
 

 

Multitemporal assessment of crop parameters 

 using multisensorial flying platforms 

 

 

 

 

 

Dissertation 
zur  

Erlangung des Doktorgrades (Dr. rer. Nat.) 
der 

Mathematisch-Naturwissenschaftlichen Fakultät 
der 

Rheinischen Friedrich-Wilhelms-Universität Bonn 

 

 

vorgelegt von 

Dipl.Biol. Andreas Burkart  

aus 

Düsseldorf 

 

Bonn Mai, 2015 

  



2 

 

 
 

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der 
Rheinischen Friedrich-Wilhelms-Universität Bonn 

 

1. Gutachter: Prof. Gunter Menz 

2. Gutachter: Prof. Uwe Rascher 
 
Tag der Promotion: 21.09.2015 
 
Erscheinungsjahr:   2016 
 
  



3 

 

Abstract 

 

Agriculture is the source of food for mankind. The increase of yield and the efficient use of resources are 

key elements for a sustainable food production. This increase is essential to fulfill the demand of the 

earth´s growing population. In the present study we investigated the opportunities and challenges of 

unmanned aerial vehicle (UAV) based measurement systems that can provide detailed data on agricultural 

crops. This novel way of rapid data acquisition with high spatial resolution opens up new possibilities in 

precision farming and management of huge breeding experiments. In total 4 studies were carried out 

which investigated key elements for the retrieval of valid remote sensing data from optical UAV sensors. 

A spectrometer was developed to be carried by an octocopter UAV and its calibration and quality 

assessment are presented. Over a spectral range from 350 nm to 800 nm, the UAV spectrometer has 

shown excellent correlation with ground based reference instruments (r² > 0.99), while having a 6 time 

smaller standard deviation.  

In a second experiment four different UAV sensors suitable for precision farming (Sony NEX-5n RGB 

camera; Canon Powershot modified to infrared sensitivity; MCA6 Tetracam; UAV spectrometer) were 

compared over differently treated grassland. The high resolution infrared and RGB camera allows spatial 

analysis of vegetation cover while the UAV spectrometer enables detailed analysis of spectral reflectance 

at single points. The high spatial and six-band spectral resolution of the MCA6 combines the opportunities 

of spatial and spectral analysis, but requires huge calibration efforts to acquire reliable data. All 

investigated systems were able to provide useful information in different distinct research areas of interest 

in the spatial or spectral domain. 

The UAV spectrometer was further used to assess multiangular reflectance patterns of wheat. By flying 

the UAV in a hemispherical path and directing the spectrometer towards the center of this hemisphere, 

the system acts like a large goniometer. Other than ground based goniometers, this novel method allows 

huge diameters without any need for infrastructures on the ground. Our experimental results shows good 

agreement with models and other goniometers, proving the approach valid.  

UAVs are capable of providing airborne data with a high spatial and temporal resolution due to their 

flexible and easy use. This was demonstrated in a two year survey a high resolution RGB camera was flown 

every week over experimental plots of barley. From the RGB imagery a time series of the barley 

development was created using the color values. From this analysis we could track differences in the 

growth of multiple seeding densities and identify events of plant development such as ear pushing.  

These results lead towards promising practical applications that could be used in breeding for the 

phenotyping of crop varieties or in the scope of precision farming. With the advent of high endurance 

UAVs such as airships and the development of better light weight sensors, an exciting future for remote 

sensing from UAV in agriculture is expected. 
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Introduction 
The ultimate goal of agricultural research is the sustainable provision of food to mankind for now and in 

the future. As the population continues its exponential growth, agriculture has to face the huge task of 

feeding 9 billion until the middle of this century (Godfray et al. 2010).  In history, more crop output was 

achieved by transforming wilderness into farmland. By applying crop rotation, fertilizer and pesticides, the 

productivity of the available area was further enhanced leadiŶg to the ͞gƌeeŶ ƌeǀolutioŶ͟ (Cassman 1999; 

Evenson and Gollin 2003). In recent decades the huge potential of breeding and genetic engineering has 

generated another gain in yield (Tester and Langridge 2010; Fischer and Edmeades 2010). But the 

capabilities of traditional techniques to increase agricultural production are reaching their limits and must 

be complemented by new methods to sustain the steady gain in yield (Jain 1986; Reilly and Fuglie 1998). 

But as improving the yield is converging the limit and environmental issues arise from the extensive use of 

fertilizers and herbicides, the optimization of the use of resources is coming into the focus of the farm 

management. So new approaches can be identified to further optimize the overall efficiency of agricultural 

food production. 

In this context two recent approaches are promising to complement the work of crop breeders and 

farmers. 

1) Precision farming makes use of precise and current knowledge about spatial heterogeneity of the 

farmlands as well as the current state of crop development. By the adaptive use of fertilizers and 

pesticides, the farmer applies only the necessary amount. This strategy has a huge potential for 

saving valuable resources (McBratney et al. 2005). However, the farmers are in need for accurate 

sensing technologies which support the decision making by detailed spatial and temporal 

information about the plants development (Auernhammer 2001). These methods must be 

available on short notice and must be able to cover large areas within short times, to deliver the 

necessary data to the decision makers in almost real time. 

2) Phenotyping characterizes the development of a plant under different environmental conditions. 

While the genotype of a crop is fixed as a variety, the phenotype of a crop can show extreme 

variations as a result of its surrounding parameters such as soil, fertilizer, pathogens and weather 

(Araus and Cairns 2014). The phenotype is the main driver for plant productivity. So breeders are 

finally interested in optimizing phenotypes for specific conditions, rather than genotypes that may 

react in unpredictable ways under changing environments. The problem is, that the amount of 

possible phenotypes of a plant is very numerous, as the permutation of environmental conditions 

are endless. To encounter this challenge high throughput phenotyping methods are necessary, 

that can screen thousands of plants and identify relevant breeding traits (Fiorani and Schurr 2013). 

Using phenotyping the impact on the plants of the relevant environmental conditions, which 

define the present ecosystem or will be occurring throughout the global climate change can be 

assessed.  Phenotyping efforts go from lab, to greenhouse and finally to field level. To survey large 

agricultural phenotyping fields, devices and sensors are required, that deliver detailed temporal 

and spatial information on the planted phenotypes on a regular base. 

The recent development of Unmanned Aerial Vehicles (UAV) provides platforms, which allow to place light 

weight sensors over agricultural fields. By changing the perspective to view of a whole field from above, 

new insights become possible. This opens the door for a whole new information technology that is going 

to change the way farmland is managed in the future. The development of high powered and light weight 

batteries, together with miniature attitude sensors, coupled with high efficiency electric motors and data 
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processing devices enabled the construction of a new class of flying vehicles. So called multicopters have 

from 3 to 16 rotors delivering vertical thrust to lift the vehicle in the air. At the same time, by accurately 

controlling each single motor, the UAV can perform directional maneuvers and allows defined positioning 

in the 3D space. The ability to hover over a fixed position is the main difference to airplanes that on the 

other hand have longer endurance and can cover larger areas (J. A. J. Berni et al. 2008). Both concepts are 

widely used in science and first steps are undergoing towards commercial use (Anderson and Gaston 

2013). 

The UAV only acts as a platform, in other words it is a versatile tripod that enables the positioning of a 

sensor almost everywhere over agricultural fields. By observing areas of interest from a nadir perspective, 

comparison of spatially distributed plant traits is straight forward, compared to an oblique view. While 

common RGB cameras already enable outstanding insights, if positioned above agricultural fields 

(Sakamoto et al. 2012; Juliane Bendig et al. 2014), other sensor types allow complementing analyses. The 

technical development towards small high performance electronics recently allowed the production of 

thermal cameras that can be carried by UAVs to detect water stress (P. J. J. Zarco-Tejada, González-Dugo, 

and Berni 2011). Furthermore, multispectral cameras allow the detection of distinct spectral bands that 

bear information on various plant parameters (Kelcey and Lucieer 2012). Exceeding a few multispectral 

bands, spectroradiometers look at the full spectrum of reflected light. Just recently spectrometers became 

available, which are both, highly accurate and light weight, which makes them suitable for the use on 

UAVs. These devices allow the deepening of insights into the plant´s structure and biochemistry (Milton 

et al. 2009) via collecting hyperspectral reflectance measurements of plants. 

In remote sensing, the concept of reflectance is used to describe the measurable interaction of incident 

light with the land cover. For top of canopy measurements, the formula for reflectance is the quotient of 

upwelling reflected radiance by incident irradiance (eq.1). ݁ݍ. ͳ     �݂݁�݁ܿ���ܿ݁ =  ݁ܿ���݀�ݎݎ�݁ܿ���݀�� 

When observing vegetation, reflection is strongly associated with the plant´s architecture, biochemistry 

and growth state (Knipling 1970; Sims and Gamon 2002; Asner 1998). By using cameras or spectrometers, 

the reflectance can be investigated in the visible or near-infrared (NIR) spectral range. In addition, the 

thermal range can be observed using thermal cameras. The visible light, however, is the driver for 

photosynthesis. Thus, a vast amount of  relevant information about the plants can be derived from the 

visible range of light (wavelength range 400 nm – 700 nm) (Peñuelas and Filella 1998). The continuous 

spectrum of a plant´s reflectance has distinct spectral regions that are known to represent information 

about the plant´s condition. These regions are commonly exploited using so called ͞VegetatioŶ IŶdiĐes͟ 
(VI), which rely on two or more single bands of the continuous spectrum. The most prominent VI is the 

normalized differentiated vegetation index (NDVI), which is based on comparing the red and NIR range of 

reflection (Blackburn 1998). An increasing number of VIs has been developed which correlate to different 

plant traits (Bannari et al. 1995) or plant diseases (Mahlein et al. 2013). But reflectance mirrors not only 

the plant´s properties, it is also dependent on variations of the measurement setup, such as sensor-

illumination geometry. The so called Bidirectional Reflection Distribution Function (BRDF) is the theoretical 

base to describe the effects of the geometry of the measurement setup in relation to the investigated 

surface (Nicodemus 1965; Schaepman-Strub et al. 2006). The angular reflection properties of a surface 

covered with plants is largely dependent on the structure of the plants and the illumination conditions. 
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The Influence of such effects must be understood to eliminate their impact on the actual plant parameter 

that could be estimated from the reflectance measurement. 

The retrieval of small differences in the reflectance of the plants is necessary to detect relevant differences 

in traits. But to identify these small differences the quality of the measurements must allow such 

discrimination. However, field measurements under outdoor conditions are prone to a large variety of 

undesired influences, which increase uncertainty. These can be divided in three categories which have to 

be addressed separately to achieve a high quality of data acquisition: 

1) Environmental factors such as changes in light conditions by clouds, different sun elevations or 

strong wind, can alter the reflection signal of plants. 

2) Instrumental characteristics are the limiting factors in data retrieval. Depending on the type of 

sensor a full quality assessment has to be performed that delivers spatial and spectral accuracy as 

well as a quantification of instrumental errors. A well characterized sensor produces data with 

known quality and uncertainty which is the essential base for the estimation of plant parameters. 

3) Measurement protocols that are suited to the given environmental factors and instruments 

characteristics need to be developed to insure consistent data quality. By intelligent design these 

protocols can eliminate issues of the sensors that would otherwise appear in the data. 

Additional awareness has to be given to metadata. All acquired sensor data is worthless without an 

adequate context. For phenotyping experiments as well as observational studies of agricultural fields, the 

measurements must be adapted to the given circumstances. Experimental treatments and meteorological 

conditions must be known. Only proper knowledge about the actual condition of the plant at ground level 

leads to meaningful analysis of any airborne sensor data. In this study, the new field of UAV-based remote 

sensing of agricultural crops and its opportunities are explored. But as outlined in the introduction a couple 

of challenges stand between the plants, the UAV based method and the desired results. This leads to the 

main task of this study: 

͞IdeŶtifiĐatioŶ of keǇ eleŵeŶts foƌ the ƌetƌieǀal of ǀalid ƌeŵote seŶsiŶg data fƌoŵ optiĐal UAV seŶsoƌs.͟ 

Along with this question we carried out different studies: 1) a UAV platform for agricultural research was 

introduced and heavily tested. It is based on a commercially available octocopter and was used throughout 

the three years of this study; 2) different optical sensors such as a RGB camera or a spectrometer were 

calibrated and tested to retrieve meaningful results from the raw data; 3) a novel UAV-based spectrometer 

was developed and tested. This first small UAV based flying spectrometer was intensively calibrated and 

its performance was assessed compared to ground based standard instruments; 4) the influence of angular 

effects on hyperspectral data was investigated to contribute to the efforts of understanding the impact of 

such effects on vegetation. The novel method presented in this study was based on an UAV spectrometer 

and allows the coverage of larger areas as compared to common ground based tools for angular 

measurements; 5) time series of UAV imagery of an agricultural experiment were analyzed over two 

vegetation periods. With this dataset it was possible to track the development of crops with high spatial 

and temporal resolution and to extract meaningful parameters referring to growth-stages. In summary, 

we give an outlook on future scientific opportunities and possible applications in this rapidly developing 

field of plant science and remote sensing. 
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Methods and Instruments 

The UAV Platform 

In this study, it was intended to acquire a mature flying platform that enables the user to focus on sensors 

and the scientific work itself, rather than design and build an UAV from scratch. So the various flying 

systems that are currently available on the market (Anderson and Gaston 2013) were compared and 

evaluated after their suitability for the present work. The following key parameters should be fulfilled by 

the UAV: 1) a payload of more than 500 g; 2) simple handling, which includes fast setup and a small form 

factor for the ease of transportation; 3) autonomous control of a stable and reliable flight, which relieves 

the operator from stressful piloting work; 4) low risk for injuries for the operator and third persons; 5) 

hover over a point and vertical take-off capability. Following this list of requirements, we decided to 

acquire the Falcon-8 UAV (Ascending Technologies, Krailing, Germany). Furthermore this UAV has a good 

reputation in the scientific community and was successfully used in various previous studies (Israel 2012; 

Eisenbeiss and Sauerbier 2011; Wefelscheid, Hänsch, and Hellwich 2012). 

 

Fig. 1 Falcon-8 UAV used within the present study, during flight, equipped with the UAV spectrometer. 

Design and Handling – The Falcon-8 (Fig. 1) is a rotary wing copter with 8 propellers that weighs 

approximately 1.8 kg including payload. The unique V-shaped motor arrangement allows the sensors to 

look down, as well as forward or upwards, without components of the UAV inside the field of view. This 

feature enabled the ͞ŵultiaŶgulaƌ eǆpeƌiŵeŶt͟ [A3]. The UAV has an actively stabilized gimbal to correct 

the orientation of the sensor against the UAVs movements. This gimbal can be exchanged quickly to mount 

different sensors, facilitating the ͞ĐoŵpaƌisoŶ of UAV seŶsoƌs͟ [A2]. The sophisticated flight stabilization 

system lets the UAV fly almost autonomously, which makes flying an easy job that can be done by anyone 

with little training. This allows, the operator to focus on scientific work. In contrast to various earlier 

studies (P. J. J. Zarco-Tejada, González-Dugo, and Berni 2011; Mitchell et al. 2012), the Falcon-8 and its 

sensors could be controlled by a single person. The system performed well during three years of operation 

and several hundred flight hours. The compact design allows to store the UAV in a case, which fits in the 

back of a car and is suitable for air-mail. By this, we could use the UAV at various sites in Germany as well 
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as throughout Europe (France, Spain, Portugal, Italy) and New Zealand. A software package for waypoint 

planning is included with the UAV, that enables semi-autonomous flight of the device, as well as sensor 

triggering. 

Accuracy – For precision farming and phenotyping, an accurate positioning of the UAV and a proper 

pointing of the optical sensor are critical to investigate the area of interest. The positioning of the UAV 

during autonomous waypoint flight is based on GPS data and is commonly given within 10 m deviation 

from the actual desired position. During the study [A3] we tested the positioning and pointing accuracy of 

the UAV, using a 3D reconstruction approach (Structure from motion, Agisoft Photoscan, St. Petersburg, 

Russia), based on multiple images of the same scene shot by the UAV´s high resolution RGB camera. Using 

this, the error in waypoint flights could be assessed and is given in Tab.  1. 

 

Deviation of: Heading [°] Camera Tilt [°] Altitude [m] Position X [m] Position Y [m] 

Average    0.11    6.07    0.03   -1.15   -2.22 

SD    8.67    1.22    0.70    0.68    0.82 

Max  26.20    9.74    1.44    0.67   -0.39 

Min -17.99    3.68  -1.09   -2.79   -4.60 

Tab.  1 Accuracy of the UAV pointing and positioning calculated by structure from motion using 75 high resolution RGB images. 

 

Robustness – The UAV was extensively used during the three years of this study and often performed 

multiple flights per day. No hardware related critical failure was observed in this period. One serious crash, 

due to the operator, who ignored battery warnings happened with structural damage to the UAV itself, 

but without harm to the payload. An in-field repair using tape and wire could restore flying capability to 

complete the ongoing experiment. The UAV was sent for maintenance and calibration to the manufacturer 

once a year. 

Legal issues – Within Germany a couple of legal issues had to be solved for scientific/commercial use of 

small flying platforms that are below 5 kg of take-off weight. The operator has to prove experience in the 

handling of remotely controlled aircrafts. An insurance that covers eventual damage of third parties has 

to be filed as well. With this prerequisites, an official license can be requested from the ͞DezeƌŶat Ϯϲ 
Luftǀeƌkehƌ, BeziƌksƌegieƌuŶg Düsseldoƌf͟, which allows the use of the specific UAV in flying altitudes of 

up to 100 m above ground level. The landowner, however, has to agree with the flying activities on his 

property. Flying above persons is strictly forbidden, as well as flying at night. Each mission has to be logged 

in a flight book. 

Efficiency – The flying time is one of the major limitations of rotary wing UAVs. As compared to planes or 

airships, their extremely inefficient way of flying, requires huge amounts of energy. This electrical power 

is stored in batteries, which are heavy and thus again decrease the flight time. With the Falcon-8 flight 

times of up to 16 minutes were achieved, depending on the payload. But for safety reasons we limited the 

mission time to 10 minutes, since a depleted battery is the main risk for crashes. Within the work with the 

UAV up to 9 additional batteries were acquired that could be exchanged in seconds after landing of the 

UAV. This way multiple sequential flights could be performed. The coverage of large areas (bigger than 1 

km²), however, is an extremely big effort with the Falcon-8 and for these purposes fixed wing UAVs 

(planes) are preferable. 
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The UAV sensors and their calibration 

RGB Camera 

The sensor that is most often used in current UAV studies is a common consumer RGB digital camera. 

These cameras are light-weight, have a high resolution of multiple megapixels, are equipped with a SD 

card to save images and have a built-in battery. These cameras are designed to capture similar information 

as the human eye does. This is achieved by employing the three channels red, green and blue for each 

pixel, by inserting a so called Bayer-Matrix (Bayer 1976) filter in front of a monochrome Charged Coupled 

Device (CCD). The spectral transmittance of the Bayer-Matrix mimics the sensitivity of the receptor cells 

for red, green and blue light in the retina of the human eye. This implies that from a RGB picture, in theory, 

all information can be derived that can be derived by human vision. Installing a camera on a UAV enhances 

the human vision by flying it towards points and perspectives of interest that are otherwise hard to reach. 

For agriculture, with a focus on phenotyping and precision farming, this means rather than walking 

through never ending fields with countless plots, a single picture taken from above describes the whole 

experiment. A RGB camera can give information about spatial distribution of plants, their color and by 

employing post-processing methods 3D information can be derived (Juliane Bendig et al. 2014). To use a 

camera on an UAV for scientific purposes to generate meaningful data, a couple of modifications, 

calibrations and in-field preparations are necessary. This is essential to finally transform the raw imagery 

of the camera into useful values of reflectance which represents information about the plant state.  

 

Fig. 2 Sony NEX-5n camera attached to the Falcon-8 UAV. Image provided by Ralf-Uwe Limbach. 

 

UAV Integration – In this study, we use a Sony NEX-5n (Sony Cooperation Inc.) with a 16 mm fixed lens. 

The camera features 4912 x 3264 pixels. The field view is 73° x 53°, which leads to an observation area of 

approximately 150 m by 100 m from a flying altitude of 100 m over ground. At the same altitude a spatial 
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resolution for a single pixel of 30 mm by 29 mm, is achieved in theory. This resolution is often not reached 

in the image due to the quality of the optical path, and largely depends on the environmental parameters 

such as illumination conditions and wind. This camera was modified by Ascending Technologies, to be 

integrated into the Falcon-8. The LCD display on the back of the camera was removed and the image is 

directly streamed to the ground control station. The operator has a life-view of the camera and can assess 

shutter speed or ISO from the ground. Triggering of the camera is done either manually by a button on the 

remote control, or by the UAV itself, whenever it reaches a waypoint. The vertical pitch angle is accurately 

defined within one degree of precision by the operator during flight, or can be set in a preprogrammed 

waypoint flight. 

Calibration – Depending on the further use of the acquired UAV imagery, the camera must be properly 

calibrated in the lab and with additional in-field methods [A2]. In this study we use the RGB camera for 1) 

color analysis and 2) 3D scene reconstruction. To derive valid color analysis from JPG images that are 

captured with automatic camera settings (eg. automatic shutter speed, ISO or white balance), the camera 

must be characterized for vignetting effects and color references must be present in each image 

(Lebourgeois et al. 2008). The vignetting effect appears in an image with darker edges compared to the 

center. This is dependent on the quality of the lens and can have a large impact on the derived color values. 

To correct for the vignetting effect, we employed an averaging approach. By averaging more than 

thousand fully different images of various scenes, the only information that remains is the lens dependent 

vignetting effect. By applying the inverse of this averaged vignetting image (Fig. 3) to the images of 

interest, the effect of the vignetting is removed. 

 

Fig. 3 RGB image averaged from >1000 different images. The image represents the vignetting pattern of the Sony NEX-5n 16 mm 

lens camera setup. The corners and edges appear slightly darker than the center of the image. 

To solve the problem of different illumination conditions (cloudy, sunny) and the cameras automatic white 

balance, colored targets on the ground were used (Sakamoto et al. 2012). These targets, which consist of 

colored squares of different reflectivity, which remain rather stable over the years. Using their colors as 
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reference, influence of illumination on the images of interest can be corrected, as long as the references 

are visible in the images. 

To derive 3D models via structure from motion, we used the software Agisoft Photoscan. This is an 

enhanced processing tool that incorporates the calibration of the optical path of a camera, based on the 

images that are processed. In other words, all calibration procedures are performed by the software and 

the user just supplies multiple images of the ROI from different positions. The software then calculates the 

3D scene including camera positions and the structure of the surface. This is used in an increasing number 

of scientific studies for a variety of surfaces from landfills to agricultural fields (Juliane Bendig et al. 2014; 

Siebert and Teizer 2014). 

 

UAV spectrometer 

At the time of this study, no spectrometer has been deployed on a small rotary wing UAV. As field 

spectroscopy using hand carried spectrometers (Milton 1987), as well as plane based airborne systems 

(Birk and McCord 1994) are frequently used with good results, the approach of mounting a spectrometer 

on a UAV system was highly promising. A UAV based spectrometer would not only facilitate speed of 

measurements compared to hand spectrometers, but it would also enable the spectrometer to be flown 

over hardly accessable areas and without disturbing eventual ground cover. To measure reflectance, 

several prerequisites have to be fulfilled: 1) the spectrometer needs a controller, that triggers via remote 

connection or at waypoints; 2) a reference must be available that allows to calculate the irradiance, while 

the flying spectrometer measures the upwelling reflected irradiance; 3) the whole system must be 

properly calibrated with a focus on influences that might arise from the implementation on an UAV; 4) 

accurate georeferencing must be available by the flying platform or an attached inertial measurement 

units (IMU). Latter is essential to allocate the field of view of the spectrometer to the actual measured 

spot in the field. 

 

 

Fig. 4 UAV spectrometer Version 1, attached to the Falcon-8 using an active gimbal that stabilizes the viewing direction against 

the movement of the flying platform. Image provided by Ralf-Uwe Limbach. 
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Design – The development of the UAV spectrometer (Fig. 4) as well as practical testing and calibration is 

described in [A1]. In the following, an overview about the critical parts of the work with the UAV 

spectrometer is given, which serves as base for the later comparison to the other optical UAV sensors [A2] 

and the multiangular experiment [A3]. The limiting parameter for an UAV based sensor is weight. The 

Falcon-8, used for this instrument cannot lift anything that exceeds 500 g. At the time of the study, the 

Ocean Optics STS micro spectrometer (STS) became available. This device weighs only 68 g. It has up to 

1024 spectral bands in the wavelength range from 300 nm to 800 nm and a field of view of about 12°. It 

provides a performance in spectral resolution and signal to noise similar to larger units, so we decided to 

base the UAV spectrometer on this unique device. The STS, however, does not provide the capability of 

saving spectra, nor has a battery for autonomous operation. To solve this problem, we designed a small 

control unit based on an open source Arduino microcontroller (Banzi 2008). This control unit provides data 

storage for spectral data on micro SD card and triggers the spectrometer. Via a wireless remote 

connection, the user can set the integration time and receive a draft of the last acquired spectrum. 

Spectrometer and control unit are both powered by a 1.000 mAh 3.7 V lithium polymer battery, which 

keeps the system running for about 4 hours. Thereby, the UAV spectrometer is fully independent from the 

UAVs electrical system. We further integrated the option to automatically trigger the spectrometer when 

the UAV reaches a predefined waypoint. Using the UAVs waypoint planning software, a fully automatic 

operation of the spectrometer on board of the Falcon-8 could be achieved. To measure reflectance, a 

second spectrometer is placed on the ground, which measures the incident radiance over a white 

reference, at the same time, the UAV spectrometer is triggered (Fig.5). Thereby, the impact of changing 

illumination conditions during flight can be eliminated. By this measurement protocol, the spectrometer 

system is also almost independent from atmospheric influence, as the UAV´s flying altitude is usually 

between 10 m and 30 m. Both spectrometers, however, must be thoroughly inter-calibrated to warrant 

high data quality. 

 

Fig. 5 reflectance measurements conducted with an airborne spectrometer over forest and a ground based device over a white 

reference, both wirelessly synchronized to adapt to changing light conditions. 

Calibration – Additionally to common calibration efforts that must be addressed in every spectrometer 

(Schaepman and Dangel 2000), a technique after Kuusk (J. Kuusk 2011) was applied, to remove the 

influence of dark current (DC) from the raw data. The DC is an underlying noise that is introduced by 

electrical effects in the linear CCD which converts incident light quants into electrical current. Commonly 
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the DC is measured and subtracted by closing the spectrometer´s optics to characterize its DC excluding 

light. But the light weight STS has no internal shutter, nor is it possible to cover the optics during flight. 

The noise is largely dependent on the temperature of the device and integration time (IT). By measuring 

the DC with different IT and raising temperature, a model was developed that estimates the DC of every 

single pixel depending on actual IT and temperature. Thereby, we could eliminate the effects of DC for 

each spectrum, even though environmental conditions might affect the temperature of the device. 

Because we rely on two spectrometer units, both must be inter-calibrated, because they have slightly 

different responses in spectral shift and sensitivity. The spectral shift is a mismatch of wavelengths and 

was corrected by using the software SPECCAL (Busetto et al. 2011), which exploits the defined positions 

of Fraunhofer lines in the solar spectrum. The different sensitivities of the two spectrometers were 

assessed by measuring the same lambertian reflectance targets (Spectralon) under equal illumination 

conditions. A correction factor that accounts for this linear difference is then applied in the post-

processing. 

Test – To check the practical use of the instrument and its performance compared to ground based field 

spectrometers, a field experiment was conducted. The same agricultural areas were measured at 

approximately the same time of the day with an ASD field spectrometer and the UAV-based spectrometer. 

The measurements were performed in a way that the same areas were covered. After post-processing, 

the results were compared [A1]. 

 

 

Field sites and experimental setup 
 

Comparison of UAV sensors experiment 

A variety of optical sensors that are suitable for UAVs are available on the market. These sensors range 

from simple consumer RGB cameras towards more complex multispectral systems to expensive 

hyperspectral line scanners or snapshot cameras. However, most of these sensors, are novel and poorly 

characterized. To evaluate, which sensor is most applicable for specific research questions, we chose 4 

different devices, which were available at the time of the study, for an in-field comparison experiment. In 

[A2] the Sony NEX-5n, a converted Canon Powershot sensible to infrared, a MCA 6 Tetracam (Tetracam 

Inc., Chatsworth, USA) multispectral camera and one UAV spectrometer [A1] were inter-compared over 

different types of grassland. In the following section we will focus on the Sony-NEX-5n RGB camera and 

the UAV spectrometer, as they were the primary sensors used in the other presented studies of this work. 

Setup – The study site was a dairy farm of the Massey University in Palmerston North, New Zealand 

(lat. - 40.376, long. 175.606). Flights were performed in February 2013 around noon at a clear blue sky 

day. The RGB camera and the UAV spectrometer were flown on board of the Falcon-8 by exchanging 

gimbal and sensor straight after landing. We chose 8 waypoints which were resembling different grassland 

conditions from dry to irrigated. Along with the UAV sensors, a handheld spectrometer (ASD handheld 2, 

ASD. Inc) was used to characterize the spectral signature of the observed WPs with a standard method. 

The UAV spectrometer was used with its ground reference as described in [A1]. To refer the RGB images 

of the camera to reflectance, big colored tarps were put in the field of view. Using the handheld 

measurements of reflectance over the reference targets, the RGB images could be converted into 



15 

 

estimates of actual reflectance, using the empirical line method (Smith and Milton 1999). Both sensors, 

RGB camera and UAV spectrometer were calibrated as described before. The reflectance values as derived 

from the two sensors and postprocessing chains, were compared and their correlation over the eight 

waypoints was assessed. As a spectral 3 band, but high spatial resolution RGB camera is compared to a 

single point hyperspectral radiometer, fully different scientific analyses can be performed. These possible 

applications were identified, according to the sensors capabilities. 

 

Multiangular experiment 

Angular effects that are the result of the trigonometry in the illumination-surface-sensor setup are an 

intensively studied field of remote sensing (Liang et al. 2000). Various earlier studies have performed 

ground-, plane- and satellite based research that led to an understanding of angular effects on the macro  

(Comar et al. 2012) or landscape scale (Verrelst et al. 2008). But vegetation canopies are subject to 

continuous change, thus a high temporal resolution of angular measurements is necessary to understand 

the underlying effects. At the same time the small spots that can be assessed by ground based angular 

measurement instruments are often too small to represent the whole canopy. This is why we developed 

the novel approach of an UAV based goniometer. Goniometers are devices that allow to characterize the 

angular reflectance properties of a surface by changing the angle of view of the sensor around a fixed 

center point of interest. For homogeneous surfaces such as snow or sand, small goniometers are suitable 

(Bourgeois et al. 2006). But for more structured surfaces such as vegetation, larger fields of view are 

necessary, as the angular effects arise from the complex 3D structure of the canopy. Common ground 

based goniometers are limited in size and thus in their field of view. With the UAV based approach, the 

goniometer is replaced by a distinct flight pattern. This flight pattern along with the viewing angle of the 

spectrometer enables the investigation of a center point from different directions, as shown in Fig. 6. 

 

 

Fig. 6 exemplary path as flown by the UAV over an agricultural area to act as a goniometer. On each nook of the flight pattern, 

the UAV stops and points and triggers the spectrometer towards the center of the hemisphere, described by the path. 

Visualization captured from Google Earth. 
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The experiment was performed over a wheat field at Merzenhausen, Germany (lat. 50.93039, long, 

6.29689), at a clear sky day in June 2013. The center point of the multiangular flight pattern was placed 

according to high resolution UAV imagery in a homogenous part of the wheat field. A pattern with 25 

waypoints covering 8 different heading angles (45° steps) and 4 different vertical tilt angles (20°; 43°; 60°; 

90°), was programmed for the UAV. The pattern was flown at 12:43 and 14:47 local time, to compare two 

different time points around solar noon. At each of the 25 waypoints, the spectrometer was triggered 3 

times, to assess the reproducibility of the spectral measurements at a single waypoint. A ground reference 

measured a white reference each time the airborne spectrometer was triggered. Using this dataset, a 

variety of angular effects in the spectral range could be investigated. Among a variety of analyses that 

were described in [A3], we investigated the effects of the sun angle on vegetation indices such as the NDVI 

or the red edge inflection point (REIP). 

 

UAV image time series of barley 

For precision farming and phenotyping, not single snapshots of the plants development are important, but 

an overview of the whole growth cycle. Only by the use of time series, the reaction of the plant to 

environmental parameters can be investigated. This is a huge effort in large field experiments, because 

each of hundreds of plots, has to be observed manually. By the use of satellite imagery agricultural fields 

can be assessed on low spatial resolution. But in general, satellite imagery is available only once per month. 

So the dynamic plant growth that can happen in days, cannot be tracked. This lack of survey capability was 

addressed in this study with a UAV, carrying a high resolution RGB camera. To this end an experimental 

barley field was observed from 100 m altitude with a weekly frequency, covering the whole growth period. 

Year 2013 Year 2014 

9-May-2013 27-Mar-2014 

14-May-2013 3-Apr-2014 

23-May-2013 10-Apr-2014 

5-Jun-2013 16-Apr-2014 

11-Jun-2013 22-Apr-2014 

19-Jun-2013 5-May-2014 

26-Jun-2013 15-May-2014 

30-Jun-2013 21-May-2014 

6-Jul-2013 22-May-2014 

1-Aug-2013 26-May-2014 

 31-May-2014 

 5-Jun-2014 

 10-Jun-2014 

 18-Jun-2014 

 24-Jun-2014 

 3-Jul-2014 

 18-Jul-2014 
 

Tab.  2 dates of UAV flights over the barley density experiment at the campus Klein-Altendorf. In 2013 a total of 10 surveys were 

performed and in 2014 we flew 17 times. 
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Setup – A density experiment with 2 barley varieties (Scarlett, Barke) was planted in 2013 and 2014 at the 

campus Klein-Altendorf next to Bonn. Ten different seeding densities ranging from 24 to 340 grains per m² 

were sown in plots of 16 x 1.5 m in 5 randomly spread repeats. The whole experiment was arranged in a 

rectangular field with paths between the plots. The UAV was flown at the dates given in Tab.  2 over the 

experiment in an altitude of 100 m to make a single image of the current growth state of the whole 

experiment. Colored references were placed in the center of the image to correct for different illumination 

conditions. Ground based plant scoring was performed along with the flights, whenever time allowed. 

 

Fig. 7 rectified and vignetting corrected image of the density experiment as photographed with the UAV at the 22th of April 

2014. In the center of the image the color references are visible. 

Image processing – Images were corrected for vignetting and rectified towards a base image using ENVI 

(Fig. 7). Regions of interest were defined for each seeding density and variety, covering all 5 repeats. The 

average RGB values for each point in time and region of interest were extracted and corrected against the 

color reference. Using the green red vegetation index GRVI (eq. 2), a relative greenness was calculated 

(Motohka et al. 2010). ݁ݍ. ʹ  ���� = ሺ�݁݁ݎ� − �݁݀ሻሺ�݁݁ݎ� + �݁݀ሻ 

With this value we assessed the development of each plot over time. The processed image data was 

compared to ground based coverage of the experiment to check its relevance for the description of the 

plants development. 

 

Results and discussion 
 

Comparison of UAV sensors 

Throughout the experiments of this study, the two main UAV sensors RGB Camera and UAV spectrometer 

were used intensively for different applications. In the following, the differences between the two sensors 

is described and afterwards the performance of each single instrument in their specific application is 

discussed. Both sensors are observing the optical domain of the electromagnetic spectrum. While the RGB 

camera has a high spatial resolution of 4912 x 3264 pixels (16 megapixels), it separates only 3 spectral 
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bands with the broadly defined bands red, green and blue. The UAV spectrometer on the other hand has 

a high spectral resolution of up to 1024 bands with a very narrow bandwidth. It covers the spectral range 

from 300 to 800 nm, but has only a single spatial pixel. While these are the main differences of the two 

sensors, there are other parameters that preclude the RGB camera from accurate reflectance 

measurements, while the spectrometer suits well for the retrieval of reflectance. Nowadays RGB cameras 

have a huge variety of automation, which is intended to create visually appealing images. This, however, 

is in conflict with the accurate quantification of light in specific bands. For this kind of measurements, the 

UAV spectrometer is suitable, because it reacts almost linear to the amount of the incident light and can 

be calibrated radiometrically. The camera on the other hand captures detailed spatial information in an 

image which can be used to generate detailed 3D models (J. Bendig et al. 2013). The UAV spectrometer, 

in contrast, allows the calculation of narrow band spectral Vis, that are highly useful for plant research. 

We tested the retrieval of reflectance from both sensors over the same areas, to assess how the retrieved 

values differ. The correlation over the 8 waypoints for three comparable bands (R,G,B) of the both sensors 

was R² = 0.681 (Tab.  3). The reason for this rather low correlation is mainly found in the non-linear 

radiometric response of the RGB camera. The JPG compression, as well as non-linear adaptions to light, 

decrease the accurate retrieval of reflectance values from RGB imagery. Scientific grade cameras or RAW 

imagery could enhance the quality of this data compared to the presented approach (Lebourgeois et al. 

2008). 

 

R² RGB IR MCA6 UAV Spec 

RGB 1    

IR 0.9136 (16) 1   

MCA6 0.3773 (16) 0.9452 (16) 1  

OO UAV 0.6807 (24) 0.8906 (24) 0.8259 (48) 1 

ASD 0.6736 (24) 0.6474 (24) 0.9242 (48) 0.9777 (3856) 

Tab.  3 Correlation of reflectance, retrieved from different UAV sensors measuring over the same eight grassland targets. In 

brackets the number of measurements n is given. RGB = Sony NEX-5n, IR = Canon Powershot modified to near-infrared 

sensitivity, MCA6 = 6 band Tetracam, UAV Spec = STS spectrometer, enhanced for mounting on an UAV. 

 

Another limitation of the RGB camera, compared to the UAV spectrometer is the low dynamical range. 

While the UAV spectrometer has a 14-bit response range, the JPG compression of the RGB camera saves 

only 8-bit per color channel. The spatial resolution, however, gives a useful insight in the grassland 

heterogeneity and allows fast assessment of clearly visible features, such as dry vs. healthy vegetation. 

Within [A2] two additional UAV sensors were tested for the use in vegetation monitoring. The third sensor 

was a Canon PowerShot consumer camera that was modified towards extended sensitivity in the near 

infrared. It was easy to use and provided high resolution (4000 by 3000 pixels) imagery, but had the same 

shortcomings as the RGB camera. The infrared sensitivity is not only affecting the red pixels, but also the 

blue and green. This leads to rather unseparated bands and thus decreases the value of the retrieved 

information (Sakamoto et al. 2012). The fourth sensor was a MCA6 Tetracam. The MCA6 has six bands that 

can be adjusted by selectable filters with a bandwith of about 10 nm. Further it is a scientific grade sensor 
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that features a 10-bit dynamical range and a resolution of 1280 by 1024 pixels. The camera, however, 

required extraordinary calibration efforts (Kelcey and Lucieer 2012). But after applying the calibration 

procedures, the correlation to the UAV spectrometer was satisfying (R² = 0.826). In contrary to the other 

three sensors, the MCA6 is a rather heavy sensor that exceeded the payload of the Falcon-8 and was lifted 

by another copter. Within [A2] we could show that four different optical UAV sensors deliver comparable 

results, but each should be used for a specific range of measurement topics. The recent technological 

development in the camera sector has produced a rapid advance in miniaturization and quality. This trend 

has an impact on scientific devices and several of manufacturers are now providing multi- and 

hyperspectral cameras suitable for UAVs (Tab. 4). 

 

Name Manufacturer Weight [g] Bands 

Rikola Hyper. Rikola Ltd. 600 adjustable 

UHD 185 Firefly Cubert GmbH 840 125 

Nano-Hyperspec Headwall Photonics Inc. 700 270 

OXI-VNIR-40 Gamaya SA 100   40 

MCA6 Tetracam Inc. 700     6 
Tab. 4 List of manufacturers for multi- and hyperspectral camera systems that are suitable for integration in UAV platforms. The 

list is a snapshot of devices available in early 2015. All cameras work with fundamentally different principles of the optical path 

and thus have huge varieties in how to perform measurements and post-processing. 

 

These cameras are closing the gap between single point spectrometers and high spatial but low spectral 

resolution cameras. Once the calibration and validation issues are mastered, these cameras will provide 

the sensing capabilities, needed for accurate determination of valid plant parameters. Recent studies with 

such cameras on board of UAVs point towards the retrieval of highly relevant data allowing the  

identification of drought stress, nitrogen deficit or upcoming plant diseases (Quemada, Gabriel, and Zarco-

Tejada 2014; P J Zarco-Tejada et al. 2009; Baluja et al. 2012; Mitchell et al. 2012). Other studies work 

towards combining 3D information with hyperspectral data to increase the informative value of the data 

(Juliane Bendig et al. 2014; Aasen et al. 2014).  Even very small, but highly meaningful signals like the 

chlorophyll fluorescence (Meroni and Colombo 2006; Porcar-Castell et al. 2014), could be measured from 

UAV based sensors (P. J. J. Zarco-Tejada, González-Dugo, and Berni 2011; P.J. Zarco-Tejada et al. 2009). 

This opens up new possibilities for insights into plant biochemistry from remote sensing data. 

 

 

Multiangular effects on optical UAV data 

Not only sensors are a limiting aspect of the optical remote sensing of plant parameters. The setting of the 

investigated vegetation, illumination or sensor angle have an effect as well. We have investigated this 

effect using a novel setup, based on the UAV spectrometer. In the multiangular study [A3] we first checked 

the accuracy of the approach. Our data revealed that the positioning and pointing accuracy were 

acceptable (Tab.  1), although they were worse than ground based devices. The reproducibility of spectra, 

taken at the same waypoint, however, was satisfying (Fig. 8). 
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Fig. 8 The spectrometer of the UAV goniometer was triggered three times at each waypoint. The overall variation of these three 

reflectance spectra for all waypoints is shown over the whole spectrum. 

We then investigated the impact of the observation angle to the NDVI and REIP. The difference in the NDVI 

ranged from 0.83 to 0.95 with a nadir value of 0.89. In the REIP the values ranged from 729 nm to 735 nm 

with a nadir value at approximately 733 nm (Fig. 9). The multiangular data, derived in this experiment, 

however, is in line with earlier studies with ground based goniometers or satellite approaches (A. Kuusk 

1991; Verrelst et al. 2008; A. Kuusk, Kuusk, and Lang 2014).  In this experiment extreme sensor tilt angles 

down to 20° were investigated, but even at 66° a significant difference is observed. 

 

 

Fig. 9 Values of NDVI and REIP in nm at all Ϯϱ waypoiŶts showŶ as a ĐirĐular graph, or polar plot. EaĐh ͞sliĐe͟ represeŶts a 
heading while each ring represents a sensor tilt angle. The indices magnitude is color coded from low values of light blue, to high 

values in bright red. The angular position of the sun is depicted by the sun-symbol. In this figure no interpolation between 

waypoints is performed. 
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This difference is driven by the position of the sun. This was confirmed by comparing a measurement 

before and one after noon. The pattern of the angular reflectance difference changes with the position of 

the sun, which is seen in the data as hot spot, with higher reflectance values. This impact of surface and 

sensor illumination geometry, also known as BRDF effects (Nicodemus 1965), is a frequently discussed 

topic in the remote sensing technology (Schaepman-Strub et al. 2006). Up to now huge efforts have been 

conducted to address this issue and various steps towards good BRDF corrections have been performed 

(Bourgeois et al. 2006; Hautecoeur and Leroy 1996; Schlapfer, Richter, and Feingersh 2015; Sandmeier and 

Itten 1999; Meggio et al. 2014). For heterogeneous surfaces such as vegetation, which is also affected by 

continuous changes throughout the year, the BRDF effects are not yet fully understood, nor characterized. 

With the presented UAV spectrometer, used as goniometer, we have introduced a method for fast and 

easy retrieval of the multiangular parameters of vegetation. The huge advantage of the system is its 

independence from ground based structures. This also enables the UAV goniometer to be used over 

surfaces that are difficult to access by foot. An approach towards convenient correction of BRDF effects 

are mathematical models, which are optimized to estimate the angular influences depending on 

vegetation structure and sun/observer position. Using the SCOPE model (Soil Canopy Observation 

Photochemistry and Energy fluxes)  (Tol et al. 2009), we have found good correlation of modelled angular 

reflection to measured data in angles close to nadir (Fig. 10). At lower tilt angles, however, the correlations 

are worse. This shows that using novel sensor-platform combinations, like the UAV goniometer, models 

can be trained and evaluated to further enhance the knowledge about angular effects of vegetation. Once 

these effects are understood in detail, the opposite way of using angular measurements to derive 

information about vegetation, will become feasible. 

 

 

Fig. 10 Comparison of modeled angular reflectance calculated by SCOPE with the values measured by the UAV goniometer. 

Shown are two exemplary wavelengths, which are scaled to the present range of values. 
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UAV image time series of barley 

To get relevant insights into the development of agricultural crops, not snapshots, but continuous 

monitoring by time series is necessary. The acquisition of time series of RGB imagery, monitoring the 

growth of barley on a whole field by using an UAV was tested in this experiment. In the first part the 

feasibility of the method was investigated within two years of practical work. Acquiring an image of the 

large 100 plot experiment, required a flying altitude of 100 m, using a wide angle lens with 16 mm focal 

length. We decided to capture only one image describing the whole experiment. This reduces effects of 

changing illumination conditions that arise when capturing multiple images and later stitching them 

together. We further placed color references in the center of the experiment to track differences in light 

composition or camera parameters over different measurement days. The overall working time for setting 

up the UAV, the targets and the photography flight itself was 20 minutes. It required only one trained 

person to perform all the tasks. Overall, the method was simple and no technical problems were 

encountered over the whole period of two years of measurement flights. 

The image quality was assessed in different ways. We first checked the actual resolution that could be 

achieved from the 16 megapixel camera with the fixed lens. In theory a pixel, from 100 m altitude, has a 

ground resolution of 3.5 by 2.8 cm. Practically, this resolution is a function of the lens quality and the given 

illumination conditions that affect ISO and aperture size of the camera. To eliminate motion blur that 

would otherwise arise from vibration and movements of the UAV, pictures were taken with short shutter 

times (1/640 s). The camera automatically adapted aperture and ISO to values that ensure a good exposure 

of the image. If the amount of environmental light is low, the aperture opens up and ISO values become 

higher. High ISO values mean a binning of multiple pixels to suppress noise and increase sensitivity. Thus, 

an open aperture lets more light in, but leads to a less accurate focus on individual pixels. Both effects lead 

to worse images. The majority of images was shot with an aperture of F4 or higher and an ISO of 100. The 

worst ISO value was at 400. Under favorable conditions, the influence of neighboring pixels is noticeable 

within two pixels away. Under the worst conditions, present during the images taken in 2014, the pixel 

blur over 3 neighboring pixels as shown in Fig. 11. 

 

Fig. 11 zoomed images of the color reference targets used in the survey campaign in 2014. The reference targets have six 

different colors (white, grey, black, red, green, blue) on a 40 cm by 60 cm panel. The UAV imagery was taken from an altitude of 

100 m.  Image A was imaged under low light conditions (Aperture F4, ISO 320). Image B was taken under favorable high light 
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conditions ( Aperture F5.6, ISO 100). Spreading of color information to neighboring pixels is made visible by the yellow raster, 

that represents the assumed real shape of the 6 color squares on the reference panel. 

Due to the optical path, the overall imaging quality is best in the center of the image and worse in the 

edges, where vignetting effects and chromatic aberration have the largest impact. In the further analyses 

we eliminated most of the optical effects by averaging over all pixels of the five repeats of an experimental 

treatment. As these five plots are randomly spread over the whole experiment and the image, this also 

minimizes angular effects. These would otherwise change color values retrieved on the edges of the image 

as compared to the center due to the viewing angle. By applying the GRVI, we further reduced the impact 

of illumination effects as it mathematically normalizes the overall illumination variation of a scene. We 

then tested, how the phenological development of the barley experiment is tracked by the GRVI analysis 

of the UAV image time series. In Fig. 12 the development of 2 different seeding densities is shown, 

normalized in time to the day after seeding. 

 

Fig. 12 Development of two different seeding densities (High = green, Medium = orange) as tracked by the GRVI in 2013 (dotted) 

and 2014 (solid).  

 

The pattern of the GRVI is similar for both years and all densities and genotypes. Plots with low seeding 

density, however, develop slower compared to the high seeding density. Around day 64, the GRVI plots 

show a sharp decrease in both years and all treatments. By comparing ground based plant scoring, we 

identified the event of ear pushing in the plant development that happens at this period of time. We 

conclude, that a shift of colors induced by ear pushing was the reason for this sudden change in GRVI. 
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While in 2013 and 2014 different environmental conditions lead to changes in the development of the 

plants as reflected in the GRVI figures, the day of ear pushing seems to be genetically fixed.  

With these first results of our analyses, we could show, that relevant traits of crops can be identified using 

time series of UAV RGB imagery. With this novel method we achieved a high frequency of images and high 

spatial resolution, as compared to satellite imagery. We conclude that further analyses of the image data 

such as heterogeneity distribution, single plant identification, 3D processing using multiple images and 

detailed color analyses will potentially add relevant results that can be referred to other plant traits. In our 

example, we investigated barley, but it is likely that similar time series over other crop types, will provide 

valid information as well. Further work must be done to relate the data of the aerial coverage to the actual 

processes on the ground and inside the plants. 

 

Outlook on UAV based sensors for precision farming and phenotyping 
 

In the present study, we have adapted a technically mature UAV platform and deployed it as sensor carrier 

for specific agricultural research questions. Study A1-A3 have shown that placing a sensor above an 

experimental field, using a flying platform, has become a simple task. Problems, however, arise when 

information about the plants needs to be derived from the sensors raw data. This led to the main question 

of the present thesis ͞IdeŶtifiĐatioŶ of keǇ eleŵeŶts foƌ the ƌetƌieǀal of ǀalid ƌeŵote seŶsiŶg data fƌoŵ 
optiĐal UAV seŶsoƌs.͟ We haǀe iŶǀestigated diffeƌeŶt aspeĐts of deploǇiŶg optiĐal UAV seŶsoƌs oǀeƌ 
vegetation. In A1 we have placed a spectrometer on an UAV and have optimized the calibration of this 

flying device. This first copter-based spectrometer with ground reference station, was then used in the 

following studies as a precise scientific sensor. As different optical sensor equipment may vary in their 

results, we compared the retrieval of reflectance data by the UAV spectrometer and an RGB camera in 

[A2]. We have found both sensors to be practical in their specific application. This is spatial analysis with 

the RGB camera and spectral analysis with the spectrometer. In [A3] we investigated the impact of angular 

effects on UAV based sensors and have found large influence due to sun to sensor position. We then 

analyzed a time series of UAV imagery and found good relationships to ground based assessment of plant 

development. Within this thesis we have shown that most of the practical problems of UAV based sensors 

can be solved and their usage for agricultural research is feasible. Based on these experiments and the 

work of other authors, the following description provides an outlook on practical cases for the future of 

UAVs in precision farming and phenotyping. 

The recent development of RGB cameras has led to various possible application scenarios on UAVs. A large 

number of studies use hundreds of high resolution images, that cover an agricultural field and create a 3D 

representation of its surface (J. Bendig et al. 2013; Juliane Bendig et al. 2014; Turner, Lucieer, and Watson 

2011). This technique is performed rather simple in the field and neither the stability of the UAV nor the 

quality of the camera must be extremely high to reach a good level of accuracy. The most significant part 

of the work is done by applying post-processing algorithms that are dependent on different observation 

positions. This approach provides good correlation between biomass estimation and plant height 

measurements in barley (Juliane Bendig et al. 2014) and even for orchards (P.J. Zarco-Tejada et al. 2014). 

These methods have great potential in phenotyping to quickly derive the plant height from UAV generated 

data. In agriculture this technique can be used to generate input data for plant growth models. These could 



25 

 

characterize the current developmental stage with high spatial resolution, which would then serve for a 

spatially adapted fertilization plan. 

 

Fig. 13 Storm damage in this experimental field of barley is visible in the top right corner of the image. The stem of the plant 

might be broken and in this case the harvest of this patch is lost. Due to the lying plant, the reflectance largely changes and is 

easily discriminated in the picture. 

 

With the same approach of collecting multiple images, a so called ortho-mosaic can be generated. This 

ortho-mosaic shows the whole field as one single image. Analysis of such an image, however, faces various 

problems, which were addressed in our studies. Analyzing color values of an ortho-mosaic may produces 

wrong estimates, as the illumination conditions might change during a flight (Hakala et al. 2013). This can 

be addressed by either using only one image of the whole area or by placing color references inside the 

flight path of the UAV. This way the image might be corrected later. Nevertheless, ignoring the color 

information of a high resolution image, object or path identification can be used for identifying plant traits 

or disturbances in the field (Herwitz et al. 2004). Counting of single plants have been performed from aerial 

imagery and sophisticated image analysis (Peña Barragán et al. 2014). Storm damage in barley can be 

quantified easily by discriminating patches of broken plants against the healthy fields as shown in Fig. 13. 

But the color of the plants holds far more useful information. The color or reflectance is a representation 

of the state of the plant and may be altered by infections, drought or other stress (Jackson 1986).  Once 

all problems with sensor calibration, illumination and angular effects are solved, in a way that reproducible 

measurements can be achieved, meaningful plant traits can be derived. This is further enhanced by using 

the whole spectrum of the visible and near infrared light by either spectrometer or multispectral frame 

cameras (Tab. 4). By analyzing narrow spectral bands, detailed information about specific plant traits, can 

be detected. This way recent studies have used UAV based sensors to directly measure PRI, chlorophyll 

content, water and nitrogen content (P. J. J. Zarco-Tejada, González-Dugo, and Berni 2011; Baluja et al. 

2012; Meggio et al. 2014; J. Berni et al. 2009). However, in most cases the derived signal is a mixture of 

different plant´s parameters. To untangle this complex mixture of biophysical processes, which are 

represented in the plants reflection spectrum, two possible ways are currently in the focus. 1) By 

comparing ground data and airborne data, vegetation indices are identified that have the maximum 

relation to a single specific plant parameter, but at the same time are not affected by other plant 

parameters. 2) By modelling the reflectance of plants using known input parameters, the spectral 
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signature can be calculated. On the other hand, the model can inversely predict the plant´s parameter, 

using the reflectance spectrum as input. This has been done in SCOPE (Tol et al. 2009)  [A3] and highly 

interesting results from this method are foreseen. 

With the steady improvement of spectrometers, it can be expected, that even tiny signals, such as the Sun 

Induced Fluorescence (SIF) will be measurable from UAVs. Various efforts are undertaken in this direction 

(P.J. Zarco-Tejada et al. 2009; Malenovsky et al. 2013), but until now the large external influences from 

sensor, flying platform and scenery, have left the absolute results and their accuracy questionable. With 

the advent of active SIF references (Burkart et al. 2015), that mimic the emission of SIF, more accurate 

measurements are expectable. 

The development of the flying platforms themselves will go different ways. The so called copters are easy 

to deploy and a great option for the scientific use over small areas. But their limited payload and endurance 

largely excludes them from professional use. If a farmer needs timely information about all his fields, a 

fixed wing UAV with decent speed and endurance is more practical to operate the chosen sensor over a 

large area. However planes are still limited in payload and endurance and need a runway. A look in the 

near future raises the need for the continuous survey of agricultural areas, to provide timely information 

with high temporal and spatial resolution. Satellites are struggling to provide these data, as they are costly, 

have a limited ground resolution and are highly affected by cloud cover or low overpass frequency. A 

possible solution for this demand is an UAV at about 1 km altitude that remains airborne for weeks or 

months. This could be achieved by a helium filled aerostat or zeppelin, which charges itself via solar power 

and continuously scans the agricultural surface. 

The remaining problem is the conversion of sensor data in meaningful products that can finally be 

delivered to the farmer or breeder. This mainly is a software based problem that must by approached by 

both, aerial and ground based data. It also must include metadata such as soil and weather conditions, as 

well as seeding time to correct the plant growth model. The crop model APSIM (Keating et al. 2003) could 

be used for example to generate the plant parameters that feed the SCOPE radiative transfer model, which 

then calculates the expected reflectance of a specific crop and growth stage. If a UAV based reflectance 

sensor measures deviations of the expected reflectance, stress or other factors that influence the growth 

are detected. The farmer then can adapt its actions accordingly. Once the steps are working in an 

automated manner, the way is open for a more resource efficient agriculture that only applies what the 

plant really needs (McBratney et al. 2005). 

Conclusion 
UAV based sensors are a highly promising tool for the acquisition of relevant data in agriculture. But 

challenges remain in how to retrieve meaningful results from the sensors, scanning the crops. This led to 

the pƌiŵaƌǇ task of this studǇ ͞IdeŶtifiĐatioŶ of keǇ eleŵeŶts foƌ the ƌetƌieǀal of ǀalid ƌeŵote seŶsiŶg data 
from optical UAV seŶsoƌs.͟ Thƌoughout this ǁoƌk paƌts of this laƌgeƌ ĐhalleŶge ǁeƌe addƌessed aŶd ǁe 
worked out possible solution.  

An easy to use octocopter platform (Falcon-8) was introduced. We then developed and implemented a 

spectrometer system on the UAV to accurately measure reflectance. The correlation of this UAV 

spectrometer to three other UAV sensors (Sony NEX-5n RGB camera, Canon Powershot modified to 

infrared sensitivity, MCA6 Tetracam) was investigated. In the spectral domain, the correlation of reflection 

was moderate between the 4 sensors. But the high spatial resolution of the cameras is beneficial for 

detailed image analysis of land-cover. The more quality is expected from vegetation measurements, the 
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more care must be taken to exclude undesired external influences. A major source of this influences are 

multiangular effects that are caused by the surface architecture and the illumination sensor geometry. 

Using the UAV equipped with a spectrometer as a huge goniometer, we introduced a novel method for 

hyperspectral characterization of multiangular effects of vegetation. But UAVs also allow, due to their 

flexible, fast and easy handling, measurements with a high temporal frequency. This way, the development 

of a whole experimental field was tracked weekly with high resolution imagery. By the analysis of this 

imagery, plant developmental stages such as ear pushing could be identified. With the rapid development 

of UAV platforms and sensors, an exciting future for the use of this systems in agriculture is foreseen. With 

upcoming long endurance drones such as airships or planes, the screening of farmland on a regular base 

becomes possible and is going to change the way agriculture is performed. The use of detailed high 

resolution data will help the breeders to phenotype and identify the best performing crops. At the same 

time, farmers can optimize their management of resources by applying only what the crop currently needs. 

With this study, we hope to contribute to a more sustainable agriculture that will be able to feed mankind 

in the coming decades.  
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A Novel UAV-Based Ultra-Light Weight

Spectrometer for Field Spectroscopy
Andreas Burkart, Sergio Cogliati, Anke Schickling, and Uwe Rascher

Abstract— A novel hyperspectral measurement system for
unmanned aerial vehicles (UAVs) in the visible to near infrared
(VIS/NIR) range (350–800 nm) was developed based on the
Ocean Optics STS microspectrometer. The ultralight device relies
on small open source electronics and weighs a ready-to-fly
216 g. The airborne spectrometer is wirelessly synchronized to
a second spectrometer on the ground for simultaneous white
reference collection. In this paper, the performance of the
system is investigated and specific issues such as dark current
correction or second order effects are addressed. Full width
at half maximum was between 2.4 and 3.0 nm depending on
the spectral band. The functional system was tested in flight
at a 10-m altitude against a current field spectroscopy gold
standard device Analytical Spectral Devices Field Spec 4 over

an agricultural site. A highly significant correlation (r
2

> 0.99)
was found in reflection comparing both measurement approaches.
Furthermore, the aerial measurements have a six times smaller
standard deviation than the hand held measurements. Thus, the
present spectrometer opens a possibility for low-cost but high-
precision field spectroscopy from UAVs.

Index Terms— Hyperspectral sensors, remote sensing,
unmanned aerial vehicles, vegetation, calibration.

I. INTRODUCTION

F IELD SPECTROSCOPY as well as hyperspectral remote

sensing (RS) are common techniques to gain an insight on

land cover beyond the human eye. Handmade ground measure-

ments and on a larger scale air- and spaceborne spectroscopy

are common investigation methods in the field of geology,

geography and environmental science [1]–[3]. A major field

in RS is the investigation of vegetation, which started in the

70th using spectral band indices like the NDVI. Currently RS

evolves to a powerful proxy for plant investigation parameters

[4]. Present studies show the utility of various parameters

derived from hyperspectral data on plants like water [5]

and chlorophyll content [6] as well as marker for diseases

[7] or even insights in the photosynthetic apparatus by the

retrieval of sun induced fluorescence [8]. Thus hyperspectral
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measurements are of high interest for observation of natural

habitats and crop management. For this purpose continuous

and automated measurement on single plots [9] and mapping

of large areas with a given spatial resolution are needed.

For continuous measurements, progress was recently made

with the development of an autonomous hyperspectral system

measuring the reflection over alpine grassland during a whole

vegetation period [10]. On the other side a large number

of studies were conducted on spectral imaging of whole

agricultural sites with high spatial resolution using manned air-

crafts [11]–[13] or different kind of unmanned aerial vehicles

(UAV) [14], [15]. With the emerging development of small

versatile UAVs their use in RS of vegetation offers simple

and affordable observation from the air. Leading the field in

spectral imaging of vegetation by UAVs, Zarco-Tejada et al.

[16]–[18] demonstrated the feasibility of the technique for

plant monitoring. On the technology side progress is expected

on the development of miniature sensors to further enhance the

performance of unmanned remote sensing platforms [19], [20].

Compared to well-proven field spectroscopy approaches the

use of UAV based sensors is tempting due to their great degree

of automation and fast throughput. However several issues still

remain in the use of the acquired spectral data like Bidirec-

tional Reflection Distribution Function (BRDF) [21], accurate

atmospheric correction, adequate calibration procedures and

the ease of use under various environmental conditions. Once

these issues are solved, it will open up the opportunity to

accurate investigation of common and advanced hyperspectral

methods. An example is the sun induced fluorescence retrieval,

which relies on highly accurate measurements [22] which are

based on distinct knowledge about the characteristics of target,

sensor and atmosphere.

To address these issues, in this paper we reduced the

UAV based hyperspectral measurements to a single point

spectrometer to provide a basic tool for the investigation of

effects in field spectroscopy and its upscaling to airborne

imaging platforms. Development, calibration and validation

are described as well as the characterization of the novel Ocean

Optics STS microspectrometer and the AscTec Falcon-8 as an

airborne platform.

II. DESCRIPTION OF THE UAV BASED SPECTROMETER

Principle of Measurements: The UAV basedhyperspectral

system is able to measure spectral radiance/reflectance over

selected targets. It is based on an UAV carried air unit

(AIR) and a ground unit (GND) both equipped with a STS-

VIS microspectrometer (Ocean Optics, Dunedin, FL, USA).

1530-437X © 2013 IEEE
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TABLE I

UAV SPECTROMETER DATASHEET

Technical details of the spectrometers units are reported in

Table I. The AIR unit is placed over the point of interest

by the UAV and measures the upwelling radiance while the

GND unit acquires the sun irradiance over a white reference.

During the technical implementation phase issues with dark

current, calibration and a second order effect arose with the

spectrometer and were solved before a validation experiment

was conducted.

Technical Implementation: Construction of both units was

aimed towards simplicity, small weight and low costs. The AIR

unit consists of the following components 1. STS microspec-

trometer; 2. Microcontroller (Seeeduino Stalker, Seeedstudio,

Shenzhen, China) for data acquisition and wireless communi-

cation (Xbee-Pro, Digi International, Minnetonka, NM, USA);

3. Stable power regulation; 4. Lithium Polymer battery. The

microcontroller listens to commands via the wireless interface

and controls the spectrometer. Acquired spectra are saved to

a micro SD. Due to RAM limitations of the microcontroller,

spectra were recorded with a spectral binning of 4 resulting in

256 pixels. The firmware performing the required tasks was

written using the open source platform Arduino [23]. The AIR

unit itself is fully independent from the UAV and can also be

used without the flying platform. Rugged cases for AIR and

GND unit were constructed using a 3D printer (Mendel Prusa,

www.reprap.org) [24]. The weight of the operational AIR unit

including battery is 216 g.

The GND unit establishes the wireless connection to the

AIR unit and performs the reference measurements. It consists

of: 1. STS microspectrometer 2. Xbee wireless modul. The

ground unit is also connected to a field notebook that runs

a graphical user interface (GUI) to control the entire system

(AIR and GND). The GUI, written in the java based, platform

independent, open source language Processing [25], provides

simple access to control both spectrometers by mouse or key-

board commands. The software also includes post-processing

functions for the output of fully corrected data. During flight

the software allows the preliminary visualization of the spectra

gathered by both units.

The flying platform used in this study was an AscTecFalcon-

8 (Ascending Technologies GmbH, Krailing, Germany) which

is an eight motor rotary wing UAV with various stabilization

systems. We used a camera adapter originally designed for

a thermal camera. This adapter is stabilized to an adjusted

angle, which can be specified during flight. It features a small

RGB camera streaming a live video to the radio control,

which simplifies the accurate aiming of the spectrometer.

Furthermore the UAV has the capability to follow navigation

points autonomously and to hover over a point of interest to

allow for a long spectrometer integration time.

III. DATA PROCESSING-CHAIN

Dark Current (DC) Removal: DC measurements are not

possible during flight operations. Moreover STS microspec-

trometers do not have the “so-called” black pixels, sometimes

present in spectrometers, to account for DC without the use of

mechanical shutters in front of the instruments foreoptics. As

the DC is a function of sensor temperature and integration time

(IT) it can substantially change during operation. To correct

target spectra during flight we characterised the DC influence

in relation to integration time and sensor temperature [26].

DC was recorded in a laboratory considering a range of

temperatures between 14 °C to 34 °C which represent the

typical temperatures during field measurements. Several levels

of integration time from 300 ms to 2000 ms have been

selected. Measurements were performed automatically and

temperature was detected by the on chip thermometer in

the ELIS-1024 linear image photo sensor used in the STS

microspectrometer.

Second Order Effect: The STS VIS microspectrometers have

a second order effect which introduces an additional stray light

signal measured at the double of the real incoming wavelength

[13]. Pixels between 676 nm and 823 nm are affected by

this stray light due to light measured at the pixels between

338 nm and 412 nm. This effect was characterized using

a monochromator (Lambda 950 Spectrophotometer, Perkin

Elmer, Waltham, Massachusetts, U.S.) illuminating with a

narrow bandwidth of 4 nm and saving the spectra for analysis.

The integration time was adapted to prevent the spectrometer

from saturation and to compare the strength of the illuminating

light and the strength of the stray light induced by the second

order effect.

Instrument Calibration: Field spectroscopy techniques

aimed at reflectance measurements do not require the absolute

spectral and radiometric calibration of spectrometers in physi-

cal units. In fact, the reflectance factor is typically determined

rationing the target and the white reference measurements

collected with the same illumination (i.e. irradiance) and

instrumental conditions (i.e. integration time). The UAV sys-

tem relies on two different spectrometers to collect target and

reference measurements. This experimental setup requires a

proper spectral/radiometric crosscalibration of the instruments.

Factory spectral calibration factors and instruments FWHM

were controlled with the SpecCal tool [27] which allows

evaluating instruments performances comparing field measure-

ments with radiances simulated by the atmospheric radiative

transfer code Modtran5 [28]. Radiometric calibration was

inferred comparing STS spectrometers with a well calibrated
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Fig. 1. Experimental site and flight pattern of the Falcon-8 UAV during the
hyperspectral measurement collection. Grassland, young wheat and bare soil
were observed with the UAV spectrometer and the ASD field spec. White
panels were placed in the center as indicated.

ASD FieldSpec PRO 4 (Analytical Spectral Devices, Inc.,

Boulder, Colorado, U.S.). Simultaneous measurements were

collected in such way that the spectrometer’s field of view

were totally overlapping on the white reference panel (Spec-

tralon, Labsphere, Inc., North Sutton, NH, U.S.). A number of

spectra were collected at different Solar Zenith Angles (SZA)

to provide measurements covering different light levels. STS

spectra were resampled to the ASD FieldSpec bands, thus a

linear relationship between ASD radiance values (LASD) and

STS digital counts at different light levels, normalized for

the different instrument integration time (IT), was estimated

for the 1024 spectral bands. The slope of the linear models

represents the radiometric gain factors at different wavelengths

that will successively be used to convert instrument relative

values to absolute radiance values (eq. 1).

L ASD =
counts

I T ∗ gains
. (1)

IV. FIELD MEASUREMENTS

Several test flights were performed to test the technical

performance of the spectrometer and the UAV. After those

successful preliminary flights a validation experiment was

performed on 14 November 2012 over agricultural fields

next to the research center of Jülich (lat 50.896312, lon

6.426436). The illumination conditions were low, but because

of a cloudless sky stable. Three different homogeneous targets

1. grassland 2. young wheat 3. bare soil were measured

with the UAV spectrometer and at the same time with an

ASD Field Spec 4 Pro. UAV measurements were conducted

between 1:10 pm and 1:23 pm local time and each target was

measured 8 times. The ground unit was placed in the center

of the three targets. Flight altitude was 10 m over ground

according to about 2 m diameter of the viewed spot. The

observation angle was at nadir. The UAV was controlled man-

ually and flown in transects over the targets during acquisition

(Fig. 1).

Due to the low illumination integration time ranged between

473 and 481 ms and was automatically optimized. The

optimization of the dynamic range of the spectrometer was

Fig. 2. Linear regression of dark current at three different detector
temperatures and changing integration time.Dots and whiskers are mean values
and standard deviations respectively for all spectral bands (n = 256).

performed by test measurements of the GND unit and adapted

to the AIR unit.

ASD measurements were conducted with a pistolgrip about

1 m above the surface. 75 measurements were acquired along

a transect over each target. Every 25 measurements irradiance

was measured over a white reference panel (Spectralon). ASD

data collection took place between 1 pm and 2 pm.

Reflectance was calculated for the ASD data using the

average of the white reference measurements recorded for each

target. The UAV spectrometer reflectance was calculated using

the white reference and upwelling irradiance of each data point

after post processing, including dark current correction and

calibration. Overall reflectance of the targets was determined

for the two datasets with mean and standard deviation.

Statistical analysis was conducted using Excel 2002

(Microsoft Corp., Redmond, WA, U.S.) and Graphpad Prism

4.0 (GraphPad Software Inc., La Jolla, CA, U.S.A.).

V. RESULTS

Dark Current Removal: The DC measured at different

integration times and at several stable temperature levels

follows a linear function with R2 > 0.99 (Fig. 2). Correspond-

ing measurementswere performed for bothspectrometers (i.e.

AIR/GND).

Measurements performed for single pixels with raising

temperature (Fig. 3) and divided by integration time after sub-

traction of the baseline were fitted to an exponential function

(R2 > 0.95 for pixel 4 of the air unit). Each pixel showed

a different temperature response in dark current leading to

an overall R2 = 0.91 for the AIR unit and R2 = 0.945 for

the GND unit. With these results the DC for the investigated

integration times from 300 ms to 2000 ms and temperature

levels from 14 °C to 34 °C could be estimated. With the fitted

exponent function for the temperature (T) for each specific

spectrometer and pixel (p) and the integration time (IT) the

DC can be determined for every single pixel by the formula

(2) where A, B and C are the constants of the fitted exponent
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Fig. 3. Exponential regression of dark current dependency to raising
detector temperature shown for Pixel 4 of the air units STS microspectrometer

(n = 1854, R2 = 0.9586). Data was fitted with an exponent function
y = a + b ∗ ecx ).

Fig. 4. Linear regression of the measured second order effect and its strength

compared to the inducing wavelength (n = 17, R2 = 0.9149).

function for each pixel.

DC[p] = (A[p] + B[p] ∗ eC[p]∗T ) ∗ I T (2)

To validate the methodology, thisDC correction was applied

to additional exemplary measurements at 33 °C. In addition

we collected the true DC as measured with closed optics. The

deviation from the actual measured DC was in average 2.39

digital counts (air unit) which is less than 0.02 % of the 14 bit

dynamic range.

Second Order Effect: The effect of the stray light of the

second order was determined for the wavelength from 340 nm

to 410 nm of the AIR unit in 10 nm steps. The amount

of second order straylight, induced by monochromatic light

was determined for the investigated wavelengths (Fig. 4).

These factors determining the amplitude of the undesired

signal at the double wavelength showed a linear behaviour

(R2 = 0.9149).

Instrument Calibration: Investigation of the spectral perfor-

mance of AIR and GND unit with the SpecCal tool resulted

in FHWM less than 3 nm and a small spectral shift as seen

in Table II. By comparing the white reference measurements

TABLE II

ACCURACY OF SPECTROMETERS USED IN THIS STUDY

of the AIR and GND unit with the radiometrically calibrated

ASD spectra a transformation vector for each spectrometer

was calculated. This vector was used to translate digital count

measurements to physical units (eq. 1) and to crosscalibrate

GND and AIR.

Field Measurements: Reflection over the 3 different targets

(grassland, wheat, soil) was calculated and analyzed for ASD

and the UAV spectrometer. Mean reflection spectra of both

devices followed the same pattern with minor differences in

the beginning and end of the spectra. The most significant

difference to the actual reflection was seen in the O2-A absorp-

tion band at 760 nm of the UAV spectrometer. Correlation

of the reflection measurements of both systems was highly

significant (R2 = 0.9912). The three surfaces showed spatial

heterogeneities such as vegetation patches, tire tracks and

row seeding. Thestandard deviation of the UAV spectrometer’s

measurements was smallerthan in ASD data. This was caused

by the much larger footprint of the UAV spectrometer. Over

grassland ASD data varied with an average standard deviation

in reflection of 4.1 % while the standard deviation with an

average of 0.59 % of the UAV spectrometer measurements

was 6 times smaller (Fig. 5).

VI. DISCUSSION

The calibration and validation experiments performed on

the UAV spectrometer have proven that high precision spec-

troscopic measurements can be performed using the minia-

turized spectrometers. The modelled dark current correction

showed good results but care must be taken for influence

of the second order effect which may cause errors in the

NIR. High uncertainties are present in the reflection cal-

culated inside the atmospheric O2−A absorption feature at

760 nm. This issue will be addressed in future development to

enable the spectrometer to accurately retrievethe sun induced

fluorescence. The STS microspectrometers performed well

regarding their size, but are still outperformed in sensitivity

and accuracy by other larger and heavier sensors such as

the Ocean Optics HR4000 or the USB2000. Despite this the

spectral accuracy is comparable to the VIS of the current

gold standard device ASD Field Spec Pro 4. Comparative

measurements over agricultural fields have shown a far lower

standard deviation in the UAV spectrometer data due to

the larger field of view, compared to the ASD Field Spec

measurements. Moreover, the very fast acquisition procedure

over large sites proves the approach as an useful complement

for conventional field spectroscopy. Taking advantage of the

system it will be used in upcoming airborne and satellite
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Fig. 5. Reflection over grassland measured by ASD field spec (n = 75)
and UAV spectrometer (n = 8). Standard deviation is indicated by the dotted
lines. Standard deviation on the other targets (wheat and soil) was similar
high in ASD measurements and low in the UAV measurements.

campaigns such as the new high performance hyperspectral

sensor HyPlant, as the UAV allows easy acquisition of refer-

ence reflectance measurements over areas difficult to access.

The opportunity of changing the angle of the spectrometer

during flight also allows the use as a giant flying goniometer

for the investigation of BRDF effects [29] especially in forest

[30]. The UAV spectrometer without the flying platform is

also as a fully autonomous device suitable for the use in

constant monitoring. It draws very low energy and has a built-

in battery and charge circuit that can be powered by a small

solar array.

In the quickly evolving field of UAV based spectral imaging,

we took a step towards high-precision field spectroscopy

and built a basic tool for hyperspectral research. To lay a

base for future experiments the sensor was properly charac-

terized and possible sources of error like the second order

effect were identified. With the UAV spectrometer the gap

between field spectroscopy and airborne sensors is about to be

closed.
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Abstract. Unmanned aerial vehicles (UAVs) equipped with

lightweight spectral sensors facilitate non-destructive, near-

real-time vegetation analysis. In order to guarantee robust

scientific analysis, data acquisition protocols and processing

methodologies need to be developed and new sensors must

be compared with state-of-the-art instruments. Four differ-

ent types of optical UAV-based sensors (RGB camera, con-

verted near-infrared camera, six-band multispectral camera

and high spectral resolution spectrometer) were deployed

and compared in order to evaluate their applicability for veg-

etation monitoring with a focus on precision agricultural ap-

plications. Data were collected in New Zealand over rye-

grass pastures of various conditions and compared to ground

spectral measurements. The UAV STS spectrometer and the

multispectral camera MCA6 (Multiple Camera Array) were

found to deliver spectral data that can match the spectral

measurements of an ASD at ground level when compared

over all waypoints (UAV STS: R2 = 0.98; MCA6: R2 =

0.92). Variability was highest in the near-infrared bands for

both sensors while the band multispectral camera also over-

estimated the green peak reflectance. Reflectance factors de-

rived from the RGB (R2 = 0.63) and converted near-infrared

(R2 = 0.65) cameras resulted in lower accordance with refer-

ence measurements. The UAV spectrometer system is capa-

ble of providing narrow-band information for crop and pas-

ture management. The six-band multispectral camera has the

potential to be deployed to target specific broad wavebands

if shortcomings in radiometric limitations can be addressed.

Large-scale imaging of pasture variability can be achieved by

either using a true colour or a modified near-infrared camera.

Data quality from UAV-based sensors can only be assured,

if field protocols are followed and environmental conditions

allow for stable platform behaviour and illumination.

1 Introduction

In the last decade, the use of unmanned aerial vehicles

(UAVs) as remote sensing platforms has become increasingly

popular for a wide range of scientific disciplines and appli-

cations. With the development of robust, autonomous and

lightweight sensors, UAVs are rapidly evolving into stand-

alone remote sensing systems that deliver information of

high spatial and temporal resolution in a non-invasive man-

ner. UAV systems are particularly promising for precision

agriculture where spatial information needs to be available

at high temporal frequency and spatial resolution in order

to identify in-field variability (Stafford, 2000; Seelan et al.,

2003; Lelong et al., 2008; Nebiker et al., 2008; Link et al.,

2013). Zhang and Kovacs (2012) provide a comprehensive

review of unmanned aerial systems applied in precision agri-

culture.

Precision agriculture aims at identifying crop and soil

properties in near-real-time (Lebourgeois et al., 2012; Prim-

icerio et al., 2012a) and at delivering results to farmers and

decision makers with minimum delay to enable management

decisions based on current crop and soil status. The use of

input resources such as fertilizers, herbicides or water (Van

Alphen and Stoorvogel, 2000; Carrara et al., 2004; Chávez

et al., 2010) are matched to the current demand by the crops,

Published by Copernicus Publications on behalf of the European Geosciences Union.
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leading to an economical use of resources. The use of UAV-

based sensors to detect water stress and quantify biomass and

nitrogen content in crops and grasses has been demonstrated

(Berni et al., 2008, 2009; Kawamura et al., 2011). Yield fore-

casting in wheat (Jensen et al., 2007) and rice (Swain et al.,

2010), rangeland management (Rango et al., 2009), leaf area

index (LAI) and green normalized difference vegetation in-

dex (NDVI) estimation in winter wheat (Hunt et al., 2010)

and site-specific vineyard management (Turner, 2011; Prim-

icerio et al., 2012b) have been accomplished using unmanned

aerial platforms.

Proximal remote sensing methods can be used to detect

pasture and crop biophysical parameters such as biomass,

dry matter, fibre content, organic matter digestibility and

macronutrient availability (nitrogen, phosphorus and potas-

sium). Pasture monitoring approaches capable of measuring

biophysical variables over the whole farm at a high spa-

tial resolution allow for site-specific management decisions

and optimum nutrient management (Sanches et al., 2012).

While vegetation indices have been frequently applied for

biomass and dry matter estimation (Mutanga, 2004; Duan

et al., 2011; Vescovo et al., 2012), waveband-specific algo-

rithms have been developed to estimate macronutrients (Mu-

tanga and Skidmore, 2007; Pullanagari et al., 2012a, b).

In a pasture management context in New Zealand, where

air- and spaceborne remote sensing methods are often lim-

ited by frequent cloud cover, UAV-based remote sensing can

potentially overcome some of those limitations. Recent de-

velopments in commercially available lightweight and small

digital cameras and multispectral sensors support precision

nutrient management. However, these sensors need to be

characterized and validated against state-of-the-art reference

instruments. The extraction of quantitative information relies

on thorough calibration procedures, good instrument charac-

terization and a high standard of field operation.

Various studies have specifically evaluated multispectral

sensors and consumer-grade digital cameras and assessed

their potential for vegetation monitoring. The use of a con-

ventional, ground-based broadband digital RGB camera has

shown limited success in estimating green biomass on short-

grass prairie, suggesting that narrow-band sensors are more

promising for application over such complex ecosystems

(Vanamburg et al., 2006). An image processing workflow

for three consumer digital cameras has been developed by

Lebourgeois et al. (2012) and they have suggested that the

cameras have a high potential for terrestrial remote sensing

of vegetation due to their versatility and multispectral ca-

pabilities. Vegetation indices derived from visible and near-

infrared imagery acquired by two compact digital cameras

were found to generate strong relationships with crop bio-

physical parameters and to be practical for monitoring of

temporal changes in crop growth (Sakamoto et al., 2012).

Kelcey and Lucieer (2012) developed a processing chain to

improve the imagery acquired with the same six-band mul-

tispectral sensor that was used in the current study. They

showed that image quality can be improved through appli-

cation of sensor correction techniques to facilitate subse-

quent image analysis. A novel, UAV-based lightweight high-

resolution spectrometer, which was tested in the field for the

first time in the current study, was introduced by Burkart et

al. (2013). Nijland et al. (2014) evaluated the use of near-

infrared (NIR) and RGB cameras for the use of vegetation

monitoring and plant phenology trend detection and found

that the NIR-converted cameras were outperformed by stan-

dard RGB cameras. Poor band separation and the limited dy-

namic range of the NIR camera system limited the use of the

sensors for vegetation monitoring in a controlled laboratory

and in a field experiment.

Studies usually deploy a single UAV sensing system over

an area of interest. But because different agricultural ap-

plications and environmental frameworks demand specific

capabilities of an UAV remote sensing system, the current

study uses four different sensors over the same experimental

area to evaluate each sensor’s suitability for applied grass-

land monitoring. From preliminary experiments, it was ev-

ident that the UAV system, including platform and sensor,

need to be specifically matched to the vegetation parameter

to be investigated. The present study used two compact digi-

tal cameras (RGB and NIR), a six-band multispectral camera

(visible/near-infrared – VNIR) and a high-resolution spec-

trometer (VNIR) mounted on two different UAV platforms

to acquire spectral information over dairy pastures in order to

characterise each instrument in terms of radiometric quality

and accuracy of spectral information obtainable, as compared

to a ground reference instrument. Handling and limitations of

the UAVs, flight planning, field procedures and the capabil-

ities of the different sensors are discussed as a prospective

guideline for upcoming UAV sensor-based research. Results

are evaluated with a focus on inter-sensor comparability, as-

pects of field data collection using UAVs and the sensor’s

capabilities for monitoring green vegetation.

1.1 Experimental site

The experimental flight campaign was conducted in Febru-

ary 2013 on a Massey University dairy farm near Palmerston

North, New Zealand, (No. 1 Dairy, located at lat. −40.376,

long. 175.606). No. 1 Dairy is a fully operational dairy farm

with an effective area of 119.7 ha. UAV flights were per-

formed over four different paddocks with distinct character-

istics from bare soil to dry and irrigated ryegrass pasture. At

the time of data acquisition between 11:00 and 15:00 LT no

clouds were visible.

1.2 UAV systems

As shown in Table 1, two different UAV systems were used: a

QuadKopter (MikroKopter), owned and operated by Massey

University, and a Falcon-8 (AscTec (Ascending Technolo-

gies), Krailing, Germany), from the Research Centre Jülich,

Biogeosciences, 12, 163–175, 2015 www.biogeosciences.net/12/163/2015/
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Table 1. UAV platforms.

Name QuadKopter Falcon-8

Manufacturer MikroKopter Ascending Technologies

Weight [g] 1900 1800

Max. Payload [g] 1000 500

Power source LiPo, 4200 mAh, 14.8 V Lipo, 6400 mAh, 11.1 V

Endurance [min] 12 15

GPS navigation Ublox LEA 6s GPS chip Ublox LEA 6T

Features Open Source Gyro-stabilized camera mount Stabilized camera mount, live video link, motor redundancy

Sensors MCA6 UAV STS, RGB, Canon IR

Germany. The Falcon-8 uses the AscTec Autopilot Control

V1.68 software. It has two identical exchangeable gimbals

manufactured by AscTec, one for the Sony camera the other

one for the spectrometer and Canon camera. Both gimbals

are dampened and actively stabilized in pitch and roll. The

MikroKopter UAV was fitted with an AV130 Standard Gim-

bal produced by Photo Higher. The gimballed camera mounts

levelled out any platform movement to ensure the sensors

were pointing in nadir direction to the ground at all times

during the flight. The main difference between the Falcon-

8 and the MikroKopter platforms is the payload restriction,

which precludes the Falcon-8 from lifting sensors heavier

than 0.5 kg, thus making it necessary to use the MikroKopter

UAV to lift the Mini-MCA6 sensor. Both UAVs with their

payloads were intensively tested on multiple flights before

the study.

1.3 UAV sensors

Four UAV sensors (Fig. 1) were tested and compared in terms

of their ability to produce reflectance data over pastures. All

of the sensors were lighter than 1 kg including batteries and

were either modified or specifically designed for use on re-

motely controlled platforms. The sensors share a spectral

range in the VNIR which is considered the most relevant

region of the electromagnetic spectrum for agricultural re-

search applications (Lebourgeois et al., 2008). In terms of

spatial and spectral resolution (Fig. 2), the sensors differ sig-

nificantly. Table 2 lists their relevant properties.

Mini-MCA6 (MCA6): the Mini-MCA6 (Multispectral

Camera Array) is a six-band multispectral camera (Tetra-

cam, Chatsworth, CA, USA) that can acquire imagery in

six discrete wavebands. A camera-specific image alignment

file is provided by the manufacturer. Exchangeable filters in

the range of 400 to 1100 nm can be fitted to six identical

monochromatic cameras. Table 3 lists the filter setup used

during the study. The camera firmware allows pre-setting all

imaging related parameters such as exposure time, shutter

release interval and image format and size. Six two giga-

byte CompactFlash memory cards store up to 800 images

(10 bit RAW format, full resolution). With an opening angle

of 38.3◦
× 31.0◦, the camera has a relatively narrow field of

Figure 1. UAV-based sensors: (a) Sony Nex5n RGB camera (b)

Canon PowerShot IR camera (c) MCA6 multispectral camera (d)

Spectrometer (UAV STS).

view as opposed to the Canon and Sony cameras. The camera

was set to a 2 ms exposure time and was run on a 2 s shutter

release interval with images saved in the 10 bit RAW format.

Positioning of the camera was achieved by hovering the UAV

over the vegetation target for at least 30 s per waypoint.

STS spectrometer (UAV STS): the spectrometer was

adapted for UAV-based remote sensing at the Research Cen-

tre Jülich. Its design is based on the STS VIS spectrometer

(Ocean Optics, Dunedin, FL, USA) with the addition of a

micro-controller to enable remote triggering and saving of

spectral data. The spectrometer operated on an independent

power source and its low weight and fine spectral resolution

made it ideal for use on an UAV. The full specifications, cal-

ibration efforts and validation of the STS spectrometer are

presented in Burkart et al. (2013). An identical spectrometer,

on the ground, acquired spectra of incoming radiance every

time the airborne sensor was triggered. Spectra were saved

on a micro SD card.

Sony RGB camera: a SONY Nex5n (Sony Corporation,

Minato, Japan) modified by AscTec was attached to the

Falcon-8 using a specially designed camera mount. A live

video feed from the camera to the UAV operator and remote

triggering were available. Spectral sensitivity was given by
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Figure 2. Spectral sensitivity of the four sensors. Spectral bands are

indicated by different colours.

the common Bayer matrix (Bayer, 1976; Hirakawa et al.,

2007) and hot mirror used in consumer digital cameras.

Canon PowerShot camera: the Canon PowerShot SD780

IS is a consumer digital camera that has been professionally

(LDP LLC, Carlstadt, US) converted to acquire near-infrared

imagery. The near-infrared filter has been replaced with a

red-light-blocking filter. Again, the spectral response of the

camera is based on the Bayer pattern colour filter array. Cus-

tomized CHDK (Canon Hack Development Kit) firmware

allows running the camera in a continuous capture mode at

specific time intervals (2 s, user defined). Camera acquisition

was set to automatic as time constraints and UAV batteries

did not allow for accurate manual configuration of white bal-

ance, aperture, ISO and shutter speed. Images were saved as

JPEGs. A live video link from the UAV’s on-board camera

enabled precise positioning of the RGB and infrared cameras

over the ryegrass pastures. The main difference to the MCA6

is the inability to adjust filter settings and the camera’s band-

widths. According to manufacturer information each band

has an approximate width of 100 nm.

1.4 Ground-based sensors

ASD HandHeld 2 ground-based reference sensor: ground-

based spectral measurements were acquired with an ASD

HandHeld 2 portable spectroradiometer (Analytical Spectral

Devices, Inc., Boulder, Colorado, US). The device covers

a spectral range from 325 nm to 1075 nm which makes it

suitable for comparison with all UAV sensors flown in this

study. At 700 nm the device has a spectral resolution of 3 nm

and the field of view equates to 25◦. A Spectralon® panel

(Spectralon®, Labsphere, Inc., North Sutton, NH, USA) was

used to acquire white reference measurements before each

target measurement. Each target was measured 10 times from

1 m distance while moving over the area of interest.

1.5 Flight planning and data acquisition procedure

Taking into account the operational requirements of each

sensor and flying platform, a detailed flight plan was devel-

oped. Eight sampling locations defined by waypoints were

selected from overview images and supported by an in situ

visual assessment of the paddock. A focus was put on cov-

ering a wide range of pasture qualities from dry to fully ir-

rigated ryegrass pastures. Waypoints were selected in pad-

dock areas with homogeneous pasture cover. This ensured

that each waypoint can be considered representative for the

area of the paddock it is located in, and it aided dealing with

the different sensor footprint sizes (Table 4).

Each sampling location was marked with a tarpaulin

square, which was clearly visible in all spectral bands of

the aerial images. In order to avoid interference effects of

the markers with the UAV STS measurements, they were re-

moved before acquisition of spectra. Next to the first way-

point, a calibration site with coloured tarpaulin squares was

set-up and measured with the ASD HandHeld 2.

The sensors were flown over the targets in the following

order: (1) RGB camera for an overview shot, (2) IR camera

for an overview shot, (3) MCA6 over calibration sites (black,

grey, white and red tarpaulins black foam material, bare soil)

and waypoints and (4) UAV spectrometer over waypoints.

Overview images cover all sampling locations in an area

with a single shot from 100 to 150 m flying height. MCA6

images were taken from 25 m above the ground. UAV STS

data were collected from a height of 10–15 m, and 15 spec-

tra were taken over each waypoint. During the experiment,

the Falcon-8 was flown in semi-autonomous GPS mode. Co-

ordinates of the sampling locations were recorded with a

low-accuracy GPS (Legend, HTC, Taoyuan, Taiwan). The

Falcon-8 used those coordinates to autonomously reach the

marker locations. Over each sampling location, the flight

mode was then switched to manual and the UAV was po-

sitioned over the target as accurately as possible using a live

video link. The UAV STS and the live camera were on the

same stabilized gimbal and aligned in a way, that the cen-

tre of the FPV camera approximates the UAV STS’s field of

view. The QuadKopter was flown in manual mode during the

entire experiment. In test flights preceding this experiment,

it was found that the GPS on board of the MikroKopter was

not accurate enough to position the sensor over a waypoint.

Flights were conducted consecutively to minimize vari-

ability due to changing illumination and vegetation status.

Figure 3 depicts raw data from the imaging sensors be-

fore any processing has been applied. Before the flight of

the UAV spectrometer, ASD ground reference measurements

were taken at each waypoint.

1.6 Data processing

Data from each sensor underwent calibration and correction

procedures.

MCA6: a proprietary software package (PixelWrench2 by

Tetracam) that was delivered with the Tetracam was used to

transfer images from the CompactFlash memory cards to the

computer. Each RAW band was processed to a TIFF (Tagged

Image File Format) image in order to identify all images that
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Table 2. Sensor properties.

Name Sony Nex5n RGB Canon Powershot IR MCA6 STS

Company Sony – modified Canon – modified Tetracam Ocean Optics – modified

Type RGB camera integrated VIS + Infrared camera Multispectral Imager with Spectroradiometer with additional

in the Falcon-8 UAV 6 bands of 10 nm width electronics for remote control

Field of View 73.7◦ × 53.1◦ 57.2◦ × 40◦ 38.3◦ × 31.0◦ 12◦

Spectral bands 3 3 6 256

Spectral range Blue, Green, Red Blue, Green, IR 450–1000 nm 338–824 nm

Image size 4912 × 3264 4000 × 3000 1280 × 1024 n/a

Image format JPEG JPEG RAW n/a

Dynamic Range 8 bit 8 bit 10 bit 14 bit

Weight [g] 500 100 790 216

Handling Wireless trigger, live view Interval mode Interval mode Wireless trigger, live view

Table 3. MCA6 filter specifications.

Slave 1 Master Slave 2 Slave 3 Slave 4 Slave 5

Centre wavelength FWHM (nm) 473 551 661 693 722 831

Bandwidth FWHM (nm) 9.26 9.72 9.73 9.27 9.73 17.81

Peak transmission (%) 64.37 72.54 61.4 66.89 63.63 65.72

show the target area. As a result, between 6 and 15 images

per target were found to be suitable for further image pro-

cessing (total of 109 images) and two images showing the

tarpaulin areas and bare soil were selected for reflectance

factor calibration. From there, RAW image processing was

done in Matlab (The MathWorks Inc., 2011). Both the cali-

bration images and the vegetation target images were noise

corrected and vignetting effects were removed for each of the

six cameras (Yu, 2004; Olsen et al., 2010; Kelcey and Lu-

cieer, 2012). A sensor correction factor was applied to each

filter based on filter sensitivity factory information (Kelcey

and Lucieer, 2012).

UAV STS: as described in Burkart et al. (2013) a

temperature-based dark current correction (Kuusk, 2011) and

an inter-calibration of the air- and ground-based spectrome-

ter were applied before derivation of reflectance factors.

Sony RGB Camera: the red, green and blue bands were

calibrated to a reflectance factor with the empirical line

method (Smith and Milton, 1999; Baugh and Groeneveld,

2008) relating the ASD reflectance over the coloured refer-

ence tarpaulins (Fig. 3) to real reflectance (Aber et al., 2006).

Canon infrared camera: the camera was corrected using

the same method as for the RGB camera, but with the centre

wavelengths adapted to the infrared sensitive pixels.

The images that show the tarpaulin and the bare soil were

selected as calibration images and processed separately. The

white and the red tarpaulins were excluded from analysis due

to pixel saturation and high specular reflection. For each of

the calibration surfaces (black, grey, black foam and bare

soil) a subset image area was defined from which the pixel

values for the empirical line method were derived.

For each calibration target, ten ASD reference spectra

were convolved to the spectral response of the Mini-MCA6

(see Spectral Convolution). The empirical line method was

applied to establish band-specific calibration coefficients.

Using those coefficients, the empirical line method was ap-

plied to each vegetation target image on a pixel-by-pixel ba-

sis, thus converting digital numbers of the image pixels to a

surface reflectance factor.

In order to extract the footprint area over which ground

ASD and UAV spectrometer data had been acquired, the rel-

evant image area was identified and extracted from each im-

age by identifying the markers in the image. Footprints were

matched between sensors by defining a 0.3 by 0.3 m area be-

low the waypoint marker as the region of interest. An average

reflectance factor was calculated for each footprint resulting

in between 6 and 15 values per sample location for the MCA6

images. Standard deviations, mean and median were calcu-

lated for each waypoint.

ASD HandHeld 2 ground reference sensor: ASD Hand-

Held 2 spectral binary files were downloaded and converted

to reflectance using the HH2Sync software package (Version

1.30, ASD Inc.). Spectral data were then imported into the

spectral database SPECCHIO (Hueni et al., 2009).

Spectral Convolutions: in order to synthesize STS spec-

trometer data from ground-based ASD data, a discrete spec-

tral convolution was applied (Kenta and Masao, 2012). Each

STS band was convolved by applying Eq. (1), using a Gaus-

sian function to represent the spectral response function of

each STS band. These spectral response functions (SRFs)

were parameterized by the calibrated centre wavelengths of

the STS instrument and by a nominal FWHM (full width at

half maximum) of 3 nm for all spectral bands. The discrete
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Table 4. Optical sensor footprint properties.

UAV STS MCA6 Canon IR Sony RGB ASD

Footprint shape Circular Rectangular Rectangular Rectangular Circular

Footprint size [Sensor height (m)] Ø 2.1 m [10] 17.3 × 13.9 m [25] 109.0 × 72.8 m [100] 149.9 × 99.9 m [100] Ø 0.44 m [1]

Number of pixels n/a 1280 × 1024 4000 × 3000 4912 × 3264 n/a

Ground resolution (m) n/a 0.0135 0.0273 0.0305 n/a

Figure 3. Raw data from the imaging sensors (a) RGB camera at

100 m altitude, (b) IR camera at 100 m altitude, (c) MCA6 at 25 m

altitude (red band). The images show the region of interest cropped

from a larger image. White points represent the tarpaulin waypoint

markers.

convolution range (nm) of each band was based on ±3σ of

the Gaussian function and applied at the wavelength posi-

tions where an ASD band occurred, i.e. at every nanometre.

It must be noted that the results of this convolution cannot

truly emulate the actual system response of the STS as the

ASD sampled input spectra are already a discrete represen-

tation of the continuous electromagnetic spectrum and are

hence already inherently smoothed by the measurement pro-

cess of the ASD.

In a similar manner, MCA6 bands were simulated, but hav-

ing replaced the Gaussian assumption of the SRFs with the

spectral transmission values (Table 3) digitized from ana-

logue figures supplied by the filter manufacturer (Andover

Corporation, Salem, US).

Rk =

m∑

j=n

cjRj

m∑

j=n

cj

, (1)

where Rk = reflectance factor of Ocean Optics band k,

Rj = reflectance factor of ASD band j , cj = weighting coef-

ficient based on the Ocean Optics STS, spectral responsivity

at wavelength of ASD band j , n : m = convolution range of

Ocean Optics band k.

2 Results

MCA6 and UAV STS: calibrated reflectance factors of the

UAV spectrometer and the MCA6 were compared to calcu-

lated ASD reflectance values using linear regression analysis.

The UAV STS and the ASD HandHeld 2 were compared over

the whole STS spectrum, while the MCA6 was compared to

the ASD in its six discrete bands.

Figure 4 shows the spectral information derived from both

the STS spectrometer and MCA6 in direct comparison with

the convolved ASD-derived reflectance spectra for two dis-

tinctively different waypoints in terms of ground biomass

cover and greenness of vegetation. Waypoint 2 is a recently

grazed pasture with a high percentage of dead matter and

senescent leaves. Soil background reflectance was high and

the paddock was very dry, with no irrigation scheme operat-

ing. Pasture at waypoint 8 had not been grazed recently and

therefore vegetation cover was dense with a mix of ryegrass

pastures and clover. The paddock undergoes daily irrigation

and no soil background signal was detectable. The data in-

dicated that the MCA6 estimates higher reflectance factors

than the UAV spectrometer and the ASD for the blue, green

and the lowest red band. In the far-red and NIR bands, val-

ues were consistently lower than those derived from the ASD

but still higher than reflectance measured by the UAV STS.

While the ASD detected a steep increase in reflectance in the
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Figure 4. Reflectance of the spectral sensors ASD (black), MCA6 (blue) and UAV STS (red) as measured over the exemplary waypoints 2

and 8. SD in dotted lines for the ASD and UAV STS and with error bars for the 6 bands of the MCA6.

Table 5. Correlation matrix of the optical sensors (R2). Values were

calculated for corresponding bands of each sensor pair over all way-

points. Number of images (n) is given in brackets.

RGB IR MCA6 UAV STS

RGB 1

IR 0.913 (16) 1

MCA6 0.377 (16) 0.945 (16) 1

UAV STS 0.681 (24) 0.891 (24) 0.826 (48) 1

ASD 0.674 (24) 0.647 (24) 0.924 (48) 0.978 (3856)

red edge, both UAV sensors detected a lower signal in the

same region of the spectrum.

The mean MCA6-derived spectra showed an increase in

reflectance in the green peak region of the vegetation spec-

trum that is approximately 0.05 % higher than in the same re-

gion of the UAV spectrometer. The slope between the green

and the red bands is positive for both sensors demonstrat-

ing the dried, stressed state of the vegetation at waypoint

2. While MCA6 bands show low correlations with the UAV

STS and the ASD for the 551 nm and the 661 nm bands, its

values are in line with the other sensors in the red-edge re-

gion of the spectra.

The MCA6 correlates significantly with ASD-derived re-

flectance (R2 0.92, Fig. 5, Table 5) when compared over all

eight waypoints and over all six-bands (n = 48). Shortcom-

ings of spectral accuracy of the MCA6 are revealed when

comparing band reflectance values over different sample lo-

cations and per waypoint (Fig. 6). The green band (551 nm)

achieves lowest correlations with ASD convolved reflectance

values (R2 = 0.68), with MCA6 reflectance factors overesti-

mated for all waypoints. The remaining five bands show cor-

relations with R2 between 0.70 (722 nm) and 0.97 (661 nm).

Overall, the MCA6 overestimates bands below the red edge,

while it shows low deviations from the STS- and the ASD-

derived reflectance values for the red-edge bands. Due to the

low number of waypoints, the blue-, green- and red-band

correlations need to be interpreted with caution. With an

Figure 5. Reflectance comparison of UAV-based sensors to con-

volved ASD-derived reflectance showing data over all eight sam-

ple locations and spectra (MCA6 n = 48, STS n = 120). MCA6 vs.

ASD (blue): R2 = 0.92, slope of linear regression: 0.6691, offset:

0.0533. STS vs. ASD (red): R2 = 0.98, slope of linear regression:

0.6522, offset: 0.0142.

R2 of 0.98, the UAV spectrometer strongly correlates to the

reflectance derived from the ASD when compared over all

waypoints (Table 4). Even though the trend of the spectra is

similar to the ASD ground truth, differences are visible in the

magnitude of the reflectance mainly in the near-infrared.

RGB and NIR camera: as can be seen in Table 4, the cor-

relation between the RGB and IR cameras results in an R2

of 0.91, whereas the correlations to the high-resolution spec-

trometers are as low as 0.65 between the NIR camera and

the ASD. The RGB camera and MCA6 are poorly correlated

with a R2 of 0.38.
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Figure 6. Comparison of reflectance values between MCA6 and convolved ASD reflectance for each MCA6 band. 473 nm: R2 = 0.93,

regression slope (RS): 0.9783; 551 nm: R2 = 0.68, RS: 1.0654; 661 nm: R2 = 0.97, RS: 1.311; 693 nm: R2 = 0.95, RS: 1.0225; 722 nm:

R2 = 0.7, RS: 0.4009; 831 nm: R2 = 0.8, RS: 0.4516.

3 Discussion

MCA6: when compared to the UAV spectrometer and the

ground reference data, the MCA6 filters performed well in

the red-edge region of the electromagnetic spectrum. This

observation is supported by the CMOS sensor relative sen-

sitivity which is over 90 % in the red-edge and the near-

infrared bands according to factory information (Tetracam

Inc.). The largest deviations were observed in the green band,

where the MCA6 consistently overestimates vegetation re-

flectance factors. In sample locations with low biomass cover

and/or stressed pastures, this results in a negative slope be-

tween the red bands. The sensor’s performance is further im-

paired when high soil background reflectance is present, as

is the case for the first three waypoints and the bare soil cal-

ibration target. While the green peak in the UAV STS and

ASD measurements is barely visible over waypoint 2 but pro-

nounced for waypoint 8, the MCA does not pick up on that

feature. Green-band reflectance is overestimated for the drier

pasture, while deviations from the other sensors’ measure-

ments over irrigated, greener pasture are lower. Those differ-

ences must be put down to radiometric inconsistencies in the

MCA6 and potential calibration issues and it suggests that

with the current filter setup, the MCA6 cannot be regarded as

suitable for remote sensing of biochemical constituents and

fine-scale monitoring of vegetation variability. Another com-

plexity can be seen in the near-infrared regions of the derived

spectra. For the UAV STS, MCA6 and the ASD, the variabil-

ity of measured reflectance factors increases. This discrep-

ancy is likely to arise from a combination of areas of dif-

ferent spatial support in terms of the sensor’s field-of view

(FOV) and calibration biases (sensor and reflectance calibra-

tion). Further investigation into sensor performance over tar-

gets with complex spectral behaviour must be conducted in

order to evaluate the spectral performance of those bands.

The number of waypoints visited was not high enough to

fully assess the performance of the four lower MCA6 bands

as can be seen in Fig. 6. Due to the statistical distribution of

the data points, a definite statement on the performance of

those bands is not possible. The empirical line method used

for reflectance calibration introduces further errors because

only one calibration image was acquired over the entire mea-

surement procedure. Reflectance factor reliability can be im-

proved by more frequent acquisition of calibration images.

UAV STS: the UAV STS-delivered spectra with strong

correlations to the ASD measurements. The calculation of

narrow-band indices or spectral fitting algorithms is thus pos-

sible. However, depending on the status of the vegetation

target the ASD-derived reflectance factors can be up to 1.5

times (Fig. 4) higher than the UAV STS measurements. This

result, particularly striking in the NIR, is below expecta-

tions, as Burkart et al. (2013) compared the Ocean Optics

spectrometer (UAV STS) to an ASD Field Spec 4 and re-

ported good agreements between the two instruments. The
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main source of discrepancies between the ASD and STS

measurements can be attributed to inconsistencies in foot-

print matching due to using a live feed from a camera that

can only approximate the spectrometer’s field of view. By

choosing homogeneous surfaces and averaging over multi-

ple measurements, parts of the problems arising from foot-

print were addressed in this study. However the matching of

the footprint of two different spectrometers can go beyond

comparing circles and rectangles due their optical path as re-

cently shown by MacArthur et al. (2012). A more thorough

inter-comparison of the ASD and the particular Ocean Optics

device employed on the UAV will be required in the future.

RGB and NIR cameras: an empirical line calibration was

used for the reflectance factor estimation of both consumer

RGB and infrared-modified cameras. Although correlations

between the digital cameras and the high-resolution spec-

trometers exist, they must be treated with caution. This is

due to the unknown radiometric response of the cameras,

band overlaps and the inherent differences between simple

digital cameras and numerical sensors. Both cameras pro-

vide imagery with high on-ground resolution, thus enabling

identification of in-field variations. In terms of the NIR cam-

era, the wide bandwidth and limited information on the spec-

tral response call for cautious use and further evaluation if

the camera is to be used for quantitative vegetation monitor-

ing. At this stage, this study can only suggest that the sen-

sor might be used for support of visual paddock assessment

and broadband vegetation indices. Nevertheless, the results

demonstrate the opportunities these low-budget sensors offer

for simple assessment of vegetation status over large areas

using UAVs. If illumination conditions enable an empirical

line calibration, reasonable three-band reflectance results can

be calculated. Further improvements of radiometric image

quality can be expected from fixed settings of shutter speed,

ISO, white balance and aperture, as well as for the use of the

RAW format. A calibration of lens distortion and vignetting

parameters could further increase the quality, especially in

the edges of the image (Yu, 2004). However, operational ef-

ficiency increases with automatic camera settings which only

varied minimally due to the stable illumination conditions at

the time of the study.

The empirical line method that was used for reflectance

calibration was based on some simplifications. Variations

in illumination and atmospheric conditions require frequent

calibration image acquisition in order to produce accurate ra-

diometric calibration results. Due to the conservative man-

agement of battery power and thus relatively short flight

times, only one MCA6 flight was conducted to acquire an im-

age of the calibration tarpaulins and the bare soil. The same

restriction applies to the quality of the radiometric calibra-

tion of the RGB and IR camera. The use of colour tarpaulin

surfaces as calibration targets has implications on the qual-

ity of the achieved reflectance calibration in this study. Al-

though they provide low-cost and easy-to-handle calibration

surfaces, they are not as spectrally flat as would be needed for

a sensor calibration with minimum errors. Moran et al. (2001,

2003) have investigated the use of chemically treated canvas

tarpaulins and painted targets in terms of their suitability as

stable reference targets for image calibration to reflectance

and introduce measures to ensure optimum calibration re-

sults. They concluded that specially painted tarps could pro-

vide more suitable calibration targets for agricultural appli-

cations.

Discrepancies in measured reflectance factors between the

UAV STS, the MCA6 and the ASD arise from a combina-

tion of factors. Foremost, inherent differences in their spec-

tral and radiometric properties lead to variations in measured

reflectance factors. Deviations in footprint matching between

the STS spectrometer and the ground measurements, al-

though kept to a minimum, lead to areas of different spa-

tial support and cannot be fully eliminated. Another dimen-

sion to this complexity is added by the UAVs and the camera

gimbals. Although platform movements were minimal due

to the stable environmental conditions and the compensation

of any small platform instabilities by the camera gimbals, a

small variability in measured radiant flux must be attributed

to uncertainties in sensor viewing directions. For a com-

plete cross-calibration between the UAV-based and ground

sensors, these potential error sources need to be quantified.

Within the context of evaluating sensors for their usabil-

ity and potential for in-field monitoring of vegetation, those

challenges were not addressed in the current study.

In-field data acquisition and flight procedures, one of the

key challenges in accommodating four airborne sensors over

the same area of interest is accurate footprint matching and

minimizing any errors that are introduced by this complexity.

Camera gimbals, on board GPS software, piloting skills and

waypoint selection maximized footprint matching between

sensors. The Falcon-8 UAV was capable of a very stable

hover flight over the area of interest while the MikroKopter

UAV required manual piloting to ensure that it hovered over

the area of interest. The tarpaulin markers were invaluable as

a visual aid both during piloting of the UAVs and during sub-

sequent image processing for identifying the footprint areas

in each image. Because of the need to select waypoints that

were representative for a large area of the paddock, the sta-

ble hovering behaviour of the Falcon-8 ensured that the UAV

spectrometer’s footprint was comparable to the other sen-

sors’ field of view. Although the described measures and pre-

cautions enabled confident matching of footprints, they can

only be applied when working in homogeneous areas of pas-

ture and vegetation cover. Confounding factors, such as soil

background influence, large variations in vegetation cover in-

side the footprint area and strong winds that destabilise the

platform, will compromise accurate footprint matching.

When acquiring data with UAVs, responses to changes in

environmental conditions, such as increasing wind speeds

and cloud presence, need to be immediate. Although specifi-

cations from UAV manufacturers attest that the flying vehi-

cles are able to cope with winds of up to 30 km h−1, in reality
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the wind speed at which a flight must be interrupted is con-

siderably lower. Platform stability, altitude control and foot-

print matching accuracy between sensors are compromised

under high winds. The fact that two different UAV plat-

forms had been used potentially introduces more variabil-

ity that cannot be quantified. However, the aforementioned

payload restrictions make the use of two different platforms

inevitable. Due to the fast progress in UAV platform devel-

opment, this intricacy is likely to be irrelevant in the future

as platforms become more versatile and adaptable to accom-

modate various sensor requirements.

Technical specifications of UAVs: both UAVs were pow-

ered with lithium polymer (LiPo) batteries. A fully charged

battery enabled flying times of approximately 10 min for the

payload carried. With only four batteries available for each

UAV, this lead to a data acquisition time frame of about

40 min per flying platform. However, because turbulence,

unplanned take offs and landings and inaccurate GPS posi-

tions frequently required revisiting a waypoint, the total num-

ber of sample locations that could be investigated between

11:00 and 15:00 LT when illumination conditions were most

favourable, was low. This makes thorough flight planning,

marking of waypoints and efficient collection of ground ref-

erence data essential. Due to the non-availability of power

outlets and the time it takes to fully recharge a LiPo battery,

battery life limits the time frame in which airborne data can

be collected. At the time of the study, higher powered LiPo

batteries were still too heavy, thus neutralizing a gain in flight

time due to the high weight of the more powerful battery.

Those restrictions can slow down data acquisition consider-

ably and the number of ground sampling locations is limited.

In the future, improvements in platform stability and elec-

tronics as well as higher powered batteries will enable larger

ground coverage by UAVs. Using in-field portable charging

options such as powered from car batteries can significantly

enhance the endurance of rotary wing UAVs.

The evaluated UAV sensors differ in their suitability for

deployment in vegetation monitoring and more specifically

pasture management applications. While high spectral ac-

curacy is essential for quantifying parameters such as nutri-

tional status in crops and pastures, the high spatial resolution

imaging ability of digital cameras can be used to assess pad-

docks and fields with regard to spatial variations that may not

be visible to a ground observer.

Usability of sensors: the UAV STS spectrometer with

its high spectral resolution can be used to derive narrow-

band vegetation indices such as the PRI (photochemical re-

flectance index) (Suarez et al., 2009) or TSAVI (transformed

soil adjusted vegetation index) (Baret et al., 1989). Fur-

thermore, its narrow bands facilitate identification of wave-

bands that are relevant for agricultural crop characterization

(Thenkabail et al., 2002). Once those centre wavelengths

have been identified, a more broadband sensor such as the

MCA6 could target crop and pasture characteristics with spe-

cific filter setups provided the MCA6 performance can be en-

hanced in terms of radiometric reliability. The consumer dig-

ital cameras seem to be useful for derivation of broadband

vegetation indices such as the green NDVI (Gitelson et al.,

1996) or the GRVI (Motohka et al., 2010). Identification of

wet and dry areas in paddocks and growth variations are fur-

ther applications that such cameras can cover. Imaging sen-

sors that identify areas in a paddock that need special atten-

tion are extremely useful, and although they do not provide

the high spectral resolution of the UAV STS spectrometer,

they do give a visual indication of vegetation status.

Challenges and limitations: deploying UAVs is a promis-

ing new approach to collect vegetation data. As opposed to

ground-based proximal sensing methods, UAVs offer non-

destructive and efficient data collection and less accessible

areas can be imaged relatively easy. Moreover, UAVs can po-

tentially provide remote sensing data when aircraft sensors

and satellite imagery are unavailable. However, three main

factors can cause radiometric inconsistencies in the measure-

ments: sensors, flying platforms and the environment.

The sensors mounted on the UAVs introduce the largest

level of uncertainty in the data. Radiometric aberrations

across the camera lenses can be addressed by a flat field-

correction of the images.

Further factors are camera settings. In this study, shutter

speed, exposure time and ISO were set on automatic because

of the clear sky and stable illumination conditions. However,

to facilitate extraction of radiance values and quantitative in-

formation on the vegetation, these settings need to be fixed

for all the flights in order to make the images comparable.

The RAW image format is recommended when attempting

to work with absolute levels of radiance as it applies the least

alterations to pixel digital numbers.

Furthermore, footprint matching between sensors with dif-

ferent sizes and shapes is challenging. While it is straight-

forward for imaging cameras with rectangular shaped foot-

prints, matching measurements between the UAV STS, ASD

and the imaging sensors can only be approximated. While

footprint shape is fixed, the size can be influenced by the fly-

ing altitude above ground.

However, it is also important to be aware of any bidi-

rectional effects that are introduced as a result of the cam-

era lens’ view angle and illumination direction (Nicodemus,

1965).

Although UAV platforms are equipped with gyro-

stabilization mechanisms, GPS chips and camera gimbals, an

uncertainty remains of whether the camera is in fact pointing

nadir and at the target. Slight winds or a motor imbalance can

destabilise the UAV system enough to cause the sensor field

of view to be misaligned. For imaging sensors this is less of

an issue as it is for numerical sensors such as the UAV STS.

The live view will only ever be an approximation of the sen-

sor’s actual FOV. Careful setting up of the two systems on the

camera gimbal and periodical measurement of known targets

to align the spectrometer’s FOV to the live view camera can

help to minimise deviations between FOVs.
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The environment also needs to be considered for the col-

lection of robust radiometric data. Even if all other factors

are perfect, winds or wobbling of the platform caused by,

e.g., a motor imbalance or a bad GPS position hold can cause

the sensor to direct its FOV to the wrong spot. In terms of

the imaging cameras this is again simple to check after im-

age download whereas the UAV STS data might possibly not

show any deviations in the data.

With a good knowledge of the sensors characteristics and

the necessary ground references an UAV operator will be

able to acquire satisfying data sets, if the environmental con-

ditions are opportune. Based on a tested UAV with known

uncertainties in GPS and gimbal accuracy the data set can be

quality flagged and approved for further analysis.

4 Conclusions

UAVs are rapidly evolving into easy-to-use sensor platforms

that can be deployed to acquire fine-scale vegetation data

over large areas with minimal effort. In this study, four op-

tical sensors, including the first available UAV-based micro-

spectrometer were flown over ryegrass pastures and cross-

compared. Overall, the quality of the reflectance measure-

ments of the UAV sensors is dependent on thorough data ac-

quisition processes and accurate calibration procedures. The

novel high-resolution STS spectrometer operates reliably in

the field and delivers spectra that show high correlations to

ground reference measurements. For vegetation analysis, the

UAV STS holds potential for feature identification in crops

and pastures as well as the derivation of narrow-band veg-

etation indices. Further investigations and cross-calibrations

are needed, mainly with regard to the near-infrared measure-

ments in order to establish a full characterization of the sys-

tem. It was also demonstrated that the six-band MCA6 cam-

era can be used as a low spectral resolution multispectral sen-

sor with the potential to deliver high-resolution multispectral

imagery. In terms of its poor radiometric performance in the

green and near-infrared filter regions, it is evident that the

sensor needs further testing and correction efforts to elim-

inate the error sources of these inconsistencies. Over sam-

ple locations with low vegetation cover and strong soil back-

ground interference, the MCA6 image data needs to be pro-

cessed with caution. Individual filters must be assessed fur-

ther, with a focus on the green and NIR regions of the elec-

tromagnetic spectrum. Any negative effects that depreciate

data quality, such as potentially unsuitable calibration targets

(coloured tarpaulins) need to be identified and further exam-

ined in order to guarantee high quality data. If those issues

can be addressed and the sensor is equipped with relevant fil-

ters, the MCA6 can become a useful tool for crop and pasture

monitoring. The modified Canon infrared and the RGB Sony

camera have proven to be easy-to-use sensors that deliver in-

stant high-resolution imagery covering a large spatial area.

No spectral calibration has been performed on those sensors,

but factory spectral information allowed converting digital

numbers to a ground reflectance factor. Near-real-time as-

sessment of variations in vegetation cover and identification

of areas of wetness/dryness as well as calculation of broad-

band vegetation indices can be achieved using these cameras.

A number of issues have been identified during the field ex-

periments and data processing. Exact footprint matching be-

tween the sensors was not achieved due to differences in the

FOVs of the sensors, instabilities in UAV platforms during

hovering and potential inaccuracies in viewing directions of

the sensors due to gimbal movements. Although those dif-

ferences in spatial scale reduce the quality of sensor inter-

comparison, it must be stated that under field conditions a

complete match of footprints between sensors is not achiev-

able. For the empirical line calibration method that was ap-

plied to the MCA6 and the digital cameras, we propose the

use of spectrally flat painted panels for radiometric calibra-

tion rather than tarpaulin surfaces. To reduce complexity of

the experiment and keep the focus on the practicality of de-

ploying multiple sensors on UAVs, the influence of direc-

tional effects has been neglected.

The field protocols developed allow for straightforward

field procedures and timely coordination of multiple UAV-

based sensors as well as ground reference instruments. The

more autonomously the UAV can fly, the more focus can be

put on data acquisition. Piloting UAVs in a field where ob-

stacles such as power lines and trees are present requires the

full concentration of the pilot and at least one support per-

son to observe the flying area. Due to technical restrictions,

the total area that can be covered by rotary wing UAVs is

still relatively small, resulting in a point sampling strategy.

Higher powered, lightweight batteries on UAVs can allow for

more frequent calibration image acquisition and the coverage

of natural calibration targets, thus improving the radiometric

calibration. Differences in UAV specifications and capabili-

ties lead to the UAVs having a specific range of applications

that they can undertake reliably.

As shown in this study even after calibration efforts, bi-

ases and uncertainties remain and must be carefully eval-

uated in terms of their effects on data accuracy and relia-

bility. Restrictions and limitations imposed by flight equip-

ment must be carefully balanced with scientific data acquisi-

tion protocols. The different UAV platforms and sensors each

have their strengths and limitations that have to be managed

by matching platform and sensor specifications and limita-

tions to data acquisition requirements. UAV-based sensors

can be quickly deployed in suitable environmental condi-

tions and thus enable the timely collection of remote sensing

data. The specific applications that can be covered by the pre-

sented UAV sensors range from broad visual identification of

paddock areas that require increased attention to the identi-

fication of waveband-specific biochemical crop and pasture

properties on a fine spatial scale. With the development of

sensor-specific data processing chains, it is possible to gen-

erate data sets for agricultural decision making within a few
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hours of data acquisition and thus enable the adjustment of

management strategies based on highly current information.
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Abstract: In this study we present a hyperspectral flying goniometer system, based on a 

rotary-wing unmanned aerial vehicle (UAV) equipped with a spectrometer mounted on an 

active gimbal. We show that this approach may be used to collect multiangular hyperspectral 

data over vegetated environments. The pointing and positioning accuracy are assessed using 

structure from motion and vary from σ = 1° to 8° in pointing and σ = 0.7 to 0.8 m in 

positioning. We use a wheat dataset to investigate the influence of angular effects on the 

NDVI, TCARI and REIP vegetation indices. Angular effects caused significant variations 

on the indices: NDVI = 0.83–0.95; TCARI = 0.04–0.116; REIP = 729–735 nm. Our analysis 

highlights the necessity to consider angular effects in optical sensors when observing 

vegetation. We compare the measurements of the UAV goniometer to the angular modules 

of the SCOPE radiative transfer model. Model and measurements are in high accordance  
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(r2 = 0.88) in the infrared region at angles close to nadir; in contrast the comparison show 

discrepancies at low tilt angles (r2 = 0.25). This study demonstrates that the UAV goniometer 

is a promising approach for the fast and flexible assessment of angular effects. 

Keywords: hyperspectral; unmanned aerial vehicle (UAV); vegetation; bidirectional 

reflectance distribution function (BRDF); goniometer; vegetation indices 

 

1. Introduction 

Spectral radiometers (spectrometers) reach beyond the capabilities of human vision and enable 

scientists to retrieve diverse information from reflected light. Field spectroscopic measurements  

have a long history [1] and are nowadays a common investigative tool in various research areas.  

Moreover, spectral vegetation analysis from air- or spaceborne platforms is a mature technology, and is 

commonly used for the accurate derivation of land cover classes [2]. Hyperspectral measurements, which 

consist of continuous narrow spectral bands, help to retrieve information about the biophysical and 

biochemical components of vegetation [3–5] and may be used to discriminate healthy or stressed  

plants [6,7]. 

With their synoptic view, airborne and spaceborne imaging sensors typically capture a large swath. 

Discrete image elements (pixels) located in the geometric center of an image are commonly acquired 

from a nadir view angle, whereas pixels at image edges are recorded from oblique angles. Off-nadir view 

geometry depends on the field of view (FOV) specifications and measurement methodology and varies 

among sensor systems; MODIS, for example is imaging ±55° off nadir [8]. 

The bidirectional reflectance distribution function (BRDF) is the conceptual framework that explains 

changes in reflectance that result from view angle changes dependent on surface property and 

illumination [9,10]. BRDF influence is not desirable in a nadir image, as it impacts reflectance  

values recorded by the sensor and complicates the compositing of multiple images or flight lines.  

However, angular or off-nadir imaging can complement nadir image data by integrating additional 

spectral information. In forest environments, for example, an oblique view will—depending on the stand 

density—detect less reflectance from tree crowns and more from tree trunks [11,12]. Lack of knowledge 

in effects created from different sun-sensor geometries throughout the vegetation season have for 

instance led to incorrect greening estimates from satellite data in the Amazon rainforest, as recently 

shown by Morton et al. [13]. 

The need for BRDF correction, along with an interest in angular characteristics, has led to the 

development of various goniometric measurement approaches. These are able to exploit a center point 

from multiple view angles. The most common approach utilizes a semi-automated goniometer equipped 

with a point spectrometer with a radius of one meter or larger [14–16]. On larger scales the POLDER 

and MISR instruments and the orbiting sensor Chris/Proba are capable of retrieving spectral data of the 

same area from different angles during one or multiple overpasses [17,18]. On a smaller scale  

Comar et al. [19] used a conoscope to assess the BRDF of wheat at leaf surface level. This technique 

allows characterizing the reflectance of small leaf structures, such as veins. Such multiangular 

measurements are necessary to accumulate knowledge regarding vegetation cover BRDF characteristics. 
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The fundamental goal of these research efforts is to develop a model capable of predicting the BRDF of 

a known vegetation cover type as well as the other way round, to derive knowledge about unidentified 

vegetation cover from multiangular measurements. Various models have been introduced in the past to 

estimate BRDF on a mathematical or empirical basis [20,21], or to compute the aggregate energy balance 

of a vegetation canopy including radiative transfer, as done in the SCOPE (Soil-Canopy-Observation of 

Photosynthesis and the Energy balance) model [22]. 

Using these methods, an effective theoretical understanding of the BDRF was developed for flat and 

accessible land cover like snow or soil [23]. The small size of common goniometers along with their 

small FOV made the BRDF characterization of other important land cover types (including forest or 

agriculture) difficult [24] or impossible. Forest and agriculture land covers are of particular significant 

scientific and economic interest, and alternative analytic approaches are necessary to allow BRDF 

measurements on larger scales and within inaccessible areas. 

Some recent studies have investigated UAVs as a novel platform for goniometric measurements. 

Burkhart et al. [25] performed a survey over ice fields using a fixed-wing UAV equipped with an  

on-board spectrometer. Principally due to maneuvering and incident wind, the flight patterns of this 

platform introduced banking levels of up to ±30°, causing the spectrometer to collect multiangular 

hyperspectral measurements of numerous points that were overflown. A more defined method was 

presented by Hakala et al. [26] and Honkavaara et al. [27], who deployed a rotary-wing UAV equipped 

with a stabilized gimbal mounting RGB and multispectral camera, respectively. Utilizing specific flight 

patterns, multiangular information could be derived in the bands of the given camera. 

To fully understand the BRDF effects of vegetation, we suggest that an optimized dataset providing 

a comprehensive understanding of multiple agricultural sites would consist of frequent multiangular 

hyperspectral measurements acquired at a number of different locations throughout a complete 

vegetation phenological cycle. Only airborne platforms can fulfill these requirements without disturbing 

crop growth by physically stepping through the field or casting shadows within the sensor FOV. With 

their recent development and improving utility and stability, UAVs can be employed as platforms for 

multi-angular remote data collection. 

The main focus of this study is to introduce a way of collecting multiangular hyperspectral data over 

almost every kind of terrain and scale with a flying spectrometer. The approach combines the benefits 

of goniometers equipped with a high-resolution spectrometer and the flexibility of UAV platforms. We 

then demonstrate the acquisition and analysis of a datasets to explore BRDF effects over wheat. The 

angular dependency of reflectance as measured with the UAV goniometer was also compared to the 

reflectance modeled by SCOPE. 

2. Material and Methods 

The Falcon-8 octocopter UAV (Ascending Technology, Krailing, Germany) was used in this study. 

This platform was chosen due to its accurate flight controls and inherent stability. A hyperspectral 

measurement system was integrated on the UAV [28]. This instrument was recently developed at the 

interdisciplinary Research Center Jülich (Forschungszentrum Jülich GmbH) and is based on the  

STS-VIS spectrometer (Ocean Optics Inc. Dunedin, USA). The FOV of this spectrometer is 
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approximately 12°; spectral resolution was at a full width at half maximum (FWHM) of 3 nm, with  

256 spectral bands (4 pixel spectrally binned) within the range of 338 to 823 nm. 

The Falcon-8 was originally designed as a camera platform for photographers and video production. 

It is equipped with a camera mount whose angle can be set during flight within 1° increments.  

The vertical angle (tilt) is defined by the camera mount, while the horizontal angle (heading) is 

determined by UAV orientation. The position and navigation is done by combining the GPS information 

from a navigation grade GPS (Ublox LEA 6T) and the information of the orientation information of the 

sensors onboard the UAV. Wind gusts during the flight are counteracted by an active system, which 

stabilizes the camera by pitch and roll. The spectrometer is also equipped with a RGB camera, which 

feeds a live video stream to the operator to facilitate operation and allow proper aiming of the system. 

Airborne hyperspectral target reflectance measurements were performed with the UAV spectrometer 

wirelessly synchronized with a second spectrometer on the ground. Latter measured a white reference 

(Spectralon®) to adapt to changing illumination. A thorough calibration of the hyperspectral system was 

performed following the procedure described by Burkart, et al. [28]. This process included dark current 

correction [29], spectral shift, dual spectrometer cross-calibration and additional quality checks using 

the SpecCal tool [30]. Our approach allows to compute the ratio of light reflected by the target surface 

to the hemispherical illumination (diffuse-, ambient-, and direct-sunlight) as reflected by the white 

reference and is termed a hemispherical/conical reflectance factor. The actual BRDF is thus only 

approximated by this approach. Schaepman-Strub et al. [10] provide a comprehensive BRDF description 

and nomenclature. 

2.1. Flight Pattern 

Grenzdörffer and Niemeyer [31] demonstrated that a distinct hemispherical flight pattern is necessary 

to enable goniometric measurements using an UAV-based airborne RGB camera. The flight pattern 

accurately defines the position of the UAV as well as the aiming of the camera. The flight path of the 

UAV is selected to follow waypoints (WP) in a hemisphere and the angle and heading of the 

spectrometer is set to continuously point towards the center of the hemisphere. In this manner the center 

of the hemisphere is measured from different viewing angles. 

To quickly compute such flight patterns for UAVs, we developed the software mAngle. It was written 

in the platform independent open source language “Processing” and is freely available as source code 

and compiled versions [32]. mAngle calculates the desired WP around a given center GPS coordinate. 

Placement of the WP are optimized for speed, as the UAV can quickly change horizontal position but 

requires more time to climb vertically to a different altitude. Flight pattern parameters including number 

of WP, initial angle, and hemisphere diameter can be set as desired (Figure 1). A designated flight pattern 

can be exported as a *.kml file to Google Earth (Google Inc., Mountain View, CA, USA) for 

visualization. The flight pattern can also be exported as a *.csv file, the format used by the Falcon-8 

flight planning software (AscTec Autopilot Control V1.68). Such a hemispheric flight pattern is also 

useful to acquire pictures around a center object of interest for 3D reconstruction. 

  



Remote Sens. 2015, 7 729 

 

 

Figure 1. Graphical user interface of the mAngle software with input fields for the desired 

waypoint pattern. By setting radius, number of desired waypoints as well as starting angle 

and other parameters, a distinct goniometric flight pattern can be generated. A draft of the 

waypoint pattern is visualized in the right box of the program window. 

2.2. Accuracy of the Unmanned Aerial Vehicle (UAV) Goniometer 

To assess the positioning and pointing accuracy of the UAV goniometer the spectrometer was 

replaced by a high resolution RGB camera (NEX 5n, Sony, 16 mm lens) mounted on a similar active 

stabilized gimbal. In this configuration the UAV was flown following the same waypoint pattern as was 

used for a multi-angular spectrometer flight. In operation, the airborne spectrometer is triggered three 

times at each WP. The RGB camera also acquired three digital images at each WP (84 in total).  

Eleven ground control points (GCPs) were distributed within the covered area and registered using a 

differential GPS (Topcon HiPer Pro, Topcon). 3D reconstruction software (Agisoft Photoscan,  

version 1.0.4) was used to structure the spatial arrangement of the scene and georeference it with the 

GCPs. This rendering was calculated with a resolution of 3.53 mm/pixel and an average error of  

1.46 pixels. The camera position and view angles for each individual image were exported and served 

as an estimator for the spatial accuracy of the UAV under operational conditions. 

2.3. Field Campaign 

Two multiangular flights (referred to as MERZ1, MERZ2) were conducted over farmland  

(Lat 50.93039, Lon 6.29689) on 18 June 2013 during the ESA-HyFlex campaign in Merzenhausen, 

Germany. The two flights were performed under cloud-free moderate wind (1.6–5.5 m/s) conditions 

with an interval of two hours—one hour before and one hour after solar noon (Table 1). At the time of 

the study, the field contained mature wheat, with fully developed but still green ears (Figure 2).  

The centroid of the hemispherical waypoint pattern was located within the field in an area of uniform 

cover, avoiding farm equipment tracks and trails. The center point was defined using aerial imagery, in 

order to avoid disturbing measurements by walking into the area of interest. The two datasets produced 
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in this campaign are freely available via SPECCHIO [33] at the server of the University of Zuerich under 

the campaign name “Merzen”. 

 

Figure 2. Wheat (Triticum aestivum) at the study site Merzenhausen, Germany, at the time 

of the multiangular flights, 18 June 2013. Ears were fully developed but still green. 

Table 1. Local time and duration with the corresponding sun angle parameters for the two 

hyperspectral flights performed over wheat field in Merzenhausen, Germany. 

Flight Start Time Duration Sun Azimuth Sun Elevation 

MERZ1 12:43 09 min 155° 61° 

MERZ2 14:47 11 min 213° 59° 

For these flights a hemisphere with a radius of 16 m was specified. The spectrometer has a FOV of 

12°. The areal coverage of each measurement is a function of sensor tilt angle, encompassing here 9 m2 

at nadir up to 30 m2 with 20° tilt. WPs around the hemisphere were set to cover vertical tilt angles of 90° 

(nadir), 66°, 43° and 20°, at 8 equally distributed heading angles, potentially producing a total of  

28 WPs. However, nadir measurements were only acquired at four different headings, which were then 

merged into a single WP, leading to a total of 25 WPs included in the analysis. In the following individual 

WPs will be identified as WP (tilt degree, heading degree). The spectrometer was activated three times 

at each WP to allow averaging and assessment of response variance. MERZ1 required a flight time of 

nine minutes, and MERZ2 required eleven minutes to consecutively measure the WP pattern. An 

additional UAV flight was conducted over the target using an RGB camera (NEX 5n, Sony Corporation, 

Minato, Japan, 16 mm lens) to image each WPs (Figure 3). 

2.4. Data Preprocessing 

Each spectrum captured from the UAV was transformed to reflectance using the reference spectra 

simultaneously measured by the ground spectrometer. Then, for each WP, the mean, standard deviation 

and coefficient of variation were calculated from the three measured spectra. All further analyses were 

based on the mean spectra. To analyze the data with regard to the tilt and heading angle, averaged values 

were calculated depending on the parameter of interest. Additionally, to analyze relative changes in 

reflectance, spectra from all measurement positions were normalized using the nadir spectra response 
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values [34]. The resulting normalized nadir anisotropy factor (ANIFband) produces a coefficient for each 

band, which individually adjusts (increases or decreases) reflectance factor values for each spectral band 

in relation to those recorded at nadir (Equation A). Thus, an ANIF factor of one describes an identical 

reflectance as recorded for a given band at nadir, while values above or below one describe higher or 

lower reflectance than the nadir value. ����௕௔�� = �݂݁�݁ܿ���ܿ݁ሺ����, ℎ݁�݀��݃ሻ௕௔���݂݁�݁ܿ���ܿ݁ሺ�����ሻ௕௔��  (A) 

 

Figure 3. Example Red-Green-Blue (RGB) images with tilt angles of 20°, 66° and 90°. 

These images were acquired at the Merzenhausen site at approximately 13:30 following a 

multiangular flight path identical to the spectrometer flights. The Field-Of-View (FOV) of 

the RGB camera is 73.7° × 53.1° (compared to the 12° FOV of the airborne spectrometer) 

and allows observing multiangular effects within a single image–the bright hotspot with the 

shadow of the unmanned aerial vehicle in the center, located in the lower left corner of the 

90° image is an example. 

2.5. Vegetation Indices 

Broadband vegetation indices (VIs) have an extensive history in remote sensing. Together with their 

hyperspectral counterparts they are still widely used in vegetation studies [35,36]. VIs commonly ratio  

near-infrared (NIR) and red band reflectance values in order to compensate for influences of different 

illumination conditions or background materials. To investigate the effect of the BRDF we examined three 

common Vis (Table 2) and calculated their values for all WPs. The Normalized Difference Vegetation 

Index (NDVI) uses two wavelengths in the red and NIR domain and has been widely used in a diverse 

range of applications. In our study we used the NDVI as proposed by Blackburn et al. [37]. As a second 

index we used the Transformed Chlorophyll Absorption in Reflectance Index (TCARI) developed by 

Haboudane et al. [38]. TCARI was developed to predict chlorophyll absorption and uses wavelengths in the 

green, red and NIR spectral regions. The last index used in this study is the Red Edge Inflection Point (REIP). 

Originally introduced by Guyot et al. [39] it characterizes the inflection in the spectral red edge by calculating 

the wavelength with maximum slope. It has been used to quantify leaf chlorophyll content [40]. 

Table 2. Vegetation indices used in this study and their underlying formulas. 

Index Formula Reference 

NDVI (R800 − R680)/(R800 + R680) Blackburn et al. 1998 

TCARI 3 × ((R700 – R760) – 0.2 × (R700 – R550) × (R700/R670)) Haboudane et al. 2002 

REIP 700 + 40 × (((R667 + R782)/2) – R702)/(R738 – R702)) Guyot et al. 1988 
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2.6. Data Visualization 

Several different visualizations or graphics were used in this study to focus on specific features under 

investigation. An effective method for assessing multiangular measurements includes the use of a 

segmented circular display known as a “polar plot”. The polar plot shown here in Figure 4 represents the 
UAV headings and sensor tilt angles within a circular matrix and illustrates the intensity of the 

measurement values by applying a color to each segment. To provide an useful overview of the dataset 

of this study and to include as well a comparison of the reflectance in the spectral domain, multiple plots 

are necessary. 

 

Figure 4. Reflectance of wheat at 480 nm measured at all 25 waypoints shown as a circular 

graph, or polar plot. Each “slice” represents a heading while each ring represents a sensor 
tilt angle. Spectral reflectance magnitude is color coded from low values of light blue, to 

high values in bright red. The angular position of the sun is depicted by  

the sun-symbol. In this figure no interpolation between waypoints is performed. 

2.7. Radiative Transfer Model Comparison 

To compare the multiangular UAV measurements to modeled data, the SCOPE radiative transfer 

model was tested. The model generates the spectrum of outgoing radiation in the viewing direction as a 

function of vegetation structure [22]. SCOPE input parameters were derived through comparison of the 

MERZ1 nadir spectrum with a lookup table of SCOPE spectra generated using a permutation of input 

parameters that were expected from wheat at the present phenological state. The resulting best-fit 

parameters are shown in Table 3. 
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Table 3. Soil-Canopy-Observation of Photosynthesis and the Energy balance model 

(SCOPE) input parameters: Leaf Area Index (LAI), Leaf Inclination (LIDFa), Chorophyll 

A/B (Cab) content in µg/cm2, Leaf Thickness Parameter (N), Leaf water equivalent layer 

(Cw) in cm, Dry matter content (Cdm) in g/cm2, Senescent material fraction (Cs), Variation 

in leaf inclination (LIDFb). Default values were used for all other SCOPE input parameters. 

Fitted Parameters Constant Parameters 

LAI LIDFa Cab N Cw Cdm Cs LIDFb 

3.5 −0.35 95 1.5 0.004 0.005 0.15 −0.15 

Using the input parameters above, the angular module of SCOPE was run to estimate the reflectance 

spectra at identical angles as those measured with the UAV goniometer. Sun azimuth and zenith angles 

were set to match the values present at the time of the MERZ1 measurements. 

3. Results 

In this section we first present the results of the accuracy assessment of the UAV goniometer.  

We then summarize the results of the analysis of the MERZ1 dataset and the influence of the BRDF on 

the full hyperspectral data as well as on the vegetation indices. Then the BRDF effects of MERZ1 are 

compared to the MERZ2 dataset. Finally, we compare the data derived from the UAV goniometer with 

results of the SCOPE radiative transfer model. 

3.1. Accuracy Assessment of the Unmanned Aerial Vehicle (UAV) Goniometer 

Table 4 shows the deviation of the UAVs actual position from the planned position. Definitions of 

altitude and position in X and Y dimensions are commonly accepted. However, to describe the functions 

of vehicle and sensor heading and tilt angle, several different definitions exist. Figure 5 shows how 

heading and tilt angles were used in this study with the UAV and its spectrometer system. The average 

deviation in heading and tilt may differ slightly from the actual UAV spectrometer pointing error, as a 

small error may have been introduced during the process of replacing the spectrometer with the RGB 

camera in the gimbal mount using a tripod screw. 

Table 4. Accuracy of the unmanned aerial vehicle (UAV) heading and spatial positioning 

calculated by structure from motion using 75 high-resolution images. Nine images were 

unusable due to motion induced “blur” and excluded from processing. Heading and tilt 
columns represent the deviation of the cameras actual pointing direction to the programmed 

angle. Altitude, X- and Y-position describe the deviation of the UAVs position as calculated 

from the differential-Global-Positioning-System ground-referenced structure from motion 

approach compared to the programmed waypoints. 

Deviation of: Heading (°) Camera Tilt (°) Altitude (m) Position X (m) Position Y (m) 

Average 0.11 6.07 0.03 −1.15 −2.22 

SD 8.67 1.22 0.70 0.68 0.82 

Max 26.20 9.74 1.44 0.67 −0.39 

Min −17.99 3.68 −1.09 −2.79 −4.60 
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Movements of the airborne platform cause slight variations in the footprint of the spectrometer and 

introduce minor differences in the individual measurements at each waypoint. Figure 6 shows the 

average coefficient of variation (CV) of the spectral measurements acquired at all WP during the MERZ1 

flight. CV values within the blue and red regions of the spectrum are between 5% and 6%; in the green 

portion the value is approximately 4%. The CV in the NIR is less than 1.5%. 

 

Figure 5. Camera orientation: Heading (azimuth) of the spectral measurements expressed in 

angular degrees from north. To assume a view angle of 0°, the Unmanned Aerial Vehicle 

(UAV) will hover north of the centeroid and aim the spectrometer at 180°. Tilt: 0° = horizontal 

and 90° = nadir view. 

 

Figure 6. The spectrometer of the unmanned aerial vehicle goniometer was triggered three 

times at each waypoint. This figure shows the overall variation of the three spectra measured 

at each waypoint as average for the MERZ1 dataset. 
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3.2. Full Spectrum Analysis 

In Figure 7 the ANIF for the MERZ1 dataset is shown for a tilt of 66°. All spectral measurements 

acquired at headings between 90° and 225° exceed nadir values, with the largest increases seen in 

measurements taken within the blue spectral region. When heading parameters are examined, the 180° 

heading shows an increase of approximately 95% (the highest). The 90° measurement shows the lowest 

increase at approximately 25%. Deviation for these headings show a gradual decrease until the red edge 

position where values for 135°, 180° and 225° headings drop to range between 25% and 30%. For all these 

WP, the deviation decreases in the green spectral region. At headings of 0°, 45°, 270° and 315° reflectance 

measurements are 10% to 30% lower than nadir within the blue spectra. Until the red edge spectral region 

is reached, reflectance values decrease from 20% to 40% below the nadir measurement. In the red edge 

region the reflectance increases to approximately 10% above that of the nadir measurement. 

 

Figure 7. To present the angular influence at different waypoints on the full spectrum the 

normalized nadir anisotropy factor (ANIF) of 66° tilt for all headings at MERZ1 from 400 

to 823 nm is plotted as example. By using the ANIF notation spectral deviation of single 

waypoints is referred to the nadir waypoint and thus can be relatively compared. A waypoint 

with the same spectrum as nadir would remain at an ANIF of 1 throughout all wavelengths. 

The legend on the right represents the color of each ANIF curve and depicts their respective 

heading angle. The azimuth position of the sun (155°) is visualized by the sun symbol. 

This shape of the ANIF which was observed for the 66° sensor tilt angle can also be found for the 

other tilt angles used in the overflights. Figure 8 shows the ANIF for five regions of the spectrum for all 

investigated tilt and heading angles. For all wavelengths the ANIF decreases with increase of the tilt 

angle. Only for most of the VIS region with heading from 180° to 270° the ANIF is smaller in the 43° 

tilt than in the 66°. On average the reflectance of the 135° and 180° show the highest increase from nadir 

with 191% and 181%, respectively. Lower reflectance values than in nadir are seen in the VIS spectral 

region with headings of 0°, 45°, 270° and 315°. At 0° and 315° even the average of all tilt reflection 

values is lower than in nadir. 
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Figure 8. Normalized nadir anisotropy factor (ANIF) values for five characteristic 

wavelengths in the blue (480 nm), green (550 nm), red (680 nm) spectral bands;  

red-edge-inflection-point (REIP) (733 nm) and near-infrared (NIR) (780 nm) for 20°, 43° 

and 66° tilt, as well as all headings together with their average values. Values greater than 1  

(blue bar) represent spectral reflectance measurements greater than nadir; values  

below 1 (red bar) represent measurements less than nadir. The suns azimuth was 155° and 

elevation 66°. 

3.3. Vegetation Indices 

NDVI values range from 0.83 (WP 20°, 135°) to 0.95 (WP 43°, 0°), compared to the nadir value of 

0.89. Values decrease for each tilt angle as the 135° heading is approached and generally increase toward 

the 0° heading, with an increase seen only at the WP (43°, 270°). On average, the 43° tilt yields the 

highest NDVI value with 0.92 (within a range of 0.86–0.95) while the 20° and 66° tilt parameters show 

an average NDVI of 0.9 (0.83–0.94, and 0.86–0.94, respectively). Relative differences from nadir NDVI 

range between −6.5% and 6.2%. The relative mean absolute difference is 3.3 percent. The 90° and the 

225° headings show the smallest differences from the nadir NDVI. Aside from the 135° and 180° 

headings, all WPs return higher NDVI values when compared with the nadir position. The tilt angle has 

only a minor influence on the relative difference (Figure 9). 

TCARI values vary with UAV heading, ranging from 0.04 (WP 66°, 315°) to 0.116 (WP 20°, 135°), 

against a nadir value of 0.046. This pattern is opposite as observed for NDVI. Vehicle heading values 

vary systematically, increasing (for all tilt angles) towards 135° and decreasing as the 0° heading is 

approached. As seen for the NDVI, WP (43°, 270°) poses an exception with a lower TCARI value. 

Sensor tilt parameter variability can be briefly summarized. The 20° tilt setting shows the highest 

mean TCARI value of 0.078 (within a range of 0.06–0.116); the 43° setting yields a mean TCARI  

value of 0.062 (with a range of 0.046–0.090) and the 66° tilt shows mean TCARI of 0.053  

(range 0.038–0.074). In relative terms, the differences from the nadir TCARI range from −16.8% to 
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153.2%. The relative mean absolute difference is 40%. Most WPs greatly surpass the nadir TCARI 

value; at a sensor tilt of 20° no TCARI value is smaller than the nadir value at 43° only a single value is 

smaller and at tilt = 66° four values are smaller than the nadir value. The tilt parameter is shown to have 

a significant influence on the relative difference. From 20° to 60° the relative mean absolute difference 

decreases from 69% to 25% (Figure 9 bottom). 

 

Figure 9. (Top) Absolute values for the NDVI, TCARI and REIP compared to the nadir value 

(center of the polar plot) for all waypoints of MERZ1. The range of values is chosen with nadir 

as center value, respectively, for each plot. Figure 5 details the angular arrangement depicted 

here. (Bottom) Relative differences for NDVI and TCARI compared to the nadir value. 

The Red Edge Inflection Point (REIP) was also analyzed in this study (Figure 9). For nadir  

spectral measurements the REIP is approximately 733 nm. WP (20°, 135°) shows the lowest REIP 

(approximately 729 nm) while WP (66°, 0°) shows the highest REIP (735 nm). The average REIP value 

was slightly lower than the nadir value with 732.5 nm. At all WPs, measurements acquired at a heading 

of 135° show the lowest values; these increase towards the 0° heading. All the WPs measured with a sensor 

tilt angle of 20° surpass the nadir REIP. Measurements acquired at tilts of 43° and 66° produced two, 

respectively, 4 values that are smaller than the nadir value. The overall mean absolute difference was less 

than 0.2%, decreasing from approximately 0.3% at 20° tilt to 0.15% at 66° tilt. 

3.4. Diurnal Variations of Angular Effects 

Ideal clear weather conditions were present over the Merzenhausen study area throughout  

18 June 2013. Sequencing a pair of overflights enabled us to compare these two datasets and analyze 

how the change in sun illumination affects multiangular sensor response (Figure 10). Nadir 

measurements remained consistent during the day. However, significant changes in target response 
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(including hotspot and backscattering features) were observed at lower sensor tilt angles, dependent on sun 

position (Table 1). These features show distinct spectral differences within the five different wavelengths 

(Figures 7 and 8). The hotspot feature is clearly visible and is characterized by higher spectral reflectance 

values within the shorter blue and green wavelengths. These spectral differences are less apparent in the 

infrared wavelengths. 

Figure 10 shows the angular distribution of reflectance in five selected wavelengths of interest: 480 nm 

(blue), 550 nm (green), 680 nm (red), 733 nm (Red-REIP) and 780 nm (NIR). All bands show the 

directional effect of increased reflectance values as heading angles approach 180°, and decreased 

reflectance with the opposite orientation. This effect is most pronounced in the shorter spectral wavelengths 

(up to 680 nm) and is less characteristic in the NIR region. Angular distribution differs in MERZ1 and 

MERZ2. Elevated reflectance values cluster between 135° and 180° headings in the MERZ1 dataset, while 

in MERZ2 this phenomena is oriented to heading angles between 180° and 225°. 

 

Figure 10. Reflection of MERZ1 and MERZ2 for 5 wavelengths of interest. The color 

legend of reflection for each horizontal pair was scaled to the occurring reflectance 

wavelength range. Figure 5 details the angular arrangement depicted here. Waypoint (20°, 

225°) is missing in MERZ2 and coded in this graphic in grey. 
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3.5. Flying Goniometer vs. Radiative Transfer Model  

Results of the comparison between the scope model and the flying spectrometer measurements are 

shown in Figure 11 for exemplary wavelengths of 550 nm and 780 nm. 

Correlation of angular measurements with modeled data show clear differences in wavelengths and 

tilt angles. To test this hypothesis, ANIF values were calculated for both datasets. Our comparison 

included sensor tilt angles of 66°, 43° and 20° and wavelengths at 480 nm, 570 nm, 680 nm and  

750 nm. Correlation statistics (r2) were calculated for the linear regression of UAV-ANIF against 

SCOPE-ANIF. While SCOPE produces results similar to UAV measurements at high tilt angles, r2 is 

low at the 20° angle (Table 5). 

 

Figure 11. Comparison of modeled angular reflectance Soil-Canopy-Observation of 

Photosynthesis and the Energy balance (SCOPE) with the unmanned aerial vehicle (UAV) 

measured values for MERZ1. Shown are two exemplary wavelengths, which are scaled to 

the present range of values. 

Table 5. Correlation of modeled data with measured data for different tilt angles. 

Tilt 20° 43° 66° 

Correlation (r2) 0.2504 0.7484 0.8819 

In the spectral domain the maximum UAV reflectance/SCOPE model r2 was found in the NIR  

(750 nm); the lowest correlation value was derived for the 680 nm spectral wavelength (Table 6). 

Table 6. Correlation of modeled data with measured data for all tilt angles at  

specific wavelengths. 

Wavelength 480 nm 570 nm 680 nm 750 nm 

Correlation (r2) 0.4298 0.5685 0.3605 0.815 
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4. Discussion 

In this study, a new goniometer approach for large-scale measurement of BRDF is presented and an 

initial hyperspectral dataset is analyzed. By deploying the spectrometer on a rotary-wing UAV there is 

no longer a need to mount the instrument on large ground-based positioning structures. The large FOV 

has the advantage of averaging out small variations, which are part of the canopies variability. As the 

device is flying, surfaces can be investigated with desired measurement patterns even over areas 

inaccessible by land and without disturbing the eventual surface cover like vegetation. Until now these 

areas had to be approached using satellites or by modeling [41]. In remote sensing applications, where 

goniometers cannot be deployed, angular effects are currently minimized or correction approaches are 

applied: Field-spectrometer measurements are carried out around the same time (noon) and from nadir 

view [5]. Thus the sun-object-sensor geometry is almost stable. For UAV-, air- and spaceborne systems 

a number of correction methods have been developed. These include the use of image statistic based 

methods for flat terrain [42] and physical or semi-empirical models such as for the processing of MODIS 

data [43]. Lately, a more generic BRDF correction method was introduced, which builds on a surface 

cover characterization [44]. Since physical and empirical models are based on the current knowledge 

and BRDF effects depend on many factors, the flying goniometer could help to evaluate and eventually 

improve the correction methods. 

We assessed the pointing accuracy of the UAV system and found it to be of acceptable accuracy for 

a GPS-aided flying system, although it is still not as precise as ground-based instrumentation [34,45]. 

Parameters of altitude, X/Y position and sensor tilt angle are highly accurate within the navigation grade 

GPS specifications. Additionally, the remounting of the RGB camera described in Section 2.2 might 

have introduced an artificial error. The relative position as described by the low standard deviation 

demonstrates the precision of the system (Table 4). However, the vehicle heading parameters are less 

accurate. Relative heading inaccuracies may be ascribed to the Falcon-8 flight control system, which 

does not make use of a magnetic compass. If operated in an environment with a strong magnetic field, a 

compass system could produce serious errors in vehicle position and heading readings and cause 

catastrophic UAV failures. However, in the case of the UAV goniometer, the accuracy would improve 

through the use of a compass system for heading correction. 

Additional sources of error in the platform/sensor system are found in gimbal calibration in the tilt 

axis and during the process of physically mounting the spectrometer on the gimbal. Inconsistencies in 

either one or both of these procedures will lead to pointing offsets. The system could also be improved 

by deploying the spectrometer and a RGB camera in tandem, triggering both simultaneously. Camera 

and spectrometer could be aligned and calibrated in the laboratory to determine the spectrometer field 

of view in the camera image. The camera imagery could then be utilized to accurately calculate the 

position and pointing of the UAV using the structure from motion approach used in this study to evaluate 

the pointing accuracy (Section 2.2). 

The UAV system in combination with the “mAngle” software enables users to plan, setup and 
perform a multiangular flight around a center point of interest efficiently and quickly (in less than  

30 min, 10 min for the measurement flight itself). In addition, the UAV and spectrometer system is 

deployed in a single, easily portable package, making it highly mobile. Since the completion of this 

study, the system has been deployed at a number of other sites in Europe and New Zealand. 
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The large radius and thus big footprint of the UAV ensures a good averaging over the fine structure 

of the vegetation (e.g., leaves, shaded areas, stems). This was assessed by calculating standard deviation 

of multiple spectra at the same waypoint (Figure 6) and shows good agreement of consecutive spectra 

taken at the same WP. If smaller footprints are desired the flying radius can be reduced or the 

spectrometer can be equipped with a fore optic with a narrower FOV. 

The results of the multiangular reflectance measurements acquired in this study are consistent with 

previous measurements characterizing common angular reflectance distribution over vegetation [46]. 

The common hotspot feature is clearly visible in the data and changes over time with sun angle.  

High levels of reflectance were found at the rather low tilt angle of 20° in the heading of the hotspot.  

As the tilt angle is lower than the hotspot feature, these high levels might be introduced by a viewing 

angle, whereas only the very top of the canopy is seen by the sensor (Figure 9). Along with the results 

of our accuracy assessment of UAV imagery pointing and of the spectral domain response, we are  

confident that we have utilized a novel platform-sensor combination to acquire a valid and valuable  

hyperspectral dataset. 

The complete spectrum analysis emphasizes that BRDF effects are both wavelength and angle 

dependent. Around the hot spot the measured reflection is higher than in nadir, in both in the VIS and 

NIR part of the spectrum. For WPs towards the dark spot the reflectance is lower in most parts of the 

VIS and higher in the NIR. Overall, lower sensor tilt angles increase reflectance compared with the nadir 

position. While the NDVI reduces angular effects quite efficiently, these effects were a significant factor 

in TCARI. This distinction can be ascribed primarily to the differing formula structures of the two VIs. 

For the NDVI, the reflectance in the NIR dominates the nominator of the formula. Thus the differences 

due to the observation angle influence the index nominator and denominator in similar ways and the 

entire ratio only slightly changes. The TCARI formula does not provide such normalization. The 

reflection factors at the wavelength of the first part of the term (R700–R760) are differently influenced 

by the angle (Figure 8) and introduce strong fluctuations to the VI. Minor influences are introduced by 

the second term. The first part (R700–R550) of the second term is not strongly influenced, since both 

reflection factors of the wavelengths are affected similarly by the angle. However, the second component 

of TCARI again uses the R700 and R760 band ratio. This increases the variations in the second term of 

the formula caused by the differing observation angles. In combination, these factors produce the 

significant differences (up to 150 percent), which are seen in the TCARI values. Differing observation 

angles cause only minor fluctuations in REIP values. As seen with NDVI, formula deviation normalizes 

most of the variation in REIP values. However, it must be emphasized that, as for most VIs, the practical 

dynamic range of the REIP is narrower than what is theoretically possible. Thus even the small 

observation angle variances suggested by the REIPs results could lead to errors in interpreting this index 

if BRDF effects are disregarded. Other studies have been carried out for other VIs or vegetation  

cover [47–50] support the angular dependency found in this study. 

Radiative transfer models show significant potential as tools for correcting angular influences 

introduced by solar effects or imaging sensors. They are based on existing theory of radiative transfer 

and plant physiology [22]. So far, real world multiangular data for various vegetation covers are rare and 

thus, a rigorous validation of the model is challenging. With the approach described in this study datasets 

for the validation and improvement of those methods may be generated. However, it has to be taken into 

account that SCOPE does not account for certain sensor variables such as FOV and FWHM. Due to the 
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footprint of the spectrometer, light reflected at different angles by the canopy is collected by the sensor. 

Thus, this might be one source for the increasing discrepancies towards low tilt angles observed in this 

study. Following studies could minimize this effect by using spectrometer fore optics with narrower 

FOV. A careful investigation on the difference between modeled and measured spectra go beyond the 

scope of this study but should be investigated in the future. 

Based on this study, we strongly encourage the extensive compilation of multiangular datasets for 

various vegetation cover types and environments. A more sophisticated knowledge base regarding 

vegetation angular effects could also enable researchers to derive accurate complementary information 

through the use of angular measurements that capture vegetation features not typically visible from a 

nadir perspective [12]. Additionally, these results could help to understand influences of BRDF effects 

in imaging spectroscopy. Typically, current hyperspectral (image-frame and push broom) imaging 

systems as well as RGB systems have a FOV of up to 50° [35]. Thus, pixels captured towards the edges 

of the image have tilt angles of about 66°. As shown here, angular effects have a significant contribution 

to these observation angles and need to be taken into account during analysis. To improve the correction 

of these effects consecutive studies should examine tilt angles found in the FOV of common UAV and 

airborne sensors. This is foreseen within a number of parallel research activities that are ongoing and 

focused on improving models and collecting spectral databases. These include COST Action ES0903 

EUROSPEC, COST Action ES1309 OPTIMISE, and the SPECCHIO online spectral database [33]. 

These projects could also serve as a basis for enhanced training of models leading to highly accurate 

correction methods. 

5. Conclusions 

This study presents a novel hyperspectral (338 to 823 nm) goniometer system based on an unmanned 

aerial vehicle (UAV) and specifically developed software. The approach allows measurements over 

inaccessible areas and without disturbing the surface cover. Using the system in an exemplary field 

experiment, we test the positioning and spectral accuracy (VIS < 6% CV, NIR < 1.5% CV) While a larger 

footprint can be analyzed, this UAV system does not provide the same absolute pointing accuracy as 

common ground based goniometers. With the presented field data we highlight the influence of angular 

effects on the spectrum (0.6 to 3 fold relative difference) and vegetation indices (up to more than 1.5 

fold relative difference) and thus the necessity for correction of angular effects in remote sensing data. 

Radiative transfer models like SCOPE represent an opportunity for angular corrections, but differ 

especially for low tilt angles from the UAV goniometer data. The fast and flexible UAV goniometer 

contributes a technique to assess angular effects over any given land cover with low efforts. Based on 

this assessment of relevant reflection parameters a new way of UAV-driven plant parameter retrieval by 

the inclusion of oblique angels could be developed. Finally, we hope to contribute additional 

understanding to the broad and complex topic of BRDF in vegetation. 
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