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Abstract

For Plant Phenotyping, non-invasive measurements of early stress processes in plants and
the quanti�cation of soil parameters with hyperspectral sensors are of particular impor-
tance, but relevant information is often concealed in the data. While the relevant parameters
are measured, only a combination of di�erent, very application-speci�c methods may reveal
them. Even though promising results have been achieved by using supervised machine learn-
ing methods, existing features are not optimal. In other cases, labels are not obtainable or,
especially for soil measurements, the information about the searched parameters is masked
in the spectrum itself. In this thesis, new methods are developed to quantify and visualize
relevant processes for Plant Phenotyping from hyperspectral data. New features are con-
structed in order to deal with the bad signal to noise ratio of early stress processes. These
features are describing the information about the whole spectrum by piece-wise polynomials.
The new features enable an earlier and more accurate prediction of stress symptoms despite
noisy measurements. A method is presented to extract labels from unlabeled hyperspectral
images. For this, an unsupervised archetypal matrix factorization is used to construct a
second order feature space. The new feature space enables the prediction of early drought
stress on the plant level. A hierarchical classi�cation approach is developed to deal with
relevant parameters masked by undesirable in�uences on the spectrum. The hierarchical
approach eliminates the variance resulting from these disturbing in�uences. This enables
more accurate regression and classi�cation models. The presented methods succeed in an
earlier stress prediction and a signi�cant improvement in soil parameter quanti�cation from
hyperspectral data.
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Kurzfassung

Für die Phänotypisierung von P�anzen sind nicht-invasive Messungen von frühen
Stressprozessen und die Quanti�zierung von Bodenparametern mit hyperspektralen
Sensoren von hoher Bedeutung, aber die relevanten Informationen sind oftmals in den
Daten verborgen. Während die relevanten Parameter zwar erfasst werden, können diese
lediglich durch eine Kombination aus verschiedenen, sehr anwendungsspezi�schen Metho-
den aufgedeckt werden. Obwohl sehr vielversprechende Erfolge mit überwachten Methoden
des Maschinellen Lernens erzielt wurden, sind die bisher benutzen Merkmale nicht op-
timal. In anderen Fällen sind annotierte Daten nicht erhältlich oder, besonders für die
Bestimmung von Bodenparametern, ist die Information über die gesuchten Prozesse in
der hyperspektralen Signatur verborgen. In dieser Arbeit werden neue Methoden zur
Quanti�zierung und Visualisierung von relevanten Prozessen für die Phänotypisierung von
P�anzen aus hyperspektralen Daten entwickelt. Neue Merkmale werden konstruiert um mit
dem schlechten Signal-Rausch-Verhältnis in der Früherkennung umzugehen. Diese Merk-
male beschreiben die Information des gesamten Spektrums durch stückweise Polynome.
Die neuen Merkmale erlauben eine frühere und präzisere Früherkennung von Stresssymp-
tomen, trotz verrauschter Messdaten. Eine Methode wird präsentiert um annotierte Daten
aus ungelabelten Hyperspektralbildern zu extrahieren. Dazu wird eine unüberwachte,
archetypische Matrixfaktorisierung verwendet, um einen Merkmalsraum zweiter Ordnung
zu konstruieren. Der neue Merkmalsraum erlaubt die Früherkennung von Trockenstress auf
der P�anzenebene. Ein hierarchisches Klassi�kationsverfahren wird entwickelt um relevante
Informationen aus der Signatur zu gewinnen, die durch unerwünschte Ein�üsse verdeckt
werden. Dies ermöglicht präzisere Regressions- und Klassi�kationsmodelle. Die präsen-
tierten Methoden erlauben eine frühere Stresserkennung und eine signi�kante Verbesserung
in der Quanti�zierung von Bodenparametern aus hyperspektralen Daten.
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1 Introduction

Expanding the food production for a rapidly increasing world population without increasing
the amount of arable land and resources has been identi�ed as a major challenge for the
upcoming decades (Nature Editorial, 2010). One of the most limiting factors is the food
production loss due to biotic and abiotic stressors like drought or fungi (Gaspar et al., 2002;
Taiz and Zeiger, 2002), calling for crops with increased stress resistance traits optimized for
speci�c climate conditions. However, as traditional breeding methods are too time consum-
ing, considering rapidly changing environmental conditions, one scienti�c challenge is the
optimization of the crop breeding process as well as the development of new methods for
resource e�ective precision plant protection. A bottleneck in understanding plant traits, like
yield, under varying environmental conditions is Plant Phenotyping (Furbank and Tester,
2011). Plant phenotypes are the result of the interaction between a plant's genotype and its
environment. To understand this complex interaction, non-invasive and fast measurement
techniques are essential (Furbank and Tester, 2011). In order to meet the challenges of new,
non-invasive sensors, the Institute of Geodesy and Geoinformation in Bonn is cooperating
with plant scientists in the context of the interdisciplinary CROP.SENSe.net network.

Of particular importance are hyperspectral sensors, which enable high-throughput, non-
invasive measurements of radiative properties of plant tissue. However, the signals are in-
�uenced by many parameters, like the illumination, observation angle and the distance to
the object, which have a strong, yet not fully researched impact. Regardless, hyperspectral
sensors have successfully been used to observe plant characteristics. One important aspect
of using hyperspectral sensors in Plant Phenotyping is the description of early stress pro-
cesses in plants. In this context, early stress detection is de�ned as the stages of stress which
symptoms are not visible to the naked eye. However, for very early stages of stress, classi�-
cation problems become more demanding as the true probability distribution functions are
unknown, labeled samples are often not available and di�erences between classes become
minor compared to the measurement noise. In order to fully understand the interaction
between genotypes and their environment, the measurement of soil parameters is required.
While hyperspectral sensors have been used to quantify soil parameters, their usefulness is
limited in the �eld, as important soil properties are masked by unwanted parameters, which
typically have a high spatial and temporal inhomogeneity.

This thesis shows that advanced methods of machine learning can improve the extrac-
tion of information from hyperspectral data considerably. The methods are developed
with the focus on plant phenotyping applications, in particular early stress prediction and
soil parameter quanti�cation. The thesis is embedded in the CROP.SENSe.net network.
CROP.SENSe.net aims to support modern sensor technology for plant phenotyping in or-
der to improve selection e�ciency in plant breeding and �eld management, where, among
others, hyperspectral sensors have been a major focus.
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1 Introduction

Hyperspectral sensors measure radiation re�ected or emitted from objects. Hyperspectral
re�ectance is typically measured in the range from 400 nm to 2700 nm with a spectral reso-
lution between 1 nm and 15 nm. As the electromagnetic energy which is re�ected or emitted
from objects depends on biological and chemical features, the structural and physiological
traits of vegetation (Knipling, 1970; Malenovsky et al., 2009; Rascher et al., 2010) or mineral
components of soil samples (Gholizadeh et al., 2013) are observable. Hyperspectral sensors
either measure single spectra averaged over a spatial area or, in the case of imaging sensors,
the spectrum is recorded for each pixel, resulting in tensors (data cubes) with millions of
scalars.

Hyperspectral sensors allow to observe changes of radiative properties of objects like plants
or soil non-invasively over time. In remote sensing, hyperspectral imaging has been used
to classify vegetation since several decades. Consequently, most data analysis methods for
hyperspectral imaging have been developed for remote sensing applications, in which the
recorded spectrum is often the re�ectance of an area of several square meters.

The most widely investigated approach for hyperspectral data analysis are Vegetation In-
dices. Vegetation Indices are ratios and / or linear combinations of mostly two di�erent
wavebands and aim at reducing the in�uence of irrelevant background information while
maximizing the in�uence of a speci�c chemical compound. Vegetation Indices have been
developed for the regression of biomass, chlorophyll content or water content, among many
others. However, Vegetation Indices have not been developed with hyperspectral image
classi�cation in mind. While they are still used in combination with hypothesis tests or lin-
ear thresholds to classify images, unknown probability distribution functions and nonlinear
classes are di�cult to handle for these approaches.

Hence, alternative data analysis algorithms which make less assumptions on the data are
needed. Especially kernel based machine learning methods have been used widely in remote
sensing applications (Camps-Valls and Bruzzone, 2009; Waske and Braun, 2009; Roscher
et al., 2012). Therefore, the question arose whether they would also improve the detection
of early stress with hyperspectral images.

The �rst work for early stress detection with machine learning and hyperspectral cameras
was based on Support Vector Machines combined with spectral Vegetation Indices (Rumpf
et al., 2009, 2010). The use of linear and non-linear Support Vector Machines and specialized
Vegetation Indices enabled more accurate and faster detection of biotic stress than tradi-
tional hypotheses tests or a linear discriminant analysis. Especially the high potential of
Support Vector Machines for early stress detection has been proven. Due to the restriction
to separating hyperplanes with low capacity, Support Vector Machines are comparatively
robust against over�tting, even on high dimensional data with relatively few labeled training
samples.

However, while the potential of Support Vector Machines for the speci�c application �eld
was demonstrated, the choice of the right feature space is as important for the success
of pattern recognition as the choice of the right learning algorithm (Cherkassky and Lari-
Naja�, 1992; Radcli�e and Shurry, 1995; Piramuthu et al., 1998) and many problems have
not been addressed yet, in particular:
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1. For early stress detection with noisy sensors, Vegetation Indices and feature selection

algorithms are not feasible.

The number of labeled samples is normally small, as obtaining ground truth samples
is time- and cost-intensive. However, in order to learn a robust classi�cation model
under very noisy conditions, either the amount of labeled samples has to increase or
the robustness of the feature space against over�tting. A common approach is to use
Vegetation Indices as features. Vegetation Indices operate on a very small subset of
spectral features. This becomes problematic, as the variance within classes and noise
is often higher than the margin between classes in the feature space. Feature selection
methods, in addition, are prone to highly correlated feature spaces. For hyperspectral
observations, large areas of neighboring wavebands are typically correlated with cor-
relation coe�cients above 0.95. Also, the complex physiological e�ects of stress cause
re�ectance changes in most spectral regions (Aldakheel and Danson, 1997; Peñuelas
et al., 1997). Features based on one or two wavebands, however, have only a very
narrow view on the overall changes happening in the spectral bands. Therefore, the
question arises whether a feature space using the information of the whole spectrum
improves the robustness of the model compared to features based on single wavebands
or combinations of a small subset of selected wavebands.

2. For early drought stress detection with hyperspectral images no labels are provided.

Plants typically react to drought with a premature leaf senescence (Lim and Nam,
2007). Leaf senescence is characterized by a redistribution of nutrients and a degra-
dation of pigments. Leaf senescence �rst occurs in older leaves before a�ecting the
younger, more productive ones (Lim and Nam, 2007; Guiboileau et al., 2010). The
premature leaf senescence allows plants to prioritize more productive leaves for nu-
trient provision in times of drought. This process is continuous and invisible to the
naked eye at early stages. Therefore, a manual annotation of pixels measuring early
drought stress is not possible.

The only reliable information is that one plant may have a higher probability of
su�ering from stress than another. This leads to mainly unsupervised tasks. Tradi-
tional unsupervised machine learning algorithms, like K-Means, partition the data
into classes. In case of the continuous drought development process, the data is dis-
cretized into ordinal classes. However, the quality of the results is dependent on a
good discretization. In order to control the quality, an interpretation of these classes
is mostly mandatory. However, the interpretation of arti�cial means is not always
easy and straightforward. An alternative method is an archetypal matrix factoriza-
tion. Archetypal Analysis decomposes a matrix into basis vectors, which are existing
data points (i.e. archetypes) and coe�cients, which express each point as a linear
combination of these archetypes. The question is if archetypal matrix factorization is
able to describe stress development in plants e�ciently with interpretable results.

3. The impact of searched processes and parameters on the spectral signature is often

masked by unwanted e�ects and parameters.

Irrelevant parameters and environmental in�uences may overshadow the e�ects of
searched parameters. Often the in�uence of these irrelevant factors is so strong, that
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1 Introduction

they e�ectively mask the searched parameters. The problem is intensi�ed the more
parameters are in�uencing the signature. In order to improve hyperspectral data anal-
ysis, the question is if it is possible to reduce the in�uence of these parameters without
the need for additional measurements.

In this thesis, the three problems described before are addressed in speci�c applications.
In all presented applications, the searched processes are neither visible to the naked eye
(even for biologically trained users) nor directly visible in the measurements themselves or
directly extractable with established data analysis methods.

In the �rst application, wheat leaves were inoculated with leaf rust under very controlled
conditions. Thus, it was exactly known where the symptoms will manifest at a later point
in time. However, the task was to detect stress at the earliest possible day after inoculation
(dai) with noisy �uorescence sensors. In this case, the mean di�erence between spectra of
healthy tissue and spectra of inoculated tissue was smaller than the variance of both classes.
This prevented a successful identi�cation of leaf rust with Vegetation Indices.

In the second application, the task was to detect drought stress with hyperspectral images
in barley. While it is known which plant was su�ering from water stress, drought does not
a�ect all leaves at the same time. As drought had to be classi�ed before symptoms manifest,
no labels were given. The typical approach would be to calculate a mean Vegetation Index
for the whole plant and classify with this feature. However, this approach is neither very
sensitive to changes in early stages nor does it allow a visualization of drought development
in plants.

In the third application, soil organic carbon (SOC) content had to be quanti�ed. SOC is an
important environmental parameter for plants. However, moisture and roughness dominate
the hyperspectral signature so strong that a direct regression of the SOC content does
not meet the accuracy requirements for SOC quanti�cation. Therefore, the need to quantify
moisture and roughness from the same signature has been identi�ed. However, until now, no
approach was able to determine roughness and moisture simultaneously from hyperspectral
signatures and use this information to improve SOC regression.

The data analysis of all applications require new methods in order to quantify and visualize
the relevant processes. In particular, this thesis provides:

1. A method to extract features representing the information of the whole spectrum.

For very early stress detection with �uorescence sensors, the low signal to noise ratio
prevents the use of Vegetation Indices and �lter algorithms. Instead, the signature
is mathematically described by curve �tting algorithms. However, global �tting algo-
rithms like splines result either in large �tting errors at the knots or require a high
number of coe�cients. This often causes errors in areas of high importance for classi-
�cation, or results in high feature space dimensions, which are not feasible due to the
low number of labeled samples available. Instead, the signature is split into smaller
areas of high relevance for classi�cation. Then, each area is described by a separate
polynomial of low order and the polynomial coe�cients are used for classi�cation. This
approach enables a classi�cation of leaf rust at the second dai and is more e�cient
than �lter selection methods or low rank approximations with principal components.
The project and results are discussed in more detail in section 3.1 and summarize the
results of Römer et al. (2011).
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2. A method to extract labels from unlabeled hyperspectral images to describe stress pro-

cesses.

For drought stress detection in hyperspectral images, labeled pixels are not available.
Therefore, an unsupervised archetypal matrix decomposition is used. As the opti-
mization process of �nding good archetypes is computationally ine�cient, traditional
archetypal factorization techniques are not suitable for large hyperspectral data sets.
Instead, Simplex Volume Maximization (Thurau et al., 2010), a new, computationally
fast algorithm for Archetypal Analysis, is used for hyperspectral image analysis for the
�rst time. The archetypes found by the matrix factorization are easily interpretable, as
they are existing samples in each image. This enables an easy and fast manual anno-
tation of each archetype. However, this still does not provide enough labeled samples
to train a supervised classi�cation model. Instead, the similarities of each sample to
the labeled archetypes can be used in order to construct a second order feature space
for each plant, expressing the mean similarity to each archetype. This step enables to
learn a classi�cation model on the plant level. In addition, the similarities of each pixel
to each archetype are used to visualize stress development. The results are described
in Römer et al. (2012) and are summarized in section 3.3.

3. A hierarchical classi�cation approach to deal with unwanted parameters masking the

searched, relevant parameters.

The in�uence of moisture and roughness on the signature masks the SOC content. In
addition, roughness in�uences nearly all wavebands. This prevents the search for wave-
bands which are only a�ected by SOC. However, moisture has a signi�cant stronger
impact than roughness and the in�uence of roughness is much higher than the in�u-
ence of SOC. Therefore, the idea is to use a hierarchical tree of Support Vector Ma-
chine models. On the �rst node, moisture is classi�ed. Now, for each moisture class,
roughness is determined and subsequently for each moisture and roughness combina-
tion the SOC content. This way, �rst a strong part of the variance from moisture is
eliminated from the signature and then the variance from roughness. However, the
classi�cation of roughness from the spectral signature is very challenging an has not
been achieved before. Therefore, an ordinal classi�cation approach is used instead of
a direct multi-class classi�cation model. This enables a quanti�cation of roughness
from spectral signatures for the �rst time. The results summarized in section 3.2 show
that the regression error was nearly halved this way.

The remaining chapters of this thesis are structured as follows: In section 2.1, the most im-
portant aspects of hyperspectral sensors and hyperspectral sensor evaluation are presented.
Furthermore, the boundary conditions for hyperspectral data evaluation and the special
challenges o�ered by hyperspectral sensors are introduced. In section 2.2, the theoretic
foundation of Support Vector Machine classi�cation is presented and it is explained why
they are well suited for hyperspectral signature evaluation. Archetypal matrix factorization
techniques for large data sets and Simplex Volume Maximization are introduced in section
2.3. Conclusions and perspectives are presented in chapter 4.
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2 Sensors and Methods

This chapter introduces hyperspectral sensors and the methods most relevant for the thesis.

Section 2.1 shortly introduces hyperspectral sensors and their use for stress detection in
plants as well as for soil parameter assessment. The challenges of hyperspectral data eval-
uation are described and a brief insight into the current state of the art in hyperspectral
data evaluation is presented.

Section 2.2 introduces Support Vector Machines, which were chosen for supervised classi�-
cation in Römer et al. (2011) and Römer et al. (2014). The section explains why Support
Vector Machines were chosen for supervised classi�cation of hyperspectral data in both
papers.

Section 2.3 introduces Archetypal Matrix Factorization and Simplex Volume Maximization,
a variant of Archetypal Analysis specialized for big data applications. Archetypal Analysis
with Simplex Volume Maximization was used in Römer et al. (2012) and is fundamental for
the understanding of section 3.3.

2.1 Hyperspectral Sensors for Plant Stress Detection and Soil

Parameter Quanti�cation

High-throughput and optimally non-invasive sensors capable of detecting and describing
plant stress and soil parameters are needed for e�ective plant phenotyping. Soil has a major
in�uence on plant development as it is one of the most important environmental factors for
plants and therefore, in order to fully understand the phenotype-environment interaction,
it is mandatory to measure soil parameters e�ectively. Hyperspectral sensors are capable
to ful�ll this role. The recorded spectrum is correlated with chemical compounds which
can be correlated with the stress factors themselves or the e�ects stress has on plants.
Hyperspectral sensors are divided into active and passive sensors.

Passive hyperspectral sensors acquire narrow, contiguous spectral bands in the visible (400
nm - 750 nm), near-infrared (750 nm - 1400 nm) and shortwave-infrared (1400 nm - 3000
mm) spectrum (Govender et al., 2007) with a bandwidth of typically between 1 nm to 15 nm
(Borengasser et al., 2008). They detect the electromagnetic energy re�ected or emitted from
biological, geological and hydrological features from the earth's surface (Knipling, 1970),
respectively from leaves and canopy (Jones et al., 2003; Malenovsky et al., 2009; Ustin and
Gamon, 2010).

As �gure 2.1 illustrates, the spectrum of solar radiation re�ected, absorbed or transmitted
from leaves or canopy is in�uenced by leaf level absorption and scattering (Rascher et al.,
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2 Sensors and Methods

Figure 2.1: Light is either absorbed, transmitted of re�ected in plant tissues (left). The
resulting spectral characteristics for a healthy winter wheat leaf are shown on
the right (Figure from Rascher et al. (2010)).

2010). In addition, canopy architecture and external e�ects like illumination and observation
geometry have a high impact. Most important for stress description is the absorption,
which is the result of electron transitions in plant pigments like chlorophyll (Curran, 1989).
For vegetation, �gure 2.2 gives an overview over some of the most important biochemical
compounds which can be measured with passive hyperspectral sensors.

Active hyperspectral sensors measure the light re-emitted from molecules excited by �u-
orophores. For plant stress measurements, UV light excitation and Chlorophyll a and b
are of importance (Malenovsky et al., 2009). Chlorophyll �uorescence was, for example,
successfully used to determine the chlorophyll content in plant leaves (Lichtenthaler and
Buschmann, 1987; Gitelson et al., 1999).

Hyperspectral sensors are either imaging or non-imaging. Non-imaging sensors measure a
single spectrum averaged over a de�ned area (Mahlein, 2011). Imaging sensors record a full
spectrum for each pixel, i.e. the x- and y-axis are referring to the spatial information while
the z-axis contains the spectral information (see Figure 2.3).

Spectral measurements of changes in pigments and chemical compounds like water are
able to reveal biotic and abiotic stress in plants (Ustin and Gamon, 2010) as stress con-
strains plant functions like photosynthesis, nutrition and water acquisition (West et al.,
1997; Wright et al., 2004).

However, measuring the chemical concentration of compounds is demanding (Banninger,
1989; Curran, 1989). Reasons for this are interference between absorption features due to
scattering e�ects in the plant tissue and the fact that wavebands are never uniquely related
to only one compound. Another limiting factor is that absorption at the most correlated
wavelengths is quickly reaching saturation at relatively low concentrations for hyperspec-
tral measurements. Furthermore, while absorption is correlated with pigments and certain
chemicals, the re�ectance is in�uenced by other factors like canopy architecture, inclina-
tion, illumination and background (Suárez et al., 2008). Due to all these interference fac-
tors, hyperspectral measurements are noisy and may signi�cantly change between di�erent
measurement setups even when observing the same object.
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2.1 Hyperspectral Sensors for Plant Stress Detection and Soil Parameter Quanti�cation

Figure 2.2: A typical hyperspectral re�ectance spectrum of vegetation is shown in grey
from the visible to the shortwave-infrared spectrum. In the visible spectrum, die
colors corresponding to the di�erent bands are depicted. Below, the biochemical
plant compounds mostly in�uencing the speci�c area of the spectrum are listed
(Figure from Mahlein (2011)).
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2 Sensors and Methods

Figure 2.3: Hyperspectral tensor (data cube) resulting from an imaging sensor. The x- and
y-axis correspond to the spatial information, whereas the z-axis contains the
spectral information. Here, white pixels are removed background information
(Figure from Behmann et al. (2014)).

For plant phenotyping, the knowledge about the quality of soil is essential to understand
crop yield, the need for nutrients or a plant's ability to withstand stress factors (Pätzold
et al., 2008). The quality of soil is dependent on its chemical and biological characteristics
like soil moisture, structure or soil organic matter. However, assessment of these parameters
for soil is very time and cost intensive, as soil parameters have a high variance in time and
space, even on small scales within a single �eld. Hyperspectral sensors in the visual and
near infrared spectrum, as well as in the mid infrared spectrum, provide the opportunity
to assess a broad range of parameters from soil. In soil sciences, hyperspectral sensors have
successfully been used to quantify these parameters (Viscarra-Rossel et al., 2006).

In order to analyze hyperspecral data Vegetation Indices are normally used (Jackson and
Huete, 1991; Bannari et al., 1995; Fiorani et al., 2012). The aim of Vegetation Indices is
to enhance the signal of the searched chemical compounds while minimizing the in�uence
of background signals like unwanted compounds or illumination. According to Jackson and
Huete (1991), Vegetation Indices can be di�erentiated into ratios and linear combinations.
Ratios are relatively simple functions of mostly two wavebands and may consist of di�er-
ences, sums or products of any number of observed spectral bands. Linear combinations are
orthogonal sets of linear equations calculated from spectral bands. A typical example is the
use of Principal Component Analysis (PCA) to transform the spectral dataset (Pearson,
1901; Jolli�e, 2002).

For classi�cation, Vegetation Indices normally have been used with multivariate hypoth-
esis tests. However, hypothesis tests are restricted to deal with linearly separable classes.
Therefore, in remote sensing, machine learning methods like Neural Networks or Support
Vector Machines have lead to superior classi�cation results in recent years (Camps-Valls and
Bruzzone, 2009). For crop stress detection with hyperspectral sensors the use of machine
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2.1 Hyperspectral Sensors for Plant Stress Detection and Soil Parameter Quanti�cation

learning for classi�cation, regression and unsupervised learning is scarce. Few papers have
revealed their potential (Karimi et al., 2006; Wu et al., 2008; Liu et al., 2010; Behmann
et al., 2015). Especially discriminative methods like Support Vector Machines, which make
no assumptions on the data distribution, can deal with linear and non-linear applications
and usually have lead to better classi�cation performances than generative methods. The
enhanced performance of Support Vector Machines lead to the prediction of stress before
any symptoms were visible yet to the naked eye (Rumpf et al., 2010). For soil parameter
estimation, machine learning methods have successfully been used in several studies and it
was concluded that Support Vector Regression is promising to improve the quality of data
evaluation signi�cantly (Gholizadeh et al., 2013).
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2 Sensors and Methods

2.2 Support Vector Machines

The relevance of Support Vector Machines (SVMs) for hyperspectral stress detection and
soil parameter estimation has been shown by several authors (Rumpf et al., 2010; Römer
et al., 2011; Gholizadeh et al., 2013; Behmann et al., 2014; Römer et al., 2014; Behmann
et al., 2015). In this section, the most important aspects of SVMs and why they were chosen
for hyperspectral classi�cation in this thesis are discussed.

SVMs belong to the group of supervised learning algorithms. For supervised learning, a
part of the data is labeled, i.e. the class membership of the instances of the training data
is known beforehand. In this section, all classi�cation problems are binary to keep the
notations simple. The notation of the equations are based on Schölkopf and Smola (2001).

For binary pattern recognition, a training dataset

(~x1, y1), . . . , (~xm, ym) ∈ χ× {±1}, (2.1)

is given, where χ is the domain from which the instances ~xi are taken and yi is referred to
as labels which are either +1 or −1. The decision to which class a sample ~xi belongs is given
by the unknown joint probability function P (~x, y), also known as the generator function.

In order to solve the classi�cation problem, generative and discriminative approaches are
distinguished here.

The generative approach is to estimate the parameters of the joint probability function
P (~x, y) to predict y for new values of ~x (Bishop and Laserre, 2007). In order to perform
well on unseen data, the training data has to be a good representation of the underlying
distribution function P (~x, y). However, for high-dimensional data like spectral signatures,
the amount of labeled data needed for a signi�cant statistical representation grows expo-
nentially with increasing dimension (Bellman, 1961). Or, as Vapnik (1995) states, in order
to estimate high-dimensional co-variance matrices su�ciently, an unpredictable number of
observations is needed.

For stress detection, especially at an early stage and for close range measurements, obtaining
this critical mass of training data is problematic. Measuring, growing and inoculating plants,
as well as manual labeling in hyperspectral images, is very time and therefore cost intensive.
This typically leads to classi�cation problems with relatively few samples compared to the
high amount of features recorded by hyperspectral sensors.

Instead of estimating the unknown joint probability function P (~x, y) it is easier to construct
a good predictor function f directly from the training data. This leads to the so called
discriminative models (Figure 2.4). The task is now to �nd a classi�cation function

f : χ→ {±1}, (2.2)

minimizing the empirical risk of misclassi�cation on the training dataset

Remp(f) =
1

m

m∑
i=1

1

2
|f(~xi)− yi|, (2.3)
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2.2 Support Vector Machines

Figure 2.4: The class membership of a vector ~x is generated by the unknown joint probability
function P (~x, y). While generative models try to estimate the parameters of the
probability function and predict y in this way, discriminative models learn a
new decision function f(~x), which is a black box and does not need P (~x, y).
Modi�ed from Breiman (2001).

in order to approximate the real risk function based on the underlying distribution P (~x, y),

R(f) =

∫
1

2
|f(~x)− y|dP (~x, y). (2.4)

However, estimating f solely based on the empirical risk function 2.3 induces the risk
of over�tting, i.e. prediction on random patterns and noise instead of estimating a good
predictor function for P (~x, y).

For hyperspectral stress detection, the number of features is typically larger than the number
of samples. This means that the risk of over�tting is large for hyperspectral data evaluation.

Therefore, following the Occams Razor principle, stating that among many possible solu-
tions, the one with the fewest assumptions should be taken, the empirical risk function is
extended by a measurement of the complexity of the set of classi�cation functions allowed
to solve the task. This is done by a penalty term in order to increase robustness with regard
to over�tting in equation 2.3

R(f) ≤ Remp(f) + φ(F,m), (2.5)

where φ is the capacity term of the set of functions F from which the predictor function f
is taken. The capacity of a set of indicator functions is measured with the VC-dimension h
(Vapnik and Chervonenkis, 1971):

The VC-dimension h is de�ned as the maximum number h of vectors ~x1 . . . ~xh that can be

separated into all 2h possible ways using functions of the set F .

The capacity term can now be de�ned as
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φ(h,m, δ) =

√
1

m

(
h

(
ln

2m

h
+ 1

)
+ ln

4

δ

)
, (2.6)

where δ is the con�dence bound of the probability 1 − δ with which the bound 2.5 should
hold (Vapnik, 1995, 1998; Schölkopf and Smola, 2001).

This so called structural risk minimization balances the empirical risk minimization (equa-
tion 2.3) with the capacity of the set of indicator functions and the size of the training data
set. To reduce the structural risk R(f) either the size m of the sample set has to increase
or F has to be restricted to a set of smaller capacity h.

Therefore, in order to control the statistical e�ectiveness of the learning algorithm, SVMs
restrict the set F to separating hyperplanes whose VC-dimension can easily be computed
(Schölkopf and Smola, 2001).

The restriction to hyperplanes limits the possible number of class separations with SVMs.
However, this greatly enhances the probability that the results are not over�tting if they
work well on the training data. This leads to the superior generalization ability typical for
Support Vector Machines and discriminative classi�ers in general (Breiman, 2001).

The good generalization ability is one of the reasons SVMs are performing well on hyper-
spectral data. The restriction of the decision functions enables to deal with problems where
the number of labeled samples and the number of features is imbalanced, as they are sta-
tistically less prone to over�tting, and the resulting high generalization ability suits SVMs
to ignore the large variability and noise typical for hyperspectral measurements to some
degree.

The hyperplanes are de�ned in the dot product space κ as

〈~w, ~x〉+ b = 0, ~w ∈ κ, b ∈ R. (2.7)

The indicator function is now

f(~x) = sgn(〈~w, ~x〉+ b). (2.8)

The optimization problem is to �nd the optimal large margin hyperplane on the training
data set:

minimize
1

2
||~w||2, (2.9)

subject to yi(〈~w,x〉+ b) ≥ 1,∀i. (2.10)

To solve the optimization problem, the dual Lagrangian problem is solved using the Karush-
Kuhn-Tucker conditions

minimize W (~α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj 〈~xi, ~xj〉 , (2.11)

14



2.2 Support Vector Machines

subject to αi ≥ 0 ∀i and
m∑
i=1

αiyi = 0. (2.12)

As the dot product 〈~xi, ~xj〉 in equation 2.11 is a kernel, both linear hyperplanes and nonlinear
kernel decision functions can be realized with Support Vector Machines:

minimize W (~α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjk(~xi, ~xj), (2.13)

where k is a function ful�lling the kernel conditions (Shawe-Taylor and Cristianini, 2004).

The kernel trick enables an implicit transformation in a higher dimensional feature space.
As higher dimensional feature spaces are less dense, each data set becomes linear separable
with increasing feature space dimension. While this allows SVMs to classify non-linear data,
controlling the capacity term becomes harder and SVMs loose some of their generalization
power. Hence, while for example radial basis function kernels nearly always exceed the
classi�cation performance of linear kernels on the training data set, they have to be used
with care to keep the good generalization abilities of SVMs which are an important factor
for the use of SVMs for hyperspectral data evaluation.

Summarized, hyperspectral measurements often result in datasets with an imbalanced ratio
between samples and features. At the same time, the measurement noise is high especially
compared to the number of training samples. This poses problems for generative models, as
the estimation of the probability density function is very challenging for high dimensional
classi�cation tasks. Discriminative models are better suited to deal with these tasks, as they
do not try to estimate the generator function. Instead they learn an indicator function to
predict the correct labels for each data point. Therefore, the results of discriminative models
lack interpretability, but are able to cope with less labeled samples to achieve the same
prediction accuracy. As hyperspectral measurements are in�uenced by many not yet fully
explained factors, they usually tend to be noisy in addition. The structural risk minimization
principle of Support Vector Machines strongly restricts the set of possible indicator functions
to separating hyperplanes for linear classi�cation problems. This greatly increases reliability
and robustness of the learned models. It further reduces the amount of labeled samples
needed in order to explain high dimensional data sets.
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2.3 Archetypal Matrix Factorization

A popular method to approximate a high-dimensional feature space to a lower dimension
is a matrix factorization of the form

X ≈WH, (2.14)

where X ∈ Rm×n is the m × n input matrix. The c ∈ N columns of W ∈ Rm×c are called
basis vectors and the reconstruction matrix H ∈ Rc×n contains the coe�cients forming a
linear combination with the basis vectors to reconstruct the input matrix.

PCA is a commonly used matrix factorization method for the construction of vegetation
indices and low-rank approximation of hyperspectral images (chapter 2.1). The basis vectors
can statistically be interpreted as the direction of the largest variance in feature space
(Lee and Seung, 1999). The singular value decomposition underlying the PCA makes no
restriction on the sign of H and W and the feature matrix X is unconstrained (Ding et al.,
2010), i.e.

X± ≈W±H±. (2.15)

However, due to the arbitrary sign of the entries in H and W , the decomposition mostly
allows for no obvious visual interpretation of the coe�cients and the basis vectors are not
corresponding to any data points (Lee and Seung, 1999). This lack of interpretability is a
serious drawback for the low rank approximation of high dimensional spectral signatures. An
interpretable decomposition would allow for better spectral unmixing models. Furthermore,
the communication of results is much easier if decompositions are intuitively understandable
by non-experts.

A variant of PCA is the Archetypal Analysis (Cutler and Breiman, 1994). For Archetypal
Analysis, the basis vectors are restricted to be mixtures of samples in the input matrix or
to be samples themselves (Stone and Cutler, 1996). As each basis vector is either a positive,
weighted sum of samples or a sample itself, it is easier to interpret the decomposition and
assign a physical meaning to the coe�cients of W .

A typical Archetypal Analysis decomposition is the convex-non-negative matrix factoriza-
tion (Convex-NMF). For Convex-NMF the basis vectors need to lie within the column space
of X, i.e.

W = XG. (2.16)

Equation 2.16 is restricted to convex combinations only, i.e. they follow the constraint

‖gi‖1 = 1, gi ≥ 0. (2.17)

Therefore, each basis vector ful�lls the conditions for Archetypal Analysis, i.e. they are either
samples or positive sums of samples themselves (Ding et al., 2010). Since additionally only
positive combinations of basis vectors are allowed in H, no subtractions can occur and
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Convex-NMF follows the intuitive combination of parts of basis vectors to form a whole
(Stone and Cutler, 1996), i.e.

X± ≈ X±G+H
T
+. (2.18)

The resulting optimization problem of minimizing X −X±G+H
T
+ with respect to the con-

straint in equation 2.17, is solvable by an iterative update rule. The starting solution can, for
example, be given by a prior K-Means (Bishop, 2006). However, according to Thurau et al.
(2009), while this matrix decomposition improves interpretability, it has some problems
coming with large data sets (which are typical for hyperspectral imaging sensors):

• the update rules have a complexity of O(n2),

• the update rule needs a matrix multiplication of XTX, which is not feasible for large
sample matrices.

For large scale data analysis, Convex Hull NMF (CH-NMF) was introduced by Thurau et al.
(2010). CH-NMF restricts basis vectors in H to lie on the convex hull of X. Thus, beside
the constraint 2.17 and the requirement for H to be positive, an additional constraint is
added to the minimization problem of C-NMF:

‖hi‖1 = 1, hi ≥ 0. (2.19)

However, while this approach may strongly reduce the number of candidates for basis vec-
tors, calculating the convex hull has a high complexity of O(n

m
2 ) and the number of samples

on the convex hull is large for high dimensional data. To solve this problem, Thurau et al.
(2009) approximate the convex hull by pairwise combinations of eigenvectors of the covari-
ance matrix.

As a faster alternative to the CH-NMF computation of the convex hull, Simplex Volume
Maximization (SiVM) aims at �nding the basis vectors through spanning the simplex with
maximal volume over the data points in X (Thurau et al., 2010). For this, the distance
between each basis vector and each data point has to be computed. However, as the number
c of basis vectors is normally signi�cantly smaller than the number of samples n (c << n),
the computational complexity can be considered as scaling linearly with the number of
samples and, in addition, the pairwise distance computation is easily parallelized.

The linear runtime of SiVM makes Archetypal Analysis feasible even for large hyperspectral
measurement campaigns. Another interesting property is that all archetypes lie on the
convex hull of the dataset. This is useful for the understanding of stress development, as
each sample can now be unmixed in, for example, very stressed and very healthy pixels. As
the coe�cients have to sum up to one, they are good measures of similarity. Both have the
bene�t that similarities to extrema are very intuitive to understand and interprete, even for
non-experts, which is an important property for an interdisciplinary research �eld.

As the coe�cients have to be positive, only samples within the simplex spanned by the
archetypes can be described correctly. All points outside of the simplex are unmixed with
an error proportional to their distance to the simplex. This means that subsampling is not
recommended for simplex calculation. Another critical point are outliers. For the algorithms
to perform well, it is mandatory to either deal with outliers beforehand or choose the
archetypes in a more robust way.
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3 Most Important Findings

This chapter summarizes and discusses the most important �ndings of the manuscripts ap-
pended to this thesis. Each of these manuscripts is presented in a separate section. Section
3.1 outlines the mathematical description of the whole spectrum through low order polyno-
mials to improve the robustness of feature space. This leads to better classi�cation results
compared to Vegetation Indices and classical feature selection algorithms. The method is
presented for �uorescence measurements of wheat leaf rust. Section 3.2 presents a hier-
archical classi�cation tree used to deal with unwanted parameters masking the searched,
relevant parameters. The method was developed for soil organic carbon detection under
varying moisture and roughness. Section 3.3 shows in which way Archetypal Analysis can
be used to extract information from unlabeled hyperspectral images in order to quantify
stress and to visualize early stress processes. Archetypal Analysis was used to detect drought
stress in barley at an early stage of development.

3.1 Polynomial Features for Early Stress Prediction

Recently machine learning methods like Support Vector Machines have been used in combi-
nation with Vegetation Indices for an improved classi�cation accuracy (Rumpf et al., 2009,
2010). However, for stress prediction at the earliest possible date, the di�erences between
spectra caused by healthy tissue and stressed tissue of plants become marginal. In addition
to the normal measurement noise, hyperspectral sensors are in�uenced by many di�erent
factors (section 2.1). This leads to situations where the di�erence between the means of
both classes are smaller than the standard deviation of all samples within one class due to
noise and the natural biologic variability of plants (see �gure 3.1). As Vegetation Indices
only use typically 2-3 di�erent wavebands, they are very prone to noise. Therefore, the
idea presented in this section is to use the information of the whole hyperspectral signature
by polynomial approximation. The polynomial coe�cients are then used as features for a
Support Vector Machine model to predict stress at an early stage.

This section presents the main �ndings of Römer et al. (2011). The underlying dataset
consists of 36 wheat leaves (Puccinia triticina) inoculated with leaf rust and 36 healthy
control leaves. Spectral �uorescence measurements were conducted on dai 2, 3 and 4. Mea-
surements were done under laboratory conditions with a point measurement sensor. The
sensor's spectral range was from 370 nm to 800 nm with a spectral resolution of about 2
nm, leading to 215 spectral features recorded per measurement1.

1The data discussed in this section is from Kathrin Bürling, Mauricio Hunsche and Georg Noga, INRES,
University of Bonn and was not measured by myself. For more details regarding the measurement setup,
please see Römer et al. (2011).
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Figure 3.1: Top: Shown is the mean spectrum of healthy leaves and the mean spectrum of
leaf rust infected leaves. Bottom: The black line shows the di�erence between the
means of healthy and inoculated leaves. Shadowed are the standard deviations
of both classes.
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3.1 Polynomial Features for Early Stress Prediction

Figure 3.2: Correlation coe�cients between wavebands of the �uorescence data. Two large
areas of highly correlated wavebands can be observed, with correlations above
0.95.

Using all features for classi�cation poses a high risk for over�tting. Typically, the number of
features is reduced either by using Vegetation Indices, wrapper or �lter algorithms (Guyon
and Elissee�, 2003). In the following �lter and wrapper algorithms are brie�y discussed and
it is outlined why they are not an optimal choice for hyperspectral signatures.

Filter algorithms like Relief (Kononenko, 1994) are a popular choice to reduce feature space
dimension to a subset of most relevant features. They use general characteristics of the
training set to select a feature subset and therefore are independent from the classi�er that
will use their output (Blum and Langley, 1997).

However, �lter algorithms have problems dealing with highly correlated feature spaces
(Guyon and Elissee�, 2003). Chemical compounds like chlorophyll have an impact on a
broad area of di�erent wavebands. This results in the problem of spectral sensors that
large areas of neighboring wavebands are strongly correlated with correlation coe�cients of
typically above 0.95 (Figure 3.2). As �lter algorithms normally weight each feature inde-
pendently, they do not take correlation into account (Kohavi and John, 1997). While two
neighboring and dependent features may achieve high rankings with the �lter algorithms,
the redundancy of the information contained reduces their combined relevance for a classi�-
cation model. In the wrapper approach, the feature subset is determined using the classi�er
itself. The best subset is selected due to the classi�ers performance on it (Kohavi and John,
1997; Guyon and Elissee�, 2003). However, the selection of single features bears the risk
that the good separability in those features may be random due to the bad ratio of labeled
samples to features compared to the noise.

Instead of using wrapper and �lter algorithms, the evaluation of the shape of the whole
signature may improve classi�cation results. While it is not advisable to simply use all
recorded wavebands, the idea is the mathematical description of the shape of the whole
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Figure 3.3: Approximation by piece-wise polynomials. The grey lines segment the spectrum
into areas approximated by di�erent polynomials into areas of high relevance
for classi�cation. Each area is then approximated by a separate polynomial of
low order.

spectral signature. The construction of polynomial features describing the shape of a certain
area of the spectrum has a number of advantages:

1. Polynomial coe�cients describe the local properties of the area they approximate
and compress them into a comparably small number of features. In this way, less
information is dismissed.

2. Polynomial coe�cients are less sensitive to random noise deviations, as they are
smoothed over a broader area.

3. Highly correlated areas are summarized into a small subset of features which are less
correlated.

An obvious approach would be to use splines (DeBoor, 1978) to approximate the whole
spectrum. However, the disadvantage of splines is the signi�cantly increasing approximation
error at the knots. When knots are placed in areas with a high relevance for the classi�cation
problem at hand, important shape features are not described precisely enough. At the same
time a higher order would increase the number of features while a higher knot density
would have decreased the smoothing e�ect of polynomials as the approximated areas become
smaller.

Instead, the focus for the approximation is not a minimized global approximation error, but
an accurate representation of a spectrum's characteristics in areas relevant for classi�cation.
Therefore, the hyperspectral signature is split at areas of low relevance for classi�cation.
This enables an easy approximation with piece-wise polynomials of low order (Figure 3.3),
where each polynomial represents an area of high relevance for the classi�er.

In order to �nd good areas for polynomial approximation, areas of high and low relevance
have to be determined. As the weight of a whole area is of importance, a �lter algorithm is
usable again, as not the relevance of a single feature is the aim, but the sum of the feature
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Dai 3rd order (%) 4th order (%) 5th order (%) 6th order (%)

2 84.22 93.05 88.89 91.67
3 87.50 88.89 84.72 90.28
4 91.67 90.28 87.50 79.17

Table 3.1: Classi�cation accuracy in dependence of di�erent polynomial orders using SVMs
for the �rst 4 dais. Polynomials of 4th order performed best on dai 2. Higher
orders were not used, as they would result in both unstable feature spaces and
high feature space dimensions.

weights in a certain range of wavebands. This was done with Relief, as it is computationally
fast and suitable of ranking linear and non-linear classi�cation problems. Now polynomials
can be optimized in a way that they do not split areas of high importance, while minimizing
the geometric approximation error and the polynomial order at the same time.

For classi�cation SVMs are used with a linear kernel as it performs better than a RBF
kernel. In order to train the SVMmodel, a ten-fold cross validation with the LibSVM (Chang
and Lin, 2011) toolbox is used. As a further pre-processing step polynomial coe�cients are
normalized to a mean of zero and a standard deviation of one. In addition, as the coe�cients
are signi�cantly lower correlated now than the original features, Relief is used in order to
weight the polynomial coe�cient features. The polynomial order is optimized during the
classi�cation process.

Table 3.1 shows the results for the SVM models on dai two, three and four with di�ering
polynomial orders. The results show that it is possible to detect leaf rust on the 2nd dai
reliably with 4th order polynomials with 93% accuracy. For comparison, a SVM model
was learned with features extracted from a PCA and with the best features �ltered by
Relief. Table 3.2 reveals that polynomial coe�cients signi�cantly improve the classi�cation
accuracy compared to both algorithms.

The results demonstrate that features describing the information of the shape of the whole
spectrum, combined with SVMs, lead to a very early leaf rust prediction only two days after
inoculation. They perform signi�cantly better than low rank approximations with PCA or
a �lter algorithms (Relief) to select the best features (Table 3.2). However, important is
not a perfect geometric approximation of the whole hyperspectral signature, but to describe
those areas optimal which are relevant for classi�cation. Therefore, piece-wise polynomials
are used, where each polynomial is placed in a segment of high relevance. The polynomial
order is also not optimized with regard to minimizing the geometric approximation error,
but instead chosen to maximize classi�cation accuracy on the one hand and to keep the
number of coe�cient features as low as possible on the other hand.

23



3 Most Important Findings

Polynomial (%) Principal components (%) Best 20 features (%)

Dai 2 93 72 72

Table 3.2: Comparison of di�erent feature space representations. The features are based
on piece-wise polynomials of 4th order are compared to a low rank approxima-
tion with PCA and the best 20 features from a Relief algorithm. 20 features
are selected as it equals the sum of polynomial coe�cients to enable a better
comparison between both approaches.

3.2 Hierarchical Classi�cation Models for Soil Parameter

Quanti�cation under varying Moisture and Surface

Roughness

Soil heterogeneity causes a large part of the heterogeneity of plant phenotypes. High or-
ganic matter, for example, positively in�uences plant stress resistance towards diseases
(Pätzold et al., 2008). The measurement of soil parameters is therefore important to under-
stand the performance of di�erent plant phenotypes. According to O' Rourke and Holden
(2011), hyperspectral imaging has the potential to signi�cantly reduce the monetary cost
compared to traditional chemical analyzing methods. This enables a higher spatial and tem-
poral measurement resolution and explains the high interest in hyperspectral soil parameter
assessment.

However, spectral signatures are in�uenced by numerous factors. Beside the strong in�uence
of the measurement setup (e.g. illumination, observation angle, distance to the object),
physical and chemical properties of the observed object have a signi�cant impact on the
re�ectance. As discussed in section 3.1 and section 2.1, wavebands are highly correlated over
large areas of neighboring wavebands and most often related to many di�erent chemical
compounds. If the unwanted parameters have a higher impact on the spectral signature and
in�uence similar wavebands, the searched parameters are e�ectively masked. A practical
solution would be to use a very controlled measurement setup with comparable soil samples
in order to rule out the in�uence of unwanted parameters.

For �eld measurements, this becomes even more problematic. For soil, the most important
properties are soil texture, soil moisture, roughness and vegetation cover (Stevens et al.,
2006), where soil moisture and vegetation cover are the most limiting factors (Cécillon
et al., 2009). Kooistra et al. (2003) concluded that a multivariate method is needed, which
extracts the relevant information from soil spectra and that simultaneously is able to deal
with these interfering factors.

In this context, surface roughness classi�cation is especially challenging. While Wu et al.
(2009) were able to correlate spectral re�ectances with surface roughness, they also con-
cluded that changing moisture was in�uencing the features needed for roughness classi�ca-
tion more than roughness itself, and therefore e�ectively masking the roughness parameter.

In this thesis, the problem of masking parameters is solved with a hierarchical approach. A
hierarchical classi�cation tree is build with SVMs in order to classify moisture and rough-
ness and use the information to learn a moisture and roughness speci�c Support Vector
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Moisture and Surface Roughness

Figure 3.4: Shown is the in�uence of moisture on the hyperspectral signature. While mainly
the areas from 1440 nm to 1550 nm and 1900 nm to 2100 nm are in�uenced
by the relative water content, moisture has clearly an impact on the whole
spectrum.

Regression model to estimate SOC. Due to this method, it is possible to classify surface
roughness under varying moisture with hyperspectral sensors for the �rst time, as described
in Römer et al. (2014).

The method is applied on a dataset2 of 1046 samples in total. Air-dried samples were sieved
into aggregations of sizes <2 mm, 2-16 mm and 16-25 mm aggregate sizes. The samples
were stepwise wetted to 5, 10, 15, 20, 25 and 30% w/w (water / weight) (�gure 3.4). The
samples were recorded with a full range VIS-NIR spectrometer from 410 nm to 2300 nm.
The SOC content varied between 7 g/kg and 12 g/kg.

The spectrum is approximated by polynomials as described in section 3.1. The resulting
polynomials were placed between the area of 410 nm -1440 nm, 1450 nm - 1550 nm, 1560
nm - 1900 nm, and 1910 nm - 2300 nm, with polynomial order ranging from 4 to 8.

For reference, SOC is �rst quanti�ed without a previous moisture or roughness classi�cation.
For regression, a Support Vector Regression model with RBF kernel is used. The model
parameters are learned using a ten-fold cross validation. The resulting root mean square
error after cross validation (RMSECV) is 0.91 g/kg.

To analyze the in�uence the di�erent factors (SOC, moisture, and roughness) have on the
signature, the correlation coe�cients between the wavebands and the three factors are
calculated �rst. The correlation coe�cients for moisture are between 0.65 and 0.85, with
the maximum in the waterbands (Figure 2.2). For roughness, nearly the whole spectrum

2The data is from Andrei Rodionov, Stefan Pätzold and Gerhard Welp, INRES, University of Bonn and
was not measured by myself. For more details regarding the measurements please see Römer et al. (2014).
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Figure 3.5: Ilustration of the hierarchical classi�cation tree. First, a SVM model is learned
to quantify moisture from the whole dataset. Second, for each moisture class a
seperate SVM model classi�es roughness.

reveals a correlation coe�cient of 0.6. Firstly, there are no wavebands speci�cally suitable
for roughness quanti�cation, as roughness a�ects the whole spectrum equally. Secondly,
moisture has a more dominating in�uence than roughness, especially in those bands typical
for water. For SOC prediction, the correlations within the visual wavebands are two times
higher than in the near-infrared, but about 50% smaller than moisture.

On the one hand, this means that there is no single waveband where SOC or roughness
have a stronger impact on the signature than moisture, and that roughness has always a
larger in�uence on the spectrum than SOC.

On the other hand, it can be concluded that moisture, roughness and SOC follow some sort of
taxonomy. As moisture dominates the signature, the moisture content can be approximated
relatively well despite the varying roughness and carbon. If the moisture content is then
known, the signature is mostly in�uenced by roughness and carbon, eliminating the variance
from moisture in the signature. Thus, as roughness again has more in�uence on the signature
than the remaining SOC, the process can be repeated for roughness. SOC is then classi�ed
on predicted moisture / roughness combinations (see �gure 3.5). This e�ectively eliminates
the in�uence of moisture and roughness from the spectrum. This approach is related to
hierarchical classi�cation (Silla and Freitas, 2011).

Hierarchical classi�cation uses the known natural taxonomy of classes to decompose the
problem into a set of smaller problems. This corresponds to splits into a tree of classi�ers
(Dumais and Chen, 2000). At each leaf of the tree an independent classi�er is learned
speci�ed for the smaller sub-problem. Each sub-problem can now be solved more e�ciently
than a �at all-in-one multi-class approach (Dumais and Chen, 2000; Dekel et al., 2004). For
the detection of soil carbon, instead of using a natural taxonomy de�ned by related classes,
the order of classi�cation is given by the need to eliminate dominating in�uences from the
signature.
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Figure 3.6: Illustration of the decomposition of an ordinal classi�cation problem into a series
of binary classi�ers. Each independently learned classi�er splits the data at the
given threshold. Final classes are shaded in grey.

In a �rst step, moisture is classi�ed by a SVM model according to �gure 3.5. As can be
seen in �gure 3.4, the in�uence of water on the signature follows a continuous function
which is discretized into classes in the experiment setup. Hence, the moisture classes have
an ordinal regression structure. This ordinal regression can be decomposed into a set of
binary classi�ers with an ordinal classi�cation (Frank and Hall, 2001). The advantages of
this ordinal classi�cation process is similar to the advantages of hierarchical classi�cation.
As the multi-class classi�cation is simpli�ed to a series of sub-tasks, the classi�er is able to
specialize the feature space and its parameters to the current problem, instead of �nding
the best trade-o� for several classes. The data is always split in half at each step of the
ordinal classi�cation (see �gure 3.6). Thus, the number of samples is approximately the
same for both meta-classes at each split. The data has to be subsampled as otherwise, SVMs
would favor the larger class during the risk minimization in equation 2.5. In addition, the
computational time is minimized in this way.

For the ordinal classi�cation of moisture a linear Support Vector Machine is learned, using
polynomial features as described above with a ten-fold cross validation. The mean accuracy
for moisture classi�cation is 89% (see table 3.3). The model is very accurate for the air-
dried samples. This is reasonable, as air-dried samples are clearly visually separable in the
spectrum from all other classes. For the moist samples, the accuracy is decreased by the
factor that samples dry faster at the surface and do not reliably have the same moisture as
the mean of the whole sample. Additionally, the spectra are, of course, also in�uenced by
the SOC and roughness. Although this in�uence is minor compared to the in�uence from
moisture, this still drops the accuracy of the moisture prediction model. If the SOC content
is quanti�ed for each single moisture class, the root mean square error drops to 0.64 g/kg
(table 3.3), which is a major improvement compared to the previous result without moisture
classi�cation.

Roughness is then predicted as outlined in �gure 3.5 for all samples in each moisture class.
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3 Most Important Findings

tb

Moisture, % w/w
Air-Dried 5 10 15 20 25 30 All

Accuracy 99% 90% 85% 84 % 90% 81% 92% 89%

SOC RMSECV 0.63 0.6 0.76 0.78 0.6 0.62 0.42 0.64

Table 3.3: Upper row: Accuracy of moisture prediction with an ordinal Support Vector
Machine model. Lower row: Root mean square error of soil organic carbon quan-
ti�cation using a Support Vector Regression model for each predicted moisture
class.

Prediction, mm Precision
True Class grounded <2 2-5 5-8 8-16 16-20 20-25

grounded 168 1 0 0 0 0 0 99%
<2mm 0 167 0 0 0 1 0 99%
2-5mm 0 0 47 16 8 3 3 61%
5-8mm 0 0 108 137 105 15 3 37%
8-16mm 0 0 10 11 44 5 2 61%
16-20mm 0 0 2 0 6 135 12 87%
20-25mm 0 0 0 0 0 7 148 95%

Accuracy 100% 99% 28% 84% 64% 81% 88%

Table 3.4: Accuracy of soil roughness classi�cation with an ordinal SVM. The matrix shows
the number of samples which were correctly predicted and the number of samples
which were wrongly assigned to di�erent classes.

The ordinal multi-class SVM is learned in the same way as described for moisture. The
confusion matrix in table 3.4 shows the classi�cation results for all roughness classes as well
as the prediction of each wrongly classi�ed sample. The confusion matrix reveals that the
prediction accuracy varies strongly between the roughness classes. For sample sizes smaller
than 2 mm the prediction accuracy is extremely good with 99%, respectively 100%. For 16-
20 mm, respectively 20-25 mm, the classi�cation accuracy is also su�cient with over 80%
and 88%. For the sample sizes between 2 nm and 16 mm, however, the prediction accuracy
drops very low if the precision is also taken into consideration. For these classes no accurate
and reliable estimation of roughness was possible. However, the confusion matrix reveals
that most wrong predictions have been between neighboring classes. This means that the
model is able to correctly estimate between smooth, rough and moderate surface roughness.
If the roughness classes are grouped into these three approximations, the prediction accuracy
becomes very high (Table 3.5) with a mean of 96%. If these estimations are used in order to
learn a new SOC regression model, the RMSECV drops to 0.5 g/kg, which is a signi�cant
improvement to the original RMSECV of 0.91 g/kg and the 0.61 g/kg for SOC quanti�cation
with moisture knowledge. This means that even the estimation of roughness is su�cient for
a notable improvement in SOC quanti�cation.

The presented method enables a quanti�cation of roughness under varying moisture for
the �rst time. The improvement in SOC prediction accuracy demonstrates the need to
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3.3 Unsupervised Archetypal Drought Detection

Roughness, aggregate size diameter, mm
<2 2-16 16-25 All

Accuracy 100% 98 % 90% 96%

SOC RMSECV 0.4 0.51 0.58 0.5

Table 3.5: Upper row: Accuracy of roughness prediction with an ordinal Support Vector Ma-
chine model. Lower row: Root mean square error of soil organic carbon quanti�-
cation using a Support Vector Regression model for each predicted combination
of moisture and roughness.

reduce the in�uence of these parameters. Although the experiment was concluded with
laboratory measurements, it is a �rst step that demonstrates the possibilities of hierarchical
classi�cation in order to reduce the variance from moisture and roughness from the spectrum
for SOC regression. The method reduced the SOC regression accuracy from 0.91 g/kg to 0.5
g/kg. For reference, destructive in-situ measurements for SOC typically achieve an accuracy
of about 0.25 g/kg. For the prediction of SOC, the ISO Norm DIN ISO 10694 (1996)
regulates that the SOC has to be quanti�ed with an accuracy of at least 0.7 g/kg for the data
discussed here. This means that the prediction accuracy of SOC with hyperspectral imaging
sensors comes signi�cantly closer to replacing in-situ measurements using this approach.

3.3 Unsupervised Archetypal Drought Detection

Under laboratory conditions with spectral point measurements (section 3.1 & 3.2), classes
are well de�ned and training samples for supervised classi�cation models exist. For early
drought stress prediction with hyperspectral images before symptoms become visible, no
labels exist. Therefore, an unsupervised approach is needed.

Cluster algorithms group the data unsupervised into a �nite number of di�erent clusters
which are similar in feature space. As symptoms of drought naturally develops continuously,
the clustering algorithm will discretize the process into ordinal clusters. Now stressed plants
have a higher probability of having a high percentage of pixels belonging to clusters of
stressed spectra. The percentage of pixels per image belonging to the clusters can now be
used as a second order feature space for a supervised classi�cation, as the labels for the
whole plant are known.

However, discretization of a continuous process always comes with a loss of information
and can lead to wrong conclusions if the discretization is wrongly chosen. A more desirable
alternative may be to unmix the signals into their similarity to stressed and healthy spectra
through an archetypal matrix factorization. While the archetypes themselves are still a
discretization of the process, the spectrum of each pixel is continuously described by the
archetypes (Figure 3.7).

However, �nding the optimal archetypes runs quadratic with the number of samples. For
hyperspectral images the algorithmic complexity is an important restriction. Simplex Vol-
ume Maximization (Section 2.3) �nds a set of archetypes with nearly linear algorithmic
complexity.
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3 Most Important Findings

Figure 3.7: Any spectral signature within the data set can be expressed as a convex com-
bination of archetypes. On the left is an arbitrary spectrum. The coe�cients
sum up to one and give a measure of similarity to the three archetypes chosen
for this example: very healthy (left), leaves already lightly a�ected by drought
(middle) and senescent leaves (right).

In Römer et al. (2012) Archetypal Analysis is used with Simplex Volume Maximization in
order to predict stress unsupervised at a very early stage for the �rst time. The results are
visualized to enable an observation of stress development.

Two experiments3 are evaluated. For both experiments barley was used in a rainout-shelter.
In 2010 the cultivar Scarlett was exposed to controlled water stress, where six pots where
well watered and six pots were reduced watered. Images were taken twice every week starting
on day 8 after drought stress application. In 2011 the genotypes Wiebke and Barke were
used with the additional treatment of extreme drought stress, where no water at all was
given to the plants. This results in three treatments (well watered, reduced watered, drought
stressed) with 4 pots per treatment. Measurements were taken each day starting at day 1
after stress application. In both experiments plants where at growing stage BBCH31, i.e.
also the group of control plants naturally show signs of senescence due to their development
stage. The hyperspectral camera recorded images of 640x640 pixels with a spectral resolution
of 4 nm in the range between 400 nm and 900 nm. In addition, control measurements were
done for the soil moisture for the 2011 experiment.

The archetypes are calculated using the runtime e�cient Simplex Volume Maximization
(SiVM) algorithm (Section 2.3). For SiVM, the archetypes are restricted to lie on the convex
hull. This is not very restricting for stress description, as this allows to unmix the other
spectra into their similarity to the most stressed and the healthiest plant pigments.

The drawback is that outliers heavily in�uence the convex hull and can lead to an unwanted
data decomposition. Therefore, to reduce the probability of outliers, the background is
removed beforehand. A large percentage of outliers are eliminated by simple thresholds on
certain wavebands (the green peak for example) and a previous clustering algorithm.

Afterwards, the set of archetypes is visually inspected by an expert to exclude biologically
implausible signatures. Subsequently the remaining archetypes are manually annotated into
spectra already showing �rst signs of drought stress and spectra expected for fully watered
plants.

Figure 3.8 shows the archetypes calculated with SiVM on the 2011 data set which are
manually classi�ed as healthy and stressed. The mean probabilities of the similarities of all

3The experiment setup was done by Agim Ballvora from the INRES, University of Bonn. Spectral mea-
surements were done by myself for the barley data. The measurements and experimental setup for the
maize data in Römer et al. (2012) were done by Francisco Pinto from the FZ Jülich.
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Figure 3.8: Archetypes of the controlled rainout shelter experiment with drought in barley.
On the left: Archetypes as selected from the 2010 experimental run with grey
signatures being labeled as spectra representing 'drought-stressed' pixels and
black signatures being labeled as spectra for 'healthy' pixels. Dashed grey spec-
tra are typical for the remaining background pixels. Middle, Right: Time course
of expected probability of pixels being classi�ed as 'drought-stressed' or 'healthy'
according to the archetype. Black lines give the probability that a randomly cho-
sen signature of a 'well-watered' plant can be explained by 'stressed' archetypes,
grey lines give this probability for the 'reduced-watered' plants. Error bars in-
dicate the standard deviation between the plants. In the middle: Results from
the 2010 experiment: well-watered and reduced-watered plants could be sepa-
rated signi�cantly (α=0.05) at day 14 using a t-test. On the right: Results from
the 2011 experiment: separation of dry plants and reduced-watered plants from
well-watered plants is signi�cant at day 9 (α=0.05).

pixels for each plant are then calculated. These probabilities are used as a second order
feature space for each plant. Figure 3.8b and 3.8c show the expected probability of drought
stress for the 2010 and 2011 data. The general increase of stressed pixels is due to the fact
that plants are in their �owering stadium and increasing leaf senescence is characteristic for
the development stage. Drought stressed plants could signi�cantly (α=0.05) be separated
from well-watered plants 14 days after start of drought stress application in 2010 and 9 days
after stress application in 2011 using a t-test (Koch, 1997).

For the 2011 experiment the day of drought stress detection was only 1 day after a slight
decrease in soil moisture could be measured and 5 days earlier than visual classi�cation
is possible. For comparison of the detection date with common evaluation methods, the
results are compared with Vegetation Indices for drought stress detection in the visible
area. The comparison is done based on the 2011 data set, as the frequency of measurements
is much higher here and therefore delivers more exact results. The four most established
drought stress indices are chosen, namely NDVI (Rouse et al., 1974), PRI (Peñuelas et al.,
1995), REIP (Peñuelas and Filella, 1998) and CRI green (Gitelson et al., 2006). For each
image, the Vegetation Indices are computed after background removal. All four indices are
evaluated together using a one sided MANOVA test to see whether the treatments can be
distinguished with a 5% signi�cance level. Table 3.6 presents the results. Separation between
fully watered and reduced-watered plants are possible from day 13 on. Plants without any
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Day Reduced-watered vs. No water vs.
fully watered (P-values) fully watered (P-values)

7 0.46 0.68
8 0.58 0.01
9 0.48 0.09
10 0.22 0.11
11 0.57 0.01
12 0.34 -
13 0.02 -
14 0.03 -

Table 3.6: The mean values of four vegetation indices are used for a four dimensional data
matrix. Then it is tested if the four dimensional means di�er signi�cantly between
plants with reduced-watered and fully watered plants, respectively, between fully
watered plants and plants without any water supply.

water supply are clearly identi�ed on day 8, although the hypothesis test fails for the days
9 and 10. On day 11 it is possible to separate both classes.

In order to visualize stress development on plants the weights calculated with SiVM can be
used for a continuous plot. For discretization each pixel was clustered to the archetype with
the highest individual coe�cient (see �gure 3.9).

In conclusion, archetypal matrix factorization has a high potential for unsupervised stress
detection. However, the large hyperspectral datasets prevents an e�cient use due to the
quadratic algorithmic complexity. Simplex Volume Maximization allows the computation
of archetypes in linear time and therefore enables the application of archetypal matrix
decomposition to hyperspectral data. Here, for the �rst time, SiVM is used for unsupervised
stress detection.

The construction of the second order feature space using annotated archetypes enables
drought stress classi�cation on the plant level. The annotation is possible due to the easy
interpretation of the archetypes. The similarities of each pixel to an archetype are used in
order to visualize drought stress development.

The results demonstrate that the presented method are four days faster for reduced watered
plants and two days faster for plants without any water supply than a data analysis with
Vegetation Indices. In addition, drought stress is successfully predicted only one day after
it could be measured by the destructive reference measurements (Römer et al., 2012).
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3.3 Unsupervised Archetypal Drought Detection

Figure 3.9: Stress dispersion in the time series of a reduced watered plant. On top are the
original RGB images. On bottom the clusters derived from SiVM. Dark red
are senescent pixels, orange are leaves a�ected by drought, light green are very
healthy pixels and dark green pixels are lightly a�ected by stress.
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4 Conclusions and Perspectives

The aim of this thesis was the development of new methods for the extraction of relevant
patterns from hyperspectral signatures. The presented methods solve challenging problems,
which are predominant in hyperspectral data analysis due to a low signal to noise ratio,
the masking of important parameters in the spectrum and the absence of labeled data. The
methods extracted an improved feature space and a hierarchical approach was presented in
order to solve the three main problems identi�ed in the introduction. The methods signi�-
cantly improved the visualization and quanti�cation of processes relevant for the description
of early stress provesses in Plant Phenotyping and for soil parameter quanti�cation.

The results of this thesis lead to a very early classi�cation of stress, despite small di�erences
between classes and strong noise. This was achieved with features describing the information
of the whole spectrum by piece-wise polynomials. Important was not a global approxima-
tion of the whole spectrum with a single spline, but a partition of the spectrum into areas
of high relevance for classi�cation. With this approach, a small number of polynomial co-
e�cients were su�cient to describe the shape of the most relevant areas. The resulting
low dimensional feature space was used to predict wheat leaf rust at the second dai with
a high classi�cation accuracy, which has not been possible with Vegetation Indices before.
The approach was also signi�cantly better than a low rank approximation with PCA or a
selection of the most important features with the �lter algorithm Relief.

The thesis showed that the extraction of a second order feature space with Archetypal
Analysis proved to be a very e�cient method to predict early drought stress on unlabeled
hyperspectral images. In contrary to arti�cial means, these archetypes were easily inter-
pretable. This enabled a subsequent annotation of the archetypes by experts. A second
order feature space was constructed with the mean similarity of each feature to the labeled
archetypes. As the plants are labeled due to the experimental setup, classi�cation on the
plant level was now possible. This way, drought stress was detected signi�cantly earlier than
with Vegetation Indices and only one day after reduction of soil moisture was noticed with
reference measurements. Once archetypes were annotated, it was also possible to visualize
drought stress development in leaves.

The quanti�cation of SOC despite the strong in�uence of moisture and roughness was im-
proved with a hierarchical classi�cation approach. As moisture had a signi�cantly larger
impact on the spectrum than roughness, a hierarchical classi�cation tree was able to quan-
tify moisture �rst, and then roughness for each moisture class. The classi�cation accuracy
was improved with ordinal classi�cation contrary to a normal multi-class approach. This
enabled roughness classi�cation from spectral signatures for the �rst time. The hierarchical
classi�cation approach e�ectively removed the variance resulting from moisture and rough-
ness. A SOC regression model was subsequently learned for each combination of moisture
and roughness. This approach signi�cantly reduced the SOC regression error.
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4 Conclusions and Perspectives

The methods presented in this thesis resulted in a signi�cantly improved analysis of hy-
perspectral images for Plant Phenotyping. However, in order to achieve further progress,
further approaches may be considered, which have not been the focus of this thesis.

One way to get additional information is to include the information of neighboring pixels.
For remote sensing applications, several papers have been published with the aim to smooth
the classi�ed image. This can be achieved by Markov Random Fields (Bishop, 2006), sec-
ond order feature spaces as in stacked learning approaches (Cohen and Carvalho, 2005) or
composite kernels for SVMs (Camps-Valls et al., 2006). However, for early stress detection,
the problem becomes more challenging as the area where the stress occurs is naturally quite
small at the beginning and therefore the challenge is to balance the trade-o� between us-
ing the information from neighboring pixels without smoothing the early stress signals too
strongly.

While this thesis showed the possibility to quantify early stress without the need for training
data, supervised algorithms are generally still more precise and e�cient for classi�cation.
For fungi quanti�cation, for example, labeled samples are quite easy to obtain as the stressed
pixels are easy to identify. However, the manual process of acquiring labeled pixels is still
time consuming, especially as this process has to be repeated for every measurement cam-
paign. Active Learning o�ers a fast and e�cient alternative to solve this problem. Active
Learning is an iterative approach where manual input is given regarding the most unsure
points. With the improved training data an enhanced classi�cation model is learned until
the user is satis�ed with the quality of classi�cation. This way, only a fraction of the labeled
samples are needed compared to a normal learning approach. For early stress detection the
question remains whether the interactive communication between the learning algorithm
and the phenotyping expert is able to learn and detect stress at stages where no symptoms
are visible yet.

This thesis demonstrated the improvement achievable with new machine learning methods
for plant phenotyping with hyperspectral sensors. However, these methods have to be avail-
able through free open source software tools. While there are free machine learning toolboxes
available, these are not tailored for the exploration of hyperspectral images, where especially
the visualization of the results, but also of the intermediate steps in classi�cation, are of
importance. Therefore, in order to support the use of advanced methods of data analysis
in the Plant Phenotyping community and trigger new developments, new methods need to
be available through free and optimally open source software products tailored for Plant
Phenotyping with hyperspectral sensors.
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A Appended Papers

A.1 Robust �tting of �uorescence spectra for pre-symptomatic

wheat leaf rust detection with Support Vector Machines

Römer, C., Bürling, K., Hunsche, M., Noga, G., Plümer, L., 2011. Robust �tting of �u-
orescence spectra for pre-symptomatic wheat leaf rust detection with Support Vector
Machines. Computers and Electronics in Agriculture 79(2), 180 � 188.

Abstract

Early recognition of pathogen infection is of great relevance in precision plant protection.
Pre-symptomatic disease detection is of particular interest. By use of a laser�uoroscope, UV-
light induced �uorescence data were collected from healthy and with leaf rust inoculated
wheat leaves of the susceptible cultivar Ritmo 2-4 days after inoculation under controlled
conditions. In order to evaluate pathogen impact on �uorescence spectra 215 wavelengths
in the range of 370-800 nm were recorded. The medians of �uorescence signatures suggest
that inoculated leaves may be separated from healthy ones, but high-frequency oscillations
and individual reactions of leaves indicate that separability is di�cult to achieve. The mis-
balance between the high number of measured wavelengths and the low number of training
examples induces a high over�tting risk. For a pre-symptomatic pathogen identi�cation a
small number of robust features was desired which comprise most of the information relevant
for the given classi�cation task. Instead of choosing only the most relevant wavelengths, the
coe�cients of polynomials �tting the spectra were used for classi�cation. They specify the
global curve characteristics. Piecewise �tting by polynomials of fourth order led to high
classi�cation accuracy. Support Vector Machines were used for classi�cation. Cross valida-
tion demonstrated that the achieved classi�cation accuracy reached 93%. This result could
be attained on the second day after inoculation, before any visible symptoms appeared. The
described method is of general interest for pre-symptomatic pathogen detection based on
�uorescence spectra.

For copyright reasons, the full paper is only included in the printed version.
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A Appended Papers

A.2 Quantifying moisture and roughness with Support Vector

Machines improves spectroscopic soil organic carbon

prediction

Römer, C.,Rodionv, A., Behmann, J., Pätzold, S., Welp, G., Plümer, L., 2014, Quantifying
moisture and roughness with Support Vector Machines improves spectroscopic soil organic
carbon prediction, Journal of Plant Nutrition and Soil Science, 77(6), 845 � 847.

Abstract

The challenges of Vis-NIR spectroscopy are permanent soil surface variations of moisture
and roughness. Both disturbance factors reduce the prediction accuracy of soil organic
carbon (SOC) signi�cantly. For improved SOC prediction, both disturbance e�ects have to
be determined from Vis-NIR spectra, which is especially challenging for roughness. Thus,
an approach for roughness quanti�cation under varying moisture and its impact on SOC
assessment using Support Vector Machines is presented here.

For copyright reasons, the full paper is only included in the printed version.
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A.3 Early drought stress detection in cereals: Simplex Volume Maximisation for

hyperspectral image analysis

A.3 Early drought stress detection in cereals: Simplex Volume

Maximisation for hyperspectral image analysis

Römer, C., Wahabzada, M., Ballvora, A., Pinto, F., Rossini, M., Panigada, C., Behmann,
J., Léon, J., Thurau, C., Bauckhage, C., Kersting, K., Rascher, U., Plümer, L., 2012.
Early drought stress detection in cereals: simplex volume maximisation for hyperspectral
image analysis. Functional Plant Biology 39(11), 878-890.

Abstract

Early water stress recognition is of great relevance in precision plant breeding and produc-
tion. Hyperspectral imaging sensors can be a valuable tool for early stress detection with
high spatio-temporal resolution. They gather large, high dimensional data cubes posing a
signi�cant challenge to data analysis. Classical supervised learning algorithms often fail in
applied plant sciences due to their need of labeled data sets, which are di�cult to obtain.
Therefore, new approaches for unsupervised learning of relevant patterns are needed. We
apply for the �rst time a recent matrix factorization technique, Simplex Volume Maximisa-
tion (SiVM), to hyperspectral data. It is an unsupervised classi�cation approach, optimized
for fast computation of massive data sets. It allows calculation of how similar each spec-
trum is to observed typical spectra. This provides the means to express how likely it is
that one plant is su�ering from stress. The method was tested for drought stress, applied
to potted barley plants in a controlled rain-out shelter experiment and to agricultural corn
plots subjected to a two factorial �eld setup altering water and nutrient availability. Both
experiments were conducted on the canopy level. SiVM was signi�cantly better than using
a combination of established vegetation indices. In the corn plots, SiVM clearly separated
the di�erent treatments, even though the e�ects on leaf and canopy traits were subtle.

For copyright reasons, the full paper is only included in the printed version.
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