Studies on the Synthesis of

Strained Azaphosphiridine Complexes and their

Reactivity towards Small Molecules

Dissertation
zur
Erlangung des Doktorgrades (Dr. rer. nat.)
der
Mathematisch-Naturwissenschaftlichen Fakultät
der
Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von
José Manuel Villalba Franco
aus
Murcia, Spanien

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter Prof. Dr. R. Streubel
2. Gutachter Prof. Dr. R. Glaum
3. Gutachter Prof. Dr. A. Lützen
4. Gutachter Prof. Dr. M. Wiese

Eingereicht am: 15.10.2015
Tag der Promotion: 7.12.2015

Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.unibonn.de/diss_online/ elektronisch publiziert

TO MY PARENTS
WHO CONSTRUCTED THE FUNDATIONS OF WHO I AM
AND
TO MY WIFE
WHO MAKES ME A BETTER PERSON

Somewhere, something incredible is waiting to be known.

Carl Sagan

Some of the results of this PhD Thesis were previously published

1. "Stimuli-Responsive Frustrated Lewis-Pair-Type Reactivity ""of a Tungsten Iminoazaphosphiridine Complex", J.M. Villalba Franco, G. Schnakenburg, T. Sasamori, A. Espinosa Ferao, R. Streubel, Chem. Eur. J. 2015, 21, 9650-9655.
2. "Unprecedented ring-ring interconversion of N,P,C-cage ligands", J.M. Villalba Franco, G. Schnakenburg, A. Espinosa Ferao, R. Streubel, Chem. Eur. J. 2015, 21, 3727-2735.
3. "Going for strain: synthesis of the first 3-imino-azaphosphiridine complexes and their conversion into oxaphosphirane complex valence isomers", J.M. Villalba Franco, T. Sasamori, G. Schnakenburg, A. Espinosa Ferao, R. Streubel, Chem. Commun. 2015, 51, 3878-3881.
4. "The azaphosphiridine to terminal phosphinidene complex rearrangement - looking for non-covalent interactions of a highly reactive species", J.M. Villalba Franco, A. Espinosa Ferao, G. Schnakenburg, R. Streubel, Chem. Commun. 2013, 49, 9648-9650.

Publications related to other works

1. "Generation of Selenium-substituted Phosphaalkenes via the 1,2- Elimination of Chlorosilanes", Takahiro Sasamori, José Manuel Villalba Franco, Jing-Dong Guo, Koh Sugamata, Shigeru Nagase, Rainer Streubel, Norihiro Tokitoh, Eur. J. Inorg. Chem. 2015, submited.
2. "Reactivity of terminal phosphinidene versus $\mathrm{Li}-\mathrm{Cl}$ phosphinidenoid complexes in cycloaddition chemistry", R. Streubel, J.M. Villalba Franco, A. Espinosa Ferao, G. Schnakenburg, Chem. Commun. 2012, 48, 5986-5988.

Conferences and workshops

1. J. M. Villalba Franco and R. Streubel, MHC-7 Deutsch-Österreichischer Workshop, Freiberg/Germany, September 19.-21. 2014: "Synthesis and reactivity of "SuperStrained" Azaphosphiridine Complexes" (Vortrag).
2. J. M. Villalba Franco, A. Espinosa Ferao and R. Streubel, $11^{\text {th }}$ European Workshop on Phosphorus Chemistry, Sofia, Bulgaria, März 24.-26. 2014: "The Azaphosphiridine to Phosphinidene Complex Rearrangement" (Poster Beitrag).
3. J. M. Villalba Franco, A. Espinosa Ferao and R. Streubel, 9th Meeting of Organoelement Chemistry, Kyoto University, Kyoto, Japan, 29-30 November 2013: "The Electrophilic Phosphinidene Complex Stabilized by Non Covalent Interactions" (Poster Beitrag).
4. J. M. Villalba Franco, A. Espinosa Ferao and R. Streubel, $48^{\text {th }}$ Meeting of Young Chemist, Tsukuba University, Japan, July 29-31, 2013: "Non Covalent Interactions of a Transient Electrophilic Terminal Phosphinidene Complex" (Poster Beitrag).
5. J. M. Villalba Franco, A. Espinosa Ferao and R. Streubel, Kyoto University, Kyoto Japan, July $12^{\text {th }}$ 2013: "Complexes with novel N, P, C-heterocyclic cage ligands derived from an azaphosphiridine complex" (Vortrag beim Arbeitskreis Prof. N. Tokitoh).
6. J. M. Villalba Franco, R. Streubel, MHC-6 PhD Workshop, Bonn/Germany, April 5-7, 2013: " N, P, C heterocyclic cage complexes derived from an azaphosphiridine complex" (Vortrag).
7. J. M. Villalba Franco, R. Streubel, 10th European Workshop on Phosphorus Chemistry, Regensburg/Germany, March 18.-20., 2013: "Complexes with novel N,P,C-heterocyclic cage ligands derived from an azaphosphiridine complex" (Vortrag).
8. J. M. Villalba Franco, R. Streubel, AC Kolloquium, University of Bonn, Bonn, Germany, 31.01.2013: "Complexes with novel N,P,C-heterocyclic cage ligands" (Vortrag).
9. J. M. Villalba Franco, R. Streubel, The 13th International Symposium on Inorganic Ring Systems, Victoria/Canada, July 29 to August 2. 2012: "Novel P,N cage ligands via rearrangement of azaphosphiridine complexes" (Poster Beitrag).
10. J. M. Villalba Franco, C. Murcia, V. Nesterov, R. Streubel, 9th European Workshop on Phosphorus Chemistry, Rennes/France, March 22.-24. 2012: "P-Functional azaphosphiridine and oxaphosphirane complexes" (Poster Beitrag).
11. J. M: Villalba Franco, R. Streubel, SFB 813 Winter School 2012 on Electrochemistry, Hirschegg/Österreich, Februar 22-26. 2012: "Novel P,N-cage complexes with "strange" NMR properties", (Poster Beitrag).
12. J. M. Villalba Franco, A. Espinosa Ferao, R. Streubel, 5. Deutsch-Österreichischer Mitarbeiter-Workshop, Graz/Österreich, September 23.-25. 2011: "Azaphosphiridine complexes: Synthesis and mechanistic considerations", (Vortrag).
13. J. M. Villalba Franco, R. Streubel, 8th European Workshop on Phosphorus Chemistry, Münster/Germany, March 28.-29. 2011: "Synthesis and ring expansion of 3-thienylsubstituted 2H-azaphosphirene and azaphosphiridine tungsten complexes", (Poster Beitrag).
14. J. M. Villalba Franco, R. Streubel, MHC-4 Deutsch-Österreichischer MitarbeiterWorkshop, Blaubeuren/Germany, September 24.-26. 2010: "Surprising competitive formation of an azaphosphiridine complex and a bicyclic azaphospholene complex", (Vortrag).

Die vorliegende Arbeit wurde im Zeitraum von Januar 2011 bis Juli 2015 im Arbeitskreis von Prof. Dr. R. Streubel am Institut für Anorganische Chemie der Rheinischen Friedrich-Wilhelms-Universität in Bonn angefertigt.

Hiermit versichere ich, dass ich diese Arbeit selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Danksagung

Bei Herrn Prof. Dr. Rainer Streubel bedanke ich mich herzlich für die Themenstellung, die hervorragenden Arbeitsbedingungen, seine wertvollen Ratschläge und Anregungen, die großzügige Bereitstellung von Mitteln zur Anfertigung dieser Arbeit, sowie das Ermöglichen meiner Auslandsaufenthalte und der Teilnahme an diversen Tagungen.

Bei Herrn Prof. Robert Glaum bedanke ich mich herzlich für sein Interesse und die Übernahme des Koreferates.

Herrn Prof. Norihiro Tokitoh und Prof. Takahiro Sasamori danke ich für die freundliche Aufnahme in seiner Arbeitsgruppe in der Institute for Chemical Research, Kyoto University. Darüber hinaus danke ich allen Mitarbeitern der Arbeitsgruppe für die gute Zusammenarbeit, insbesondere Dr. Koh Sugamata für die Einarbeitung in die Phosphenium-Kationenchemie, sowie Dr. Hideaki Miyake, Dr. Tomohiro Agou und Dr. Yoshiyuki Mizuhata für die Lösung von alltäglichen technischen Schwierigkeiten. Prof. Takahiro Sasamori und seine Familie danke ich für ihre Freundschaft.

Prof. Arturo Espinosa Ferao und Prof. Takahiro Sasamori danke ich für die theoretischen Untersuchungen und für die Anregungen und vielen Diskussionen.

Für die Anfertigung von Einkristallröntgenstrukturanalysen gilt mein Dank Herrn Dr. Gregor Schnakenburg, Frau Charlotte Rödde und Prof. Takahiro Sasamori.

Weiterhin danke ich allen Mitarbeitern der Zentralanalytik der Chemischen Institute. Vor allem geht mein Dank für die Aufnahme zahlreicher Spektren und die Durchführung der NMR-Sondermessungen an Frau Karin Prochnicki. Darüber hinaus danke ich Frau Hannelore Spitz, Frau Ulrike Weynand für die Aufnahme von NMR-Spektren. Herrn Claus Schmidt und Frau Dr. Senada Nocinovic danke ich für viele hilfreiche Diskussionen und Anregungen. Frau Christine Sondag und Frau Dr. Marianne Engeser danke ich für die Aufnahme von MSSpektren, Frau Anna Martens für die Durchführung der Elementaranalysen sowie den Mitarbeitern des Chemikalienlagers, Glasbläserei, der Mechanik- und der Elektrowerkstatt.

Mein Dank gilt auch allen aktuellen und vorherigen Mitarbeiter des AK Streubel: Gerd von Frantzius, Aysel Özbolat-Schön, Holger Helten, Maren Bode, Stefan Fankel, Christian Schulten, Janaina Marinas Pérez, Carolin Albrecht, Vitaly Nesterov, Lili Duan, Susanne Sauerbrey, Melina Klein, Andreas Kyri, Paresh Kumar Majhi, Abhishek Koner, Jan Faßbender, Imtiaz Begum, Cristina Murcia García und Tobias Heurich für die hervorragende Zusammenarbeit und auch für die ausserhalb des Labors vorhandene Unterstützung.

Außerdem danke ich auch allen ACF- und Bachelor-Praktikanten, die mich bei meiner Arbeit unterstützt haben.

Mein besonderer Dank gilt meinen Eltern und meine Ehefrau, Marianna, die mich ständig unterstützt haben.

Table of Contents

1. Introduction 1
1.1. Low-coordinate phosphorus compounds 1
1.2. Phosphinidene complexes 2
1.3. M / X phosphinidenoid complexes in heterocyclic chemistry 5
1.4. Azaphosphiridines and their complexes 7
2. Aim of the thesis 12
3. Complexes with $\mathbf{N}, \mathbf{P}, \mathbf{C}$-cage ligands 13
3.1. P,C-Cage ligand complexes having further heteroatoms 13
3.2. N,P,C-Cage complexes via reaction of a P-Cp* substituted $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complex with carbaldimines 14
3.2.1. Low temperature rearrangement of azaphosphiridine complexes to $\mathrm{N}, \mathrm{P}, \mathrm{C}$-cage complexes 15
3.2.2. Trapping reaction with phenyl acetylene 20
3.3. N,P,C-Cage complexes via reaction of a P-Cp* substituted terminal electrophilic phosphinidene complex with aldimines 21
3.4. Ring-ring interconversion of $\mathrm{N}, \mathrm{P}, \mathrm{C}$-cage ligands 30
4. 3-Imino-azaphosphiridine complexes 34
4.1. Introduction 34
4.1.1. Ring strain energy in three-membered rings 34
4.1.2. 3-Imino substituted 3-membered heterocycles 36
4.1.3. Frustrated Lewis pairs and small molecule activation 37
4.2. Synthesis of 3-imino-azaphosphiridine complexes 39
4.3. Studies on the decomposition pattern of 3-imino-azaphosphiridine complexes in solution 44
4.4. Reactivity of 3-Imino-azaphosphiridine complexes 46
4.4.1. Examples for a substrate stimuli-responsive masked FLP-type reactivity 46
4.4.1.1. Ring opening reaction with water 46
4.4.1.2. Reaction with isocyanates and bis-isocyanates 53
4.4.1.3. Reaction with carbon dioxide 57
4.4.1.4. Reaction with pentafluorobenzaldehyde 61
4.4.2. Examples as electrophilic phosphinidene complex transfer reagent 64
4.4.2.1. Reaction with carbon monoxide 64
4.4.2.2. Reaction with benzaldehyde 68
4.4.2.3. Reaction with dicyclohexyl carbodiimide 70
4.4.2.4. Reaction with isonitriles 72
4.4.3. Chalcogen atom insertion reactions into the endo $\mathrm{P}-\mathrm{C}$ bond 76
4.4.3.1. Sulfur insertion 76
4.4.3.2. Selenium insertion 78
5. Summary 81
6. Experimental part 92
6.1. General procedures 92
6.1.1. Analytical methods 92
6.1.2. Purchased reagents and solvents 94
6.1.3. Reactants synthesized according to published procedures 94
6.1.4. Working procedure and chemical waste 95
6.2. Reaction of $P-\mathrm{Cp}^{*}$ substituted $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complex $\mathbf{2}$ with aldimines 3a-f. 95
6.2.1. General procedure for the reaction of $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complex with aldimines 95
6.2.2. Synthesis of pentacarbonyl[6-(furan-2-yl)-2,3,4,5,7,8-hexamethyl-7-aza-1- phosphatricyclo[3.2.1.0 ${ }^{2,8}$]oct-3-ene-кP]tungsten(0) complex (4b) 95
6.3. Synthesis pentacarbonyl[5-(furan-2-yl)-1,4,6,7,8,9-hexamethyl-2-phenyl-4-aza-3- phosphatetracyclo[4.3.0.1 $1^{3,9} .0^{2,10}$]dec-8-ene-кP]tungsten(0) complex (12b) (route a) 96
6.4. Formation of complexes 15a-f 97
6.4.1 General procedure for the formation of complexes 15a-f 97
6.4.2 Synthesis of pentacarbonyl[7-(4-trifluoromethylphenyl)-2,3,4,5,6,8-hexamethyl-8- aza-1-phosphatricyclo[3,3,0,0 2,6]oct-3-ene-кP]tungsten(0) complex (15f) 98
6.5. Synthesis pentacarbonyl[5-(furan-2-yl)-1,4,6,7,8,9-hexamethyl-2-phenyl-4-aza-3- phosphatetracyclo[4.3.0.1 ${ }^{3,9} \cdot 0^{2,10}$]dec-8-ene-кP]tungsten(0) complex (12b) (route b) 98
6.6. Synthesis pentacarbonyl[1,4,6,7,8,9-hexamethyl-2-phenyl-5-(4- trifluoromethylphenyl)-4-aza-3-phosphatetracyclo[4.3.0.1 ${ }^{3,9} .0^{2,10}$]dec-8-ene- κ Р]tungsten(0) complex (12f,f') 99
6.7. Synthesis of pentacarbonyl[3-(furan-2-yl)-2,4,5,6,7,9-hexamethyl-8-phenyl-2,9-diaza- phosphatricyclo[5.2.1.0 ${ }^{4,10}$]dec-5-ene-кP]tungsten(0) complex (17) 99
6.8. Synthesis of imino azaphosphiridine complexes 21a,b,22a,b 100
6.8.1. General procedure for the synthesis of imino azaphosphiridine complexes 21a,b,22a,b 100
6.8.2. Synthesis of [pentacarbonyl\{(1-isopropyl-3-isopropylimino-2-(triphenylmethyl)-
1,2-azaphosphiridine-кP\}tungsten(0)] (21a) 101
6.8.3 Synthesis of [pentacarbonyl\{(1-isopropyl-3-isopropylimino-2-(1,2,3,4,5- pentamethylcyclopentadienyl)-1,2-azaphosphiridine-кP\}tungsten(0)] (22a) 101
6.8.4. Synthesis of [pentacarbonyl\{(1-cyclohexyl-3-cyclohexylimino-2-(1,2,3,4,5- pentamethylcyclopentadienyl)-1,2-azaphosphiridine-кP\}tungsten(0)] (22b) 102
6.9. Synthesis of complexes 28a,b,29a,b 102
6.9.1. General procedure for the synthesis of complexes $\mathbf{2 8} \mathbf{a}, \mathbf{b}, \mathbf{2 9 a}, \mathbf{b}$ 102
6.9.2. Synthesis of [pentacarbonyl\{(isopropylamino)(isopropyliminio)methyl (triphenylmethyl)phosphinite-кP\}tungsten(0)] (28a) 103
6.9.3. Synthesis of [pentacarbonyl\{(isopropylamino)(isopropyliminio)methyl (1,2,3,4,5- pentamethylcyclopentadienyl)phosphinite-кP\}tungsten(0)] (29a) 103
6.9.4. Synthesis of [pentacarbonyl\{(cyclohexylamino)(cyclohexyliminio)methyl(1,2,3,4,5- pentamethylcyclopentadienyl)phosphinite-кP\}tungsten(0)] (29b) 104
6.10. Synthesis of [pentacarbonyl\{trifluoro(((isopropylamino)(isopropyliminio)- methyl)(trityl)phosphinooxy)borate-кP\}tungsten(0)] (33) 104
6.11 Synthesis of [pentacarbonyl\{4-isopropyl-3-isopropylimino-5-phenylimino-2- triphenylmethyl-1,3,5-oxazaphospholidine-кP\}tungsten(0)] (35) 105
6.12 Synthesis of 1,3,5-triphenyl-1,3,5-triazinane-2,4,6-trione (36) 106
6.13. Synthesis of $\left[\mathrm{N}^{1}, \mathrm{~N}^{4}\right.$-bis\{pentacarbonyl[4-isopropyl-3-isopropylimino-2- triphenylmethyl-1,4,2-oxazaphospholidine-5-yl]-kP\}tungsten(0)]benzene-1,4-diimine] (38) 106
6.14. Synthesis of [pentacarbonyl\{4-isopropyl-3-isopropylimino-5-one-2-triphenylmethyl-1,3,5-oxazaphospholidine-кP\}tungsten(0)] (39)107
6.15. Synthesis of [pentacarbonyl\{4-isopropyl-3-isopropylimino-5-pentafluoro-phenyl-2- triphenylmethyl-1,4,2-oxazaphospholidine-кP\}tungsten(0)] (44) 108
6.16. Synthesis of [pentacarbonyl\{1-isopropyl-4-(isopropylimino)-3-triphenylmethyl-1,3- azaphosphetidin-2-one-кP\}tungsten(0)] (45) 109
6.17. Synthesis of [2-triphenylmethyl-3-phenyl-oxaphosphirane- κ]]pentacarbonyltungsten(0) (50) 109
6.18. Synthesis of isocyanide-to-phosphinidene tungsten(0) complexes adduct 26b,c 110
6.18.1. General procedure for the synthesis of isocyanide-to-phosphinidene tungsten(0) complexes 26b,c 110
6.18.2. Synthesis of [pentacarbonyl\{(tert-butyl-isocyanide-кC-to- P)(triphenylmethylphosphanylidene)- $\mathrm{\kappa P}$ \}tungsten(0)] (26b) 110
6.18.3. Synthesis of [pentacarbonyl\{ n-butyl-isocyanide-кC-to- $\mathrm{P})$ (triphenylmethylphosphanylidene)-kP\}tungsten(0)] (26c) 110
6.19. Synthesis of [pentacarbony|\{3-isopropyl-4-(isopropylimino)-2-triphenylmethyl-1,3,2- thiazaphosphetidin-кP\}tungsten(0)] (54) 111
6.20. Synthesis of [pentacarbonyl\{3-isopropyl-4-(isopropylimino)-2-triphenylmethyl-1,3,2- selenazaphosphetidin-кP\}tungsten(0)] (58) 111
7. References 113
8. Appendix 121
9. Curriculum Vitae 195

Chemical abbreviations:

12-c-4	12-crown-4
AIM	Atoms-In-Molecules
Ar	Aryl
aver.	Average
BCP	Bond Critical Point
BDE	Bond Dissociation Energy
dmp	2,6-Dimesitylphenyl
dtbpe	1,2-bis(di-tert-butylphosphanyl)ethane
Bu	Butyl
c	Cyclo
can	Canonical
conf.	Configuration
Cp	Cyclopentadienyl
Cp*	1,2,3,4,5-Pentamethylcyclopentadienyl
Cy	Cyclohexyl
DFT	Density Functional Theory
E	Heteroatom or Energy
Et	Ethyl
Fc	Ferrocene or ferrocenyl
FLP	Frustrated Lewis Pair
Fur	Furyl
G(r)	Lagrange kinetic energy
$\Delta \mathrm{G}^{\neq}{ }_{\mathrm{c}}$	Free activation energy at coalescence temperature
HB	Hydrogen Bond
HMPT	Hexamethyl phosphorus triamide
HOMO	Highest Occuped Molecular Orbital
J	Coupling constant
Kc	Rate constant
LA	Lewis Acid
LB	Lewis Base
LBO	Löwdin Bond Order
LDA	Lithium diisopropylamide
LUMO	Lowest Unoccupied Molecular Orbital
M	Metal
Me	Methyl
Mes	Mesityl (2,4,6-trimethylphenyl)
Mes*	Super mesityl (2,4,6-tritertbutylphenyl)
MBO	Mayer Bond Order
MS	Mass Spectrometry
n	normal

NBO	Natural Bond Orbital
NCI	Non-Covalent Interaction
NMR	Nuclear Magnetic Resonance
OTf	Triflate
Ph	Phenyl
iPr	iso-Propyl
Res	Resonance
RCP	Ring Critical Point
RDG	Reduced Density Gradient
RSE	Ring Strain Energy
solv.	Solvent
SOPT	Second Order Perturbation Theory
$t, t e r t$	Tertiary
Tc	Coalescence temperature
TfOH	Triflic acid
Th	Thienyl
THF	Tetrahydrofurane
TS	Transition State
WBI	Wiberg Bond Index
X	Halogen

Units:

\AA	Angstrom
a_{o}	Bohr Radius
${ }^{\circ}$	Angle degree
cm	Centimetre
${ }^{\circ} \mathrm{C}$	Degree Celsius
e	electron
eV	Electron volt
Hz	Hertz
kcal	Kilocalories
mg	milligram
mL	Millilitre
mmol	Millimol
ppm	Parts per million
pm	Picometre

Analyticals abbreviations:

$\mathrm{Br} \quad$ Broad

Calcd. Calculated
d Doublet or bond length

EI	Electronic Impact
ESI	Electrospry Ionization
IR	Infra Red
m	Multiplet
m / z	Mass to charge ratio
q	Quintet
r.t.	Room Temperature
s	Singlet
Sat	Satellites
sep	Septet
t	Triplet
w	Weak
$\Delta \nu_{o}$	Difference in Hz between resonances
$\rho(r)$	Electron density
δ	Chemical shift
\tilde{u}	Wave number

1. Introduction

1.1. Low-coordinate phosphorus compounds

As asserted by Scherer and Regitz in their renowned book Multiple Bonds and Low Coordination in Phosphorus Chemistry "the preparation of HCP (phosphaacetylene) I ${ }^{[1]}$ by Gier and $\mathrm{Me}_{3} \mathrm{P}=\mathrm{P}-\mathrm{CF}_{3}{ }{ }^{[2]}{ }^{[2]}$ by Burg and Mahler in 1961, although being unstable under ambient conditions, provided the starting point for a second heyday of phosphorus chemistry, namely the chemistry of low-coordinate phosphorus compounds" (Scheme 1.1.1.). ${ }^{[3]}$

I

II

Scheme 1.1.1. Phosphaacetylene I and $\mathrm{P}^{\mathrm{V}}, \mathrm{P}$ PII diphosphene II.
$\sigma^{2} \lambda^{3}$-Phosphorus derivatives, where σ and λ stand for coordination and oxidation number respectively, are often compared to their C-C carbon analogous. The fact that phosphorus is reluctant to hybridize is due to the weak overlap between 3 s and $3 p$ atomic orbitals (AO). ${ }^{[3]}$ This weak hybridization implies that the orbital which describes the phosphorus lone pair, for example in $\mathrm{HP}=\mathrm{CH}_{2}$, is not the highest in energy and features a very high 3s character (66% of the 3 s atomic orbital and 34% of the 3 p atomic orbital). These data are not specific to phosphaalkenes, and other low-coordinate phosphorus compounds display similar properties. As a consequence, the basicity of the lone pair is very low in low-coordinate phosphorus derivatives. ${ }^{[4]}$ Due to the fact that the $\mathrm{P}=\mathrm{C} \pi$-bond strength (in $\mathrm{CH}_{2}=\mathrm{PH}$) is ca. $20 \mathrm{Kcal} / \mathrm{mol}$ weaker than that of the olefinic system $\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right),{ }^{[4]}$ most of these low-coordinate phosphorus compounds require kinetic stabilization to prevent oligomerization and be isolated. For example Mes* $\mathrm{P}=\mathrm{CH}_{2}$ (Mes* $=2,4,6$-tris-tert-butylbenzene) could be isolated in the group of Appel thanks to the kinetic stabilization provided by the bulky Mes* group. ${ }^{[5]}$ Thermodynamic stabilization can be achieved by introducing the $\mathrm{P}=\mathrm{C}$ bond in a delocalized system as shown by Dimroth and Hoffmann in 1964 with the preparation of the first example of a stable two-coordinated, three valent phosphorus atom, the phosphamethine cyanine
cation III, ${ }^{[6]}$ by Märkl with the 2,4,6-triphenylphosphinine IV $^{[7]}$ in 1966 and by Ashe with the parent phosphabenzene $\mathbf{V}^{[8]}$ in 1971.

Scheme 1.1.2. Phosphamethine cyanine cation III, 2,4,6-triphenylphosphabenzene IV and phosphabenzene V.

Among the low-coordinate phosphorus compounds, phosphinidenes ${ }^{[9-11]}$ are unique since they carry only a singly, σ-bonded substituent at the phosphorus atom. They are related with carbenes, ${ }^{[12]}$ nitrenes ${ }^{[13]}$ and silylenes ${ }^{[14]}$ and, hence, can exist as singlet and triplet species depending on its substituent. Alike the parent carbene $\left(\mathrm{H}_{2} \mathrm{C}\right)$ and nitrene (HN) and in contrast to silylene ($\mathrm{H}_{2} \mathrm{Si}$), the parent phosphinidene (HP) (according to IUPAC: phosphanediyl) largely prefers the triplet ground state. Alkyl or aryl substitution does not have a large influence on its ground state, while addition of a transition metal complex lead to a phosphinidene complex, which can exist as nucleophilic or electrophilic species.

1.2. Phosphinidene complexes

According to a proposal of Mathey, ${ }^{[11]}$ electrophilic phosphinidene complexes can be seen as a combination of a singlet phosphinidene and a singlet transition metal moiety and, hence it has been related to the corresponding Fischer-type carbene complexes. The nucleophilic species can be considered as a combination of a triplet phosphinidene with a triplet transition metal moiety leading to a genuine $\mathrm{P}=\mathrm{M}$ double bond with the more electronegative phosphorus atom carrying the negative charge and a LUMO that is mainly located at the metal center. ${ }^{[15]}$ They have been related, for their part, to the Schrock-type carbene complexes (Figure 1.2.1). ${ }^{[16]}$

Fischer-type

Electrophilic

Schrock-type

Nucleophilic

Figure 1.2.1. Representation of the electronic structures of electrophilic and nucleophilic terminal phosphinidene complexes (according to Mathey). ${ }^{[17]}$

The most characteristic reactions of the nucleophilic species are the phospha-Wittig reaction with carbonyl compounds ${ }^{[18]}, 1,2$-additions of protic reagents ${ }^{[19]}$, and $[2+2]$ cycloadditions with alkynes (Scheme 1.2.1). ${ }^{[20]}$

Scheme 1.2.1. Typical reactivity of nucleophilic terminal phosphinidene complexes. ${ }^{[17]}$

Since the first report of a transient electrophilic terminal phosphinidene pentacarbonylmetal(0) complex IX (Scheme 1.2.3), generated from 7-phosphanorbornadiene complexes (VI) ${ }^{[21]}$ (Scheme 1.2.2) in toluene at about $110{ }^{\circ} \mathrm{C}$ (or at $55^{\circ} \mathrm{C}$ if the reaction is performed in presence of CuCl$),{ }^{[22]}$ these highly reactive species have been established as important $R P_{1}$ building blocks in organometallic synthesis. ${ }^{[9-11][23]}$ Since then, several attempts have been made to develop methodologies to generate them in solution under milder conditions while keeping their high reactivity. In this regard, 2 H -azaphosphirene (VII) ${ }^{[24-26]}$ and benzophosphepine (VIII) ${ }^{[27]}$ complexes (Scheme 1.2.2) were shown to be useful precursors for XIX at about $45-75^{\circ} \mathrm{C}$ and $75-80^{\circ} \mathrm{C}$ respectively.

$\mathrm{VI}{ }^{[20]}$

VII ${ }^{[25,26]}$

VIII ${ }^{[27]}$

Scheme 1.2.2. Commonly used electrophilic phosphinidene transfer reagents VI, ${ }^{[21]} \mathbf{V I I},{ }^{[25,26]}$ VIII ${ }^{[27]}$ ($\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W} ; \mathrm{R}=$ alkyl or aryl).

It was then shown that transient P-amino phosphinidene complexes $\mathbf{X}^{[28]}$ can be obtained via cycloreversion of phosphirane complexes at temperatures of about $70-90^{\circ} \mathrm{C}$. P Amino phosphinidene iron complex $\mathbf{X I}$, stable at room temperature, represented a breakthrough. However, strong back-donation from the iron and the additional intramolecular N-donor centre led to over-stabilization and, hence, loss of reactivity. ${ }^{[29]}$ More recently, this quandary was solved to some extent as tetracarbonyliron(0) phosphinidene complexes of type \mathbf{X} displayed a somewhat reduced phosphinidene complex reactivity in intermolecular ${ }^{[30]}$ reactions, but which appeared to be enhanced for intramolecular ${ }^{[31]}$ processes. Recently, a different strategy was reported using trileptic cationic phosphinidene metal(I) complexes ${ }^{[32]}$ possessing cyclopentadienyl (Cp) or 1,2,3,4,5-pentamethylcyclopentadienyl (Cp*) ligands (XII), thus taking advantage of effective π-donor ligand effects. Stable, neutral, electrophilic phosphinidene vanadium ${ }^{[33]}$ and niquel ${ }^{[34]}$ complexes were prepared via halide abstraction from $\mathrm{Cl}_{2} \mathrm{PNR}_{2}$ and $[\mathrm{Na}]_{2}\left[\mathrm{CpV}(\mathrm{CO})_{3}\right]$ or deprotonation of cationic phosphido Ni complex ([(dtbpe)Ni\{P(H)(dmp)\} $\left.\left.\}^{+}\right]\left[\mathrm{PF}_{6}^{-}\right]\right)$respectively.

IX

XI

X

XII

Scheme 1.2.3. Terminal phosphinidene complexes IX-XII ($M=$ transition metal, $R=$ alkyl, aryl, amino group in XI = tris-(pyrazolyl)borato).

1.3. M / X phosphinidenoid complexes in heterocyclic chemistry

Already in 1985 Huttner visualized the synthetic potential of a species generated by a lithium/halogen exchange in a dichloro(organo)phosphane complex. Attempts where performed on dichloro(organo)phosphane complexes having sterically demanding organo substituents such as t-butyl, c-hexyl, or $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCH}_{2}$ using methyl lithium or n-butyl lithium as base but, here, only substitution reaction where obtained. When the size of the base was increased and t-butyl lithium was used, the result of the reaction was either a mixture of nonidentified products or dinuclear phosphinidene complexes, depending on the transition metal. Although it could neither be isolated nor directly observed, a lithium/halogen exchange product was proposed as reactive intermediate. ${ }^{[35]}$ Two decades later, a fluorophosphido tungsten(0) complex was proposed by Mathey to be generated in the reaction of 7phosphanorbornadiene with cesium fluoride which readily reacted with another molecule of 7-phosphanorbornadiene forming a P-fluoro diphosphine complex. ${ }^{[36]}$ An efficient methodology to achieve a lithium/halogen exchange in a dichloro(organo)phosphane complex was then reported in 2007 by Streubel. ${ }^{[37]}$ Nowadays, such structures are named as Li/Cl phosphinidenoid complexes ${ }^{[37]}$ among the scientific community. Meanwhile, this new and unique class of transition metal coordination compounds having unusual anionic P-ligands with a dicoordinate phosphorus atom and a bulky organic substituent such as bis(trimethylsilyl)methyl ${ }^{[38]}$ (bisyl), 1,2,3,4,5-pentamethylcyclopentadienyl ${ }^{[39]}$ (Cp^{*}) or triphenylmethyl ${ }^{[40]}$ (trityl) can be obtained (in some cases) bearing electron-withdrawing groups at phosphorus such as an halogen, ${ }^{[44]}$ cyano, ${ }^{[42]}$ alkoxide, ${ }^{[43]}$ or amido. ${ }^{[44]}$ Out of these four types of phosphinidenoid complexes, the Li/Cl derivatives XV have shown to be the most synthetically useful, because of their easy preparation and high reactivity. Chlorine/lithium exchange of dichloro(organo)phosphane complexes XIII using tert-butyl lithium or deprotonation of chloro(organo)phosphane complexes XIV with lithium diisopropylamide (LDA), in the presence of [12]crown-4 at low temperatures $\left(-78^{\circ} \mathrm{C}\right)$ in ethereal solvents have appeared as the two successful routes for the generation of these reactive intermediates. As well as M / X carbenoids resemble the reactivity of carbenes, ${ }^{[45]}$ a multitude of examples have shown a similar parallelism of $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes and terminal electrophilic phosphinidene complexes in cycloaddition chemistry. For example, $\sigma^{3} \lambda^{3}$-oxaphosphirane complexes XVI, which were first reported by Mathey in 1990 by epoxidation of phosphaalkene complexes, ${ }^{[46]}$ can be also obtained via reaction of an electrophilic terminal phosphinidene
complex generated thermally from 2 H -azaphosphirene complex with aldehydes, ${ }^{[26]}$ or via a Li/Cl phosphinidenoid complex with the same substrates. ${ }^{[38,47,48]}$ Additionally, this so-called "low-temperature" route turned out to be extremely efficient because of its high yield and high functional group tolerance thus, in some cases, making the $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complex synthetically superior to the electrophilic phosphinidene complex in ring forming reactions. In the same vein, $1,2 \lambda^{3}$-azaphosphiridine complexes XVII having the bisylgroup at phosphorus can be synthesized making use of the electrophilic terminal phosphinidene complex and aromatic carbaldimines ${ }^{[99]}$ as well as by reaction of $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complex and the same substrates. ${ }^{[50]}$ Synthesis of $1,2 \lambda^{3}$-azaphosphiridine complexes having the Cp * group at phosphorus has been one of the main objectives in this PhD thesis, which will be denoted hereafter as azaphosphiridines for simplicity. Nevertheless, occasionally different reactivity of these two kinds of reactive intermediates was observed toward the same substrates (Scheme 1.3.1). ${ }^{[1]}$

XVII
For oxaphosphirane complexes XVI: $\mathrm{R}^{1}=\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}{ }^{[37,47]} \mathrm{Cp}^{*},{ }^{[38,48]} \mathrm{CPh}_{3}{ }^{[40]}$;
$\mathrm{R}_{2}, \mathrm{R}_{3}=\mathrm{H}$, aryl, alkyl
For azaphosphiridine complexes XVII: $\mathrm{R}^{1}=\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}{ }^{[50]}$
$\mathrm{Ar}^{[50]}=$ pheny, 2-furyl, 3-furyl, 2-thienyl, 2-(N-methylpirryl), ferrocenyl

Scheme 1.3.1. Generation of phosphinidenoid complex XV and formation of oxaphosphirane complex XVI and azaphosphiridine complex XVII.

1.4. Azaphosphiridines and their complexes

Three-membered heterocycles including one (XVIII) or two (XIX) heteroatoms such as oxygen, nitrogen or sulfur (Scheme 1.4.1) are very well known as versatile building blocks in organic synthesis. ${ }^{[52]}$ Although related P-heterocycles, such as oxaphosphiranes (XX) ${ }^{[53]}$ and azaphosphiridines (IV) ${ }^{[54]}$ having four- and/or five-coordinate phosphorus centers received early attention in the late 1970s and early 1980s, reports on derivatives with a threecoordinate phosphorus center are still scarce for $\mathbf{X X I}{ }^{[55]}$ or even unknown for XX. Recently, computational studies on $\mathbf{X X}{ }^{[56]}$ and $\mathbf{X X I}{ }^{[57]}$ on the relative energies of the three-membered heterocycle and its isomers (and their $\mathrm{Cr}(\mathrm{CO})_{5}$ in case of $\mathbf{X X}$ and $\mathbf{X X I}$), the ring stability towards valence isomerization, and the ring strain, as well as the kinetics and thermodynamics of possible ring-opening reactions of $\mathrm{P}(\mathrm{III})$ (and $\mathrm{P}(\mathrm{V})$ chalcogenides for $\mathbf{X X I}$) derivatives, were reported.

Scheme 1.4.1. Three-membered rings having one (XVIII) or two (XIX) heteroatoms such as oxaphosphiranes (XX) and azaphosphiridines (XXI).

The question of electrocyclic ring opening and closing of symmetrical three-membered P-heterocycles was explored theoretically by Schoeller, ${ }^{[3]}$ (Scheme 1.4.2) focusing on the thermochemistry of the $\mathrm{E}-\mathrm{E}$ bond breaking and bond forming reactions, and the influence of substituents at E and P as being largely responsible for the relative stabilities of the rings with respect to their acyclic isomers, the bis(ylene)phosphoranes. Schoeller theoretically showed that species XXIIb,c,f tend to be more stable in form of their open valence isomers than as three-membered rings. ${ }^{[3]}$ Experimentally, Niecke ${ }^{[58]}$ studied the diazaphosphiridine system and demonstrated that the closed form can be obtained if bulky substituent such as tert-butyl are used at N atom.

XXII
XXIII

$$
\mathrm{E}=\mathrm{CH}_{2}(\mathrm{a}), \mathrm{O}(\mathrm{~b}), \mathrm{NH}(\mathrm{c}), \mathrm{SiH}_{2}(\mathrm{~d}), \mathrm{PH}(\mathrm{e}), \mathrm{S}(\mathrm{f})
$$

Scheme 1.4.2. Electrocyclic ring opening/closure for symmetrical three-membered phosphorus heterocycles according to Schoeller. ${ }^{[3]}$

The first example of an azaphosphiridine XXVIII was reported by Niecke in 1981. There, diisopropylamino(tert-butylimino)phosphane XXIV reacted with 1-diazo-2,2-dimethylpropane XXV to give the λ^{3}-triazaphospholene XXVI upon [2+3]-cycloaddition. The elimination of N_{2} from XXVI leads to the corresponding imino(methylene)phosphorane XXVII. Then, valence isomerization of XXVII occurred yielding the final three-membered heterocycle XXVIII. This compound possesses a ${ }^{31} \mathrm{P}$ NMR chemical shift of -73.3 ppm , and was described to be a colorless liquid with a boiling point of $53-55^{\circ} \mathrm{C}$ (0.01 torr)(Scheme 1.4.3). ${ }^{[55]}$

Scheme 1.4.3. Niecke's synthesis of $1,2 \lambda^{3}$-azaphosphiridine XXVIII. ${ }^{[55]}$

A second example was reported by Majoral and co-workers in 1989. In this case, addition of two equivalents of lithium bis(trimethylsilyl)amide XXX to the C, C^{\prime}-dichloro phosphaalkene XXIX in THF at $-70^{\circ} \mathrm{C}$ led to the phosphaalkene XXXI ($\delta^{31} \mathrm{P}=+95$). However, XXXI rearranged to the azaphosphiridine XXXIII which was obtained as a mixture of two isomers ($\delta^{31} \mathrm{P}=-49.5$ and -47.4) (Scheme 1.4.4). ${ }^{[59]}$

$$
R=\mathrm{SiMe}_{3},{ }^{\mathrm{t}} \mathrm{Bu}
$$

Scheme 1.4.4. Majoral's synthesis of $1,2 \lambda^{3}$-azaphosphiridine XXXIII. ${ }^{[59]}$

The azaphosphiridine metal complex XVIIa was the first example ever to be reported (Streubel, 1997) using the reaction of the electrophilic terminal phosphinidene complex XXXV, generated thermally from the $2 H$-azaphosphirene complex XXXIV, and benzylidene(methyl)amine XXXVIa. ${ }^{[49]}$ Later, Lammertsma and co-workers reported strong experimental ${ }^{[60]}$ and computational ${ }^{[61]}$ evidence for the intermediacy of azaphosphiridine complexes in thermal reactions of 7-phosphanorbornadiene complexes with imines, thus confirming the proposal by Mathey and co-workers made earlier in case of P - Ph and $P-\mathrm{Me}$ derivatives. ${ }^{[62]}$ Recently, in 2010, a new methodology for the synthesis of this kind of threemembered heterocycles was developed using a Li/Cl phosphinidenoid metal(0) complex (XV) as the reactive intermediate in reaction with aldimines (XXXVIa-c) (Scheme 1.4.4). ${ }^{[50]}$ Depending on the aryl substituent of the azaphosphiridine tungsten (0) complexes they display
${ }^{31}$ P NMR chemical shifts between -35 and -41 ppm and ${ }^{1}{ }^{\prime} / \mathrm{p}, \mathrm{P}$ coupling constants between 265 and 272 Hz (Scheme 1.4.4).

Scheme 1.4.4. Synthesis of azaphosphiridine tungsten(0) complexes XVIIa-f via reaction of an electrophilic phosphinidene complex (top) or a phosphinidenoid complex (bottom) with aldimines. ${ }^{[50,51]}$

Azaphosphiridine tungsten(0) complexes XVIIa,d, were shown to undergo regioselective ring expansion reactions with trifluoromethane sulfonic acid in the presence of dimethyl cyanamide, followed by deprotonation with triethylamine, thus leading to 1,3,4$\sigma^{3} \lambda^{3}$-diazaphosphol-2-ene complexes (XXXIX) (Scheme 1.4.5). ${ }^{[50]}$

Scheme 1.4.5. Ring expansion reaction of complexes XVIIa,d. ${ }^{[50]}$

2. Aim of the thesis

The objective of this PhD Thesis was to build up a three-membered ring system containing phosphorus, carbon and nitrogen atoms, namely azaphosphiridines, which would exhibit higher reactivity than those azaphosphiridine systems reported before, and to study its ability to react with various, rather unreactive small molecules. This objective was approached from two different angles: i) the employment of a phosphorus bound pentamethyl cyclopentadienyl ($\mathrm{Cp}{ }^{*}$) group and ii) the presence of an exocyclic imino bond at the ring carbon atom.

3. Complexes with N,P,C-cage ligands

In this chapter a comparative study on the reactivity of $P-\mathrm{Cp}^{*}$ substituted terminal phosphinidene and $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes towards a series of N-methyl-C-aryl carbaldimines is reported. Despite intense studies on the reactivity of $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes, revealing their high versatility, occasionally, a different reactivity of these reactive intermediates towards the same substrates was observed. In addition, high-level DFT calculations were performed by Espinosa to study the path of formation of the products, revealing, e.g. an unprecedented ring-ring interconversion of a polycyclic ligand.

3.1. P,C-Cage ligand complexes having further heteroatoms

Since tetraphosphacubane ${ }^{[63]}(\mathrm{XL})$ was obtained by phosphaalkyne cyclooligomerization in the late 1980s, the chemistry of P,C-cage compounds has expanded significantly. Despite this, few synthetic methods have been devised to prepare P,C-cage derivatives, incorporating further heteroatoms such as oxygen in XLI, ${ }^{[64]}$ nitrogen in XLII ${ }^{[65-68]}$ or phosphorus in XLIII. ${ }^{[69]}$ For example O,P,C-cage complex XLI was obtained regioselectively upon thermal reaction of an oxaphosphirane complex and acetaldehyde. Here, an oxaphosphirane $\mathrm{C}-\mathrm{O}$ ring opening was postulated to occur as the first step of the reaction mechanism. ${ }^{[64,70]}$ Phosphaazabarbaralane XLII ${ }^{[71]}$ named by Grützmacher et. al. as BARBAR-Phos, was elegantly synthesized by dehalogenation of dibenzotropylamino(dichloro)phosphane with magnesium in THF solutions. They showed that this kinds of ligands allow the synthesis of low-valent platinum(0) and copper(I) complexes. ${ }^{[71]} \mathrm{N}, \mathrm{P}, \mathrm{C}-$ Cage complexes with related structures were reported by the group of Streubel in the following years. ${ }^{[67,68]}$ Hexaphosphapentaprismane cage XLIII could be prepared either by light-induced valence isomerization of an unsaturated precursor ${ }^{t} \mathrm{Bu}_{4} \mathrm{C}_{4} \mathrm{P}_{6}$ or by metal elimination of the trimeric mercury complex $\left[\left({ }^{\mathrm{t}} \mathrm{Bu}_{4} \mathrm{C}_{4} \mathrm{P}_{6}\right) \mathrm{Hg}\right]_{3}$. ${ }^{[69]}$ XLIII readily reacted with sulfur, selenium, and tellurium at its $P-P$ bond to quantitatively afford new cage molecules of the type $E C_{4}{ }^{t} B_{4} P_{6}(E=S, S e, T e) .{ }^{[72]}$ Some of these structures were obtained only within the coordination sphere of a transition metal and/or by using P pentamethylcyclopentadienyl substituted reactive species such as terminal and bridging ${ }^{[73]}$ phosphinidene complexes. Recently, access to ionic cages such as XLIV, which were obtained by reducing pentamethylcyclopentadienyl dichlorophosphine with low oxidation state group XIII halides like indium chloride, was also reported. ${ }^{[74,75]}$

$X L^{[63]}$

$X L^{[64]}$

X LII $^{[71]}$

XLIII ${ }^{[69]}$

$X L I V^{[74,75]}$

Scheme 3.1.1. Tetra-tert-butyltetraphosphacubane ${ }^{[63]}(\mathbf{X L})$ and examples of oxygen (XLI), ${ }^{[64]}$ nitrogen (XLII) ${ }^{[71]}$ and phosphorus (XLIII) ${ }^{[69]}$ containing phosphorus cage-type molecules and an example of a cationic cage (XLIV). ${ }^{[74,75]}$

3.2. $\mathrm{N}, \mathrm{P}, \mathrm{C}$-Cage complexes via reaction of a P-Cp* substituted $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complex with carbaldimines

In continuation of earlier efforts to develop azaphosphiridine complex chemistry, ${ }^{[50]}$ and because a main group element-bound Cp^{*} group has offered interesting reactivity in the past, ${ }^{[74]}$ a P-Cp* substituted azaphosphiridine complex was targeted first. Therefore, the reaction of $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complex $\mathbf{2},^{[39]}$ prepared from $\mathbf{1}^{[77]}$ and observed at 280.2 $\mathrm{ppm}\left({ }^{1}{ }_{\mathrm{W}, \mathrm{p}}=76.5 \mathrm{~Hz}\right)$ in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, ${ }^{[39]}$ with carbaldimines $3 \mathrm{a}-\mathrm{f}{ }^{[78,79]}$ was investigated. With $\mathbf{3 a}, \mathbf{b}$ formation of the novel $\mathrm{N}, \mathrm{P}, \mathrm{C}$-cage complexes $\mathbf{4 a}, \mathbf{b}$ occurred in 60 and 95% conversion according to ${ }^{31} \mathrm{P}$ NMR integration (THF), displaying ${ }^{31} P\left\{{ }^{1} H\right\}$ NMR resonances at $-34.1 \mathrm{ppm}\left({ }^{1} J_{\mathrm{w}, \mathrm{p}}=268.3 \mathrm{~Hz}\right.$) and $-34.5 \mathrm{ppm}\left({ }^{1} \mathrm{~J}_{\mathrm{w}, \mathrm{p}}=272.0 \mathrm{~Hz}\right)$, respectively. Reaction of 2 with $\mathbf{3 c}$ and $\mathbf{3 f}$ yielded $\mathbf{4 c}$, \mathbf{f} in negligible amounts along with mixtures of unidentified products. No evidence for 4d was observed when $\mathbf{2}$ was reacted with 3d. Reaction of $\mathbf{2}$ with $\mathbf{3 e}$ yielded selectively a complex 5 showing a ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ resonance at $173.0 \mathrm{ppm}\left({ }^{1} \int_{\mathrm{w}, \mathrm{P}}=260.6 \mathrm{~Hz}\right.$ in THF) presumably with a bicyclic azaphospholene ligand structure ${ }^{[51]}$ (Scheme 3.2.1, Table 3.2.1). ${ }^{[80]}$

Table 3.2.1. ${ }^{31} \mathrm{P}$ NMR resonances $[\mathrm{ppm}]$ and ${ }^{1} \mathrm{~J}_{\mathrm{w}, \mathrm{P}}[\mathrm{Hz}]$ for 4a-f in the reaction of $\mathbf{2}$ with 3a-f (THF). ${ }^{[80]}$

Aryl	$\delta^{31 \mathrm{P}}$	${ }^{1} \mathrm{JW}_{\mathrm{W}, \mathrm{P}}$	4a-f [\%] (31p NMR int.)
Phenyl (a)	-34.1	268.3	60
2-Furyl (b)	-34.5	272.0	95
2-Thienyl (c)	-34.8	274.9	3
3-Furyl (d)	-	-	0
3-Thienyl (e)	-	-	0
$p-$ CF $_{3}$-Phenyl (f)	-29.6	272.0	15

Ar = Phenyl (a), 2-furyl (b), 2-thienyl (c), 3-furyl (d), 3-thienyl (e), 4-CF 3 -phenyl (f)
Scheme 3.2.1. Reaction of Li/Cl phosphinidenoid complex 2 with carbaldimines 3a-f. ${ }^{[80]}$

3.2.1. Low temperature rearrangement of azaphosphiridine complexes to $\mathrm{N}, \mathrm{P}, \mathrm{C}$-cage complexes

In case of $\mathbf{4 b}$, low temperature ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR monitoring (THF) (Figure 3.2.1) revealed the formation of three intermediates which rapidly transformed into the final product. Compared to data of known azaphosphiridine complexes, ${ }^{[50]}$ intermediates observed at $-42.8 \mathrm{ppm}\left({ }^{1} \mathrm{Jw}, \mathrm{p}\right.$ $=277.8 \mathrm{~Hz}$) and at $-38.5 \mathrm{ppm}\left({ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{P}}=271.0 \mathrm{~Hz}\right)$ were assigned to two stereoisomers of transient azaphosphiridine complexes $\mathbf{7 b}$ and $\mathbf{7 b}$ ' (Scheme 3.2.1.1) for which a trans configuration of
the NMe and the 2-furyl groups is assumed. The intermediate displaying a ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonance at $-28.7 \mathrm{ppm}\left({ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{P}}=259.0 \mathrm{~Hz}\right)$ was assigned to the $\mathrm{N}, \mathrm{P}, \mathrm{C}$-cage complex $\mathbf{4 b}{ }^{\prime}$ which isomerizes to $\mathbf{4 b}$. Complex $\mathbf{4 b}$ was isolated in 70% yield and fully characterized and its molecular structure was confirmed by X-ray crystallography. ${ }^{[81]}$

Figure 3.2.1.1 Low temperature ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR monitoring (THF) of the reaction of P - $\mathrm{Cp}{ }^{*}$ phosphinidenoid tungsten(0) complex $\mathbf{2}$ and C-furyl- N-methyl carbaldimine 3b. Time interval between each measurement was 10 minutes. ${ }^{[81]}$

The molecular structure of $\mathbf{4} \mathbf{b}$ crystallized in the triclinic crystal system, space group $P \overline{1}$ and displays an almost planar geometry at nitrogen ($\Sigma^{\circ} \angle \mathrm{N}=357.97$), and a $\mathrm{P}-\mathrm{C}(3)$ bond of $1.881(2) \AA$ which is slightly elongated compared to the standard P,C bond distance (of about 1.80 Å) ${ }^{[82]}$ (Figure 3.2.1.2).

Figure 3.2.1.2. Molecular structure of complex $\mathbf{4 b}$ (50% probability level, hydrogen atoms except H6 are omitted for clarity). Selected bond lengths [\AA] and angles [${ }^{\circ}$]: P-W 2.4907(6), PC2 1.810(2), P-N 1.6723(18), P-C3 1.881(2), C3-P-C2 49.23(10). ${ }^{[81]}$

Espinosa performed DFT calculations (B3LYP-D3/def2-TZVP) on the reaction pathway using chromium as metal and H instead of the methyl group at nitrogen, starting from model azaphosphiridine complex $\mathbf{7 g}$ with the furyl and Cp^{*} groups in trans (Scheme 3.2.1.1); the epimer at $N\left(7 g^{\prime}\right)$ was found to be less stable. ${ }^{[81]}$ An intermediate iminium phosphane-ylid complex ${ }^{[83]} 8 \mathrm{~g}$ is predicted to be initially formed by $\mathrm{P}-\mathrm{C}$ bond cleavage through a low-lying TS (Figure 3.2.1.3) and displays the $\mathrm{P}-\mathrm{N}-\mathrm{C}$ plane almost perpendicular to the Cp * ring due to T stacking of the model NH group with the p -system. In the real system $\mathbf{8 b}$ the larger N substituent presumably favors the conformer locating the side-chain parallel to the Cp * ring. Despite the low energy barrier for the transformation of $\mathbf{7 g}$ into $\mathbf{8 g}$, this conversion constitutes the rate-determining step for the overall transformation into the final $\mathrm{N}, \mathrm{P}, \mathrm{C}$-cages $\mathbf{4 g}, \mathbf{g}^{\prime}$. This species can undergo thermal aza-phospha-Cope $[3,3]$ sigmatropic rearrangement affording phosphinidene complex $\mathbf{9 g}^{\text {conf }}$ in a kinetically favored process. To the best of our knowledge only one example of a related aza-phospha-Cope reaction has been reported. ${ }^{[84]}$ This reactive species $9 g^{\text {conf }}$ features the P atom lying almost antiperiplanar to the furyl substituent and far away from the dienic moiety. ${ }^{1}$ Rotation of the $\mathrm{C}-\mathrm{N}$ bond can furnish the thermodynamically favored conformer 9 g . Final addition of the phosphinidene complex to a $\mathrm{C}=\mathrm{C}$ double bond ${ }^{[84]}$ of the $\mathrm{Cp} *$ group would lead to the reaction product $\mathbf{4 g}^{2}$ (Scheme 3.2.1.1, Figure 3.2.1.3).

[^0]

7g

8g

4g

$9 g^{\text {conf }}$

4g'

Scheme 3.2.1.1. Proposed mechanism for the isomerization of azaphosphiridine model complex $\mathbf{7 g}$ into final complex $\mathbf{4 g}$ (Ar: 2-furyl). ${ }^{[81]}$

Figure. 3.2.1.3. Computed (B3LYP-D3/def2-TZVPP) minimum energy profile for the transformation $\mathbf{7 g} \rightarrow \mathbf{4 g}{ }^{[81]}$

The relatively low energy of $\mathbf{9 g}$ can be explained as arising from electron density donation into the formally vacant p orbital of phosphorus, either (i) directly from the lone pair of the adjacent N atom and (ii) through-space from two different electron sources, namely the O atom of the 2 -furyl substituent and a terminal carbon of the Cp * dienic unit. DFT calculations performed by Espinosa for the location of the BCPs (bond critical points) corresponding to
these two NCls^{3} fully supports these assumptions. These NCls are conveniently visualized by color-coded RDG (reduced density gradient) isosurfaces (Figure 3.2.1.4). A rough estimation of the sum of NCIs, amounting to $3.2 \mathrm{kcal} \mathrm{mol}^{-1}$, can be obtained from comparison between both conformers. When C-phenyl N-methyl carbaldimine (3a) was used instead of 3b, a significant selectivity decrease (from 95% conv. to 60%, by ${ }^{31}$ P NMR integration) was observed. This might be explained in terms of an increased electrophilicity at phosphorus and a decreased stability in the corresponding phosphinidene complex intermediate by loss of one of the "through-space" NCls.

Figure 3.2.1.4. Computed (B3LYP-D3/def2-TZVP) structure for complex 9g highlighting key NCIs. ${ }^{[81]}$

[^1]
3.2.2. Trapping reaction with phenyl acetylene

The hypothesis of a transient terminal phosphinidene complex was further examined by studying trapping reactions. When phenyl acetylene was added to the reaction mixture of $\mathbf{7 b}, \mathbf{b}^{\prime}$ at $-30^{\circ} \mathrm{C}, \mathbf{4 b}$ and $\mathbf{1 2}\left(\delta^{31} \mathrm{P}=-3.9,{ }^{1} J_{\mathrm{wP}}=277.6 \mathrm{~Hz}\right.$) were obtained in a $1: 4$ ratio (Figure 3.2.2.1, Scheme 3.2.2.1).

Scheme 3.2.2.1. Synthesis of complex 12 (Ar: 2-furyl).

Figure 3.2.2.1. ${ }^{31}$ P $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra with signal integrals (in \%) of a mixture of complexes $\mathbf{4 b}$ and 12. ${ }^{[81]}$

Complex 12 was isolated in 60% yield and X-ray structure analysis (crystal system monoclinic, space group P21/n) (Figure 3.2.2.2) confirmed the formation of a new $\mathrm{N}, \mathrm{P}, \mathrm{C}$-cage complex 12, which can be explained by a $[2+1]$ cycloaddition of the transient terminal
phosphinidene complex 9b leading to 11, followed by an intramolecular Diels-Alder reaction to give 12.

Figure 3.2.2.2. Molecular structure of complex $\mathbf{1 2}$ (50% probability level, hydrogen atoms except H 6 are omitted for clarity). Selected bond lengths [Å] and angles [${ }^{\circ}$]: P-W 2.4978(8), PC8 1.803(3), P-N 1.666(3), P-C7 1.824(3), C7-P-C8 50.60(63). ${ }^{[81]}$

3.3. $\mathrm{N}, \mathrm{P}, \mathrm{C}$-Cage complexes via reaction of a P-Cp* substituted terminal electrophilic phosphinidene complex with aldimines

When P-Cp* substituted phosphinidene complex 14, generated thermally from 2 H azaphosphirene complex $\mathbf{1 3}^{[86]}$ in toluene, reacted in situ with C-aryl- N-methyl carbaldimines 3a-f, ${ }^{[78,79]}$ complexes 4a-f and 15a-f were obtained in different ratios. Complexes 15a-f exhibit resonances in the range of 226 to 231 ppm with tungsten-phosphorus coupling constants of about 230 Hz in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra and $4 \mathrm{a}-\mathrm{f}$ possesses ${ }^{31} \mathrm{P}$ resonances between -27 and -36 ppm with tungsten-phosphorus coupling constants of about 274 Hz (Scheme 3.3.1, Table 3.3.1, Figure 3.3.1). In analogy to previously reported reactions of complex 14 with nitriles, ${ }^{[68]}$ an ylidic structure of transiently formed complexes 8a-f was initially proposed to explain the formation of 4a-f and 15a-f. ${ }^{[80]}$

$\mathrm{Ar}=\mathrm{Ph}(\mathrm{a}), 2$-furyl (b), 2-thienyl (c), 3-furyl (d), 3-thienyl (e), 4-CF 3 - Ph (f)

Scheme 3.3.1. Synthesis of complexes 15a-f and 4a-f. ${ }^{[80]}$

Figure 3.3.1. Spectrum of the reaction mixture of $\mathbf{1 4}$ and $\mathbf{3 b}$ showing signals corresponding to $4 b$ and 15 b.

Table 3.3.1. ${ }^{31} \mathrm{P}$ NMR resonances $[\mathrm{ppm}]\left({ }^{1} / \mathrm{w}, \mathrm{P}[\mathrm{Hz}]\right)$ and ratios for $\mathbf{5 a}$-f and $\mathbf{1 5 a - f}$ in the reaction of 14 with 3a-f (in toluene). ${ }^{[80]}$

Aryl	$\begin{gathered} \delta^{31} \mathrm{p}\left({ }^{1} \mathrm{~J}, \mathrm{p}\right) \\ \text { 15a-f } \end{gathered}$	$\begin{gathered} \delta^{31} \mathrm{p}\left({ }^{1} / \mathrm{w}, \mathrm{p}\right) \\ 4 \mathrm{a}-\mathrm{f} \end{gathered}$	$\begin{aligned} & \text { Ratio } \\ & (15: 4) \end{aligned}$
Phenyl (a)	228.4 (228.4)	-27.7 (273.4)	3:1
2-Furyl (b)	225.9 (228.4)	-34.1 (272.0)	2:1
2-Thienyl (c)	226.1 (228.8)	-34.2 (272)	2:1
3-Furyl (d)	226.3 (228.7)	-33.1	5:1
3-Thienyl (e)	226.2 (228.8)	-35.6	4:1
$p-\mathrm{CF}_{3}$-Phenyl (\mathbf{f})	226.9 (230.8)	-27.0 (275.8)	6:1

From these mixtures, only complex $\mathbf{1 5 f}$ could be isolated (36% yield) and characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and IR spectroscopy. Additionally, its molecular structure was confirmed by Xray crystallography (crystal system monoclinic, space group P21/c)(Figure 3.3.2). The unusual downfield shift of the ${ }^{31}$ P NMR resonances of complexes 15a-f is of particular interest, especially because polycyclic P (III) ligands with low ring strain usually possess resonances close to their acyclic relatives. Similar observations have been made before, e.g. for 2,3-bis(methoxycarbonyl)-5,6-dimethyl-7-phenyl-7-phosphanorborna-diene(pentacarbonyl)tungsten complex and tetra-tert-butyl tetraphosphacubane, which show resonances at $208.0^{[21]}$ and $257.4^{[67,68]} \mathrm{ppm}$, respectively. Although the ${ }^{13} \mathrm{C}$ NMR chemical shift of 63.4 and 66.2 ppm of C^{2} and C^{5} atoms and their ${ }^{1} J_{\mathrm{p}, \mathrm{c}}$ coupling constants of 33.3 and 20.1 Hz are in the expected range for this type of compounds, the fact that both P-C bonds ($P-C 2=1.881(6) \AA$ and P-C5 $=1.867(7) \AA$ A $)$ are elongated compared with standard $P-C$ single bonds ${ }^{[82]}(P-C=1.80-$ 1.82 Å), suggests unusual bonding in $\mathbf{1 5 f}$ (vide infra).

Figure 3.3.2. Molecular structure of complex 15 f (50% probability level, hydrogen atoms except at C6 are omitted for clarity). Selected X-ray crystal structure data (distances [\AA] and angles [${ }^{\circ}$]): P-W 2.462(18), P-C2 1.881(6), P-C5 1.867(7), P-N 1.683(5), C2-P-N 97.1(3), C5-P-N 94.6(3), C2-P-C5 71.5(3). ${ }^{[80]}$

As NMR and structural characteristics of complexes 15 and 4 had created further interest, the stability and reactivity of these two types of $\mathrm{N}, \mathrm{P}, \mathrm{C}$-cage ligands was studied and, for this, the isolated complexes $\mathbf{4 b}$ and $\mathbf{1 5 f}$ were chosen as good case in point. It was found that both ligands interconverted rapidly at room temperature, but only to a certain extent. In case of $\mathbf{4 b}$ and after $48 \mathrm{~h}, 70 \%$ of complex $\mathbf{4 b}$ was converted into $\mathbf{1 5 b}$ ($\mathbf{1 5 b}$ was detected by ${ }^{31}$ P NMR spectroscopy after 1 h), whereas in case of $\mathbf{1 5 f}, 15 \%$ of complex $\mathbf{1 5 f}$ converted into 4f after the same time. No further conversion could be achieved by means of heating the reaction mixtures. Especially the latter observation was a great surprise because threemembered rings usually possess much larger ring strain energies than five-membered rings, thus being expected to be thermodynamically unfavored. The rearrangement is explained as to be a dynamic process in which transient phosphinidene complexes 9a-f are generated, which serve as common intermediates for both interconversions (4a-f \leftrightarrow 15a-f) (Scheme 3.3.2).

$\mathrm{Ar}=\mathrm{Ph}$ (a), 2-furyl (b), 2-thienyl (c), 3-furyl (d), 3-thienyl (e), 4-CF 3 - Ph (f)

Scheme 3.3.2. Equilibrium between 4a-f and 15a-f via proposed intermediates 9a-f. ${ }^{[80]}$

To study the plausibility of the proposed key intermediates 9 (Scheme 3.3.2) as well as the possible occurrence of the initial intermediate 8, DFT calculations (COSMO toluene / B3LYP-D3/def2-QZVPP//B3LYP-D3/def2-TZVP) were performed by Espinosa using Cr (instead of W) model complexes (subscript "Cr" is used for naming the corresponding structures), with H as N -substituent and 2-furyl (b) and 4-trifluoromethylphenyl (f) as aryl (Ar) substituents. As previously proposed (Scheme 3.3.1), complex $\mathbf{8 C r}_{\mathrm{cr}} \mathrm{f}$ is also the intermediate resulting upon nucleophilic attack of the N atom of the corresponding model imine $\mathrm{Ar}-\mathrm{CH}=\mathrm{NH}\left(3^{\prime}\right)$ to the model electrophilic phosphinidene complex 14 cr . The dipolar nature of this iminium phosphane-ylid ligand is evidenced by the large $\mathrm{C}=\mathrm{N}$ bond ($1.305 \AA \AA^{\mathrm{A}} \mathrm{BCr}_{\mathrm{r}} \mathrm{f}$) in comparison to typical imine bonds ($1.268 \AA$ in model imine 3 'f) as reported for related structures. ${ }^{[87]}$ According to the recent report for the reaction of phosphinidene complexes with carbon monoxide studied theoretically, ${ }^{[88]}$ the approach of both reagents leading to phosphaketene
 and in a barrierless fashion, as no van der Waals complex could be located at the current level of theory. Recently, transient formation of methylphosphaketene complexes which kann act as precorsurs of non-hindered phosphinidene complexes upon loss of CO under UV irradiation at room temperature was reported. ${ }^{[89]}$ This privileged conformation undergoes a kinetically and thermodynamically favoured transformation into phosphinidene complex $\mathbf{9}_{\mathrm{cr}} \mathrm{f}$ by means of an azaphospha-Cope [3.3] shift ${ }^{[84]}$ as explained beforehand.

Scheme 3.3.3. Proposed mechanism for the reaction of model phosphinidene chromium complex $\mathbf{1 4} \mathrm{cr}$ and carbaldimine $\mathbf{3}^{\prime} \mathrm{f}$ yielding final complexes $\mathbf{4 c r}$ and $\mathbf{1 5} \mathrm{cr} .{ }^{[80]}$

Figure 3.3.2. Computed (COSMO toluene /B3LYP-D3/def2-QZVPP) minimum energy profile for the

Usually electrophilic terminal phosphinidenes complexes with π-acidic co-ligands ${ }^{[31,66,90]}$ belong to a well-known class of highly reactive intermediates and, therefore, it is worth to mention the surprisingly low energy of complexes 9 cr . This is even more impressive when compared to the energy of the azaphosphiridine 7 cr which are usually stable, easily manipulated and storable compounds. In this case, 9 cr receives strong stabilization using several through-bond (classical electronic inductive and mesomeric effects) and throughspace (noncovalent interactions, NCIs) pathways that can be analysed with the aid of the NBO (natural bond orbital) theory. ${ }^{[91]}$ According to the results of Espinosa, the most prominent interaction is the through-bond electron density donation from the N lone pair into the (formally) vacant orbital of phosphorus. Using the NBO analysis, this corresponds to a $p_{\mathrm{N}} \rightarrow p_{\mathrm{P}}$ electron transfer with an associated stabilization of $69.93 \mathrm{kcal} / \mathrm{mol}$ in the second order perturbation theory (SOPT) analysis of the Fock matrix in NBO basis and entails strengthening of the N-P bond. This is evidenced by the rather short bond distance ($\mathrm{d}_{\mathrm{N}-\mathrm{P}}=1.657 \AA$) and quantified by the WBI (Wiberg bond index), ${ }^{[92]}$ MBO (Mayer bond order), ${ }^{[93]}$ LBO (Löwdin bond order) ${ }^{[94]}$ and electron density at the BCP (bond critical point) using the topological analysis of the electron density in the context of Bader's AIM (atoms-in-molecules) methodology ${ }^{[95,96]}$ $\left(W B I=1.090 ; M B O=1.303 ; L B O=1.659 ; \rho(r)=17.33 \cdot 10^{-2} e / a 0^{3}\right)$. A second weaker yet important interaction is a through-bond back-donation from the electron enriched phosphorus atom, using both its filled p orbital and the formally vacant but partially populated p orbital (populations 1.937 and $0.530 e$, respectively, according to NBO analysis) into the adjacent amino group (through-bond back-donation) by using a $\sigma^{*}(\mathrm{P}-\mathrm{N})$ orbital as acceptor, with little SOPT energy of stabilization amounting to 0.62 and $0.70 \mathrm{kcal} / \mathrm{mol}$, respectively. The formally vacant p orbital at P is the major contribution at LUMO, whereas the filled p orbital at P predominates at HOMO (Figure 3.3.3). Three other significant through-space interactions are evidenced by location of the corresponding BCPs. The strongest one consist of an electron donation from one of the $\pi(\mathrm{C}=\mathrm{C})$ orbitals at the Cp * unit to the formally vacant p orbital at P (dp...c(1) $=3.027 \AA \AA \rho(r)=1.79 \cdot 10^{-2} e / a_{0}{ }^{3} ;$ ellipticity $\varepsilon=0.364 ; \Sigma W B I=0.118 ; \Sigma L B O=0.209$; stabilization $E_{\text {SOPT }}=8.92 \mathrm{kcal} / \mathrm{mol}$) as represented in HOMO-1 (Figure 3.3.3c). The other two are weaker and constitute channels for alleviating the excess of electron density at the otherwise too electron enriched P atom into i) the corresponding $\pi^{*}(\mathrm{C}=\mathrm{C})$ orbital at Cp * (stabilization $\mathrm{E}_{\text {SOPT }}=0.67 \mathrm{kcal} / \mathrm{mol}$) (see HOMO-4 in Figure 3d) and ii) the $\sigma^{*}(\mathrm{C}-\mathrm{H})$ orbital of one of the ortho-positions of the aryl substituent by formation of a $\mathrm{P} \cdots \mathrm{H}-\mathrm{C}$ hydrogen bond
(dр...н $=2.661 \AA ̊ ; \rho(r)=1.38 \cdot 10^{-2} \mathrm{e} / a_{0}{ }^{3} ; \mathrm{WBI}=0.012 ;$ LBO $=0.071$; angle $\mathrm{P} \cdots \mathrm{H}-\mathrm{C} 126.6^{\circ}$; stabilization $\left.E_{\text {SOPT }}=1.42 \mathrm{kcal} / \mathrm{mol}\right)$. Furthermore, NBO deletion calculations ${ }^{[39,97]}$ provide an additional approach for the quantification of the above mentioned main stabilizing interactions whose associated binding energies are in good agreement with the reported $E_{\text {sopt }}$: through-bond $\mathrm{N} \rightarrow \mathrm{P}$ donation, $67.4 \mathrm{kcal} / \mathrm{mol}$; through-bond $\mathrm{N} \leftarrow \mathrm{P}$ back-donation, 0.4 $\mathrm{kcal} / \mathrm{mol}$; through-space $\mathrm{P} \leftarrow \pi_{(\mathrm{C}=\mathrm{c})}$ transfer, $8.0 \mathrm{kcal} / \mathrm{mol}$; through-space $\mathrm{P} \rightarrow \pi^{*}{ }_{(\mathrm{c}=\mathrm{c})}$ transfer, 1.3 $\mathrm{kcal} / \mathrm{mol}$; through-space $\mathrm{P} \rightarrow \sigma^{*}{ }_{(\mathrm{P} . . \mathrm{Hc})}$ transfer, $5.1 \mathrm{kcal} / \mathrm{mol}{ }^{[80]}$

Figure 3.3.3. Computed (B3LYP-D3/def2-QZVPP) Kohn-Sham isosurfaces (0.04 au isovalue) for representative frontier molecular orbitals in complex 10 crf: a) LUMO, b) HOMO, c) HOMO-1 and d) HOMO-4. ${ }^{[80]}$

These two ways of non-covalent interactions are conveniently visualized by colourcoded RDG (reduced density gradient) isosurfaces using the NCIplot technique (Figure 3.3.4).

Figure 3.3.4. Computed (B3LYP-D3/def2-TZVP) most stable structure for complex $\mathbf{9 c r}^{\mathrm{cr}}$ with NCIplot highlighting key stabilizing NCls; the two most significant ones explicitly indicated in green. The RDG $s=0.2$ au isosurface is coloured over the range $-0.1<\operatorname{sign}\left(\lambda_{2}\right) \cdot \rho<0.1$ au: blue denotes strong attraction, green stands for moderate interaction, and red indicates strong repulsion. ${ }^{[80]}$

Here it is worth mentioning that the low electrophilic character of the phosphinidene complex intermediate $\mathbf{9}_{\mathbf{c r} \mathbf{r}}$, according to its high value of HOMO-LUMO gap (3.054 eV), can be used as diagnostic criterion in agreement with the comparative study, recently reported. ${ }^{[66]}$

Finally, the phosphinidene complex can undergo [4+1] cycloaddition through a lowlying transition state affording 15 crf or a $[2+1]$ cycloaddition with either the $\mathrm{C}^{4}=\mathrm{C}^{5}$ or the $\mathrm{C}^{2}=\mathrm{C}^{1}$ Cp* units giving rise to the diastereomeric pairs $\mathbf{4 c r f}_{\text {rf }}$ or $\mathbf{4}^{\prime}$ crf, respectively (Scheme 3.3.3). For the last type of cycloaddition reactions the corresponding TS could not be located.
 compound and lead to products of similar energy via reactions of the same type, we assume that the energy content for the TS of both transformations should be rather similar. The higher stability of $\mathbf{1 5}_{\mathbf{c r}} \mathbf{f}$ in comparison to $\mathbf{4 c r} \mathbf{f}$ (and $\mathbf{4}{ }^{\prime}{ }_{\mathrm{cr}} \mathbf{f}$) (Figure 3.3.2) agrees with the experimental ratio in which complexes $\mathbf{1 5 f} / \mathbf{4 f}$ are obtained (Table 3.3.1).

As previously mentioned, the P-C bond distances in $\mathbf{1 5 f}$ were found to be larger than expected in the solid state structure (Figure 3.3.1), which deserves a closer inspection by computational means. Metrics obtained for the computed model species $\mathbf{1 5 c r}^{\mathrm{f}}$ ($\mathrm{dp}_{\mathrm{p}-\mathrm{c}}=1.903$ and $1.904 \AA$ Å) agree well with the experimental data and points to weaker covalent P-C bonds
$\left(W_{B B}^{\text {aver. }}=0.772 ; M B O_{\text {aver. }}=0.746 ; \mathrm{LBO}_{\text {aver. }}=0.818\right)$ when compared to isomer $4 \mathrm{crf}^{\mathrm{f}}(\mathrm{dp}-\mathrm{c}=1.819$ and $1.864 \AA ; \mathrm{WBl}_{\text {aver. }}=0.812 ; \mathrm{MBO}_{\text {aver. }}=0.826 ; \mathrm{LBO}_{\text {aver. }}=0.986$) or even the strained intermediate $\mathbf{7 c r}_{\mathrm{cr}}$ ($\mathrm{dp}_{\mathrm{C}}=1.823 \AA$ A $; \mathrm{WBI}=0.848 ; \mathrm{MBO}=0.827 ; \mathrm{LBO}=1.088$). Therefore, the $\mathrm{N}, \mathrm{P}, \mathrm{C}$-cage complexes 15 can be formally viewed, to some extent, as an amino phosphinidene species with a moderate interaction of the P atom with the termini of the dienic moiety of a Cp* group, as additionally shown by the rough coplanarity of the methyl groups at C2 and C4 (see numbering in Scheme 3.3.3) with the C2-C1-C5-C4 plane (dihedrals in 15crf: Me-C2-C1-C5 -173.7°; Me-C4-C5-C1 174.5°). This is in line with the behaviour shown by the genuine phosphinidene complex 9. Nevertheless, to a smaller extent, the P-N bond in 15crf is strengthened ($\mathrm{dP}-\mathrm{N}=1.691 \AA \AA ; \mathrm{WBI}=0.982 ; \mathrm{MBO}=1.014 ; \mathrm{LBO}=1.276$) in relation to 4crf (dP$N=1.697 \AA \AA \mathrm{WBI}=0.859 ; \mathrm{MBO}=0.942 ; \mathrm{LBO}=1.272$) which, in turn, shows a stronger $\mathrm{P}-\mathrm{N}$ bond than the strained complex $7_{\mathrm{cr}} \mathrm{f}\left(\mathrm{dP}-\mathrm{N}=1.738 \AA \AA^{\circ} ; \mathrm{WBI}=0.828 ; \mathrm{MBO}=0.984 ; \mathrm{LBO}=\right.$ $1.266) .{ }^{[80]}$

3.4. Ring-ring interconversion of $\mathrm{N}, \mathrm{P}, \mathrm{C}$-cage ligands

To confirm the proposed intermediacy of $9 \mathrm{a}, \mathbf{f}$, trapping experiments were performed using reagents that have been shown before to react selectively with electrophilic terminal phosphinidene complexes. ${ }^{[51,81]}$ Here, the former were employed as solvents: complex $\mathbf{4} \mathbf{b}$ was dissolved in phenyl acetylene (10) or C-phenyl N-methyl carbaldimine (3a) at ambient temperature. Both reactions where monitored by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy and in both cases the formation of a mixture of complexes $\mathbf{4 b}$ and $\mathbf{1 5} \mathbf{b}$ was observed, showing that the intramolecular conversion is kinetically favoured. In the first case (Scheme 3.4.1), first evidence for a mixture of two structural isomers 12b, ${ }^{[81]}$ (major isomer, $80 \%, \delta^{31} \mathrm{P}=-3.9,{ }^{1} J_{\mathrm{WP}}$ $=277.6 \mathrm{~Hz}$) and 12b' ${ }^{\prime}$ (minor isomer, 20\%, $\delta^{31} \mathrm{P}=-0.4 \mathrm{ppm},{ }^{1}{ }^{1} \mathrm{wP}=279.4 \mathrm{~Hz}$) was observed after 16 h . To increase the reaction progression, the reaction mixture was heated at $90^{\circ} \mathrm{C}$ until the reaction was completed after 20 hours. The major isomer was isolated in 40% yield and fully characterized. Formally, an insertion of the C-C triple bond unit of phenyl acetylene (10) into the P-C4 and P-C5 or P-C2 and P-C4 bonds of $\mathbf{9 b}$ occurred (using the numbering depicted in Scheme 5), forming 11b, \mathbf{b}^{\prime} followed by an intramolecular Diels-Alder reaction, strongly suggesting the presence of the transient phosphinidene complex $\mathbf{9 b}$. When the same experiment was performed using 15f, a mixture of $\mathbf{1 2 f}$ (major isomer, $\delta^{31} \mathrm{P}=-2.4 \mathrm{ppm},{ }^{1} J_{\mathrm{WP}}=$ 275.2 Hz) and $\mathbf{1 2 f}^{\prime}\left(\delta^{31} \mathrm{P}=1.7 \mathrm{ppm},{ }^{1} \mathrm{~J}_{\mathrm{WP}}=278.3 \mathrm{~Hz}\right.$) in a ratio of $1: 2$ was obtained, thus
providing further evidence for the existence of 9 as common intermediates in the proposed interconversion of 15 and 4 (Schemes 3.3.3 and 3.4.1). ${ }^{[80]}$

12b,f

11b,b'f,f'

Scheme 3.4.1. Synthesis of complexes $\mathbf{1 2 b}, \mathbf{b}^{\prime}, \mathbf{f}, \mathbf{f}^{\prime}$ (numbering corresponds to that used in Scheme 3.3.3). $\mathrm{Ar}=2$-furyl (b), $\mathrm{p}-\mathrm{CF}_{3} \mathrm{Ph}(\mathrm{f}) ; \mathrm{R}, \mathrm{R}^{\prime \prime}=\mathrm{Ph}, \mathrm{H} .{ }^{[80]}$

In the second case, when 3a was used as trapping reagent, about 90% of the starting material was converted into product 17 at $90^{\circ} \mathrm{C}$ after 20 hours; 10% of not identified species were formed. Complex 17 was isolated in 50%, yield and fully characterized, e.g. it displayed a ${ }^{31} \mathrm{P}$ NMR resonance at $145.1 \mathrm{ppm}\left({ }^{1} / \mathrm{WP}=186.2 \mathrm{~Hz}\right.$). The formation of 17 suggests a nucleophilic attack of the nitrogen atom of $\mathbf{3 a}$ to the phosphorus atom of $\mathbf{9 b}$ leading to the iminium phosphane-ylide complex 16, which upon [3+2] cycloaddition yielded the final product 17 (Scheme 3.4.2). The intermediacy of 16 could also rationalize the observed high regioselectivity, which could not be explained if the imine undergoes initial [4+2] cycloaddition with the Cp* unit. DFT calculations performed by Espinosa demonstrates that a model complex similar to $\mathbf{1 6}$ but replacing the 2 -furyl and N-methyl groups by hydrogen atoms ($\mathbf{1 6}^{\prime}$) exists as a minimum at the working level of theory and possess the required 1,3-dipolar
electronic structure similar to that of $\mathbf{8} \mathbf{c r}$ (Scheme 3.3.3). It undergoes an intramolecular exergonic (-21.82 kcal/mol) 1,3-dipolar cycloaddition to model tricyclic complex 17' via a lowlying TS.

Scheme 3.4.2. Proposed pathway for the formation of complex 17. ${ }^{[80]}$

The X-ray diffraction study of $\mathbf{1 7}$ confirmed the proposed structure (Figure 3.4.1). 17 crystallized in a triclinic crystal system, and $P \overline{1}$ space group. The $P-N(1)$ and $P-N(2)$ bond length are $1.694(7)$ and $1.698(8) \AA$, respectively, which is in accordance with other examples of bicyclic azaphospholane complexes found in the literature. ${ }^{[98]}$ The sum of bond angles around the N atoms are $346.82^{\circ}(\mathrm{N} 1)$ and $344.16^{\circ}(\mathrm{N} 2)$, thus suggesting a geometry getting close to trigonal planar.

Figure 3.4.1. Molecular structure of complex 17 (50\% probability level, hydrogen atoms except at C6, C7, and at the furyl substituent are omitted for clarity). Selected X-ray crystal structure data (distances [\AA] and angles [${ }^{\circ}$]): P-W 2.524(2), P-N2 1.698(8), P-N1 1.694(7), P-C2 1.845(8), N1-P-N2 106.5(4), C2-P-N2 94.4(4), C2-P-N1 92.8(4). ${ }^{[80]}$

4. 3-Imino-azaphosphiridine complexes

4.1. Introduction

4.1.1. Ring strain energy in three-membered rings

The ring strain energy (RSE) is defined as the difference between the observed heat of formation and that expected for a strain-free molecule with the same number of atoms and type of bonds. ${ }^{[99]}$ It represents a useful tool for explaining reactivities and thermodynamics of cyclic compounds. It combines bond lengths and angles distortions, reflecting deviations from the ideal 109.5° for angles around carbon atoms in the ring, torsional interaction strain, which takes into account the bond rotational barriers, transannular interaction strain that reflects interactions of group in opposite sides of the ring, and the energy changes due to rehybridization. In the case of cyclopropanes, angle strain dominates the RSE, because the deviation of ring angles of 60° from the ideal value of 109.5° is severe, whereas the threemembered ring geometry minimizes torsional and transannular interactions. ${ }^{[100]}$ The question of an addition of sp^{2} centers in the cycloprapane ring was studied, among others, ${ }^{[101]}$ by Wiberg and co-workers, ${ }^{[102]}$ Borden and co-workers ${ }^{[103]}$ and Bach and co-workers. ${ }^{[14]}$ The increase of ring strain of about $12-14 \mathrm{kcal} / \mathrm{mol}$ per trigonal center is attributed to two main factors namely the hybridization strain associated with the sp^{2} center ${ }^{[102]}$ and, specially, the loss of a very strong tertiary C-H bond (Scheme 4.1.1). ${ }^{[103]}$

27.5 XLV

41.0

XLVI

53.1

XLVII

Scheme 4.1.1. Strain energies (kcal/mol) of methylcylopropane (XLV) and methylenecyclopropane (XLVI) and 1-methylcyclopropene (XLVII). ${ }^{[102]}$

Lammertsma and Würthwein studied ring strain energies in three-membered heterocycles having one or two heteroatoms and performed a thorough analysis on the preferences of an endo- or exocyclic unsaturation in these derivatives. As shown in Scheme
4.1.2, substitution of a carbon for a nitrogen atom in the cyclopropane ring does not have a large influence in the ring strain. To the contrary, substitution for a phosphorus atom implies a reduction of the ring strain of about 25%. As one might expect, substitution of a second carbon atom in the phosphirane or aziridine rings for a nitrogen or a phosphorus atom respectively, leads to a ring strain value that merges in between of that of the monosubstituted cycles. When it comes to endo- or exocyclic unsaturations, in contrast to that observed in cyclopropanes, aziridines and phosphiranes prefer a $E-C(E=N, P)$ endocyclic double bond rather than an $\mathrm{C}-\mathrm{C}$ exocyclic one, being this effect smoother in the case of phosphiranes. In case of azaphosphiridines an unsaturation in the $\mathrm{N}-\mathrm{C}$ bond is preferred compared with a $\mathrm{P}-\mathrm{N}$ bond single, a $\mathrm{C}-\mathrm{C}$ exocyclic double bond, and a $\mathrm{P}-\mathrm{C}$ bond unsaturation (Figure 4.1.2). ${ }^{[105]}$

28.4

XLVIII

8.6

LII

0.0

LVI

28.2

XLIX

0.0

LIII

7.0

LVII

21.4

L

2.0

LIV

12.4

LVIII

26.5
LI

0.0

LV

18.6

LIX

Scheme 4.1.2. Calculated ring strain energies ($\mathrm{kcal} / \mathrm{mol}$) for cyclopropane and heterocycles XLVIII-LIX. RSE of LII, LIV and LVII, LVIII, LIX are referred to RSE of LIII, LIV and LVI respectively. ${ }^{[105]}$

4.1.2. 3-Imino substituted 3-membered heterocycles

3-Iminoaziridines (LX), ${ }^{[106]}$ which were first obtained by Quast in 1970 by treating α bromoamidine with potassium tert-butoxide, ${ }^{[107]}$ belong to the group of highly strained threemembered heterocycles and, hence, enable a wide range of interesting synthetic transformations. In contrast and to the best of our knowledge, 3 -imino-phosphiranes (LXI) are unknown, but transition metal complexes (LXII) were recently described. ${ }^{[108]}$ Including a second heteroatom such as a group 15 element leads to the series LXIII-LXVI. Iminodiaziridine (LXIII) ${ }^{[109]}$ was synthesized first from two moles of $\mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime \prime}$-tri-tert-butylguanidine and one mole of tert-butyl hypochlorite by Quast. ${ }^{[110]}$ The first example of a iminodiphosphirane ${ }^{[111,112]}$ (LXIV) was prepared by Baudler via reaction of dimetallo-diphosphanes and isocyanide dichlorides ($\mathrm{ArN}=\mathrm{CCl}_{2}$). Here, only those species with a bulky substituent at the imino-aryl ring proved to be stable at room temperature, whereas the derivatives with less demanding substitution patterns were subject to slow decomposition with the formation 2,4-diimino-1,3diphosphetanes. ${ }^{[111]}$ Complexed iminodiphosphiranes (LXV) were prepared by Weber by the reaction of metallodiphosphenes and isocyanides. ${ }^{[113]}$ Iminoazaphosphiridine (LXVI) was proposed as a reactive intermediate only, ${ }^{[114]}$ and azaphosphiridine complexes LXVII remained unknown until the beginning of this work (Scheme 4.2.1).

LX

LXIV

LXI

LXV

LXII

LXVI

LXIII

LXVII

Scheme 4.2.1. 3-Imino-aziridines (LX), and related heterocycles LXI-LXVII including some transition metal complexes (LXII, LXV, LXVII) (exocyclic lines denote organic substituents).

4.1.3. Frustrated Lewis pairs and small molecule activation

Frustrated Lewis pairs (FLPs) are compounds having a Lewis acid (LA) and a Lewis base (LB) functional group within the same molecule which because of steric and/or electronic factors cannot form a bond. ${ }^{[115]}$ Stephan and co-workers in 2006 discovered that the intramolecular Lewis acid/Lewis base pair could reversibly heterolytically cleave the dihydrogen molecule under ambient conditions (Scheme 4.1.3.1). ${ }^{[116]}$ This ability, which was attributed before to d orbitals in transition metal complexes as to be an exclusive feature, marked the starting point for the development of this new chemistry.

Scheme 4.1.3.1. First example of FLP activation of dihydrogen. ${ }^{[116]}$
Since the discovery of the reversible splitting of dihydrogen by FLPs, a variety of methods for metal-free catalytic hydrogenation processes of various organic unsaturated substrates such as imines, ${ }^{[117]}$ enamines, ${ }^{[118]}$ silyl enols ethers, ${ }^{[119]}$ non functionalized alkenes ${ }^{[120]}$ and alkynes ${ }^{[121]}$ or electron-poor alkenes ${ }^{[122]}$ and alkynes ${ }^{[123]}$ and arenes ${ }^{[124]}$ as well as asymmetric hydrogenations ${ }^{[125]}$ were developed using different kinds of LB/LA systems such as $P / B, N / B$ or even C / B combinations.

Reversible CO_{2} capture by inter- or intramolecular P/B FLPs was first shown by Stephan and Erker in 2009 (Scheme 4.1.3.2). ${ }^{[126]}$ Later on, different studies on the capture of CO_{2} by modified P/B FLPs systems have been reported. ${ }^{[127]}$ Substitution of the phosphane base by a primary or secondary amine ${ }^{[128]}$ or by a carbene ${ }^{[129]}$ has been also shown to be an affective system for CO_{2} sequestration as well as FLPs having aluminum as a Lewis acid and phosphane as base, which were reported by Uhl and Lammertsma ${ }^{[130]}$ among other authors. ${ }^{[131]}$
LXX

Scheme 4.1.3.2. Reversible CO_{2} uptake and release by intermolecular- LXX.LXXI and intramolecular LXIII frustrated phosphane/borane Lewis pairs. ${ }^{[126]}$

The donor/acceptor properties of FLPs suggest a potential metal center-analogous behavior towards small molecules such as isocyanides or carbon monoxide (CO). For example, Erker showed that conjugated phosphane/borane FLPs undergo 1,1-addition reaction to n butyl isocyanide forming new $\mathrm{P}-\mathrm{C}$ and $\mathrm{B}-\mathrm{C}$ bonds. Use of tert-butyl isocyanide led to a dynamic behavior between the isocyanide-[B] adduct and the 1,1-addition product in solution. ${ }^{[132]}$ Some saturated vicinal P/B (Scheme 4.1.3.3) ${ }^{[133]}$ or $N / B^{[134]}$ FLP exhibit a similar behavior towards CO. ${ }^{4}$

Scheme 4.1.3.3. Cooperative (left) and end-on behavior of FLPs towards carbon monoxide. ${ }^{[133]}$ In a similar fashion, FLPs have been shown to undergo addition reactions of small molecules such as sulfur dioxide $\left(\mathrm{SO}_{2}\right),{ }^{[136]}$ nitrous oxide $\left(\mathrm{N}_{2} \mathrm{O}\right),{ }^{[137]}$ or nitric oxide (NO). ${ }^{[138]}$

[^2]
4.2. Synthesis of 3-imino-azaphosphiridine complexes

Recently, it has been achieved to solve the challenge of building up an array of three atoms in a molecular compound two of which have no bonding interactions and being opponents in terms of the Lewis acid and base concept; this has been termed frustrated Lewis pair (FLP). Due to this, a wide range of new chemical structures such as LXXXI were discovered in recent years (LXXXI,LXXXI': LB1 = CR2; Scheme 1); evidence for LXXXI' was not obtained, so far. Among the many interesting transformations, enabled by LXXXI, is the activation of quite unreactive substrates such as H_{2} and CO_{2} through interactions of $L A / L B$ centers such as B / P and AI / P (for references, see above).

LXXXI

LX

LXXXI'

LXVI

LXXXII

LXVII

LXXXII'

LXVII'

Scheme 4.2.1. 1,1'-Vinyl-derived frustrated Lewis pairs LXXXI, closed isomers LXXXI' and neutral rings with polar bonds LXXXII and zwitterions thereof LXXXII' (LB ${ }^{1}=\mathrm{CR}_{2}$); 3-iminoaziridines LX, 3-imino-azaphosphiridines LXVI and their complexes LXVII/LXVII' (lines denote organic substituents and [M] a transition metal complex).

In order to approach the FLP concept from a different angle, we contemplated about the necessities to enhance reactivity of three-membered heterocycles having three different, strongly polarized ring bonds (i), ${ }^{[81,139-141]}$ high ring strain (ii) being combined with an exo nucleophilic centre LB ${ }^{1} .{ }^{[142]}$ It is well known that implementation of an sp^{2}-hybridized centre increases ring strain and bond strain in the distal bond in three-membered P heterocycles. ${ }^{[61,105]}$ Due to our longstanding interest in the chemistry of complexes possessing strained heterocyclic ligands having polar ring bonds such as 2 H -azaphosphirenes, ${ }^{[24]}$ oxaphosphiranes ${ }^{[38,48,140]}$ and azaphosphiridines, ${ }^{[50,51,81]}$ we contemplated about reactions of
$\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes and cumulenes in order to obtain structures such as LXVII, LXVII'. Until recently, only 3 -imino-aziridines $\mathbf{L X}^{[107]}$ were at hand and LXVI were claimed as reactive intermediate. ${ }^{[114]}$ Complexes LXVII, appear as particularly interesting targets as they may feature a masked (crypto) FLP-type character, ready to be unveiled upon cleavage of a markedly weakened endocyclic P-N bond (LXVII').

The first example of this will be reported in this chapter, together with theoretical calculations performed by Espinosa on the ring strain energy of the hitherto unknown complexes LXVII.

When $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes $\mathbf{2}^{[39]}$ and $19,{ }^{[40]}$ prepared from complexes $\mathbf{1}^{[77]}$ and $\mathbf{1 8}^{[40]}$ respectively, were reacted in situ with diisopropyl- and dicyclohexyl carbodiimides $\mathbf{2 0 a}, \mathbf{b}$ formation of the novel 3-iminoazaphosphiridine complexes $\mathbf{2 1 a}, \mathbf{b}, \mathbf{2 2 a}, \mathbf{b}$ was observed (Scheme 4.2.1); low temperature ${ }^{31}$ P NMR spectroscopic monitoring for the reaction of $\mathbf{2}$ and 20a didn't reveal any further evidence for intermediates. A fast work-up by exchanging the solvent to n-pentane and filtration of lithium chloride is required in order to obtain $\mathbf{2 1 a , b}, \mathbf{2 2 a}, \mathbf{b}$ in pure form and avoid decomposition. Compared to data of known azaphosphiridine complex derivatives, ${ }^{[50,51,81]}$ the complexes $\mathbf{2 1 a} \mathbf{, b}, \mathbf{2 2 a}, \mathbf{b}$, possess ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonances significantly downfield-shifted (Table 4.2.1). The imino carbon atoms of 21a,22a,b exhibit ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonances at $137.0 \mathrm{ppm}, 139.7 \mathrm{ppm}$ and 139.9 ppm , respectively, displaying relatively small sum of scalar coupling constants (21a: $J_{C, P}=7.2 \mathrm{~Hz}$; 22a: $J_{C, P}=5.5 \mathrm{~Hz}$ and 22b: $J_{C, P}=5.2 \mathrm{~Hz}$.

Scheme 4.2.1. Synthesis of 3-imino-azaphosphiridine complexes 21a,b,22a,b. ${ }^{[143,144]}$

Table 4.2.1. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonances $(\mathrm{ppm})\left[{ }^{1} \mathrm{~J}_{\mathrm{w}, \mathrm{P}}(\mathrm{Hz})\right]$ for $\mathbf{2 1 a , b , 2 2 a , b}$ in the reaction of $\mathbf{2 , 1 9}$ with 20a,b $\left(\mathrm{CDCl}_{3}\right)$.

R^{\prime}	R	${ }^{[143]} \mathrm{CPh}_{3}(21)$	${ }^{[144]} \mathrm{Cp}^{*}(22)$
	iPropyl (a)	$2.1[257.4]$	$4.0[265.6]$
	Cyclohexyl (b)	$0.0[257.2]$	$1.5[265.9]$

The structure of 3-imino-azaphosphiridine complexes 21a and 22a were confirmed by X-ray diffraction analysis (Figure 4.2.1). 21a Crystallized in the monoclinic crystal system, space group $\mathrm{P} 2 / \mathrm{a}$ and $\mathbf{2 2 a}$ in the triclinic crystal system, $\mathrm{P} \overline{1}$ space group. Although they were severely disordered (79:21 (21a) and 67:33 (22a), they were solved appropriately. 21a And 22a show a pyramidal geometry at the N 1 atom (sum of bond angles: 150.4° (21a) and 342.7° (22a)) and, interestingly, the N1-C1 bond lengths of 1.369 (7) and 1.366 (8) Å respectively, are shortened compared with $1.48-1.47 \AA$ as reported for azaphosphiridine complexes not possessing the 3-imino group ${ }^{[50]}$ and elongated compared to an 3-amino- 2 H -azaphosphirene complex derivative of $1.297(5) \AA .{ }^{[37]}$ The $\mathrm{P}-\mathrm{N} 1$ bond lengths of 1.767(4) \AA (21a) and 1.795(5) \AA (22a) are slightly elongated compared with the values of $1.72-1.73 \AA$ reported for azaphosphiridine complexes. ${ }^{[50]}$ The N2-C1 bond lengths of $1.258(7) \AA(21 a)$ and $1.249(6) \AA$ (22a) are similar to the corresponding $\mathrm{C}-\mathrm{N}$ bond length of the imino group in the N -phenyl-2iminophosphirane iron complex (1.273(7) \AA), ${ }^{[108]}$ and shorter than in the the same 3-amino$2 H$-azaphosphirene complex $(1.326(5) \AA)^{[37]}$ suggesting considerable $\mathrm{C}=\mathrm{N}$ double bond character. Despite contribution of canonical structure $\mathbf{2 1 , 2 2}{ }^{\text {res }}$ which is less important than $\mathbf{2 1 , 2 2}$, these compounds might be best depicted by resonance hybrid structures $\mathbf{2 1 , 2 2} \mathbf{}{ }^{\text {hyb }}$ (Scheme 4.2.2).

Scheme 4.2.2. Resonance structures of 3-imino-azaphosphiridine complexes 21,22.

Figure 4.2.1. Molecular structure 3 -imino-azaphosphiridine complex 21a (left). (50\% probability level, hydrogen atoms, except at N atoms, are omitted for clarity; only the main part of the disordered moiety is shown here). Selected X-ray crystal structure data (distances [Å] and angles [$\left.{ }^{\circ}\right]$]: P-W 2.5062(9), P-C(1) 1.824(6), P-N(1) 1.767(4), C(1)-N(1) 1.369(7), C(1)$\mathrm{N}(2) 1.258(7), \mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2) 141.1(7), \mathrm{N}(1)-\mathrm{C}(1)-\mathrm{P}$ 65.4(3), $\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{P}$ 153.0(6). Molecular structure of 3-imino-azaphosphiridine complex 22a (right). (50 \% probability level, hydrogen atoms are omitted for clarity; only the main part of the disordered moiety is shown here. Selected structural parameters (distances [Å] and angles [${ }^{\circ}$]): P-W 2.4779(9), P-C(1) 1.840(6), $\mathrm{C}(1)-\mathrm{N}(1) 1.366(8), \mathrm{C}(1)-\mathrm{N}(2) 1.249(6), \mathrm{P}-\mathrm{N}(1) 1.795(5), \mathrm{C}(1)-\mathrm{P}-\mathrm{N}(1) 44.1(3), \mathrm{N}(1)-\mathrm{C}(1)-\mathrm{P}$ 66.2(3), P-N(1)-C(1) 69.7(4), P-C(1)-N(2) 154.4(9), N1-C1-N2 138.9(9).

3-Imino-zaphosphiridine complexes were also studied computationally by Espinosa at the DFT level (B3LYP-D3/def2-TZVP). First, the E / Z isomerism of the exocyclic $C=N$ bond was inspected using model complexes bearing either H (23) or methyl groups (24) as P - and N substituents. The Z-isomer is the most stable diastereomer by 1.57 and $2.97 \mathrm{kcal} / \mathrm{mol}$ for complexes $\mathbf{2 3}$ and 24, respectively. A very important feature of these complexes is their remarkably large ring strain energy (RSE) of 50.58 and $52.26 \mathrm{kcal} \mathrm{mol}^{-1}$ computed for both diastereomers $\mathbf{2 3}{ }^{\mathbf{Z}}$ and $\mathbf{2 3}^{\mathbf{E}}$, using homodesmotic reactions, like those employed previously for related systems. ${ }^{[57]}$ This is almost twice as much as the value for the parent azaphosphiridine complex ($23.9 \mathrm{kcal} \mathrm{mol}^{-1}$). ${ }^{[57]}$ Moreover, the Lagrange kinetic energy at the ring critical point (RCP), $G(r)$, was recently shown to correlate with RSEs within related systems, ${ }^{[107]}$ at much lower computational cost, and also successfully employed within a related oxaphosphirane series. ${ }^{[48,145]}$ This computationally inexpensive $G(r)$ quantity suggests that the ring strain
slightly increases with trimethyl substitution on going from 23 (0.1311 au) to 24 (0.1362 au).
A small but significant contribution of resonance structures 21,22 ${ }^{\text {res }}$ (Scheme 4.2.2) is supported by the inspection of typical bond-strength related parameters such as the Wiberg bond index (WBI) ${ }^{[92]}$ and the electron density $\rho(r)$ at bond critical points (BCP) within the atoms-in-molecules (AIM) framework in the model complexes $\mathbf{2 3 , 2 4} .{ }^{[95,96]}$ The slightly larger than single bond order found for the endocyclic C-N bond in 23,24 (WBI = 1.176 (23) and 1.169 (24); $\rho(r)=32.69 \times 10^{2}(\mathbf{2 3})$ and $\left.32.73 \times 10^{2} e / a_{0}{ }^{3}(\mathbf{2 4})\right)$ and smaller than double bond for the exocyclic one (WBI $=1.886$ and 1.816; $\rho(r)=41.31 \times 10^{2}$ and $\left.41.12 \times 10^{2} e / a_{0}{ }^{3}\right)$. The weakest endocyclic bond in 23,24 was found to be the P-N bond (WBI $=0.778$ and $0.748 ; \rho(r)=$ 14.77×10^{2} and $15.07 \times 10^{2} e / a_{o}{ }^{3}$ respectively), which is responsible for ring opening reactions (vide infra).

As one might expect due to the large ring strain energy of complexes 3-iminoazaphosphiridine complexes, this kind of structures are unstable in solution in standard organic solvents and present difficulties when it comes to their handling. For example, 22b decomposed upon low temperature column chromatography $\left(-20^{\circ} \mathrm{C}, \mathrm{Al}_{2} \mathrm{O}_{3}\right.$, petrol ether $\left.(40 / 60) / \mathrm{Et}_{2} \mathrm{O}=70 / 30\right)$ into several products, one of which could be identified by X-ray crystallographic analysis (crystal system triclinic, space group $P \overline{1}$)(Figure 4.2.3). The zwitterionic bicyclic complex 25 (Scheme 4.2.3) displayed a ${ }^{31} \mathrm{P}$ NMR resonance of -23.6 ppm $\left({ }^{1} J_{W, P}=230.5 \mathrm{~Hz},{ }^{1} \int_{P, H}=230.5 \mathrm{~Hz}\right)$ resulted from the formal addition of a H_{2} (or a proton plus a hydride, or two H atoms) molecule to 22b. Unfortunately, the origins of the H^{+}and the H^{-}(or the two H atoms) as well as the formation of $\mathbf{2 5}$ remain still unknown.

Scheme 4.2.3. Decomposition reaction of 22b upon column chromatography to form $\mathbf{2 5}$.

The P-C15 bond length of $1.874(3)$ was found to be slightly elongated from its standard value of $1.80-1.82 \AA .{ }^{[82]}$ The $\mathrm{C} 16-\mathrm{C} 17$ and $\mathrm{C} 17-\mathrm{C} 18$ are $1.381(4)$ and $1.425(4)$ respectively suggesting intermediate situation between single and double bonds, circumstance that repeats for the C1-N1 and C1-N2 bonds which lengths are $1.333(3)$ and $1.339(3)$ respectively.

The folding angle between the best mean planes defined by C14-C15-C16-C7-C18 and C14$\mathrm{C} 15-\mathrm{P}-\mathrm{C} 1-\mathrm{N} 1$ is 69.2°. The sum of angles around C16, C17, C18, N1, C1 and N 2 is in all cases almost to 360°, thus suggesting trigonal planar environment and an overall zwitterionic structure.

Figure 4.2.3. Molecular structure of zwitterionic bicyclic complex 25 (50% probability level, hydrogen atoms, except for HX are omitted for clarity). Selected structural parameters (distances [Å]): P-W 2.6253(7), P-C(1) 1.810(3), P-C(15) 1.874(3), C(15)-C(16) 1.527(4), C(16)$\mathrm{C}(17) 1.381(4), \mathrm{C}(17)-\mathrm{C}(18) 1.425(4), \mathrm{C}(18)-\mathrm{C}(14) 1.533(4), \mathrm{C}(1)-\mathrm{N}(1) 1.333(3), \mathrm{C}(1)-\mathrm{N}(2)$ 1.339, (3), $\mathrm{N}(1)-\mathrm{C}(14) 1.509(3)$.

4.3. Studies on the decomposition pattern of 3-imino-azaphosphiridine complexes in solution

After leaving an ethereal ($\mathrm{Et}_{2} \mathrm{O}$ or THF) solution of 21a at ambient temperature, two new products displaying ${ }^{31} \mathrm{P}$ NMR resonance of $-50.7 \mathrm{ppm}\left({ }^{1} \int_{\mathrm{W}, \mathrm{P}}=119.6 \mathrm{~Hz}\right) \mathbf{2 6 a}$ and 150.8 ppm $\left({ }^{1} J_{\mathrm{W}, \mathrm{p}}=288.3 \mathrm{~Hz}\right) 27\left(\mathrm{Et}_{2} \mathrm{O}\right)$ appeared after two hours. Upon warming the reaction solution till $60^{\circ} \mathrm{C}$ the reaction was accelerated and no other products were observed (Scheme 4.3.1). The nature of 26a was assigned by comparison with the isolated and characterized product 26b, obtained from the reaction of 21a with isonitrile 52b (see chapter 4.4.2.4). 1,3,2Diazaphosphetidine complex 27 was identified by single crystal X-ray analysis (crystal system triclinic, space group $\overline{1}$) (Figure 4.3.1). Here, a $P-N$ and $C-N$ bond cleavage in 21a occurred leading to the formation of the isonitrile-phosphinidene complex adduct 23a (see also chapter
4.4.2.4) and transfer of a nitrene unit being inserted into the $P-C$ bond of a second molecule of 21a.
$2 x$

21a

26a

27

Scheme 4.3.1. Decomposition reaction of 21a to form 26 and 27.

In complex 27, the P-N1 and P-N2 bond lengths were found to be similar, 1.704(4) \AA and $1.713(4) \AA$ respectively, and the C1-N1 bond length of $1.400(6)$ shorter than the C1-N2 bond length of $1.442(5)$. The folding angle between the planes defined by N1-C1-N2 and N1-$\mathrm{P}-\mathrm{N} 2$ atoms is 6.2° thereford showing an almost planar ring structure (Figure 4.3.1).

Figure 4.3.1. Molecular structure of 1,3,2 diazaphosphetidine complex 27. (50 \% probability level, hydrogen atoms are omitted for clarity. Selected structural parameters (distances [Å] and angles [${ }^{\circ}$]): P-W 2.5094(10), $\mathrm{P}-\mathrm{N}(1) 1.704(4), \mathrm{P}-\mathrm{N}(2) 1.713(4), \mathrm{N}(1)-\mathrm{C}(1) 1.400(6), \mathrm{C}(1)-\mathrm{N}(2)$ $1.442(5), N(1)-P-N(2) 76.38(17), P-N(2)-C(1) \quad 92.7(3), N(2)-C(1)-N(1) 96.0(3), C(1)-N(1)-P$ 94.6(3).

4.4. Reactivity of 3-Imino-azaphosphiridine complexes

4.4.1. Examples for a substrate stimuli-responsive masked FLP-type reactivity

In the presence of certain substrates such as water, heterocumulenes like phenylisocyanate or carbon dioxide or pentafluorobenzaldehyde 3-imino-azaphosphiridine complexes show a stimuli-responsive masked FLP-type reactivity. In the present chapter, the synthesis and characterization of the products obtained upon reaction of 3-imino-azaphosphiridine complexes and the above mentioned substrates are described. Reaction mechanisms of representative reactions based on DFT calculations performed by Espinosa are also discussed.

4.4.1.1. Ring opening reaction with water

When THF, $\mathrm{Et}_{2} \mathrm{O}$ or toluene solutions of complexes $\mathbf{2 1 a , b}$ and $\mathbf{2 2 , a , b}$ were treated with 1 eq. of water at ambient temperature, the formation of complexes $\mathbf{2 8 a} \mathbf{a} \mathbf{b}$ and $\mathbf{2 9 a} \mathbf{a}$ occurred selectively (Scheme 4.4.1.1.1) which were obtained in pure form and good yields via crystallization from diethyl ether solutions (Table 4.4.1.1.1). The resonances of the carbon nuclei, directly bound to two nitrogens, appear as doublets in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (28a: $172.5 \mathrm{ppm},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=32.5 \mathrm{~Hz}, \mathbf{2 9 a}: 171.9 \mathrm{ppm},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=14.4 \mathrm{~Hz}$ and $29 \mathrm{~b}: 170.8 \mathrm{ppm},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=14.1 \mathrm{~Hz}$).

21,28: $\mathrm{R}=\mathrm{CPh}_{3} ; 22,29: \mathrm{R}=\mathrm{Cp} *$
a: $\mathrm{R}^{\prime}={ }^{\mathrm{I}} \mathrm{Pr} ; \mathbf{b}: \mathrm{R}^{\prime}=\mathrm{Cy}$

Scheme 4.4.1.1.1 Synthesis of $\mathbf{2 8 a} \mathbf{a} \mathbf{b}$ and $\mathbf{2 9} \mathbf{a}, \mathbf{b}$.

Table 4.4.1.1.1. ${ }^{31} \mathrm{p}$ NMR resonances $(\mathrm{ppm})\left[{ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{P}}(\mathrm{Hz})\right]$ for $\mathbf{2 8 a}, \mathbf{b}, \mathbf{2 9 a} \mathbf{a} \mathbf{b}$ in the reaction of $\mathbf{2 1 a}, \mathbf{b}, \mathbf{2 2 a} \mathbf{a} \mathbf{b}$ with water $\left(\mathrm{CDCl}_{3}\right)$.

R^{\prime}	R	${ }^{[143]} \mathrm{CPh}_{3}(28)$	${ }^{[144]} \mathrm{Cp}{ }^{*}$ (29)
		$92.4[285.6]$	$84.3[269.0]$
	iPropyl (a)		$91.2[284.2]$

Interestingly, the ${ }^{1} \mathrm{H}$ NMR spectra (CDCl_{3}) of 29a showed a broad singlet at 6.7 ppm for the $\mathrm{N}-\mathrm{H}$ protons at ambient temperature which, upon cooling to $-70^{\circ} \mathrm{C}$, splits into two doublets (${ }^{3}{ }_{\mathrm{H}, \mathrm{H}}=6.5 \mathrm{~Hz}$) at 5.1 and $8.0 \mathrm{ppm}\left({ }^{4} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=8.0 \mathrm{~Hz}\right.$) revealing that rotation around the $\mathrm{P}-\mathrm{C}^{\mathrm{N}}$ bond is hampered due to an PO $\cdots \mathrm{H}-\mathrm{N}$ hydrogen bonding. According to the GutowskyHolms equation $\left(K_{c}=\pi \nabla / \sqrt{ } 2\right){ }^{[146]}$ and the Eyring equation $\left\{\Delta G^{\neq}{ }_{c}=4.58 T_{c}[10.32+\log \right.$ $\left.\left.\left(T_{c} / K_{c}\right)\right]\right\}^{[147]}$ the free energy activation at coalescence temperature for this process was calculated to be between 10.9 and $11.4 \mathrm{kcal} \mathrm{mol}^{-1}$ (Figure 4.4.1.1.1).
$K_{c}=\pi \Delta v_{o} / V 2=\pi 861 / V 2=1912.7$
$\Delta G^{\neq}{ }_{\mathrm{c}}=4.58 \times 264[10.32+\log (264 / 1912.7)]=11.4 \mathrm{kcal} \mathrm{mol}^{-1}$
$K_{c}{ }^{\prime}=\pi \Delta v_{o}{ }^{\prime} / \mathrm{V} 2=\pi 33 / \mathrm{V} 2=73.3$
$\Delta \mathrm{G}^{\neq}{ }_{\mathrm{c}}{ }^{\prime}=4.58 \times 221[10.32+\log (221 / 73.3)]=10.9 \mathrm{kcal} \mathrm{mol}^{-1}$

Where K_{c} stands for the rate constant for the process at coalescence temperature $\left(\mathrm{T}_{\mathrm{c}}\right)$ and ∇ stands for the chemical shift difference of the signals in hertz.

Figure 4.4.1.1.1. Low temperature ${ }^{1} \mathrm{H}$ NMR monitoring of 29a. Time interval between each measurement was 10 minutes. ${ }^{[144]}$

Complexes 28a and 29a,b were also structurally confirmed (crystal system monoclinic, space group $\mathrm{P} 2_{1} / \mathrm{n}$ in all three cases) (Figures 4.4.1.1.2 and 4.4.1.1.3) revealing a unique bonding of a zwitterion ligand possessing a delocalized cationic moiety where the sum of the bond angles around C 1 atom are 359.5° (28a), 359.8° (29a) and 359.7° (29b), almost identical C-N distances, an elongated P-C (1.921(8) Å (28a), 1.897(2) A (29a) and 1.902(4) A (29b)) and shortened P-O bond (1.518(6) A (28a), 1.5201(16) \AA (29a) and 1.521 (3) \AA (29b)). This situation bears also features of a carbene donor adduct to a terminal phosphinidene oxide complex as expressed by the formulae $\mathbf{2 8 , 2 9}$ can (BDE for model complex $\mathbf{3 0}$ (methyl substituent at P and N atoms) was computed to be $53.69 \mathrm{Kcal} \cdot \mathrm{mol}^{-1}$, see below) (Figure 4.4.1.1.1). Albeit having a O1-C1 distance of $2.64 \AA$ (29a), which is shorter than the sum of van der Waals radii (3.22 \AA A), ${ }^{[148]}$ it is clearly the first example of a valence isomer of an oxaphosphirane complex. Furthermore, there is a $\mathrm{O} 1 \cdots \mathrm{H}-\mathrm{N} 2$ hydrogen bond (O1-H2.06, O1-N2 2.639(2) \AA), which reflects the situation in solution at low temperature.

Figure 4.4.1.1.2. Molecular structure of 29a (left) and 29b (right). (50 \% probability level, hydrogen atoms (except at nitrogen atoms) are omitted for clarity. Selected structural parameters (distances [Å] and angles [${ }^{\circ}$]) for 29a: P-W 2.5384(6), P-C(1) 1.897(2), C(1)-N(1) 1.319(3), C(1)-N(2) 1.311(3), P-O 1.5201(16), C(1)-P-O 100.61(10), N(1)-C(C1)-N(2) 127.1(2), $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{P}$ 122.71(17), $\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{P}$ 110.03(16); 29b: P-W 2.5440(11), P-C(1) 1.902(4), C(1)$N(1) 1.317(5), C(1)-N(2) 1.305(5), \quad \mathrm{P}-\mathrm{O} 1$ 1.521(3), $\mathrm{C}(1)-\mathrm{P}-\mathrm{O}$ 101.76(19), $\mathrm{N}(1)-\mathrm{C}(\mathrm{C} 1)-\mathrm{N}(2)$ 128.0(4), $N(1)-C(1)-P 121.3(3), N(2)-C(1)-P 110.5(3) .{ }^{[144]}$

Figure 4.4.1.1.3. Molecular structure of 28a. (50\% probability level, hydrogen atoms, except at N atoms, are omitted and CPh_{3} group shown in grey for clarity). Selected X-ray crystal structure data (distances [Å] and angles [${ }^{\circ}$]): P-W 2.541(2), P-C(1) 1.921(8), P-O(1) 1.518(6), $\mathrm{C}(1)-\mathrm{N}(1) 1.334(11), \mathrm{C}(1)-\mathrm{N}(2) 1.317(9), \mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2) \quad 126.1(7), \mathrm{N}(1)-\mathrm{C}(1)-\mathrm{P}$ 108.5(5), $\mathrm{N}(2)-$ $C(1)-P 124.9(6) .{ }^{[143]}$

Studies by Espinosa on the reaction mechanism support that the basic character of the exocyclic N atom in model complex 24 enables initial hydrogen bond (HB) formation leading to the van der Waals complex $\mathbf{2 4} \cdot \mathbf{H}_{\mathbf{2}} \mathrm{O}$, which promotes weakening of the exocyclic $\mathrm{C}=\mathrm{N}$ bond (lower double bond character) thus allowing rotation of this bond to afford the slightly less stable isomer $\mathbf{2 4}^{\mathrm{E}} \cdot \mathrm{H}_{2} \mathrm{O}$ (Figure 4.4.1.1.4).

Figure 4.4.1.1.4. Calculated energy profile (COSMO thf/LPNO-NCEPA1/def2-TZVPP//B3LYP-D3/def2-TZVP) for the hydrolysis of model complex 24 (see text) to 31. ${ }^{[144]}$

This E-configured van der Waals complex displays a two-point anchoring of the water molecule to 24^{E} by means of a $\mathrm{OH} \cdots \mathrm{N}$ HB ($\mathrm{d}=2.025 \AA$; $\mathrm{WBI}=0.030$) and a weak secondary O \ldots P interaction ($d=3.1985 \AA$; WBI $=0.020$), as visualized in a NCI (noncovalent interactions) plot ${ }^{[91,149]}$ (Figure 4.4.1.1.5). This in turn entails an important change in $\mathbf{2 4}{ }^{\boldsymbol{E}}$ as it remarkably increases the ring strain $(G(r)=0.1566 \mathrm{au})$ and weakens the $\mathrm{P}-\mathrm{N}$ bond $(\mathrm{WBI}=0.726 ; \rho(\mathrm{r})=$ $\left.14.55 \times 10^{2} \mathrm{e} / a_{0}{ }^{3}\right)$, thus giving rise to a cascade set of reactions.

Figure 4.4.1.1.5. Computed (B3LYP-D3/def2-TZVP-f) structure for $\mathbf{2 4} \cdot{ }^{\mathrm{E}} \cdot \mathrm{H}_{2} \mathrm{O}$ with NClplot highlighting key stabilizing NCIs. The RDG $s=0.25$ au isosurface is coloured over the range $0.07<\operatorname{sign}\left(\lambda_{2}\right) \cdot \rho<0.07$ au: blue denotes strong attraction, green stands for moderate interaction, and red indicates strong repulsion. ${ }^{[144]}$

The proposed reaction sequence starts with a low barrier ($20.7 \mathrm{kcal} \mathrm{mol}^{-1}$), exergonic, unusual pericyclic $[2 \sigma+(2 \pi+2 \sigma)]$ process corresponding to the formal addition of water across the $\mathrm{P}-\mathrm{C}=\mathrm{N}$ termini and leading to the open-chain intermediate $\mathbf{3 0}$ that displays intramolecular NH $\cdots \mathrm{O}(\mathrm{H}) \mathrm{P}$ HB-stabilization. Rotation around the C-P bond affords conformer $\mathbf{3 0}^{\text {conf }}$ that is stabilized by a different (and stronger) intramolecular hydrogen bond of POH $\cdots \mathrm{N}$ type and enables the final slightly exergonic and very low barrier O-to-N proton transfer leading to $\mathbf{3 1}$.

In order to inspect further the bonding in 31, the heterolytic P-C bond dissociation energy (BDE) was computed to $53.69 \mathrm{Kcal} \cdot \mathrm{mol}^{-1}$, which is rather low for a not heavily substituted system (as in 28a,29a) in comparison to the reported mean value of ca. 123 $\mathrm{kcal} / \mathrm{mol}$. ${ }^{[150]}$ Furthermore, descriptors for bond strength points to a weak P-C bond in 31 (WBI $\left.=0.726 ; \rho(r)=13.92 \times 10^{2} e / a_{0}{ }^{3}\right)$ in comparison to the closely related precursor $30^{\text {conf }}(\mathrm{WBI}=$ 0.828; $\left.\rho(r)=15.99 \times 10^{2} e / a_{o}{ }^{3}\right)$ and even the strained P-C bond in $24(\mathrm{WBI}=0.809 ; \rho(r)=$ $\left.15.47 \times 10^{2} \mathrm{e} / a_{o}{ }^{3}\right)$, thus providing some additional support for the formulation as a
diaminocarbene-stabilized phosphinidene oxide complex 28,29can (Scheme 4.4.1.1.1). Rotation around the C-P bond in 31 requires to surpass a transition state barrier of 7.62 $\mathrm{kcal} / \mathrm{mol}\left(\mathrm{CHCl}_{3}\right.$ solution), which is in quite good agreement with the experimental value obtained for 29a, especially if taking the larger substituents at both N and P into account.

4.4.1.1.1. Reaction of complex 28a with tritylium tetrafluoroborate

The unusual 1,3-zwitterionic P-ligand structure of $\mathbf{2 8 , 2 9}$ raised our particular interest, and the option of single electron transfer oxidation reactions was contemplated. Such reactions could lead to interesting radical cationis as stable products, or intermediates. When the zwitterionic complex 28a was reacted with tritylium tetrafluoroborate (32), known to be a strong SET oxidant, ${ }^{[151]}$ in $\mathrm{Et}_{2} \mathrm{O}$ or THF at room temperature for twenty hours, complex 33 displaying ${ }^{31} \mathrm{P}$ NMR resonance of $110.6 \mathrm{ppm}\left({ }^{1}{ }_{\mathrm{w}, \mathrm{P}}=294.3 \mathrm{~Hz}\right)\left(\mathrm{CDCl}_{3}\right)$ was obtained selectively (Scheme 4.4.1.1.1.1). In contrast to the precursor 28a, the ${ }^{1} \mathrm{H}$ NMR spectrum of the new product showed a broad singlet at 6.5 ppm at room temperature corresponding to the two $\mathrm{N}-\mathrm{H}$ hydrogen atoms. This finding reveals a free rotation around the P-C1 bond and the loss of the hydrogen bonding between the $\mathrm{P}-\mathrm{O}$ atom and the hydrogen atom at the nitrogen atom. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum showed a doublet for the C 1 atom at $169.0 \mathrm{ppm}\left({ }^{1} \mathrm{~J}_{\mathrm{p}, \mathrm{C}}=11.5 \mathrm{~Hz}\right)$ which in comparison with $172.5 \mathrm{ppm}\left({ }^{1} J_{\mathrm{P}, \mathrm{C}}=32.5 \mathrm{~Hz}\right.$) observed in the precursor 28a, suggests a similar environment at the $\mathrm{P}-\mathrm{C}^{\mathrm{N} 2}$ carbon atom, and a weakening of this phosphorus-carbon bond might be concluded. The ${ }^{11}$ B NMR spectrum showed a broad singlet at -1.1 ppm and the ${ }^{19} \mathrm{~F}$ NMR spectrum a broad doublet at $-139.9 \mathrm{ppm}\left({ }^{1}{ }_{\mathrm{F}, \mathrm{B}}=2.7 \mathrm{~Hz}\right)$.

Scheme 4.4.1.1.1.1. Reaction of 28a with tritylium tetrafluoroborate to give $\mathbf{3 3}$.

The P-ligand in complex $\mathbf{3 3}$ can be described as a carbene donor adduct to a terminal phosphinidene oxide complex which, in turn, coordinates to boron trifluoride via a lone pair at the oxygen atom ($3^{\text {can }}$ (can = canonical structure))(Scheme 4.4.1.1.1.2).

33

$33^{\text {can }}$

Scheme 4.4.1.1.1.2. Two canonical structures of complex 33.

Compared to the metrics of the starting material 28a, the $\mathrm{P}-\mathrm{C1}$ bond length of 1.9191(1) Å remains almost unchanged (1.921(8) Å for 28a), while the P-O1 bond length of $1.543(7)$ Å is, as expected, significantly elongated compared with $1.518(6)$ Å in 28a, due to the coordination to boron trifluoride (Figure 4.4.1.1.1.1). Compared with literature values for related compounds, the O1-B bond length of $1.5146(1) A$ is almost equal to the one observed for the triphenylphosphine oxide trifluoroborane adduct (LXXXIII) ${ }^{[152]}$ ($\mathrm{d}_{\mathrm{O}-\mathrm{B}}=1.516(6) \mathrm{A}$) and slightly elongated with respect to $\operatorname{LXXXIV}{ }^{[153]}$ and $\operatorname{LXXXV}^{[154]}$ of 1.487 and $1.488(6) \AA$, respectively (Scheme 4.4.1.1.1.3).

Figure 4.4.1.1.1.1. Molecular structure of 33. (50\% probability level, hydrogen atoms, except at N atoms, are omitted and CPh_{3} group shown in grey for clarity). Selected X -ray crystal structure data (distances [Å] and angles [$\left.{ }^{\circ}\right]$): P-W 2.533(1), P-C(1) 1.9191(1), P-O(1) 1.543(7), $\mathrm{O}(1)-\mathrm{B} 1.5146(1), \mathrm{C}(1)-\mathrm{N}(1) 1.327(1), \mathrm{C}(1)-\mathrm{N}(2) 1.301(1), \mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2) 128.57, \mathrm{~N}(1)-\mathrm{C}(1)-\mathrm{P}$ 112.54, N(2)-C(1)-P 118.68. ${ }^{5}$

[^3]

LXXXIII $^{[152]}$

LXXXIV $^{[153]}$

$\operatorname{LXXXV}^{[154]}$

Scheme 4.4.1.1.1.3. Some examples of literature known compounds having the $\mathrm{P}-\mathrm{O}-\mathrm{BF}_{3}$ unit.

4.4.1.2. Reaction with isocyanates and bis-isocyanates

When 3-imino-azaphosphiridine complex 21a was treated with 1 eq. of phenyl isocyanate (34a) in THF, $\mathrm{Et}_{2} \mathrm{O}$ or toluene at ambient temperature (Scheme 4.4.1.2.1), 1,3,5oxazaphospholane complex 35 was obtained. Interestingly, no reaction was observed when isopropyl isocyanate (34b) was used under the same conditions. Complex 35 displayed a ${ }^{31}\left\{{ }^{1} \mathrm{H}\right\}$ resonance at $131.7 \mathrm{ppm}\left({ }^{1} J_{\mathrm{W}, \mathrm{P}}=277.7 \mathrm{~Hz}\right)$; this was accompanied by the formation of a complex ($\sim 4 \% ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}=103.4 \mathrm{ppm},{ }^{1} J_{\mathrm{W}, \mathrm{P}}=288.0 \mathrm{~Hz}$) which could not be identified. In case of 35, a formal insertion of the carbonyl group of the phenyl isocyanate into the P-N bond of complex 21a had occurred. Product $\mathbf{3 5}$ was isolated in 65% yield and its molecular structure was confirmed by X-ray analysis (crystal system monoclinic, space group $\mathrm{P}_{1} / \mathrm{c}$) (Figure 4.4.1.2.1). The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 35 revealed resonances for the imino carbon atoms at $143.5 \mathrm{ppm}\left({ }^{2+3} \mathrm{~J}_{\mathrm{p}, \mathrm{C}}=12.4 \mathrm{~Hz}\right)$ and $150.7 \mathrm{ppm}\left({ }^{1+4} \mathrm{~J}_{\mathrm{p}, \mathrm{C}}=10.2 \mathrm{~Hz}\right)$. For a mechanistic proposal see chapter 4.4.1.3.

Scheme 4.4.1.2.1. Reaction of 3-imino-azaphosphiridine complex 21a with phenyl isocyanate (34a) to give 1,3,5-oxazaphospholane complex 35.

Figure 4.4.1.2.1. Molecular structure of 1,3,5-oxazaphospholane complex 35. (50\% probability level, hydrogen atoms are omitted and CPh_{3} group in gray for clarity). Selected structural parameters (distances [Å] and angles []): P-W 2.5011(6), P-C(2) 1.885(2), P-O(1) 1.6562(15), $\mathrm{O}(1)-\mathrm{C}(1) 1.386(2) \mathrm{C}(1)-\mathrm{N}(1) 1.370(3), \mathrm{N}(1)-\mathrm{C}(2) 1.406(3), \mathrm{C}(2)-\mathrm{P}-\mathrm{O}(1) 89.98(9), \mathrm{O}(1)-\mathrm{C}(1)-\mathrm{N}(1)$ 111.20(19), $N(1)-C(2)-P 105.21(15) .{ }^{[143]}$

Interestingly, when a large excess of ca. 100 eq. of $\mathbf{3 4 a}$ was added to the reaction mixture of freshly prepared 21a, formation of a crystalline, trimeric structure of the phenyl isocyanate $\left(\mathrm{PhNCO}_{3}(36)^{[155]}\right.$ occurred (Scheme 4.4.1.2.2). Simple hand-touching of the reaction vessel revealed an exothermic reaction. The trimerization was not observed when a large excess of 34a was added neither to solutions of isolated 21a nor to lithium chloride. The product, which co-crystallized together with a THF molecule, was identified by X-ray crystallographic analysis (crystal system triclinic, space group $\mathrm{P} \overline{1}$) (Figure 4.4.1.2.2). A nucleophilic attack of the lone pair at imino nitrogen atom to the allenic carbon of the isocyanate (see chapter 4.4.1.3), in which lithium chloride might be somehow involved, and which does not allow for a fast ring closure might be the explanation. But the overall mechanism of the trimerization requires further theoretical studies.

18
19
${ }^{\mathrm{i}} \mathrm{PrN}=\mathrm{C}=\mathrm{N}^{\mathrm{i}} \mathrm{Pr}$ (20a)
THF, $-78^{\circ} \mathrm{C}->$ r.t.
33.3 X

Scheme 4.4.1.2.2. Formation of 1,3,5-triphenyl-1,3,5-triazinane-2,4,6-trione 36.

Figure 4.4.1.2.2. Molecular structure of 36. (50\% probability level, hydrogen atoms are omitted for clarity). Selected structural parameters (distances [Å]): C(1)-N(1) 1.3897(16), N(1)$\mathrm{C}(2) 1.3905(16), \mathrm{C}(2)-\mathrm{N}(2) 1.3932(15), \mathrm{N}(2)-\mathrm{C}(3) 1.3881(16), \mathrm{C}(3)-\mathrm{N}(3) 1.3926(16), \mathrm{N}(3)-\mathrm{C}(1)$ $1.3928(16), \mathrm{C}(1)-\mathrm{O}(1) 1.2059(15), \mathrm{C}(2)-\mathrm{O}(2) 1.2078(15), \mathrm{C}(3)-\mathrm{O}(3) 1.2101(15)$.

The selectivity observed for the reaction 21a with phenyl isocyanate (34a) extends to bis-isocyanates. Reaction of 1,4-phenylene diisocyanate (37) with two equivalents of 3iminoazaphosphiridine complex 22a led selectively to the formation of 1,4-phenylene-bis-

1,3,5-oxazaphopholane complex 38 . The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum showed three broad signals at $132.1 \mathrm{ppm}, 132.6 \mathrm{ppm}$ and 134.3 ppm with ${ }^{1} / \mathrm{w}, \mathrm{p}=276 \mathrm{~Hz}$ probably due to diastereoism at the phosphorus atom (Scheme 4.4.1.2.3). Complex 38 was isolated in 50% yield by low temperature column chromatography and both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra displayed broad signals as it was expected for this kind of "bis-structures" (see experimental part).

Scheme 4.4.1.2.3. Reaction of 3-imino-azaphosphiridine complex 21b with 1,4-phenylene diisocyanate (37) to give complex 38.

The structure of $\mathbf{3 8}$ was further confirmed by X -ray analysis (crystal system monoclinic, space group $\mathrm{P} 2_{1} / \mathrm{n}$)(Figure 4.4.1.2.3). In general, all bonding parameters in the $1,3,5-$ oxazaphospholane rings in 35 and 38 are in the same range, except of the $P-C(2)$ bond length of $1.859(4) \AA$ in 38 which is shortened in comparison with the P-C(2) bond length of 1.885(2) in 35.

Figure 4.4.1.2.3. Molecular structure of 1,4-phenylene-bis-1,3,5-oxazaphospholane complex 38. (50\% probability level, hydrogen atoms are omitted and Cp^{*} groups in grey for clarity). Selected structural parameters (distances [Å] and angles []): P-W 2.4966(10), P-C(2) 1.859(4), $\mathrm{P}-\mathrm{O}(1) 1.678(3), \mathrm{O}(1)-\mathrm{C}(1) 1.376(4) \mathrm{C}(1)-\mathrm{N}(1) 1.385(5), \mathrm{N}(1)-\mathrm{C}(2) 1.406(5), \mathrm{C}(2)-\mathrm{P}-\mathrm{O}(1)$ 90.19(16), O(1)-C(1)-N(1) 110.7(3), N(1)-C(2)-P 105.6(3).

4.4.1.3. Reaction with carbon dioxide

In order to test its reactivity further, 21a was treated with carbon dioxide, first in THF (1 bar, r.t.), to give readily $1,3,5$-oxazaphospholane complex 39 via ring expansion. Under these conditions ${ }^{\sim} 15 \%$ of an unknown complex was observed ($\delta^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}=71.6,{ }^{1} J_{\mathrm{W}, \mathrm{P}}=288.0 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}$ $=358.5 \mathrm{~Hz}$) which could not be isolated. This by-product formation was suppressed, if the reaction was carried out in $\mathrm{Et}_{2} \mathrm{O}$ at 20 bar of CO_{2} and ambient temperature (Scheme 4.4.1.3.1). Product $39\left(\delta^{31} P\left\{{ }^{1} \mathrm{H}\right\}=128.0,{ }^{1} J_{\mathrm{W}, \mathrm{P}}=272.4 \mathrm{~Hz}\right)$ was fully characterized including X -ray structure analysis (crystal system triclinic, space group $\mathrm{P} \overline{1}$) (Figure 4.4.1.3.1) and displayed ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonances of $\left.151.0 \mathrm{ppm}\left({ }^{1+4}\right)_{\mathrm{P}, \mathrm{C}}=8.1 \mathrm{~Hz}\right)$ and $\left.149.5\left({ }^{2+3}\right)_{\mathrm{P}, \mathrm{C}}=12.1 \mathrm{~Hz}\right)$ for the imino and carbonylic carbon atoms, respectively

Scheme 4.4.1.3.1. Reaction of 3 -imino-azaphosphiridine complex 21a with CO_{2} to give complex 33.

The 1,3,5-oxazaphospholane rings in 35, $\mathbf{3 8}$ and $\mathbf{3 9}$ are planar, showing in all cases a largest distance of a ring atom with respect to the best mean plane formed by all ring atoms below $0.04 \AA$ And a sum of bond angles at the N1 atom of $35: 359.9^{\circ} ; 33: 359.6^{\circ} ; 39: 360.0^{\circ}$, showing a planar environment (Figures 4.4.1.2.1, 4.4.1.2.3 and 4.4.1.3.1).

Figure 4.4.1.3.1. Molecular structure of 1,3,5-oxazaphospholane complex 39. (50\% probability level, hydrogen atoms are omitted and trityl group in grey for clarity). Selected structural parameters (distances [Å] and angles [${ }^{\circ}$]):P-W 2.4935(8), P-C(2) 1.885(3), P-O(1) 1.671(3), $\mathrm{O}(1)-\mathrm{C}(1) 1.377(4), \mathrm{C}(1)-\mathrm{N}(1) 1.370(5), \mathrm{N}(1)-\mathrm{C}(2) 1.407(4), \mathrm{C}(2)-\mathrm{P}-\mathrm{O}(1) 89.82(14), \mathrm{O}(1)-\mathrm{C}(1)-$ $N(1)$ 111.2(3), $N(1)-C(2)-P 104.9(2) .{ }^{[143]}$

To understand the formal $\mathrm{P}-\mathrm{N}$ bond-selective ring expansion process, Espinosa performed quantum chemical calculations (COSMO ${ }_{\text {toluene }} /$ DLPNO-CCSD(T)/def2TZVPPecp//COSMO ${ }_{\text {toluene }}$ /B3LYP-D3/def2-TZVP ecp) to elucidate the reaction pathway. Here,
the in silico reaction with carbon dioxide of model complex $\mathbf{2 4}$ (methyl groups at both P and N atoms were used for the sake of computational efficiency) was explored. Initially, the basic exocyclic N atom of the most stable Z-configured initial model complex 24 interacts with the electrophilic centre of carbon dioxide leading to $\mathbf{2 4} \cdot \mathbf{C O}_{2}$ that undergoes rotation of the weakened exocyclic C-N bond to afford the van der Waals complex $\mathbf{2 4} \cdot \mathbf{C O} \cdot \mathrm{CO}_{2}$ bound by weak non-covalent interactions (NCIs) (Scheme 4.4.1.3.2).

Scheme 4.4.1.3.2. Proposed mechanism for the formation of model complex 41. ${ }^{[143]}$

The van der Waals complex $\mathbf{2 4}^{\mathrm{E}} \cdot \mathrm{CO}_{\mathbf{2}}$ is easily visualized by the NCIplot technique of colour-coded reduced density gradient (RDG) isosurfaces (Figure 4.4.1.3.2). ${ }^{[156]}$ The most significant NCIs are those linking the exocyclic N atom with the CO_{2} carbon ($\mathrm{d}=2.858 \AA$; WBI $\left.=0.010 ; \rho(r)=1.15 \times 10^{-2} e / a_{0}{ }^{3}\right)$ and one CO_{2} oxygen atom with the P atom ($\mathrm{d}=3.330 \AA$; $\mathrm{WBI}=$ $0.003 ; \rho(r)=0.68 \times 10^{-2} e / a_{0}{ }^{3}$) and a carbonyl ligand ($d=3.205 \AA$; WBI $=0.002 ; \rho(r)=0.51 \times 10^{-2}$ $e\left(a_{0}{ }^{3}\right)$.

Figure 4.4.1.3.2. Computed (B3LYP-D3/def2-TZVPecp) most stable structure for van der Waals complex $\mathbf{2 4}^{\text {E. }} \cdot \mathbf{C O}_{\mathbf{2}}$ with NCIplot highlighting key stabilizing NCIs. The RDG $s=0.28$ au isosurface is coloured over the range $-0.05<\operatorname{sign}\left(\lambda_{2}\right) \cdot \rho<0.05$ au: blue denotes strong attraction, green stands for moderate interaction, and red indicates strong repulsion.

Strengthening of the N \cdots C interaction in the van der Waals complex leads to zwitterionic intermediate $\mathbf{4 0}$ that undergoes ring opening by attack of the negatively charged O atom to phosphorus thus forming a new 5-membered 1,3,5-oxazaphospholane ring 41^{E} in a highly exergonic low barrier process (Figure 4.4.1.3.3). Finally the exocyclic E-configured $\mathrm{C}=\mathrm{N}$ bond rotates to give the most stable Z-configuration of the final product 41. ${ }^{[143]}$

Figure 4.4.1.3.3. Computed (COSMO toluene $^{\text {/DLPNO-CCSD(T)/def2-TZVPPecp) minimum energy }}$ path for the transformation $\mathbf{2 4}+\mathrm{CO}_{2} \rightarrow \mathbf{4 1}$. $^{[143]}$

The driving force for the overall transformation $\mathbf{2 4}+\mathrm{CO}_{2} \rightarrow \mathbf{4 1}$ must be mainly related to the release of the remarkably high ring strain ($50.58 \mathrm{kcal} / \mathrm{mol}$ was calculated for the parent
complex). ${ }^{[152]}$ In this line, the computationally inexpensive $G(r)$ (Lagrangian of the kinetic energy density at ring critical points) ${ }^{[101]}$ values reveal a dramatic increase of ring strain on moving from 24 to $\mathbf{2 4}^{\mathrm{E}} \cdot \mathrm{CO}_{2}$ (8.9\%) and to 40 (19.0\%) (Table 4.4.1.3.1), which parallels a significant weakening of the P-N bond. This situation approaches a bonding described by formula LXXXII' (or more specifically LXVII') as result of an external substrate stimulus. Some commonly used bond strength related parameters support this view (Table 4.4.1.3.1).

Table 4.4.1.3.1. Ring strain and P-N bond strength related parameters for selected computed species. ${ }^{[143]}$

Entry	$G(r)_{R C P}{ }^{[a]}$	$d_{P-N^{[b]}}$	WB1P-N	$\rho(r)_{P-N^{[c]}}$
$\mathbf{2 4}$	0.1362	1.747	0.748	0.1507
$\mathbf{2 4}{ }^{\text {E. }} \mathrm{CO}_{2}$	0.1483	1.750	0.739	0.1493
$\mathbf{4 0}$	0.1621	1.768	0.673	0.1389

[a] In au. [b] In Å. [c] In e/ao ${ }^{3}$.

4.4.1.4. Reaction with pentafluorobenzaldehyde

To extend the reactivity studies on 3-imino-azaphosphiridine complexes towards the class of carbonylic compounds, complex 21a was reacted with benzaldehyde (42) and pentafluorobenzaldehyde (43). Since both reactions have different outcomes, we focus first in this chapter on the reactivity of 21a with 43. Reaction of 21a with 42 will be discussed in chapter 4.4.2.2.

When 21a was reacted with 1 eq. of pentafluorobenzaldehyde (43) in $\mathrm{Et}_{2} \mathrm{O}$ at room temperature, complex 44 showing ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ resonance of $138.3 \mathrm{ppm}\left({ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{P}}=274.6 \mathrm{~Hz}\right)$ was obtained together with 18% (according to ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR integration) of a minor product 45 displaying ${ }^{31}$ P $\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonance of $9.3 \mathrm{ppm}\left({ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{P}}=316.6 \mathrm{~Hz}\right)$. The assignment of the minor product 45 as oxaphosphirane tungsten(0) complex bearing pentafluorophenyl substituent at the ring carbon atom, is supported by a recent report of this complex and the similarity of their ${ }^{31}$ P NMR spectral data ${ }^{[139]}$ (see chapter 4.4.2.2). Interestingly, the amount of 45 in the reaction mixture could be reduced to 3% by doubling the concentration of 21a and 43 and keeping other reaction conditions constant (Scheme 4.4.1.4.1). Complex 44, showing a 1,3,5-
oxazaphospholane structure formed in a diastereoselective manner upon a $\mathrm{P}-\mathrm{N}$ bond ring expansion reaction with the carbonylic moiety of $\mathbf{4 3}$, was isolated in 50% yield and completely characterized and its molecular structure was confirmed by X-ray crystallographic analysis (Figure 4.4.1.4.2). The ${ }^{1} \mathrm{H}$ NMR spectrum displayed a singlet for the $\mathrm{C} 1-\mathrm{H}$ hydrogen atom at 4.4 ppm $\left(\mathrm{CDCl}_{3}\right)$. In the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, the C 1 carbon atom shows a resonance of 83.6 ppm $\left(\mathrm{CDCl}_{3}\right)$ and a multiplicity of a triplet $\left({ }^{3} J_{\mathrm{F}, \mathrm{C}}=10.5 \mathrm{~Hz}\right.$) due to coupling with the orthofluorine atoms of the pentafluorophenyl group. Interestingly, the ${ }^{13} \mathrm{C}$ NMR resonance for the cis-carbonyl carbon atoms at tungsten appeared as a doublet of doublets at $196.5 \mathrm{ppm}\left({ }^{2} J_{\mathrm{P}, \mathrm{C}}\right.$ $\left.=6.5 \mathrm{~Hz}, J_{F-C}=3.6 \mathrm{~Hz}\right)$. In order to clarify if the splitting of the common multiplicity of the ciscarbonyl carbon atoms (doublet) is caused by a hampered rotation around the $\mathrm{P}-\mathrm{W}$ bond, a ${ }^{13} \mathrm{C}$ NMR spectrum was measured in chloroform- $d 8$ at $60^{\circ} \mathrm{C}$. Here, the cis-carbonyl carbon atoms continue to show a doublet of doublet multiplicity. This observation together with the similar values of through space coupling constants between the fluorine and carbonyl carbon nuclei of 5.5 Hz as reported for related compounds such as LXXXVI (Figure 4.4.1.4.1), ${ }^{[157]}$ suggests a through space coupling as the origin of the observed multiplicity. Accordingly, the ${ }^{19}$ F NMR spectrum showed five different resonances for the five different fluorine nuclei at the phenyl ring (see experimental part).

$$
\operatorname{LXXXVI}^{[157]}
$$

Figure 4.4.1.4.1. Example of a complex having a trough-space interaction between carbonyl carbon atoms and a fluorine substituent ($J_{F-C}=5.5 \mathrm{~Hz}$).

Scheme 4.4.1.4.1. Reaction of 21a and $\mathbf{4 3}$ to give complex 44.
1,3,5-Oxazaphospholane complex 44 crystallized in a monoclinic crystal system and a C2/c space group and displayed shortening of P-C2, P-O1 and N1-C2 bond lengths of 1.82(2) \AA, $1.654(14) \AA$ and $1.37(2) ~ A ̊$, respectively, compared with $1.885(3) \AA 1.671(3) A ̊$ and $1.407(4) \AA$ shown by 39. To the contrary, O1-C1 and C1-N1 bond lengths of 1.47 (2) \AA and $1.45(3) \AA$ are elongated compared with $1.377(4) \AA$ and $1.370(5) \AA$ of 39 . The $1,3,5$-oxazaphospholane ring shows a non-planar structure showing the C1 atom the greatest distance (d(C1-best plane) $=$ $0.128 \AA$ Å) from the best mean plane defined by all five ring atoms (Figure 4.4.1.4.2).

Figure 4.4.1.4.2. Molecular structure of 1,3,5-oxazaphospholane complex 44. (50\% probability level, hydrogen atoms are omitted and trityl group in grey for clarity). Selected structural parameters (distances [Å] and angles [${ }^{\circ}$]): P-W 2.528(6), P-C(2) 1.82(2), P-O(1) 1.654(14), O(1)$\mathrm{C}(1) 1.47(2), \mathrm{C}(1)-\mathrm{N}(1) 1.45(3), \mathrm{N}(1)-\mathrm{C}(2) 1.37(2), \mathrm{C}(2)-\mathrm{P}-\mathrm{O}(1) 89.7(9), \mathrm{O}(1)-\mathrm{C}(1)-\mathrm{N}(1)$ 104.1(16), $N(1)-C(2)-P 109.7(16)$.

In a similar fashion of what was proposed for the reaction of 21a with CO_{2}, we can assume an initial van der Waals complex $\mathbf{2 1 a} \cdot \mathbf{F}_{5} \mathbf{C}_{6}(\mathbf{H}) \mathbf{C}=\mathbf{O}$ formation which upon nucleophilic attack of the imino N atom to the electrophilic centre of carbonyl carbon of the aldehyde then leads to a subsequent $\mathrm{P}-\mathrm{O}$ bond formation and ring closure (Scheme 4.4.1.4.2).

Scheme 4.4.1.4.2. Proposed mechanism for the formation of 44.

4.4.2. Examples as electrophilic phosphinidene complex transfer reagent

Unexpectedly, 3-imino-azaphosphiridine complexes $\mathbf{2 1 , 2 2}$ were observed to react in a different manner towards certain substrates. In contrast to the behavior observed towards water, heterocumulenes such as isocyanates or carbon dioxide and pentafluorobenzaldehyde, reaction of 21a with carbon monoxide, with benzaldehyde, with cyclohexyl carbodiimide and with "butyl- and tbutyl isocyanides yielded a phosphinidene complex transfer reaction, thus revealing a surprising dichotomy of the reactivity of 3-imino-azaphosphiridine complexes.

4.4.2.1. Reaction with carbon monoxide

When a $\mathrm{Et}_{2} \mathrm{O}$ solution of 3-imino-azaphosphiridine complex 21a was stirred under CO (20 bar) atmosphere, selective formation of 1,3-azaphosphetidinone complex 45 was observed at ambient temperature (Scheme 4.4.2.1.1). Complex 45 was isolated in 70% yield and its molecular structure confirmed by X-ray analysis (Figure 4.4.2.1.1). 45 displayed a ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ resonance at $94.9 \mathrm{ppm}\left({ }^{1} \mathrm{~J}_{\mathrm{w}, \mathrm{P}}=226.5 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ resonances of the carbon nuclei of the imino and carbonyl groups were observed at $148.9 \mathrm{ppm}\left({ }^{1+3} \mathrm{~J}_{\mathrm{p}, \mathrm{c}}=13.2 \mathrm{~Hz}\right)$ and 169.6 ppm $\left({ }^{1+3} J_{P, C}=52.1 \mathrm{~Hz}\right)$, respectively. An unligated 1,3-azaphosphetidinone derivative having tertbutyl groups at phosphorus and nitrogen atoms showing a ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonance of 60.5
ppm was prepared by reaction of a phospha-carbodiimide and an isocyanate, reported in 1982 by Kolodyazhnyi. ${ }^{[158]}$

Scheme 4.4.2.1.1. Synthesis of 1,3-azaphosphetidinone complex 45.

Complex 45 crystallized in a triclinic crystal system and a $\mathrm{P} \overline{1}$ space group. The $\mathrm{P}-\mathrm{C} 1$ and $\mathrm{P}-\mathrm{C} 2$ bond lengths of 1.916(10) and 1.887(9) are significantly elongated compared to standard $\mathrm{P}-\mathrm{C}$ single bond lengths of 1.80-1.82 Å. ${ }^{[82]}$ Interestingly, the two endocyclic N-C bonds differ significantly (N1-C1 1.326(11) and N1-C2 1.455(12) Å) thus pointing to a strong π-electron interaction between the lone pair at the N 1 atom and the $\mathrm{C}=\mathrm{O}$ moiety, thus the resonance structure $45^{\text {res }}$ should have a considerable contribution (Scheme 4.4.2.1.2). The azaphosphetidinone ring is almost planar showing a folding angle between the planes defined by the C1-N1-C2 and N1-P-C2 of 5.2° (Figure 4.4.2.1.1).

Scheme 4.4.2.1.2. Two resonance structures of 1,3-azaphosphetidinone complex 45.

Figure 4.4.2.1.1. Molecular structure of 1,3-azaphosphetidinone complex 45 (50% probability level, hydrogen atoms are omitted and CPh_{3} group in grey for clarity). Selected structural parameters (distances [Å] and angles [${ }^{\circ}$]): P-W 2.510(3), P-C(1) 1.916(10), P-C(2) 1.887(9), $\mathrm{N}(1)-\mathrm{C}(1) 1.326(11), \mathrm{N}(1)-\mathrm{C}(2) 1.455(12), \mathrm{C}(2)-\mathrm{N}(2) 1.255(11), \mathrm{C}(2)-\mathrm{P}-\mathrm{C}(1) 69.9(4), \mathrm{P}-\mathrm{C}(1)-\mathrm{N}(1)$ 94.8(6), P-C(2)-N(1) 91.9(6).

DFT calculations were performed by Espinosa (COSMO toluene/DLPNO-CCSD(T)/def2TZVPP(ecp), ZPE-corrected) on the reaction mechanism using model azaphosphiridine complex $\mathbf{2 4}$ having methyl groups at P and N atoms. The result was not a mechanistic pathway corresponding to the initial activation of the endocyclic $\mathrm{P}-\mathrm{N}$ bond. Instead, a fast equilibrium of $\mathbf{2 4}$ with an end-on carbodiimide $N \rightarrow P$ complex $\mathbf{4 6}$ seems to initiate the overall process. This is followed by a CO / MeNCNMe ligand exchange reaction via the TS $\mathbf{4 6} \cdot \mathbf{C O} \boldsymbol{\rightarrow} \mathbf{2 0 c} \mathbf{4 7}$ (Scheme 4.4.2.1.3) giving rise to a phosphaketene complex 47 ${ }^{[89,159]}$ and carbodiimide 20c. Subsequent stepwise nucleophilic attack of the carbodiimide N atom to the C atom in 47 and of the P centre to the highly electrophilic carbodiimidium C atom in 48 yields complex 49, finally.

Scheme 4.4.2.1.3. Proposed mechanistic path for the transformation $\mathbf{2 4 + C O} \boldsymbol{\rightarrow} \mathbf{4 9}$.

According to the calculations, the rate determining step should be the initial isomerization of the ring in $\mathbf{2 4}$ resulted in the formation of carbodiimide end-on complex 46 $\left(\Delta E_{\text {ZPE }}=13.88 \mathrm{kcal} / \mathrm{mol}\right)$ through a relatively low energetic barrier $\left(\Delta E^{\neq}{ }_{Z P E}=17.92 \mathrm{kcal} / \mathrm{mol}\right)$. Ligand displacement at phosphorus exhibits an even lower barrier of $7.51 \mathrm{kcal} / \mathrm{mol}$ (Figure 4.4.2.1.2). Indeed, the very low bond dissociation energy (BDE) of $18.65 \mathrm{kcal} / \mathrm{mol}$ computed for the P-N bond in 46 at $25^{\circ} \mathrm{C}$ supports its representation as dative bonding from the carbodiimide (ligand) to the P center thus underlining the metal-like bonding behavior. The two subsequent cyclization steps ($\mathbf{4 7} \cdot \mathbf{2 0 c} \boldsymbol{\rightarrow 4 8} \boldsymbol{\rightarrow} \mathbf{4 9}$) are almost barrierless processes ($\Delta \mathrm{E}^{\neq}{ }_{\text {ZPE }}$ $=3.28 \mathrm{kcal} / \mathrm{mol}$ and $0.91 \mathrm{kcal} / \mathrm{mol}$ respectively), although in the real system the steric hinderance of the substituent should raise these values, the last one being remarkably exergonic $\left(\Delta_{\text {ZPE }}=41.27 \mathrm{kcal} / \mathrm{mol}\right)$ due to the high stability of 49. The long endocyclic P-C2 $\left(\mathrm{WBI}=0.814 ; \rho(\mathrm{r})=15.50 \cdot 10^{-2} \mathrm{e} / a_{0}{ }^{3}\right)$ and P-C1 $\left(\mathrm{WBI}=0.800 ; \rho(\mathrm{r})=15.43 \cdot 10^{-2} \mathrm{e} / a_{0}{ }^{3}\right)$ bonds calculated for 49 ($\mathrm{dp}_{\mathrm{P}-\mathrm{C} 2}=1.878 \AA$ And $\mathrm{dP}_{\mathrm{C} 1}=1.898 \AA$) are in good agreement with experimental values for 45 ($\mathrm{d}_{\mathrm{P}-\mathrm{C} 2}=1.887$ (9) \AA And $\mathrm{dp}_{\text {PC1 }}=1.916(10) \mathrm{A}$).

Figure 4.4.2.1.2. Computed (COSMO ${ }_{\text {toluene }} /$ DLPNO-CCSD(T)/def2-TZVPP(ecp), ZPE-corrected) relative energy profile for the transformation $\mathbf{2 4}+\mathbf{C O}$ to 49.

4.4.2.2. Reaction with benzaldehyde

In contrast to the observed reaction of 21a with pentafluorobenzaldehyde, the reaction with benzaldehyde (42) led to complex 50 displaying a ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonance of $16.2 \mathrm{ppm}\left({ }^{1} \int_{\mathrm{W}, \mathrm{P}}=\right.$ 312.2 Hz) ($\mathrm{Et}_{2} \mathrm{O}$) (Scheme 4.4.2.2.1). Approximately 30% of another complex was observed showing a ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonance of $145.8 \mathrm{ppm}\left({ }^{1} J_{\mathrm{W}, \mathrm{P}}=280.0 \mathrm{~Hz}\right)\left(\mathrm{Et}_{2} \mathrm{O}\right)$, probably having a 1,3,5-oxazaphospholane structure obtained via $\mathrm{P}-\mathrm{N}$ bond ring expansion reaction of 21a with 42 as in the formation of 44 . The amount of the minor-product could be reduced to 4% by reducing the concentration of the reagents to a 50% value. The identity of the product 50 was assigned to be the P-trityl oxaphosphirane complex $\mathbf{5 0}$, which was obtained before by reaction of $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complex 19 and benzaldehyde. ${ }^{[40]}$

Scheme 4.4.2.2.1. Reaction of 3-imino-azaphosphiridine complex 21a with benzaldehyde to give oxaphosphirane complex 50.

In this case, again, a terminal phosphinidene complex transfer via the carbodiimide side-on intermediate species $\mathbf{5 1}$ thus yielding a formal $[2+1]$ cycloaddition product seems to be a plausible mechanism for the formation of 50 (Scheme 4.4.2.2.2). In the case of pentafluorobenzaldehyde the carbonylic carbon of the aldehyde is much more electrophilic due to the electron-withdrawing effect of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ group, thus making it more reactive towards the nucleophilic attack of the imino N atom. As this would also create a comparatively stronger N-C bond, so that an intramolecular follow-up reaction is more likely to occur than in case of the benzaldehyde.

Scheme 4.4.3.2.2. Proposed mechanism for the formation of $\mathbf{5 0}$ via end-on carbodiimide $N \rightarrow P$ complex 51.

At this point two aspects shall be emphasized. In the reaction of 3-iminoazaphosphiridine complex 21a with benzaldehyde and pentafluorobenzaldehyde, two competitive reactions namely i) $\mathrm{P}-\mathrm{N}$ bond ring expansion reaction with the carbonyl moiety of the aldehyde and ii) generation of a short-lived end-on carbodiimide $N \rightarrow P$ complex 51 intermediate, reacting as a source for a terminal phosphinidene complex, occurred. Depending on the electronic properties of the aldehyde a substrate-depending reaction path was favored, i.e. a remarkable substrate stimulated response of complex 21a resulted. This might be also described as new example of an aldehyde sensor.

4.4.2.3. Reaction with dicyclohexyl carbodiimide

When the 3-imino-azaphosphiridine complex 21a was allowed to react with 1 eq. of dicyclohexyl carbodiimide (20b) in THF at ambient temperature, a mixture of 21a and 21b (ratio 1:1) was obtained after 3 h (Figure 4.4.2.3.1); this ratio remained constant over time. Here, again, an unusual substitution reaction at the phosphorus center had occurred in which the diisopropyl carbodiimide moiety in 21a was exchanged by the dicyclohexyl carbodiimide to form 21b (Scheme 4.4.2.3.1). As in the reaction of 21a with benzaldehyde, the phosphinidene complex transfer reaction is favored, maybe caused by steric repulsion of the N -substituent. To examine this exchange further the alternative reaction of 21b with carbodiimide 20a was performed, and again a 1:1 mixture was formed. ${ }^{[143]}$

Scheme 4.4.2.3.1. Carbodiimide exchange reactions of 3-imino-azaphosphiridine complex 21a,b. ${ }^{[151]}$

Figure 4.4.2.3.1. ${ }^{31}$ P $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture of 21a and dicyclohexyl carbodiimide 20b in $\mathrm{Et}_{2} \mathrm{O}$.

Besides the evidence obtained from the ${ }^{31} P\left\{{ }^{1} H\right\} N M R$ spectra, the nature of the newly formed product as 21a' was confirmed additionally through formation of a 1:1 mixture of their hydrolysis products $\mathbf{2 5 a}$, \mathbf{a}^{\prime} occurring upon reaction of 21a, a' with water (Scheme 4.4.2.3.2) (Figure 4.4.2.3.2). ${ }^{[143]}$

Scheme 4.4.2.3.2. Hydrolysis reaction of 3-imino-azaphosphiridine complexes 21a and 21b.

25a
25b

Scheme 4.4.2.3.2. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture of $\mathbf{2 1 a} \mathbf{a} \mathbf{b}$ with water to give 28a,b.

4.4.2.4. Reaction with isonitriles

In order to examine if a "bulkier CO analogue" would change the reaction course, we turned to isonitriles as they are closely related to CO with respect to their coordination behavior towards transition-metals. Here, the reaction of 21a with isonitriles 52b,c did not yield 1,3azaphosphetidine complexes. Instead, the isonitrile-to-phosphinidene complex adducts 26b,c were obtained selectively (Scheme 4.4.2.4.1).

$$
R={ }^{t} B u(b),{ }^{n} B u(c)
$$

Scheme 4.4.2.4.1. Reaction of 3-imino-azaphosphiridine complex 21a with isonitriles $\mathbf{5 2 b} \mathbf{~} \mathbf{c}$ to give isonitrile-to-phosphinidene complex adducts 26b,c.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(\mathrm{CDCl}_{3}\right)$ of complexes 26b,c displayed resonances of -49.8 ppm and -51.8 ppm, respectively and surprisingly small phosphorus-tungsten coupling constant magnitudes of $118.5 \mathrm{~Hz}(\mathbf{2 6 b})$ and $118.2 \mathrm{~Hz}(\mathbf{2 6 c})$. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra showed resonances for the isonitrile carbon atoms at $146.9 \mathrm{ppm}(\mathbf{2 6 b})$ and $146.6 \mathrm{ppm}(\mathbf{2 6 c})$ and small phosphoruscarbon coupling constant magnitudes of $6.8 \mathrm{~Hz}(\mathbf{2 6 a})$ and $6.6 \mathrm{~Hz}(\mathbf{2 6 b})$. A comparison with the values of 209.4 ppm (LXXXVIIa) and 192.2 (LXXXVIIb) reported by Yoshifuji for phosphacarbodiimide structures, ${ }^{[160]}$ of 195.5 ppm by Streubel for phosphacarbodiimide complex LXXXVIII ${ }^{[161]}$ and 140.0 ppm by Scheer for the isocyanide-to-phosphinidene dinuclear complex LXXXIX ${ }^{[162]}$ (Figure 4.4.2.4.1), it can be concluded that the adduct description of 26b,c has a large contribution to the canonical structures (Figure 4.4.2.4.2).

LXXXVIIa, ${ }^{[160]}$

LXXXVIII $^{[161]}$

LXXXIX $^{[162]}$
R = Ph (a), 'Bu (b);
R = Ph (a), 'Bu (b);
Mes* = 2,4,6-tri-t-butylphenyl
Mes* = 2,4,6-tri-t-butylphenyl

Figure 4.4.2.4.1. Phosphacarbodiimide LXXXVIIa,b, ${ }^{[160]}$ phosphacarbodiimide complex LXXXVIII ${ }^{[161]}$ and isocyanide-to--phosphinidene dinuclear complex LXXXIX. ${ }^{[162]}$

26a-c

$26 a^{\text {can }}-c^{\text {can }}$

$$
R={ }^{i} \operatorname{Pr}(\mathbf{a}),{ }^{\mathrm{t}} \mathrm{Bu}(\mathrm{~b}),{ }^{\mathrm{n}} \mathrm{Bu}(\mathrm{c})
$$

Figure 4.4.2.4.2. Two canonical structures of complexes 26.

X-ray structure analysis of 26b (crystal system monoclinic, space group $\mathrm{P} 2_{1} / \mathrm{n}$) showed P-C1 and C1-N bond distances of $1.747(3) \AA$ and $1.156(3) \AA$, respectively (Figures 4.4.3.4.3). Together with a unique set of bond angles (C6-P-W 124.25(7) ${ }^{\circ}$, C6-P-C1 98.57(11) ${ }^{\circ}$ and C1-PW 101.06(8) ${ }^{\circ}$) it supports the adduct geometry and bonding (Figure 4.4.3.4.2). This becomes even more apparent if compared to LXXXVIIa, which showed $\mathrm{P}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond distances of 1.651(3) and $1.209(4) \AA$, respectively. ${ }^{[160]}$ Nevertheless, the not strictly linear C1-N-C2 bond angle of $165.5(3)$ indicates some contribution of the valence isomer structure of $\mathbf{2 6}^{\text {can }}$ (Figure 4.4.3.4.2). A similar situation was observed by Scheer in LXXXIX. In this case, respective $\mathrm{P}-\mathrm{C}$ and $C-N$ bond distances of $1.796(6)$ and $1.140(7) \AA$ where reported, ${ }^{[162]}$ thus revealing a slightly less disturbed C-N bonding in this case.

Figure 4.4.2.4.3. Molecular structure complex 26b. (50\% probability level, hydrogen atoms are omitted and CPh_{3} group in grey for clarity). Selected structural parameters (distances [$\left.\AA \AA\right]$ and angles [${ }^{\circ}$]): P-W 2.5908(7), P-C(1) 1.747(3), P-C(6) 1.952(2), C(1)-N 1.156(3), N-C(2) 1.462(3), C(6)-P-W 124.25(7), C(6)-P-C(1) 98.57(11), C(1)-P-W 101.06(8), C(1)-N-C(2) 165.5(3).

Mechanistically, this reaction is similar to that effected by carbon monoxide and proceeds by a nucleophilic displacement of the carbodiimide by the isonitrile at phosphorus in $\mathbf{5 1}$, which for model systems ($\mathbf{4 6}+\mathrm{Me}-\mathrm{N}=\mathrm{C}:(\mathbf{5 2 d})$) is a very low barrier process $\left(\Delta_{E^{\neq}}{ }^{\boldsymbol{Z P E E}}=\right.$ $2.68 \mathrm{kcal} / \mathrm{mol}$) and slightly exergonic ($\Delta \mathrm{E}_{\text {ZPE }}=-13.59 \mathrm{kcal} / \mathrm{mol}$) starting from the $\mathbf{4 6} \cdot$ CNMe van der Waals complex (Scheme 4.4.2.4.2).

Scheme 4.4.2.4.2. Proposed mechanism for the formation of the methyl model isocyanide-tophosphinidene complex adduct 53.

Figure 4.4.2.4.4. Computed (COSMO ${ }_{\text {toluene }} /$ DLPNO-CCSD(T)/def2 -TZVPP(ecp), ZPE-corrected) relative energy profile for the transformation $\mathbf{4 6 c} \cdot \mathrm{Me}-\mathrm{N}=\mathrm{C}$: to 53.

Model complex 53 features a strong multiple N-C bond ($d=1.162 \AA$ A ; WBI $=2.282 ; \rho(r)$ $=45.86 \cdot 10^{-2} e / a_{0}{ }^{3}$) together with a moderately strong P-C bond ($\mathrm{d}=1.742 \AA$ A ; WBI = 1.237; $\rho(\mathrm{r})$ $=15.11 \cdot 10^{-2} \mathrm{e} / a_{0}{ }^{3}$) in very good agreement with the experimental values found for $\mathbf{2 6 b}$ (Figure 4.4.2.4.3). This can be explained in the light of the second order perturbation theory analysis of Fock matrix in NBO (natural bond orbital) ${ }^{[91,149]}$ basis as resulting from extensive backdonation of electron density from a $3 p$ atomic orbital at P to two $(\mathrm{N}-\mathrm{C}) \pi$ orbitals, amounting to a $61.98 \mathrm{kcal} / \mathrm{mol}$ stabilization, which would support a formulation as $\mathbf{2 6}^{\text {can }}$. The computed BDE of $31.22 \mathrm{kcal} / \mathrm{mol}$ for the P-C bond in 53 lies halfway between that of the above mentioned carbodiimide-to-phosphinidene- complex ($18.65 \mathrm{kcal} / \mathrm{mol}$, see chapter 4.4.2.1) and the strong P-C bond ($50.71 \mathrm{kcal} / \mathrm{mol}$) in the recently reported NHC-to-phosphinidene adduct (NHC = 1,3-dimethyl-imidazole-2-ylidene). ${ }^{[163]}$ Frequency calculation in $\mathbf{5 3}$ shows the expected uncorrected vibration of the C-N bond at $2258.0 \mathrm{~cm}^{-1}$, together with five coupled stretching modes for the carbonyl groups at 2117.5, 2025.4, 1982.3, 1973.8 and $1966.6 \mathrm{~cm}^{-1}$, in reasonable agreement with the experimentally observed absorption bands.

4.4.3. Chalcogen atom insertion reactions into the endo $P-C$ bond

In order to test further the reactivity of the 3-imino-azaphosphiridine ligands and examine their ability and utility in forming new heterocyclic structures, chalcogen (i.e. sulfur and selenium) atom insertions were targeted.

4.4.3.1. Sulfur insertion

Complex 21a was reacted with sulfur in toluene. Here, a formal insertion of a sulfur atom into the P-C ring bond was observed, thus forming 1,2,3-thiazaphosphetidine complex 54 that displays a ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonance of $122.6 \mathrm{ppm}\left({ }^{1} \mathrm{~J}_{\mathrm{w}, \mathrm{P}}=280.5 \mathrm{~Hz}\right)\left(\mathrm{CDCl}_{3}\right) ; 10 \%$ of an unidentified compound ($\delta^{31} \mathrm{P}=96.6$) was observed too (Scheme 4.4.3.1.1). Complex 54 was isolated and completely characterized and its molecular structure was confirmed by X-ray analysis (Figure 4.4.3.1.1). The ${ }^{13} \mathrm{C}$ NMR resonance of the imino carbon atom was found in the expected range at 139.1 ppm having a small ${ }^{2+2} J_{\mathrm{P}, \mathrm{c}}$ coupling constant of 6.8 Hz . An unligated 1,2,3-thiazaphosphetidine derivative, synthesized via reaction of an P-amino iminophosphane derivative and carbon disulfide, ${ }^{[164]}$ reported by Niecke in 1986, showed a ${ }^{31}$ P NMR resonance of 100.9 ppm .

Scheme 4.4.3.1.1. Reaction of 21a with sulfur to form 1,3,2-thiazaphosphetidine complex 54.
The X-ray crystallographic analysis showed that 54 crystallized in a triclinic crystal system and a $\mathrm{P} \overline{1}$ space group revealing a planar structure of the four-membered ring with a small folding angle between the planes defined by the N1-C1-S and N1-P-S of 0.6°. The endocyclic N atom is very slightly pyramidalized as shown by the sum of bond angles of 357.4°. The phosphorus-sulfur bond length of 2.132(3) \AA, was found to be in the expected range for a $\mathrm{P}-\mathrm{S}$ single bonds, as in XC (dp-s $=2.136(1)^{[165]}$ or XCI ($\mathrm{d}_{\mathrm{p}-\mathrm{s}}=2.1348(13)^{[166]}$ and slightly
elongated with respect to literature known $\mathrm{P}-\mathrm{S}$ single bounds being part of a cyclic structure and in which a phosphorus center is coordinated to pentacarbonyltungsten as in XCII. ${ }^{[167]}$

$X C^{[165]}$

X CI $^{[166]}$

$\mathrm{XCII}^{[167]}$

Scheme 4.4.3.1.2. Examples of literature known five-membered ringss having a P-S single bond.

Figure 4.4.3.1.1. Molecular structure of 1,3,2-thiazaphosphetidine complex 54. (50\% probability level, hydrogen atoms are omitted and CPh_{3} group in grey for clarity). Selected structural parameters (distances [Å] and angles []): P-W 2.506(2), P-N(1) 1.707(6), P-S $2.132(3), N(1)-C(1) 1.388(9) \mathrm{C}(1)-\mathrm{S} 1.841(7), \mathrm{C}(1)-\mathrm{N}(2) 1.237(10), \mathrm{S}-\mathrm{P}-\mathrm{N}(1) 80.2(2), \mathrm{C}(1)-\mathrm{S}-\mathrm{P}$ 75.6(3), P-N(1)-C(1) 103.9(4).

Preliminary theoretical studies of Espinosa on the reaction of model 3-iminoazaphosphiridine complex 24 with sulfur leading to 4-imino-1,3,2-thiazaphosphetidine complex 55 were performed. Here, the (likely) intermediacy of the carbodiimide end-on adduct to a terminal phosphinidene-sulfide complex 56 was assumed. This intermediate results from direct oxidation of the phosphorus centre to the P -sulfide of the open-chain derivative 46 and quickly cyclizes to give 55 in an exergonic ($\Delta \mathrm{E}_{\text {ZPE }}=-18.80 \mathrm{kcal} / \mathrm{mol}$) and almost barrierless process ($\left.\Delta \mathrm{E}^{\neq}{ }_{\text {ZPE }}=1.70 \mathrm{kcal} / \mathrm{mol}\right)$.

55

Scheme 4.4.3.1.3. Proposed mechanism for the formation of the model imino-1,3,2thiazaphosphetidine complex 55.

4.4.3.2. Selenium insertion

With the purpose to extend this reactivity to other chalcogens, we tried the same experiment with elemental selenium instead of sulfur. Despite many efforts by means of changing reaction conditions, no reaction could be found between elemental selenium and 21a. At this point, we thought about using compounds that have served effectively as selenium transfer reagents in the past. In this regard, tris(dimethylamino) phosphane selenide ${ }^{[168]}$ (57) was reported to transfer a selenium atom onto a distibene to form a selenadistibirane derivative. ${ }^{[169]}$ Reaction of 57 with 21a in $\mathrm{Et}_{2} \mathrm{O}$ led to a mixture in which the main product, having incorporated a selenium atom bound to phosphorus as judged from the ${ }^{31} \mathrm{P}$ NMR spectrum, was rapidly decomposing presumably due to the presence of the liberated
tris(dimethylamino)phosphane. To avoid this, 21a was reacted with 0.05 eq. of 57 in the presence of 1 eq. of elemental selenium in $\mathrm{Et}_{2} \mathrm{O}$ (Scheme 4.4.4.2.1). In this way, the liberated tris(dimethylamino)phosphane reacted with elemental selenium and the newly in situ generated $\mathbf{5 7}$, served as selenium atom transfer reagent to give selectively 58 together with 0.05 eq. of 57 . As expected, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ resonance of $111.6 \mathrm{ppm}\left({ }^{1} / \mathrm{W}_{\mathrm{w}, \mathrm{P}}=275.3 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{se}, \mathrm{P}}=\right.$ 148.0 Hz) of $\mathbf{5 8}$ is slightly highfield-shifted with respect of that of the sulfur derivative $\mathbf{5 4}$ $\left({ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}=122.6 \mathrm{ppm}\right)$. The compound was isolated and completely characterized and its molecular structure was confirmed by X-ray analysis (Figure 4.4.4.2.1).The ${ }^{13} \mathrm{C}$ NMR resonance of the imino carbon atom of $132.0 \mathrm{ppm}\left({ }^{2+2} J_{\mathrm{p}, \mathrm{c}}=8.5 \mathrm{~Hz}\right)$ was found slightly highfield-shifted compared to its sulfur analogue 54 and displayed a ${ }^{77} \mathrm{Se}$ NMR resonance of $649.2 \mathrm{ppm}\left({ }^{1}\right]_{\mathrm{se}, \mathrm{P}}$ $=148.0 \mathrm{~Hz})\left(\mathrm{CDCl}_{3}\right)$, lowfield-shifted as compared with the value of 501.0 ppm reported for XCIV. ${ }^{[170]}$

Scheme 4.4.3.2.1. Formation of 1,3,2-selenazaphosphetidine complex 47.

The X-ray crystallographic analysis (crystal system triclinic, space group $P \overline{1}$) showed, as well as in the case of 54, a planar ring structure with a small folding angle between the planes defined by the $\mathrm{N} 1-\mathrm{C} 1-\mathrm{Se}$ and $\mathrm{N} 1-\mathrm{P}-\mathrm{Se}$ of 0.5°. The endocyclic N atom is slightly more pyramidalized than that in 54 with a sum of bond angles at nitrogen of 352.1°. The phosphorus-selenium bond length of 2.2719(6) \AA is in the expected range as compared with literature known P-Se single bonds of heterocycles as in XCIII (dp-se $=2.242(3) \AA)^{[171]}$ or XCIV $\left(d_{p-S e}=2.253(2) \AA\right)^{[170]}$.

XCIII ${ }^{[171]}$

$X C I V^{[170]}$

Scheme 4.4.3.2.2. Examples of literature know compounds having P-Se single bond.

Figure 4.4.3.2.1. Molecular structure of 1,3,2-selenazaphosphetidine complex 58. (50\% probability level, hydrogen atoms are omitted and CPh_{3} group in grey for clarity). Selected structural parameters (distances [Å] and angles []]): P-W 2.5103(5), P-N(1) 1.7125(17), P-Se 2.2719(6), N(1)-C(1) 1.386(3), C(1)-Se 1.987(2), C(1)-N(2) 1.245(3), Se-P-N(1) 81.26(6), C(1)-SeP 71.27(6), P-N(1)-C(1) 106.60(13).

5. Summary

As a first objective of this PhD work, synthesis of a P-Cp* substituted azaphosphiridine complex was attempted. To reach this objective, two routes were explored, namely i) reaction of P-Cp* substituted $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complex with a series of carbaldimines and ii) reaction of thermally generated $P-C p^{*}$ substituted transient terminal electrophilic phosphinidene complex with the same substrates. In chapter 3.2 attempts using route i) are described. Reaction of $\mathbf{2}$ with furan-2-carbaldimine (3b) yielded selectively the novel N,P,Ccage complex $\mathbf{4} \mathbf{b}$ which was isolated and completely characterized. The observed selectivity decreased to ca. 60% when N -benzylidenemethylamine (3a) was used instead. Reaction of 2 with $\mathbf{3 f}$ yielded $\mathbf{4 f}$ in negligible ammounts only and no sign of $\mathbf{4 c}$, \mathbf{d} was observed in the reaction of $\mathbf{2}$ and $\mathbf{3 c}$ cd. The bicyclic azaphospholane complex $\mathbf{5}$ was selectively obtained upon reaction of $\mathbf{2}$ with thiophen-3-carbaldimine (3e).

$\mathrm{Ar}=$ Phenyl (a), 2-furyl (b), 2-thienyl (c), 3-furyl (d), 3-thienyl (e), 4-CF 3 -phenyl (f)

Scheme 5.1. Reaction of $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complex $\mathbf{2}$ with carbaldimines 3a-f.

In order to verify the presence or absence of the expected azaphosphiridine complex as the first intermediate in the formation of the $\mathrm{N}, \mathrm{P}, \mathrm{C}$-cage complex $\mathbf{4 b}$, or to be the first product in the reaction of $\mathbf{2}$ with $\mathbf{3 b}$, low temperature ${ }^{31}$ P NMR monitoring (THF) was performed. The experiment revealed the formation of three intermediates which rapidly
transformed into the final product. Two of them were assigned to two stereoisomers of transient azaphosphiridine complexes $\mathbf{7 b}$ and $\mathbf{7 b}$ ' and the remaining one to the $\mathrm{N}, \mathrm{P}, \mathrm{C}$-cage complex 4b' which isomerizes to 4b.

DFT calculations (B3LYP-D3/def2-TZVP) performed by Espinosa using a model complex supported the hypothesis that an intermediate iminium phosphane-ylid complex $\mathbf{8 g}$ is initially formed which undergoes thermal aza-phospha-Cope $[3,3]$ sigmatropic rearrangement leading to the phosphinidene complex 9 g . Final addition of the phosphinidene complex to a $\mathrm{C}=\mathrm{C}$ double bond of the $C p^{*}$ group would lead to the reaction product 4 g (Figure 3.2.1.3). The relatively low energy of $\mathbf{9 g}$ arises from electron density donation into the formally vacant p orbital of phosphorus, either (i) directly from the lone pair of the adjacent N atom and (ii) through-space (non-covalent interactions) from two different electron sources, namely the O atom of the 2 -furyl substituent and a terminal carbon of the Cp * dienic unit.

The intermediacy of the terminal amino phosphinidene comlex $\mathbf{9 b}$ in the formation of $\mathbf{4 b}$ was proven via a trapping experiment with phenylacetylene at $-30^{\circ} \mathrm{C}$ which led to the formation of the N,P,C-cage complex 12; the latter was also structurally confirmed by X-ray diffraction studies.

Scheme 5.2. Synthesis of complex 12 (Ar: 2-furyl).

In chapter 3.3 attempts to synthesize P-Cp* azaphosphiridine complex using route ii) are described. When P-Cp* substituted electrophilic terminal phosphinidene complex 14 reacted with carbaldimines 3a-f complexes 4a-f and 15a-f were obtained in different ratios, 15 being always the predominant species. From these mixtures, complex $\mathbf{1 5 f}$ could be isolated and characterized by NMR spectroscopy and X-ray diffraction.

$\mathrm{Ar}=\mathrm{Ph}(\mathrm{a}), 2$-furyl (b), 2-thienyl (c), 3-furyl (d), 3-thienyl (e), 4-CF ${ }_{3}$-Ph (f)
Scheme 5.3. Synthesis of complexes 15a-f and 4a-f.
Interestingly, it was found that both polycyclic ligands interconvert rapidly and to a certain extent at room temperature. The rearrangement is explained as a dynamic process in which transient terminal phosphinidene complexes 9a-f are generated, serving as common intermediates for both interconversions (4a-f $\leftrightarrow \mathbf{1 5 a} \mathbf{- f}$). On the basis of DFT calculations, performed by Espinosa, complexes 9 get stabilized by through-bond ($p_{N} \rightarrow p_{\mathrm{P}}$) and throughspace non-covalent interactions.

$$
\mathrm{Ar}=\mathrm{Ph} \text { (a), 2-furyl (b), 2-thienyl (c), 3-furyl (d), 3-thienyl (e), 4-CF }-\mathrm{Ph} \text { (f) }
$$

Scheme 5.4. Equilibrium between 4a-f and 15a-f via proposed intermediates 9a-f.

To obtain proof for the intermediacy of complexes 9a-f trapping reactions with phenyl acetylene and N-benzylidenemethylamine were performed using $\mathbf{4 b}$ and $\mathbf{1 5 f}$ as starting point. In the first case, an addition of the phosphinidene complex to the triple bond of phenylacetylene occurred, which was followed by an intramollecular Diels-Alder reaction
yielding $\mathrm{N}, \mathrm{P}, \mathrm{C}$-complexes $\mathbf{1 2 b}, \mathbf{b}^{\prime}, \mathbf{f}, \mathbf{f}$ '. In the second case, a nucleophilic attack of the nitrogen atom of $\mathbf{3 a}$ to the phosphorus atom of $\mathbf{9 b}$ leading to the iminium phosphane-ylide complex 16, which upon [3+2] cycloaddition yielded the final product 17 which was characterized by NMR spectroscopy and X-ray diffraction studies.

Scheme 5.5. Synthesis of complexes 12b,b',f,f' (Ar = 2-furyl (b), p-CF3Ph (f); R,R" = Ph, H) and 17 (Ar = furyl).

As a second objective of this work, the concept of increasing ring strain via an exocyclic C-imino bond in azaphosphiridine complexes was examined. In chapter 4.2 the synthesis of the first examples of 3 -imino-azaphosphiridine complexes $\mathbf{2 1 a} \mathbf{a} \mathbf{b}, \mathbf{2 2 a} \mathbf{a} \mathbf{b}$ is described. Reaction of $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complexes $\mathbf{2 , 1 9}$ and carbodiimides 20a,b was again key to success, and low temperature ${ }^{31}$ P NMR spectroscopic monitoring did not show any evidence for the presence of intermediates (Scheme 5.6).

Scheme 5.6. Synthesis of 3-imino-azaphosphiridine complexes 21a,b,22a,b.

Complexes 21,22 were studied computationally by Espinosa at the DFT level (B3LYP-D3/def2-TZVP). A very important feature of these complexes is their remarkably large ring strain energy (RSE): 50.58 and $52.26 \mathrm{kcal} \mathrm{mol}^{-1}$ was computed for both diastereomers 24^{Z} and $\mathbf{2 4}^{\mathrm{E}}$. Due to the large ring strain energy, complexes $\mathbf{2 1 , 2 2}$ are unstable and highly reactive in solution. For example, 22b decomposed during low temperature column chromatography ($20^{\circ} \mathrm{C}, \mathrm{Al}_{2} \mathrm{O}_{3}$, petrol ether $\left.(40 / 60) / \mathrm{Et}_{2} \mathrm{O}=70 / 30\right)$ to give several products, one of which, the zwitterionic bicyclic complex 25, could be identified by X-ray crystallographic analysis.

Scheme 5.7. Decomposition reaction of $\mathbf{2 2 b}$ during column chromatography to form $\mathbf{2 5}$ and other products.

In chapter 4.3 studies on the decomposition of 3-imino-azaphosphiridine complexes in solution are presented. Leaving an ethereal ($\mathrm{Et}_{2} \mathrm{O}$ or THF) solution of 21a at ambient temperature for 12 hours, led to the formation of two new products. The nature of 26a was assigned by comparison with the isolated and characterized product as to be the isonitrile-tophosphinidene complex adduct 26b, obtained from the reaction of 21a with isonitrile 52b (see chapter 4.4.2.4). The other product resulted formally from a nitrene transfer being inserted into the P-C ring bond of 21a which was isolated and identified by single-crystal X-ray diffractometry as 1,3,2-diazaphosphetidine complex 27.

Scheme 5.8. Decomposition reaction of 21a in solution to form 26a and $\mathbf{2 7}$.

In chapter 4.4 three other reactivity aspects of 3-imino-azaphosphiridine complexes are described. In chapter 4.4.1 examples of the reactivity of complexes $\mathbf{2 1 , 2 2}$ acting as masked frustrated Lewis pairs are presented. Here, initial van der Waals contact of the exocyclic imino nitrogen atom with the substrate led to a ring activation and weakening of the $\mathrm{P}-\mathrm{N}$ bond seems to be the common starting point for this class of reactions.

Ring opening reaction of $\mathbf{2 1 , 2 2}$ with water leading to the first valence isomer of an oxaphosphirane complex $\mathbf{2 8 , 2 9}$ are shown in chapter 4.4.1.1. These complexes $\mathbf{2 8 , 2 9}$ have a 1,3-zwitterionic P-ligand with a delocalized cationic moiety and a negative charge located at the P-oxygen atom. Alternatively, this can be described as a diaminocarbene-stabilized terminal phosphinidene oxide complex which is further backed by the comparatively low BDE value ($53.69 \mathrm{Kcal} \cdot \mathrm{mol}^{-1}$) of this $\mathrm{P}-\mathrm{C}$ bond.

21,28: $\mathrm{R}=\mathrm{CPh}_{3} ; 22,29: \mathrm{R}=\mathrm{Cp} *$
a: $\mathrm{R}^{\prime}={ }^{\mathrm{i}} \mathrm{Pr} ; \mathbf{b}: \mathrm{R}^{\prime}=\mathrm{Cy}$

Scheme 5.9. Synthesis of $\mathbf{2 8 a} \mathbf{, b}, \mathbf{2 9} \mathbf{a}, \mathbf{b}$.

DFT studies (COSMOTнғ/LPNO-NCEPA1/def2-TZVPP//B3LYP-D3/def2-TZVP) performed by Espinosa on the reaction mechanism support that the basic character of the exocyclic N atom in model complex 24 (methyl substituent at P and N atoms) enables the initial $[2 \sigma+(2 \pi+2 \sigma)]$ process corresponding to the formal addition of water across the $\mathrm{P}-\mathrm{C}=\mathrm{N}$ moiety. Rotation of the $\mathrm{P}-\mathrm{C}$ bond and subsequent $\mathrm{O}-$ to-N proton transfer would lead to the final complex 30. The zwitterionic complex 28a was reacted with tritylium tetrafluoroborate (26) which resulted in a fluoride substitution reaction and the formation of the 1,4-zwitterionic complex 27.

28a
33
Scheme 5.10. Reaction of 28a with tritylium tetrafluoroborate to give 33.

When 21a reacted with 1 eq. of phenyl isocyanate and 22a with half eq. of 1,4phenylene diisocyanate, ring expansion reactions occurred, leading to 1,3,5oxazaphospholane ligand structures 35 and 38. Analogously, 21a reacted with CO_{2} and with pentafluorobenzaldehyde to give 1,3,5-oxazaphospholane complexes 39 and 44 (Chapter 4.4.1.2, 4.4.1.3 and 4.4.1.4).

Scheme 5.11. Reactions of 21a with phenyl isocyanate, carbon dioxide and pentafluorobenzaldehyde to give 1,3,5-oxazaphospholane complexes 35, 39 and 44, respectively.

The reaction mechanism of the reaction of 3-imino-azaphosphiridine complex 21a with CO_{2} was studied computationally by Espinosa (COSMO ${ }_{\text {toluene }} /$ DLPNO-CCSD(T)/def2TZVPPecp//COSMO ${ }_{\text {toluene }}$ /B3LYP-D3/def2-TZVP ecp) using the model comlex 24. They support an initial nucleophilic atack of the basic exocyclic N atom of $\mathbf{2 4}$ to the electrophilic centre of CO_{2} leading to $\mathbf{2 4} \cdot \mathbf{C O}_{2}$. Subsequent attack of the negatively charged O atom to phosphorus then forms the model 1,3,5-oxazaphospholane ring 41 (Scheme 4.4.1.3.2, Figure 4.4.1.3.3).

Chapter 4.4.2 describes examples of 3-imino-azaphosphiridine complex 21a behaving as a terminal phosphinidene complex transfer reagent. In this case, a ligand substitution reaction of the end-on carbodiimide $N \rightarrow$ Pcomplex 51 seems to be the crucial step for this class of reactions.

Reaction of 3-imino-azaphosphiridine complex 21a with CO, where the carbon atom of CO inserted into the $\mathrm{P}-\mathrm{N}$ bond leading to 1,3-azaphosphetidinone complex 45 is described in chapter 4.4.2.1.

Scheme 5.12. Synthesis of 1,3-azaphosphetidinone complex 45 by reaction of 21a and CO.

DFT calculations performed by Espinosa (COSMO ${ }_{\text {toluene }} /$ DLPNO-CCSD(T)/def2TZVPP(ecp)) ZPE-corrected on the reaction mechanism using model azaphosphiridine complex 24. Here, the formation of the end-on carbodiimide $N \rightarrow$ Pcomplex 46 is the rate limiting step and initiate the overall process. This is followed by a CO / MeNCNMe ligand exchange reaction via the TS $\mathbf{4 6} \cdot \mathbf{C O} \rightarrow \mathbf{2 0} \mathbf{c} \cdot \mathbf{e}$ (Scheme 4.4.2.1.3) leading to phosphaketene complex $\mathbf{4 7}$ and carbodiimide 20c. Subsequent stepwise nucleophilic attack of the carbodiimide nitrogen atom to the carbon atom in 47 and of the phosphorus centre to the carbodiimidium carbon atom in 48 yields final model complex 45.

Reaction with benzaldehyde (42) led to the (known) oxaphosphirane complex 50 (Chapter 4.4.2.2).

Scheme 5.13. Reaction of 3-imino-azaphosphiridine complex 21a with benzaldehyde to give oxaphosphirane complex 50.

In reaction with dicyclohexyl carbodiimide (20b), a mixture of 21a and 21b (ratio 1:1) was obtained, suggesting again that a substitution reaction had occurred in which the
diisopropyl carbodiimide moiety in 21a was exchanged by the dicyclohexyl carbodiimide to form 21b (Chapter 4.4.2.3).

Scheme 5.14. Carbodiimide exchange reactions between 3-imino-azaphosphiridine complexes 21a and 21b.

The nature of the newly formed product as 21b was confirmed additionally through formation of a $\mathbf{1 : 1}$ mixture of their hydrolysis products $\mathbf{2 8 a} \mathbf{a} \mathbf{b}$ upon reaction of $\mathbf{2 1 a} \mathbf{a} \mathbf{b}$ with $\mathrm{H}_{2} \mathrm{O}$.

In chapter 4.4.2.4 reaction of 3-imino-azaphosphiridine complex 21a with isocyanides $\mathbf{5 2 b}, \mathbf{c}$ is described. Here, in contrast to the previously observed reaction of 21a with CO, isonitrile-to-phosphinidene complex adducts $\mathbf{2 6 b}, \mathbf{c}$ were obtained selectively.

21a

- ${ }^{\mathrm{i}} \mathrm{PrN}=\mathrm{C}=$ Nipr $\mathrm{Et}_{2} \mathrm{O}$
15 h, r.t.

26b,c

$$
R={ }^{t} B u(b),{ }^{n} B u(c)
$$

Scheme 5.15. Reaction of 3-imino-azaphosphiridine complex 21a with isonitriles 52b,c to give isonitrile-to-phosphinidene complex adducts 26b,c.

Chapter 4.4.3 decribes P-C ring bond chalcogen insertion reactions of 3-iminoazaphosphiridine complex 21a. In case of sulfur, the reaction of 21a yielded 1,2,3-
thiazaphosphetidine complex 54 almost selectively. In contrast, reaction of 21a with selenium afforded no reaction, but sub-stoichiometric amounts of an in situ generated selenium transfer reagent such as tris(dimethylamino)phosphane P-selenide yielded selectively 1,3,2selenazaphosphetidine complex 58.

Scheme 5.16. Sulfur and selenium insertion into te iminoazaphosphiridine ligand $\mathrm{P}-\mathrm{C}$ bond to form 1,3,2-thiazaphosphetidine complex 54 and 1,3,2-selenazaphosphetidine complex 58 respectively.

6. Experimental part

6.1. General procedures

All operations were performed in an atmosphere of deoxygenated and dried argon (BTS catalyst (Merck) heated at 100 to $130^{\circ} \mathrm{C}$, phosphorus pentoxide, and silica gel) using standard Schlenk techniques or glove-box with conventional glassware, which was evacuated, heated in vacuo, and filled with inert gas before usage. Solvents (petrol ether (40/60)) were dried over sodium, sodium/benzophenone (THF and diethyl ether) or calcium hydride (dichloromethane) according to procedures described in the literature ${ }^{[172]}$ and stored in brown-glass bottles under inert atmosphere over sodium wire or molecular sieves. Deuterated solvents (cloroform- $d 3$, benzende- $d 6$, THF- $d 8$, and toluene- $d 8$) were stored under inert atmosphere over molecular sieves. High temperature reactions were carried out in an oil bath. In the case of low temperature reactions, ethanol and liquid nitrogen were employed as coolant. Cannulas with whatman glass microfiber filters (GF/B, $\mathrm{d}=25 \mathrm{~mm}$) connected to one end with Teflon band were used for filtrations with pressure gradient of the argon gas. Most products were purified by low-temperature column chromatography using chromatographic columns equipped with integrated cooling mantles cooled with a connected cryostat (cooling medium: ethanol, technical grade); in most cases retention factors were previously estimated by thin layer chromatography. In the description of experimental procedures the applied temperatures, the column dimensions (length \times diameter), the solvent mixtures that were used as eluents, and the materials of the employed stationary phase are specified (i.e., silica gel 60, 60-200 mesh (Merck) or neutral aluminum oxide (Merck)).

6.1.1. Analytical methods

Melting points (or decomposition temperatures) were determined with a Büchi apparatus Type S; the values are not corrected.

NMR data were recorded on a Bruker Advance 300 spectrometer (${ }^{1} \mathrm{H}: 300.13 \mathrm{MHz} ;{ }^{13} \mathrm{C}$: 75.5 $\mathrm{MHz} ;{ }^{19} \mathrm{~F}$: 282.4 MHz ; ${ }^{31} \mathrm{P}: 121.5 \mathrm{MHz}$) or a Bruker Avance 400 spectrometer ($1 \mathrm{H}: 400.13 \mathrm{MHz}$; ${ }^{13} \mathrm{C}$: $100.6 \mathrm{MHz} ;{ }^{31} \mathrm{P}: 161.9 \mathrm{MHz}$) at room temperature (if not otherwise denoted) using $\mathrm{C}_{6} \mathrm{D}_{6}$, $\mathrm{CDCl}_{3}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, toluene- d_{8} or THF- d_{8} as solvent and internal secondary standard; chemical shifts (δ) are referenced to external standards: tetramethylsilane $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$, trichlorofluoromethane $\left({ }^{19} \mathrm{~F}\right)$, boron trifluoride diethyl etherate in $\mathrm{CDCl}_{3}\left({ }^{11} \mathrm{~B}\right)$ and $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$. The assignment of NMR signals was supported by ${ }^{1} \mathrm{H}$ gsCOSY as well as ${ }^{1} \mathrm{H}$ detected, pfg-selected $2 \mathrm{D}{ }^{1} \mathrm{H}, \mathrm{X}\left(\mathrm{X}={ }^{13} \mathrm{C}\right.$,
$\left.{ }^{31} \mathrm{P}\right)$ gsHSQC, gsHMQC, or gsHMBC measurements, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (and in some cases ${ }^{1} \mathrm{H}$ NMR) spectroscopic reaction monitoring was carried out to follow reaction progressions, and signal integration was used to estimate product shares (\%) of reaction mixtures. Magnitudes of coupling constants are abbreviated as ${ }^{x} J_{A, B}$, where A and B denote the coupling nuclei (nuclear number omitted; ordered by decreasing atomic number), and x denotes the number of bonds that separate A and B (for further abbreviations see Appendix A); only absolute values were determined.

EI-Mass spectra were recorded on aMAT 95 XL Finnigan (70 eV) spectrometer. ESI-mass spectra (positive mode) and ESI tandem mass spectra were recorded on a Bruker APEX IV Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer equipped with an Apollo ESI source (selected data given).

Elemental analyses were performed using an elementary vario EL analytical gas chromatograph. The mean valuesof two or three independent measurements are given in each case.

IR spectra were recorded on a Thermo Nicolet 380 FT-IR spectrometer using KBr for samples preparation or on a ATR diamond plate.

Reflection data for the X-ray crystallographic analysis were on a STOE IPDS-2T diffractometer (STOE\&Cie GmbH, Darmstadt, Germany), using graphite monochromated Mo- K_{α} radiation (λ $=0.71073 \AA$) . The diffractometer was equipped with a low-temperature device (Cryostream 700er series, Oxford Cryosystems, 123K). Intensities were measured by fine-slicing ω-scans at different ϕ-angels and corrected for background, polarization and Lorentz effects or collected at the BL38B1 beamline of the SPring-8 (JASRI, 2014B1556) using Rayonix/MX225HE CCD detector and $\mathrm{Si}(111)$-monochromated X-ray radiation $(\lambda=0.80000 \AA$). The structures were solved by Patterson methods or Direct Methods (SHELXS-97) and refined by full-matrix least squares on F^{2} (SHELXL-97). All non-hydrogens were refined anisotropically. Hydrogen atoms were included isotropically using the riding model on the bound atoms; in some (denoted) cases hydrogen atoms were located in the Fourier difference electron density. Absorption corrections were carried out analytically or semi-empirically from equivalents. Additionally, some calculation of bond lengths and angles were obtained using the Ortep32 program.

6.1.2. Purchased reagents and solvents

The following reagents and solvents were purchased and in some cases purified before usage: Acetic acid (Merck); acetone (Biesterfeld); acetonitrile (Merck); [D3]acetonitrile (Euriso-Top); aluminum oxide neutral (Merck); ammonia (PraxAir); benyaldehzde (Aldrich); [D6]benzene (Euriso-Top); $\quad N$-benzylidenemethylamine (Aldrich); $\quad \mathrm{N}$-(4trifluoromethzl)benzylidenemethylamine (Aldrich); benzonitrile (Merck); 1,2bis(diphenylphosphino)ethane (Aldrich); n-butyllithium, 1.6 M in n -hexane, (Aldrich); tertbutyllithium, 1.7 M in n-pentane (Aldrich); iso-butyl isocyanide (Acros); tert-butyl isocyanide (Acros), calcium chloride (KMF); calcium hydride (Acros); carbon dioxide (Air Liquide); carbon monoxide (Air Liquide); [D]chloroform (Merck); chromium hexacarbonyl (Acros); 12-crown-4 (Acros); cyclohexyl isocyanide (Merck); dichloromethane (Biesterfeld); [D2]dichloromethane (Euriso-Top); dicyclohexylcarbodiimide (Fluka), diethyl ether (Prolabo); ethanol, technical grade (Hofmann); diisopropylcarbodiimide (Aldrich), ferrocene (Acros); furan-2-carbaldehyde (Acros); furan-3-carbaldehyde (Acros); hexamethyphosphorustriamide (Alfa Aesar); hydrochloric acid 37 \% (Riedel-de Haën); magnesium sulfate (Riedel-de Haën); mineral oil (Fluka); molecular sieves 3 and $4 \AA$ (Merck); molybdenum hexacarbonyl (Acros); n-pentane (Grüssing); naphtalene (Alfa Aesar); pentafluorobenzaldehyde (Aldrich); petroleum ether 40/60 (Biesterfeld); phenyl acetylene (Alfa Aesar); phenyl isocyanate (Acros); phosphorus pentoxide (Riedel-de Haën); phosphorus trichloride (Aldrich); selenium powder (Alfa Aesar); silica gel 60, 60-200 mesh (Merck); silica gel silanized 60, 60-200 mesh (Merck); sodium (Riedel-de Haën); Sodium hyposphosphite (Aldrich), sodium hydroxide (Grüssing), stirene (acros); sulfur (KMF); sulfuric acid, 98\% (Merck); tetrabutylammonium fluoride (Acros); tetrabutylammonium hexafluorophosphate (Fluka); tetrabutylammonium tetraphenylborate (Aldrich); tetrahydrofuran (Aldrich); thiophen-2-carbaldehyde (Aldrich); thiophen-3carbaldehyde (Aldrich); tris(4-bromophenyl)ammoniumyl hexachloroantimonate (Aldrich); 4(trifluoromethyl)benzaldehyde (Aldrich); toluene (Acros); triphenylmethanol (Aldrich); tungsten hexacarbonyl (Acros).

6.1.3. Reactants synthesized according to published procedures

- [Amino(phenyl)carbene]pentacarbonyltungsten(0) ${ }^{[173]}$
- [2-(1,2,3,4,5-Pentamethylcyclopenta-2,4-dien-1-yl)-3-phenyl-2H-azaphosphireneκ P]pentacarbonyltungsten(0) ${ }^{[86]}$
- Dichloro(1,2,3,4,5-pentamethylcyclopenta-2,4-dien-1-yl)phosphan[119]
- [Dichloro(1,2,3,4,5-pentamethylcyclopenta-2,4-dien-1-yl)phosphanκ K]pentacarbonyltungsten (0) ${ }^{[77]}$
- Dichloro(triphenylmethyl)phosphan ${ }^{[174]}$
- [Dichloro(triphenylmethyl)phosphan-кP]pentacarbonyltungsten $(0)^{[40]}$
- Acetonitrilpentacarbonyltungsten(0) ${ }^{[175]}$
- N-[(thiophen-2-yl)methylen]methanamin ${ }^{[88,89]}$
- N-[(thiophen-3-yl)methylen]methanamin ${ }^{[88,89]}$
- N-[(furane-2-yl)methylen]methanamin ${ }^{[88,89]}$
- N-[(furane-2-yl)methylen]methanamin ${ }^{[88,89]}$
- 4-trifluoromethyl N -benzylidenemethylamine ${ }^{[88,89]}$

6.1.4. Working procedure and chemical waste

The working with the chemicals was accomplished using fume hoods and/or a glove box according to the valid legislation (in agreement with the dangerous material regulation). All work resulting in this sense took place in appropriate protective clothing available in the laboratory. The already used solvents were collected in the canisters and properly removed according to the institutes waste disposal policy. The used silica gel was likewise supplied to the solid wastes.

6.2. Reaction of P-Cp* substituted $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complex 2 with aldimines 3a-f

6.2.1. General procedure for the reaction of $\mathrm{Li} / \mathrm{Cl}$ phosphinidenoid complex with aldimines

To a THF solution of dichlorophosphane tungsten complex 1 and 1 eq. of 12 -crown-4, 1.1 eq. of tert-butyl lithium (1.5 M in n-hexane) were slowly added at $-78{ }^{\circ} \mathrm{C}$. After 15 min .1 .5 eq . of the corresponding aldimine (3a-f) was slowly added at $-78^{\circ} \mathrm{C}$. The reaction mixtures were then allowed to warm up slowly to room temperature.

6.2.2. Synthesis of pentacarbonyl[6-(furan-2-yl)-2,3,4,5,7,8-hexamethyl-7-aza-1phosphatricyclo[3.2.1.0 ${ }^{2,8}$]oct-3-ene-кP]tungsten(0) complex (4b)

To a solution of $506 \mathrm{mg}(0.9 \mathrm{mmol})$ of dichlorophosphane complex 1 and 156 mg (1 eq.) of 12-crown-4, dissolved in THF, 1.1 eq. of tert.-butyl lithium (1.5 M in n-hexane) were slowly added at $-78{ }^{\circ} \mathrm{C}$. After 15 min .145 mg (1.5 eq .) of furan-2-carbaldimine ($\mathbf{3 b}$) was slowly added at -78
${ }^{\circ} \mathrm{C}$. The reaction mixture was warmed up slowly to room temperature. Lithium chloride was filtrated via filter paper (Schleicher \& Schuell S\&S 598) and evaporation of all volatile components (ca. $10^{-2} \mathrm{mbar}$); the residue was subjected to column chromatography ($\mathrm{h}=8 \mathrm{~cm}$, $\mathrm{d}=3 \mathrm{~cm}$, silica gel, $-20^{\circ} \mathrm{C}$, petroleum ether / $\mathrm{Et}_{2} \mathrm{O}: 5 / 1$) and the product, a light yellow solid, was obtained via subsequent crystallization from $\mathrm{Et}_{2} \mathrm{O}$ at $-70^{\circ} \mathrm{C}$.

Yield: $380 \mathrm{mg}(0.63 \mathrm{mmol}, 70 \%)$; m. p. $=104-105^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=0.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}^{1}-\mathrm{CH}_{3}\right)$, $1.03\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=17.4 \mathrm{~Hz}, \mathrm{P}-\mathrm{C}^{3}-\mathrm{CH}_{3}\right), 1.27\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} J_{\mathrm{P}, \mathrm{H}}=16.3 \mathrm{~Hz}, \mathrm{P}-\mathrm{C}^{2}-\mathrm{CH}_{3}\right), 1.32\left(\mathrm{dq}, 3 \mathrm{H},{ }^{5} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$ $\left.=1.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=4.5 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{C}^{4}=\mathrm{C}^{5}\right), 1.45\left(\mathrm{dq}, 3 \mathrm{H},{ }^{5} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.0 \mathrm{~Hz},{ }^{5} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=1.8 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{C}^{5}=\mathrm{C}^{4}\right), 2.27$ (d, $\left.3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=11.2 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{3}\right), 3.64\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=12.2 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}-\mathrm{Fu}\right), 5.92\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H} 2}=3.2\right.$ $\left.\mathrm{Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H} 1}=0.8 \mathrm{~Hz}, F u H^{3}\right), 6.03\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H} 2, \mathrm{H} 3}=3.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H} 1}=1.9 \mathrm{~Hz}, F u H^{2}\right), 7.15(\mathrm{dd}, 1 \mathrm{H}$, $\left.\left.{ }^{3} J_{\mathrm{H} 1, \mathrm{H} 2}=1.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H} 1, \mathrm{H} 3}=0.8 \mathrm{~Hz}, \mathrm{FuH}^{1}\right) .{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=10.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.9 \mathrm{~Hz}, \mathrm{P}-\mathrm{C}^{1}-\mathrm{CH}_{3}\right)$, $10.83\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.8 \mathrm{~Hz}, \mathrm{P}-\mathrm{C}^{2}-\mathrm{CH}_{3}\right), 12.05\left(\mathrm{~s}, \mathrm{P}-\mathrm{C}^{5}-\mathrm{CH}_{3}\right), 14.12\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=9.3 \mathrm{~Hz}, \mathrm{P}-\mathrm{C}^{3}-\mathrm{CH}_{3}\right), 15.31$ $\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=2.8 \mathrm{~Hz}, \mathrm{P}-\mathrm{C}^{4}-\mathrm{CH}_{3}\right), 35.12\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=8.2 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{3}\right), 46.37\left(\mathrm{~s}, \mathrm{C}^{1}\right), 59.10\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=32.0\right.$ $\mathrm{Hz}, \mathrm{C}^{3}$), $65.93\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=2.7 \mathrm{~Hz}, \mathrm{C}^{3}\right), 78.00\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.8, \mathrm{Fu}-\mathrm{CH}-\mathrm{N}\right), 107.70\left(\mathrm{~s}, \mathrm{C}^{3} \mathrm{Fu}\right), 109.57(\mathrm{~s}$, $\left.C^{2} \mathrm{Fu}\right), 131.03\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.8 \mathrm{~Hz},-C^{3}=\mathrm{C}\right), 134.93\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=9.3 \mathrm{~Hz},-\mathrm{C}=\mathrm{C}^{2}\right), 141.96\left(\mathrm{~s},-\mathrm{C}^{1} \mathrm{Fu}\right), 153.40$ ($\mathrm{s}, \mathrm{C}^{4} \mathrm{Fu}$), $195.63\left(\mathrm{dSat},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=8.3 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{C}}=125.7\right.$, cis-CO$), 198.00\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=32.1 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$
 $599.1[\mathrm{M}]^{+}(40) ; 543.1[\mathrm{M}-2 x \mathrm{CO}]^{+}(5) ; 459.1[\mathrm{M}-5 \mathrm{xCO}]^{+}(10) ; 444.1$ [M-5xCO-Me] ${ }^{+}(10) ; 406.0$ [$\left.\mathrm{M}-4 \mathrm{CO}-\mathrm{Me}-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}\right]^{+}$(100); 378.0 [$\left.\mathrm{M}-5 \mathrm{xCO}-\mathrm{Me}^{2}-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}\right]^{+}(40) . \mathrm{IR}(\mathrm{KBr}): \tilde{u}=2967$ (b, v-CH), 2725 (b, v-CH), 2072 (s, v-CO), 1944, (s, v-CO), 1462 (s, v-C-C/Ar) cm ${ }^{-1}$.

Elemental analysis (\%) for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{6}$ PW calcd.: C 42.09, H 3.70, N 2.34; found: C 42.09, H3.77, N 2.30.

6.3. Synthesis pentacarbonyl[5-(furan-2-yl)-1,4,6,7,8,9-hexamethyl-2-phenyl-4-aza-3-phosphatetracyclo[4.3.0.1 ${ }^{3,9} .0^{2,10}$]dec-8-ene-кP]tungsten(0) complex (12b) (route

 a)To a solution of 580 mg (1.03 mmol) of dichlorophosphane complex 1 and 179 mg (1 eq.) of 12-crown-4, dissolved in 20 mL THF, 1.1 eq. of tert.-butyl lithium (1.5 M in n-hexane) were slowly added at $-78{ }^{\circ} \mathrm{C}$. After 15 min .113 mg (1 eq.) of furan-2-carbaldimine (3b) was slowly added at $-78^{\circ} \mathrm{C}$. The reaction mixture was warmed slowly until $-30^{\circ} \mathrm{C}$. Around 75% of the solvent was removed under vacuo and 10 mL phenyl acetylene was added at $-30^{\circ} \mathrm{C}$. The reaction mixture was stirred between -30 and $-20^{\circ} \mathrm{C}$ during 5 hours. The excess of phenyl
acetylene and the remaining solvent was removed under vacuo (ca. $10^{-2} \mathrm{mbar}$) and the product was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{~d}=3 \mathrm{~cm}, \mathrm{~h}=6 \mathrm{~cm}\right.$, pure petrol ether (40/60)) and then crystallized from a mixture of n-pentane and diethyl ether ($3 / 1$) at $-60^{\circ} \mathrm{C}$. A white solid was thus obtained.

Yield: $430 \mathrm{mg}\left(0.62 \mathrm{mmol}, 60 \%\right.$); m. p. $=151-152{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=0.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-\mathrm{CH}_{3}\right)$, 0.85 (quint, $3 \mathrm{H},{ }^{5} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.33 \mathrm{~Hz}+{ }^{5} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=1.33 \mathrm{~Hz}, \mathrm{C}=\mathrm{C}-\mathrm{CH}_{3}$), $1.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Fu}-\mathrm{CH}-\mathrm{C}-\mathrm{CH}_{3}\right.$), 1.19 (s, $\left.3 \mathrm{H}, \mathrm{C}-\mathrm{CH}_{3}\right), 1.36\left(\mathrm{q}, 3 \mathrm{H},{ }^{5} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.33 \mathrm{~Hz}, \mathrm{C}=\mathrm{C}-\mathrm{CH}_{3}\right), 1.99\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=13.11 \mathrm{~Hz}, \mathrm{P}-\mathrm{CH}\right), 2.51(\mathrm{~d}$, $\left.3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=14.70 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{3}\right), 3.7\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4}{ }_{\mathrm{H}, \mathrm{H}}=0.8 \mathrm{~Hz}, \mathrm{Fu}-\mathrm{CH}-\mathrm{N}\right), 6.00\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.24 \mathrm{~Hz}\right.$, $\left.{ }^{4} \mathrm{~J}_{\mathrm{H} 2, \mathrm{H} 1}=1.85 \mathrm{~Hz}, \mathrm{FuH}^{2}\right), 6.1\left(\mathrm{dt}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H} 2}=3.42 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H} 1}=0.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{CH}-\mathrm{N}}=0.8 \mathrm{~Hz}, \mathrm{FuH}^{3}\right)$, $6.97\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H} 1, \mathrm{H} 2}=1.85 \mathrm{~Hz},{ }^{4} \mathrm{H}_{\mathrm{H}, \mathrm{H} 3}=0.8 \mathrm{~Hz}, \mathrm{FuH}^{1}\right), 7.01(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}-\mathrm{Ph}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ $=9.7\left(\mathrm{~s}, \mathrm{C}^{10}\right), 10.7\left(\mathrm{~s}, \mathrm{C}^{6}\right), 12.1\left(\mathrm{~s}, \mathrm{C}^{9}\right), 12.8\left(\mathrm{~s}, \mathrm{C}^{7}\right), 16.8\left(\mathrm{~s}, \mathrm{C}^{8}\right), 40.5\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=13.8 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{3}\right)$, 43.5 ($\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=6.0 \mathrm{~Hz}, \mathrm{P}-\mathrm{CH}$), $52.5\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=21.0 \mathrm{~Hz}, \mathrm{P}-\mathrm{C}-\mathrm{Ph}\right), 55.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.8 \mathrm{~Hz}, \mathrm{C}^{1}\right), 59.1(\mathrm{~d}$, $\left.{ }^{2} J_{C, P}=2.0 \mathrm{~Hz}, C^{5}\right), 64.0\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=5.1 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}\right), 64.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.1 \mathrm{~Hz}, C^{2}\right), 109.3\left(\mathrm{~s}, \mathrm{C}^{3} \mathrm{Fu}\right), 110.5$ ($\mathrm{s}, \mathrm{C}^{2} \mathrm{Fu}$), $127.2\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.5 \mathrm{~Hz},{ }^{\text {ipsoph }}\right.$), 127.6 ($\mathrm{s}, \mathrm{p}-\mathrm{Ph}$), 127.9 ($\left.\mathrm{s}, o-\mathrm{Ph}\right), 128.2(\mathrm{~s}, m-\mathrm{Ph}), 138.3$ ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.0 \mathrm{~Hz},-\mathrm{C}=\mathrm{C}$), $139.2\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.8 \mathrm{~Hz},-\mathrm{C}=\mathrm{C}\right), 140.1\left(\mathrm{~d},{ }^{2}{ }_{\mathrm{C}, \mathrm{P}}=6.6 \mathrm{~Hz}\right), 141.4\left(\mathrm{~s}, \mathrm{C}^{1} \mathrm{Fu}\right)$, $154.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.1 \mathrm{~Hz}, \mathrm{C}^{4} \mathrm{Fu}\right), 195.9\left(\mathrm{dSat},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=8.7 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{C}}=125.6, \mathrm{cis}-\mathrm{CO}\right), 198.6\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{p}, \mathrm{C}}=\right.$ 31.6 Hz , trans-CO). ${ }^{31} \mathrm{P} \delta=-3.7 \mathrm{ppm}$, quintSat, ${ }^{1} \mathrm{~J}_{\mathrm{w}, \mathrm{P}}=277.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=14.1 \mathrm{~Hz} . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}$, $\left.{ }^{184} \mathrm{~W}\right): \mathrm{m} / \mathrm{z}(\%): 701.1[\mathrm{M}]^{+}(30) ; 673.1[\mathrm{M}-\mathrm{CO}]^{+}(10) ; 617.1[\mathrm{M}-3 x \mathrm{CO}]^{+}(30) ; 561.1,[\mathrm{M}-4 \mathrm{CCO}]^{+}$, (30); 534.1 [M-5x CO] ${ }^{+}$(5). IR (KBr): $\tilde{u}=2976$ (b, v-CH), 2073 ($\left.s, v-C O\right), 1992(s, v-C O), 1918$ (s, $\mathrm{v}-\mathrm{CO}$),1496 ($\mathrm{s}, \mathrm{v}-\mathrm{C}-\mathrm{C} / \mathrm{Ar}$) cm^{-1}.

Elemental analysis (\%): Calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{NO}_{6} \mathrm{PW}: \mathrm{C} 49.66, \mathrm{H} 4.02, \mathrm{~N} 2.00$, found: $\mathrm{C} 49.64, \mathrm{H} 4.83$, N 2.07.

6.4. Formation of complexes 15a-f

6.4.1 General procedure for the formation of complexes 15a-f

To yellow solutions of 2 H -azaphosphirene pentacarbonyl tungsten complex 13, 1.5 equivalent of aldimines 3a-f were added at room temperature. The solutions were then heated at $70^{\circ} \mathrm{C}$ during 1.5 hours

6.4.2 Synthesis of pentacarbonyl[7-(4-trifluoromethylphenyl)-2,3,4,5,6,8-hexamethyl-8-aza-1-phosphatricyclo[3,3,0,0 ${ }^{2,6}$]oct-3-ene-кP]tungsten(0) complex (15f)

The solvent was removed under vacuo (ca. $10^{-2} \mathrm{mbar}$) and the product recrystallized from diethyl ether at $-70^{\circ} \mathrm{C}$ to give a pale yellow solid.

Yield: $280 \mathrm{mg}(36 \%)$, m.p. $135-134{ }^{\circ} \mathrm{C}$ ' $^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=0.55\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=16.9 \mathrm{~Hz}, \mathrm{P}-\mathrm{C}-\mathrm{CH}_{3}\right)$, $0.61\left(\mathrm{~d}, 3 \mathrm{H},{ }^{4} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=1.6 \mathrm{~Hz}, \mathrm{C}-\mathrm{C}-\mathrm{CH}_{3}\right), 0.66\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=16.1 \mathrm{~Hz}, \mathrm{P}-\mathrm{C}-\mathrm{CH}_{3}\right), 1.56\left(\mathrm{dq}, 3 \mathrm{H},{ }^{5} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=\right.$ $\left.1.3 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=2.6 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{C}=\mathrm{C}\right), 1.63\left(\mathrm{dq}, 3 \mathrm{H},{ }^{5} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.3 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=5.3 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{C}=\mathrm{C}\right), 2.75(\mathrm{~d}, 3 \mathrm{H}$, $\left.{ }^{3} J_{\mathrm{P}, \mathrm{H}}=9.4 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{3}\right), 3.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CH}-\mathrm{Ph}), 7.15\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.2 \mathrm{~Hz}, m-\mathrm{PhH}\right.$), $7.33\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$ $=8.2 \mathrm{~Hz}, o-\mathrm{PhH}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=6.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.2 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 8.0\left(\mathrm{~s},-\mathrm{CH}_{3}\right), 10.25\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=\right.$ $\left.10.7 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 10.45\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{c}, \mathrm{P}}=1.2 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 10.69\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=2.4 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 34.77\left(\mathrm{~s}, \mathrm{~N}-\mathrm{CH}_{3}\right), 63.39$ ($\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=33.3 \mathrm{~Hz}, \mathrm{P}-\mathrm{C}$), 66.18($\mathrm{d},{ }^{1}{ }_{\mathrm{C}, \mathrm{P}}=20.1 \mathrm{~Hz}, \mathrm{P}-\mathrm{C}$), $73.04(\mathrm{~s}, \mathrm{~N}-\mathrm{C}-\mathrm{Ph}), 85,08(\mathrm{~s}, \mathrm{C}-\mathrm{C}-\mathrm{C}), 124.53$ ($\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=271.8 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CF}_{3}$), $124.68\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=3.6 \mathrm{~Hz}, m-\mathrm{Ph}\right.$), $128.8(\mathrm{~s}, \mathrm{o}-\mathrm{Ph}), 129.3\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=32,2\right.$ $\mathrm{Hz}, p-\mathrm{Ph}$), $130.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=10.1 \mathrm{~Hz}, \mathrm{C}=\mathrm{C}\right.$), $130.9\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=10.1 \mathrm{~Hz}, \mathrm{C}=\mathrm{C}\right.$), 141.08 ($\mathrm{s}, \mathrm{PhC} \mathrm{C}^{1}$) 195,3 (dSat, ${ }^{2} J_{\mathrm{P}, \mathrm{c}}=6.6 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{c}}=123.8, \mathrm{cis}-\mathrm{CO}$), 197.43 (dSat, ${ }^{2} \mathrm{~J}_{\mathrm{p}, \mathrm{c}}=27.4 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{c}}=143.1$, trans-CO). ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=-62.36\left(\mathrm{~s}, \mathrm{CF}_{3}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=226.8 \mathrm{ppm},{ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{P}}=229.8 \mathrm{~Hz} . \mathrm{MS}$ (EI, ${ }^{184} \mathrm{~W}$) : m/z (\%): $677.0[\mathrm{M}]^{+}(40) ; 608.0\left[\mathrm{M}-\mathrm{CF}_{3}\right]^{+}(10) ; 580.0\left[\mathrm{M}-\mathrm{CF}_{3}-\mathrm{CO}\right]^{+}(10) ; 535.0$ [M-$\left.\mathrm{CF}_{3}-2 x \mathrm{CO}-\mathrm{Me}\right]^{+}(10) ; 490.0$ [M-PhCF $\left._{3}-\mathrm{CO}-\mathrm{Me}\right]^{+}(20) ; 406.0\left[\mathrm{M}-\mathrm{PhCF}_{3}-4 \times \mathrm{CO}-\mathrm{Me}\right]^{+}$(100). IR (KBr pellet): $\tilde{v}=2921$ (b, v-CH), 2071 ($s, v-C O), 1983(s, v-C O), 1944$ ($s, v-C O), 1616$ ($w, v-C=C$), 1462 ($\mathrm{s}, \mathrm{v}-\mathrm{C}-\mathrm{C} / \mathrm{Ar}$) cm^{-1}. UV/Vis ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$): $\lambda_{\max } / \mathrm{nm} 233.5\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 102047\right.$), 290.0 (10 709). Elemental analysis (\%) Calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{PW}$: C 41.65, H 3.19, N 2.11, found: $\mathrm{C} 42.29, \mathrm{H}$ 3.53, N 2.07.

6.5. Synthesis pentacarbonyl[5-(furan-2-yl)-1,4,6,7,8,9-hexamethyl-2-phenyl-4-aza-3-phosphatetracyclo[4.3.0.1 ${ }^{3,9} .0^{2,10}$]dec-8-ene-кP]tungsten(0) complex (12b) (route b)

To a THF solution of $935 \mathrm{mg}(1.67 \mathrm{mmol})$ of $P-\mathrm{Cp}^{*}$ dichlorophosphane tungsten complex (1) and 1 eq. of 12 -crown-4, 1.1 eq. of t-butyl lithium (1.5 M in n-hexane) were slowly added at $78{ }^{\circ} \mathrm{C}$. After 15 minutes 1.5 eq. of 2 -furyl- N -methyl aldimine (3a) was slowly added at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was warmed up slowly until room temperature. After 2 h stirring at room temperature, LiCl was filtered off and the solvent was removed in vacuo ($\sim 10^{-2} \mathrm{mbar}$). The remaining red oil was dissolved in 6 mL phenyl acetylene and the solution was stirred during

20 h at $90^{\circ} \mathrm{C}$. After completion (${ }^{31} \mathrm{P}$ NMR), the excess of phenyl acetylene was removed in vacuo ($\sim 10^{-2} \mathrm{mbar}$) and recovered and a red oil was obtained. $\mathbf{1 2 b}, \mathbf{b}^{\prime}$ was separated from the crude mixture by column chromatography ($\mathrm{SiO}_{2}, \mathrm{~d}=3 \mathrm{~cm}, \mathrm{~h}=6 \mathrm{~cm}$, pure petrol ether (40/60)) and $\mathbf{1 2 b}$ was crystallized from a mixture of n-pentane and diethyl ether ($3: 1$) at $-60^{\circ} \mathrm{C}$.

Yield $470 \mathrm{mg}\left(40 \%\right.$), m.p. $=151-152^{\circ} \mathrm{C},{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=0.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-\mathrm{CH}_{3}\right), 0.85$ (quint, 3 H , $\left.{ }^{5} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.33 \mathrm{~Hz}+{ }^{5} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=1.33 \mathrm{~Hz}, \mathrm{C}=\mathrm{C}-\mathrm{CH}_{3}\right), 1.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Fu}-\mathrm{CH}-\mathrm{C}-\mathrm{CH}_{3}\right), 1.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-\mathrm{CH}_{3}\right), 1.36$ ($\left.q, 3 \mathrm{H},{ }^{5} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.33 \mathrm{~Hz}, \mathrm{C}=\mathrm{C}-\mathrm{CH}_{3}\right), 1.99\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=13.11 \mathrm{~Hz}, \mathrm{P}-\mathrm{CH}\right), 2.51\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=14.70\right.$ $\left.\mathrm{Hz}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.7\left(\mathrm{~d}, 1 \mathrm{H},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=0.8 \mathrm{~Hz}, \mathrm{Fu}-\mathrm{CH}-\mathrm{N}\right), 6.00\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H} 2, \mathrm{H} 3}=3.24 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H} 1}=1.85 \mathrm{~Hz}\right.$, FuH ${ }^{2}$), $6.1\left(\mathrm{dt}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H} 2}=3.42 \mathrm{~Hz},{ }^{3} \mathrm{H}_{\mathrm{H}, \mathrm{H} 1}=0.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{CH}-\mathrm{N}}=0.8 \mathrm{~Hz}, \mathrm{FuH}^{3}\right), 6.97\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H} 1, \mathrm{H} 2}\right.$ $\left.=1.85 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H} 1, \mathrm{H}}=0.8 \mathrm{~Hz}, \mathrm{FuH}^{1}\right), 7.01(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}-\mathrm{Ph}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=9.7\left(\mathrm{~s}, \mathrm{C}^{10}\right), 10.7(\mathrm{~s}$, $\left.C^{6}\right), 12.1\left(\mathrm{~s}, \mathrm{C}^{9}\right), 12.8\left(\mathrm{~s}, \mathrm{C}^{7}\right), 16.8\left(\mathrm{~s}, \mathrm{C}^{8}\right), 40.5\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=13.8 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{3}\right), 43.5\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=6.0 \mathrm{~Hz}, \mathrm{P}-\right.$ $C H), 52.5\left(\mathrm{~d},{ }^{1}{ }^{\mathrm{J}} \mathrm{C}, \mathrm{P}=21.0 \mathrm{~Hz}, \mathrm{P}-\mathrm{CPh}\right), 55.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.8 \mathrm{~Hz}, \mathrm{C}^{1}\right), 59.1\left(\mathrm{~d},{ }^{2}{ }^{\mathrm{J}} \mathrm{C}, \mathrm{P}=2.0 \mathrm{~Hz}, \mathrm{C}^{5}\right), 64.0$ $\left(\mathrm{d},{ }^{2}{ }^{2} \mathrm{P}, \mathrm{P}=5.1 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}\right), 64.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.1 \mathrm{~Hz}, \mathrm{C}^{2}\right), 109.3\left(\mathrm{~s}, \mathrm{C}^{3} \mathrm{Fu}\right), 110.5\left(\mathrm{~s}, C^{2} \mathrm{Fu}\right), 127.2\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}\right.$ $=1.5 \mathrm{~Hz},{ }^{\text {ipsoph }}$), 127.6 ($\mathrm{s}, \mathrm{p}-\mathrm{Ph}$), 127.9 ($\mathrm{s}, \mathrm{o}-\mathrm{Ph}$), $128.2(\mathrm{~s}, m-\mathrm{Ph}), 138.3\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.0 \mathrm{~Hz},-\mathrm{C}=\mathrm{C}\right.$), 139.2 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.8 \mathrm{~Hz},-\mathrm{C}=\mathrm{C}$), 140.1 ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=6.6 \mathrm{~Hz}$), 141.4 ($\mathrm{s}, \mathrm{C}^{1} \mathrm{Fu}$), $154.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.1 \mathrm{~Hz}\right.$, $C^{4} \mathrm{Fu}$), 195.9 ($\mathrm{dSat},{ }^{2} \mathrm{~J}_{\mathrm{p}, \mathrm{c}}=8.7 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{w}, \mathrm{c}}=125.6, ~ c i s-\mathrm{CO}$), $198.6\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{p}, \mathrm{c}}=31.6 \mathrm{~Hz}\right.$, trans-CO$) .{ }^{31} \mathrm{p}$ $\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=-3.72 \mathrm{ppm},{ }^{1} J_{\mathrm{w}, \mathrm{P}}=278.9 \mathrm{~Hz},{ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=-3.72 \mathrm{ppm}$ (quintSat, ${ }^{1} \mathrm{~J}_{\mathrm{w}, \mathrm{P}}$ $=278.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=14.3 \mathrm{~Hz} . \mathrm{MS}\left(\mathrm{EI},{ }^{184} \mathrm{~W}\right): \mathrm{m} / \mathrm{z}(\%): 701.1,[\mathrm{M}]^{+},(30) ; 673.1[\mathrm{M}-\mathrm{CO}]^{+},(10) ; 617.1$ $[\mathrm{M}-3 \mathrm{xCO}]^{+}(30) ; 561.1[\mathrm{M}-4 \mathrm{xCO}]^{+}(30) ; 534.1[\mathrm{M}-5 \mathrm{x} \mathrm{CO}]^{+}(5) . \mathrm{IR}(\mathrm{KBr}$ pellet): ũ $=2976$ (b, v-CH), 2073 ($\mathrm{s}, \mathrm{v}-\mathrm{CO}$), 1992 ($\mathrm{s}, \mathrm{v}-\mathrm{CO}$), 1918 ($\mathrm{s}, \mathrm{v}-\mathrm{CO}$), 1496 ($\mathrm{s}, \mathrm{v}-\mathrm{C}-\mathrm{C} / \mathrm{Ar}$) cm^{-1}.

6.6. Synthesis pentacarbonyl[1,4,6,7,8,9-hexamethyl-2-phenyl-5-(4-trifluoromethylphenyl)-4-aza-3-phosphatetracyclo[4.3.0.1 ${ }^{3,9} .0^{2,10}$]dec-8-eneκ K]tungsten(0) complex (12f, f^{\prime})

20 mg of complex $5 \mathbf{f}$ was dissolved in 0.5 mL of phenyl acetylene and the solution was stirred during 20 h at $90{ }^{\circ} \mathrm{C}$. After completion $\left({ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\right)$ the crude mixture was analysed without further purification. A mixture of $\mathbf{1 3 f}$ (major isomer, $\delta^{31} \mathrm{P}=-2.4 \mathrm{ppm},{ }^{1} J_{\mathrm{WP}}=275.2 \mathrm{~Hz}$) and $\mathbf{1 3 f}^{\prime}$ $\left(\delta^{31} \mathrm{P}=1.7 \mathrm{ppm},{ }^{1} \mathrm{~J}_{\mathrm{wP}}=278.3 \mathrm{~Hz}\right.$) in a ratio of 1:2 was obtained.

6.7. Synthesis of pentacarbonyl[3-(furan-2-yl)-2,4,5,6,7,9-hexamethyl-8-phenyl-2,9-diaza-phosphatricyclo[5.2.1.0 ${ }^{4,10}$]dec-5-ene-кP]tungsten(0) complex (17)

490 mg (0.81 mmol) of complex $\mathbf{4} \mathbf{b}$ were dissolved in 5 mL of N -benzylidenemethylamine (3a) and the yellow solution was stirred during 20 h at $90^{\circ} \mathrm{C}$. When the reaction was completed
$\left({ }^{31} P\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\right)$, the excess of imine was removed and a yellow oil was obtained. The product, a white solid, was then purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{~d}=3 \mathrm{~cm}, \mathrm{~h}=8 \mathrm{~cm},-20^{\circ} \mathrm{C}\right.$, petrol ether $40 / 60$) and recrystallized from n-pentane at $-60^{\circ} \mathrm{C}$.

Yield: $300 \mathrm{mg}(50 \%)$, m.p. $=132-133^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=0.33\left(\mathrm{q}, 3 \mathrm{H},{ }^{5} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=0.84 \mathrm{~Hz}, \mathrm{C}=\mathrm{C}-\right.$ CH_{3}), $0.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}^{3}-\mathrm{CH}_{3}\right), 0.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}^{1}-\mathrm{CH}_{3}\right), 1.24\left(\mathrm{q}, 3 \mathrm{H},{ }^{5} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=0.84 \mathrm{~Hz}, \mathrm{C}=\mathrm{C}-\mathrm{CH}_{3}\right), 1.28(\mathrm{~d}$, $\left.3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=21.8 \mathrm{~Hz}, \mathrm{P}-\mathrm{C}^{2}-\mathrm{CH}_{3}\right), 2.13\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=10.17 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{N}-\mathrm{CH}_{3}\right), 2.40\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=\right.$ 13.31 Hz, Fu-CH-N-CH3), 3.46 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CH}-\mathrm{Ph}$), $4.58\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=5.63 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CH}-\mathrm{Fu}\right), 5.93(\mathrm{dd}$, $\left.1 \mathrm{H},{ }^{3} \mathrm{JH}_{\mathrm{H}, \mathrm{H} 2}=3.20 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H} 1}=0.7 \mathrm{~Hz}, \mathrm{FuH}^{3}\right), 5.98\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{H}_{\mathrm{H}, \mathrm{H} 3}=3.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H} 2, \mathrm{H} 1}=1.80 \mathrm{~Hz}, \mathrm{FuH}^{2}\right)$, $6.96\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H} 1, \mathrm{H2}}=1.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=0.7 \mathrm{~Hz}, \mathrm{FuH}^{1}\right), 7.01(\mathrm{~m}, 5 \mathrm{H}, \mathrm{N}-\mathrm{C}-\mathrm{Ph}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=$ 10.0 ($\mathrm{s}, \mathrm{CH}_{3}-\mathrm{C}-\mathrm{P}$), $10.1(\mathrm{~s}, 10.2), 17.2\left(\mathrm{~s}, \mathrm{C}^{10}\right), 19.9\left(\mathrm{~s}, \mathrm{C}^{8}\right), 21.3\left(\mathrm{~s}, \mathrm{C}^{9}\right), 32.50\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.2 \mathrm{~Hz}\right.$, Fu-$\left.\mathrm{CH}-\mathrm{N}-\mathrm{CH}_{3}\right), 36.42\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=9.5 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{N}-\mathrm{CH}_{3}\right), 60.0\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=39.8 \mathrm{~Hz}, \mathrm{P}-\mathrm{C}^{1}\right), 60.0\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=\right.$ $\left.1.8 \mathrm{~Hz}, \mathrm{P}-\mathrm{C}^{5}\right), 62.0\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=2.6 \mathrm{~Hz} \mathrm{P-C}{ }^{4}\right), 46.37\left(\mathrm{~s}, \mathrm{C}^{4}\right), 59.10\left(\mathrm{~d},{ }^{1}{ }^{\mathrm{I}} \mathrm{C}, \mathrm{P}=32.0 \mathrm{~Hz}, C^{1}\right), 65.93(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{C}, \mathrm{P}}=2.7 \mathrm{~Hz}, \mathrm{C}^{5}\right), 70.68\left(\mathrm{~d},{ }^{2}{ }_{\mathrm{C}, \mathrm{P}}=1.8, \mathrm{Fu}-\mathrm{CH}-\mathrm{N}\right), 77.50\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=11.6, \mathrm{Ph}-\mathrm{CH}-\mathrm{N}\right), 109.2\left(\mathrm{~s}, \mathrm{C}^{3} \mathrm{Fu}\right)$, 109.2 ($\mathrm{s}, \mathrm{C}^{2} \mathrm{Fu}$), 126.7 ($\mathrm{s}, p-\mathrm{Ph}$), $127.1(\mathrm{~s}, o-\mathrm{Ph}), 127.5(\mathrm{~s}, m-\mathrm{Ph}), 132.65\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.2 \mathrm{~Hz},-\mathrm{C}^{3}=\mathrm{C}\right.$), $136.76\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.2 \mathrm{~Hz},-\mathrm{C}=\mathrm{C}^{2}\right), 138.2\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=5.6 \mathrm{~Hz},{ }^{\text {ipso }} \mathrm{Ph}\right), 140.7\left(\mathrm{~s}, \mathrm{C}^{1} \mathrm{Fu}\right), 152.05\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=\right.$ $11.95 \mathrm{~Hz}, \mathrm{C}^{4} \mathrm{Fu}$), 196.72 ($\mathrm{dSat},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=8.3 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{C}}=125.0$, cis-CO), $198.00\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=25.71 \mathrm{~Hz}\right.$, trans-CO). ${ }^{31}$ P $\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=145.1 \mathrm{ppm},{ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{P}}=286.1 \mathrm{~Hz}$. MS (EI, 184W) : m/z (\%): 718.0 $[\mathrm{M}]^{+}(30) ; 662.0,[\mathrm{M}-2 \mathrm{xCO}]^{+}(30) ; 599.0$ [M-PhC(H)NMe] ${ }^{+}$(100); 578.1 [M-5xCO] ${ }^{+}$(20). IR (KBr pellet): $\tilde{v}=2923$ (b, v-CH), 2068 ($s, v-C O$), 1980 ($s, v-C O$), 1905 ($s, v-C O$), 1443 ($s, v-C-C / A r$) cm^{-1}.

Elemental analysis (\%) for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}$ PW Calc: C 48.49, H 4.35, N 3.90, found (\%): C $49.60, \mathrm{H}$ 4.86, N 3.68.

6.8. Synthesis of imino azaphosphiridine complexes $21 a, b, 22 a, b$

6.8.1. General procedure for the synthesis of imino azaphosphiridine complexes 21a,b,22a,b

To a THF solution of dichloro(pentamethylcyclo-pentadienyl) or phosphane dichloro(triphenylmethyl)phosphane tungsten complex $(\mathbf{1 , 1 8})$ and 1 eq. of 12-crown-4, 1.1 eq. of tert-butyl lithium (1.7 M in n -hexane) were slowly added at $-78^{\circ} \mathrm{C}$. After 15 min .1 eq. of diisopropyl- and dicyclohexyl carbodiimides (20a,b) was slowly added at $-78{ }^{\circ} \mathrm{C}$. In case of $\mathbf{2 1 a}, \mathbf{b}$ the reaction mixture was stirred and warmed up slowly to $+4^{\circ} \mathrm{C}$ and then kept at $4^{\circ} \mathrm{C}$
during $\mathbf{1 5 h}$. In case of 22a,b the reaction mixture was stirred and warmed up slowly (4 h) to room temperature. The solvent was then removed in vacuo ($\sim 10^{-2} \mathrm{mbar}$) and LiCl filtered from a pentane solution.

6.8.2. Synthesis of [pentacarbonyl\{(1-isopropyl-3-isopropylimino-2-(triphenylmethyl)-1,2-azaphosphiridine-KP\}tungsten(0)] (21a)

Yellow solid, yield: $900 \mathrm{mg}(1.24 \mathrm{mmol}, 87 \%)$, m. p. $=120-121^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 0.80(\mathrm{~d}, 3 \mathrm{H}$, $\left.\mathrm{P}-\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.5 \mathrm{~Hz}\right), 0.80\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{C}=\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.2 \mathrm{~Hz}\right), 1.17\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{P}-\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3}\right.$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.5 \mathrm{~Hz}\right), 1.29\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{C}=\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.3 \mathrm{~Hz}\right.$), 3.35 (dsep, $\left.1 \mathrm{H}, \mathrm{N}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right),{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.5$ $\mathrm{Hz},{ }^{3} \mathrm{~J}_{\mathrm{p}, \mathrm{H}}=3.8 \mathrm{~Hz}$), 3.44 (sep, $1 \mathrm{H}, \mathrm{N}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.3 \mathrm{~Hz}$); $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}\right): 19.6(\mathrm{~d}, \mathrm{P}-\mathrm{N}-\mathrm{CH}-1$. $\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=2.7 \mathrm{~Hz}$), $20.3\left(\mathrm{~d}, \mathrm{P}-\mathrm{N}-\mathrm{C}-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=1.7 \mathrm{~Hz}\right), 23.1\left(\mathrm{~s}, \mathrm{C}=\mathrm{N}-\mathrm{C}-\mathrm{CH}_{3}\right), 24.1\left(\mathrm{~s}, \mathrm{C}=\mathrm{N}-\mathrm{C}-\mathrm{CH}_{3}\right)$, 50.6 ($\mathrm{s}, \mathrm{P}-\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3}$), 56.9 ($\mathrm{d}, \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=14.3 \mathrm{~Hz}$), $65.6\left(\mathrm{~d}, \mathrm{P}-\mathrm{C}-\mathrm{Ph}_{3},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=15.8 \mathrm{~Hz}\right.$), 125.1 (s, Ph), 127.2 (s, Ph), 128.5 (s, Ph) 130.0 ($\mathrm{d},{ }^{\text {ipsoph }}{ }^{2}{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=9.8 \mathrm{~Hz}$), $137.0\left(\mathrm{~d}, \mathrm{~N}=\mathrm{C},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=7.2 \mathrm{~Hz}\right.$), 140.4 ($\mathrm{d}, \mathrm{Ph}, \mathrm{J}_{\mathrm{p}, \mathrm{c}}=3.0 \mathrm{~Hz}$), 143.0 (s, Ph), 194.6 ($\mathrm{dSat},{ }^{2} \mathrm{~J}_{\mathrm{p}, \mathrm{c}}=6.5 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{w}, \mathrm{c}}=126.3 \mathrm{~Hz}, ~ c i s-C O$), $196.1\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=35.9 \mathrm{~Hz}\right.$, trans-CO); ${ }^{31 \mathrm{P}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 2.1 \mathrm{ppm},{ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{P}}=257.4 \mathrm{~Hz} . \mathrm{MS}\left(\mathrm{EI},{ }^{184} \mathrm{~W}\right)$: $\mathrm{m} / \mathrm{z}(\%): 724.1,[\mathrm{M}]^{+},(0.3) ; 598.0,\left[\mathrm{M}-\mathrm{PrN}=\mathrm{C}=\mathrm{NiPr}^{+}\right]^{+}(0.3) ; 570.0,\left[\mathrm{M}-\mathrm{PrN}=\mathrm{C}=\mathrm{NiPr}^{\mathrm{i}} \mathrm{CO}\right]^{+}(0.03)$;

 ['PrN=C] ${ }^{+}$(100); IR (ATR): ũ = 2969 (b, v-CH 2), 2072 ($s, v-C O$), 1980 ($\left.s, v-C O\right), 1917$ ($s, v-C O$), 1740 ($s, v-C O$), 1597 (b, v-C=N) cm ${ }^{-1}$.

Elemental analysis for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5}$ PW Calc (\%): C 51.40, H 4.04, N 3.87; found (\%): C $53.21, \mathrm{H}$ 4.63, N 3.59.

6.8.3 Synthesis of [pentacarbonyl\{(1-isopropyl-3-isopropylimino-2-(1,2,3,4,5-pentamethylcyclopentadienyl)-1,2-azaphosphiridine-кP\}tungsten(0)] (22a)

Yellow solid, yield $412 \mathrm{mg}(75 \%)$, m. p. $=153-154^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=1.14\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{P}-\mathrm{C}-\mathrm{CH}_{3}\right.$, $\left.{ }^{3} J_{\mathrm{P}, \mathrm{H}}=14.1 \mathrm{~Hz}\right), 1.24\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{C}-\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.5 \mathrm{~Hz}\right), 1.27\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{C}-\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.5 \mathrm{~Hz}\right)$, 1.44 (d, $3 \mathrm{H}, \mathrm{C}=\mathrm{N}-\mathrm{CH}_{-\mathrm{CH}_{3}}{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.6 \mathrm{~Hz}$), 1.47 ($\mathrm{d}, 3 \mathrm{H}, \mathrm{C}=\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.5 \mathrm{~Hz}$), $1.84(\mathrm{~d}, 6 \mathrm{H}$, $\left.\mathrm{Cp}^{*}-\mathrm{CH}_{3},{ }^{4}{ }_{\mathrm{P}, \mathrm{H}}=4.9 \mathrm{~Hz}\right), 1.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 1.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 3.65\left(\mathrm{sep}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$, ${ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.5 \mathrm{~Hz}$), 3.65 (dsep, $1 \mathrm{H}, \mathrm{N}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=2.3 \mathrm{~Hz}$), ${ }^{13} \mathrm{C} \mathrm{NMR}: \delta=11.0(\mathrm{~d}$, $\left.\mathrm{Cp}^{*}-\mathrm{CH}_{3},{ }^{4} \mathrm{~J}_{\mathrm{p}, \mathrm{c}}=3.3 \mathrm{~Hz}\right), 11.5\left(\mathrm{~d}, \mathrm{Cp}^{*}-\mathrm{CH}_{3},{ }^{4} \mathrm{~J}_{\mathrm{p}, \mathrm{c}}=1.6 \mathrm{~Hz}\right), 12.00\left(\mathrm{~d}, \mathrm{Cp}^{*}-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{p}, \mathrm{c}}=5.7 \mathrm{~Hz}\right), 12.00$ $\left(\mathrm{d}, \mathrm{Cp}^{*}-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{p}, \mathrm{C}}=5.7 \mathrm{~Hz}\right), 16.56\left(\mathrm{~d}, \mathrm{P}-\mathrm{C}-\mathrm{CH}_{3},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=4.3 \mathrm{~Hz}\right), 21.78\left(\mathrm{~d}, \mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{CH}_{3},{ }^{2} \mathrm{~J}_{\mathrm{p}, \mathrm{C}}=1.9 \mathrm{~Hz}\right)$,
22.41 ($\mathrm{d}, \mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{CH}_{3},{ }^{2} \mathrm{~J}_{\mathrm{p}, \mathrm{C}}=1.6 \mathrm{~Hz}$), 25.14 ($\mathrm{s}, \mathrm{C}=\mathrm{N}-\mathrm{C}-\mathrm{CH}_{3}$), $25.30\left(\mathrm{~s}, \mathrm{C}=\mathrm{N}-\mathrm{C}-\mathrm{CH}_{3}\right.$), 51.62 ($\mathrm{s}, \mathrm{C}=\mathrm{N}-$ $\left.\mathrm{CH}-\mathrm{CH}_{3}\right), 57.71\left(\mathrm{~d}, \mathrm{~N}-\mathrm{CH}-\mathrm{CH} 3,{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=13.5 \mathrm{~Hz}\right), 64.64\left(\mathrm{~d}, \mathrm{P}-\mathrm{C}\left(\mathrm{Cp}^{*}\right),{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=15.5 \mathrm{~Hz}\right), 133.33(\mathrm{~d}$, $\left.C=C, J_{P, C}=7.1 \mathrm{~Hz}\right), 135.55(\mathrm{~s}, \mathrm{C}=\mathrm{C}),, 139.7\left(\mathrm{~d}, \mathrm{~N}=\mathrm{C},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=5.5 \mathrm{~Hz}\right), 142.71\left(\mathrm{~d}, \mathrm{C}=\mathrm{C}, \mathrm{J}_{\mathrm{P}, \mathrm{C}}=6.0 \mathrm{~Hz}\right)$, $144.12\left(\mathrm{~d}, \mathrm{C}=\mathrm{C}, \mathrm{J}_{\mathrm{P}, \mathrm{C}}=7.8 \mathrm{~Hz}\right), 195.02$ (dsat, $\left.{ }^{2} \mathrm{~J}_{\mathrm{p}, \mathrm{C}}=7.6 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{w}, \mathrm{C}}=125.1, \mathrm{cis}-\mathrm{CO}\right), 196.45\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{p}, \mathrm{c}}=\right.$ 33.3 Hz , trans-CO), ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=4.03$ (ssat, ${ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{P}}=265.8 \mathrm{~Hz}$), MS (EI, ${ }^{184} \mathrm{~W}$) : m/z (\%): $618.1[\mathrm{M}]^{+}(4) ; 588.1[\mathrm{M}-\mathrm{CO}]^{+}(5) ; 560.1[\mathrm{M}-2 \mathrm{xCO}]^{+}(2) ; 532.1[\mathrm{M}-3 x C O]^{+}(2) ; 504.1[\mathrm{M}-4 \mathrm{xCO}]^{+}$ (2); $476.1[\mathrm{M}-5 \mathrm{xCO}]^{+}(2)$, IR (ATR): $\tilde{\mathrm{u}}=2969\left(\mathrm{~b}, \mathrm{v}-\mathrm{CH}_{2}\right), 2924\left(\mathrm{~b}, \mathrm{v}-\mathrm{CH}_{2}\right), 2071(\mathrm{~s}, \mathrm{v}-\mathrm{CO}), 2074$ ($\mathrm{s}, \mathrm{v}-\mathrm{CO}$), 1995 ($\mathrm{s}, \mathrm{v}-\mathrm{CO}$), 1895 (b, v-CO), 1609 (b, v-C=N) cm ${ }^{-1}$.

Elemental analysis for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{PW}$ Calc (\%): C 42.88, H 4.74, N 2.55, found (\%): C 42.72, H 5,06, N 4.28.

6.8.4. Synthesis of [pentacarbonyl\{(1-cyclohexyl-3-cyclohexylimino-2-(1,2,3,4,5-pentamethylcyclopentadienyl)-1,2-azaphosphiridine-кP\}tungsten(0)] (22b)

Yellow oil, yield $250 \mathrm{mg}(63 \%),{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=1.06\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3}{ }^{\mathbf{J}} \mathrm{P}, \mathrm{H}=14.2 \mathrm{~Hz}, \mathrm{Cp}^{*}-\mathrm{C}^{1} \mathrm{H}_{3}\right), 1.10-$ 1.33 (br m, 10H, Cy-CH2), 1.42-1.90 (br m, 10H, Cy-CH2), 1.77 (s, 3H, Cp*-CH3), 1.78 (s, 3H, Cp*CH_{3}), $1.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 1.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 3.15(\mathrm{brm}, 2 \mathrm{H}, 2 \times \mathrm{NCH}),{ }^{13} \mathrm{C}$ NMR : $\delta=10.5$ (d, $\mathrm{Cp}^{*}-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{p}, \mathrm{C}}=2.7 \mathrm{~Hz}$), $11.3\left(\mathrm{~s}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 11.7\left(\mathrm{~s}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 11,9\left(\mathrm{~s}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 16.3\left(\mathrm{~d}, \mathrm{Cp}^{*}-\right.$ $\mathrm{CH}_{3},{ }^{2} \mathrm{~J}_{\mathrm{p}, \mathrm{c}}=3.7 \mathrm{~Hz}$), $24.7\left(\mathrm{~s}, \mathrm{CyCH}_{2}\right), 24.9\left(\mathrm{~s}, \mathrm{CyCH}_{2}\right), 25.1\left(\mathrm{~d}, \mathrm{CyCH}_{2},{ }^{3} \mathrm{Jp}_{\mathrm{p}, \mathrm{C}}=18.2 \mathrm{~Hz}\right), 25.1(\mathrm{~d}$, $\left.\mathrm{CyCH}_{2},{ }^{3} \mathrm{~J}_{\mathrm{p}, \mathrm{C}}=17.6 \mathrm{~Hz}\right), 25.4\left(\mathrm{~s}, \mathrm{CyCH}_{2}\right), 25.5\left(\mathrm{~s}, \mathrm{CyCH}_{2}\right), 34.9\left(\mathrm{~s}, \mathrm{CyCH}_{2}\right), 34.9\left(\mathrm{~s}, \mathrm{CyCH}_{2}\right), 35.2(\mathrm{~s}$, $\left.\mathrm{CyCH}_{2}\right), 35.5\left(\mathrm{~s}, \mathrm{CyCH}_{2}\right), 55.7(\mathrm{~s}, \mathrm{~N}-\mathrm{CH}), 58.8(\mathrm{~s}, \mathrm{~N}-\mathrm{CH}), 64.64\left(\mathrm{~d}, \mathrm{P}-\mathrm{C}\left(\mathrm{Cp}^{*}\right),{ }^{1} \mathrm{~J}_{\mathrm{p}, \mathrm{c}}=13.5 \mathrm{~Hz}\right), 133.15$ ($\mathrm{d}, \mathrm{C}=\mathrm{C}, J_{\mathrm{P}, \mathrm{C}}=6.9 \mathrm{~Hz}$), 135.45 ($\mathrm{d}, \mathrm{C}=C, \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=1.5 \mathrm{~Hz}$), $139.95\left(\mathrm{~d}, \mathrm{~N}=\mathrm{C}^{1} \mathrm{~J}_{\mathrm{p}, \mathrm{C}}=5.2 \mathrm{~Hz}\right), 142.33(\mathrm{~d}$, $C=C, J_{P, C}=6.0 \mathrm{~Hz}$), $143.87\left(\mathrm{~d}, \mathrm{C}=\mathrm{C}, J_{\mathrm{P}, \mathrm{C}}=78.6 \mathrm{~Hz}\right), 194.85\left(\mathrm{dSat},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=7.5 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{C}}=125.5\right.$, cisCO), $196.28\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=33.1 \mathrm{~Hz}\right.$, trans-CO), ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=1.47\left(\mathrm{~s},{ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{P}}=265.8 \mathrm{~Hz}\right), \mathrm{IR}$ (ATR): $\tilde{v}=2971\left(b, v-\mathrm{CH}_{2}\right), 2922\left(b, v-\mathrm{CH}_{2}\right), 2070(\mathrm{~s}, v-\mathrm{CO}), 2069(\mathrm{~s}, v-\mathrm{CO}), 1993(\mathrm{~s}, v-\mathrm{CO}), 1890$ (b, v-CO), $1613(b, v-C=N) \mathrm{cm}^{-1}$.

6.9. Synthesis of complexes $28 \mathrm{a}, \mathrm{b}, 29 \mathrm{a}, \mathrm{b}$

6.9.1. General procedure for the synthesis of complexes $28 \mathrm{a}, \mathrm{b}, 29 \mathrm{a}, \mathrm{b}$

To a THF solution of $\mathbf{2 1 a}, \mathbf{b}, \mathbf{2 2 a}, \mathbf{b} 1 \mathbf{e q}$. of water was added at room temperature. The reaction mixture was stirred during 5 minutes. The solvent was removed in vacuo ($\sim 10^{-2} \mathrm{mbar}$) and a yellow oil was obtained. The compound was then crystallized from pure $\mathrm{Et}_{2} \mathrm{O}$ at $-20^{\circ} \mathrm{C}$.

6.9.2. Synthesis of [pentacarbonyl\{(isopropylamino)(isopropyliminio)methyl (triphenylmethyl)phosphinite-kP\}tungsten(0)] (28a)

White solid, yield $=250 \mathrm{mg}(0.34 \mathrm{mmol}, 70 \%)$, m. p. $=162-163{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 1.0-1.4(\mathrm{~m}$, $12 \mathrm{H}, \mathrm{i-Pr} \mathrm{CH}_{3}$), 3.9 (bs, 2 H, , ${ }^{\text {i-Pr }} \mathrm{CH}$), 6.7-7.7 (m, $3 \times \mathrm{Ph}$), $\mathrm{N}-\mathrm{H}$ are in coalescence process at room temperature; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}): 22.8 ($\mathrm{s},{ }^{i} \mathrm{Pr}-\mathrm{CH} 3$), 22.9 ($\mathrm{s},{ }^{\mathrm{i} P r-\mathrm{CH} 3), ~} 47.0\left(\mathrm{~s}, 2 \mathrm{x}^{\mathrm{i}-\mathrm{Pr}} \mathrm{CH}\right.$), 69.0 (d , $\left.{ }^{1} J_{\mathrm{C}, \mathrm{P}}=2.6 \mathrm{~Hz}, \mathrm{P}-\mathrm{CPh}_{3}\right), 126.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.0 \mathrm{~Hz}, \mathrm{C}-\mathrm{Ph}\right), 127.0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=1.7 \mathrm{~Hz}, \mathrm{C}-\mathrm{Ph}\right), 127.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}\right.$ $=1.0 \mathrm{~Hz}, C-\mathrm{Ph}), 127.4\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=2.3 \mathrm{~Hz}, C-\mathrm{Ph}\right), 128.0(\mathrm{~s}, C-\mathrm{Ph}), 128.5(\mathrm{~s}, C-\mathrm{Ph}), 130.0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=6.4\right.$ $\mathrm{Hz}, \mathrm{C}-\mathrm{Ph}), 130.5\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=2.3 \mathrm{~Hz}, C-P h\right), 131.1\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=7.4 \mathrm{~Hz}, C-\mathrm{Ph}\right), 140.3\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=5.13 \mathrm{~Hz}\right.$, $C^{\text {ipso }}-\mathrm{Ph}$), $141.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=2.3 \mathrm{~Hz}, \mathrm{C}^{\text {ipso }}-\mathrm{Ph}\right), 144.7\left(\mathrm{~d},{ }^{2}{ }_{\mathrm{C}, \mathrm{P}}=10.7 \mathrm{~Hz}, C^{\text {ipso-Ph }}\right.$), $172.5(\mathrm{~d}, \mathrm{~N}-\mathrm{C}-\mathrm{N}$, ${ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=32.5 \mathrm{~Hz}$), 197.7 (dSat, ${ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=8.4 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{w}, \mathrm{C}}=127.5$, cis-CO$), 200.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=27.5 \mathrm{~Hz}\right.$, transCO, ${ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{C}}=144.2$, trans-CO); ${ }^{31 \mathrm{P}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 92.4 \mathrm{ppm}$, qSat, ${ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{P}}=285.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=16 . \mathrm{Hz}$; MS (EI, ${ }^{184} \mathrm{~W}$): m/z (\%): m/z (\%): $743.1[\mathrm{M}]^{+},(1) ; 658.1$ [M-3xCO] ${ }^{+}(2) ; 630[\mathrm{M}-4 \mathrm{xCO}]^{+}$(1); 243.1, $\left[\mathrm{CPh}_{3}\right]^{+}$(100); IR (ATR): $\tilde{u}=3347(\mathrm{~b}, \mathrm{~N}-\mathrm{H}), 2967\left(\mathrm{~b}, \mathrm{v}-\mathrm{CH}_{2}\right), 2068$ ($\left.\mathrm{s}, \mathrm{v}-\mathrm{CO}\right), 1986$ ($\mathrm{s}, \mathrm{v}-$ CO), 1933 ($s, v-C O), 1915$ ($s, v-C O), 1899$ ($s, v-C O), 1607(b, v-C=N) \mathrm{cm}^{-1}$.

Elemental analysis for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{PW}$ Calc (\%): C 50.15, H 4.21, N 3.77, found (\%): C 49.99 , H 4.37 , N 3.79.

6.9.3. Synthesis of [pentacarbonyl\{(isopropylamino)(isopropyliminio)methyl (1,2,3,4,5-pentamethylcyclopentadienyl)phosphinite-kP\}tungsten(0)] (29a)

White solid, yield $250 \mathrm{mg}(80 \%)$, m. p. $164-165^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=1.24-1.30\left(\mathrm{~m}, 12 \mathrm{H},{ }^{\text {i- }}\right.$ ${ }^{\text {Pr }} \mathrm{CH}_{3}$), $1.43\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{Cp}^{*}-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=16.7 \mathrm{~Hz}\right), 1.73\left(\mathrm{bs}, 3 \mathrm{H}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 1.82\left(\mathrm{dd}, 3 \mathrm{H}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}, \mathrm{~J}_{\mathrm{P}, \mathrm{H}}\right.$ $\left.=3.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.1 \mathrm{~Hz}\right), 1.86\left(\mathrm{bs}, 3 \mathrm{H}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 2.05\left(\mathrm{bs}, 3 \mathrm{H}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 3.89\left(\mathrm{~m}, 2 \mathrm{H},,^{\text {i-Pr }} \mathrm{CH}\right), 6.79$ (bs, 2H, N-H); ${ }^{13} \mathrm{C}$ NMR : $\delta=10.9\left(\mathrm{~s}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 11.7\left(\mathrm{~d}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}, \mathrm{~J}, \mathrm{P}=1.0 \mathrm{~Hz}\right), 12.9\left(\mathrm{~s}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right)$, 13.0 ($\mathrm{s}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}$), 16.0 ($\mathrm{d}, \mathrm{P}-\mathrm{C}-\mathrm{CH}_{3},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=5.8 \mathrm{~Hz}$), 23.6 ($\mathrm{s}, 2 \times \mathrm{iPr}-\mathrm{CH} 3$), 23.7 ($\mathrm{s}, 2 \times \mathrm{iPr}-\mathrm{CH} 3$), $47.1\left(\mathrm{~s}, 2 \mathrm{x}^{\mathrm{i}-\mathrm{Pr}} \mathrm{CH}\right), 66.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=2.7 \mathrm{~Hz}, \mathrm{P}-\mathrm{Cp}^{*}-\mathrm{C} 1\right), 135.0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=2.7 \mathrm{~Hz}, \mathrm{C}=\mathrm{C}\right), 135.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=\right.$ $4.7 \mathrm{~Hz}, \mathrm{C}=\mathrm{C}$), 139.9 ($\mathrm{d}, \mathrm{J}_{\mathrm{C}, \mathrm{P}}=6.7 \mathrm{~Hz}, \mathrm{C}=\mathrm{C}$), $143.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.7 \mathrm{~Hz}, \mathrm{C}=\mathrm{C}\right), 65.3\left(\mathrm{~d}, \mathrm{Cp}^{*} \mathrm{C}^{1,1}{ }_{\mathrm{C}}^{\mathrm{C}, \mathrm{P}}=2.7\right.$ $\mathrm{Hz}), 134.2\left(\mathrm{~d}, \mathrm{C}=\mathrm{C},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=2.7 \mathrm{~Hz}\right), 134.3\left(\mathrm{~d}, \mathrm{C}=\mathrm{C},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=4.5 \mathrm{~Hz}\right), 171.9\left(\mathrm{~d}, \mathrm{~N}-\mathrm{C}-\mathrm{N},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=14.4 \mathrm{~Hz}\right)$, 198.6 (dsat, ${ }^{2} \mathrm{~J}_{\mathrm{p}, \mathrm{c}}=8.4 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{w}, \mathrm{c}}=126.4$, cis-CO), $200.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{p}, \mathrm{C}}=23.6 \mathrm{~Hz}\right.$, trans-CO, ${ }^{1} \mathrm{~J}_{\mathrm{w}, \mathrm{c}}=143.4$, trans-CO), ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=84.3$ (qsat, ${ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{P}}=269.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=16.0 \mathrm{~Hz}$); MS (EI, ${ }^{184} \mathrm{~W}$) : m/z (\%): $634.1[\mathrm{M}]^{+}(10) ; 606.1[\mathrm{M}-\mathrm{CO}]^{+}(1) ; 578.1[\mathrm{M}-2 \times \mathrm{CO}]^{+}(1) ; 550.1[\mathrm{M}-3 \mathrm{xCO}]^{+}(5) ; 499.0$ [M$\left.\mathrm{Cp}^{*}\right]^{+}$(100); 471.0 [M-Cp*-CO] ${ }^{+}$, (60); $443.0\left[\mathrm{M}^{\left.-C p^{*}-2 x C O\right]^{+}}\right.$(80); $415.0\left[\mathrm{M}-\mathrm{Cp}^{*}-3 \mathrm{xCO}\right]^{+}$(85); 387.0 [M-Cp*-4xCO] ${ }^{+}$(40); $359.0\left[\mathrm{M}-\mathrm{Cp}^{*}-5 \mathrm{xCO}\right]^{+}(20) ; 175.1$ [M-Cp*-W(CO)5] ${ }^{+}$(15); 58.0
[CHMe2NH] ${ }^{+}$(20); IR (ATR): ũ = 3387 (b, NH) 2977 (b, v-CH2), 2918 (b, v-CH2), 2065 (s, v-CO), 1978 ($\mathrm{s}, \mathrm{v}-\mathrm{CO}$), 1910 ($\mathrm{s}, \mathrm{v}-\mathrm{CO}$), 1888 ($\mathrm{s}, \mathrm{v}-\mathrm{CO}$), 1609 ($\mathrm{b}, \mathrm{v}-\mathrm{C}=\mathrm{N}$) cm cm^{-1}.

Elemental analysis for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}$ PW Calc (\%): C 41.66, H 4.93, N 4.42 , found (\%): C 41.52, H 5.104, N 4.29.

6.9.4. Synthesis of [pentacarbonyl\{(cyclohexylamino)(cyclohexyliminio)methyl(1,2,3,4,5-pentamethylcyclopentadienyl)phosphinite-kP\}tungsten(0)] (29b)

White solid, yield $215 \mathrm{mg}(70 \%)$, m.p. $174-175^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=1.19-1.37(\mathrm{br} \mathrm{m}, 10 \mathrm{H}$, $\left.\mathrm{Cy}-\mathrm{CH}_{2}\right), 1.43\left(\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=16.8 \mathrm{~Hz}, \mathrm{Cp}^{*}-\mathrm{C}^{1} \mathrm{H}_{3}\right), 1.65-1.69(\mathrm{br} \mathrm{m}, 2 \mathrm{H}, \mathrm{Cy}), 1.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right)$, $1.82\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}_{\mathrm{P}, \mathrm{H}}=3.4 \mathrm{~Hz}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 1.83-1.90$ (broad m, $8 \mathrm{H}, \mathrm{CyCH}_{2}$), $1.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 3.42$ (br m, 2H, $2 \times \mathrm{NCH}$), 6.8 (br s, $2 \times \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR : $\delta=9.9$ (s, CyC), 10.7 ($\mathrm{d}, \mathrm{CyC}^{\mathrm{C}} \mathrm{J}_{\mathrm{C}, \mathrm{P}}=0.6 \mathrm{~Hz}$), 11.97 ($\mathrm{d}, \mathrm{CyC}^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=2.8 \mathrm{~Hz}$), $12.01(\mathrm{~s}, \mathrm{CyC}), 14.91(\mathrm{~s}, \mathrm{CyC}), 23.49\left(\mathrm{~s}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 23.64\left(\mathrm{~s}, \mathrm{Cp}^{*}-\right.$ CH_{3}), $23.8\left(\mathrm{~s}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 32.95\left(\mathrm{~s}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 32.99\left(\mathrm{~s}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 53.4(\mathrm{~s}, \mathrm{CyC}), 65.3\left(\mathrm{~d}, \mathrm{Cp}^{*} \mathrm{C}^{1,}\right.$ $\left.{ }^{1} J_{\mathrm{C}, \mathrm{P}}=2.7 \mathrm{~Hz}\right), 134.2\left(\mathrm{~d}, \mathrm{C}=\mathrm{C},{ }^{3} J_{\mathrm{C}, \mathrm{P}}=2.7 \mathrm{~Hz}\right), 134.3\left(\mathrm{~d}, \mathrm{C}=\mathrm{C},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=4.5 \mathrm{~Hz}\right), 138.8\left(\mathrm{~d}, \mathrm{C}=\mathrm{C},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=\right.$ $6.7 \mathrm{~Hz}), 142.2\left(\mathrm{~d}, \mathrm{C}=\mathrm{C},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.0 \mathrm{~Hz}\right), 170.8\left(\mathrm{~d}, \mathrm{~N}-\mathrm{C}-\mathrm{N},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=14.5 \mathrm{~Hz}\right), 197.6$ (dsat, ${ }^{2} \mathrm{~J}_{\mathrm{p}, \mathrm{c}}=8.6 \mathrm{~Hz}$, ${ }^{1} \mathrm{~J}_{\mathrm{w}, \mathrm{c}}=126.0$, cis-CO$), 199.7$ (d, ${ }^{2} \mathrm{~J}_{\mathrm{p}, \mathrm{c}}=23.5 \mathrm{~Hz}$, trans-CO), ${ }^{31} \mathrm{P} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=85.0$ (qsat, ${ }^{1}{ }^{\mathrm{J} / \mathrm{p}}$ $=269.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=16.8 \mathrm{~Hz}$), MS (EI, ${ }^{184} \mathrm{~W}$): m/z (\%): 714.1[M] ${ }^{+}(5) ; 579.0\left[\mathrm{M}-\mathrm{Cp}^{*}\right]^{+}(80) ; 551.0$ [M-Cp*-CO] ${ }^{+}$(60); $523.0\left[\mathrm{M}-\mathrm{Cp}^{*}-2 x C O\right]^{+}(90) ; 495.2\left[\mathrm{M}-\mathrm{Cp}^{*}-3 x \mathrm{CO}\right]^{+}(90) ; 467.2\left[\mathrm{M}-\mathrm{Cp}^{*}-4 \mathrm{xCO}\right]^{+}$ (50), IR (ATR): $\tilde{u}=3390(b, N H), 2932\left(b, v-\mathrm{CH}_{2}\right), 2857\left(b, v-\mathrm{CH}_{2}\right), 2062$ ($\left.s, v-\mathrm{CO}\right), 1971$ (s, v CO), 1912 ($\mathrm{s}, \mathrm{v}-\mathrm{CO}$), 1892 ($\mathrm{s}, \mathrm{v}-\mathrm{CO}$), 1618 ($\mathrm{b}, \mathrm{v}-\mathrm{C}=\mathrm{N}$) cm^{-1}.

Elemental analysis for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{PW}$ Calc (\%): C 47.07, H 5.50, N 3.92, found (\%): C 47.27, H 5.83, N 3.74.

6.10. Synthesis of [pentacarbonyl\{trifluoro(((isopropylamino)(isopropyliminio)-methyl)(trityl)phosphinooxy)borate-кP\}tungsten(0)] (33)

To a suspension of 465.0 mg (0.6263 mmol) of complex 28a in $40 \mathrm{~mL} \mathrm{Et}{ }_{2} \mathrm{O}$, a suspension of 206.8 mg ($0.6263 \mathrm{mmol}, 1$ eq.) of tritylium tetrafluoroborate in 40 mL Et 2 O was added at room temperature. After 1 hour the color of the solution of the reaction mixture changed from colorless to pale yellow. After 20 hours stirring at room temperature, a white precipitate was observed and the color of the solution turned again to colorless. The precipitate was filtered and washed three times with 5 mL of n-pentane.

White solid, yield $385 \mathrm{mg}(83 \%)$, m. p. $=173-174{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $1.02\left(\mathrm{~d}, 6 \mathrm{H},{ }^{\mathrm{i}-\mathrm{Pr}} \mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$ $=6.4 \mathrm{~Hz}), 1.20\left(\mathrm{~d}, 6 \mathrm{H},{ }^{\mathrm{i}-\mathrm{Pr}} \mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.4 \mathrm{~Hz}\right), 3.91\left(\mathrm{~m}, 2 \mathrm{H},{ }^{\mathrm{i}-\mathrm{Pr}} \mathrm{CH}\right), 6.50(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}), 6.8-7.5(\mathrm{~m}$,
 $C P h_{3},{ }^{1} J_{C, P}=15.3 \mathrm{~Hz}$), 128.9 ($\mathrm{d}, \mathrm{J}_{\mathrm{C}, \mathrm{P}}=0.5 \mathrm{~Hz}, C-\mathrm{Ph}$), $129.0\left(\mathrm{~d}, J_{C, P}=3.0 \mathrm{~Hz}, C-P h\right), 129.5\left(\mathrm{~d}, J_{C, P}=\right.$ $1.2 \mathrm{~Hz}, \mathrm{C}-\mathrm{Ph}), 130.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.0 \mathrm{~Hz}, \mathrm{C}-\mathrm{Ph}\right), 131.0(\mathrm{~s}, \mathrm{C}-\mathrm{Ph}), 131.1(\mathrm{~s}, \mathrm{C}-\mathrm{Ph}), 131.2(\mathrm{~s}, \mathrm{C}-\mathrm{Ph}), 138.9$ $\left(\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=6.8 \mathrm{~Hz}, C^{\text {ipso }}-\mathrm{Ph}\right), 139.8\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.5 \mathrm{~Hz}, C^{\text {ipso }}-\mathrm{Ph}\right), 142.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=8.7 \mathrm{~Hz}, C^{\text {ipso-Ph }}\right.$), 169.1 (dd, $\mathrm{N}-\mathrm{C}-\mathrm{N},{ }^{1}{ }_{\mathrm{Jp}, \mathrm{c}}=11.6 \mathrm{~Hz}, \mathrm{~J}=1.6 \mathrm{~Hz}$), 196.2 ($\mathrm{dSat},{ }^{2}{ }_{\mathrm{JP}, \mathrm{c}}=7.2 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{c}}=127.1,2 \times$ cis-CO), $197.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{p}, \mathrm{c}}=33.4 \mathrm{~Hz}, 2 \times \operatorname{trans}-\mathrm{CO},{ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{c}}=144.2\right.$, trans-CO$) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): 110.6 \mathrm{ppm}$, qSat, ${ }^{1} J_{\mathrm{J}, \mathrm{P}}=293.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=2.0 \mathrm{~Hz} ; \operatorname{IR}(\mathrm{ATR}):$ u $=3344(\mathrm{~b}, \mathrm{~N}-\mathrm{H}), 3281(\mathrm{~b}, \mathrm{~N}-\mathrm{H}), 2970\left(\mathrm{~b}, \mathrm{v}-\mathrm{CH}_{2}\right)$, 2077 ($s, v-C O$), 2003 ($s, v-C O$), 1940 ($s, v-C O$), 1907 ($s, v-C O), 1778$ ($s, v-C O), 1621$ (b, v-C=N) cm^{-1}.

Elemental analysis for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{BF}_{3} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{PW}$ Calc (\%): C 45.96, H 3.86, N 3.46, found (\%): C 45.52, H 4.14, N 3.30.

6.11 Synthesis of [pentacarbonyl\{4-isopropyl-3-isopropylimino-5-phenylimino-2-triphenylmethyl-1,3,5-oxazaphospholidine-кP\}tungsten(0)] (35)

To a solution of $500 \mathrm{mg}(0.69 \mathrm{mmol})$ of imino-azaphosphiridine complex 21a in $\mathrm{Et}_{2} \mathrm{O}, 82.2 \mathrm{mg}$ (1 eq.) of phenyl isocyanate (35) were added at room temperature and stirred for 5 hours. The solvent was removed in vacuo ($\sim 10^{-2} \mathrm{mbar}$) and a dark yellow oil was obtained. The product was then crystallized from $\mathrm{Et}_{2} \mathrm{O}$ at $-20^{\circ} \mathrm{C}$ and obtained as white solid.

Yield: $380 \mathrm{mg}(0.45 \mathrm{mmol}, 65 \%)$, m. p. $=148-149{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=0.46(\mathrm{~d}, 3 \mathrm{H}, \mathrm{C}=\mathrm{N}-\mathrm{CH}-$ $\left.\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=5.9 \mathrm{~Hz}\right), 1.12\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{C}=\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=5.8 \mathrm{~Hz}\right), 1.46\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{C}-\mathrm{N}-\mathrm{CH}^{2} \mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.9\right.$ $\mathrm{Hz}), 1.56\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{C}-\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz}\right), 3.48\left(\mathrm{sep}, 1 \mathrm{H}, \mathrm{C}=\mathrm{N}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3}{ }^{\mathrm{J}} \mathrm{H}, \mathrm{H}=5.8 \mathrm{~Hz}\right), 4.89$
 $\left.\mathrm{C}-\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3}\right), 18.5\left(\mathrm{~s}, \mathrm{C}-\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3}\right), 23.4\left(\mathrm{~s}, \mathrm{C}=\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3}\right), 24.7\left(\mathrm{~s}, \mathrm{C}=\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3}\right) 48.7$ ($\mathrm{s}, \mathrm{C}-\mathrm{N}-\mathrm{CH}$), $56.2\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=12.5 \mathrm{~Hz} \mathrm{C}=\mathrm{N}-\mathrm{CH}\right)$, $71.2\left(\mathrm{~d}, \mathrm{CPh}_{3},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=4.1 \mathrm{~Hz}\right.$), $122.8\left(\mathrm{~s}, \mathrm{C}-\mathrm{C}^{\mathrm{Ph}}\right), 122.9\left(\mathrm{~s}, \mathrm{C}-\mathrm{C}^{\mathrm{Ph}}\right)$, $128.0\left(\mathrm{~s}, \mathrm{C}-\mathrm{C}^{\mathrm{Ph}}\right), 128.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=1.7 \mathrm{~Hz} \mathrm{C}-\mathrm{C}^{\mathrm{Ph}}\right), 128.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=1.5 \mathrm{~Hz} \mathrm{C}-\mathrm{C}^{\mathrm{Ph}}\right.$), $128.4\left(\mathrm{~s}, \mathrm{C}-\mathrm{C}^{\mathrm{Ph}}\right), 128.7$ $\left(\mathrm{s}, \mathrm{C}-\mathrm{C}^{\mathrm{Ph}}\right), 130.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=2.3 \mathrm{HzC}-\mathrm{C}^{\mathrm{Ph}}\right), 131.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=8.6 \mathrm{HzC}-\mathrm{C}^{\mathrm{Ph}}\right), 131.7\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=6.3 \mathrm{~Hz} \mathrm{C}-\mathrm{C}^{\mathrm{Ph}}\right)$,

 195.2 (dSat, ${ }^{2} \mathrm{~J}_{\mathrm{p}, \mathrm{C}}=6.2 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{c}}=127.1$, cis-CO$), 197.5\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=34.1 \mathrm{~Hz}\right.$, trans-CO$) ;{ }^{31} \mathrm{p} \mathrm{NMR}$
$\left(\mathrm{CDCl}_{3}\right): 125.06 \mathrm{ppm},{ }^{1}{ }_{\mathrm{Jw}, \mathrm{p}}=273.8 \mathrm{~Hz} ; \mathrm{MS}\left(\mathrm{EI},{ }^{184} \mathrm{~W}\right): \mathrm{m} / \mathrm{z}(\%): 843.1$ [M] ${ }^{+},(0.12) ; 787.2$ [M-2 $\times \mathrm{CO}^{+}(0.1) ; 759.2[\mathrm{M}-3 \times \mathrm{CO}]^{+}(0.1) ; 559.0\left[\mathrm{M}-\mathrm{CPh}_{3}-3 \times \mathrm{CO}\right]^{+}(0.1) ; 488.9\left[\mathrm{M}-\mathrm{CPh}_{3}-3 \times \mathrm{CO}\right]^{+}$
 CO), 1933 ($\mathrm{s}, \mathrm{v}-\mathrm{CO}$), 1697 ($\mathrm{s}, \mathrm{v}-\mathrm{CO}$), 1630 (b, v-C=N), 1594 (b, v-C=N) cm${ }^{-1}$.

Elemental analysis for $\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{PW}$ Calcd (\%): C 54.11, H 4.06, N 4.98, found (\%): C 53.97 , H 4.11, N 4.98 .

6.12 Synthesis of 1,3,5-triphenyl-1,3,5-triazinane-2,4,6-trione (36)

To a 1 mL THF solution of 40 mg (0.055 mmol) of dichloro(triphenylmethyl)phosphane tungsten complex (18) and 1 eq. of 12-crown-4, 1.1 eq. of tert-butyl lithium (1.7 M in nhexane) were slowly added at $-78^{\circ} \mathrm{C}$. After 15 min . 1 eq . of diisopropyl carbodiimide (20a) was slowly added at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred and warmed up slowly (4 h) to room temperature. Then, 65.8 mg ($60 \mu \mathrm{~L}, 100$ eq.) of phenyl isocyanate (34a) were added at room temperature. After 30 minutes of gentle stirring, the reaction vessel was found to be full of a crystallinic material (37) together with lithium chloride. X-ray diffraction analysis of the single crystalls revealed the nature of $\mathbf{3 7}$ as a trimer of phenyl isocyanate.

6.13. Synthesis of [$\mathrm{N}^{1}, \mathrm{~N}^{4}$-bis\{pentacarbonyl[4-isopropyl-3-isopropylimino-2-triphenylmethyl-1,4,2-oxazaphospholidine-5-yl]-kP\}tungsten(0)]benzene-1,4diimine] (38)

To a 5 mLEt 2 O solution of $333 \mathrm{mg}(0.54 \mathrm{mmol})$ of P-Cp* 3-imino-azaphosphiridine tungsten 22a, 43 mg (0.5 eq.) of 1,4-phenylen diisocyanate (38) suspended in $5 \mathrm{mLEt} \mathrm{Et}_{2} \mathrm{O}$ were added at room temperature reaction mixture was stirred for 20 h at this temperature. The solvent was removed in vacuo ($\sim 10^{-2} \mathrm{mbar}$) and a yellow oil was obtained. The product was then purified by column chromatography ($-10^{\circ} \mathrm{C}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{~d}=3 \mathrm{~cm}, \mathrm{~h}=6 \mathrm{~cm}, \mathrm{PE}(40 / 60) / \mathrm{Et}_{2} \mathrm{O}=95 / 5$) and crystallized from pure $\mathrm{Et}_{2} \mathrm{O}$ at $-20^{\circ} \mathrm{C}$. White powder, yield: $190 \mathrm{mg}(0.14 \mathrm{mmol}, 50 \%), \mathrm{m} . \mathrm{p} .=$ $110-111{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=1.00-2.00\left(\mathrm{~m}, 54 \mathrm{H}, 18 \mathrm{x}-\mathrm{CH}_{3}\right), 3.40\left(\mathrm{bs}, 2 \mathrm{H}, 2 \times-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 4.91 (bs, 2H, $2 \times-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$), 6.97 (bs, 2H, N-Ph-N), 7.01 (bs, 2H, N-Ph-N); ${ }^{13} \mathrm{C}$ NMR (CDCl3): $\delta=$ $11.5\left(\mathrm{~s}, \mathrm{C}-\mathrm{CH}_{3}\right), 11.9\left(\mathrm{~s}, \mathrm{C}-\mathrm{CH}_{3}\right), 12.2\left(\mathrm{~s}, \mathrm{C}-\mathrm{CH}_{3}\right), 12.6\left(\mathrm{~s}, \mathrm{C}-\mathrm{CH}_{3}\right), 14.2\left(\mathrm{~s}, \mathrm{C}-\mathrm{CH}_{3}\right), 16.2\left(\mathrm{~s}, \mathrm{C}-\mathrm{CH}_{3}\right)$, 18.1 ($\mathrm{s}, \mathrm{C}-\mathrm{CH}_{3}$), $18.5\left(\mathrm{~s}, \mathrm{C}-\mathrm{CH}_{3}\right), 22.5\left(\mathrm{~s}, \mathrm{C}-\mathrm{CH}_{3}\right), 25.3\left(\mathrm{~s}, \mathrm{C}-\mathrm{CH}_{3}\right), 25.4\left(\mathrm{~s}, \mathrm{C}-\mathrm{CH}_{3}\right), 29.8\left(\mathrm{~s}, \mathrm{C}-\mathrm{CH}_{3}\right)$, 34.2 ($\mathrm{s}, \mathrm{C}-\mathrm{CH}_{3}$), 48.4 (bs, $2 \times \mathrm{C}-\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3}$), 55.1 (bd, $2 \times \mathrm{C}=\mathrm{N}-\mathrm{CH}-\mathrm{CH} 3,{ }^{3}{ }_{\mathrm{Jp}, \mathrm{c}}=13.2 \mathrm{~Hz}$), 64.6 (bs, $\left.2 \times P-C^{P^{*}}\right), 127.7\left(d, J_{c, P}=1.9 \mathrm{~Hz}, C-P h\right), 123.4(\mathrm{~s}, 2 \times \mathrm{N}-\mathrm{Ph}-\mathrm{N}), 123.6(\mathrm{~s}, 2 \times \mathrm{N}-\mathrm{Ph}-\mathrm{N}), 133.3$ (bs,
$2 \times C=C), 138.0$ (bs, $2 \times C=C$), 140.9 (bs, $2 \times \mathrm{C}=\mathrm{C}$), 142.4 (bs, $2 \times \mathrm{C}=\mathrm{C}$), 144.3 (bs, $2 \times \mathrm{C}=\mathrm{N}-\mathrm{Ph}$), 148.6 (bs, $2 \times \mathrm{C}=\mathrm{N}$ - ${ }^{\text {Pr }}$), 195.7 (bdSat, ${ }^{2} \mathrm{~J}_{\mathrm{p}, \mathrm{c}}=5.9 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{c}}=124.5, \mathrm{cis}-\mathrm{CO}$), $197.5\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{p}, \mathrm{c}}=31.7\right.$ Hz , trans-CO); ${ }^{31} \mathrm{P}$ NMR (CDCl_{3}): $\delta=132.8\left(\mathrm{sSat},{ }^{1}{ }_{\mathrm{J}, \mathrm{p}}=270.5 \mathrm{~Hz}\right), 133.1\left(\mathrm{sSat},{ }^{1}{ }_{\mathrm{Jw}, \mathrm{p}}=270.5\right.$ Hz); MS (EI, ${ }^{184} \mathrm{~W}$): m/z (\%): 1392.3 [M] ${ }^{+}$, (25); 1258.1 [$\left.\mathrm{M}-\mathrm{C}_{10} \mathrm{H}_{14}\right]^{+}$(35); 1201.1 [M - Cp* - 2 x $\mathrm{CO}^{+},(35) ; 1122.1\left[\mathrm{M}-2 \times \mathrm{Cp}^{*}\right]^{+}$(70); IR (ATR): $\tilde{\mathrm{v}}=29765\left(\mathrm{~b}, \mathrm{v}-\mathrm{CH}_{2}\right), 2076$ ($\mathrm{s}, \mathrm{v}-\mathrm{CO}$), 1991 ($\mathrm{s}, \mathrm{v}-$ CO), 1921 ($s, v-C O$), 1684 ($s, v-C O$), 1627 ($w, v-C=N$) cm ${ }^{-1}$.

Elemental analysis for $\mathrm{C}_{52} \mathrm{H}_{62} \mathrm{~N}_{6} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{~W}_{2}$ Calcd (\%): C 44.61, H 4.98, N 5.70 , found (\%): C 44.84, H 4.49 , N 6.03.

6.14. Synthesis of [pentacarbonyl\{4-isopropyl-3-isopropylimino-5-one-2-triphenylmethyl-1,3,5-oxazaphospholidine-kP\}tungsten(0)] (39)

(route a): To a solution of freshly prepared 21a ($295 \mathrm{mg}(0.44 \mathrm{mmol})$ of dichloro(triphenylmethyl)phosphane tungsten complex, $69.4 \mu \mathrm{~L}$ (1 eq.) of 12 -crown 4 and 0.30 mL (1.1 eq.) of tert-butyl lithium (1.6 M in n-hexane) being slowly added at $-78{ }^{\circ} \mathrm{C}$. Then 69.5 mL (1 eq.) of N, N-diisopropyl carbodiimide 20a was slowly added at $-78{ }^{\circ} \mathrm{C}$ after 15 min . The reaction solution was stirred and warmed up slowly to $+4^{\circ} \mathrm{C}$ and then kept at $4^{\circ} \mathrm{C}$ during 15 h) CO_{2} was bubbled through the solution during 30 min and then LiCl was filtered off $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ from a 1 to 1 mixture of petrol ether (40/60) and $\mathrm{Et}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ and the main impurity extracted with n pentane at room temperature. The product was then crystallized from $\mathrm{Et}_{2} \mathrm{O}$ at $-20^{\circ} \mathrm{C}$ and obtained as light yellow solid; yield: $100 \mathrm{mg}(0.14 \mathrm{mmol}, 30 \%)$; (route b): a $100 \mathrm{mg}(0.14 \mathrm{mmol})$ 5 mLEt 2 O solution of 3-imino-azaphosphiridine complex 21a was stirred under a CO_{2} (20 bar) atmosphere for 15 hours. The solvent was removed in vacuo ($\sim 10^{-2} \mathrm{mbar}$) and a yellow oil was obtained. The product was then crystallized from $\mathrm{Et}_{2} \mathrm{O}$ at $-20^{\circ} \mathrm{C}$ and obtained as white solid; yield: $75 \mathrm{mg}(0.98 \mathrm{mmol}, 70 \%) ; \mathrm{m} . \mathrm{p} .=155-156{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=0.27(\mathrm{~d}, 3 \mathrm{H}, \mathrm{C}=\mathrm{N}-\mathrm{CH}-$ $\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=5.8 \mathrm{~Hz}$), $0.94\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{C}=\mathrm{N}-\mathrm{CH}_{-\mathrm{CH}}^{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=5.8 \mathrm{~Hz}\right.$), $1.04\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{C}-\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.0\right.$ $\mathrm{Hz}), 1.11\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{C}-\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz}\right), 3.48\left(\mathrm{sep}, 1 \mathrm{H}, \mathrm{C}=\mathrm{N}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=5.8 \mathrm{~Hz}\right), 4.52$ (sep, $\left.1 \mathrm{H}, \mathrm{C}-\mathrm{N}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz}\right), 6.8-7.8\left(\mathrm{~m}, 15 \mathrm{H}, 3 \times \mathrm{C}_{6} \mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=18.2(\mathrm{~s}$, $\mathrm{C}-\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3}$), 18.5 ($\mathrm{s}, \mathrm{C}-\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3}$), 23.4 ($\mathrm{s}, \mathrm{C}=\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3}$), 24.8 ($\mathrm{s}, \mathrm{C}=\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3}$), 48.0 ($\mathrm{s}, \mathrm{C}-\mathrm{N}-$ $\mathrm{CH}), 55.6\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=11.7 \mathrm{~Hz}, \mathrm{C}=\mathrm{N}-\mathrm{CH}\right), 71.2\left(\mathrm{~d}, \mathrm{CPh}_{3},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=2.2 \mathrm{~Hz}\right), 128.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=2.0 \mathrm{~Hz} \mathrm{C}-\mathrm{C}^{\mathrm{Ph}}\right)$, $128.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=2.7, \mathrm{HzC}-\mathrm{C}^{\mathrm{Ph}}\right), 128.9\left(\mathrm{~s}, \mathrm{C}-\mathrm{C}^{\mathrm{Ph}}\right), 129.2\left(\mathrm{~s}, \mathrm{C}-\mathrm{C}^{\mathrm{Ph}}\right), 129.8\left(\mathrm{~s}, \mathrm{C}-\mathrm{C}^{\mathrm{Ph}}\right), 131.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=\right.$ 2.7, Hz C-C ${ }^{\text {Ph }}$), $131.6\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=9.2, \mathrm{~Hz} \mathrm{C}-\mathrm{C}^{\mathrm{Ph}}\right.$), $132.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=7.0, \mathrm{~Hz} \mathrm{C}-\mathrm{C}^{\mathrm{Ph}}\right), 136.9\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=6.4\right.$ HzC C ${ }^{\text {ipso-Ph }}$), 139.3 ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{p}, \mathrm{C}}=6.4 \mathrm{~Hz}, \mathrm{C}-\mathrm{C}^{\text {ipso-Ph }}$), $141.9\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{p}, \mathrm{C}}=8.5 \mathrm{~Hz} \mathrm{C}-\mathrm{C}^{\text {ipso-Ph }}\right.$), $149.5(\mathrm{~d}, \mathrm{O}-$
$\left.C=0,{ }^{2} J_{\mathrm{P}, \mathrm{C}}=12.1 \mathrm{~Hz}\right), 151.0\left(\mathrm{~d}, \mathrm{P}-\mathrm{C}=\mathrm{N},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=8.1 \mathrm{~Hz}\right), 195.6\left(\mathrm{dSat},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=6.2 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{w}, \mathrm{c}}=126.8\right.$, cisCO), $197.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=34.1 \mathrm{~Hz}\right.$, trans-CO); ${ }^{31 \mathrm{P}} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=128.07 \mathrm{ppm},{ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{P}}=274.6 \mathrm{~Hz} . \mathrm{MS}$ (EI, ${ }^{184} \mathrm{~W}$) : m/z (\%): $768.1[\mathrm{M}]^{+}(5) ; 740.1[\mathrm{M}-\mathrm{CO}]^{+}(2) ; 712.1[\mathrm{M}-2 \times C O]^{+}(10) ; 684.1[\mathrm{M}-3 \times C O]^{+}$ (1); $712.1[\mathrm{M}-2 \mathrm{xCO}]^{+}(10) ; 684.1[\mathrm{M}-3 \mathrm{xCO}]^{+}(2) ; 640.1\left[\mathrm{M}-\mathrm{CO}_{2}-3 \mathrm{xCO}\right]^{+}(10) ; 584.1\left[\mathrm{M}-\mathrm{CO}_{2}{ }^{-}\right.$ $5 x C O]^{+}(25) ; 243[C P h 3(100)]^{+} ;$IR (ATR): ũ = $2929\left(b, v-C H_{2}\right), 2076$ ($\left.s, v-C O\right), 1997(s, v-C O)$, 1919 ($\mathrm{s}, \mathrm{v}-\mathrm{CO}$), 1767 ($\mathrm{s}, \mathrm{v}-\mathrm{C}=\mathrm{O}$), 1661 ($\mathrm{b}, \mathrm{v}-\mathrm{C}=\mathrm{N}$) cm ${ }^{-1}$.

Elemental analysis for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{7}$ PW Calc (\%): C 50.02, H 3.80, N 3.65, found (\%): C 49.80, H 4.17, N 3.50.

6.15. Synthesis of [pentacarbonyl\{4-isopropyl-3-isopropylimino-5-pentafluoro-phenyl-2-triphenylmethyl-1,4,2-oxazaphospholidine-кP\}tungsten(0)] (44)

To a $20 \mathrm{mLEt} \mathrm{E}_{2} \mathrm{O}$ solution of $375 \mathrm{mg}(0.52 \mathrm{mmol})$ of 3-imino-azaphosphiridine tungsten 21a, 64μ (1 eq.) of pentafluorobenzaldehyde (43) were added at room temperature. The reaction mixture was stirred for 22 h at this temperature. The solvent was removed in vacuo ($\sim 10^{-2}$ $\mathrm{mbar})$ and an orange oil was obtained. The product was then crystallized from pure $\mathrm{Et}_{2} \mathrm{O}$ at $30^{\circ} \mathrm{C}$. White powder, yield: $240 \mathrm{mg}(0.26 \mathrm{mmol}, 50 \%)$, m. p. $=180-181^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): δ $=0.42\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{C}=\mathrm{NH}-\mathrm{CH}-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=5.8 \mathrm{~Hz}\right), 0.99\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{C}-\mathrm{N}-\mathrm{CH}^{2} \mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.2 \mathrm{~Hz}\right), 1.10(\mathrm{~d}, 3 \mathrm{H}$, $\mathrm{C}-\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.5 \mathrm{~Hz}$), 1.13 (d, $3 \mathrm{H}, \mathrm{C}=\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=5.8 \mathrm{~Hz}$), 3.53 (dsep, $1 \mathrm{H}, \mathrm{C}=\mathrm{N}-$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3}{ }^{\mathrm{J}}, \mathrm{H}=5.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=1.6 \mathrm{~Hz}\right), 3.92\left(\mathrm{sep}, 1 \mathrm{H}, \mathrm{C}-\mathrm{N}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.9 \mathrm{~Hz}\right), 4.42(\mathrm{~s}, \mathrm{~N}-$ $\left.\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{H}-\mathrm{O}\right), 7.2-7.9\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{C}-\mathrm{C}^{\mathrm{Ph}}\right) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta=18.2\left(\mathrm{~s}, \mathrm{C}-\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3}\right), 19.7(\mathrm{~s}, \mathrm{C}-\mathrm{N}-$ $\mathrm{CH}-\mathrm{CH}_{3}$), $24.1\left(\mathrm{~s}, \mathrm{C}=\mathrm{N}-\mathrm{C}-\mathrm{CH}_{3}\right), 24.9\left(\mathrm{~s}, \mathrm{C}=\mathrm{N}-\mathrm{C}-\mathrm{CH}_{3}\right), 48.0\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{p}, \mathrm{C}}=2.2 \mathrm{~Hz}, \mathrm{C}-\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3}\right) 56.8(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{P}, \mathrm{C}}=14.6 \mathrm{~Hz}, \mathrm{C}=\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3}\right), 70.2\left(\mathrm{~d}, \mathrm{P}-\mathrm{CPh}_{3},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=6.1 \mathrm{~Hz}\right), 83.7\left(\mathrm{t},{ }^{4} \mathrm{~J}_{\mathrm{F}, \mathrm{H}}=10.2 \mathrm{~Hz}\right), 128.3(\mathrm{~s}, \mathrm{C}-$ $\left.C^{\text {Ph }}\right), 128.4\left(\mathrm{~s}, \mathrm{C}-\mathrm{C}^{\mathrm{Ph}}\right), 128.5\left(\mathrm{~s}, \mathrm{C}-\mathrm{C}^{\mathrm{Ph}}\right), 128.7\left(\mathrm{~s}, \mathrm{C}-\mathrm{C}^{\mathrm{Ph}}\right), 128.8\left(\mathrm{~s}, \mathrm{C}-\mathrm{C}^{\mathrm{Ph}}\right), 131.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=8.3 \mathrm{~Hz}, \mathrm{C}-\right.$ $\left.C^{\text {Ph }}\right), 131.8\left(\mathrm{~d}, J_{C, P}=2.2 \mathrm{~Hz}, C-C^{\text {Ph }}\right), 132.1\left(\mathrm{~d}, J_{C, P}=6.1 \mathrm{~Hz}, C-C^{\text {Ph }}\right), 135.6\left(C^{\text {C6F5 }}\right), 136.5\left(C^{C 6 F 5}\right)$, $139.0\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=5.8 \mathrm{~Hz}, \mathrm{C}^{\text {ipso }}-\mathrm{Ph}\right), 139.9\left(\mathrm{C}^{\text {C6F5 }}\right), 140.2\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=6.0 \mathrm{~Hz}, C^{\text {ipso }}-\mathrm{Ph}\right), 141.0\left(\mathrm{C}^{\text {C6F5 }}\right)$, 143.1 ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=8.0 \mathrm{~Hz}, C^{\text {ipso }} \mathrm{Ph}$), 144.2 ($\left.\mathrm{C}^{\mathrm{C6F5}}\right), 147.3\left(\mathrm{C}^{\mathrm{C} 655}\right), 151.8\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.0 \mathrm{~Hz}, C=\mathrm{N}^{-1} \mathrm{Pr}\right)$, 196.5 (ddSat, ${ }^{2} J_{\mathrm{P}, \mathrm{C}}=6.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{F}-\mathrm{C}}=3.6 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{C}}=127.6$, cis-CO), $198.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=33.3 \mathrm{~Hz}\right.$, trans-
 $\mathrm{m} / \mathrm{z}(\%): 780.1[\mathrm{M}-5 \mathrm{xCO}]^{+}(1) ; 243,\left[\mathrm{CPh}_{3}\right]^{+}(100) ; \mathrm{IR}(\mathrm{ATR}): \tilde{\mathrm{u}}=2981\left(\mathrm{~b}, \mathrm{v}-\mathrm{CH}_{2}\right), 2074$ (s, v-CO$)$, 2008 ($s, v-C O), 1941$ ($s, v-C O), 1925$ ($s, v-C O), 1627(w, v-C=N) \mathrm{cm}^{-1}$.

Elemental analysis for $\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{PW}$ Calcd (\%): C 49.58, H 3.29, N 3.04, found (\%): C 49.68, H 3.65, N 2.84 .

6.16. Synthesis of [pentacarbonyl\{1-isopropyl-4-(isopropylimino)-3-triphenylmethyl-1,3-azaphosphetidin-2-one-кP\}tungsten(0)] (45)

A 180 mg (0.25 mmol$) 5 \mathrm{mLEt}_{2} \mathrm{O}$ solution of 3-imino-azaphosphiridine complex 21a was stirred under a CO (20 bar) atmosphere for 20 hours at room temperature. The solvent was removed in vacuo ($\sim^{10^{-2}} \mathrm{mbar}$) and a yellow oil was obtained. The product was then crystallized from $\mathrm{Et}_{2} \mathrm{O}$ at $-20^{\circ} \mathrm{C}$ and obtained as white solid.

Yield: $130 \mathrm{mg}(0.175 \mathrm{mmol}, 70 \%)$, m. p. $=162-163{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=0.63(\mathrm{~d}, 3 \mathrm{H}, \mathrm{C}=\mathrm{N}-\mathrm{CH}-$ $\left.\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.0 \mathrm{~Hz}\right), 1.11\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{C}=\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.0 \mathrm{~Hz}\right), 1.13\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{C}-\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.0\right.$ $\mathrm{Hz}), 1.29\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{C}-\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz}\right), 3.20\left(\mathrm{sep}, 1 \mathrm{H}, \mathrm{C}=\mathrm{N}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.0 \mathrm{~Hz}\right), 4.00$ (sep, 1H, C-N-CH(CH3 $)_{2},{ }^{3} \mathrm{H}_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz}$), 7.1-7.7 (m, $15 \mathrm{H}, 3 \times \mathrm{C}_{6} \mathrm{H}_{5}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=19.6$ (s, $\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3}$), 19.9 (s, $\mathrm{N}=\mathrm{CH}-\mathrm{CH}_{3}$), 23.0 ($\mathrm{s}, \mathrm{C}=\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3}$), 24.5 (s, $\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3}$), 47.5 (d, $\mathrm{C}-\mathrm{N}-\mathrm{CH},{ }^{1} \mathrm{~J}_{\mathrm{p}, \mathrm{C}}$ $=4.2 \mathrm{~Hz}), 57.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=9.4 \mathrm{~Hz}, \mathrm{C}=\mathrm{N}-\mathrm{CH}\right), 64.8\left(\mathrm{~d}, C \mathrm{Ch}_{3},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=2.0 \mathrm{~Hz}\right), 128.2\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=2.2 \mathrm{~Hz} \mathrm{C}-\right.$ $\left.C^{\mathrm{Ph}}\right), 128.4\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=2.0, \mathrm{~Hz} \mathrm{C}-C^{\mathrm{Ph}}\right), 128.5\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=2.4, \mathrm{~Hz} \mathrm{C}-C^{\mathrm{Ph}}\right.$), $128.6\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=2.4, \mathrm{~Hz} \mathrm{C}-C^{\mathrm{Ph}}\right.$), $128.9\left(\mathrm{~s}, \mathrm{C}-\mathrm{C}^{\mathrm{Ph}}\right.$), $129.2\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=0.5 \mathrm{HzC}-C^{\mathrm{Ph}}\right.$) $130.1\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=2.5, \mathrm{HzC}-C^{\mathrm{Ph}}\right.$), $130.5\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=8.7 \mathrm{~Hz}\right.$
 $\left.C^{\text {ipso-Ph }}\right), 141.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{P}, \mathrm{C}}=8.5 \mathrm{~Hz} C-C^{\text {ipso-Ph }}\right), 148.9\left(\mathrm{~d}, \mathrm{P}-\mathrm{C}=\mathrm{N},{ }^{1+3} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=13.2 \mathrm{~Hz}\right), 169.6(\mathrm{~d}, \mathrm{P}-\mathrm{C}=\mathrm{O}$, ${ }^{1+3} J_{\mathrm{P}, \mathrm{C}}=52.1 \mathrm{~Hz}$), 195.2 ($\mathrm{dSat},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=5.4 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{C}}=126.7$, cis-CO), $197.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=29.1 \mathrm{~Hz}\right.$, transCO); ${ }^{31} \mathrm{P}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=94.9\left(\mathrm{~s},{ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{P}}=226.5 \mathrm{~Hz}\right) ; \mathrm{MS}\left(\mathrm{EI},{ }^{184} \mathrm{~W}\right): \mathrm{m} / \mathrm{z}(\%): 752.0,[\mathrm{M}]^{+}(2) ; 243$, [CPh3] ${ }^{+}$(100); IR (ATR): ṽ = $2972\left(b, v-\mathrm{CH}_{2}\right), 2076$ (s, v-CO), 1997 (s, v-CO), 1919 (s, v-CO), 1767 ($s, v-C=O$), 1661 (b, v-C=N) cm-1.

Elemental analysis for $\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{PW}$ Calcd (\%): C 51.08, H 3.88, N 3.72, found (\%): C 50.77, H 4.34, N 3.46.

6.17. Synthesis of [2-triphenylmethyl-3-phenyl-oxaphosphiraneKP]pentacarbonyltungsten(0)(50)

To a $1 \mathrm{mLEt} \mathrm{t}_{2} \mathrm{O}$ solution of 13.6 mg (0.019 mmol) of 3-imino-azaphosphiridine tungsten 21a, 2 μ (1 eq.) of benzaldehyde (42) were added at room temperature. The reaction mixture was stirred for 22 h at this temperature; ${ }^{31} \mathrm{P}$ NMR ($\left.\mathrm{Et}_{2} \mathrm{O}\right): 16.2 \mathrm{ppm}\left({ }^{1} J_{\mathrm{w}, \mathrm{P}}=312.2 \mathrm{~Hz}\right)$.

6.18. Synthesis of isocyanide-to-phosphinidene tungsten(0) complexes adduct 26b,c

6.18.1. General procedure for the synthesis of isocyanide-to-phosphinidene tungsten(0) complexes 26b,c

To $\mathrm{Et}_{2} \mathrm{O}$ solutions of 3-imino-azaphosphiridine complex 21a, 1 eq. of isocyanide ($\mathbf{5 2 b} \mathbf{~ c}$) were added at room temperature. The reaction mixtures were stirred for 15 hours. When the reactions were completed the solvent was removed in vacuo ($\sim_{10^{-2}} \mathrm{mbar}$) and yellow oils were obtained. The products were then crystallized from $\mathrm{Et}_{2} \mathrm{O}$ at $-40^{\circ} \mathrm{C}$ and obtained as yellow solids.

6.18.2. Synthesis of [pentacarbonyl\{(tert-butyl-isocyanide- κ C-to-P)(triphenylmethylphosphanylidene)-кP\}tungsten(0)] (26b)

Yield: $309 \mathrm{mg}(0.45 \mathrm{mmol}, 60 \%) ; \mathrm{m} . \mathrm{p} .=116-117{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=0.67\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}-\mathrm{CH}_{3}\right)$, 6.9-7.1 (m, 9H, $\mathrm{C}_{6} \mathrm{H}_{5}$), 7.4-7.5 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{5}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=28.7\left(\mathrm{~s}, \mathrm{C}-\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3}\right), 58.6$ ($\mathrm{d}, \mathrm{CPh}_{3},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=25.0 \mathrm{~Hz}$), $60.9\left(\mathrm{~s}, \mathrm{~N}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 126.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=1.8 \mathrm{~Hz} \mathrm{C-C}{ }^{\mathrm{Ph}}\right), 128.1\left(\mathrm{~s}, \mathrm{C}-\mathrm{C}^{\mathrm{Ph}}\right), 130.4$ (d, $J_{\mathrm{P}, \mathrm{C}}=8.2, \mathrm{HzC}-\mathrm{C}^{\mathrm{Ph}}$), 146.9 (d, $\mathrm{NC} \rightarrow \mathrm{P},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=6.8 \mathrm{~Hz}$), 197.9 (dSat, ${ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=3.6 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{c}}=126.6$, cis-CO), $201.0\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=16.7 \mathrm{~Hz}\right.$, trans-CO); ${ }^{31} \mathrm{P} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=-50.0 \mathrm{ppm}\left(\mathrm{s},{ }^{1} \mathrm{~J}_{\mathrm{w}, \mathrm{P}}=117.7 \mathrm{~Hz}\right.$);
 243 [CPh3] ${ }^{+}$(100); IR (ATR): $\tilde{u}=2988(b, v-C H), 2142(b, v-N \equiv C), 2060(s, v-C O), 1923$ (s, vCO), 1889 ($\mathrm{s}, \mathrm{v}-\mathrm{CO}$), 1847 ($\mathrm{s}, \mathrm{v}-\mathrm{CO}$) cm^{-1}.

Elemental analysis for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{PW}$ Calcd (\%): C 51.12, H 3.55, N 2.06, found (\%): C 50.90, H 3.93, N 2.61.

6.18.3. Synthesis of [pentacarbonyl\{(n-butyl-isocyanide- κC-to-P)(triphenylmethylphosphanylidene)-kP\}tungsten(0)] (26c)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=0.80\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.18\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.40(\mathrm{~m}, 2 \mathrm{H},-$ $\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 3.56\left(\mathrm{dt}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.7 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=4.4 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 7.1-7.3\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta=13.3\left(\mathrm{~s}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 19.8\left(\mathrm{~s},-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 30.8\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{p}, \mathrm{c}}=2.1 \mathrm{~Hz}_{2} \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH} 2\right), 46.7$ ($\mathrm{s}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$), $58.8\left(\mathrm{~d}, \mathrm{CPh}_{3},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=24.7 \mathrm{~Hz}\right), 126.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=1.8 \mathrm{~Hz} \mathrm{C}-\mathrm{C}^{\mathrm{Ph}}\right), 128.2\left(\mathrm{~s}, \mathrm{C}-\mathrm{C}^{\mathrm{Ph}}\right), 130.4$ (d, $J_{P, C}=8.2, \mathrm{HzC}-\mathrm{Ch}^{\mathrm{Ph}}$), 146.6 ($\mathrm{d}, \mathrm{N} \equiv \mathrm{C} \rightarrow \mathrm{P},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=6.6 \mathrm{~Hz}$), 197.7 ($\mathrm{dSat},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=3.5 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{C}}=126.4$, cis-CO), 201.3 ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{p}, \mathrm{C}}=17.2 \mathrm{~Hz}$, trans-CO); ${ }^{31} \mathrm{P} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=-51.8 \mathrm{ppm}\left(\mathrm{s},{ }^{1} \mathrm{~J}_{\mathrm{w}, \mathrm{P}}=118.2\right.$ Hz).

6.19. Synthesis of [pentacarbonyl\{3-isopropyl-4-(isopropylimino)-2-triphenylmethyl-1,3,2-thiazaphosphetidin-кP\}tungsten(0)] (54)

To a 15 mL toluene solution of 350 mg (0.48 mmol) of 3-imino-azaphosphiridine complex 21a, $15.5 \mathrm{mg}\left(1 / 8\right.$ eq.) of elemental sulfur $\left(\mathrm{S}_{8}\right)$ was added at room temperature. The reaction mixture was stirred for 24 hours. When the reaction was completed the solvent was removed in vacuo ($\sim_{10^{-2}} \mathrm{mbar}$) and a yellow oil was obtained. The product was then crystallized from $\mathrm{Et}_{2} \mathrm{O}$ at $-50^{\circ} \mathrm{C}$ and washed with pentane at $-50^{\circ} \mathrm{C}$ to obtain a white solid after drying in vacuo.

Yield: $237 \mathrm{mg}(0.31 \mathrm{mmol}, 65 \%)$; m. p. $=142-143^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=0.91(\mathrm{~d}, 3 \mathrm{H}, \mathrm{P}-\mathrm{N}-\mathrm{CH}-$ $\left.\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.6 \mathrm{~Hz}\right), 1.01\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{C}-\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.2 \mathrm{~Hz}\right), 1.06\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{C}=\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.2\right.$ $\mathrm{Hz}), 1.49\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{C}=\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.6 \mathrm{~Hz}\right), 2.86\left(\mathrm{dsep}, 1 \mathrm{H}, \mathrm{C}=\mathrm{N}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=\right.$ 2.9 Hz), 2.98 (dsep, $\left.1 \mathrm{H}, \mathrm{P}-\mathrm{N}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=11.7 \mathrm{~Hz}\right), 6.92-6.98(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}-\mathrm{Ph})$, 7.26-7.45 (m, 13H, C-Ph), 7.70-7.77 (m, 2H, C-Ph); ${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right): \delta=19.7\left(\mathrm{~d}, \mathrm{P}-\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3}\right.$, $\left.{ }^{2} J_{\mathrm{P}, \mathrm{C}}=1.5 \mathrm{~Hz}\right), 20.6\left(\mathrm{~d}, \mathrm{P}-\mathrm{N}-\mathrm{C}-\mathrm{CH}_{3},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=2.0 \mathrm{~Hz}\right), 24.0\left(\mathrm{~s}, \mathrm{C}=\mathrm{N}-\mathrm{C}-\mathrm{CH}_{3}\right), 24.3\left(\mathrm{~s}, \mathrm{C}=\mathrm{N}-\mathrm{C}-\mathrm{CH}_{3}\right), 53.7$ ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=1.2 \mathrm{~Hz}, \mathrm{P}-\mathrm{N}-\mathrm{CH}^{2}-\mathrm{CH}_{3}$), $54.0\left(\mathrm{~d}, \mathrm{C}=\mathrm{N}-\mathrm{CH}-\mathrm{CH} 3,{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=1.1 \mathrm{~Hz}\right.$), $71.1\left(\mathrm{~d}, \mathrm{P}-\mathrm{CPh}_{3},{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=13.7\right.$ $\mathrm{Hz}), 127.9\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=2.0 \mathrm{~Hz}, C-\mathrm{Ph}\right), 128.0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=1.8 \mathrm{~Hz}, \mathrm{C}-\mathrm{Ph}\right), 128.3\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=3.0 \mathrm{~Hz}, C-\mathrm{Ph}\right)$, 128.5 ($\mathrm{d}, J_{\mathrm{C}, \mathrm{P}}=2.9 \mathrm{~Hz}, C-\mathrm{Ph}$) 128.8 (s, C-Ph), 129.0 (d, $J_{\mathrm{C}, \mathrm{P}}=1.2 \mathrm{~Hz}, C-\mathrm{Ph}$), 129.4 ($\mathrm{s}, \mathrm{C}-\mathrm{Ph}$), 129.7 $\left(\mathrm{d}, J_{\mathrm{C}, \mathrm{P}}=2.8 \mathrm{~Hz}, C-P h\right), 131.3\left(\mathrm{~d}, J_{C, P}=3.5 \mathrm{~Hz}, C-P h\right), 131.4\left(\mathrm{~d}, J_{C, P}=2.3 \mathrm{~Hz}, C-P h\right), 139.1\left(\mathrm{~d},{ }^{2+2} J_{C, P}\right.$ $=6.8 \mathrm{~Hz}, C=\mathrm{N}-\mathrm{Pr}$), 140.4 ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.5 \mathrm{~Hz}, C^{\text {ipso }}-\mathrm{Ph}$), 141.2 ($\left.\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.9 \mathrm{~Hz}, C^{i p s o}-\mathrm{Ph}\right), 142.5(\mathrm{~d}$, ${ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=11.9 \mathrm{~Hz}$, C $^{\text {ipso_Ph }}$), $196.5\left(\mathrm{dSat},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=6.7 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{C}}=128.0, \operatorname{cis}-\mathrm{CO}\right), 198.6\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=37.1\right.$ Hz , trans-CO); ${ }^{31} \mathrm{P}$ NMR (CDCl_{3}): 122.6 (dSat, $J_{\mathrm{P}, \mathrm{H}}=10.7 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{w}, \mathrm{P}}=280.5 \mathrm{~Hz}$); pos-ESI-MS : m/z (\%): calcd: $[\mathrm{M}+\mathrm{H}]^{+}=757.1120$, found: $[\mathrm{M}+\mathrm{H}]^{+}=757.1123$; IR (ATR): $\tilde{\mathrm{v}}=2975\left(\mathrm{~b}, v-\mathrm{CH}_{2}\right), 2932$ (b, v-CH2), 2073 (s, v-CO), 1988 (s, v-CO), 1928 (s, v-CO), 1677 (s,v-CO), 1599 (b, v-C=N) cm-1.

Elemental analysis for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5}$ PSW calcd (\%): C 49.32, H 3.86, N 3.70, S 4.24 found (\%): C 49.36, H 3.98, N 3.66, S 4.28.

6.20. Synthesis of [pentacarbonyl\{3-isopropyl-4-(isopropylimino)-2-triphenylmethyl-1,3,2-selenazaphosphetidin-кP\}tungsten(0)] (58)

To a $7 \mathrm{mLEt}_{2} \mathrm{O}$ solution of $317 \mathrm{mg}(0.44 \mathrm{mmol})$ of 3-imino-azaphosphiridine complex 21a, 34.5 mg (1 eq.) of elemental selenium was added at room temperature. To the suspension 5.3 mg (0.022 mmol, 5%) of tris(dimethylamino)phosphane P-selenide 57 was added at room temperature and the reaction mixture was stirred for 20 hours. When the reaction was
completed the solvent was removed in vacuo ($\sim_{10^{-2}} \mathrm{mbar}$) and a yellow oil was obtained. The product was then crystallized from $\mathrm{Et}_{2} \mathrm{O}$ at $-30^{\circ} \mathrm{C}$ and washed with pentane at $-30^{\circ} \mathrm{C} .58$ was obtained as a white solid.

Yield: $245 \mathrm{mg}(0.30 \mathrm{mmol}, 70 \%)$; m. p. $=125-126{ }^{\circ}{ }^{\circ} \mathrm{C}^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=0.81(\mathrm{~d}, 3 \mathrm{H}, \mathrm{P}-\mathrm{N}-\mathrm{CH}-$ $\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.6 \mathrm{~Hz}$), $0.94\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{C}-\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.2 \mathrm{~Hz}\right.$), 1.02 (d, $3 \mathrm{H}, \mathrm{C}=\mathrm{N}-\mathrm{CH}^{2} \mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.2$ Hz), $1.43\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{C}=\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.6 \mathrm{~Hz}\right.$), 2.51 (dsep, $1 \mathrm{H}, \mathrm{C}=\mathrm{N}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=$ 3.2 Hz), 2.84 (dsep, $1 \mathrm{H}, \mathrm{P}-\mathrm{N}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}{ }^{3}{ }^{3} \mathrm{~J}_{\mathrm{H}} \mathrm{H}=6.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{H}}=10.6 \mathrm{~Hz}$), 6.81-6.87 (m,2H,C-Ph), 7.17-7.36 (m, 13H, C-Ph), 7.69-7.74 (m, 2H, C-Ph); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl3):} \delta=19.7$ (d, P-N-CH-CH3, ${ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=1.5 \mathrm{~Hz}$), $20.4\left(\mathrm{~d}, \mathrm{P}-\mathrm{N}-\mathrm{C}-\mathrm{CH}_{3},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=1.8 \mathrm{~Hz}\right.$), $23.9\left(\mathrm{~s}, \mathrm{C}=\mathrm{N}-\mathrm{C}-\mathrm{CH}_{3}\right), 24.1\left(\mathrm{~s}, \mathrm{C}=\mathrm{N}-\mathrm{C}-\mathrm{CH}_{3}\right), 56.1$ $\left(\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{p}, \mathrm{C}}=1.6 \mathrm{~Hz}, \mathrm{P}-\mathrm{N}-\mathrm{CH}-\mathrm{CH}_{3}\right), 57.00\left(\mathrm{~d}, \mathrm{C}=\mathrm{N}-\mathrm{CH}-\mathrm{CH} 3,{ }^{2} \mathrm{~J}_{\mathrm{p}, \mathrm{C}}=0.7 \mathrm{~Hz}\right), 70.30\left(\mathrm{~d}, \mathrm{P}-\mathrm{CPh}_{3},{ }^{1} \mathrm{~J}_{\mathrm{p}, \mathrm{C}}=\right.$ $17.0 \mathrm{~Hz}), 127.7\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=1.9 \mathrm{~Hz}, \mathrm{C}-\mathrm{Ph}\right), 128.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.0 \mathrm{~Hz}, \mathrm{C}-\mathrm{Ph}\right), 128.4\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=2.8 \mathrm{~Hz}, \mathrm{C}-\right.$ Ph), 128.5 ($\mathrm{s}, \mathrm{C}-\mathrm{Ph}$), 128.9 ($\left.\mathrm{d}, J_{\mathrm{C}, \mathrm{P}}=0.9 \mathrm{~Hz}, C-\mathrm{Ph}\right), 129.6$ ($\mathrm{d}, J_{\mathrm{C}, \mathrm{P}}=2.9 \mathrm{~Hz}, C-\mathrm{Ph}$), 131.1 ($\mathrm{d}, J_{\mathrm{C}, \mathrm{P}}=$ $9.7 \mathrm{~Hz}, C-\mathrm{Ph}), 131.4\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=7.8 \mathrm{~Hz}, C-\mathrm{Ph}\right), 132.0\left(\mathrm{~d},{ }^{2+2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=8.5 \mathrm{~Hz}, C=\mathrm{N}-\mathrm{Pr}\right), 140.2\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=\right.$ $3.5 \mathrm{~Hz}, C^{\text {ipso }}-\mathrm{Ph}$), $142.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}, \mathrm{P}}=5.0 \mathrm{~Hz}, \mathrm{C}^{\text {ipso-Ph }}\right.$), $142.6\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=12.8 \mathrm{~Hz}, C^{\text {ipso }}-\mathrm{Ph}\right), 197.0$ (dSat, ${ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=6.5 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{c}}=127.0$, cis-CO$), 198.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{C}}=36.5 \mathrm{~Hz}, \operatorname{trans}-\mathrm{CO},{ }^{1} \mathrm{~J}_{\mathrm{W}, \mathrm{c}}=143.2\right.$, trans-CO$)$; ${ }^{31} \mathrm{P}$ NMR (CDCl_{3}): 111.6 (dSatSat, ${ }^{3} J_{\mathrm{P}, \mathrm{H}}=10.6 \mathrm{~Hz},{ }^{1} J_{\mathrm{W}, \mathrm{P}}=275.3 \mathrm{~Hz},{ }^{1} J_{\mathrm{S}, \mathrm{P}}=148.0 \mathrm{~Hz}$); ${ }^{77} \mathrm{Se} \mathrm{NMR}$ (CDCl_{3}): 649.2 ($\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{se}, \mathrm{P}}=148.0 \mathrm{~Hz}$). IR (ATR): $\tilde{v}=2974\left(\mathrm{~b}, \mathrm{v}-\mathrm{CH}_{2}\right), 2072$ ($\left.\mathrm{s}, \mathrm{v}-\mathrm{CO}\right), 1988$ ($\mathrm{s}, \mathrm{v}-$ CO), 1930 ($s, v-C O$), 1692 ($s, v-C O$), 1598 ($w, v-C=N$) cm ${ }^{-1}$.

Elemental analysis for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5}$ PSW Calcd (\%): C 46.35, H 3.64, N 3.49, found (\%): C 45.85, H 4.11, N 3.39.

7. References

[1] T. E. Gier, J. Am. Chem. Soc. 1961, 83, 1769-1770.
[2] A. B. Burg, W. Mahler, J. Am. Chem. Soc. 1961, 83, 2388-2389.
[3] M. Regitz, O. J. Scherer, R. Appel (Eds.) Multiple bonds and low coordination in phosphorus chemistry, G. Thieme Verlag; Thieme Medical Publishers, Stuttgart, New York, New York, 1990.
[4] P. Floch, Coord. chem. rev. 2006, 250, 627-681.
[5] a) R. Appel, C. Casser, M. Immenkeppel, F. Knoch, Angew. Chem. Int. Ed. Engl. 1984, 23, 895896; Angew. Chem. 1984, 96, 905-906.
[6] a) K. Dimroth, K. J. Kraft, Angew. Chem. Int. Ed. Engl. 1964, 3, 384-385; Angew. Chem. 1964, 76, 433.
[7] a) G. Märkl, Angew. Chem. Int. Ed. Engl. 1966, 5, 846-847; Angew. Chem. 1966, 78, 907-908.
[8] A. J. Ashe, J. Am. Chem. Soc. 1971, 93, 3293-3295.
[9] K. Lammertsma, Top. Curr. Chem. 2003, 229, 95-119.
[10] F. Mathey, Z. Duan, Dalton Trans. 2015, DOI: 10.1039/C5DT02532J.
[11] F. Mathey, Dalton Trans. 2007, 1861.
[12] a) R. Moss, Contemporary Carbene Chemistry, Wiley Ser. React. Intermed. Chem. Biol., 7, 2014; b) D. J. Nelson, S. P. Nolan, Chem. Soc. Rev. 2013, 42, 6723-6753; c) S. P. Nolan (Ed.) N-Heterocyclic Carbenes, Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim, Germany, 2014.
[13] a) D. Falvey, Nitrenes and Nitrenium Ions. Wiley Ser. React. Intermed. Chem. Biol., 6, 2013; b) A. Schulz, A. Villinger, Angew. Chem. Int. Ed. 2013, 52, 3068-3070.
[14] a) G. Frenking, R. Tonner, S. Klein, N. Takagi, T. Shimizu, A. Krapp, K. K. Pandey, P. Parameswaran, Chem. Soc. Rev. 2014, 43, 5106-5139; b) M. Driess, Nat. chem. 2012, 4, 525-526.
[15] G. Frison, F. Mathey, A. Sevin, J. Organomet. Chem. 1998, 570, 225-234.
[16] K. B. Dillon, F. Mathey, J. F. Nixon, Phosphorus. The carbon copy : from organophosphorus to phospha-organic chemistry, Wiley, Chichester, New York, 1998.
[17] F. Mathey, N. Huy, A. Marinetti, Helv. chim. acta 2001, 84, 2938-2957.
[18] a) C. C. Cummins, R. R. Schrock, W. M. Davis, Angew. Chem. 1993, 105, 758-761; Angew. Chem. Int. Ed. Engl. 1993, 32, 756-759.
[19] a) A. Mahieu, A. Igau, J.-P. Majoral, Phosphorus, Sulfur, and Silicon Relat. Elem. 1995, 104, 235239; b) T. L. Breen, D. W. Stephan, Organometallics 1996, 15, 4223-4227.
[20] a) B. Sterenberg, A. Carty, J. Organomet. Chem. 2001, 617-618, 696-701; b) T. L. Breen, D. W. Stephan, J. Am. Chem. Soc. 1996, 118, 4204-4205.
[21] A. Marinetti, F. Mathey, J. Fischer, A. Mitschler, Chem. Commun. 1982, 667.
[22] a) A. Marinetti, F. Mathey, J. Fischer, A. Mitschler, J. Am. Chem. Soc. 1982, 104, 4484-4485; b) A. Marinetti, F. Mathey, Organometallics 1984, 3, 456-461; c) K. Lammertsma, A. W. Ehlers, M. L. McKee, J. Am. Chem. Soc. 2003, 125, 14750-14759.
[23] a) F. Mathey, Angew. Chem. Int. Ed. Engl. 1987, 26, 275-286; Angew. Chem. 1987, 99, 285-296.
[24] R. Streubel, Coord. chem. rev. 2002, 227, 175-192.
[25] a) R. Streubel, J. Jeske, P. G. Jones, R. Herbst-Irmer, Angew. Chem. 1994, 106, 115-117; Angew. Chem. Int. Ed. 1994, 33, 80-82.
[26] R. Streubel, A. Kusenberg, J. Jeske, P. G. Jones, Angew. Chem. 1994, 106, 2564-2566; Angew. Chem. Int. Ed. 1994, 33, 2427-2428.
[27] M. L. G. Borst, R. E. Bulo, C. W. Winkel, D. J. Gibney, A. W. Ehlers, M. Schakel, M. Lutz, A. L. Spek, K. Lammertsma, J. Am. Chem. Soc. 2005, 127, 5800-5801.
[28] F. Mercier, B. Deschamps, F. Mathey, J. Am. Chem. Soc. 1989, 111, 9098-9100.
[29] A. H. Cowley, R. L. Geerts, C. M. Nunn, J. Am. Chem. Soc. 1987, 109, 6523-6524.
[30] J. B. Wit, van Eijkel, Gerno T, M. Schakel, K. Lammertsma, Tetrahedron 2000, 56, 137-141.
[31] M. L. G. Borst, van der Riet, Niels, R. H. Lemmens, de Kanter, Franciscus J. J., M. Schakel, A. W. Ehlers, A. M. Mills, M. Lutz, A. L. Spek, K. Lammertsma, Chem. Eur. J. 2005, 11, 3631-3642.
[32] a) B. T. Sterenberg, K. A. Udachin, A. J. Carty, Organometallics 2001, 20, 4463-4465; b) B. Sterenberg, A. Carty, J. Organomet. Chem. 2001, 617-618, 696-701.
[33] T. W. Graham, K. A. Udachin, M. Z. Zgierski, A. J. Carty, Organometallics 2011, 30, 1382-1388.
[34] R. Melenkivitz, D. J. Mindiola, G. L. Hillhouse, J. Am. Chem. Soc. 2002, 124, 3846-3847.
[35] H. Lang, G. Mohr, O. Scheidsteger, G. Huttner, Chem. Ber. 1985, 118, 574-596.
[36] C. Compain, F. Mathey, Z. Anorg. Allg. Chem. 2006, 632, 421-424.
[37] A. Özbolat, G. von Frantzius, J. M. Pérez, M. Nieger, R. Streubel, Angew. Chem. Int. Ed. 2007, 46, 9327-9330; Angew. Chem. 2007, 119, 9488-9491.
[38] R. Streubel, M. Bode, J. Marinas Pérez, G. Schnakenburg, J. Daniels, M. Nieger, P. G. Jones, Z. Anorg. Allg. Chem. 2009, 635, 1163-1171.
[39] M. Bode, J. Daniels, R. Streubel, Organometallics 2009, 28, 4636-4638.
[40] V. Nesterov, G. Schnakenburg, A. Espinosa, R. Streubel, Inorg. Chem. 2012, 51, 12343-12349.
[41] A. Ozbolat, G. von Frantzius, W. Hoffbauer, R. Streubel, Dalton trans. 2008, 2674-2676.
[42] A. Özbolat, G. von Frantzius, E. Ionescu, S. Schneider, M. Nieger, P. G. Jones, R. Streubel, Organometallics 2007, 26, 4021-4024.
[43] a) L. Duan, G. Schnakenburg, J. Daniels, R. Streubel, Eur. J. Inorg. Chem. 2012, 2012, 3490-3499; b) L. Duan, G. Schnakenburg, R. Streubel, Organometallics 2011, 30, 3246-3249.
[44] L. Duan, G. Schnakenburg, J. Daniels, R. Streubel, Eur. J. Inorg. Chem. 2012, 2012, 2314-2319.
[45] G. Boche, Lohrenz, John C. W., Chem. Rev. 2001, 101, 697-756.
[46] a) S. Bauer, A. Marinetti, L. Ricard, F. Mathey, Angew. Chem. Int. Ed. 1990, 29, 1166-1167; b) S. Bauer, A. Marinetti, L. Ricard, F. Mathey, Angew. Chem. 1990, 102, 1188-1189.
[47] R. Streubel, M. Klein, G. Schnakenburg, Organometallics 2012, 31, 4711-4715.
[48] C. Albrecht, E. Schneider, M. Engeser, G. Schnakenburg, A. Espinosa, R. Streubel, Dalton trans. 2013, 42, 8897-8906.
[49] R. Streubel, A. Ostrowski, H. Wilkens, F. Ruthe, J. Jeske, P. G. Jones, Angew. Chem. 1997, 109, 409-413; Angew. Chem. Int. Ed. 1997, 36, 378-381.
[50] S. Fankel, H. Helten, G. von Frantzius, G. Schnakenburg, J. Daniels, V. Chu, C. Müller, R. Streubel, Dalton trans. 2010, 39, 3472-3481.
[51] R. Streubel, J. M. V. Franco, G. Schnakenburg, A. E. Ferao, Chem. Commun. 2012, 48, 5986-5988.
[52] a) T. L. Gilchrist, Heterocyclic chemistry, Prentice Hall, 1997; b) A. K. Yudin, Aziridines and epoxides in organic synthesis, John Wiley \& Sons, 2006; c) E. Rivard, Chem. Soc. Rev. 2015, DOI: 10.1039/C5CS00365B.
[53] a) P. A. Bartlett, N. I. Carruthers, B. M. Winter, K. P. Long, J. Org. Chem. 1982, 47, 1284-1291; b) M. T. Boisdon, J. Barrans, Chem. Commun. 1988, 615-618; c) G.-V. Röschenthaler, K. Sauerbrey, R. Schmutzler, Chem. Ber. 1978, 111, 3105-3111.
[54] a) K. Burger, J. Fehn, W. Thenn, Angew. Chem. Int. Ed. Engl. 1973, 12, 502-503; Angew. Chem. 1973, 85, 542.
[55] E. Niecke, A. Seyer, D.-A. Wildbredt, Angew. Chem. 1981, 93, 687-688; Angew. Chem. Int. Ed. 1981, 20, 675-677.
[56] O. Krahe, F. Neese, R. Streubel, Chem. Eur. J. 2009, 15, 2594-2601.
[57] A. Espinosa, R. Streubel, Chem. Eur. J. 2011, 17, 3166-3178.
[58] a) E. Niecke, K. Schwichtenhövel, H. G. Schäfer, B. Krebs, Angew. Chem. 1981, 93, 1033-1034; Angew. Chem. Int. Ed. 1981, 20, 963-964.
[59] N. Dufour, A.-M. Caminade, J.-P. Majoral, Tetrahedron Lett. 1989, 30, 4813-4814.
[60] M. J. M. Vlaar, P. Valkier, de Kanter, Frans J. J., M. Schakel, A. W. Ehlers, A. L. Spek, M. Lutz, K. Lammertsma, Chem. Eur. J. 2001, 7, 3551-3557.
[61] T. Goumans, A. W. Ehlers, M. J. Vlaar, S. J. Strand, K. Lammertsma, J. Organomet. Chem. 2002, 643-644, 369-375.
[62] N. H. Tran Huy, L. Ricard, F. Mathey, Heteroatom Chem. 1998, 9, 597-600.
[63] T. Wettling, J. Schneider, O. Wagner, C. G. Kreiter, M. Regitz, Angew. Chem. 1989, 101, 10351037; Angew. Chem. Int. Ed. Engl. 1989, 28, 1013-1014.
[64] M. Bode, G. Schnakenburg, P. G. Jones, R. Streubel, Organometallics 2008, 27, 2664-2667.
[65] a) U. Rohde, F. Ruthe, P. G. Jones, R. Streubel, Angew. Chem. 1999, 111, 158-160; Angew. Chem. Int. Ed. 1999, 38, 215-217.
[66] V. Nesterov, A. Espinosa, G. Schnakenburg, R. Streubel, Chem. Eur. J. 2014, 20, 7010-7016.
[67] N. Hoffmann, C. Wismach, L. Ernst, H.-M. Schiebel, P. G. Jones, R. Streubel, Eur. J. Inorg. Chem. 2003, 2003, 1815-1821.
[68] R. Streubel, U. Schiemann, N. Hoffmann, Y. Schiemann, P. G. Jones, D. Gudat, Organometallics 2000, 19, 475-481.
[69] M. Al-Ktaifani, W. Bauer, U. Bergsträßer, B. Breit, M. D. Francis, F. W. Heinemann, P. B. Hitchcock, A. Mack, J. F. Nixon, H. Pritzkow et al., Chem. Eur. J. 2002, 8, 2622-2633.
[70] R. Streubel, C. Murcia-García, G. Schnakenburg, A. Espinosa Ferao, Organometallics 2015, 34, 2676-2682.
[71] J. Liedtke, S. Loss, G. Alcaraz, V. Gramlich, H. Grützmacher, Angew. Chem. 1999, 111, 1724-1727; Angew. Chem. Int. Ed. 1999, 38, 1623-1626.
[72] a) M. M. Al-Ktaifani, D. P. Chapman, M. D. Francis, P. B. Hitchcock, J. F. Nixon, L. Nyulászi, Angew. Chem. Int. Ed. 2001, 40, 3474-3477; Angew. Chem. 2001, 113, 3582-3585.
[73] a) M. Stubenhofer, C. Kuntz, M. Bodensteiner, A. Y. Timoshkin, M. Scheer, Organometallics 2013, 32, 3521-3528; b) B. P. Johnson, G. Balázs, M. Scheer, Coord, Chem. Rev. 2006, 250, 1178-1195; c) I. Amor, M. E. García, M. A. Ruiz, D. Sáez, H. Hamidov, J. C. Jeffery, Organometallics 2006, 25, 4857-4869; d) M. E. García, V. Riera, M. A. Ruiz, D. Sáez, J. Vaissermann, J. C. Jeffery, J. Am. Chem. Soc. 2002, 124, 14304-14305; e) M. A. Alvarez, M. E. García, M. A. Ruiz, J. Suárez, Angew. Chem. Int. Ed. 2011, 50, 6383-6387; Angew. Chem. 2011, 123, 6507-6511.
[74] M. Scheer, D. Himmel, C. Kuntz, S. Zhan, E. Leiner, Chem. Eur. J. 2008, 14, 9020-9029.
[75] O. C. Presly, M. Green, J. C. Jeffery, E. Leiner, M. Murray, C. A. Russell, M. Scheer, U. Vogel, Chem. Commun. 2006, 4542-4544.
[76] a) N. A. Pushkarevsky, S. N. Konchenko, A. V. Virovets, M. Scheer, Organometallics 2013, 32, 770-779; b) M. Stubenhofer, G. Lassandro, G. Balázs, A. Y. Timoshkinb, M. Scheer, Chem. Commun. 2012, 48, 7262-7264; c) O. C. Presly, T. J. Davin, M. Green, R. J. Kilby, S. M. Mansell, J. E. McGrady, C. A. Russell, Eur. J. Inorg. Chem. 2008, 29, 4511-4515; d) R. Streubel, M. Bode, G. von Frantzius, C. Hrib, P. G. Jones, A. Monsees, Organometallics 2007, 26, 1371-1375.
[77] P. Jutzi, H. Saleske, D. Nadler, J. Organomet. Chem. 1976, 118, C8-C10.
[78] M. A. Sprung, Chem. Rev. 1940, 26, 297-338.
[79] D. N. Robertson, J. Org. Chem. 1960, 25, 47-49.
[80] J. M. Villalba Franco, G. Schnakenburg, A. Espinosa Ferao, R. Streubel, Chem. Eur. J. 2015, 21, 3727-3735.
[81] J. M. Villalba Franco, A. Espinosa Ferao, G. Schnakenburg, R. Streubel, Chem. Commun. 2013, 49, 9648-9650.
[82] W. M. Haynes, D. R. Lide, CRC handbook of chemistry and physics. A ready-reference book of chemical and physical data : 2012-2013, CRC Press, Boca Raton (Fla.), London, New York, 2012.
[83] a) X. Sava, A. Marinetti, L. Ricard, F. Mathey, Eur. J. Inorg. Chem., 2002, 2002, 1657-1665; b) X. Sava, A. Marinetti, L. Ricard, F. Mathey, Eur. J. Inorg. Chem. 2002, 2002, 1657-1665.
[84] T. Kawashima, T. Kihara, N. Inamoto, Chem. Lett. 1988, 577-580.
[85] a) M. J. M. Vlaar, A. W. Ehlers, M. Schakel, S. B. Clendenning, J. F. Nixon, M. Lutz, A. L. Spek, K. Lammertsma, Chem-Eur. J. 2001, 7, 3545-3550; b) M. J. M. Vlaar, Mark J. M. van Assema, Sander G. A. de Kanter, Frans J. J. Schakel, Marius Spek Anthony, Lutz Martin, Lammertsma Koop, ChemEur. J. 2002, 8, 58-65; c) R. Streubel, M. Bode, G. von Frantzius, C. Hrib, P. G. Jones, A. Monsees, Organometallics 2007, 26, 1371-1375.
[86] R. Streubel, U. Rohde, J. Jeske, F. Ruthe, P. G. Jones, Eur. J. Inorg. Chem. 1998, 1998, 2005-2012.
[87] a) M. J. M. Vlaar, P. Valkier, de Kanter, Frans J. J., M. Schakel, A. W. Ehlers, A. L. Spek, M. Lutz, K. Lammertsma, Chem. Eur. J. 2001, 7, 3551; b) M. J. M. Vlaar, P. Valkier, M. Schakel, A. W. Ehlers, M. Lutz, A. L. Spek, K. Lammertsma, Eur. J. Org. Chem. 2002, 2002, 1797-1802.
[88] G. von Frantzius, A. Espinosa Ferao, R. Streubel, Chem. Sci. 2013, 4, 4309.
[89] Y. Mao, Z. Wang, R. Ganguly, F. Mathey, Organometallics 2012, 31, 4786-4790.
[90] J. B. Wit, van Eijkel, Gerno T, M. Schakel, K. Lammertsma, Tetrahedron 2000, 56, 137-141.
[91] A. E. Reed, F. Weinhold, J. Chem. Phys. 1983, 78, 4066-4073.
[92] K. B. Wiberg, Tetrahedron 1968, 24, 1083-1096.
[93] a) I. Mayer, Int. J. Quantum Chem. 1984, 26, 151-154; b) I. Mayer, Chem. Phys. Lett. 1983, 97, 270-274; c) I. Mayer, Theoret. Chim. Acta 1985, 67, 315-322; d) A. J. Bridgeman, G. Cavigliasso, L. R. Ireland, J. Rothery, Dalton trans. 2001, 2095-2108.
[94] P.-O. Löwdin (Ed.) Advances in Quantum Chemistry, Elsevier, 1970.
[95] R. F. W. Bader, Chem. Rev. 1991, 91, 893-928.
[96] C. F. Matta, R. J. Boyd, The quantum theory of atoms in molecules. From solid state to DNA and drug design, Wiley-VCH, Weinheim, 2007.
[97] E. M. Sproviero, G. Burton, J. Phys. Chem. A 2003, 107, 5544-5554.
[98] X. Sava, A. Marinetti, L. Ricard, F. Mathey, Eur. J. Inorg. Chem. 2002, 2002, 1657-1665.
[99] a) K. B. Wiberg, Angew. Chem. 1986, 98, 312-322; Angew. Chem. Int. Ed. 1986, 25, 312-322.
[100] A. M. de Lio, B. L. Durfey, A. L. Gille, T. M. Gilbert, J Phys Chem A 2014, 118, 6050-6059.
[101] A. Bauzá, D. Quiñonero, P. M. Deyà, A. Frontera, Chem. Phys. Lett. 2012, 536, 165-169.
[102] K. B. Wiberg, R. A. Fenoglio, J. Am. Chem. Soc. 1968, 90, 3395-3397.
[103] W. T. G. Johnson, W. T. Borden, J. Am. Chem. Soc. 1997, 119, 5930-5933.
[104] R. D. Bach, O. Dmitrenko, J. Am. Chem. Soc. 2004, 126, 4444-4452.
[105] T. P. M. Goumans, A. W. Ehlers, K. Lammertsma, E.-U. Würthwein, Eur. J. Org. Chem. 2003, 2003, 2941-2946.
[106] a) H. Quast, Liebigs Ann. 1996, 87; b) H. Quast, A. Fuss, W. Nüdling, Eur. J. Org. Chem. 1998, 1998, 317-327; c) H. Quast, S. Aldenkortt, B. Freudenreich, P. Schäfer, M. Hagedorn, J. Lehmann, K. Banert, J. Org. Chem. 2007, 72, 1659-1666; d) H. Quast, S. Aldenkortt, Chem. Eur. J. 1996, 2, 462-469; e) H. Quast, S. Aldenkortt, E. Heller, P. Schäfer, E. Schmitt, Chem. Ber. 1994, 127, 16991706; f) A. J. Hubert, A. Feron, R. Warin, P. Teyssie, Tetrahedron Letters 1976, 17, 1317-1318.
[107] H. Quast, E. Schmitt, Angew. Chem. 1970, 82, 395-396; Angew. Chem. Int. Ed. 1970, 9, 381382.
[108] 2 For 2-Phenylimino-3-bis(trimethylsilyl)phosphirane(dicarbonyl)(1,2,3,4,5-pentamethyl cyclopentadienyl)iron complex), see: Weber, Lothar, A. Ruehlicke, H. G. Stammler, B. Neumann, Organometallics 1993, 12, 4653-4656.
[109] a) H. Quast, K.-H. Ross, G. Philipp, M. Hagedorn, H. Hahn, K. Banert, Eur. J. Org. Chem. 2009, 2009, 3940-3952; b) H. Quast, L. Bieber, Angew. Chem. Int. Ed. 1975, 428-429; Angew. Chem. 1975, 87, 422-423.
[110] a) H. Quast, E. Schmitt, Angew. Chem. 1969, 81, 428-429; Angew. Chem. Int. Ed. 1969, 8, 448-449.
[111] M. Baudler, J. Simon, Chem. Ber. 1987, 120, 421-424.
[112] a) D. Lentz, R. Marschall, Z. Anorg. Allg. Chem. 1992, 617, 53-58; b) J. Buschmann, D. Lentz, M. Röttger, S. Willemsen, Z. anorg. allg. Chem. 1999, 625, 1934-1939.
[113] L. Weber, S. Buchwald, D. Lentz, O. Stamm, D. Preugschat, R. Marschall, Organometallics 1994, 13, 4406-4412.
[114] W. M. Abdou, R. F. Barghash, M. S. Bekheit, Arch. Pharm. 2012, 345, 884-895.
[115] a) D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2015, 54, 6400-6441; Angew. Chem. 2015, 127, 6498-6541b) D. W. Stephan, Acc. Chem. Res. 2015, 48, 306-316; c) D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2010, 49, 46-76; d) D. W. Stephan, Dalton Trans 2009, 3129-3136; e) D. W. Stephan, G. Erker, Angew. Chem. 2010, 122, 50-81.
[116] G. C. Welch, R. R. San Juan, J. D. Masuda, D. W. Stephan, Science 2006, 314, 1124-1126.
[117] a) P. A. Chase, D. W. Stephan, Angew. Chem. Int. Ed. Engl. 2008, 47, 7433-7437; Angew. Chem. 2008, 120, 7543-7547; b) P. A. Chase, G. C. Welch, T. Jurca, D. W. Stephan, Angew. Chem. Int. Ed. Engl. 2007, 46, 8050-8053; Angew. Chem. 2007, 119, 8196-8199.
[118] a) P. Spies, S. Schwendemann, S. Lange, G. Kehr, R. Fröhlich, G. Erker, Angew. Chem. Int. Ed. 2008, 47, 7543-7546; Angew. Chem. 2008, 120, 7654-7657.
[119] H. Wang, R. Fröhlich, G. Kehr, G. Erker, Chem. Commun. 2008, 5966-5968.
[120] a) L. Greb, P. Oña-Burgos, B. Schirmer, S. Grimme, D. W. Stephan, J. Paradies, Angew. Chem. Int. Ed. 2012, 51, 10164-10168; Angew. Chem. 2012, 124, 10311-10315; b) L. Greb, S. Tussing, B. Schirmer, P. Oña-Burgos, K. Kaupmees, M. Lõkov, I. Leito, S. Grimme, J. Paradies, Chem. Sci. 2013, 4, 2788.
[121] K. Chernichenko, Á. Madarász, I. Pápai, M. Nieger, M. Leskelä, T. Repo, Nat. chem. 2013, 5, 718-723.
[122] a) B. Inés, D. Palomas, S. Holle, S. Steinberg, J. A. Nicasio, M. Alcarazo, Angew. Chem. Int. Ed. 2012, 51, 12367-12369; Angew. Chem. 2012, 124, 12533-12536; b) L. Greb, C.-G. Daniliuc, K. Bergander, J. Paradies, Angew. Chem. Int. Ed. 2013, 52, 5876-5879; Angew. Chem. 2013, 125, 5989-5992.
[123] a) B.-H. Xu, R. A. A. Yanez, H. Nakatsuka, M. Kitamura, R. Fröhlich, G. Kehr, G. Erker, Chem. Asian. J. 2012, 7, 1347-1356; b) B.-H. Xu, G. Kehr, R. Fröhlich, B. Wibbeling, B. Schirmer, S. Grimme, G. Erker, Angew. Chem. Int. Ed. 2011, 50, 7183-7186; Angew. Chem. 2011, 123, 73217324.
[124] a) T. Mahdi, Z. M. Heiden, S. Grimme, D. W. Stephan, J. Am. Chem. Soc. 2012, 134, 40884091; b) Y. Segawa, D. W. Stephan, Chem. Commun. 2012, 48, 11963-11965.
[125] a) Z. M. Heiden, D. W. Stephan, Chem. Commun. 2011, 47, 5729-5731; b) D. Chen, J. Klankermayer, Chem. Commun. 2008, 2130-2131.
[126] C. M. Mömming, E. Otten, G. Kehr, R. Fröhlich, S. Grimme, D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. Engl. 2009, 48, 6643-6646; Angew. Chem. 2009, 121, 6770-6773.
[127] a) R. C. Neu, G. Ménard, D. W. Stephan, Dalton Trans 2012, 41, 9016-9018; b) I. Peuser, R. C. Neu, X. Zhao, M. Ulrich, B. Schirmer, J. A. Tannert, G. Kehr, R. Fröhlich, S. Grimme, G. Erker et al., Chem. Eur. J. 2011, 17, 9640-9650; c) D. Voicu, M. Abolhasani, R. Choueiri, G. Lestari, C. Seiler, G. Menard, J. Greener, A. Guenther, D. W. Stephan, E. Kumacheva, J. Am. Chem. Soc. 2014, 136, 3875-3880; d) M. Harhausen, R. Fröhlich, G. Kehr, G. Erker, Organometallics 2012, 31, 28012809.
[128] T. Voss, T. Mahdi, E. Otten, R. Fröhlich, G. Kehr, D. W. Stephan, G. Erker, Organometallics 2012, 31, 2367-2378.
[129] a) M. Feroci, I. Chiarotto, S. V. Ciprioti, A. Inesi, Electrochimica Acta 2013, 109, 95-101; b) J. D. Holbrey, W. M. Reichert, I. Tkatchenko, E. Bouajila, O. Walter, I. Tommasi, R. D. Rogers, Chem. Commun. 2003, 28-29; c) E. L. Kolychev, T. Bannenberg, M. Freytag, C. G. Daniliuc, P. G. Jones, M. Tamm, Chem. Eur. J. 2012, 18, 16938-16946; d) E. Theuergarten, T. Bannenberg, M. D. Walter, D. Holschumacher, M. Freytag, C. G. Daniliuc, P. G. Jones, M. Tamm, Dalton Trans 2014, 43, 1651-1662.
[130] a) C. Appelt, H. Westenberg, F. Bertini, A. W. Ehlers, J. C. Slootweg, K. Lammertsma, W. Uhl, Angew. Chem. Int. Ed. Engl. 2011, 50, 3925-3928; Angew. Chem. 2011, 123, 4011-4014.
[131] a) J. Boudreau, M.-A. Courtemanche, F.-G. Fontaine, Chem. Commun. 2011, 47, 1113111133; b) G. Ménard, T. M. Gilbert, J. A. Hatnean, A. Kraft, I. Krossing, D. W. Stephan, Organometallics 2013, 32, 4416-4422.
[132] O. Ekkert, G. G. Miera, T. Wiegand, B. Eckert, Petersen, C. G. Daniliuc, R. Fröhlich, S. Grimme, G. Kehr, G. Erker, Chem. Sci. 2013, 4, 2657-2664.
[133] M. Sajid, A. Lawzer, W. Dong, C. Rosorius, W. Sander, B. Schirmer, S. Grimme, C. G. Daniliuc, G. Kehr, G. Erker, J. Am. Chem. Soc. 2013, 135, 18567-18574.
[134] M. A. Dureen, D. W. Stephan, J. Am. Chem. Soc. 2010, 132, 13559-13568.
$[135] \quad$ a) A. Hinz, A. Schulz, A. Villinger, Angew. Chem. Int. Ed. Engl. 2015, 54, 2776-2779; Angew. Chem. 2015, 127, 2815-2819.
[136] M. Sajid, A. Klose, B. Birkmann, L. Liang, B. Schirmer, T. Wiegand, H. Eckert, A. J. Lough, R. Fröhlich, C. G. Daniliuc et al., Chem. Sci. 2013, 4, 213-219.
[137] a) G. Ménard, J. A. Hatnean, H. J. Cowley, A. J. Lough, J. M. Rawson, D. W. Stephan, J. Am. Chem. Soc. 2013, 135, 6446-6449; b) E. Otten, R. C. Neu, D. W. Stephan, J. Am. Chem. Soc. 2009, 131, 9918-9919.
[138] a) A. J. P. Cardenas, B. J. Culotta, T. H. Warren, S. Grimme, A. Stute, R. Fröhlich, G. Kehr, G. Erker, Angew. Chem. Int. Ed. Engl. 2011, 50, 7567-7571; Angew. Chem. 2011, 123, 7709-7713.
[139] C. Murcia-García, A. Bauzá, G. Schnakenburg, A. Frontera, R. Streubel, CrystEngComm 2015, 17, 1769-1772.
[140] M. Klein, C. Albrecht, G. Schnakenburg, R. Streubel, Organometallics 2013, 32, 4938-4943.
[141] R. Streubel, J. Faßbender, G. Schnakenburg, A. Espinosa Ferao, Organometallics 2015, 150616142707003.
[142] a) L. J. Hounjet, C. B. Caputo, D. W. Stephan, Angew. Chem. Int. Ed. Engl. 2012, 51, 47144717; Angew. Chem. 2012, 124, 4792-4795.
[143] J. M. Villalba Franco, G. Schnakenburg, T. Sasamori, A. Espinosa Ferao, R. Streubel, Chem. Eur. J. 2015.
[144] J. M. Villalba Franco, T. Sasamori, G. Schnakenburg, A. Espinosa Ferao, R. Streubel, Chem. Commun. 2015, 51, 3878-3881.
[145] A. Espinosa, E. de las Heras, R. Streubel, Inorg. Chem. 2014, 53, 6132-6140.
[146] a) H. S. Gutowsky, C. H. Holm, J. Chem. Phys. 1956, 25, 1228-1234; b) A. Shockravi, M. Kamali, F. Sorkhei, R. Jafari, Heteroat. chem. 2011, 22, 659-668.
[147] H. Eyring, J. Chem. Phys. 1935, 3, 107-115.
[148] J. Emsley, The elements, Clarendon Press; Oxford University Press, Oxford, New York, 1998.
[149] A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 1985, 83, 735.
[150] T. Cottrell, The strengths of chemical bonds, Butterworth, London, 1958.
[151] a) N. G. Connelly, W. E. Geiger, Chem. Rev. 1996, 96, 877-910; b) A. Özbolat-Schön, M. Bode, G. Schnakenburg, A. Anoop, M. van Gastel, F. Neese, R. Streubel, Angew. Chem. 2010, 122, 7047-7051; Angew. Chem. Int. Ed. 2010, 49, 6894-6898; c) V. Nesterov, A. Özbolat-Schön, G. Schnakenburg, L. Shi, A. Cangönül, M. van Gastel, F. Neese, R. Streubel, Chem. Asian. J. 2012, 7, 1708-1712; d) V. Nesterov, Z.-W. Qu, G. Schnakenburg, S. Grimme, R. Streubel, Chem. Commun. 2014, 50, 12508-12511.
[152] N. Burford, R. E. v. H. Spence, A. Linden, T. S. Cameron, Acta crystallogr. C 1990, C46, 92-95.
[153] M. Ghalib, P. G. Jones, G. J. Palm, J. W. Heinicke, RSC Advances 2013, 3, 17726-17731.
[154] W. Petz, F. Öxler, K. Aicher, B. Neumüller, Z. anorg. allg. Chem. 2010, 636, 1751-1759.
[155] a) A. Usanmaz, Acta crystallogr. B 1979, B35, 1117-1119; b) Z. Guo, X. Wei, H. Tong, D. Liu, J. Organomet. Chem. 2015, 776, 136-142.
[156] E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, W. Yang, J. Am. Chem. Soc. 2010, 132, 6498-6506.
[157] a) P. Szczeciński, J. Organomet. Chem. 1992, 423, 23-29; b) P. Szczeciński, K. Wiśniewski, J. Organomet. Chem. 1992, 423, C13-C15.
[158] O. Kolodyazhnyi, Russ. J. Gen. Chem 1982, 52, 2361-2362.
[159] G. von Frantzius, A. Espinosa Ferao, R. Streubel, Chem. Sci. 2013, 4, 4309.
[160] M. Yoshifuji, T. Niitsu, K. Toyota, N. Inamoto, K. Hirotsu, Y. Odagaki, T. Higuchi, S. Nagase, Polyhedron 1988, 7, 2213-2216.
[161] E. Ionescu, G. von Frantzius, P. G. Jones, R. Streubel, Organometallics 2005, 24, 2237-2240.
[162] M. Seidl, M. Schiffer, M. Bodensteiner, A. Y. Timoshkin, M. Scheer, Chem. Eur. J. 2013, 19, 13783-13791.
[163] M. Klein, G. Schnakenburg, A. Espinosa Ferao, N. Tokitoh, R. Streubel, Eur. J. Inorg. Chem., submited.
[164] U. Dressler, E. Niecke, S. Pohl, W. Saak, W. W. Schoeller, H.-G. Schäfer, Chem. Commun. 1986, 1086.
[165] J. Kerth, T. Jikyo, G. Maas, Eur. J. Org. Chem. 2003, 2003, 1894-1903.
[166] J. Dietz, J. Renner, U. Bergsträßer, P. Binger, M. Regitz, Eur. J. Org. Chem. 2003, 2003, 512525.
[167] T. Jikyo, G. Maas, Chem. Commun. 2003, 2794.
[168] M. D. Rudd, S. V. Lindeman, S. Husebye, O. R. Konestabo, E. J. Samuelsen, W. T. Robinson, K. Undheim, C. N. Rosendahl, M. Haugg, N. Trabesinger-Rüf et al., Acta Chem. Scand. 1996, 50, 759-774.
[169] N. Tokitoh, T. Sasamori, R. Okazaki, Chem. Lett. 1998, 8, 725-726.
[170] J. Laube, S. Jäger, C. Thöne, Eur. J. Inorg. Chem. 2001, 2001, 1983-1992.
[171] M. L. Helm, P. B. Hitchcock, J. F. Nixon, L. Nyulászi, D. Szieberth, J. Organomet. Chem. 2002, 659, 84-91.
[172] D. D. Perrin, W. L. F. Armarego, Purification of laboratory chemicals, Butterworth Heinemann, Oxford, Boston, 1988.
[173] G. M. Bodner, S. B. Kahl, K. Bork, B. N. Storhoff, J. E. Wuller, L. J. Todd, Inorg. Chem. 1973, 12, 1071-1074.
[174] V. Plack, J. R. Goerlich, A. Fischer, H. Thönnessen, P. G. Jones, R. Schmutzler, Z. Anorg. Allg. Chem. 1995, 621, 1080-1092.
[175] U. Koelle, J. Organomet. Chem. 1977, 133, 53-58.

8. Appendix

8.1 Crystal data and structure refinement of $\mathbf{4 b}$

Table 8.1. Crystal data and structure refinement for 4b.

Identification code	GSTR215, Greg1752f
Device Type	Bruker X8-KappaApexII
Empirical formula	C21 H22 N O6 P W
Moiety formula	C21 H22 N O6 P W
Formula weight	599.22
Temperature/K	$100(2) \mathrm{K}$
Crystal system	Triclinic
Space group	P-1
a/A	8.8600
b/A	$10.8854(5)$
c/A	$12.8306(5)$
$\alpha /{ }^{\circ}$	$86.595(2)$
$\beta /{ }^{\circ}$	$78.246(2)$
Y/	$66.290(2)$
Volume/ \AA^{3}	$1108.89(8)$
Z	2

$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.795
μ / mm^{-1}	5.317
$\mathrm{~F}(000)$	584
Crystal size $/ \mathrm{mm}^{3}$	$0.50 \times 0.27 \times 0.26$
Absorption correction	Semi-empirical from equivalents
Tmin; Tmax	$0.3386 ; 0.1763$
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection ${ }^{\circ}$	3.24 to 28.00°
Completeness to theta	0.996
Index ranges	$-11 \leq \mathrm{h} \leq 11,-174 \leq \mathrm{k} \leq 14,-16 \leq \mathrm{I} \leq 16$
Reflections collected	13781
Independent reflections	$5338[\mathrm{R}(\mathrm{int})=0.0261]$
Data/restraints/parameters	$5338 / 6 / 277$
Goodness-of-fit on F^{2}	1.034
Final R indexes [l>=2 $\sigma(\mathrm{I})]$	$\mathrm{R} 1=0.0174, \mathrm{wR} 2=0.0404$
Final R indexes [all data]	$\mathrm{R} 1=0.0184, \mathrm{wR2}=0.0410$
Largest diff. peak/hole /e \AA^{-3}	$1.121 /-0.936$

8.2 Crystal data and structure refinement of 12

Table 8.2. Crystal data and structure refinement for 12.

Identification code	GSTR253, Greg2252
Device Type	Nonius KappaCCD
Empirical formula	C29 H28 N O6 P W
Moiety formula	C29 H28 N O6 P W
Formula weight	701.34
Temperature/K	$123(2) \mathrm{K}$
Crystal system	Monoclinic
Space group	P 21/n
a/A	$9.32930(10)$
b/A	$18.8398(3)$
c/A	$16.1143(2)$
$\alpha /^{\circ}$	90
$\beta /{ }^{\circ}$	$101.8670(8)$
Y/	90
Volume $/ \AA^{\circ}$	$2771.75(6)$
Z	4
$\rho_{\text {calcg }}{ }^{\circ} / \mathrm{cm}^{3}$	1.681

μ / mm^{-1}	4.268
F(000)	1384
Crystal size/mm ${ }^{3}$	$0.43 \times 0.23 \times 0.10$
Absorption correction	Semi-empirical from equivalents
Tmin; Tmax	0.6749; 0.2612
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	3.18 to 28.00°
Completeness to theta	0.997
Index ranges	$-12 \leq h \leq 11,-23 \leq k \leq 24,-20 \leq 1 \leq 21$
Reflections collected	52522
Independent reflections	6681 [R (int) $=0.0494$]
Data/restraints/parameters	6681 / 63 / 349
Goodness-of-fit on F^{2}	1.086
Final R indexes [$1>=2 \sigma(1)]$	$\mathrm{R} 1=0.0249, w R 2=0.0576$
Final R indexes [all data]	$\mathrm{R} 1=0.0302, w R 2=0.0594$
Largest diff. peak/hole / e \AA^{-3}	1.382/-2.255

8.3 Crystal data and structure refinment of $\mathbf{1 5 f}$

Table 8.3. Crystal data and structure refinement for $\mathbf{1 5 f}$.

Identification code	GSTR221, Greg1803
Device Type	Nonius KappaCCD
Empirical formula	C24 H23 F3 N O5 P W
Moiety formula	C24 H23 F3 N O5 P W
Formula weight	677.25
Temperature/K	$123(2) \mathrm{K}$
Crystal system	Monoclinic
Space group	P $21 / \mathrm{n}$
a/A	$12.3385(4)$
b/A	$16.5060(3)$
c/A	$25.2801(7)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$92.6450(13)$
V/ $^{\circ}$	90
Volume $/ \AA^{\circ}$	$5143.0(2)$
Z	8
$\rho_{\text {calcg } / \mathrm{cm}^{3}}$	1.749

μ / mm^{-1}	4.610
F(000)	2640
Crystal size/mm ${ }^{3}$	$0.27 \times 0.23 \times 0.10$
Absorption correction	Semi-empirical from equivalents
Tmin; Tmax	0.6557; 0.3691
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	2.66 to 27.00°
Completeness to theta	0.992
Index ranges	$-12 \leq h \leq 15,-18 \leq k \leq 20,-28 \leq \mathrm{l} \leq 32$
Reflections collected	33545
Independent reflections	11123 [R (int) $=0.0787$]
Data/restraints/parameters	11123 / 47 / 643
Goodness-of-fit on F^{2}	0.970
Final R indexes [$1>=2 \sigma(1)]$	$\mathrm{R} 1=0.0452, \mathrm{wR2}=0.1086$
Final R indexes [all data]	$\mathrm{R} 1=0.0706, \mathrm{wR} 2=0.1180$
Largest diff. peak/hole / e \AA^{-3}	2.597/-2.512

8.4 Crystal data and structure refinment of 17

Table 8.4. Crystal data and structure refinement for 17.

Identification code
Device Type
Empirical formula
Moiety formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
$c / A ̊$
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume/Å ${ }^{3}$
Z

GSTR248, 2235f
Nonius KappaCCD
C29 H31 N2 06 P W
C29 H31 N2 O6 P W
718.38

123(2) K
Triclinic
P-1
8.6782(12)
10.8622(16)
17.391(3)
105.044(7)
93.225(7)
111.375(4)
1453.4(4)

2

$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.642
μ / mm^{-1}	4.073
F(000)	712
Crystal size/mm ${ }^{3}$	$0.22 \times 0.16 \times 0.08$
Absorption correction	Empirical
Tmin; Tmax	0.7365; 0.4677
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	2.10 to 26.00°
Completeness to theta	0.999
Index ranges	$-10 \leq h \leq 10,-13 \leq k \leq 13,-21 \leq 1 \leq 21$
Reflections collected	38310
Independent reflections	5716 [R (int) $=0.0439$]
Data/restraints/parameters	5716 / 149 / 359
Goodness-of-fit on F^{2}	1.148
Final R indexes [$1>=2 \sigma(1)]$	$\mathrm{R} 1=0.0544, w R 2=0.1279$
Final R indexes [all data]	$\mathrm{R} 1=0.0650, w R 2=0.1339$
Largest diff. peak/hole / e Å ${ }^{-3}$	3.117/-1.861

8.5. Crystal data and structure refinement for 21a

Table 8.5. Crystal data and structure refinement for 21a.

Identification code	Jmv
Device Type	SPring-8
Empirical formula	C31 H29 N2 O5 P W
Moiety formula	C31 H29 N2 O5 P W
Formula weight	724.38
Temperature/K	93(2) K
Crystal system	Monoclinic
Space group	P2/a
a/Å	13.91610(10)
b/Å	13.26790(10)
c / \AA	16.14500(10)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	104.1771(4)
$\mathrm{Y} /{ }^{\circ}$	90
Volume/Å	2890.18(4)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.665

μ / mm^{-1}	5.518
F(000)	1432
Crystal size/mm ${ }^{3}$	$0.02 \times 0.01 \times 0.01$
Absorption correction	Empirical
Tmin; Tmax	0.9469; 0.8976
Radiation	MoK $\alpha(\lambda=0.80000)$
2Θ range for data collection/ ${ }^{\circ}$	1.46 to 29.5°
Completeness to theta	0.984
Index ranges	$\begin{aligned} & -10 \leq h \leq 10,-13 \leq k \leq 13,-21 \leq \\ & \mathrm{l} \leq 21 \end{aligned}$
Reflections collected	64704
Independent reflections	5358 [R (int) $=0.0528$]
Data/restraints/parameters	5358/31/443
Goodness-of-fit on F^{2}	1.101
Final R indexes [l>=2 $\sigma(1)$]	$R 1=0.0315, w R 2=0.0878$
Final R indexes [all data]	$R 1=0.0319, w R 2=0.0885$
Largest diff. peak/hole / e \AA^{-3}	0.815/-3.198
Disorder (79:21), $\mathrm{iPr}-\mathrm{N}=\mathrm{C}-\mathrm{N}-\mathrm{iPr}$	moiety

8.6. Crystal data and structure refinement for 22a

Table 8.6. Crystal data and structure refinement for 22a.

Identification code
Device Type
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$Y /{ }^{\circ}$
Volume/Å ${ }^{3}$
Z
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Absorption correction
Tmin; Tmax
Radiation

318 // GXray3299f
Bruker X8-KappaApex-II
$\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{PW}$
616.29
100.15

Triclinic
P-1
10.9909(5)
11.0605(6)
12.8740(10)
108.084(4)
95.194(4)
118.186(2)
1257.68(14)

2
1.627
4.688
608.0
$0.26 \times 0.06 \times 0.02$
empirical
0.5393; 0.7460

MoK $\alpha(\lambda=0.71073)$

2Θ range for data collection/	6.316 to 55.994°
Completeness to theta	0.996
Index ranges	$-14 \leq \mathrm{h} \leq 14,-14 \leq \mathrm{k} \leq 14,-16 \leq \mathrm{I} \leq 16$
Reflections collected	12812
Independent reflections	$6035\left[\mathrm{R}_{\text {int }}=0.0322, \mathrm{R}_{\text {sigma }}=0.0489\right]$
Data/restraints/parameters	$6035 / 2 / 339$
Goodness-of-fit on F^{2}	1.026
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0290, \mathrm{wR}_{2}=0.0569$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0409, \mathrm{wR}_{2}=0.0610$
Largest diff. peak/hole $/$ e \AA^{-3}	$0.97 /-1.27$

8.7. Crystal data and structure refinement for $\mathbf{2 5}$

Table 8.7. Crystal data and structure refinement for 25.

Identification code	GSTR270, 2433f
Device Type	Nonius KappaCCD
Empirical formula	C28 H39 N2 O5 P W
Formula weight	698.43
Temperature/K	123(2)
Crystal system	triclinic
Space group	P-1
a/Å	11.7278(12)
b/Å	12.0308(12)
$c / A ̊$	12.1600(12)
$\alpha /{ }^{\circ}$	65.513(3)
$\beta /{ }^{\circ}$	72.612(4)
$\mathrm{V} /{ }^{\circ}$	69.370(4)
Volume/Å ${ }^{3}$	1437.6(2)
Z	2
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.614
μ / mm^{-1}	4.112
F(000)	700
Crystal size/mm ${ }^{3}$	$0.40 \times 0.38 \times 0.32$
Absorption correction	empirical
Tmin; Tmax	0.3528; 0.2900

Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection/	1.89 to 28.00°
Completeness to theta	0.999
Index ranges	$-15 \leq \mathrm{h} \leq 15,-15 \leq \mathrm{k} \leq 15,-16 \leq \mathrm{I} \leq 16$
Reflections collected	80361
Independent reflections	$60356938[\mathrm{R}(\mathrm{int})=0.0279]$
Data/restraints/parameters	$6938 / 92 / 345$
Goodness-of-fit on F^{2}	1.209
Final R indexes [l>=2 $\sigma(\mathrm{I})]$	$\mathrm{R} 1=0.0206, \mathrm{wR2}=0.0460$
Final R indexes [all data]	$\mathrm{R} 1=0.0255, \mathrm{wR2}=0.0502$
Largest diff. peak/hole $/$ e \AA^{-3}	$2.777 /-1.659$

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for JMV227-iF3. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	U (eq)
W	2258 (1)	3890 (1)	8749 (1)	14(1)
P	2797 (1)	1875(1)	8156(1)	12 (1)
O(1)	1952 (2)	5951(2)	9840 (2)	31 (1)
O(2)	523 (2)	2527 (2)	11143 (2)	27 (1)
O(3)	-154 (2)	5566(2)	7567 (2)	30 (1)
O(4)	3811 (2)	5358 (2)	6277 (2)	32 (1)
O(5)	4726 (2)	2433 (3)	9877 (2)	34 (1)
N(1)	2814 (2)	2435 (2)	5778 (2)	12 (1)
N(2)	4641 (2)	2474(2)	6157 (2)	13 (1)
C (1)	3499 (2)	2303 (2)	6545 (2)	11 (1)
C (2)	3159 (2)	2878 (2)	4418 (2)	14(1)
C (3)	3307 (3)	4229 (3)	3862 (2)	18 (1)
C (4)	3528 (3)	4665 (3)	2455 (3)	30 (1)
C (5)	4628 (4)	3745 (3)	1974 (3)	33 (1)
C (6)	4455 (3)	2410 (3)	2539 (3)	29 (1)
C (7)	4259 (3)	1941(3)	3942 (3)	19(1)
C (8)	5556 (2)	1894(2)	6973 (2)	12 (1)
C (9)	6090 (3)	493(3)	7163 (3)	21 (1)
C(10)	7050 (3)	-115 (3)	8001 (4)	31 (1)
C (11)	8069 (3)	567 (3)	7507 (3)	26 (1)
C (12)	7528 (3)	1966(3)	7305 (3)	25 (1)
C (13)	6572 (3)	2575 (3)	6457 (3)	20 (1)
C (14)	1540 (2)	2230 (2)	6350 (2)	13 (1)
C (15)	1555 (2)	1544(2)	7756 (2)	13 (1)
C (16)	1906 (2)	147 (3)	7904 (2)	16 (1)
C (17)	1750(3)	23 (3)	6883 (3)	20 (1)
C (18)	1399 (2)	1228(3)	5965 (3)	16 (1)
C (19)	590 (2)	3499 (3)	5981 (3)	18 (1)
C (20)	291 (2)	1857(3)	8569 (3)	18 (1)

C (21)	2256 (3)	-856(3)	9021(3)	27 (1)
C (22)	1878(4)	-1204 (3)	6751 (3)	31 (1)
C (23)	955 (3)	1472 (3)	4930 (3)	28 (1)
C (24)	2044 (3)	5207 (3)	9432 (3)	20 (1)
C (25)	1157 (3)	2998 (3)	10294 (2)	17 (1)
C (26)	712 (3)	4928 (3)	7990 (3)	18 (1)
C (27)	3264 (3)	4807 (3)	7169 (3)	18 (1)
C (28)	3830 (3)	2934(3)	9493(2)	18 (1)

Table 3. Bond lengths [A] and angles [deg] for JMV227-iF3.

W-C (24)	1.987 (3)
W-C (27)	2.026 (3)
W-C (26)	2.036 (3)
W-C (28)	2.045 (3)
W-C (25)	2.050 (3)
W-P	2.6253 (7)
$\mathrm{P}-\mathrm{C}(1)$	1.810 (3)
$\mathrm{P}-\mathrm{C}$ (15)	1.874 (3)
P-H (24)	1.41 (3)
O(1)-C(24)	1.152 (4)
O(2) - C (25)	1.137(3)
O (3) - C (26)	1.149 (4)
O (4) - C (27)	1.146 (4)
O(5)-C (28)	1.140 (4)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.333(3)
$\mathrm{N}(1)-\mathrm{C}(2)$	1.484 (3)
$\mathrm{N}(1)-\mathrm{C}(14)$	1.509(3)
$\mathrm{N}(2)-\mathrm{C}(1)$	1.339 (3)
$\mathrm{N}(2)-\mathrm{C}(8)$	1.470 (3)
$\mathrm{N}(2)-\mathrm{H}(25)$	0.84 (3)
$\mathrm{C}(2)-\mathrm{C}(7)$	1.529(4)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.532 (4)
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	1.0000
C (3)-C (4)	1.534 (4)
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9900
C (3) $-\mathrm{H}(3 \mathrm{~B})$	0.9900
$\mathrm{C}(4)-\mathrm{C}(5)$	1.520 (5)
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9900
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	0.9900
$\mathrm{C}(5)-\mathrm{C}(6)$	1.526 (4)
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9900
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	0.9900
$C(6)-C(7)$	1.530 (4)
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9900
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	0.9900
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9900
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	0.9900
C (8) - C (13)	1.516(4)
C (8) -C (9)	1.519 (4)
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	1.0000
C (9)-C (10)	1.526 (4)
C (9)-H (9A)	0.9900

$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	0.9900
$\mathrm{C}(10)-\mathrm{C}(11)$	1.522 (4)
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9900
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	0.9900
$\mathrm{C}(11)-\mathrm{C}(12)$	1.514(4)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9900
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.9900
$\mathrm{C}(12)-\mathrm{C}(13)$	1.531(4)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9900
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9900
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9900
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	0.9900
C (14)-C (19)	1.518 (4)
$\mathrm{C}(14)-\mathrm{C}(18)$	1.533 (4)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.563 (3)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.527(4)
$\mathrm{C}(15)-\mathrm{C}(20)$	1.535 (4)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.381(4)
$\mathrm{C}(16)-\mathrm{C}(21)$	1.447 (4)
C (17) - C (18)	1.425 (4)
$\mathrm{C}(17)-\mathrm{C}(22)$	1.500 (4)
$\mathrm{C}(18)-\mathrm{C}(23)$	1.386 (4)
C (19) - H (19A)	0.9800
C (19) - $\mathrm{H}(19 \mathrm{~B})$	0.9800
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	0.9800
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9800
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9800
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	0.9800
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9800
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	0.9800
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	0.9800
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9800
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	0.9800
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	0.9800
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	0.9800
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	0.9800
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	0.9800

C (24) -W-C (27)
90.42 (11)

C (24) -W-C (26)
C (27) -W-C (26)
C (24) -W-C (28)
C (27) -W-C (28)
$\mathrm{C}(26)-\mathrm{W}-\mathrm{C}(28)$
$\mathrm{C}(24)-\mathrm{W}-\mathrm{C}(25)$
C (27) -W-C (25)
C (26) -W-C (25)
C (28) $-W-C(25)$
C (24) $-W-P$
C (27) $-W-P$
$90.18(11)$
$88.28(11)$
87.37 (11)
$90.03(11)$
177.01(11)
$90.53(11)$
176.70 (11)
88.56 (11)
93.17(11)
169.37(8)
93.46(8)

C (26) $-W-P$
99.83(8)
82.73(8)
86.16(8)
87.96(11)
106.66(8)
$118.95(9)$
117.7(13)
113.1(13)

```
W-P-H(24)
110.8(13)
W-P-H(24)
C(1) -N (1) -C (14)
C(2)-N(1)-C(14)
C(1)-N(2)-C(8)
C(1) -N (2) -H (25)
C (8) -N (2) -H (25)
N(1) -C (1) -N (2)
N(1) -C (1) -P
N(2) -C (1) -P
N(1)-C(2)-C(7)
N(1) -C (2) -C (3)
C(7) -C (2) - C (3)
N(1) -C (2) -H (2A)
C(7)-C (2)-H(2A)
C(3)-C (2) -H (2A)
C(2)-C(3)-C(4)
C (2) - C (3) -H (3A)
C (4)-C (3)-H(3A)
C (2) -C (3) -H (3B)
C(4)-C(3)-H(3B)
H(3A) -C (3) -H(3B)
C(5)-C(4)-C(3)
C (5) -C (4) -H (4A)
C (3) -C (4)-H (4A)
C (5) -C (4) -H (4B)
C (3) -C (4) -H (4B)
H(4A) -C (4)-H(4B)
C(4)-C (5)-C (6)
C(4)-C (5) -H (5A)
C (6) -C (5) -H (5A)
C (4)-C (5) -H (5B)
C(6)-C (5)-H(5B)
H(5A) -C (5) -H(5B)
C(5)-C(6)-C(7)
C (5) -C (6) -H (6A)
C(7)-C (6)-H (6A)
C(5)-C(6)-H(6B)
C (7) -C (6) -H (6B)
H(6A)-C (6) -H (6B)
C (2) - C (7) - C (6)
C(2)-C (7) -H (7A)
C (6)-C (7) -H (7A)
C(2)-C (7) -H (7B)
C(6)-C (7) -H(7B)
H(7A) -C (7) -H(7B)
N(2) -C (8) -C (13)
N(2) -C (8) -C (9)
C(13)-C (8)-C(9)
N(2)-C (8) -H(8A)
C(13)-C(8)-H(8A)
C (9) -C (8) -H (8A)
C (8) -C (9) -C (10)
C (8) -C (9) -H (9A)
C (10) -C (9) -H(9A)
C(8)-C (9) -H (9B)
C(10)-C (9) -H(9B)
H(9A) -C (9) -H(9B)
C(11)-C(10)-C(9)
125.3(2)
116.3(2)
118.15(19)
121.9(2)
117(2)
117(2)
122.3(2)
116.08(18)
121.57(19)
113.3(2)
113.0(2)
112.9(2)
105.6
105.6
105.6
109.8(2)
109.7
109.7
109.7
109.7
108.2
111.2(3)
109.4
109.4
109.4
109.4
108.0
111.2(3)
109.4
109.4
109.4
109.4
108.0
111.3(2)
109.4
109.4
109.4
109.4
108.0
109.4(2)
109.8
109.8
109.8
109.8
108.2
110.3(2)
110.6(2)
111.0(2)
108.3
108.3
108.3
110.9(2)
109.5
109.5
109.5
109.5
108.0
111.3(3)
```

```
C(11)-C(10)-H(10A)
C(9)-C(10)-H(10A)
C(11)-C(10)-H(10B)
C(9)-C(10)-H(10B)
H(10A) -C (10) -H(10B)
C(12)-C(11)-C(10)
C(12)-C(11)-H(11A)
C(10)-C(11)-H(11A)
C(12)-C(11)-H(11B)
C(10)-C(11) -H (11B)
H(11A) - C (11) -H(11B)
C(11)-C(12) -C (13)
C(11)-C(12)-H(12A)
C(13) -C (12) -H(12A)
C(11) -C (12) -H (12B)
C(13)-C(12)-H(12B)
H(12A) -C (12) -H(12B)
C(8) -C (13) -C(12)
C(8)-C(13)-H(13A)
C(12)-C(13)-H(13A)
C(8)-C(13)-H(13B)
C(12)-C(13)-H(13B)
H(13A) -C (13) -H (13B)
N(1) -C (14) -C(19)
N(1) -C (14) -C (18)
C(19)-C(14)-C(18)
N(1) -C (14)-C(15)
C(19) -C (14) -C (15)
C(18) -C (14) -C (15)
C(16)-C(15) -C (20)
C(16)-C(15) -C (14)
C (20) -C (15) -C (14)
C (16) -C (15) -P
C(20) -C (15) -P
C(14)-C (15) -P
C(17)-C(16) -C (21)
C(17)-C(16) -C (15)
C(21) -C (16) -C (15)
C(16)-C(17)-C(18)
C(16)-C(17) -C (22)
C(18)-C(17) -C (22)
C(23) -C (18) -C (17)
C(23) -C (18) -C (14)
C(17)-C(18)-C(14)
C(14)-C(19)-H(19A)
C(14)-C(19)-H(19B)
H(19A) -C (19) - H (19B)
C(14)-C(19)-H(19C)
H(19A) - C (19) -H (19C)
H(19B) - C (19) -H (19C)
C(15) -C (20) -H(20A)
C (15) -C (20) -H (20B)
H (20A) -C (20) -H (20B)
C (15) -C (20)-H (20C)
H (20A) - C (20) - H (20C)
H(20B) - C (20) -H (20C)
C (16) -C (21) -H (21A)
C(16)-C (21) -H (21B)
H(21A) - C (21) -H (21B)
```

109.4
109.4
109.4
109.4
108.0
110.8(3)
109.5
109.5
109.5
109.5
108.1
111.6(2)
109.3
109.3
109.3
109.3
108.0
110.2(2)
109.6
109.6
109.6
109.6
108.1
108.4(2)
108.7(2)
114.2(2)
105.41(19)
116.2 (2)
103.3(2)
108.7(2)
102.8(2)
113.7 (2)
$109.58(17)$
112.22(18)
109.38(16)
127.4(3)
110.3(2)
122.2(2)
111.1(2)
125.5(3)
123.4(3)
126.4(3)
125.4 (3)
108.1(2)
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5

```
        C(16)-C(21)-H(21C)
    H(21A)-C(21)-H(21C) 109.5
    H (21B) - C (21) -H (21C)
    C(17)-C(22)-H(22A)
    C (17) -C (22) -H (22B)
    H (22A) - C (22) - H (22B)
    C(17)-C(22)-H(22C)
    H(22A)-C(22)-H(22C) 109.5
    H (22B) -C (22) -H (22C)
    C (18) -C (23) -H (23A)
    C (18) -C (23) -H (23B)
H(23A) -C (23) -H (23B)
    C(18) -C (23)-H (23C)
    H (23A) - C (23) -H (23C)
    H (23B) -C (23) -H (23C)
    O(1)-C(24)-W
O(2)-C(25)-W 178.4(2)
    O(3)-C (26) -W
    O(4)-C (27) -W
    O(5) -C (28) -W
        109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
178.0(3)
176.6(2)
178.1(3)
O(5)-C(28)-W 177.6(3)
```

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for JMV227iF3.

The anisotropic displacement factor exponent takes the form:

```
-2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ]
```

	U11	U22	U33	U23	U13	U12
W	16(1)	14 (1)	13 (1)	-5 (1)	-2 (1)	-4 (1)
P	11 (1)	14 (1)	10 (1)	-4 (1)	-2 (1)	-5 (1)
O(1)	$39(1)$	23 (1)	35 (1)	-16(1)	-9(1)	-5 (1)
O(2)	22 (1)	24 (1)	23 (1)	-2 (1)	4 (1)	-4 (1)
O (3)	29 (1)	27 (1)	31 (1)	-11(1)	-17(1)	5 (1)
O(4)	35 (1)	32 (1)	22 (1)	1 (1)	0 (1)	-18(1)
O (5)	22 (1)	56 (2)	28 (1)	-24(1)	-11(1)	3 (1)
$\mathrm{N}(1)$	11 (1)	14(1)	11 (1)	-3(1)	-2 (1)	-6(1)
N(2)	13 (1)	17 (1)	10 (1)	-2 (1)	-3 (1)	-6(1)
C (1)	13 (1)	9 (1)	13 (1)	-4 (1)	-3(1)	-3(1)
C (2)	17 (1)	17(1)	10 (1)	-3(1)	-4 (1)	-8(1)
C (3)	26 (1)	14(1)	15 (1)	-2 (1)	-6(1)	-8(1)
C (4)	50 (2)	26 (2)	15 (1)	3 (1)	-9(1)	-21(2)
C (5)	57 (2)	36 (2)	14(1)	-7 (1)	5 (1)	-31(2)
C (6)	43 (2)	34 (2)	17 (1)	-13(1)	5 (1)	-22 (2)
C (7)	24 (1)	18(1)	17 (1)	-10(1)	1 (1)	-8(1)

C (8)	12 (1)	12 (1)	14(1)	-3(1)	-5 (1)	-3(1)
C (9)	17 (1)	13 (1)	37 (2)	-7 (1)	-11(1)	-4(1)
C (10)	27 (2)	16 (1)	49 (2)	-1 (1)	-22(2)	-4(1)
C (11)	17 (1)	27 (2)	36 (2)	-12(1)	-11(1)	-3(1)
C (12)	23 (2)	24 (2)	37 (2)	-7 (1)	-17(1)	-9(1)
C (13)	21 (1)	13 (1)	28 (2)	-3(1)	-10(1)	-8(1)
C (14)	11 (1)	14 (1)	14(1)	-3(1)	-4 (1)	-5 (1)
C (15)	11 (1)	16 (1)	13 (1)	-4 (1)	-1 (1)	-6(1)
C (16)	13 (1)	17 (1)	17 (1)	-4 (1)	0 (1)	-8(1)
C (17)	20 (1)	20 (1)	22 (1)	-9(1)	4 (1)	-11(1)
C (18)	14(1)	19 (1)	20 (1)	-8(1)	-1 (1)	-9(1)
C (19)	15 (1)	18 (1)	21 (1)	-6(1)	-6(1)	-2 (1)
C (20)	12 (1)	27 (1)	19(1)	-10 (1)	2 (1)	-8(1)
C (21)	26 (2)	19 (1)	33 (2)	-3(1)	-4 (1)	-11(1)
C (22)	51 (2)	22 (2)	26 (2)	-10 (1)	1 (2)	-19(2)
C (23)	28 (2)	32 (2)	34 (2)	-13(1)	-9(1)	-14(1)
C (24)	23 (1)	19 (1)	18 (1)	-6(1)	-4 (1)	-6(1)
C (25)	16(1)	14 (1)	16(1)	-5 (1)	-4 (1)	1 (1)
C (26)	21 (1)	17 (1)	17 (1)	-8(1)	-4 (1)	-3(1)
C (27)	21 (1)	16 (1)	19(1)	-5 (1)	-6(1)	-4(1)
C (28)	21 (1)	25 (1)	13 (1)	-13(1)	-1 (1)	-4 (1)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for JMV227-iF3.

	x	y	z	U (eq)
H (24)	3470 (30)	800 (30)	8990 (30)	14
H (25)	4910 (30)	2700(30)	5390 (30)	16
H (2A)	2436	2918	4115	17
H (3A)	4016	4254	4125	22
H (3B)	2551	4806	4157	22
H (4A)	2778	4732	2192	36
H (4B)	3681	5514	2101	36
H (5A)	5392	3737	2171	40
H (5B)	4726	4032	1069	40
H (6A)	5194	1828	2229	34
H (6B)	3730	2404	2285	34
H (7A)	4097	1096	4289	23
H (7B)	5014	1864	4203	23
H (8A)	5128	1984	7788	15
H (9A)	6480	384	6359	26
H (9B)	5413	64	7532	26
H (10A)	6639	-89	8832	37
H (10B)	7420	-1013	8069	37
H (11A)	8643	193	8098	31
H (11B)	8547	454	6721	31
H (12A)	8203	2396	6939	30
H (12B)	7131	2080	8106	30

H (13A)	6207	3477	6376	24
H(13B)	6982	2533	5631	24
H(19A)	656	3840	5086	22
H(19B)	744	4089	6249	22
H(19C)	-244	3387	6369	22
H(20A)	37	2761	8453	22
H(20B)	354	1359	9433	22
H(20C)	-325	1652	8342	22
H(21A)	1683	-667	9733	32
H(21B)	3100	-920	9060	32
H(21C)	2221	-1660	9026	32
H(22A)	1065	-1246	6734	37
H(22B)	2209	-1912	7449	37
H(22C)	2444	-1254	5986	37
H(23A)	1631	1545	4219	34
H(23B)	298	2266	4781	34
H(23C)	622	778	5058	34

Table 6. Torsion angles [deg] for JMV227-iF3.

```
C(24)-W-P-C(1)
C (27)-W-P-C(1)
C (26)-W-P-C (1)
C (28)-W-P-C(1)
C (25) -W-P-C (1)
C(24)-W-P-C (15)
C (27)-W-P-C (15)
C(26)-W-P-C (15)
C(28)-W-P-C (15)
C (25) -W-P-C (15)
C (2) -N (1) -C (1) -N (2)
C (14)-N(1) -C (1) -N (2)
C(2) -N (1)-C (1)-P
C(14)-N(1)-C (1) -P
C(8)-N (2) -C (1) -N (1)
C (8) -N (2) -C (1) -P
C(15)-P-C(1)-N(1)
W-P-C(1)-N(1)
C(15)-P-C (1)-N(2)
W-P-C(1)-N(2)
C (1) -N (1) -C (2) - C (7)
C(14)-N(1)-C(2)-C(7)
C(1)-N(1)-C(2)-C(3)
C(14)-N(1)-C(2)-C(3)
N(1)-C(2)-C(3)-C(4)
C(7)-C(2)-C(3)-C(4)
C(2)-C(3)-C(4)-C(5)
C (3)-C(4)-C(5)-C(6)
C(4)-C (5)-C (6) -C (7)
N(1) -C (2) -C (7) -C (6)
C(3)-C(2)-C(7)-C(6)
C (5) -C (6) -C (7) -C (2)
C(1) -N (2) -C (8)-C(13)
C(1)-N(2)-C(8)-C(9)
-123.2(5)
    -12.02(12)
    76.83(12)
    -101.61(12)
    164.69(11)
    139.7(5)
    -109.10(12)
    -20.25(12)
    161.31(12)
        67.61(12)
        -5.2(4)
    174.89(19)
        0.9(3)
-156.7(2)
    11.3(2)
    18.1(2)
    -62.0(3)
    112.0(2)
-174.1(2)
    55.8(3)
    -55.1(3)
        56.7(4)
    -57.3(4)
    173.9(2)
    -56.1(3)
        56.0(4)
-160.8(2)
    76.0(3)
```

```
N(2) -C (8) -C (9) - C(10)
C(13)-C(8)-C(9) -C (10)
C (8) -C (9) -C (10) -C (11)
C(9)-C(10)-C(11)-C(12)
C(10)-C(11)-C (12) -C (13)
N(2) -C (8) -C(13) -C(12)
C(9)-C(8)-C(13) -C (12)
C(11)-C (12) -C (13) -C (8)
C(1)-N(1)-C(14)-C(19)
C(2)-N(1)-C(14)-C(19)
C(1)-N(1)-C(14)-C(18)
C(2)-N(1)-C(14)-C(18)
C(1) -N (1) -C (14)-C(15)
C(2)-N(1)-C(14)-C(15)
N(1) -C (14)-C(15) -C (16)
C(19)-C(14)-C(15)-C(16)
C(18)-C(14)-C(15)-C(16)
N(1) -C (14) -C (15) -C (20)
C(19)-C(14)-C(15)-C(20)
C(18)-C(14)-C(15)-C (20)
N(1) -C (14) -C (15) -P
C(19)-C(14)-C(15)-P
C(18)-C(14)-C(15)-P
C(1)-P-C (15)-C (16)
W-P-C(15)-C(16)
C(1)-P-C(15)-C(20)
W-P-C(15)-C(20)
C(1)-P-C(15)-C(14)
W-P-C(15)-C(14)
C(20)-C(15)-C(16)-C (17)
C(14)-C(15)-C(16)-C (17)
P-C(15)-C(16)-C(17)
C(20)-C(15)-C (16)-C (21)
C(14)-C(15)-C(16)-C(21)
P-C(15)-C (16) -C (21)
C(21)-C(16)-C(17)-C(18)
C(15)-C(16)-C(17)-C(18)
C(21)-C(16)-C(17)-C(22)
C(15)-C(16)-C(17)-C(22)
C(16)-C(17)-C(18)-C(23)
C(22)-C(17)-C(18)-C(23)
C(16)-C(17)-C(18)-C(14)
C(22)-C(17)-C(18)-C(14)
N(1) -C (14) -C (18) -C (23)
C(19)-C(14)-C(18)-C(23)
C(15)-C(14)-C(18)-C(23)
N(1) -C (14)-C(18) -C (17)
C(19)-C(14)-C(18)-C(17)
C(15)-C(14)-C(18)-C(17)
C(27) -W-C (24)-O(1)
C (26) -W-C (24)-O (1)
C(28)-W-C (24)-O(1)
C (25)-W-C (24)-O(1)
P-W-C (24)-O(1)
C(24)-W-C (25)-O(2)
C (27) -W-C (25) -O (2)
C (26) -W-C (25)-O (2)
C(28)-W-C (25)-O(2)
P-W-C(25)-O(2)
179.5(2)
    56.7(3)
    -55.6(4)
    55.0(4)
    -55.7(4)
-179.7(2)
    -56.8(3)
    56.6(3)
    109.6(2)
    -64.9(3)
-125.7(2)
    59.8(3)
    -15.5(3)
    170.0(2)
    -93.8(2)
    146.2(2)
    20.3(2)
    148.9(2)
        28.9(3)
    -97.0(2)
    22.6(2)
    -97.4(2)
    136.67(18)
        92.62(18)
-159.42(14)
-146.5(2)
    -38.6(2)
    -19.40(18)
        88.56(17)
    104.9(3)
    -15.9(3)
-132.1(2)
    -71.0(3)
    168.2(2)
        52.0(3)
    179.9(3)
        4.3(3)
        2.1(5)
-173.5(3)
-167.6(3)
            10.2(5)
            9.8(3)
-172.4(3)
    -90.0(3)
        31.3(4)
    158.4(3)
    92.6(2)
-146.2(2)
    -19.0(3)
    -85(8)
-173(8)
            5 (8)
        98(8)
        26(8)
        69(9)
    -38(10)
    -21(9)
    156(9)
-121(9)
```

```
    C(24)-W-C (26)-O (3)
C (27) -W-C (26)-O (3)
    C(28) -W-C (26)-O (3)
C(25)-W-C (26)-O (3)
P-W-C (26)-O (3)
C (24)-W-C (27)-O(4)
C(26)-W-C (27) -O (4)
C (28) -W-C (27)-O (4)
C (25) -W-C (27) -O (4)
P-W-C (27)-O(4)
C(24)-W-C (28)-O(5)
C (27) -W-C (28) -O (5)
C (26) -W-C (28)-O (5)
C(25)-W-C (28)-O (5)
P-W-C (28)-O(5)
    21(4)
    -70(4)
-14(6)
111(4)
-163(4)
    -38(8)
    52(8)
125(8)
69(8)
152(8)
-70(6)
    20(6)
    -36(7)
-161(6)
    113(6)
```

Symmetry transformations used to generate equivalent atoms:
8.8. Crystal data and structure refinement for 27

Table 8.8. Crystal data and structure refinement for 27.

Identification code	GSTR381, $3700 f$
Empirical formula	$\mathrm{C}_{34} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{PW}$
Formula weight	782.49
Temperature/K	100
Crystal system	triclinic
Space group	$\mathrm{P}-1$
a/A	$9.4161(5)$
b/Å	$11.5014(6)$
c/Å	$15.6035(8)$
$\alpha /{ }^{\circ}$	$86.325(2)$
$\beta /{ }^{\circ}$	$83.413(2)$
$\gamma /{ }^{\circ}$	$77.206(2)$
Volume $/ \AA^{3}$	$1635.69(15)$
Z	2
$\rho_{\text {calcg } / \mathrm{cm}^{3}}$	1.589
μ / mm^{-1}	3.625
$\mathrm{~F}(000)$	782.0
Crystal size $/ \mathrm{mm}^{3}$	$0.15 \times 0.06 \times 0.04$

Absorption correction
Tmin; Tmax
Radiation
2Θ range for data collection/ ${ }^{\circ}$
Completeness to theta
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[1>=2 \sigma(1)]$
Final R indexes [all data]
Largest diff. peak/hole /e \AA^{-3}
Identification code
empirical
0.5544; 0.7460

MoK $\alpha(\lambda=0.71073)$
5.1 to 56°
0.977
$-12 \leq h \leq 12,-15 \leq k \leq 15,-20 \leq 1$
≤ 19
31825
$7732\left[\mathrm{R}_{\text {int }}=0.0357, \mathrm{R}_{\text {sigma }}=\right.$ 0.0313]

7732/0/403
1.159
$\mathrm{R}_{1}=0.0344, \mathrm{wR}_{2}=0.0918$
$\mathrm{R}_{1}=0.0389, \mathrm{wR}_{2}=0.0948$
3.89/-1.58

GSTR381, 3700f

Table 2 Bond Lengths for $3700 f$.
Atom Atom Length/i̊ Atom Atom Length/Å

W	P	2.5094 (10)	C5	C7	1.527(7)
W	C30	2.017 (5)	C8	C9	1.525 (6)
W	C34	2.030 (5)	C8	C10	1.541 (6)
W	C31	2.065 (4)	C 11	C12	1.522 (6)
W	C32	2.032 (5)	C11	C18	1.549(5)
W	C33	2.050 (4)	C11	C24	1.531(6)
P	N1	1.704 (4)	C 12	C13	1.402 (6)
P	N2	1.713 (4)	C12	C17	1.398 (6)
P	C1	2.290 (5)	C 13	C14	1.387 (7)
P	C11	1.962 (4)	C14	C15	1.394 (7)
O1	C30	1.129 (6)	C15	C16	1.372 (7)
O2	C31	1.129 (5)	C16	C17	1.388(7)
O3	C32	1.154 (6)	C18	C19	1.403(6)
O4	C33	1.143 (5)	C18	C23	1.393(6)
O5	C34	1.154 (6)	C19	C20	1.389(6)
N1	C1	1.400 (6)	C20	C21	1.390 (7)
N1	C2	1.470 (5)	C21	C22	1.388 (7)
N2	C1	1.442 (5)	C22	C23	1.397 (6)
N2	C8	1.477 (5)	C24	C25	1.398 (6)
N3	C1	1.249 (6)	C24	C29	1.404 (7)
N3	C5	1.456 (6)	C25	C26	1.403(7)
C2	C3	1.524 (6)	C26	C27	1.374 (9)
C2	C4	1.532 (6)	C27	C28	1.381(8)

C5 C6 1.532(7) C28 C29 1.395(7)

Table 3 Bond Angles for 3700f.

Atom		Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C30	W	P	176.33(13)	N3	C5	C6	106.6(4)
C30	W	C34	86.19(18)	N3	C5	C7	109.7(4)
C30	W	C31	87.08(18)	C7	C5	C6	111.1(4)
C30	W	C32	90.20(18)	N2	C8	C9	112.9(4)
C30	W	C33	89.27(17)	N2	C8	C10	113.5(4)
C34	W	P	97.48(12)	C9	C8	C10	112.3(4)
C34	W	C31	91.58(16)	C 12	C11	P	108.2(3)
C34	W	C32	176.39(16)	C 12	C11	C18	110.2(3)
C34	W	C33	90.54(17)	C 12	C11	C24	111.8(3)
C31	W	P	92.72(12)	C 18	C11	P	105.5(3)
C32	W	P	86.13(12)	C 24	C11	P	109.9(3)
C32	W	C31	88.06(17)	C 24	C11	C18	111.0(3)
C32	W	C33	89.58(17)	C 13	C12	C11	120.3(4)
C33	W	P	90.77(12)	C 17	C12	C11	122.2(4)
C33	W	C31	175.65(15)	C 17	C12	C13	117.5(4)
N1	P	W	113.80(13)	C 14	C13	C12	121.4(4)
N1	P	N2	76.38(17)	C 13	C14	C15	119.6(4)
N1	P	C1	37.55(16)	C 16	C15	C14	119.8(5)
N1	P	C11	109.25(17)	C 15	C16	C17	120.6(4)
N2	P	W	118.72(13)	C16	C17	C12	121.0(4)
N2	P	C1	38.98(16)	C 19	C18	C11	119.8(4)
N2	P	C11	104.43(18)	C 23	C18	C11	122.1(4)
C1	P	W	121.62(11)	C 23	C18	C19	117.9(4)
C11	P	W	124.16(13)	C 20	C19	C18	121.3(4)
C11	P	C1	114.21(17)	C 19	C20	C21	120.2(4)
C1	N1	P	94.6(3)	C 22	C21	C20	119.2(4)
C1	N1	C2	128.3(4)	C 21	C22	C23	120.5(4)
C2	N1	P	136.7(3)	C 18	C23	C22	120.8(4)
C1	N2	P	92.7(3)	C 25	C24	C11	121.6(4)
C1	N2	C8	133.0(4)	C 25	C24	C29	117.4(4)
C8	N2	P	127.1(3)	C 29	C24	C11	120.8(4)
C1	N3	C5	123.8(4)	C 24	C25	C26	120.6(5)
N1	C1	P	47.9(2)	C 27	C26	C25	121.1(5)
N1	C1	N2	96.0(3)	C26	C27	C28	119.1(5)
N2	C1	P	48.4(2)	C 27	C28	C29	120.6(6)
N3	C1	P	172.3(4)	C 28	C29	C24	121.2(5)
N3	C1	N1	125.1(4)	01	C30	W	178.4(4)
N3	C1	N2	138.9(4)	05	C34	W	174.4(4)
N1	C2	C3	111.3(4)	O	C31	W	176.5(4)
N1	C2	C4	111.7(4)	O 3	C32	W	177.2(4)
C3	C2	C4	111.2(4)	O4	C33	W	178.1(4)

Table 4 Torsion Angles for 3700f.

A	B	C D	Angle/ ${ }^{\circ}$	A B C D	Angle/ ${ }^{\circ}$
W	P	N1 C1	-111.5(2)	C11C18C23C22	178.3(4)
W	P	N1 C2	61.3(4)	C11C24C25C26	176.6(4)
W	P	N2 C1	105.9(2)	C11C24C29 C28	-177.3(4)
W	P	N2 C8	-47.2(4)	C 12 C 11 C 18 C 19	65.0(5)
W	P	C1 N1	88.7(2)	C 12 C 11 C 18 C 23	-110.2(4)
W	P	C1 N2	-97.8(2)	C12C11C24C25	3.9(5)
W	P	C1 N3	64(3)	C12C11C24C29	-179.8(4)
W	P	C11C12	-29.4(3)	C 12 C 13 C 14 C 15	1.3(6)
W	P	C11C18	88.5(3)	C 13 C 12 C 17 C 16	0.9(6)
W	P	C11C24	-151.7(2)	C 13 C 14 C 15 C 16	0.1(7)
P	W	C3001	135(15)	C 14 C 15 C 16 C 17	-1.0(7)
P	W	C3405	164(4)	C 15 C 16 C 17 C 12	0.5(7)
P	W	C31O2	-131(7)	C 17 C 12 C 13 C 14	-1.8(6)
P	W	C32O3	123(9)	C 18 C 11 C 12 C 13	-164.5(4)
P	W	C3304	163(13)	C18C11-12 C17	18.0(5)
P	N1	C1 N2	-4.9(3)	C18C11C24C25	-119.6(4)
P	N1	C1 N3	176.1(4)	C18C11C24C29	56.7(5)
P	N1	C2 C3	124.0(4)	C18C19C20C21	1.9(7)
P	N1	C2 C4	-111.0(5)	C 19 C 18 C 23 C 22	3.1(7)
P	N2	C1 N1	4.8(3)	C19 C20 C21 C22	1.1(7)
P	N2	C1 N3	-176.3(5)	C20C21C22 C23	-1.9(8)
P	N2	C8 C9	-126.6(4)	C 21 C 22 C 23 C 18	-0.2(7)
P	N2	C8 C10	104.1(4)	C23 C18C19 C20	-3.9(7)
P	C11	C12 C13	-49.5(4)	C24C11-12 C13	71.6(4)
P		C12 C17	133.0(3)	C 24 C 11 C 12 C 17	-105.9(4)
P	C11	C18C19	-51.6(5)	C 24 C 11 C 18 C 19	-170.7(4)
P	C11	C18C23	133.2(4)	C24C11-18C23	14.2(6)
P	C11	C24C25	124.0(4)	C24C25C26C27	0.2(7)
P	C11	C24C29	-59.7(4)	C 25 C 24 C 29 C 28	-0.8(6)
N1	P	N2 C1	-4.1(2)	C25C26C27 C28	0.2(7)
N1	P	N2 C8	-157.2(4)	C26C27C28C29	-0.9(7)
N1	P	C1 N2	173.5(4)	C27C28C29 C24	1.2(7)
N1	P	C1 N3	-25(3)	C29 C24C25 C26	0.1(6)
N1	P	C11C12	109.5(3)	C30W P N1	40(2)
N1	P	C11C18	-132.6(3)	C30W P N2	-47(2)
N1	P	C11C24	-12.8(3)	C30W P C1	-2(2)
N2	P	N1 C1	4.2(2)	C30W P C11	178(2)
N2	P	N1 C2	177.0(4)	C30W C34O5	-16(4)
N2	P	C1 N1	-173.5(4)	C30W C31O2	45(7)
N2	P	C1 N3	162(3)	C30W C32 O3	-57(9)

N2 P	C11C12	-170.2(3)	C30 W	C33 04	-13(13)
N2 P	C11C18	-52.3(3)	C34 W	P N1	-141.06(18)
N2 P	C11C24	67.5(3)	C34 W	P N2	131.91(18)
C1 P	N1 C2	172.8(6)	C34 W	P C1	177.19(17)
C1 P	N2 C8	-153.1(5)	C34 W	P C11	-3.76(19)
C1 P	C11C12	149.7(2)	C34 W	C30 01	-43(16)
C1 P	C11C18	-92.4(3)	C34 W	C31 O2	131(7)
C1 P	C11C24	27.4(3)	C34 W	C32 O3	-54(10)
C1 N1	C2 C3	-65.2(6)	C34 W	C33 04	-100(13)
C1 N1	C2 C4	59.8(6)	C31 W	P N1	126.99(18)
C1 N2	C8 C9	91.6(5)	C31 W	P N2	39.95(18)
C1 N2	C8 C10	-37.7(7)	C31 W	P C1	85.24(17)
C1 N3	C5 C6	-109.5(5)	C31 W	P C11	-95.71(18)
C1 N3	C5 C7	130.2(5)	C31 W	C30 O1	48(16)
C2 N1	C1 P	-173.7(5)	C31 W	C34 05	-103(4)
C2 N1	C 1 N 2	-178.6(4)	C31 W	C32 O3	30(9)
C2 N1	C1 N3	2.4(7)	C31 W	C33 04	20(14)
C5 N3	C1 P	-167(2)	C32 W	P N1	39.12(19)
C5 N3	C1 N1	170.2(4)	C32 W	P N2	-47.92(19)
C5 N3	C1 N2	-8.4(8)	C32 W	P C1	-2.63(18)
C8 N2	C1 P	150.4(5)	C32 W	P C11	176.42(19)
C8 N2	C1 N1	155.3(4)	C32 W	C30 01	136(16)
C8 N2	C1 N3	-25.9(9)	C32 W	C34 O5	-19(5)
C11P	N1 C1	105.0(3)	C32 W	C31 O2	-45(7)
C11P	N1 C2	-82.3(4)	C32 W	C33 04	77(13)
C11P	N2 C1	-110.8(2)	C33 W	P N1	-50.41(19)
C11P	N2 C8	96.1(4)	C33 W	P N2	-137.45(18)
C11P	C1 N1	-90.5(3)	C33 W	P C1	-92.16(18)
C11P	C1 N2	83.0(3)	C33 W	P C11	86.89(19)
C11P	C1 N3	-115(3)	C33 W	C30 01	-134(16)
C11C12	C13C14	-179.4(4)	C33 W	C34 05	73(4)
C11C12	C17 C16	178.5(4)	C33 W	C31 O2	12(8)
C11C18	C19 C20	-179.3(4)	C33 W	C32 O3	-146(9)

8.9. Crystal data and structure refinement for 28a

Table 8.9. Crystal data and structure refinement for 28a.

Identification code	GSTR377, 3718
Empirical formula	$\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{PW}$
Formula weight	742.40
Temperature/K	123
Crystal system	monoclinic
Space group	$\mathrm{P}_{1} / \mathrm{c}$
a/A	$17.7060(10)$
b/A	$16.7883(13)$
c/A	$9.9971(6)$
$\alpha /{ }^{\circ}$	90.00
$\beta /{ }^{\circ}$	$94.217(5)$
$\gamma /{ }^{\circ}$	90.00
Volume $/ \AA^{3}$	$2963.6(3)$
Z	4
$\rho_{\text {calcg } / \mathrm{cm}^{3}}$	1.664
μ / mm^{-1}	3.998
$\mathrm{~F}(000)$	1472.0
Crystal size $/ \mathrm{mm}^{3}$	$0.12 \times 0.09 \times 0.02$

Absorption correction	integration
Tmin; Tmax	0.4446; 0.7315
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	5.38 to 56°
Completeness to theta	0.999
Index ranges	$-23 \leq h \leq 23,-22 \leq k \leq 22,-13 \leq \mathrm{l} \leq 1$
Reflections collected	30626
Independent reflections	$7156\left[\mathrm{R}_{\text {int }}=0.2189, \mathrm{R}_{\text {sigma }}=0.3978\right]$
Data/restraints/parameters	7156/42/374
Goodness-of-fit on F^{2}	0.459
Final R indexes [$1>=2 \sigma(1)]$	$\mathrm{R}_{1}=0.0393, w R_{2}=0.0575$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1498, w \mathrm{R}_{2}=0.0824$
Largest diff. peak/hole / e \AA^{-3}	1.14/-0.86

8.10. Crystal data and structure refinement for 29a

Table 8.10. Crystal data and structure refinement for 29a.

Identification code	GSTR375, 3677 f
Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{PW}$
Formula weight	634.31
Temperature/K	100
Crystal system	monoclinic
Space group	$\mathrm{P}_{2} / \mathrm{c}$
a/A	$9.5748(5)$
b / \AA	$27.7242(13)$
c / \AA	$10.5851(5)$
$\alpha /{ }^{\circ}$	90.00
$\beta /{ }^{\circ}$	$115.3400(10)$
$\mathrm{Y} /{ }^{\circ}$	90.00
Volume/ \AA^{3}	$2539.5(2)$
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.659
μ / mm^{-1}	4.649
$\mathrm{~F}(000)$	1256.0
Crystal size $/ \mathrm{mm}^{3}$	$0.13 \times 0.1 \times 0.04$
Absorption correction	empirical
Tmin; Tmax	$0.5227 ; 0.7460$

Radiation $\quad \operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ} 5.54$ to 56°
Index ranges $\quad-12 \leq h \leq 11,-36 \leq k \leq 36,-13 \leq \mathrm{I} \leq 13$
Reflections collected 19281
Independent reflections $6102\left[R_{\text {int }}=0.0297, \mathrm{R}_{\text {sigma }}=0.0302\right]$
Data/restraints/parameters 6102/0/298
Goodness-of-fit on $\mathrm{F}^{2} \quad 1.021$
Final R indexes $[I>=2 \sigma(I)] \quad R_{1}=0.0205, w R_{2}=0.0462$
Final R indexes [all data] $\quad R_{1}=0.0248, w R_{2}=0.0476$
Largest diff. peak/hole / e $\AA^{-3} 0.98 /-0.63$
Identification code
GSTR375, 3677f
8.11. Crystal data and structure refinement for 29b

Table 8.11. Crystal data and structure refinement for 29b.

Identification code	GSTR269, 2432
Device type	Nonius KappaCCD
Empirical formula	C28 H39 N2 O6 P W
Formula weight	714.43
Temperature/K	123(2)
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{c}$
a/Å	10.9216(4)
b/Å	23.5529(11)
c/Å	14.5767(4)
$\alpha /{ }^{\circ}$	90.00
$\beta /{ }^{\circ}$	126.717(2)
$\mathrm{V} /{ }^{\circ}$	90.00
Volume/Å ${ }^{3}$	3005.7(2)
Z	4
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.579
μ / mm^{-1}	3.938
F(000)	1432
Crystal size/mm ${ }^{3}$	$0.24 \times 0.07 \times 0.04$
Absorption correction	empirical
Tmin; Tmax	0.5227; 0.7460

Radiation $\quad \operatorname{MoKa}(\lambda=0.0 .7107)$
2Θ range for data collection $/{ }^{\circ} 2.57$ to 28.00°
Completeness to theta 0.986
Index ranges $\quad-11<=h<=14,-28<=k<=31,-19<=\mid<=19$
Reflections collected 24433
Independent reflections $\quad 7162[R($ int $)=0.0803]$
Data/restraints/parameters 7162/5/348
Goodness-of-fit on $\mathrm{F}^{2} \quad 0.843$
Final R indexes $[1>=2 \sigma(I)] \quad R 1=0.0360, w R 2=0.0545$
Final R indexes [all data] $\quad R 1=0.0782, w R 2=0.0631$
Largest diff. peak/hole / e $\AA^{-3} 2.838 /-2.320$
8.12. Crystal data and structure refinement for $\mathbf{3 5}$

Table 8.12. Crystal data and structure refinement for 35.

Identification code	GSTR373, 3628c
Empirical formula	$\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{PW}$
Formula weight	843.50
Temperature/K	123(2)
Crystal system	monoclinic
Space group	P2 1_{1} c
a/Å	13.5927(4)
b/Å	9.9774(3)
c/Å	26.2734(7)
$\alpha /{ }^{\circ}$	90.00
$\beta /{ }^{\circ}$	96.006(2)
$\gamma /{ }^{\circ}$	90.00
Volume/Å ${ }^{3}$	3543.63(18)
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.581
μ / mm^{-1}	3.355
F(000)	1680.0
Crystal size/mm ${ }^{3}$	$0.12 \times 0.09 \times 0.03$
Absorption correction	Integration
Tmin; Tmax	0.5755; 0.7572
Radiation	MoKa ($\lambda=0.71073$)

2Θ range for data collection/ ${ }^{\circ} 5.22$ to 56°
Index ranges
Reflections collected
Independent reflections $\quad 8465\left[\mathrm{R}_{\text {int }}=0.0318, \mathrm{R}_{\text {sigma }}=0.0667\right]$
Data/restraints/parameters 8465/0/446
Goodness-of-fit on F^{2}
0.764

Final R indexes $[1>=2 \sigma(I)] \quad R_{1}=0.0220, w R_{2}=0.0304$
Final R indexes [all data] $\quad R_{1}=0.0443, w R_{2}=0.0320$
Largest diff. peak/hole /e $\AA^{-3} 1.10 /-0.79$
8.13. Crystal data and structure refinement for $\mathbf{3 6}$

Table 8.13. Crystal data and structure refinement for 36.

Identification code	GSTR283, 2484g
Device Type	Bruker X8-KappaApexII
Empirical formula	C25 H23 N3 O4
Moiety formula	C21 H15 N3 O3, C4 H8 O
Formula weight	429.46
Temperature/K	$100(2)$
Crystal system	Triclinic
Space group	P-1
a/A	$11.0468(6)$
b/A	$11.1610(6)$
c/A	$11.1665(6)$
$\alpha /{ }^{\circ}$	$91.967(2)$
$\beta /{ }^{\circ}$	$113.625(2)$
Y/	$118.811(2)$
Volume $/ \AA^{\circ}$	$1543.74(11)$
Z	2
Pcalcg/cm ${ }^{3}$	1.653
μ / m^{-1}	3.843
F(000)	760
Crystal size/mm ${ }^{3}$	$0.24 \times 0.11 \times 0.06$
Absorption correction	Empirical
Tmin; Tmax	$0.8022 ; 0.4590$

Radiation	MoKa ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ} 2.76$ to 28.00°	
Completeness to theta	0.983
Index ranges	$-12<=h<=11,-13<=k<=13,-23<=1<=23$
Reflections collected	14631
Independent reflections	7318 [R (int) $=0.0498$]
Data/restraints/parameters	7318/0/392
Goodness-of-fit on F^{2}	1.092
Final R indexes [$1>=2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0306, w R 2=0.0774$
Final R indexes [all data]	R1 $=0.0351, w R 2=0.0789$
Largest diff. peak/hole / e \AA^{-3}	1.691/-1.658

```
Table 2. Atomic coordinates ( x 10^4) and equivalent isotropic
displacement parameters (A^2 x 10^3) for JMV259.
U(eq) is defined as one third of the trace of the orthogonalized
Uij tensor.
```

	x	Y	z	$\mathrm{U}(\mathrm{eq})$
C (1)	10157 (2)	4869(1)	2925 (1)	18 (1)
C (2)	7590 (1)	3192 (1)	2777 (1)	17 (1)
C (3)	8255 (2)	5577 (1)	2508(1)	17 (1)
C (4)	9397(2)	2454 (1)	3020 (1)	17 (1)
C (5)	10487(2)	2499(1)	4229 (1)	22 (1)
C (6)	10778(2)	1415 (2)	4263 (1)	26 (1)
C (7)	9982 (2)	310 (2)	3102 (2)	26 (1)
C (8)	8903 (2)	292 (2)	1894 (2)	26 (1)
C (9)	8608(2)	1367 (1)	1848 (1)	22 (1)
C (10)	5774 (2)	3921 (1)	2467 (1)	17 (1)
C (11)	4557 (2)	3486 (1)	1163 (1)	22 (1)
C (12)	3090 (2)	3099 (1)	995 (1)	25 (1)
C (13)	2852 (2)	3160 (1)	2118 (2)	25 (1)
C (14)	4084 (2)	3602 (1)	3417 (1)	24 (1)
C (15)	5555 (2)	3985 (1)	3601 (1)	21 (1)
C (16)	10846(2)	7257 (1)	2762 (1)	17 (1)
C (17)	10757 (2)	7577(1)	1556 (1)	22 (1)
C (18)	11847 (2)	8931 (2)	1608(2)	27 (1)
C (19)	13026(2)	9939 (2)	2847 (2)	28 (1)
C (20)	13100 (2)	9602(1)	4049 (2)	25 (1)
C (21)	12007 (2)	8259(1)	4010 (1)	22 (1)
C (22)	5237 (2)	1475(1)	-929(1)	25 (1)
C (23)	4386 (2)	1773 (2)	-2215 (1)	26 (1)

C(24)	$5743(2)$	$2846(2)$	$-2429(1)$	$28(1)$
C(25)	$7013(2)$	$3720(2)$	$-979(1)$	$27(1)$
N(1)	$9067(1)$	$3569(1)$	$2973(1)$	$17(1)$
N(2)	$7296(1)$	$4275(1)$	$2650(1)$	$17(1)$
N(3)	$9707(1)$	$5848(1)$	$2726(1)$	$18(1)$
O(1)	$11407(1)$	$5137(1)$	$3057(1)$	$26(1)$
O(2)	$6650(1)$	$2026(1)$	$2767(1)$	$22(1)$
O(3)	$7885(1)$	$6435(1)$	$2261(1)$	$22(1)$
O(4)	$6748(1)$	$2777(1)$	$-138(1)$	$26(1)$

Table 3. Bond lengths [A] and angles [deg] for JMV259.

$\mathrm{C}(1)-\mathrm{O}(1)$	$1.2059(15)$
$\mathrm{C}(1)-\mathrm{N}(1)$	1.3897 (16)
$\mathrm{C}(1)-\mathrm{N}(3)$	1.3928 (16)
$\mathrm{C}(2)-\mathrm{O}(2)$	$1.2078(15)$
$\mathrm{C}(2)-\mathrm{N}(1)$	1.3905 (16)
$\mathrm{C}(2)-\mathrm{N}(2)$	1.3932 (15)
$\mathrm{C}(3)-\mathrm{O}(3)$	1.2101(15)
$\mathrm{C}(3)-\mathrm{N}(2)$	1.3881(16)
$\mathrm{C}(3)-\mathrm{N}(3)$	1.3926(16)
C (4)-C (9)	1.3789(18)
C (4)-C (5)	1.3815(18)
$\mathrm{C}(4)-\mathrm{N}(1)$	1.4525 (15)
C (5) - C (6)	1.3911(19)
C (5) - H (5A)	0.9500
$\mathrm{C}(6)-\mathrm{C}(7)$	1.381(2)
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9500
$\mathrm{C}(7)-\mathrm{C}(8)$	1.3876(19)
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9500
C (8) - C (9)	1.3850 (18)
C (8) - H (8A)	0.9500
C (9)-H (9A)	0.9500
C (10)-C(11)	1.3844(18)
$\mathrm{C}(10)-\mathrm{C}(15)$	1.3858(18)
$\mathrm{C}(10)-\mathrm{N}(2)$	1.4506(16)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.3878(19)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9500
C (12)-C (13)	1.386(2)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9500
C (13)-C (14)	1.386(2)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9500
C (14)-C (15)	1.3865 (18)
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9500
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9500
$\mathrm{C}(16)-\mathrm{C}(17)$	1.3829(18)
C(16)-C(21)	1.3843(18)
$\mathrm{C}(16)-\mathrm{N}(3)$	1.4513(16)
$\mathrm{C}(17)-\mathrm{C}(18)$	1.3853(19)
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9500
C(18)-C(19)	1.383 (2)
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9500
C(19)-C(20)	1.388(2)

$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.9500
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.3843(19)$
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9500
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9500
$\mathrm{C}(22)-\mathrm{O}(4)$	$1.4395(16)$
$\mathrm{C}(22)-\mathrm{C}(23)$	$1.5195(18)$
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9900
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	0.9900
$\mathrm{C}(23)-\mathrm{C}(24)$	$1.521(2)$
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	0.9900
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	0.9900
$\mathrm{C}(24)-\mathrm{C}(25)$	$1.5135(19)$
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	0.9900
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	0.9900
$\mathrm{C}(25)-\mathrm{O}(4)$	$1.4381(16)$
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	0.9900
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	0.9900

$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{N}(1)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{N}(3)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(3)$
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{N}(1)$
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{N}(2)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(2)$
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{N}(2)$
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{N}(3)$
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{N}(3)$
$C(9)-C(4)-C(5)$
$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{N}(1)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{N}(1)$
$C(4)-C(5)-C(6)$
C (4) - C (5) - H (5A)
C (6) $-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$
$C(7)-C(6)-C(5)$
C (7) $-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$
$C(5)-C(6)-H(6 A)$
$C(6)-C(7)-C(8)$
$C(6)-C(7)-H(7 A)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$
$C(9)-C(8)-C(7)$
C (9) $-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$
$C(4)-C(9)-C(8)$
C (4) - C (9) $-\mathrm{H}(9 \mathrm{~A})$
C (8) $-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$
C (11) -C (10) -C (15)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{N}(2)$
$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{N}(2)$
$C(10)-C(11)-C(12)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$
$C(11)-C(12)-H(12 A)$
$C(12)-C(13)-C(14)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$
$C(13)-C(14)-C(15)$
0.9500
$1.3843(19)$
-. 9500
$1.4395(16)$
1.5195 (18)
0.9900
0.9900
1.521(2)
0.9900
0.9900
1.5135 (19)
. 9900
1.4381 (16)
0.9900
0.9900
122.52(11)
122. 32 (12)
115.15(11)
122.54(11)
122.27(11)
115.14(10)
122.82(11)
$122.36(11)$
114.77(10)
121.35(12)
118.91(11)
119.74(11)
$119.13(13)$
120.4
120.4
120.17(12)
119.9
119.9
$119.82(12)$
120.1
120.1
120.44(13)
119.8
119.8
119.07 (12)
120.5
120.5
121.34(12)
119.39(11)
119.24(11)
118.97(12)
120.5
120.5
120.41(13)
119.8
119.8
$119.88(13)$
120.1
120.1
120.37(13)

$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	119.8
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	119.8
$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(14)$	119.03(12)
$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	120.5
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	120.5
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(21)$	121.16(12)
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{N}(3)$	119.74(11)
$\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{N}(3)$	119.10 (11)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	118.96(13)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	120.5
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	120.5
C (19)-C(18) -C (17)	120.65(13)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	119.7
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	119.7
C (18) - C (19)-C (20)	119.72(13)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	120.1
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	120.1
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	120.22(13)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	119.9
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	119.9
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(16)$	119.28(12)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	120.4
$\mathrm{C}(16)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	120.4
$\mathrm{O}(4)-\mathrm{C}(22)-\mathrm{C}(23)$	106.16(11)
$\mathrm{O}(4)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	110.5
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	110.5
$\mathrm{O}(4)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	110.5
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	110.5
H (22A) - C (22) - H (22B)	108.7
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	101.68(11)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	111.4
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	111.4
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	111.4
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	111.4
H (23A) - C (23) - H (23B)	109.3
C (25) - C (24)-C (23)	101.91(11)
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	111.4
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	111.4
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	111.4
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	111.4
H (24A) - C (24)-H (24B)	109.3
$\mathrm{O}(4)-\mathrm{C}(25)-\mathrm{C}(24)$	106.58(11)
$\mathrm{O}(4)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	110.4
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	110.4
$\mathrm{O}(4)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	110.4
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	110.4
H (25A) -C (25)-H (25B)	108.6
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	124.60(10)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)$	117.30(10)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(4)$	117.38(10)
$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{C}(2)$	124.64(10)
$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{C}(10)$	118.32(10)
$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(10)$	116.47(10)
$\mathrm{C}(3)-\mathrm{N}(3)-\mathrm{C}(1)$	124.87 (11)
$\mathrm{C}(3)-\mathrm{N}(3)-\mathrm{C}(16)$	117.76(10)
$\mathrm{C}(1)-\mathrm{N}(3)-\mathrm{C}(16)$	117.37(10)
$\mathrm{C}(25)-\mathrm{O}(4)-\mathrm{C}(22)$	109.06(10)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters ($A^{\wedge} 2 \times 10^{\wedge} 3$) for JMV259. The anisotropic displacement factor exponent takes the form:

```
-2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ]
```

	U11	U22	U33	U23	U13	U12
C (1)	20 (1)	19 (1)	18 (1)	7 (1)	10 (1)	11 (1)
C (2)	16(1)	18 (1)	16 (1)	4 (1)	8 (1)	$9(1)$
C (3)	18 (1)	17 (1)	16 (1)	4 (1)	9 (1)	$9(1)$
C (4)	18 (1)	18 (1)	22 (1)	10 (1)	13 (1)	11 (1)
C (5)	23 (1)	25 (1)	20 (1)	9 (1)	11 (1)	14 (1)
C (6)	26 (1)	34 (1)	28 (1)	18 (1)	14 (1)	21 (1)
C (7)	28 (1)	24 (1)	41 (1)	17 (1)	22 (1)	19 (1)
C (8)	24 (1)	21 (1)	33 (1)	3 (1)	14 (1)	13 (1)
C (9)	20 (1)	24 (1)	21 (1)	6 (1)	8 (1)	13 (1)
C (10)	17 (1)	14 (1)	24 (1)	5 (1)	11 (1)	9 (1)
C (11)	24 (1)	23 (1)	22 (1)	5 (1)	12 (1)	15 (1)
C (12)	21 (1)	20 (1)	29 (1)	4 (1)	8 (1)	12 (1)
C (13)	18(1)	19(1)	41 (1)	8 (1)	16 (1)	11 (1)
C (14)	25 (1)	21 (1)	32 (1)	7 (1)	19 (1)	12 (1)
C (15)	21 (1)	18 (1)	23 (1)	5 (1)	11 (1)	10 (1)
C (16)	16(1)	17 (1)	24 (1)	8 (1)	11 (1)	10 (1)
C (17)	23 (1)	24 (1)	23 (1)	8 (1)	12 (1)	15 (1)
C (18)	35 (1)	28 (1)	34 (1)	18 (1)	25 (1)	21 (1)
C (19)	27 (1)	18 (1)	47 (1)	12 (1)	24 (1)	13 (1)
C (20)	18(1)	20 (1)	32 (1)	0 (1)	9 (1)	9 (1)
C (21)	21 (1)	24 (1)	22 (1)	7 (1)	10 (1)	14(1)
C (22)	23 (1)	22 (1)	25 (1)	7 (1)	10 (1)	11 (1)
C (23)	23 (1)	31 (1)	23 (1)	9 (1)	11 (1)	14(1)
C (24)	31 (1)	31 (1)	23 (1)	12 (1)	14(1)	17 (1)
C (25)	31 (1)	22 (1)	27 (1)	10 (1)	15 (1)	13 (1)
N(1)	17 (1)	16 (1)	20 (1)	7 (1)	10 (1)	10 (1)
N(2)	17 (1)	17 (1)	21 (1)	7 (1)	11 (1)	10 (1)
N(3)	17(1)	16 (1)	24 (1)	8 (1)	11 (1)	9 (1)
O(1)	20 (1)	25 (1)	$39(1)$	14(1)	18 (1)	14(1)
O (2)	22 (1)	19(1)	29 (1)	9(1)	15 (1)	11 (1)
O (3)	22 (1)	20 (1)	28 (1)	10 (1)	13 (1)	14 (1)
O (4)	25 (1)	26 (1)	21 (1)	8 (1)	8 (1)	11 (1)

Table 5. Hydrogen coordinates (x 10^4) and isotropic
displacement parameters (A^2 x 10^3) for JMV259.

	x	Y	z	U (eq)
H (5A)	11031	3261	5026	26
H (6A)	11526	1435	5088	31
H (7A)	10173	-435	3129	31
H (8A)	8362	-464	1093	31
H (9A)	7872	1357	1020	26
H (11A)	4724	3453	395	26
H (12A)	2242	2790	105	29
H (13A)	1847	2899	1998	30
H (14A)	3920	3643	4186	29
H (15A)	6400	4286	4490	25
H (17A)	9960	6880	704	26
H (18A)	11785	9168	786	32
H (19A)	13781	10859	2875	33
H (20A)	13903	10295	4901	30
H (21A)	12054	8026	4832	26
H (22A)	4641	1200	-414	30
H (22B)	5362	691	-1161	30
H (23A)	3818	2186	-2078	32
H (23B)	3636	898	-2994	32
H (24A)	6066	2366	-2881	33
H (24B)	5469	3443	-2974	33
H (25A)	8065	4102	-902	32
H (25B)	6949	4530	-697	32

Table 6. Torsion angles [deg] for JMV259.

$C(9)-C(4)-C(5)-C(6)$	$-0.8(2)$
$N(1)-C(4)-C(5)-C(6)$	$179.24(11)$
$C(4)-C(5)-C(6)-C(7)$	$-0.1(2)$
$C(5)-C(6)-C(7)-C(8)$	$0.7(2)$
$C(6)-C(7)-C(8)-C(9)$	$0.5(2)$
$C(5)-C(4)-C(9)-C(8)$	$-179.07(12)$
$N(1)-C(4)-C(9)-C(8)$	$-0.3(2)$
$C(7)-C(8)-C(9)-C(4)$	$-0.39(19)$
$C(15)-C(10)-C(11)-C(12)$	$177.60(11)$
$N(2)-C(10)-C(11)-C(12)$	$0.56(19)$
$C(10)-C(11)-C(12)-C(13)$	$-0.4(2)$
$C(11)-C(12)-C(13)-C(14)$	$0.0(2)$

```
C(11)-C(10)-C(15)-C(14)
N(2) -C (10) -C (15) - C(14)
C(13)-C(14)-C(15)-C (10)
C (21) -C (16) -C (17) -C (18)
N(3)-C(16)-C(17) -C (18)
C(16)-C(17)-C(18)-C (19)
C(17)-C(18)-C(19)-C(20)
C(18)-C(19)-C(20)-C (21)
C(19)-C(20)-C(21)-C (16)
C(17)-C(16)-C (21)-C (20)
N(3) -C (16) -C (21) -C (20)
O(4)-C(22)-C(23) -C (24)
C(22)-C (23)-C (24)-C (25)
C(23)-C (24)-C (25)-O(4)
O(1)-C (1) -N (1) - C (2)
N(3)-C(1)-N(1) -C (2)
O(1)-C(1)-N(1)-C(4)
N(3)-C(1)-N(1) -C (4)
O(2)-C(2)-N(1)-C(1)
N(2) -C (2) -N (1) -C (1)
O(2)-C(2)-N(1)-C(4)
N(2)-C(2)-N(1) -C (4)
C(9)-C (4)-N(1) -C (1)
C(5)-C(4)-N(1)-C(1)
C (9) -C (4) -N (1) -C (2)
C (5) -C (4)-N (1) -C (2)
O(3)-C(3)-N(2)-C(2)
N(3) -C (3) -N (2) -C (2)
O(3) -C (3) -N (2) -C (10)
N(3) -C (3) -N (2) -C (10)
O(2)-C(2)-N(2)-C(3)
N(1) -C (2) -N (2) -C (3)
O(2) -C (2) -N (2) - C (10)
N(1) -C (2) -N (2) -C (10)
C (11) -C (10) -N (2) -C (3)
C (15) -C (10) -N (2) -C (3)
C(11)-C (10)-N (2)-C (2)
C(15)-C (10)-N (2)-C (2)
O(3)-C(3)-N(3)-C(1)
N(2) -C (3) -N (3) - C(1)
O(3) -C (3) -N (3) -C (16)
N(2) -C (3) -N (3) -C (16)
O(1) -C (1) -N (3) -C (3)
N(1) -C (1) -N (3) -C (3)
O(1) -C (1) -N (3)-C (16)
N(1) -C (1) -N (3) -C (16)
C(17)-C(16)-N(3)-C (3)
C(21)-C (16)-N (3)-C (3)
C(17)-C(16)-N(3)-C(1)
C}(21)-C(16)-N(3)-C(1
C(24)-C(25) -O (4) -C (22)
C (23) -C (22) -O (4) -C (25)
    0.03(19)
-177.96(11)
    0.15(19)
    -0.48(19)
    179.63(11)
    1.2(2)
    -1.2(2)
    0.5(2)
    0.2(2)
    -0.19(19)
    179.70(11)
    31.97(14)
    -37.43(14)
    30.80(14)
-177.57(11)
        3.05(17)
    -7.52(18)
    173.10(10)
    176.60(11)
    -5.92(17)
    6.55(17)
-175.97(10)
-102.62(14)
    77.39(15)
    68.17(15)
-111.82(13)
    172.23(11)
    -10.23(17)
    1.23(18)
    178.78(10)
-172.71(11)
            9.81(17)
    -1.56(17)
-179.05(10)
    76.65(15)
-105.32(13)
    -95.08(14)
    82.95(14)
-175.53(12)
        6.91(17)
        5.02(18)
-172.54(10)
    177.04(11)
        -3.58(17)
        -3.52(18)
    175.87(10)
    -82.30(15)
    97.81(14)
    98.21(14)
    -81.68(15)
    -11.20(15)
    -13.33(14)
```

Symmetry transformations used to generate equivalent atoms:
8.14. Crystal data and structure refinement for $\mathbf{3 8}$

Table 8.14. Crystal data and structure refinement for 38.

Identification code	GSTR400, JMV443 // GXray3943f
Device Type	Bruker X8-KappaApexII
Empirical formula	$\mathrm{C}_{57} \mathrm{H}_{74} \mathrm{~N}_{6} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{~W}_{2}$
Moiety formula	C52 H62 N6 O12 P2 W2, C5 H12
Formula weight	1464.86
Temperature/K	100
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$
a/Å	10.1110(6)
b/Å	21.9547(14)
c/Å	13.4351(9)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	92.962(2)
$\mathrm{V} /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	2978.4(3)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.633
μ / mm^{-1}	3.977
F(000)	1464.0
Crystal size/mm ${ }^{3}$	$0.12 \times 0.1 \times 0.08$
Absorption correction	empirical
Tmin; Tmax	0.6437; 0.7460

Radiation $\quad \operatorname{MoK\alpha }(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ} 5.482$ to 56°
Completeness to theta 0.995
Index ranges
Reflections collected
Independent reflections
$-13 \leq h \leq 10,-28 \leq k \leq 29,-17 \leq \mathrm{l} \leq 17$
17418

Data/restraints/parameters 7150/61/374
Goodness-of-fit on F^{2}
1.036

Final R indexes $[1>=2 \sigma(I)] \quad R_{1}=0.0364, w_{2}=0.0846$
Final R indexes [all data] $\quad R_{1}=0.0507, w_{2}=0.0901$
Largest diff. peak/hole / e $\AA^{-3} 2.16 /-0.86$

Table 2 Bond Lengths for 3943f.

Atom Atom				Length/Å	Atom
W	Ptom	Length/Å			
W	C22	$2.4966(10)$	C3	C4	$1.399(6)$
W	$2.023(5)$	C3	C5	$1.395(5)$	
W	C23	$2.039(5)$	C4	C5 1	$1.387(6)$
W	C24	$2.061(5)$	C5	C4 1	$1.387(6)$
W	C25	$2.061(5)$	C6	C7	$1.531(6)$
W	C26	$2.039(5)$	C6	C8	$1.511(6)$
P	O1	$1.678(3)$	C9	C10	$1.516(6)$
P	C2	$1.859(4)$	C9	C11	$1.524(6)$
P	C12	$1.884(4)$	C12	C13	$1.514(6)$
O1	C1	$1.376(4)$	C12	C16	$1.532(6)$
O2	C22	$1.141(6)$	C12	C17	$1.528(6)$
O3	C23	$1.143(5)$	C13	C14	$1.342(6)$
O4	C24	$1.130(5)$	C13	C18	$1.480(6)$
O5	C25	$1.128(6)$	C14	C15	$1.498(6)$
O6	C26	$1.144(6)$	C14	C19	$1.495(6)$
N1	C1	$1.385(5)$	C15	C16	$1.340(6)$
N1	C2	$1.406(5)$	C15	C20	$1.488(6)$
N1	C6	$1.485(5)$	C16	C21	$1.504(6)$
N2	C1	$1.254(5)$	C27	C28	$1.481(10)$
N2	C3	$1.420(5)$	C28	C29	$1.498(10)$
N3	C2	$1.266(5)$	C29	C30	$1.470(10)$
N3	C9	$1.462(5)$	C30	C31	$1.487(10)$

${ }^{1} 2-X, 2-Y,-Z$

Table 3 Bond Angles for 3943f.

Atom Atom Atom		
C22	W	P
C22	W	C23
C22	W	C24
C22	W	C25
C22	W	C26
C23	W	P
C23	W	C24
C23	W	C25
C23	W	C26
C24	W	P
C25	W	P
C25	W	C24
C26	W	P
C26	W	C24
C26	W	C25
O1	P	W
O1	P	C2
01	P	C12
C2	P	W
C2	P	C12
C12	P	W
C1	O1	P
C1	N1	C2
C1	N1	C6
C2	N1	C6
C1	N2	C3
C2	N3	C9
O1	C1	N1
N2	C1	01
N2	C1	N1
N1	C2	P
N3	C2	P
N3	C2	N1
C4	C3	N2
C5	C3	N2

Angle/ ${ }^{\circ}$	Atom Atom Atom			Angle/ ${ }^{\circ}$
170.74(14)	C5	C3	C4	117.3(4)
87.19(18)	$C 5^{1}$	C4	C3	120.2(4)
90.95(18)	$C 4^{1}$	C5	C3	122.5(4)
89.58(18)	N1	C6	C7	110.7(3)
88.45(19)	N1	C6	C8	111.6(3)
99.69(12)	C8	C6	C7	113.3(4)
89.69(18)	N3	C9	C10	106.7(3)
176.06(17)	N3	C9	C11	109.6(4)
87.3(2)	C 10	C9	C11	111.2(4)
82.96(12)	C 13	C12	P	109.0(3)
83.76(12)	C 13	C12	C16	103.3(3)
92.62(18)	C 13	C12	C17	113.7(4)
97.98(14)	C 16	C12	P	110.6(3)
177.00(19)	C17	C12	P	108.0(3)
90.3(2)	C17	C12	C16	112.3(3)
105.80(10)	C 14	C13	C12	109.0(4)
90.19(16)	C 14	C13	C18	127.1(4)
101.31(16)	C 18	C13	C12	123.6(4)
121.41(13)	C 13	C14	C15	109.6(4)
103.87(19)	C 13	C14	C19	128.2(4)
126.13(14)	C 19	C14	C15	121.9(4)
116.2(2)	C 16	C15	C14	109.2(4)
116.7(3)	C 16	C15	C20	127.2(4)
120.8(3)	C 20	C15	C14	123.7(4)
122.1(3)	C 15	C16	C12	108.8(4)
126.0(3)	C 15	C16	C21	126.2(4)
120.8(3)	C 21	C16	C12	124.4(4)
110.7(3)	O 2	C22	W	178.8(4)
125.9(4)	O 3	C23	W	175.8(4)
123.4(4)	04	C24	W	177.2(4)
105.6(3)	05	C25	W	178.7(4)
133.3(3)	06	C26	W	176.4(5)
121.0(4)	C 27	C28	C29	141(3)
126.5(3)	C 30	C29	C28	113.7(10)
116.1(4)	C29	C30	C31	106.3(9)

[^4]Table 4 Torsion Angles for 3943f.

A	B	C	D	Angle/ ${ }^{\circ}$	A	B	C	D	Angle/ ${ }^{\circ}$
W	P	01	C1	-125.2(2)	C3	N2	C1	01	0.5(7)
W	P	C2	N1	114.1(2)	C3	N2	C1	N1	178.4(4)
W	P	C2	N3	-63.7(5)	C4	C3	C5	C4 ${ }^{1}$	-1.6(7)
W	P	C12	C13	70.9(3)	C5	C3	C4	C5 ${ }^{1}$	1.5(7)

W P	C12 C16	-176.2(2)	C6 N1 C1 O1	178.9(3)
W P	C12 C17	-53.0(3)	C 6 N 1 C 1 N 2	0.8(6)
P 01	C1 N1	-1.6(4)	C6 N1 C2 P	179.9(3)
P 01	C1 N2	176.5(3)	C 6 N 1 C 2 N 3	-2.0(6)
P C12	C13 C14	116.4(4)	C9 N3 C2 P	5.2(6)
P C12	C13 C18	-68.7(5)	C9 N3 C2 N1	-172.3(4)
P C12	C16 C15	-114.0(4)	$\mathrm{C} 12 \mathrm{P} \quad \mathrm{O} 1 \mathrm{C} 1$	101.9(3)
P C12	C16 C21	73.8(5)	$\mathrm{C} 12 \mathrm{P} \quad \mathrm{C} 2 \mathrm{~N} 1$	-96.3(3)
O1P	C2 N1	5.4(3)	$\mathrm{C} 12 \mathrm{P} \quad \mathrm{C} 2 \mathrm{~N} 3$	85.9(5)
O1P	C2 N3	-172.4(4)	C 12 C 13 C 14 C 15	-0.4(5)
O1P	C12 C13	-169.8(3)	C 12 C 13 C 14 C 19	172.6(5)
O1P	C12 C16	-56.9(3)	C 13 C 12 C 16 C 15	2.5(5)
O1P	C12 C17	66.3(3)	C 13 C 12 C 16 C 21	-169.7(4)
N2 C3	C4 C5 ${ }^{1}$	178.5(4)	C 13 C 14 C 15 C 16	2.1(6)
N2 C3	C5 C4 ${ }^{1}$	-178.9(4)	C 13 C 14 C 15 C 20	-178.5(5)
C1 N1	C2 P	-7.7(4)	C14 C15C16C12	-2.8(5)
C1 N1	C2 N3	170.5(4)	C14 C15C16C21	169.3(4)
C1 N1	C6 C7	-107.9(4)	C16 C12 C13 C14	-1.2(5)
C1 N1	C6 C8	124.9(4)	C 16 C 12 C 13 C 18	173.7(4)
C1 N2	C3 C4	24.9(7)	C 17 C 12 C 13 C 14	-123.1(4)
C1 N2	C3 C5	-158.1(4)	C 17 C 12 C 13 C 18	51.8(6)
C2 P	O1 C1	-2.3(3)	C 17 C 12 C 16 C 15	125.4(4)
C2 P	C12 C13	-76.8(3)	C 17 C 12 C 16 C 21	-46.9(5)
C2 P	C12 C16	36.1(3)	C 18 C 13 C 14 C 15	-175.1(4)
C2 P	C12 C17	159.4(3)	C 18 C 13 C 14 C 19	-2.1(8)
C2 N1	C1 O1	6.4(5)	C19 C14 C15 C16	-171.4(4)
C2 N1	C1 N2	-171.8(4)	C 19 C 14 C 15 C 20	8.0(7)
C2 N1	C6 C7	64.2(5)	C20 C15 C16 C12	177.8(4)
C2 N1	C6 C8	-63.0(5)	C20 C15 C16C21	-10.1(8)
C2 N3	C9 C10	109.5(4)	C27 C28C29 C30	-70(5)
C2 N3	C9 C11	-130.1(4)	C28 C29 C30 C31	6(4)

8.15. Crystal data and structure refinement for 39

Table 8.15. Crystal data and structure refinement for 39.

Identification code	GSTR295, 2671
Device Type	STOE IPDS2T
Empirical formula	C32 H29 N2 O7 P W
Moiety formula	C32 H29 N2 O7 P W
Formula weight	768.39
Temperature/K	$123(2)$
Crystal system	Triclinic
Space group	P-1
a/A	$9.1467(4)$
b/A	$9.9353(4)$
c/A	$17.7375(7)$
$\alpha /{ }^{\circ}$	$74.768(3)$
$\beta /{ }^{\circ}$	$85.528(3)$
Y/	$83.659(3)$
Volume $/ \AA^{\circ}$	1.653
Z	2
${\text { Ccalcg } / \mathrm{cm}^{3}}^{3}$	1.346
μ / mm^{-1}	0.093
F(000)	452
Crystal size $/ \mathrm{mm}^{3}$	$0.10 \times 0.10 \times 0.05$

Absorption correction	Empirical
Tmin; Tmax	0.9954; 0.9908
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ} 2.08$ to 28.00°	
Completeness to theta	0.987
Index ranges	$-15 \leq h \leq 17,-13 \leq k \leq 12,-34 \leq \mathrm{l} \leq 24$
Reflections collected	9760
Independent reflections	5058 [R(int) = 0.0242]
Data/restraints/parameters	$5058 / 1 / 289$
Goodness-of-fit on F^{2}	1.062
Final R indexes [l>=2 $\sigma(1)$]	$R 1=0.0415, w R 2=0.0990$
Final R indexes [all data]	$R 1=0.0578, w R 2=0.1088$
Largest diff. peak/hole / e \AA^{-3}	0.281/-0.249

8.16. Crystal data and structure refinement for 44

Table 8.16. Crystal data and structure refinement for 44.

Identification code	GSTR417, JMV-452 // GXray4003_0t0
Device Type	Bruker X8-KappaApexll
Empirical formula	$\mathrm{C}_{76} \mathrm{H}_{61} \mathrm{~F}_{10} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{~W}_{2}$
Moiety formula	C38 H31 F5 N2 O6 P W, C38 H30 F5 N2 O6 P W
Formula weight	1841.92
Temperature/K	100
Crystal system	monoclinic
Space group	C2/c
a/Å	43.742(5)
b/Å	9.4789(12)
c/Å	34.564(5)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	94.132(6)
$\mathrm{V} /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	14294(3)
Z	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.712
μ / mm^{-1}	3.353
F(000)	7272.0
Crystal size/mm ${ }^{3}$	$0.08 \times 0.04 \times 0.02$
Absorption correction	empirical
Tmin; Tmax	0.482305; 0.745979

Radiation $\quad \operatorname{MoK\alpha }(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ} 4.398$ to 50.498°
Completeness to theta 0.843
Index ranges
Reflections collected
Independent reflections $22163\left[\mathrm{R}_{\text {int }}=0.1698, \mathrm{R}_{\text {sigma }}=0.3047\right]$
Data/restraints/parameters 22163/379/964
Goodness-of-fit on $F^{2} \quad 0.988$
Final R indexes $[1>=2 \sigma(I)] \quad R_{1}=0.1024, w_{2}=0.1869$
Final R indexes [all data] $\quad R_{1}=0.2372, w_{2}=0.2392$
Largest diff. peak/hole / e $\AA^{-3} 3.35 /-3.11$

Table 2 Bond Lengths for 4003_0t0.
Atom Atom Length/Å Atom Atom

Length/Å

2.512(6)
1.99(2)
2.01(3)
2.04(2)
1.98(2)
2.05(2)
1.649(14)
1.87(2)
1.91(2)
1.33(2)
1.35(3)
1.33(2)
1.36(2)
1.34(2)
1.44(2)
1.15(2)
1.16(2)
1.12(2)
1.20(2)
1.15(2)
1.49(3)
1.39(3)
1.52(3)
1.26(2)
1.47(3)
1.51(3)
1.43(3)
1.35(3)
1.37(3)

C5	C6	1.39(3)	C5'	C6'	1.35(3)
C6	C7	1.37(3)	C6'	C7'	1.39(3)
C7	C8	1.43(3)	C7'	C8'	1.39(3)
C9	C10	1.61(3)	$\mathrm{C} 9^{\prime}$	C10'	1.49(3)
C9	C11	1.54(3)	C9'	C11'	1.53(3)
C12	C13	1.49(3)	C12'	C13'	1.56(3)
C12	C14	1.48(3)	C12'	C14'	1.48(3)
C15	C16	1.53(3)	C15'	C16'	1.56(3)
C15	C22	1.57(3)	C15'	C22'	1.54(3)
C15	C28	1.54(3)	C15'	C28'	1.54(3)
C16	C17	1.37(3)	C16'	C17'	1.34(3)
C16	C21	1.42(3)	C16'	C21'	1.41(2)
C17	C18	1.38(3)	C17	C18'	1.41(3)
C18	C19	1.39(3)	C18'	C19'	1.36(3)
C19	C20	1.39(3)	C19'	C20'	1.31(3)
C20	C21	1.36(3)	C20'	C21'	1.39(3)
C22	C23	1.40(3)	C22'	C23'	1.43(3)
C22	C27	1.35(3)	C22'	C27'	1.38(3)
C23	C24	1.36(3)	C23'	C24'	1.40(3)
C24	C25	1.40(3)	C24'	C25'	1.36(3)
C25	C26	1.33(3)	C25'	C26'	1.36(3)
C26	C27	1.40(3)	C26'	C27'	1.40(3)
C28	C29	1.39(3)	C28'	C29'	1.41(3)
C28	C33	1.41(3)	C28'	C33'	1.43(3)
C29	C30	1.38(3)	C29'	C30'	1.41(3)
C30	C31	1.40(3)	C30'	C31'	1.31(3)
C31	C32	1.40(3)	C31'	C32'	1.38(3)
C32	C33	1.37(3)	C32'	C33'	1.40(3)

Table 3 Bond Angles for 4003_0t0.

Atom Atom Atom	Angle/		Atom Atom Atom	Angle/ ${ }^{\circ}$		
C34	W	P	$172.0(7)$	C34'	W^{\prime}	P $^{\prime}$

C38	W	C37	89.1(9)	C38'	W^{\prime}	P^{\prime}	87.0(6)
01	P	W	107.3(5)	O1'	P^{\prime}	W'	108.1(5)
O1	P	C2	89.7(9)	O1'	P^{\prime}	C2'	91.9(9)
01	P	C15	100.5(8)	O1'	P^{\prime}	C15'	100.7(8)
C2	P	W	117.6(7)	C 21	P^{\prime}	W'	116.0(7)
C2	P	C15	108.3(9)	$\mathrm{C} 2^{\prime}$	P^{\prime}	C15'	108.0(9)
C15	P	W	125.4(7)	C15'	P^{\prime}	W'	125.5(7)
C1	01	P	116.6(12)	$\mathrm{C} 1{ }^{\prime}$	O1'	P^{\prime}	116.5(12)
C1	N1	C9	122.4(17)	$\mathrm{C} 1^{\prime}$	N1'	C9'	122.2(18)
C2	N1	C1	115.8(17)	$\mathrm{C} 2{ }^{\prime}$	N1'	C1'	117.5(18)
C2	N1	C9	119.9(18)	$\mathrm{C} 2^{\prime}$	N1'	C9'	119(2)
C2	N2	C12	124(2)	$\mathrm{C} 2{ }^{\prime}$	N2'	C12'	123(2)
O1	C1	C3	105.8(16)	O1'	C1'	N1'	104.1(15)
N1	C1	01	104.1(16)	O1'	C1'	C3'	107.8(16)
N1	C1	C3	116.9(17)	N1'	C1'	C3'	113.7(17)
N1	C2	P	109.7(16)	N1'	C2'	P^{\prime}	105.4(16)
N2	C2	P	129.0(18)	N2'	C2'	P^{\prime}	134.9(18)
N2	C2	N1	120(2)	$\mathrm{N} 2{ }^{\prime}$	C2'	N1'	119(2)
C4	C3	C1	123(2)	$\mathrm{C} 4^{\prime}$	C3'	C1'	118.0(19)
C8	C3	C1	121(2)	$\mathrm{C} 8{ }^{\prime}$	C3'	C1'	126(2)
C8	C3	C4	116(2)	$\mathrm{C} 8{ }^{\prime}$	C3'	C4'	116(2)
F1	C4	C3	122.0(19)	F1'	C4'	C3'	119.2(19)
F1	C4	C5	117(2)	F1'	C4'	C5'	120(2)
C5	C4	C3	121(2)	C^{\prime}	C4'	C3'	121(2)
F2	C5	C4	120(2)	F2'	C5'	C4'	118(2)
F2	C5	C6	119(2)	F2'	C5'	C6'	120(2)
C4	C5	C6	122(2)	C6'	C5'	C4'	122(2)
F3	C6	C5	122(2)	F3'	C6'	C5'	122(2)
F3	C6	C7	118(2)	F3'	C6'	C7'	120(2)
C7	C6	C5	121(2)	$\mathrm{C} 5^{\prime}$	C6'	C7'	119(2)
F4	C7	C6	123(2)	F4'	C7'	C6'	120(2)
F4	C7	C8	121(2)	F4'	C7'	C8'	120(2)
C6	C7	C8	116(2)	$\mathrm{C} 8{ }^{\prime}$	C7'	C6'	119(2)
F5	C8	C7	115(2)	F5'	C8'	C3'	120(2)
C3	C8	F5	119.4(19)	F5'	C8'	C7'	117(2)
C3	C8	C7	126(2)	$\mathrm{C} 3^{\prime}$	C8'	C7'	123(2)
N1	C9	C10	108.8(17)	N1'	C9'	C11'	108.4(19)
N1	C9	C11	111.6(18)	$\mathrm{C} 10 '$	C9'	N1'	115(2)
C11	C9	C10	111.2(19)	$\mathrm{C} 10 '$	C9'	C11'	118(2)
N2	C12	C13	109.9(19)	N2'	C12'	C13'	107.3(17)
N2	C12	C14	110.1(18)	N2'	C12'	C14'	110.7(18)
C14	C12	C13	111(2)	C14'	C12'	C13'	113.5(19)
C16	C15	P	107.6(13)	C16'	C15'	P^{\prime}	106.9(13)
C16	C15	C22	110.7(16)	C22'	C15'	P^{\prime}	109.1(13)
C16	C15	C28	109.3(16)	C22'	C15'	C16'	110.8(16)
C22	C15	P	107.0(13)	C22'	C15'	C28'	111.3(17)
C28	C15	P	111.0(14)	C28'	C15'	P^{\prime}	110.3(14)

C28	C15	C22	111.1(17)	C28'	C15'	C16'	108.3(17)
C17	C16	C15	121.1(19)	C17'	C16'	C15'	123.2(18)
C17	C16	C21	117(2)	C17'	C16'	C21'	118.0(19)
C21	C16	C15	121.9(17)	C21'	C16'	C15'	118.5(18)
C16	C17	C18	122(2)	C16'	C17'	C18'	121.8(19)
C17	C18	C19	122(2)	C19'	C18'	C17'	118(2)
C18	C19	C20	115(2)	C20'	C19'	C18'	122(2)
C21	C20	C19	123(2)	C19'	C20'	C21'	121(2)
C20	C21	C16	120(2)	C20'	C21'	C16'	119(2)
C23	C22	C15	119.8(18)	C23'	C22'	C15'	117.9(19)
C27	C22	C15	122.5(19)	C27'	C22'	C15'	126(2)
C27	C22	C23	118(2)	C27'	C22'	C23'	115.5(19)
C24	C23	C22	121(2)	C24'	C23'	C22'	121(2)
C23	C24	C25	120(2)	C25'	C24'	C23'	120(2)
C26	C25	C24	120(3)	C26'	C25'	C24'	120(2)
C25	C26	C27	119(2)	C25'	C26'	C27'	120(2)
C22	C27	C26	122(2)	C22'	C27'	C26'	122(2)
C29	C28	C15	124(2)	C29'	C28'	C15'	123.2(19)
C29	C28	C33	117(2)	C29'	C28'	C33'	117(2)
C33	C28	C15	118.8(19)	C33'	C28'	C15'	119.5(19)
C30	C29	C28	123(2)	C30'	C29'	C28'	119(2)
C29	C30	C31	119(2)	C31'	C30'	C29'	124(2)
C30	C31	C32	119(2)	C30'	C31'	C32'	119(2)
C33	C32	C31	121(2)	C31'	C32'	C33'	120(2)
C32	C33	C28	121(2)	C32'	C33'	C28'	120(2)
O 2	C34	W	177(2)	O 2	C34'	W'	172.4(18)
03	C35	W	177(2)	O3'	C35'	W'	176(2)
04	C36	W	175.4(19)	O4'	C36'	W'	176(2)
05	C37	W	176(2)	O5'	C37'	W^{\prime}	178(2)
06	C38	W	178(2)	O6'	C38'	W'	176(2)

Table 4 Torsion Angles for 4003_0t0.

A	B C D	Angle/ ${ }^{\circ}$	A	B C D	Angle/ ${ }^{\circ}$
W	P O1 C1	-132.4(12)	W^{\prime}	$\mathrm{P}^{\prime} \quad$ O1' C1'	-133.4(11)
W	$\mathrm{P} \quad \mathrm{C} 2 \mathrm{~N} 1$	110.4(13)	W^{\prime}	$\mathrm{P}^{\prime} \quad \mathrm{C} 2{ }^{\prime} \mathrm{N} 1^{\prime}$	113.1(13)
W	P C2 N2	-59(2)	W^{\prime}	$\mathrm{P}^{\prime} \quad \mathrm{C} 2{ }^{\prime} \mathrm{N} \mathbf{l}^{\prime}$	-57(3)
P	O1 C1 N1	21.1(18)	P^{\prime}	O1' C1' N1'	22.6(17)
P	O1 C1 C3	145.0(14)	P^{\prime}	O1' C1' C3'	143.7(14)
P	C15 C16C17	142.2(18)	P^{\prime}	C15' C16' ${ }^{\prime} 17^{\prime}$	-40(2)
P	C15 C16C21	-40(2)	P^{\prime}	C15' C16' ${ }^{\prime} 21^{\prime}$	146.4(16)
P	C15 C22 C23	-69(2)	P^{\prime}	C15' C22' ${ }^{\prime} 23^{\prime}$	-62(2)
P	C15 C22 C27	107(2)	P^{\prime}	C15' C22' ${ }^{\prime} 27^{\prime}$	128.6(19)
P	C15 C28C29	133.4(18)	P^{\prime}	C15' C28' ${ }^{\prime} 29^{\prime}$	110(2)
P	C15 C28C33	-56(2)	P^{\prime}	C15' C28' C33'	-68(2)
F1	C4 C5 F2	2(3)	F1'	C4' C5' F2'	-1(4)

$\left.\begin{array}{llllllllr}\text { F1 } & \text { C4 } & \text { C5 } & \text { C6 } & 180(2) & \text { F1 } & \text { C4' } & \text { C5' } & \text { C6' }\end{array}\right)-179(2)$

C15 P C2 N1	-100.0(15)	C15' ${ }^{\prime}$ C2' N1'	-100.1(15)
C15P C2 N2	91(2)	$\mathrm{C} 15^{\prime} \mathrm{P}^{\prime} \quad \mathrm{C} 2{ }^{\prime} \mathrm{N} 2^{\prime}$	90(3)
C15 C16 C17 C18	179.8(19)	$\mathrm{C15}^{\prime} \mathrm{C} 16^{\prime} \mathrm{C} 17{ }^{\prime} \mathrm{C} 18{ }^{\prime}$	-177.5(19)
C15 C16 C21 C20	179.1(19)	C15' C16' C21'C20'	176.1(18)
C15 C22 C23 C24	177.4(19)	C15' C22' C23' $\mathrm{C} 24^{\prime}$	180.0(17)
C15 C22 C27 C26	-177(2)	C15' C22' C27' C26'	176(2)
C15 C28 C29 C30	176(2)	C15' C28' C29' C30'	-177.6(18)
C15 C28 C33 C32	-176.0(18)	C15' C28' C33' C32'	178(2)
C16 C15 C22 C23	174.2(17)	C16' C15' C22' $\mathrm{C} 23^{\prime}$	56(2)
C16C15 C22 C27	-10(3)	C16' C15' C22'C27'	-114(2)
C16C15 C28C29	-108(2)	C16' C15' C28' C29'	-7(3)
C16 C15 C28C33	63(2)	C16' C15' C28' C33'	175.0(18)
C16 C17 C18C19	1(3)	C16' C17' C18' C19'	3(3)
C17 C16 C21 C20	-3(3)	C17' C16' C21'C20'	3(3)
C17 C18 C19 C20	-2(3)	C17' C18' C19' C20'	0(3)
C18 C19 C20 C21	1(3)	C18' C19' C20' C21'	-2(3)
C19 C20 C21 C16	2(3)	C19' C20' C21'C16'	0(3)
C21 C16 C17 C18	2(3)	C21'C16' C17'C18'	-4(3)
C22 C15 C16C17	-101(2)	$\mathrm{C} 22^{\prime} \mathrm{C} 15^{\prime} \mathrm{C} 16^{\prime} \mathrm{C} 17{ }^{\prime}$	-159.1(19)
C22 C15 C16C21	77(2)	C22'C15' C16'C21'	28(3)
C22 C15 C28C29	14(3)	C22' C15' C28' 22^{\prime}	-129(2)
C22 C15 C28C33	-174.6(18)	C22' C15' C28' C33'	53(2)
C22 C23 C24C25	-2(3)	C22' C23' C24' 25^{\prime}	4(3)
C23 C22 C27 C26	-1(3)	C23' C22' C27' C26'	6(3)
C23 C24 C25 C26	2(3)	C23' C24' C25'C26'	4(3)
C24 C25 C26C27	-2(4)	C24' C25' C26'C27'	-7(4)
C25 C26 C27 C22	1(4)	C25' C26' C27' $\mathrm{C} 22^{\prime}$	2(4)
C27 C22 C23 C24	1(3)	C27' C22' C23' 24^{\prime}	-9(3)
C28 C15 C16C17	22(3)	C28' C15' C16'C17'	79(2)
C28 C15 C16C21	-160.7(19)	C28' C15' C16' $\mathrm{C} 21^{\prime}$	-95(2)
C28 C15 C22 C23	52(2)	C28' C15' C22'C23'	176.6(18)
C28 C15 C22 C27	-132(2)	C28' C15' C22' C27'	7(3)
C28 C29 C30 C31	-3(3)	C28' C29' C30' C31'	-2(3)
C29 C28 C33 C32	-4(3)	C29' C28' C33' C32'	O(3)
C29 C30 C31 C32	-1(3)	C29' C30' C31' C32'	2(4)
C30 C31 C32 C33	2(3)	C30' C31' C32' C33'	-2(4)
C31 C32 C33 C28	1(3)	C31' C32' C33' $\mathrm{C} 28^{\prime}$	1(4)
C33 C28 C29 C30	5(3)	C33' C28' C29' C30'	1(3)

8.17. Crystal data and structure refinement for $\mathbf{4 5}$

Table 8.17. Crystal data and structure refinement for 45.

Identification code	GSTR414, JMV-460 // GXray4051g
Device Type	Bruker X8-KappaApexlI
Empirical formula	$\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{PW}$
Moiety formula	C32 H29 N2 O6 P W
Formula weight	752.39
Temperature/K	100
Crystal system	triclinic
Space group	P-1
a/Å	9.5314(7)
b/Å	10.1118(7)
c/Å	17.1850(11)
$\alpha /{ }^{\circ}$	96.218(4)
$\beta /{ }^{\circ}$	104.840(4)
$\mathrm{V} /{ }^{\circ}$	103.765(5)
Volume/A ${ }^{3}$	1529.58(19)
Z	2
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.634
μ / mm^{-1}	3.874
F(000)	744.0
Crystal size/mm ${ }^{3}$	$0.12 \times 0.11 \times 0.04$
Absorption correction	empirical

Tmin; Tmax	0.5810; 0.7460
Radiation	MoKa ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ} 5.272$ to 50.498°	
Completeness to theta	0.886
Index ranges	$-11 \leq h \leq 11,-10 \leq k \leq 12,-20 \leq 1 \leq 20$
Reflections collected	11086
Independent reflections	$4918\left[\mathrm{R}_{\text {int }}=0.1148, \mathrm{R}_{\text {sigma }}=0.2457\right]$
Data/restraints/parameters	4918/66/383
Goodness-of-fit on F^{2}	0.964
Final R indexes [$1>=2 \sigma(\mathrm{l})$]	$\mathrm{R}_{1}=0.0539, \mathrm{wR}_{2}=0.0935$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1478, w \mathrm{R}_{2}=0.1140$
Largest diff. peak/hole / e \AA^{-3}	3.00/-3.53

Table 2 Bond Lengths for 4051g.

Atom Atom		Length/Å	Atom	Atom	Length/Å
W	P	2.510(3)	C6	C8	1.527(13)
w	C28	2.000(13)	C9	C10	1.535(12)
W	C29	2.032(13)	C9	C16	1.543(13)
w	C30	2.017(12)	C9	C22	1.532(12)
w	C31	2.046(11)	C 10	C11	1.419(12)
W	C32	2.017(12)	C 10	C15	1.410(12)
P	C1	1.916 (10)	C 11	C12	1.394(12)
P	C2	1.887(9)	C12	C13	1.366(12)
P	C9	1.946(10)	C13	C14	1.399(13)
01	C1	1.207(10)	C14	C15	1.368(13)
02	C28	$1.168(11)$	C16	C17	1.373(13)
03	C29	1.154(13)	C 16	C21	1.398(12)
04	C30	1.167(11)	C 17	C18	1.396(13)
05	C31	1.156(11)	C 18	C19	1.355(13)
06	C32	1.180(11)	C 19	C20	1.382(14)
N1	C1	$1.326(11)$	C 20	C21	1.381(14)
N1	C2	1.455(12)	C 22	C23	1.404(12)
N1	C3	1.452(11)	C22	C27	1.412(13)
N2	C2	1.255(11)	C 23	C24	1.390(12)
N2	C6	$1.486(12)$	C 24	C25	1.396(14)
C3	C4	1.517(13)	C25	C26	1.379(14)
C3	C5	1.512(12)	C 26	C27	1.394(12)
C6	C7	1.533(12)			

Table 3 Bond Angles for 4051g.

| Atom Atom Atom | Angle/ ${ }^{\circ}$ Atom Atom Atom | Angle/ ${ }^{\circ}$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| C 28 W | P | $178.4(3)$ | $\mathrm{C} 8 \quad \mathrm{C} 6 \quad \mathrm{C} 7$ | $111.0(8)$ |

C28	W	C29	91.6(4)	C10	C9	P	108.5(6)
C28	W	C30	92.4(4)	C10	C9	C16	111.6(8)
C28	W	C31	88.3(4)	C 16	C9	P	109.2(6)
C28	W	C32	84.0(4)	C 22	C9	P	103.2(6)
C29	W	P	86.8(3)	C 22	C9	C10	111.1(7)
C29	W	C31	177.8(5)	C 22	C9	C16	112.8(8)
C30	W	P	87.5(3)	C 11	C10	C9	121.7(8)
C30	W	C29	90.2(4)	C 15	C10	C9	121.9(8)
C30	W	C31	87.6(4)	C 15	C10	C11	116.1(8)
C30	W	C32	176.4(4)	C 12	C11	C10	120.8(9)
C31	W	P	93.3(3)	C 13	C12	C11	121.2(9)
C32	W	P	96.1(3)	C 12	C13	C14	119.2(9)
C32	W	C29	89.4(4)	C 15	C14	C13	120.3(9)
C32	W	C31	92.8(4)	C 14	C15	C10	122.4(9)
C1	P	W	110.9(3)	C 17	C16	C9	122.0(9)
C1	P	C9	107.5(4)	C 17	C16	C21	118.4(9)
C2	P	W	113.5(3)	C 21	C16	C9	119.6(8)
C2	P	C1	69.9(4)	C 16	C17	C18	120.4(9)
C2	P	C9	112.5(4)	C19	C18	C17	120.5(9)
C9	P	W	127.5(3)	C 18	C19	C20	120.2(10)
C1	N1	C2	103.1(8)	C 19	C20	C21	119.5(10)
C1	N1	C3	130.9(9)	C 20	C21	C16	120.9(9)
C3	N1	C2	125.8(8)	C 23	C22	C9	120.9(9)
C2	N2	C6	116.5(8)	C 23	C22	C27	118.2(8)
O1	C1	P	132.5(8)	C 27	C22	C9	120.6(8)
O1	C1	N1	132.6(10)	C 24	C23	C22	120.9(9)
N1	C1	P	94.8(6)	C 23	C24	C25	119.0(9)
N1	C2	P	91.9(6)	C26	C25	C24	121.9(9)
N2	C2	P	142.4(8)	C 25	C26	C27	118.6(10)
N2	C2	N1	125.5(9)	C 26	C27	C22	121.3(9)
N1	C3	C4	109.9(7)	O 2	C28	W	179.5(9)
N1	C3	C5	110.6(8)	O 3	C29	W	178.0(10)
C5	C3	C4	112.3(8)	04	C30	W	178.7(9)
N2	C6	C7	106.8(8)	05	C31	W	176.1(10)
N2	C6	C8	110.0(8)	06	C32	W	174.6(8)

Table 4 Torsion Angles for 4051g.

$\left.\begin{array}{lllllllll}\text { A } & \text { B } & \text { C } & \text { D } & \text { Angle/ }^{\circ} & \text { A } & \text { B } & \text { C } & \text { D }\end{array}\right]$| Angle/ |
| :---: |

$\left.\begin{array}{lllll}\text { P C9 } & \text { C22 } & \text { C27 } & 48.8(10) & \text { C11 C10 C15 C14 }\end{array}\right)-1.2(14)$
8.18. Crystal data and structure refinement for 26b

Table 8.18. Crystal data and structure refinement for 26b.

Identification code	GSTR421, JMV474 // GXray4100f
Device Type	Bruker X8-KappaApexII
Empirical formula	$\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{PW}$
Moiety formula	$\mathrm{C} 29 \mathrm{H} 24 \mathrm{~N} \mathrm{O5} \mathrm{P} \mathrm{W}$
Formula weight	681.31
Temperature/K	100
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$
a/A	$13.1709(10)$
b/A	$13.0975(9)$
c/A	$15.6670(12)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$91.408(2)$
Y/	90
Volume $/ \AA^{\circ}$	$2701.8(3)$
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.675
μ / mm^{-1}	4.373
$\mathrm{~F}(000)$	1336.0
Crystal size $/ \mathrm{mm}^{3}$	$0.24 \times 0.22 \times 0.2$

Absorption correction	empirical
Tmin; Tmax	$0.4719 ; 0.7460$
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection $/^{\circ} 5.06$ to 55.996°	
Completeness to theta	0.995
Index ranges	$-17 \leq \mathrm{h} \leq 16,-17 \leq \mathrm{k} \leq 14,-20 \leq \mathrm{I} \leq 20$
Reflections collected	26300
Independent reflections	$6503\left[\mathrm{R}_{\text {int }}=0.0405, \mathrm{R}_{\text {sigma }}=0.0355\right]$
Data/restraints/parameters	$6503 / 0 / 337$
Goodness-of-fit on F^{2}	1.048
Final R indexes [l>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0220, \mathrm{wR}_{2}=0.0470$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0268, \mathrm{wR}_{2}=0.0483$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3} 0.78 /-0.63$	

Table 2 Bond Lengths for 4100f.

Atom Atom	Length/Å	Atom Atom	Length/Å		
W	P	$2.5908(7)$	C6	C19	$1.538(3)$
W	C25	$1.989(3)$	C7	C8	$1.404(3)$
W	C26	$2.043(3)$	C7	C12	$1.388(3)$
W	C27	$2.047(3)$	C8	C9	$1.383(4)$
W	C28	$2.048(3)$	C9	C10	$1.383(4)$
W	C29	$2.041(3)$	C10	C11	$1.377(4)$
P	C1	$1.747(3)$	C11	C12	$1.400(4)$
P	C6	$1.952(2)$	C13	C14	$1.401(3)$
O1	C25	$1.146(3)$	C13	C18	$1.391(3)$
O2	C26	$1.146(3)$	C14	C15	$1.376(3)$
O3	C27	$1.141(3)$	C15	C16	$1.392(4)$
O4	C28	$1.139(3)$	C16	C17	$1.379(4)$
O5	C29	$1.139(3)$	C17	C18	$1.391(3)$
N	C1	$1.156(3)$	C19	C20	$1.395(3)$
N	C2	$1.462(3)$	C19	C24	$1.399(3)$
C2	C3	$1.515(4)$	C20	C21	$1.386(3)$
C2	C4	$1.516(4)$	C21	C22	$1.387(4)$
C2	C5	$1.520(4)$	C22	C23	$1.389(4)$
C6	C7	$1.531(3)$	C23	C24	$1.385(3)$
C6	C13	$1.538(3)$			

Table 3 Bond Angles for 4100f.

Atom Atom Atom			Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C25	W	P	172.40(8)	C19	C6	P	103.35(15)
C25	W	C26	88.75(10)	C8	C7	C6	119.6(2)
C25	W	C27	90.43(11)	C 12	C7	C6	122.7(2)
C25	W	C28	91.96(10)	C 12	C7	C8	117.7(2)
C25	W	C29	88.11(11)	C9	C8	C7	121.0(2)
C26	W	P	85.87(7)	C 8	C9	C10	120.5(3)
C26	W	C27	88.74(10)	C 11	C10	C9	119.5(3)
C26	W	C28	178.15(10)	C 10	C11	C12	120.2(3)
C27	W	P	94.81(7)	C7	C12	C11	121.1(2)
C27	W	C28	89.55(10)	C 14	C13	C6	121.0(2)
C28	W	P	93.58(7)	C18	C13	C6	121.2(2)
C29	W	P	86.61(8)	C 18	C13	C14	117.8(2)
C29	W	C26	90.97(10)	C 15	C14	C13	121.1(2)
C29	W	C27	178.52(10)	C 14	C15	C16	120.5(2)
C29	W	C28	90.76(10)	C 17	C16	C15	119.1(2)
C1	P	W	101.06(8)	C 16	C17	C18	120.4(2)
C1	P	C6	98.57(11)	C 13	C18	C17	121.1(2)
C6	P	W	124.25(7)	C 20	C19	C6	122.3(2)
C1	N	C2	165.5(3)	C 20	C19	C24	117.5(2)
N	C1	P	173.6(2)	C 24	C19	C6	120.1(2)
N	C2	C3	106.5(2)	C21	C20	C19	120.9(2)
N	C2	C4	108.4(2)	C 20	C21	C22	120.9(2)
N	C2	C5	106.4(2)	C 21	C22	C23	118.8(2)
C3	C2	C4	109.4(2)	C 24	C23	C22	120.2(2)
C3	C2	C5	112.7(2)	C 23	C24	C19	121.6(2)
C4	C2	C5	113.2(2)	01	C25	W	178.5(2)
C7	C6	P	106.54(15)	O 2	C26	W	178.7(2)
C7	C6	C13	112.56(19)	03	C27	W	177.6(2)
C7	C6	C19	111.01(19)	04	C28	W	178.6(2)
C13	C6	P	112.01(16)	05	C29	W	178.1(2)
C13	C6	C19	110.92(18)				

Table 4 Torsion Angles for 4100f.

A B	C D	Angle/ ${ }^{\circ}$	A B C D	Angle/ ${ }^{\circ}$
P C6	C7 C8	-52.9(3)	C10C11C12C7	-1.1(4)
P C6	C7 C12	130.1(2)	$\mathrm{C} 12 \mathrm{C} 7 \quad \mathrm{C} 8 \mathrm{C} 9$	-0.4(4)
P C6	C13 C14	-49.1(3)	$\mathrm{C} 13 \mathrm{C} 6 \mathrm{C} 7 \mathrm{C8}$	-176.0(2)
P C6	C13 C18	132.9(2)	$\mathrm{C} 13 \mathrm{C} 6 \quad \mathrm{C} 7 \quad \mathrm{C} 12$	6.9(3)
P C6	C19 C20	125.6(2)	C13C6 C19C20	-114.2(2)
P C6	C19 C24	-55.4(2)	C13C6 C19C24	64.8(3)
C1N	C2 C3	55.5(11)	C 13 C 14 C 15 C 16	0.3(4)
C1N	C2 C4	173.0(10)	C 14 C 13 C 18 C 17	1.2(4)
C1N	C2 C5	-65.0(11)	C 14 C 15 C 16 C 17	0.5(4)
C6C7	C8 C9	-177.5(2)	C 15 C 16 C 17 C 18	-0.5(4)

| C6 C7 C12 C11 | $178.1(2)$ | C16 C17 C18 C13 | $-0.4(4)$ |
| :--- | ---: | :--- | ---: | ---: |
| C6 C13 C14 C15 | $-179.2(2)$ | C18 C13 C14 C15 | $-1.1(4)$ |
| C6 C13 C18 C17 | $179.3(2)$ | C19 C6 C7 C8 | $58.9(3)$ |
| C6 C19 C20 C21 | $-178.9(2)$ | C19 C6 C7 C12 | $-118.1(2)$ |
| C6 C19 C24 C23 | $179.3(2)$ | C19 C6 C13 C14 | $-164.0(2)$ |
| C7 C6 C13 C14 | $71.0(3)$ | C19 C6 C13 C18 | $18.0(3)$ |
| C7 C6 C13 C18 | $-107.1(3)$ | C19 C20 C21 C22 | $-0.7(4)$ |
| C7 C6 C19 C20 | $11.8(3)$ | C20 C19 C24 C23 | $-1.7(4)$ |
| C7 C6 C19 C24 | $-169.2(2)$ | C20 C21 C22 C23 | $-1.2(4)$ |
| C7 C8 C9 C10 | $-0.4(4)$ | C21 C22 C23 C24 | $1.6(4)$ |
| C8 C7 C12 C11 | $1.1(4)$ | C22 C23 C24 C19 | $-0.1(4)$ |
| C8 C9 C10 C11 | $0.4(4)$ | C24 C19 C20 C21 | $2.0(4)$ |
| C9 C10 C11 C12 | $0.3(4)$ | | |

8.19. Crystal data and structure refinement for 54.

Table 8.19. Crystal data and structure refinement for 54.

Identification code	GSTR386, JMV416 // GXray3815
Device Type	STOE IPDS 2T
Empirical formula	$\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5}$ PSW
Formula weight	756.44
Temperature/K	$123(2)$
Crystal system	triclinic
Space group	P-1
a/A	$9.6390(6)$
b/ \AA	$9.9715(5)$
c/A	$16.9758(11)$
$\alpha /{ }^{\circ}$	$78.438(5)$
$\beta /{ }^{\circ}$	$89.320(5)$
Y/	$73.325(4)$
Volume $/ \AA^{3}$	$1529.49(16)$
Z	2
$\rho_{\text {calcg } / \mathrm{cm}^{3}}$	1.643
μ / mm^{-1}	3.938
$\mathrm{~F}(000)$	748.0
Crystal size $/ \mathrm{mm}^{3}$	$0.12 \times 0.09 \times 0.03$

Absorption correction	integration
Tmin; Tmax	$0.4692 ; 0.6566$
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection $/^{\circ} 5.22$ to 50.5°	
Completeness to theta	0.976
Index ranges	$-11 \leq \mathrm{h} \leq 11,-11 \leq \mathrm{k} \leq 11,-20 \leq \mathrm{I} \leq 19$
Reflections collected	10474
Independent reflections	$5403\left[\mathrm{R}_{\text {int }}=0.0652, \mathrm{R}_{\text {sigma }}=0.1334\right]$
Data/restraints/parameters	$5403 / 0 / 374$
Goodness-of-fit on F^{2}	0.899
Final R indexes [l>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0429, \mathrm{wR}_{2}=0.0726$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0694, \mathrm{wR}_{2}=0.0762$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3} 1.27 /-1.04$	

Table 2 Bond Lengths for 3815.

Atom Atom		Length/Å	Atom	Atom	Length/Å
W	P	2.506(2)	C5	C7	1.507(11)
W	C27	2.005(9)	C8	C9	1.536(10)
W	C28	2.046(10)	C8	C15	1.544(9)
W	C29	2.058(9)	C8	C21	1.542(9)
W	C30	2.040(10)	C9	C10	1.400(10)
W	C31	2.039(9)	C9	C14	1.387(10)
S	P	2.132(3)	C10	C11	1.360(11)
S	C1	1.841(7)	C11	C12	1.379(12)
P	N1	1.707(6)	C12	C13	1.390(11)
P	C8	1.949(8)	C 13	C14	1.372(11)
01	C27	1.157(10)	C15	C16	1.382(10)
02	C28	1.141(10)	C 15	C20	1.401(10)
03	C29	1.126(9)	C 16	C17	1.390(10)
04	C30	1.145(11)	C17	C18	1.396(11)
05	C31	1.133(9)	C 18	C19	1.387(11)
N1	C1	1.388(9)	C19	C20	1.387(10)
N1	C5	1.497(8)	C 21	C22	1.389(10)
N2	C1	1.237(10)	C 21	C26	1.399(10)
N2	C2	1.476(9)	C 22	C23	1.383(10)
C2	C3	1.508(12)	C 23	C24	1.358(12)
C2	C4	1.530(12)	C 24	C25	1.386(11)
C5	C6	1.521(10)	C25	C26	1.383(10)

Table 3 Bond Angles for 3815.

Atom Atom Atom			Angle/ ${ }^{\circ}$ Atom Atom Atom				Angle/ ${ }^{\circ}$
C27	W	P	176.3(3)	C9	C8	P	109.1(5)
C27	W	C28	86.4(4)	C9	C8	C15	112.7(6)
C27	W	C29	91.0(3)	C9	C8	C21	110.0(6)
C27	W	C30	89.7(4)	C 15	C8	P	105.2(5)
C27	W	C31	88.6(3)	C21	C8	P	109.8(5)
C28	W	P	97.0(2)	C 21	C8	C15	110.0(6)
C28	W	C29	90.6(3)	C 10	C9	C8	123.0(6)
C29	W	P	87.7(2)	C14	C9	C8	119.3(6)
C30	W	P	86.8(3)	C 14	C9	C10	117.6(7)
C30	W	C28	174.8(4)	C 11	C10	C9	120.8(7)
C30	W	C29	86.1(3)	C10	C11	C12	121.4(8)
C31	W	P	92.5(2)	C11	C12	C13	118.4(8)
C31	W	C28	93.3(3)	C14	C13	C12	120.4(7)
C31	W	C29	176.0(4)	C13	C14	C9	121.3(7)
C31	W	C30	90.0(4)	C16	C15	C8	122.2(6)
C1	S	P	75.6(3)	C 16	C15	C20	119.3(6)
S	P	W	113.18(10)	C 20	C15	C8	118.5(7)
N1	P	W	118.2(2)	C 15	C16	C17	121.0(7)
N1	P	S	80.2(2)	C 16	C17	C18	120.1(8)
N1	P	C8	106.5(3)	C 19	C18	C17	118.7(7)
C8	P	W	124.6(2)	C18	C19	C20	121.5(7)
C8	P	S	105.0(2)	C 19	C20	C15	119.5(8)
C1	N1	P	103.9(4)	C 22	C21	C8	122.8(7)
C1	N1	C5	123.8(6)	C 22	C21	C26	117.4(7)
C5	N1	P	129.7(5)	C26	C21	C8	119.6(6)
C1	N2	C2	119.2(6)	C 23	C22	C21	120.8(7)
N1	C1	S	100.3(5)	C 24	C23	C22	121.4(7)
N2	C1	S	131.4(6)	C 23	C24	C25	119.0(7)
N2	C1	N1	128.3(7)	C 26	C25	C24	120.3(8)
N2	C2	C3	108.4(7)	C 25	C26	C21	121.0(7)
N2	C2	C4	107.8(7)	01	C27	W	179.5(9)
C3	C2	C4	111.5(7)	O 2	C28	W	174.3(8)
N1	C5	C6	110.4(6)	O 3	C29	W	175.5(8)
N1	C5	C7	112.2(6)	04	C30	W	177.6(7)
C7	C5	C6	112.0(6)	05	C31	W	176.4(7)

Table 4 Torsion Angles for 3815.

A	B	C	D	Angle/ ${ }^{\circ}$	A B	C D	Angle/ ${ }^{\circ}$
W	P	N1	C1	-110.7(4)	C12 C13	C14C9	0.2(13)
W	P	N1	C5	51.2(7)	C14C9	C10C11	-2.0(12)
W	P	C8	C9	156.3(3)	C15C8	C9 C10	7.4(11)
W	P	C8	C15	35.2(5)	C15C8	C9 C14	-173.4(7)
W	P	C8	C21	-83.1(5)	C15C8	C21-22	-81.7(8)
S	P	N1	C1	0.4(4)	C15C8	C21C26	93.8(8)

S	P	N1 C5	162.4(7)	C 15 C 16 C 17 C 18	0.3(13)
S	P	C8 C9	23.5(5)	C 16 C 15 C 20 C 19	1.3(12)
S	P	C8 C15	-97.6(4)	C 16 C 17 C 18 C 19	-0.2(12)
S	P	C8 C21	144.2(4)	C 17 C 18 C 19 C 20	0.7(12)
P	W	C2701	-104(100)	C18C19 C20C15	-1.3(12)
P	W	C2802	-172(7)	C 20 C 15 C 16 C 17	-0.8(12)
P	W	C29 O3	-109(9)	C21C8 C9 C10	130.6(8)
P	W	C3004	115(22)	C21C8 C9 C14	-50.3(9)
P	W	C3105	152(13)	C21C8 C15C16	-13.0(10)
P	S	C1 N1	0.4(4)	C21C8 C15C20	167.5(7)
P	S	C1 N2	-177.8(9)	C 21 C 22 C 23 C 24	-1.9(11)
P	N1	C1 S	-0.5(5)	C22 C21 C26C25	-0.7(11)
P	N1	C1 N2	177.8(8)	C22C23 C24C25	-0.1(12)
P	N1	C5 C6	127.8(7)	C 23 C 24 C 25 C 26	1.6(13)
P	N1	C5 C7	-106.4(7)	C 24 C 25 C 26 C 21	-1.2(12)
P	C8	C9 C10	-109.0(8)	C26C21 C22C23	2.2(11)
P	C8	C9 C14	70.2(7)	C27W P S	-27(4)
P	C8	C15C16	-131.1(7)	C 27 W P N1	64(4)
P	C8	C15C20	49.4(8)	C 27 W P C8	-156(4)
P	C8	C21C22	33.5(8)	C 27 W C 28 O 2	6(7)
P	C8	C21C26	-150.9(6)	C 27 W C 29 O	67(9)
N1	P	C8 C9	-60.5(5)	C 27 W C 30 O	-64(22)
N1	P	C8 C15	178.4(4)	C 27 W C31O5	-25(13)
N1	P	C8 C21	60.2(5)	C28W P S	132.1(2)
C1	S	P W	116.2(3)	C28W P N1	-136.8(3)
C1	S	P N1	-0.3(3)	$\mathrm{C} 28 \mathrm{~W} \mathrm{P} \mathrm{C8}$	2.6(3)
C1	S	P C8	-104.9(3)	$\mathrm{C} 28 \mathrm{~W} \mathrm{C27O1}$	97(100)
C1	N1	C5 C6	-73.4(9)	$\mathrm{C} 28 \mathrm{~W} \mathrm{C29O3}$	154(9)
C1	N1	C5 C7	52.4(9)	C28W C30O4	-24(26)
C1	N2	C2 C3	-108.5(9)	C28W C31O5	-111(13)
C1	N2	C2 C4	130.6(8)	C29 W P S	41.7(3)
C2	N2	C1 S	-3.7(12)	C29W P N1	132.8(4)
C2	N2	C1 N1	178.6(7)	$\mathrm{C} 29 \mathrm{~W} \mathrm{P} \mathrm{C8}$	-87.8(4)
C5	N1	C1 S	-163.8(6)	C 29 W C27O1	-173(100)
C5	N1	C1 N2	14.4(12)	$\mathrm{C} 29 \mathrm{~W} \mathrm{C28O2}$	-85(7)
C8	P	N1 C1	103.3(5)	C29W C3004	27(22)
C8	P	N1 C5	-94.8(7)	C29W C31O5	60(16)
C8	C9	C10C11	177.2(8)	C30W P S	-44.5(2)
C8	C9	C14C13	-178.1(8)	C30W P N1	46.7(3)
C8	C15	C16C17	179.7(7)	C30W P C8	-173.9(3)
C8	C15	C20 C19	-179.1(7)	C30W C2701	-87(100)
C8	C21	C22 C23	177.9(6)	C30W C28O2	-35(11)
C8	C21	C26C25	-176.5(7)	C30W C29O3	-22(9)
C9	C8	C15C16	110.2(8)	C30W C31O5	65(13)
C9	C8	C15C20	-69.3(9)	C31W P S	-134.3(3)
C9	C8	C21C22	153.5(7)	C31W P N1	-43.2(4)
C9	C8	C21C26	-30.9(9)	C31W P C8	96.3(4)

C9 C10 C11 C12	$1.6(15)$ C31W C27O1	$3(100)$	
C10 C9 C14 C13	$1.1(12)$ C31W C28O2	$95(7)$	
C10 C11 C12 C13	$-0.3(15)$ C31W	C29 O3	$-17(13)$
C11 C12 C13 C14	$-0.6(14)$	C31W	C30 O4

8.20. Crystal data and structure refinement for 58

Table 8.20. Crystal data and structure refinement for 58.

Identification code	GSTR421, JMV474 // GXray4100f
Device Type	Bruker X8-KappaApexll
Empirical formula	$\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{PW}$
Moiety formula	C29 H24 N O5 P W
Formula weight	681.31
Temperature/K	100
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$
a/Å	13.1709(10)
b/Å	13.0975(9)
c/Å	15.6670(12)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	91.408(2)
$\gamma /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	2701.8(3)
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.675
μ / mm^{-1}	4.373

F(000)	1336.0
Crystal size/mm ${ }^{3}$	$0.24 \times 0.22 \times 0.2$
Absorption correction	empirical
Tmin; Tmax	0.4719; 0.7460
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ} 5.06$ to $55.996{ }^{\circ}$	
Completeness to theta	0.995
Index ranges	$-17 \leq h \leq 16,-17 \leq k \leq 14,-20 \leq \mathrm{l} \leq 20$
Reflections collected	26300
Independent reflections	$6503\left[\mathrm{R}_{\text {int }}=0.0405, \mathrm{R}_{\text {sigma }}=0.0355\right]$
Data/restraints/parameters	6503/0/337
Goodness-of-fit on F^{2}	1.048
Final R indexes [$1>=2 \sigma(1)]$	$\mathrm{R}_{1}=0.0220, \mathrm{wR}_{2}=0.0470$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0268, w \mathrm{R}_{2}=0.0483$
Largest diff. peak/hole / e \AA^{-3}	0.78/-0.63

Table 2 Bond Lengths for 3902f.

Atom Atom	Length/Å	Atom Atom	Length/Å	
W	P	$2.5103(5)$	C5	C7

Table 3 Bond Angles for 3902f.

Atom Atom Atom			Angle/ ${ }^{\circ}$	Atom Atom Atom		
C27	W	P	176.36(6)	C9	C8	P
C27	W	C28	90.07(8)	C9	C8	C15
C27	W	C29	87.70(8)	C9	C8	C21
C27	W	C30	86.16(8)	C15	C8	P
C27	W	C31	90.64(8)	C21	C8	P
C28	W	P	86.44(6)	C 21	C8	C15
C28	W	C29	90.09(9)	C10	C9	C8
C28	W	C30	174.72(8)	C14	C9	C8
C28	W	C31	85.90(9)	C14	C9	C10
C29	W	P	93.32(6)	C11	C10	C9
C29	W	C30	93.44(9)	C10	C11	C12
C29	W	C31	175.66(9)	C13	C12	C11
C30	W	P	97.26(6)	C 12	C13	C14
C31	W	P	88.09(6)	C9	C14	C13
C31	W	C30	90.45(8)	C16	C15	C8
C1	Se	P	71.27(6)	C 20	C15	C8
Se	P	W	113.12(2)	C 20	C15	C16
N1	P	W	117.43(6)	C 17	C16	C15
N1	P	Se	81.26(6)	C 18	C17	C16
N1	P	C8	106.65(8)	C19	C18	C17
C8	P	W	124.31(6)	C18	C19	C20
C8	P	Se	105.38(6)	C19	C20	C15
C1	N1	P	106.60(13)	C 22	C21	C8
C1	N1	C5	123.18(16)	C 22	C21	C26
C5	N1	P	128.33(13)	C26	C21	C8
C1	N2	C2	120.11(18)	C 23	C22	C21
N1	C1	Se	100.87(13)	C 24	C23	C22
N2	C1	Se	130.86(16)	C 23	C24	C25
N2	C1	N1	128.25(19)	C26	C25	C24
N2	C2	C3	109.22(18)	C 25	C26	C21
N2	C2	C4	108.19(16)	01	C27	W
C3	C2	C4	111.81(18)	02	C28	W
N1	C5	C6	111.70(16)	O 3	C 29	W
N1	C5	C7	111.17(17)	04	C30	W
C7	C5	C6	112.33(18)	05	C31	W

Angle/ ${ }^{\circ}$
108.54(13)
110.40(15)
112.39(16)
109.99(13)
104.69(12)
110.66(16)
119.14(18)
123.01(18)
117.84(19)
121.0(2)
120.5(2)
119.3(2)
120.3(2)
121.0(2)
119.80(18)
122.51(17)
117.47(18)
121.0(2)
120.5(2)
119.3(2)
120.2(2)
121.46(19)
122.30(17)
117.60(18)
120.09(17)
120.75(19)
120.6(2)
119.5(2)
119.83(19)
121.69(19)
179.10(18)
177.23(19)
177.42(19)
174.09(17)
176.64(19)

Table 4 Torsion Angles for 3902f.

A B	C	D	Angle/ ${ }^{\circ}$	A	B	C D	Angle/ ${ }^{\circ}$
W P	N1	C1	-111.95(12)	C9	C8	C15C16	-30.7(3)
W P	N1	C5	52.55(17)	C9	C8	C15C20	154.76(18)
Se P	N1	C1	-0.38(11)	C 9	C8	C21-22	111.3(2)

Se P N1 C5	164.12(16)	C9 C8 C21C26	-68.6(2)
P N1 C1 Se	0.43(13)	C9 C10C11C12	0.1(3)
P N1 C1 N2	179.05(18)	C10C9 C14C13	-2.0(3)
P N1 C5 C6	-108.59(19)	C10 C11-12C13	-1.8(3)
P N1 C5 C7	125.07(17)	C 11 C 12 C 13 C 14	1.6(3)
P C8 C9 C10	70.23(19)	C12 C13 C14C9	0.4(3)
P C8 C9 C14	-110.30(18)	C14C9 C10C11	1.8(3)
P C8 C15C16	-150.41(16)	C15C8 C9 C10	-50.4(2)
P C8 C15C20	35.0(2)	C 15 C 8 C 9 C 14	129.08(19)
P C8 C21-22	-131.08(17)	C 15 C 8 C 21 C 22	-12.6(3)
P C8 C21C26	49.0(2)	C15C8 C21C26	167.44(17)
C1N1 C5 C6	53.6(2)	C 15 C 16 C 17 C 18	-0.9(3)
C1N1 C5 C7	-72.8(2)	C 16 C 15 C 20 C 19	2.8(3)
C1N2 C2 C3	129.8(2)	C16 C17 C18C19	1.7(3)
C1N2 C2 C4	-108.3(2)	C 17 C 18 C 19 C 20	-0.1(3)
C2N2 C1 Se	-2.9(3)	C18 C19 C20 C15	-2.2(3)
C2N2 C1 N1	178.85(18)	C20 C15 C16C17	-1.3(3)
C5N1 C1 Se	-165.06(14)	C21C8 C9 C10	-174.47(16)
C5N1 C1 N2	13.6(3)	C21C8 C9 C14	5.0(3)
C8P N1 C1	103.16(13)	C 21 C 8 C 15 C 16	94.4(2)
C8P N1 C5	-92.34(17)	C21C8 C15C20	-80.2(2)
C8C9 C10C11	-178.74(18)	C21 C22 C23 C24	-0.7(3)
C8C9 C14C13	178.51(18)	C22 C21-26C25	1.1(3)
C8C15C16C17	-176.12(19)	C 22 C 23 C 24 C 25	0.9(3)
C8C15C20 C19	177.53(18)	C23 C24C25C26	-0.2(3)
C8C21-22 C23	179.69(19)	C24 C25 C26C21	-0.9(3)
C8C21C26 C25	-178.92(18)	C26 C21 C22 C23	-0.4(3)

[^0]: ${ }^{1} \mathrm{~A} O \cdots \mathrm{H}-\mathrm{N}$ interaction ($\mathrm{d}=2.437 \AA$) is formed.
 ${ }^{2} \mathrm{TS}(9 \mathrm{~g} \rightarrow \mathbf{4 g})$ could not be properly located due to geometry convergence problems in a rather flat area of the hypersurface.

[^1]: ${ }^{3} \mathrm{P} \ldots \mathrm{C}, \mathrm{d} 3.110 \AA \AA$, WBI $0.052, \rho(r)=1.52 \times 10^{-2} e / a_{o}{ }^{3} ; \mathrm{P} \cdots \mathrm{O}, \mathrm{d} 3.324 \AA$ A , WBI $0.007, \rho(r)=0.84 \times 10^{-2} e / a_{0}{ }^{3}$.

[^2]: ${ }^{4}$ Recently, it was shown by Schulz that five-membered biradicaloids can also add carbon monoxide. ${ }^{[135]}$

[^3]: ${ }^{5}$ The structure as obtained by X-ray analysis is not yet refined.

[^4]: ${ }^{1} 2-X, 2-Y,-Z$

