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Summary 

CyFIP (Cytoplasmic Fragile X mental retardation protein Interacting Protein) is a large 

scaffolding protein that was shown to be a central regulatory component of the WAVE 

complex. The pentameric WAVE complex is a nucleation promoting factor (NPF) 

regulated by phosphoinositides and phosphorylation, which translates signals from the 

small GTPase Rac1 by exposing the VCA domain in the WAVE subunit, thus activating 

the Arp2/3 actin nucleation complex and initiating actin polymerization. Actin 

reorganization is important for cell motility, migration, locomotion, proliferation and 

more. Except for HSPC300/Brick, each subunit is represented by a gene family - 

CyFIP1 and CyFIP2 for CyFIP, Nap1/Hem2 and Hem1 for Nap, WAVE1, WAVE2, and 

WAVE3 for WAVE, and Abi1, Abi2, and Abi3 for Abi. In principle this allows to build 

many different WAVE complexes, a few of which have also been crystalized and their 

structure determined. Despite the extensive sequence similarity, the expression 

pattern of CyFIP1 and CyFIP2 in mouse tissues suggests distinct physiological roles. 

CyFIP1 is ubiquitously expressed, while CyFIP2 has a more specialized function in the 

nervous system, where it is ten-fold more abundant than its homologue. CyFIP1 has 

been proposed to function as a tumor suppressor gene and is a known interaction 

partner of FMRP in the brain (Fragile X Mental Retardation Protein), hence having a 

distinct role in translational control. CyFIP1 has also been linked to autism spectrum 

disorder phenotypes in Prader-Willi, Angelman and Fragile X Syndromes. 

In this work the role of CyFIP1 during mouse embryonic development, ES cells in vitro 

differentiation and female fertility was analyzed, as well as the composition of the 

WAVE complex. The results showed that CyFIP1 has an essential role in early 

embryonic development and CyFIP1-/- embryos die around embryonic day 6.5. To 

obtain better insight into the function of CyFIP1 in development two strategies were 

used: 1. analysis of the embryos and 2. Generation and differentiation of ES cells. 

Generated CyFIP1-/- ES cells showed disturbed cell proliferation, differentiation and 

adhesion. Differentiation studies of CyFIP1-/- ES cells into embryoid bodies (EB) 

indicated that lineage determination is altered. EBs showed an increase in endodermal 

tissue, a decrease in meso-endodermal tissue and higher apoptosis. Importantly ES 

cells showed alterations in the levels of several WAVE complex components. 

Microarray analysis of in vitro differentiated ES cells revealed down-stream effectors 

and pathways affected by CyFIP1 depletion. 
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CyFIP1+/- females showed an infertility disorder similar to women with Fragile X-

dependent POI (primary ovarian insufficiency) Syndrome. Investigations in the ovaries 

and follicles of wild type and CyFIP1+/- females showed some important differences. 

Altered follicle distribution in the ovaries of CyFIP1+/- females was observed. Antral 

and preovulatory follicles of CyFIP1+/- females appeared significantly smaller than wt. 

Studies on the ligands and composition of the WAVE complex indicated that the WAVE 

complex is not an irreversibly stable pentameric complex. Biochemical analyses under 

different ionic conditions were made and results are in agreement with the predictions 

from the structure determined by the Rosen lab, showing how CyFIP/Nap forms a core 

complex around which the other subunits assemble. Variable complexes were 

recognized in different tissues. Novel Cyfip1/2 ligand candidates were identified by 

mass spectrometry after pull-down of the complex in brain, such as Cofilin1, CapZ, 

Myosin1 and Myosin4. One surprising novel Cyfip1/2 ligand was POF1 (Premature 

ovarian failure 1B), an actin binding protein mutated in human premature ovarian 

failure. These latest findings expand the current view of the WAVE complex. 
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1.1 The actin cytoskeleton 

The term cytoskeleton was first introduced by the French embryologist Paul Wintrebert 

in 1931. The cytoskeleton is composed of three major types of protein filaments: 

microtubules, intermediate filaments, and microfilaments. Microfilaments are polymers 

of actin that together with a large number of actin-binding and associated proteins 

constitute the actin cytoskeleton. Actin genes have been highly conserved during 

evolution, and actin molecules from various organisms are functionally 

interchangeable in vitro (Kron, Drubin et al. 1992; Nefsky and Bretscher 1992). Actin 

is a 42 kDa ATPase that can polymerize into filaments of 7 nm in diameter. Two 

different actin forms exist. G-actin is the monomeric form and F-actin is the polymeric 

form of actin. Globular (G) actin is able to polymerize into filamentous (F) actin which 

can disassemble back into the initial G-actin. Actin filaments are very dynamic and live 

in permanent reorganization. ATP-bound G-actin assembles into the filament. Upon 

binding to the end of a filament, an actin subunit rapidly hydrolyzes its bound ATP into 

ADP and a phosphate group (Pi) that is slowly released (Fig. 1). ADP-bound actin is 

prone to depolymerization. Released ADP-G-actin is recharged with ATP and ATP-G-

actin is able to bind again. ATP-actin subunits preferentially bind to the fast growing 

"barbed" end of an actin filament (Fig. 1), although they can also bind on the other side, 

to the "pointed" end, at a much slower rate. In the cell, several actin binding proteins 

act together to control the polymerization process, which is directed towards the cell 

membrane. 

 

 

 

 

 

 

Figure 1: Actin polymerization and 

depolymerization.  

Continuous remodeling of the actin 

filament at the fast growing barbed end 

and slow growing pointed end (Kuhn and 

Pollard 2005). 
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1.2 Actin binding proteins 

Actin filaments play a crucial role in different processes such as cell migration, motility, 

intracellular trafficking and cell division. All of these are dynamic processes that require 

polarity and a continuous reorganization of the actin filament network. In cells, the 

assembly and disassembly of actin filaments, and also their organization into functional 

higher order networks, is regulated by a plethora of actin-binding proteins (ABPs) (dos 

Remedios, Chhabra et al. 2003). The activities of these proteins are in turn under the 

control of specific signaling pathways. They have the following functions: nucleation, 

monomer binding, capping, stabilization, severing, depolymerization, cross-linking, 

sequestration, and nucleotide exchange. In Fig. 2 the different classes of actin binding 

proteins are shown.  

 

 

Figure 2: The actin cytoskeleton is regulated by actin-binding proteins (ABPs). Different classes of ABPs are 

shown (Winder 2005). 
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1.3 Profilin 

Profilin is one of the first characterized actin binding proteins and is involved in the 

dynamic turnover and restructuring of the actin cytoskeleton (Carlsson, Nystrom et al. 

1977). Profilin forms a 1:1 complex with G-actin and, acting as an ADP-ATP exchange 

factor, can regulate the rate of actin polymerization (Mockrin and Korn 1980). Today 

four Profilin genes are known in mice and humans (Kwiatkowski and Bruns 1988; 

Honore, Madsen et al. 1993; Braun, Aszodi et al. 2002; Obermann, Raabe et al. 2005). 

Profilin 1 and 2 are described to play a major role in actin dynamics. In mice Profilin1 

is expressed ubiquitously, except in the skeletal muscle. The deletion of Profilin1 in 

mice results in lethality before the blastocyst stage due to a possible defect in 

cytokinesis (Witke, Sutherland et al. 2001). Profilin2 is mostly expressed in brain, 

although lower expression can be found in skeletal muscle, testis, uterus, thymus and 

kidney. Two splice variants, Profilin2A and Profilin2B, have been reported (Witke, 

Podtelejnikov et al. 1998; Di Nardo, Gareus et al. 2000). A knockout study of this gene 

in mice described neurological and behavioral defects (Pilo Boyl, Di Nardo et al. 2007). 

Profilin1 and Profilin2 form different complexes to regulate actin assembly (Witke 

2004). Among others, one of the ligands in the Profilin2 complex is POP (Partner of 

Profilin) (Witke, Podtelejnikov et al. 1998), also named CyFIP, whose study is the main 

topic of this thesis. 

 

 

1.4 Actin nucleators and nucleation promoting factors 

Actin nucleators promote the polymerization of the different types of actin arrays 

formed in a variety of cellular processes, such as cell migration, cell division, cellular 

morphogenesis, and membrane trafficking. The first discovered actin nucleator was 

the Arp2/3 (actin-related protein 2/3) complex (Machesky, Atkinson et al. 1994; Mullins, 

Stafford et al. 1997). In the last decade the complexity of nucleation mechanisms 

became clear and several novel nucleators have been described. Today about 28 

different nucleators are known in mammalian cells. These can be divided into three 

Classes (Fig. 3): (1) the Arp2/3 complex and its nucleation promoting factors (the 

WASP and the WAVE families), (2) formins, and (3) WH2-containing nucleators like 

Spire, Cobl, and Leiomodin. 
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WASP family members use their WH2/V (Wiskott-Aldrich homology 2/Verprolin 

homology) domain to recruit actin monomers and their cofilin homology (C) and acidic 

(A) domains to bind to one subunit of the actin-related protein 2/3 (Arp2/3) complex. 

This structure, created and stabilized by N-WASP, mimics an actin trimer and allows 

further addition of actin monomers (Takenawa and Miki 2001). Arp2/3 also allows the 

formation of branched actin networks (Fig. 3) (Mullins, Heuser et al. 1998). Formins 

are hypothesized to nucleate actin by stabilizing spontaneously formed actin dimers 

and/or trimers. Differently from the Arp2/3, formins remain associated with the barbed 

end while favouring addition of actin subunits, thus functioning also as elongation 

factors for the formation of long linear filaments (Fig.3) (Faix and Grosse 2006). Spire, 

Cobl, and Lmod contain between one and four WH2 domains each, separated by 

intervening linker sequences of variable length (Kerkhoff 2006). Their nucleation 

mechanisms are related, but each may generate an actin nucleus with distinct 

properties (Fig. 3), stabilized by lateral and/or longitudinal contacts between subunits, 

and in some cases capped at one end. In some respects, N-WASP represents a 

specialized form of Class 3 nucleator, in which the third actin monomer-binding domain 

has been replaced with a domain that binds to actin-related proteins (Chesarone and 

Goode 2009). 

 

 

 

Figure 3: Mechanisms of actin nucleation. The three classes of actin nucleators and their mechanism of 

function are schematically represented. Nucleator domains are displayed in color, actin subunits used by 

nucleators to seed polymerization in black, and actin subunits polymerized from nuclei in gray (Chesarone and 

Goode 2009). 
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1.5 The Wiskott-Aldrich Syndrome protein (WASP) family 

WASP has been associated with modulation of lymphocyte activation and cytoskeletal 

reorganization (Aldrich, Steinberg et al. 1954; Cooper, Chae et al. 1968). Indeed the 

Wiskott-Aldrich syndrome, an X-linked recessive disease, is characterized by 

immunodeficiency, thrombocytopenia and eczema (Thrasher 2002). Five proteins 

belong to this protein family: WASP, N(neural)-WASP, WAVE1, WAVE2 and WAVE3. 

WASP is only present in cells from the hematopoietic system. N-WASP shares 

sequence homology with WASP and shows a high expression in the nervous system 

(Miki, Miura et al. 1996). WAVE is the acronym of WASP-family Verprolin-homologous 

protein (Suetsugu, Miki et al. 1999). The three mammalian WAVE isoforms have 

different expression pattern. WAVE1 and WAVE3 are highly expressed in the brain, 

WAVE2 is ubiquitously expressed (Takenawa and Miki 2001). All WASP family 

members share a common C-terminal organization, the VCA region. The VCA region 

consists of three domains: the Verprolin homology domain (V), also known as WH2 

(WASP Homology 2) domain, the cofilin homology or central domain (C), and the acidic 

domain (A). The N-terminus is similar in WASP and N-WASP with the WH1 (WASP 

Homology 1) domain and the autoinhibitory domain. WAVE proteins, instead, have a 

WHD (WAVE Homology Domain) also called SCAR homology domain (SHD) (Bear, 

Rawls et al. 1998). WASP and N-WASP possess a GTPase-binding domain (GBD), 

which can bind directly to the small GTPase Cdc42. Cdc42 regulates filopodia 

formation activating WASP/N-WASP which recruit and activate the Arp2/3 complex, 

triggering actin polymerization (Miki, Sasaki et al. 1998). WAVE proteins are also 

downstream of a small GTPase, called Rac1, but they have no possibility for a direct 

interaction with it, missing the GBD. Other proteins have been found to interact with 

WAVE and respond to Rac1 signaling, organized in the so called WAVE complex 

(Eden, Rohatgi et al. 2002). 
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1.6 The WAVE complex 

The WAVE complex is formed as a heteropentamer of a molecular weight of about 500 

kDa (Eden, Rohatgi et al. 2002). The components of the WAVE complex are WAVE 

itself, Abi (Abelson-interacting protein), Nap (Nck-associated protein), CyFIP 

(cytoplasmic Fragile-X mental retardation-protein interacting protein) and HSPC300 

(heat-shock protein C300, also known as Brick) (Eden, Rohatgi et al. 2002). As 

previously mentioned, there are three WAVE isoforms in mammals, WAVE1 and 

WAVE2 have been reported to be part of the WAVE complex. Later studies on WAVE3 

showed that WAVE3 is likely to participate in similar signaling complexes to WAVE1 

and WAVE2 and that the differences between these WAVE proteins are likely to be at 

the level of tissue expression, differences in affinity for certain binding partners and 

possibly interaction with yet undiscovered binding partners (Stovold, Millard et al. 

2005). The Abi family also comprises three different isoforms: Abi1, Abi2 and Abi3 

(Nesh). All three can be part of the WAVE complex, but Abi3 likely plays a different 

role in the regulation of c-Abl (Hirao, Sato et al. 2006). Abi is a scaffolding molecule 

that was originally identified as an interactor for the tyrosine kinase Abl (Shi, Alin et al. 

1995). Nap1 or p125Nap was reported to bind the SH3-containing protein Nck. In 

hematopoietic cells a different isoform is expressed called Hem1. CyFIP is the direct 

interaction partner of Nap1 in the WAVE complex (Fig. 4) and two isoforms exist 

(CyFIP1 and CyFIP2). HSPC300 is the smallest subunit of the WAVE-complex, a small 

peptide of approximately 75 amino acids whose function is still unclear. 

The exact architecture of the WAVE complex was identified by Chen et al. in 2010 and 

is schematized in Figure 4. The WAVE complex consists of two sub-complexes: a 

dimer formed by pseudo-symmetric association of the two large, similar proteins CyFIP 

and Nap1, and a trimer formed by the N-terminus of WAVE1, Abi2 and HSPC300 

forming a four-helix bundle.  
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Figure 4: Structure and composition of the WAVE complex. A) Topography as determined by biochemical 

studies (Adapted by Marzia Massimi from Gautreau 2004). B, C) CyFIP/Sra1 and Nap1 build the base of the 

complex as a pseudo-symmetric dimer. WAVE, Abi and HSPC300 form a trimer that lies on top of the base. In 

case of the inactive form, Nap1 keeps the VCA region of the WAVE protein inaccessible to possible binding 

partners. Following activation by the Rac1 small GTPase this region is exposed B) Stereo view of the WAVE-

complex. Sra1, Nap1, WAVE1, Abi2 and HSPC300 are green, blue, magenta, orange and yellow, respectively. 

C) 180° rotation around a horizontal axis of the structure in A). The polybasic region and the proposed Rac1 and 

eIF4E binding sites are indicated. (Chen, Borek et al. 2010) 

 

 

1.6.1 Regulation of the WAVE complex 

The WAVE complex plays an essential role in remodeling the actin cytoskeleton. The 

complex is by default inactive towards the Arp2/3 complex, but can be stimulated by 

the Rac1 GTPase, kinases and phosphatidylinositols. Within the structure of the 
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regulatory WAVE complex, the activity of WAVE toward the Arp2/3 complex is inhibited 

by intra-complex sequestration of its VCA region (Chen, Borek et al. 2010). In fact, the 

WAVE proteins lack the auto-inhibition feature. Therefore it depends on the other 

components of the WAVE complex fulfilling the inhibitory function. This is achieved 

through the structure of the complex. The inactive form of the complex shows WAVE’s 

VCA region facing Nap1, which makes it unreachable to possible binding partners (Fig. 

5). The regulatory WAVE complex is recruited to the membrane and triggered by 

extracellular signals to release its inhibition of WAVE (Padrick, Cheng et al. 2008; 

Lebensohn and Kirschner 2009). Activation of the WAVE complex is achieved by the 

small GTPase Rac1 (Fig. 4), which directly interacts with CyFIP1, or might act through 

a yet unknown mediator, by exposing the VCA domain (Goley and Welch 2006). The 

VCA region of the WAVE protein is responsible for the binding of Actin monomers and 

the Arp2/3 complex. The Arp2/3 complex, as previously explained, an important F-

actin nucleator, is therefore recruited by the WAVE protein to finally trigger actin 

polymerization via a tripartite complex formed close to the cell membrane (Fig. 4) 

(Bogdan, Grewe et al. 2004).  

However, the exact composition of the WAVE complex and the complexity of its 

regulation and function in vivo and in the different cell types and tissues remain still 

unclear. 

 

Figure 5: WAVE complex activation. Model of WAVE complex activation according to the Chen&Rosen 

structure (Chen, Borek et al. 2010). Activated Rac1, phosphorylation, and phospholipids are thought to unmask 

the VCA domain required for Arp2/3 activation (adapted from Stradal et al., TICB, 2004). 
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1.6.2 Genetics of the WAVE complex in the mouse 

In the past years several studies on knockout mice for the different subunits of the 

WAVE complex have been published. There are three different studies on WAVE1 

knockout mice, which were generated with two different methods. In the studies from 

Dahl et al. a gene trap approach was used to generate a line of mice bearing a 

disruption of the WAVE1 gene. Homozygous disruption of the WAVE1 gene resulted 

in postnatal lethality at day 20. These animals showed severe limb weakness, a resting 

tremor, and notable neuroanatomical malformations without overt histopathology of 

peripheral organs (Dahl, Wang-Dunlop et al. 2003). The same WAVE1 knockout mice 

were used for another study that described defects in myelin formation (Kim, 

DiBernardo et al. 2006). A different targeted disruption of the WAVE1 gene by 

homologous recombination generated viable mice with reduced anxiety, sensorimotor 

retardation, and deficits in hippocampal-dependent learning and memory (Soderling, 

Langeberg et al. 2003). WAVE2 knockout mice were created similarly by homologous 

recombination in one study that reported embryonic lethality at E12.5, with defects in 

the response of fibroblasts to platelet-derived growth factor (Yan, Martinez-Quiles et 

al. 2003). Another study on a different WAVE2 knockout model showed embryonic 

cardio-vascular defects, hemorrhages, and lethality at about embryonic day 10. Mutant 

endothelial cells did not form lamellipodia in response to VEGF (vascular endothelia 

growth factor) (Yamazaki, Suetsugu et al. 2003). One conclusion from these knockout 

studies could be that WAVE1 and WAVE2 have overlapping functions during early 

embryo development because both single mutants survive midgestation (Soderling, 

Langeberg et al. 2003; Yamazaki, Suetsugu et al. 2003; Yan, Martinez-Quiles et al. 

2003). WAVE3 and HSPC300 knockout mice are not described yet. Abi1 knockout 

mice died around embryonic day 11.5 and displayed malformations in the developing 

heart and brain. Western blotting analysis of Abi1 ko cell lysates indicated decreased 

levels of WAVE2 complex components: WAVE2, Nap1, and CyFIP1. On the contrary, 

the expression of Abi2 was significantly increased. Apparently the presence of Abi1 is 

critical for the integrity and stability of the WAVE2 complex so that it cannot be restored 

even by enhanced Abi2 expression (Dubielecka, Ladwein et al. 2011). Homozygous 

deletion of the murine Abi2 gene in mice resulted in defective orientation and migration 

of secondary lens fibers, abnormal neuronal migration in the neocortex and 

hippocampus, aberrant dendritic spine morphology and density, and profound deficits 
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in learning and memory (Grove, Demyanenko et al. 2004). Two different Nap1 

knockout mouse models are reported in the literature. In Nap1 ko mice, generated by 

insertional mutagenesis in the C-terminal region of the gene, embryonic lethality at 

E10.5 was observed, with several morphogenetic defects, such as strikingly open, 

undulating neural folds in the anterior of the embryo (Yokota, Ring et al. 2007). A 

different Nap1 mutant mouse model was generated by a missense mutation by ENU 

(N-ethyl-N-nitrosourea) mutagenesis at the beginning of the Nap1 coding sequence. 

These Nap1 knockout mice arrested embryonic development around day E9 and 

displayed several morphogenetic defects such as delay in endoderm and mesoderm 

migration, failure in heart formation and neural tube closure, duplication of the antero-

posterior body axis. Interestingly, loss of Nap1 induced loss of WAVE1 expression and 

cellular mislocalization of Abi1 and CyFIP1/Sra1 (Rakeman 2006).  

 

 

1.7 CyFIP 

From previous work, CyFIP appears to have many functions and interacting partners, 

some of which are known and some might still be unknown. Due to this, CyFIP was 

given a number of names. In 1998 CyFIP was described under the name p140Sra1. It 

was purified from bovine brain cytosol and identified as a 140 kDa molecular mass 

Rac1-interacting molecule. Therefore it was named Specifically Rac-associated 

protein 1 (p140Sra1) (Kobayashi, Kuroda et al. 1998). At the same time CyFIP was 

found as an interactor of Profilin2 and named POP (Partner of Profilin) (Witke, 

Podtelejnikov et al. 1998). The name PIR121 (121F-specific p53-inducible RNA) was 

given in a work in which the level of a specific messenger RNA, identified as the CyFIP 

mRNA, was found increased in cell lines expressing the apoptosis-inducing p53 

mutant, 121F (Saller, Tom et al. 1999). PIR121 is normally used for the Dictyostelium 

orthologue. Another name for CyFIP, derived from a work on a C. Elegans mutant 

phenotype, is Gex2 or Gut on the Exterior 2 (Soto, Qadota et al. 2002). Finally, the 

name CyFIP1 and 2 (Cytoplamic FMRP Interacting Protein) was given in 2001 when a 

yeast two-hybrid screening yielded two novel interactors of FMRP (Schenck, Bardoni 

et al. 2001). Related to this, a novel role for CyFIP1 was recently reported, that might 

be independent from its role in the WAVE complex. CyFIP1 can behave as an eIF4E 

inhibitor, a novel 4E-BP (eukaryotic translation initiation factor 4E Binding Protein), 



1. Introduction 

12 

 

cooperating with FMRP in down-regulating translation in neurons (Napoli, Mercaldo et 

al. 2008). In lower organisms only one CyFIP gene is present, while in human and 

mouse two genes, encoding for CyFIP1 and CyFIP2, are found. In the mouse these 

genes are located on chromosome 7 and 11, respectively, showing the same genomic 

organization of 31 exons encoding for 1253 amino acids. CyFIP1 and 2 share 88% 

amino acid sequence identity and have the same molecular weight of 145 kDa. In the 

mouse CyFIP2 was shown to be approximately 10 fold more abundant in brain than 

CyFIP1 at the mRNA level (Massimi 2008). CyFIP1 is the predominant isoform 

expressed in ES cells and early embryonic stages, while CyFIP2 is expressed later 

during development and then restricted to the brain (Massimi 2008), but the specific 

role of CyFIP1 in development is still unknown.  

 

1.7.1 The physiological role of CyFIP1 and CyFIP2 

Several studies have been carried on model organisms such as Dictyostelium, C. 

Elegans, and Drosophila and also on different cell types in order to understand the 

physiological role of CyFIP. In Dictyostelium the pirA gene which encodes 

PIR121/CyFIP was disrupted and defects in migration and chemotaxis were observed 

(Blagg, Stewart et al. 2003). Ablation of the worm gene Gex2 resulted in embryonic 

lethality with defects in morphogenesis of the hypodermis. In Gex2 mutants, neither 

dorsal intercalation nor ventral migration (including leading cell migration) occurred, 

resulting in the complete loss of ventral closure (Soto, Qadota et al. 2002). Drosophila 

Sra1 null mutants were also embryonic lethal and showed defects in synaptic 

architecture and bristle development (Schenck, Bardoni et al. 2003; Bogdan, Grewe et 

al. 2004). Studies in zebrafish showed that CyFIP2 is required to maintain positional 

information by dorso-nasal axons as they project through the optic tract and the tectum 

(Pittman, Gaynes et al. 2010). Bozdagi et al. showed that haploinsufficiency of CyFIP1 

mimics key aspects of the phenotype of Fmr1 knockout mice and is consistent with the 

hypothesis that these effects are mediated by interaction of CyFIP1 and FMRP in 

regulating activity-dependent translation. They observed that in CyFIP1 heterozygous 

mice metabotropic glutamate receptor (mGluR)-dependent long-term depression 

(LTD) induced by paired-pulse low frequency stimulation (PP-LFS) was significantly 

increased in comparison to wildtype mice. In addition, mGluR-mediated LTD was not 

affected in the presence of protein synthesis inhibitors in the CyFIP1 heterozygous 
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mice, while the same treatment inhibited LTD in wildtype littermate controls. Behavioral 

studies of CyFIP1 heterozygous mice showed enhanced extinction of inhibitory 

avoidance (Bozdagi, Sakurai et al. 2012). In mammalian cell culture studies, using 

siRNA, CyFIP1 was shown to be essential for lamellipodia formation and the entire 

WAVE complex could no longer be detected in CyFIP1 knockdown cells (Steffen, 

Rottner et al. 2004).  

 

1.7.2 CyFIP1 knockout mouse 

A CyFIP1 conditional knockout mouse was generated by Dr. Marzia Massimi in a 

C57BL/6J mouse genetic background. The targeting vector carrying the CyFIP1 

genomic sequence and LoxP sites flanking exon 4 and exon 6, together with a 

Neomycin resistance cassette, was created as shown in Fig. 6. Excision of the LoxP 

flanked region upon Cre recombination resulted in a frame shift leading to premature 

translation termination soon after exon 3, producing a knockout allele. The Neomycin 

resistance cassette was also flanked by FRT sites, which allowed its removal upon 

FLP recombination (Massimi 2008) to produce a clean Flox allele. 

 

 
 

Figure 6: CyFIP1 targeted allele and the Cre-mediated recombination event leading to the CyFIP1 

knockout allele. Exon 4 and exon 6 are flanked by LoxP sites. These can be used for the conditional removal 

of the flanked region by Cre recombination. A Neomycin resistance cassette, flanked by FRT sites, was also 

inserted for the selection of recombinant ES cell clones. The Neomycin cassette can be removed by FLIP 

recombination (Massimi 2008). 

 

To generate the CyFIP1 complete knockout mouse, CyFIP1+/targeted mice were 

crossed with a Cre-deleter strain. Heterozygous CyFIP1 deleted mice (CyFIP1+/-) 

were then mated among themselves to obtain CyFIP1 null mutants (CyFIP1-/-). The 
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CyfFIP1 complete knockout resulted embryonic lethal, with embryos dying around 

embryonic day 8.5 due to severe developmental defects (Fig. 7). Somites were absent 

in the mutant embryos and the tissues appeared to be degraded. Some components 

of the WAVE complex were no longer detectable in homozygous CyFIP1 ko embryos 

by Western blotting (Massimi 2008). The generation of the conditional CyFIP1 mouse 

model is still in progress. 

 

   

   

 

Figure 7: CyFIP1 null mutants and control littermates. (A) E8.5 CyFIP1-/- embryo. (B) E8.5 CyFIP1+/+ 

embryo that has started to differentiate the neural plate (indicated by an arrow). (C) E9 CyFIP1-/- embryo. 

(D) E9 CyFIP1+/+ embryo. The differences between mutant and wild type are more evident at this stage: it 

is evident the lack of differentiated somites in the mutant, while in the control 6 pairs of somites are visible. 

(E) E9.5 CyFIP1-/- embryo. (F) E9.5 CyFIP1+/+ embryo. Only a few mutants reached this stage, had an 

overall degenerated aspect, and their tissues appeared degraded (Massimi 2008). 

 

1.7.3 CyFIP1 in Autism Spectrum Disorders 

In humans, CyFIP1 has been genetically linked to a number of Autism Spectrum 

Disorders (ASDs), which suggests that CyFIP1 might be a central component of the 

different ASD pathways. The CyFIP1 gene in humans is located on chromosome 

15q11.2, this is a critical region of high susceptibility to deletion and duplication 

(Pathania, Davenport et al. 2014). For example paternal or maternal deletion occurs in 

the Prader-Willi and Angelman Syndromes, respectively. The CyFIP1 gene falls within 

the range of chromosomal deletion responsible for the syndromes (Ben-Shachar, 
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Lanpher et al. 2009), and if included in the deletion increases the occurrence of the 

autistic phenotype in the syndromes. CyFIP1 has also been implicated in the autistic 

phenotype of patients with Fragile X syndrome (Clifford, Dissanayake et al. 2007). 

Apart from point mutations, gene dosage and copy number variation also play an 

important role in autism spectrum disorder (Nishimura, Martin et al. 2007). Two 

pathways that affect the maturation of excitatory synapses and therefore disrupt 

neuronal connectivity were shown to be affected by CyFIP1: the protein translation 

pathway (FMRP, PTEN and TSC1/2) and the actin cytoskeletal/adhesion molecule 

pathway (e.g Neuroligins, Neurexins, Shank and Integrin-β3) (Walsh, Morrow et al. 

2008). 

 

1.7.4 POF/POI (Premature Ovarian Failure / Premature Ovarian 

Insufficiency)  

Besides the neurological syndromes, CyFIP1, through one of its ligands, might be 

indirectly involved in another disease affecting the reproductive system. Studies have 

suggested that females who show premature ovarian insufficiency of unknown cause 

have a 1/50 chance of being a premutation carrier of the FMR1 gene, the same gene 

that causes Fragile X syndrome (Macpherson, Murray et al. 1999) and whose protein 

product FMRP is a well-known binding partner of CyFIP1. Females who have 

premature ovarian insufficiency have problems with ovarian function which can lead to 

infertility and early menopause. Indeed, two chromosomal regions involved in POF 

have been located on the long arm of the X chromosome at Xq13-21 (Omim: POF2) 

and at Xq26-28 (Omim: POF1) (Ennis, Ward et al. 2006) and FMR1 is found at Xq27.3. 

Blood testing of affected females showed high levels of the pituitary hormone FSH 

(follicle stimulating hormone) and low levels of the ovarian hormone AMH (anti-

Müllerian hormone). Recent studies suggest that the FMR1 gene can exert controlling 

functions on ovarian recruitment and ovarian reserve (Gleicher and Barad 2010). While 

POF has not been studied yet in FMR1 ko mice, in other studies germ cell deficient 

(gcd) mice were generated, which reproduced premature ovarian failure. Germ cell 

deficient mice underwent normal puberty and complete sexual development but by 6-

8 weeks of age their estrous cycle became irregular. Mice aged 12-16 weeks became 

reproductively senescent, as defined by the apparent absence of estrous cycling. The 
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ovaries of wild type mouse feature white spots that correspond to corpora lutea, while 

the ovaries of the germ cell deficient mice were much smaller with no gross evidence 

of ovarian activity (Duncan, Cummings et al. 1993).  

 

 

1.8 Ovarian and follicular development  

The mouse ovary is a very complex structure with tight regulation machineries between 

the different cell types. At birth, the ovary is a solid organ. It consists of only two 

different cell types: the oocytes and the stroma cells. Then the ovary undergoes 

massive changes in morphology in the five to eight weeks between birth and fertility. 

While the oocytes grow, the stroma cells differentiate into theca cells, lutein cells, 

granulosa cells and many others. The granulosa cells surround the oocytes, and form 

follicles that grow and differentiate while in constant interplay with the oocyte (Eppig 

2001). The concept of a regulatory loop between oocyte and follicles was proposed by 

Eppig et al. in 2001. He showed that follicular cells maintain oocytes in meiotic arrest 

until the pre-ovulatory surge of gonadotropins and, at the same time, promote growth 

and maturation of the oocyte. On the other hand the oocyte is crucial for follicle 

formation, as well as for granulosa cell proliferation and differentiation. During the 

fertile life of a female a constant maturation of follicles and oocytes takes place, starting 

with recruitment of primordial follicles and going on to ovulation or atresia, programmed 

follicular death. A mature ovary is structured with a compact cortical layer, where the 

follicles are localized, and a loose medulla in the middle of the organ, where blood 

vessels and lymphatic vessels can be found (Figure 8). 
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Figure 8: Organization of a mouse ovary. H&E staining of a frozen section from an adult mouse ovary. 

Indicated in the figure are the compact outer layer (Cortex) containing the follicles (green arrows) and the medulla 

in the center of the organ, a loose structure dense with vessels (red arrows). 

 

1.8.1 Follicle development and classification of the developmental 

stages  

In mature ovaries all follicular developmental stages are present at the same time. 

Several classification systems for oocytes and follicles have been published in the past 

years. The classification proposed by Pedersen & Peters 1968 and adapted later by 

Myers et al. (2004) is shown in Figure 9. Myers et al. classification is marked in red in 

Figure 9. It is a more simplified system, and was used in this thesis for the analysis of 

the ovaries of CyFIP1 heterozygous mice. 

Three big groups of follicles, small, medium and large, are subdivided in different 

Types. In the group of small follicles, Type 1 and Type 2 consist of non-growing small 

oocytes with no or only few granulosa cells attached. Small follicles, but surrounded 

by a whole layer of squamous granulosa cells, were named Type 3a follicles. All these 

were also called primordial follicles, and form the pool from where growing follicles are 

recruited. After recruitment, the oocyte starts growing and the granulosa cells become 
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cuboidal and start to proliferate. Type 3b or primary follicles contain a growing oocyte 

with a single layer of granulosa cells. Follicles with more than one layer of cells around 

the growing oocyte are called secondary follicles (Types 4 to 5b).  

 

 

Figure 9: Classification of the different developmental stages of a follicle. Small follicles: bare oocyte (type 1 

and 2) and primordial follicle consisting of the oocyte and one layer of squamous granulosa cells (type 3). Medium 

follicles: primary follicle surrounded by one layer of cuboidal granulosa cells (type 3b); secondary follicle with two 

to five layers of granulosa cells (type 4 to 5b). Large follicles: early antral follicle with small dispersed cavities in the 

granulosa cell layers and a fully mature oocyte (type 6); antral follicle with a large antrum filled with follicular fluid 

(type 7); pre-ovulatory follicle with a large antrum and a ring of granulosa cells encircling the oocyte (type 8) 

(modified from (Pedersen and Peters 1968)). 

 

The transition from medium to large follicles is marked by the formation of cavities 

containing follicular fluid. Oocytes in large follicles are fully grown and meiotically 

competent, which means that they can resume meiosis after a gonadotropin surge. 

Type 6 or early antral follicles, sometimes called tertiary follicles, display scattered 

cavities with follicle fluid. In Type 7 or antral follicles one large cavity (antrum) is present 

and divides the granulosa cell types into two different classes: (1) the oocyte-

associated cumulus cells and (2) the follicle-associated mural cells. The last class of 
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follicles is the pre-ovulatory or type 8 follicles. Following a pre-ovulatory gonadotropin 

surge, the oocyte resumes meiosis and the cumulus cells start to express hyaluronic 

acid, leading to cumulus expansion and finally to ovulation. 

 

 

1.9 Embryonic stem cells 

A useful tool to study early mouse development is to culture and in vitro differentiate 

Embryonic Stem cells (ES cells). ES cells are derived from the inner cell mass of 

blastocysts (Evans and Kaufman 1981; Martin 1981) but can also be isolated from 8-

cell stage embryos (Wobus, Wallukat et al. 1991) or from morulae (Eistetter 1989). 

Under optimal conditions ES cells can be expanded almost indefinitely in cell culture. 

Furthermore, embryonic stem cells are pluripotent cells and thus are able to 

differentiate into cells of the three germ layers: mesoderm, endoderm, and ectoderm. 

ES cells can be cultured into so-called “embryoid bodies” (EBs) that represent 

aggregates of differentiating ES cells in non-adherent cultures and consist of a core of 

ectoderm, mesoderm and endoderm surrounded by visceral and parietal endodermal 

cells (Maye, Becker et al. 2000). Using this approach ES cells can be differentiated 

into cardiogenic (Wobus, Wallukat et al. 1991; Maltsev, Rohwedel et al. 1993; Maltsev, 

Wobus et al. 1994), myogenic (Rohwedel, Maltsev et al. 1994), adipocytic (Dani, Smith 

et al. 1997), chondrogenic (Kramer, Hegert et al. 2000), osteogenic (Hegert, Kramer 

et al. 2002), hematopoetic (Schmitt, Bruyns et al. 1991), insulin-producing (Schroeder, 

Rolletschek et al. 2006), epithelial (Bagutti, Wobus et al. 1996) and also neuronal 

(Fraichard, Chassande et al. 1995; Strubing, Ahnert-Hilger et al. 1995; Rujano, Pina 

et al. 2004) cell types. The differentiation of mouse ES cells into non-somatic germ 

cells including oocytes and sperm cells has also been done (Hubner, Fuhrmann et al. 

2003; Kehler, Hubner et al. 2005). During in vitro differentiation ES cells-derived cells 

differentially express developmentally regulated genes encoding transcription factors, 

enzymes, receptors or ion channels, mimicking expression patterns that are seen in 

vivo during embryo development (Wobus, Wallukat et al. 1991; Rohwedel, Maltsev et 

al. 1994; Guan, Rohwedel et al. 1999). 
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1.10 Embryoid bodies 

The name embryoid bodies was given to these cell aggregates due to their similarities 

to post-implantation embryos. Embryoid bodies are three-dimensional structures 

generated by the aggregation of pluripotent stem cells when they are cultured in the 

absence of feeder cells and on low attachment surfaces. It was shown in 1985 that 

mouse ES cells can form EBs in vitro (Doetschman, Eistetter et al. 1985). The 

morphogenic events in EBs mimic multiple aspects of the post-implantation mouse 

embryo, including primitive endoderm formation (Grabel and Casanova 1986; Shen 

and Leder 1992), germ layer differentiation (Keller 1995; Itskovitz-Eldor, Schuldiner et 

al. 2000), and epithelial to mesenchymal transition (Shukla, Nair et al. 2010). The 

process of cavitation in mouse embryogenesis has also been examined using EBs 

(Coucouvanis and Martin 1999; Maye, Becker et al. 2000). The specific mechanism of 

cavitation in developing embryos and EBs is thought to be regulated by programmed 

cell death induced by factors secreted by the visceral endoderm, and survival of cells 

based on basement membrane attachment (Coucouvanis and Martin 1995; 

Coucouvanis and Martin 1999). EBs can be formed using a variety of techniques, 

including hanging drop (Maltsev, Wobus et al. 1994), static suspension (Doetschman, 

Eistetter et al. 1985), semi-solid methylcellulose culture (Ling and Neben 1997; Dang, 

Kyba et al. 2002), and stirred-culture bioreactors (Gerecht-Nir, Cohen et al. 2004). 

Each system has specific advantages and disadvantages (Kurosawa 2007); for 

example, the hanging drop method is relatively controlled, but not suitable for 

producing large amounts of EBs, while static suspension is simple and scalable, but 

not well controlled. Rotary suspension culture provides a middle ground between 

hanging drop and static suspension, in that it produces EBs uniform in size and shape, 

yet with a high yield (Carpenedo, Sargent et al. 2007). Directed differentiation of EBs 

is most commonly accomplished through addition of soluble factors to the culture 

medium. Growth factors such as vascular endothelial growth factor (VEGF) (Nourse, 

Halpin et al. 2010), brain derived neurotrophic factor (BDNF) (Takaki, Nakayama et al. 

2006), basic fibroblast growth factor (bFGF) (Yamada, Kioussi et al. 1994), epidermal 

growth factor (EGF) (Kang, Cho et al. 2007), and platelet-derived growth factor (PDGF) 

(Kang, Cho et al. 2007) have been studied in the context of EBs differentiation. Other 

morphogens such as bone morphogenetic proteins (BMPs) (Bruce, Gardiner et al. 
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2007), Wnts (ten Berge, Koole et al. 2008) and retinoic acid (Bain, Ray et al. 1996) 

have also been assessed for directed EB differentiation.  

 

 

1.11 Embryonic development 

Since the CyFIP1 knockout mouse model is embryonic lethal, a detailed analysis of 

early embryonic developmental events is required in order to understand which is the 

cause of lethality and, subsequently, the role of CyFIP1 and the WAVE complex in 

developmental events. Early embryonic development can be divided into two phases, 

a preimplantation and a postimplantation phase. 

 

1.11.1 Preimplantation development 

Preimplantation development is characterized by a fast cell division process from a 

one-cell embryo to a blastocyst stage embryo and lasts 4-5 days in mice (Fig. 10). 

Early cellular doubling divisions occur without a perceptible increase in embryo size.  

The zona pellucida surrounds the embryo until implantation (Comiskey, Goldstein et 

al. 2003). Mammalian embryos need to establish a permanent connection to maternal 

tissues to grant nutrient and oxygen supply. Timing of implantation in the mouse is at 

around 4.5 days of embryonic development (E4.5). The E4.5 mouse blastocyst 

contains three cell types: epiblast, trophoblast and primitive endoderm. Lineage 

studies, mostly using chimeras and reconstituted blastocysts, have shown that the 

three cell types give rise to distinct tissues later in development (Rossant 1987). The 

primitive endoderm and the epiblast lineage are the major cell lineages which are 

important for gastrulation (Srinivas 2006). 
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Figure 10. Preimplantation embryo development. (A) Schematic view of the development of the 

preimplantation embryo in mice from day 0 (E0) to day 5 (E5.0) (Wang und Dey, 2006, modified by Wörsdorfer). 

(B) Light microscopy images of early embryonic development stages. IZM: inner cell mass, BZ: blastocoele, TE: 

trophectoderm, ZP: zona pellucida (Braude, Pickering et al. 2002, modified by Wörsdorfer) 

 

1.11.2 Postimplantation development 

The early postimplantation development involves dynamic processes resulting in 

dramatic rearrangements in the embryo. At around E5.0, soon after implantation, the 

early postimplantation mouse embryos are divided into two regions and display a 

proximal-distal body axis (Fig. 11A).  

 



1. Introduction 

23 

 

 
Figure 11. Early postimplantation development in the mouse. (A) At PrS/egg cylinder stage, the embryo 

consists of two cell layers, the epiblast (blue) and the surrounding Visceral Endoderm (VE, light green) and is 

characterized by a proximal-distal (PD) axis. The differentiation of VE cells at the distal tip of the embryo into 

DVE (Distal VE, bright green) marks the first visible sign of the forming asymmetry. (B) Just prior to the beginning 

of gastrulation, the DVE migrates anteriorly (becoming Anterior VE, AVE) and marks the future anterior pole of 

the embryo. On the opposite side, at the very proximal end of the embryonic region, the primitive streak (PS) 

forms. (C) Mesoderm (yellow) and Definitive Endoderm (DE, orange) are formed in the PS. The PS progresses 

further distally and the produced DE and Mesoderm migrate laterally. Mesoderm also expands into the 

extraembryonic region, to form the visceral yolk sac (VYS) mesoderm. (D) At the early head fold (EHF) stage, 

almost the entire VE region has been replaced by DE and the VE displaced towards the extraembryonic region. 

The ectoderm in the anterior is specified to become neuroectoderm and the head folds start to extrude. At the 

anterior end of the PS, the node (nd), an embryonic organizer region, has formed. (E) At E8.5, the head folds 

have formed and the ventral body side of the embryo begins to close and thereby the embryo will be incorporated 

into the VYS. The mesodermal derived allantois establishes a contact to the chorion. Abbreviations: al: allantois, 

AVE: anterior visceral endoderm, DE: definitive endoderm DVE: distal visceral endoderm, EHF: early head fold 
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This is the egg-cylinder stage of the mouse embryo, so called because of a cup shaped 

structure. About 20 to 24 hours later, at early streak stage (~E6.5), the body axis shifts 

from proximal-distal to anterior-posterior and the embryonic germ layers begin to form: 

this is the process of gastrulation (Beddington 1981; Tam and Beddington 1987) (Fig. 

11B,C). The initiation of gastrulation is indicated by the primitive streak (PS), a transient 

structure that is located in the posterior of the embryonic region. Through the primitive 

streak epiblast cells can flow and form mesoderm and definitive endoderm. These cells 

then migrate to their respective destinations in the embryonic, and in the case of early-

generated mesoderm, also into the extraembryonic region (Parameswaran and Tam 

1995) (Fig. 11D,E). In consequence of the cylindrical shape of rodent embryos, the 

early postimplantation embryo requires a rotation along the longitudinal (antero-

posterior) axis that results in an inversion of the order of the germ layers: in fact before 

E8.0 the endoderm forms the outermost and the ectoderm the innermost cell layer, 

while at E9.5 the endodermal layer is on the inside of the embryo and the ectoderm is 

on the outside (Kaufman 1992). The inversion occurs in concert with the closure of the 

ventral and parts of the dorsal body walls in order to form a closed primitive gut and 

neural tube, respectively, and is referred to as embryonic turning (Kaufman 1992). This 

turning happens between E8.5 and E9.5 and together with the ventral closure gives 

rise to the folding of the midline endoderm and results in arranging the primitive gut 

tube (Fig. 12). This also induces the fusion of the two lateral heart primordia, which 

have already formed by E7.5, and the complete enclosure of the embryo by the visceral 

yolk sac. The visceral yolk sac is composed of cells of the extraembryonic region, 

which are the extraembryonic visceral endoderm and the extraembryonic mesoderm 

(Kaufman 1992; Erlacher 2009).  

 

stage, emb: embryonic region, epc: ectoplacental cone, ES: early streak stage, ExE: extraembryonic ectoderm, 

exemb: extraembryonic region, hf: head fold, ht: heart, MS: mid streak stage, nd: node, PrS: pre-streak stage, 

PS: primitive streak, VE: visceral endoderm, VYS: visceral yolk sack (Kaufman 1992, modified by Erlacher). 
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Figure 12. Embryonic turning in 

the mouse embryo. During early 

postimplantation development, the 

mouse embryo exhibits an inversion 

of germ layers. Chordate 

development requires the turning of 

the embryo in order to establish the 

embryonic body plan. (A) At E8.5, the 

embryo exposes its ventral body side, 

consisting of endoderm, to the 

outside and starts to be enclosed in 

the VYS. (B) While the enclosure in 

the VYS proceeds, the caudal end 

begins to “roll” in an anticlockwise 

motion around the rostral part of the 

embryo. (C) At E9.0, the embryo is 

almost entirely enclosed within the 

VYS. (D) The turning process is 

completed at around E9.5, and the 

embryo has achieved the fetal 

position, which is typical in chordate 

embryos. Abbreviations: al: allantois, 

hd: head, hf: head fold, ht: heart, 

VYS: visceral yolk sac (Kaufman 

1992, modified by Erlacher). 

 

With the inception of gastrulation the basis for proper development of neural and head 

structures is already laid down. The anterior ectoderm is structured to form the 

prospective brain structures. At head fold stage (E8.0), the neuroectoderm can already 

be distinguished from close-by surface ectoderm and elevates into clearly visible head 

folds (resulting in the stage name). Between E8.0 and E9.5, the time of embryonic 

turning, the head folds and the more caudal neuroepithelium folds up. The folds close 

and fuse in an exactly regulated mode which is starting at the hindbrain level and 

continues both rostrally and caudally forming the future fore- mid- and hindbrain 

regions and the neural tube. Subsequently, the neural tube generates the spinal cord 

(Kaufman 1992). During further development, many different cell types, structures and 

organs are specified at their designated location. All developmental stages are subject 

to exact regulatory machineries, consisting of a large number of different gene 

products that are present at a given time in a certain environment (Erlacher 2009). 
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1.11.3 Theiler stages 

Theiler stages have been used for a more detailed classification of embryonic 

development than the normal “days post coitum” or “embryonic day” classification. The 

mouse development is divided into 26 prenatal and 2 postnatal Theiler stages. Each 

Theiler stage is identified with one 'average' age, and a range of variation of real ages, 

centered on this average, that can be seen when actual developing embryos are 

studied. In fact, embryos of the same gestational age may differ in their stage of 

development. Especially during preimplantation and early postimplantation 

development, the embryo is involved in dynamic processes and dramatically 

rearranged in one day, so that the Theiler stages can quantify these changes in a better 

way. Theiler's criteria are, for example, cell number or somite number and therefore 

allow to distinguish many of the important phases of early development. 

 

 

Figure 13. Theiler stages and their 

relationship to “days post-coitum” 

(dpc). The 25 Theiler stages and the 

corresponding development of the 

embryo are shown (Kaufman 1992) 
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1.12 Aim of the Thesis 

The aim of this thesis is to obtain better insight into the functions of CyFIP1 and the 

WAVE complex during oogenesis and early mouse development: how the actin 

nucleation function is reconciled with cellular events such as cell survival, apoptosis, 

membrane trafficking and cell lineage programming; how the composition of the WAVE 

complex is regulated and which could be the relevant upstream and downstream 

signaling pathways. 

The starting point was the observation that CyFIP1 heterozygous females showed a 

reduction of fertility at as early as 10-12 weeks of age. Therefore the role of CyFIP1 in 

ovarian and follicular maturation was analyzed. 

Previous studies showed that embryos lacking CyFIP1 die at E6.5. The role of CyFIP1 

and the WAVE complex was studied during early embryonic development by using the 

CyFIP1 knockout mouse model. A focus was put on the genetic background and 

mutation inheritance in the mouse. In parallel to the analysis of early mutant mouse 

development, CyFIP1 ko ES cells were employed in an in vitro paradigm of embryonic 

development, the embryoid bodies. In this in vitro model of development, cell 

proliferation, differentiation and adhesion were analyzed. Germ layer formation 

mimicked in the embryoid bodies approach was analyzed by flow cytometry using 

specific developmental markers.  

Finally, the complexity of the composition of the WAVE complex was studied and new 

possible ligands were identified with biochemical and spectroscopic methods.  
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2.1 General stock solutions, buffers and media 

 

2.1.1 General solutions 

Solution   Concentration Substance 

10x PBS (1l) 1.5 M (87.68 g)  

162 mM (23 g anhydrous) 

38 mM (4.56 g) 

pH 7.4 

 

NaCl 

Na2HPO4 

NaH2PO4 

PBT 0.1 % Tween-20  

in PBS 

 

4% Paraformaldehyde (100 

ml) 

60 ml 

4 g  

dissolve at 65 ºC  

adjust volume to 100 ml

  

sterile filtrate 

 

PBS 

PFA 

 

PBS 

TBS (1l 10x) 1.5 M (87.68 g) 

  

0.25 M (25 ml) 

  

NaCl  

(1 M) Tris/HCl pH 

7.4 

TBS-T  0.2%  Tween-20  

in TBS 

 

2.1.2 Solutions for the analysis of nucleic acids 

Solution Concentration Substance 

50x TAE-Buffer (1l) pH 8.3 2 M (242.2 g) Tris base 

 57.1 ml Glacial acetic acid 

 0,05 M (100 ml)  EDTA 0.5 M (pH 8,0) 
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Proteinase K (stock in H2O) 10 µg/µl  

   

Tail DNA extraction buffer 50 mM  Tris/HCl pH7.4 

 100 mM NaCl 

 1% SDS 

 5 mM EDTA 

 0.5 µg/µl Proteinase K 

   

ES cells DNA extraction buffer 20 mM  Tris/HCl pH7.4 

 150 mM NaCl 

 2 mM EDTA 

 1% SDS 

 0.5 μg/μl Proteinase K 

   

DNA loading buffer 40% Sucrose 

 0.5% SDS 

 0.25% Bromophenol blue 

   

DNA ladder 1 kb Plus (500 µl) 50 µ  DNA ladder 1 kb Plus  

 83 µl DNA loading buffer 

 367 µl H2O 

   

RNA lysis buffer 100mM 

10mM 

NaCl 

MgCl2l 

 5mM 

50mM 

1% 

EDTA 

Tris/HCl pH 7.4 

Triton-X100 

 40U/ml RNAseOut (added just prior 

to use) 
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2.1.3 Solutions and Media for ES cell culture 

Solution Concentration Substance 

ES cell medium 

(500 ml) 

410 ml 

15% (75 ml) 

1 mM (5 ml) 

1 mM (5 ml)  

10 mM (5 ml)  

1 mM (5 ml)  

5 ml 

4 µl 

1 ml 

DMEM medium 

ES cell-tested Fetal Calf Serum 

Non essential amino acids (100x stock) 

Sodium Pyruvate (100x stock) 

HEPES pH 7.2 (100x stock) 

Glutamine (100x stock) 

Pen/Strep antibiotics (100x stock) 

β-mercaptoethanol  

LIF conditioned media (contains leukemia 

inhibitory factor) 

 

ES cell 

differentiation 

medium 

  

ES cell medium without LIF and only 10% FCS 

ES cell freezing 

medium 

10% DMSO in ES cell medium 

 

 

Gelatine (0.2%) 0.2% (w/v) ‘Porcine skin gelatine’ 

  

2.1.4 Solutions and media for flow cytometry 

Solution Concentration Substance 

MACS buffer 2mM 

1% 

EDTA 

Fetal calf serum 

PBS 

 

0,1% 

1% 

TritonX  

Fish gelatine 
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2.1.5 Solutions for biochemical analysis 

Solution Concentration Substance 

Coomassie solution  50% 

10%  

0.1% 

 

 

Methanol 

Acetic acid 

Coomassie Brilliant Blue 

stir O/N, filtrate 

 

ECL solution A (200 ml) 0.1 M 

4 ml 

0.1 ml  

 

Tris/HCl pH 8.6 

Luminol stock 

P-hydroxy-coumarin stock 

 

ECL solution B (200 ml) 0.1 M 

0.2 ml 

Tris-HCl pH 8.6 

H2O2 (30%) 

 

Luminol stock solution (10 

ml) 

0.44 g Luminol  

in DMSO 

 

P-hydroxy-coumarin stock (1 

ml) 

150 mg P-hydroxy-coumarin 

in DMSO 

 

 

 

IF blocking solution 

 

 

10% 

0.2% 

 

 

Goat serum 

Triton-X100 

in TBS 

 

IF washing solution 

 

0.2% 

 

Triton-X100 

in TBS  

 

10x NCP (Western blot 

washing buffer) 

 

1.47 M 

0.4 M   

0.5 %  

pH 8-8.2 

NaCl 

Tris base 

Tween-20 
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10x SDS running buffer 0.25 M 

1.92 M 

1% 

Tris base 

Glycine 

SDS 

 

5x SDS loading buffer 110 mM  

20%  

3.8% 

8%  

ad libitum  

Tris/HCl pH 6.8 

Glycerol 

SDS 

β-mercaptoethanol  

BPB (Bromophenol blue) 

 

Towbin transfer buffer 25 mM 

192 mM 

20% 

 

Tris base 

Glycine 

Methanol 

Western blot blocking 

solution 

5% Non-fat Milk powder 

in 1x NCP 

 

Triton lysis buffer 150 mM 

50 mM 

1% 

1x 

NaCl 

Tris/HCl pH 7.4 

Triton-X100 

EDTA-free Complete protease 

inhibitor (Roche) 

 

SDS stacking gel (4%)  

(for 2 gels) 10 ml 

6.1 ml 

1.3 ml 

2.5 ml 

50 µl 

70 µl 

5 µl 

 

 

H2O 

30% Acrylamide (1:38) 

0.5 M Tris/HCl pH 6.8 

20% SDS 

10% APS (Ammonium Persulphate) 

TEMED 
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SDS separating gel (8%)  

(for 2 gels) 20 ml 

10.7 ml 

5.3 ml 

3.8 ml 

100 µl 

140 µl 

H2O 

30% Acrylamide (1:38) 

2 M Tris/HCl pH 8.8 

20% SDS 

10% APS (Ammonium Persulphate) 

10 µl TEMED 

   

Coupling buffer 0.1 M NaCO3 

 0.5 M 

pH8.5 

NaCl 

 

   

Blocking buffer (for Profilin2 

beats) 

0.1 M 

0.5 M 

Tris pH 8.0 

NaCl 

 

 

 

2.2 Commercial solutions 

 

2.2.1 Commercial solutions for nucleic acid analysis 

Name Manufacturer 

dNTPs 100 μM each Promega 

MgCl2 25 mM Promega 

PCR-flexi-buffer (5x) Promega 

Go-Taq Polymerase 5 u/μl Promega 

SuperScriptIII First Strand Synthesis System for RTPCR Invitrogen 

 

2.2.2 Commercial solutions for tissue culture 

Name Manufacturer 

DMEM Gibco 

DMSO Sigma 
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FCS PAA 

HEPES pH 7.2 (100x) Gibco 

L-Glutamine (100x) Gibco 

LIF Gibco 

Non essential amino-acids (100x) Gibco 

PBS Gibco 

Pen/Strep antibiotics (100x) Gibco 

Sodium pyruvate (100x) Gibco 

Trypsin (2.5%) Gibco 

Trypsin-EDTA (2.5%-0.05%) Gibco 

 

2.2.3 General tissue culture materials 

Name Manufacturer 

Cell culture flasks (75 cm3) Corning 

Cryotubes Nunc 

Pipetteman Eppendorf 

Filters Millipore 

Lab-Tek™ Chamber Slides™ Thermo Scientific 

Petri dishes (diameter 3 cm, 10 cm) VWR 

Pipettes (1 ml, 2 ml, 5 ml, 10ml, 25 ml, 50 ml) BD Falcon 

Plastic tubes (15 ml, 50 ml) Sarstedt 

Well plates (96-, 48-, 24-, 6-well) Corning 

 

2.2.4 Further material 

Name Manufacturer 

Protein transfer membrane Immobilon-P Millipore 

Bio Max XAR Film Kodak 

Microspin columns G-50 GE- Healthcare 

1.5/2 ml tubes  Roth 
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2.3 Commercial chemicals and reagents 

 

2.3.1 Liquids 

Name Manufacturer 

Acrylamide (30%) BioRad 

Bovine serum albumin (BSA) (10 mg/ml) New England Biolabs 

Bradford reagent (5x) BioRad 

Chloroform Merck 

CyQUANT® Cell Proliferation Assay Kit Life Technologies 

Dimethylsulfoxide (DMSO) Merck 

Eosin (0.05% Eosin in 96% Ethanol) Merck 

Ethanol (technical) Merck 

Ethanol, absolute Merck 

Ethidiumbromide (10 mg/ml) BioRad 

Film developer solution G153 AGFA 

Film fixer solution G354 AGFA 

Formamide Sigma 

Glacial acetic acid Merck 

Glutaraldehyde (25%) Sigma 

Glycerol Sigma 

HCl 37% Merck 

Hemalaun Merck 

Heparin Sigma 

Hydrogen peroxide (30%) Sigma 

Isopropanol Merck 

β-Mercaptoethanol Sigma 

Methanol VWR 

NBT (Nitroblue tetrazolium chloride 100mg/ml) Sigma 

Phenol Merck 

RNase Inhibitor Roche 

TaqMan® probes Life Technologies 

TEMED Sigma 

http://www.dict.cc/englisch-deutsch/glacial.html
http://www.dict.cc/englisch-deutsch/acetic.html
http://www.dict.cc/englisch-deutsch/acid.html
http://www.dict.cc/englisch-deutsch/nitroblue.html
http://www.dict.cc/englisch-deutsch/tetrazolium.html
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Transcription buffer (for Digoxigenin labeling) Roche 

Triton-X100 

TRIzol® 

Roche 

Life Technologies 

Tween 20 Sigma 

 

2.3.2 Reagents 

Name Manufacturer 

Agar AppliChem 

APS Fischer Scientific 

Bromophenol blue BioRad 

BSA Merck 

Coomassie Brilliant Blue BioRad 

dpN6 Pharmacia 

DTT Sigma 

EDTA Sigma 

Glucose Merck 

Glycine Grüssing 

Luminol Sigma 

MgCl2 Sigma 

Milk powder (non-fat) Roth 

NaH2PO4 Sigma 

Na2HPO4 Sigma 

NaOH pellets Sigma 

P-hydroxy-Coumain Sigma 

Poly-L-proline (MW 40.000) Sigma 

Protease inhibitor cocktail tablets,Complete, EDTA free Roche 

Proteinase K Sigma 

SDS Merck 

Sodium chloride Merck 

Tris base Ultra  Roth 
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2.4 Technical equipment 

Description Manufacturer 

Axiovert + AxioCam Color 412-312 Zeiss 

Binocular MS 5  +  

Camera ConProgRes C10 plus +  

Light source  KL 1500 LCD  

Leica 

JENOPTIK Germany 

Leica 

Centrifuge 5415 D  Eppendorf 

Centrifuge 5417 R  Eppendorf 

Centrifuge J2-HS Beckman 

Centrifuge J2-MC Beckman 

Centrifuge tissue culture  Beckmann 

CTR 5500 + camera DFC 420 C  Leica 

Electric homogenizator Bosch 

Film developer Curix 60  AGFA 

Freezer (-80 °C)  Thermo Scientific 

Gel documentation UV Herolab 

Gel electrophoresis running chambers  BioRad/EMBL 

Glass-Teflon tissue grinders Co 

Heating blocks Grant/QBT 

Hybridization oven Bachofer 

ImageQuant LAS4000 Mini GE Healthcare 

Incubators for bacterial culture Heraeus 

Incubators for tissue culture Heraeus 

Magnetic stirrers Heidolph 

Microscopes for tissue culture Leitz 

Multi-channel pipettes Eppendorf 

Ovens Heraeus 

PTC-200 Peltier Thermal Cyclers MJ Research 

pH-meter  InoLab 

Pipette tips Molecular Bio Products 

Pipettes  Gilson 

Pipetteboy Eppendorf 

Power supply PowerPAC300 BioRad 

http://www.dict.cc/englisch-deutsch/magnetic.html
http://www.dict.cc/englisch-deutsch/stirrer.html
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Power supply PowerPAC200 BioRad 

Rocker Heidolph 

Scale Sartorius 

Scale (analytic) Kern & Sohn 

SDS PAGE apparatus Pharmacia Biotech 

Shaker New Brunswick Scientific 

Spectrophotometer Beckmann 

Thermomixer Eppendorf 

UV-Table Bachofer 

Vortex  Scientific Industries 

Water purifier Millipore 

Western blotting apparatus BioRad 

 

  

http://www.dict.cc/englisch-deutsch/rocker.html
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2.5 Antibodies  

 

2.5.1 Primary antibodies 

Antigen Isotype  Dilution Manufacturer 

    

Abi1 rabbit polyclonal 1:1000 Sigma 

Abi2 mouse polyclonal 1:500 Sigma 

Actin C4 mouse monoclonal 1:2000 MP Biomedicals 

Akt rabbit polyclonal 1:1000 Cell signaling 

phoshpho Akt (Ser473) rabbit monoclonal 1.1000 Cell signaling 

Erk1/2 (p44/42 MAPK) rabbit polyclonal 1:1000 Cell signaling 

phoshpho Erk1/2 (p44/42 

MAPK) 

rabbit monoclonal 1:1000 Cell signaling 

FAK rabbit polyclonal 1:1000 Abcam 

GAPDH mouse monoclonal 1:5000 Callbiochem 

Nap1 rabbit polyclonal 1:1000 Millipore (Upstate) 

PI3-Kinase p85 (N-SH3) mouse monoclonal 1:1000 Millipore (Upstate) 

POP 5C9-E12 (Hybridoma 

supernatant) 

mouse monoclonal 1:1.5 Witke Lab 

(Massimi) 

WAVE1 mouse monoclonal 1:500 BD Bioscience 

WAVE2 rabbit polyclonal 1:500 Cell signaling 

Smad1 rabbit monoclonal 1:1000 Cell signaling 

phoshpho Smad1/5 rabbit monoclonal 1:1000 Cell signaling 

SOS1 rabbit polyclonal 1:1000 Cell signaling 

Sra1 rabbit polyclonal 1:500  Millipore (Upstate) 

α-Tubulin mouse monoclonal 1:5000 Sigma 

γ-Tubulin mouse monoclonal 1:2000 Sigma 
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2.5.2 Direct labeled Antibodies for flow cytometry 

Antigen Conjugate/Host Dilution Manufacturer 

Beta-catenin PE/mouse 1.100 eBioscience 

CD184 (CXCR4) PerCP-eFluor 710/rat 1:100  eBioscience 

Cleaved Caspase 3 Alexa Fluor 488/rabbit 1:50 Cell signaling 

Sca-1 FITC/rat 1:100 eBioscience 

SSEA1 PE/mouse 1:100 eBioscience 

 

2.5.3 Secondary Antibodies 

Secondary antibody Isotype Dilution Manufacture 

HRP goat anti-mouse polyclonal 1:5000 Merck 

HRP goat anti-rabbit polyclonal 1:5000 Merck 
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2.6 Oligonucleotides 

The Oligonucleotides in this thesis were produced by Eurofins MWG Operon. 

 

2.6.1 Oligos for mice genotyping 

Oligo Sequence (in 5’-3’ direction) 

Cre 1 (sense) (346) GCC TGC ATT ACC GGT CGA TGC AAC GA 

Cre 2 (antisense) (345) GTG GCA GAT GGC GCG GCA ACA CCA TT 

Cre 3 (antisense) (356) TCG TTG CAT CGA CCG GTA ATG CAG GC 

CyFIP 1-flox1 for (492) GTT TTA AGG AAG TCT TTG CC 

CyFIP 1-flox1 rev (493) TAA CTA AAA GAG GTA CC 

CyFIP 1-floxed rev (576) AAG ACT GAT AAG TAG CTC C 

 

 

2.7 ES cell lines  

CyFIP1+/+ 

CyFIP1+/- 

CyFIP1-/- 

Embryonic stem cell lines, 

obtained from blastocysts from 

CyFIP1 heterozygote matings.  

Generated and first 

described in this 

thesis. 

 

 

2.8 Animals 

All animals used for this thesis were bred under optimal conditions, following the 

German and EU guidelines (2010/63/UE) for welfare of laboratory animals. The mice 

were in C57/Bl6N or CD1 genetic background.  

The following mouse lines were used for the experiments: 

 

Line  Reference 

CyFIP1-/- ko Massimi (PhD Thesis), 2008 
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2.9 Molecular Weight Markers 

Name Manufacture 

SeaBlue Plus2 Pre-Stained Standard Invitrogen 

1 kb Plus DNA Ladder Invitrogen 

Broad Range marker BioRad 

Precision Plus Protein™ Dual Color BioRad 
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3.1 Molecular Biology 

 

3.1.1 Isolation of genomic DNA from mouse tail biopsies 

A 3 mm tail biopsy was cut from 17-21 days-old pups. The tail biopsy was digested in 

200 µl of Genomic DNA extraction buffer over night at 56°C. On the next day, ½ volume 

(100 µl) of saturated NaCl solution was added to the digested tails. The tubes were 

shaken vigorously for 90 seconds and centrifuged for 14 minutes at 14000 rpm. 220 µl 

of the supernatant were used to precipitate the DNA by transferring them to a new tube 

containing ~2.5 volumes (500 µl) of Ethanol. The DNA, visible by flocculation, was 

spun for 1 min at 14000 rpm and the supernatant was removed. The DNA pellet was 

dried at 37°C for a few minutes and resuspended in 200 µl of MilliQ water by shaking 

at 37°C for one hour. For PCR reaction, 1 µl of the resuspended DNA was used, while 

for southern blotting 50 µl per digestion were used. 

 

3.1.2 Isolation of genomic DNA from ES cells 

ES cells derived from blastocysts were genotyped according to the following method. 

ES cells were cultured on gelatine-coated 6 well plates for two passages to dilute out 

the feeder cells. In order to lyse ES cells, 1 ml of ES cell lysis buffer was added and 

incubated for 2 hours at 37°C. Then the lysates were recovered with a cut 1 ml tip (due 

to genomic DNA viscosity) and transferred into a 2 ml Eppendorf tube. The lysates 

were incubated over night at 56°C. On the following day, DNA was extracted by adding 

½ volume (500 µl) of a saturated NaCl solution, shaking very energetically for 90 

seconds and centrifuging for 14 min at 14000 rpm. The supernatant was transferred 

into 2.5 volumes (3.75 ml) of ethanol in a 5 ml snap cap tube. The DNA flocculated and 

after a short spin, the supernatant was removed with a pulled Pasteur-Pipette. The 

DNA pellet was dried at 37°C for a few minutes and resuspended in 500 µl of MilliQ 

water and shaken at 37°C for one hour to obtain complete dissolution. 1 µl of a 1/10 

dilution was used for the PCR reaction. 
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3.1.3 Isolation of genomic DNA from amnion or yolk sac 

Genomic DNA was extracted from the amnion or yolk sac by Proteinase K digestion 

(0.5 mg/ml) of the tissue in 20 µl of MilliQ water overnight at 56°C. The following day 

Proteinase K was inactivated by increasing the temperature to 98°C for 10 min. After 

cooling and a short centrifugation, 1 µl of the supernatant was used for the PCR 

reaction. 

 

3.1.4 Phenol-chloroform extraction of DNA 

Phenol-Chloroform extraction is a way to remove proteins from nucleic acid samples. 

It was employed on some genomic DNA samples if the PCR reaction was not clear to 

increase the purity of the template DNA. 

Phenol/Tris-(pH 7.4)-Chloroform (1:1) was added with a ratio of 1:1 to the DNA 

solution, and thoroughly shaken for 30 sec. The emulsion was centrifuged for 10 min 

at 14.000 rpm to obtain a separation of the phases. The aqueous, DNA-containing, 

phase on top was carefully transferred into a new Eppendorf tube. The DNA was 

precipitated adding 2.5 volumes of Ethanol and centrifuging for 10 min. After removal 

of the supernatant, the pellet was dried and dissolved in H2O. 

 

3.1.5 Genotyping of mice, ES cells, and embryos by PCR 

The polymerase chain reaction (PCR) is a widely used technique in molecular biology. 

It is an enzymatic way to amplify a DNA template in replicative cycles using short 

oligonucleotide primers and free deoxynucleotides. Specific sense and antisense 

primers flanking the desired target sequence were used. There are three main steps 

in each PCR cycle: denaturation, annealing and extension. The reaction mixture is first 

heated to a temperature between 95-98°C that ensures DNA denaturation. The mixture 

is then cooled to a temperature (generally, between 55-65°C) that permits annealing 

of the primers to the complementary sequences in the single-stranded DNA. The short, 

typically 18 to 24 bases, oligonucleotide primers should have a defined GC content 

(40-60%) that determines the annealing temperature. The extension step typically 

occurs at 72°C. In the presence of the four dNTPs the Taq Polymerase synthesizes 

new DNA strands starting at the 3’-end of the annealed primers. These steps are 
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repeated for 25-35 cycles. A final extension step at 72°C for 3-10 min is usually 

performed to ensure that the new DNA fragments are complete. 

The amplified DNA products can be visualized by gel electrophoresis using agarose 

gels after staining with ethidium bromide or other fluorescent intercalating agents. 

 

3.1.5.1 Genotyping of CyFIP1 ko mice 

Oligo sequences are found in the Materials (2.6.1). 

PCR Mix for 20 μl of Total Reaction Volume: 

11.2 µl   H2O 

     4.0 µl 5 × Flexi Buffer 

  1.2 µl MgCl2 (25mM) 

  0.4 µl dNTPs (10mM) 

     1.0 µl Oligos 492/493 (20 mM) 

     1.0 µl Oligos 492/576 (20 mM) 

  0.2 µl Taq-Polymerase 

     1.0 µl Genomic DNA 

 

Programme (CKO-Pfn2) 

98°C for 2 min  

96°C for 30 sec 

55°C for 1 min 15 sec                 35 cycles   

72°C for 30 sec 

72°C for 5 min 

15°C forever 

 

Expected PCR products: 

wild type band: 270 bp 

deletion band: 410 bp 
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3.1.5.2 Genotyping of Cre-deleter mice 

PCR Mix for 20 μl of Total Reaction Volume: 

11.2 µl   H2O 

     4.0 µl 5x Flexi Buffer 

  1.2 µl MgCl2 (25mM) 

  0.4 µl dNTPs (10mM) 

     0.5 µl Oligos 346/345 (20 mM) 

     0.5 µl Oligos 149/150 (20 mM) 

  0.2 µl Taq-Polymerase 

     1.0 µl Genomic DNA 

 

Programme (Cre-P) 

98°C for 2 min  

96°C for 30 sec 

58°C for 30 sec                 30 cycles   

72°C for 40 sec 

72°C for 5 min 

15°C forever 

 

Expected PCR products: 

wild type (gelsolin) band: 264 bp 

Cre band: 600 bp 

 

3.1.6 Gel electrophoresis 

The DNA products amplified by PCR can be visualized by gel electrophoresis. Gels 

were prepared, depending on the size of DNA fragments, by melting 0.8-2% (w/v) 

agarose in 1× TAE buffer and adding 7 µl of ethidium bromide per 100 ml of gel. In the 

electrophoresis chamber the gel was covered with 1× TAE buffer. DNA loading buffer 

was added to the DNA (PCR products have the loading buffer included in the PCR 

mix) and samples were pipetted in the gel slots. The gel was run at constant voltage 

(20-90V) for 30-90 min. Finally, gels were documented using a gel documentation 

system with UV illumination (BioRad). 
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In order to measure the RNA concentration and determine the purity of the RNA, 1 μl 

of this solution was measured with the NanoVue (GE Healthcare) spectrophotometer. 

 

 

3.2 Cell Biology 

 

3.2.1 ES cell culture 

Cell culture was performed under sterile conditions in a sterile laminar flow hood with 

sterile media, glass and plastics. Cells were cultured in a humidified incubator at 37°C 

in 5% CO2 atmosphere. 

ES cells were grown in tissue culture plates or flasks coated with gelatine, on a layer 

of mouse embryonic fibroblasts (MEFs) inactivated by -irradiation in ES Cell Medium, 

which was changed daily. ES cells were passaged every 3-4 days. For passaging ES 

cells, medium was removed, and then cells were washed twice with PBS and incubated 

in Trypsin-EDTA for 5 min at 37°C. In order to inactivate trypsin, at least 1 volume of 

ES Cell Medium was then added and the cells were resuspended to a single-cell 

suspension, transferred to a 15 ml tube and centrifuged at 760 rpm for 5 min. The pellet 

was resuspended in an appropriate volume of ES Cell Medium and cells were plated 

on new gelatine coated plates with freshly plated MEFs.  

 

3.2.2 Freezing and thawing of ES cells 

ES Cells can be stored for long periods of time in liquid N2. 

In order to freeze ES cells, they were treated with trypsin and centrifuged as previously 

described (3.2.1 Cell Culture). Afterwards the cell pellet was resuspended in ice-cold 

ES cell freezing medium and transferred into cryo-vials. Vials were frozen overnight at 

-80°C. The following day, the vials were transferred into liquid nitrogen. 

ES cells were thawed in a 37°C water bath. Immediately after thawing, cells were 

complemented with ES Cell Medium, transferred in a tube, and centrifuged (760 rpm, 

5 min).  

The pellet was resuspended in ES Cell Medium and plated onto a 10 cm dish coated 

with gelatine, on a monolayer of freshly plated mitotically inactivated MEFs. 
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3.2.3 Generation of mouse Embryonic Stem (ES) cells 

 

3.2.3.1 Blastocysts preparation from mice 

Time-mated females were sacrificed at embryonic day 3.5. The uteri were dissected 

and transferred to a petri dish containing ES Cell Medium. With scissors and forceps 

the uteri were cleaned from fat. A clean uterus was transferred to a 35 mm dish and 

the blastocysts were flushed out of the uterine horn using a 3 ml syringe with a 27G 

needle, using ES Cell Medium. The whole process was performed on an inverted 

microscope. Blastocysts were collected with a capillary tube and pipette and 

transferred singularly into the wells of a 48-well plate containing a layer of mitotically 

inactivated MEFs. 

 

3.2.3.2 ES cell derivation 

Blastocysts were incubated at 37°C with 5% CO2 for approximately two days in 48-well 

plates. During this period it is important to avoid any interference. After attachment to 

the feeder layer, the blastocysts hatch and the ES Cell Medium can be changed. The 

inner cell mass (ICM) then expanded and 5 or 6 days after plating of the blastocyst a 

defined ES cell-like population could be seen in the expanded ICM. The cells were 

then trypsinized for the first time and plated again on a new 48-well plate on fresh MEF 

feeder layer. The typical appearance of mouse ES cell clones was normally seen 4-5 

days after the first trypsinization. The following days the ES cells grew and were finally 

trypsinized a second time and plated on a 6-well plate and finally expanded to 75 cm2 

flasks. ES cells can then be frozen in ES cell freezing medium. Normally eight 1 ml 

aliquots were frozen from a 75 cm2 flask of each established mouse ES cell line.  

 

3.2.3.3 ES cell differentiation 

Mouse embryonic stem cells are derived from the ‘inner cell mass’ of blastocysts and 

have pluripotent properties. Embryonic stem cells of mouse can differentiate into 

different embryonic tissues depending on culture conditions. 
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3.2.3.3.1 Spontaneous differentiation into embryoid bodies 

ES cells were trypsinized from a cell culture dish and pipetted to obtain a single-cell 

suspension. The cells were then transferred onto a Petri dish in ES cell differentiation 

medium to induce differentiation. After a few days in culture they formed cell 

aggregates of different sizes. The cells could not attach to the surface of the Petri dish 

and grew in suspension. The medium was carefully changed every second day. 

Culture was stopped after 7 days. The derived embryoid bodies varied greatly in size. 

 

3.2.3.3.2 Hanging-drop method for embryoid bodies 

To control the size of the cell aggregates more precisely, the hanging drop method 

was used. After trypsinization, ES cells were resuspended in ES cell differentiation 

medium and counted with a haemocytometer. Fifty drops of 20 μl, containing 

approximately 1500 cells, were deposited on the interior of a cover of a 10 cm Petri 

dish and the cover was set over the bottom part containing PBS. After two days in 

culture at 37°C each drop contained a small aggregate of cells, which was transferred 

to a Petri dish and cultured for additional 4 days. During this period, medium was 

changed carefully every second day.  

 

 

3.3 Flow cytometry analysis 

Flow cytometry is a widely used method for characterizing and separating individual 

cells. With Flow cytometry it is possible to measure certain physical and chemical 

characteristics of cells or particles as they pass in a fluid stream by a beam of laser 

light. Cells or EBs in this work were grown like described previously and analyzed by 

flow cytometry. 
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3.3.1 Preparation of ES cells for flow cytometry analysis 

ES cells were trypsinized from a cell culture dish and pipetted in ES cell Medium to 

obtain a single-cell suspension. After centrifugation the ES cells were resuspended in 

MACS Buffer and stained as followed in 3.3.3 or 3.3.4. 

 

3.3.2 Preparation of EBs for flow cytometry analysis 

The EBs, which were grown in suspension in Petri dishes, were transferred carefully 

into 50 ml falcon tubes. For 10 min the EBs were allowed to settle down to the bottom 

of the falcon tube. The supernatant was removed and EBs were washed two times 

with PBS. A gentle spin for 5 minutes at 500 rpm was done to collect the EBs at the 

bottom of the tube when in PBS. Supernatant was discarded. An appropriate volume 

of MACS buffer (approximately 15-25 ml per falcon depending on the amount of EBs) 

was added and incubated at RT for about 15 min with pipetting in between until a single 

cell suspension was visible under the microscope. Around 106 cells were transferred 

to an eppendorf tube for each antibody staining and flow cytometry assay. The cells 

were kept on ice at 4°C. 

 

3.3.3 Extracellular antibody staining for flow cytometry 

All steps were performed at 4°C.The cells in Eppendorf tubes were spun down for 5 

min at 1000 rpm, the supernatant discarded and the pellet resuspended in 100 µl of 

MACS buffer. 1 µl of the appropriate fluorescently-labelled primary antibody was added 

and incubated at 4°C in the dark for 45 min. After 45 min, 500 µl of MACS buffer were 

added to dilute the antibody and spun down at 1000 rpm for 5 min. The supernatant 

was discarded and the cells were washed once in 500 µl of MACS buffer and spun 

down again. After the supernatant was removed the cells were resuspended in 200 µl 

of MACS buffer and analyzed by flow cytometry (BD Accuri C6). 
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3.3.4 Intracellular antibody staining for flow cytometry 

All steps were performed at 4°C. The cells collected in Eppendorf tubes were spun 

down for 5 min at 1000 rpm, the supernatant discarded and, in order to fix the cells, 

resuspended in 300 µl 2% PFA and incubated for 10 min at 4°C. Then 500 µl of MACS 

buffer were added to dilute the PFA. After fixation centrifugation must be performed at 

3000 rpm for 5 min to minimize cell loss. Supernatant was discarded and cells washed 

once with 500 µl of MACS buffer and treated as previously described. The cells were 

resuspended in in 300 µl of MACS Buffer with 0,1% TritonX and 1% fish gelatine and 

incubated for 45 min to permeabilize and block the cells. Afterwards cells were spun 

down and resuspend in 100 µl of MACS buffer. 1 µl of the appropriate fluorescently-

labelled primary antibody was added and the cells were incubated at 4°C for 45 min in 

the dark. After 45 min, 500 µl of MACS buffer were added to dilute the antibody and 

cells were spun down at 1000 rpm for 5 min. The supernatant was discarded and the 

cells were washed once in 500 µl of MACS buffer and spun down again. After the 

supernatant was removed the cells were resuspended in 200 µl of MACS buffer and 

analyzed by flow cytometry (BD Accuri C6). 

 

 

3.4 CyQuant assay 

The CyQuant assay (Life Technologies) uses DNA quantification as a measure to 

determine the number of cells, so it can be used for proliferation, differentiation and 

adhesion assays. The cells were seeded in triplicates in 96-well-plates at a defined 

density with 200 µl of medium. One plate was prepared for each time point. For the 

proliferation and differentiation assays cells were cultured for 1, 2, 3, 4 and 5 days, 

with medium changes every second day. For the adhesion assay cells were cultured 

for 1, 2, 3 and 4 hours. The time point zero was done by spinning cells down at the 

moment of plating for 5 min at 1000 rpm to attach them mechanically to the plate. After 

the respective incubation period, the medium was removed from the plates. The wells 

were carefully washed twice with PBS. The plates were then frozen at -80°C. The 

freezing step is critical for cell lysis. The plates can be stored at -80°C for up to 4 

weeks. For the assay, a working solution was prepared by adding 50 µl of CyQuant 

GR stock solution (Component A) to a mixture of 1 ml cell lysis buffer stock solution 
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(Component B) and 19 ml of nuclease-free water in a 50 ml tube protected from light. 

After the 96-well-plates were thawed at room temperature, 200 µl of the working 

solution were added to each well and the plates were incubated for 5 minutes. The 

fluorescence was determined by a microplate reader (Victor, Perkin Elmer) at an 

excitation wavelength of 480 nm and an emission wavelength of 520 nm. 

 

 

3.5 Microarrays 

The RNA expression levels of large numbers of genes can be analyzed by Microarrays. 

Illumina BeadChip arrays were used. The BeadChip arrays are constructed by 

introducing oligonucleotides bearing 3-micron beads to microwells etched into the 

surface of a slide-sized, silicon substrate. During the manufacturing process, beads 

self-assembly into the microwells of the BeadChip arrays. Each bead contains 

hundreds of thousands of copies of covalently-attached, oligonucleotide probes and is 

represented with an average of 30-fold redundancy (Illumina).  Cells were grown as 

described previously and trypsinized from a 10 cm cell culture dish. One wash in PBS 

was performed. Cells were lysed in 1ml of TRIzol® with pipetting up and down several 

times and immediately frozen at -20°C until processing. 

The Microarray and data analysis was done in the Microarray facility of Joachim 

Schulze, LIMES Institute. 
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3.6 Biochemistry 

 

3.6.1 Protein Lysates 

 

3.3.6.1 Preparation of protein lysates from mouse tissues  

Mouse organs were dissected on ice, shock-frozen in liquid nitrogen and stored at-

80°C. Fresh organs were also used for protein lysates. The organ was placed in Triton 

Lysis buffer in a Glass-Teflon douncer and homogenized at constant speed (250-500 

rpm) on ice until the tissue was completely dissociated. 

The homogenized tissue was centrifuged for 15 min at 14000 rpm at 4°C. The 

supernatant was transferred to a fresh tube and the protein concentration was 

determined using the Bradford assay. Protein lysates were shock-frozen and stored at 

-80°C. Diluted lysates in 1× SDS loading buffer were denatured by heating at 95°C for 

10 min and stored at -20°C. 

 

3.3.6.2 Preparation of protein lysate from cultured cells 

Adherent growing cells were trypsinized (see protocol), culture medium was added and 

the cell suspension was collected in a 15 ml Falcon tube. The cells were spun down 

for 5 minutes at 7600 rpm and washed twice with 5 ml of ice cold PBS. 

 

3.3.1.6.1 Cytoplasmic and nuclear cell lysates 

To prepare cytoplasmic and nuclear extracts, the cells were lysed in Triton lysis buffer 

(see 3.3.1.1) for 10 min on ice, after resuspending the cell pellet by pipetting up and 

down with a blue tip, and transferred into a 1.5 ml tube. Normally, for a 10 cm dish 

growing to confluence, 300 µl of Triton lysis buffer were used. The lysate was then 

spun down for 10 min at 14000 rpm at 4°C. The supernatant, which contained the 

cytoplasmic fraction, was transferred into a new tube. SDS loading buffer was added 

to a final concentration of 1x. Protein concentration was determined using the Bradford 
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assay. The pellet, which contained the nuclei, was washed once in Triton lysis buffer 

and lysed in 20-50 µl 2x SDS loading buffer. The lysates were denatured and genomic 

DNA sheared with 3-4 cycles of 2 minutes at 99°C and 15-30 seconds vortexing, 

cooled on ice and stored at -20°C. Protein concentration was determined using the 

Bradford assay. 

 

3.3.1.6.2 Total lysates 

For total protein extraction, cells were lysed in 2x SDS loading buffer. In order to shear 

genomic DNA and denature the proteins, the lysates were boiled for 2 min at 99°C and 

vortexed for 15-30 seconds for 3-4 times. Protein concentration was determined with 

the Bradford essay. Lysates were stored at -20°C. 

 

3.6.2 Western blotting 

 

3.6.2.1 Discontinuous SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

SDS-PAGE (Sodium Dodecyl Sulfate PolyAcrylamide Gel Electrophoresis (PAGE) 

(Laemmli 1970)) is a method to separate proteins according to their molecular weight. 

Since proteins with similar molecular weights may migrate differently due to their 

difference in structure or net charge, SDS, an anionic detergent, and β-

Mercaptoethanol, a reducing agent, are used to denature proteins to their primary 

(linearized) structure and coat them with a uniform negative charge. 

Acrylamide gels are composed of two layers: an upper layer about 2 cm long and with 

a fixed acrylamide concentration of 4%, called “stacking gel”, needed to compact 

proteins in one line; a lower layer about 5 cm long, called “resolving gel”, needed to 

separate the proteins: the size of the proteins of interest determine the acrylamide 

percentage to be used for this gel. The components of the WAVE complex (except for 

HSPC300) were analyzed using 8% acrylamide gels. Samples in 1X SDS loading 

buffer were loaded on the gel. To identify the size of the proteins, 7 μl of See Blue 

Plus2 Pre-Stained Molecular Weight Standard (Invitrogen) or 6 μl of Broad Range 

Unstained MW Standard (BioRad) were also loaded. Electrophoretic separation was 
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obtained in 1x running buffer at 80 V through the stacking gel and at 130 V through the 

resolving gel. The electrophoresis was stopped when the 50 kDa marker band reached 

the bottom of the gel. 

 

3.6.2.2 Blotting (wet blot) 

The high molecular weight proteins of the WAVE complex were transferred to a 

membrane with wet blots. Following SDS-PAGE, the gel was equilibrated in transfer 

buffer. 3MM Whatman sheets and a PVDF membrane were cut to the size of the gel 

and soaked in transfer buffer. The PVDF membrane was first activated by immersion 

for a few seconds in methanol. The gel and the membrane were packed between the 

soaked 3MM paper pieces and two sponge pads in perforated plastic plates as follows: 

Anode (+) 

Sponge pad 

2 Whatman sheets 

PVDF membrane 

Polyacrylamide gel 

2 Whatman sheets 

Sponge pad 

Cathode (-) 

 

The transfer was performed in a blotting tank for 90 min at 110 V at 4°C or overnight 

at 20 V at room temperature. 

 

3.6.2.3 Protein detection 

After transfer of the proteins to the PVDF membrane, the membrane was blocked for 

30 min in blocking solution. The primary antibody was diluted in blocking solution to an 

appropriate concentration and the blot was incubated either for 2 h at room 

temperature or overnight at 4°C. The membrane was washed three times for 10 min in 

1x NCP. Incubation of the blot with the secondary antibody conjugated to horseradish 

peroxidase (HRP) was carried out for 1 h at room temperature in blocking solution with 

a dilution of 1:5000. The membrane was again washed three times for 10 min in NCP 

1x. The protein of interest was detected by enhanced chemical luminescence (ECL) 
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utilizing the reaction of Luminol and H2O2, which is catalyzed by the HRP. For this 

purpose, the membrane was incubated with the ECL reagent for 1 min and the 

chemiluminescent signal was acquired with a LAS4000 Mini (GE Healthcare) imager. 

 

3.6.3 Coomassie staining  

Coomassie reagent was used to stain proteins on an acrylamide gel in order to 

estimate the protein concentration and the quality of the lysates.  

Gels were first fixed by incubation in 40% Methanol and 10% Acetic acid in Milli-Q 

water for 30 minutes (this step was only necessary for gels that were not previously 

blotted, in fact the transfer buffer contains methanol, therefore blotted gels are already 

fixed). Then the gels were stained in Coomassie solution for 30 min at room temp. 

Finally the gels were washed twice for 15 minutes in 40% Methanol and 10% Acetic 

acid in H2O and twice for 30 minutes in 20% Methanol and 10% Acetic acid in H2O. 

Coomassie stained gels were stored in distilled water. 

 

3.6.4 Coupling of Profilin2 to sepharose beads 

Profilin2 beads were made by dissolving 50 mg of Profilin2 in 12 ml of coupling buffer 

(0.1 M NaCO3, 0.5 M NaCl, pH8.5). 1,5 g of dry CNBr-activated sepharose 4B were 

weighted (1 g of lyophilized powder gives about 3.5 ml final volume of medium) and 

suspended in 1 mM HCl. The medium was swelling immediately and then washed for 

15 minutes with 1 mM HCl on a sintered glass filter (porosity G3). Then the beads were 

washed briefly with cold water and coupling buffer. The beads were added immediately 

to the dissolved Profilin2 and incubated on a test tube rotator overnight at 4°C. 

The next day, the beads were washed three times with 40 ml of coupling buffer and 

blocked with 0.1 M Tris pH 8.0, 0.5 M NaCl for 2 hours at RT. Then the resin was 

washed 4 times (alternating with 0.1 M sodium acetate pH 4.0, 0.5 M NaCl and 0.1 

M Tris pH 8.0, 0.5 M NaCl). The beads were stored in 20 mM Tris pH 8.0, 5 mM EDTA, 

0.1 M NaCl, 0.1% NaN3 at 4°C. 
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3.6.5 Profilin2-beads pull-down 

The pull-down assay was performed in a cold room at 4°C. First columns were washes 

with 500 μl of lysis buffer. Then Columns were filled with 100 μl of lysis buffer. 

Afterwards a solution containing 100 μl of Profilin2-beads and 100 μl of water was 

added on top of the lysis buffer. The beads were left to settle and then washed twice 

with 500 μl of lysis buffer before the protein lysates with a total protein amount of 250 

mg were added. The flow-though was collected and added two more times to the 

column. The last flow-through, (unbound fraction) was transferred into a new tube and 

stored in 1x SDS loading buffer. To remove unbound proteins from the columns, they 

were washed 5 times with 800 μl of lysis buffer. After washing, 150 μl of 2x SDS-

loading buffer were added to each column and the beads were thoroughly mixed by 

pipetting up and down. The solution containing the beads (bound fraction) was 

transferred into a new tube and stored. All fractions were boiled at 99°C and vortexed 

in between (the bound fraction had to be vortexed carefully). The unbound and the 

wash fraction were shortly spun down and stored at -20°C. The bound fraction was 

spun down at 1000 rpm for 5 min to separate the beads from the supernatant. The 

supernatant was transferred into a new tube and both were stored at -20°C. 

 

 

3.7 Histology 

3.7.1 Paraffin embedding of ovaries for morphological studies 

For paraffin embedding, the ovaries were fixated in an eppendorf tube with 1 ml of 2% 

PFA in PBS overnight at 4°C with shaking. The next day the tissues were washed three 

times for 30 minutes in PBS at 4°C and then again in fresh PBS overnight. Dehydration 

was performed at 4°C on a shaker in increasing alcohol concentrations. After two hours 

in 50% ethanol/H2O the tissues were placed in 75% ethanol. The ethanol was replaced 

after two hours and the ovaries were incubated at least overnight at 4°C. The 

dehydration process was completed at room temperature with two 30 minutes 

incubations in 96% ethanol and two 30 minutes incubations in absolute ethanol. After 

dehydration the ovaries were transferred in glass vials and cleared incubating for three 

times 30 minutes in xylene. Then xylene was replaced with paraffin at 60°C. The 

ovaries were incubated in paraffin in a heating block at 60°C twice for at least 45 
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minutes, then in fresh paraffin overnight and the next day again 45 minutes in new 

paraffin. At last the each ovary was oriented in a small embedding mould, covered with 

an appropriate amount of paraffin and allowed to solidify at room temperature. The 

hardened paraffin block was then taken out of the mould, trimmed with a razor blade 

and mounted on a tray with melted paraffin ready to be cut with the microtome. 

 

 

3.7.2 Hemalaun and Eosin (H&E) staining 

The H&E staining was performed on paraffin sections of the mouse ovary. First the 

sections were deparaffinated and rehydrated, all steps taking place under the fume 

hood. The slides were placed in a glass shuttle and dipped three times for 10 minutes 

in a glass tray with xylene and then transferred to trays with decreasing alcohol 

concentrations for four minutes each: absolute ethanol, 96%, 75% and 50% ethanol. 

Then the slides were submerged in distilled water for 10 minutes before the staining. 

First the sections were stained with Meyers Hemalaun for 15 seconds and 

subsequently blued for 30 seconds to one minute under flowing tap water (nuclear 

staining). The counterstaining was realized with eosin/ethanol for two minutes. Then 

the slides were rinsed under flowing tap water until no more color came off and dipped 

for 30 seconds in 96% ethanol, then two minutes in absolute ethanol and finally for 2 

minutes in xylene. The sections were mounted with Entellan and left to dry overnight 

under the fume hood and the imaged under the microscope. 

 

 

.  
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4.1 Analysis of the infertility phenotype in CyFIP1+/- females  

 

4.1.1 CyFIP1+/- females show infertility 

Previous observations showed that CyFIP1 heterozygous (+/-) females, starting at the 

age of about three months, were less fertile than wild type females of the same age. 

Only 19% of CyFIP1+/- plugged females were pregnant in contrast to 72% of wild type 

females (figure 14, (Stoecker 2010)).  

 

 

Figure 14: Comparison between CyFIP1+/- and wild type pregnancies of plugged females. Percentage 

representation of pregnant females in CyFIP1+/- matings (n=31) and wild type matings (n=25). Females were 

older than 3 months and in a C57BL/6N genetic background (Stoecker 2010). 

 

In order to identify the role that CyFIP1 plays in ovaries and the reason for premature 

infertility in CyFIP1 heterozygous female mice, their ovaries were analyzed in 

comparison to wild type ovaries from age-matched littermates. 

 

4.1.2 WAVE complex stability in ovaries 

Previous experiments showed that the entire WAVE regulatory complex was down- 

regulated in the CyFIP1 knockout embryos (Stoecker 2010). Therefore the first 

question was if and how the components of the WAVE complex would also be affected 
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in the ovaries of CyFIP1+/- females. CyFIP1, as expected, was found reduced in 

protein extracts from heterozygous ovaries (figure 15). Surprisingly also the other three 

WAVE complex components analyzed showed a reduction in their levels (figure 15). 

Although Nap1 appeared expressed at much lower levels than in brain it was further 

reduced in extracts from heterozygous ovaries. Abi1 showed a double band running 

slightly higher compared to the two bands in the brain control, but it is well known that 

Abi1 has different splice isoforms in different tissues (at least 15 isoforms have been 

characterized in total). WAVE2 appeared very weak in the brain control, which is 

normal since WAVE1 and 3 are the predominant isoforms in the brain, and it was very 

clearly reduced in heterozygous ovaries. Overall more than 50% of the WAVE complex 

was lost in CyFIP1 heterozygous ovaries (figure 15). 

 

 

Figure 15: Western blot analysis of the WAVE complex in CyFIP1 heterozygous ovaries. Two wild type 

lysates and four CyFIP1 heterozygous lysates of ovaries from 3 months old females were loaded as indicated. 

A brain lysate was used as positive control. Examined proteins: CyFIP1, Nap1, Abi1, and WAVE2. Reference 

protein for loading control: GAPDH. A reduction of CyFIP1, Nap1, Abi1 and WAVE2 is evident in the 

heterozygous ovaries. 
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4.1.3 Morphological analysis of the ovaries 

In order to understand what effect the reduction of WAVE complex availability was 

having on the ovaries, firstly ovaries from 3 weeks old CyFIP1+/- and wt females were 

analyzed to see if any morphological differences could be detected at this early stage, 

considering that female mice become fertile at about 5-6 weeks of age. Therefore, the 

ovaries were taken and analyzed before the mice became fertile and had an estrous 

cycle. Ovaries were embedded in paraffin, sectioned and stained with H&E. The gross 

morphology of wt and CyFIP1+/- ovary sections after H&E staining resulted very similar 

(figure 16).  

 

 

Figure 16: Sections of wild type and CyFIP1+/- ovaries from 22 days old mice. (A) Sample section from a 

wt ovary stained with H&E shows the presence of follicles at different stages of development. (B) Sample section 

from a CyFIP1+/- ovary similarly stained shows no difference from the wt at this time point. 

 

Then ovaries from mature 3 month old mice were embedded in paraffin, sectioned and 

stained with H&E. Prior to embedding, the ovaries were imaged at the dissection 

microscope and measured. Measuring the ovary surface area showed in average no 

significant difference between wild type and CyFIP1 heterozygous ovaries (see 

appendix figure 38). 
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4.1.4 Follicle development analysis 

At early time point before fertility no major differences in morphology could be detected 

in follicles. Ovaries from sexually mature mice were analyzed more in depth. Follicle 

development is essential for fertility, therefore a detailed analysis of the number of 

follicles at each developmental stage was performed in CyFIP1+/- ovaries from 

females of 2-3 months of age. Follicles are classified according to their developmental 

stage as previously explained (Introduction 1.8.1) and for this study a classification in 

five types was chosen (figure 17).  

 

 

Figure 17: Classification of follicle types in H&E stained paraffin sections of the ovary. Type 1: primordial 

and primary follicles. Type 2: secondary follicles. Type 3: early antral follicles. Type 4: antral and pre-ovulatory 

follicles. Type 5: follicle-like structures without oocyte. 

 

Groups of three consecutive wt and CyFIP1+/- 10 m thick ovary sections at intervals 

of 100 m were stained by H&E in order to properly identify all the follicles in the ovary 

and minimize double counting. 

The numbers of Type 1 to Type 4 follicles showed no significant difference between 

CyFIP1+/- ovaries and wt ovaries. Nevertheless, the quantity of Type 1 and Type 3 



4. Results 

66 

 

follicles tended to be slightly lower in CyFIP1+/- ovaries, while a reverse trend was 

observed in follicles of Type 2 and Type 4. The comparison of Type 5 follicles, however, 

showed a significant difference (p=0.018) with 64 follicles in the ovaries of 

heterozygous animals compared to only 36 in the wild type littermates (figure 18). 

 

 

Figure 18: Comparison of the number of follicles of the 5 types present in the ovaries of wild type and 

CyFIP1 heterozygous females. Bars represent number of follicles classified according to their developmental 

stage. Type 1: primordial and primary follicles. Type 2: secondary follicles. Type 3: early antral follicles. Type 4: 

antral and pre-ovulatory follicles. Type 5: follicle-like structures without oocyte. The difference in the number of 

Type 5 follicles between wt and het is significant (wt n=3 and CyFIP1+/- n=4, t-test * 0.05>p>0.01). 

 

 

4.1.5 Follicle dimensional analysis 

Another possible indicator of follicular developmental defects is the size of the different 

types of follicles. The diameter of every Type 1 to Type 4 follicle counted in the previous 

section was measured, in order to compare their size distribution within each type in 

wild type and CyFIP1 heterozygous mice. Type 5 follicles were too heterogeneous in 

size to be included in this analysis. No significant differences in size were found in 
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Type 1-3 follicles (data not shown). Type 4 follicles, on the contrary, showed a 

significant difference in size distribution between wt and CyFIP1+/- animals. CyFIP1+/- 

type 4 follicles appeared to be in the majority of cases smaller than the controls (figure 

19, where the distribution is represented as a survival graph respect to follicle 

diameter). It appeared clear that only 1 heterozygous female showed higher 

percentage of larger Type 4 follicles while only 1 wt had significantly less of the larger 

Type 4 follicles. Note that females were not synchronized in hormone cycle, therefore 

a certain variability is expected. 

In summary, ovaries of CYFIP1+/- females showed a reduction of the WAVE complex 

components: CyFIP1, Nap1, Abi1, and WAVE2. Accordingly, follicle number and size 

was affected in CyFIP1+/- females: the follicle analysis showed higher number of Type 

4 follicles and significantly higher numbers of Type 5 follicles in CyFIP1+/- ovaries. 

Also, the size of Type 4 follicles was reduced in CyFIP1+/- mice. 

 

 

Figure 19: Survival analysis of the size of antral and preovulatory (Type 4) follicles of CyFIP1+/- females.  

Individual survival curves of follicle size (average diameter) showed that in the majority of CyFIP1+/- females 

follicles were significantly smaller than in wt. Statistical analysis using Logrank (Mantel-Cox) test gave p=0.0217. 
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4.2 Analysis of the CyFIP1 knockout mouse 

 

4.2.1 Genetic background and mutation inheritance 

As previously shown by Massimi, CyFIP1 is ubiquitously expressed in most adult 

tissues and during all embryonic stages as early as the embryonic stem cell stage. 

Since it was known that the knockout mouse was early embryonic lethal, to minimize 

the genetic variability and better define the window of lethality, heterozygous CyFIP1 

knockout mice originally in a C57BL/6J background were crossed into C57BL/6N 

background. CyFIP1-/- embryos were then obtained by intercrossing CyFIP1+/- 

animals. These knockout mice appeared to die much earlier than described in previous 

work from Massimi (see Introduction 1.7.2), around embryonic day 6.5 (E6.5). 

Moreover, in this background, the phenotype of CyFIP1 heterozygous females 

described above (section 4.1) became evident: a highly reduced fertility. In an attempt 

to overcome this problem the CyFIP1 knock out mouse was backcrossed into a CD1 

background. The CD1 mice are characterized by higher fertility, better maternal 

behavior and bigger litter size. After five generations of backcrossing with CD1 mice, 

timed matings between CyFIP1 heterozygous mice were resumed. Embryos were 

collected at E6.5, E7.5 and E8.5, imaged and genotyped by PCR. All three possible 

genotypes were found at these stages in CD1 genetic background with an overall 

correct Mendelian distribution (figure 20). Nevertheless the morphological analysis of 

the mutant embryos at the same stages as wild types indicated severe developmental 

differences. 
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Figure 20: Distribution of the genotypes obtained from heterozygous matings in CD1 background at 

different early embryonic stages. Percentage representation of the genotypes of embryos dissected at E6.5, 

E7.5 and E8.5 showed a normal Mendelian ratio with slight preference for heterozygosity. E6.5: 1 litter, 12 pups; 

E7.5: 4 litters, 49 pups; E8.5: 3 litters, 27 pups. 

 

 

4.2.2 Morphological analysis of Cyfip1 null mutant embryos 

A morphological analysis of the embryos was performed to better define the time point 

of embryonic lethality. At time point E6.5, the differences between the mutant and the 

control were already quite obvious: CyFIP1-/- embryos appeared delayed in 

development. E6.5 wt embryos had reached Ts10 (see Introduction 1.11.3 for the 

definition of Theiler stages), while CyFIP1-/- embryos were still around Ts7 (figure 

21A,B). CyFIP1-/- embryos at E7.5 were much smaller than controls and don´t develop 

properly (figure 21C,D). Finally at E8.5 CyFIP1-/- embryos had an overall degenerated 

aspect and the tissues appeared degraded. The mutants showed no morphology 

similarities to the controls anymore (figure 21E,F). 

In conclusion CyFIP1-/- embryos showed severe developmental problems starting at 

the time point where gastrulation and germ layer formation take place.  
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Figure 21: Morphology of control sample and CyFIP1-/- embryos at developmental day E6.5, E7.5 and 

E8.5. Control sample embryos (A,C,E), and Cyfip1-/- sample embryos (B,D,F). The genotype was determined 

by PCR on the whole embryo after imaging. 

 

 

4.3 Characterization of CyFIP1 ko mouse-derived ES cells 

In order to study early embryogenesis events, an alternative approach to embryonic 

analysis is the establishment of ES cell lines where defects in adhesion, proliferation, 

and differentiation can be analyzed. This approach was, therefore, chosen to elucidate 

the relevance of CyFIP1 in these processes and infer its function(s) in early embryonic 

development, since in vitro assays are a reproducible, easier to handle and validated 

system, and allow a substantial reduction of the use of experimental animals. For this 

reason ES cells were prepared from blastocysts (E3.5) collected after mating 

CyFIP1+/- mice of the C57Bl/6N genetic background. Briefly, blastocysts were 

singularly deposited on a feeder layer (mitotically arrested fibroblasts) and hatched for 

5-6 days, then trypsinized and re-plated for 4-5 more days, when they were trypsinized 

a second time and finally plated as an established line. ES cells were kept on feeder 

cells and with LIF (Leukemia inhibitory factor) to maintain their pluripotency. To induce 

differentiation, ES cells were plated on gelatine coated dishes without feeders or 

cultured in suspension. 
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4.3.1 The WAVE complex in CyFIP1 knockout ES cells is reduced 

After being generated, the ES cells were first characterized by analyzing the 

expression of CyFIP1 and the other components of the WAVE complex in total cell 

extracts, in order to establish if there was any biochemical difference. 

In all CyFIP1-/- ES cells no CyFIP1 protein could be detected, as expected (figure 22). 

The faint band visible in the WB could likely be ascribed to the feeder cells, which 

normally represent a 10% of the lysate. Also no CyFIP2 was expressed at this stage. 

Nap1, the direct interaction partner of CyFIP1 in the WAVE complex, was strongly 

down-regulated as well as WAVE2 and Abi2, which seemed to be the dominant Abi 

form in ES cells. Abi1 and WAVE1 appeared to be less expressed, compared to brain 

control, but equally affected by the loss of CyFIP1.  

Vinculin, a cytoskeletal adapter protein and FAK, the Focal Adhesion Kinase, which 

both play a role in focal adhesions, showed no differences between wt and knockout 

cells. SOS1 a binding partner of Abi1 in a different complex (Fan and Goff 2000) was 

not affected in the knockout. Total actin levels also did not appear to be altered by 

Western Blotting. 

In summary, the major biochemical alterations that could be identified in ES cells 

depleted of CyFIP1 concerned the WAVE complex. 
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Figure 22: Expression of the WAVE complex components in CyFIP1 knockout ES cells total protein 

extracts. Deletion of CyFIP1 resulted in a significant reduction of the complex subunits Nap1, WAVE1, WAVE2, 

Abi1 and Abi2. SOS1, Vinculin, FAK and Actin seemed not to be affected by CyFIP1 depletion. γ-Tubulin is used 

as reference gene. 

 

4.3.2 Genome-wide expression studies 

To obtain a comprehensive insight about the genes and the pathways altered in 

CyFIP1 ko ES cells and their differentiation, an RNA microarray approach was 

performed. Microarrays, a high-throughput method, allow generating massive amounts 
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of molecular biology data. Three different clones for each genotype of undifferentiated 

ES cells and ES cells cultured for 3 days on gelatine were analyzed on beadchip arrays 

containing more than 29000 annotated genes. Two main strategies were followed in 

data analysis: 1) Identifying the differentially expressed transcripts at the level of 

individual genes; and 2) Assessing the differential expression of transcripts grouped 

into modules related to functional pathways. In order to consider a single gene 

differentially expressed, it had to fulfill a dual-criterion of magnitude change over 

reference (arbitrary minimum fold change (FC) ±1.5) and statistical significance of 

p<0.05. For gene group analyses, the expression distribution of the whole gene group 

had to be significantly different between the control and knockout (p<0.05). All data 

were log2 transformed because log-transformation decouples a random multiplicative 

error from a true signal.  

 

4.3.2.1 CyFIP1 and CyFIP2 mRNA expression in wt and knockout 

undifferentiated and gelatine-differentiated ES cells 

First, expression levels of CyFIP1 and CyFIP2 mRNAs were analyzed. CyFIP1 mRNA 

expression in the knockout cells was only 2/3 of the wt. This could be explained by the 

fact that although exons 4-6 are deleted, the other exons are still in place, so an mRNA 

could be transcribed. Although it should be prevented from nuclear export by the NMD 

(non-sense mediated decay) mechanism, a leakage is always possible. However no 

functional CyFIP1 protein could be translated and was ever detected, as shown, for 

example, in figure 22. CyFIP1 mRNA expression levels did not differ between ES cells 

and differentiated cells, both in the wt and the knockout genetic background.  

On the contrary, CyFIP2 mRNA expression was affected by the knockout of CyFIP1. 

CyFIP2 in wt ES cells was low. Interestingly, in CyFIP1-/- ES cells CyFIP2 expression 

was about 20% higher than in the wt cells (figure 23). In the wt differentiated ES cells, 

after three days on gelatine, the expression of CYFIP2 increased about 1.5 fold in 

comparison to ES cells. The expression of CyFIP2 in CyFIP1-/- differentiated cells 

increased only slightly compared to undifferentiated cells and remained less than in wt 

cells. 
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Figure 23: Log2 transformed expression levels of CyFIP1 and CyFIP2 mRNA. The triplicates for every 

genotype and condition are shown as circles in different colors. Each circle represents one cell clone. Expression 

level of CyFIP1 in the knockout is only 2/3 of wt level. CyFIP1 expression did not change between ES cells and 

differentiated cells. CyFIP2 expression is affected by the knockout of CyFIP1 and increases during differentiation 

only in wt background. wt-0 (green): Wild type ES cells; ko-0 (red): CyFIP1-/- ES cells; wt-3 (purple): 

Differentiated wild type ES cells for 3 days on gelatine; ko-3 (blue): Differentiated CyFIP1-/- ES cells for 3 days 

on gelatine. 

 

4.3.2.2 Transcription factors altered by CyFIP1 deletion 

The mainly phenomenological data generated by microarrays are often difficult to 

relate with the activation/inhibition of particular signal transduction pathways. The gene 

expression changes measured using microarrays in different cellular states, in fact, 

reflect just an "echo" of real molecular processes in the cells. A way to facilitate data 

interpretation is to look for transcription factors. Transcription factors are essential for 

the regulation of gene expression. They are proteins that control which genes are 

turned on or off in the genome by binding to DNA and other proteins. Bound to DNA, 

these proteins can promote or block the gene transcription holoenzyme, increasing or 

decreasing the availability of specific mRNAs. In CyFIP1-/- ES cells eleven 
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transcription factors were found significantly up-regulated and one transcription factor 

was significantly down-regulated compared to wild type ES cells (figure 24).  

 

 

Figure 24: Gene expression heat map of transcription factors affected by CyFIP1 deletion in ES cells. 

The heat map displays (A) significantly up-regulated genes in 3 wild type ES cell clones (blue) compared to  

CyFIP1-/- ES cell clones (red) (B) significantly down-regulated genes in 3 CyFIP1-/- ES cell clones (blue) 

compared to 3 wild type ES cell clones (red). 

 

Among the up-regulated transcription factors, Tgif1 and Hmgb2 are known to play an 

important role in embryonic development and germ layer formation (Rodriguez, Velkey 

et al. 2007; Powers, Taniguchi et al. 2010; Abraham, Bronstein et al. 2013). Rnf4 

(RING finger protein 4), Atf4 (Activating transcription factor 4) and Hmga1 are known 

to play a positive role in regulating proliferation (Li and Wang 2006; Wang, Lian et al. 

2009; Wang, Qian et al. 2010; Hirota, Tsuda et al. 2014). Hmga1 also has role in 

cancer and tumor invasiveness (Wang, Qian et al. 2010). Ctbp2 ability to direct cell 

migration has been previously linked to its ability to repress PTEN expression and 

thereby stimulate phosphatidylinositol 3-kinase (PI3K) activity, resulting in Rac-

dependent migration (Paliwal, Kovi et al. 2007). Ctbp2 and Ndel1 are known to play a 

role in adhesion. Ndel1 is essential for cell proliferation and cell survival (Sasaki, Mori 

et al. 2005). Rbbp7 seems to play a role in differentiation and proliferation but more in 

the opposite direction compared to Rnf4 and Atf4: it inhibits cell growth by negatively 
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regulating β-catenin expression and the β-catenin/TCF signaling pathway, presumably 

through positive regulation of GSK-3 expression (Li and Wang 2006). Rbbp7 can 

induce apoptosis through activation of the c-Jun N-terminal kinase (JNK) signaling 

pathway (Zhang, Yu et al. 2003). Med24 is a component of the mediator complex (also 

known as TRAP, SMCC, DRIP, or ARC), a transcriptional coactivator complex thought 

to be required for the expression of almost all genes (Gustafsson and Samuelsson 

2001). Med24 is also discussed in the hematopoietic system and for Med1 it is shown 

that it has influence on the hematopoietic stem cells (Stumpf, Waskow et al. 2006) and 

that Med1-/- bone marrow cells proliferate less (Sumitomo, Ishino et al. 2010). Snrpa 

is essential for splicing and is present in the spliceosome associated with Sm complex 

(Hetzer and Mattaj 2000). Bcor is a transcriptional corepressor and is a key 

transcriptional regulator during early embryogenesis (Ng, Thakker et al. 2004). 

Rnf2 is the only significantly down-regulated transcription factor in CyFIP1-/- ES cells. 

Rnf2 is an essential component of a Polycomb group (PcG) multiprotein PRC1-like 

complex, a complex class required to maintain the transcriptionally repressive state of 

many genes, including Hox genes, throughout development.  

In differentiated cells after 3 days on gelatine only one transcription factor was found 

to be significantly up-regulated, Rhox9, and no one was significantly down-regulated 

compared to wt cells (figure 25).  Rhox 9 is a member of the Homeobox gene family 

and important in embryonic development and the reproductive system (Lee, Lee et al. 

2013), which is affected already in the CyFIP1+/- mouse (see results 4.1 and 4.2). In 

hematopoietic stem cells Rhox9 is highly expressed compared to endothelial cells 

(Solaimani Kartalaei, Yamada-Inagawa et al. 2015) 

 

 

Figure 25: Gene expression heat map of transcription factors affected by CyFIP1 deletion in 

differentiated cells. The heat map displays one significantly up-regulated gene in 3 CyFIP1-/- cell clones 

differentiated for 3 days on gelatine compared to 3 wild type differentiated cell clones. No significant down-

regulated genes were found. 
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4.3.2.3 Pathway enrichment analysis in CyFIP1-/- ES cells 

Pathway enrichment analysis (PEA) was used to identify statistically significant gene 

sets affected by the deletion of CyFIP1. Interestingly, among others, the PI3K-Akt 

signaling pathway appeared up-regulated in the absence of CyFIP1 (figure 26). The 

PI3K-Akt signaling pathway is involved in a wide variety of cellular events including 

mitogenic signaling, regulation of growth and survival, vesicular trafficking, and control 

of the cytoskeleton.  

 

 

Figure 26: Pathway enrichment analysis in CyFIP1 knockout vs. wt ES cells: up-regulated pathways. 

Significantly up-regulated gene sets/pathways are shown with the enrichment Score and p-value.  

 

No significant differences resulted for the PEA of the entire TGFβ pathway in  

CyFIP1-/- ES cells in comparison to the wt cells, but the overview heat map of the 

pathway with all TGFβ genes showed clear differences in expression levels of a subset 

of genes (figure 27). For example one can see in the bottom half of the map Smad5, 

Smad2 and Nodal are down in the CyFIP1-/- ES cells compared to wild type ES cells. 

The TGFβ superfamily is known to be one of the most ubiquitous regulators of 

embryonic development (Gordon and Blobe 2008). For example it regulates germ layer 

formation via the BMP/Smad signaling (Coucouvanis and Martin 1999; Pangas, Li et 

al. 2008). Because of the early embryonic phenotype of the CyFIP1 knockout it seemed 

a plausible candidate pathway that could be affected by CyFIP1 depletion. 
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Figure 27: Gene expression heat map of TGFβ superfamily genes affected by CyFIP1 deletion. Heat map 

of all genes involved in the TGFβ network in the 3 CyFIP1-/- ES cell clones compared to the 3 wild type ES cell 

clones. A clear difference is observed in the bottom half of the map, besides some dysregulation of some of the 

genes in the upper part of the map. 

 

In summary the microarray analysis showed that transcription factors mRNAs as well 

as pathways involved in apoptosis, cell growth, proliferation, adhesion and 

transcription are significantly up-regulated in CyFIP1 knockout cells. Also genes which 

are important in development and differentiation were significant altered in the  

CyFIP1-/- cells. These findings represented a starting point for further analysis of the 

mutant ES cells to experimentally verify any defects in apoptosis, proliferation, 

differentiation and adhesion. 
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4.4 Proliferation and adhesion properties of CyFIP1-/- ES 

cells 

The microarray data for the CyFIP1-/- ES cells showed altered mRNA levels of 

transcription factors which regulate cell proliferation and adhesion. Proliferation and 

adhesion are important functions in cells and are necessary for the cell and the whole 

organism survival. To check proliferation and adhesion in CyFIP1-/- ES cells the so 

called CyQuant assay was used. Proliferation and adhesion can be easily and 

reproducibly measured with this assay because it is based on counting the cells that 

grow on plates using DNA quantification as a measure to determine the number of 

cells. The CyQuant dye intercalating nucleic acids was quantified by fluorometric 

measurement. For the proliferation assay, ES cells were grown on feeders for five days 

and every day a plate was frozen for quantification. At the end of the time course all 

plates were stained and read together in a plate reader. A second protocol was used 

to study combined adhesion and proliferation properties by growing ES cells for five 

days on gelatine without feeders. Adhesion capacity was examined after seeding equal 

numbers of ES cells on gelatine, a collagen-derived substrate, with a short time course, 

freezing one plate every hour for a total of 4 hours.  

In the proliferation assay, Cyfip1-/- ES cells rapidly grew into a stationary phase where 

probably the proliferation rate was equal to the apoptosis rate, the two processes 

balancing each other. Instead, wt ES cells grew slower and after reaching maximal 

density underwent cell death with a net decrease in cell number (figure 28A). Indeed, 

while handling the ES cells for the experiments, it was always necessary to passage 

CyFIP1-/- ES cell clones earlier than wt clones although the same number of cells was 

plated on the dish.  

In a different proliferation protocol on a collagen substrate the results were very 

different. While wt cells proliferated massively, up to 100 times the initial adhered 

number (although this high increase could be partially due to the zero time point 

preparation, where simple centrifugation of the cells on collagen might not efficiently 

adhere all seeded cells), CyFIP1-/- cells were 4 to 5 times slower (figure 28B).  
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Figure 28: Proliferation 

and adhesion properties 

of CyFIP1-/- ES cells. (A) 

CyFIP1-/- ES cells showed 

an increased proliferation 

rate, as seen by the steeper 

slope, reaching steady state 

after three days on feeders 

(B) Without feeders wild 

type ES cells proliferated 

very efficiently while 

CyFIP1-/- ES cells were 

much slower. (C) CyFIP1-/- 

ES cells showed deficits in 

adhesion to collagen.  

 

 

Analyzing raw numbers showed a much smaller number of CyFIP1-/- cells at every 

time point compared to wt, possibly indicating adhesion deficits on the collagen 

substrate, or a requirement of growth factors from feeder cells, or a cell density effect, 

or a combination of all factors that could all justify the different result from the previous 

experiment. 
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For this reason, the adhesion capacity of CyFIP1-/- ES cells on a collagen-derived 

substrate was tested and it was found reduced in the first 4 hours after plating, although 

only by a factor of about 2 (figure 28C). This was in line with the previous experiment, 

partially explaining the low growth on gelatine, since cells might be continuously lost in 

the medium due to adhesion deficits. But the much larger effect observed in the cell 

proliferation assay implies other reasons, as proposed above. 

 

 

4.5 Morphological characterization of CyFIP1 knockout 

embryoid bodies  

The morphological analysis of CyFIP1-/- embryos showed defects in development at 

the time point of gastrulation (see Introduction 1.7.2). The microarray data provided 

some hints concerning differentiation and germ layer formation. Genes from the TGF 

beta pathway like Smad 1 and 5, which have been shown to be important for 

mesoderm formation and for endoderm organization in the embryo were affected. The 

up-regulation of the transcription factors Tgif1 and Hmgb2 in CyFIP1-/- ES cells also 

suggested possible germ layer formation defects. For a detailed analysis of germ 

layers, an in vitro differentiation system was chosen, the embryoid body formation from 

ES cells, due to its sustainability compared to embryo analysis that would require a 

high rate of animal sacrifice. It is a well-established protocol where ES cells cultured in 

suspension without anti-differentiation factors spontaneously differentiate and form 

three-dimensional multicellular aggregates called embryoid bodies (EBs) (Nishimura, 

Martin et al. 2007). In the EBs, the three embryonic germ layers, ectoderm, endoderm 

and mesoderm, are developed. EBs grossly resemble early embryos at the blastocyst-

primitive streak stage (see Introduction 1.11), having an endodermal exterior and a 

mesodermal and ectodermal interior. Furthermore, the cells of the EBs are surrounded 

by a large cystic yolk sac-like cavity. Accordingly, the outer columnar epithelium is of 

endodermal origin (visceral endoderm). This model system, therefore, allows to study 

early developmental stages in vitro. 

In a first approach, in order to morphologically characterize them, EBs obtained from 

wt and CyFIP1-/- ES cells were imaged in wide field microscopy and measured. 

Evident differences could be detected in their size. Cyfip1-/- EBs were significantly 
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larger than control EBs (figure 29), suggesting that Cyfip1-/- cells have a higher 

proliferative activity, in line with the previous proliferation assay (see figure 28A).  

 

 

Figure 29: Comparison between wild type and CyFIP1-/- EBs after 7 days of differentiation. H&E Staining 

of (A) wt and (B) CyFIP1-/- EBs showed that mutant EBs are much bigger than wt controls. 

 

4.5.1 Germ layers defects in CyFIP1-/- EBs 

The question, therefore, was what could be wrong in the development of the mutant 

EBs. Were all layers present with increased cell numbers, or were some layers missing 

to the expense of other layers, or would there be no layering at all? Germ layers can 

be identified by specific markers. CD184 is known to be expressed in endodermal cells 

(Drukker, Tang et al. 2012) while beta-catenin is important for meso-endoderm 

formation through the Wnt-signaling pathway (Davidson, Adams et al. 2012). Cleaved 

caspase 3 is expressed during apoptosis and can mark the cell death rate in the 

blastocoele-like cavity of EBs (Porter and Janicke 1999). To address the question how 

the germ layer formation in CyFIP1-/- is affected, a quantitative FACS-based method 

was developed to analyze differentiation of individual cell lineages in CyFIP1-/- versus 

wt EBs. Flow cytometry has the advantage that many cells can be analyzed in a short 

time and quantitative data were obtained. EBs were generated from three independent 

clones of CyFIP1-/- and wild type (wt) ES cells after 7 days in suspension culture. They 

were then collected and a single cell suspension was produced with a gentle 

dissociation treatment. Cells were then immunostained with fluorescently-labeled 
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primary antibodies raised against the germ layers markers described above and 

analyzed with a BD Accuri flow cytometer. 

The results of this analysis showed that CyFIP1-/- EBs were impaired in their 

differentiation program. In fact the endoderm showed a significant 40% expansion, 

while the meso-endoderm was decreased by 20% in comparison to wt EBs (figure 

30A,B). Moreover, the apoptosis rate was increased by 60% in CyFIP1-/- EBs (figure 

30C). 

In summary, these data showed a considerable impairment of mesodermal lineage 

determination in Cyfip1-/- EBs while the endodermal lineage was found to be increased 

at the expense of mesodermal cells and EB size. Ectoderm seemed not to be 

influenced in the knockout, but it represented a very small percentage of cells in EBs 

(data not shown). 

 

 

 

Figure 30: Quantification of endoderm, meso-endoderm and apoptosis in CyFIP1 knockout embryoid 

bodies. Flow cytometric analysis from 7 days old embryoid bodies. Results are displayed as fold increase (>1) 

or decrease (<1) respect to wt controls. (A) Significant increase of endodermal cells in CyFIP1-/- EBs. (B) The 

amount of mesodermal cells is significantly decreased in CyFIP1-/- EBs. (C) CyFIP1-/- EBs show a much higher 

number of apoptotic cells. For each genotype, n=3 (independent ES clones). Statistical analysis by T-test: ** 

P<0.01, *** P<0.001. 

 

 

4.6 Differentiation of CyFIP1-/- ES cells on gelatine 

While EBs formation reproduces a directed differentiation into the three germ layers, 

another approach to study differentiation is undirected differentiation of ES cells on a 

substrate, for example culturing ES cells for 3 days on gelatine without feeders in 

regular ES cell culture medium. This simple differentiation protocol was used also for 
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the microarray analysis, therefore it appeared necessary to study it from a 

morphological and biochemical point of view.  

The wild type ES cells, despite the presence of the LIF, directly started to differentiate. 

In fact, under these conditions, they lost the typical round shape of the colonies, spread 

out and flattened. The CyFIP1-/- cells, on the contrary, mostly kept the round colony 

form and differentiated much less (figure 31). Even after 3 days on gelatine they looked 

more like ES cell clones compared to the wt where no single clone could be detected. 

 

 

Figure 31: Wide field imaging of wild type and CyFIP1-/- ES cells after 3 days in culture on gelatine. 

CyFIP1-/- ES cell colonies were resistant to differentiation after 3 days in culture without feeder layer. 

 

4.6.1 Molecular characterization of CyFIP1-/- ES cells on gelatine 

As it was shown by visual analysis (4.6 and figure 31), CyFIP1-/- ES cells differentiated 

less than wt cells when cultured for three days on gelatine. To characterize the type of 

cells which were growing on the collagen-like surface, two markers were used: SSEA1, 

Stage-Specific Embryonic Antigen 1, a well-known marker for murine pluripotent stem 

cells (Ginis, Luo et al. 2004) and Sca-1, Stem cell antigen-1, a member of the Ly-6 

antigen family in mouse expressed in hematopoietic stem/progenitor cells (Holmes and 

Stanford 2007). The cultured cells were detached from the plate, brought to a single-

cell suspension, and analyzed by FACS after labeling them with the stem cell markers. 

This method, as previously mentioned, provides reliable quantitative data.  

CyFIP1-/- cultures were tendentially richer in SSEA1 positive cells (figure 32A), 

indicating the presence of more stem cell-like cells than in the wt culture. This is in 

good accordance with the previous findings obtained analyzing the morphology of the 
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colonies on the dish. In addition, Sca-1 positive cells were significantly decreased in 

CyFIP1-/- cultures (figure 32B). Hematopoietic stem cells are the progenitor cells that 

give rise to all blood and immune cells and are derived from the mesodermal lineage. 

It was already shown using an in vitro embryo developmental paradigm that CyFIP1-/- 

ES cells are defective in mesoderm formation (see Results 4.5.1 and figure 30B), and 

these data strongly confirm the previous findings.  

 

 

Figure 32: Quantification of different types of stem cells after culturing CyFIP1 knockout ES cells on 

gelatine. A) SSEA1, a stem cell marker, is increased in CyFIP1-/- cultures. B) Sca-1, a hematopoietic stem cell 

marker, is significantly decreased in CyFIP1-/- cultures. N=3 for each genotype. Statistical analysis with t-

student’s test: *** p<0.001. 

 

 

4.7 Analysis of kinases involved in growth, survival and 

apoptosis pathways  

Proliferation, cell growth and adhesion have been shown to be altered in CyFIP1-/- ES 

cells. These cell functions, when abnormal, play an important role in cancer formation 

and progression, therefore it appeared a key question to identify the signaling 

pathways responsible for the described phenotype. The microarray data showed an 

overall increase of the PI3K pathway in CyFIP1-/- ES cells. The PI3K pathway 

regulates many cell functions such as proliferation, cell growth and adhesion and 

consequently its dysregulation is also the main known cancer pathway. Nevertheless, 

the MAPK pathway also regulates cell proliferation and survival and is another 

A B 
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important cancer pathway in case of alterations. The TGFβ pathway controls apoptosis 

and proliferation, also resulting to have a role in cancer when altered. Important 

proteins of the TGFβ pathway are the Smads. Smads are intracellular proteins that 

transduce extracellular signals from TGF ligands to the nucleus where they activate 

downstream gene transcription (Heldin, Miyazono et al. 1997). Smad1/5 and also 8 

have been shown to be important in early embryonic development (Faure, Lee et al. 

2000).  

The activity of these pathways correlates with the phosphorylation state of many of 

their components. Therefore, the phosphorylation state of key proteins of these 

pathways was analyzed by western blotting in cell extracts from ES cells grown on 

feeders to possibly uncover the molecular mechanisms leading to the defects 

described in the previous sections when CyFIP1 is depleted. 

Western Blot analysis of PI3K, MAPK and TGFβ pathways related proteins showed no 

clearly visible differences in protein levels (figure 33A). Therefore a statistical approach 

was adopted, quantifying the protein levels in the three clones and calibrating with the 

-tubulin expression, to detect even subtle changes in the protein levels. The analysis 

showed only a significant decrease of phospho-Smad1/5 in CyFIP1-/- ES cells (figure 

33 B). All other proteins showed no significant differences between wt and CyFIP1-/- 

ES cells. Only tendencies were visible. The PI3K pathway appeared down-regulated 

at the protein level in CyFIP1-/- compared to wt ES cells, in contradiction with the 

microarray analysis. A tendential down-regulation was also seen for phospho-Erk1 and 

phospho-Erk2 although data showed high variability among the three clones (figure 

33B). 

In summary, the analysis showed that P-Smad1/5 are significantly decreased, while 

the PI3K pathway as well as the MAPK pathway are overall not significantly affected. 
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Figure 33: Total protein and phosphorylated protein levels of components of the PI3K, MAPK and TGFβ 

pathways. A) Western Blotting of selected components of the PI3K, MAPK and TGFβ pathways of wt and 

CyFIP1-/- ES cell clones. γ-Tubulin is shown as reference gene. B) Quantification analysis of total and 

phosphorylated protein levels showed significant decrease of phospho-Smad1/5 levels in CyFIP1-/- ES cells. No 

significant changes could be observed in the other proteins. Only a tendential decrease could be seen in the 

proteins which were related to the PI3K pathway and the phosphorylated MAPKs in CyFIP1-/- ES cells. Data 

were calibrated with γ-Tubulin levels and are expressed as means ± SEM; n = 3 per genotype. Statistical analysis 

with t-student’s test: *p < 0.05 
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4.8 Biochemical Analysis of the WAVE Complex(es) in the 

Mouse 

The WAVE complex is composed by the different isoforms of its 5 subunits but may be 

closely interacting with other unknown factors in order to be regulated in its activities. 

In this way the WAVE complex composition and function might be differently specified 

in different tissues. As mentioned in the introduction, Cyfip1/2 interacts with Profilin2 

but not with Profilin1 (Witke, Podtelejnikov et al. 1998). The interaction of Profilin2 and 

the WAVE complex depends on the poly-L-proline binding domain of Profilin2 (Witke, 

Podtelejnikov et al. 1998). In pull-down assays with Profilin2-beads nearly all CyFIP1/2 

is collected from brain lysates (Massimi 2008). Pull-down assays are useful for 

identifying the domains or post-translational regulatory mechanisms affecting protein-

protein interactions and for identifying previously unknown binding partners by mass 

spectrometry sequencing of the pulled-down proteins.  

Pull-down assays with Profilin2-beads were used in this thesis to investigate the 

question of subunit exchange and the regulatory mechanisms of the WAVE complex. 

  

 Figure 34: Scheme of a Profilin2 pull-

down experiment. Profilin2 covalently 

bound to Sepharose 4B beads interacts 

with the WAVE complex when the beads 

are mixed with a mouse tissue lysate 

extracting it with its ligands from the total 

protein pool (Witke, Podtelejnikov et al. 

1998)). 

 

 

4.8.1 The WAVE complex in mouse tissues 

Most WAVE complex subunits are represented by more than one isoform, which have 

a tissue specific pattern, with an expression overlap in some tissues. It is, therefore, 

possible to hypothesize that in every tissue one or more unique WAVE complexes are 
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formed. Pull-down assays with Profilin2-beads from brain, lung and kidney lysates 

were performed in order to dissect some of these complexes. In brain and lung the 

amount of free subunits (unbound fraction) was rather low and practically all of the 

subunits appear to be forming WAVE complexes bound to profilin2 (figure 35). In brain 

the complex incorporated essentially WAVE1, while in lungs only WAVE2 formed the 

complex, due to the different expression patterns of the WAVE subunits.  

Surprisingly the WAVE complex in the kidney behaved differently from the other 

tissues. First of all in kidney the WAVE complex didn’t bind to Profilin2 (figure 35). 

Secondly, no Abi1 was expressed (figure 35), implying that probably Abi2 is the main 

Abi component in kidney’s WAVE complex, even though Abi2 has been characterized 

as the brain isoform (Grove et al., 2004).  

 

 

Figure 35: Different properties of the WAVE complex in brain, lungs and kidney. In brain and lungs the 

classical WAVE complex binds to Profilin2-beads. In kidney the WAVE complex doesn´t bind to Profilin2.  

 

4.8.2 The WAVE complex regulation by different ionic conditions 

and signaling pathways 

An interesting question is if the composition of the WAVE complex could change in 

response to different ionic conditions and signaling pathways. In order to address this 

question, Profilin2 pull-down assays were performed with different lysis buffers 

covering a range of conditions and signaling cascades. The control condition was a 

basic isotonic buffer with KCl, Tris/HCl pH 7.4 to keep the lysate buffered and TritonX-

100 to lysate the tissues. The other buffers consisted of the basic buffer components 
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and some additional reagents: the second buffer was enriched in Mg2+ without Ca2+. 

The absence of any free Ca2+ was ensured by the use of EGTA, which binds uniquely 

to Ca2+, negatively affecting Ca2+-dependent interactions and pathways. The third 

buffer, on the contrary, was enriched in both Mg2+ and Ca2+ and should therefore 

activate Ca2+-dependent pathways. The fourth lysate was depleted of all divalent ions 

by using the strong wide spectrum chelator EDTA. The fifth type of lysate was depleted 

of all protein phosphorylation by digestion with CIP (calf intestinal phosphatase). The 

sixth one, was prepared with strong phosphatase inhibitors (NaF, Na3VO4 and Na-

pyrophosphate) to preserve the physiological phosphorylation state of proteins. NaF is 

inhibiting serine and threonine phosphatases (PSPs). Na3VO4 has a high resemblance 

to phosphate due to the four oxygen atoms in a tetrahedral conformation and can inhibit 

tyrosine phosphatases (PTPs) through competitive inhibition. Na-pyrophosphate on 

the other hand has a high resemblance to the end product of phosphorylation (although 

it is missing the adenosine part) and can also inhibit phosphatases through competitive 

inhibition.  

The results of the Profilin2 pull-down essay from brain extracts prepared in the different 

buffers are shown in figure 36. The bound fractions of each pull-down showed a 

surprisingly flexible composition of the WAVE complex. High Mg2+ in the absence of 

Ca2+ led to a strong binding of the entire WAVE complex to Profilin2 (column 2 vs. 1), 

whereas the addition of Ca2+ resulted in no binding at all (column 3). Sequestration of 

all divalent cations from the solution obtained with the addition of EDTA resulted in a 

very surprising effect, the braking of the pentameric WAVE complex in two parts, with 

the CyFIP/Nap1 core binding alone to Profilin2 and the Abi/WAVE part left in the 

unbound fraction (column 4). Dephosphorylation of the proteins in the lysate seemed 

to have only little influence on the binding pattern of the WAVE complex components 

(column 5 vs. 1). Finally, even more surprisingly, preservation of the phosphorylation 

state of proteins seemed to detach exclusively Abi1 from the complex, and at the same 

time to increase the binding of the CyFIP/Nap1 core similarly to when all divalent 

cations were removed by the addition of EDTA.  

These results strongly pointed to a flexibility in the composition of the WAVE complex 

that in brain can also exist as a CyFIP/Nap1 complex alone or a CyFIP/Nap1/WAVE1 

complex. 
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Figure 36: Differential composition of the WAVE complex binding to Profilin2 in different buffer 

conditions. Western blotting showing in Column 1 the binding of the WAVE complex in a basic isotonic buffer 

with 1% TritonX-100 for reference of the other columns; in Column 2 increased binding of the WAVE complex to 

Profilin2-beads in the presence of Mg2+ ions; in Column 3 loss of WAVE complex binding to Profilin2 in the 

presence of Ca2+; in Column 4 uncoupling of CyFIP/Nap1 and Abi/WAVE sub-complexes when all divalent ions 

are sequestered from the solution; in Column 5 that treatment of the lysate with phosphatase (removing all 

phosphorylations) does not significantly affect the binding of the WAVE complex to Profilin2; in Columns 6 that 

in the presence of phosphatase inhibitors the binding of CyFIP/Nap1 to Profilin2 is enhanced, while the Abi 

subunit is specifically lost. 

 

4.8.3 New candidate ligands of the WAVE complex 

Since the data presented until now have shown that the WAVE complex has a quite 

flexible structure, it was sensible to think it might be interacting with yet unknown 

partners. In order to verify this hypothesis, a new approach was designed. CyFIP1/2 

was immunoprecipitated from brain extracts with a specific monoclonal antibody 

previously generated and characterized in the lab (Massimi 2008) and new candidate 

ligands were identified by Maldi-TOF mass spectrometry after band elution from a 

polyacrylamide gel. Mass spectrometry is a technique that allows the identification of 

proteins by producing and separating ions by their unique mass-to-charge ratios. 

Although there is no possibility to distinguish if ligands directly interact with CyFIPs or 

with any of the other WAVE complex components, this approach allows at least 

identifying possible cellular processes in which the WAVE complex is involved and 

further expanding the current view of the WAVE complex as a static pentameric 

structure. 



4. Results 

92 

 

By mass spectrometry it was possible to identify among the immunoprecipitated 

material CyFIP1 and CyFIP2 as well as the classical complex components such as 

Nap1, Abi1/2 and WAVE1. Besides the WAVE complex, which was considered as a 

positive control for the whole experiment, many other possible novel ligands have been 

identified. For easiness of interpretation they are presented in figure 37 divided into 

four functional protein groups: actin-binding, membrane trafficking, signaling, and 

mRNA translation and transport.  

 

 
Figure 37: Novel candidate ligands for CyFIP1/2 and the WAVE complex identified by MALDI-TOF. The 

identified candidates are presented grouped according to four molecular pathways related to actin-binding, 

signaling, membrane trafficking and mRNA translation and transport. 

 

In the group of actin-binding proteins were found besides the expected Profilin2 (Witke, 

Podtelejnikov et al. 1998) and Arp2/3 complex some interesting novel candidates such 

as Cofilin 1 and CapZ (figure 37). Also, surprisingly, POF1 was identified, a protein 

mutated in human premature ovarian failure (Lacombe, Lee et al. 2006), an infertility 

phenotype that has been previously described in CyFIP1+/- females (see Results 4.1).  

Among the membrane trafficking-related candidates, Myosin 1 and Myosin 4 were 

found, possibly pointing to a role of the WAVE complex in actin-based cargo transport 

(confirmed by the candidates concerning mRNA transport).  

Interestingly proteins involved in translation initiation (e.g. eIF4A and eIF6) and mRNA 

transport in neurons (hnRNPA1, Pur-α) were also found, in line with the already shown 
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role of CyFIP1 in mRNA translational repression in spines in combination with FMRP 

(Napoli, Mercaldo et al. 2008).  
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5.1 Relevance of genetic background for CyFIP1 deletion  

The genetic background of the mouse is well known to dramatically influence the 

phenotype of single locus changes brought about by gene targeting. The influence of 

the genetic background is evident on the phenotype of the CyFIP1 knockout mouse 

model. The three strains used until now for this knockout show some substantial 

phenotypic differences. The widely used C57BL/6J and C57BL/6N strains are so-

called inbred mouse strains which were generated by sister-brother matings for 20 or 

more consecutive generations, respectively at the Jackson Laboratories and at NIH, 

hence the last letter in the name (Green, Grueneberg et al. 1963). They have a great 

genetic stability and were generated to facilitate the comparison of data from different 

labs. The CD1 mice are outbred stocks, which have genetic variability. Inbred strains 

offer a defined genetic background, whereas outbred stocks offer a diverse gene pool, 

which is closer to the situation in most human studies. In C57BL/6J background the 

CyFIP1 knockout is embryonic lethal around E8.5. The CyFIP1 knockout in C57BL/6N 

background showed a much more severe phenotype, with embryonic lethality 

occurring as early as E6.5 and the embryos quickly reabsorbed. Moreover, an infertility 

phenotype of the heterozygous females appeared, which complicates the 

embryological studies. The infertility phenotype becomes much milder in CyFIP1 

heterozygous females in the CD1 genetic background. In general, for embryological 

studies, the CD1 background is also much better, due to higher female fertility, better 

maternal behavior, and bigger litter size compared to the C57BL/6 strain. Therefore, 

the CD1 strain is ideal for studies where a high number of embryos is needed. 

Nevertheless, the lethality of the CyFIP1 knockout mouse in CD1 background occurred 

between E6.5 and E8.5, with the malformed mutant embryos still visible at E8.5, before 

being reabsorbed. The larger time range of embryonic death could be due the genetic 

variability of the outbred strain compared to the inbred C57BL/6. From the genetic point 

of view the two C57 strains were thought to be quite similar, but in the case of the 

CyFIP1 deletion a small genetic difference strongly affected the phenotype. More 

recent comparison of C57BL/6J and C57BL/6N demonstrated a range of genetic 

differences that have the potential to impact upon penetrance and expressivity of 

mutational effects in these strains. Sequence variants were identified which provide a 

set of candidate genes for the phenotypic differences observed between the two 
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strains (Simon, Greenaway et al. 2013). So the genetic background confirms being an 

important factor to consider when generating knockout mouse models. 

 

 

5.2 CyFIP1 as a tumor suppressor 

Cancer occurs when a dysregulation of important cellular processes like proliferation, 

apoptosis, differentiation and adhesion take place. A tumor suppressor is a gene that 

can control these important cellular processes in the direction opposite to carcinogenic 

alterations. CyFIP1 might indeed function as a tumor suppressor gene, as proposed in 

a previous report (Silva et al., 2009). Silva et al. published in 2009 that Cyfip1 is a 

putative invasion suppressor in epithelial cancers. They showed that CyFIP1 is deleted 

in human epithelial cancers and observed a reduced expression of Cyfip1 during 

invasion of epithelial tumors (Silva, Ezhkova et al. 2009). Silencing of WAVE complex 

components reduced cell-cell adhesion and adhesion to the extracellular matrix (Silva, 

Ezhkova et al. 2009). 

Upon deletion of both CyFIP1 alleles, in fact, ES cells gain proliferative capacity, lose 

adhesion to extracellular matrix and maintain an undifferentiated morphology for a 

longer time. In order to uncover the molecular pathways responsible for the phenotype, 

two approaches were employed in this work: 1. An unbiased high throughput analysis 

using microarrays; 2. A biochemical study of signaling pathways selected by their 

relevance in the processes altered in the CyFIP1-/- cells. Contrary to many 

expectations, classical pathways involved in cell proliferation and growth such as the 

MAPK and the PI3K pathways did not result significantly activated in the CyFIP1-/- 

cells at the protein level (although the PI3K pathway at the mRNA level appeared to 

be up-regulated). Instead, a specific signaling cascade within the TGFβ pathway was 

found significantly reduced. The TGFβ pathway is vast and widespread, with roles from 

embryo development to adult organisms, and is known to be involved in cancer (Grady 

2005). In particular Smad1/5, which are involved in TGFβ signaling, showed a 

significant reduction of their phosphorylation in CyFIP1-/- ES cells. It has been shown 

that conditional deletion of Smad1 and Smad5 in somatic cells of male and female 

gonads leads to metastatic tumor development in mice (Pangas, Li et al. 2008). The 

question is how CyFIP1 is connected to the TGFβ pathway. Experiments with CyFIP1 
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-/- ES cells in a special medium (Esgro, Millipore) to grow these cells without feeders 

and serum free showed a reduction of the CyFIP1-/- phenotype (data not shown). In 

these conditions ES cells reverted to nearly normal proliferation rates and EBs 

differentiated properly. This medium contains BMP4 and a GSK3β inhibitor. GSK3 

(Glycogen synthase kinase-3) is a target of Akt and is known to play important roles in 

numerous signaling pathways that regulate a variety of cellular processes including 

cell proliferation, differentiation, apoptosis and embryonic development (Xu, Kim et al. 

2009). In the microarray analysis only a non-significant up-regulation of GSK3 could 

be detected, but protein and phosphorylation levels have not yet been analyzed. BMP4 

is an extracellular signaling molecule of the TGF superfamily of ligands that binds to 

heterodimeric complexes of type I and type II cell surface receptors (BMPRI and 

BMPRII), which in turn leads to phosphorylation of Smad1/5/8 (Ueki and Reh 2012). 

As mentioned before, in CyFIP1-/- ES cell a significant decrease in phosphorylation of 

Smad1/5 was observed, but the Esgro medium was able to rescue it. Therefore CyFIP1 

must have a direct or indirect influence on the phosphorylation of the Smads. The gene 

Nipa1 is often found together with CyFIP1 as an autism risk gene because in human 

they are both in the 15q11.2 region (Doornbos, Sikkema-Raddatz et al. 2009). This 

region has been implicated in autism spectrum disorders (ASDs) associated with 

15q13.2microduplication (van der Zwaag et al., 2009) and 15q11-q13 deletion at break 

points 1 and 3 in Prader-Willi and Angelman syndromes (Moreira, Griesi-Oliveira et al. 

2014). This region encodes four genes: CyFIP, TUBGCP5, Nipa1 and Nipa2 (Murthy, 

Nygren et al. 2007). TUBGCP5, the Tubulin Gamma Complex Associated Protein 5 is 

a member of the gamma-tubulin complex which is a large multiprotein complex that is 

required for microtubule nucleation at the centrosome (Murphy, Preble et al. 2001). 

Nipa family members are integral membrane proteins which function as magnesium 

transporters (Xie, Zhang et al. 2014). Nipa1, Nipa3 and Nipa4 transport Mg2+ as well 

as other cations. Nipa2 is a highly selective magnesium transporter located in the 

cytomembrane and the early endosome (Goytain, Hines et al. 2008). Its function is to 

transfer extracellular Mg2+ into the cytoplasm (Quamme 2010). Nipa1 is also known to 

be an inhibitor of BMP signaling by interacting with the type II BMP receptor (Tsang, 

Edwards et al. 2009), although it is not known how Nipa1 itself is regulated. It was 

shown in cell culture experiments on human embryonic stem cells, that high 

concentration of magnesium in the medium resulted increased proliferation and 

increased apoptosis of the cells (Nguyen, Garcia et al. 2012). Low or high magnesium 
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concentrations in the cytoplasm are diverse discussed in the cancer field. It is well 

established that intracellular magnesium concentrations affect functions directly linked 

to those identified as the hallmarks of cancer (Hanahan and Weinberg 2000; Hanahan 

and Weinberg 2011). One can hypothesize that Nipa1 and/or Nipa2 are negatively 

regulated by CyFIP1. This hypothesis needs to be confirmed with further experiments.  

Finally, many transcription factors found up-regulated in CyFIP1-/- ES cells by the 

unbiased microarray screening presented in this thesis are connected to cancer. 

HMGA1 was found to be overexpressed in pancreatic adenocarcinomas (Liau, Jazag 

et al. 2007) and overexpression of HMGB2 was shown to be associated with tumor 

aggressiveness and prognosis of hepatocellular carcinoma (Kwon, Kim et al. 2010). 

Atf4 is overexpressed in human solid tumors, suggesting that it has an important 

function in tumor progression (Ye, Kumanova et al. 2010). TGIF1 splicing variant 8 

was found overexpressed oral squamous cell carcinoma and is related to pathological 

and clinical behavior (Liborio, Ferreira et al. 2013). CtBP2 was shown to be 

overexpressed in colon, breast, and prostate cancer (Thomas, Jacobs et al. 2008), and 

increased levels have been linked to the loss of tumor suppressors such as APC, 

Hipk2, and ARF (alternative reading frame) (Ng, Thakker et al. 2004). An hypothesis 

that could explain the up-regulation of this panel of transcription factors involved in cell 

proliferation and adhesion, and consequently in cancer progression and invasiveness, 

could be that the suppression of the TGF pathway reduces the competition with the 

MAPK and PI3K pathways, which can take over, although the increase in transcription 

factor level should be verified at the protein level, as well as their translocation to the 

nuclear compartment. 

 

 

5.3 Functions of CyFIP1 in embryonic development and 

cellular processes  

Homozygous deletion of CyFIP1 resulted in an early embryonic lethal phenotype 

between E6.5 and E8.5. Most homozygous embryos appeared to die of severe defects 

in gastrulation and were quickly reabsorbed. Indeed, differentiation studies of ES cells 

into embryoid bodies showed substantial expansion of the endoderm, partially also at 

the expense of mesodermal differentiation. The formation of the primitive streak, of 
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meso-endodermal nature, is the important starting point of gastrulation in embryonic 

development. 

These considerations also explain previous observations on CyFIP1-/- embryonic 

developmental alterations in the C57Bl/6J background (Massimi 2008). Massimi 

reported that CyFIP1 ko embryos have defects in somite formation, neural tube closure 

and anterior-posterior axis formation. These structures are of mesodermal origin or are 

induced by mesoderm formation. For example, the formation of the neural plate begins 

when the dorsal mesoderm signals to the ectodermal cells above it to elongate into 

columnar neural plate cells (Keller, Shih et al. 1992). Members of the TGFβ family of 

secreted growth factors regulate key processes during postimplantation mammalian 

development including embryonic axis patterning, organogenesis and specification of 

the germ line. 

CyFIP1 controls important cell functions like proliferation, adhesion, differentiation and 

apoptosis. In CyFIP1-/- ES cells hyper-proliferation was observed and adhesion is 

impaired. CyFIP1-/- EBs show increased apoptosis rate and disturbed differentiation 

into mesoderm. CyFIP1-/- ES cells which were differentiated for three days on gelatine 

showed a more stem cell-like morphology and also the analysis of the molecular 

markers in these cells showed a defect of differentiation into hematopoietic cells, which 

are of mesodermal origin.  

Transcription factors regulating proliferation and differentiation were found affected 

using a microarray approach. The transcription factor RNF4 is up-regulated in  

CyFIP-/- ES cells. It was shown that disruption of the RNF4 gene in chicken DT40 cells 

resulted in a gradual loss of proliferation capability (Hirota, Tsuda et al. 2014). The 

experiments performed on ES cells in this work showed a higher proliferation rate in 

the absence of CyFIP1. In CyFIP1-/- ES cells the transcription factor HMGB2 is 

significantly up-regulated. HMGB2, the high mobility group box 2, is a member of the 

non-histone chromosomal high-mobility group protein family. Interestingly, the 

transcription factor is known to regulate Oct4, a stem cell marker that is important in 

embryonic development. The knockout of HMGB2 in the sub-granular zone showed a 

down-regulation of Oct4 expression (Abraham, Bronstein et al. 2013). It has been 

shown that reduced expression of Oct4 in hESCs promoted up-regulation of markers 

indicative of mesoderm and endoderm differentiation, while elevated levels of Oct4 in 

hESCs promoted up-regulation of markers indicative of endoderm derivatives 

(Rodriguez, Velkey et al. 2007). This could be one biological mechanism behind what 



5. Discussion 

100 

 

was is seen in the CyFIP1-/- EBs, where a massive expansion of the endoderm takes 

place, but mesoderm formation is decreased. Indeed, Oct4 is up-regulated at the 

mRNA level in CyFIP1-/- ES cells (data not shown). Another transcription factor, which 

is also important in embryonic development and was found to be up-regulated in 

CyFIP1-/- ES cells, is TGIF1. TGIF1 function is required for gastrulation, and limits the 

transcriptional response to Nodal signaling during early embryogenesis (Powers, 

Taniguchi et al. 2010). The nodal family of proteins belongs to the TGFβ superfamily 

and is responsible for meso-endoderm induction, patterning of the nervous system, 

and determination of dorsal- ventral axis in vertebrate embryos (Schier 2003). A third 

developmental transcription factor that was found up-regulated is RBBP7, which is also 

named retinoblastoma (Rb) suppressor-associated protein 46 (RbAp46). This factor 

plays an important role in negatively regulating -catenin expression and the -

catenin/TCF3 signaling pathway, presumably through regulation of GSK3 expression 

(Li and Wang 2006). RBBP7 is up-regulated in CyFIP1-/- ES cells and also in the EBs 

and may have an influence on the –catenin pathway, which is decreased in  

CyFIP1-/- EBs, although GSK3 protein levels in the mutant cells have not been verified 

yet. Atf4 a transcription factor that was also shown to regulate proliferation, blocking it 

when inhibited (Ye, Kumanova et al. 2010), was found significantly up-regulated in  

CyFIP1-/- ES cells. The only significantly down-regulated transcription factor found in 

CyFIP1-/- ES cells is RNF2, the Ring Finger Protein 2. This is an essential component 

of a Polycomb group (PcG) multi-protein PRC1-like complex, a complex class required 

to maintain the transcriptionally repressive state of many genes, including Hox genes, 

throughout development. The down-regulation of RNF2 could be the reason why Hox 

genes like TGIF1 and possibly also other transcription factors were up-regulated in the 

mutant ES cells. RNF2-deficient mice show a similar phenotype to the CyFIP1-/- mice 

(Voncken, Roelen et al. 2003). They are early embryonic lethal, don´t undergo normal 

gastrulation and have problems with mesoderm formation (Voncken, Roelen et al. 

2003).  

It seems that several unrelated genes belonging to different signaling pathways are 

affected by CyFIP1 depletion. There could be several explanation for this counter-

intuitive findings. One explanation could be that the effect of CyFIP1 depletion on the 

TGFβ pathway (discussed in 5.2) resulting in its down-regulation might imbalance the 

equilibrium between different and competitive pathways such as the PI3K and the 

MAPK pathways producing the described defects of the CyFIP1-/- ES cells. A second 
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possibility could be that in consequence of CyFIP1 depletion, one or more of the other 

WAVE complex subunits would be freed from the complex and therefore available to 

activate or inhibit other pathways. For example Abi1 is known to be in a tricomplex 

together with Eps8 and SOS1 (Innocenti, Tenca et al. 2002). Abi1 binds through its 

SH3 domain to the same binding site on SOS1 as Grb2, so that SOS1 can either form 

the tricomplex with Eps8 and Abi1 or form a functionally different Gbr2-SOS1 complex 

(Innocenti, Tenca et al. 2002). If Abi1 is freed from the WAVE complex due to the 

absence of CyFIP1 the complex with Gbr2 and SOS1 could not be formed in the correct 

amount because extra SOS1 would be sequestered in the tricomplex by the excess of 

available Abi1. All these hypotheses would have to be experimentally proved. 

Finally, CyFIP2 was found increased 1.5 fold in CyFIP1-/- cells by microarray analysis. 

CyFIP2 is a direct target of p53 (Jackson, Cho et al. 2007). It was shown that CyFIP2 

expression is sufficient to induce apoptotic cell death. The increase of CyFIP2 

expression could therefore explain the apoptosis phenotype of CyFIP1-/- ES cells and 

embryoid bodies. 

In conclusion CyFIP1 plays an important role in lineage determination by affecting 

developmental pathways that depend on TGF signaling, which explains the early 

failure of embryonic development. In this view CyFIP1 appears to regulate important 

cellular processes such as proliferation, adhesion, differentiation and apoptosis. 

 

 

5.4 CyFIP and the WAVE complex  

The classical WAVE complex consists of the five subunits CyFIP, Nap, WAVE, Abi, 

and HSPC300. Except for HSPC300, which has no known paralogues, each of the 

other subunits in mammals is a member of a protein family consisting of two or three 

paralogue genes, some of them also alternatively spliced. Considering all the different 

isoforms of each subunits, about 56 different WAVE complexes could be theoretically 

formed. Moreover, the new findings presented in this work suggest that the classical 

pentameric WAVE complex is only one possible complex. In fact in vivo a regulated 

exchange of subunits can occur. Under certain ionic conditions and in response to 

specific signaling the WAVE complex can break down. CyFIP and Nap appear to form 

a core complex around which the other subunits can assemble or not. When using a 
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physiological buffer rich in Mg2+, an intact pentameric WAVE complex binds to 

Profilin2. However, when divalent cations are completely sequestrated the WAVE 

complex falls apart uncoupling Abi1 and WAVE1 from the CyFIP/Nap1 core, 

suggesting that Mg2+ is an essential co-factor for integrity of the pentameric WAVE 

complex. In more physiological conditions, when phosphorylation is preserved, the 

binding of Cyfip1/2 and Nap1 to Profilin2 is significantly increased by about 5-fold, while 

binding of WAVE1 is reduced and retention of Abi1 is virtually abolished. This suggests 

that phosphorylation triggers CyFIP/Nap1 binding to Profilin2, and secondly that 

phosphorylation uncouples the other subunits from the CyFIP/Nap1 complex.  

Several conclusions can be drawn from the experiments presented in this work: first, 

different signals (phosphorylation, divalent ions) can control the stoichiometry of the 

WAVE complex in different ways. Secondly, phosphorylation appears to be a major 

regulatory mechanism of WAVE complex formation and subunit exchange. Finally, the 

results also prove that binding of the WAVE complex to Profilin2 occurs through the 

CyFIP/Nap1 core complex, directly or indirectly through another yet unidentified ligand. 

This explains how the WAVE complex in its full conformation can recruit Profilin2, when 

it is known that neither Abi nor WAVE when incorporated in the WAVE complex are 

able to bind to Profilin2, their PLP stretches being buried in the structure (Davidson 

and Insall 2013) (Insall, personal communication). 

These data are a fundamental finding in view of the other roles that the WAVE complex 

subunits might have in the cell and shed light on the possible interpretations of the 

CyFIP1 knockout phenotype. For example, phosphorylated Abi1 can activate PI3-

kinase by stabilizing the PI3-kinase regulatory p85 subunit and thereby trigger 

downstream signaling events via the PI3K/Akt pathway (Dubielecka, Machida et al. 

2010). However, a role of Abi1 phosphorylation for its incorporation in the WAVE 

complex has not been formally shown. In this view, it is possible that the stable 

CyFIP/Nap1 core complex can function to sequester the other subunits, thereby 

regulating the corresponding signaling pathways. The Chen et al. model of the WAVE 

complex structure suggests that activation of WAVE1 is basically mediated by a 

desequestration of the VCA-domain from CyFIP1 (Chen, Borek et al. 2010). The 

phenotype originated by the deletion of CyFIP1 and commented in the previous 

sections can therefore be also explained in this view. The reduction or complete 

depletion of the WAVE complex has freed the other subunits to activate without control 

other pathways, which have to be analyzed more in detail in the future. A similar 
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sequestration effect of the WAVE complex towards the Arp2/3 complex was described 

in a recent report where depletion of the WAVE complex in cells hyperactivated N-

WASP-Arp2/3-driven 3D migration (Tan, Li et al. 2013).  

In certain tissues the CyFIP/Nap1 complex might be differently regulated. As 

mentioned above, Profilin2 binds the classical WAVE complex with high efficiency from 

brain through the CyFIP/Nap1 core subunits. On the contrary, in kidney CyFIP and 

Nap1 are expressed, but no CyFIP/Nap1 complex could bind to Profilin2-beads. This 

leads to hypothesize the existence of a different modification of the WAVE complex in 

kidney or the presence of tissue-specific intermediary ligands. 

The diverse phenotypes of the knockout mouse models for the WAVE complex 

subunits also argue against a single common genetic pathway. Nap1 mutant embryos 

show a severe defect at E8.5 in axis polarity (Rakeman 2006), CyFIP1 mutants show 

early defects around E6.5 in mesodermal lineage formation, Abi1 mutants die around 

E11.5 because of vascularization defects (Ring, Ginsberg et al. 2011), while Abi2 

mutants are viable and show neuronal deficits (Grove, Demyanenko et al. 2004). 

WAVE1 mutants are viable (Soderling, Langeberg et al. 2003), but WAVE2 mutants 

die around E10.5 from angiogenesis defects (Yamazaki, Suetsugu et al. 2003). CyFIP2 

null mutants die at birth (Hauck, unpublished). Information on HSPC300/Brk1, WAVE3 

and Abi3 knockout mice are not available yet. This shows that in vivo the WAVE 

complex can serve quite distinct cellular pathways, although it is possible that the 

different subunits can compensate each other only in certain functions and cell types, 

but not others due to expression, splicing, or modification differences. Judging from 

the similar phenotypes, the mouse CyFIP1 and Nap1 genes and Abi1 and WAVE2 

genes seem to function in closely connected pathways and tissues. The genetic data 

from knockout studies suggest that in vivo a functional link between Cyfip1 and Nap1 

as well as Abi1 and WAVE2 exists, with the other subunits such as WAVE1 and 3, 

Abi2 and 3, and HSPC300/Brk1 having specific functions and possibly being 

exchangeable complex ligands. 

In summary the WAVE complex composition and complexity differs in tissues and 

cells. The WAVE complex that is bound to Profilin2 changes in response to different 

signaling pathways. The WAVE complex is not a stable pentameric complex, it 

undergoes dynamic turnover. 
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5.5 Infertility disorder of CyFIP1+/- females 

In this thesis work the novel infertility phenotype (POI) of CyFIP1 heterozygous 

females and a first evaluation of the morphological and biochemical features 

associated with the ovaries of CyFIP1+/- mice is described. The lower amount of 

CyFIP1 in the ovary leads to a down-regulation of the components of the WAVE 

complex, a higher number of atretic follicles and corpora lutea, and smaller antral and 

pre-ovulatory follicles. These findings provide a first insight into the early infertility 

phenotype of the CyFIP1 heterozygous females. Two potential mechanisms may be 

involved in the development of POI: (1) abnormalities in primordial follicle activation 

and (2) increased rates of apoptosis of oocytes (Sullivan and Castrillon 2011). The 

premutation of FMR1 is well known in the context of infertility disorders. A mouse model 

carrying the human FMR1 premutation allele showed that FMR1 premutation causes 

primary ovarian failure (Lu, Lin et al. 2012). FMR1 premutation RNA can cause a 

reduction in the number of growing follicles in ovaries and is sufficient to impair female 

fertility (Lu, Lin et al. 2012). In the CyFIP1-/- knockout a solid molecular phenotype 

seems to be a decreased signaling of the TGFβ pathway. Smad1/5 phosphorylation 

was significantly down-regulated in CyFIP1-/- ES cells. Interestingly, it has been shown 

that Smad1/5 play a key role also in female fertility. Double Smad1;Smad5 knockout 

females become infertile and develop metastatic granulosa cell tumors (Pangas, Li et 

al. 2008). The Anti-Mullerian Hormone (AMH) is also a member of the transforming 

growth factor-β (TGF-β) family and activates BMP-specific R-Smads (Smad 1, 5 and 

8) (di Clemente, Josso et al. 2003). In patients with primary ovarian failure, the Anti-

Mullerian Hormone is absent or reduced (Visser, Schipper et al. 2012). The AMH levels 

in CyFIP1+/- females have to be tested in future. In addition, the microarray results 

from CyFIP1-/- differentiated ES cells for 3 days on gelatine showed a significant up-

regulation of the transcription factor RHOX9, which is a member of the Reproductive 

Homeobox gene family and important in the reproductive system. RHOX9, together 

with RHOX5, was found to be expressed in follicular cells, is constitutively expressed 

in ovarian cells (Lee, Lee et al. 2013) and mRNA levels of RHOX9 were fairly 

consistently expressed during follicular development. RHOX9 knockout mice have no 

observable phenotype and ovulate normally (Takasaki, Rankin et al. 2001). So deletion 

of RHOX9 seems to be compensated by other RHOX genes (Takasaki, Rankin et al. 

2001). But overexpression may influence follicle development. RHOX9, also named 
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Gpbox (RHOXF1 in human), was discussed in a paper as a new candidate gene for 

premature ovarian failure (Suzumori, Pangas et al. 2007). 

From the biochemical point of view, POF1B was found by mass spectrometry as a new 

candidate ligand of the WAVE complex. Disrupted binding of POF1B (Premature 

Ovarian Failure Protein 1B) to non-muscle actin filaments is associated with premature 

ovarian failure (Lacombe, Lee et al. 2006). In human POF1B is located on the X 

chromosome, like FMR1, and these two genes have been formally demonstrated to be 

responsible for premature ovarian failure (Bione and Toniolo 2000). One additional 

possibility could be that the WAVE complex is regulating female fertility via its 

interaction with POF1B, which might also be part of the complex. Further experiments 

are needed to prove this hypothesis, as well as the TGF pathway down-regulation. 

In summary the heterozygous deletion of CyFIP1 shows similar effects on ovary 

function as the premutation of FMR1 and CyFIP1-mediated regulation of or CyFIP1 

interaction with genes important for follicle development and female fertility, such as 

RHOX9 and POF1B, could be relevant for the infertility phenotype of the CyFIP1+/- 

mouse. 

 

 

5.6 Conclusions and outlook 

The work presented in this thesis provides solid grounds to unravel the function of 

CyFIP1 and the WAVE complex in cells and during embryonic development. A novel 

and unexpected role of CyFIP1 in lineage determination via the TGF pathway was 

found, which explains the early failure of embryonic development. CyFIP1 is required 

during embryogenesis for mesodermal differentiation and has additional activities in 

controlling proliferation and adhesion. CyFIP1 also controls apoptosis and overall 

behaves as a tumor suppressor gene. 

In addition, in the female reproductive system of the mouse CyFIP1 plays a 

fundamental role and decreased CyFIP1 causes an infertility phenotype similar to a 

POF syndrome.  

Although CyFIP1 role as an actin nucleation promoting factor has been previously 

demonstrated, the knockout approach has shown that by itself or through the WAVE 
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complex it is indirectly regulating important signaling pathways, such as the TGFβ 

pathway.  

Finally, at the biochemical level the WAVE complex is not a stable pentameric complex, 

CyFIP/Nap1 build a core complex around which the other subunits assemble. Different 

signals (phosphorylation, divalent ions) can control the stoichiometry of the WAVE 

complex in different ways. Other proteins seem to interact with the WAVE complex, 

either due to its function in specific cellular processes (translational regulation, 

cargo/mRNA transport, signaling) or to allow its role in actin polymerization (for 

example in brain interacts with Profilin2 but not in kidney, where some other 

mechanism might be used) 

To address the open questions about CyFIP1 function further experiments will be 

needed. A reporter mouse line like a CyFIP1-LacZ insertion would be a helpful tool to 

characterize the distribution of CyFIP1 in the mouse tissues and to distinguish the 

different expression pattern of CyFIP1 and CyFIP2. A conditional CyFIP1 mouse 

model would be a great tool to analyze the function of CyFIP1 more specifically. The 

knockout of CyFIP1 in the brain would be very useful to distinguish the functions of 

CyFIP1 and CyFIP2 in the brain and to answer the question if they have overlapping 

functions or they act in completely different neuronal cell types or compartments. 

Electrophysiological analysis would address the question of synaptic and network 

physiology of neurons lacking CyFIP1. Specific knockout of CyFIP1 in neuronal 

subtypes would help to study the involvement of CyFIP1 in autism spectrum disorder.  

A further step would be the CyFIP1 and CyFIP2 double knockout mouse model for in 

vitro and/or in vivo studies. An interesting question is what would happen to the WAVE 

complex when there is no CyFIP at all: can the complex exist without CyFIP? What 

happens to the other components of the WAVE complex when they are freed from the 

WAVE complex due to CyFIP1 depletion? An interesting question is if in brain and 

kidney and perhaps other tissues have distinct from the classical WAVE complex other 

ligands and how would these complexes relate to actin nucleation.  

In conclusion in this work for the first time a molecular pathway was found, the TGFβ 

pathway, which consistently explains all the different phenotypes of CyFIP1 depletion 

(infertility of heterozygote females, embryonic development defects, cellular alterations 

such as proliferation, adhesion and apoptosis), although it is still missing the 

mechanism how CyFIP1 is affecting this signaling pathway. This will be the object of 

future studies. 
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Figure 38: Graphical representation of the surface area of the analyzed ovaries. Left: Ovaries from wt mice. 

Right: Ovaries from CyFIP1+/- mice. Grey columns: first ovary from the examined mouse. Black framed grey 

columns: second ovary from the examined mouse. The surface area varied strongly from mouse to mouse, 

independently of the genotype and no significant differences could be observed. 

 

 

Figure 39: Principal component analysis (PCA) mapping for the microarray data. The gene expression 

data after normalization for each genotype and time point are represented by circles of different color. Each 
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colored circle represents data from one clone. wt-0 green: Wild type ES cells; ko-0 red: CyFIP1-/- ES cells; wt-3 

purple: Differentiated wild type ES cells for 3 days on gelatine; ko-3 blue: Differentiated CyFIP1-/- ES cells for 3 

days on gelatine. The three clones for each type show very little variance, therefore a mean of the three could 

be used for further analyses. 

 


