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Abstract

This thesis focuses on the application and development of electronic structure methods for

noncovalent interactions in general and the evaluation of multilevel methodologies for an

accurate description of supramolecular thermochemistry in particular. Noncovalent inter-

actions are omnipresent in systems of various domains of science, such as supramolecular

chemistry, structural biology, and surface science. Within supramolecular chemistry, host-

guest complexes are of particular importance due to their diverse applicability in various

fields like molecular recognition or self-assembly.

The binding situation in a supramolecular complex is often unknown and sampling

many different conformations is desired. Therefore, the first part of this thesis is con-

cerned with cost-efficient density functional theory (DFT) and Hartree–Fock (HF) based

electronic structure methods for noncovalent interactions, which are about a factor of 50

to 100 faster than calculations in a large basis set. The main errors in a DFT or HF

calculation with small atomic orbital basis sets are the missing London dispersion and

the basis set superposition error (BSSE). An exemplary benchmark study shows that

modern correction strategies clearly outperform plain DFT or HF for energies and geo-

metries of small dimers, large supramolecular complexes, and molecular crystals. Further,

the development and evaluation of a minimal basis set Hartree–Fock method with three

atom-pairwise corrections for London dispersion, BSSE, and basis set incompleteness (HF-

3c) is presented. With nine global parameters, the empiricism of HF-3c is moderate, the

method is self-interaction error free, and noiseless analytical frequencies can be obtained.

HF-3c provides accurate geometries of organic supramolecular systems and small prote-

ins, and good noncovalent interaction energies. The mean absolute deviations (MADs)

for the S22 set of small noncovalently bound dimers and the S12L set of supramolecular

host-guest association energies are 0.6 and 4.4 kcal mol−1, respectively. This is excellent

compared to dispersion corrected DFT methods whose MADs are in the range of 0.3–0.5

and 2–5 kcal mol−1, respectively.

The second part focuses on the application and evaluation of multilevel methodologies

for an accurate description of Gibbs free energies of association (∆Ga) for supramole-

cular host-guest complexes in solution. First, state-of-the-art dispersion corrected DFT

(DFT-D3ATM) is used together with a large quadruple-zeta (QZ) basis set to obtain as-

sociation energies in the gas phase. A semiempirical method is utilized to compute the

thermostatistical corrections from energy to free energy and last, a continuum solvation
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model is employed. The general procedure is illustrated with a case study on eight typi-

cal complexes. The SAMPL4 blind test challenge provides a unique opportunity to test

this methodology in a realistic setting. Relative ∆Ga in water are predicted for a cucur-

bit[7]uril host and 14 guest molecules containing ammonia groups. The HF-3c method was

employed to sample possible binding conformations and the final ∆Ga were calculated on

the PW6B95-D3ATM/QZ level with HF-3c thermal corrections and COSMO-RS solvati-

on contributions. Compared to other methods theses predictions rank in the top three

of all statistical measurements. The MAD and RMSD are only 2.0 and 2.6 kcal mol−1,

respectively. Further, the S30L benchmark set is proposed as an extension of the S12L

set for association (free) energies of host-guest complexes. Larger systems with up to 200

atoms, more divers interaction motifs, and higher charges are represented by experimen-

tally measured complexes with ∆Ga values in the range from -0.7 to -24.7 kcal mol−1. In

order to obtain a theoretical best estimate for ∆Ga different dispersion corrected density

functionals, semiempirical methods, and continuum solvation models are tested. The best

method combination is similar to the one used for the SAMPL4 bind test and yields an

MAD with respect to experiment of only 2.4 kcal mol−1. Inclusion of counterions for the

charged systems (S30L-CI) were found to improve the results overall.

Synergy between theory and experiment is demonstrated in the last part of this the-

sis with the application of quantum chemical methods to two specific chemical problems

related to supramolecular chemistry. Experimentally, it was found that titanocene(III)

catalysts can be stabilized by chloride additives and the calculations reveal that the sta-

bilities of these adducts are determined by the extent of hydrogen bonding between the

catalyst and the ammonium cation. 1,1’-Binaphthol based ligands can be used to obtain

enantiomerically pure double- and triple-stranded helicates with transition-metal ions in a

completely diastereoselective self-assembly process. Electronic circular dichroism spectra

of precursors for paracyclophane based ligands have been investigated computationally in

order to identify their absolute configuration.
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Zusammenfassung

Diese Dissertation befasst sich mit der Anwendung und Entwicklung von Elektronen-

strukturmethoden zur Beschreibung nichtkovalenter Wechselwirkungen im Allgemeinen

und der Evaluierung von Multilevelmethodiken für die Thermochemie supramolekularer

Systeme im Speziellen. Nichtkovalente Wechselwirkungen sind allgegenwärtig in Syste-

men unterschiedlichster Fachgebiete, wie supramolekulare Chemie, Strukturbiologie und

Oberflächenforschung. Auf Grund ihrer vielfältigen Einsatzmöglichkeiten, u.a. in der mo-

lekularen Erkennung und der Selbstassemblierung, spielen Wirt-Gast Komplexe in der

supramolekularen Chemie eine besondere Rolle.

Da die Bindungssituation in einem solchen supramolekularen Komplex oft nicht be-

kannt ist, ist ein Testen verschiedener Konformationen wünschenswert. Daher beschäftigt

sich der erste Teil der Arbeit mit kostengünstigen Dichtefunktionaltheorie (DFT) und

Hartree–Fock (HF) basierten Methoden, die nichtkovalente Wechselwirkungen gut be-

schreiben und 50 bis 100 mal schneller sind als Rechnungen in einem großen Basissatz. Die

beiden gravierendsten Fehler in einer DFT oder HF Rechnung mit kleinem Atomorbital-

Basissatz sind die fehlende London Dispersion und der Basissatzsuperpositionsfehler (BS-

SE). Eine exemplarische Studie zeigt, dass moderne Korrekturstrategien reine DFT und

HF hinsichtlich ihrer Genauigkeit für Energien und Geometrien kleiner Dimere, großer

Supramoleküle und molekularer Kristalle deutlich übertreffen. Weiterhin wird die Ent-

wicklung und Evaluierung einer HF Methode mit minimalen Basissatz gezeigt (HF-3c).

Diese nutzt drei Korrekturen zur Berücksichtug der London Dispersion, des BSSE und

des Basissatzunvollständigkeitsfehler. Der Empirismus von HF-3c ist mit neun globalen

Parametern moderat, die Methode ist selbstwechselwirkungsfehlerfrei und rauschfreie ana-

lytische Frequenzen sind zugänglich. HF-3c liefert genaue Geometrien für organische Su-

pramoleküle und kleine Proteine sowie gute Energien nichtkovalenter Wechselwirkungen.

Die gemittelte absolute Abweichung (MAD) für den S22 Testsatz kleiner nichtkovalent

gebundener Dimere und den S12L Testsatz supramolekularer Wirt-Gast Komplexe sind

0.6 und 4.4 kcal mol−1. Dieses Ergebnis ist ausgezeichnet, verglichen mit modernen disper-

sionskorrigierten DFT Methoden, welche MADs von 0.3–0.5 und 2–5 kcal mol−1 liefern.

Der zweite Teil der Dissertation befasst sich mit der Anwendung und Evaluierung von

Multilevelmethodiken zur genauen Beschreibung der freien Enthalpie (Gibbs-Energie) der

Assoziation (∆Ga) supramolekularer Wirt-Gast Komplexe in Lösung. Die Assoziations-

energie in der Gasphase wird über moderne dispersionskorrigierte DFT (DFT-D3ATM)
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Rechnungen in einem quadrupel-zeta (QZ) Basissatz erhalten, semiempirische Methoden

liefern die thermostatistischen Korrekturen zur freien Enthalpie und Solvatationseffekte

werden mit Hilfe von Kontinuumsmodellen berücksichtigt. Das Protokoll wird anhand

einer Fallstudie von acht typischen Systemen dargelegt. Die Teilnahme am SAMPL4

Blindtest bietet die ideale Möglichkeit die Methodik unter realen Bedingungen zu prüfen.

Für einen Cucurbit[7]uril Wirt und 14 Gast Moleküle mit Ammoniumgruppen werden

relative ∆Ga Werte vorhergesagt. HF-3c wurde zum Testen verschiedener Bindungskon-

formationen genutzt und die Methodenkombination aus PW6B65-D3ATM/QZ Energien,

HF-3c thermostatistischen Korrekturen und COSMO-RS freien Solvatationsenergien lie-

fert ∆Ga, welche unter den Top drei aller eingereichten Methoden für alle Statistikmaße

rangiert. Der MAD and der RMSD sind nur 2.0 and 2.6 kcal mol−1. Weiterhin wurde der

S12L Testsatz auf 30 Komplexe erweitert (S30L), sodass größere Systeme mit bis zu 200

Atomen, ein breiteres Spektrum an Wechselwirkungsmotiven und höhere Ladungen (-1

bis +4) enthalten sind. Zu allen Komplexen liegen experimentelle Daten vor und die ∆Ga

Werte liegen im Bereich von -0.7 bis -24.7 kcal mol−1. Um die beste Methodenkombi-

nation zu finden, wurden verschiedene dispersionskorrigierte Dichtefunktionale, mehrere

semiempirische Methoden und unterschiedliche Solvatationsmodelle getestet. Die beste

Kombination ist ähnlich zu der bereits im SMAPL4 Blindtest verwendeten und ergibt

einen MAD von 2.4 kcal mol−1 verglichen mit dem Experiment. Berücksichtigung von

Gegenionen für die geladenen Systeme verbessert die Ergebnisse im Mittel leicht.

Das Zusammenwirken von Theorie und Experiment wird im letzten Teil der Arbeit an-

hand zweier Kooperationsprojekte mit Bezug zur supramolekularen Chemie dargestellt.

Experimente zeigen, dass Titanocen(III)-Katalysatoren durch Chlorid-Additive stabili-

siert werden können. Die Berechnungen erklären die Stärke dieser Stabilisierung mit dem

Ausmaß der Wasserstoffbrückenbindungen. Chirale Liganden basierend auf 1,1’-Binaphtyl

können über einen Selbstassemblierungsprozess mit Übergangsmetallionen zwei-oder drei-

strängige enantiomerenreine Helicate bilden. Die absolute Konfiguration von Vorläufern

Paracyclophan-basierter Liganden wurde mithilfe von theoretischen Circulardichroismus-

Spektren aufgeklärt.
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background
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1. Introduction

Traditional chemistry focuses on covalent bonds and new substances are obtained via

synthetic routes that involve cleavage and formation of those bonds. Supramolecular

chemistry as defined by Lehn is the ”chemistry beyond the molecule”, [1,2] which implies

that not only one single molecule but a number of assembled molecules is regarded. To

emphasize the difference to the interactions responsible for forming or breaking covalent

bonds within a molecule, the intermolecular forces governing the assembly or disassembly

of supramolecules are termed noncovalent interactions. [3,4]

The fundaments of supramolecular chemistry date back to the late 19th century, when

some of the most basic concepts were already introduced. In 1891, Villiers and Hebd

discovered the cyclodextrins, the first host molecules. [5] Werner formulated the idea of

coordination chemistry in 1893, [6] and in 1894 Fischer introduced the lock-and-key con-

cept, [7] which already assumes molecular recognition and host-guest chemistry. The static

picture of the lock-and-key concept is reasonable as long as the binding molecules remain

in their initial pre-binding conformation. In the beginning of the 20th century, noncovalent

bonds were gradually understood in more detail, e.g. through the description of hydrogen

bonding by Latimer and Rodebush in 1920. [8] 1958, Koshland refined the lock-and-key

idea and formulated the induced fit concept for biomolecules which undergo a conforma-

tional change during the binding event. [9] This provided a more dynamic view of the often

significant structural reorganization. An important breakthrough was the elucidation of

the double helix structure of DNA, which is stabilized by hydrogen bonds connecting the

base pairs (see Figure 1.1 (a)) and stacking interactions between those pairs. [10] Watson,

Crick, and Wilkins were honored for their discovery with the Nobel Prize in Physiology

or Medicine in 1962. [11] Gradually, chemists were able to transfer the introduced concepts

to synthetic systems, which finally lead to the discovery of crown ethers by Pedersen

in 1967 (see Figure 1.1 (b)). [12,13] Inspired by this work, Lehn and Cram focused their

own research on supramolecular chemistry. Together, the three pioneers of this field were

awarded with the Nobel Prize in Chemistry in 1987 ”for their development and use of

molecules with structure-specific interactions of high selectivity”. [14]

Today, supramolecular chemistry is a highly interdisciplinary field that bridges areas like

biochemistry, nanochemistry, and material sciences. [16,17] Nevertheless, it is still tightly

connected to host-guest chemistry, which is also the focus of this thesis. A host molecule

favorably binds a guest molecule and thus, the two molecules form a stable complex
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Figure 1.1.: (a) Hydrogen bonded DNA base pairs: Guanine-cytosine (G-C) and adenine-
thymine (A-T). (b) Structure of a crown ether alkali metal ion complex. [12]

(c) Structure of a host-guest complex. [15]

(see Figure 1.1 (c) for a typical example). If the binding of a certain guest molecule

is specific, the process is called molecular recognition. [16–18] Many different hosts with

functional shapes, e.g. bowls, cages, pincers, tweezers, container, and capsules have been

designed in the past years. [16,17,19–21] Besides molecular recognition, host-guest complexes

are used in the fields of template-directed synthesis, biomimetics, and even as reaction

containers. [1,2,13,16,17,22]

The formation and stability of supramolecular architectures in general and host-guest

complexes in particular is determined by the intermolecular interactions. These non-

covalent interactions are based on electrostatics, induction and charge transfer effects,

and London dispersion. [3,4,23,24] For their understanding the chemical concepts of ion-ion

and ion-dipole interactions, hydrogen and halogen bonding, π − π stacking, anion- and

cation-π interactions, and van der Waals interactions can be employed. Within this thesis,

the terms of the chemical concepts and the underlying physical principles are not used

separately but rather combined to complement each other. Note, that all these types

of noncovalent interactions can of course also occur within one single molecule of cer-

tain size. Thus, noncovalent interactions are omnipresent and control the structures of

DNA and proteins, antigen-antibody recognition, host-guest and enzyme-substrate bind-

ing, self-assembly processes, and the orientation of molecules on surfaces or in molecular

crystals. [25–29]

Although supramolecular chemistry is mainly an experimental discipline, computational

methods have emerged as invaluable tools for analyzing, characterizing, and understanding

of supramolecular systems. [30] Theoretical methods with reliable predictive power could

partly replace tedious and costly experimental work and help in the design of new systems.

Therefore, a central aspect of this thesis is the evaluation of computational methodologies
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to accurately describe supramolecular host-guest thermochemistry of realistic systems.

As typical complexes consist of a few hundred atoms or more, the method of choice has

to have a low computational cost but be accurate enough at the same time. Kohn-Sham

density functional theory (DFT) provides a good ratio of cost and accuracy, for a more

detailed description of DFT see Chapter 2.2. It is able to treat chemically relevant systems

and yields quantitative relative energies of many reactions and accurate geometries of

various molecules. The success of DFT can partly be attributed to the fact that electron

correlation at short and intermediate distances is taken into account in a very efficient

manner. However, a fundamental problem of common local, semi-local and hybrid density

functional approximations is their incapability to describe long-range correlation, namely

London dispersion. [23,24,31] Since the common functionals are based on the exponentially

decaying electron density, they fail to provide the asymptotically correct 1/R6 dependence

of the London dispersion energy on the inter-atomic distance R. Nevertheless, for all

noncovalently bound systems the dispersion energy is crucial and cannot be neglected. [3,4]

In the past years, various concepts to correct this error have been developed. [32–35] The

work presented in this thesis mainly uses the dispersion-corrected DFT scheme that was

developed in the Grimme group over the last years (DFT-D3). [36,37] Within the D3 scheme

the dispersion energy is calculated as a sum of atom-pairwise contributions−C6/R
6, where

the C6 are the interatomic dispersion coefficients. A more detailed description of this semi-

classical correction scheme can be found in Chapter 2.4. Nevertheless, even with highly

accurate association energies, DFT calculations are still limited to the gas phase.

Solvation is a crucial aspect in supramolecular chemistry and thus, cannot be ignored. [17]

Solvent molecules can be competitors to the guest molecules, and their polarity and size

are adjusted in order to tune a binding constant. [17] Within a calculation, a solvent can

be included either explicitly or implicitly. As the regarded systems within this thesis

are usually too large to be treated routinely in an environment of hundreds of explicit

solvent molecules, simpler continuum solvation models will be used. Common continuum

solvation models like the polarizable continuum model (PCM) [38,39] or the conductor like

screening model (COSMO) [40] cannot describe the statistical entropy effects of the liquid

phase. The conductor like screening model for real solvents (COSMO-RS) [41,42] is capable

of including those effects by using statistical mechanics. One part of this work is concerned

with the evaluation of the accuracy of COSMO-RS for host-guest systems. More on the

theoretical background of COSMO and COSMO-RS can be found in Chapter 2.6.

In order to compute the association free energy ∆Ga of a host-guest system in solu-

tion, the thermodynamic cycle shown in Figure 1.2 is used. First, the geometries of all

compounds are optimized on a feasible level of theory. Usually, TPSS-D3 with a medium

sized atomic orbital basis set is employed. As only one single conformation is taken

into account, this approach is static. The association energy ∆E in the gas phase is
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Figure 1.2.: Thermodynamic cycle used to compute the association free energy ∆Ga of a
host-guest complex in solution

computed with DFT-D3ATM using a hybrid functional including the three-body contribu-

tions to the D3 dispersion energy and a large basis set in a supermolecular approach, i.e.

∆E = E(complex)− E(host)− E(guest). The thermostatistical corrections from energy

to free energy ∆GRRHO in the gas phase (see Chapter 2.5 for details) are obtained mostly

with semiempirical methods due the greatly reduced computational cost. For an overview

of the semiempirical methods employed, see Chapter 2.3. And finally, the solvation free

energy for each gas phase species δGsolv is calculated with COSMO-RS. This protocol has

been used before for supramolecules in general [43–45] and host-guest systems in particu-

lar. 12 typical textbook examples of host-guest complexes (S12L) have been compiled

by Grimme and treated with this multilevel methodology. [46] The ∆Ga values on the

PW6B95-D3ATM/QZ level of theory including DFTB3-D3 thermostatistical corrections

and COSMO-RS 2012 solvation free energies, have an overall mean absolute deviation

(MAD) of 2.1 kcal mol−1 compared to experiment. [46] This thesis further evaluates and

applies the multilevel approach to realistic host-guest systems with the aim to show its

predictive power.

After this introduction and the theoretical background, the thesis is divided into three

major parts. Part II focuses on the evaluation and development of cost-efficient DFT

and Hartree–Fock (HF) based electronic structure methods for noncovalent interactions.

As the binding situation in a supramolecular complex is often unknown, sampling many

possible conformations is desired. This cannot be afforded with a high level method like

DFT-D3ATM/QZ for calculating the gas phase association energies. Therefore, computa-

tionally less demanding approaches with still reasonable accuracies are needed. Reducing

the number of atomic orbital basis functions to a double-zeta or minimal basis set yields

an increase in speed by a factor of 50 to 100 compared to a quadruple-zeta basis set calcu-

lation. Unfortunately, two major errors arise in a plain semi-local DFT or HF calculation

with a small basis set. These are the missing London dispersion and the basis set super-

position error (BSSE) which are analyzed in Chapter 3. Modern correction strategies to
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circumvent them are presented and reviewed. An exemplary benchmark study is carried

out to compare the accuracy of those correction schemes and to evaluate the improvement

over plain DFT and HF. The performance is tested for interaction energies and geometries

of noncovalently bound dimers, host-guest complexes, and organic molecular crystals.

The development and evaluation of a minimal basis set Hartree–Fock method with three

atom-pairwise corrections (HF-3c) is presented in Chapter 4. The D3 scheme is employed

to include London dispersion, a geometric counter-poise correction (gCP) [47] is used to

account for BSSE, and a third short-range term is applied to correct for basis sets incom-

pleteness effects. This results in nine global parameters and thus, moderate empiricism.

Compared to a DFT approach with a small basis set, HF has the advantages of being

self-interaction error free, providing noiseless analytical frequencies and it does not require

the construction of a grid for integrating the exchange-correlation functional. The accu-

racy of HF-3c is evaluated for the geometries of small covalently bound organic molecules,

geometries and interaction energies of small noncovalent dimers and large supramolecular

host-guest systems, geometries of small proteins, and thermostatistical corrections. In

terms of cost and accuracy HF-3c might fill the gap between conventional semiempirical

and DFT methods.

Part III focuses on the application and evaluation of the multilevel methodology de-

scribed above, to obtain free energies of association for supramolecular host-guest com-

plexes in solution. In Chapter 5 the general procedure is reviewed, and an overview of

recent calculations on supramolecular systems that were carried out before in our group

and by others is provided. To illustrate the methodology and its general applicability, a

case study on eight typical host-guest complexes is carried out. Two tweezer complexes,

two pseudorotaxanes, two cucurbit[7]uril complexes, and two complexes of the fullerene

C70 in cycloparaphenylenes are chosen.

Chapter 6 focuses on the participation in a blind test challenge. Blind tests provide the

unique opportunity to test a computational method in a realistic setting without a bias

towards known answers. The Statistical Assessment of Modeling of Proteins and Ligands

(SAMPL) aims at testing protein, supramolecular, and small molecule modeling. [48] In the

4th SAMPL blind test (SAMPL4), (relative) association free energies of two different host

and several guest molecules in water are to be predicted. [49] The first host is the rigid cu-

curbit[7]uril and the 14 guest molecules contain either one or two ammonia groups. The

cucurbit[n]uril (CBn, n = 5, 6, 7, 8) family of molecular containers is one of the major

tools to study molecular recognition in water. [50–52] Usually, guest molecules with a rigid

hydrophobic core such as ferrocene [53] or adamantane [15,50] in combination with cationic

ammonium groups yield very high binding affinities. The participation in the blind test

challenge is carried out in cooperation with Dr. Jens Antony, who focuses on the second

host system which is a more flexible, eightfold charged basket shaped octa-acid molecule.
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The HF-3c method is applied to sample possible binding conformations. Counterions are

introduced and the geometries are re-optimized on the TPSS-D3/TZ level of theory. The

final ∆Ga values are computed on the PW6B95-D3ATM/QZ level with HF-3c thermal

corrections and COSMO-RS 2012 solvation contributions. The results are submitted to

the SAMPL4 organizing committee, prior to publication of the experimental results, and

compared to the experimentally obtained values and to those computed by other partici-

pants.

In the case study as well as in the SAMPL4 blind test participation outliers for ∆Ga

values compared to experiment are present. Often, but not always these systems are

charged. Thus, it is evident that further testing of the multilevel approach is necessary

and the extension of the S12L test set to 30 host-guest systems is described in Chapter 7.

An extensive literature search is carried out in order to find interesting systems for which

measured free energies of association exist. The aim is to include larger and slightly more

flexible systems, higher charges, more diverse interaction motifs, and different solvents. In

order to obtain a theoretical best estimate for ∆Ga, different dispersion-corrected density

functionals (∆E) are used in combination with several semiempirical methods (∆GRRHO)

and various COSMO-RS parametrizations, as well as a density dependent continuum sol-

vent model (SMD) [54] (∆δGsolv). The influence of counterions, i.e. chloride for cations

and sodium for anions, is investigated.

Part IV contains two projects that are carried out in collaboration with experimentally

working groups. Experiment and theory are often complementary and thus, should ideally

be combined. Theory can give insight into experimental findings and make suggestions

for new compounds, and in return, experimental results and newly synthesized systems

can trigger the development of novel theoretical methods. Chapter 8 presents a computa-

tional study on supramolecular interactions of titanocene(III)-chloride that is realized in

a collaboration with the group of Prof. Gansäuer. Titanocene(III) catalysts are employed

in atom-economical catalytic radical reactions to synthesize tetrahydrofuran [55–58] and

arylate epoxides. [59] It was found that thermal instability of the most efficient electron-

deficient catalysts could be circumvented by the addition of a chloride source. Thus,

the stability and geometry of the formed hydrochloride-titanocene adducts is investigated

computationally in order to explain this finding.

The focus of Chapter 9 is the computational study of 4,15-difunctionalized [2.2]paracy-

clophanes in collaboration with the group of Prof. Lützen. It was shown, that chiral

1,1’-binaphthol based ligands can be used to obtain enantiomerically pure double- and

triple-stranded helicates with transition-metal ions [60–63] or even larger polyhedral struc-

tures. [64] The underlying process is a completely diastereoselective self-assembly. Sim-

ilar to binaphtyl, paracyclophanes are chiral and can be used as precursors for analo-

gous ligands. [65] In order to identify the absolute configuration of the difunctionalized
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[2.2]paracyclophanes, electronic circular dichroism spectra are calculated and compared

to experiment.
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2. Theoretical background

The following chapters provide an overview of the theoretical background of the methods

applied within this thesis. The main focus lies on electronic ground state theory. Start-

ing with the electronic Hamiltonian, the Hartree–Fock approximation is explained in

Chapter 2.1 and the concept of electron correlation energy is defined. Chapter 2.2 gives

an introduction to density functional theory and an overview of the classes of density

functionals. Simplifications to the Hartree–Fock and DFT methods resulting in several

semiempirical methods are reviewed in Chapter 2.3. A semi-classical scheme to account

for the London dispersion interactions is introduced in Chapter 2.4. The necessary steps

from energy to free energy are discussed in Chapter 2.5 and models to take solvation

effects into account are introduced in Chapter 2.6.

2.1. The Hartree–Fock approximation

The time-independent, non-relativistic Schrödinger equation ĤΨ = EΨ is the starting

point in a wave function based, quantum-mechanical treatment of atoms and molecules. [66]

Within the Born–Oppenheimer (BO) approximation, the comparably slow motion of the

nuclei is separated from that of the fast moving electrons. [67] This leads to the electronic

Schrödinger equation for a fixed nuclear conformation in atomic units:

ĤeΨe =

[
N∑
i

ĥi + V̂ee

]
= EeΨe (2.1)

ĥi = −1

2
∇̂2
i −

M∑
A

Za
riA

, V̂ee =
N−1∑
i

N∑
j>i

1

rij
(2.2)

The electronic Hamiltonian Ĥe consists of two parts: The one-electron part ĥi describes

the kinetic energy of the ith electron and its Coulomb interaction with the fixed nuclei,

and the two-electron part V̂ee is the Coulomb repulsion between electron pairs ij. The

operator ∇̂2
i yields the second derivative of the electronic wave function Ψe with respect

to the coordinates of electron i (kinetic energy), riA and rij are the distances between

electron i and nucleus A or another electron j, and ZA is the charge of nucleus A.

The electronic energy Ee is the expectation value of Ĥe with respect to the normalized
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2. Theoretical background

electronic wave function Ψe:

Ee = 〈Ψe|Ĥe|Ψe〉 (2.3)

In order to obtain the total energy Etot of a given system, the potential energy of the nuclei

Vnn, which is a constant for the fixed, classically treated nuclei in the BO approximation,

has to be added to Ee.

Etot = Ee + Vnn = Ee +
M−1∑
A

M∑
B>A

ZaZB
rAB

(2.4)

If not mentioned otherwise, electronic energies will be considered within this chapter and

the index e is dropped from here on.

The wave function of an electronic ground state of a system with N electrons can often

be approximated with good accuracy by a single Slater Determinant Φ0. [68]

Φ0 =
1√
N !

N !∑
n

(−1)pn P̂n

n∏
i

φi (2.5)

Φ0 consists of products of independent one-electron wave functions φi, so called molecular

orbitals (MOs). The permutation operator P̂n exchanges the electrons between orbitals,

pn is the number of transpositions necessary to achieve the nth permutation, and 1/
√
N !

is the normalization factor. By construction, the Slater determinant fulfills the Pauli

principle, that is the anti-symmetry of the wave function with respect to the interchange

of two electrons. Within this thesis, only those systems will be investigated for which a

single Slater determinant is a good approximation for the electronic ground state.

The variational principle states that the energy expectation value of any trial wave

function Φ̃ cannot be lower than the energy of the true wave function Ψ.

Ẽ = 〈Φ̃|Ĥ|Φ̃〉 ≥ 〈Ψ|Ĥ|Ψ〉 = E (2.6)

The most important procedure to minimize the energy expectation value of a single Slater

determinant Φ0 is probably the Hartree–Fock (HF) approximation. [69–71] It forms the basis

for a large number of more accurate and sophisticated wave function based methods and

thus, is fundamental for the whole of quantum chemistry. In HF theory, Ansatz 2.5 is

used for the wave function and the energy is minimized with respect to the orbitals φi.

The method of Lagrange multiplier with the constraint of orthonormal orbitals finally
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2.1. The Hartree–Fock approximation

leads to the HF eigenvalue problem.

f̂iφi = εiφi (2.7)

f̂i = ĥi + v̂HFi , v̂HFi =
N∑
j

Ĵij − K̂ij (2.8)

Hence, the MOs φi are eigenfunctions of an effective one-electron operator, i.e. the Fock-

operator f̂i. In the HF method, the exact electron-electron Coulomb potential is approxi-

mated by the interaction of an electron i with the averaged field v̂HFi of all other electrons.

Therefore, Hartree–Fock is a mean-field theory. v̂HFi consists of the Coulomb operator Ĵij

and the exchange operator K̂ij.

Ĵij|φi〉 = 〈φj|
1

rij
|φj〉|φi〉 (2.9)

K̂ij|φi〉 = 〈φj|
1

rij
|φi〉|φj〉 (2.10)

Ĵij incorporates the Coulomb repulsion between all electrons and K̂ij originates from the

anti-symmetry of the wave function leading to an additional effective interaction between

electrons with the same spin. As 〈φi|Ĵii|φi〉 equals 〈φi|K̂ii|φi〉, there is no unphysical

interaction of an electron with itself. Thus, the HF method is free of the self-interaction

error (SIE).

The MOs can be expanded in a linear combination of known basis functions, usually

atomic orbitals ψ (AOs, LCAO ansatz), [72,73]

φi =
∑
µ

Cµiψµ (2.11)

where the Cµi are the LCAO-MO coefficients. This approach is exact if the atomic

orbitals form a complete basis. For a finite basis set, it leads to the so called basis set

incompleteness error (BSIE). Within the LCAO ansatz, the eigenvalue problem 2.7 can

be reformulated as a linear matrix equation (Roothan–Hall equation). [72,73]

FC = SCε (2.12)

The Fock matrix F contains elements of the form 〈φi|f̂i|φj〉, and C consists of the LCAO-

MO coefficients. S is the overlap matrix with the elements Sij = 〈φi|φj〉, as the AOs are

usually not orthogonal in the molecular system. Solving Equation 2.12 yields the energies

(eigenvalues) ε of the orbitals. The Fock operator depends on the orbitals and thus on the

MO coefficients (c.f. Eqs. 2.8, 2.9, 2.10). Consequently, the solution has to be carried out
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iteratively which is done by a self-consistent field (SCF) procedure via linear variation of

the MO coefficients.

Once the self-consistent orbitals are obtained, the HF energy can be calculated.

EHF =
N∑
i

〈φi|ĥi|φi〉+
N−1∑
i

N∑
j>i

(
〈φi|Ĵij|φi〉 − 〈φi|K̂ij|φi〉

)
(2.13)

The computational effort of HF formally scales with O(N4), where N is the number

of AOs used. Speed-ups can be achieved e.g. through the resolution of the identity (RI)

approximation, in which the four-center two-electron integrals are approximated by three-

center ones. [74]

The HF approximation includes the correlated motion of two electrons with parallel spin

that arises due to the Pauli principle (Fermi correlation), but the correlated motion of

two electrons that originates from their mutual Coulomb repulsion (Coulomb correlation)

is neglected. The reason for the missing Coulomb correlation is the approximation that

each electron only experiences an averaged potential of the other electrons. Thus, even in

the limit of a complete basis set, HF cannot yield the exact energy of the non-relativistic

Schrödinger equation within the BO approximation for a system with more than one

electron. The difference between the exact energy E and the HF limit EHF is defined as

electron correlation energy Ecorr.

Ecorr = E − EHF (2.14)

Ecorr can be computed by electron correlated methods, e.g. by perturbative methods like

the Møller–Plesset (MP) theory, configuration interaction (CI) and coupled cluster (CC)

methods, which are all based on the single-determinant wave function obtained from HF.

Having a formal scaling of O(N5) with the system size or higher, these methods are

computationally much more demanding. However, for an accurate treatment of chemical

systems, correlation cannot be neglected. Coupled cluster theory that includes single and

double excitations and treats the triple excitations in an approximated, perturbative way

(CCSD(T)) has emerged as ’the gold standard’ of quantum chemistry and is often used

to calculate reference values for benchmarking simpler methods. Recent developments in

local coupled-cluster methods allow the treatment of molecules in the regime of about 100

atoms. [75–78] Nevertheless, the convergence of the energy with the basis set size is inverse

cubic, which is rather slow compared to HF that converges exponentially. As the systems

regarded in this thesis are generally too large to be naturally treated with these kinds of

correlated methods, they will not be discussed further.
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2.2. Density functional theory

2.2. Density functional theory

The idea to use the electron density ρ instead of a wave function dates back to Thomas

and Fermi. In 1927 they independently assumed that the ground state of a system can

be obtained through an energy functional of the density. [79,80] The existence of such an

energy functional was proven by Hohenberg and Kohn in 1964, who showed that the

energy of the electronic ground state is completely determined by its density. [81] Thus,

according to the first Hohenberg–Kohn theorem, there has to be a density functional

(DF) E[ρ] that directly connects the ground state electron density to the exact energy.

The second Hohenberg–Kohn theorem is the analogue to the variation principle in wave

function theory (WFT), and shows that for any valid trial density ρ̃, E[ρ̃] yields the upper

bound to the true ground state energy. [82,83] However, the Hohenberg–Kohn theorems do

not provide a construction formalism for the shape of this functional.

As the exact density functional is not known, finding a good approximation to E[ρ] is

the goal of density functional theory (DFT) methods. E[ρ] can conveniently be divided

into separate functionals that include different contributions.

E[ρ] = Te[ρ] + Ven[ρ] + Vee[ρ] (2.15)

Vee[ρ] = J [ρ] +K[ρ] (2.16)

Te[ρ] gives the kinetic energy, Ven[ρ] yields the Coulomb attraction between electrons and

nuclei and Vee[ρ] describes the electron-electron interaction, that can be split further into

a Coulomb part J [ρ] and an exchange part K[ρ]. Up to this point, the formulation of

DFT is orbital-free. The advantage compared to wave function based theories is the

dependence of the density on only three variables, i.e. the three Cartesian coordinates,

instead of three variables per electron. The functionals Ven[ρ] and J [ρ] can be described

by their classical expressions.

Ven[ρ] = −
M∑
A

∫
ZAρ(r)

|RA − r|dr (2.17)

J [ρ] =
1

2

∫
ρ(r)ρ(r′)

|r− r′| drdr′ (2.18)

Expressions for Te[ρ] and K[ρ] were first approximated by Thomas and Fermi and Dirac,
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respectively, based on the uniform electron gas (UEG).

TUEGe [ρ] =
3

10
(3π)

2
3

∫
ρ(r)

5
3 dr (2.19)

KD[ρ] = −3

4

(
3

π

) 1
3
∫
ρ(r)

4
3 dr (2.20)

These early attempts to approximate the true functional do not yield useful results for

chemical problems, as chemical bonding cannot be described. The main reason for this is

the inaccurate expression of the kinetic energy in the Thomas–Fermi model. Kohn and

Sham introduced the calculation of the kinetic energy via a fictitious reference system of

non-interacting quasi-particles which is supposed to have the same density as the true

system. [84] This Kohn–Sham (KS) approach to DFT (KS-DFT) is nowadays the most

common one and therefore, the KS prefix will be dropped. The drawback is that orbitals

(KS-orbitals) have to be introduced in order to evaluate the kinetic energy TKS. Thus,

the number of variables grows to 3N as in wave function theory. Usually, this approach

yields 98 to 99 % of the true kinetic energy. The missing difference in the kinetic energy

for the independent compared to the correlated electrons, as well as the overall correlation

and the exchange effects are described by the exchange-correlation functional EXC . EXC

is usually divided into an exchange EX and a correlation part EC . The sum of all theses

contributions is the total DFT energy.

EDFT = TKS[φ] + Ven[ρ] + J [ρ] + EXC [ρ] (2.21)

EXC [ρ] = EX [ρ] + EC [ρ] (2.22)

TKS[φ] = −1

2

N∑
i

〈φi|∇̂2
i |φi〉 (2.23)

The electronic energy and the respective set of KS-orbitals are obtained iteratively by

solving the KS-equations.

f̂KSi [ρ]φi =

[
ĥi[ρ] +

∑
j

(
Ĵij[ρ] + vXC [ρ]

)]
φi = εiφi (2.24)

Analogous to the Fock-operator in HF, the Kohn–Sham operator f̂KSi [ρ] is an effective

one-electron operator. But instead of the exchange operator in HF, DFT uses an exchange-

correlation potential vXC [ρ] that is the derivative of the EXC [ρ] functional with respect

to the density.

The similarity of DFT and HF is also reflected in the same computational effort. Reduc-

ing the formal scaling of O(N4) to O(N3) can be achieved by using the efficient resolution
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2.2. Density functional theory

of the identity approximation for the Coulomb integrals (RI-J), [74] The major advantage

of DFT over HF is the inclusion of correlation effects when a sufficiently accurate approx-

imation for EXC [ρ] is applied. While DFT is formally exact, the commonly used density

functional approximations (DFAs) are not. A drawback of DFT compared to WFT is,

that it cannot be systematically improved, e.g. by increasing the number of excitation

configurations as in coupled cluster theory. Therefore, the development of DFAs is often

based on a trial and error approach, i.e. the accuracy of the functional is evaluated by

testing it on typical, exemplary systems. As only a small part of the chemical space can

be covered, uncertainties of the accuracy remain.

2.2.1. Hierarchy of density functional approximations

Although the systematic improvement of density functionals is difficult, the accuracy

and computational effort of a density functional can be classified. Perdew introduced

the picture of ’Jacob’s ladder’ which ascends from the ’Hartree-hell’ to the ’heaven of

chemical accuracy’. [85] Density functionals can be categorized into rungs of that ladder.

The higher the rung, the more information of the systems is used in the functional and

the more expensive it is. The increase in accuracy with each rung cannot be guaranteed,

but that the general picture holds has been verified statistically on a large scale. [86]

The local density approximation

The first rung of Jacobs ladder includes functionals that only take into account the local

electron density. This local density approximation (LDA) is based on the assumption

that the electron density varies slowly, and that it behaves like the uniform electron gas

(UEG). The LDA exchange functional is a modification of the Dirac functional (Eq. 2.20)

for which a pre-factor was introduced by Slater (also called Xα method). [87] An LDA

description of the correlation energy was derived by Vosko, Wilk and Nusair (VWN) [88]

via analytic interpolation formulae based on accurate Monte-Carlo calculations.

The LDA is widely and successfully used for the description of metallic solids, as their

electronic structures are similar to the UEG. LDA functionals yield reasonable molecular

structures but unfortunately, tend to overbind most molecular systems.

The general gradient approximation

The major reason for the inaccuracies of LDA methods for molecular systems is the

strongly varying electron density of a molecule, which cannot be described by an approx-

imation solely based on he UEG. Therefore, in addition to the local density, functionals

on the second rung of the ladder take the gradient of the density ∇ρ into account. This
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2. Theoretical background

general gradient approximation (GGA) is based on an LDA description modified by an

enhancement factor FGGA
XC , which depends on both the electron density and its gradient.

EGGA
XC =

∑
σ=α,β

∫
ρELDA

XC [ρ]FGGA
XC [ρ,∇ρ] dr (2.25)

σ is the spin variable for α or β spin, and the LDA exchange and correlation function-

als are usually modified separately. Common GGA functionals are the PBE exchange

and correlation functional by Perdew, Burke, and Ernzerhof, [89,90] Beckes’s B88 exchange

functional [91] and the LYP correlation functional by Lee, Yang, and Parr. [92]

meta-GGA functionals

The third rung of Jacobs ladder comprises functionals, which additionally include higher

order derivatives of the electron density, such as the electron density Laplacian ∇2ρ.

The Laplacian was found to be numerically unstable and thus, meta-GGA functional

are based on enhancement factors that include the related orbital kinetic energy density

instead. Meta-GGA functionals are often more accurate than GGA functionals, although

this cannot be generalized and the improvement is by far not as large as going from

LDA to GGA. The probably most popular meta-GGA functional is the TPSS functional

developed by Tao, Perdew, Staroverov, and Scuseria, [93] which was also extensively used

in this thesis for the optimization of geometries. GGA and meta-GGA functionals are

called semi-local functionals, since they are not only evaluated based on local electron

density, but also take information about its close proximity into account.

Hybrid functionals

The forth rung of the ladder contains functionals that use additional non-local information

based on the occupied KS-orbitals. This is achieved by substituting a part of the DFT

exchange with non-local Fock-exchange evaluated with the KS-orbitals (EHF
X ), also called

’exact’ exchange. This approach can be motivated based on the adiabatic connection. [94]

Ehybrid
XC = E

(meta−)GGA
C + (1− aX)E

(meta−)GGA
X + aXE

HF
X (2.26)

Functionals of this class are named hybrid functionals and its most prominent example is

the B3LYP functional. It contains 20 % of Fock-exchange (aX = 0.2), 0.08 % of Slater’s

LDA and 0.72 % B88 exchange, and 0.19 % VWN-LDA and 0.81 % LYP correlation. [95,96]

Further examples of typical hybrid functionals are BHLYP [97] (aX = 0.5) and PBE0 [98]

(aX = 0.25). Popular hybrid functional based on meta-GGA functionals are Zhao and

Truhlar’s M05 [99] and M06 [100] classes of functionals, also frequently called Minnesota
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2.2. Density functional theory

functionals, which are highly parametrized with up to 40 parameters. The PW6B95 [101]

hybrid functional (aX = 0.28) is also based on a meta-GGA and used in this thesis to

a large extent. All the so far mentioned hybrids have in common, that they employ the

same amount of Fock-exchange over the whole space. Therefore, these hybrid functionals

are also called global hybrids.

The principal problem with global hybrid functionals is that the underlying (meta-)GGA

potential decays exponentially. Thus, in the asymptotic limit the hybrid exchange poten-

tial decays with ax/r instead of the correct 1/r behavior. This behavior can be corrected

by introducing a range separation that retains the short-range error cancellation between

exchange and correlation of a global hybrid and yields the correct potential of 100 % Fock

exchange in the asymptotic limit. In these so called range-separated hybrid functionals,

the two-electron operator 1
r12

is partitioned into a short-range and a long-range component

using the error function (erf). [102,103]

1

r12

=
1− erf(µr12)

r12

+
erf(µr12)

r12

(2.27)

The short-range part is then treated by an exchange functional, and the long-range part

by HF exchange. Examples of this type of functionals are ωB97 and ωB97X developed

by Chai and Head-Gordon, [104] and their advancements ωB97X-D [105] and ωB97X-D3. [106]

Further examples are LC-BLYP and CAM-B3LYP by Handy, [107] though the latter one

is not asymptotically correct as it contains a finite amount of GGA exchange in the long-

range limit. Nevertheless, CAM-B3LYP has been used successfully for the computation

of electronic circular dichroism spectra within this thesis. In general, range-separated

functionals perform good for the calculations of excited states by means of time-dependent

DFT, due to the much more appropriate orbital energies.

Virtual-orbital dependent functionals

Functionals on the fifth and last rung of the ladder take the virtual KS-orbitals into

account when calculating the correlation energy. Several approaches to accomplish this

have been published, including perturbation methods as done by Görling and Levy, [108,109]

and random phase approximation (RPA) methods. [110] The probably most widely used

approach is that of a double-hybrid density functional (DHDF) proposed by Grimme. [111]

A part of the correlation energy is computed by second order Møller–Plesset perturbation

theory (MP2) from the KS-orbitals of a preceding hybrid functional SCF calculation.

EDHDF
XC = (1− aX)E

(meta−)GGA
X + aXE

HF
X + (1− aC)E

(meta−)GGA
C + aCE

MP2
C (2.28)
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2. Theoretical background

The most accurate DHDFs are those containing rather high amounts of Fock exchange and

much smaller amounts of non-local correlation. E.g. the B2PYLP [111] functional employs

53 % exact exchange (aX = 0.53) and 27 % MP2 correlation (aC = 0.27). Double-hybrid

functionals are very accurate for reactions energies and basic molecular properties. [86]

However, as the MP2 part with its formal scaling of O(N5) is rather expensive for large

molecules and MP2 in general cannot accurately treat π − π stacked systems, DHDFs

were not employed in the work of this thesis.

2.3. Semiempirical methods

In the early days of quantum chemistry the computational resources were very limited and

carrying out a Hartree–Fock or DFT calculation was challenging even for small systems

using a small basis set. Nowadays, even with the present computational power there are

systems, e.g. supra- or biomolecules, which exceed the size of those practically accessible

by tHF or DFT methods. Originally, the so called semiempirical methods (SE-MO) were

introduced as simplifications to ab initio MO treatments, usually HF. Drastic integral

approximations are introduced to gain speed-up and empirical parameters are used to

partly recover the lost accuracy. In this thesis modified neglect of differential overlap

(MNDO) type methods have been used and will be discussed in the first part of this

chapter. Conceptually different are the semiempirical tight-binding (TB) versions of DFT

methods. The initial DFTB approach [112] as well as the self-consistent charge (SCC)

DFTB method [113,114] are employed in this thesis will be introduced in the second part of

this chapter.

2.3.1. MNDO type methods

MNDO type methods are typically restricted to the valence electrons only and use a

minimal basis set of Slater type orbitals (STOs), i.e. one basis function per valence orbital

reduces the number of integrals. They are based on the neglect of diatomic differential

overlap (NDDO) approximation, in which all products of basis functions that depend

on the same electron coordinates but are located on different atoms A and B are zet to

zero. [115,116] The first consequence of the NDDO approximation is, that the overlap matrix

S is reduced to a unity matrix.

Sµν = 〈ψν |ψµ〉 ≡ 〈µ|ν〉 = δµνδAB (2.29)

Thus, a special eigenvalue problem has to be solved. As this is not the correct HF eigen-

value problem, the exchange is usually described badly. Further, one-electron integrals
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2.3. Semiempirical methods

that involve three centers, i.e. two from the basis functions and one from the operator,

are set to zero. The ones that remain are the following,

〈µA|ĥ|νA〉 = 〈µA| −
1

2
∇2 − Z ′A

|RA − r|
|νA〉 −

nuclei∑
a6=A
〈µA|

Z ′a
|Ra − r|

|νA〉 (2.30)

〈µA|ĥ|νB〉 = 〈µA| −
1

2
∇2 − Z ′A

|RA − r|
− Z ′B
|RB − r|

|νB〉 (2.31)

where ĥ is the one-electron operator. Z ′a is the nuclear charge reduced by the number of

core electrons which assumes complete shielding.

And finally, all three- and four-center two-electron integrals are neglected.

〈µAνB|λCσD〉 = δACδBD〈µAνB|λAσB〉 (2.32)

For a basis set containing s and p functions only, there are 27 different one- and two-center

two-electron integrals, whereas this number rises over 500 if d functions are added. In

case of the sp basis, only five one-center two-electron integrals remain:

〈ss|ss〉 = Gss 〈sp|sp〉 = Gsp 〈ss|pp〉 = Hpp

〈pp|pp〉 = Gpp 〈pp′|pp′〉 = Gp2

(2.33)

The G-type parameters are Coulomb terms and the H parameter is an exchange integral.

The Gp2 integral involves two different types of p-functions.

Besides NDDO, two other approximations exist which differ mainly in the treatment of

the two-electron integrals. The intermediate neglect of differential overlap approximation

(INDO) neglects all two-center two-electron integrals which are not of Coulomb type

and in the complete neglect of differential overlap (CNDO) only Coulomb one-center and

two-center two-electron integrals survive.

The difference in the various NDDO based methods lies in treatment of the remaining

integrals. They are either calculated from the functional form of the atomic orbitals,

estimated from parameters based on a few atomic experimental data, or obtained via

parameters which are fitted to molecular (experimental) data. Older modified NDDO

methods, i.e. the MNDO model, [117] Austin Model 1 (AM1), [118] and MNDO Paramet-

ric Method number 3 (PM3), [119] use only s and p functions and calculate the overlap

integrals Sµν explicitly. They differ in the treatment of the core-core repulsion and how

the parameters for the integrals are obtained. MNDO and AM1 use atomic experimental

data that was assigned by hand, whereas the PM3 parameters were fitted on a large set

of experimental training data. All of these methods are available only for a small number

of elements, usually H, C, N, O, F, Si, P, Cl, Br and I.
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An older common INDO type method is SINDO1, [120] which is available for the elements

H, C, N, O, F, Li, Be, and B. For its modification, MSINDO, parameters exist also for

main group elements and transition metals of the third row. [121–123]

Within this thesis the more recent MNDO type methods PM6, and [124] PM7 [125] and

OM2 [126] have been applied. PM6 is a successor of PM3, which uses improved core-core

interactions, a spd basis set, and a more general parametrization for over 70 elements.

PM7 can be considered as the most general purpose semiempirical method. It aims at

correcting many faults of the PM6 method, and partially includes dispersion and hydro-

gen bond corrections. The OM2 method introduces two one-electron orthogonalization

corrections. The first one takes valence orthogonalization of the resonance integrals into

account and the second one includes the dominant core-valence repulsions through an

effective core potential.

2.3.2. Density functional tight binding methods

In a similar way the so far discussed conventional semiempirical methods are approx-

imations to HF theory, the density functional tight binding (DFTB) methods are ap-

proximations to DFT. The DFT energy of a system is obtained through solving the KS

equations (Eq. 2.24) and adding the nuclear-nuclear repulsion energy Enn. Within the

DFTB approach the electron density is expressed as the sum of a reference density ρ0 and

its deviation ∆ρ from the DFT ground state density ρ. The exchange-correlation energy

EXC is expanded in a Taylor series around ρ0 with respect to ∆ρ up to second-order.

EXC [ρ(r) + δρ(r)] =EXC [ρ0(r)] +

∫ [
δEXC [ρ(r)]

δρ(r)

]
ρ0

∆ρ(r) dr

+
1

2

∫ [
δ2EXC [ρ(r)]

δ2ρ(r′)

]
ρ0,ρ′0

∆ρ(r)∆ρ(r′) drdr′
(2.34)

The reference density ρ0 is build from a superposition of atomic densities and in order

to yield a reasonable molecular density, the atomic ones are compressed by an external
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2.3. Semiempirical methods

potential. The total energy is given as

E[ρ(r) + ∆ρ(r)] =
∑
i

〈φi| −
1

2
∇2 + Ven +

∫
ρ0(r′)

|r− r′|dr′ + vXC |φi〉︸ ︷︷ ︸
EH0

−1

2

∫
ρ(r)ρ(r′)

|r− r′| drdr′ −
∫
vXC [ρ0(r)]ρ(r) dr + EXC [ρ0(r)] + Enn︸ ︷︷ ︸

Erep

+
1

2

∫ (
1

|r− r′| +
δ2EXC

δρ(r)δρ(r′)

∣∣∣∣
ρ0,ρ′0

)
∆ρ(r)∆ρ(r′) drdr′︸ ︷︷ ︸

Eγ

(2.35)

The first term, EH0, is the energy contribution depending on the reference density ρ0

only. Since ρ0 is build from a superposition of atomic densities, the matrix elements of

the Hamiltonian H0
µν can be computed in an atomic orbital basis set in advance.

EH0 =
∑
i

∑
µ∈a

∑
ν∈b

nicµicνiH
0
µν (2.36)

The second contribution, Erep, is an approximation to the electron Coulomb interaction,

the core repulsion, and the exchange-correlation contributions. In a tight-binding ap-

proach, these are approximated as a sum of one-center terms and short-ranged two-center

potentials V rep
ab . As the atomic one-center contributions result in a constant shift which

cancels when considering energy differences, they are neglected within DFTB.

Erep =
1

2

∑
ab

V rep
ab [ρ0,a, ρ0,b, rab] (2.37)

The second order term is neglected in the original DFTB approach and in this case, the

energy can be obtained non-self-consistently. Within the self-consistent charge DFTB

(SCC-DFTB) the second order contribution is approximated with Eγ, which needs to be

evaluated self-consistently.

Eγ =
1

2

∑
ab

∆qa∆qbγab (2.38)

∆qa = qa − q0,a is the net charge of atom a and γ is a function that takes the electron-

electron interaction into account. γ is given by the integral over the product of two

normalized Slater-type spherical charge densities. For large distances rab, γab reduces to

1/rab and for a = b it describes the self-repulsion γaa = Ua introducing the Hubbard

parameter Ua.

The total energy within the SCC-DFTB method is given as a sum of these three con-
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tributions.

ESCC−DFTB = EH0 + Erep + Eγ (2.39)

=
∑
i

∑
µ∈a

∑
ν∈b

nicµicνiH
0
µν +

1

2

∑
ab

V rep
ab [ρ0,a, ρ0,b, rab] +

1

2

∑
ab

∆qa∆qbγab

(2.40)

Within this thesis only the SCC-DFTB approach is used, and for simplicity, the prefix SCC

is dropped in the following. Further, the latest third order inclusive version with empirical

damping of hydrogen containing pair-potentials and self-consistent charge redistribution

is employed, [127] and the 3OB Slater–Koster files constructed by Elstner and coworkers

are used. [128,129]

2.4. London dispersion corrections to DFT and HF

One problem that all mean-field methods, i.e. semi-local functionals as well as Hartree–

Fock and its semiempirical variants share, is that they cannot provide the correct −C6/R
6

dependence of the long-range correlation, so called London dispersion energy in the asymp-

totic limit. Here, R is the the inter-atomic distance. [3,4,23,24,31] Therefore, the description

of noncovalently bound systems, which are in the focus of this thesis, is usually bad. Over

the recent years, many different approaches to treat London dispersion were proposed. For

reviews and overviews of state-of-the-art dispersion corrections see Refs. [32–34]. In the

following, only the DFT-D scheme introduced by Grimme and coworkers will be discussed

in more detail as it was extensively used in this thesis. The DFT-D scheme provides a

semi-classical dispersion energy ED
disp that can simply be added to any converged DFT,

HF or SE-MO calculation.

EDFT -D = EDFT + ED
disp (2.41)

The correction is based on a perturbative treatment of the interaction and the multipole

expansion of the intermolecular potential V (R) at large distances R. The application of

perturbation theory leads to the potential for the dispersion energy Vdisp(RAB) of two

systems A and B. [3]

Vdisp(RAB) = −
∑

n=6,7,8,9,..

CAB
n

Rn
AB

(2.42)

The CAB
n are the system dependent nth order dispersion coefficients. There is no conven-

tion for the sign of the CAB
n in the literature. Within this thesis, positive CAB

n are used,

which gives rise to the minus sign in the definition of the inherently negative dispersion

energy and provides a stronger interaction for larger coefficients. For the approximation
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2.4. London dispersion corrections to DFT and HF

that the interacting systems are spherical the odd terms vanish and the resulting potential

Edisp = −1

2

∑
A 6=B

∑
n=6,8,10,..

CAB
n

Rn
AB

(2.43)

can be used to create an isotropic atom-pairwise dispersion correction to DFT. DFT

accounts for some correlation energy in the short- to medium-range regime, and the sum

in Equation 2.43 diverges for small RAB. Thus, the dispersion energy needs to be damped

for small distances.

The first version of the DFT-D dispersion correcting scheme (DFT-D1), was published

in 2004. [130] It takes only the leading order (dipole-dipole, CAB
6 ) term of the multipole ex-

pansion (Eq. 2.43) into account and introduces a damping function that lets the dispersion

energy vanish for short distances. The C6 dispersion coefficients are element-specific av-

erages over different hybridization states based on experimental dipole oscillator strength

distributions. DFT-D1 is only available for a few elements (H,C–Ne) and was therefore

extended in 2006. [131] The main change in the second version (DFT-D2) is that the C6 are

calculated using PBE0/QZVP values of the atomic static polarizabilities and ionization

potentials for all elements up to xenon via the original London formula for the dispersion

interaction. [31]

The major revision in 2010, named DFT-D3, [36] is less empirical than the previous

versions, and is the one that is extensively used in this thesis. It also includes a higher

order (dipole-quadrupole, CAB
8 ) term to account for medium-range dispersion effects.

ED3
disp = −1

2

∑
A 6=B

∑
n=6,8

sn
CAB
n

Rn
AB + fBJdamp(R

AB
0 )n

(2.44)

The CAB
n denote the averaged isotropic nth order dispersion coefficient for each atom

pair AB which depend on the coordination number. The dispersion coefficients CAB
6 are

computed starting from the Casimir–Polder formula. [132]

CAB
6 =

3

4

∫ ∞
0

αA(iω)αB(iω)dω (2.45)

α(iω) is the averaged dipole polarizability at imaginary frequency ω calculated ab initio

by time-dependent (TD) DFT for appropriate reference systems. The higher-order coef-

ficients are calculated from the CAB
6 with a recursion formula.

The sn in Equation 2.44 are the global scaling factors. For common density functionals s6

is usually set to unity to ensure the correct asymptotic behavior, whereas s8 is optimized

for each functional. Note that the s8 was set to zero for most of the Minnesota class

functionals except M05 due to double counting of the medium-ranged dispersion that is
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fitted into the functionals themselves.

The initially proposed damping function is very close to the damping function used

in DFT-D1/2. As the dispersion energy vanishes for short distances, this damping is

called zero-damping and thus, the correction scheme is dubbed D3(0). Problematic is

that the zero-damping may result in unphysical repulsion forces. Becke and Johnson (BJ)

introduced a rational damping function fBJdamp that leads to a constant contribution of the

dispersion energy to the total correlation energy from spatially close, i.e. directly bonded,

pair of atoms. [133,134]

fBJdamp(R
AB
0 ) = a1R

AB
0 + a2 (2.46)

a1 and a2 are fitting parameters and RAB
0 =

√
CAB

8 /CAB
6 is the cut-off parameter. This

BJ-damping function is the default in the DFT-D3 scheme and thus, we will refer to it as

DFT-D3 instead of DFT-D3(BJ) in the following. [37]

The dispersion energy is mainly additive but non-additive many-body contributions

can play a role in large systems that are in the focus of this thesis. The importance of

many-body dispersion interactions has been recently analyzed by various groups. [135–137]

Within the D3 dispersion correction scheme an Axilrod-Teller-Muto (ATM) type three-

body (dipole-dipole-dipole) term is available. [138,139]

E
(3)
disp = −1

6

∑
A 6=B 6=C

CABC
9 (3 cos θa cos θb cos θc + 1)

(RABRBCRAC)3
f 0
damp(R

AB
0 ) (2.47)

θa, θb and θc are the three angles between the three atoms A, B and C, and RAB, RBC

and RAC are the respective interatomic distances. The CABC
9 dispersion coefficients are

approximated from the C6 coefficients.

CABC
9 ≈ −

√
CAB

6 CBC
6 CAC

6 (2.48)

The damping function is the zero-damping variant similar to the one used in DFT-D1/2.

It employs geometrically averaged distances and averaged cut-off radii as well as modified,

functional independent parameters. Note that the three-body term is usually repulsive

for dense systems.

A drawback of the D3 scheme is its semiempirical character and the need of a parameter

fit for every functional. Further, the D3 correction does not depend on the density and

thus, the electronic structure is not directly affected. Although, an indirect effect due to

the altered geometry (coordination number) is present. The independence on the density

can be advantageous for semiempirical methods, since their density is usually inaccurate.

Another flaw is that the C6 coefficients are not reasonable if no appropriate reference

systems exist. Therefore, the D3 scheme can be problematic for anions, cations, organo-
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metallic compounds, and systems with a small or vanishing gap, e.g. metals.

One advantage of the D3 scheme over other dispersion corrections is its availability for

almost all elements in the periodic table and its possible combination with all relevant

HF, DFT and semiempirical methods. Further, the computation is extremely fast and

analytical nuclear gradients exist. Even for thousands of atoms the scaling behavior with

system size is low and the computational pre-factor is small. Another benefit is that the

corrections can simply be added on top of any DFT, HF or semiempirical calculation

without the necessity for a specific implementation into a program package.

2.5. Gas phase thermodynamic properties

Up to now, potential and kinetic energies of electrons and nuclei in a single atom or

molecule and the total electronic energy of that atom or molecule were regarded. As

in a chemical reaction usually an ensemble of molecules is present, this chapter deals

with the necessary steps to make the transition from single-molecule energies to ensemble

thermodynamic variables.

Within the BO approximation the electronic energy is calculated for a fixed nuclear con-

formation that is treated classically. Even if nuclear motion on the BO potential energy

surface (PES) is allowed, no quantum effects for the nuclei are considered. Nevertheless,

there exists a lowest non-zero vibrational energy level for any bound molecule. In order

to obtain the full energy at zero temperature (T = 0), the zero-point vibrational energy

(ZPVE) hat to be taken into account. The usual approach to describe molecular vibration

is the quantum harmonic oscillator (HO) approximation. The nuclear Schrödinger equa-

tion for a quadratic potential needs to be solved in order to obtain the energy eigenvalues

for the nuclear vibrations. With a transformation into a unique set of mass-dependent,

vibrational normal coordinates q it is possible to separate the initially 3N dimensional

equation into 3N one-dimensional Schrödinger equations.[
− 1

2µi

d2

dq2
i

+
1

2
ki(qi − qeq,i)2

]
Ξ(qi) = EΞ(qi) (2.49)

There, µi is the reduced mass, ki is the bond force constant, i.e. the second derivative of

electronic energy with respect to qi at qeq,i. These equations can be solved analytically,

their eigenfunctions are products of Hermite polynomials and Gaussian functions, and
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their energy eigenvalues Ei,n depend on the force constant and the reduced mass.

Ei,n =

(
n+

1

2

)
~ωi (2.50)

ωi =
1

2π

√
ki
µi

(2.51)

ωi is the vibrational frequency of the ith vibrational mode, and ~ is the reduced Planck

constant. The lowest energy level for each normal vibration is then given as ~ωi/2 and the

sum over all these energies defines the zero-point vibrational energy. Adding the ZPVE

to the electronic energy yields the the internal energy U0 for a molecule at 0 K.

U0 = Eelec +
modes∑
i

1

2
~ωi (2.52)

As the least harmonic modes are soft modes, e.g. weakly hindered torsions, which have

small vibrational frequencies, their contribution to the ZPVE is also small. Thus, the

harmonic oscillator approximation provides good results for the ZPVE if the frequencies

themselves are accurate enough. Since the second derivatives of the energy with respect

to the nuclear coordinates gets very expensive for large systems, a common approach

is to scale the frequencies obtained with simpler and less accurate electronic structure

methods. E.g. for HF a scaling factor of about 0.9 is necessary to bring the computed

frequencies in good agreement with experiment.

A number of molecules at T > 0 are described with statistical mechanics, which requires

certain external conditions to be constant. For a canonical ensemble these constants are

the total number of identical molecules N , the volume V and the temperature T . The

canonical ensemble is described by its partition function Q(N, V, T ).

Q(N, V, T ) =
∑
i

e−Ei(N,V )/kBT (2.53)

The index i runs over all possible energy states Ei of the system and kB is Boltzmann’s

constant. Within the canonical ensemble the internal energy U , the enthalpy H, the
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2.5. Gas phase thermodynamic properties

entropy S, and the Gibbs free energy G can be calculated from its partition function.

U = kB T
2

(
∂lnQ

∂T

)
N,V

(2.54)

H = U + PV (2.55)

S = kB lnQ+ kB T

(
∂lnQ

∂T

)
N,V

(2.56)

G = H − TS (2.57)

The problem is that finding an explicit expression for Q(N, V, T ) for the real system is

non-trivial, and therefore, simplifications are made. First, the ensemble is approximated

as an ideal gas. Thus, the indistinguishable molecules do not interact with each other,

which reduces the problem of finding the partition function of the ensemble Q(N, V, T )

to finding a molecular partition function q(V, T ). Further, the PV term in the enthalpy

equation (Eq. 2.55) can be replaced with NkBT . Second, the molecular energy is assumed

to be a separable sum of electronic, translational, rotational, and vibrational terms, which

leads to a molecular partition function which is a product of these individual components.

Q(N, V, T ) =
[q(V, T )]N

N !
(2.58)

q(V, T ) = qelec(T ) qtrans(V, T ) qrot(T ) qvib(T ) (2.59)

The electronic and translational partition functions will not be discussed further, as

their resulting contribution to U and S is either zero (qelec) or very small (qtrans) for

common and within this thesis considered closed-shell molecules. To find an expression

for the molecular rotational partition function, the molecule is assumed to be a quantum

rigid rotor (RR). For a diatomic molecule, the rigid rotor Schrödinger equation can be

solved and the analytical expression for the energy eigenvalues EJ , which depends on the

moment of inertia I, is:

EJ =
J(J + 1)h2

8π2I
(2.60)

The solution for the diatomic case is general for any linear molecule, as long as I is com-

puted in the appropriate way for the whole molecule. The solution for the general rigid

rotor with three unique axes and associated moments of inertia is non-trivial. There-

fore, the generalization of the classical rigid rotor problem is transferred to the quantum

problem and a simple expression for the rotational partition function is possible.

qrot(T ) =

√
πIAIBIC
σ

(
8π2kBT

h2

)3/2

(2.61)
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2. Theoretical background

IA, IB, and IC are the principal moments of inertia, and σ is a symmetry number, that

gives the number of pure rotations that carry the molecule into itself. With qrot(T ) the

rotational contributions to the internal energy Urot and the entropy Srot can be derived.

Urot =
3

2
RT (2.62)

Srot = R

[
3

2
+ ln

(√
πIAIBIC
σ

(
8π2kBT

h2

)3/2
)]

(2.63)

R is the gas constant and kB is Boltzmann’s constant. Any methodology which yields

accurate geometries and thus, accurate principal moments of inertia is useful for con-

structing the rotational partition function and the thermodynamic variables computed

therefrom.

To construct an expression for the molecular vibrational partition function qvib(T ), it

is assumed that the vibrational energy can be expressed as a sum of individual energies

associated with each mode. Each of theses 3N − 6 vibrational modes is described within

the quantum harmonic oscillator approximation (Eq. 2.49, Eq. 2.50). If the ZPVE is

included in the zero of energy U0 (Eq. 2.52), the zeroth vibrational energy level is zero

for every mode. The vibrational partition function qvib(T ) is a product of all partition

functions of the individual modes.

qvib(T ) =
3N−6∏
i

( ∞∑
k

e−khωi/kBT
)

=
3N−6∏
i

(
1

1− e−hωi/kBT
)

(2.64)

As the vibrational modes are treated as independent variables, a full geometry optimiza-

tion and subsequent evaluation of the frequencies via the second derivatives is necessary

to compute the vibrational contributions to the internal energy Uvib and the entropy Svib.

Uvib = R

3N−6∑
i

hωi
kB(ehωi/kBT − 1)

(2.65)

Svib = R

3N−6∑
i

[
hωi

kBT (ehωi/kBT − 1)
− ln

(
1− e−hωi/kBT

)]
(2.66)

Low-lying vibrational frequencies are inaccurate in the harmonic treatment and the nu-

merical noise in standard quantum chemical calculations causes further errors. Unfortu-

nately, they have a great impact on the vibrational entropy since the Bose-Einstein factor

diverges for small frequencies (Eq. 2.66). Thus, an interpolated rigid-rotor-harmonic-

oscillator (RRHO) approach proposed by Grimme will be used. This partially replaces

the contribution of the low-lying modes to the entropy by a corresponding rotational en-

tropy. [46] For any low-lying normal vibrational mode the moment of inertia µ of a rigid
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2.6. Continuum solvation models

rotor with the same energy is calculated from the frequency. To restrict this quantity to a

reasonable value, the average molecular moment of inertia Iav is used a as limiting value

for very small ω and thus, very large µ.

µ =
h

8π2ω
(2.67)

µ′ =
µIav
µ+ Iav

(2.68)

Via the effective moment of inertia µ′ the entropy of a low-lying mode is evaluated as a

rotational entropy given in Equation 2.63.

In order to smoothly interpolate between the rotational and harmonic treatment of the

vibrations, Srot and Svib are combined by using the Head-Gordon weighting function

w(ω). [105]

S = w(ω)Svib + [1− w(ω)]Srot (2.69)

w(ω) =
1

1 + (ω0/ω)4
(2.70)

This approach ensures interpolation between the harmonic vibrational entropy for ω � ω0

and a pure and finite rotational entropy for small ω. The default value for ω0 is 100 cm−1.

A similar cut-off value has recently been used by Truhlar and co-workers. [140,141]

2.6. Continuum solvation models

So far, all energies and thermodynamic properties have been regarded in the gas phase.

However, most of chemistry including all of biochemistry takes place in solution and

solvation effects are often crucial. Especially for supramolecular host-guest systems which

are in the focus of this thesis it is common to tune the binding constant of a specific host-

guest complex by changing the polarity and size of the solvent molecules. [16,17] From a

theoretical point of view, describing a chemical reaction in a solution is a very complex

problem, and the involved possibilities of an explicit treatment of solvation via molecular

mechanics will not be discussed. Within this thesis the simpler approach of an implicit

treatment of the solution environment via continuum solvation models [142,143] has been

employed and these methods are introduced briefly in this chapter.

All implicit solvation models are based on the Poisson equation of classical electrostatics,

which expresses the electrostatic potential φ(r) as a functions of the charge density ρ(r)

and the dielectric constant ε of the medium.

∇2φ(r) = −4πρ(r)

ε
(2.71)
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2. Theoretical background

The explicitly treated solute forms a cavity inside the homogeneous dielectric medium and

thus, there are two regions, one inside and one outside the cavity, for which the Poisson

equation can be formulated as:

∇ε(r) · ∇φ(r) = −4πρ(r) (2.72)

The cavity for a given solute, also called the solvent accessible surface (SAS), can be

constructed e.g. by superposition of atomic spheres with respective Van-der-Waals radii.

For arbitrarily shaped cavities, the analytical solution of the Poisson equation is not

possible. In order to solve the equation numerically, the SAS is tessellated into i surface

segments with an area si.

Instead of solving the resulting equations for the exact dielectric boundary conditions

the conductor-like screening model (COSMO) approximates the dielectric medium as a

perfect conductor, i.e. ε is infinite. Thus, the electrostatic potential vanishes at each of

the surface segments and the resulting equations are much easier to solve.

Aq + f(ε) BQ = 0 (2.73)

The vector q contains the outside surface charges qi and Q contains the given inside

screening charges Qi of the solute cavity segments. The matrices A and B generate the

electrostatic potential on the surface segments and the solute cavity segments, respectively.

f(ε) is a scaling function for the screening charges in order to achieve an approximation

for a finite dielectric.

f(ε) =
ε− 1

ε+ 0.5
(2.74)

The surface charges qi can be used as external charges within the SCF procedure of a

HF or DFT calculation. Due to the altered electron density and subsequent change in

the surface charges, the solute electron density and the polarization charges are iterated

to self-consistency. COSMO is a purely electrostatic model that influences the electronic

energy only. Explicit solute-solvent interactions like hydrogen bonding or dispersion in-

teractions are neglected and a solvation correction to the free energy is not accessible.

The conductor-like screening model for real solvents (COSMO-RS) overcomes these

deficiencies by using the screening charge densities σ from a precedent COSMO calculation

to calculate the chemical potential µ of a solute in solution. [41,42] Based on the resulting

chemical potentials other thermodynamic equilibrium properties such as the free energy

of solvation, activity coefficients, partition coefficients, solubility, and vapor pressure are

available.

Within the COSMO-RS model, the liquid phase is approximated to be incompressible.
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2.6. Continuum solvation models

Further, it is assumed that all parts of the solute and solvent molecule surface can be

in contact with each other, but only pairwise interactions of the surface segments are

allowed. For the solute as well as the solvent molecule a histogram of the charge densities

p(σ), the so called σ profiles are constructed and are the only information used. This

way, all geometrical constrains vanish and the statistical thermodynamics of the liquid

ensemble reduces to the much simpler statistical thermodynamics of the corresponding

ensemble of pairwise interacting surface segments. For an ensemble S of solvent molecules

the chemical potential µS is determined as

µS(σ) = −kBT
aeff

ln

∫
pS(σ′) exp

(
−aeff (Eint(σ, σ

′)− µS(σ′))

kBT

)
dσ′ (2.75)

where aeff is the effective area of the surface segment. The interaction energy Eint is the

sum of the electrostatic Emisfit and the hydrogen bonding energy Ehb.

Emisfit(σ) =
α

2
(σ + σ′)2 (2.76)

Ehb(σ) = chb(T ) min[0, σσ′ − σ2
hb] (2.77)

α, Chb, and σ2
hb are fitting parameters, obtained from a large training set of data. The

electrostatic interaction has been dubbed ”misfit” energy because it results from the

mismatch of the interacting charged surface segments compared to the perfect conductor.

Equation 2.75 needs to be solved iteratively, usually starting with µS = 0. After

convergence, µS describes the affinity of a solvent S for a molecular surface of polarity

σ. The chemical potential of any solute molecule X in this solvent S is calculated by

integrating µS over the surface of X.

µXS =

∫
pX(σ)µS(σ)dσ + µXcomb,S + µdisp (2.78)

µXcomb,S is a combinatorial correction term and µdisp is the dispersion contribution, which

is originally a simple surface proportional term but has been replaced by the D3 scheme

(see section 2.4) in the newest version.

One of the main advantages of COSMO-RS is its capability to treat all kinds of solvents

and solutes. For a solvent mixture, the respective σ-profiles are simply averaged according

to their mole fractions. Within this thesis, the COSMO-RS model has been successfully

employed for the computation of free energies of solvation.
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Part II contains two chapters on the evaluation and development of cost-efficient DFT

and HF based methods for the description of noncovalent interactions. It has been shown

that dispersion corrected hybrid density functional approximations together with a large

atomic-orbital basis set yield accurate interaction energies for noncovalently bound sys-

tems. [35,46,86,144] However, if the systems are larger than a few hundred atoms, like small

proteins, or if there are many of them, e.g. whenever sampling various binding conforma-

tion for a given host-guest complexes is necessary, these calculations are too expensive.

Several semiempirical methods exist (see Chapter 2.3) which are two to three orders of

magnitude faster than HF or DFT calculations in a large basis set. But even if a dispersion

correction is used, the interaction energies are typically not accurate enough. Therefore,

the following two chapters aim at filling the gap between the semiempirical methods and

the DFT/large basis calculations in terms of cost and accuracy (See Figure 2.1).

The first idea that comes to mind when the computational cost has to be decreased, is

the reduction of the number of basis functions. Thus, Chapter 3 evaluates the accuracy

of DFT and HF calculations with double-zeta basis sets. B3LYP/6-31G* has been in

extensive use for years and which can yield surprisingly good results for various systems

and reactions. As mentioned before, a semi-local density functional cannot describe the

asymptotically correct 1/R6 dependence of the London dispersion energy on the inter-

atomic distance R. However, if a dispersion correction is applied, the results are often

worse. This is due to the basis set superposition error (BSSE), which is the second

major error source in a DFT or HF calculation with a small basis set and thus, a second

correction is needed. Both errors are analyzed further in Chapter 3 and modern correction

schemes to include dispersion and prevent BSSE are presented. Among other methods,

the combination of the D3 dispersion correction scheme [36,37] with a recently published

HF-D3
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Figure 2.1.: Sketch of the cost-accuracy ratio of several quantum chemical methods. A
dispersion correction is assumed in all cases.
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very efficient geometric counterpoise correction (gCP) [47] to correct for the BSSE is used

which has shown promising results before. [145,146] An exemplary benchmark study on

interaction energies and geometries of noncovalently bound dimers, host-guest complexes

and organic molecular crystals is presented in order to compare the accuracy of those

correction schemes and to evaluate the improvement over plain DFT and HF.

When the basis set is reduced even further to a minimal basis set, the basis set incom-

pleteness error (BSIE) becomes problematic. A novel HF based method that includes

dispersion, and corrects for BSSE and BSIE (HF-3c) is introduced in Chapter 4 Three

atom-pairwise corrections are added on top of a HF calculation in a minimal basis set.

These are the D3 dispersion correction scheme, [36,37] the gCP correction to efficiently cor-

rect for BSSE, [47] and a short-ranged correction to compensate for the BSIE effects. HF-3c

has nine global parameters and is less empiric than conventional semiempirical methods,

but it is about a factor of 50 slower. Nevertheless, in terms of cost and accuracy HF-3c

might fill the gap between existing semiempirical methods and density functionals with

a large basis set. The accuracy of HF-3c is evaluated for the geometries of small cova-

lently bound organic molecules, geometries and interaction energies of small noncovalent

dimers and large supramolecular host-guest systems, geometries of small proteins, and

thermostatistical corrections.
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periodic systems

Abstract

In quantum chemical computations the combination of Hartree–Fock or a density func-

tional approximation with relatively small atomic orbital basis sets of double-zeta quality

is still widely used, e.g., in the popular B3LYP/6-31G* approach. We critically analyze

the two main sources of error in such computations, that is the basis set superposition

error on the one hand and the missing London dispersion interactions on the other. We

review various strategies to correct those errors and present exemplary calculations on

mainly noncovalently bound systems of widely varying size. Energies and geometries of

small dimers, large supramolecular complexes, and molecular crystals are covered. We

conclude that it is not justified to rely on fortunate error compensation, as the main

inconsistencies can be cured by modern correction schemes which clearly outperform the

plain mean-field methods.

3.1. Introduction

Kohn-Sham density functional theory (KS-DFT, or simply DFT in the following) [147,148]

has evolved to be today’s most widely used electronic structure method and has emerged

as the theory of choice for application to various problems in the chemical and physical

science. Due to its good cost-accuracy ratio this especially holds for large molecular sys-

tems and solids. The number of collaborative experimental and theoretical studies grew

tremendously in the last decade. The usage of complementary theoretical and experimen-

tal information can generate valuable new insights and it is nowadays possible to explain

and describe various phenomena in a detailed mechanistic way based on routine quantum

chemical calculations.

DFT is considered as the natural theory for extended systems but its current, partially

semiempirical character requires extensive benchmarking on theoretical or experimental

reference values. Over the past years, such benchmark studies have been carried out

with diligence, mainly focusing on energetic properties [86,149,150] and more recently also

regarding structures of small to medium sized molecules [150–153]. However, the number

of proposed density functionals is already too huge to be covered comprehensively. Con-

sequently, the task to select an appropriate and efficient level of theory for a specific

problem is highly non-trivial. Thus, it comes as no surprise that non-experts often choose

methods purely because of their popularity and those are not necessarily the best options

for their application. This eventually results in a waste of computational as well as human

resources.

One prominent example is the combination of the B3LYP functional [88,92,96,154] with the

6-31G* double-ζ one-particle AO basis set [155] in particular, or similar functionals with a
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Figure 3.1.: SciFinder [156] hits (dated May 2015) for journal articles containing the B3LYP
functional in combination with DZ (6-31G*, def2-SVP, cc-pVDZ, aug-cc-
pVDZ), TZ (6-311G*, def2-TZVP, cc-pVTZ, aug-cc-pVTZ) and QZ (def2-
QZVP, cc-pVQZ, aug-cc-pVQZ) basis sets from the periods 1995-2005 and
2005-2015.

small double-ζ (DZ) basis set in general. Over the last decade the computational power

has increased immensely and using a well converged basis set (BS) is feasible in many

cases. A search with SciFinder [156] for the exemplary B3LYP functional reveals that the

ratio of journal articles using it in combination with a DZ basis and those using it with

a triple-ζ (TZ) basis is roughly the same compared to the previous decade. In the years

1995 to 2005 this ratio was about 3.5:1 and it only dropped slightly to about 3:1 during

the last decade (Figure 3.1).

In 2005 Ahlrichs et. al published the efficient def2-SVP (DZ) and def2-TZVP (TZ) BSs

which were specifically designed for SCF calculations. However, the 6-31G* (DZ type)

and 6-311G* [157] (TZ type) published by Pople et. al in 1972 and 1980, respectively, are

still widely used in DFT calculations.

Compared to the citations of DZ and TZ basis sets, the number of articles employing

B3LYP in combination with quadruple-ζ (QZ) type expansions is tiny. Utilizing QZ

basis sets in HF or DFT calculations leads to results which are chemically very close

to the complete basis set (CBS) limit and this is our general recommendation if this

level is affordable. Because of the faster BS convergence compared to correlated post-

Hartree–Fock methods, normally no further BS extrapolation scheme is needed. However,

these calculations are routinely possible on standard workstations only for medium-sized

systems with about 100 atoms or less.

If the system size increases, or one has to perform very many calculations, and one
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is rather limited in the computational resources, as most mainly experimentally working

groups are, a DZ basis is sometimes the only choice. Even with modern computational

equipment, a sufficiently fast, and at the same time, reasonably accurate and interac-

tion consistent electronic structure method is mandatory for the screening of a large

conformational space, for instance in the fast growing field of organic crystal structure

prediction. [158–160] Therefore, in this short review article we want to emphasize the prob-

lems that arise from using a small DZ or related BSs, give an overview of methods to

circumvent these problems, and discuss some exemplary calculations to provide a survey

on the accuracy of the selected methods. This work extends our previous activities in the

field which were focused specifically on B3LYP/6-31G* thermochemistry [145]. For related

papers concerning noncovalent interactions see Refs. [32–34,161–165]

3.2. Problems of double-ζ basis sets

There are two major shortcomings of small BS Hartree–Fock (HF) or DFT calculations.

The first one is the BS error. This error can be split further into the basis set superposition

error (BSSE) and the basis set incompleteness error (BSIE).

Almost all quantum chemical simulations rely on systematic error compensations be-

tween the initial (reactant) and final state (product) calculation. The BSSE is caused by

the fact that with a small BS the monomers and the complex in a reaction are not treated

on equal footing which destroys the error compensation. Typically, this is discussed in

the context of noncovalently bound complexes but the same phenomenon also appears for

covalent bond-forming chemical reactions as well as in intramolecular transformations. In

a dimer complex AB the BS is larger than the individual ones of the monomers A and B

because the unoccupied orbitals from A can be used by B and vice versa. This variational

’borrowing’ of basis functions leads to an artificial energy lowering of the complex.

The most common approach to circumvent an intermolecular BSSE is the counter-

poise (CP) correction scheme proposed by Boys and Bernadi (BB-CP) [166]. The BB-CP

counterpoise correction ∆ECP for a dimer complex AB is defined as

∆ECP = E(A)a − E(A)ab + E(B)b − E(B)ab (3.1)

where a and b are the BSs belonging to the monomers A and B in their frozen AB complex

geometries. This approach is also termed molecular CP correction as only two fragments

(the former monomers) are taken into account. Although the BB-CP approach is not

free of criticism [167–169], it is widely used and found to be a robust approximation for the

self-consistent field (SCF) methods HF and DFT when applied to molecular aggregates.

The BSSE depends on the number of virtual functions that are supplied by the addi-
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3.2. Problems of double-ζ basis sets

tional fragment in the complex and on their respective overlap. Because the HF/DFT

total energies converge exponentially with respect to the BS size, the initial increase of

BSSE with BS size eventually decreases as the CBS limit is approached. The electron

density decays exponentially with the distance and the corresponding exponent is deter-

mined by the ionization potential of the fragment. [170,171] Because the inclusion of Fock

exchange in a hybrid functional increases the ionization potential, this leads to a more

compact density, a smaller density overlap of neighboring atoms, and a maller BSSE. This

can be qualitatively described as

EBSSE ∝ Nbf × exp (−Nbf )× exp
(
−
√

2 I r
)
, (3.2)

with the number of virtual basis functions Nbf , ionization potential I, and electron-

molecule distance r. We have adjusted this function with variable pre-factors to the

Boys-Bernadi CP energy of the S66 [172] noncovalent dimers (see below) for functionals with

varying amount of Fock exchange (PBE: 0%, B3LYP: 20%, PBEh-3c: 42%, HF: 100%)

and increasing BS size (MINIX, def2-SV(P), def2-TZVP, def2-QZVP). The corresponding

contour plot is shown in Figure 3.2.
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Figure 3.2.: Contour plot of the relative BSSE as a function of the basis set size (minimal,
DZ, TZ, QZ) and the amount of Fock-exchange. An interpolating function
(equation 3.2) was fitted based on the S66 Boys-Bernardi counterpoise ener-
gies calculated for the functionals PBE, B3LYP, PBEh-3c, and HF.

The BSSE is most pronounced for medium sized BSs of double-ζ quality and can be

more than 40% of the binding energy. In a minimal BS, the neighboring fragment has

only few (even zero for rare gas atoms) virtual orbitals and the extension of the variational

freedom is minor (small BSSE). In a CBS, the virtual space is huge, but the energy gain is
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zero because it is already converged in the single fragment basis (no BSSE). For medium

sized BSs, the increase in the number of virtual functions and the corresponding lowering

of the energy can be substantial. In general, BSSE leads to overestimated binding energies

and underestimated interatomic distances.

Similar to the formation of a complex out of monomers, one part of a molecule such

as a functional group can borrow basis function from another nearby part. This leads

to the concept of intramolecular BSSE (IBSSE). [173–175] A uniform and clear definition

of the IBSSE is missing, but its influence on energetics and structures of molecules has

been recognized. The BSIE is an inherent problem of any finite BS expansion. It leads

to insufficient descriptions of physical effects such as Pauli repulsion, electrostatics and

polarization and thus, often to a systematic lengthening of bonds [176]. In practice, BSSE

and BSIE are not strictly distinguishable but we will focus on the effects due to BSSE in

the following.

Though one should try to minimize the BSSE (corresponding to the ’green areas’ in

Figure 3.2), a small BSSE is not a sufficient criterion for a good basis set. A minimal

BS for instance has a relatively small BSSE, but cannot describe certain physical effects

like polarization well. Furthermore, additional basis functions do not automatically lead

to a more complete basis. They need to have the proper shape, which is a non-trivial

requirement and basis set optimizations have been carried out for decades. We typically

find the Ahlrichs sets optimal for molecular SCF type calculations and they have been

only slightly adjusted and optimized for composite methods like PBEh-3c. [177] Similarly,

the amount of HF exchange should not be increased too much to lower the BSSE because

this would eliminate the account of important (static) electron correlation effects. The

correct electron density can be best reproduced with a medium amount of HF exchange

(about 20% to 50%), but other options (GGA or plain HF) can have advantages, too.

The second major shortcoming of common HF and (semi-local) DFT approximations is

the inherent lack of a correct description of the London dispersion energy. For large inter-

atomic distances > 4.5 Å the interaction between atoms or comparably unpolar molecules

is dominated by long-range correlation effects, called London dispersion. This type of

interaction has a −C6/R
6 distance dependence and are not included in any semi-local

exchange-correlation functional. Modern density functionals exist [100,178], which include

correlation effects in the medium distance regime (2.5 to 4.5 Å) to a strongly varying

degree but they do not provide the correct asymptotic behavior. Density functionals with

a non-local correlation kernel exist and have been shown to yield reasonably good geome-

tries and reasonably accurate binding energies [179–181]. While these special functionals can

in principle also be evaluated in small basis sets, this combination is rarely applied and

in the present review we focus on inherently more efficient methods.

The reason why small BS DFT (or HF) calculations like B3LYP/6-31G* can perform
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Figure 3.3.: Distance behavior of the dispersion energy and BSSE as calculated with
second-order DFT-SAPT and the Boys-Bernadi counterpoise scheme, respec-
tively, for the PBE0/SV(P) method on the S66x8 molecular dimers. The indi-
vidual energies with integrated contributions in 0.5 Å bins (bars, left) and the
possible error compensation if both contributions are neglected (bars, right)
are shown. The crosses refer to the individual values for the 528 complex
geometries. Note that while the BSSE is a negative quantity which has the
same sign as the stabilizing dispersion energy, the plotted CP correction is
positive (repulsive).

surprisingly well is immediately recognized when looking at the two largest error sources

and their (partial) compensation. The first one is the BSSE which leads to too strongly

bound complexes while the second flaw is the missing London dispersion energy resulting

in too weak interactions. The prerequisite for a favorable error compensation is that

dispersion and BSSE are of similar magnitude in a sufficiently large distance regime.

However. this does not hold in general due to the fundamentally different functional

dependence of BSSE and dispersion with respect to the distance separation, (exponential

vs. R−6) which is highlighted in Figure 3.3. We have calculated the dispersion and BSSE

contribution for the S66x8 set (66 molecular dimers at eight different center of mass

distances) with DFT-SAPT [182,183] and the Boys-Bernadi method, respectively, at the

PBE0/SV(P) level. While the two contributions roughly cancel each other on average

(bars, right plot), the individual values for the complexes have a significant scatter showing

that either dispersion or BSSE can dominate. It is clear that systematically accurate

results can not be obtained if both contributions are not properly included.

If we assume that BSSE and London dispersion effects cancel precisely at the equi-

librium distance of the stacked benzene dimer, this can not hold for non-equilibrium

distances (compare with Figure 3.4). Thus, for reliable results one needs to correct for
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r < req r = req r > req

BSSE
correction Dispersion Dispersion DispersionBSSE

correction
BSSE

correction

Figure 3.4.: Sketch of the error compensation between BSSE and dispersion. In this ex-
ample for the noncovalently bound benzene dimer we assume that they are
balanced at the intermolecular equilibrium distance. This is not the case for
smaller or larger distances due to the different distance dependence of BSSE
and dispersion. The BSSE decays exponentially whereas dispersion decreases
slower with R−6.

both dispersion and BSSE at the same time. In the following section we will present

an overview over existing methods that were designed for that purpose and are used in

combination with HF or DFT.

3.3. Methods treating dispersion and BSSE

One possibility to include London dispersion effects in DFT calculations is to correct the

long-range interaction by atom-centered potentials, so called dispersion correcting poten-

tials (DCPs) [184–186]. Though the correct physical terms leading to the London dispersion

interaction (zero point energy of coupled frequency dependent polarizabilities) cannot be

described by DCPs, their mathematical form together with parameter adjustment can

empirically capture attractive dispersion-like forces to a rather high degree. The DCPs

designed by DiLabio et al. resemble traditional effective core potentials (ECPs) and

are similar to the earlier plane-wave approach proposed for periodic DFT by Lilienfeld

et al. [187,188]. The general idea is to use a set of reference data and fit the interaction

which is not covered by the density functional into additional atom-centered potentials.

These potentials need a high degree of flexibility and should distinguish atoms in different

hybridization states.

Typical potentials Ul(r) are composed of atom-centered Gaussian-type functions and
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have the following form:

Ul(r) = r−2

Nl∑
i=1

cli r
nli e−ξlir

2

(3.3)

where l is the angular momentum, Nl corresponds the number of Gaussian functions, nli

is the power of r (electron-nucleus distance), cli is the coefficient of the Gaussian function,

and ξli is its exponent.

For B3LYP-DCP [185] the nli are fixed to the value of two and the exponents and coef-

ficients were optimized for a set of 16 noncovalently bonded dimers. Two sets of DCPs

have been developed: one intended for use with a CP correction and one for use without.

The latter also compensate for the BSSE to a significant extent. Thus, BSSE and disper-

sion are treated simultaneously but the correct R−6 asymptotic behavior of the London

dispersion is not met (though this is in principle possible by a complete expansion with

all orders in Nl).

The advantage of this approach is its simple implementation and that DCPs can be

used with any computational chemistry program package that can handle ECPs. The

corresponding exponents and coefficients for each element are provided in the input files

and no modifications of the program themselves are necessary. Further, with the use of

DCPs or related approaches, dispersion effects are included on the electronic structure

level and the electron density can adjust to these effects. A disadvantage in particular

for large systems is that the incorporation of DCPs into the self consistent field (SCF)

procedure often increases the number of cycles needed for convergence and hence the

overall computational time. Another drawback is that a DCP has to be fitted for each

element in combination with a specific density functional and a given BS. For each element

one has to gather enough reliable reference data, which can be difficult when aiming at

an extension to heavier elements. Currently, for small DZ basis sets, which are the focus

of this review article, DCPs are available for the elements H, C, N and O and the B3LYP

functional [185,186]. They are suitable for the 6-31+G(d,p) basis set or larger, but the

use of 6-31+G(2d,2p) is recommended. The first DCP for the carbon atom needed to

be revised due to the too large exponents that hampered the correct description of C-C

bond breaking or bond formation and with the revised DCP, noncovalent interactions and

covalent chemical reactions are described with similar accuracy [186]. We will refer to and

use these improved DCPs throughout this article.

In the original publication the performance of B3LYP-DCP/6-31+G(2d,2p) for nonco-

valent interactions was tested on several benchmark sets and we will give here only some

examples. Its accuracy for the S66 [172] test set of small noncovalently bound dimers is

excellent. The mean absolute deviation (MAD) of the binding energies compared to the

reference is only 0.19 kcal mol−1. For comparison, B3LYP-D3(BJ) with the quadruple-ζ

basis set def2-QZVP yields an MAD of 0.28 kcal mol−1 [189]. For the HSG [190] set of 21
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dimers and trimers which are present in the complex of the inhibitor indinavir and HIV-II

protease the performance is also encouraging. The MAD compared to the revised refer-

ence values (HSG-A [191]) is 0.16 kcal mol−1. Further, B3LYP-DCP/6-31+G(2d,2p) was

applied to the S12L [46] set of supramolecular complexes. One out of the 12 complexes

contains a Cl atom and another one involves Fe. As no DCPs exist for Cl and Fe these

atoms were left uncorrected. The final MAD for the (reduced) S12L set is 2.6 kcal mol−1.

This result is similar to those obtained with PBE-D3 or PBE-NL in combination with

def2-QZVP (2.1 and 2.3 kcal mol−1, respectively) [192]. Overall, these examples show, that

B3LYP-DCP/6-31+G(2d,2p) as a method on the double-ζ level can provide results of

quadruple-ζ quality.

Its good performance was confirmed by Goerigk who compared B3LYP-DCP, B3LYP-

NL and B3LYP-D3(BJ) in combination with the 6-31+G(2d,2p) basis set for noncovalent

complexes, relative energies of conformers, basic properties and reaction energies [34]. An

overall comparison revealed B3LYP-NL as the most robust and accurate approach, closely

followed by B3LYP-D3. However, for these two methods the influence of BSSE effects on

the binding energies of noncovalently bound complexes can be larger than it is the case

for B3LYP-DCP. Further, it was verified that the revised DCP for carbon actually does

improve the overall performance, though the change for electron affinities and ionization

potentials is negligible.

Recently, the DCP scheme was coupled to the atom-pairwise D3 dispersion correction

(vide infra) for the BLYP functional and the 6-31+G(2d,2p) basis set [193]. In this BLYP-

D3-DCP approach the exponents of the DCP tend to be larger than those for the ones

developed previously. Thus, they mostly have an impact on the electron density close to

the nuclei and mainly influence the covalently bonded parts. This is reflected in the large

improvement for barrier heights compared to BLYP-D3 but only small enhancements for

noncovalent interaction energies. This result indicates that also typical GGA problems

like the self-interaction-error (SIE) can be corrected with DCP (see also [194,195]).

A different approach is the combination of a dispersion correction and a CP correc-

tion which are developed independently from each other, but which are simultaneously

employed in a calculation. For the treatment of London dispersion we use our efficient

atom-pairwise D3(BJ) correction [36,37] that can simply be added on top of a converged

standard DFT or HF calculation. For reviews and overviews of other state-of-the-art dis-

persion corrections see Refs. [[32–35]]. Within the D3(BJ) scheme the energy contribution

is calculated as a sum over all atom pairs AB

ED3
disp = −1

2

∑
A,B

∑
n=6,8

sn
Cn
AB

Rn
AB + f(R0

AB)n
(3.4)
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where, CAB
n denotes the averaged coordination-number dependent (isotropic) nth order

dispersion coefficient for each atom pair AB. The order n equals 6 and 8, introducing a

R−6
AB long-range and a R−8

AB medium-range term. The sn are the global scaling factors.

For common density functionals s6 is usually set to unity to ensure the correct asymptotic

behavior, whereas s8 is optimized for each functional. f(R0
AB) is the damping function as

introduced by Becke and Johnson [133,134]

f(R0
AB) = a1R

0
AB + a2 (3.5)

with the fitting parameters a1 and a2, and the cut-off radii R0
AB =

√
CAB

8 /CAB
6 . For

simplicity we will refer to D3(BJ) (which is the current default for the method) as D3 in the

following. An Axilrod-Teller-Muto (ATM) type three-body (dipole-dipole-dipole) term is

also available in the D3 code including its analytical derivatives. [138,139] The importance of

many-body dispersion interactions has been recently analyzed by various groups, [135–137]

but is not in the focus of this review.

The D3 dispersion correction can in principle be combined with any BSSE correction,

e.g., with the standard BB-CP procedure. In this scheme, however, the computational

cost quickly increases for larger complexes because full BS calculations for the fragments

have to be conducted. If each atom is considered as an individual fragment, one can define

an atomic counterpoise correction (ACP) [196] as done by Jensen. The ACP(x) correction

∆EACP (x) is expressed as a sum over all atoms A

∆EACP (x) =
∑
A

E(A)a − E(A)as (3.6)

where a denotes the regular basis set and as is a subset of a which always includes the

regular basis function on A. For the intramolecular case this subset further includes all

basis functions from atoms x bonds apart, and for the intermolecular case it contains all

basis function of the other monomer. When all basis functions of the whole system are in-

cluded in the subset, the ACP(1) correction equals the CPaa correction published earlier

by Galano and Alvarez-Idaboy. [197] These BSSE corrections have a highly reduced com-

putational cost and the advantage to treat inter- and intra-molecular effects conceptually

on the same level. Unfortunately, these approaches lack the availability of nuclear gra-

dients. Therefore, we recently developed a geometrical counterpoise correction (gCP) [47]

that solely depends on the molecular geometry. It provides a fast, conceptually simple

but physically reasonable energy and gradient correction for the BSSE in large molecules

and condensed phase systems.

Within the gCP scheme the difference in atomic energy Emiss
A between a large, nearly

complete BS and the target basis (here DZ) is calculated (and tabulated) for each atom
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at the HF or B3LYP level and used as a measure for the BS incompleteness. The Emiss
A

are then multiplied with a decay function depending on the interatomic distance RAB and

summed up over all atom pairs AB

EgCP
BSSE = σ

∑
A

∑
A 6=B

Emiss
A

exp
(
−α(RAB)β

)√
SABN virt

B

(3.7)

where α, β and σ are functional and BS specific fitting parameters. As the density has

an exponential tail, the decay function is exponential. Due to the strong dependence of

the BSSE on the charge density overlap in SCF methods, this function is normalized by

the square-root of the Slater-overlap SAB times the number of virtual orbitals N virt
B on

atom B. The overlap integrals SAB are evaluated over single s-type orbitals centered on

each atom using optimized Slater exponents and weighted by the last fitting parameter η.

The fit was performed for HF and B3LYP together with the target basis set on the S66x8

test set [172]. Standard BB-CP corrected interaction energies for the respective method

were employed as reference values. The accuracy gained by a re-fit for different density

functionals is negligible and thus, the use of the B3LYP parameters is recommended for

common GGA or hybrid functionals.

One advantage of the D3-gCP combination is its availability for almost all elements

in the periodic table, and the existence of analytical nuclear gradients. Further, the

scaling behavior with system size is low and the computational pre-factor is small. This

results in very fast computations even for thousands of atoms. Another benefit is that

the corrections can simply be added on top of any DFT or HF calculation without need

for a specific implementation into a program package. A drawback is the semiempirical

character of both corrections and thus, the need for a parameter fit for every functional

in case of D3 and each functional/BS combination in case of gCP. However, as mentioned

before, the gCP dependence on the functional was found to be negligible and hence

only adjustments for each basis set and for HF or DFT have to be made. Further, the

corrections do not depend on the density and thus, the electronic structure is not directly

affected, though, an indirect effect due to the altered geometry is present.

Note, that in general the gCP scheme can be combined with any dispersion correction.

One example is a recent publication by Yoshida et. al, who used gCP for HF/6-31G(d)

together with their own dispersion correction to describe the HIV-1 protease and its

potent inhibitor KNI-10033 [198]. The good performance of DFT-D3-gCP/DZ and HF-D3-

gCP/DZ for non-ncovalent interactions was already noted in the original gCP publication.

The gCP correction is able to provide a reasonable estimate for the intermolecular BSSE

with an error of 10-30%. For the S22 benchmark set [199] e.g. PW6B95-D3-gCP/def2-SVP

yields an MAD of 0.84 kcal mol−1 for interaction energies. In case of B3LYP/6-31G*
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the MAD can be reduced from 2.67 to 0.88 kcal mol−1 upon application of both the D3

and gCP correction. Geometry optimizations of the S22 complexes showed that B3LYP-

D3-gCP/6-31G* as well as HF-D3-gCP/SV reproduce the reference structures well. In

case of 9-helicene the non-bonded C-C distances can be accurately computed with HF-

D3-gCP/SV within a few pm [47]. Somewhat unexpectedly, of all various method/basis

set combinations tested, HF-D3-gCP/MINIS performs particularly well for noncovalent

interactions.

In a recent publication the shortcomings of the B3LYP/6-31G* model chemistry, as

explained in the previous section, were analyzed and it was shown that D3-gCP can

account for the major deficiencies and that B3LYP-D3-gCP/6-31G* yields reasonably

accurate thermochemical results [145]. Benchmark calculations on the general main group

thermochemistry, kinetics and non-ncovalent interactions meta-database GMTKN30 [86]

showed a statistical improvement when both corrections are used. The weighted MAD

decreased from 8.8 (B3LYP/6-31G*) to 6.9 kcal mol−1 (B3LYP-D3-gCP/6-31G*). It

was statistically confirmed that the partial error compensation of missing dispersion and

BSSE in plain B3LYP/6-31G* is unsystematic and depends on the chemical nature of the

system at hand. The improvement gained with the D3-gCP scheme is largest for systems

that exhibit noncovalent interactions but reaction energies and barrier heights are also

improved.

Goerigk and Reimers used DFT-D3-gCP/DZ and HF-D3-gCP/DZ for geometry opti-

mizations of several test sets which aim at describing important interactions in protein

structures [200]. Various functionals as well as HF in combination with different DZ basis

sets were employed for the P26 test set [201], in order to investigate their performance for

conformers of five tri-peptides containing aromatic side chains. For the 6-31G* basis with-

out any correction as an example, structural RMSDs around 0.5 Å are observed. When

only gCP is employed the RMSDs rise, and with solely the D3 correction the RMSDs

drop significantly. When the combined D3-gCP scheme is used the RMSDs decrease to

values of about 0.15 Å, which are slightly higher than those with the D3 correction only.

It seems that in this specific case without gCP a fortunate error compensation occurs

which, however, does not hold in general as discussed above.

Martinez et. al showed that uncorrected DFT or HF with DZ basis sets can yield

good geometries for small proteins [202]. They compiled a set of 58 proteins with up to 35

residues (up to 600 atoms) and compared their results to experimental X-ray or nuclear

magnetic resonance derived structures. The ab initio methods HF and ωPBEh are able

to provide geometries of the same quality as highly parametrized force fields and are

consistently better at reproducing experimental structures for proteins with disordered

regions, judged by standard health metrics.

Reimers et. al optimized a portion of an ensemble of conformationally flexible lysosome
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structures by a divide-and-conquer approach and compared their results to X-ray crys-

tallography data [146]. The functionals BP86 and B3LYP as well as HF were employed

together with the 6-31G* basis set and in combination with the D3-gCP scheme. Re-

garding amd all atom RMSD and the R-factor, the best and most consistent structures

are obtained when both the D3 and the gCP correction are used. Compared to the un-

corrected methods, employing only D3 gives similar results and only gCP yields worse

values. This observations resemble the ones made for small peptides [200] and again show

that one cannot rely on error compensation effects.

Extension of the gCP correction to periodic HF/DFT calculations enables the use of

the D3-gCP scheme for molecular crystals [203]. The corrections were applied to PBE and

B3LYP for the X23 molecular crystal test set [204] and reduce the MAD of the sublimation

energies significantly by more than 70 % and 80 %, respectively, to small residual MADs

of about 2 kcal mol−1 (corresponding to 13 % of the average sublimation energy). Further,

variation of the interlayer distances for graphite yielded a potential energy surface that

is very close to the converged basis set reference and agrees very well with experimental

stacking distances.

Up to now, D3 and gCP were fitted independently of each other, but applied at the

same time in a calculation. We introduced two composite methods, that make also use of

these corrections but which were fitted or adjusted in the presence of each other and thus

are suggested as one composite approach with a fixed basis set. As we noticed the good

performance of HF-D3-gCP/MINIS for noncovalent interactions during the development

of the gCP correction, we proposed HF-3c, a minimal basis set Hartree–Fock method

with three atom-pairwise corrections: D3, gCP, and an additional term, which corrects

for short-range basis (SRB) set incompleteness effects [205]. The six parameters of the

gCP and D3 correction terms were fitted together on the S66 test set and were kept

constant in the subsequent fitting procedure of the third SRB term. This composite

method corrects for both dispersion and BSSE and is suggested as an alternative to

semiempirical methods or DFT, in particular when SIE is acute. HF-3c yields reasonable

noncovalent interaction energies and good geometries of small organic molecules, as well

as supramolecular complexes and small proteins [200,205,206]. As this review focuses on DZ

basis sets, we will not discuss this method further.

A related composite approach is our recently developed PBEh-3c method, a global

hybrid functional with a DZ basis set, that is meant to fill the gap between existing

semiempirical methods or HF-3c and large basis set DFT with respect to the cost-accuracy

ratio [177]. The term ’3c’ indicates its relation to HF-3c, and the corrections are a slightly

modified gCP, D3, and minor modifications to the def2-SV(P) BS (dubbed def2-mSVP)

for boron to neon in order to ensure consistent bond lengths for all elements. PBEh-

3c yields accurate geometries which was verified for small molecules as well as medium
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sized molecules, noncovalently bound complexes, and molecular crystals. The overall

deviations from reference structures are tiny and practically of MP2/def2-TZVPP quality

while the geometries are obtained at a much lower computational cost (speedup of about

50-100). All other DFT/small BS methods tested yielded larger deviations. For the S22

set of noncovalent complexes PBEh-3c agrees well with the MP2 reference geometries,

the mean deviation (MD) for intermolecular center-of-mass distances is only 3 pm. For

molecular crystals, the PBEh-3c accuracy for geometries in the X23 and ICE10 [207] sets

approaches TPSS-D3/’large BS’ results. The mean absolute deviations in the computed

unit cell volume are 2.7 % and 5.0 %, respectively, for X23 and ICE10. Although PBEh-

3c was mainly designed for the computation of structures it yields reasonable results for

thermochemistry, barrier heights and general noncovalent interactions. Clearly, due the

small BS the accuracy of dispersion-corrected hybrid DFT in a QZ basis set can not be

reached.

3.4. Comparison of methods for noncovalently bound

systems

In the following we will compare the performance of the various discussed methods

for some exemplary noncovalently bound systems. We chose HF, HF-D3-gCP, B3LYP,

B3LYP-D3-gCP, B3LYP-DCP, M06-2x, and PBEh-3c. The def2-SV(P) basis set will

be applied in all cases (modified for PBEh-3c) except for B3LYP-DCP where the 6-

31+G(2d,2p) basis will be used. An overview of the capability of these method to treat

dispersion and BSSE is provided in Table 3.1.

Table 3.1.: Overview of the applied methods and their capability to treat BSSE and dis-
persion. B3LYP-DCP will be used with the 6-31+G(2d,2p) basis set, all other
methods with the def2-SV(P) basis set (modified in case of PBEh-3c).

method BSSE correction dispersion correction
HF no no
HF-D3-gCP yes yes
B3LYP no no
B3LYP-D3-gCP yes yes
B3LYP-DCP yes (yes)[a]

M06-2X no (yes)[b]

PBEh-3c yes yes

[a] BSSE and dispersion are treated together in one ECP leading to the wrong asymptotic
behavior for the dispersion interaction. [b] The dispersion interaction has the wrong asymptotic
behavior.
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3.4.1. Noncovalent interaction energies

The accuracy for noncovalent interaction energies of the aforementioned methods is tested

on several benchmark sets. We chose three sets for the interaction of small to medium

sized systems (WATER27 [208,209], S22 [191,199], S66 [172]), two sets for large and supramolec-

ular systems (L7 [144], S30L [206]), and two test sets for molecular crystals (ICE10 [207],

X23 [204,210]). For each test set one exemplary system is depicted in Figure 3.5.

The WATER27 test set contains 27 neutral and charged water clusters with up to 20

water molecules. The S22 set consists of 22 noncovalently bound model complexes that

show hydrogen bonding, dispersion interactions and mixed electrostatic-dispersion bind-

ing motifs. The S66x8 test set is similar to S22 but with less emphasis on nucleobases.

Further, reference geometries and energies are provided at eight different distances of the

monomers, which allows the extraction of the minimum of the intermolecular potential

energy surface (PES) of a given method via an interpolation procedure. The reference

energies for these three sets refer to the estimated CCSD(T)/CBS level of theory. For

the S22 we use the revised values by Sherill et al. [191]. For the (H2O)20 complex con-

tained in the WATER27 set we use the reference values computed on the incremental

CCSD(T)(F12*)|MP2-F12+∆MP2 level by Friedrich [209]. The L7 test set comprises seven

larger, mostly dispersion-stabilized complexes of organic molecules. We use the revised

reference values on the estimated DLPNO-CCSD(T)/CBS* level of theory [211]. The S30L

set is an extension of the S12L set [46,192], which was the first test set for large host-guest

complexes. It contains 30 realistic host-guest complexes with charges from −1 to +4 and

up to 200 atoms, featuring various typical noncovalent binding motifs like hydrogen and

halogen bonding, π − π stacking, nonpolar dispersion, CH−π, and cation-dipolar inter-

actions. The reference association energies are back-corrected values from experimentally

measured association free energies. ICE10 includes ten ice polymorphs and X23 compiles

molecular crystals that show mainly van-der-Waals or hydrogen bonding or a mixture of

these two interaction motifs. For these two sets the reference lattice energies were de-

rived from experimental values which are further corrected for zero-point vibrational and

thermal effects.

As the absolute interaction energies differ by almost three orders in magnitude, we give

mean absolute relative deviations (MARDs in %) from the reference energies for all test

sets and methods in Figure 3.6. Because of SCF convergence problems for some molecular

crystals, the HF results for the periodic benchmarks were omitted. The values are color-

coded as suggested by Martin [212] in order to provide an easy overview and the best two

methods for each test set are highlighted.

As expected, the plain B3LYP functional or HF without any corrections cannot properly

describe noncovalent interactions. Already for small systems contained in the WATER27,
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L7S22, S66WATER27

S30L ICE10 X23

Figure 3.5.: Example systems for each test set. Hydrogen bonds are indicated by dotted
lines.

S22, or S66x8 sets huge MARDs of 50 to 80% are obtained. In many cases these methods

yield unbound complex states. The same is observed for the supramolecular test sets

and the MARDs for L7 and S30L are even larger (80 to 160%). The performance of

B3LYP for the ice polymorphs is similar to the molecular WATER27 set. For both the

MARD is about 60 %. Surprisingly, the MARD for the X23 set of molecular crystals

is with 34 % much smaller than the corresponding values for the S22 and S66x8 sets

(about 60 %) and the performance is actually similar to M06-2X and B3LYP-DCP. For

the mixed hydrogen bonded crystals, the error compensation between missing dispersion

and neglected BSSE in plain B3LYP is rather good around the corresponding equilibrium

geometry. While this explains the slightly smaller error compared to the other test sets,

this compensation does not hold for stronger hydrogen bonding (significant overbinding of

the various ICE10 polymorphs due to dominant BSSE) nor for purely London dispersion

bonded X23 systems (significant underbinding due to missing dispersion interaction).

When the D3 and gCP corrections are added, the plain HF and B3LYP results can be

improved tremendously. In case of HF, no improvement is observed for the WATER27 set,

but for all others the MARD for HF-D3-gCP drops to 15 to 25 % which is very reasonable

for such a simple method. For B3LYP-D3-gCP the enhancement for WATER27 and ICE10

is much smaller than for the other sets, but still, the MARD is reduced from 60 % to

about 35 %. Very good results are obtained for the S22, S66x8, L7, S30L and X23 test sets

which have MARDs of 10 to 14 %. Compared to B3LYP-D3 with the large def2-QZVP

basis set, the MARD for B3LYP-D3-gCP/DZ on the S22 set is doubled (6.2 % [86] vs.

13 %). For the large supramolecular complexes B3LYP-D3-gCP/DZ yields equally good

values or even better results than B3LYP-D3/QZ. The MARD for the S30L set is 13.8 %

for B3LYP-D3-gCP/DZ and very similar for B3LYP-D3/QZ (13.2 % [206]). For the L7 set
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Figure 3.6.: Mean absolute relative deviations (MARDs, in %) for different methods com-
pared to the reference values for several test sets. MARDs below 15 % are
color-coded in green, those below 30 % in yellow and those higher than 30 % in
red. For each set the two best performing methods are highlighted. PBEh-3c
includes the ATM three-body dispersion term by default, for B3LYP-D3-gCP
and HF-D3-gCP it was included for the large systems (L7 and S30L test sets).
In case of B3LYP-DCP two systems of the S30L were omitted due to missing
functions of the 6-31+G(2d,2p) basis set for iodine and for X23, eight systems
had to be disregard due to SCF convergence problems.

B3LYP-D3-gCP/DZ yields an MARD of 13.6 %, which is less than half of the value for

B3LYP-D3/QZ (32.5 % [144,211]).

If DCPs are used for B3LYP instead of the D3-gCP correction the behavior is very

different. First we note the extraordinary good performance for the water containing

systems. The MARD of B3LYP-DCP for WATER27 is 9.4 % and for ICE10 1.1 %.

Even with large basis set dispersion-corrected DFT calculations it is difficult to reach this

accuracy. This can partially be attributed to the basis set (6-31+G(2d,2p)) which contains

two sets of additional polarization functions as well as a diffuse set of sp-functions on non-

hydrogen atoms which is known to be important for these systems [86,208,209]. Therefore,

the number of basis functions per atom is more comparable to a TZ basis and much larger

than in def2-SV(P). The B3LYP-DCP results for S22 and S66x8 are also very good and

the MARDs of 7.7 and 0.5 %, respectively, are the lowest ones reported here. The MARD

for S22 is very close to the already mentioned B3LYP-D3/QZ result (6.2 % [86]). For

large systems, however, the performance of B3LYP-DCP deteriorates significantly. The

MARDs for the S30L and L7 sets are 39.2 and 27.9 %, respectively. Although these values

are about three times smaller than those for plain B3LYP, they are still about three times

larger than for B3LYP-D3-gCP. For the X23 set there is no improvement compared to

plain B3LYP. Both MARDs are about 35 %, which is again three times as large compared
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Figure 3.7.: Comparison of the PBEh3c, M06-2X, B3LYP-D3-gCP, and B3LYP-DCP
binding energies with reference values for the S30L test set. The complexes
are sorted according to the most prominent type of interaction. In case of
B3LYP-DCP the complexes 15 and 16 were omitted due to missing functions
of the 6-31+G(2d,2p) basis set for iodine. The MADs and MDs in parentheses
are provided for each method in kcal mol−1.

to B3LYP-D3-gCP.

Finally, we discuss the recently published composite method PBEh-3c [177] Its overall

performance for all test sets is very good and consistent accuracy for small as well as large

complexes is evident. The MARDs for the S22, S66x8, L7, S30L and X23 sets are found

to be in the range of 8 to 13 %. The performance for WATER27 and ICE10 is worse, the

MARDs are about 20 %. This indicates that the applied corrections cannot repair the

higher basis set requirements in condensed hydrogen bonded systems compared to only

medium polar dimers. But nevertheless, the similar MARDs for WATER27 and ICE10

as well as S22/S66x8, L7/S30L, and X23 show that PBEh-3c treats the noncovalent

interactions in small, large and periodic systems with the same accuracy. PBEh-3c is

always one of the two best performing methods on any test set. The others are either

B3LYP-DCP (WATER27, S22, S66x8, ICE10) or B3LYP-D3-gCP (L7, S30L, X23).

As this article mainly focuses on large systems, a closer look to the supramolecular

complexes of the S30L set is appropriate. The association energies ∆E range from -

17.4 kcal mol−1 for the halogen bonded complex 15 up to -135.5 kcal mol−1 for the

doubly positive charged complex 24. Figure 3.7 shows a comparison of the ∆E values for

PBEh-3c, M06-2X, B3LYP-D3-gCP and B3LYP-DCP with the reference values.

As one can easily see, B3LYP-DCP and M06-2X exhibit large systematic overbinding as

indicated by MDs of -9.6 and -6.4 kcal mol−1, respectively. The largest errors for B3LYP-

DCP are observed for the charged systems 23 to 30 and range from -11 to -27 kcal mol−1.

Somewhat surprisingly, the errors are also large (>-10 kcal mol−1) for most of the hydrogen
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bonded systems (17, 19 to 21). As seen before B3LYP-DCP performs exceptionally well

for the WATER27 and ICE10 sets, the hydrogen bonded dimers in S22/S66x8, but seems

to fail for hydrogen bonds in these supramolecular complexes. Further, the errors are

large (-8 to -14 kcal mol−1) for some of the π − π-stacked systems (5, 7 to 10). The

complexes 25 and 26 which also exhibit π−π-stacking as major interaction show a similar

error. Obviously, for the small systems (on which the DCPs are fitted) the description

of dispersion and the compensation for BSSE is reasonable and accurate results can be

obtained. For these large supramolecular complexes the balancing of dispersion effects

and BSSE is different which is difficult to describe by a correction potential lacking the

correct physics. As explained above, missing dispersion results in too weak and BSSE

in too strong bound complexes. B3LYP-DCP overestimates the binding energy for all

host-guest complexes and thus, the remaining BSSE seems to be the major error source.

Whether the diffuse functions in the 6-31+G(2d,2p) basis play an additional negative role

in the larger systems due to a more long-ranged BSSE is currently not clear.

The largest errors for plain M06-2X (-10 to -19 kcal mol−1) are obtained for the com-

plexes 5, 9, 11, 12, 17, 29 and 30. Thus, M06-2X seems to have less trouble to accurately

describe hydrogen bonded complexes than to reproduce the reference values for the π−π-

stacked systems. As the MARD for S30L is similar to that of S22 and even better than for

S66x8 (Figure 3.6), the incorrect asymptotic treatment of the London dispersion seems

not to be a major error source. Much more problematic is the unaccounted BSSE and

therefore, binding energies are overestimated. When a TZ basis is used, the MAD drops

to 2.5 kcal mol−1 and the MD is just 1.4 kcal mol−1, indicating underbinding due to the

missing long-range dispersion contribution [206].

When dispersion and BSSE are both independently accounted for, as in B3LYP-D3-gCP

and PBEh-3c, the errors decrease substantially. For B3LYP-D3-gCP the largest errors of

-12 to -21 kcal mol−1 are observed for complexes 9 to 12. For PBEh-3c the complexes

11 to 13, 22 and 24 show the largest errors of 6 to 9 kcal mol−1. B3LYP-D3-gCP and

PBEh-3c reach MDs of -1.6 to -0.1 kcal mol−1, respectively, indicating small to almost

no systematic overbinding. Compared to M06-2X and B3LYP-DCP, the MAD values for

B3LYP-D3-gCP and PBEh-3c are with 4.7 kcal mol−1 and 3.4 kcal mol−1, respectively,

much lower. For comparison, the previously best results for S30L were obtained with

PW6B95-D3/def2-QZVP, which yields an MAD of 2.4 and an MD of -0.1 kcal mol−1 [206].

B3LYP-D3/def2-QZVP is one of the worse performers at the large BS level and has an

MAD of 4.1 and an MD -2.7 kcal mol−1 [206]. Thus, B3LYP-D3-gCP is able to provide

close to QZ quality results but at a small fraction of computational cost, and PBEh-3c

almost approaches the accuracy of PW6B95-D3/QZ. These examples show clearly how

important it is in large systems to properly and consistently treat both, dispersion and

BSSE.
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Figure 3.8.: Error statistics of S66 equilibrium binding energies for corrected and un-
corrected HF and B3LYP in a SV(P) basis set converted into normal error
distributions.

In Figure 3.8, we summarize the different contributions to the binding energy of the

S66 dimers (minimum extracted from S66x8 potentials) for the HF and B3LYP methods

evaluated in a def2-SV(P) basis set with and without correction schemes. We show the

statistics of the deviations to CCSD(T) references as normal error distributions. The

behavior of HF and B3LYP mean-field methods is very similar, which is typical for purely

noncovalent interactions. Without any corrections, the error spread is large (broad distri-

bution) with a slight systematic underbinding. When only the gCP correction is applied,

the error spread decreases, but the underbinding is increased. The sole application of the

D3 correction leads similarly to a smaller error spread and a systematic overbinding. Only

the combination of both schemes leads to an excellent agreement with the reference data

with MAD of 0.8 kcal mol−1 and 0.6 kcal mol−1 for HF-D3-gCP and B3LYP-D3-gCP,

respectively.

3.4.2. Structures of noncovalently bound systems

In the following, the accuracy of the methods for optimized structures of noncovalent

complexes is evaluated. As examples for small systems we chose the S22 and S66x8 sets

that were already employed for the interaction energies as well as the P26 [201] set, which

contains different conformers of four peptides. For S22 and P26 the reference geometries

were calculated on the MP2/TZ level of theory and the root mean square deviation

(RMSD) of the heavy atom positions as well as the deviation of the intramolecular center-

of-mass distance of the monomers are used as performance measures. For the S66x8

the PES is used to determine the optimal intramolecular center-of-mass distance of the
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monomers and therefore the CCSD(T)/CBS level of theory is the reference as conducted

similarly before. [177,213] For the supramolecular systems we face the problem that there

are no reference geometries available. The L7 and S30L systems were optimized on the

TPSS-D3/TZ level of theory, which is certainly a good choice but not accurate enough

to serve as a reference. In order to show exemplary the influence of London dispersion

and BSSE in large supramolecular complexes, system 5 from S30L and the phe complex

from L7 were re-optimized on the TPSS-D3/def2-QZVP(-g/f) level and these structures

are used for comparison.

For the molecular crystal test sets ICE10 and X23 the reference geometries refer to

experimental X-ray data which are isotropically corrected for zero-point vibrational and

thermal effects [177,207]. Here, we use the deviation of the unit cell volume as measure to

evaluate the accuracy of the tested methods.

PBEh-3c M06-2x B3LYP B3LYP-D3-gCP B3LYP-DCP

(RMSD=7.5) (RMSD=6.9)

(RMSD=205.6)

(RMSD=12.9) (RMSD=7.3)

(RMSD=13.6) (RMSD=18.9) (RMSD=23.4)(RMSD=19.9) (RMSD=5.1)

Figure 3.9.: Comparison of the PBEh-3c, M06-2X, B3LYP, B3LYP-D3, B3LYP-D3-gCP,
and B3LYP-DCP geometries (colored) with the reference MP2/TZ structure
(in gray) for the π−π stacked cytosine-uracil base pair (top) and the hydrogen
bonded cytosine-uracil base pair (bottom) from the S22 test set. Hydrogen
bonds are indicated by dotted lines. The RMSDs for the heavy atom positions
are given in pm.

Figure 3.9 depicts the geometries of two exemplary systems, the π − π stacked and

hydrogen bonded cytosine-uracil base pair, as obtained with the DFT methods in com-

parison with the reference structures. The results for HF and HF-D3-gCP are similar to

B3LYP and B3LYP-D3-gCP and therefore, these geometries are not shown.

One can see immediately, that plain B3LYP can not even qualitatively correctly repro-

duce the π−π stacked structure (Figure 3.9, top). As the London dispersion is completely

missing the π−π stacked dimer is not a minimum on the PES and the optimization leads

to the hydrogen bonded structure. In contrast, all other four methods which include
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Table 3.2.: Statistical data for the deviations of the intramolecular center-of-mass dis-
tances RCMA from the reference values for the S22 and S66x8 test set and
the mean RMSDs (RMSD) for the heavy atom positions in case of S22 and
P26 compared to the reference. An MD > 0 denotes too large intermolecular
distances. All values are given in pm.

S22 S66x8 S22 P26
MD MAD MAX MD MAD MAX RMSD RMSD

PBEh-3c 7.6 12.7 98.4 3.2 5.7 16.7 9.9 16.1
M06-2X -7.7 8.4 -44.7 -9.5 9.6 -24.6 6.5 8.4
B3LYP 78.7 82.6 389.9 40.2 43.0 362.5 55.1 48.8

B3LYP-D3-gCP 4.6 11.2 43.8 10.1 10.2 28.0 8.2 17.5
B3LYP-DCP -4.4 5.7 33.8 1.3 20.5 59.6 3.9 9.4

HF 81.8 82.2 263.2 54.2 54.2 362.5 53.2 49.6
HF-D3-gCP 8.6 15.6 135.4 1.7 2.8 f 18.4 11.7 12.7

dispersion effects can describe the π − π stacking. B3LYP-DCP and PBEh-3c yield the

most and B3LYP-D3-gCP the least accurate structure. The missing dispersion terms

in plain B3LYP are less problematic for the hydrogen bonded dimer because hydrogen

bonds are mainly caused by electrostatic and induction interactions which most density

functionals cover rather accurately. Thus, for the hydrogen bonded dimer plain B3LYP

yields a geometry which is as good as with M06-2X and even slightly better than the

B3LYP-D3-gCP structure. Again, B3LYP-DCP and PBEh-3c have the smallest RMSD

compared to the reference.

Table 3.2 presents the statistical data of the S22, S66x8 and P26 test sets for small

systems. The two best performing methods for each set are highlighted and the data are

converted to normal error distributions in Figure 3.10.

In general, plain B3LYP and HF cannot correctly reproduce the structures. Especially,

when π−π stacking or nonpolar dispersion interactions are involved these methods yield a

practically unbound geometry or a different conformation, like the hydrogen bonded dimer

in the example shown above. Thus, the mean (absolute) deviations for the intermolecular

center-of-mass distances RCMA for the S22 and S66x8 sets as well as the heavy atom

positions in the S22 and P26 sets are unacceptably large. When the D3-gCP corrections

are added, the MDs and MADs for the RCMA of about 80 pm for S22 and about 40-50 pm

for S66x8 drop significantly. B3LYP-D3-gCP yields an MD of only 5 pm and an MAD

of 11 pm in case of S22 and the same values for both measures of 10 pm for the S66x8

set. HF-D3-gCP gives an MD of 9 pm and and MAD of 16 pm for the S22 set. For

S66x8, HF-D3-gCP in fact is one of the two best methods and yields an MD of only 2 pm

and and MAD of only 3 pm. The RMSD for the heavy atom positions are similar for

B3LYP-D3-gCP and HF-D3-gCP, about 10 pm for the S22 and about 15 pm for the P26.
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Figure 3.10.: Error statistics of S66 equilibrium center-of-mass distances for corrected and
uncorrected HF and B3LYP in a SV(P) basis set converted into normal error
distributions.

B3LYP-DCP performs somewhat better than B3LYP-D3-gCP for S22 and gives the

best results for this set with an MAD of -4 pm, an MAD 6 pm, and an RMSD value for

the heavy atom positions of only 4 pm. In case of the S66x8 set the MD of 1 pm is even

lower and the best value obtained but the MAD of 21 pm is much larger than those for

all other dispersion-corrected methods. M06-2X yields one of the two best values for the

heavy atom RMSDs of 7 and 8 pm for the S22 and P26 set, respectively. It is the only

method which consistently gives too small intermolecular center-of-mass distances RCMA

for both, the S22 and S66x8 set. The MDs are -8 and -10 pm, respectively. The MADs are

very similar, indicating that this error is systematic. PBEh-3c yields results comparable

to HF-D3-gCP and slightly worse than M06-2x, with an MD of 8 pm, an MAD of 13 pm

and an RMSD value of 10 pm for the S22 set. In case of the S66x8 the performance is

better. The MD is 3 pm and the MAD is with 6 pm the second best value obtained.

Note that the S66 set consists of the most reliable reference data, while the S22 and P26

systems are only optimized at the MP2 level. A comparison of the S66 equilibrium CMA

distances calculated at MP2 level reveals an MAD of 3.3 pm compared to the coupled

cluster reference. Therefore, MAD values of a few pm on the S22 and P26 sets do not

indicate significant deviations and are within the MP2 error. Even more important in

this context are systematic errors in the reference structures. For instance some of the

largest PBEh-3c outliers for S22 occur for the π-stacked benzene dimer, for which MP2 is

known to overbind significantly [214]. Presumably, in this case the MP2 reference is in fact

off (too short distance) as indicated by a distance underestimation by 3.4% compared to

the CCSD(T) reference for the benezene dimer in the S66x8 set.

The influence of the dispersion and counterpoise correction schemes for the S66 equilib-
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rium distances is summarized in Figure 3.10. In analogy to the binding energy analysis in

the previous paragraph, we show HF and B3LYP deviations with and without correction

converted into normal error distributions. These distributions mainly confirm the analysis

given above. While the uncorrected methods yield rather bad structures, the most consis-

tent methods are the dispersion and counterpoise corrected ones, though B3LYP-D3-gCP

yields slightly too large intermolecular distances.

Among the dispersion-corrected methods B3LYP-DCP seems to be the best performer

for all three test sets but we could not identify a method which is clearly superior to others.

It is important to note, that due to the larger 6-31+G(2d,2p) basis set and the dispersion

correcting potentials themselves, the geometry optimizations with B3LYP-DCP are an

order of magnitude slower than with all other methods employed.

In order to show the influence and the interplay of dispersion and BSSE for super-

molecular systems we optimized complex 5 of the S30L and the phe complex with plain

B3LYP, B3LYP-D3, B3LYP-gCP and B3LYP-D3-gCP. The overlays of these geometries

with the reference structure are presented in Figure 3.11.

B3LYP B3LYP-D3

B3LYP-gCP B3LYP-D3-gCP

(RMSD = 94.1) (RMSD = 28.7)

(RMSD = 15.6)(RMSD = 85.0)

B3LYP B3LYP-D3

B3LYP-gCP B3LYP-D3-gCP

(RMSD = 59.3) (RMSD = 12.6)

(RMSD = 11.6)(RMSD = 79.5)

(a) (b)

Figure 3.11.: Comparison of the B3LYP, B3LYP-D3, B3LYP-gCP, and B3LYP-D3-gCP
geometries (colored) with the reference TPSS-D3/def2-QZVP(-gf) structure
(in gray) for (a) complex 5 of the S30L set and (b) the phe complex of the
L7 set. The RMSDs for the heavy atoms are given in pm.

As already observed for the small complexes the plain B3LYP functional gives too large

distances for the π − π stacked systems due to the dominant effect of missing dispersion.

The RMSD of the heavy atom positions is 59 pm for 5 and 94 pm for phe. If the D3 scheme
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is employed, the distances are slightly too small due to the BSSE. The RMSDs drop to

13 and 29 pm, respectively. When we only correct for the BSSE by gCP, the distances

are again far too large and the RMSD values are similar to those of plain B3LYP. Only if

dispersion and BSSE corrections are employed together (B3LYP-D3-gCP level), accurate

geometries are obtained. Visually, the agreement with the reference structure is very

good and the heavy atom RMSDs are only 12 pm for 5 and 16 pm for phe. These two

examples clearly show, that not only for interaction energies, but also for geometries of

large systems it is important to treat London dispersion and BSSE on the same footing.

Finally, we investigate the structures of the previously introduced X23 and ICE10

solid state benchmark sets. As noted before, we use the experimental crystal densities

(or crystal volumes) from X-ray measurements. These mass densities have been back-

corrected for zero-point and thermal effects, which is important as it can alter the mass

density by 1 to 5% with a typically decreased density (enlarged unit cell volume). In

Table 3.3, we give the statistical deviations from the reference unit cell volumes for the

methods PBEh-3c, M06-2X, B3LYP, B3LYP-D3-gCP, and B3LYP-DCP all with the same

basis sets as in the molecular calculations.

The general picture that emerged from the molecular complexes is confirmed for the

crystals. However, because of the larger long-range contributions to the interaction the

differences between the tested methods are more pronounced. Again, M06-2X and B3LYP-

DCP are numerically problematic and suffer from SCF convergence problems. As already

seen for the molecular dimers, M06-2X suffers from BSSE, which leads to systematically

too small unit cells by 13% and 15% for the X23 and ICE10 set, respectively. For plain

B3LYP inconsistent behavior for the two test sets is found. For the more dispersion

dominated X23 systems, the unit cells are substantially too large by more than 20%

though for some systems the error compensation leads to better results than B3LYP is

Table 3.3.: Statistics (MD, MAD, SD, MAX)a for the relative deviations of the cell volume
for the X23 and ICE10 sets. All values are given in %. The two best performing
methods with smallest MAD are highlighted.

X23 ICE10
MD MAD SD MAX MD MAD SD MAX

PBEh-3c 1.8 2.7 3.2 10.2 2.5 5.0 7.7 16.6
M06-2Xb -12.5 12.5 4.4 23.3 -14.9 14.9 2.2 17.3
B3LYP 22.1 22.1 15.5 57.3 -5.7 5.7 1.4 8.3
B3LYP-D3-gCP 5.5 7.6 6.4 14.7 7.6 8.3 5.5 15.8
B3LYP-DCPb -3.5 3.6 2.1 7.5 -4.4 4.4 1.9 7.0

a An MD > 0 denotes a too large cell volume.
b only 70% of the systems could be converged.
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inherently capable. For instance, the geometries of the oxalic acid polymorphs are very

reasonable with only 4% deviation from the reference density. The ice polymorphs are

more strongly dominated by electrostatic and induction effects with only small dispersion

contribution. Here, the BSSE is even larger compared to the missing dispersion leading

to too small unit cells. Applying both correction schemes (D3 and gCP) results in a more

consistent performance. At this level, for both test sets a reasonable MAD of about 8% is

obtained. A combined optimization of the gCP and D3 parameters would probably lead

to even better geometries. B3LYP-DCP is based on a larger basis set with rather diffuse

functions, which explains some of the convergence problems. However, this also minimizes

the BSSE and the results are good with MADs for the X23 and ICE10 reference unit cell

slightly below and slightly above 4%, respectively. Again, especially the ice polymorphs

are described to a high accuracy consistent with the excellent lattice energies. On the

X23 set, B3LYP-DCP is only outperformed by the new PBEh-3c composite method. The

geometries are competitive to more expensive calculations based on converged PAW basis

sets with typical unit cell errors of about 3%. [177,215]

As prototypical example for London dispersion dominated crystal, we investigate the

benzene crystal in more detail. It has various energetically close-lying polymorphs [216,217]

and it was used extensively to test and judge electronic structure methods (including wave-

function expansions [218–222], dispersion corrected DFT [204,210,215,223–225], and semiempirical

MO methods [226–228]). We show a potential energy surface (PES) scan of the benzene

crystal in Figure 3.12. Each structure corresponds to a constrained volume optimization

at the TPSS-D3 level in a converged PAW [229,230] basis set and we additionally highlight

the equilibrium point. The reference point refers to the back-corrected experimental unit

cell volume combined with a highly accurate CCSD(T) computed lattice energy. [231]

Because of SCF convergence problems, M06-2X results are not included. Concerning

the other methods, substantial differences in the computational speed are observed. With

identical numerical setups, the relative timing for one single-point energy calculation of

PBEh-3c, B3LYP/SV(P), and B3LYP-DCP/6-31+G* are 1.0 : 1.2 : 8.2 with PBEh-3c

being the fastest and B3LYP-DCP/6-31+G* the slowest method. The higher computa-

tional cost is mainly due to the larger and more diffuse basis set, which leads (especially

in periodic boundaries) to a substantially higher number of computed integrals.

The benzene crystal nicely reflects the basic properties of the described methods re-

garding the treatment of dispersion dominated systems. Plain B3LYP just shows a

shallow BSSE related minimum. This correctly disappears when the gCP correction

is applied. Only in combination with both correction schemes (B3LYP-D3-gCP), a very

reasonable PES is obtained with nearly perfect lattice energy (-13.16 (B3LYP-D3-gCP)

vs. -13.22 kcal mol−1 (reference)) but slightly to large unit cell (by 2.6% too low mass

density). The B3LYP-DCP approach shows a clear minimum which is somewhat too low

65



3. Small basis set first-principles quantum chemical methods for large molecular and

periodic systems

−16

−12

−8

−4

0

4

90 100 110 120 130 140 150

D3, gCP

E
/

kc
al
·m

ol
−
1

Vunit cel l / Ångström3
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Figure 3.12.: Lattice energy of the benzene crystal along a PES based on contained volume
optimizations (TPSS-D3/’CBS’ level). The experimental geometry is back-
corrected for zero-point and thermal effects as described in Refs. [ 177,207]
and the reference lattice energy corresponds to a CCSD(T) estimate. [231]

(lattice energy of -15.22 kcal mol−1) and too small unit cell (by 4.5% too large mass den-

sity). The potential of PBEh-3c agrees excellently with the reference and both the unit

cell volume and the lattice energy are within 1.2% and 0.8 kcal mol−1, respectively.

3.5. Conclusions

In this short topical review, we have critically analyzed widely used quantum chemical

HF and DFT computations employing relatively small single-particle basis sets of double-

zeta quality. As indicated by the tremendous number of publications which are based on

this or similar theoretical levels, these methodologies are practically very relevant. We

highlighted the two main error sources in standard applications, namely the BSSE and the

missing London dispersion interaction. Different strategies to treat and correct the errors

were reviewed and tested on mainly noncovalently bound systems with varying size. We

analyzed both energetic and geometric properties. Due to the efficiency of the methods,

their main applications are large supramolecular or periodic systems, which were also the

focus of our analysis.

As main result of our investigations, it is nowadays not justified to rely on fortuitous

error compensation as e.g. in the popular B3LYP/6-31G* approach. Without additional

computational overhead, the main error sources can be treated with semi-classical po-

tentials and the composite method B3LYP-D3-gCP/DZ outperforms the plain functional

clearly. Further improved results are obtained, when the BSSE and London dispersion are
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directly included in the method design as recently done in the PBEh-3c functional with

good to excellent results on all tested geometries and reference energies. Only for some

systems with particular high requirements on the basis set (e.g. very strong hydrogen

bonds or anions) the performance is slightly worse compared to e.g. a ’hybrid’/QZ level.

Using ECP type potentials to simultaneously cure the functional and basis set errors

works very well for small complexes similar to those used in the training sets for the

method. However, with the tested B3LYP-DCP scheme, the computational costs are

closer to that of a triple-zeta basis set. More importantly, the quality of the results

for larger systems deteriorates and the performance is unsatisfying. We attribute this

inconsistency to a wrong distance behavior of the correction potential as the finite ECP

expansion can not recover the correct R−6 limit of the dispersion interaction.

In summary, it is indeed possible to effectively use quantum chemical methods with

small basis set expansions when all arising errors are treated properly. The good results

for both, energetic and geometric properties of large and periodic systems is encouraging

and we expect this to translate into globally accurate potential energy surfaces, which is

important for thermodynamic properties and ab initio molecular dynamics.

In this context we would like to mention the problem of solvation effects that was

not discussed in this review. Dispersion effects are omnipresent and also occur for any

molecule when it is solvated as in most chemical applications. Molecular dispersion (or

BSSE) effects are then partly quenched, i.e., intramolecular contributions are replaced

by intermolecular ones with the solvent. An accurate account of these effects requires

sophisticated solvation models with the same high accuracy as the quantum chemical

treatments which is difficult to obtain at present. Whenever comparisons of computed

molecular to experimental liquid phase data are made we recommend to inlcude consistent

continuum solvation models like COSMO-RS [41,232] or DCOSMO-RS [41] (for geometry

optimizations). Only such treatments eventually will lead to the ’right answer for the

right reason’. In any case due to the broad area of possible applications of e.g. the new

PBEh-3c composite scheme in describing host-guest binding enthalpies, lattice enthalpies

of organic crystals, and structures of larger biologically relevant molecules, the future for

quantum chemical modeling of these systems seems bright.

3.6. Computational details

For the single-point energy calculations on the benchmark sets S22 [199,214], S66x8 [172],

WATER27 [208], L7 [144], S30L [206], ICE10 [207], and X23 [204,210] the geometries were taken

as provided in the corresponding references. The computations for the molecular systems

were carried out with either the current development version of ORCA 3.0 [233,234] in case

of B3LYP [88,92,96,154]-DCP [185,186]/6-31+G(2d2p) [155] or TURBOMOLE 7.0 [235,236] for all
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other methods (HF, B3LYP, M06-2X [100], PBE0 [98] and PBEh-3c [177]) in combination

with the double-ζ basis set def2-SV(P) [237] (modified in case of PBEh-3c for boron to

neon, for details see Ref. [177]). The resolution-of-identity (RI) approximation for the

Coulomb integrals [74] was applied in all cases except B3LYP-DCP using matching default

auxiliary basis sets [238]. For the integration of the exchange-correlation contribution the

numerical quadrature grids m4 (m5 in case of M06-2X) [239] and grid 6 were employed

in TURBOMOLE and ORCA, respectively. The energy convergence criteria were set to

10−7 Eh in all cases.

The periodic calculations were conducted with a developer version of the CRYSTAL14

program [240]. It is the ideal choice for cost effective DFT calculations in small basis sets

as it can exploit full point and space group symmetry. The Brillouin zone is sampled

with a Γ-centered k-mesh with grid density of approximately 0.025 Å−1 (for details see

references [204,207]). Standard integral thresholds and large DFT integration grids were

used.

The calculation of the D3(BJ) [36,37] dispersion correction and the gCP BSSE correc-

tion [47] were carried out with our own programs dftd3 and gcp, respectively. These

programs are freely available from our website [241].

For the structure optimizations of the benchmark sets S22 and P26 [201] the geometries

as provided in the corresponding references were taken as start coordinates. Again, for

B3LYP-DCP/6-31+G(2d,2p) ORCA 3.0 was employed and TURBOMOLE 6.6 was used

in for HF, B3LYP, M06-2X, PBE0, and PBEh-3c in combination with the def2-SV(P) basis

set (modified in case of PBEh-3c). The D3(BJ) and gCP corrections to the gradients were

again calculated with our own programs dftd3 and gcp. The convergence criteria were

set to 10−7 Eh for energies and 10−5 Eh/Bohr for gradients.
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Abstract

A quantum chemical method based on a Hartree–Fock calculation with a small Gaussian

AO basis set is presented. Its main area of application is the computation of structures,

vibrational frequencies and noncovalent interaction energies in huge molecular systems.

The method is suggested as a partial replacement of semiempirical approaches or DFT

in particular when self-interaction errors are acute. In order to get accurate results three

physically plausible atom pair-wise correction terms are applied for London dispersion in-

teractions (D3 scheme), basis set superposition error (gCP scheme), and short-ranged ba-

sis set incompleteness effects. In total nine global empirical parameters are used. This so

called Hartree–Fock-3c (HF-3c) method is tested for geometries of small organic molecules,

interaction energies and geometries of noncovalently bound complexes, for supramolecu-

lar systems, and protein structures. In the majority of realistic test cases good results

approaching large basis set DFT quality are obtained at a tiny fraction of computational

cost.

4.1. Introduction

Noncovalent interactions such as van der Waals interactions or H-bonding play a crucial

role in the chemistry of supra-molecular and bio-molecular systems as well as for nano-

structured materials. [16,17] They control host-guest and enzyme-substrate binding, struc-

tures of proteins and DNA, antigen-antibody recognition or the orientation of molecules

on a surface. Theoretical methods based on first principles to complement experimental

studies which often can provide only limited information about these complex soft-matter

systems seem indispensable.

Many of these systems or at least reasonable models thereof can nowadays be com-

puted routinely with quite good accuracy by (dispersion corrected) density functional

theory (DFT) together with relatively large basis sets (triple-ζ quality or better). For

recent reviews how to treat the important long-range London dispersion interactions in

DFT see Refs. [ 32,33]. One perspective of such treatments is to provide accurate input

data to parametrize simpler force-field or even coarse-grained theoretical models although

full protein structures can be treated [242]. But despite of the good cost-accuracy ratio of

DFT for large systems, these calculations are often prohibitive in terms of the necessary

computational efforts. Furthermore the quadrature of the exchange- correlation energy in

DFT causes numerical noise in geometry optimizations or frequency calculations which is

a particular problem in these often flexible systems. Accurate harmonic frequencies are

an important ingredient for the computation of thermodynamic properties as for exam-

ple free energies of association of supra-molecules [46]. Another issue in DFT are charged
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systems (e.g. proteins with charged residues) where the self-interaction error (SIE [243,244])

can lead to artificial charge-transfer and convergence problems of the self consistent field

(SCF) [242,245,246] at least when ’cheap’ semi-local functionals of general gradient approxi-

mation (GGS) type are used. Modern semiempirical methods like DFTB3 [247], OM2 [126]

or PM6 [124] (for an overview see Ref. [ 248]) represent an alternative in principle but suffer

from missing parametrization for important elements or robustness in certain situations

(e.g. charged complexes [192]).

As will be shown in this work, most of the above mentioned problems can be alleviated

by applying Hartree–Fock (HF) theory together with small AO basis sets. The basic idea

is to fill the gap between existing semiempirical methods and DFT in terms of the cost-

accuracy ratio with a physically sound approach. Using HF has the following advantages:

First, in contrast to DFT, HF does not suffer from SIE and extended charged systems

even when treated un-screened (in vacuo) are unproblematic. Second, a HF calculation

is performed completely analytical, including the computation of gradients and Hessians

so that no problems with numerical noise in geometry optimizations or frequency calcula-

tions occur. Third, contrary to standard semiempirical approaches HF is inherently able

to treat the important hydrogen bonding so that there is no need for atom-type dependent

H-bond corrections which are normally applied for neglect of differential overlap (NDDO)

type methods. [249]. Furthermore, the proposed HF method can be applied without any

parametrization to almost any element of the periodic table and includes important physi-

cal effects like Pauli-exchange repulsion correctly. The accurate description of these steric

interactions was always a problem in semiempirical methods [248] and even current density

functionals are not free of inaccuracies for short inter-atomic distances [172,250]. For density

functionals which try to mimic the HF short-range repulsive behavior see e.g. Ref. [251]

It is clear, however, that the Coulomb correlation energy is entirely missing in HF

and a small basis set can introduce further severe errors. The suggested approach is

hence not meant to be generally applicable or as a replacement of DFT. Rather, it should

yield reasonable results for simple molecular properties like equilibrium structures or

vibrational frequencies or for noncovalent interactions, i.e., when changes in the basic

electronic structure during a chemical process is small. The accurate computation of

chemical reaction energies requires the account of various short-ranged polarization and

correlation effects and is not of concern here (and likely not computable with a minimal

or small AO basis set).

Several years ago Pople noted that HF/STO-3G optimized geometries for small molecules

are excellent, better than HF is inherently capable of yielding. [252,253] Similar observa-

tions were made by Ko los already in 1979, who obtained good interaction energies for a

HF/minimal-basis method together with a counterpoise-correction as well as a correction

to account for the London dispersion energy. [254] It seems that part of this valuable knowl-
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edge has been forgotten during the recent ’triumphal procession’ of DFT in chemistry.

The true consequences of these intriguing observations could not be explored fully at that

time due to missing computational resources but are the main topic of the present work.

We recently noted the good performance of HF/large-basis in combination with our

latest dispersion correction scheme D3 [36,37] for noncovalent interactions and we will use

this well-established dispersion correction (see Ref. [212,255–257] for recent D3 applications)

also in the present work. Work along similar lines (i.e. using HF-D3/STO-3G) has been

done by the group of T. Martinez recently [202]. The basis set superposition error (BSSE) is

significant for a small or minimal basis set and will be treated with our recently developed

geometrical counterpoise correction (gCP). [47] Importantly, this approach also accounts for

intramolecular BSSE which is difficult to correct efficiently otherwise. Both schemes are

used essentially in unmodified form here. Additionally, a new short-ranged basis (SRB)

incompleteness correction term is applied. This corrects for systematically overestimated

bond lengths for electronegative elements (e.g. N,O,F) when employing small basis sets.

According to common practice basis set effects are separated into BSSE and BSIE (basis

set incompleteness error). In this sense the SRB term corresponds to the BSIE and

the gCP scheme accounts for the atom pair- wise part of the BSSE (for related BSSE

correction schemes see Refs. [196,197]).

The basis set used here is of minimal quality for the often occurring (’organic’) ele-

ments H,C,N,O and mostly of split-valence (SV) or polarized SV (SVP) quality for the

other elements. It is dubbed ’MINIX’ from now on and an inherent (fixed) ingredient

of the method. For simplicity this HF-D3-gCP-SRB/MINIX method will be abbreviated

HF-3c in the following where the term ’3c’ stands for the three applied corrections and

the mentioned compound basis set is always implied. It should also indicate that the

method accounts for the important dispersion contributions by the relatively accurate D3

scheme [36,37].

We present HF-3c results in comparison to those obtained with the semiempirical

PM6 [124] method and to standard DFT. The PM6 method is used because it is parametrized

for very many elements so that the same systems can be calculated for comparison. We

investigate geometries of small organic molecules as well as interaction energies and geome-

tries of small noncovalent complexes. As more realistic tests, geometries and association

free energies of supramolecular complexes will be considered. This also includes a test

of the quality of the harmonic vibrational frequencies. Finally, HF-3c results for protein

structures will be presented and compared to experimental X-ray and solution NMR data.
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Table 4.1.: Composition of the MINIX basis set.

element basis

H-He, B-Ne MINIS
Li-Be MINIS+1(p)
Na-Mg MINIS+1(p)
Al-Ar MINIS+1(d)
K-Zn SV
Ga-Kr SVP
Rb-Xe def2-SV(P) with ECP

4.2. Theoretical and computational Methods

4.2.1. The HF-3c method

The starting point for calculating the electronic energy is a standard HF treatment with

a small Gaussian AO basis set. The herein used so called MINIX basis set consists of

different sets of basis functions for different groups of atoms (Table 4.1). The valence

scaled minimal basis set MINIS [258] and the split valence double-ζ basis sets SV, SVP [259]

and def2-SV(P) [237] (the latter together with effective core potentials (ECP) [260] for heavier

elements) are employed. Many other possibilities have been considered but the chosen one

not only represents a very good compromise between accuracy and speed but furthermore

this basis seems to be balanced and easily to correct for deficiencies (see below).

The HF calculations are conducted in conventional mode, i.e., the two-electron integrals

are computed once and stored on disk or in memory if possible. This option is a further

advantage of the small basis set approach and leads to large computational savings. Only

huge systems are treated in direct mode by re-calculating integrals in every SCF iteration.

The so called resolution of the identity (RI) approximations are not applied because the

savings are negligible for small basis sets and this approach can even slow-down the

computations due to overhead from the necessary linear algebra parts.

Three terms are added to correct the HF energy E
HF/MINIX
tot in order to include London

dispersion interactions, to account for the BSSE and to correct for overestimated bond

lengths. The corrected total energy is calculated as

EHF−3c
tot = E

HF/MINIX
tot + E

D3(BJ)
disp + EgCP

BSSE + ESRB. (4.1)

The first correction term E
D3(BJ)
disp is the atom-pair wise London dispersion energy from
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the D3 correction scheme [36] and applying Becke-Johnson (BJ) damping [37,133,134]

E
D3(BJ)
disp = −1

2

atoms∑
A 6=B

(
s6

CAB
6

R6
AB + (a1RAB

0 + a2)
6 + s8

CAB
8

R8
AB + (a1RAB

0 + a2)
8

)
(4.2)

Here, CAB
n denotes the nth-order dispersion coefficient (orders = 6, 8) for each atom pair

AB, RAB is their internuclear distances and sn are the order-dependent scaling factors.

The cutoff radii RAB
0 =

√
CAB

8 /CAB
6 and the fitting parameters a1 and a2 are used as

introduced in the original works [133,134]. For the present method, the three usual parame-

ters s8, a1 and a2 were re-fitted using reference interaction energies of the the S66 test set

complexes [172]. This results in s8 = 0.8777, a1 = 0.4171 and a2 = 2.9149. The parameter

s6 was set to unity as usual to enforce the correct asymptotic limit and the gCP correction

(see below) was already applied in this fitting step.

The second term EgCP
BSSE denotes our recently published geometrical counterpoise (gCP)

correction [47] for BSSE, which depends only on the atomic coordinates of a given molecule.

The difference in atomic energy Emiss
A between a large (nearly complete) basis set and

the target basis set (MINIX in our case) for each free atom A is calculated for the HF

Hamiltonian. The Emiss
A term is multiplied with a decay function depending on the inter-

atomic distances RAB. The sum over all atom pairs reads

EgCP
BSSE = σ

atoms∑
A

atoms∑
A 6=B

Emiss
A

exp
(
−α (RAB)β

)
√
SABN virt

B

, (4.3)

where α, β and σ are fitting parameters, SAB is a Slater-type overlap integral and N virt
B

is the number of virtual orbitals on atom B in the target basis. The SAB is evaluated

over a single s-type orbital centered on each atom and using optimized Slater exponents

weighted by the fourth fitting parameter η. The gCP parameters were fitted in a least-

squares sense against counterpoise correction data obtained by the scheme of Boys and

Bernadi [166] as described in the original publication [47]. This way, for each combination

of a Hamiltonian (HF or DFT) and a basis set, a specific set of parameters α, β, σ and

η was created. We found that this gCP correction performs particularly well for HF in

combination with a small basis set. For further details and recent applications see [47,145].

The last term ESRB is a short-ranged correction to deal with basis set deficiencies which

occur when using small or minimal basis sets. It corrects for systematically overestimated

covalent bond lengths for electronegative elements and is again calculated as a sum over

all atom pairs:

ESRB = −s
atoms∑
B 6=B

(ZAZB)3/2 exp(−γ(R0,D3
AB )3/4RAB) (4.4)
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Here, R0,D3
AB are the default cut-off radii as determined ab initio for the D3 dispersion

correction scheme [36] and ZA, ZB are the nuclear charges. The correction is applied for

all elements up to argon. The empirical fitting parameters s = 0.03 and γ = 0.7 were

determined to produce vanishing HF-3c total atomic forces for the B3LYP-D3(BJ)/def2-

TZVPP equilibrium structures of 107 small organic molecules. The other two correction

terms were included in the fitting procedure of ESRB, which was carried out by minimizing

the HF-3c RMS gradient for the reference geometries. The D3 and gCP parameters were

kept constant at their previously optimized values in this procedure. Because the SRB

correction also effects covalent bond energies, the thermochemical properties of HF-3c

are different from those of HF-D3-gcp/MINIX. Some cross-checking for standard reaction

energies of organic molecules showed that HF-3c performs reasonably well but further

tests which are out of the scope of the present work should be conducted to validate this

finding.

In summary, the HF-3c method consists of only nine empirical parameters, three for

the D3(BJ) dispersion, four in the gCP scheme and two for the SRB correction. Because

the fits are done independently, this parametrization procedure was easy to perform and

changes in the setup of the fit are not expected to have any major effect on the method.

No element or pair-specific terms need to be determined, i.e., the nine parameters apply

globally for all elements considered (i.e., currently up to iodine). Total energies and

3c-components for a few molecules are given in the SI.

4.2.2. Technical details

All HF/MINIX and B3LYP [91,92]-D3(BJ)/def2-TZVPP [237] calculations were performed

using TURBOMOLE 6.4. [261] In case of B3LYP the resolution-of-identity (RI) approxi-

mation for the Coulomb integrals [74] was applied using matching default auxiliary basis

sets. [238] The numerical quadrature grid m4 was employed for integration of the exchange-

correlation contribution. The 3c-terms to energy and analytical gradient were calculated

by a new code which basically merges the freely available programs dftd3 and gCP [241].

For both, HF and DFT, computations of the harmonic vibrational frequencies were per-

formed analytically using the aoforce code of TURBOMOLE. The 3c-contributions to

the Hessian are computed numerically by two-point finite differences of analytical gradi-

ents.

All PM6 [124] and PM6-DH2 [262] calculations were undertaken using MOPAC 2012 [263]

for the calculation of energies and gradients but the relax or statpt codes from TUR-

BOMOLE 6.4 for executing the geometry relaxation steps. Vibrational frequencies were

computed numerically using MOPAC 2012.

The COSMO-RS model [41,42] was used as implemented in COSMOtherm [264] to ob-
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tain all solvation free energies. Single-point calculations on the default BP86 [91,265]/def-

TZVP [266] level of theory were performed on the optimized gas phase geometries.

All visualizations of molecules were done with USCF Chimera version 1.6.1. [267]

The root mean square deviation (RMSD) of two geometries was calculated using a

quaternion algorithm [268] in order to get an all atom best-fit.

The HF-3c method has also been implemented into the upcoming version of the free

ORCA software [234] where it is invoked simply by keyword.

4.2.3. Computation of free energies of association

Free energies of association for host and guest molecules in a solvent X at a temperature

T are calculated as

∆Ga = ∆E + ∆GT
RRHO + ∆δGT

solv(X). (4.5)

Here, ∆E denotes the gas phase interaction energy of the fully optimized molecules and

GT
RRHO is the sum of thermal corrections from energy to free energy within a rigid-

rotor-harmonic-oscillator approximation for each molecule in the gas phase at a given

temperature T , including the zero-point vibrational energy. All harmonic frequencies

are scaled with a factor of 0.86 for HF-3c. For obtaining the vibrational entropy, low-

lying modes below ≈100 cm−1 are treated within a rigid-rotor model in order to reduce

their error in the harmonic approximation, for details see Ref [46]. The solvation free

energy δGT
solv(X) is calculated for each gas-phase species by employing the COSMO-RS

model [41,42]. No further (empirical) corrections are applied and the so computed values

can be directly compared to experimental data.

4.3. Results and Discussion

4.3.1. Geometries of small organic molecules

The fitting set for the SRB correction of basis set deficiencies consists of 107 small organic

molecules (2 to 34 atoms) containing the elements H, B, C, N, O, F, Si, P, S, and Cl.

All standard functional groups are represented within this test set (for a detailed list of

molecules see SI). The B3LYP-D3(BJ)/def2-TZVPP geometries, which have been proven

to be reliable for organic molecules, were used as reference structures in the fitting pro-

cedure. PM6 calculations were performed to compare the HF-3c results to those from a

widely used semiempirical approach.

Geometry optimization of these organic molecules using the final 3c-parameters yield an

average root mean square deviation (RMSD) between the HF-3c and B3LYP-D3 Carte-

sian coordinates of 0.033 Å. This is considered to be a very good result meaning that
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Figure 4.1.: Root mean square deviation (RMSD) between HF-3c or PM6 and B3LYP-
D3/def2-TZVPP geometries for 107 small organic molecules. The molecules
are sorted according to the type of atoms and hence to the functional groups
they contain. The atoms given in brackets are only rarely represented in the
corresponding group. The lines between the data points are drawn just to
guide the eye.

at least for the fit set HF-3c yields structures of almost B3LYP/large-basis quality. The

RMSD values for the individual molecules are shown in Figure 4.1. One of the rare ’out-

liers’ with a notably higher RMSD (adenine, 63) merely shows a methyl group rotated

by 180◦ compared with the reference structure. PM6 shows more ’outliers’ than HF-3c

and the average RMSD of 0.910 Å is much larger. Also the PM6 geometries of adenine as

well as methyl acetate (43) exhibit a rotated methyl group. Further, hydrogen peroxide

(30) is planar whereas glyoxal (37) and urea (58) are not as they should be. Hydrazine

(50), diphosphane (87) and PH2NH2 (91) adopt the anti instead of the gauche conforma-

tion when optimized with PM6. These drastic conformational changes do not occur in

optimizations with the HF-3c method.

Comparison of the lengths for the most frequent bonds (C-C, C=C, conjugated C-

C/C=C, C-H, O-H N-H, P-H, B-H, C-F, C=O, C-O, C-N, conjugated C-N/C=N, C-S,

C-Cl, C-B and C-Si) results in an overall mean deviation (MD) with respect to the

reference structures of 0.012 Å for HF-3c and 0.005 Å in case of PM6. With a few

exceptions (C=C, B-H and C-F) the HF-3c bond lengths tend to be slightly too long.

The mean absolute deviation (MAD) for all considered bond lengths in HF-3c and PM6

structures is 0.015 Å and 0.016 Å respectively. Hence, the overall error for bond lengths is

similar for both methods. Due to a better description of bond angles and dihedral angles,

HF-3c geometries generally show smaller RMSD values than PM6 structures.

The accuracy as demonstrated above also results from the SRB correction. This is

more clearly seen by comparing some critical bond lengths with and without this term in
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4. Corrected small basis set Hartree–Fock method for large systems

Table 4.2.: Critical bond lengths for some exemplary molecules at the HF/MINIX, HF-
D3-gCP/MINIX, HF-3c and B3LYP-D3/def2-TZVPP level. All distances are
given in Å.

molecule bond
R(HF/ R(HF-D3-gCP/

R(HF-3c) R(B3LYP-D3)
MINIX) MINIX)

acetone C=O 1.264 1.268 1.206 1.209
urea C=O 1.275 1.280 1.216 1.218
methaneimine C=N 1.294 1.298 1.260 1.264
ethanol C-O 1.478 1.486 1.428 1.428
urea C-N 1.423 1.427 1.397 1.372
hexaflouroethane C-F 1.413 1.429 1.343 1.334
H2S2 S-S 2.132 2.136 2.122 2.073

typical molecules. For example the C=O bond length in a ketone like acetone is 1.268 Å

at the HF-D3-gCP/MINIX level (1.264 Å at HF/MINIX) which is too long by about

0.06 Å. This systematic deviation it corrected with HF-3c and the computed length of

1.206 Å is sufficiently close to the B3LYP reference value fo 1.209 Å. Another example is

hexaflouroethane where the corresponding values for the C-F bond length are at 1.429 Å

the HF-D3-gCP/MINIX level (1.413 Å at HF/MINIX) and 1.343 Å at the HF-3c level

(1.334 Å at B3LYP). A few more comparisons are given in Table 4.2 where in general the

strong influence is seen for several bonds in polar situations.

HF-3c, RMSD = 0.150

S

O

O

O

O

Si

O

O O

N N

F

Cl

N

HF-3c, RMSD = 0.310

PM6, RMSD = 1.043

PM6, RMSD = 1.236

Figure 4.2.: Two artificially constructed organic molecules optimized with HF-3c (left
grey structures) and PM6 (right grey structures). Black coloured B3LYP-
D3/def2-TZVPP geometries serve as reference. All RMSDs are given in Å.
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As a cross-validation, two artificial neutral organic molecules containing a few het-

eroatoms were constructed in a more or less arbitrary fashion and fully optimized with

all three methods taking again B3LYP-D3(BJ)/def2-TZVPP as reference. The RMSD

relative to the reference structure is 0.15 Å for HF-3c and 1.043 Å for PM6 in case of the

first molecule and 0.310 Å for HF-3c and 1.236 Å for PM6 in case of the second molecule

(see Figure 4.2). For both structures HF-3c performs significantly better than PM6. Ad-

ditionally, PM6 is not able to correctly describe the bond angle at the oxygen-atom of the

silyl ether group in the second molecule but instead yields an almost linear coordination

geometry.

Additionally, we performed single-point calculations for 10 conformers of the tripeptide

phenylalanyl-glycyl-glycine (PCONF set [269]), 15 conformers of the n-alkanes butane, pen-

tane and hexane (ACONF set [270]), 15 conformers of the sugar 3,6-anhydro-4-O-methyl-

D-galactitol (part of the SCONF set [271]) and 10 conformers of cystein (CYCONF set [272])

as included in the GMTKN30 benchmark set [86]. The reference energies were taken from

the original publications. For PCONF, SCONF and CYCONF they were calculated on

the estimated coupled cluster with singles an doubles excitations and perturbative triples

at the estimated complete basis set limit (CCSD(T)/CBS) level of theory and the ones

for ACONF on the W1h-val level. The mean absolute deviation (MAD) for all confor-

mational energies is 1.4 kcal/mol for HF-3c, which is an reasonable result in particular

because this property is quite sensitive to the quality of the AO basis set. PM6-DH2

yields a much higher MAD of 2.8 kcal/mol while B3LYP-D3/def2-QZVP gives a much

smaller MAD of 0.3 kcal/mol. The D3-correction contributes significantly to this good

result, since plain B3LYP/def2-QZVP yields an MAD of 1.5 kcal/mol (i.e., is worse than

HF-3c).

Further cross-validation studies for structures are performed on noncovalent complexes

and their fragments as discussed in the next sections.

4.3.2. Geometries and interaction energies for S22 and S66 sets

In order to test the capability of the HF-3c method to describe noncovalent interactions,

single-point calculations as well as geometry optimizations for the S22 [199] and S66 [172] test

sets were carried out. Due to under representation of some interaction motifs, the S66 set

was published by the Hobza group as a revised and extended version of the S22 set. [172]

We also used their recently published X40 test set, which was designed to cover different

halogen bonding interactions. [273] Reference values for interaction energies and geometries

were taken from the original publications. The interaction energies refer to the estimated

CCSD(T)/CBS level and the geometries were optimized on the MP2/cc-pVTZ(CP) or

CCSD(T)/cc-pVTZ(noCP) level of theory.
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4. Corrected small basis set Hartree–Fock method for large systems

Table 4.3.: Mean deviation (MD) and mean absolute deviation (MAD) for the single-point
interaction energies of the S22, S66 and X40 test sets for the three methods
HF-3c, PM6 and PM6-DH2. All energies are given in kcal/mol.

HF-3c PM6 PM6-DH2
MD MAD MD MAD MD MAD

S22 -0.01 0.55 3.39 3.39 0.13 0.39
S66 -0.09 0.38 2.68 2.68 0.35 0.65
X40 -0.80 1.44 1.19 1.73 0.35 1.46

Again, PM6 optimized geometries and interaction energies are used for comparison.

Additionally, the DH2 correction [262] to PM6 for hydrogen-bonding and dispersion was

employed which is mandatory for this kind of benchmark. Due to known problems with

this correction for geometry optimizations, the scheme of calculating PM6-DH2 energies

on PM6 geometries proposed by Hobza et al. was applied. [262,274]

For the S22 and S66 sets, the single-point HF-3c interaction energies are rather accurate

with MADs of 0.55 kcal/mol and 0.39 kcal/mol, respectively. These values are consid-

erably lower than the previously published ones (0.64 and 0.51 kcal/mol) for HF/mini

calculations applying just the D3 and gCP correction. [47] Thus, the modified basis set

together with the SRB correction term and re-parametrization gives a further significant

improvement. This accuracy is comparable or even better than obtained for some density

functionals at the DFT-D3/large-basis level [250].

The MD values of -0.01 kcal/mol in case of S22 and -0.09 kcal/mol in case of S66

are almost insignificant. In case of the X40 test set both the MAD of 1.44 kcal/mol

and the MD of -0.80 kcal/mol are much higher than for S22 (MAD of 0.55 kcal/mol)

and S66 (MAD of 0.38 kcal/mol) but they are still reasonable for the applied theoretical

level. In conclusion it is clear that HF-3c is able to provide a qualitatively correct and

quantitatively reasonable description of general noncovalent interactions. For a detailed

analysis of responsible systematic error compensations see Ref. [47]

In contrast, PM6 single-point calculations result in equal values for the MD and MAD

of 3.39 kcal/mol for the S22 and 2.68 kcal/mol for the S66 test set which indicates a

systematical underbinding. This error can be reduced by applying the DH2 correction

which accounts for dispersion and H-bonding. PM6-DH2 yields an MD of 0.13 kcal/mol

and an MAD of 0.39 kcal/mol in case of the S22 and an MD of 0.35 kcal/mol and an

MAD of 0.65 kcal/mol for the S66 set. Again, for the X40 set the deviations are much

higher (MAD of 1.46 kcal/mol, MD of 0.35 kcal/mol). Altogether, the HF-3c method

performs slightly better than PM6-DH2 in reproducing the interaction energies.

For the S22 set HF-3c geometry optimizations lead to an MD of 0.42 kcal/mol and an

MAD of 0.94 kcal/mol for the interaction energies. Optimizations on the PM6 level of
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theory results in much higher values of 3.11 kcal/mol for both MD and MAD. Except

for complex 10, which shows an imaginary vibrational mode for methyl rotation on the

HF-3c level of theory, all optimized complexes are minima on the corresponding potential

energy surface (PES) for both methods when started straightforwardly from the reference

coordinates. In various cases the convergence criteria for energy and gradient and the

step size for the numerical PM6 frequency calculations had to be adjusted in order to

remove small artificial imaginary frequencies. Similar numerical problems do not occur

in HF-3c calculations. PM6-DH2 single-point calculations on PM6 geometries yield an

MD of 0.1 kcal/mol and an MAD of 0.76 kcal/mol which are slightly lower than the

corresponding values for HF-3c although the inconsistencies in the PM6 optimizations

should be kept in mind.

Comparison of the resulting geometries with the reference structures yields an average

RMSD of 0.21 Å in case of HF-3c and 0.45 Å for PM6. As shown in Figure 4.3(a), there

are more outliers for PM6 than for HF-3c geometries. The HF-3c geometries of both,

the T-shaped benzene dimer (20) and the T-shaped benzene· · · indole complex (21) show

structures in between a T-shaped and parallel-stacked one. The rings of two parallel

stacked systems, namely the benzene dimer (11) and the benzene· · · indole complex (14),

are rotated towards each other compared with the reference structures. Altogether the

general structural motifs of the S22 complexes can be reproduced well with HF-3c keeping

in mind the flatness of the corresponding PES. In contrast, PM6 seems to systematically

disfavor parallel stacked geometries. Instead of a parallel stacking the benzene dimer

(11) shows a T-shaped stacking, the uracil dimer (14) an H-bonded geometry and the

benzene· · · indole complex (14) a structure between parallel-stacked and T-shaped. Fur-

ther, the orientation of the monomers in PM6 optimized geometry of the methane dimer

(8) differs from the one in the reference structure. Overall, the HF-3c geometries in the

S22 set match the reference structures better than the PM6 ones.

The results for the S66 set reveal a similar picture. Geometry optimizations of the

complexes yield an MD of 0.08 kcal/mol and an MAD of 0.59 kcal/mol for the interaction

energy in case of HF-3c and again the same value for the MD and MAD of 2.33 kcal/mol

for PM6. The PM6-DH2 single-point calculations on PM6 geometries result in an MD of

0.33 kcal/mol and an MAD of 0.81 kcal/mol which are slightly higher than the values for

HF-3c. Similar to the S22 set there are more outliers for PM6 than for HF-3c geometries

(Figure 4.3b) compared to the reference. The average structural RMSD is 0.20 Å in case

of HF-3c and 0.68 Å for PM6. All structures were proven to be minima on the corre-

sponding PES though PM6 again shows problems with numerical noise. In general, HF-3c

geometries reproduce the reference structures very well. The acetamide dimer (21) shows

a rotated methyl group and the rings of the parallel stacked benzene· · · uracil complex

(28) are differently rotated towards each other compared to the reference structures. In
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Figure 4.3.: RMSD between HF-3c or PM6 and CCSD(T)/cc-pVTZ(noCP) or MP2/cc-
pVTZ(CP) reference geometries for S22 (a) and S66 (b). The lines between
the data points are drawn just to guide the eye.

all cases, the basic interaction motifs are preserved in the HF-3c geometries which is a

very important result.

PM6 geometries of the acetic acid dimer (20), acetamide dimer (21) and the ethyne· · · acetic

acid complex (60) feature a rotated methyl group. As already observed for the S22 set PM6

prefers T-stacked geometries over parallel stacked ones. Almost every parallel stacked ref-

erence geometry shows T-shaped binding when optimized with PM6. Furthermore, the

pyridine· · · uracil complex (29) shows an H-bonded geometry instead of parallel stacking

and the H-bonded pyridine· · ·methylamine complex (66) does not exhibit an H-bond at

all.

Overall the HF-3c method reproduces the reference geometries of the S22 and S66 sets

better than PM6. The RMSD is smaller and the general interaction motives are preserved
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in all cases indicating robustness in practical applications. The MDs and MADs for

HF-3c interaction energies derived from optimized structures are similar to single-point

values indicating that the HF-3c and reference PES are reasonably parallel to each other.

The accuracy for HF-3c computed noncovalent interaction energies approaches that of

dispersion corrected DFT but is less than the best DFT-D3/large-basis variants.

4.3.3. Thermal corrections to Gibbs free energies for small organic

molecules and noncovalent complexes

Vibrational frequency calculations and the corresponding zero-point energy and thermal

corrections to Gibbs free energies are supposed to be a main area of application of HF-3c.

We randomly chose ten molecules out of 107 from the geometry fitting set, four complexes

from S22, and six from the S66 test set. For these 20 molecules the E → G(298) corrections

were calculated using HF-3c, PM6, and B3LYP-D3/def2-TZVPP as reference. The scaling

factors for the harmonic vibrational frequencies were set to 0.86 for HF-3c, 1.0 for PM6

and 0.97 for B3LYP. Low-lying modes below ≈100 cm−1 were treated within a rigid-rotor

model [46] in order to reduce their error in the harmonic approximation when obtaining

the vibrational entropy. The final thermal corrections for all 20 molecules are listed in

the SI (table 4).

Comparison of HF-3c with the B3LYP reference values shows a good agreement with

an MD of 0.8 kcal/mol and an MAD of 1.9 kcal/mol (corresponding to about 3% relative

error). For most molecules the deviations range from only -1.3 to 2.7 kcal/mol. The four

molecules with the highest deviations are tetramethylsilane, the ethane-pentane complex

and the cyclopentane-neopentane complex where the HF-3c thermal corrections are 4.2

to 7.4 kcal/mol too large and the T-shaped benzene dimer for which the HF-3c value is

7 kcal/mol too small. The large error for the benzene dimer can be attributed to the very

shallow potential energy surface. In case of PM6 the thermal corrections for all regarded

molecules except ammoniaborane are too small. The MD with respect to the B3LYP-

D3/def2-TZPP values is -7.0 and the MAD is 7.2 kcal/mol, i.e., significantly worse than

for HF-3c.

4.3.4. Geometries and association free energies of supramolecular

complexes

Recently, we compiled a set of 12 supramolecular complexes (S12L set) and compared cal-

culated free energies of association with experimental data. [46] This set was very recently

used to benchmark various dispersion corrections to DFT [192] and will be taken in this

work for cross-validation of the HF-3c method on large realistic systems.
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4. Corrected small basis set Hartree–Fock method for large systems

The investigated complexes are two ”tweezer” complexes with tetracyanoquinone (TCNQ)

and 1,4-dicyanobenzene (DCB) (1a and 1b measured in CHCl3) [275], two ”pincer” com-

plexes of organic π-systems (2a and 2b in CH2Cl2) [276], the fullerenes C60 and C70 in a

”buckycatcher” (3a and 3b in toluene) [277], complexes of an amide macrocycle (mcycle)

with glycine anhydride (GLH) and bezoquinone (BQ) (4a and 4b in CHCl3), [278] complexes

of cucurbit[6]uril (CB6) with butylammonium (BuNH3) and propylammonium (PrNH3)

(5a and 5b in a 1:1 mixture of formic acid and water) [279] and complexes of cucurbit[7]uril

(CB7) with a di-cationic ferrocene derivative (FECP) and 1-hydroxyadamantane (ADOH)

(6a and 6b in water). [280]

Computations at the PW6B95-D3(BJ)/def2-QZVP’//TPSS-D3(BJ)/def2-TZVP level

for gas phase interaction energies ∆E together with a rigid rotor harmonic oscillator

model for thermodynamical corrections ∆GRRHO and the COSMO-RS model for solvation

free energies ∆δGsolv are able to reproduce the experimental values for association free

enthalpies for these complexes with good accuracy. The MAD from experimental data

was about 2 kcal/mol. [46] These results were used as a reference to test the performance of

HF-3c for geometries and free enthalpies of association of the S12L set of supramolecular

complexes. Again, PM6-DH2//PM6 calculations are performed for comparison.

Figure 4.9 (a) shows the magnitudes of the contributions to the association free energy

(∆E, ∆GRRHO and ∆δGsolv) for HF-3c, PW6B95-D3//TPSS-D3 as reference and PM6

or PM6-DH2//PM6, respectively. The HF-3c gas phase interaction energy tends to be

lower than the PW6B95-D3 energy, the deviation for the complexes 1a, 1b, 2a, 2b, 4a,

4b and 6b is 0.5 to -2 kcal/mol. For C60@Catcher (3a) and C70@Catcher (3b) HF-3c

is overbinding by 5 to 6 kcal/mol, for BuNH3@CB6 (5a) and PrNH3@CB6 (5b) by 10

kcal/mol and for FECP@CB7 (6a) by 12.6 kcal/mol. The result for FECP@CB7 is not

surprising since HF is known to describe transition metal complexes in general badly.

Additionally, the complex has a double positive charge, which is challenging for a small

basis set method due to large polarization effects. Consistent with this, the two complexes

5a and 5b with a larger error also carry a positive charge. These errors demonstrate that

HF-3c is well-behaved and performs as expected.

Overall, the HF-3c gas phase interaction energies have an MD of -4.2 and an MAD

of 4.4 kcal/mol compared with the PW6B95-D3//TPSS-D3 reference values. The MD

indicates a small systematical overbinding and the MAD is similar to various dispersion

corrected DFT methods employing large AO basis sets [46].
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Figure 4.4.: (a) Contributions to free energy of association (interaction energy
∆E, RRHO free energy correction ∆GRRHO and solvation free energy
∆δGsolv). PW6B95-D3/def2-QZVP’//TPSS-D3/def2-TZVP values are taken
from Ref. [46] and are shown for comparison. The left bar for each com-
plex always presents the HF-3c values, the bar in the middle the PW6B95-
D3//TPSS-D3 values and the right bar the PM6-DH2//PM6 (pure PM6 re-
sults for ∆E are shown with narrower bars) values. Not all ∆GRRHO have
been computed at the DFT level. (b) Total free energy of association ∆Ga

for all supramolecular complexes on the HF-3c, PM6 and PM6-DH2//PM6
levels of theory. Experimental values are taken from Refs. [275,276,278–281]
and are shown for comparison.
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All PM6 interaction energies are much higher than the reference values, the deviation

ranges from 3 up to 30 kcal/mol. Applying the PM6-DH2//PM6 approach, the deviations

decrease but remain larger than for HF-3c (6.1 kcal/mol compared to 4.4 kcal/mol).

Exceptions are C70@Catcher (3b) and FECP@CB7 (6a) with an error of -3.6 and -7.6

kcal/mol, respectively. Except for complexes 1a and 1b, PM6-DH2 overbinds and the

MD (-5.6 kcal/mol) is absolutely larger than for HF-3c.

Comparison of the HF-3c geometries with the TPSS-D3 reference structures yield a

minimal RMSD of 0.04 Å for the complex C60@Catcher (3a) and a maximal RMSD of

0.48 Å for π-Syst1@Pincer (2a). The average RMSD is 0.19 Å. The corresponding values

for PM6 are 0.11 Å, 0.97 Å and 0.45 Å. For both methods the complexes BuNH3@CB6

(5a) and PrNH3@CB6 (5b) show a slightly different coordination of the guest molecule

compared with the reference geometries. Similar to the small noncovalent complexes, the

HF-3c method reproduces the reference structures better than PM6.

Since the geometry enters the COSMO-RS calculation, the better performance of HF-

3c is also reflected in the solvation free energies ∆δGsolv of the complexes. The ∆δGsolv

values based on the HF-3c geometries deviate from the reference values in the range from

only -0.5 to +2.6 kcal/mol whereas the deviation based on PM6 geometries ranges from

-2.7 to +6.1 kcal/mol.

Because of the high computational cost, the thermodynamic correction ∆GRRHO on the

TPSS-D3/def2-TZVP level of theory has been computed only for three complexes (2a, 3a

and 4a). [46] Both simpler methods match the three reference values relatively well. The

highest deviation is 1.5 kcal/mol in case of HF-3c and 1.3 kcal/mol for PM6 corresponding

to about 5-10% of ∆GRRHO. Because the number of comparisons is very small we can

only guess that both methods might perform equally well.

The sum of all these contributions, the association free energy ∆Ga, is shown in Figure

4.9 (b) in comparison to the experimental values. Since the gas phase interaction energy is

the largest contribution and also most sensitive to the quality of the underlying electronic

structure method, the error in ∆Ga mainly reflects the error in ∆E. Therefore, HF-

3c yields ∆Ga values which are too low (overbinding). Nevertheless, the calculated ∆Ga

values from HF-3c are surprisingly good regarding the simplicity of the method and an MD

of -5.2 and an MAD of 6.2 kcal/mol seems to be very respectable. The PM6-DH2//PM6

values are even lower and hence, the overbinding is even stronger than for HF-3c in most

cases. The only significant exception is the complex FECP@CB7, whose ∆Ga(PM6-

DH2//PM6) matches the reference value much better than the HF-3c one. Since the

HF-3c geometries are quite accurate and the derived values for ∆δGsolv and ∆GRRHO

in particular are reasonable, a single-point DFT-D3/large-basis calculation on the HF-3c

geometries is suggested for improved performance. For screening applications or scanning

of supra-molecular potential energy surfaces, however, HF-3c seems to be sufficiently
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accurate.

4.3.5. Geometries of small proteins

Recently, Martinez et al. composed a set of 58 small proteins with 5 to 35 residues

in length and total charges ranging from -2 to +2. [202] To test the performance of HF-

3c, these proteins were fully optimized starting from the experimental geometries, which

were taken from the Protein Databank (PDB). [282] Eight structures were excluded due

to problems with the original PDB file (residues were missing or charges could not be

assigned according to Ref. [202]). In case of multiple protein structures in one PDB file,

the first one was always used. Again, PM6 optimizations were performed for comparison.

During the HF-3c geometry optimization procedure of almost all proteins, the charged

termini of the protein backbone neutralize via proton transfer from the protonated amino

group to the carboxylate, if they are in close proximity or close to a lysine and aspartic

or glutamic acid. This was also observed when two of those amino acids are too close.

The protonation states and final charges were determined with USCF Chimera, which

uses an empirical procedure for adding hydrogen atoms to the protein structure and

AMBER ff99SB parameters [283] to assign the overall charge. Hence, it is not completely

sure weather this is the same protonation state the protein would adopt in its natural

environment. Six final HF-3c geometries (1T2Y, 2I9M, 2NX6, 2NX7, 2RLJ, 2RMW)

exhibit a very small imaginary vibrational frequency below -22 cm−1, all other structures

are true minima on the PES. In case of PM6 this hydrogen transfer is observed for only a

few proteins. Contrary to the unproblematic HF-3c calculations, the PM6 optimization

of ten proteins showed convergence problems which could not be solved. Additionally, 13

optimized structures exhibit persistent imaginary frequencies. Nevertheless, all structures

also with imaginary frequencies are included in the geometry analysis.

As a first examination, the backbone RMSD between the calculated and the starting

experimental geometries was evaluated using USCF Chimera [267]. The results are shown

in Figure 4.5. All Cα atom pairs were included, even if the calculated secondary structure

strongly deviates from the reference one. In this way, the RMSD value gives a hint how

good the computed secondary structure is. The minimal RMSD for the HF-3c geometries

is 0.45 Å for 3NJW, the maximal value is 5.21 Å for 2PJV and the average RMSD is

2.02 Å. The average RMSD between different models of solution NMR structures in the

whole set of 58 proteins is 1.73 Å. [202] Hence, the average RMSD for the HF-3c geometries

is acceptable. In most cases the general secondary structure is preserved. Figure 4.6

shows four protein geometries with a very small RMSD in comparison to the experimental

structures. We consider 13 protein structures which exhibit a backbone RMSD higher than

2.5 Å (arbitrarily chosen threshold) as some kind of outliers and these are now discussed
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Figure 4.5.: Backbone RMSD for all optimized protein structures on the HF-3c and PM6
level of theory relative to the experimental starting structure. The lines
between the data points are drawn just to guide the eye.

(a) 2KUX
RMSD = 0.565

(b) 2KVX
RMSD = 0.654

(c)3NJW
RMSD = 0.451

(d) 2OL9
RMSD = 0.460

Figure 4.6.: HF-3c structures (grey) for four proteins with a small backbone RMSD in
comparison to experimental ones (black). The RMSDs are given in Å. Hy-
drogens at carbon atoms in structure (d) are omitted for clarity.

in more detail.

Figure 4.7 shows the HF-3c geometries of four proteins with a high RMSD and the

experimental structure in comparison. The experimentally determined α-helix of 1Y03 is

bent but straight in the HF-3c calculation (Figure 4.7a). The opposite applies for 2JXF

(Figure 4.7b) and 2OQ9, where the experimental structure exhibits a straight helix and

the calculated geometry a bent one. In case of 2PJV (Figure 4.7c), 2PV6, 1ODP and 1O53

the α-helix is strongly distorted compared with the experimental geometry. For 2ONW

(Figure 4.7d), 3FTK, 3FTR and 3NVG the backbone of the experimental structures is

more or less linear whereas it is folded in HF-3c optimized geometries. Protein 2CEH

neither has a α-helix nor a β-sheet structure and the HF-3c geometry is disordered in a

different way than the experimental one. 2RLJ exhibits a larger helix part when optimized
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(a) 1Y03
RMSD = 4.198

(b) 2JXF
RMSD = 4.149

(c) 2PJV
RMSD = 5.211

(d) 2ONW
RMSD = 4.034

Figure 4.7.: HF-3c structures (grey) for four proteins with a high backbone RMSD in
comparison to experimental ones (black). The RMSDs are given in Å. Hy-
drogens at carbon atoms in structure (d) are omitted for clarity.

with HF-3c compared to the experimentally obtained geometry.

In case of PM6 the minimal backbone RMSD is 0.58 Å for 1AQG and the maximal

value is 8.81 Å for 2OQ9. The average backbone RMSD of 2.96 Å is much higher than

for the HF-3c optimized geometries. For more than half of the investigated proteins the

PM6 structure yields an RMSD larger than 2.5 Å and in most cases PM6 is not able to

reproduce the general secondary structure.

Standard health checks to characterize the protein structures were used as described

in Refs. [ 284–286]: (1) clashcores or steric overlaps greater than 0.4 Å per 1000 atoms,

(2) percentage of bad side-chain dihedrals or rotamers, (3) number of β-carbon deviations

greater than 0.25 Å from the expected position based on the backbone coordinates, (4)

percentage of backbone dihedrals that fall into a favored region on a Ramachandran plot

and (5) percentage of those, which are Ramachandran outliers, (6) percentage of bad

bonds and (7) percentage of bad angles. These health checks were performed for the

calculated as well as the starting experimental structures. No structural improvements, e.

g. allowing Asn/Gln/His flips, were made. To provide one single number that represents

the quality of a protein structure, the MolProbity score was defined as a logarithmic-

weighted combination of clashores, percentage of Ramachandran outliers and percentage

of bad side-chain rotamers. [284] The averaged results are shown in Table 4.4, the individual

values for each protein are provided in the supporting information.

The health check data for the HF-3c structures match the values obtained for the

experimental geometries very well. The values for clashcores and bad angles are only

slightly higher. The most defective health criterion is the percentage of bond outliers.

Compared to the values published by Martinez et al. [202] for HF-D3/mini the application

of the geometrical counterpoise correction and the additional short-range term in the HF-
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Table 4.4.: Averaged health criteria for the HF-3c (50 proteins) and PM6 (41 proteins)
optimized structures as well as the experimental starting geometries (50 pro-
teins). Values for HF-D/mini and HF/6-31G were taken from Ref. [202] for
comparison (all 58 proteins).

exp. HF-3c PM6 HF-D3/mini HF/6-31G

clashcore / 1000 atoms 29 34 54 43 8
bad side-chain rotamers 19 % 13 % 21 % 18 % 10 %
Cβ deviations 0.2 0.2 0.0 0.5 0.3
Ramachandran outliers 5 % 6 % 8 % 7 % 3 %
Ramachandran favored 81 % 81 % 71 % 77 % 86 %
bad bonds 0.5 % 8 % 3 % 79 % 1 %
bad angles 1 % 4 % 1 % 10 % 1 %
MolProbity score 2.7 3.3 3.9 3.1 1.9

3c method gives an improvement for all health criteria. This is particularly obvious for the

percentage of bond outliers, which is much smaller for the HF-3c geometries than for the

ones obtained with HF-D3/mini. Compared to the results from the original publication for

HF and the 6-31G basis set, the HF-3c health criteria are almost compatible. The highest

deviation is found again in the percentage of bond outliers. Additionally, the number of

clashcores is substantially smaller for HF/6-31G than for both HF-3c and experiment.

Overall, we conclude that HF-3c is able to yield good geometries for the tested proteins.

Because the method includes only minor empiricism and was not parametrized specifically

for protein structures, we think that this conclusion holds in general and suggest it as a

tool in structural bio-chemistry.

The health checks for PM6 geometries give worse results than those for HF-3c for most

criteria. The number of clashcores and the percentage of poor rotamers is higher and the

percentage of favored Ramachandran dihedrals is much smaller. The results for bond and

angle outliers are slightly better than for HF-3c but overall the PM6 structures are not as

good as the HF-3c ones. Additionally, in many cases the positively charged guanidinium

group of the amino acid arginine is not planar when optimized with PM6.

In general HF-3c seems to predict too many hydrogen bonds (Figure 4.8). On average,

the calculation yields six hydrogen bonds too much compared to the corresponding exper-

imental structures. PM6 shows on average four excessive hydrogen bonds. The hydrogen

bond search was done with USCF Chimera [267] applying default criteria.

To test the influence of the solvent (i.e. artificially neglected water molecules) on the ob-

served hydrogen transfer and the excess of hydrogen bonds, five proteins (1ODP, 2EVQ,

2FBU, 2JTA and 2RLJ) were optimized with HF-3c using the COSMO model [40] for

continuum solvation. The dielectric constant ε was set to 78 for pure water. For all op-

timizations including COSMO, considerably less hydrogen transfers are observed. 1ODP
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Figure 4.8.: Number of hydrogen bonds for the experimental, HF-3c and PM6 protein
structures. The lines between the data points are drawn just to guide the
eye.

and 2RLJ do not show a hydrogen transfer at all. For the other three proteins, the number

of transferred hydrogens is reduced from two in case of 2EVQ and 2JTA and four in case

of 2FBU to just one. Regarding the hydrogen bonds, only the 2FBU structure exhibits

more H-bonds in the HF-3c-COSMO optimization than with plain HF-3c. The other four

proteins exhibit two or three H-bonds less when optimized with COSMO. Nevertheless the

number of computed hydrogen bonds is still higher compared to the experiment. Because

HF-3c performs very well for the structures and energies of all hydrogen bonded systems

in S22 and S66, it is not clear in how far this conclusion is based on biased experimental

data instead of errors of the theoretical model.

The geometries of all five proteins improve regarding all health checks when using

COSMO in the optimization (for explicit values see SI). In particular, the number of

clashcores is reduced and the percentage of Ramachandran favored dihedrals is increased.

Also the backbone RMSD relative to the experimental geometry is much smaller, i.e., it

decreases by a factor of about two. The largest improvement was observed for 1ODP, its

RMSD is reduced from 2.656 Å to only 0.956 Å . Thus, inclusion of the COSMO model in

the optimization yields a further improvement to already good HF-3c protein ”gas phase”

structures.

4.4. Conclusion

A fast method based on a Hartree–Fock calculation with a small (in part minimal) basis

set is presented (dubbed HF-3c from now on). Three corrections, namely the D3 scheme

to include include long-range London dispersion and medium-range correlation effects, a

geometrical counterpoise to handle intra- and inter-molecular BSSE and a short-range
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4. Corrected small basis set Hartree–Fock method for large systems

term to correct basis set deficiencies for bond lengths are added to improve the plain HF

energy. Detailed benchmarks for a variety of molecular properties were presented.

The method is able to yield good geometries for small covalently bound organic molecules,

small noncovalent complexes as included in the S22 and S66 test sets as well as large

supramolecular complexes. Fully optimized geometries of small proteins with up to 550

atoms yield good results in standard protein structure health checks and reasonable RMSD

agreement compared to experimental structures.

By construction the method gives a physically sound description of noncovalent inter-

actions which is reflected in accurate interaction energies for a variety of systems. The

mean absolute deviation of the interaction energies compared with theoretical reference

values is only 0.55 kcal/mol for the S22 and 0.38 kcal/mol for the S66 test set. For 12

supramolecular complexes, the fully ab initio computed association free energy has an

MAD of 6.2 kcal/mol with respect to experimentally obtained values. The MAD for the

corresponding gas phase interaction energies is 4.4 kcal/mol. To put this into perspec-

tive, dispersion corrected DFT methods yield MADs in the range of 2-5 kcal/mol while

MP2/CBS yields an MAD of 16 kcal/mol [46] for the same set of realistic complexes. For

the S66 set the MAD for the best DFT-D3/large basis variants and MP2/CBS are 0.2-0.3

and 0.45 kcal/mol, respectively [250].

Compared to widely used semiempirical approaches (PM6 and PM6-DH2 used here as

typical examples), the presented Hartree–Fock based method is slower but generally more

accurate, robust and numerically stable. It is easier to handle in large-scale geometry

optimizations as shown by the protein studies. The method can be used routinely even

on small desktop computers to optimize systems with hundreds of atoms and in parallel

it can be applied to those with a few thousand atoms. Analytical vibrational frequency

calculations are straightforward and the derived statistical thermodynamic corrections

seem to be reasonable. Thus, the HF-3c method might be able to fill the gap between

semiempirical and DFT methods in terms of cost and accuracy and is recommended as a

standard quantum chemical tool in bio-molecular or supra-molecular simulations. Current

work in our laboratory investigates its applicability for the computation of molecular

crystals.
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Part III focuses on the application and evaluation of a multilevel methodology to ob-

tain free energies of association for supramolecular host-guest complexes in solution. This

approach was first published for a set of 12 host-guest systems, termed S12L set. This

set contains six different typical host molecules, a tweezer, a pincer, a catcher, a macro-

cycle and two cucurbiturils, which are relatively rigid. Each host forms a complex with

two different guest molecules (see Figure 4.9), [46] and for every complex only one binding

conformation is taken into account. In order to obtain the association free energy ∆Ga

of the host-guest systems in solution, three contributions are added. First, the associa-

tion energy ∆E is computed for optimized structures on the DFT(hybrid)-D3/QZ level

of theory in the gas phase. Second, a semiempirical method is used to calculate the ther-

mostatistical corrections from energy to free energy ∆GRRHO. And third, a continuum

solvation model is employed to include solvation effects (∆δGsolv).

The methods of choice for the S12L set were PW6B95-D3/QZ for ∆E, DFTB3-D3

for ∆GRRHO and COSMO-RS with the 2012 parametrization for ∆δGsolv. With this

combination a mean absolute deviation (MAD) of only 2.1 kcal mol−1 compared to the

experiment was achieved. [46] It was demonstrated that using only ∆E in the gas phase is

certainly not enough to explain experimentally observed binding affinities, and solvation

effects are crucial to reproduce the measured results. This thesis further explores the

multilevel approach with applications to realistic host-guest systems in order to evaluate

its predictive power.

In Chapter 5 the general procedure is reviewed, and put into perspective by giving

an overview of other approaches for various examples of supramolecular systems. To

illustrate the multilevel methodology and its general applicability, eight typical host-guest

complexes are studied. The chosen examples for the case study are two tweezer complexes,

two pseudorotaxanes with either one or two crownethers as wheels, two cucurbit[7]uril

complexes, and two complexes of the fullerene C70 in cycloparaphenylenes. In Chapter 4

2a 2b 3a 3b 4a 4b

5a 5b 6a 6b 7a 7b

Figure 4.9.: Structures of the host-guest complexes contained in the S12L set. [46] 6a and
6b carry a positive, and 7a has a two-fold positive charge.
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it was shown, that HF-3c yields accurate thermostatistical contributions and thus, HF-3c

is mainly used to compute ∆GRRHO from here on.

With the participation in a blind test challenge this approach is used in a hard and

realistic examination. This blind test challenge is the focus of Chapter 6. Without a bias

towards known answers, achievements of diverse computational methods can be evaluated.

In the 4th Statistical Assessment of Modeling of Proteins and Ligands (SAMPL4) relative

association free energies of the rigid cucurbit[7]uril and 14 guest molecules that contain

either one or two ammonia groups are to be predicted. [49] The HF-3c method is employed

to sample possible binding conformations, and the ones with the highest binding affinities

are then treated with higher level methodologies. Counterions are introduced and the ge-

ometries are re-optimized on the TPSS-D3/TZ level of theory. The PW6B95-D3ATM/QZ

level of theory is used to obtain the gas phase association energies, HF-3c is employed

for thermal corrections, and COSMO-RS 2012 is applied to compute the solvation free

energies for each compound. The relative ∆Ga values are submitted to the organizing

committee of the SAMPL4 blind test, and compared to the results obtained by other

participants by means of a statistical analysis. During the previous investigations on the

S12L set, the case study presented in Chapter 5 and in the SAMPL4 blind test partici-

pation a few ∆Ga values were computed that deviate more than 4 kcal mol−1 from the

experimental results. Frequently, these outliers are charged complexes and thus, further

testing of the multilevel approach is necessary especially for charged systems. Chapter 7

presents the extension of the S12L test set to 30 host-guest systems (S30L), with the aim

to include larger and slightly more flexible systems, higher charges (cations and anions)

and a broader variety of interaction motifs. The ferrocene@cucurbit[7]uril complex of the

S12L set (7a) was disregarded in order to provide a set that contains only organic systems

since many semiempirical methods and force fields are not parametrized for treating met-

als. The influence of counterions (CI) is investigated by adding chloride for cations and

sodium ions for anions to the structures of the charged systems and re-optimizing them

including the COSMO model (S30L-CI). In order to obtain a theoretical best estimate for

∆Ga, different dispersion-corrected density functionals are tested for ∆E and combined

with several semiempirical methods to calculate ∆GRRHO and COSMO-RS with different

parametrizations as well as SMD to compute ∆δGsolv.
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binding thermodynamics

Abstract

A recently published theoretical approach employing a nondynamic structure model using

dispersion-corrected density functional theory (DFT-D3) to calculate equilibrium free en-

ergies of association (Chem. Eur. J., 2012, 18, 9955–9964) is illustrated by its application

to eight new supramolecular complexes. We compare with experimentally known binding

constants which span the range from -3.3 to -20.3 kcal mol−1. The mean deviation of

calculated from measured ∆Ga results in 0.4 kcal mol−1, the mean absolute deviation in

1.8 kcal mol−1 excluding two outliers for which the computed solvation free energies are

identified as the largest error source. A survey of previous applications of the theoretical

approach and related computational studies is given underlining its good accuracy. It is

concluded that structures and gas phase interaction energies can be computed routinely

with good to high accuracy (relative errors for interaction energies of 5-10%) for complexes

with about 200-300 atoms.

5.1. Introduction

Noncovalent interactions are of crucial importance for the binding of small molecules

to enzymes and receptors, the folding of proteins and DNA to their three-dimensional

structures, and the orientation of substrates on surfaces and of molecules in molecular

crystals. [28,29] Therefore, hydrogen bonding, cation-π and ion pair interactions, and Lon-

don dispersion forces [3,24] have a central role in providing matter with unique functions

and properties. Consequently, the understanding and control of noncovalent interactions

has a prominent place in chemistry, biology, and materials science. A particular example

to this is the area of host-guest and supramolecular chemistry, mimicking concepts like

self-assembly and molecular recognition, that are operative in many biological processes,

on a manageable scale in a well defined environment. [16,17]

Although supramolecular chemistry is essentially an experimental discipline, theoretical

methods have a firm standing in the arsenal of tools for analyzing host-guest systems. [30]

The methods of our choice for modeling supramolecular complexation are based on den-

sity functional theory (DFT), [82,83] as it combines the predictive power of a first-principles

approach with computational efficiency allowing the routine treatment of molecules con-

taining hundreds of atoms. Unfortunately, practically all common density functional

approximations have well known deficiencies, among which their inability to account for

long-range correlation effects is particularly obstructive when treating intermolecular in-

teractions. [287–289] Numerous ways to fix this error were presented. [32,33]

In the mean time the dispersion problem of density functional theory is considered as

being more or less solved in the sense that applications to realistic questions of chemical
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interest like supramolecular systems that are the focus of this feature article are treated

repeatedly and with reasonable accuracy. [290] However, the development of dispersion cor-

rections [291–293] and of dispersion-including density functionals [294] is still a highly active

area in order to properly treat effects like polarizability anisotropy, polarizability of delo-

calized π states, many-body effects beyond three atoms, resonant structures, dispersion

interactions in polarizable solids, etc.

Our contribution to the field of dispersion corrections denoted as DFT-D3 [36,37] has

proven to provide accurate intermolecular interaction energies with a typical error below

5%. [86,250] Molecular dispersion coefficients are on average accurate to better than 5 % as

well [32]. The error denotes the average performance of better functionals in the vicinity

of the equilibrium distance, which is the relevant case for this work (see Fig. 4 in Ref.

[250]Q). For less good performing functionals and for non-equlibrium distances the relative

error is larger, and of course outliers can occur. Concerning the issue of scalability we

refer to Ref. [192] where mean absolute percentage deviations of DFT-D3 from empirical

reference energies for the S12L complexes of down to 5% are reported. Consequently,

DFT-D3 has been applied recently to calculate host-guest binding affinities in solution

with an unprecedented accuracy. [46] The key role of London dispersion interactions for

the binding enthalpies of cucurbituril host-guest systems in water has very recently been

emphasized also by Fenley et al. [295] using microsecond time scale classical molecular

dynamics simulations.

After a short description of the theoretical approach, a survey of recent and related

applications is given and then its performance is illustrated by new calculations on host-

guest complexes. Thereby, both parts of this article are considered as exemplary rather

than exhaustive and as not all relevant classes of supramolecular structures are covered

by the eight complexes treated, one or the other important contribution might be omitted

in the survey.

5.2. Computation of free energies of association with

DFT-D3

Equilibrium association free energies ∆Ga for typical medium-sized supramolecular host-

guest systems can be computed with good accuracy by DFT-D3 together with a relatively

large atomic-orbital basis set in a nondynamic single-structure approach without any

system-dependent adjustments or empirical corrections. [46,49,192,296] The target ∆Ga for a

host-guest system in a given solvent X at a certain temperature T is calculated as the

sum of three contributions, the electronic gas phase association energy ∆E, the difference

in thermal corrections from energy to free energy ∆GT
RRHO, and the difference in solvation
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binding thermodynamics

free energies ∆δGT
solv(X):

∆Ga = ∆E + ∆GT
RRHO + ∆δGT

solv(X) (5.1)

Here, the ∆ terms refer to differences in the process host + guest → complex while the δ

indicates that the quantity is already a difference between two states. All molecules, host,

guest and the complex, are fully optimized in the gas phase on an affordable DFT level

together with the D3(BJ) (D3 with Becke-Johnson damping [133,134]) dispersion correc-

tion (e.g. TPSS-D3/def2-TZVP). The gas phase association energy ∆E of the optimized

system is then calculated by employing a hybrid density functional with the D3(BJ) dis-

persion correction in combination with an extended quadruple-ζ basis set (e.g., PW6B95-

D3/def2-QZVP’) in the supermolecular approach, i.e. ∆E = E(complex) − E(host) −
E(guest), with E being the total electronic energy. In addition to the two-body dis-

persion interaction energy ∆E
(2)
disp being operative upon geometry optimization the three-

body contribution ∆E
(3)
disp is also taken into account in the single-point energy calculations.

∆E
(3)
disp was found to destabilize the complex by typically 1-3 kcal mol−1 and therefore

cannot be neglected. [46,49] For a recent discussion of many-body dispersion effects see Refs.

[ 297–299] The overall association energy ∆E is thus a sum of the pure electronic DFT

energy ∆EDFT
el , two-body ∆E

(2)
disp and three-body dispersion ∆E

(3)
disp:

∆E = ∆EDFT
el + ∆E

(2)
disp + ∆E

(3)
disp. (5.2)

The sum of thermal corrections from energy to free energy GT
RRHO including the zero-

point vibrational energy is obtained for each species in the gas phase at the given tem-

perature T and a pressure of 1 atm by using a combined rigid-rotor-harmonic-oscillator

approach. To calculate the vibrational entropy, low lying modes below 100 cm−1 are

treated within a rigid-rotor model to reduce their error in the harmonic approximation,

for details, see Ref. [ 46]. It has already been discussed in the original publication [46]

that the applied rotor approximation for the entropy works much better than a stan-

dard treatment, since anharmonic calculations are currently absolutely impossible for

such large complexes. The harmonic vibrational frequencies themselves are calculated

with dispersion-corrected semiempirical methods like PM6, [124] DFTB [114,300,301] or our

recently developed HF-3c method [205] (minimal basis set Hartree–Fock with three correc-

tions). DFT-D3 and semiempirical frequencies provide very similar ∆GT
RRHO values as

shown in the original work. [46]

The solvation free energy δGT
solv(X) for each species is calculated by employing the DFT

based COSMO-RS solvation model (conductor-like screening model for real solvents) [41,42]

which is simply used as a black box with default parametrization. As an alternative, SMD
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(universal solvent model based on the solute electron density) [54] is tested. COSMO-RS as

well as SMD approximately include all non-electrostatic effects of solvation. In particular

the standard state correction for the free energy is implicitly included in COSMO-RS.

Whether the continuum solvation models are of sufficient accuracy for large complexes

is a topic of actual research and this feature article. For small organic molecules the

computed solvation free energies have an accuracy of 0.5 kcal mol−1 on average. [232]

Alternatives to COSMO-RS/SMD continuum solvation models like MM/MD or QM/

MM/MD require the statistical sampling of the distributions of solvent and counterions.

For a recent survey of force-field based free energy perturbation calculations of solvation

free energies see Ref. [302]. Another route to solvation modeling is provided by couplings

of QM with integral equation theory of liquids like 3D-RISM. [303,304]

5.3. Survey of previous calculations

5.3.1. Scope of the survey

The following survey of literature is on the application of quantum chemical methods to

help understanding structure and energetics of noncovalent supramolecular association in

recent years. The focus lies on density functional theory and wave-function based as well

as semiempirical methods but not on approaches based on classical force fields. The size

of the systems under investigation lies between those treated in common benchmark data

sets for intramolecular interaction energies [199] (up to about 20 atoms) on the one hand

and macromolecular systems such as protein-ligand complexes on the other (more than

500-1000 atoms). Consequently, no highly accurate theoretical reference data are available

routinely and comparison is mainly made to experiment. Finally, neither metal-containing

systems nor chemical reactions are considered below.

5.3.2. Recent studies in our group

The nondynamic structure approach as described above [46] has been applied successfully to

several different host-guest systems of similar size as in the original work. [43,49,192,205,296,305]

The calculated free energy of dimerization of the [5,15-diphenyl-10,20-bis[4-(N-methyl)py-

ridinum]porphyrin] dication in water yielded an excellent agreement with measurements

(∆Gcalc=-6.9 vs. ∆Gexptl=-8.2 kcal mol−1) when counterions (chlorides) are included in

the calculations leading to overall charge neutrality. [43] The computed ∆Ga value of the

bicyclophane-tBu6-HBC (hexa-peri-hexabenzocoronene) complex in THF solution of -7

kcal mol−1 agreed reasonably well with the experimental value of -2.5 kcal mol−1 ob-

tained for two related somewhat larger bicyclic oligophenylene structures. [296] The inclu-
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sion complex of the biscation [Cp∗Ir(H2O)3]2+ with cucurbit[7]uril (CB7) being neutral-

ized by association of two chloride anions was studied at the (ZORA)BLYP-D3(0)/AE(all

electron)-TZP level suggesting that noncovalent concealment is way more favorable ther-

modynamically than the chelation of the Ir center by a pair of carbonyl oxygen atoms of

CB7. [305]

Back-corrected intermolecular interaction energies for the S12L test set of supramolec-

ular complexes were used to evaluate the performance of a range of modern dispersion-

corrected density functional methods combined with quadruple-ζ basis sets when possible

or with 1/2 counterpoise correction for triple-ζ and the three-body dispersion correc-

tion. [192] Most dispersion-corrected DFT methods as well as the M06 functional performed

well, whereas standard MP2 theory was less accurate for these complexes. Semiempirical

(or minimal basis HF) methods are useful for e.g., conformer screening.

The applicability of the HF-3c method, which is based on a Hartree–Fock(HF)/small

basis set calculation, for free energies of association and rotamer sampling was tested for

the twelve supramolecular complexes contained in the S12L) set. [205] The HF-3c method

was able to yield good geometries and reasonable analytical frequencies for thermochem-

ical corrections of supramolecular complexes. It gave good free energies of association

(mean absolute deviation (MAD) of 6.2 kcal mol−1 w.r.t. experiment on the S12L test

set), and provided a possibility for efficient rotamer sampling.

In the 2013 version of the SAMPL aiming at testing protein and small molecule model-

ing, [49] the supramolecular host-guest binding affinities for the cucurbit[7]uril host and 14

different amine guest molecules as well as for the octa-acid host (OA) and nine different

carboxylic acid guest molecules were predicted. [306] For the CB7 host our submission was

one of the top three among 20 submissions in all statistical analyses, whereas for the OA

host it ranked in the second half among twelve submissions. In both cases the inclusion

of counterions systematically improved the agreement with experiment.

5.3.3. Related studies by other groups

The interaction of nine small organic molecules and amolecular tweezer featuring two

(+)-usnic acid moieties as tethered pincers and (1R,2R)-1,2-diaminocyclohexane as spacer

was modeled using dispersion-corrected density functional theory approaches at the B97-

D/def2-QZVP//B97-D/6-31G(d) level of theory including solvent effects through single-

point polarizable continuum model (PCM) calculations. [307,308] The theoretical best es-

timates for the free complexation energies of two of the guests where X-ray structures

have been obtained (-5.7 kcal mol−1 for 2,4,7-trinitrofluorenone and -2.2 kcal mol−1 for

7-chloro-4-nitrobenzoxadiazole), which were quite close to the experimental values of -2.3

and -1.3 kcal mol−1, respectively. [307] Extension to a series of molecules complexed in
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the same tweezer for which the experimental geometry was unknown and whose Gibbs

energies fell in the narrow range from -2 to -1 kcal mol−1 was additionally complicated

by uncertainties concerning the experimental conditions. However, it turned out that the

best statistics (regression coefficient and standard deviation) in comparison to experiment

was found with the complexation energies rather than with the Gibbs energies including

solvent effects and entropic corrections, tempting the authors to suggest to predict exper-

imental Gibbs energy results from complexation energies only. [308] Our results based on

large basis set DFT-D3 calculations do not support such a treatment.

The complexes of C60 with the buckycatchers C60H28 and C60H32S8 and with the re-

spective pincers C20H10 and C20H10S4 were studied by Zhao and Truhlar at the M06-

2X/6-31+G(d,p)//M06-L/MIDI! level of theory. [309] The free energy of association for

C60@C60H28 in vacuum was calculated to be -8.6 kcal mol−1 and only 3.2 kcal mol−1 more

negative than the experimental value measured in toluene. Consequently, the difference

was ascribed to desolvation missing in the theoretical treatment. The other three struc-

tures were estimated to be unbound in vacuum which for C60@C20H10 is consistent with

the difficulty to detect this supramolecule experimentally. Due to flexibility of the host

and uncertainties concerning the structure of the inclusion complexes, no computed free

energies of association were reported in addition to those determined by 1H NMR exper-

iments in toluene-d8 in Ref. [ 310] for the complexes of a tridental molecular clip with

cyclotriveratrylene tether and three corannulene pincers and fullerenes C60 and C70.

The encapsulation of C60 by three cycloparaphenylenes (9CPP, 10CPP, and 11CPP)

was studied using density functional theory calculations at the M06-2X/6-31G(d) level of

theory. [311] The encapsulation of C70 and a functionalised C70 by the cycloparaphenylenes

10CPP and 11CPP was treated with the same approach. [312] While the structural infor-

mation obtained from energy-minimisation was in agreement with NMR results and the

X-ray analysis, free energies of binding were overestimated almost by an order of mag-

nitude (∆Gcalc= -236 vs. ∆Gexptl=-28 kJ mol−1 for C70@10CPP and ∆Gcalc= -211 vs.

∆Gexptl=-30 kJ mol−1 for C70@11CPP), a discrepancy which most probably originated

only partly from the solvation effect by toluene missing in the theoretical description. A

possible explanation is the basis set superposition error (BSSE)at this level to which M0X

functionals were shown to be very sensible. [313]

The complexation of five molecular tweezers based on oligo-Tröger’s base derivatives

with tetracyanobenzene was investigated by DFT calculations combined with a dielectric

continuum solvent model on the one hand and by the potential of mean force approach

using umbrella sampling and the weighted histogram analysis method with molecular dy-

namics simulations on the other. [314] Compared to experimental binding free energies de-

termined by NMR titration, the DFT calculations correctly provided the observed trends

in complex stability but overestimate the magnitudes of complexation energies. The over-

103



5. Using dispersion-corrected density functional theory to understand supramolecular

binding thermodynamics

estimation might in part be ascribed to the relatively small atomic orbital basis sets used

not fully exploring the basis set limit. The semiempirical PM6-DH2X method yielded

better magnitudes of the binding energies but not the proper order. Although not in the

focus of the current presentation it is indicated that the molecular dynamics simulations

provided the most realistic Gibbs binding energies of the study. [314] This finding is in

line with the computational results given in Ref. [315] for the free energies of binding of

nine cyclic carboxylate guest molecules to the octa-acid host in the SAMPL4 blind test

challenge [306] employing four different approaches. While the absolute binding affinities

calculated using minimized DFT structures gave intermediate-quality results with MADs

of 5-9 kJ mol−1 and R2=0.6-0.8, depending on how the structures where obtained, stan-

dard free-energy perturbation calculations of relative binding affinities, performed at the

molecular mechanics level, amounted to good results providing the best prediction (of

twelve in total) submitted to SAMPL4.

The structure, the energy, and vibrational, electronic, and NMR spectra of the bucky-

onions C60@C180 and C60@C240 were investigated using dispersion-corrected DFT methods

in Ref. [ 316] Although, not being in the very focus of this survey, the work is included

as another relevant example to illustrate the necessity of including dispersive interactions

in the DFT treatment to obtain a meaningful description of the structure and energetics

of the two systems investigated. This finding is far from self-evident, as the existence of

e.g. the following studies demonstrates: an ab initio investigation of electronic structure,

molecular electrostatic potential, and NMR chemical shifts in cucurbit[n]urils (n=5-8),

ferrocene, and their complexes, [317] an investigation of binding patterns, NMR, and vi-

brational spectra of SF6 in complex with CB6, [318] both at the B3LYP/6-31G(d) level

of theory modeling effects of solvation through the self-consistent reaction field theory

calculations incorporating the polarizable continuum model, and a recent density func-

tional based investigation on structure, binding energy, and vibrational spectra of com-

plexes between hexa- and penta-valent actinyls and functionalised cucurbit[5]uril on the

B3LYP/TZVP//BP86/def2-SV(P) level of theory (for the valence orbitals of the actinide

ions, a def-SV(P) is taken for geometry optimizations and def-TZVP for energetics, while

the core orbitals are modeled via the def-ECP pseudo potential). [319]

Sundararajan investigated the binding of methane, ethane, butane, isobutane, n-pentane,

cyclopentane, neopentane, and n-hexane to cucurbit[6]uril with dispersion-corrected DFT

calculations. [320] Calculated binding free energies at the B97-D/TZVP//BP86/def2-SV(P)

level forethane, butane, isobutane, and n-pentane in vacuum deviated from the experi-

mental free energies by 1.23 kcal mol−1 (mean absolute error). Though incorporation

of solvent effects did not alter the overall binding affinity trends it might have been in-

structive to report the effect of COSMO on the absolute calculated values as well. Using

the dispersion-corrected PM7 semiempirical method, binding of long chain alkanes (up to
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diammonium-C12-alkane) to several supramolecular hosts (cucurbit[6]uril, cucurbit[8]uril,

and a dimeric capsule of a tetraimide derived from resorcinarene) was also studied. Along

similar lines, binding of oxazine-1 to two cyclodextrin hosts, namely β-cyclodextrin and

γ-cyclodextrin, was examined theoretically in support of photophysical studies. [321] This

time the COSMO continuum solvation model for water was invoked in estimation of the

binding energies, but no calculated binding free energies were reported for direct compar-

ison to the measured binding constant values.

The barriers for expulsion of atoms and small molecules (N2, CO, H2, Ar, Kr, Xe,

H2O) from an open C60 fullerenes cage (I20) and related molecular containers (C40H20,

[5]beltene, cucurbit[5]uril) determined on the M05-2X/6-311+G(d,p)//M05-2X/6-31(d)

level of theory were reported in Ref. [322] The SMD method with standard parameters was

used to calculate free t energies of solvation when comparison was made to measurements

in solution. Results of N2@I20 and CO@I20 were compared with experimental kinetic

data, yielding a better agreement for CO@I20 than for N2@I20. The calculation for

Xe@CB[5] in water provided qualitative agreement with the experiment.

DiLabio and coworkers applied dispersion-correcting potentials being developed for use

with B3LYP/6-31+G(2d,2p) amongst others to determine complexation energies of the

complexes in the S12L test set with a mean absolute error of 2.6 kcal mol−1 but did not

extend the approach to the calculation of free energies. [186] Bachrach reported structures

and binding energies for the complex of the so called ExBox4+ host with the aromatic

hydrocarbons benzene, naphthalene, anthracene, and tetracene guests using the ωB97X-D

functional and the 6-31G(d) and 6-311G(d,p) basis sets in both the gas and the solution

phases, the latter using the COSMO continuum model with acetonitrile as solvent. [323]

The formation of all four complexes was calculated to be exergonic, but the binding was

not as strong in solution as in the gas phase. Comparison of the computed solution-phase

binding free energy of the complex with anthracene to the experimental value yielded a

large discrepancy (∆Gcalc=-18.8 vs. ∆Gexptl=-4.01 ± 0.073 kcal mol−1).

The tetracationic cyclobis(paraquat-p-phenylene) ring in complex with the [2]pseudoro-

taxane without and with four chloride counterions was studied considering B3LYP, PBE,

X3LYP, M06-L, M06, M06-2X, and M06-HF density functionals and the Hartree–Fock

method, using the 6-31G(d,p) basis set for geometry optimization and the 6-311++G(d,p)

basis set for subsequent single-point energy calculations. [324] Solvent corrections were

based on single-point self-consistent Poisson-Boltzmann continuum solvation calculations

for acetonitrile. Comparison to the experimental enthalpy of formation showed that only

the M06-class of functionals predicted structural and binding properties qualitatively

correctly. DFT calculations at the level of M06-2X/6-311G and the Poisson-Boltzmann

model for MeCN were carried out for the synthetic receptor Ex2Box4+ in complex with an-

thracene, 9,10-anthraquinone, and 1,4-anthraquinone in order to understand their modes
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of binding. [325] For the complex with anthracene, the co-conformation observed in the solid

state was a local minimum, while the computed global minimum was 1.25 kcal mol−1 lower

in energy. The position and orientation of 1,4-anthraquinone inside Ex2Box4+ observed

experimentally was in close agreement with the DFT prediction, while in the case of

9,10-anthraquinone the guest resided in one of the DFT local energy minima. The size

of the relative energies compared to the complex of Ex2Box4+ with four MeCN molecules

determined by DFT calculations correlated with the measured binding parameters, but

no calculated free energies of binding for direct comparison were given.

DFT calculations on the dispersion-corrected BP86-D/def2-TZVP//BP86-D/def2-SV(P)

level of theory which were performed on two open-cage fullerenes and their water encap-

sulated complexes yielded barrier heigths for water entering the cages whose difference

of 16 kJ mol−1 compared well to that observed in 1H NMR experiments (13 kJ mol−1)

when the COSMO model with ε=∞ was used in the calculations. [326] However,a second

transition state lying about 53 kJ mol−1 below the one considered for one of the cages was

not used for the comparison. Employing the same level of theory, dispersion-corrected

density functional calculations of binding and activation energies for the anion of one of

the two open-cage C60 fullerene derivatives encapsulating one water molecule provided a

barrier height of 110 kJ mol−1 which was in excellent agreement with the experimental

value of 104±4 kJ mol−1 determined from the temperature dependence of the ion kinetics

of the water evaporation reaction. The computational result was hardly affected by the

charge of the complex. [327]

Dieckmann and Houk reported a benchmark of DFT calculations performed on the

dispersion-corrected M06-2X/def2-TZVPP//B97-D/6-31G(d,p) level of theory to esti-

mate free energies of complex formation by comparison to experimental values for six

charge transfer complexes and a hydrogen bonded model system. [328] Subsequently, the au-

thors studied the energetics of complex formation in a number of artificial self-replicating

systems by this procedure. [329] While the stability of the termolecular complexes relative

to the bimolecular complexes was represented well by the computed energetics of com-

plex formation, inclusion of entropic effects reversed the balance in five of eight cases

considered.

The binding of the trihalomethanes chloroform, bromoform, and fluoroform as well

as tetrachloroethane to a C3-symmetric imidazole-containing cyclopeptide cavitand and

its building blocks was studied on the M05-2X, B3LYP, and B3LYP-D3 levels of theory

with a mixed 6-31G(d)/cc-pVTZ basis set for structure optimization and 6-311++G(d,p),

aug-cc-pVTZ for B3LYP single-point calculations. [330] The calculations revealed that

a very high dispersion energy is responsible for the measured complex stability, sup-

ported by DF-DFT-SAPT for host-guest model complexes, but no computed free en-

ergies of binding were given. The same computational procedure was applied to the
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cryptophane-E and cryptophane-A host molecules proving their ability to enclose chloro-

form, dichloromethane, tetrachloroethane, chlorobenzene, bromobenzene, and dichloroben-

zene due to energetic stabilisation by dispersion interactions. [331]

By using diffusion Monte Carlo calculations, Tkatchenko and coworkers reported ref-

erence binding energies for two supramolecular complexes of the S12L benchmark set:

the buckyball catcher complex (C60@C60H28) and glycine anhydride interacting with an

amide macrocycle. [332] The results were used to assess the performance of their dispersion-

corrected DFT methods and were compared to the back corrected binding energies de-

rived from the experimental free energies of association by removing enthalpic and en-

tropic contributions, with which they agree within 2.2 and 1.4 kcal mol−1. The approach

was extended to four more complexes of S12L, the tetracyanoquinone-tweezer, 1,4-dicy-

anobenzene-tweezer, butylammonium-cucurbit[6]uril cation, and 1-hydroxyadamantane-

cucurbit[7]uril, with differences from the back corrected binding energies in the range

from 1.4 to 3.6 kcal mol−1. [333] The results were compared to binding energies for the

PBE functional including long-range correlation energy calculated from coupled atomic

response functions. The binding energies obtained by the latter method for the entire

S12L database were reported to deviate from the back-corrected experimental association

free energies by 1.6 kcal mol−1 on average (mean absolute error), but the approach was not

incorporated into a scheme for directly determining association free energies. [334] Reliable

estimates for the binding energies of the S12L complexes are tried to approach towards

by accompanying the DFT-SAPT results with those from the nonlocal DFT (NLDFT)

and MP2 coupled (MP2C) methods in Ref. [335]

Continuing an investigation on the supramolecular homodimers, mixed dimers, and

complexes with C60 and C70 formed with corannulene, sumanene, and pentaindenoco-

rannulene, [336] Denis reported gas phase complexation energies and free energies for C60

and C70 interacting with chrysaorole and pentaindenocorannulene and the buckycatchers

that employ the latter as pincers at the M06-2X/6-31G level of theory [337] and with 26

receptors for C60, 15 had been synthesized and 11 were proposed by the author, and 22

for C70, four of them designed theoretically, at the M06-2X/6-31G and M06-2X/6-311G

levels. [338] The effect of solvation in toluene on the formation of the supramolecular com-

plexes was evaluated employing the solvation model developed by Tomasi, Barone and

coworkers. [339–344] Results on relative complexation strengths were utilized to make sug-

gestions regarding the synthesis of these receptors, but lacking a suitable reference in most

cases, no final judgement of the accuracy of the reported data was done.

Joseph and Masson studied complexes of three biphenyls and cucurbit[7]- and cucur-

bit[8]uril by DFT calculations at the TPSS-D3(BJ)/def2-TZVP level. [345] Instead of cal-

culating binding affinities in comparison to their measured data, the authors focused on

torsional barriers by using dispersion-corrected B3LYP and triple-ζ doubly polarized def2-
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TZVPP basis sets, with enthalpic and entropic corrections at nonzero temperatures. The

deviation of the experimental torsional barriers inside CB7 and CB8]from the calculated

barrier of the free guest in gas phase and in aqueous solution did not exceed 1.4 kcal mol−1.

5.4. Results of illustrative calculations on eight example

complexes

In this section we present new results for eight supramolecular complexes (see Figure 5.1)

to illustrate the performance of our method for obtaining association free energies as de-

scribed above. The chosen examples, which have not been treated with our approach yet,

contain neutral as well as charged molecules, show the typical supramolecular interac-

tions such as hydrogen bonding, π-stacking, nonpolar dispersion dominated binding and

cation-dipolar interactions, and cover a wide range of measured ∆Ga values from -3.3 to

-20.3 kcal mol−1.

We investigate the following systems: Two tweezer complexes with 1,2,4,5-tetracy-

anobenzene (TCNB) and 1-fluor-2,4-dinitrobenzol (FDNB) as guest molecules (1 and 2

that were measured in CDCl3 and are calculated in CHCl3), [346] two pseudorotaxanes

with N,N ′-(anthracene-9,10-diylbis(methylene))bis(1-phenylmethanaminium) (ADMPA)

as axle and one or two dibenzo[24]crown-8 (DB24C8) wheels (3 and 4 measured in a

1:1 mixture of CD3CN and CD3NO2 and calculated in a 1:1 mixture of CH3CN and

CH3NO2), [347] two cucurbit[7]uril (CB7) complexes with adamantan-1-aminium (AdNH+
3 )

and adamantan-1-ylmethanaminium (AdCH2NH+
3 ) as guests (5 and 6 in H2O), [348] and

two complexes of the fullerene C70 in [10]cycloparaphenylene (10CPP) and [11]cyclopara-

phenylene (11CPP) (7 and 8 in toluene). [312]

The tweezer complexes 1 and 2 and the fullerene complexes 7 and 8 are mainly dominated

by π-stacking and nonpolar dispersion interactions. The pseudorotaxanes 3 and 4 and the

CB7 complexes 5 and 6 mostly feature hydrogen bonding and cation-dipole interactions.

As molecular symmetry influences the rotational part of the entropy and the effect of

symmetry number σ is significant for highly symmetric molecules, [349] we treat the sym-

metric molecules in their respective point group: the tweezer host is C2 symmetric, TCNB

is D2h and FDNB Cs symmetric, ADMPA has C2 and the fullerene C70 D5h symmetry.

The other host and guest molecules and all complexes do not show any symmetry.

The tweezer complexes 1 and 2 and the fullerene complexes 7 and 8 are neutral. The

CB7 complexes 5 and 6 are positively charged and the pseudorotaxanes 3 and 4 are

twice positively charged. These systems are investigated with and without counter ions.

For simplicity, chloride ions are chosen for all complexes although for 3 and 4 hexafluo-

rophosphate was used in the experiment. [347] From calculations for CB7 complexes with
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1 2

3 4

5 6

7 8

(-5.0) (-3.3)

(-5.2) (-4.2)

(-19.4) (-20.3)

(-6.7) (-7.2)

Figure 5.1.: Structures of the eight investigated complexes. Host molecules are shown
in light grey, guest molecules in dark grey and H-bonding interactions are
indicated by dotted lines. The atoms in green represent the chloride counter
ions included in the calculations Experimental free energies of binding are
reported in kcal mol−1 in parentheses.

ammonium guests similar to 5 and 6 we concluded that the inclusion of chloride counteri-

ons significantly improves the results. [49] Also, counterions were found to be necessary in

calculations of multiply charged species when using the COSMO-RS solvation model. [43]

On the PW6B95-D3/def2-QZVP’ level the calculated ∆Ga values for the CB7 com-

plexes 5 and 6 show no improvement when chloride counterions are included. With-

out counterions both complexes are slightly overbound, 5 by 3.6 kcal mol−1 and 6 by

0.6 kcal mol−1. These results for the charged species are already very accurate. Chloride
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ions shift the ∆Ga values so that the complexes now become slightly underbound, 5 by

3.8 kcal mol−1 and 6 by 1.9 kcal mol−1, but the error compared to the experiment is similar.

In case of the complexes 3 and 4 the improvement is tremendous. Without counterions

∆Ga for both complexes is highly overestimated by -12.3 kcal mol−1 and -14.0 kcal mol−1,

respectively. When chloride ions are included, 3 is overbound by 3.8 kcal mol−1 and 4 is

now underbound by 1.3 kcal mol−1 and the error is drastically reduced. In the following,

we will only discuss results including counterions for these four complexes, although no

improvement is observed for 5 and 6.
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Figure 5.2.: Contributions to ∆Ga for all complexes (pure electronic energy (∆EDFT
el ),

two-body (∆E
(2)
disp) and three-body (∆E

(3)
disp) dispersion energy, thermal cor-

rections from energy to free energy (∆GT
RRHO) and the solvation free energy

(∆δGT
solv) calculated by using the COSMO-RS solvent model) and total ∆Ga

values on the PW6B95-D3/def2-QZVP’//TPSS-D3/def2-TZVP level of the-
ory. For 3, 4, 5 and 6 chloride counterions are included.

The individual contributions to the total free energy of association on the PW6B95-

D3/def2-QZVP’ level of theory for the eight investigated complexes are shown in Figure

5.2. As all these values are large in magnitude, they have to have a small intrinsic error,

otherwise adding them up would result in a highly defective ∆Ga. Most components in

our partitioning are very important to achieve reasonable accuracy. Solvation alone would

explain not even qualitative trends.

The total interaction energy ∆E for our set of complexes ranges from -26.2 kcal mol−1

for 2 to -48.5 kcal mol−1 for 7. As expected, the contribution of the two-body dispersion

energy ∆E
(2)
disp is large, at least as big as the pure electronic DFT energy ∆EDFT

el , but

for most complexes it is even higher. The outstanding example is 7, whose two-body

dispersion contribution to binding is about five times as large as the pure DFT interaction

energy. In general, ∆E
(2)
disp ranges from -17.4 kcal mol−1 (3) to -44.0 kcal mol−1 (7),
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whereas ∆EDFT
el only lies between -8.2 kcal mol−1 (2) and -22.4 kcal mol−1 (6). The

three-body contribution to the dispersion is always repulsive and lies between 1.6 for 3

to 4.5 kcal mol−1 for 7. As typical supramolecular ∆Ga values are in the range 0 to

-10 kcal mol−1, [17] this term is significant and cannot be neglected, especially, since it has

the opposite sign than ∆E
(2)
disp and therefore shifts all ∆Ga values towards the less bound

region. Altogether, this clearly shows that an accurate account of the dispersion energy

is mandatory for obtaining best possible association energies.

The thermal corrections from energy to free energy ∆GT
RRHO on the HF-3c level lie

between 15.4 and 21.6 kcal mol−1. This is in the usual range that was observed before

for complexes of similar size. [46,49] We also showed previously that HF-3c is sufficiently

accurate for calculating the harmonic frequencies of such complexes. [205] Because it avoids

any quadrature schemes, it is practically free of numerical noise which is of particular

importance for low-lying vibrational frequencies.

The solvation contribution ∆δGT
solv is positive for all complexes except 3 and ranges

from 1.5 kcal mol−1 (5) to 12.1 kcal mol−1 (4). 3 shows a small negative ∆δGT
solv amount-

ing to -3.2 kcal mol−1. We assume, that this term has the largest error in our calculation

protocol for ∆Ga, since it depends on the chosen COSMO-RS parametrization and the

COSMO-RS model itself breaks down for large molecular surface charges which appear

for bare ions with localized electronic structure as in 3, 4, 5 and 6 (see also Ref. [115]).

Further, it has been found before that SMD performs worse for ions than e.g. SM6 or

SM8. [350]

The agreement between the total association free energies on the PW6B95-D3/def2-

QZVP’//TPSS-D3/def2-TZVP level with the experiment is very good for the complexes

1 to 6, see Figure 5.3 (a) for a direct comparison, but the complexes 7 and 8 are over-

bound. The error is -11.6 kcal mol−1 for 7 and -7.6 kcal mol−1 for 8 and will be discussed

in the next paragraph. The next largest errors are found for complexes 3 and 5, for

which ∆Ga is overestimated by 3.8 kcal mol−1 and underestimated by 3.8 kcal mol−1,

respectively. Compared to the other rigid complexes, 3 and 4 contain one and two very

flexible DB24C8 molecules, but even for those our nondynamic single-structure approach

works fine. The mean deviation (MD) of calculated from experimental ∆Ga results in

-2.1 kcal mol−1 (0.4 kcal mol−1 excluding 7 and 8) and the mean absolute deviation

(MAD) in 4.2 kcal mol−1 (1.8 kcal mol−1 excluding 7 and 8)

In all our investigations conducted so far, the errors for 7 and 8 are the largest ones we

observed.
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(a) COSMO-RS

(b) SMD
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Figure 5.3.: Comparison of experimental and computed total free association energies
∆Ga on the PW6B95-D3/def2-QZVP’//TPSS-D3/def2-TZVP level of theory
with COSMO-RS (2012) (a) and SMD (b) as solvation models. Theoretical
error bars were obtained via the sum of the following three estimates (abso-
lute values): difference between the PW6B95/QZ’ and TPSS/QZ’ interaction
energies, 5% of the ∆GT

RRHO and 10% of the ∆δGT
solv term. In the experi-

mental work, very small errors were reported for 5, 6, 7, and 8 (about 0.1
kcal mol−1), while no uncertainties were given for complexes 1, 2, 3, and 4.
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5.4. Results of illustrative calculations on eight example complexes

Among the eight complexes studied in this work, 7 and 8 contain the largest π-systems.

A similar but less pronounced overbinding was already observed for the two buckycatcher-

fullerene complexes in Ref. [46]

In order to shed light on this, we first calculate the association energy ∆E with two other

density functionals, TPSS and B3LYP, and the same basis set to investigate, whether

PW6B95 might give an exceptionally bad result in this case. As the deviations in ∆E

lie in the range of only ±(1-2) kcal mol−1 we can rule out any significant effect of the

chosen density functional. However, as the three-body term is large for 7 and 8, ∆E

might be overestimated due to underestimation of further many-body effects that are

not captured with the D3 correction. The importance of many-body effects beyond the

three-body term has been pointed out before. [135,297–299] Nevertheless, as the D3 and MBD

(many body dispersion) approaches are different, the conclusions drawn there cannot be

transferred one-to-one to D3.

Next, we calculate DFTB3-D3 frequencies in addition to the HF-3c frequencies, but

the deviations in ∆GT
RRHO are only within 1 kcal mol−1. Hence, as we assumed before,

the COSMO-RS model to calculate ∆δGT
solv seems to be the largest error source in our

calculation protocol. We therefore employ six different COSMO-RS parameter sets (based

on BP86/def-TZVP and BP86/def2-TZVPD from the years 2012, 2013 and 2014) and

obtain values for ∆δGT
solv in the range of 10.3 to 14.4 kcal mol−1 for 7 and 9.5 to 14.2

kcal mol−1 for 8. These deviations are large compared to the total ∆Ga value and by

far more than the 10% error that were assumed for estimating the theoretical error bars.

For the other complexes the deviation with the parametrization is less pronounced but

still about ±2 kcal mol−1. The largest values are obtained by the 2014 parametrization

based on BP86/def2-TZVPD including a dispersion term similar to D3, which is quite

important for a solvent like toluene and gives better results in this case. For comparison

we employ SMD [54] as an alternative DFT based solvation model for calculating ∆δGT
solv.

The solvation contribution for 7 and 8 is 18.9 and 14.8 kcal mol−1, respectively, an

thereby even higher than the result obtained by the 2014 COSMO-RS parametrization.

Therefore the total ∆Ga is with -11.3 kcal mol−1 for 7 and -11.1 kcal mol−1 for 8 closer

to the experimental values than using COSMO-RS and the 2014 BP86/def2-TZVPD

parameterization, but still not very accurate. For complex 6 the ∆Ga value is also slightly

better when SMD is used, but for the other three charged complexes it provides higher

absolute deviations of up to 6.8 kcal mol−1 compared to experiment and hence, performs

worse (see Figure 5.3 (b)). When using SMD, the MD for the calculated ∆Ga with respect

to experiment is similar (-2.4 kcal mol−1) and the MAD is larger (5.6 kcal mol−1) compared

to COSMO-RS. No general recommendation regarding the choice of the solvation model

can be given, but for the presented examples COSMO-RS seems to be the better choice.

Note, however, that whatever solvation model is used, the results are much more accurate
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than they would be when solvation effects are ignored completely. This example indicates,

that the most inaccurate part of our approach is the solvation free energy. Hence, one has

to be cautious when using implicit solvation models like COSMO-RS or SMD and maybe

should consult potentially more accurate methods like QM/MM in the future.

The association energy ∆E for all complexes was calculated also on the B3LYP-

D3/def2-QZVP’ and TPSS-D3/def2-QZVP’ levels to show the influence of the density

functional and on the TPSS-D3/def2-TZVP level to illustrate the effect of the basis set.

The resulting ∆Ga for all applied methods are presented in Figure 5.4. For all complexes

except 2, 3 and 7 PW6B95/def2-QZVP’ yields the most accurate ∆Ga values compared

to experiment. For 2 and 7 TPSS-D3/def2-TZVP has a slightly smaller error and in case

of 3 all other methods provide a better ∆Ga than PW6B95/def2-QZVP’.

Compared to PW6B95/def2-QZVP’ all other tested methods result in a slightly smaller

MD (-1.1 kcal mol−1 for TPSS/TZ, -1.4 kcal mol−1 for TPSS-QZ’ and -1.6 kcal mol−1 for

B3LYP/QZ’) but a much larger MAD (5.1 kcal mol−1 for TPSS/TZ, 6.8 kcal mol−1 for

TPSS-QZ’ and 6.6 kcal mol−1 for B3LYP/QZ’). If 7 and 8 are excluded, PW6B95 has the

smallest MD and MAD, while for the other methods the improvement is much smaller.

The MDs for TPSS/TZ and TPSS/QZ’ get even larger (1.8 and 3.1 kcal mol−1). Hence,

it is concluded, that similar to the S12L set the PW6B95 functional again gives the best

results for ∆E.

−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

 0

 2

−22−20−18−16−14−12−10 −8 −6 −4 −2  0  2

E
xp

er
im

en
ta

l ∆
G

a 
/k

ca
l m

ol
−

1

Calculated ∆Ga /kcal mol−1

2
1

3

4

7

8

6

5

PW6B95−D3/QZ
B3LYP−D3/QZ
TPSS−D3/QZ
TPSS−D3/TZ

Figure 5.4.: Comparison of experimental and computed total free association energies for
four levels of theory to calculate ∆E.
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When comparing TPSS/TZ and TPSS/QZ’ one clearly sees the effect of the basis set

superposition error (BSSE). For all complexes except 3 the ∆E value for the quadruple-ζ

basis is less negative by 1-2 kcal mol−1 than for the triple-ζ basis set. As the basis set

incompleteness error (BSIE) has the opposite sign compared to the BSSE, ∆E is not

necessarily less negative for the larger basis set calculation (see complex 3). Thus, for

a correct description without relying on error compensation a single-point quadruple-ζ

basis set treatment is mandatory.

In order to check whether the quadruple-ζ results are converged we estimated the basis set

limit with a two point exponential extrapolation [351–353] using the triple and quadruple-ζ

energies and the coefficient fitted for the def2 basis sets as proposed by Neese et. al. [354] The

interaction energies calculated from the extrapolated energies are at most 0.35 kcal mol−1

lower than the quadruple-ζ results, so we are are confident that a ∆E on the quadruple-ζ

level is converged.

5.5. Computational details

HF-3c [205] was used for pre-optimizations and calculations of harmonic frequencies. Re-

optimizations were done on the TPSS [93]-D3(BJ) [36,37] level employing the def2-TZVP

basis set. [237] When chloride counter ions were included, the COSMO model [40] was used

in the optimization. Single-point calculations for the energies in gas phase were obtained

on the PW6B95 [101]-D3(BJ), B3LYP [88,92,96,154]-D3(BJ), and TPSS-D3(BJ) levels together

with the def2-QZVP’ basis set (def2-QZVP with g- and f-functions discarded on the non-

hydrogen and hydrogen atoms, respectively). [237]

All HF and DFT calculations were performed using the TURBOMOLE 6.4 program pack-

age. [261] The 3c-corrections to the pure HF energy and analytical gradient were calculated

by our freely available standalone program. [241] Computations of harmonic vibrational

frequencies were performed analytically using the aoforce code from TURBOMOLE. The

3c-contributions to the Hessian are computed numerically by two-point finite differences

of analytical gradients. [241] For calculating ∆GT
RRHO the HF-3c frequencies were scaled

with a factor of 0.86. [205]

Additional frequency calculations were performed with DFTB-D3 using the full third-

order correction and self consistent charges (SCC) [114,300,301] together with the most recent

Slater–Koster files provided by the group of M. Elstner. [355] D3 parameters for DFTB were

fitted on the S66 test set. [227] The DFTB-D3 frequencies were used unscaled.

In case of the DFT calculations the resolution-of-identity (RI) approximation for the

Coulomb integrals [74] was applied using matching default auxiliary basis sets. [238] For the

integration of the exchange-correlation contribution the numerical quadrature grid m4 [239]

was employed. For the geometry optimizations as well as the single-point calculations the
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default convergence criteria were used. The three-body contributions to the dispersion

energy were calculated using the dftd3 program. [241]

The COSMO-RS solvation model [41,42] was used as implemented in COSMOtherm em-

ploying six different parameter sets (BP86/def-TZVP and BP86/def2-TZVPD from the

years 2012, 2013 and 2014). [356] To obtain the solvation free energies the standard proce-

dure with two single-point calculations (one in the gas phase and one in an ideal conductor

with ε =∞) on the default BP86 [91,265]/def-TZVP [266] or the BP86/def2-TZVPD [237] lev-

els of theory were performed on the optimized geometries and then used as input for

COSMOtherm. The results presented in Figure 5.3 (a) refer to the 2012 BP86/def-TZVP

parametrization. SMD [54] calculations based on COSMO charges were performed with

the implementation in the current development version of ORCA 3.0 [234]. For the solvent

mixture of 3 and 4 the solvation free energies were averaged.

All visualizations of molecules were done with USCF Chimera version 1.8.1 [267] and all

graphs were plotted with Gnuplot 4.4. [357]

5.6. Conclusions

In this feature article we give an overview of the authors’ and other groups research on

using dispersion-corrected density functional theory to understand supramolecular bind-

ing thermodynamics. Although almost being a truism to date, we reiterate here as most

important finding that proper modeling of the London dispersion energy is crucial when

applying density functional theory in the study of intermolecular interactions in a quan-

titative way. The contribution of dispersion to the complexation energy is significant

sometimes reaching or even exceeding 100% of the total gas phase interaction energy. A

corollary to this is the necessity of using large basis sets as close to the complete basis

set limit as affordable. Commonly applied double-ζ type basis sets are therefore not rec-

ommended. This conclusion is even more relevant for potential users of wave-function

theory methods (e.g. MP2 or CCSD(T)) because an accurate account of dispersion by

these methods requires even more extensive basis sets including multiple sets of diffuse

functions. The relatively fast convergence of the dispersion-corrected DFT interaction en-

ergy with basis set size to a limit of very reasonable accuracy is probably its best ’selling

argument’.

A second major prerequisite for a successful ab initio based modeling of binding ther-

modynamics is that the structure of the supramolecular complex is represented well by a

single conformer or maximally a few most important conformations being either known

from experimental evidence or unambiguously identified through conformation search.

Generally, structures are better reproduced than energies if not too many too closely

spaced conformational alternatives are accessible to the host-guest complex. Furthermore,
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semi-local density functionals which are used for optimization perform best when not too

large, localized charges are present. This is related to the so called self-interaction error

of approximate density functionals and this problem is largely avoided by using hybrid-

or range-separated hybrid functionals.

Finally, it is of utmost importance that the conditions under which the experimental

free energies of binding are recorded and the assumptions of the modeling study match.

For instance, it must be excluded that auto-association of the guest disturbs the mea-

sured host-guest association constants [308] or that complexation is hindered by a too high

barrier of activation. [320] Inclusion of counterions generally improves the results as charge

neutrality is obtained although the flexibility of the host-guest complex is enhanced. [43,49]

And last but not least, solvation effects have to be properly taken care of. Implicit sol-

vation models have their drawbacks, but without any solvation model the calculation of

reasonable association free energies is not possible in most cases.
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achievements and shortcomings of DFT-D3

Abstract

Association free energies ∆Ga are calculated for two different types of host-guest systems,

the rigid cucurbit[7]uril (CB7) and the basket shaped octa-acid (OA), and a number

of charged guest molecules each by quantum chemical methods from first principles in

the context of a recent blind test challenge (SAMPL4). For CB7 the overall agreement

between theory and experiment is excellent. In comparison with all other submitted

calculated relative ∆Ga,rel values for this part of the blind test, our results ranked on

top. Modeling the binding free energy in the case of the OA host mainly suffers from

the problem that the binding situation is undefined with respect to the charge state

and due to its intrinsic flexibility the host-guest complex is not represented well by a

single configuration, but qualitative features of the binding process such as the proper

binding orientation and the order of magnitude of ∆Ga are represented in accord with

the experimental expectations even though an accurate ranking is not possible.

6.1. Introduction

Noncovalent interactions, such as dispersion interactions, hydrogen and halogen bond-

ing or π · · · π stacking play an important role in structural biology and supramolecular

chemistry. [25–27] They control the structures of proteins and DNA, host-guest and enzyme-

substrate binding, antigen-antibody recognition, or the orientation of molecules on sur-

faces or in molecular crystals. [16,17] Association free energies ∆Ga for typical supramolec-

ular host-guest systems can be computed with good accuracy by dispersion corrected

density functional theory (DFT-D3) together with a relatively large basis set as demon-

strated recently [46,192]. Blind tests provide a unique opportunity to test a method in a

realistic setting without a bias towards known answers. One of those blind test challenges

is the Statistical Assessment of Modeling of Proteins and Ligands (SAMPL). [48] The lat-

est challenge, SAMPL4, consisted of three different parts: (1) the prediction of hydration

free energies, (2) the prediction of protein-ligand binding constants and (3) the prediction

of association free energies of supramolecular host-guest systems. The results presented

in this article were obtained while participating in the latter part on host-guest binding

affinities and submitted to the SAMPL committee before publication of the experimental

results. After the submission deadline and the statistical assessment of all results, the

so far disclosed experimental binding affinities were made available to the participants.

An overview of all the results, calculations as well as experiments, will be given by the

SAMPL4 committee in an upcoming article. [49]
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Figure 6.1.: Host and guest molecules for the CB7 host system. Guest 1 is the reference
compound.

Association free energies ∆Ga had to be predicted for two different types of host systems

and a number of guest molecules each. The first host is the rigid cucurbit[7]uril (CB7),

which is known for its ability to bind guest molecules in aqueous solution with a very

high binding affinity (∆Ga as large in magnitude as −20 kcal mol−1). [50,53,358] The highest

binding constants have been observed for guests with a rigid hydrophobic core, such as

ferrocene [53], adamantane [50,358] or [2.2.2]bicyclooctane [358] in combination with cationic

ammonium groups, that can bind to the carbonyls at the rims of the host. The guest

molecules (1-14) for this host also have at least one ammonia group in combination with

various cores, see Figure 6.1. The experimental binding affinities for this part of SAMPL4

were obtained via competition experiments with respect to guest 1 monitored by 1H-NMR

spectroscopy at pH 7.4. [359] Hence, it is expected that all ammonia groups are likely to

be protonated in solution and that we have to treat positively charged guest molecules.

The second host is a basket shaped octa-acid (OA) [360,361], which has four flexible pro-

pionate side chains bearing two rotatable single bonds each and, hence, is not as rigid as a

cucurbituril. The guest molecules for this host are several carboxylic acids (benzoic acid

15, 4-methyl-benzoic acid 16, 4-ethyl-benzoic acid 17, 4-chloro-benzoic acid 18, 3-chloro-

benzoic acid 19, cyclohexanecarboxylic acid 20, trans-4-methyl-cyclohexylcarboxylic acid

21, cyclopentylcarboxylic acid 22, and cycloheptanecarboxylic acid 23), see Figure 6.2.

Since dimers of OA are known to encapsulate steroids up to the size of estradiol and

estriol [361], all of the guests 15-23 are expected to be easily accomodated by this host in

various orientations. The experimental binding affinities determined by ITC and NMR

were measured at high pH (9.2), [362] so the octa-acid host might be fully deprotonated

having a maximum charge of −8. However, also the charge of −6 with two of the car-

boxylic acids at the bottom of the basket taken to be diagonally across from each other
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Figure 6.2.: Host and guest molecules for the OA host system.

being protonated was suggested [363]. Thus, the charge of the octa-acid is not completely

clear. As the guests may be fully deprotonated as well under the experimental conditions,

one is faced with the unusual case of anion-anion binding, which represents a huge chal-

lenge for quantum chemical methods due to the inherent electrostatic repulsion. Solvent

screening is expected to play an important role in the process.

6.2. General approach to calculate association free

energies

The equilibrium association free energies ∆Ga for the SAMPL4 host-guest systems in

solution are calculated by quantum chemical methods. The theoretical approach employs

a (nondynamic) single-structure model and has been successfully applied before to several

different host-guest systems of similar size. [43,45,46]

The free energies of association for a host and guest molecule in a given solvent X at

a certain temperature T is computed as:

∆Ga = ∆E + ∆GT
RRHO + ∆δGT

solv(X) (6.1)

The solvent in our cases is always water and the temperature was assumed to be 298.15 K.

∆E denotes the electronic gas phase association energy of the fully optimized host and

guest molecules and is calculated by dispersion corrected density functional theory (DFT-

D3(BJ), D3 with Becke-Johnson damping) [36,37,133] with extended basis sets (triple-zeta

and quadruple-zeta quality). The solvation free energy δGT
solv(X) is calculated for each

gas-phase species by employing the COSMO-RS solvation model. [41,42] GT
RRHO is the sum

of thermal corrections from energy to free energy within a rigid-rotor-harmonic-oscillator

approximation for each molecule in the gas phase at a given temperature T and 1 atm,

122



6.3. Computational details

including the zero-point vibrational energy. For obtaining the vibrational entropy from

harmonic frequencies, low-lying modes below 100 cm−1 are treated within a rigid-rotor

model in order to reduce their error in the harmonic approximation, for additional details

see Ref. [ 46]. All harmonic frequencies were calculated with our recently developed HF-3c

method. [205] HF-3c is a fast quantum chemical procedure based on a minimal(small) basis

set Hartree–Fock (HF) calculation with three atom-pairwise correction terms (D3(BJ),

geometrical counterpoise correction (gCP) [47] and an additional short-range term to cor-

rect for basis set deficiencies). To determine ∆GT
RRHO the HF-3c vibrational frequencies

were scaled with a factor of 0.86.

HF-3c was also used to pre-optimize several complexes with possible binding situations.

The complexes with the lowest association free energy were then re-optimized on the

TPSS [93]-D3(BJ) [36,37,133]/def2-TZVP [237] level of theory. Final single-point energies were

calculated on the PW6B95 [101]-D3(BJ)/def2-QZVP [237] level as in the original work. [46]

We also included three-body-dispersion [36] which amounts to 2-3 kcal mol−1 for this type

of systems as discussed recently [192]. No empirical modifications to the published first-

principles procedure [46] were made.

6.3. Computational details

All HF/MINIX, TPSS-D3/def2-TZVP and PW6B95-D3/def2-QZVP’ calculations (def2-

QZVP with discarded g- and f-functions on the non-hydrogen and hydrogen atoms, re-

spectively) were performed using the TURBOMOLE 6.4 program package. [261] In case

of the DFT calculations the resolution-of-identity (RI) approximation for the Coulomb

integrals [74] was applied using matching default auxiliary basis sets [238]. The numerical

quadrature grid m4 (grid 2 for the SCF iterations and grid 4 for the final energy) [239] was

employed for integration of the exchange-correlation contribution. During the geometry

optimizations the convergence criteria were set to 10−7 a.u. for the energy change and

10−5 a.u. for the maximum gradient norm. For the single-point energy a convergence

criterion of 10−8 a.u. for DFT and 10−7 a.u. for HF calculations was used.

In the case of HF-3c, the 3c-terms to energy and analytical gradient were calculated by a

freely available code which basically merges the two programs dftd3 and gCP. [241] Compu-

tations of harmonic vibrational frequencies were performed analytically using the aoforce

code from TURBOMOLE. The 3c-contributions to the Hessian are computed numerically

by two-point finite differences of analytical gradients. The three-body contributions to the

dispersion energy were calculated using the dftd3 program. [241] The COSMO-RS solvation

model [41,42] was used as implemented in COSMOtherm. [356] To obtain the solvation free

energies the standard procedure with two single-point calculations, one in the gas phase

and one with an infinite dielectric constant, on the default BP86 [91,265]/def-TZVP [266] level
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of theory were performed on the TPSS optimized geometries and then used as input for

COSMOtherm.

6.3.1. Specifics for the CB7 host

We first used the protonated and hence positively charged species without any counter

ions. Checking for several binding modes with HF-3c was done by chemical intuition and

not by employing a special algorithm to search for conformers. For all guest molecules ex-

cept 10@CB7 all ammonia groups are stabilized by hydrogen bonds. ∆Ga for 10@CB7

with guest 10 in its triply protonated state is unreliably high (-103.4 kcal mol−1 on the

TPSS-D3/def2-TZVP level). It seemed reasonable to us to use the doubly protonated

state for guest 10 (see below for further discussion).

We then included chloride counter ions by simply adding them to the structures at

hand and re-optimizing the neutral molecules. Including counter ions was already found

to be necessary in calculations of multiply charged species by COSMO-RS [43]. These

optimizations are not reasonable in the gas phase and hence we used the COSMO solvation

model [40] with the dielectric constant for water (ε = 78). The binding mode as well as the

overall geometry did not change significantly when including counter ions. Since analytical

frequencies cannot be computed when using COSMO and the numerical ones often show

numerical noise we therefore used the frequencies obtained for the positively charged

compounds in gas phase also for calculating ∆GT
RRHO of the neutral complexes with

counter ions in solution. For calculating the rotational part of the entropy C2 symmetry

was assumed for guests 1 and 4, and C1 symmetry for all others. Single-point calculations

on the PW6B95-D3/def2-QZVP’ as well as the TPSS-D3/def2-TZVP level were performed

in the gas phase to avoid double counting of electrostatic solvation effects when applying

COSMO-RS.

The absolute ∆Ga for the racemic mixture of compound 11@CB7 was calculated from

the ∆Ga values from 11a@CB7 and 11b@CB7 via the Boltzmann average:

∆Ga(11) = −RTln
(
exp

(
−∆Ga(11a)

RT

)
+ exp

(
−∆Ga(11b)

RT

))
(6.2)

6.3.2. Specifics for the octa-acid host

The octa-acid host is used in its fully protonated and thus neutral form while all guests are

treated as singly negatively charged. Various binding modes are sampled with HF-3c in

the following way: The guest is rotated from 0 to 180 degrees (polar angle) in seven steps

and from 0 to 45 degrees (azimuth angle) in four steps inside the host with respect to its

symmetry axis to generate 28 starting structures per guest for full geometry optimization

with HF-3c. Harmonic frequency calculations on the optimized structures provide internal
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(gas-phase) entropies. For determination of the rotational part of the entropy, a symmetry

number according to four-fold symmetry of the host and a symmetry number according

to two-fold symmetry of guests 15 to 18 is assumed. The symmetry number accounts for

equivalent molecular conformations in the partition function. It is not necessarily given

by the symmetry of the lowest energy conformation which for the empty fully protonated

host is C4 and for the deprotonated guests 15 and 18 is C2, but the symmetry of guests

16 and 17 themselves is Cs at best. Guests 19 to 23 and due to a tilt of the guest with

respect to the host all complexes have no symmetry and their symmetry numbers are 1.

The octa-acid host bears four propionate groups whose inner two C-C-C-C dihedral

angles span a sizable conformational space. A complete sampling of all low energy struc-

tures is not yet practical on the level of theory used in this work. One possible strategy to

deal with this flexibility is to truncate the host by substituting each (CH2)2COO− with

one hydrogen atom. Alternatively and more closely preserving the electronic structure

of the host in this work the reference structure of the uncomplexed host is obtained by

reoptimization starting from its geometry in the complex thus eliminating the influence

of intramolecular hydrogen bonds at the outside of the host on the estimated free energies

of binding ∆Ga within the single-structure model. Preliminary estimates of ∆Ga are ob-

tained by the COSMO-RS continuum solvation model based on DFT (BP86/def-TZVP)

single-point energy calculations and TPSS-D3(BJ)/def2-TZVP single-point association

energies. Host-guest structures with most negative ∆Ga are then fully optimized with

TPSS-D3(BJ)/def2-TZVP + COSMO (ε=78) to obtain structures that account for des-

olvation more properly than in vacuo.

The final ∆Ga values obtained by single-point calculations with the PW6B95 meta-

hybrid functional and the large def2-QZVP’ basis set, the three-body dispersion contribu-

tion to the association energy, and redone COSMO-RS calculations on the TPSS-D3(BJ)

structures, are finally supplemented by a neutral to ionic host correction. This correction

is done by TPSS-D3(BJ)/def2-TZVP + COSMO (ε=78) single-point energy calculations

on a host where the protons of the four benzoic acid carboxylate groups at the rim of the

host are replaced by Na+ ions in a relative geometry derived from a fully HF-3c optimized

anionic structure of the host with twelve additional explicit water molecules. The relative

Na geometries are the same for the nine different guests and are specified in the support-

ing information. The four propionate groups are not ionized because a fully deprotonated

host of charge -8 is unlikely to change the correction term much. The difference between

the interaction energies in the anionic and the neutral hosts ∆∆E=∆E(4Na+)-∆E(4H)

ranges from 0.8 to 2.1 kcal mol−1 with an average value of 1.5 kcal mol−1 (see Tables

S6 and S7 of the supporting information). It is added to ∆E for the results submitted

to the SAMPL4 blind test. Subsequent to the evaluation of the results by the SAMPL4

committee several alternative approaches to include ionic effects have been tested consid-
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ering also the case of the fully deprotonated host. They are described below in the results

section.

6.4. Results and discussion

6.4.1. The CB7 host complexes

We first considered the protonated and hence positively charged guest species without

any counter ions and optimized the geometries and calculated the association free energy

at the HF-3c level. Checking for several binding situations with the CB7 host was done

by trying to achieve the maximum number of hydrogen bonds for all complexes.

(a) (b) (c) (d)

1

2

3 1

2

3 1

2

3 1

2

3

Figure 6.3.: Four different possible binding modes for the ammonia group of guest 2
to the host CB7. (a) 1,2-Binding with third H-atom pointing inwards the
cavity. (b) 1,2-Binding with third H-atom pointing outwards the cavity. (c)
1,3-Binding with third H-atom pointing inwards the cavity. (d) 1,3-Binding
with third H-atom pointing outwards the cavity.

For each ammonia group of the guest molecules there are four possible binding modes,

shown in Figure 6.3. The first hydrogen forms a hydrogen bond with an arbitrary oxygen

atom at the rim of the host. The second hydrogen can then bind to the neighbouring

oxygen (1,2-binding, Figure 6.3 (a) and (b)) or to the next but one oxygen (1,3-binding,

Figure 6.3 (c) and (d)). The third hydrogen is either pointing inwards (Figure 6.3 (a) and

(c)) or outwards (Figure 6.3 (b) and (d)) the host cavity.

For those guests with two ammonia groups (1, 4 and 5) we additionally checked whether

both groups bind to the same rim or one to the upper and one to the lower one. 3, 6

and 14 have a hydroxyl group in addition to the ammonia group. Hence, we had to test

if hydrogen bonding with the host or hydrogen bonding with the solvent water molecules

is favored and the OH group points outwards the cavity.

It was not possible to obtain all these different binding situations for all complexes be-

cause sometimes two different starting points lead to the same final geometry. When both

geometries with the third non-bonding hydrogen atom of the ammonia group pointing in-

wards and outwards the host cavity could be optimized, the one with the hydrogen atom
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pointing outwards is always the one with the lower free energy of association. Also in

general the 1,2-binding mode of the guest molecules with the oxygens is favored over the

1,3-binding mode. From the guests with two ammonia groups, 1 and 4 bind to both,

the upper and the lower rim of the host, whereas 5 forms hydrogen bonds with one rim

only. From the guests with a hydroxyl group, only 14 shows a lower ∆Ga when the OH

groups points outwards into the solvent. 3 and 6 form an additional hydrogen bond with

an oxygen atom at the opposite rim.

Guest 10 is the only one with three ammonia groups and also the only one for which not all

ammonia groups can be stabilized via hydrogen bonds. ∆Ga for 10@CB7 with 10 in its

triply protonated state is unreliably high (-103.4 kcal mol−1 on the TPSS-D3/def2-TZVP

level). 10 can only form two hydrogen bonds via the primary and secondary ammonia

group. It is known that in aqueous solution tertiary amine groups are normally not pro-

tonated due to hydration effects. [364] So it seemed reasonable to us to use the doubly

protonated state for guest 10, which then yielded more reliable ∆Ga values.

The complexes with the lowest ∆Ga obtained at the HF-3c level were then re-optimized

with TPSS-D3/def2-TZVP. If two conformers of one complex had similar ∆Ga values, we

re-optimized both to be sure to find the one with the lowest ∆Ga on the TPSS-D3 level.

The final geometries are shown in Figure 6.4. For three complexes, 2, 6 and 11b, the

favored binding mode differs between TPSS-D3 and HF-3c. The hydrogen bonds in the

HF-3c geometries show a 1,2 binding mode, whereas the 1,3 binding mode is present in the

TPSS-D3 structures. For the other 12 complexes the average root mean square deviation

(RMSD) between the HF-3c and TPSS-D3 geometries is only 0.206 Å(max. RMSD =

0.542 Å; min. RMSD = 0.073 Å). In general, in most complexes the host molecule shows

an elliptical deformation compared to the free state without a guest molecule. The average

RMSD between the geometries of the free host and the host in the complex is 0.567 Å

(max. RMSD = 1.917 Å; min. RMSD = 0.117 Å).

We then included chloride counter ions by simply adding them to the gas phase struc-

tures above the third non-bonding hydrogen atoms of the ammonia groups. We re-

optimized the now neutral complexes with TPSS-D3/def2-TZVP including the COSMO

continuum solvation model (ε = 78 for water). The binding modes did not change and

the overall geometries do not differ significantly compared to the charged complexes opti-

mized in the gas phase. The average RMSD between the gas phase geometries and those

in solution is 0.16 Å on the HF-3c and 0.19 Å on the TPSS-D3 level of theory.

The contributions to ∆Ga, namely the gas phase electronic energy ∆Eel, the two-

body ∆E
(2)
disp and three-body ∆E

(3)
disp dispersion energy, the thermal correction from energy

to free energy ∆GT
RRHO and the solvation free energy ∆δGT

solv are show in Figure 6.5.

The electronic association energy varies in a large range from -7.5 to -37.0 kcal mol−1.
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1@CB7 2@CB7 3@CB7 4@CB7 5@CB7

6@CB7 7@CB7 8@CB7 9@CB7 10@CB7

11a@CB7 11b@CB7 12@CB7 13@CB7 14@CB7

Figure 6.4.: Geometries of all 15 CB7 complexes on the TPSS-D3/def2-TZVP level in
the gas phase optimized without chloride counter ions.

The guests with two ammonia groups (1, 4, 5 and 10) exhibit a higher ∆Eel compared

to those with just one ammonia group, mainly due to twice the number of hydrogen

bonds. The higher ∆Eel of those complexes is compensated by a larger solvation free

energy with opposite sign. For 3@CB7, 6@CB7 and 14@CB7 with an additional

hydroxy group the absolute value of ∆δGT
solv is much smaller and for the guests with

only one ammonia group it is almost zero. Complexes 7@CB7, 8@CB7, 9@CB7,

12@CB7 and 13@CB7 show a negative ∆δGT
solv, whereas it is positive for all others.

As expected, the two-body dispersion energy is large and for most complexes even higher

than the pure DFT contribution. ∆E
(2)
disp varies between -14.0 and -24.0 kcal mol−1,

depending on the size and nature of the guest molecules. The three-body dispersion

energy is similar for all complexes (2-3.5 kcal mol−1) and therefore constantly shifts all

∆Ga values. The thermal correction ∆GT
RRHO on the HF-3c level lies between 15.6 and

19.2 kcal mol−1. Note that this term also contains changes of the zero-point vibrational

energy and other thermal contributions (H(0 K) to H(298 K)) and not only (but mostly)

accounts for entropic changes. Previously, we showed that HF-3c is sufficiently accurate

to calculate the harmonic frequencies of supramolecular complexes of similar size. [205]

The final absolute ∆Ga values span a large range from -3.4 kcal mol−1 for complexes

6@CB7 to -17.8 kcal mol−1 for 12@CB7. ∆Ga of the racemic mixture of 11@CB7
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Figure 6.5.: Contributions to ∆Ga and final ∆Ga values on the PW6B95-D3/def2-
QZVP(-g,-f)/COSMO-RS//TPSS-D3-cosmo/def2-TZVP/HF-3c(freq.) level
for all 14 CB7 complexes including Cl− counter ions. Complexes marked by
? have guests with two ammonia groups.

was calculated as a Boltzmann average (Equation 6.2) of the values of 11a@CB7 and

11b@CB7, resulting in -14.0 kcal mol−1. The reference compound 1@CB7 has a ∆Ga

of -10.9 kcal mol−1. In order to get the relative ∆Ga,rel, which had to be submitted

to the SAMPL4 committee according to the guidelines, this value was subtracted from

all the others (see Table S2 in the supporting information). The absolute experimental

∆Ga of 1@CB7 (-9.9 kcal mol−1) was then added by the committee to both the relative

calculated and the relative measured ∆Ga,rel of the other complexes in order to ensure a

fair evaluation of the results. Compared to the values obtained this way, all our calculated

absolute ∆Ga values are shifted by the error in ∆Ga(1@CB7) of 1.0 kcal mol−1.

The comparison of our calculated and the experimental results is shown in Figure 6.6.

We included estimated theoretical error bars, which have been obtained by taking half of

the absolute difference in interaction energy on the TPSS-D3/def2-TZVP and PW6B95-

D3/def2-QZVP’ levels of theory and adding 3% of the computed absolute values of the

∆GT
RRHO and ∆δGT

solv terms.

The overall agreement between theory and experiment is very good. The best results

are obtained for complexes 3@CB7, 4@CB7, 7@CB7 and 8@CB7 for which the er-

ror is less than 1 kcal mol−1. As it can be seen from Figure 6.6, the calculations yield

overbinding for strongly bound complexes and underbinding for weakly bound complexes,

respectively. The main outlier of the overbound complexes with a deviation from the ex-

perimental value of -3.5 kcal mol−1 is 12@CB7, which has the most bulky guest. The
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Figure 6.6.: Comparison of calculated and experimentally obtained association free en-
ergies ∆Ga for all CB7 complexes with respect to the reference compound
1@CB7. The absolute experimental ∆Ga of 1@CB7 was added to both the
relative calculated and the relative measured ∆Ga,rel to get absolute values
∆Ga.

main outliers of the underbound complexes with an error larger than +3 kcal mol−1 are

the complexes 5@CB7 and 6@CB7 with two functional groups and complex 10@CB7

with the not clearly specified charge state and at least two ammonia groups. Presumably,

we were not able to find the conformer with the lowest ∆Ga and therefore, the single-

conformer approach may be not best suited for these systems.

In comparison with all other submitted calculated relative ∆Ga,rel values for this part of

the SAMPL4 blind test, our results achieved the best Pearson correlation coefficient (R=

0.90± 0.05), the second best value for the mean deviation (MD= 0.27± 0.72 kcal mol−1),

the second best value for the mean absolute deviation (MAD= 2.02 ± 0.46 kcal mol−1),

the second best value for the root mean square deviation (RMSD= 2.62±0.51 kcal mol−1)

and the third best Kendall’s τ measure (τ = 0.74± 0.10) with respect to the experimen-

tal values. However, for the SAMPL4 overview article the RMSD was calculated after

subtracting the MD. The committee justified, they did not want to put participants at a

disadvantage when their result for the reference compound 1@CB7 had a large error. [49]

With respect to this measure our results only ranked eighth.

To conclude this chapter on the CB7 systems, we want to mention the importance of

counter ions. As described before, ∆Ga values were calculated for all complexes with a

charge and with chloride counter ions and the changes in the corresponding geometries
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Figure 6.7.: Deviations from experimental ∆Ga, rel values for all complexes with and
without chloride counter ions.

were small. We decided to submit the ∆Ga,rel values for the complexes including chloride

ions, because the inclusion of counter ions seems physically more reasonable to us. As it

can be seen from Figure 6.7, with only two exceptions the deviation from the experimental

association free energy is always smaller for the calculations with counter ions. Hence,

counter ions systematically improve the agreement with experiment. Tentatively, this can

be attributed to a breakdown of the COSMO-RS solvation model for large surface charges

which appear for bare ions with localized electronic structure as considered here.

6.4.2. The octa-acid host complexes

After showing the success of the combined DFT-D3/HF-3c/COSMO-RS approach in pre-

dicting the free energy of binding for a rigid, neutral host we now turn to the very

challenging situation of the highly charged and considerably flexible octa-acid host. Two

types of binding modes of the anionic guests inside the neutral octa-acid host were ob-

tained by the HF-3c based conformational search, in both of them the guest is roughly

aligned to the axis of the host. In one type, the carboxylate group points out of, in the

other into the binding pocket. Structures with an orientation of the guest perpendicular

to the octa-acid axis are possible only at the cost of a strong deformation of the host

preventing a rotation of the guest inside the pocket between up and down. On the other

hand for each of the two bound configurations various orientations of the guest inside the

host with similar energies are obtained indicating considerable intrinsic flexibility of the

host-guest complex.
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In terms of the gas phase association energy ∆E, orientations with the carboxylate

pointing into the pocket are favored over those with the carboxylate oriented towards

the outside by several kcal mol−1 mainly due to weak hydrogen bonds with the CH

groups inside the octa-acid. However, this energy difference is overcompensated by the

∆δGT
solv term being over 10 kcal mol−1 more positive when the carboxylate is inside the

pocket, thereby resulting in positive (i.e. not binding) ∆Ga values. All in all, in the

most favorable complexes in terms of ∆Ga, the polar head group of the guest is located

at the portal of the hydrophobic pocket, and the host is minimally deformed with the

only exception of guest 22@OA which has a positive computed ∆Ga (see below). In

order to reduce artifacts also in structures with the proper orientation of the guest inside

the host by overestimating interactions between the carboxylate and the host, geometries

were derived by using the COSMO continuum solvation model instead of optimizations

in vacuum. Figure 6.8 shows two representative structures with minimal free energy

of binding ∆Gaon the PW6B95-D3/def2-QZVP(-g,-f)/COSMO-RS//TPSS-D3(BJ)/def2-

TZVP+COSMO(ε=78)/def2-TZVP/HF-3c(freq.) level of theory.

17@OA 21@OA

Figure 6.8.: Geometries of two OA complexes on the TPSS-D3/def2-TZVP level opti-
mized with the COSMO continuum solvation model (ε=78): side-view and
plan-view of guests 17 (left) and 21 (right).

The neutral model of the host binds the anionic guest according to the ∆Ga values

at the TPSS-D3(BJ)/def2-TZVP level with one exception: no negative ∆Ga was ob-

tained for guest 22. After adding single-point PW6B95-D3(BJ)/def2-QZVP’ association

energy corrections, the three-body dispersion contribution, and the neutral to ionic host

correction, the final ∆Ga values are also positive for complexes 15@OA and 20@OA.

Note that ∆Ga is a sum of the intramolecular, noncovalent association energy ∆E with

competing, usually positive solvent and entropic corrections (Equation 6.1). Since these

compensation terms are generally much larger than the resulting free energy of binding,

we already consider it as a success to be in the right order of magnitude [46] for such a

difficult system. Comparison of the final ∆Ga values for octa-acid to the experimental

affinities reveals that the calculated result is not completely wrong, but underestimates

the experiment due to an inappropriate modelling of the charge state (Figure C.2, top).
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Consequently the results rank between seventh and eleventh among the twelve submis-

sions to SAMPL4 in eight different statistical measures (note that the results presented

here are not identical to those that were available at the SAMPL4 deadline, see Table S7 of

the supporting information for a description of the difference between the submitted data

and those shown in Figure C.2, top). In particular the results performed worse than two

null models, like all other submissions based on quantum mechanical energy models [49]

indicating a common shortcoming in the case of octa-acid. More importantly our sub-

mitted results are in general slightly worse than a submission by the group of Ryde also

based on DFT-D3 calculations on one single configuration per host-guest complex [365].

Among others the DFT-D3 based free energies of binding reported in ref. [365] are derived

from TPSS-D3/def2-QZVP intermolecular interaction energies for a fully charged host.

Without a final judgement with respect to the most important source of the discrepancy

between between the performances of the two sets of similarly derived results we conclude

that the full potential of the approach is not yet exhausted with our contribution to the

SAMPL4 octa-acid challenge.

The importance of a proper modeling of the charge state is demonstrated by single-

point energy calculations after adding a Na+ counterion and two explicit water molecules

to the guest in a relative orientation obtained by TPSS-D3(BJ)/def2-TZVP + COSMO

(ε=78) geometry optimization of guest 15 + Na+ + 2H2O (Figure C.2, middle). While

∆E of guest 15 is smaller by about 11 kcal mol−1, ∆δGT
solv is reduced as well by more

than 18 kcal mol−1, resulting in an overbinding ∆Ga of -7.6 kcal mol−1. Thus, adding a

counterion corrects the systematic deviation of values except for the complex of octa-acid

with guest 22, but the scattering of the data is increased. This is reflected by the smaller

correlation coefficient of 0.18 with (Figure C.2, middle) compared to 0.66 without (Figure

C.2, top) Na+ counterion (both after removing the outlier complex 22@OA). That the

stabilizing effect of adding a Na+ counter ion and two explicit water molecules on ∆Ga is

not also visible for the 22@OA complex is due to the repulsion between the additional

water molecules and the host overriding the former. Even for a structure of 22@OA

in which the carboxylate group of cyclopentanecarboxylic acid roughly points out of the

host, the Na+ counter ion and two explicit water molecules can not be added in the plane

of the guests’ carboxylate group without a clash with the host as for the other eight cases

but have to be tilted by 60 degrees out of this plane. The extra energy is removed by

the restricted geometry optimization described below in the next paragraph which results

in a binding ∆Ga also for guest 22 which was not obtained without counter ion due to

artificial contacts between the carboxylate group of cyclopentanecarboxylic acid and the

host.

In order to improve the computational model of the octa-acid host accordingly, an an-

ionic C4 symmetrical structure with eight Na+ counterions plus three additional explicit
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Figure 6.9.: Computed vs. experimental binding free energy (kcal mol−1) for the anionic
guests in the neutral octa-acid host without (top) and with (middle) one Na+

counterion and in the anionic octa-acid host with totally nine Na+ counterions
(bottom). Geometries of the 15@OA complex are shown on the right.
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water molecules (totally 24 extra water molecules) was obtained by HF-3c optimization in

vacuum. The ionic model replaces the neutral host in the best TPSS-D3(BJ)/def2-TZVP

+ COSMO (ε=78) structure (i.e. the one with most negative ∆Ga except for complex

22@OA where instead of the structure with lowest positive ∆Ga a less favorable struc-

ture is taken in which the carboxylate group of cyclopentanecarboxylic acid points out of

instead of into the binding pocket) by matching the positions of all carbon atoms (min-

imal RMSD). Finally, the guest together with its Na+ counterion and two explicit water

molecules is optimized at the TPSS-D3(BJ)/def2-TZVP + COSMO (ε=78) level in a fixed

host, i.e. by setting the forces on the host atoms, eight Na+ counterions, and 24 water

molecules zero. The resulting ∆Ga values are composed of the TPSS-D3(BJ)/def2-TZVP

intermolecular interaction energy ∆E between the guest with its Na+ counterion plus two

explicit water molecules and the C4 symmetric host including the three-body dispersion

contribution, the ∆δGT
solv(X) term for the same structure, a TPSS-D3(BJ)/def2-TZVP

to PW6B95-D3(BJ)/def2-QZVP’ correction for the fully TPSS-D3(BJ)/def2-TZVP +

COSMO (ε=78) optimized structure of the anionic guest with the neutral host, and the

∆GT
RRHO term derived from the harmonic frequencies of the HF-3c optimized the neutral

host/anionic guest structure (Figure C.2, bottom).

Comparing the results for ∆Ga in the anionic (Figure C.2, bottom) to those in the neu-

tral (Figure C.2, middle and top) host, a considerable improvement is obtained. Instead of

underbinding all guests are overbound now except for complexes 20@OA and 23@OA. In

particular complex 22@OA is bound, too, as interaction between the carboxylate group

of the smallest and thereby most mobile guest in the series and the host is prohibited by

the presence of the Na+ counterion. However, the deviation of the calculated ∆Ga from

the reference values still ranges from -3.7 to 3.4 kcal mol−1 with a mean absolute devia-

tion (MAD) of 2.3 kcal mol−1. Also the value of the correlation coefficient is only slightly

increased to 0.43, but now also including the previous outlier, guest 22. A similar picture

results for an anionic C2 symmetrical host structure with six Na+ counterions plus three

additional explicit water molecules (totally 18 extra water molecules) and an anionic C4

symmetrical host structure with four Na+ counterions plus three additional explicit water

molecules (totally 12 extra water molecules). The error range and MAD are -4.5 to 2.6

(-3.5 to 2.5) kcal mol−1 and 2.0 (1.6) kcal mol−1 for seven (five) Na+ counterions and the

correlation coefficient is 0.45 (0.47). The corresponding graphs are provided as support-

ing information where also the raw data and their components are tabulated. Thus, the

assumed charge state of the host appears to be not as influential for the resulting ∆Ga

(Figure C.2, bottom) as is that of the guest whose modification results in qualitatively

correct (i.e. binding) estimates (Figure C.2, top and middle). Unfortunately neither of

the three anionic host structures gives a proper ranking.

It is very interesting to know whether the improved results with counter ions are caused
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by the counter ions and not because the host was kept rigid with the same geometry

for all complexes, avoiding some of the conformational problems. This is checked by

calculating single-point energies also without the counter ions, i.e. re-replacing eight Na+

by H and deleting the 24 coordinating water molecules. The resulting ∆Ga values differ

from those in the fully deprotonated host from 0.3 to -0.8 kcal mol−1 (see Table S3 of

the supporting information). The differences in the individual components (∆E and

∆δGT
solv are slightly larger but opposite in sign and therefore mutually compensating.

Consequently the error range is slightly shifted (-4.2 to 2.8 kcal mol−1), while MAD (2.3

kcal mol−1) and correlation coefficient (0.49) are hardly affected compared to the fully

protonated host supporting the statement at the end of the preceding paragraph.

The overbinding of an anionic guests by an anionic model of the host is surprising at

first sight. Most likely this is related to the extension of the guest by the Na+ counterion

plus its two coordinating water molecules leading to the inclusion of additional interaction

terms in ∆E. Therefore the two water molecules were omitted from interaction energy

and free energy of desolvation calculation. [365] The resulting ∆Ga values are consistently

reduced by 1.8 to 4.5 kcal mol−1, so that overbinding is essentially removed for guests 15,

17, 19, and 21. Since this is true also for the initially underbinding guests 20 and 23,

all remaining complexes (16@OA, 18@OA, 20@OA, 22@OA, and 23@OA) end up

underbinding without consideration of the two explicit water molcules. The error ranges

from -0.9 to 5.8 with an MAD of 2.1 kcal mol−1 and correlation coefficient of 0.42. That

is the results are more or less shifted from over- to underbinding. The same holds for the

other two incompletely deprotonated hosts: MAD 2.0 kcal mol−1 (2.0 kcal mol−1) and

correlation coefficient 0.59 (0.54) without the two explicit water molecules for seven (five)

Na+ counter ions are similar to the case with the two explicit water molecules, while the

error range -1.2 to 5.1 kcal mol−1 (-1.2 to 4.9 kcal mol−1) is shifted upwards. However the

underbinding of the remaining five complexes can be easily attributed to the underlying

potentially not optimal binding configuration. All in all modeling the binding free energy

in the case of the octa-acid host mainly suffers from the problem that the binding situation

is insufficiently defined with respect to the charge state and due to its intrinsic flexibility

the host-guest complex is probably not represented well by a single configuration in our

approach.

6.5. Conclusion

The presented DFT-D3 based blind prediction of binding affinities for charged supramolec-

ular host-guest systems within the SAMPL4 framework shows that the success of the

approach strongly depends on the validity of one (or few) minimal energy structures to

represent the complex properly. Extensive sampling of several hundred thousand or even
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million of configurations is not yet compatible with the high level of electronic structure

theory applied here. Furthermore, neutral host-guest complexes are treated more accu-

rately than charged ones and cationic ones are easier to handle than anionic systems in

our DFT treatment.

Hence, in case of the rigid and neutral CB7 host the single conformer approach is suc-

cessful to calculate the binding free energies of cationic guest molecules. The inclusion of

chloride counter ions to neutralize the ammonia groups improves the results even further.

Compared to all other submissions to the SAMPL4 blind test our calculated ∆Ga ranked

top and our result is one out of the best three for all statistical analyses applied. With an

MAD of only 2 kcal mol−1 w.r.t. experiment we were able to predict the binding affinity

with a high accuracy.

In case of the OA host the addition of counter ions and explicit water molecules, while

neutralizing the structures, increases the flexibility and furthermore introduces an ambi-

guity into the dissection between host and guest which is necessary for computing ∆Ga. It

is reassuring that the qualitative features of the binding process are represented in accord

with the experimental expectations also in the case when the quantitative agreement of

the computed free energy of binding with the measured one is not fully satisfactory. It

is interesting to note that whereas the present method performs worse on OA than on

CB7, the opposite is true fore nearly all the other submissions to SAMPL4. [49] So having

tested the limits of our approach to ∆Ga determination we feel even more confidence

than before in the predictive power of dispersion corrected density functional theory in

determining binding affinities for a wide range of supramolecular systems.
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Abstract

The S12L test set for supramolecular Gibbs free energies of association ∆Ga (Chem. Eur.

J. 2012,18, 9955–9964) is extended to 30 complexes (S30L), featuring more diverse in-

teraction motifs, anions and higher charges (-1 up to +4) as well as larger systems with

up to 200 atoms. Various typical noncovalent interactions like hydrogen and halogen

bonding, π − π stacking, non-polar dispersion, CH−π, and cation-dipolar interactions

are represented by ”real” complexes. The experimental Gibbs free energies of association

(∆Gexp
a ) cover a wide range from -0.7 to -24.7 kcal mol−1. In order to obtain a theo-

retical best estimate for ∆Ga, we test various dispersion corrected density functionals in

combination with quadruple-ζ basis sets for calculating the association energies in the

gas phase. Further, modern semiempirical methods are employed to obtain the ther-

mostatistical corrections from energy to Gibbs free energy, and the COSMO-RS model

with several parametrizations as well as the SMD model are used to include solvation

contributions. We investigate the effect of including counterions for the charged systems

(S30L-CI), which is found to overall improve the results. Our best method combination

consists of PW6B95-D3 (for neutral and charged systems) or ωB97X-D3 (for systems

with counterions) energies, HF-3c thermostatistical corrections, and Gibbs free energies

of solvation obtained with the COSMO-RS 2012 parameters for non-polar solvents and

2013-fine for water. This combination gives a mean absolute deviation for ∆Ga of only

2.4 kcal mol−1 (S30L) and 2.1 kcal mol−1 (S30L-CI), respectively, with a mean deviation

of almost zero compared to experiment. Regarding the relative Gibbs free energies of

association for the 13 pairs of complexes which share the same host, the correct trend

in binding affinities could be reproduced except for two cases. The MAD compared to

experiment amounts to 1.2 kcal mol−1 and the MD is almost zero.

The best-estimate theoretical corrections are used to back-correct the experimental ∆Ga

values in order to get an empirical estimate for the ”experimental”, zero-point vibrational

energy exclusive, gas phase binding energies. These are then utilized to benchmark the

performance of various ”low-cost” quantum chemical methods for noncovalent interac-

tions in large systems. The performance of other common DFT methods as well as the

use of semiempirical methods for structure optimizations is discussed.
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7.1. Introduction

Noncovalent interactions between atoms and molecules, such as dispersion interactions,

π − π stacking, or hydrogen and halogen bonding play an important role in structural

biology and supramolecular chemistry [25–27]. They control the structures of DNA and

proteins, antigen-antibody recognition, host-guest and enzyme-substrate binding, or the

orientation of molecules on surfaces or in molecular crystals. [16,17] Due to their omnipres-

ence in diverse fields of science, the investigation and understanding of these noncovalent

interactions (NCIs) has advanced to a major topic in modern chemistry. Although they

are frequently termed ”weak” interactions, especially the London dispersion part can ac-

count for a large percentage of the total interaction energy and often outranks electrostatic

or hydrogen bonding contributions [3].

Noncovalently bound host-guest complexes are of particular importance in supramolec-

ular chemistry. They are utilized in the fields of molecular recognition, template-direct

synthesis, biomimetics, self-assembly, and even as reaction containers. [1,2,16,17,22] There-

fore, the characterization and subsequent tuning of the different stabilizing interactions

are of particular interest. Quantitative descriptions and predictions of the binding ther-

modynamics of these supramolecular complexes by means of computational electronic

structure methods are still a challenge. This can be attributed to the facts that even the

smallest experimentally synthesized systems are built up from a hundred atoms or more,

and solvation and entropic effects play an important role in the binding process. Hence,

the computational costs in a theoretical, preferably highly accurate quantum chemical

treatment, are large and often unaffordable.

Density functional theory (DFT) has been proven to provide a good ratio in terms of cost

and accuracy for many applications in modern quantum chemistry. However, standard

exchange-correlation functional approximations inherently lack the correct description of

London (long-range) dispersion interactions. [287,288,366] Several different ways of treating

dispersion forces within the Kohn-Sham DFT framework have been presented in the past

years and have emerged as a standard in the field, for recent reviews see Refs. [32,33], and

for comparison of their performance see e.g. Refs. [34,35]. As demonstrated recently, Gibbs

free energies of association ∆Ga (in the following referred to as free energies) for typical

medium-sized supramolecular host-guest systems can be computed with good accuracy by

dispersion corrected density functional theory (e.g. DFT-D3 [36]) together with a relatively

large basis set in a non-dynamic single-structure approach without any system-specific

adjustments. [46,192,296,367]. For the so called S12L set of complexes, [46] which was the first

benchmark set for NCI in large systems, the DFT-D3 gas phase interaction energies were

confirmed by independent DFT-SAPT calculations [368] and high level electronic Quantum

Monte-Carlo simulations. [299] For the related L7 benchmark set for NCI in large model
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complexes see Ref. [144].

Our procedure to obtain the target ∆Ga value involves three steps: First, the elec-

tronic interaction energy in the gas phase ∆E is computed for equilibrium structures.

The molecules of interest (host, guest and complex) are optimized in the gas phase on an

affordable level including a dispersion correction, e.g. the TPSS meta-GGA density func-

tional [93] together with the triple-ζ basis set def2-TZVP [237] and the D3 dispersion correc-

tion with Becke-Johnson damping [133,134] (D3(BJ)). [37] Single-point energies are obtained

by employing a hybrid-functional like PW6B95 [101]-D3 together with a large quadruple-ζ

basis set, e.g. def2-QZVP [237]. The gas phase association energy ∆E is calculated in the

supermolecular approach

∆E = E(complex)− E(host)− E(guest), (7.1)

where E is the total electronic energy of the species involved. At a QZ basis set level,

basis set superposition errors (BSSE) diminish to typically less than 2% of ∆E and can

be ignored [192] for (hybrid)GGA functionals. In addition to the two-body dispersion inter-

action ∆E
(2)
disp, the Axilrod-Teller-Muto-type three-body dispersion (ATM) energy ∆E

(3)
disp

is also included. The three-body dispersion contribution to ∆E was found to be always

positive and to contribute significantly with 2-3 kcal mol−1 for typical supramolecular

systems [46]. We disregard many-body dispersion effects beyond the three-body term,

see Refs. [ 135,137,299,332,369 ] for examples and further discussion. Note that ∆E
(3)
disp

varies in methodologically different approaches, [136,299] and we decided to use the efficient

D3 method for its computation without any empirical adjustments. However, missing

higher-order many-body dispersion effects are maybe on the order of 1-2 kcal mol−1 which

can be estimated from a comparison of D3+ATM data and the MBD approach [297] for

molecular crystals. [207,370] This is relevant when aiming at absolute ∆Ga values of about

5-10 kcal mol−1 and further investigation of their accurate computation seems manda-

tory. The total electronic interaction energy ∆E thus comprises the pure electronic DFT

energy ∆EDFT
el , two-body ∆E

(2)
disp, and three-body dispersion energy ∆E

(3)
disp:

∆E = ∆EDFT
el + ∆E

(2)
disp + ∆E

(3)
disp (7.2)

Second, the sum of thermostatistical corrections from energy to free energy GT
RRHO

are obtained for each molecule in the gas phase at a given temperature T and normal

pressure of 1 atm, including the zero-point vibrational energy. Since low-lying vibra-

tional frequencies are inaccurate in the harmonic approximation, a modified rigid-rotor-

harmonic-oscillator scheme is used [46]. In this approach vibrational modes below 100 cm−1

are treated within a rigid-rotor model with smooth interpolation to the standard harmonic
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regime, for additional details, see Ref. [46] Its good performance has been verified repeat-

edly also for computing reaction thermochemistry, see e.g. Refs [371–373]. The computation

of the harmonic frequencies is carried out with semiempirical methods like PM6 [124]-

D3, DFTB [113]-D3 or our recently developed minimal basis set Hartree–Fock (HF-3c)

method [205]. HF-3c is a fast quantum chemical procedure with three atom-pairwise cor-

rection terms (D3(BJ), geometrical counter-poise correction (gCP) [47], and an additional

short-range term to correct for basis set deficiencies). It yields very reasonable structures

and interaction energies for typical supramolecular systems and can therefore be used for

pre-optimizations or screening applications.

Third, a continuum solvation model like COSMO-RS [41,42] or SMD [54] is used in a black-

box manner to calculate the solvation free energy δGT
solv(X) of each gas phase species at

the temperature T in solvent X. The resulting values implicitly contain the conversion

to standard state conditions. An alternative approach to the solvation problem is for

example the coupling of quantum mechanics to an integral equation theory of liquids,

like 3D-RISM. [303,304] As the current implementation unfortunately does not support all

needed solvents, we did not apply this method here. Another route is represented by

classical molecular dynamics (MD) or hybrid quantum mechanics/molecular mechanics

(QM/MM) MD simulations, which require a statistical sampling of the distributions of

solvent molecules, for recent examples see Refs. [295,374]

The association free energy ∆Ga is the sum of the three contributions:

∆Ga = ∆E + ∆GT
RRHO + ∆δGT

solv(X) (7.3)

In the original publication, [46] this approach was applied to 12 rigid organic complexes

(S12L) with up to 160 atoms and yielded accurate ∆Ga values with a mean absolute de-

viation (MAD) of only 2.1 kcal mol−1 with respect to experiment for PW6B95-D3/def2-

QZVP’ energies, DFTB-D3 vibrational frequencies and solvation effects treated with

COSMO-RS (2012 parametrization). Moreover, it has recently been employed in the

SAMPL4 blind test challenge. Binding affinities for 14 cucurbit[7]uril complexes with

cationic guest molecules were to be predicted and our results ranked in the top three of

all submissions in all statistical measures. [49,306,375]

The present work continues and extends the application of this approach to 30 com-

plexes with up to 200 atoms and charges from -1 up to +4. In addition to 11 of the original

complexes (excluding the ferrocene@CB7 complex because many semiempirical methods

or force-fields cannot handle transition metals), 19 new chemically interesting complexes

were chosen, which feature slightly less rigid hosts like crown ethers and cyclodextrins and

host molecules with flexible alkyl side chains. The experimentally obtained ∆Ga values

cover a wide range from -0.7 to -24.7 kcal mol−1 and the complexes cover the most im-
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portant typical supramolecular interactions such as hydrogen and halogen bonding, π−π
stacking, non-polar dispersion, CH−π, and cation-dipolar interactions. We investigate

the influence of counterions for charged complexes since we found in previous studies that

the inclusion of chloride (model) ions significantly improved the results. [49,367] Also, coun-

terions were found to be necessary in calculations of multiply charged species when using

the COSMO-RS solvation model. [43]

Furthermore, we test several density functionals to compute the binding energies, differ-

ent semiempirical methods to calculate vibrational frequencies, and various COSMO-RS

parametrizations as well as SMD to describe solvation effects in order to find the combi-

nation yielding the most accurate ∆Ga values. No empirical adjustments to any of the

applied methods were made. With the presumably best approaches for ∆GT
RRHO and

∆δGT
solv, we subsequently back-correct the experimental binding free energies to obtain

empirical (”experimental”) gas phase binding energies ∆Eemp. These values are then used

to benchmark the performance of low-cost simplified quantum chemical methods and are

suggested together with the best DFT values as reference data in future methodological

studies.

7.1.1. The test set complexes

In the following, we briefly describe the investigated complexes. Figure 7.1 shows the

optimized equilibrium structures of the complexes contained in the S30L test set and

Table 7.1 summarizes the experimental conditions as well as the net charges and the

experimental ∆Gexp
a values. The complexes are sorted according to the most prominent

type of interaction.

The first two complexes mainly feature non-polar dispersion interactions and were al-

ready part of the S12L set. 1 and 2 are tweezer complexes with tetracyanoquinodimethane

(TCNQ) and para-dicyanobenzene (DCB) (measured in CHCl3 at 298 K). [275]

The next group consists of ten complexes which mainly feature π − π stacking in-

teractions. 3 and 4 were taken from the S12L and are two pincer complexes with 2,4,7-

trinitro-9-fluorenone (TNF) and 4-chloro-7-nitrobenzofurazan (NDB) as guests (in CH2Cl2

at 298 K). [276] Further, two tweezer complexes with TNF and TCNQ as guest molecules

(5 and 6 in CHCl3 at 298 K) [376] were chosen. These two complexes are able to undergo

shape switching and are therefore interesting as a nanomechanical devices. [16,385] Also, two

ring-in-ring complexes were considered, namely [5]cycloparaphenyleneacetylene (5CPPA)

in 8CPPA and 6CPPA in 9CPPA (7 and 8 in CHCl3 at 328 K). [377] These complexes

show concave-convex π − π interactions, which are important in the formation of e.g. so

called bucky onions [386,387] and fullerene peapods. [388] 7 has a ∆Ga value comparable to

C60@6CPPA giving evidence that concave-convex π − π interactions are not limited to
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Figure 7.1.: Structures of the 30 supramolecular complexes contained in the S30L test
set. C-atoms of the host molecules are shown in light grey, those of the guest
molecules in dark grey, and H-bonding interactions are indicated by dotted
lines. For convenience, the old S12L numbering is given if appropriate.

fullerenes only. [378,389] 9 and 10 were already part of the S12L and are two buckycatcher

complexes that capture C60 and C70 (in toluene at 293 K). [281] Next, two other fullerene

catcher complexes witch pentakis(1,4-benzodithiino)corannulene (CA10) as host and also

C60 and C70 as guests (11 and 12 in CS2 at 298 K) [378] were chosen. In addition to

the already mentioned concave-convex π − π interactions the CA10 host contains sulfur

atoms, which provide somewhat enhanced dispersion interactions compared to second-row

atoms.

The third group consists of two complexes which mainly show C-H· · · π interactions.

Two resorcin[4]arene-based container (RA4) complexes with morpholine and tioxane as

guests (13 and 14 in mesitylene at 303 K) were selected. [379] These complexes feature non-

polar dispersion in addition to C-H· · · π interactions, and due to the latter, heterocyclic

guests show a much larger binding affinity than cyclic hydrocarbons, which were also
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Table 7.1.: Overview of the investigated complexes, their charges (in case of S30L), the
experimental measurement conditions (solvent and temperature T in K) and
the experimental association free energies ∆Gexp

a given in kcal mol−1.

complex charge solvent T ∆Gexp
a

1 TCNQ@tweezer [275] 0 CHCl3 298 -4.2
2 DCB@tweezer [275] 0 CHCl3 298 -1.4
3 TCNB@pincer [276] 0 CH2Cl2 298 -1.5
4 NBD@pincer [276] 0 CH2Cl2 298 -1.8
5 TNF@tweezer2 [376] 0 CHCl3 298 -5.2
6 TCNQ@tweezer2 [376] 0 CHCl3 298 -4.6
7 5CPPA@8CPPA [377] 0 CHCl3 328 -5.5
8 6CPPA@9CPPA [377] 0 CHCl3 328 -2.2
9 C60@catcher [281] 0 toluene 293 -5.3
10 C70@catcher [281] 0 toluene 293 -5.1
11 C60@CA10 [378] 0 CS2 298 -4.4
12 C70@CA10 [378] 0 CS2 298 -4.2
13 morpholine@RA4 [379] 0 mesitylene 303 -10.0
14 tioxane@RA4 [379] 0 mesitylene 303 -9.0
15 TMPDA@XB-donor [380] 0 cyclohexane 298 -0.7
15 HHTAP@XB-donor [380] 0 cyclohexane 298 -5.1
17 BQ@mcycle [278] 0 CHCl3 298 -8.3
18 GLH@mcycle [278] 0 CHCl3 298 -3.3
19 C5H9OH@β-CD [381] 0 H2O 298 -3.0
20 C8H15OH@β-CD [381] 0 H2O 298 -4.9
21 AdOH@CB7 [280] 0 H2O 298 -14.1
22 DAAD@ADDA [15] 0 CHCl3 298 -11.7
23 AAAA@DDDD+ [358] +1 CH2Cl2 298 -17.3
24 Ad2(NMe3)2@CB7 [382] +2 H2O 298 -24.7
25 tetraphene@Ex2Box [383] +4 CH3CN 298 -4.4
26 chrysene@Ex2Box [383] +4 CH3CN 298 -5.3
27 BuNH+

4 @CB6 [279] +1 formic acid:H2O 1:1 298 -6.9
28 PrNH+

4 @CB6 [279] +1 formic acid:H2O 1:1 298 -5.7
29 acetate@CP4 [384] -1 CH3CN 298 -8.2
30 benzoate@CP4 [384] -1 CH3CN 298 -7.7

investigated experimentally. The RA4 container has four flexible hexyl side chains that

were fully included in the calculations. Thus, 13 and 14 are the largest complexes with

about 200 atoms.

The forth group consists of two complexes which exhibit halogen bonding (15 and

16 in cyclohexane at 298 K). [380] The host molecule (XB-donor) features three polyfluo-

roiodoarenes that are orientated perpendicular to the central benzene core and thus form

a tridentate halogen bond donor motif. It binds various diamines and triamines such as

the chosen guests N,N,N’,N’-tetramethylpropane-1,3-diamine (TMPDA) and hexahydro-
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1H,4H,7H-3a,6a,9a-triazaphenalene (HHTAP). Halogen bonds are more directional than

hydrogen bonds and thus, describing these multi-point interactions is much more chal-

lenging. [390–392]

The fifth group of eight complexes feature hydrogen bonds as the major type of in-

teraction. The first two complexes are two amine macroycyle (mcycle) complexes with

benzoquinone (BQ) and glycine anhydride (GLH) from the S12L (17 and 18 in CHCl3

at 298 K). [278] Note, that the electronic structure of BQ is somewhat non-trivial in the

sense that some quantum chemical codes produce a wrongly occupied orbital guess in

the D2h symmetry so that the SCF converges to an incorrect excited state. Next, two

β-cyclodextrin (β-CD) complexes with cyclopentanol and cyclooctanol as guests (19 and

20 in H2O at 298 K) were investigated. [381] Cyclodextrins posses a hydrophobic central

cavity and a hydrophilic outer surface and can therefore be used to improve the deliv-

ery for poorly soluble drugs. [393] Therefore, in addition to hydrogen bonds, non-polar

dispersion is also important. 21 and 24 are two cucurbit[7]uril (CB7) complexes with

1-hydroxyadamantane (AdOH) (taken from S12L) [280] and a double positively charged

diamantane diammonium (Ad2(NMe3)2) [358] as guests (in H2O at 298 K). 23 shows an es-

pecially high ∆Ga due to the perfect alignment of the guest along the axis of the host and

hence, maximal dispersion interaction of the diamantane core with the hydrophobic re-

gion of the inner circumference of the CB7 and seven ion-dipole interactions of the NMe+
3

groups with each carbonyl of the ureidyl portal. Over the past decade, the cucurbit[n]uril

(CBn, n = 5, 6, 7, 8) family of molecular containers has advanced to a major tool for

studying molecular recognition in water. [50–52] Guest molecules with a rigid hydrophobic

core, such as ferrocene [53] or adamantane, [50,358] in combination with cationic ammonium

groups, have been found to yield very large binding affinities. Further, two quadruple

hydrogen bond arrays were chosen. The first one is an ADDA-DAAD type array where

both host and guest are a double donor (D) and a double acceptor (A) (22 in CHCl3 at

298 K). [15] The second one is an AAAA-DDDD+ complex, where the host molecule is a

quadruple acceptor and the guest a positively charged quadruple donor (23 in CH2Cl2

at 298 K). [382] This array exhibits exceptional stability for such a small system even in

hydrogen bond disrupting solvents.

The last group contains eight charged complexes (23 and 24 also belong to this group).

We investigated two complexes of the recently synthesized Ex2Box4+ macrocycle with

tetraphene and chrysene (25 and 26 in CH3CN at 298 K). [383] This macrocycle, composed

of two biphenyl-bridged bipyridinium units and thus a charge of +4, has the unusual

capability of binding π-electron rich as well as π-electron-poor guests, either two small

molecules at the same time or one large guest like the chosen tetraphene and chrysene.

In this case, the main interaction occurs through π-π-stacking. 27 and 28 were already

included in the S12L and are two CB6 complexes with butylammonium (BuNH3) and
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propylammonium (PrNH3) guests (in a 1:1 mixture of formic acid and H2O at 298 K). [279]

The last complexes that were investigated are two calix[4]pyrrole (CP4) complexes that

bind various mono anions. Our chosen guests are acetate and benzoate (29 and 30

in CH3CN at 298 K). [384] Anions are usually more challenging for DFT methods than

cations due to the fact that the energy of highest molecular orbital is often calculated to

be positive leading to artifical charge-transfer.

7.2. Computational details

The geometries of the S30L complexes 1, 2, 3, 4, 9, 10, 17, 18, 21, 27 and 28 as well

as those of their host and guest molecules were taken from Ref [46]. Geometry optimiza-

tions of all other complexes, hosts and guests (applying the appropriate charge of the

molecules) were done on the same level, that is employing the density functional TPSS [93]

together with the triple-ζ basis set def2-TZVP [237]. Hence, opposed to other large com-

plex benchmarks like the L7 set [144],treatment of S30L requires the computation of the

so called relaxation energy, i.e., the effect of full optimization of all fragments. In all

DFT calculations except for M06-2X the D3 dispersion correction [36] with Becke-Johnson

(BJ) damping [37,133,134] was used. In case of the S30L-CI set, chloride counterions were

added to the cationic structures and sodium ions to the anionic structures of the charged

complexes 23 to 30 at appropriate positions and re-optimized on the TPSS-D3/def2-

TZVP level using the COSMO continuum solvation model [40]. No significant effect to the

host-guest binding by the specific choice of the counterions is expected and they should

mainly compensate for the present charges and reduce the electrostatic contribution to

∆E and the COSMO-RS solvation free energies. This approach was successfully applied

before. [43,394,395] Symmetric molecules were always treated in their respective point group

(vide infra). Corrections for basis set superposition error (except for HF-3c which uses

gCP) were not made.

Single-point calculations for the final gas phase interaction energies were conducted

at the PW6B95 [101]-D3, B3LYP [88,91,92,95,96]-D3, BLYP [91,92]-D3, PBE [89,90]-D3, TPSS-D3

and ωB97X-D3 [106] levels together with the quadruple-ζ basis set def2-QZVP’ (QZ) with

discarded g- and f-functions on the non-hydrogen and hydrogen atoms, respectively. [237]

For such a large basis set the basis set superposition error (BSSE) almost vanishes (re-

maining BSSE at this level is typically 1-2% of ∆E, see Ref. [192]) and hence, no special

treatment, e.g. such as a computationally demanding counter-poise correction, is required.

Basis set extrapolation (TZ,QZ) of the energies for similar complexes yielded at maximum

a change of about 0.5 kcal mol−1 for ∆E. [367] For iodine the pseudopotentials from the

Stuttgart/Cologne group were used. [260]

All DFT calculations were performed using the TURBOMOLE 6.4 program pack-
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age [236,261], except for the ωB97X-D3 single-points which were carried out with ORCA

3.0.1. [233,234] and the M06-2X [100] single-points which were calculated with TURBOMOLE

6.6. The resolution-of-identity (RI) approximation for the Coulomb integrals [74] was ap-

plied in all cases using matching default auxiliary basis sets. [238] For the integration of

the exchange-correlation contribution the numerical quadrature grids m4 (m5 in case

of M06-2X) [239] and grid 5 (final-grid 6) were employed in TURBOMOLE and ORCA,

respectively. In the geometry optimizations as well as for the single-point energies the

default convergence criteria were used (10−7 Eh for energies and 10−5 Eh/Bohr for gra-

dients). The three-body contribution to the dispersion energy were calculated using the

dftd3 program. [241] Computations of TPSS-D3 frequencies for comparison were carried

out numerically and in parallel with SNF 2.2.1 [396] and the values were used unscaled.

The HF-3c [205] method was used for calculations of harmonic vibrational frequencies,

geometry optimizations and energies. The HF part was computed using TURBOMOLE

6.4 (with the same convergence criteria as given above) and the 3c-terms to the energy

and the nuclear gradients were calculated with our own freely available code [241]. For the

optimizations of complexes with counterions the COSMO model was used. Computations

of the HF harmonic vibrational frequencies were performed analytically using the aoforce

code of TURBOMOLE. The 3c-contributions to the Hessian are computed numerically by

two-point finite differences of analytical gradients. [241] To determine GT
RRHO, the HF-3c

vibrational frequencies were scaled with a factor of 0.86. For the host molecules tweezer,

CA10, and XB-donor and complex 23 small imaginary frequencies of about < i50 cm−1

were obtained and inverted to the corresponding positive value in order to minimize the

error resulting from missing low-lying modes.

SCC-DFTB3-D3 energies, geometries and frequencies were computed with DFTB+ [397]

using the full third-order correction [127], self consistent charges (SCC) and the empirical

damping for hydrogen-containing pair potentials [113,114,300] together with the most recent

Slater–Koster files provided by the group of Elstner. [355] For simplicity the SCC-DFTB3-

D3 method is referred to as DFTB-D3. The SCC tolerance was set to 10−7 Eh and refitted

D3 parameters determined recently [227] were used. For the geometry optimizations the

statpt code of TURBOMOLE 6.4 was used for executing the relaxation steps and again,

for the complexes with counterions the COSMO model was employed. The DFTB-D3

frequencies were used unscaled for calculating GT
RRHO. For some complexes (4, 22, 23, 27

28), host (XB-donor and CB6) and guest molecules (5CPPA, 6CPPA, TMPDA, DAAD,

and acetate) small imaginary frequencies of about < i50 cm−1 were obtained and therefore

inverted. Imaginary frequencies larger than i100 cm−1 were observed for TCNB and TNF,

disregarded and not used in the calculation of GT
RRHO.

PM6-D3 [124], PM6-D3H2 [262] and PM7 [125] calculations were carried out with MOPAC

2012 [263] but employing the TURBOMOLE modules for executing the geometry relax-
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ation steps. As the parametrization of the hydrogen bonding corrections was done in

combination with D3 employing the zero damping (termed D3(0)), we used this scheme

consistently for all PM6-D3 calculations. The same holds for DFT with the M06-2X func-

tional where only D3(0) is appropriate. For the H+ corrections [398] we used our own code,

the H4 corrections [399] were computed using the standalone code provided by the Hobza

group. Vibrational frequencies for PM6-D3 were calculated numerically using MOPAC

2012. To obtain GT
RRHO the frequencies were used unscaled. For most host molecules

and most complexes imaginary frequencies were obtained, and again those smaller than

i50 cm−1 were inverted and larger ones disregarded.

OM2 [126] energies were calculated with MNDO 2005 [400]. The SCF convergence criterion

was set to 10−6 eV. The dispersion contribution was calculated using the dftd3 standalone

code.

The COSMO-RS solvation model [41,42] was used as implemented in COSMOtherm [401]

employing the 2012, 2013 and 2014 BP86/def-TZVP parametrization as well as 2013 and

2014 BP86/def2-TZVPD parameters(dubbed fine parametrizations in the following). To

obtain the solvation free energies the standard procedure with two single-point calculations

(one in the gas phase and one in an ideal conductor) on the default BP86 [91,265]/def-

TZVP [266] or BP86/def2-TZVPD [402] levels of theory were performed on the optimized

gas-phase geometries and then used as input for COSMOtherm.

The SMD [54] calculations based on COSMO charges were performed on the BP86/def2-

SVP level with the implementation in NWChem 6.4 [403]. For the solvent mixture in case

of 27 and 28 the solvation free energies were averaged.

All visualizations of molecules were done with USCF Chimera version 1.8.1 [267] and all

graphs were plotted with Gnuplot 4.6. [357].

7.3. Results and discussion

Molecular symmetry influences the rotational part of the entropy and the effect of the sym-

metry number σ is significant for highly symmetric molecules. [349] Therefore, we treated

the symmetric guest and host molecules in their respective point group: C60 has Ih and

C70 has D5h symmetry; 5CPPA is D5h, 6CPPA and CB6 D6h, 8CPPA D8h and 9CPPA

D9h symmetric; TCNQ, DCB, TCNB and BQ have D2h symmetry; tetraphene has C2h

symmetry; benzoate and the tweezer are C2v symmetric; XB-donor and HHTAP have

C3v symmetry; pincer and tweezer2 are C2 symmetric; FDNB, ADDA, crysene, acetate,

CA10, DAAD and AAAA are Cs symmetric; and Ad2(NMe3)2 has Ci symmetry. Out of

all complexes only four exhibit any symmetry. 9 is C2v, 16 is C3v, and 27 and 28 are Cs

symmetric.

The complexes 23, 27 and 28 are positively charged, 24 is doubly positive charged,
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25 and 26 carry a fourfold positive charge and 29 and 30 are negatively charged. These

systems were investigated with and without counterions. For simplicity, chloride ions

were chosen for all cationic complexes and sodium ions for the anionic ones, although in

the experiment iodide was present in the case of 24, [B(3,5-(CF3)2C6H3)4]− for 23 and

hexafluorophosphate in case of 25 and 26. For an easier assignment of the systems we

will refer to the set without counterions as S30L and the one including them as S30L-

CI. In general, we assume that the additional chloride or sodium ions do not effect the

vibrations significantly. Hence, the same ∆GRRHO values as for the charged systems

without counterions are used to calculate the final ∆Ga.

In the following sections we evaluate the different possible method combinations for

∆Ga, investigate the influence of counterions, and find the presumably best method com-

bination to reproduce the experimental values. With help of the most accurate ∆GT
RRHO

and ∆GT
solv(X) empirical (”experimental”) binding energies are created and used for

benchmarking low-cost semiempirical methods. And finally, the performance of these

semiempirical methods for the geometries of the complexes is discussed.

7.3.1. Evaluating the various method combinations

The three (free) energy components in Eq. 7.3 can independently be computed by different

theoretical methods and very many combinations are possible. A priori it is not clear if

certain method combinations can benefit from error compensation and are thus preferred

over others to compute accurate ∆Ga values. Finding such cases and exploring the general

sensitivity of the results to the applied theory levels is the topic of this section. Note that it

is currently not clear which of the three components ultimately limits the overall accuracy

and in which direction future theoretical work should be invested.

For calculations of the binding energies ∆E we tested the following functionals to-

gether with the D3(BJ) dispersion correction: PW6B95-D3 because it worked well for

this purpose before [46,306] and yielded good results for the GMTKN30 general thermo-

chemistry test set [86], B3LYP-D3 and PBE-D3 because they are widely used, TPSS-D3

as another (meta-)GGA and ωB97X-D3 as a long-range corrected range-separated hy-

brid which should be preferable for charged systems due to reduced self-interaction error.

For all DFT calculations the three-body dispersion (ATM) contribution is included and

D3(BJ)+ATM is abbreviated as just ”D3” in the following, unless noted otherwise. The

harmonic frequencies for evaluation of ∆GT
RRHO were calculated with the semiempirical

methods HF-3c, PM6-D3 and DFTB-D3 and ∆GT
solv(X) was obtained with COSMO-RS

and SMD. For COSMO-RS several parameter sets were used: the BP86/def-TZVP pa-

rameters from 2012, 2013 and 2014 and the BP86/def2-TZVPD parameters from 2013

and 2014 (called fine in the following).

151



7. Comprehensive benchmark of association (free) energies of realistic host–guest

complexes

COSMO−RS(12)

COSMO−RS(13)

COSMO−RS(13−fine)

COSMO−RS(14)

COSMO−RS(14−fine)

SMD

HF−3c DFTB−D3 PM6−D3

4.8 (−3.4)

4.7 (−3.4)

4.2 (−3.1)

4.4 (−3.0)

4.0 (−2.8)

4.5 (−0.1)

5.2 (−3.7)

5.1 (−3.8)

4.5 (−3.4)

4.8 (−3.3)

4.5 (−3.1)

4.6 (−0.4)

5.2 (−3.4)

5.1 (−3.5)

4.8 (−3.1)

4.9 (−3.0)

4.4 (−2.9)

4.8 (−0.1)

COSMO−RS(12)

COSMO−RS(13)

COSMO−RS(13−fine)

COSMO−RS(14)

COSMO−RS(14−fine)

SMD

HF−3c DFTB−D3 PM6−D3

2.6 (1.1)

2.6 (1.1)

3.1 (1.5)

2.7 (1.6)

3.4 (1.7)

5.8 (4.4)

3.2 (0.8)

3.6 (0.7)

4.0 (1.1)

3.2 (1.2)

3.5 (1.4)

5.5 (4.1)

3.1 (1.1)

3.0 (1.1)

3.1 (1.4)

3.2 (1.5)

3.7 (1.7)

6.1 (4.4)

COSMO−RS(12)

COSMO−RS(13)

COSMO−RS(13−fine)

COSMO−RS(14)

COSMO−RS(14−fine)

SMD

HF−3c DFTB−D3 PM6−D3

2.8 (−0.8)

2.8 (−0.9)

2.7 (−0.5)

2.6 (−0.4)

2.6 (−0.2)

4.4 (2.5)

3.3 (−1.1)

3.3 (−1.2)

3.4 (−0.8)

3.1 (−0.7)

3.4 (−0.6)

4.1 (2.2)

3.4 (−0.8)

3.5 (−0.9)

3.4 (−0.5)

3.4 (−0.4)

2.8 (−0.3)

5.0 (2.5)

COSMO−RS(12)

COSMO−RS(13)

COSMO−RS(13−fine)

COSMO−RS(14)

COSMO−RS(14−fine)

SMD

HF−3c DFTB−D3 PM6−D3

3.3 (−1.6)

3.3 (−1.7)

2.8 (−1.3)

3.1 (−1.2)

3.6 (−1.1)

4.9 (1.7)

3.9 (−1.9)

3.9 (−2.0)

3.4 (−1.6)

3.6 (−1.5)

4.0 (−1.4)

4.6 (1.4)

3.8 (−1.6)

3.7 (−1.7)

3.3 (−1.3)

3.5 (−1.2)

4.0 (−1.1)

5.3 (1.6)

COSMO−RS(12)

COSMO−RS(13)

COSMO−RS(13−fine)

COSMO−RS(14)

COSMO−RS(14−fine)

SMD

HF−3c DFTB−D3 PM6−D3

3.6 (−1.2)

3.9 (−1.2)

4.0 (−0.9)

3.6 (−0.8)

3.3 (−0.6)

4.9 (2.1)

4.2 (−1.5)

4.5 (−1.6)

4.7 (−1.2)

4.2 (−1.1)

4.0 (−1.0)

4.9 (1.8)

4.2 (−1.2)

4.5 (−1.3)

4.4 (−0.9)

4.3 (−0.8)

3.8 (−0.7)

5.2 (2.1)

(e) TPSS-D3/QZ

(d) PBE-D3/QZ

(a) PW6B95-D3/QZ

(c) B3LYP-D3/QZ

MAD ≤ 3.5

3.5 < MAD ≤ 4.5

MAD > 4.5

(b) ωB97X-D3/QZ

(MD in parentheses)

Figure 7.2.: MADs (and MDs) for S30L for several combinations of functionals (∆E),
semiempirical methods for vibrational frequencies (∆GT

RRHO), and continuum
solvation models (∆δGT

solv) with respect to the experimental ∆Gexp
a values.

A negative MD corresponds to overbinding, a positive one to underbinding.
All values are given in kcal mol−1.

Figure 7.2 shows the mean absolute deviation (MAD) from experiment (and the mean

deviation (MD) in parenthesis) for all possible method combinations. The values are color-

coded in order to provide an easy overview as suggested by Martin and co-workers. [212]
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The choice of the functional has the largest effect on the performance of the entire

procedure. Within our of course limited test suite, PW6B95-D3 and PBE-D3 perform

best yielding lowest MADs of about 3 kcal mol−1. This confirms our previous finding

that PW6B95-D3 yields accurate supramolecular binding energies. The good perfor-

mance of PBE-D3 is somewhat surprising due to its known tendency to overbind hydrogen

bonds [86,207]. However, we find that compared to e.g. PW6B95-D3 the error for hydrogen

bonded systems is here not larger than for other complexes. ωB97X-D3 and TPSS-D3

give slightly worse results with MADs increased by about 0.5-1 kcal mol−1. This conclu-

sion is rather independent of the choice of the source of the thermostatistical as well as

solvation corrections (see below). For B3LYP-D3 the MADs of about 5 kcal mol−1 are

the largest obtained. The MD of B3LYP-D3 is also worst (about -3.5 kcal mol−1) and

indicates a strong tendency to overbind. This is also the reason why B3LYP-D3 is the

only functional that does not yield worse results together with SMD as the SMD solvation

contributions are usually larger than those from COSMO-RS. Since B3LYP-D3 performs

very well for small noncovalently bound complexes [250], we tentatively attribute this to

an inconsistent treatment of many-body effects (see below) in this very over-repulsive

functional (PW6B95, PBE, and TPSS are inherently much less repulsive).

The conclusion for the performance of the functionals is not affected by the inclusion

of the three-body dispersion term. Disregarding it worsens almost all MADs by at least

0.5 kcal mol−1 when COSMO-RS is used as a solvation model. When SMD is employed in

most cases the MAD is better without the three-body dispersion due to the already men-

tioned larger values for ∆δGT
solv. For analysis purposes we tested if scaling the three-body

dispersion (in a range from 0.5 to 2.1) improves the performance. In case of PW6B95-D3

and ωB97X-D3 the unscaled three-body contribution yields mean absolute deviations and

standard deviations (SD) very close to the optimum. For PBE-D3 a slight improvement

in both measures is observed when the three-body dispersion is scaled down, for TPSS-D3

a slight improvement is gained when it is scaled up. In the case of B3LYP-D3 scaling up

the three-body term yields a significant improvement of 0.5 kcal mol−1 of both the MAD

and SD. This is consistent with the finding that B3LYP-D3 shows a strong tendency to

overbind. TPSS-D3 and B3LYP-D3 both have a relatively large scaling factor s8 of about

two for the higher order two- body dispersion term in the D3 scheme. To check whether

this might be connected, we also tested the BLYP functional which has a similarly large

s8 value of about 2.7. The behavior is the same as seen for B3LYP and it is even more

pronounced. Particularly the complexes 9-12 with C60 or C70 as guests where the ATM

term is large are overbound with these functionals. These observations suggest that func-

tionals with a smaller s8 values in the D3 scheme yield in general better results for the

binding energies of large systems.

When comparing the semiempirical methods tested for the frequencies it is evident
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that HF-3c performs slightly better than DFTB-D3 and both yield better results than

PM6-D3. HF-3c also seems to be generally more stable for this purpose, since HF avoids

any quadrature schemes and is practically free of numerical noise. This is of particular

importance for low-lying vibrational modes. Contrary to HF-3c, imaginary modes were

obtained for a few complexes, host and guest molecules when DFTB-D3 was used (see

computational details) and for almost all complexes when PM6-D3 was employed. For

eight complexes (1, 3, 7, 9, 15, 17, 22, 25), we also calculated (unscaled) TPSS-D3/def2-

TZVP vibrational frequencies to obtain ∆GT
RRHO values for comparison. The HF-3c

results agree very well with the DFT ones, the absolute deviation is only 0.4 kcal mol−1

on average for the∆GT
RRHO term (see SI for details, Table S5). If PM6-D3 and DFTB-D3

are used for the frequencies the MAD is larger, 1.1 and 1.6 kcal mol−1, respectively. Note

that anharmonic vibrational treatments for systems as large as the complexes discussed

here are currently not possible.

For the solvation models the trend is not as clear as for the functionals and the

thermostatistical contributions. In general, COSMO-RS outperforms SMD, but several

parametrizations yield equally good results. It has been reported before that SMD per-

forms worse for ions than other SMx methods, e.g. SM6 or SM8. [404] Excluding the charged

systems (23 to 30) improves the results for both solvation models slightly (see supporting

information, Figure S1). As the improvement is similar, the charged complexes cannot

cause the worse performance of SMD compared the COSMO-RS. When COSMO-RS is

used, the resulting MADs lie between 2.6 and 2.8 kcal mol−1 in combination with PW6B95-

D3 energies and HF-3c thermostatistical corrections, and between 2.6 and 3.4 kcal mol−1

for PBE-D3 and ∆GT
RRHO(HF-3c). We expected the 2014-fine parametrization to per-

form better than others because it uses the theoretically superior D3 scheme to describe

solvation dispersion interactions instead of a much simpler surface-proportional approach

employed for the other parameter sets, but this seems not to be the case. All COSMO-RS

versions yield similar MADs and MDs, and for all of them outliers are observed. This will

be discussed in more detail in the next sections.

Overall, there is no method combination that very clearly outperforms others and at

this point we recommend to use the PW6B95-D3 functional (together with a quadruple-

ζ basis set) for the gas phase association energies ∆E, HF-3c for the thermostatistical

corrections ∆GT
RRHO and COSMO-RS for the solvation contributions ∆δGT

solv.

7.3.2. Influence of counterions

The results discussed so far were obtained without including counterions for the charged

systems 23 to 30. In the S30L-CI test chloride ions were included for the cationic systems

and sodium ions for the anionic ones meaning that in all quantum chemical calculations of
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Figure 7.3.: Structures of the eight supramolecular complexes contained in the S30L-CI
test set which have counterions (chloride ions drawn green, sodium ions are
purple). C-atoms of the host molecules are shown in light grey, those of the
guest molecules in dark grey, and H-bonding interactions are indicated by
dotted lines.

energeis (including those required by the continuum solvation models) only overall neutral

species appear. The structures of complexes 23-CI to 30-CI are shown in Figure 7.3.

As mentioned before, the same thermostatistical corrections as for the S30L were used,

so they will not be discussed again.

Figure 7.4 shows the color-coded MADs with respect to experiment (and the MDs in

parentheses) for all possible method combinations for the S30L-CI in the same manner as

before. Whether the inclusion of counterions improves or deteriorates the results strongly

depends on the functional. The largest improvement is observed for ωB97X-D3, which

now outperforms PW6B95-D3. B3LYP-D3 also yields better results and now performs

similar to TPSS-D3. For PW6B95-D3 the MADs stay similar and for TPSS-D3 and PBE-

D3 a slight deterioration is obtained compared to the results for S30L. The observations

for the solvation contributions are the same as for S30L: COSMO-RS outperforms SMD

for ∆δGT
solv but the five versions give similar results.

The individual errors in ∆Ga for the charged complexes with respect to experimental

data are shown for ωB97X-D3 in Figure 7.5. The largest improvement is observed for

complex 24. Without counterions it is overbound by -11.1 kcal mol−1, and upon inclusion

of chloride ions the error is reduced to only -0.3 kcal mol−1. In case of 23, 25, 26, 27

and 28, the deviation compared to experiment decreases by about 2-4 kcal mol−1. For
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Figure 7.4.: MADs (and MDs) for S30L-CI for several combinations of functionals (∆E),
semiempirical methods for vibrational frequencies (∆GT

RRHO), and continuum
solvation models (∆δGT

solv) with respect to the experimental ∆Gexp
a values.

The three-body dispersion contribution ∆E
(3)
disp is always included. A negative

MD corresponds to overbinding, a positive one to underbinding. All values
are given in kcal mol−1.

25 and 26, the complexes with the highest charge of +4, the improvement is not larger

when counterions are added than for other complexes. Due to the fully conjugated π-
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RS(13-fine) including and disregarding counterions for the charged systems
23 to 30 with respect to the experimental ∆Gexp

a in kcal mol−1.

system, the charges are highly delocalized and thus seem to cause less problems for the

continuum solvation models compared to the more localized charges in the other systems.

Other COSMO-RS parametrizations gave similar results in combination with the ωB97X-

D3 functional for the six cationic systems. For other functionals the improvement or

deterioration upon inclusion of chloride ions can differ from the results shown for ωB97X-

D3.

In contrast, for the two anionic systems ωB97X-D3 yields worse results when sodium

counterions are taken into account. All other functional behave in the same way, though

the extent of deterioration may differ. Again, these observations do not depend on the

COSMO-RS parametrization employed. This result is surprising because the tested den-

sity functional approximations should have more problems in describing anions than

cations and this might suggest the general omission of sodium counterions for anionic

systems.

7.3.3. Finding the optimal method combination

As described above, PW6B95-D3 yields best gas phase interaction energies for S30L, and

ωB97X-D3 performs best for the S30L-CI set. HF-3c consistently gives the best ther-

mostatistical contributions. In terms of MAD and MD all COSMO-RS parametrizations

perform similar, and for all of them outliers exist.

Figure 7.6(top) shows the comparison of the calculated ∆Ga with the experimental
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∆Gexp
a for the S30L set when the COSMO-RS(12) parameters are used. For non-polar

solvents, like chloroform or dichloromethane, COSMO-RS(12) gives the most consistent

results, which cannot be improved when any other parametrization is used. 22 clearly is

an outlier for all COSMO-RS versions. According to our previous experience COSMO-

RS(14-fine) yields better values for solvents like toluene, which can do π − π-stacking,

in combinations with fullerene complexes due to the aforementioned better description

of dispersion in COSMO-RS(14-fine). [367] For the two buckycatcher complexes 9 and 10

in toluene, the deviation of COSMO-RS(12) and COSMO-RS(14-fine) is small (up to

2 kcal mol−1). Therefore, we decided to use the COSMO-RS(12) values. Moreover, the

calculations are less time-consuming when the regular instead of the fine parametrizations

are used.

For water as the solvent, the situation is different. With COSMO-RS(12) the complexes

21, 24, 27 and 28 show a large deviation from experiment, which can be reduced when a

fine parametrization is used. For the six complexes in water the best and most consistent

results were obtained with COSMO-RS(13-fine) (Figure 7.6(bottom)). An explanation

for this may be, that the fine parametrizations employ the larger basis set def2-TZVPD

instead of def-TZVP. It is well-known that for water a large basis set with diffuse functions

is necessary for an accurate description [86]. The largest errors (≥4 kcal mol−1) for S30L are

now observed for 6, 11, 13, 22, 25 and 26. Complexes 6, 11, 25 and 26 are overbound

by -4.0, -5.4, -4.5, and 4.6 kcal mol−1, respectively, while 13 and 22 are underbound by

4.9, and 8.9 kcal mol−1, respectively.

Complex 11 belongs to the ones which have a fullerene as guest molecule. For these

type of large, electronically delocalized systems a partial breakdown of pairwise dispersion

interaction schemes has been observed and analyzed before. [405,406] This is confirmed by

our study as reflected in the overbinding observed for all complexes including fullerenes,

though less pronounced for 9, 10, and 12. Although within our D3 dispersion model

three-body-effects are only very approximately included, the three-body dispersion for

these four systems is qualitative correctly and found to be larger (3.3 to 5.1 kcal mol−1)

compared to other complexes (excluding 24). Many-body-dispersion effects beyond the

three-body term are disregarded in our model, but the observed overbinding provides ev-

idence that neglecting the higher order terms introduces an error of about 1-2 kcal mol−1

for theses systems. Recent work on molecular crystals and comparison of D3 and MBD

data indicates, [207,370] that many-body effects beyond three-body dispersion are probably

rather small for saturated or not too unsaturated organic molecules. This conclusion is in

agreement with previous results from wave function theory based analysis (for coopera-

tivity in noncovalent interactions of biologically relevant molecules see Ref. [407] and for a

study on crystalline benzene see Ref. [137]). For six of the complexes (1, 2, 9, 17, 21, and

27) PBE-MBD* calculations exist. [299] Compared to our PBE-D3 values the PBE-MBD*
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Figure 7.6.: Comparison of experimental ∆Gexp
a and computed total free association ener-

gies ∆Ga for S30L obtained with the method combination PW6B95-D3/HF-
3c/COSMO-RS(12) throughout (top), and PW6B95-D3/HF-3c/COSMO-
RS(12) for non-polar solvents and COSMO-RS(13-fine) for water (bottom).
The dashed grey line shows the result of a linear regression with slope m.

results for ∆E are always more negative and the deviations lie in the range of -0.6 to

-1.8 kcal mol−1 for five of the complexes. For 21, the deviation is with -4 kcal mol−1

much larger, but compared to the DQMC values PBE-MBD* seems to be overshooting

in this case.

For S30L-CI ωB97X-D3 performs better than PW6B95 in terms of MAD (the MD is
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Figure 7.7.: Contributions to ∆Ga for S30L-CI (pure electronic energy (∆EDFT
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body (∆E
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(3)
disp) dispersion energy, thermal cor-

rections from energy to free energy (∆GT
RRHO) and solvation free energy

(∆δGT
solv)) and total ∆Ga values for the method combination PW6B95-

D3/HF-3c/COSMO-RS(12/13-fine). The lengths of the bars represent the
size of the contributions. All values are given in kcal mol−1.

similar and about zero). Complexes 1 to 22 are the same as in the S30L and the ob-

servations described for PW6B95-D3 and the various COSMO-RS parameter sets hold

for ωB97X-D3. In case of the complexes with counterions the COSMO-RS(13-fine)

parametrization also yields the most consistent results. It does not always give the small-

est error, but no outlier is observed.

Our best method combination to compute ∆Ga now consists of PW6B95-D3 gas phase

association energies including the three-body dispersion term or ωB97X-D3 energies when

counterions are included, HF-3c frequencies to obtain the thermostatistical corrections

from energy to free energy, and COSMO-RS with the 2012 parametrization to calculate

the solvation free energies for non-polar solvents and the 2013-fine parametrization for

water and when counterions are included.

This combination yields an MAD of only 2.4 kcal mol−1 for the S30L and PW6B95-

D3 (2.9 kcal mol−1 for the S30L-CI) and 2.1 kcal mol−1 for the S30L-CI and ωB97X-D3

(2.6 kcal mol−1 for the S30L). When judging this deviation one should keep in mind

that the small ∆Ga values result as a sum of individually large and oppositely signed

contributions as discussed already in Ref [46] (see Figure 7.7). The MD for both approaches

is almost zero (-0.5 to 0.5 kcal mol−1) indicating the absence of systematic errors (or a

very favorable systematic compensation). Because the final ∆Ga values for many (neutral)

complexes are rather small (between -5 and -10 kcal mol−1), the mean relative deviation for

the whole set is with about 50% rather large. The overall correlation between experiment
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and theory is reasonable, the Pearson correlation coefficient is R = 0.80 for PW6B95-

D3 on S30L and R = 0.89 for ωB97X-D3 on the S30L-CI set. A linear regression gives

a slope of 0.93 for S30L/PW6B95-D3 and 0.92 for S30L-CI/ωB97X-D3 indicating only

minor systematic deviations.

Figure 7.7 shows the individual contributions to the total free energy of association

exemplary for the method combination PW6B95-D3/HF-3c/COSMO-RS(12/13-fine) for

S30L-CI. The pure electronic DFT energy ∆EDFT
el ranges from -53.3 kcal mol−1 for 23-CI,

which shows nearly pure hydrogen bonding, to almost zero for 11 and 12, which are mainly

bound by dispersion interactions. The the two-body dispersion ∆E
(2)
disp contribution ranges

from -5.2 to -43.9 kcal mol−1. For 22 and 23-CI, which geometrically have a small

contact area between host and guest, the ∆E
(2)
disp part is with about -5 to -7 kcal mol−1

small compared most other complexes. As we have already shown previously for many

supramolecular systems [46,49,367] the two-body dispersion contribution easily outranks the

pure electronic DFT energy. The three-body dispersion term ∆E
(3)
disp ranges from almost

zero for the nearly planar complexes 22 and 23-CI up to 5.9 kcal mol−1 for 24-CI. Again,

we find that ∆E
(3)
disp contributes repulsively with 2 to 3 kcal mol−1 on average. The thermal

corrections from energy to free energy ∆GT
RRHO vary less, between 15 and 20 kcal mol−1.

The solvation contribution ∆δGT
solv is positive in most cases except for complexes 19,

20 and 21, and ranges from -6.2 for 21 to 31.7 kcal mol−1 for 23. As Figure 7.7 also

shows the total ∆Ga values, one can easily see that a large gas phase association energy

does not necessarily result in a large association free energy in solution if the solvation

contribution is big. Therefore, all parts are significant, and solely ∆E cannot be used to

explain binding affinity trends in solution.

In 13 cases two complexes (deliberately) share the same host molecule. For these

systems relative binding affinities ∆∆Ga were calculated and compared to experiment

in order to evaluate if our best method combination is able to correctly reproduce those.

The results are shown for PW6B95-D3/HF-3c/COSMO-RS(12/13-fine) in Figure 7.8. For

two pairs of complexes, 3/4 and 13/14 the wrong trend is observed. For all others it is

correct but the differences in binding tend to be overestimated. Compared to experiment

the MAD for ∆∆Ga is 1.2 kcal mol−1 and the MD is almost zero. This improved accuracy

compared to the results for ∆Ga indicates favorable error compensation.

7.3.4. Binding energy reference values for benchmarking purposes

In order to provide convenient gas phase binding energies for benchmarking, we back-

correct the experimental binding free energies ∆Gexp
a to obtain empirical (”experimental”)

binding energies ∆Eemp as reference values in analogy to the original work for S12L. [46,192]

Therefore, we subtract the best thermostatistical corrections calculated with HF-3c and
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linear regression for S30L with slope 1.02.

the solvation contributions obtained with COSMO-RS(12) for non-polar solvents and

COSMO-RS(13-fine) for water from the experimental ∆Gexp
a :

∆Eemp = ∆Gexp
a −∆GT

RRHO(HF-3c)−∆δGT
solv(X)(COSMO-RS(12/13-fine)) (7.4)

These values are collected in Table 7.2. Since the ∆δGsolv values vary for different

COSMO-RS parametrizations and we think that the solvation contribution is the least

accurate theoretical component, we decided to define our error in ∆Eemp as 10% of the

chosen ∆δGsolv COSMO-RS results. For comparison the calculated ∆E values on the

presumably most accurate DFT level (PW6B95-D3/def2-QZVP’) are provided. Further,

a comparison of the two best functionals PW6B95-D3 and ωB97X-D3 with the refer-

ence values ∆Eemp is shown in Figure 7.9. Except for the aforementioned outlier 22 the

PW6B95-D3 energies agree well with the back corrected ∆Eemp. As noted above, for

S30L both data sets have an MAD of 2.4 and 2.8 kcal mol−1, respectively, and for the

S30L-CI 2.6 and 2.1 kcal mol−1, respectively. These values should be kept in mind when

other theoretical methods are benchmarked against ∆Eemp. At present it seems difficult

to guess if the residual errors in the DFT-D3 treatment or the inherent errors in the exper-

imental data and the back-correction scheme are larger. As will be shown below, however,

the agreement achieved is sufficient to benchmark lower-level quantum chemical methods
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Table 7.2.: Empirical binding energies ∆Eemp for the S30L and S30L-CI sets obtained
via back correcting the experimental ∆Gexp

a values and our best calculated
binding energies ∆Ecalc on the PW6B95-D3/def2-QZVP’ level for comparison.
Complexes of the S30L-CI including counterions are indicated with a ”CI”. All
values are given in kcal mol−1.

∆Eemp ∆Ecalc ∆Eemp ∆Ecalc ∆Eemp ∆Ecalc

1 -29.0 ± 0.9 -30.2 14 -31.3 ± 0.7 -28.28 27 -82.2 ± 6.0 -82.1
2 -20.8 ± 0.4 -20.4 15 -17.4 ± -0.1 -17.84 28 -80.1 ± 6.0 -78.8
3 -23.5 ± 0.5 -24.2 16 -25.1 ± 0.1 -24.02 29 -53.5 ± 2.6 -54.3
4 -20.3 ± 0.3 -20.3 17 -33.4 ± 0.8 -31.87 30 -49.3 ± 2.1 -49.9
5 -29.0 ± 0.6 -32.9 18 -23.3 ± 0.4 -20.38 23(CI) -67.3 ± 3.2 -63.2
6 -25.5 ± 0.5 -29.5 19 -17.5 ± -0.1 -15.01 24(CI) -75.4 ± 2.9 -68.4
7 -35.1 ± 0.8 -32.9 20 -19.2 ± -0.2 -17.85 25(CI) -29.1 ± 0.7 -33.5
8 -36.8 ± 1.1 -37.5 21 -24.2 ± -0.6 -25.56 26(CI) -29.4 ± 0.7 -33.7
9 -28.4 ± 0.6 -31.7 22 -42.6 ± 1.1 -33.79 27(CI) -36.3 ± 1.4 -32.1
10 -29.8 ± 0.7 -32.4 23 -61.3 ± 2.6 -58.9 28(CI) -32.0 ± 1.1 -26.9
11 -33.0 ± 1.2 -38.3 24 -135.5 ± 8.9 -133.4 29(CI) -47.5 ± 2.0 -46.7
12 -33.9 ± 1.2 -37.8 25 -26.0 ± 0.4 -30.5 30(CI) -52.1 ± 2.4 -46.7
13 -30.8 ± 0.6 -25.9 26 -25.8 ± 0.4 -30.4

which are mostly less accurate than the mentioned 3 kcal mol−1 uncertainty. This holds

even more for common force-field approaches, which are expected to have problems to

reach average errors below 10 kcal mol−1 for S30L according to some preliminary test

calculations.

For some complexes already contained in the old S12L set diffusion quantum Monte

Carlo (DQMC) calculations were performed, [299] and for all of them symmetry adapted

perturbation theory (DFT-SAPT) computations exist. [368] The binding energies obtained

with these methods are in good agreement with our new ∆Eemp. A table with a direct

comparison is provided in the SI (table S6). The maximal deviation between ∆Eemp

and the DQMC and DFT-SAPT results amounts to 2.5 kcal mol−1 which is more than

reasonable. This gives us confidence in the back correcting scheme and the choice of

∆δGsolv contributions.

Error distributions for the relative deviation from ∆Eemp are depicted in Figure 7.10 for

the S30L and all tested functionals. The statistical data (MD, MAD, mean absolute rela-

tive deviation (MARD),mean relative deviation (MRD), and standard relative deviation

(SRD)) are given in Table 7.3. Note that all methods including the semiempirical ones

are benchmarked as usual by single-point energy computations. The widths (SRD) of the

error distributions for PW6B95-D3/QZ, ωB97X-D3/QZ, and PBE-D3/QZ are small with

about 10%. B3LYP-D3/QZ, BLYP-D3/QZ, and TPSS-D3/QZ have a broader distribution

with widths of about 14-16%. PW6B95-D3/QZ and ωB97X-D3/QZ show no systematic
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Figure 7.9.: Empirical binding energies ∆Eemp in comparison to binding energies for the
best functionals PW6B95-D3 and ωB97X-D3 together with a QZ basis set.

error, whereas PBE-D3/QZ tends to underbind by about 7% on average. TPSS-D3/QZ,

B3LYP-D3/QZ as well as BLYP-D3/QZ exhibit a systematic overbinding by about 5, 10

and 14%, respectively. TPSS-D3-/TZ performs similar to TPSS-D3/QZ with a bit worse

MD and MRD and slightly better MAD, MARD and SRD.

Because the Minnesota functionals [100] include medium-range dispersion effects and are

widely used for noncovalently bound systems, we tested the prototypical M06-2X func-

tional also at the TZ basis set level so that the results are directly comparable to TPSS-

D3/TZ. M06-2X/TZ yields a smaller standard deviation than TPSS-D3/TZ of about 8%

and tends to underbind by about 5% similar to TPSS-D3/TZ. Adding the D3(0)+ATM

corrections yields overbinding by about 14 % on average indicating the appearance of the

residual BSSE.

Table 7.3.: MAD and MD in kcal mol−1, MARD, MRD and SRD in % for S30L for
various functionals compared to ∆Eemp. A negative MD means overbinding
and a positive MD underbinding.

MAD MD MARD MRD SRD

PW6B95-D3/QZ 2.4 -0.1 7.9 0.9 10.1
ωB97X-D3/QZ 2.6 -0.9 8.0 1.8 10.5
B3LYP-D3/QZ 4.1 -2.7 13.2 9.6 13.8
BLYP-D3/QZ 4.8 -4.1 16.0 13.8 16.0
PBE-D3/QZ 2.8 1.8 8.4 -5.5 9.7
TPSS-D3/QZ 3.6 -0.5 11.8 3.1 14.7
TPSS-D3/TZ 3.5 -1.6 11.1 5.8 13.2
M06-2X/TZ 2.5 1.4 8.1 -5.2 8.4
M06-2X-D3/TZ 4.8 -4.4 15.0 13.5 10.0
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Figure 7.10.: Visualization of the statistical distribution of the relative errors in ∆E with
respect to ∆Eemp for several functionals for S30L. The half widths of the
Gaussians represent the SD and their shift from the origin corresponds to
the MD.

7.3.5. Performance of semiempirical methods

The empirical binding energies ∆Eemp were used to benchmark the performance of various

semiempirical (minimal basis set) methods which are typically about two to three orders of

magnitude faster than DFT/”large basis” calculations. Thus, these methods can be used

for e.g. pre-screening of different possible conformers or binding modes in supramolecular

complexes if they yield sufficiently accurate binding energies.

We tested HF-3c, DFTB-D3, PM6-D3, PM6-D3 in combination with hydrogen bonding

corrections of second generation H2 [262] (PM6-D3H2), third generation H+ [398] (PM6-

D3H+), and fourth generation H4 [399] (PM6-D3H4), as well as PM7 [125] and OM2-D3 [126].

For the semiempirical methods the abbreviation D3 does not include the three-body

dispersion. If the ATM term is included it is stated explicitly. In the case of PM6,

the zero damping for the D3 correction was used throughout, as the hydrogen bonding

corrections were parametrized in this way. Of all the methods tested, HF-3c is the most

expensive one because all integrals are computed (about 50 times slower than the ”truly”

semiempirical PMx or OMx methods). Nevertheless, HF-3c calculations can be carried

out routinely on a standard workstation for hundreds to about one thousand atoms.

The MADs (and MDs) with respect to ∆Eemp are given in Figure 7.11 for the S30L

and S30L-CI sets and with and without inclusion of the three-body dispersion. OM2 has

no parameters for sodium, sulfur, chlorine, and iodine and hence, no results could be
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Figure 7.11.: MADs (and MDs) for calculated ∆E of S30L and S30L-CI for several
semiempirical methods w.r.t. ∆Eemp in kcal mol−1. The values are given
with and without inclusion of the three-body dispersion term ∆E

(3)
disp. For

OM2-D3 six complexes of the S30L had to be disregarded due to missing
parameters.

obtained for the complexes 4, 11, 12, 14, 15, 16 and all complexes including counterions

(23-CI to 30-CI). Thus, for S30L-CI half of the complexes could not be treated and we

disregarded the statistical analysis for S30L-CI with OM2-D3.

With the sole exception of PM7 (which shows a huge MAD of about 15 kcal mol−1), all

tested semiempirical methods can be recommended and in particular for neutral systems.

Methods like PM6-D3H2 treat the dispersion and hydrogen bonding corrections indepen-

dently of PM6, whereas for PM7 explicit terms for dispersion and hydrogen bonding are

included in the method itself and optimized during the parameter fit. PM7 performs

well for small organic complexes like in the S22 [199] and S66 [172] test sets but still slightly

worse than e.g. PM6-DH2. [125,408,409] This result clearly shows that the PM7 parameters

obtained for small systems cannot easily be used to describe the interactions in large

supramolecular complexes.

For the S30L set, OM2-D3 and PM6-D3H2 yields the lowest MADs of 5.3 and 5.7 kcal

mol−1, respectively. PM6-D3H+, PM6-D3, HF-3c and DFTB-D3 show similar results

ranging from 6.4 to 6.9 kcal mol−1. PM6-D3H4 performs worse than PM6-D3 in combi-

nation with the other two hydrogen bond corrections tested, and yields a larger MAD of

8.4 kcal mol−1.

As discussed for the DFT methods above, one can see a general improvement of the

interaction energies when chloride counterions are used, except for HF-3c for which the

MAD and MD almost stay the same. Furthermore, all methods benefit from the inclusion

of the three-body dispersion. For DFTB-D3 and all PM6 based methods the results

obtained with counterions and inclusion of the three-body dispersion contribution yield

the smallest MADs compared to ∆Eemp. The MADs for these six methods range from

3.9 kcal mol−1 (PM6-D3) to 5.0 kcal mol−1 (PM6-D3H4). PM6-D3H2 and PM6-D3H+
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Figure 7.12.: The averaged RMSD (RMSD) in Å for the heavy atoms and the MRD
(and MARD) of the rotational constants in % w.r.t. TPSS-D3/def2-TZVP
geometries for S30L and S30L-CI. For the rotational constants a negative
MRD corresponds to a structure with a too small spatial extent.

perform similar to plain PM6-D3, and PM6-D3H4 performs worse. HF-3c has a larger

MAD of 6.2 kcal mol−1, which is mainly caused by the larger error for the halogen bonded

systems 15 and 16 and the anionic ones 29/29-CI and 30/30-CI. For all methods the

MDs are small and negative and lie between -1.1 (PM6-D3H2) and -4.0 kcal mol−1 (PM6-

D3H4), showing a slight to small systematic overestimation of the binding energies.

The improvement gained with the various hydrogen bonding corrections compared to

plain PM6-D3 for the whole set of complexes is small and in most cases negligible. PM6-

D3H4 seems to perform generally a bit worse than plain PM6-D3. For the complexes whose

interactions are dominated by hydrogen bonding (17 to 23) association energies obtained

with PM6-D3 and PM6-D3 in combination with any hydrogen bonding correction differ

by 3 kcal mol−1 at most. We could not identify a version that clearly outperforms the

others or is better than PM6-D3 for all of these seven complexes. This was observed be-

fore for smaller model complexes as contained in e.g. the S66 [172] or JSCH [199] test sets. [410]

7.3.6. Semiempirical methods for structure optimization

Finally, we compare the geometries of the complexes obtained with HF-3c, DFTB-D3,

PM6-D3, PM6-D3H4 and PM7 with the ones obtained from TPSS-D3/def2-TZVP op-

timizations taken as reference. We left out OM2 because of convergence problems and

PM6-D3H2 due to known small errors in the H2 gradient. [262] DFTB-D3 can not be ap-

plied to S30L-CI set due to the missing COSMO implementation in the DFTB+ code. As

quality measure the average root mean square deviation (RMSD) of the heavy atom coor-

dinates and the mean relative deviation (MRD) and the mean absolute relative deviation

(MARD) of the rotational constants were calculated (see Figure 7.12). For the rotational

167



7. Comprehensive benchmark of association (free) energies of realistic host–guest

complexes

constants, we define the error as Bsemiemp.−BTPSS−D3/def2−TZV P so that a negative MRD

denotes a structure with too small spatial extent. One has to keep in mind that TPSS-D3

structures have small errors themselves, but better hybrid DFT (or MP2 for saturated

complexes) cannot be obtained routinely for such large systems which require typically

hundreds of structure optimization steps. In general, for small noncovalent complexes

DFT-D3 yields reasonable geometries. [411] For small covalently bound organic molecules

TPSS-D3 yields geometries with slightly too large spatial extent [152].

All tested semiempirical methods except PM7 yield very similar RMSDs for the com-

plexes with counterions included than for those without. For PM7 the RMSD increases by

about 0.06 Å. HF-3c yields by far the smallest RMSD of 0.171 Å for S30L, which is about

half the magnitude of the values observed for all other tested semiempirical methods.

These give values in the range of 0.336 Å (DFTB-D3) up to 0.454 Å (PM6-D3H4). The

good agreement of HF-3c and DFT-D3/TZ structures has been observed before. [200,205]

Note, that PM7 yielded the worst association energies but the geometries are as good as

DFTB-D3 and (hydrogen bonding corrected) PM6-D3 results.

Regarding the rotational constants, HF-3c yields the best results with the smallest

MRD of -0.9 % and the smallest MARD of 1.4 %. DFTB-D3 and PM6-D3H4 perform a

bit worse for the MRD (-1.6 to -1.7 %) and PM6-D3 and PM7 yield much larger MRDs

above 3 %. The MARDs are at least twice as large as for HF-3c and range from 2.8 %

for DFTB-D3 to 5.6 % for PM7. For HF-3c and PM6-D3 the mean relative deviation of

the rotational constants does not change much when counterions are included. In case

of PM6-D3H4 a deterioration of 0.5 % and in case of PM7 an improvement of 0.9 % is

observed. Overall, we find that HF-3c yields the most accurate geometries of all tested

semiempirical methods, which agrees well with our previous finding that HF-3c yields the

best thermostatistical corrections.

7.4. Conclusion

The S12L test set for supramolecular association free energies ∆Ga was extended to 30

complexes (S30L). It features complexes with higher charges (up to +4) and anions (-

1), slightly less rigid hosts, more diverse types of noncovalent interactions, and larger

system sizes (up to 200 atoms). The ∆Ga values were obtained in a non-empirical,

static single structure approach by adding the computed gas phase binding energy, the

thermostatistical corrections from energy to free energy and the solvation free energy.

Various dispersion corrected density functionals (PW6B95-D3, B3LYP-D3, TPSS-D3,

PBE-D3, ωB97X-D3) in combination with a quadruple-ζ basis set were tested for cal-

culating the association energies in the gas phase including our standard Axilrod-Teller-

Muto type three-body dispersion correction. Various minimal basis set, semiempirical
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methods (HF-3c, PM6-D3, DFTB-D3) were used to obtain the thermostatistical con-

tributions. Several versions of the COSMO-RS model as well as SMD were employed

to include solvation effects. In order to find the best procedure to predict theoretical

∆Ga values we investigated and statistically analyzed all possible combinations of these

methods. The best performing density functional and the best method for thermostatis-

tical corrections could be clearly identified, whereas for the solvation free energies many

COSMO-RS parametrizations perform similarly. When looking closer, we found that the

COSMO-RS(12) parameters perform best and most consistently for non-polar solvents,

whereas for water COSMO-RS(13-fine) yields better results. Thus, the proposed method

combination consists of PW6B95-D3/def2-QZVP’ energies on TPSS-D3/def2-TZVP opti-

mized geometries, HF-3c thermostatistical corrections, and COSMO-RS(12/13-fine) (for

non-polar solvents/water) solvation free energies.

Further, we investigated the effect of counterions for the charged systems (S30L-CI)

on the gas phase binding energy calculations as well as on the solvation term. The

inclusion of counterions reduced the error in most cases for the cationic systems and

is thus recommended as a default procedure. For the association energies ωB97X-D3

slightly outperforms PW6B95-D3 and thus is advised for charged systems. In case of

the solvation term the COSMO-RS(13-fine) parametrization again works best. Our best

method combinations give a mean absolute deviation of only 2.4 kcal mol−1 for S30L

(PW6B95-D3) and 2.1 kcal mol−1 for S30L-CI (ωB97X-D3) and a mean deviation of

almost zero compared to experimental ∆Gexp
a .

13 pairs of complexes (deliberatly) share the same host. For those relative association

free energies were calculated in order to evaluate if the correct trend in binding affinities is

observed. Except for two cases this always is the case. The MAD compared to experiment

amounts to 1.2 kcal mol−1 and the MD is almost zero.

The thermostatistical and solvation data above were used to back-correct the experi-

mental association free energies from solution measurements in order to get an empirical

estimate for the ”experimental” binding energies in the gas phase as done previously for

the S12L set. These reference data are utilized to benchmark the performance of var-

ious semiempirical, minimal basis set methods for binding energies. HF-3c, DFTB-D3,

OM2, PM6-D3 (with and without various hydrogen bonding corrections) and PM7 were

tested. Apart from PM7 (whose errors are huge), all these methods perform rather similar

although clearly worse than dispersion corrected DFT/”large basis set”. They can be rec-

ommended in general for neutral complexes. For charged systems, the ”simple” methods

perform less well and their application in such cases requires careful testing on the specific

problem under consideration. The choice of the hydrogen bonding correction for PM6-D3

has no significant impact. Again, inclusion of counterions improves the semiempirical

results and so does the three-body dispersion term.
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Finally, we investigated the geometries of the complexes obtained with the semiempir-

ical methods. HF-3c yields the by far smallest averaged RMSD of 0.18 Å compared to

TPSS-D3/def2-TZVP reference data. All other methods perform similar and give RMSDs

in the range of 0.34 Å (DFTB-D3) up to 0.45 Å (PM6-D3H4). This picture changes only

slightly in favor of PM6-D3H4 when rotational constants are used to measure the quality

of the structures.

In summary, the future for the prediction and understanding of supramolecular interac-

tions by dispersion corrected DFT seems bright. If the structures are not too flexible and

only a few conformers have to be considered, reasonably accurate absolute as well as rel-

ative binding affinities can be computed routinely. We found no indications in S30L that

slightly more flexible complexes exhibit larger errors but note, that extended π-systems

seem to be somewhat problematic in the gas phase interaction part. The small residual

deviations of 2-3 (typically 5-10% of ∆E) are impressive for large complexes with 200

atoms from a theoretical point of view. However, achieving ”chemical accuracy” on an

1 kcal mol−1 level for ∆Ga seems to be extremely difficult and likely requires improvement

of gas phase interaction energies, inclusion of anharmonic and dynamic effects as well as

a much more accurate solvation treatment.
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In Part II and III of this thesis the performance of electronic structure methods for

noncovalent interactions and the achievements of a multilevel methodology for describing

the thermochemistry of host-guest complexes have been presented. Part IV focuses on the

application of quantum chemical methods to two specific problems in order to demonstrate

the possible synergy between theory and experiment.

The first project is a collaboration with Prof. Gansäuer and his group who work on

titanocene(III) catalyzed atom-economical reactions. One example of the investigated re-

actions is the intramolecular arylation of epoxides. [59] In this reaction, the titanocene(III)

catalyst opens the epoxide, an intramolecular radical addition to the arene takes place,

the electron is transferred back to the Ti(IV), and a proton transfer yields the desired

product as well as the regenerated catalyst. The proposed catalytic cycle of the reac-

tion, as well as mechanistic alternatives were studied computationally. [412] In agreement

with synthetic and kinetic studies, the calculations confirmed the electron transfer as the

turnover limiting step and several possible side reactions could be ruled out. During the

experimental work on this and other reactions, it is found that the most efficient electron-

deficient catalysts are thermally unstable. This can be circumvented by the addition

of chloride sources. Thus, Chapter 8 focuses on the computational investigation of the

supramolecular interaction of the titanocene with the hydrochloride additives, and the

stability of the formed adducts.

The second project is a collaboration with Prof. Lützen and his group who work on the

synthesis of functional supramolecular systems. Self-assembly processes are used to design

metallo supramolecular coordination compounds. For example these are enantiomerically

pure double- and triple-stranded helicates which can be obtained by combining chiral

1,1’-binaphthol based ligands and transition metal ions. [60–63] Similarly, paracyclophane

based ligands can be used to create helicates. [65] The determination of the absolute con-

figuration of 4,15-difunctionalized [2.2]paracyclophanes is the topic of Chapter 9. If a

crystal structure cannot be obtained, one way to identify an enantiomer is by measuring

an electronic circular dichrosim (ECD) spectrum and comparing it to a calculated one.

As the standard time dependent (TD) DFT approach is computationally demanding, a

recently published simplified TD-DFT (sTD-DFT) version is used. [413,414] ECD spectra

are calculated for different difunctionalized paracyclophanes employing the hybrid func-

tional BHLYP [97] and the range-separated functional CAM-B3LYP. [107]

As mentioned above, the functionalized paracyclophanes can be used to synthesize lig-

ands which form double- and triple-stranded helicates with transition metal ions. One

example, a triple-stranded helicate with two zink ions is shown in Figure 7.13. In gen-

eral, three diastereomers are possible: (∆,∆)-, (∆,Λ)-, or (Λ,Λ)-[Zn2L3]4+. In ongoing

work, the experimental spectrum is compared to the calculated ones of all three diastere-

omers to identify the diastereomer that was obtained in the self-assembly process. The
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Figure 7.13.: Geometries (PBE-D3/def2-TZVP, cosmo=35.7) of three possible [Zn2L3]4+

helicates and their corresponding calculated circular dichroism spectra (sTD-
DFT CAM-B3LYP/def2-TZVP, cosmo=35.7) compared to experiment. Rel-
ative association free energies ∆∆Ga are given in kcal mol−1 on the PW6B95-
D3/def2-QZVP’ level of theory with PBE/def2-SVP thermal corrections and
COSMO-RS 2012 solvation effects.

(Λ,Λ)-diastereomer can be ruled out but the general features of the calculated spectra

for the (∆,∆)- and (∆,Λ)-diastereomers are similar and the agreement with the exper-

imental spectrum is equally good. Therefore, the relative association free energies are

calculated on the PW6B95-D3/QZ level of theory with PBE/def2-SVP thermostatistical

corrections and COSMO-RS 2012 solvation effects in order to identify the most stable he-

licate. (∆,∆)-[Zn2L3]4+ is the most stable diastereomer and thus, most likely the helicate

obtained in the self-assembly process.
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8. Substituent Effects and Supramolecular Interactions of Titanocene(III) Chloride:

Implications for Catalysis in Single Electron Steps

Abstract

The electrochemical properties of titanocene(III) complexes and their stability in THF

in the presence and absence of chloride additives were studied by cyclic voltammetry

(CV) and computational methods. The anodic peak potentials of the titanocenes can

be decreased by as much as 0.47 V through the addition of an electron-withdrawing

substituent (CO2Me or CN) to the cyclopentadienyl ring when compared with Cp2TiCl.

For the first time, it is demonstrated that under the conditions of catalytic applications

low-valent titanocenes can decompose by loss of the substituted ligand. The recently

discovered effect of stabilizing titanocene(III) catalysts by chloride additives was analyzed

by CV, kinetic, and computational studies. An unprecedented supramolecular interaction

between [(C5H4R)2TiCl2] and hydrochloride cations through reversible hydrogen bonding

is proposed as a mechanism for the action of the additives. This study provides the

critical information required for the rational design of titanocene-catalyzed reactions in

single electron steps.

8.1. Introduction

The design of novel and efficient catalytic transformations is at the heart of chem-

istry. [415–417] Radical-based transformations offer attractive features such as ease of gen-

eration, high functional group tolerance, and ability to add to unsaturated functional

groups. [418–420] In view of these advantages, it is surprising that their potential as key in-

termediates in catalytic atom-economical C–C bond formation is largely untapped. [421–423]

Among the rare examples of such reactions are atom-transfer radical addition reactions,

especially those catalyzed by Ru complexes, [424–426] the highly important Cu-catalyzed

atom-transfer radical polymerizations, [427–429] and H2-mediated Cr- or Co-catalyzed reduc-

tive cyclization of dienes. [430–432] We have introduced reagent-controlled examples [433–435]

of atom-economical catalytic radical reactions with our titanocene-catalyzed tetrahydro-

furan synthesis [55–58] and radical arylations of epoxides. [59] In all of the aforementioned

processes, radical generation and trapping can be regarded as oxidative additions and re-

ductive eliminations in single electron steps. [436] Thus, catalysis of atom-economical rad-

ical chemistry should be considered as catalysis in single electron steps and is therefore

part of the framework of classical organometallic catalysis. [437,438] In line with this notion,

the titanocene-catalyzed tetrahydrofuran synthesis and radical arylation are critically in-

fluenced by the electronic properties of the ligands. Moreover, in reactions with the most

efficient electron-deficient catalysts, thermal stability of the catalyst was a serious issue.

Addition of chloride sources resolved this issue and allowed a significant reduction of cat-

alyst loading. Thus, the success of these transformations is due to an intricate interplay
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of thermodynamic properties of the titanocene(III) reagents and their kinetic stability

under highly specific reaction conditions. As a consequence, it is essential to unravel the

interplay between catalyst stability and reactivity in order to provide a toolbox for the

design of efficient reactions. Here we describe our efforts to achieve this goal with the

aid of cyclic voltammetry (CV), kinetic, and computational studies. CV is ideally suited

for the identification of the components of mixtures of redox-active compounds and the

study of their properties and the kinetics of their reactions. [439–441] CV has been applied

to resolve the composition and reactivity of parent Cp2TiCl-derived reagents in a number

of solvents and transformations. [442–446] Computational studies provide the relative sta-

bilities of the complexes between Ti(III) catalysts and amine hydrochlorides, and kinetic

studies show the impact of additives on catalyst reactivity.

8.2. Results and discussion

The CV investigations were divided into three parts. First, the electrochemical reduction

of the titanocenes was studied. In this manner, the properties of [(C5H4R)2TiCl2]– could

be studied, providing benchmarks for examining the impact of chloride additives. Sec-

ond, the influence of ligand substitution on solutions of Zn-reduced (C5H4R)2TiCl2 was

investigated. These solutions contain (C5H4R)2TiCl, the active species in titanocene(III)-

catalyzed reactions, and its dimer. Finally, since chloride sources are often employed in

catalytic applications of Ti(III) reductants, the effect of chloride additives to solutions of

Zn–(C5H4R)2TiCl2 was probed. In addition to the CV experiments, kinetic and compu-

tational studies aimed at understanding the nature of the interactions of these additives

and catalysts were examined.

8.2.1. Substituent effects for electrochemically reduced

titanocene(IV) dichlorides in THF

In general, the electrochemical reduction of Cp2TiCl2 (Figure 8.1, R = R’ = H) can be

described according to an EqCr reaction scheme as originally proposed by Laviron and

co-workers. [447,448] The quasi-reversible electrochemical reduction of Cp2TiCl2 (Eq) is fol-

lowed by a chemically reversible cleavage of chloride from [Cp2TiCl2]– (Cr).
[443,449] Figure

8.1 also includes a chemically irreversible step (Ci), namely, loss of a cyclopentadienyl

anion ligand rather than chloride upon electrochemical reduction, which has never been

observed until this point. Previously, it was shown that the most characteristic feature of

the cyclic voltammogram of Cp2TiCl2 at a low sweep rate (ν < 1 V s−1), is the presence

of the Cp2TiCl2/Cp2TiCl2
– wave in tetrahydrofuran (THF) (vide infra). [443] This is due

to the fact that the second-order back association reaction between Cp2TiCl and Cl– in
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Figure 8.1.: EqCr and EqCi schemes for the electrochemical reduction of titanocene dichlo-
rides.

Figure 8.2.: Cyclic voltammograms of 2 mM Cp2TiCl2 (4) (—), (C5H4Cl)CpTiCl2 (5)
(—), and (C5H4Cl)2TiCl2 (7) (—) recorded at a glassy carbon disk electrode
using ν = 0.1 V s−1 in 0.2 M Bu4NPF6/THF.

the Cr step is fast, thus leaving [Cp2TiCl2]– as the only species detectable on the reverse

sweep. In principle, at sufficiently high sweep rates a situation can be reached where

the back association reaction is outrun before regeneration of [Cp2TiCl2]–. Indeed, cyclic

voltammograms recorded at ν = 20 V s−1 show a small additional oxidation wave per-

taining to the oxidation of Cp2TiCl. [443] Ring-substituted titanocenes have only recently

been employed in catalytic electron transfer applications. [59,436] It was assumed that ring

substitution would strongly influence the redox behavior of the complexes. Until now

only a few such examples have been investigated. [450,451] Therefore, in this study we de-

cided to investigate various mono- and disubstituted titanocene complexes of the type

(C5H4R)(C5H4R
′)Ti(IV)Cl2 with R = tBu, H, Cl, COOMe, or CN and R’ = tBu, H, Cl,

or COOMe (see Figure 8.1).

Figure 8.2 shows cyclic voltammograms of Cp2TiCl2, (C5H4Cl)CpTiCl2, and (C5H4Cl)2-
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TiCl2 recorded at ν = 0.1 V s−1 in 0.2 M Bu4NPF6/THF. As can be seen, the overall elec-

trochemical behavior of the two substituted complexes follows that of Cp2TiCl2 in which

the characteristic redox wave of (C5H4R)(C5H4R
′)TiCl2/[(C5H4R)(C5H4R

′)TiCl2]– is the

only one observable at low ν. However, the position of the wave is shifted in a positive di-

rection when chlorine is introduced as a substituent. Hence, CV constitutes a good method

of choice for studying the properties of the anionic complexes [(C5H4R)(C5H4R
′)TiCl2]–.

Table 8.1 summarizes the effect of ligand substitution on the redox properties of the

titanocene complexes. The potential of the reduction peak (Ep,c) varies from –1.44 V vs

ferrocenium/ ferrocene (Fc+/Fc) for the reduction of Kagan’s complex (1) to –1.06 V vs

Fc+/Fc for the reduction of (C5H4CN)CpTiCl2 in THF (recorded at ν = 0.1 V s−1); the

pertinent anodic potentials (Ep,a1) were found to be 100–160 mV less negative. The stan-

dard potentials of the (C5H4R)(C5H4R
′)TiCl2/[(C5H4R)(C5H4R

′)TiCl2]– systems (E◦1)

were determined by digital simulations and are included in the last column of Table

8.1. [452–454]

The order of the potentials is substituent-dependent, displaying a reasonable correlation

with the Hammett substituent coefficient σp (σp = –0.20, 0, 0.22, 0.45, and 0.66 for the

tBu, H, Cl, COOMe, and CN substituents, respectively). [465] In addition, the substituent

effect on the potential shift is seen to be almost additive for Cl (compounds 5 and 7)

with, on average, 75 mV per substituent and also for COOMe (compounds 6 and 8) with,

on average, 130 mV per substituent, as deduced from the E◦1 values. In contrast, the tBu

substituent (complexes 2 and 3) exerts much less than the expected effect (≤ 20 mV)

on the measured potentials. For Kagan’s complex 1 (Figure 8.3), [455–457] a precatalyst in

highly enantioselective electron transfer reactions, [466–471] the effect on E◦1 is larger. This

is due to destabilizing steric interactions between the two Ti-bound chlorides and the

conformationally locked [456] and sterically congested cyclopentadienyl ligands.

In this respect, it is also interesting to note that for complexes 1–5 and 7 we found that

|ip,a1/ip,c| > 0.8 at ν = 0.1 V s−1, where ip,a1 is the anodic peak current of the first anodic

wave and ip,c is the cathodic peak current. Such high values of |ip,a1/ip,c| show that the

chemical reactions present are quasi-reversible. As mentioned previously, by increasing ν

TiCl2
2

1

Figure 8.3.: Structure of Kagan’s complex (1).
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Table 8.1.: CV Data for the reduction of titanocene dichlorides 1–9 in THF in terms of
peak potentials for the cathodic wave (Ep,c) and the two anodic waves (Ep,a1

and Ep,a2) along with the determined standard potential (E◦1)a

compound Ep,c
b Ep,a1

b Ep,a2
b E◦1

c

Kagan’s complex (1) [455–457] -1.44 -1.32 -1.37
(C5H4tBu)CpTiCl2 (2) [458] -1.39 -1.27 -1.36
(C5H4tBu)2TiCl2 (3) [459] -1.36 -1.25 -1.34
Cp2TiCl2 (4) -1.36 -1.24 -1.27
(C5H4Cl)CpTiCl2 (5) [460] -1.26 -1.15 -1.20
(C5H4COOMe)CpTiCl2 (6) [461] -1.20 -1.09 -0.85 -1.15
(C5H4Cl)2TiCl2 (7) [460,462] -1.18 -1.08 -1.12
(C5H4COOMe)2TiCl2 (8) [463] -1.08 -0.92 -0.74 -1.01
(C5H4CN)CpTiCl2 (9) [436] -1.06 -0.85 -1.00

a All potentials are given in units of V vs Fc+/Fc and can be converted to V vs SCE by
adding 0.52 V. [443,464]

b Recorded at a glassy carbon disk electrode with ν = 0.1 V s−1 in 0.2 M Bu4NPF6/THF.
b Determined by digital simulation (see Appendix E).

substantially it is possible to reach a situation where the back association reaction in the

Cr step is outrun and can be disregarded. Experimentally, this is seen as a decrease in

|ip,a1/ip,c| and the appearance of a new peak at less negative potentials pertaining to the

oxidation of (C5H4R)(C5H4R
′)TiCl. In a specific study of Cp2TiCl itself, its oxidation

wave recorded at ν = 0.1 V s−1 appeared at about –0.8 V vs Fc+/Fc. [443]

In contrast to the findings described above, the reduction of 6, 8, and textbf9 follows a

different course as evidenced by CV. Figure 8.4(a) shows cyclic voltammograms recorded

for (C5H4COOMe)CpTiCl2 (6) at three different sweep rates. Besides an oxidation wave

appearing at Ep,a1 = −1.09 V vs Fc+/Fc, a second wave at Ep,a2 = −0.85 V is seen.

Unambiguously, this shows that the generated anionic Ti(III)–species 6 is unstable and

undergoes a chemical follow-up reaction.

Two observations preclude that the mechanism can be the ”expected” EqCr mechanism.

First, the addition of a chloride source (Bu4N+Cl–) did not affect the voltammograms (see

the Supporting Information), even though the Cr follow-up reaction should be greatly

suppressed by the presence of Cl–. [443] Second, the first anodic wave grows at the expense

of the second wave (after background subtraction) as ν is enhanced from 0.05 to 0.5 V s−1.

This behavior is the opposite of what would be expected if the rate-controlling step had

been the back association in a Cr step. Rather, this behavior would be in much better

agreement with the existence of another rate-controlling chemical follow-up step in which

the cyclopentadienyl anion, [C5H4R]– , rather than chloride is lost irreversibly, [472] as
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(a) (b)

Figure 8.4.: (a) Cyclic voltammograms of 2 mM (C5H4COOMe)CpTiCl (6) recorded at a
glassy carbon disk electrode using ν = 0.05 (—), 0.1 (—), and 0.5 V s−1 (—)
in 0.2 M Bu4NPF6/THF.
(b) Cyclic voltammograms of 2 mM (C5H4CN)CpTiCl2 (9) (—),
(C5H4COOMe)CpTiCl2 (6) (—), and (C5H4COOMe)2TiCl2 (8) (—) recorded
at a glassy carbon disk electrode using ν = 0.1 V s−1 in 0.2 M Bu4NPF6/THF.

included in figure 8.1.

Figure 8.4 (b) further compares the CV behavior of 6, 8, and 9 for ν fixed at 0.1 V s−1.

Since the reductions of both 6 and 9 would be expected to proceed exclusively through

loss of the cyclopentadienyl ligand possessing the electron-withdrawing group to achieve

the highest possible stabilization of the released anion, this would in both cases result in

the formation of CpTiCl2 as the other product. This was indeed the case, as the peak

potential of the second oxidation wave was the same for both complexes (Ep,a2 = −0.85 V

vs Fc+/Fc) and identical to that measured for the oxidation peak of CpTiCl2 generated

by electrochemical reduction of CpTiCl3 (see the Supporting Information).

Loss of [C5H4CO2Me]– was also observed after reduction of 8. In this case, the second

anodic wave has a lower potential (Ep,a2 = 0.74 V vs Fc+/Fc) than for 6 because of the

formation of (C5H4CO2Me)TiCl2, in agreement with the EqCi mechanism in Figure 8.1. A

third anodic wave (–0.52 V vs Fc+/Fc) was also observed. It seems reasonable to assume

that this is due to the formation of TiCl3 through ligand loss from (C5H4CO2Me)TiCl2,

even though this was not further investigated.

Hence, for 6, 8, and 9 we propose the EqCi mechanism in Figure 8.1, where the quasi-

reversible electrode process is followed by an irreversible loss of the cyclopentadienyl anion.

The time frame for the follow-up reactions in the case of 6 and 8 can be easily monitored

in CV by varying the sweep rate as illustrated in Figure 8.4 (a). From such studies of the

voltammetric response recorded as a function of sweep rate, the dissociation rate constant
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Figure 8.5.: Model systems for the thermodynamic features of cyclopentadienyl ligand loss
(R = H, CN) at 298.15 K (All Energies in kcal mol−1.)

(kdis) may be extracted using digital simulations (see the Supporting Information). [452–454]

Using this approach provided kdis values of 0.11 and 10 s−1 for the anions of 6 and 9,

respectively. Thus, the more electron-deficient cyano-substituted cyclopentadienyl lig-

and [473] dissociates faster than the corresponding ester-substituted one as a consequence

of the enhanced ability of the cyano group to stabilize the negative charge in the cleaved

[C5H4R]– anion.

The thermodynamic features of the loss of the cyclopentadienyl ligands were studied

computationally [261] for the model systems with Bu4N+ replaced by Me4N+ shown in Fig-

ure 8.5 in the gas phase (TPSS-D3/def2-TZVP) [36,37,93,133,134,237] and in solution with the

COSMO continuum solvation model for real solvents (RS) (TPSS-D3-COSMO-RS [41,42]/

def2-TZVP//TPSS-D3/def2-TZVP). In the gas phase, both dissociation reactions are

unfavorable (R = H, ∆G = +25.0 kcal mol−1; R = CN, ∆G = +10.4 kcal mol−1). The

difference between the ∆G values is caused by the difference in ∆H and is a reflection

of the weaker binding of [C5H4CN]–. The effect of solvation was studied by employing

two modifications. First, COSMO-RS was included to simulate the effect of bulk solvent.

Second, one molecule of THF was introduced in order to understand its interactions with

NMe4
+ of the substrate and the Lewis acidic product CpTiCl2 on a molecular level. The

results clearly show that dissociation of the cyclopentadienyl ligands is more advantageous

in solution than in the gas phase. This is mainly due to a more favorable ∆H that is
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(a) (b)

Figure 8.6.: (a) Cyclic voltammograms of 2 mM Zn−Cp2TiCl2 (4) (—),
Zn−(C5H4Cl)CpTiCl2 (5) (—), and Zn−(C5H4Cl)2TiCl2 (7) (—) recorded at
a glassy carbon disk electrode using ν = 0.1 V s−1 in 0.2 M Bu4NPF6/THF.
(b) Cyclic voltammograms of 2 mM Zn−Cp2TiCl2 containing 2 eq Hex3N·HCl
(—), 2 eq (Coll · HCl (—), and 2 eq Py · HCl (—) as additive. Recordings
were performed at a glassy carbon disk electrode using ν = 0.1 V s−1 in
0.2 M Bu4NPF6/THF.

caused by coordination of THF to the Lewis acid CpTiCl2. The differences between the

∆G values (14.6 and –113.5 kcal mol−1, respectively) in the gas phase and in solution

are almost identical. This suggests that binding of [C5H5]– to Ti is more favorable than

binding of [C5H4CN]– by about 14 kcal mol−1.

8.2.2. Zn–titanocene(IV) dichlorides in THF

In stoichiometric and catalytic applications of titanocene(III) complexes, the active reagent

is practically always generated by reduction of the titanocene dichlorides with Mn or Zn

dust. [433–435] The understanding of the influence of ligand substitution on the redox prop-

erties of the titanocene species is therefore of high practical relevance and was investigated

next. Previous studies of solutions of metal–Cp2TiCl2 in THF by CV have shown that

these solutions consist of the Cp2TiCl monomer and the (Cp2TiCl)2 dimer. [442–446] The

Cp2Ti+ cation is also observed in the voltammograms but is generated only in the diffusion

layer during sweeping from the oxidized products of Cp2TiCl and (Cp2TiCl)2.

Figure 8.6 (a) shows cyclic voltammograms recorded for Zn–4, Zn–5, and Zn–7. In line

with the previous assessment, the first oxidation wave is assigned to the monomer/dimer

couple and the second one to the cation. Furthermore, it was noted that the second wave

diminishes with increasing ν, thus confirming that the cation indeed is formed in follow-up

reactions induced by the sweeping and thus is not present in any substantial amount for
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Table 8.2.: CV Data for the oxidations of Zn–1 through Zn–9 in terms of peak potentials
for the anodic Waves, Ep,a1 and Ep,a2.a

compound Eb
p,a1 Eb

p,a2

Kagan’s complex (1) -0.82 -0.47
(C5H4tBu)CpTiCl2 (2) -0.84 -0.44
(C5H4tBu)2TiCl2 (3) -0.74 -0.45
Cp2TiCl2 (4) -0.83 -0.42
(C5H4Cl)CpTiCl2 (5) -0.71 -0.32
(C5H4COOMe)CpTiCl2 (6) -0.58 -0.23
(C5H4Cl)2TiCl2 (7) -0.54 -0.2
(C5H4COOMe)2TiCl2 (8) -0.43 -0.1
(C5H4CN)CpTiCl2 (9) -0.35 -0.2

a Potentials were recorded at a glassy carbon disk electrode with ν = 0.1 V s−1 in 0.2 M
Bu4NPF6/THF; the values are given in V vs Fc+/Fc and can be converted to V vs SCE
by adding 0.52 V. [443,464]

any of the compounds 1–9.

To determine the exact monomer/dimer composition, a detailed analysis of the first

wave as a function of ν and concentration involving digital simulation would be required.

Since this is not the purpose of the present investigation, the focus is rather addressed at

describing the redox properties of the Ti(III) species by determining the peak potentials.

At the same time, it would be pertinent to elucidate whether the cyclopentadienyl ligand is

lost in the chemical reduction of 6, 8, and 9 as was seen for the electrochemical reduction.

Table 8.2 summarizes the CV data in terms of the anodic peak potentials Ep,a1 and

Ep,a2 obtained for Zn–1 through Zn–9 in THF. Notably, the potentials of Zn–1 [455–457] and

Zn–4 are very similar. The success of Zn–1 [455–457] in enantioselective and regiodivergent

epoxide opening reactions [466–471,474] is therefore due to steric and not electronic effects.

This should also be the case in the recently described enantioselective cyclizations of ketyl

radicals catalyzed by Brintzinger’s complex. [475]

The introduction of electron-withdrawing substituents has a dramatic effect on Ep,a1,

which changes from –0.84 to –0.35 V vs Fc+/Fc. For the cationic titanocenes, the effect

of ligand substitution is less dramatic, with the Ep,a2 values ranging from –0.47 to –0.20 V

vs Fc+/Fc.

A very important finding is that for the Zn-reduced solutions the loss of electron-

deficient cyclopentadienyl ligands, which is a major decomposition pathway for the elec-

trochemically reduced complexes, was never observed. This is likely due to the efficient

abstraction of chloride from [(C5H4R)CpTiCl2]– by Zn2
+ ions in THF. The same is true

for Mn2
+ ions.
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8.2.3. Zn–titanocene(IV) dichlorides in THF in the presence of

chloride additives

The increased use of Cp2TiCl as a reagent is a consequence of the development of con-

ditions catalytic in the reagent. In most of these reactions, turnover is mediated by

protonation or silylation of Ti–O bonds through the addition of stoichiometric amounts

of either Coll · HCl or Coll ·Me3SiCl (Coll = 2,4,6-trimethylpyridine). [433–435] In order to

understand the impact of added chloride ions on the coordination sphere and the redox

properties of titanocene(III) chlorides, we studied the CV behavior of Zn–Cp2TiCl2 in

the presence of various chloride donors, namely, Bu4N+Cl–, Hex3N · HCl, LiCl, Py · HCl

(Py = pyridine), and Coll · HCl.

Figure 8.6 (b) shows the cyclic voltammograms recorded for the selected chloride donors

at a glassy carbon disk electrode with ν = 0.1 V s−1 in 0.2 M Bu4NPF6/THF. A common

effect of all of these additives is that they make the oxidation wave of [Cp2TiCl2]– appear at

low sweep rates. In fact, in the presence of Bu4N+Cl–, LiCl, and to a large extent also Py ·
HCl, the voltammograms recorded are by and large identical to those of electrochemically

reduced Cp2TiCl2 in 0.2 M Bu4N+PF6
–/THF, as essentially no other wave but that for

[Cp2TiCl2]– is detectable. This implies that the association of chloride to either Cp2TiCl

or (Cp2 TiCl)2 cannot be outrun in the presence of these additives, at least for the sweep

rates employed (Figure 8.1).

The same is true to some extent for Hex3N · HCl, although the Cp2TiCl/(Cp2TiCl)2

oxidation wave becomes dominant in the high sweep rate range. In general, Coll · HCl

leads to the formation of a distinctly lower amount of [Cp2TiCl2]– in the CV compared

with Py · HCl, and interestingly, the peak current ratio of the two oxidation waves was

found to be constant over the range of sweep rates from 0.05 to 20 V s−1 .

This tuning of the kinetics of the formation of [Cp2TiCl2]– and its concentration through

additives is to the best of our knowledge unprecedented. Since Coll ·HCl is distinctly less

soluble in THF than Hex3 N · HCl and Py · HCl, a straightforward explanation for this

behavior is the smaller concentration of Coll · HCl in THF.

However, this analysis does not take into account the stability of the hydrochloride

adducts, which should not be a function of the concentration of the hydrochloride. This

issue was further investigated by computational means after the study of the kinetic effects

of adduct formation.

In order to further understand the effect of ligand substitution on the interaction

of the titanocenes with additives experimentally, we studied the voltammetry of Zn–

(C5H4tBu)2TiCl2 and Zn–(C5H4Cl)2TiCl2 in the presence of Coll · HCl. Compared with

Cp2TiCl2, the experiments at higher sweep rates show a more rapid decline in the in-

tensity of the oxidation wave of [(C5H4tBu)2TiCl2]–, and therefore, the complexation of
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Figure 8.7.: Effect of Hex3N · HCl on the rate of the radical arylation of 10. For further
experimental details see Appendix E.

Cl– is slower for the bulky (C5H4tBu)2TiCl than for Cp2TiCl. In agreement with intu-

ition, a higher proportion of [(C5H4Cl)2TiCl2]– was observed for the more Lewis acidic

(C5H4Cl)2TiCl over all sweep rates.

The formation of [(C5H4R)2TiCl2]– reduces the concentration of Cp2TiCl, the active

species in titanocene-catalyzed reactions. Therefore, there should be an inverse kinetic

order of chloride concentration on rate caused by addition of the hydrochloride salts.

This was probed for the Cp2TiCl-catalyzed radical arylation of 10 (Figure 8.7). [59] In

these experiments Hex3N · HCl was chosen as the chloride source rather than Coll · HCl

because of the limited solubility of the latter in THF.

The observed rate constants for the catalytic reaction were measured at constant initial

substrate and catalyst concentrations and three concentrations of Hex3N·HCl by following

the decay of epoxide 10. The decays (Figure 8.7) fit well to a single exponential. The

kobs values from the decays are given in Table 8.3.

With higher amounts of Hex3N · HCl, lower values of kobs were observed. This finding

is consistent with a reduction of the Cp2TiCl concentration through the formation of

[(C5H4R)2TiCl2]– ·Hex3NH+. Moreover, the radical arylation of 10 proceeds faster in the

presence of Coll · HCl than in the presence of Hex3N · HCl. This is consistent with the

CV data showing a lower amount of adduct formation.
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Table 8.3.: Observed rate constants for the arylation of 10 at different concentrations of
Hex3N · HCl.

equiv of Hex3N · HCla kobs / min−1

2 0.57 ± 0.04
4 0.39 ± 0.01
8 0.24 ± 0.01

a With respect to catalyst concentration.

8.2.4. Computational study of the hydrochloride adducts

To evaluate our hypothesis of hydrogen bonding and to understand the nature of the

interactions of the hydrochlorides with titanocene(III) complexes on a molecular level, a

computational study was performed using the TURBOMOLE 6.4 program package. [261]

All of the DFT structures were fully optimized at the TPSS-D3/def2-TZVP level in-

cluding the COSMO [40] model. Final reaction free energies were obtained via single-point

calculations on the PW6B9535 [101]-D3/def2-QZVP [237] level in the gas phase and applying

the COSMO-RS model to include solvation.

For all of the titanocenes, the Et3NH · HCl adducts are the most stable ones (Table

8.4). The Coll · HCl adducts are enthalpically more favorable than the Py · HCl adducts

and also thermodynamically more stable except for the case of [(C5H4Cl)2TiCl2]– ·PyH+.

These results can be explained by a modulation of chloride binding through hydrogen

bonding. The stronger acid Py · HCl will interact more strongly with the basic chloride

ligands than the weaker acids Coll ·HCl and Et3NH ·HCl. This is in agreement with the

calculated bond lengths for H–Cl(1) and Ti–Cl(1) shown in Table 8.4. The shortest of

the ”short” Ti–Cl bonds is found in [Cp2TiCl2]– · Et3 NH+ (2.50 Å) and the longest in

[Cp2TiCl2]– ·PyH+ (2.53 Å). The notion that chloride binding makes the most important

contribution to ∆H is also supported by the observation that the most Lewis acidic

titanocene, (C5H5Cl)2TiCl, forms the most stable adducts. The contributions of entropy

are less relevant and are caused by differences in the entropy of solvation.

Analysis of the adduct structures (Table 8.5) also supports the idea that supramolecular

interactions modulate the Ti–Cl bonding. In all of the structures, hydrogen bonding

between the N–H and the chlorides is observed. The Coll · HCl adduct 12 and Py · HCl

adduct 11 are distinguished by the orientations of the respective arenes. While in 11

the arene is almost in the plane containing both chlorides and Ti, in 12 the arene is

nearly perpendicular to this plane (Figure 8.8). This is consistent with unfavorable steric

interactions between the methyl groups at the 2- and 6-positions of collidine and the two

chlorides that disfavor the ”in-plane” binding. As a consequence, the hydrogen bonding
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Table 8.4.: Computed free energies (PW6B95-D3-COSMO-RS/def2-QZVP//TPSS-D3-
COSMO/def2-TZVP) of formation of hydrochloride adducts in THF at
298.15 K. All energies are given in kcal mol−1.

[Ti] additive ∆H −T∆S ∆G

Cp2TiCl Py · HCl -4.9 4 -1.0
Cp2TiCl Coll · HCl -9.6 6.9 -2.6
Cp2TiCl Et3N · HCl -15.2 6.6 -8.6
(C5H4Cl)2TiCl Py · HCl -8 3.8 -4.20
(C5H4Cl)2TiCl Coll · HCl -10.4 6.6 -3.7
(C5H4Cl)2TiCl Et3N · HCl -17.2 6.9 -10.3
(C5H4tBu)2TiCl Py · HCl 0 4.5 4.50
(C5H4tBu)2TiCl Coll · HCl -5.4 8.1 2.7
(C5H4tBu)2TiCl Et3N · HCl -9.2 8.8 -0.4

in 11 is distinctly different from that in 12. In 11 the two N–H–Cl hydrogen bonds have

the same length, and the arrangement is symmetrical. In 12 the two N–H–Cl hydrogen

bond lengths are significantly different. In 13, the hydrogen bonding pattern is similar

to that 12. Therefore, Et3NH+ is best regarded as a cation with a steric bulk similar

to CollH+. This notion is further corroborated for the adducts of (C5H4Cl)2TiCl and

(C5H4tBu)2TiCl (see Appendix E for details).

The slightly less favored formation of [(C5H4Cl)2TiCl2]–·CollH+ compared with [(C5H4Cl)2-

TiCl2]– ·PyH+ is a consequence of ”out-of-plane” binding, which results in an unfavorable

interaction between one of the methyl groups attached to the arene and the Cl substituent

of a Cp ligand in [(C5H4Cl)2TiCl2]– · CollH+ (see Appendix E).

Thus, our CV, kinetic, and computational studies clearly highlight that the addition of

hydrochloride additives has a profound and unprecedented influence on the composition of

metal-reduced solutions of Cp2TiCl2 and its substituted derivatives. Adducts are formed

that consist of hydrogen-bonded tight ion pairs of [Cp2TiCl2] and the ammonium ion.

The stability and rate of formation of the adduct can be finetuned by the steric bulk and

Table 8.5.: Selected Structural Data for 11, 12, and 13. The dihedral angle is measured
between the Cl–Ti–Cl and C(2)–N–C(6) planes

H–Cl(1) / Å H–Cl(2) / Å Ti–Cl(1) / Å Ti–Cl(2) / Å dihedral angle / ◦

2.34 2.34 2.53 2.53 -14.2
2.07 2.73 2.51 2.55 79.9
2.06 3.24 2.5 2.55 NA
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11 12 13
Figure 8.8.: TPSS-D3-COSMO/def2-TZVP-optimized structures of [Cp2TiCl2]– · PyH+

(11), [Cp2TiCl2]– · CollH+ (12), and [Cp2TiCl2]– · Et3NH+ (13).

acidity of the additive’s cation. The consequences of adduct formation on the performance

of these reagents in catalysis will be discussed next.

8.2.5. Implications of adduct formation for catalysis

The Cp2TiCl/(Cp2TiCl)2 couple was introduced by Nugent and RajanBabu as a very mild

and chemoselective stoichiometric reagent for the reductive opening of epoxides. [476–479]

In seminal contributions it was demonstrated that the epoxide-derived radicals could be

employed in classical radical reactions such as 5-exo cyclizations, additions to acrylates,

and radical reduction via hydrogen atom transfer.

Later, catalytic conditions employing additives such as Coll · HCl to mediate turnover

were developed. [480–482] Even though under these circumstances the concentration of the

active species Cp2TiCl is further depleted by chloride binding, the catalytic conditions

are superior for the realization of kinetically difficult radical processes. Examples in-

clude epoxypolyene cyclizations featuring slow 6-endo, 7-endo, and transannular cycliza-

tions, [483–489] 4-exo cyclizations, [490–494] tandem processes combining cyclizations and in-

termolecular additions, [495,496] and atom-economical tetrahydrofuran syntheses. [55–58]

In all of these processes, the trapping of intermediate radicals by Cp2TiCl is an un-

desired intermolecular side reaction. Reduction of the Cp2TiCl concentration through

reversible [Cp2TiCl2]– formation efficiently suppresses radical trapping and therefore in-

creases the radical lifetime. Even better results can be obtained with electron-deficient

titanocenes, [59,436] which form the hydrochloride adducts more readily and constitute less

efficient reductants. These effects can even be exploited under stoichiometric conditions,

as demonstrated in a recent synthesis of (–)-maoecrystal Z. [497,498]

Another beneficial aspect of adduct formation has been described recently. [55–58] After

addition of hydrochlorides, Cp2TiCl- catalyzed reactions can be run at high temperatures

without catalyst decomposition. Therefore, the hydrochloride adducts are thermally more

stable than Cp2TiCl and its dimer.
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8.3. Conclusion

We have investigated the composition and properties of solutions of electrochemically

reduced (C5H4R)2TiCl2, Zn–(C5H4R)2TiCl2, and Zn–(C5H4R)2TiCl2 in the presence of

chloride additives by cyclic voltammetry, kinetic studies, and DFT calculations. Through

this combined approach, the redox properties of representative (C5H4R)2TiCl complexes,

their dimers, and anionic chloride adducts [(C5H4R)2TiCl2]– were determined. The sta-

bility of the electrochemically generated complexes depends on the substituents of the

cyclopentadienyl ligands. With –CO2Me- or –CN-containing ligands, [Cp(C5H4R)TiCl2]–

decomposes through loss of [C5H4R]–.

In the presence of organoammonium chlorides, ammonium-adducts of [(C5H4R)2TiCl2]

are generated from Zn–(C5H4R)2TiCl2. The stabilities of these adducts and the rates of

their formation are determined by the extent of hydrogen bonding between the catalyst

and the ammonium cation. The degree of adduct formation can also be controlled by

the solubility of the hydrochloride. The fine-tuning of the supramolecular interactions

provides a novel platform for the design of more efficient and sustainable titanocene

catalysts and titanocene-catalyzed processes.

8.4. Computational details

All quantum chemical calculations on the study of the loss of a cyclopentadienyl ligand

as well as the formation of hydrochloride adducts have been performed with the TUR-

BOMOLE 6.4 program package. [261] The geometry optimizations were performed on the

DFT level using the TPSS density functional [93] together with the polarized triple-zeta

Gaussian AO basis set def2-TZVP. [237] This choice avoids major BSSE effects without

employing counter-poise corrections. Further, for the hydrochloride adduct formation

reaction the cosmo continuum solvation model (COSMO) [40] was included during the op-

timizations. As the reactions were performed in THF the dielectric constant was set

to 7.4. For all DFT calculations the resolution-of-identity (RI) approximation for the

Coulomb integrals [74] with matching default auxiliary basis sets [238] was applied. The

numerical quadrature grid m4 was employed for integration of the exchange-correlation

contribution. [239] For all geometry optimizations as well as single-point calculations, the

D3 dispersion correction scheme [36] applying Becke-Johnson (BJ) damping [37,133,134] was

used. The final level used for geometry optimization is dubbed TPSS-D3/def2-TZVP

in the following. For a detailed description of the dispersion correction, that is of great

importance in studies of large molecules, including many illustrative examples see Ref.

[11], for recent chemical applications of this method see e.g. Ref. [12]. We discuss in the

manuscript enthalpies H(298) and free energies G(298) that are obtained by a rigid-rotor,
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harmonic vibrational statistical treatment. For the study of the loss of cyclopentadienyl

ligands the vibrational frequencies are computed at the HF-3c [205] level (minimal basis

set Hartree–Fock with three corrections for dispersion, basis set superposition error and

short-range basis incompleteness) with a scaling factor of 0.86. Low-lying vibrational

modes (below 100 cm−1) are treated by a special rigid-rotor approximation in order to

avoid numerical artifacts in the entropy calculations. [46] These gas phase calculations are

also used to characterize the stationary points as minima or transition states, respectively,

and do not include explicit solvent molecules. The corresponding thermo-statistical cor-

rections are also used to correct the explicitly solvated results from energy to enthalpy

or free energy. The methods employed here have been used recently to compute in an

ab initio manner free energies of association for typical supramolecular complexes in so-

lution (see below) with an unprecedented accuracy of about 1–2 kcal mol−1. [46] For the

recent computation of transition-metal thermochemistry in solution see Ref. [44]. For the

hydrochloride adduct formation reactions the computations of the harmonic vibrational

frequencies were performed numerically due to the inclusion of the COSMO model using

the TURBOMOLE module numforce. Thermal corrections from energy to free energy

were obtained as described for the other study before. The vibrational frequencies were

used unscaled. Solvent effects on the thermochemical properties have been obtained by

the COSMO-RS model [41,42] that was used as implemented in COSMOtherm [401] to obtain

all solvation free energies. Single-point calculations employing the default BP86 [91]/def-

TZVP [266] level of theory were performed on the optimized cosmo geometries. Solvation

contributions to free energies at 298 K for THF solution are computed from the TPSS-

D3 gas phase structures and added to the TPSS-D3 gas phase free energies values. For

the study of the loss of a cyclopentadienyl ligand test calculations for the functional

dependence of the gas phase reaction energies have been performed with the PBE [89,90]-

D3 (GGA) and PBE0 [98]-D3 (hybrid) approximations but only small differences to the

reported TPSS-D3 results of about 1 kcal mol−1 have been found. The employed def2-

TZVP basis set usually yields results to within 2–3 kcal mol−1 of the basis set limit for

such reactions. The COSMO-RS solvent correction for the here considered reaction is

8–9 kcal mol−1. With a conservative error estimate of 10-20 % for this contribution one

arrives at a final estimate for accuracy of the computed ∆ value of ±4–5 kcal mol−1. For

the formation of hydrochloride adducts, single-point energies for the hydrochloride adduct

formation were obtained in the gas phase on the PW6B95 [101] and B3LYP [91,92,96] levels

together with the extended quadruple-zeta basis set def2-QZVP. [237] The difference in the

gas phase reaction energy between those two functional amounts to 2–3 kcal mol−1. The

larger def2-QZVP basis has been used in this part because it yields an even smaller BSSE

than the def2-TZVP basis which is important for these hydrogen binding associations.
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Abstract

Despite the fact that functionalized planar chiral [2.2]- paracyclophanes have received a

lot of attention, the chemistry of pseudo- meta 4,15-distubstituted [2.2]paracyclophanes

is largely unexplored. This is mainly due to the fact that the 4,5-dibromo-functionalized

[2.2]- paracyclophane is much less prone to halogen-metal exchange reactions than its

constitutional pseudo-ortho or pseudo-para isomers. Here, we give an account of an

efficient protocol to achieve this, which allows the synthesis of a broad variety of 4,15-

disubstituted [2.2]paracyclophanes. Furthermore, we were able to resolve several of the

racemic compounds via chiral HPLC and assign the absolute configurations of the isolated

enantiomers by X-ray diffraction and/or by the comparison of calculated and measured

CD-spectra.

9.1. Introduction

Although known for 65 years now [2.2]paracyclophane (1) is still far from its retirement age

as it still offers lots of opportunities and challenges. The archetype of layered compounds

is still fascinating chemists around the world due to its special physical and chemical

properties. [499–502] In fact, it was only very recently, e.g., that the slightly twisted arrange-

ment of the two layered aromatic rings could be proven experimentally. [503] This chiral

D2 symmetric structure, which represents a challenging test case for approximate density

functional theory (DFT), has been predicted by high level quantum chemical calculations

already 10 years ago. [504] In most cases, substitution of the aromatic rings results in the

formation of planar chiral compounds even when the twist in the equilibrium structure

is not considered, which could lead to possible diastereomers which influences their CD

spectra. [505] For a discussion of possible diastereomers and their CD spectra, see ref [505].

Mono- and pseudo-ortho 4,12-disubstituted derivatives have found application as chiral

building blocks in the synthesis of materials, [506–513] chiral catalysts, [514–519] or synthetic

receptors. [520] Therefore, it is surprising that pseudo-meta 4,15-disubstituted [2.2]paracy-

clophanes are largely unexplored, so far, although the 4,15-dibromo-[2.2]paracyclophane

(2) is easily accessible via bromination of [2.2]paracyclophane and has been known for

a long time. [521,522] In fact only very few 4,15-disubstituted [2.2]paracyclophanes have

been synthesized by D. J. Cram [523] in the early days of paracyclophane-chemistry to

study their spectral properties. Despite the work of H. Hopf who brought this class of

compounds back into focus in the early 2000s, [520,524] the number of pseudo-meta dis-

ubstituted derivatives is still very low. One reason for this might be that research has

mainly been focused on the synthesis of the 4,12-derivatives as bidentate ligand or ligand

precursors. However, another reason might be that the pseudo-meta dibromide was found
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to be much less reactive compared to its pseudo-ortho substitutes isomer concerning a

bromine-lithium exchange. This particular reaction is most often used to get access to

functionalized derivatives.

Our group has been interested in rigid dissymmetric chiral scaffolds with uncommon

stereogenic elements for quite some time now, and we have synthesized and resolved 9,9’-

spirobifluorenes with stereogenic spirocenters, [525] Troöger’s base derivatives with stere-

ogenic nitrogen atoms, [526,527] and planar chiral pseudo-ortho 4,12-disubstituted [2.2]para-

cyclophanes [528] and used these for the synthesis of ditopic ligands for the stereoselective

self-assembly of metallosupramolecular aggregates. [64,529–532] Hence, pseudo-meta 4,15-

disubstituted [2.2]paracyclophanes also caught our attention because this substitution

pattern brings functional groups in an angle of 120◦, which makes them interesting build-

ing blocks for the formation of (metallo-)supramolecular aggregates.

Here, we report on the synthesis of various pseudo-meta 4,15-disubstituted [2.2]para-

cyclophanes and the chiral resolution of some complementarily substituted derivatives

via semipreparative and preparative HPLC on chiral stationary phases. In doing so we

were not only able to improve the syntheses of already known compounds such as 4,15-

dihydroxy[2.2]paracyclophane, [522] [2.2]paracyclophane-4,15-di-carboxylic acid, [522,523], 4,15-

diformyl[2.2]paracyclophane, [524] and 4,15-diamino[2.2]para-cyclophane, [523] but we could

also synthesize the formerly unknown 4,15-diiodo[2.2]para-cyclophane, 4,15-di(4,4,5,5-

tetramethyl-1,3,2-dioxoborolane)[2.2]paracylcophane, and [2.2]-paracyclophane-4,15-diazide,

which can easily be converted into the corresponding diamine. Furthermore, we were able

to separate the enantiomers of 4,15-dihydroxy[2.2]para-cyclophane, [2.2]paracyclophane-

4,15-dicarboxylic acid (indirectly in form of its di(4-bromophenyl) ester and subsequent

saponification), 4,15-diformyl[2.2]paracyclophane, 4,15-diamino[2.2]paracyclophane, and

4,15- di(4,4,5,5-tetramethyl-1,3,2-dioxoborolane)[2.2]para-cyclophane. Enantiomerically

pure 4,15-diidodo[2.2]paracyclophane could be obtained via a Sandmeyer reaction from

the corresponding enantiomerically pure diamine. The absolute configuration of the re-

solved compounds could be determined by single crystal X-ray diffraction and/or by

comparison of quantum chemically calculated electronic circular dichroism (CD) spectra

with experimentally obtained CD spectra.

9.2. Results and discussion

Our synthesis started from nonsubstituted [2.2]paracyclophane (1), which is commercially

available and easy to functionalizevia well-known bromination. [521,524] To afford the desired

(rac)-4,15-dibromo[2.2]paracyclophane ((rac)-2) we used the method developed by Hopf

in 2008, [522] which also leads to achiral 4,16-dibromo[2.2]paracyclophane (3). Compound

(rac)-2 then served as our starting material for all further reactions (Figure 9.1).
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Figure 9.1.: Synthesis of 4,15-difunctionalized [2.2]paracyclophanes by bromine lithium
exchange of (rac)-2 and addition of electrophiles

The synthesis of compounds (rac)-4, (rac)-5, and (rac)-6 has already been reported by

H. Hopf, [522,524] however, only in rather low yields. We tried to follow these procedures but

it soon became clear that the bromine-lithium exchange reaction must be the hindered

step, which prevents higher yields. Hence, our first task was to improve this step. This

was finally achieved by adding a solution of (rac)-2 in dry THF to a solution of tert-

butyllithium (tBuLi) in dry THF at –78 X◦C. The color of the solution turns from flashy

yellow to pale yellow, and after 1 h of stirring at –78 ◦C the bromine-lithium exchange is

complete.

The synthetic procedure for the preparation of diol (rac)-4 established by H. Hopf

et al. allots the use of 2.4 equiv of n-butyllithium (nBuLi) in diethyl ether at room

temperature followed by oxidation of the lithiated (rac)-2 with nitrobenzene at –78 ◦C

to obtain (rac)-4 in 30% yield. [522] Interestingly, standard addition of B(OMe)3 to the

dilithiated intermediate and subsequent oxidative cleavage of the intermediate diboronate

did not lead to the desired product. Alternatively, Hopf performed a stepwise synthesis

involving monolithiation with 1.2 equiv of nBuLi in diethyl ether at room temperature

followed by the addition of B(OMe)3 with subsequent oxidation and saponification of

the borate leading to the monohydroxy-monobromo compound. This compound wasthen

etherified to protect the hydroxyl-function and subsequently subjected to the complete
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sequence again to finally obtain the monomethoxy-monohydroxy compound in an overall

yield of 65%. With our lithiation approach and the usage of B(OiPr)3 instead of B(OMe)3

we were able to increase the yield of (rac)-4 dramatically to 81%.

Similarly, we were able to improve the synthesis of dicarboxylic acid (rac)-5 to 87%

yield which H. Hopf et al. obtained via addition of CO2 to dilithiated (rac)-2 followed by

acidification in 75% yield. [522]

In 2004 H. Hopf described the synthesis of (rac)-4,15- diformyl[2.2]paracyclophane

((rac)-6) in 62% from (rac)-2 via a bromine-lithium exchange with sec-butyllithium

(sBuLi) in THF followed by the addition of N -formylpiperidine and subsequent treatment

with aqueous HCl. Again, we were able to improve the synthesis by employing tBuLi and

N,N -dimethylformamide (DMF) instead and we obtained (rac)-6 after quenching with

aqueous HCl in 89% yield. [524]

As we mentioned above our group is interested in enantiomerically pure compounds.

Hence, the next challenge was the resolution of the racemic mixtures. As described earlier

HPLC on a chiral stationary phase proved to be a versatile method to separate various

4,12-disubstituted [2.2]-paracyclophanes. [528] So we tried to apply this approach also for

the resolution of the 4,15-disubstituted [2.2]paracyclophanes. In fact, both (rac)-4 and

(rac)-6 could be resolved on an analytical and a semipreparative scale in a very effective

manner by using a CHIRALPAK IA as the stationary phase and different mixtures of n-

hexane and ethanol as the eluent (see Supporting Information (SI)). This method allowed

us to obtain both enantiomers in optically pure forms on a semipreparative scale.

(rac)-5

1. (COCl)2, Et2O, DMF

2. 4-bromophenol,
NEt3, CH2Cl2

87% over both steps

O

O

Br O

O

Br

(rac)-7

Figure 9.2.: Synthesis of di(bromophenyl) ester (rac)-7

To achieve the esterification the diacid was first transformed into the corresponding

dicarboxylic acid chloride upon reaction with oxalyl chloride. This was reacted with 4-

bromophenol to afford the desired diester (rac)-7 in 87% yield (Figure 9.2). As hoped, we

are also able to resolve the enantiomers in the same way on a semipreparative scale using

n-hexane/ethanol (80:20 v/v) as the eluent. Saponification of the ester under alkaline
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Figure 9.3.: Synthesis of enantiomerically pure ditriflate 8 and enantiomerically pure
diethynyl-[2.2]paracyclophane 9

BrBr

(rac)-2

1. tBuLi, THF
2. I2

80%

II

(rac)-10

Figure 9.4.: Synthesis of racemic diiodo-[2.2]paracyclophane 10

conditions then provided the enantiomerically pure acids.

The next step was to use the separated compounds as starting materials for the con-

struction of further functionalized derivatives. Therefore, we decided to transform (rac)-4

into the corresponding ditriflate 8, which can be used as a coupling reagent in various

types of cross-coupling reactions. The enantiomercially pure aldehyde 5 could be trans-

formed into the corresponding dialkyne by treating it with the Bestmann-Ohira [533,534]

reagent following an approach introduced by Hopf. [524] This dialkyne 9 is a promising

starting material, e.g., for Sonogashira cross-coupling reactions (Figure 9.3).

Our next idea was to synthesize the 4,15-diiodo[2.2]-paracyclophane ((rac)-10), which

is also a versatile starting material for various types of transformations including cross-

coupling reactions. Again, we performed the bromine-lithium exchange in THF at –

78 ◦C by using tBuLi and quenched dilithiated 2 with iodine to get access to the desired

diiodinated (rac)-10 in 80% yield (Figure 9.4).

Unfortunately, we were not able to resolve (rac)-10 directly into its enantiomers by

HPLC on chiral stationary phases. Hence, we decided to develop a second strategy to

synthesize 10 from the corresponding 4,15-diamino[2.2]paracyclophane ((rac)-12) via a

Sandmeyer reaction hoping that this might by easier to resolve via chiral HPLC (Figure

9.5).
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The first step is the lithiation of (rac)-2 with subsequent addition of p-toluensulfonyl

azide leading to the diazide (rac)-11, which is quite stable and can be purified via column

chromatography on silica gel to separate it from p-toluensulfonate and defunctionalized

[2.2]paracyclophane. Unfortunately, however, we were not able to separate it from the

monoazide byproduct at this stage. Hence, the resulting mixture was reduced to the cor-

responding amines with sodium borohydride, which could easily be separated via column

chromatography on silica gel to afford the pure desired diamine (rac)-12 in a good overall

yield of 68% starting from dibromide 2. As hoped, this diamine could be resolved by

HPLC on a CHIRALPAK IB column as the stationary phase and n-hexane and ethanol

(70:30 v/v) as the eluent both on an analytical and a preparative scale. Enantiomerically

pure 12 could then be converted into the enantiomerically pure diodide 10 by a Sand-

meyer reaction, which was running smoothly without stereochemical leakage to afford the

desired product in 74% yield.

I I

BrBr

(rac)-2

1. tBuLi, THF

2.
SO2N3

N3
N3

(rac)-11

NaBH4

H2O, THF
68% from

(rac)-2

NH2
H2N

(rac)-12(RP)-10

74%

1. resolution via HPLC
2. HCL, H2O, NaO2
3. KI

Figure 9.5.: Synthesis of enantiomerically pure 4,15-diiodo[2.2]paracyclophane 10 via
racemic diazide 11 and racemic diamine 12 with subsequent chiral resolu-
tion via HPLC

Having achieved the syntheses of two enantiomerically pure starting materials for po-

tential cross-coupling reactions (8 and 10) and the dialkyne (9), which might also serve

as the starting material for a transmetalation agent [the reactive Cu-alkyne is formed

in situ during a Sonogashira-type cross-coupling reaction], we wanted to broaden the

spectrum of versatile precursors for the synthesis of more sophisticated molecular archi-

tectures based on the 4,15-difunctionalized [2.2]paracyclophane motif even further. Thus,

we decided to synthesize a [2.2]paracyclophane-4,15-diboronic acid derivative next. Hav-

ing access to enantiomerically pure starting materials our first approach was the direct
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formation of the boronic pinacol ester via a Pd-catalyzed Miyaura cross-coupling reac-

tion with bis(pinacolato)diboron, [535] but, unfortunately, this reaction did not lead to the

desired product. Also, the boronic acid itself seems to be quite instable, and its syn-

thesis via bromine-lithium exchange reaction and subsequent borylation with B(OMe)3

or B(OiPr)3 followed by ester hydrolysis with aqueous ammonium chloride solution only

led to an undefined mixture of products, which neither contained the desired boronic

acid nor the nonsubstituted [2.2]paracyclophane. Even the addition of pinacol to the

reaction mixture did not provide the boronic ester. This is in agreement with the fact

that 4-substituted [2.2]paracyclophane boronicacid esters have been found to be unstable

under similar conditions so far. Finally, we were able to solve the problem by using com-

mercially available isopropoxyboronic acid pinacol ester, which is known to react directly

with lithiated aromatic molecules to afford the usually rather stable boronic acid pinacol

esters. [536,537]

This approach turned out to be very effective, and we were able to prepare the bis(boronic

pinacol ester) ((rac)-13) in an excellent yield of 91%. Fortunately, racemic 13 could also

be resolved via HPLC by using a CHIRALPAK IB column as the stationary phase and

n-hexane/chloroform (98:2 v/v) as the eluent both in analytical and preparative scale

(Figure 9.6).

Having achieved the successful resolution of racemic 4, 6, 7, 12, and 13 the final task

was to determine the absolute configuration of the isolated enantiomers. A powerful

method to determine the absolute configuration is X-ray diffraction analysis of suitable

single crystals and the analysis of the Flack parameter. This requires the presence of

a heavy atom such as bromine, iodine, or sulfur in the structure, which only applies to

compound 7. Conveniently, 4 can easily be transformed into the corresponding ditriflate

and 8 and 12 into the corresponding diiodide 10. To determine the absolute configuration

of dialdehyde 6 it was transformed into the corresponding (4- bromophenyl)hydrazone 14

(Figure 9.7).

Fortunately, we succeeded in growing single crystals of compounds 7, 10, and 14

suitable for XRD-measurements (seeSI). Thus, we were able to unambiguously assign

the (RP )-configuration to the (–)-enantiomer of 7, the (RP )-configuration to the (–)-

BrBr

2. O
BOiPr

O

1. tBuLi, THF B

O

O
B

O

O

91%
(rac)-2 (rac)-13

Figure 9.6.: Synthesis of racemic diboronic pinacolatoester 13
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CHOOHC

(SP)-6

Br

N2H4

H2SO4, H2O, EtOH

(SP)-14

N
NH

Br

N
NH

Br

Figure 9.7.: Synthesis of (+)-(SP )-14 from enantiomerically pure (+)-(SP )-6

enantiomer of 10, and the (SP )-configuration to the (+)-enantiomer of 14. This enabled

us also to conclude on the absolute configurations of the enantiomerically pure precursors

5, 6 and 12. Hence, (–)-5 is (RP )-configurated, (+)-6 is (SP )-configurated, and (–)-12 is

(RP )-configurated.

Unfortunately, we were not successful in growing suitable single crystals of 8 as it

turned out to be highly viscous oil in its enantiomerically pure form. Additionally, we

could not elucidate the absolute configuration of 13 because of the lack of any heavy atom

in the structure. Therefore, we turned our attention to another analytical method that

is well established to assign the absolute stereochemistry of enantiomerically pure chiral

molecules, the circular dichroism (CD) spectroscopy.

In order to allow an assignment from experimental CD spectra it is probably best to

compare them with those obtained from quantum chemical calculations (Figure F.1).

These calculations were done by employing the recently developed simplified time depen-

dent density functional theory (sTD-DFT) approach. [413] Single-point calculations with

the global hybrid BHLYP [97] and the range-separated hybrid functional CAM-B3LYP [107]

together with the def2-TZVP basis set

citedef2-tzvp were performed on TPSS [93]-D3(BJ) [36,37]/def2-TZVP optimized structures.

Both functionals reproduce the main features of the experimental spectra, but CAM-

B3LYP shows the overall better agreement. The range-separation technique which allevi-

ates so called self-interaction errors in the density functional improves the quality of the

calculated spectra even if CAM-B3LP is not asymptotically correct as it contains 65%

exact exchange in the long-range limit. In case of (–)-(SP )-4, (+)-(SP )-6 and (+)-(SP )-13

a small shift of the computed vertical excitation energies by -0.2 to -0.3 eV is observed,

which is typical for this functional together with the sTD-DFT approach (spectra for all

four compounds including the rotatory strengths for CAM-B3LYP are provided in the

Supporting Information). For a more detailed discussion of the CD spectra of [2.2]para-

cyclophanes, see ref [505].

Given the fact that all (–)-enantiomers described above were found to be (RP )-configura-

ted we were initially surprised to find that that comparison of the experimental and
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(a) (b)

(c) (d)

Figure 9.8.: Experimental and simulated CD spectra of (a) (–)-(SP )-4, (b) (+)-(SP )-6 (c)
(–)-(RP )-10, and (d) (+)-(SP )-13.

simulated spectra clearly proved that the (–)-enantiomer of compound 4 is indeed (SP )-

configurated. Hence, we decided to validate our theoretical approach by also applying it

to the simulation of the spectra of 6 and 10 whose configuration we could already assign

via single crystal X-ray diffraction. These calculations nicely agree with the experimental

spectra and corroborate the assignment made according to the X-ray diffraction analysis.

Having proved that the applied quantum chemical method is indeed reliable, we were

also able to determine the absolute configuration of boronic ester 13 showing that the

(+)-enantiomer is again (SP )-configurated.

9.3. Conclusion

In summary we have synthesized 12 planar chiral 4,15-difunctionalized [2.2]paracyclo-

phanes. Some of them (2, 4–6, 9, and 12) have been prepared in racemic form before,

but some of them (8, 10, 11, 13, and 14) have not been reported yet. By improving
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9.4. Computational details

the efficiency of the bromine-lithium exchange we have been able to dramatically increase

the yields of 4–6 and 12. Furthermore, we have been able to resolve five of these com-

pounds (4, 6, 7, 12, and 13) by HPLC techniques on an analytical, semipreparative and

preparative scale by using CHIRALPAK IA and CHIRALPAK IB stationary phases. The

absolute configuration could be assigned by X-ray crystal structure analysis of 7, 10, and

14, which also implies the absolute configuration of 5, 6, and 12. The absolute con-

figuration of 4 and 13 was determined by comparison of experimental CD-spectra with

quantum chemically calculated ones. This method was validated by comparing experi-

mental and simulated CD spectra of 6 and 10 with known configuration. Most of the

derivatives carry versatile functional groups that offer the possibility to integrate the 4,15-

difunctionalized [2.2]paracyclophane skeleton into more sophisticated (supra-)molecular

architectures with well-defined stereochemical properties.

9.4. Computational details

The geometries of the investigated molecules were optimized on the DFT level using

the TURBOMOLE 6.4 program package [261] and employing the TPSS functional [93] to-

gether with the D3(BJ) [36,37] dispersion correction and the def2-TZVP [237] basis set. The

resolution-of-identity (RI) approximation for the Coulomb integrals [74] was applied us-

ing matching default auxiliary basis sets [238] and for the integration of the exchange-

correlation contribution the numerical quadrature grid m4 was employed. [239] Single-point

calculations on the optimized geometries were performed with the global hybrid functional

BHLYP [97] and the range-separated hybrid functional CAM-B3LYP [107] together with the

def2-TZVP basis set utilizing the development version of ORCA 3.0 (precursor of 3.0.1

release). [233,234] The RI approximation for the Coulomb integrals was used in combination

with the chain-of-spheres (COSX) approximation. [538,539] Rotatory strengths values for the

electronic transitions from ground to singly excited states were obtained at the sTD-DFT

level, [413,414] and all excitations up to a threshold of 10 eV were included. The molecular

circular dichroism (∆ε) values were calculated by convoluting Gaussian functions with a

width of σ = 0.4 eV which are centered at the wavelength of the electronic transitions and

multiplied by the corresponding rotatory strength (vertical transitions). For all spectra

the origin independent velocity rotatory strength was used.
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In this thesis, the application and development of computationally cost-efficient DFT

and HF based methods for noncovalent interactions in large systems and the evaluation

of multilevel quantum mechanical methodologies for the accurate description of the ther-

mochemistry of supramolecular host-guest systems have been presented.

It has been shown that semi-local density functional approximations and HF can yield

good results for interaction energies and geometries of noncovalently bound systems in a

small atomic-orbital basis set if the two major error sources are eliminated. These are

the missing London dispersion and the BSSE. Several modern correction schemes have

been tested and they all outperform the plain semi-local DFAs or plain HF. Dispersion

correcting effective potentials, i.e. B3LYP-DCP performs excellently for water, small non-

covalent dimers, and ice polymorphs, but cannot accurately treat larger organic systems.

The combination of the D3 dispersion scheme and the geometrical counterpoise correc-

tion, e.g. B3LYP-D3-gCP provides accurate results for small noncovalent dimers, large

supramolecular systems and organic molecular crystals, but fails for water and ice. The

recently developed PBEh-3c functional is always one of the two best performing methods,

and yields reasonable results for water and ice and accurate energies and geometries for

small dimers, supramolecular complexes, and molecular crystals.

Further, a minimal basis set HF based method (HF-3c) with three atom-pairwise cor-

rections for dispersion, BSSE, and BSIE, which has been developed and tested within

this thesis. HF-3c is slower than conventional semiempirical methods, but generally more

accurate, robust, numerically stable, and less empirical. Compared to DFT, HF is in-

herently free of the self-interaction error and provides numerically noiseless analytical

frequencies. HF-3c yields excellent interaction energies for small noncovalently bound

dimers and good association energies for the S12L set of supramolecular host-guest com-

plexes. Further, it provides accurate geometries of small organic molecules, noncovalent

dimers, and supramolecular systems. HF-3c optimized geometries of small proteins with

up to 550 atoms yield good results in standard protein structure health checks and have

a reasonable agreement with experimental structures. HF-3c also provides good thermo-

statistical corrections from energy to free energies and with its good cost-accuracy ratio

it is ideally suited for sampling free energies of different binding conformations for large

systems, e.g. supramolecular host-guest complexes.

Within this thesis, HF-3c has been employed in a nondynamic single-structure mul-

tilevel approach to compute association free energies ∆Ga of host-guest complexes in

solution. The association energy ∆E in the gas phase has been computed with dispersion-

corrected DFT including three-body dispersion terms, i.e. on the DFT(hybrid)-D3ATM/QZ

level. HF-3c and other semiempirical methods have been employed to calculate the ther-

mostatistical corrections from energy to free energy ∆GRRHO and a continuum solva-

tion model has been used to include solvation effects (∆δGsolv). The general procedure
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has been illustrated for a case study of eight typical complexes: two tweezer complexes,

two pseudorotaxanes with either one or two crownethers as wheels, two cucurbit[7]uril

complexes, and two complexes of the fullerene C70 in cycloparaphenylenes. For these

eight systems the PW6B95-D3/QZ energies with HF-3c thermostatistical corrections and

COSMO-RS(12) solvation contributions yield an MD of -2.1 and an MAD of 4.2 kcal mol−1

compared to the experimental values. Errors larger than 6 kcal mol−1 have been observed

for the fullerene-cycloparaphenylene complexes. Excluding them from the statics results

in an MD and MAD of 0.4 and 1.8 kcal mol−1, respectively.

Although the methodology did not always yield highly accurate results, its predictive

power has been be demonstrated. With the participation in the SAMPL4 blind test

challenge, it has been put to a realistic evaluation. Relative association free energies have

been predicted for a cucurbit[7]uril host and 14 guest molecules that contain either one or

two ammonia groups. HF-3c has been applied to sample possible binding conformations

and the final ∆Ga have been calculated on the PW6B95-D3ATM/QZ level with HF-3c

thermal corrections and COSMO-RS(12) solvation contributions with and without the

inclusion of chloride counterions. The results with counterions have been submitted to the

organizing committee and the MAD and RMSD compared to the subsequently published

experimental values are only 2.0 and 2.6 kcal mol−1, respectively. In comparison with

computational results obtained with other methods, theses predictions rank in the top

three of all statistical accuracy measurements. For almost all complexes the inclusion of

counterions improve the calculated ∆Ga.

Errors in ∆Ga appeared during the case study, as well as in the SAMPL4 participa-

tion, especially for the second host which was a flexible, octa-acid basket-shaped molecule

with an unclear charge state. Thus, further testing of the multilevel approach seemed

mandatory. The S12L set of supramolecular host-guest complex has been extended to

30 realistic host-guest systems. The new S30L set contains larger systems with up to

200 atoms, a broader variety of interaction motifs, slightly more flexible compounds, and

higher charges (anions and cations). The experimental reference values are in the range

of -0.7 to -24.7 kcal mol−1. The influence of counterions for the charged systems has

been investigated further by employing chloride for cations and sodium ions for anions

(S30L-CI). For the two sets, S30L and S30L-CI the theoretical best estimate for ∆Ga

has been obtained. Different dispersion-corrected density functionals (PBE-D3, TPSS-

D3, B3LYP-D3, PW6B95-D3 and ωB97X-D3) together with a quadruple-zeta basis set

have been tested for ∆E. They have been combined with the semiempirical methods

HF-3c, PM6-D3 and DFTB3-D3 to calculate ∆GRRHO, and COSMO-RS with different

parametrizations as well as SMD to compute ∆δGsolv. For the S30L the best association

free energies are obtained with PW6B95-D3ATM/QZ energies, HF-3c thermostatistical

corrections, and COSMO-RS(12/13-fine) (for non-polar solvents/water) solvation free en-
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ergies. The resulting MD and MAD are -0.1 and 2.4 kcal mol−1, respectively. For the

systems including counterions ωB97X-D3ATM/QZ outperforms PW6B95-D3ATM/QZ for

the energies and the COSMO-RS(13-fine) yields the best ∆δGsolv, giving an MAD of

2.1 kcal mol−1.

In collaboration with the group of Prof. Gansäuer, the presented approach to calculate

∆Ga in solution has been used to investigate adducts of titanocene(III) catalysts and

hydrochloride additives (Py ·HCl, Coll ·HCl and Et3N ·HCl). It has been shown that the

stabilities of these adducts are determined by the extent of hydrogen bonding between

the catalyst and the ammonium cation and can be tuned by the steric bulk and acidity

of the additive cation.

In the collaboration with Prof. Lützen and his group, quantum chemical calculations

of electronic chircular dichroism spectra have helped to identify the absolute configura-

tion of several 4,15-difunctionalized [2.2]paracyclophanes. These difunctionalized paracy-

clophanes are precursors for ligands that form double- or triple-stranded helicates with

transition metal ions via self-assembly processes, whose investigation is ongoing. As the

theoretical spectra for two of the three possible diastereomers are often similar, the com-

putation of relative association free energies is used as a second indicator to identify the

experimentally obtained helicates.

With the current approach to compute ∆Ga the average error for association energies

of host-guest systems is about 2 kcal mol−1, which has been found during the SAMPL4

blind test participation as well as during the S30L studies. The non-dynamic methodology

makes the drastic assumption that only one conformer with one specific binding motif is

important and all other structures are neglected. For testing purposes, HF-3c has been

employed to sample about a hundred different conformers for two different cucurbit[7]uril

complexes. Weighting all their ∆Ga values according to the Boltzmann statistics lowers

the association fee energy obtained from only one structure by about 1 kcal mol−1. Cucur-

biturils are rigid molecules and the error due to neglecting other conformers could be larger

for more flexible systems. A quantum mechanically derived force field (QMDFF [540]) was

developed recently and coupled to a simulated annealing approach. This could simplify

the sampling process and could be used to identify the structures with the lowest ∆Ga

for further treatment with quantum chemical methods.

Already for the single-structure ∆Ga value several error sources are present. The DFT-

D3ATM/QZ association energies are inherently off by about 5 %. Depending on the sys-

tem, ∆E lies in the range of -20 to -80 kcal mol−1 which results in an error of about 1

to 4 kcal mol−1. For routine applications, dispersion corrected DFT is the only option

and thus, this error has to be tolerated. The thermostatistical corrections are based on a

lot of thermodynamic approximations, and their error is estimated to be about 5 %, i.e.
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about 1 kcal mol−1. Anharmonic effects might be important and should be investigated.

However, computing the third and forth derivatives of the energy with respect to the

nuclear coordinates are too expensive with standard quantum chemical methods. The

QMDFF chould be used to compute anharmonic corrections to the ∆GRRHO values in

order to investigate their significance. The largest error source is likely the treatment of

solvation effects. Continuum solvation models like COSMO-RS neglect all explicit solva-

tion effects. Further, the structural change and the change in the molecular vibrations

when going from gas phase to solution are disregarded. Sometimes, COSMO-RS yields

∆δGsolv values that differ by up to 5 kcal mol−1 depending on the parametrization. The

estimated error in the COSMO-RS ∆δGsolv is 10 % which amounts to 1–3 kcal mol−1

depending on the system. A generalized Born solvation model is currently developed in

the Grimme group and can hopefully be used to obtain better molecular structures in

solution as well as more accurate ∆δGsolv.

Overall, the sum of all estimated errors is much larger than the average error in ∆Ga of

about 2 kcal mol−1 which indicates fortunate error compensation due to the different signs

of the contributions. This thesis has clearly demonstrated that the nondynamic single-

structure multilevel approach can nevertheless be used routinely to accurately compute

and predict association free energies in solution. It can be used to design new supramolec-

ular complexes and help to guide experimentalists in finding suitable guest molecules for

a specific host.
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C. Hättig, A. Hellweg, H. Horn, C. Huber, U. Huniar, M. Kattannek, C. Kölmel,

M. Kollwitz, K. May, P. Nava, C. Ochsenfeld, H. Öhm, H. Patzelt, D. Rappoport,
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[395] W. Iali, P. Petrović, M. Pfeffer, S. Grimme, J.-P. Djukic, Dalton trans. 2012, 41,

12233–122343.

[396] C. Kind, M. Reiher, J. Neugebauer, B. A. Hess, SNF Version 2.2.1, Universität

Erlangen, 2002.

[397] B. Aradi, B. Hourahine, T. Frauenheim, J. Phys. Chem. A 2007, 111, 5678–84.

[398] M. Korth, J. Chem. Theory Comp. 2010, 6, 3808–3816.
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[409] J. Hostaš, J. Řezáč, P. Hobza, Chem. Phys. Lett. 2013, 568-569, 161–166.

[410] A. Li, H. S. Muddana, M. K. Gilson, J. Chem. Theory Comput. 2014, 10, 1563–

1575.

[411] J. Witte, M. Goldey, J. B. Neaton, M. Head-Gordon, J. Chem. Theory Comput.

2015, 11, 150317130807007.
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[481] A. Gansäuer, H. Bluhm, M. Pierobon, J. Am. Chem. Soc. 1998, 120, 12849–12859.

231



[482] A. F. Barrero, A. Rosales, J. M. Cuerva, J. E. Oltra, Org. Lett. 2003, 5, 1935–1938.
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A. Gansäuer, J. Am. Chem. Soc. 2008, 130, 1788–1796.
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A. Supporting Information to Chapter 3

Appendix A contains:

• List of the organic molecules in the fitting set

• Total energies for the S22 test set

• Thermal corrections to Gibbs free energies for small molecules and non-covalent

complexes

• Free enthalpies of association of the S12L test set

• Health criteria for all proteins

List of the organic molecules in the fitting set

Table A.1.: List of molecules in the fitting set including the RMSD relative to the B3LYP-
D3(BJ)/def2-TZVPP reference geometries for HF-3c and PM6 optimized structures.

No. name sum formula RMSD(HF-3c) RMSD(PM6)

molecules containing C H

1 dihydrogen H2 0.018 0.010

2 methane CH4 0.004 0.004

3 ethyne C2H2 0.009 0.018

4 ethene C2H4 0.005 0.028

5 ethane C2H6 0.006 0.004

6 cyclopropane C3H6 0.012 0.034

7 cyclopropene C3H4 0.011 0.034

8 allene C3H4 0.005 0.030

9 cyclobutane C4H8 0.030 0.005

10 butadiene C4H6 0.174 0.106

11 c-butadiene C4H4 0.009 0.068

12 neo-pentane C5H12 0.008 0.013

13 cyclohexane C6H12 0.018 0.016

14 benzene C6H6 0.003 0.011

15 norbornadiene C7H8 0.008 0.034

16 cyclooctatetraene C8H8 0.101 0.156

17 naphtalene C10H8 0.008 0.017

18 biphenyl C16H10 0.096 0.241

molecules containing C H F

19 difluorine F2 0.070 0.015

20 hydrogen fluoride HF 0.011 0.022

21 CF2 0.010 0.003

22 tetraflouroethylene C2F4 0.017 0.054
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23 hexafluoroethane C2F6 0.067 0.076

24 1,1,1-trifluoroethane CH3CF3 0.037 0.056

25 hexaflourbenezene C6F6 0.020 0.013

molecules containing C H O (F)

26 dioxygen O2 0.005 0.048

27 carbon monooxide CO 0.005 0.007

28 carbon dioxide CO2 0.009 0.009

29 water H2O 0.012 0.012

30 hydrogen peroxide H2O2 0.069 0.274

31 oxygen difluoride F2O 0.059 0.045

32 formyl flouride HCOF 0.020 0.041

33 formaldeyde CH2O 0.009 0.007

34 fomic acid HCOOH 0.027 0.041

35 acetone CO(CH3)2 0.023 0.019

36 acetyl (radical) CO(CH3)* 0.031 0.075

37 glyoxal C2H2O2 0.021 1.376

38 EtOH C2H5OH 0.017 0.036

39 dimethylether CH3OCH3 0.021 0.045

40 oxirane C2H4O 0.022 0.034

41 furane C4H40 0.013 0.031

42 3,3,4,4-tetramethyl-1,2-dioxetane C6H12O2 0.047 0.070

43 methyl acetate CH3COOCH3 0.027 0.494

44 a-D-Glocupyranose C6H12O6 0.051 0.051

molecules containing C H N (O F)

45 dinitrogen N2 0.004 0.013

46 hydrogen cyanide HCN 0.005 0.006

47 flouramine NH2F 0.045 0.018

48 NH2OF 0.111 0.041

49 ammonia NH3 0.029 0.006

50 hydrazine N2H4 0.042 0.543

51 trimethylamine N(CH3)3 0.047 0.038

52 aziridine C2H5N 0.023 0.053

53 pyridine C5H5N 0.006 0.024

54 tetrazine C2H2N4 0.074 0.067

55 methaneimine CH2NH 0.017 0.063

56 succinimide C4H5NO2 0.021 0.025

57 urea CO(NH2)2 0.029 1.315

58 alanin CH3CH(NH2)COOH 0.144 0.069

59 nitrobenzene C6H5NO2 0.011 0.019

60 phenylamine C6H5NH2 0.078 0.025

61 2-(2-aminophenoxy)phenol C12H11O2N 0.095 0.092

62 adenine C5H5N5 0.391 0.396

63 cytosine C4H5N3O 0.042 0.051

molecules containing C H Cl (N O F)

64 dichlorine Cl2 0.011 0.017

65 hydrogen chloride Hcl 0.022 0.009

66 chlorine monofluoride Fcl 0.030 0.001

67 dichlorine monoxide Cl2O 0.022 0.024

68 carbon tetrachloride Ccl4 0.015 0.030

69 tetrachloroethylene C2Cl4 0.016 0.023

70 hexachlorobenzene C6Cl6 0.012 0.012

71 phosgene COCl2 0.019 0.027

72 chloramine NH2Cl 0.042 0.020

molecules containing C H S (O F)

73 disulfur S2 0.004 0.014
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74 hydrogen sulfide H2S 0.025 0.024

75 hydrogen disulfide H2S2 0.028 0.040

76 sulfur dioxide SO2 0.028 0.040

77 sulfur difluoride SF2 0.022 0.146

78 sulfoxide CH2S 0.034 0.031

79 dimethylsulfide S(CH3)2 0.010 0.018

80 ethanthiol C2H5SH 0.022 0.049

81 dithietane C2S2H4 0.018 0.036

82 thiophene C4H4S 0.015 0.025

83 thiirane C2H4S 0.022 0.026

molecules containing C H P

84 phosphorous P4 0.005 0.032

85 phosphane PH3 0.022 0.094

86 diphosphane P2H4 0.033 0.855

87 methylidynephosphine HCP 0.013 0.022

88 methylenephosphine CH2PH 0.011 0.072

89 methylphosphine PH2CH3 0.017 0.070

90 phosphinous amide PH2NH2 0.113 0.656

91 phenylphosphine PhPH2 0.017 0.053

molecules containing C H B (F)

92 borane BH3 0.001 0.008

93 diborane B2H6 0.051 0.036

94 trifluoroborane BF3 0.006 0.005

95 BH2CH3 0.034 0.032

96 ammonia borane BH3NH3 0.022 0.036

97 BH3NCH 0.052 0.031

98 borazine B3H6N3 0.098 0.078

99 boronic acid B(OH)3 0.058 0.048

100 trimethylborane B(CH3)3 0.027 0.022

101 tris(pentafluorophenyl)borane B(C6F5)3 0.032 0.198

molecules containing C H Si

102 silane SiH4 0.003 0.007

103 disilane Si2H6 0.010 0.052

104 CH2SiH2 0.011 0.028

105 phenylsilane PhSiH3 0.011 0.028

106 silabenzene C5SiH6 0.008 0.027

107 TMS Si(CH3)4 0.014 0.014
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Total energies for the S22 test set

Table A.2.: Contributions E
D3(BJ)
disp , EgCPBSSE and ESRB to the energy as well as final total energies

EHF−3c
tot for HF-3c single-point calculation on the reference geometries of the S22

complexes. All values are given in a.u..

no. complex E
D3(BJ)
disp EgCPBSSE ESRB EHF−3c

tot

1 Ammonia dimer -0.0135677 0.0593118 -0.0545009 -0.0087568

2 Water dimer -0.0074538 0.0606613 -0.0700433 -0.0168358

3 Formic acid dimer -0.0299646 0.0857724 -0.2152092 -0.1594014

4 Formamide dimer -0.0376455 0.0878221 -0.1860949 -0.1359184

5 Uracil dimer h-bonded -0.1212656 0.1636129 -0.4324284 -0.3900810

6 2-pyridoxine 2-aminopyridine complex -0.1252456 0.1483840 -0.2767470 -0.2536085

7 Adenine thymine Watson-Crick complex -0.1567821 0.1956715 -0.4590304 -0.4201410

8 Methane dimer -0.0179855 0.0500821 -0.0378408 -0.0057442

9 Ethene dimer -0.0327958 0.0588616 -0.0619226 -0.0358568

10 Benzene - Methane complex -0.0671056 0.0847888 -0.1010838 -0.0834007

11 Benzene dimer parallel displaced -0.1203611 0.1189375 -0.1638166 -0.1652402

12 Pyrazine dimer -0.1039268 0.1080350 -0.2346852 -0.2305771

13 Uracil dimer stack -0.1291107 0.1609975 -0.4343544 -0.4024677

14 Indole benzene complex stack -0.1522298 0.1454883 -0.2238504 -0.2305920

15 Adenine thymine complex stack -0.1698002 0.1950683 -0.4593097 -0.4340416

16 Ethene ethyne complex -0.0243677 0.0460663 -0.0623129 -0.0406143

17 Benzene water complex -0.0619781 0.0890309 -0.1164851 -0.0894322

18 Benzene ammonia complex -0.0646446 0.0889949 -0.1091647 -0.0848144

19 Benzene HCN complex -0.0662910 0.0723309 -0.1296924 -0.1236525

20 Benzene dimer T-shaped -0.1165023 0.1190570 -0.1636935 -0.1611388

21 Indole benzene T-shape complex -0.1465955 0.1457880 -0.2236032 -0.2244107

22 Phenol dimer -0.1279341 0.1530626 -0.2435771 -0.2184486

Thermal corrections to Gibbs free energies for small molecules and non-covalent

complexes

Table A.3.: Thermal corrections for 10 molecules from the fitting set, 4 complexes from the S22
and 6 complexes from the S66 test set. All values are given in kcal/mol.

molecule/complex B3LYP-D3 HF-3c PM6

nitrobenzene 43.39 42.62 41.35

tiophene 23.87 24.58 22.28

norbornadiene 60.88 63.59 58.53

naphtalene 70.86 71.97 68.05

glucose 97.29 97.05 84.03

trifluoroethane 14.84 14.55 13.02

methylacetate 35.98 36.43 31.47

succinimide 23.58 23.34 21.75

ammoniaborane 28.34 29.53 28.64

tetramethylsilan 70.51 74.79 58.45

adenenine-thymine 111.79 111.27 101.87

indole-benzene 115.48 117.26 109.69

phenol dimer 103.32 104.23 91.84

formic acid dimer 23.86 22.58 16.54

ethene-pentane 105.37 109.99 97.21
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benzene dimer (T-shaped) 98.49 91.44 86.80

acetic acid dimer 54.11 54.26 45.58

peptide-MeOH 35.64 36.29 26.04

benzene-MeOH 70.77 71.31 61.73

cyclopentane-neopentane 157.84 165.26 140.50

Free enthalpies of association of the S12L test set

Table A.4.: Gas phase interaction energies ∆E, thermal corrections ∆GRRHO, free enthalpies of
solvation ∆δGsolv and final enthalpies of association ∆Ga for the S12L test set at
the HF-3c level. All values are given in kcal/mol.

no. complex ∆E ∆GRRHO ∆δGsolv ∆Ga

1a TCNA@Tweezer -31.19 15.80 9.02 -6.37

1b DCB@Tweezer -21.67 15.02 4.33 -2.32

2a π-Syst1@Pincer -26.50 18.28 4.44 -3.78

2b π-Syst2@Pincer -19.68 17.03 2.81 +0.15

3a C60@Catcher -37.19 14.99 5.79 -16.41

3b C70@Catcher -39.24 15.14 6.79 -17.31

4a GLH@Mcycle -31.38 17.22 9.02 -5.14

4b BQ@Mcycle -22.02 17.00 4.58 -0.44

5a BuNH3@CB6 -91.73 15.29 57.07 -19.38

5b PrNH3@CB6 -88.93 14.81 56.36 -17.76

6a FECP@CB7 -142.23 20.77 89.56 -31.91

6b ADOH@CB7 -27.66 16.27 -8.97 -20.36

Health criteria for all proteins

Standard health checks include: (1) clashcores or steric overlaps greater than 0.4 Å per 1000

atoms, (2) percentage of bad side-chain dihedrals or rotamers, (3) number of β-carbon devia-

tions greater than 0.25 Å from the expected position based on the backbone coordinates, (4)

percentage of backbone dihedrals that fall into a favoured region on a Ramachandran plot and

(5) percentage of those, which are Ramachandran outliers, (6) percentage of bad bonds and (7)

percentage of bad angles. Also the MolProbity Score and the backbone RMSD relative to the

experimental starting structure.

Table A.5.: Health criteria, MolProbity score and backbone RMSD for the HFx optimized pro-
tein structures.

No. PDB ID clash poor Rama Rama Cβ dev bad bad MolProbity backbone

cores rotam. favoured outlier bond angle score RMSD

1 1AQG 38 30 0 78 0 0 0 3.95 0.773

2 1EMZ 10 8 0 100 0 10 5 2.18 1.438

3 1LB0 35 17 0 82 0 8 0 3.67 2.133

4 1LB7 24 23 0 100 0 6 6 2.9 1.761

5 1LBJ 30 10 5 85 0 5 5 3.37 1.092

6 1LCX 31 17 0 82 0 8 0 3.61 2.383

7 1LVQ 19 25 0 86 0 0 22 3.48 1.454

8 1LVR 44 38 0 86 0 0 0 3.97 2.343

9 1LVZ 38 10 0 100 0 0 0 2.82 0.725

10 1MZI 31 17 0 82 0 8 0 3.61 2.107
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11 1O53 68 14 0 69 0 13 0 4.03 2.749

12 1ODP 30 13 6 89 0 5 5 3.38 2.656

13 1RIJ 18 11 5 95 0 4 4 2.87 1.123

14 1T2Y 55 0 9 78 0 4 0 2.97 1.893

15 1UAO 36 0 0 100 0 10 0 2.04 0.597

16 1V46 49 0 14 86 0 22 0 2.81 1.046

17 1Y03 12 0 3 91 0 6 3 2.12 4.198

18 1Y49 41 29 14 58 0 0 0 4.13 1.174

19 1YJP 37 17 0 80 0 29 14 3.72 0.877

20 1YT6 90 13 0 75 1 10 10 4.05 1.077

21 2AP7 13 7 6 78 1 10 5 3.04 0.627

22 2CEH 28 19 18 47 0 0 0 3.88 4.149

23 2CSA 38 19 18 53 0 5 5 3.98 1.795

24 2E4E 54 0 13 88 0 30 20 2.82 1.156

25 2EVQ 30 0 0 90 0 8 0 2.52 1.231

26 2FBU 46 18 10 70 0 8 0 3.94 2.111

27 2FXY 28 14 6 82 0 6 0 3.53 2.177

28 2FXZ 29 10 9 91 0 0 0 3.23 2.011

29 2I9M 24 11 0 100 0 11 6 2.67 1.746

30 2JOF 53 7 0 94 0 15 5 3.2 1.294

31 2JTA 45 22 0 63 0 30 20 4.05 1.216

32 2JXF 22 15 4 93 0 3 0 3.19 5.163

33 2K59 15 7 8 92 0 4 4 2.82 2.181

34 2KNP 14 16 0 94 0 3 3 2.99 0.998

35 2KUX 10 8 0 90 0 0 0 2.76 0.565

36 2KVX 24 20 0 88 0 0 0 3.45 0.654

37 2NX6 12 4 0 76 7 4 0 2.81 2.055

38 2NX7 14 0 4 92 0 4 0 2.12 1.285

39 2OL9 11 17 0 100 0 17 17 2.48 0.46

40 2ONW 61 0 25 50 0 0 0 3.23 4.034

41 2OQ9 22 13 0 82 0 4 0 3.39 4.963

42 2PJV 13 0 5 86 0 4 4 2.27 5.211

43 2PV6 34 24 0 90 0 5 0 3.61 2.909

44 2RLJ 18 0 7 86 0 6 6 2.4 2.574

45 2RMW 41 21 25 46 1 8 8 4.08 1.858

46 3FTK 70 17 20 40 0 14 14 4.26 3.291

47 3FTR 66 0 0 75 0 0 0 3.08 3.548

48 3FVA 53 50 25 50 0 17 0 4.45 2.308

49 3NJW 22 7 6 94 0 5 0 2.86 0.451

50 3NVG 51 20 50 50 0 33 17 4.15 3.117

average 34 13 6 81 0.2 8 4 3.26 2.015
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Table A.6.: Health criteria, MolProbity score and backbone RMSD for the protein structures
optimized with HFx including COSMO.

No. PDB ID clash poor Rama Rama Cβ dev bad bad MolProbity backbone

cores rotam. favoured outlier bond angle score RMSD

14 1ODP 6 13 6 94 9 5 0 2.54 0.956

29 2EVQ 20 0 0 100 0 8 0 1.8 0.759

30 2FBU 23 0 0 80 0 0 0 2.59 0.881

35 2JTA 38 11 0 88 0 10 0 3.47 0.789

50 2RLJ 0 0 0 93 0 0 0 0.95 1.411

Table A.7.: Health criteria, MolProbity score and backbone RMSD for the PM6 optimized pro-
tein structures.

No. PDB ID clash poor Rama Rama Cβ dev bad bad MolProbity backbone

cores rotam. favoured outlier bond angle score RMSD

1 1AQG 33 30 0 67 0 0 0 3.99 0.577

2 1EMZ 58 8 5 84 0 5 0 3.58 4.847

3 1LB0 44 17 0 82 0 0 0 3.76 2.392

4 1LB7 55 15 0 79 0 0 0 3.87 2.606

5 1LBJ 55 40 0 85 0 0 0 4.09 2.923

6 1LCX 49 17 0 72 0 0 0 3.91 3.313

7 1LVQ 63 38 0 71 0 0 0 4.3 2.900

8 1LVR 44 75 14 57 0 0 0 4.48 2.060

9 1LVZ - - - - - - - - -

10 1MZI 27 25 9 72 0 8 0 3.79 4.143

11 1O53 52 36 15 52 0 7 0 4.28 1.606

12 1ODP 49 19 11 67 0 0 0 4 3.930

13 1RIJ 60 17 0 86 0 0 0 3.82 1.339

14 1T2Y 89 17 4 57 0 0 0 4.28 2.126

15 1UAO 51 14 0 88 0 10 0 3.67 1.717

16 1V46 66 14 29 57 0 0 0 4.1 2.138

17 1Y03 - - - - - - - - -

18 1Y49 49 14 14 71 0 0 0 3.87 2.065

19 1YJP 37 17 0 60 0 0 0 3.9 2.171

20 1YT6 67 13 13 75 0 10 0 3.92 1.878

21 2AP7 50 14 0 83 0 0 0 3.74 1.716

22 2CEH 63 31 29 35 0 0 0 4.44 4.791

23 2CSA 95 25 12 47 0 0 0 4.49 4.486

24 2E4E 47 17 0 75 0 10 10 3.87 2.033

25 2EVQ 46 20 10 80 0 0 0 3.86 2.974

26 2FBU 23 27 0 50 0 25 8 3.92 3.611

27 2FXY 57 43 13 88 0 0 0 4.08 3.169

28 2FXZ 62 10 18 73 0 0 0 3.84 4.022

29 2I9M 45 33 0 73 0 0 0 4.1 4.474

30 2JOF 42 20 6 89 0 0 0 3.67 1.588

31 2JTA - - - - - - - - -

32 2JXF - - - - - - - - -

33 2K59 78 22 8 77 0 0 0 4.16 2.683

34 2KNP - - - - - - - - -

35 2KUX 64 12 0 89 0 0 0 3.65 0.692

36 2KVX 54 24 0 88 0 4 0 3.84 0.973

37 2NX6 66 16 20 72 0 4 0 4.03 2.190

38 2NX7 - - - - - - - - -

39 2OL9 32 33 0 100 0 0 0 3.15 1.628
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40 2ONW 121 0 25 75 0 17 0 3.34 4.115

41 2OQ9 83 19 5 72 0 0 0 4.17 8.808

42 2PJV 54 9 0 77 0 4 0 3.7 5.752

43 2PV6 - - - - - - - - -

44 2RLJ - - - - - - - - -

45 2RMW - - - - - - - - -

46 3FTK 30 17 0 60 0 0 0 3.81 4.101

47 3FTR 53 0 25 75 0 0 0 2.99 4.022

48 3FVA 42 0 50 50 0 0 0 3.07 4.394

49 3NJW 56 20 6 82 0 0 5 3.91 1.210

50 3NVG 21 20 0 25 0 17 0 3.87 3.047

average 54 21 8 71 0 3 0.6 3.89 2.956

Table A.8.: Health criteria and MolProbity score for the experimentally obtained protein struc-
tures.

No. PDB ID clash poor Rama Rama Cβ dev bad bad MolProbity

cores rotam. favoured outlier bond angle score

1 1AQG 22 30 11 67 1 0 9 3.82

2 1EMZ 6 8 0 100 0 0 0 2.03

3 1LB0 9 33 0 100 0 0 0 2.63

4 1LB7 0 8 0 100 0 0 0 1.17

5 1LBJ 0 15 5 85 0 0 0 1.74

6 1LCX 0 33 0 100 0 0 0 1.66

7 1LVQ 25 50 0 86 4 22 44 3.83

8 1LVR 0 38 0 57 2 0 0 2.63

9 1LVZ 11 0 0 100 0 0 0 1.55

10 1MZI 40 8 9 91 0 0 0 3.3

11 1O53 36 14 8 61 0 0 0 3.82

12 1ODP 6 19 6 78 0 0 0 3.06

13 1RIJ 21 17 0 100 0 0 0 2.74

14 1T2Y 162 33 26 43 0 0 0 4.83

15 1UAO 51 29 0 100 0 0 0 3.29

16 1V46 156 50 29 29 0 0 0 5.01

17 1Y03 5 54 0 94 0 0 0 2.95

18 1Y49 180 14 29 29 0 0 0 4.65

19 1YJP 0 0 0 100 0 0 0 0.5

20 1YT6 7 38 13 50 0 0 0 3.58

21 2AP7 50 29 6 94 0 0 0 3.66

22 2CEH 3 25 24 35 1 0 0 3.24

23 2CSA 23 13 18 29 0 0 0 3.74

24 2E4E 16 17 0 75 0 0 0 3.42

25 2EVQ 0 0 0 90 0 0 0 1.05

26 2FBU 23 0 20 60 0 0 0 3.5

27 2FXY 10 36 6 82 0 0 0 3.44

28 2FXZ 24 20 0 91 0 0 0 3.38

29 2I9M 20 33 0 73 0 0 0 3.77

30 2JOF 0 13 0 100 0 0 0 1.35

31 2JTA 90 56 0 50 0 0 0 4.71

32 2JXF 2 27 4 93 0 0 0 2.51

33 2K59 70 4 8 92 0 0 0 3.22

34 2KNP 40 24 3 90 0 0 0 3.66

35 2KUX 35 8 0 100 0 0 0 2.69

36 2KVX 35 8 4 92 0 0 0 3.19

37 2NX6 43 20 4 92 0 0 0 3.59

38 2NX7 33 14 0 92 0 0 0 3.34
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39 2OL9 0 0 0 100 0 0 0 0.5

40 2ONW 0 0 0 100 0 0 0 0.5

41 2OQ9 26 31 0 86 0 0 0 3.67

42 2PJV 3 0 0 77 0 0 0 1.9

43 2PV6 84 38 0 85 0 0 0 4.25

44 2RLJ 22 0 0 64 0 0 0 2.73

45 2RMW 48 21 8 42 0 0 0 4.17

46 3FTK 0 0 0 100 0 0 0 0.5

47 3FTR 0 0 0 100 0 0 0 0.5

48 3FVA 0 0 0 100 0 0 0 0.5

49 3NJW 0 0 0 88 0 0 0 1.09

50 3NVG 0 0 0 100 0 0 0 0.5

average 29 19 5 81 0.2 0.5 1 2.74
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B. Supporting Information to Chapter 4

Appendix B contains:

• Contributions to ∆Ga and final ∆Ga values for the eight complexes

Contributions to ∆Ga and final ∆Ga values

Table B.1.: Contributions to ∆Ga and final ∆Ga values on the PW6B95-D3/def2-QZVP(-g,-
f)/COSMO-RS//TPSS-D3/def2-TZVP/HF-3c(freq.) for all eight complexes includ-
ing Cl− counterions for 3, 4, 5 and 6. All values are given kcal mol−1.

∆E ∆E
(2)
disp ∆E

(3)
disp ∆GTRRHO ∆δGTsolv ∆Ga

1 -32.58 -20.51 1.73 15.42 8.45 -6.98

2 -26.24 -18.01 1.77 15.94 6.56 -1.96

3 -27.75 -17.40 1.64 20.33 -3.20 -8.99

4 -38.99 -22.94 2.35 21.64 12.15 -2.86

5 -38.37 -23.34 3.75 17.58 1.48 -15.57

6 -46.30 -23.90 3.86 18.52 5.52 -18.39

7 -52.94 -43.95 4.50 18.26 11.8 -18.44

8 -45.80 -31.97 3.87 16.02 11.1 -14.80
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Appendix C contains:

• Contributions to ∆Ga values for the CB7 complexes

• Submitted final relative ∆Ga values for the CB7 complexes

• Contributions to ∆Ga and final ∆Ga values for the OA complexes

• Comparison of the computed with the experimental binding free energies for the

OA hsot with one Na+ counterion for the guest and four or six Na+ counterions for

the host

Contributions to ∆Ga and final ∆Ga values for the CB7 Complexes

Table C.1.: Contributions to ∆Ga and final ∆Ga values on the PW6B95-D3/def2-QZVP(-g,-
f)/COSMO-RS//TPSS-D3-cosmo/def2-TZVP/HF-3c(freq.) for all 14 complexes in-
cluding Cl− counter ions (kcal mol−1).

∆E ∆E
(2)
disp ∆E

(3)
disp ∆GTRRHO ∆δGTsolv ∆Ga

1@CB7 -55.1 -18.1 2.9 19.1 22.2 -10.9

2@CB7 -30.2 -14.1 2.3 15.6 0.4 -11.8

3@CB7 -36.4 -14.0 2.4 17.6 8.0 -8.3

4@CB7 -52.8 -15.5 2.6 18.0 23.4 -8.8

5@CB7 -35.7 -12.7 1.8 18.8 10.2 -4.9

6@CB7 -26.3 -18.8 3.0 17.1 2.8 -3.4

7@CB7 -28.6 -15.4 2.5 16.2 -1.1 -11.1

8@CB7 -31.2 -18.0 2.9 16.7 -2.1 -13.7

9@CB7 -35.6 -19.6 3.2 16.9 -0.2 -15.7

10@CB7 -40.5 -18.7 3.1 17.8 14.1 -5.5

11a@CB7 -28.4 -17.1 2.8 16.0 0.6 -9.0

11b@CB7 -32.7 -16.5 2.7 15.7 0.3 -14.0

12@CB7 -36.8 -24.0 3.8 15.7 -0.6 -17.8

13@CB7 -33.0 -20.1 3.3 16.9 -4.5 -17.3

14@CB7 -39.8 -23.4 3.8 19.2 4.9 -11.9
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Table C.2.: Submitted relative ∆Ga (∆∆Ga,rel) values (reference compound is 1@CB7) in
kcal mol−1.

∆∆Ga,rel ∆∆Ga,rel

2@CB7 -1 10@CB7 5.4

3@CB7 2.6 11@CB7 -3.1

4@CB7 2.1 11a@CB7 1.9

5@CB7 6 11b@CB7 -3.1

6@CB7 7.5 12@CB7 -6.9

7@CB7 -0.2 13@CB7 -6.4

8@CB7 -2.8 14@CB7 -1.1

9@CB7 -3.9

Contributions to ∆Ga and final ∆Ga values for the OA Complexes

Table C.3.: Contributions to ∆Ga and final ∆Ga values on the PW6B95-D3/def2-QZVP(-g,-
f)/COSMO-RS//TPSS-D3-cosmo/def2-TZVP/HF-3c(freq.) for all nine complexes
including nine Na+ counter ions and 26 water molecules (kcal mol−1). The TPSS-
D3(BJ)/def2-TZVP to PW6B95-D3(BJ)/def2-QZVP’ correction ∆∆Etq is taken
from the fully TPSS-D3(BJ)/def2-TZVP + COSMO (ε=78) optimized structure
of the anionic guest with the neutral host. Results obtained by calculating single-
point energies after re-substituting eight Na+ counter ions by H and removing the
24 coordinating water molecules are given in parentheses. The hydrogen atoms are
placed in a relative geometry derived from a fully HF-3c optimized structure of the
neutral host: d(H-O)= 1.0 Å, α(H-O-C)= 110 degrees, θ(H-O-C-O)= 0 degrees.

∆E ∆E
(2)
disp ∆E

(3)
disp ∆∆Etq ∆GTRRHO ∆δGTsolv ∆Ga

15@OA -34.0 (-32.4) -33.5 (-33.0) 2.9 (2.9) 1.1 13.9 8.7 (7.1) -7.4 (-7.5)

16@OA -38.5 (-37.8) -36.5 (-36.0) 3.0 (2.9) 1.1 17.2 10.2 (9.2) -7.0 (-7.4)

17@OA -35.1 (-34.7) -38.2 (-37.7) 3.3 (3.2) -0.5 17.8 4.8 (3.7) -9.7 (-10.5)

18@OA -39.4 (-37.7) -34.9 (-34.5) 2.8 (2.7) 1.3 16.4 10.0 (8.5) -8.9 (-8.7)

19@OA -32.4 (-30.5) -33.5 (-33.0) 2.9 (2.8) 0.8 15.0 6.3 (4.5) -7.4 (-7.4)

20@OA -29.6 (-28.9) -31.4 (-31.0) 3.1 (3.0) 2.4 16.0 5.9 (4.6) -2.2 (-2.8)

21@OA -34.0 (-33.4) -35.2 (-34.8) 3.5 (3.4) -1.2 16.6 5.2 (4.3) -10.0 (-10.3)

22@OA -34.6 (-32.0) -36.0 (-35.5) 3.3 (3.2) -0.3 15.8 10.7 (8.4) -5.0 (-4.7)

23@OA -31.5 (-30.8) -36.5 (-36.0) 3.5 (3.4) 1.6 16.5 4.4 (3.2) -5.5 (-6.0)
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Table C.4.: Contributions to ∆Ga and final ∆Ga values on the PW6B95-D3/def2-QZVP(-g,-
f)/COSMO-RS//TPSS-D3-cosmo/def2-TZVP/HF-3c(freq.) for all nine complexes
including seven Na+ counter ions and 20 water molecules (kcal mol−1). The TPSS-
D3(BJ)/def2-TZVP to PW6B95-D3(BJ)/def2-QZVP’ correction ∆∆Etq is taken
from the fully TPSS-D3(BJ)/def2-TZVP + COSMO (ε=78) optimized structure
of the anionic guest with the neutral host.

∆E ∆E
(2)
disp ∆E

(3)
disp ∆∆Etq ∆GTRRHO ∆δGTsolv ∆Ga

15@OA -36.5 -33.5 2.7 1.1 13.9 10.6 -8.2

16@OA -32.5 -34.2 2.9 1.1 17.2 4.9 -6.5

17@OA -33.1 -38.6 3.2 -0.5 17.8 3.0 -9.6

18@OA -33.3 -33.8 2.6 1.3 16.4 4.7 -8.2

19@OA -30.9 -33.1 2.7 0.8 15.0 4.3 -8.1

20@OA -27.3 -30.3 2.9 2.4 16.0 3.0 -3.0

21@OA -28.1 -33.4 3.3 -1.2 16.6 0.8 -8.6

22@OA -27.8 -34.5 3.1 -0.3 15.8 5.8 -3.4

23@OA -38.0 -35.3 3.1 1.6 16.5 9.2 -7.6

Table C.5.: Contributions to ∆Ga and final ∆Ga values on the PW6B95-D3/def2-QZVP(-g,-
f)/COSMO-RS//TPSS-D3-cosmo/def2-TZVP/HF-3c(freq.) for all nine complexes
including five Na+ counter ions and 14 water molecules (kcal mol−1). The TPSS-
D3(BJ)/def2-TZVP to PW6B95-D3(BJ)/def2-QZVP’ correction ∆∆Etq is taken
from the fully TPSS-D3(BJ)/def2-TZVP + COSMO (ε=78) optimized structure
of the anionic guest with the neutral host.

∆E ∆E
(2)
disp ∆E

(3)
disp ∆∆Etq ∆GTRRHO ∆δGTsolv ∆Ga

15@OA -31.6 -32.4 2.7 1.1 13.9 6.8 -7.2

16@OA -32.9 -34.9 2.9 1.1 17.2 5.3 -6.3

17@OA -31.9 -38.2 3.2 -0.5 17.8 2.3 -9.1

18@OA -31.8 -35.2 2.7 1.3 16.4 4.6 -6.8

19@OA -30.3 -33.1 2.7 0.8 15.0 3.8 -8.1

20@OA -28.2 -30.4 2.9 2.4 16.0 3.9 -3.1

21@OA -29.0 -33.4 3.3 -1.2 16.6 1.1 -9.2

22@OA -30.6 -35.0 3.1 -0.3 15.8 8.3 -3.6

23@OA -30.3 -35.3 3.2 1.6 16.5 2.9 -6.1
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Table C.6.: Contributions to ∆Ga and final ∆Ga values on the PW6B95-D3/def2-QZVP(-g,-
f)/COSMO-RS//TPSS-D3-cosmo/def2-TZVP/HF-3c(freq.) for all nine complexes
including one Na+ counter ion and two water molecules (kcal mol−1). The position of
the Na+ counterion and two explicit water molecules relative to the guest is obtained
by TPSS-D3(BJ)/def2-TZVP + COSMO (ε=78) geometry optimization of guest 15
+ Na+ + 2H2O: d(Na-O)= 2.4 Å, α(Na-O-C)= 90 degrees, θ(Na-O-C-O)= 0 degrees,
d(O-Na)= 2.4 Å, α(O-Na-O)= 162 degrees, θ(O-Na-O-C)= 4 degrees, d(H-O)=1.0
Å, α(H-O-Na)= 120 degrees, θ(H-O-Na-O)= -129 degrees, d(H-O)= 1.0 Å, α(H-
O-Na)= 120 degrees, θ(H-O-Na-O)= 2 degrees, d(O-Na)= 2.4 Å, α(O-Na-O)= 105
degrees, θ(O-Na-O-C)= -179 degrees, d(H-O)= 1.0 Å, α(H-O-Na)= 120 degrees, θ(H-
O-Na-O)= -130 degrees, d(H-O)= 1.0 Å, α(H-O-Na)= 120 degrees, θ(H-O-Na-O)=
1 degree. The TPSS-D3(BJ)/def2-TZVP to PW6B95-D3(BJ)/def2-QZVP’ correc-
tion ∆∆Etq is taken from the fully TPSS-D3(BJ)/def2-TZVP + COSMO (ε=78)
optimized structure of the anionic guest with the neutral host. The neutral to ionic
correction ∆∆Ena is calculated on the TPSS-D3(BJ)/def2-TZVP + COSMO (ε=78)
level of theory using a structure of the host where the protons of the four benzoic
acid carboxylate groups are replaced by Na+ ions in a relative geometry derived
from a fully HF-3c optimized anionic structure of the host with twelve explicit wa-
ter molecules: d(Na-O)= 2.2 Å are the distances to the coordinating oxygen atoms,
α(Na-O-C)= 109/90/96/93 degrees are the bond angles of the 1st/2nd/3rd/4th Na+,
and θ(Na-O-C-O)= -1/3/1/6 degrees are the corresponding dihedrals.

∆E ∆E
(2)
disp ∆E

(3)
disp ∆∆Etq ∆∆Ena ∆GTRRHO ∆δGTsolv ∆Ga

15@OA -34.7 -34.6 2.7 1.1 0.3 13.9 9.0 -7.6

16@OA -32.6 -34.3 2.8 1.1 0.6 17.2 6.0 -4.9

17@OA -35.3 -39.1 3.1 -0.5 0.6 17.8 5.7 -8.6

18@OA -32.3 -33.2 2.5 1.3 0.5 16.4 4.6 -7.0

19@OA -36.5 -35.2 2.6 0.8 0.1 15.0 9.9 -8.1

20@OA -33.3 -31.2 2.9 2.4 0.7 16.0 8.3 -3.0

21@OA -31.1 -32.7 3.2 -1.2 0.3 16.6 2.8 -9.4

22@OA -19.6 -37.5 3.2 -0.3 0.5 15.8 15.1 14.9

23@OA -35.6 -35.4 3.2 1.6 0.7 16.5 7.7 -5.9
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Table C.7.: Contributions to ∆Ga and final ∆Ga values on the PW6B95-D3/def2-QZVP(-g,-
f)/COSMO-RS//TPSS-D3-cosmo/def2-TZVP/HF-3c(freq.) for all nine complexes
of neutral host and anionic guest (kcal mol−1). The neutral to ionic correction
∆∆Ena is calculated on the TPSS-D3(BJ)/def2-TZVP + COSMO (ε=78) level of
theory using a structure of the host where the protons of the four benzoic acid car-
boxylate groups are replaced by Na+ ions in a relative geometry derived from a fully
HF-3c optimized anionic structure of the host with twelve explicit water molecules:
d(Na-O)= 2.2 Å are the distances to the coordinating oxygen atoms, α(Na-O-C)=
109/90/96/93 degrees are the bond angles of the 1st/2nd/3rd/4th Na+, and θ(Na-
O-C-O)= -1/3/1/6 degrees are the corresponding dihedrals. ∆Ga values submitted
to SAMPLE4 are given in parentheses. The main difference to the ∆Ga values pre-
sented in here is the missing TPSS-D3(BJ)/def2-TZVP to PW6B95-D3(BJ)/def2-
QZVP’ correction ∆∆Etq given in C.3, C.4, C.5, and C.6. Furthermore the ∆∆Ena
term in C.6 and this Table is replaced by 1.36 kcal mol−1 which was the average
value of the neutral to ionic corrections for the first seven complexes (15@OA to
21@OA) upon submission. Finally, for complexes 21@OA and 23@OA a structure
with more negative ∆Ga found after submission is considered here, and for complex
22@OA instead of the structure with lowest ∆Ga a less favourable structure is taken
in which the carboxylate group of cyclopentanecarboxylic acid points out of instead
of into the binding pocket.

∆E ∆E
(2)
disp ∆E

(3)
disp ∆∆Ena ∆GTRRHO ∆δGTsolv ∆Ga

15@OA -45.8 -30.0 2.5 1.8 13.9 27.6 0.1 (-1.5)

16@OA -45.0 -32.9 2.7 0.9 17.2 22.5 -1.7 (-2.4)

17@OA -48.6 -37.8 3.1 1.1 17.8 21.6 -5.0 (-4.2)

18@OA -44.0 -31.9 2.5 1.1 16.4 20.2 -3.9 (-4.8)

19@OA -44.9 -30.3 2.5 1.7 15.0 24.4 -1.3 (-2.5)

20@OA -45.5 -28.4 2.7 1.9 16.0 27.5 2.7 (-0.3)

21@OA -43.4 -31.4 3.1 0.8 16.6 16.4 -6.5 (-1.5)

22@OA -47.8 -32.9 2.8 2.1 15.8 40.2 13.1 (11.6)

23@OA -47.9 -33.1 3.0 1.8 16.5 25.6 -0.9 (-0.9)
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Figure C.1.: Contributions to ∆Ga and final ∆Ga values on the PW6B95-D3/def2-QZVP(-g,-
f)/COSMO-RS//TPSS-D3-cosmo/def2-TZVP/HF-3c(freq.) for all nine OA com-
plexes in kcal mol−1 of fully deprotonated anionic host and anionic guest including
nine Na+ counter ions and 26 water molecules (a), partially deprotonated anionic
host and anionic guest including five Na+ counter ions and 14 water molecules (b,
artially deprotonated anionic host and anionic guest including seven Na+ counter
ions and 20 water molecules (c, neutral host and anionic guest including one Na+

counter ion and two water molecules (d), and neutral host and anionic guest (e).
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Comparison of the computed with the experimental binding free energies
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Figure C.2.: Computed vs. experimental binding free energy (kcal mol−1) for the anionic guests
with one Na+ counterion in the anionic octa-acid host with four (top) and six
(bottom) Na+ counterions. Geometries of the 15@OA complex are shown on the
right.

253



D. Supporting Information to Chapter 6

Appendix C contains:

• Electronic energies of all S30L complexes for all used density functionals and semiem-

pirical methods

• Thermal corrections of all S30L complexes for all used methods

• Solvation contributions of all S30L complexes for all used methods

• Validation of thermal corrections obtained with semiempirical methods

• Comparison of the reference binding energies of 11 complexes with other methods

• Statistics (MAD, MD) without charged systems

Electronic energies of all S30L complexes for all used density functionals and

semiempirical methods

Table D.1.: ∆E obtained with all tested functionals for the S30L set. The two body dispersion

contribution ∆E
(2)
disp is included in ∆E, the three body dispersion ∆E

(3)
disp is given

independently. In case of S30L-CI counter ions were included for the complexes
indicated with a ”CI”.

PW6B95-D3 TPSS-D3 B3LYP-D3 PBE-D3 ωB97xD3 ∆E
(3)
disp

1 -32.08 -33.011 -35.09 -29.77 -33.18 1.83

2 -21.72 -21.798 -23.01 -19.43 -21.78 1.27

3 -26.17 -22.047 -27.92 -19.97 -21.47 1.95

4 -21.07 -19.900 -21.78 -19.28 -20.35 0.74

5 -35.19 -34.818 -38.05 -30.85 -34.66 2.28

6 -31.38 -33.556 -35.85 -24.15 -24.86 1.88

7 -34.93 -35.952 -39.58 -31.63 -35.39 1.99

8 -39.73 -41.283 -45.35 -36.46 -41.00 2.22

9 -34.98 -37.468 -37.46 -30.58 -32.14 3.30

10 -36.05 -38.339 -38.77 -31.33 -33.67 3.61

11 -43.42 -46.703 -46.94 -37.95 -39.25 5.12

12 -42.88 -46.069 -46.48 -37.16 -39.19 5.07

13 -28.82 -26.917 -30.18 -25.77 -31.55 2.93

14 -31.32 -29.294 -33.21 -26.90 -33.00 3.04

15 -18.17 -22.362 -21.21 -21.41 -15.91 0.33

16 -24.51 -27.923 -26.92 -25.20 -20.09 0.49

17 -32.92 -32.803 -36.87 -33.29 -37.22 1.05

18 -21.41 -22.039 -25.73 -22.25 -24.58 1.03

19 -16.64 -16.468 -17.26 -16.91 -19.11 1.63

20 -20.18 -19.875 -21.45 -20.50 -23.75 2.33

21 -28.98 -27.347 -30.95 -26.81 -32.54 3.42
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22 -33.89 -37.786 -38.52 -38.80 -37.39 0.11

23 -58.67 -57.312 -50.45 -67.86 -64.47 -0.26

24 -139.23 -133.727 -143.77 -132.30 -146.92 5.88

25 -33.17 -35.672 -37.78 -29.71 -34.39 2.70

26 -33.14 -35.709 -37.80 -29.80 -34.50 2.74

27 -84.41 -83.021 -87.67 -82.67 -89.02 2.33

28 -80.68 -79.641 -83.44 -79.02 -84.80 1.92

29 -54.79 -53.830 -56.00 -54.77 -56.77 0.52

30 -50.59 -50.187 -52.96 -50.40 -52.60 0.73

23-CI -63.11 -71.391 -69.46 -72.44 -65.68 -0.05

24-CI -74.16 -68.629 -77.60 -55.23 -81.44 5.77

25-CI -35.82 -35.672 -37.78 -31.20 -35.68 2.30

26-CI -35.62 -35.709 -37.80 -34.31 -35.50 1.90

27-CI -34.63 -34.458 -37.83 -34.31 -39.34 2.49

28-CI -29.41 -29.701 -32.40 -29.44 -33.74 2.53

29-CI -47.18 -44.473 -49.07 -44.18 -46.72 0.49

30-CI -47.70 -45.667 -51.08 -44.71 -46.46 1.01

Table D.2.: ∆Esemiempel obtained with all tested semiempirical methods for the S30L set. The

two body dispersion contribution ∆E
(2)
disp is included. In case of S30L-CI counter

ions were included for the complexes indicated with a ”CI”.

HF-3c DFTB-D3 PM6-D3 PM6-D3H+ PM6-D3H2 PM6-D3H4 PM7 OM2-D3

1 -30.89 -28.62 -29.42 -29.42 -29.42 -31.53 -38.49 -32.28

2 -21.26 -19.88 -19.64 -19.64 -19.64 -21.75 -26.70 -20.47

3 -20.78 -23.94 -25.74 -24.23 -24.94 -27.85 -32.04 -24.94

4 -19.22 -18.79 -20.17 -18.93 -19.97 -22.28 -24.23 -

5 -34.38 -34.07 -34.92 -34.74 -34.74 -37.03 -45.56 -34.64

6 -25.71 -24.61 -26.04 -26.01 -26.01 -28.14 -35.51 -23.59

7 -39.88 -38.78 -31.20 -31.20 -31.20 -33.31 -49.45 -30.04

8 -45.32 -44.03 -35.17 -35.17 -35.17 -37.28 -57.31 -33.89

9 -37.37 -36.37 -30.39 -30.39 -30.39 -32.50 -57.19 -32.71

10 -39.26 -38.10 -31.82 -31.82 -31.82 -33.92 -60.79 -33.68

11 -39.28 -44.49 -41.49 -41.48 -41.48 -43.59 -75.20 -

12 -39.69 -44.33 -41.69 -41.69 -41.69 -43.80 -75.97 -

13 -28.06 -26.75 -28.17 -27.77 -27.63 -30.27 -35.81 -25.45

14 -29.68 -30.64 -29.90 -29.68 -29.68 -32.01 -36.04 -

15 -38.97 -36.63 -31.82 -31.82 -35.38 -35.56 -4.03 -

16 -52.12 -42.40 -41.36 -41.35 -48.25 -45.79 -8.91 -

17 -28.56 -31.15 -43.63 -42.53 -45.00 -45.74 -45.09 -36.47

18 -20.47 -23.08 -33.03 -32.42 -32.32 -35.14 -34.48 -26.67

19 -16.41 -17.15 -19.66 -21.89 -22.03 -21.77 -19.26 -15.43

20 -19.79 -22.62 -25.62 -27.38 -27.52 -27.72 -25.23 -20.75

21 -27.62 -28.22 -28.12 -28.33 -27.22 -30.23 -33.16 -23.82

22 -39.52 -33.76 -42.37 -42.22 -44.57 -44.47 -49.26 -34.99

23 -66.17 -41.69 -57.24 -58.79 -57.22 -59.35 -72.11 -50.40

24 -144.10 -162.05 -166.42 -164.68 -164.68 -168.53 -183.77 -162.21

25 -34.08 -29.38 -24.33 -24.33 -24.33 -26.44 -50.48 -27.11

26 -34.28 -29.49 -24.11 -24.11 -24.11 -26.22 -50.85 -26.97

27 -92.41 -95.17 -95.32 -94.92 -92.76 -97.43 -112.65 -94.98

28 -88.76 -89.88 -92.37 -91.95 -90.13 -94.48 -110.49 -91.20

29 -68.72 -58.39 -41.06 -49.80 -59.37 -77.21 -53.64 -89.93

30 -65.11 -56.79 -73.22 -46.69 -59.77 -76.41 -53.72 -147.72

23-CI -72.46 -47.47 -110.74 -55.88 -112.28 -124.59 -68.76 -
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24-CI -64.82 -87.86 -82.35 -81.14 -81.14 -84.60 -83.11 -

25-CI -37.76 -34.71 -27.86 -27.86 -27.86 -30.10 -50.81 -

26-CI -37.80 -34.77 -27.57 -27.58 -27.58 -29.82 -51.37 -

27-CI -38.65 -42.97 -42.85 -42.20 -39.77 -45.09 -58.42 -

28-CI -33.89 -36.83 -39.59 -38.28 -37.44 -41.83 -56.81 -

29-CI -71.57 -61.74 -51.78 -47.08 -52.94 -60.20 -41.36 -

30-CI -81.65 -61.16 -58.02 -55.89 -57.27 -63.58 -42.98 -

Thermal corrections of all S30L complexes for all used methods

Table D.3.: ∆GRRHO obtained with all tested semiempirical methods for the S30L set. In case
of S30L-CI counter ions were included for the complexes indicated with a ”CI”.

HF-3c DFTB-D3 PM6-D3

1 15.80 14.54 13.35

2 15.01 14.63 14.79

3 16.65 23.12 16.01

4 15.48 15.04 15.22

5 17.46 22.52 15.28

6 15.71 15.42 14.18

7 21.54 22.53 20.91

8 23.87 24.45 21.58

9 16.83 13.59 16.53

10 17.45 13.77 16.56

11 16.59 14.33 18.55

12 17.42 14.36 18.99

13 14.94 14.52 15.82

14 15.52 15.65 15.43

15 17.84 16.41 19.96

16 19.31 16.75 19.61

17 17.18 16.87 16.29

18 16.15 16.13 15.62

19 15.54 14.97 16.63

20 16.50 16.20 16.11

21 16.26 17.46 18.74

22 19.60 19.31 23.78

23 18.27 16.07 17.90

24 21.39 20.77 26.71

25 17.60 18.17 17.95

26 17.84 17.51 16.59

27 15.29 18.30 13.03

28 14.82 17.05 12.16

29 19.54 15.73 16.10

30 20.13 17.18 22.17

23-CI 18.27 16.07 17.90

24-CI 21.39 20.77 26.71

25-CI 17.60 18.17 17.95

26-CI 17.84 17.51 16.59

27-CI 15.29 18.30 13.03

28-CI 14.82 17.05 12.16

29-CI 19.54 15.73 16.10

30-CI 20.13 17.18 22.17

Solvation contributions of all S30L complexes for all used methods
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Table D.4.: ∆Gsolv obtained with all tested continuum solvation models for the S30L set. In
case of S30L-CI counter ions were included for the complexes indicated with a ”CI”.

COSMO-RS 12 13 13 fine 14 14 fine SMD

1 9.04 9.08 9.28 9.31 9.8 12.97

2 4.37 4.34 4.35 4.48 5.18 8.71

3 5.39 5.62 5.51 5.77 6.5 6.62

4 2.99 3.44 2.94 3.35 3.1 5.57

5 6.33 6.47 6.48 6.70 8.91 11.04

6 5.19 5.39 5.50 5.50 7.67 10.39

7 8.02 8.23 8.78 8.33 10.69 10.93

8 10.72 10.88 11.57 11.05 13.84 12.09

9 6.25 5.52 5.75 7.06 8.35 14.68

10 7.23 6.33 6.58 8.05 9.75 16.25

11 11.96 7.80 8.07 11.13 13.08 18.21

12 12.30 7.99 8.21 11.41 14.25 17.71

13 5.89 5.36 5.38 6.08 6.37 6.58

14 6.81 6.16 5.60 6.97 7.28 7.42

15 -1.16 -1.27 -1.18 -0.95 -1.71 -0.31

16 0.71 0.39 0.47 0.89 -0.09 1.48

17 7.90 7.74 7.47 8.09 8.03 12.82

18 3.86 4.08 4.20 4.09 5.33 11.54

19 -1.38 -2.51 -1.08 -1.43 -1.62 0.54

20 -2.56 -3.59 -2.15 -2.55 -2.9 -0.70

21 -9.11 -7.95 -6.15 -8.21 -9.24 3.43

22 11.3 10.78 8.80 11.47 8.78 13.18

23 25.75 25.69 23.96 26.25 23.65 34.76

24 83.85 86.27 89.42 85.54 81.27 88.17

25 3.96 3.17 2.22 3.70 4.86 3.27

26 3.73 3.00 1.85 3.60 4.49 4.20

27 54.33 57.14 59.99 56.09 52.55 48.75

28 54.05 56.79 59.59 55.77 53.26 50.43

29 25.80 27.40 28.60 27.04 26.901 29.74

30 21.46 23.22 24.61 22.97 23.278 23.35

23-CI 27.428 33.92 31.71 34.69 30.94 20.37

24-CI 27.21 28.00 29.32 27.27 27.4 26.43

25-CI 8.10 7.42 7.07 7.96 7.76 7.43

26-CI 7.89 7.25 7.34 7.78 7.51 8.23

27-CI 10.59 10.94 14.12 10.44 10 7.05

28-CI 8.45 8.67 11.44 8.20 8.77 8.19

29-CI 22.08 21.03 19.77 21.63 20.12 16.17

30-CI 26.74 25.74 24.26 26.70 25.08 16.71

257



D. Supporting Information to Chapter 6

Validation of thermal corrections obtained with semiempirical methods

Table D.5.: Comparison of ∆GRRHO obtained with semi-empirical methods with those obtained
from TPSS-D3/def2-TZVP calculations for eight complexes. The MAD and MD is
given w.r.t. TPSS-D3.

TPSS-D3 HF-3c DFTB-D3 PM6-D3

1 14.4 15.8 16.8 13.3

3 16.8[a] 18.3 23.6 16.0
7 21.4 21.5 21.8 19.1

9 16.8[a] 17.0 18.7 16.8
15 18.3 17.8 16.4 20.0

17 17.4[a] 17.2 17.3 16.3
22 19.2 18.7 16.1 17.9
25 18.1 18.1 18.2 17.9

MAD 0.4 1.6 1.1
MD 0.1 0.3 0.4

[a] Taken from: S. Grimme Chem. Eur. J., 2012, 18, 9955-9964.

Comparison of the reference binding energies of 11 complexes with other methods

Table D.6.: Comparison of the reference binding energies ∆Eemp for the complexes that were
already contained in the S12L set, with the old empirical reference values and binding
energies obtained from DFT-SAPT and DQMC calculations.For convenience we also
provide PBE-MBD* and PBE-D3+ATM values.

∆E ∆E ∆E ∆E

∆Eemp ∆Eempold
[a] (DFT-SAPT)[b] (DQMC)[c] (PBE-MBD*)[c] (PBE-D3+ATM)

1 -29.0 -30.0 -30.00 -27.2 -29.0 -27.9
2 -20.8 -20.4 -19.3 -17.2 -18.8 -18.2
3 -23.5 -24.8 -27.0 - - -18.0
4 -20.3 -20.7 -22.0 - - -18.5
9 -28.4 -27.9 -33.9 -25.8 -28.3 -27.3
10 -29.8 -29.3 -35.2 - - -27.7
17 -33.4 -34.8 -33.0 -33.4 -33.8 -32.2
18 -23.3 -23.2 -21.5 - - -21.2
21 -24.2 -22.6 -27.7 -24.1 -27.4 -23.4
27 -82.2 -77.4 -82.4 -81.0 -82.1 -80.3
28 -80.1 -77.1 -78.7 - - -77.1

[a] Taken from: T. Risthaus, S. Grimme J. Chem. Theory Comp., 2013, 9, 1580–1591.
[b] Taken from: A. Heßelmann, T. Korona J. Chem. Phys., 2014, 141, 094107.

[c] Taken from: A. Ambrosetti, D. Alfè, R. A. DiStasio, A. Tkatchenko J. Phys. Chem. Lett., 2014, 5, 849–855.
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Statistics (MAD, MD) without charged systems
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Figure D.1.: MADs (and MDs) for several combination of functionals (PW6B95-D3, B3LYP-
D3, TPSS-D3 and PBE-D3 for ∆E), semi-empirical methods for frequencies (HF-
3c, DFTB-D3 and PBE-D3 for ∆GTRRHO), and continuum solvation models (SMD
and COSMO-RS with several parametrizations for ∆δGsolv) w.r.t. to experimental
∆Ga for the S30L test set without the charged system 23 to 30. The three body

dispersion contribution ∆E
(3)
disp is included in ∆E.
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Appendix E contains:

• Experimental details for the kinetic studies

• Experimental details for the cyclic voltammetry

• Details on the DigiSim Simulations

• Contributions to the reaction free energies of the hydrochloride adduct formation

Experimental details for the kinetic studies

General procedure for RPKA runs:

All kinetic runs were carried out using a Mettler-Toledos ReactIR 4000 fitted with SiComp

probe and running iCIR software 4.2.26. To a two neck rbf manganese (9.5 mg, 0.173 mmol)

and Hex3 · HCl (60.5 mg, 0.197 mmol) were added and attached with a reflux condenser inside

glove box. This was taken out and fixed to reactIR probe and flushed with argon. An air

background (64 scans) was obtained and 11.5 ml of THF was added to the rbf through septa

and started heating with an oil bath previously heated to 60.0 ◦C for 15 min and the iCIR

software was initiated to obtain data. IR spectra were collected every minute till the completion

of the reaction. The Cp2TiCl2 (21.4 mg, 0.0859 mmol) in 2.0 ml of THF was added after 4.0–5.0

minutes of starting the reaction and washed with 0.25 ml of THF. The reaction mixture was

refluxed until the appearance of green color indicative of formation of Ti(III) and epoxide (10)

(100.1 mg, 0.418 mmol) in 1 ml of THF was added and washed with 0.2 ml THF. The contents

were continued refluxing till the end of reaction as monitored by reactIR.

Table E.1.: Conditions for Reaction with Hex3N ·HCl salt.

10 / M Hex3N ·HCl / M Mn / M Cp2TiCl2 / M Temperature / ◦C

0.0275 0.0132 0.0115 0.0057 60.0 ± 5

0.0275 0.0264 0.0115 0.0057 60.0 ± 5

0.0275 0.0528 0.0115 0.0057 60.0 ± 5

Experimental details for the cyclic voltammetry

Materials: THF was distilled over potassium under an atmosphere of argon. Tetrabutylammo-

niumhexafluorophosphate, Bu4NPF6, and Tetrabutylammoniumiodide, Bu4NI, were commer-

cially available in electrochemical grade from Aldrich and were stored in a glovebox under an

atmosphere of argon. The additives LiCl, nBu4N+Cl–, nHex3N·HCl, 2,4,6-collidinehydrochloride
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and pyridinehydrochloride were dried under vacuum and stored in a glovebox under an atmo-

sphere of argon.

Apparatus: All handling of chemicals and the cyclic voltammetric experiments were per-

formed in a glovebox under an atmosphere of argon. The cyclic voltammograms were recorded

by a 600D or a 1140D Electrochemical Analyzer/Workstation (CH-Instruments). The working

electrode was a glassy carbon disk of diameter 1 mm. The electrode surface was polished using

0.25 µm diamond paste (Struers A/S), followed by cleaning in an ethanol bath. The counter

electrode consisted of a platinum coil melted into glass, while a Ag/AgI electrode (silver wire

immersed in a Pyrex tube containing 0.2 M Bu4NPF6 + 0.02 M Bu4NI in THF) separated

from the main solution by a ceramic frit served as the reference electrode. All potentials were

reported against the Fc+/Fc redox couple, the potential of which is equal to 0.52 V vs. SCE

in 0.2 M Bu4NPF6/THF. All cyclic voltammograms were recorded using the IR compensation

mode of the CH-Instrument Electrochemical Analyzer/Workstation.

Procedure: In the cyclic voltammetric experiments 0.77 g of Bu4NPF6 (2.0 mmol) and a

small magnetic bar were added to the electrochemical cell. 9 mL of freshly distilled THF, 1 mL

of the appropriate standard solution containing the complex or the zinc-reduced complex and

the appropriate amount of additive were added to the cell and the solution was stirred. At the

end of each series of experiments a small amount of ferrocene was added and the potential of

the Fc+/Fc redox couple was measured.

Details on the DigiSim-Simulations

(C5H4CN)CpTiCl2: Simulation parameters and input values (using DigiSim syntax) for the

simulation of the voltammograms of (C5H4CN)CpTiCl2.

Heterogeneous reactions (electrode reactions) E[a] α k
[b]
s

(C5H4CN)CpTiCl2 + e = (C5H4CN)CpTiCl2
– -1.00±0.03 0.5 6× 10−3

[CpTiCl2]2
+ + e = [CpTiCl2]2 -0.87±0.03 0.5 1× 10−3

CpTiCl2
+ + e = CpTiCl2 -0.85±0.03 0.5 6× 10−3

Homogeneous reactions K[c] k
[d]
f k

[d]
b

2 CpTiCl2 = [CpTiCl2]2 1 10 10

(C5H4CN)CpTiCl2
– = CpTiCl2 + (C5H4CN)– 1× 104 10 1× 10−3

[a] In V vs. Fc+/Fc. [b] In cm s−1 [c] In Mx according to the reaction in question. [d] In M-x s−1 according to

the reaction in question. [e] Equilibrium constants are determined automatically from square scheme thermodynamics in

DigiSim.

Other input parameters (in DigiSim syntax):

Estart (V): 0 cycles: 1

Eswitch (V): -1.80 electrode geometry: planar

Eend (V): 0 area (cm2): 0.00785

Temperature (K): 298.2 diffusion: semi-infinite

Ru (Ohms): 0 pre-equilibrium: disabled

Cdl (F): 0

Diffusion coefficients:
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(C5H4COOMe)CpTiCl2, (C5H4COOMe)CpTiCl2
–, CpTiCl2

+: 6× 10−6 cmss−1

(C5H4COOMe)–, CpTiCl2, [CpTiCl2]2, [CpTiCl2]2
+: 1× 10−5 cmss−1

(C5H4Cl)CpTiCl2: Simulation parameters and input values (using DigiSim syntax) for the

simulation of the voltammograms of (C5H4Cl)CpTiCl2.

Heterogeneous reactions (electrode reactions) E[a] α k
[b]
s

Heterogeneous reactions (electrode reactions) Ea α kbs
(C5H4Cl)CpTiCl2 + e = (C5H4Cl)CpTiCl2

– –1.20±0.03 0.5 6× 10−3

(C5H4Cl)CpTiCl + + e = (C5H4Cl)CpTiCl –0.73±0.03 0.5 1× 10−3

Homogeneous reactions Kc kdf kdb

(C5H4Cl)CpTiCl2
– = (C5H4Cl)CpTiCl + Cl– 6× 10−4 2× 104 3.3× 107

(C5H4Cl)CpTiCl2 = (C5H4Cl)CpTiCl+ + Cl– 4.5× 10−11 1 2.2× 1010

[a] In V vs. Fc+/Fc. [b] In cm s−1 [c] In Mx according to the reaction in question. [d] In M-x s−1 according to

the reaction in question. [e] Equilibrium constants are determined automatically from square scheme thermodynamics in

DigiSim.

Other input parameters (in DigiSim syntax):

Estart (V): 0 cycles: 1

Eswitch (V): -2 electrode geometry: planar

Eend (V): 0 area (cm2): 0.00785

Temperature (K): 298.2 diffusion: semi-infinite

Ru (Ohms): 0 pre-equilibrium: disabled

Cdl (F): 0

Diffusion coefficients: 1.3× 10−5 cmss−1

(C5H4Cl)2TiCl2: Simulation parameters and input values (using DigiSim syntax) for the

simulation of the voltammograms of (C5H4Cl)2TiCl2.

Heterogeneous reactions (electrode reactions) Ea α kbs

(C5H4Cl)2TiCl2 + e = (C5H4Cl)2TiCl2
– -1.12±0.03 0.5 9× 10−3

(C5H4Cl)2TiCl+ + e = (C5H4Cl)2TiCl -0.57±0.03 0.5 1× 10−3

Homogeneous reactions Kc kdf kdb

(C5H4Cl)2TiCl2 = (C5H4Cl)2TiCl+ + Cl– 4.2× 10−12 1 3.5× 1013

(C5H4Cl)2TiCl2
– = (C5H4Cl)2TiCl + Cl– 7× 10−4 2× 104 2.9× 10−6

[a] In V vs. Fc+/Fc. [b] In cm s−1 [c] In Mx according to the reaction in question. [d] In M-x s−1 according to

the reaction in question. [e] Equilibrium constants are determined automatically from square scheme thermodynamics in

DigiSim.

Other input parameters (in DigiSim syntax):

Estart (V): 0 cycles: 1

Eswitch (V): -2 electrode geometry: planar

Eend (V): 0 area (cm2): 0.00785

Temperature (K): 298.2 diffusion: semi-infinite

Ru (Ohms): 0 pre-equilibrium: disabled

Cdl (F): 0
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Diffusion coefficients: 1× 10−5 cmss−1

(C5H4tBu)CpTiCl2 Simulation parameters and input values (using DigiSim syntax) for the

simulation of the voltammograms of (C5H4tBu)CpTiCl2.

Heterogeneous reactions (electrode reactions) Ea α kbs

(C5H4tBu)CpTiCl2 + e = (C5H4tBu)CpTiCl2
– -1.36±0.03 0.5 0.005

(C5H4tBu)CpTiCl+ + e = (C5H4tBu)CpTiCl -0.97±0.03 0.5 6× 10−5

Homogeneous reactions Kc kdf kdb

(C5H4tBu)CpTiCl2
– = (C5H4tBu)CpTiCl + Cl– 8× 10−5 2× 104 2.5× 108

(C5H4tBu)CpTiCl2 = (C5H4 tBu)CpTiCl+ + Cl– 4.5× 10−11 1 2.2× 1010

[a] In V vs. Fc+/Fc. [b] In cm s−1 [c] In Mx according to the reaction in question. [d] In M-x s−1 according to

the reaction in question. [e] Equilibrium constants are determined automatically from square scheme thermodynamics in

DigiSim.

Other input parameters (in DigiSim syntax):

Estart (V): 0 cycles: 1

Eswitch (V): -1.60 electrode geometry: planar

Eend (V): 0 area (cm2): 0.00785

Temperature (K): 298.2 diffusion: semi-infinite

Ru (Ohms): 0 pre-equilibrium: disabled

Cdl (F): 0

Diffusion coefficients:6× 10−6 cmss−1

(C5H4COOMe)2CpTiCl2 Simulation parameters and input values (using DigiSim syntax)

for the simulation of the voltammograms of (C5H4COOMe)2TiCl2.

Heterogeneous reactions (electrode reactions) Ea α kbs

(C5H4COOMe)2TiCl2 + e = (C5H4COOMe)2TiCl2
– -1.01±0.03 0.5 6× 10−2

(C5H4COOMe)TiCl2
+ + e = (C5H4COOMe)TiCl2 -0.79±0.03 0.5 1× 10−2

TiCl22
+ + e = TiCl2 -0.58±0.03 0.5 1× 10−2

Homogeneous reactions Kc kdf kdb

(C5H4COOMe)TiCl2 = TiCl2
+ + (C5H4COOMe) 1× 104 0.5 5× 10−5

(C5H4COOMe)2TiCl2
– = (C5H4COOMe)TiCl2 + (C5 H4COOMe– 1× 104 0.12 1.2× 10−5

[a] In V vs. Fc+/Fc. [b] In cm s−1 [c] In Mx according to the reaction in question. [d] In M-x s−1 according to

the reaction in question. [e] Equilibrium constants are determined automatically from square scheme thermodynamics in

DigiSim.

Other input parameters (in DigiSim syntax):

Estart (V): -020 cycles: 1

Eswitch (V): -1.60 electrode geometry: planar

Eend (V): -0.20 area (cm2): 0.00785

Temperature (K): 298.2 diffusion: semi-infinite

Ru (Ohms): 0 pre-equilibrium: disabled

Cdl (F): 0

Diffusion coefficients:1× 10−5 cmss−1
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Appendix F contains:

• Synthetic details

• Details on the crystal structure determinations

• Calculated CD spectra including the rotatory strength for CAM-B3LYP

Synthetic details

General Information. All reactions with moisture or air sensitive substances were performed

under argon according by using Schlenk techniques with oven-dried glass ware. Thin-layer

chromatography was performed with aluminum TCL plates (silica gel 60F254). Detection was

carried out under UV light with 254 and 366 nm. Products were purified via column chromatog-

raphy by using silica gel 60 (70–230 mesh). 1H NMR chemical shifts are reported on the δ scale

(ppm) relative to residual nondeuterated solvent as the internal standard. The 13C {1H} NMR

chemical shifts are reported on the δ scale (ppm) relative to deuterated solvent as the inter-

nal standard. Signals were assigned on the basis of 1H, 13C, H,H–COSY, HMQC, and HMBC

NMR experiments. Mass spectra were recorded as EI or as QToF-ESI spectra. Chiral ana-

lytical and semipreparative stationary phases CHIRALPAK IA (column size 0.46 cm × 25 cm

respectively 1 cm × 25 cm, equipped with precolumns of the same diameter and 2 cm length)

and chiral analytical and preparative stationary phases CHIRALPAK IB (column size 0.46 cm

× 25 cm respectively 2.5 cm × 20 cm, equipped with precolumns of the same diameter and

2 cm length) were applied and solvent mixtures of n-heptane (HPLC quality) and chloroform

(p.a. stabilized with ethanol) and n-hexane (HPLC qualitiy) and ethanol (p.a.) and 2-propanol

(HPLC quality) were used. Circular dichroism spectroscopy was performed using ethanol or

chloroform (p.a.) as solvents. Most solvents were dried, distilled and stored under argon ac-

cording to standard procedures. All chemicals were used as received from commercial sources.

(rac)-4,15-Dibromo[2.2]paracyclophane [522] was prepared according to a literature protocol.

(rac)-4,15-Dihydroxy[2.2]paracyclophane {(rac)-4}. 7.20 mL of tBuLi (1.9 M in pen-

tane, 13.70 mmol) were added to 40 mL of dry THF at –78 ◦C and stirred for 5 min. To the

flashy yellow solution (rac)-2 (1.00 g, 2.74 mmol) dissolved in THF (20 mL) was added via a

syringe. The mixture is stirred for 1 h at –78 ◦C turning from flashy yellow to pale yellow. Then

B(OiPr)3 (2.06 g, 2.53 mL, 10.96 mmol) was added, and the solution was allowed to slowly warm

to room temperature turning from yellow to colorless, and precipitate was formed. Subsequently

aqueous KOH (0.5 M, 2.74 mL, 1.38 mmol) and H2O2 (35%, 2.00 mL, 21.92 mmol) were added,
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and the solution was stirred for 1 h. The reaction mixture was poured into water and was ex-

tracted with Et2O (3 × 60 mL). The combined organic layers were washed with brine and dried

over MgSO4. The solvents were evaporated, and crude 4 was purified by column chromatogra-

phy on silica gel (cyclohexane/ethyl acetate 2:1 (v/v); Rf = 0.6), yield 0.53 g (2.22 mmol, 81%).

The product is a white solid: mp 227 ◦C (decomposing); 1H NMR (500.1 MHz, acetone-d6,

298 K) δ = 2.67–2.76 (m, 2 H, H-1, H-2), 2.79–2.82 (m, 4 H, H-9, H-10), 3.15–3.22 (m, 2 H,

H-1, H-2), 5.67 (d, 4J5,7 = 4J16,12= 1.7 Hz, 2 H, H-5, H-16), 6.08 (dd, 3J7,8 = 3J12,13 = 7.6 Hz,
4J7,5 = 4J12,16 = 1.7 Hz, 2 H, H-7, H12), 6.83 (d, 3J8,7 = 3J13,12 = 7.6 Hz, 2 H, H-8, H-13) 7.64

(s, 2 H,O–H) ppm; 13C {1H} NMR (125.8 MHz, acetone-d6, 298 K) δ = 30.5 (C-1, C-2), 35.0

(C-9, C-10), 121.71 (C-5, C-16), 124.1 (C-7, C-12), 126.7 (C-3, C-14), 130.8 (C-8, C-13), 141.4

(C-6, C-11), 156.6 (C-4, C-15) ppm; MS (EI) m/z (%) = 240.1 (70) [C16H16O2]+·, 120.1 (100)

[C7H8O]+, 91 (20) [C7H7]+; EI-HRMS m/z calcd. for [C16H16O2]+· 240.1150, found 240.1157.

Separation of Enantiomers. HPLC [chiral phase (semipreparative): CHIRALPAK IA;

n-hexane/EtOH (90:10); f = 5.0 mL/min; loading 20 mg of racemic material per run] tR =

12.80 [(+)-(RP )-4 [α]20
D = +37.0 (c = 4.4645 g/mL, THF), >99.9% ee], 15.23 [(–)-(SP )-4 [α]20

D

= –35.8 (c = 4.4605 g/mL, THF), 99.8% ee] min.

(RP )- and (SP )-[2.2]Paracyclophane-4,15-dicarboxylic acid (RP )- and (SP )-5. KOtBu

(0.337 g, 3.00 mmol) was dissolved in water (0.54 mL, 3.00 mmol), and THF (40 mL) and enan-

tiomerically pure (RP )- or (SP )-8 (0.150 g, 0.25 mmol) was added. The resulting mixture was

stirred overnight. The THF was evaporated and water was added. The mixture was acidified

with aq. HCl (2 M), and the white precipitated was filtered off and washed with water to give

the enantiomerically pure target compound. Yield: 0.057 g (0.19 mmol, 77%). The product is

a white solid: mp > 250 ◦C; 1H NMR (400.1 MHz, DMSO d6 , 293 K) δ = 2.83–2.94 (m, 2 H,

H-1, H-2), 2.94–3.05 (m, 2 H, H-9, H-10), 3.09–3.21 (m, 2H, H-9, H-10), 3.89–4.02 (m, 2 H, H-1,

H-2), 6.47 (d, 3J8,7 = 3J13,12 = 7.8 Hz, 2 H, H-8, H-13), 6.62 (dd, 3J7,8 = 3J12,13 = 7.8 Hz, 4J7,5

= 4J12,16 = 2.0 Hz, 2 H, H-7, H12) 7.13 (d, 4J5,7 = 4J16,12 = 2.0 Hz, 2 H, H-5, H-16), 12.59 (s, 2

H, CO2–H) ppm; 13C 1H NMR (100.6 MHz, DMSO d6, 293 K) δ = 34.1 (C-1, C-2), 35.1 (C-9,

C-10), 131.5 (C-4, C-15), 133.8 (C-5, C-16), 135.1 (C-8, C-13), 135.7 (C-7, C-12), 139.8 (C-6,

C-11), 142.2 (C-3, C-14), 176.9 (CO2H) ppm; MS (ESI negative mode) m/z (%) = 295.1 (100)

[C18H15O4]–; ESI-HRMS m/z calcd. for [C18H15O4]– 295.0976, found 295.0978.

Compound (+)-(SP )-5: [α]20
D = +65.6 (c = 4.1 mg/mL, EtOH). Compound (–)-(RP )-5: [α]20

D

= –68.2 (c = 4.40 mg/mL, EtOH).

(rac)-4,15-Diformyl[2.2]paracyclophane (rac)-6. 7.20 mL of tBuLi (1.9 M in pentane,

13.70 mmol) were added to 40 mL of dry THF at –78 ◦C and stirred for 5 min. To the flashy

yellow solution (rac)-2 (1.00 g, 2.74 mmol) dissolved in THF (20 mL) was added via a syringe.

The mixture was stirred for 1 h at –78 ◦C turning from flashy yellow to pale yellow. Then DMF

(0.72 g, 0.76 mL, 10.00 mmol) was added, and the solution was allowed to slowly warm to room

temperature turning from yellow to colorless. Subsequent aqueous HCl (4 M, 7.5 mL, 30 mmol)

was added, and the mixture was stirred for further 30 min. Water and Et2O were added, and

the phases were separated. The aqueous layer was extracted with Et2O (3 × 50 mL), and the
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combined organic phases were washed with 0.5 M HCl, saturated aqueous NaHCO3 solution,

and brine and dried over MgSO4. The solvent was removed under reduced pressure and crude

6 was purified via column chromatography on silica gel (cyclohexane/ ethyl acetate, 5:1, v/v)

Rf = 0.6), yield 0.645 mg (2.44 mmol, 89%). The product is a white solid. The analytical data

were in accordance with the literature data. [524]

Separation of Enantiomers. HPLC [chiral phase (semiprepar-ative): CHIRALPAK IA;

n-hexane/EtOH (90:10); f = 5.0 mL/min; loading 30 mg of racemic material per run] tR =

14.53 [(+)-(SP )-6 [α]20
D = +231.2 (c = 4.645 g/mL, THF), > 99.9% ee], 18.76 [(–)-(RP )-6 [α]20

D

= –226.3 (c = 4.715 g/mL, THF), > 99.9% ee] min.

(rac)-Di(4-bromophenyl)[2.2]paracyclophane-4,15-dixarboxylate (rac)-7. (rac)-6

(0.200 g, 0.64 mmol) was dissolved in dry diethyl ether (40 mL). Oxalyl chloride (0.12 mL,

1.48 mmol) and one drop of DMF were added, and the resulting mixture was stirred for 2 h

at room temperature. The solvent was evaporated, and the white residue was dissolved in

dry dichloromethane (10 mL). Subsequently dry triethylamine (10 mL) was added, and the

solution turned red. After that 4-bromophenol (0.463 g, 2.68 mmol) was added, and the solution

turned yellow. The solution was stirred at room temperature overnight and then poured into

ice water. The mixture was acidified, and the layers were separated. The aqueous layer was

extracted with dichloromethane (3 × 10 mL). The combined organic layers were washed with

saturated aq. NaHCO3 and brine and dried over Mg2SO4. The product was obtained as a white

powder. If needed it can be further purified by column chromatography on silica gel (eluent:

cyclohexane/ethyl acetate, 2:1 (v/v), Rf = 0.8). The product was obtained as a white powder.

Yield: 0.356 g (0.59 mmol, 92%); mp 94 ◦C; 1H NMR (400.1 MHz, CDCl3, 293 K) δ = 3.08–3.17

(m, 4 H, H-1, H-2, H-9, H-10), 3.22–3.33 (m, 2 H, H-9, H-10), 4.08–4.15 (m, 2 H, H-1, H-2), 6.71

(d, 2 H, H-8, H-13, 3J8,7 = 3J13,12 = 7.9 Hz), 6.75 (dd, 2 H, H-7, H-12 3J7,8 = 3J12,13 = 7.9 Hz,
4J7,5 = 4J12,16 = 1.9 Hz), 7.15 (d, 4 H, H-phenyl 3J = 8.9 Hz), 7.39 (d, 2 H, H-5, H-16 4J5,7 =
4J16,12 = 1.9 Hz) 7.59 (d, 4 H, H-phenyl 3J = 8.9 Hz) ppm; 13C 1H NMR (100.6 MHz, CDCl3,

293 K) δ = 34.9 (C-9, C-10), 35.8 (C-1, C-2), 119.2 (C-21), 123.7 (C-19), 130.1 (C-4, C-15),

132.8 (C-20), 134.6 (C-8, C-13), 135.7 (C-5, C-12), 137.0 (C-7, C-12), 140.8 (C-6, C-11), 144.3

(C-3, C-14), 150.0 (C-18), 165.0 (C-17) ppm; MS (EI) m/z (%) 606.0 (5) [C30H22Br2O4]+·,

433.0 (100) [C24H18BrO3]+, 131.0(70) [C9H7O]+; ESI-HRMS m/z calcd. for [C30H22O4Br2]+

603.9885, found 603.9880. Elemental analysis calcd. (%) for C30H22O4Br2 (606.30) C 59.43, H

3.66. Found: C 59.21, H 3.91.

Separation of Enantiomers. HPLC [chiral phase (semiprepar): CHIRALPAK IA; n-

hexane/EtOH (80:20); f = 5.0 mL/min; loading 20 mg of racemic material per run] tR = 10.63

[(+)-(SP )-7 [α]20
D = +164.8 (c = 3.405 g/mL, THF), 99.9% ee], 14.27 [(–)-(RP )-7 [α]20

D = –161.3

(c = 4.080 g/mL, THF), 99.7% ee] min.

(RP )- and (SP )-4,15-Di(trifluoromethanesulfonate)[2.2]-paracyclophane (RP )- and

(SP )-8. Enantiomerically pure (SP )- or (RP )-4 (0.200 g, 0.83 mmol) was dissolved in dry

triethylamine (1.15 mL, 8.30 mmol) and dry CH2Cl2 (20 mL). The solution was cooled to –

78 ◦C, and triflic anhydride (0.35 mL, 2.08 mmol) was added slowly via syringe. The reaction
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mixture was allowed to warm to room temperature. After that the solution was acidified with

aq. HCl (2 M), and the layers were separated. The aqueous layer was extracted with CH2Cl2

(2 × 20 mL), and the combined organic layers were washed with saturated NaHCO3 and brine

and dried with MgSO4. The solvents were evaporated, and the crude product was purified by

column chromatography on silica gel (eluent: cyclohexane/ethyl acetate, 2:1 (v/v); Rf = 0.7).

The product was obtained a colorless highly viscous oil, whereas (rac)-8 was obtained as a pale

yellow solid (mp 77 ◦C). Yield: 0.352 g (0.70 mmol, 84%); 1H NMR (400.1 MHz, CDCl3, 293 K)

δ = 2.92–3.01 (m, 2 H, H-1, H-2), 3.04–3.13 (m, 4 H, H-9, H-10), 3.32–3.41 (m, 2 H, H-1, H-2),

6.23 (d, 4J5,7 = 4J16,12 = 1.7 Hz, 2 H, H-5, H-16), 6.61 (dd, 3J7,8 = 3J12,13 = 8.0 Hz, 4J7,5

= 4J12,16 = 1.7 Hz, 2 H, H-7, H12), 7.02 (d, 3J8,7 = 3J13,12 = 8.0 Hz, 2 H, H-8, H-13) ppm;
13C 1H NMR (100.6 MHz, CDCl3, 293 K) δ = 30.4 (C-1, C-2), 34.4 (C-9, C-10), 120.4 [CF3,

1JC,F = 318 Hz], 127.5 (C-5, C-16), 132.0 (C-3, C-14), 132.1 (C-7, C-12), 132.7 (C-8, C-13),

142.8 (C-6, C-11), 148.7 (C-4, C-15) ppm; MS (EI) m/z (%) = 504.0 (30) [C18H14F6O6S2]+·,

371.0 (40) [C17H14O4F3S]+, 252.0 (100) [C9H7O3F3S]+, 91 (25) [C7H7]+; EI-HRMS m/z calcd.

for [C18H14F6O6S2]+· 504.0136, found 504.0136.

Compound (+)-(SP )-8: [α]20
D = +16.7 (c= 8.050 mg/mL, CHCl3). Compound (–)-(RP )-8: [α]20

D

= +17.3 (c = 4.180 mg/mL, CHCl3).

(RP )- and (SP )-4,15-Diethynyl[2.2]paracyclophane (RP )- and (SP )-(9). Enantiomer-

ically pure (RP )- or (SP )-6 (0.500 g, 1.89 mmol) and Cs2CO3 (2.407 g, 7.56 mmol) were sus-

pended in anhydrous MeOH (40 mL), and the Bestmann–Ohira reagent (1.390 g, 7.56 mmol)

was added. The resulting mixture was stirred for 24 h at room temperature. Subsequently

another portion of Cs2CO3 (0.722 g, 2.52 mmol) and the Bestmann–Ohira reagent (0.463 g,

2.52 mmol) was added and stirred for further 12 h. After that CH2Cl2 and water were added,

and the layers were separated. The aqueous layer was extracted CH2Cl2 (2 × 20 mL), and

the combined organic layers were washed with brine and dried over MgSO4. The solvent was

evaporated, and the crude product was purified, if necessary, by column chromatography on

silica gel (eluent: 5% of ethyl acetate in cyclohexane, Rf = 0.8). The product was obtained as

a pale yellow powder. Yield: 0.475 g (1.85 mmol, 98%). The analytical data were in accordance

with the literature data. [524]

Compound (+)-(SP )-9: [α]20
D = +339 (c= 2.760 mg/mL, CHCl3). Compound (–)-(RP )-9: [α]20

D

= –342 (c= 2.355 mg/mL, CHCl3).

(rac)-4,15-Diiodo[2.2]paracyclophane (rac)-10. 7.20 mL of tBuLi (1.9 M in pentane,

13.70 mmol) were added to 40 mL of dry THF at –78 ◦C and stirred for 5 min. To the flashy

yellow solution (rac)-2 (1.000 g, 2.74 mmol) dissolved in THF (20 mL) was added via a syringe.

The mixture is stirred for 1 h at –78 ◦C turning from flashy yellow to pale yellow. Then iodine

(1.905 g, 7.50 mmol) was added. The solution was allowed to slowly warm to room temperature.

The reaction mixture was diluted with CH2Cl2 and water, and the layers separated. The organic

layer was washed with saturated aqueous Na2SO3, water, and brine and dried over MgSO4. The

solvent was evaporated, and the crude product was purified by column chromatography on silica

gel (eluent: cyclohexane, Rf = 0.7). The product is a white powder. Yield: 2.060 g (4.34 mmol,
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80%); mp 161 ◦C; 1H NMR (400.1 MHz, CDCl3, 293 K) δ = 2.84–2.92 (m, 2 H, H-1, H-2),

3.03–3.20 (m, 2 H, H-1, H-2), 3.21–3.22 (m, 4 H, H-9,H-10), 6.50 (dd, 2 H, H-7, H-12, 3J7,8 =
3J12,13 = 7.8 Hz, 4J7,5 = 4J12,16 = 1.8 Hz), 6.91 (d, 2 H, H-5, H-16, 4J5,7 = 4J16,12 = 1.8 Hz) 7.20

(d, 2 H, H-8, H-13, 3J8,7 = 3J13,12 = 7.8 Hz) ppm; 13C 1H NMR (100.6 MHz, CDCl3, 293 K δ =

34.8 (C-1, C-2), 36.9 (C-9, C-10), 104.9 (C-4, C-15), 129.5 (C-8, C-13), 131.9 (C-7, C-12), 141.0

(C-6, C-11), 142.7 (C-3, C-14), 142.8 (C-5, C-16); MS (EI) m/z (%) 459.9 (100) [C16H14I2]+,

229.9 (60) [C8H7I]+; ESI-HRMS m/z calcd. for [C16H14I2]+ 459.9185, found 459.9192.

(RP )-4,15-Diiodo[2.2]paracyclophane (RP )-(10). Enantiomerically pure (RP )-12 (0.100 g,

0.43 mmol) was dissolved in conc. HCl (1.5 mL) and diluted with water (5 mL). The stirred

solution was cooled to 0 ◦C and NaNO2 (0.070 g, 1.03 mmol) dissolved in water (2.5 mL) was

slowly added. After 30 min KI (0.374 g, 2.25 mmol) dissolved in water (2 mL) was added at

0 ◦C. The solution was stirred at 0 ◦C for 30 min and was then heated to 80 ◦C for 2 h. After

cooling to room temperature the solution was extracted with dichloromethane (3 × 20 mL).

The combined organic phases were washed with saturated aqueous NaHSO3 solution and brine

and dried over MgSO4. The solvent was evaporated under reduced pressure and crude 10 was

purified by column chromatography on silica gel (eluent: cyclohexane, Rf = 0.7). The product

is a white powder. Yield: 0.152 g (0.32 mmol, 74%). Suitable crystals for X-ray diffraction

analysis were grown from a mixture of cyclohexane and ethyl acetate.

Compound (–)-(RP )-10: [α]20
D = –245 (c = 3.20 mg/mL, CHCl3).

(rac)-[2.2]Paracyclophane-4,15-diazide [rac)-11. 7.20 mL of tBuLi (1.9 M in pentane,

13.70 mmol) were added to 40 mL of dry THF at –78 ◦C and stirred for 5 min. To the flashy

yellow solution (rac)-3 (1.000 g, 2.74 mmol) dissolved in THF (20 mL) was added via a syringe.

The mixture was stirred for 1 h at –78 ◦C turning from flashy yellow to pale yellow. Then

p-toluenesulfonyl azide (1.608 g, 8.16 mmol) in 10 mL of dry THF was added slowly to the

stirred solution. The solution was allowed to slowly warm to room temperature, turning from

pale yellow to red and then to black. The reaction mixture is poured into saturated ammonium

chloride solution, and the aqueous layer was extracted with dichloromethane (3 × 60 mL).

The combined organic layers were washed with brine and dried over MgSO4. The solvent was

removed under reduced pressure and crude 11 was purified via column chromatography on silica

gel (cyclohexane, Rf = 0.4) to remove remaining p-toluenesulfonate. The mixture still contains

monoazide byproduct. The product mixture is a pale yellow solid: 1H NMR (400.1 MHz, CDCl3,

293 K) δ = 2.75–2.84 (m, 2 H, H-1, H-2), 2.99–3.12 (m, 4 H, H-1, H-9), 3.14–3.23 (m, 2 H, H-1,

H-2), 6.01 (d, 2 H, H-5, H-16 4J5,7 = 4J16,12 = 1.7 Hz), 6.38 (dd, 2 H, H-7, H-12, 3J7,8 = 3J12,13

= 7.9 Hz, 4J7,5 = 4J12,16 = 1.7 Hz), 6.84 (d, 2 H, H-8, H-13, 3
J8,7 = 3J13,12 = 7.9 Hz) ppm;

13C 1H NMR (100.6 MHz, CDCl3, 293 K) δ = 30.8 (C-1, C-2), 34.7 (C-9, C-10), 123.8 (C-5,

C-16), 128.0 (C-7, C-12), 131.1 (C-8, C-13), 133.2 (C-3, C-14), 140.8 (C-6, C-11), 146.2 (C-4,

C-15) ppm; MS (EI) m/z (%) = 290.1 (25) [C16H14N6]+·; EI-HRMS m/z calcd. for [C16H14N6]+·

290.1280, found 290.1282.

(rac)-4,15-Diamino[2.2]paracyclophane (rac)-12. A roundbottom flask was charged

with tetrabutylammonium iodide (1.272 g, 3.44 mmol) and NaBH4 (2.612 g, 68.80 mmol) under
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an argon atmosphere. Subsequently, (rac)-11 (1.000 g, 3.44 mmol), dissolved in 26.5 mL of

dry THF, and 21.8 mL of water were added, and the solution was stirred for 48 h at room

temperature. Afterwards additional NaBH4 (1.306 g, 34.40 mmol) was added, and the mixture

was stirred for further 24 h. The reaction mixture was then poured into water and was extracted

with Et2O (4 × 50 mL). The combined organic layers were washed with brine and dried over

MgSO4. The solvent was evaporated under reduced pressure, and crude 12 was purified by

column chromatography on silica gel (cyclohexane/ethyl acetate 2:1, v/v + 5% triethylamine,

Rf = 0.5), yield 0.729 g (3.06 mmol, 73%). The product is a brownish solid: mp 232 ◦C; 1H

NMR (400.1 MHz, CD2Cl2, 293 K) δ = 2.76–2.80 (m, 4 H, H-1*, H-2*), 2.83–2.97 (m, 4 H,

H-9*, H-10*), 3.35 (bs, 4H, N–H), 5.45 (d, 2 H, H-5, H-16, 4J5,7 = 4J16,12 = 1.8 Hz), 5.97 (dd, 2

H, H-7, H-12, 3J7,8 = 3J12,13 = 7.7 Hz, 4J7,5 = 4J12,16 = 1.8 Hz), 6.92 (d, 2 H, H-8, H-13, 3J8,7

= 3J13,12 = 7.7 Hz) ppm; 13C 1H NMR (100.6 MHz, CD2Cl2, 293 K) δ = 29.7 (C-1*, C-2*),

35.0 (C-9*, C-10*), 120.7 (C-5, C-16), 122.3 (C-7, C-12), 124.0 (C-3, C-14), 128.7 (C-8, C-13),

140.8 (C-6, C-11), 146.2 (C-4, C-15) ppm (* assignment might be interchanged); MS (EI) m/z

(%) = 238.1 (50) [C16H18N2]+·, 119.0 (100) [C8H9N]+, 91 (10) [C7H7]+; EI-HRMS m/z calcd.

for [C16H18N2]+· 238.1470, found 238.1472.

Separation of Enantiomers. HPLC [chiral phase (semipreparative): CHIRALPAK IB;

n-hexane/EtOH (70:30); f = 20.0 mL/min; loading 40 mg of racemic material per run] tR =

11.86 [(+)-(SP )-12 [α]20
D = +95 (c = 2.55 g/mL, THF), 99.9% ee], 15.55 [(–)-(RP )-12 [α]20

D =

–97 (c = 3.15 g/mL, THF), 99.9% ee] min.

(rac)-4,15-Di-(4,4,5,5-tetramethyl-1,3,2-dioxborolan)-[2.2]- paracylcophane (rac)-

13. 7.20 mL of tBuLi (1.9 M in pentane, 13.70 mmol) were added to 40 mL of dry THF at

–78 ◦C and stirred for 5 min. To the flashy yellow solution (rac)-3 (1.000 g, 2.74 mmol) dissolved

in THF (20 mL) was added via a syringe. The mixture was stirred for 1 h at –78 ◦C turning

from flashy yellow to pale yellow. Then 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

(1.530 g, 1.66 mL, 8.22 mmol) in 10 mL of dry THF was added, and the solution was allowed to

slowly warm to room temperature, thereby first turning to pale green and then colorless. The

reaction was quenched by the addition of water and ethyl acetate. The phases were separated,

and the aqueous phase was extracted with ethyl acetate (2 × 40 mL). The combined organic

phases were washed with water and brine and dried over MgSO4. The crude product was purified

by column chromatography on silica gel (cyclohexane/ethyl acetate, 10:1 v/v, Rf = 0.5), yield

1.196 g (2.60 mmol, 95%). The product is a white powder: mp 190 ◦C; 1H NMR (400.1 MHz,

acetone-d6, 293 K) δ = 1.41 (s, 12 H, CH3), 2.86–2.94 (m, 2H, H-1, H-2), 2.95–3.05 (m, 2H, H-9,

H-10), 3.10–3.20 (m, 2H, H-9, H-10), 3.85–3.95 (m, 2H, H-1, H-2), 6.37 (d, 2H, H-8, H-13, 3J8,7

= 3J13,12 = 7.7 Hz), 6.52 (dd, 2H, H-7, H12, 3J7,8 = 3J12,13 = 7.7 Hz, 4J7,5 = 4J12,16 = 2.0 Hz),

7.00 (d, 4J5,7 = 4J16,12 = 2.0 Hz, 2H, H-5, H-16), ppm; 13C 1H NMR (100.4 MHz, acetone-d6,

293 K) δ = 24.8 (CH3), 25.1 (CH3), 35.39 (C-1, C-2), 36.42 (C-1, C-2), 83.6 (Cquaternary), 134.3

(C-8, C-13), 135.3 (C-7, C-12), 138.8 (C-6, C-11), 140.9 (C-5, C-16), 148.0 (C-3, C-14) ppm. The

carbon connected to the boron cannot be seen in the NMR spectrum because of its low intensity

due to the coupling to the boron. 11B 1H NMR (128.4 MHz, acetone-d6, 293 K) δ = 31.23
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(bs) ppm; MS (ESI) m/z (%) = 461.3 (50) [C28H38B2O4
+H]+·, 483.3 (100) [C28H38B2O4

+Na]+;

ESI-HRMS m/z calcd. for [C28H38B2O4
+Na]+ 483.2858, found 483.2863. Elemental analysis

calcd. (%) for C28H38B2O4 (460.22): C 73.07, H 8.32. Found: C 72.96, H 8.18.

Separation of Enantiomers. HPLC [chiral phase (preparative): CHIRALPAK IB; n-

hexane/CHCl3 (98:2); f = 9.0 mL/min; loading 10 mg of racemic material per run] tR = 15.03

[(+)-(SP )-13 [α]20
D = +158 (c = 2.010 g/mL, EtOH), > 99.9% ee], 17.48 [(–)-(RP )-13 [α]20

D =

–158 (c = 2.29 g/mL, EtOH), 98.7% ee] min.

(SP )-4,15-Di(4-bromophenyl)hydrazone[2.2]paracyclophane (SP )-14. 4-Bromohydra-

zine (0.45 g) was dissolved in conc. H2SO4 (2 mL) and water (3 mL). EtOH (10 mL) was added

to this solution and precipitate was filtered off. (SP )-5 (0.100 g, 0.273 mmol) was dissolved in

CH2Cl2 (2 mL) and added to the 4-bromohydrazine solution. After keeping at room temperature

overnight greenish crystals were formed, which were filtered off and carefully washed with water.

These crystals were suitable for X-ray diffraction analysis: mp 218 ◦C; 1H NMR (400.1 MHz,

CDCl3, 293 K) δ = 2.87–2.97 (m, 2 H, H-1, H-2), 2.98–3.09 (m, 2 H, H-9, H-10), 3.10–3.21

(m, 2 H, H-9, H-10), 3.69–3.80 (m, 2 H, H-1, H-2) 6.45 (d, 2 H, H-7, H-12, 3J7,8 = 3J12,13 =

7.7 Hz), 6.59 (d, 2 H, H-8, H-13, 3J8,7 = 3J13,12 = 7.7 Hz), 6.86 (s, 2 H, H-5, H-16), 7.03 (d, 4

H, H-phenyl, 3J = 8.8 Hz), 7.41 (d, 4 H, H-phenyl, 3J = 8.8 Hz), 7.68 (s, 2 H, CHN) ppm; MS

(ESI) m/z (%) 601.06 (100) [C30H26Br2N4
+H]+, 623.0 (35) [C30H26Br2N4

+Na]+; ESI-HRMS

m/z calcd. for [C30H26Br2N4
+H]+ 601.0597, found 601.0574. Elemental analysis calcd. (%) for

C30H26Br2N4 (602.36) · 2 H2O: C 56.44, H 4.74. Found: C 56.89, H 4.75.

Compound (+)-(SP )-14: [α]20
D = +1056 (c= 4.42 mg/mL, THF).

Crystal structure determinations

Data were collected on a Nonius KappaCCD diffractometer equipped with a low tempera-

ture device (Cryostream, Oxford Cryosystems, 600er series) using graphite monochromated

Mo Kα radiation (λ = 0.71073 Å). Intensities were measured by fine-slicing ω- and π-scans

and corrected for background, polarization and Lorentzian effects. A semiempirical absorp-

tion correction from equivalent reflections was applied for all data sets according to Blessing’s

method. [541] The structures were solved by direct methods (SHELXL-97) and refined by full-

matrix least-squares on F2 (SHELXL-97). [542,543] All non-hydrogen atoms were refined anisotrop-

ically. Hydrogen atoms at carbon were placed in calculated positions and refined isotropically

using a riding model. For selected details of the crystallographic data see Table F.1. CCDC-

1003202 [(–)-(RP )-7], CCDC-1003203 [(–)-(RP )-10], and CCDC-1003204 [(+)-(SP )-14] contain

the supplementary data for these structures. These data can be obtained free of charge via

www.ccdc.cam.ac.uk/data request/cif, or by emailing data request@ccdc.cam.ac.uk, or by con-

tacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ,

U.K.; fax: +44 1223 336033.
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F. Supporting Information to Chapter 8

Table F.1.: Crystallographic Data for (–)-(RP )-7, (–)-(RP )-10, and (+)-(SP )-14

parameters (–)-(RP )-7 (–)-(RP )-10 (+)-(SP )-14

formula C30H22Br2O4 C16H14I2 C30H26Br2N4

Mr 606.3 460.07 602.37

T /K 123(2) 123(2) 123(2)

crystal system orthorhombic trigonal monoclinic

space group P22121 P32 C2

crystal dimensions /mm 0.60 × 0.12 × 0.02 0.36 × 0.24 × 0.18 0.24 × 0.08 × 0.04

a /Å 6.8010(2) 11.6253(2) 33.742(2)

b /Å 16.1651(5) 11.6253(2) 7.9547(3)

c /Å 22.3501(8) 9.0313(2) 9.8768(7)

α /Å 90 90 90

β /Å 90 90 97.566(2)

γ /Å 90 120 90

V /Å3 2457.14(14) 1057.04(5) 2627.9(3)

Z 4 3 4

ρ /mg m3 1.639 2.168 1.523

µ /mm−1 3.335 4.442 3.111

θ range /◦ 2.68–28.00 3.03–28.00 2.44–27.86

completeness /% 98.6 99.9 98

reflections measured 17603 19608 8898

unique reflections (Rint) 5763 (0.0856) 3396 (0.0404) 5504 (0.0455)

data/restrains/parameters 5763/0/325 11266/19/649 5504/85/325

GoF on F 2 0.996 1.088 0.937

final R indices [I > 2σ(I)] R1 = 0.0389 R1 = 0.0238 R1 = 0.0382

ωR2 = 0.0826 ωR2 = 0.0588 ωR2 = 0.0789

R indices all data R1 = 0.0515 R1 = 0.0244 R1 = 0.0572

ωR2 = 0.0867 ωR2 = 0.0244 ωR2 = 0.0842

absolute structure parameter X –0.013(8) –0.04(3) 0.000(9)
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Calculated CD spectra including the rotatory strengths
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Figure F.1.: Experimental and simulated CD spectra of (a) (–)-(SP )-4, (b) (+)-(SP )-6 (c) (–)-
(RP )-10, and (d) (+)-(SP )-13 including the rotatory strength for CAM-B3LYP.
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