
A N A LY T I C A N D L E A R N E D F O O T S T E P C O N T R O L
F O R R O B U S T B I P E D A L WA L K I N G

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

marcell missura

aus

Eger, Ungarn

Bonn, März 2015

Angefertigt mit Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der

Rheinischen Friedrich-Wilhelms-Universität Bonn

1 . gutachter: Prof. Dr. Sven Behnke
2 . gutachter: Prof. Dr. Maren Bennewitz

tag der promotion: 12.02.2016

erscheinungsjahr: 2016

Mamának

*31.03.1958 – †16.03.2009

A B S T R A C T

Bipedal walking is a complex, balance-critical whole-body motion
with inherently unstable inverted pendulum-like dynamics. Strong
disturbances must be quickly responded to by altering the walking
motion and placing the next step in the right place at the right time.
Unfortunately, the high number of degrees of freedom of the hu-
manoid body makes the fast computation of well-placed steps a par-
ticularly challenging task. Sensor noise, imprecise actuation, and la-
tency in the sensomotoric feedback loop impose further challenges
when controlling real hardware.

This dissertation addresses these challenges and describes a method
of generating a robust walking motion for bipedal robots. Fast mod-
ification of footstep placement and timing allows agile control of the
walking velocity and the absorption of strong disturbances. In a di-
vide and conquer manner, the concepts of motion and balance are
solved separately from each other, and consolidated in a way that a
low-dimensional balance controller controls the timing and the foot-
step locations of a high-dimensional motion generator. Central pat-
tern generated oscillatory motion signals are used for the synthesis
of an open-loop stable walk on flat ground, which lacks the ability
to respond to disturbances due to the absence of feedback. The Cen-
tral Pattern Generator exhibits a low-dimensional parameter set to
influence the timing and the landing coordinates of the swing foot.

For balance control, a simple inverted pendulum-based physical
model is used to represent the principal dynamics of walking. The
model is robust to disturbances in a way that it returns to an ideal
trajectory from a wide range of initial conditions by employing a com-
bination of Zero Moment Point control, step timing, and foot place-
ment strategies. The simulation of the model and its controller output
are computed efficiently in closed form, supporting high-frequency
balance control at the cost of an insignificant computational load. Ad-
ditionally, the sagittal step size produced by the controller can be
trained online during walking with a novel, gradient descent-based
machine learning method. While the analytic controller forms the
core of reliable walking, the trained sagittal step size complements
the analytic controller in order to improve the overall walking per-
formance. The balanced whole-body walking motion arises by using
the footstep coordinates and the step timing predicted by the low-
dimensional model as control input for the Central Pattern Generator.
Real robot experiments are presented as evidence for disturbance-
resistant, omnidirectional gait control, with arguably the strongest
push-recovery capabilities to date.

v

Z U S A M M E N FA S S U N G

Der zweibeinige Gang ist eine komplexe, balancekritische Ganzkör-
perbewegung mit der inherent instabilen Dynamik eines inversen
Pendels. Starke Störungen erfordern eine schnelle Reaktion mit einem
Schritt zum richtigen Zeitpunkt an die richtige Stelle. Leider stellt
die hohe Anzahl der Freiheitsgrade eines humanoiden Roboters eine
besondere Herausforderung für die schnelle Erzeugung von gut plat-
zierten Schritten dar. Sensorrauschen, unpräzise Motorik und Latenz
in der sensomotorischen Schleife erschweren im Betrieb auf realer
Hardware diese Aufgabe zusätzlich.

In dieser Dissertation wird eine Methode vorgestellt, die eine ro-
buste Gehbewegung für humanoide Roboter erzeugt. Schnelle Mo-
difikation des Timings und der Schrittkoordinaten ermöglichen eine
agile Steuerung der Fortbewegungsgeschwindigkeit, sowie die Rück-
gewinnung der Stabilität nach starken Störungen. Im Sinne einer “Di-
vide and Conquer” Strategie werden die Körperbewegung und die
Balanceregelung als getrennte Konzepte gelöst und zusammengeführt,
indem ein niedrigdimensionales Balancemodell die Steuerung eines
Bewegungsgenerators für Schrittbewegungen mittels Schrittkoordi-
naten und Timing übernimmt. Für die Synthese einer Gehbewegung
werden mit einem zentralen Mustergenerator periodische Bewegungs-
signale erzeugt, die auch ohne geschlossenen Regelkreis auf ebenem
Untergrund stabil sind, aber nicht auf äußere Störungen reagieren
können.

Für die Balanceregelung wird ein einfaches physikales Modell mit
der Dynamik eines inversen Pendels verwendet. Das Modell reagiert
robust auf Störungen indem es durch eine Kombination aus Druck-
punktregelung, Timing und Schrittplatzierung aus einer Vielzahl von
instabilen Zuständen zu einer idealen Trajektorie zurückkehrt. Die
Simulation sowie die Ausgangsgrößen des physikalischen Modells
werden dabei effizient in geschlossener Form berechnet. Weiterhin
kommt eine neuartige maschinelle Lernmethode zum Einsatz, die
mittels einer einfachen Modellannahme einen Gradienten schätzt und
die sagittale Schrittgröße online während der Gehbewegung trainiert.
Während die analytische Balanceregelung eine stabile Gehbewegung
initialisert, kann das Lernverfahren durch eine gelernte Differenz zu
der Ausgabegröße der analytischen Regelung die Stabilität der Geh-
bewegung zusätzlich verbessern. Die balancierte Ganzkörperbewe-
gung entsteht indem die mit dem Punktmassemodell vorhergesagten
Schrittkoordinaten und Zeitpunkte als Steuereingaben für den Muster-
generator verwendet werden. Experimente mit realen Robotern bele-
gen, dass die analytisch berechnete und online trainierte Schrittrege-
lung eine störungsresistente Gehbewegung erzeugt.

vi

P U B L I C AT I O N S

The following publications contributed to this thesis:

• Development of a 2D Linear Inverted Pendulum Model-based
gait controller that incorporates conceptual determinants of walk-
ing in analytic form. The controller computes Zero Moment
Point, step timing, and footstep location parameters that return
the center of mass from a wide range of initial states to an ideal
trajectory for a desired walking pace. The parameters are com-
puted in closed form, which allows for a fast controller response
in the sub-millisecond range.

Missura and Behnke [2011]
Alcaraz-Jiménez et al. [2012]
Missura and Behnke [2013b]

• Real hardware evaluation of the analytic balance model in com-
bination with a central pattern generated gait. The step size and
step timing outputs of the balance model are transformed into
control signals of a central pattern generator to realize targeted
and timed steps. The combination of the two technologies pro-
duces a robust omnidirectional walk that challenges the state of
the art.

Missura and Behnke [2013a]
Missura and Behnke [2014b]

• Development of an online machine learning concept that learns
a foot placement controller during walking. The learning pro-
cess addresses the trade-off between stepping onto a desired lo-
cation and maintaining balance. Using a simple model assump-
tion, a gradient is computed that allows for fast learning from
errors measured at the end of each step. The publications in-
clude experiments with a simulated robot. Fast learning from
the experience of failed steps during falling, and strong push re-
covery capabilities have been achieved with a real bipedal robot
using this method.

Missura and Behnke [2014a]
Missura et al. [2014]

vii

A huge gap exists between what we know is possible with
today’s machines and what we have so far been able to finish.

— Donald Knuth

A C K N O W L E D G M E N T S

My deepest gratitude goes to my wife Olana, without whom all of
this would not have been possible, and would not make sense. I thank
my father, Béla Missura, who taught me the meaning of uncondi-
tional support. I thank Hannes Schulz, Jens Behley, and Philipp All-
geuer for insightful discussions, motivation, and for helping out with
countless cumbersome little things. I am grateful to Michael Schreiber
for building these excellent humanoid robots and actively supporting
my research with prompt no questions asked maintenance work that
made it possible to go to the limits of these machines and a little bit
beyond. I thank Prof. Dr. Sven Behnke for the opportunity to study
bipedal walking in his laboratory and for supporting my research
with know-how and reliable financial support.

I am also grateful for a number of freely available software tools
that are the fruits of voluntary work by people all around the world.
Among these are the GNU C++ compiler, the Eclipse IDE, the CVS
and SVN version control systems, the Armadillo linear algebra li-
brary, the LWPR library for incremental learning, the Qt framework,
the libQGLViewer library, OpenGL, OpenOffice, gnuplot, and the Bul-
let Physics Engine.

ix

C O N T E N T S

1 introduction 1

2 related work 5

2.1 Analytic Bipedal Walking 5

2.2 Learned Bipedal Walking 8

3 the robots 11

4 overview 17

5 principles of bipedal walking 19

6 step motion generator 23

6.1 The Layers of the Motion Generator 25

6.2 Abstract Kinematic Interface 26

6.3 Motion Pattern . 29

6.3.1 Halt Position . 30

6.3.2 Leg Lifting . 31

6.3.3 Leg Swing . 31

6.3.4 Lateral Hip Swing 33

6.3.5 Leaning . 33

6.3.6 Complete Leg Pattern 34

6.3.7 Arm Motion . 35

6.3.8 Compliant Actuation 35

6.4 Control Interface . 38

6.4.1 Step Size Conversion 38

6.4.2 Step Timing . 42

6.5 Experiments . 43

6.5.1 Video Demonstration 43

6.5.2 Center of Mass and Compliant Actuation 44

6.5.3 Stability Analysis 44

6.6 Discussion . 48

7 state estimation 51

7.1 Trunk Attitude Estimation 52

7.2 Tilted Whole-Body Pose Reconstruction 53

7.3 Center of Mass State Estimation 55

7.4 Support Foot Estimation 55

7.5 Experiments . 56

7.5.1 Trunk Attitude Estimation 56

7.5.2 Center of Mass State Estimation 57

7.6 Discussion . 59

xi

xii contents

8 analytic footstep control 61

8.1 The Linear Inverted Pendulum Model 63

8.1.1 One-dimensional Model 63

8.1.2 Two-dimensional Model 65

8.2 Predictive Filter . 66

8.3 Reference Trajectory Generation 71

8.4 Balance Control . 74

8.4.1 Lateral Zero Moment Point Offset 75

8.4.2 Step Time . 76

8.4.3 Sagittal Zero Moment Point Offset 78

8.4.4 Footstep Location 79

8.5 Experiments . 82

8.5.1 Walk and Push 82

8.5.2 Technology Demonstration 83

8.5.3 Push Recovery 84

8.6 Discussion . 87

9 learned footstep control 89

9.1 Machine Learning Framework 91

9.2 Learning the Sagittal Step Size 93

9.3 Experiments . 95

9.3.1 Evaluation of Reference Tracking 96

9.3.2 Evaluation of Disturbance Rejection 97

9.3.3 Evaluation of Stability 98

9.3.4 Push Recovery Learning with a real Robot . . . 99

9.4 Discussion . 102

10 conclusion 105

bibliography 109

L I S T O F F I G U R E S

Figure 3.1 Robot Soccer . 11

Figure 3.2 The Robots . 13

Figure 3.3 Parallel Kinematics 14

Figure 3.4 Knee Elasticity 14

Figure 3.5 The Kinematic Chain 15

Figure 4.1 Overview of the Capture Step Framework . . . 17

Figure 5.1 Stick Diagrams of a Compass Gait 19

Figure 6.1 The Motion Generator Component 23

Figure 6.2 Layers of the NimbRo Gait Generator 25

Figure 6.3 The Leg Interface 26

Figure 6.4 The Leg Angle Parameter 27

Figure 6.5 The Zero Pose 28

Figure 6.6 The Motion Patterns of the Gait Generator . . 30

Figure 6.7 Joint Motion with Compliant Actuation 36

Figure 6.8 Step Size versus Leg Swing Amplitude 39

Figure 6.9 Step Size Conversion 40

Figure 6.10 Center of Mass Height and Leg Motion Patterns 44

Figure 6.11 Phase Space Vector Fields Open-Loop 46

Figure 6.12 Push-Synchronized Trunk Angle Open-Loop . 47

Figure 7.1 The State Estimation Component 51

Figure 7.2 Kinematic Models 54

Figure 7.3 Evaluation of the Attitude Estimation 56

Figure 7.4 Center of Mass Motion Data 58

Figure 8.1 The Analytic Footstep Control Component . . 61

Figure 8.2 The Linear Inverted Pendulum Model 64

Figure 8.3 The Predictive Filter 66

Figure 8.4 Effects of the Predictive Filter 70

Figure 8.5 The Two-Dimensional Reference Trajectory . . 71

Figure 8.6 The Concept of the Balance Controller 74

Figure 8.7 Step Time Computation 77

Figure 8.8 Data Streams of the Footstep Controller 82

Figure 8.9 Push Recovery with Bipedal Robot Dynaped . 83

Figure 8.10 Phase Space Vector Fields Analytic 85

Figure 8.11 Push-Synchronized Trunk Angle Analytic . . . 86

Figure 9.1 The Learning Footstep Control Component . . 89

Figure 9.2 The Pendulum-Cart Model 94

Figure 9.3 Online Learned Reference Tracking 96

Figure 9.4 Online Learned Disturbance Rejection 97

Figure 9.5 Probability to Fall versus the Push Impulse . . 98

Figure 9.6 Experimental Setup for Push Recovery Learning 99

Figure 9.7 Push Recovery Learning with Copedo 99

xiii

Figure 9.8 Data Streams of a Learning Experiment 100

Figure 9.9 Evolution of the Function Approximator 101

L I S T O F TA B L E S

Table 6.1 Humanoid prototypes of the robot soccer team
NimbRo. 24

Table 6.2 An annotated set of configuration parameters
for the Central Pattern Generator. 37

L I S T O F A L G O R I T H M S

Algorithm 8.1 Footstep Control 62

Algorithm 8.2 LIPM2D Predict 65

Algorithm 8.3 Predictive Filter 67

Algorithm 8.4 ForwardMX . 67

Algorithm 8.5 Step . 67

L I S T O F V I D E O S

Video 1 Dynaped Walking with Capture Steps (short)
http://youtu.be/PoTBWV1mOlY

Video 2 Dynaped Walking with Capture Steps (long)
http://youtu.be/WRMMx6dkwgM

Video 3 Lateral Sensitivity
http://youtu.be/l9uvBD9zmsw

Video 4 The NimbRo Gait
http://youtu.be/RCg-9gSDLE

Video 5 Dynaped with Small Feet
http://youtu.be/GU53yomxrxE

Video 6 Dynaped Walking Outside
http://youtu.be/ssGnF6lDZ44

Video 7 Push Recovery Learning with Copedo
http://youtu.be/qeWjy36gCBU

xiv

http://youtu.be/PoTBWV1mOlY
http://youtu.be/WRMMx6dkwgM
http://youtu.be/l9uvBD9zmsw
http://youtu.be/RCg-9gSDLE
http://youtu.be/GU53yomxrxE
http://youtu.be/ssGnF6lDZ44
http://youtu.be/qeWjy36gCBU

acronyms xv

A C R O N Y M S

CoM Center of Mass

CoP Center of Pressure

CPG Central Pattern Generator

LIPM Linear Inverted Pendulum Model

IMU Inertial Measurement Unit

ZMP Zero Moment Point

1
I N T R O D U C T I O N

Bipedal walking is an energy efficient and versatile means of locomo-
tion that has been used by vertebrates for over 200 million years. The Bipedal locomotion

excels in energy
efficiency and
versatility.

principle of vaulting over a stiff support leg combined with a ballistic
motion of the swing leg results in an almost effortless way of trans-
portation, suitable for covering large distances. Moreover, bipeds, in
particular humans, are adept in a diversity of terrains. They can walk
over slippery, muddy, and rough terrain, leap over gaps, climb steep
structures, and swim in water. The key to truly mobile humanoid
robots that can move about freely in human environments, walk up
stairs, step over obstacles, and use vehicles that were designed to be
operated by a pair of legs, lies in the synthesis of the efficiency and
robustness of the natural human gait.

Unfortunately, two-legged robots are inherently unstable and rather
difficult to control. The principal dynamics of a biped is likened to an A bipedal gait is

difficult to control
due to its complexity
and inherent
instability.

inverted pendulum, which once disturbed, quickly diverges from the
upright position. The balance of a biped must be constantly main-
tained by stepping into the right place at the right time, and by using
the torso as a reaction mass. Strong disturbances necessitate a timely
response in order to act before the state of balance escalates beyond
capturability. At the same time, walking is a rather complex whole-
body motion. Excluding wrists, fingers, and the neck, typically a total
of twenty degrees of freedom in the legs and the arms are relevant for
the walking motion in a human-like kinematic chain. Consequently,
a high-dimensional motion signal needs to be generated, and it has
to be generated fast in order to be able to quickly absorb strong dis-
turbances. The application to real hardware imposes additional chal-
lenges. The limited computational power of embedded systems, sen-
sor noise, imprecise actuation, friction, backlash, and latency in the
sensorimotor control loop can severely degrade the performance of
a motion controller. It is no surprise that over the past decades, the
replication of a well-balanced human-like walk has emerged as one
of the most interesting challenges in robotics.

The widespread state of the art covers basic walking on a flat
surface without disturbances. Push recovery, walking on rough ter- The most successful

methods use a
low-dimensional
physical model to
control balance.

rain, and agile footstep control are active research topics. The dom-
inant strategy is to abstract from the complex body by represent-
ing it as a point mass with inverted pendulum dynamics. In most
cases, the mathematically tractable Linear Inverted Pendulum Model
is used to deduce controllers that steer and balance the pendulum
in a way that the Zero Moment Point—the assumed pivot point of

1

2 introduction

the inverted pendulum—stays within the boundaries of the support
polygon. The trajectory of the point mass model is then transformed
into a whole-body walking motion by mimicking the pendulum mo-
tion with the pelvis, connecting the pendulum base locations with
smooth swing foot trajectories in Cartesian space, and computing the
resulting motor commands using inverse kinematics. This approach
works to some extent, but has not yet achieved the versatility and
robustness of the human walk.

The bipedal walk generation technique presented in this thesis dif-
fers conceptually from the state of the art. Instead of designing aThe method

presented here fits a
simple model to an
open-loop walking

motion and
augments it with

balance control.

low-dimensional model first and forcing a robot to follow its motion,
we start with a central pattern-generated whole-body motion that can
produce an open-loop stable walk. A low-dimensional inverted pen-
dulum model is then fitted to match the open-loop motion. The fitted
model augments the walking motion with balance control capabili-
ties by controlling the timing and landing coordinates of footsteps in
a non-intrusive way, leaving the execution of the stepping motions
entirely up to the underlying pattern generator. The result is a ro-
bust omnidirectional gait controller that preserves the complexity of
the walking motion. A restriction of the center of mass to a plane—a
consequence of the limitations of the low-dimensional model—is not
imposed on the robot. Walking with stretched knees is still possible.

Since we are able to make a robot walk without any additional
feedback control, we assume that the central pattern-generated walkUsing a self-stable

walking motion
generator preserves

the natural
dynamics of the
physical system.

represents an instance of natural, self-stable dynamics of the biped.
The augmentation with feedback control, which merely adjusts the
step size and timing, does not derogate the natural dynamics. The
fitting of the abstract model to real hardware motion data results in
a forgiving controller. Precision requirements, that would otherwise
need to be imposed when a robot is required to follow a model closely
in order to preserve its theoretical stability, can be relaxed. Despite a
high degree of imprecision and latency due to our unique setting of
compliant, low-gain position controlled actuators, we achieved stable
omnidirectional walking with arguably the strongest bipedal push re-
covery capabilities to date. It is the first bipedal gait controller that
combines adaptive foot placement with a dynamic variation of the
step timing. The motion generation with the Central Pattern Genera-
tor and the balance control using a low-dimensional model are both
computationally efficient and suitable for high-frequency application
on embedded systems.

Furthermore, the same technique of separating motion and balance
lends itself to a machine learning approach. While the Central PatternThe separation of

motion and balance
simplifies the

learning of a balance
controller.

Generator hides the complexity of the whole-body walking motion,
only a low-dimensional controller needs to be learned to control the
timing and the coordinates of footsteps in order to maintain a bal-
anced gait. Based on this approach, we implemented an online learn-

introduction 3

ing concept that learns during walking to adapt the sagittal step size
in order to improve the balancing and reference tracking capabilities
of the robot. During learning, a simple physical model suggests step
size modifications with an estimated gradient, which speeds up the
learning process to a level of performance where the controller is able A simple physical

model is used to
estimate a gradient
that speeds up the
learning process.

to learn strong push recovery skills based on the experience of only a
few failed steps. Moreover, the machine learning component can coex-
ist with the analytic controller. The learning controller learns a correc-
tive offset that is added to the sagittal step size output of the analytic
controller and improves the overall walking performance. The Central
Pattern Generator and the analytic controller constitute a fundamen-
tal initialization of the learning process in a way that the robot can
already walk to some extent and has a concept of balance. This elim-
inates the two most critical aspects of online learning—starting with
a constantly falling robot, which makes learning cumbersome and
increases the risks of damage, and the necessity for the exploration
of a large portion of the state space before a reliable performance is
achieved.

The remainder of this thesis is organized as follows. After review-
ing related work in Chapter 2, we briefly introduce the bipedal robots
in Chapter 3 that were used to carry out the experiments. In Chapter 4

we present an overview of the gait control framework in coarse de-
tail. In Chapter 5, core principles of bipedal walking are introduced,
which are distilled to the fundamental assumptions the analytic and
the learned gait controllers are derived from. In the subsequent chap-
ters the reader is guided through an in-depth presentation of the gait
generation method. In Chapter 6, an open-loop Central Pattern Gener-
ator is introduced that is used to generate stepping motions. In Chap-
ter 7, we elaborate on our state estimation method that simplifies the
whole-body state to a low-dimensional point mass representation. In
Chapter 8, an analytic footstep controller is presented that augments
the open-loop motion generator with push recovery-capable feedback
control. In Chapter 9, an online learning scheme for balanced gait con-
trol is introduced and our concept of learning a sagittal step size con-
troller is covered. Experiments and discussions are presented inline.
We close with a summary and conclusions.

2
R E L AT E D W O R K

The research topic of bipedal walking has been experiencing a contin-
uous uprise of attention over the past decades. From an impenetra-
bly large number of publications related to this topic, we selected the
state of the art approaches with the largest impact in the robotics com-
munity. We divided the publications into two categories—analytic
walk controllers, and learned controllers—and discuss these categories
in the following sections.

2.1 analytic bipedal walking

Zero Moment Point (ZMP) preview control [Kajita et al., 2003] is the
most popular approach to bipedal walking. A number of pre-planned The most popular

approach to bipedal
gait control is the
Zero Moment Point
preview control
algorithm.

footsteps are used to define a future ZMP reference trajectory. A con-
tinuous Center of Mass (CoM) trajectory that minimizes the ZMP track-
ing error, the jerk of the CoM, and the deviation from terminal condi-
tions at the end of the preview horizon, is then generated by solving
a quadratic programming problem in a Model Predictive Control set-
ting [Wieber, 2006]. The optimization is computationally expensive,
but can be performed in real time. In theory, once a smooth and sta-
ble model is computed, a robot closely following the motion of the
model should be stable too. By using the ZMP preview control scheme,
high quality hardware [Kajita et al., 2010, Park et al., 2005] can walk
reliably on flat ground as long as disturbances are small. Next genera-
tion gait controllers from the ZMP preview family [Diedam et al., 2008,
Morisawa et al., 2010, Stephens and Atkeson, 2010] also consider foot
placement in addition to ZMP control by including the footstep lo-
cations in the optimization process. Adaptive step timing has not yet
been addressed by such methods. Perhaps the most capable version of
the ZMP preview control family that includes adaptive foot-placement
has been proposed by Urata et al. [2011]. Instead of optimizing the
CoM trajectory for a single ZMP reference, a fast, iterative method is
used to sample a whole set of lower quality ZMP/CoM trajectory pairs
for three steps into the future. Triggered by a disturbance, the algo-
rithm selects the best available motion according to given optimiza-
tion criteria. Resampling during execution of the motion plan is not
possible. The robot has to be able to track a fixed motion trajectory
for the duration of the recovery. This algorithm was demonstrated to
produce push recovery capabilities on a real robot. Highly specialized
hardware was used to meet the precision requirements.

5

6 related work

The capture point is an appealing indicator of balance. The capture
point [Pratt et al., 2006] is the location on the ground where a bipedCapture point based

methods are simpler
and can produce
good results, but

have not yet
matured to adaptive

foot placement.

would theoretically need to step in order to come to a complete stop.
Extensive work on stability analysis of bipedal systems has been pre-
sented by Pratt et al. [2012] based on the capture point dynamics. An
analytical formalism was introduced to compute regions of N-step
capturability for simple bipedal models that include a support area
of non-zero size and a hip torque driven reaction mass. Englsberger
et al. [2011] proposed the use of a capture point trajectory as a refer-
ence input for gait generation, instead of the ZMP. Since the capture
point depends on the velocity of the pendulum mass, and not on the
acceleration like the Zero Moment Point does, the system equations
reduce to first order. The capture point approach is much simpler and
faster to compute than ZMP preview control. A capture point based
preview controller was demonstrated on Toro [Ott et al., 2010] to pro-
duce a walk of the same quality as the classic ZMP preview controller.
Reactive foot placement and timing, however, have not been consid-
ered so far by this approach.

A drawback of all of the aforementioned approaches is that the mo-
tion of a low-dimensional model is computed first, and then the robotTracking a

low-dimensional
model derogates

natural dynamics
and imposes high

precision
requirements.

is forced to follow its trajectory as closely as possible. This imposes
precise position tracking requirements on the hardware in order to
preserve the stability predicted by the model. Furthermore, a low-
dimensional model strongly simplifies the walking motion by design.
Following the model closely results in an unnatural, plane-restricted
motion of the pelvis, typically with extensive use of bent knees.

The inverse approach of starting with the motion itself originates
from passive dynamic walking pioneered by McGeer [1990]. His ex-Passive dynamic

walkers can walk
naturally without

actuation and
feedback control.

periments proved that not only control, but also actuation can be en-
tirely removed from the system. The passive dynamics of legs with
freewheeling joints is sufficiently stable to walk down a shallow slope.
With a minimal amount of actuation to restore lost energy, passive
walking on level ground is also possible [Anderson et al., 2005, Collins
et al., 2001, Wisse and Frankenhuyzen, 2003]. The graceful motions of
these bipedal constructions strongly resemble the human walk, and
suggest that the core principle of biological gaits may also be pas-
sive dynamics with minimal control effort. Central pattern-generated
walking adds actuation, but no control of balance. However, a smallCentral pattern

generators add
actuation, but no

control of balance.

basin of attraction around the upright pose allows for open-loop sta-
ble walking when the floor is flat and external disturbances are not
present. This includes some control of the walking direction and ve-
locity. Position controlled motors with high gear ratios—a popular
choice to actuate robots with Central Pattern Generator (CPG) driven
gaits—unfortunately impede the passive dynamics of a system and
trade energy efficiency for ease of control.

2.1 analytic bipedal walking 7

Interestingly, in the competitive environment of RoboCup, where
humanoid robots play, win, and lose soccer games, open-loop walk-
ing is the dominant strategy. Due to the rapid change of hardware
prototypes, software architectures, and scientific staff, the require-
ments on a walking algorithm shift towards adaptability to hard-
ware modifications and simplicity of integration. Furthermore, the
onboard computation capabilities of soccer robots set a limiting fac-
tor on the choice of walking algorithms, rendering the classic ZMP

preview control algorithm less attractive.
Perhaps the most advanced RoboCup walk was presented for the

Nao standard platform by Graf et al. [2009]. Based on the solution of a
system of linear pendulum equations, the timing and trajectory of the
pendulum motion is adjusted online in order to land the swing foot
as closely as possible to a desired step size. This is one of very few
examples that takes step timing into account. While a relatively weak
open-loop core is present, the proposed feedback loop significantly
increases the walking ability of the Nao robot.

The DARwIn-OP platform [Ha et al., 2013] has been very successful
in the smallest humanoid robot class in the recent years. This capable
hardware comes with a fast and reliable walk that has been described
by Yi et al. [2011]. The core walking process has a strong similarity
with ZMP preview control. Future footstep locations are placed in a
queue and represent the future reference a few steps ahead. However,
instead of the expensive CoM trajectory optimization that includes jerk
minimization, the CoM trajectory is generated open-loop and in closed
form using simple Linear Inverted Pendulum Model equations that
do not limit the jerk. Swing foot trajectories are expressed as phase
dependent trajectories in Cartesian space and are converted to joint
motions using inverse kinematics.

Another remarkable CPG technique has been proposed by Dong
et al. [2011]. Inspired by the capability of passive dynamic walkers
to walk down shallow slopes, this approach shortens the swing leg
before support exchange and creates a virtual downwards slope for
the center of mass. The artificial shortening is reversed during the
support phase and the dissipated energy is regained. Along with a
simple, model-free and tunable algorithm for the generation of step-
ping motions, this approach comes with a mathematical framework
to calculate optimal virtual slopes for desired walking velocities. This
method has been successfully applied on robots of various sizes from
the smallest to the largest of size classes of RoboCup.

The origin of the CPG used in this thesis was published by Behnke
[2006]. Since then, the algorithm has evolved. The patterns have been
simplified and extended with new capabilities that make the algo-
rithm more flexible. It has been ported to new hardware, and compli-
ant actuation has been experimented with. A detailed description of

8 related work

the latest version of the CPG [Missura and Behnke, 2013a] is included
in Chapter 6.

The focus of this thesis is the recently developed Capture Step
Framework [Missura and Behnke, 2013b], which complements a CPGThe method

presented in this
thesis augments a

Central Pattern
Generator with
balance control.

gait with balance control. It preserves the high-dimensional motion
created by the CPG and allows for more natural walking with stretched
knees. It has been demonstrated to generate a stable, omnidirectional
walk with strong disturbance rejection capabilities on a real robot
[Missura and Behnke, 2014b]. It computes both the balance control
augmentation and the CPG efficiently in closed form, and is thereby
suitable even for mobile devices with limited computational power.

By modeling virtual forces that keep the robot upright and pull it
in the desired direction of locomotion, Pratt et al. [2001] created the
Virtual Model Control approach. The virtual forces are mapped to the
actuators of the robot such that the actuators produce the same trunk
motion as the forces would. With this algorithm, the two-dimensional
robot Spring Flamingo showed a fluid and natural looking walk that
was robust enough to reject small disturbances and to walk up and
down on slopes.

2.2 learned bipedal walking

When it comes to learning a bipedal gait controller, the leading state
of the art is the simulation of artificial muscle control. Geyer and
Herr [2010] introduced the concept of muscle reflex control and man-
aged to produce a stable planar walk with a simulated biped that
is actuated by Hill-type muscles and a set of simple reflexive feed-
back control laws. Wang et al. [2012] extended the concept to a 3D
humanoid character and used Covariance Matrix Adaptation to opti-
mize a large number of muscle activation and limb target position pa-
rameters. One of the main optimization criteria was the metabolic ex-
penditure, which expresses the effort of transportation. The achieved
result is a convincingly natural looking bipedal walk that locomotes
at a fixed velocity and is robust to perturbations. Geijtenbeek et al.
[2013] have extended the concept even further and included variable
interaction points between the muscles and the skeleton to also be
the subject of optimization. This way, a robust walk could be evolved
for an arbitrary bipedal character. These methods are useful to gen-
erate natural looking sequences of computer animation. However, as
the motions require hours to days on a large number of cores to opti-
mize, and the precision of a high-frequency physical simulation, the
applicability to real robots is not foreseeable in the near future.

When a real robot is in the loop, the feasible number of trials and
the risk of damaging the hardware become limiting factors, and dic-
tate that the learning process must reach a reliable walking perfor-
mance after only a low number of experiences. Successful learning

2.2 learned bipedal walking 9

projects on real hardware to date typically start from either a fully
functional motion generator, which is optimized for walking speed Machine learning

with real hardware
is difficult due to the
limited number of
feasible repetitions.

or stability during execution, or with a parameterized motion skele-
ton, and learn its parameters such that some form of stable walking
is achieved within a feasible amount of iterations. Balancing concepts
are investigated only in reduced settings, for example by learning
how to stop in one step after a push.

Bipedal and quadrupedal gaits have been successfully optimized
for walking speed using policy gradient methods [Hemker et al., 2009,
Kohl and Stone, 2004]. With the same learning method, adjusted to
a neuronal gait controller, the sagittal-only robot Runbot learned to
walk with a high velocity and to cope with irregular terrain [Geng
et al., 2006]. These experiments started from an open-loop stable,
hand-designed gait.

Focusing on balance, Rebula et al. [2007] improved the reactive step-
ping of a simulated biped from a standing position by learning to step
onto an offset from the capture point in order to bring the robot to a
rest in an upright position. An orbital energy-based performance mea-
sure was introduced to evaluate the quality of an attempted step lo-
cation, and a grid-based search was used to find a resolution-optimal
solution in a local neighborhood.

A fast bipedal learning system was presented by Tedrake et al.
[2005]. Using an online stochastic policy gradient estimation, the robot
Toddler learned to walk on different surfaces in less than 20 minutes.
The robot was designed in such way that it can passively walk down
a slope without actuation. The success of this experiment can mostly
be attributed to a strong simplification of the learning task to low-
dimensional control of ankle actuation, imitating a passive dynamic
gait without the need for a slope.

Yi et al. [2011] have investigated online learning on real hardware
using a reinforcement learning method. This approach learns to opti-
mize the input parameters of three biologically inspired disturbance
rejection strategies that stabilize an open-loop gait trajectory genera-
tor. To make online learning in a real hardware setting feasible, the
reinforcement learning was simplified by a discretization of the in-
put space and the assumption that the control parameter space is
restricted to parametric functions.

Morimoto and Atkeson [2009] used Gaussian processes [Morimoto
et al., 2007] and Receptive Field Weighted Regression [Morimoto and
Atkeson, 2007] to learn a Poincaré map that approximates the peri-
odic dynamics of a biped. Using this map to select suitable actions,
a policy gradient based reinforcement learning method was used to
train bipedal gaits in simulation and on real robots. Upright walking
with an unspecified walking velocity in the absence of disturbances
was successfully achieved.

10 related work

Relying on the concept of separating the generation of the walk-
ing motion from the control of balance, Missura and Behnke [2014a]
reduced the difficulty of the learning task to learning only the low-
dimensional control parameters of a CPG. By estimating an approx-
imate gradient for the lateral step size with an inverted pendulum
model [Missura et al., 2014] and for the sagittal step size with the
pendulum-cart model Missura and Behnke [2014a], an efficient incre-
mental learning approach learned strong push recovery capabilities
on a simulated robot after only a few failed steps. The sagittal method
has been implemented on a real robot and is presented as -part of this
thesis.

3
T H E R O B O T S

Figure 3.1: Scenes from RoboCup robot soccer games in the TeenSize class
of the Humanoid League.

The bipedal gait generation framework presented in this thesis
was designed with real hardware conditions in mind. Controlling Limited and noisy

perception, imprecise
actuation, and
increased latency are
challenges that make
controlling a real
robot more difficult
than a simulated
one.

real hardware is more difficult than controlling a simulated robot.
While a physical simulation can offer access to high quality data, real
robot control software must make do with the amount and quality
of the data the sensor equipment can provide. Often, not all relevant
physical quantities can be directly observed and must be inferred
by combining different sources of information that are obscured by
noise. The controller must succeed at its task using torque and ve-
locity limited actuators prone to flawed response to control signals.
These limitations apply to simulations only if they are explicitly in-
cluded. Finally, particularly for tasks that involve balance constraints,
such as the generation of a bipedal gait for a humanoid robot, a low-
latency controller response is highly desired. Humanoid robots can
be likened to an inverted pendulum that, once disturbed, quickly di-
verges away from the upright position. The quicker the controller
response, the better the odds are for the robot to successfully avoid
a fall after an unexpected disturbance. On a real robot, certain time
delays needed for data transfers are unavoidable. The real world also
cannot be paused to wait for a control iteration that has not finished
computing.

Two fairly similar, medium-sized humanoid robots with a height
of a little over one meter were used to validate the proposed bipedal
gait controller in real robot experiments. Certain properties of these
robots provided a unique experimental environment that inevitably
coined the design of the gait generation method presented in this the-
sis. For example, the robots are not equipped with foot pressure or

11

12 the robots

ankle torque sensors. Therefore, it is not possible to determine the
center of pressure underneath a foot, or whether a foot is in contact
with the ground, in a straightforward manner. Other sources of in-
formation had to be used to infer ground contact, and the controller
had to be designed in a way that it is robust to large errors in the
ground contact estimation. Furthermore, the intelligent actuators of
the robots support a compliant setting that permits shock absorption
and a soft walking motion that tempers the stress on the motors. Un-
fortunately, this comes at the costs of imprecise control response and
additional latency. However, since the compliant motion proved so
beneficial for the hardware, and since it simulates conditions similar
to serial elastic elements being present in the actuator drive train, it
encouraged the development of components that specifically address
lack of precision and high latency. Finally, the ability of the robotsThe robots used for

experimentation are
able to tolerate

mechanical stress
and are easy to

repair.

to tolerate the mechanical stress of a fall to a large extent without
sustaining damage, and their low-cost, easy-to-repair mechanical con-
struction, made it possible to experiment with the limitations of the
presented gait controller. This is a rarely the case with robotic plat-
forms, since contemporary humanoid robots of a relevant size, such
as ASIMO [Hirai et al., 1998], HRP [Kajita et al., 2010], and HUBO
[Park et al., 2005], are too fragile and too expensive to support overly
dynamic experimentation, or even a single fall.

The robots that were used to validate the bipedal gait controller
carry the names Dynaped and Copedo. Their photographs and fact
sheets are presented in Figure 3.2. Dynaped and Copedo can look
back at a successful history in the annual RoboCup competitions.
Having won five consecutive world championship titles from 2009 to
2013, and being awarded the Louis Vuitton Best Humanoid Award for
outstanding performance in the years 2010 and 2012, these robots are
among the most decorated robot soccer players worldwide. Figure 3.1
shows impressions of this robotic sport, where humanoid robots com-
pete in fully autonomous games of soccer, played for two halves of
ten minutes.

Both robots are constructed from milled aluminum and composite
carbon fiber parts to keep the weight low. The robots carry a lithium
polymer battery that provides the energy for an operation time of ap-
proximately 20 minutes. The robots are equipped with a Sony Vaio
VGN-UX1XN ultra-mobile PC that takes charge of running the con-
trol software. The PC is fitted with a solid state disk, which reliably
survives falls. A Freescale microcontroller board supports the data
communication on the robot by distributing the actuator commands
from the PC to all the actuators. It collects the motor position feed-
back from the actuators, trunk attitude data from an accelerometer
and two gyroscopes, and transmits the sensor information as a bun-
dled data packet via a USB connection to the PC. The somewhat in-
volved communication effort loads the available bus to the limit of its

the robots 13

Dynaped

Total height: 105 cm

CoM height: 48.5 cm

Foot size: 24 cm x 15 cm

Weight: 7.5 kg

DoF: 13

CPU: Intel 1.3 GHz Core Solo

Sensors: dual accelerometer ADXL203

roll, pitch gyroscopes ADXRS
Motors: Robotis Dynamixel

EX-106, RX-64, RX-28

Copedo

Total height: 114 cm

CoM height: 53 cm

Foot size: 24.5 cm x 15.5 cm

Weight: 8 kg

DoF: 17

CPU: Intel 1.3 GHz Core Solo

Sensors: dual accelerometer ADXL203

roll, pitch gyroscopes ADXRS
Motors: Robotis Dynamixel

EX-106+, EX-106, RX-64, RX-28

Simon

Total height: 262 cm

CoM height: 122.8 cm

Foot size: 30 cm x 20 cm

Weight: 13.5 kg

DoF: 22

CPU: -

Sensors: -

Motors: -

Figure 3.2: The humanoid soccer robots Dynaped and Copedo, and the sim-
ulated robot Simon were used to carry out the experiments in this thesis.

14 the robots

Figure 3.3: Parallel kinematic
leg design.

capacity and limits the loop rate of
the control software to a frequency of
83.3 Hz.

The legs of both robots were con-
structed with a parallel kinematics struc-
ture, as shown in Figure 3.3. The parallel
linkages in the thigh and in the shank
mechanically force the knee joint to stay
parallel to the trunk, and the foot plate
to remain parallel to the knee joint. This
construction lacks the degree of freedom
in the ankle pitch, but provides addi-
tional passive stability. The robots are ac-
tuated by Robotis1 Dynamixel intelligent
actuators that simplify the task of mo-
tion generation with a position control
interface. The position control is carried
out by a high-frequency P-controller that
modulates the pulse width of the motor voltage depending on the
deviation of the current position of the output axle from the com-
manded position. When the P-controller is configured with a lowCompliant motion

control is achieved
by using a low-gain

position control
setting provided by

the actuators.

gain, the actuator tolerates a larger error. This results in a relatively
compliant actuator behavior with a soft feel, but it also adds a notice-
able amount of latency. Over the years, the compliant actuation has
proven to be an efficient protection for the motors and transmission
gears. Incidents of broken gears drastically decreased. The tendency
of the actuators to overheat was mitigated and the operation time
of the robots increased. Figure 3.4 shows the commanded (tx) and
measured (rx) motion trajectories of a knee actuator during in-place
walking. Starting at approximately 1.5 seconds, a vertical downwards
force was exerted by hand onto the hip of the robot. The actuator
yields to the pressure and tolerates a certain amount of error. The

1 http://www.robotis.com

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Jo
in

t A
ng

le
 [r

ad
]

Time [s]

right knee tx right knee rx

Figure 3.4: Commanded (tx) and measured (rx) joint angles of the right knee
during walking in place. To demonstrate the joint elasticity, the robot was
pushed down on the right hip at 1.5 seconds. The blue bar indicates the time
and duration of the push. The position tracking error increases significantly
at this point.

the robots 15

Neck

Shoulder

Elbow

Hip

Knee

Ankle

Yaw

Roll

Pitch

Figure 3.5: A generic kinematic chain that applies to most humanoid robots.

compliant actuator setting combines best with the parallel kinematic
construction. In experiments with robots that had an articulated ankle
pitch axis, a stiffer configuration had to be used for the pitch motors.
The compliance of the roll motors could still be set to a high value.

The third robot introduced in Figure 3.2 is a simulated one. It was
given the name Simon. This robot was frequently used to perform
theoretical experiments in a Bullet 2.82 physics simulation. The same
software was used to control the walk of the simulated robot and the
real robots, with the only difference that in simulation we were able
to use a higher control loop frequency of 100 Hz. Notably, Simon is
significantly larger than the two real robots Dynaped and Copedo.
For numerical reasons it is easier for the Bullet Physics engine to pro-
cess the kinematic chain when the distances between the constraints
that hold the rigid body segments together are large. The physical
simulator produced the same qualitative physical behavior that we
observed with the real robots. The difference in size did not seem to
have a notable influence.

The mechanical construction of a robot implicitly defines a fixed
order of rotations in the kinematic chain. The kinematic order of the The kinematic chain

shown in the figure
above, and an
x-forward,
right-handed
coordinate system
are our underlying
assumptions for
kinematic
computations.

axes of rotation matters, because a rotation about one axis also ro-
tates all subsequent axes in the chain. The kinematic chain of Simon
is shown in Figure 3.5. This is the kinematic order we assume for all
subsequent computations. For all joints, we assume a right-handed
coordinate frame with the convention that the x-axis points in the
forward direction of the robot and corresponds to the axis of the roll
rotation. The z-axis—the axis of the yaw rotation—points upwards.
The y-axis completes the right-handed coordinate frame and is the
axis of the pitch rotation. As far as the order of the degrees of free-
dom is concerned, the kinematic layout shown in Figure 3.5 is very
common amongst humanoid robots. For example, the hip joint is typ-
ically designed in a yaw-roll-pitch order. The actuators of Dynaped

16 the robots

and Copedo are also arranged according to this kinematic chain, ex-
cept that some of the degrees of freedom are missing. Due to the
parallel kinematics, Dynaped and Copedo both lack the ankle pitch
axis. The neck joints of Dynaped and Copedo also only have the yaw
degree of freedom, but not the pitch. The shoulders of Copedo do
not have the yaw degree of freedom and the shoulders of Dynaped
only have a pitch degree of freedom. Dynaped also does not have el-
bows. The missing degrees of freedom of the real robots are simply
ignored during motion execution. This is possible because the motion
of the neck joint is not relevant for walking, the motion of the arms
uses the shoulder pitch degree of freedom, which both robots have,
and the parallel leg kinematics of the robots mechanically moves the
ankle pitch the same way the gait motion generator would do. For
the generation of stepping motions, the definition of the order of the
rotational axes is sufficient. The sizes of the rigid body elements only
become relevant for the pose reconstruction presented in Section 7.2.

In the following chapter, an overview of the gait generation frame-
work is presented, where all relevant components are introduced in
reduced detail. This complete picture is used as a guideline when
descending into the detailed descriptions of each component in later
chapters.

4
O V E RV I E W

Š

S ,T

q̂ , â , ω̂

Footstep Control

y

Motion Generator

State Estimation Bipedal Robot

c ,λ q

y

x

Figure 4.1: Overview of the Capture Step Framework. The State Estimation
component (bottom left) reconstructs the pose of the robot from the sensors
reporting the joint angles q̂, the inertial acceleration â of the trunk, and
the angular velocity ω̂ of the trunk. The Footstep Control module (top left)
uses the point mass representation c and the support foot indicator λ to
compute the location S and the timing T of the next footstep in order to
track the desired step size Š while maintaining balance. The Motion Gener-
ator (top right) executes a timed whole-body stepping motion towards the
commanded footstep coordinates and generates the joint position targets q.

The bipedal gait generation method presented in this thesis is called
the Capture Step Framework. Figure 4.1 illustrates the structure of the Our gait control

method is organized
in a framework with
functional
components for state
estimation, balance
control, and motion
generation.

framework. It is organized in the typical circular layout of a control
loop with functionally separable modules. The layout is the result of
a unique approach to controlling an open-loop Central Pattern Gener-
ator (CPG) using footstep coordinates and timing. The robot itself (bot-
tom right) is part of the loop. It receives motor targets from the control
software and provides sensor data about its internal state. Three logi-
cal software components can be identified: State Estimation, Footstep
Control, and Motion Generation.

A higher control instance can command a reference step size Š that
the biped should produce. This choice is motivated by the fact that The control input is

a desired step size
for compatibility
with footstep
planning.

footstep planning [Chestnutt et al., 2005, Hornung et al., 2012] is a
gradually improving, versatile method to command a robot where to
walk. A footstep plan can be used to simply encode constant velocity
walking on a flat surface, but has the flexibility to scale up to careful

17

18 overview

stepping onto constrained locations in cluttered environments, step-
ping over obstacles, and using elevated footholds in rough terrain.

Using the joint angles q̂, the inertial acceleration â of the trunk,
and the angular velocity ω̂ of the trunk, as measured by the sen-
sors of the robot, the State Estimation module reconstructs the whole-
body robot pose. The pose reflects the kinematic configuration of the
robot, i. e. the angle of its body parts relative to their parent, and
the attitude of the trunk in the world coordinate frame. From the re-
constructed pose, the motion of a fixed point on the body frame is
tracked and used as a low-dimensional representation of balance. Co-
ordinates and velocities of this fixed point—referred to as the Center
of Mass (CoM) state c = (cx, ċx, cy, ċy)—are determined in the sagittal
(x, forwards) and the lateral (y, sidewards) directions with respect to
the support foot λ ∈ {−1, 1}. We assign the sign -1 to the left foot
and the sign 1 to the right foot. The CoM state vector c, the sign
λ of the support foot, and the desired step size Š, are the inputs
into the Footstep Control module, where a Linear Inverted Pendu-
lum Model (LIPM) is used to reason about the location S and timing
T of the next footstep in order to keep the center of mass balanced
while obeying the desired step size Š as closely as possible. We herebyWe term the task of

tracking a desired
step size while

maintaining balance
“footstep control”.

term this task footstep control. The step size S and the step time T are
passed on to the Motion Generator module as step parameters. The
Motion Generator concretizes the step into a whole-body stepping
motion. The whole-body motion trajectory is conveniently expressed
as a signal of joint angles q, which yields the next target position for
each of the position controlled servo motors of the robot. The control
loop executes at a frequency of approximately 100 Hz1.

At this point, it is advisable to watch the demonstration video [1] in
the List of Videos, where bipedal robot Dynaped demonstrates the ca-
pabilities of the Capture Step Framework. It enables agile, omnidirec-
tional walking with recovery capabilities from a number of different
types of disturbances, such as pushes, unexpected objects under the
foot, and collisions. The video material presented in the List of Videos
is referenced throughout the thesis to demonstrate experiments and
specific features.

In the following chapter, we introduce underlying principles we ob-
served from walking bipedal robots. These are coarse physical princi-
ples that help simplify the task of modeling a balance controller. We
subsequently turn our attention to the whole-body motion generation
component.

1 The bipedal robots Dynaped and Copedo that were used to carry out the real hard-
ware experiments are run with a control loop frequency of 83.3Hz.

5
P R I N C I P L E S O F B I P E D A L WA L K I N G

σ

(a) Sagittal

α δ

(b) Lateral

Figure 5.1: Stick diagrams of a compass gait. (a) In the sagittal direction,
the center of mass crosses the pendulum pivot point in every gait cycle.
(b) In the lateral direction, the center of mass oscillates between the pivot
points. The parameter annotations highlight characteristic quantities. σ is
the maximum center of mass displacement in sagittal direction. α marks the
minimum distance between the center of mass and the pivot point at the
lateral step apex. δ shows the lateral support exchange location of the center
of mass in the center of a comfortable stride width.

The inverted pendulum-like dynamics of the human walk has been
long known to be an economical principle of locomotion [Kuo et al.,
2005]. Vaulting over a stretched leg and exploiting the ballistic motion
of the swing leg results in an almost effortless way of transportation,
suitable for covering large distances. However, the energy efficiency
comes at the cost of stability. Bipeds constantly have to use small cor-
rections to remain within a comfortable cycle, and well-placed foot-
steps to react to large disturbances.

For the purpose of designing a balance controller for bipedal walk-
ing it is beneficial to understand the nature of the walking motion The walking motion

can be decomposed
into a sagittal and a
lateral motion.

itself. Figure 5.1 shows stick diagrams of the idealized pendulum mo-
tion projected onto the sagittal plane and the frontal plane. This or-
thogonal decomposition is commonly used to analyze the walking
motion, since other than a shared time of support exchange, the sagit-
tal and the lateral motion do not seem to have a significant influence
on each other. Interestingly, the sagittal and lateral motions exhibit
strongly distinct behaviors. In the sagittal plane, the center of mass
crosses the pivot point of the pendulum in every gait cycle, while in
the frontal plane, the center of mass oscillates between the support
feet and never crosses the pivot point.

In the lateral direction the set of reachable footholds is constrained,
as placing the swing leg on the other side of the support leg would

19

20 principles of bipedal walking

require the legs to cross, which humanoid robots are typically not
able to do. Consequently, tipping over sideways in the direction ofThe lateral direction

is more constrained
than the sagittal

direction.

the support leg is a critical situation that requires an exceptionally
challenging sequence of motions to recover from. The small lateral
distance at the apex of the step between the pivot point and the cen-
ter of mass (annotated with the parameter α in Figure 5.1b) provides
a narrow margin for error. As long as the center of mass returns, a
step can be taken. Otherwise, the biped tips over and cannot reason-
ably step. In the sagittal direction, however, viable footholds are only
constrained by the kinematic range of the legs. The walker can com-
fortably place the swing leg in front of, or behind, the support leg.

Walking in the sagittal direction is a determined and fluid mo-
tion. The center of mass travels straight forward (or backward) onSidestepping is a

cumbersome motion
of alternating step

sizes.

an arched trajectory over the stretched respective support leg. Walk-
ing in the lateral direction, however, is cumbersome. In an alternating
manner, the walker takes a large step with the leading leg, followed
by a small trailing step, without crossing the legs. The stride width of
the trailing step is approximately the same as the comfortable stride
width that emerges when not walking in the lateral direction. This
characteristic stride width is denoted δ, and is indicated in Figure 5.1b
as the center point of the comfortable stride. Humans, although able
to cross their legs, usually abstain from sidestepping and prefer to
follow the geometric paths of non-holonomic systems, such as cars
steering their way to their target along Clothoids [Laumond et al.,
2011].

The perpetual lateral oscillation of the center of mass, a conse-
quence of the absence of static stability, appears to be the primary de-The lateral

oscillation of the
center of mass is

sensitive to
disturbances.

terminant of the step timing. Disobeying the right timing can quickly
destabilize the lateral swing. The video experiment [3] demonstrates
how a small disturbance of the lateral oscillation can be sufficient for
the system to destabilize and fall. In the sagittal direction, timing ap-
pears to be less crucial. Following from the law v ≈ 2σΩ, the velocity
v of the center of mass can be the result of an infinite amount of step
frequency Ω and stride length 2σ combinations. Therefore, the biped
can flexibly accommodate small variations in timing with a change
of the stride length, e. g. take a short and quick step or a long and
slow one, and not disturb the CoM velocity. The observed flexibility in
the sagittal direction in contrast to the constrained motion in the lat-
eral direction coincides with the fact that humans invest substantially
more effort into lateral control [Bauby and Kuo, 2000, Kuo, 1999].

From a biomechanical perspective, walking with stretched support
legs and with the center of mass traveling on circular arcs (ratherStretched legs imply

symmetrical steps. than on a horizontal line) is a causal effect of the energetic cost of
locomotion [Kuo, 2007]. From a modeling perspective, stretched knee
walking leads to a convenient consequence. If in the moment of the
heel strike both legs are stretched out, they are of nearly equal lengths.

principles of bipedal walking 21

Hence, the center of mass is approximately above the center point be-
tween the two pendulum pivot points. We refer to this configuration
as symmetrical stepping.

Based on these observations, we make the following assumptions
that all our mathematical and algorithmic models of a bipedal walk
are based on:

• Synchronized at the time of the support exchange, the sagittal
and the lateral motions can be treated as uncoupled entities.

• Control priority of the time of the support exchange is allocated
to the lateral direction. The primary determinant of the time of
the support exchange is the moment when the center of mass
reaches a nominal support exchange location in the center of
the stride width.

• Variations in timing are accommodated by the choice of sagittal
stride length.

• A constant lateral apex distance (α) should be maintained in
order to preserve lateral stability and to avoid tipping over.

• The final configuration of a step in the moment of the heel strike
is symmetrical. The center of mass is in the middle between two
pivot points.

Naturally, these assumptions do not capture the full complexity
of the human gait. However, they simplify the mathematical model-
ing of a balance controller, yet preserve the possibility to walk with
stretched knees.

In the next chapter, we introduce a central pattern generator that
can produce an open-loop stable bipedal gait with stretched legs and
symmetrical steps. Then, we turn our attention to an analytic step
controller that introduces feedback techniques into the gait genera-
tion process, based on the assumptions listed above.

6
S T E P M O T I O N G E N E R AT O R

Š

S ,T

q̂ , â , ω̂

Footstep Control

y

Motion Generator

State Estimation Bipedal Robot

c ,λ q

y

x

Figure 6.1: The Motion Generator component is a central pattern generator
that generates the motor targets q of a whole-body stepping motion. The
step size S and the landing time T are provided as control input.

The challenge of maintaining balance on rough terrain and in the
presence of strong disturbances remains a difficult task for bipedal Often a small basin

of attraction allows
for self-stable
walking.

robots. In undisturbed flat-floor environments, however, a small basin
of attraction around the upright pose is sufficient to support open-
loop walking. Numerous teams in the Humanoid League of RoboCup
rely on this technique, and are able to implement a relatively stable
and dynamic walk for bipedal robots, providing for exciting games of
robot soccer. Team NimbRo1 is one of the most successful teams in the
Humanoid League to date. Playing with self-constructed prototypes,
the team managed to win the KidSize competitions in 2007 and 2008

and the TeenSize competitions from 2009 to 2013. A central pattern-
generated gait that has been successfully adapted to a number of
prototypes of varying sizes is one of the strengths of team NimbRo.
Table 6.1 shows robots that this gait has been adapted to over the
years. The motion patterns used by team NimbRo were originally
proposed by Behnke [2006]. Since then, the algorithm has evolved.
The patterns have been extended with new capabilities along with
new configuration parameters that make the algorithm more flexible.
It has been adopted to new hardware and compliant actuation has
been experimented with. The latest version of the CPG has been pub-

1 http://www.nimbro.de

23

24 step motion generator

Class KidSize TeenSize NimbRo-OP

Year 2006 2007 2008 2007 2008 2011 2013 2014

Name Paul Lothar Steffi Robotina Dynaped Copedo P0 P1

Size 60 cm 60 cm 60 cm 122 cm 105 cm 114 cm 95 cm 90 cm

Weight 2.9 kg 4 kg 3.5 kg 9 kg 7.5 kg 8 kg 6.6 kg 6.6 kg

DOF 20 20 17 21 13 17 20 20

Cameras 2 3 3 3 3 1 1 1

Sensors 2-axis acc, gyro 2-axis acc, gyro 3-axis acc, gyro

CPU XScale Intel Core Solo ULV AMD-450

520 MHz 1.33 GHz 2×1.6 GHz

Table 6.1: Humanoid prototypes of the robot soccer team NimbRo. Source:
http://www.nimbro.de

lished by Missura and Behnke [2013a]. This CPG has been selected as
the Motion Generator component for the Capture Step Framework.

The NimbRo CPG generates an omnidirectional walk that allows a
humanoid robot to step in the sagittal, lateral, and rotational direc-The NimbRo CPG

generates an
omnidirectional

walk with stretched
knees.

tions. The possibility to independently and simultaneously control
the step size in these three directions gives rise to a relatively ag-
ile and dynamic walk that has been a key advantage in robot soccer
games since the year of its first application in 2006. Today, an om-
nidirectional walk is standard amongst humanoid RoboCup teams.
Interestingly, the NimbRo gait is able to recover from mild distur-
bances, such as light pushes and stepping on small objects on the
floor, even though it is completely open-loop. The CPG offers a fair
number of parameters to tune the motion patterns, enabling flexible
adaptation to individual robot prototypes. The walking motion keeps
the knees almost completely stretched during the support phase. The
constant leg length during the support phase results in a non-level
CoM trajectory. This is a desirable feature that reduces the energetic
cost of transportation during walking. Furthermore, the CPG can be
combined with optional low-gain position control actuation for softer
leg motions.

In the following sections we introduce the layered architecture of
the motion generator and descend into a detailed explanation of each
layer. Then, we show experiments to analyze the open-loop stabil-
ity that was achieved with a simulated and a real robot using the
NimbRo CPG.

6.1 the layers of the motion generator 25

Leg Interface

Motion Pattern

Control Interface

(η ,ϕLeg, ϕFoot)

(ϕHip ,ϕKnee ,ϕAnkle)

Š

AConfig μ

Ť

Figure 6.2: Layers of the NimbRo gait generator. The Control Interface re-
ceives a step size target Š and a desired step time Ť from a higher layer and
translates them into a leg swing activation vector A, and a motion phase
µ. The Motion Pattern layer generates phase dependent periodic motion sig-
nals in an abstract leg position parameter space, that is then mapped to joint
targets by the Leg Interface.

6.1 the layers of the motion generator

The NimbRo gait generator algorithm can be represented by three log-
ical layers, as illustrated in Figure 6.2. The topmost layer is the Control The gait generator

can be decomposed
into three
hierarchical layers of
a control interface,
pattern generator,
and abstract
kinematic interface.

Interface. It receives a foot-to-foot step size vector Š =
(
Šx, Šy, Šψ

)
with sagittal, lateral, and rotational coordinates of the swing foot rel-
ative to the support foot, and a desired step time Ť from a higher con-
trol instance. The Control Interface translates the desired step size Š
into a swing amplitude activation vector A =

(
Ax,Ay,Aψ

)
∈ [−1, 1]3

with roll, pitch, and yaw parameters. The swing activation vector A
determines the leg swing amplitude—and thus the step size—during
walking. The Control Interface also maintains a continuous flow of
the motion phase µ ∈ [−π,π), which is computed based on the tar-
get step time Ť . The Motion Pattern layer generates periodic motion
signals that produce omnidirectional stepping motions, targeted to
match the input step size at the commanded time. The motion pattern
generation is aided by an abstract kinematic interface constituted by
intuitive leg pose parameters, such as the angle of the leg relative to
the trunk, and the extension of the leg. These parameters are trans-
lated into joint targets by the Leg Interface abstraction layer. A set
of configuration variables is an integral part of the algorithm that al-
lows easy hardware adaptation. The three layers are best explained
in more detail in a bottom-up order.

26 step motion generator

η

ϕLeg

ϕFoot

Figure 6.3: The Leg Interface encapsulates leg pose control with three ab-
stract parameters: the leg extension η, the leg angle φLeg, and the foot
angle φFoot.

6.2 abstract kinematic interface

The presented gait generation algorithm is entirely based on a kine-
matic abstraction layer that we dubbed the Leg Interface. The Leg Inter-The CPG uses an

abstract kinematic
interface to control

the joints of the
robot.

face exhibits three abstract parameters to control the pose of a leg. The
meaning of the parameters is illustrated in Figure 6.3. A leg extension
parameter η determines the distance between the foot and the trunk
and allows the leg to be extended and retracted like a prismatic joint.
A leg angle parameter φLeg = (φRollLeg ,φPitchLeg ,φYawLeg) determines the
rotation of the leg with respect to the trunk. The leg can be rotated
in the roll, pitch, and yaw directions. To roll or pitch the foot, the
foot angle parameter φFoot =

(
φRollFoot,φ

Pitch
Foot

)
is used to determine

the rotation of the foot with respect to the trunk. The coordination of
the hip, knee, and ankle joints that supports the use of this interface
is computed automatically by the Leg Interface.

The parameter space of the Leg Interface offers a rather intuitive
way to move a leg. The parameters encode motion components that aThe Leg Interface

parameters span a
convenient

orthogonal space for
the design of motion

patterns.

robot would naturally perform during walking and simplify the task
of pattern generation. For example, lifting the leg up at the beginning
of the swing phase, and stretching it out shortly before the heel strike,
can be achieved using the leg extension parameter η. Swinging the leg
back with a stretched knee during the support phase is achieved by
keeping the leg extension parameter η constant, and using the leg
angle parameter φPitchLeg to smoothly modify the leg pitch angle. It
is much easier to express these typical leg swing motions with Leg
Interface parameters than in end-effector coordinates of an inverse
kinematics-based motion interface, where the arcs that the feet de-
scribe relative to the trunk during a stretched knee walk would have
to be explicitly generated first. Conveniently, the input parameters η,
φLeg, and φFoot operate independently of each other. For example,
if we shorten the leg using the leg extension parameter η, the Leg In-
terface computes the joint angles in a way that the leg angle and the

6.2 abstract kinematic interface 27

ϕLeg
Roll

ϕLeg
Yaw

ϕLeg
Pitch

trunk

x

y

(a) Roll-pitch-yaw

x

y

ϕLeg
Roll

ϕLeg
Pitch

ϕLeg
Yaw

trunk

(b) Yaw-roll-pitch

Figure 6.4: (a) The leg angle parameter φLeg is interpreted in a roll-pitch-
yaw order. This way, the pitch and roll components of the leg angle corre-
spond to the x and y-coordinates of the foot in the trunk frame, and the
trunk is in the center between the feet when both legs are positioned with
the same parameter values, but with opposing signs. (b) The yaw-roll-pitch
order of the hip rotation implied by the mechanical construction does not
provide these advantages.

foot angle remain untouched. Similarly, modifying the angle of the
leg with the leg angle parameter φLeg does not have an influence on
the extension of the leg and also preserves the foot angle. If we were
to move the knee joint directly, the leg extension, the leg angle, and
the foot angle would all be modified at once in a non-trivial manner.

Formally, the Leg Interface is a function(
φHip, φKnee, φAnkle

)
= L

(
η, φLeg, φFoot

)
(6.1)

that encapsulates the mapping of the abstract parameters to joint an-
gles φHip = (φRollHip ,φPitchHip ,φYawHip) for the hip joint which has three
rotational axes in the roll, pitch, and yaw directions, φKnee for the
knee joint which has only a pitch axis, andφAnkle = (φRollAnkle,φPitchAnkle)

for the ankle joint which has pitch and roll axes. The joint angles are
computed using the equations[

φ′ Pitch
Leg

φ′ Roll
Leg

]
= R(−φYawLeg)

[
φPitchLeg

φRollLeg

]
, (6.2)

ζ = arccos(1− η), (6.3)

φYawHip = φYawLeg , (6.4)

φRollHip = φ′ Roll
Leg , (6.5)

φPitchHip = φ′ Pitch
Leg − ζ, (6.6)

φKnee = 2ζ, (6.7)

φPitchAnkle = φ
Pitch
Foot −φ′ Pitch

Leg − ζ, (6.8)

φRollAnkle = φ
Roll
Foot −φ

′ Roll
Leg . (6.9)

The order of the motors in the kinematic chain of the robot (shown
in Figure 3.5) implies a yaw-roll-pitch order of the rotation of the hip

28 step motion generator

(a) side (b) front

Figure 6.5: The Zero Pose is a mechanically defined pose of the robot where
the legs are fully extended, parallel to the trunk, and parallel to each other.
In the Zero Pose, The feet are orthogonal to the legs.

joint. However, we rotate the pitch and roll components ofφLeg with
a counter-clockwise rotation matrix R in equation 6.2 by the negativeThe roll-pitch-yaw

rotation order of the
leg angle centers the
trunk in between the

feet.

leg yaw and define the interpretation of the leg angle parameterφLeg
to be in a roll-pitch-yaw order. This interpretation bears two advan-
tages that are illustrated in Figure 6.4. Typically, the legs move in a
symmetrical way during walking, such that φLeftLeg ≈ −φRightLeg , i. e.
the left leg is positioned using leg angle parameters that have the op-
posite signs of the leg angle parameters for the right leg. When using
the roll-pitch-yaw interpretation as shown in Figure 6.4a, the φYawLeg

parameter rotates the foot around the ankle joint, rather than the en-
tire leg around the hip joint, and the trunk is always approximately
in the center between the feet. If we were to use a yaw-roll-pitch in-
terpretation of the leg angle parameter as shown in Figure 6.4b, the
yaw rotation of the legs around the hip joints with opposing signs
would not place the trunk in the center between the feet. The sec-
ond advantage is that since only small angles are used to activate
the roll and pitch leg angle parameters, the φPitchLeg parameter corre-
sponds to the x-coordinate and the φRollLeg parameter corresponds to
the y-coordinate of the foot in the reference frame of the trunk. This
is highly convenient for the conversion of the input step size Š to the
swing amplitude vector A in the Control Interface. This is discussed
in Section 6.4.

The leg extension parameter η is expected to lie in the unit interval
[0, 1]. The leg and foot angle parameters can have arbitrary values
as far as the Leg Interface is concerned. Joint angle limitations are
enforced on a deeper level on a per joint basis.

We assume that the thigh and the shank of the robot are of equal
lengths. Humanoid robots are frequently constructed this way. In the
case of a different kinematic configuration, the Leg Interface equa-
tions (6.3-6.9) need to be adjusted accordingly. Please note that de-
spite this assumption, the motion abstraction layer is essentially model
free. Unlike for inverse kinematics, the actual sizes of the body seg-
ments do not need to be known.

6.3 motion pattern 29

We follow the convention that if all Leg Interface parameters are set
to zero, the Leg Interface computes a value of zero for all joint angles.
We define that in this Zero Pose where all joint angles and all Leg
Interface parameters are zero, the legs are fully extended, parallel
to the trunk and to each other, and the feet are orthogonal to the
legs. The Zero Pose is illustrated in Figure 6.5. This is a safe and
reproducible pose, well-suited for calibration. The definition of the
Zero Pose implies that a leg extension of η = 0 is interpreted as a
fully extended leg and a leg extension of η = 1 is interpreted as a
fully retracted leg.

6.3 motion pattern

The NimbRo gait pattern is a combination of rhythmic activation sig-
nals that encode periodic leg-lifting and leg-swinging motions. The The pattern

generator is a
combination of
periodic motion
primitives. The same
pattern is used to
generate the motion
for both legs.

leg swing amplitude is determined by the swing activation vector
A =

(
Ax,Ay,Aψ

)
∈ [−1, 1]3 with parameters for the roll, pitch, and

yaw directions. The motion signal oscillation is driven by a motion
phase µ ∈ [−π,π). The motion phase is incremented smoothly with
a small increment in every iteration of the main control loop. When
the next increment would set the motion phase to a value µ > π, the
motion phase is reset to µ = −π. The output of the pattern generator
is a set of Leg Interface parameters. The Leg Interface conveniently
allows us to design leg angle and leg extension trajectories instead of
having to think about coordinated motions on the single joint level.

The walking motion pattern can be subdivided into motion primi-
tives. The most important motion primitives for leg lifting, leg swing-
ing, and hip swinging motions are shown in Figure 6.6. The same
motion pattern is used to generate the motion for both legs. The pat-
tern generator is executed twice, once for the right leg with the leg
phase ν = µ and once for the left leg with a time-shifted leg phase
ν = µ+ π . In some cases the sign λ ∈ {−1, 1} of the leg (left or right)
is used to determine the direction of a rotation, depending on which
leg the pattern is generated for.

In the following sections we introduce the motion primitives in de-
tail, and refer to Figure 6.6 where appropriate. The motion primitives
are summated to the final step motion pattern that produces the Leg
Interface parameters. After the presentation of the pattern generation
process, we provide an annotated set of configuration parameters in
Table 6.2, as used for bipedal robot Dynaped, the robot that has been
used to carry out most of the experiments in this thesis. We denote
motion primitives with the letter P and configuration variables with
the letter K.

30 step motion generator

π/-π 0 π/-π 0 π/-π 0 π/-π
Motion phase

Leg extension Leg pitch Leg roll

Figure 6.6: The main ingredients of the gait motion are rhythmical leg lifting
(top), a leg swing motion (center), and a lateral hip swing (bottom). The
solid vertical lines indicate the expected times of support exchange. The
dashed vertical lines indicate the swing start and swing end timings. The
patterns for the left leg (shown in faint color) are phase shifted by π.

6.3.1 Halt Position

The halt position is an offset from the Zero Pose that does not depend
on the motion phase. It is the pose the robot stands in when the
walking motion is not active. All other motion primitives are added
to the halt position and thus it can be described as the “center” of the
walking motion. Typically, in the halt position a robot has its knees
slightly bent, the legs are spread apart by a few degrees to provide a
wide enough stance, and the center of mass is adjusted to be roughly
above the center of the feet. The halt position primitive

PHalt(λ) = (PηHalt, P
Leg
Halt(λ), P

Foot
Halt(λ)) (6.10)

is a collection of configuration parameters that define the base val-
ues of the leg extension, leg angle, and foot angle parameters. The
components of the halt position primitive are given by

P
η
Halt = K1, (6.11)

PLegHalt(λ) = (λK2, K3, 0) , (6.12)

PFootHalt(λ) = (λK4, K5) , (6.13)

where λ ∈ {−1, 1} denotes the leg sign.
The reason why the knees are typically not fully stretched is that

when the leg extension is near zero, a small modification of the leg
extension results in a relatively high required motor velocity. Some
robots may also have a mechanical barrier that prevents the legs from
being hyperextended. To avoid reaching the mechanical or velocity

6.3 motion pattern 31

limits of the servo motors, the knees are slightly bent in the halt posi-
tion. There is no numerical reason that prevents the legs from being
fully stretched. The Leg Interface (6.2-6.9) is well-defined for a leg
extension of η = 0.

6.3.2 Leg Lifting

The leg lifting primitive is an alternating shortening of the legs that
induces a lateral oscillation of the body mass and frees one leg at a Alternating leg

lifting induces the
lateral oscillation.

time from its support duty. The leg lifting motion is shown as the
topmost curve in Figure 6.6. Notably, the leg lifting primitive makes
a distinction between a support phase, when the leg phase ν 6 0 and
the foot is on the ground, and a swing phase, when the leg phase
ν > 0 and the foot is in the air. During the support phase, a small
push is applied against the ground. During the swing phase, the foot
is lifted up into the air and can be swung. The leg lifting primitive
activates the leg extension parameter with a sinusoidal function

PLegLift(ν,A) =

sin(ν) (K6 +K7 ||A||∞) , if ν 6 0

sin(ν) (K8 +K9 ||A||∞) , otherwise
(6.14)

that depends on the leg phase ν ∈ [−π,π) and the swing amplitude
activation A. The configuration variables K6 and K8 describe a con-
stant push height during the support phase and step height during
the the swing phase, respectively. In the support phase, the support
leg pushes into the ground with a much smaller amplitude than it lifts
up into the air during the swing phase. The push amplitude should
never be greater than the leg extension in the halt position (K1), other-
wise the maximum leg extension will be reached and the leg cannot
extend any further. The configuration variables K7 and K9 intensify
the push and the step height depending on the L∞ norm of the swing
activation vector A. The swing amplitude dependent increase of the
step height (K9) is crucial to avoid ground contact when large steps
are taken and allows for calm steps with a low step height when the
robot is walking slowly or in place. The support exchange is expected
to occur at leg phases ν = 0 and ν = ±π.

6.3.3 Leg Swing

To induce a walking motion in any direction, we use a leg swing
pattern The leg can be

swung in the
sagittal, lateral, and
rotational directions.

PLegSwing(λ,ν,A) =
(
PRollLegSwing,PPitchLegSwing,PYawLegSwing

)
(6.15)

that activates the roll, pitch, and yaw components of the leg angle.
The leg swing pattern is shown in Figure 6.6 in the center. The leg

32 step motion generator

is swung forwards with a sinusoidal motion and pushed backwards
with a linear motion during its support phase. The leg swing motion
was designed this way with a specific motivation. If the legs were the
spokes of a wheel that is traveling with a constant speed, the angular
velocity of the spokes would be constant. The forward swing, how-
ever, is designed as a sinusoid in order to swing the leg as smoothly
as possible, and to minimize inertial effects on the rest of the body.

The leg swing motion is not perfectly embedded into the leg phase.
Swing phase configuration parameters Kµ0 and Kµ1 are used to de-
lay the start of the swing motion and to rush the touchdown of the
leg around the nominal support exchange time at leg phase ν = ±π.
The parameters are indicated by dashed vertical lines in Figure 6.6.
We found that these parameters are a good way of eliminating shuf-
fling. Essentially, these parameters account for a short double support
phase that occurs implicitly, even though it is not commanded by the
leg lifting primitive.

To generate the leg swing pattern, we first compute a leg phase
dependent unit swing oscillator

ζ(ν) =

2(ν+2π−Kµ1)
2π−Kµ1+Kµ0

− 1, if − π 6 ν < Kµ0

cos
(
π(ν−Kµ0)
Kµ1−Kµ0

)
, if Kµ0 6 ν < Kµ1

2(ν−Kµ1)
2π−Kµ1+Kµ0

− 1, if Kµ1 6 ν < π,

(6.16)

which incorporates the sinusoidal swing during the swing phase, the
linear swing during the support phase, and the swing phase config-
uration parameters Kν0 and Kν1 . We use the swing activation vector
A to modulate the amplitude of the unit swing oscillator in the roll,
pitch, and yaw directions, and compute the leg angle parameter acti-
vators with the equations

PRollLegSwing(λ,ν,A) = −ζ(ν)AxK10 − λmax(|Ax|K11, |Aψ|K12),
(6.17)

PPitchLegSwing(λ,ν,A) = ζ(ν)AyK13, (6.18)

PYawLegSwing(λ,ν,A) = ζ(ν)Aψ K14 − λ|Aψ|K15, (6.19)

where λ ∈ {−1, 1} denotes the leg sign.
The leg swing equations (6.17-6.19) differ in the three directions. In

the pitch direction, the legs are encouraged to swing fully from frontSelf-collisions must
be avoided during

sidestepping.
to back. The maximum swing amplitude for forward walking and
backward walking is configured using the step size parameter K13.
Laterally, however, the legs would collide. Therefore, leg roll angle
offsets K11 and K12 are added proportionally to the roll and yaw
swing amplitude activatorsAx andAψ, causing the legs to spread out
when walking in the lateral direction, and when the robot is turning.

6.3 motion pattern 33

In the yaw direction, an activation dependent yaw angle offset can be
configured using the parameter K15.

6.3.4 Lateral Hip Swing

The lateral hip swing pattern PHipSwing(µ) activates the leg roll an-
gle and sways the pelvis left and right during walking. It helps to
transfer the weight from one leg to the other. The hip swing is illus-
trated in Figure 6.6 in the bottommost curve. In the case of the hip
swing, both legs execute exactly the same pattern and, thus, the time
argument of the pattern is the motion phase µ rather than the leg
phase ν.

The hip swing is designed as a sinusoidal motion that includes
transitions between swings to the right and swings to the left. The
transition adjusts to the swing start timing Kν0 and the swing stop
timing Kν1 . For the computation of the hip swing primitive, two ex-
plicit hip swing motion phases µl and µr are derived from the motion
phase µ to determine the start and end points of two sine waves, one
for the hip swing to the left, and one for the hip swing to the right,
which overlap in the implicit double support phase. The sum of the
two sine functions generates the final hip swing motion. µl and µr
are given by

µl(µ) =

µ−Kµ1 + 2π, if µ < Kµ0

µ−Kµ1 , if µ > Kµ1

0, otherwise,

(6.20)

µr(µ) =

µ−Kµ1 + 3π, if µ+ π < Kµ0

µ−Kµ1 + π, if µ+ π > Kµ1

0, otherwise.

(6.21)

The hip swing to the left starts when the left foot touches the ground,
and ends when the left foot is lifted off the ground. The hip swing
to the right works in a symmetrical manner. The hip swing motion
primitive is then computed with the equations

k =
π

Kµ0 −Kµ1 + 2π
, (6.22)

PHipSwing(µ) = K16 (sin(kµl(µ)) − sin(kµr(µ))) . (6.23)

The two sine functions overlap and their sum creates a transition be-
tween the left and the right hip swing phases.

6.3.5 Leaning

The leaning motion primitive PLean(A) =
(
PRollLean,PPitchLean

)
leans the

robot slightly by adding an offset proportional to the swing ampli-

34 step motion generator

tude to the roll and pitch angles of the legs. This primitive does not
depend on the motion phase. The roll and pitch angle offsets are
given by

PRollLean(A) = −K17Aψ|Ay|, (6.24)

PPitchLean (A) =

K18Ay, if Ay > 0

K19Ay, if Ay < 0.
(6.25)

The roll lean is determined as a value proportional to both the pitch
and yaw leg swing amplitudes. Practically speaking, the robot “leans
into curves”. For the pitch lean, we distinguish between forward and
backward walking, and use separate parameters to calibrate the lean
offset for the pitch angle. In earlier work, we performed an experi-
ment with the NimbRo-OP [Schwarz et al., 2012] that demonstrated
that the pitch leaning primitive is of statistical benefit for the balance
of the robot.

6.3.6 Complete Leg Pattern

The complete leg motion pattern

(η,φLeg,φFoot) = PLeg(λ,ν,µ,A) (6.26)

computes a set of Leg Interface parameters for one leg. The param-
eters are computed by summing the appropriate motion primitives
with the equations

The complete motion
pattern is a sum of

the motion
primitives.

η = PηHalt + PLegLift(ν,A), (6.27)

φLeg = PLegHalt(λ) +
(
PHipSwing(µ), 0, 0

)
+PLegSwing(λ,ν,A) + (PLean(A), 0) ,

(6.28)

φFoot = P
Foot
Halt(λ). (6.29)

To obtain the Leg Interface parameters for both legs, we derive the
time-shifted motion phase

ν =

µ+ π, if µ+ π < π

µ− π, otherwise
(6.30)

for use with the left leg. Then, we compute the Leg Interface parame-
ters for the right leg using

PLeg(1,µ,µ,A) (6.31)

and for the left leg using

PLeg(−1,ν,µ,A). (6.32)

6.3 motion pattern 35

Please note the use of the appropriate leg sign and leg phase param-
eters. The flow of the motion phase µ and the value of the swing
amplitude activation vector A are computed by the Control Interface,
which is discussed in Section 6.4. At this point, it can be verified with
the help of the leg swing motion pattern plotted in Figure 6.6, or
the leg swing equations (6.17-6.19), that the complete motion pattern
does indeed produce an approximately symmetrical step configura-
tion with φLeftLeg ≈ −φRightLeg in the moment of the support exchange.
This is in accordance with our symmetrical step assumption in Chap-
ter 5.

6.3.7 Arm Motion

The arm motion is generated in an analogous fashion to the leg mo-
tion with an arm motion pattern PArm(λ,µ,A). Similar to the Leg In-
terface, an Arm Interface provides an abstract actuator space in which
halt and swing motion primitives are defined. The motion primitives
are designed in the same way as for the legs. The arms swing antago-
nistically to the legs, i. e. the right arm swings forward when the left
leg does, and the left arm swings forward when the right leg does.
The most important role of the arm motion is to counteract the rota-
tion about the support foot that would otherwise be induced by the
inertia of the swinging leg.

6.3.8 Compliant Actuation

Simulated elastic actuation is achieved by configuring the position
controller embedded in the Dynamixel servo motors of the robots
with a low gain. All robots that the NimbRo motion pattern has been
adapted to were actuated by servo motors of this brand. The soft feel
of the low-gain position control leads to smooth and forgiving mo-
tions that dampen undesired vibrations during walking. The compli-
ant actuation protects the transmission gears from mechanical dam-
age to some extent and extends the operation time of the robots by
using less energy and causing less heat in the motors.

While the compliant motor setting results in smooth motions, it is
important to be aware of the fact that it also increases the position Compliant actuation

smooths the joint
motions, but it also
contributes to
position tracking
error and latency.

tracking error of the motors. Figure 6.7 shows a time series of com-
manded and measured motor positions of the hip pitch and knee
servos in a situation where the robot is walking forward. The po-
sition tracking error is quite evident. The low-gain position control
has the same effect as a low-pass filter. It decreases the amplitude of
the periodic motion output and introduces a phase shift, which con-
tributes to the latency of the control loop. Within tolerable limits, the
open-loop gait generator can compensate for the compliance, simply
because the commanded motion signals can be configured to exag-

36 step motion generator

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 1 2 3 4 5 6

Jo
in

t a
ng

le
 [r

ad
]

Time [s]

Hip tx Hip rx Knee tx Knee rx

Figure 6.7: Time series of the commanded (tx) positions and measured (rx)
positions of the right hip pitch and knee joints during forward walking,
recorded with Dynaped. The compliant actuation mode smooths the mo-
tion output like a low-pass filter. It decreases the swing amplitude and in-
troduces a phase shift.

gerate the leg swing motion in such way that the desired output of
the motors is achieved. In a recent publication, Schwarz and Behnke
[2013] proposed an approach to achieve precise position tracking with
compliant motors, which is an option to address the position tracking
problem on a more fundamental level.

6.3 motion pattern 37

Table 6.2: An annotated set of configuration parameters of the central pat-
tern generator. The provided values are a set of parameters that were used
for the bipedal robot Dynaped.

Variable Value Denotation

K1 0.01 Halt Position leg extension

K2 0.1 Halt Position leg roll angle

K3 -0.06 Halt Position leg pitch angle

K4 0.08 Halt Position foot roll angle

K5 0 Halt Position foot pitch angle

K6 0.01 Constant ground push

K7 0 Proportional ground push

K8 0.06 Constant step height

K9 0.03 Proportional step height

Kµ0 0 Swing start timing

Kµ1 2.3876 Swing stop timing

K10 0.12 Lateral swing amplitude

K11 0.1 Lateral swing amplitude offset

K12 0.01 Turning lateral swing amplitude offset

K13 0.24 Sagittal swing amplitude

K14 0.4 Rotational swing amplitude

K15 0.05 Rotational swing amplitude offset

K16 0.035 Lateral hip swing amplitude

K17 0.07 Forward and turning lean

K18 0.04 Forward lean

K19 0 Backward lean

K20 3.5 Swing amplitude limiting norm p

K21 0.2 Lateral acceleration

K22 0.2 Sagittal acceleration

K23 0.2 Rotational acceleration

K24 2.4 Constant step frequency

K25 3.0 Maximum step frequency

38 step motion generator

6.4 control interface

The top layer of the CPG chain is the Control Interface (recall Fig-
ure 6.2). The Control Interface exhibits two parameters that can beThe Control

Interface exhibits
parameters to

control the size and
timing of the steps.

used to control the size and the timing of the steps. The desired
size of the next step can be modified with the step size parameter
Š =

(
Šx, Šy, Šψ

)
, and the timing of the steps is set by the target step

time Ť . The CPG will attempt to touch down the swing foot at the de-
sired step coordinates Š at time Ť , even if the parameters change mid-
step, but the Control Interface will enforce a certain level of smooth-
ness and bounds of feasibility. In this section, the conversion from
desired step size Š to swing amplitude activation A, and from step
time Ť to motion phase µ, is explained.

6.4.1 Step Size Conversion

The swing amplitude vector A =
(
Ax,Ay,Aψ

)
∈ [−1, 1]3 contains

activation signals for the leg swing in the roll, pitch, and yaw direc-
tions. It follows from the right-handed, x-forward coordinate frame
assumption that the roll swing corresponds to lateral walking in the
y direction of the robot, the pitch swing corresponds to forward and
backward walking in the x direction, and the yaw swing corresponds
to the rotational direction about the z axis. A swing activation value of
1 represents the highest achievable swing amplitude in the respective
direction. For example, the swing activation vector A = (−0.8, 1, 0.5)
means the robot should walk to the right with 80% of the possible
step size, walk forward with the maximum possible swing amplitude,
and turn left with half of the possible turning speed. Since we use the
same leg swing amplitudeA to generate the stepping motion for both
legs, even though the phase is shifted for the left leg, the motion of
the legs is coupled and one parameter per dimension is sufficient to
control the gait. This is a key assumption that reduces the control
space of the CPG to a low number of dimensions. Independent con-
trol of each leg would double the number of control parameters for
the leg swing.

As previously described in Section 6.2, the equations of the Leg
Interface (6.2-6.9) have been designed in such way that the leg angleA linear relation

between the leg
swing amplitude
and the resulting

step size facilitates a
simple conversion
from desired step

size to a leg swing
activation signal.

parameterφLeg is interpreted in a roll-pitch-yaw order. As illustrated
in Figure 6.4a, this convention facilitates a one-to-one mapping of
the leg roll angle to the y coordinate, the leg pitch angle to the x
coordinate, and the leg yaw to the rotation of the footstep in the trunk
frame, as long as only small angles are used to activate the leg roll
and leg pitch swing. The roll and pitch leg swing equations (6.17, 6.18)
together with the configuration parameter values K10, K11, and K13,
show that the commanded leg angle of Dynaped is always smaller
than 0.24 radians. We assume furthermore, that the componentwise

6.4 control interface 39

-0.4

-0.2

 0

 0.2

 0.4

-1 -0.5 0 0.5 1

S
te

p
si

ze
 x

 [m
]

Swing Amplitude Ay

Simon

right support
left support

-0.4

-0.2

 0

 0.2

 0.4

-1 -0.5 0 0.5 1

S
te

p
si

ze
 x

 [m
]

Swing Amplitude Ay

Dynaped

right support
left support

(a) Sagittal

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

S
te

p
si

ze
 y

 [m
]

Swing Amplitude Ax

Simon

right support
left support

-0.4

-0.2

 0

 0.2

 0.4

-1 -0.5 0 0.5 1

S
te

p
si

ze
 y

 [m
]

Swing Amplitude Ax

Dynaped

right support
left support

(b) Lateral

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-1 -0.5 0 0.5 1

S
te

p
ro

ta
tio

n
ψ

 [m
]

Swing Amplitude Aψ

Simon

right support
left support

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-1 -0.5 0 0.5 1

S
te

p
ro

ta
tio

n
ψ

 [m
]

Swing Amplitude Aψ

Dynaped

right support
left support

(c) Rotational

Figure 6.8: The step sizes in the (a) sagittal, (b) lateral, and (c) rotational di-
rections can be approximated with linear functions of the swing amplitude
parameter A. In the lateral direction, two step sizes can be observed: a large
step of variable step size by the leading leg, and a constant step size of the
trailing leg. The data points are colored red when the right leg is the support
leg, and blue when the left leg is the support leg. The left column shows data
recorded with the simulated robot Simon. The right column shows real data
from bipedal robot Dynaped. In the rotational direction the imperfection of
the aging hardware is evident.

40 step motion generator

y

x Šx

Šψ

Šy

support
foot

swing
foot

trunk

(a)

Šx

Šψ

Š y'

Šy

x

y

Šψ

2

Š x'

(b)

Figure 6.9: (a) The target step size Š is expressed in the reference frame of
the support foot. The rotational component Šψ defines the angle of rotation
from the support foot to the swing foot. (b) To profit from a convenient
linear conversion from step size to leg swing activation A, the target step
vector Š has to be transformed to a step vector Š′ in the trunk reference
frame.

mappings from leg swing amplitudes to step coordinates in the trunk
frame are linear functions. Figure 6.8 confirms that our assumption
is reasonable. The figure 6.8 shows plots of the foot-to-foot step size
in trunk frame coordinates in each of the respective dimensions as a
function of the leg swing amplitude. The step sizes were determined
during walking by utilizing the kinematic model of the robot and
measuring the distance from the support foot to the swing foot in
the trunk frame at the moment of the swing foot touchdown. The
state estimation procedure including the detection of the swing foot
touchdown event and the measurement of the step size, is explained
in Chapter 7. The data was collected with the simulated robot Simon
and the real robot Dynaped. The maximal sagittal step size of 0.2 m
for Dynaped multiplied by the open loop step frequency of 2.4 Hz
yields a maximum open-loop walking speed of 0.48 m/s, sustainable
only for short periods of time. When walking in the lateral direction,
the biped takes a large step with the leading leg followed by a trailing
step of smaller size. Thus, two different step sizes can be observed.
The size of the leading step depends on the roll leg swing amplitude
Ax, while the size of the trailing step does not.

The target step size Š =
(
Šx, Šy, Šψ

)
is a step size vector in Carte-

sian coordinates in the reference frame of the support foot, which is
an x-forward, right-handed coordinate frame. The rotational compo-
nent Šψ defines the angle of yaw rotation from the support foot to the
swing foot. Figure 6.9a shows an example. To profit from the compo-
nentwise linear—and easily invertible—relation between the swing
amplitude vector A and the step size in the trunk frame, the com-
manded step size must be transformed into the coordinate frame of
the trunk. When performing a step, the CPG yaws both feet by half
of the angle Šψ in opposing directions. By the end of the step, the

6.4 control interface 41

trunk is rotated by half of the commanded angle Šψ with respect to
the support foot. This is illustrated in Figure 6.9b. To transform the
desired step size Š to a desired step size Š

′
in the trunk frame, we

compute[
Š′x

Š′y

]
= R(−

Šψ

2
)

[
Šx

Šy

]
, (6.33)

Š′ψ = Šψ, (6.34)

where R is a counter-clockwise rotation matrix that negates the rota-
tion of the trunk.

Through the modulation of the motion pattern amplitudes in equa-
tions (6.14) and (6.17 - 6.19), the leg swing amplitude A has a direct The leg swing

activator is bounded
and smoothed in
order to protect the
hardware from
erratic motions.

effect on the motor targets that are sent to the robot. Therefore it is
crucial that the Control Interface presents a swing amplitude vector
to the Motion Pattern layer that remains continuous at all times in
order to avoid sudden changes in the motor target positions that may
lead to hardware damage. To this end, the desired step size Š

′
in the

trunk frame is mapped to an intermediate swing amplitude target
Ǎ =

(
Ǎx, Ǎy, Ǎψ

)
first, which is then smoothed and bounded before

it is allowed to pass into the pattern generation layer. For the con-
version of the desired step size Š

′
in the trunk frame to the swing

amplitude target Ǎ, we exploit the linear correlation that we identi-
fied in Figure 6.9, and compute

Ǎy := kxŠ
′
x, (6.35)

Ǎx :=

λ(|Š′y|−Sminy)
Smaxy −Sminy

, if λŠ′y − Sminy > 0

Ǎx, otherwise,
(6.36)

Ǎψ := kψŠψ, (6.37)

where λ = −sgn(µ) is the sign of the support leg, determined as
the opposite sign of the motion phase µ. The sagittal (6.35) and rota-
tional (6.37) conversions are simple linear functions with factors kx
and kψ. For the lateral conversion (6.36), minimal and maximal step
size parameters Sminy and Smaxy are used, but only if the desired step
is a leading step of at least the minimal size. Otherwise, the input is
ignored and the roll swing amplitude target Ǎx retains its previous
value. The values of the conversion factors kx and ky, and the lateral
step size boundaries Sminy and Smaxy , are best determined experimen-
tally from the data shown in Figure 6.8.

Leg swing amplitudes can be arbitrarily combined in all three di-
mensions as long as the swing amplitude is contained within a convex
region defined by a p-norm. We regard p to be a parameter K20 > 1.
The configurable shape of the applied norm restricts the target swing
amplitude vector Ǎ to remain inside the region [−1, 1]3, and also en-

42 step motion generator

forces a configurable restriction on the combination of the swing am-
plitude components. If after the step size conversion the K20-norm of
Ǎ exceeds a value of 1 (‖Ǎ‖K20 > 1), we normalize the swing ampli-
tude target vector Ǎ using

Ǎ :=
Ǎ

‖Ǎ‖K20
. (6.38)

The Control Interface maintains an internal state A of the swing
amplitude that is moved towards the bounded target swing ampli-
tude Ǎ in small increments within configurable limits

Ax := Ax + min(max(Ǎx −Ax,−K21ρ),K21ρ), (6.39)

Ay := Ay + min(max(Ǎy −Ay,−K22ρ),K22ρ), (6.40)

Aψ := Aψ + min(max(Ǎψ −Aψ,−K23ρ),K23ρ), (6.41)

where ρ = 0.01 s is the time period of one iteration of the main control
loop (i. e. 100Hz).

Both sensor noise and legitimate sudden changes of the task may
cause the target step size Š to change abruptly. As a result of the
bounding and smoothing of the leg swing amplitude in the Control
Interface, the target step size is allowed to change abruptly at any
time during the step, and higher control layers are relieved of the
responsibility of having to provide a continuous target. The robot
will continue to execute a smooth stepping motion and attempt to
step towards the target step location, to the extent that is possible
given the remaining time of the step and the configured restrictions.

Please note that exposing the swing amplitude target Ǎ instead of
the target step size Š may be a more suitable interface for certain ap-
plications. For example, the output of a force field based gait control
method, or direct joystick control by a human operator, can be more
conveniently mapped directly to the unit region [−1, 1]3 of the leg
swing activation signal than to a commanded footstep location.

6.4.2 Step Timing

The second parameter the Control Interface offers is the remaining
time Ť until the next support exchange. When the CPG walk is usedThe step time

parameter is
converted into a step

frequency, which is
used to advance the

motion phase.

in open-loop mode, a fixed frequency K20 pulses the step time param-
eter Ť . A closed-loop controller on a higher layer may adapt the step
timing in order to maintain the balance of the robot. The technique
used here is to convert the time-to-step parameter Ť into a step fre-
quency Ω. The step frequency determines by how much the motion
phase µ is incremented per control loop iteration. We compute a step
frequency such that the support exchange is induced exactly at time

6.5 experiments 43

Ť seconds into the future. The time to frequency conversion is given
by

Ω =

− µ

πŤ
, if µ 6 0

π−µ

πŤ
, if µ > 0.

(6.42)

The motion generator reaches the support exchange at motion phases
µ = 0 and µ = ±π. Thus, two cases have to be handled, depending
on the current value of the motion phase. The time to frequency con-
version (6.42) becomes increasingly instable when the time-to-step Ť
approaches zero. The Control Interface bounds the step frequency to
a range [0,K25]. The applied bounds make sure that the step motion
can only be played forwards, and that the increment of the motion
phase is smaller than an admissible upper bound, preventing erratic
step frequencies from generating discontinuous motor targets. Then,
the motion phase µ is incremented based on the bounded step fre-
quency

µ :=

µ+Ωπρ, if µ+Ωπρ < π

−π otherwise,
(6.43)

where ρ = 0.01 s is the time period of one iteration of the main control
loop at 100Hz. Whenever the motion phase exceeds the upper bound
π, it needs to be reset to −π. This cannot be done smoothly. Thus, all
phase dependent motion primitives have to be designed carefully in
order to produce a smooth output even when the motion phase is
reset.

6.5 experiments

6.5.1 Video Demonstration

Table 6.1 and the demonstration video [4] both show a number of dif-
ferent humanoid robots that the central pattern-generated walk de- The NimbRo CPG

has been successfully
implemented on a
number of bipedal
robots of various
sizes.

scribed in this chapter has been used on. All of these robots could
walk on a flat floor and demonstrated outstanding performance in
RoboCup soccer games. In a push experiment that was performed
in video [4], bipedal robot Dynaped was able to passively absorb im-
pacts that were strong enough to create a visible disturbance during
open-loop walking. The robot was also able to step on 2 cm thick
board. Furthermore, the video shows the effects of compliant control.
The robot automatically yields to pressure and dampens undesired
swinging.

44 step motion generator

-0.2

-0.1

0.0

0.1

0.2

0.0

0.1

0.6

0.7

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Time [s]

Leg Extension tx [0-1]
Leg Extension rx [0-1]

CoM Height tx [m]
CoM Height rx [m]

Leg Angle tx [rad]
Leg Angle rx [rad]

Figure 6.10: Center of Mass height, leg extension, and leg angle during walk-
ing. The Center of Mass travels on arc shaped trajectories rather than on a
plane. The collision of the swing leg with the floor is automatically absorbed
by the compliant actuators. Strong deviations between the commanded (tx)
and the received (rx) leg extension motion signals can be observed shortly
after the floor impact. The distance between the commanded and the mea-
sured leg angle gives a visual impression of the latency.

6.5.2 Center of Mass and Compliant Actuation

Figure 6.10 shows motion pattern data recorded with Dynaped while
it was walking with the CPG. The experiment started with the robotThe center of mass

travels on arcs and
the floor impact is

absorbed by the
compliant actuators.

walking in place. The robot accelerated to its peak velocity, slowed
down again, and then came to a stop. The plot displays the CoM

height on the top, and demonstrates the non-planar motion of the
CoM. The data stream in the center shows the commanded signal (tx)
for the leg extension and the signal received back from the robot (rx).
Due to the compliant actuation, the swing leg automatically absorbs
the impact of the floor contact. Accordingly, the received signal can
be seen to deviate strongly from the commanded signal when shortly
after the swing foot lands on the floor. The data stream in the bot-
tommost plot in the figure shows the motion signal of the leg angle.
There is an evident latency between the commanded signal and the
received signal.

6.5.3 Stability Analysis

To analyze the open-loop stability of walking with the CPG, we per-An open-loop stable
basin of attraction is

revealed in an
exhaustive push

experiment.

formed push experiments with a simulated and a real robot. We com-
manded Simon and Dynaped to walk in place with the open-loop pat-
tern generator. We subjected the robots to a large number of pushes
of randomly varying strengths and made sure that strong enough

6.5 experiments 45

pushes that make the robots fall were included. In two separate ex-
periments, pushes were applied from the front and the back to exam-
ine the sagittal stability, and from the left and the right to examine
the lateral stability. Simon was pushed 300 times in each experiment
and fell between 100 to 120 times in each experiment. Dynaped was
pushed at least 100 times in each experiment and fell approximately
60 times in each experiment. Please note that the number of falls does
not reflect stability, as it can be easily influenced by the choice of the
strength of the disturbance. The number of falls compared to the total
number of pushes confirms that both types of pushes—those strong
enough to make the robot fall and those weak enough to be passively
absorbed—were included in sufficient numbers.

Figure 6.11 shows the results of this experiment. The plots show
vector fields of stable and unstable areas in the pitch and roll phase
spaces of the trunk angle. The sagittal stability is reflected by the pitch
angle phase space, and the lateral stability is reflected by the roll an-
gle phase space. The vector field is produced by constructing vectors
that point from a trunk angle state to the trunk angle state 50 ms later.
The vectors are then sorted into a grid of 40 by 40 cells and averaged
to one vector per cell. Cells that do not contain at least two vectors
before averaging are considered empty, and no vector is plotted. The
length of the vectors has been capped to the radius of the in-circle of
the cells in order to improve the visual effect. Short arrows symbolize
a slow rate of change of the trunk angle. Long arrows correspond to
a fast rate of change. The contours of the stable and unstable regions
were determined by counting the visits in each grid cell. Dividing
the number of visits that ended in a fall by the total number of visits
yields the probability that the robot will fall after being in the state
that is represented by the cell. Cells that have a higher than 50% prob-
ability of leading to a fall are marked in red. Cells that have a less
than 50% probability of leading to a fall are marked in blue. Only
cells that have been visited at least twice are assigned a color. The
vector fields and the colored regions complement each other and re-
flect the response of the system to the applied push impulses. The
arrows in the blue region point “inwards”, leading the robot back to
a stable state in the center of the phase space. The arrows in the red
regions point “outwards”, leading to an escalation of the trunk angle
and a certain fall.

The existence of a stable region is best explained by the non-zero
size of the feet, and by the width of the stance in the lateral direction. The set of stable

states near the
upright pose is a
result of the
non-zero size of the
feet.

When the robot is undisturbed, the pitch and roll angles and angular
velocities are near zero, i. e. in the center of the blue regions. Pushes
tilt the robot and drive the trunk angle away from the center position.
If the push was weak enough that the robot does not tip over the edge
of a foot, the trunk angle and angular velocity remain within the blue
colored basin of attraction and spiral back to the center of the phase

46 step motion generator

SimonSimon

-2

-1

 0

 1

 2

-0.4 -0.2 0 0.2 0.4

T
ru

nk
 P

itc
h

A
ng

le
 R

at
e
θ. y

[r
ad

/s
]

Trunk Pitch Angle θy [rad]

Simon

stable
unstable

DynapedDynaped

-2

-1

 0

 1

 2

-0.4 -0.2 0 0.2 0.4

T
ru

nk
 P

itc
h

A
ng

le
 R

at
e
θ. y

[r
ad

/s
]

Trunk Pitch Angle θy [rad]

Dynaped

stable
unstable

(a) Sagittal

SimonSimon

-2

-1

 0

 1

 2

-0.4 -0.2 0 0.2 0.4

T
ru

nk
 R

ol
l A

ng
le

 R
at

e
θ. x

[r
ad

/s
]

Trunk Roll Angle θx [rad]

Simon

stable
unstable

DynapedDynaped

-2

-1

 0

 1

 2

-0.4 -0.2 0 0.2 0.4

T
ru

nk
 R

ol
l A

ng
le

 R
at

e
θ. x

[r
ad

/s
]

Trunk Roll Angle θx [rad]

Dynaped

stable
unstable

(b) Lateral

Figure 6.11: Vector fields of the pitch and roll trunk angle phase spaces. The
simulated robot Simon and the real robot Dynaped were subjected to pushes
of randomly varying strength from the front and the back to explore the (a)
sagittal (pitch) stability, and from the left and the right to examine the (b)
lateral (roll) stability. The vectors hint at the short-term future development
of the trunk angle. The length of the arrows reflects the angular velocity
up to an upper bound for better visibility. For each plot, a stable region is
outlined in blue. States that were frequently involved in a fall are marked in
red. Both the pitch and roll phase spaces possess a stable region where the
robot is able to passively absorb disturbances. The size of the stable regions
is mostly to be attributed to the size of the feet in the sagittal direction, and
to the width of the stance in the lateral direction.

space. If the push is strong enough to tip the robot over the edge of a
foot, it drives the trunk angle state into one of the red regions and the
robot inevitably falls. Despite fewer and more noisy samples from the
real robot, the same regions can be identified in the trunk angle phase
spaces. Interestingly, larger stable regions appear in both trunk angle
phase spaces of Dynaped. The reason for this must be the larger foot
size to CoM height ratio of Dynaped compared to Simon.

6.5 experiments 47

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 1 2 3 4 5

T
ru

nk
 P

itc
h

A
ng

le
 θ
y

[r
ad

]

Time Since Push [s]

Simon

unstable
stable

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 1 2 3 4 5

T
ru

nk
 P

itc
h

A
ng

le
 θ
y

[r
ad

]

Time Since Push [s]

Dynaped

unstable
stable

(a) Sagittal

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 1 2 3 4 5

T
ru

nk
 R

ol
l A

ng
le

 θ
x

[r
ad

]

Time Since Push [s]

Simon

unstable
stable

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 1 2 3 4 5

T
ru

nk
 R

ol
l A

ng
le

 θ
x

[r
ad

]

Time Since Push [s]

Dynaped

unstable
stable

(b) Lateral

Figure 6.12: Plots of (a) pitch and (b) roll trunk angle trajectories synchro-
nized at the moment of the push.

Generated from the same push experiments, Figure 6.12 shows
plots of the trunk pitch angle and the trunk roll angle after the push,
synchronized by the push event. In the same manner as before, tra-
jectories that resulted in a fall are marked in red. Stable trajectories
are marked in blue. A noticeable threshold separates the trajectories
that were able to return from the edge of the foot from the ones that
tipped over and ended in a fall. In the lateral experiment, once the
oscillation has been disturbed, it takes a long time for it to settle and
to return to its usual amplitude. Some of the falling trajectories were
not brought to a fall directly by the push, but oscillate first before
tipping over. These cases present evidence that the robot can disturb
itself by pushing into the ground with a badly timed step.

48 step motion generator

6.6 discussion

The presented CPG creates an open-loop walking motion for bipedal
robots using configurable motion patterns that operate in the parame-
ter space of an abstract motion interface. It combines well with elastic,
low-gain position control. The central pattern generator is model free
in that it uses an abstract kinematic interface that does not relate end-
effector configurations to joint angles. Masses, inertia, and sizes of
body parts do not need to be known. A successful history of walking
and soccer playing bipedal robots provides evidence that self-stable
walking can be achieved with this CPG.

The Leg Interface—the kinematic abstraction layer the CPG is based
on—constitutes the encoding of intuitive leg motion components that
are used during walking. Using the Leg Interface can produce a natu-
ral looking and energy-efficient robotic walk with stretched knees. An
inverse kinematics-based interface does not naturally support step-
ping motions with stretched knees. When using inverse kinematics
to track motion trajectories defined in Cartesian space, end-effector
targets must be designed in such way that they remain inside the
kinematically feasible region of the legs. When using the Leg Inter-
face to express motions, this is always guaranteed. Due to the encod-
ing of motions using angles, the motion patterns can be transferred
between robots of different sizes without the need for scaling or re-
targeting. The necessity to learn the conversion from footstep param-
eters to leg swing amplitudes, which we accomplished using simple
linear mappings, appears to be a disadvantage of the abstract kine-
matic interface, as compared to inverse kinematics. However, even in
the latter case, where the transformation of the footstep parameters
to joint angles is given directly, elastic actuator elements and other
sources of imprecise actuation can cause unexpected deviations from
the computed results and may necessitate a similar learned mapping.

Due to the execution of the same pattern with both legs, the Con-
trol Interface can offer a conveniently low number of parameters to
control the walking motion on a higher level of abstraction. Both the
computation of an analytic balance controller and the online learning
of balance profit from this simplification.

We argue that it is beneficial to use an open-loop stable algorithm
as a building block in a hierarchical gait control approach. Most im-
portantly, a reference trajectory can be gained by modeling the peri-
odic motion of the center of mass observed during open-loop walking.
This reference trajectory is a product of the natural dynamics of the
physical system and represents a stable limit cycle. The reference tra-
jectory can then be used as a target for a light-weight control strategy
that simply attempts to return to a motion that the robot is comfort-
able with. Most of the successful walking algorithms use some sort
of a reference trajectory [Englsberger et al., 2011, Kajita et al., 2003,

6.6 discussion 49

Urata et al., 2012]. However, they are generated by a low-dimensional
model and not by a self-stable whole-body walking motion. Further-
more, in situations where the robot is stable and corrective actions are
not required, the balance control loop can remain inactive and allow
the robot to walk without control effort.

A drawback of the central pattern generator is the need for manual
parameter tuning. We envision future motion generators as being able
to tune their own parameters during operation times, optimizing the
cost of transportation and slowly adjusting to changes of the body
over time.

Throughout the remainder of this thesis, we can regard the pat-
tern generator as a black box that can be commanded to step onto
Cartesian floor coordinates at specific times. We now begin to build
a balance control augmentation on top of the CPG that uses the Con-
trol Interface to command the pattern generator to step onto desired
locations. In the next chapter, we introduce our method to compute
a low-dimensional feature that represents the state of balance and
serves as a basis for the computation of the step size and the step
timing.

7
S TAT E E S T I M AT I O N

Š

S ,T

q̂ , â , ω̂

Footstep Control

y

Motion Generator

State Estimation Bipedal Robot

c ,λ q

y

x

Figure 7.1: The State Estimation module uses the joint angles q̂measured by
motor encoders, the inertial acceleration â of the trunk, the angular velocity
ω̂ of the trunk, and a kinematic model to reconstruct the tilted whole-body
pose of the robot. For the purpose of balance control, the position and the
velocity of the Center of Mass c and the support foot sign λ are extracted
from the pose reconstruction.

The State Estimation module illustrated in Figure 7.1, reconstructs
the whole-body pose of the robot in three-dimensional space. To this The state of the

Center of Mass and
the support leg
indicator are the
main features
computed by the
State Estimation.

end, it uses a kinematic model and the sensor information gained
from the robot. The sensor inputs into the State Estimation module
are the joint angles q̂ measured by motor encoders, the inertial accel-
eration â of the trunk measured by accelerometers, and the angular
velocity ω̂ of the trunk reported by gyroscopes. For the purpose of
generating a stable walk, we are interested in two particular features:
the coordinates and the velocity of a fixed point on the body frame,
which we refer to as the Center of Mass (CoM) state c, and an indica-
tor λ ∈ [−1, 1] for the sign of the leg the robot is currently standing
on. Both of these features can be extracted from the whole-body pose
reconstruction.

In the following, we describe a common method of fusing the ac-
celerometer and the gyroscope data into an estimate of the trunk at-
titude θ, which is required for the pose reconstruction. Then, we ex-
plain our method of tilted whole-body pose reconstruction, CoM state
extraction, and support leg sign detection.

51

52 state estimation

7.1 trunk attitude estimation

An Inertial Measurement Unit (IMU), typically mounted in the trunk
of a humanoid, uses a combination of accelerometers and gyroscopes,The measurements

of accelerometers
and gyroscopes are
fused into a trunk

attitude estimation,
exploiting the

advantages of both
types of sensors.

sometimes also magnetometers, for the purpose of estimating the
orientation of a body. Accelerometers report the vector of the total
inertial acceleration experienced by the sensor. A dominant part of
the acceleration is due to the gravitational force, which allows a raw
estimate of the trunk attitude to be computed directly from the ac-
celerometer readings. The raw estimate is not always accurate, how-
ever, because the accelerometer readings also contain the acceleration
resulting from other forces at work on the body. Moreover, the trunk
of a walking robot is shaky, and thus the accelerometer readings are
quite noisy. Gyroscopes report the angular velocity in a body-fixed
coordinate frame, which is much less prone to noise. The angular
velocity can be integrated over time to obtain a low noise angle es-
timate. This suffers from drift, because the integration accumulates
errors. It is common practice to combine the advantages of both sen-
sors to form a low-noise, drift-free, and low-latency estimation of the
attitude with the use of a complementary filter.

The trunk attitude θ = (θx, θy) is expressed as a trunk roll angle
θx and a trunk pitch angle θy about the x and y axes of a body-fixed
right-handed coordinate frame, respectively, where the x-axis points
forward, and the y-axis points to the left. The trunk attitude is in-
terpreted as a vector of independent, one-dimensional rotations with
respect to the world vertical. While this definition does not hold for
pitch and roll combinations that considerably deviate from vertical, it
is sufficient for the purpose of presenting the concepts of this thesis,
and for balance control in a small range of trunk attitudes around the
upright pose. A more robust definition of “fused angles” suitable for
use in more general 3D scenarios has been published by Allgeuer and
Behnke [2014a].

Let â = (âx, ây) be a two-dimensional vector of inertial accelera-
tion measured by accelerometers with its components expressed in
units of the gravitational constant G and bounded to [−1, 1]. The raw
trunk angle estimate θ̂ = (θ̂x, θ̂y) is then given by

θ̂x = arcsin(âx), (7.1)

θ̂y = arcsin(ây). (7.2)

Let θ̂n be the raw trunk angle estimate, and ω̂n be the angular ve-
locity reported by the gyroscopes in iteration n of the control loop.
Then, the trunk angle estimate for that iteration, θn, is given by

θn = (1− k) (θn−1 + ρ (ω̂n −Bn)) + kθ̂n, (7.3)

where k = 0.01 is a blending factor, ρ = 0.01 s is the time interval
between iteration n and n − 1, and Bn is the gyro bias. The idea

7.2 tilted whole-body pose reconstruction 53

behind this formula is that the blending of the lowly weighted raw
trunk angle angle with the highly weighted gyroscope integration
“ties” the low-noise gyro integration to the noisy but drift-less signal
of the accelerometers. The gyro bias Bn plays an important role for
the accuracy of the attitude estimation. Typically, the gyroscope out-
put is prone to systematic error, e. g. a constant overestimation of the
angular velocity. The integration of the raw gyroscope output accu-
mulates this systematic error and results in an attitude estimate that
drifts away from the real angle with time. Subtracting the bias before
performing the integration is a good way of sufficiently reducing the
drift. One can estimate the gyro bias in a simple way by computing
the mean of the angular velocities that the sensor reports in a state
of rest. A better method, however, is to estimate the bias during oper-
ation by utilizing the angle estimate provided by the accelerometers.
This can be done using

θ̄n = θ̄n−1 + ρω̂n, (7.4)

βn =

(
θ̄n − θ̄n−m

)
−
(
θ̂n − θ̂n−m

)
ρm

, (7.5)

Bn = Bn−1 + k (βn −Bn−1) . (7.6)

In (7.4), we integrate the raw gyroscope readings ω̂ into a biased
angle estimate θ̄ and compare by how much the estimated angle
changed during the last m iterations according to the biased integra-
tion θ̄ and according to the accelerometer readings θ̂ in (7.5). Their
difference divided by the time of m iterations yields a new gyro bias
estimate βn, which we slowly blend our running bias estimate Bn to-
wards with a blending factor of k = 0.001. Aside from the automatic
calibration of the gyro bias, the advantage of this method is that it
can account for a slow change of the bias during runtime.

A more sophisticated trunk attitude estimator that performs the
estimation in 3D and also includes a magnetometer sensor has been
published recently by Allgeuer and Behnke [2014b].

7.2 tilted whole-body pose reconstruction

We use the joint angle information q̂ obtained from the motor en-
coders and the estimated trunk attitude θ to reconstruct a tilted whole- A tilted whole-body

pose reconstruction
with the help of a
robot skeleton is a
rich source of
kinematic and
balance-related
information.

body pose of the robot with the help of its kinematic model. The mea-
sured joint angles q̂ are applied to set the kinematic model in pose
with a forward kinematics algorithm. After this operation, the rela-
tive orientation of the rigid body parts with respect to their parent
in the kinematic chain matches the orientation implied by the set of
joint angles that were measured from the robot. Once in pose, the
entire kinematic model is rotated around the center of the current
support foot such that the trunk attitude equals the roll and pitch

54 state estimation

(a) Simon (b) Copedo (c) Dynaped

Figure 7.2: The kinematic models used for (a) the simulated robot Simon
and smaller models used for the soccer robots (b) Copedo and (c) Dynaped.
Sizes are not to scale.

angles θ = (θx, θy) returned by the complementary filter. We con-
sciously neglected the fact that the robot would rotate about one of
the edges of the support foot, and not about the center of the foot.
This eliminates the need to determine the edge to rotate about, and
disposes of a potential source for jitter at the cost of a negligible error.

In this manner, we aggregate a pose reconstruction that combines
the kinematic state of the robot with its state of balance. Since pitch
and roll estimates were incorporated, the position and orientation of
body parts relative to the floor can be determined, under the assump-
tion of a flat and horizontal floor. In this way, the pose reconstruction
is a useful source of balance relevant information, such as for example
the angle of the support foot relative to the floor, the position and ori-
entation of the trunk relative to the floor, and the position and orienta-
tion of the swing foot relative to the floor. The global yaw orientation
is not included in our model, as it is not relevant for balance. Includ-
ing the yaw orientation, however, could extend the usefulness of the
tilted whole-body pose reconstruction for localization purposes.

Without attempting to be precise, we use a generic humanoid kine-
matic model that we developed in simulation [Missura and Behnke,Omitting small

details from the
kinematic model

assists mathematical
operations.

2013b] and adjust the lengths of its body segments to the sizes of
the controlled robot. The layout of the kinematic model and the sizes
of the relevant segments are illustrated in Figure 7.2. In this generic
humanoid model, the rotational axes of all degrees of freedom of a
joint intersect at a single point. This is not always the case with real
hardware. The neglecting of the small offsets between the rotational
axes simplifies the implementation of the forward and inverse kine-
matic operations, the adaptation to different robot prototypes, and
accelerates physical simulation.

7.3 center of mass state estimation 55

7.3 center of mass state estimation

Using the reconstructed pose in three-dimensional space, we track the
motion of the center point in between the hip joints with respect to a The center point

between the hip
joints can be used as
an approximation of
the center of mass.

footstep frame. The footstep frame is set to the ground projection of
the new support foot in the moment of a detected support exchange.
Support exchange detection is discussed in Section 7.4. The ground
projected support frame is horizontally aligned with the floor and pre-
serves the yaw orientation the new support foot had relative to the
last footstep frame after the support exchange. During the step, the
footstep frame remains fixed until the next support exchange occurs.
With respect to the footstep frame, we compute the coordinates of the
ground projected center point between the hip joints and obtain the
CoM state c = (cx, ċx, cy, ċy), a four dimensional vector with position
and velocity components in the sagittal and lateral directions. The val-
ues of the derivatives ċx and ċy have to be determined by numerical
differentiation and are hence prone to noise.

The relocation of the footstep frame in the moment of the support
exchange introduces an unavoidable discontinuity in the CoM trajec-
tory. To maintain a continuous velocity in the global reference frame,
the velocity vector (ċx, ċy) is rotated into the new support frame in
the event of a support exchange, using[

ċx

ċy

]
:= R(−φ)

[
ċx

ċy

]
, (7.7)

where R(−φ) is the 2D rotation matrix corresponding to a counter-
clockwise rotation of −φ, and φ is the yaw angle that rotates the
footstep frame before the support exchange to the footstep frame after
the support exchange. The magnitude of the velocity vector is not
updated until at least two CoM state estimates are available in the
new support frame to continue the numerical differentiation.

7.4 support foot estimation

The support foot estimation is a continuous process and can be initial-
ized with either the right or the left foot. If after the pose reconstruc-
tion outlined above, the vertical coordinate of the swing foot has a
value lower than the vertical coordinate of the support foot, the roles
of the feet are switched and the sign λ ∈ {−1, 1} of the support foot is
set to either to λ = −1 for the left foot, or λ = 1 for the right foot. In
this moment the support frame is relocated to the ground projection
of the new support foot. In order to avoid erratic changes of the sup-
port foot sign when both feet are on the ground, after every change
of the support role, we require the vertical distance between the feet
to exceed 5mm before another support exchange is allowed to occur.

56 state estimation

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0 2 4 6 8 10 12 14 16 18

T
ru

nk
 P

itc
h

A
ng

le
 θ
y

[r
ad

]

Time [s]

mocap
xsens

onboard

 -0.2

-0.1

0

0.1

0.2

0.3

0.4

 0 2 4 6 8 10 12 14 16 18

T
ru

nk
 R

ol
l A

ng
le

 θ
x

[r
ad

]

Time [s]

mocap
xsens

onboard

Figure 7.3: Comparison of the attitude estimation with the onboard equip-
ment of robot Copedo, a motion capture device, and a commercial Xsens
sensor. In the pitch and roll directions, the robot was slowly pushed onto a
support edge and released shortly before tipping over, allowing the robot to
rock back into a standing position.

Note that this support foot detection method is based on the as-
sumption that the floor is horizontal and flat, and at least one foot
touches the ground at all times. Based on these assumptions, sup-
port foot detection is possible without foot pressure or ankle torque
sensors, but the method does not scale to non-planar surfaces.

7.5 experiments

7.5.1 Trunk Attitude Estimation

We evaluated the quality of our trunk attitude estimation in a mo-
tion capture experiment. Bipedal robot Copedo was equipped with
reflective markers and their position in three-dimensional space was
determined by an OptiTrack1 motion capture device. From multiple
markers attached to the trunk, it is possible to reconstruct the trunk
orientation. We also attached a commercially available Xsens sensor
to the trunk. This sensor has an integrated filter and reports a direct
trunk attitude estimate. In separate experiments for the pitch and roll
directions, Copedo was pushed onto a support edge and released

1 http://www.naturalpoint.com/optitrack

7.5 experiments 57

shortly before tipping over, allowing it to rock back into a standing
position. This was repeated several times in each direction. Figure 7.3
shows a comparison of the trunk pitch and trunk roll angles esti-
mated with the onboard sensor equipment of Copedo (filtered with
the complementary filter), the motion capture device, and the Xsens
sensor. Especially at large peaks, the motion capture device and the
Xsens sensor are more in agreement with each other, than with our
attitude estimation. The motion capture data is relatively noisy, but
it is certain to be drift-free. The Xsens sensor is a quality product of
an established brand that appears to perform reliably. Based on the
agreement of the two other sources of data, the self-assembled sen-
sor equipment of robot Copedo appears to show some deficiency. It
is unclear how much of the deviation can be attributed to the hard-
ware components and the simple complementary filter. However, the
accuracy is sufficient for balanced walking and push recovery.

7.5.2 Center of Mass State Estimation

Figure 7.4 shows CoM positions and velocities in the sagittal and
lateral directions for the simulated robot Simon and the real robot The velocity of the

center of mass
cannot be
determined as
precisely as its
position.

Dynaped. The CoM positions and velocities were estimated with the
tilted kinematic pose reconstruction method that was introduced ear-
lier in this chapter. The data was recorded during an open-loop ex-
periment where the robots Simon and Dynaped were walking with
the CPG. The data also shows the support exchange detection where
discontinuities in the CoM position trajectory occur. It is obvious that
the velocity estimates are rather noisy in comparison to the position
estimates. This is due to the fact that the velocity of the CoM is de-
termined by means of numerical differentiation. Interestingly, the ve-
locity estimation noise in the simulated environment is significantly
larger than on the real robot. The reason for this is that the motion of
rigid bodies within the Bullet Physics engine is jerky on a small time
scale, since Bullet uses a combination of actually simulated world
state updates and interpolations in between states to speed up per-
formance. Whenever a real simulation step occurs, the position and
orientation of the involved rigid bodies is incremented in a different
way, resulting in a spike in the velocity estimate. Increasing the sim-
ulation frequency results in less noise, but is more computationally
intense. The Capture Step controller includes a predictive filter that
is able to reduce the noise we experience in simulation. The filter is
presented in Section 8.2. The most characteristic sources of noise in
the real robot data are the support exchanges, where spikes in the ve-
locity estimate can be observed. The predictive filter includes a step
noise suppression mechanism to solve this issue.

Most importantly, the CoM data of the robots resembles the motion
of an inverted pendulum in both the sagittal and lateral directions.

58 state estimation

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

x
[m

],
vx

 [m
/s

]

Time [s]

Simon

vx
x

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5 2 2.5 3

x
[m

],
vx

 [m
/s

]

Time [s]

Dynaped

vx
x

0x
[m

],
vx

 [m
/s

]

Time

LIPM

vx
x

(a) Sagittal motion

-0.9

-0.6

-0.3

 0

 0.3

 0.6

 0.9

 0 0.5 1 1.5 2 2.5 3

y
[m

],
vy

 [m
/s

]

Time [s]

Simon

vy
y

-0.9

-0.6

-0.3

 0

 0.3

 0.6

 0.9

 0 0.5 1 1.5 2 2.5 3

y
[m

],
vy

 [m
/s

]

Time [s]

Dynaped

vy
y

0

y
[m

],
vy

 [m
/s

]

Time

LIPM

vy
y

(b) Lateral motion

Figure 7.4: Estimated Center of Mass position and velocity data in the sagit-
tal and lateral directions for the simulated robot Simon and the real robot
Dynaped. The velocity estimates are noisy because they are determined by
means of numerical differentiation. Interestingly, the velocity estimates in
the physical simulation are noisier than on the real robot. Example Linear In-
verted Pendulum Model trajectories are shown in the elongated plots. When
walking with the open-loop Central Pattern Generator, the Center of Mass
motion of the robots in the (a) sagittal and (b) lateral directions resemble the
motion of an inverted pendulum.

7.6 discussion 59

The elongated plots in Figure 7.4a and 7.4b show schematic trajecto-
ries generated with the LIPM. The Linear Inverted Pendulum Model The Center of Mass

motion gained from
a simulated and a
real robot resembles
the motion of an
inverted pendulum.

introduced in Chapter 8.1 is a mathematical concept that approxi-
mates the dynamics of an inverted pendulum in closed form. The
shapes of the LIPM position and velocity profiles are similar to the
position and velocity profiles produced by the robots. This is par-
ticularly interesting because the walking motion of the robots was
generated by the CPG, which does not explicitly attempt to generate
an inverted pendulum-like walk.

7.6 discussion

The low-dimensional representation of the motion state is an essen-
tial feature of the Capture Step Framework. The fast, analytic com- The planar model for

state representation
still accounts for
rotations about the
support foot.

putation of suitable footstep control equations is based on the high
correlation between the motion of the extracted CoM state c and a mo-
tion trajectory engineered with the Linear Inverted Pendulum Model.
Even though we compress the whole-body state into a planar model,
rotations of the whole body about the support foot are still accounted
for since we rotate the kinematic model by the trunk attitude before
extracting the CoM state. We do not assume that the feet remain flat
on the floor. This is a strong distinction between our work and the
majority of the prevailing state of the art approaches. Push experi-
ments we perform in subsequent chapters show that strong distur-
bances inevitably lead to a violation of the floor-aligned support foot
assumption. Nevertheless, the balance controller is able to recover
from oblique poses to a certain degree, despite only using a planar
model.

By tracking a fixed point on the kinematic model instead of the
true center of mass, we not only avoid having to provide masses and It is easier and less

noisy to track a fixed
point on the body
than to determine
the true center of
mass.

mass distributions to construct a physical model for the computation
of the actual center of mass, but we also evade additional noise orig-
inating from every moving part of the body that has non-zero mass.
We abstain from using quantities that are difficult to assess without
high-quality sensors, such as torques, forces, and accelerations. It is
not necessary to estimate the type and magnitude of a disturbance,
e. g. the magnitude of an impulse. No matter what type of distur-
bance alters the trajectory of the fixed point—pushes, collisions, or
the inertial effect of moving robot parts—the balance controller will
react and suggest new step parameters.

The tilted pose reconstruction can serve as a useful source of in-
formation for tasks other than walking and balancing. While the roll
and pitch angle of the trunk is sufficient for balancing purposes, a
global yaw estimation can be likewise integrated into the pose, when
performing the rotation of the model about the support foot. Then,
for example, a camera pose estimate can be gained from the model

60 state estimation

and used to seed visual registration methods. Finally, the sequence of
footstep frames computed by the model during walking, and the CoM

motion relative to the footstep frame, can be used as a dead-reckoning
motion model to support localization.

8
A N A LY T I C F O O T S T E P C O N T R O L

Š

S ,T

q̂ , â , ω̂

Footstep Control

y

Motion Generator

State Estimation Bipedal Robot

c ,λ q

y

x

Figure 8.1: The Footstep Control module (top left) receives the Center of
Mass state c and the support leg sign λ from the State Estimation (bottom
left). A desired step size Š from a higher control instance informs the Foot-
step Control about the target step location. Based on the Linear Inverted
Pendulum Model, the Footstep Control computes the step size S and step
time T for the Motion Generator.

Closed-loop balance control is imperative for a legged robot in
order to remain upright for long periods of time in unconstrained Due to the limited

open-loop stability of
bipeds, closed-loop
control of balance is
essential.

environments, where disturbances of balance can frequently occur.
We introduce an analytic footstep control method that augments the
open-loop CPG with closed-loop disturbance rejection and reference
tracking capabilities.

The Footstep Control module shown on the top middle in Fig-
ure 8.1 is an integral part of the control loop. The Footstep Control When a robot loses

its balance, it must
first avoid a fall
before it can return
to the commanded
path.

module executes the footstep control task to obey the desired step
size Š =

(
Šx, Šy, Šψ

)
while preserving the balance of the robot. Un-

fortunately, these two goals can be mutually exclusive. The target step
size can only be met if the balance of the robot is not compromised.
If this is not the case, a footstep location must rather be chosen that
prevents the robot from falling.

The State Estimation component, shown in the bottom left in Fig-
ure 8.1, compresses the whole-body state of the robot into a point
mass model, and provides the Center of Mass (CoM) state vector
c = (cx, ċx, cy, ċy) along with the sign λ ∈ {−1, 1} of the support

61

62 analytic footstep control

leg. The vector c contains positions and velocities of the CoM in the
sagittal and lateral directions with respect to the support foot. TheOnly a

low-dimensional
point mass

representation is
used for balance

control.

outputs of the Footstep Control are the coordinates S =
(
Sx,Sy,Sψ

)
of the location where the swing foot should touch down with respect
to the support foot, and the step time T , the remaining time until the
next support exchange. The step parameters (S, T) are realized as a
whole-body stepping motion by the Motion Generator shown in the
top right in Figure 8.1.

Formally, the Footstep Control is a footstep control function

(S, T) = F(Š, c, λ). (8.1)

In its core, the Footstep Control generates an ideal reference trajec-
tory for the Center of Mass. The reference trajectory is the limit cycleZero Moment Point,

step timing, and foot
placement control
strategies help the
robot to maintain

balance.

that the Center of Mass would follow under perfect conditions when
executing stepping motions with the desired step size Š. The limit
cycle is gained by walking the robot with the open-loop CPG and ap-
proximating the observed CoM trajectory with a parameterized Linear
Inverted Pendulum Model. Robust and controllable walking perfor-
mance is achieved by driving the Center of Mass towards the ref-
erence trajectory by means of analytically computed Zero Moment
Point (ZMP), step timing, and foot placement control strategies.

An algorithmic representation of the analytic footstep control func-
tion F is presented in Algorithm 8.1. Three main computation steps
can be identified within the FootstepControl(Š, c, λ) function. The
first computation step is the application of a predictive filter that
smooths the CoM state input and overcomes latency by means of
prediction. The PredictiveFilter(c, λ) function overwrites the CoM

state c and the support leg sign λ with a smoothed short-term pre-
diction. The ReferenceTrajectory(Š, λ) function computes a target
state s that guides the CoM towards the limit cycle trajectory. The
BalanceControl(s, c, λ) function computes the ZMP Z, the step size
S, and the step time T , which drive the CoM state c towards the tar-
get state s and make sure that the CoM does not diverge from the
reference trajectory. Please note that only the step size S and the step

Algorithm 8.1 Footstep Control

Input: Desired step size Š . Command input
Input: CoM state c, support foot λ . From the State Estimation
Output: Step parameters (S, T) . Step size and timing

1: function FootstepControl(Š, c, λ)
2: (c, λ)← PredictiveFilter(c, λ)
3: s← ReferenceTrajectory(Š, λ)
4: (Z,S, T)← BalanceControl(s, c, λ)
5: return (S, T)
6: end function

8.1 the linear inverted pendulum model 63

timing T are returned by the FootstepControl() function. The CPG

does not need the ZMP for the generation of the stepping motion and
the ZMP can remain hidden inside the Footstep Control component.

In the remainder of this chapter, we first introduce the Linear In-
verted Pendulum Model in Section 8.1. This is the mathematical frame-
work that we use to derive our step control formulae. We then walk
through the computation steps in Algorithm 8.1 in sequential order.
In Section 8.2, we introduce the predictive filter that we use to reduce
noise and overcome control loop latency. We elaborate on the gen-
eration of the CoM reference trajectory in Section 8.3, and introduce
the computation of step parameters for balanced reference tracking in
Section 8.4. In Section 8.5, we present experimental results and finally,
in Section 8.6, we summarize and discuss our results.

8.1 the linear inverted pendulum model

8.1.1 One-dimensional Model

Figure 8.2a illustrates a one-dimensional Linear Inverted Pendulum
Model (LIPM). The model was originally proposed by Kajita et al. The Linear Inverted

Pendulum Model is
a mathematical
model that captures
the principal
dynamics of bipedal
walking.

[2001]. It is an approximation of an inverted pendulum and resem-
bles a bipedal walker standing on one support leg, falling away from
the pendulum base. The pendulum base, the ZMP, and the Center of
Pressure (CoP), are equivalent concepts that label the pivot point of
the pendulum on the ground. The quantity of our interest is the hor-
izontal coordinate x of the CoM with respect to the pendulum base.
The LIPM describes the motion of the CoM using the differential equa-
tion

ẍ = C2x (8.2)

for some constant C. C is used in squared form to simplify the equa-
tions that are derived from equation (8.2). Typically, a value of C =√
G/h is used for C, where G = 9.81m/s2 is the gravitational con-

stant and h is the assumed constant height of the center of mass. As
in our approach it is not the LIPM that generates the walking motion,
but a CPG, we can identify the value of C for an individual robot
experimentally to fit the LIPM as closely as possible to the observed
behavior.

The LIPM differential equation (8.2) has a closed form solution. For
an initial state (x0, ẋ0), the location and the velocity of the future state
at time t are computed by

Closed form
solutions for the
prediction of future
states are available.

x(t, x0, ẋ0) = x0 cosh(Ct) +
ẋ0
C

sinh(Ct), (8.3)

ẋ(t, x0, ẋ0) = x0C sinh(Ct) + ẋ0 cosh(Ct). (8.4)

64 analytic footstep control

ZMP

CoM

x

h

(a) 1D

c=(cx , ċx , cy , ċy)

CoM

ZMP

x

y

Z

c '

(b) 2D

Figure 8.2: (a) The one-dimensional Linear Inverted Pendulum Model with
pendulum height h and Center of Mass coordinate x. (b) Using the orthog-
onal superposition of two Linear Inverted Pendulum Models, the Center of
Mass motion is approximated in a two-dimensional plane. Ideally, the Zero
Moment Point is in the origin of the coordinate frame underneath the ankle
joint. A small Zero Moment Point offset Z can be used for limited influence
on the motion of the Center of Mass c.

The time t when the CoM reaches a future location x, or velocity ẋ, is
given by

t(x, x0, ẋ0) =
1

C
ln

(
x

c1
±

√
x2

c21
−
c2
c1

)
, (8.5)

t(ẋ, x0, ẋ0) =
1

C
ln

(
ẋ

c1C
±

√
ẋ2

c21C
2
+
c2
c1

)
, (8.6)

where

c1 = x0 +
ẋ0
C

, (8.7)

c2 = x0 −
ẋ0
C

. (8.8)

Unless the pendulum is disturbed by external forces, the orbital en-
ergy

E(x, ẋ) =
1

2

(
ẋ2 −C2x2

)
(8.9)

is constant for an entire trajectory.
Equations (8.3) to (8.9) serve as a repertoire for the derivation of

formulae that compute pendulum base locations to be used either as
the Zero Moment Point, or as footstep coordinates, in order to steer
the pendulum to a desired future state.

8.1 the linear inverted pendulum model 65

8.1.2 Two-dimensional Model

In accordance with the dimensional decomposition suggested in Chap-
ter 5, we model a two-dimensional CoM motion using two uncoupled
LIPM equations[

ẍ

ÿ

]
=

[
C2 0

0 C2

][
x

y

]
. (8.10)

The x dimension describes the sagittal motion and the y dimension
describes the lateral motion. Additionally, we extend this passive A two-dimensional

Linear Inverted
Model simulates the
motion of the Center
of Mass under the
influence of a
constant Zero
Moment Point
offset.

model with ZMP control, as illustrated in Figure 8.2b. The origin of
the coordinate frame is located underneath the ankle joint of the sup-
port foot. A small ZMP offset Z = (Zx,Zy) can relocate the pendulum
base within the foot and influence the future motion of the CoM state
c = (cx, ċx, cy, ċy). If we assume that the ZMP offset remains constant,
we can use the one-dimensional LIPM state predictor equations (8.3)
and (8.4), and incorporate the ZMP offset Z in a trivial manner into
a two-dimensional LIPM predictor function. The resulting predictor
function is presented in Algorithm 8.2. The Predict(c, Z, t) function
predicts the future CoM state c′ = (c′x, ċ′x, c′y, ċ′y) at time t, given the
current CoM state c at time t = 0, and the ZMP offset Z. The predic-
tion is computed efficiently in closed form and includes the effect of
the ZMP control input. Typical use cases for the predictions are la-
tency compensation and the computation of footstep locations based
on estimated future states.

Algorithm 8.2 LIPM2D Predict
Input: CoM state c, ZMP offset Z, prediction time t
Output: Future CoM state c′ at time t

1: function Predict(c, Z, t)
2: c′x ← x(t, cx −Zx, ċx) +Zx . Eq. (8.3)
3: ċ′x ← ẋ(t, cx −Zx, ċx) . Eq. (8.4)
4: c′y ← x(t, yx −Zy, ċy) +Zy . Eq. (8.3)
5: ċ′y ← ẋ(t, cy −Zy, ċx) . Eq. (8.4)
6: c′ ←

(
c′x, ċ′x, c′y, ċ′x

)
7: return c′

8: end function

66 analytic footstep control

8.2 predictive filter

txlmxrx

1

Figure 8.3: The Predictive Filter. This filter removes noise by blending be-
tween a measured Center of Mass state rx and an expected state mx. The
filter also predicts a short-term future state tx to overcome the latency.

In a real hardware environment, sensor noise and latency in the
control loop can have a significant effect on the performance of con-In a real hardware

environment, issues
originating from
sensor noise and

latency cannot be
neglected.

trol algorithms. A Predictive Filter is an integral part of the Footstep
Control algorithm 8.1 to remove noise from the CoM state estimate
and to compensate the latency by making a short-term prediction
with the LIPM. The filter is illustrated in Figure 8.3. Its three building
blocks are denoted rx, mx, and tx. The rx block encapsulates the
CoM state computed from the raw sensor input by the State Estima-
tion. The second building block named mx is a model state. In every
iteration of the main control loop, the mx state is forwarded by the
time period of one iteration of the control loop using the LIPM. TheNoise and latency

can both be
compensated with

the help of
predictions made by
the Linear Inverted

Pendulum Model.

forwarded state is then linearly interpolated with the rx state using
a blending factor b ∈ [0, 1] and written back into the mx state. In this
manner, the rx-mx loop forms a noise filter that blends between an
expected state according to the LIPM, and a raw input state estimated
from the sensor input. The tx block contains the mx state forwarded
in time by the latency l, once again using the LIPM equations. It is the
tx CoM state that is presented to the BalanceControl computation
step of the Footstep Control algorithm 8.1. Effectively, the footstep
controller does not compute the step parameters for the state that
was last measured, but instead for the state the robot is estimated to
be in by the time the motors execute the commands.

For a detailed description of the Predictive Filter algorithm, we
define the rx state to be a vector rx = (crx, λrx, trx, Trx) that contains
the CoM state crx and the support leg sign λrx, as they were computed
by the State Estimation module. trx is the time that has passed since
the last detected support exchange, and Trx is the estimated time
until the next support exchange. We similarly define the mx state
mx = (cmx, λmx, tmx, Tmx), and the tx state tx = (ctx, λtx, ttx, Ttx).

The computation steps of the Predictive Filter are shown in Algo-
rithm 8.3. Line 3 computes the linear blending between the rx CoM

state crx and the mx CoM state cmx, which has been forwarded in
line 2 by the system iteration time ρ = 0.01 s using the ForwardMX al-
gorithm 8.4. The ForwardMX algorithm encapsulates the two-dimen-
sional LIPM model with a ZMP control input, which we introduced

8.2 predictive filter 67

Algorithm 8.3 Predictive Filter
Input: CoM state crx, support foot λrx . From the State Estimation
Output: CoM state ctx, support foot λtx . Smoothed and predicted

1: function PredictiveFilter(c, λ)
2: mx← Forward(mx,Z, ρ)
3: cmx ← b ∗ crx + (1− b) ∗ cmx . Noise filter
4: (T ,Z,S)← BalanceControl(cmx, λmx)
5: Tmx ← T

6: if (T < l) then
7: tx← Forward(mx,Z, T) . Alg. 8.4
8: tx← Step(tx,S) . Alg. 8.5
9: tx← Forward(tx,Z, l− T) . Alg. 8.4

10: else
11: tx← Forward(mx, l) . Alg. 8.4
12: end if
13: if (T < ρ) then
14: mx← Step(mx, λ) . Alg. 8.5
15: end if
16: b← δλrx,λmx ∗ SNS ∗DEX . Eq. (8.13)
17: return (ctx, λtx)
18: end function

Algorithm 8.4 ForwardMX
Input: Model state mx, ZMP offset Z, time t
Output: Model state mx′ . Forwarded in time

1: function Forward(mx,Z, t)
2: c′mx ← Predict(cmx,Z, t) . LIPM2D predict 8.2
3: λ′mx ← λmx
4: t′mx ← tmx + t

5: T ′mx ← Tmx − t

6: return mx′

7: end function

Algorithm 8.5 Step
Input: Model state mx = (c, λ, t, T) . Pre step state
Input: Step size S = (Sx,Sy,Sψ) . Planned step size
Output: Model state mx′ = (c′, λ′, t′, T ′) . Post step state

1: function Step(mx, S)
2: c′x ← Sx/2 . Symmetric step assumption
3: ċ′x ← ċx . Constant velocity assumption
4: c′y ← Sy/2

5: ċ′y ← ċy
6: λ′ ← −λ . Fip the leg sign
7: t′ ← 0 . Reset time since step
8: return mx′

9: end function

68 analytic footstep control

in Section 8.1.2. The ZMP used for the forwarding of the mx state in
line 2 bears only marginal significance, since the prediction is made
only over a very short time horizon. A good value to use is the ZMP

Z that was computed in the previous iteration in line 4. The blending
factor b is computed at a later time in the algorithm. We will turn our
attention to it after having discussed the latency compensation.

We determined a latency of l = 65ms on the robots we used for
experimentation. This is quite significant considering that an undis-Due to the high

latency, the
generation of the

motion for the next
step has to begin

before the support
exchange is detected.

turbed step takes approximately 420ms. One portion of the latency
is the time needed for the data communication between the main
processing unit and the hardware. Another significant portion can be
attributed to our unique setting of compliant actuation. The unfor-
tunate implication of the high latency is that the support exchange
has to be anticipated ahead of time, and the first portion of the mo-
tion signal for the next step has to be commanded, well before the ac-
tual support exchange is detected by the sensors. Consequently, when
computing the latency-compensated tx state, a step may have to be
included in the prediction. In line 4 of Algorithm 8.3, a set of step pa-
rameters (T ,Z,S) is computed with the balance controller based on
the mx state, which has not been forwarded by the latency yet. The
computation of the step parameters is described in Section 8.4 and is
here simply referred to as BalanceControl(c, λ). The set of step pa-
rameters gained from the mx model is used to compute the tx state
in lines 6 to 12. If the latency l exceeds the estimated remaining time
T until the step, an anticipated support exchange must be included
in the prediction of the tx state. In line 7, the mx model is forwarded
with the ForwardMX algorithm 8.4 by the step time T to the moment
of the anticipated support exchange. In line 8, the modeled support
exchange is performed and a post step state is estimated with the
Step(mx, S) function given in Algorithm 8.5. In line 9, the post step
state is forwarded by the remaining time to the latency horizon. If the
step time T is greater than the latency l, the tx model does not need
to step and can be directly forwarded by the latency l in line 11.

In the Step(mx, S) function in Algorithm 8.5, the support exchange
is modeled as an instantaneous change of the CoM location without aUsing the coordinate

frame of the swing
foot shortly before
the step is a good

way to predict the
state of the Center of

Mass after the step.

double support phase. The CoM velocity is assumed to be unaffected
by the step. A safe way to estimate the coordinates of the CoM after
the step is to rely on the symmetrical step assumption and to use half
of the step size for the post-step CoM coordinates, as indicated in lines
2 and 4. This method can be used when the blending factor b is set
to zero and the mx-tx states drive the walking motion in an open-
loop mode. A more precise method is to use the coordinates of the
CoM in the ground projected frame of the swing foot as a post-step
estimate. When the estimated step time T is smaller than the latency
l, the swing foot is typically close to its landing position and the
coordinates of the CoM in the ground projected swing foot frame are

8.2 predictive filter 69

a good estimate of the post-step state. However, this method closes
the feedback loop and must be used with care.

When the estimated step time decrements to a value T < ρ, the
mx model is stepped in line 14 of the Predictive Filter algorithm 8.3,
whether the actual support exchange has been detected or not. This
means that at times near the support exchange, the rx state and the
mx state may have different support leg signs and cannot reasonably
be blended.

The blending factor b is a powerful parameter that determines the
extent to which the sensor input can influence the internal state of
the system. If the blending factor is set to b = 0, the sensor input is Blending between

the measured and a
model predicted
state of the system is
an efficient way to
remove noise.

ignored entirely and the gait generation process runs in open-loop
mode. The LIPM simulation of the mx state reproduces the reference
trajectory. The robot will still attempt to step to the commanded step
location Š and is therefore controllable, but it will not adapt to distur-
bances. In the other extreme, when the blending factor is set to b = 1,
the rx state overwrites the mx state in every cycle and the loop is
completely closed. No reduction of noise takes place. This is not rec-
ommended, because noise can destabilize the system and stimulate
it to produce even more noise. For values 0 < b < 1, the blending
works similar to a Kalman filter. The filter output is a mixture of an
expected state computed by the LIPM simulation, and a state that was
estimated based on the sensor input.

We take active control of the blending factor during walking, and
dynamically adjust its value according to the following rules: Active control of the

blending factor
enables
domain-specific
filtering.

• In the case where the rx and the mx states have different sup-
port leg signs, they cannot be blended, and the blending factor
is set to b = 0.

• We inhibit the adaptation and smoothly decrease bwith a Gaus-
sian step noise suppression function when the estimated step
time T approaches zero, and allow it to rise again after the sup-
port exchange. We compute the step noise suppression factor

SNS = 1− exp
(
−

min{tmx, Tmx, Ttx}2

2ε2

)
, (8.11)

where ε = 0.07 is a tuning parameter. With this mechanism in
place, short periods of open-loop motion are used to discard ex-
cessive sensor noise near the support exchange, and to bridge a
short period of physical double support motion that can deviate
from the LIPM model.

• Finally, we decrease the value of b when the Euclidean distance
between the crx and the cmx CoM states is small. This indicates
that the CoM trajectory is developing as expected and there is

70 analytic footstep control

-2.0

-1.0

0.0

1.0

2.0

0

0.1

0.2

 0 0.5 1 1.5 2 2.5 3 3.5 4

Time [s]

push

b
tx y
rx y

mx y
rx vy

mx vy

Figure 8.4: Demonstration of the effects of the predictive filter in an experi-
ment with Dynaped. We observe the commanded (tx) lateral position of the
Center of Mass, the measured (rx) lateral position and velocity of the Center
of Mass, the filtered (mx) lateral position and velocity of the Center of Mass,
and the blending factor b while the robot is walking in place. The vertical
gray line indicates a moment when the robot was pushed from the side. The
blending factor b rises and the filter adapts to the new trajectory. The filter
successfully discards the undesired peaks of the measured Center of Mass
velocity around the support exchanges.

no need for adaptation. The deviation from the expected state
is expressed as

DEX = k‖crx − cmx‖, (8.12)

where k = 0.5 is a gain. This way, the gait controller has a ten-
dency towards following an open-loop trajectory when the state
of the system develops as expected, and avoids the possibly
destabilizing effects of sensor noise.

The blending factor b is then computed with the function

b = δλrx,λmx · SNS ·DEX, (8.13)

where δλrx,λmx is the Kroneker delta applied to λrx and λmx. The
computation of the blending factor is embedded into the Predictive
Filter algorithm 8.3 in line 16.

Figure 8.4 shows the commanded (tx) lateral position of the Center
of Mass, the measured (rx) lateral CoM position and velocity, and the
filtered (mx) lateral CoM position and velocity recorded during an
experiment with Dynaped. While the robot was walking on the spot,
it was pushed from the side in the moment indicated by the gray
vertical bar. The smoothing effect of the predictive filter can best be
seen by comparing the rx andmx velocity data. The filter discards the

8.3 reference trajectory generation 71

CoP

CoM

t

x

σ

σ

σ

(a) Sagittal

γ
δ

α

δ

α

α

ω

t

y

CoP

CoM

δ

α

α

(b) Lateral

Figure 8.5: The two-dimensional Center of Mass reference trajectory is com-
posed of (a) a sagittal motion and (b) a lateral motion. Four configuration
parameters define the maximum sagittal Center of Mass displacement σ, the
lateral apex distance α, and the minimal and maximal support exchange lo-
cations, δ and γ, in the lateral direction. The support exchange is modeled
as an instantaneous relocation of the pendulum base such that the Center of
Mass is in the center between the pivot points before and after the support
exchange.

high velocity peaks at the support exchange that differ strongly from
the pendulum model and lead to bad predictions. The blending factor
shows its highest peaks right after the push and after the capture step.
The model adapts nicely to the new pendulum trajectory caused by
the push, yet eliminates the jittery noise after the 2.0 second mark. At
the first step after the push, the rx and mx signals are slightly out
of synchronization. The mx model steps earlier than the robot, but
synchronization is quickly restored.

In the following section, we discuss the next computation step of
the Footstep Control algorithm 8.1, which is the generation of a refer-
ence trajectory for the Center of Mass.

8.3 reference trajectory generation

The gait generation cycle leans on the computation of a nominal tra-
jectory, which is a limit cycle that describes an ideal motion of the The reference

trajectory is a limit
cycle that describes
the ideal motion of
the Center of Mass.

CoM. The shape of the nominal trajectory is determined by the de-
sired step size Š and a set of constant parameters. It does not depend
on the current state of the CoM.

The nominal trajectory is composed by orthogonal superposition
of two uncoupled, one-dimensional LIPMs. Figure 8.5 shows trajec-
tory schematics for the sagittal and lateral dimensions. In the sagittal
direction, the point mass crosses the pendulum base in every step
cycle. In the lateral direction, however, the point mass oscillates be-
tween two supports and never crosses the pendulum base. Under the
ideal conditions of the limit cycle trajectory, the pendulum base is as-
sumed to stay stationary during a step, and to instantly relocate in
the moment of the support exchange in a way that the last position of

72 analytic footstep control

the CoM at the end of the step is in the center between the pendulum
bases before and after the relocation. A double support phase is not
included in our nominal trajectory model.

Based on the underlying principles of bipedal walking we intro-
duced in Chapter 5, we identify four parameters that characterize theThe reference

trajectory is
characterized by

parameters derived
from a rough

concept of the
walking motion.

walking motion. The parameters are illustrated in Figure 8.5. The lat-
eral distance between the pivot point and the lateral apex of the point
mass trajectory is denoted α. It is evident that the lateral component
of the CoM velocity is zero at this point. As long as the apex distance is
greater than zero, the point mass will return from the foot and reach
the lateral support exchange location in a range bounded by δ and
γ. When walking in place, we assume the support exchange occurs
at the distance δ. When walking with a non-zero lateral velocity, the
walker first takes a long step with the leading leg and then a shorter
trailing step. The support exchange at the end of the leading step oc-
curs at a distance between δ and an upper bound γ, depending on
the desired lateral step size. The trailing step is assumed to result in
a support exchange at δ, independent of the size of the leading step.
For the sagittal direction, one parameter is sufficient to describe the
Center of Mass motion. σ defines an absolute bound for displacement
of the CoM with respect to the foot. The CoM displacement is negative
when the robot walks backwards.

We estimate the values of the reference trajectory parameters α, δ,
γ, and σ using data collected from a robot walking with the open-loopThe reference

trajectory is fitted to
the limit cycles

observed during
open-loop walking.

CPG. We averaging the lateral apex coordinates, the lateral coordinates
of the support exchange points when walking in place, and when
walking with full lateral velocity, and the sagittal CoM displacement
when walking forward with full velocity, respectively. The CoM dis-
placement limit σ can be increased once a reliable balance controller
has been achieved.

For the mathematical formulation of the reference trajectory, we
exploit the assumptions that the motion of the CoM follows the lawsThe reference

trajectory is
expressed with a

single nominal state
at the end of the step.

of the LIPM and that the Center of Pressure remains stationary during
the step in the ideal case. With these conditions in effect, a single state
s = (sx, ṡx, sy, ṡy) is sufficient to represent the limit cycle. We choose
the state s to be the end-of-step CoM state, that is, the CoM state in the
moment of the support exchange. In the following, we introduce the
formulas for the computation of the limit cycle representative s.

Given the configuration parameters α, δ, γ, and σ, the pendulum
constant C (8.2), and the desired step size Š = (Šx, Šy, Šψ), we first
compute the desired lateral support exchange location ξy. We dif-
ferentiate between the leading step case, where the lateral support
exchange location ξy is bounded by δ and γ, and the trailing step

8.3 reference trajectory generation 73

case, where the lateral support exchange always occurs at distance δ.
The lateral support exchange location is given by

ξy =

min(max(|Šy|2 , δ),γ), if λ = sgn(Šy)

δ, otherwise,
(8.14)

where λ ∈ {−1, 1} denotes the sign of the support leg. Due to the
symmetrical step assumption, the lateral support exchange location
is trivially half of the desired leading step size, bounded to the per-
mitted range [δ,γ]. Please note that ξy is always positive due to the
fact that the configuration parameters have positive values. Later on,
the support leg sign λ will be used to obtain the correct sign for ξy.

The computation of the bounded sagittal support exchange loca-
tion

ξx = min(max(
Šx

2
,−σ),σ) (8.15)

is also trivial due to the symmetric step assumption.
Both coordinates of the support exchange location have to be reached

at the same time, but it is the relatively constrained lateral motion that
determines the time period of the steps. We introduce the half step
time variable τ, which is the time it takes for the Center of Mass to
travel from the lateral apex α to the lateral support exchange coordi-
nate ξy. The nominal half step time is computed as

τ =
1

C
ln

ξy
α

+

√
ξy
2

α2
− 1

. (8.16)

To determine τ, we use (α, 0) as the initial state and solve the LIPM

time-of-location equation τ = t(ξy,α, 0) (8.5) to compute the time it
takes to reach the lateral support exchange location ξy.

We can now completely express the nominal support exchange
state s as

s =

sx

ṡx

sy

ṡy

 =

ξx

ξxC coth(Cτ)

λξy

λC
√
s2y −α

2

 . (8.17)

The nominal state s is expressed in coordinates relative to the current
support foot. The coordinates (sx, sy) of the nominal state are iden-
tical with the coordinates of the support exchange location (ξx, ξy),
apart from the leg sign λ that disambiguates the lateral support ex-
change coordinate. To compute the sagittal support exchange velocity
ṡx, we solve for ẋ0 the LIPM location prediction equation x(τ, 0, ẋ0) =
ξx (8.3) with the initial state (0, ẋ0), and the known output location

74 analytic footstep control

c

Z

s
S '

x
y

c '

Figure 8.6: The balance controller computes a Zero Moment Point offset Z
that steers the Center of Mass c towards the nominal support exchange state
s. The Zero Moment Point is not always effective in reaching the target state,
but the achievable end-of-step state c′ can be predicted. The location of the
next footstep S′ is computed with respect to the achievable state c′ and then
converted to the foot-to-foot step size S.

ξx. This yields the CoM velocity ẋ0 at the sagittal apex. Then, we use
the LIPM velocity prediction equation ẋ(τ, 0, ẋ0) = ṡx (8.4) to compute
ṡx at the support exchange location. The computation of the lateral
support exchange velocity ṡy uses the law of conservation of energy
(8.9) in conjunction with the orbital energy of the apex state (α, 0). We
solve the equation E(ξy, ṡy) = E(α, 0) for ṡy.

The computation of the nominal state s using Equation (8.17) is
equivalent to the ReferenceTrajectory(Š, λ) computation step in
line 3 of the Footstep Control algorithm 8.1.

8.4 balance control

The next computation step of the Footstep Control algorithm 8.1 is the
BalanceControl(s, c, λ) function in line 4. Given the nominal targetIn any given state,

the balance
controller attempts

to reach the nominal
state by means of

Zero Moment Point
control, and

computes the
footstep location

based on a predicted
achievable state by
the end of the step.

state s, the filtered and latency-compensated CoM state c, and the
sign λ of the support leg, the balance control function computes the
ZMP offset Z, the step size S, and the step timing T parameters that
make the robot track the commanded step size Š while maintaining
balance. Inside the balance controller, the nominal state s represents
the limit cycle trajectory that would reproduce the commanded step
size Š. Aiming to make the CoM state c reach the nominal state s
by the end of the step is equivalent to tracking the commanded step
size. Disturbances can force the walker away from the nominal tra-
jectory and necessitate a choice of footstep location that differs from
the commanded one. The balance controller is prepared to adapt the
step timing and the step size in order to absorb a disturbance, and to
return to the reference trajectory in a suitably short time.

The concept of the balance controller is illustrated in Figure 8.6.
The balance controller computes a ZMP offset Z that steers the CoM

towards the target location s. The ZMP offset Z is expressed relative to
the ankle joint of the support leg. Since the ZMP is physically bounded

8.4 balance control 75

to remain inside the support polygon, the effect of the ZMP is limited
and the target state is not guaranteed to be reached. The time T for the
support exchange is chosen to be the time when the CoM reaches the
lateral coordinate of the target state. Based on the support exchange
time T and the bounded ZMP offset Z, the balance controller predicts
the achievable end-of-step state c′ and uses it to compute the step
coordinates S′ expressed with respect to the predicted state c′. Finally,
the step coordinates S′ are converted to a foot-to-foot step size S. For
the computation of the aforementioned step parameters, closed-form
formulae are derived from the LIPM.

The dimensional decomposition introduced in Chapter 5 simplifies
the task of computing the step parameters by splitting the CoM mo-
tion into uncoupled, one-dimensional entities. It allows us to employ
different strategies for the computation of sagittal and lateral param-
eters. The following sections outline, in order, how the various step
parameters are computed. The order is important as later parameters
depend on the values of the former ones.

8.4.1 Lateral Zero Moment Point Offset

The ZMP offset exerts a limited amount of control over the CoM trajec-
tory during the step by relocating the pivot point of the inverted pen- The Zero Moment

Point control is
based on the
assumption that the
Zero Moment Point
stays constant
during a step.

dulum from the ankle joint to a location within the support foot. The
balance controller makes active use of this relocation and attempts to
steer the CoM towards the well-defined target state s. However, even
in a one-dimensional setting, the transfer of a pendulum state (cy, ċy)
to a target state (sy, ṡy) in a desired time Ť is not a simple control task.
Since we are targeting compliant and imprecise hardware that is not
fitted with the necessary sensors to measure the actual location of
the ZMP, a complex control strategy that involves a smooth motion of
the ZMP throughout the step cannot be enforced. We opt for a simple
control strategy based on the assumption that if the CoM continues to
travel along an undisturbed Linear Inverted Pendulum trajectory, the
ZMP offset stays constant for the remainder of the step. It is not possi-
ble to satisfy all three target conditions—the location sy, the velocity
ṡy, and the time Ť—with this control paradigm. Only two out of the
three conditions can be met. However, we gain an approximate solu-
tion in closed-form and preserve closed-form predictability of future
CoM states.

Given the current CoM state c = (cx, ċx, cy, ċy) and the nominal
support exchange location s = (sx, ṡx, sy, ṡy), we compute the lateral
ZMP offset

Zy =
cy cosh(CŤ) + ċy

C sinh(CŤ) − sy
cosh(CŤ) − 1

(8.18)

that accelerates the CoM so that it reaches the lateral support exchange
location sy at the nominal step time Ť . To derive the formula above,

76 analytic footstep control

we solved for the unknown ZMP offset Zy the LIPM location predictor
equation (8.3)

x(Ť , cy −Zy, ċy) = sy −Zy. (8.19)

Ť is the nominal remaining step time, obtained by setting it to Ť = 2τ

whenever a support exchange occurs, and decrementing it by ρ = 0.01s
in every iteration, the time period of a 100 Hz control loop. τ (see
Eq. (8.16)) is the half step time of the reference trajectory. When Ť ap-
proaches 0, the result of the ZMP computation is increasingly unstable.
Ť can also have a negative value if the nominal step time is exceeded.
The ZMP control formula (8.18) will still compute a sensible value,
but Zy has to be bounded to a reasonable range [Zminy ,Zmaxy], for
example the width of the foot.

With this control approach, the lateral ZMP helps to maintain the
nominal step frequency of the limit cycle by reaching the target lo-
cation at the right time. However, due to the bounding of the ZMP

offset, a constant step frequency cannot be guaranteed. The target lat-
eral velocity ṡy at the support exchange location is neglected, but a
possible error in the lateral velocity at the support exchange location
is corrected by the choice of the lateral step size.

A similar ZMP control approach was suggested by Englsberger et al.
[2011]. In the same manner, a ZMP offset is selected that remains con-
stant for the remainder of the step, assuming the point mass con-
tinues to travel along a perfect Linear Inverted Pendulum trajectory.
However, instead of the location and the time, the capture point of
the center of mass is made to match a nominal capture point at a
given time Ť . The capture point py = cy+

ċy
C is a function of the CoM

location cy and velocity ċy. Thus, this approach constrains the CoM

to have one of an infinite set of position and velocity combinations by
the end of the step, lying on the curve of a constant nominal capture
point. When simulating the behavior of the capture point-based ZMP

controller, we found that it often led to oscillatory behavior where the
ZMP never settled. With our formula, the oscillatory behavior has not
been observed.

8.4.2 Step Time

The next step parameter to compute is the step time T . Motivated by
the observed sensitivity of the lateral oscillation, as demonstrated inThe best time to step

is when the robot
returns to the center

of the lateral
oscillation.

video [3], we assume the lateral oscillation to be the main determi-
nant of the step time. In most cases, the best time for the support ex-
change is when the CoM reaches the nominal lateral support exchange
location sy. In this position, the robot can be expected to be upright
and to have sufficient lateral momentum to transfer its weight to the
other leg. The ideal case is illustrated in Figure 8.7a. The CoM travels
towards the support leg, passes through the apex, and returns. Even-

8.4 balance control 77

y

x

s

c

(a)

y

x

s

c

cx
max

(b)

y

x

s

c

(c)

y

x

s

c

(d)

Figure 8.7: The balance controller estimates the remaining time of the step as
the time when (a) the Center of Mass c reaches the lateral coordinate of the
target location s. Special cases, such as (b) reaching the sagittal limit cmaxx

first, (c) never reaching the lateral coordinate, or (d) crossing the support
foot, are handled explicitly.

tually it reaches the nominal support exchange location sy. Using the
LIPM time-of-location equation (8.5), the time to reach sy is given by

t(sy) =
1

C
ln

sy −Zy
c1

+

√
(sy −Zy)

2

c21
−
c2
c1

, (8.20)

where

c1 = cy −Zy +
ċy

C
, (8.21)

c2 = cy −Zy −
ċy

C
. (8.22)

To account for the previously computed lateral ZMP offset, we have
subtracted it from the current CoM location cy and the target location
sy.

There are, however, special cases, where the step time must be
determined in a different way. Figure 8.7b shows the case, where a
sagittal limit cmaxx is reached first. A push in the lateral direction can
double or triple the time needed to return to the support exchange
location. If during this time the CoM continues to move in the sagit-
tal direction, a limit can be reached, beyond which an increase of the
stride length would also compromise balance. The time to reach cmaxx

is given by

t(cmaxx) =
1

C
ln

 cmaxx

cx +
ċx
C

+

√√√√ (cmaxx)2(
cx +

ċx
C

)2 −
cx −

ċx
C

cx +
ċx
C

. (8.23)

Figure 8.7c depicts the case where the support exchange location
sy is never reached. A strong disturbance cause the CoM to never
cross the support exchange coordinate. Situations where the support
exchange location has been crossed in the past without a step hav-
ing occurred also belong to this category. Case (c) can be detected

78 analytic footstep control

when t(sy) (8.20) does not compute a positive value. In that case, if a
positive time

t(0) =
1

C
ln

√√√√cy −Zy −

ċy
C

cy −Zy +
ċy
C

 (8.24)

can be determined using the LIPM time-of-velocity equation (8.6) with
a target velocity of zero, then an irregular lateral apex is still to be
encountered in the future. The irregular apex is the closest point to
the lateral support exchange location, and the time to reach this apex
can be used as a sensible step time. Otherwise, we set the step time
to zero and the balance controller recommends an immediate step,
which drives the step motion generator at its maximum permitted
frequency towards the next support transition.

Finally, Figure 8.7d shows the critical case where the CoM is esti-
mated to tip over the support foot, indicated by a positive lateral or-
bital energy E(cy, ċy) (8.9). In this case, we use a large constant step
time of T = 2 seconds to slow the stepping motion down and hope
that the CoM will return after all. If the robot tips over, a recovery
step cannot reasonably be taken, but at least the imminent fall can be
predicted ahead of time. In this situation, the trunk, arms, and swing
leg could be used to increase the odds of a return.

All cases considered, the step time parameter T is computed as

T =

t(cmaxx), if t(cmaxx) < t(sy),

t(sy), if t(sy) > 0∧ t(sy) <∞,

t(0), if t(0) > 0∧ t(sy) = ∞,

2, if E(cy, ċy) > 0,

0, otherwise.

(8.25)

The step parameters computed in the following sections depend on
the step time T.

8.4.3 Sagittal Zero Moment Point Offset

For the computation of the sagittal ZMP offset, we use the same con-
trol approach as in the lateral direction. We calculate a ZMP such thatThe same Zero

Moment Point
control concept is

applied in the
sagittal and lateral

directions.

if the CoM continues to move along a Linear Inverted Pendulum tra-
jectory, the ZMP offset stays constant and two out of the three target
constraints—the position sx, the velocity ṡx, and the step time T—
are satisfied by the end of the step. In the sagittal direction, we also
choose the position and time as the two conditions to satisfy, and
compute the sagittal ZMP offset as

Zx =
cx cosh(CT) + ċx

C sinh(CT) − sx
cosh(CT) − 1

. (8.26)

8.4 balance control 79

To derive this formula we solve for the unknown ZMP offset Zx the
LIPM location predictor equation (8.3)

x(T , cx −Zx, ċx) = sx −Zx. (8.27)

Please note that in the sagittal direction, we aim for the CoM to arrive
at the sagittal support exchange location at the predicted step time T ,
unlike in the lateral direction, where we aimed for the nominal step
time Ť . This is how the sagittal motion accommodates variations in
step timing, while the lateral motion attempts to maintain a nominal
frequency.

Due to physical limitations, the sagittal ZMP offset must be bounded
to a reasonable range [Zminx ,Zmaxx]. The offsets to the forefoot and the
heel are good initial values for the upper and lower ZMP bounds.

8.4.4 Footstep Location

The choice of the next footstep location is the most powerful step pa-
rameter towards maintaining the balance of a biped. While the ZMP Foot placement is

the most powerful
strategy to maintain
balance.

has only limited control over the CoM during the step that is already
being executed, the touch down of the swing foot determines the next
pendulum base location and has a strong influence on the future tra-
jectory of the CoM. Our concept to determine a suitable footstep loca-
tion is based on prediction. Given the current CoM state c, the already
chosen step time T , and the bounded ZMP offset Z, we can estimate
the achievable end-of-step state c′ that will be reached when taking
the limited influence of the ZMP into account. We use the LIPM2D
Predict Algorithm 8.2 for this, and compute

c′ = Predict(c,Z, T). (8.28)

The achievable state c′ is a strong indicator of the state of balance in
the near future. After a disturbance, the achievable state can signifi- The step size adapts

to a predicted state
at the end of the step.
The Zero Moment
Point and external
disturbances both
influence the
predicted end-of-step
state.

cantly deviate from the nominal state s. For example, if the robot is
pushed from the back while it is walking forward, and the push is
strong enough that it cannot be compensated by means of ZMP con-
trol, the future CoM state c′ will inevitably overshoot with a higher
than expected velocity. This situation is illustrated in Figure 8.6. The
biped must react with a larger step size, otherwise its instability will
increase during the next step. A simple way to think of it is that the
biped has to adapt its step size to match the additional velocity it
gained from the push.

In the following, we compute the sagittal and lateral coordinates of
the footstep S′ =

(
S′x,S′y

)
, defined to be expressed relative to the co-

ordinates of the predicted end-of-step state c′ = (c′x, ċ′x, c′y, ċ′y). Due
to their conceptually distinct behavior, we use different strategies for
the sagittal and the lateral directions. To obtain the sagittal step co-
ordinate S′x, we determine the limit cycle trajectory that results in

80 analytic footstep control

the same sagittal CoM velocity by the end of the step as the sagittal
velocity ċ′x of the predicted end-of-step state. We use the LIPM veloc-
ity predictor equation (8.4) with (0, ẋ0) as the initial state and solve
ẋ(τ, 0, ẋ0) = ċ′x for ẋ0. We thereby determine the sagittal apex velocity
ẋ0 that would result in the end-of-step velocity ċ′x after the half step
time τ. We then use the LIPM location predictor equation (8.3) with
the now known apex velocity ẋ0 as the initial state (0, ẋ0) at the sagit-
tal apex, and compute the end-of-step location x(τ, 0, ẋ0) of the limit
cycle. Since limit cycle steps are symmetrical, the end-of-step state co-
ordinate x(τ, 0, ẋ0) is equal to the sagittal footstep coordinate S′x. All
of the operations outlined above yield the sagittal step size

S′x =
ċ′2x
C

tanh(Cτ). (8.29)

The lateral step size S′y is computed such that the CoM will pass
the apex of the next step at a distance α. A simple way to derive
the formula is using the constant orbital energy (8.9). The orbital en-
ergy E(Sy, ċ′y) right after the support exchange should equal the con-
stant energy level of the lateral step apex E(α, 0). Solving the equation
E(S′y, ċ′y) = E(α, 0) for S′y yields the lateral step size

S′y = λ

√
ċ′2y
C2

+α2, (8.30)

where λ ∈ {−1, 1} is the sign of the support leg prior to the step.
The transformation of S′ into the foot-to-foot step vector S is triv-

ially given by

S =
(
c′x + S

′
x, c′y + S

′
y, Šψ

)
. (8.31)

The rotational step size Šψ is simply passed through the balance con-
trol without modification. We assume that the rotational gait control
component does not have a significant influence on the sagittal and
lateral balance. The yaw motion of the legs transforms sagittal into
lateral motion and vice versa and the balance controller should be
able to handle a small amount of rotation per step automatically. The
same assumption was made by Kajita et al. [2003].

The now complete step parameters (S, T) are passed on to the Mo-
tion Generator module to command the robot to step to the computedThe Zero Moment

Point is not passed
on to the motion

generator.

location at the right time. A noteworthy detail about our framework
is that neither the ZMP, nor the CoM trajectory, is passed on to the
Motion Generator. The step size S and the step time T are implicit
results of the computed ZMP offset Z. The physical execution of the
commanded step should place the ZMP location at least roughly in the
right location under the foot, even without a means to explicitly en-
force the physical location of the ZMP. Both real and simulated robots
have successfully been controlled by the Capture Step Framework,

8.4 balance control 81

and have shown robust bipedal walking capabilities, even though the
ZMP control is included only in the theoretical model. Concerning
the CoM trajectory, we argue that it is beneficial not to force a CoM

trajectory upon the robot that was generated by a low-dimensional
model. The Motion Generator should be allowed to produce high-
dimensional whole-body stepping motions as freely as possible, as
long as the commanded foot placements are met at the right time.

The presentation of the theoretical aspects of the analytic balance
controller is now complete. In the next section, we guide the reader
through an experiment that highlights the most significant signals
of the analytic footstep controller, and we present the results of a
stability analysis.

82 analytic footstep control

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1 2 3 4 5 6

[m
]

Time [s]

push go

S'x

Zx

cx

(a) Sagittal

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 1 2 3 4 5 6

[m
]

Time [s]

push go

S'y

Zy

cy

(b) Lateral

Figure 8.8: Center of Mass, Zero Moment Point and footstep coordinate
data recorded with Dynaped during a (a) sagittal and (b) lateral push and
walk experiment. The vertical bars indicate the moments when the robot
was pushed (push), and then commanded to walk forward and to the left,
respectively (go).

8.5 experiments

8.5.1 Walk and Push

To demonstrate the analytic footstep controller in operation, we per-
formed a push and walk experiment with the humanoid robot Dy-
naped. Figure 8.8a shows the relevant data streams of a sagittal ex-
periment, and 8.8b shows a lateral experiment. In both experiments,
the robot is first pushed while walking in place. Some time later, it is
commanded to walk forward or to the side, respectively.

In the sagittal direction, the push occurs at time 0.9 s towards the
back of the robot while it was walking on the spot. The CoM trajectory
indicates how the robot suddenly starts to step forward after the push.
The robot takes several steps, during which the sagittal ZMP is shifted
to its forward limit of 25 cm. The step size subsequently decreases and
the robot comes to a halt. Then, it is commanded to walk forward
after 3.2 s. The ZMP shifts to the “heels”, and the robot accelerates
forward by increasing its step size step by step.

8.5 experiments 83

Figure 8.9: Extreme push recovery with bipedal robot Dynaped.

In the lateral direction, the push occured approximately at 1.1 s
from the side. The disturbance in the CoM trajectory is clearly visible.
The recovery step takes approximately than one second to execute.
The lateral ZMP is at its limit during this time. At the same time, the
lateral step size increases to counteract the disturbance during the
next step. The robot returns to its nominal oscillation amplitude after
one step, before it is commanded to walk to the side at 4.2 s.

8.5.2 Technology Demonstration

We gave a technology demonstration at the RoboCup German Open
robot soccer event in Magdeburg in April 2014, where the analytic The robust

omnidirectional
walking skills of
Dynaped were
shown in a
technology
demonstration at the
RoboCup German
Open in 2014.

footstep controller was shown during one hour long public demon-
strations several times over the course of two days. A short demon-
stration was also featured during the half-time of the finals in the Kid-
Size class. Heise Online mentioned the technology demonstration in
an article1 about the event. Video [2] shows a five minute long com-
pilation of recorded scenes, where bipedal robot Dynaped demon-
strates reliable and controllable walking skills with disturbance re-
jection capabilities. In this video, Dynaped was not only disturbed
by pushes during walking, but also by placing a hand under its feet,
and by collisions with a static obstacle. In a further robot demonstra-
tion at the French-German-Japanese Conference on Humanoid and
Legged Robots in 2014, a video [6] was recorded of Dynaped walking
outside on a cobblestone surface. In the experiment shown in video
[5], we mounted feet of human-like proportions on Dynaped that
were smaller than the existing ones, and after refitting the parame-
ters, we reproduced omnidirectional walking capabilities of similar
quality as before. We also managed to produce a few quite extreme

1 http://goo.gl/CN8ZS3

84 analytic footstep control

cases of push recovery, as shown towards the end of video [5] and in
Figure 8.9.

8.5.3 Push Recovery

In a systematic push recovery experiment, we explored the stability
of the analytic capture step controller in simulation and with a real
robot. In the same manner as in the exhaustive push experiment with
the open-loop CPG in Section 6.5, we subjected Simon and Dynaped
to a large number of pushes from the front and the back, and from
the left and the right, to map out the stable regions in the sagittal and
the lateral trunk angle phase spaces. During this testing the analytic
footstep controller was active. Simon was pushed 300 times in each
direction and fell 24 times in the sagittal direction and 57 times in the
lateral direction. Dynaped was pushed 96 times in the lateral direc-
tion, out of which 26 cases resulted in a fall. The sagittal experiment
had to be aborted after 85 pushes and 22 falls, when Dynaped suf-
fered damage to its IMU. The proportion of pushes that led to a fall
does not characterize the stability very well. It is rather an indicator
for the fact that the controller was tested in a range of disturbances
that includes pushes strong enough to push the robots beyond their
limits. Since less data could be gained from the real robot, and as it
is difficult to produce a well distributed set of pushes by hand, the
plots showing the results of the real robot experiment are more noisy,
but show the same qualitative result as the simulated experiment.

Figure 8.10 shows vector fields and color coded regions in the sagit-
tal and the lateral trunk angle phase spaces. For a detailed description
of how the vector fields and the regions are constructed, please refer
to Section 6.5. The color blue indicates the stable region, where the
controller is able to reliably stabilize the robot. When the trunk angle
is pushed into the red region, in most cases the controller is not able
to restore the balance of the robot. The regions of the open-loop CPG

experiment are shown in darker colors in the background for a direct
comparison of their size. In the sagittal direction, the analytic con-
troller clearly increases the size of the stable regions. This means that
the analytic controller is able to restore balance in cases where the
robot has a high enough tilt, or angular velocity, for which it would
normally tip over the edge of a foot and fall, if no corrective action
were taken. In the lateral direction, the size of the stable region is
not increased. The reason for this is that the analytic controller is not
able to handle the situation where the robot tips over the support leg.
Thus, the analytic controller operates in the same range of trunk roll
angles, as the open-loop controller does. The vector fields are most
interesting when comparing with the results of the same experiment
that was performed with the open-loop CPG shown in Figure 6.11. For
the sagittal direction, the vectors in the red regions of the open-loop

8.5 experiments 85

SimonSimonSimonSimon

-2

-1

 0

 1

 2

-0.4 -0.2 0 0.2 0.4

T
ru

nk
 P

itc
h

A
ng

le
 R

at
e
θ. y

[r
ad

/s
]

Trunk Pitch Angle θy [rad]

Simon

stable
unstable

DynapedDynapedDynapedDynaped

-2

-1

 0

 1

 2

-0.4 -0.2 0 0.2 0.4

T
ru

nk
 P

itc
h

A
ng

le
 R

at
e
θ. y

[r
ad

/s
]

Trunk Pitch Angle θy [rad]

Dynaped

stable
unstable

(a) Sagittal

SimonSimonSimonSimon

-2

-1

 0

 1

 2

-0.4 -0.2 0 0.2 0.4

T
ru

nk
 R

ol
l A

ng
le

 R
at

e
θ. x

[r
ad

/s
]

Trunk Roll Angle θx [rad]

Simon

stable
unstable

DynapedDynapedDynapedDynaped

-2

-1

 0

 1

 2

-0.4 -0.2 0 0.2 0.4

T
ru

nk
 R

ol
l A

ng
le

 R
at

e
θ. x

[r
ad

/s
]

Trunk Roll Angle θx [rad]

Dynaped

stable
unstable

(b) Lateral

Figure 8.10: Vector fields of (a) the sagittal (pitch) and (b) the lateral (roll)
phase spaces of the trunk angle with the analytic footstep controller. The
simulated robot Simon and the real robot Dynaped were subjected to pushes
of randomly varying strength from the front and the back to explore the
sagittal stability and from the left and the right to map out the lateral sta-
bility. The vectors point in the direction the trunk angle is moving in on
average in this region of the phase space. The length of the arrows hints at
the angular velocity. The stable region, where the controller reliably rejects
disturbances, is colored in blue. States that most certainly lead to a fall are
marked in red.

experiment point away from the stable region. In the experiment with
the analytic controller, these vectors are tangential to the stable region,
indicating that the controller is still making a reasonable attempt to
stabilize the robot. In the lateral direction, the vectors generated by
the analytic controller are much more directed towards the central re-
gion of the phase space than the vectors produced by the open-loop
controller.

86 analytic footstep control

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 1 2 3 4 5

T
ru

nk
 P

itc
h

A
ng

le
 θ
y

[r
ad

]

Time Since Push [s]

Simon

unstable
stable

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 1 2 3 4 5

T
ru

nk
 P

itc
h

A
ng

le
 θ
y

[r
ad

]

Time Since Push [s]

Dynaped

unstable
stable

(a) Sagittal

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 1 2 3 4 5

T
ru

nk
 R

ol
l A

ng
le

 θ
x

[r
ad

]

Time Since Push [s]

Simon

unstable
stable

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 1 2 3 4 5

T
ru

nk
 R

ol
l A

ng
le

 θ
x

[r
ad

]

Time Since Push [s]

Dynaped

unstable
stable

(b) Lateral

Figure 8.11: Plots of (a) the pitch (sagittal) and (b) the roll (lateral) trunk
angle trajectories synchronized by the moment of the push.

In Figure 8.11 trunk angle trajectories are plotted that have been
synchronized by the moment of the push. Trajectories that resulted inThe analytic

controller increases
the stable region in

the sagittal phase
space, and improves

the lateral balance
by resolving cases of
self-disturbance, and

by accelerating the
return to a nominal

oscillation.

a fall are marked in red. Trajectories that were successfully balanced
are marked in blue. In the simulated sagittal experiment, a few cases
of overcompensation can be observed, where for example, the robot
was pushed backwards, the controller overcompensated with a too
large step, and the robot fell forward in the end. In comparison with
the trunk angle trajectories from the open-loop experiment, shown
in Figure 6.12, the following observations can be made. In the sagit-
tal direction, a significantly higher push impact can be absorbed, as
indicated by the peaks of the trunk pitch angle trajectories shortly
after the push. In the lateral direction, the peaks are approximately
the same size. However, the open-loop experiment shows cases of
self-disturbance, where the initial push was not the cause of the fall,
but an inappropriate step at a later time. Additionally, even when the
robot did not fall after the push, it takes a long time to return to its

8.6 discussion 87

nominal amplitude of oscillation. This is in particular clear to see in
the trunk roll angle trajectories of Dynaped. With the analytic con-
troller enabled, cases of self-disturbance are completely eliminated
and Simon and Dynaped return to their nominal trajectories in one
or two steps.

8.6 discussion

In this chapter, we have presented an analytic version of a footstep
controller that tracks a commanded step size while maintaining bal-
ance. A low-dimensional point mass model with linear inverted pen-
dulum model dynamics was used to represent the CoM trajectory and
to compute the ZMP, step timing, and step size parameters that ful-
fill the footstep control task. The controllability and the robustness of
the bipedal walk was demonstrated in videos and through systematic
push recovery experiments.

The update frequency of the gait generation process is 83.3 Hz.
Each iteration of the control software requires 0.12 ms to compute
on a single 1.3 GHz core for the entire control loop including state es-
timation, balance control, and motion generation. The execution time
is spent almost entirely on the computation of closed-form formulae.
This low computation time would allow for the application of the
analytic controller at a much higher frequency. The bottleneck in our
setup is the hardware communication layer, which is not able to trans-
port the amount of data in the timely fashion that would be required
at a higher frequency.

The key of the highly responsive analytic controller is the compu-
tation of the step size based on a prediction of the future end-of-step
state of the low-dimensional point mass. When either the control in-
put, or a disturbance, alters the course of the CoM mid-step, the pre-
dicted end-of-step state changes too, and the balance controller can
immediately respond by suggesting a new footstep location. In fact,
the analytic controller performs the same computation in every cycle
based on an almost arbitrary constellation of the CoM and target state,
and does not distinguish between stable and unstable states. This
eliminates the need to sense and categorize the type of a disturbance,
and does not require an estimate of its magnitude. The controller is
automatically robust to a number of disturbances of different nature.

A remarkable detail that arises in our particular implementation
is that since we do not have the means to enforce or to measure the
ZMP, it is not passed on to the motion generation layer. The physical
location of the ZMP arises freely from execution of the motion. Despite
a high amount of latency and imprecise actuation, commanding the
step size and the step time alone is sufficient to control a bipedal
robot to an extent where push recovery is possible.

9
L E A R N E D F O O T S T E P C O N T R O L

Footstep Control

y

Motion Generator

State Estimation

Learning Control

Σ

Bipedal Robot

Š

SE ,θE c ,λ

S ,T S+ΔS ,T+ΔT

q

y

x

θ , θ̇

ΔS ,ΔT

q̂ , â , ω̂

Figure 9.1: The Learning Control component (top left) is embedded into the
Capture Step Framework. The Learning Control contributes the step size
and timing offsets ∆S and ∆T , which are added to the outputs of the analytic
Footstep Control. The Learning Control receives two data streams from the
State Estimation. The trunk angle θ and angular velocity θ̇ estimates are
used for continuous balance control in every iteration of the control loop.
The step size SE and trunk angle θE at the end of the step are used to train
the Learning Control.

Using machine learning to train a capable gait controller with the
hardware in the loop is thought to be a promising alternative to engi- Machine learning

with real hardware
is difficult due to the
limited number of
feasible repetitions.

neered design. However, model-free learning of a high-dimensional
motion signal for the motors of a humanoid robot in a way that a
robust and controllable walk is achieved, is intractable. With the help
of a motion skeleton and a fitness function that guides the learning
process towards upright walking, evolutionary algorithms and rein-
forcement learning methods can be successful in simulation. When a
real robot is in the loop, the feasible number of trials and the risk of
damaging the hardware become limiting factors, and the problem of
learning to walk needs to be approached in a new way.

Flight animals learn how to balance their gait shortly after birth Biological examples
of learning to walk
often start with a
genetically
initialized concept of
motion and balance.

based on a genetic disposition to step in the right direction. This bi-
ological example suggests that initialization with a hard-wired mo-
tion pattern—and a rough concept of balance—are key factors for
the learning of balance-critical locomotion skills in an online learning

89

90 learned footstep control

setting. We follow this paradigm and bootstrap the learning process
with our CPG, which enables the robot to execute targeted steppingInitialization with

the Central Pattern
Generator and the

analytic footstep
controller allows
learning with a

robot that can
already maintain

balance to some
extent.

motions out of the box. The CPG hides the full complexity of the walk-
ing motion and reduces the learning task to the learning of Cartesian
footstep coordinates and the timing of steps, as opposed to learning
whole-body control. The initialization with a rough concept of bal-
ance is twofold. On the one hand, the learning algorithm can coexist
with the previously introduced analytic footstep controller. The an-
alytic controller initializes a controller response for the entire state
space and provides a starting point where the robot can already walk
and maintain balance to some extent. This way, the exploration can
start from a stable state, and the first steps do not have to be learned
from the experience of falling. On the other hand, we use a pendulum-
cart as a simple physical model to drive the learning process. Based
on feedback of the errors the robot makes during walking, we infer
sagittal step size modifications using an estimated gradient that we
gain from the physical model. The gradient boosts the rate of learn-
ing to a level of performance where the experience of a few steps can
be sufficient to successfully learn how to recover from a push, even
when the analytic initialization is not present.

Despite the fact that our method is limited to the learning of the
sagittal step size, we choose to set our approach into the context of
a bigger picture. We introduce our vision of learning a footstep con-
troller in greater generality, and present our method of learning the
sagittal step size as a part of the outlined concept.

Our online learning scheme is embedded into the Learning Control
component of the Capture Step Framework, illustrated in Figure 9.1.The learning

footstep controller
learns an offset to

the analytic
controller.

The idea of the Learning Control is to be able to learn a step size off-
set ∆S and a timing offset ∆T that are to be added to the output of the
analyic Footstep Control. The modified step size output S+∆S and
the modified step time output T + ∆T are passed on to the Motion
Generator module as the commanded step parameters. The Learning
Control has access to the commanded step size Š and pursues the
same task as the analytic Footstep Control—tracking the reference
step size while maintaining balance. The Learning Control receives
input from two data streams. The trunk angle θ, and its angular ve-
locity θ̇, drive the footstep control function of the Learning Control,
which is executed in every iteration of the control loop. This stands in
contrast to the analytic controller, which is based on the CoM state c
and the support leg sign λ. The second data stream delivers the step
size SE and the trunk angle θE at the end of the step, both measured
in the moment of the support exchange. These quantities are used for
the training of the sagittal step size.

In the following, we formally introduce our concept of learning a
footstep control function online, and descend into the details of the

9.1 machine learning framework 91

completed component—learning of the sagittal step size. Finally, we
present experiments and discuss the results.

9.1 machine learning framework

The Learning Control is formally a footstep control function

(∆S,∆T) = F(Š,θ, θ̇, λ), (9.1)

where ∆S = (∆Sx,∆Sy,∆Sψ) is the step size offset, ∆T is the step tim-
ing offset, Š = (Šx, Šy, Šψ) is the commanded step size, θ = (θx, θy)
is the trunk angle, θ̇ = (θ̇x, θ̇y) is the angular velocity of the trunk,
and λ is the support leg sign. The approach suggested in this thesis
to train the footstep control function online hinges on a strong re-
duction of the complexity of the learning task. The most significant
reduction of complexity, by learning only the control parameters of
the CPG, is already reflected by the footstep control equation (9.1).
While the number of input and output dimensions of the footstep
control function F is much lower than what would be needed for
whole-body control, we simplify the task further by decomposing F

into independent control functions The decomposition
of the footstep
controller into
independent control
functions simplifies
the learning task.

F(Š,θ, θ̇, λ) =

∆Sx

∆Sy

∆Sψ

∆T

 =

Fx(Šx, θy, θ̇y)

Fy(Šy, θx, θ̇x, λ)

Fψ(Šψ)

FT (θx, θ̇x, λ)

 , (9.2)

where ∆Sx is the sagittal step size offset, ∆Sy is the lateral step size
offset, ∆Sψ is the rotational step size offset, and ∆T is the offset of the
the step time. This decomposition is motivated by the dimensional
splitting of the walking motion into the sagittal and lateral directions,
as introduced in Chapter 5, which suggests that we could learn sepa-
rate controllers for the sagittal and the lateral directions, and allocate
the control of the step time to the lateral direction. We further as-
sume that the rotational step size controller Fψ(Šψ) does not need to
be concerned with balance, and learns only to increase its precision
with regard to the desired step yaw Šψ.

We propose the trunk angle, the angular velocity of the trunk, and
step size measurements to be used as sources of information for the The trunk angle and

the step size are
reliable sources of
information that
express the state of
balance and the
reference tracking
error.

operation and training of the learned footstep control function F.
These quantities can be reliably estimated and are not prone to ex-
cessive noise, as opposed to for example the CoM velocity, which has
to be determined via numerical differentiation. While the trunk angle
and the angular velocity of the trunk are strong indicators of the state
of balance, the measured step size is a direct estimate of the reference
tracking error. Specifically for training, we measure these quantities
in the instant of the touch-down of the swing foot and obtain the

92 learned footstep control

end-of-step trunk angle θE = (θEx, θEy), and the step size estimate
SE = (SEx,SEy,SEψ). The step size estimate is gained from the tilted
whole-body pose reconstruction through computation of the transfor-
mation from the ground projection of the support foot to the ground
projection of the swing foot. The detection of the moment of the sup-
port exchange implies the notion of the support leg sign λ, which can
also be estimated reliably from the pose reconstruction as long as the
floor is horizontal and flat. We use the step size estimate SE and the
commanded step size Š to compute the step size error

S̄ = SE − Š. (9.3)

To facilitate fast learning, we expect to find a simple, possibly con-
ceptually different model for each component of the footstep controlA learning gradient

can be gained from
simple physical

models and can be
used to boost the

learning
performance.

function F for the purpose of computing an approximate gradient.
We define the gradient function

G(S̄,θE) =

Gx(S̄x, θEy)

Gy

Gψ

GT

 (9.4)

to be a function of the end-of-step trunk angle θE and the step size
error S̄. The gradient function G is decomposed into independent gra-
dients for the elementary functions of the footstep control function F.
The gradient can be used for an efficient online modification of the
step size coordinates and the step timing, respectively. For the learn-
ing of the sagittal step size, we found the pendulum-cart model to be
a powerful model for the implementation of a suitable gradient func-
tion Gx(S̄x, θEy). In earlier work [Missura et al., 2014], the LIPM was
used to deduce an approximate gradient for the learning of the lateral
step size. However, this gradient was based on the CoM state rather
than the trunk angle, and it was suitable for push recovery learning,
but not for reference tracking. Thus, we choose not to include it into
our framework, and use it only to support the assumption that a sim-
ple model can be found for the learning of the lateral step size. Under
the assumption that the yaw step size Sψ has only a negligible effect
on balance, the yaw step size gradient can possibly be as simple as
the difference between the target and the measured yaw step size.
The components Gy, Gψ, and GT of the gradient function have not
been implemented and cannot be further specified.

The footstep control function F is represented by a function ap-
proximator, which is initialized with zero output for all states. TheThe learned footstep

control function is
represented by a

function
approximator that is

trained with the
learning gradient.

function approximator is updated in a specific way that arises from
having gradient information at hand. We query the function approx-
imator at the location (Š,θ, θ̇) of the input space that we wish to
update, add the gradient G(S̄,θE) to the returned value with consid-
eration of a learning rate, and present the new value to the function

9.2 learning the sagittal step size 93

approximator as the desired output at this location. The update func-
tion at the point (Š,θ, θ̇), using the gradient G(S̄,θE), is given by

F(Š,θ, θ̇) := F(Š,θ, θ̇) + ηG(S̄,θE), (9.5)

where η > 0 is a learning rate. This method of incremental learning
was introduced in earlier work, where it was used for the learning of
the lateral step size in a push recovery setting [Missura et al., 2014].
The method has remained unchanged for the learning of the sagittal
step size. This is no surprise, as the update method is not specific to
the learning task, but only to the setting of gradient based training of
a function approximator in an online fashion.

The online learning setting demands specific capabilities of the
function approximator implementation. The main control loop queries We use an

implementation of
the LWPR algorithm
for the realization of
an online capable
function
approximator.

the footstep control function at a high frequency—typically 100 Hz—
to drive the walking motion. A function approximator used in this
context has to deliver a time-critical response, even when it is being
updated with new data. Neither the response time nor the memory
consumption of the function approximator should degrade with the
ever increasing amount of seen data, otherwise the learning process
will eventually have to terminate. Gaussian processes [Rasmussen
and Williams, 2006], regression trees [Breiman et al., 1984], and ran-
dom forests [Breiman, 2001], all degrade when used in an incremental
learning setting. The LWPR algorithm [Vijayakumar et al., 2005] has
been specifically designed for incremental learning. It represents a
function with a bounded number of locally linear kernels, such that
the training data can eventually be discarded. Thus, the memory con-
sumption, update times, and recall times are bounded. We use an
open-source implementation1 of the LWPR algorithm that fully satis-
fies our requirements.

9.2 learning the sagittal step size

For the training of the sagittal step size control function Fx(Šx, θy, θ̇y),
we use the sagittal component of the reference step size tracking er-
ror S̄x = SEx − Šx, and the end-of-step trunk pitch angle θEy. From
these two quantities, we compute the gradient Gx(S̄x, θEy) and use it
to improve the sagittal step size for the states that were encountered
during the step that resulted in the above measurements.

To derive a suitable modification of the step size that attempts to
maintain an upright posture of θy = 0, we borrow a concept from The pendulum-cart

model resembles the
angular dynamics of
a biped.

the pendulum-cart model illustrated in Figure 9.2. The simplest con-
troller that manages to balance the pendulum on the cart when the
pendulum angle φ ≈ 0, is a proportional controller ẍ = kφ for some
gain k. Here, the acceleration ẍ of the cart is a function of its angle φ.

1 http://wcms.inf.ed.ac.uk/ipab/slmc/research/software-lwpr

94 learned footstep control

ϕ

ẍ

θ

ẍ

Sx

Figure 9.2: The pendulum-cart model (left) resembles the angular dynamics
of a biped (right). When the cart accelerates, the pendulum angle is accel-
erated in the negative direction. A biped accelerates by increasing its step
size and can counteract undesired angular momentum the same way as the
pendulum-cart.

A biped is not a cart, but it can accelerate its center of mass by in-
creasing or decreasing its step size. We can translate the proportionalWhen the biped is

tilted “forward” by
the end of the step, it

should have made a
longer step.

controller from the pendulum-cart to a bipedal setting by converting
acceleration to a step size modification.We thereby obtain a rough
approximation of a balancing step controller

∆Sx ≈ k θEy, (9.6)

which estimates a sagittal step size modification ∆Sx to control the
trunk pitch angle. An example is shown in Figure 9.2. If at the end of
a step the trunk pitch angle θEy is positive, i. e. the robot is rotated
“forward”, the robot needs to take a larger step next time in the same
situation in order to end up with a more upright posture.

As the right place to step to counteract undesired angular momen-
tum does not necessarily coincide with the desired step size, we faceThe right place to

step to maintain
balance and the
desired footstep
location are not

necessarily the same.

an ill-posed problem. A trade-off must be found between stepping
onto a desired location and avoiding a fall. We combine the control
law we derived from the cart-pendulum model (9.6), and the footstep
error S̄x, into the gradient function

Gx(S̄x, θEy) = θEy − pθ tanh(pSS̄x). (9.7)

The characteristic saturation of the hyperbolic tangent function limits
the influence of the step size error S̄x to a configurable bound of pθ
for two specific purposes. The parameterized saturation makes sure
that the robot learns to track the reference step size carefully in order
to avoid sudden changes of the CPG activation signal that are likely
to cause instability, and, critical inclinations of ‖θy‖ � pθ dominate
the gradient, ensuring balance takes priority over reference tracking
when a fall is imminent. pS is a weight to fine-tune the influence
of the step size error within the permitted bounds. Throughout our

9.3 experiments 95

experiments, we used pθ = 0.15 and pS = 30. Note that the gain k has
been dropped from the gradient equation, because it is absorbed by
the learning rate that we multiply the gradient with when we apply
the update rule in equation (9.8) below.

We represent the sagittal step size control function Fx(Šx, θyi, θ̇yi)
with a dedicated function approximator. At the end of each step, we
train the function approximator with the update rule

Fx(Šx, θyi, θ̇yi) := Fx(Šx, θyi, θ̇yi) + ηGx(S̄x, θEy),∀i ∈ I, (9.8)

where η = 2.0 is the learning rate, I is an index set, and {θyi, θ̇yi}, i ∈ I
is the set of trunk pitch angles and angular velocities that were mea-
sured during the step. In words, we query the function approximator
at the locations that were seen during the step, add the gradient to the
returned values, and present the results as the new desired outputs
to of function approximator at the respective locations.

9.3 experiments

To evaluate and demonstrate isolated features of our learning frame-
work, we performed a series of experiments in simulation and with a
real robot. In all of the following experiments, the Learning Control
learned online during the experiment. It was not pre-trained and it
was operational during the entire evaluation time. Although the ex-
periments are focused on learning the sagittal step size, the motion
of the robot was not restricted in any way and the analytic controller
was fully operational.

96 learned footstep control

-0.1

-0.05

 0

 0.05

 0.1

 0 0.5 1 1.5 2

S
ag

itt
al

 S
te

p
S

iz
e

E
rr

or
 [m

]

Time Since Change of Reference [s]

Analytic
Learned

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

0 50 100 150 200

S
ag

itt
al

 S
te

p
S

iz
e

[m
]

Step number

Analytic
Learned

Commanded

Figure 9.3: Top: In an experiment with random changes of the commanded
sagittal step size, the standard deviation of the step size error decreases
faster with learning, than without. Bottom: A time series of the commanded
step size and the step sizes produced by the analytic and the learned con-
trollers.

9.3.1 Evaluation of Reference Tracking

In this experiment, we evaluate the ability of the controller to track a
reference step size in simulation with Simon. We compare the analyticThe reference

tracking capabilities
improved with

learning.

footstep controller on its own, and the analytic controller together
with the learning controller that was trained during the experiment.
We sample the commanded step size Šx from a range [−10, 20] cm,
and keep it constant for 4 to 8 seconds. We observe how quickly both
controller versions can adapt the step size to the correct value. To
preserve comparability, the same random step size sequence was pre-
sented to both controller versions. Figure 9.3 shows statistical data
averaged over 1000 steps. The moments of the reference step size
changes are synchronized at zero seconds. We observe the mean and
standard deviation of the step size error. Since the reference step size
was uniformly sampled, the mean is near zero. With learning, the
standard deviation of the step size error decreased at all points in
time. This means that the learned controller not only follows the ref-
erence faster than the capture step controller alone, but it also learned
to step onto the right location altogether more precisely. In the bottom
plot in Figure 9.3, we show a time series extract of the commanded
and the measured sagittal step sizes.

9.3 experiments 97

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

S
ag

itt
al

 S
te

p
S

iz
e

E
rr

or
 [m

]

Time Since Push [s]

Analytic
Learned

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

T
ru

nk
 P

itc
h

A
ng

le
 [r

ad
]

Time Since Push [s]

Analytic
Learned

Figure 9.4: Top: After the robot was pushed, the sagittal step size increases
when the robot steps forward in order to prevent a fall. When the learning
controller enabled, the robot is able to return faster to the commanded step
size. Bottom: The learning controller allows a larger trunk angle within the
allowed margin of 0.15 radians in order to better obey the commanded step
size.

9.3.2 Evaluation of Disturbance Rejection

In this experiment performed with the simulated robot Simon, we
demonstrate the ability of the controller to return to a commanded The learning

controller learned to
sacrifice a small
amount of balance in
order to better track
the desired step size.

step size after a sagittal disturbance. We command the robot to walk
forward with a fixed sagittal step size of 20 cm. While the robot is
walking, we push it 400 times onto the back with impulses of mag-
nitude 8 Ns. The pushes are triggered at random times in order to
avoid hitting the robot repeatedly in the same motion phase. Synchro-
nized by the moment of the push, Figure 9.4 shows how the step size
(shown on the top) and the trunk pitch angle (shown on the bottom)
return to their reference values. The learning component reduces the
time it takes for the robot to return to the commanded step size. The
fact that the trunk pitch angle appears to have increased after learn-
ing might be a surprise at first, but seeing as we set the tolerated
trunk pitch angle parameter pθ to 0.15 radians, the learned controller
utilized this allowable margin to sacrifice a small amount of balance
in order to better track the commanded step size closer.

98 learned footstep control

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

P
ro

ba
bi

lit
y

to
 F

al
l

Push Impulse [Ns]

Open-Loop
Analytic
Learned

Figure 9.5: Probability to fall of an open-loop, analytic, and a learned con-
troller with respect to varying push impulses from the back.

9.3.3 Evaluation of Stability

In this simulated experiment we aim to evaluate whether the learn-
ing component is able to improve the sagittal stability. We apply 400The learned

controller learned to
utilize the planar

steps of the motion
generator more

efficiently than the
analytic controller

and can absorb a
stronger push.

randomly timed push impacts to a robot walking in place, with mag-
nitudes sampled from a range of [0, 20]Ns. The pushes are directed
in the forward direction and force the robot to make forward steps in
order to avoid falling. By counting falls and pushes, we estimate the
probability of a fall depending on the magnitude of the disturbance.
In addition to the Analytic and the Learned footstep controllers, in
this experiment we also included an open-loop controller that walks
in place with a fixed frequency and does not react to the pushes. The
results are shown in Figure 9.5. The analytic controller significantly
increases the push resistance compared to what the robot can absorb
passively. The learned controller increases the stability even further.
Both controllers face the limitation that the motion generator and the
footstep controller do not take the inclination of the floor with respect
to the robot into account. Strong pushes force the robot to tip forward
into an oblique pose, where the large forward step that would be nec-
essary to counteract the push results in a kick into the floor. The
learned controller can compensate this issue to some degree by learn-
ing to increase the size of the recovery step even more, but it quickly
reaches the limitations of the robot, and cannot significantly improve
the push recovery performance as compared to the analytic controller.
At this point it is clear that in order to be able to absorb even stronger
pushes, the gait control framework has to be upgraded to anticipate
the tilt of the robot at the end of the step, and to adjust the motion
pattern accordingly.

9.3 experiments 99

9.3.4 Push Recovery Learning with a real Robot

0.75 m

1.6 m

3 kg

Figure 9.6: Experi-
mental setup for push
recovery learning.

We evaluated the potency of the sagittal step
size learning method in a push recovery experi-
ment with the humanoid robot Copedo. The ex-
perimental setup is illustrated in Figure 9.6. We
swing a 3 kg mass attached to a 1.6 m rope onto
the back of the robot from a distance of 0.75 m.
The mass is pulled back and released by hand.
A yellow pole marks the starting point to aid
manual repeatability. The robot is positioned at
the spot where the rope reaches the vertical po-
sition. The mass of the robot is 8 kg. The exper-
iment has been set up in a way that the impact
of the mass on the back of the robot generates
a significant push impulse that requires active

control effort as a response. The passive stability of the robot is not
enough absorb the impact.

We command the robot to walk in place by setting Šx = 0. This
time, the step size output of the analytic controller was suppressed
and the learning controller had to learn the concept of the sagittal
step size on its own. Only the step timing component of the analytic
controller was active in order to prevent the accumulation of lateral
instability. The learning controller is initialized with a zero step size
and trained online during the experiment. The impact is rather strong
and the controller has to learn to step forward in order to cope with
the push, but as soon as balance is restored, the robot should stop
walking forwards and come to a halt due to the commanded step
size of zero.

Figure 9.7: Humanoid robot Copedo regains its balance with a learned push
recovery controller after a strong push from the back.

100 learned footstep control

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

trunk pitch

-1
-0.5

 0
 0.5

 1

 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

pitch rate

-0.2

 0

 0.2

 0.4

 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

gradient

-0.2
-0.1

 0
 0.1
 0.2

 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Time [s]

step size

Figure 9.8: Data recorded during the sagittal push recovery experiment.

A video of this experiment [7] shows uncut recordings of how
Copedo successfully learns to absorb the impact. Due to the absenceEven without

initialization, robot
Copedo learns to

absorb a strong push
from a few steps

during falling.

of the analytic controller, the learned controller cannot respond to the
first push and Copedo falls forward. However, the controller learns
from the unsuccessful steps during the fall and is able to success-
fully absorb the second push. When observing the attempted steps
following the first push in slow motion, one can see with the naked
eye how the controller is learning and attempting to increase the step
size. Photographs of the experiment are shown in Figure 9.7. Note
that it is not necessary for the robot to fall in order to train the sagit-
tal balance controller. Light pushes that drive the robot to the limit of
its balance are sufficient. It highlights the robustness of the learning
concept, in that it can learn even during a fall.

Figure 9.8 shows the relevant data that allows us to analyze the
learning process in detail. The experiment lasted 30 seconds in total.
A first push was applied to the robot after 14 seconds, and a second
push was applied after 24 seconds. The pushes are marked with dot-
ted vertical lines in the plots. The first and second plots show the
trunk pitch and pitch rate respectively. The trunk pitch values show
how the robot fell forward after the first push, but not after the sec-
ond push. In the pitch rate signal, two arrows mark the first peak
after each push, showing that both pushes were equally strong. The
pitch rate signal is quite noisy due to the general shaking of the robot.
After the second push, the pitch rate is negative at 25 seconds, when
the robot steps forward and corrects the trunk pitch angle to an up-
right position. The third plot shows the gradient that was computed
after each step. The gradient increases and the robot learns during the
three steps after the first push, while the robot is falling forward, and

9.3 experiments 101

Step 6

-2.4

-1.2

0.0

1.2

2.4

θ. y
[r

ad
/s

]

Step 10 Step 20

-1.5
-1
-0.5
 0
 0.5
 1
 1.5

Step 21

-2.4

-1.2

0.0

1.2

2.4

θ. y
[r

ad
/s

]

Step 22 Step 23

-1.5
-1
-0.5
 0
 0.5
 1
 1.5

Step 42

-0.7 -0.35 0.0 0.35 0.7
θy [rad]

-2.4

-1.2

0.0

1.2

2.4

θ. y
[r

ad
/s

]

Step 43

-0.7 -0.35 0.0 0.35 0.7
θy [rad]

Step 44

-0.7 -0.35 0.0 0.35 0.7
θy [rad]

-1.5
-1
-0.5
 0
 0.5
 1
 1.5

Figure 9.9: Evolution of the function approximator of the sagittal step size
controller during the push recovery experiment. The black dots mark the
data points that were used to update the function approximator at the end
of the step.

larger and larger steps would have needed to be taken to regain bal-
ance. When the fall is detected at approximately 15.5 seconds, the gait
controller switches to a fallen state, where walking and learning are
suppressed. When an upright pose is detected, the controller automat-
ically switches the walking and the learning back on. This is the case
shortly before 20 seconds, where an undesired gradient can be seen
to have been computed. Wrong gradients can be computed while the
robot is standing, but is still in the process of manually being moved
into the correct position. LWPR assigns more weight to new data and
eventually forgets old data, and thus it makes sure that bad data does
not degrade performance for an extended period of time. After the
second push, the gradient stays near zero. The robot already learned
the correct step size to cope with the push and no further adjustment
is needed. The fourth plot shows the step size measured during the
experiment. It is interesting to note that the robot responded with a
smaller step size to the second push than to the first push, and yet
the robot did not fall. The evident reason for this is that since the
controller already learned from the first push, it was able to react ear-
lier to the second push and could balance the robot with less effort,
and more elegantly, with a single step. As can be inferred from the
inverted pendulum dynamics, the sooner corrective action is taken,
the smaller the correction needs to be.

The evolution of the function approximator during the learning
experiment can be observed in Fig. 9.9. The black dots on top of the
color maps of the function approximator show the data points that
were used to update the controller after the preceding step. The first
row consists of states of the function approximator before the first

102 learned footstep control

push. While the robot is walking in place, no significant change can
be observed. We use a relatively large kernel size within the LWPR.
The small cluster of data in the middle of the trunk pitch phase space
is covered by a single linear kernel. The first push is followed by steps
21, 22, and 23 in the second row, during which the robot is falling. The
LWPR algorithm places new kernels along the observed trajectory of
the pitch angle state in the phase space and covers a large portion
of it with non-zero leg swing amplitude activation values. In the last
row, step 42 is the last step before the second push, where the robot
is still stable. Step 43 is the capture step that absorbs the push, and
finally, step 44 is a step of nearly zero size, during which the residual
instability is depleted passively.

There are interesting insights to be gained from this experiment.
The fact that the initialization with the analytic controller was not
present shows that the learning technique for the sagittal step size is
robust. It can be initialized with zero step sizes, and learn from data
gathered during falling rather than during mostly stable walking. The
implication of this is that the sagittal learning technique can be poten-
tially used in constellations where a stable walking core is not present,
and there is no other choice than to begin the learning process by ten-
tative stepping and falling. The speed of learning from only a few
steps is remarkable and unique among walking- and balance-related
online learning attempts so far. Finally, the strength of the push re-
covery skills Copedo was able to obtain by learning is comparable, if
not stronger, than the push recovery skills demonstrated by Dynaped
with the analytic controller.

9.4 discussion

The load bearing concept of making the problem of learning to walk
tractable for online machine learning is the decoupling of the whole-
body walking motion from the concept of balance. When using an ex-
isting motion generator for stepping motions that can be controlled
in its step size and timing, the complexity of the learning problem
is reduced to the learning of a low-dimensional balance controller
with reference tracking capabilities. Furthermore, the balance con-
troller itself can be divided into isolated concepts of sagittal and lat-
eral balance, and step timing. Our implementation of an analytic con-
troller based on the dimensional decomposition paradigm is strong
evidence that this technique can result in a significant improvement
of balance with respect to open-loop walking. A set of simple, low-
dimensional controllers are easier to learn than a complex one that
attempts to tackle all control tasks at once.

To overcome the initial problem of a falling robot, we embedded
our learning concept into an analytic gait generation framework. The
analytic controller provides sufficient walking skills to begin the learn-

9.4 discussion 103

ing process without risking hardware damage, only an offset to the
analytic controller needs to be learned in order to improve the walk-
ing performance of the robot.

We proposed to use a gradient-based update method to train func-
tion approximators that represent the controllers to be learned. To
compute the gradient, we invest a model assumption and thereby
limit the competence of the learning algorithm to inverted pendulum-
like balancing tasks. Nevertheless, we gain a competitive learning
performance that is able to balance a humanoid robot after a strong
push. In the example of sagittal step size learning, a few steps were
sufficient for the controller to produce convincing push recovery ca-
pabilities, even when the analytic controller is not present. To our
knowledge, the speed of our learning concept as well as the achieved
sagittal balance are among the best results accomplished on a bipedal
robot to date.

One of the most interesting aspects of using machine learning to
solve the walking control task is that the latency and imprecise actu- The learned

controller
automatically
accounts for latency
and imprecise
actuation as good as
it can.

ation are more or less taken into account automatically. In our ana-
lytic design of a bipedal walking controller we explicitely included a
component that converts the commanded step size to CPG activation
signals based on data collected from the robot that includes the im-
precise execution of stepping motions. We also included a predictive
filter to compensate for the latency. A learned controller automatically
learns to account for these factors.

10
C O N C L U S I O N

In this thesis we introduced a new approach to robust bipedal gait
control with push recovery capabilities. The core concept of the gait The main

contributions of this
thesis are a robust
analytic gait
controller and a fast
online learning
method for the
learning of the
sagittal step size.

controller is to use a Central Pattern Generator to generate open-loop
stepping motions that can be controlled in terms of step size and tim-
ing. Using this control interface to abstract from high-dimensional
whole-body control allows the implementation of a much simpler,
low-dimensional balance controller that controls the Central Pattern
Generator using Cartesian footstep coordinates and step timing. The
balance controller is derived analytically with the help of the Linear
Inverted Pendulum Model and can be computed efficiently in closed
form. At the same time, the constraints of the low-dimensional bal-
ance model are not forced upon the robot and the natural dynamics
of the bipedal walking motion can still be fully exploited. The execu-
tion of the whole-body walking motion is entirely up to the Central
Pattern Generator. Its full complexity can be used to generate an en-
ergy efficient walking motion with stretched knees and a non-planar
Center of Mass trajectory.

In spite of the imprecision and latency caused by the compliant
setting of the actuators, we were able to demonstrate robust and con-
trollable omnidirectional walking with a real robot with potentially
the strongest push recovery capabilities to date. We were able to ac-
complish this without using a precise dynamic model of the robot,
without detecting foot contact, and without means of measuring or
enforcing the model-suggested location of the Zero Moment Point.
To our knowledge, the presented gait control framework is the first
to take charge of step timing, and the first to be able to cope with
oblique poses, thereby discarding the assumption that the feet of the
robot have to remain flat on the floor. It is in fact one of the most
surprising results that despite using only a planar model for balance,
and a motion generator that has been designed to walk exclusively
on a horizontal floor, the closed-loop gait controller is able to recover
from situations where the robot has already tipped over the edge of
a foot. We have substantiated this claim with systematic statistical
experiments and video examples.

Furthermore, we proposed an online learning concept that can com-
plement and improve the analytic controller. Our learning concept
benefits from the same step size interface of the Central Pattern Gen-
erator that was used to simplify the task of designing the analytic
footstep controller. The decomposition of the sagittal and the lateral
dynamics simplifies the learning task further. We pragmatically iden-

105

106 conclusion

tified initialization with a concept of balance as a key factor for suc-
cessful learning in a real hardware environment, and introduced a
gradient based learning technique that boosts the learning speed. We
were able to demonstrate state of the art online learning performance
of the sagittal step size with a real robot that, even when started
without initialization, learns how to absorb a strong push from the
experiences of a few failed steps during falling. The strength of the
learned push recovery skills is comparable to, or better than what we
were able to achieve with the analytic controller.

Apart from the general concept of the separation of motion and
balance, we would like to highlight our method of Center of Mass
state estimation with a kinematic model, our powerful predictive fil-
ter algorithm that removes noise and compensates latency, the math-
ematical framework for computing Zero Moment Point, step timing,
and step location control variables, and the gradient based training of
a function approximator as our in depth contributions in this thesis.

The architecture of the Capture Step Framework gives rise to poten-
tial beyond the concepts that have been researched so far. The man-The proposed gait

control concept is of
manageable

complexity and does
not exhaust the

available resources.

ageable level of complexity of the Capture Step Framework leaves
sufficient room to be extended with additional functionalities that
seem directly within reach. For example, the controller could utilize
the mass of the trunk and the arms as reaction mass and help the
robot balance. It also seems obvious that the motion generator and
the balance controller should be upgraded to take the inclination of
the robot with respect to the floor explicitely into account, if not be
able to generate stepping motions suitable for locomotion in non-level
terrain. More complex learning algorithms could be added that oper-
ate in a higher dimensional input space and thereby take correlations
into account, for example between the sagittal and the lateral direc-
tions, which are neglected by the simple learners proposed so far.

The balance control augmentation could be combined with a mo-
tion generator designed to be used in combination with series elastic
actuators. Compliant, muscle-tendon-like actuation appears to be an
integral part of the natural walking motion [Geyer et al., 2006] and is
therefore a promising course for further investigation.

Separating the control of balance from the walking motion, and
having a simple balance controller available that can potentially adapt
to small changes of the walking motion, opens the perspective of at-
tempting to optimize the walking motion directly on the hardware.
Theoretical methods have been developed in simulation [Felis and
Mombaur, 2013], but are not yet applicable to real robots. Starting
with a robot that can already walk, and simplifying the optimization
to not be concerned with balance could leverage an online optimiza-
tion algorithm to find a motion pattern for the optimal use of the
available actuators.

conclusion 107

The Capture Step framework does not make prohibitive use of
memory and computation time and leaves these resources available The Capture Step

Framework can
potentially support
future research of
elastic motion
generation, online
optimization of the
walking motion, and
balance aware
footstep planning.

for computationally intensive processes. Footstep planning, for exam-
ple, could be a well fitting extension to the short-sighted one step
lookahead character of the capture step controller. Footstep planning
offers the flexibility to traverse cluttered environments and rough ter-
rain, and could utilize the available computational resources to plan
several steps ahead. With the help of a simple physical model for
balance, such as the one included in the analytic controller, a foot-
step planning algorithm could take the state of balance into account
and plan multi-step recovery sequences while potentially avoiding
prohibited foothold locations. The desired step size-based command
interface of the Capture Step Framework seamlessly lends itself to be
controlled by a footstep planning algorithm.

B I B L I O G R A P H Y

Juan José Alcaraz-Jiménez, Marcell Missura, Humberto Martínez Bar-
berá, and Sven Behnke. Lateral Disturbance Rejection for the Nao
Robot. In RoboCup, pages 1–12, 2012.

Philipp Allgeuer and Sven Behnke. Fused angles for body orientation
representation. In Proceedings of 9th Workshop on Humanoid Soccer
Robots of the IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids),
Madrid, Spain, 2014a.

Philipp Allgeuer and Sven Behnke. Robust sensor fusion for robot
attitude estimation. In Proceedings of 14th IEEE-RAS Int. Conference
on Humanoid Robots (Humanoids), Madrid, Spain, 2014b.

S. O. Anderson, M. Wisse, C. G. Atkeson, J. K. Hodgins, G. J. Zeglin,
and B. Moyer. Powered Bipeds Based on Passive Dynamic Princi-
ples. In IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), 2005.

Catherine E. Bauby and Arthur D. Kuo. Active Control of Lateral
Balance in Human Walking. Journal of Biomechanics, 33(11):1433–
1440, 2000.

Sven Behnke. Online trajectory generation for omnidirectional biped
walking. In IEEE Int. Conf. on Robotics and Automation (ICRA), pages
1597–1603, 2006.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification
and Regression Trees. Chapman Hall, New York, 1984.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
ISSN 0885-6125.

J. Chestnutt, M. Lau, K.M. Cheung, J. Kuffner, J.K. Hodgins, and
T. Kanade. Footstep planning for the honda asimo humanoid. In
IEEE Int. Conf. on Robotics and Automation (ICRA), 2005.

Steven H. Collins, Martijn Wisse, and Andy Ruina. A Three-
Dimensional Passive-Dynamic Walking Robot with Two Legs and
Knees. International Journal of Robotics Research, pages 607–615, 2001.

H. Diedam, D. Dimitrov, P.-B. Wieber, K. Mombaur, and M. Diehl.
Online Walking Gait Generation with Adaptive Foot Positioning
Through Linear Model Predictive Control. In IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2008.

H. Dong, M. Zhao, and N. Zhang. High-Speed and Energy-Efficient
Biped Locomotion Based on Virtual Slope Walking. Autonomous
Robots, 30(2), 2011.

109

110 bibliography

J. Englsberger, C. Ott, M. A. Roa, A. Albu-Schäffer, and G. Hirzinger.
Bipedal Walking Control Based on Capture Point Dynamics. In
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2011.

Martin Felis and Katja Mombaur. Modeling and optimization of hu-
man walking. In Katja Mombaur and Karsten Berns, editors, Mod-
eling, Simulation and Optimization of Bipedal Walking, volume 18 of
Cognitive Systems Monographs, pages 31–42. Springer Berlin Heidel-
berg, 2013. ISBN 978-3-642-36367-2. URL http://dx.doi.org/10.

1007/978-3-642-36368-9_3.

Thomas Geijtenbeek, Michiel van de Panne, and A. Frank van der
Stappen. Flexible Muscle-Based Locomotion for Bipedal Creatures.
ACM Transactions on Graphics, 32(6), 2013.

Tao Geng, Bernd Porr, and Florentin Wörgötter. Fast biped walking
with a sensor-driven neuronal controller and real-time online learn-
ing. International Journal of Robotics Research, 2006.

Hartmut Geyer and Hugh Herr. A muscle-reflex model that encodes
principles of legged mechanics produces human walking dynam-
ics and muscle activities. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 18(3):263–273, 2010.

Hartmut Geyer, Andre Seyfarth, and Reinhard Blickhan. Compliant
Leg Behaviour Explains Basic Dynamics of Walking and Running.
Proceedings of the Royal Society of London B: Biological Sciences, 273

(1603):2861–2867, 2006. ISSN 0962-8452.

Colin Graf, Alexander Härtl, Thomas Röfer, and Tim Laue. A Robust
Closed-Loop Gait for the Standard Platform League Humanoid. In
Workshop on Humanoid Soccer Robots, 2009.

Inyong Ha, Yusuke Tamura, and Hajime Asama. Development of
open platform humanoid robot darwin-op. Advanced Robotics, 27

(3):223–232, 2013.

T. Hemker, M. Stelzer, O. von Stryk, and H. Sakamoto. Efficient walk-
ing speed optimization of a humanoid robot. International Journal
of Robotics Research, 28(2):303–314, 2009.

K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka. The Development
of Honda Humanoid Robot. In IEEE Int. Conf. on Robotics and Au-
tomation (ICRA), 1998.

Armin Hornung, Andrew Dornbush, Maxim Likhachev, and Maren
Bennewitz. Anytime search-based footstep planning with subopti-
mality bounds. In Proc. of the IEEE-RAS International Conference on
Humanoid Robots (HUMANOIDS), Osaka, Japan, November 2012.

http://dx.doi.org/10.1007/978-3-642-36368-9_3
http://dx.doi.org/10.1007/978-3-642-36368-9_3

bibliography 111

S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, and
K. Yokoi. Biped Walking Pattern Generation by Using Preview
Control of Zero-Moment Point. In IEEE Int. Conf. on Robotics and
Automation (ICRA), 2003.

S. Kajita, M. Morisawa, K. Miura, S. Nakaoka, K. Harada, K. Kaneko,
F. Kanehiro, and K. Yokoi. Biped Walking Stabilization Based on
Linear Inverted Pendulum Tracking. In IEEE/RSJ Int. Conf. on Intel-
ligent Robots and Systems (IROS), 2010.

Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kazuhito Yokoi, and Hi-
rohisa Hirukawa. The 3D linear inverted pendulum mode: a simple
modeling for a bipedwalking pattern generation. In IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), 2001.

Nate Kohl and Peter Stone. Policy gradient reinforcement learning
for fast quadrupedal locomotion. In IEEE Int. Conf. on Robotics and
Automation (ICRA), 2004.

Arthur D. Kuo. Stabilization of Lateral Motion in Passive Dynamic
Walking. The International Journal of Robotics Research, 18(9):917–930,
1999.

Arthur D. Kuo. The Six Determinants of Gait and the Inverted Pendu-
lum Analogy: A Dynamic Walking Perspective. Human Movement
Science, 26(4):617 – 656, 2007. ISSN 0167-9457. European Workshop
on Movement Science 2007 European Workshop on Movement Sci-
ence 2007.

Arthur D. Kuo, J. Maxwell Donelan, and Andy Ruina. Energetic
Consequences of Walking Like an Inverted Pendulum: Step-to-step
Transitions. Exercise and Sport Sciences Reviews, 33(2):88–97, 2005.
URL http://www.ncbi.nlm.nih.gov/pubmed/15821430.

J.-P. Laumond, G. Arechavaleta, T.-V.-A. Truong, H. Hicheur, Q.-C.
Pham, and A. Berthoz. The Words of the Human Locomotion.
In Makoto Kaneko and Yoshihiko Nakamura, editors, Robotics Re-
search, volume 66 of Springer Tracts in Advanced Robotics, pages 35–
47. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-14742-5.

Tad McGeer. Passive Dynamic Walking. International Journal of
Robotics Research, 1990.

Marcell Missura and Sven Behnke. Lateral capture steps for bipedal
walking. In IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids),
2011.

Marcell Missura and Sven Behnke. Self-Stable Omnidirectional Walk-
ing with Compliant Joints. In Workshop on Humanoid Soccer Robots,
Atlanta, USA, 2013a.

http://www.ncbi.nlm.nih.gov/pubmed/15821430

112 bibliography

Marcell Missura and Sven Behnke. Omnidirectional Capture Steps
for Bipedal Walking. In IEEE-RAS Int. Conf. on Humanoid Robots
(Humanoids), 2013b.

Marcell Missura and Sven Behnke. Online Learning of Balanced Foot
Placement for Bipedal Walking. In IEEE-RAS Int. Conf. on Humanoid
Robots (Humanoids), 2014a.

Marcell Missura and Sven Behnke. Balanced walking with capture
steps. In RoboCup 2014: Robot Soccer World Cup XVIII (to appear).
Springer, 2014b.

Marcell Missura, C. Münstermann, P. Allgeuer, M. Schwarz, J. Pas-
trana, S. Schueller, M. Schreiber, and Sven Behnke. Learning to
improve capture steps for disturbance rejection in humanoid soc-
cer. In RoboCup 2013: Robot Soccer World Cup XVII, pages 56–67.
Springer, 2014.

Jun Morimoto and Christopher G. Atkeson. Learning Biped Locomo-
tion. In IEEE Robotics and Automation Magazine. IEEE, 2007.

Jun Morimoto and Christopher G. Atkeson. Nonparametric Repre-
sentation of an Approximated Poincaré Map for Learning Biped
Locomotion. In Auton Robot. Springer, 2009.

Jun Morimoto, Christopher G. Atkeson, Gen Endo, and Gordon
Cheng. Improving Humanoid Locomotive Performance with
Learnt Approximated Dynamics via guassian Process for Regres-
sion. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS).
IEEE, 2007.

Mitsuharu Morisawa, Fumio Kanehiro, Kenji Kaneko, Nicolas
Mansard, Joan Sola, Eiichi Yoshida, Kazuhito Yokoi, and Jean-Paul
Laumond. Combining suppression of the disturbance and reactive
stepping for recovering balance. In IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), pages 3150–3156, 2010.

Christian Ott, Christoph Baumgärtner, Johannes Mayr, Matthias
Fuchs, Robert Burger, Dongheui Lee, Oliver Eiberger, Alin Albu-
Schäffer, Markus Grebenstein, and Gerd Hirzinger. Development
of a biped robot with torque controlled joints. In IEEE-RAS Int.
Conf. on Humanoid Robots (Humanoids), pages 167–173, 2010. ISBN
978-1-4244-8688-5.

I.-W. Park, J.-Y. Kim, J. Lee, and J.-H. Oh. Mechanical Design of
Humanoid Robot Platform KHR-3 (KAIST Humanoid Robot 3:
HUBO). In IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids),
2005.

Jerry Pratt, Chee-Meng Chew, Ann Torres, Peter Dilworth, and Gill
Pratt. Virtual Model Control: An Intuitive Approach for Bipedal

bibliography 113

Locomotion. The International Journal of Robotics Research, 20(2):129–
143, 2001.

Jerry E. Pratt, John Carff, Sergey V. Drakunov, and Ambarish
Goswami. Capture point: A step toward humanoid push recov-
ery. In IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), pages
200–207. IEEE, 2006. ISBN 1-4244-0200-X.

Jerry E. Pratt, Twan Koolen, Tomas de Boer, John R. Rebula, Sebastien
Cotton, John Carff, Matthew Johnson, and Peter D. Neuhaus.
Capturability-based analysis and control of legged locomotion,
part 2: Application to m2v2, a lower-body humanoid. The Inter-
national Journal of Robotic Research, 31(10):1117–1133, 2012.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian
Processes for Machine Learning. MIT Press, 2006.

John Rebula, Fabian Canas, Jerry Pratt, and Ambarish Goswami.
Learning Capture Points for Humanoid Push Recovery. In IEEE-
RAS Int. Conf. on Humanoid Robots (Humanoids), 2007.

Max Schwarz and Sven Behnke. Compliant robot behavior using
servo actuator models identified by iterative learning control. In
17th RoboCup International Symposium, 2013.

Max Schwarz, Michael Schreiber, Sebatian Schueller, Marcell Missura,
and Sven Behnke. Nimbro-op humanoid teensize open platform.
In Workshop on Humanoid Soccer Robots of the IEEE-RAS Int. Conf. on
Humanoid Robots (Humanoids), 2012.

B. J. Stephens and C. G. Atkeson. Push Recovery by Stepping for
Humanoid Robots with Force Controlled Joints. In IEEE-RAS Int.
Conf. on Humanoid Robots (Humanoids), 2010.

Russ Tedrake, Teresa Weirui Zhang, and H. Sebastian Seung. Learn-
ing to walk in 20 minutes. In 14th Yale Workshop on Adaptive and
Learning Systems, 2005.

J. Urata, K. Nishiwaki, Y. Nakanishi, K. Okada, S. Kagami, and M. In-
aba. Online Decision of Foot Placement Using Singular LQ Preview
Regulation. In IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids),
2011.

Junichi Urata, Koichi Nishiwaki, Yuto Nakanishi, Kei Okada, Satoshi
Kagami, and Masayuki Inaba. Online Walking Pattern Generation
for Push Recovery and Minimum Delay to Commanded Change of
Direction and Speed. In IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 2012.

Sethu Vijayakumar, Aaron D’souza, and Stefan Schaal. Incremental
Online Learning in High Dimensions. Neural Comput., 17(12):2602–
2634, December 2005. ISSN 0899-7667.

114 bibliography

Jack M. Wang, Samuel R. Hamner, Scott L. Delp, Vladlen Koltun,
and More Specifically. Optimizing Locomotion Controllers Using
Biologically-Based Actuators and Objectives. ACM Trans. Graph,
2012.

Pierre-Brice Wieber. Trajectory Free Linear Model Predictive Control
for Stable Walking in the Presence of Strong Perturbations. In IEEE-
RAS Int. Conf. on Humanoid Robots (Humanoids), 2006.

Martijn Wisse and J. Van Frankenhuyzen. Design and Construction of
MIKE; a 2D Autonomous Biped Based on Passive Dynamic Walk-
ing. In International Symposium of Adaptive Motion and Animals and
Machines, 2003.

Seung-Joon Yi, Byoung-Tak Zhang, Dennis Hong, and Daniel D. Lee.
Online Learning of a Full Body Push Recovery Controller for Om-
nidirectional Walking. In IEEE-RAS Int. Conf. on Humanoid Robots
(Humanoids), 2011.

	Dedication
	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Videos
	Acronyms
	1 Introduction
	2 Related Work
	2.1 Analytic Bipedal Walking
	2.2 Learned Bipedal Walking

	3 The Robots
	4 Overview
	5 Principles of Bipedal Walking
	6 Step Motion Generator
	6.1 The Layers of the Motion Generator
	6.2 Abstract Kinematic Interface
	6.3 Motion Pattern
	6.3.1 Halt Position
	6.3.2 Leg Lifting
	6.3.3 Leg Swing
	6.3.4 Lateral Hip Swing
	6.3.5 Leaning
	6.3.6 Complete Leg Pattern
	6.3.7 Arm Motion
	6.3.8 Compliant Actuation

	6.4 Control Interface
	6.4.1 Step Size Conversion
	6.4.2 Step Timing

	6.5 Experiments
	6.5.1 Video Demonstration
	6.5.2 Center of Mass and Compliant Actuation
	6.5.3 Stability Analysis

	6.6 Discussion

	7 State Estimation
	7.1 Trunk Attitude Estimation
	7.2 Tilted Whole-Body Pose Reconstruction
	7.3 Center of Mass State Estimation
	7.4 Support Foot Estimation
	7.5 Experiments
	7.5.1 Trunk Attitude Estimation
	7.5.2 Center of Mass State Estimation

	7.6 Discussion

	8 Analytic Footstep Control
	8.1 The Linear Inverted Pendulum Model
	8.1.1 One-dimensional Model
	8.1.2 Two-dimensional Model

	8.2 Predictive Filter
	8.3 Reference Trajectory Generation
	8.4 Balance Control
	8.4.1 Lateral Zero Moment Point Offset
	8.4.2 Step Time
	8.4.3 Sagittal Zero Moment Point Offset
	8.4.4 Footstep Location

	8.5 Experiments
	8.5.1 Walk and Push
	8.5.2 Technology Demonstration
	8.5.3 Push Recovery

	8.6 Discussion

	9 Learned Footstep Control
	9.1 Machine Learning Framework
	9.2 Learning the Sagittal Step Size
	9.3 Experiments
	9.3.1 Evaluation of Reference Tracking
	9.3.2 Evaluation of Disturbance Rejection
	9.3.3 Evaluation of Stability
	9.3.4 Push Recovery Learning with a real Robot

	9.4 Discussion

	10 Conclusion
	Bibliography

