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Abstract

In this work quantum coherence effects in dense rubidium atomic vapour are investigated.
Prepared in a laser driven atomic system, coherent effects, like the well-known electro-
magnetically induced transparency, have a remarkable ability to significantly alter optical
properties of the used medium. Electromagnetically induced transparency and related
phenomena like slow and stored light can be explained in terms of dark state polaritons,
representing quasiparticles consisting of light and matter components. In this thesis,
experiments aiming to the concept of quasiparticles are described.

Furthermore, in this thesis the concept of resonance retrieval of a stored coherence is
investigated, a concept that might prove useful in metrology.

In this thesis, the focus is set on the experimental study of the particle-like nature of dark
state polaritons. Therefore, a radiofrequency spectroscopy is performed on stationary and
moving polaritons with an internal level structure. To this end, an experimental setup is
described that allows for the existence of two state dark polaritons in a tripod level scheme.
The internal level structure of these polaritons is then probed by a radiofrequency field and
a transfer of population between two dark states is observed. The measured population
transfer, though with a limited contrast, strongly indicates that dark state polaritons can
be considered as quasiparticles with an internal level structure.

Since the dark state polaritons exhibit features of an effective magnetic dipole moment,
the existence of the Aharonov-Casher phase effect for these quasiparticles is investigated
experimentally. It is predicted by a known Aharonov-Casher effect that taking two parti-
cles with a finite magnetic dipole moment around a line of charge causes an accumulated
phase difference between them. In this work, a detection system with a phase sensitivity
of 10−5 rad is described, which sets the upper boundary on the experimentally detectable
Aharonov-Casher phase for the hot rubidium gas system.

In the last part of this thesis experiments on storage and resonant retrieval of an atomic
coherence are described. To this end, an RF field creates an atomic coherence which is
stored and subsequently read out with an optical field. The retrieved field is shown to be
frequency locked to the optical field. The difference frequency is, within the limits of ex-
perimental sensitivity, at the atomic resonance frequency independently on the amplitude
and frequency variations of the radiofrequency excitation field.

Parts of this thesis have been published in the following paper:

• V. Djokic, G. Enzian, F. Vewinger and M. Weitz, Resonance retrieval of stored
coherence in an rf-optical double resonance experiment, Phys. Rev. A 92, 063802
(2015)
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1 Introduction

Quantum coherence effects, the main subject of this thesis, have been a topic of intense
scientific research in the past decades. Induced by light-matter interactions, these coherent
effects have a remarkable capability of being able to alter optical properties of atomic
media. A real milestone, not only in the investigation of the coherent effects, but also in
scientific research in general and above all in our everyday lives, represents the invention
of the laser [1], as a coherent source of optical radiation. The laser invention provoked a
modified theory of the quantum nature of light [2], confirmed up to this day in a series of
remarkable experiments [3,4]. The previous decades have seen enormous improvements in
the field of metrology, where by laser spectroscopy of atomic media one could determine
the relative position of atomic energy levels with unprecedented precision [5, 6]. Recent
impressive examples of improvements in metrology techniques represent high-precision
measurements of the frequency of light [7] or a newly developed superradiant laser [8]
with a potential application in the measurement of gravitational waves and fundamental
constants. Another important landmark was the development of laser cooling techniques
of atoms [9–11], allowing for the creation of Bose-Einstein condensates [12, 13] and for
major improvements in the field of atomic clocks [14]. Whether it is the creation of
squeezed light [15], of entangled photons [16] or of a Bose-Einstein condensation of photons
[17], an astonishing world of light induced effects never stops to amaze us.

A huge contribution to the development of many research fields gave quantum interfer-
ence effects, namely coherent population trapping (CPT) [18] and the closely related phe-
nomenon of electromagnetically induced transparency (EIT) [19, 20], capable of making
an otherwise opaque medium transparent through the presence of so-called dark states.
For example, dark states played a well known role in the development of laser cooling
techniques for atoms, with the technique of velocity selective coherent population trap-
ping [11], allowing for first experiments achieving laser cooling below the atomic recoil
temperature. Also, the fields of nonlinear optics [21, 22] and atomic interferometry [23]
have benefited from dark states techniques. Other applications of dark states include op-
tical propagation effects in media, an effect well described in terms of electromagnetically
induced transparency. In parallel to a strong reduction of the absorption near an atomic
resonance, is the existence of a spectrally very steep dispersion, followed at the same time
by a rise of the nonlinear susceptibility [24]. Moreover, due to the modified dispersion, the
group velocity of a light pulse can be significantly lowered compared to the vacuum speed
of light, an effect well described by the term "slow light" [25], which is used for instance
in quantum communication protocols [26]. A comprehensive review of the properties of
these optical coherence effects in media can be found in [27].

Of crucial importance in many fields, e.g. in quantum information, is the ability to
coherently manipulate atomic states and retrieve previously mapped photon states. EIT
and CPT effects are widely used tools that allow for reversible storage of light in atomic
ensembles [28, 29], where stored photonic information can be controlled in a coherent
manner [30]. Based on the EIT effect, it has been reported that non-classical states
of light, like squeezed and single-photon states, or entangled photons can be reversibly
stored in atomic ensembles [31–34]. Application of EIT in quantum devices and generation
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of photonic qubits has also been proposed [35, 36], as well as the use of EIT in quantum
teleportation between light and matter [37]. Besides the EIT phenomenon, many different
storage techniques have been suggested, such as off-resonant Raman interaction [38] or
gradient echo memories [39] schemes in both gaseous atomic samples [40, 41] and in ion-
doped crystals [42].

The possibility to prepare narrow resonances using EIT [43, 44] makes it a valuable tool
for magnetometry [45–47] and optical clocks. State-of-the-art magnetometry that sur-
passes the precision of superconducting quantum interference devices (SQUIDs) has been
reported [48]. Of further interest is the application of coherent population trapping in the
measurement of the frequency difference between two hyperfine atomic states allowing
for miniature atomic clocks [49, 50]. While many experiments use continuous signal read
out, other work has used free spin precessing for atomic magnetometry, resulting in a
Ramsey-like scheme [51].

Since the slow light and storage of light effects can be explained in the formalism of
dark state polaritons (DSPs) that show bosonic commutation relations, a realization of
Bose-Einstein condensate for dark state polaritons was proposed [52,53].

Very interesting theoretical considerations show that the propagation of the DSPs can be
seen as a motion of Dirac particles with a tunable effective mass [54,55]. It was shown by
Leon Karpa that dark state polaritons possess an effective magnetic dipole moment [56].
In his previous work, Karpa also demonstrated a resonance retrieval of stored optical
fields at an atomic transition frequency [57].

This thesis investigates quantum coherence effects, like electromagnetically induced trans-
parency and related slow and storage of light effects, which arise from coherently prepared
atomic ground state superpositions in hot atomic rubidium vapour. Considered in terms of
dark state polaritons (DSPs), these coherence effects show a particle-like nature. Studying
this quasiparticle concept is one of the main goals of this thesis. Furthermore, a resonant
retrieval of a stored atomic coherence is investigated in an optical-radiofrequency double
resonance experiment.

The thesis is arranged as follows. In chapter 2, a general theoretical introduction on
the effects of electromagnetically induced transparency in the formalism of dark state
polaritons is presented. Also, the operational principle of optical-radiofrequency double
resonance spectroscopy is given.

The following third chapter gives an overview of the basic properties of the used exper-
imental setup and calibration measurements. In the calibration measurements, the ex-
perimentally observed EIT effects, which underline the work performed in this thesis, are
going to be presented. The EIT resonances in different atomic configurations and their
limiting factors are discussed. Measurements of closely related effects of slow/stopped
light are also shown.
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Spectroscopic measurements on the internal states of dark state quasiparticles, investigat-
ing a matter-like nature of polariton systems, are discussed in chapter 4. The preparation
of multilevel dark state polaritons in a tripod level scheme and their probing by radio-
frequency (RF) field is described. Measurements of RF spectroscopy on both stationary
and moving DSP are presented and compared with calculations.

In the next chapter, the study of particle-like properties of the DSP will be continued
by searching for an experimental evidence on the existence of Aharonov-Casher effect for
DSPs. A brief overview of the existing theoretical considerations for the Aharonov-Casher
effect for DSPs is given and a current state of the experiment is discussed.

The sixth chapter describes a demonstration of resonance retrieval of an atomic coher-
ence in an optical-radiofrequency double resonance experiment. An experimental and
theoretical results show that after the retrieval of stored coherence, a beating that corre-
sponds to the atomic eigenfrequency is observed. The detected beat frequency is, within
the limits of the reached experimental uncertainty, insensitive to the amplitude and fre-
quency variations of the driving RF field, making it a possible candidate for precision
measurements.

This thesis is concluded by an outlook in chapter 7 discussing future prospects of the
experimental setup.
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2 Theoretical Background

A general theoretical overview of the most relevant phenomena is given in this section.
Starting with a three-level Λ-interaction scheme, a concept of electromagnetically induced
transparency and dark states is introduced. A formalism of dark state polaritons is widely
used in this thesis and consequently, it’s basic properties are discussed here. After that, a
semi-classical model is described, which is used for all later theoretical considerations of
a laser driven atomic system. An optical-radiofrequency double resonance spectroscopy,
used in chapter 6, is also explained.

2.1 Dark state in a three-level Λ-scheme

When an atomic system with a Λ - configuration level scheme (Fig. 2.1) interacts with
coherent optical fields, several physical phenomena can occur. Namely, a creation of a
coherent superposition of the lower states of the three-level system can lead to a coherent
population trapping (CPT) [58] if the allowed optical transitions interfere destructively.
It follows that the entire population of the system remains trapped in the coherent su-
perposition state despite the presence of the optical driving fields [59]. A closely related
effect to CPT is electromagnetically induced transparency (EIT) [19], where no initial
preparation of the coherent state is needed and a coherent non-absorbing dark state is
created by a combination of strong and weak optical coupling fields. The basic features
of the EIT phenomenon can be understood by considering the simple three-state model
(shown in Fig. 2.1) interacting with optical control and signal fields in the dressed-state
formalism [60].

Signal
field

Control
 field
ΩC , ωCΩS , ωS

∆ab ∆ac

|a〉

|b〉 |c〉

γa γa

γbc

Figure 2.1: Simplified three-level scheme with two ground states |b〉 and |c〉 and one
excited state |a〉. Optical signal field with Rabi frequency ΩS couples the states |b〉 and
|a〉, whereas optical control field with Rabi frequency ΩC connects the states |c〉 and |a〉.
∆ab and ∆ac represent detuning of signal and control field. The relaxation rates of the
excited state and the ground state are denoted by γa and γbc, respectively.
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The derivation of the Hamiltonian for the three-level system, with the rotating wave
approximation (RWA) implemented for the optical couplings, is presented in Appendix A
and here only the final result is given as:

H = ~
2

 0 ΩS ΩC
ΩS 2∆ab 0
ΩC 0 2∆ac

 , (2.1)

where ΩC, ∆ac and ΩS, ∆ab represent the Rabi frequencies and one-photon detunings of
the optical strong control field and optical weak signal field, respectively. The one-photon
detunings are defined as ∆ab = ωab − ωS and ∆ac = ωac − ωC, with ωS and ωC being the
frequencies of optical signal and control fields. Solving the eigenproblem of the dressed-
system reveals an eigenstate of an eigenvalue zero that is of a particular interest for the
discussion. Here, it can be expressed as a superposition of the ground states |b〉 and |c〉
in the following way:

|ψD〉 = cos(θ)|b〉 − sin(θ)|c〉 (2.2)
with the mixing angle θ given as tan(θ) = ΩS/ΩC. Since there is no contribution of
the excited state |a〉 in Eq. (2.2), this eigenstate is also called a dark state. In the ideal
case, atoms in the dark state do not absorb any optical radiation. When arranging the
optical Rabi frequencies in such a way that ΩC = ΩS, one obtains a dark state of the form
|ψD〉 = 1√

2(|b〉 − |c〉).

The behavior of the atomic ensemble, when probed by the signal field, can be expressed
by linear susceptibility [27] for ∆ac = 0 as:

χ(∆ab) = 2g2N

ωab

iγbc + 2∆ab

Ω2
C + (γbc + 2i∆ab)(γa + 2i∆ab) (2.3)

where N is the total number of atoms, γa is the population decay rate of the state |a〉, γbc
the decoherence rate between the states |b〉 and |c〉, and ωab is the transition frequency
between the states |a〉 and |b〉. The atom-signal field coupling constant g is given by
g = µab

√
ωab
~ε0V , where µab is the |a〉 − |b〉 dipole matrix element, ε0 is the permitivity

of the system, and V the quantization volume. The susceptibility of the system under
EIT conditions (|ΩC|2 � γaγbc, γa � γbc) is shown in Figure 2. The imaginary part
of the susceptibility χ (Fig. 2.2(a)) corresponds to the absorption of the medium, while
the real part (Fig. 2.2(b)) can be connected with the refractive index n =

√
1 +Re(χ)

of the signal field. It is evident from Eq. (2.3) that on the atomic transition resonance
(∆ab = 0) the absorption of the signal field vanishes due to the quantum interference. The
existence of the EIT resonance [20] makes the opaque system transparent to the signal
field propagation.

Another interesting EIT feature arises due to the behavior of the refractive index when the
signal field frequency approaches the atomic transition frequency (Fig. 2.2(b)). A rapid
linear change of the refractive index n, in the transparency window close to the atomic
resonance, modifies the group velocity at which the signal field propagates through the
medium [61,62]:

vg = c

1 + g2N/|ΩC|2
(2.4)
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Figure 2.2: (a) Imaginary part of the susceptibility χ of the system as a function of
the detuning under EIT conditions shows the decrease of the absorption on the atomic
resonance. (b) Real part of the linear susceptibility χ approaches zero value with the
very steep slope as the frequency of the signal field is closer to the atomic resonance.
The parameter values used in obtaining the shape of the susceptibility are: ΩC = 0.45,
γbc = 0.001, and γa = 1.

In this way, the group velocity vg can be significantly reduced, compared to the vacuum
speed of light c, by increasing the atomic density N or reducing the Rabi frequency ΩC of
the control field [21, 25]. The effect of lowering the group velocity of the resonant signal
pulse to values much smaller than the speed of light is known as slow light effect. On the
other hand, the phase velocity vph of the signal field is at the same time very close to the
vacuum speed of light.

2.2 Properties of the Dark State Polaritons

Previously described properties of the EIT phenomenon, such as slow light propagation
in the atomic medium, can be considered using the quasiparticle picture [61, 63]. In this
approach, form-stable coupled excitations of light and matter are associated with the
propagation of the quantum light pulses. Using this formalism the signal field pulse is
described by slowly varying quantum operator ÊS(z, t), whose propagation is given by:(

∂

∂t
+ c

∂

∂z

)
ÊS(z, t) = − g2N

ΩC(t)
∂

∂t

ÊS(z, t)
ΩC(t) . (2.5)

If the decoherence rate γbc is negligible, one can introduce a coupled superposition Ψ̂D(z, t)
of photonic and spin wave-like excitations, called dark state polariton (DSP), and express
it as:

Ψ̂D(z, t) = cos θ(t)ÊS(z, t)− sin θ(t)
√
Nσ̂bc(z, t). (2.6)

where σ̂bc(z, t) is the collective atomic operator describing the quantum properties of the
medium, in general expressed as:

σ̂µν(z, t) = 1
Nz

Nz∑
j=1
|µj〉 〈νj| e−ωµνt, (2.7)
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and averaged over small but macroscopic volumes containing Nz � 1 particles at position
z. The mixing between light and matter components is defined here by the mixing angle
θ in the following way:

cos θ(t) = ΩC(t)√
Ω2

C(t) + g2N
, sin θ(t) = g

√
N√

Ω2
C(t) + g2N

. (2.8)

The dark state polariton Ψ̂D(z, t) obeys the equation of motion:[
∂

∂t
+ c cos2 θ(t) ∂

∂z

]
Ψ̂D(z, t) = 0, (2.9)

and is propagating with the group velocity vg(t) = c cos2 θ(t), which can be controlled by
the modification of the control field Rabi frequency ΩC. It is notable that the rotation
of the mixing angle θ(t) from 0 to π/2 can lead to the full stopping of the signal light
pulse, making the polariton completely atomic in nature (see Fig. 2.3). Note that for a

Figure 2.3: Form-stable propagation of dark state polariton (b). Rotation of mixing angle
θ for π/2 (a), induces a transition from light-like (c) to spin wave-like propagation (d) of
dark state polariton that at all times preserves its shape. Axes are in arbitrary units with
c = 1. Figure from [61].
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finite value of the control field Rabi frequency, the signal field pulse cannot be completely
halted, as in this case the width of the EIT window (see Eq. 2.10) vanishes and the pulse
is correspondingly not affected. However, this can be achieved by adiabatical reduction
of the control field intensity to zero, with the condition that the spectral width ∆ωS of
the signal field pulse obeys the following relation [27]:

∆ωS(t) = ∆ωS(0) vg(t)
vg(0) . (2.10)

Then, the photonic quantum state can be mapped and stored onto the atomic spin system.
The stopped dark state polariton can easily be reaccelerated by turning the control field
back on, at the same time coherently retrieving stored quantum state of the signal field
pulse [61].

2.3 Semiclassical model

In order to describe an atomic driven system in more detail, a semi-classic model will
be adopted, in which the atoms are treated as quantum mechanical particles, while the
electromagnetic fields are seen as classical fields. This model will be used throughout this
thesis in the theoretical considerations of the system.

The time-domain properties of the quantum mechanical system are conveniently expressed
by a density operator ρ. The density operator can be written in a matrix form, which has
to be Hermetian (ρ∗nm = ρnm) and normalized (Tr(ρ) = 1). The physical meaning of the
density matrix can be understood by considering its matrix elements ρnm = 〈n|ρ|m〉. The
diagonal elements ρnn represent the probabilities of occupying the states |n〉 and therefore
are referred to as populations. Since the off-diagonal elements ρnm describe the evolution
of the coherent superpositions, they are considered as coherences. The dynamics of the
atomic ensemble driven by electromagnetic fields is governed by the Liouville equation:

∂ρ

∂t
= − i

~
[H, ρ]− Γρ, (2.11)

where H is the Hamiltonian of the system, for example the Hamiltonian given in Eq. (2.1)
for the three-level system. The superoperator Γ incorporates all relaxation rates, which
are in this thesis introduced in a phenomenological way.

The equations of motion for the populations and coherences for the optically driven three-
level Λ system, shown in Fig. (2.1), can be derived from Eq. 2.11, and after applying a
slowly-varying amplitude approximation [59] on the density matrix ρ̂ = ρ̃e−iωt, expressed
as:

∂ρ̃aa

∂t
= iΩS(ρ̃ba − ρ̃ab) + iΩC(ρ̃ca − ρ̃ac)− 2γaρ̃aa (2.12)

∂ρ̃bb

∂t
= iΩS(ρ̃ab − ρ̃ba) + γaρ̃aa + γbc(ρ̃cc − ρ̃bb) (2.13)

∂ρ̃cc

∂t
= iΩC(ρ̃ac − ρ̃ca) + γaρ̃aa + γbc(ρ̃bb − ρ̃cc) (2.14)
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∂ρ̃ab

∂t
= −(i∆ab + γa)ρ̃ab + ΩS(ρ̃bb − ρ̃aa) + iΩCρ̃cb (2.15)

∂ρ̃ac

∂t
= −(i∆ac + γa)ρ̃ac + iΩC(ρ̃cc − ρ̃aa)− iΩSρ̃cb (2.16)

∂ρ̃cb

∂t
= −(iδ + γbc)ρ̃cb + iΩSρ̃ca + iΩCρ̃ab, (2.17)

where δ is a two-photon detuning, defined as δ = ∆ac − ∆ab. The equations (2.12-2.17)
are usually regarded as the optical-Bloch equations for the three-level Λ system and their
expanded versions for the six and the eleven-level system are to be used in the theoretical
considerations in chapters 4 and 6. The solution of the above system of equations can be
found by numerical integration, and the steady-state ∂tρ̃ij = 0, can be found analytically.

Of interest for the action of the atomic medium onto the light fields is the macroscopic
polarization P of the atomic medium, which can be expressed as the dipole moment µ of
an individual atom averaged over the ensemble per unit volume V :

P = N

V
〈µ〉 = −eN

V
〈r〉 , (2.18)

where 〈µ〉 is the dipole moment, e is the electron charge, and r is the electron position
operator. Using the density matrix formalism, 〈µ〉 can be written as:

〈µ〉 =
∑
n,m

ρnmanm, (2.19)

defining anm = −e 〈m|r|n〉 as the electronic dipole moment of the |n〉 → |m〉 electronic
transition. Now, by inserting Eq. 2.19 into Eq. 2.18, the atomic polarization P for the
Λ-system has the following form :

P = N

V
[
µabρ̃abe

−iωSt + µacρ̃ace
−iωCt

]
. (2.20)

This expression reveals that the polarization of the medium is proportional to the off-
diagonal elements coupled with the dipole moment of the particular electronic transition.
This property of the atomic polarization will be used when calculating the response of
the medium on a specific optical transition.

2.4 Optical-radiofrequency double resonance technique

A three-level interaction scheme with the two ground levels |m〉 and |k〉 and one excited
level |n〉 (Fig. 2.4) is considered. Levels |m〉 and |n〉 are coupled via the optical laser
field ΩC, effectively transferring the population from one ground state to the other. If
the states |m〉 and |k〉 are now resonantly coupled with a radiofrequency (RF) field, then
the optical laser field and the RF field are simultaneously in resonance with the atomic
transitions, which is called optical-RF double resonance technique [64].

Turning on the RF field modifies the absorption of the optical laser beam, which can be
monitored in general by detecting the laser-induced fluorescence. This applies equally
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Figure 2.4: Simplified three-level scheme for which an optical-radiofrequency double
resonance effect can be realized. The levels |m〉 and |n〉 are coupled by control field with
the Rabi frequency ΩC while RF field at frequency ωRF couples the ground levels |m〉 and
|k〉. The effect can be observed by detecting the fluorescence occurring between the levels
|n〉 and |k〉.

for a system consisting of one ground and two excited states. The main advantage of
the optical-RF double-resonance technique is its high spectral resolution. In the case of a
Doppler-broadened optical transition, the optical-RF double-resonance signal is measured
at the frequency ωRF, reducing the Doppler-width by a factor ωRF/ωC. When there are
no additional broadening mechanisms, the width of the double resonance, for the RF
transition between the ground states, is determined by the life time of the corresponding
ground levels.

However, this thesis will not focus on the spectroscopic properties of this effect. It will
rather be seen from a perspective of an induced two-photon coherences. Simultaneous
coupling of the optical and RF transition, creates coherence between the states |n〉 and
|k〉, that in turn produces coherent optical transition. This coherence will be stored in
a process similar to the storage of light and its properties studied for different set of
parameters. The three-level scheme presented in Fig. 2.4, can be achieved for the Zeeman
sublevels of the electronic states, where the allowed RF transitions are magnetic dipole
transitions.
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3 Experimental setup and Characterization

In this chapter, the experimental setup used in this work is discussed. The spotlight is
set on the general elements used in each experimental investigation. The preparation
of the electromagnetic fields and their control is described, as well as the experimental
conditions of the medium with which they are interacting. Detailed description of the
measurement and detection procedures of each performed experiment is given in their
respective chapters.

3.1 Rubidium atomic vapour apparatus

The medium, in which all of the experiments were performed, is a thermal ensemble of
atomic rubidium vapour. Rubidium is an element of the alkali metal group, used here
with the natural abundance of its isotopes (72.2 % of 85Rb and 27.8 % of 87Rb). Only
the D1-line transition in 87Rb between the states 5S1/2 and 5P1/2 (see Fig. 3.1) is used
experimentally (for more details on 87Rb D1 transition see App. B). On this transition,
two different level configurations - Zeeman and hyperfine configuration - allow for the
preparation of a simple Λ-like level schemes (Fig. 3.1). The so-called Zeeman configuration
uses degenerate Zeeman levels of the same hyperfine level to act as the ground state of
the Λ-scheme, whereas for the hyperfine configuration, Zeeman states of the two different
ground hyperfine states are used to serve as the ground state levels.

-2 - 1 0 1 2

 D1

5 S1/2

mF

      5 P1/2

F = 1

F = 2

F ′ = 1

F ′ = 2

87Rb

6.835 GHz

Figure 3.1: Rubidium energy level scheme based on D1-line transition. Both hyperfine
(red solid lines) and Zeeman (green solid lines) configuration are used for the creation of
a Λ- scheme.
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A cylindrical 50 mm long, 26 mm wide rubidium glass cells is used, filled with the buffer
gas depending on the experimental requirements. The buffer gas is added to change
from ballistic to diffusion motion, increasing the coherence time by elastic collisions with
the rubidium atoms and simultaneously increasing the interaction time of the traversing
optical fields with the ensemble. The glass cell containing rubidium is placed on an
aluminum holder that supports a long aluminum tube used for heating of the cell (see
Fig. 3.2). In the experiments, the temperature is controllably held in the range between
50°C and 80°C by the application of resistive cartridge heaters (HT15W).

Rubidium cell

Magnetic
shieldingAluminum

tubeHeat
isolation

Cell
 holder

Aluminum
holder

Figure 3.2: Scheme of rubidium atomic vapour apparatus consisting of the rubidium cell,
the aluminum support component, the heating system, and the magnetic shielding. Two
pair of coils producing longitudinal and transversal magnetic fields are placed inside the
magnetic shielding (not shown). Schematic adopted from [65].

A magnetic bias field, which lifts Zeeman degeneracy of the ground state levels, is applied
using coils wounded around the rubidium cell. The apparatus shown in Fig. 3.2 contains
two such coils, one long coil producing the magnetic field parallel with the optical axis
and a pair of coils producing transversal magnetic field. For these two coils, the following
relation between the achieved value of the Zeeman spitting ∆ν and the applied current
I is obtained experimentally, for the longitudinal coil ∆ν‖(I) = 8.32 kHz/mA · I and for
the transversal coil ∆ν⊥(I) = 0.75 kHz/mA · I. In order to protect the atomic system
from the influence of any stray magnetic fields, a µ-metal shielding is necessary. For this,
a double layer µ-metal shield encloses the rubidium cell.

3.2 Preparation of the optical fields

In order to obtain a coherent superposition of the ground state levels of the atomic
system, a coherent electromagnetic excitation of the atomic medium is required. The
dark states, created in the three level Λ-scheme in the alkali atoms, require two coherent
optical fields, the control and the signal field. For a source of coherent optical light fields,
self-built external cavity diode lasers (ECDL) in a so-called Littrow configuration [66]
(see Fig. 3.3) are used. Two different laser diode types - QPhotonics QLD-795-150S;
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Figure 3.3: Sketch of the external cavity diode laser in Littrow configuration.

Toptica DL-0800-0100-1 - were experimentally available. With the use of extended cavities
and a grating to select the desired mode, the comparatively large linewidth of the free
running diode laser is reduced to about 1 MHz and single mode operation of the laser is
ensured. The external cavity here consists of the diffraction grating and one end facet of
the laser diode. The blaze angle of the grating is chosen in such a way to reflect the -1
order back into the diode and to subsequently optically seed the gain medium amplifying
at the frequency of the injected light. The zeroth reflection order is coupled out and
subsequently used in the experimental apparatus.

The output frequency of the laser can be scanned by modifying the length of the external
cavity by changing the grating position with the piezoelectric transducer mounted on the
grating itself. In this way, laser frequency tunability of several GHz with a bandwidth
of several kHz can be achieved. Since temperature changes of the laser diode cause slow
drifts of the laser frequency, the temperature has to be actively controlled and monitored
by a Peltier element and a temperature sensor (IC AD590).

In the experiments, the used ECDLs are tuned to the rubidium D1-line near 795 nm
wavelength. Rubidium atomic vapour is used as the optical medium in the experi-
ments conducted in the framework of this thesis. The lasers are actively stabilized
on the hyperfine transitions in 87Rb, typically on the 5S1/2 F = 1→ 5P1/2 F

′ = 1 and
5S1/2 F = 2 → 5P1/2 F

′ = 1 transitions (see Fig. 3.1). The laser frequency stabiliza-
tion technique, used in most of the experiments, is a dichroic atomic vapour laser lock
(DAVLL) procedure [67]. The DAVLL technique, without going into the details, gives a
dispersion-like voltage error signal (black solid line Fig. 3.4) that can be applied to the
piezo stack controlling the grating position through an active feedback PID controller.
The frequency locking point of the laser can be set and continuously scanned around the
atomic resonance frequency in a range of several hundred MHz. To monitor required
hyperfine transitions in 87Rb in parallel with the obtained error signal, a setup allowing
for a Doppler-free saturated absorption spectrum (red solid line Fig. 3.4) is realized.

For the Zeeman configuration (see Fig. 3.1), the same laser source is used for the creation
of the optical control and signal beams. Both the amplitude and the frequency of the
control and the signal fields can readily be controlled by two different acousto-optical
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Figure 3.4: Doppler-free saturation absorption spectrum (red line) and the corresponding
DAVLL error signal (black line). From left to right, absorption resonances with Lamb dips
for 87Rb D1-line hyperfine transitions F = 2→ F ′ = 1 and F = 2→ F ′ = 2 (red line).

modulators (AOMs). The optical fields creating the dark states need to have a constant
phase relationship between each other, which is here easily fulfilled by driving the AOMs
with the same frequency generator.

To use different 87Rb hyperfine levels for the creation of the dark states, two different
diode lasers are needed since the hyperfine splitting between the levels 5S1/2 F = 1 and
5S1/2 F = 2 is 6.834 GHz. Also, a phase lock between the two separate diode lasers has to
be achieved, which is realized by an optical phase locked loop (OPLL), where a reference
oscillator (a master laser) forces a local oscillator (a slave laser) to track its phase and
frequency, maintaining a constant phase relation (Fig. 3.5). The master laser itself is
frequency stabilized by the DAVLL technique.

SLAVE

MASTER

Lead-lag
fillter

6.8 GHz

LO 2
50 MHz

P
F
D

error
signal

to
experiment

to Piezo

PID
controller

to FET

PD LO1

Optical setup Electronic circuit board

Figure 3.5: Diagram of the optical phase locked loop. In the optical setup (left-hand
side), the AC component of the beat signal between master and slave laser is passed from
the photodiode (PD) to the electronic part of the feedback (right-hand side). There it
is shifted to 50 MHz and connected together with a stable local oscillator (LO) to phase
frequency detector (PFD), which gives an error signal proportional to the phase difference
of two inputs. The error signal is then fed back to the slave laser.
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Firstly, the portion of the master and slave laser light is interfered and detected on a fast
photodiode (Hamamatsu G4176), producing a beat signal near the frequency of the afore-
mentioned hyperfine splitting. Later, the beat note signal is shifted down with a frequency
mixer to approximately 50 MHz and together with another reference oscillator operating
at 50 MHz connected on the inputs of a phase frequency detector (PFD) [68,69]. The PFD
contains both an analog and digital phase and frequency detector combining advantages
of both techniques. The analog detector inside the PFD corrects the phase deviations
in the range between −π and π, whereas the digital detector counteracts higher phase
deviations bringing them back in the operating range of the analog detector. Ideally, the
PFD produces an error signal changing linearly with the phase shift. The low frequency
components of the error signal are sent to the piezo stack modulating the ECDL’s grating
position. In parallel, the fast frequency components are fed to the diode laser injection
current through a modulation circuit. Before being sent to the injection current modula-
tion stage, high frequency error components are corrected for the phase drifts by lead-lag
filter. These phase drifts stem from a time delay ∆t of signal propagation through both
optical and electrical components and for high frequencies, they are very critical since the
acquired phase difference becomes ∆φ = ω∆t.

With the applied OPLL, a typical phase lock beat spectrum between the master and
the slave laser is recorded on the spectrum analyzer (Fig. 3.6). A narrow peak at the
frequency of the hyperfine splitting of 6.835 GHz is observed, together with two servo
bumps approximately 1 MHz away from the central peak. From the observed spectrum,
one can calculate the percentage η of the total power contained in the carrier (in this case

6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840
−95

−90

−85

−80

−75

−70

−65

−60

−55

−50

−45

P
ow

er
 s

pe
ct

ra
l d

en
si

ty
 (

dB
m

/H
z)

Frequency (MHz)

Figure 3.6: Beat signal between two diode lasers with active optical phase lock loop,
recorded on a spectrum analyzer. A typical narrow peak at the frequency of the hyperfine
splitting is clearly observable. The bandwidth of the feedback loop can be deduced from
servo-bumps that lay approximately 1 MHz away from the narrow peak.
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approximately 90 %) and from that also the rms phase error σφ as [70,71]:

σφ =
√
−ln(η) = (18.2± 1.0)°, (3.1)

which is comparable with the values previously reported in quantum optics experiments
[72].

3.3 The optical setup

The choice of the atomic level configuration, besides imposing conditions on the number
and the design of the stabilization of the optical sources, requires also careful planning
of the optical setup. In this section, only a brief overview of the dark state experiment
in the Λ-scheme is given (see Fig. 3.7). The Λ-scheme is realized in the Zeeman level
configuration.
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Figure 3.7: Scheme of the optical setup used in the EIT experiment in Λ-configuration.
BS stands for beam splitter, PBS for polarizing beam splitter, and AOM for acousto-optic
modulator. λ/2 indicates a half-wave plate, and λ/4 a quarter-wave plate.
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After leaving the external cavity diode laser and passing through the Faraday isolator,
which prevents potentially harmful reflections going back into the diode laser, a small
fraction of the laser power is taken for the laser stabilization setup and the rest of it
is coupled to the experimental optical setup. To produce the two optical fields, the
control and the signal laser beam, the initial laser beam is split into the two parts with
the use of a λ/2-wave plate and a polarizing beam splitter (PBS). Each of these two
linearly polarized laser beams is then focused on acousto-optic modulators (models used:
Crystal Technology AOM 3200-121 and Gooch & Housego R23080-2-LTD) allowing for the
separate control of the amplitude and the frequency of the optical beams. The light fields,
after being collimated, are then overlapped on the PBS and coupled into the polarization
maintaining single mode fiber leading to their spatial mode matching. The control and the
signal beam leaving the optical fiber are expanded to typically 5 mm beam diameter and
with a λ/4-wave plate transformed into the σ+ and σ− polarized light fields. Such collinear
laser beams are then passed through the rubidium vapour apparatus. Afterwards, both
beams are converted into initial linear polarizations with another λ/4-wave plate. Linearly
polarized control and signal beams can now be separated with a PBS, after which the
signal beam is detected on a photo-diode.

In order to secure resonant excitation of the medium by the applied optical fields, the
frequency of the light field in the frequency stabilization setup is additionally shifted
with the acousto-optic modulator for the same amount as the optical fields used in the
experimental setup.

3.4 Detection

The typical analysis of the light fields leaving the rubidium cell consists of the detection
of the transmitted light intensity with a photodiode (Perkin Elmer FFD 100) and ob-
serving the corresponding detection signal on the oscilloscope. Besides this method, the
experimental analysis relies also on the detection of a beat note signal with a fast pho-
todiode. In general, the beat note stems from the interference of the two co-propagating
light fields that are impinging on the photodiode. For example, two experimentally used
optical signal fields ES1 = ES10e

ωS1t and ES2 = ES20e
ωS2t create a photodiode output signal

proportional to |E2
S1 + E2

S2|. The recorded intensity I then has the following form:

I ∝ |ES1|2 + |ES2|2 + 2|ES1ES2| cos(∆ωt). (3.2)

In this way, a signal is detected, whose AC component is proportional to the frequency
difference ∆ω of the two signal fields, which can later be studied. The optical setup allows
also for a beat note between the zeroth AOM order and the optical signal fields to be
observed by heterodyne beat detection (Fig. 3.8). From this, a signal proportional to the
amplitudes ES1,2 of the signal field is obtained, which can be frequency separated and
monitored independently.
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Figure 3.8: Scheme of the heterodyne beat detection setup. The measured signal is
proportional to the amplitudes ES1,2 of two signal fields. The polarizations of the zeroth
AOM order and the signal field are first projected onto each other. Mode matching of the
two fields is achieved by coupling them into the single mode fiber and subsequently, they
are detected on a fast photodiode. The same beat detection setup is used for the optical
phase lock loop.

3.5 Characterization measurements

The coherent effects studied in the framework of this thesis, particularly the ones studied
in chapters 4 and 5, rely on the existence of the electromagnetically induced transparency
and the phenomena closely related to it, like slow light and storage of light effects. In the
following subsections, typical results for the EIT and slow/stored light experiments are
shown and used to characterize the experimental system.

3.5.1 Measurements of electromagnetically induced transparency

The well-known electromagnetically induced transparency was originally observed in 1991
in strontium atoms [19]. In the following, measurements of EIT resonances are described,
as a first step towards the later discussed experiments, recorded for two different atomic
level configurations.

Firstly, the Λ-scheme realized in the hyperfine configuration is considered, for which the
two phase locked lasers are needed to generate the optical couplings. One of the lasers,
producing the optical control field, is tuned to the optical transition 5S1/2 F = 2 →
5P1/2 F

′ = 1, whereas the laser that produces the optical signal field, couples the transi-
tion between the 5S1/2 F = 1 and 5P1/2 F

′ = 1 hyperfine states. The control field and the
signal field are σ+ and σ− polarized, respectively and after their interaction with the rubid-
ium atoms in the buffer gas cell, only the transmission of the signal beam is detected on the
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photodiode. The frequency of the signal field is scanned in order to observe the EIT res-
onance, exhibiting maximal transparency at the zero frequency detuning (Fig. 3.9). This
resonance is achieved in the Λ-scheme that involves the two-photon transition between
the states |F = 2,mF = −1〉 and |F = 1,mF = 1〉 and is in the first order insensitive
to variations in the magnetic bias field. Another EIT resonance, not shown here, can
be realized for the following two-photon transition |F = 2,mF = −2〉 ↔ |F = 1,mF = 0〉
that is magnetic field sensitive (see Fig. 3.1). The frequency difference between the mag-
netically nonsensitive and sensitive resonances respectively is here used to calculate the
applied magnetic field and calibrate the bias field coils. The width of the EIT resonance,
shown in Fig. 3.9, is obtained from the fit of the Lorentzian function to the measured data
points and is calculated to be 13 kHz. The data set is taken for the Rabi frequencies of the
control and signal fields of ΩC = 1.87 MHz and ΩS = 0.65 MHz, respectively (calculated
for the respective optical powers of PC = 500 µW and PS = 180 µW in a beam diameter
of 5 mm). The temperature of the rubidium gas cell was held at 80°C.
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Figure 3.9: Electromagnetically induced transparency measured in hyperfine configuration
as a function of the detuning of the signal field. The FWHM is approximately 13 kHz.

The EIT measurements are also performed for the Λ-scheme in the Zeeman configuration
using the optical setup described in the section 3.3. The diode laser, that provides the
optical control and signal fields, is locked on the 5S1/2 F = 2 → 5P1/2 F

′ = 1 hyperfine
transition, and the optical fields are coupled with the corresponding Zeeman ground
sublevels to form the Λ-interaction scheme. The EIT resonance (Fig. 3.10) is taken for
2 mm laser beam diameter and the Rabi frequencies of the optical control and signal beams
of approximately ΩC = 3.5 MHz and ΩS = 1.8 MHz. For this measurements, a rubidium
cell without buffer gas is used, heated up to 75°C, where the atomic motion is entirely
ballistic and the atomic coherence depends on the time that atoms need to pass the laser
beam. Since the atoms lose their ground state coherence in collisions with the cell walls,
the EIT resonance width in the vacuum Rb cells is broader than the width measured
in the buffer gas cells. The width of the resonance shown in Fig. 3.10 is approximately
55 kHz.

The dependency of the EIT width on the control beam optical power is also recorded,
from which one can determine the decoherence rate of the system [73]. Main decoherence
mechanisms of the experimentally used system can be attributed to atom-atom and atom-
wall collisions, to finite interaction time of atoms with the laser beam, and to magnetic
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Figure 3.10: Electromagnetically induced transparency signal meversus detuning of the
signal field, measured in Zeeman configuration. The FWHM of the dark resonance is
approximately 55 kHz.

field inhomogeneity. The FWHM of the dark resonance can be calculated from:

FWHM = 2γbc + 4|ΩC|2

2Wd + γa
, (3.3)

where Wd is the width of the Doppler broadened resonance. Since |ΩC|2 is proportional
to the laser beam intensity, it follows from the previous equation Eq. 3.3 that the EIT
linewidth scales linearly with the control beam power, allowing the decoherence rate γbc
to be determined from the linear fit results. The data presented in Fig. 3.11, after being
fitted with the linear function, reveal a decoherence rate of the ground state of 4 kHz.
Consequently, the time scale, on which the coherent dynamics of the system can be stud-
ied, is in the order of milliseconds.
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Figure 3.11: EIT linewidth versus a control beam optical power for six different mea-
surements in Λ configuration.
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3.5.2 Slow light

Slowing of light in EIT medium was first observed in 1999 in a BEC [25] and in hot
rubidium vapour [21, 74]. The basic properties of the slow light effect are described in
chapter 2. To characterize the system, here slow light measurements using both Zeeman
and hyperfine configuration are performed. The experimental conditions for the slow light
measurements are similar to the ones given in the above section except that signal field
pulses have to be created. This is accomplished by sending the time-varying Gaussian
shaped voltage signal to the AOM, which controls the behavior of the signal field, produc-
ing the signal light pulses of Gaussian envelope. The light pulses are then sent through
the heated rubidium cell and recorded on the photo-diode. On their way through the
EIT medium, light pulses acquire a certain time delay, which is determined by comparing
the center of the Gaussian light pulse with the falling edge of the trigger pulse (Fig. 3.12
black line) of the device that creates the time-varying voltage signal. The precise posi-
tion of the center of the Gaussian pulse is obtained from the Gaussian fit of the recorded
data points. For a signal beam pulse of approximately 100 µs duration, and the optical
control and signal beam powers of 240 µW and 70 µW, respectively, the time delay of
4.7 µs is measured for the hyperfine configuration in the rubidium buffer gas cell held at
temperature of 80 °C (Fig. 3.12(a) solid red line).
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Figure 3.12: Slow light pulse for: (a) hyperfine configuration in the rubidium buffer gas
cell, and (b) Zeeman configuration in the rubidium vapour cell with no buffer gas present.
The black vertical lines represent the position of the pulse maximum in the absence of
the rubidium vapour cell in each case.

From the delay time τd and cell length L of 5 cm, the group velocity vgr can easily be
calculated:

vgr = L

τd
, (3.4)

which, for the τd = 4.7µs, corresponds to the group velocity of 11 km s−1.

The signal light pulse is also detected in the Zeeman configuration for the rubidium vapour
cell without the presence of the buffer gas. The cell is heated up to 50 °C and control
and signal beam optical powers are 800 µW and 300 µW respectively. The measured
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time delay of the signal field pulse for such system is approximately 2.2 µs (solid red line
in Fig. 3.12(b)), leading to a group velocity of 23 km s−1. In the formalism of the dark
state polaritons (see section 2.2), measuring the group velocity of the slow signal light
pulse actually means determining the propagating velocity of the dark state polariton.
Knowledge on the exact value of the polartion velocity is of the crucial importance in
later evaluation the experimentally available Aharonov-Casher phase in chapter 5.

3.5.3 Storage of light

A reversible transfer of the photonic quantum state to the collective atomic spin coherences
can be done in a storage of light procedure, by adiabatically reducing the intensity of the
control field to zero. The stored information can later be coherently retrieved by turning
the control field back on. This phenomenon is well-explained in terms of dark state
polaritons [61] and demonstrated for the first time in 2001 in atomic vapour [29]. Here,
the storage of light is achieved experimentally by pulsing the optical fields with the help
of the AOMs. A digital pulse delay generator sends tailored pulses through RF switches
to the AOMs, which in turn control the behavior of the optical fields. The pulse sequence
is repeated continuously with the period of 200 µs (see Fig. 3.13). To store the signal

 control field

 signal field

t

ΩC

ΩS1

τ

200µs

Figure 3.13: Typical experimental pulse sequence for storage of light measurement with
a period of 200 µs. The control and the signal field are simultaneously switched off at the
beginning of the pulse cycle. After the storage time τ , only the control field is switched
back on.

light field, both the control and the signal field pulses are simultaneously turned off for
a certain storage period. After a storage time τ up to 30 µs, only the control field is
switched on, causing the retrieval of the stored light. The signal field is turned on 100 µs
after the start of the storage procedure and together with the control field, kept on until
the end of the whole cycle (Fig. 3.13).

The result of storage of light measurement for a Λ-scheme in a hyperfine configuration
is shown in Fig. 3.14. The optical powers of the control and the signal field are set to
350 µW and 90 µW, respectively. The storage time is 15 µs and the size of the Zeeman
splitting 600 kHz.
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Figure 3.14: Typical signal of storage of light measurement in the hyperfine configuration,
detected on a photodiode. The optical fields are both turned off at t = 0. After the storage
time of 15 µs only the control field is turned back on and the signal field is restored.

The experimental decoherence rate of the system can also be obtained from storage of
light measurements [73], by measuring the intensity of the retrieved light as function
of the duration of storage time. The decoherence rate between the ground states γbc
can be found by fitting the measured data (see Fig. 3.15) with an exponential function
f(t) = a · e−b·t. From the fit parameter b, one can calculate the decoherence rate to be
γbc = b/(2π) = (4.6± 0.4) kHz.
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Figure 3.15: Signal of the retrieved light versus storage time in the hyperfine configura-
tion. The blue dots represent experimental data, while the red line represents a fit. The
error bars show estimated uncertainty of the signal field intensity measurement.
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4 RF-spectroscopy of dark state polaritons

In the formalism of dark state polaritons, the slow/stored light effects in the EIT regime
can be attributed to moving quasiparticles consisting of an atomic and a photonic con-
tribution (Sec. 2.2). Here, the particle-like properties of the DSP are investigated by
aiming to demonstrate the first spectroscopic experiments on dark state quasiparticles.
To this end, a four level tripod interaction scheme in the atomic rubidium vapour is real-
ized, providing quasiparticles with an internal state structure. The tripod configuration is
originally considered in both theoretical [75,76] and experimental work [77,78] regarding
coherent population transfer by stimulated adiabatic Raman passage followed with the
controllable creation of a coherent superposition of two atomic states. This previous work
revealed the existence of two orthogonal, adiabatic and degenerated states for the tripod
level scheme. It was also shown that in such four-level atoms two slowly propagating
optical modes co-exist [79].

The following section gives a theoretical introduction to the properties of dark states in
the tripod scheme accompanied by experimental measurements of the dark resonances.
Later, both experimental and theoretical results of the RF-spectroscopy of the DSPs are
discussed.

4.1 Theoretical and experimental introduction

In this section, a four-level atomic system, as shown in Fig. 4.1., with one spontaneously
decaying electronically excited state |a〉 and three stable ground states |b〉, |c〉, and |d〉 is
considered. The atomic system interacts with three optical fields, two of which represent
the signal fields with their respective Rabi frequencies ΩS1 and ΩS2, and the third field
being the optical control field with the Rabi frequency ΩC. The two signal fields ΩS1 and
ΩS2 couple the excited state |a〉 with the ground states |b〉 and |d〉, respectively, whereas
the control field ΩC couples the transition between the states |c〉 and |a〉 of the tripod
linkage scheme.

∆ab ∆ac

|a〉

|b〉 |c〉 |d〉

∆ad

ΩS1 ΩS2ΩC

Figure 4.1: Simplified tripod-level scheme with one excited state |a〉, coupled with three
ground states |b〉, |c〉, and |d〉 by light fields of Rabi frequencies ΩS1, ΩC, ΩS2.
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The interaction Hamiltonian of the tripod system can be written as:

H(t) = ~
2


0 ΩS1(t) ΩC(t) ΩS2(t)

ΩS1(t) 2∆ab 0 0
ΩC(t) 0 2∆ac 0
ΩS2(t) 0 0 2∆ad

 , (4.1)

where ∆ab, ∆ac, and ∆ad are the one-photon detunings of the optical fields, as denoted
in Fig. 4.1. The adiabatic instantaneous eigenstates of H(t) can be defined for a special
case where all optical fields are resonant with their respective transitions, together with
the condition that the optical signal fields have the same Rabi frequency ΩS(t), and
ΩS(t) � ΩC(t). Two of the eigenstates are degenerate, with no contribution from the
excited state |a〉 and therefore, they are called dark states [75]:

|Φ1(t)〉 = 1√
2
(
|b〉+ |d〉

)
−
√

2
(ΩS(t)

ΩC(t)

)
|c〉 , (4.2)

|Φ2(t)〉 = 1√
2
(
|b〉 − |d〉

)
. (4.3)

The energy of the two dark states here is zero. Further, the two other bright eigenstates
that contain state |a〉 are given as:

ΦB± =
ΩS(t)

(
|b〉+ |d〉

)
+ ΩC(t) |c〉 ± |a〉√

2ΩS
2 + ΩC

2
. (4.4)

For the above conditions, the group velocity of both signal fields [80] can be expressed:

vgr ≈
4~cε0
ωS|µab|2

(
|ΩC|2 + |ΩS|2

)
. (4.5)

Evidently, in the tripod system, two different dark modes with the same group velocity
can exist, which can be treated as a quasiparticle with internal structure.

4.1.1 Quasi-particle picture

To find the polariton representation of the EIT effects in the ensemble of tripod atoms,
one starts by considering two signal beams as quantum fields ÊS1,2(z, t) and the control
beam as a classical field of Rabi frequency ΩC(t) (as defined in Sec. 2.2). For the pulse
propagation of the signal fields through the tripod medium, two assumptions need to be
fulfilled. Firstly, the low-intensity approximation, for which the Rabi frequency of the
quantum signal field is much smaller than the one in the classical case and the number
density of atoms N is much bigger than the number density of photonic excitations n.
Secondly, a slowly-varying amplitude of the Rabi frequencies has to be assumed as well,
i.e. the adiabatic limit. Then the propagation equations of the two quantum signal fields
are [81]: (

∂

∂t
+ c

∂

∂z

)
ÊS1(z, t) ∼= −

g2N

ΩC(t)
∂

∂t

[
ÊS1(z, t)
2ΩC(t) + ÊS2(z, t)

ΩC(t) ρbd

]
(4.6)
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(
∂

∂t
+ c

∂

∂z

)
ÊS2(z, t) ∼= −

g2N

ΩC(t)
∂

∂t

[
ÊS2(z, t)
2ΩC(t) + ÊS1(z, t)

ΩC(t) ρdb

]
, (4.7)

where the symmetry between the propagation of the signal fields ÊS1(z, t) and ÊS2(z, t)
is visible. Also the coupling between the slow signal fields is equal to zero and both fields
propagate through the atomic system independently. Defining a rotation in the space of
variables ÊS1,2 and the atomic spin coherences ρbc,dc, as in expression 2.8, introduces a
new set of quantum fields :

Ψ̂D1,2(z, t) = cos θ(t)ÊS1,2(z, t)− sin θ(t)
√
Nρ̂bc,dc(z, t) (4.8)

Ψ̂B1,2(z, t) = cos θ(t)ÊS1,2(z, t) + sin θ(t)
√
Nρ̂bc,dc(z, t). (4.9)

For the first pair of fields, a plain-wave decomposition Ψ̂D1,2(z, t) = ∑
k Ψ̂D1,2k(t)eikz is

introduced, which reveals bosonic commutation relations between mode operators Ψ̂D1,2k

and Ψ̂†D1,2k’. Consequently, the new fields can be associated with bosonic quasiparticles
[82]. All number states created by Ψ̂†D1,2k are dark states, because they do not contain
the excited state |a〉, for example:

|n〉k = 1√
n!

(Ψ̂†D2k) |0〉 |d1...dN〉 , (4.10)

where |0〉 denotes the photonic state with the number of photons equal to zero or simpler,
the field vacuum. The states |n〉k are also eigenstates of the interaction Hamiltonian H(t)
with the eigenvalue zero. Therefore, the quasi-particles Ψ̂D1,2 are called dark state polari-
tons. A similar procedure is applicable to the fields given in Eq. 4.9, which correspond
to the bright state polaritons. Both of the polaritons Ψ̂D1 and Ψ̂D2 obey the equation of
motion (see Eq. 2.9) and in general, the two component tripod polariton can be written
as:

Ψ̂D(z, t) = αΨ̂D1(z, t) + βΨ̂D2(z, t). (4.11)

The propagation of the two optical signal fields in the tripod medium under EIT conditions
can now be seen as a propagation of a quasi-particle with two internal orthogonal states.
The question is whether it is possible to observe the transition between the internal
states of DSPs by applying a radio-frequency excitation on the tripod ground states and
effectively change the occupation number of the co-existing dark states (Fig. 4.2).

Ψ̂D1

ωRF

Ψ̂D1

Ψ̂D2Ψ̂D2

Figure 4.2: RF spectroscopy of dark state polaritons inducing population transfer between
internal polariton states.
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4.1.2 Experimental setup and basic RF measurements

In the course of the investigation of the radio-frequency switching between the internal
states of DSP, the Zeeman configuration (Fig. 3.1) was initially used, since its experimental
realization is less demanding than the hyperfine configuration. Although the Zeeman
configuration on the rubidium transition 5S1/2 F = 2 → 5P1/2 F ′ = 1 provides an
eight-level tripod-like linked scheme with two orthogonal dark states [83], no transitions
between the polariton substates could be experimentally detected for this configuration.
Theoretical calculations on the RF-spectroscopy of the DSP for the eight-level system,
done by Stephan Hüwe [84] within his master thesis, confirmed this experimental findings
and pointed out the necessity of using the hyperfine configuration for the tripod scheme.
If not stated otherwise, all measurement discussed in this chapter are performed in the
eleven-level system realized in the hyperfine configuration (see Fig. 4.3).

The RF spectroscopy measurements of the dark state polaritons in the hyperfine configu-
ration were performed in a collaboration with the master student Georg Enzian [71]. To
work in the hyperfine configuration, one needs to achieve a phase lock of two diode lasers,
tuned at two different 87Rb hyperfine transitions. The master laser in the OPLL, used
as a source of the optical control beam, is locked at the 5S1/2 F = 2 → 5P1/2 F

′ =
1 transition, whereas the slave laser serves as a signal field source operating at the
5S1/2 F = 1→ 5P1/2 F

′ = 1 transition (Fig. 4.3). Compared to the Λ-scheme, for the

-2 -1 0 1 2

Rb87
 D1

5 S1/2

mF

      5 P1/2

F = 1

F = 2

F ′ = 1
|1〉 |2〉 |3〉

|4〉
|5〉

|6〉
|7〉

|8〉

|9〉 |10〉 |11〉

ωRF
ωRF

ΩS1ΩS2
ΩC

Figure 4.3: 87Rb energy level scheme on the D1-line transition, used for the realization
of the tripod level scheme (orange color). Optical signal fields (red solid lines) with
the Rabi frequencies ΩS1 and ΩS2 couple the F = 1 → F ′ = 1 hyperfine transition,
whereas an optical control field (blue solid line) with the Rabi frequency ΩC couples the
F = 2 → F ′ = 1 hyperfine transition. The green solid lines indicate RF field, which
couples the Zeeman ground states.
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tripod-scheme two signal fields are needed, created here from the same laser source by
simply dividing the laser beam in two paths with a beam splitter. The two optical fields
are afterwards coupled through AOMs to control their frequency and amplitude indepen-
dently.

Creating the tripod linked scheme, as shown in Fig. 4.3, also demanded careful polarization
preparation of the optical couplings, in which the control and one signal field would have a
σ+-polarization, whereas the other signal field would be orthogonally σ− polarized. Hence,
one of the signal beams and the control beam are first overlapped and then projected onto
the same linear polarization with the help of two polarizing beam splitters (PBS). The
remaining signal beam is polarized orthogonally with respect to the other two beams by
overlapping all beams on the second PBS. Such linearly polarized beams are then coupled
into a polarization maintaining fiber to ensure their mode matching and after leaving
the fiber, expanded to a 3 mm beam diameter. Before being sent through the rubidium
vapour apparatus, their polarization is converted into the desired circular polarizations
via a λ/4-wave plate.

In the hyperfine configuration, the Zeeman ground state sublevels |F = 1,mF = −1〉,
|F = 2,mF = −1〉, and |F = 1,mF = 1〉 correspond to the states |b〉, |c〉, and |d〉 of the
tripod model scheme and together with the prepared optical couplings, form the exper-
imentally used tripod-level configuration. In general, additional two-photon transitions
are allowed in this hyperfine configuration, like |F = 2,mF = −2〉 ↔ |F = 1,mF = 0〉 and
|F = 2,mF = 0〉 ↔ |F = 1,mF = 0〉, which are off-resonant in this setup.

Magnetic bias field coils 
in Helmholtz configuration

ωS1,ωS2

rubidium buffer
      gas cell

brass enclosure
heated to ~ 90°C

RF
coils

( , )σ σ+ −

ωC ( )σ+

Signal field
components

Control field

Figure 4.4: Rubidium atomic vapour apparatus used for RF spectroscopy on dark state
polaritons. The glass cell containing a mixture of rubidium vapour and xenon buffer gas
is placed inside brass heated enclosure. RF coils are mounted close to the rubidium cell.
A longitudinal magnetic bias field is created by pair of Helmholtz coils.
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The rubidium atomic vapour apparatus is a modified version of the one presented in
section 3.1. The rubidium cell with xenon buffer gas is placed inside the brass enclosure
(Fig. 4.4), which is heated up to 80 °C with the resistive heaters. To couple the Zeeman
sublevels of the hyperfine ground states, an RF coil is mounted between the heating
enclosure and the gas cell and driven by an RF power amplifier (LZY-22+ Minicircuits),
capable of delivering up to 30W into a 50 Ω load. The impedance of the RF coil, for
the frequency corresponding to the splitting of the Zeeman sublevels, is matched to 50 Ω
resistance. The energy difference between the Zeeman ground state sublevels is typically
set to 1 MHz by a pair of Helmholtz coils, which define the quantization axis in the
longitudinal direction. From the calibration of the magnetic bias field coils, the Zeeman
splitting for the current I up to 1 A can be calculated from the relation ∆νZeeman(I) =
(2.31 ± 0.02)MHz · I/A. The whole rubidium apparatus is covered with the rectangular
shaped, 2 mm thick µ-metal sheet (not shown in Fig. 4.4 for clarity reasons).

In order to successfully observe a transition between the internal polariton components,
it is necessary to distinguish between the two signal fields in the detection procedure
and monitor independently their behavior with the applied RF excitation. This is accom-
plished by detecting the beat note of the two signal fields and the light field from the slave
laser, which is provided by the zeroth order of the AOM. The beat signal is detected on
a fast photo-diode, amplified and observed on a spectrum analyzer. The signal fields are
monitored on separate channels of the spectrum analyzer, which are centered on the field’s
respective AOM modulation frequencies and operated in zero span mode. The resolution
bandwidth of the two channels has to be sufficiently narrow to isolate the beat signal
components, but at the same time has to allow for the observation of the fast processes.
In the experiments, the resolution bandwidth in a range of 100 kHz to 300 kHz is used.
As an example, Fig 4.5. shows storage of light of two signal fields, obtained using the beat
detection procedure and recorded on the spectrum analyzer. One signal field component
is pulsed with 100 µs period and the pulse duration of 100 µs and detected at the beat
frequency of 80 MHz (Fig. 4.5(a)). The other field component, at the beat corresponding
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Figure 4.5: Detected storage of light for heterodyne beat spectroscopy: (a) Storage of the
first signal field component at a beat frequency of 80 MHz, and (b) the second signal field
at 81.2 MHz. The difference between the two beat frequencies corresponds to twice the
Zeeman splitting.
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to the modulation frequency of 81.2 MHz, is irradiated only for 25 µs before being turned
off together with the control field (Fig. 4.5(b)). By comparing the height of the restored
signal fields, it becomes obvious that the signal retrieved at 80 MHz is roughly 10 dBm
higher than the signal retrieved at 81.2 MHz, which is connected with the much shorter
pulse duration of the second signal field (Fig. 4.5(b)). Different interaction times of the
two signal fields with the rubidium atoms are realized to create two dark states with an
initial population difference for the subsequent RF spectroscopy experiment.

The influence of the RF excitation on the EIT resonance is studied by simply monitoring
the intensity of the transmitted signal field on the photo-diode while scanning the fre-
quency of the RF field. This measurement is done in the simple Λ-configuration, with
the signal field frequency kept exactly at the zero two-photon detuning and the Zeeman
splitting set to roughly 600 kHz. The recorded measurement (Fig. 4.6) shows a decrease
in the signal field transmission at the frequency corresponding to the value of a single Zee-
man splitting. This behavior is attributed to the depopulation of the dark state caused
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Figure 4.6: Radio-frequency resonance for EIT conditions. Transparency of the signal
field is reduced at the RF frequency equal to the size of the Zeeman splitting. The optical
control and signal beam powers were set to 300 µW and 130 µW respectively.

by the RF excitation. The experimental Rabi frequency of the RF field, used also in
theoretical considerations, can be found from the RF power broadening of the observed
transmission dip. The measured Rabi frequency of the RF field is determined to be
ΩRF/IRF = (2.6± 0.1) MHz A−1.

4.1.3 Initial theoretical calculations

Before presenting the measurements regarding polariton spectroscopy, the basic properties
of theoretical calculations, performed to complement the experimental findings, should be
noted. In the calculations, the time evolution of the atomic system interacting with the
optical and RF excitation fields is simulated. An eleven-level atomic system is consid-
ered, mimicking the experimentally used 87Rb hyperfine levels subjected to an external
magnetic bias field. All considerations are done in the semi-classical regime (Sec. 2.3),
where the density matrix ρ gives the full description of the system in the time-domain.
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For this, solving the Liouville equation (2.11) for the experimental set of parameters is
the primary goal. The density matrix ρ contains 121 elements, from which the diagonal
and off-diagonal elements give the information about the atomic populations and transi-
tions, respectively. The interaction Hamiltonian H(t) and the relaxation superoperator
Γ, defined in the Eq. 2.11, are represented by 121 × 121 dimensional matrices. The ini-
tially performed simulations in MATLAB, tested whether the theoretical model behaves
as one would expect for different starting conditions. In that sense, the simulation results
regarding the spontaneous decay of the excited state, the RF transfer of the population
between the Zeeman ground states, and storage of light are presented in this subsection.

The time evolution of the system prepared in the excited state |1〉 (for this state nota-
tion see Fig. 4.3) with no couplings present is shown in Fig. 4.7. The time scale in the
calculations is set in the units of the inverse relaxation rate γ. In all simulations, the
decoherence rate G is considered to be equal to 0.0001γ, which is comparable with the
decoherence rate value obtained from the Eq. 3.3.
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Figure 4.7: Spontaneous decay of the excited state |1〉 with the decay rate γ. The
population of the state |1〉 can decay to particular ground states and only the evolution
of their respective diagonal density matrix elements is shown here.

Evidently, for the initial conditions ρ1,1(t = 0) = 1 and ΩC = ΩS1,2 = 0, the excited state
|1〉 decays at the time rate τ = γ−1, as theoretically expected. The black line in Fig. 4.7
represents the trace of the density matrix ρ. As predicted, it is equal to unity during the
time evolution of the system.

The population transfer between the Zeeman states of one hyperfine ground state (Fig. 4.8)
is also simulated by setting the total population into the state |9〉 (ρ9,9(t = 0) = 1) and
introducing the RF coupling BRF of the Zeeman ground states as:

BRF = ΩRF cosωRFt · e−i(BZ+δ)t, (4.12)

where ΩRF is the Rabi frequency of the RF field, ωRF the RF frequency, BZ is the size
of the Zeeman splitting, and δ two-photon detuning. It should be noted, that hyperfine
ground states 5S1/2F = 1 and 5S1/2F = 2 have the same absolute value of the Zeeman
splitting and therefore, the RF field couples the Zeeman states of both hyperfine ground
levels. Compared to the optical couplings, the rotating-wave approximation for the RF
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Figure 4.8: Time evolution of the density matrix element ρ9,9 describing changes in the
population of the state |9〉 for different RF excitation amplitudes. Both the size of the
Zeeman splitting ωZ and RF frequency ωRF are set to γ.

interaction cannot be applied, since the counter-rotating terms are not negligible. Fig. 4.8
shows the simulated population transfer among the Zeeman ground states for different
RF amplitudes.

The storage of light process for the eleven-level system and the optical control and signal
field couplings is modeled as well (blue solid curve in Fig. 4.9). Since the signal field
ΩS1 couples the states |2〉 and |11〉, the time evolution of the imaginary part of the non-
diagonal element ρ2,11 is of interest here. In the beginning, the system is prepared into
the dark state, leading to the vanishing polarization. Then by simultaneous switching off
of the control and signal field, the photonic state of the signal field is mapped on to the
spin coherences for a certain period of time (denoted by vertical black lines in Fig. 4.9).
Turning only the control field on causes the oscillation of the polarization, which leads to
an emission of the signal field light with an intensity depending on the amplitude of the
oscillating polarization.
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Figure 4.9: Simulation of the storage of light process. The Rabi frequencies of the control
and signal fields are ΩC = 2γ and ΩS1 = 0.5γ, respectively. The second signal field is set
to zero intensity (ΩS2 = 0) and the expected polarization on its transition is also equal to
zero (green solid line).
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4.2 Experimental results

4.2.1 Influence of RF excitation on stored light

After the action of the RF field on the dark state in the Λ-configuration has already been
studied and the separation of two signal field components is enabled in the detection
setup, the behavior of the stopped polariton under the influence of the RF excitation can
be investigated. For this measurements, only one signal field component is stored and
the RF field is applied during the storage time (experimental pulse sequence is shown in
Fig. 4.10).

input control pulse readout control pulse 

RF pulse

retrieved signal field 1

τ

t

input signal pulse 1

input signal pulse 2 retrieved signal field 2

ΩRF

ΩC

ΩS1

ΩS2

Figure 4.10: Pulse sequence used for testing influence of RF excitation on stored light.
Only one signal field component is stored, while the RF pulse is applied during the storage
time τ .

The RF field transfers the population trapped in the dark state, here in the Zeeman
substate |F = 1,mF = 1〉, to the Zeeman state |F = 1,mF = −1〉 of the same hyperfine
manifold, causing at same time also the retrieval of the second field component (Fig. 4.10).
Both retrieved signal fields are monitored on the spectrum analyzer at their respective
AOM modulation frequencies.

A typical measurement of the amplitude of the reaccelerated signal fields as a function
of the different RF amplitudes is shown in Fig. 4.11. An RF frequency pulse of a 9 µs
duration length and a 3 µs delay to the falling edge of the optical pulses is irradiated
during the storage time of 15 µs. Obviously, the amplitude of the stored signal field
(orange dots in Fig. 4.11) is reduced under the influence of the RF field, causing the
appearance of the second signal field (blue dots in Fig. 4.11). The frequency of the RF
pulse matches the value of the Zeeman splitting of 1.2 MHz. Optical light powers for the
control and signal field are set to 300 µW and 130 µW. The RF amplitude is considered
in the units of the current applied through the RF coils. Although the experimentally
obtained data show limited contrast (the retrieved amplitude of the second signal field
is by a factor of 25 smaller), the Rabi-like oscillation pattern between two signal field
components is observable.
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Figure 4.11: Retrieved amplitude of the stored signal field components versus the RF
current. Although only one signal field is being stored (orange dots), the RF field induces
the retrieval of the second non-applied signal field (blue dots), causing a Rabi-like oscilla-
tions with a limited contrast between the retrieved signal field components. To compare
the amplitudes of the detected signal fields, the amplitude of the second signal field had
to be magnified by a factor of 25.

A similar oscillatory behavior, again with a limited contrast of the retrieved signal light
is observed for the RF pulses of the different duration lengths (Fig. 4.12). Again, only
one signal field of optical power of 200 µW is stored for 15 µs (orange dots in Fig. 4.12).
As in the previous case, the RF pulse excitation induces the rise of the second signal field
(blue dots in Fig. 4.12).
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Figure 4.12: Retrieved amplitude of the stored signal field components versus the RF
pulse duration. The RF field induces the retrieval of the non-applied signal field (blue
dots), reducing in parallel the amplitude of the originally stored signal field component
(orange dots). The RF current is kept constant at 230 mA and the control field has 500
µW of optical power.

The behavior of the stored light field is further examined by comparing the retrieved
amplitudes of the induced second signal field component for two different RF pulse lengths,
scanning at the same time the RF power (Fig. 4.13). For the same set of the experimental
parameters, the RF pulse of duration of 6 µs (red dots in Fig. 4.13) and 9 µs (blue dots
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Figure 4.13: Amplitude of the retrieved signal field for 6 µs (red dots) and 9 µs (blue dots)
long RF pulse. The measured data points correspond to the population of the RF induced
polariton component as a function of the different RF amplitudes. The oscillation period is
longer for the shorter RF pulse. The error bars correspond to the estimated measurement
uncertainty of the retrieved signal amplitude.

in Fig. 4.13) is applied during the storage time. The increased oscillation period for the 6
µs RF pulse can clearly be observed, which confirms the Rabi-like oscillatory population
transfer despite the limited contrast of the recorded amplitudes.

Moreover, a clear RF resonance is observable when the frequency of the RF field excitation
is scanned during the storage time of 15 µs (Fig. 4.14). A 9 µs long, frequency variable
RF pulse induces the population transfer among Zeeman ground states, which is detected
through the initially non-present, restored second signal field component. Despite of the
very small amplitudes of the RF induced restored light field, it can be concluded from the
measurements performed on the stopped polaritons that distinguishing between the two
polariton components of the tripod DSP is possible.
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Figure 4.14: Radio-frequency resonance, observable as a rise of the amplitude of the
stored light at the frequency of the non-used signal field component. The frequency of
the RF pulse is scanned around the value of the Zeeman splitting of 1.2 MHz, while its
amplitude is fixed at 46 mA.
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4.2.2 RF spectroscopy of moving polaritons

Although the population transfer between the two states of the stationary polariton is
detectable, it cannot be claimed yet that an RF spectroscopy experiment on dark state
polariton has been performed. For stationary polaritons, only the atomic component
of the polariton is present and the RF excitation of the system resembles usual atomic
radio-frequency spectroscopy, where the prepared atomic coherences are manipulated.
Therefore, a transition between the internal states of the moving polariton has to be
realized.

For such an experiment, as in the previous measurements, the amplitude of the restored
light is used to read out the desired information, with a difference that the RF pulse is
irradiated during the presence of the optical control and two signal fields, which ensure
the existence of the slowly moving polariton. Also, the two dark polariton modes are
initially prepared with a certain population difference by applying one of the signal fields
for a shorter period of time (see Fig. 4.15).

input control pulse readout control pulse 

RF pulse

retrieved signal field 1

ΩRF

τ

t

ΩC

input signal pulse 1

input signal pulse 2 retrieved signal field 2

ΩS1

ΩS2

Figure 4.15: Pulsed sequence used in RF spectroscopy of moving polaritons. The RF
field is irradiated during the presence of optical couplings. The duration of the two signal
field pulses is different in order to prepare a population difference between two polariton
components.

The signal fields of the same optical power of 150 µW are stored for 6 µs and afterwards,
resolved in the heterodyne beat detection. The amplitude of the stored signal fields is
recorded on the spectrum analyzer as a function of the applied RF pulse length (see
Fig. 4.16). The initially high-populated internal state of the DSP (red dots in Fig. 4.16)
evidently loses its population with the increased duration of the RF pulse, whereas the
originally low-populated DSP state gains population for longer RF pulses (blue dots in
Fig. 4.16).

A comparable behavior is observable when the frequency of the RF field is varied under
the same experimental conditions. For an RF pulse of duration of a 13 µs and a constant
RF current of 46 mA, a depopulation of the initially high-populated internal state is
measured (red dots in Fig. 4.17). At the same time, a peak in the intensity of the restored
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Figure 4.16: Population transfer for a moving dark state polariton as a function of the RF
pulse duration. Retrieved amplitude of the initially high-populated polariton component
is indicated by red dots, whereas blue dots represent the second polariton component.
The error bars correspond to the estimated measurement uncertainty of the retrieved
signal amplitude.

light was detected for the low-populated second field component (blue dots in Fig. 4.17).
This indicates population transfer between the internal states of the moving polariton, at
the frequency of the Zeeman splitting (1.2 MHz). On the other hand, the contrast of the
experimental data is limited.

So far, all measurements indicate that the representation of the dark state polariton
in the tripod scheme as quasi-particle with the internal state structure is valid. The
additional theoretical confirmation of the experimental findings is desirable and therefore,
the behavior of the eleven-level atomic system subjected to the optical and RF couplings
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Figure 4.17: Amplitude of the retrieved signal fields versus the frequency of the irradiated
fields shows a spectroscopic measurement on moving dark state polaritons. The popula-
tion of one polariton component (red dots) is transfered to the other (blue dots) at the
resonance RF frequency transition. The error bars indicate the estimated measurement
uncertainty of the retrieved signal amplitude.
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Figure 4.18: Calculated amplitude of the retrieved light fields versus frequency of the
RF field. Orange and blue lines denote the amplitudes of the two restored signal fields
corresponding to the mean values of their respective non-diagonal elements.

is simulated. The initial calculation results corresponded well with the expectations (as
explained in Sec. 4.1.3). However, current calculations predict transition between the two
polariton components (blue and orange solid lines in Fig. 4.18) only for the parameters
that are experimentally not available, as the RF Rabi frequency ΩRF, which is several
orders higher than experimentally used one. The amplitude of the stored light is calculated
as the mean value of the absolute imaginary part of the corresponding off-diagonal density
matrix element, after the storage period. Moreover, for the size of the Zeeman splitting
set to BZ = γ, the transition between the two dark states occurs at the RF frequencies
ωRF different from γ (see Fig. 4.18).

This calculation result is obtainable only when the interaction of the RF field with the
hyperfine ground state 5S1/2 F = 2 is considered as a non-existing, for all other cases the
calculations show no transitions between the dark polariton modes. The reason for this
is understood as the RF field being also expected to cause transitions between Zeeman
states of the F = 2 manifold, i.e. not only between the desired Zeeman components of the
F=1 manifold. Due to the complexity of the experimentally used system, more careful
theoretical considerations are needed to achieve better agreement with the measurement
results.

The possibility of achieving the first radio-frequency spectroscopic measurement on a
two level dark state polariton has been considered. The experimental demonstration of a
transition between two internal polariton states would confirm particle-like properties of
this quasi-particles. The two state dark polariton is realized in hot rubidium atoms in a
tripod scheme and probed by an radio-frequency field.

The measurements, performed on both stationary and moving polaritons, give a strong
indication that a population transfer between the internal polariton states is possible.
However, the absolute detectable value of the transfered population is quite small and
requires a reliable optimization of the experimental setup. A theoretical model of the
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experimentally used interaction system simulated well the basic properties of the eleven-
level EIT medium, yet its theoretical predictions regarding the RF-switching between the
two polariton modes do not fully correspond to the experimental findings. Therefore,
further improvements of the theoretical model as well as the experimental apparatus are
desirable.
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5 Aharonov-Casher effect for dark state polaritons

If two charged particles are taken around a solenoid they will experience different influence
of the electromagnetic potential that can be measured as a phase shift between them.
This is the well-know prediction of the Aharonov-Bohm effect [85]. A similar topological
effect considering neutral particles with a finite magnetic dipole moment that exhibit
phase difference after being taken round the line of charge and recombined is called the
Aharonov-Casher (AC) effect [86] (see Fig. 5.1(a)). The main topic of this chapter is a
prospective measurement of Aharonov-Casher effect for dark state polaritons (DSPs).

It was already suggested in earlier work concerning Stern-Gerlach experiment for slow light
[56] that the DSP possesses an effective non-zero magnetic dipole moment ~µ0. However,
two dark polaritons cannot simply be taken round the line of charge and therefore, a
different geometrical configuration is needed. For a detection of the AC effect, it is
equivalent having a beam of neutral particles passing through a homogeneous electrostatic
field ~E in a straight line [87,88], as shown in Fig. 5.1(b), which was already implemented
in the earlier measurements of the AC effect in thallium fluoride molecules [89,90]. Besides
this, the Aharonov-Casher effect was also observed for neutrons [91], calcium and rubidium
atoms [92,93]. More recently, the AC effect was observed in the ring structures fabricated
from quantum wells [94] and for an electron spin in arrays of two-dimensional electron
gas rings [95].
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Figure 5.1: (a) Schematic layout for the interferometric measurement of the Aharonov-
Casher effect. Two neutral particles with a magnetic dipole moment are recombined
after being traversed round a line of charge. (b) Equivalent geometrical scheme for the
detection of Aharonov-Casher effect in a homogeneous electric filed for particles with
opposite magnetic dipole moment.

Extensive work on this topic in our group was done in the framework of Leon Karpas PhD
thesis, yet with no unambiguous answer on the question whether is possible to achieve
the first observation of the topological phase for the quasiparticles [65]. The inconclusive
results asked for a somewhat different experimental approach, which is discussed in the
following subsections. First, a theory for the AC effect for the dark state polaritons is
given, followed by the experimental setup and its scope.
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5.1 Theory of the Aharonov-Casher effect for the DSP

One way of experimentally detecting the AC phase is to coherently split the beam of
neutral particles in two beams, traverse them round a line of charge and after recombining
them, as shown in Fig. 5.1(a), perform the interferometric measurement. The measured
phase difference does not depend on the choice of the path enclosing the line of charge
and it can be defined as:

∆ϕAC = 1
~c2

∮
C
~µ0 × ~E(~r) d~r. (5.1)

If this effect is considered in the rest frame of the particle [96], then the electric field
moves producing a magnetic field according to Lorentz transformation. The energy of the
particle can then be calculated from:

U(~r) = −~µ0 ~B(~r) = − 1
c2~µ0 · (~v × ~E(~r)), (5.2)

where ~v is the velocity of the field. In the laboratory reference frame the moving particle
now gives rise to the electric dipole moment ~p0 and the potential energy of the particle is:

U(~r) = −~p0 ~E(~r) = − 1
c2 (~v × ~µ0) · ~E(~r). (5.3)

By comparing Eq. 5.2 and 5.3, it becomes obvious that the AC phase shift is independent
of the velocity of the particle. In the case of DSPs this conclusion does not hold, which
imposes particular demands in the later realization of the experimental setup. Before the
behavior of the DSP in different reference frames can be analyzed, the effective magnetic
dipole moment for the DSP shoud be introduced. It was pointed out by Karpa [56, 65]
that the effective magnetic dipole moment of the DSP can be derived from the difference
of the spin expectation values ŜZ of one-polariton state and the polariton vacuum in a
following way:

~µpol = ~exµB
(
p〈1|ŜZ |1〉p − p〈0|ŜZ |0〉p

)
= ~ex∆mFgFµB sin2(θ),

(5.4)

where ~ex presents the unity vector of the quantization axis, gF the hyperfine g-factor equal
to 1/2 for the used 87Rb transition, and sin(θ) is the mixing angle defined in the Eq. 2.8.
For a tripod-level scheme, in the case where vgr � c and sin2(θ) ≈ 1, two orthogonal
components of the dark states have magnetic dipole moment µpol = ±1

2∆mFµB. Now, in
the rest frame of the DSP, atoms move with the velocity −~vgr and acquire besides the
magnetic dipole moment also the electric dipole moment. In DSP reference frame the
electric dipole moment of DSP is:

~ppol = −1
c

(~vgr × ~µpol), (5.5)

Also, in the rest frame of the polariton, the electrical field moves creating the magnetic
field ~B(~r) = − 1

c2~vgr × ~E(~r). From the previous expressions the potential energy of the
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polariton can be calculated:

U(~r) = −~µpol ~B(~r)− ~ppol ~E(~r)

= −1
c
~µpol · (~vgr × ~E(~r)) + 1

c
(~vgr × ~µpol) · ~E(~r) = 0.

(5.6)

Evidently, for the non-moving medium contributions from the magnetic and electric
dipole moments neutralize themselves in the electrostatic field leading to the non-existing
Aharonov-Casher phase. This implies that the spin component of the DSP has to be
moving to detect the AC phase.

In the case where atoms of the ensemble move with the velocity ~vat = −~vgr, the rest frame
of DSP and the laboratory frame would coincide and the polariton potential energy would
in turn become U(~r) = −~ppol ~E(~r). The acquired phase difference is then:

∆ϕ(−~vgr) = 1
~

∫
U(~r) dt = 1

~c2

∫
(~vgr × ~µpol) · ~E(~r) dt

= 1
~c2

∮
C

(
~µpol × ~E(~r)

)
· d~r,

(5.7)

which is identical to the Eq. 5.1. This proves that in order to detect Aharonov-Casher
phase for DSP, it is necessary to work with a moving medium.

The expected phase difference between the signal fields traversing the glass cell of the
length L, placed in the homogeneous electric field ~E, can be defined as [97]:

|∆ϕAC | =
1
~c2µB| ~E|L

(vat
vgr

)
, (5.8)

where factor
(
vat
vg

)
is added to account for the general case of the atoms moving with the

velocity different from the velocity of the polations.
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5.2 Experimental setup for the Aharonov-Casher effect

As mentioned earlier, the geometrical configuration used in a search for the AC phase
differs from the one proposed originally by Aharonov and Casher (see Fig. 5.1(b)). This
approach requires particles with the linear superposition of antiparallel magnetic dipole
moments, which is here realized in the tripod-level configuration (Fig. 5.2) by creating a
quasiparticle with two orthogonal internal states (see section 4.1). After passing through
the homogeneous electric field (Fig. 5.1(b)), the dark polaritons should acquire certain
phase difference that is imprinted on the signal fields ΩS1 and ΩS2. Since optical signal
fields carry the phase information, a detection of their phase is going to be here the main
measurement tool.

|a〉

|b〉 |c〉 |d〉

ΩS1 ΩS2ΩC

Figure 5.2: Simplified tripod level scheme consisting of three ground states |b〉, |c〉, |d〉
coupled to excited state |a〉 with optical fields ΩS1, ΩC, and ΩS2.

Nevertheless, an important issue has to be solved first concerning the design of the AC
experimental setup. Namely, the setup has to allow for the existence of the moving
medium. Since hot atomic rubidium gas is used as a working medium, one cannot move
the atoms in a particular direction to achieve the desired medium velocity. Thus, a way
to select particular atomic velocity classes that are close to the polariton group velocity
~vgr has to be found. One possible way of choosing a different atomic velocity class is
to simultaneously vary the one-photon detuning ∆ of all participating optical couplings
and select the atoms with the velocity vat = ∆

νC
c. This is the method applied in [65],

with the downside that detunings of only several tens of MHz were achievable, limiting
the selectivity of the velocity classes to ± 50 m/s. For larger detunings, one would leave
the EIT transparency window and consequently, the dark resonances would vanish. In
the framework of this thesis, different approaches were investigated in order to achieve
selectivity of the velocity classes. One of the first ideas was to select velocity classes by
working in the EIT environment with counterpropagating control and signal beams [98].
Although the control beam with several tens of mW of optical power generated by tapered
amplifier was applied, the EIT operating conditions could not be reached and this method
was abandoned.

The selectivity of the atomic velocity classes is obtained eventually by adding a repumping
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Figure 5.3: Experimentally used energy level scheme on rubidium D1 transition. The
tripod-level scheme is realized with the σ+-polarization component of the signal field 1
(green solid lines), the π-polarized control field (blue solid lines), and the σ−-polarization
component of the signal field 2 (orange solid lines). The dashed orange and green lines
represent the off-resonant components of the two signal fields.

laser beam to a tripod-level scheme. For the experimental realization of the tripod-level
scheme, transition 5S1/2 F = 2 → 5P1/2 F ′ = 1 is used (see Fig. 5.3). Adding the
repumping beam on the hyperfine transition 5S1/2 F = 1 → 5P1/2 F

′ = 2 increases the
number of atoms of a particular velocity class, which interact with the laser fields without
increasing the atomic density (Fig. 5.4(a)). The black solid line in Fig. 5.4(a) shows the
transmission of the signal field without the presence of the repumper beam. In the system
with the laser repumper, the group velocity of a slow light pulse and the EIT linewidth
are reduced with the trade-off of a diminished EIT contrast [99]. Without repumping
the signal light pulse is slowed down to approximately 22 kms−1 (blue line Fig. 5.4(b)),
whereas with the repumper the group velocity becomes 16 kms−1 (orange line Fig. 5.4(b)).
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Figure 5.4: (a) Transmission of the signal field without the repumper beam (black solid
line) and with the repumper beam frequency locked at different positions. (b) The time
delay of a slow light pulse is increased with repumping from 2.2 µs (blue line) to 3 µs
(orange line).
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With more available repumped atoms the transmission drops and therefore the operating
temperature of the rubidium apparatus is set to 50°C.

The rubidium atomic vapour apparatus and the optical setup differ in several points from
the setup described in the subsections 3.3 and 3.1. Firstly, due to the constant change of
the atomic impulse in the rubidium buffer gas cells and therefore the lack of the ability
to select distinct velocity class, one needs to work with the glass cells filled only with
rubidium, i.e. no buffer gas can be used. The rubidium cell needed to be placed inside the
electrostatic field in such a way, that the relation (~µpol× ~E(~r))·d~r = (~µpol× ~E(~r))·~vgrdt 6= 0
is satisfied, realizing that the maximal measurable phase difference is accomplished when
the vectors ~µpol, ~E and ~vgr are orthogonal to each other. This is done by placing the cell
between two aluminum plates mimicking the plate capacitor (Fig. 5.5). To each aluminum
plate a voltage up to ± 8 kV is applied using a high voltage power supply (Heinziger PNC
10000 - 20).
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-
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Figure 5.5: Scheme of the experimental setup used for investigating the Aharonov-Casher
effect for dark state polaritons. Co-propagating optical fields traverse the rubidium cell,
which is placed inside a capacitor. A pair of coils produces a transversal magnetic bias
field.

The π-polarized optical control field, together with the two signal fields, forms the tripod-
like level scheme in the Zeeman configuration (see Fig. 5.3). To prepare two optical signal
fields ωS1 and ωS2 for the tripod interaction scheme, the same acousto-optic modulator is
driven with two different carrier frequencies. In this way, the optical signal beam contains
two frequency components, shifted for the corresponding value of the Zeeman splitting
±∆ω = gFµBB0. The signal beam is polarized orthogonally to the applied transversal
magnetic bias field ~B0 and its polarization can bee seen as a linear combination of two
orthogonal circular polarizations σ+ and σ−. With the right choice of the modulation
frequencies, only the σ+ component of the signal field with the frequency ωS1 is resonant
with the tripod-level scheme (green solid lines in Fig. 5.3). Correspondingly, only the σ−
component of the signal field with the frequency ωS2 is resonant with the created level
scheme (orange solid lines in Fig. 5.3).

Obviously, both signal fields possess non-resonant polarization components. The resonant
components of the signal fields participate in the creation of the DSP with two internal
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dark states, whereas the off-resonant components become absorbed by the medium. This
non-resonant interaction contributes to the rise of decoherence processes and to the de-
crease of the EIT contrast. It has to be noted here that for this, the atoms are prepared
in a state that strictly speaking cannot be called a pure dark state. In order to strongly
suppress the influence of the off-resonant mechanisms one could work with the higher op-
tical densities by increasing the temperature of the rubidium system. Unfortunately, this
is not applicable here, due to the usage of the repumping as an atomic velocity selection
tool and the accompanying vanishing of the EIT resonances for the high temperatures.

The experimental setup presented here, compared with the one used in [65], enables
the selection of the atomic velocity classes across the whole Doppler broadened profile
without detuning any of the optical couplings contributing to the creation of the dark
state polaritons. Also the magnetic field defining the quantization axis in the system is
produced with the help of the low noise current source and the available intensity of the
electric field is increased several times.

5.3 Detection of the Aharonov-Casher effect

In the detection of the phase difference between two signal fields and with that the
Aharonov-Casher phase, a beat note detection procedure is used (Sec. 3.4). Two different
methods are available experimentally, a detection of the absolute and the relative optical
phase. With the heterodyne beat detection, two signal fields ωS1 and ωS2 can be iso-
lated in the frequency space and then their absolute phases can be compared on a phase
detector (PD). To this end, a home-build spectrum analyzer is constructed (Fig. 5.6),
whose output is fed to the phase detector and then averaged on a lock-in amplifier. The
drawback of this method is that the noise of the reference oscillator (here the zeroth AOM
order) obviously influences the final sensitivity of the phase measurement. This can be
avoided in the relative phase detection, where the phase of the beat note between the
two signal fields is compared with the phase of a stable reference oscillating on the beat
frequency. However, for this method one cannot gauge the local oscillator.

Several fingerprints are expected in the experimental AC phase detection. For instance,
to prove the existence of the Aharonov-Casher effect for the DSP, one needs to show the
linear dependence of the measured phase difference with the applied electric field according
to the relation 5.8. It is also expected that the AC phase changes its sign for the atomic
velocity classes of the opposite sign. Hence, scanning of the repumper frequency across
the Doppler profile should give the linear behavior of the AC phase with the velocity of the
atoms. For the experimentally available parameters, the maximal achievable Aharonov-
Casher phase delay can be estimated from the Eq. 5.8. In the atomic ensemble heated
to 50°C, the group velocity of 15 km/s can be achieved and the maximal experimentally
observable phase difference can then be estimated to be ∆ϕAC ≈ 2× 10−5 rad.

The absolute phase detection method makes use of the beating between the signal fields
ωS1 and ωS2 and the unmodulated beam passing through the AOM used for the creation of
the signal fields. The beat note signal obtained on a fast photodiode contains modulation
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Figure 5.6: Block diagram of absolute phase detection of a single field. The detected beat
signal is sent to the RF mixer, after being split in two parts. A local oscillator is used to
mix down only one signal field component to the operating frequency of the narrow SAW
filter. The signal is then actively stabilized and passed to phase detector.

frequencies of the two signal fields at 196.5 MHz and 199.5 MHz. Their difference of 3 MHz
is chosen to match the double value of the corresponding Zeeman splitting. The RF signal
is then isolated with a bias tee and after being amplified (Mini-Circuits ZFL-500LN), split
in two parts on an RF power spitter (ZSC-2-1+) (see Fig. 5.6). The two outputs are fed to
an RF input of separate RF mixers in order to shift the beat frequencies of the two signal
fields to the same intermediate frequency of 70 MHz. Both signals are then passed through
narrow bandpass filters with a FWHM of 30 kHz (Tai-Saw Technology TB0505). Since
the evaluated AC phase is very small and the output of the PD sensitive on the signal
power changes, the RF power of each branch has to be actively stabilized by feeding the
signal to a voltage variable attenuator (VVA) and controlling its output (Fig. 5.7(a)). For
example, the influence on the PD output of an amplitude modulation of 1% of one of the
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Figure 5.7: (a) Intensity fluctuations of the RF signal with (orange line) and without
(green line) active RF power stabilization. (b) Intensity fluctuations of the phase detector
output for a 1% amplitude modulation (red line) and a 1° phase modulation (blue line)
of the signal field.
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signal fields (red line Fig. 5.7(b)) is comparable to the 1° phase modulation of the signal
field (blue line Fig. 5.7(b)), with both modulations performed by frequency generator.
Hence, part of the RF power is detected on an RF power detector (ZX47-60+) and from
it passed to the PI-controller that modulates the output of the VVA (ZX73-2500). Such
signals are then amplified and its phases are compared on the phase detector.

In both absolute and relative phase detection, two types of the phase detectors are used
(Mini-Circuits ZRPD and Analog Devices AD-8302). Their DC output is filtered out and
detected with the lock-in amplifier (Signal Recovery DSP 7265). The lock-in amplifier
averages only the frequency components of the input signal that match its reference
oscillator, which here corresponds to the switching of the polarity of the high voltage
applied to the aluminum plates at the frequency fHV = 200 Hz. The polarity on the
capacitor plates is exchanged with the rectangular pulses fed to the high voltage switch
(Behlke HTS 151-03-GSM) ensuring that for the duration of the pulse, plates have high
voltage of a different sign.

Calibration measurements with two different phase detection methods are performed and
compared. The calibration measurements for the relative phase detection, where only
the beat note signal is compared with the reference signal without the EIT conditions,
reveal the phase resolution of the 10−5 rad. Although this represents the necessary phase
resolution for the measurement of the estimated AC phase, coupling the control and
the repumper beam into the system introduces substantial intensity fluctuations in the
detected signal reducing the signal-to-noise ratio. Therefore, no measurable phase changes
are observable, either for the scan of the repumper frequency or for the scan of the electric
field. For the comparison of the absolute phases of the two separate signal fields, the
phase of one of them is modulated with the function generator. The detected signal on
the lock-in amplifier corresponded to the phase sensitivity of only 10−4 rad. Despite the
previously described efforts to increase the stability of the system and the usage of a linear
current supply for all electronic devices, the intensity-to-phase noise conversion could not
be reduced. For both detection methods, the separation of the optical control and the
repumper fields from the signal fields before their detection on the photo-diode could
increase the signal-to-noise ratio. It should be noted that with the careful optimization
of the detection setup and the lock-in amplifier averaging, the detected phase changes are
well below the operating threshold of the phase detectors.

Nevertheless, the calibration measurements set the upper boundary on the Aharonov-
Casher phase for the dark state polaritons in the ensemble of the hot rubidium atoms.
Following the calibration results, one can conclude that for the measurement of the AC
phase the relative phase detection method is more favorable since it counteracts for the
systematic phase noise disturbances.
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The particle-like properties of the dark state polaritons have been investigated, particu-
larly the behavior of the attributed effective magnetic dipole moment of the DSP in the
presence of the homogeneous electric field. More precisely, the experimental evidence of
the existence of the Aharonov-Casher phase effect for the polariton systems is searched
for. The results, coming from the calibration measurements, determine the upper bound-
ary for the experimentally detectable AC phase difference for the atomic rubidium gas
system.

The experimental setup and the detection system give a method of determining the phase
difference between two optical fields with the sensitivity of 10−5 rad, which is comparable
to previous work [65]. Another possible way of detecting such phase delays could be
achieved with a polarimetry measurements based on auto-balanced photodetection. Since
the experimentally used interaction scheme does not provide the existence of the pure
dark states, using the hyperfine level configuration with the two phase locked lasers in
the future investigations of the AC phase for DSP is advisable.
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6 Resonance Retrieval of Stored Coherence

In the following sections of this chapter, the eigenfrequency of the retrieved atomic coher-
ence following initial storage of coherence is examined, inspired by light storage experi-
ments in dark state media [29]. In previous works using light storage it was demonstrated
that the difference frequency of the regenerated signal beam to the control beam used for
storage oscillated at an atomic eigenfrequency [100, 101]. Apart from the described EIT
systems, it is well known that atomic ground state coherences can be created also in an
optical-radiofrequency double resonance configuration [102]. Here, a resonance retrieval
of atomic coherence in an optical-radiofrequency double resonance experiment is going
to be demonstrated. The experiment uses an atomic three-level system, and the setup
is based on hot atomic rubidium vapour used for the storage. After the retrieval of the
stored coherence, a beating that matches the energy difference between the two ground
levels was observed. Within the experimental uncertainty, the observed beat frequency is
insensitive to a wide range of variations of both the drive frequency ωRF and the amplitude
of the radiofrequency (RF) field. The observed effect is robust with respect to variations
of the Rabi frequencies of both optical control and RF fields.

6.1 Theoretical and experimental results

For a simple model of the experimental method, an ensemble of three-level atoms is
considered (as depicted in Fig. 6.1) with two stable ground states |g1〉, |g2〉 and one
electronically excited state |e〉, which is spontaneously decaying. The transition between
the states |g2〉 and |e〉 is coupled coherently via the optical control laser field with Rabi
frequency ΩC, while the RF field at frequency ωRF couples the ground levels |g1〉 and
|g2〉. Without the presence of the RF coupling, the system is pumped into the ground
state |g1〉. Adding of the RF field coupling creates a coherence among ground levels and
together with the simultaneous driving of the optical transition induces coherence between
levels |g1〉 and |e〉, that in turn produces a coherent optical signal field collinear with the
control laser beam. During the RF excitation of the system, the generated signal field
beats with the transmitted laser field at the frequency ωbeat = ωS − ωC = ωRF. After the
simultaneous switching off of the optical and RF excitation fields, and the later resonant
retrieval of the stored coherence, the retrieved light beats at the difference frequency of
the ground state levels ωbeat = ωS − ωC = ωg1e − ωg2e.

In the experimental apparatus (see Fig. 6.2), a grating stabilized diode laser is used as
a source of the optical control beam. The diode laser is locked with dichroic atomic
vapor laser lock procedure to the 5S1/2 F = 1 → 5P1/2 F

′ = 1 (see Fig. 6.3) hyperfine
component of the rubidium D1 line near 795 nm. Its emission passes an acousto-optic
modulator, is spatially filtered by a fiber, and then with linear polarization sent to a
magnetically shielded 50 mm long rubidium buffer gas cell (see Sec. 3.1). The cell itself
contains 1 Torr of xenon buffer gas and is heated up to 80°C, resulting in a rubidium
atom number density of around 1012cm−3. To lift the degeneracy of the Zeeman sublevels
of the F = 1 ground state, a magnetic bias field is applied in a direction parallel to the
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ωRF

Emitted
signal
field

Contol
 field

|g1〉 |g2〉

|e〉

ωS
ΩC , ωC

Figure 6.1: Simplified three-level scheme used for resonant retrieval of stored coherence.
The levels |g2〉 and |e〉 are coupled by a control field with the Rabi frequency ΩC, while
a RF field at frequency ωRF couples the ground levels |g1〉 and |g2〉. After storage of the
ground state coherence, an optical signal field can be generated with the difference of the
optical fields oscillating at the (Raman) transition frequency between ground states |g1〉
and |g2〉.

control beam polarization.

The splitting between the adjacent Zeeman sublevels of the ground state is gFµBB,
where µB is the Bohr magneton, and the hyperfine gF factor equals 1/2. In the ex-
perimentally used level scheme, the ground state sublevels |F = 1,mF = 0〉 and |F =
1,mF = ±1〉 correspond to the states |g1〉 and |g2〉 of the three-level model presented
in the Fig. 6.1 respectively, and |F ′ = 1,mF = ±1〉 of the electromagnetically excited
state to |e〉. The π-polarized optical field drives the transition |F = 1,mF = ±1〉 to
|F ′ = 1,mF = ±1〉, whereas the generated signal beam is σ+ − σ− polarized and tuned
near the |F ′ = 1,mF = ±1〉 to |F = 1,mF = 0〉 transition. The RF field coherently cou-
ples the Zeeman states of the 5S1/2, F = 1 ground state manifold. This field is generated
by a radio-frequency antenna mounted close to the rubidium cell, as explained in section
4.1.2. In the absence of a radiofrequency field, the linearly polarized control field pumps
the atomic population into the |F = 1,mF = 0〉 ground state sublevel. After leaving the
rubidium cell, the control field and the generated signal field are projected onto the same

π

    optical 
control field   polarizer photodiode

rf coils 

Rb buffer gas cell

λ/ 4

�BZ
control & generated 
         signal field   

Figure 6.2: Scheme of the experimental setup used for resonant retrieval of stored atomic
coherence.
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      5 P1/2, F
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ωRF

ΩC
generated 
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manifold

|1〉 |2〉 |3〉

|4〉 |5〉 |6〉

ωRF

π ΩC

Figure 6.3: Full level scheme of the experimentally investigated Rb87 F = 1 → F ′ = 1
transition, as also used in the numerical calculations. The solid blue and orange lines
represent the transitions driven by the π-polarized optical control field and the RF field
respectively. The dashed blue lines represent the coupling of the generated σ+ − σ−

polarized optical signal field.

polarization using a polarizer and the resulting beat signal between the two fields is de-
tected using a fast photodiode. The amplitude of the detected beat signal can be adjusted
by a λ/4 mounted wave plate in front of the polarizer.

The control laser power is on a 5 mm beam diameter typically set to 200 µW. The fre-
quency of the applied radiofrequency is tuned to the Zeeman splitting between adjacent
Zeeman sublevels near 1.2 MHz at the used level of the magnetic bias field, and the Rabi
frequency of the RF field is approximately ΩRF/2π = 5 kHz. The experimental cycle,
see Fig. 6.4, begins by initially activating the linearly polarized control laser beam, so
that population is pumped into the |F = 1,mF = 0〉 component of the electronic ground
state. In addition, the resonant radiofrequency pulse is activated, which creates an atomic
ground state coherence, after which the optical control field and the radiofrequency field
are simultaneously turned off. After a 5 µs long period with no external driving fields ap-
plied, only the control field is reactivated, which retrieves the stored coherence and causes
emission of a signal beam pulse [103]. This beam is generated by the coherence oscillating
at the |g1〉 to |e〉 transition of the simplified level scheme of Fig. 6.1, or |F = 1,mF = 0〉
to |F ′ = 1,mF = ±1〉 of the full level scheme (Fig. 6.3), and upon reactivating the control
beam emission of a second optical beam collinear to the control beam is possible.

input control pulse readout control pulse 

RF pulse retrieved Raman field

ΩC

ΩRF

τ

t

Figure 6.4: Experimentally used pulse sequence for the resonant retrieval of stored co-
herence.
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The blue line in Fig. 6.5 shows typical experimental data for the observed beat signal
between the control and the signal beam. Fig. 6.5 shows that a beat signal, as understood
from emission of a signal field, is not only present during the retrieval of the coherence,
but also during the preparation stage, where both the radiofrequency field and the control
beam are active. As in that phase one deals with a driven system, it is expected that
before the storage, the beat frequency will be determined by the frequency of the RF field,
which in the presence of a finite detuning differs from the atomic eigenfrequency. The
frequency of the detected beat, both during the RF pulse and after the coherent retrieval,
is determined by fitting the signal with a sinusoidal function.
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Figure 6.5: Photo-diode beat signal between the optical control field and the coherent
generated signal field for a 50 µs long RF pulse and the storage period of 5 µs. The inset
shows a photo-diode beat signal for a longer time span.

To allow for a comparison with expected results, numerical simulations of the system
are carried out, using time-dependent density matrix calculations. In the simulations, a
6 level system, corresponding to the ground and excited states of the experimentally used
F = 1 → F ′ = 1 transition, is considered. The time evolution of the density matrix
ρ is calculated by using the Liouville equation (2.11) and the system of optical Bloch
equations (2.12). The Hamiltonian of the system that is used in the calculations includes
interactions with the optical control field, the external DC magnetic field and the RF
field (see Eq. A.7). All loss mechanisms, like the dephasing rate G and the population
relaxation rate γ ≈ 2π × 6 MHz are introduced in a phenomenological way. For the
decoherence rate G of our Rb buffer gas system, the experimental value derived from
EIT resonance measurements is used, as in [73]. To mimic the experimentally existing
population losses from the excited hyperfine level 5P1/2 F

′ = 1 to the level 5S1/2 F = 2,
one additional element of the density matrix ρ is introduced as a loss level. Therefore, for
the six-level system, the density matrix has 37 elements and together with the matrices
C and D that contain all coupling and decay coefficients, leads to the Liouville equation
of the following form:

∂ρ

∂t
= (C +D)ρ, (6.1)

where C and D are 37 × 37 dimensional matrices. As usual, the diagonal elements of
the density matrix give the population of the states, while off-diagonal elements can be
used to calculate the complex polarization of the medium [27]. In this case, the matrix
elements ρii correspond to the occupation number of the states |i〉 (see Fig. 6.3). To test
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the theoretical assumptions, the code is checked by simulating the time evolution of the
6-level system interacting resonantly with the optical field ΩC , where the total population
of the system occupies the ground state |4〉. The result of solving the Eq. 6.1 for the
following initial conditions ρ44(t = 0) = 1, and ΩC = 0.1γ is presented in Fig. 6.6 with
the time scale given in units of inverse population relaxation rate γ.
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Figure 6.6: Time evolution of the main diagonal elements of the density matrix ρ.

From the time evolution of the matrix element ρ44, one sees that only the part of the
entire population of the ground state |4〉 is pumped to the ground state |5〉, while the
rest of the population is lost. The black solid line in Fig. 6.6 presents the trace of the
density matrix ρ and since it includes the lossy channel, it is at all times equal to the
total occupation number.

The main goal of this calculations is to simulate the response of the system, interacting
simultaneously with the resonant optical and radio-frequency fields. A typical result is
shown in Fig. 6.7, for parameters corresponding to the experimental settings.
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Figure 6.7: Calculated medium polarization on the transition between levels
|F = 1,mF = 0〉 → |F ′ = 1,mF = 1〉 (see Fig. 6.3), where the eigenfrequency is mea-
sured with the respect to the control field frequency. Parameters used in the calculation
correspond to the estimated experimental parameters (ΩC = 0.02γ, ΩRF = 0.0005γ,
gFµBB ∝ 0.033γ, G = 0.0001γ, where γ ≈ 2π × 6 MHz).

Compared to the experimentally measured beat signal (Fig. 6.5), the beat note coming
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from the oscillation of the calculated polarization has a qualitatively similar behavior. For
the same storage time of 5 µs, it is determined that the calculated beat frequency of the
retrieved coherence quantitatively matches the measured frequency value of the detected
beat signal.

In the experiments, the beat signal of control and generated optical signal beam is de-
tected for different values of both the magnetic bias field and the frequency ωRF of the
RF coupling. When the magnetic bias field is varied, the frequency of the RF field is
kept constant and vice versa. Typical data for the shift in the beat frequency after the
resonance retrieval, as a function of the bias field and the frequency ωRF of the RF field
is shown by orange dots and blue squares in Fig. 6.8(a). Here, the variable magnetic bias
field is expressed in terms of Zeeman splitting of two neighboring ground states. Both
parameters are scanned for the same frequency range, and each shown data point repre-
sents the averaged value for ten different measurements. These two data sets are fitted by
a linear function, showing the linear dependence of the beat frequency on the size of the
Zeeman splitting (Fig. 6.8(a) solid orange line) with a slope of 0.999(±0.003). Within the
experimental accuracy, the beat frequency between optical control and generated signal
fields thus equals the separation gFµBB of adjacent Zeeman components of the F = 1
hyperfine ground state.
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Figure 6.8: (a) Measured beat frequency versus frequency of the radiofrequency field
(blue squares) and Zeeman frequency splitting between adjacent Zeeman sublevels (orange
dots). When the magnetic bias field is varied the frequency of the RF field is kept constant
and vice versa. Each shown data point represents the averaged value of ten measurements.
(b) Corresponding calculated results from the numerical simulation.

The data points corresponding to different values of the frequency ωRF of the RF field
can be well described by linear behavior (Fig. 6.8(a) blue dashed line) with a slope of
0.002(±0.005) that vanishes within the experimental uncertainty, which is consistent with
the assumption that the frequency of the RF coupling does not have a noticeable influence
on the value of the retrieved beat frequency. As expected, during the RF excitation, the
difference of the detected beat frequency is given by ωS − ωC = ωRF when varying either
magnetic bias field or the RF frequency.

Fig. 6.7 shows calculated results for the coherences between the states |F = 1,mF = 0〉 →
|F ′ = 1,mF = 1〉, where the eigenfrequency is measured with respect to the frequency of



6.1 Theoretical and experimental results 59

the optical control field. The corresponding polarization is responsible for the emission
of the signal beam, and the shown oscillation is to serve as a numerical estimation of the
expected time-dependence of the experimentally observed beat between signal and con-
trol optical fields respectively. Fig 6.8(b) shows the corresponding calculated values of the
oscillation frequency of the atomic polarization with respect to the control field frequency,
versus the frequency of the RF field (blue squares) and the frequency splitting between ad-
jacent Zeeman sublevels (orange dots). For determination of the corresponding frequency
from the numerical values for the polarization, a Fast Fourier transform procedure, imple-
mented in a MATLAB environment, is used. The calculated results are in good agreement
with the corresponding experimental observation (Fig. 6.5 and Fig. 6.8(a)). The exper-
imentally measurable beat frequency range is several times smaller than the frequency
range acquired by simulations, which is attributed to the experimentally limited detec-
tion sensitivity.

The resonance retrieval effect for different storage times of the atomic coherence is also
investigated. The green dots in Fig. 6.9 show the measured slope of the observed beat
signal upon variation of the Zeeman splitting between adjacent sublevels versus the storage
time, and within experimental uncertainties no deviation from the expected value unity
is observed. In red, results of the numerically calculated dependence is shown.
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Figure 6.9: Slope of the observed beat frequency upon variation of the Zeeman splitting
gFµBB (green dots) versus the storage time, and corresponding simulated results for the
atomic coherence (red squares). The size of the error bars of the simulated data values is
within the drawing size of the data points.

Finally, the robustness of the effects is tested by performing measurements for different
intensities of the optical control field. Fig. 6.10(a) shows the observed (green dots) slope
of the beat frequency upon variation of the Zeeman splitting versus the control field Rabi
frequency, and in red, results of a corresponding calculation are shown. For the used
parameter range, within experimental uncertainties no frequency shift from the ac Stark
shift was observed. Similarly, within experimental uncertainty, no dependence on the
retrieved frequency difference is observed when varying the Rabi frequency ΩRF of the
RF field up to approximately a level of ΩRF/2π = 100 kHz. However, the simulations for
the range of the control field Rabi frequencies, which is experimentally unavailable, show
that the beat frequency has quadratic Stark dependence on the Rabi frequency ΩC of the
control field (Fig. 6.10(b)).
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Figure 6.10: (a) Slope of the observed beat frequency upon variation of the Zeeman
splitting gFµBB (green dots) versus the Rabi frequency of the optical control field ΩC .
(b) Calculated beat frequency for a wide range of the Rabi frequencies ΩC .

A method of storage and resonance retrieval of the atomic coherence has been presented.
The stored atomic coherence is created by RF coupling of the Zeeman ground states and
subsequently retrieved with the use of the optical field. Experimental and theoretical
investigations reveal that the retrieved signal remains matched to the atomic transition
frequency independent of amplitude and frequency variations of the RF field. The exper-
imental uncertainty of the measured atomic eigenfrequency is here limited by a combi-
nation of the magnetic bias field coils and the current source, which give the frequency
resolution of approximately 1 kHz/mA.



61

7 Conclusions and Outlook

In this dissertation, quantum coherent effects in a hot rubidium ensemble have been
studied. The main result represents the retrieval of stored atomic coherence at the atomic
eigenfrequency in a double radiofrequency-optical experiment. Also, the validity of quasi-
particle concept of dark state polaritons (DSP) was investigated.

The results from the radiofrequency (RF) spectroscopy of both stationary and moving
dark state polartions indicate that a transition between the internal polariton states is
possible, which also proves the particle-like nature of the DSP. A two-level dark polari-
ton was prepared in the tripod-linked scheme, realized in the hyperfine configuration in
atomic rubidium. The RF field probed the Zeeman sublevels of the hyperfine ground
state, allowing for the population transfer between the two internal states. Since the ex-
perimentally used Rb hyperfine ground states possess the same g-factor, the RF coupling
presumably was partially contributing to a destruction of the dark states. Therefore, for
future RF spectroscopic measurements on the DSP, the use of a different atomic system
is recommendable. In the tripod configuration one can store two orthogonally polarized
light components, making this system potentially applicable as a quantum memory. Ob-
viously, a reliable population transfer between the two tripod dark states could find its
application in the quantum information field.

The matter-like nature of the DSP was researched further by studying the behavior of
its effective magnetic dipole moment in the presence of the homogeneous electric field.
Hence, the existence of the Aharonov-Casher (AC) phase effect for the polariton systems
was investigated as well. To this end, a detection system that allows a phase measurement
with the sensitivity of 10−5 rad was developed. It can be conjectured from the calibration
measurements that upper limit of the here experimentally detectable AC phase using hot
rubidium gas is 10−5 rad.

A resonance retrieval of atomic coherence in an optical-radiofrequency double resonance
experiment was demonstrated. The atomic coherence was stored in a thermal vapor of
rubidium atoms by an optical control field, and a radiofrequency field. It was shown,
both experimentally and theoretically, that after the retrieval of this stored coherence, a
beat signal corresponding to the atomic eigenfrequency occurs. This is attributed to the
atomic coherence in the absence of driving oscillating at an atomic eigenfrequency, i.e. that
only phase (and amplitude), but no frequency information is stored. The detected beat
frequency is, within the limits of the experimental uncertainty, insensitive to the amplitude
and frequency variations of the driving RF field. It is to be assumed that here presented
experimental procedure can be used in measurements of the atomic transition frequencies
without precise knowledge of the driving frequencies. The results hold prospects for
the development of simple and robust atomic clocks. Prospective applications in atomic
magnetometry are also anticipated.

Several technical improvements of the experimental setup could increase the overall sen-
sitivity. An active temperature stabilization of the rubidium apparatus would contribute
to the long term stability of the system, which is important for the measurement of the
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Aharonov-Casher phase where long averaging time is required. Higher accuracy in the
frequency measurements could be achieved with a further improved magnetic shielding,
which would reduce influence from stray magnetic fields.
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A Derivation of RWA Hamiltonian for the Λ-scheme

To find the HamiltonianH of the Λ-linked interaction scheme (Fig. 2.1) as given in Eq. 2.1,
the Hamiltonian itself has to be transformed from the basis of bare (uncoupled) states
into the basis of dressed states. This is achieved by transforming the state vector |Ψ〉 via
rotation operator T̂ into the transformed state |Ψ̂〉, as |Ψ̂〉 = T̂ |Ψ〉. Starting with the
Schroedinger equation:

i~∂t |Ψ〉 = H |Ψ〉 , (A.1)

and including into it the above the state transformation, the general expression of the
transformed Hamiltonian can be found:

Ĥ = T̂HT̂ † − i~T̂ (∂tT̂ †) (A.2)

For the Λ-scheme in Fig. 2.1, the Hamiltonian in the bare-states basis is :

H = ~

 ωa ΩS cosωSt ΩC cosωCt
ΩS cosωSt ωb 0
ΩC cosωCt 0 ωc

 , (A.3)

while the transformation matrix T̂ can be defined as:

T̂ =

1 0 0
0 eiωSt 0
0 0 eiωSt

 . (A.4)

Then, with the use of Eq. A.2, the transformed Hamiltonian is calculated:

H = ~


ΩCAC

ΩSAS

ωa

0

ωb − ωS

ΩSA
∗
S

ωc − ωC

0

ΩCA
∗
C
 , (A.5)

where AS = 1
2e
iωSt [e−iωSt + eiωSt], AC = 1

2e
iωCt [e−iωCt + eiωCt], and the cosine factors cosωt

are replaced by 1
2 (eiωt + e−iωt). Applying now the rotating wave approximation (RWA),

one neglects the rapidly oscillating terms at 2ωS and 2ωC since they are far-off resonant.
Setting the zero point of the energy to ~ωa = 0 and introducing the one-photon detunings
of the signal and the control field as ∆ab = ωb − ωS and ∆ac = ωc − ωC, the Hamiltonian
of the Λ-scheme can be defined as:

H = ~
2

 0 ΩS ΩC
ΩS 2∆ab 0
ΩC 0 2∆ac

 , (A.6)

The above approach in finding the Hamiltonian of the atom-light interaction system is
used in the calculations performed in this thesis. For example, in chapter 6, a Hamiltonian
describing a six-level atomic system interacting with optical and radio-frequency(RF) field
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is used and it can be expressed in a following way:

H = ~
2


0

0

−cg1,4ΩC

0

0

0

0

0

0

0

δ

0

−cg3,6ΩC

0

0

2δ

0

0

0

−ΩRFB

∆ +BZ

0

0

−cg1,4ΩC

−ΩRFB

∆ + δ

−ΩRFB
∗

0

0

0

2δ + ∆−BZ

−ΩRFB
∗

0

−cg3,6ΩC

0

0 
, (A.7)

where BZ is the size of the Zeeman splitting, ΩC and ΩRF are the Rabi frequencies of
the optical control and RF field. One-photon and two-photon detuning are given by ∆
and δ, and B = cosωRFt · exp[−i(BZ + δ)t]. Obviously, in the case of RF coupling, the
counter-rotating far-off resonance terms cannot be neglected. cgi,j are the dipole matrix
elements for specific hyperfine sublevels |F,mF 〉 → |F ′,m′F 〉 transitions, which represent
the interaction strength between 87Rb and nearly-resonant optical radiation. Here given
cg1,4 and cg3,6 are dipole matrix elements for transitions between the states |4〉 → |1〉 and
|6〉 → |3〉, as denoted in Fig. 6.3, with values 1/

√
12 and −1/

√
12 respectively. A full list

of dipole matrix elements for 87Rb D1 transition can be found in [104].
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B Rubidium Spectroscopic Data

This section gives a short list of 87Rb optical properties on D1 line transition (Table B.1)
and a scheme of 87Rb D1 transition hyperfine structure with hyperfine splittings (Fig. B.1).

Frequency 2π · 377.107 463 5(4) THz
Wavelength (Vacuum) 794.978 850 9(8) nm

Wavelength (Air) 794.765 69 nm
Wave Number (Vacuum) 12 578.950 985(13) cm−1

Lifetime 27.70(4) ns
Natural Line Width 2π · 5.746(8) MHz

Table B.1: 87Rb optical properties on D1 line transition [104].

306.25 MHz

510.41 MHz

816.66 MHz

gF = 1/6
(0.23 MHz/G)

gF = −1/6

(0.23 MHz/G)

F= 1

F= 2

gF = 1/2

(0.70 MHz/G)

4.272 GHz

2.563 GHz

6.835 GHz

gF = −1/2
(-0.70 MHz/G)

F= 1

F= 2

      5 P1/2

5 S1/2

 794.978 nm
377.107 THz

Figure B.1: 87Rb D1 transition hyperfine structure. Scheme adapted from [104].
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