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English abstract 

Metabolic programming is defined as an early stimulus with long term effect. In dairy cows, 

feeding in the preweaning period has long term effects on later milk production. However, the 

influence on metabolic and endocrine changes is not fully clarified. The aim of this thesis was to 

investigate the influence of different feeding regimen on performance data and metabolic and 

endocrine variables in dairy calves and around the first lactation. Special attention was directed to 

insulin sensitivity and adiponectin, an adipokine with insulin sensitizing properties. However, its 

concentration and changes with age were unknown in calves. To characterize the effects of 

colostrum feeding and of different feeding intensities before weaning, samples from different 

trials were used; In Manuscript I, twenty dairy calves fed with colostrum and then restrictively 

with milk replacer (MR; 130 g/L, 6 L/d) for 110 d post natum (p.n.) were studied. In addition, 

calves receiving either colostrum (n = 7) or formula (n = 7) until d 4 p.n., and calves born either 

at term (n = 7) or preterm (n = 7) receiving their first colostrum only at 24 h p.n. were included. 

Blood and milk samples were taken and adiponectin was measured by an in-house developed 

ELISA and by Western blot to assess the different molecular weight forms. In Manuscripts II, the 

influence of different feeding regimen on performance including milk yield in the first lactation 

was investigated; in Manuscript III, the animal trial from manuscript II was extended to assess 

metabolic and endocrine variables. The experiment comprised dairy calves fed at 3 different 

regimen until d 25 p.n. (MR restricted, n = 20; MR ad libitum (ad lib), n = 17; whole milk (WM) 

ad lib, n = 20) and observed thereafter until d 110 p.n. The female calves (n = 28) were further 

pursued in their first pregnancy from 3 months ante partum until 10 weeks post partum. Blood 

samples were taken in regular intervals. During calfhood, glucose tolerance tests and insulin 

tolerance tests (only male calves) were done and liver biopsies were taken. Performance data like 

body weight, average daily gain, food and energy intake, milk yield were recorded and economic 

outcomes were calculated. The postpartal increase in adiponectin serum concentrations depended 

on colostrum intake suggesting a transfer of colostral adiponectin to the calves’ circulation. The 

different feeding regimen yielded differences in the metabolic and endocrine variables as well as 

the performance data but these were not sustained at later age. Around the first lactation the 

metabolic and endocrine variables were not different, albeit the heifers from in the WM-ad lib   

group had numerically greater milk yields thus compensating the higher costs during the rearing 

period. The present thesis provides information about the circulating adiponectin concentrations 

in dairy calves and about the effects of different feeding regimen on performance and endocrine 

and metabolic variables in blood. 



 
 

 

German abstract 

„Metabolische Programmierung“ meint den Einfluss eines Reizes in der frühen Entwicklung und 

dessen langfristigen Wirkung auf den Stoffwechsel eines Individuums. Bei Milchkühen konnte 

nach einer intensiven Aufzucht in den ersten Lebenswochen eine gesteigerte Milchleistung 

beobachtet werden. Die Folgen auf den endokrinen und metabolischen Status sind jedoch nicht 

eindeutig geklärt. Ziel dieser Arbeit war es, den Einfluss unterschiedlicher Fütterungsmethoden 

in der Aufzucht von Kälbern auf den endokrinen und metabolischen Status in der ersten 

Laktation zu untersuchen. Ein besonderes Augenmerk wurde dabei auf die Insulinsensitivität und 

das Adipokin Adiponektin gelegt, dessen Blutkonzentration und zeitlicher Verlauf bislang in 

Kälbern nicht bekannt war. Um die Effekte von Kolostrumfütterung und verschiedener 

Fütterungsintensitäten zu untersuchen, wurden Proben bzw. Daten aus 3 verschieden Versuchen 

verwendet. Manuskript I beinhaltet die Ergebnisse von 20 Kälbern, die mit Kolostrum und 

danach mit Milchaustauscher (MR, 130 g/L, 6 L/Tag) bis zum Alter von 110 Tagen verfolgt 

wurden. Zudem gingen die Daten von Kälbern, die entweder Kolostrum (n = 7) oder MR (n = 7) 

erhielten und nur bis zum 4. Lebenstag beobachtet wurden, sowie von Kälbern, die entweder 

natürlicherweise geboren wurden (n = 7), oder vorzeitig per Kaiserschnitt auf die Welt kamen (n 

= 7), und nach 24 h zum ersten Mal gefüttert wurden, in das Manuskript ein. Es wurden jeweils 

in regelmäßigen Abständen Blut- und Milchproben genommen und Adiponektin mittels einem, 

im Institut entwickelten ELISA, sowie zur Charakterisierung der verschiedenen 

Molekulargewichtsformen im Western Blot nachgewiesen. In den Manuskripten II und III wurde 

der Einfluss verschiedener Fütterungsintensitäten auf die Wachstumsleistung, aber auch auf 

metabolische und endokrine Parameter bis hin zur ersten Abkalbung herum zu untersuchen. Dazu 

wurden Holstein-Kälber in den ersten 25 Lebenstagen aus 3 verschiedenen Fütterungskonzepten 

(MR restriktiv (n = 20; 130 g /L, 6 L/Tag); MR ad libitum (ad lib; n = 17, 160 g/L) und 

Vollmilch ad lib (n = 20)) bis zu ihrem 110. Lebenstag beobachtet. Die weiblichen Tiere aus 

diesem Versuch wurden weiter bis um ihre erste Abkalbung herum verfolgt. Während der 

Aufzuchtphase wurden zudem Glucose- und Insulin-Toleranztests durchgeführt sowie 

Leberbiopsien gewonnen und Daten zum Körpergewicht, Gewichtszunahme, Futter- und 

Energieaufnahme erhoben sowie später die Milchleistung notiert und auch die 

betriebswirtschaftlichen Ergebnisse berechnet.  

Der postnatale Anstieg der Adiponektinblutkonzentration bei neugeborenen Kälbern erwies sich 

als abhängig von der Kolostrumaufnahme, was auf einen Transfer von kolostralem Adiponectin 

in den Blutkreislauf des Kalbes weist. Die getesteten, unterschiedlichen Fütterungsintensitäten 

ergaben lediglich während der differenzierten Fütterung Unterschiede zwischen den Gruppen in 

Hinblick auf die metabolischen und endokrinen Parameter. Auch um die erste Abkalbung herum 

gab es keine Unterschiede in den Blutparametern, obwohl Färsen, die als Kälber Vollmilch ad lib 

bekommen hatten, numerisch mehr Milch gaben. Die höheren Aufzuchtkosten mit Vollmilch 

konnten so kompensiert werden. 



 
 

 

In der vorliegenden Arbeit wird die Adiponektinblutkonzentration bei Kälbern unter 

verschiedenen Bedingungen charakterisiert und der Einfluss verschiedener Fütterungsintensitäten 

auf die Wachstums- und spätere Laktationsleistung dokumentiert.  
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1 Introduction: 

In the last four decades, milk production per cow doubled in many countries (Oltenacu and 

Algers, 2005; Oltenacu and Broom, 2010). Improved feeding regimen and herd management, as 

well as improvements in the genetics of dairy cows strongly contributed to this increase 

(Oltenacu and Broom, 2010). However, negative side effects like metabolic problems, lameness, 

mastitis or reduced fertility and reduced production lifespan may occur (Oltenacu and Broom, 

2010). Studies have shown that nutrition in early life can support the performance and health of 

adult individuals (Lucas, 1991). In dairy cows, nutrition in the first weeks of rearing may 

influence milk production in later life (Bach, 2012). For understanding the influence of 

nutritional stimuli in dairy calves on their later milk production sound knowledge about the 

physiology of dairy calves and cows and the underlying mechanisms of metabolic programming 

in the relevant target tissues and at the systemic level is required.  

 

1.1 Dairy calves: changing from pseudo-monogastrics to ruminants 

The physiology of digestion of newborn ruminants differs from adult ruminants. After birth the 

rumen of dairy calves is not yet fully developed (Warner et al., 1956). The reticulum, omasum 

and rumen are inactive and rudimentary (Heinrichs, 2005). Colostrum and milk (or milk replacer) 

are directly passed over the rumen via the esophageal groove into the abomasum (Fig. 1). In the 

first weeks of life the digestion of newborn ruminants is similar to non-ruminant monogastric 

animals (Leat, 1971). Therefore neonate dairy calves are referred to as pseudo-monogastrics or 

pre-ruminants. Carbohydrates are digested in the small intestine. The main energy source of non-

ruminant dairy calves in their first weeks of life is milk or milk replacer. Only with the gradual 

increase of the intake of solid feed, which reaches the rumen directly, the rumen starts to develop 

physically and metabolically and a microbial population starts to develop in the rumen. The 

degradation of carbohydrates into volatile fatty acids, i.e. acetate, propionate, and butyrate, also 

supports the development of the rumen (Heinrichs, 2005). Additionally, the size of the rumen 

increases and there is an expansion of the papillae with growing age. In contrast, the size of the 

abomasum decreases (Warner et al., 1956). Depending on the development of the rumen and 

therefore on the quality and quantity of the solids eaten, calves can be weaned after 4 to 11 weeks 

post natum [p.n. (Anderson et al., 1987)].  
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Figure 1: The development of the digestion system of the calf from the first week until maturity (modified from 

Heinrichs and Jones, 2003). 

 

1.2 The physiology of dairy cows during the transition period  

Throughout lactation dairy cows experience continued changes of energy supply and energy 

demand through changes in development of the offspring, milk production and feed intake. The 

difference between energy supply and energy demand is referred to as energy balance. In the 

transition period, defined as 3 weeks ante partum (a.p.) until 3 weeks post partum (p.p.), 

metabolic and endocrine changes occur to support the nutrient supply to the offspring including 

lactogenesis and galactopoiesis in the dam (Grummer, 1995), the energy requirements increase. 

Limitations concerning nutrition in the transition period may have long time effects on milk yield 

(Drackley, 1999). Furthermore, during this critical time dairy cows are prone to develop 

metabolic and infectious diseases, like ketosis, displaced abomasum or mastitis (Bell, 1995; 

Drackley, 1999). In addition to the increased energy demand, the feed intake of the dairy cow 

decreases due to the metabolic and endocrine changes around parturition (Allen et al., 2005). The 

energy balance turns into negative.  

The most important nutrient for the developing mammary gland and the offspring is glucose (Bell 

and Baumann, 1997). Therefore ensuring an appropriate glucose supply for both, the offspring 

and the mammary gland, is a metabolic priority for the dam (Bell and Baumann, 1997). In 

consequence, gluconeogenesis in the liver is increased whereas glucose uptake in the muscle and 

adipose tissue is reduced due to a decrease in insulin sensitivity (Bell and Baumann, 1997). To 
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adapt to the increased energy demand, the dairy cow starts to mobilize body reserves, mainly 

from adipose tissue (Drackley, 1999).  

1.3 Adipose tissue and its role in the dairy cow 

Adipose tissue (AT) is a type of loose connective tissue composed of adipocytes (lipid filled 

cells) which are surrounded by a matrix of collagen fibers, blood vessels, fibroblasts and immune 

cells (Ashima and Flier, 2000). The number of adipocytes is determined in childhood and 

remains constant during adulthood (Spalding et al., 2008). The AT can be subdivided into brown 

AT (BAT) and white AT (WAT). The BAT plays an important role in the production of heat, 

especially in newborns. Brown adipocytes contain many small lipid droplets and a high amount 

of mitochondria (Saely et al., 2012). The amount of BAT decreases with age, whereas the size of 

WAT increases. Moreover, adipocytes of WAT have only one lipid droplet and less 

mitochondria. Beside its ability to store and to mobilize triglycerides, AT (BAT and WAT) 

metabolism is regulated trough endocrine, paracrine and autocrine signals (Mohamed-Ali et al., 

1998). Adipokines, e.g. adiponectin, leptin, resistin, visfatin and apelin represent signal 

molecules of AT by which the AT is able to communicate with other organs such as brain, 

skeletal muscle, liver or gastrointestinal tract. Adipokines influence, among other things, glucose 

and lipid metabolism, insulin sensitivity and secretion, endothelial functions and blood pressure 

(Blüher, 2012).  

In dairy cows the process of fat mobilization (lipolysis) occurs mainly during the transition 

period. Triglycerides which are stored in the AT are hydrolyzed into glycerol and free fatty acids 

(FA) and are released into the circulation as non-esterified FA (NEFA, McNamara, 1991). 

During late lactation and the beginning of the dry period when energy intake is increased and 

milk production decreases, the triglyceride storages in AT are refilled. This process is referred to 

as lipogenesis (McNamara, 1991). 

 

1.3.1 Adiponectin 

Adiponectin is a hormone that is produced by brown and white adipocytes and has important 

roles in regulating glucose and lipid metabolism (Berg et al., 2002; Waki et al., 2003; Iacobellis 

et al., 2013). It was discovered two decades ago by four research groups almost simultaneously 
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and therefore different names were used for it at that time: Acrp30 [adipocyte complement-

related protein of 30 kDa (Scherer et al., 1995)], apM1 [adipose most abundant gene transcript 1 

(Maeda et al., 1996)], adipoQ (Hu et al., 1996), and GBP28 [gelatin binding protein of 28 kDa 

(Nakano et al., 1996)].    

The 30 kDa adiponectin monomer consists of 247 amino acids and is structured by a N-terminal 

sequence (17 amino acids (aa)), a variable species-specific domain (28 aa), a collagen-like 

domain (65 aa), and a C-terminal globular domain (137 aa) (Fig. 2, Scherer et al., 1995; Berg et 

al., 2002; Waki et al., 2003).  

 

 

Figure 2: Structural domains of adiponectin (modified from Scherer et al., 1995; Waki et al., 2003). 

 

In blood, several molecular weight (MW) forms of the full length adiponectin can be found: the 

low MW form (LMW), the middle MW form (MMW) and the high MW form (HMW) (Fig. 3, 

Berg et al., 2002; Waki et al., 2003). In addition, there is a form of adiponectin that is limited to 

the globular head, and that is biologically active (Fruebis et al., 2001). 

 

N-terminus C-terminus

Signal 
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Region

Collagen-like 
domain Globular domain
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Figure 3: Different molecular weight forms of adiponectin (modified from Fruebis et al., 2001 and Berg et al., 2002). 

1.3.2 Adiponectin and its receptors 

Several receptors and transcription factors mediate the adiponectin signal (Fig. 4). Adiponectin 

acts through its two receptors, adiponectin receptor 1 (AdipoR1) and adiponectin receptor 2 

(AdipoR2) (Yamauchi et al., 2003). AdipoR1 can be found in skeletal muscle and liver whereas 

AdipoR2 predominantly acts in hepatocytes (Yamauchi et al., 2003). AdipoR1 binds to all 

molecular forms of adiponectin, whereas AdipoR2 has a low affinity to the globular form of 

adiponectin and prefers the full length form of the protein.  
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Figure 4: Signaling pathway of adiponectin and its receptors adiponectin receptor 1 and 2 (AdipoR1 and AdipoR2). 

Adiponectin activates the signaling molecules AMPK (adenosine monophosphate-activated protein kinase), PPARα 

(peroxisome pro-liferator activated receptor α), and p38-MAPK (mitogen-activated protein kinase). The protein 

APPL1 (adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine 

zipper motif) acts as a link between the adiponectin receptors and the signaling molecules. In muscles, the glucose 

uptake, fatty acid oxidation and insulin sensitivity are stimulated by adiponectin. In liver, gluconeogenesis is 

decreased and the fatty acid oxidation as well as insulin sensitivity is increased. In adipose tissue the hormone 

sensitive lipase activation and lipolysis are inhibited (modified from Chandran et al., 2003 and Kadowaki et al., 

2006). 
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1.3.3 Adiponectin and insulin sensitivity  

Adiponectin is known for its insulin sensitizing effects (Fruebis et al., 2001; Yamauchi et al., 

2001; Berg et al., 2002). In the liver, insulin sensitivity is increased while adiponectin decreases 

gluconeogenesis and the NEFA influx but increases the NEFA oxidation (Yamauchi et al., 2002). 

The hepatic glucose output and triglyceride synthesis are reduced. In muscle cells, adiponectin 

increases glucose uptake, FA oxidation and lactate production but decreases glycogen synthesis 

(Wu et al., 2003; Yamauchi et al., 2003; Ceddia et al., 2005). Especially the globular form of 

adiponectin increases the glucose uptake by stimulating the glucose transporter protein 4 (GLUT 

4) translocation in muscle cells (Ceddia et al., 2005). Lipolysis in adipocytes is inhibited by 

adiponectin (Qiao et al., 2011; Wedellová et al., 2011). In contrast to most proteins which are 

produced by AT, adiponectin is negatively correlated with obesity (Hu et al., 1996; Arita et al., 

1999). Furthermore, adiponectin is decreased in patients with diseases associated with insulin 

resistance like cardiovascular disease or hypertension (Hotta et al., 2000; Ouchi et al., 2003; 

Trujillo and Scherer, 2005).  

Bovine adiponectin was first characterized by Sato et al. (2001). The amino acid sequence of the 

bovine adiponectin has 92 % identity with murine adiponectin and 82 % identity with human 

adiponectin. The MW forms of the murine adiponectin are similar to the bovine adiponectin MW 

forms (Sato et al., 2001).  

The mRNA abundance of AdiopR1 and AdipoR2 is decreased after parturition compared to late 

gestation in cattle (Lemor et al., 2009). The adiponectin concentration in serum decreases before 

parturition with a nadir around calving and an increase thereafter (Giesy et al., 2012; Mielenz et 

al., 2013; Singh et al., 2014a). The decrease of the adiponectin concentration is related to the 

already known status of insulin resistance around calving and was therefore expected (Giesy et 

al., 2012; Mielenz et al., 2013; Singh et al., 2014a). Hence, adiponectin might support the 

increased supply of glucose to the fetus in late gestation and to the mammary gland in early 

lactation, respectively.  

In contrast to humans, the adiponectin concentrations and their metabolic effects are not well 

studied in neonate and young ruminants. In the human fetus, adiponectin is detectable from week 

24 of gestation (Kajantie et al., 2004). At birth the concentration is higher in neonates than in 

older children and adults, but a decrease of adiponectin occurs within 2 years of age (Iñiguez et 
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al., 2004; Kamoda et al., 2004; Kotani et al., 2004). Adiponectin serum concentrations are 

positively correlated with birth weight (Kamoda et al., 2004; Kotani et al., 2004), whereas in 

adolescents a negative correlation was observed between adiponectin concentrations and body 

weight (Arita et al., 1999; Cnop et al., 2003). Concerning sex differences contradictory results 

were reported in neonates (Arita et al., 1999; Kamoda et al., 2004; Erhardt et al., 2014).  

Adiponectin is found in human milk in a range of 4 – 30.4 µg/L (Bronský et al., 2006; Martin et 

al., 2006). The concentration is influenced by maternal factors, like obesity, duration of lactation 

or ethnicity (Martin et al., 2006). Several studies have shown the positive effects of breast milk in 

contrast to milk replacer with less obesity and improved metabolic health (Gartner et al., 2005; 

Owen et al., 2005, 2006). Adipokines in milk, especially adiponectin might be one reason for the 

positive influence of breast milk (Bronský et al., 2006; Martin et al., 2006), since AdipoR1 was 

found in the small intestine of neonatal mice and humans (Zhou et al., 2005; Bronský et al., 

2012). In neonatal pigs a positive influence of leptin (another adipokine) in colostrum and milk 

was observed on the development of the small intestine structure and function (Woliński et al., 

2003) and therefore might influence gut development and nutritional programming (Bronský et 

al., 2012).  

In cows’ milk the adiponectin concentrations are far above the concentrations measured in human 

milk. Singh et al. (2014a) reported milk adiponectin concentrations of 600 ± 30 µg/L. However, 

like in humans, a decrease during lactation was observed. Adiponectin and the adiponectin 

receptors AdipoR1 and AdipoR2 were detected in the bovine mammary gland (Ohtani et al., 

2011; Saremi et al., 2014; Lecchi et al., 2015), indicating a functional role for adiponectin in 

metabolism and immunity of the mammary gland.  
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1.4 Gluconeogenesis in dairy cows 

An important fuel for the energy supply in mammals is glucose. Several cells and tissues depend 

on regular glucose supply. Therefore, a steady level of glucose is a central element of 

homeostasis. Glucose can be stored in cells as glycogen, but can also be produced by 

gluconeogenesis mainly in the liver. In dairy cows gluconeogenesis is an important mechanism to 

supply sufficient glucose for the organism, especially in times of high glucose demand 

(Aschenbach et al., 2010). In humans and non-ruminants the glucose supply is ensured due to the 

direct intestinal absorption. Dairy cows only absorb little amounts of glucose in the small 

intestine (Aschenbach et al., 2010). The required glucose level in circulation is ensured by 

hepatic and renal gluconeogenesis. In dairy cows the main substrate for gluconeogenesis is 

propionate followed by lactate, glycerol, and glucoplastic amino acids (Seal and Reynolds, 1993). 

There are two different transporter types to support the cellular uptake of glucose: the sodium-

dependent glucose transporters (SGLT) which are mainly found in the small intestine and the 

kidneys, and the glucose transporter proteins (GLUT) (Zhao and Keating, 2007). There are 

several GLUT, of which not all require insulin (e.g. GLUT 1, which is mainly located on brain 

cells, erythrocytes, kidney cells, and mammary gland, but also ensures the basal glucose demand 

of all cells (Mueckler et al., 1985)). On adipose cells and muscle cells the GLUT 4 is the 

dominant one, a glucose transporter which requires insulin (Fukumoto et al., 1989). The GLUT 4 

ensures a higher uptake of glucose into the adipocytes and muscle cells during times of high 

nutrient intake. In times of low glucose levels in the blood stream, and therefore low insulin 

levels, glucose uptake is not stimulated (Wilcox, 2005).  

In dairy calves, gluconeogenesis increases with age and therefore with the increase of propionate 

due to the degradation of carbohydrates in the developing rumen (Leat, 1971).  
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1.5 Insulin and insulin resistance in calves and dairy cows 

One of the main hormones regulating the cellular uptake of glucose is insulin. Insulin is secreted 

by the β-cells (or B cells) in the Langerhans’ islets of the pancreas to maintain a constant level of 

glucose in the circulation. Besides, insulin stimulates glycogenesis, protein synthesis and 

lipogenesis and also exerts mitogenic and antiapoptotic effects (Fig. 5; Dimitriadis et al., 2011). 

The synthesis and secretion of this hormone can be stimulated by nutrients like glucose (Wilcox, 

2005).  

 

 

Figure 5: Major effects of insulin on metabolism (modified from Dimitriadis et al., 2011). 

 

Insulin binds to insulin receptors on the cell membrane and thereby stimulates the glucose 

transporters for the uptake of glucose into the cell. A reduced biological response (e.g. reduced 

uptake of glucose into the cells) to normal insulin concentrations is defined as insulin resistance 

(Kahn, 1978). Insulin resistance can be caused either by decreased insulin sensitivity or a 

decreased insulin response or both (Kahn, 1978). Insulin sensitive tissues need more insulin to 

achieve half of the maximal biological response (Fig. 6). In contrast reduced insulin 

responsiveness means that the biological response of the tissue is dampened even though the 

amount of insulin for reaching the half maximal response equals to the normal insulin response 

(Fig. 6) (Kahn, 1987; De Koster and Opsomer, 2013).  

Insulin 
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Liver:
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Figure 6: Differences between insulin sensitivity and insulin responsiveness. Rmax1 = maximal biological effect; Rmax2 

= decreased biological effect; ED50,1 = insulin concentration to elicit a half-maximal effect; ED 50,2 = increased 

insulin concentration to elicit half of the maximal effect (modified from Kahn, 1978 and De Koster and Opsomer, 

2013). 

 

In the newborn calf insulin secretory mechanisms are not fully developed (Grütter and Blum, 

1991). However, the intake of colostrum by the calf leads to an increase of serum insulin 

concentrations (Malven et al., 1987). Furthermore, a positive correlation was observed with the 

increase of colostrum and insulin receptors in the intestinal mucosa (Hammon and Blum, 2002). 

At weaning the main source for the supply of energy changes from glucose to the short chain FA, 

in particular propionate. 

The tissues of dairy cows seem to be more sensitive to insulin than tissues of non-ruminant 

animals (Brockman and Laarveld, 1986). The insulin sensitivity is different in different tissues, 

i.e. there are insulin-sensitive tissues, like the skeletal muscle and the AT and insulin in-sensitive 

tissues, like mammary gland, uterus, brain, and kidney (De Koster and Opsomer, 2013). During 

late gestation and early lactation, dairy cows experience an insulin resistant status to ensure a 

sufficient glucose supply to the fetus and the mammary gland. In late lactation the demand of the 

uterus for glucose increases to provide an adequate supply for the fetus. After parturition, when 

milk production increases rapidly, glucose is directed towards the mammary gland for lactose 
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production. During this time dairy cows develop insulin resistance and lipolysis increases. There 

are many methods to estimate the insulin resistance status. Beside the direct measurement of 

insulin sensitivity (Hyperinsulinemic Euglycemic Clamp (HEC) test), there are indirect methods, 

e.g. the intravenous glucose tolerance test (GTT) and the intravenous insulin tolerance test (ITT), 

to measure insulin sensitivity in an individual. The gold standard for measuring insulin resistance 

in humans and animals is the HEC test (Muniyappa et al., 2007; De Koster and Opsomer, 2013). 

However, the HEC test requires intensive animal experimentation and is labor and time-intensive, 

therefore several surrogate indices have been established to improve and simplify the estimation 

of the insulin sensitivity (Singh and Saxena, 2010). Those indices are based on a single blood 

sample and the concentrations of glucose, insulin, glycerol, non-esterified fatty acids (NEFA) and 

beta-hydroxybutyrate (BHB). The following table provides a list of some different indices 

suggested to assess insulin sensitivity (Tabl. 1). 

 

Table 1: List of different indices to assess insulin sensitivity. 

Designation Abbreviation Equation Reference 

Homeostasis model 

assessments 

HOMO-IR [glucose (mmol/L) x insulin 

(µU/mL)]/22.5 

 

Matthews et al., 

1985 

Quantitative insulin 

sensitivity check 

index 

QUICKI 1/[log glucose (mg/dL) + log 

insulin (µU/mL)] 

 

Katz et al., 2000 

Revised quantitative 

insulin sensitivity 

check index 

RQUICKI 1/[ log glucose (mg/dL) + log 

insulin (µU/mL)+ log NEFA 

(mmol/L)] 

Perseghin et al., 

2001 

Revised quantitative 

insulin sensitivity 

check index including 

BHB 

RQUICKIBHB 1/[ log glucose (mg/dL) + log 

insulin (µU/mL)+ log NEFA 

(mmol/L) + log BHB (mmol/L)] 

 

Balogh et al., 

2008 

Quantitative insulin 

sensitivity check 

index including 

glycerol 

QUICKIGlycerol 1/[log glucose (mg/dL) + log 

insulin (µU/mL) + log glycerol 

(µmol/L)] 

 

Rabasa-Lhoret et 

al., 2003 
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A low HOMO-IR indicates low insulin resistance whereas low values of QUICKI and RQUICKI 

indicate high insulin resistance, i.e. low insulin sensitivity.  

Normally these parameters are tested in a fasting state in humans. In dairy cows this state is hard 

to achieve as the rumen is a long lasting nutrient reservoir. Additionally, the sensitivity of the 

tissues towards insulin changes in late gestation and during early lactation. Therefore these 

parameters should be used carefully (De Koster and Opsomer, 2013). 

 

1.6 Metabolic Programming  

Several studies have shown that the diet and the nutritional status of the fetus and the neonate in 

humans and animals can influence health and performance in later life (Lucas, 1991; Barker and 

Clark, 1997; Lucas, 1998; Ozanne, 2001; Gartner et al., 2005; Shamay et al., 2005; Guilloteau et 

al., 2009; Moallem et al., 2010; Kiezebrink et al., 2015). Permanent or long term changes on 

health and performance of individuals resulting from an early stimulus or insult at a critical or 

sensitive period were described by Lucas (1991) and defined as ‘metabolic programming’. 

Especially hormones seem to play an important role by inducing long term effects (Lucas, 1991).  

In contrast to humans, where the focus of metabolic programming is on long term health, in 

animals the focus is on later performance (Kaske et al., 2010). In dairy calves several studies 

have shown a positive effect of ad libitum (ad lib) feeding of whole milk or milk replacer on the 

later milk production in first lactation (Bar-Peled et al., 1997; Shamay et al., 2005; Zanton and 

Heinrichs, 2005; Raeth-Knight et al., 2009; Moallem et al., 2010; Davis Rincker et al., 2011; 

Soberon and van Amburgh, 2013; Kiezebrink et al., 2015). DeNise et al. (1989) have already 

demonstrated a positive relationship between the intake of immunoglobulins via maternal 

colostrum and the later milk production. In addition, they also observed a positive correlation 

between an increased culling rate because of low milk production and a lower intake of 

immunoglobulins with colostrum as calves.  

In humans, several studies have shown the influence of early fetal or postnatal nutrition on the 

risk of developing diseases like insulin resistance, obesity or hypertension in later life (Martin et 

al., 2005; Owen et al., 2003, 2005, 2006, 2008; Martin-Gronert and Ozanne, 2012). All these 

diseases are primary symptoms of the metabolic syndrome (Symonds et al., 2009). The AT and 
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its adipokines might play a role in the development of later diseases after an early in utero or 

postnatal nutritional insult, as the number of adipocytes is determined in early life (Spalding et 

al., 2008; Mostyn and Symonds, 2009). Breast milk seems to have a positive influence on health 

in later life in humans (Martin et al., 2005; Owen et al., 2003, 2005, 2006, 2008). As to whether 

adipokines such as adiponectin, as bioactive components of colostrum and milk may have a role 

in protecting the organism against the metabolic diseases mentioned above is not clarified.  

In rats, neonatal nutrition influences the development of the pancreatic islet cells (Aalinkeel et al., 

2001; Srinivasan et al., 2003). After receiving a high carbohydrate formula in the preweaning 

period, rats developed hyperinsulinemia after weaning and an increase of β-cell proliferation was 

observed (Aarlinkeel et al., 2001; Srinivasan et al., 2003). The observation, that population 

growth of pancreatic islets occurs pre- and postnatally in rats, might indicate an influence of 

nutrition in the pancreatic cell development (Kaung, 1994).  

In a study with male dairy calves, an increase of Langerhans islets was observed when calves 

were reared intensively as compared to the calves fed restrictively in the first three weeks of life 

(Prokop et al., 2015). This study might point out one reason for the observed increase in milk 

yield after intensive feeding (Moallem et al., 2010; Davis Rincker et al., 2011; Soberon et al., 

2012). Taken together, health problems due to changes in the insulin action in later life might be 

triggered by nutritional stimuli in early pre- and postnatal life by affecting the development of the 

endocrine pancreas (Barella et al., 2014).  
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2 Objectives 

Adiponectin is one of the most abundant adipokines and is positively associated with insulin 

sensitivity. However, in dairy calves the ontogeny of the circulating adiponectin concentrations 

was not characterized. Furthermore, the influence of different feeding regimen prior to weaning 

on the concentrations of adiponectin and its association with insulin sensitivity in dairy calves 

and further on their first lactation, were not studied before.  

Therefore, the objectives of this thesis were: 

1. To assess the changes of the circulating adiponectin concentrations in newborn dairy 

calves as affected by colostrum intake, 

 

2. To characterize the effects of different feeding regimen in the first weeks of rearing on 

insulin sensitivity and the adiponectin serum concentrations (a) in dairy calves and (b) 

around first lactation, and, 

 

3. To relate the findings to the metabolic profiles and performance data. 
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ABSTRACT

Adiponectin, an adipokine, regulates metabolism and 
insulin sensitivity. Considering that the transplacental 
transfer of maternal proteins of high molecular weight is 
hindered in ruminants, this study tested the hypothesis 
that the blood concentration of adiponectin in neonatal 
calves largely reflects their endogenous synthesis where-
by the intake of colostrum might modify the circulating 
concentrations. We thus characterized the adiponectin 
concentrations in neonatal and young calves that were 
fed either colostrum or formula. Three trials were per-
formed: in trial 1, 20 calves were all fed colostrum for 3 
d, and then formula until weaning. Blood samples were 
collected on d 0 (before colostrum feeding), and on d 1, 
3, 11, 22, 34, 43, 52, 70, 90, and 108 postnatum. In trial 
2, 14 calves were studied for the first 4 d of life. They 
were fed colostrum (n = 7) or formula (n = 7), and 
blood samples were taken right after birth and before 
each morning feeding on d 2, 3, and 4. In trial 3, calves 
born preterm (n = 7) or at term received colostrum 
only at 24 h postnatum. Blood was sampled at birth, 
and before and 2 h after feeding. Additionally, allantoic 
fluid and blood from 4 Holstein cows undergoing cesar-
ean section were sampled. Adiponectin was quantified 
by ELISA. In trial 1, the serum adiponectin concentra-
tions recorded on d 3 were 4.7-fold higher than before 
colostrum intake. The distribution of the molecular 
weight forms of adiponectin differed before and after 
colostrum consumption. In trial 2, the colostrum group 
had consistently greater plasma adiponectin concentra-
tions than the formula group after the first meal. In 
trial 3, the preterm calves tended to have lower con-
centrations of plasma adiponectin than the term calves 

at birth and before and 2 h after feeding. Furthermore, 
the adiponectin concentrations were substantially lower 
in allantoic fluid than in the sera from neonatal calves 
and from cows at parturition. Our results show that 
calves are born with very low blood concentrations of 
adiponectin and placental transfer of adiponectin to the 
bovine fetus is unlikely. In conclusion, colostrum intake 
is essential for the postnatal increase of circulating adi-
ponectin in newborn calves.
Key words: adiponectin, colostrum, milk-based 
formula, preterm-born, newborn calf

INTRODUCTION

Adiponectin is one of the most abundant adipocy-
tokines in circulation and is well known for its insulin-
sensitizing effects and its role in regulating lipid and 
glucose metabolism (Kadowaki et al., 2006). It is 
mainly expressed in adipose tissue, and the circulating 
concentrations are inversely associated with adiposity 
and inflammation (Cnop et al., 2003). Adiponectin 
in blood occurs as multimeric complexes of different 
molecular weights (MW): as low MW trimer, medium 
MW hexamer, and as a high MW complex (HMW; 
Waki et al., 2003).

In human fetal blood, adiponectin is detectable 
from wk 24 of gestation (Kajantie et al., 2004); the 
concentrations in newborns are higher than those in 
adults and are positively associated with birth weight 
(Kotani et al., 2004). In addition, the available body of 
evidence suggests that the concentration and the MW 
distribution of adiponectin differ in preterm and term 
infants (Siahanidou et al., 2007). The mRNA expres-
sion of adiponectin and its receptor in human and rat 
placental tissue has also been reported (Caminos et 
al., 2005). Humans have a hemochorial placenta type 
that allows for the transplacental transfer of maternal 
proteins of high MW. In ruminants with an epithelio-
chorial placenta type, the transfer of such proteins is 
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hindered and therefore neonates depend on the transfer 
of HMW proteins as known from the acquisition of 
passive immunity through colostral immune globulins 
(Barrington and Parish, 2001).

Milk, in particular colostrum, contains a wide range 
of different biologically active compounds that influence 
both immediate and long-term metabolism and health 
of the offspring (Blum and Hammon, 2000). The pres-
ence of adiponectin has been documented for human 
milk (Martin et al., 2006; Bronsk  et al., 2012). The 
concentrations of adiponectin in mature human milk 
(around 20 ng/mL; Bronsk  et al., 2012) are far below 
the ones we recently reported for cow milk (610 ng/mL; 
Singh et al., 2014b), albeit the blood concentrations are 
comparable in the 1- to 2-digit μg/mL range in both 
species (Højlund et al., 2006; Singh et al., 2014a). In 
view of adiponectin’s metabolic functions and of the ex-
pression of adiponectin receptor 1 in the small intestine 
of neonatal mice (Zhou et al., 2005), milk adiponectin 
may play an important role in infant development, both 
locally and systemically and may also exert a trajectory 
effect during later ages (Woo et al., 2012).

In consideration of the difference in placenta type and 
in milk concentrations between humans and ruminants, 
we hypothesized that in case of adiponectin, the blood 
concentration of adiponectin in neonatal ruminants 
will reflect their endogenous synthesis and might be 
influenced by intake of colostrum and milk. To test this 
hypothesis we used neonatal and young calves fed with 
either colostrum or formula and compared the time 
course of both the adiponectin plasma concentrations 
and the adiponectin MW distribution during the first 
days of life.

MATERIALS AND METHODS

Trial 1

Experimental Design, Animals, and Feeding. 
The experimental procedures performed in this study 
were in strict accordance with the German animal 
protection law and were approved by the relevant 
authority [Landesuntersuchungsamt Rheinland-Pfalz, 
Koblenz, Germany (G 11–20–026.)]. Twenty German 
Holstein calves (10 male and 10 female) were weighed 
and transferred to individual hutches with straw bed-
ding when born. After 8 d, the calves were kept in 
group pens equipped with an automatic feeding system 
(Vario Kombi, Förster-Technik GmbH, Engen, Germa-
ny) until d 70. All calves received colostrum from their 
dam 2 times daily for 3 d, and then formula (Neumühle 
sauer, Trouw Nutrition Deutschland GmbH, Burgheim, 
Germany) from d 4 until weaning at 56 d with access 

to a pelleted starter concentrate and ad libitum access 
to hay and fresh water. The formula was reconstituted 
(130 g/L of water) and restricted to 6 L per calf and 
day (780 g of powder per calf/d). The study covered 
the period from birth until d 110 after birth and was 
conducted at the Educational and Research Centre for 
Animal Husbandry, Hofgut Neumuehle, Muenchweiler 
a.d. Alsenz, Germany.

Sample Collection. Blood samples were taken from 
a jugular vein immediately after birth and before co-
lostrum consumption (d 0), and on d 1, 3, 11, 22, 34, 
43, 52, 70, 90, and 108 after birth. Blood samples were 
centrifuged within 1 h at room temperature at 3,000 
× g for 20 min. The serum was obtained and frozen 
(−20°C) until analysis.

Trial 2

Experimental Design, Animals, and Feeding. 
The experimental procedures performed in this study 
were in accordance with animal care guidelines and 
were approved by the relevant authorities of the State 
Mecklenburg-Vorpommern, Germany (LALLF M-V/
TSD/7221.3–1.1–014/07). The study was guided by the 
Leibniz Institute for Farm Animal Biology, Dummer-
storf, Germany, and calves were kept in single boxes at 
the Research Station of the University of Rostock. The 
calves in the present study were used in a feeding trial to 
investigate glucose metabolism as previously described 
in detail (Steinhoff-Wagner et al., 2011a). Briefly, 14 
male German Holstein calves were separated from 
their dams at birth and were transferred to individual, 
straw-bedded boxes with free access to water. Calves 
were randomly assigned to 2 experimental groups, each 
consisting of 7 animals: (1) colostrum (COL), and (2) 
formula (FOR). Calves were bottle-fed either pooled 
colostrum obtained from d 1, 2, and 3 after parturition 
or milk-based formula (Bergophor Futtermittelfabrik 
GmbH, Kulmbach, Germany) with comparable nutri-
ent composition as colostrum on the first 3 d of life. On 
d 4, calves received either colostrum of d 3 or formula 
of d 3 in groups COL and FOR, respectively. The daily 
amount of colostrum or formula fed was targeted to 
be 8% of BW on d 1 and 10% of BW on d 2 to 4. The 
calves in both groups were slaughtered on d 4 of life, 2 
h after the last feeding.

Sample Collection. Blood samples were taken 
from a jugular vein after birth, before first feeding of 
colostrum (d 1), from d 2 until d 4 before morning feed-
ing and 2 h after feed intake on d 4. Tubes containing 
K3EDTA (1.8 g/L blood) were placed on ice and centri-
fuged at 1,500 × g at 4°C for 20 min to harvest plasma. 
The plasma was stored at −20°C until analyzed.
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Trial 3

Experimental Design, Animals, and Feeding. 
The animal ethical and study prerequisites were as 
described for trial 2. The calves were used in a study 
to investigate the maturation of endogenous glucose 
production in preterm and term calves. Details of this 
study were reported previously (Steinhoff-Wagner et 
al., 2011b). Briefly, 14 German Holstein calves, born 
preterm (PT; 6 male and 1 female) or at term (T; 7 
male) were kept in individual boxes with straw bed-
ding and free access to water. Calves in the T group 
were spontaneously born after normal gestation length. 
Preterm calves were delivered by caesarean section 9 
d before the anticipated calving date. The calves in 
both groups were slaughtered 26 h after birth. They 
did not receive colostrum or milk during the first 24 
h postnatum and were then fed with pooled colostrum 
from d 3 of lactation at 5% of BW, 2 h before slaughter.

Sample Collection. Blood samples were taken from 
a jugular vein immediately after birth, and before (24 h 
after birth) and 2 h after final feeding. Preparation of 
plasma was as described for trial 2.

Additional samples from 4 healthy German Holstein 
cows undergoing caesarean section at the Clinic for 
Cattle, University of Veterinary Medicine (Hannover, 
Germany) were obtained. Allantoic fluid (AF) was 
collected during surgery, and blood samples from a 
jugular vein of the cows immediately thereafter. Blood 
was collected into EDTA tubes (Sarstedt AG and Co., 
Nümbrecht, Germany), centrifuged (1,000 × g, 15 min, 
4°C) and the plasma obtained was stored at −20°C 
until analysis.

Analysis of Adiponectin Concentrations  
and MW Distribution

Quantitative Assessment of Adiponectin by 
ELISA. Serum, plasma, colostrum, formula, and AF 
were assayed in duplicate for adiponectin using an in-
house developed bovine-specific ELISA that is based 
on a polyclonal rabbit antiserum generated against 
adiponectin purified from bovine serum (Mielenz et al., 
2013). The original protocol of this ELISA was slightly 
modified, i.e., (a) for assaying colostrum, the microtiter 
plates were coated with whey prepared from colostrum 
(final dilution 1:20,000) instead of serum, (b) the an-
tiserum was affinity-purified before use in all assays 
to exclude potential IgG binding antibodies, (c) the 
working dilution of the antiserum was 0.1 μg/mL and 
incubation was 3 h at 20°C, and (d) the peroxidase-
conjugated secondary antibody (A1949, Sigma-Aldrich 
Chemie GmbH, Schnelldorf, Germany) was used at a 
1:20,000 dilution. Serum and plasma can be used in 

the assay without difference. Assay accuracy was con-
firmed by linearity of diluted samples and parallelism 
of standard curve and dilution series. The measuring 
range of the assay was 0.07 to 1 ng/mL and the limit 
of detection was 0.03 ng/mL. The intra- and interassay 
coefficients of variation were 7 and 9%, respectively.

Western Blotting. To maintain the different mul-
timer complexes, the samples were neither heat-dena-
tured nor reduced before electrophoresis. The amount 
of adiponectin per lane that allows for optimal display 
of the different MW forms in each body fluid and in 
formula was initially assessed and the samples (serum, 
plasma, colostrum, and AF) subjected to electropho-
resis and Western blotting were standardized for the 
same adiponectin concentrations based on prior ELISA 
results. The final amount of adiponectin loaded per lane 
to which all samples were standardized by diluting the 
samples with PBS was 0.5 ng. The diluted samples were 
mixed with sample buffer (final concentration: 0.064 M 
Tris HCl pH 6.8, 1% SDS, 0.01% bromophenol blue, 
10% glycerol) and were centrifuged for 5 min at 10,000 
× g and 4°C before loading on 8% SDS-PAGE gels. 
Proteins separated by SDS-PAGE were transferred onto 
a polyvinylidene difluoride membrane (GE Healthcare 
Europe, Freiburg, Germany) using tank blotting with 
the Criterion Blotter System (Bio-Rad Laboratories, 
Munich, Germany). After blotting, the membranes 
were blocked with Tris-buffered saline containing 0.05% 
Tween 20 (TBST) and 1% Roti-Block (Carl Roth, 
Karlsruhe, Germany) for 60 min at room temperature. 
The membranes were exposed to the primary antibody 
(1 μg/mL, anti-bovine adiponectin polyclonal rabbit 
antiserum, same preparation as used in the ELISA) 
for 1 h at room temperature and washed 4 times with 
TBST. Likewise, the membranes were treated with the 
secondary antibody [i.e., a monoclonal anti-rabbit IgG 
(γ-chain specific) produced in mouse and conjugated 
with horseradish peroxidase (Sigma; A1949, 1:10,000)]. 
After washing, the immune complex was detected with 
an enhanced chemiluminescence detection system (GE 
Healthcare Europe GmbH, Amersham, UK) using the 
VersaDoc MP4000 imaging system with Image Lab 
software (Bio-Rad, Munich, Germany). The MW of the 
developed bands was assessed by comparison with a 
MW marker (Prestained Protein Marker, High Range, 
12949, Cell Signaling Technology Inc., Danvers, MA).

Statistical Analyses

Data from trials 1, 2, and 3 were analyzed using the 
Mixed Model of SAS 9.2 (SAS Institute Inc., Cary, NC). 
In trial 1, the model included the effects of time, sex, 
and the interaction of sex and time as fixed effects and 
calf as random effect. The outcome of this preliminary 
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statistical evaluation did not show any significant effect 
of sex or an interaction of sex and time on the serum 
adiponectin concentrations. Therefore, sex and the in-
teraction of sex and time were disregarded as effects in 
the model for the final statistical analysis. Pearson cor-
relation coefficients were derived to identify potential 
correlations between serum adiponectin concentrations 
at birth and birth BW. In trial 2, the model included 
diet (COL or FOR), sampling time point, and diet by 
time interaction as fixed effects, and calf as random 
effect. In trial 3, the model included the fixed effects 
of group (PT, T), time, and group × time, and the 
random effect of calf. A Tukey-Kramer adjustment was 
used to account for multiple comparisons. Results are 
presented as means ± standard error of the mean. The 
threshold of significance was set at P < 0.05; trends 
were declared at 0.05 < P ≤ 0.10.

RESULTS

Adiponectin Concentrations in Serum and AF

The time course of the adiponectin serum concentra-
tions in dairy calves during the first 108 d of life (trial 
1) is shown in Figure 1. Serum adiponectin was changed 
during the course of the study (P < 0.01). Immediately 
after birth, and before colostrum intake, the concentra-
tions of adiponectin were lowest as compared with all 
other sampling time points (P < 0.05). The adiponectin 
concentrations in serum increased 3.5- and 4.7-fold in 
the d 1 and 3 samples compared with d 0 (before colos-
trum intake). Until d 52, the concentrations remained 

unchanged, but increased again thereafter until the end 
of the study on d 108 of life (P < 0.05). The serum 
adiponectin concentrations at birth and birth BW of 
calves (41.9 ± 0.82 kg) were not correlated.

In Figure 2 the plasma concentrations of adiponectin 
in COL and FOR calves (trial 2) from birth to d 4 of 
life are shown. In the FOR group, the plasma adiponec-
tin concentrations slightly increased from birth until 72 
h thereafter (P < 0.05). Before colostrum consumption 
(0 h), adiponectin concentrations were also very low in 
the COL group, comparable with the FOR group, but 
were substantially increased at 24 h after colostrum 
intake (P < 0.05). From that time onward, the calves 
in the COL group had consistently greater (P < 0.05) 
blood adiponectin concentrations than the FOR calves 
(Figure 2). The plasma concentrations of adiponectin 
before and 2 h after feeding on d 4 were not affected 
by time in both groups, but were also higher in COL 
calves than in FOR calves at both times (P < 0.05; 
data not shown).

The PT calves from trial 3 tended (P = 0.10) to have 
lower concentrations of adiponectin than the T calves 
at birth, and before and 2 h after feeding on d 2 of life 
(Figure 3). Plasma adiponectin concentrations did not 
change over time. Furthermore, no group by time inter-
actions was observed for the plasma concentrations of 
adiponectin.

Figure 1. Concentrations of adiponectin in serum (means ± SEM, 
μg/mL) in Holstein calves (n = 20) from birth until 108 d of life. 
Different letters (a–e) indicate differences (P < 0.05) between the time 
points.

Figure 2. Concentrations of adiponectin in plasma (means ± SEM, 
μg/mL; n = 7 per group) in calves fed either colostrum (COL) or 
formula (FOR) for 4 d. Different lowercase letters indicate differences 
(P < 0.05) between the time points (a,b) in the COL calves. Different 
uppercase letters indicate differences (P < 0.05) between the time 
points (A–C) in the FOR calves. An asterisk (*) indicates a significant 
difference (P < 0.05) between COL- and FOR-fed calves at a given 
time point. Significant effects (P < 0.001) were time, diet, and diet × 
time effects.
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The adiponectin concentrations recorded in AF col-
lected during caesarean section were 2.60 ± 0.70 ng/
mL and thus far below the ones observed in neonatal 
calves (2.55 ± 0.16 μg/mL; means from trials 1–3) and 
in cows at parturition (19.8 ± 0.70 μg/mL, trial 4).

Adiponectin Concentrations in Colostrum  
and Formula

The adiponectin concentrations in colostrum used in 
trials 1 and 2 were greater on d 1 than on d 2 and 3, 
respectively (Table 1). The adiponectin content in the 

formula was almost 200-fold lower than in d 1 colos-
trum in trial 1 and 165-fold lower in trial 2 (Table 1).

Adiponectin Multimeric Complexes  
in Blood, Milk, and AF

In trial 1, as displayed in Figure 4A, the adiponec-
tin complexes differed in their distribution of HMW 
forms before and after colostrum consumption. Before 
colostrum intake, only faint bands were detected for the 
HMW isoforms of adiponectin in the serum, whereas af-
ter the intake of colostrum, the HMW complexes dem-
onstrated a prominent band with a shift to the upper 
MW similar to the one in the corresponding colostrum 
samples. In trial 2, the same trend was observed in 
terms of the distribution of HMW adiponectin in the 

Figure 3. Concentrations of adiponectin in plasma (means ± SEM, 
μg/mL) immediately after birth (1) and before (2) and 2 h after feed-
ing on d 2 of life (3) in preterm and term-born calves. Time effect, P 
= 0.90; group effect, P = 0.10; group × time effect, P = 0.64.

Table 1. Mean adiponectin concentrations in colostrum and formula

Item Adiponectin (μg/mL)

Trial 11  
 Colostrum  
  d 1 75.9 ± 4.19
  d 3 3.32 ± 0.30
 Formula 0.38
Trials 2 and 3  
 Colostrum  
  d 1 56.1
  d 2 19.9
  d 3 2.67
 Formula  
  d 1 0.38
  d 2 0.36
  d 3 0.27
1Colostrum data from trial 1 in which calves received colostrum from 
their own dams comprise 20 individual colostrums; all other adiponec-
tin concentrations refer to pooled colostrum (trials 2 and 3) or pooled 
formula (trials 1 to 3) that was given to the calves.

Figure 4. Representative Western blots of adiponectin multimeric complexes (A) in serum samples of calves from trial 1, before (d 0) and 
after receiving colostrum (d 1, 2, and 3) and corresponding colostrum (COL) samples (d 1 and 3); (B) in plasma samples of the calves from 
trial 2, before (0) and after receiving colostrum (24 and 48 h after birth); and (C) in maternal plasma (MP) and allantoic fluid (AF) from trial 
4. HMW = high molecular weight form.
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plasma before and after colostrum consumption (Figure 
4B). The adiponectin HMW forms were also present in 
maternal plasma and in AF (Figure 4C).

DISCUSSION

The present characterization of the ontogeny of 
circulating adiponectin in neonatal and young calves 
documents that colostrum plays a critical role for the 
transfer of adiponectin from the dam to the neonate 
in cattle. Assuming that the low blood adiponectin 
concentrations in calves at birth represent the calf’s 
endogenous secretion and originate from adipose tis-
sue, low concentrations were to be expected in view of 
the low body fat content in neonatal calves. The blood 
adiponectin concentrations increased 3- to 4-fold after 
the first colostrum consumption. The changes observed 
for the MW distribution of circulating adiponectin in 
calves after intake of colostrum provided also qualita-
tive support for colostrum being the major source of 
adiponectin in newborn calves. In umbilical cord blood 
from human neonates, the adiponectin serum concen-
trations range between 20 to 60 μg/mL (Sivan et al., 
2003) and are thus greater than in the newborn calves 
before colostrum intake reported herein. The higher 
adiponectin serum concentrations in human neonates 
point to a placental transfer of maternal adiponectin 
to the fetus. However, the adiponectin serum con-
centrations in human neonates reportedly exceed the 
maternal ones (Kotani et al., 2004; Dawczynski et al., 
2014), suggesting fetal origin of adiponectin (Lindsay 
et al., 2003; Sivan et al., 2003; Corbetta et al., 2005). 
In contrast, the adiponectin plasma concentrations in 
the calves at birth (trials 1–3) were substantially lower 
than those measured in the cows undergoing caesarean 
section or from other cows at parturition as reported 
earlier (Mielenz et al., 2013; Singh et al., 2014a,b). In 
addition, the very low concentrations of adiponectin in 
the AF suggest that the placental transfer of adipo-
nectin in cattle is unlikely or negligible. Nevertheless, 
the concordance of the HMW adiponectin in AF and 
in blood from newborn calves before colostrum feeding 
supports that bovine fetuses do endogenously produce 
adiponectin, albeit at a low level. The higher endog-
enous production of adiponectin during fetal life in 
humans as compared with cattle might be related by 
species differences in body fat content because human 
infants have the highest body fat levels of any mamma-
lian species (around 16%; Widdowson, 1950). Neonatal 
calves or lambs have body fat content of about 2% 
(Marple, 2003).

Human milk adiponectin concentrations have been 
reported to range from 4 to 88 ng/mL (Martin et al., 

2006). However, our present data about the adiponec-
tin concentrations in bovine colostrum derived from 
the first 3 d of lactation (3 to 76 μg/mL) demonstrate 
substantially higher concentrations than reported for 
human milk in the first week postpartum (50 ng/mL; 
Ley et al., 2012). Therefore, unlike human neonates, 
calves receive a significant portion of their circulating 
adiponectin from their mother’s colostrum.

Following the adiponectin serum concentrations be-
yond the time of colostrum feeding in the calves from 
trial 1, the values remained unchanged until d 52, but 
increased gradually thereafter to concentrations similar 
to the ones reported for lactating dairy cows (Mielenz 
et al., 2013) or breeding bulls of similar age (Heinz et 
al., 2015) until d 90 of life. In view of the biological 
half-life of adiponectin in circulation that is reportedly 
about 75 min in mice (Halberg et al., 2009), a decrease 
of the plasma adiponectin concentrations in the COL 
group from trial 2 would be expected after the initial 
rise with colostrum feeding. Surprisingly, the adiponec-
tin concentrations in plasma remained fairly constant 
and were maintained when the intake of colostrum and 
thus adiponectin ceased due to gut closure around 24 
h postnatum; also, 72 h after birth, no decline in adi-
ponectin was observed. Adiponectin has structural ho-
mology with complement factor C1q (Okamoto et al., 
2000) and C1q-adiponectin complexes were detected 
in human blood (Nakatsuji et al., 2013). The ELISA 
used herein to quantify adiponectin has negligible cross 
reactivity (<0.0001%) with the human C1q protein and 
other proteins such as albumin and collagen (Mielenz et 
al., 2013); therefore, we can exclude interference of C1q 
or C1q-adiponectin complexes in the assay. Moreover, 
the concentrations of C1q in bovine milk are very low 
(Rainard, 2003). The underlying mechanisms regulat-
ing plasma adiponectin concentrations in the neonatal 
calves are not yet known. It is likely that factors other 
than endogenous adiponectin secretion also affect the 
circulating concentrations of adiponectin in newborn 
calves. We thus speculate that the rate of turnover of 
colostral adiponectin might be slower as a compensa-
tory effect to the lower rate of endogenous adiponectin 
production with regard to a very low percentage of 
body fat in neonatal calves (Marple, 2003). Neverthe-
less, in view of the consistently low concentrations in 
the FOR group compared with the COL group in trial 
2, colostrum might indeed be indispensable for an early 
induction of adiponectin synthesis in neonatal calves. 
Colostrum intake might also have triggered the secretion 
of adiponectin from brown adipose tissue; the expres-
sion of adiponectin has already been reported in brown 
adipose tissue of humans and rodents (Viengchareun et 
al., 2002; Iacobellis et al., 2013). The serum adiponec-
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tin concentrations in neonatal, prepubertal calves were 
not different between males and females; data on sex 
dependent variations of circulating adiponectin in hu-
man babies are contradictory (Ley et al., 2012). In our 
study, birth BW and serum adiponectin concentrations 
were not correlated. However, for humans, a positive 
correlation between adiponectin serum concentrations 
and birth BW was reported (Kotani et al., 2004).

Previous studies in human infants have shown that 
total adiponectin concentrations are significantly lower 
in preterm compared with full-term infants (Siahani-
dou et al., 2009) and this difference is probably due to 
decreased adiposity of preterm infants (Siahanidou et 
al., 2007). Adiponectin concentrations correlated posi-
tively with the degree of adiposity in neonates, whereas 
in adults inverse relationships are known (Kotani et al., 
2004; Pardo et al., 2004; Tsai et al., 2004). In the cur-
rent study, plasma adiponectin concentrations tended 
to be lower in PT calves compared with T calves. The 
calves in both groups received pooled colostrum from 
d 3 of lactation only 2 h before last blood sampling at 
26 h of life. In both groups, no changes were observed 
in plasma concentrations of adiponectin 2 h after colos-
trum feeding compared with the values before feeding. 
Furthermore, the values measured were substantially 
lower than those observed in calves that received co-
lostrum at birth (trials 1 and 2). Besides feeding colos-
trum with lower adiponectin concentrations, the timing 
of feeding (i.e., when gut closure occurred) is the most 
likely explanation for this difference. Taken together, 
adiponectin is unlikely to be transferred through the 
placental from the dam to the fetus in cattle. In contrast 
to human infants, fetal synthesis and secretion of adipo-
nectin seem low in the bovine species. In confirmation 
of our working hypothesis, the blood concentrations 
of adiponectin in neonatal ruminants are indeed very 
low at birth but increase with intake of colostrum and 
milk. Besides increasing the circulating concentrations 
in the neonate, the high adiponectin concentrations in 
bovine colostrum and milk may also play a role for 
gut development because adiponectin receptors were 
already demonstrated both at the mRNA level and the 
protein level in intestinal tissue of fetal mice (Zhou et 
al., 2005) and humans (>9 mo of age; Bronsk  et al., 
2012). Moreover, as adiponectin is a glycoprotein, it 
might also have a role for pathogen protection in the 
gut, acting as growth promoter for genera of benefi-
cial microflora (Gopal and Gill, 2000) and preventing 
adverse effects of bacterial toxins because adiponectin 
was demonstrated to bind bacterial lipopolysaccharide 
(Peake et al., 2006).

In conclusion, calves are born with very low blood 
concentrations of adiponectin and colostrum intake is 

crucial to supply blood adiponectin and may also be 
indispensable to trigger the endogenous adiponectin 
secretion in newborn calves.
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Interpretive summary: Different feeding intensities during the first 1 four weeks of 

rearing in dairy calves: Part 1: Effects on performance and production from birth over 

the first lactation: By Korst et al. The effects of restrictive (milk replacer, 6.78 kg/d) versus ad 

libitum feeding (milk replacer or whole milk) of dairy calves during the first four weeks of life on 

growth rate, feed intake and on performance in their first lactation were tested and the economic 

outcomes were estimated. Differences in growth rate were limited to the time of differential 

feeding; heifers fed ad libitum in early calfhood had numerically greater milk yields in first 

lactation than those fed restrictively. The greater feed costs in ad libitum fed calves were more 

than compensated by the increased returns from milk. 
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The aim of this study was to test the effects of ad libitum feeding (ad lib) of whole milk (WM) or 

milk replacer (MR) versus restrictive feeding (res) of MR during the first 4 wk of life on growth 

performance and on milk yield in the first lactation. Fifty-seven German Holstein calves (29 

females, 28 males) were studied from birth until d 110 of life (Trial 1). The 28 females from Trial 

1 were further studied during their first lactation (Trial 2). In Trial 1, all calves were randomly 

assigned at birth to either group MR-res (6.78 kg MR/calf/d, n = 20), or group MR-ad lib (n = 17) 

or group WM-ad lib (n = 20). All calves received colostrum ad lib from their dam until day (d) 3 

of age. From d 4 - 27 calves were fed according to their group regimen. From d 28 - 55 all calves 

received the MR-res feeding and were then gradually weaned until d 69. Body weight (until d 

110), feed intake (amount (g), metabolizable energy (ME) and frequency of liquid feed intake 

until weaning) were recorded. The profitability of the different feeding regimen was estimated 

taking the income from milk yield (Trial 2) and the feed costs during rearing into consideration. 

Trial 1: Considering the total ME intakes, the calves from WM-ad lib and MR-ad lib had 2.02 

and 1.65 fold greater intakes than the MR-res group during the first 4 wk of life. In this period, 

concentrate intake did not differ between groups, but tended to be greater in the WM-ad lib 

calves from d 28 - 69 of age as compared to the MR-ad lib animals. The MR-res calves visited 

the automatic feeders more often than the ad lib fed groups during the time of differential 

feeding, but 70% of the visits were in vein (< 10% in the ad lib fed calves). When all calves were 

subsequently fed at the MR-res level, the average portion of futile visits was 65% in all groups. 

Average daily weight 46 gain and body weight (BW) were greater in MR-ad lib and WM-ad lib 

calves than in MR-res animals in the first 4 wk of life but not from d 1 to 110. In Trial 2, age at 

first calving, dry matter intake and BW over the first 10 mo of lactation were not different 

between the groups. Milk composition was also not different. Milk yields (305 d) were 

numerically, but not statistically greater in the ad lib-fed groups (+ 765 kg for WM-ad lib versus 

MR-res, + 612 kg MR-ad lib versus MR-res) during the first lactation. Feeding WM-ad lib and 

MR-ad lib was 1.37 and 1.21 fold more costly than MR-res, respectively, but amounted to 18, 15, 

and 13 % of the total estimated feed costs until calving in WM-ad lib, MR-ad lib and MR-res, 

respectively. Our study confirms that ad lib feeding is an attractive measure for rearing dairy 

calves, both for animal welfare and - with the caveat of sample size in Trial 2 that lead to 

insufficient power - economic profit from milk. Key words: calf, nutrition, growth, milk yield 

Introduction 
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Calves are born as pseudo-monogastrics without a functional rumen and nutrients are mainly 

provided in liquid form, i.e. as whole milk (WM) or milk replacer (MR) during the first wk of life 

to achieve high growth rates (Baldwin et al., 2004; Khan et al., 2011). Over the past decades 

feeding strategies for dairy calf were focused on early weaning to stimulate the intake of solid 

feed and thus the development of a fully functional forestomach system (Baldwin et al., 2004; 

Khan et al., 2011, 2012, 2016). Restrictive feeding before weaning is considered to drive the 

intake of concentrate and thus the production of volatile fatty acids (VFA), in particular butyrate 

which are the primary drivers of rumen epithelial and rumen papillae development (Quigley et 

al., 1991). However, restricting the amount of liquid feed results in lower growth rates, in 

abnormal behavior and in negative effects on rumen development (Khan et al., 2011, 2016).  

The effects of increasing nutrient supply with WM or MR on feed intake, growth rate and milk 

yield in the first lactation were investigated recently (Soberon et al., 2012; Eckert et al., 2015; 

Kiezebrink et al., 2015). Increasing WM or MR intake decreased concentrate intake (Khan et al., 

2007a, b; Raeth-Knight et al., 2009), delayed rumen development, and decreased BW at weaning 

(Suarez-Mena et al., 2011). However, Robelin and Chilliard (1989) and Moallem et al. (2010) 

found that increased ADG during the first 2 months of life resulted greater BW at 24 mo of age. 

Greater growth rates in early life reportedly improve gastrointestinal development at weaning 

(Eckert et al., 2015), reduce age at first calving (Raeth-Night et al., 2009) and increase  first 

lactation milk yield albeit not always significant (Magerison et al., 2013; Soberon and van 

Amburgh, 2013). 

Brown et al. (2005) documented that increasing the intake of energy and protein from 2 to 14 wk 

of age affected the development of the mammary gland in heifer calves, i.e., total parenchymal 

mass and parenchymal DNA and RNA increased, and the histological development was 

stimulated. A recent report (Geiger et al., 2016) confirmed these results and documented that 

intensified feeding over 8 wk of life resulted in increased organ weights, e.g., liver, mammary 

gland, spleen. 

The “lactocrine hypothesis” emanated from the notion that milk-born factors may affect the 

development of specific tissues or physiological functions and thus exert long term effects (Bartol 

et al., 2008, 2013). Such findings were first described in neonatal pigs (Donovan and Odle, 1994; 

Burrin et al., 1997) and subsequently also in calves (Blum and Hammon, 2000; Rauprich et al., 
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2000a, b, Blattler et al., 2001). Indeed, the results of these studies showed that neonates may 

undergo a programming by early nutrition with sustained long term effects e. g. on the 

gastrointestinal tract, liver, and mammary gland. Naturally milk born factors are constituents of 

WM, occurring at particularly high concentrations in colostrum (Blum and Hammon, 2000), 

whereas MR hardly contains such bioactive substances. Potentially sustained effects of early 

intensive WM feeding might thus be due to these bioactive substances but also to the level of 

energy and protein intake. 

We herein aimed to test the following hypotheses: (1) Feeding WM or MR ad libitum (ad lib) for 

the first 4 wk of life and continuing thereafter on a restrictive regimen with MR until weaning at 

10 wk of life will result in improved performance until d 110 of life, and thereafter during the 

onset and course of the first lactation. (2) Calves fed ad lib with WM will perform better in later 

life than calves receiving ad lib MR, and (3) the monetary costs of the 4 wk ad lib feeding will be 

balanced by the returns achieved with the lactating animals. The effects of the different feeding 

strategies on the metabolic and endocrine status from birth over the first lactation are described in 

the companion paper by Kesser et al. (submitted to Journal of Dairy Science, currently revised, 

JDS-16-11595). 

 

 

 

 

 

 

 

 

 

Material and Methods 
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The animal experiments were performed in strict accordance with the German Law for Animal 

Protection and were approved by the relevant authority (Landesuntersuchungsamt Rheinland-

Pfalz, Koblenz, Germany (G 11-20-026)). Two trials, one with calves and one with heifers 

recruited from the initial calf trial, were conducted at the Educational and Research Centre for 

Animal Husbandry, Hofgut Neumuehle, Muenchweiler a.d. Alsenz, Germany.  

Trial 1 

Animals, housing, feeding and sampling 

German Holstein calves (29 females; 28 males) were studied from April 2012 to January 

2013 during their first 110 d of life. All calves were born spontaneously at term and received 10 

mL iron suspension (Sinta fer-o-bac, 115 mg Fe3+/mL and 108 mg dextran/mL, Sinta GmbH, 

Schwarzenborn, Germany) per os. Colostrum milked from respective dams was provided ad 

libitum within 2 h after birth in the calving pen next to their dam. The calves were randomly 

allocated directly after birth to 3 feeding groups, but differential feeding was not started until d 4 

of life, i.e. after the colostrum phase. The groups were MR-res (milk replacer restrictively, n=20; 

each 10 males and 10 females, birth weight: 41.9 kg ±0.8), MR-ad lib (milk replacer ad libitum, 

n = 17, 8 males and 9 females, 41.8 kg ±1.4) or WM-ad-lib (whole milk ad libitum, n = 20; each 

10 males and 10 females, 42.3 kg ±1.3). The first colostrum intake was not different between the 

groups (MR-res: 2334 g ±211; WM-ad lib: 2349 g ±237; MR-ad lib: 2245 g ±211). From the 

second feeding time until d 3 of age all calves received colostrum and transition milk, 

respectively, ad lib from their dam. From d 4 to d 27 of age calves were fed according to their 

group regimen, i.e. the calves of the MR-res group received MR (11.5 % solids; 42 °C mixing 

temperature and 39 °C drinking temperature) limited to 6.78 kg/d; the calves of the MR-ad lib 

and the WM-ad lib group had free access 24 h/d to MR (13.8 % solids) and WM, respectively. 

The acidified MR was provided from Trouw Nutrition Deutschland GmbH, Burgheim, Germany 

(Table 1). The WM was saleable bulk tank milk from Hofgut Neumuehle (in average 3.9 % fat 

and 3.3 % protein) and was acidified with 2 mL acidifier per L of WM (Schaumacid, H. W. 

Schaumann GmbH, Pinneberg, Germany) to pH 4.6. In addition, WM was supplemented with a 

mix of trace elements and vitamins (1 mL Milkivit Quick-Mix trace elements/L whole milk and 1 

ml Milkivit Quick-Mix vitamins/L whole milk; Trouw Nutrition Deutschland GmbH). For the 

first 7 d of age all calves were kept in individual straw bedded hutches (FLIXBOX, Mayer 

Maschinenbaugesellschaft mbH, Tittmoning, Germany). During this time calves were fed twice 
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daily by teat buckets. The MR-res group received 3.4 kg MR each in the morning and in the 

evening. Both ad lib groups were offered 9 kg WM or MR each in the 142 morning and in the 

evening and the buckets were accessible all day to achieve free access. From d 8 to d 70 of age 

calves were housed in straw bedded group pens with an automatic feeding system (Vario Kombi, 

Förster-Technik GmbH, Engen, Germany) and had free access to water, hay, and concentrate. 

The latter was also offered by an automatic feeding system (Vario Kombi, Förster-Technik 

GmbH). The calves of the different groups were mixed in the pens and differential feeding was 

achieved by transponder collars through which the calves had access to their group-specific diet. 

From d 25 to d 27 of age the calves of the MR-ad lib and the WM-ad lib group were gradually 

adapted to the MR-res feeding regimen (11.5 % solids, maximal daily allowance was 6.78 kg) on 

which they continued until d 55. All calves were then stepped down from 6.78 kg MR/d to 2 kg 

on d 69. From d 70 of age onwards MR supply was entirely stopped and all calves had free 

access to a total mixed ration (TMR, Table 1) for lactating dairy cows until the end of the trial at 

d 110 of age. The calves were housed in group pens irrespective of their rearing group. All calves 

were subjected to blood samplings from the jugular vein immediately after birth (d 0) until d 108 

of age (total number of blood samples: 11). Liver biopsies were taken on d 19 and 100. In 

addition, glucose tolerance test (GTT) were performed in all calves on d 22, 52 and 108 and 

insulin tolerance tests (ITT) were performed on d 24, 54 and 110 in male calves only. Details of 

sampling, processing and storage of the samples obtained, the analyses done and the results 

therefrom are described in the companion paper by Kesser et al. (submitted to Journal of Dairy 

Science, JDS-16-11595 revised version submitted concomitantly with the present revision). 

Feed intake 

Daily MR and WM intake was documented individually from d 1 - 7 when all calves were kept in 

individually hutches. From d 8 – 69 of age MR, WM and concentrate intakes were recorded daily 

per individual via the automatic feeding system (Vario Kombi, Förster-Technik GmbH). The 

contents of ME in MR and WM were calculated according to Jentsch et al. (2000); the ME 

content of the concentrate was analyzed according to the methods of the Verband der Deutschen 

Landwirtschaftlichen Untersuchungs- und Forschungsanstalten (VDLUFA, 2007). The daily ME 

intakes via MR, WM and concentrate were calculated by multiplying the individual daily intake 

of MR, WM and concentrate by the mean ME content (MJ/kg DM) of MR (16.3), WM (19.3) and 

concentrates (11.6) for each calf, and are presented as average intake (± SEM) per group from d 2 
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- 27 and d 28 - 69. Beside the amounts consumed, the number of visits in the automatic feeders 

was recorded and subclassified in successful visits, i.e. when feed was dispensed, and attempts in 

vein, i.e. without receiving feed when the daily allowance had already been retrieved. 

 

Body Weight  

All calves were weighed after the first colostrum feeding and birth weight was determined 

by subtracting the amount of ingested colostrum. During Trial 1, BW was recorded weekly from 

birth until day 110 of age with a mobile scale (Tru- Test Ltd., Auckland, New Zealand).  

 

Economic estimates  

The total feed costs over the liquid feeding period were calculated with the average intake of MR, 

WM or concentrate consumption from d 4 until d 70 of age per group (MR-res, MR-ad lib, WM-

ad lib) and the costs of the WM (= 0.456 Euro/kg, i.e. 0.43 Euro market price plus 0.028 Euro/kg 

for the vitamin and mineral supplement used for WM), MR (2.50 €/kg, respectively) and 

concentrate (0.38 €/kg) at that time.  

 

Trial 2 

Animals, housing and feeding  

In 2014, the young heifers from Trial 1 (n = 28; MR-res: n = 10, MR-ad lib: n =9, WM-ad 

lib: n = 9) were allocated to a second trial. They were kept in straw bedded group pens and had ad 

lib access to a TMR for lactating dairy cows (Table 1) from d 70 until 7 mo of age. The heifers 

were then transferred to a loose-housing system with high boxes with rubber mattresses and were 

fed with TMR for heifers. The composition and nutrient contents of the diets are provided in 

Table 1. Heifers were artificially inseminated when having reached a minimum age of 15 mo and 

spontaneous estrus was detected using activity sensors (Rescounter, leg mounted, via Dairy Plan 

C 21, GEA Farm Technologies GmbH, Boenen Germany) and visual observation. Three weeks 

before the expected calving date, they were integrated into the herd of the lactating cows to get 

accustomed with the milking parlor (GEA Farm Technologies GmbH), and the weighing feed 
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troughs (Insentec B. V., Marknesse, Netherlands). During this time they had free access to a 

TMR for lactating dairy cows (Table 1). The heifers were transferred to individual straw bedded 

calving pens 5 - 7 d ante partum (a.p.). Immediately after calving colostrum was milked from the 

heifer and fed directly to the calf next to their dam in the calving pen. The heifers were kept in 

group housing with straw bedding and ad lib access to a TMR for the lactating cows (Table 1) for 

the first 5 d post partum (p.p.). Thereafter the heifers were transferred to group pens with straw 

bedded boxes with the lactating herd receiving the same TMR through the weighing troughs.  
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Table 1: Ingredients and nutrient composition of milk replacer (MR), concentrate, and TMR for heifers and lactating 

cows (Trial 1 and 2). 

 

   TMR 

Item MR* Concentrate Heifer Lactating
a 

Lactating
b 

Ingredient (% of DM)      

Grass silage - - 85.8 20.1 23.0 

Corn silage - - - 20.3 18.2 

Pressed beet pulp silage - - - 19.4 12.8 

Wheat straw and hay - - 6.6 3.6 4.9 

Barley - - - 9.1 10.6 

Grain maize - - - 10.2 10.6 

SES
1 

- - - 3.4 5.7 

SER
2 

- - 6.7 12.1 13.2 

Vitamin and mineral mix - - 0.9 1.5 0.8 

Urea - - - 0.3 0.2 

Dry matter (DM) 96.6 88.9 38.4 48.2 44.8 

Crude protein (CP) 23.0 19.0 14.0 15.4 16.6 

Crude fat (CL) 17.0 4.1 n.d. n.d. n.d. 

Crude fiber (CF) 0.4 6.0 19.1 16.4 15.9 

Crude ash (CA) 7.4 7.4 n.d. n.d. n.d. 

ADFOM (%) n.d. n.d. 31.8 31.5 19.7 

aNDFOM
3
 (%) n.d. n.d 38.3 37.9 35.5 

NEL, MJ/kg DM4 n.d. n.d. 5.8 6.8 7.0 

Ca (%) 1.0 1.0 n.d. n.d. n.d. 

P (%) 0.7 0.6 n.d. n.d. n.d. 

Na (%) 0.4 0.3 n.d. n.d. n.d. 

Lysine 1.8 n.d n.d. n.d. n.d. 

Methionine 0.5 n.d. n.d. n.d. n.d. 

 

a
TMR which were fed from d 70 until the age of 7 mo; 

b
TMR which received the heifers three 

wk before expected calving date and over the first lactation; n.d. not determined; 
1
solvent 

extracted soybean meal; 
2
solvent extracted rapeseed meal; 

3
Neutral detergent fibre content, 

which was assayed with a heat stable amylase and acid detergent fibre content were expressed 

exclusive of residual ash; 
4
calculated values from the analyses of all feedstuffs, 

*
milk replacer. 
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Collection of samples and data 

During lactation, daily individual feed intake was recorded. The TMR was provided every 

morning (0730 h). All cows had free access to drinking water. Samples of all feedstuffs were 

collected every second week and stored at -20 °C until analysis. Feed samples were analyzed for 

crude ash, crude protein (CP), crude fat and crude fiber, as well as aNDFOM and ADFOM 

(VDLUFA, 2007). The NEL and CP contents of the diets were calculated according to the 

German Society of Nutrition Physiology (GfE, 2001). Cows were milked twice daily at 0500 and 

1530 h. Daily milk yield was recorded electronically via the herd management system Dairy Plan 

C21 (GEA Farm Technologies GmbH) and milk samples were collected monthly over the first 

lactation (305 DIM) as combined aliquots from one evening and the next morning milking. 

Samples were treated with Bronopol (2-bromo-2-nitropropane-1,3-diol) and transported to the 

regional lab of the milk recording organization (Landeskontrollverband Rheinland-Pfalz-Saar e. 

V., Bad Kreuznach, Germany). Fat, protein, lactose and somatic cell count were analyzed via 

infrared analyzer (MilkoScan FT-6000, Foss Analytical A/S, Hillerod Denmark). Energy 

corrected milk (ECM) was calculated according to the equation provided by GfE (2001) which is 

adjusted to 4 % fat and 3.4 % protein. The energy balance (EB) was calculated individually from 

NEL intake per d minus the energy requirement for maintenance (BW
0.75

 * 0.293) and minus the 

daily energy output via ECM (GfE, 2001). Blood samples were taken monthly (3, 2, and 1 

month) a.p. and weekly (0 - 10 wk) p.p. from the jugular vein. Details and results from the blood 

analyses performed are reported in the companion paper by Kesser et al. (submitted to Journal of 

Dairy Science currently revised, JDS-16-11595).  

Body weight, body condition and back fat thickness 

BW was recorded every second mo from d 111 until calving with a mobile scale (Tru- Test Ltd.). 

After calving, BW was recorded twice daily after milking via an automatic scale (GEA Farm 

Technologies GmbH). Backfat thickness (BFT) was assessed by ultrasonography (Aloka SSD 

500, 48 mm, UST 5820, 5 MHz, Aloka GmbH, Meerbusch, Germany) as described by Schröder 

and Staufenbiel (2006). Body condition was scored every second week (BCS, 5 point scale; 

Edmonson et al., 1989). 
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Economic estimates  

The total feed costs from d 1 - 70 of age were calculated for all groups (MR-res, MR-as lib, WM-

ad lib) as described for Trial 1. From d 70 until first calving, we used daily feed costs of 1.27 

Euro. This number corresponds to the average from practical farms in Rhineland- Palatinate, 

Germany, at that time, as assessed by the extension services and authorized by the Ministry for 

Environment, Agriculture, Nutrition, Viticulture and Forestry in Rhineland- Palatinate (BZA 

Rind, 2013). Total feed costs from birth to first calving were calculated by summing up the 

respective costs from d 1 – 70 and the period thereafter until calving. To calculate the returns 

from milk, we used the average milk price in 2014 which was realized by Hofgut Neumuehle 

(0.43 Euro/kg milk) multiplied by the 305 d lactation milk yield per heifer. Milk returns over feed 

costs were accordingly calculated. 

Statistical Analyses  

Statistical analyses were done using SPSS (version 22.0 SPSS Inc. Chicago, IL). For the 

statistical evaluation, trial 1 was divided in 4 phases (P): P0 = d 0 - 1, P1 = d 2 - 27, P2 = d 28 - 

69 and P3 = d 70 - 110 of age. At the end of each phase, differences in feeding and performance 

data between the feeding groups MR-res (n = 20), MR-ad lib (n = 17), and WM-ad lib (n = 20) 

were tested by ANOVA. The homogeneity of variance was checked by the Levene`s test (P > 

0.10) and, in case of significance, the Kruskal-Wallis test for non parametric tests was used. The 

ADG and BW of the calves during the first weeks of life (Trial 1) were analyzed with linear 

mixed models: group, sex, time (week or phase) and the interaction group x time were included 

as fixed effects and calf as random effect. The performance data of the heifers (Trial 2) were also 

tested with linear mixed models: group, time (mo p.p.) and the interaction group x time were 

included as fixed effects and heifer as random effect. For multiple comparisons, the Bonferroni 

post hoc test was applied using the α-correction. Results are shown as means ± SEM. Significant 

differences were declared at P < 0.05 and trends at 0.05 < P < 0.1. It should be noted that the 

sample size in Trial 2, i.e. 9 – 10 animals per group, was actually too low to allow for sufficient 

power to correctly reject, or not, the null hypothesis. 
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Results 

Trial 1: Growth performance and feed intake  

The ADG and BW during the first 15 wk of life (Trial 1) are shown in Figure 1 and in Table 2, 

respectively. Birth weight was not different between the treatment groups. ADG was greatest in 

the ad lib fed calves (P < 0.05) in P1 and exceeded the gains of the MR-res group by a factor of 

1.44 (WM-ad lib) and 1.58 (MR-ad lib), respectively. In P2, ADG tended to be greater (P < 0.1) 

in MR-res calves when compared with MR-ad lib, whereas ADG in MR-res versus WM-ad lib 

and MR-ad lib versus WM-ad lib were not different. Recorded BW was highest in group MR-ad 

lib (P < 0.05) at the end of P1 and was higher in group WM-ad lib than in group MR-res (P < 

0.05). At the end of P2 and P3, BW was not different between the groups and also ADG during 

P3 was not different (Figure 1 and Table 2). Sex differences in BW and ADG were limited to P3 

(Table 2 and Fig. 1 (footnote)) whereas feed intakes were not different between sexes. Feed 

intakes both as amounts and ME from the different phases of Trial 1 are presented in Table 3. 
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Figure 1: Development of ADG (means ± SEM) from birth until week 15 of life (Trial 1). Different letters indicate 

differences between groups within the respective phase (small letters: P < 0.001; capital letters: P < 0.1). 

Sex differences were limited to P3: P < 0.05; males: 1028 g ± 36; females: 876 g ± 44. Feeding groups: 

MR-res = milk replacer restrictive, MR-ad lib = milk replacer ad libitum, WM-ad lib = whole milk ad 

libitum. 
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Table 2: Development of body weights (BW, kg ± SEM) during the first 110 d of life (Trial 1). 

 

 

 

The intake of colostrum with the first meal (MR-res: 2334 g ± 211; WM-ad lib: 2349 g ± 237; 

MR-ad lib: 2245 g ± 211) and the amount of colostrum consumed per day from d 0 to 1 of age 

(P0) was not different between the groups (Table 3). In phase 1 (P1, d 2 – 27) MR and WM 

intake were approximately 1.4-fold greater (about 3 kg more) in both ad lib-fed groups than in the 

MR-res group (Table 3). During P1, the calves ate only very low and highly variable amounts of 

concentrate (0.07 - 0.25 kg/calf/d) that did not differ between the groups. In phase 2 (P2, d 28 - 

69), i.e. after the differential feeding was ceased and all animals were fed according to the MR-

res regimen, the intake of concentrate by the MR-ad lib calves tended to be less (P < 0.1) than in 

WM-ad lib animals; no differences in concentrate intake were detectable between MR-res and 

MR-ad lib and MR-res and WM-ad lib, respectively (Table 3). The daily energy intake (ME) via 

milk in P0 was the same in all groups. In contrast, the ME intake via milk in P1 was different (P 

< 0.05) between all groups with the greatest intakes in WM-ad lib exceeding those in MR-ad lib 

and MR-res by a factor of 1.8 and 2.1, respectively. In P2 the ME intake via milk was not 

different between the groups. The ME intake via concentrate in P1 was not different between the 

groups. In the subsequent phase of equal feeding (P2), the ME intake from concentrate was 

greatest in the WM-ad lib group without any difference when compared with group MR-res, but a 

Feeding

BW MR-res (n = 20) MR-ad lib (n = 17) WM-ad lib (n = 20)

Birth weight 41.9 ( 0.8) 41.8 ( 1.4) 42.3 ( 1.3)

BW at the end of phase 1 (d 27) 56.4a ( 1.0) 65.4b ( 1.9) 63.9b ( 1.3)

BW at the end of Phase 2 (d 70) 95.8 ( 1.9) 98.4 ( 2.9) 99.0 ( 2.2)

BW at the end of Phase 3 (d 110)* 131.0 ( 2.6) 131.0 ( 4.2) 133.0 ( 3.1)

Small letters indicate differences between groups (P < 0.05). Capital letters indicate trends (P < 0.10). Feeding groups

(differential feeding was limited to d 4 – 27 of age): MR-res = milk replacer restrictive, MR-ad lib = milk replacer ad

libitum, WM-ad lib = whole milk ad libitum

*Sex differences were limited to Phase 3: P = 0.004; males 137.6 kg  2.3; females: 127.0 kg  2.6
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trend for greater intakes in MR-res than in MR-ad lib (P < 0.10). Total ME intake via milk and 

concentrate was greater (P < 0.05) in WM-ad lib than in MR-ad lib and MR-res in P1, but was 

not different between the groups in P2 (Table 3).  

 

 

 

Figure 2: Daily visits at the automatic feeders by dairy calves feed at different intensities during the first four weeks 

of life (Trial 1). P1: phase of differential feeding from d 4 – d 27 of life; P2: phase when all calves were fed 

according to the restrictive regimen. Feeding groups: MR-res = milk replacer restrictive, MR-ad lib = milk 

replacer ad libitum, WM-ad lib = whole milk ad libitum. Solid bars: mean number of visits when feed was 

obtained; hatched bars: mean number of visits during which no feed was obtained due to the restrictions set. 

The feeders were set to maximal allowances per visit of 5 and 2 L for the ad lib fed and the res fed animals; 

liquid feed was dispensed only if the calves had left at least 0.5 L (ad lib) or 1 L (res) of their daily 

allowance. Phase and the interaction group x phase were significant (P < 0.001). 
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The feeding frequency patterns, i.e. the daily number of visits in the automatic feeders, are shown 

in Figure 2. During P1, the number of total visits was greater in the MR-res fed group whereby 

the portion of futile visits, i.e., when the calves entered the feeder but feed was not dispensed 

since the daily allowance was already retrieved, amounted to 70% of total visits. The average 

number of visits with feed intake across all groups was 6.9/d during P1. Thereafter, when all 

groups were on the MR-res plane (P2), the total visits from calves of both ad lib groups were 

more than double as frequent than in P1, and reached 70 % futile visits, i.e. similar to the MR-res 

group during P1 and P2. 
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Table 3: Milk replacer (MR), whole milk (WM), concentrate and energy intake (ME) in the different phases of Trial 

1 (means ± SEM). 

 

 

a
liquid intake; *ME: metabolizable energy; small letters indicate differences between groups 

(P < 0.05). Capital letters indicate trends (P < 0.10). Feeding groups: MR-res = milk replacer 

restrictive, MR-ad lib = milk replacer ad libitum, WM-ad lib = whole milk ad libitum 

 Feeding 

MR or WM (g
a
) MRr (n = 20) MR-ad lib (n = 17) WM-ad lib (n = 20) 

Phase 0 (d 0 – 1) 4015 (± 243) 4827 (± 348) 4736 (± 410) 

Phase 1 (d 2 – 27) 6385
b
 (± 39) 9249

a
 (± 150) 9470

a
 (± 137) 

Phase 2 (d 28 – 69) 5724 (± 50) 5833 (± 53) 5723 (± 50) 

Concentrate (g)    

Phase 0 -- -- -- 

Phase 1 (d 2 – 27) 250 (± 20) 100 (± 10) 70 (± 10) 

Phase 2 (d 28 – 69) 1230
AB

 (± 20) 1050
B
 (± 30) 1260

A
 (± 20) 

ME* intake (MJ/d) via milk    

Phase 0 (d 0 – 1) 12.5 (± 0.76) 15.0 (± 1.08) 14.4 (± 1.29) 

Phase 1 (d 2 -27) 12.3
c
 (± 0.09) 21.1

b
 (± 0.34) 25.7

a
 (± 0.37) 

Phase 2 (d 28 – 69) 10.7 (± 0.09) 10.9 (± 0.10) 10.7 (± 0.09) 

ME* intake (MJ/d) via concentrate    

Phase 0 -- -- -- 

Phase 1 (d 2 – 27) 1.04 (± 0.11) 0.32 (± 0.05) 0.23 (± 0.04) 

Phase 2 (d 28 – 69) 12.6
A
 (± 0.25) 10.8

Bb
 (± 0.25) 12.8

a
 (± 0.25) 

Total ME* intake (MJ/d)    

Phase 0 -- -- -- 

Phase 1 (d 2 – 27) 13.0
c
 (± 0.14) 21.5

b
 (± 0.39) 26.2

a
 (± 0.43) 

Phase 2 (d 28 – 69) 23.3 (± 0.21) 21.7 (± 0.20) 23.5 (± 0.21) 
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Trial 2: Performance during the first lactation 

Milk yield, DMI, EB and BFT recorded during 10 mo of the first lactation are depicted in Figure 

3. In Figure 4, BW during lactation is shown. None of these variables was different between the 

animal groups originating from the different feeding regimens during calfhood. In addition, BCS 

was also not different between the groups (data not shown). When considering the ECM yields 

that are based on monthly milk recordings, the lactation curves of the heifers from the different 

groups were separating only during the last 2 mo; the P value for group was 0.168. When 

considering the 305 d milk yield (Table 4), the WM-ad lib heifers produced numerically more 

milk (+ 765 kg or + 9 %) than heifers reared on the MR-res feeding regimen. The milk yield in 

the first lactation of the MR-ad lib animals was 612 kg (+ 7 %) above the one of the MR-res 

heifers, but all comparisons were clearly below the level of significance (P = 0.969). Average 

milk fat %, protein %, fat and protein yield, and feed efficiency (kg ECM/kg DMI; Table 4) did 

also not differ between the treatment groups (Figure 2). Age at first calving was numerically 

lower in WM-ad lib reared heifers than in the other groups but the threshold of significance was 

also not reached (Table 4). 

Trials 1 and 2: Economic considerations 

 Economic estimates based on the feed costs for rearing until first calving and the performance in 

the first lactation are presented in Table 5. Means instead of individual intakes were considered 

since records of individual intakes were limited to the liquid feeding period; for the remaining 

time, we used an average value of rearing heifers in our region under comparable conditions. 

Variation of the recorded variables and statistical comparisons were already provided in the 

paragraphs above and we thus renounce on repeating these numbers after just being indued with a 

price factor. In average, the WM-ad lib regime was creating the greatest feed costs during the 

time of liquid feeding phase: 56 and 28 Euro more than for MR-res and MR-ad lib feeding, 

respectively. When relating the feed costs during liquid feeding to kg of BW gain during this 

time, the ranking was similar, i.e. the WM-ad lib feeding was 1.17 and 1.35 fold more costly than 

the MR-ad lib and the MR-res feeding, respectively. Considering the entire time of rearing until 

first calving, the portion of the costs for the liquid feeding phase in the total feed costs for rearing 

were 17.9, 15.1 and 12.7 % in WM-ad lib, MR-ad lib and MR-res, respectively. Taking the 

returns from milk sale into consideration that were (numerically) greater in group WM-ad lib 
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than in group MR-ad lib and MR-res, the WM-ad lib feeding yielded also 310 and 71 Euros more 

returns over rearing feed costs than the MR-res or the MR-ad lib regimens. When expressed per 

kg of milk, the difference would amount to 0.008 and 0.002 Euro, i.e. the returns over rearing 

feed costs in WM-adlib reared calves would be 2.5 and 0.6 % above the ones in heifers reared 

with MR-res or MR-ad lib. 

 

 

Figure 3: Development of ECM (energy corrected milk; A), DMI (dry matter intake; B), EB (Energy balance; C) and 

BFT (backfat thickness; C) in the first 10 months p.p. of the first lactation (mean ± SEM) (Trial 2). Feeding 

groups: MR-res = milk replacer restrictive, MR-ad lib = milk replacer ad libitum, WM-ad lib = whole milk 

ad libitum. 
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Figure 4: Development of body weight (means ± SEM) in heifers over the first 10 months of the first lactation (Trial 

2). Feeding groups: MR-res = milk replacer restrictive, MR-ad lib = milk replacer ad libitum; WM-ad lib = whole 

milk ad libitum. 
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Table 4: First lactation performance (means ± SEM) in heifers (Trial 2) reared at different feeding intensities over 

the first 4 weeks of life 

 

 

 

 

 

 

 

 

 

 

 

 

Feeding p-value

First lactation performance MR-res (n = 10) MR-ad lib (n = 9) WM-ad lib (n = 9) group

Age at first calving (d) 775 ( 18.0) 773 ( 16.8) 745 ( 15.2) 0.969

305-d milk yield 8452 ( 402) 9064 ( 432) 9217 ( 475) 0.919

305-d Fat yield (kg) 329 ( 15.2) 358 ( 13.4) 347 ( 15.8) 0.925

305-d Protein yield (kg) 279 ( 14.4) 300 ( 12.8) 300 ( 17.5) 0.646

Fat (%) 3.85 ( 0.07) 3.77 ( 0.05) 3.83 ( 0.07) 0.171

Protein (%) 3.32 ( 0.04) 3.22 ( 0.04) 3.22 ( 0.05) 0.693

kg ECMa/kg DMIb 1.50 ( 0.05) 1.46 ( 0.04) 1.50 ( 0.03) 0.722

a ECM: energy corrected milk; bDMI: dry matter intake, Feeding groups: MR-res= milk replacer restrictive,

MR-ad lib = milk replacer ad libitum, WM-ad lib = whole milk ad libitum; gr: group



Manuscript II  45 
   
 

 

Table 5: Estimates of feed costs (Euro) for rearing heifers fed differently during the first 4 weeks of life in relation to 

the milk returns during their first lactation. 

 

 

 

 

Discussion 

Performance during calfhood 

Several previous studies demonstrated that heifer calves fed WM or MR ad lib increased 

daily nutrient intake and had greater growth rates during the nursery period (Shamay et al., 2005; 

Moallem et al., 2010; Kiezebrink et al., 2015). In the current study ad lib feeding of WM or MR 

over the first 4 wk of life increased BW only during this period without any sustained difference 

at 15 wk of life. Similar results were observed by Morrisson et al. (2012) and Kiezebrink et al. 

(2015), where BW differences had disappeared by 84 to 126 wk of age and by 16 wk of age, 

Feeding

Item
MR-res 

(n = 10)

MR-ad lib 

(n = 9)

WM-ad lib 

(n = 9)

Concentrate costs (d 4 – 70) 21.4 17.6 20.7

WM + MR costs 109.5 140.7 166.1

Total feed costs from d 1 – 70 130.9 158.3 186.8

Feed costs per kg BW gain from d 1 - 70 2.43 2.80 3.29

Total feed costs heifers* 1026 1051 1044

Milk returns from first lactation ** 3634 3898 3963

Milk returns over rearing feed costs 2608 2847 2918

Milk returns over rearing feed costs per kg of milk 0.308 0.314 0.316

*Total feed costs from birth until date of first calving: total costs from d 1 – d 70 plus feed costs of 1.27 €/d from d

71 until first calving; **305-d milk yield multiplied with milk price (0.43 Euro/kg milk). Feeding groups: MR-res =

milk replacer restrictive, MR-ad lib = milk replacer ad libitum, WM-ad lib = whole milk ad libitum
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respectively. In our study, the calves were all fed MR restrictively after the first 4 weeks of life 

during which they were fed divergently. The increased growth rates from the previous ad lib MR 

or WM feeding could only be maintained if the energy intake via concentrate would have been 

accordingly increased and the development of the gastrointestinal tract would be adequate to 

digest the concentrate. It is well documented that starter intake and fermentation of starch in the 

rumen are responsible for rumen development (NRC, 2001) and ADG of calves between birth 

and 2 mo of age was positively related to starter intake (Heinrichs and Heinrichs, 2011; Bateman 

et al., 2012). Increased intakes of liquid feed reportedly decrease concentrate intake (Khan et al., 

2007a; Khan et al., 2007b; Chapman et al., 2016). We were expecting the MR-res fed calves to 

have superior concentrate intakes since they were urged by the limited supply of MR to start 

earlier with concentrate intake, and to adapt their gastrointestinal function to solid feed earlier 

than the ad lib fed calves. However, we did not observe group differences in concentrate intakes 

during P1, probably because the amounts were low and highly variable. Concentrate intake starts 

only at about 14 d of age (Khan et al., 2011). During P2, the MR-res calves ate more concentrate 

but only when compared against the MR-ad lib group, but not to the WM-ad lib group that had 

similar concentrate intakes as the MR-res group during P2. However, taking the ME intakes from 

liquid and solid feed together at that time (P2), the groups were not different. There was a trend 

for greater gains in the MR-res group than in the MR-ad lib group in P2, indicating that MR-res 

feeding, but also the WM-ad lib feeding may have resulted in greater feed efficiencies. This trend 

for greater gains might have also resulted from the actual comparison with the previous MR-ad 

lib feeding group in which a dip in their growth curve might have been occurred whereas the 

MR-res were able to increase their growth rate. After weaning, when all calves had free access to 

a TMR for lactating cows (6.8 MJ NEL/kg DM), maintaining increased growth rates via 

increasing feed intake might have been possible, but was not observed during the 39 d phase 

following weaning. Chapman et al. (2016) showed that the greater ADG and BW in calves fed at 

a high level before weaning, were not maintained but reduced thereafter. The latter aspect might 

be attributable to constraints of the digestive capacity for the diet fed after weaning (Chapman et 

al., 2016). Khan et al. (2016) concluded in a recently published review that the provision of high-

starch and low-fiber starter feeds may negatively affect rumen development and that forage 

supplementation is beneficial for promoting gut development and rumination behavior in young 

calves. We could not quantify the intake of hay offered to the calves from d 4 of life and can thus 

not address this aspect. It is certainly important for maintaining high growth rates after weaning 
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that the diet fed thereafter would allow for this in terms of amount, nutrient concentration and 

also digestibility. 

In view of the frequent feeder visits of group MR-res during P1, with the high portion of 

futile visits, it seems likely that this regimen left the animals unsatisfied and possibly frustrated 

by the futile visits which may in turn be stressful. This pattern was continued in P2, and occurred 

accordingly in the ad lib fed animals when these were transferred to the MR-res regimen. As to 

whether this level of suspected stress might have metabolic consequences above the mere nutrient 

intake remains unknown. However, albeit sustained effects seem improbable considering ADG 

and BW after the phases of liquid feeding, the restrictive feeding implies reduced welfare (Khan 

et al., 2016). 

Our findings that calves had equal growth rates after weaning are not in support of a 

sustained programming of overall growth rate through feed intake or feed efficiency by feeding 

regimens during the first weeks of life. Nevertheless, there might have been alterations at the 

level of individual organs showing effects only in later life, or being too subtle to translate into 

growth performance. A greater feeding intensity (1.2 kg/d of MR) during the preweaning period 

has been demonstrated to improve nutrient intake, growth rates, and gastrointestinal development 

at weaning (Eckert et al., 2015). Geiger et al. (2016) showed in a recent report that higher growth 

rates over the first 8 wk of life increased organ weights per kg of BW (e. g. liver and mammary 

gland). 

Performance during the first lactation  

We were pursuing the performance of the heifer calves from Trial 1 until the end of their first 

lactation in Trial 2 albeit the sample size was basically too small to allow for sufficient power. In 

a meta-analysis of studies testing the effects of an enhanced supply of nutrients from WM or MR 

to dairy calves on milk yield in first lactation, Soberon 412 and Van Amburgh (2013) showed 

that the overall milk yield response was 435 ± 117 kg/lactation (P < 0.001). The individual 

studies analyzed had not equivocally reported significant effects and were mostly also 

underpowered. However, when using the equation elaborated from the meta-regression for the 

effect of ADG during preweaning on milk yield by Soberon and Van Amburgh (2013), on our 

data, the predicted increase in milk yield in our study amounts to a 330 kg for both ad lib fed 

groups in average. The actual (numerical) increase we had was in average of the two ad lib fed 
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groups 688 kg, which is more than double than the calculated value. However, regardless of the 

absolute numbers, our study is – albeit not significant - in line with the general notion and our 

starting hypothesis that early intensive feeding with increased growth rates has beneficial effects 

on milk yield in later life. Based on the lack of differences between all groups and the marginal 

numerical difference in 305 d milk yield between the MR-ad lib and the WM-ad lib group (+ 153 

kg or 1.12 % more), the source of nutrients in early life seems rather not important for milk yield 

in later life. This is in line with earlier studies as summarized by Soberon and Van Ambergh 

(2013). Our hypothesis that WM-fed calves will perform better than MR-fed ones in later life was 

thus not substantiated. However, when considering the data on concentrate intake and thus ME 

intake after the differential feeding, WM-fed calves had some advantage over the MR-fed ones at 

least during calfhood 

Economics 

Total feed costs over the preweaning period were greater in both groups fed ad lib, similar 

to the results presented by Brown et al. (2005) and Raeth-Knight et al. (2009). Total costs per calf 

were higher in the group WM-ad lib, and also when related to a kg gain and compared against the 

MR fed groups. The reason for the somewhat lesser total feed costs for rearing until first calving 

in the WM-ad lib group than in the MR-res group is due to the numerically lower AFC in WM-ad 

lib calves. The returns from milk were greatest in the WM-ad lib group. When related to the total 

rearing feed costs, the returns over feed costs seem to be able to compensate the additional 

expenses during the preweaning phase. These results support the positive effect of the higher 

investment over the nursery period without any negative effect on economics in heifers over the 

first lactation. 
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CONCLUSION 

Ad libitum intake of whole milk or milk replacer over the first 4 wk of life increased ADG and 

BW until d 28 but not thereafter. Restrictive feeding of MR stimulated concentrate intake to the 

same extent as did ad libitum feeding of whole milk. Accelerated BW gain over the first 28 d of 

life did not impair milk yield, milk ingredients, DMI, EB, BW, body condition or back fat 

thickness in the first lactation. The numerical but not statistically significant increase in milk 

yield is in line with previous findings and supports the notion that intensified feeding strategies 

may improve lactation performance. Further research is needed to identify an optimal transition 

from liquid to solid feed with focus on the development of a healthy rumen, gut, well adapted 

microbiome and all bodily functions allowing for a long productive life span. 
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5 Manuscript III (submitted) 

Interpretive Summary: Different feeding intensities during the first four weeks of rearing 

in dairy calves: Part 2: Effects on the metabolic and endocrine status during calfhood and 

around the first lactation. Kesser et al. The effects of three different feeding regimens in the 

first weeks of life of dairy calves on the metabolic and endocrine status until the first lactation 

were tested. Calves received either milk replacer restrictively or milk replacer or whole milk ad 

libitum. Differences in NEFA, glucose, insulin, adiponectin and a marker of insulin sensitivity 

were limited to the time of different feeding but were not sustained thereafter and when entering 

lactation. 
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Abstract 

 

Feeding dairy calves at high intensity has been demonstrated to increase milk yield in later life. 

We aimed to investigate the effect of three different feeding regimens in the preweaning period 

on the metabolic and endocrine status during calfhood and in heifers at the onset of their first 

lactation. In Trial 1, 60 German Holstein calves were allocated to 3 different feeding groups: 

MR-res (milk replacer restricted to 6.78 kg/calf/d, 11.5 % solids, n = 20); MR-ad lib (MR 13.8 

% solids, ad libitum (ad lib), n = 17) and WM-ad lib (whole milk ad lib, n = 20). All calves 

received ad lib colostrum for the first 3 d post natum (p.n.). From d 4 to 27 all calves were fed 

according to their respective feeding regimen resulting in average intakes of 6.38, 9.25 and 9.47 

kg/d in MR-res, MR-ad lib and WM-ad lib, respectively. Thereafter all calves were fed according 

to the MR-res regimen until weaning at d 55 (gradually until d 69 p.n.). Blood samples were 

collected on d 0 before the first colostrum intake and on d 1, 3, 11, 22, 34, 43, 52, 70, 90 and 108 

p.n. Liver biopsies were taken on d 19 and 100, and on d 22, 52 and 108 p.n. intravenous glucose 

tolerance tests (GTT) were performed. The male calves (n = 8 to 10 per group) underwent also an 

insulin tolerance test (ITT) on d 24, 54 and 110 p.n. The females (n = 28) from Trial 1 were 

further reared and bred as common practice, and were enrolled in Trial 2 when being in last 

trimester of pregnancy. Blood samples were collected monthly ante partum starting 91 d before 

calving and weekly (0 – 70 d) post partum. Trial 1 was subdivided into 4 phases (P): P0 (d 0 - 1 

p.n.), P1 (d 2 - 27 p.n.), P2 (d 28 - 69 p.n.), and P3 (d 70 - 110 p.n.). In Trial 1, the leptin and 

adiponectin concentrations increased with colostrum intake. Differences in non-esterified fatty 

acids (NEFA), insulin, adiponectin, revised quantitative insulin sensitivity check index 

(RQUICKI) and variables from the GTT were largely limited to P1. The MR-res group had 

greater RQUICKI and NEFA values, and lower insulin and, as a trend, lower adiponectin 

concentrations than one or both ad lib groups. These differences were partly sustained in P2 

(NEFA, adiponectin and RQUICKI), and in P3 (adiponectin). The hepatic mRNA abundance of 

the gluconeogenic enzymes phosphoenolpyruvate carboxykinase and pyruvatcarboxylase 

increased from d 19 to d 100. None of the blood variables were different between the groups 

when tested in pregnancy and lactation. Our results are not in support of a sustained deflection of 

metabolic regulation by rearing at different feeding intensities, nevertheless the differences 
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observed during rearing might influence nutrient utilization in later life or the cellular 

development of organs such as mammary gland and thereby affect milk yield. Further studies 

involving greater animal numbers and thus improved power will help to sort out the mechanisms 

of programming body function in later life via nutrition in early life. 

Key words: dairy calves, metabolic programming, insulin sensitivity, adiponectin, RQUICKI 

 

Introduction 

Metabolic programming is defined as a permanent or long lasting change in the structure or 

function of an organism arising from a stimulus or insult which acts during a sensitive or critical 

period in early life (Lucas, 1991). In dairy cows, nutrition during fetal or neonatal life can 

influence health and performance in later life (Bach, 2012). Feeding increased amounts of whole 

milk or milk replacer in the first weeks of rearing was reported to lead to greater milk yields in 

the first lactation as compared to the common practice of feeding calves restrictively (Shamay et 

al., 2005; Moallem et al., 2010). In addition, increased growth rates due to increased intake of 

concentrate in the first months of life were positively correlated with later milk yields (Bach and 

Ahedo, 2008; Heinrichs and Heinrichs, 2011). A meta-analysis of 12 studies on the topic 

demonstrated that long-term productivity benefitted from increased nutrient intake from milk or 

milk replacer during the preweaning period; the authors also stated that many studies were 

underpowered to appropriately test such effects (Soberon and Van Amburgh, 2013).  

The current concepts about the mechanisms underlying the increased milk yield in intensively 

reared dairy calves comprise mainly three different aspects: (a) Improved gastrointestinal 

function and liver metabolism resulting in greater feed digestibility and better nutrient utilization 

(Baldwin et al., 2004; Khan et al., 2011), (b) stimulated the development of the mammary 

parenchyma which may in turn give rise to a greater capacity for milk production (Brown et al., 

2005; Geiger et al., 2016), and (c) tuning of the endocrine regulation of metabolism in favor of 

milk synthesis in later life. In the latter context, insulin and insulin sensitivity are of central 

importance: the reduced insulin sensitivity of peripheral tissues observed in late pregnancy and 

early lactation facilitates the partitioning of nutrients, in particular glucose, towards the mammary 

gland in which glucose uptake is largely independent of insulin (Bell and Baumann, 1997). There 
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is evidence from both animal models and epidemiological studies in humans that early nutrition 

may affect insulin action in later life (Martin-Gronert and Ozanne, 2012; Duque-Guimarães and 

Ozanne, 2013). Results from rat studies suggest that the early environment can also affect β-cell 

mass and function, and hence insulin secretion (Tarry-Adkins and Ozanne, 2011). Intensive 

feeding of male Holstein calves during the first 3 wk of life has been demonstrated to increase the 

numbers of islets of Langerhans and the circulating concentrations of insulin at 8 mo of age 

(Prokop et al., 2015). In this study, we focused on the endocrine and metabolic alterations 

potentially induced by the feeding regimen in early life. We hypothesized that intensive feeding 

during the first 4 weeks of life will elicit sustained changes of metabolic hormones that will 

continue until lactation and promote milk production. In addition, we hypothesized that ad 

libitum feeding of whole milk will be more effective to yield a metabolic profile in favor of milk 

production as compared to milk replacer. To test these hypotheses and to elucidate the mode of 

action of the beneficial effects reported for increased feeding of dairy calves during the first 

weeks of life on their later lactational performance, we aimed to (1) characterize their metabolic 

and endocrine status during differential feeding (d 4 - 27 of life), and (2) to evaluate whether 

potential differences might be sustained during the following 12 wk and also during their later 

pregnancy (last trimester) and the first 70 d of lactation.  

 

Material and Methods 

The animal experiments were performed in strict accordance with the German Law for the 

Protection of Animals and were approved by the relevant authority (Landesuntersuchungsamt 

Rheinland-Pfalz, Koblenz, Germany (G 11-20-026)). Two trials were conducted: Trial 1 was 

focused on the effects of different preweaning feeding regimen in calves; the female calves from 

this trial were studied as heifers in Trial 2 during late pregnancy and the first 70 d of lactation. 

Both trials were performed at the Educational and Research Centre for Animal Husbandry, 

Hofgut Neumuehle, Muenchweiler a.d. Alsenz, Germany. The experimental design and the gross 

outcomes in terms of performance are presented in the companion paper by Korst et al. 

(submitted to JDS, JDS-16-11594, currently revised). In brief, the experimental designs were as 

follows: 

Trial 1 
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German Holstein calves (29 females and 28 males) were studied from April 2012 to 

January 2013 during their first 110 d of life. All calves were born spontaneously at term and 

received colostrum from their dam within 2 h after birth in the calving pen next to their dam. 

After the 3 d colostrum phase, the differential feeding was started on d 4 post natum (p.n.). The 

calves were randomly allocated to 3 different feeding groups balanced for sex and body weight 

(BW): group MR-res received milk replacer (MR, Neumühle sauer, Trouw Nutrition Deutschland 

GmbH, Burgheim, Germany) restricted to maximally 6.78 kg/d (11.5 % solids; n = 20, each 10 

males and females), group MR-ad lib had ad libitum access to MR (13.8 % solids; n = 17, 8 

males and 9 females), and group WM-ad lib had ad lib access to whole milk (acidified tank milk, 

1 mL Schaumacid®/L, H. W. Schaumann GmbH, Pinneberg, Germany; supplemented with a mix 

of trace elements and vitamins (1 mL/L Milkivit Quick-Mix®/L, Trouw Nutrition Deutschland 

GmbH); n = 20, each 10 males and females). For the first 7 d p.n., all calves were kept in 

individual straw bedded hutches (FLIXBOX, Mayer Maschinenbaugesellschaft mbH, 

Tittmoning, Germany) and were fed twice daily by a teat bucket. From d 8 until d 69 p.n. calves 

were kept in straw bedded group pens with an automatic feeding system (Vario Kombi, Förster-

Technik GmbH, Engen, Germany). All groups had free access to hay and water from d 8 p.n. 

onwards, and concentrate was available for all calves from d 8 until d 69 p.n. by an automatic 

feeding system (Vario Kombi). Differential feeding was continued until d 27 p.n. Thereafter the 

calves of the MR-ad lib and the WM-ad lib group were gradually adapted (within 2 d) to the 

feeding regime of the MR-res group and all calves continued on this regimen until d 55 p.n. when 

gradual weaning was done until d 69. From d 70 until the end of the trial at d 110 p.n. calves 

were housed in group pens and had free access to a total mixed ration (TMR) for milking cows 

(Korst et al., submitted as companion paper).  

Recordings and samplings. Birth weight was recorded and thereafter the calves were 

weighed weekly and also before a tolerance test (see below) was performed. Health status and 

eventual medical treatments were recorded regularly. As visualized in Figure 1, blood samples 

were taken immediately after birth (d 0) before colostrum consumption and on d 1, 3, 11, 22, 34, 

43, 52, 70, 90 and 108 p.n. from the jugular vein and serum and plasma were prepared. All blood 

samples from ≥ d 1 p.n. were collected after calves were suspended from access to liquid and 

solid feed 2 h before sampling. Samples were stored at -20 °C until analyses.  
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Figure 1: Sampling scheme in Trial 1 and 2. Phases (P): P0 = d 0 – 1; P1 = d 2 – 27; P2 = d 28 – 69; P3 = d 70 –110; 

P4 = d 91 – 30 ante partum; P5 = calving until d 21 post partum; P 6 = d 28 – 70 post partum. GTT: glucose 

tolerance test; ITT: insulin tolerance test 

 

 

Liver biopsies were taken on d 19 and 100 p.n. After shaving, disinfection and local anesthesia (5 

mL Isocaine 2 % (Selectavet Dr. Otto Fischer GmbH, Weyarn/Holzolling, Germany)), a small 

incision was made with a scalpel between the 11
th

 and the12
th

 rib on a line between the olecranon 

and the tuber coxae, and biopsies (~50 mg) were obtained with sterile 14G biopsy needles 

(Dispomed Witt oHG, Gelnhausen, Germany). The samples were immediately snap-frozen in 

liquid nitrogen and stored at -80 °C until further analysis. After the biopsy, the puncture site was 

treated with antiseptic spray (Oxytetracycline spray blue, Bayer Health Care AG, Leverkusen, 

Germany).  

In addition, intravenous (IV) glucose tolerance test (GTT) were performed in all calves on d 22, 

52 and 108 and IV insulin tolerance tests (ITT) were performed on d 24, 54 and 110 in the male 

calves only. The protocols used were described earlier by Bossaert et al. (2009) and Oikawa and 

Oetzel (2006). At least 4 h before the tests, calves had no access to milk, hay and TMR. For the 

Trial 1

Trial 2

days of life

days aroundcalving

P 1 P 2 P 3

P 4

P 0

P 5 P 6

Blood samples

Liver biopsy
GTT

ITT
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GTT, the calves were IV infused with glucose (150 mg/kg BW, Glucose 40%, Selectavet Dr. 

Otto Fischer GmbH). Blood samples were collected from the jugular vein -10, -5, 4, 8, 12, 18, 25, 

36, 45, 60, 90 and 120 min relative to the glucose infusion. For the ITT, the calves were IV 

infused with 0.05 IU/kg BW of human recombinant insulin (Actrapid® Penfill®, Novo Nordisk 

A/S, Bagsværd, Denmark) and blood was sampled at -15, -5, 15, 30 and 45 min relative to the 

infusion. 

For testing the relationship between the concentration of adiponectin in colostrum and milk with 

the serum concentrations we collected blood samples from 22 additional German Holstein calves 

before their first colostrum intake on d 0 and thereafter on d 1, 2 h after the last colostrum 

feeding. In total, i.e. including the calves from Trial 1, we had serum samples from these 2 d 

available from 79 calves. Colostrum from the day of calving and milk samples (7
th

 d in milk) 

from the respective dams (n = 79) were also collected and all samples stored at -20 °C until 

analysis. 

Trial 2 

After finishing Trial 1, the heifer calves (n = 28) were kept in straw bedded group pens 

and had ad lib access to a TMR for milking dairy cows and were then transferred to a loose-

housing system with high boxes in the stable for the milking cows at 5 - 6 mo of age. When 

having reached 15 mo of age, estrus detection was started using activity sensors (foot rescounter 

via Dairy Plan C 21, GEA Farm Technologies GmbH, Boenen Germany) and visual observation. 

Pregnancies were confirmed by veterinary rectal palpation. In average, heifers were first 

inseminated at 18 ± 1 mo of age and received a TMR for dry cows until 21 d before expected 

calving when they were integrated into the herd with the lactating dairy cows. During this time 

they had free access to the TMR for high yielding dairy cows offered in weighing troughs 

(Insentec B. V., Marknesse, Netherlands). The heifers were transferred to individual calving pens 

5 - 7 d ante partum (a.p.). After calving, the calves were separated; the heifers were milked twice 

daily (0500 a.m. and 0330 p.m.) and kept in a group pen with ad lib access to the TMR for the 

first 5 d post partum (p.p.). For the remaining lactation, the heifers were returned to the weighing 

troughs and received a TMR for high yielding cows.  

Data recorded and samples collected. Milk was sampled monthly over the first lactation 

(305 DIM) as combined aliquots from the evening and the next morning milking. Samples were 
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stabilized with Bronopol (2-bromo-2-nitropropane-1,3-diol) and transported to the regional lab of 

the milk recording organization (Landeskontrollverband Rheinland-Pfalz-Saar e. V., Bad 

Kreuznach, Germany) where milk fat, protein, lactose and somatic cell counts were analyzed via 

infrared analyzer (MilkoScan FT-6000, Foss Analytical A/S, Hillerod, Denmark).  

Body weight was recorded every second month starting 111 d p.n. After calving, BW was 

recorded twice daily after milking via an automatic scale (GEA Farm Technologies). Health 

status and eventual medical treatments were recorded regularly.  

Blood samples were collected (V. coccygealis) monthly before the expected calving date, starting 

91 d a.p., at calving and thereafter in weekly intervals until d 70.  

 

Analyses 

The concentrations of non-esterified fatty acids (NEFA), glucose and beta-

hydroxybutyrate (BHB) were determined in the serum samples obtained in both trials by an 

automatic spectrophotometer (ABX Pentra 400, Horiba ABX, SAS, Montpellier, France). The 

following kits were used: Trial 1: glucose (#553-230, Idstein, Germany), NEFA (#434-91795, 

WAKO Chemicals GmbH Neuss, Germany), and BHB (# RB 1007, Crumlin, UK); Trial 2: 

glucose (#A11A01667, Horiba ABX); NEFA (#434-91795, WAKO Chemicals GmbH); urea 

(#LT-UR 0010, Labor + Technik, Berlin, Germany) and BHB (# RB-1008, Labor + Technik, 

Berlin, Germany). The concentration of total plasma protein (TPP) in the calves’ samples was 

measured by a handheld refractometer (RF.5612, Euromex Microscopen B.V., Arnhem, NL). 

Hormone analyses. For Trial 1, a RIA was used for determining the insulin concentrations 

(IM3210, Insulin IRMA KIT, Immunotech, Beckman Coulter, CA). The intra-assay coefficient of 

variation (CV) was 7.6 % and the inter-assay CV was 10.7 %. The limit of detection (LOD) was 

3.95 μU/mL.  

For Trial 2, insulin was measured via a RIA for porcine insulin (PI-12K, Linco Research, 

St. Charles, MO) that has been used with bovine serum previously (Bellmann et al., 2004). The 

intra-assay CV was 8.2 % and the inter-assay CV was 4.3 %. The LOD was 1.61 μU/mL and the 

specificity for bovine insulin was 90 %. 
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Leptin in serum, colostrum and milk was measured by ELISA (Sauerwein et al., 2004). The intra- 

and interassay CV were 3.6 and 7.8 %, respectively. The LOD was 0.3  ng/mL.  

Adiponectin in serum, colostrum and milk was measured by a modified in-house developed 

ELISA specific for bovine adiponectin (Mielenz et al., 2013; Kesser et al., 2015). Assay accuracy 

was confirmed by linearity and parallelism of diluted samples. The LOD was 0.03 ng/mL. The 

intra- and interassay CVs were 7 and 9 %, respectively. 

mRNA abundance of Pyruvate carboxylase (PC) and Phosphoenolpyruvate carboxykinase 

(PCK1) in liver samples. Quantitative PCR (qPCR) was carried out using a Mx3000P cycler 

(Stratagene, Agilent Technologies, CA) after total RNA extraction and cDNA synthesis as 

described earlier (Saremi et al., 2012). For qPCR an inter-run calibrator and a negative template 

control and for cDNA a negative template control and a no reverse transcriptase control were 

included in each run. For each PCR reaction, a cDNA standard curve with serial dilutions was 

used to calculate efficiency-corrected relative quantities of the targets. Data were normalized with 

the geometric mean of the reference genes selected by qBASE
plus

 2.0 (Biogazelle, Ghent, 

Belgium) as described earlier (Hosseini et al., 2010). The 3 reference genes identified as the most 

stable ones were eukaryotic translation initiation factor 3, subunit K (EIF3K), low-density 

lipoprotein receptor–related protein 10 (LRP10), and Hippocalcin-like (HPCAL1). The primer 

sequences and accession numbers of the target and the references genes are provided in Table 1. 
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Table 1: Characteristics of primers and real-time polymerase chain reaction conditions. 

 
 *EIF3K: Eukaryotic translation initiation factor 3; HPCAL: Hippocalcin-like 1; LRP10: Lipoprotein 

                 receptor-related protein 10; PC: Pyruvate carboxylase; PCK1: (cytosolic) Phosphoenolpyruvate 

                 carboxykinase 

 

 

Calculations and Statistical Analyses  

 Glucose and insulin tolerance tests. For the GTT, the means of the concentrations from -

10 and -5 min before the glucose infusion were considered as basal for glucose (GB) and insulin 

(IB), respectively. The difference between the basal and the peak concentrations was defined as 

∆Peak-Basis. The area under the curve (AUC) was calculated with GraphPad Prism (GraphPad 

Software, Inc., La Jolla, CA) using the increase of the glucose and insulin concentrations above 

the basal values until 120 min after the infusion. 

For the ITT, the insulin-stimulated blood glucose response (ISBGR, %) was calculated based on 

the equation of Oikawa and Oetzel (2006): ISBGR (%) = [(GB - G30) / GB] x 100, whereby GB is 

the basal glucose concentration (calculated as the mean between the glucose concentration in the 

samples taken before the insulin infusion (-10 min and -5 min) and G30 is the glucose 

concentration at 30 min thereafter. 

 

Gene
*
 

 

Sequences (5'-3') 

NCBI 

Accession No. 

 

bp 

Concentration 

(nM) 

Annealing 

(s/◦C)
4
 

1 EIF3K 
 

    

  Forward CCAGGCCCACCAAGAAGAA 
NM_001034489 125 400 45/59 

  Reverse TTATACCTTCCAGGAGGTCCATGT 

2 HPCAL 
 

    

  Forward CCATCGACTTCAGGGAGTTC 
NM001098964 99 400 30/60 

  Reverse CGTCGAGGTCATACATGCTG 

3 LRP10 
 

    

  Forward CCAGAGGATGAGGACGATGT 
BC149232 139 400 30/61 

  Reverse ATAGGGTTGCTGTCCCTGTG 

4 PC 
 

    

  Forward ATCTCCTACACGGGTGACGT 
NM_177946 214 1000 30/60 

  Reverse TGTCGTGGGTGTGGATGTGCA 

5 PCK1 
 

    

  Forward AACTCACGGTTCTGCACTCCA 
NM_174737 229 800 30/60 

  Reverse GGTCGTGCATGATGACTTTGC 
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Insulin sensitivity was estimated by the revised insulin sensitivity check index (RQUICKI) 

(Perseghin et al., 2001; Holtenius and Holtenius, 2007) according to the following equation: 

RQUICKI = 1 / [log (Glucose, mg/dL) + log (Insulin, μU/mL) + log (NEFA, mmol/L)]. A low 

RQUICKI index indicates decreased insulin sensitivity. 

For the statistical comparisons, data from Trial 1 and 2 were divided into phases (P): P0: d 0 - 1 

p.n.; P1: d 2 - 27 p.n.; P2: d 28 - 69 p.n.; P3: d 70 - 110 p.n.; for Trial 1. For Trial 2 the phases 

were P4: d 91 - 30 a.p., P5: calving until d 21 p.p., P6: d 29 - 70 p.p. However, in case of Trial 2, 

the number of animals that could be considered (28 in total, i.e. 9 to 10 per group) was 

insufficient to allow for an adequate power and therefore results must be considered as 

preliminary. Data were analyzed using the linear mixed model from SPSS version 22.0 (SPSS 

Inc. Chicago, IL). Normal distribution was tested by the Kolmogorov-Smirnov test and the 

Levene’s test was used to test the homogeneity of variances. The linear mixed model with 

Bonferroni Post Hoc tests was used for the metabolite and hormone concentrations as dependent 

variables to identify group, time and sex (only Trial 1) differences. Group, sex and time and the 

interaction between group and time were included as fixed effects and the animal as random 

effect. Differences between groups at each time point were tested with an ANOVA (normal 

distributed and homogeneity of variance) or Kruskal Wallis Test (not normal distributed and no 

homogeneity of variance). Student’s t-test was used for the liver biopsies and the milk samples to 

identify differences between time points. Results are shown as means ± SEM. Correlations were 

calculated by Spearman analysis (= ρ). Significant differences were declared at P < 0.05 and 

trends at P < 0.1.  

 

 

 

 

 

 

Results 



66 
 

 

Growth performance and milk yields. Detailed information about performance data is 

presented in the companion paper (Korst et al., submitted). In brief, differences in BW, feed and 

energy intake between the calves groups from Trial 1 were observed mainly during P1. During 

this time, the calves in the MR-res group were lighter when compared with the ad lib fed animals. 

Albeit their consumption of concentrate at that time was numerically but not statistically higher, 

the energy intake from both liquid and solid feed was only 60 and 80% of the ME intake in the 

MR-ad lib and WM-ad lib group, respectively. When all calves were fed according to the MR-res 

regimen for the remaining time of liquid feeding (P2), energy intakes with concentrate were 

greater in the WM-ad lib group than in the MR-ad lib group but were not different when 

compared with the MR-res group. At that time the ADG of the MR-res group tended to greater 

values than in the MR-ad lib group, but was not different from the WM-ad lib group. At the end 

of Trial 1 and in Trial 2 these differences had disappeared. In Trial 2, there were no differences in 

p.p. DMI, energy balance, BW, or milk composition. In addition, 305 d milk yield of heifers from 

the WM-ad lib group was numerically, but not statistically, greater than in the MR-res and the 

MR-ad lib group (+ 765 L and + 153 L, respectively). 

Metabolites. The comparisons of the hormone and metabolite concentrations in the different 

phases of both trials are presented in Table 2. The time courses of the circulating concentrations 

of NEFA, glucose and BHB are shown for both the calves and the heifers in Figure 2. In Trial 1, 

the NEFA concentration was lower in the MR-ad lib than in the MR-res and WM-ad lib group (P 

< 0.05). From d 11 to 34 p.n. the glucose concentrations in the MR-res group were lower (P < 

0.05) than in the MR-ad lib and the WM-ad lib group. The BHB concentration was greater in the 

MR-res than in the MR-ad lib group in Trial 1. There were no sex differences for NEFA, glucose 

and BHB. The concentrations of TPP increased about 1.2- fold after the first intake of colostrum 

(P < 0.001) until d 3 p.n. There were no group or sex differences for TPP throughout the entire 

trial. In Trial 2, the heifers originating from the different rearing protocols did not differ in NEFA 

or glucose. Only urea and BHB were different before parturition (P4). The WM-ad lib heifers had 

lower urea concentrations than the MR-res and MR-ad lib groups (P = 0.1 and P < 0.05, 

respectively) and tended to have lower BHB concentrations then the MR-ad lib group (P = 0.1). 

Urea decreased around calving (P < 0.001) and increased towards the end of the trial (P < 

0.001).  
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Table 2: Comparison of the metabolic and endocrine blood variables (means ± SEM) during different phases (P) of life in calves and heifers. 

 

 P1 (d 2 – 27 p.n.) P2 (d 28 - 69 p.n.) P3 (d 70 - 110 p.n.) P4 (d 91 – 30 a.p.) P6 (d 29 - 70 p.p.) 

 MR 

-res 

MR 

-ad lib 

WM 

-ad lib 

MR 

-res 

MR 

-ad lib 

WM 

-ad lib 

MR 

-res 

MR 

-ad lib 

WM 

-ad lib 

MR 

-res 

MR 

-ad lib 

WM 

-ad lib 

MR 

-res 

MR 

-ad lib 

WM 

-ad lib 

NEFA 

[µmol/L]  

332
b
  

± 30.4  

204
a
  

± 16.5  

299
b
  

± 18.9  

337
AB

  

± 41.6  

287
B
  

± 26.1  

412
A
  

± 44.8  

194 

± 25.9  

177 

 ± 17.5  

219  

± 27.7  

190  

± 19.5  

148  

± 16.1  

174 

± 17.7  

243 

± 17.7  

259  

± 25.5  

216 

 ± 20.3  

Glucose  

[mmol/L]  

6.1  

± 0.2 

6.6  

± 0.2 

6.5  

± 0.2 

4.7  

± 0.2  

4.9  

± 0.1  

4.9  

± 0.1  

5.0  

± 0.1  

4.9  

± 0.2  

5.0  

± 0.1  

3.7  

± 0.1  

3.6   

± 0.1  

3.7  

± 0.1  

3.3  

± 0.1  

3.4  

± 0.1  

3.3  

± 0.1  

BHB  

[mmol/L]  

0.1  

± 0.01  

0.1  

± 0.01  

0.1  

± 0.01  

0.17
ab 

 

± 0.01  

0.14
b
  

± 0.01  

0.19
a
  

± 0.01  

0.29  

± 0.02  

0.29 

± 0.02  

0.29  

± 0.02  

0.31
AB

 

± 0.02  

0.33
B
 

± 0.02  

0.27
A
 

± 0.02  

0.53  

± 0.03  

0.52 

± 0.02  

0.49  

± 0.02  

Urea  

[mmol/L]  

-  -  -  -  -  -  -  -  -  4.1
B
  

± 0.2  

4.3
bB

  

± 0.2  

3.6
aA

  

± 0.1  

3.4  

± 0.1  

3.4  

± 0.1  

3.5  

± 0.1  

TPP 

[g/dL]  

5.2  

± 0.1  

5.3  

± 0.1  

5.3  

± 0.1  

5.2  

± 0.1  

5.3  

± 0.1  

5.3  

± 0.1  

5.8  

± 0.1  

5.8 

± 0.1  

5.9 

± 0.1  

-  -  -  -  -  -  

Insulin  

[µU/mL]  

12.1
a
  

± 1.2  

27.6
b
  

± 4.7  

28.5
b
  

± 4.0  

7.2  

± 0.1  

7.1  

± 0.5  

6.5  

± 0.7  

9.8  

± 0.7  

9.8  

± 0.6  

10.8  

± 1.0  

18.3 

±  2.1  

19.8 

±  1.3  

19.2 

±  2.1  

9.6
a
 

± 0.5  

12.6
b
 

± 1.0  

10.5
ab

 

± 0.6  

Adiponectin  

[µg/mL]  

11.7
B
  

± 0.7  

14.2
A
  

± 1.1  

12.7
AB  

± 0.5  

14.1
a
  

± 0.5  

16.2
b
  

± 0.4  

17.4
b
  

± 0.7  

19.3
a
  

± 0.8  

23.5
b
  

± 1.1  

22.8
B
  

± 1.3  

23.0  

± 0.9  

24.4  

± 0.8  

24.8  

± 0.8  

23.0
A
  

± 0.5  

23.8
AB

 

± 0.6  

24.9
B
 

± 0.6  

Leptin  

[ng/mL]  

2.7  

± 0.2  

2.7  

± 0.2  

2.8 

 ± 0.3  

1.9 

± 0.1  

1.9 

± 0.1  

2.0 

 ± 0.1  

2.3  

± 0.1  

2.6  

± 0.2  

2.5  

± 0.1  

-  -  -  -  -  -  

RQUICKI  0.41
a
 

± 0.01  

0.39
ab

 

± 0.01  

0.37
b
 

± 0.01  

0.49
a
 

± 0.01  

0.47
ab

 

± 0.01  

0.46
b
  

± 0.01  

0.47 

± 0.01  

0.50 

± 0.01  

0.47  

± 0.01  

0.25 

± 0.01  

0.25 

± 0.01  

0.25 

± 0.01  

0.27 

± 0.01  

0.26 

±0.01  

0.27 

± 0.01  

No differences between groups in any variable were observed during P0 and P5, therefore results from these phases are not shown. Different small letters indicate differences between 

groups (a, b) (P < 0.05) within each time point, different capital letters letters indicate trends (P < 0.1). p.n. = post natum; a.p. = ante partum; p.p. = post partum; MR-res = milk replacer, 

restricted; MRad lib = milk replacer ad libitum; WMad lib = whole milk ad libitum; NEFA = non-esterified fatty acids; TPP = total plasma protein; RQUICKI = revised quantitative insulin 

sensitivity check index 

 1 
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Hormones: The concentrations of adiponectin and insulin during both trials are shown in 

Table 2 and Figure 3.  

 

Figure 2: Time dependent changes of NEFA (A), glucose (B) and BHB (C) (means ± SEM) from Trial 1 (calves) and 

Trial 2 (heifers). Small letters indicate differences between groups (P < 0.05), capital letters indicate trends (P < 

0.1). a/A = MR-ad lib vs. MR-res and WM-ad lib; b/B = MR-res vs. MR-ad lib; c/C = MR-ad lib vs. WM-ad lib, d/D 

= MR-res vs. WM-ad lib; e/E = MR-res vs. MR-ad lib and WM-ad lib. 
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Figure 3: Time dependent changes of adiponectin (A), insulin (B) and RQUICKI (C) (means ± SEM) from Trial 1 

(calves) and Trial 2 (heifers). Small letters indicate differences between groups (P < 0.05), capital letters indicate 

trends (P < 0.1). a/A = MR-ad lib vs. MR-res and WM-ad lib; b/B = MR-res vs. MR-ad lib; c/C = MR-ad lib vs. 

WM-ad lib, d/D = MR-res vs. WM-ad lib; e/E = MR-res vs. MR-ad lib and WM-ad lib. The adiponectin 

concentrations of the MR-res calves were reported previously (Kesser et al., 2015). 
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The MR-res group tended (P = 0.07) to have lower adiponectin concentrations than the MR-

ad lib group during Trial 1. Female calves had greater adiponectin concentrations than male 

calves (P = 0.05).  

The MR-res group had lower (P < 0.05) insulin concentrations in blood than the WM-ad lib 

group in Trial 1. On d 11 and 22 p.n. the MR-res group had lower (P < 0.05) insulin 

concentrations than the MR-ad lib and the WM ad lib group. In Trial 2, no group differences 

were observed for the insulin and adiponectin concentrations. The leptin concentrations, assessed 

only during Trial 1, were not different between the feeding groups and are shown in Figure 4 

together with the mean leptin concentrations in colostrum and milk. 

 

 

Figure 4: Time dependent changes of serum leptin (A; n = 57; Trial 1) and leptin concentration in colostrum and in 

milk from the corresponding dams (B) (means ± SEM). Small letters indicate differences between leptin 

concentration in colostrum and milk (P < 0.01). 
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 The RQUICKI data are presented in Table 2 and Figure 3 C. The WM-ad lib group had lower 

RQUICKI values than the MR-res group (P < 0.05). No group differences were observed in Trial 

2.  

GTT and ITT. The basal concentration, the peak concentration, ∆Peak-Basis and the AUC of 

insulin and glucose measured during the GTT are presented in Table 3.   
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Table 3: Variables (means ± SEM) from intravenous glucose tolerance tests (GTT) performed at different phases (P) of life from calves reared (d 4 – d 28 of life) at different feeding 

intensities. 

 

 

 

  Basal concentration Peak concentration ∆Peak-Basis Area under the curve (AUC) 

 n = 51* 

MR 

-res 

MR 

-ad lib 

WM 

-ad lib 

MR 

-res 

MR 

-ad lib 

WM 

-ad lib 

MR 

-res 

MR 

-ad lib 

WM 

-ad lib 

MR 

-res 

MR 

-ad lib 

WM 

-ad lib 

P1 (d 22) Glucose 

[mmol/L]  

4.9
bx

 

± 0.23 

6.3
ax 

 

± 0.20 

6.2
ax  

 

± 0.23 

9.3
xy

 

± 0.69 

9.4
xy

 

± 0.24 

10.3
xy 

± 0.74 

4.5
Ax 

± 0.61 

3.1
Bx

 

± 0.11 

4.0
ABx 

 ± 0.69 

125 

 ± 11.1 

112 

 ± 5.78 

113 

 ± 8.73 

 Insulin 

[µU/mL]  

8.0
bx

 

± 1.25 

21.4
ax

 

± 6.84 

18.8
ax

 

± 3.32 

58.5
bx

 

± 14.2 

87.1
abx 

 

± 20.1 

120
ax

  

± 17.2 

50.6
bx 

± 13.4 

65.6
abx 

 ± 15.3 

101
ax

  

± 14.6 

1,087
bx 

 

± 256 

2,170
abx

 

 ± 650 

2,562
ax

 

 ± 461 

P2 (d 52) Glucose 

[mmol/L]  

4.9
y
 

± 0.25 

4.8
y
  

± 0.15 

4.9
y
 

± 0.11 

9.0
x
 

± 0.27 

9.1
x
  

± 0.19 

9.1
x
 

 ± 0.22 

4.1
xy

 

± 0.22 

4.2
xy

  

± 0.12 

4.2
xy

 

± 0.24 

122 

 ± 11.0 

115 

 ± 7.49 

112 

 ± 6.98 

 Insulin 

[µU/mL]  

7.09
y
 

± 0.7 

7.34
y
 

± 1.1 

6.23
y
 

± 0.6 

48.3
y
  

± 7.3 

68.1
y
 

± 13.4 

61.9
y
  

± 7.4 

41.2
x
 

± 7.2 

60.7
x 

± 12.8 

55.7
x
 

 ± 7.4 

875
y
 

± 122 

1,161
y  

± 240 

1,089
y 

 ± 119 

P3 (d 108) Glucose 

[mmol/L]  

5.3
Y
 

± 0.08 

5.1
Y
 

± 0.18 

5.1
Y 

± 0.08 

10.0
y
 

± 0.11 

9.7
y
  

± 0.13 

9.7
y
 

± 0.08 

4.6
y
  

± 0.12 

4.6
y
 

± 0.18 

4.6
y
 

 ± 0.07 

123  

± 5.20 

139  

± 8.99 

123  

± 4.95 

 Insulin 

[µU/mL]  

11.6
XY

 

± 1.4 

11.3
XY

 

± 2.2 

11.5
XY

 

± 1.0 

137
z
 

± 14.7 

108
z
 

± 11.9 

132
z
 

± 13.5 

125
y
 

± 14.3 

96.7
y 
 

± 12.5 

121
y
  

± 12.2 

2,650
z
  

± 274 

2,465
z 

± 222 

2,679
z 

 ± 256 

P1: d 2 – 27 post natum (p.n.); P2: d 28 – 69 p.n.; P3: d 70 – 110 p.n.; *: at the time of the GTT planned, 6 calves were exempted from the tests due to minor 

health issues, data are thus limited to n = 51, not 57. a, b:  different letters indicate differences between groups (a, b, c) or phases within each group (x, y, z) (P < 

0.05); different small and capital letters indicate trends between groups (a, A, b, B) or phases within each group (x, X, y, Y, z, Z) (P < 0.10) 
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Differences between the groups were limited to P1. The basal concentrations of glucose and 

insulin were lower in the MR-res than in the MR-ad lib and WM-ad lib group (P < 0.05) and 

male calves tended to have greater basal insulin concentrations (P < 0.1). No differences were 

observed in the peak concentrations of glucose. However, the peak insulin concentration was 

lower in MR-res than in the WM-ad lib group (P < 0.05). ∆Peak-Basis of glucose tended to be 

greater in the MRr than in the MRal group (P < 0.1) and the ∆Peak-Basis of insulin was lower in the 

MR-res than WM-ad lib group (P < 0.05). The AUC of insulin was lower in the MR-res than in 

the WM-ad lib group (P < 0.05), however, no differences were observed in the AUC of glucose 

between groups and phases. In contrast, the AUC of glucose in male calves was greater than in 

female calves (P < 0.05). In table 4 the ISBGR from the ITT (done in males only) is shown. Only 

in the MRr group there was a decrease of the ISBGR from P1 to P3 (P < 0.05). No differences 

between the groups were observed and only a numerical decrease from P1 to P3 in the ad lib 

groups.  

 

 

Table 4: The insulin-stimulated blood glucose response (ISBGR, means ± SEM) in response to an intravenous 

insulin tolerance test (ITT) performed at different phases (P) of life in male calves reared at different feeding 

intensities from d 4 to 27 of life. 

 

 ISBGR [%] 

 MR-res (n = 9) MR-ad lib (n = 7) WM-ad lib (n = 7) 

P1 (d 24) 56.8
x 
± 4.8 52.0 ± 3.2 52.8  ± 5.5 

P2 (d 54) 43.4
y 
± 3.3 48.8 ± 3.3 45.0 ± 2.3 

P3 (d 110) 39.6
y 
± 4.1 43.4 ± 3.6 43.2 ± 3.3 

P1: d 2 – 27; P2: d 28 – 69; P3: d 70 – 110; MR-res = milk replacer restricted; MR-

ad lib = milk replacer ad libitum; WM-ad lib = whole milk ad libitum. Different 

small letters indicate differences between phases (P < 0.05).  
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The mRNA abundance of PC and PCK1 is shown in Figure 5 A and B. Both mRNA 

abundance of PC and PCK1 increased from the first to the second biopsy (P < 0.01), but without 

any differences between feeding groups or sexes. 

 

 

 

Figure 5: mRNA abundance of pyruvate carboxylase (PC; A) and phosphoenolpyruvate carboxykinase (PCK1; B) on 

d 19 and 100 post natum (p.n.). Different letters indicate differences between sampling time points (P < 0.01). 

 

In Trial 1, there was a positive correlation between the RQUICKI values and the adiponectin 

concentrations across all samples (ρ = 0.37; P < 0.01). On d 0, before the first intake of 

colostrum, RQUICKI values and adiponectin were negatively correlated (ρ = -0.32; P < 0.05). 

This correlation changed to positive coefficients throughout the trial: on d 90 p.n. the correlation 

was ρ = 0.42 (P < 0.01). In Trial 2, RQUICKI and adiponectin were not correlated.  

In colostrum, the adiponectin concentration were greater on d 1 than in milk from d 7 p.p. (P 

< 0.001; 76.7 ± 3.2 vs. 3.8 ± 0.3 µg/mL; n = 79; i.e. samples from Trial 1 and from 22 additional 
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animals). The correlation between the adiponectin concentration in colostrum and the serum 

adiponectin concentration of the calves after their first colostrum consumption was ρ = 0.3 (P < 

0.05; n = 79; additional calves). The same correlation was seen with leptin in colostrum and in 

serum of calves after their first colostrum consumption (ρ = 0.3; P < 0.05, n = 57; Trial 1). 

 

Discussion 

The different feeding regimens tested in the present study affected the intake of both liquid and 

solid feeds as reported in the companion paper (Korst et al., submitted to JDS). In brief, the 

metabolizable energy (ME) from liquid feed during the differential feeding period (P1) was 1.9-

fold higher in the ad lib fed groups than in the MR-res group. At the same time the intake of 

concentrate was low, thus confirming earlier findings that calves eat only little solid feed during 

the first wk of life (Khan et al., 2011). The intake of hay might have been different between the 

groups during calfhood and might thus have affected rumen development and performance as 

shown by Khan et al. (2012, 2016). Unfortunately we could not measure the intake of hay that 

was offered ad lib and thus we have to limit our discussion to the effects of concentrate intake. 

Albeit data about rumen and intestinal development could not be directly assessed, we have some 

indication from BHB concentrations in serum about rumen development as discussed below. In 

the lactating heifers, there were no differences in DMI, BW, body condition and energy balance, 

but the numerically greater milk yields in the ad lib groups may point to a more efficient nutrient 

utilization or stimulated development of the mammary gland in heifers that were reared ad lib, in 

particular those receiving WM during the first 4 wk of life. However, in view of the limited 

number of animals we could pursue until they were lactating, this consideration remains 

speculative.  

 

Metabolic traits 

The plasma concentrations of NEFA, glucose, BHB and TPP in the dairy calves are 

consistent with other studies (Hadorn et al., 1997; Hugi and Blum 1997; Hammon et al., 2002). 

Differences between groups were observed in P1 during the differential feeding. However, after 

all groups were adapted to the same feeding regimen, these differences disappeared in our study. 
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Similar adaptations were also reported in the literature (Hadorn et al., 1997; Rauprich et al., 2000; 

Prokop et al., 2015). The greater plasma glucose concentration occasionally observed in the ad lib 

fed dairy calves as observed in our study (Fig. 2) might be due to the higher intake of lactose, as 

observed in veal calves earlier (Hugi et al., 1997). 

For BHB, differences between the feeding groups were limited to the time after 

differential feeding. When all calves were turned to the MR-res regimen (P2), the calves from the 

preceding WM-ad lib and MR-res feeding had greater BHB concentrations than the MR-ad lib 

group. Increasing BHB concentrations might indicate increased hepatic ketogenesis due to an 

increased supply or decreased oxidation of NEFA from mobilization of body fat. Pre-ruminant 

animals are basically capable of hepatic ketogensis when fasted, but the increase of BHB in the 

circulation is more likely related to the beginning ruminal production of ketones (Baldwin et al., 

2004). The suitability of serum BHB as an indicator for grain intake and rumen development in 

calves was recently confirmed (Deelen et al., 2016). Indeed, the intakes of concentrate and the 

BHB serum concentrations when all calves were fed according to the MR-res protocol until 

weaning showed the same pattern: highest values in both variables were observed in the WM-ad 

lib and MR-res groups whereas the MR-ad lib group ate about 200 g/d less concentrate (Korst et 

al., companion paper), and had around 80% of the BHB concentrations. We had expected the 

MR-res group to have the fastest BHB increase and to differ from both ad lib groups since early 

restriction for liquid feed would stimulate the intake of concentrate. In contrast to this 

expectation, the BHB blood concentrations in calves from the WM-ad lib feeding group were not 

different from the MR-res group, but both groups had higher values than the MR-ad lib group. 

This finding might point to beneficial effects of WM feeding on rumen development by milk-

borne stimuli. Rumen development could be directly or indirectly affected through promoting a 

rumen microbiome which in turn accelerates rumen development and might also concern the 

entire intestinal tract (Steele et al., 2016). 

In the heifers, the metabolite concentrations in our study were typical for the transition 

period as observed earlier (Drackley, 2000; Wathes et al., 2007; Weber et al., 2013). There were 

no group differences in the plasma concentrations of NEFA or glucose. The BHB concentrations 

tended to be lower in the WM-ad lib group than in the MR-ad lib group in late pregnancy. In 

contrast to the findings during calfhood when BHB in blood likely reflects rumen development, 

BHB concentrations in blood of late pregnant and of lactating cows indicate mainly increased 
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ketogenesis. The observation of sporadically lower BHB concentrations in heifers reared on the 

WM-ad lib regimen might point to a greater capacity for the complete oxidation of NEFA in 

these animals, however, the values reached in all heifers were still in a normal range and the 

difference was transient only. Before calving, urea was lower in the WM-ad lib group than in the 

MR-res and MR-ad lib groups. It is unlikely that these differences resulted from feed composition 

and feed intake since all heifers received the same ration and the dry matter intake was not 

different (albeit intake could be recorded only post partum). The highest concentrations were 

observed in the MR-ad lib group and might point towards a less efficient ruminal microbiome. 

However, all values were well within the reference values suggested for late pregnant and 

Holstein cows (Brscic et al., 2015) and the difference between the groups disappeared after 

calving. Nevertheless the data may provide some support for a more efficient N utilization in 

WM-ad lib reared heifers. Taking the differences in blood urea a.p. together with the findings 

from BHB during calfhood, we speculate that WM feeding might thus be superior to both MR 

feeding regimens in terms of nutrient utilization. When taking the results from the metabolites 

together, they provide 418 some - albeit minor- support for our hypothesis that ab lib feeding of 

WM will be more beneficial than feeding MR ad lib. In general, the greater nutrient supply by ad 

lib feeding during the first weeks of life is now generally accepted as being beneficial for long 

term growth and productivity (Khan et al., 2011).  

Hormones 

The serum leptin concentrations in neonatal dairy calves increased with the first intake of 

colostrum in our study. The colostral leptin concentrations decreased from d 1 to 3 by factor of 4. 

In neonatal piglets, Woliński et al. (2014) reported a 3-fold increase of the leptin concentrations 

in plasma after the first feeding of colostrum. In the corresponding samples of sows’ colostrum 

and milk, the leptin concentrations increased from d 1 to 3 p.p. and then decreased to d 7 p.p. 

(Woliński et al., 2014). Casabiell et al. (1997) have shown that leptin is transferred from the 

maternal circulation into the milk and through the stomach of neonatal rats into the bloodstream 

without a loss of biological activity. Leptin from colostrum and milk was suggested to be 

important for the development of the small intestine, since the maturation of the small intestine 

was slowed down when only formula was fed (Woliński et al., 2003). However, the leptin 

concentrations in colostrum and in plasma in neonatal piglets (Woliński et al., 2014), whereas we 

observed a weak correlation (ρ = 0.3; P < 0.05; n = 57) in dairy calves. The role of colostral 
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leptin seems less clear since the increase of serum leptin observed in the present study upon 

colostrum intake was not observed in two other studies (Blum et al., 2005; Schäff et al., 2014), 

but this might have been due to the relatively small animal numbers in these studies which did 

not allow for picking up the small and transient increase we were able to show herein. When 

comparing calves receiving only MR with colostrum-fed ones, the leptin concentrations were 

lower in MR-fed calves (Schäff et al., 2014). However, it is improbable that individual 

adipokines such as leptin or adiponectin out of a plethora of other bioactive components 

contained in colostrum would alone mediate the beneficial (not immune globuline related) effects 

commonly associated with colostrum intake. 

In contrast to our previous study involving only 10 males and 10 female calves (Kesser et 

al., 2015) in which no sex difference was established for adiponectin during the first 110 d of life, 

the female calves in the present study (n = 29) had greater adiponectin concentrations than the 

males (n = 28; P = 0.05). In human babies, data concerning sex differences were contradictory 

(Sivan et al., 2003; Kamoda et al., 2004; Erhardt et al., 2014). 

The trend to lower adiponectin serum concentrations in the MR-res fed calves compared to the 

MR-ad lib calves indicated a reduced insulin sensitivity in the MR-res group, however, the results 

of the GTT (as discussed below) contradict this finding. The nadir of adiponectin around 

parturition in the young heifers is in line with other studies (Giesy et al., 2012; Mielenz et al., 

2013; Singh et al., 2014) and may be interpreted as a support for the nutrient supply towards the 

mammary gland by decreasing the insulin sensitizing, gluconeogenesis and lipolysis inhibiting 

effects (Yamauchi et al., 2002; Kadowaki et al., 2006; Singh et al., 2014). In addition, the 

decreased adiponectin concentrations around calving might result from the increased secretion of 

blood adiponectin into colostrum (Singh et al., 2014). However, only a weak positive correlation 

(ρ = 0.3; P < 0.05; n = 79) was seen between the plasma adiponectin concentrations and the 

colostrum adiponectin concentrations.  

In intensively fed calves the insulin concentration increases (Hadorn et al., 1997; 

Hammon and Blum, 1998; Kühne et al., 2000), but is commonly not sustained when the animals 

are moved to less intensive feeding regimen. The increased insulin concentration in the ad lib 

groups from the present study was probably due to the greater amounts of ingested energy 

compared to the MR-res group as reported earlier in veal calves (Hugi et al., 1997, Maccari et al., 
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2014). Decreased insulin concentrations around parturition as observed in the heifers from our 

study and reported previously (Swali and Wathes, 2006; De Koster and Opsomer, 2013) point to 

reduced lipogenesis and protein synthesis and enhanced lipolysis and thus support the flux of 

glucose and amino acids to the mammary gland (De Koster and Opsomer, 2013). However, the 

insulin concentrations were not affected by the rearing conditions during the first weeks of life 

which is in contrast to studies in rats where intensive feeding in early life stimulated the 

development of the pancreatic cells and lead to higher insulin concentrations in later life 

(Srinivasan et al., 2003). In intensively fed male German Holstein calves an increase in the 

number of the islets of Langerhans was observed after 8 mo of life (Prokop et al., 2015). In early 

life the pancreatic cells as well as the adipose tissue (AT) continue to develop and to establish the 

total number of cells (Kaung, 1994; Spalding et al., 2008). Therefore, these tissues serve as 

potential targets of metabolic programming (Mostyn and Seymonds, 2009; Duque-Guimaraes and 

Ozanne, 2013; Barella et al., 2014).  

However, greater milk yields after an intensive feeding regime in the preweaning period 

were reported in several studies (Bar-Peled et al., 1997; Moallem et al., 2010; Soberon et al., 

2012). In our study, the milk yield of the WM-ad lib group was numerically higher as shown in 

our companion paper (Korst et al., submitted as companion paper). Another possibility for the 

increased milk yield after intensive feeding regimens in the preweaning period might be the 

increased mammary parenchymal mass, parenchymal DNA and RNA (Brown et al., 2005). A 

positive influence of intensive feeding regimen in the preweaning period on the mammary gland 

parenchyma was shown previously (Brown et al., 2005; Meyer et al., 2006; Geiger et al., 2016). 

Tucker (1981) stated that one of the primary determinants for milk production is the number of 

cells available for synthesis of milk. Before puberty, the mammary gland grows allometric 

(Esselburn et al., 2015) and therefore the mammary gland might be more sensitive to external 

stimuli compared to the remaining tissues. The influence of different feeding regimens before 

puberty might have long term programming effects on the development of the mammary gland 

and therefore on the life time milk yield production of dairy cows. 

 

Variables describing insulin sensitivity 
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In the dairy calves from the present study, the GTT variables suggested a higher insulin 

sensitivity in the MR-res group compared to the ad lib groups in P1. The trend for higher 

RQUICKI values, as surrogate indicator for insulin sensitivity, in the MR-res group compared to 

the WM-ad lib group supported the latter result. The accordance between GTT variables and 

RQUICKI values in dairy calves was confirmed earlier (Bossaert et al., 2009).The ISBGR from 

the ITT did not differ between groups and in the MR-res group a significant decrease was only 

observed from P1 to P3 indicating decreased insulin responsiveness (Ohtsuka et al., 2001). In 

contrast, the trend for lower plasma adiponectin concentrations in calves of the MR-res group 

suggests lower insulin sensitivity in the MR-res group than in the ad lib groups. Some reports 

confirm that insulin sensitivity is decreased by more intensive feeding levels (Bach et al., 2013; 

Yunta et al., 201), whereas others could not confirm such effects (MacPherson et al., 2016). The 

divergent results from these studies including ours might be explained by differences in the age 

when the feeding regimens were started as well as the setting of the GTT performed i.e., the 

fasting time before starting the GTT and also the age when the GTT were performed. Additional 

factors likely influencing the response are the amount and composition of the MR used, and the 

feeding frequency (usually 2 times daily versus the free access in our study resulting in average 

meal sizes of about 1.3 kg). 

In the heifers, no group differences in RQUICKI values were observed. However, a slight 

decrease around parturition might indicate a decreased insulin sensitivity and hence supports the 

previous findings (Holtenius and Holtenius, 2007; Singh et al., 2014). In dairy cows, Singh et al. 

(2014) demonstrated a positive correlation between plasma adiponectin concentrations and 

RQUICKI values. This was not confirmed in our study. However, in dairy calves, we found a 

negative correlation during P0, P1 and P2. In contrast to tissues of non-ruminant animals, the 

tissues of dairy cows seem to be less sensitive to insulin (Brockman and Laarveld, 1986). 

Adiponectin is known for its insulin sensitizing effects (Berg et al., 2002). However, the change 

from a negative correlation between adiponectin and RQUICKI values in calves to a positive 

correlation in dairy cows (Singh et al., 2014) probably occurs after weaning. The adiponectin 

system in pre-ruminant calves might thus be still developing and be not yet mature. Moreover, 

the adiponectin system might have different functions than increasing insulin sensitivity at that 

age. Therefore, measuring adiponectin in calves seems inappropriate to infer information about 

insulin sensitivity. 
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Taken together, even though high feeding planes were shown to alter insulin sensitivity 

and glucose metabolism in some studies including ours, if tested in later life, these effects seem 

transient only and there is no evidence for sustained effects. Our results about the various 

hormones are not supporting our initial hypotheses according to which the ad lib feeding, in 

particular of WM, will elicit sustained changes of metabolic hormones that will continue until 

lactation and promote milk production. Bearing in mind that the small sample size available for 

Trial 2 may have impeded the detection of sustained differences, transient nature of the hormonal 

and metabolic changes induced by the feeding during the first weeks of life, they might 

nevertheless have affected the development of target tissues, in particular the development of 

gastrointestinal tract and the mammary gland as discussed above. 

mRNA abundance of PCK1 and PC 

The increase of the mRNA abundance of PC and PC1K from the first to the second biopsy 

observed herein indicates an increase of gluconeogenesis that is probably related to the switch 

from the pre-ruminant to the ruminant stage. The main trigger of this switch is the change of 

substrates from lactose to short chain fatty acids, in particular propionate (Greenfield et al., 2000; 

Aschenbach et al., 2010; Steinhoff-Wagner et al., 2011). As observed in our study and in earlier 

ones (Scheuer et al., 2006; Steinhoff-Wagner et al., 2011), different feeding regimens in the 

preweaning period had no influence on the mRNA abundance of PC and PCK1, indicating that 

the endogenous glucose production was not affected.  

 

CONCLUSION 

In times of differential feeding (d 4 - 27 p.n.) differences in the circulating concentrations 

of some metabolites and hormones were observed between groups. However, in contrast to our 

working hypothesis, these differences were not sustained when all calves received the same feed 

later on. Moreover, when considering the animals as pregnant and then lactating heifers, their 

endocrine and metabolic patterns were not different. Therefore, no programming effects on 

metabolism and its endocrine regulators could be identified. However, in view of the numerically 

higher milk yield in heifers raised at ad lib-feeding during the first weeks of life, programming 
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effects on gastrointestinal function or the cellular development of the mammary gland may not be 

ruled out but should be addressed in further studies involving more animals. 
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6 General discussion and conclusions 

 

Circulating adiponectin in neonatal dairy calves  

The adiponectin concentrations in dairy calves during their first three months of life were 

characterized in the present thesis. After birth, the adiponectin concentrations in our study were 

about 7-fold lower compared to dairy cows around parturition (3.0 µg/mL ± 0.3; Mielenz et al., 

2013; Singh et al., 2014 a, b). With the intake of colostrum, the adiponectin concentrations 

increased rapidly. In contrast, in dairy calves receiving formula instead of colostrum, only a slow 

increase of the adiponectin concentration was observed. The high adiponectin concentrations in 

the first colostrum in comparison to formula underline the importance of colostrum for the 

transfer of adiponectin from the dam to the offspring, albeit the function remains unexplained. 

After colostrum consumption, the adiponectin concentration stayed at about the same level until d 

52 p.n., thereafter the calves were weaned and an increase was observed. The increase in 

adiponectin might be because of the increase in insulin sensitivity due to the change from pseudo-

monogastric to ruminants (Brockman and Laarveld, 1986), as adiponectin is positively associated 

with insulin sensitivity in humans and rodent models (Berg et al., 2002).  

The half life of adiponectin in mice is between 4.5 h (hexamers) and 9 h (HMW) (Pajvani et al., 

2003). However, the time between blood samples in Trial 2 of Manuscript I is about 24 h, hence a 

decrease of the adiponectin concentrations between the sequential blood samples was expected in 

consideration of colostral adiponectin being the dominant source for adiponectin in the 

circulation. Potential reasons for the sustained elevation of serum adiponectin might be that the 

half life of adiponectin taken up from colostrum is extended or the colostral adiponectin might 

trigger the endogenous production of adiponectin in AT whereby not only WAT but also BAT 

may be involved. The BAT plays the major role in neonates and is relevant for heat production. 

Like WAT, BAT is known for its endocrine function, e.g. the expression of adiponectin 

(Iacobellis et al., 2013; Villarroya et al., 2013). Whether the adiponectin secretion of BAT and/or 

WAT is triggered by hormones reaching the circulation from colostrum and milk intake is not 

clarified.  
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In a study by Kotani et al. (2004), adiponectin was positively correlated with BW in human 

neonates. The authors concluded that in contrast to adults, adiponectin increases with fetal fat 

mass and might depend on the adipocyte size and body fat distribution. In our study there was no 

correlation between the BW of dairy calves and the serum adiponectin concentration. However, 

in comparison to humans, who have the highest body fat content as neonates in mammals (around 

16 %; Widdowson, 1950), dairy calves only have a low content (2 %; Marple, 2003).  

Concerning the influence of sex on the adiponectin concentration we found contradictory results. 

As reported in Manuscript III, female calves had greater adiponectin concentrations than male 

calves, whereas in Manuscript I, in which only the control group fed according to the MRr from 

Manuscript III was integrated, no sex differences were observed. Contradictory observations 

concerning the differences between sexes on the adiponectin concentration were also made in 

humans (Erhardt et al., 2014; Lausten-Thomsen et al., 2015). However, the different results from 

Manuscript I and II are probably based on the larger animal numbers included in Manuscript III.  

Estimation of the portions of adiponectin and leptin contained in colostrum reaching the 

circulation of newborn dairy calves 

For getting an impression about the portion of adiponectin and of leptin that was ingested with 

colostrum and milk and actually reached the circulation as evident from the increase of the 

plasma concentrations observed in the dairy calves studied herein, the following estimates were 

done, using the assumptions explained below for adiponectin (results are shown as means ± 

SEM): 

1. Total amount of adiponectin in the plasma in the circulation = plasma volume of the calf 

(9 % of BW (mL), Quigley, 2002) x plasma adiponectin (µg/mL) 

2. Total amount of adiponectin (µg) in the first ingested colostrum = Total amount of 

ingested colostrum (mL) x adiponectin (µg/mL) in colostrum (in consideration of gut 

closure, only the first meal was considered as contributing to adiponectin in the 

circulation) 

3. Percentage of the increase of plasma adiponectin concentration (µg/mL) due to the first 

colostrum from the ingested adiponectin (µg/mL) concentration in the first colostrum 

(transfer rate) = increase of plasma adiponectin (µg/mL) concentration due to the first 

colostrum / total amount of adiponectin (µg) in the first ingested colostrum x 100 
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The estimation was analogously done for leptin (ng). 

The total intake of colostrum containing ~76 μg/mL (  4.2) adiponectin was in average around 

2.3 L (with the first meal) and thus the uptake of adiponectin with colostrum amounted to 175 

mg. The total adiponectin content in the circulation was about 26 mg, i.e. around 15 % of the 

ingested adiponectin. 

For leptin, colostrum contained ~23 ng/mL (± 1.9) in average and thus, the uptake of leptin with 

colostrum (~2.3 L with the first meal) amounted to 0.05 mg. The total leptin content in the 

circulation was about 0.006 mg. This corresponded to 12 % of the ingested leptin.  

The large variation from these calculations reflects the intra-individual variation. The weak 

correlations between the adipokine concentration in the first colostrum and the plasma adipokine 

concentration in the calves’ circulation after the first colostrum intake (Manuscript III) are in 

support of a relationship between intake and the circulating concentration achieved, albeit with 

considerable variability.  

Formula contained 0.38 µg/mL in average. In dairy calves receiving formula as a first meal 

instead of colostrum (Manuscript I, Trial 2), the uptake of adiponectin with formula (~3.6 L with 

the first meal) amounted to 3.6 mg. The total adiponectin concentration in the circulation was 

about 12.6 mg. This means that the increase of plasma adiponectin was higher than the amount of 

ingested adiponectin in formula and may thus indicate that this slight increase of adiponectin in 

plasma might be due to endogenous production of adiponectin.  

In calves born at term and preterm and receiving their first colostrum only after 24 h of life 

(Manuscript I, Trial 3), the adiponectin concentration is colostrum contained 56.1 µg/mL. The 

uptake of first colostrum (~2.3 L and ~2.1 L for at term and preterm born calves, respectively) 

amounted to 129.7 mg and 115.0 mg, respectively. In the blood circulation the amount of 

adiponectin was about 10.5 mg for calves born at term and 6.2 mg for calves born preterm. This 

indicates that the intestinal barrier was closed after 24 h and none of the adiponectin from 

colostrum could be found in the circulation of these calves.  

However, it still needs to be elucidated to what extent adipokines, like adiponectin and leptin, in 

the milk have an influence on the development of metabolism of dairy calves, and how the 

endogenous production is triggered.   
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The influence of different feeding regimens on the circulating adiponectin concentrations in 

dairy calves 

The influence of three different feeding regimens on the adiponectin serum concentrations of 

dairy calves was tested. The restrictive feeding of milk replacer (MR 130 g/L, 6 L per day) is the 

common practice in many countries. The other two groups were to compare two different 

intensive feeding forms. The MR-ad lib group received milk replacer at a higher concentration 

(160 g/L) ad lib and the WM-ad lib group received whole milk ad lib. Even if the ingredients 

were quite similar, there are a many components in the whole milk which have not yet been 

investigated, let alone the influence of the components on the further development of the 

offspring. 

Dairy calves receiving MR in restricted amounts tended to have lower adiponectin concentrations 

compared to calves receiving milk replacer ad lib. During the time of differential feeding (P1), 

the adiponectin concentration was even significantly lower in the MR-res group than in the MR-

ad lib and WM-ad lib group. In P1 the energy intake via milk in the WM-ad lib group was 1.8-

fold and 2.1-fold greater than in the MR-ad lib group and in the MR-res group, respectively. In 

contrast, the energy intake via concentrates was greater in the MR-res group (3.4-fold and 5.3-

fold greater than in MR-ad lib and WM-ad lib, respectively). In colostrum, much higher 

adiponectin concentrations than in milk (23-fold lower adiponectin concentrations) or milk 

replacer (190-fold lower) were observed whereby the concentrations in milk decreased with time 

as observed in human milk (Ley et al., 2012). As alike observed for leptin (Woliński et al., 2003; 

Bronský et al., 2012), the greater adiponectin concentrations in colostrum in milk might influence 

gut development, especially the number of adipoR1 in the small intestine (Zhou et al., 2005; 

Bronský et al., 2012). The lower milk intake in P1 and therefore lower adiponectin and milk 

energy intake might have resulted in lower adiponectin serum concentrations in the restrictively 

fed group. The greater milk and energy intake likely increased the higher average daily gain in 

the ad lib groups in P1 and might thus be another reason for the higher adiponectin concentration 

in these groups.  
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Relationship between adiponectin and insulin sensitivity in dairy calves and the influence of 

different feeding regimen 

For identifying the influence of the different feeding regimen on the insulin sensitivity of the 

dairy calves, GTTs were performed during the trial. Except for P1, no differences were observed. 

However, in P1 the greater basal and peak concentrations in the ad lib-groups indicated a higher 

insulin secretion in both groups and assumingly lower insulin sensitivity than in the restricted fed 

group. The MR-res group had also the highest RQUICKI values thus supporting the results from 

the GTT.  

The lower adiponectin concentrations of the MR-res group indicate opposite conclusions 

compared to the results of the GTT and the RQUICKI. Adiponectin is known for its insulin 

sensitizing functions (Berg et al., 2002). In dairy cows a positive correlation between adiponectin 

and RQUICKI was observed (Singh et al., 2014a, b). However, in the preweaning period of the 

calves, the adiponectin concentration was negatively correlated with RQUICKI values and by the 

end of the trial, when calves were fully weaned, the correlation of adiponectin and RQUICKI 

values turned to positive. These results lead to the assumption that adiponectin cannot be used as 

an indicator for insulin sensitivity in growing dairy calves. 

During the process of weaning in dairy cows the main supply of glucose changes from the direct 

intestinal absorption to hepatic and renal gluconeogenesis. In contrast to tissues of non-ruminant 

animals, the tissues of dairy cows seem to be more sensitive to insulin (Brockman and Laarveld, 

1986). However, the change from a negative correlation between adiponectin and RQUICKI 

values in calves to a positive correlation in dairy cows (Singh et al., 2014a) occurs during 

weaning and lead to the assumption that with the change to gluconeogenesis as the main supply 

of glucose the insulin sensitivity in tissues of dairy cows increases. Adiponectin in pre-ruminant 

calves might have different functions than increasing insulin sensitivity. Adiponectin might 

support the differentiation of adipocytes in the growing calves as observed in growing mouse 

3T3-L1 fibroblasts cells (Fu et al., 2005). Another possible role for adiponectin might be an anti-

inflammatory effect on the development of the digestive system from pre-ruminants to ruminants. 

Before weaning the main feed is milk and therefore lactose is converted to glucose. After 

weaning, the intake of concentrates and thus of starch increases and in consequence, the 

production of volatile fatty acids (i.e. acetate, propionate, and butyrate) in the rumen. The lower 
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adiponectin concentrations in the MR-res group might be because of the greater intake of 

concentrates and less intake of forage. In contrast to forage, concentrates with high starch content 

have negative effects on the rumen development (Williams et al., 1987). This might lead to an 

increase of pro-inflammatory cytokines which suppress the synthesis of adiponectin (Maeda et 

al., 2002; Fasshauer et al., 2003).  

Influence of different feeding regimen on adiponectin and on variables indicative for insulin 

sensitivity around the first lactation 

Most changes of the adiponectin concentrations in dairy cows occur during the transition period 

(Singh et al., 2014a). Until calving, the adiponectin concentration decreased, thereafter an 

increase was observed. The RQUICKI had similar characteristics around calving (Holtenius and 

Holtenius, 2007; Singh et al. 2014a). In contrast to Singh et al. (2014a) we observed no 

correlation between adiponectin and RQUICKI, although the RQUICKI was decreased around 

calving, too. Even though the RQUICKI and adiponectin have the same characteristics around 

calving, a correlation does not mean that the parameters are linked and can be replaced by each 

other. The RQUICKI is just a calculated ratio and several studies doubted its use as an indicator 

for insulin sensitivity in dairy cows with metabolic disorders (Kerestes et al., 2009; Schulz et al., 

2014).  

However, the decrease of adiponectin around parturition might support the glucose flux towards 

the uterus and the mammary gland by decreasing the insulin sensitivity in other peripheral tissues 

and thus the uptake of glucose, and by stimulating hepatic gluconeogenesis (Yamauchi et al., 

2001, 2002; Singh et al., 2014a). The greater adiponectin concentrations in colostrum and milk 

might be due to an increased transfer of blood adiponectin to colostrum and milk (Singh et al., 

2014a). Based on the very low abundance of adiponectin mRNA detectable in the mammary 

gland it is unlikely that the mammary gland itself contribute a significant portion of the 

concentrations in milk (Sauerwein and Häußler, 2016).  

The feeding regimen in the first weeks of life had no sustained influence on the concentrations of 

adiponectin and of insulin and on the RQUICKI values around calving.  

Nevertheless, greater insulin concentrations were observed in rats after an intensive feeding in 

early life (Srinivasan et al., 2003). The authors suggested that a stimulation of the pancreatic cells 

triggers the elevated insulin secretion (Srinivasan et al., 2003). Increased numbers of Langerhans 
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islets after an intensive feeding was reported recently in 8 months old male Holstein dairy calves 

(6 - 9 L milk/per day for the first 3 weeks p.n. compared to the control group: 4 L milk/per day 

for the first weeks p.n. and 6 L MR/per day for second and third week p.n.; Prokop et al., 2015). 

Adipose tissue as well as pancreatic cells are most relevant target tissues when considering 

metabolic programming, since the development of cells and their number is determined in early 

life in both tissues (Kaung, 1994; Spalding et al., 2008).  

Based on the lack of differences in insulin and the other metabolic and endocrine variables after 

differential feeding in the preweaning period in our study, we suggest that no programming 

effects on these parameters were set in our study. However, the numerically higher milk yield in 

the WM-ad lib calves together with the increase of milk yield after an intensive feeding during 

early calfhood reported in literature (Bar-Peled et al., 1997; Moallem et al., 2010; Soberon et al., 

2012) point towards mechanisms other than metabolic programming underlying the effects on 

increased milk yield in the dairy cow.   

One of the primary determinants for milk production is the number of cells available for milk 

synthesis (Tucker, 1981). Several studies observed an increase in mammary gland parenchyma 

after dairy calves were fed intensively before puberty (Brown et al., 2005; Meyer et al., 2006; 

Geiger et al., 2016). Until puberty the mammary gland grows allometrical, thereafter an isometric 

growth is observed (Cowie, 1949). Esselburn et al. (2015) observed during the first 2 months of 

life a 6-fold increase of the mammary gland, whereas BW did not even double during this time, 

i.e. the mammary gland growing obviously allometrical. This intensive growing phase of the 

mammary gland parenchyma prior to puberty might be another starting point for programming 

effects on the later life’s performance in dairy cows because the allometric growth of the 

mammary gland might be sensitive for external stimuli. 

Male German Holstein calves are a kind of ‘by-product’ of the milk industry and therefore are 

reared as veal calves although their breed is bred for milk production. A liquid diet with high fat 

content ensures a faster growing until the required weight for slaughter is reached (Doppenberg 

and Palmquist, 1991). In veal calves, insulin resistance is an often observed status, due to the 

high intake of milk or milk replacer and therefore lactose (Hostettler Allen et al., 1994; Hugi and 

Blum, 1997). In a recently published study, feeding male Holstein calves with WM ad lib lead to 

an increase in pancreatic Langerhans islets after 8 months of life (Prokop et al., 2015). Higher 
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insulin concentrations and insulin resistance during calfhood may have an impact on health in 

adult animals. The higher concentration of insulin due to a higher number of Langerhans islets 

may also lead to an increasingly insulin resistant status in adult animals and therefore, 

comparable to humans, metabolic problems may occur. However, considering the productive life 

span of male cattle, this might be an issue only in breeding bulls. 

Bossaert et al. (2009) suggested that there are breed specific differences in insulin sensitivity, 

since beef calves have a higher insulin sensitivity compared to German Holstein calves which are 

bred for milk production. They assumed that the intensive selection for either growth rate or milk 

yield in beef and dairy cows, respectively, was accompanied by a selection for a greater insulin 

sensitivity when aiming for tissue accretion (beef cattle); on the other hand a selection for higher 

milk yield (dairy cattle) implied a lower insulin sensitivity of the peripheral tissues (Bossaert et 

al., 2009). However, from the scientific point of view it would be interesting to investigate 

intensive feeding, e.g. in veal calves and therefore triggering an insulin resistant status in early 

life, and the influence on health in later life.  

Influence of different feeding regimen on performance and metabolic and endocrine 

variables in dairy calves and later around their first lactation 

Ad libitum feeding of WM or MR increased the average daily weight gain and the energy intake 

during times of different feeding regimen and the BW until 13 weeks p.n. Starter intake was not 

influenced by the higher intake of WM or MR. Although there was no difference in the feed 

intake during the first lactation, a numerically increase of the milk yield was observed after whole 

milk was fed ad lib during the first weeks of life. The observed greater milk yield of the WM-ad 

lib group could not be explained by the measured blood metabolites in our study. However, an 

increase of milk yield after in intensive feeding during in the preweaning period was also 

reported in literature (Bar-Peled et al., 1997; Moallem et al., 2010; Soberon et al., 2012). Parallel 

to the increase of milk yield in the last decades (Oltenacu and Broom, 2010), an increase in health 

problems, especially reduced fertility, lameness and mastitis, but also metabolic disorders were 

observed (Ingvartsen, 2006). Whether there is a positive correlation between increased milk yield 

due to intensive feeding and health problems is not yet known.  
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The intensified feeding strategies may have economic benefits improving the income from milk 

and thus the profit from the first lactation. However, milk price versus feed costs will certainly 

affect the final extent of the benefit, if any. 

Only in times of differential feeding (d 1 - 27 p.n.) differences in the metabolic variables (NEFA, 

glucose, BHB and TPP) were observed. After the feeding regimens of all groups were adjusted to 

the MR-res protocol, the differences were leveled off. Leptin increased significantly after 

colostrum intake, indicating a colostrum-depending leptin supply as observed earlier for the 

adiponectin concentrations (Kesser et al., 2015). An increase of leptin due to the first intake of 

colostrum was also observed in piglets (Woliński et al., 2014). In heifers no group differences in 

NEFA and glucose were observed. Differences were seen before parturition (P4) in the urea and 

BHB concentrations. WM-ad lib heifers had lower urea concentrations than the MR-res and MR-

ad lib groups (P = 0.1 and P < 0.05, respectively) and tended to have lower BHB concentrations 

then the MR-ad lib group (P = 0.1). The feed intake prior to calving was not measured. The 

lower urea concentrations might indicate an increased metabolisation of protein in the WM-ad lib 

group. The tendency of higher, but not clinical relevant BHB concentrations in the MR-ad lib 

group before calving, might indicate a greater ketogenesis due to a higher physiological energy 

demand before calving compared to the WM-ad lib group, perhaps because of a lower 

gluconeogenesis.  

Future perspectives  

The potential influence of preventing the uptake of adiponectin with colostrum in formula-fed 

calves on the development of the circulating adiponectin concentrations could not be investigated 

in the present work. The calves fed exclusively with formula were maximally 4 days old when 

euthanized for tissue sampling and thus no data from formula-fed calves at older ages were 

available. Further studies are needed to identify the development of adiponectin without the 

maternal supply of colostrum or milk for a longer duration of life to better understand the 

regulation of the endogenous production of adiponectin and the role of adiponectin in calves. 

However, conflicts may occur because colostrum-free rearing is certainly not animal friendly as 

the colostrum provides next to the passive immunity a wide range of important nutrients and non-

nutritive bioactives for the offspring (Blum, 2006).  
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As we found contradictory results concerning the influence of sex on the adiponectin 

concentration, a focus on this aspect is recommend in further studies. However, the greater 

number of animals in Manuscript III as compared to Manuscript I might account for this result. 

The lack of significant differences in metabolic and endocrine variables as well as in the 

performance data, like milk yield may be due to the low number of animals in each group (min: n 

= 9; max: n = 10). Soberon and van Amburgh (2012) conducted a meta-analysis and evaluated 

the effects of preweaning nutrition on milk yield in the first lactation. They assumed that the 

missing significance in several studies for a positive influence of intensive feeding on milk yield 

was due to a low number of animals per group and therefore lack of power. Finally by taking all 

data together, they found a stimulating influence of milk intake in the preweaning period on milk 

production during lactation.  

For identifying the effect of different feeding regimen on metabolism and the related endocrine 

systems as well as on performance, more data need to be generated in neonatal dairy calves and 

later in their life when lactating and thus further studies are recommended with a greater number 

of participants. Next to regular blood samples, biopsies of the mammary gland should be sampled 

for identifying possible feeding influences. For measuring or estimating the insulin sensitivity, 

direct measurements (e.g. HEC-Test) or indirect measurements (eg. GTT or ITT) of insulin 

sensitivity should be conducted. In addition, for getting a better insight into the metabolic 

programming of different feeding regimen in the preweaning period on the later milk production, 

dairy cows should be observed also for the following lactations. 
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7 Summary 

 

In the transition from pregnancy to lactation, dairy cows exhibit a period of decreasing insulin 

sensitivity in the peripheral tissues to support the partitioning of glucose towards the uterus and 

the mammary gland. During this time the susceptibility for metabolic disease increases as the 

main priority is the support of the offspring. Improvements in nutrition, management and genetic 

merit achieved in the past, have led to an increase of milk production but the incidence of 

diseases increased simultaneously. An intensive feeding of dairy calves in the preweaning period 

showed positive effects on the later milk production. The influence of nutritional stimuli during 

critical periods in early life and its long lasting effects on later health and performance is called 

metabolic programming. Furthermore studies have shown that an intensive rearing program 

increases the number of Langerhans islets in rats and dairy calves but also the parenchymal mass 

of the mammary gland. 

Adiponectin is one of the most abundant adipokines in the circulation and is known for its insulin 

sensitizing effects. In dairy calves, the circulating adiponectin concentrations were not 

investigated until now, whereas it was known that in dairy cows the adiponectin concentrations 

decrease around parturition, probably to support the glucose flux to the mammary gland. As to 

whether different feeding methods in the preweaning period may influence the circulating 

adiponectin concentrations in dairy calves and later around the first parturition was to be tested in 

this thesis.  

Insulin supports the cellular glucose uptake. During the transition period, the glucose demand for 

the offspring and later on for milk production increases. For supporting the flux of glucose to the 

uterus and mammary gland, the insulin sensitivity of the muscle cells and adipocytes decreases, 

and higher insulin concentrations are commonly observed in the circulation.  

In this thesis we investigated 1) the adiponectin concentration in dairy calves and the influence of 

colostrum, 2) the influence of different feeding regimen in the rearing period on performance 

data, and on metabolic and endocrine parameters, and 3) the relation between performance and 

the metabolic and endocrine profiles. 

In the Manuscript I we aimed to characterize the adiponectin concentration in dairy calves and 

the influence of colostrum. For this purpose, samples of three trials were used. In the first trial 
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(Trial I-1), 20 German Holstein calves (10 males and 10 females) were fed right after birth with 

colostrum from their own dam for 3 d. On d 1 the calves had ad libitum (ad lib) access and on d 2 

and 3 the amount was restricted to 6 L. Thereafter milk replacer (MR) was fed in a restricted 

form (130 g MR /L and 6 L per calf per day) until weaning on d 56 post natum (p.n.). On d 70 

p.n. all calves were fully weaned and had ad lib access to a total mixed ration (TMR) until the 

end of the trial (d 110 p.n.). From d 4 p.n. until the end of the trial, all calves received 

concentrates and had ad lib access to hay and water. Blood samples were taken on d 0 before first 

colostrum consumption and on d 1, 3, 11, 22, 34, 43, 52, 70, 90, 108 p.n. Colostrum samples 

were taken from the dam on d 1 and 3 post partum (p.p.). In the second trial (Trial I-2) 14 

German Holstein Calves were divided into two groups right after birth. The first group received 

colostrum and the second group a milk based formula on d 1 p.n. (8 % of body weight) and on d 

2, 3 and 4 p.n. (10 % of body weight). The calves in both groups were slaughtered on d 4 p.n., 

two h after the last food intake. Blood samples were taken before the first feeding, from d 2 to 4 

p.n. before morning feeding and additionally before slaughtering on d 4 p.n. On each day samples 

of the pooled colostrum or formula were taken. In the third trial (Trial I-3) 14 German Holstein 

calves were born preterm (9 days before anticipated calving date by cesarean section) or after 

normal gestation length at term. Both groups received pooled colostrum (5 % of body weight) 24 

h p.n. After 26 h p.n. all calves were slaughtered. Blood samples were taken immediately after 

birth, before feeding and before slaughtering. Additionally allantoic fluid and blood samples were 

taken of 4 German Holstein cows undergoing caesarian section.  

In all samples adiponectin was measured with in-house developed ELISA specific for bovine 

adiponectin and via Western blot the molecular weight forms (MW) of adiponectin were 

determined. 

In the Manuscripts II and III we investigated the influence of different feeding regimen in the 

preweaning period on performance (Manuscript I) and on metabolic and endocrine variables 

(Manuscript III) in dairy calves and around the first lactation. In Trial II-1, 57 German Holstein 

calves (28 males and 29 females) were fed right after birth with colostrum from their own dam 

for 3 d p.n. Thereafter calves were allocated to three feeding groups: MR-res (Milk replacer 

restricted 130 g MR /L and 6 L per calf per day, n = 20, i.e. the same animals as studied in 

Manuscript I, Trial 1-I), MR-ad lib (milk replacer ad lib, n = 17) and WM-ad lib (whole milk ad 

lib). All calves had ad lib access on colostrum on d 1 and on d 2 and 3 the amount was restricted 
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to 6 L for the MR-res whereas MR-ad lib and WM-ad lib had ad lib access. Thereafter groups 

were fed according to their respective feeding regimen. From d 25 p.n. the ad lib groups were 

gradually adapted to the feeding regime of the MR-res group and continued on MR-res feeding 

until weaning started on d 56 p.n. all calves received the same feeding regime. On d 70 p.n. all 

calves were fully weaned and had ad lib access to a TMR until the end of the trial (d 110 p.n.). 

From d 4 p.n. until the end of the trial calves received concentrates and had al access to hay and 

water. Blood samples were taken on d 0 before first colostrum consumption and on d 1, 3, 11, 22, 

34, 43, 52, 70, 90, 108 p.n. An GTT was done on d 22, 52 and 108 p.n. and an ITT (only male 

calves) on d 24, 53 and 110 p.n. A liver biopsy was taken on d 19 and 100 p.n. Colostrum 

samples were taken from the dam on d 1 and 3 post partum (p.p.). Additionally, regular data 

concerning daily weight gain, body weight, food intake, and economics were recorded.  

In Trial II-2, 28 heifers from the 29 that were participating in Trial I-1, were further investigated 

in terms of performance, including ecomomic outcomes and in terms of various metabolic and 

endocrine variables. Blood samples were collected 3, 2, and 1 month ante partum (a.p.), at 

calving and from wk 1-10 p.p.  

Both trials were divided in phases (P): P0: d 0 – 1 p.n.; P1: d 2 - 27 p.n.; P2: d 28 - 69 p.n.; P3: d 

70 - 110 p.n.; P4: 3, 2 and 1 month a.p., P5: calving until 3 wk p.p., P6: 4 - 10 wk p.p. 

In the blood samples of the calves, non-esterified fatty acids (NEFA), glucose, beta-

hydroxybutyrat (BHB), total protein content (TTP), adiponectin, leptin and insulin were 

determined. In the heifers, NEFA, glucose, BHB, urea, adiponectin and insulin were measured.  

In Manuscript I we characterized the adiponectin concentration in dairy calves. A low 

adiponectin concentration (3 µg/mL ± 0.3) was observed after birth. With the intake of colostrum 

the adiponectin concentration increased 3.5-fold and 4.7-fold from d 0 to 1 and 3 p.n. and 

remained constant until d 52 p.n. when a second increase was observed. In colostrum the 

adiponectin concentration was higher than in milk (23-fold difference) or even milk replacer 

(190-fold difference). Calves receiving formula instead of colostrum had only a slow increase of 

adiponectin. Preterm calves tended to have lower adiponectin concentrations than term calves. In 

the allantoic fluid the adiponectin concentrations were far below the plasma concentrations of 

neonatal calves and dairy cows at parturition. The high MW form (HMW) of adiponectin was 
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detectable in the circulation of dairy calves after the intake of colostrum, in which mainly the 

HMW form was observed, but also in maternal plasma and allantoic fluid. 

In Manuscript II the influence of different feeding regimen on performance data (average daily 

weight gain, body weight, food intake, energy intake, milk yield and economic outcomes) was 

studied in dairy calves and later one around the first lactation. In P1 ad lib calves had a higher 

milk intake, energy intake and gaily weight gain compared to the MR-res group, however, 

differences were leveled off in P2 and later around the first lactation. Albeit the ad lib groups had 

the highest feeding costs, the (numerically) greater milk yield in their first lactation 

overcompensated these costs, in particular for the WM-ad lib group, and lead to a higher profit 

compared to the MR-ad lib and MR-res groups.  

In Manuscript III the influence of different feeding regimen in the preweaning period on the 

metabolic and endocrine profiles of dairy calves and, later on, around their first lactation was 

investigated. In dairy calves, differences between groups in the metabolic and endocrine variables 

were mainly limited to P1. Calves in the ad lib groups appeared as less insulin sensitive. No 

group differences were seen in the glyconeogenetic enzymes. After P1, differences were leveled 

off and except for BHB and urea in P4, no group related differences were detectable around the 

first lactation.  

Besides the characterization of the circulating concentrations of adiponectin in dairy calves, this 

thesis provides information about the influence of different feeding regimen in the preweaning 

periods on performance and metabolic and endocrine profiles during later life including the first 

lactation. 
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8 Zusammenfassung 

Im geburtsnahen Zeitraum bei Milchkühen verringert sich die Insulinsensitivität im peripheren 

Gewebe, um dem gesteigerten Glukosebedarf der Placenta vor der Abkalbung und des Euters 

nach der Abkalbung gerecht zu werden. Die in den letzten Jahren zu beobachtende Steigerung der 

Milchleistung aufgrund verbesserter Fütterung, Haltung und Genetik der Milchkühe führte auch 

zu einer erhöhten Inzidenz metabolischer Erkrankungen. Intensive Fütterungsmethoden von 

Milchkälbern zeigten einen positiven Einfluss auf die spätere Milchleistung. Der Begriff 

metabolische Programmierung bezeichnet den Einfluss verschiedener Reize in der frühen 

Entwicklung und deren langfristigen Auswirkungen zum Beispiel auf die Gesundheit und 

Leistung eines Individuums. Eine intensive Kälberaufzucht hatte nicht nur positive Effekte auf 

die spätere Milchleistung, auch konnten Effekte auf die Anzahl der Langerhan’schen Inseln bei 

männlichen Milchkälbern sowie im Eutergewebe von weiblichen Tieren festgestellt werden. 

Adiponektin, ein Adipokin mit sehr hohen Blutkonzentrationen, ist für seine 

insulinsensitivierenden Eigenschaften bekannt. Bislang war die Konzentration von Adiponektin 

im Blut bei Kälbern unbekannt. Bei Milchkühen hingegen konnte eine sinkende 

Adiponektinkonzentration um die Geburt herum beobachtet werden, vermutlich um den 

gesteigerten Glukosebedarf des Euters zu unterstützen. Ob die Adiponektinkonzentration in 

Kälbern und bei Färsen durch verschiedene Fütterungsmethoden in den ersten Lebenswochen 

beeinflusst wird, ist noch nicht bekannt. 

Insulin unterstützt die Glukoseaufnahmen in die Zellen. Zum Ende der Trächtigkeit hin, steigt der 

Glukosebedarf für den Fötus an. Mit Einsetzen der Milchproduktion steigt der Glukosebedarf des 

Euters. Um die Zufuhr von Glucose zum Uterus und dem Euter zu unterstützen, sinkt die 

Insulinsensitvität der Muskel- und Fettzellen im peripheren Gewebe. Die Insulinkonzentration in 

der Blutzirkulation steigt an. 

Ziel dieser Arbeit war es 1) die Adiponektinkonzentration in Kälbern und den Einfluss von 

Kolostrum zu messen, 2) den Einfluss verschiedener Fütterungsmethoden in der frühen 

Aufzuchtsperiode auf die Leistungsdaten, die metabolischen und die endokrinen Daten zu 

untersuchen und 3) die metabolischen Ergebnisse mit den Leistungsdaten in Zusammenhang zu 

stellen. 



108 
 

 

In Manuskript I wurden die Adiponektinkonzentration von Kälbern und der Einfluss von 

Kolostrum untersucht. Dafür standen uns Daten aus 3 verschiedenen Versuchen zur Verfügung. 

Im 1. Versuch (Versuch I-1)wurden 20 Deutsch Holstein Kühe (10 weibliche und 10 männliche) 

für die ersten 3 Lebenstage mit Kolostrum gefüttert. Am 1. Tag bekamen alle Tiere ad libitum (ad 

lib) Kolostrum, am 2. und 3. Lebenstag wurde die Menge auf 6 L pro Tag beschränkt. Vom 4. 

Lebenstag bis zum Absetzen am 56. Lebenstag bekamen die Tiere 6 L Milchaustauscher (MR) 

pro Tag (130 g MR/ L). Ab dem 70. Lebenstag waren alles Tiere vollständig abgesetzt und hatten 

bis zum Ende des Versuches am 110. Lebenstag ad lib Zugang zu einer Totalmischration. Ab 

dem 4. Lebenstag bekamen die Kälber Kraftfutter und hatten ad lib Zugang zu Heu und Wasser. 

Blutproben wurden vor der ersten Kolostrumaufnahme an Tag 0 sowie an den Lebenstagen 1, 3, 

11, 22, 34, 43, 52, 70, 90, 108 gezogen. Kolostrumproben wurden von den Muttertieren am 1. 

und 3. Tag nach der Kalbung genommen.  

Im 2. Versuch (Versuch I-2) wurden 14 Deutsch Holstein Kühe in 2 Gruppen unterteilt. Über 

einen Zeitraum von 4 Lebenstagen bekam die ersten Gruppe Kolostrum und die zweite Gruppe 

einen MR (Tag 1: 8 % des Körpergewichtes; Tag 2-4: 10% des Körpergewichtes). Am 4. 

Lebenstag, 2 h nach der Fütterung wurden alle Tiere geschlachtet. Blutproben wurden vor der 

ersten Fütterung sowie an den darauffolgenden Tagen vor der morgendlichen Fütterung und vor 

der Schlachtung genommen. Zusätzlich wurde jeden Tag eine Probe vom gepoolten Kolostrum 

und des MR gezogen. 

Im 3. Versuch (Versuch I-3) wurden 7 Tiere nach normaler Trächtigkeitsdauer geboren und 7 

Tiere kamen 9 Tage vor dem errechneten Kalbetermin per Kaiserschnitt zur Welt. Beide Gruppen 

bekamen einmalig nach 24 Lebensstunden Kolostrum (5 % des Körpergewichtes). Nach 26 

Lebensstunden wurden alle Tiere geschlachtet. Blutproben wurden direkt nach der Geburt sowie 

vor der Fütterung und vor der Schlachtung genommen. Zusätzlich zu den erwähnten Versuchen 

wurden Fruchtwasserproben und Blutproben von 4 Deutsch Holstein Kühen während eines 

Kaiserschnitts entnommen. 

In allen Blutproben wurde Adiponektin mittels eines im Institut entwickelten ELISAs, der 

spezifisch für bovines Adiponektin ist, gemessen und das Molekulargewicht von Adiponektin 

mittels Western Blot bestimmt. 
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In den Manuskripten II und III haben wir den Einfluss verschiedener Fütterungsmethoden in der 

Zeit vor dem Absetzen zunächst auf die Leistungsdaten (Manuskript II) sowie metabolischen und 

endokrinen Parametern (Manuskript III) bei Kälbern und in der Zeit um die erste Abkalbung 

dieser Tiere untersucht. Im 1. Versuch (Versuch II-1) wurden 57 Holstein Kälber (29 weibliche 

und 28 männliche Tiere) nach der Geburt in 3 Gruppen unterteilt: die 1. Gruppe bekam MR 

restriktiv (MR-res, 130 g / L; 6 L pro Tag, n = 20 (die selber Tiere, die auch in Manuskript I im 1. 

Versuch teilgenommen haben)), die 2. Gruppe bekam MR ad lib (MR-ad lib, n = 17) und die 3. 

Gruppe bekam Vollmilch ad lib (WM-ad lib, n = 20) In den ersten 3 Lebenstagen wurden alle 

Tiere mit Kolostrum gefüttert, wobei ab dem 2. Lebenstag die Menge in der Gruppe MR-res auf 

6 L beschränkt wurde. Ab dem 4. Lebenstag wurden die Tiere mit der der Gruppe zugehörigen 

Fütterungsmethode gefüttert. Ab dem 25. Lebenstag wurde die Tiere der Gruppen MR-ad lib und 

WM-ad lib langsam auf das Fütterungsregime der Gruppe MR-res umgestellt. Bis zum Absetzen 

am 56. Lebenstag wurden alle Tiere gleich gefüttert. Am 70. Lebenstag waren alle Tiere 

vollständig abgesetzt und hatten ad lib Zugang zu einer Totalmischration bis zum Ende des 

Versuches am 110. Lebenstag. Alle Tiere bekamen ab dem 4. Lebenstag Kraftfutter und hatten ad 

lib Zugang zu Heu und Wasser. Blutproben wurden vor der ersten Kolostrumaufnahme 

genommen sowie an den Lebenstagen 1, 3, 11, 22, 34, 43, 52, 70, 90, 108. An den Lebenstagen 

22, 52 und 108 wurde ein Glucose Toleranz Test durchgeführt, sowie an den Tagen 24, 54 und 

110 nur bei den männlichen Tieren ein Insulin Toleranz Test. Eine Leberbiopsie wurde am 19. 

Lebenstag und am 100. Lebenstag gezogen. Kolostrumproben wurden von den Muttertieren am 

1. und 3. Tag nach der Abkalbung genommen. Zusätzlich wurden regelmäßige Aufzeichnungen 

zum Gewicht, Gewichtszunahme, Futteraufnahme, sowie ökonomische Aspekte (Kosten, 

Gewinn) gemacht. 

Im 2. Versuch (Versuch II-2), von den 29 zuvor schon als Kälber im ersten Versuch (Versuch II-

1) teilgenommenen Färsen wurden 28 Färsen hinsichtlich ihrer Leistungsdaten sowie 

metabolischen und endokrinen Daten um den Zeitraum ihrer ersten Abkalbung untersucht. 

Blutproben wurden vor der Abkalbung monatlich gezogen, beginnend 3 Monate vor dem 

errechneten Abkalbetermin, und wöchentlich bis zur 10. Woche nach der Abkalbung. 

Beide Versuche wurden in Phasen aufgeteilt: P0: Lebenstage 0 - 1.; P1: Lebenstage 2 - 27; P2: 

Lebenstage 28 - 69; P3: Lebenstage 70 - 110.; P4: 3, 2 und 1 Monat vor Abkalbung, P5: Kalbung 

bis zur 3 Woche nach Abkalbung, P6: 4 - 10 Wochen nach Abkalbung. 
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In den Blutproben der Kälber wurden nicht veresterte Fettsäuren (NEFA), Glukose, Beta-

Hydroxybutyrat (BHB), Gesamtprotein (TPP), Adiponektin, Leptin und Insulin gemessen. Bei 

den Färsen wurde NEFA, Glukose, BHB, Harnstoff, Adiponektin und Insulin gemessen. 

In Manuskript I haben wir die Adiponektinkonzentration in Kälbern bestimmt. Direkt nach der 

Geburt und noch vor der ersten Kolostrumaufnahme konnten wir eine sehr geringe 

Adiponektinkontzentration (3 µg/mL ± 0.3) beobachten. Nach der Kolostrumaufnahme stieg die 

Adiponektinkonzentration um das 3.5-fache bis zum 1. Lebenstag und das 4.7-fache bis zum 3. 

Lebenstag an und blieb dann bis zu einem zweiten Anstieg ab dem 52. Lebenstag konstant. im 

Kolostrum war die Adiponektinkonzentration 23 mal so hoch wie in der Milch am 3. Tag nach 

der Kalbung und 190 mal so hoch wie im Milchaustauscher. Bei Kälbern, die nur 

Milchaustauscher bekommen haben, stieg die Adiponektinkonzentration nur langsam an. Kälber, 

die vor dem errechneten Kalbetermin per Kaiserschnitt zu Welt kamen, tendierten zu einer 

geringeren Adiponektinkonzentration als Kälber, die nach einer normalen Trächtigkeitsdauer zur 

Welt kamen. Die Konzentration von Adiponektin im Fruchtwasser war viel geringer als die in 

den Kälbern und in den Muttertieren um die Kalbung. Nach dem die Kälber Kolostrum 

aufgenommen hatten, erschien die hochmolekulare Gewichtsform von Adiponektin im Blut, die 

hauptsächlich im Kolostrum vorzufinden ist sowie im maternalen Plasma und im Fruchtwasser. 

In Manuskript II wurde der Einfluss verschiedener Fütterungsmethoden bei Kälbern auf die 

Leistungsdaten wie tägliches Gewicht, Gewichtszunahme, Futteraufnahme, Energieaufnahme, 

Milchleistung und Kosten und Gewinn bei den Kälbern und später in der ersten Laktation 

untersucht. Im Vergleich zu den restriktiv gefütterten Kälbern war die Milchaufnahme, die 

Energieaufnahme und die tägliche Gewichtszunahme bei den ad lib Kälbern in P1 höher. Diese 

Unterschiede haben sich jedoch in P2 und später in der ersten Laktation ausgeglichen. Die 

höheren Kosten für die Fütterung der ad lib Tiere wurde durch die numerisch höhere 

Milchleistung wieder ausgeglichen und führte sogar zu höheren Einnahmen der WM-ad lib 

Gruppe im Vergleich zu den MR Gruppen.  

In Manuskript III wurde der Einfluss verschiedener Fütterungen in den ersten Lebenswochen auf 

die metabolischen und endokrinen Parameter bei Kälbern und um deren erste Abkalbung herum 

untersucht. Bei den Kälbern konnten nur in der Phase unterschiedlicher Fütterungen (P1) 

Unterschiede in den metabolischen und endokrinen Parametern festgestellt werden. Mit 
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Ausnahme von BHB und Harnstoff zeigten sich weder Unterschiede in den letzten Phasen des 1. 

Versuches noch um die erste Abkalbung herum im Bezug auf die metabolischen und endokrinen 

Parameter. Die Kälber in den ad lib Gruppen waren weniger insulinsensitiv. Keine 

Gruppenunterschiede konnten bei den glukoneogenetischen Enzymen festgellt werden.  

Neben der Messung von der Adiponektinkonzentration bei Kälbern wird in dieser Arbeit auf die 

Unterschiede verschiedener Kälberfütterungen und deren Einfluss auf die Leistungsdaten sowie 

die metabolischen und endokrinen Daten bei Kälbern und später in der ersten Laktation 

eingegangen.  
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