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Functional studies of microRNA 17-92 cluster members in bovine granulosa cells and 

oocyte maturation 

Dynamic transcript of genes expression are believed to occur during follicular development 

and oocyte maturation, which one way or the other is regulated by a post-transcriptional 

modifier, namely microRNA. In the previous work, among others, miR-17-92 cluster 

members were overexpressed in granulosa cell of subordinate follicle at day 19 of estrous 

cycle compared to the dominant ones. Thus, we hypothesized the potential involvement of 

miR-17-92 cluster members in follicular function at the late stage of the estrous cycle. 

Therefore, the aim of this thesis was to investigate the role of miR-17-92 cluster members in 

bovine granulosa cell and oocyte maturation. First, potential target gene of miR-17-92 cluster 

were predicted in silico followed by validation using luciferase assay. In order to investigate 

the role of miR-17-92 cluster member in granulosa cell function and oocyte maturation, we 

modulated the expression of those microRNAs in granulosa cells and cumulus-oocyte 

complexes (COCs) under in vitro condition. Target prediction and validation revealed that 

PTEN and BMPR2 are direct target genes of miR-17-92 cluster members. This result was 

confirmed by the alteration of PTEN and BMPR2 expression in granulosa cells transfected 

with miR-17-92 cluster members mimic and inhibitor. In this study, we observed that 

overexpression of miR-17-92 cluster increased proliferation and decreased differentiation rate 

of granulosa cells. On the other hand, inhibition of miR-17-92 cluster showed the opposite 

phenotypes. However, progesterone level in spent media of granulosa cells culture was not 

persistent with the cell differentiation rate. Further, cross-validation by target knockdown 

PTEN and BMPR2 genes simulated the results obtained from granulosa cells transfected miR-

17-92 cluster member. In addition, the expression of one of miR-17-92 cluster members 

(miR-20a) in cumulus cells increased after in vitro maturation (IVM). Contrastively, it was 

decreased in oocytes after IVM. Moreover, the expression of miR-20a in cumulus cells and 

oocytes was affected by the presence or absence of their companion cells during culture. The 

expression of miR-20a in cumulus cells and oocytes from COCs cocultured with miR-20a 

mimic or inhibitor suggested that the transfection was restricted in the cumulus cells. In this 

study, miR-20a overexpression in COCs culture increased oocyte maturation rate and 

cumulus cell progesterone synthesis. On the other hand, inhibition of miR-20a did not affect 

the oocyte maturation rate, but decreased progesterone synthesis. In conclusion, the miR-17-

92 cluster members involved in granulosa cell proliferation and differentiation, as well as 

oocyte maturation by targeting PTEN and BMPR2 genes. 



 

 

Funktionelle Bedeutung des miRNA-17-92 Komplexes in bovinen Granulosazellen und 

in der bovinen Eizellreifung 

Die Genexpression während der Follikelentwicklung und Eizellreifung ist räumlich/zeitlich 

dynamisch geregelt, unter anderem spielt die posttranskriptionelle Expressionsregulation 

durch miRNAs eine bedeutende Rolle. In vorangegangenen Arbeiten unserer Arbeitsgruppe 

wurde gezeigt, dass Mitglieder des miR-17-92 Komplexes in Granulosazellen subordinater 

Follikel, im Vergleich zu dominanten Follikeln, am Tag 19 des Östrus überexprimiert sind. 

Daraus ergab sich für diese Arbeit die Hypothese, dass der miR-17-92 Komplex im späteren 

Zyklus die follikuläre Dynamik beeinflusst. Daher war es das Ziel dieser Arbeit, die Rolle von 

miR-17-92 in bovinen Granulosazellen und während der Oozytenmaturation aufzuklären. 

Zunächst wurden potentielle Target-Gene des miR-17-92 Komplexes identifiziert, mittels 

Luziferase-Array validiert und die Expression der miRNAs in Granuloszellen und im 

Kumulusoozytenkomplex stimuliert und inhibiert. Die Zielgenidentifizierung und Validierung 

bestätigte PTEN und BMPR2 als direkte Zielgene des miR-17-92 Komplexes. Die Expression 

von PTEN und BMBR2 konnte mit miR-17-92 Agonisten und Inhibitoren moduliert werden. 

Die Überexpression von miR-17-92 erhöhte die Proliferation und verringerte die 

Differenzierungsrate der Granulosazellen. Die Inhibierung von miR-17-92 zeigte den 

gegenteiligen Phänotyp. Der Progesteronspiegel im Kulturmedium der Granulosazellen war 

nicht konsistent mit der Differenzierungsrate. Knockdown von PTEN und BMPR2 zeigten 

dieselben Ergebnisse wie die mit miR-17-92 transfizierten Granulosazellen. Die Expression 

von miR-20a in Kumuluszellen und Kumuluszelloozytenkomplexen, die mit miR-20a 

Agonisten oder Inhibitoren kokultiviert wurden, wiesen auf eine Expression in den 

Kumuluszellen hin. Die Expression von miR-20a in Kumuluszellen verbesserte die in vitro 

Maturationsrate und die Kumuluszell Progesteronsynthese; die Inhibierung von miR-20a 

reduzierte die Progesteronsynthese, hatte aber keinen Einfluss auf die 

Oozytenmaturationsrate. Es kann gefolgert werden, dass der miR-17-92 Komplex über die 

Zielgene PTEN und BMPR2 an der Oozytenmaturation und der Granulosaproliferation- und 

Differentiation regulierend beteiligt ist. 
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1.1 Introduction 

 

Follicular development is a complex process regulated by a vast number of intra- and extra-

ovarian factors. Based on the developmental stage and their dependence on the gonadotropins, 

follicular development can be classified into three phases namely: primordial until preantral 

follicular phase (gonadotropin-independent phase), transition from preantral to early antral 

stage (gonadotropin-responsive), and gonadotropin-dependent follicular growth phase which 

includes follicle recruitment, selection and ovulation (Aerts and Bols 2010, McGee and Hsueh 

2000). In bovine species, follicular development within one estrous cycle occurs in a wave-

like pattern (Jaiswal et al. 2009). In every wave, several follicles will be recruited into the 

growth phase but one follicle will be selected to subsequently be a dominant (Ginther et al. 

1989). Although some biological and regulatory mechanisms are known, several key elements 

of folliculogenesis remain unclear. Among several processes during follicular development in 

cattle, mechanisms that allowed selected follicle to grow into dominant follicle while the rest 

follicle regress (Evans and Fortune 1997), are not clearly understood. However, several 

studies have demonstrated the critical interaction between oocyte and surrounding somatic 

cells (theca and granulosa cells) (Cecconi et al. 2004, Gilchrist et al. 2004b, Orisaka et al. 

2009) and within somatic cells as well (Parrott and Skinner 1998). 

Granulosa cells are the most important follicular cells for supporting the follicular growth 

progression, oocyte developmental competence and ovulation (Voronina et al. 2007). At the 

late stage of the estrous cycle, follicles enter into non-exponential growth phase with slower 

increase in diameter (Ali et al. 2001, Manikkam and Rajamahendran 1997). This condition 

coincided with the declining of granulosa cell proliferation and progression while terminal 

differentiation of granulosa cell lead to granulosa lutein cells (Hirshfield 1991, Rao et al. 

1978, Richards et al. 1986, Richards 1994). The granulosa cell proliferation and 

differentiation seem to be a critical cellular activity within the dominant follicle and is 

regulated by the balance between positive and negative regulators of cell cycle kinase 

cascades (Robker and Richards 1998a). For instance, deletion of the proliferation-related gene 

in mice granulosa cell, namely CCND2, resulted in decreased proliferation and a reduced 

number of granulosa cell. Similarly, the P27 gene deleted granulosa cell, a gene responsible 

for differentiation, exhibited impaired luteinization and reduced number of the granulosa 

lutein cell. These both phenomenons lead to incomplete folliculogenesis and ovulation failure 

(Robker and Richards 1998b). 
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The ovulation process is the result of a long and orchestrated process to release the competent 

oocyte which is fertilizable, followed by normal embryo development and eventually the birth 

of healthy offspring (Labrecque and Sirard 2014). During the oogenesis, the oocyte is arrested 

in the diplotene of the prophase stage of first meiosis cleavage within the ovarian follicle. 

Along with the follicle recruitment, the volume of the oocyte increases, undergoes replication 

and results in redistribution of cytoplasmic organelles (Picton et al. 1998). The resumption of 

the meiosis progression of the oocyte during folliculogenesis is influenced by the local 

microenvironment formed by companion somatic cells, namely, cumulus oophorus (Sanchez 

and Smitz 2012). The interaction between oocyte and cumulus cells is crucial for the 

development and functions of both cell types (Eppig 2001, Gilchrist et al. 2004a, Matzuk et 

al. 2002). For instance, the removal of cumulus cell before in vitro oocyte maturation inhibits 

oocyte developmental competence (Vozzi et al. 2001), and the similar result was obtained 

when the interaction of both cells was disrupted using gap junction inhibitors (Atef et al. 

2005). 

At the late stage of estrous cycle, granulosa cells from preovulatory follicle started to express 

the LH receptor (Bao et al. 1997). In response to the LH surge, the granulosa cell starts to 

differentiate into granulosa lutein cell, the expression of some genes related to progesterone 

synthesis was increased and followed by the increment of granulosa cell progesterone 

synthesis (Baufeld and Vanselow 2013, Chang et al. 2015, Havelock et al. 2004, Zhang et al. 

2015). Apart from granulosa cells, six hours after LH surge, the germinal vesicle breakdown 

(GVBD) of the oocyte is started along with increased steroidogenesis-related genes in the 

cumulus cells, including HSD3B2, INHBA, PGR, HPGD and DHCR24 (Assidi et al. 2010, 

Dieleman et al. 1983, Sirard et al. 1989). Several studies proved that supplementation of LH 

and FSH within in vitro maturation (IVM) media induced oocyte maturation, cumulus cells 

expansion, synthesis of hyaluronic acid and progesterone production by cumulus cells (Ježová 

et al. 2001, Nagyova et al. 2011, Nagyova et al. 2012, Nagyová et al. 1999, Procházka et al. 

1991). The progesterone synthesis during oocyte maturation process is essential for oocyte 

meiosis resumption and subsequent oocyte maturation processes (Aparicio et al. 2011, Choi et 

al. 2001, Ježová et al. 2001, Montano et al. 2009, Nagyova et al. 2011, Nagyova et al. 2012, 

Shimada et al. 2004c, van Tol et al. 1996, Yamashita et al. 2003). In addition, administration 

of progesterone during IVM is believed to promote oocyte maturation in various species in a 

dose-dependent manner (Jamnongjit et al. 2005, Siqueira et al. 2012, Yamashita et al. 2003). 

On the other hand, the inhibition of progesterone synthesis during oocyte maturation 

drastically decreased the percentage of mature oocyte (MII stage), ovulation rate and 
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subsequent embryonic development in mouse (Aparicio et al. 2011, Panigone et al. 2008, 

Siqueira et al. 2012, Sirotkin 1992), porcine (Kawashima et al. 2008, Shao et al. 2003, 

Shimada and Terada 2002, Shimada et al. 2004c) and bovine species (Aparicio et al. 2011, 

O'Shea et al. 2013, Roh et al. 1988, Shao et al. 2003, Shimada et al. 2004b, Shimada et al. 

2004a, Wang et al. 2006). 

Insights into the molecular mechanism regulating the follicular development, an orchestrated 

expression of genes are believed to occur in various follicular cells. Several studies have been 

conducted to investigate the differential expression of genes in granulosa cells derived from 

small, medium and large antral follicle in bovine (Douville and Sirard 2014, Hatzirodos et al. 

2014b). The mRNA abundance in the different follicular size demonstrated numbers of genes 

and pathways associated with the regulation of follicular dominance (Girard et al. 2015, 

Hatzirodos et al. 2014a) and development of oocyte competence in the late stage of estrous 

cycle (Nivet et al. 2013). Apart from this, the dynamics of gene expression in oocyte and 

cumulus cells before and after maturation process indicates the spatiotemporal regulation of 

genes during oocyte maturation (Assidi et al. 2010, Fair et al. 2007, Regassa et al. 2011). We 

have shown in our previous work that the presence of oocyte and cumulus cells in the culture 

of oocyte-ectomized cumulus cells and denuded oocyte, respectively, altered the pattern of the 

differential expressed genes in both cells types (Regassa et al. 2011). It has been postulated 

that the differential expression of genes in one way or the other are believed under the 

regulation of post-transcriptional modifiers, namely microRNAs. 

The role of microRNAs has been studied in the last decade to provide evidenced the role of 

microRNAs in the follicular cells function (Table 1). In our previous work, we demonstrated 

the dynamic change of the microRNAs global expression in granulosa cells derived from 

large and small follicles at day 3, 7 (Salilew-Wondim et al. 2014) and 19 (Gebremedhn et al. 

2015) of the estrous cycle in bovine. Especially in the late stage of the estrous cycle (day 19), 

among several microRNAs, miR-17-5p, miR-19a, miR-20a and miR-92a, which are belong to 

miR-17-92 cluster, were found to be upregulated in the subordinate follicle compared to the 

dominant ones (Gebremedhn et al. 2015). 

Table 1. List of microRNAs expressed in ovarian follicle cells. 

Functions MicroRNA Target genes Reference 

Promote granulosa cells 

proliferation 

Hsa-miR-93 

Mmu-miR-242 

CDKN1A 

SMAD7 

(Jiang et al. 2015) 

(Yao et al. 2010) 
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Suppress granulosa cell 

proliferation 

Chi-miR-10b 

Mmu-miR-181a 

Mmu-miR-145 

BDNF 

ACVR2A 

ACVR1B 

(Peng et al. 2016) 

(Zhang et al. 2013) 

(Yan et al. 2012) 

Induce granulosa cell apoptosis Mmu-miR-125a-5p 

Hsa-miR-146a 

 

Ssc-let-7g 

 

Ssc-miR-26b 

Ssc-miR-34a 

Ssc-miR-26b 

STAT3 

IRAK1 

TRAF6 

TGFΒ1 

MAP3K1 

SMAD4 

INHBB 

ATM 

(Wang et al. 2016) 

(Chen et al. 2015) 

 

(Zhou et al. 2015a) 

(Cao et al. 2015) 

(Liu et al. 2014a) 

(Tu et al. 2014) 

(Lin et al. 2012) 

Inhibit granulosa cell apoptosis Mmu-miR-22 

Ssc-miR-92 

SIRT1 

SMAD7 

(Xiong et al. 2016) 

(Liu et al. 2014b) 

Regulate 17β-estradiol synthesis 

of granulosa cells 

Mmu-miR-764-3p 

Mmu-miR-132 

Mmu-miR-133b 

Mmu-miR-383 

Ssc-miR-378 

SF1 

NURR1 

FOXL2 

RBMS1 

CYP19A1 

(Wang et al. 2015) 

(Wu et al. 2015) 

(Dai et al. 2013) 

(Yin et al. 2012) 

(Xu et al. 2011a) 

Regulate oocyte maturation Ssc-miR-378 CYP19A1 (Pan et al. 2015) 

Involve in the regulation of 

cumulus expansion 

Mmu-miR-224 PTX3 (Yao et al. 2014) 

 

MicroRNA 17-92 (miR-17-92) cluster is one of the best characterized polycistronic miRNAs, 

consist of six individual miRNAs, namely miR-17, miR-18a, miR-19a, miR-20, miR-19b and 

miR-92a (Kumar et al. 2013). Based on the sequence homology and seed region conservation, 

the six individual miRNA in the cluster belong to four different microRNA families, namely 

miR-17 (miR-17 and miR-20), miR-18, miR-19 (miR-19a and miR-19b) and miR-92 family 

(Tanzer and Stadler 2004). In addition, this microRNA cluster is transcribed from intergenic 
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region of chromosome 12 of the bovine genome and its expression is believed to be regulated 

by MYC (Kumar et al. 2013, O'Donnell et al. 2005), E2F1-3 (Sylvestre et al. 2007) and 

SMAD3 (Luo et al. 2014) transcription factor genes. Several studies have been conducted by 

modulating the expression of miR-17-92 cluster revealed that miR-17-92 cluster members 

play a role in cell differentiation, cell proliferation, self-renewal, cell apoptosis and motility of 

various cell types (Cohen et al. 2015, Dou et al. 2015, Li et al. 2014, Poitz et al. 2013, Qin et 

al. 2013, Wu et al. 2013, Wu et al. 2014, Xu et al. 2014). However, the functional role of this 

microRNA cluster in granulosa cell function and oocyte maturation is not yet known. 

Taking all these information into account, we hypothesized that modulation of miR-17-92 

cluster members play significant role in bovine granulosa cells to support the follicular 

development and oocyte growth. For this, two experiments were conducted to achieve the 

following objectives: 

1. To investigate the role of miR-17-92 cluster in bovine granulosa cell function. 

2. To investigate the role of this microRNA cluster in bovine oocyte maturation in vitro. 
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1.2 Materials and methods 

 

To achieve the objectives of this study, several materials and methods were used. The details 

of materials and methods are described in the respective chapters of this thesis. The 

importance of the main methods and their description are briefly summarized here. 

 

1.2.1 Bovine granulosa cell culture  

Granulosa cells were isolated from healthy small follicle (3-5 mm of diameter) of bovine 

ovaries obtained from a local slaughterhouse. Cell concentration was determined using trypan 

blue exclusion method. A total 2.5 x 10
5
 granulosa cells per well were seeded into 600 µl 

culture medium (DMEM/F12-HAM medium supplemented with 10% FBS, 100 IU/ml of 

penicillin, 100 μg/ml of streptomycin and 2.5 μg/ml fungizone (Sigma-Aldrich Chemie 

GmbH, Taufkirchen, Germany) in CytoOne® 24-well plate (Starlab GmbH, Hamburg, 

Germany). Granulosa cell cultures were performed at 37 ºC in a humidified atmosphere with 

5% (v/v) CO2 in air. 

 

1.2.2 Cumulus-oocyte complex (COC) collection and in vitro oocyte maturation 

The COCs were isolated from healthy small follicles (2-8 mm of diameter) of bovine ovaries 

obtained from a local slaughterhouse. The good quality and morphologically uniform COCs 

were washed before set into culture to obtain matured oocytes or were directly frozen as 

immature COCs (germinal vesicle; GV). The COCs were cultured in groups of 50 in 400 µl of 

maturation media (modified parker medium supplemented with 12% estrus cow serum and 10 

µg/ml Follitropin®) under mineral oil in five-well dishes. Maturation was performed for 22 h 

at 39 °C in a humidified atmosphere with 5% (v/v) CO2 in air. The cumulus cells and oocytes 

from the immature and matured group of COCs were separated by gentle pipetting in TCM-

199 supplemented with hyaluronidase (1 mg/ml). Matured oocyte (metaphase II stage; MII) 

was indicated by the presence of first polar body under an inverted microscope. The total 

numbers of recovered and matured oocytes after IVM were recorded. The maturation rate was 

calculated from the number of matured oocytes compared to the total number of recovered 

oocytes.  
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1.2.3 Cumulus cells and denuded oocytes culture 

To investigate the effect of oocyte on cumulus cells microRNA expression and vice versa, 

cumulus cells and oocytes were cultured in the presence or absence of the others. For this, 

cumulus cells and oocytes from 100 collected COCs were separated and cultured 

independently in the maturation media at 39 °C in 5% (v/v) CO2 incubator for 22 h. The 

cumulus cells (CCs-Oo) and denuded oocytes (Oo-CCs) were collected and stored at -80 °C 

until further analysis. The cumulus cells and oocytes from COCs culture were used as 

controls (CCs+Oo and Oo+CCs). 

 

1.2.4 MicroRNA mimic and inhibitor transfection 

To investigate the function of microRNA 17-92 cluster in bovine granulosa cell culture, 100 

nM of individual or a pool of microRNA 17-92 cluster mimic or inhibitor (miR-17-5p, miR-

19a, miR-20a, miR-92a; miRCURY LNA™; Exiqon, Vedbaek, Denmark) were transfected 

into subconfluent granulosa cells using Lipofectamine® 2000 transfection reagent (Life 

Technologies GmbH, Darmstadt, Germany). Cultured granulosa cells and spent media were 

collected 48 h post-transfection. To investigate the role of miR-20a during IVM, 50 nM of 

miR-20a mimic or inhibitor were transfected in COCs. Maturated COCs and spent media 

were collected 22 h post-transfection. 

 

1.2.5 MicroRNA target prediction 

Target gene prediction for members of the miR-17-92 cluster was performed by using 

miRWalk database (http://www.umm.uniheidelberg.de/apps/zmf/mirwalk/). The target genes 

were identified at least by four prediction tools and those with p-value<0.05 were selected for 

further analysis. Common target genes of all microRNA in the cluster were selected and 

binding site prediction was performed by using PITA 

(http://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html) with minimum 7-mer seed 

region. Pathway analysis was performed by KEGG pathways database 

(http://www.genome.jp/kegg/pathway.html) and microRNA-mRNA binding site prediction in 

bovine sequences was performed by using TargetScan (http://www.targetscan.org). 

 

 

http://www.umm.uniheidelberg.de/apps/zmf/mirwalk/
http://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html
http://www.genome.jp/kegg/pathway.html
http://www.targetscan.org/
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1.2.6 Plasmid construction and luciferase assay 

Wild-type plasmid was constructed by ligating the 3´-UTR fragment into pmirGLO Dual-

Luciferase miRNA Target Expression Vector (Promega GmbH, Mannheim, Germany). Gene 

specific primers were used to amplify 3´-UTR region of PTEN and BMPR2 as listed in Table 

S1 (Chapter 2). Specific primers and 50 bp mutated-oligonucleotides were designed based on 

bovine PTEN (XM_613125) and BMPR2 (NM_001304285) mRNA sequences in GenBank. 

Afterwards, subconfluent cultured granulosa cells (70-80% of confluency) were co-

transfected with 500 ng of plasmid harboring wild-type or mutated-sequences and 50 nM of 

the corresponding individual microRNA mimic or mimic negative control (mimic NC; 

Exiqon, Vedbaek, Denmark). Transfection was performed using Lipofectamine® 2000 (Life 

Technologies GmbH, Darmstadt, Germany) as transfection reagent. The cell lysate was 

extracted using 1x Passive Lysis Buffer (PLB; Promega GmbH, Mannheim, Germany) at 48 

hours post transfection. Luciferase activity assay in cultured granulosa cells was performed 

using pmirGLO Dual Luciferase® Reporter Assay System (Promega GmbH, Mannheim, 

Germany) according to manufacturer’s protocol. The absorbance of firefly and renilla 

luciferase activity was detected by Centro LB 960 Microplate Luminometer (Berthold 

Technologies GmbH). 

 

1.2.7 Total RNAs isolation from granulosa and cumulus cells 

Total RNAs from granulosa and cumulus cells were extracted using miRNeasy® mini kit 

(Qiagen GmbH, Hilden, Germany) following the manufacturer’s protocol. Before starting the 

total RNAs extraction, granulosa and cumulus cells were washed using 1x PBS to remove 

remaining culture media. At the end of the extraction protocol, trapped RNAs in the 

membrane of spin column were eluted using 30 µl RNase-free water. Quantity and quality of 

isolated RNAs were assessed using NanoDrop 8000 UV-Vis Spectrophotometers (Thermo 

Scientific, Wilmington, USA).  

 

1.2.8 Total RNA isolation from denuded oocytes 

In order to extract the total RNAs from denuded oocytes, a pool consisted of 50 denuded 

oocytes was washed using 0.9 ml 1 x PBS/0.1 ml 0.5 M EDTA followed by centrifugation at 

3000 x g for 5 minutes. The supernatant was removed and the total RNAs was isolated from 

cell pellet using PicoPure® RNA isolation kit (Life Technologies GmbH, Darmstadt, 
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Germany). Total RNAs concentration and purity were determined using NanoDrop 8000 UV-

Vis Spectrophotometers (Thermo Scientific, Wilmington, USA) for further analysis. 

 

1.2.9 Candidate genes expression analysis 

To investigate the expression of miR-17-92 cluster members target and candidate genes in 

granulosa and cumulus cells, the equal amount of total RNA was reverse transcribed using 

RevertAid first stand cDNA synthesis kit (Life Technologies GmbH, Darmstadt, Germany) 

with oligo (dT)18 primer. The primers used for gene expression analysis have been confirmed 

by sequencing analysis using GenomeLab™ GeXP Genetic Analysis System (Beckman 

Coulter GmbH, Krefeld, Germany). The quantitative PCR (qPCR) was performed using 

iTaq™ Universal SYBR® Green Supermix (Bio-Rad Laboratories GmbH, München, 

Germany) in Applied Biosystem® StepOnePlus™ (Applied biosystems, Foster City, CA, 

USA). The mRNAs expression data was analyzed using comparative Ct (2
-∆∆Ct

) methods 

(Livak and Schmittgen 2001) and the expression level of β-ACTIN was used for 

normalization. 

 

1.2.10 MiR-20a expression analysis 

The cDNA for miR-20a expression was constructed from an equal amount of total RNA using 

Universal cDNA synthesis kit (Exiqon, Vedbaek, Denmark) following the manufacturer's 

instructions. MiR-20a expression was performed using ExiLENT SYBR® green master mix 

(Exiqon, Vedbaek, Denmark) in Applied Biosystem® StepOnePlus™ (Applied biosystems, 

Foster City, CA, USA). The relative expression of miR-20a was analyzed using comparative 

Ct (2
-∆∆Ct

) methods (Livak and Schmittgen 2001). The 5s rRNA expression was used as an 

internal control. 

 

1.2.11 Western blot analysis 

Total protein from granulosa and cumulus cells were isolated using 1x PLB (passive lysis 

buffer; Promega GmbH, Mannheim, Germany) and the protein concentration was determined 

using Coomassie Protein Assay Reagent (Life Technologies GmbH, Darmstadt, Germany). 

The same amount of protein was separated on 4-16% gradient SDS-polyacrylamide gel. 

Transfer protein from the gel into Immun-Blot® PVDF Membrane (Bio-Rad Laboratories 
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GmbH, Germany) was performed using Trans-Blot® SD Semi-Dry Transfer Cell (Bio-Rad 

Laboratories GmbH, Germany). The membrane was blocked in Roti®-Block (Carl Roth 

GmbH, Germany) for 1 h at room temperature and then incubated overnight at 4 °C with an 

anti-BMPRII goat polyclonal antibody, anti-PTEN goat polyclonal antibody, anti-PCNA 

rabbit polyclonal antibody, anti-STAR rabbit polyclonal antibody or anti-β-ACTIN mouse 

monoclonal antibody (Santa Cruz Biotechnology Inc, Germany). The membrane was 

incubated for further 2 h at room temperature in donkey anti-goat, goat anti-rabbit or goat 

anti-mouse IgG-HRP (1:10000; Santa Cruz Biotechnology Inc, Germany). The protein bands 

were visualized using Clarity™ Western ECL Substrate (Bio-Rad Laboratories Inc, USA) and 

membrane image was captured using ChemiDoc™ XRS+ system (Bio-Rad Laboratories 

GmbH, Germany) and the ImageJ 1.48v software (http://imagej.nih.gov/ij) was used to 

analyze the signal intensities. 

 

1.2.11 Determination of granulosa cell diameter 

Granulosa cell diameter was measured as an indicator for cell differentiation using ImageJ 

1.48v software (http://imagej.nih.gov/ij). The pictures of granulosa cells were captured from 

five different areas of counting chamber using 40 x magnifications. Cells with diameter ≥ 14 

μm were considered as a differentiated cell while those with diameter ≤ 14 μm were 

considered as undifferentiated (Kuran et al. 1995). 

 

1.2.12 Cell proliferation assay 

To investigate the proliferation rate, a total 2 x 10
4
 were cultured in 96-well plate and cultured 

in the culture medium (described in the previous section). MiR-17-92 cluster members mimic 

or inhibitor was transfected 48 h after seeding. Granulosa cell proliferation analysis was 

performed 48 h post-transfection using CCK-8 kit (Dojindo EU GmbH, München, Germany) 

according to manufacturer´s protocol. The proliferation rate was indicated by the absorbance 

at 450 nm wavelength using Synergy™ H1 Multi-Mode Reader (BioTek Germany, Bad 

Friedrichshall, Germany). 

 

 

 

http://imagej.nih.gov/ij
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1.2.13 Progesterone assay 

Progesterone level in spent media of granulosa cell culture and IVM were measured using 

progesterone ELISA kit (ENZO life sciences GmbH, Lörrach, Germany) according to the 

manufacturer´s instruction. Before analysis, the spent media was diluted using 1x PLB. The 

progesterone level was calculated from optical density at 405 nm wavelength using 

Synergy™ H1 Multi-Mode Reader (BioTek Germany, Bad Friedrichshall, Germany). 

 

1.2.14 Targeted knockdown of PTEN and BMPR2 genes using small interfering RNA 

(siRNA) 

Small interfering RNA (siRNA) targeting PTEN or BMPR2 gene was transfected into 

subconfluent cultured granulosa cell to cross-validate the results obtained from miR-17-92 

cluster members transfection. Gene expression and other phenotype measurements, namely 

cell diameter, cell proliferation and progesterone levels analysis were performed 48 h post 

siRNA transfection. 

 

1.2.15 Data analysis 

All data are presented as mean ± standard error mean (SEM). The statistical significant 

difference between the groups was analyzed using t-test in GraphPad Prism® software 

version 5.02 (GraphPad Software, Inc., La Jolla, CA, USA). Mean differences at p<0.05 were 

considered as significant and indicated in the corresponding figure legend. 

 

 

 

 

 

 

 

 

 



Chapter 1 

 

12 
 

1.3 Results 

 

The main results in this thesis are briefly described here. The detailed results can be found in 

the respective chapters in this thesis. 

 

1.3.1 Target prediction and validation of miR-17-92 cluster member in granulosa cells 

In this study, we first performed in silico analysis to predict potential genes targeted by miR-

17-92 cluster members. Bioinformatic analysis by miRwalk revealed that 233 genes to be 

commonly targeted by the individual miRNA members of the cluster, namely miR-17-5p, 

miR-19a, miR-20a and miR-92a. Binding site prediction based on PITA identified 91 genes 

with a minimum 7-mer binding site. Pathway analysis of the top 26 genes showed that PI3K-

AKT signaling pathway, FOXO signaling pathway, focal adhesion and hippo signaling 

pathway to be among the top 10 pathways. The PTEN and BMPR2 were selected as targets 

based on their conserved binding site between human and bovine, and their potential 

involvement in bovine granulosa cells function. 

Validation of PTEN and BMPR2 as potential target genes of miR-17-92 cluster members was 

performed using luciferase assay. Here we showed that transfection of miR-17-92 cluster 

members mimic in granulosa cell harboring 3´-UTR of PTEN and BMPR2 genes reduced the 

luciferase activity compared to those granulosa cell transfected with microRNA mimic 

negative control. In addition, no difference was observed between relative luciferase activity 

in granulosa cells harboring the mutant-type constructed plasmid PTEN and BMPR2 3´-UTR 

transfected with miR-17-92 cluster members mimic compared to microRNA mimic control. 

Further validation was performed by modulating the expression of individual or pooled miR-

17-92 cluster members in cultured granulosa cells. In the present study, we found that 

overexpression of individual or pool of miR-17-92 cluster members in granulosa cells resulted 

in decreased mRNA expression of PTEN and BMPR2 genes. However, the expression of 

PTEN gene was upregulated in miR-17-5p and miR-19a inhibitor transfected granulosa cells 

while elevated BMPR2 gene expression was observed in granulosa cells transfected with 

miR-19a, miR-20a and pool of miR-17-92 cluster. These results from mRNA expression 

analysis were confirmed by the protein expression analysis of those target genes. 
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1.3.2 The effect of miRNA 17-92 cluster members modulation in granulosa cell 

proliferation and differentiation 

We next examined the effect of overexpression and inhibition of miR-17-92 cluster in 

granulosa cell function. In this experiment, we showed that except miR-17-5p mimic, 

granulosa cells transfected with individual or a pool of miR-17-92 cluster members mimic 

increased cellular proliferation. On the other hand, proliferation rate in granulosa cells 

transfected with miR-92a and a pool of miR-17-92 cluster inhibitors was significantly 

reduced. These results were further confirmed by the expression of cell proliferation marker 

genes, namely CCND2 and PCNA. The overexpression of miR-17-5p and miR-19a in 

granulosa cells increased the expression of CCND2 gene, whereas the PCNA expression was 

increased in granulosa cells transfected with miR-20a and miR-92a mimic. Inhibition of miR-

17-92 cluster members in granulosa cells resulted in decreased CCND2 gene expression while 

no difference was observed in the expression of PCNA gene. Nevertheless, PCNA protein 

analysis revealed an increasing trend in granulosa cells transfected with either miRNA-17-92 

cluster mimic or inhibitor. 

Granulosa cell differentiation as indicated by cell diameter revealed that except in miR-20a 

overexpression, granulosa cells transfected with miR-17-92 cluster mimic had a lower 

percentage of differentiated cells. No difference in cell differentiation rate was observed in 

granulosa cell transfected with miR-17-92 cluster members. In addition, progesterone level 

measured in spent media showed that miR-20a overexpressed granulosa cells resulted in 

increased progesterone synthesis. There was no effect of either miR-17-92 cluster members 

mimic or inhibitor in the mRNA expression of cell differentiation-related genes, namely 

CYP11A1 and STAR. However, the PCNA protein in granulosa cell transfected with miR-17-

92 cluster members mimic and inhibitor showed decreasing and increasing trend, 

respectively. 

 

1.3.3 Selective knockdown of PTEN and BMPR2 genes 

Cross-validation of the results obtained from miR-17-92 cluster members mimic transfection 

was performed by selectively targeted knockdown of PTEN and BMPR2 in cultured 

granulosa cells using siRNA. The suppression of the PTEN gene resulted in increased 

proliferation rate while no difference was observed in BMPR2 suppression. The mRNA 
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expression of CCND2 and PCNA genes were relatively higher in PTEN and BMPR2 

suppressed granulosa cells. However, the protein level of PCNA showed the opposite trend. 

Apart from cell proliferation, the percentage of differentiated granulosa cells was decreased in 

PTEN suppressed granulosa cells. The progesterone level detected in spent media indicated 

an increasing progesterone synthesis in granulosa cells transfected with PTEN and BMPR2 

siRNA. These results were confirmed by the expression of CYP11A1 and STAR mRNA. 

However, we found inconsistencies between protein and mRNA expression of STAR gene. 

 

1.3.4 Temporal expression of miR-20a in cumulus cells and oocytes  

In this part of experiment, one of the most dominant members of the microRNA 17-92 cluster 

(miR-20a) was selected for further investigation during oocyte maturation. The transcript 

abundance showed that miR-20a expression in cumulus cells increased during in vitro 

maturation, while in the oocytes, the miR-20a expression is being suppressed after in vitro 

maturation. In order to know whether the expression of miR-20a in cumulus cells and oocytes 

is dependent on their communication, we have analyzed cumulus cells and oocytes cultures in 

the presence or absence of oocytes and cumulus cells, respectively. The expression of miR-

20a in cumulus cells cultured with the presence of oocytes (CCs+Oo) was higher compared 

with those cumulus cells cultured without oocytes (CCs-Oo). On the other hand, miR-20a 

expression in oocytes cultured with cumulus cells (Oo+CCs) was lower compared to those 

oocytes cultured without their cumulus cells (Oo-CCs). 

 

1.3.5 Modulation of miR-20a in cumulus oocyte complexes (COCs) during in vitro 

maturation 

To investigate the role of miR-20a during in vitro maturation, we modulated the expression of 

this microRNA by coculturing COCs with miR-20a mimic, inhibitor or corresponding 

control. For feasibility study of miR-20a overexpression or inhibition, first we analyzed the 

expression of miR-20a in cumulus cells and oocytes after transfection. The results showed 

that the expression of miR-20a in cumulus cells was increased and decreased in COCs 

cocultured with miR-20a mimic and inhibitor, respectively. However, the expression of miR-

20a in oocytes could not be detected either in miR-20a mimic or inhibitor cocultured group. 

In addition, we found that overexpression miR-20a leads to increased oocyte maturation rate 

while no difference in the maturation rate was observed in COCs cocultured with miR-20a 
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inhibitor compared to the control. This result was further confirmed by the analysis of oocyte 

maturation marker genes in cumulus cells and oocytes, namely INHBA, MAPK1, PTGS2, 

PTX3, EGFR and CYCB2. With the exception of PTGS2 and CYCB2 gene expression, 

overexpression of miR-20a increased the expression of oocyte maturation marker genes in 

cumulus cells and oocytes. On the other hand, inhibition of miR-20a suppressed the 

expression of those marker genes. 

 

1.3.6 The effect of miR-20a in cumulus cell progesterone synthesis 

Progesterone is one of the critical hormones to support oocyte maturation, produced and 

secreted by cumulus cells during IVM. In the present study, the cumulus cell progesterone 

synthesis, as measured in spent media, relatively increased and decreased in COCs cocultured 

with miR-20a mimic and inhibitor, respectively. The expression of CYP11A1 and STAR 

genes, which are involved in progesterone synthesis, increased in miR-20a overexpressed 

COCs. However, no difference in progesterone was observed between COCs transfected with 

miR-20a inhibitor compared to control. 

 

1.3.7 MiR-20a regulates oocyte maturation and progesterone synthesis by targeting PTEN 

and BMPR2 in cumulus cells 

To confirm whether miR-20a also regulates the expression of PTEN and BMPR2 genes 

during in vitro oocyte maturation, we next examined the expression of PTEN and BMPR2 in 

cumulus cells. The results showed that the expression of PTEN and BMPR2 genes were 

increased and decreased in cumulus cells obtained from COCs cocultured with miR-20a 

mimic and inhibitor, respectively. 
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Abstract 

Granulosa cell proliferation and differentiation are the key developmental steps involved the 

formation of dominant follicle that could be eligible for ovulation. This process is in turn 

regulated by spatiotemporally emerging molecular events. Among others, microRNAs are one 

of the molecular signatures which are believed to regulate granulosa cells function by fine 

tuning the expression of genes. In previous study, we showed that miR-17-92 cluster was 

found to be differentially expressed in the granulosa cells from subordinate and dominant 

follicles at day 19 of the estrous cycle. However, the role of this miRNA cluster in bovine 

follicular cells function is not known. Therefore, in the present study, the role of miR-17-92 

cluster in granulosa cell function was investigated using an in vitro model. Target prediction 

and luciferase assay analysis revealed that miR-17-92 cluster coordinately regulate PTEN and 

BMPR2 genes. Furthermore, overexpression of the miR-17-92 cluster using mimic promoted 

granulosa cell proliferation and reduced the proportion of differentiated cells. However, the 

cluster inhibitor resulted in decreased proliferation and increased differentiation in granulosa 

cells. This was further supported by the expression analysis of marker genes of proliferation 

and differentiation. Furthermore, the role of miR-17-92 cluster was cross-validated by 

selective knockdown of its target genes using siRNA technique. The suppression of PTEN 

and BMPR2 genes revealed similar phenotypic and molecular alterations as observed when 

the granulosa cells were transfected with miR-17-92 cluster mimic. In conclusion, the miR-

17-92 cluster involved in granulosa cell proliferation and differentiation by coordinately 

targeting the PTEN and BMPR2 genes. 

 

Keywords: microRNA 17-92 cluster, granulosa cells, proliferation and differentiation, PTEN, 

BMPR2 
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Introduction 

Follicular development is the most important physiological process to ensure normal 

reproduction of mammalian species. Based on the developmental stage and their dependence 

on the gonadotropin, follicular development can be classified into three phases namely: 

primordial until preantral follicular stage (gonadotropin-independent phase), transition from 

preantral to early antral stage (gonadotropin-responsive), and gonadotropin-dependent 

follicular growth phase which includes follicle recruitment, selection and ovulation (Aerts and 

Bols 2010, McGee and Hsueh 2000). In bovine species, follicular development within one 

estrous cycle occurs in a wave-like pattern (Jaiswal et al. 2009). In every wave, several 

follicles will be recruited into the growth phase but one follicle will be selected to 

subsequently be a dominant follicle while the rest undergo atresia and regress (Ginther et al. 

1989). 

Among the follicular cells, granulosa cells are the key components of the follicular cells 

which are essential to support the progression of follicular growth and oocyte development 

(Voronina et al. 2007). Proliferation and terminal differentiation of granulosa cells are critical 

for ovulation and this phenomenon is regulated by the balance between positive and negative 

regulators of cell cycle kinase cascades (Robker and Richards 1998a). For instance, deletion 

of genes responsible for proliferation and differentiation, namely CCND2 and P27, 

respectively in mice resulted in a decrease of granulosa cells proliferation and impaired 

luteinization, which are leading to incomplete folliculogenesis and ovulation failure (Robker 

and Richards 1998b). 

In order to have a better understanding about the molecular mechanisms associated with 

follicular development and granulosa cell function, several studies have been conducted to 

investigate the differential expression of genes in granulosa cells of different follicular size in 

bovine species (Douville and Sirard 2014, Hatzirodos et al. 2014b). More focus was laid on 

differentially expressed genes associated with follicular dominance (Girard et al. 2015, 

Hatzirodos et al. 2014a) and oocyte competence (Nivet et al. 2013). On the other hand, the 

expression of genes in bovine follicular cells are believed to be under the regulation of post 

transcriptional modifiers, namely microRNAs (Maalouf et al. 2015). On this regards, we have 

previously studied the global expression profile of microRNAs in bovine granulosa cells 

derived from dominant and subordinate follicle at day 3 and 7 (Salilew-Wondim et al. 2014), 

and 19 (Gebremedhn et al. 2015) of the estrous cycle. In the later study, among several 

clusters of microRNAs, the microRNA 17-92 cluster (miR-17-5p, miR-19a, miR-20a and 
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miR-92a) was found to be enriched in granulosa cells derived from subordinate follicle 

compared to the dominant ones. However, the role of this microRNA cluster in bovine 

granulosa cell function is not yet known. Interestingly, bioinformatic analysis of this 

microRNA cluster revealed that PTEN and BMPR2 genes to be the potential target genes of 

this microRNA cluster and they are known to play a vital role in bovine granulosa cells 

development in dominant follicle and small/subordinate follicle (Douville and Sirard 2014, 

Hatzirodos et al. 2014b). Therefore, this study has been designed to investigate the role of 

microRNA 17-92 cluster in bovine granulosa cell using an in vitro model.  

 

Materials and Methods 

Bovine granulosa cell culture  

Bovine ovaries as sources of granulosa cells were collected from a local slaughterhouse and 

transported to the laboratory in warm 0.9% NaCl solution. Immediately after arrival, ovaries 

were washed three times using a new warm 0.9% NaCl solution. The granulosa cells were 

collected from healthy small follicle (3-5 mm of diameter) using a 20-gauge needle. The 

granulosa cells were transferred to a culture medium (DMEM/F12-HAM medium 

supplemented with 10% FBS, 100 IU/ml of penicillin, 100 μg/ml of streptomycin and 2.5 

μg/ml fungizone; Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany). Cell viability and 

concentration were determined by using trypan blue exclusion method. Finally, a total of 2.5 

x 10
5
 cells per well were seeded into CytoOne

®
 24-well plate (Starlab GmbH, Hamburg, 

Germany) containing 600 µl culture medium at in 37 °C with 5% CO2. 

 

MicroRNA target prediction 

Target genes of the miR-17-92 cluster members were predicted using miRWalk database 

(http://www.umm.uniheidelberg.de/apps/zmf/mirwalk/) and genes commonly predicted by at 

least four prediction tools with p-value<0.05 were selected as potential target gene for further 

analysis. Target genes were common for all members of miR-17-92 cluster were selected and 

the binding sites of those genes were further predicted using PITA 

(http://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html) and TargetScan 

(http://www.targetscan.org) with minimum 7-mer seed region. The canonical pathway 

enriched by the target genes of the miR-17-92 cluster were identified using KEGG pathways 

database (http://www.genome.jp/kegg/pathway.html). 

http://www.umm.uniheidelberg.de/apps/zmf/mirwalk/
http://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html
http://www.targetscan.org/
http://www.genome.jp/kegg/pathway.html
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Plasmid construction  

Wild-type plasmid was constructed by ligating the 3´-UTR of PTEN or BMPR2 gene 

fragments into the pmirGLO Dual-Luciferase miRNA Target Expression Vector (Promega 

GmbH, Mannheim, Germany) while the mutant plasmid was constructed by ligating 50 bp 

mutated nucleotides of PTEN or BMPR2 gene. Gene specific primers (listed in Electronic 

Supplementary Material, Table S1) were used to amplify the 3´-UTR region of PTEN and 

BMPR2 genes. The gene specific primers and 50 bp mutated-oligonucleotides were designed 

on the bovine PTEN (XM_613125) and BMPR2 (NM_001304285) mRNA sequences. 

Luciferase assay 

Sub-confluent in vitro cultured granulosa cells (70-80% of confluency) were co-transfected 

with 500 ng of plasmid harboring wild type or mutant-sequences of the 3´-UTR of PTEN or 

BMPR2 and 50 nM of the corresponding individual miRCURY LNA™ microRNA mimics 

(Exiqon, Vedbaek, Denmark) or miRCURY LNA™ microRNA mimic negative control 

(mimic NC; Exiqon, Vedbaek, Denmark). Transfection was performed using Lipofectamine® 

2000 transfection reagent (Life Technologies GmbH, Darmstadt, Germany). Afterward, the 

cell lysates were extracted using 1x Passive Lysis Buffer (PLB; Promega GmbH, Mannheim, 

Germany) 48 h post transfection. The luciferase activity assay in cultured granulosa cells was 

performed using pmirGLO Dual Luciferase
®
 Reporter Assay System (Promega GmbH, 

Mannheim, Germany) according to manufacturer’s protocol. Finally, the absorbance of firefly 

and renilla luciferase activity was detected by Centro LB 960 Microplate Luminometer 

(Berthold Technologies GmbH). 

 

MicroRNA mimic and inhibitor transfection 

To investigate the function of microRNA 17-92 cluster in bovine granulosa cells, sub-

confluent cultured granulosa cells were transfected with 100 nM of individual microRNA 

(miR-17-5p, miR-19a, miR-20a, miR-92a) or pool of miR-17-92 cluster miRCURY LNA™ 

microRNA mimics or inhibitors (Exiqon, Vedbaek, Denmark). The granulosa cells 

transfected with 100 nM of mimic or inhibitor miRCURY LNA™ microRNA mimic or 

inhibitor negative controls (NC), respectively (Exiqon, Vedbaek, Denmark) were used as 

controls for appropriate treatments. The cultured granulosa cells and the spent media were 

then collected 48 h post transfection for further analysis. 
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Total RNA isolation and quantitative real-time PCR (qRT-PCR) 

To confirm the expression of miRNA cluster target, and cell proliferation and differentiation 

marker genes in granulosa cells transfected with miRNA cluster mimic, inhibitor or NC, the 

cells were harvested 48 h post transfection and lysed using lysis buffer. Total RNA was then 

isolation in the cell lysates using miRNeasy
®

 mini kit (Qiagen GmbH, Hilden, Germany) 

following manufacturer’s protocol. After assessing the quality and concentration of the RNA 

samples, cDNA synthesis was performed using RevertAid first stand cDNA synthesis kit 

(Life Technologies GmbH, Darmstadt, Germany) with oligo (dT)18 primer. The qRT-PCR 

was performed using iTaq™ Universal SYBR
®

 Green Supermix (Bio-Rad Laboratories 

GmbH, München, Germany) in Applied Biosystem
®
 StepOnePlus™ (Applied biosystems, 

Foster City, CA, USA). The mRNAs expression data was analyzed using comparative Ct (2
-

∆∆Ct
) methods (Livak and Schmittgen 2001) and the expression level of β-ACTIN was used 

for normalization. Gene specific primers used for mRNA expression analysis are listed in 

Electronic Supplementary Material, Table S2. 

 

Western blot analysis 

Total protein from cultured granulosa cells was isolated 48 h post transfection using 1x PLB 

(Promega GmbH, Mannheim, Germany) and the protein concentration was determined using 

Coomassie Protein Assay Reagent (Life Technologies GmbH, Darmstadt, Germany). A total 

of 30 μg of protein was separated on 4-16% gradient SDS-polyacrilamide gel. Afterwards, the 

protein was transferred into Immun-Blot
®
 PVDF Membrane (Bio-Rad Laboratories GmbH, 

München, Germany) using Trans-Blot
®
 SD Semi-Dry Transfer Cell (Bio-Rad Laboratories 

GmbH, München, Germany). Following this, the membrane was incubated overnight with 

anti-PTEN goat polyclonal antibody (product no. sc-6818), anti-BMPRII goat polyclonal 

antibody (product no. sc-5682), anti-PCNA rabbit polyclonal antibody (product no. sc-7907), 

anti-STAR rabbit polyclonal antibody (product no. sc-25806) or anti-β-ACTIN mouse 

monoclonal antibody (product no. sc-47778; Santa Cruz Biotechnology Inc., Heidelberg, 

Germany). At the end of incubation period, the membrane was washed 6 times with 1x TBST 

(tris-buffered saline and tween 20) and incubated with donkey anti-goat, goat anti-rabbit or 

goat anti-mouse IgG-HRP secondary antibody (Santa Cruz Biotechnology Inc., Heidelberg, 

Germany). Detection of the protein signal was then performed using Clarity™ Western ECL 

Substrate (Bio-Rad Laboratories GmbH, München, Germany). Following this, the images 
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were developed using ChemiDoc™ XRS+ system (Bio-Rad Laboratories GmbH, München, 

Germany).  

 

Determination of granulosa cell diameter 

Cultured granulosa cells were harvested using 0.25% trypsin-EDTA solution (Sigma-Aldrich 

Chemie GmbH, Taufkirchen, Germany) and the snapshots of trypsinized granulosa cells were 

captured using a camera from five different areas of counting chamber with 40x microscope 

magnification. Diameter of the granulosa cells was measured using ImageJ 1.48v software 

(http://imagej.nih.gov/ij). Granulosa cells with diameter ≥ 14 μm were considered as 

differentiated cell while those with diameter ≤ 14 μm were considered as undifferentiated 

(Kuran et al. 1995). 

 

Cell proliferation assay 

To perform the cell proliferation assay, 2 x 10
4
 granulosa cells per well were seeded into 96-

well plate and cultured in the growth medium (described in the previous section). Sub-

confluent granulosa cells were then transfected with individual members or pooles of the 

members of the microRNA 17-92 cluster mimic, inhibitor and NCs. After 48 h culture, 10 μl 

of CCK-8 kit solution (Dojindo EU GmbH, München, Germany) was added into each well 

and the plate was incubated for another 2 h. The optical density (OD) associated with 450 nm 

wavelength was measured using Synergy™ H1 Multi-Mode Reader (BioTek Germany, Bad 

Friedrichshall, Germany). 

 

Progesterone assay 

The progesterone level was measured in cultured granulosa cells spent media 48 h post 

transfection. Prior to measuring progesterone level, the spent media was diluted in 1:25000 in 

phosphate buffer saline (PBS) and then the progesterone level was measured using 

progesterone ELISA kit (ENZO life sciences GmbH, Lörrach, Germany) according to the 

manufacture´s instruction and the 405 nm wavelength OD was detected using Synergy™ H1 

Multi-Mode Reader (BioTek Germany, Bad Friedrichshall, Germany). 
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Targeted knockdown of PTEN and BMPR2 genes using small interfering RNA (siRNA) 

Bovine specific Antisense LNA™ GapmeR (Exiqon, Vedbaek, Denmark) were used to inhibit 

the expression of PTEN and BMPR2 genes. For this, sub-confluent cultured granulosa cells 

were transfected with 50 nM of siRNA targeting PTEN or BMPR2. Cells transfected with 50 

nM of siRNA negative control (siRNA NC) were used as controls. Gene expression and other 

phenotype measurements, namely cell diameter, cell proliferation and progesterone levels 

analysis were performed 48 h post siRNA transfection. 

 

Data analysis 

All data are presented as mean ± standard error of the mean (SEM). Statistical significant 

difference between the groups was analyzed using t-test in GraphPad Prism® software 

version 5.02 (GraphPad Software, Inc., La Jolla, CA, USA). Mean differences at p<0.05 were 

considered as significantly different. 

 

Results  

The miRNA 17-92 cluster targets PTEN and BMPR2 genes 

The bioinformatic analysis revealed that 233 genes to be commonly potentially targeted by 

the microRNA 17-92 cluster members among which 91 genes had a minimum 7-mer binding 

sites. Canonical pathway analysis showed that PI3K-AKT signaling pathway, FOXO 

signaling pathway, focal adhesion and hippo signaling pathway were among the top 10 

pathways enriched by miR-17-92 cluster target genes. Among several bioinformatically 

predicted potential target genes, PTEN and BMPR2 were selected for further analysis based 

on their conserved binding site, and their potential role in bovine granulosa cells 

development. Therefore, to further investigate whether these two genes could be targeted by 

miR-17-92 cluster, luciferase assay system was performed using expression vector ligated 

with 3´-UTR of PTEN or BMPR2 genes. Luciferase activity in granulosa cells co-transfected 

with miR-17-5p, miR-19a, miR-20a or miR-92a mimic and plasmid vector harboring wild 

type PTEN or BMPR2 3´-UTR sequences were significantly reduced compared to those cells 

transfected with miRNA mimic control and plasmid vector harboring wild type PTEN or 

BMPR2 3´-UTR (Fig. 1). 
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Following the luciferase assay, we opted to look into whether manipulating the expression 

level of the miRNA 17-92 cluster could affect the expression levels of these target genes. For 

this, cultured granulosa cells were transfected with 100 nM of individual or pooled of mimic 

or inhibitor of miR-17-92 cluster members. Granulosa cells transfected with the negative 

control of inhibitor or mimic were used as controls. Subsequent gene expression analysis was 

performed 48 h post transfection showed that granulosa cells transfected with individual or 

pooled miRNA mimic exhibited a significant reduction in the relative abundance of PTEN 

and BMPR2 genes compared to cells transfected with controls (Fig. 2a). On the contrary, the 

expression levels of PTEN and BMPR2 genes were upregulated in cultured granulosa cells 

transfected with miR-17-92 cluster inhibitors (Fig. 2b). Furthermore, both qualitative and 

quantitative western blot analysis of the PTEN and BMPR2 protein levels showed that 

granulosa cells transfected with miR-17-92 cluster mimic exhibited lower PTEN and BMPR2 

protein levels (Fig. 2c, d) indicating that miRNA 17-92 cluster targets both PTEN and 

BMPR2 genes. 

 

MiRNA 17-92 cluster regulates bovine granulosa cell proliferation and differentiation by 

controlling the expression of PTEN and BMPR2 genes 

Parallel analysis of cellular proliferation and differentiation post over or under expression of 

miR-17-92 cluster using mimic and inhibitor, respectively showed that except miR-17-5p 

mimic, granulosa cells transfected with individual or pool of miR-17-92 cluster members 

mimic significantly increased cellular proliferation activity (Fig. 3a) while, granulosa cells 

transfected with miR-92a inhibitor or pooled miR-17-92 cluster inhibitors significantly 

reduced cellular proliferation activity (Fig. 3b). This was further confirmed by the analysis of 

expression of cell proliferation marker genes, namely CCND2 and PCNA. Nevertheless, 

upregulation of CCDN2 gene expression was observed only in granulosa cells transfected 

with miR-17-5p and miR-19a mimic while PCNA gene expression level was increased only 

in granulosa cells transfected with miR-20a and miR-92a mimic (Fig. 3c). On the other hand, 

transfection of granulosa cells with individual or pooled inhibitors of miR-17-92 cluster 

resulted in a reduced expression of CCND2 gene (Fig. 3d) and no significant difference was 

observed in PCNA gene expression. However, the expression of PCNA protein revealed an 

increasing trend in granulosa cells transfected with either miRNA-17-92 cluster mimic or 

inhibitor (Fig. 3e, f). 
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Following cell proliferation, we also opted to understand whether miR-17-92 cluster could be 

involved in granulosa cells differentiation. For this, the proportion of differentiated cells was 

evaluated based on their size under inverted microscope. Those cells with a diameter of >14 

µm were considered as differentiated while others with diameter of ≤ 14µm were categorized 

as undifferentiated ones. Based on that, except those transfected with miR-20a mimic, 

granulosa cells transfected with miR-17-92 cluster mimic had significantly lower 

differentiating cell compared to cells transfected with mimic NC (Fig. 4a). Moreover, except 

mimic of miR-20a, granulosa cells transfected with inhibitor or mimic of miRNA-17-92 

cluster showed no significant difference in progesterone synthesis (Fig. 4c, d). The mRNA 

expression analysis of the cell differentiation marker genes, namely CYP11A1 and STAR 

genes, showed that except the transfection of miR-17-5p mimic, none of the microRNAs 

including the pooled microRNA mimic resulted in dysregulation of these marker genes (Fig. 

4e, f). However, protein expression analysis in cultured granulosa cells showed that miRNA-

17-92 cluster mimic transfection decreased the STAR protein (Fig. 4g) while miR-17-5p and 

miR-92a mimic transfection showed increasing trend (Fig. 4h). 

 

Targeted knockdown of PTEN and BMPR2 genes in bovine granulosa cells using RNA 

interference increased cell proliferation and progesterone secretion 

In order to validate the phenotypic variation observed in bovine granulosa cells after 

modulating the expression level of miRNA 17-92 cluster, we have performed an independent 

experiment to suppress the expression of the two target genes (PTEN and BMPR2) using 

siRNA technology (Fig. 5a-d). The transfection of granulosa cells with PTEN siRNA has 

effectively increased (p<0.05) cell proliferation while suppression of BMPR2 expression had 

no effect on proliferation of the cells (Fig. 5e). Similarly, relatively higher expressions of 

CCND2 and PCNA genes were observed following targeted suppression of PTEN and 

BMPR2 genes (Fig. 5h). Moreover, the percentage of differentiating cells was found to be 

decreased in granulosa cells transfected with PTEN siRNA (Figure 5f). On the other hand, 

suppression of PTEN and BMPR2 genes increased the expression of CYP11A1 and STAR 

genes (p<0.01; Fig. 5i) and the release of progesterone in spent media (Fig. 5g). However, the 

protein analysis of PCNA and STAR genes showed decreasing trend in granulosa cells 

transfected with both PTEN and BMPR2 siRNA (Fig. 5j).  
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Discussion 

Orchestrated physiological processes are believed to occur in granulosa cells during follicular 

development. However, the molecular mechanisms that could trigger the selection of one 

follicle to develop into dominant follicle while the rest follicles are regressing in cattle are 

barely understood. It has been postulated that these processes are regulated by spatiotemporal 

expression of genes (Douville and Sirard 2014, Girard et al. 2015, Hatzirodos et al. 2014a, 

Hatzirodos et al. 2014b, Nivet et al. 2013) which are epigenetically regulated by miRNAs 

(Feng et al. 2015, Liu et al. 2016, Sontakke et al. 2014, Zhou et al. 2015b). In our previous 

work, among others, microRNA 17-92 cluster was upregulated in bovine granulosa cells 

derived from subordinate compared to the dominant follicle at day 19 of estrous cycles 

(Gebremedhn et al. 2015). Among these, microRNA 17-92 cluster was found to be increased 

in granulosa cells of subordinate follicles compared to preovulatory dominant follicle. This 

may hint that this miRNA cluster could have an important role in granulosa cell function 

during follicular development. 

Based on the insilico target prediction results, miR-17-92 cluster are potentially targeting 

genes involved in several key developmentally related canonical pathways namely, 

PI3K/AKT signaling pathway, FOXO signaling, focal adhesion and hippo signaling pathways 

which are known to be the key pathways in follicular development and ovulation by targeting 

several key genes (Alam et al. 2004, Jagarlamudi et al. 2009, Klusza and Deng 2011, Xiang et 

al. 2015, Zhang et al. 2010). Moreover, among target genes enriched in those pathways, 

PTEN and BMPR2 were selected for wet lab target validation as those genes have conserved 

binding site (seed region) between human and bovine sequences, and their potential role in 

follicular development (Douville and Sirard 2014, Hatzirodos et al. 2014b). Accordingly, the 

luciferase assay validated that PTEN and BMPR2 genes to be direct target of miR-17-92 

cluster. This was further confirmed by modulating the activity of this microRNA cluster in 

bovine granulosa cells using mimic and inhibitor under in vitro condition. Overexpression of 

microRNA 17-92 cluster resulted in reduced expression of both mRNA and protein level of 

PTEN and BMPR2 genes while inhibition resulted in elevated expression of both genes in 

cultured bovine granulosa cells. Therefore, miR-17-92 cluster could regulate the cell 

physiology by optimizing the expression level of PTEN and BMPR2.  

The dysregulation of PTEN and BMPR2 gene expression has been associated with 

abnormalities in follicular development. For instance, the deletion of PTEN gene in mouse 

lead to a premature follicular growth and ovulation failure (Reddy et al. 2008) while targeted 
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disruption of PTEN in ovarian granulosa cells resulted in enhanced proliferation and repress 

structural luteolysis (Richards et al. 2012). Similarly, in the present study, suppression of 

PTEN and BMPR2 genes via overexpressing the microRNA 17-92 cluster increased 

granulosa cell proliferation and this was accompanied by increased expression of proliferation 

marker genes, namely CCND2 and PCNA. On the other hand, overexpressing the microRNA 

17-92 cluster using miRNA mimic was found to decrease the proportion of differentiated 

granulosa cells. This was further confirmed by the opposite phenotypes were observed where 

the expression of the microRNA 17-92 cluster reduced using miRNA inhibitor. Comparable 

results in the effect of this microRNA cluster on cell proliferation and differentiation have 

been reported in various cell types, including ischemic neural progenitor cells of mouse model 

where overexpression of miR-17-92 cluster increased cell proliferation (Liu et al. 2013) while 

deletion of miR-17-92 cluster in mice inhibited differentiation of osteoblast cells (Zhou et al. 

2014).  

Several hours before ovulation, granulosa cells of preovulatory dominant follicle start to 

express high level of LH receptor and become responsive to the LH surge (Bao et al. 1997). 

In response to the LH surge, progression of granulosa cells division was dropped while 

terminal differentiation program was initiated (Hirshfield 1991, Rao et al. 1978, Richards et 

al. 1986, Richards 1994). During this process, several genes associated with progesterone 

synthesis, namely CYP11A1 and STAR were found to be increased with subsequent increase 

in progesterone synthesis by granulosa cells (Baufeld and Vanselow 2013, Chang et al. 2015, 

Havelock et al. 2004, Zhang et al. 2015). In the present study, spent media analysis was 

performed to analyze the level of progesterone released by granulosa cells following 

overexpression or inhibitor of miR-17-92 cluster and we detected a significant elevation in 

progesterone level in granulosa cells overexpressing miR-20a than other members of the 

cluster. The opposite was observed in granulosa cells transfected with miR-17-92 cluster 

inhibitor but these differences were not statistically significant. 

The effect of microRNA 17-92 cluster on granulosa cells function through regulation of 

PTEN and BMPR2 was cross validated by selective knockdown of the two genes using RNA 

interference technique. In this regard, selective knockdown of PTEN gene in cultured 

granulosa cells promoted cell proliferation and increased the expression of CCND2 and 

PCNA genes while the proportion of differentiated cells was reduced. However, as opposed to 

miR-17-92 cluster mimic transfection, the progesterone profile in spent media and the 

expression of CYP11A1 and STAR genes were significantly increased. The inhibition of 
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BMPR2 gene expression in cultured granulosa cells had no effect on proliferation and 

proportion of differentiated cells, but as observed for PTEN knockdown cells, there was 

significant increase in progesterone level in spent media and the expression of CYP11A1 and 

STAR genes in cultured granulosa cells. The elevation of progesterone in spent media in 

PTEN knockdown cells could be due to suppression of BMP-SMAD signaling pathways (Luo 

et al. 2015), which was reported to inactivate the FSH-induced progesterone synthesis in rat 

granulosa cells (Hosoya et al. 2015). All in all, the data of the present study evidenced the 

involvement of miR-17-92 cluster in bovine granulosa cell proliferation and differentiation by 

coordinately targeting the expression of PTEN and BMPR2 genes. 
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Table S1. Sequence specific primers used for 3´-UTR amplification 

Accession number Genes Primer sequence Size (bp) 

FJ376737 pmirGLO 
F: 5´-GCAAGATCGCCGTGTAATTC-3´ 

107 
R: 5´-CTTTCGGGCTTTGTTAGCAG-3´ 

XM_613125 PTEN-miR-17-5p/20a 
F: 5´-TGAGGAGCTCCACAGGGTTTTGACACTTGTTG-3´ 

219 
R: 5´-CAGTCTCGAGTGGTGACAGAACACAAAATGAG-3´ 

XM_613125 PTEN-miR-19a 
F: 5´-TGAGGAGCTCCCAATAGATGTCAGCCGTTCC-3´ 

268 
R: 5´-CAGTCTCGAGGCATTATGTGGGACAATTTCTACTG-3´ 

XM_613125 PTEN-miR-92a 
F: 5´-TGAGGAGCTCGCTCCTCTTGAACATTTTTCTGC-3´ 

313 
R: 5´-CAGTCTCGAGCCCCACTTTAGTGCACAGTTC-3´ 

NM_001304285 BMPR2-miR-17-5p/20a 
F: 5´-GCATGAGCTCCCTCCTACCCCTGCAACAAG-3´ 

199 
R: 5´-GACTCTCGAGGAGACCACTTTTGATACACACACA-3´ 

NM_001304285 BMPR2-miR-19a/92a 
F: 5´-GCATGAGCTCCCTGAACGCATCATCTGTTGG-3´ 

249 
R: 5´-CGGTCTCGAGGAGAGAAAGCAAGAAATCAGGTAGC-3 

Underlined: SacI recognition site (GAGCT|C). Bold: XhoI recognition site (C|TCGAG) 
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Table S2. Sequence specific primers used for analysis of the relative abundance of genes 

Accession number Genes Primer sequence Size (bp) 

NM_173979 β-ACTIN 
F: 5´-TGTCCACCTTCCAGCAGAT-3´ 

249 
R: 5´-TCACCTTCACCGTTCCAGT-3´ 

NM_001076372 CCND2 
F: 5´-CGACTTCATCGAACACATCC-3´ 

279 
R: 5´-ATCTTTGCCAGGAGATCCAC-3´ 

NM_001034494 PCNA 
F: 5´-CACCAGCATGTCCAAAATAC-3´ 

192 
R: 5´-CTGAGATCTCGGCATATACG-3´ 

NM_176644 CYP11A1 
F: 5´-CGGAAAGTTTGTAGGGGACA-3´ 

177 
R: 5´-ACGTTGAGCAGAGGGACACT-3´ 

NM_174189 STAR 
F: 5´-AAATCCCTTTCCAAGGTCTG-3´ 

204 
R: 5´-ACCAGCATTTCTGCTACTGC-3´ 

XM_613125 PTEN 
F: 5´-TGGGGAAGTAAGGACCAGAG-3´ 

172 
R: 5´-ATTGCAAGTTCCACCACTGA-3´ 

NM_001304285 BMPR2 
F: 5´-GCAAGCACAAGCTCGAATCC-3´ 

169 
F: 5´-TGGCTGTGAAACATTGGTGG-3´ 
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Figure 1. Experimental validation of PTEN and BMPR2 genes as targets of miR-17-92 

cluster. Putative miR-17-5p, miR-19a, miR-20a and miR-92a binding sites in bovine PTEN 

(a) and BMPR2 (b) sequences. The bold faced letters indicated a putative binding site and the 

underlined sequences indicate the 3´-UTR mutated region to be used as a control. Relative 

luciferase activity in granulosa cells co-transfected with a vector harboring the wild-type 

(WT) or mutant (MT) sequences of PTEN (c) and BMPR2 (d) 3´-UTR sequences. Firefly and 

renilla activity ratio for each constructed plasmid were compared to corresponding mimic 

NCs. White bars: microRNA mimics. Black bars: mimic NC. Data were shown in mean ± 

SEM (n=3, 
*
p<0.05, 

**
p<0.01). 
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Figure 2. Overexpression or inhibition of miR-17-92 cluster resulted in variation in mRNAs 

and protein expression of PTEN and BMPR2 genes. The mRNA expression of PTEN and 

BMPR2 genes in granulosa cells transfected with miR-17-92 cluster mimic (a) and inhibitor 

(b). Data were shown in mean ± SEM (n=3, 
*
p<0.05, 

**
p<0.01). The protein expression of 

PTEN and BMPR2 in granulosa cells transfected with miR-17-92 cluster mimic (c) and 

inhibitor (d). The numbers on the top western blot figures represent relative protein density. 

Both mRNA and protein expression levels were compared to negative controls (mimic NC or 

inhibitor NC) and β-ACTIN was used as an internal control. 

 

 



Chapter 2 

 

33 
 

 

Figure 3. The effect of miR-17-92 cluster overexpression in granulosa cell proliferation and 

expression of cell proliferation marker genes. The effect of miR-17-92 cluster mimic (a) and 

inhibitor (b) in granulosa cells proliferation. The mRNA expression of CCND2 and PCNA 

genes in granulosa cells transfected with miR-17-92 cluster mimic (c) or inhibitor (d). The 

protein expression of PCNA in granulosa cells transfected with miR-17-92 cluster mimic (e) 

or inhibitor (f). Data were compared to the corresponding microRNA controls and shown in 

mean ± SEM (n=3, 
*
p<0.05, 

**
p<0.01). The numbers on the top western blot figures represent 

relative protein density. The expression of β-ACTIN was used as internal control in mRNA 

and protein analysis. 
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Figure 4. Overexpression or inhibition of miR-17-92 cluster induced partial effect on bovine 

granulosa cell differentiation and progesterone synthesis. The proportion of differentiated 

granulosa cell in cultured granulosa cells transfected with miR-17-92 cluster mimic (a) and 



Chapter 2 

 

35 
 

inhibitor (b). The progesterone levels measured in spent media of granulosa cell culture 

transfected with miR-17-92 cluster mimic (c) and inhibitor (d) transfection. The effect of 

miR-17-92 cluster mimic (e) and inhibitor (f) transfection on the expression of CYP11A1 and 

STAR genes in the cultured granulosa cells. The protein expression of STAR in granulosa 

cells transfected with miR-17-92 cluster mimic (g) or inhibitor (h). Data were compared to the 

corresponding microRNA controls and shown in mean ± SEM (n=3, 
*
p<0.05, 

**
p<0.01). The 

numbers on the top western blot figures represent relative protein density. The expression of 

β-ACTIN was used as internal control in mRNA and protein analysis. 
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Figure 5. Selective knockdown of PTEN and BMPR2 mRNA in cultured granulosa cells. The 

relative abundance of mRNA and protein of PTEN (a and c), and BMPR2 (b and d) genes in 

granulosa cells transfected with siRNA targeting PTEN and BMPR2. The effect of PTEN and 

BMPR2 knockdown in granulosa cells proliferation (e), differentiation (f), progesterone 
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synthesis (g), and the mRNA and protein expression of genes associated with cell 

proliferation, differentiation and progesterone secretion (h, i and j). Data were compared to 

negative control siRNA (siRNA NC) and presented as mean ± SEM (n=3, 
**

p<0.01. 

***
p<0.001). The numbers on the top western blot figures represent relative protein density. 

The mRNA and protein expression were calculated relative to the expression of β-ACTIN. 
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ABSTRACT 

Ovulation of the developmentally competent oocyte is an orchestrated process which requires 

intimate interaction between oocyte and its surrounding cells. The dynamic changes of 

microRNAs in oocyte and cumulus cells before and after the maturation process revealed the 

spatiotemporal post-transcriptional gene expression within bovine follicular cells during 

oocyte maturation process. MiR-20a has been shown to regulate proliferation and 

differentiation as well as progesterone synthesis in cultured granulosa cells. In the present 

study, we focus on the function of miR-20a during bovine oocyte in vitro maturation (IVM) 

process. The maturation of cumulus-oocyte complex was performed at 39 °C in a humidified 

atmosphere with 5% CO2 in the air. The expression of miR-20a was investigated in the 

cumulus cells and oocytes at 22 h post culture. Further, we cultured denuded oocytes and 

cumulus cells separately to investigate whether the presence of oocytes or cumulus cells will 

affect the expression of miR-20a in each type of cells. The function of miR-20a was examined 

by modulation of miR-20a in cumulus-oocyte complex (COCs) during IVM. The cumulus 

cells, oocytes and spent media were collected 22 h post culture. Oocyte maturation was 

assessed based on the presence of the polar body. In this study, miR-20a expression in 

cumulus cells was increased during IVM, while in the oocytes, the expression of this 

microRNA was decreased. We also found that the absence of oocyte reduced miR-20a 

expression in cumulus cells, while the absent of cumulus cells increased miR-20a expression 

in oocyte. The transfection of miR-20a mimic and inhibitor during IVM modulated the 

expression of miR-20a in cumulus cells but not in oocytes. The overexpression of miR-20a 

during IVM increased oocyte maturation rate and expression of oocyte maturation marker 

genes. These findings were consistent with the progesterone level in spent media of COCs 

and the expression of progesterone synthesis marker genes in cumulus cells. In this study, we 

also confirmed that PTEN and BMPR2 genes are also targeted genes of miR-20a in cumulus 

cells. We concluded that modulation of miR-20a expression in cumulus cells regulates oocyte 

maturation through increasing cumulus cell progesterone synthesis by simultaneously 

suppression of the expression of PTEN and BMPR2 genes. 

Keywords: miR-20a, oocyte maturation, progesterone, PTEN, BMPR2 
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INTRODUCTION 

Oocyte growth development in mammals starts early in the fetal development and is arrested 

in the diplotene of the prophase stage of first meiosis cleavage within the ovarian follicle. 

When the follicle is recruited, the oocyte enters the growth phase where it increases in 

volume, undergoes replication and redistribution of cytoplasmic organelles (Picton et al. 

1998). Oocyte meiosis progression and development competence during folliculogenesis is 

influenced by the local microenvironment formed by companion somatic cells, namely 

cumulus oophorus (Sanchez and Smitz 2012). The communication between oocyte and its 

cumulus cells is critical for the development and functions of both cells (Eppig 2001, 

Gilchrist et al. 2004a, Matzuk et al. 2002). For instance, the removal of cumulus cell before in 

vitro maturation inhibits oocyte developmental competence (Vozzi et al. 2001). Similar 

results were obtained when the interaction of both cells were disrupted using gap junction 

inhibitors (Atef et al. 2005). 

In the late stages of follicular development, ovulation is the result of a long and orchestrated 

process to release the competent oocyte which is fertilizable, followed by normal embryo 

development and eventually the birth of healthy offspring (Labrecque and Sirard 2014). The 

transcriptome dynamic in oocyte (Fair et al. 2007, Regassa et al. 2011) and cumulus cells 

(Assidi et al. 2010, Nivet et al. 2013, Regassa et al. 2011) before and after maturation process 

revealed a spatiotemporal regulation of gene expression within bovine follicular cells. The 

differentially expressed genes in oocytes and cumulus cells cultured without their surrounding 

cumulus cells and oocytes, respectively, indicated the molecular cross-talk between the 

oocytes and surrounding cumulus cells (Regassa et al. 2011). Similar to the mRNAs, our 

previous studies revealed the microRNAs transcript abundance in oocytes (Abd El Naby et al. 

2013, Tesfaye et al. 2009) and cumulus cells (Abd El Naby et al. 2013) during oocyte 

maturation. 

During in vitro maturation (IVM) of oocyte, bovine cumulus cells are able to produce and to 

secrete steroid hormones (Mingoti et al. 2002). The inhibition of endogenous steroids 

production during maturation drastically decreased the percentage of mature oocyte (MII 

stage) and suppressed cumulus expansion in bovine cumulus-oocyte complexes (COCs) (Pan 

et al. 2015, Wang et al. 2006). As reported previously by others, progesterone is one of the 

steroid hormones which is produced and secreted by cumulus cells to support the oocyte 

meiosis resumption maturation processes (Aparicio et al. 2011, Choi et al. 2001, Ježová et al. 

2001, Montano et al. 2009, Nagyova et al. 2011, Nagyova et al. 2012, Shimada et al. 2004c, 
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van Tol et al. 1996, Yamashita et al. 2003) under stimulation of FSH and LH (Choi et al. 

2001, Shimada and Terada 2002, Shimada et al. 2004c, van Tol et al. 1996). The important 

role progesterone in bovine follicle has been indicated by the higher progesterone level in 

follicular fluid in follicle with mature oocyte compared to those with immature ones (Grimes 

and Ireland 1986). In addition, progesterone is believed to promote oocyte maturation in pig 

(Yamashita et al. 2003), mouse (Jamnongjit et al. 2005) and bovine in a dose-dependent 

manner (Siqueira et al. 2012) during IVM process. On the other hand, the inhibition of 

progesterone synthesis had shown a negative effect on cumulus cells expansion, oocyte 

maturation rate, ovulation rate, and subsequent embryonic development in mouse (Aparicio et 

al. 2011, Panigone et al. 2008, Siqueira et al. 2012, Sirotkin 1992), porcine (Kawashima et al. 

2008, Shao et al. 2003, Shimada and Terada 2002, Shimada et al. 2004c) and bovine 

(Aparicio et al. 2011, O'Shea et al. 2013, Roh et al. 1988, Shao et al. 2003, Shimada et al. 

2004b, Shimada et al. 2004a, Wang et al. 2006). 

In our previous work, we have shown that miR-20a is differentially expressed in bovine 

granulosa cells derived from the different size of follicle at the late phase of estrous cycle 

(Gebremedhn et al. 2015). The miR-20a overexpression and knockdown of its target genes 

(PTEN and BMPR2) in culture bovine granulosa cells promoted cell proliferation and 

suppressed cell differentiation. In addition, the progesterone level in spent media of granulosa 

cell culture was elevated (Andreas et al. 2016). This finding was supported by the cross-talk 

between PTEN/PI3K/AKT and BMP-SMAD signaling pathways in progesterone synthesis 

(Chang et al. 2013, Hosoya et al. 2015, Luo et al. 2015). However, the potential involvement 

of miR-20a during oocyte maturation has not been reported to date. In the present study, we 

found that the miR-20a expression during IVM process was increased and decreased in 

cumulus cells and oocytes, respectively. We also observed that the expression of miR-20a in 

cumulus cells and oocytes is regulated by the presence or absence their companion cells. 

Moreover, our experiments provide evidence that oocyte maturation progression during IVM 

could be triggered by the modulation of miR-20a expression in its surrounding somatic cells. 

 

Materials and Methods 

Cumulus-oocyte complexes (COCs) collection and in vitro oocyte maturation 

Bovine ovaries, as a source of cumulus-oocyte complexes (COCs), were obtained from a local 

slaughterhouse and transported to the laboratory in a thermo-flask that contained a 0.9% 

saline solution within 2 h after slaughter. The COCs were aspirated from healthy small 
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follicles (2–8 mm of follicle diameter). Good quality and morphologically uniform COCs 

(oocytes with a homogenous, evenly granulated ooplasm, and surrounded by at least three 

layers of cumulus cells) were selected in this study. The selected COCs were washed with 

TCM-199 media before set into culture to obtain matured oocytes or were directly frozen as 

immature COCs (germinal vesicle; GV). The COCs were cultured in groups of 50 in 400 µl of 

maturation media (modified parker medium (MPM) supplemented with 12% estrus cow 

serum and 10 µg/ml Follitropin
®
) under mineral oil in five-well dishes. Maturation was 

performed for 22 h at 39 °C in a humidified atmosphere with 5% (v/v) CO2 in air. Spent 

media of in vitro maturation medium were collected for progesterone assay. The cumulus 

cells and oocytes from immature and matured group of COCs were separated by gentle 

pipetting in TCM-199 media supplemented with hyaluronidase (1 mg/ml). After transferring 

the denuded oocytes into a new tube containing 10 µl 1x PBS (phosphate buffer saline), the 

cumulus cells were isolated by gentle centrifugation. The cumulus cells pellet were 

resuspended using 50 µl lysis buffer (0.8% Igepal, 40 U RNasin and 5 mM DTT). The 

cumulus cells, oocytes and spent media were snap frozen using liquid nitrogen and stored at -

80 °C until further analysis. Matured oocytes (metaphase II stage; MII) were indicated by the 

presence of first polar body under an inverted microscope. The total numbers of recovered 

and matured oocytes after in vitro maturation (IVM) were recorded. The maturation rate was 

calculated from the number of matured oocytes compared to the total number of recovered 

oocytes.  

 

Cumulus cells and denuded oocytes culture 

To investigate the effect of oocyte on cumulus cells microRNA expression and vice versa, 

cumulus cells and oocytes were cultured in the presence or absence of their companion cells. 

For this, cumulus cells and oocytes from 50 collected COCs were separated in TCM-199 

media supplemented with hyaluronidase (1 mg/ml). The cumulus cells (CCs-Oo) and denuded 

oocytes (Oo-CCs) were cultured for 22 h in the maturation media at 39 °C in 5% (v/v) CO2 

incubator, as described in the previous section. Denuded oocytes and cumulus cells were 

collected and stored at -80°C until further analysis. The cumulus cell (CCs+Oo) and oocytes 

(Oo+CCs) obtained from COCs cultures used as controls. 
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MicroRNA transfection 

To investigate the function of miR-20a in oocyte maturation, the collected COCs were culture 

in a group of 50 COCs in five-well dishes containing 400 µl maturation media, as described 

above. The equal concentration (50 nM) of miRCURY LNA™ miR-20a mimic, miR-20a 

inhibitor or corresponding negative controls (mimic NC and inhibitor NC) was transfected 

into the appropriate well using Lipofectamine
®

 2000 reagent. Transfected COCs were 

cultured for 22 h at 39 °C in a humidified atmosphere with 5% (v/v) CO2 in air.  

 

Total RNA isolation and cDNA synthesis 

Total RNA of cumulus cells was isolated using miRNeasy
®

 mini kit following manufacturer’s 

protocol, while oocyte total RNA extraction was performed using PicoPure
®

 RNA isolation 

kit. The quality and quantity of extracted RNA were determined using NanoDrop 8000 

(Thermo Scientific). For analysis of gene expression, the equal amount of total RNA (100 ng 

of cumulus cell and 50 ng of oocyte total RNA) were reverse transcribed using RevertAid 

first stand cDNA synthesis kit (Life Technologies GmbH) according to manufacturer’s 

protocol. For microRNA expression analysis, the cDNA was synthesized from 50 ng and 25 

ng of total RNA of cumulus cells and oocytes, respectively, using Universal cDNA synthesis 

kit (Exiqon) following manufacturer's instructions. 

 

MicroRNA and mRNA quantitative PCR analysis 

The quantitative PCR (qPCR) analysis of several candidate genes and miR-20a expression 

were performed using iTaq™ Universal SYBR
®

 Green Supermix and ExiLENT SYBR® 

green master mix, respectively, in Applied Biosystem
®
 StepOnePlus™. The primers for gene 

expression analysis (Table 1) have been tested using qualitative PCR followed by sequencing 

analysis using GenomeLab™ GeXP Genetic Analysis System, while microRNA primers were 

purchased from Exiqon. In addition, the specificity of amplification in qPCR processes was 

indicated by a single melting curve generated at the end of the qPCR protocol. The relative 

expression of candidate genes and miR-20a were analyzed using comparative Ct (2
-∆∆Ct

) 

methods (Livak and Schmittgen 2001). The expression of β-ACTIN and 5s rRNA were used 

to normalize the candidate genes and miR-20 expression, respectively. In particular, the 

agarose gel (1.5%) has been used to confirm the miR-20a expression in oocyte samples. 
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Western blot analysis 

The total protein obtained from cumulus cells was extracted using 1x passive lysis buffer 

(PLB; Promega GmbH) and separated on 4-16% gradient SDS-polyacrylamide gel followed 

by transferring into Immun-Blot
®
 PVDF Membrane. Transfer protein was performed on 

Trans-Blot
®
 SD Semi-Dry Transfer Cell. After incubation with 1x Roti®-block solution, the 

membrane was incubated with anti-PTEN goat polyclonal antibody (1:200 dilution), anti-

BMPRII goat polyclonal antibody (1:200 dilution), anti-STAR rabbit polyclonal antibody 

(1:500) or anti-GAPDH goat polyclonal antibody (1:500 dilution) for overnight, followed by 

incubation with donkey anti-goat or donkey anti-rabbit IgG-HRP (1:7500 dilution). All 

antibodies used in this study were purchased from Santa Cruz Biotechnology Inc. Detection 

of conjugated protein was performed using Clarity™ Western ECL Substrate and captured by 

ChemiDoc™ XRS+ system. 

 

Progesterone measurement 

Progesterone level was measured in spent oocyte maturation media. Prior to measuring the 

progesterone level, the spent maturation media was diluted 1:1000 in 1x PBS. Progesterone 

level was measured using a progesterone ELISA kit (ENZO Life Sciences GmbH) according 

to the manufacturer´s instruction and the 405 nm OD was detected by Synergy™ H1 Multi-

Mode Reader. 

 

Data analysis 

All quantitative data are presented as mean ± standard error of the mean (SEM). Statistical 

significance of the data was analyzed using t-test methods (Prism® software version 5.02; 

GraphPad). The p-values are indicated in the corresponding figure legend. 

 

Results 

Temporal expression of miR-20a during in vitro maturation 

To investigate the temporal expression of miR-20a in cumulus cells and oocytes, first, we 

collected COCs from small healthy follicles at the GV stage. Parts of these COCs were used 

as immature (GV) group, while the others were matured (MII). The cumulus cells and oocytes 

from both immature and matured groups were separated. The qPCR analysis showed that 
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miR-20a expression cumulus cell of matured COCs was significantly higher (p<0.05) 

compared to those cumulus cells from GV stage of COCs. Conversely, the expression of this 

microRNA was lower in oocytes from the matured group (Fig. 1).  

 

The expression of miR-20a in oocytes and cumulus cells in the presence or absence of 

their companion cells 

In addition, in order to investigate whether the expression of miR-20a in oocytes and cumulus 

cells are affected by the presence or absence of their companion cells, we cultured the 

cumulus cells and denuded oocytes with the absence of oocyte (CCs-Oo) and cumulus cells 

(Oo-CCs), respectively. In the present study, we observed that the expression of miR-20a in 

cumulus cells matured with the presence of oocytes (CCs+Oo) during IVM is relatively 

higher (p=0.0543) than those in cumulus cells cultured without oocyte. On the other hand, the 

presence of surrounding cumulus cells during IVM resulted in reduction of the miR-20a 

expression in the oocytes (Fig. 2). 

 

The effect of miR-20a modulation in cumulus cells and oocytes 

To investigate the role of miR-20a in oocyte maturation, we first studied the feasibility of 

miR-20a overexpression or inhibition during IVM using 50 nM of miR-20a mimic or 

inhibitor. As a negative control, the same amount of mimic or inhibitor negative control 

(mimic NC or inhibitor NC) was transfected into the COCs culture. The qPCR analysis 

revealed a significant increase (p<0.001) of miR-20a expression in cumulus cells from COCs 

transfected with miR-20a mimic compared to mimic NC. On the other hand, the transfection 

of miR-20a inhibitor resulted in decreased (p<0.001) cumulus cell microRNA expression 

compared to the inhibitor NC group (Fig. 3A). However, neither miR-20a mimic nor inhibitor 

transfection had an effect on the miR-20a expression in the oocytes. We suggest that the 

expression of miR-20a in oocytes is almost negligible. It was indicated by lower Ct value 

(beyond 35 cycles) and it was further supported by running electrophoresis of PCR products 

on 1.5% agarose gel (Fig. 3B). 
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MiR-20a overexpression during IVM increased oocyte maturation rate 

We next studied the effect of miR-20a expression on maturation rate of oocytes. Matured 

oocyte was assessed by the presence of first polar body under an inverted microscope and the 

maturation rate was calculated from the number of matured oocytes compared to the total 

number of recovered oocytes. We observed that miR-20a overexpression during IVM resulted 

in increased oocyte maturation rate (p<0.05). However, the transfection of miR-20a inhibitor 

had no effect on maturation rate (Fig. 4). 

 

The miR-20a modulation altered expression of oocyte maturation-related genes 

To study whether the effect of miR-20a on the maturation rate was accompanied by the 

changes in oocyte maturation marker gene expression, we analyzed the expression level of 

genes related to the oocyte competence (INHBA, MAPK1 and PTGS2), cumulus cells 

expansion (PTX3 and EGFR) and cell cycle regulator (CYCB2) in cumulus cells and denuded 

oocytes. We found that the inhibition of miR-20a expression during IVM resulted in a 

decrease of oocyte competence and cumulus expansion-related gene expression (INHBA 

p<0.05; MAPK1 p<0.05; PTGS2 p<0.05 and EGFR p<0.01) in cumulus cells. Conversely, the 

cumulus cell INHBA, EGFR and CYCB2 gene expression were found to be increased 

(p<0.05) in miR-20a overexpression. In addition, except in oocyte PTGS2 and EGFR gene 

expression, the miR-20a inhibitor transfection during IVM had no effect on expression of 

genes related to oocyte competence, cumulus cells expansion and cell cycle regulator. 

However, the miR-20a overexpression resulted in an increase in oocyte INHBA (p<0.01), 

MAPK1 (p<0.05) and PTX3 (p<0.05) gene expression (Fig. 5). 

 

MiR-20a enhanced oocyte maturation through cumulus cell-progesterone synthesis 

Parallel with the oocyte maturation, the spent media of IVM culture was collected and 

analyzed for its progesterone level. The progesterone assay revealed that overexpression and 

inhibition of miR-20a during IVM relatively increased (p=0.0936) and decreased (p=0.0993) 

the progesterone synthesis as measured in IVM spent media (Fig. 6A). This result was 

confirmed by the expression of progesterone synthesis-related genes, namely CYP11A1 and 

STAR genes (Fig. 6B, C). 
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The miR-20a regulates oocyte maturation and progesterone synthesis by targeting 

PTEN and BMPR2 genes in cumulus cells 

To confirm whether miR-20a also regulates the expression of PTEN and BMPR2 genes 

during in vitro oocyte maturation, we next examined the expression of PTEN and BMPR2 in 

cumulus cells. Here, we found that miR-20a overexpression during IVM tends to reduce the 

mRNA and protein expression of PTEN and BMPR2 genes in cumulus cell (Fig. 7). 

 

Discussion 

The oocyte maturation process is complex and requires an integration of endocrine, paracrine, 

juxtacrine and autocrine signaling pathways (Takahashi et al. 2006). This process involves an 

interaction between the oocyte and surrounding cumulus cells. In our previous work, 

differentially expressed mRNAs (Regassa et al. 2011) and microRNAs (Abd El Naby et al. 

2013) in cumulus cells before and after in vitro maturation process indicated the signals 

released from somatic cells stimulated the meiotic progression and oocyte maturation (Chen 

et al. 2013). In this study, we observed that the in vitro maturation process resulted in 

increased miR-20a expression in cumulus cells, but decreased in the oocytes. Similarly, the 

decrement of miR-20a expression during IVM was also reported in human oocytes (Xu et al. 

2011b). 

During the oocyte maturation process, it has been postulated that bidirectional communication 

between those cells is essential for proper maturation of oocytes, fertilization and further 

embryonic development (Buccione et al. 1990a, Eppig 2001, Gilchrist et al. 2004a, Matzuk et 

al. 2002). This dialogue is vital for the oocyte to acquire meiotic and developmental 

competence (Brower and Schultz 1982, Calder et al. 2001, Calder et al. 2005, De La Fuente 

and Eppig 2001, Eppig 1991, Eppig 2001, Eppig et al. 2002, Matzuk et al. 2002). Moreover, 

the oocyte-secreted factors (OSFs), such as GDF9 and BMP15 are believed to regulate key 

cumulus cell functions (Buccione et al. 1990b, Eppig et al. 1997, Eppig et al. 2005, Gilchrist 

et al. 2001, Gilchrist et al. 2003, Gilchrist et al. 2004a, Gilchrist et al. 2006, Hussein et al. 

2005, Joyce et al. 2000, Li et al. 2000, Otsuka and Shimasaki 2002, Sugiura et al. 2005, 

Tanghe et al. 2002, Vanderhyden et al. 1990). With regard to the transcript abundance, we 

have shown previously that the presence or absence of oocyte in culture cumulus cells altered 

several mRNAs (Regassa et al. 2011) and microRNAs (Abd El Naby et al. 2013) expression 

and vice versa. In the present study, cumulus cells cultured without the presence of oocyte 

(CCs-Oo) had lower miR-20a expression compared to those cumulus cells with the presence 



Chapter 3  

 

48 
 

of oocytes (CCs+Oo). On the other hand, miR-20a expression was higher in oocytes cultured 

without their cumulus cells (Oo-CCs) compared to those oocytes cultured with the presence 

of their cumulus cells (Oo+CCs). We suggested that the expression of miR-20a in cumulus 

cells and oocytes are regulated by the presence or absence of their companion cells. 

Within follicle, before LH surge, the oocyte is arrested in the prophase I stage (germinal 

vesicle; GV) and believed that cumulus cells are set to receive the last major induction of 

oocyte final maturation (Dieleman et al. 2002). At 6h after LH surge, the germinal vesicle 

breakdown (GVBD) of the oocyte (Dieleman et al. 1983, Sirard et al. 1989) followed by the 

increase of steroidogenesis synthesis marker genes in cumulus cell, namely HSD3B2, 

INHBA, PGR, HPGD, and DHCR24 (Assidi et al. 2010). Previous studies in pig reported that 

LH and FSH induced oocyte maturation, cumulus cells expansion (Procházka et al. 1991), 

synthesis of hyaluronic acid (Nagyová et al. 1999) and progesterone production by cumulus 

cells (Ježová et al. 2001, Nagyova et al. 2011, Nagyova et al. 2012). With regards to 

microRNA, several studies have been conducted to demonstrate the role of microRNAs in 

oocyte developmental competence (Pan et al. 2015, Yao et al. 2014). The miR-20a expression 

analysis revealed that the transfection is restricted to cumulus cells of the COCs. We 

suggested that several layers of cumulus cell and the thick zona pellucida protect the oocyte 

from transfection reagent, as reported previously in lentivirus transduction (Pan et al. 2015). 

In addition, we also observed that miR-20a overexpression during IVM resulted in increased 

oocyte maturation rate, while no difference was found in maturation rate when miR-20a 

expression was inhibited. The analysis of oocyte developmental competence related genes 

revealed that except PTGS2 and CYCB2, the expression of INHBA, MAPK1, PTX3 and 

EGFR (Assidi et al. 2008, Fülöp et al. 1997, Fülöp et al. 2003, McKenzie et al. 2004, Salustri 

et al. 2004, Sirois et al. 1992) in both cumulus cells and oocytes were increased when miR-

20a was overexpressed. The increment of the CYCB2 gene expression in cumulus cells could 

be associated with the evidence that miR-20a promoted granulosa cell proliferation (Andreas 

et al. 2016). Herein, we suggest that miR-20a regulates oocyte maturation and the expression 

of oocyte developmental competence related genes. 

The progesterone synthesis during oocyte maturation process is essential for oocyte meiosis 

resumption and subsequent oocyte maturation processes (Aparicio et al. 2011, Choi et al. 

2001, Ježová et al. 2001, Montano et al. 2009, Nagyova et al. 2011, Nagyova et al. 2012, 

Shimada et al. 2004c, van Tol et al. 1996, Yamashita et al. 2003). This hormone is secreted by 

cumulus cells under stimulation of FSH and LH (Choi et al. 2001, Shimada and Terada 2002, 
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Shimada et al. 2004c, van Tol et al. 1996). The progesterone level was found to be higher in 

follicular fluid obtained from follicle-enclosed mature oocytes compared to follicle-enclosed 

immature ones (Grimes and Ireland 1986). Administration of progesterone during in vitro 

maturation promoted oocyte maturation and induced nuclear maturation in pig (Yamashita et 

al. 2003), mouse (Jamnongjit et al. 2005) and bovine (Siqueira et al. 2012) in a dose-

dependent manner. On the other hand, the inhibition of progesterone synthesis had shown 

negative effect on oocyte meiosis resumption, cumulus cells expansion, final oocyte 

maturation, ovulation and number of ovulated oocytes and subsequent embryonic 

development in mouse (Aparicio et al. 2011, Siqueira et al. 2012, Sirotkin 1992), porcine 

(Shao et al. 2003, Shimada and Terada 2002, Shimada et al. 2004c) and bovine (Aparicio et 

al. 2011, O'Shea et al. 2013, Roh et al. 1988, Shao et al. 2003, Shimada et al. 2004b, Shimada 

et al. 2004a, Wang et al. 2006). Here we showed that progesterone synthesis was increased 

and decreased in cumulus cells overexpressed and inhibited miR-20a, respectively. This result 

was accompanied by the expression of progesterone synthesis marker genes, namely 

CYP11A1 and STAR (Nuttinck et al. 2008). Similarly, the selective knockdown of PTEN and 

BMPR2 genes in cultured granulosa cells confirmed the role of miR-20a in progesterone 

synthesis (Andreas et al. 2016). Moreover, we observed that the higher progesterone synthesis 

in miR-20a overexpressed cumulus cell was consistent with the increase of oocyte maturation 

rate in miR-20a mimic transfected COCs suggested that miR-20a overexpression in cumulus 

cells promoted oocyte maturation through increasing cumulus cell progesterone synthesis. 

The profiling of microRNA expression in ovarian tissues/cells has been conducted in various 

species including human (Landgraf et al. 2007), mice (Ro et al. 2007), pigs (Li et al. 2011), 

cattle (Hossain et al. 2009) and sheep (McBride et al. 2012). Several studies shown the role of 

specific microRNAs in regulating granulosa cell proliferation, apoptosis and estradiol 

synthesis (Dai et al. 2013, Jiang et al. 2015, Wang et al. 2016). However, a few report has 

been reported about the function of microRNA in regulating oocyte maturation (Pan et al. 

2015) and cumulus expansion (Yao et al. 2014). Recently, we have shown that miR-20a 

directly targets PTEN and BMPR2, and miR-20a overexpression in bovine granulosa cells 

downregulates mRNA expression and protein level of both genes (Andreas et al. 2016). In the 

present study, we observed the similar decrease in PTEN and BMPR2 gene expression when 

miR-20a was overexpressed in cumulus cells. Those results suggested that PTEN and BMPR2 

genes are direct targets of miR-20a in both types of cells. 
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In conclusion, our work has demonstrated that modulation of miR-20a expression in cumulus 

cells regulates oocyte maturation. The miR-20a increased cumulus cell progesterone synthesis 

by simultaneously suppressed the expression of PTEN and BMPR2 genes. Besides, the 

expression of several cumulus expansion, oocyte maturation and cell cycle related genes in 

both cumulus cells and oocytes supported the role of miR-20a during oocyte maturation 

progression. Our finding offers new insights into how the microRNA expression in oocyte 

surrounding somatic cells regulates the oocyte developmental competence. 
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Table 1. List of primers used for candidate genes expression analysis in bovine cumulus cells and oocytes. 

GenBank accession number Genes 
 

Primer sequence (5'-3') Product length (bp) 

NM_173979 B-ACTIN F: TGTCCACCTTCCAGCAGAT 249 

  R: TCACCTTCACCGTTCCAGT  

NM_001304285 BMPR2 F: GCAAGCACAAGCTCGAATCC 169 

  R: TGGCTGTGAAACATTGGTGG  

AF080219 CYCB2 F: TGCCACTCTTGTTTGTCCGT 246 

  R: GGTTTCGGGTGCTTGTTGAC  

NM_176644 CYP11A1 F: CGGAAAGTTTGTAGGGGACA 177 

  R: ACGTTGAGCAGAGGGACACT  

XM_592211 EGFR F: GACCCGAAAGAACTGGACAT 177 

  R: TGTTATATCCAGGCCGACAA  

NM_174363 INHBA F: GCAAGGTCAACATCTGCTGTA 262 

  R: TACAACATGGACATGGGTCTC  

NM_175793 MAPK1 F: GGGCTACACCAAGTCCATCG 249 

  R: GCTTTGGAGTCCGCGTTC  
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NM_001034494 PCNA F: CACCAGCATGTCCAAAATAC 192 

  R: CTGAGATCTCGGCATATACG  

XM_613125 PTEN F: TGGGGAAGTAAGGACCAGAG 172 

  R: ATTGCAAGTTCCACCACTGA  

NM_001076259 PTX3 F: ACCTGGGATTCAAAGAAAGG 208 

  R: CACCCTCCCAGATATTGAAG  

NM_174445 PTGS2 F: CGATGAGCAGTTGTTCCAGA 215 

  R: GAAAGACGTCAGGCAGAAGG  

NM_174189 STAR F: AAATCCCTTTCCAAGGTCTG 204 

  R: ACCAGCATTTCTGCTACTGC  
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Figure 1. Temporal change of miR-20a expression in cumulus cells and oocytes of immature 

(GV) and matured (MII) COCs. The expression of 5S rRNA was used as internal control. The 

data are shown as mean ± SEM (n=3; *p<0.05; ***p<0.001). 
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Figure 2. Relative expression of miR-20a in cumulus cells cultured with (CCs+Oo) or 

without (CCs-Oo) oocytes and in oocytes matured with (Oo+CCs) or without (Oo-CCs) 

cumulus cells. The expression of 5S rRNA was used as internal control. The data are shown 

as mean ± SEM (n=3; *p<0.05). 
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Figure 3. The effect of transfection is restricted in the cumulus cells. The expression of miR-

20a in cumulus cells and oocytes transfected with miR-20a mimic, inhibitor and 

corresponding controls (A). Agarose gel (1.5%) electrophoresis of miR-20a amplification 

products in cumulus cells and oocytes transfected with miR-20a mimic, inhibitor and 

corresponding controls (B). The miR-20a expression level was compared to corresponding 

negative controls (mimic NC or inhibitor NC) and the expression of 5S rRNA was used as an 

internal control for qPCR analysis. The data are shown as mean ± SEM (n=3; ***p<0.001). 
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Figure 4. MiR-20a overexpression in cumulus cells increased oocyte maturation rate. The 

maturation rate was compared to corresponding negative controls (mimic NC or inhibitor 

NC). Data are shown as mean ± SEM (n=3; *p<0.05). 
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Figure 5. Expression of INHBA (A), MAPK1 (B), PTGS2 (C), PTX3 (D), EGFR (E) and 

CYCB2 (F) in cumulus cells and oocytes transfected with miR-20a mimic, inhibitor or 

controls. The expression level of β-ACTIN was used as an internal control. Data are 

compared to corresponding negative controls (mimic NC or inhibitor NC) and shown as mean 

± SEM (n=3; *p<0.05; **p<0.01; ***p<0.001). 
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Figure 6. MiR-20a overexpression during IVM elevated cumulus cell-progesterone synthesis. 

The effect of miR-20a mimic and inhibitor during IVM on progesterone level in spent media 

(A). The expression of CYP11A1 (B) and STAR (C) mRNA in cumulus cell transfected miR-

20a mimic, inhibitor or corresponding controls. Data are shown as mean ± SEM (n=3; 

*p<0.05; **p<0.01). The STAR protein expression in cumulus cells after miR-20a 

modulation (D). The expression level of β-ACTIN and GAPDH were used as an internal 

control in mRNA and protein analysis, respectively. 
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Figure 7. MiR-20a overexpression during in vitro oocyte maturation reduced cumulus cell 

PTEN and BMPR2 genes expression. The mRNA (A) and protein (B) expression of PTEN 

and BMPR2 genes in cumulus cells transfected with miR-20a mimic, inhibitor or 

corresponding controls. Both mRNA and protein expression levels were compared to negative 

controls (mimic NC or inhibitor NC). The β-ACTIN and GAPDH were used to normalized 

mRNA and protein expression, respectively. The expression of mRNAs abundance are shown 

as mean ± SEM (n=3; **p<0.01). 
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As an important process in the development of competent oocyte, orchestrated physiological 

processes are believed to occur in granulosa cells during follicular development. Although 

some biological and regulatory mechanisms are known, several key elements that could 

trigger the selection of one follicle to develop into dominant follicle while the rest follicles are 

regressing in cattle remain unclear. The dynamic transcript abundance at mRNA level in 

follicular cells derived from different size and stages during folliculogenesis indicated the 

spatiotemporal expression of genes in this process (Douville and Sirard 2014, Girard et al. 

2015, Hatzirodos et al. 2014a, Hatzirodos et al. 2014b, Nivet et al. 2013). Comparable to 

mRNA, we have shown the differential expression of microRNAs, post-transcriptional 

regulator of genes expression (Ambros 2004, Bartel 2009, Huntzinger and Izaurralde 2011, 

Smalheiser and Torvik 2005), in granulosa cells derived from dominant and subordinate 

follicle at day 3, 7 and 19 of estrous cycle (Gebremedhn et al. 2015, Salilew-Wondim et al. 

2014). At the late phase of estrous cycle (day 19 of estrous cycle), among others, miR-17-5p, 

miR-19a, miR-20a and miR-92a, which belong to miR-17-92 cluster, were upregulated in 

granulosa cells of subordinate follicles compared to dominant ones. However, the function of 

these microRNAs in follicular development is not known. Therefore, in the present study, we 

investigated the role of miR-17-92 cluster members during folliculogenesis using bovine 

granulosa cells under in vitro condition. 

Target prediction analysis revealed that miR-17-92 cluster member coordinately regulate 

several genes involved in PI3K/AKT signaling pathway, FOXO signaling, focal adhesion and 

hippo signaling pathways which are known to be the key pathways in follicular development 

and ovulation (Alam et al. 2004, Jagarlamudi et al. 2009, Klusza and Deng 2011, Xiang et al. 

2015, Zhang et al. 2010). Among target genes enriched in those pathways, PTEN and BMPR2 

were selected for wet lab target validation as those genes have conserved binding sites (seed 

region) between human and bovine sequences and their potential role in follicular 

development (Douville and Sirard 2014, Hatzirodos et al. 2014b). The luciferase assay 

showed that PTEN and BMPR2 genes are direct targets of miR-17-92 cluster members. This 

result was confirmed by decreased and increased expression of PTEN and BMPR2 genes 

expression in granulosa cells transfected with mimic and inhibitor of miR-17-92 cluster 

member, respectively. In addition, PTEN and BMPR2 genes have been known to be involved 

in follicular growth, ovulation, luteolysis and steroidogenesis (Findlay et al. 2002, Inagaki et 

al. 2009, Miyoshi et al. 2007, Reddy et al. 2008, Richards et al. 2012, Shimasaki et al. 2004). 
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Granulosa cell proliferation and differentiation have been reported as the most important 

cellular activity within dominant follicle in the late phase of estrous cycle (Ali et al. 2001, 

Manikkam and Rajamahendran 1997). In response to the LH surge, progression of granulosa 

cells division is reduced while the terminal differentiation program was initiated (Hirshfield 

1991, Rao et al. 1978, Richards et al. 1986, Richards 1994), and followed by the increased 

synthesis and release of progesterone (Baufeld and Vanselow 2013, Chang et al. 2015, 

Havelock et al. 2004, Zhang et al. 2015). In the present study, we simulated those conditions 

by modulating the expression of miR-17-92 cluster members in cultured granulosa cell. We 

observed that cell proliferation was increased while cell differentiation was decreased in miR-

17-92 cluster members overexpressing granulosa cells. However, except in miR-20a mimic 

transfection, there was no difference in progesterone synthesis in granulosa cell transfected 

with miR-17-92 cluster members. These results were supported by the expression of CCND2 

and PCNA genes, and CYP11A1 and STAR genes as marker for granulosa cell proliferation 

and differentiation, respectively. On the other hand, even not statistically significant, the 

inhibition of miR-17-92 cluster members in granulosa cell showed an opposite trend 

compared to those transfected with miR-17-92 cluster members mimic. Similarly, miR-17-92 

cluster overexpression increased cell proliferation in mouse ischemic neural progenitor (Liu et 

al. 2013) while miR-17-92 cluster deletion in mouse model inhibited differentiation of 

osteoblast cells (Zhou et al. 2014). The role of miR-17-92 cluster member in granulosa cell 

proliferation and differentiation, as well as progesterone synthesis was cross-validated by 

selectively knockdown its target genes (PTEN and BMPR2) using siRNA technique. Here, we 

found that suppression of PTEN and BMPR2 simulated the effect of miR-17-92 cluster 

members overexpression in cultured granulosa cell proliferation and differentiation. However, 

the progesterone synthesis was not in agreement with cell differentiation rate result. We 

suggested that beside reduced the cell differentiation rate, the disruption of BMP-SMAD 

signaling pathways increased FSH-induced progesterone synthesis by granulosa cells (Chang 

et al. 2013, Hosoya et al. 2015, Luo et al. 2015). 

Besides their role in granulosa cell function, the expression and potential role of miR-17-92 

cluster during bovine oocyte maturation is not yet known. Therefore, comparative analysis of 

the member of miR-17-92 cluster (miR-20a) in oocytes and cumulus cells during oocyte 

maturation has been performed. In this study, we observed that miR-20a expression increased 

during IVM in cumulus cells while it decreased in the oocytes. Similarly, the decrement of 

miR-20a expression during IVM was also reported in human oocytes (Xu et al. 2011b).  
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The oocyte maturation process is complex and requires an integration of several signaling 

pathways (Takahashi et al. 2006), and interaction between the oocyte and surrounding 

cumulus cells for proper maturation of oocytes, fertilization and further embryonic 

development (Buccione et al. 1990a, Eppig 2001, Gilchrist et al. 2004a, Matzuk et al. 2002). 

The transcriptome dynamic in oocytes (Fair et al. 2007, Regassa et al. 2011) and cumulus 

cells (Assidi et al. 2010, Nivet et al. 2013, Regassa et al. 2011) revealed the spatiotemporal 

regulation of genes expression within bovine follicular cells during oocyte maturation. 

Moreover, we showed that the presence or absence of oocyte in culture cumulus cells altered 

several mRNAs (Regassa et al. 2011) and microRNAs (Abd El Naby et al. 2013) expression, 

and vice versa. In the present study, we cultured cumulus cells and oocytes with the presence 

or absence of their companion cells. We found that the expression of miR-20a in cumulus 

cells cultured with oocytes (CCs+Oo) was higher compared to those cumulus cells cultured 

without oocytes (CCs-Oo). On the other hand, miR-20a expression in oocytes cultured with 

cumulus cells (Oo+CCs) was lower compared to those oocytes cultured alone (Oo-CCs). We 

suggest that the expression of miR-20a in cumulus cells and oocytes is affected by the 

presence or absence of their companion cells. 

In order to investigate whether alteration of miR-20a expression plays a role in the oocyte 

maturation, we modulated miR-20a expression by coculturing COCs with miR-20a mimic or 

inhibitor during in vitro maturation. The results showed that the expression of miR-20a in 

cumulus cells was increased and decreased in COCs cocultured with miR-20a mimic and 

inhibitor groups, respectively. However, the miR-20a expression has not seen detected in the 

oocytes either in miR-20a mimic or inhibitor cocultured COCs. We suggested that several 

layers of cumulus cells and the thick zona pellucida protect the oocyte from transfection 

reagent. Comparable results were obtained in lentivirus-transduced COCs (Pan et al. 2015).  

During their developmental process, the oocyte is arrested in the prophase I stage (germinal 

vesicle; GV) until LH surge occurs (Dieleman et al. 2002). Six hours after LH surge, the 

germinal vesicle breakdown (GVBD) of the oocyte is started (Dieleman et al. 1983, Sirard et 

al. 1989) followed by the steroidogenesis in cumulus cell (Assidi et al. 2010). Under in vitro 

condition, supplementation of LH and FSH in the maturation media induced oocyte 

maturation, synthesis of hyaluronic acid, cumulus cells expansion and progesterone synthesis 

in cumulus cells (Ježová et al. 2001, Nagyova et al. 2011, Nagyova et al. 2012, Nagyová et al. 

1999, Procházka et al. 1991). With regard to microRNA, several studies have been conducted 

to demonstrated the association of microRNA with oocyte developmental competence (Pan et 
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al. 2015, Yao et al. 2014). In the present study, we provide evidenced that miR-20a 

overexpression during IVM increased oocyte maturation rate. However, inhibition of miR-20a 

expression had no effect on maturation rate of the oocyte. This result was further confirmed 

by the expression of oocyte maturation-related genes, namely INHBA, AMPK1, PTGS2, 

PTX3, EGFR and CYCB2 (Assidi et al. 2008, Fülöp et al. 1997, Fülöp et al. 2003, McKenzie 

et al. 2004, Salustri et al. 2004, Sirois et al. 1992). 

Progesterone is one of the critical hormones during oocyte maturation (Aparicio et al. 2011, 

Choi et al. 2001, Ježová et al. 2001, Montano et al. 2009, Nagyova et al. 2011, Nagyova et al. 

2012, Shimada et al. 2004c, van Tol et al. 1996, Yamashita et al. 2003), being secreted by the 

cumulus cells under stimulation of FSH and LH (Choi et al. 2001, Shimada and Terada 2002, 

Shimada et al. 2004c, van Tol et al. 1996). Progesterone supplementation in IVM media has 

been reported to induce oocyte maturation in pig (Yamashita et al. 2003), mouse (Jamnongjit 

et al. 2005) and bovine (Siqueira et al. 2012) in a dose-dependent manner. On the other hand, 

the inhibition of progesterone synthesis resulted in negative effects on oocyte meiosis 

resumption, cumulus cells expansion, oocyte maturation rate, ovulation rate and subsequent 

embryonic development in various species (Aparicio et al. 2011, O'Shea et al. 2013, Roh et al. 

1988, Shao et al. 2003, Shimada and Terada 2002, Shimada et al. 2004c, Shimada et al. 

2004b, Shimada et al. 2004a, Siqueira et al. 2012, Sirotkin 1992, Wang et al. 2006). In the 

present study we observed that miR-20a overexpression during IVM resulted in increased 

progesterone synthesis while progesterone synthesis was suppressed when miR-20a 

expression was inhibited. The analysis of CYP11A1 and STAR genes expression supported 

the role of miR-20a in progesterone synthesis. The consistent results with oocyte maturation 

rate suggested that miR-20a overexpression in cumulus cells promoted oocyte maturation 

through increasing cumulus cell progesterone synthesis. 

The role of specific microRNAs in regulating follicular cells function have been studied in the 

last decade synthesis (Dai et al. 2013, Jiang et al. 2015, Wang et al. 2016). However, less 

information is available about the role of microRNA during oocyte maturation (Pan et al. 

2015). In our previous study, we showed that the PTEN and BMPR2 are direct target of miR-

20a by using granulosa cells model (Andreas et al. 2016). In the present study, we found that 

the overexpression and inhibition of miR-20a resulted in decreased and increased the mRNA 

and protein expression of PTEN and BMPR2 genes in cumulus cells. These results suggested 

that miR-20a regulates oocyte maturation and progesterone synthesis by targeting PTEN and 

BMPR2 genes in cumulus cells. 
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In conclusion, this work demonstrated the role of miR-17-92 cluster in bovine granulosa cell 

proliferation and differentiation by coordinately targeting the expression of PTEN and 

BMPR2 genes. In addition, we also provide evidence that modulation of miR-20a expression 

in cumulus cells regulates oocyte maturation and progesterone synthesis in cumulus cells. 
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