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I 

 

Epigenetic regulation of CD14 in TRIF pathway in pulmonary alveolar macrophages of 

German Landrace pigs 

 

Diseases of the respiratory system are a main problem in pig production. Pulmonary alveolar 

macrophages (PAMs) are key players to defend these respiratory diseases like lung 

inflammation caused by bacterial infection. Cluster of differentiation 14 (CD14) is the pattern 

recognition receptor (PRR) involved in the recognition of bacterial component 

lipopolysaccharide (LPS) through the MyD88-dependent and TRIF pathway of innate 

immunity. Gene expression regulation of CD14 and downstream genes may prevent LPS-

induced inflammation in pigs. However, epigenetic modulation on gene expression of CD14 

in response to infection is poorly understood. As a histone deacetylase (HDAC) inhibitor, 

sulforaphane (SFN) shows an anti-inflammatory activity and suppresses the DNA 

methylation. To identify the epigenetic changes of CD14 mediated with SFN in LPS-induced 

TRIF pathway, a PAMs model in vitro was investigated. For this, mRNA expression of CD14 

and downstream genes of TRIF pathway were quantified using qPCR. The cytokine level of 

tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β) were measured by enzyme - linked 

immunosorbent assay (ELISA). The protein level of NF-κB was analyzed by Western blot. In 

addition, gene expression of the epigenetic enzymes DNA methyltransferase-1 (DNMT1) and 

DNMT3a were quantified. Furthermore, the DNA methylation alterations of CD14 at 

promotor and gene body (CDS region) were analyzed using bisulfite sequencing in SFN and 

LPS treated PAMs. 

We found that CD14 gene expression was induced by 5 µg/ml LPS in time dependent manner. 

At time point 12 h, the gene expression of CD14 and downstream genes in TRIF pathway 

including TRIF, TRAF6, NFƳB, TRAF3, IRF7 and cytokines such as TNF-α, IL-1β, IL-6 and 

IFN-β were significantly induced by LPS. The LPS induced gene expression was suppressed 

by SFN in a dose dependent manner. The LPS-induced cytokine level of TNFα, IL-1β and 

NF-κB were also inhibited by SFN. Similarly, the DNMT3a mRNA expression was increased 

by LPS and down regulated by SFN at a dose of 5 µM. Furthermore, the bisulfite sequencing 

results presented that gene body methylation of CD14 was positively associated with gene 

expression of LPS treated PAMs and this methylation status was inhibited by SFN in a dose 

dependent manner. This in vitro study suggests that CD14 is involved in TRIF pathway 

including TRIF-TRAF6 and TRIF-TRAF3 pathway by LPS induction. Further, this LPS-

CD14 activation was suppressed by SFN via the epigenetic regulation of CD14 gene body 

methylation associated with DNMT3a.  
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This study provided novel insights into SFN-mediated epigenetic downregulation of CD14 

gene in LPS induced-TRIF pathway inflammation and may open new avenues of approaches 

to prevent and mitigate the LPS-induced inflammation in pigs. 
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Epigenetische Regulation von CD14 des TRIF-Signalwegs in Lungen 

Alveolarmakrophagen bei Schweinen der Deutschen Landrasse 

Krankheiten des Atmungssystems sind ein Hauptproblem in der Schweineproduktion. 

Pulmonale Alveolarmakrophagen (PAMs) spielen bei der Verteidigung des Körpers 

gegen Erkrankungen der Atemwege, wie Lungenentzündung, durch bakterielle 

Infektion eine Schlüsselrolle. Das „Cluster of differentation“ 14 (CD14) agiert als 

„pattern recognition receptor“ (PRR) und ist damit an der Identifizierung von 

bakteriellen Komponenten wie Lipopolysacchariden (LPS), durch die MyD88-

abhängigen und dem TRIF Signalweg der angeborenen Immunität, beteiligt. Die 

Regulation der Genexpression von CD14 und den nachgeschalteten Genen können die 

LPS-induzierte Entzündung verhindern. Allerdings, bisher jedoch sind epigenetische 

Modulationen von CD14 in Bezug auf Infektionen kaum untersucht. Als ein Histon-

Deacetylase (HDAC)-Inhibitor, zeigt Sulforaphan (SFN) eine entzündungshemmende 

Wirkung und unterdrückt die DNA-Methylierung. Um die epigenetischen 

Veränderungen von CD14 vermittelt durch SFN in LPS-induziertem TRIF Signalweg 

zu identifizieren, wurden PAMs in vitro untersucht. Hierzu wurden die mRNA-

Expression von CD14 und nachgeschalteten Gene des TRIF Signalwegs mit qPCR 

quantifiziert. Die Zytokinkonzentrationen von Tumornekrosefaktor-α (TNF) und 

Interleukin-1β (IL-1β) wurden mittels Enzym-linked Immunosorbent Assay (ELISA) 

gemessen. Der Proteingehalt von NF-κB wurde durch Western-blot bestimmt. Ebenfalls 

wurde die Genexpression der epigenetischen Enzyme DNA-Methyltransferase-1 

(DNMT1) und DNMT3a quantifiziert. Des Weiteren, wurde der DNA-

Methylierungsstatus von CD14 sowohl in der Promotor als auch in der intragenic 

Region (CDS Region) unter Verwendung von Bisulfit-Sequenzierung in SFN und LPS 

behandelten PAMs analysiert. Es konnte festgestellt werden, dass die Genexpression 

von CD14 durch 5 µg/ml LPS im Zeitverlauf angeregt wird. Zum Zeitpunkt 12 h nach 

LPS Behandlung zeigte sich ein signifikanter Genexpressionsunterschied von CD14 und 

nachgeschalteten Gene des TRIF Signalweges einschließlich TRIF, TRAF6, NFƳB, 

TRAF3, IRF7 und von Zytokinen wie TNF-α, IL-1β, IL-6 und IFN-ß. Der LPS- 

induzierte Genexpressionsunterschied wurde durch SFN dosisabhängig unterdrückt. 

Ebenfalls war das durch LPS-induzierte Zytokin-Level, einschließlich TNF, IL-1β und 

NF-κB, durch SFN gehemmt. Weiterhin konnte auch bei der mRNA-Expression von 

DNMT3a durch LPS eine erhöhte und durch SFN eine nach unten regulierte Expression 
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bei einer Dosis von 5µM festgestellt werden. Die Bisulfit-Sequenzierungsergebnisse der 

intragenic Region von CD14 ergab eine positive Assoziation mit der Gene-Expression 

von LPS-behandelten PAMs und dieser Methylierungsstatus wurde von SFN 

dosisabhängig gehemmt. Diese in vitro Studie legt nahe, dass CD14 nach LPS 

Behandlung an den TRIF Signalwegen, einschließlich TRIF-TRAF6 und TRIF-TRAF3 

beteiligt ist. Ferner wurde diese LPS-CD14-Aktivierung durch SFN über die 

epigenetische Regulation der Methylierung der CD14 intragenic Region assoziiert mit 

DNMT3a unterdrückt. Diese Studie gibt einen neuen Einblick in die SFN-vermittelte 

epigenetische Herunterregulation vom CD14-Gen in durch LPS induzierten TRIF 

Signalweg Entzündungen und kann neue Verfahrensweisen eröffnen die LPS-induzierte 

Entzündung bei Schweinen zu verhindern und zu mildern. 
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1 Introduction 

Inflammation is the body’s reaction to injuries including trauma, hypersensitivity and 

infection, which aims to defend against pathogens and repair tissue (Ferrero-Miliani et 

al. 2007, Moldoveanu et al. 2009). Unlike the adaptive immunity which needs more 

time for the defense against antigens, the innate immunity always takes a quick 

response to inflammatory-related stimulations (Sheu et al. 2013). Lipopolysaccharide 

(LPS) is the component of the outer membrane of gram-negative bacteria and one of the 

most predominant microbial stimulators of inflammation (Dobrovolskaia and Vogel 

2002). It activates the innate immune response in monocytes (Dobrovolskaia and Vogel 

2002), dendritic cells (DCs) (Dat et al. 2015) and macrophages (Zhao et al. 2015). 

Macrophages are phagocytes which develop and differentiate from tissue monocytes, 

with pivotal functions in host defense and inflammation (Ginhoux 2014, Gordon and 

Taylor 2005). In macrophages, LPS induces the production of pro-inflammatory 

cytokines including tumor necrosis factor-α (TNFα), interleukin1-β (IL-1β), IL-6 and 

IL-8 and anti-inflammation mediators such as IFN-a and IL-10 (Dobrovolskaia and 

Vogel 2002, Mosser and Edwards 2008, Rogler et al. 1998). Pulmonary alveolar 

macrophages (PAMs) or alveolar macrophages (AMs) reside in the pulmonary alveolus, 

constitute a vital component of the alveolar spaces and play a central role in pulmonary 

innate immunity (Hoppstadter et al. 2010, Sato-Nishiwaki et al. 2013). 

Cluster of differentiation 14 (CD14), a glycosyl-phosphatidylinositol (GPI)-linked 

protein is a pattern recognition receptor (PRR) which binds directly to LPS (Wright et 

al. 1990) and transfers LPS molecules in a co-expressed way to Toll-like receptor 4 

(TLR4) and lymphocyte antigen 96 (LY96, also know as MD-2) (da Silva Correia et al. 

2001). It enhances the inflammatory response and induced LPS-dependent production 

of IL-8 in vitro (He et al. 2014). CD14 was discovered as a myeloid differentiation 

antigen (Griffin et al. 1981) and human monocytes antigen (Todd et al. 1981) by 

reactivity of monoclonal antibodies (mAbs) depending on antigen-antibody reaction. 

There are two forms of CD14, the membrane CD14 (mCD14) (Todd et al. 1981) and the 

soluble CD14 (sCD14) (Maliszewski et al. 1985). It is already known that mCD14 is 

expressed in spleen macrophages and Kupffer cells in granuloma (Hancock et al. 1983, 

Ziegler-Heitbrock and Ulevitch 1993). CD14 knockdown in macrophages inhibited the 

secretion of inflammatory cytokines like IL-6 and LPS induced TNFα strongly. This 

suggested that CD14 was critical for LPS binding to macrophages (Ma et al. 2015). 
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CD14 is also expressed in AMs (Ziegler-Heitbrock and Ulevitch 1993) and it binds with 

LPS and delivers LPS to the TLR4-MD2 complex on AMs (Kuronuma et al. 2009). 

After LPS stimulation, CD14-TLR4 activates the myeloid differentiation primary-

response protein 88 (MyD88)-dependent and MyD88-independent pathway (TRIF 

pathway) (Akira and Takeda 2004). The TLR4-TRIF (TIR-domain-containing adaptor 

protein inducing interferon-β) interaction requires for the adaptor TRIF-related adaptor 

molecule (TRAM) and TRIF activates both TNF receptor associated factor 3 (TRAF3) 

and TRAF6 by a binding domain present on its N-terminus (Brown et al. 2011, Wang et 

al. 2001, Yamamoto et al. 2003b, Yamamoto et al. 2003a). The activation of TRAF6 or 

receptor-interacting serine/threonine-protein kinase (RIPK)-1 by TRIF initiates the NF-

κB signaling which is similar to the MyD88-dependent pathway (Qian and Cao 2013).  

While the activation of TRAF3 initiates the interferon (IFN) regulatory factor (IRF)-3 

through IKKi and TANK-binding kinase (TBK)-1, the phosphorylation of IRF3 induces 

the production of IFN-β  (Brown et al. 2011, Doyle et al. 2002). TRAF3 regulates the 

production of the anti-inflammatory cytokine IL-10 and the activation of the IFN 

(Hacker et al. 2006). It is well known that CD14 works in the LPS-MyD88 signaling 

(Haghparast et al. 2011, Jiao et al. 2013, Tachado et al. 2010, Tsai et al. 2011, Zhang et 

al. 2009) but its activation in the TRIF pathway is argumentative. It has been shown that 

LPS initiates TRIF signaling independent of CD14 (Watanabe et al. 2013) and CD14 is 

required for the TRIF-independent signaling (Jiang et al. 2005, Lloyd-Jones et al. 2008, 

Regen et al. 2011) through IRF3 (Roy et al. 2014). Thereby, CD14 may be involved in 

the TRIF pathway by directly binding with LPS. This LPS inducing CD14-TRIF 

pathway genes including CD14, TRIF-TRAF6 sub-pathway genes and TRIF-TRAF3 

sub-pathway genes may be further epigenetically regulated by DNA methylation. 

DNA methylation is one of the key epigenetic performers which interact with regulatory 

proteins and non-coding RNAs (Delcuve et al. 2009). It refers to the addition of methyl 

groups to the adenine or cytosine bases of the DNA (Plongthongkum et al. 2014). DNA 

methylation is associated with gene regulation (Wilson et al. 2014) by DNA 

methyltransferases (DNMTs) including DNMT1 and DNMT3. DNMT1 has 

maintenance methylation activity (Ronemus et al. 1996) and DNMT3 has the role in de 

novo methylation (Robertson et al. 2000). DNA methylation of gene promotor regions 

is associated with gene silencing (Bird 2002, Huang et al. 2014, Jones and Baylin 

2002). Oppositely, the gene body methylation is positively correlated with gene 
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expression in humans (Ball et al. 2009, Hellman and Chess 2007, Huang et al. 2014, 

Klose and Bird 2006, Laurent et al. 2010, Lister et al. 2009).  

Sulforaphane (SFN; 1-isothiocyanato-4-(methylsulfinyl)-butane), is a natural member 

of the isothiocyanate family which is mainly found in vegetables from consumed 

cruciferous vegetables such as broccoli, cabbage and kale (Juge et al. 2007, Meeran et 

al. 2010, Singh et al. 2005). It has anticancer (Ho et al. 2009, Meeran et al. 2010, Singh 

et al. 2005, Xiao et al. 2009), anti-inflammatory (Ko et al. 2013), antioxidant and 

antidiabetic (de Souza et al. 2012) effects. It has been shown that SFN also leads to the 

demethylation of gene promoter region. SFN treatment caused the demethylation of the 

first 5 CpGs in the promoter region of the nuclear factor erythroid-derived 2-like 2 

(Nrf2) gene, thereby it increased messenger RNA (mRNA) and protein expression of 

Nrf2 and Nrf2 downstream target genes, while it decreased the protein levels of 

DNMT1 and DNMT3a (Zhang et al. 2013).  

Reports on CD14 function in TRIF pathway are controversial. Furthermore, the CD14 

gene expression regulation which may be controlled by the epigenetic factor SFN has 

not been shown. In this study, we have performed the first epigenetic analysis of 

porcine CD14 gene with the histone deacetylase HDAC inhibitor SFN, using LPS 

treated PAMs of German Landrace (GL) pigs. The aim of this study is to investigate the 

potential of SFN suppression for CD14 gene expression in TRIF pathway through the 

epigenetic modification in pig PAM cells.



4                              Introduction                                             

 



                           Literature review 5 

 

2 Literature review 

2.1 Inflammation and innate immunity  

Inflammation is the body’s reaction to injuries and stimulations including trauma, 

hypersensitivity and infection, which aim to defend the body against pathogens and repair 

tissue (Ferrero-Miliani et al. 2007, Moldoveanu et al. 2009). Lung inflammation is the 

vigorous response to the aggressors including pollutants, irritants, allergens, toxins and 

pathogens which easily may reach to lung because it supplies a huge surface for gas 

exchange and pathogen exposure (Moldoveanu et al. 2009). 

Innate immunity and adaptive immunity are the two major defenses of the host against 

micro-bacterial, viral, or other antigenic stimulations. Unlike the adaptive immunity which 

needs time to against the antigen, the innate immunity reaction always takes quick 

response to the inflammatory or antigen-related stimulation (Sheu et al. 2013), thereby it 

first identifies the specific antigens and then launches inflammatory cells to target that 

designated antigens (Moldoveanu et al. 2009).  

2.2 Cells in the innate immune response 

As cells of the innate immune system, mast cells (MCs) not only have the role of inducing 

inflammation by producing pro-inflammatory mediators, but also can act as key regulators 

of tolerance (Jungraithmayr 2015). Phagocyte such as macrophage, neutrophil and 

dendritic cell displays an early and crucial event in host defenses against pathogens 

(Henneke and Golenbock 2004). Basophil is an innate immune cell which has expression 

of a functional TLR2 receptor, while eosinophil is the innate immune inducer which lead 

the production of cytokines including transforming growth factor-β (TGF-β), interleukin 

(IL)-3, IL-4, IL-5, IL-8, IL-10, IL-12, IL-13, IL-16, IL-18 and tumor necrosis factor 

(TNF)-α (Stone et al. 2010). Natural killer cells (NKs) are also important contributors to 

innate defense against a number of different infectious agents (Biron et al. 1999). 

2.3 Pulmonary alveolar macrophages and inflammation 

Macrophages are phagocytes which developed and differentiated from monocytes in the 

tissues, with pivotal functions in development, tissue remodeling, repair or homeostasis, 

host defense and inflammation (Ginhoux 2014, Gordon and Taylor 2005). They are 

antigen-presenting cells since they express the major histocompatibility complex (MHC) 
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class II molecules, therefore they work not only in innate immunity but also in adaptive 

immunity (Hoppstadter et al. 2010). Macrophages are the main source of cytokines, 

chemokines and other inflammatory mediators that disseminate or inhibit the immune 

response (Moldoveanu et al. 2009). Furthermore, macrophages can secret quite a few 

cytokines including the pro-inflammatory cytokines such as TNF, IL-1, IL-6 and IL-8 and 

anti-inflammatory mediators such as IL10, thus they play a crucial role in inflammation 

(Mosser and Edwards 2008, Rogler et al. 1998).  

Pulmonary alveolar macrophages (PAMs), or alveolar macrophages (AMs) are a type of 

macrophages, which reside in the pulmonary alveoli (Fig. 1) (Wissinger et al. 2008). They 

constitute a vital component of the alveolar spaces and play a central role in pulmonary 

innate immunity (Hoppstadter et al. 2010, Sato-Nishiwaki et al. 2013).  

 

Fig. 1 PAMs are located in the alveoli (Wissinger et al. 2008, modified) 

2.4 Pathogen recognition by innate immunity 

Unlike the adaptive immunity, innate immunity has a role in the nonspecific recognition of 

pathogens, by which it is activated via pathogen associated molecular patterns (PAMPs) 

linking to pattern recognition receptors (PRRs) (Maciejewska Rodrigues et al. 2009). 

PAMPs are derived from microorganisms such as bacteria, fungi, parasites and viruses. 

Bacteria include gram-negative bacteria lipopolysaccharide (LPS), gram-positive bacteria 
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peptidoglycan (PG), lipoteichoic acid (LTA), flagellin and C-phosphate-G (CpG)-DNA. 

Viruses comprise DNA, double-stranded RNA (dsRNA) and single-stranded RNA 

(ssRNA) (Akira et al. 2006). They are recognized by Toll-like receptors (TLRs) and other 

PRRs, such as nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), 

retinoid acid-inducible gene I (RIG-I)-like receptors (RLRs) and absent in melanoma 2 

(AIM2) like receptors (ALRs) (Akira et al. 2006, Creagh and O'Neill 2006, Janeway and 

Medzhitov 2002, Tang et al. 2012). Several classes of PRRs, including TLRs and 

cytoplasmic receptors like NLRs and RLRs, recognize different microbial components and 

activate immune cells directly (Akira et al. 2006).  

2.4.1 LPS 

Lipopolysaccharide (LPS) endotoxin is an outer membrane component of gram-negative 

bacteria and one of the most predominant microbial stimulator of inflammation 

(Dobrovolskaia and Vogel 2002). Peripheral stimulation of the innate immune system with 

LPS causes an exaggerated neuro-inflammatory response in aged BALB/c mice (Henry et 

al. 2009). The structure of LPS includes a hydrophobic domain named lipid A, a distal 

polysaccharide (O-antigen) and a core oligosaccharide (Fig. 2) (Raetz and Whitfield 2002). 

LPS activates the innate immune response with monocytes (Dobrovolskaia and Vogel 

2002), dendritic cells (DCs) (Dat et al. 2015) and macrophages (Zhao et al. 2015). In 

macrophages, LPS induces the production of inflammation cytokines, such as TNF-α and 

IL1-β (Beutler and Cerami 1988, Carson et al. 2011, Dinarello 1991) and anti-

inflammation mediator IL-6 (Dobrovolskaia and Vogel 2002). 
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Fig. 2 LPS structure and membrane structure of E. coli (Raetz and Whitfield 2002) 

(PPEtN: phosphate-pyrophosphorylethanolamine, Kdo: 3-deoxy-D-manno-oct-2-ulosonic 

acid, MDO: membrane-derived oligosaccharides) 

2.4.2 TLRs  

TLRs are type I transmembrane proteins. They have three parts with ectodomains, 

transmembrane domains and intracellular toll-IL-1 receptor (TIR) domains. The 

ectodomains contain leucine-rich repeats (LRRs) that mediate the recognition of PAMPs,  

while the TIR domain is the part which is required for downstream signal transduction 

(Kawai and Akira 2010). So far, 12 members of the TLRs family have been identified in 

mammals (Akira et al. 2006), while 10 functional TLRs have been identified in humans 

(Kawai and Akira 2010). TLRs recognize PAMPs including proteins, lipids (TLR1, TLR2 

and TLR6), lipoproteins and nucleic acids (TLR8 and TLR9) derived from a wide range of 

microbes such as viruses, bacteria, fungi and parasites (Akira et al. 2006, Kawai and Akira 

2010). 

Based on their cellular localization and respective PAMP ligands, TLRs can be divided 

into 2 subfamilies, one is composed of TLR1, TLR2, TLR4, TLR5, TLR6 and TLR11 
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which are expressed on cell surfaces and recognize mainly microbial membrane 

components such as lipids, lipoproteins and proteins; the other one is composed of TLR3, 

TLR7, TLR8 and TLR9 which are expressed only in intracellular vesicles such as the 

lysosomes, endosomes, endolysosomes and endoplasmic reticulum (ER),  where they 

recognize microbial nucleic acids (Kawai and Akira 2010). 

TLR1 recognizes the microbial components of triacyl lipopeptides from the species of 

bacteria and mycobacteria (Table 1) (Akira et al. 2006). TLR2 can recognize several 

microbial components including diacyl lipopeptides (mycoplasma), triacyl lipopeptides 

(bacteria and mycobacteria), LTA (group B Streptococcus), peptidoglycan (PG, gram-

positive bacteria), porins (Neisseria), lipoarabinomannan (mycobacteria), zymosan 

(Saccharomyces cerevisiae), phospholipomannan (Candida albicans), 

glucuronoxylomannan (cryptococcus neoformans), tGPI-mutin (Trypano-soma), 

hemagglutinin protein (measles virus) (Table 1) (Akira et al. 2006). TLR4, the typical 

member of the TLR family which is the only receptor utilizing all four TIR-domain-

containing adaptors (Kagan and Medzhitov 2006). It was the first PRR discovered to be 

expressed in mammalian innate immune cells (Medzhitov and Janeway 1997). Two 

pathways including the myeloid differentiation primary-response protein 88 (MyD88)-

dependent and MyD88-independent pathways are activated when TLR4 is stimulated with 

LPS (Akira and Takeda 2004). 

Table 1 TLR recognition of microbial components (Akira et al. 2006) 

Microbial components Species TLR usage 

Bacteria   

LPS Gram-negative bacteria TLR4 

Diacyl lipopeptides Mycoplasma TLR6/TLR2 

Triacyl lipopeptides Bacteria and mycobacteria TLR1/TLR2 

LTA Group B Streptococcus TLR6/TLR2 

Peptidoglycan Gram-positive bacteria TLR2 

Porins Neisseria TLR2 
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Lipoarabinomannan Mycobacteria TLR2 

Flagellin Flagellated bacteria TLR5 

CpG-DNA Bacteria and mycobacteria TLR9 

ND (not determined) Uropathogenic bacteria TLR11 

Fungus   

Zymosan Saccharomyces cerevisiae TLR6/TLR2 

Phospholipomannan Candida albicans TLR2 

Glucuronoxylomannan Cryptococcus neoformans TLR2 and TLR4 

Parasites   

tGPI-mutin Trypanosoma TLR2 

Glycoinositolphospholipids Trypanosoma TLR4 

Hemozoin Plasmodium TLR9 

Profilin-like molecule Toxoplasma gondii TLR11 

Viruses   

DNA Viruses TLR9 

dsRNA Viruses TLR3 

ssRNA RNA viruses TLR7 and TLR8 

Envelope proteins RSV, MMTV TLR4 

Hemagglutinin protein Measles virus TLR2 

Host   

Heat-shock protein 60, 70  TLR4 

Fibrinogen  TLR4 
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2.4.3 The TLR signaling pathway 

Depending on ligand stimulation, TLRs attract different adaptor proteins including 

MyD88, myD88-adaptor-like (Mal), TIR-domain-containing adaptor protein inducing 

IFNβ (TRIF) and TRIF-related adaptor molecule (TRAM) by TIR-TIR interactions (Qian 

and Cao 2013). All TLRs, with the exception of TLR3, activate the MyD88-dependent 

signaling pathway by utilizing MyD88 while TLR4 and TLR3 initiate the TRIF-dependent 

(MyD88-independent pathway) signaling pathway (Qian and Cao 2013). The whole TLR 

signaling pathway is shown in Fig. 3. 

(http://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=map04620&keyword=myd88) 

 

Fig. 3 TLR signaling pathway (KEGG 20150205) 
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2.4.3.1 The MyD88-dependent pathway 

The TLR4/MyD88 signaling pathway is primarily used to induce the expression of pro-

inflammatory cytokines (Brown et al. 2011). MyD88 activates IL-1 receptor-associated 

kinase (IRAK)-1 though the interaction with IRAK-4 by the death domain part of IRAK-4. 

Then the activation of TNF receptor associated factor (TRAF)-6 is promoted with other E2 

ubiquitin protein ligases which activate a compound containing TGF-β-activated kinase 

(TAK)-1, TAK1-binding protein (TAB)-1, TAB-2 and TAB-3 (Brown et al. 2011, Cao et 

al. 1996, Chen 2005, Li et al. 2000, Li et al. 2002, Muzio et al. 1997). The TAK1/TABs 

complex induces the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-

κB) signaling pathway by activating IƳB kinase (IKK) and the mitogen-activated protein 

kinases (MAPK) signaling pathway by Jun amino-terminal kinase (JNK) (Wang et al. 

2001). 

2.4.3.2 The TRIF-dependent pathway 

The TRIF-dependent (MyD88 independent) pathway is initiated by the TLR3 and TLR4 

(Qian and Cao 2013). The TLR4-TRIF interaction requires for the adaptor TRAM and 

TRIF activates both TRAF3 and TRAF6 by a binding domain present on its N-terminus 

(Brown et al. 2011, Wang et al. 2001, Yamamoto et al. 2003a, Yamamoto et al. 2003b). In 

spite of the similar structure, TRAF3 and TRAF6 have different functions in the TRIF 

signaling pathway (Hacker et al. 2006). The activation of TRAF6 or receptor-interacting 

serine/threonine-protein kinase (RIPK)-1 by TRIF initiates the nuclear factor 'kappa-light-

chain-enhancer' of activated B-cells (NF-κB) signaling which is similar to the MyD88-

dependent pathway (Qian and Cao 2013). While the activation of TRAF3 initiates the 

interferon (IFN) regulatory factor (IRF)-3 through IKKi and TANK-binding kinase (TBK)-

1, the phosphorylation of IRF3 induces the production of IFN-β (Brown et al. 2011, Doyle 

et al. 2002). TRAF3 regulates the production of anti-inflammatory cytokine IL-10 and the 

activation of the IFN (Hacker et al. 2006). The TRIF pathway is shown in Fig. 4 (KEGG 

http://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=map04620&keyword=myd88). 
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Fig. 4 TRIF signaling pathway (KEGG 20150205 with modification) 

2.5 CD14 gene and its function  

2.5.1 Molecular structure, forms and distribution of CD14 

Cluster of differentiation 14 (CD14) was discovered as a myeloid differentiation antigen 

(Griffin et al. 1981) and human monocytes antigen (Todd et al. 1981) by reactivity of 

monoclonal antibodies (mAbs) depending on antigen-antibody reaction. CD14 is a 53-55 

kDa glycoprotein (Gregory and Devitt 1999) with 356 amino acids (Goyert et al. 1988), it 

contains the leucine-rich repeats which are incorporated into the plasma membrane via a 

glycosyl-phosphatidylinositol (GPI) anchor (Gregory and Devitt 1999). The CD14 gene is 

located on chromosome 5q 23-q31 in human (Goyert et al. 1988) and chromosome 18 in 

mouse (Ferrero et al. 1990). In addition to human and mouse, CD14 gene was identified in 

other species. Bovine CD14 gene encodes 373 amino acids and the coding sequence is 

separated by a 90 nt intron (Ikeda et al. 1997). In rat, CD14 gene contains 883 bp of 5′-

flanking region, a 93 bp exon-1, an 87 bp intron followed after the ATG translation start 

codon and a 377 bp partial exon-2 (Liu et al. 2000). The porcine CD14 gene is located to 

chromosome 2q21 which includes two exons and a short intron (80 bp) following after the 

ATG translation start codon (Qiu et al. 2007). 
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CD14 exists in two forms, the membrane CD14 (mCD14) (Todd et al. 1981) and the 

soluble CD14 (sCD14) (Maliszewski et al. 1985). mCD14 is expressed in spleen 

macrophages and kupffer cells in granuloma (Hancock et al. 1983, Ziegler-Heitbrock and 

Ulevitch 1993). It is also expressed in alveolar macrophages and microglia cells (Ziegler-

Heitbrock and Ulevitch 1993). sCD14 was detected in cellular supernatant of monocytes 

and normal plasma (Maliszewski et al. 1985). The porcine CD14 gene was expressed in 

various tissues, such as spleen, liver, thymus, skeletal muscle and white matter (Qiu et al. 

2007).  

2.5.2 Functional properties of CD14 

2.5.2.1 CD14 as biomarker of disease 

CD14 is an acute phase inflammatory biomarker. In older adults, it predicts cardiovascular 

disease. It also strongly and independently predicts all-cause mortality in older adults 

(Reiner et al. 2013). Periodontitis, a chronic infectious disease of tooth supporting tissues 

which is leading to inflammation and loosing teeth subsequently, is associated with 

elevated levels of sCD14 (Nicu et al. 2009). sCD14 is a marker of disease activity in 

Crohn's disease (CD) (Lakatos et al. 2011). It is also a potential marker for pneumonia in 

children (Marcos et al. 2010). Microglia-derived sCD14 is a candidate cerebrospinal fluid 

biomarker for Alzheimer's disease (AD) and Parkinson's disease (PD) (Yin et al. 2009). It 

is also shown that the sCD14 level is associated with inflammation and protein-energy 

wasting in hemodialysis patients (Raj et al. 2009). sCD14 was higher in unstimulated 

whole saliva (UWS) and it was used as potential salivary biomarker for oral lichen planus 

(OLP) and burning mouth syndrome (BMS) (Srinivasan et al. 2008). It’s suggested that the 

elevated sCD14 concentration may be one of the host-response components of the 

periodontal disease clinical manifestations (Isaza-Guzman et al. 2008). Inhibition of CD14 

may be a novel treatment strategy in melioidosis because it plays a detrimental role in the 

host response against burkholderia pseudomallei although it is involved in the recognition 

of burkholderia pseudomallei by innate immune cells (Wiersinga et al. 2008). Bottema et 

al. indicates that atopy is importantly influenced by CD14 in interaction with pet exposure 

at the age of 4 and 8 years childen (Bottema et al. 2008). 
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2.5.2.2 CD14 is responsible for immunity and TLR activities 

Soluble CD14 is associated with human dendritic cell cytokine production and increased T 

cell responses (Liu et al. 2012). CD14-159C/T could effect the T cell-mediated immunity 

in extensively burned patients (Dong et al. 2009). The CD14-159C>T polymorphism is 

associated with soluble CD14 gene expression, which might influence the balance of pro- 

and anti-inflammatory immune responses in healthy term neonates (Hartel et al. 2008). 

CD14 expression in tonsils and adenoids implies that CD14 takes part in an important 

immunological sentinel function in the innate immunity of the upper airway (Ben-Yaakov 

et al. 2010). 

CD14 plays a role in the stimulation of TLRs and it acts as a co-receptor for endosomal 

TLR activation (Baumann et al. 2010). CD14-mediated TLR activation might be related 

with the cardiovascular and metabolic complications of obesity (Roncon-Albuquerque et 

al. 2008). CD14 was necessary for the microbe-induced endocytosis of TLR4 while CD14 

controls the trafficking and signalling functions of TLR4. This innate immune trafficking 

cascade illustrates how pathogen detection systems operate to induce both membrane 

transport and signal transduction (Zanoni et al. 2011). CD14 gene expression is critical for 

TLR2-mediated recognition of LTA in human peripheral blood (Bunk et al. 2010). CD14 

is responsible for the internalization of TLR2 ligand fibroblast stimulating ligand-1(FSL-1) 

via the clathrin-dependent endocytic pathway (Shamsul et al. 2010). CD14 is a co-receptor 

of TLR7 and TLR9, it is required for TLR7- and TLR9-dependent induction of pro-

inflammatory cytokines in vitro and for TLR9-dependent innate immune responses in mice 

(Baumann et al. 2010). TLR9 immune response of A, B and C-classes oligodeoxy-

nucleotides was upregulated by CD14 (Weber et al. 2012). Taken all together, the CD14 

function in the TLRs can be explained in three panels: (1) CD14 activates NF-κB -

dependent cytokine production with low-LPS doses challenge; (2) CD14 promotes TLR4 

endocytosis and type-I IFN expression in TRIF pathway; (3) CD14 has the role to lead to 

the activation of nuclear factor of activated T-cells, cytoplasmic (NFATc) transcription 

factor family members (Fig. 5) (Zanoni and Granucci 2013).  
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Fig. 5 CD14 fundamental functions in the TLRs (Zanoni and Granucci 2013) 

2.5.3 CD14 is required for LPS - induced TRIF pathway 

CD14 is the PRR which binds directly to LPS (Wright et al. 1990) and transfers LPS 

molecules in a co-expressed way to TLR4 and lymphocyte antigen 96 (LY96 or MD-2) (da 

Silva Correia et al. 2001). It is shown that CD14 is critical for LPS binding to 

macrophages, CD14 knockdown in macrophages inhibited the secretion of inflammatory 

cytokines including IL-6 and TNFα induced by LPS (Ma et al. 2015). CD14 enhanced the 

inflammatory response and LPS-dependent production of IL-8 induced by type 1 pili 

enterotoxigenic E. coli (ETEC) in vitro (He et al. 2014). It has been well known that CD14 

is involved in the LPS-MyD88 signaling pathway (Haghparast et al. 2011, Jiao et al. 2013, 

Tachado et al. 2010, Tsai et al. 2011, Zhang et al. 2009) but its involvement in the TRIF 

pathway is argumentative. It was shown that LPS initiates the TRIF pathway independent 
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of CD14 (Watanabe et al. 2013), but evidence also displayed that CD14 is required for the 

TRIF-independent signaling (Jiang et al. 2005, Lloyd-Jones et al. 2008, Regen et al. 2011) 

through IRF3 (Roy et al. 2014). Thereby, it is not only important for the MyD88-

dependent pathway to express TNFa, but is also required for the TRIF pathway to mediate 

IFNs expression (Jiang et al. 2005) via regulation of TLR4 endocytosis and facilitation of 

TRIF-mediated signal transduction (Zanoni et al. 2011).  

2.6 Epigenetics 

Epigenetics is the study of mitotically and/or meiotically heritable changes in gene 

function that cannot be explained by changes in DNA sequence (Russo et al. 1996). 

The epigenetic mechanisms regulate all biological processes including genome 

reprogramming during early embryogenesis and gametogenesis, cell differentiation and 

maintenance of a committed lineage (Delcuve et al. 2009). Key epigenetic performers 

are DNA methylation, RNA interference and histone modifications which interact with 

regulatory proteins and non-coding RNAs (Fig. 6) (Delcuve et al. 2009, Kim et al. 

2011).  

 

Fig. 6 Scheme of epigenetic mechanisms (Kim et al. 2011) 
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2.6.1 DNA Methylation  

DNA methylation refers to the addition of methyl groups to the adenine or cytosine bases 

of DNA (Plongthongkum et al. 2014) and is associated with gene regulation (Wilson et al. 

2014). It has inhibitory influence on gene expression by recruitment of methyl binding 

proteins, interference with transcription factor binding and the establishment and 

maintenance of an oppressive chromatin structure (Curradi et al. 2002, Havlis and Trbusek 

2002, Liu et al. 2004). The most common mark of DNA methylation is the 

5-methylcytosine (5mC) (Plongthongkum et al. 2014). Most of the DNA methylation 

analysis work in animals has focused on 5-methylcytosine (5mC) in the CpG sequence 

context. In vertebrate genomes, more than half of the genes contain short (approximately 1 

kb) CpG-rich regions known as CpG islands (CGIs) (Jones 2012). 

DNA methylation can occur in the promoter and gene body regions of genes. DNA 

methylation of gene promotor is associated with gene silencing (Bird 2002, Huang et al. 

2014, Jones and Baylin 2002), oppositely, gene body methylation is positively correlated 

with gene expression in humans (Ball et al. 2009, Hellman and Chess 2007, Huang et al. 

2014, Klose and Bird 2006, Laurent et al. 2010, Lister et al. 2009). 

2.6.1.1 Gene body methylation 

Gene body methylation is the DNA methylation of transcription units (Sarda et al. 2012). It 

occurs not only in human genomes but also in the genomes of animal and plant species 

(Sarda et al. 2012, Yu et al. 2015). Recent researches show the increasing support of the 

gene body methylation as the ancestral pattern of DNA methylation in animal genomes 

(Feng et al. 2010, Zemach et al. 2010). Although the promoter DNA methylation is known 

as a silencing mechanism, the gene body has recently been recognized as a major 

mechanism for regulating gene expression in many tissues (Baylin and Jones 2011). Unlike 

the negative effect of promotor methylation on gene expression, gene body methylation 

displays a positive role (Huang et al. 2014). The strongest correlation between the age-

related changes in gene expression and methylation is not confined to the promoter region; 

oppositely, the high densities of hypo-methylated CpG-rich regions crossing the gene body 

are preferentially associated with gene downregulation (Yu et al. 2015). It is displayed that 

methylation in the gene body region does not prevent transcription elongation in genome-

wide approaches (Ball et al. 2009). However, the underlying mechanisms of gene body 
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methylation in regulating gene expression and the functional roles of gene body 

methylation is still not clear. 

2.6.1.2 DNA modification enzymes 

DNA methyltransferases (DNMTs) are the family of enzymes which catalyze the methyl 

reaction via transferring a methyl group from S-adenosylmethionine to the 5 position of 

cytosine on CpG dinucleotides (Arand et al. 2012, Teerawanichpan et al. 2004). DNMT1 

was the first discovered DNMTs in mammals (Bestor 2000), then DNMT2 (Yoder and 

Bestor 1998) and DNMT3 (DNMT3a and DNMT3b) families were found respectively 

(Okano et al. 1998). It’s has been shown that DNMT1 class has maintenance methylation 

activity in vivo (Ronemus et al. 1996), DNMT2 class has only a methyltransferase domain 

therefore it lacks significant role in DNA methylation (Okano et al. 1998) while DNMT3 

class contributes the role in de novo methylation (Robertson et al. 2000).  

In addition to DNMTs, a class of enzymes named ten-eleven translocation (TET) including 

TET1, TET2 and TET3 have been discovered to produce epigenetic modifications like 

5-carboxylcytosine (5caC), 5-formylcytosine (5fC) and 5-hydroxymethylcytosine (5hmC) 

(Plongthongkum et al. 2014).  

2.6.1.3 Bisulfite sequencing 

Bisulfite genomic sequencing is a effective technique to discern the 5-methylcytosine 

position for the accurate mapping of methylation sites on individual DNA molecules by 

using sodium bisulfite to convert un-methylated cytosine residues to uracil with a very 

small amounts of genomic DNA (gDNA) (Clark et al. 1994). The technical steps of 

bisulfite sequencing are (1) bisulfite conversion of gDNA, (2) polymerase chain reaction 

(PCR) by using bisulfite PCR primers for bisulfite-converted DNA and (3) direct 

sequencing or cloning of the purified bisulfite PCR and then sequencing (Frommer et al. 

1992, Liu et al. 2004) (Fig. 7). 
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Fig. 7 Bisulfite genomic sequencing (Liu et al. 2004) 

2.6.2 Histone modifications 

Histone modification is another key epigenetic factor which is typically controlled by the 

dynamic processes including histone acetylation and histone deacetylation (HDAC) 

regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), 

respectively (Meeran et al. 2010). Histone acetylation like acetylation of histone H3 and   

acetylation of histone H4 causes the transcriptional activation throughout chromatin 

remodeling. Conversely, histone deacetylation results in transcriptional silencing (Meeran 

et al. 2010). HDACs are enzymes that eliminate the acetyl modification from histones 

(Delcuve et al. 2009). HDAC inhibitors induce the HAT co-activator complexes to transfer 

acetyl groups to lysine residues in histones, therefore an open chromatin structure which 

facilitates the binding of transcription factors to gene promoters for regulation of gene 

expression (Meeran et al. 2010, Murakami et al. 2005, Struhl 1998). In addition to 

acetylation, histones also have reversible post-translational modifications (PTMs) 

including ubiquitination, phosphorylation, adenosine diphosphate (ADP) - ribosylation and 

methylation (Kouzarides 2007).  

2.6.3 RNA interference 

MicroRNAs (miRNAs) are small RNA molecules, about 22 nucleotides long, that can 

suppress their target gene expression post-transcriptionally. They were described first in 
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Caenorhabditis elegans in 1993. miRNAs have been shown to inhibit translation or 

decrease mRNA stability by binding to specific sites usually in the 3’ untranslated region 

(3′UTR) of target messages, thus providing another way of gene expression controlling 

(Kim et al. 2011). 

2.7 SFN as a regulator of anti-inflammation and epigenetics 

Sulforaphane (SFN; 1-isothiocyanato-4-(methylsulfinyl)-butane), a naturally occurring 

member of the isothiocyanate family mainly found in cruciferous vegetables such as 

broccoli, broccoli sprouts, cauliflower, radish, cabbage and kale (Juge et al. 2007, Meeran 

et al. 2010, Singh et al. 2005), has anticancer (Ho et al. 2009, Meeran et al. 2010, Singh et 

al. 2005, Xiao et al. 2009), anti-inflammatory (Ko et al. 2013), antioxidant and antidiabetic 

(de Souza et al. 2012) effects.  

The anticancer function of SFN is considered to be associated to the inducing of phase-II 

enzymes of xenobiotic transformation or detoxifying and transcription increment of tumor 

suppressor proteins perhaps by inhibitory effects on histone deacetylase (Brandenburg et 

al. 2010). It was shown that SFN also can lead to the demethylation of gene promoter 

region. SFN treatment caused the demethylation of the first 5 CpGs in the promoter region 

of the nuclear factor erythroid-derived 2-like 2 (Nrf2) gene, thereby it increased messenger 

RNA (mRNA) and protein expression of Nrf2 and Nrf2 downstream target genes, while it 

decreased the protein levels of DNMT1 and DNMT3a (Zhang et al. 2013).  

SFN has been shown to have an anti-inflammatory role. SFN regulates LPS-induced innate 

immune responses of monocyte-derived dendritic cells (moDCs) in pigs (Qu et al. 2015). It 

modulates TLR4 activation and inhibits LPS-induced inflammatory responses (Koo et al. 

2013). Functions of SFN in the modulation of TLR4 signaling have been investigated in 

different cell lines. SFN reduced LPS-induced TNF-α expression in macrophage cells 

(Youn et al. 2010). It also suppressed NFκB in LPS stimulated RAW macrophages (Heiss 

et al. 2001) and endothelial cells (Liu et al. 2008). SFN and nobiletin (NBN) inhibit 

synergistically LPS-induced inflammation in RAW 264.7 cells (Guo et al. 2012). It has 

been shown that SFN suppressed LPS-induced inducible nitric oxide synthase (iNOS), 

cyclooxygenase-2 (COX-2) and TNF-α expression in mouse macrophages (Heiss et al. 

2001). 
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2.8 Hypothesis and Objectives 

Hypothesis:  

LPS-induced CD14 expression can be modified by SFN through epigenetic mechanisms in 

the TRIF pathway in pulmonary alveolar macrophages of German Landrace pigs  

Objectives: 

(1) To investigate the effect of LPS on CD14 gene expression in PAMs of German 

Landrace pigs 

(2) To find out the epigenetic effect of SFN on LPS-induced CD14 expression in 

PAMs of German Landrace pigs 
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3 Material and methods 

3.1 Material 

3.1.1 Reagents  

Chemical Cat.no. Manufacturer/Supplier 

Ketamin 98046 
Pharmazeutische, Handelgesellschaft 
GmbH, Garbsen - Berenbostel 

T61 03542 
Pharmazeutische Handelgesellschaft 
GmbH, Garbsen - Berenbostel 

Meliseptol®  1110493 Labomedic GmbH, Bonn, Germany 

NaCl P029.2 
Carl Roth GmbH + Co. KG, Karlsruhe, 
Germany 

Na2HPO4.2H2O T877.1 
Carl Roth GmbH + Co. KG, Karlsruhe, 
Germany 

KCl 6781.1 
Carl Roth GmbH + Co. KG, Karlsruhe, 
Germany 

KH2PO4 3904.1 
Carl Roth GmbH + Co. KG, Karlsruhe, 
Germany 

DPBS (1×) 14190-094 
Life Technologies GmbH, Darmstadt, 
Germany 

Fungizone® antimycotic 15290-026 
Life Technologies GmbH, Darmstadt, 
Germany 

Penicillin-streptomycin 
(10,000 U/ml) 

15140-122 
Life Technologies GmbH, Darmstadt, 
Germany 

NH4Cl K298.2 
Carl Roth GmbH + Co. KG, Karlsruhe, 
Germany 

KHCO3 P748.2 
Carl Roth GmbH + Co. KG, Karlsruhe, 
Germany 
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EDTA 8043.2 Carl Roth GmbH + Co. KG, Karlsruhe, 
Germany 

RPMI 1640 medium 61870-044 
Life Technologies GmbH, Darmstadt, 
Germany 

FBS 10270-106 
Life Technologies GmbH, Darmstadt, 
Germany 

Gentamicine (10 mg/ml) 15710-049 
Life Technologies GmbH, Darmstadt, 
Germany 

Trypan blue stain (4%) 93595 Sigma-Aldrich (Fluka), St. Louis, USA 

LPS-EB  tlrl-3pelps InvivoGen, California, USA 

R,S-sulforaphane  4478-93-7 Biomol GmbH, Hamburg, Germany 

DMSO (≥ 99.9%) 154938 Sigma-Aldrich, St. Louis, USA 

Anti-CD163 antibody MCA2311F 
Bio-Rad Laboratories GmbH, München, 
Germany 

WST-1 Cell Proliferation 
Assay Kit 

10008883 Biomol GmbH, Hamburg, Germany 

AllPrep®DNA/RNA/Potein 
Mini Kit 

80004 Qiagen GmbH, Hilden, Germany 

First Strand cDNA 
Synthesis Kit 

K1612 
Thermo Fisher Scientific Inc. St. Leon-
Roth, Germany 

iTaqTM Universal SYBR® 
Green Supermix 

172-5120 
Bio-Rad Laboratories GmbH, München, 
Germany 

EZ DNA Methylation-
DirectTM Kit  

D5020 
Zymo Research Europe GmbH, Freiburg, 
Germany 

Ethanol (≥ 99,8%) 9065.2 
Carl Roth GmbH + Co. KG, Karlsruhe, 
Germany 

ZymoTaqTM DNA 
Polymerase Kit 

E2002 
Zymo Research Europe GmbH, Freiburg, 
Germany 
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QIAquick PCR 
Purification Kit  

28106 Qiagen GmbH, Hilden, Germany 

Tris base 4855.3 
Carl Roth GmbH + Co. KG, Karlsruhe, 
Germany 

Agarose 
N3101-
0500 

STARLAB GmbH, Ahrensbur, Germany 

Ethidium bromide (1%) 2218.1 
Carl Roth GmbH + Co. KG, Karlsruhe, 
Germany  

pGEM®-T Vector System 
II 

A3610 Promega GmbH, Mannheim, Germany 

Tryptone/peptone 8952.1 
Carl Roth GmbH + Co. KG, Karlsruhe, 
Germany 

Yeast extract 2363.2 
Carl Roth GmbH + Co. KG, Karlsruhe, 
Germany 

NaOH 6771.1 
Carl Roth GmbH + Co. KG, Karlsruhe, 
Germany 

Agar 2266.2 
Carl Roth GmbH + Co. KG, Karlsruhe, 
Germany 

Ampicillin HP62.1 
Carl Roth GmbH + Co. KG, Karlsruhe, 
Germany 

IPTG 2316.3 
Carl Roth GmbH + Co. KG, Karlsruhe, 
Germany 

X-B-gal 2315.3 
Carl Roth GmbH + Co. KG, Karlsruhe, 
Germany 

D-(+)-glucose  16325 Sigma-Aldrich, St. Louis, USA 

Taq DNA polymerase  786-447 G-Biosciences, St Louis, USA 

Anti-CD14 antibody ab27545 Abcam, Cambridge, UK 

Anti-acetyl-histone H3 
antibody 

06-599 Merck Millipore, Darmstadt, Germany  

Anti-acetyl-histone H4 
antibody  

06-866 Merck Millipore, Darmstadt, Germany 
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Anti- NF-κB p65 antibody  ab72555 Abcam, Cambridge, UK 

Anti- NF-κB p105/p50  ab47336 Abcam, Cambridge, UK 

Anti-β-actin (C4) antibody sc-47778 
Santa Cruz Biotechnology, Inc., 
Heidelberg, Germany 

Goat anti-mouse IgG-HRP  sc-2005 
Santa Cruz Biotechnology, Inc., 
Heidelberg, Germany 

Clarity™ ECL Western 
Blotting Substrate  

170-5060 
Bio-Rad Laboratories GmbH, München, 
Germany 

TNFα Pig ELISA Kit Ab100756 Abcam, Cambridge, UK 

IL-1β Pig ELISA Kit Ab100754 Abcam, Cambridge, UK 
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3.1.2 Buffer, media and gels 

1× PBS (without Ca2+ and Mg2+, pH 7.4)   (g/L) 

NaCl  8 

Na2HPO4.2H2O  1.44 

KCl  0.20 

KH2PO4  0.24 

PAMs washing PBS  Percentage (%) 

1× DPBS (without Ca2+ and Mg2+, pH 7.4)    90 

Fungizone® antimycotic  5 

Pen-Strep  5 

1× RBC lysis buffer  (g/L) or (ml/L) 

NH4Cl  8.30 g/L 

KHCO3  1 g/L 

5% EDTA   1.80 ml/L 

ddH2O added to   1 L 

PAMs culture medium  Percentage (%) 

RPMI 1640 medium  87 

FBS  10 

Pen-Strep (100× concentrate)  1 

Fungizone® antimycotic   1 

Gentamicine (10 mg/ml)  1 

Cell count medium  ul 

Cell suspension  10 

4% Trypan blue stain  50 
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PAMs culture medium  40 

Tris-acetate-EDTA (TAE) (10×)  ml/L or g/L 

Acetic acid (100%)  571 ml 

Tris base  242 g 

EDTA  100 ml 

ddH2O  added to 1 L 

Agarose gel  2% 

Agrose  4 g 

TAE (1×)  200 ml 

Ethidium bromide  9 µl 

LB medium with ampicillin   

Tryptone  10 g 

Yeast extract  5 g 

NaCl  5 g 

Adjust pH to 7.0 with NaOH    

Agar  15 g 

Autoclave, cool to 50 °C, adding    

Ampicillin  5 ml 

SOC medium   500 ml 

Tryptone  10 g 

Yeast extract  2.50 g 

1 M NaCl  5 ml 

1 M KCl  1.25 ml 

dd H2O  485 ml 
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Autoclave, cool to room temperature,  

Adjust pH to 7.0 with NaOH 
  

2 M Mg2+ stock (filter-sterilized)  5 ml 

2 M glucose (filter-sterilized)  5 ml 

dd H2O  Adding to 500 ml 

dNTP solution    400 ml 

dATP (100 mM)  10 µl 

dGTP (100 mM)  10 µl 

dTTP (100 mM)  10 µl 

Add ddH2O to  400 ml 

Acrylamide gradients SDS-PAGE  8% 10% 12% 15% 

Acrylamide (30%) 1.33 ml 1.67 ml 2.00 ml 2.50 ml 

Separating gel buffer 1.25 ml 1.25 ml 1.25 ml 1.25 ml 

ddH2O 2.32 ml 2.00 ml 1.67 ml 1.15 ml 

APS (Aliquot in -20 °C)  25 µl 25 µl 25 µl 25 µl 

Temed 5 µl 5 µl 5 µl 5 µl 

Sample gel                 5.6% 

Acrylamide (30%)                      0.725 ml 

Sample gel buffer                      0.500 ml 

ddH2O                      2.825 ml 

APS                      38 µl 

Temed             5 µl 

10× blotting buffer          1 L  

Tris               30.3 g 
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Glyzin              144.0 g 

ddH2O              1 L 

pH 8.3  

1× blotting buffer       1 L  

10× blotting buffer             100 ml 

Methanol             200 ml 

ddH2O             700 ml 
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3.1.3 Equipment and consumables 

Equipment/consumables Manufacturer/Supplier 

Cell strainer (70 μm) BD Biosciences, Heidelberg 

Rotilabo® filter 0.22 μm 
Carl Roth GmbH + Co. KG, 
Karlsruhe 

Centrifuge tubes (15 ml, 50 ml) 
SARSTEDT AG & Co., 
Nümbrecht 

Centrafuge (5810R, 5424, 5416, 5415R) Eppendorf AG, Hamburg 

Haemocytometer 
Paul Marienfeld GmbH & Co. 
KG, Lauda-Königshofen 

Microscope (ECLIPSE TS100)  Nikon GmbH, Düsseldorf 

Digital camera system for microscopy digital 
sight series (DS-Fi1)  

Nikon GmbH, Düsseldorf 

Memmert CO2 incubator 
Fisher Scientific UK Ltd, 
Loughborough 

6 - well cell culture plates STARLAB GmbH, Hamburg 

24 - well cell culture plates STARLAB GmbH, Hamburg 

96 - well cell culture plates STARLAB GmbH, Hamburg 

Serological pipettes (1,2, 5, 10, 25 ml) 
Greiner Bio-One GmbH, 
Frickenhausen 

Aspirating pipette 
Greiner Bio-One GmbH, 
Frickenhausen 

Cell scrapers 
Greiner Bio-One GmbH, 
Frickenhausen 

Plate reader synergy™ 2 
BioTek Instruments GmbH, Bad 

Friedrichshall 

FACSCanto flow cytometer  
BD Biosciences GmbH, 
Heidelberg 
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StepOnePlus™ real time PCR system 
Life Technologies GmbH, 
Darmstadt (Applied 
Biosystems®) 

MicroAmp® fast optical 96-well reaction plate 
with barcode, 0.1 ml 

Life Technologies GmbH, 
Darmstadt (Applied 
Biosystems®) 

CEQ8000 sequencer system (CEQ8000) 
Beckman Coulter, Inc., Fullerton, 
CA 

Water-bath 1083 
GFL Gesellschaft für 
Labortechnik mbH, Burgwedel 

Nanodrop 8000 spectrophotometer 
Thermo Fisher Scientific 
Biosciences GmbH, St. Leon-
Roth 

Universal high speed centrifugation (Z300 K, 
Z300, Z200 M/H, Z233 MK, Z323 K) 

HERMLE Labortechnik 
GmbH,Wehingen 

ELV fully automatic autoclave (3870) 
Tuttnauer Europe B.V., 
Netherlands 

Multi®-ultra tubes 0.65 ml 
Carl Roth GmbH + Co. 
KG,Karlsruhe 

SafeSeal® tubes 1.5 ml 
Carl Roth GmbH + Co. KG, 
Karlsruhe 

SafeSeal® tubes 2.0 ml 
Carl Roth GmbH + Co. 
KG,Karlsruhe 

PCR® strip tubes 
VWR International GmbH, 
Darmstadt (Axygen®) 

Pipette tips (10 µl, 200 µl, 1000 µl) Labomedic GmbH, Bonn 

Pipettes (0.5 - 10, 2 - 20, 20 - 200, 100 - 1000 
μl) 

Eppendorf AG, Hamburg 
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3.1.4 Software programs and statistical packages 

Software Using for Sources  

Primer 3 qRT-PCR primer design http://simgene.com/Primer3 

BLAST Check alignment specificity 
http://blast.ncbi.nlm.nih.gov/Blast.
cgi 

MethPrimer 
Bisulfite PCR primers 
design, CpG islands 
prediction 

http://www.urogene.org/cgi-
bin/methprimer/methprimer.cgi 

BiQ Alalyzer Bisulfite sequence analysis  
http://biq-analyzer.bioinf.mpi-
inf.mpg.de/index.php 

FlowLogic® 
software 

Flow cytometry analyses BD Biosciences, Germany 
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3.2 Methods 

3.2.1  Experimental animals 

A total of three 35-days-old female GL piglets (after weaning) were used in this study. 

Animals were fed in the same environmental conditions in the teaching and research 

station of Frankenforst, University of Bonn, Germany. The feeding and husbandry 

practices of the animals followed the husbandry regulations and standard guidelines 

(ZDS, 2003). The experiment was approved by the Veterinary and Food Inspection 

Office, Siegburg, Germany (the number of permission: 39600309-547115). The piglets 

were selected from one litter and all of them were free from all major pig diseases. At 

the age of 28 days, piglets were weaned and placed in collective pens.  

3.2.2  PAMs cells isolation from lungs of the GL piglets 

Animals were humanely euthanized with a dose of ketamine and afterwards T61 

(adjusted to the individual body weight) through the vena cava cranialis. After the 

animals had been euthanized, the chest and abdominal skin was disinfected with 

meliseptol. The thorax was opened gently and the whole lung was removed with trachea 

carefully. Afterwards, the lungs were washed with ice-cold sterile calcium-magnesium-

free phosphate buffered saline (PBS) (1×, pH 7.4), then transported on ice to laboratory. 

At the laboratory, lungs were taken out from the ice box, washed with 1× PBS (4 °C) 

again and put on the aluminium foil on ice. The PAMs from porcine lungs were 

obtained by bronchoalveolar lavage (BAL) using ice-cold PBS medium, as described by 

Islam (Islam et al. 2012), with some modifications. Sterile PBS medium (300 - 400 ml) 

was poured into the lungs with plastic dropper for 6 - 8 times and gently massaged 30 

sec, The lavage fluid was collected in a sterile bottle and filtered by using sterile gauze. 

Afterwards, it was filtered by 70 μm cell strainer. The PAMs were precipitated by 

centrifuge with 1,500 rpm for 10 min at 4 °C. After centrifugation, the supernatant was 

completely and carefully removed. To remove the red blood cells (RBCs), the isolated 

cells were treated with 5 ml 4 °C red blood cell (RBC) lysis buffer solution for 5 min 

incubation at room temperature, aiming to prevent the contamination of red blood cells. 

The reaction of lysis buffer was stopped with 20 ml sterile Dulbecco’s phosphate 

buffered saline (DPBS, 1×, pH 7.4, Life Technologies, Darmstadt, Germany) and a cell 

pellet was produced by centrifugation (1,500 rpm for 10 min, 4 °C). 
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The RBC lysis reaction process was repeated as often as required until all the red blood 

cells were removed completely. Supernatant was removed carefully and cell pellet was 

washed with sterile DPBS (1×, 4 °C, pH 7.4, Life Technologies, Darmstadt, Germ-any), 

then suspended by PAMs culture medium (37 °C) including 87% Roswell Park 

Memorial Institute (RPMI) 1640 medium (GlutaMAX™) (Life Technologies, 

Darmstadt, Germany), 10% fetal bovine serum (FBS), 1% penicillin-streptomycin (Pen-

Strep) (100× concentrate, Life Technologies, Darmstadt, Germany), 1% fungizone® 

antimycotic (Life Technologies, Darmstadt, Germany) and 1% gentamicine (10 mg/ml, 

Life Technologies, Darmstadt, Germany). Cells were counted in a haemocytometer with 

the final cell suspension in 10 times dilution using 4% trypan blue stain and PAMs 

culture medium and the viability of cells also was determined on the basis of trypan 

blue dye exclusion. Then cells were cultured in PAMs culture medium in a 5% CO2 

humidified cell culture incubator at 37 °C.  

3.2.3 PAMs cell morphology detection 

PAMs were seeded in a poly-D-lysine-coated 6 - well cell culture plates (2 × 106 

cells/ml) to observe the cell morphology. The medium was changed every second day. 

Morphology of PAMs on day 3, 5, 7, 12, 18 and 29 was evaluated by Microscope 

(ECLIPSE TS100, Nikon GmbH, Düsseldorf). 

3.2.4 Cell characterization by flow cytometry analyses 

Cell characterization were done by flow cytometry assay using FACSCanto flow 

cytometer (BD Biosciences, Heidelberg, Germany) and FlowLogic® software (BD 

Biosciences, Germany) with one cell marker CD163 (Abdserotec, cat. MCA2311F). 

PAMs were harvested, washed with sterile DPBS and cell numbers were counted by 

hemocytomer. Afterwards, 1 × 106 cells were incubated with 10 μL of conjugated 

antibody CD163 for 30 min at 4 °C. Cells were stained according to the manufacturer. 

Cells were washed two times and re-suspended in 1 ml and 400 µl flow cytometry 

staining buffer, respectively. Assay was performed by FACSCanto flow cytometer and 

the results were analyzed by using FlowLogic® software. 
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3.2.5 Treatment of PAMs with LPS and SFN 

PAMs were seeded in poly-D-lysine-coated 24 - well cell culture plates (5 × 105 

cells/ml) with 1 ml medium for LPS treatment in different time points to isolate total 

RNA. Cells were also seeded in 96 - well (1 × 105 cells/ml) plates with 100 µl medium 

for 48 h to perform cell viability assays. Thereafter, cell culture medium was changed 

every two days. On day 9, cells were treated with 5 µg/ml of LPS (LPS from E.coli 

0111:B4, Invivogen, USA) for 1, 3, 6, 12, 24, 36 and 48 h (Fig. 8AB). Cells without 

LPS treatment served as a vehicle control (Fig. 8AB). 

 

Fig. 8 (A) PAMs with LPS treatment in different time points in 24-well plates  
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Fig. 8 (B) PAMs with LPS treatment in different time points in 96-well plates for cell 

viability test  

(×: means wells were not used) 

S - SFN (Biomol GmbH, Hamburg, Germany) was prepared in dimethyl sulfoxide 

(DMSO) and stored as a stock concentration of 50 mmol/L at -20 °C. PAMs were 

seeded in the poly - D - lysine - coated 6 - well cell culture plates (2 × 106 cells/ml) with 

3 ml medium to isolate total RNA. Cells also were seeded in 96 - well (1 × 105 cells/ml) 

plates with 100 µl medium for 48 h to perform cell viability assays. On day 7, cells 

were treated with 0, 5, 10 µM SFN respectively (the maximum concentration of DMSO 

was 0.05% (v/v) in the medium) for 48 h. Cells treated only with DMSO served as 

control. Cells were treated with 5 µg/ml of LPS for 12 h subsequently. PAMs were also 

treated with SFN (0, 5, 10 µM) on day 7 for 48 h and LPS (0 or 5 µg/ml) on day 9 for 12 

h in six groups (SFN0-LPS0; SFN0-LPS5; SFN5-LPS0; SFN5-LPS5; SFN10-LPS0; 

SFN10-LPS5) in 6-well plates, group SFN0-LPS0 served as a control (Fig. 9AB). 
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Fig. 9 (A) PAMs with SFN and LPS treatment in 6-well plates (3 plates) 

 

 

Fig. 9 (B) PAMs with SFN and LPS treatment in 96-well plate for cell viability test  
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3.2.6 Cell viability assay  

The cell viability of PAMs was measured with water - soluble tetrazolium salt - 1 

(WST-1) Cell Proliferation Assay Kit (Biomol GmbH, Hamburg, Germany). Cells were 

seeded in a 96 - well plates at a density of 1 × 105 cells/well in 100 µl of PAMs culture 

medium (Fig. 8B and 9B). For PAMs with/without LPS treatment, cells were 

challenged with 5 µg/ml LPS for 48, 36, 24, 12, 6, 3, 1 h on day 9 (Fig. 8B). For PAMs 

with/without LPS-SFN treatment, cells were challenged with SFN (0, 5, 10 µM) on day 

7 for 48 h and LPS (0, 5 µg/ml) on day 9 for 12 h (Fig. 9B). At the end of stimulation, 

the old cell supernatant was aspirated and the fresh PAMs culture medium was added. A 

volume of 10 µl of the reconstituted WST-1 solution was added to each well. Cells were 

incubated for two h at 37 °C in the 5% CO2 incubator. Then the supernatant was 

transferred to a new 96 - microplate and the absorbance of each sample was measured at 

a wavelength of 450 nm on the plate reader Synergy™ 2 (BioTek Instruments GmbH, 

Bad Friedrichshall, Germany). 

Quantitative cell viability data was expressed as means ± SD, n = 3. The statistical 

analysis of data was investigated with SAS (version 9.3) using the general linear model 

containing the LPS and SFN treatments as fixed effects. The *P < 0.05, **P < 0.01 and 

***P < 0.001 were set as statistically significant. 

3.2.7 RNA extraction, cDNA synthesis and real-time PCR 

Total cellular RNA was isolated from PAMs using the AllPrep® DNA/RNA/Protein 

Mini Kit (Qiagen, Germany) according to the manufacturer’s instruction. Cells were 

disrupted by buffer RLT and the cell lysate was homogenized by a vortex mixer. RNA 

was bound with RNeasy spin column and washed with 700 μL buffer RW1 and 500 μL 

buffer RPE (2 times). Then the RNA was eluted with 30 µl ribonuclease (RNase) - free 

water and the concentration was measured by Nanodrop 8000 spectrophotometer.  

200 ng of total RNA were reverse transcribed into first strand cDNA using the First 

Strand cDNA Synthesis Kit (Thermo Fisher Scientific Biosciences GmbH, St. Leon-Rot 

, Germany). The reaction system, which included 0.5 µl oligo (dT)18 primer (100 µM, 

0.5 µg/µl), 0.5 µl random hexamer primer (100 µM, 0.2 µg/µl), nuclease-free water and 

total RNA (200 ng) up to 11 µl, was mixed gently, centrifuged briefly and incubated at 

65 °C for 5 min and then quick chilled on ice. Afterwards, 4 µl 5 × reaction buffer (250 
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mM Tris-HCl (pH 8.3), 250 mM KCl, 20 mM MgCl2, 50 mM DTT), 1 µl Ribolock 

RNase inhibitor (20 U/µl), 2 µl dNTP Mix (10 mM) and 2 µl M-MuLV reverse 

transcriptase (20 U/µl) were added to the reaction tube with a total volume of 20 µl. 

Reaction tube was mixed gently and centrifuged for 30 sec and incubated at 25 °C for 5 

min, 37 °C for 60 min and 70 °C for 5 min. cDNA concentrations were also measured 

by Nanodrop 8000 spectrophotometer.  

The qRT-PCR was performed by using iTaqTM Universal SYBR® Green Supermix 

(Bio-Rad Laboratories GmbH, Germany). PCR primers (Table 2) were designed by 

using Primer 3 on line tool (http://simgene.com/Primer3) or chosen from the literature 

and additionally proofed with BLAST (basic local alignment search tool) 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) to ensure specificity. The pig glyceraldehyde - 3 

- phosphate dehydrogenase (GAPDH) gene was selected as the house keeping gene. The 

total volume of 20 µl for each qRT-PCR reaction consisted of 100 ng cDNA, forward 

(F) and reverse (R) primers, RNase - and deoxyribonuclease (DNase) - free water and  

10 μL of iTaq™ Universal SYBR® Green Supermix (2×). qRT-PCR amplification was 

conducted with 95 °C for 3 min; 95 °C for 15 sec, 60 °C for 45 sec (40 cycles); 95 °C 

for 15 sec, 62 °C for 1 min, 95 °C for 15 sec (Melt-Curve) by  using StepOnePlus™ 

Real time PCR System (Applied Biosystems®).  

Gene-specific expression was measured as relative to the geometric mean of the 

expression of the housekeeping gene GAPDH. The delta Ct (∆Ct) values were 

calculated as the difference between target gene and reference gene. 

∆Ct = Cttarget - Cthousekeeping gene 

The relative gene expression was calculated as 2(-∆Ct) and the fold change in expression 

between the treated and untreated PAMs was calculated as 2(-∆Ct
treated

)/ 2(-∆Ct
control

) 

(Schmittgen and Livak KJ, 2008) (control: untreated group SFN0-LPS0). Relative gene 

expression levels were checked for outliers. Outliers were identified when these values 

deviating more than three standard deviations from the raw mean. These extreme values 

were eliminated from future analysis. Data was analyzed by SAS (version 9.3) with 

liner mixed model: 

 Y = LPS + SFN + LPS * SFN + animal + e  

Y:  fold change; animal: random effect of the animal; e: residuals 

Group means were expressed as least square means (± standard error (SE)). The values 

were tested by a Dunnett - Hsu test in order to identify significant differences compared 
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to the control group (SFN0-LPS0). In addition, a Tukey - Kramer test (pair wise 

comparisons) was performed to compare other classes with each other. The (* and #) P 

< 0.05, (** and ##) P <0.01, (*** and ###) P < 0.001 were set as statistically 

significant. 

Table 2 Primers and their sequences for RT-PCR 

F R 

CD14 5'-TGG ACC TCA GTC ACA ACT CG-3' 5'-CCT TTA GGC ACT TGC TCC AG-3' 

TRAM 5'-GTC TCC TGT ATG GCG ATG GT-3' 5'-TCT GTT GCA GGG AGG GTA AC-3' 

TRIF 5'-CAC CTC CTT GTG GAG GAG AA -3' 5'-GAC GTC CTC CAT GTC CCT AA -3' 

TRAF6 5'-CTG GAC GCC CTA AGA CAG AG-3' 5'-AAC CCT CCC TCC GAA GAC TA-3' 

RIPK1 5'-AAA CTG ACG AAG GAG GAG CA -3' 5'-CAG ATG GCA TTT TCG TAG GG-3' 

TRAF3 5'-CTC CTC CAG CCC AAA ATG TA-3' 5'-TTC TTC AAA TGC ACC AGC AG-3' 

NF-κB 5'-TGG GAA AGT CAC AGA AAC CA-3' 5'-CCA GCA GCA TCT TCA CAT CT-3' 

TNFa 5'-TCC TCA CTC ACA CCA TCA GC-3' 5'-CCA AAA TAG ACC TGC CCA GA-3' 

IL-1β 5'-GTA CAT GGT TGC TGC CTG AA-3' 5'-CTA GTG TGC CAT GGT TTC CA-3' 

IL-6 5'-GGC AGA AAA CAA CCT GAA CC -3' 5'-GTG GTG GCT TTG TCT GGA TT-3' 

IL-12-p40 5'-ATG CAC CTT CAG CAG CTG GTT G-3' 5'-CTA ATT GCA GGA CAC AGA TGC-3' 

IRF7 5'-ACA CTC TAC CCC CGT GTC TG-3' 5'-AGA CCC GTA CAG GAG CAC AC-3' 

IRF3 5'-TTC CTG AGC CAG ACA CCT CT-3' 5'-ACT CCC ACT CGT CGT CAT TC-3' 

IFN-α 5'-TTC CAG CTC TTC AGC ACA GA-3' 5'-ATG ACA CAG GCT TCC AGG TC-3' 

IFN-β 5'-ACC TGG AGA CAA TCC TGG AG-3' 5'-AGG ATT TCC ACT TGG ACG AC-3' 

GAPDH 5'-CAA GCA GTT GGT GGT ACA GG-3' 5'-GCT GGT GCT GAG TAT GTC GT-3' 

DNMT1 5'-GCG GGA CCT ACC AAA CAT-3' 5'-TTC CAC GCA GGA GCA GAC-3' 

DNMT3a 5'-CTG AGA AGC CCA AGG TCA AG-3' 5'-CAG CAG ATG GTG CAG TAG GA-3' 

F = Forward, R = Reverse 
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3.2.8 Protein extraction and Western blot analysis 

Total cellular protein purification was performed by using the AllPrep® 

DNA/RNA/Protein Mini Kit (Qiagen, Germany) according to the manufacturer’s 

instruction. One volume (700 µl) of buffer APP was added to the flow-through from 

RNA-extraction step. Tubes were mixed vigorously and incubated at room temperature 

for 10 min to precipitate protein and centrifuged at 12,000 rpm for 10 min. The 

supernatant was decanted carefully. A volume of 500 μL of 70% ethanol was added to 

the protein pellet, centrifuged at 12,000 rpm for 1 min. The supernatant was removed 

and the protein pellet was dried for 5-10 min at room temperature. Afterwards, 50 µl 

buffer ALO were added and mixed vigorously to dissolve the protein pellet, incubated 

for 5 min at 95 °C to completely dissolve and denature the protein. Samples were 

cooled to room temperature, then centrifuged for 1 min at 12,000 rpm to pellet any 

residual insoluble material. The supernatant of protein was transferred to a new 1.5 ml 

tube and saved in -80 °C for Western blotting. 

Equal amounts of protein extracts from the PAMs were loaded and separated by using 

8-12% acrylamide gradients sodium dodecyl sulfate - polyacrylamide gel 

electrophoresis (SDS-PAGE). After running the gel, proteins were transferred from gel 

to a membrane. The membrane was incubated with primary antibodies (anti-CD14 

antibody (1:400, Abcam), anti-acetyl-Histone H3 polyclonal antibody (1:1000, 

Millipore), anti-acetyl-Histone H4 polyclonal antibody (1:2000, Millipore), anti- NF-κB 

p105 / p50 (phospho S932) antibody (1:500, Abcam) and anti-β-actin (C4) (1:500, 

Santa Cruz Biotechnology, Inc.)). Signals were detected by a secondary antibody (goat 

anti-mouse immunoglobulin G - horseradish peroxidase (IgG-HRP) (1:8000, Santa Cruz 

Biotechnology, Inc.)). The specific signals of immunoreactive bands were detected by 

chemiluminescence using Clarity™ ECL Western Blotting Substrate (1:1000, Bio-Rad 

Laboratories GmbH). Images were acquired by Quantity One 1-D analysis software 

(Bio-Rad).  

3.2.9 ELISA analysis of cytokines 

PAMs cells culture supernatants were collected after PAMs stimulation with or without 

SFN for 48 h and LPS for 12 h (from the arrangement treatment groups Fig. 9A) to 

measure cytokines by Enzyme-linked immunosorbent assay (ELISA). IL-1β and TNF-α 

cytokines levels were measured by using porcine specific ELISA kits (Abcam, 
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Cambridge, UK) with the sensitivity of minimum detectable dose as 6 pg/ml (less than) 

and 20 pg/ml (less than), respectively. Assays were conducted in 96-well microplates 

according to the manufacturer’s instruction and the absorbance of 450 nm was 

measured on the plate reader Synergy™ 2 (BioTek Instruments GmbH, Bad 

Friedrichshall, Germany).  

Data was expressed as mean ± SD, n=3. The statistical differences between protein level 

values were analyzed by SAS (version 9.3) using the general linear model. The *P < 

0.05, **P <0.01 and ***P < 0.001 were set as statistically significant. 

3.2.10  CD14 CpG islands prediction 

The CD14 promoter region and the complete coding sequence (CDS) (GenBank 

DQ079063.1, 1762 bp) (Sanz et al. 2007) were submitted to the online program: 

Methprimer (http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi) to identify 

the CGIs. 

3.2.11  Genomic DNA extraction  

PAMs were cultured in 6 - well plates at a density of 2 × 106 cells/well and were treated 

with SFN on day 7 for 48 h followed by 12 h stimulation of LPS on day 9 (Fig. 9A). 

gDNA was extracted by using buffer EB by AllPrep® DNA/RNA/Protein Mini Kit 

(Qiagen, Germany). Cells were disrupted by buffer RLT and the cell lysate was 

homogenized by a vortex mixer. The gDNA was bound with an AllPrep DNA spin 

column placed in a 2 ml collection tube from the homogenized lysate. The gDNA was 

washed by 500 μL buffer AW1 and 500 μL buffer AW2, afterwards, eluted by buffer 

EB (preheated to 70 °C) with 2 min incubation at room temperature (15 - 25 °C) and 1 

min centrifugation at 10,000 rpm. The concentration of gDNA was measured by 

Nanodrop 8000 spectrophotometer. 

3.2.12  Bisulfite conversion of gDNA  

To assess the methylation status of CD14 gene promoter and complete CDS, sodium 

bisulfite methylation sequencing was performed. 300 ng purified gDNA were used for 

bisulfite conversion followed the protocol of EZ DNA Methylation-DirectTM Kit (Zymo 

Reserch, Freiburg, Germany). Cytosine-thymidine (CT) conversion reagent was 

prepared by adding 790 μL of M-solubilization buffer and 300 μL of M-dilution buffer 
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by following 10 min frequent vortex at room temperature, then adding 160 μL of M-

reaction buffer and mixing an additional 1 min. M-wash buffer was prepared by adding 

24 ml of 100% ethanol. A total amount of 300 ng gDNA and ddH2O with a volume of 

20 µl were added to 130 µl of CT conversion reagent solution in a PCR tube, mixed and 

then centrifuged briefly. The PCR tubes were placed in a thermal cycler and incubated 

by 8 min at 98 °C, 3.5 hours at 64 °C and 4 °C storage for up to 20 h. A volume of 600 

µl of M-binding buffer was added into a Zymo-Spin™ IC column which was placed 

into a provided collection tube. The sample of gDNA with CT conversion reagent 

solution was loaded into the Zymo-Spin™ IC column containing the M - binding buffer 

after finishing the thermal cycler program, mixed by inverting the column several times, 

then centrifuged at full speed (> 10,000 × g) for 30 sec. Afterwards, 100 μl of M-wash 

buffer were added to the column and centrifuged at full speed for 30 sec. Then 200 μl of 

M-desulphonation buffer were added to the column with 15 - 20 min incubation at room 

temperature (20 - 30 °C) and 30 sec centrifugation at full speed. A volume of 200 μl of 

M-wash buffer was added to the column and centrifuged at full speed for 30 sec, this 

step was repeated one time. The bisulfite conversed gDNA was eluted by 10 μl of M-

elution buffer with 30 sec centrifugation at full speed and measured by Nanodrop 8000 

spectrophotometer and stored at - 20 °C. 

3.2.13  Bisulfite PCR amplification and PCR purification  

Bisulfite PCR was performed by ZymoTaqTM DNA Polymerase Kit (Zymo research, 

Germany) using touchdown PCR. Bisulfite PCR primers (9 primers: CD1401 to 

CD1409, Table 3) of CD14 promoter region and complete CDS (GenBank 

DQ079063.1, 1762 bp) were designed by using MethPrimer 

(http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi) online software. In the 

PCR reaction, 12.5 µl 2× reaction buffer, 0.4 µl dNTP Mix (25 mM each dNTP), 0.5 µl 

Forward Primer (10 µM), 0.5 µl Reverse Primer (10 µM), 1 µl bisulfite gDNA, 0.2 µl 

ZymoTaqTM DNA polymerase (5 U/µl) and DNase/RNase - Free H2O were added for a 

total volume of 25 µl. The reaction program of bisulfite touchdown PCR is displayed in 

table 4. 
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Table 3 Primers for bisulfite PCR 

Primer              F (5′-3′) R (5′-3′) 
Product 
size (bp) 

CD1401 AGGGAAAAGTTAAGGAAATTTTTTG 
CAAAACCTCTAAAATCCTTAACACTA

AAC 
169  

CD1402 GGATTTTAGAGGTTTTGTAAGATTTTTY ACTCCCTAACTTCCAAACTCCAC 248  

CD1403 GGAGTTTGGAAGTTAGGGAGTGT CAACAAAAACAACAACAACAACAA 219  

CD1404 TTGTTGTTGTTGTTGTTTTTGTTG TTTAAAAAAAACTCTTCCAAACTCC 194  

CD1405 GTTTGGAAGAGTTTTTTTTAAAGAG ACAAAACCAAAACCAAAATCTAAAC 135  

CD1406 GGTTTTTGTTTAGATTTTGGTTTTG TTAACTAAAACCACTACTACAATTC 212  

CD1407 TTTTAGTTAAGTTTTAAGGTATTGAAAGTG AACAAAAAACTACAATCAACCC 151  

CD1408 GGGTTGATTGTAGTTTTTTGTT ACAATCCTTTAAACACTTACTCCAACT 253  

CD1409 TGATTTTGGAAGGGAATTTTTATAT ATTCCCCTTCCTTAAACCTTAAAC 176  

Note: Y-CT 

Table 4 Programs of touchdown PCR for bisulfite primers 

Primer Program  

CD1401  

CD1403 

95 °C for 10 min; 95 °C for 30 sec, 0.5 °C↓/58 °C for 1min (20 cycles); 95 °C for 45 

sec, 48 °C for 1min, 72 °C for 1 min 30 sec (40 cycles); 72 °C for 10 min; 4 °C for ∞ 
 

CD1402 
95 °C for 10 min; 95 °C for 30 sec, 0.5 °C↓/59°C for 1min (20 cycles); 95°C for 45 sec, 

49 °C for 1 min, 72 °C for 1 min 30 sec (40 cycles); 72 °C for 10 min; 4 °C for ∞ 
 

CD1404 

CD1405 

CD1406 

CD1407 

95 °C for 10 min; 95 °C for 30 sec, 0.5 °C↓/55 °C for 1min (20 cycles); 95 °C for 45 

sec, 45 °C for 1 min, 72 °C for 1 min 30 sec (40 cycles); 72 °C for 10 min; 4 °C for ∞, 
 

CD1408 

CD1409 

95 °C for 10 min; 95 °C for 30 sec, 0.5 °C↓/56 °C for 1 min (20 cycles); 95 °C for 45 

sec, 46 °C for 1 min, 72 °C for 1 min 30 sec (40 cycles); 72 °C for 10 min; 4 °C for ∞ 
 

 

The bisulfite touchdown PCR production was purified by using QIAquick PCR 

Purification Kit which was used for purification of 100 bp to 10 kb PCR products. Five 
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volumes of buffer PB were added into 1 volume of bisulfite touchdown PCR samples 

and mixed by pipette. The QIAquick spin columns were placed in provided 2 ml 

collection tubes. The PCR sample-PB solution was loaded into the columns, then 

columns were centrifuged at 12,000 rpm for 1 min. A volume of 750 µl buffer PE was 

added to the QIAquick spin columns, centrifuged at 12,000 rpm for 1 min. The flow-

through was discarded and the column was centrifuged at 12,000 rpm for an additional 

1 min. The column was placed in a new 1.5 ml micro-centrifuge tube. A volume of 30 

µl buffer EB (10mM Tris-HCl, pH 8.5) was added to the center of the QIAquick 

membrane. The column was stand for 1 min and centrifuged for 1 min at 12,000 rpm. 

The purified PCR product (5 µl) was loaded to 2% agarose gel. To check the PCR 

products, the gel was run following by a step at 120 V for 30 min. The concentration of 

purified PCR product was measured by Nanodrop 8000 spectrophotometer.  

3.2.14  Cloning  

The purified bisulfite touchdown PCR products were cloned by using pGEM®-T Easy 

Vector Systems (Promega GmbH, Germany). The ligation reaction system was set as 

described below (Table 5). Reaction was mixed by pipette and incubated overnight at 4 

°C.  

Table 5 Ligation reaction system 

Reaction component Standard 

reaction 

Positive 

control 

Background 

control 

2× Rapid ligation buffer, T4 DNA ligase 5 μl 5 μl 5 μl 

pGEM®-T easy vector (50 ng) 1 μl 1 μl 1 μl 

Purified PCR product 3 μl 0 μl 0 μl 

Control insert DNA 0 μl 2 μl 0 μl 

T4 DNA ligase 1 μl  1 μl 1 μl 

Nuclease-free water 0 µl 1 μl 3 μl 

Total reaction volume 10 µl 10 µl 10 µl 
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The transformation was performed by using JM109 High Efficiency Competent Cells. 

LB/ampicillin/IPTG/X-Gal plates were prepared. The JM109 High Efficiency 

Competent Cells were removed from -80 °C freezer and placed in an ice bath until just 

thawed (about 5 min) and mixed by gently flicking the tubes. The ligation reaction tubes 

were centrifuged briefly and 5 µl of ligation reaction were put into sterile 1.5 ml tubes 

on ice, then 100 µl of competent cells were added. The tubes were flicked gently to mix 

and placed on ice for 20 min. Then cells were heat-shocked in a water bath at exactly 42 

°C without shake for 45 - 60 sec and returned immediately to ice for 2 min. A volume of 

950 μL SOC medium was added to the ligation reaction transformations and incubated 

for 1.5 hours at 37 °C with shaking (150 rpm). Cells were centrifuged for 3 min at 1,000 

rmp and re-suspend in 200 µl SOC medium. A volume of 100 μL of each 

transformation cell suspension was poured onto duplicate LB/ampicillin/IPTG/X-Gal 

plates. For the uncut DNA control, a 1:10 dilution with SOC was recommended. The 

plates was incubated overnight (18 h) at 37 °C. White clones (positive clones) were 

selected and picked up for cloning PCR. The blue clones were also picked up for 

cloning PCR as a negative control. 

3.2.15  Cloning PCR 

With the picked clones, a PCR was performed. Cloned DNAs were heated by thermal 

cycler at 95 °C for 15 min. Cloning PCR was performed by Taq DNA polymerase with 

messier 13 (M13) primers (F 5′-TTG TAA AAG GAG GGC CAG T-3′, R 5′-CAG 

GAA ACA GCT ATG ACC, Tm-56 °C). The PCR reaction system was set as described 

below (Table 6) and PCR program was performed with 95 °C for 5 min; 95 °C for 30 

sec, 56 °C for 1 min, 72 °C for 1 min, 40 cycles; 72 °C for 10 min; 4 °C for ret. To 

check the PCR product, 5 µl of each product were loaded to 2% agarose gel. The gel 

was run following a step at 120 V for 30 min. 
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Table 6 The reaction system of M13 cloning PCR 

Reaction component Volume (µl) 

dd H2O   5.8 

10× PCR buffer (Mg2+ plus)   2.0 

dNTPs (10 mM each)   1.0 

Primer (10 µM) F   0.5 

Primer (10 µM) R   0.5 

Cloning DNA   10.0 

Taq DNA polymerase (5 U/μl)   0.2 

Total reaction volume   20.0 

* F-Forward primer, R-reverse primer 

3.2.16  Bisulfite sequencing and DNA methylation analysis 

A minimum of 8 different positive clones (white clones) for each subject were randomly 

selected for sequencing with M13 primer (forward primer) performed by the CEQ8000 

sequencer system (Beckman Coulter, Inc., CA). Bisulfite sequencing data were 

performed with default parameters using BiQ Analyzer on line tool (http://biq-

analyzer.bioinf.mpi-inf.mpg.de/index.php). Sequences with a conversion rate below 

90% were excluded from analysis. 
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4 Results 

4.1 PAMs cell phenotypes  

4.1.1 PAMs cell morphology 

PAMs cell morphology and cell growth state in different time points (day 3, 5, 7, 12, 18 

and 29) were recorded in this study. The PAMs grew as time increased (Fig. 10). Cell 

morphology is mainly characterized by two structures including round shape and 

dumbbell shape (Fig. 10C). Cell feelers grew around cell membrane on day 5 (Fig. 

10B). Cells were confluent on day 12 (Fig. 10D). Most of cells died as cytoplasmic lysis 

on day 29 (Fig. 10F). From these results, we suggested day 9 was chosen for LPS 

treatment and day 7 was chosen for SFN pre-treatment. 

 

Fig. 10 Morphology of PAMs on different days of culture (ABCDF-20×, E-10× under 

microscope). A-day 3, B-day 5, C-day 7, D-day 12, E-day 18, F-day 29.   

4.1.2 Cell characterization by flow cytometry analyses 

Cells were analyzed by flow cytometry, results are shown in Fig. 11. 35% of cells were 

stained with marker CD163. 
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Fig. 11 Flow cytometry results of PAMs with cell marker CD163. The y-axis represents 

the cell population, the x-axis represents the fluorescence. The upper row is the result of 

cells without marker (control) and the lower row is the result of cells with marker 

CD163. Figures with red color mean the rates of cell population. 

4.1.3 LPS affects PAMs cell viability in a time dependent manner 

PAM cells viability was measured by WST-1 Cell Proliferation Assay Kit (Biomol 

GmbH, Hamburg, Germany). LPS at a dose of 5 µg/ml was used to induce 

inflammatory conditions in cultured PAMs. To determine the effective but nontoxic 

time point of LPS treatment on PAMs, we first performed cell viability assay to 

evaluate the cell number and activity. The results show that there was no difference 

between LPS treated cells and control, also between the untreated cells and control at all 

time points (Fig. 12A). When treated and untreated groups were compared, LPS had no 

noticeable effect on the cell viability after 1, 12 and 48 h (1 h, 12 h and 48 h of LPS post 

stimulation, ps) (Fig. 12A). The highest cell viability of both treated and untreated 

PAMs in these three groups was observed at 12 h LPS ps. Therefore, the time point of 

12 h ps was selected for the further study. 
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4.1.4 SFN affects PAMs cell viability in a dose dependent manner 

For the further study, the LPS treatment at time point of 12 h was used as the positive 

control (SFN0-LPS5) and SFN was pre-added in different doses of 0, 5 and 10 µM at 

day 7 for determining the effective dose of SFN on PAMs cell viability. Cell viability of 

SFN5-LPS0 and SFN5-LPS5 had no differences compared to the control group (SFN0-

LPS0) (Fig. 12B). There were significant differences between SFN10-LPS0 and SFN0-

LPS0 (control), as well as between SFN10-LPS5 and SFN0-LPS0 (control) (Fig. 12B). 

SFN pre-treatment significantly increased the cell viability in LPS treated PAMs 

(SFN5-LPS5 and SFN10-LPS5) compared to the positive control (Fig. 12B).  
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Fig. 12 Results of the PAMs cell viability assay. A) The relative cell viability of PAMs 

without and with 5 µg/ml LPS treatment (1, 3, 6, 12, 24, 36, 48 h). B) The relative cell 

viability of PAMs without and with SFN (5, 10 µM) and LPS (5 µg/ml) treatment. All 

of the data were expressed as mean ± SD, n = 3. *, ** and *** indicate significant 

differences at p < 0.05, p < 0.01 and p < 0.001, respectively.  
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4.2 CD14 mRNA expression was induced by LPS in time dependent manner 

To investigate the potential effects of LPS on CD14 expression in PAMs, quantitative 

real-time PCR (qPCR) was performed. The result showed that LPS significantly 

induced CD14 gene expression at time points 1, 6, 12 and 24 h (Fig. 13) while the 

highest expression was displayed at time point 12 h (Fig. 13). At 12 h, gene expression 

of CD14 in LPS treated PAMs was significantly higher than in LPS untreated group 

(LPS0-12 h) and control (LPS0-0 h) (Fig. 13). Theses results indicated that LPS acts on the 

CD14 expression at time points 1, 6, 12 and 24 h, but the greatest effect was at 12 h 

(Fig. 13). The results indicated that LPS induced CD14 expression in a time dependent 

manner (Fig. 13).  

4.3 TRIF downstream genes were induced by LPS 

CD14 directly binds with LPS and activates the MyD88-dependent pathway (Akira and 

Takeda 2004), it may also be involved in TRIF pathway by binding with LPS. Thereby, 

we further analyzed the mRNA expression of CD14 downstream TRIF pathway genes 

including TRAM, TRIF, the TRIF-TRAF6 sub-pathway genes (TRAF6, RIPK1, NF-

κB) and the TRIF-TRAF3 sub-pathway genes (TRAF3, IRF7, IRF3) in 5 µg/ml LPS 

treated PAMs. LPS significantly increased gene expression of CD14, TRIF, TRAF6, 

NF-κB, TRAF3 and IRF7 (Fig. 14 ABC). 
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Fig. 13 Effect of LPS on CD14 mRNA expression in PAMs. Relative CD14 mRNA 

expression in PAMs with or without 5 µg/ml LPS treatment in 7 time points (1, 3, 6, 12, 

24, 36, 48 h) were assayed. mRNA expression without LPS treatment on 0 h was set as 

control. Comparison between treated and untreated cells at one time point is indicated 

as ‘*’. Comparison between treated group and control (0 h) is indicated as ‘#’. All of the 

data are expressed as mean ± SD, n = 3. * (#), ** (##) and *** (###) indicate significant 

differences at p < 0.05, p < 0.01 and p < 0.001, respectively. 

4.4 mRNA expression of CD14 and downstream LPS-induced TRIF pathway genes 

were suppressed by SFN in a dose dependent pattern 

As a HDAC inhibitor, SFN also has anti-inflammatory effects (Ko et al. 2013). To 

explore the effect of SFN on LPS induced inflammation, we examined the relative 

mRNA of CD14 and downstream genes expression in TRIF pathway as illustrated in 

Fig. 14. The results clearly demonstrated that SFN pre-treatment significantly inhibited 

CD14 gene expression (Fig. 14A). We set the SFN0-LPS5 treated cells as the positive 

control. Compared with the positive control, CD14 expression was decreased 

significantly (p < 0.05) in SFN5-LPS5 group.   

SFN suppressed LPS-induced TRAM (p < 0.05) and TRIF (p < 0.001) mRNA expression 

comparing with positive control at the dose of 5 µM (Fig. 14 A). In the TRIF-TRAF6 

pathway, the mRNA expression of TRAF6 and NF-κB genes were decreased in the 

SFN5-LPS5 group compared with the positive control, while the expression of LPS-
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induced RIPK1 gene was inhibited (p < 0.05) by SFN at the doses of 5 µM (Fig. 14 B). 

In TRIF-TRAF3 pathway, SFN suppressed (p < 0.01) LPS-induced TRAF3 expression at 

the dose of 5 µM (Fig. 14 C). These results suggest that the inhibitory effects of SFN on 

LPS-induced TRAM, TRIF, RIPK1 and TRAF3 at the dose of 5 µM might be mediated 

through decreased CD14 mRNA expression. The other genes including TRAF6, NF-κB 

and IRF7 showed the same trend, only IRF3 represented on a contrary trend. Results of 

additional group comparisons can be found in appendix file 1 and 2 (Fig. 21 and Fig. 

22). 

 

Fig. 14 SFN inhibited CD14 mRNA expression and effected on TRIF pathway gene 

expression in PAMs. A) CD14 and downstream genes TRAM and TRIF mRNA 

expression in SFN-LPS stimulated PAMs. B) TRIF-TRAF6 pathway genes mRNA 

expression in SFN-LPS treated PAMs. C) TRIF-TRAF3 pathway genes mRNA 

expression in SFN-LPS treated PAMs. PAMs with or without SFN (5, 10 µM) for 24 h 

treatment and LPS (5 µg/ml) for 12 h treatment were used in this assay. mRNA 
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expression in PAMs without SFN and without LPS treatment (SFN0-LPS0) was set as 

control. mRNA expression in PAMs without SFN treatment but with LPS treatment 

(SFN0-LPS5) was set as the positive control. Comparison between treated group and 

control is indicated as ‘*’. Comparison between SFN treated group and the positive 

control is indicated as ‘#’. All of the data were expressed as mean ± SEM, n = 3. *, ** 

and *** indicate significant differences at p < 0.05, p < 0.01 and p < 0.001, 

respectively. 

4.5 Gene expression of LPS-induced cytokines in CD14-TRIF pathway were 

inhibited by SFN in dose dependent manner in PAMs 

Cytokines such as TNFα, IL-1β, IL-6, IL-12p40, IFNα and IFNβ were produced in the 

CD14-TRIF pathway where the first four cytokines are from the TRIF-TRAF6 sub 

pathway and the last two cytokines are from the TRIF-TRAF3 sub pathway. Thus we 

measured the mRNA expression of theses cytokines in the same six groups of cells with 

SFN-LPS treatment. As shown in Fig. 15A, compared with the positive control (SFN0-

LPS5), the gene expression of TNFα was significantly decreased in SFN5-LPS5 (p < 

0.05) group. For IL-1β, the gene expression was suppressed by SFN at both 5 µM (p < 

0.001) and 10 µM (p < 0.001) as compared with the positive control (Fig. 15A). The 

gene expression of IL-6 was suppressed by SFN at 10 µM (p < 0.05) compared with the 

positive control (Fig. 15B). Gene expression of cytokines released from TRIF-TRAF3 

pathway including IFN-α and IFN-β are shown in Fig. 15 C. SFN inhibited LPS-

induced IFN- β expression at the dose of 5 µM (p < 0.001). Results of additional group 

comparisons can be found in appendix file 3 and 4 (Fig. 23 and Fig. 24). 
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Fig. 15 SFN altered mRNA expression of cytokines in TRIF pathway in PAMs. A and 

B) Relative gene expression of TRIF-TRAF6 pathway released cytokines in SFN-LPS 

treated PAMs. C) Relative gene expression of TRIF-TRAF3 pathway released cytokines 

in SFN-LPS treated PAMs. PAMs with or without SFN (5, 10 µM) for 24 h treatment 

and LPS (5 µg/ml) for 12 h treatment were used in this assay. Relative mRNA 

expression in PAMs without SFN and without LPS treatment (SFN0-LPS0) was set as 

control. Relative mRNA expression in PAMs without SFN but with LPS treatment 

(SFN0-LPS5) was set as the positive control. Comparison between treated group and 

control is indicated as ‘*’. Comparison between SFN treated group and the positive 
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control is indicated as ‘#’. All of the data were expressed as means ± SEM, n = 3. *, ** 

and *** indicate significant differences at p < 0.05, p < 0.01 and p < 0.001, 

respectively. 

4.6 Protein levels of pro-inflammatory cytokines TNFα and IL-1β were suppressed by 

SFN  

Productions of cytokines including TNFα and IL-1β were measured by ELISA (Fig. 

16). To our surprise, we found that both LPS-induced TNF-α and IL-1β production was 

suppressed by 5 µM and 10 µM SFN. The results clearly show that LPS induced TNF-α 

and IL-1β production. The level of TNF-α in SFN0-LPS5 cells was significantly (p < 

0.001) increased compared with the control group and the level of IL-1β in the same 

group was also significantly (p < 0.05) higher than the control group. Treatment with 

SFN reduced the production of TNF-α with significant effects for SFN5-LPS0 (p < 

0.001), SFN5-LPS (p < 0.001), SFN10-LPS0 (p < 0.01) and SFN10-LPS5 (p < 0.01) as 

compared with the positive control. SFN also significantly repressed IL-1β production 

in SFN5-LPS0 (p < 0.001), SFN5-LPS (p < 0.001) and SFN10-LPS0 (p < 0.01) groups 

as compared to the positive control.  



                                Results 59 

 

 

Fig. 16 Levels of pro-inflammatory cytokines TNFα and IL-1β were suppressed by SFN 

treatment. A) Levels of TNFα were suppressed by SFN, B) Levels of IL-1β were 

suppressed by SFN. TNF-α and IL-1β were measured by ELISA. PAMs with or without 

SFN (5, 10 µM) for 24 h treatment and LPS (5 µg/ml) for 12 h treatment were used in 

this assay. The cytokine level in PAMs without SFN and without LPS treatment (SFN0-

LPS0) was set as control. Cytokine level in PAMs without SFN treatment but with LPS 

treatment (SFN0-LPS5) was set as the positive control. Comparison between treated 

group and control is indicated as ‘*’. Comparison between SFN treated group and the 

positive control is indicated as ‘#’. All of the data were expressed as means ± SD, n = 3. 

* (#), ** (##) and *** (###) indicate significant differences at p < 0.05, p < 0.01 and p < 

0.001, respectively. 
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4.7 NF-κB protein expression was inhibited by SFN 

To next examine whether SFN regulates the activation of NF-κB in LPS-treated PAMs, 

we analyzed the NF-κBp50/105 protein expression. Our results show that NF-κBp50 

and p105 were upregulated in LPS treated PAMs (Fig. 17). But SFN pretreatment 

caused a dose-dependent decrease of LPS-induced P50/105 translation (Fig. 17).  

 

Fig. 17 NF-κB protein expression was inhibited by SFN 

4.8 Gene expression of the epigenetic enzymes DNMT1 and DNMT3a were altered 

by SFN 

To further investigate the epigenetic modulations that occurred in CD14 caused by SFN, 

we assessed the expression of DNMT1 and DNMT3a in SFN-LPS treated PAMs (Fig. 

18). To our surprise, we discovered that SFN considerably inhibit DNMT1 and 

DNMT3a expression in a dose-dependent manner. Compared with the positive control 

(SFN0-LPS5), the DNMT1 expression was decreased in SFN5-LPS5 group. The LPS-

induced DNMT3a expression was suppressed (p < 0.05) by 5 µM SFN. Results of 

additional group comparisons can be found in appendix file 5 and 6 (Fig. 25 and Fig. 

26). 
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Fig. 18 SFN altered DNMT1 and DNMT3a gene expression. Relative DNMT1 and 

DNMT3a gene expression were measured in SFN-LPS treated PAMs. PAMs with or 

without SFN (5, 10 µM) for 24 h treatment and LPS (5 µg/ml) for 12 h treatment were 

used in this assay. Relative mRNA expression in PAMs without SFN and without LPS 

treatment (SFN0-LPS0) was set as control. Relative mRNA expression in PAMs 

without SFN treatment but with LPS treatment (SFN0-LPS5) was set as the positive 

control. Data are expressed as means ± SEM, n = 3, # indicate significant differences at 

p < 0.05. 

4.9 CpG islands prediction of CD14 promotor and CDS 

To further understand the epigenetic regulation of CD14, we analyzed the CpG islands 

and CpG sites distribution in CD14 promotor region including the 5’-UTR (1- 492 bp) 

and CD14 gene body region (CDS) (from 493 bp to1694 bp) (GenBank DQ079063.1, 

1762 bp of whole sequence) by using MethPrimer (http://www.urogene.org/cgi-

bin/methprimer/methprimer.cgi). Two CpG islands were found in whole sequence 

including island 1 (196 bp) which starts from 400 bp and ends at 595 bp and island 2 

which starts from 601 bp and ends at 1417 bp (Fig 19). 135 CpG sites were found in the 

whole sequence including 22 CpGs in promotor and 5’-UTR region and the other 113 in 

the CDS region (Fig. 27).  
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Fig. 19 CpG islands prediction of the CD14 promotor and CDS  

CDS: coding sequence 

4.10 Gene body DNA methylation of CD14 was suppressed by SFN in LPS-induced 

PAMs 

It is well known that DNA methylation plays an important role in gene regulation and 

gene expression. To further explore the epigenetic regulation of CD14 in the TRIF 

pathway in SFN-LPS treated PAMs and the molecular mechanism of SFN-induced 

repression of CD14, we analyzed the DNA methylation status of the CD14 promotor 

region and CDS (gene body) region using bisulfite sequencing. CpG islands and CpG 

sites distribution in CD14 promotor including the 5’-UTR (1- 492 bp) and CDS (493-

1694 bp) (GenBank DQ079063.1, 1762 bp of whole sequence) were predicted by using 

MethPrimer. Two CpG islands were found in the whole sequence, island 1 with a length 

of 196 bp starts from 400 bp to 595 bp and the second one from 601 bp to 1417 bp (Fig 

19). 135 CpG sites were found in the whole sequence including 22 CpGs in promotor 

and 5’-UTR region and other 113 in CDS region (Fig. 27). The CpGs in the products of 

the primers was displayed in table 7. Gene expression is suppressed by DNA 

methylation of gene promotor, but induced by gene body methylation (Huang et al. 

2014, Laurent et al. 2010). The present study showed there were no methylation 

changes in the CD14 promoter region (1-492 bp, primer 1 to 3 region) in any SFN-LPS 

treated PAMs (Fig 20A). Surprisingly, two alterations of the gene body methylation 

(CDS region) were found in sequence starting from 869 bp to 1081 bp (primer 6) and 
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from 1537 bp to 1712 bp (primer 9) in PAMs (Fig 20B). For primer 6 region, 

methylation was increased with 5 µg/ml LPS (16.7%) compared to SFN0-LPS0 (5.9%). 

On the other hand, methylation was suppressed with 5 µM SFN which showed 0% 

methylation in both SFN5-LPS0 and SFN5-LPS5 group. In LPS induced PAMs, 

methylation status of CD14 in primer 6 with both SFN5-LPS5 and SFN10-LPS5 cells 

was suppressed. Similar results were found in the primer 9 region, methylation was 

induced by LPS resulting in 25% methylation in SFN0-LPS5 PAMs but only 12.5% 

methylation in the control group. Methylation was repressed by SFN that led to 0% 

methylation in SFN5-LPS0 and SFN10-LPS0 treated cells. In LPS induced PAMs, 

demethylation was shown in SFN10-LPS5 (12.5% methylation) group but not in SFN5-

LPS5 (25% methylation) in this region.  

Table 7 CpGs in the products of primers and their positions in the original sequence 

Primer 
Sequnce sites 

(bp) 
Position Islands 

Product 

size (bp) 

CpGs in 

product 

CpG name in 

sequnce 

CD1401 20 to 188 Promotor and 5′UTR  169 6 CpG3 – CpG8 

CD1402 172 to 419 Promotor and 5′UTR  248 7 CpG9 – CpG15 

CD1403 399 to 617 
Promotor and 5′UTR; 

and exon 
Island 1 219 15 CpG16 – CpG30 

CD1404 594 to 787 Exon Island 2 194 20 CpG31 – CpG50 

CD1405 766 to 900 Exon Island 2 135 13 CpG51 – CpG63 

CD1406 869 to 1081 Exon Island 2 212 17 CpG64 – CpG80 

CD1407 1071 to 1221 Exon Island 2 151 11 CpG81 – CpG91 

CD1408 1200 to 1452 Exon Island 2 253 27 CpG92 – CpG118 

CD1409 1537 to 1712 Exon  176 8 CpG126 – CpG133 

CD1410 1428 to 1560 Exon Island 2 133 7 CpG119 – CpG125 
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Fig. 20 CD14 methylation alteration was induced by SFN in PAMs. A) Methylation 

status of the CD14 promotor and 5’-UTR region of PAMs treated with SFN (0, 5, 10 

µM) and LPS (0, 5 µg/ml). Here was no methylation alteration in CD14 promotor and 

5’-UTR. B) Methylation status of the CD14 CDS region of PAMs treated with SFN (0, 

5, 10 µM) and LPS (0, 5 µg/ml). At least 8 white cloning PCR products were used for 

sequencing, the result of one sample shown above is from at least 4 sequences (all of 

these 4 sequences show the same results). CD14 methylation in CDS (primer 6 and 

primer 9) were increased by LPS, but suppressed by SFN. Blue filled ( ) squares: un-

methylated; red filled squares ( ): methylated; open squares: unknown; Blank lines 

( ): sequence of each primer products.  
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5 Discussion  

LPS leads to inflammation in mammals through inducing the production of 

inflammatory cytokines including TNF-α and IL1-β in macrophages (Beutler and 

Cerami 1988, Carson et al. 2011, Dinarello 1991, Dobrovolskaia and Vogel 2002). 

CD14 is a PRR which binds directly to LPS and facilitates the TRIF pathway (Wright et 

al. 1990, Zanoni et al. 2011). As a HDAC inhibitor, SFN has an anti-inflammatory 

effect (Liu et al. 2008). In the present study, we demonstrated that CD14 mediated the 

LPS-induced TRIF pathway in PAMs to secrete proinflammatory and inflammatory 

cytokines. Additionaly, SFN inhibited the LPS-induced inflammation in TRIF pathway 

by regulation CD14 through epigenetic alteration. 

5.1 PAMs and their biological characters 

Phagocytosis displayed by macrophages, neutrophils and dendritic cells is an early and 

crucial event in host defense against pathogens (Henneke and Golenbock 2004). 

Macrophages are phagocytes which develop and differentiate from monocytes in the 

tissues, with pivotal functions in development, tissue remodeling, repair or homeostasis, 

host defense and inflammation (Ginhoux 2014, Gordon and Taylor 2005). They are the 

main source of cytokines, chemokines and other inflammatory mediators disseminating 

or inhibiting the immune response (Moldoveanu et al. 2009). 

PAMs are the central components of lung innate immune system (Murphy et al. 2008). 

As well known, the alveolar macrophages or PAMs are the bactericidal functionalities 

of the lungs (Green and Kass 1964). The basic biologic knowledge of PAMs like cell 

growth, the inherent half-life, cell apoptosis are the premise of the PAMs’ functional 

study. A half-life of 2 weeks (Godleski and Brain 1972) and 30 days (Matute-Bello et 

al. 2004) for PAMs has been shown. In this study, PAMs were observed growing in a 

time dependent manner. Viable growth of PAMs was shown between day 3 to day 18. 

At day 29, most of the cells were degenerated. Thus, the time point of day 9 was chosen 

for LPS treatment and day 7 was chosen for SFN pretreatment.  

Cell markers can be used for recognizing and sorting cell types. The typical macrophage 

markers are CD11b and D163. CD13 is a marker of mature resident macrophages 

related to secretion of inflammatory mediators (Dimitrijevic et al. 2013, Held et al. 

2013). Flow cytometry and cell sorters were developed aiming to characterize single-
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cells, due to cell physical and chemical properties. The principle of the method is based 

on the laser path. It measures the single-cells in liquid suspension by passing them 

through an electronic detection apparatus (Metes et al. 2003). In this study, it was 

shown that 35% of the PAMs were stained with the cell marker CD163 (PAMs without 

SFN and LPS treatment) by using flow cytometry.   

5.2 Cell viability of PAMs with LPS/ SFN-LPS challenge 

Cell viability is used for cell vitality and chemical cytotoxicity tests. The enzyme-based 

WST method relies on a reductive coloring reagent and dehydrogenase in a viable cell 

to determine cell viability. Cell viability is effected by the cell culture density (Zhuang 

and Wogan 1997) and experimental chemical concentration.  

In this study, PAMs were cultured with a density of 1 * 105 cells/well. LPS at a dose of 

5 µg/ml was used to induce inflammatory conditions in cultured PAMs. We showed that 

LPS treatment had no notable effect on the cell viability at all the 7 time points 

compared with the control.  

Factors like extract of Glycyrrhiza glabra L. (EGGR) and SFN can affect cell viability. 

EGGR (100 μg/ml) increased cell viability (from 66.6 to 99%) of LPS-treated 

macrophages (Li et al. 2015). SFN (5 μM) pre-treatment enhanced cell viabilities of 

cytotoxicity of cadmium selenide (CdSe) quantum dots (QDs)-treated liver cells in mice 

(Wang et al. 2015). It was also shown that pre-treatment with SFN increased cell 

viability by decreasing intracellular reactive oxygen species production (Ziaei et al. 

2013). In this study, SFN (5, 10 µM) pre-treatment increased LPS-treated PAMs cell 

viability.  

5.3 CD14 mRNA and downstream TRIF pathway genes expression were induced by 

LPS  

Inflammation is the body’s reaction to defend against pathogens (Ferrero-Miliani et al. 

2007, Moldoveanu et al. 2009). LPS is the major structural component of the outer wall 

of gram-negative bacteria. It is a potent initiator of inflammatory responses. Therefore, 

LPS is important in lung inflammation and is regularly used as a model for pulmonary 

inflammation. Cytokines, the nonstructural and small proteins with molecular weights 

ranging from 8 to 40,000 d, are primarily involved in host responses to disease or 

infection like inflammation (Dinarello 2000). They are the marker and regulators 
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(promoters or suppressors) of the inflammation. In the LPS-TRIF pathway, TRAF6 

activated the release of the pro-inflammatory cytokines including TNF-α, IL-1β, IL-6, 

IL-12, while TRAF3 initiated the production of IFN-α and IFN-β (Fig. 4). 

LPS increased IL-8 release in a human macrophage-derived cell line (THP-1) cells at a 

concentration of 10 μg/ml after 24 h of incubation (Antonicelli et al. 2004). LPS 

treatment also increased TLR2 mRNA expression in a mouse macrophage cell line 

(Matsuguchi et al. 2000). It is known to cause inflammation in mammals through 

induction of the production of inflammation cytokines such as TNF-α and IL1-β in 

macrophages (Beutler and Cerami 1988, Carson et al. 2011, Dinarello 1991, 

Dobrovolskaia and Vogel 2002). LPS injection in mice upregulated the levels of LBP, 

CD14, TNF-α, IL-6 and IFN-γ in spleen (Zhang et al. 2015). LPS induced 

phosphorylation of IRF3 and the activation of the TRIF signaling pathway in monocytes 

(Endo et al. 2014).  

CD14 is an acute phase inflammatory biomarker. It is the PRR binding directly to LPS 

and facilitates TRIF pathway (Wright et al. 1990, Zanoni et al. 2011). CD14 was 

necessary for the microbe-induced endocytosis of TLR4 while CD14 controls the 

trafficking and signalling functions of TLR4. This innate immune trafficking cascade 

illustrates how pathogen detection systems operate to induce both membrane transport 

and signal transduction (Zanoni et al. 2011). In a CD14-dependent manner, soluble-

lipopolysaccharide (S-LPS) and rough lipopolysaccharide (R-LPS) at low dose induced 

acute lung inflammation, while the inflammatory response triggered by high dose S-

LPS or R-LPS was reduced by CD14 (Anas et al. 2010). 

CD14 expression is essential for the development of LPS-induced systemic 

inflammation and for activation of circulating neutrophils, but not necessary for the 

mechanism of LPS detection and activation of neutrophil recruitment in the liver 

microcirculation (McAvoy et al. 2011). LPS induces CD14-TLR4 pro-inflammatory 

signaling through triggering the generation of phosphatidylinositol 4, 5-bisphosphate 

[PI (4, 5) P2]. It was shown that LPS induced a CD14-dependent immobile fraction of 

TLR4 in the plasma membrane (Klein et al. 2015). This is in accordance with previous 

findings that CD14 mRNA expression was induced by LPS in alveolar macrophage of 

pigs (Islam et al. 2013). Exposure of alveolar macrophages to LPS (0.1, 1, 5, 10 µg/ml) 

increased CD14 expression compared with control (Islam et al. 2013). In this study, we 
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found that CD14 gene expression was significantly increased by 5 µM LPS treatment at 

time point 12 h.  

It was shown that LPS initiates the TRIF pathway independent of CD14 (Watanabe et 

al. 2013), but CD14 is also required for the TRIF-independent signaling (Jiang et al. 

2005, Lloyd-Jones et al. 2008, Regen et al. 2011). In the TRIF pathway, TRIF activates 

both TRAF3 and TRAF6 by a binding domain present on its N-terminus (Brown et al. 

2011, Wang et al. 2001, Yamamoto et al. 2003a, Yamamoto et al. 2003b). The 

activation of TRAF6 initiates NF-κB signaling which leads to the release of the pro-

inflammatory cytokines including TNF-α, IL-1β, IL-6, IL-12 (Fig. 4) and the activation 

of TRAF3 initiates IRF-3 through IKKi and TBK-1, then the phosphorylation of IRF3 

induces the production of IFN-β (Brown et al. 2011, Doyle et al. 2002). TRAF3 

regulates the production of anti-inflammatory cytokine IL-10 and the activation of the 

IFN (Hacker et al. 2006). It was shown that CD14 is required for LPS-induced 

activation of the TLR4/TRAM-TRIF pathway even at very high LPS doses. Both 

smooth and rough LPS cannot induce TRAM-TRIF-dependent IRF3 activation and 

type-I IFN production without CD14 (Jiang et al. 2005). In this study, similar as CD14, 

the mRNA expression of the downstream genes including TRIF, TRAF6, NFκB, 

TRAF3 and IRF7 also was also enhanced by LPS.  

Cytokine genes like IL-6, IL-8 and TNF-α are immune associated genes with strong 

response to LPS (Green and Kerr 2014). TNF-α mRNA expression was induced by LPS 

(Green and Kerr 2014). LPS induced the release of IL1-β, IL12-β, TNF-α, IL-6, IL-8, 

IFN-γ and IL-10 in a dose-dependent manner in pig macrophages (Islam et al. 2013). In 

this study, the mRNA expression of inflammatory cytokines including TNF-α, IL-1β, 

IL-6 and IFN-β were upregulated in LPS stimulated PAMs.  

5.4 mRNA expression of CD14 and downstream LPS-induced TRIF pathway genes 

were suppressed by SFN in a dose dependent pattern 

Epigenetic control including the DNA methylation and histone acetylation may play a 

crucial role in the revision of immune-responsive genes related to pathogen recognition 

and subsequent signaling (Green and Kerr 2014). Recent research presented chemical 

inhibitors such as 5-aza-2-deoxycytidine (AZA), trichostatin A (TSA) and SFN as 

epigenetic modifiers (Luo et al. 2015, Samiec et al. 2015, Su et al. 2014, Yang et al. 

2014). As a HDAC inhibitor, SFN also has anti-proliferative, pro-apoptotic role in 
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cancer cells (Chu et al. 2009, Ho et al. 2009) and anti-inflammatory activity (Ko et al. 

2013, Koo et al. 2013). SFN regulates LPS-induced innate immune responses of porcine 

moDCs (Qu et al. 2015). In this study, we found that SFN suppresses the gene 

expression of CD14 and it’s down stream genes including TRAM, TRIF, RIPK1 and 

TRAF3 in the TRIF pathway.  

Our results suggest that SFN possesses anti-inflammatory activity, resulting in 

downregulation of LPS-induced CD14, TRAM, TRIF, RIPK1 and TRAF3 in 

macrophages in pigs. 

5.5 LPS-induced inflammatory cytokines and NF-κB were suppressed by SFN in a 

dose dependent manner in PAMs 

Pro-inflammatory cytokines such as IL-1 and TNF-α play critical roles in the progress 

of diseases including cancer (Guo et al. 2012). They are the Th1 cytokines to produce 

the pro-inflammatory responses to fight viruses and other intracellular parasites and to 

eliminate cancer cells (Moldoveanu et al. 2009). TNF-α concentration in the cell 

supernatant fluid increased immediately at 1 h after LPS stimulation (Islam et al. 2012). 

NF-κB is connected with cancer, inflammatory and autoimmune diseases due to its role 

in modulating transcription of DNA, cytokine production and cell survival (Gilmore 

2006). 

Inflammation balance is one of important strategies for the prevention and treatment of 

diseases. Factors like nacystelyn (NAL) can modulate the LPS-induced inflammation. 

NAL decreased IL-8 release from LPS-stimulated THP-1 cells after 4 h of incubation 

(Antonicelli et al. 2004). LPS-induced mammary gland histopathologic changes, NF-κB 

and MAPKs activations and TNF-α, IL-1β and IL-6 production were inhibited by 

TRAM-derived decoy peptide (TM6) in mice (Zhang et al. 2015). EGGR suppressed 

LPS-induced iNOS, COX-2 cytokines, TNF-α, IL-1β and IL-6 at both the mRNA and 

the protein level (Li et al. 2015). ADP-ribosylation factor 6 (ARF6) reduced LPS-

induced cytokine production and regulated TRAM/TRIF-dependent TLR4 signaling in 

mouse macrophages (Van Acker et al. 2014). TF5 (a peptide derived from putative helix 

B of TRIF TIR) downregulated plasma cytokine levels and protected mice from a fatal 

LPS challenge in a mouse model of TLR4-driven inflammation (Piao et al. 2013). 

Mammalian peroxiredoxin V (PrdxV), a multifunctional protein which inhibits stress-

induced apoptosisis and protects cells from DNA damage, is the key mediator 
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contributing to the regulation of LPS/TLR4-induced immune responses. It selectively 

regulates IL-6 production by modulating the Jak2-Stat5 pathway (Choi et al. 2013).  

Epigenetic control including the DNA methylation and histone acetylation may play a 

crucial role in the regain of immune-responsive genes related to pathogen recognition 

and subsequent signaling (Green and Kerr 2014). Recent research presented chemical 

inhibitors such as 5-aza-2-deoxycytidine (AZA), trichostatin A (TSA) and SFN to be 

epigenetic modifiers (Fan et al. 2012, Luo et al. 2015, Samiec et al. 2015, Su et al. 2014, 

Yang et al. 2014).  

As a HDAC inhibitor, SFN also has anti-proliferative and pro-apoptotic roles in cancer 

cells (Chu et al. 2009, Ho et al. 2009) and anti-inflammatory activity (Ko et al. 2013, 

Koo et al. 2013). SFN showed a potent decrease in LPS-induced secretion of pro-

inflammatory and pro-carcinogenic signaling factors in cultured Raw 264.7 

macrophages (Heiss et al. 2001). SFN regulated the LPS-induced innate immune 

responses of porcine monocyte-derived dendritic cells (moDCs) though epigenetic 

mechanisms (Qu et al. 2015). SFN suppressed the LPS-induced secretion of 

inflammatory mediators like TNFα, IL-1β and IL-6 (Heiss et al. 2001, Wierinckx et al. 

2005). Low doses of SFN and NBN significantly reduced LPS-induced IL-1 mRNA 

expression (Guo et al. 2012).  

In this study, we found that SFN suppressed the mRNA expression of LPS-dependent 

inflammatory cytokines including TNFα, IL-1β, IL-6 and IFNβ in a dose dependent 

manner. In addition, the protein level of TNFα and IL-1β also were suppressed by SFN. 

Further, the protein level of NF-κB was inhibited by SFN. 

Taken together, our data indicate that SFN possesses anti-inflammatory activity, 

resulting in downregulation of LPS-stimulated TNFα, IL-1β, IL-6, IFNβ and NF-κB in 

porcine macrophages. 

5.6 DNMT3a gene expression was induced by LPS but suppressed by SFN 

It is well known that DNMT1 is the key maintenance methyltransferase, whereas 

DNMT3a and DNMT3b play the role in de novo activity (Robertson et al. 2000, 

Ronemus et al. 1996). Knockdown of the DNMT1 gene reduced the suppressors of 

cytokine signaling1 (SOCS1) gene promoter methylation and upregulated the 



                               Discussion 71 

 

expression of SOCS1 in activated RAW264.7 cells (Cheng et al. 2014). DNMT1 

inhibited SOCS1 expression though the SOCS1 hypermethylation, that caused the 

suppression of the activation of the JAK2/STAT3 pathway and enhanced the level of 

LPS-induced pro-inflammatory cytokines such as TNF-α and IL-6 in macrophages 

(Cheng et al. 2014). Liver cells and spleen cells responded to exposure of LPS with 

alterations in proteins levels involved in DNA methylation (DNMT1, DNMT3a and 3b) 

or DNA repair with changes in gene expression (Kovalchuk et al. 2013a, Kovalchuk et 

al. 2013b).  

LPS induced NF-κB activation and decreased levels of histone HDAC1 and DNMTs 

(Biswas and Yenugu 2013). DNMT1 mRNA expression was significantly increased by 

LPS treatment in fibroblasts derived from human periodontal ligament (HPDL) (Uehara 

et al. 2014). LPS downregulated DNMT1 (p < 0.05) gene expression in HaCaT cells (de 

Camargo Pereira et al. 2013), the same result was found in our study. It was shown that 

DNMT3a gene expression was downregulated in response to LPS in PBMCs (Doherty 

et al. 2013). However, the DNMT3a gene expression was increased by LPS in this 

study.  

SFN inhibited LPS-induced DNMT3a, HDAC6 and HDAC10 gene expression, whereas 

it upregulated DNMT1 gene expression (Qu et al. 2015). SFN extremely decreased the 

protein expression of DNMT1, DNMT3a and DNMT3b (Su et al. 2014). SFN also 

downregulated the protein levels of DNMT1, DNMT3a, HDACs 1, 4, 5 and 7 while 

increased the level of active chromatin marker acetyl-Histone 3 (Ac-H3) in prostate 

cancer TRAMP C1 cells (Zhang et al. 2013). DNMT1 and DNMT3a were decreased in 

SFN-treated breast cancer cells suggesting that SFN may inhibit human telomerase 

reverse transcriptase (hTERT) by affecting epigenetic pathways. SFN inhibited the LPS 

induced HDAC6, HDAC10 and DNMT3a gene expression while upregulated the 

expression of DNMT1 gene (Qu et al. 2015).  

In the present study we found SFN reduced DNMT1 and DNMT3a mRNA expression 

in a dose dependent manner. Like CD14 gene, DNMT3a gene expression was increased 

by LPS and suppressed significantly by SFN at the dose of 5 µM. This result suggests 

that CD14 DNA methylation changes may be related with DNA methylation enzyme 

DNMT3a in PAMs.  
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Take together, CD14 may be involved in the TRIF pathway and the suppression of LPS-

induced CD14 gene expression was associated with the suppression of CD14 gene body 

methylation which may be caused by downregulation of DNMT3a gene expression in 

PAMs post SFN pre-treatment.  

5.7 Gene body DNA methylation of CD14 was suppressed by SFN in LPS-induced 

PAMs 

DNA methylation is a critical epigenetic modification in mammals (Huang et al. 2014). 

It refers to the addition of methyl groups to the adenine or cytosine bases of DNA and is 

tightly associated with gene regulation (Plongthongkum et al. 2014, Wilson et al. 2014). 

Over the past years, most studies showed that DNA methylation modification occurs in 

gene promoter to be a key molecular mechanism leading to gene expression changes 

(Curradi et al. 2002, Gao et al. 2007, Kontorovich et al. 2009, Park et al. 2012). 

Although the promoter DNA methylation is known as a silencing mechanism, the gene 

body has recently been recognized as a major mechanism for regulating gene expression 

in many tissues (Baylin and Jones 2011).  

Recently, some studies demonstrated that DNA methylation in the gene body is 

connected with gene expression (Fan et al. 2015, Sarda et al. 2012, Wang et al. 2013, 

Yang et al. 2014). DNA methylation in the gene body region can alter gene expression 

and is a therapeutic target in cancer (Yang et al. 2014). The high densities of 

hypomethylated CpG-rich regions across the gene body are preferentially associated 

with gene downregulation (Yu et al. 2015). Although several recent studies investigated 

the role of gene body DNA methylation on gene expression, the function of gene body 

DNA methylation is poorly understood (Kulis et al. 2012, Lister et al. 2009, Lou et al. 

2014, Maunakea et al. 2010, Varley et al. 2013).  

In an attempt to identify potential epigenetic changes which mediate the effect of SFN 

on CD14 expression, we further assessed the methylation status of CpG islands 

embedded in the CD14 promotor and the whole CDS region. Surprisingly, our results 

showed that there were no methylation changes in the CD14 promotor of non CpG 

island and also CpG island regions, but methylation alterations were found in the CD14 

CDS region (Fig. 20B). The results showed that CD14 gene body methylation was 

induced by 5 µM LPS in PAMs (Fig. 20B, primer 6 and primer 9 region). Therefore, 

gene expression of CD14 was increased in LPS treatment cells. Theses results showed 
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that gene body DNA methylation was positively connected with CD14 gene expression. 

Similarly, research suggested that gene body DNA methylation may increase 

transcriptional activity by blocking the initiation of intragenic promoters or by affecting 

the activities of repetitive DNAs within the transcriptional unit (Maunakea et al. 2010).  

However, CD14 gene body methylation was also decreased by the HDAC inhibitor 

SFN. Results showed that CD14 gene body methylation was inhibited by both 5 µM 

SFN and 10 µM SFN (Fig 20B, primer 6 and primer 9 region). It might be considered 

that the CD14 gene expression was suppressed by SFN depending on the methylation 

inhibition of CD14 gene body in LPS-induced PAMs. Gene body DNA demethylation 

induced-gene repression may be due to 3 factors including: 1) whether embedded 

demethylated functional elements regain activity, 2) whether demethylated regions are 

located at intron-exon junctions together with destabilized nucleosomes, 3) possible 

effects on the rates of transcript elongation and splicing (Yang et al. 2014).  

In summary, CD14 acts not only as a LPS-receptor, but also as a LPS-induced 

inflammation regulator that mediates the TRIF pathway genes and cytokines expression. 

This regulatory role of CD14 may depend on the epigenetic changes in gene body 

methylation caused by SFN. In addition, this DNA methylation alteration is probably 

related with DNMT3a expression. The SFN-mediated inhibition of DNMTs especially 

DNMT3a could be an important contributing factor in CD14 DNA methylation 

regulation and also in the SFN anti-inflammation role. 
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6 Summary 

Infections of the respiratory system which cause diseases like lung inflammation are main 

threats in pig production. LPS is the component of the outer membrane of gram-negative 

bacteria and one of the most predominant microbial stimulators of inflammation. The 

innate immunity system can recognize and response to bacteria. PAMs constitute a vital 

component of the alveolar spaces and play a central role in pulmonary innate immunity and 

functionally work in LPS-induced lung inflammation. Two pathways including the 

MyD88-dependent and MyD88-independent (TRIF) pathways are activated after TLR4 

stimulation with LPS. CD14 is the PRR which binds directly to LPS, transfers LPS 

molecules in a co-expressed way to TLR4 and initates the MyD88-dependent and TRIF 

pathways. Therefore, CD14 may be involved in TRIF pathway cytokines release and 

downstream genes expression.  

As an epigenetic regulator, SFN was also shown to have an anti-inflammation role. 

Therefore, SFN may inhibit the LPS-induced inflammation through regulation of CD14 

gene expression. The epigenetic modulation including DNA methylation and histone 

modulation of CD14 in response to infection are poorly understood. In the present study, 

we identified the epigenetic changes of CD14 mediated with SFN in LPS-induced TRIF 

pathway with an in vitro PAMs model in pig. The methylation status of CpG islands 

embedded in the CD14 promotor and whole CDS region was analyzed. 

We found that CD14 gene expression was significantly increased by 5 µM of LPS 

treatment at 12 h. Likewise, the mRNA expression of the downstream genes TRIF, 

TRAF6, NFƳB, TRAF3 and IRF7 were also upregulated significantly. In addition, the 

mRNA expression of inflammatory cytokines including TNF-α, IL-1β, IL-6 and IFN-β 

were significantly upregulated in LPS stimulated PAMs. It is important to point out that 

CD14 mediates the TRIF signals and induced the inflammatory cytokines in LPS 

challenged PAMs. 

SFN inhibited the gene expression of CD14 and its downstream genes including TRAM, 

TRIF, RIPK1, TRAF3 and IRF7 that are involved in TRIF pathway to recognize 

LPS/bacteria. In addition, SFN also downregulated the protein level of LPS-induced 

inflammatory cytokines including TNFα, IL-1β, IL-6 and IFNβ in a dose dependent 

manner.  
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The CD14 DNA methylation results showed that there was no methylation change 

occurring in the CD14 promotor either in non CpG islands or in CpG islands, but 

methylation alterations were found in CD14 CDS region. Results showed that CD14 gene 

body methylation was induced by 5 µM of LPS in PAMs. Therefore, gene expression of 

CD14 was increased in LPS treated PAMs. Theses results showed that gene body DNA 

methylation was positively connected with CD14 gene expression. However, CD14 gene 

body methylation was decreased by SFN. Results presented that CD14 gene body 

methylation was inhibited by both 5 µM SFN and 10 µM SFN. The surprising result from 

our study is that gene body regions show sustained DNA demethylation and gene 

downregulation of expression after SFN withdrawal. It might be considered that the CD14 

gene expression suppressed by SFN is depending on the methylation inhibition of CD14 

gene body in LPS-induced PAMs. Therefore, CD14 plays a role not only as a LPS-

receptor, but also as a LPS-induced inflammation regulator that mediates the TRIF 

pathway genes and cytokines expression and also cytokines secretion through the 

epigenetic changes in gene body methylation by SFN in PAMs.  

Another important outcome of this study is that CD14 DNA methylation changes may be 

related to expression of DNA methylation enzyme DNMT3a. We found that SFN 

downregulated DNMT3a mRNA expression in a dose dependent manner. It is suggested 

that CD14 is involved in the TRIF pathway in PAMs. The repression of LPS-induced 

CD14 gene expression was associated with the CD14 gene body demethylation which 

might be caused by DNMT3a gene suppression due to SFN regulation. 

In summary, in the present in vitro study, we have demonstrated not only that CD14 is 

involved in the TRIF pathway by LPS treatment in a time dependent manner, but also 

explored the possible epigenetic mechanism such as demethylation in the gene body region  

related to CD14 repression in SFN pre-treated PAMs. In addition, this DNA methylation 

alteration is probably related with DNMT3a expression. This study provided new insights 

into SFN-mediated epigenetic downregulation of CD14 gene in LPS induced-TRIF 

pathway inflammation. It may open new methods to prevent and reduce the LPS-induced 

inflammation in pigs. 
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Zusammenfassung 

Infektionen der Atemwege, die zu Krankheiten wie Lungenentzündung führen, sind eine 

der Hauptbedrohungen in der Schweineproduktion. LPS als Komponente der äußeren 

Membran von gramnegativen Bakterien ist einer der vorherrschenden mikrobiellen 

Stimulatoren für Entzündungen. Das angeborene Immunsystem kann schnell solche 

Entzündungen erkennen und darauf reagieren. PAMs bilden eine wichtige Komponente der 

Alveolarräume und spielen daher eine zentrale Rolle in der angeborenen pulmonalen 

Immunabwehr sowie bei der funktionellen Arbeit durch LPS-induzierte 

Lungenentzündung. Zwei wesentliche Signalwege, MyD88-abhängig und MyD88-

unabhängig (TRIF) werden aktiviert, nach der Stimulation von TLR4 durch LPS. CD14 ist 

der PRR, der direkt an LPS bindet, die LPS-Moleküle zum TLR4 transportiert und dadurch 

die MyD88-abhängigen und den TRIF-Signalweg initiiert. Daher scheint CD14 an der 

Freisetzung von TRIF Signalweg-Zytokinen und an der Expression von nachgeschalteten 

Genen beteiligt zu sein. 

 

Als epigenetische Regler hat SFN eine entzündungshemmende Wirkung. Daher ist die 

Frage, ob SFN die LPS-CD14-induzierte Entzündung durch Regulierung der CD14 

Genexpression hemmen kann, von Interesse. Allerdings ist das Verständnis der 

epigenetischen Modulationen einschließlich DNA-Methylierung und Histon-Modifikation 

von CD14 in Bezug auf die Reaktion auf eine Infektion gering. In der vorliegenden Studie 

haben wir daher die epigenetischen Veränderungen von CD14 durch SFN in LPS-

induziertem TRIF Signalweg mit einem in vitro-Modell in PAMs beim Schwein, 

untersucht. Um potentielle Veränderungen des DNA-Methylierungsstatus zu identifizieren, 

die mit der Wirkung von SFN auf die CD14-Expression assoziiert sind, wurde der 

Methylierungsstatus der CpG Inseln sowohl der CD14-Promotor Region als auch der 

intragenetic Region (CDS Region) analysiert. 

 

Es konnte festgestellt werden, dass die CD14 Genexpression signifikant in Zellen mit 5 

µM LPS nach 12 h erhöht war. Ebenfalls war die mRNA-Expression der nachgeschalteten 

Gene, TRIF, TRAF6, NFƳB, TRAF3 und IRF7, hochreguliert. Des Weiteren, ergab die 

mRNA-Expressionsanalyse der Zytokine, TNF-α, IL-1β, IL-6 und IFN-β, ebenfalls eine 

Hochregulation in LPS stimulierten PAMs. Es ist wichtig darauf hinzuweisen, dass CD14 
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die TRIF Signale vermittelt und die inflammatorischen Zytokine in LPS behandelten 

PAMs induziert. 

 

Durch die Zugabe von SFN wurde die Genexpression von CD14 und den nachgeschalteten 

Genen, TRAM, TRIF, RIPK1, TRAF3 und IRF7, die im TRIF Signalweg an der 

Erkennung von LPS/Bakterien beteiligt sind, gehemmt. Weiterhin, unterdrückt SFN die 

Produktion von LPS-induzierten inflammatorischen Zytokinen, TNFα, IL-1β, IL-6 und 

IFN-ß, in Abhängigkeit von der Dosis. 

 

Die Analyse des Methylierungsprofils ergab überraschenderweise, dass es keine Änderung 

des Methylierungsstatus in der CD14-Promotor Region gab, weder in CpG-Inseln noch 

außerhalb von CpG-Inseln. Allerdings zeigte sich eine Veränderung des 

Methylierungsbildes in der intragenic Region des CD14 Gens. Die Ergebnisse ergaben, 

dass eine Behandlung mit 5 µM LPS die CD14-Methylierung induziert. Daher war die 

Genexpression von CD14 LPS behandelten PAMs erhöht. Diese Ergebnisse zeigten, dass 

die Gen intragenic Region Methylierung positiv mit der CD14 Genexpression assoziiert ist. 

Jedoch wurde die CD14 Methylierung durch SFN wieder gesenkt. Die inragenic Region 

Methylierung von CD14 war sowohl bei 5 µM SFN als auch 10 µM SFN gehemmt. Das 

überraschende Ergebnis unserer Studie ist, dass die Gen inragenic Region eine klare DNA 

Demethylierung zeigt und das eine Herunterregulation der Genexpression nach SFN 

Behandlung beobachtet werden kann. Es könnte daher in Betracht gezogen werden, dass 

die CD14-Gen-Expression, unterdrückt durch SFN, abhängt von der 

Methylierungshemmung der CD14-Gen intragenic Region in LPS-induzierten PAMs. 

Deshalb spielt CD14 nicht nur eine Rolle als LPS-Rezeptor, sondern auch als eine Art 

LPS-induzierter Entzündungsregler, der die TRIF Signalweg-Gene, die Zytokin-

Expression und auch die Zytokin-Sekretion durch die epigenetischen Veränderungen in der 

inragenic Region Methylierung durch SFN in PAMs vermittelt. 

 

Eine weitere wichtige Entdeckung dieser Studie ist, dass die Veränderungen des CD14 

DNA-Methylierungsstatus im Zusammenhang mit der Expression des DNA-

Methylierungs-Enzyms DNMT3a stehen. Es konnte festgestellt werden, dass SFN die 

DNMT3a mRNA-Expression in Abhängigkeit von der Dosis herunterreguliert. Daraus 

ergibt sich, dass CD14 in den TRIF Signalweg involviert zu sein scheint und daher die 

Hemmung der LPS-induzierten CD14 Genexpression mit der CD14 intragenic Region 
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Methylierung assoziiert ist, die durch die Herrunterregulation der DNMT3a Genexpression 

in PAMs aufgrund der SFN Vorbehandlung verursacht sein könnte. 

 

Zusammenfassend konnten wir in dieser in vitro Studie nicht nur zeigen, dass CD14 am 

TRIF Signalweg nach einer LPS-Behandlung im Zeitverlauf beteiligt ist, sondern auch der 

mögliche epigenetische Mechanismus wie Demethylierung in der intragenic Region in 

Verbindung mit der Repression von CD14 in SFN behandelten PAMs steht. Darüber 

hinaus wird diese DNA Methylierungsänderung wahrscheinlich mit der DNMT3a 

Expression assoziiert sein. Diese Studie gibt einen neuen Einblick in die SFN-vermittelten 

epigenetischen Herunterregulationen des CD14-Gens in LPS induzierten TRIF Signalweg 

Entzündungen. Dadurch ergeben sich neue Wege zur Entwicklung von neuen Ansätzen zur 

Vermeidung bzw. Milderung von LPS-induzierten Entzündungen bei Schweinen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



80                              Summary                                           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                             References 81 

 

7 References 

Akira S, Takeda K (2004): Toll-like receptor signalling. Nature Reviews Immunology 4, 
499-511 

Akira S, Uematsu S, Takeuchi O (2006): Pathogen recognition and innate immunity. Cell 
124, 783-801 

Anas AA, Hovius JW, van 't Veer C, van der Poll T, de Vos AF (2010): Role of CD14 in a 
mouse model of acute lung inflammation induced by different lipopolysaccharide 
chemotypes. PLoS One 5, e10183 

Antonicelli F, Brown D, Parmentier M, Drost EM, Hirani N, Rahman I, Donaldson K, 
MacNee W (2004): Regulation of LPS-mediated inflammation in vivo and in vitro by the 
thiol antioxidant Nacystelyn. Am J Physiol Lung Cell Mol Physiol 286, L1319-1327 

Arand J, Spieler D, Karius T, Branco MR, Meilinger D, Meissner A, Jenuwein T, Xu G, 
Leonhardt H, Wolf V, Walter J (2012): In vivo control of CpG and non-CpG DNA 
methylation by DNA methyltransferases. PLoS Genet 8, e1002750 

Ball MP, Li JB, Gao Y, Lee JH, LeProust EM, Park IH, Xie B, Daley GQ, Church GM 
(2009): Targeted and genome-scale strategies reveal gene-body methylation signatures in 
human cells. Nat Biotechnol 27, 361-368 

Baumann CL, Aspalter IM, Sharif O, Pichlmair A, Bluml S, Grebien F, Bruckner M, 
Pasierbek P, Aumayr K, Planyavsky M, Bennett KL, Colinge J, Knapp S, Superti-Furga G 
(2010): CD14 is a coreceptor of Toll-like receptors 7 and 9. J Exp Med 207, 2689-2701 

Baylin SB, Jones PA (2011): A decade of exploring the cancer epigenome - biological and 
translational implications. Nat Rev Cancer 11, 726-734 

Ben-Yaakov A, Maly B, Abu-Ita R, Elidan J, Gross M (2010): Identification and 
immunolocalization of the innate immune receptor CD14 in hypertrophic adenoids and 
tonsils. Immunol Invest 40, 150-159 

Bestor TH (2000): The DNA methyltransferases of mammals. Hum Mol Genet 9, 2395-
2402 

Beutler B, Cerami A (1988): Tumor necrosis, cachexia, shock, and inflammation: a 
common mediator. Annual Review of Biochemistry 57, 505-518 

BiQ Analyzer on line tool, http://biq-analyzer.bioinf.mpi-inf.mpg.de/index.php 

Bird A (2002): DNA methylation patterns and epigenetic memory. Genes Dev 16, 6-21 

Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP (1999): Natural killer 
cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 
17, 189-220 

Biswas B, Yenugu S (2013): Lipopolysaccharide induces epididymal and testicular 
antimicrobial gene expression in vitro: insights into the epigenetic regulation of sperm-
associated antigen 11e gene. Immunogenetics 65, 239-253 

BLAST, http://blast.ncbi.nlm.nih.gov/Blast.cgi 

Bottema RW, Reijmerink NE, Kerkhof M, Koppelman GH, Stelma FF, Gerritsen J, Thijs 
C, Brunekreef B, van Schayck CP, Postma DS (2008): Interleukin 13, CD14, pet and 
tobacco smoke influence atopy in three Dutch cohorts: the allergenic study. Eur Respir J 
32, 593-602 



82                              References                                           

 

Brandenburg LO, Kipp M, Lucius R, Pufe T, Wruck CJ (2010): Sulforaphane suppresses 
LPS-induced inflammation in primary rat microglia. Inflamm Res 59, 443-450 

Brown J, Wang H, Hajishengallis GN, Martin M (2011): TLR-signaling networks: an 
integration of adaptor molecules, kinases, and cross-talk. J Dent Res 90, 417-427 

Bunk S, Sigel S, Metzdorf D, Sharif O, Triantafilou K, Triantafilou M, Hartung T, Knapp 
S, von Aulock S (2010): Internalization and coreceptor expression are critical for TLR2-
mediated recognition of lipoteichoic acid in human peripheral blood. J Immunol 185, 
3708-3717 

Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV (1996): TRAF6 is a signal 
transducer for interleukin-1. Nature 383, 443-446 

Carson WF, Cavassani KA, Dou Y, Kunkel SL (2011): Epigenetic regulation of immune 
cell functions during post-septic immunosuppression. Epigenetics 6, 273-283 

Chen ZJ (2005): Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 7, 758-765 

Cheng C, Huang C, Ma TT, Bian EB, He Y, Zhang L, Li J (2014): SOCS1 
hypermethylation mediated by DNMT1 is associated with lipopolysaccharide-induced 
inflammatory cytokines in macrophages. Toxicol Lett 225, 488-497 

Choi HI, Chung KJ, Yang HY, Ren L, Sohn S, Kim PR, Kook MS, Choy HE, Lee TH 
(2013): Peroxiredoxin V selectively regulates IL-6 production by modulating the Jak2-
Stat5 pathway. Free Radic Biol Med 65, 270-279 

Chu WF, Wu DM, Liu W, Wu LJ, Li DZ, Xu DY, Wang XF (2009): Sulforaphane induces 
G2-M arrest and apoptosis in high metastasis cell line of salivary gland adenoid cystic 
carcinoma. Oral Oncol 45, 998-1004 

Clark SJ, Harrison J, Paul CL, Frommer M (1994): High sensitivity mapping of methylated 
cytosines. Nucleic Acids Res 22, 2990-2997 

Creagh EM, O'Neill LA (2006): TLRs, NLRs and RLRs: a trinity of pathogen sensors that 
co-operate in innate immunity. Trends Immunol 27, 352-357 

Curradi M, Izzo A, Badaracco G, Landsberger N (2002): Molecular mechanisms of gene 
silencing mediated by DNA methylation. Mol Cell Biol 22, 3157-3173 

da Silva Correia J, Soldau K, Christen U, Tobias PS, Ulevitch RJ (2001): 
Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor 
complex. transfer from CD14 to TLR4 and MD-2. The Journal of Biological Chemistry 
276, 21129-21135 

Dat LD, Thao NP, Tai BH, Luyen BT, Kim S, Koo JE, Koh YS, Cuong NT, Thanh NV, 
Cuong NX, Nam NH, Kiem PV, Minh CV, Kim YH (2015): Chemical constituents from 
Kandelia candel with their inhibitory effects on pro-inflammatory cytokines production in 
LPS-stimulated bone marrow-derived dendritic cells (BMDCs). Bioorg Med Chem Lett 25, 
1412-1416 

de Camargo Pereira G, Guimaraes GN, Planello AC, Santamaria MP, de Souza AP, Line 
SR, Marques MR (2013): Porphyromonas gingivalis LPS stimulation downregulates 
DNMT1, DNMT3a, and JMJD3 gene expression levels in human HaCaT keratinocytes. 
Clin Oral Investig 17, 1279-1285 

de Souza CG, Sattler JA, de Assis AM, Rech A, Perry ML, Souza DO (2012): Metabolic 
effects of sulforaphane oral treatment in streptozotocin-diabetic rats. J Med Food 15, 795-
801 



                             References 83 

 

Delcuve GP, Rastegar M, Davie JR (2009): Epigenetic control. Journal of Cellular 
Physiology 219, 243-250 

Dimitrijevic M, Stanojevic S, Kustrimovic N, Mitic K, Vujic V, Aleksic I, Radojevic K, 
Leposavic G (2013): The influence of aging and estradiol to progesterone ratio on rat 
macrophage phenotypic profile and NO and TNF-alpha production. Exp Gerontol 48, 
1243-1254 

Dinarello CA (1991): Interleukin-1 and interleukin-1 antagonism. Blood 77, 1627-1652 

Dinarello CA (2000): Proinflammatory cytokines. Chest 118, 503-508 

Dobrovolskaia MA, Vogel SN (2002): Toll receptors, CD14, and macrophage activation 
and deactivation by LPS. Microbes and Infection 4, 903-914 

Doherty R, O'Farrelly C, Meade KG (2013): Epigenetic regulation of the innate immune 
response to LPS in bovine peripheral blood mononuclear cells (PBMC). Vet Immunol 
Immunopathol 154, 102-110 

Dong N, Yao YM, Yu Y, Cao YJ, He LX, Yang HM, Sheng ZY (2009): Study on the 
correlation between CD14 gene polymorphism and T cell-mediated immunity in severely 
burned patients. Zhonghua Wai Ke Za Zhi 47, 617-620 

Doyle S, Vaidya S, O'Connell R, Dadgostar H, Dempsey P, Wu T, Rao G, Sun R, 
Haberland M, Modlin R, Cheng G (2002): IRF3 mediates a TLR3/TLR4-specific antiviral 
gene program. Immunity 17, 251-263 

Endo Y, Blinova K, Romantseva T, Golding H, Zaitseva M (2014): Differences in PGE2 
production between primary human monocytes and differentiated macrophages: role of IL-
1beta and TRIF/IRF3. PLoS One 9, e98517 

Fan H, Zhang R, Tesfaye D, Tholen E, Looft C, Holker M, Schellander K, Cinar MU 
(2012): Sulforaphane causes a major epigenetic repression of myostatin in porcine satellite 
cells. Epigenetics 7, 1379-1390 

Fan R, Wang WJ, Zhong QL, Duan SW, Xu XT, Hao LM, Zhao J, Zhang LN (2015): 
Aberrant methylation of the GCK gene body is associated with the risk of essential 
hypertension. Mol Med Rep 12, 2390-2394 

Feng S, Cokus SJ, Zhang X, Chen PY, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, 
Halpern ME, Ukomadu C, Sadler KC, Pradhan S, Pellegrini M, Jacobsen SE (2010): 
Conservation and divergence of methylation patterning in plants and animals. Proc Natl 
Acad Sci USA 107, 8689-8694 

Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE (2007): Chronic inflammation: 
importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol 147, 
227-235 

Ferrero E, Hsieh CL, Francke U, Goyert SM (1990): CD14 is a member of the family of 
leucine-rich proteins and is encoded by a gene syntenic with multiple receptor genes. J 
Immunol 145, 331-336 

Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul 
CL (1992): A genomic sequencing protocol that yields a positive display of 5-
methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 89, 1827-
1831 



84                              References                                           

 

Gao YP, Li M, Zhang YY, Wang H, He XH, Wang ZH (2007): Relationship between 
RAR-beta gene expression defect and its methylation. Zhonghua Fu Chan Ke Za Zhi 42, 
472-476 

Gilmore TD (2006): Introduction to NF-kappa B: players, pathways, perspectives. 
Oncogene 25, 6680-6684 

Ginhoux F (2014): Fate PPAR-titioning: PPAR-gamma 'instructs' alveolar macrophage 
development. Nat Immunol 15, 1005-1007 

Godleski JJ, Brain JD (1972): The origin of alveolar macrophages in mouse radiation 
chimeras. J Exp Med 136, 630-643 

Gordon S, Taylor PR (2005): Monocyte and macrophage heterogeneity. Nat Rev Immunol 
5, 953-964 

Goyert SM, Ferrero E, Rettig WJ, Yenamandra AK, Obata F, Le Beau MM (1988): The 
CD14 monocyte differentiation antigen maps to a region encoding growth factors and 
receptors. Science 239, 497-500 

Green BB, Kerr DE (2014): Epigenetic contribution to individual variation in response to 
lipopolysaccharide in bovine dermal fibroblasts. Vet Immunol Immunopathol 157, 49-58 

Green GM, Kass EH (1964): The role of the alveolar macrophage in the clearance of 
bacteria from the lung. J Exp Med 119, 167-176 

Gregory CD, Devitt A (1999): CD14 and apoptosis. Apoptosis 4, 11-20 

Griffin JD, Ritz J, Nadler LM, Schlossman SF (1981): Expression of myeloid 
differentiation antigens on normal and malignant myeloid cells. J Clin Invest 68, 932-941 

Guo S, Qiu P, Xu G, Wu X, Dong P, Yang G, Zheng J, McClements DJ, Xiao H (2012): 
Synergistic anti-inflammatory effects of nobiletin and sulforaphane in lipopolysaccharide-
stimulated RAW 264.7 cells. J Agric Food Chem 60, 2157-2164 

Hacker H, Redecke V, Blagoev B, Kratchmarova I, Hsu LC, Wang GG, Kamps MP, Raz 
E, Wagner H, Hacker G, Mann M, Karin M (2006): Specificity in Toll-like receptor 
signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439, 204-207 

Haghparast A, Heidari Kharaji M, Malvandi AM (2011): Down-regulation of CD14 
transcripts in human glioblastoma cell line U87 MG. Iran J Immunol 8, 111-119 

Hancock WW, Zola H, Atkins RC (1983): Antigenic heterogeneity of human mononuclear 
phagocytes: immunohistologic analysis using monoclonal antibodies. Blood 62, 1271-1279 

Hartel C, Rupp J, Hoegemann A, Bohler A, Spiegler J, von Otte S, Roder K, Schultz C, 
Gopel W (2008): 159C>T CD14 genotype--functional effects on innate immune responses 
in term neonates. Hum Immunol 69, 338-343 

Havlis J, Trbusek M (2002): 5-Methylcytosine as a marker for the monitoring of DNA 
methylation. J Chromatogr B Analyt Technol Biomed Life Sci 781, 373-392 

He Y, Liu S, Kling DE, Leone S, Lawlor NT, Huang Y, Feinberg SB, Hill DR, Newburg 
DS (2014): The human milk oligosaccharide 2'-fucosyllactose modulates CD14 expression 
in human enterocytes, thereby attenuating LPS-induced inflammation. Gut 1-14 

Heiss E, Herhaus C, Klimo K, Bartsch H, Gerhauser C (2001): Nuclear factor kappa B is a 
molecular target for sulforaphane-mediated anti-inflammatory mechanisms. The Journal of 
Biological Chemistry 276, 32008-32015 



                             References 85 

 

Held C, Wenzel J, Wiesmann V, Palmisano R, Lang R, Wittenberg T (2013): Enhancing 
automated micrograph-based evaluation of LPS-stimulated macrophage spreading. 
Cytometry A 83, 409-418 

Hellman A, Chess A (2007): Gene body-specific methylation on the active X chromosome. 
Science 315, 1141-1143 

Henneke P, Golenbock DT (2004): Phagocytosis, innate immunity, and host-pathogen 
specificity. J Exp Med 199, 1-4 

Henry CJ, Huang Y, Wynne AM, Godbout JP (2009): Peripheral lipopolysaccharide (LPS) 
challenge promotes microglial hyperactivity in aged mice that is associated with 
exaggerated induction of both pro-inflammatory IL-1beta and anti-inflammatory IL-10 
cytokines. Brain Behav Immun 23, 309-317 

Ho E, Clarke JD, Dashwood RH (2009): Dietary sulforaphane, a histone deacetylase 
inhibitor for cancer prevention. J Nutr 139, 2393-2396 

Hoppstadter J, Diesel B, Zarbock R, Breinig T, Monz D, Koch M, Meyerhans A, Gortner 
L, Lehr CM, Huwer H, Kiemer AK (2010): Differential cell reaction upon Toll-like 
receptor 4 and 9 activation in human alveolar and lung interstitial macrophages. Respir Res 
11, 124-139 

Huang YZ, Sun JJ, Zhang LZ, Li CJ, Womack JE, Li ZJ, Lan XY, Lei CZ, Zhang CL, 
Zhao X, Chen H (2014): Genome-wide DNA methylation profiles and their relationships 
with mRNA and the microRNA transcriptome in bovine muscle tissue (Bos taurine). Sci 
Rep 4, 6546 

Ikeda A, Takata M, Taniguchi T, Sekikawa K (1997): Molecular cloning of bovine CD14 
gene. J Vet Med Sci 59, 715-719 

Isaza-Guzman DM, Aristizabal-Cardona D, Martinez-Pabon MC, Velasquez-Echeverri H, 
Tobon-Arroyave SI (2008): Estimation of sCD14 levels in saliva obtained from patients 
with various periodontal conditions. Oral Dis 14, 450-456 

Islam MA, Cinar MU, Uddin MJ, Tholen E, Tesfaye D, Looft C, Schellander K (2012): 
Expression of Toll-like receptors and downstream genes in lipopolysaccharide-induced 
porcine alveolar macrophages. Vet Immunol Immunopathol 146, 62-73 

Islam MA, Proll M, Holker M, Tholen E, Tesfaye D, Looft C, Schellander K, Cinar MU 
(2013): Alveolar macrophage phagocytic activity is enhanced with LPS priming, and 
combined stimulation of LPS and lipoteichoic acid synergistically induce pro-
inflammatory cytokines in pigs. Innate Immun 19, 631-643 

Janeway CA, Jr., Medzhitov R (2002): Innate immune recognition. Annu Rev Immunol 20, 
197-216 

Jiang Z, Georgel P, Du X, Shamel L, Sovath S, Mudd S, Huber M, Kalis C, Keck S, 
Galanos C, Freudenberg M, Beutler B (2005): CD14 is required for MyD88-independent 
LPS signaling. Nat Immunol 6, 565-570 

Jiao H, Zhang Y, Yan Z, Wang ZG, Liu G, Minshall RD, Malik AB, Hu G (2013): 
Caveolin-1 Tyr14 phosphorylation induces interaction with TLR4 in endothelial cells and 
mediates MyD88-dependent signaling and sepsis-induced lung inflammation. J Immunol 
191, 6191-6199 

Jones PA (2012): Functions of DNA methylation: islands, start sites, gene bodies and 
beyond. Nat Rev Genet 13, 484-492 



86                              References                                           

 

Jones PA, Baylin SB (2002): The fundamental role of epigenetic events in cancer. Nat Rev 
Genet 3, 415-428 

Juge N, Mithen RF, Traka M (2007): Molecular basis for chemoprevention by 
sulforaphane: a comprehensive review. Cell Mol Life Sci 64, 1105-1127 

Jungraithmayr W (2015): The putative role of mast cells in lung transplantation. Am J 
Transplant 15, 594-600 

Kagan JC, Medzhitov R (2006): Phosphoinositide-mediated adaptor recruitment controls 
Toll-like receptor signaling. Cell 125, 943-955 

Kawai T, Akira S (2010): The role of pattern-recognition receptors in innate immunity: 
update on Toll-like receptors. Nat Immunol 11, 373-384 

Kim GH, Ryan JJ, Marsboom G, Archer SL (2011): Epigenetic mechanisms of pulmonary 
hypertension. Pulm Circ 1, 347-356 

Klein DC, Skjesol A, Kers-Rebel ED, Sherstova T, Sporsheim B, Egeberg KW, Stokke 
BT, Espevik T, Husebye H (2015): CD14, TLR4 and TRAM show different trafficking 
dynamics during LPS stimulation. Traffic 16, 677-690 

Klose RJ, Bird AP (2006): Genomic DNA methylation: the mark and its mediators. Trends 
Biochem Sci 31, 89-97 

Ko JY, Choi YJ, Jeong GJ, Im GI (2013): Sulforaphane-PLGA microspheres for the intra-
articular treatment of osteoarthritis. Biomaterials 34, 5359-5368 

Kontorovich T, Cohen Y, Nir U, Friedman E (2009): Promoter methylation patterns of 
ATM, ATR, BRCA1, BRCA2 and p53 as putative cancer risk modifiers in Jewish 
BRCA1/BRCA2 mutation carriers. Breast Cancer Res Treat 116, 195-200 

Koo JE, Park ZY, Kim ND, Lee JY (2013): Sulforaphane inhibits the engagement of LPS 
with TLR4/MD2 complex by preferential binding to Cys133 in MD2. Biochem Biophys 
Res Commun 434, 600-605 

Kouzarides T (2007): Chromatin modifications and their function. Cell 128, 693-705 

Kovalchuk I, Walz P, Thomas J, Kovalchuk O (2013a): Genomic instability in liver cells 
caused by an LPS-induced bystander-like effect. PLoS One 8, e67342 

Kovalchuk I, Walz P, Thomas J, Kovalchuk O (2013b): The increased expression of 
proteins involved in proliferation, DNA repair and DNA methylation in spleen of mice 
exposed to E. coli O157:H7 lipopolysaccharide. Environ Mol Mutagen 54, 421-428 

Kulis M, Heath S, Bibikova M, Queiros AC, Navarro A, Clot G, Martinez-Trillos A, 
Castellano G, Brun-Heath I, Pinyol M, Barberan-Soler S, Papasaikas P, Jares P, Bea S, 
Rico D, Ecker S, Rubio M, Royo R, Ho V, Klotzle B, Hernandez L, Conde L, Lopez-
Guerra M, Colomer D, Villamor N, Aymerich M, Rozman M, Bayes M, Gut M, Gelpi JL, 
Orozco M, Fan JB, Quesada V, Puente XS, Pisano DG, Valencia A, Lopez-Guillermo A, 
Gut I, Lopez-Otin C, Campo E, Martin-Subero JI (2012): Epigenomic analysis detects 
widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet 
44, 1236-1242 

Kuronuma K, Mitsuzawa H, Takeda K, Nishitani C, Chan ED, Kuroki Y, Nakamura M, 
Voelker DR (2009): Anionic pulmonary surfactant phospholipids inhibit inflammatory 
responses from alveolar macrophages and U937 cells by binding the lipopolysaccharide-
interacting proteins CD14 and MD-2. J Biol Chem 284, 25488-25500 



                             References 87 

 

Lakatos PL, Kiss LS, Palatka K, Altorjay I, Antal-Szalmas P, Palyu E, Udvardy M, Molnar 
T, Farkas K, Veres G, Harsfalvi J, Papp J, Papp M (2011): Serum lipopolysaccharide-
binding protein and soluble CD14 are markers of disease activity in patients with Crohn's 
disease. Inflamm Bowel Dis 17, 767-777 

Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, Low HM, Kin Sung KW, 
Rigoutsos I, Loring J, Wei CL (2010): Dynamic changes in the human methylome during 
differentiation. Genome Res 20, 320-331 

Li C, Eom T, Jeong Y (2015): Glycyrrhiza glabra L. Extract inhibits LPS-induced 
inflammation in RAW macrophages. J Nutr Sci Vitaminol (Tokyo) 61, 375-381 

Li L, Cousart S, Hu J, McCall CE (2000): Characterization of interleukin-1 receptor-
associated kinase in normal and endotoxin-tolerant cells. J Biol Chem 275, 23340-23345 

Li S, Strelow A, Fontana EJ, Wesche H (2002): IRAK-4: a novel member of the IRAK 
family with the properties of an IRAK-kinase. Proc Natl Acad Sci USA 99, 5567-5572 

Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, 
Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, 
Thomson JA, Ren B, Ecker JR (2009): Human DNA methylomes at base resolution show 
widespread epigenomic differences. Nature 462, 315-322 

Liu HH, Hu Y, Zheng M, Suhoski MM, Engleman EG, Dill DL, Hudnall M, Wang J, 
Spolski R, Leonard WJ, Peltz G (2012): Cd14 SNPs regulate the innate immune response. 
Mol Immunol 51, 112-127 

Liu L, Wylie RC, Hansen NJ, Andrews LG, Tollefsbol TO (2004): Profiling DNA 
methylation by bisulfite genomic sequencing: problems and solutions. Methods Mol Biol 
287, 169-179 

Liu S, Shapiro RA, Nie S, Zhu D, Vodovotz Y, Billiar TR (2000): Characterization of rat 
CD14 promoter and its regulation by transcription factors AP1 and Sp family proteins in 
hepatocytes. Gene 250, 137-147 

Liu YC, Hsieh CW, Weng YC, Chuang SH, Hsieh CY, Wung BS (2008): Sulforaphane 
inhibition of monocyte adhesion via the suppression of ICAM-1 and NF-kappaB is 
dependent upon glutathione depletion in endothelial cells. Vascul Pharmacol 48, 54-61 

Lloyd-Jones KL, Kelly MM, Kubes P (2008): Varying importance of soluble and 
membrane CD14 in endothelial detection of lipopolysaccharide. J Immunol 181, 1446-
1453 

Lou S, Lee HM, Qin H, Li JW, Gao Z, Liu X, Chan LL, Kl Lam V, So WY, Wang Y, Lok 
S, Wang J, Ma RC, Tsui SK, Chan JC, Chan TF, Yip KY (2014): Whole-genome bisulfite 
sequencing of multiple individuals reveals complementary roles of promoter and gene 
body methylation in transcriptional regulation. Genome Biol 15, 408 

Luo FY, Xiao S, Liu ZH, Zhang PF, Xiao ZQ, Tang CE (2015): Kank1 reexpression 
induced by 5-Aza-2 '-deoxycytidine suppresses nasopharyngeal carcinoma cell 
proliferation and promotes apoptosis. Int J Clin Exp Pathol 8, 1658-1665 

Ma CY, Chang WE, Shi GY, Chang BY, Cheng SE, Shih YT, Wu HL (2015): 
Recombinant thrombomodulin inhibits lipopolysaccharide-induced inflammatory response 
by blocking the functions of CD14. The Journal of Immunology 194, 1905-1915 

Maciejewska Rodrigues H, Jungel A, Gay RE, Gay S (2009): Innate immunity, epigenetics 
and autoimmunity in rheumatoid arthritis. Mol Immunol 47, 12-18 



88                              References                                           

 

Maliszewski CR, Ball ED, Graziano RF, Fanger MW (1985): Isolation and 
characterization of My23, a myeloid cell-derived antigen reactive with the monoclonal-
antibody Aml-2-23. Journal of Immunology 135, 1929-1936 

Marcos V, Latzin P, Hector A, Sonanini S, Hoffmann F, Lacher M, Koller B, Bufler P, 
Nicolai T, Hartl D, Griese M (2010): Expression, regulation and clinical significance of 
soluble and membrane CD14 receptors in pediatric inflammatory lung diseases. Respir Res 
11, 32 

Matsuguchi T, Musikacharoen T, Ogawa T, Yoshikai Y (2000): Gene expressions of Toll-
like receptor 2, but not Toll-like receptor 4, is induced by LPS and inflammatory cytokines 
in mouse macrophages. J Immunol 165, 5767-5772 

Matute-Bello G, Lee JS, Frevert CW, Liles WC, Sutlief S, Ballman K, Wong V, Selk A, 
Martin TR (2004): Optimal timing to repopulation of resident alveolar macrophages with 
donor cells following total body irradiation and bone marrow transplantation in mice. J 
Immunol Methods 292, 25-34 

Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD, Johnson 
BE, Hong C, Nielsen C, Zhao Y, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, 
Heine VM, Rowitch DH, Xing X, Fiore C, Schillebeeckx M, Jones SJ, Haussler D, Marra 
MA, Hirst M, Wang T, Costello JF (2010): Conserved role of intragenic DNA methylation 
in regulating alternative promoters. Nature 466, 253-257 

McAvoy EF, McDonald B, Parsons SA, Wong CH, Landmann R, Kubes P (2011): The 
role of CD14 in neutrophil recruitment within the liver microcirculation during 
endotoxemia. J Immunol 186, 2592-2601 

Medzhitov R, Janeway CA, Jr. (1997): Innate immunity: the virtues of a nonclonal system 
of recognition. Cell 91, 295-298 

Meeran SM, Patel SN, Tollefsbol TO (2010): Sulforaphane causes epigenetic repression of 
hTERT expression in human breast cancer cell lines. PLoS One 5, e11457 

Metes D, Logar A, Rudert WA, Zeevi A, Woodward J, Demetris AJ, Abu-Elmagd K, 
Eghtesad B, Shapiro R, Fung JJ, Trucco M, Starzl TE, Murase N (2003): Four-color flow 
cytometric analysis of peripheral blood donor cell chimerism. Hum Immunol 64, 787-795 

MethPrimer online tool, http://www.urogene.org/methprimer/ 

Moldoveanu B, Otmishi P, Jani P, Walker J, Sarmiento X, Guardiola J, Saad M, Yu J 
(2009): Inflammatory mechanisms in the lung. J Inflamm Res 2, 1-11 

Mosser DM, Edwards JP (2008): Exploring the full spectrum of macrophage activation. 
Nature Reviews Immunology 8, 958-969 

Murakami J, Asaumi J, Kawai N, Tsujigiwa H, Yanagi Y, Nagatsuka H, Inoue T, 
Kokeguchi S, Kawasaki S, Kuroda M, Tanaka N, Matsubara N, Kishi K (2005): Effects of 
histone deacetylase inhibitor FR901228 on the expression level of telomerase reverse 
transcriptase in oral cancer. Cancer Chemother Pharmacol 56, 22-28 

Murphy J, Summer R, Wilson AA, Kotton DN, Fine A (2008): The prolonged life-span of 
alveolar macrophages. Am J Respir Cell Mol Biol 38, 380-385 

Muzio M, Ni J, Feng P, Dixit VM (1997): IRAK (Pelle) family member IRAK-2 and 
MyD88 as proximal mediators of IL-1 signaling. Science 278, 1612-1615 

Nicu EA, Laine ML, Morre SA, Van der Velden U, Loos BG (2009): Soluble CD14 in 
periodontitis. Innate Immun 15, 121-128 



                             References 89 

 

Okano M, Xie S, Li E (1998): Cloning and characterization of a family of novel 
mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19, 219-220 

Park SY, Kwon HJ, Choi Y, Lee HE, Kim SW, Kim JH, Kim IA, Jung N, Cho NY, Kang 
GH (2012): Distinct patterns of promoter CpG island methylation of breast cancer subtypes 
are associated with stem cell phenotypes. Modern Pathology 25, 185-196 

Piao W, Ru LW, Piepenbrink KH, Sundberg EJ, Vogel SN, Toshchakov VY (2013): 
Recruitment of TLR adapter TRIF to TLR4 signaling complex is mediated by the second 
helical region of TRIF TIR domain. Proc Natl Acad Sci USA 110, 19036-19041 

Plongthongkum N, Diep DH, Zhang K (2014): Advances in the profiling of DNA 
modifications: cytosine methylation and beyond. Nat Rev Genet 15, 647-661 

Primer 3 online tool, http://biotools.umassmed.edu/bioapps/primer3_www.cgi 

Qian C, Cao X (2013): Regulation of Toll-like receptor signaling pathways in innate 
immune responses. Ann N Y Acad Sci 1283, 67-74 

Qiu XT, Li YH, Li H, Yu Y, Zhang Q (2007): Molecular cloning, mapping, and tissue 
expression of the porcine cluster of differentiation 14 (CD14) gene. Biochem Genet 45, 
459-468 

Qu X, Proll M, Neuhoff C, Zhang R, Cinar MU, Hossain MM, Tesfaye D, Grosse-
Brinkhaus C, Salilew-Wondim D, Tholen E, Looft C, Holker M, Schellander K, Uddin MJ 
(2015): Sulforaphane epigenetically regulates innate immune responses of porcine 
monocyte-derived dendritic cells induced with lipopolysaccharide. PLoS One 10, 
e0121574 

Raetz CR, Whitfield C (2002): Lipopolysaccharide endotoxins. Annu Rev Biochem 71, 
635-700 

Raj DS, Carrero JJ, Shah VO, Qureshi AR, Barany P, Heimburger O, Lindholm B, 
Ferguson J, Moseley PL, Stenvinkel P (2009): Soluble CD14 levels, interleukin 6, and 
mortality among prevalent hemodialysis patients. Am J Kidney Dis 54, 1072-1080 

Regen T, van Rossum D, Scheffel J, Kastriti ME, Revelo NH, Prinz M, Bruck W, Hanisch 
UK (2011): CD14 and TRIF govern distinct responsiveness and responses in mouse 
microglial TLR4 challenges by structural variants of LPS. Brain Behav Immun 25, 957-
970 

Reiner AP, Lange EM, Jenny NS, Chaves PH, Ellis J, Li J, Walston J, Lange LA, Cushman 
M, Tracy RP (2013): Soluble CD14: genomewide association analysis and relationship to 
cardiovascular risk and mortality in older adults. Arterioscler Thromb Vasc Biol 33, 158-
164 

Robertson KD, Keyomarsi K, Gonzales FA, Velicescu M, Jones PA (2000): Differential 
mRNA expression of the human DNA methyltransferases (DNMTs) 1, 3a and 3b during 
the G(0)/G(1) to S phase transition in normal and tumor cells. Nucleic Acids Res 28, 2108-
2113 

Rogler G, Hausmann M, Vogl D, Aschenbrenner E, Andus T, Falk W, Andreesen R, 
Scholmerich J, Gross V (1998): Isolation and phenotypic characterization of colonic 
macrophages. Clin Exp Immunol 112, 205-215 

Roncon-Albuquerque R, Jr., Moreira-Rodrigues M, Faria B, Ferreira AP, Cerqueira C, 
Lourenco AP, Pestana M, von Hafe P, Leite-Moreira AF (2008): Attenuation of the 
cardiovascular and metabolic complications of obesity in CD14 knockout mice. Life Sci 
83, 502-510 



90                              References                                           

 

Ronemus MJ, Galbiati M, Ticknor C, Chen J, Dellaporta SL (1996): Demethylation-
induced developmental pleiotropy in Arabidopsis. Science 273, 654-657 

Roy S, Karmakar M, Pearlman E (2014): CD14 mediates Toll-like receptor 4 (TLR4) 
endocytosis and spleen tyrosine kinase (Syk) and interferon regulatory transcription factor 
3 (IRF3) activation in epithelial cells and impairs neutrophil infiltration and Pseudomonas 
aeruginosa killing in vivo. The Journal of Biological Chemistry 289, 1174-1182 

Russo VEA, Martienssen RA, Riggs AD (1996): Epigenetic mechanisms of gene 
regulation. Cold Spring Harbor Laboratory Press, New York,  

Samiec M, Opiela J, Lipinski D, Romanek J (2015): Trichostatin A-mediated epigenetic 
transformation of adult bone marrow-derived mesenchymal stem cells biases the in vitro 
developmental capability, quality, and pluripotency extent of porcine cloned embryos. 
Biomed Research International 2015,  

Sanz G, Perez E, Jimenez-Marin A, Mompart F, Morera L, Barbancho M, Llanes D, 
Garrido JJ (2007): Molecular cloning, chromosomal location, and expression analysis of 
porcine CD14. Developmental & Comparative Immunology 31, 738-747 

Sarda S, Zeng J, Hunt BG, Yi SV (2012): The evolution of invertebrate gene body 
methylation. Mol Biol Evol 29, 1907-1916 

Sato-Nishiwaki M, Aida Y, Abe S, Shibata Y, Kimura T, Yamauchi K, Kishi H, Igarashi 
A, Inoue S, Sato M, Nakajima O, Kubota I (2013): Reduced number and morphofunctional 
change of alveolar macrophages in MafB gene-targeted mice. PLoS One 8, e73963 

Schmittgen TD, Livak KJ (2008): Analyzing real-time PCR data by the comparative C(T) 
method. Nature Protocols 3, 1101-8 

Shamsul HM, Hasebe A, Iyori M, Ohtani M, Kiura K, Zhang D, Totsuka Y, Shibata K 
(2010): The Toll-like receptor 2 (TLR2) ligand FSL-1 is internalized via the clathrin-
dependent endocytic pathway triggered by CD14 and CD36 but not by TLR2. Immunology 
130, 262-272 

Sheu JJ, Sung PH, Leu S, Chai HT, Zhen YY, Chen YC, Chua S, Chen YL, Tsai TH, Lee 
FY, Chang HW, Ko SF, Yip HK (2013): Innate immune response after acute myocardial 
infarction and pharmacomodulatory action of tacrolimus in reducing infarct size and 
preserving myocardial integrity. J Biomed Sci 20, 82-96 

Singh SV, Srivastava SK, Choi S, Lew KL, Antosiewicz J, Xiao D, Zeng Y, Watkins SC, 
Johnson CS, Trump DL, Lee YJ, Xiao H, Herman-Antosiewicz A (2005): Sulforaphane-
induced cell death in human prostate cancer cells is initiated by reactive oxygen species. J 
Biol Chem 280, 19911-19924 

Srinivasan M, Kodumudi KN, Zunt SL (2008): Soluble CD14 and toll-like receptor-2 are 
potential salivary biomarkers for oral lichen planus and burning mouth syndrome. Clin 
Immunol 126, 31-37 

Stone KD, Prussin C, Metcalfe DD (2010): IgE, mast cells, basophils, and eosinophils. J 
Allergy Clin Immunol 125, S73-80 

Struhl K (1998): Histone acetylation and transcriptional regulatory mechanisms. Genes 
Dev 12, 599-606 

Su ZY, Zhang CY, Lee JH, Shu LM, Wu TY, Khor TO, Conney AH, Lu YP, Kong ANT 
(2014): Requirement and epigenetics reprogramming of Nrf2 in suppression of tumor 
promoter TPA-induced mouse skin cell transformation by sulforaphane. Cancer Prevention 
Research 7, 319-329 



                             References 91 

 

Tachado SD, Li X, Bole M, Swan K, Anandaiah A, Patel NR, Koziel H (2010): MyD88-
dependent TLR4 signaling is selectively impaired in alveolar macrophages from 
asymptomatic HIV+ persons. Blood 115, 3606-3615 

Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT (2012): PAMPs and DAMPs: signal 0s 
that spur autophagy and immunity. Immunol Rev 249, 158-175 

Teerawanichpan P, Chandrasekharan MB, Jiang Y, Narangajavana J, Hall TC (2004): 
Characterization of two rice DNA methyltransferase genes and RNAi-mediated 
reactivation of a silenced transgene in rice callus. Planta 218, 337-349 

Todd RF, 3rd, Nadler LM, Schlossman SF (1981): Antigens on human monocytes 
identified by monoclonal antibodies. Journal of Immunology 126, 1435-1442 

Tsai TH, Chen SF, Huang TY, Tzeng CF, Chiang AS, Kou YR, Lee TS, Shyue SK (2011): 
Impaired Cd14 and Cd36 expression, bacterial clearance, and Toll-like receptor 4-Myd88 
signaling in caveolin-1-deleted macrophages and mice. Shock 35, 92-99 

Uehara O, Abiko Y, Saitoh M, Miyakawa H, Nakazawa F (2014): Lipopolysaccharide 
extracted from Porphyromonas gingivalis induces DNA hypermethylation of runt-related 
transcription factor 2 in human periodontal fibroblasts. J Microbiol Immunol Infect 47, 
176-181 

Van Acker T, Eyckerman S, Vande Walle L, Gerlo S, Goethals M, Lamkanfi M, Bovijn C, 
Tavernier J, Peelman F (2014): The small GTPase Arf6 is essential for the Tram/Trif 
pathway in TLR4 signaling. J Biol Chem 289, 1364-1376 

Varley KE, Gertz J, Bowling KM, Parker SL, Reddy TE, Pauli-Behn F, Cross MK, 
Williams BA, Stamatoyannopoulos JA, Crawford GE, Absher DM, Wold BJ, Myers RM 
(2013): Dynamic DNA methylation across diverse human cell lines and tissues. Genome 
Res 23, 555-567 

Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ (2001): TAK1 is a ubiquitin-
dependent kinase of MKK and IKK. Nature 412, 346-351 

Wang W, He Y, Yu G, Li B, Sexton DW, Wileman T, Roberts AA, Hamilton CJ, Liu R, 
Chao Y, Shan Y, Bao Y (2015): Sulforaphane protects the liver against CdSe quantum dot-
induced cytotoxicity. PLoS One 10, e0138771 

Wang Y, Wang X, Lee TH, Mansoor S, Paterson AH (2013): Gene body methylation 
shows distinct patterns associated with different gene origins and duplication modes and 
has a heterogeneous relationship with gene expression in Oryza sativa (rice). The New 
Phytologist 198, 274-283 

Watanabe S, Kumazawa Y, Inoue J (2013): Liposomal lipopolysaccharide initiates TRIF-
dependent signaling pathway independent of CD14. PLoS One 8, e60078 

Weber C, Muller C, Podszuweit A, Montino C, Vollmer J, Forsbach A (2012): Toll-like 
receptor (TLR) 3 immune modulation by unformulated small interfering RNA or DNA and 
the role of CD14 (in TLR-mediated effects). Immunology 136, 64-77 

Wierinckx A, Breve J, Mercier D, Schultzberg M, Drukarch B, Van Dam AM (2005): 
Detoxication enzyme inducers modify cytokine production in rat mixed glial cells. Journal 
of Neuroimmunology 166, 132-143 

Wiersinga WJ, de Vos AF, Wieland CW, Leendertse M, Roelofs JJ, van der Poll T (2008): 
CD14 impairs host defense against gram-negative sepsis caused by Burkholderia 
pseudomallei in mice. J Infect Dis 198, 1388-1397 



92                              References                                           

 

Wilson GA, Butcher LM, Foster HR, Feber A, Roos C, Walter L, Woszczek G, Beck S, 
Bell CG (2014): Human-specific epigenetic variation in the immunological Leukotriene B4 
Receptor (LTB4R/BLT1) implicated in common inflammatory diseases. Genome Med 6, 
19 

Wissinger EL, Saldana J, Didierlaurent A, Hussell T (2008): Manipulation of acute 
inflammatory lung disease. Mucosal Immunol 1, 265-278 

Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990): CD14, a receptor for 
complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431-1433 

Xiao D, Powolny AA, Antosiewicz J, Hahm ER, Bommareddy A, Zeng Y, Desai D, Amin 
S, Herman-Antosiewicz A, Singh SV (2009): Cellular responses to cancer 
chemopreventive agent D,L-sulforaphane in human prostate cancer cells are initiated by 
mitochondrial reactive oxygen species. Pharm Res 26, 1729-1738 

Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama 
M, Okabe M, Takeda K, Akira S (2003a): Role of adaptor TRIF in the MyD88-
independent toll-like receptor signaling pathway. Science 301, 640-643 

Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T, Takeuchi O, Takeda 
K, Akira S (2003b): TRAM is specifically involved in the Toll-like receptor 4-mediated 
MyD88-independent signaling pathway. Nat Immunol 4, 1144-1150 

Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G (2014): Gene body 
methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 26, 
577-590 

Yin GN, Jeon H, Lee S, Lee HW, Cho JY, Suk K (2009): Role of soluble CD14 in 
cerebrospinal fluid as a regulator of glial functions. J Neurosci Res 87, 2578-2590 

Yoder JA, Bestor TH (1998): A candidate mammalian DNA methyltransferase related to 
pmt1p of fission yeast. Hum Mol Genet 7, 279-284 

Youn HS, Kim YS, Park ZY, Kim SY, Choi NY, Joung SM, Seo JA, Lim KM, Kwak MK, 
Hwang DH, Lee JY (2010): Sulforaphane suppresses oligomerization of TLR4 in a thiol-
dependent manner. J Immunol 184, 411-419 

Yu B, Russanova VR, Gravina S, Hartley S, Mullikin JC, Ignezweski A, Graham J, Segars 
JH, DeCherney AH, Howard BH (2015): DNA methylome and transcriptome sequencing 
in human ovarian granulosa cells links age-related changes in gene expression to gene 
body methylation and 3'-end GC density. Oncotarget 6, 3627-3643 

Zanoni I, Granucci F (2013): Role of CD14 in host protection against infections and in 
metabolism regulation. Front Cell Infect Microbiol 3, 32 

Zanoni I, Ostuni R, Marek LR, Barresi S, Barbalat R, Barton GM, Granucci F, Kagan JC 
(2011): CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 147, 868-
880 

ZDS. Zentralverband der Deutschen Schweineproduktion. Germany (2003): Richtlinie für 
die Stationsprüfung auf Mastleistung, Schlachtkörperwert und Fleischbeschaffenheit beim 
Schwein. 

Zemach A, McDaniel IE, Silva P, Zilberman D (2010): Genome-wide evolutionary 
analysis of eukaryotic DNA methylation. Science 328, 916-919 



                             References 93 

 

Zhang C, Su ZY, Khor TO, Shu L, Kong AN (2013): Sulforaphane enhances Nrf2 
expression in prostate cancer TRAMP C1 cells through epigenetic regulation. Biochem 
Pharmacol 85, 1398-1404 

Zhang G, Han J, Welch EJ, Ye RD, Voyno-Yasenetskaya TA, Malik AB, Du X, Li Z 
(2009): Lipopolysaccharide stimulates platelet secretion and potentiates platelet 
aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. J 
Immunol 182, 7997-8004 

Zhang LM, Song W, Cui H, Xing LQ, Du HB, Cui Y, Chen WH, Zhao ZG, Niu CY 
(2015): Normal mesenteric lymph ameliorates lipopolysaccharide challenge-induced 
spleen injury. Acta Cir Bras 30, 604-610 

Zhao B, Zhou B, Bao L, Yang Y, Guo K (2015): Alpha-tomatine exhibits anti-
inflammatory activity in lipopolysaccharide-activated macrophages. Inflammation 38, 
1769-1776 

Zhuang JC, Wogan GN (1997): Growth and viability of macrophages continuously 
stimulated to produce nitric oxide. Proc Natl Acad Sci USA 94, 11875-11880 

Ziaei A, Schmedt T, Chen Y, Jurkunas UV (2013): Sulforaphane decreases endothelial cell 
apoptosis in fuchs endothelial corneal dystrophy: a novel treatment. Invest Ophthalmol Vis 
Sci 54, 6724-6734 

Ziegler-Heitbrock HW, Ulevitch RJ (1993): CD14: cell surface receptor and differentiation 
marker. Trends in Immunology 14, 121-125 

 



94                              References                                           

 



                               Appendix                            95 

 

8 Appendix 

 

Fig. 21 (Appendix 1) The role of LPS and SFN on gene expression regulation of CD14 

and downstream genes in PAMs. A) CD14 and downstream genes TRAM and TRIF 

mRNA expression in SFN-LPS stimulated PAMs. B) TRIF-TRAF6 pathway genes 

mRNA expression in SFN-LPS treated PAMs. C) TRIF-TRAF3 pathway genes mRNA 

expression in SFN-LPS treated PAMs. PAMs with or without SFN (5, 10 µM) for 24 h 

treatment and LPS (5 µg/ml) for 12 h treatment were used in this assay. Fold change in 

PAMs without SFN and without LPS treatment (SFN0-LPS0) was set as control. 

Comparison between treatment group (black column) and control group (white column) 

is indicated as ‘*’. All of the data were expressed as least square means ± SE, n = 3. *, 

** and *** indicate significant differences at p < 0.05, p < 0.01 and p < 0.001, 

respectively. 
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Fig. 22 (Appendix 2) Effect of SFN5 and SFN10 on gene expression regulation of 

CD14 and downstream genes in PAMs. A) CD14 and downstream genes TRAM and 

TRIF mRNA expression in SFN-LPS stimulated PAMs. B) TRIF-TRAF6 pathway 

genes mRNA expression in SFN-LPS treated PAMs. C) TRIF-TRAF3 pathway genes 

mRNA expression in SFN-LPS treated PAMs. PAMs with or without SFN (5, 10 µM) 

for 24 h treatment and LPS (5 µg/ml) for 12 h treatment were used in this assay. All of 

the data were expressed as least square means ± SE, n = 3. *, ** and *** indicate 

significant differences at p < 0.05, p < 0.01 and p < 0.001, respectively. 
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Fig. 23 (Appendix 3) The role of LPS and SFN on gene expression regulation of 

cytokines in the TRIF pathway in PAMs. A) Relative gene expression of TRIF-TRAF6 

pathway released cytokines in SFN-LPS treated PAMs B) Relative gene expression of 

TRIF-TRAF3 pathway released cytokines in SFN-LPS treated PAMs. PAMs with or 

without SFN (5, 10 µM) for 24 h treatment and LPS (5 µg/ml) for 12 h treatment were 

used in this assay. Fold change in PAMs without SFN and without LPS treatment 

(SFN0-LPS0) was set as control. Comparison between treatment group (black column) 

and control group (white column) is indicated as ‘*’. All of the data were expressed as 

least square means ± SE, n = 3. *, ** and *** indicate significant differences at p < 

0.05, p < 0.01 and p < 0.001, respectively. 
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Fig. 24 (Appendix 4) Effect of SFN5 and SFN10 on gene expression regulation of 

cytokines in the TRIF pathway in PAMs. A) Relative gene expression of TRIF-TRAF6 

pathway released cytokines in SFN-LPS treated PAMs B) Relative gene expression of 

TRIF-TRAF3 pathway released cytokines in SFN-LPS treated PAMs. PAMs with or 

without SFN (5, 10 µM) for 24 h treatment and LPS (5 µg/ml) for 12 h treatment were 

used in this assay. Comparison between treatment group and control group is indicated 

as ‘*’. All of the data were expressed as least square means ± SE, n = 3. *, ** and *** 

indicate significant differences at p < 0.05, p < 0.01 and p < 0.001, respectively. 
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Fig. 25 (Appendix 5) The role of LPS and SFN on gene expression regulation of 

DNMT1 and DNMT3a. Relative DNMT1 and DNMT3a gene expression were 

measured in SFN-LPS treated PAMs. PAMs with or without SFN (5, 10 µM) for 24 h 

treatment and LPS (5 µg/ml) for 12 h treatment were used in this assay. Fold change in 

PAMs without SFN and without LPS treatment (SFN0-LPS0) was set as control. 

Comparison between treatment group (black column) and control group (white column) 

is indicated as ‘*’. All of the data were expressed as least square means ± SE, n = 3. * 

indicates significant difference at p < 0.01. 

 

Fig. 26 (Appendix 6) Effect of SFN5 and SFN10 on gene expression regulation of 

DNMT1 and DNMT3a. Relative DNMT1 and DNMT3a gene expression were 

measured in SFN-LPS treated PAMs. PAMs with or without SFN (5, 10 µM) for 24 h 

treatment and LPS (5 µg/ml) for 12 h treatment were used in this assay. Comparison 

between treatment group and control group is indicated as ‘*’. All of the data were 

expressed as least square means ± SE, n = 3. ** indicates significant difference at p < 

0.01. 
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Fig. 27 (Appendix 7) Sequence, CpG sites and bisulfite primers of CD14 promoter and 

CDS.  

Note: Upper row: Original sequence; Lower row: Bisulfite modified sequence, for 

display, assume all CpG sites are methylated; ++ CpG sites; :::: Non-CpG 'C' converted 

to 'T'; >>>>>> Left  primer; <<<<<< Right primer 
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Fig. 28 (Appendix 8) Protein levels of CD14 in SFN-LPS treated PAMs 

 

 

Fig. 29 (Appendix 9) Protein levels of Ac-H3 and Ac-H4 in SFN-LPS treated PAMs 
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