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Preface

Astronomy is the oldest science and it has survived over the ages, because there is always more
to discover. Especially the fields of extragalactic astronomy and cosmology combine many disci-
plines of modern physics and are thus very attractive and active fields of research. Cosmology is
the science of the Universe as a whole, where scientists are trying to understand how the Universe
evolves, how it started, and what it is made of. Although people have been trying to find out
what the Universe is made of, it appears that we still only know about 5 per cent of its content,
namely baryonic matter, which for example men are made of. The rest of the Universe is filled
with the mysterious and invisible substances of dark matter and dark energy. Dark matter makes
up most of the mass in galaxies and clusters of galaxies and is suspected to be a still unknown
elementary particle, whereas dark energy appears to accelerate the expansion of the Universe
and it is not clear at all what it might be. In order to map the dark matter distribution and
investigate the true nature of dark energy, we need to observe the sky using high-tech telescopes
and cameras. The raw data products, which derive from such a telescope, are not immediately
usable for science. They need to undergo a long process of data reduction and manipulation.
The analysis itself is then another complicated, long process during which we build theories and
use various statistical methods to test and constrain them.

The title of this thesis, “Optical Data Analysis and its Application to Cosmology”, and its
meaning are starting to become clear. In order to understand the Universe we need observations
of the sky and we need to find suitable methods to analyse them. In this thesis we will focus on
observations in the optical. After introducing the basic theoretical concepts of astronomy and
cosmology in the Chapters 1, 2, and 3, which we will need to understand this thesis, we will
describe various aspects of optical data analysis and its applications in the subsequent chapters.
A very technical aspect of astronomy is described in Chapter 4, where we introduce the problem
of CCD crosstalk, a problem present in many modern CCD cameras, and a correction for it for
the specific example of OmegaCAM. In Chapter 5, which is based on a publication in Monthly
Notices of the Royal Astronomical Society, we will learn about how archival data can be used
to discover new massive galaxy clusters. Furthermore, we describe the process of the analysis
of optical imaging and spectroscopic data in order to learn about specific properties of these
clusters. Finally, we will combine the optical data with radio data and conduct a cosmology
test to find out if the clusters found are in tension with the cosmological standard model. In
Chapter 6 we will introduce a new estimator for two-point statistics, an important tool in modern
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cosmology, and apply it to data from the BOSS and the RCSLenS surveys in order to measure
the galaxy bias b. This is an approach that is also promising for cosmological studies.

In the end, this thesis is concerned with three major aspects of modern observational cosmol-
ogy: technical work, data analysis, and its interpretation. We hope that after reading this thesis
the reader will have gained some more insight into the complicated field of cosmology.
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CHAPTER 1

Cosmology

This chapter is in great parts based on the following references:

� Carrol (2004)

� Dodelson (2003)

� Serjeant (2010)

� Mo, van den Bosch & White (2010)

� Schneider (2009)

1.1. Theory of General Relativity

In this section and and Section 1.2 we will make use of natural units where the speed of light is
c = 1.

The dominant force on large scales in our Universe is gravity, the phenomenon that massive
bodies appear to attract each other. For centuries mankind attempted to find a theoretical
description for gravity, a way to describe it. The first one to find a proper description was Sir
Isaac Newton who in his “Principia Mathematica” first formulated a gravitational law

~Fg = Gm1m2
~r

|r|3 , (1.1)

where G is the gravitational constant, m1 and m2 the masses of the two bodies and ~r the
separation vector between those bodies. This proved adequate to describe most, but not all,
of the motions of the planets in the solar system. There were still some small discrepancies
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1.2. FRIEDMANN-ROBERTSON-WALKER MODELS

between predictions and observations, like the precession of Mercury’s perihelion. To explain
this, it needed another more advanced theory of gravity, which is Einstein’s theory of general
relativity. In his theory, Einstein explains gravity not as an attraction of masses but rather as
the curvature of space-time. Consequently, the Einstein equation connects the energy content of
space-time with the curvature

Gµν = Rµν −
1

2
gµνR = −8πGTµν . (1.2)

Here Gµν is the Einstein tensor, which describes the curvature of space-time. It consists of Rµν ,
the Ricci tensor, and R its contraction, the Ricci scalar. Those are derived from derivatives
of the metric gµν . Tµν is the energy momentum tensor, which gives the energy-momentum of
space-time.

Given a metric that solves Eq. (1.2), we can immediately compute the left hand side of that
equation. Since Gµν and Tµν only differ by a constant, this then also gives us the shape of the
energy-momentum tensor.

1.2. Friedmann-Robertson-Walker Models

In order to find solutions to Eq. (1.2), namely the metric gµν , one usually has to make some
simplifying assumptions. One of the first solutions found was the Friedmann-Robertson-Walker
metric, which derives from the cosmological principle:

1. The Universe is homogeneous.

2. The Universe is isotropic.

Homogeneous means that a small part of something is a fair representation of the whole and
isotropic that something looks the same in all directions. The Friedmann-Robertson-Walker
metric is thus the most homogeneous and isotropic solution to Einstein’s equation

ds2 = dt2 − a2(t)
[
dw2 + f2

k (w)(dθ2 + sin2(θ)dφ2
]
. (1.3)

Here w is the comoving distance, θ and φ are spherical coordinates, fk(w) the comoving angular
diameter distance, and k the curvature parameter. We find that fk(w) depends on k

fk(w) =


1√
−k sinh

(√
−k w

)
k < 0 ,

w k = 0 ,
1√
k

sin
(√

k w
)

k > 0 .

(1.4)

Furthermore, ds2 is the space-time interval; in case of light rays, this becomes zero and a(t)
is the so-called scale factor, which describes the expansion behaviour of the Universe. A static
isotropic and homogeneous universe is not stable, which is why all Friedmann-Robertson-Walker
models are non-static ones.
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CHAPTER 1. COSMOLOGY

For this metric we can immediately compute the left hand side of Eq. (1.2), since the Ricci
tensor Rµν and the Ricci scalar R are derivatives of the metric. Given the Einstein tensor, Gµν ,
we then find that the Universe is filled with a perfect fluid and thus use the corresponding energy
momentum tensor

Tµν = (ρ+ p)UµUν + pgµν , (1.5)

where ρ is the density, p the pressure, and Uµ = (1, 0, 0, 0) the four velocity. The time-time
component of Eq. (1.2) then yields the following equation(

ȧ(t)

a(t)

)2

=
8πG

3
ρ(t)− k

a2(t)
, (1.6)

which is known as the first Friedmann equation. Due to the isotropy in the Friedmann-Robertson-
Walker solution the spatial part yields only one equation

ä(t)

a(t)
= −4πG

3
[3p(t) + ρ(t)] . (1.7)

This is the second Friedmann equation. Those two equations describe the evolution of the
expansion factor a(t) of the Universe. Both can also be illustratively derived from Newtonian
physics, as we will see now. With this derivation we will follow the one shown in Schneider
(2006) closely. We start by considering an expanding sphere with physical radius Rs(t) = a(t)rs,
where we introduced the comoving radius rs, which is unaffected by the expansion, and the scale
factor a(t) that describes the expansion of the sphere. The density of the sphere is given as
ρ(t) = ρ0a

−3(t) and the mass of the sphere is then

M(rs) =
4π

3
ρ0r

3
s . (1.8)

We can write down the equation of motion for this system

R̈s(t) = −GM(rs)

R2
s (t)

= −4πG

3

ρ0r
3
s

R2
s (t)

, (1.9)

which yields

ä(t) = −4πG

3
ρ(t)a(t) . (1.10)

Then we divide by a(t) and arrive at the second Friedmann equation,

ä(t)

a(t)
= −4πG

3
ρ(t) . (1.11)

This only differs from Eq. (1.7) in one aspect, which is the missing pressure term. In the
Newtonian approach we only consider matter, which can be assumed to be pressure free. Finally,
we can now multiply this equation with 2ȧa, which leaves us with

2ȧ(t)ä(t) = −8πG

3
ρ0

ȧ(t)

a2(t)
. (1.12)
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1.2. FRIEDMANN-ROBERTSON-WALKER MODELS

It is known that d
dt ȧ

2 = 2äȧ and that d
dt

(
− 1
a

)
= ȧ

a2 , which we can plug into Eq. (1.12) and then
integrate it. This then yields (

ȧ(t)

a(t)

)2

=
8πG

3
ρ(t)− k

a2(t)
, (1.13)

where k is an integration constant. This remarkably resembles the correct full relativistic deriva-
tion of Eq. (1.6).

If we now consider the first Friedmann equation again, we can distinguish between three
different spatial curvatures of a universe, depending on the sign of the curvature parameter k.
In case of k < 0 the universe is open. For k > 0 the universe is closed, whereas k = 0 is the
limiting case, called a flat universe. Assuming k = 0 for Eq. (1.6) we can define the critical
density, which is needed for a flat universe

ρcrit(t) =
3H2(t)

8πG
, (1.14)

where we defined H(t) = ȧ(t)
a(t) as the expansion rate or the so-called Hubble parameter. Using the

critical density ρcrit we can define dimensionless density parameters to describe the energy content
of the Universe. For this we use ρcrit at our time now, t0, which just leads to H(t)→ H(t0) = H0,
the current expansion rate of the Universe, or the so-called Hubble constant. This is sometimes
parametrised as H0 = h × 100 km s−1 Mpc−1, where h is the dimensionless Hubble constant.
From observations we know that our Universe is filled with matter, radiation, and the so-called
dark energy

ρm(t)

ρcrit(t)
= Ωm(t),

ρr(t)

ρcrit(t)
= Ωr(t),

ρΛ(t)

ρcrit(t)
= ΩΛ(t) . (1.15)

Due to the expansion of the Universe, the energy densities in general are not constant but change
with time. The matter density changes with a−3 due to the expansion of the three spatial
dimensions. The radiation density also gets diluted by the spatial expansion and additionally,
the wavelength of the radiation expands, which results in an extra factor of a, so in total it scales
with a−4. The dark energy density is assumed to be constant over time, which means it scales
with a0. When plugging in the definition of the critical density we find, for example in case of
the matter density

Ωm(t) =
ρm(t)

ρcrit(t)
=

8πG

3H2(t)
ρm(t) =

(
H0

H(t)

)2

Ωm,0 a
−3(t) . (1.16)

Consequently, we write

Ωr(t) =

(
H0

H(t)

)2

Ωr,0 a
−4(t), ΩΛ(t) =

(
H0

H(t)

)2

ΩΛ,0 a
0(t) . (1.17)

So far we have excluded the curvature part of Eq. (1.6). We can replace k with the curvature
parameter Ωk = 1−∑Ωi = 1− Ω0 as k = −H2

0 Ωk. Now we can also replace ρ = ρm + ρr + ρΛ
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CHAPTER 1. COSMOLOGY

with the density parameters in the first Friedmann equation, which yields a slightly different
notation (

ȧ

a

)2

= H2 = H2
0

[
Ωm,0 a

−3 + Ωr,0 a
−4 + ΩΛ,0 a

0 + (1− Ω0) a−2
]
. (1.18)

As we can see, the density parameters and the Hubble constant are sufficient to describe the
expansion history of the Universe. Given those parameters, one can attempt to solve the first
Friedmann equation, which will yield the functional form of the scale factor a(t). In general
the first Friedmann equation cannot be solved analytically. Nevertheless, by using simplifying
assumptions we can find analytic solutions for it. In a universe with Ωm = Ω0 = 1 we find

a(t) =
(

3
2H0t

)2/3
. This is called an Einstein-de-Sitter model. A dark energy-dominated universe

where ΩΛ = Ω0 = 1 has a scale factor of a(t) = eH0t. In a radiation dominated universe with
Ωr = Ω0 = 1 the Friedmann equation yields a(t) =

√
2H0t.

When considering how the radiation density scales with the cosmic scale factor, we already
stated that the wavelength of radiation changes due to the expansion of the Universe. Since the
wavelength becomes longer, light becomes redder and thus this effect is called the redshift z. In
terms of observed and emitted wavelength we define it as follows

z =
λobs − λe

λe
. (1.19)

We know that λe = a(te)λobs, which then yields the relation between redshift z and scale factor
a

a =
1

1 + z
. (1.20)

The redshift z is an actual observable, which, as we will see later on, is closely related to several
measures of distance. It can be measured in the spectra of galaxies, where known spectroscopic
features, like emission or absorption lines are found at wavelengths that are different from the
known rest frame ones.

In the 1920’s Edwin Hubble measured redshifts for many galaxies and found that the further
away those galaxies were, the more redshifted their spectra were or the higher their recession
velocity was. He formulated this observation mathematically in the Hubble law

v(t) = cz = H0r , (1.21)

where v is the velocity of the galaxy and r its distance. We can also derive this law from the

principles of an expanding universe. Again, we consider comoving coordinates ~x = ~r(t)
a(t) . From

this we find the physical position ~r(t) = a(t)~x and its derivative

~v(t) = ȧ(t)~x =
ȧ(t)

a(t)
~r(t) = H(t)~r(t) , (1.22)

where in the second step we plugged in the definition of the comoving coordinate again.
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1.3. COSMOLOGICAL DISTANCES

1.3. Cosmological Distances

Due to the expansion of the Universe, defining distances in cosmology is a difficult business.
Thus, unlike in Euclidean space, there is not one distance definition but several, which are all
connected with each other. The distance as we on earth would measure it, for example between
the start and finish lines of some kind of race track, is what we call the proper distance dp. This
corresponds to stopping time and using a ruler to find the distance between us and a galaxy,
which, of course, is not feasible or better to say impossible. The proper distance is, as we have
seen already, closely related to the comoving distance, which is by definition not affected by the
expansion of the Universe

w = a(t)dp(t) . (1.23)

Comoving and proper distance can be computed using a fixed cosmology and a measured red-
shift. Apart from the redshift being the observable one can also construct distances, which are
connected to different measurements. One such distance is the angular diameter distance. Given
the angular size θ and the proper size s of an object one can define the angular diameter distance
as

dA =
s

θ
. (1.24)

A similar approach is to make use of the luminosity and the flux of an object, which results in
the luminosity distance

dL =

√
L

4πS
. (1.25)

Comoving distance, angular diameter distance and luminosity distance are all connected via the
redshift or the scale factor

dL = a−2dA = a−1w , (1.26)

where the last equality is only valid in a flat universe. From Eq. (1.3) follows

w =

∫ t0

t(a)

dt′
c

a(t′)
=

∫ 1

a

da′
c

a′ 2H(a′)
. (1.27)

In a similar way we can also give the angular diameter distance as a function of the scale factor.
Starting with the definition above, for a flat universe we find

dA = aw , (1.28)

because in an expanding universe the comoving size is s/a and the angular size is s/a
w(a) . For open

and closed universes we find

dA =


a

H0

√
Ωk

sinh
(√

ΩkH0w
)

Ωk > 0 ,

a

H0

√
|Ωk|

sin
(√
|Ωk|H0w

)
Ωk < 0 .

(1.29)
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CHAPTER 1. COSMOLOGY

1.4. Thermal History of the Universe

In the middle of the 20th century, astronomers discovered that in every direction on the sky one
can measure a background radiation in the microwave regime. Today it is known as the cosmic
microwave background (CMB). This radiation is the same in all directions and follows a Planck
distribution with a maximum temperature of TCMB ≈ 2.7 K. In this section we will give a brief
history of the Universe starting shortly after the big bang and explain how the CMB was created
and why it is important for cosmology today.

Energies can be expressed in terms of the temperature T and Boltzmann’s constant kB. We
can insert this into the relation between the wavelength λ and the energy E

λ =
hc

E
=

hc

kBT
, (1.30)

where h is the Planck constant. This means that, using the temperature of the CMB, we can
find the characteristic wavelength of the CMB photons today

λCMB =
hc

kBTCMB
. (1.31)

Due to the expansion of the Universe the CMB photons get redshifted by a factor of a−1, which
also means that their temperature decreased over time. Considering this, it means that the
Universe started in a hot and dense state and due to its expansion it cooled down. This hot and
dense state in the beginning is called the big bang. Shortly after the big bang the Universe was
also very different than it is now; it was filled with a primordial plasma.

Whether a particle species is in equilibrium with the rest of the plasma depends on the expan-
sion rate H(t) and the reaction rate, Γ, of the processes that produce and destroy those particles.
Γ depends on the particle density, the reaction cross-section, and the velocity distribution. Since
the density decreases with a−3 due to the expansion and the cross-sections decrease due to their
dependence on the energy and thus the temperature, the reaction rate decreases as well. As
long as Γ > H(t) particles can still be created sufficiently and the number of particles stays
in equilibrium. Knowing these things, we will now briefly go through the thermal history of
the Universe. When considering how the density parameters change with the scale factor, we
find that in the early Universe the radiation density must have been the dominating ingredient,
whereas later on matter and then eventually dark energy will take over.

The very early stages of the Universe are not quite understood yet, because so far we do not
know the physics to describe systems at such high energies. Nevertheless, at some point the
Universe had cooled down sufficiently for us to be able to describe its further history. At this
time the Universe was still too hot for atoms or even molecules to form. They were dissipated
immediately by high energy photons. Thus, the plasma contained smaller building blocks of
matter, like protons, neutrons, electrons, neutrinos, or photons. Depending on the rest mass
and on the rate of the reactions through which they are created the particles will one after
another stop being in equilibrium with the rest of the plasma, for reasons mentioned before.
At a temperature of a few MeV we will start our description of the thermal history. At those
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1.4. THERMAL HISTORY OF THE UNIVERSE

energies, protons and neutrons are already too heavy to be created from photons, so they stayed
in equilibrium with other particles through weak interactions, but we will get back to this later.
Besides protons and neutrons this leaves photons, electrons, positrons, and neutrinos.

The mass of neutrinos is not yet known but from neutrino oscillations we know that neutrinos
are not massless, although their mass must be low, mν ≤ 1 eV. Neutrinos stay in equilibrium
via the reaction

e− + e+ ←→ νe + ν̄e .

At a temperature of about 1.4 MeV, the reaction rates for neutrino creation are smaller than
H(t) and thus they decouple from the plasma and do not interact with it any more.

Electrons and positrons have a rest mass of me = 511 keV. Consequently, they cannot be
created through

γ + γ ←→ e− + e+

reactions any more, when the temperature is smaller than me. Thus, at a temperature of about
0.5 MeV, electrons and positrons can no longer be created through the aforementioned reaction
but they can still annihilate and produce more photons. This leads to a temperature rise in the
photon plasma, which does not affect the neutrinos, since they were already decoupled. One
should note that there was a small excess in electrons compared to positrons, which was needed
to counterbalance the proton charge. This excess of electrons could thus not be annihilated with
positrons.

We already mentioned that protons and neutrons stay in equilibrium through weak interac-
tions, also involving neutrinos. After the neutrino freeze out, those reactions happen only very
rarely any more. Due to this and the fact that neutrons are a bit heavier than protons, neutrons
start to decay after the neutrino freeze out via

n→ p+ e− + ν̄e .

We know that there are neutrons in the Universe today and this is because they got bound inside
the first atomic nuclei before all of them could decay, which brings us to the era of big bang
nucleosynthesis.

Between temperatures of 0.7 MeV and 0.1 MeV, the Universe was sufficiently cool to not dis-
sipate the first atomic nuclei, but still sufficiently hot and dense to form those. Basically all
neutrons got captured in deuterium via

p+ n←→ D + γ .

The deuterium then gets transformed to He4. Besides that, also small quantities of He3 and
lithium could be built, but H and He4 make up almost all of the atomic nuclei in the Universe
at the end of big bang nucleosynthesis.

All events described before happened in the radiation dominated era, where the radiation
density dominated the expansion compared to the smaller matter and possibly the dark energy
density. Some time after big bang nucleosynthesis happened, the Universe had been expanding
enough for matter to start being the dominant ingredient. At an energy of about 1eV most of the
photons were not energetic enough to ionize hydrogen atoms, which formed out of one electron
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CHAPTER 1. COSMOLOGY

and one proton. This time is called recombination and happens at a much lower energy than
the hydrogen binding energy of 13.6 eV, because of the high energy photons in the Wien tail of
their velocity distribution.

Before recombination, the plasma in the Universe consisted of photons and baryons which
interacted with each other through various interactions, for example Compton scattering. After
recombination, no particle species can still interact with the primordial photons and thus they
can travel freely through the Universe. We call this the cosmic microwave background which has
been observed and which shows the Universe at the time of the last scattering between photons
and matter. It is called microwave background because today we observe the red-shifted photons,
which at the time of the last scattering had a much higher energy, in the microwave regime. The
CMB indeed is the most perfect black body spectrum observed today with a temperature of
TCMB ≈ 2.73 K.

Now that recombination is over, the Universe is neutral and the primordial photons can travel
freely without any interactions with matter. Today, though, we know that the Universe is ionized
again as we can observe UV emission from high-redshift (z > 6) sources. In a neutral universe,
these photons would have been absorbed by neutral hydrogen atoms. Accordingly, there must
have been a period in time where the Universe became reionized, which is called the epoch of
reionization. Why and when exactly this happened is not clear, yet. This is a very active field
of research and so far it is only known that reionization happened between z ≈ 6 and z ≈ 12.
The sources that are suspected to have reionized the neutral Universe are first stars and active
galactic nuclei.

1.5. Cosmological Probes

As we have seen before, a few numbers, the so-called cosmological parameters, are sufficient to
describe the evolution of our Universe on large scales, when using the Friedmann-Robertson-
Walker metric. Those parameters are the density parameters Ωi, the Hubble constant H0 as well
as some others, which we will come across later in this chapter. Those are all free parameters
that need to be fixed by observations. In this section, we will briefly describe several cosmological
probes and corresponding results.

1.5.1. Clusters of Galaxies

At the peaks of the dark matter density distribution we can find large ensembles of galaxies,
which are gravitationally bound. This is what we call a cluster of galaxies. Within those,
galaxies actually only contribute about one per cent to the total mass content. Most of the mass,
roughly 90 per cent, is dark matter. The remaining is the so-called intra cluster medium (ICM),
a hot gas, consisting mostly of hydrogen and helium.

Galaxy clusters play an important role in cosmology, which is why we will refer for more detail
to Chapter 3 and for an actual application to Chapter 5.
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Figure 1.1.: The CMB temperature differences compared to the mean temperature as seen by
Planck (Planck Collaboration et al., 2015a). Note that the contrast is chosen in order for the
small anisotropies to be visible.

1.5.2. The Cosmic Microwave Background

As we will see later on, something called inflation is probably the origin for the structures that
were imprinted on the density distribution in the early Universe, which was supposed to be
homogeneous and isotropic. Those structures then result in the large scale inhomogeneities that
we observe today, like galaxies, galaxy clusters, and voids. Before recombination, those over-
and underdensities could only grow in the dark matter density field. Dark matter is not coupled
to photons, which wiped out all baryonic structures. Still, due to dark matter there were over-
and underdense regions in the Universe and because of gravity the primordial plasma would
fall into those overdense regions and contract. Due to the contraction, the photon pressure
would rise, which then pushed the plasma out of the potential wells again. This process would
then repeat itself and it is what is called baryonic acoustic oscillations (BAO). We call them
acoustic oscillations, because those appeared as pressure waves in the primordial plasma. At
recombination, the CMB photons start to travel freely and all of them are supposed to have
the same energy or wavelength, but due to the over- and underdense regions, some photons are
hotter or colder. This is then what can be observed as the CMB, the temperature of the sky in
every direction. After subtracting foreground sources, the CMB then indeed looks almost the
same regardless of the direction - almost, but not quite. There are temperature differences of the
order of 10−5 K, which are caused by the aforementioned inhomogeneities in the early Universe.
A full sky map of the CMB measured by the Planck satellite is displayed in Fig. 1.1.
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CMB experiments create temperature maps of the sky by measuring the energy of incoming
photons in different directions. From these maps one can then compute the temperature distri-
bution, which follows a black body spectrum and the temperature power spectrum, which tells us
about characteristic scales in the temperature differences on the sky. In the temperature power
spectrum shown in Fig. 1.2 one can observe peaks in the amplitude of the data points. Those
correspond to different modes of the BAO before recombination. The first peak is caused by the
mode that until recombination was able to only fall into the wells and then rarefy once. The
scale on which this peak appears corresponds to the distance a sound wave could have travelled
between the big bang and recombination, the sound horizon. All other peaks are caused by
modes which were able to contract and rarefy more often. The location and the ratio of the peak
amplitudes are sensitive to several cosmological parameters and today CMB experiments usually
have the best constraining power in most parameters. In addition to the temperature, one can
also measure the polarisation of the CMB photons, which is affected by gravitational lensing as
well as primordial gravitational waves. There have been several experiments so far, starting from
ground-based, through balloon experiments ending at space probes. Whereas ground-based and
balloon experiments usually only cover a fraction of the sky and are bound to concentrate on
small-scale modes in the CMB, space probes can scan the whole extragalactic sky and analyse
small as well as large scales. The latest CMB space mission was the European Planck satellite
(Planck Collaboration et al., 2015a), which carried out an all sky survey of the CMB tempera-
ture as well as its polarisation. The accuracy of the results and the best fit power spectra are
astonishing (Planck Collaboration et al., 2015c). Plancks predecessors were the COBE (Mather
et al., 1984) and the WMAP satellites (Bennett et al., 2003). Ground based experiments are for
example the BICEP2 telescope (Ade et al., 2014a), the Atacama Cosmology Telescope (ACT,
Swetz et al. 2011), or the South Pole Telescope (SPT, Carlstrom et al. 2011). BICEP focuses
on detecting the CMB polarisation, whereas ACT and SPT are by now also capable of that, but
were initially designed for the detection of the Sunyaev-Zel’dovich (SZ) effect.

The Sunyaev-Zel’dovich Effect

The CMB photons on their way towards earth are affected by many different phenomena. A
particularly interesting one is the Sunyaev-Zel’dovich effect. When CMB photons travel through
clusters of galaxies, they can be scattered off the electrons of the ICM. Through this inverse
Compton scattering the energy of the photons changes and so does their energy spectrum, as
seen in Fig. 1.3. Depending on the frequency of observation, the intensity of CMB photons then
either decreases or increases. This means that in the direction of a galaxy cluster a temperature
in the CMB will be measured that is different to the average CMB temperature and thus this
can be used as a way of cluster detection. This effect has first been described by Sunyaev and
Zel’dovich (Sunyaev & Zel’dovich 1970; Sunyaev & Zel’dovich 1980) and it has indeed been used
to detect and study galaxy clusters, for example by Planck (Planck Collaboration et al., 2015b),
ACT (e.g. Hasselfield et al. 2013), or SPT (e.g. Bleem et al. 2015).

13



1.5. COSMOLOGICAL PROBES

0

1000

2000

3000

4000

5000

6000

D
T
T

`
[µ

K
2
]

30 500 1000 1500 2000 2500
`

-60
-30
0
30
60

∆
D
T
T

`

2 10
-600
-300

0
300
600

Figure 1.2.: The CMB temperature-temperature power spectrum as measured by Planck (Planck
Collaboration et al., 2015c).
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Figure 1.3.: The impact of the SZ-effect on the CMB temperature spectrum (Carlstrom, Holder
& Reese, 2002).
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1.5.3. Baryonic Acoustic Oscillations

Using galaxy redshift surveys, one can measure the two-point correlation function of the galaxy
distribution

ξgg(~r) = 〈ng(~x)ng(~x+ ~r)〉 , (1.32)

which tells us the excess probability of finding a galaxy at a comoving separation ~r to another
galaxy at position ~x in comparison to a Poisson distribution. Here ng is the galaxy number
density and 〈〉 is the ensemble average. Its Fourier transform is the power spectrum

Pgg(~k) =

∫
d3r ξgg(~r)e−i~r·~k . (1.33)

Those two functions describe the statistical properties of the matter density field. The BAO
peaks in the matter field, which we already experienced in the CMB power spectrum, are also
imprinted in the matter power spectrum and correlation function. Since we know that galaxies are
good tracers of the matter density field, the BAO can also be observed in the galaxy correlation
function, ξgg. The location of the BAO peak in ξgg can be used as a standard rod to measure
the expansion of the Universe as it tells us the size of the sound horizon at recombination and
thus it can be used to constrain cosmological parameters.

The most successful experiments in this field of research are the Baryonic Oscillations Spec-
troscopic Survey (BOSS; e.g. Sánchez et al. 2013) and the WiggleZ survey (e.g. Blake et al.
2012).

1.5.4. Supernovae of Type Ia

Supernovae are explosions of stars, which can be categorised by using the reason for this explosion,
as for example a collapsing stellar core. One category is the supernova of type Ia (SNIa). This
is caused by a binary star, consisting of a red giant star and a white dwarf. The separation
between the two must be sufficiently small so that the white dwarf can accrete mass from its
companion. Once the white dwarf mass exceeds the Chandrasekhar limit, the star explodes in
a supernova. The Chandrasekhar limit gives the maximum mass for a white dwarf, where the
electron degeneracy pressure is still in equilibrium with the gravitational force. This explosion
is amongst the most luminous in the Universe and since it is always caused by similar systems, a
white dwarf exceeding the Chandrasekhar limit, its luminosity is always approximately the same.
This knowledge can be exploited to use supernovae type Ia as standard candles for distance
measurements, even at very high redshift. Subsequently, the distance measurements can be used
as a probe of the expansion of the Universe and thus to constrain cosmological parameters. The
first groups to use SNIa to constrain cosmology were the the High-Z Supernova Search Team
(Riess et al., 1998) and the Supernova Cosmology Project (Perlmutter et al., 1999).

1.5.5. Gravitational Lensing

Gravitational lensing means the deflection of light rays by masses, as described by Einstein’s
theory of general relativity. Chapter 2 will give a detailed introduction to this phenomenon and
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Figure 1.4.: The energy content of the Universe as measured by Planck (Planck Collaboration
et al., 2015c).

its application, so here we will only acknowledge the fact that different lensing applications can
be used as cosmological probes and refer to Chapter 2 for more information.

1.6. The Cosmological Standard Model: ΛCDM

Using the diversity of cosmological probes described above, the astronomical community was able
to independently constrain the cosmological parameters and arrived at a concordance model of
cosmology. This model is called the Λ cold dark matter (ΛCDM) model. In this model, only
about 5 per cent of the Universe consist of ordinary baryonic matter, about 25 per cent of
dark matter and roughly 70 per cent of dark energy. The best fit values of some cosmological
parameters, including density parameters for dark energy and dark matter, from the Planck
collaboration can be found in Table 1.1, a graphic that shows the energy content in Fig. 1.4.
The ΛCDM universe we think we live in started with the big bang, and then expanded, first
through a radiation dominated, then later through a matter dominated phase. In the late times
of the Universe, dark energy started to dominate and the expansion started to accelerate.

From intuition it is not at all clear, how astronomers would come up with a world model, that
includes mysterious materials like dark energy and dark matter nor what these things are. We
will find that the idea of dark matter is already almost a hundred years old, whereas dark energy
is a more recent one.

The first hint for dark matter was found in the 1930s by Fritz Zwicky (Zwicky, 1933), who
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Table 1.1.: This table shows a few cosmological parameters constrained by the Planck satellite
while adding information from lensing, BAO, and other data sets (Planck Collaboration et al.,
2015c).

Parameter ΩΛ,0 Ωm,0 Ωb,0 H0 [ km
s Mpc

] σ8

Best fit 0.6911 ± 0.0062 0.3089 ± 0.0062 0.04851 ± 0.00035 67.74 ± 0.46 0.8159 ± 0.0086

used the virial theorem to estimate the mass of the Coma cluster (more details in Chapter 3).
His findings showed that there was apparently more mass than was visible in the optical, thus
the term dark matter. This agrees with other studies, like rotation curves of galaxies, or from
the CMB. The conclusion is that there must be some new particles, which do not interact with
light, but only show themselves via gravity. Nowadays, most people believe that dark matter
must be some unknown elementary particle but the search for it is still ongoing.

Dark energy is basically a term to describe the apparent accelerated expansion of the Universe
found by Riess et al. (1998) and Perlmutter et al. (1999) at the end of the 20th century. Those
teams studied the expansion of the Universe using distant SNIa and found, in contradiction to
most expectations, that the Universe’s expansion was accelerating. Before, the community was
convinced that our Universe was a matter dominated one with Ωm,0 close to unity. It turned
out to be quite different. There are several possible explanations for this expansion behaviour,
like Einstein’s cosmological constant Λ or a new particle. Some researchers even believe that
the accelerated expansion is only apparent and that it is due to general relativity failing to
describe the Universe on cosmological scales. Unfortunately, so far those are all just guesses
and cosmologists are nowhere near finding out what exactly dark energy is. Probably, the next
generation of wide field surveys like Euclid or LSST will shed light onto this matter.

1.7. Inflation

Although the standard model of cosmology is very successful, there are some problems, which
can only be resolved by extensions to the model. Here we will briefly explain those problems and
then introduce the idea of inflation, which is the most popular solution to these problems.

The particle horizon is the distance within which regions can have interacted and thus achieve
thermal equilibrium. Regions further apart than this distance had no chance of interaction. The
particle horizon at the time of recombination can be calculated from theory, and using the known
redshift of recombination and the angular diameter distance this can be projected on to the sky.
The result is of the order of a few degrees. This means that the CMB temperature should only be
the same on scales comparable to the particle horizon. This is not the case. In fact we know the
CMB to be homogeneous and isotropic on very large scales. How can this be if widely separated
regions had no chance of interaction? This is known as the horizon problem.

Using the first Friedmann equation, one can show that the Universe is evolving away from
flatness. Considering the fact that the Universe today is already close to flatness, this means
that in early times the Universe must have been even closer to flatness. This leaves an immense
fine tuning problem: Why would the Universe from all possible configurations start off that close
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to flatness? We call this the flatness problem.

These two problems can be solved by a theoretical construct, which is called inflation. In this
theory, shortly after the big bang, the Universe undergoes an epoch of exponential expansion. It
gets inflated, thus the term inflation. Through inflation all curvature would be wiped out and
inflation would leave the Universe almost flat. Also, via inflation formerly connected regions
would become so distant that they appeared as informationally disconnected today.

Inflation itself is motivated purely observational. There is no physical need to construct any-
thing like this, except to bring observations in line with the cosmological standard model. There
are many theoretical works and different theories how inflation might have worked. The few
observables connected to inflation are the slope of the primordial power spectrum, ns, and the
amplitude of a gravitational wave signal imprinted by inflation into the CMB polarisation. The
term primordial power spectrum refers to the power spectrum of the density fluctuations at
very early times. This can supposedly be described as a power law Pδ(k) ∝ kns . Inflation pre-
dicts ns to be a bit smaller than unity, which is in agreement with findings by Planck (Planck
Collaboration et al., 2015c). Gravitational waves in the CMB polarisation data have not been
discovered yet, although there were recent claims (Ade et al., 2014b), which were later found to
be premature (BICEP2/Keck and Planck Collaborations et al., 2015).

1.8. Structure Formation

When considering the small anisotropies in the CMB, a major goal for cosmology should be to
find a way to properly describe the evolution from small inhomogeneities in the early Universe
to the galaxy clusters and voids we are observing today. In order to achieve this, we first need to
find out how density perturbations evolve and how we can describe the density field in a sensible
way.

We can describe inhomogeneities in the density field using the so-called density contrast

δ(~x, t) =
ρ(~x, t)− ρ̄(t)

ρ̄(t)
, (1.34)

where ρ(~x, t) is the density at comoving position ~x and time t and ρ̄(t) the mean density. In
structure formation theory the horizon scale is an important one, because, as we will see now,
it determines the growth of perturbations δ in the density field. For simplicity we define the
Hubble scale as the horizon

dh(t) =
c

H(t)
. (1.35)

At some point in the past all perturbations were larger than the horizon, which is what we
call super-horizon perturbations. Later on all perturbations enter the horizon and become sub-
horizon perturbations. When considering super-horizon perturbations we find that in a radiation-
dominated universe they grow as δ ∝ a2 and in a matter-dominated one with δ ∝ a. For a
sub-horizon perturbation we find that in a matter-dominated universe the perturbations still
grow with a, whereas in a radiation-dominated one they grow with δ ∝ ln a.
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For sub-horizon perturbations we can now assume that matter is a fluid, which in the early
Universe is a sound assumption. We can then use the continuity equation, the Euler equation,
and the Poisson equation given in comoving coordinates to describe the perturbations

∂δ

∂t
+

1

a
∇~x · [(1 + δ)~v] = 0 , (1.36)

∂~v

∂t
+

(
ȧ

a

)
~v +

1

a
(~v · ∇~x)~v = −∇~xΦ

a
− ∇~xp
aρ̄(1 + δ)

, (1.37)

∇2
~xΦ = 4πGρ̄a2δ , (1.38)

where p is the pressure, Φ the gravitational potential, and ~v the peculiar velocity. Here we
also assume that the perturbations are embedded in a smoothly expanding universe. If those
perturbations are small, they do not influence the evolution of the surrounding universe. We can
now assume an equation of state

∇~xp
ρ̄

= c2s∇~xδ +
2

3
(1 + δ)T∇~xS , (1.39)

where cs is the speed of sound and S the entropy, and that δ and ~v are small and thus neglect
higher order terms. After some calculus we arrive at the linear growth equation

∂2δ

∂2t
+ 2

ȧ

a

∂δ

∂t
= 4πGρ̄δ +

c2s
a2
∇2
~xδ +

2

3

T

a2
∇2
~xS . (1.40)

Eq. (1.40) describes how small perturbations grow in an expanding universe with scale factor a
and mean density ρ̄. In case of pressureless matter we can find two simple analytic solutions to
Eq. (1.40), which in general needs to be solved numerically. A decaying solution is D− ∝ H(t),
a growing solution is

D+ ∝ H(t)

∫ t

0

dt′
t′

a2(t′)H2(t′)
. (1.41)

We call D+ the linear growth factor. Describing the evolution of density perturbations in the
non-linear case is not as simple and one is usually in need of numerical simulations. We will
not explain this here and instead begin to find a way to describe the initial conditions of the
density field in our Universe found in the CMB. Using the linear growth equation and numerical
simulations, we can try to evolve initial perturbations like the ones found in the CMB to form
the large inhomogeneities we observe today. Due to the fact that initial conditions in the early
Universe are one realization of a random field, no simulation will be able to exactly match
the outcome of the Universe today. Thus we need some statistical tool to describe the matter
distribution in the Universe. For this we will use the already introduced concepts of the two-
point correlation function and the power spectrum, which we show here again for the matter
distribution

ξmm(~r) = 〈ρm(~x)ρm(~x+ ~r)〉 , (1.42)

Pmm(~k) =

∫
d3r ξmm(~r)e−i~r·~k . (1.43)
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From theory the shape of the power spectrum can be derived, not so its amplitude, which we
need to fix using observations. This amplitude is usually parametrised in terms of the dispersion
of the smoothed matter distribution on a scale r

σ2
r = 〈δ2

r(~x)〉. (1.44)

Observations showed that when one is counting the number of galaxies, N , in spheres of a radius
of 8h−1 Mpc we find

σ2
gal,8 =

〈(N − 〈N〉)2〉
〈N〉2 ≈ 1 . (1.45)

Assuming galaxies are unbiased tracers of the matter distribution this then means that

σ8 ≈ 1. (1.46)

In case of galaxies being a biased tracer σ8 becomes

σ8 =
σgal,8

b
=

1

b
, (1.47)

where b is the galaxy bias. σ8 is another cosmological parameter.
Using the tools of the power spectrum or the correlation function, we can statistically describe

the matter density field in the Universe or in simulations and thus quantify our observations. In
fact, the matter power spectrum is one of the easiest predicted observables and thus it is very
useful for constraining cosmological parameters. Unfortunately, the matter power spectrum is
mostly about dark matter, which cannot be observed and so we have to use other observables,
in this case galaxies. The galaxy distribution though cannot be expected to and is indeed known
to not exactly follow the matter distribution. This can again be seen in the power spectrum or
the correlation function. The difference in the matter and galaxy correlation function can be
understood as a measure of how much more galaxies cluster and it is parametrised by the galaxy
bias, b. In a simple model one can assume the bias to be linear and deterministic,

Pgg = b2Pmm . (1.48)

Note that this is usually not a correct assumption unless one is dealing with large scales, where
the bias has been found to be mostly constant. Furthermore, we can also connect the two
auto-correlations Pgg and Pmm using the cross-correlation

r2
gm =

P2
gm

PggPmm
, (1.49)

where rgm is the cross-correlation coefficient.
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CHAPTER 2

Gravitational Lensing

If not stated otherwise, all equations in this chapter are taken from Bartelmann & Schneider
(2001).

2.1. Basics of Gravitational Lensing

In Fig. 2.1 we can see the geometry of a typical gravitational lensing system. We have the
observer, the lens plane, where the lens is located, and the source plane, where the source is
located that emits light that will be deflected by the mass of the lens. A normally continuous
light ray in our model can be replaced by two straight lines if the extension of the lens is
considerably smaller than its distance to source and observer. We define the angular diameter
distance between deflector and observer as Dd, the one between deflector and source as Dds, and
the one between observer and source as Ds. ~η is the position of the source in the source plane.
It emits a light ray that gets deflected by the lens with the deflection angle ~α′. ~ξ is the distance
in the lens plane between the lens and the position where the light ray passes through the lens
plane. ~β is the true source position as seen by the observer, if there was no light deflection,
whereas ~θ is the observed source position. We can safely assume all angles to be small. From
the source plane in Fig. 2.1 we see that

~η = ~a−~b , (2.1)

where we can replace ~a = ~θDs and ~b = ~α′(~ξ)Dds

~η = ~θDs − ~α′(~ξ)Dds . (2.2)
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Figure 2.1.: Geometry of a typical gravitational lensing system.
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Now we can make use of the definition of the angular diameter distance and divide by Ds, which
then yields the lens equation

~β = ~θ − Dds

Ds
~α′(Dd

~θ) = ~θ − ~α(~θ) , (2.3)

where in the last step we defined the reduced deflection angle

~α(~θ) =
Dds

Ds
~α′(Dd

~θ) . (2.4)

Eq. (2.3) can have multiple solutions, each one corresponding to a different image of the source.

For a system with a spherically symmetric lens and ~ξ much smaller than the Schwarzschild radius
of the lens, the deflections angle is

α′ =
4GM

c2ξ
. (2.5)

We can plug this into Eq. (2.3) and while using θ = ξ/Dd we find

β = θ − Dds

DdDs

4GM

c2θ
. (2.6)

When the source is exactly behind the lens, β = 0 which leaves us with

θE :=

√
Dds

DdDs

4GM

c2
, (2.7)

where we defined the Einstein angle θE. This means that in case of a spherically symmetric
lens and the source being exactly behind the lens, the image will appear as a ring around the
lens. This is called an Einstein ring. The angular radius of the ring is then the Einstein angle or
Einstein radius θE, which can be used to immediately estimate the mass within the ring.

In case of a three-dimensional density distribution of the lens we can introduce the surface
mass density

Σ(~ξ) =

∫
dr3ρ(ξ1(λ), ξ2(λ), r3(λ)) , (2.8)

where ρ is the density distribution of the lens and ξ1, ξ2, and r3 describe the path of the light
ray. λ is an affine parameter. Usually the deflection angles involved are small angles, which is
why we can make use of the Born approximation that allows us to describe the path of the light
ray as a straight line close to the lens. r3 then is the path on which the light ray travels. Now
we can express the deflection angle using the surface mass density

~α(~ξ) =
4G

c2

∫
d2ξ′Σ(~ξ′)

~ξ − ~ξ′
|~ξ − ~ξ′|2

, (2.9)

or by using the convergence κ

~α(~θ) =
1

π

∫
R2

d2θ′κ(~θ′)
~θ − ~θ′
|~θ − ~θ′|2

. (2.10)

27



2.2. WEAK GRAVITATIONAL LENSING

Here κ is the dimensionless surface mass density defined as

κ(~θ) =
Σ(Dd

~θ)

Σcrit
, (2.11)

where Σcrit = c2

4πG
Ds

DdDds
. The reduced deflection angle can also be expressed as the gradient of

a deflection potential ψ
~α = ∇ψ(~θ) , (2.12)

where

ψ(~θ) =
1

π

∫
R2

d2θ′κ(~θ′) ln |~θ − ~θ′| . (2.13)

Finally, we can say that
∇2ψ = 2κ , (2.14)

while making use of ∇2 ln |~θ| = 2πδD(~θ), where in this case δD is the Dirac delta function.

2.2. Weak Gravitational Lensing

So far, we only considered point sources or single light rays, but what happens with extended
sources? Images of extended sources will get distorted due to the differential deflection of every
light ray belonging to the image. The distortion of such an image is described by the Jacobian
of the lens equation

A(~θ) =
∂~β

∂~θ
= δij −

∂2ψ(~θ)

∂θi∂θj
=

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
, (2.15)

where γ is the so-called shear. It is a complex number and thus has two components γ1 and γ2

γ = γ1 + iγ2 . (2.16)

The inverse of the determinant of A is the magnification

µ(~θ) =
1

det(A(~θ))
=

1

(1− κ)2 − |γ|2 . (2.17)

In extreme cases, lensing can lead to giant arcs (see Section 2.3). However, when κ and |γ|
are both much smaller than unity, we are in the weak gravitational lensing regime, where these
distortions are only small and the effect is subtle. In order to describe the change in galaxy
shapes we first need to be able to quantify the shape. We do this by introducing the complex
ellipticity

ε = |ε|e2iφ , (2.18)

where φ in this case is the position angle and

|ε| = 1− r
1 + r

, (2.19)
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with r being the axis ratio of the light distribution of the image of a galaxy. It was shown that
the ellipticity under lensing changes as follows (Schneider & Seitz, 1995)

εlen =
εint + g

1 + g∗εint
, |g| ≤ 1 or εlen =

1 + gε∗int

ε∗int + g∗
, |g| > 1 , (2.20)

where g is the reduced shear

g =
γ

1− κ = g1 + ig2 = |g|e2iφ . (2.21)

The change in ellipticity depends only on the reduced shear, not on κ and γ separately, thus g
is the only quantity that can be inferred from measuring galaxy ellipticities.

In practice one does not know the intrinsic ellipticities of background galaxies and thus it is
not possible to judge if a single galaxy has been lensed or not. For a large enough ensemble
of galaxies, however, we can assume that due to the cosmological principle 〈εint〉 = 0. If those
galaxies were lensed this would not be the case. So for an ensemble of galaxies it is possible
to measure the weak gravitational lensing signal. Typical lenses here can be galaxies, galaxy
clusters or even the large scale structure of the universe. We will describe these applications in
the next sections.

2.2.1. Cluster Weak Lensing

The gravitational potential of a single galaxy cluster can act as a gravitational lens in the strong
(see Section 2.3) as well as the weak lensing regime. In order to find the weak lensing signal
around a galaxy cluster, one usually uses the tangential shear,

γt = −<[γe−2iφ] , (2.22)

where φ is the angle that describes the position of the source galaxy with respect to the lens,
which is in the centre of the coordinate frame. Astronomical lenses like galaxy clusters or galaxies
should introduce a distortion to the sources that is tangential with respect to the lens centre.
Thus, we use the tangential part of the shear whereas the cross shear,

γx = −=[γe−2iφ] , (2.23)

will be zero in such a case. If a non-zero γx is measured, this normally points to systematics in
the data. Usually, γt is measured in annular bins around the lens. So instead of just having one
source galaxy, people make use of all background galaxies around the cluster and thus measure
the average γt as a function of separation to the lens. When assuming a mass profile for the
lens, this signal can be predicted and using this, a mass for the cluster can be estimated. When
redshift information is available one can also use the annular differential excess surface mass
density

∆Σ(R) = 〈γt〉Σcrit (2.24)

as the lensing observable, where R is the projected separation between lens and source. A
statistically complete sample of clusters can even be used to measure the so-called halo mass
function and thus to constrain cosmological parameters. Recent results of cluster lensing studies
can for example be found in Applegate et al. (2014) and Hoekstra et al. (2015).
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2.2.2. Galaxy-Galaxy Lensing

Instead of a cluster of galaxies, one can also measure the average tangential shear as a function
of separation around galaxies. The signal of a single galaxy is normally not strong enough to
be detected, which can be overcome by stacking the signal of many lens galaxies. The resulting
signal can then be used to learn about the average properties of the lens population. Recent
results in this field are for example van Uitert et al. (2011), van Uitert et al. (2012), Mandelbaum
et al. (2013), or Velander et al. (2014). An actual application of galaxy-galaxy lensing can be
found in Chapter 6.

2.2.3. Cosmic Shear

Light rays emitted by a high-redshift source get deflected many times on their way to the observer.
The lens in this case is the large scale structure of the universe. This deflection again changes
the shapes of galaxies and can be measured in a statistical sense. The tools being used here are
two-point statistics of the shear, namely the correlation functions

ξ+(ϑ) = 〈γtγt〉(ϑ) + 〈γxγx〉(ϑ) , (2.25)

ξ−(ϑ) = 〈γtγt〉(ϑ)− 〈γxγx〉(ϑ) , (2.26)

ξx(ϑ) = 〈γtγx〉(ϑ) . (2.27)

Here we use pairs of galaxies, each with a measured ellipticity, to estimate these functions, which
is why we can again define a tangential as well as a cross part of the shear for each pair. Those
functions are directly connected to the convergence power spectrum and thus to the matter power
spectrum. This makes cosmic shear a powerful tool to constrain cosmological parameters. The
first detections of cosmic shear happened about 15 years ago. Recent results are for example
Schrabback et al. (2010) or Heymans et al. (2013).

2.2.4. The Aperture Mass

A special estimator for weak gravitational lensing is the aperture mass (Schneider 1996; Schneider
et al. 1998). It was initially designed to overcome the mass-sheet degeneracy, which describes
the problem that κ for a given lens can only be constrained up to a constant λ, which means
that we cannot observe a difference between κ and a κ′, where

κ′(~θ) = λκ(~θ) + (1− λ) . (2.28)

The aperture mass Map is now defined in such a way that it is insensitive to the mass sheet
degeneracy. We define it as

Map =

∫
dφ φ U(φ) κ(φ) , (2.29)

where U is a compensated filter function and φ the aperture radius. In terms of the tangential
shear γt instead of the convergence κ, it turns into

Map =

∫
dφ φQ(φ) γt(φ) , (2.30)
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where Q is related to U via

Q(φ) =
2

φ2

∫ φ

0

dφ′ φ′ U(φ′)− U(φ) . (2.31)

Several possible filters have been suggested and used in measurements, most of them polynomials.
In Chapter 6 we will present a new set of filters for Map and apply these new estimators to data.

2.3. Strong Gravitational Lensing

If κ and |γ| are of the order of 1, we are in the strong gravitational lensing regime. Massive
lenses lead to the deflection of the emitted light of a source, which can result in multiple images,
magnified images, and distorted images. The image distortion can lead to intrinsically elliptical
background galaxies appearing as arcs in the vicinity of galaxy clusters or, when lens, source,
and observer are aligned, to a complete ring, the Einstein ring. The radius of the ring or the
curvature radius of arcs are called Einstein radius and, as mentioned before, can be used as a
simple measure of the lens mass. In case of imperfect alignment also incomplete rings can appear.
Furthermore, the position of multiple images and arcs can be used to build a lens model, which
again can be used to find the mass of the lens. Typical lenses for these phenomena are single
galaxies and clusters of galaxies.

When the source in a multiply imaged system is intrinsically variable, this can be used for
constraining the Hubble constant, H0. The path of the light rays of the multiple images will
be different and hence also the light travel time between source and observer. Using long term
photometric monitoring light curves of the different images can be produced and the time delay,
∆t, can be measured, which is proportional to H0.

Strong gravitational lensing does not play an important role in this work, so we will not discuss
it in more detail here.

2.4. Microlensing

So far, the phenomena we discussed were all about extragalactic lenses and sources, such as
galaxies and galaxy clusters. There is, however, the possibility of lower mass objects within the
Milky Way to act as a lens, such as a black hole. When observing stars for example in the
Magellanic clouds, it can happen that a lens passes between the observer and the star. Due to
the mass of the lens the star light will be magnified for a short while. In long term photometric
monitoring of stars such an event will create a distinct shape in the light curve and can thus be
detected. The phenomenon of microlensing has been used for example to search for macroscopic
dark matter in the Milky Way halo (e.g. Alcock et al. 1995) or quite recently to search for
extrasolar planets (e.g. Kains et al. 2013; Skowron et al. 2015).
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CHAPTER 3

Clusters of Galaxies

Most parts of this chapter are based on the introduction of Buddendiek et al. (2015) published
in Monthly Notices of the Royal Astronomical Society, Volume 450, Issue 4, p. 4248-4276.

3.1. Content of Galaxy Clusters

Galaxy clusters are the largest gravitationally collapsed structures in the Universe and as such
a valuable tool for cosmology. Already in the early 20th century it had been shown that most
of the mass in the Coma cluster is not visible in the optical (Zwicky, 1933). It turned out that
indeed galaxies make up only about one per cent of the total mass of a galaxy cluster. About ten
per cent is hot gas, the ICM, the rest is dark matter. In the centre of a cluster one usually finds
a giant elliptical galaxy, which is at the same time the brightest cluster galaxy (BCG). The first
large catalogue of galaxy clusters has been assembled by Abell in the 1950s (Abell, 1958). This
has been done by visually inspecting photographic plates and looking for galaxy overdensities.
In the course of this chapter we will describe briefly how galaxy clusters can be detected, how
their mass can be estimated, and the ways clusters can be used as cosmological tools. Thereby,
we will focus on the cosmological aspects and not go into detail concerning studies of cluster
physics.

3.2. Detecting Clusters of Galaxies in Different Wavelength
Regimes

Clusters of galaxies, especially at high-redshift, are important tools to study our Universe. Years
before the discovery of dark energy in the late 20th century, cluster studies already pointed
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towards an Ωm,0 much smaller than unity (e.g. White et al. 1993; Bahcall, Lubin & Dorman
1995). Furthermore, one can measure the total number of clusters per mass bin and compare it
to theoretical predictions. In order to conduct such a cosmological analysis of a sample of galaxy
clusters, one first has to find them. Galaxy cluster detection is possible in many different ways
depending on the wavelength. Since the intra-cluster medium (ICM) emits in the X-ray, one
can use X-ray surveys to detect clusters. This has been done many times using different X-ray
observatories. For example using the ROSAT satellite (e.g. XBAC: Ebeling et al. 1996; BCS:
Ebeling et al. 1998; MACS: Ebeling, Edge & Henry 2001; HIFLUGCS: Reiprich & Böhringer
2002; 400D Cluster Survey: Burenin et al. 2007) or the XMM Newton satellite (e.g. XCS:
Romer et al. 2001, Mehrtens et al. 2012; XMM LSS: Pierre et al. 2001, Pierre, Valtchanov &
Refregier 2002; REXCESS: Böhringer et al. 2007). Using the X-ray emission of the ICM, one
can measure the temperature of the gas, which probes the full gravitational potential of the
cluster. Consequently, the X-ray properties of clusters correlate well with mass (e.g. Mahdavi
et al. 2013). Once redshift, mass, and the selection function are known, the samples can be used
for constraining cosmological parameters (e.g. Vikhlinin et al. 2009a; Mantz et al. 2014).

As already mentioned in Section 1.5.2, CMB photons experience inverse Compton scattering
due to the electrons in the ICM and thus the CMB spectrum changes. Depending on the
frequency one will either observe a decrease in photons or an increase, which is known as the SZ
effect. The SZ effect is also being used as another way to find galaxy clusters for example by the
South Pole Telescope (SPT, e.g. Bleem et al. 2015), the Atacama Cosmology Telescope (ACT,
e.g. Hasselfield et al. 2013) or the Planck satellite (Planck Collaboration et al., 2015a). The
SZ effect probes the integrated pressure of the ICM, which probes the gravitational potential
and has also been found to correlate well with mass (e.g. Bonamente et al. 2008). SZ-selected
samples have been used for cosmological parameter constraints (e.g. Benson et al. 2013; Sievers
et al. 2013; Planck Collaboration et al. 2015b).

Galaxy cluster detection in the optical works somewhat differently. Most cluster finding al-
gorithms look for overdensities in the galaxy distribution. Nowadays, this is usually combined
with magnitude information or photometric redshifts (e.g. Postman et al. 1996; Milkeraitis et al.
2010). Similar to photometric redshifts one can also use colour information and an intrinsic
property of clusters, the cluster red sequence. This red sequence can be observed as a region
in the colour-magnitude diagram, where red galaxies of the same cluster align along a line of
almost constant colour (Gladders & Yee, 2000). This is due to the redshift dependent shift of
the 4000 Å-break through the filter bands in use, which is why the location of the red sequence
in colour-magnitude space can be used as an estimator for the cluster redshift.

The red sequence method has also been used for cluster detection, for example by the Red
Cluster Sequence Surveys 1 and 2 (Gladders & Yee 2005; Gilbank et al. 2011), by the MaxBCG
program (Koester et al., 2007), or redMaPPer (Rykoff et al., 2014). Besides giving an estimate
for the cluster redshift optical surveys can also provide estimates of “cluster richness”, which
is the number of cluster galaxies within a certain radius and brighter than some characteristic
magnitude. Several cluster surveys have been generated around various richness measures (e.g.
Koester et al. 2007; High et al. 2010; Rykoff et al. 2014) and it has been shown to correlate with
mass (e.g. Planck Collaboration et al. 2011, Sehgal et al. 2013) although this relation appears
to have large intrinsic scatter (Angulo et al., 2012).

36



CHAPTER 3. CLUSTERS OF GALAXIES

Usually, the methods of cluster detection that do not make use of optical observations require
some kind of confirmation from a different wavelength regime. This can be overcome by cross-
correlating data from two different regimes. This has been done using optical and X-ray data by
for example the Massive Cluster Survey (MACS, Ebeling, Edge & Henry 2001), the RASS-SDSS
Galaxy Cluster Survey (Popesso et al., 2004), or the extended MACS (eMACS, Ebeling et al.
2013). Also optical and infra-red data have been combined by the Massive Distant Clusters of
Wise Survey (MaDCoWS, Brodwin et al. 2015).

Over the last few years, more large volume surveys were conducted. Especially the Planck
satellite has been shown to find massive galaxy clusters at redshifts greater than z = 0.5 (Planck
Collaboration et al., 2014) spread over the whole sky. This is complementary to the samples
found by the SPT (Bleem et al., 2015) and ACT (Hasselfield et al., 2013), which originate from
a smaller area and consist of typically slightly less massive but higher redshift clusters.

3.3. Determining the Mass of Clusters of Galaxies

For cosmological cluster studies the masses of the clusters play a crucial role, as we will see later
on in this chapter and Chapter 5. Before explaining this, we will first briefly introduce some
possibilities of estimating the mass of a galaxy cluster. As it is not intuitively clear what the
mass of a cluster means, we define r500 (r200) as the radius, where the density of the galaxy
cluster is 500 (200) times the critical density of the universe. We then take M500 (M200) to be
the mass within this radius.

3.3.1. Strong and Weak Gravitational Lensing

Gravitational lensing is a great tool to measure the total mass of objects, also of clusters, as it
probes not only the visible but also the dark matter. For the inner ∼ 100 kpc of a cluster, strong
gravitational lensing can be used to constrain the cluster mass. This can be done by finding mass
models using multiple images of the same background sources or by using the Einstein angle of
giant luminous arcs. As we explained in Chapter 2, the Einstein angle can immediately be used
as a mass proxy. If one is interested in the cluster mass on larger scales, weak lensing is the tool
to use. Due to the gravitational potential of the cluster, the light of background galaxies gets
deflected and their shapes distorted. Statistically this can be measured as the tangential shear
γt as a function of distance to the cluster centre. While assuming a model for the mass profile,
the expected tangential shear can be computed and fitted to the measured shear profile. The
constrained mass profile can then be used to find the mass of the cluster (see Chapter 2).

3.3.2. Dynamical Mass Estimation

Mass estimation is also possible by using dynamical information, namely the motions of galaxies
inside the cluster. For this to work we need to obtain a great number of spectra of cluster
members, from which we can measure peculiar velocities. We can then use the virial theorem to
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find the mass of the cluster (e.g. Maurogordato et al. 2008). We will now give a brief derivation
of this method closely following the one from Schneider (2006).

The virial theorem states that in a dynamically bound system, like a galaxy cluster, the
potential energy Epot is equal to twice the kinetic energy Ekin

− Epot = 2Ekin . (3.1)

We can define the energies of the cluster as the sum over the energies of all cluster galaxies,
which yields

Ekin =
1

2

∑
i

miv
2
i (3.2)

and

Epot = −1

2

∑
i 6=j

Gmimj

rij
, (3.3)

where mi is the mass of the ith galaxy, vi the absolute value of the velocity of the ith galaxy, and
rij the absolute value of the three dimensional separation between the ith and jth galaxy. Now

we define the total mass of the cluster asMi =
∑
i

mi, the three dimensional velocity dispersion as

〈v2〉 = 1
M

∑
i

miv
2
i , and the three dimensional gravitational radius as rG = 2M2

∑
i 6=j

mimj

rij

−1

.

All these equations, when plugged into the virial theorem, yield

M =
〈v2〉rG

G
. (3.4)

This expression makes use of three dimensional quantities such as 〈v2〉. In order to connect this to
observables we need to use two dimensional quantities. In case of an isotropic velocity distribution
we can use 〈v2〉 = 3σ2

v , where σ2
v is the two dimensional velocity dispersion, which can be mea-

sured using galaxy spectra. Additionally, we use rG = π
2RG, with RG = 2M

∑
i 6=j

mimj

rij

−1

,

the absolute value of the two dimensional separation of the ith and jth galaxy. This then yields
an expression for the total mass of a cluster using only observables

M =
3π

2

σ2
vRG

G
. (3.5)

This means that by assuming that the cluster is dynamically bound and by taking a large
number of galaxy spectra, it is possible to estimate the dynamical mass of a galaxy cluster.
However, we should note that this is an especially expensive way of mass determination in terms
of observing time. Particularly, for high-redshift galaxy clusters it becomes increasingly hard to
take reasonable spectra of a sufficient number of cluster members. This is probably a reason why
this method is not as popular in estimating cluster masses as for example lensing.
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3.3.3. Scaling Relations using Optical-, Radio-, and X-ray-Data

Weak lensing cluster mass estimates as described before can be used to calibrate scaling relations
between the cluster mass and several observables that are known to correlate well with mass,
but are easier to measure than the weak lensing mass. Those observables are usually the X-ray
temperature of the ICM, TX, and the integrated pressure of the ICM, YSZ, which can be measured
using the SZ effect. A more detailed explanation of how to measure YSZ can be found in Chapter
5. In order to find a general scaling relation, the selection function of the cluster sample needs
to be known and be corrected for. An example for a YSZ −M scaling relation will be applied to
data in Chapter 5. A recent work with constrained scaling relations is for example Andersson
et al. (2011).

3.4. Galaxy Clusters as a Cosmological Probe

3.4.1. Cluster Counting Experiments

The halo mass function is used to compute the number density of halos for a given mass bin.
The number density of clusters, depends strongly on the initial conditions of the matter field
they form in, which depend on the cosmology. Thus the cluster number density can be used
for cosmological studies. The halo mass function can be constrained at the high mass end by
counting galaxy clusters as a function of mass. Although the concept appears simple, it requires
well calibrated mass measurements (e.g. from weak lensing or from the X-ray) as well as a
statistically complete sample of clusters. Recent studies are Vikhlinin et al. (2009b), who use
masses determined from X-ray data, or Planck Collaboration et al. (2015b), who use the data of
the Planck satellite.

3.4.2. Probing the Extreme End of the Mass Function: Galaxy Clusters too
Massive for our Universe

The most extreme clusters in mass (M200 ≥ 5 × 1014M�) can be used for a cosmological test
other than cluster counting. Given a cosmological model, one can compute the highest possible
masses of galaxy clusters as a function of redshift (Haiman, Mohr & Holder 2001; Weller, Battye
& Kneissl 2002). This probes the extreme end of the mass function. In order to systematically
search for the most massive clusters in our Universe, a deep and wide area survey that probes
large volumes needs to be carried out. Until recently, mostly samples consisting of only a few
clusters that were discovered in small surveys were tested for consistency with the ΛCDM model.
For example, Broadhurst & Barkana (2008) used mass estimates based on strong lensing arcs
of four galaxy clusters, whereas Jee et al. (2011) used weak gravitational lensing masses of 22
clusters. In Mortonson, Hu & Huterer (2011) two clusters are tested and the authors provide a
fitting formula for exclusion curves, which was shown to be too strict by Hotchkiss (2011). In
contrast to testing single cluster masses for consistency with the standard cosmological model one
can also use extreme number statistics and test a whole sample of clusters (Waizmann, Redlich
& Bartelmann 2012; Waizmann, Ettori & Bartelmann 2013). So far only Jee et al. (2011) find
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significant deviations from ΛCDM, using the exclusion curves from Mortonson, Hu & Huterer
(2011). Considering the findings of Hotchkiss (2011), this tension has likely been resolved.
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CHAPTER 4

Correcting for CCD Crosstalk in
OmegaCAM@VST

4.1. Basics of Charge Coupled Devices

This introduction to CCD detectors is based on the chapters concerning CCDs in Rieke (2003).

Charge Coupled Devices (CCD) are semi-conductor detectors that were developed in 1969 in
the Bell Labs. Nowadays, basically all optical telescopes used for scientific research are using
cameras based on CCDs. Here we will give a brief introduction to how CCDs work and why
they are being used. For more detailed explanations, we refer to literature about semi-conductor
physics or detectors.

In a piece of semi-conductor material, we can apply condensed matter theories to describe the
principles of a CCD. Electrons in such a piece exist in huge numbers and can move freely. Due
to their high numbers they populate vast amounts of energy levels with very small differences in
energy. Those can effectively be treated as energy bands. We will consider two bands here, the
conduction band as well as the valence band. In metals all electrons are in the conduction band,
whereas in insulators all electrons are in the valence band. Semi-conductors are somewhere in
between those two cases. Between the valence and the conduction band is the band gap. If
an electron in the valence band gets sufficiently excited by an incoming photon it can leave the
valence band, cross the band gap and reach the conduction band, where it can contribute to the
electrical current and can thus be measured. In an insulator this band gap crossing is not possible
because the energy gap is too large. The basic principle of CCD semi-conductor detectors is that
incoming photons excite electrons in the valence band, which are then counted in the conduction
band. In CCD detectors each pixel has such a photo-active region. The charge carriers excited
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Figure 4.1.: This figure shows the basic concepts of a CCD Detector in a schematic way. The
incoming photons enter the CCD and excite electrons that are read out by applying voltages and
finally counted, which results in the raw image seen on the bottom right.

by incoming light are trapped by a capacitor. Using voltage, the charges can be transferred from
one pixel to the next, which is used for the read-out. In case of a CCD in a camera, this results
in a two dimensional array that contains the number of electrons counted per pixel. This is then
interpreted as a grey-shaded image, where the number of counts is proportional to the number of
incoming photons. This is of course only a very basic description of the much more complicated
works of a CCD detector. Nevertheless, it is sufficient to understand the basic behaviour of such
detectors. A schematic view of a how a CCD detector works is displayed in Fig. 4.1. For a more
detailed introduction to detectors in astronomy see for example Rieke (2003).

CCD detectors are being used in astronomy due to some great properties. Compared to the
photographic plates that had been used for decades before, they react in a much more predictable
way. The amount of charge counted for the images for example goes linear with the amount of
light exposed to the detector. Additionally, their quantum efficiency is much higher, which means
that most of the light gets converted into charge during the exposure. Furthermore, it is possible
to create large arrays of CCDs (also called chips in this context), to cover even wider fields of
view. The usage of several CCD chips is necessary, as it is not feasible to construct increasingly
big single chip CCDs. Due to the more complicated read-out, which happens separately for
each chip, this can introduce other problems, for example CCD crosstalk. Additionally, it is not
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possible to place the different chips right next to each other, but instead there are gaps between
chips, which will result in gaps in the image as well. This can be overcome by taking several
exposures and slightly moving the telescope between those, which will lead to different parts of
the sky being in the chip gaps at each exposure. This is called dithering. Further downsides
of CCDs are for example hot pixels or pixel overflow due to the limited capacity of a pixel. A
mosaic of the raw images of all 32 chips in OmegaCAM (which will be introduced later in the
course of this chapter) is shown in Fig. 4.2.

4.2. Introduction to Crosstalk

In CCD detectors it is possible for a pixel to lose charge after the light exposure, which will show
up on the image but at a different location or, in CCD arrays, possibly even at a different chip.
This is called crosstalk. A possible scenario is for example the so-called row crosstalk, where
during read-out the charge of one well filled pixel gets spread out over the whole row. Another
example would be where inside the read-out electronics the currents in physically close wires
interact and cause similar effects. Those are unwanted effects, that, especially in astronomy,
need to be corrected for. We will now report on a particular case of CCD crosstalk at the Very
Large Telescope Survey Telescope (VST) in Chile.

4.3. CCD Crosstalk in OmegaCAM@VST

The VST is a 2.6 m telescope located at Cerro Paranal in Chile and has been specifically designed
for wide-field imaging surveys in the optical. As such it is the largest dedicated wide-field survey
telescope in the world. Several surveys are being carried out using the VST, among them the
Kilo Degree Survey (KiDS, de Jong et al. 2013, de Jong et al. 2015, Kuijken et al. 2015). KiDS
makes use of OmegaCAM, a 32 chip CCD-camera that has a field of view of 1 deg2. The 32
chips are each 4102 × 2048 pixels big and are placed in a 4 × 8 grid. The pixel size is 0.′′213.
As mentioned before, a mosaic of the raw images of each chip can be looked at in Fig. 4.2.
Furthermore, this figure shows the different chip numbering schemes, which we will comes across
now.

During the course of the data reduction for KiDS many images had to be visually inspected.
At this image exploration it was found that there are several chips that apparently interact with
each other, which results in artificial objects or “holes” in the image. This is a special kind of
crosstalk, in which the flux of one chip gets transferred to another chip. It is especially easy to
spot when looking at bright objects at the crosstalk-causing chip and the corresponding pixel
positions at the other chip, where the artificial objects and holes will appear. On a small and
negligible level this probably happens to all chips in OmegaCAM, but there are a few that show
very strong cases of this effect. By visual image inspection it has been found that the chips 25, 26,
27 and in rare cases also 181 are having crosstalk interactions with each other. This interaction

1Note that we are using an internal numbering instead of the official ESO numbering, which is used in Kuijken
et al. (2015) where those are the chips 94, 95, 96, and 87. Check Fig. 4.2 for an illustration of this.
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Figure 4.2.: This figure shows a mosaic of all 32 chips in OmegaCAM of a raw image. The red
numbers indicate the ESO chip numbering and the blue ones the THELI numbering.
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can be positive or negative crosstalk. We talk about positive crosstalk if a bright object at pixel
position ~x in chip i causes an artificial object at the same pixel position ~x in chip j. If the bright
object instead causes a hole, which has a negative flux, we call this negative crosstalk. The chip
that causes the crosstalk with bright objects we call thief (as in the case of negative crosstalk
it “steals” flux) and the chip that shows the crosstalk objects we refer to as robbed. We find the
flux of the artificial objects to be proportional to the flux of the object that causes the crosstalk.
Fig. 4.3 shows two exposures with obvious crosstalk.

When we assume that this effect is linear we find an equation to add the missing or subtract
the additional flux and thus correct for the crosstalk

Irobbed,cor(~x) = Irobbed(~x) + cx(robbed, thief)× Ithief (~x) . (4.1)

Here Irobbed,cor(~x) is the intensity of the crosstalk-corrected image, Irobbed(~x) the intensity of
the original image, and Ithief (~x) the intensity of the thief image. We also defined the crosstalk
coefficient cx as the ratio of the flux between the crosstalk objects in robbed and thief

cx(robbed, thief) =
Srobbed
Sthief

. (4.2)

Here Sthief is the flux of the crosstalk-causing object, which in our case is always a star in thief
and Srobbed is the flux of the resulting crosstalk object, either a hole or an artificial object. We
use stars for constraining cx as those have the highest fluxes in astronomical images and thus
will give less noisy estimates than for example galaxies.

Apart from the fact that the added or subtracted flux will corrupt photometric measurements
on the image, especially the added objects will cause problems later on during the data analysis.
Thus, a correction scheme needs to be developed. In order to do so we explored a few of the
early images of KiDS. During this exploration we discovered several properties of this crosstalk
effect. The coefficient cx for example appears to be best measured with bright stars as causing
objects. As the flux added or subtracted is always a fraction of the flux in the thief chip at the
corresponding position, the resulting crosstalk objects will be brightest (or the deepest holes in
case of negative crosstalk) when considering the brightest objects in the thief image, which are
stars. On the other hand those stars should not be saturated already (the potential wells in the
CCD are overflowing with electrons), as this will lead to a fixed constant flux for the saturated
pixels. Thus, the information needed to find the correct cx is lost. Consequently, saturated pixels
cannot be corrected properly. Moreover, it was found that cx appears to be roughly constant
when measured for multiple stars in the same exposure of one chip (see Fig. 4.4). Unfortunately,
it was also found that, although the rough level of the coefficient appears to be always the same
(check Table 4.1 to see the default levels found during the data exploration), when considering
the coefficient for several exposures over the time scales of hours, days or weeks it is not constant.
Variations of up to 50 per cent can be observed. In Fig. 4.5 we show the coefficients for the
different crosstalk combinations of the chips 25, 26, and 27 as they vary over a few months. This
variation of the coefficients also means that the cx itself needs to be measured on very small
times scales, like one KiDS exposure, which is not always possible. As the chips cover only a
small fraction of the sky, it is for example not always possible to find suitable stars to determine
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Table 4.1.: This table shows all pairs of chips in OmegaCAM that show significant crosstalk.
robbed and thief give the chip number of the chip affected by the crosstalk or causing the
crosstalk. The default cx is the rough level of the coefficient and cut-off gives the upper limits of
the coefficients that were found during data exploration.

robbed thief default cx cut-off
25 26 −0.00750 −0.01
26 25 +0.00400 0.01
26 27 −0.00035 −0.001
25 27 +0.00020 0.001
27 26 −0.00035 −0.001
27 25 +0.00020 0.001
25 18 −0.00020 −0.001

cx from those. Fortunately, we found the coefficients to be constant over the course of one KiDS
observing block (OB), which corresponds to five exposures of the same pointing or ∼ 1800 s. For
these five exposures it is usually possible to determine the coefficient. If after all it is not possible,
we can still fall back to the default level, which has been found during the image explorations.
This will still be better than not applying any correction at all. The different levels for the chip
pairs are shown in Table 4.1.

In some ways the crosstalk observed in OmegaCAM is special. The specific cause of the
crosstalk is for example not known. In many cases crosstalk happens during read-out, outside
the CCDs, whereas for OmegaCAM it appears to happen within the CCDs. Moreover, as we
mentioned before, the coefficients appear to vary over time, which in other modern cameras is
usually not the case, as the crosstalk level there seems to be fairly constant. We will now describe
the correction scheme for OmegaCAM, which was designed for the r-band images of KiDS, but
has also been tested on the shorter exposures (t < 100 s) in the u-, g-, r-, i, and z-band from the
ATLAS survey (Shanks et al., 2015).

4.4. A Correction for the Crosstalk Problem in OmegaCAM

We can find the amount of flux added or subtracted to the images by measuring the crosstalk
coefficient cx for each chip pair that interacts. We will now briefly describe how these coefficients
are measured and how the images are then corrected. The solution described here has been
included in the THELI pipeline (Erben et al. 2005; Erben et al. 2013), which is being used for
the r-band data reduction of the KiDS data and another small description of this procedure can
be found in Kuijken et al. (2015).

Given a pair of crosstalk chips and their default crosstalk-coefficient, we can follow the steps
below:

1. We subtract the background of both images. This is technically not necessary, as SExtractor
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Figure 4.3.: The effect of positive and negative crosstalk on a raw science image. This shows
the same part of the chips 25 (left) and 26 (right) with several crosstalk objects. Six of them
are specifically marked. The circles show the object that causes the crosstalk, the pentagons the
objects that result from the crosstalk. Crosstalk started from chip 25 is marked in blue, in case
of chip 26 being the start, it is marked in cyan. We can see the negative crosstalk caused by 26,
as well as the positive crosstalk caused by 25.
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Figure 4.4.: We present the fractional difference between the crosstalk coefficient cx(25, 26),
measured for the stars in one exposure compared to the mean of all stars in this exposure. We
show this as a function of x and y location in pixel coordinates. The measured coefficient for
single objects does not vary more than 4 per cent from the mean, which is why we conclude that
cx is constant across a chip.
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Figure 4.5.: We display the crosstalk coefficients for the chips 25, 26, and 27 over a period of a
few months to demonstrate their variability.
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(Bertin & Arnouts, 1996) supposedly subtracts the background for all photometric mea-
surements, but in the implementation of this correction scheme this step is still included.

2. We then measure the fluxes of the crosstalk objects in both chips in SExtractor ’s dual
image mode, with thief as the detection image. Dual image mode uses two images, one
as a detection image, where it detects objects, and one measurement image, where it
measures photometric properties like fluxes or magnitudes at the same pixel position as for
the detected objects in the detection image. The assumption here is that both images have
the same x and y dimensions and that the same pixel positions in both images correspond
to the same sky positions. In our case it is obviously not the case that the same pixels
correspond to the same sky positions, as we are using two chips, that map different parts
of the sky. Nevertheless, this is an ideal tool to measure the fluxes of the stars in thief and
the corresponding artificial crosstalk objects or holes in robbed in such a way that we use
the exact same object positions for both images. This procedure will result in a catalogue
that includes measurements of the stars in thief as well as the crosstalk objects in robbed.
Especially important are the flux measurements.

3. Afterwards, a signal-to-noise (S/N) cut is applied to the fluxes of the stars in thief . We
define the S/N as the ratio of the flux S measured as SExtractor’s FLUX APER and
its measurement error ∆S, S/N = S/∆S. As mentioned before, we are looking for high
S/N stars in thief that are not yet saturated, so we can determine the cx from their fluxes.
Obviously, the S/N level needed here depends strongly on the exposure time t. When
looking for the ideal cuts for selecting bright, but not saturated stars, we arrived at the
following configuration:

� t < 100 s: 20 000 < S/N < 100 000 ,

� t ≥ 100 s: 10 000 < S/N < 50 000 .

This means that we are eliminating all entries in the catalogue where the star in thief lies
outside the given S/N range.

4. As explained before, we know from exploring vast numbers of crosstalk affected images that
the level of crosstalk is never higher than the cut-off values given in Table 4.1. However, due
to bad object selection, it can happen that for a few objects we find such a high coefficient.
Thus, we remove all entries from the catalogue that give obviously wrong values for the
coefficient. We determine this by using the cut-off in Table 4.1 as an upper limit.

5. Objects that are within 10 pixels from the artificial crosstalk objects in robbed, which
are used to determine the coefficient, can corrupt the coefficient estimate. Therefore, we
run SExtractor again, with robbed as the detection image, and check for entries in our
catalogues, that are located close to such objects. If this is the case, we remove those
entries from the coefficient determination.

6. Although cx is fairly constant across one chip, we use more than just one object to determine
it. This will suppress the noise in the measurement. We decide to use the median of all
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Figure 4.6.: Here we show the detected objects of a simple SExtractor run on the uncorrected
(left) and the corrected (right) raw image of chip 26. In order to make it easier for the eye, we
display only parts of the images. The black circles indicate the detections on the uncorrected
image, whereas the white boxes show the detections on the corrected image. One can immediately
see the five black circles on the right, that do not have a white box counterpart. This is due to
artificial crosstalk objects, that were removed by the crosstalk correction.

measured cx within one exposure as the estimate for this exposure. The median is chosen
as it is less sensitive to outliers than the mean.

7. The mean of the coefficients of all exposures for one OB is then saved as the coefficient to
correct all exposures in this OB. Again, taking the mean of all measurements will suppress
noise in the measurement.

Given the measured coefficient, we can correct the images by first subtracting the background
(this time it is needed as we are taking fractions of the flux in one image, which is affected by
the background), then applying Eq. (4.1) and finally adding the background again.

As stated before, due to the limited area of a single chip, it is possible that no stars are present
on a chip that fulfil the S/N condition. In this case we either use the last measured value of cx or,
if this is not present either, the default value. Additionally, as we cannot correct for saturated
objects, we only flag saturated pixels in the crosstalk chips so that they will not be used for
photometry measurements or object detection later on.

In order to briefly demonstrate that the approach of finding cx is indeed working and necessary,
we apply it to the images of chips 25 and 26 of a single exposure. We first determine the coefficient
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using chip 26 as robbed and chip 25 as thief following the steps in the description above, except
that we do not average over the measurements of the whole OB, as for simplicity we are only
using one single exposure. After the coefficient has been determined we apply Eq. (4.1) to
the image of chip 26. Subsequently, we conduct a simple SExtractor run, using the default
configuration, to check the number of detected objects in the uncorrected and the corrected
image of chip 26. For the uncorrected image we find 573 objects, whereas for the corrected one
we find only 542 objects. This is expected as bright objects in chip 25 will result in artificial
crosstalk objects in chip 26. After the correction has been applied, those objects should have
vanished, thus the lower number of detections. Parts of the uncorrected and the corrected images
of chip 26 and the corresponding object catalogues are displayed in Fig. 4.6. This is of course
only a simplified experiment, in which we did not take into account the more complicated aspects
of object detection, as for example weight images. Nevertheless, it demonstrates in a neat way
that crosstalk introduces artificial objects, which will be picked up during the source detection
process. Consequently, it is possible that those objects get propagated further into the analysis,
which can possibly lead to biases in or corruption of the scientific results.

As mentioned before, this approach has been implemented and is part of the KiDS weak lensing
data production (Kuijken et al., 2015).
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CHAPTER 5

Optical & Sunyaev-Zel’dovich
Observations of a New Sample of

Distant Rich Galaxy Clusters in the
ROSAT All Sky Survey

This chapter is based on Buddendiek et al. (2015), published in Monthly Notices of the Royal
Astronomical Society, Volume 450, Issue 4, p. 4248-4276.

5.1. Introduction

This work is meant to be a continuation of the still ongoing search for massive galaxy clusters at
high redshift. By cross-correlating the positions of red galaxies in the Sloan Digital Sky Survey
(SDSS) and the faint and bright source catalogues of the ROSAT All Sky Survey (RASS),
we create a new sample of distant (z > 0.6) and possibly massive cluster candidates, making
use of the wide area of the SDSS Data Release 8. Because red galaxies are known to reside
preferentially in clusters, this is a useful approach to identify massive clusters from the RASS
catalogues which are strongly contaminated with other X-ray sources (for example AGN or binary
stars). Through follow-up observations using the William Herschel Telescope (WHT), the Large
Binocular Telescope (LBT), and the Combined Array for Research in Millimeter Astronomy
(CARMA), we then confirm or reject our candidates and check for consistency with ΛCDM.
This study presents one of the first systematic searches for massive high-redshift galaxy clusters
in the optical and X-ray regimes in a very large volume. Similar approaches to detect clusters
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have been used for eMACS (Ebeling et al., 2013), which also uses RASS data but for the optical
part it makes use of deeper imaging data from the Pan-STARRS Medium Deep Survey, which
is part of the Pan-STARRS project (Kaiser et al., 2002). Also, the aforementioned work by
Brodwin et al. (2015) searches for high redshift clusters in data from the Wide-Field Infrared
Survey Explorer (WISE ) satellite (Wright et al., 2010). Instead of cross-correlating with optical
data, they use a non-detection in the SDSS as an indication for a high-redshift cluster.

One should note that we do not intend to use our sample for cosmological cluster abundance
studies. By specifically following up the most extreme candidates, we compromise a simple
selection function. Nonetheless, it is one of the largest samples of very X-ray-luminous high-
redshift galaxy clusters in the northern hemisphere making it complementary to the cluster
samples found by Planck, SPT, and ACT. The distribution of all clusters in our sample on the
sky is plotted in Fig. 5.1.

In Section 5.2, we first describe how we define our cluster sample. We then explain the data
from follow-up observations and the instruments which were used for those campaigns in Section
5.3. This is followed by a detailed description of the red sequence and richness analysis and their
interpretation in Section 5.4. We describe the SZ data analysis in Section 5.5. In Section 5.6
we discuss possible tensions of our cluster sample with ΛCDM and in Section 5.7 properties of
some individual clusters. This is followed by our conclusion. Images showing postage stamps of
all 47 clusters, including three previously discovered objects, as well as SZ-maps from CARMA
and Planck data can be found in Section 5.C, 5.D, and 5.E.

As our fiducial cosmology we use H0 = 70 km/Mpc/s, h = 0.7, ΩΛ,0 = 0.7 and Ωm,0 = 0.3. The
exclusion plots in Section 5.6 were created assuming σ8 = 0.83 as has been done in Mortonson,
Hu & Huterer (2011).

5.2. Preselection of cluster candidates

To find some of the most massive clusters at redshifts 0.6 . z . 1.0, we use the combined bright
and faint source catalogues of RASS (Voges et al. 19991; Voges et al. 20002), which is an X-ray
all sky survey in the 0.1 − 2.4 keV range carried out with the ROSAT satellite. This combined
catalogue contains 125 000 entries with typical positional uncertainties of 20′′. Most of these
objects are not galaxy clusters but rather AGN or X-ray binaries. Hence, to identify distant
galaxy clusters, more information is needed. For that we combine the X-ray data with imaging
data from the SDSS (Castander, 1998), where we used Data Release 8 (Aihara et al., 2011). By
cross-correlating the RASS object positions with the position of SDSS galaxies for which the
SDSS photometry suggests that they likely match the targeted redshift range, we are able to
efficiently preselect candidates for galaxy clusters. Here we generally use a 50′′ matching radius,
which should account for the positional uncertainty in RASS and for the fact that galaxies scatter
around the cluster centre. Note that we did not employ a radius in projected physical separation
given the photometric redshift uncertainties and the small change in projected radius of only

1http://www.xray.mpe.mpg.de/rosat/survey/rass-bsc/
2http://www.xray.mpe.mpg.de/rosat/survey/rass-fsc/
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about 50 kpc between z = 0.6 and z = 0.9. Photometric redshifts are taken from the Photoz-
table in the SDSS archive. We then employ two different SDSS galaxy selection schemes: In
the first scheme we select all SDSS galaxies with a photometric redshift z > 0.6 and i < 20.5.
This yields 1149 matches of RASS sources with two or more SDSS DR8 galaxies, mostly at
0.6 . z . 0.8. At higher redshifts we expect that possibly only a single cluster galaxy (the
BCG) is detected in SDSS. We select candidates for such galaxies photometrically from SDSS
with colour cuts r − i > 0.5, i− z > 0.8, and 17 < i < 21 (compare e.g. High et al. 2010). While
requiring a match of at least one of these galaxies in the SDSS DR8 with the RASS sources and
adding these cases to our preselected sample, we find 1395 candidates in total.

In the next step all candidates are visually inspected using SDSS postage stamps and graded.
Here we immediately drop obvious chance alignments of background galaxies e.g. with bright
foreground stars, spectroscopically classified QSOs, or low-z galaxy groups, which most likely
dominate the X-ray flux. In addition, we drop sparse galaxy groups/clusters, where the SDSS
colours suggest z ∼ 0.6− 0.7. At these redshifts we would still expect to detect numerous cluster
galaxies in SDSS if these were massive clusters. Hence, these sparse groups/clusters likely have an
X-ray flux boosted by an AGN and are not of interest for our study. The remaining candidates
are graded in preparation for further follow-up observations (Section 5.3), where we prioritise
the richest systems as well as good candidates for the highest-redshift clusters (z & 0.8) in our
sample. We attempted optical follow-up observations for a total of 80 candidates. From these 48
have data of sufficient quality in the three filters r, i, z, constituting the sample we analyse in this
paper. This includes all of the top-graded candidates. For 8 of the remaining candidates, single
band observations were sufficient to identify them as false positive. The remaining 24 candidates,
which were all of lower or medium priority, were dropped from the current analysis, as they do not
have observations of sufficient quality in all three bands. This was due to observations attempted
under poor conditions, guiding errors, or limited target visibility. Within the allocated time these
observations could not be completed or repeated, but we ensured to complete the observations
for all of the highly-graded candidates.

With our automated pre-selection we also ‘rediscovered’ the known massive clusters
MACSJ0744.8+3927 (z = 0.6976, Ebeling et al. 2007), MACSJ2129.4−0741 (z = 0.5889, Ebel-
ing et al. 2007), and RCS2-J232727.7−020437, (z = 0.705, Menanteau et al., 2013), providing a
confirmation of our algorithm and a reference sample of massive clusters in the targeted redshift
range.

5.3. Follow-up observations

5.3.1. Optical images

William Herschel Telescope

The majority of our optical follow-up observations were taken with the Auxiliary-port CAMera
(ACAM) (Benn, Dee & Agócs, 2008) on the 4.2-m William Herschel Telescope on the island of
La Palma in Spain. ACAM is a red-optimised one chip camera with 2148 × 2500 pixels which
has an unvignetted circular field of view of about 8′ in diameter and a pixel scale of 0.′′25.
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Figure 5.1.: This plot shows the distribution of all clusters of our sample on the sky. Open
symbols indicate clusters with unknown spectroscopic redshift. Our search for clusters makes
use of about one quarter of the whole sky.

Our WHT data were taken in service mode (August 2010 and August 2013, PIs Schrabback
and Buddendiek, respectively), and in visitor mode (four nights each in August 2011 and March
2012, PI Schrabback). We obtained imaging in r, i, and z filters, which bracket the 4000 Å-break
in the redshift range of interest. The service observations in 2010 were carried out with the
RGOZ2 filter (λcentral = 8748 Å) as the SDSS z-band was not yet available. Therefore we need
to create different red sequence models for those images later on. Our total exposure time per
cluster candidate per filter varies between 360 and 1800 seconds, this choice primarily depends on
observing conditions and the roughly estimated cluster redshift. For some of the candidates for
the highest-redshift clusters in the sample – which typically were the most uncertain candidates
with only a single noisy BCG candidate – we stopped observing after taking data in a single
filter (i or z) if these data clearly showed that this was a spurious match (e.g. a faint red star
misclassified as galaxy in SDSS). In total we obtained 3-band imaging for 42 cluster candidates
with ACAM, plus 3 previously known clusters with spectroscopic redshifts which were included
as reference objects for the generation of the red sequence model (see Table 5.1).

Large Binocular Telescope

We observed nine cluster candidates using the 2× 8.4-m Large Binocular Telescope in Arizona
during observations in October and December 2010, as well as February and April 2011 (PI:
Eifler). Two of these candidates were also observed with the WHT. Here we employed the r-, i-
and z-filters, which are similar to the WHT filters used. The instruments used were LBC RED
(i- and z-band) and LBC BLUE (r-band) (Giallongo et al., 2008). Those cameras have four
2048× 4608 pixel chips each, a pixel scale of 0.′′23 and a field of view of about 24× 25 arcmin2.
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A single chip covers roughly 17× 8 arcmin2.
Total exposure times per filter for the LBT data are between 360 and 720 seconds, depending

on the object. Single exposures were integrated for 180 seconds regardless of the filter in use.

5.3.2. Spectroscopic observations

We obtained long-slit spectroscopic data for 14 clusters with ACAM during the visitor mode
WHT runs listed in Sect. 5.3.1, plus one cluster as part of a WHT service program in June 2014
(PI: Buddendiek). Targets were selected for the spectroscopic observations either if they appeared
to be very rich, at very high redshift or if they seemed relaxed due to a single very bright BCG.
Integration times varied between 600 s and 1100 s per exposure, which results in total integration
times between 1800 s and 3300 s per target. In all cases we employed the V400 grating and the
G495 filter, which provides a wavelength range from 4950 Å to 9500 Å and 3.3 Å/pixel. The slit
width is 1.′′0, corresponding to a resolution of R = 570 at a wavelength of λ = 7500 Å. For three
clusters the spectra are too noisy and no redshift could be estimated. We generally placed the
slit on top of the BCG and if possible oriented it so that other cluster members were visible
through the slit as well.

5.3.3. Data reduction and calibration

The WHT and LBT data are reduced using the GUI version of the THELI3 pipeline (Erben
et al. 2005; Schirmer 2013). We apply bias subtraction, flat field correction, and superflat
field correction. Exposures are co-added and later convolved with a Gaussian kernel to have
approximately the same resolution in all bands for photometric measurements.

We calibrate the photometry by fitting the function

magSDSS −magm = CSDSS · CT + ZP (5.1)

to field stars. magm is the measured magnitude, magSDSS the corresponding SDSS magnitude,
CT the colour term and ZP the magnitude zero point. CSDSS is the SDSS colour we use for
calibration, either r− i (r- and i-band calibration) or r−z (z-band calibration). After correcting
magnitudes with the zero points we do not apply a colour correction but work in the instrumental
system instead. Every single field is corrected independently. The data reduction for WHT and
LBT data is performed in the same way.

In order to determine the limiting magnitude of a co-added image we use

mlim = ZP− 2.5 log
(

5
√

Npixσsky

)
, (5.2)

where Npix is the number of pixels within a circle with a radius of 2.′′0 and σsky is the variation
of the sky background noise (see Erben et al. 2009). This gives the 5σ detection limit. We find
the mean limiting magnitudes of the WHT images to be rlim = 23.81 mag, ilim = 23.42 mag
and zlim = 22.64 mag. We also measure the seeing as the FWHM and find the median seeing

3http://www.astro.uni-bonn.de/~theli/index.html
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FWHMr = 0.′′95, FWHMi = 0.′′82 and FWHMz = 0.′′82. For the LBT data we find rlim = 24.52 mag,
ilim = 24.95 mag, zlim = 23.63 mag and FWHMr = 0.′′77, FWHMi = 0.′′92, FWHMz = 0.′′77.

The spectra are also bias subtracted, flat fielded and then extracted. For the further reduc-
tion we use IRAF (Tody, 1993). We extract the spectra using the task apall. Furthermore,
wavelength and flux calibration are performed with the tasks identify, dispcor and calibrate

using skylines and standard star observations.

5.3.4. Sunyaev-Zel’dovich data

To obtain cluster mass estimates, we targeted a sub-sample of 21 targets with the Combined
Array for Research in Millimeter Astronomy to measure the Sunyaev-Zel’dovich effect signal,
which has been found to correlate with mass with small intrinsic scatter, both from simulations
(e.g. da Silva et al. 2004; Motl et al. 2005; Stanek et al. 2010) and observations (e.g. Bonamente
et al. 2008; Planck Collaboration et al. 2011; Marrone et al. 2012; Planck Collaboration et al.
2013).

The SZ data for 20 of those clusters were obtained using the eight 3.5 m telescopes of CARMA
in the SH and SL configurations. For these configurations, 6 telescopes are grouped in a compact
central array and two on outlying pads. The long baselines resolve out the cluster signal and yield
uncontaminated measurements of point sources, which can then be subtracted from the short
baseline data. We used the CARMA wideband correlator with 8 GHz of correlation bandwidth.
Observations were carried out in the 30 GHz band and integration times were planned to be 8 h
for each cluster. Due to various reasons the 8 h were not always reached. The exact integration
times can be found in Table 5.4. The CARMA program numbers are c0734, c0734Z (both PI:
Schrabback) and c0934 (PI: Plagge). Those targets were selected because they appeared to be the
richest or most distant objects in the sample. Additionally, we also have been granted director’s
discretionary time for the target ClG-J122208.6+422924 (cx389, PI: Buddendiek). This data
set was recorded using an antenna configuration different from the SL and SH configurations.
All 3.5 m-antennas were grouped in a compact array and the 6 m and 10 m antennas are used
for long baselines.

The first 20 targets were selected after an initial optical analysis because they appeared to be
either the richest, the most X-ray luminous or the highest redshift ones. One should note that at
that time the optical campaign was not complete yet. The last of the 21 targets was selected after
the optical analysis had been completed and it had a measured spectroscopic redshift greater
than 1, which is the highest in the whole sample.

5.4. Optical Data Analysis

5.4.1. Spectroscopic redshifts

After extracting the spectra, we use the IRAF task fxcor (Fitzpatrick, 1993) in order to cross-
correlate them with the absorption line template spectrum fabtemp97 and the emission line
template spectrum femtemp97. This yields the redshift estimates. In order to find the uncertainty

64



CHAPTER 5. OPTICAL & SZ OBSERVATIONS OF GALAXY CLUSTERS

fxcor fits a Gaussian to the correlation peak and we then take the half width at half maximum
as the redshift error. Visually identified lines and features can be found in Table 5.1.

The spectra are mainly low S/N spectra due to very faint targets. The redshifts are mostly
estimated using absorption features like the Ca K+H doublet, thus the errors for the redshifts
are comparably high (≈ 0.5 per cent). Individual errors can be found in Table 5.1.

In our analysis we also include the already known redshifts of twelve galaxy clusters. Those
were taken either from the SDSS Data Release 10 (Ahn et al., 2014) or from other independent
discoveries. In one of those cases (ClG-J131339.7+221151) a spectrum from the SDSS was
available, but no reliable redshift has been estimated (zSDSS = 1.000± 3.359); we downloaded
the already reduced and extracted spectrum and estimated the redshift ourselves. All redshifts
used in this study are listed in Table 5.1, which also includes additional information.
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Table 5.1.: The spectroscopic sub-sample. Spectroscopic redshifts are either measured from our
data, taken from independent discoveries or from the SDSS DR 10. If zspec was measured, the
spectroscopic features which were identified by visually inspecting the spectra are listed. For ClG-
J131339.7+221151 we downloaded one spectrum from the SDSS database and determined the
redshift ourselves, because the estimate taken from SDSS proved not to be trustworthy (zSDSS =
1.000± 3.359).

Object Redshift Lines # Spectra Ref.

ClG-J013710.4−103423 0.662±0.002 Ca H+K, 4000Å 1 -

ClG-J031924.2+404055 0.680±0.003 Ca H+K, 4000Å 1 -
MACSJ0744.8+3927a 0.698 - - Ebeling et al. (2007)
ClG-J080434.9+330509 0.553 - 1 SDSS
ClG-J083415.3+452418 0.666 - 1 SDSS
ClG-J094700.0+631905 0.710 - 1 SDSS

ClG-J094811.6+290709 0.778±0.002 Ca H+K, 4000Å 1 -
ClG-J095416.5+173808 0.828 - - Nastasi et al. (2014)

ClG-J102714.5+034500 0.749±0.003 Ca H+K, 4000Å 1 -
ClG-J120958.9+495352 0.902±0.001 [OII], Ca H+K 1 -

ClG-J122208.6+422924 1.069±0.003 Ca H+K, 4000Å 2 -
ClJ1226.9+3332a 0.892 - - Ebeling et al. (2001)

ClG-J131339.7+221151 0.737±0.002 Ca H+K, 4000Å 1 SDSS
ClG-J142040.3+395509 0.607 - - Bayliss et al. (2011)
ClG-J142138.3+382118 0.762 - 1 SDSS
ClG-J142227.4+233739 0.726 - 1 SDSS

ClG-J143411.9+175039 0.744±0.003 Ca H+K, 4000Å 1 -
ClG-J145508.4+320028 0.654 - 1 SDSS
ClG-J150532.2+331249 0.758 - 1 SDSS

ClG-J152741.9+204443 0.693±0.002 Ca H+K, 4000Å 1 -

ClG-J223007.6−080949 0.623±0.003 Ca H+K, 4000Å 1 -

ClG-J231215.6+035307 0.648±0.003 [OII], Ca H+K, 4000Å 4 -
RCS2-J232727.7−020437a 0.705 - - Menanteau et al. (2013)

aThese clusters were known before and are only included in the sample for calibration reasons.
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5.4.2. Red sequence finding and redshift estimation

We derive empirical red sequence models in r − i, i− z and r − z using twelve clusters from the
WHT sample with known spectroscopic redshifts. For this we use the colour-magnitude diagram
of galaxies within the inner 50′′ around the BCG. Again, we employ a constant angular radius
and not a physical one given the small change in the angular diameter distance between z = 0.6
and z = 0.9.

Within this radius, we fit a linear function of galaxy colour vs. magnitude as a red sequence
yielding slope and offset. We then assume that red sequence slope and offset change linearly
with redshift and thus fit both as a linear function of z. Using these fits, we can derive an
empirical red sequence model for every redshift in the range 0.5 . z . 0.9. Additionally, we
extrapolate these models to z = 0.4 and z = 1.0. We are aware that the red sequence slope
and offset do not in general vary linearly with redshift. Nevertheless, this assumption provides a
good approximation given the redshift range and filter choice. The models created can be used
for both the WHT and the LBT sample, because their filter sets are fairly similar; for the service
observations in 2010, we create models in the same way but using different clusters, due to the
different filters used. The clusters used to create the models for the WHT and LBT samples
spread almost evenly in the redshift range between z ≈ 0.55 and z ≈ 0.9. For the models for the
WHT service observations, we only have redshifts available between z ≈ 0.6 and z ≈ 0.8. Later
on in this section, we will find these models to be sufficient for our purposes (see Fig. 5.2).

We create the galaxy catalogue with aperture photometry in dual image mode, using the i-
band as the detection image. Due to the homogenised PSF, we suppress background noise and
thus underestimate the photometric errors. To avoid this issue, we run SExtractor (Bertin &
Arnouts, 1996) again on the unconvolved images and use those magnitude errors. Nevertheless,
we find that we still underestimate the photometric errors due to multiple reasons. For example,
during the reduction we resample the images to a new pixel grid, which correlates the background
noise. This has a similar effect as the PSF homogenisation. We also use aperture photometry,
which can lead to additional photometry errors, in case of a not completely homogeneous PSF in
all three filters. In order to account for this, we take the photometric errors from SExtractor to
be twice as large as the original value. A factor of 1.3 is due to noise correlations, the remaining
due to uncertainties arising from the limitations in the PSF homogenisation. This is performed
by assuming Gaussian PSFs and by quantifying the PSF using the flux radius, which is not a
complete description of the PSF. In the end, this results in a total correction factor of 2. Using
the newly created models, we find the red sequence and the corresponding redshifts by taking
the following steps, which are similar to the approach used in High et al. (2010):

First, we identify the BCG in the colour image. We then use all galaxies, which are within a
given radius R around the BCG. Additionally, we only take galaxies with a S/N larger than six
in the i-band into account. Between redshifts 0.4 and 1.0, we proceed in steps of ∆z = 0.025 and
use the corresponding red sequence model to look for galaxies in the catalogue which lie within
a certain error range in colour, ∆c, from the red sequence lines in all three colours. Here we also
use galaxies, even if they only fall within that range, when taking their magnitude errors into
account. Although we only use the inner parts around the cluster centre, we are still affected
by fore- and background galaxies, which are contaminating the colour-magnitude diagram. In
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order to avoid false detections through these galaxies, we determine and subtract an average red
sequence background. Since the ACAM field of view is fairly small, we use about 100 apertures in
the public CFHTLenS catalogue (Erben et al. 2013; Hildebrandt et al. 2012), using the same cuts
as for the actual galaxy catalogues in order to estimate the mean red sequence object density.
After normalising by the projected area and subtracting the background, we choose the redshift
bin which contains the most galaxies to be our red sequence redshift estimate. The error range
∆c, and the aperture radius R are free variables, which can be chosen arbitrarily. We explore the
parameter space spanned by those two parameters, looking for the combination which recovers
the known spectroscopic redshifts best. Although we vary the radius R for each cluster, we find
that the best choice for all the WHT objects is R = 1.′25 and R = 0.′76 for all the LBT targets.
While looking for the red sequence for every cluster candidate we maximize the signal by varying
∆c in discrete steps between 0.01 and 0.2. In the end, for each cluster we pick the value, which
leads to the strongest signal. A typical value here is ∆c = 0.08.

We plot the estimated spectroscopic redshifts against their measured photometric counterparts
for the best configuration of R and ∆c. As can be seen in Fig. 5.2, no systematic bias is present,
and on average the red sequence redshift estimates agree with the spectroscopic ones. Thus, we
decide not to calibrate the estimates further.

The comparison with the spectroscopic sample shows that the models work fine as we find
σz = 0.037, which we define as

σz =

√
1

N

∑(
zspec − zphot

1 + zspec

)2

, (5.3)

where N is the number of galaxy clusters with a known spectroscopic redshift and zspec and zphot

is their corresponding spectroscopic or red sequence redshift.
We also try building analytical models from Bruzual & Charlot (2003), taking into account

filter curves, quantum efficiency, and reflection curves of all optical elements inside the telescope,
but we found that, especially at the low- and high-redshift regions in our sample, the redshift
estimation failed completely. These models apparently do not match the observed galaxy distri-
bution over the whole redshift range. Already Hildebrandt et al. (2010) showed that photometric
redshift codes, which are tested on a suitable training sample, usually work best while using em-
pirical models. In the end, we decided to use the empirical models rather than the analytical
ones.

A colour image of a typical cluster, a background subtracted histogram of possible red sequence
members, the red sequence corresponding to the photo-z estimate, and also the number counts
(Section 5.4.3) can be seen in Fig. 5.3.
We estimate statistical errors from bootstrapping the whole galaxy catalogue and estimating
the redshift several thousand times. To the standard deviation of the distribution, which is the
statistical error, we quadratically add the magnitude zero point error, which gives a fair estimate
of the photometric error, and take this as the red sequence redshift uncertainty. We check if
this is indeed a fair representation of the true uncertainty by computing the standard deviation,
∆z, of zspec − zphot and comparing it with the mean redshift error 〈∆z〉. We find ∆z = 0.048
and 〈∆z〉 = 0.044. This means that on average ∆z is a good representation of the true redshift
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Figure 5.2.: Comparison of spectroscopic vs. red sequence redshifts of galaxy clusters. Error
bars represent statistical errors and photometric errors, which originate from the photometric
calibration. The black line shows the one on one relation. No systematic bias seems to be present.

uncertainty.

Defining a detection

After running our red sequence finder on the data of all 48 cluster candidates, which have three
band imaging, we define a detection using two criteria:

1. The object shows a peak in the red sequence histogram (see Fig. 5.3, top right panel).

2. In the three colour image, we can visually find an overdensity of galaxies, which have the
same colour.

If both these criteria are true, we consider this a detection and continue the analysis. If only
one or none are true, we stop the analysis after the red sequence finding and consider this a
non-detection. From the 48 cluster candidates, we detect 44 according to these criteria. The
three previously known clusters are detected as well.

5.4.3. Richness estimates

We define the richness Ngal to be the number of cluster galaxies within 0.5 Mpc around the
BCG, which are brighter than some characteristic magnitude of the cluster luminosity function.
We will now describe the procedure to estimate Ngal.
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Once the red sequence redshift was estimated, we created new catalogues with all galaxies
which were detected as a red sequence member in all three colours at this redshift. For the
aperture radius r, we now choose 0.5 Mpc. The galaxies are divided in magnitude bins of size
0.5 mag between 19th and 24th magnitude in the i-band and normalised to the area. Again,
a background is estimated from CFHTLenS and subtracted. We then fit a Schechter function
(Schechter, 1976) normalised to projected area rather than volume to the data

φ(m)dm = 0.4 ln 10φ∗ 10−0.4(m−m∗)(α+1) exp[−10−0.4(m−m∗)]dm . (5.4)

For the fit, we keep α fixed to −1.1, which has been shown to be robust for rich clusters (e.g.
Paolillo et al. 2001). Furthermore, we assume passive stellar evolution and use the stellar popu-
lation synthesis models from Bruzual & Charlot (2003) with the Padova stellar evolution models
(Bertelli et al., 1994) and the initial mass function by Chabrier (2003) to fix m∗ for every redshift.
In the end, we only fit the normalisation φ∗. Subsequently, we integrate the Schechter function
up to m∗ + 2. After multiplying the result with the projected area, this gives us our richness
estimate, Ngal. An example of such a measured function can be found in the bottom right panel
of Fig. 5.3.

We estimate statistical errors for the richness by bootstrapping the cluster member sample
and repeating the whole estimation procedure several thousand times. We then quadratically
add the Poissonian error and take this as the total uncertainty in richness. For comparison, we
also estimate the richness of a cluster by counting the red sequence galaxies that are brighter
than m∗ + 2 and call this Ncount. Here we take the Poissonian error as the uncertainty. For the
further analysis we use only the Ngal estimates, because we expect them to be more robust.

Redshifts, richnesses, and other properties as well as comments concerning the data and the
analysis can be found in Table 5.3.

5.4.4. Discussion of the results from the optical data

With our analysis, we confirmed 44 galaxy clusters at redshifts between 0.5 . z . 1.0. Addition-
ally, we conducted the analysis for three previously known clusters in order to have a calibration
sample. The cluster richnesses within 0.5 Mpc vary between 3 and 46. We summarise all mea-
sured quantities in Table 5.3. One column in this table lists problems that occurred during
the analysis. Those problems were poor observing conditions like high airmass, cloud cover-
age etc., which lead to considerable systematic uncertainties. Furthermore, the galaxy redshift
distribution in the histograms like the one shown in Fig. 5.3 does not always have a clear
peak, sometimes it is bimodal. Additionally, the Schechter function fit can fail, which can for
example be caused by a poor redshift estimate due to a faint cluster. An example for this is
ClG-J094742.3+351742. From the fit we find Ngal = 20 ± 4, which does not agree with the
counted estimate of Ncount = 2 ± 1. Poor data in one or more bands can also lead to poor
richness estimates. The r-band of ClG-J144847.4+284312 for example is much shallower than
the rest of the data, because it was observed in bright time. Due to this we overestimate the
background in this field, which leads to the low values in Ngal = 3± 2 and Ncount = 3± 2.

The redshift and richness distribution of our sample can be found in Fig. 5.4. The redshift
distribution peaks at z = 0.75. We targeted a redshift range of 0.6 . z . 1.0 while cross-
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Figure 5.3.: This figure shows the output of the red sequence analysis for one cluster, ClG-
J231215.6+035307. The top left panel shows a colour image of the inner parts of the cluster.
In the top right panel we show the number of galaxies around the cluster centre, which coincide
with the red sequence models as a function of redshift. Here the peak lies at z = 0.625. The
bottom left panel shows a colour-magnitude diagram. Grey points are all galaxies in the field,
blue points are galaxies within 1.′25 of the centre and red points are red sequence galaxies. The
black line shows the red sequence for z = 0.625. Finally, the bottom right panel shows the
i-band number counts of the cluster members, shown in the figure to the left. The black line
is the best Schechter function fit. The fact that the number counts do not start to decrease at
fainter magnitudes suggests that we do not suffer from significant incompleteness issues.
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correlating RASS and SDSS. In this respect, the left panel of Fig. 5.4 is a confirmation that
our approach works indeed. The richness distribution shows a peak between 20 and 30 and then
a decreasing trend towards higher richness. The most interesting objects are those at the high
richness tail at Ngal > 30. Nevertheless, all objects in this sample seem to be rare X-ray luminous
high-redshift galaxy clusters, which makes them interesting objects for further research.

By inspecting the colour images, eleven clusters with one or more potential strong gravitational
lensing features were found. Those clusters and the arc coordinates are listed in Table 5.2 and
corresponding colour images can be found in Fig. 5.5.

Due to the two clusters RCS2-J232727.7−020437 and ClG-J120958.9+495352 being in both
the WHT as well as the LBT sample, we have the possibility to cross-check the results. The red
sequence redshifts both agree within 2σ with the spectroscopic redshift. Comparing richness, we
see that for ClG-J120958.9+495352, the measured values from the WHT sample are, within the
error bars, consistent with the ones from the LBT sample (ClG-J120958.9+495352: 18±5; 22±
5). For RCS2-J232727.7−020437, the Schechter function fit did not work for the LBT data and
thus the estimate for Ngal = 11 ± 6 is very different to the one from the WHT (46 ± 7). This
is due to the values to which we fix the parameters in the Schechter function. Those apparently
do not match the observed data for RCS2-J232727.7−020437 in the deeper LBT data.

Six of the clusters in this sample had been discovered independently by Wen, Han & Liu (2012),
another four by the Planck collaboration (Planck Collaboration et al., 2015b). We marked those
clusters in Table 5.3.

5.5. SZ Data Analysis

The SZ signal is quantified in terms of the Compton y parameter, the line-of-sight integrated
pressure. For scaling with mass, a convenient measure is the integrated Comptonization

Y =

∫
y d Ω =

1

(dA)2

σT
mec2

∫
dl

∫
P (r)dA , (5.5)

where Ω is the subtended solid angle of the cluster on the sky, dA is the angular diameter
distance, σT is the Thomson cross-section, P (r) is the projected pressure profile, and A is a
projected physical area. Following Marrone et al. (2012), we quantify the SZ signal in terms of
the spherical measure

YSZ ≡ Ysph(dA)2 =
σT
mec2

∫
P (r)dV , (5.6)

where dV is a physical volume element and P (r) is now the pressure as a function of physical
radius. Note that we have moved dA to the left-hand side of the equation to remove the redshift
dependence in the SZ measure.

For the pressure as a function of radial distance, we adopt the generalised NFW pressure
profile (Nagai, Kravtsov & Vikhlinin, 2007), with the functional form

P (r) =
P0

c500xγ(1 + c500xα)(β−γ)/α
, (5.7)
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Table 5.2.: This table names clusters where potential strong lensing features were found and
gives their coordinates.

Object Ra Dec
ClG-J013710.4−103423 01:37:09.87 −10:34:31.15
ClG-J080434.9+330509 08:04:37.90 +33:04:53.49
ClG-J083415.3+452418 08:34:16.82 +45:23:24.15
ClG-J104803.7+313843 10:48:04.68 +31:38:51.70

10:48:03.71 +31:38.29.46
10:48:04.47 +31:39:05.18

ClG-J124515.2+245335 12:45:15.25 +24:53:46.61
ClG-J142040.3+395509 14:20:37.48 +39:54:48.53

14:20:38.61 +39:54:52.47
ClG-J142138.3+382118 14:21:39.41 +38:21:05.21
ClG-J214826.3−053312 21:48:25.77 −05:33.02.26
ClG-J231215.6+035307 23:12:16.79 +03:52:38.90

23:12:16.99 +03:52:12.15
ClG-J231520.6+090711 23:15:21.73 +09:07:34.09

23:15:19.88 +09:07:06.59
RCS2-J232727.7−020437 23:27:29.41 −02:03:48.03

23:27:30.69 −02:04:29.47
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Figure 5.4.: Redshift and richness distribution of all 44 galaxy clusters in our sample and of the
three previously known objects. Wherever available, we use spectroscopic redshifts. Light grey
bars show the whole sample, dark grey bars the SZ-detected clusters only.

where x = r/r500 and (P0, c500, α, β, γ) are parameters of the model. For our analysis, we fix
(α, β, γ) to the best-fit values of the ‘universal pressure profile’ found by Arnaud et al. (2010).

We reduce the CARMA data using a pipeline similar to the one used in Muchovej et al. (2007),
which was adapted for the use with CARMA. We first filter out bad weather errors as well as
pointing errors and then apply a gain and flux calibration. For the flux calibration, we use the
model of Mars from Rudy et al. (1987). We assume that Mars is a disk of uniform brightness,
Fourier transform this disk to the visibility plane and compare it to the measured visibilities.
From this comparison, we derive an antenna-specific scale factor, which brings the observations
in line with the model. A conservative estimate for the absolute flux calibration uncertainty is
∼7 per cent. This results from ∼5 per cent uncertainty in the model from Rudy et al. (1987)
and ∼5 per cent uncertainty from the gain solution of the telescopes.

We carry out a model fit using the pressure profile of Arnaud et al. (2010) to the interferometric
data by Fourier transforming the model and comparing it to the data in visibility space. We
minimize a χ2 statistic and estimate the detection significance. If this significance is greater
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than three, we estimate the spherical volume-integrated Comptonization, YSZ. If the significance
is less than three, we only give upper limits on YSZ and the mass. We call these cases non-
detections. We estimate r500 by forcing YSZ to be consistent with the YSZ−M500 scaling relation of
Andersson et al. (2011), which effectively means we are fitting only to integrated Comptonization
(or equivalently, mass) from which r500 is directly given. We use the scaling relation with a fixed
slope of 1.79. The positions and peak fluxes of point sources detected in the long-baseline image
are included in the fit (rather than subtracted in the visibility-plane), and marginalised over in
determining YSZ.

In addition to the statistical errors in the fit, there are further sources of uncertainty. First,
there is intrinsic scatter in theM−YSZ scaling relation, for which we assume a 21 per cent intrinsic
scatter in mass consistent with Andersson et al. (2011). We add this scatter in quadrature to the
statistical errors of the fit as it assumes that the clusters follow the scaling relation exactly. In
addition, it is important to realise that this scaling relation has been calibrated via the M − YX

scaling relation, which itself was calibrated empirically using weak lensing data at much lower
redshifts only (Vikhlinin et al., 2009). Given the high-redshift range of our clusters, any deviation
from the assumed self-similar redshift evolution would lead to a systematic bias in the derived
masses. So far, Jee et al. (2011) present the only weak lensing study for a large cluster sample
at high redshifts. Their analysis suggests a possible evolution in the M − TX scaling relation
until z ∼ 1 in comparison to self-similar evolution at the 20− 30% level. To be conservative,
and accounting for the in comparison to Jee et al. (2011) slightly lower redshift range of our
clusters (zmedian = 0.725), we therefore adopt an additional 20 per cent systematic uncertainty
in the mass scale. Andersson et al. (2011) use a cosmology slightly different to ours, introducing
another systematic bias of about 5 per cent in mass, which is however negligible compared to
the statistical errors.

For ClG-J122208.6+422924, which was observed in a different configuration, we used the 6
m and 10 m antennas to search for point sources and the 3.5 m antennas to estimate YSZ. We
analysed about 4 hours of these data but could not detect the cluster. Half of the data had only
been observed at half the normal bandwidth.

From the 21 clusters analysed, we detect eleven. For those we estimate M500 according to the
scaling relation. Furthermore, using the mass-concentration relation from Duffy et al. (2008),
we can convert this to M200. Again, for the non-detections, we only determine upper lim-
its. In Fig. 5.6, we show how the masses from the SZ data scale with our richness estimates.
Additionally, we also show masses which were already known for RCS2-J232727.7−020437,
MACS074452.8+392725, and ClGJ1226+33. M200 for RCS2-J232727.7−020437 was deter-
mined from the value given for YSZ in Sharon et al. (2015), which had been measured from
CARMA data. We estimate M200 = (11.3± 3.9)× 1014 h−1

70 M� using the cosmology adopted in
our work; the given uncertainty is dominated by the uncertainties in the scaling relation. For
MACS074452.8+392725, we use the weak lensing mass estimate from Umetsu et al. (2014). Also,
Jee & Tyson (2009) estimate a weak lensing mass for ClGJ1226+33. The mass estimates for
MACS074452.8+392725 and ClGJ1226+33 use different techniques than we do, which means
that they do not necessarily measure the same mass as our SZ estimate.

In the plot, there is only a rough relation between mass and richness visible; one can see
large scatter among the data. This is expected due to comparably short integration times, the
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Figure 5.5.: Strong lensing arc candidates. All panels show 75′′ × 75′′. Arc candidates are
highlighted by a white circle.

76



CHAPTER 5. OPTICAL & SZ OBSERVATIONS OF GALAXY CLUSTERS

assumptions we make while determining the masses, but most importantly due to the large
intrinsic scatter between mass and richness (e.g. Angulo et al. 2012). We also find that our M500

estimates range mostly between 3− 9× 1014h−1
70 M� at redshifts of 0.6 ≤ z ≤ 0.9. That we only

find these high masses is due to a selection effect; the less massive clusters could not be detected
at > 3σ in the SZ data while using only these comparably short integration times.

The objects that have not been detected with CARMA are in most cases not particularly rich
in the optical or were only integrated for a short amount of time. There are two exceptions. One
of these is ClG-J142040.3+395509, for which we find a point source at the BCG position, which
can potentially cancel the SZ-signal. Due to a flagged antenna, we do not have enough long
baselines to properly measure the flux of this source. This could explain the apparent strong SZ-
peak, with an offset of about 2′ from the BCG position. The other one is ClG-J095416.5+173808,
which is optically rich, but not detected. As we already explained before, there is a large scatter
in the mass-richness relation, so this could mean that ClG-J095416.5+173808 shows a strong
richness while not being massive, which would result in a faint SZ signal.

In Fig. 5.7, we show the M500 − LX, the LX − YSZ, and the YSZ −Ngal scaling relations. The
blue lines show the corresponding M500 −LX and LX − YSZ relations from Arnaud et al. (2010).
In order to compare the data to those relations, we assume self-similar evolution, which depends
on the self-similar evolution factor E(z) = H(z)/H0 =

√
Ωm(1 + z)3 + ΩΛ (in this form it is only

true for flat cosmologies). We plot both the CARMA detections as well as the non-detections
(denoted in red) using their 3σ upper limits. The measured M500 − LX and the LX − YSZ

relations agree well with the results from Arnaud et al. (2010). The non-detections seem to have
a preferentially lower LX than the detection. When comparing Ngal to YSZ we find no clear
trend, as already discussed for Fig. 5.6. We do not attempt to compare the mass-richness or
YSZ-richness relations to previous works, due to differences in the definition of richness between
studies.

All results from the CARMA SZ observations can be found in Table 5.4. In addition to the
CARMA data, we also check if the clusters observed with CARMA can be found in data from
Planck. A detailed description of this and postage stamps of the CARMA and Planck SZ-maps
are given in the appendix.

5.6. Are there galaxy clusters too massive compared to
predictions from ΛCDM?

Using M200 estimated from the SZ data, we can check for eleven clusters if they are too massive
for our current structure formation paradigm. For this we use the fitting formula given in
Mortonson, Hu & Huterer (2011) for upper mass limits as a function of redshift and survey
size in a flat ΛCDM cosmology. One limitation here is that we do not test the whole sample
but every cluster individually. We do not know the exact area which has been used for our
cluster detection, due to our selection procedure. Nevertheless, we can calculate a lower limit
for the area. For this we use all galaxies from the SDSS DR8, which includes the complete SDSS
imaging data, with psfMag i < 13 and all objects from the RASS faint source catalogue. We
grid both samples and compute the overlapping area as the sum of cells, which contain at least
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FROM ΛCDM?

Figure 5.6.: We show mass estimates as a function of richness. The solid points are SZ
masses from this study. The open symbols are masses from previous studies. The masses for
RCS2-J232727.7−020437 were determined from YSZ given in Sharon et al. (2015), which was
measured from CARMA data. For MACS074452.8+392725, the mass estimate is taken from
Umetsu et al. (2014), which is a weak lensing mass estimate. Jee & Tyson (2009) measure a
weak lensing mass for ClGJ1226+33. The error bars in mass for objects from this work include
the 21 per cent scatter from the scaling relation from Andersson et al. (2011) but not the 20 per
cent systematic error due to the high-redshift mass calibration (see Section 5.5).
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Figure 5.7.: We present scaling relations comparing the ROSAT X-ray luminosity LX, the in-
tegrated Comptonization parameter YSZ from the CARMA data, the SZ-inferred galaxy cluster
mass M500, and the cluster richness Ngal. The black points show the CARMA detections, the red
points the CARMA non-detections and the corresponding 3σ upper limits. The blue lines show
corresponding relations from Arnaud et al. (2010). We assume self-similar evolution in order to
compare the data to the scaling relations from Arnaud et al. (2010). For a detailed discussion
please see Section 5.5.

one object of each survey. This estimate does strongly depend on the cell size and does not
converge. In order to find a lower limit on the area used, we vary the cell size and check how
many of the 44 clusters are within the overlapping area. The smallest cell size for which we still
find all clusters within the overlap is 0.7 × 0.7 deg2. For this configuration, we find the area to
be ≈ 10, 000 deg2. This estimate is, as mentioned before, only a lower limit and it does not take
variations in sensitivity in the SDSS and RASS into account. Thus we only provide this area
estimate to put our findings into a cosmological context. We also test if our sample selection
is sensitive to the exposure time in RASS. We find the lowest exposure time of a cluster in the
sample to be ≈ 350 s. Areas in RASS with exposure times greater than or equal to these 350 s
correspond to about 80 per cent of the total RASS area.

We plot the cluster masses against redshift in Fig. 5.8. Additionally, the masses of three
clusters from previous studies are plotted (see Section 5.5). Furthermore, we take the 10 most
massive clusters at redshifts 0.6 < z < 1.0 from Bleem et al. (2015)4 and also from Planck

4http://pole.uchicago.edu/public/data/sptsz-clusters/index.html
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FROM ΛCDM?

Figure 5.8.: The solid line shows the 99 per cent confidence mass limit as a function of redshift
for a flat ΛCDM universe and the survey size of Planck. The dotted line shows the same limit
for a survey size of 10, 000 deg2, which corresponds to the survey size in this work. The dashed-
dotted one shows the corresponding limit for the SPT 2500 deg2 survey. To compute these lines,
we use the fitting formula from Mortonson, Hu & Huterer (2011) and acknowledge the fact that
this gives too strict limits. The solid points show the masses estimated in this study. The other
symbols represent masses from previous studies. Arrows indicate the upper limits we find in
CARMA for non-detected clusters. We find no tension with the ΛCDM model. The open circles
are the ten most massive clusters between 0.6 < z < 1.0 from Bleem et al. (2015), the triangles
with the tip down show the ten most massive clusters in this redshift range in the Planck SZ
sample (Planck Collaboration et al., 2015c).
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(Planck Collaboration et al., 2015c)5, determine their M200 as described above and plot them as
well. The masses we find for both of these samples are comparable to ours. Considering that we
use the most massive ones from that study, this might again be an indication of the massive and
extreme nature of our cluster sample.

As visible in Fig. 5.8, we find no significant tension between our clusters and the current
cosmological standard model. The clusters from Bleem et al. (2015) and from Planck were found
by different surveys using a different selection function. Thus, from Fig. 5.8 we should not infer
possible tension for those clusters. We are aware that Hotchkiss (2011) showed that the fitting
formula we use is too strict, but since none of the objects is in strong tension, the method from
Mortonson, Hu & Huterer (2011) is sufficient for our purposes.

Only a sub-sample is tested here and ideally we would like to achieve mass estimates for more
clusters than these eleven, preferably for those with the highest Ngal, since this should be a rough
indication for the mass.

5.7. Notes on Individual Clusters

After this summary of the general data, we will now focus on the most notable objects in the
sample, which are either high-redshift clusters, very rich clusters in the optical or very massive
clusters according to their SZ signal. Those clusters are the most interesting targets for further
and deeper follow-up observations, in order to determine their masses and other interesting
properties.

5.7.1. RCS2-J232727.7−020437

We can confirm this object to be a very rich cluster. The measured photometric redshift
zphot = 0.725± 0.042 agrees well with the known spectroscopic one, zspec = 0.705 (Menanteau
et al., 2013). The richness of 46± 7 (WHT) is the largest in the sample, as expected from its high
mass. However, as we will see later on, there are comparable clusters in our sample. Its mass has
been estimated before. For example Gralla et al. (2011) find M500 = (6.2± 0.8)× 1014 h−1

70 M�.
Hasselfield et al. (2013) estimate masses from ACT data and use different ways to fix their Y −M
scaling relation. This leads to different mass estimates for RCS2-J232727.7−020437. The re-
sults from using what they call a ‘universal pressure profile’ (UPP) scaling relation is M500 =
(9.4 ± 1.5) × 1014 h−1

70 M�, which is their lowest estimate. Their largest value arises from using
a scaling relation determined with dynamical masses. With M500 = (14.9± 3.0)× 1014 h−1

70 M�,
this is about 50 per cent larger than the UPP value. From the YSZ given in Sharon et al. (2015),
we estimate M500 = (8.1± 2.3)× 1014 h−1

70 M�. This agrees well with the value from Gralla et al.
(2011) and within 1σ with the UPP mass from Hasselfield et al. (2013).

5http://pla.esac.esa.int/pla/aio/planckProducts.html
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5.7.2. ClG-J095416.5+173808

ClG-J095416.5+173808 has a measured photometric redshift of zphot = 0.725± 0.047, which
scatters 2σ low compared to zspec = 0.828 (Nastasi et al., 2014). The richness of Ngal = 40± 6
is comparable to the one of RCS2-J232727.7−020437. We do not detect this object with more
than 3σ in CARMA.

5.7.3. ClG-J104803.7+313843

This object is located at zphot = 0.750± 0.047 and has a richness of 31± 5. Its redshift appears
to be slightly higher than the one measured for RCS2-J232727.7−020437. The existence of at
least two potential arcs indicates a high mass, which is confirmed from the SZ observations,
where we estimate M200 = (16.0± 5.5)× 1014 h−1

70 M�. This makes it one of the most massive
systems known at high redshift.

5.7.4. ClG-J120958.9+495352

We discovered ClG-J120958.9+495352, which has a spectroscopic redshift of zspec = 0.902 and
a measured red sequence redshift of zphot = 0.950± 0.112 (WHT). The richness within 0.5 Mpc
was measured to be 18± 5 (WHT). Due to its large distance, we cannot probe the luminosity
function down to faint magnitudes. Based on the RASS count rate, this is the most X-ray
luminous cluster discovered by our program with LX = (20.3± 6.2)× 1044 erg

s . In addition to the

findings from the optical data, we estimate its SZ-mass to be M200 = (8.3± 2.5)× 1014 h−1
70 M�.

5.7.5. ClG-J122208.6+422924

ClG-J122208.6+422924 is the object with the highest measured red sequence redshift in our
sample (zphot = 1.000± 0.200). The large error arises from the fact that only very few cluster
members are visible, and those have an average i-band magnitude of i ≈ 24.1, which is very close
to the detection limit. The measured spectroscopic redshift is somewhat larger with zspec = 1.069,
which was measured from the two brightest cluster members, and both spectra show a clear break
at the corresponding 4000 Å position. This makes the object by far the highest redshift one in
the sample. Nevertheless, the two brightest cluster galaxies are detected in the SDSS which,
given their high-redshift, is very rare and might indicate a high mass for those galaxies. We
do not detect this object in 4 h of CARMA data but measure a 3σ upper mass limit M500 <
3.8× 1014 h−1

70 M�.

5.7.6. ClG-J133732.5+195827

This cluster has a redshift of zphot = 0.900± 0.106, but it was observed at a high airmass, which
might have affected the data. It does show a strong SZ signal, and considering its possibly
high redshift, its mass of M200 = (10.2± 3.0)× 1014h−1

70 M� is extraordinarily high. The optical
colour image shows only a few very red galaxies, and we measure its richness as Ngal = 10± 5.
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5.7.7. ClG-J135345.0+432905

ClG-J135345.0+432905 shows a very strong SZ signal and with M200 = (13.4±6.0)×1014h−1
70 M�,

it is among the most massive clusters in the CARMA sample. It has no spectroscopic redshift
but we measure the red sequence redshift to zphot = 0.725± 0.024. Its richness is Ngal = 21± 6.

5.7.8. ClG-J142040.3+395509

This cluster has a spectroscopic redshift of zspec = 0.607 (Bayliss et al., 2011) and shows a
richness of Ngal = 25± 5. From serendipitous Chandra observations, we conducted an X-ray
analysis, which can be found in appendix 5.A. This analysis shows a gas temperature of about
8+3
−2 keV, which indicates a high mass. Also, Bayliss et al. (2011) find several strong lensing

features and a high velocity dispersion of σv = 1095+86
−175

km
s . Oguri et al. (2012) use weak and

strong gravitational lensing to measure its virial mass, which, adapted to the cosmology we use, is
Mvir = 10.77+3.59

−2.88 × 1014M�. Still, we did not detect this cluster at more than 3σ using CARMA.
A possible explanation is a point source we find at the BCG position. This source could counter
act the SZ signal and thus we would not detect the cluster. ClG-J142040.3+395509 shows a
strong signal in Planck.

5.7.9. ClG-J142138.3+382118

With a measured redshift of zphot = 0.750± 0.027 (zspec = 0.762) and a richness of 41± 7, this
cluster appears to be at higher redshift but with a comparable richness to RCS2-J232727.7−020437.
Possible strong lensing arcs have been observed which also indicate a high mass. On the other
hand, we cannot detect it at more than 3σ in the CARMA data, which could be due to the short
integration time of only 1.3 hours.

5.7.10. ClG-J152741.9+204443

ClG-J152741.9+204443 has a redshift of zspec = 0.693 and a richness of Ngal = 27 ± 5. This is
a rather large richness, which also agrees with the CARMA analysis. There we find one of the
strongest SZ signals, which corresponds to a mass of M200 = (14.5± 6.5)× 1014h−1

70 M�. Again,
this appears to be an exceptionally massive cluster.

5.8. Conclusions

We cross-correlated RASS and SDSS in order to find rich galaxy clusters at redshifts 0.6 . z . 1.0.
Using follow-up observations, we confirmed 44 cluster candidates. The motivation was to find
similar objects as RCS2-J232727.7−020437, in which we succeeded. We estimated red sequence
redshifts which we compared to our spectroscopic sub-sample and determined the cluster richness
by fitting and integrating a Schechter function.

In the end we found at least two clusters of comparable richness as RCS2-J232727.7−020437.
Furthermore, we achieved rough mass estimates from SZ observations for a sub-sample of eleven
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clusters and find them to be massive systems. Using the formalism by Mortonson, Hu & Huterer
(2011), we find no tension between any of these clusters and the standard cosmological model.
Further investigations, which will need deeper and higher-quality observations, will reveal the
masses of more of these rare objects and check whether those are compatible with the ΛCDM
structure formation paradigm.

We have demonstrated that the approach of cross-correlating X-ray with optical data within
an area of about 10 000 deg2 is efficient, resulting in the discovery of some of the richest galaxy
clusters at high-z to date.

Our cluster sample is unique and complementary to the Planck cluster sample and also to the
southern hemisphere samples of the SPT and ACT. With respect to the redshift range and the
large area, this sample is more similar to the Planck sample than to the other two. Although we
have constructed our sample by surveying a large area, we cannot attempt to infer cosmological
parameters from it. The sample is by default incomplete, because we searched for the most
massive objects, which are easiest to detect.

While preparing this paper, we made use of the python version of Ned Wright’s cosmology calcu-
lator (Wright, 2006), which was implemented by James Schombert. Additionally, we used TOPCAT

(Taylor, 2005) and STILTS (Taylor, 2006).

The overall program, and the optical follow-up campaign were conceived and led by Tim Schrabback.
Glenn Morris led the Chandra analysis. The CARMA observations, reductions, and analysis
were conducted by Christopher Greer, Martin Sommer, and Dan Marrone. Jens Erler created
the y-maps from the Planck data.
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5.A. X-ray Analysis of ClG-J142040.3+395509

In addition to our optical and SZ data, we found serendipitous archival data from Chandra for
ClG-J142040.3+395509. Fig. 5.9 shows the 0.6− 7.0 keV count rate image. This was back-
ground subtracted and exposure corrected. When fitting a simple free absorption + thermal
Bremsstrahlung model to the data, we find the metallicity to be 0.5+0.4

−0.3 Z� and a temperature

of TX = 8+3
−2 keV. This temperature as well as the high velocity dispersion from Bayliss et al.

(2011) indicate a high mass. The flux in the 0.6-7.0 keV band is SX = 6.8×10−13 erg
cm2 s . The 2-10

keV luminosity is LX = 8.1×1044 erg
s which is consistent with the RASS luminosity in Table 5.3.

In Fig. 5.9, we also show the optical three-colour image superposed with the X-ray contours.
Clearly the X-ray peak coincides with the position of the BCG.

The chip being analysed here is acis-S4, which is non standard for the analysis of extended
sources. This means that the calibration model is probably not as reliable as usual which might
result in an additional systematic bias of our measurements. All errors given are 1σ errors.

5.B. Galaxy Cluster and SZ Data
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Figure 5.9.: left: Smoothed Chandra image of ClG-J142040.3+395509. Colour indicates the
count rate. The cluster is visible in the upper part of the image. right: White lines are X-ray
contours from Chandra superposed on the optical three-colour image from the WHT. This image
shows a much smaller part of the field than visible in the left panel, due to the small field of view
in the optical. The contour levels are 0.05, 0.1, 0.2, 0.5, 1.0 and 1.5 counts/s.
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Table 5.3.: This table shows photometric and spectroscopic redshifts, richness, X-ray counts in 1/s, and the X-ray
luminosity in 1044 erg s−1 measured in the ROSAT 0.1−2.4 keV band. Ngal is the richness measured using the Schechter
function fit, Ncount the one measured by counting galaxies brighter than m∗ + 2. In the comments column we have
noted several anomalies, namely: 1 bimodal red sequence galaxy distribution as a function of redshift or only a weak
signal (compare Fig. 5.3 top right panel); 2 the data is shallow compared to other images; 3 the object had been
observed at high airmass (≈ 2); 4 the Schechter function fit did not work well, which means that our fixed parameters
lead to poor fits. For clusters with known spectroscopic redshift we used those instead of the photometric ones for the
richness estimate. Coordinates given are those of the BCG. Cluster names showing the superscript † were independently
discovered by Wen, Han & Liu (2012); the superscript � indicates clusters that have been independently discovered by
the Planck collaboration (Planck Collaboration et al., 2015b).

Object WHT LBT SZ Ra Dec zphot zspec Ngal Ncount countsX LX com.

ClG-J001640.6−130644† x - - 00:16:40.636 −13:06:43.84 0.700±0.097 - 18±6 13±4 0.0297±0.0126 6.5±3.1 1

ClG-J005805.6+003058 x - - 00:58:05.648 +00:30:57.85 0.725±0.017 - 33±6 39±6 0.0230±0.0099 5.5±2.4

ClG-J013710.4−103423 x - - 01:37:10.433 −10:34:23.15 0.525±0.034 0.662 24±5 17±4 0.0192±0.0091 2.9±1.4 4

ClG-J031924.2+404055 x - - 03:19:24.237 +40:40:54.91 0.750±0.020 0.680 6±3 13±4 0.0229±0.0087 5.0±1.9 1,4

MACSJ074452.8+392725 x - - 07:44:52.775 +39:27:25.45 0.675±0.028 0.698 19±5 17±4 0.0148±0.0073 3.1±1.5

ClG-J080434.9+330509†� x - - 08:04:34.899 +33:05:08.99 0.575±0.014 0.552 24±5 26±5 0.0239±0.0102 3.0±1.3

ClG-J083415.3+452418† - x x 08:34:15.317 +45:24:18.19 0.675±0.029 0.666 19±5 13±4 0.0416±0.0116 8.1±2.3

ClG-J084009.8+442154 x - - 08:40:09.783 +44:21:53.51 0.700±0.060 - 21±4 26±5 0.0689±0.0209 15.0±5.0 2

ClG-J093503.2+061438 x - x 09:35:03.235 +06:14:38.46 0.750±0.031 - 9±3 8±3 0.0435±0.0135 11.2±3.6

ClG-J094742.3+351742 - x - 09:47:42.313 +35:17:41.81 0.500±0.065 - 20±4 2±1 0.0190±0.0086 1.8±0.9 4

ClG-J094700.0+631905 x - - 09:47:00.010 +63:19:04.99 0.700±0.062 0.710 9±4 10±3 0.0172±0.0076 3.8±1.8 4

ClG-J094811.6+290709 x - x 09:48:11.569 +29:07:09.48 0.775±0.063 0.778 16±4 21±5 0.0337±0.0109 9.5±3.4

ClG-J095416.5+173808 - x - 09:54:16.461 +17:38:07.76 0.725±0.047 0.828 40±6 15±4 0.0216±0.0110 6.5±3.4

ClG-J102714.5+034500 x - - 10:27:14.475 +03:45:00.36 0.700±0.030 0.749 20±5 33±6 0.0304±0.0126 7.4±3.1

ClG-J103605.6+441140 x - - 10:36:05.645 +44:11:40.29 0.800±0.119 - 5±3 13±4 0.0228±0.0100 6.9±3.6 4

ClG-J104803.7+313843 - x x 10:48:03.669 +31:38:42.90 0.750±0.047 - 31±5 10±3 0.0443±0.0132 12.1±3.9

ClG-J120958.9+495352 x x x 12:09:58.948 +49:53:52.02 0.950±0.112 0.902 18±5 16±4 0.0486±0.0145 20.3±6.2

ClG-J122208.6+422924 x - x 12:22:08.612 +42:29:24.19 1.000±0.200 1.069 7±4 12±3 0.0189±0.0087 11.3±7.2 4

ClJ1226+33 x - - 12:26:58.170 +33:32:48.41 0.950±0.028 0.892 14±5 27±5 0.0233±0.0102 9.5±4.2

ClG-J124515.2+245335† - x x 12:45:15.204 +24:53:35.41 0.650±0.027 - 10±4 15±1 0.0233±0.0100 4.2±1.8

ClG-J131104.8+551443 x - - 13:11:04.815 +55:14:42.67 0.775±0.127 - 12±5 10±3 0.0204±0.0080 5.7±2.8

ClG-J131339.7+221151 x - - 13:13:39.723 +22:11:50.82 0.675±0.019 0.737 21±5 25±5 0.0232±0.0106 5.3±2.5

ClG-J133620.3+544540 - x x 13:36:20.308 +54:45:40.22 0.875±0.039 - 17±4 20±4 0.0204±0.0088 7.7±3.4

ClG-J133732.5+195827 x - x 13:37:32.451 +19:58:26.57 0.900±0.106 - 10±5 11±3 0.0162±0.0079 6.5±3.5 3

ClG-J135345.0+432905� x - x 13:53:44.996 +43:29:05.12 0.725±0.024 - 21±6 42±6 0.0393±0.0107 9.3±2.6
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Table 5.3.:
Object WHT LBT SZ Ra Dec zphot zspec Ngal Ncount countsX LX com.

ClG-J142008.8−031906 x - - 14:20:08.763 −03:19:06.40 0.750±0.070 - 16±4 20±4 0.0209±0.0112 5.4±3.0

ClG-J142040.3+395509†� x - x 14:20:40.353 +39:55:09.72 0.600±0.044 0.607 25±5 34±6 0.0360±0.0100 5.5±1.6

ClG-J142138.3+382118� x - x 14:21:38.288 +38:21:18.32 0.750±0.027 0.762 41±7 42±6 0.0209±0.0084 5.5±2.3 2

ClG-J142227.4+233739 x - - 14:22:27.366 +23:37:38.82 0.750±0.017 0.726 23±5 20±4 0.0284±0.0105 6.9±2.6

ClG-J143411.9+175039 x - x 14:34:11.929 +17:50:38.96 0.800±0.020 0.744 25±7 35±6 0.0278±0.0101 7.4±2.7 3

ClG-J144847.4+284312 x - - 14:48:47.381 +28:43:12.17 0.750±0.125 - 3±2 3±2 0.0186±0.0074 4.8±2.4 1,2,3

ClG-J145508.4+320028 x - - 14:55:08.384 +32:00:27.90 0.675±0.017 0.654 11±4 27±5 0.0161±0.0068 3.0±1.3

ClG-J150532.2+331249† x - - 15:05:32.212 +33:12:48.83 0.725±0.036 0.757 24±5 24±5 0.0142±0.0058 3.6±1.5

ClG-J151544.3+042554 x - - 15:15:44.312 +04:25:53.65 0.700±0.039 - 32±8 29±5 0.0262±0.0100 5.7±2.2

ClG-J151601.9+394426 x - x 15:16:01.946 +39:44:26.57 0.725±0.025 - 10±5 34±6 0.0288±0.0084 6.8±2.0 2,3,4

ClG-J152741.9+204443 x - x 15:27:41.933 +20:44:42.77 0.700±0.034 0.693 27±5 14±4 0.0269±0.0122 5.8±2.6

ClG-J153035.0+130512 x - - 15:30:34.980 +13:05:12.31 0.625±0.025 - 17±4 34±6 0.0216±0.0103 3.6±1.7 3,4

ClG-J153258.8+021324 x - - 15:32:58.807 +02:13:23.87 0.850±0.119 - 13±3 12±3 0.0209±0.0086 7.3±3.6 1,3

ClG-J153735.6+382851 x - x 15:37:35.582 +38:28:50.90 0.750±0.057 - 26±5 29±5 0.0336±0.0116 8.7±3.2

ClG-J171225.8+561253 x - - 17:12:25.840 +56:12:52.51 0.600±0.036 - 19±5 13±4 0.0082±0.0036 1.2±0.6

ClG-J174109.9+555819 x - x 17:41:09.881 +55:58:19.06 0.625±0.036 - 18±5 27±5 0.0059±0.0023 1.0±0.4

ClG-J214826.3−053312 x - - 21:48:26.270 −05:33:12.01 0.625±0.025 - 23±5 34±6 0.0211±0.0095 3.5±1.6

ClG-J223007.6−080949 x - x 22:30:07.589 −08:09:48.80 0.575±0.017 0.623 24±5 25±5 0.0336±0.0154 5.1±2.4

ClG-J223727.5+135523 x - x 22:37:27.543 +13:55:22.56 0.700±0.043 - 15±5 24±5 0.0161±0.0067 3.5±1.5

ClG-J231215.6+035307 x - x 23:12:15.600 +03:53:06.90 0.625±0.030 0.648 31±6 19±4 0.0234±0.0093 4.1±1.7

ClG-J231520.6+090711 x - - 23:15:20.558 +09:07:11.09 0.725±0.024 - 20±5 36±6 0.0206±0.0086 4.9±2.1

RCS2-J232727.7−020437 x x - 23:27:27.7 −02:04:37.00 0.725±0.042 0.705 46±7 35±6 0.0474±0.0137 10.7±3.6 4(LBT)
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5.C. POSTAGE STAMPS OF ALL CLUSTERS

5.C. Postage Stamps of all Clusters

5.D. Maps from the CARMA Data

5.E. Results from Planck Data

We constructed 10◦ × 10◦ y-maps of all 44 galaxy clusters from public Planck data by forming
a linear combination of maps (the ILC method; Bennett et al. 2003; Remazeilles, Delabrouille &
Cardoso 2011), using all six frequency bands of the Planck High Frequency Instrument (HFI),
taken from the recent 2015 data release (Planck Collaboration et al., 2015a).

A Gaussian filter was applied to smooth all maps to a common resolution of 10′, corresponding
to the Planck beam at 100 GHz. The final Compton-y maps are the weighted sum of all six
maps: y =

∑
i ωiTi/TCMB. Here Ti are the individual channel maps, each weighted with an

ILC-coefficient ωi. The coefficients are chosen to minimise the variance of the reconstructed
Compton-y map while fulfilling two constrains: 1) eliminate the primary CMB Temperature
anisotropies and 2) preserve the temperature fluctuations introduced by the SZ effect. The
produced map may contain an offset, since the variance of the map stays unaffected while adding
a constant. The map offset was determined by fitting the histogram of pixel values with a
Gaussian, which provides a very good model for the map noise. The offset is then corrected for
by subtracting the mean of the Gaussian. In Fig. 5.13, we show Planck y-maps for all clusters,
which have been observed with CARMA.
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CHAPTER 5. OPTICAL & SZ OBSERVATIONS OF GALAXY CLUSTERS

Table 5.4.: This table shows the results from the SZ observations. tint is the integration time in
hours. All masses are in 1014h−1

70 M�, YSZ is given in 10−5Mpc2. To the statistical mass errors
from the fit, we have added in quadrature the 21 per cent scatter from the scaling relation from
Andersson et al. (2011). We acknowledge the fact that our error bars do not include the 20 per
cent systematic error from the uncertainty in the high-redshift mass calibration (see Section 5.5).

Object zspec zphot YSZ M500 M200 tint

ClG-J083415.3+452418 0.666 0.675 2.9±1.1 3.8±1.2 5.6±2.0 3.5
ClG-J094811.6+290709 0.778 0.775 8.2±1.7 6.6±1.9 10.4±3.3 4.1
ClG-J095416.5+173808 0.828 0.725 < 5.4 < 5.1 < 8.0 4.0
ClG-J104803.7+313843 - 0.750 16.8±3.6 9.8±3.2 16.0±5.5 3.5
ClG-J120958.9+495352 0.902 0.950 5.9±1.2 5.3±1.5 8.3±2.5 6.8
ClG-J122208.6+422924 1.069 1.000 < 3.7 < 3.8 < 5.8 4.0
ClG-J124515.2+245335 - 0.650 5.3±1.7 5.3±1.6 8.1±2.8 4.1
ClG-J131339.7+221151 0.737 0.675 2.1±0.9 3.1±1.0 4.4±1.8 5.8
ClG-J133620.3+544540 - 0.875 < 1.9 < 2.8 < 4.0 3.6
ClG-J133732.5+195827 - 0.900 8.2±1.2 6.4±1.8 10.2±3.0 1.4
ClG-J135345.0+432905 - 0.725 12.3±6.8 8.3±3.5 13.4±6.0 1.6
ClG-J142040.3+395509 0.607 0.600 < 7.0 < 6.2 < 9.7 1.5
ClG-J142138.3+382118 0.762 0.750 < 9.7 < 7.2 < 11.5 1.3
ClG-J143411.9+175039 0.744 0.800 < 7.5 < 6.3 < 9.9 1.7
ClG-J151601.9+394426 - 0.725 < 7.5 < 6.3 < 9.9 0.9
ClG-J152741.9+204443 0.693 0.700 14.0±7.6 9.0±3.8 14.5±6.5 1.8
ClG-J153735.6+382851 - 0.750 3.6±0.8 4.2±1.1 6.3±1.9 5.1
ClG-J174109.9+555819 - 0.625 < 10.5 < 7.8 < 12.4 4.5
ClG-J223007.6−080949 0.623 0.575 < 4.4 < 4.8 < 7.3 3.4
ClG-J223727.5+135523 - 0.700 < 2.5 < 3.4 < 5.0 6.3
ClG-J231215.6+035307 0.648 0.625 1.9±0.9 3.0±1.0 4.2±1.8 6.8
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5.E. RESULTS FROM PLANCK DATA

Figure 5.10.: In this figure, we present optical postage stamps of all clusters in our sample. These
postage stamps were created using the r-, i- and z band images from WHT and LBT. Wherever
available, we show the LBT data, which is considerably deeper. Which data is available can be
found in Table 5.3. All images show the inner 1.′7 of the cluster.
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Figure 5.10.:

95



5.E. RESULTS FROM PLANCK DATA

Figure 5.10.:
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Figure 5.10.:
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5.E. RESULTS FROM PLANCK DATA

Figure 5.11.: We show SZ-maps for all clusters observed with CARMA. The images show 12×12′.
The ellipses in the bottom left are the beams, the circle in the centre has a 2′ radius and indicates
the BCG position.
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Figure 5.11.:
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5.E. RESULTS FROM PLANCK DATA

Figure 5.12.: We show optical three-colour images and the corresponding SZ-overlay for all
clusters that have been detected at more than 3σ with CARMA. The images show 4.′2 × 4.′2
around the BCG. The contour levels are −4.0,−3.0,−2.5,−2.0,−1.5 and −1.0× 10−3Jy/beam.
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CHAPTER 5. OPTICAL & SZ OBSERVATIONS OF GALAXY CLUSTERS

Figure 5.13.: This figure shows the y-maps of all the clusters in our sample in Planck . The
images show a 1.25× 1.25 deg2 field around the cluster. The black circle has a 7.′5 radius and is
centred at the BCG.
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Figure 5.13.:
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Figure 5.13.:
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5.E. RESULTS FROM PLANCK DATA

Figure 5.13.:
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CHAPTER 6

A new Estimator for
Galaxy-Matter Correlations

This chapter is based on an analysis of data from RCSLenS and BOSS and is soon to be submitted
to a journal. As RCSLenS uses a blinding scheme in order to prevent confirmation bias, the
catalogues contain four different columns with galaxy ellipticities, from which only one is the
true measured one (the procedure will be explained in more detail in this chapter). When I
submitted this thesis, the manuscript for this paper was almost in its final form, but not quite.
This is why the results still include information from all four ellipticity columns, and not only
the single true one, which will only be revealed once the whole manuscript is finalised.

6.1. Introduction

Since the discovery of the accelerated expansion of the universe using supernovae in 1998 and 1999
(Riess et al. 1998; Perlmutter et al. 1999), the origin and nature of dark energy remains unknown.
Several possible explanations like a cosmological constant, quintessence, or a modification of
gravity on cosmological scales have been suggested. Although the accelerated expansion was
confirmed by other cosmological probes like CMB experiments (Hinshaw et al. 2013; Planck
Collaboration et al. 2015), weak gravitational lensing (Schrabback et al. 2010; Heymans et al.
2013), galaxy clusters (Vikhlinin et al. 2009; Mantz et al. 2014), or baryonic acoustic oscillations
(BAO, Blake et al. 2012; Sánchez et al. 2013), the statistical power of these probes so far remains
insufficient to reveal the true nature of dark energy. Statistical precision sufficient to distinguish
a cosmological constant from a more dynamical nature of dark energy will only be reached by the
next generation of cosmology experiments, like Euclid (Laureijs et al., 2011), the LSST (Ivezic
et al., 2008), or WFIRST (Spergel et al., 2015). For this purpose, the Euclid satellite will not

105



6.1. INTRODUCTION

only map the whole extragalactic sky in the optical and the near-infrared, but it will also take
near-infrared spectra of about 50 million galaxies up to a redshift of z = 2. Using this vast
data set, the Euclid consortium will measure the geometry of the Universe using both baryonic
acoustic oscillations and cosmic shear.

Cosmic shear is the distortion of light bundles from distant sources caused by the intervening
tidal gravitational field, caused by the large-scale matter distribution in the Universe, which is
measured from the auto-correlation of galaxy shapes (e.g. Bacon, Refregier & Ellis 2000; Van
Waerbeke et al. 2001; Hoekstra et al. 2002b; see Bartelmann & Schneider 2001 for a review).
The gravitational lensing signal in the galaxy shapes contributes only a few per cent of the whole
galaxy ellipticities; furthermore, these galaxies are intrinsically small, typically smaller than the
point-spread function of ground-based observations, and correspondingly are measured only on a
very limited number of pixels on CCD detectors. Correcting for PSF effects and pixelisation still
poses a great challenge to the astronomical community (e.g. Kitching et al. 2012; Mandelbaum
et al. 2015). Due to these technical difficulties, it is important to have multiple independent weak
lensing probes to map the density field in our Universe. A particularly promising approach is to
combine information from galaxy auto-correlations (e.g. Blake et al. 2012; Sánchez et al. 2013)
and galaxy-matter correlations (e.g. van Uitert et al. 2011; van Uitert et al. 2012; Velander
et al. 2014). Much effort has been put into developing new theoretical frameworks for these
measurements (e.g. Leauthaud et al. 2011; Eriksen & Gaztanaga 2014; Coupon et al. 2015).

A further challenge in relating observed signals to theoretical predictions stems from the diffi-
culty to understand baryonic physics, like cooling, star formation, and feedback, which affects the
statistical properties of the large-scale structure on small scales. Motivated by that, a particularly
interesting approach was suggested by Baldauf et al. (2010), henceforth B10, who introduced a
new estimator Υ for clustering and lensing, which ignores all small-scale contributions to the
signals. This was successfully applied to data from the SDSS by Mandelbaum et al. (2013). This
new estimator can be used to constrain cosmological parameters as well as the bias between
galaxies and the dark matter distribution (Kaiser, 1984).

In this work we will show that the Υ statistic is a special case of the aperture mass formalism
(Schneider 1996; Schneider et al. 1998). Using this information, we generalise the B10 approach;
in particular, we define a complete set of estimators for a given range of scales which all are
‘blind’ to the correlation functions below a predescribed threshold. We expect that the first few
elements of this discrete set contain all the relevant information, which thus leads to a substantial
data compression and a much lower dimensional covariance, similar to the COSEBIs for cosmic
shear (Schneider, Eifler & Krause, 2010).

As a proof of concept, in this paper we fix the cosmology and use the new estimators to measure
the bias of a particular galaxy sample. For this study, we use as lenses the galaxies from the
Baryon Oscillations Spectroscopic Survey (BOSS) LOWZ sample (Eisenstein et al., 2011) and
as sources photometrically selected background galaxies from the Red Cluster Sequence Lensing
Survey (RCSLenS1; Hildebrandt et al. in prep.). In order to create the corresponding covariance
matrix, we use mock catalogues, that were initially designed for Choi et al. (in prep.) and are
based on the simulations by Harnois-Deraps & van Waerbeke (2015).

1www.rcslens.org
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CHAPTER 6. GALAXY-MATTER CORRELATIONS

In Sect. 6.2, we introduce the B10 method, our generalisation, and the approach to measure
the galaxy bias. Section 6.3 describes the data analysis, and in Section 6.4, we give a detailed
discussion. As the fiducial cosmology, we use a flat ΛCDM cosmology constrained by Planck with
H0 = 67.74 km s−1Mpc−1, Ωm,0 = 0.3089, ΩΛ,0 = 0.6911, and σ8 = 0.8159 (Planck Collaboration
et al., 2015). For testing the sensitivity of our results with respect to cosmological parameters, we
also use the cosmology obtained in Heymans et al. (2013): H0 = 73.8km s−1Mpc−1, Ωm,0 = 0.271,
ΩΛ,0 = 0.729, and σ8 = 0.799.

6.2. Method

6.2.1. The Υ statistics interpreted as Map

In B10 two new estimators were introduced, one in terms of the projected galaxy correlation
function ωp, and one in terms of the differential surface mass density ∆Σ around galaxies, as
measured from the tangential shear component γt. Those estimators are being simultaneously
analysed in order to recover information about the dark matter distribution. In this chapter, we
will generalise these estimators, but instead of ωp and ∆Σ we will use the angular correlation
function ω(ϑ) and the tangential shear γt(ϑ) around (foreground) galaxies. These quantities
can be obtained from large photometric lensing surveys for which no spectroscopic redshift in-
formation is available. When using only photometric redshifts, measuring ωp is not sensible.
Nevertheless, for this proof of concept study, we will later make use of a spectroscopically se-
lected galaxy sample, because current photometric surveys still are very heterogeneous in terms
of photometry. This introduces systematics in the clustering measurement, which will change
with future surveys.

The estimator introduced by B10 in case of the tangential shear γt is2

Υ̂(ϑ, ϑmin) = γt(ϑ)−
(
ϑmin

ϑ

)2

γt(ϑmin) , (6.1)

where ϑmin is the scale below which small-scale information is suppressed. There are two features
in the definition of Υ̂(ϑ, ϑmin) which require attention. First, it is a continuous function of the
scale ϑ; in any analysis, this angular scale needs to be discretised when comparing measurements
with theoretical predictions, and it is unclear how this discretisation is optimised, as a balance
between enough points to include all relevant cosmological information on the one hand, and
to limit the number of points for manageable sizes of covariances on the other hand. A second
feature is the occurrence of γt(ϑmin) for every ϑ in Υ̂, which means that any uncertainty in this
quantity will affect Υ̂(ϑ, ϑmin) at all scales ϑ in a similar way. Furthermore, as the tangential
shear at a fixed angular separation cannot be measured, but must be averaged over a finite
interval, this can introduce systematics in the measurement of γt(ϑmin), and thus the Υ̂(ϑ, ϑmin).
In fact, Mandelbaum et al. (2013) determined γt(ϑmin) by a power-law fit of the tangential shear
(more precisely, of ∆Σ) over a finite interval bracketing both sides of the minimum scale.

2As mentioned before, B10 actually define Υ in terms of ∆Σ. To be consistent throughout the paper, we use γt.
Thus we denote the B10 statistics in terms of γt as Υ̂.
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Here we address both issues, by first relating the Υ̂-statistic to the aperture mass (Schneider,
1996), which is defined as

Map =

∫ φmax

φmin

dφ φ U(φ) κ(φ) , (6.2)

where κ(φ) is the convergence, azimuthally averaged over polar angle and over the foreground
galaxy population, U is a compensated filter function, i.e.,∫ φmax

φmin

dφ φ U(φ) = 0 ; (6.3)

and φmin and φmax the inner and outer scales on which the weight function is non-zero. The
aperture mass can be expressed in terms of the azimuthally averaged tangential shear γt, yielding

Map =

∫ φmax

φmin

dφ φQ(φ) γt(φ) , (6.4)

where Q is related to U via

Q(φ) =
2

φ2

∫ φ

0

dφ′ φ′ U(φ′)− U(φ) . (6.5)

For every value of ϑ we can interpret Υ̂ as an aperture mass. Indeed, comparing Eq. (6.4) with
Eq. (6.1), we see immediately that Υ̂(ϑ, ϑmin) is a special case of Map if we set φmin = ϑmin,
φmax = ϑ, and

Q(φ) = +
1

φ
δD(φ− ϑ)− ϑmin

ϑ2
δD(φ− ϑmin) , (6.6)

where δD is the Dirac delta function. Inverting Eq. (6.5), we find

U(φ) = −Q(φ) + 2

∫ ∞
φ

dφ′
Q(φ′)

φ′
, (6.7)

which yields

U(φ) = − 1

φ
δD(φ− ϑ) +

ϑmin

ϑ2
δD(φ− ϑmin) +

2

ϑ2
[H(ϑ− φ)−H(ϑmin − φ)] , (6.8)

where H is the Heaviside step function. This equation shows that the Υ̂-statistics is indeed
insensitive to κ(ϑ) on scales ϑ < ϑmin, and thus allows the exclusion of small scales where
theoretical predictions are believed to be uncertain.

6.2.2. Measuring Υ by using a set of orthogonal functions

The filter functions U and Q of the aperture mass depend on the scale ϑ of Υ̂. Instead of using a
continuum of scales ϑ, we can define a complete set of compensated filter functions Un over the
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range of scales ϑmin ≤ ϑ ≤ ϑmax, i.e., each filter function satisfies∫ ϑmax

ϑmin

dϑ ϑ Un(ϑ) = 0 . (6.9)

The completeness ensures that the corresponding set of aperture masses contains the full in-
formation contained in Υ̂(ϑ, ϑmin) for ϑmin ≤ ϑ ≤ ϑmax. In fact, we expect that most of the
information is included in only the first few elements of this set, whereas the remaining ones
contain essentially only noise. Working with a few numbers, instead of a continuous function,
will ease the analysis, in particular the generation of covariances, due to the associated data
compression, while keeping the essential features of Υ̂, i.e., suppression of small-scale influence.
We choose the filter functions to be orthogonal, i.e.,∫ ϑmax

ϑmin

dϑ Un(ϑ) Um(ϑ) = 0 for m 6= n . (6.10)

The Legendre polynomials Pn form a complete orthogonal set of functions on [−1, 1], which we
can use to find a set of suitable filter functions. For this to work we define the transformation
used in Schneider, Eifler & Krause (2010)

x =
2(ϑ− ϑ̄)

∆ϑ
, (6.11)

with ∆ϑ = ϑmax−ϑmin, ϑ̄ = (ϑmin+ϑmax)/2 and dϑ = ∆ϑ
2 dx. This maps the interval [ϑmin, ϑmax]

onto [−1, 1]. Setting

Un(ϑ) =
1

(∆ϑ)2
un

(
2(ϑ− ϑ̄)

∆ϑ

)
, (6.12)

this transforms the compensation and orthogonality conditions into∫ 1

−1

dx

(
x∆ϑ

2
+ ϑ̄

)
un(x) = 0 (6.13)

and ∫ 1

−1

dx un(x) um(x) = δnm , (6.14)

where in the latter case we fixed the normalisation of the filter functions. The Legendre polyno-
mials can be defined via the recurrence relation

Pn+1(x) =
1

n+ 1
[(2n+ 1) x Pn(x)− n Pn−1(x)] , (6.15)

with P0(x) = 1 and P1(x) = x. We will first try to find dimensionless filters un(x) which are
proportional to the Pn(x); these can then be transformed into the Un(ϑ) according to Eq. (6.12).
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The first function to fulfil our two conditions is a first-order polynomial of the form u1(x) =
a1x+ a0, where the two coefficients ai are determined from the two conditions, to yield

u1(x) =
3Gx− 1√
2(1 + 3G2)

, (6.16)

where we defined G = 2ϑ̄/∆ϑ. Since ∫ 1

−1

dx Pn(x) xm = 0 (6.17)

for m < n and because the Legendre polynomials are orthogonal we can choose for n ≥ 2 the
filter functions

un(x) =

√
2n+ 1

2
Pn(x)H(1− x2) , (6.18)

which has the correct normalisation, and we explicitly included the finite interval of support for
the un. Using Eq. (6.12), we then find

Un(ϑ) =
1

(∆ϑ)2
un(x) =

1

(∆ϑ)2

√
2n+ 1

2
Pn
(

2(ϑ− ϑ̄)

∆ϑ

)
H(ϑ− ϑmin)H(ϑmax − ϑ) , (6.19)

for n ≥ 2 and

U1(ϑ) =
1

(∆ϑ)2

3G
(

2(ϑ−ϑ̄)
∆ϑ

)
− 1√

2(1 + 3G2)
H(ϑ− ϑmin)H(ϑmax − ϑ) . (6.20)

The Qn(ϑ) follow immediately as

Qn(ϑ) =
2

ϑ2

∫ ϑ

0

dϑ′ ϑ′ Un(ϑ′)− Un(ϑ) . (6.21)

The final estimators for galaxy-galaxy lensing then become

Υgm(n) =

∫ ϑmax

ϑmin

dϑ ϑ Qn(ϑ) γt(ϑ) . (6.22)

Since we want to compare the clustering of galaxies with the galaxy-galaxy lensing signal, to
learn about the biasing of galaxies and the correlation coefficient between the galaxies and the
underlying matter distribution, we define integrals of the galaxy angular correlation function
that have the same angular dependence as the filter functions for the convergence κ, i.e.,

Υgg(n) =

∫ ϑmax

ϑmin

dϑ ϑ Un(ϑ) ω(ϑ) . (6.23)

Note that the clustering signal will be measured using the lens sample from galaxy-galaxy lensing
in order to probe the same density field. During our analysis we will make use of only the first
three orders of the filter functions; for our dataset, those should contain all relevant information.
The corresponding filter functions for ϑmin = 3 arcmin and ϑmax = 20 arcmin are displayed in
Fig. 6.1 and Fig. 6.2.
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Figure 6.1.: Filter functions Un(ϑ) for clustering for ϑmin = 3 arcmin and ϑmax = 20 arcmin.

Figure 6.2.: Filter functions Qn(ϑ) for lensing for ϑmin = 3 arcmin and ϑmax = 20 arcmin.
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6.2.3. Connecting observables to theory

In order to constrain cosmological parameters or to measure the bias factor, we need to know
how the observables Υij(n) are connected to well predictable theoretical quantities like the three
dimensional dark matter power spectrum P3D(k,w), where k is the comoving wavenumber and
w the comoving distance, characterising the cosmic epoch. This is now shown for the case where
the lens sample has a rather broad redshift distribution as for increasingly small distributions
the following approximation diverges and is not valid any more.

The angular correlation function of galaxies is related to P3D through (Hoekstra et al., 2002a)

ω(ϑ) =
1

2π

∫
dw

(
plw(w)

fk(w)

)2 ∫
d` ` b̂2(`, z)P3D

(
`

fk(w)
;w

)
J0(`ϑ) , (6.24)

where b̂(`, z) is the galaxy bias as a function of angular wave number ` and redshift z, w the
comoving distance, fk(w) the comoving angular diameter distance, plw(w) the lens probability
distribution in terms of w, and J0 the zeroth-order Bessel function of the first kind. Changing
the order of integration and replacing the probability distribution with respect to w, plw(w), by
the observable redshift distribution, using plz(z)dz = plw(w)dw, yields

ω(ϑ) =
1

2π

∫
d` ` J0(`ϑ)

∫
dw

(
plz(z)

fk(w)

)2(
dz

dw

)2

b̂2(`, z)P3D

(
`

fk(w)
;w

)
, (6.25)

with
dz

dw
=
H0

√
(1 + z)2(1 + zΩm,0)− z(2 + z)ΩΛ

c
.

By inserting Eq. (6.25) into Eq. (6.23), we obtain an expression for Υgg(n), which depends
quadratically on the galaxy bias

Υgg(n) =
b2

2π

∫ ϑmax

ϑmin

dϑ ϑ Un(ϑ) (6.26)

×
∫

d` ` J0(`ϑ)

∫
dw

(
plz(z)

fk(w)

)2(
dz

dw

)2

P3D

(
`

fk(w)
;w

)
.

Here we defined b as a weighted average of the bias b̂(`, z) over ` and z, where the weight is given
by the factors in the integrals in Eq. (6.25). We point out that b still depends on the order
n (due to the dependence of the angular weight function Un on ϑ), which we do not write out
explicitly3. The connection between P3D and γt(ϑ) has been shown to be (Kaiser 1992; Guzik
& Seljak 2001)

γt(ϑ) =
3 Ωm,0

4π

(
H0

c

)2 ∫
dw

g(w)plw(w)

a(w)fk(w)

∫
d` ` b̂(`, z) r̂(`, z)P3D

(
`

fk(w)
;w

)
J2(`ϑ) , (6.27)

3When constraining b later on, we will actually constrain an average over n, `, and z
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where r̂ is the cross-correlation coefficient, a(w) the cosmic scale factor, and g(w) is the mean of
angular diameter distances (e.g., Hoekstra et al., 2002a)

g(w) =

∫ wH

w

dw′ psw(w′)
fk(w′ − w)

fk(w′)
, (6.28)

where psw(w) is the source distance probability distribution in terms of w. Again, by changing the
order of integration, inserting the redshift probability distribution and inserting it into Eq. (6.22),
one finds

Υgm(n) =
3 Ωm,0

4π

(
H0

c

)2

b r

∫ ϑmax

ϑmin

dϑ ϑ Qn(ϑ) (6.29)

×
∫

d` ` J2(`ϑ)

∫
dw

g(w)plz(z)

a(w)fk(w)

dz

dw
P3D

(
`

fk(w)
;w

)
.

As before, we use the weighted average of b̂ and r̂ over `, z and ϑ. When measuring Υgm(n) and
Υgg(n) from the data, we can simultaneously fit the models to both signals. In this way we can
either

1. fix the cosmology and constrain b and r,

2. fix b and r and constrain the cosmology,

3. or constrain b, r, and the cosmology simultaneously.

The latter is possible by combining galaxy clustering and galaxy-galaxy lensing with a cosmic
shear signal, weighted by the same kernel functions Un(ϑ). Since the scope of this work is to proof
the concept we will use a fixed cosmology and constrain the galaxy bias b and the cross-correlation
coefficient r.

6.3. Data Analysis

We keep the cosmology fixed and measure only the galaxy bias b and the cross-correlation
coefficient r using the BOSS LOWZ sample as lenses and photometrically selected galaxies in
the RCSLenS as sources.

6.3.1. Data sets

BOSS LOWZ

As lenses we use galaxies from BOSS (Eisenstein et al., 2011), namely the 10th Data Release
(Ahn et al., 2014), which have measured spectroscopic redshifts. Of those galaxies we use only
the LOWZ sample that consists of luminous red galaxies, photometrically selected to have 0.2 .
z . 0.4, which resulted in selecting also galaxies that have a slightly higher or lower spectroscopic
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redshift. Following the studies by Chuang et al. (2013) and Sánchez et al. (2013), we cut the
LOWZ sample with 0.15 ≤ z ≤ 0.43. This yields 9102 galaxies within the RCSLenS area from
which we select the sources. For the lensing measurements we only use the BOSS galaxies that lie
within the BOSS-RCSLenS overlap; however, for the clustering measurement, the whole LOWZ
sample is used, which is spread over a much larger area and consists of 218 891 galaxies. In
this way we can make use of the much better statistics arising from the larger sample. We will
show in Section 6.3.4 that the signals measured for both samples are consistent with each other,
which is why this is a valid approach. The BOSS and RCSLenS overlapping area is shown in
Fig. 6.3. The summed plz(z) derived from spectroscopic redshifts of the lenses can be seen in
Fig. 6.4. For the clustering measurements we make use of the weights, Θ, provided by the BOSS
collaboration, which account for fibre collisions as explained in Anderson et al. (2014).

RCSLenS

RCSLenS (Hildebrandt et al. in prep.) is an analysis of the original Red Cluster Sequence
Survey 2 data (RCS2; Gilbank et al. 2011) using the CFHTLenS pipeline (Hildebrandt et al.
2012; Heymans et al. 2012; Miller et al. 2013; Erben et al. 2013) for reducing the data and
creating shape and photometry catalogues. The survey has been carried out using Megacam at
CFHT and has only one exposure per band per pointing. It covers roughly 500 deg2 in the g′-,
r′-, i′- and z′-band and an additional 250 deg2 with three or fewer band coverage. The r′-band is
used as the lensing band with a 5σ point source limiting magnitude of mlim = 24.3 and a median
seeing of 0.71 arcsec (Gilbank et al., 2011). Galaxy shapes are measured using lensfit (Miller
et al., 2013). As described in Blake et al. (2015), we use the lensfit weights η and the BOSS
weights Θ for the lensing analysis. We take both weights in order to use the same weighting
scheme in the lensing as well as in the clustering analysis. For selecting source galaxies, we only
use the six RCSLenS patches that have four band photometry and sufficient overlap with BOSS.
Those are CDE0133, CDE0047, CDE1645, CDE2329, CDE1514, and CDE2143. This leaves us
with about 230 deg2 in area and 3.288.686 source galaxies. As sources we select all galaxies with
a lensfit weight η > 0 that are between r′ = 19 and r′ = 24. The BPZ (Beńıtez, 2000) estimate
of the summed psz(z) of the sources is displayed in Fig. 6.4. In order to find the the summed
psz(z), we add up all individual psz(z) estimates of the source galaxies and renormalise.

Furthermore, we are aware that the shear measurements for RCSLenS suffer from a multi-
plicative as well as an additive bias so that

eobs = (1 +m)etrue + c , (6.30)

as explained for example in Miller et al. (2013). Here eobs is the observed ellipticity of a galaxy
image, etrue the intrinsic ellipticity, 1 + m the correction factor for the multiplicative bias (m-
correction), and c is the correction for the additive bias (c-correction). We correct the measured
shapes of galaxies for the multiplicative bias using the factor (1+m) determined for every galaxy
(for more details see e.g. Heymans et al. 2012 or Hildebrandt et al. in prep.). We apply the m
correction as an ensemble correction in order to avoid correlations between the correction and
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the intrinsic shape of the galaxy (Miller et al., 2013)

〈γcal
t (ϑ)〉 =

〈γt(ϑ)〉
1 +K(ϑ)

, (6.31)

where

1 +K(ϑ) =

∑
ηiΘj(1 +mi)∑

ηiΘj
. (6.32)

Here ηi denotes the lensfit weight of the ith source galaxy and Θj the BOSS weight of the jth
lens galaxy. We do not apply an additive c-correction but subtract the γt signal around random
points. The number of random points used depends on the patch size and differs between
∼ 100 000 and ∼ 180 000. The measured signal around random points is consistent with zero on
scales below 30 − 40 arcmin and rises out to larger scales, where for ϑ > 70 arcmin it can reach
an amplitude of a few times 10−4 for some patches. We subtract this signal for every patch
separately as it would average out when combined from all patches. The signals are shown in
Fig. 6.5. The patch with the strongest random signal is CDE0133, which is the smallest in area
and thus contributes the least to the total signal. We note that it is not possible to judge if this
will influence cosmic shear measurements on this data set, as such studies will make use of the
c-correction, which should ideally account for these systematics. For the weighted average source
density we find ∼ 3.12 galaxies/arcmin2 when using

neff =
1

Aeff

(
∑
ηi)

2∑
(ηi)2

, (6.33)

as defined in Heymans et al. (2012), where Aeff = 229.55 deg2 is the total unmasked area. We
use this definition to account for the fact that we use the lensfit weight in the analysis. The
RCSLenS catalogues are also subject to a blinding scheme. In order to avoid confirmation bias,
the galaxy ellipticities exist in four versions A, B, C, and D. One of them is the true measured
one, whereas the rest have been changed by a small factor as described in Hildebrandt et al. (in
prep.) and Kuijken et al. (2015). This analysis has been performed four times using the different
ellipticity versions. After the manuscript will be finalised, we will contact Mathias Bartelmann,
the external blinder, who will reveal which catalogue is the true one. We will then use the
results of the true measured ellipticities only. After “unblinding”, no changes can be applied
to the analysis. As we did not “unblind” ourselves already, we will present the results of this
analysis for all four columns but only show the plots for the first one. For more information
about RCSLenS and the data production process, we refer to Hildebrandt et al. (in prep.).

6.3.2. Mock catalogues

In order to find the covariance of the Υs, we make use of the simulations described in Harnois-
Deraps & van Waerbeke (2015). Those have box sizes of 505h−1Mpc, 15363 particles each and
are on 30723 grids, which are projected onto 122882 pixels. The light cones are then extracted
from those onto 60002 pixels grids. The cosmology used is Ωm,0 = 0.2905, ΩΛ,0 = 0.7095,
σ8 = 0.826, and H0 = 68.98 km s−1Mpc−1. The slight difference to the cosmologies we use will
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Figure 6.3.: RCSLenS patches that were used, and the galaxies from BOSS. The RCSLenS
patches are non-contiguous because of the lack of four-band data, which is needed for photometric
redshifts.

Figure 6.4.: plz(z) of lenses (blue) and psz(z) of sources (red). For the lenses we use the spectro-
scopic redshifts to estimate plz(z), whereas for the sources we make use of the stacked full p(z)
of every source galaxy, which is estimated by the photometric redshift code.
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Figure 6.5.: We show the lensing signal around random points. The coloured lines show the signal
for every patch, whereas the black dashed line shows the average. Furthermore, we display the
measured signal of γt around BOSS LOWZ galaxies as the solid black line. The strongest signal
corresponds to CDE0133, which is the smallest patch in the area we use, and thus it has the
smallest impact on the total signal.

introduce a small systematic error in the covariance, which we will neglect in this study, where
very high statistical precision is not the main goal.

Based on these simulations, we use a set of mock catalogues initially created for Choi et
al. (in prep.) to match the properties of the RCSLenS sources and the BOSS LOWZ lenses.
They specifically match the ellipticity and redshift distributions of RCSLenS and the clustering
properties of the LOWZ sample. Those mocks are each 60 deg2 big. Using six of the mocks,
we can create one mock survey, assuming that each of the six RCSLenS patches fits within
the 60 deg2. Whenever the patches are too big, we use as much area as possible and scale
the covariance accordingly by using the ratio of the area of the mock patch and the real patch.
Furthermore, for the covariance estimation we are forced to use only the BOSS-RCSLenS overlap
for the measurements of the clustering signal, whereas for the data we use the whole BOSS area.
In order to account for this we rescale the clustering part of the covariance with the ratio of the
two areas. Additionally, we set the cross-covariance part to 0, as the BOSS-RCSLenS overlap is
just a small fraction of the whole BOSS area. This has been shown to be a valid approach by More
et al. (2015), who conduct similar measurements with BOSS and the CFHTLenS catalogues. In
the end we have 60 mock surveys, to which we apply the same masks as for the data set. For
this we neglect that the mocks assume a flat sky, whereas the original survey data was observed
on a sphere. Given the small extend of each patch, the resulting differences are clearly negligible
compared to the statistical error of our measurements.
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Figure 6.6.: left: We present the measured parameter values as a function of the number of used
Υ-orders n for b and r. No significant difference in the values is visible, from which we conclude
that the data compression is indeed working and only a few orders contain all information of the
measured signals. right: This graphic shows the parameter uncertainty in per cent for b and r,
again as a function of the used number of n. Here, we also do not find a significant difference,
which again shows that the data compression of the Υ(n) is working.

6.3.3. Measuring two-point correlations

Before we can determine the Υij(n), we first need to measure the corresponding galaxy-galaxy
lensing and galaxy clustering signals. We measure those in two intervals

1. 3′ ≤ ϑ ≤ 20′,

2. 20′ ≤ ϑ ≤ 70′

in 200 linear bins. As a cross-check we also determine these signals for a larger angular scale in
larger logarithmic bins. The 200 linear bins will later be used for determining the Υ. For ω(ϑ)
we use the Landy-Szalay estimator (Landy & Szalay, 1993).

6.3.4. Υgm(n) and Υgg(n)

We use γt(ϑ) and ω(ϑ) measured in the 200 linear bins and integrate them using Eq. (6.22) and
Eq. (6.23) in order to find Υgm(n) and Υgg(n). Here we only compute the first three orders. At
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Figure 6.7.: In the top panels, we present the measured Υgm and Υgg and the best fit using
a Planck cosmology or the CFHTLenS cosmology. The dark blue and magenta lines are the
connections between the predicted data points using the Planck or the CFHTLenS cosmology.
In the bottom panels we show the residuals (Υobs −Υmodel)/∆Υobs. left: Measurements for the
3− 20 arcmin interval. right: Measurements for the 20− 70 arcmin interval.
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Table 6.1.: Parameter estimates for galaxy bias b and cross-correlation coefficient r for the first
ellipticity column. In case of the full sample, the second column indicates the cosmology used.
For the samples used in Section 6.3.5, it indicates which subsample was used.

scale b r

3′ − 20′ Planck 2.47+0.06
−0.06 1.37+0.15

−0.16

3′ − 20′ CFHTLenS 2.36+0.06
−0.05 1.48+0.17

−0.17

20′ − 70′ Planck 2.37+0.08
−0.08 1.04+0.25

−0.25

20′ − 70′ CFHTLenS 2.25+0.07
−0.08 1.12+0.26

−0.27

3′ − 20′ 0.15 < z < 0.3 2.69+0.06
−0.06 1.39+0.21

−0.20

3′ − 20′ 0.3 < z < 0.45 2.63+0.08
−0.08 1.11+0.19

−0.19

the end of our analysis, we tested how the parameter constraints on b and r changed with the
number of Υ orders used. We found no significant difference for up to 5 orders and decided to use
3 orders, which yields a sufficient number of data points for our analysis and still benefits from
a low-dimensional covariance. The fact that we do not find a decrease of parameter uncertainty
with increasing number of orders shows that the first few orders indeed contain all the relevant
information, as anticipated before (see Fig. 6.6 for more details). The measured data points for
both angular intervals are presented in Fig. 6.7. From the 60 mock realisations, we compute the
Υgm and Υgg covariance matrix by measuring the signals on each mock survey while taking into
account the correction factor from Hartlap, Simon & Schneider (2007). The correlation matrices
for all measurements are shown in Fig. 6.8. Additionally, we show the mean signals for γt and
ω measured in the mocks together with the real data in Fig. 6.9. The covariance matrix is then
used for a maximum likelihood analysis, in which we simultaneously fit theoretical predictions
to Υgm and Υgg with the galaxy bias b and the cross-correlation coefficient r as free parameters.
We compute the predictions from Eq. (6.26) and Eq. (6.29) using the 3D matter power spectrum
computed with nicaea (Kilbinger et al., 2009), which uses the recipe from Smith et al. (2003).
The resulting likelihood contours are displayed in Fig. 6.10. We perform this fit twice using the
Planck cosmology as well as the one from CFHTLenS, constrained in Heymans et al. (2013), to
test for the dependence of the parameters on different cosmologies. The results are presented
in Tables 6.1, 6.2, 6.3, and 6.4. For the maximum likelihood analysis we assume a Gaussian
likelihood function.

The estimated values for b are slightly higher compared to the findings by Parejko et al. (2013),
who determine the bias by fitting their projected clustering signal to HOD populated N -body
simulations. Using their best fit model and the corresponding simulations they predict the bias
for the LOWZ sample as a function of physical scale. For 3 Mpc, which corresponds to about
11 arcmin at a redshift of 0.3, this corresponds to a bias of about ∼ 2.2, whereas for 12 Mpc
(∼ 45 arcmin) it corresponds to a bias of ∼ 2.1. The discrepancy can for example be explained
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Table 6.2.: Parameter estimates for galaxy bias b and cross-correlation coefficient r for the second
ellipticity column. In case of the full sample, the second column indicates the cosmology used.
For the samples used in Section 6.3.5, it indicates which subsample was used.

scale b r

3′ − 20′ Planck 2.47+0.06
−0.06 1.55+0.16

−0.16

3′ − 20′ CFHTLenS 2.36+0.06
−0.05 1.68+0.17

−0.17

20′ − 70′ Planck 2.37+0.08
−0.08 1.17+0.25

−0.24

20′ − 70′ CFHTLenS 2.25+0.07
−0.08 1.26+0.27

−0.27

3′ − 20′ 0.15 < z < 0.3 2.69+0.06
−0.06 1.58+0.20

−0.20

3′ − 20′ 0.3 < z < 0.45 2.63+0.08
−0.08 1.26+0.19

−0.19

Table 6.3.: Parameter estimates for galaxy bias b and cross-correlation coefficient r for the third
ellipticity column. In case of the full sample, the second column indicates the cosmology used.
For the samples used in Section 6.3.5, it indicates which subsample was used.

scale b r

3′ − 20′ Planck 2.47+0.06
−0.06 1.42+0.16

−0.16

3′ − 20′ CFHTLenS 2.36+0.06
−0.05 1.53+0.17

−0.17

20′ − 70′ Planck 2.37+0.08
−0.08 1.08+0.25

−0.25

20′ − 70′ CFHTLenS 2.25+0.07
−0.08 1.16+0.27

−0.27

3′ − 20′ 0.15 < z < 0.3 2.69+0.06
−0.06 1.45+0.20

−0.20

3′ − 20′ 0.3 < z < 0.45 2.63+0.08
−0.08 1.15+0.19

−0.19
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Table 6.4.: Parameter estimates for galaxy bias b and cross-correlation coefficient r for the fourth
ellipticity column. In case of the full sample, the second column indicates the cosmology used.
For the samples used in Section 6.3.5, it indicates which subsample was used.

scale b r

3′ − 20′ Planck 2.47+0.06
−0.06 1.60+0.16

−0.16

3′ − 20′ CFHTLenS 2.36+0.06
−0.05 1.73+0.17

−0.17

20′ − 70′ Planck 2.37+0.08
−0.08 1.21+0.25

−0.25

20′ − 70′ CFHTLenS 2.25+0.07
−0.08 1.30+0.27

−0.27

3′ − 20′ 0.15 < z < 0.3 2.69+0.06
−0.06 1.63+0.20

−0.20

3′ − 20′ 0.3 < z < 0.45 2.64+0.08
−0.08 1.30+0.19

−0.19

by our approach of averaging over ` and z and the corresponding weight functions or by the
strong difference in the two approaches of finding the bias. We would also expect r to be closer
to unity on the smaller scales interval, where for both cosmologies it is about 3σ away from unity.
On large scales, however, we find r to be close to unity. One should note that a measured r > 1
is possible, as has been discussed in B10. The values measured for different cosmologies differ
by a few percent which is smaller than the parameter uncertainties from statistical error.

In Fig. 6.11 we show the measured signals for γt(ϑ) and ω(ϑ) for the whole sample as well
as the two sub-samples from Section 6.3.5. We also scale the expected signals for both with the
constrained values of b and r. Apparently, the data is consistent with constant values of b and r
and the values for both parameters obtained from the fit to the Υs is consistent with the signals
of the traditional correlation functions γt(ϑ) and ω(ϑ).

6.3.5. Sanity check: splitting up the LOWZ sample

As a sanity check we split up the lens sample in two sub-samples with 0.15 < z < 0.3 and
0.3 < z < 0.43. We then make the same measurements as before using the Planck cosmology
and the ϑ ∈ [3′, 20′] interval. This yields two new estimates for b and for r. They are shown
in Tables 6.1, 6.2, 6.3, and 6.4. The measured correlation functions are displayed in Fig. 6.11
and the likelihood contours in Fig. 6.10. We find that r becomes smaller for the higher redshift
sample. We point out that all these differences are not statistically significant as all estimates
are only a few σ away from each other. The measurements of the two sub-samples are consistent
with all other measurements within a few σ.
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CHAPTER 6. GALAXY-MATTER CORRELATIONS

Figure 6.8.: We present the correlation matrices for Υgm and Υgg for all measurements. The top
left part of the matrices corresponds to galaxy-galaxy lensing, the bottom right to galaxy cluster-
ing. The rest are cross-covariance, which we set to 0 as the area for the lensing measurement is
only a small fraction of the clustering area, which makes those measurements basically indepen-
dent. In the order left to right, top to bottom we show the matrix for the 3− 20 arcmin interval
and the Planck cosmology, the 20−70 arcmin interval and the Planck cosmology, the 3−20 arcmin
interval and the CFHTLenS cosmology, the 20− 70 arcmin interval and the CFHTLenS cosmol-
ogy, the 3−20 arcmin interval and the 0.15 < z < 0.3 sample, and the 3−20 arcmin interval and
the 0.3 < z < 0.45 sample.

123



6.3. DATA ANALYSIS

Figure 6.9.: Galaxy clustering and galaxy-galaxy lensing signals in the mocks. The black lines
show the mean; spread is indicated by the blue and yellow shaded regions. We also show the
measurement from the data as the blue and pink points. They are in good agreement with
the mocks. Additionally, the clustering signal measured just for the BOSS-RCSLenS overlap is
displayed as the green points. This is consistent with the signal from the whole LOWZ sample.
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CHAPTER 6. GALAXY-MATTER CORRELATIONS

Figure 6.10.: We present the likelihood contours of the different measurements. The black ellipse,
if shown, is the 1σ contour of the corresponding measurement with the Planck cosmology. top
left: 1-, 2- and 3-σ likelihood contours of b and r of the fit to the Υgm and Υgg for the 3−20 arcmin
interval. We also show the marginalised likelihoods of b and r. top right: Likelihood contours for
the 20 − 70 arcmin interval. middle left: Likelihood contours for the 3 − 20 arcmin interval and
the Heymans et al. (2013) cosmology. middle right: Likelihood contours for the 20 − 70 arcmin
interval and the Heymans et al. (2013) cosmology. bottom left: Likelihood contours for the
3 − 20 arcmin interval, the Planck cosmology and the 0.15 < z < 0.3 sample. bottom right:
Likelihood contours for the 3− 20 arcmin interval, the Planck cosmology and the 0.3 < z < 0.43
sample.
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6.3. DATA ANALYSIS

Figure 6.11.: Galaxy clustering and galaxy-galaxy lensing signals and the best fit lines for the
3 − 20 arcmin interval, the Planck cosmology and the two sub samples from the sanity check,
as well as the full sample. The best fit lines were fitted to the Υs, not the signals shown here.
Within the fitting range, the estimated parameter values for b and r appear to be in excellent
agreement with the data. Furthermore, we show the cross-shear γx, which is consistent with
zero.
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6.4. Discussion & Outlook

We introduced a new estimator for galaxy-clustering, Υgg, and for galaxy-galaxy lensing, Υgm.
Those are generalisations of the methods introduced and tested in Baldauf et al. (2010) and
Mandelbaum et al. (2013), respectively. The estimators are essentially a discretisation of the
signal, which leads to great data compression and a lower dimensional covariance, while still
eliminating small scale influences. Especially, the low dimension of the data covariance makes
life easy when computing it since the number of mock realisations needed to find a good estimate
of the covariance increases with the number of data points. We applied this method to data using
the BOSS LOWZ sample as lenses and galaxies from the RCSLenS as sources. While fixing the
cosmology, we performed a simultaneous fit to Υgg and Υgm with b and r as free parameters.
For different angular scales as well as different assumed cosmologies, we find b slightly higher
than the findings of Parejko et al. (2013), which is probably caused by our estimate being an
average over many scales. On small angular scales, we find r to be considerably greater than
unity, which is not expected at these scales, where r is usually found to converge to 1. On larger
scales, however, we find r close to unity. Given already measured values for b and r, this method
can even be used for cosmological studies. In these studies, it will be necessary to find out how
many orders of Υ are sufficient to extract all cosmological information from the signal. As in this
work, it was not possible to do so as all information is already contained in the first few orders,
due to our simplified bias models. This might change in a cosmological analysis, where the data
models will increase in complexity.

All things considered, the new estimators appear to be promising tools for large-scale struc-
ture studies, especially given their advantageous abilities concerning data compression and the
dimension of the data covariance.

For this work we made use of the correlation codes athena4 and swot5 (Coupon et al., 2012).

4http://www.cosmostat.org/athena.html
5https://github.com/jcoupon/swot

127

http://www.cosmostat.org/athena.html
https://github.com/jcoupon/swot




Bibliography

Ahn C. P. et al., 2014, ApJS, 211, 17

Anderson L. et al., 2014, MNRAS, 439, 83

Bacon D. J., Refregier A. R., Ellis R. S., 2000, MNRAS, 318, 625

Baldauf T., Smith R. E., Seljak U., Mandelbaum R., 2010, Phys. Rev. D, 81, 063531

Bartelmann M., Schneider P., 2001, PhR, 340, 291
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CHAPTER 7

Conclusions & Outlook

After a proper introduction to modern cosmology, weak gravitational lensing and galaxy clusters
we investigated a few aspects of observational cosmology in this work.

In Chapter 4, we introduced the problem of CCD crosstalk in CCD cameras, which are now
used at every professional telescope in the world. This re-localisation of flux between different
pixels or even chips is a serious problem for photometric measurements. It needs to be corrected
for. We discussed the case of OmegaCAM at the VST, where several of the 32 chips interchange
flux and suggested a correction scheme. This scheme is capable of correcting the flux in most of
the pixels involved in the crosstalk interaction and flags the remaining as not usable for object
detection and subsequent measurements. The approach has been implemented by the author
and is now included in the THELI data reduction pipeline, which is part of the KiDS pipeline
described in Kuijken et al. (2015). As cameras will become even larger, more chips will be
used and consequently more electronics. The problem of crosstalk will remain and become more
important. Thus it is important to have fully developed and tested tools in place to build on for
future surveys. This is as important for the kind of crosstalk discussed in this work as well as
other kinds.

Chapter 5 is concerned with high-redshift galaxy clusters that are possibly among the most
massive in the Universe. By assuming a certain cosmology, one can predict the largest galaxy
cluster mass as a function of redshift. So by finding one ore more clusters that are more massive,
we can conduct a relatively easy cosmology test. First, however, we need to find suitable massive
cluster candidates. We conducted such a search by cross-correlating X-ray data from RASS and
optical data from the SDSS. For this we specifically searched for one or more red galaxies that
have a photometric redshift in the SDSS of 0.6 . z . 0.9 and are within 50′′ of a source from
the RASS faint source catalogue. The most promising candidates were then observed with the
LBT and the WHT in the optical and the possibly most massive or highest redshift ones with
CARMA in the radio. From the optical data we confirmed or rejected candidates and estimated
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photometric redshifts and richness and for a sub-sample also spectroscopic redshifts. Using the
Redshift information and a scaling relation we measured YSZ from the CARMA data and used
it to find M500. For the clusters that have mass estimates, we can conduct a cosmology test
suggested in Mortonson, Hu & Huterer (2011). We found no tension with ΛCDM for single
cluster masses. Furthermore, we could identify many interesting high-redshift galaxy clusters,
that for example show strong lensing features or are suspects for cool cores. For some of these
objects, weak lensing and X-ray studies are in preparation. A possible extension to this study
would be to test if the whole sample is in tension with the standard cosmology and not only
single clusters. Additionally, it is possible to run a similar search in the southern hemisphere
once the catalogues of the next generation surveys like ATLAS, KiDS, or DES are public.

After using galaxy clusters as a cosmology probe in Chapter 5, we went on to large scale
structure probes as tools in cosmology in Chapter 6. Those tools are for example two-point
correlations of different observables. An important one is the shear-shear correlation, or cosmic
shear, which can be used to recover information of the dark matter distribution. Although a
promising probe, it requires very careful data handling and can suffer from strong systematics.
Instead of using cosmic shear, we introduced new estimators for galaxy clustering and galaxy-
galaxy lensing that, when combined, contain the same information as cosmic shear, but have
different, if not smaller, systematics. These new estimators, Υgm(n) and Υgg(n), are general-
isations of a method introduced in Baldauf et al. (2010) and are based on the aperture mass
formalism. The Υs are an integrated measure, which effectively discretises the signals. Due to
the discretisation, we achieve great data compression, which, depending on the measurements,
can reduce the size of the final data vector by a factor of ∼ 5 or more. This also helps in
determining the data covariance, which is needed for parameter estimates. Furthermore, we
can keep the beneficial properties of the Baldauf et al. (2010) estimators that eliminate small
scale influences in the signal. As a proof of concept we apply the new estimators to data from
BOSS for the lenses and from RCSLenS for the sources and constrain the galaxy bias b and the
cross-correlation coefficient r. The results are in rough agreement with earlier studies. These
new estimators can also be used for constraining cosmological parameters and could for example
be applied to the Kilo Degree Survey or Euclid.

To summarise, we presented a technical problem and a correction for it as well as two of the
many ways to do cosmology. Galaxy clusters as cosmological tools will become more and more
important within the next few years. As already mentioned, it will become easier to find massive
high-redshift clusters in the southern hemisphere, as new wide area surveys will become public
soon. Furthermore, the eRosita satellite will map the whole sky in the X-ray, which will help
to find many more clusters and will allow a similar search for high-redshift ones as has been
done in this work. Combining it with KiDS or DES, it might even be possible to push this to
higher redshifts. Also, the large scale structure probes will find even more interest in the future.
Especially the combination of clustering and lensing is a promising approach. Ideal testing
grounds for these methods are the next generation lensing surveys like KiDS or DES. These
surveys will most likely not revolutionise cosmology, but are in general a great preparation for
the even larger surveys like LSST and Euclid, which will actually have the statistical power and
a sufficient data quality to constrain the dark energy equation of state and shed some light onto
the true nature of dark energy.
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CHAPTER A

Summary

Chapter 1: Cosmology

In this chapter, we introduce the reader to the basic concepts of cosmological physics. We
start at Einstein’s theory of general relativity and the homogeneous and isotropic solutions of
Einstein’s field equation, that can be used to describe the Universe on large scales. Furthermore,
we introduce the concept of distances in expanding cosmologies and describe the thermal history
of the Universe. At the end of the chapter, we summarise the cosmological standard model and
give a brief description of structure formation in the Universe.

Chapter 2: Gravitational Lensing

Chapter 2 describes the basic concepts of gravitational lensing, a major tool for cosmology. We
derive the lens equation and introduce the concepts of shear, convergence and magnification as
well as strong-, weak-, and micro lensing. Furthermore, we summarise the many applications of
gravitational lensing within and outside cosmology.

Chapter 3: Clusters of Galaxies

Clusters of galaxies are important parts of our Universe and subject to many cosmological studies.
As such, their composition as well as several ways of detecting them are described in this chapter.
Additionally, we introduce different concepts of estimating the masses of galaxy clusters and two
approaches to use clusters as tools for cosmology.
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Chapter 4: Correcting for CCD-Crosstalk in OmegaCAM@VST

Chapter 4 is concerned with a correction for the CCD crosstalk in OmegaCAM at the VST. In
the beginning, we introduce the concepts of CCD cameras and crosstalk. We then describe the
crosstalk between three different chips observed at OmegaCAM. This is followed by explaining
the suggested approach for correction and a description of its implementation.

Chapter 5: Optical & Sunyaev-Zel’dovich Observations of a
New Sample of Distant Rich Galaxy Clusters in the ROSAT All
Sky Survey

As mentioned in Chapter 3, massive high redshift galaxy clusters provide an interesting test for
cosmology. This chapter, which has been published in Monthly Notices of the Royal Astronomical
Society, describes the search for those massive clusters. By combining X-ray data from the
ROSAT All Sky Survey and optical data from the Sloan Digital Sky Survey, we create a list
of rich cluster candidates that have a suspected redshift of 0.6 ≤ z ≤ 0.9. Using follow-up
observations in the optical, we confirm 44 new galaxy clusters, estimate their red sequence
redshifts and their richness. For a sub sample of 21 clusters, we use radio observations from the
Combined Array for Research in Millimeter Astronomy in order to detect the SZ signal. We
detect 11 of those and estimate their mass M200. Using these mass estimates as well as some
already known masses, we check for tension with the cosmological standard model and find none.

Chapter 6: A new Estimator for Galaxy-Matter Correlations

We introduce new discrete estimators for galaxy-galaxy lensing and galaxy clustering within
the aperture mass formalism. Those estimators provide great data compression and thus lead
to a low dimensional data covariance. We test them by measuring the galaxy bias b and the
cross-correlation coefficient r for BOSS LOWZ galaxies using lensing data from RCSLenS.

Chapter 7: Conclusions & Outlook

In this chapter we briefly summarise the most important scientific results of this thesis and give
a brief outlook.
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