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Abstract

During the past century, mathematical modelling of biological processes rapidly developed into
a field of high scientific interest. The diversity of mathematical approaches and biological ap-
plications is large. Some key objectives in this context are a better understanding of biological
processes and, based on that, the prediction of processes which have not yet been investigated
experimentally. The purpose of this thesis is to contribute to this area at the interface of stochas-
tics and immunology.

The thesis consists of three parts. In the first part, we investigate the question how certain immune
cells (so-called T-cells) recognise structures which are potentially harmful to an organism. This
is studied by means of a stochastic model. Mathematically, this problem can be described as the
task to distinguish particular signals from a noisy background. A signal is represented by a sum
of real-valued random variables and we are interested in the probability of the event that this
sum becomes extremely large. To analyse this probability we use techniques from the theory of
large deviations. We prove that sharp estimates on the probabilities of large deviations hold, also
in conditional setups. The estimates are interpreted in the biological context of T-cell activation.
In the second part, we analyse related problems in a setup which is independent of the biological
application; as a consequence the results apply to a broader class of random variables. We
establish strong large deviation results for certain conditional probability distributions. Moreover,
we show that the behaviour of the random rate function can be characterised by an invariance
principle.
In the third part, we introduce a stochastic, individual-based model from population dynamics
that describes the evolution of cancer. This model offers the possibility to include the effects of
particular immunotherapies. It allows to survey the development of heterogeneous tumour cell
populations under the influence of certain immune cells and specific aspects of an inflammatory
environment. The relevance of particular stochastic phenomena for this context is studied and
illustrated by examples.

The models we investigate are examples of an effective interaction of mathematics and immunol-
ogy. On the one hand, they show that biological concepts and questions can be stated more
precisely with the help of mathematical models, and that the resulting models may be useful to
predict the behaviour of a biological system. On the other hand, during the analysis of biologi-
cal questions new mathematical problems and models arise, which are mathematically relevant,
independent of the primary questions.
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Zusammenfassung

Während des letzten Jahrhunderts hat sich die mathematische Modellierung biologischer Prozesse
immer schneller zu einem wissenschaftlich hoch interessanten Gebiet entwickelt. Die Vielfalt
mathematischer Ansätze und biologischer Anwendungen ist groß. Einige der wichtigsten Ziele in
diesem Zusammenhang sind sowohl ein besseres Verständnis biologischer Prozesse als auch die
darauf basierende Vorhersage von Vorgängen, die so noch nicht experimentell untersucht wurden.
Das Ziel dieser Dissertation ist es, einen wissenschaftlichen Beitrag zu dieser Thematik an der
Schnittstelle zwischen Stochastik und Immunologie zu leisten.

Die vorliegende Arbeit besteht aus drei Teilen. Im ersten Teil analysieren wir das Problem der
Erkennung von für einen Organismus gefährlichen Strukturen durch bestimmte immunkompetente
Zellen (sogenannte T-Zellen) und untersuchen es mithilfe eines stochastischen Modells. Mathe-
matisch kann dieses Problem als die Aufgabe beschrieben werden, bestimmte Signale von einem
verrauschten Hintergrund zu unterscheiden. Dabei wird ein Signal durch eine Summe von reell-
wertigen Zufallsvariablen repräsentiert und wir sind an der Wahrscheinlichkeit des Ereignisses in-
teressiert, bei dem diese Summe besonders groß wird. Um diese Wahrscheinlichkeit zu analysieren,
verwenden wir Techniken aus der Theorie der großen Abweichungen und beweisen, dass scharfe
Abschätzungen für die Wahrscheinlichkeiten großer Abweichungen auch unter bestimmten be-
dingten Wahrscheinlichkeitsverteilungen gelten. Diese Abschätzungen werden im Kontext der
Aktivierung von T-Zellen interpretiert.
Im zweiten Teil betrachten wir ähnliche mathematische Probleme, unabhängig von der biolo-
gischen Anwendung. Die mathematischen Resultate gelten dann für eine größere Klasse von
Zufallsvariablen. Wir zeigen, dass scharfe Abschätzungen für die Wahrscheinlichkeiten großer Ab-
weichungen unter bestimmten bedingten Wahrscheinlichkeitsverteilungen gelten. Darüber hinaus
beweisen wir, dass die zufällige Ratenfunktion durch ein Invarianzprinzip charakterisiert werden
kann.
Im dritten Teil führen wir ein Modell ein, das die Evolution von Krebserkrankungen beschreibt,
wobei sowohl die spontane Entwicklung als auch diejenige unter bestimmten Immuntherapien be-
trachtet werden kann. Hierbei handelt es sich um ein stochastisches, individuen-basiertes Modell
aus dem Bereich der Populationsdynamik. Es ermöglicht die Untersuchung der Entwicklung het-
erogener Tumorzell-Populationen unter dem Einfluss bestimmter immunkompetenter Zellen und
einer inflammatorischen Umgebung. Die Relevanz gewisser stochastischer Phänomene für diesen
Kontext wird untersucht und anhand von Beispielen verdeutlicht.

Die betrachteten Modelle sind Beispiele für eine erfolgreiche Interaktion von Mathematik und
Immunologie. Sie zeigen einerseits, dass biologische Konzepte und Fragestellungen mithilfe von
mathematischen Modellen präzisiert werden können und dass die resultierenden Modelle zur
Vorhersage des Verhaltens eines biologischen Systems verwendet werden können. Andererseits
entstehen aus der Analyse der biologischen Fragestellungen neue mathematische Probleme und
Modelle, die unabhängig von der ursprünglichen Fragestellung mathematisch relevant sind.
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1. Introduction

The immune system of vertebrates is a very complex system containing many different compo-
nents, which interact in a highly intertwined and sophisticated manner. A deep and complete
understanding of these interactions is still missing in many aspects despite the advanced measur-
ing techniques and the continuously increasing amount of data. This biological framework offers
many challenging problems for mathematical modelling.

One aim of mathematical modelling is to combine theoretical and experimental observations
and to enable a fruitful interaction between the involved disciplines. On the one hand, experi-
mental observations can give rise to new theoretical concepts and stimulate the development of
new mathematics. On the other hand, theory can be used to pinpoint even counter-intuitive
interrelations, to guide experimental setups as well as to interpret and predict experimental re-
sults. These principles are well-established for the interaction of mathematics and physics, and
receive growing attention in the field of biology [99]. Many articles and books are devoted to
mathematical biology including applications in neuroscience, evolutionary theory, immunology
and carcinogenesis, see e.g. [33, 99, 105, 106, 119].

In general, mathematical models describe concepts and interpretations of particular real situa-
tions, using the precise language of mathematics. Once the mathematical description is built up,
the whole strength of mathematical theory, proven theorems and strategies to prove new results
is applicable for the analysis of the problems of interest. In order to obtain meaningful results, a
good balance between the level of detail, i.e. the closeness to real systems, and manageability, i.e.
the feasibility from the mathematical point of view, is required, when choosing a model. Chapters
2 to 4 give examples where both is achieved: The models provide insights into the underlying
biological systems and raise mathematical questions, which are interesting to study from the
mathematical point of view, independent from the application.

For several reasons stochastic models are an appropriate choice in special immunological con-
texts. Many parameters are still unknown, and thus it is reasonable to describe the respective
quantities by means of random variables. Moreover, in certain situations relevant cell populations
are small and therefore random fluctuations play a crucial role. In other situations cells move
around and meet each other randomly. As we will see in Chapter 2, also rare events, as for
example encounters of particular rare cell types, are important in immune responses.

For many stochastic models the dependence on the detailed description of a system is relatively
weak, and certain universal behaviour can be observed. This is comparable to classical limit
theorems in probability theory, namely the law of large numbers and the central limit theorem:
For a huge class of random variables or models the limiting behaviour is very similar, and can be
described in a common framework.

This thesis consists of three parts: the first one, Chapter 2, investigates a stochastic model
for the activation of certain immune cells, namely T-cells, and was published in the Journal
of Mathematical Biology, [100]. From the mathematical point of view this requires the use of
large deviation techniques. The generalisation of the mathematical results obtained in Chapter 2
constitutes Chapter 3 of this thesis. This chapter was published in the probability theory journal
ALEA, [18]. Here, we establish a conditional strong large deviation result and a functional
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2 Introduction

central limit theorem for the random large deviation rate function. In the third part of this
thesis, Chapter 4, we propose a stochastic, individual-based model to describe the evolution of
cancer with and without treatment. Several examples illustrate certain stochastic phenomena
arising in this setting. This chapter is based on the preprint [11].

The remainder of the introduction is organised as follows: Section 1.1 provides a brief overview
of the immune system to a reader from a mathematical background. It introduces concepts and
terminology used in this thesis. The content of this section is slightly more general than required
to read Chapters 2 and 4. Section 1.2 on mathematical universalities arising in the context of
this thesis complements the biological explanations. The purpose of this section is to elucidate
the connections of the different chapters from the mathematical point of view and to sketch the
position of the present thesis in mathematics. Finally, the main results of Chapters 2 to 4 are
summarised in Section 1.3. All chapters are self-contained, i.e. each chapter can be read without
reading other parts of this thesis.

1.1 Immunological context

The following subsections provide a brief introduction into the immune system and cancer im-
munotherapy, and mention some modelling approaches in immunology. The introduction of the
basic immunological terms and concepts is based on [104].

1.1.1 Brief overview of the immune system

The major task of the immune system is to protect the body against foreign invaders such as
bacteria, viruses, fungi or parasites. In some particular situations, such as cancer, also structures
derived from the host itself may be harmful and have to be eliminated. At the same time
it is important that the system is not overreactive, i.e. that allergies (potentially too strong
immune responses to rather harmless structures) and auto-immune diseases are avoided. To fulfil
this task a huge diversity of organs, cells and molecules interacts in a sophisticated manner,
passing on information and controlling each other. In order to combat a pathogen reliably, the
immune system recognises the presence of invaders, clears the infection effectively, regulates its
own activity and forms a memory to better deal with future infections. Immunity can be split
into two parts, so-called innate and adaptive immunity.

Innate immunity works in an unspecific way and provides direct protection against infections
on the basis of recognition of certain patterns, which are common for pathogens. This part of the
immune system is evolutionary older and can be found in all plants and animals [80]. In many
organs, such as the skin or the intestinal tract, it forms a protective barrier against pathogens.
A pathogen is a substance which can potentially cause a disease. Some infections can be cleared
by the mechanisms of innate immunity alone, but most infections overcome the innate defence.

Adaptive immunity enables the individual to respond to a pathogen specifically, i.e. by recog-
nition of specific characteristics of a given health threat. It is present only in vertebrates, and
adapts and develops during the life-time of an individual (vertebrate). Furthermore, it is able
to build up an immunological memory. This means that within a certain timeframe a second
infection of the same or a very similar type can be controlled faster and more efficient due to
the presence of free antibodies and specialised memory cells remaining from a first infection [14].
Antibodies are certain proteins, which bind to pathogens or parts of them and thereby allow for
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the neutralisation of pathogens or infected cells. Any substance which is able to induce antibody
generation is called antigen.

Innate and adaptive immunity are intertwined, and several steps of communication between
these parts of immunity are required for an effective immune response.

T-cells are certain immune cells, belonging and contributing to adaptive immunity. They
play a crucial role in the immune system. Furthermore, a focus of this thesis is on T-cells, too.
Therefore, the following description of immunological processes is focussed on T-cells and closely
related processes.

T-cells are a particular group of lymphocytes, special white blood cells. They can be clas-
sified in various subgroups according to their different functions, such as killing of infected cells
and activation or regulation of other immune cells. All T-cells have in common that they can
execute their function only upon interaction with other cells, namely Antigen Presenting Cells
(APC). The notion of an APC is functional; it generally applies to cells displaying fragments of
an antigen on their surface. Peptides on the surface of an APC are displayed by two classes of
Major-Histocompatibility-complexes (MHC), MHC I and MHC II. They have a different struc-
ture and serve different purposes. Both types present peptides, which are degraded from pro-
teins in the inner of an antigen presenting cell, in their peptide binding groove. The so-called
peptide:MHC-complexes are displayed on the surface of an APC. Professional APCs express
MHC I and MHC II molecules on their surface, whereas non-professional APCs not necessarily
express MHC II. Mostly, the term professional APC refers to a specific set of immune cells, in
particular dendritic cells, macrophages and B-cells. Let us describe these types of immune cells
briefly.

Dendritic cells are located in most tissues. They internalise antigen and travel upon activation
to the lymph nodes. There they meet and activate T-cells when indicated. This function is a
crucial point in the communication of adaptive and innate immunity [13].

Macrophages, literally the “big eaters”, play various important roles, of which some rely on
their phagocytic activity in many tissues. Phagocytosis denotes the engulfment of extracellular
material and can be compared to eating in higher order organisms. Apart from a scavenging
function this provides direct control on pathogens as well as presentation of the collected material
to other immune cells. T-cells which arrived in an infected tissue can be further activated by the
resident macrophages. Recent research reveals that macrophages are a diverse set of cells with
many differentiation states and functions [65, 137].

B-cells form another subset of lymphocytes, also bearing a unique, specific receptor on their
cell surface. They are important in humoral immunity and are able to secrete their receptors as
soluble antibodies.

Most immune cells carry a variety of different receptors on their surface, and some receptors
are responsible for recognition of pathogens. In the context of innate immunity these are so-
called pattern-recognition receptors (PRRs), which identify pathogens by means of characteristic
patterns. Such Pathogen-Associated Molecular Patterns (PAMPs) stem from characteristics of
certain groups of pathogens, as for example lipopolysaccharides which are present on particular
bacteria. For instance, the activation of dendritic cells requires such recognition processes. It is
a distinctive feature of B-cells and T-cells that they recognise antigen by specific chemical struc-
tures. Whereas B-cells and their secreted antibodies are able to interact with “original”, unbound
pathogens, T-cells can only detect antigens located on the surface of other cells.
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Figure 1.1: Interaction of T-cell and APC, adapted from Figure 8.19 in [104].

Let us have a closer look on recognition, signalling and activation on the example of T-cell
activation since this is also subject to the modelling approach in Chapter 2.

T-cells are produced in the bone marrow and educated in an organ called thymus. Only T-
cells which survive positive and negative selection are released from the thymus. Positive selection
ensures that the T-cells can productively interact with APCs, and negative selection avoids (to
some degree) auto-reactivity of T-cells. After their development in the thymus, T-cells enter
the blood stream, migrate to lymphoid organs, search for targets and reenter the blood stream.
When T-cells leave the thymus, they are so-called näıve T-cells which are not yet able to fulfil
their function in the immune response. They have not encountered antigen so far. To obtain
their effector type, they have to be activated by professional APCs. A T-cell interacts with an
APC in a so-called immunological synapse, a bond between the cells. As long as this bond of
cells takes place, different types of receptors and ligands on the cell surfaces interact and provide
different signals to both cells.

Each T-cell bears many copies of one type of the so-called T-cell receptor (TCR), which
determines the clonotype of the T-cell. The specificity of the T-cell relies on this receptor type.
In addition, T-cells are equipped with co-receptors, either CD4 or CD8, which allow for the
distinction between functionally different sets of effector T-cells: cytotoxic (mostly CD8) T-cells,
which are able to kill other cells, and helper and regulatory (CD4) T-cells, which support and
control immune responses in various ways. During an immunological synapse the TCRs interact
with peptide:MHC-complexes. The co-receptors (CD4 or CD8) stabilise such bonds by connecting
to invariant parts of the MHC molecules. CD4 receptors interact with MHC II molecules, and
CD8 receptors engage with MHC I molecules [112]. The appearance of the peptides on MHC I
and MHC II molecules is related to the origin of the peptides. More precisely, the presentation
opportunities depend on whether the pathogen infected the presenting cell or whether and how
the pathogen or fragments were engulfed from outside into the cell. This information is passed
on to the T-cells by different ways of presentation, ensuring activation of suitable T-cells.

After successful interaction with a professional APC näıve T-cells proliferate and differentiate
into effector cells. Most CD4 effector cells contribute to the activation of other immune cells
and thus help to clear infections. Therefore, these CD4 T-cells are called helper T-cells. Näıve
CD8 T-cells all differentiate into the same effector function, namely into cytotoxic T-cells. This
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Figure 1.2: Näıve T-cell is activated by an APC, differentiates into effector T-cell and proliferates.

means that CD8 effector cells are able to kill infected cells. They do so with a high precision and
neighbouring healthy cells are usually not damaged. Effector cells again interact with APCs but
not necessarily with professional ones. Upon such interactions they can perform their effector
function. For example, a cytotoxic T-cell can be stimulated by a cancer cell, which in this case
functions as an APC. This results in killing of the cancer cell by the activated cytotoxic T-cell.

For its full activation a näıve T-cell requires three signals, see Figure 1.1. Signal 1 is mediated
via the TCR and leads to initial activation. The co-stimulatory Signal 2 is required for survival
and depends on stimulation of certain additional receptors on T-cells. Finally, Signal 3 guides
differentiation into different effector cells. It is conveyed by cytokines, [40, 41]. Cytokines are small
proteins which influence the behaviour of cells. They orchestrate immune responses in various
ways, e.g. by activating or inhibiting cells or by guiding their movement through chemotaxis.
Signals 2 and 3 in a sense “belong” to the APC and the environment, and represent the state of
activation of the APC and innate immunity. Whether they are provided or missing, is independent
of the specificity of the T-cell. Signal 1 regulates which T-cell clonotypes become activated by an
activated APC that provides Signals 2 and 3. Only activated APCs can deliver co-stimulatory
signals (Signal 2) to T-cells. Effector T-cells do not need co-stimulation to perform their task at
the correct side, e.g. an infected cell.

Lymphocyte receptors are highly diverse, enabling T-cells and B-cells to recognise a huge
diversity of pathogens by specific molecular structures. This is basically empowered by a genetic
mechanism, by which the genes encoding for these receptors are rearranged in a random manner.
The (safe) functionality of the cells is ensured by certain selection processes, as for example
positive and negative selection of T-cells in the thymus. The effectivity of the repertoire results
from clonal expansion of a rare suitable clone, i.e. an activated lymphocyte produces many copies
of itself bearing the same receptor, compare Figure 1.2. This concept is sometimes called clonal
selection theory and was introduced in [22]. It enables the immune system to create populations
of the required clonotype which are large enough to cure an infection. After an immune response
most T-cells die, but some memory T-cells remain. They are highly sensitive to antigen and can
elicit a faster response to a second infection with the same or maybe a very similar pathogen
[14, 82].
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The actual signalling resulting from the interaction of receptors and their ligands and the
events induced by this signal again constitute a complicated topic. The details are of interest
also in ongoing biological research [1]. A lot of research is concerned with the signal transduction
from the outside to the inside of a cell considering aspects such as phosphorylation and activation
of transcription factors [113]. Whole signalling pathways can be tracked experimentally, but the
complexity and the integration in the entire system are still not completely understood.

1.1.2 Immunotherapy of cancer

Cancer denotes a family of diseases characterised by increased cell division, avoidance of cell
death, invasion into and distraction of surrounding tissues and organs as well as the ability to
metastasize [84]. The way such diseases are treated has changed substantially in recent years.
Although the disease is not curable in many cases, very often a status similar to that of a chronic
disease can be achieved by treatment.

Classical therapeutic approaches are surgery, radiotherapy and chemotherapy. The treatment
options depend strongly on the type, location and stage of the tumour. If a solid tumour is
detected early enough, surgery can be curative. Radiation is applied locally, but damages also
healthy cells in the close environment of the targeted tumour. For treatment of cancer at a
metastatic stage a systemic treatment is required. Chemotherapies operate in such a way. The
majority of chemotherapeutic approaches targets parts of the cell division programme and exe-
cutes cytotoxic functions. Thus, healthy cells, in particular immune cells, are destroyed as well
[84].

The lack of specificity in the above mentioned therapies as well as the high frequency of
side effects and recurrences of tumours underline the necessity of the development of different
treatment strategies. There exist already approaches in targeted therapy in clinical practice. This
term refers mainly to the use of small molecules or particular antibodies that target specific
structures of cancer cells. This way the destruction of other cells is avoided.

One set of therapeutic approaches, developed during the last decades, is so-called immunother-
apy. Immunotherapy is a collective term for strategies which use the immune system to treat a
disease, as for example cancer. In some cases such strategies target only immune cells, completely
independent of the cancer cells. This is a strong change in treatment procedures [38].

Usually, the immune system is able to recognise and eliminate mutated endogenous cells,
which might eventually give rise to cancer. But sometimes the abnormal cells manage to escape
the immune system and to generate a tumour. The environment in an advanced tumour is often
immunosuppressive, i.e. the immune system is silenced [94, 139, 140]. There are a lot of different
strategies to unleash the immune system again. As described in [101] at least three key aspects
in tumour immunology can be targeted: antigen presentation by dendritic cells, production of
protective T-cell responses and the immunosuppressive environment of a tumour. For many
immunotherapies T-cells are an essential point of action, see e.g. the overview given in [88]. The
following list provides a few examples.

• Antibodies can be used as checkpoint inhibitors, i.e. to block T-cell receptors that mediate
inhibitory signals. Programmed death-1 (PD-1) and cytotoxic T-lymphocyte associated
antigen-4 (CTLA-4) are two receptors on T-cells, which are often stimulated by tumours
and mediate cell death or anergy of T-cells. These receptors can be blocked by monoclonal
antibodies in clinical practice already (Nivolumab targeting PD-1 and Ipilimumab targeting
CTLA-4). Blocking these receptors keeps T-cells active.
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• Bispecific antibodies are able to connect with tumour cells on the one end and T-cells on
the other end of the antibody. On the side of the T-cell CD3, which is a compulsory part
of the T-cell receptor, can be used as an anchor. The antibody not only binds to the TCR,
but it also imitates the usual activation of the T-cell. Thus, the specificity of the T-cell is
not relevant. For this approach it is necessary to identify a tumour antigen, which is not
present on healthy cells, as a reliable binding site for the antibody.

• Adoptive cell transfer therapy (ACT) denotes the transfer of immune cells which are able
to target cancerous cells into a patient. This strategy hinges on getting hands on specific
T-cells [110]. For example, tumour-specific T-cells can be obtained from a patient, cultured
and activated ex vivo, and then be re-transferred. A second way to obtain suitable T-cells
is to engineer T-cells and their receptors genetically.

1.1.3 Mathematical modelling in immunology

The preceding description of the immune system raises a lot of questions on how the immune
system really functions. These questions include but are not restricted to: How is it possible that
the immune system is balanced between auto-immunity and effective defence? How are signals
transduced from the outside into the inside of cells? How do T-cells find suitable APCs? How long
does it take from the invasion of a pathogen to its detection by innate and adaptive immunity?
How is an effective and safe T-cell repertoire maintained? How do cells communicate? How does
directed cell migration work?

This list of questions could be extended, but it is already long enough to demonstrate that
immunology poses a lot of challenging questions. Mathematical modelling can assist in answering
them. A good overview on existing modelling approaches is provided in [103], a book containing
a diverse mixture of articles about models of certain parts of the immune system. The need for
a collaboration of immunology and mathematics is also pointed out in [23].

Many mathematical models in immunology are concerned with the activation of T-cells, see
e.g. [52, 93, 95, 129, 130, 131, 138]. Another line of research studies T-cell development and the
influence of selection processes on the actual T-cell repertoire [54, 89, 125]. The maintenance
of an effective and diverse T-cell repertoire under homeostatic conditions is investigated with
Markov process models in [115, 116, 117]. Brownian motion can be used to approach for example
the movement of T-cells [49]. More generally, chemotaxis and movement of immune cells were
described by different types of random walks [2, 69, 73, 134]. Reactions involved in immunity
happen on different timescales. For example, the bonds between TCRs and p:MHC molecules
are not as long-lived as bonds between T-cells and APCs [122]. Furthermore, many models for
signalling are proposed [58].

1.2 Mathematical context

Stochastic objects can often be classified according to their limit behaviour. Properly rescaled,
a system or particular characteristic quantities of it converge to the same limit for a set of
systems. The limits can be used to describe a complex random object by a simpler object. Results
concerning such kind of universalities play a crucial role in this thesis and are thus explained in
the following. As a reference for the basic theorems and explanations introduced below see for
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example [68]. In addition, we briefly introduce stochastic, individual-based models, which play
an important role in Chapter 4.

1.2.1 Law of large numbers, central limit theorem and large
deviation principle

Laws of large numbers (LLN) and central limit theorems (CLT) are classical results in probabil-
ity theory. They are concerned with the asymptotic behaviour of rescaled sequences of random
elements. While particular variants of them are taught in each introductory course for proba-
bility theory, they are in different contexts and for varying levels of complexity still subject of
contemporary mathematical research.

Roughly speaking, an LLN states that under suitable conditions a properly rescaled sequence
of random elements converges to a deterministic object in some sense. That means that LLNs
are statements of the form

a−1
n Sn → C as n→∞, (1.2.1)

where (Sn)n∈N is a sequence of random elements, (an)n∈N with an ∈ R is a scaling sequence with
an →∞ as n→∞ and C denotes a deterministic limit. If this convergence holds in probability
or almost surely, we speak about a weak LLN or a strong LLN, respectively. A CLT quantifies
the random fluctuations of a particular order of magnitude around the limit obtained in the LLN.
CLTs consider convergence results of the form

b−1
n (Sn − anC)→ Z weakly, (1.2.2)

where (bn)n∈N with bn ∈ R and bn →∞ as n→∞ is an additional normalising sequence and Z
is a random element.

The first published form of an LLN is due to Jacob Bernoulli and considers sums of indepen-
dent, identical Bernoulli trials.

The typical modern formulation of the standard result about the behaviour of the empirical
mean of a sequence of real-valued random variables is stated in the following Theorem 1.2.1.

Theorem 1.2.1 (LLN). Let (Xi)i∈N be a sequence of independent, identically distributed random
variables with E[|X1|] <∞. Then,

lim
n→∞

1
n

n∑
i=1

Xi = E[X1] almost surely. (1.2.3)

A first version of the CLT was introduced by Abraham de Moivre and generalised by Pierre-
Simon Laplace. The combination of their results, known as the De Moivre-Laplace Theorem,
can be seen as a special case of the following formulation of the classical CLT. It states that
the fluctuations of the empirical mean around its expectation converge to a Gaussian random
variable.

Theorem 1.2.2 (CLT). Let (Xi)i∈N be a sequence of independent, identically distributed random
variables such that E[|X1|] <∞ and 0 < σ2 = V[X1] <∞. Then,

lim
n→∞

1
σ
√
n

n∑
i=1

(Xi − E[Xi]) = Z in law, (1.2.4)

where Z is a Gaussian random variable with mean 0 and variance 1.
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The sequences in the general formulations, (1.2.1) and (1.2.2), are in Theorems 1.2.1 and 1.2.2
given by Sn = ∑n

i=1Xi, an = n and bn = σ
√
n. Both theorems characterise a universality in the

limiting behaviour of partial sums of sequences of random variables, which is independent of the
exact distribution of the components of the sum. This formally states that certain regularities
can be observed in the occurrence of random events.

So-called large deviation theory is concerned with the analysis of the probabilities of deviations
from the LLN beyond the CLT. The LLN stated above yields Sn ∼ µn and the CLT states that
typical deviations are of order

√
n, i.e. the typical size of Sn − µn is of order

√
n. In addition,

one can ask for the probability of events where Sn − µn is atypically large, for example of order
n. This is done by large deviation theory. Probabilities of such events tend to 0 as n tends to
infinity. In other words, large deviation theory deals with rare events.

Many results in this framework are formulated as large deviation principles (LDP). We present
the concept of an LDP as well as some basic results following [45] and [46]. An LDP characterises
the limiting behaviour of a sequence of probability measures, Pn, on a measurable space, (X ,B),
as n tends to infinity. More precisely, asymptotic exponential bounds on Pn(B) for measurable
sets B ∈ B are provided in terms of a rate function.

Definition 1.2.3. A function I : X → [0,∞] is called a rate function if I 6≡ ∞, I is lower
semi-continuous and has compact level sets.

Definition 1.2.4 (LDP). A sequence of probability measures Pn on (X ,B) is said to satisfy the
large deviation principle (LDP) with rate function I and rate cn if, for all B ∈ B,

− inf
x∈B◦

I(x) ≤ lim inf
n→∞

c−1
n logPn(B) ≤ lim sup

n→∞
c−1
n logPn(B) ≤ − inf

x∈B
I(x), (1.2.5)

where B◦ denotes the interior of a set B and B denotes its closure.

The basic result complementing Theorems 1.2.1 and 1.2.2 can be traced back to Cramér [39].

Theorem 1.2.5 (Cramér). Let (Xi)i∈N be a sequence of independent, identically distributed
random variables such that φ(ϑ) = E[exp(ϑX1)] <∞ for all ϑ ∈ R. Then, for all a > E[X1],

lim
n→∞

1
n

logP(Sn ≥ an) = −I(a), (1.2.6)

where I(z) = supϑ∈R (zϑ− log φ(ϑ)).

Here, the sequence Pn in the formulation of an LDP is induced by the sequence Sn, i.e.
Pn(B) = P(Sn ∈ B) for measurable sets B ∈ B. The sets B correspond to the intervals [a,∞)
and the sequence cn is given by cn = n.

Opposed to the previous two theorems here the actual distribution of the random variables
is more important. The rate function, I(a), depends on the distribution via the logarithmic
moment generating function and the limit is not determined by first and second moments alone.
The moment generating function determines the law of a random variable completely, whereas
first and second moments can be equal for large families of distributions.

LLN, CLT and LDP were subject of research during the last decades in various guises. The
classical results and generalisations of them are not only used to establish other results, but it is
also a generic research interest to obtain related statements in different contexts.
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One line of generalisations, which developed mainly during the 1970’s, establishes similar
results, when the summands Xi take values in Banach spaces [75, 92]. This is a natural direction
for generalisations since these spaces allow for a summation by their vector space structure and
provide helpful convergence properties by completeness.

When the random elements Xi take values in certain function spaces, such results are usually
referred to as functional or dynamic LLN, CLT or LDP. In connection with consistency of pa-
rameter estimates in statistics or economics also uniform LLNs are discussed [4, 81, 107]. When
dependence of the random objects is introduced, one speaks about ergodic theorems in place of
LLNs, but the terms CLT and LDP remain.

A more recent line of research arises in the setup of conditional probability distributions, as
for example in the study of random walks in random environment or random conductance models.
Such scenarios have been studied by many authors during the last years [3, 9, 15, 35, 47, 61, 62, 98].

The framework explained above considers countable sequences of random objects. There are
also results for collections of random elements indexed by a continuous parameter, as for example
in the context of perturbation theory [60].

1.2.2 Refined large deviation results

The results obtained by an LDP, such as estimates of the form

lim
n→∞

1
n

logP (Sn ≥ an) = −I(a), (1.2.7)

are relatively imprecise. Approximations of the form (1.2.7) can be rephrased as

P(Sn ≥ an) = exp[−n(I(a) + o(1))] = exp(−nI(a)) exp(−no(1)), n→∞. (1.2.8)

The involved probabilities are approximated only up to a factor exp(−no(1)), whose behaviour
is unknown.

There are refinements of estimates of the form (1.2.7). The version for Sn a sum of indepen-
dent, identically distributed (i.i.d.) random variables was analysed by Bahadur and Ranga Rao
[12]. A further generalisation was proven by Chaganty and Sethuraman in [24] for sequences of
real-valued random variables satisfying certain regularity conditions. The precise statement relies
on the following two assumptions and can be formulated as Theorem 1.2.8. It will play a crucial
role in Chapters 2 and 3.

Let us denote the logarithmic moment generating function of Sn by Ψn, i.e.

Ψn(ϑ) ≡ logE[exp(ϑSn)], ϑ ∈ R. (1.2.9)

Assumption 1.2.6. There exist ϑ∗ ∈ (0,∞) and β <∞ such that

|Ψn(ϑ)| < β, for all ϑ ∈ {ϑ ∈ C : |ϑ| < ϑ∗} (1.2.10)

for all n ∈ N large enough.

Assumption 1.2.7. (an)n∈N is a bounded real-valued sequence such that the equation

an = Ψ′n(ϑ) (1.2.11)

has a solution ϑn ∈ (0, ϑ∗∗) with ϑ∗∗ ∈ (0, ϑ∗) for all n ∈ N large enough.
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We define σ2
n ≡ Ψ′′n(ϑn) with ϑn as in Assumption 1.2.7 and denote the moment generating

function of Sn by Φn, i.e. Φn(ϑ) ≡ E[exp(ϑSn)]. Furthermore, the analogue of the rate function
I(a) is defined as

In(an) ≡ anϑn −Ψn(ϑn). (1.2.12)

Theorem 1.2.8 (Theorem 3.3 in [24]). Let Sn be a sequence of real-valued random variables. Let
Ψn be their logarithmic moment generating function defined in (1.2.9) and assume that Assump-
tions 1.2.6 and 1.2.7 hold for Ψn. Assume furthermore that

(i) limn→∞ ϑn
√
n =∞,

(ii) lim infn→∞ σ2
n > 0, and

(iii) limn→∞
√
n supδ1≤|t|≤δ2ϑn

∣∣∣Φn(ϑn+it)
Φn(ϑn)

∣∣∣ = 0 ∀ 0 < δ1 < δ2 <∞,

are satisfied. Then

P (Sn ≥ nan) = exp(−nIn(an))
ϑnσn

√
2πn

[1 + o(1)] , n→∞. (1.2.13)

As many other proofs of large deviation results, the proof of this theorem involves an expo-
nential change of measure. Such a change turns rare events into typical ones and thereby allows
to use well-known results, such as CLTs, for the analysis of the behaviour of the random variables.
The involved random variables are studied under the law P̃ defined by its distribution function
F̃n. For Fn the distribution function of Sn and ϑn as defined in Equation (1.2.11) the tilted
version of the distribution function is given by

F̃n(x) = 1
E[exp(ϑnSn)]

∫
(−∞,x]

exp(ϑny)dFn(y). (1.2.14)

Theorem 1.2.8 is deduced from a local central limit theorem for (nσ2
n)− 1

2 (Sn−nan) under the
tilted law P̃.

In principle, even finer estimates on the probabilities, as for example of Berry-Esseen type,
can be obtained.

1.2.3 Conditional probability distributions

The description of real world phenomena by stochastic models often requires the incorporation
of different sources of randomness. In such situations, one can study the behaviour of the objects
conditioned on certain types or parts of the randomness. This is also the case for the model we
investigate in Chapter 2.

Let us explain the idea on the example of random walks in random environment (RWRE).
The motion of a particle can be described by means of a random walk, which is a classical object
to study in probability theory. The particle moves according to certain rules on an underlying
space, typically a sort of grids or graphs. In real situations, the medium in which the random walk
evolves can be highly irregular. This is taken into account by representing the media as a random
environment. For this purpose, a random variable is attached to each site of the underlying space.
These random variables influence the transition probabilities or rates of a particle at this site.
It is not clear in which cases and to which amount the long-term behaviour of the random walk
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depends on the realisation of the environment. Thus, a rigorous study of such phenomena is
required.

The system or results conditioned on the environment are often called quenched, whereas the
corresponding objects where also the environment is averaged out are called annealed. These
terms were shaped by statistical mechanics. It is important to note that probability measures
conditioned on a source of randomness are a priori random measures. Additional technicalities
arise, when dealing with these objects, and proofs become more involved.

1.2.4 A brief introduction to stochastic, individual-based models

Stochastic, individual-based models are a crucial mathematical ingredient in Chapter 4. There-
fore, we describe this class of models briefly.

In such modelling approaches, interacting particle systems are used to describe the Darwinian
evolution in a population with asexual reproduction, e.g. a population which consists of cells. The
structure of individual-based models is defined on the level of its components. The macroscopic
evolution is a result of the evolutionary events of the single particles. Each particle is equipped
with a set of exponential waiting times, indicating together the time and type of the next evolution
step for the whole population.

Here, we introduce a “basic” version of these models, following [25]. Each individual with trait
x ∈ X , where the trait space X is a compact subset of Rd, can give birth to another individual or
die. At a birth event, a mutant appears with a certain probability. More precisely, each individual
is characterised by the following set of parameters:

• a natural birth rate, b(x) ∈ R+,

• a natural death rate, d(x) ∈ R+,

• a competition kernel, c(x, y)K−1 ∈ R+, indicating the competition felt by an individual of
trait x ∈ X in presence of an individual of trait y ∈ X ,

• a probability, uKµ(x), that a birth event induced by an individual of trait x is a mutation,

• a law, M(x, dh), that describes the distribution of a mutant of type x+ h

• scaling parameters, K and uK , for the population size and the mutation probabilities.

The population at time t can be represented by a rescaled point measure

νKt = 1
K

Nt∑
i=1

δxi(t), (1.2.15)

where xi(t) denotes the trait of the i-th individual at time t and Nt denotes the number of
individuals at time t. To each individual of trait x three independent exponential clocks are
attached with parameters:

• (1− uKµ(x))b(x) for clonal reproduction

• uKµ(x)b(x) for production of a mutant

• d(x) +
∫
X c(x, y)νKt (dy) for logistic death due to age and competition.
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Both types of reproduction clocks for an individual depend only on the trait of that individual.
In contrast, the death clock depends (via the effect of competition) on the state of the whole
population. When the clonal reproduction clock rings, another individual with trait x appears. A
ring of the mutational reproduction clock indicates the appearance of a mutant of trait y = x+h,
where h ∼ M(x, dh). Furthermore, when the death clock rings, an individual with trait x
disappears.

The dynamics of the process can be summarised in terms of its generator. Let us define

MK ≡
{

1
K

n∑
i=1

δxi , n ≥ 0, xi ∈ X
}

(1.2.16)

as the set of finite rescaled counting measures on X . The infinitesimal generator, LK , of the
process of interest acts on bounded measurable functions φ from MK into R, for all η ∈MK by

(
LKφ

)
(η) =

∫
X

(
φ

(
η + δx

K

)
− φ(η)

)
b(x)(1− µKm(x))Kη(dx)

+
∫
X

∫
Rd

(
φ

(
η + δx+h

K

)
− φ(η)

)
b(x)µKm(x)M(x, dh)Kη(dx)

+
∫
X

(
φ

(
η − δx

K

)
− φ(η)

)(
d(x) +

∫
X
c(x, y)η(dy)

)
Kη(dx). (1.2.17)

This defines a continuous-time, measure-valued Markov process with density-dependence. Under
regularity assumptions on the involved parameters, the existence and uniqueness in law of a
process with generator LK have been proven in [57].

This model and related ones as well as their asymptotic behaviour were studied rigorously for
example in [10, 25, 26, 27, 28, 30, 31, 74, 102]. In these publications the long-term evolution of
the system is investigated in the limits of large populations, rare mutations and small mutational
effects in different combinations and on different timescales.

1.2.5 Law of large numbers, central limit theorem and large deviations
in this thesis

Limit theorems appear in various manners in this thesis. One idea behind the studies in Chapter
2 is to unify the modelling framework and to show a higher robustness of previous results. We will
see in Chapter 2 that rare events play a crucial role in the functioning of the immune response.
Apart from proving large deviation results for conditional probability distributions it is a crucial
part of Chapters 2 and 3 to derive a functional central limit theorem in order to describe the
random rate function. The central limit theorem is functional in the threshold value a, which
determines the size of the large deviation. These results are established by proving tightness and
convergence in finite dimensional distributions. Several steps in the proof of the main results
hinge on verifying uniform laws of large numbers, which are again functional in the parameter a.

The large population approximation in the context of stochastic, individual-based models in
Chapter 4 can be seen as an LLN as well. It is derived from the LLN for density-dependent pop-
ulation processes of [55] and illustrated in Figure 1.3, which shows the trajectories of a stochastic
system and of the solution of the corresponding deterministic limit.
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Figure 1.3: Each line describes the trajectory of one subpopulation of a population of interacting cancer
and immune cells. On the left-hand side the trajectories of the stochastic process are shown, whereas
on the right-hand side the trajectories of a solution of the deterministic system obtained in the limit are
depicted. These pictures are taken from [11] and explained in more detail in Chapter 4.

1.3 Outline of the content of this thesis

The main part of the present thesis consists of three chapters. Each of these chapters is briefly
summarised in one of the following subsections.

1.3.1 A mathematical justification for a specific recognition by T-cells

Chapter 2 of this thesis is concerned with a stochastic model for the activation of T-cells. The
model describes the signal a T-cell receives via its T-cell receptors (TCRs). Our results can be
seen as a mathematical justification for a specific recognition by T-cells. This chapter appeared
as joint work with Anton Bovier in the Journal of Mathematical Biology, [100],

H. Mayer and A. Bovier, Stochastic modelling of T-cell activation, Jour-
nal of Mathematical Biology, Volume 70, Number 1–2, pp. 99–132, 2015.

The model, which we consider, is a slight generalisation of the model proposed by van den
Berg, Rand and Burroughs in [131] and further developed in [138]. In both publications partic-
ular distributions are used for the involved random variables. In contrast, we develop a unified
framework, i.e. the results are more robust.

With regard to T-cell activation we are interested in the question how a reliable distinction
between foreign and self structures is possible. More precisely, we ask: Is an immune response
more likely in the presence of invaders? If yes, which T-cells become activated? Are those T-cells
activated which are sensitive to a certain peptide species?

To answer these questions we analyse the probability of T-cell activation in three different sce-
narios, which are illustrated in Figure 1.4. Recall that a T-cell interacts with Antigen Presenting
Cells (APC) and scans the sample of peptides presented on the APC with its receptors. A T-cell
should become activated when foreign peptides are present on the APC. Let us describe the three
cases that we study. The first one is concerned with the total probability that a T-cell with a
randomly chosen clonotype is activated by a randomly chosen APC, i.e. by a randomly chosen
Antigen Presentation Profile (APP), see Figure 1.4 (A). Case two investigates the probability
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Figure 1.4: Illustration of different scenarios, for which the probability of T-cell activation is analysed.
(A) The T-cell clonotype and the Antigen Presentation Profile (APP) are chosen at random. (B) The
T-cell pool is restricted to one clonotype and the APP is chosen at random. (C) The T-cell clonotype is
chosen at random and the pool of Antigen Presenting Cells is restricted to one APP.

that a T-cell of a fixed clonotype is activated by a randomly chosen APP, see Figure 1.4 (B).
Finally, the third case examines the probability that a randomly chosen T-cell is activated by a
fixed APP, Figure 1.4 (C). For all three cases the frequency of observed activations converges to
a particular probability.

In mathematical terms, we study the probability that a large sum of random variables,
Gi,n(zf), representing the stimulatory signal received by the T-cell, exceeds a certain threshold
value, gact,

P (Gi,n(zf) ≥ gact) . (1.3.1)

Here,

Gi,n(zf) ≡ qn
n∑
j=1

ZjWij + zfWif , where (1.3.2)

• Zj are i.i.d. random variables representing the number of copies of peptides of species j,

• Wij are i.i.d. random variables representing the stimulation rate induced by a peptide of
species j for a T-cell of clonotype i,
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• zf is a parameter denoting the number of foreign peptides,

• qn is a parameter ensuring proportional displacement of self peptides and

• n denotes the number of different self peptide species present on an APC.

The sum in Equation (1.3.2) describes the signal induced by the self-background and the last
term, zfWif , the signal induced by the foreign peptide species.

Let us define W as the sigma-algebra generated by the stimulation rates, (Wij)i,j∈N, and Z
as the one generated by the numbers of peptides, (Zj)j∈N. Then, the three scenarios introduced
above correspond to investigate

P (Gi,n(zf) ≥ gact) , P (Gi,n(zf) ≥ gact|W) and P (Gi,n(zf) ≥ gact|Z) . (1.3.3)

P (Gi,n(zf) ≥ gact) refers to the case illustrated in Figure 1.4 (A), P (Gi,n(zf) ≥ gact|W) to the one
in Figure 1.4 (B) and P (Gi,n(zf) ≥ gact|Z) to the one in Figure 1.4 (C).

By a law of large numbers, n−1Gi,n(zf) converges almost surely to E[Z1W1] as n tends to
infinity. From immunology we know that T-cell activation is a rare event since there are many
encounters of T-cells and APCs all the time, but only very few of them lead to an immune
response. Thus, the threshold value, gact, has to be larger than nE[Z1W1] and large deviation
techniques can be used to analyse the probabilities of interest. Large deviation results were also
applied in previous work but not in the conditional (quenched) scenarios [125, 131, 138]. First
steps into the direction of the analysis of these scenarios have been carried out in [121].

The investigation of the quenched cases adds value to the analysis of this type of models.
As stated precisely in Theorems 2.3.3, 2.3.5 and 2.3.16, we can show that strong large deviation
estimates hold in all three scenarios. Furthermore, the random rate function, appearing in the
analysis of the quenched scenarios, can be characterised in terms of functional central limit
theorems, see Theorems 2.3.7 and 2.3.17. With these tools it is possible to deduce that the
probability of T-cell activation increases exponentially with the number of foreign peptides, zf,
for a fixed threshold value gact/n when T-cell clonotype and APP are chosen at random or when
an APP is fixed. In the case where the T-cell clonotype is fixed, the activation probabilities grow
only then exponentially in zf when the stimulation rate induced by the foreign peptide species,
Wif , is large enough.

This implies that T-cell activation in this model is indeed more likely in the presence of foreign
invaders. Moreover, it is gradually specific, i.e. only those T-cells are activated which are sensitive
to the foreign peptide. There might be several peptides inducing a high stimulation rate for one
given T-cell clonotype. That means that in this model crossreactivity plays also a role, fitting to
reality [97, 136].

The results obtained in Chapter 2 are independent of the actual distribution of the random
variables. This fact allows to use different distributions depending on the exact situation that
should be modelled. Of course, the involved random variables have to satisfy some moment
conditions. Mathematically, this can be seen as a universality in the behaviour of objects of the
form (1.3.2).

1.3.2 Conditional large deviations for sums of weighted random variables

In Chapter 3 we consider large deviation results for partial sums, Sn = ∑n
j=1 ZjWj , conditioned on

the sequence (Wj)j∈N, for sequences of real-valued, i.i.d. random variables, (Zj)j∈N and (Wj)j∈N.
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We define W and Z as the sigma-algebras generated by (Wj)j∈N and (Zj)j∈N, respectively, and
let Z andW be independent. For a > E[Z1W1], we establish a sharp large deviation result for the
conditional probability distribution, P(Sn ≥ an|W), and an invariance principle for the random
large deviation rate function. This chapter is joint work with Anton Bovier and was published in
ALEA, [18],

A. Bovier and H. Mayer, A conditional strong large deviation result and
a functional central limit theorem for the rate function, ALEA Lat. Am.
J. Probab. Math. Stat., Volume 12, Number 1, pp. 533–550, 2015.

Assuming that W1 and Z1 satisfy certain moment conditions and for a suitable interval J , we
prove Theorem 3.1.6. Roughly speaking, it states that, as n→∞,

P
(
∀a ∈ J : P(Sn ≥ an|W) = KWn (a) exp(−nIWn (a))[1 + o(1)]

)
= 1. (1.3.4)

Here, KWn (a) denotes a random prefactor and IWn (a) the random rate function. The result relies
on a strong large deviation result due to Chaganty and Sethuraman, [24], restated in Theorem
1.2.8. Equation (1.3.4) means that the approximation provided by Theorem 1.2.8 holds almost
surely, uniformly in a ∈ J . Subsection 3.3 of this thesis contains the proof of Theorem 3.1.6.

The rate function is given by

IWn (a) = aϑWn (a)− 1
n

n∑
j=1

f(Wjϑ
W
n (a)), (1.3.5)

where f(ϑ) ≡ logE[exp(ϑZ1)] and ϑWn (a), the tilting parameter, solves

a = d

dϑ

 1
n

n∑
j=1

f(Wjϑ)

 . (1.3.6)

Let us define ϑ(a) as the solution of

a = d

dϑ
E [f(W1ϑ)] . (1.3.7)

We can split up the rate function into the sum of a deterministic function, I(a), well-behaved ran-
dom fluctuations, 1√

n
Xn(ϑ(a)), and a small enough remainder term, 1

nrn(a), where rn(a) ∈ O(1),
i.e.

IWn (a) = I(a) + 1√
n
Xn(ϑ(a)) + 1

n
rn(a). (1.3.8)

Note that an approximation of the rate function via a uniform law of large numbers without
further characterisation of the remainder term, i.e. of the form

IWn (a) = I(a) +Rn(a) with Rn ∈ O
( 1√

n

)
, (1.3.9)

is not good enough, because the rate function is scaled by a factor n in the approximation of the
probabilities, exp(−nIWn (a)). This means that also the error term is blown up by this factor and
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we need a more precise control. To prove that Equation (1.3.8) holds in a suitable sense we prove
that the fluctuation process, (Xn(ϑ(a)))a∈J̄ , converges in distribution, jointly with its derivatives,
to a Gaussian process, provided the covariance structure is well-behaved. The description of IWn (a)
by means of a functional central limit theorem is the subject of Theorem 3.1.9, which is proven
in Subsection 3.4.

A typical condition required for large deviation results is that the moment generating function,
E[exp(ϑSn)], exists on a certain interval. Here, we do not need this condition for the environment
given by the Wj ’s and we require only the existence of the moment generating function of Z1.
The exact conditions imposed on W1 depend on the distribution of Z1, but are typically weaker
than existence of exponential moments.

1.3.3 Modelling the evolution of cancer with and without treatment

In Chapter 4 a stochastic, individual-based model for the evolution of tumours with and without
therapy is introduced and further examined by illustrative examples. This part of the thesis is
based on joint work with Martina Baar, Anton Bovier and Loren Coquille from the mathematical
department and Michael Hölzel, Meri Rogava and Thomas Tüting from the medical faculty in
Bonn. The following preprint is available on the arXiv, [11],

M. Baar, L. Coquille, H. Mayer, M. Hölzel, M. Rogava, T. Tüting and A.
Bovier, A stochastic individual-based model for immunotherapy of cancer,
arXiv:1505.00452, 2015.

Sections 4.1, 4.2 and 4.4 and Subsection 4.3.1 of Chapter 4 are rewritten with a different
focus. The remainder of Section 4.3 contains only minor changes compared to the preprint, [11],
in particular some pictures are not shown here. Section 4 of the preprint is not used in this thesis
apart from small parts of Subsection 4.2 of the preprint. Except for the simulations shown in
Section 4.4, the figures in Chapter 4 are taken from the preprint. Simulations were performed
with a Gillespie-like algorithm implemented by Boris Prochnau.

A large part of this work is the actual choice of the model. The starting point from the
biological point of view are the experimental findings by Landsberg et al. reported in [91].
It is shown there that melanoma cells escape therapy with cytotoxic T-cells by switching their
phenotype. This so-called phenotypic plasticity is enhanced in the presence of particular cytokines
secreted during inflammation. After an initial phase of remission very often a relapse appears.

In small populations random fluctuations can play a crucial role and modify the long-term
evolution of a system. Since at least some subpopulations in a tumour are relatively small, in
particular in a phase of remission, it is reasonable to use a probabilistic approach to model this
setup. In order to build in the model the interactions of cancer and immune cell populations as
well as the influence of the environment constituted by cytokines, we choose an individual-based
model.

The starting point from the mathematical perspective are thus stochastic, individual-based
models as introduced in Subsection 1.2.4. Recall that individuals in these models are characterised
by a trait x ∈ X . They can reproduce or die due to age or competition. At reproduction events
a mutation occurs with probability µ(x). Note that in these models the population size, Nt, is
not constant as it is for example in Wright-Fisher models. This is important for modelling the
applications we have in mind, where a tumour shrinks and regrows in the context of therapy.
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We extend the basic model in order to describe a therapeutic setup as explained in [91]. To do
so we include a predator-prey relation between T-cells and cancer cells, switching of phenotypes
of cancer cells and terms reflecting the production of a special cytokine and its influence on the
cancer cells. Furthermore, we generalise the new framework in a way which allows to model
also new therapy strategies, such as usage of several types of T-cells attacking different types of
cancer cells. The observed phenotypic switch is relatively rapid, i.e. it takes place on a shorter
timescale than genotypic mutations. A distinction of genotype and phenotype of cancer cells
allows for assuming rare mutations and fast switches at the same time and for studying their
interplay. This might also be a tool to better understand the impact of phenotypic and genotypic
heterogeneity of tumours on therapy resistance.
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Figure 1.5: Dynamics of the process (without mutations) modelling the experiments described in [91]. x
denotes differentiated melanoma cells, y dedifferentiated melanoma cells, zx T-cells and w TNF-α. This
picture is taken from [11].

The “small” model describing the experiments reported in [91] can graphically be represented
as shown in Figure 1.5. Differentiated (original) melanoma cells are denoted by x and dedif-
ferentiated melanoma cells appearing through switching by y. At time t each melanoma cell
can divide at rate b(x) or b(y), switch at rate s(x, y) + sw(x, y)νKt (w) or s(y, x), and die at
rate d(i) + c(i, i)νKt (i) + c(i, j)νKt (j) with i, j ∈ {x, y} and i 6= j. At cell divisions the pheno-
type is maintained. The presence of T-cells, denoted by zx, introduces an additional death rate
t(zx, x)νKt (zx) for differentiated melanoma cells, while the T-cells reproduce in presence of their
target at rate b(zx, x)νKt (x). T-cells can also die or become exhausted and thus vanish at rate
d(zx). When melanoma cells die from therapy, `kill

w (zx, x) TNF-α molecules are secreted. Their
presence enhances the switch towards dedifferentiated cells. TNF-α vanishes at rate d(w). The
evolution of the population is described by exponential waiting times with rates as explained
above and indicated on the arrows in Figure 1.5. We do not consider mutations in this reduced
setup since this was also not studied in [91].

In Subsection 4.3.1 we give examples describing the experiments of [91] qualitatively, whereas
Subsection 4.3.3 aims at a quantitative description with physiologically reasonable parameters.
Both examples are extended to a predictive setup, where a second type of T-cells targeting
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dedifferentiated cancer cells with the switched phenotype is introduced. A possible influence of
therapy on the incidence of mutations is presented by an example in Subsection 4.4.1.



2. Stochastic modelling of T-cell activation

Hannah Mayer and Anton Bovier

Abstract We investigate a specific part of the human immune system, namely the
activation of T-cells, using stochastic tools, especially sharp large deviation results.
T-cells have to distinguish reliably between foreign and self peptides which are both
presented to them by antigen presenting cells. Our work is based on a model studied
by [138] [J Math Bio 57(6):841-861]. We are able to dispense with some restrictive
distribution assumptions that were used previously, i.e. we establish a higher robustness
of the model. A central issue is the analysis of two new perspectives to the scenario (two
different quenched systems) in detail. This means that we do not only analyse the total
probability of a T-cell activation (the annealed case) but also consider the probability
of an activation of one certain clonotype and the probability of a T-cell activation by
a certain antigen presentation profile (the quenched cases). Finally, we see analytically
that the probability of T-cell activation increases with the number of presented foreign
peptides in all three cases.

2.1 Introduction and model setting

In the present paper we analyse a stochastic model for T-cell activation that was introduced
by [131] and later developed and studied by [138]. While we allow for a slightly more general
model setting, the main new contribution is the analysis of some different biological settings that
correspond mathematically to various conditional probabilities. This is explained in detail below.

2.1.1 Biological perspective

Let us first of all say that the model we consider concerns only the mechanism of T-cell activation.
There are many other processes involved in the immune response [104] that are not considered
here at all. T-cells have the task to recognise foreign antigens against a noisy background of the
body’s own antigens. Any substance which is able to elicit an immune response is called antigen
(from the term antibody generating). T-cells do not react with free antigens present in the body,
but only with antigens presented by antigen presenting cells (APCs). APCs collect material in
the body, internalize it and split it up in peptides which are afterwards presented on the surface
of the APC.

In a so called immunological synapse, a bond between a T-cell and an APC, the T-cell scans
the presented mixture of peptides using its receptors. There is only one receptor type on each
T-cell and thus the T-cell is characterised by its T-cell receptor (TCR) clonotype. On the other
hand there are many different peptide species on each APC. The task of a T-cell is to decide on
the basis of signals received in an immunological synapse whether foreign antigens are present in
the body, and to trigger an immune reaction when indicated (in reality, this involves a complex
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interplay with other parts of the immune system which we do not deal with here). This task
is made difficult by the following fact: according to [97] and [6], there exist about 1013 peptide
species that should be recognised but only 107 different TCR clonotypes. This implies that a
fully specific recognition, i.e. that each TCR clonotype recognises exactly one specific antigen,
is impossible. Therefore, a certain degree of cross-reactivity has to be assumed. The presence
of auto-immune diseases, allergies and heavy diseases caused e.g. by viruses and bacteria shows
that the immune system faces a very difficult task.

2.1.2 The model

[131] and [138] presented a mathematical model that allows to interpret the functioning of T-cells
as a statistical test problem. We briefly describe this model following [138].

Characterisation of the APC. An APC is characterised by the species of the presented pep-
tides and the number of copies of each peptide species. Thus, each APC can be represented by a
set of parameters zj representing the numbers of peptides of species j, by the so-called Antigen
Presentation Profile (APP). Peptide species are sometimes distinguished as constituent (i.e. being
present in all cells) and variable (i.e. being present only in some cells), but this distinction plays
no major rôle in the present paper (see, however [95]). The index j ranges over all peptide species
present on this APC. We denote the number of foreign peptides present on the APC by zf and
allow, for simplicity, for only one species of foreign peptide on one APC. Note that the peptides
on the APC are collected by a given APC and thus are a random sample from the total pool of
peptides present in the body.

Characterisation of the T-cell. Each T-cell possesses one receptor type on its surface which
determines the so-called TCR clonotype. The T-cell is characterised by the interaction of its
receptors with the different peptide species. To each TCR clonotype i corresponds a set of
association rates, aij , and dissociation rates, rij . Here i ranges over all TCR clonotypes and j
over all peptide species. We use the following assumption in line with the approach of [138] and
[131]. This scenario is discussed by [128] as the “MHC-limited case”.

Assumption 2.1.1. There is an abundance of receptors on each T-cell in the region of interaction
with the APC such that each released peptide is immediately bound by a receptor again. In this
case association can be assumed as instantaneous and the association rates play no major rôle.

Remark 2.1.2. We see later that we have to work with random stimulation rates to investigate
the event of T-cell activation. It will become clear that the qualitative behaviour of our results
does not rely on the exact distribution of the stimulation rates. In particular, this distribution
could depend on the association rates and thus Assumption 2.1.1 is not too restrictive.

Under Assumption 2.1.1, a T-cell is fully characterised by the set rij , where i refers to the
particular TCR clonotype. We will see later that we are interested in the duration of peptide-
receptor-complexes. The duration of a complex of type ij is denoted by tij and depends on the
dissociation rates.

Activation criteria. The interaction of the cells produces a stimulating signal which the T-cell
receives. This signal results in an activation of the T-cell, if certain criteria are met. The papers
by [111, 124, 123] and [133] suggest the following assumption.
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Assumption 2.1.3.

1. A T-cell receives a stimulus if a peptide-receptor-complex exists longer than a time t∗.

2. A T-cell sums up all the stimuli it gets, even those of different receptors.

3. A T-cell is activated if the sum of all stimuli exceeds a threshold value gact.

Note that activation is induced by stimulation and thus the stimulation rates wij which result
from a peptide-receptor-complex of type ij are important. The central quantity to analyse is then
the total stimulation rate a T-cell receives. It is denoted by gi and compounds all the parameters
mentioned before.

The preliminary description demonstrates that we are concerned with a really high-dimensional
problem and model. Merely the number of parameters for the dissociation rates in the model is
at least of the order 1020 (107 TCR clonotypes times 1013 peptide species).

Stochastic model. The large number of parameters in this model makes a specification of all
of them impossible. Therefore, [131] proposed a stochastic model.

A closer look at the system reveals that we must deal with different types and sources of
randomness. This is crucial for the interpretation of the probabilities in specific setups. The
dissociation rates are assumed to be random because they are unknown in detail. The APP is
random because it represents a random sample of the peptides present in the body. In fact, this
quantities are doubly stochastic because we have a random pool of peptides in the body and a
random sample out of this pool is presented on the APC. For the sake of simplicity we do not
model this double effect here. A further reason to assume randomness is that we consider a
random encounter of two randomly meeting cells. Let us now specify the stochastic version of
the model precisely.

Let (Ω,F ,P) be a probability space on which we define the following random variables. First,
we characterise the APP.

(i) n ≡ nc + nv + 1 denotes the number of different peptide species on one APC, where nc and
nv denote the number of constitutive and variable peptide species on each APC and one
foreign peptide species is present.

(ii) Nc and Nv denote the number of constitutive and variable peptide species in the body.

(iii) The sample of constitutive and variable peptides is represented by positive random variables
Zcj and Zvj , each of them representing the number of copies of a certain peptide species; they
are independent and identically distributed (i.i.d.) in the class of constitutive and variable
peptides, respectively.

(iv) Zcj and Zvj are bounded, and independent of each other.

(v) Z is the σ-algebra generated by Zcj with j ∈ {1, . . . , Nc} and Zvj with j ∈ {1, . . . , Nv}.

(vi) We use a short-hand notation for the conditional distribution PZ(A) ≡ P(A|Z) and denote
the corresponding conditional expectation by EZ [·].

It is reasonable to assume that Zcj and Zvj are bounded because the space on each APC is bounded.

Next, we come to the characterisation of the T-cell.
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(i) The total number of TCR clonotypes is N1 ∈ N, the one of the peptide species is N2 ∈ N.

(ii) The index i denotes the TCR clonotype and j denotes the peptide species.

(iii) The dissociation rates of a complex of type ij are positive, i.i.d. random variables Rij with
distribution P and expectation value E[Rij ] = τ , τ ∈ R+.

(iv) R is the σ-algebra generated by Rij with i ∈ {1, . . . , N1} and j ∈ {1, . . . , N2}.

(v) The times certain peptide-receptor-complex of type ij exist are positive i.i.d. random vari-
ables Tij with conditional distribution PR(Tij ∈ A) ≡ P(Tij ∈ A|R) and corresponding
conditional expectation ER[Tij ] ≡ E[Tij |R] = 1/Rij .

In this setting Tij are random variables in a random environment, in other words they are also
doubly stochastic. They display the individual duration of a concrete peptide-receptor-complex
of type ij. Therefore, the expected duration of such a bond should be reciprocally proportional to
the corresponding dissociation rate Rij . According to (v) E[Tij ] = (τ̄)−1. The joint distribution
of all dissociation rates is given by the product measure PN1N2 . The presented sample is from
the biological point of view independent of the dissociation rates and the duration of the peptide-
receptor-bonds. Thus, Z and R are independent.

The parameters of the previous part can be considered as realisations of these random vari-
ables.

The stimulation rates. According to Assumption 2.1.3 a single bond between a receptor i and
a presented peptide of species j in a synapse results in a stimulation signal if the binding time,
Tij , exceeds a certain threshold t∗. It is assumed that the relevant signal for the T-cell is the
compound average number of stimuli in a synapse,

1
t

∑Nj(t)
k=1

1Tkij>t∗
, (2.1.1)

where t indicates the time, for which this synapse lasts, Nj(t) denotes the total number of bindings
with a peptide of species j and T kij are the respective binding times. Assuming that the number
of bindings is very large, it is reasonable to assume that the relevant signal a T-cell is receiving
from a given peptide species is given by

Wij ≡ lim
t↑∞

1
t

∑Nj(t)
k=1

1Tkij>t∗
= PR(Tij > t∗)

ER[Tij ]
a.s., (2.1.2)

where the last equality follows from elementary renewal theory. We will henceforth consider the
random variables Wij as the fundamental characteristics of a peptide-receptor interaction.

Remark 2.1.4. This approach might not be reasonable for certain T-cell types, e.g. for cytotoxic
T-cells since these cells interact only for a very short time with the APC and an equilibrium can
not be reached.

Notation. Let the variable zf denote the number of presented foreign peptides of one particular
species. The expected number of peptides present at one APC is given by nM ≡ ncE[Zc1] + nvE[Zv1 ].
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The factor qn ≡ (nM − zf)n−1
M used in the following ensures a proportional displacement of the

presented self peptides by the foreign peptides1.

We drop the index i in favour of a clear notation since it is fixed for one T-cell. The discussion
above motivates [138] to define the total stimulation rate as follows.

Definition 2.1.5. With the notation introduced above, the total stimulation rate a T-cell receives
is given by

Gn(zf) = qn

 nc∑
j=1

ZcjWj +
nc+nv∑
j=nc+1

ZvjWj

+ zfWf. (2.1.3)

Note that Wf has the same distribution as the other random variables representing stimulation
rates, and is independent of these random variables and Z.

Interpretation of the probabilities.
The central quantity for our investigation is the probability of T-cell activation. If we consider

just one certain encounter of an APC and a T-cell the “probability” of T-cell activation is either
0 or 1 since all parameters are fixed in that case. But one single event does not give much
information on the actual situation because it is possible that this T-cell makes a mistake. So,
we and in fact the immune system take another, namely a statistical, view to the scenario. We
are concerned with investigating the following three different cases:

1.) The annealed case: Here we consider the overall probability that a randomly chosen T-cell is
activated by a randomly chosen APC, P(Gn(zf) ≥ gact). This probability can be interpreted
as the frequency with which activations occur. If m denotes the number of encounters of
APCs and T-cells, then

1
m

# {activations of T-cells} → P(Gn(zf) ≥ gact) (2.1.4)

as m tends to infinity.

2.) The case quenched with respect to (w.r.t.) the TCR clonotype: In this case we investigate the
conditional probability that a T-cell of a certain TCR clonotype is activated by a randomly
chosen APC, PR(Gn(zf) ≥ gact). Here, different T-cells of one TCR clonotype are examining
several APPs presented by different APCs and the results are averaged. The probability is
to be interpreted as the frequency of activations of T-cells of a given clonotype in several
synapses with different APCs presenting different APPs. That is, if mR denotes the number
of encounters of T-cells of clonotype i and different APCs, then

1
mR

#{activations of T-cells of clonotype i} → PR(Gn(zf) ≥ gact) (2.1.5)

as mR tends to infinity. We shall see that these probabilities depend strongly on the sensitivity
of the given TCR clonotype to the particular presented foreign peptide species.

1One may argue that scaling the random variables by a common factor is not the best choice to achieve a
constant expectation. E.g., if the Zj were assumed to be binomial random variables, it would be more reasonable
to change the parameter in an appropriate way. However, this appears to have only little effect on the results and
we keep following [138] at this point.
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3.) The case quenched w.r.t. the APP: The conditional probability that a APC with a certain
APP activates a randomly chosen T-cell, PZ(Gn(zf) ≥ gact), is analysed here. If mZ denotes
the number of encounters of T-cells of different clonotype with different APCs presenting the
same APP, then

1
mZ

#{activations of T-cells by the given APP} → PZ(Gn(zf) ≥ gact) (2.1.6)

as mZ tends to infinity. This is to be interpreted as the frequency of TCR clonotypes which
are “sensitive” to the fixed APP under consideration. If one considers the idealistic situation
of having one encounter for each TCR clonotype this implies that it is desired that

P(Gn(0) ≥ gact)�
1
N1
� P(Gn(zf ) ≥ gact) (2.1.7)

is fulfilled, where N1 denotes the number of different TCR clonotypes. This is intuitively
clear since no TCR clonotype should be activated by the self-background and at least one
TCR clonotype should be activated if foreign peptides are present.

These three cases can be used to answer different biological questions. Depending on the particular
question different distributions for the appearing random variables should be used. To calculate
a probability which can be compared to biological parameters certain aspects have to be known
or specified, for example the number of T-cells of the different clonotypes and the number of
different APPs. Then questions, such as “How long does it take to elicit an immune response?”,
“How long does it take to encounter a suitable TCR clonotype?” can be asked. On the other
hand, this also gives a feedback on the question whether the mathematical model is reasonable.
The main question is which information on zf is deducible from the behaviour of the T-cells.
This information emerges only on the basis of several encounters and the resulting frequency of
activations. It leads to the question whether there exists a threshold value gact such that the
presence of invaders is distinguishable from the self-background.

[138] considered only Case 1.). In our view the Cases 2.) and 3.) are even more relevant since
they provide information on the activating APPs and the activated clonotypes.

Scaling and asymptotics. To obtain sensible analytic results one needs to consider certain
numbers to be large. Clearly, the total number of peptide species on one APC, n, will be assumed
the main large parameter. The number of foreign peptides has to be seen in comparison to this
number, i.e. we understand that zf depends on n, and one wants to know how large zf has to be
(as a function of n) for a reliable detection. The numbers nc and nv can in principle also be of
different magnitude, e.g. one may think that nv ∼ n and nc ∼ nβ, β < 1. For simplicity, we will
consider here only the case nc ∼ nv ∼ n.

2.2 Results

2.2.1 Expectation value and variance of the total stimulation rate

We compute the expectation value and variance of the total stimulation rate as a function of the
number of foreign peptides, zf, in Cases 1.) , 2.), and 3.). It is easy to calculate these quantities
and they allow a first insight into why and in which range a foreign self distinction may work.
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We assume the existence of the involved first and second moments.

Case 1.) According to the following lemma an increasing number of foreign peptides does not
change the expectation value but the variance of the total stimulation rate.

Lemma 2.2.1. It holds that E[Gn(0)] = E[Gn(zf)], and that

V[Gn(zf)]− V[Gn(0)] =
(
V[W1] + V[Gn(0)]

n2
M

)
zf

(
zf − 2nMV[Gn(0)]

V[W1]n2
M+[Gn(0)]

)
. (2.2.1)

We can see that the expectation value of Gn(zf) is independent of zf. The variance depends
quadratically on zf, the difference of the variances as a function of zf is a parabola with roots
2nMV[Gn(0)]/(V[W1]n2

M + V[Gn(0)]) and 0. The function decreases first but for zf large enough
it is monotonously increasing and positive. The qualitative behaviour shows up in this general
setup, the exact shape depends only on the first and second moments of the involved random
variables and not on their exact distribution. In the setting of an increasing variance and a con-
stant expectation value the probability to exceed a threshold value larger than the expectation
value increases. Thus, a T-cell activation may become more likely for a larger value of zf. The
increasing variance may allow to have the threshold value gact on a level such that permanent
reactions are avoided but an activation becomes more probable. We see here already that a de-
tection can only be possible if zf is large enough.

Case 2.) Because we consider conditional probabilities and expectations here, these quantities
can coincide at most almost surely. We consider now the difference of the conditional expectations
as a function of zf, too. In this case the expectation value and the variance depend on zf.

Lemma 2.2.2. It holds that ER[Gn(zf)]− ER[Gn(0)] = zf(Wf − E[W1]) almost surely, and that

VR[Gn(zf)]− VR[Gn(0)] =
(
VR[W1] + VR[Gn(0)]

n2
M

)
zf

(
zf −

2nMVR[Gn(0)]
VR[W1]n2

M + VR[Gn(0)]

)

=VR[Gn(0)]
n2
M

zf (zf − 2nM ) , (2.2.2)

where VR[X] := ER[(X − ER[X])2].

Note that VR[W1] = 0 because W1 is measurable w.r.t R. E[W1] is with positive probability
not equal to Wf because we do not assume the stimulation rates to be distributed according
to a Dirac measure. This is reasonable because we know from the biological background that
the stimulation rates can vary. Hence, we have here an effect on the average stimulation rate
a T-cell receives which depends on the stimulation rate associated to the foreign peptide. The
conditional expectation of Gn(zf) increases with zf if Wf > E[W1]. The effect becomes enlarged
for an increasing zf. On the other hand, the variance is decreasing for an increasing value of zf
because zf will never reach 2nM from the biological point of view. Thus, the situation is different
here. The parabolas describing the difference of the variances are random here.

Case 3.) Again, the conditional expectations can be at most almost surely equal. Here, the
expectation value is almost surely independent of zf but the variance depends again on zf.
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Lemma 2.2.3. It holds that EZ [Gn(zf)]− EZ [Gn(0)] = 0 almost surely, and that

VZ [Gn(zf)]− VZ [Gn(0)] =
(
VZ [W1] + VZ [Gn(0)]

n2
M

)
zf

(
zf −

2nMVZ [Gn(0)]
VZ [W1]n2

M + VZ [Gn(0)]

)
, (2.2.3)

where VZ [X] := EZ [(X − EZ [X])2].

In this case the conditional expectation of the total stimulation rate is only almost surely
independent of zf. We also have random parabolas for the difference of the variances in this case.
Note that this scenario is very similar to the one in the annealed case; there is an effect on the
level of the variance but not on the level of the expectation.

In Figure 2.1 intervals are plotted for different values of zf, such that the random variable
Gn(zf) lies in these intervals with probability 0.99, under the tentative assumption that the
standardised version of the total stimulation rate, (Gn(zf)−E[Gn(zf)])(

√
V[Gn(zf)])−1, is standard

normally distributed. In Case 1.) the intervals enlarge for zf large enough because the variance of
Gn(zf) increases. In Case 2.) the intervals shrink due to the decreasing variance but they move
according to the value of the stimulation rate of the foreign peptide. In the presented case Wf is
larger than its expectation E[Wf]. Thus, the intervals move to the right hand side. Case 3.) is
very similar to Case 1.) except for a slight difference concerning the expectation value which is
just almost surely independent of zf, and thus slightly varying.

2.2.2 Large deviations

Encounters of T-cells and APCs happen permanently in the body, but only very few of them give
rise to an immune reaction. Therefore, T-cell activation must be tuned (by suitable choice of the
activation threshold gact) such that activation and the corresponding immune response are rare
events. This implies that to compute the activation probabilities, one needs to use large deviation
techniques (see for example [46] or [45]). In particular, the computations of means and variances
from the previous subsection 2.2.1 are insufficient.

We are concerned with a family of real-valued random variables (Sn)n∈N and the probability
that n−1Sn exceeds a threshold value a, P(Sn ≥ na). A large deviation is a deviation from the
expectation value of Sn of the order n. If the family of random variables under consideration
satisfies a so called large deviation principle (LDP), the probability for a large deviation event
decays exponentially in n with rate I(a). The rate function I(a) is obtained as the limit of the
Fenchel-Legendre transformation of the logarithmic moment generating function of Sn, to wit
I(a) = limn↑∞ In(a), where

In(a) = sup
ϑ

(aϑ−Ψn(ϑ)) ≡ aϑn −Ψn(ϑn), (2.2.4)

and Ψn(ϑ) ≡ 1
n lnE[exp(ϑSn)] and ϑn satisfies

Ψ′n(ϑn) = a. (2.2.5)

ϑn is known as the tilting parameter and is used to perform an exponential change of measure in
many proofs of theorems in this field. The standard theorems of Cramér and Gärtner-Ellis then
state

P(Sn ≥ an) = exp(−nI(a)(1 + o(1))). (2.2.6)
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(a) Case 1.) (b) Case 2.)

(c) Case 3.)

Figure 2.1: Intervals containing Gn(zf) with probability and conditional probability 0.99.

As was pointed out by [138], this approximation is not sufficiently precise to calculate the actual
probability because of the huge and poorly controlled multiplicative error term exp(no(1)). For-
tunately, there are stronger theorems available, known as sharp large deviation results or exact
asymptotics. To use such results was already suggested by [131] and [126]. We obtain approxi-
mations of the form

P(Sn ≥ an) = exp(−nIn(a))
ϑnσn

√
2πn

(1 + o(1)) (2.2.7)

with the same notation as before and σ2
n ≡ Ψ′′n(ϑn). The standard theorem for Sn a sum of

i.i.d. random variables is due to [12]. The generalization to independent, but not identically
distributed random variables, which we need here, is based on results of [24]. We restate these
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results in Section 2.3.
These techniques will allow us to achieve our goal, namely to check whether there is a thresh-

old value gact such that the probability of activation changes by orders of magnitude with zf.
We would like to know if the condition P(Gn(0) ≥ gact) � P(Gn(zf) ≥ gact) can be satisfied for
physiologically reasonable values of zf. Therefore, we look at the activation probabilities as a
function of gact. These functions are often called activation curves.

Application to the model of T-cell activation. We look at an artificial sequence of models
which is characterised by an increasing number of peptide species, n ≡ nc + nv + 1. We assume
that there exists C ∈ (0,∞) such that limn→∞ nc/nv = C. This implies that there exist C1, C2 ∈
(0,∞) such that limn→∞ nc/n = C1 and limn→∞ nv/n = C2. We use this condition to ensure
some convergence properties, especially for the rate function. But this is also from the biological
point of view a reasonable assumption because the ratio of the numbers of constitutive and
variable peptide species is constant. The sequence of random variables Sn is given by Gn(zf)
from Definition 2.1.5.

[138] used certain distributions for all appearing random variables to prove the applicability
of Theorem 3.1.3 below. Afterwards, the approximations of the probabilities were calculated and
compared to simulations. Thereby a separation of the activation curves for different values of zf
was obtained and a high coincidence of the approximation with the simulation was observed.

We prove the applicability of Theorem 3.1.3 in the Cases 1.), 2.), and 3.) in Section 2.3 under
suitable conditions on the distributions and moment generating functions of the involved random
variables. In this section we state just the approximations of the probabilities and the involved
rate functions.

Remark 2.2.4. To obtain the following approximations of the probabilities we assume the existence
of the moment generating and the conditional moment generating functions of Zc1W1, Zv1W1 and
W1. This condition is satisfied since we consider bounded random variables.

Case 1.) Let Mc(ϑ) ≡ E[eϑZc1W1 ], Mv(ϑ) ≡ E[eϑZv1W1 ] and M(ϑ) ≡ E[eϑW1 ] denote the moment
generating functions of Zc1W1, Z

v
1W1 and W1. Let gact(n) ≡ an for a > E[Gn(zf)]/n. The

activation probabilities can be approximated by

P(Gn(zf) ≥ gact(n)) =exp(−naϑn(a, zf) + nc lnMc(qnϑn(a, zf)))
ϑn(a, zf)σn

√
2πn

× exp(nv lnMv(qnϑn(a, zf)) + lnM(zfϑn(a, zf)))(1 + o(1)), (2.2.8)

where ϑn(a, zf) is chosen such that the argument of the exponential function attains its minimum.
We write ϑn(a, zf) and not just ϑn to visualise the dependence on a and zf. We have proven this
approximation in analogy to the proof of [138]. It only requires homogeneous distributions with
certain properties in each block. The form of the dependence of the stimulation rates on the
dissociation rates is not important. This can be interpreted as a tacit inclusion of competition of
the peptides, association rates, loading fluctuations and similar aspects.

The interesting situation is when zf becomes large, but remains small compared to n. In
that case, the infimum will be attained for ϑn ∼ a, and since the law of W1 is assumed to have
bounded support, there will be a constant L such that d

dϑ lnM(zfϑ) ∼ Lzf for ϑzf large enough.
For zf �

√
n we may apply this approximation since we know from the applicability of Theorem
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3.1.3 that ϑn
√
n→∞. A simple computation then shows that

P(Gn(zf) ≥ gact(n))
P(Gn(0) ≥ gact(n)) ∼ exp

(
ϑn(a, 0)zf

(
L− a n

nM

))
, (2.2.9)

where ϑn(a, 0) is the solution of Equation (2.2.5) for zf = 0. This implies that if a is chosen
sufficiently small, the activation probability increases exponentially with zf, as desired. To obtain
Equation (2.2.9) we used two Taylor approximations: first we expanded ϑn(a, zf) in ϑn(a, 0) and
after substituting this term in the rate function we expanded the resulting expression. This way
it is possible to recover the probability of activation for the self-background and calculate the
ratio of interest as stated by Equation (2.2.9).
Remark 2.2.5. The fact that if a is too big, the activation probability drops as zf increases has a
simple intuitive explanation: for very large a, the contribution of the foreign peptides is limited
by the maximal value of Wf, whereas the reduction of the contribution of the other peptides
makes it more unlikely to achieve an activation by a random fluctuation.
Case 2.) An upper index R on any previously defined object should signify the same object
conditioned on the σ-algebra R. We consider the conditional moment generating functions

MRγ,j(ϑ) = ER[eϑZ
γ
jWj ] =

∫
exp(ϑZγjWj)dPZγj , γ ∈ {c, v}, (2.2.10)

where PZγj denotes the measure corresponding to Zγj , γ ∈ {c, v}. Thus, the moment generating
functions are random variables themselves. Because the numbers of copies, Zcj and Zvj , are
independent of R and the stimulation rates are measurable w.r.t. R, these moment generating
functions are again i.i.d. random variables in each block. Due to the measurability of Wf w.r.t.
R we have MR(ϑ) = exp(ϑzfWf). The resulting rate function, IRn (a, zf), is also random. We need
to apply a law of large numbers in the proof of the approximation of the probabilities in this
case. Thus, ln(MRγ,j(ϑ)) ∈ L1(PN1N2) for each ϑ ≥ 0 and γ ∈ {c, v} is an important ingredient
for the proof. Using this fact we can also establish convergence of the rate function according to
a strong law of large numbers. But this convergence is not good enough for our purpose because
the rate function and thus also the error term arising from the law of large numbers are scaled
with a factor n in the large deviation approximation of the probabilities. Therefore, we have to
prove a functional central limit theorem for a part of the rate function and we have to take into
account the term which thus emerges. Thereby we obtain a process, Zn, which converges weakly
to a Gaussian process. Let

gn(ϑ) ≡ nc
n
E
[
lnER

[
eϑZ

c
1W1

]]
+ nv

n
E
[
lnER

[
eϑZ

v
1W1

]]
(2.2.11)

and ϑn0 (a, zf) be defined as the solution of

a− zf
n
Wf = d

dϑ
gn(qnϑ). (2.2.12)

The (random) function In0 (a, zf) ≡ aϑn0 (a, zf)− gn(qnϑn0 (a, zf)) converges to a function I0(a). Let

Zn(ϑ) ≡ 1√
n

 nc∑
j=1

(
lnMRc,j(ϑ)− E

[
lnMRc,j(ϑ)

])
+
nc+nv∑
j=nc+1

(
lnMRv,j(ϑ)− E

[
lnMRv,j(ϑ)

]) . (2.2.13)
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With this notation the activation probabilities can be approximated almost surely according to

PR(Gn(zf) ≥ gact(n))

=exp (−nIn0 (a, zf) +
√
nZn(qnϑn0 (a, zf)) + zfWfϑ

n
0 (a, zf) + nRn)

σnϑn
√

2πn
(1 + o(1)), (2.2.14)

whereRn ∈ O
(

1
n

)
. In Section 2.3 we prove the joint weak convergence of the process Zn(qnϑn0 (a, zf))

and its derivatives which establishes that the expression for the probabilities is well-behaved.
As in Case 1.), the interesting situation is when zf becomes large but zf/n is small. A

computation similar as in Case 1.) then shows that

PR(Gn(zf) ≥ gact(n))
PR(Gn(0) ≥ gact(n)) ∼ exp

(
ϑn0 (a, 0)zf

(
Wf − a

n

nM

))
. (2.2.15)

This shows that for a given choice of a, the activation probability increases exponentially with
zf only if Wf is large enough (depending on the choice of a). That is, only the presence of
foreign peptide species which interacts strongly with the particular TCR clonotype will lead to
an increased activation frequency. This implies a certain degree of specificity. Although we have
seen in Case 1.) that the overall probability of T-cell activation increases with zf, this is not true
for any TCR clonotype but just for those clonotypes which are equipped with a large enough
value of Wf.

Note that the rate function in this case is random, that is the activation probabilities fluctuate
from clonotype to clonotype by a factor of order exp(

√
nZ), where Z is random. This implies

that, for the modulation of the activation probabilities due to foreign peptides to exceed these
random fluctuations significantly, one should have that zf �

√
n. This appears to limit the sen-

sitivity level for the recognition of foreign peptides.

Case 3.) An upper index Z denotes the objects conditioned on this σ- algebra. ϑ̃n(a, zf) is the
solution of

a = d

dϑ
g̃n(qnϑ) + d

dϑ

1
n

lnE
[
eϑzfWf

]
, (2.2.16)

where g̃n(ϑ) ≡ nc
n E

[
lnEZ

[
eϑZ

c
1W1

]]
+ nv

n E
[
lnEZ

[
eϑZ

v
1W1

]]
. Z̃n(ϑ) is defined by

Z̃n(ϑ) ≡ 1√
n

 nc∑
j=1

(
lnMZc,j(ϑ)− E[lnMZc,j(ϑ)]

)
+

nc+nv∑
j=nc+1

(
lnMZv,j(ϑ)− E[lnMZv,j(ϑ)]

) (2.2.17)

and Z̃n(qnϑ̃n(a, zf)) converges weakly to a Gaussian process. Ĩn(a, zf) ≡ aϑ̃n(a, zf)−g̃n(qnϑ̃n(a, zf))
converges to a function Ĩ(a).

The notations and the proof of the result are quite similar to Case 2.) but we can recognise
some structural differences in the results here. We have already seen these differences between
the two conditional scenarios in the analysis of the variances and the expectation values. Here,
the probability of activation can be approximated by

PZ(Gn(zf) ≥ gact(n))

=exp (−nĨn(a, zf) +
√
nZ̃n(qnϑ̃n(a, zf)) + lnE[eϑ̃n(a,zf)zfWf ] + nRn)

σnϑn
√

2πn
(1 + o(1)), (2.2.18)
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where Rn ∈ O
(

1
n

)
. In the rate function appears again a term which depends on the foreign

peptide, namely lnE[exp (ϑ̃n(a, zf)zfWf)]. But in contrast to Case 2.) this term is deterministic
and the only randomness in the rate function lies in the fluctuation term which arises from
conditioning. Thus, we are again dealing with a random rate function but this function does not
vary from event to event by a term which is scaled with zf.

The interesting situation is again when zf becomes large, but remains small compared to n.
As in Case 1.) there will be a constant L such that d

dϑ lnM(zfϑ) ∼ Lzf for ϑzf large enough. A
simple computation then shows that

PZ(Gn(zf) ≥ gact(n))
PZ(Gn(0) ≥ gact(n)) ∼ exp

(
ϑ̃n(a, 0)zf

(
L− a n

nM

))
, (2.2.19)

where ϑ̃n(a, 0) is the solution of Equation (2.2.16) for zf = 0. As in Case 2.), there appears a
fluctuation term

√
nZ. Therefore, we need again zf �

√
n such that the impact of this fluctu-

ation term is not too big. This order of zf ensures again that we may use the approximation
d
dϑ lnM(zfϑ) ∼ Lzf.
Remark 2.2.6. During an infection the body is flooded with the invader. Therefore, a significant
ratio of the peptides presented on the APC belongs to the foreign invader and it is reasonable
to consider the regime zf �

√
n. A clear indication that a sufficiently high presentation level of

the targeted peptides is needed, has been established by [91] in the context of T-cell therapy of
melanomas. Our work is based on the assumption zf � n although parts of the results in Case
2.) are also valid for zf ∼ n. If this is the regime of interest we suggest to use a convolution of the
distribution of the foreign stimulation rate and the distribution of the part of Gn belonging to
the self background since then the influence of the summand zfWf is very large and this summand
cannot be treated as the other summands. That is, one should consider

P(Gn(zf) ≥ an) = P(qnGn(0) ≥ an− zfWf)

=
∫

P(n−1Gn(0) ≥ q−1
n (a− n−1zfWf)|Wf)dPWf (2.2.20)

and approximate the probability in the integral suitably, depending on the value of q−1
n (a −

n−1zfWf).

2.3 Precise formulation of the results and proofs

To state the central large deviation result proven by [24] we introduce some notation. Let {Sn}n∈N
denote a sequence of real-valued random variables with moment generating functions Φn(ϑ) ≡
E[exp(ϑSn)], ϑ ∈ R and let Ψn be defined by Ψn(ϑ) ≡ 1

n ln Φn(ϑ).
Assumption 2.3.1. There exist ϑ∗ ∈ (0,∞) and β <∞ such that

|Ψn(ϑ)| < β, for all ϑ ∈ Bϑ∗ ≡ {ϑ ∈ C : |ϑ| < ϑ∗} and n ∈ N.

Notation. Let (an)n∈N be a bounded real-valued sequence such that the equation

an = Ψ′n(ϑ) (2.3.1)

has a solution ϑn ∈ (0, ϑ∗∗) with ϑ∗∗ ∈ (0, ϑ∗) for all n ∈ N. σ2
n ≡ Ψ′′n(ϑn) is the variance of the

tilted version of n−1Sn and In(an) ≡ anϑn − Ψn(ϑn) is the Fenchel-Legendre transform of Ψn.
We will abusively refer to this as the rate function.
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Theorem 2.3.2 ([24]). If in the above setting

(i) limn→∞ ϑn
√
n =∞

(ii) infn∈N σ2
n > 0 and

(iii) limn→∞
√
n supδ1≤|t|≤δ2ϑn

∣∣∣Φn(ϑn+it)
Φn(ϑn)

∣∣∣ = 0 ∀0 < δ1 < δ2 <∞,

then

P (Sn ≥ nan) = e−nIn(an)

ϑnσn
√

2πn
(1 + o(1)) , n→∞. (2.3.2)

We give here the precise conditions that we impose on the distributions of the involved random
variables to ensure the applicability of Theorem 3.1.3 with Sn = Gn(zf) in the three different cases.

Case 1.) This case has been considered in [138]. We state their result under slightly more general
assumptions. Below the quantities Φn,Ψn and ϑn are defined as above with Sn = Gn(zf).

Theorem 2.3.3. Let (an)n∈N be defined by an ≡ a and gact(n) = an such that gact(n) > E[Gn(zf)]
and a < supϑ∈R d

dϑΨn(ϑ) for all n ∈ N. Then Theorem 3.1.3 is applicable provided zf/n ↓ 0, the
distribution functions of Zc1W1, Zv1W1 and W1 are neither lattice-valued nor concentrated on one
point, and the corresponding moment generating functions Mc(ϑ),Mv(ϑ) and M(ϑ) are finite for
each ϑ ∈ R. The rate function is

In(a, zf) = aϑn(a, zf)−
nc
n

lnMc(qnϑn(a, zf))−
nv
n

lnMv(qnϑn(a, zf))−
1
n

lnM(zfϑn(a, zf)). (2.3.3)

Proof. The moment generating function of the random variable Gn is given by

Φn(ϑ) = Mc(qnϑ)ncMv(qnϑ)nvM(zfϑ). (2.3.4)

It reduces to Φn(ϑ) = Mc(ϑ)ncMv(ϑ)nv if zf = 0. Assumption 3.1.1 is satisfied because the
following holds: For each x ∈ R+ and all ϑ < x

Ψn(ϑ) ≤ nc
n

lnMc(qnx) + nv
n

lnMv(qnx) + 1
n

lnM(zfx)

≤ lnMc(x) + lnMv(x) + lnM(zfx) ≡ β(x) (2.3.5)

because Ψn(ϑ) is strictly increasing and qn, nc/n and nv/n are smaller than 1. ϑn(a, zf) is defined
as the (unique) solution of

a = nc
n

[
d

dϑ
lnMc(qnϑ)

]
+ nv

n

[
d

dϑ
lnMv(qnϑ)

]
+ 1
n

[
d

dϑ
lnM(zfϑ)

]
. (2.3.6)

This equation results from Equation (3.1.7) and the choice an ≡ a. The solution exists since the
function d

dϑΨn(ϑ) runs from 1
nE[Gn(zf)] = d

dϑΨn(ϑ)|ϑ=0 to supϑ∈R d
dϑΨn(ϑ) and a lies in between

these values. It is unique because d
dϑΨn(ϑ) is strictly increasing. Because nc

n → C1, nv
n → C2,

zf
n → 0 and qn → 1, Equation (2.3.6) converges. The limit equation is a = C1

d
dϑ lnMc(ϑ) +

C2
d
dϑ lnMv(ϑ). Thus, there exists C ∈ (0,∞) such that limn→∞ ϑn = C. C is strictly positive
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because a > d
dϑΨn(ϑ)|ϑ=0. Consequently, Condition (i) of Theorem 3.1.3 is satisfied.

We define

σ2
n =

(
nc
n

d2

dϑ2 lnMc(qnϑ) + nv
n

d2

dϑ2 lnMv(qnϑ) + 1
n

d2

dϑ2 lnM(zfϑ)
)∣∣∣∣∣

ϑ=ϑn(a,zf)
. (2.3.7)

This equation converges as the previous one and the second derivatives of lnMγ(qnϑ), γ ∈ {c, v}
are positive due to the strict convexity of these functions. Thus, Condition (ii) of Theorem 3.1.3
is satisfied, too.
We define

νnγ (t) = Mγ(qn(ϑn(a, zf) + it))
Mγ(qnϑn(a, zf))

, γ ∈ {c, v} and νn(t) = M(zf(ϑn(a, zf) + it))
M(zfϑn(a, zf))

. (2.3.8)

These are the characteristic functions of the tilted random variables. The distribution functions
corresponding to these characteristic functions are also neither lattice-valued nor concentrated on
one point. Because ϑn(a, zf)→ C and qn → 1, there exist ε > 0 and n0 <∞ for each t 6= 0 such
that for all n ≥ n0

|νnγ (t)| ≤ 1− ε, γ ∈ {c, v} and |νn(t)| ≤ 1− ε.
We obtain∣∣∣∣Φn(ϑn(a, zf) + it)

Φn(ϑn(a, zf))

∣∣∣∣ =
∣∣∣∣Mc(qn(ϑn(a, zf) + it))ncMv(qn(ϑn(a, zf) + it))nvM(zf(ϑn(a, zf) + it))

Mc(qnϑn(a, zf))ncMv(qnϑn(a, zf))nvM(zfϑn(a, zf))

∣∣∣∣
= |(νnc (t))nc(νnv (t))nvνn(t)|

≤ (1− ε)n = o
( 1√

n

)
, n→∞. (2.3.9)

It remains to consider the supremum over the values of t in Condition (iii). Since ϑn(a, zf)
converges, the supremum is taken over a compact set. Thus, this function attains a maximum on
this interval and this can be bounded according to Equation (2.3.9). Therefore, Condition (iii)
of Theorem 3.1.3 is satisfied and Theorem 3.1.3 is applicable.

Remark 2.3.4. The case zf ∼ n requires a special treatment. This is, however, best relegated to
the following Case 2.).
Case 2.) We denote by EPN1N2 [·] the expectation w.r.t. the measure PN1N2 which is the
joint distribution of all the dissociation rates. We would like to show that the conditions of
Theorem 3.1.3 are almost surely satisfied. As already mentioned it is important that ln(MRγ,j(ϑ)) ∈
L1(PN1N2), where γ ∈ {c, v}. Under the assumption Mγ(ϑ) < ∞ for each ϑ ∈ (0, ϑ∗∗) we have
that ER[exp(ϑZγ1W1)] ∈ L1(PN1N2). Combined with

0 ≤ ln(ER[exp(ϑZγ1W1)]) < ER[exp(ϑZγ1W1)], for ϑ ≥ 0, (2.3.10)

this yields
ln(MRγ,j(ϑ)) = ln(ER[exp(ϑZγ1W1)]) ∈ L1(PN1N2), (2.3.11)

where γ ∈ {c, v}. Below we denote by ΨRn , ϑRn (a, zf) ≡ ϑn(a, zf) the analogues of the quantities
Ψn, ϑn(a, zf) under the conditional expectations ER. For notational simplicity we drop that
superscript on ϑn(a, zf), but it is important to keep in mind that this is now a random variable,
too.
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Theorem 2.3.5. Let (an)n∈N be defined by an ≡ a and gact(n) = an such that gact(n) >
ER[Gn(zf)] and a < supϑ∈R d

dϑΨRn (ϑ) for all n ∈ N. Then Theorem 3.1.3 is almost surely appli-
cable if the density of Wj is continuous and the moment generating functions MRc,j(ϑ), MRv,j(ϑ)
and MR(ϑ) as well as Mc(ϑ), Mv(ϑ) and M(ϑ) are finite for each ϑ ∈ R. Then the rate function
is

IRn (a, zf) =
(
a− zf

n
Wf

)
ϑn(a, zf)

− 1
n

 nc∑
j=1

lnMRc,j(qnϑn(a, zf)) +
nc+nv∑
j=nc+1

lnMRv,j(qnϑn(a, zf))

 . (2.3.12)

Proof. Due to the monotonicity of the logarithmic moment generating function for each realisation
of the stimulation rates and the boundedness of all involved random variables we can find again
β(x) such that ΨRn (ϑ) < β(x) for all ϑ < x. Thus, Assumption 3.1.1 is satisfied. Recall that
ϑn(a, zf) is defined as the solution of the equations

a = 1
n

 nc∑
j=1

d

dϑ
lnMRc (qnϑ) +

nc+nv∑
j=nc+1

d

dϑ
lnMRv (qnϑ)

+ zf
n
Wf. (2.3.13)

The solution ϑn(a, zf) exists due to the choice of a and is unique due to the strict convexity of
ΨRn .

For ϑ ≥ 0 we have, by the law of large numbers,

lim
n→∞

1
n

 nc∑
j=1

lnMRc,j(qnϑ) +
nc+nv∑
j=nc+1

lnMRv,j(qnϑ)


=C1EPN1N2

[
lnMRc,1(ϑ)

]
+ C2EPN1N2

[
lnMRv,1(ϑ)

]
, PN1N2 − a.s. (2.3.14)

Since the derivatives of the summands satisfy the bounds

0 ≤ d

dϑ
lnER[exp(ϑqnZγ1W1)] = qnW1ER[Zγ1 exp(ϑqnZγ1W1)]

ER[exp(ϑqnZγ1W1)]

≤ qnW1Z
γ,max
1 ER[exp(ϑqnZγ1W1)]
ER[exp(ϑqnZγ1W1)] = qnW1Z

γ,max
1 , (2.3.15)

where Zγ,max
1 denotes the maximal value of Zγ1 , γ ∈ {c, v}. Therefore they are integrable and

hence the limit of the derivatives on the left-hand side of Equation (2.3.14) exists and is equal
to the derivative of the right-hand side. If either limn→∞ zf/n = 0, or limn→∞ zf/n = C > 0,
the equations determining ϑn(a, zf) converge almost surely and therefore so does the solution
ϑn(a, zf). Thus, Condition (i) of Theorem 3.1.3 is again satisfied.

We have ( d2

dϑ2 ΨRn (ϑ))|ϑ=ϑn(a,zf) > 0 for each n due to the strict convexity of ΨRn . So, it
remains to check whether this holds true in the limit n → ∞. limn→∞

d2

dϑ2 ΨRn (ϑ) exists because
the summands of the derivative are again bounded and therefore integrable, since

0 ≤ d2

dϑ2 lnER[exp(ϑZγ1W1)] ≤ q2
nW

2
1 ER[(Zγ1 )2eϑqnZ

γ
1W1 ]ER[eϑqnZ

γ
1W1 ]− ER[qnW1Z

γ
1 e

ϑqnZ
γ
1W1 ]2

ER[eϑqnZ
γ
1W1 ]2

≤ q2
nW

2
1 (Zγ,max

1 )2ER[eϑqnZ
γ
1W1 ]2

ER[eϑqnZ
γ
1W1 ]2

= q2
nW

2
1 (Zγ,max

1 )2. (2.3.16)
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Thus, it is again allowed to interchange limit and derivative. Moreover, we have that

d2

dϑ2

(
C1EPN1N2 [lnMRc,1(ϑ)]

)
= C1EPN1N2

[
d2

dϑ2 lnMRc,1(ϑ)
]
> 0 (2.3.17)

because lnMRc,1(ϑ) is strictly convex. Thus, this summand is positive and, analogously, so is the
second one. Therefore, Condition (ii) of Theorem 3.1.3 is satisfied.

Next we check Condition (iii) on the characteristic function. We have to take into account
that Zcj and Zvj should be lattice-valued random variables because they represent numbers of
peptides. The characteristic function is given by∣∣∣∣∣ΦRn (ϑ+ it)

ΦRn (ϑ)

∣∣∣∣∣ =
∣∣∣∣∣
∏nc
j=1M

R
c,j(qn(ϑ+ it))∏nc+nv

j=nc+1M
R
v,j(qn(ϑ+ it))MR(zf(ϑ+ it))∏nc

j=1M
R
c,j(qnϑ)∏nc+nv

j=nc+1M
R
v,j(qnϑ)MR(zfϑ)

∣∣∣∣∣ . (2.3.18)

We can rewrite (2.3.18) as(
exp

(
1
nc

∑nc
j=1 ln

∣∣∣MRc,j(qn(ϑ+it))
MRc,j(qnϑ)

∣∣∣))nc (exp
(

1
nv

∑nv
j=1 ln

∣∣∣MRv,j(qn(ϑ+it))
MRv,j(qnϑ)

∣∣∣))nv ∣∣∣MR(zf(ϑ+it))
MR(zfϑ)

∣∣∣
= exp

(
nc

(
EPN1N2

[
ln
∣∣∣MRc,1(qn(ϑ+it))

MRc,1(qnϑ)

∣∣∣]+ o(1)
)

+ nv

(
EPN1N2

[
ln
∣∣∣MRv,1(qn(ϑ+it))

MRv,1(qnϑ)

∣∣∣]+ o(1)
)

+ ln
∣∣∣MR(zf(ϑ+it))

MR(zfϑ)

∣∣∣). (2.3.19)

This expression can be bounded from above by

exp
(
nc

(
ln(1− ε)PN1N2

(∣∣∣MRc,1(qn(ϑ+it))
MRc,1(qnϑ)

∣∣∣ ≤ 1− ε
)

+ ε̃

)

+ nv

(
ln(1− ε)PN1N2

(∣∣∣MRv,1(qn(ϑ+it))
MRv,1(qnϑ)

∣∣∣ ≤ 1− ε
)

+ ε̃

))
. (2.3.20)

For given ε > 0, the probabilities

PN1N2

(∣∣∣∣MRc,1(qn(ϑ+it))
MRc,1(qnϑ)

∣∣∣∣ ≤ 1− ε
)

and PN1N2

(∣∣∣MRv,1(qn(ϑ+it))
MRv,1(qnϑ)

∣∣∣ ≤ 1− ε
)

(2.3.21)

are strictly positive, uniformly in n for n large, due to the assumptions on the distribution of
the stimulation rates. Therefore, there exists δ > 0, such that for all n large enough, (2.3.20) is
bounded from above by

exp((n− 1)(ε̃− δ)). (2.3.22)
Since ε̃ can be made arbitrarily small if n is large enough, δ − ε̃ > 0 for such n, and so this
expression tends to zero with n exponentially fast. We use the continuous density to control the
supremum which appears in Condition (iii) of Theorem 3.1.3. It is again a crucial point that
ϑn(a, zf) converges such that the supremum is taken over a compact set and Condition (iii) is
satisfied.

Remark 2.3.6. Note that it suffices in order to check these conditions to assume C1 + C2 > 0. It
is not necessary that both constants are strictly positive. It is also not necessary that the density
of Wj is continuous but we did not want to state a technical condition.
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Investigation of the rate function. We are concerned with the behaviour of the large deviation
rate function and prove a functional central limit theorem with which we can characterise this.
gn(qnϑ) defined by Equation (2.2.11) converges to

C1E
[
lnER

[
eϑZ

c
1W1

]]
+ C2E

[
lnER

[
eϑZ

v
1W1

]]
≡ g(ϑ). (2.3.23)

In the rate function appears the process Zn(qnϑn0 (a, zf)) which is defined by Equation (2.2.13).
The following theorem states our result. We use the short-hand notation MR,ac,1 ≡ lnMRc,1(ϑ0(a)),
where ϑ0(a) denotes the limit of ϑn0 (a, zf), the solution of Equation (2.2.12).

Theorem 2.3.7. If there exists a constant C such that g′′n(qnϑn0 (a, zf)) > C > 0, the rate function
is given by

IRn (a, zf) =In0 (a, zf)−
1√
n
Zn(qnϑn0 (a, zf))−

zf
n
ϑn0 (a, zf)Wf +Rn, (2.3.24)

where Zn(qnϑn0 (a, zf)) converges weakly to the Gaussian process Za + Za and Rn ∈ O
(

1
n

)
. Za

and Za are both Gaussian processes with expectation functions E[Za] = 0 = E[Za] and covariance
functions

Cov(Za, Za′) = C1
(
E
[
MR,ac,1 MR,a

′

c,1

]
− E

[
MR,ac,1

]
E
[
MR,a

′

c,1

])
(2.3.25)

and

Cov(Za, Za′) = C2
(
E
[
MR,av,1 M

R,a′
v,1

]
− E

[
MR,av,1

]
E
[
MR,a

′

v,1

])
. (2.3.26)

Remark 2.3.8. The remainder term is given by

Rn = (Z ′n(qnϑn0 (a, zf)))2

2n(g′′n(qnϑn0 (a, zf)) + 1√
n
Z ′′n(qnϑn0 (a, zf)))

+ o
( 1
n

)
, (2.3.27)

where the appearing process scaled with n converges weakly. Since we consider the regime
zf �

√
n the term zf

n ϑ
n
0 (a, zf)Wf is of a higher order than the remainder.

As we already mentioned in Section 2.2 we need this approximation of the rate function on
the level of the central limit theorem due to the scaling with the factor n in the expression for
the probabilities. In order to prove this result we show weak convergence of the involved random
processes and derive then an expression for the rate function. To establish the weak convergence
of Zn(qnϑn0 (a, zf)), Z ′n(qnϑn0 (a, zf)) and Z ′′n(qnϑn0 (a, zf)) as well as their joint weak convergence as
processes on the Wiener Space with parameter a we show convergence of their finite dimensional
distributions and tightness. To prove tightness we use the Kolmogorov-Chentsov criterion from
[83]. Adapted to our notation we have to check the conditions

1. Zn(qnϑn0 (a, zf)) converges in finite dimensional distribution.

2. The family of initial distributions, Zn(qn(ϑn0 (ε, zf))), is tight.

3. There exists C > 0 independent of a and n such that

E
[
(Zn(qnϑn0 (a+ h, zf))− Zn(qnϑn0 (a, zf)))2

]
≤ C|h|2. (2.3.28)
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Note that Condition (3) is fulfilled if

E
[(

d

da
Zn(qnϑn0 (a, zf))

)2]
≤ C. (2.3.29)

The same criteria with Zn(qnϑn0 (a, zf)) suitably replaced by the process under consideration can
be used to prove the convergence of these processes.

We can handle the constitutive and the variable part separately. It suffices to check the
conditions for the constitutive part because the sum in the variable part is built analogously. The
following results are taken from [79]. We need this central limit theorem for triangular arrays to
check Condition (1).

Definition 2.3.9. A row-wise independent d-dimensional triangular array scheme is a sequence
(Kn) of elements of N∗ = N \ {0} ∪∞ and a sequence of probability spaces (Ωn,Fn, Pn) each of
one being equipped with an independent sequence (χnk)1≤k≤Kn of Rd-valued random variables.

We restrict the scenario to row-wise independent schemes which satisfy∑
1≤k≤Kn

|E [h (χnk)]| <∞ and
∑

1≤k≤Kn

E
[
|χnk |

2 ∧ 1
]
<∞ (2.3.30)

for each n, where h is a given truncation function. This condition does not depend on h ∈ Cdt ≡
{h : Rd → Rd bounded, compact support, h(x) = x in a neighbourhood of 0}.

Definition 2.3.10. A row-wise independent array (χnk) satisfies the Lindeberg condition if for all
ε > 0 we have

lim
n→∞

∑
1≤k≤Kn

E
[
|χnk |21{|χnk |>ε}

]
= 0. (2.3.31)

Of course, this implies ∑k E[|χnk |2] <∞, provided Condition (2.3.30) is satisfied.

Theorem 2.3.11. We suppose that the d-dimensional row-wise independent array satisfies Con-
dition (2.3.30) and the Lindeberg condition, and let ξn = ∑

1≤k≤Kn χnk . Then
a) If L(ξn)→ µ, then µ is a Gaussian measure on Rd;
b) in order that L(ξn)→ N (b, c), the Gaussian measure with mean b and covariance matrix c, it
is necessary and sufficient that the following two conditions hold:
[β] ∑1≤k≤Kn E [χnk ]→ b

[γ] ∑1≤k≤Kn E
[
χn,jk χn,lk

]
→ cjl,

where χn,lk denotes the l-th component of χnk .

Using this theorem we can prove the following lemmata which we need to prove Theorem
2.3.7.

Lemma 2.3.12. Zn(qnϑn0 (a, zf)) as a process on the Wiener Space with parameter a converges
weakly to a Gaussian process if there exists a constant C such that g′′n(qnϑn0 (a, zf)) > C > 0.

In order to simplify the notation we define

Y n
a,j ≡ lnER

[
eqnϑ

n
0 (a,zf)ZcjWj

]
− E

[
lnER

[
eqnϑ

n
0 (a,zf)ZcjWj

]]
. (2.3.32)
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The constitutive part of the process Zn(qnϑn0 (a, zf)) is given by Zn,c(qnϑn0 (a, zf)) ≡ 1√
n

∑nc
j=1 Y

n
a,j .

To prove this lemma we have to check Conditions 1., 2., and 3. First we investigate the finite
dimensional distributions of Zn,c in the following Lemma 2.3.13. Therefore, let 0 < a1 < · · · <
am < ∞, ai ∈ R,m ∈ N. We are interested in the limiting behaviour of ξn ≡ ∑1≤j≤Kn χnj with
χnj ≡ 1√

n
(Y n
a1,j , . . . , Y

n
am,j) and j ∈ {1, . . . , nc}.

Lemma 2.3.13. Under the assumptions of Lemma 2.3.12, ξn ≡
∑nc
j=1 χ

n
j converges weakly to a

Gaussian vector with expectation 0 and covariance matrix defined by

Cjl = C1
(
E
[
M
R,aj
c,1 MR,alc,1

]
− E

[
M
R,aj
c,1

]
E
[
MR,alc,1

])
. (2.3.33)

Proof. We show that Theorem 2.3.11 is applicable in this case. We have

|χnj |2 =
m∑
i=1

( 1√
n

lnMRc,j(qnϑn0 (ai, zf))− E
[ 1√

n
lnMRc,j(qnϑn0 (ai, zf))

])2
≤ 4m

n
K2 (2.3.34)

where K is the global constant bounding each MRc,j for ϑ ∈ (0, ϑ∗∗), independent of j. We have
to check that the Lindeberg condition (2.3.31) is satisfied. Since |χnj | ≤ 2

√
m
nK there exists for

each ε > 0 n0 ∈ N such that |χnj | < ε for all n ≥ n0. Therefore, each summand is 0 for n ≥ n0
and thus also the sum and the limit vanish. Part 1 of Condition (2.3.30) is satisfied because we
consider centered random variables. Part 2 holds true due to

nc∑
j=1

E
[
|χnj |2

]
≤ max

nc∑
j=1
|χnj |2 ≤ nc

4mK2

n
≤ 4mK2 <∞ (2.3.35)

according to (2.3.34). There can only appear finitely many summands which are equal to 1. Con-
dition [β] of Theorem 2.3.11 is satisfied because each χnj has expectation 0 due to the construction.
Condition [γ] is satisfied since

nc∑
j=1

E
[
χn,kj χn,lj

]
=nc
n

(
E
[
lnMRc,1(qnϑn0 (ak, zf)) lnMRc,1(qnϑn0 (al, zf))

]

− E
[
lnMRc,1(qnϑn0 (ak, zf))

]
E
[
lnMRc,1(qnϑn0 (al, zf))

])
. (2.3.36)

Letting now n tend to infinity we obtain

C1
(
E
[
M
R,aj
c,1 MR,alc,1

]
− E

[
M
R,aj
c,1

]
E
[
MR,alc,1

])
. (2.3.37)

Limit and integral are interchangeable because dominated convergence is applicable due to the
boundedness of the logarithmic moment generating functions for ϑ ∈ (0, ϑ∗∗).

To complete the proof of Lemma 2.3.12 we need to prove tightness. To do so, we use, as usual,
the Kolmogorov-Chentsov criterion [83] and check the Conditions 2 and (3.4.7).

Proof of Lemma 2.3.12. The family of initial distributions is given by the random variables eval-
uated in ϑn0 (ε, zf) for an ε > 0 because a > n−1ER[Gn(zf)] > 0. This family is seen to be tight
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using Chebychev’s inequality:

P

 1√
n

nc∑
j=1

(
lnMRc,j(qnϑn0 (ε, zf))− E

[
lnMRc,j(qnϑn0 (ε, zf))

])
≥ K


≤

1
n

∑nc
j=1 V[lnMRc,j(qnϑn0 (ε, zf))]

K2 = nc
n

V[lnMRc,1(qnϑn0 (ε, zf))]
K2 . (2.3.38)

With nc
n → C1 and qn → 1 exist δ, δ̄ and n0 such that nc

n ≤ C1 + δ and qnϑn0 (ε, zf) ≤ ϑn0 (ε, zf) + δ̄
for all n ≥ n0. Thus,

nc
n
V[lnMRc,j(qnϑn0 (ε, zf))] ≤ (C1 + δ)V[lnMRc,1(ϑn0 (ε, zf) + δ̄))] (2.3.39)

for all n ≥ n0 and we obtain

P

 1√
n

nc∑
j=1

(lnMRc,j(qnϑn0 (ε, zf))− E[lnMRc,j(qnϑn0 (ε, zf))]) ≥ K


≤K−2 max

{
max

i∈1,...,n0−1
nc(i)
i V

[
Y i
ε,j

]
, (C1 + δ)V

[
lnMRc,1(ϑn0 (ε, zf) + δ̄)

]}
. (2.3.40)

For each ε̃ we can choose K large enough such that 2.3.40 < ε̃ and thus we have proven tightness
of the initial distributions.

It remains to check Condition 3.4.7. We have

E
[(

d

da
Zn,c(qnϑn0 (a, zf))

)2]
= E


 1√

n

nc∑
j=1

d

da
Y n
a,j

2


= 1
n

E
 nc∑
j=1

(
d

da
Y n
a,j

)2
+

nc∑
j=1

nc∑
i=1,i 6=j

E
[
d
daY

n
a,j

d
daY

n
a,i

]
︸ ︷︷ ︸

=0

 = nc
n
E
[(

d

da
Y n
a,j

)2]
(2.3.41)

because Y n
a,j and thus d

daY
n
a,j are centered i.i.d. random variables. They are independent for

different j because ϑn0 (a, zf) depends only on the random variable Wf by definition. Thus, it is
enough to show that E

[
( d
daY

n
a,j)2

]
is bounded. Since E[X] and thus X −E[X] are bounded if the

random variable X is bounded it suffices in our scenario to show boundedness of the uncentered
random variable. Let Xn

a,j ≡ ϑn0 (a, zf)ZcjWj . Then

0 ≤ d

da

(
lnER

[
eqnX

n
a,j

])
=

ER
[
qn

d
daX

n
a,je

qnXn
a,j

]
ER

[
eqnX

n
a,j

]
≤qn max

a

(
d

da
Xn
a,j

) ER
[
eqnX

n
a,j

]
ER

[
eqnX

n
a,j

] ≤ qnZc,max
1 Wmax

1 max
a

d

da
(ϑn0 (a, zf)) . (2.3.42)

We know by an application of the implicit function theorem that
d

da
ϑn0 (a, zf) =

(
g′′n(qnϑn0 (a, zf))

)−1
. (2.3.43)

Thus, we get tightness if g′′n(qnϑn0 (a, zf)) > C > 0.
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With analogous calculations we get the convergence of the derivatives of Zn(qnϑn0 (a, zf)).

Lemma 2.3.14. The processes Z ′n(qnϑn0 (a, zf)) and Z ′′n(qnϑn0 (a, zf)) as processes on the Wiener
Space with parameter a converge weakly if there exists C > 0 such that g′′n(qnϑn0 (a, zf)) > C > 0.

Proof. In analogy to the previous proof we define

(
Y n
a,j

)′
=

ER
[
qnZ

c
jWje

qnXn
a,j

]
ER

[
eqnX

n
a,j

] − E

ER
[
qnZ

c
jWje

qnXn
a,j

]
ER

[
eqnX

n
a,j

]
 (2.3.44)

and

(
Y n
a,j

)′′
=
ER

[
(qnZcjWj)2eqnX

n
a,j

]
ER

[
eqnX

n
a,j

] −

ER
[
qnZ

c
jWje

qnXn
a,j

]
ER

[
eqnX

n
a,j

]
2

− E

ER
[
(qnZcjWj)2eqnX

n
a,j

]
ER

[
eqnX

n
a,j

] −

ER
[
qnZ

c
jWje

qnXn
a,j

]
ER

[
eqnX

n
a,j

]
2 . (2.3.45)

The constitutive parts of the processes under consideration are given by

Z ′n,c(qnϑn0 (a, zf)) = 1√
n

nc∑
j=1

(
Y n
a,j

)′
and Z ′′n,c(qnϑn0 (a, zf)) = 1√

n

nc∑
j=1

(
Y n
a,j

)′′
. (2.3.46)

With the notation (χnj )′ = 1√
n

((Y n
a1,j)

′, . . . , (Y n
am,j)

′) and (χnj )′′ = 1√
n

((Y n
a1,j)

′′, . . . , (Y n
am,j)

′′) we
obtain |(χnj )′|2 ≤ 4m

n (Zc,max
1 Wmax

1 )2 and |(χnj )′′|2 ≤ 4m
n (Zc,max

1 Wmax
1 )4. Hence, the convergence

of the finite dimensional distributions of Z ′n,c and Z ′′n,c follows with the same argument as before.
Concerning the tightness of the initial distributions we get the two following bounds using

again Chebychev’s inequality:

P

 1√
n

nc∑
j=1

(Y n
ε,j)′ ≥ K


≤K−2 max

{
max

i∈1,...,n0−1
nc(i)
i V

[
(Y i
ε,j)′

]
, (C1 + δ)V

[
ER[Zc1W1e

(ϑn0 (ε,zf)+δ̄)Zc1W1 ]
ER[e(ϑ0(ε,zf)+δ̄)Zc1W1 ]

]}
(2.3.47)

and

P

 1√
n

nc∑
j=1

(Y n
ε,j)′′ ≥ K

 ≤ K−2 max
{

max
i∈1,...,n0−1

nc(i)
i

V[(Y i
ε,j)′′],

(C1 + δ)V

ER[(Zc1W1)2e(ϑn0 (ε,zf)+δ̄)Zc1W1 ]
ER[e(ϑn0 (ε,zf)+δ̄)Zc1W1 ]

−
(
ER[Zc1W1e

(ϑn0 (ε,zf)+δ̄)Zc1W1 ]
ER[e(ϑn0 (ε,zf)+δ̄)Zc1W1 ]

)2 . (2.3.48)

Using again Condition 3.4.7 it is enough to bound

d

da

ER[qnZcjWje
qnXn

a,j ]
ER[eqnX

n
a,j ]

(2.3.49)
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and
d

da

ER[(qnZcjWj)2eqnX
n
a,j ]

ER[eqnX
n
a,j ]

−
(
ER[qnZcjWje

qnXn
a,j ]

ER[eqnX
n
a,j ]

)2 . (2.3.50)

These derivatives are given by

ER[(ϑn0 )′(a, zf)(qnZcjWj)2eqnX
n
a,j ]

ER[eqnX
n
a,j ]

−
ER[(ϑn0 )′(a, zf)qnZcjWje

qnXn
a,j ]ER[qnZcjWje

qnXn
a,j ]

(ER[eqnX
n
a,j ])2

(2.3.51)

and

ER[(ϑn0 )′(a, zf)(qnZcjWj)3eqnX
n
a,j ]

ER[eqnX
n
a,j ]

−
ER[(qnZcjWj)2eqnX

n
a,j ]ER[(ϑn0 )′(a, zf)qnZcjWje

qnXn
a,j ]

(ER[eqnX
n
a,j ])2

− 2
ER[(qnZcjWj)2(ϑn0 )′(a, zf)eqnX

n
a,j ]ER[qnZcjWje

qnXn
a,j ]

(ER[eqnX
n
a,j ])2

+ 2
ER[(ϑn0 )′(a, zf)qnZcjWje

qnXn
a,j ](ER[qnZcjWje

qnXn
a,j ])2

(ER[eqnX
n
a,j ])3

. (2.3.52)

We are able to bound the first derivative according to

−max
a

(ϑn0 )′(a, zf)(Zc,max
j Wmax

j )2 ≤ (2.3.51) ≤ max
a

(ϑn0 )′(a, zf)(Zc,max
j Wmax

j )2. (2.3.53)

Thus, we get the same criterion as in Lemma 2.3.12 for boundedness and thus tightness here.
We can bound each summand in (2.3.52) very similar to the previous cases and end up with
the bound 4 maxa(ϑn0 )′(a, zf)(Zc,max

j Wmax
j )3. Thus, we again arrive at the same criterion to get

tightness.

Lemma 2.3.15. Xn
a = (Zn(qnϑn0 (a, zf)), Z ′n(qnϑn0 (a, zf)), Z ′′n(qnϑn0 (a, zf))) converges weakly if

there exists C > 0 such that g′′n(qnϑn0 (a, zf)) > C > 0.

Proof. The structure of the proof is the same. First, we consider the finite dimensional distribu-
tions. Let Y n

a,j , (Y n
a,j)′ and (Y n

a,j)′′ be defined as above. We investigate now

χnj ≡ 1√
n

(Y n
a1,j , (Y

n
a1,j)

′, (Y n
a1,j)

′′, . . . , Y n
al,j
, (Y n

al,j
)′, (Y n

al,j
)′′). (2.3.54)

These vectors are again independent for different j. The boundedness of |χnj |2 follows directly by
the boundedness in the previous cases. Again, |χnj | tends to 0 such that the Lindeberg condition
is satisfied. Part 1 of Condition 2.3.30 holds because we consider centered random variables. Part
2 holds because we can bound |χnj |2. It can be shown that the initial distributions are tight using
again Chebychev’s inequality. To prove tightness we have to show that

E
[
|Xn

a+h −Xn
a |2
]

=E
[
(Zn(qnϑn0 (a+ h))− Zn(qnϑn0 (a, zf)))2 + (Z ′n(qnϑn0 (a+ h))− Z ′n(qnϑn0 (a, zf)))2

+(Z ′′n(qnϑn0 (a+ h))− Z ′′n(qnϑn0 (a, zf)))2
]
≤ C|h|2 (2.3.55)

This holds true because we have already seen that each summand can be bounded by the right-
hand side for a certain C. Thus, we have just to sum up the different constants.
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Finally, we come to the proof of the result about the rate function.

Proof of Theorem 2.3.17. We look at the ϑn(a, zf) determining equation

a− zf
n
Wf = qng

′
n(qnϑ) + 1√

n
qnZ

′
n(qnϑ) (2.3.56)

and write the solution of this equation in the form ϑn0 (a, zf) + δn(a, zf), where ϑn0 (a, zf) is defined
as the solution of

a− zf
n
Wf = qng

′
n(qnϑ). (2.3.57)

δn(a, zf) denotes the stochastic perturbation of this equation caused by the process Zn. By
definition of ϑn0 (a, zf), we have qng′n(qnϑn0 (a, zf)) = a − zf/nWf. We can derive an expression for
δn(a, zf) using a first order Taylor expansion. To keep the notation short we drop the arguments
and write just ϑn0 and δn. We obtain

a− zf
n
Wf = qn

[
g′n(qn(ϑn0 + δn)) + 1√

n
Z ′n(qn(ϑn0 + δn))

]
⇔ a− zf

n
Wf = qn

[
g′n(qnϑn0 ) + qnδ

ng′′n(qnϑn0 ) + 1√
n
Z ′n(qnϑn0 ) + qnδ

n 1√
n
Z ′′n(qnϑn0 ) + o(δn)

]
⇔ 0 = q2

nδ
n
(
g′′n(qnϑn0 ) + 1√

n
Z ′′n(qnϑn0 )

)
+ qn√

n
Z ′n(qnϑn0 ) + o(δn)

⇔ δn =
− 1√

n
Z ′n(qnϑn0 ) + o(δn)

qn(g′′n(qnϑn0 ) + 1√
n
Z ′′n(qnϑn0 ))

=
− 1√

n
Z ′n(qnϑn0 )

qn(g′′n(qnϑn0 ) + 1√
n
Z ′′n(qnϑn0 ))

+ o(δn). (2.3.58)

The rate function can be rewritten as

IRn (a, zf) = aϑn(a, zf)−ΨRn (ϑn(a, zf))

=
(
a− zf

n
Wf

)
(ϑn0 + δn)− gn(qn(ϑn0 + δn))− 1√

n
Zn(qn(ϑn0 + δn)). (2.3.59)

A second order Taylor expansion and reordering of the involved terms yields

IRn (a, zf) = aϑn0 − gn(qnϑn0 )︸ ︷︷ ︸
=:In0 (a,zf)

−zf
n
Wfϑ

n
0 −

1√
n
Zn(qnϑn0 ) +

((
a− zf

n
Wf

)
− qng′n(qnϑn0 )

)
︸ ︷︷ ︸

=0

δn

− 1√
n
qnδ

nZ ′n(qnϑn0 )− 1
2(qnδn)2

(
g′′n(qnϑn0 ) + 1√

n
Z ′′n(qnϑn0 )

)
+ o((qnδn)2) (2.3.60)

The stochastic process Zn(qnϑn0 (a, zf)) converges weakly to the mentioned Gaussian process ac-
cording to Lemma 2.3.12. g′′n is of the order O(1) according to

g′′n(qnϑ)→ C1E
[
ER[(Zc1W1)2eϑZ

c
1W1)]ER[eϑZc1W1 ]− ER[Zc1W1e

ϑZc1W1 ]2

(ER[eϑZc1W1 ])2

]

+ C2E
[
ER[(Zv1W1)2eϑZ

v
1W1 ]ER[eϑZv1W1 ]− ER[Zv1W1e

ϑZv1W1 ]2

(ER[eϑZv1W1 ])2

]
(2.3.61)
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Together with the joint weak convergence of the processes Z ′n(qnϑn0 (a, zf)) and Z ′′n(qnϑn0 (a, zf)) this
yields δn ∈ O(1/

√
n). Furthermore, this implies f ∈ o(1/

√
n) for each f ∈ o(δn) and f ∈ o(1/n)

for each f ∈ o((δn)2). We plug in Equation (3.4.16) the expression for δn and obtain

IRn (a, zf) = In0 (a, zf)−
zf
n
Wfϑ

n
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1√
n
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2
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Zn(qnϑn0 )− q2
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2

(
g′′n(qnϑn0 ) + 1√

n
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)
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q2
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(
g′′n(qnϑn0 ) + 1√

n
Z ′′n(qnϑn0 )

)2 −
1√
n
Z ′n(qnϑn0 )o(δn)
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(
g′′n(qnϑn0 ) + 1√

n
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) + o((δn)2)


+

1
n(Z ′n(qnϑn0 ))2

g′′n(qnϑn0 ) + 1√
n
Z ′′n(qnϑn0 )

+ 1√
n
Z ′n(qnϑn0 )o(δn) + o((δn)2). (2.3.62)

According to the observations concerning δn this equals

In0 (a, zf)−
zf
n
Wfϑ

n
0 −

1√
n
Zn(qnϑn0 ) +

1
2n(Z ′n(qnϑn0 ))2

g′′n(qnϑn0 ) + 1√
n
Z ′′n(qnϑn0 )

+ o
( 1
n

)
, (2.3.63)

where (Z′n(qnϑn0 ))2

g′′n(qnϑn0 )+ 1√
n
Z′′n(qnϑn0 ) converges weakly due to continuous mapping and the joint weak con-

vergence of Z ′n(qnϑn0 ) and Z ′′n(qnϑn0 ). This completes the proof of the theorem.

Case 3.) Conditioning on Z produces again i.i.d. random variables because Zj are measurable
w.r.t. Z and the stimulation rates are independent of this σ-algebra.

Theorem 2.3.16. Let (an)n∈N be defined by an ≡ a and gact(n) = an such that gact(n) >
EZ(Gn(zf)) and a < supϑ∈R d

dϑΨZn (ϑ) for all n ∈ N. Then Theorem 3.1.3 is almost surely
applicable provided zf/n ↓ 0, the distribution functions of the stimulation rates are neither lattice-
valued nor concentrated on one point and the moment generating functions MZc,j(ϑ), MZv,j(ϑ) and
MZ(ϑ) as well as Mc(ϑ), Mv(ϑ) and M(ϑ) are finite for each ϑ ∈ R. The rate function is

IZn (a, zf) =aϑn(a, zf)−
1
n

 nc∑
j=1

lnMZc,j(qnϑn(a, zf))

+
nc+nv∑
j=nc+1

lnMZv,j(qnϑn(a, zf)) + lnM(zfϑn(a, zf))

 . (2.3.64)

Proof. The proof of this theorem goes along the same lines as the analogous result in Case 2.)
and will be skipped.
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Investigation of the rate function. In this case, the properties of the large deviation rate
function can again be described by a functional central limit theorem. Using the notation from
Section 2.2 we obtain the following result

Theorem 2.3.17. If there exists a constant C such that g̃′′n(qnϑ̃n(a, zf)) > C > 0, the rate
function takes the form

IZn (a, zf) =Ĩn(a, zf)−
1√
n
Z̃n(qnϑ̃n(a, zf))−

1
n

lnM(zfϑ̃
n(a, zf)) +Rn, (2.3.65)

where Rn ∈ O
(

1
n

)
. Z̃n(qnϑ̃n(a, zf)) converges weakly to the Gaussian process Za + Za. Za and

Za are both Gaussian processes with expectation functions E[Za] = 0 = E[Za] and covariance
functions

Cov(Za, Za′) = C

(
E[ln(EZ [eϑ̃0(a)Zc1W1 ]) ln(EZ [eϑ̃0(a′)Zc1W1 ])]

−E[ln(EZ [eϑ̃0(a)Zc1W1 ])]E[ln(EZ [eϑ̃0(a′)Zc1W1 ])]
)

(2.3.66)

and

Cov(Za, Za′) = C̃

(
E[ln(EZ [eϑ̃0(a)Zv1W1 ]) ln(EZ [eϑ̃0(a′)Zv1W1 ])]

−E[ln(EZ [eϑ̃0(a)Zv1W1 ])]E[ln(EZ [eϑ̃0(a′)Zv1W1 ])]
)
. (2.3.67)

The approach to prove this result is the same as in Case 2.) and we will not present the
details.

2.4 Conclusion and Outlook

The main new aspects of the present work are the investigation of the conditional scenarios and
the establishment of a higher robustness of the model using classes of distributions instead of
concrete distributions.

The first point allows a more precise understanding and interpretation of the activation mech-
anism. The presented results show that the parameter a can be chosen such that the activation
probabilities increase exponentially with zf for the regime

√
n� zf � n in Cases 1.) and 3.). For

Case 2.) this result depends on the actual value of the stimulation rate of the foreign peptide,
Wf. This value has to be large enough in order that the probability of activation increases expo-
nentially with zf. In biological terms this means that the overall frequency of T-cell activation
increases as desired. This growth is caused by those TCR clonotypes which interact strongly with
the given foreign peptide species. This interpretation also suits to the histograms of stimulation
rates and the explanation of these histograms by [95].

The generalised distribution assumptions allow the choice of different distributions depending
on the mechanisms that should be included into the model. For example MHC-loading fluctua-
tions, influence of different affinity of the different peptide species to the same receptor and maybe
co-stimulation could be considered (see e.g. [128, 127]). For the relevance of co-stimulation in
the immune response see, e.g. the recent review by [32].
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One aim of future work is to investigate the mechanism of negative selection. Thereby T-
cells which interact too strongly with the body’s own structures are deleted. Negative selection
was already investigated in a different model setting [131, 125] and also [138] included negative
selection into numerical simulations. In this case the situation becomes mathematically more
involved, since the selection causes dependencies in between the stimulation rates.
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3. A conditional strong large deviation result
and a functional central limit theorem for
the rate function

Anton Bovier and Hannah Mayer

Abstract We study the large deviation behaviour of Sn = ∑n
j=1WjZj , where (Wj)j∈N

and (Zj)j∈N are sequences of real-valued, independent and identically distributed ran-
dom variables satisfying certain moment conditions, independent of each other. More
precisely, we prove a conditional strong large deviation result and describe the fluctua-
tions of the random rate function through a functional central limit theorem.

3.1 Introduction and Results

Let (Zj)j∈N be independent, identically distributed (i.i.d.) random variables and let (Wj)j∈N be
i.i.d. random variables as well. Define the σ-fields Z ≡ σ(Zj , j ∈ N) and W ≡ σ(Wj , j ∈ N) and
let Z and W be independent. Furthermore, define

Sn ≡
n∑
j=1

ZjWj . (3.1.1)

In this paper we derive strong (local) large deviation estimates on Sn conditioned on the σ-
field W. The random variables Wj can be interpreted as a random environment weighting the
summands of Sn. Conditioning on W can thus be understood as fixing the environment. [34]
investigates conditional large deviation estimates of such sums in the more general setup of i.i.d.
random fields of random variables taking values in a Polish Space. His results concern, however,
only the standard rough large deviation estimates. Local limit theorems have been obtained in
the case Sn ∈ R (see e.g. [12, 24]) and for the case Sn ∈ Rd (see [78]), but these have, to our
knowledge, not been applied to conditional laws of sums of the form (3.1.1).

Our result consists of two parts. The first part is an almost sure local limit theorem for the
conditional tail probabilities P(Sn ≥ an|W), a ∈ R. The second part is a functional central limit
theorem for the random rate function.

3.1.1 Strong large deviations

For a general review of large deviation theory see for example [46] or [45]. A large deviation
principle for a family of real-valued random variables Sn roughly says that, for a > E

[
1
nSn

]
,

P(Sn ≥ an) = exp [−nI(a)(1 + o(1))] . (3.1.2)

The Gärtner-Ellis theorem asserts that the rate function, I(a), is obtained as the limit of the
Fenchel-Legendre transformation of the logarithmic moment generating function of Sn, to wit

49
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I(a) = limn→∞ In(a), where In(a) is defined by

In(a) ≡ sup
ϑ

(aϑ−Ψn(ϑ)) = aϑn −Ψn(ϑn), (3.1.3)

where Ψn(ϑ) ≡ 1
n logE[exp(ϑSn)] and ϑn satisfies Ψ′n(ϑn) = a. Furthermore, define Φn(ϑ) ≡

E[exp(ϑSn)].
Strong large deviations estimates refine this exponential asymptotics. They provide estimates

of the form
P(Sn ≥ an) = exp(−nIn(a))

ϑnσn
√

2πn
[1 + o(1)], (3.1.4)

where σ2
n ≡ Ψ′′n(ϑn) denotes the variance of 1√

n
Sn under the tilted law P̃ that has density

dP̃
dP

= eϑnSn
E [eϑnSn ] . (3.1.5)

The standard theorem for Sn a sum of i.i.d. random variables is due to [12]. The generalisation,
which we summarise by Theorem 3.1.3, is a result of [24]. We abusively refer to In(a) as the rate
function. The following theorem is based on 2 assumptions.

Assumption 3.1.1. There exist ϑ∗ ∈ (0,∞) and β <∞ such that

|Ψn(ϑ)| < β, for all ϑ ∈ {ϑ ∈ C : |ϑ| < ϑ∗} (3.1.6)

for all n ∈ N large enough.

Assumption 3.1.2. (an)n∈N is a bounded real-valued sequence such that the equation

an = Ψ′n(ϑ) (3.1.7)

has a solution ϑn ∈ (0, ϑ∗∗) with ϑ∗∗ ∈ (0, ϑ∗) for all n ∈ N large enough.

Theorem 3.1.3 (Theorem 3.3 in [24]). Let Sn be a sequence of real-valued random variables
defined on a probability space (Ω,F ,P). Let Ψn be their logarithmic moment generating function
defined above and assume that Assumptions 3.1.1 and 3.1.2 hold for Ψn. Assume furthermore
that

(i) limn→∞ ϑn
√
n =∞,

(ii) lim infn→∞ σ2
n > 0, and

(iii) limn→∞
√
n supδ1≤|t|≤δ2ϑn

∣∣∣Φn(ϑn+it)
Φn(ϑn)

∣∣∣ = 0 ∀ 0 < δ1 < δ2 <∞,

are satisfied. Then

P (Sn ≥ nan) = exp(−nIn(an))
ϑnσn

√
2πn

[1 + o(1)] , n→∞. (3.1.8)

This result is deduced from a local central limit theorem for Sn−nan√
nσ2

n

under the tilted law P̃

defined in (3.1.5).
Remark 3.1.4. There are estimates for P(Sn ∈ nΓ), where Sn ∈ Rd and Γ ⊂ Rd, see [78]. Then
the leading order prefactor depends on d and the geometry of the set Γ.
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3.1.2 Application to the conditional scenario

Throughout the following we write IWn (a), ϑWn (a), ΦWn (ϑ), ΨWn (ϑ) and EW [·] for the random
analogues of the quantities defined in the previous section, e.g. ΦWn (ϑ) ≡ E[exp(ϑSn)|W].
Remark 3.1.5. One could also condition on a different σ-field Y as in the application to financial
mathematics and an immunological model described in Section 3.2. In the proofs we just need
the fact that W ⊂ Y and Z is independent of Y.

Theorem 3.1.6. Let Sn be defined in (3.1.1). Assume that the random variables W1 and Z1
satisfy the following conditions:

(i) Z1 is not concentrated on one point.

(a) If Z1 is lattice valued, W1 has an absolutely continuous part and there exists an interval
[c, d] such that the density of W1 on [c, d] is bounded from below by p > 0.

(b) If Z1 has a density, P(|W1| > 0) > 0 .

(ii) The moment generating function of Z1, M(ϑ) ≡ E[exp(ϑZ1)], is finite for all ϑ ∈ R.

(iii) For f(ϑ) ≡ logM(ϑ), both E[f(ϑW1)] and E[W1f
′(ϑW1)] are finite for all ϑ ∈ R.

(iv) There exists a function F : R→ R such that E[F (W1)] is finite and
W 2

1 f
′′(ϑW1) ≤ F (W1) for all ϑ ∈ R.

Let ϑ∗ ∈ R+ be arbitrary but fixed. Let J ≡ (E[W1]E[Z1],E[W1f
′(ϑ∗W1)]) and let a ∈ J .

Then

P
(
∀a ∈ J : P(Sn ≥ an|W) = exp(−nIWn (a))√

2πnϑWn (a)σWn (a)
(1 + o(1))

)
= 1, (3.1.9)

where
IWn (a) = aϑWn (a)− 1

n

n∑
j=1

f
(
Wjϑ

W
n (a)

)
(3.1.10)

and ϑWn (a) solves a = d
dϑ( 1

n

∑n
j=1 f(Wjϑ)).

This theorem is proven in Section 3.3.
Remark 3.1.7. The precise requirements on the distribution of W1 depend on the distribution of
Z1. In particular, Condition (iii) does not in general require the moment generating function of
W1 to be finite for all ϑ ∈ R. Condition (iv) looks technical. It is used to establish Condition (ii)
of Theorem 3.1.3 for all a at the same time. For most applications, it is not very restrictive, see
Section 3.1.4 for examples.

3.1.3 Functional central limit theorem for the random rate function

Note that the rate function IWn (a) is random. Even if we may expect that IWn (a) converges
to a deterministic function I(a), almost surely, due to the fact that it is multiplied by n in the
exponent in Equation (3.1.9), its fluctuations are relevant. To control them, we prove a functional
central limit theorem. We introduce the following notation.

g(ϑ) ≡ E[f(W1ϑ)] and Xn(ϑ) ≡ 1√
n

n∑
j=1

(f(Wjϑ)− E[f(Wjϑ)]) . (3.1.11)
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Moreover, define ϑ(a) as the solution of the equation a = g′(ϑ).
In addition to the assumptions made in Theorem 3.1.6, we need the following assumption

on the covariance structure of the summands appearing in the definition of Xn(ϑ) and their
derivatives.

Assumption 3.1.8. There exists C < ∞, such that, for all a, a′ ∈ J̄ , where J̄ is the closure of
the interval J ,

Cov
(
f(ϑ(a)Wj), f(ϑ(a′)Wj)

)
, Cov

(
Wjf

′(ϑ(a)Wj),Wjf
′(ϑ(a′)Wj)

)
,

Cov
(
W 2
j f
′′(ϑ(a)Wj),W 2

j f
′′(ϑ(a′)Wj)

)
, Cov

(
f(ϑ(a)Wj),Wjf

′(ϑ(a′)Wj)
)
,

Cov
(
Wjf

′(ϑ(a)Wj),W 2
j f
′′(ϑ(a′)Wj)

)
, Cov

(
f(ϑ(a)Wj),W 2

j f
′′(ϑ(a′)Wj)

)
and

V
[
W 3
j f
′′′(ϑ(a)Wj)

]
are all smaller than C.

Theorem 3.1.9. If g′′(ϑ(a)) > c for some c > 0 and Assumption 3.1.8 is satisfied, then the rate
function satisfies

IWn (a) = I(a) + n−1/2Xn(ϑ(a)) + n−1rn(a), (3.1.12)

where
I(a) ≡ aϑ(a)− g(ϑ(a)), (3.1.13)

(Xn(ϑ(a)))a∈J̄
D→ (Xa)a∈J̄ , asn→∞, (3.1.14)

where X is the Gaussian process with mean zero and covariance

Cov(Xa, Xa′) = E[f(W1ϑ(a))f(W1ϑ(a′))]− E[f(W1ϑ(a))]E[f(W1ϑ(a′))], (3.1.15)

and

rn(a) = (X ′n(ϑ(a)))2

2
[
g′′(ϑ(a)) + 1√

n
X ′′n(ϑ(a))

] + o (1) , (3.1.16)

uniformly in a ∈ J̄ .

To prove Theorem 3.1.9 we show actually more, namely that the process

(Xn(ϑ(a)), X ′n(ϑ(a)), X ′′n(ϑ(a)))a∈J̄
D→ (Xa, X

′
a, X

′′
a )a∈J̄ , (3.1.17)

(see Lemma 3.4.1 below). The proof of the theorem is given in Section 3.4.

3.1.4 Examples

In the following we list some examples in which the conditions of the preceding theorems are
satisfied.
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1. Let Z1 be a Gaussian random variable with mean zero and variance σ2. In this case,

f(ϑ) = log(E[exp(ϑZ1)]) = 1
2σ

2ϑ2, f ′(ϑ) = σ2ϑ (3.1.18)

f ′′(ϑ) = σ2, and f ′′′(ϑ) = 0 (3.1.19)

This implies that W1 must have finite fourth moments to satisfy Assumption 3.1.8. Under
this requirement Conditions (iii) and (iv) of Theorem 3.1.6 are met. According to Condition
(ib) of Theorem 3.1.6, W1 may not be concentrated at 0. Moreover,

g′′(ϑ) = σ2 > c (3.1.20)

independent of the distribution of W1.

2. Let Z1 be a binomially distributed random variable, Z1 ∼ B(m, p). Thus

f(ϑ) = m log(1− p+ peϑ) (3.1.21)

f ′(ϑ) = m
peϑ

1− p+ peϑ ≤ m (3.1.22)

f ′′(ϑ) = m(p− p2) eϑ
(1− p+ peϑ)2 ≤ f

′′
(

log
(3p− 1

p

))
(3.1.23)

f ′′′(ϑ) = m(p− p2)eϑ 1− 3p+ peϑ
(1− p+ peϑ)3 ∈ C0. (3.1.24)

Then W1 has to satisfy (ia) of Theorem 3.1.6 and must have finite sixth moments. One
can show that f ′(ϑ), f ′′(ϑ) and f ′′′(ϑ) are bounded, E[f(ϑW1)] and the moments depending
on f(ϑW1) in Assumption 3.1.8 are finite. Furthermore, the assumption 0 < E[W 2

1 ] < ∞
implies that g(ϑ(a)) > c as required in Theorem 3.1.9.

Remark 3.1.10. In both cases it is not necessary that the moment generating function of W1
exists.

3.1.5 Related results

After posting our manuscript on arXiv, Ioannis Kontoyiannis informed us about the papers [43]
and [44], where some similar results on conditional large deviations are obtained. They concern
sums of the form

ρn ≡
1
n

n∑
j=1

ρ(Wj , Zj), (3.1.25)

where W = (Wj)j∈N and Z = (Zj)j∈N are two stationary processes with Wj and Zj taking values
in Polish spaces AW and AZ , respectively, and ρ : AW×AZ → [0,∞) is some measurable function.
Their main motivation is to estimate the frequency with which subsequences of length n in the
process Z occur that are “close” to W . To do this, they estimate conditional probabilities of the
form

P (ρn ≤ D|W) , (3.1.26)
obtaining, under suitable assumptions, refined large deviation estimates of the form

1
n

logP (ρn ≤ D|W) = Rn(D) + 1√
n

Λn(D) + o(1/
√
n), (3.1.27)
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almost surely, where they show that Rn(D) converges a.s. while Λn(D) converges in distribution
to a Gaussian random variable.

3.2 Applications

3.2.1 Stochastic model of T-cell activation

The immune system defends the body against dangerous intrusion, e.g. bacteria, viruses and
cancer cells. The interaction of so-called T-cells and antigen presenting cells plays an important
rôle in performing this task. Van den Berg, Rand and Burroughs developed a stochastic model of
T-cell activation in [131] which was further investigated in [138] and [100]. Let us briefly explain
this model.

The antigen presenting cells display on their surface a mixture of peptides present in the body.
During a bond between a T-cell and a presenting cell the T-cell scans the presented mixture of
peptides. The T-cell is stimulated during this process, and if the sum of all stimuli exceeds a
threshold value, the cell becomes activated and triggers an immune response. The signal received
by the T-cell is represented by

Sn ≡
n∑
j=1

ZjWj + zfWf , (3.2.1)

where Wj represents the stimulation rate elicited by a peptide of type j and Zj represents the
random number of presented peptides of type j. The sum describes the signal due to self peptides,
zfWf is the signal due to one foreign peptide type. From the biological point of view, T-cell
activations are rare events and thus large deviation theory is called for to investigate P(Sn ≥
na|Y), where Y is a σ-field such that Wj are measurable with respect to Y and Zj are independent
of Y. For two examples of distributions discussed in [138], Theorems 3.1.6 and 3.1.9 can be
applied. In both examples, the random variables Zj are binomially distributed, and thus their
moment generating function exists everywhere. Wj is defined by Wj ≡ 1

τj
exp(− 1

τj
), where τj

are exponentially distributed or logarithmic normally distributed, i.e. Wj are bounded and the
required moments exist. Furthermore, W1 has a density and Condition (ia) of Theorem 3.1.6
is met. Using Theorems 3.1.6 and 3.1.9, one can prove that the probability of T-cell activation
for a given type of T-cell grows exponentially with the number of presented foreign peptides, zf ,
if the corresponding stimulation rate Wf is sufficiently large. It is then argued that a suitable
activation threshold can be set that allows significantly differentiate between the presence or
absence of foreign peptides. For more details see [100].

3.2.2 Large portfolio losses

Dembo, Deuschel, and Duffie investigate in [42] the probability of large financial losses on a bank
portfolio or the total claims against an insurer conditioned on a macro environment. The random
variable Sn represents the total loss on a portfolio consisting of many positions, Wj is a {0, 1}-
valued random variable and indicates if position j experiences a loss, whereas the random variable
Zj is for example exponentially distributed and represents the amount of loss. They consider the
probability conditioned on a common macro environment Y and assume that Z1,W1, . . . , Zn,Wn

are conditionally independent. Furthermore, they work in the slightly generalised setup of finitely
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many blocks of different distributions. That is

Sn ≡
K∑
α=1

Qα∑
j=1

Zα,jWα,j , (3.2.2)

where Zα,j
D= Zα and Wα,j

D= Wα for each α ∈ {1, . . . ,K} and ∑K
α=1Qα = n. Moreover, the

conditional probability of losses for each position is calculated and the influence of the length of
the time interval, in which the loss occurs, is investigated. For more details see [42]. This analysis
was generalised later in a paper by [114].
Remark 3.2.1. In general, the exponential distribution for Z1 causes problems because the moment
generating function does not exist everywhere. Evaluating at ϑWj thus might yield to an infinite
term depending on the range of Wj . In this application there is no problem because Wj is
{0, 1}-valued.

3.3 Proof of Theorem 3.1.6

Proof of Theorem 3.1.6. We prove Theorem 3.1.6 by showing that the conditional law of Sn given
W satisfies the assumptions of Theorem 3.1.3 uniformly in a ∈ J , almost surely.

Assumption 3.1.1 is satisfied due to Conditions (ii) and (iii) of Theorem 3.1.6: For each n ∈ N
and each realisation of (Wj)j∈N ΨWn (ϑ) is a convex function. Furthermore,

ΨWn (ϑ) ≤ max{ΨWn (ϑ∗),ΨWn (−ϑ∗)} (3.3.1)

and

lim
n→∞

max{ΨWn (ϑ∗),ΨWn (−ϑ∗)} = max{E [f(W1ϑ∗)] ,E [f(−W1ϑ∗))]}, a.s. (3.3.2)

This implies that Assumption 3.1.1 is satisfied. To prove that Assumption 3.1.2 holds, note that,
by the law of large numbers,

lim
n→∞

d

dϑ
ΨWn (0) = lim

n→∞
1
n
EW [Sn] = E[W1]E[Z1], a.s. (3.3.3)

Next, by convexity, and again the law of large numbers

lim inf
n→∞

sup
ϑ∈[0,ϑ∗]

d

dϑ
ΨWn (ϑ) = lim inf

n→∞
d

dϑ
ΨWn (ϑ∗) = E[W1f

′(ϑ∗W1)], a.s. (3.3.4)

Recall that ϑWn (a) is defined as the solution of

a = 1
n

n∑
j=1

d

dϑ
logM(Wjϑ) = 1

n

n∑
j=1

Wjf
′(ϑWj). (3.3.5)

For n large enough, the solution ϑWn (a) exists for a ∈ J and is unique since the logarithmic
moment generating function ΨWn is strictly convex. Again by monotonicity of d

dϑΨWn (ϑ) in ϑ, and
because of (3.3.3) and (3.3.4), for a ∈ J , ϑWn (a) ∈ (0, ϑ∗), almost surely, for n large enough. Thus
Assumption 3.1.2 is satisfied.

In order to establish Condition (i) of Theorem 3.1.3 we prove the following
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Lemma 3.3.1. P
(
∀a ∈ J : limn→∞ ϑ

W
n (a) = ϑ(a)

)
= 1.

Proof. First, using that g′(ϑ) is continuous and monotone increasing

P
(
∀a ∈ J : lim

n→∞
|ϑWn (a)− ϑ(a)| = 0

)
= P

(
∀a ∈ J : lim

n→∞

∣∣∣g′(ϑWn (a))− 1
n

n∑
j=1

Wjf
′(ϑWn (a)Wj)

−g′(ϑ(a)) + 1
n

n∑
j=1

Wjf
′(ϑWn (a)Wj)

∣∣∣ = 0
)

= P

∀a ∈ J : lim
n→∞

∣∣∣g′(ϑWn (a))− 1
n

n∑
j=1

Wjf
′(ϑWn (a)Wj)

∣∣∣ = 0

 , (3.3.6)

where we used that, by definition of ϑ(a) and ϑn(a),

1
n

n∑
j=1

Wjf
′(ϑWn (a)Wj) = g′(ϑ(a)) = a. (3.3.7)

Since we have seen that for a ∈ J , ϑ(a) ∈ [0, ϑ∗] and, for n large enough, ϑWn (a) ∈ [0, ϑ∗], the last
line in (3.3.6) is bounded from below by

P

 sup
ϑ∈[0,ϑ∗]

lim
n→∞

∣∣∣∣∣∣ 1n
n∑
j=1

Wjf
′(ϑWj)− E[W1f

′(ϑW1)]

∣∣∣∣∣∣ = 0

 . (3.3.8)

Denote the open ball of radius δ around ϑ by Bδ(ϑ) ≡ {ϑ̄ ∈ R : |ϑ− ϑ̄| < δ}. The following facts
are true:

1. By Condition (iii) of Theorem 3.1.6 W1f
′(ϑW1) is integrable, for each ϑ ∈ [0, ϑ∗].

2. W1(ω)f ′(ϑW1(ω)) is a continuous function of ϑ, ∀ω ∈ Ω.

3. W1f
′(ϑW1) is monotone increasing in ϑ since d

dϑ(W1f
′(ϑW1)) > 0.

4. (1), (2), and (3) imply, by dominated convergence, that, for all ϑ ∈ [0, ϑ∗],

lim
δ↓0

E
[

sup
ϑ̄∈Bδ(ϑ)

W1f
′(ϑ̄W1)− inf

ϑ̄∈Bδ(ϑ)
W1f

′(ϑ̄W1)
]

= 0. (3.3.9)

Note that (4) implies that, for all ϑ ∈ [0, ϑ∗] and for all ε > 0, there exists a δ = δ(ε, ϑ), such that∣∣∣∣∣∣E
 sup
ϑ̄∈Bδ(ε,ϑ)(ϑ)

W1f
′(ϑ̄W1)− inf

ϑ̄∈Bδ(ε,ϑ)(ϑ)
W1f

′(ϑ̄W1)

∣∣∣∣∣∣ < ε. (3.3.10)
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The collection {Bδ(ε,ϑ)(ϑ)}ϑ∈[0,ϑ∗] is an open cover of [0, ϑ∗], and since [0, ϑ∗] is compact we can
choose a finite subcover, {Bδ(ε,ϑk)(ϑk)}1≤k≤K . Therefore

sup
ϑ∈[0,ϑ∗]


∣∣∣∣∣∣ 1n

n∑
j=1

Wjf
′(ϑWj)− E[W1f

′(ϑW1)]

∣∣∣∣∣∣
 (3.3.11)

= max
1≤k≤K

sup
ϑ∈Bδ(ε,ϑk)(ϑk)


∣∣∣∣∣∣ 1n

n∑
j=1

Wjf
′(ϑWj)− E[W1f

′(ϑW1)]

∣∣∣∣∣∣


= max
1≤k≤K

max


∣∣∣∣∣∣ sup
ϑ∈Bδ(ε,ϑk)(ϑk)

 1
n

n∑
j=1

Wjf
′(ϑWj)− E[W1f

′(ϑW1)]

∣∣∣∣∣∣ ,∣∣∣∣∣∣ inf
ϑ∈Bδ(ε,ϑk)(ϑk)

 1
n

n∑
j=1

Wjf
′(ϑWj)− E[W1f

′(ϑW1)]

∣∣∣∣∣∣
 .

It suffices to show that for all 1 ≤ k ≤ K and n large enough almost surely

−ε < inf
ϑ∈Bδ(ε,ϑk)(ϑk)

 1
n

n∑
j=1

Wjf
′(ϑWj)− E[W1f

′(ϑW1)]


≤ sup

ϑ∈Bδ(ε,ϑk)(ϑk)

 1
n

n∑
j=1

Wjf
′(ϑWj)− E[W1f

′(ϑW1)]

 < ε. (3.3.12)

Note that

sup
ϑ∈Bδ(ε,ϑk)(ϑk)

 1
n

n∑
j=1

Wjf
′(ϑWj)− E[W1f

′(ϑW1)]

 (3.3.13)

≤ 1
n

n∑
j=1

sup
ϑ∈Bδ(ε,ϑk)(ϑk)

Wjf
′(ϑWj)− inf

ϑ∈Bδ(ε,ϑk)(ϑk)
E[W1f

′(ϑW1)]

Since by convexity of f

Wjf
′(−ϑ∗Wj) ≤ sup

ϑ∈Bδ(ε,ϑk)(ϑk)
Wjf

′(ϑWj) ≤Wjf
′(ϑ∗Wj) (3.3.14)

and since these bounds are integrable by Condition (iii) of Theorem 3.1.6 also the supremum
itself is integrable. Thus, the strong law of large numbers applies and (3.3.13) converges almost
surely to

E

 sup
ϑ∈Bδ(ε,ϑk)(ϑk)

W1f
′(ϑW1)

− inf
ϑ∈Bδ(ε,ϑk)(ϑk)

E[W1f
′(ϑW1)], (3.3.15)

which in turn, due to (3.3.10), is bounded from above by

E

 sup
ϑ∈Bδ(ε,ϑk)(ϑk)

W1f
′(ϑW1)− inf

ϑ∈Bδ(ε,ϑk)(ϑk)
W1f

′(ϑW1)

 < ε. (3.3.16)
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With a similar argument it can be shown that for all 1 ≤ k ≤ K and n large enough almost surely

inf
ϑ∈Bδ(ε,ϑk)(ϑk)

 1
n

n∑
j=1

Wjf
′(ϑWj)− E[W1f

′(ϑW1)]

 > −ε. (3.3.17)

Thus, ϑWn (a) converges almost surely to ϑ(a).

But for a ∈ J , we know that ϑ(a) > 0, and since ϑWn (a) converges to ϑ(a), a.s., a fortiori,
Condition (i) of Theorem 3.1.3 is satisfied, a.s.

Next we show that Condition (ii) of Theorem 3.1.3 is also satisfied, almost surely. To see this,
write (

d2

dϑ2 ΨWn (ϑ)
)∣∣∣∣∣

ϑ=ϑWn (a)

= 1
n

n∑
j=1

E[W 2
j Z

2
j e
ϑWn (a)WjZj |W]E[eϑ

W
n (a)WjZj |W]−

(
E[WjZje

ϑWn (a)WjZj |W]
)2

(E[eϑ
W
n (a)WjZj |W])2

= 1
n

n∑
j=1

Vϑ
W
n (a)[WjZ1|W]. (3.3.18)

The conditional variance VϑWn (a)[WjZj |W] is clearly positive with positive probability, since we
assumed the distribution of Z1 to be non-degenerate and Wj is non-zero with positive probability.
We need to show that also the infimum over n ∈ N is strictly positive. Note that

Ψ′′(ϑ(a)) = E[Vϑ(a)[W1Z1|W]] > 0. (3.3.19)

We need the following lemma.

Lemma 3.3.2. P
(
∀a ∈ J : limn→ă∞Ψ′′n(ϑWn (a)) = Ψ′′(ϑ(a))

)
= 1.

Proof. Since trivially

|Ψ′′n(ϑWn (a))−Ψ′′(ϑ(a))|
≤ |Ψ′′n(ϑWn (a))−Ψ′′(ϑWn (a))|+ |Ψ′′(ϑWn (a))−Ψ′′(ϑ(a))|, (3.3.20)

Lemma 3.3.2 follows if both

P
(
∀a ∈ J : lim

n→∞
|Ψ′′n(ϑWn (a))−Ψ′′(ϑWn (a))| = 0

)
= 1 (3.3.21)

and
P
(
∀a ∈ J : lim

n→∞
|Ψ′′(ϑWn (a))−Ψ′′(ϑ(a))| = 0

)
= 1. (3.3.22)

Now, Ψ′′(ϑ) is a continuous function of ϑ and uniformly continuous on the compact interval [0, ϑ∗].
This implies that

∀ε > 0 ∃δ = δ(ε) : ∀ϑ, ϑ′ : |ϑ− ϑ′| < δ |Ψ′′(ϑ)−Ψ′′(ϑ′)| < ε. (3.3.23)

From the uniform almost sure convergence of ϑWn (a) to ϑ(a), it follows that

∀δ > 0 ∃N = N(ω, δ) : |ϑWn (a)− ϑ(a)| < δ, (3.3.24)
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which in turn implies that

∀n ≥ N : |Ψ′′(ϑWn (a))−Ψ′′(ϑ(a))| < ε. (3.3.25)

Therefore, Equation (3.3.22) holds. The proof of (3.3.21) is very similar to that of Lemma 3.3.1.
The difference is that we cannot use monotonicity to obtain a majorant for W 2

1 f
′′(ϑW1), but

instead use Condition (iv) of Theorem 3.1.6. Again, as in (3.3.8),

P
(
∀a ∈ J : lim

n→∞
|Ψ′′n(ϑWn (a))−Ψ′′(ϑWn (a))| = 0

)
≥ P

(
sup

ϑ∈[0,ϑ∗]
lim
n→∞

|Ψ′′n(ϑ)−Ψ′′(ϑ)| = 0
)
. (3.3.26)

Moreover, the following facts are true:

1. By Condition (iv) of Theorem 3.1.6 and the convexity of f ,
0 ≤W 2

1 f
′′(ϑW1) ≤ F (W1) and E[F (W1)] <∞.

2. W 2
1 (ω)f ′′(ϑW1(ω)) is a continuous function of ϑ ∀ω ∈ Ω.

3. From (1) and (2) it follows by dominated convergence that for all ϑ ∈ [0, ϑ∗] that

lim
δ↓0

E
[

sup
ϑ̄∈Bδ(ϑ)

W 2
1 f
′′(ϑ̄W1)− inf

ϑ̄∈Bδ(ϑ)
W 2

1 f
′′(ϑ̄W1)

]
= 0. (3.3.27)

The proof of Lemma 3.3.2 proceeds from here exactly as the proof of Lemma 3.3.1, just replacing
f ′ by f ′′ and W1 by W 2

1 .

Condition (ii) of Theorem 3.1.3 now follows immediately.
Next we show that Condition (iii) is satisfied. We want to show that ∀0 < δ1 < δ2 <∞

P
(
∀a ∈ J : lim

n→∞

√
n sup
δ1≤|t|≤δ2ϑWn (a)

∣∣∣∣∣ΦWn (ϑWn (a) + it)
ΦWn (ϑWn (a))

∣∣∣∣∣ = 0
)

= 1. (3.3.28)

As above we bound the probability in (3.3.28) from below by

P
(

lim
n→∞

√
n sup
ϑ∈[0,ϑ∗]

sup
δ1≤|t|≤δ2ϑ

∣∣∣∣∣ΦWn (ϑ+ it)
ΦWn (ϑ)

∣∣∣∣∣ = 0
)
. (3.3.29)

Therefore, (3.3.28) follows from the first Borel-Cantelli lemma if, for each δ > 0,
∞∑
n=1

P
(
√
n sup
ϑ∈[0,ϑ∗]

sup
δ1≤|t|≤δ2ϑ

∣∣∣∣∣ΦWn (ϑ+ it)
ΦWn (ϑ)

∣∣∣∣∣ > δ

)
<∞. (3.3.30)

Note that ∣∣∣∣∣ΦWn (ϑ+ it)
ΦWn (ϑ)

∣∣∣∣∣ =
n∏
j=1

∣∣∣∣∣M(Wj(ϑ+ it))
M(Wjϑ)

∣∣∣∣∣ (3.3.31)

is a product of functions with absolute value less or equal to 1. Each factor is the characteristic
function of a tilted Zj . According to a result of [56] there are 3 classes of characteristic functions.
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Lemma 3.3.3 (Lemma 4 in Chapter XV in [56]). Let φ be the characteristic function of a
probability distribution function F . Then one of the following must hold:

1. |φ(ζ)| < 1 for all ζ 6= 0.

2. |φ(λ)| = 1 and |φ(ζ)| < 1 for 0 < ζ < λ. In this case φ has period λ and there exists a real
number b such that F (x+ b) is arithmetic with span h = 2π/λ.

3. |φ(ζ)| = 1 for all ζ. In this case φ(ζ) = eibζ and F is concentrated at the point b.

Case (3) is excluded by assumption. Under Condition (ia) of Theorem 3.1.6 we are in Case
(1). In this case it is rather easy to verify Equation (3.3.28). Namely, observe that there exists
0 < ρ < 1, such that for all ϑ ∈ [0, ϑ∗], for all δ1 ≤ t ≤ δ2ϑ∗, whenever K−1 ≤ |Wj | ≤ K, for
some 0 < K <∞, ∣∣∣∣∣M(Wj(ϑ+ it))

M(Wjϑ)

∣∣∣∣∣ < 1− ρ. (3.3.32)

This implies that, for ϑ as specified,∣∣∣∣∣M(Wj(ϑ+ it))
M(Wjϑ)

∣∣∣∣∣ ≤ (1− ρ)
1{ 1

K
≤|Wj |≤K} . (3.3.33)

Therefore,

P

√n sup
ϑ∈[0,ϑ∗]

sup
δ1≤|t|≤δ2ϑ

n∏
j=1

∣∣∣∣∣M(Wj(ϑ+ it))
M(Wjϑ)

∣∣∣∣∣ > δ


≤ P

(√
n(1− ρ)

∑n

j=1 1{ 1
K
≤|Wj |≤K} > δ

)
, (3.3.34)

where K is chosen such that P
(

1
K ≤ |Wj | ≤ K

)
> 0. With cn ≡

log δ− 1
2 logn

log(1−ρ) , the probability in
the second line of (3.3.34) is equal to

P

 n∑
j=1

1{ 1
K
≤|Wj |≤K} < cn


≤
dcne∑
k=1

(
n

k

)
P
( 1
K
≤ |Wj | ≤ K

)k [
1− P

( 1
K
≤ |Wj | ≤ K

)]n−k

≤ dcne
(

n

dcne

)[
1− P

( 1
K
≤ |Wj | ≤ K

)]n−bcnc
. (3.3.35)

Since
( n
dcne

)
∼ nC logn for a constant C, this is summable in n and (3.3.30) holds.

Case (2) of lattice-valued random variables Zj , which corresponds to Condition (ib) of The-
orem 3.1.6, is more subtle. Each of the factors in the product in (3.3.31) is a periodic function,
which is equal to 1 if and only if Wjt ∈ {kλ, k ∈ Z}, where λ is the period of this function. This
implies that each factor is smaller than 1 if Wj /∈ {kλ/t, k ∈ Z}. The points of this set do not
depend on ϑ and have the smallest distance to each other if t is maximal, i.e. t = δ2ϑ∗. Each



3.3 Proof of Theorem 3.1.6 61

factor is strictly smaller than 1 if tWj does not lie in a finite interval around one of these points.
We choose these intervals as follows. Let

δ̃ ≡ min
{

λ

8δ2ϑ∗
,
d− c

4

}
(3.3.36)

and define the intervals
I(k, t, δ̃) ≡

[
kλ

t
− δ̃, kλ

t
+ δ̃

]
. (3.3.37)

These disjoint and consecutive intervals are separated by a distance at least 6δ̃ from each other.
Then, for all ϑ ∈ [0, ϑ∗] there exists 0 < ρ(ϑ) < 1 , independent of t, such that∣∣∣∣∣M(Wj(ϑ+ it))

M(Wjϑ)

∣∣∣∣∣ ≤ (1− ρ(ϑ))
1
{|Wj |/∈∪k∈ZI(k,t,̃δ)} . (3.3.38)

Furthermore,
∣∣∣M(θ+it)
M(θ)

∣∣∣ is continuous in θ, and thus its supremum over compact intervals is at-
tained. Thus, for any C > 0 there exists ρ̄ = ρ̄(C, ϑ∗) > 0 such that, for all ϑ ∈ [0, ϑ∗],∣∣∣∣∣M(Wj(ϑ+ it))

M(Wjϑ)

∣∣∣∣∣ ≤ (1− ρ̄)
1
{Wj∈[−C,C]\∪k∈ZI(k,t,̃δ)} . (3.3.39)

We choose C such that the interval [c, d] from Hypothesis (ia) is contained in [−C,C]. Then we
get with Equations (3.3.38) and (3.3.39) that

P
(
√
n sup
ϑ∈[0,ϑ∗]

sup
δ1≤|t|≤δ2ϑ

n∏
j=1

∣∣∣∣∣M(Wj(ϑ+ it))
M(Wjϑ)

∣∣∣∣∣ > δ

)

≤ P
(
√
n sup
ϑ∈[0,ϑ∗]

sup
δ1≤|t|≤δ2ϑ∗

n∏
j=1

(1− ρ̄)
1
{Wj∈[−C,C]\∪k∈ZI(k,t,̃δ)} > δ

)

= P
(√

n (1− ρ̄)
infδ1≤|t|≤δ2ϑ∗

∑n

j=1 1{Wj∈[−C,C]\∪k∈ZI(k,t,̃δ)} > δ

)
. (3.3.40)

With cn ≡
log δ− 1

2 logn
log(1−ρ̄) Equation (3.3.40) can be rewritten as

P
(

inf
δ1≤|t|≤δ2ϑ∗

n∑
j=1

1{Wj∈[−C,C]\∪k∈ZI(k,t,δ̃)}
< cn

)

≤ P
(

inf
δ1≤|t|≤δ2ϑ∗

n∑
j=1

1{Wj∈([−C,C]∩[c,d])\∪k∈ZI(k,t,δ̃)}
< cn

)
. (3.3.41)

(3.3.41) is summable over n since the number of Wj contained in the “good” sets is of order n,
i.e. #{j : Wj ∈ [c, d]\ ∪k∈Z I(k, t, δ̃)} = O(n). Define

K(t) = #{k : I(k, t, δ̃) ∩ [c, d] 6= ∅}, (3.3.42)

and let k1, . . . kK(t) enumerate the intervals contained in [c, d]. Let m1(t), . . . , mK(t)(t) be chosen
such that Wmi(t) ∈ I(ki, t, δ̃). Note that mi(t) are random. The probability in the last line of
(3.3.41) is bounded from above by

P

 inf
δ1≤|t|≤δ2ϑ∗

n∑
j=1

1{Wj∈[c,d],|Wj−Wm1(t)|>2δ̃,...,|Wj−WmK(t)(t)|>2δ̃} ≤ cn

 . (3.3.43)
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Since there are only finitely many intervals of length 2δ̃ with distance 6δ̃ to each other in [c, d],
there exists K < ∞ such that supt∈[δ1,δ2ϑ∗]K(t) < K. Thus, the probability in (3.3.43) is not
larger than

P
(
∃m1,...,mK∈{1,...,n} :

n∑
j=1

1{
Wj∈[c,d],|Wj−Wm1 |>2δ̃,...,|Wj−WmK

|>2δ̃
} ≤ cn

)

≤
n∑

m1,...,mK=1
P
(

n∑
j=1

1{
Wj∈[c,d],|Wj−Wm1 |>2δ̃,...,|Wj−WmK

|>2δ̃
} ≤ cn

)

≤ nKP
(

n∑
j=1

1{
Wj∈[c,d],|Wj−Wm1 |>2δ̃,...,|Wj−WmK

|>2δ̃
} ≤ cn

)
. (3.3.44)

The indicator function vanishes whenever j = mi with i ∈ {1, . . . ,K}. Thus,

P
(

n∑
j=1

1{
Wj∈[c,d],|Wj−Wm1 |>2δ̃,...,|Wj−WmK

|>2δ̃
} ≤ cn

)

= P
(

n∑
j 6∈{m1,...,mK}

1{
Wj∈[c,d],|Wj−Wm1 |>2δ̃,...,|Wj−WmK

|>2δ̃
} ≤ cn

)

= P
(

n∑
j=K

1{
Wj∈[c,d],|Wj−W1|>2δ̃,...,|Wj−WK |>2δ̃

} ≤ cn
)

(3.3.45)

due to the i.i.d. assumption. (3.3.45) is equal to

dcne∑
l=0

(
n−K
l

)
P(A)l (1− P(A))n−K−l ≤ dcne

(
n−K
dcne

)
(1− P(A))n−K−dcne. (3.3.46)

Here A is the event

A =
{
W ∈ [c, d], |W −W1| > 2δ̃, . . . , |W −WK | > 2δ̃

}
, (3.3.47)

where W is an independent copy of W1. We show that P(A) is strictly positive.

P(A) =
∫

[c,d]
P
(
|W −W1| > 2δ̃, . . . , |W −WK | > 2δ̃

∣∣∣W)
dPW (3.3.48)

≥
∫

[c,d]
P
(
Wi ∈ [W − 2δ̃,W + 2δ̃]c ∩ [c, d],∀i ∈ {1, . . . ,K}

)
dPW ,

where PW denotes the distribution of W . Since the random variables W1, . . . , WK ,W are inde-
pendent of each other, this is equal to∫

[c,d]
P
(
W1 ∈ [W − 2δ̃,W + 2δ̃]c ∩ [c, d]|W

)K
dPW , (3.3.49)

and due to the lower bound on the density of PW postulated in Hypothesis (ia), this in turn is
bounded from below by

(p(d− c− 4δ̃))K
∫

[c,d]
dPW ≥ (d− c)pK+1(d− c− 4δ̃)K ≡ p̃ ∈ (0, 1]. (3.3.50)
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Combining Equations (3.3.46) and (3.3.50) we obtain

(3.3.44) ≤ nK dcne
(

n

dcne

)
p̃n−K−dcne (3.3.51)

which is summable over n, as desired. Thus all hypotheses of Theorem 3.1.3 are satisfied with
probability one, uniformly in a ∈ J , and so the conclusion of Theorem 3.1.6 follows.

3.4 Proof of Theorem 3.1.9

In order to prove Theorem 3.1.9 we need the joint weak convergence of the process Xn, defined
in (3.1.11) and its derivatives, as stated in Lemma 3.4.1. Define on the closure, J̄ of the interval
J (recall the definition of J in Theorem 3.1.6), the processes (X̂n

a )a∈J̄ , n ∈ N, via

X̂n
a ≡ (Xn(ϑ(a)), X ′n(ϑ(a)), X ′′n(ϑ(a))). (3.4.1)

Lemma 3.4.1. The family of processes (X̂n
a )a∈J̄ defined on

(
C(J̄ ,R3),B(C(J̄ ,R3)

)
, converges

weakly, as n → ∞, to a process (X̂a)a∈J̄ on the same space, if there exists c > 0, such that, for
all a ∈ J̄ , g′′(ϑ(a)) > c, and if Assumption 3.1.8 is satisfied.

Proof. As usual, we prove convergence of the finite dimensional distributions and tightness.
More precisely, we have to check that:

1. (X̂n
a )a∈J̄ converges in finite dimensional distribution.

2. The family of initial distributions, i.e. the distributions of X̂n
b , where b ≡ E[Z1W1], is tight.

3. There exists C > 0 independent of a and n such that

E
[
‖X̂n

a+h − X̂n
a ‖2

]
≤ C|h|2, (3.4.2)

which is a Kolmogorov-Chentsov criterion for tightness, see [83, Corollary 14.9].

First, we consider the finite dimensional distributions. Let

Ya,j ≡ f(ϑ(a)Wj)− E [f(ϑ(a)Wj)]
Y ′a,j ≡ Wjf

′(ϑ(a)Wj)− E[Wjf
′(ϑ(a)Wj)] and

Y ′′a,j ≡ W 2
j f
′′(ϑ(a)Wj)− E[W 2

j f
′′(ϑ(a)Wj)]. (3.4.3)

Moreover, let ` ∈ N, a1 < a2 < · · · < a` ∈ J̄ and

χj ≡
(
Ya1,j , Y

′
a1,j , Y

′′
a1,j , . . . , Ya`,j , Y

′
a`,j

, Y ′′a`,j

)
∈ R3`. (3.4.4)

These vectors are independent for different j and the components (χj)k, 1 ≤ k ≤ 3`, have co-
variances Cov((χj)k, (χj)m) = Ckm < C for all k,m ∈ {1, . . . , 3`}, according to Assumption 3.1.8.
Therefore, 1/

√
n
∑n
j=1 χj converges, as n→∞, to the 3`-dimensional Gaussian vector with mean

zero and covariance matrix C by the central limit theorem. This proves convergence of the finite
dimensional distributions of (X̂n

a )a∈J̄ .
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The family of initial distributions is given by the random variables evaluated at ϑ(b). This
family is seen to be tight using Chebychev’s inequality

P (‖Xn
b ‖2 > C) ≤

V
[√

Xn(ϑ(b))2 + (X ′n(ϑ(b)))2 + (X ′′n(ϑ(b)))2
]

C2

≤ E
[
Xn(ϑ(b))2 + (X ′n(ϑ(b)))2 + (X ′′n(ϑ(b)))2]

C2 . (3.4.5)

which is finite by Assumption 3.1.8. For each ε we can choose C large enough such that (3.4.5)
< ε. It remains to check Condition (3). Since

E
[
‖X̂n

a+h − X̂n
a ‖2

]
= E

[
(Xn(ϑ(a+ h))−Xn(ϑ(a)))2

]
+E

[
[X ′n(ϑ(a+ h))−X ′n(ϑ(a)))2

]
+E

[
(X ′′n(ϑ(a+ h))−X ′′n(ϑ(a)))2

]
, (3.4.6)

we need to show that each of the three terms on the right-hand side is of order h2. Note that
E
[
[Xn(ϑ(a+ h))−Xn(ϑ(a))]2

]
≤ C|h|2 if

E
[(

d
daXn(ϑ(a))

)2
]
≤ C. (3.4.7)

Since Xn(ϑ(a)) = 1√
n

∑n
j=1 Ya,j ,

E
[(

d
daXn(ϑ(a))

)2
]

= 1
n

n∑
j=1

E
[(

d
daYa,j

)2
]
. (3.4.8)

Each summand can be controlled by

E
[(

d
daYa,j

)2
]

= E
[(

d
daf(ϑ(a)Wj)

)2
]
−
(
E
[
d
daf(ϑ(a)Wj)

])2

=
(
d
daϑ(a)

)2 (
E
[
W 2
j f
′(ϑ(a)Wj)2

]
−
(
E
[
Wjf

′(ϑ(a)Wj)
])2)

=
(
d
daϑ(a)

)2
V
[
Wjf

′(ϑ(a)Wj)
]
. (3.4.9)

By the implicit function theorem,

d

da
ϑ(a) =

(
g′′(ϑ(a))

)−1
. (3.4.10)

Thus, Equation (3.4.7) holds since g′′(ϑ(a)) > c by assumption and V [Wjf
′(ϑ(a)Wj)] is bounded

by Assumption 3.1.8. The bounds for the remaining terms follow in the same way by controlling
the derivatives of X ′n(ϑ(a)) and X ′′n(ϑ(a)). We obtain

E
[(

d
daY

′
a,j

)2
]

= E
[(

d
daWjf

′(ϑ(a)Wj)
)]
−
(
E
[
d
daWjf

′(ϑ(a)Wj)
])2

=
(
d
daϑ(a)

)2
V
[
W 2
j f
′′(ϑ(a)Wj)

]
(3.4.11)
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and

E
[(

d
daY

′′
a,j

)2
]

= E
[(

d
daW

2
j f
′′(ϑ(a)Wj)

)]
−
(
E
[
d
daW

2
j f
′′(ϑ(a)Wj)

])2

=
(
d
daϑ(a)

)2
V
[
W 3
j f
′′′(ϑ(a)Wj)

]
. (3.4.12)

In both formulae the right hand sides are bounded due to Assumption 3.1.8. This proves the
lemma.

Proof of Theorem 3.1.9. Recall that ϑWn (a) is determined as the solution of the equation

a = g′(ϑ) + 1√
n
X ′n(ϑ). (3.4.13)

Write ϑWn (a) ≡ ϑ(a) + δn(a), where ϑ(a) is defined as the solution of

a = g′(ϑ). (3.4.14)

Note that ϑ(a) is deterministic while δn(a) is random and W-measurable . The rate function can
be rewritten as

IWn (a) = a(ϑ(a) + δn(a))− g(ϑ(a) + δn(a))− 1√
n
Xn(ϑ(a) + δn(a)). (3.4.15)

A second order Taylor expansion and reordering of the terms yields

IWn (a) = aϑ(a)− g(ϑ(a))︸ ︷︷ ︸
≡I(a)

− 1√
n
Xn(ϑ(a))

+
(
a− g′(ϑ(a))

)︸ ︷︷ ︸
=0

δn(a)− 1√
n
δn(a)X ′n(ϑ(a))

−1
2(δn(a))2

(
g′′(ϑ(a)) + 1√

n
X ′′n(ϑ(a))

)
+ o((δn(a))2). (3.4.16)

Note that the leading terms on the right-hand side involve the three components of the processes
X̂n whose convergence we have just proven. We obtain the following equation for δn(a) using a
first order Taylor expansion.

a = g′(ϑ(a) + δn(a)) + 1√
n
X ′n(ϑ(a) + δn(a)) (3.4.17)

= g′(ϑ(a)) + 1√
n
X ′n(ϑ(a)) + δn(a)

(
g′′(ϑ(a)) + 1√

n
X ′′n(ϑ(a))

)
+ o(δn(a)),

which implies

δn(a) =
− 1√

n
X ′n(ϑ(a))

g′′(ϑ(a)) + 1√
n
X ′′n(ϑ(a))

+ o(δn(a)). (3.4.18)
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Lemma 3.4.1 combined with g′′(ϑ(a)) = O(1) yields δn(a) = O(1/
√
n). We insert the expression

for δn(a) into Equation (3.4.16) to obtain

IWn (a)

= I(a)− 1√
n
Xn(ϑ(a))− 1

2

(
g′′(ϑ(a)) + 1√

n
X ′′n(ϑ(a))

)

×

 1/n(X ′n(ϑ(a)))2(
g′′(ϑ(a)) + 1√

n
X ′′n(ϑ(a))

)2 −
1√
n
X ′n(ϑ(a))o(δn)(

g′′(ϑ(a)) + 1√
n
X ′′n(ϑ(a))

) + o((δn)2)


+

1
n(X ′n(ϑ(a)))2

g′′(ϑ(a)) + 1√
n
X ′′n(ϑ(a))

+ 1√
n
X ′n(ϑ(a))o(δn) + o((δn)2). (3.4.19)

Combining this with the bound (3.4.18), it follows that

IWn (a) = I(a)− 1√
n
Xn(ϑ(a)) + 1

n
rn(a), (3.4.20)

where
rn(a) ≡

1
2(X ′n(ϑ(a)))2

g′′(ϑ(a)) + 1√
n
X ′′n(ϑ(a))

+ o(1). (3.4.21)

rn(a) converges weakly due to the continuous mapping theorem and the joint weak convergence
of X ′n(ϑ(a)) and X ′′n(ϑ(a)). This completes the proof of the theorem.
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4. A stochastic approach to develop effective
immunotherapy strategies

4.1 Introduction

In this chapter we discuss a stochastic, individual-based model for the evolution of tumours. The
model allows to study the evolution of pure tumours as well as the co-evolution of a tumour and
a therapeutic environment. It is explained on the example of an immunotherapy for metastatic
melanoma, namely the adoptive cell transfer therapy (ACT) of particular T-cells. The trans-
ferred T-cells are capable of killing melanoma cells expressing a certain surface marker. It has
been shown experimentally that melanoma cells react to the therapy-induced inflammation by
phenotypic plasticity, i.e. by switching their phenotype. The relevant surface marker is down-
regulated in the switched melanoma cells. Thus, these melanoma cells are not recognised by the
T-cells [91].

The proposed model is able to describe the phenomena observed in the experiments. We
apply it to simulate different therapy protocols, as for example different dosages or protocols
involving several types of T-cells targeting different types of cancer cells. Phenotypic and geno-
typic heterogeneity of cancer cells within a single tumour enables therapy resistance in many
cases [76, 77, 96]. Therefore, it is important to understand the interplay of heterogeneity and
treatment. The model which we explain in the following serves this purpose.

In this model from population dynamics the population of cancer cells grows logistically and
interacts with therapeutic agents in a predator-prey relation. We include two sources of changes
of traits of cancerous cells: rare genetic mutations and fast phenotypic alterations, which we
call switches. In the context of therapy the switch is environment-dependent, i.e. it is influenced
by the molecules present in the tumour. The interplay of slow changes via mutations and fast
changes via switches is worth studying with or without the context of cancer. First steps in
the analysis of this setup are described in [11]. Here we focus on the biological applications
and the phenomena relevant for treatment strategies, as for example the role of heterogeneity
for resistance and the appearance of a relapse. We demonstrate that the occurrence of different
types of relapses under the same treatment protocol can be explained by random fluctuations,
which alter the long-term behaviour of the system of a tumour under treatment. For instance,
when subpopulations become extinct, the system is attracted to an equilibrium that is different
from the attractive equilibrium in a scenario when the subpopulation survived. This is illustrated
by examples and numerical simulations in Section 4.3. In addition, we explain in Subsection
4.4.1 that cancer evolution can be accelerated by an increased mutation rate during therapy in
certain setups. Furthermore, some phenomena can be observed that would maybe not have been
anticipated without the model. These findings can be understood very well once observed, see for
example the paragraph on the influence of the initial intensity of treatment in Subsection 4.3.4.

Let us now explain the biological and mathematical frameworks in more details.

67
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4.1.1 Cancer evolution and therapy resistance

Cancer is still a leading cause of death throughout the world. In 2012, eight million people died
due to cancer and 14 million new incidences were recorded according to the WHO [135]. Although
many therapeutic approaches are successful in the beginning, very often a relapse appears after
some time [76]. In order to improve treatment strategies and to achieve durable therapy responses,
it is necessary to understand the mechanisms of resistance and the evolution of cancer with and
without treatment.

Cancer denotes a family of diseases characterised by increased cell division, avoidance of cell
death, invasion into and distraction of surrounding tissues and organs as well as the ability to
metastasize [84]. In a healthy organism, cells divide and die in a controlled and balanced way. The
majority of cancerous diseases arises from genetic mutations. The disease develops in a multistep
process, in which several evolutional steps equip cancer cells with different properties [50, 84, 108].
This process is called tumerogenesis. Initiation of cancer is often caused by mutations in so-called
oncogenes or tumour suppressor genes. Such genes encode for example for proliferative signalling,
growth suppressors or programmed cell death, and influence the cell cycle in various ways [71, 84].
Nearly all cancers develop from a single cell [84]. The descendants of this cell accumulate various
mutations. Some of them cause an evolutionary growth advantage compared to the surrounding
cells. Such mutants are selected by Darwinian evolution.

This brief description shows already that the concept of a tumour as only an accumulation
of cells is too simplistic and not appropriate. Instead tumours should be understood as complex
tissues. They consist of many different cell types, which interact in a complex and structured
way. This enables the tumour to take over the control and to evade a lot of control and security
mechanisms of healthy organisms, e.g. control by the immune system. Apart from risk factors,
such as environmental exposure, or inherited genetic variation, the simple intrinsic property of
cell division rate is a crucial determinant for the probability that a certain tissue develops cancer
in an individuals life time, see [118].

As pointed out in several reviews, the heterogeneous structure of tumours can be seen as
a driving cause for the failure of treatment, see [21, 64, 77, 96] and references therein. The
heterogeneity is not restricted to genotypic diversity, but includes also phenotypic changes which
are not induced by genotypic changes [21, 77, 96]. Sometimes resistance is acquired very fast and
the corresponding changes can be reversible. These facts indicate the crucial role of phenotypic
heterogeneity [77]. Genotypic and phenotypic adaptations differ with respect to stability and
heritability. Heritability of mutations is (relatively) stable and advantageous mutations can fixate.
The question whether an alteration has to be heritable and thus selectable in order to be relevant
is currently debated [21, 96]. Therapy induces a rapid, strong and not necessarily permanent
change of the environment. This can be seen as a strong selective pressure acting in a short time
frame so that changes do not necessarily need to be inherited to provide a selective advantage
according to [59]. The presence of different cell types enables the tumour to exploit niches formed
by therapy [66, 96]. In addition, the microenvironment strongly influences which cell types are
fit at a given time [36]. According to [77] the tumour resides in a “metastable order”, which can
be perturbed or destroyed by the new environment created by therapy. The important role of
the simultaneous, spontaneous phenotypic plasticity of tumour and immune cells is emphasized
in [77].

Despite the development of new therapeutic approaches for the treatment of metastatic can-
cers durable responses to therapy are still hard to achieve. Resistance as well as recurrence are



4.1 Introduction 69

issues for most targeted therapy strategies, [64, 76], and thus it is essential to understand the un-
derlying mechanisms rigorously. Immunotherapeutic approaches, i.e. therapeutic strategies which
activate the immune system to target cancer, are promising [38, 101, 109, 120]. However, they
are also subject to the problem of resistance.

Melanoma under adoptive cell transfer therapy with cytotoxic T-cells:
Therapeutic approach and resistance mechanism

Landsberg et al. investigate the system of melanomas under adoptive cell transfer therapy with
cytotoxic T-cells in mice [91]. Before treatment a melanoma consists mainly of differentiated
cells, but rare dedifferentiated cells may be present. Melanoma cells coexist in a dynamic equi-
librium and switch phenotypes in both directions. As a therapeutic agent cytotoxic T-cells are
transferred into mice. These T-cells are able to recognise a certain melanocyte-specific surface
marker, glycoprotein 100 (gp100). They are capable of killing differentiated melanoma cells, i.e.
cells bearing these markers. This therapeutic strategy induces an inflammation, during which
(apart from other cytokines) the pro-inflammatory cytokine Tumour Necrosis Factor-α (TNF-α)
is produced. It was shown in in vitro experiments, where cell division was inhibited, that the
switch is reversible and that it occurs without cell division. The switch towards dedifferentiated
cells is enhanced in the presence of TNF-α. In dedifferentiated melanoma cells the surface marker
gp100, required for recognition, is down-regulated. Thus, dedifferentiated melanoma cells can-
not be controlled by these T-cells. The inflammation-induced phenotypic plasticity serves as a
resistance mechanism in this system. A relapse occurs after some time in almost every case. Phe-
notypic plasticity was not only observed in mouse models but also for human cell lines, showing
its clinical relevance.

In addition to the effect of phenotypic plasticity, T-cells can become exhausted after some
time, i.e. they lose their functionality and are not able to kill melanoma cells anymore. The state
of exhaustion can in principle be reversed by re-activation. In the experiments re-activation of the
T-cells could only delay the appearance of the relapse. According to careful control experiments
conducted by Landsberg et al. the influence of other immune cells and cytokines in the tumour
microenvironment can be neglected in the context of the situation described above [91].

4.1.2 Mathematical modelling of cancer evolution

Cancer research is an active and fast developing field, as for example indicated by the update of the
publication about the “hallmarks of cancer” [71] after roughly ten years [72]. Mathematical models
may help to structure the huge amount of data and to keep track of the relevant mechanisms.
Moreover, they may assist in sharpening biological questions and in planning experiments. There
are many mathematical modelling approaches in the context of cancer evolution, in particular in
connection with immunotherapy of cancer, see for example [53, 64, 90, 108]. In general, efficient
mathematical modelling of the interaction between cancer and immune cells provides a better
understanding of the mechanisms behind therapy failure and may ultimately help to develop
more efficient treatment protocols. So far, many deterministic and some stochastic approaches
as for example branching process models, [5, 20, 50, 51], or rate models, [70], were used to study
the development and treatment of cancer. To our knowledge, branching process models are
mainly used to describe the early onset of cancer and do not include the interaction with therapy.
Evolutionary theory can be seen as a unifying framework for understanding cancerous diseases
and resistance at various stages [64, 67, 132].
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Here we choose a probabilistic model since random effects play a crucial role and deterministic
models, such as [53], cannot describe these effects. This is partially based on the fact that the
number of cells and molecules in the entire tumour is relatively small, especially during remission.
The model, we present in the following, comes from population dynamics and is a stochastic,
individual-based model with density-dependence. In individual-based models the structure of the
model is defined on the level of the components (called individuals, agents or particles) of the
system. The model at hand is an extension of the individual-based stochastic models for adaptive
dynamics introduced by Metz et al. [102] and developed and analysed by many authors in recent
years, see e.g. [10, 16, 17, 19, 25, 26, 27, 29, 37, 48].

We aim to understand the co-evolution of tumour and immune cell populations and therefore
include additional mechanisms, describing their interactions, into the “basic” model that was
described for example in [25] or [31]. In the basic model a population grows logistically and
at birth events mutations may occur. Mutant populations can invade a population and either
replace the resident population or coexist with some resident traits. The models describe the
Darwinian evolution of a population with asexual reproduction, mediated by heredity, mutation
and selection. Most of the research in this area is concerned with the asymptotic behaviour of
the models. Typically, various combinations of the limits of large populations, rare mutations
and small mutational effects are considered on different timescales.

In our model, we allow for two varieties of changes in cancer cells: fast (possibly reversible)
switches, which affect only the phenotype of cells, and slow genetic mutations. The switching
behaviour is influenced by an environment, which in this description is constituted by cytokines.
Cytokines are molecules working as chemical messengers in the immune system. The description
of the evolution of these particles is also part of the stochastic model and is not described by
separate, deterministic equations as in [29]. The relation between therapeutic agents, here T-
cells, and cancer cells is modelled as a predator-prey term. In [37] the long-term evolution of
predator-prey systems is studied. In their model general escape strategies of prey are accounted
for by changing relevant parameters. We model the escape mechanism, namely switching, directly.
Moreover, in our model competition cannot only increase the death rate of the individuals, but
also affect their reproduction behaviour and decrease their cell division rate.

4.2 The model

We consider three classes of particles. In each class certain evolutionary events take place. More
precisely, we distinguish cancer cells, T-cells (certain immune cells) and cytokines (chemical
messengers of the immune system).

Cancer cells are characterised by a genotype and a phenotype. (g, p) ∈ G×P denotes the trait
of a cancer cell with genotype g and phenotype p. They can divide, die (due to age, competition
or therapy) or switch their phenotype. If they die from therapy, cytokines are produced at the
same time. Furthermore, mutations (i.e. a change of the genotype) may appear at cell divisions.

T-cells can divide or die. Their trait is denoted by z ∈ Z. At distinguished T-cell reproduction
events cytokines are released.

Cytokines can only disappear, but cannot reproduce themselves. Their trait is denoted by
w ∈ W. Their presence influences the switching behaviour of cancer cells.
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The whole trait space, X , is a finite set of the form

X = G × P ∪· Z ∪· W

=
{
g1, . . . , g|G|

}
×
{
p1, . . . , p|P|

}
∪·
{
z1, . . . , z|Z|

}
∪·
{
w1, . . . , w|W|

}
. (4.2.1)

Let us define

MK ≡
{

1
K

n∑
i=1

δxi , n ≥ 0, xi ∈ X
}

(4.2.2)

as the set of finite, rescaled counting measures on X . K is a parameter scaling the population
size, which is sometimes called carrying capacity. The state of the population at time t can be
represented by the measure

νKt = 1
K

Nt∑
i=1

δxi(t) ∈MK , (4.2.3)

where Nt denotes the number of individuals at time t and xi(t) ∈ X denotes the trait of the i-th
individual at time t.

All evolutionary events happen at exponential waiting times depending on parameters and
on the state of the population (density-dependence) as explained in Subsections 4.2.1 to 4.2.3.
The sequence of these waiting times can be used to construct a continuous-time, measure-valued
Markov process, which describes the co-evolution of the whole system.

For the sake of clarity we explain the generator and the dynamics of the process in three parts.

4.2.1 Natural growth

This part describes the natural growth behaviour of all individuals. Each cancer cell of type
(g, p) divides at a natural birth rate b(p). At each cell division a mutation can appear with
probability µ(p). Whenever a mutation occurs, the trait of the mutant is distributed according
to a mutation kernel m((g, p), (g′, p′)), where in this setup m((g, p), (g′, p′)) can be seen as a
transition probability. In particular, m((g, p), (g, p)) = 0 and ∑(g′,p′)∈G×P m((g, p), (g′, p′)) = 1.
T-cells divide at a natural birth rate b(z), whereas cytokines do not reproduce since they are
molecules. We do not allow for mutations of T-cells here to keep the approach simple and since
this is not necessary for the applications we want to look at. All cells and cytokines die and
vanish at natural death rates d(p), d(z) and d(w), respectively.

Furthermore, competition for resources can have two effects: On the one hand, cell division
is lowered, modelled via a competition kernel K−1cb(p, p′). We call this effect birth-reducing
competition in the following. If this effect sets the birth rate already to a level zero, then the kernel
acts as an additional death rate. On the other hand, the death rate of individuals is increased,
modelled via a competition kernel K−1c(p, p′). Both kernels signify the influence of individuals
of phenotype p′ on individuals of phenotype p. Note that we could include competition between
T-cells and cancer cells or among T-cells, but for the sake of simplicity we consider competition
only among cancer cells.

The infinitesimal generator of this part of the process, LKG , acts on bounded measurable
functions φ from MK into R, for all η ∈MK by
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(
LKGφ

)
(η) =

∑
(g,p)∈G×P

(
φ
(
η + δ(g,p)

K

)
− φ(η)

)

× (1− µ(p))
⌊
b(p)−

∑
(g̃,p̃)∈G×P

cb(p, p̃)η(g̃, p̃)
⌋

+

Kη(g, p)

+
∑

(g,p)∈G×P

(
φ
(
η − δ(g,p)

K

)
− φ(η)

)

×
(
d(p) +

∑
(g̃,p̃)∈G×P

c(p, p̃)η(g̃, p̃) +
⌊
b(p)−

∑
(g̃,p̃)∈G×P

cb(p, p̃)η(g̃, p̃)
⌋
−

)
Kη(g, p)

+
∑
z∈Z

(
φ
(
η + δz

K

)
− φ(η)

)
b(z)Kη(z) +

∑
z∈Z

(
φ
(
η − δz

K

)
− φ(η)

)
d(z)Kη(z)

+
∑
w∈W

(
φ
(
η − δw

K

)
− φ(η)

)
d(w)Kη(w)

+
∑

(g̃,p̃)∈G×P

∑
(g,p)∈G×P

(
φ
(
η + δ(g̃,p̃)

K

)
− φ(η)

)

× µ(p)m((g, p), (g̃, p̃))
⌊
b(p)−

∑
(g′,p′)∈G×P

cb(p, p′)η(g′, p′)
⌋

+

Kη(g, p). (4.2.4)

4.2.2 Therapy

Let us now describe all effects related to therapy. In the presence of their target of phenotype
p T-cells of type z divide according to an additional reproduction kernel K−1b(z, p). At each
such activity-related reproduction event a number of `prod

w (z, p) cytokines of type w are released.
Cancer cells with phenotype p die in the presence of T-cells of type z according to a therapy
kernel K−1t(z, p). At such activity-related death events a number of `kill

w (z, p) cytokines of type
w are produced. The relation of T-cells and cancer cells can be seen as a predator-prey system.
The generator of this part of the process, LKT , acts via

(
LKT φ

)
(η) =

∑
(g,p)∈G×P

∑
z∈Z

(
φ

(
η − δ(g,p)

K +
∑
w∈W

`kill
w (z, p) δwK

)
− φ(η)

)
t(z, p)η(z)Kη(g, p) (4.2.5)

+
∑
z∈Z

∑
(g,p)∈G×P

(
φ

(
η + δz

K +
∑
w∈W

`prod
w (z, p) δwK

)
− φ(η)

)(
b(z, p)η(g, p)

)
Kη(z)

4.2.3 Switching

Each cancer cell can switch its phenotype p into phenotype p′ without changing its genotype g
according to a switch kernel K−1sg(p, p′). In the presence of a cytokine of type w there is an
additional messenger-induced switch kernel K−1sgw(p, p′). The generator of this part of the
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process, LKS , acts via(
LKS φ

)
(η) =

∑
(g,p)∈G×P

∑
p̃∈P

(
φ
(
η + δ(g,p̃)

K − δ(g,p)
K

)
− φ(η)

)
×
(
sg(p, p̃) +∑

w∈Ws
g
w(p, p̃)η(w)

)
Kη(g, p). (4.2.6)

The measure-valued process (νKt )t≥0 is a Markov process, whose law is characterised by its
infinitesimal generator LK , which captures the dynamics described above and is defined by

LK = LKG + LKT + LKS . (4.2.7)

Remark 4.2.1. 1. All “visible” properties of the cancer cells such as birth or death rates depend
only on the phenotype. The genotype defines the set of possible phenotypes and the dynamic
equilibria via the associated switch kernels. The switch kernels specify which phenotypes
are expressed by a given genotype in which proportions in a (dynamic) environment.

2. Switching, T-cell reproduction and killing of melanoma cells are multiple events in this
description: at one time the state of several populations is changed. For switching one cancer
cell disappears and another one appears, for T-cell reproduction a T-cell and cytokines
appear, and for killing a cancer cell disappears and cytokines appear.

3. Such models can also be constructed on a continuous trait space. In order to avoid techni-
calities we restrict ourselves to the finite trait space, which is sufficient for the applications
in this thesis.

4.2.4 Large population approximation

The preceding explanation defines a sequence of continuous-time, measure-valued Markov pro-
cesses, which describe the co-evolution of tumour and immune cells as well as the influence of the
inflammatory environment. We are interested in the asymptotic behaviour of the system in the
limit of large populations, i.e. we let the carrying capacity K tend to infinity. In this limit, the
sequence of rescaled processes, ((νKt )t≥0)K , converges almost surely to the solution of a system
of differential equations, as stated in Corollary 4.2.3. This result can be seen as a law of large
numbers. It is a consequence of a law of large numbers for a collection of density-dependent pop-
ulation processes with finitely many traits due to Ethier and Kurtz, [55]. Let us now introduce
some notation in order to restate this result.

Let E ⊂ Rd and EK = E ∩ {K−1u : u ∈ Zd}. We consider a collection of non-negative
functions βl, l ∈ Zd on E, such that for x ∈ EK and βl(x) > 0 also x + K−1l ∈ EK . Let
((XK(t))t≥0)K be a sequence of Markov jump processes with state space EK and transition rates
qKx,y from x to y given by

qKx,y ≡ KβK(y−x)(x) for x, y ∈ EK . (4.2.8)

We define F (x) ≡ ∑l lβl(x) and denote by (Yl)l∈Zd a family of standard Poisson processes and
by Ỹl(u) ≡ Yl(u) − u the centred versions of these processes. When XK(0) denotes the initial
condition, XK satisfies

XK(t) = XK(0) +
∑
l

l

K
Ỹl

(
K

∫ t

0
βl(XK(s))ds

)
+
∫ t

0
F (XK(s))ds (4.2.9)

as long as only finitely many jumps occurred.
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Theorem 4.2.2 (Theorem 2.1 in Chapter 11 in [55]). Suppose that for each compact S ⊂ E,∑
l

|l| sup
x∈S

βl(x) <∞ (4.2.10)

and that there exists MS > 0 such that

|F (x)− F (y)| ≤MS |x− y|, x, y ∈ S. (4.2.11)

Suppose that XK satisfies Equation (4.2.9), limK→∞XK(0) = x0, and X satisfies

X(t) = x0 +
∫ t

0
F (X(s))ds, t ≥ 0. (4.2.12)

Then, for every T ≥ 0,
lim
K→∞

sup
t∈[0,T ]

|XK(t)−X(t)| = 0 a.s. (4.2.13)

Since the trait space X is finite, the population in our model can be represented as a vector
VK(t) := (νKt (x))x∈X of dimension d = |G| · |P| + |Z| + |W|. We present the population as a
measure in the definition of the model (see Equation (4.2.3)), since this is more convenient for
continuous trait spaces.

Corollary 4.2.3. Suppose that the initial conditions converge almost surely to a deterministic
limit, i.e. limK→∞ VK(0) = v(0). Then, for each T ∈ R+ the sequence of rescaled processes
(VK(t))0≤t≤T converges almost surely as K → ∞ to the d-dimensional deterministic process
which is the unique solution to the following dynamical system:

dn(g,p)
dt = n(g,p)

(
(1− µ(p))

⌊
b(p)−

∑
(g̃,p̃)∈G×P

cb(p, p̃)n(g̃,p̃)

⌋
+

(4.2.14)

−
⌊
b(p)−

∑
(g̃,p̃)∈G×P

cb(p, p̃)n(g̃,p̃)

⌋
−

− d(p)−
∑

(g̃,p̃)∈G×P
c(p, p̃)n(g̃,p̃)

−
∑
z∈Z

t(z, p)nz −
∑
p̃∈P

(
sg(p, p̃) +

∑
w∈W

sgw(p, p̃)nw
))

+
∑

(g̃,p̃)∈G×P
n(g̃,p̃)

(
µ(p̃)m((g̃, p̃), (g, p))

⌊
b(p̃)−

∑
(g′,p′)∈G×P

cb(p̃, p′)n(g′,p′)

⌋
+

)

+
∑
p̃∈P

n(g,p̃)

(
sg(p̃, p) +

∑
w∈W

sgw(p̃, p)nw
)
, (g, p) ∈ G × P

dnz
dt = nz

(
b(z)− d(z) +

∑
(g,p)∈G×P

b(z, p)n(g,p)

)
, z ∈ Z

dnw
dt = − nwd(w) +

∑
(g,p)∈G×P

n(g,p)
∑
z∈Z

(
`kill
w (z, p) t(z, p) + `prod

w (z, p) b(z, p)
)
nz, w ∈ W.

More precisely, P
(
limK→∞ sup0≤t≤T |VK(t)− n(t)| = 0

)
= 1, where n(t) denotes the solution to

Equations (4.2.14) with initial condition v(0).
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Proof. The process VK(t) can be constructed explicitly from a finite collection of Poisson pro-
cesses. To each possible event corresponds a standard Poisson Process Yl. The index l ∈ Zd
encodes the possible transitions between (non-rescaled) population states and βl : Rd → R+
yields the corresponding transition rates qKx,y = Kβl(x) from x to y, where l = K(x − y). For
a fixed order of the d elements of X , say x1, . . . , xd, we denote for each x ∈ X by ex the unit
vector with a 1 at position k, when x = xk. In a similar way we denote by vx the k-th entry of a
vector v ∈ Rd, when x = xk. With a slight abuse of notation, the different possible events, their
corresponding l and βl for a rescaled population in state v ∈ Rd are

1. Birth of an individual of type x (clonal or mutational):

l = ex, (4.2.15)

with

βl(v) = (1− µ(p))

b(p)− ∑
(g̃,p̃)∈G×P

cb(p, p̃)v(g̃,p̃)


+

v(g,p) (4.2.16)

+
∑

(g̃,p̃)∈G×P

µ(p̃)m((g̃, p̃), (g, p))

b(p̃)− ∑
(g′,p′)∈G×P

cb(p̃, p′)v(g′,p′)


+

 v(g̃,p̃),

when x = (g, p) and
βl(v) = b(z)vz, (4.2.17)

when x = z.

2. Production of a T-cell of type z in presence of a cancer cell with phenotype p combined
with cytokine production:

l = ez +
∑
w∈W

`prod
w (z, p)ew, (4.2.18)

with

βl(v) =

∑
g∈G

b(z, p)v(g,p)

 vz. (4.2.19)

3. Death of a particle of type x (natural or due to competition):

l = −ex (4.2.20)

with

βl(v) =

d(p) +
∑

(g̃,p̃)∈G×P
c(p, p̃)v(g̃,p̃) +

b(p)− ∑
(g̃,p̃)∈G×P

cb(p, p̃)v(g̃,p̃)


−

 v(g,p) (4.2.21)

when x = (g, p) and
βl(v) = d(x)vx, (4.2.22)

when x ∈ Z ∪· W.
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4. Therapy-induced death of a cancer cell of type (g, p) in presence of a T-cell of type z
combined with cytokine production:

l = −e(g,p) +
∑
w∈W

`kill
w (z, p)ew, (4.2.23)

with
βl(v) = t(z, p)vzv(g,p). (4.2.24)

5. Switch from type (g, p) to type (g, p̃),

l = −e(g,p) + e(g,p̃) (4.2.25)

with

βl(v) =
(
sg(p, p̃) +

∑
w∈W

sgw(p, p̃)vw
)
v(g,p). (4.2.26)

For transitions not mentioned above βl(v) = 0. Furthermore, VK(t) satisfies

VK(t) = VK(0) +
∑
l

lK−1Ỹl

(
K

∫ t

0
βl (VK(s)) ds

)
+
∫ t

0
F (VK(s)) ds, (4.2.27)

where Ỹl(u) = Yl(u) − u is the Poisson process centred at its expectation and F (v) ≡ ∑l lβl(v)
for v ∈ Rd. Since only finitely many transitions are possible and all event rates are finite and
continuous in v we have for each compact set S,∑

l

|l| sup
v∈S

βl(v) <∞. (4.2.28)

Moreover, F (v) is Lipschitz continuous on compact subsets of Rd+ and n(t) satisfies for every t ≥ 0

n(t) = v(0) +
∫ t

0
F (n(s))ds. (4.2.29)

Thus, the claimed result follows from Theorem 4.2.2.

The meaning of this convergence result is illustrated in Figure 4.1. The trajectories of the
stochastic process, as shown on the left-hand side of Figure 4.1, converge to the trajectories of
the solution of the deterministic system, as shown on the right-hand side. Each line represents
the rescaled population size of one subpopulation. The underlying example is explained in more
detail in Subsection 4.3.2, where also the parameters used for the generation of the pictures are
specified.

4.2.5 Simulations

The examples in the following Sections 4.3 and 4.4 rely on simulations. Simulations were run
with a computer programme implemented by Boris Prochnau. The programme is based on a
Gillespie-like algorithm, [63], where all events for the stochastic process are simulated, i.e. the
simulation is exact and does not use approximative results.
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Figure 4.1: Each line describes the trajectory of one subpopulation of a population of interacting cancer
and immune cells. On the left-hand side the trajectories of the stochastic process are shown, whereas
on the right-hand side the trajectories of a solution of the deterministic system obtained in the limit are
depicted.

Note that for X1, . . . , Xk independent, exponentially distributed random variables with pa-
rameters λ1, . . . , λk

min{X1, . . . , Xk} ∼ Exp(λ1 + · · ·+ λk). (4.2.30)

Due to this property it is possible to use following simplification in order to obtain the sequence
of evolutionary events for models as described above: Sample one exponential random variable
indicating the time for the next evolution step and decide which event happened afterwards
instead of sampling exponential random variables for all possible events in order to obtain their
minimum and the corresponding event.

The steps performed in the algorithm can be summarised as follows.

1. Initialize: Read the initial data and parameters.

2. Calculate and save for each trait, which is present in the population at this step, the event
rates for each type of event and the total event rate for this trait.

3. Calculate the total event rate for the whole system, rtot, and sample the time for the next
evolution step from an exponentially distributed random variable with parameter rtot.

4. Choose which event happens:

• Sample from a uniform distribution on the interval [0, rtot], which trait changes. To
each trait corresponds a part of the interval [0, rtot] of length rx, where rx denotes
the total event rate of trait x ∈ X . When the sampled number falls into the interval
corresponding to trait x, this trait is changed.

• Sample from a uniform distribution on the interval [0, rx], how this trait is changed,
i.e. which event happens. To each event for the chosen trait corresponds a part of
the interval [0, rx] of length reventtype, where reventtype denotes the corresponding event
rate. When the sampled number falls into the interval corresponding to a certain event
type, execute this event.
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5. Execute the chosen event. When the event is a birth event for a cancer cell, decide whether
a mutation appears. If a mutation appears, sample the trait of the mutant. When the
event is a switch, sample the phenotype, to which the individual switches. As long as the
maximal number of iterations is not reached, go back to Step 2.

4.3 Influence of random fluctuations on the appearance
of a relapse

A crucial difference between the stochastic systems we consider here and their deterministic
counterparts is the possibility of extinction of (sub)populations in the stochastic system. Already
the extinction of one subpopulation can alter the long-term behaviour of the whole system. For
example, the populations can be attracted to different equilibria, depending on the set of surviving
traits.

In the context of cancer and treatment, this can be seen as an explanation for different types
of relapses observed under the same treatment protocol. This is explained in more detail in the
following subsections.

4.3.1 Therapy with T-cells of one specificity

The aim of the following example is to model the experiments of [91] qualitatively. That means
that we want to construct an example which includes the treatment of melanoma with cytotoxic
T-cells and the escape from therapy by phenotypic plasticity. Thus, the trait space consists of
four traits: differentiated melanoma cells with trait x, dedifferentiated melanoma cells with trait
y, T-cells with trait zx and cytokines (TNF-α) with trait w.

Both melanoma populations grow logistically and switch in both directions. When T-cells
are introduced into the system, they reproduce in presence of their target, while differentiated
melanoma cells die at an additional rate in the presence of these T-cells. TNF-α is secreted,
when melanoma cells are killed. T-cells can also die or become exhausted and thus vanish at a
certain rate that takes both effects into account. The presence of TNF-α introduces an additional
unidirectional switch from differentiated to dedifferentiated melanoma cells. TNF-α vanishes at a
certain rate. The deterministic limit of a stochastic model of the form introduced in the previous
sections, which incorporates the effects just mentioned, is given by

ṅx = nx
(
b(x)− d(x)− c(x, x)nx− c(x, y)ny− s(x, y)− sw(x, y)nw− t(zx, x)nzx

)
+ s(y, x)ny

ṅy = ny
(
b(y)− d(y)− c(y, y)ny − c(y, x)nx − s(y, x)

)
+ s(x, y)nx + sw(x, y)nwnx

ṅzx = nzx(b(zx, x)nx − d(zx))
ṅw = −nwd(w) + (`kill

w (zx, x) t(zx, x) + `prod
w (zx, x) b(zx, x))nxnzx . (4.3.1)

Due to the switch terms a rigorous analysis of the system, even a calculation of the fixed
points, is difficult. Therefore, we analyse the system for the following set of parameters and
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initial values numerically. Parameters and initial conditions are chosen as

b(x) = 3 b(y) = 3 b(zx, x) = 8 `kill
w (zx, x) = 1

d(x) = 1 d(y) = 1 t(zx, x) = 28 `prod
w (zx, x) = 0

c(x, x) = 0.3 c(y, x) = 0 d(zx) = 3 d(w) = 15
c(x, y) = 0 c(y, y) = 0.3 sw(x, y) = 4
s(x, y) = 0.1 s(y, x) = 1

(4.3.2)

and
(nx, ny, nzx , nw)(0) = (2, 0, 0, 0.05, 0). (4.3.3)

The system has three fixed points, but only one of them is stable. We denote the stable fixed
point by Pxyzxw. All populations are present at a non-zero level at this fixed point. For initial
conditions as in the example, the deterministic system is attracted to this fixed point. In addition
to Pxyzxw there are two more fixed points: First, P0000, where all populations are absent. This
fixed point is unstable. Second, Pxy00, where both melanoma populations are present, but T-cells
and TNF-α are absent. This fixed point is unstable in the four-dimensional space but stable in
the invariant subspace where {nx = 0}.

This fact is very important when the stochastic system is considered. As mentioned above the
deterministic system is attracted to Pxyzxw for initial conditions as indicated in (4.3.3) or similar
ones. The T-cell population, nzx , increases in presence of its target, while the differentiated
melanoma population, nx, shrinks in the presence of the T-cells. TNF-α is secreted and its
presence intensifies switching form differentiated to dedifferentiated melanoma cells. Thus, the
population of dedifferentiated melanoma cells, ny, grows. After a short phase of oscillation the
system levels off around Pxyzxw.

Let us now study the stochastic system. One possible behaviour of the stochastic system is
that it approaches Pxyzxw, too. A typical trajectory, i.e. one close to the one of the deterministic
system, passes through a phase of remission. In this phase the T-cell population drops to a
low level and becomes extinct with positive probability. Once this subpopulation died out, also
the TNF-α population becomes extinct. Both populations cannot reappear and the remaining
melanoma cells equilibrate around Pxy00, the fixed point which is stable in the respective invariant
subspace. The case where the T-cell population survives is qualitatively shown in Fig. 4.2 C, and
the one where they become extinct is shown in Fig. 4.2 D. The pictures include a second T-cell
population, which becomes extinct quite fast and has only very little impact. This is explained
in more detail in the following Subsection 4.3.2.

Note that depending on the choice of parameters (in particular switching, therapy or cross-
competition), a variety of different behaviour is possible.

To analyse the extinction times and probabilities in the phenomenon described above is both
interesting and challenging. From the medical point of view, a better understanding of the
circumstances for extinction of the therapeutic agents is desirable. From the mathematical point
of view, it is important to note that the system in this example is not at equilibrium at the time
of extinction. The probability of extinction in the phase of remission depends strongly on K.
The extinction probability can only be high in a short phase as long as the value of the minimum,
nmin
zx , is small enough compared to K. Thus, for very large K this effect probably disappears and

a population can only become extinct after a long enough time.
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4.3.2 Therapy with T-cells of two specificities

A therapy can only be called successful if the whole tumour is eradicated or kept small for a long
time. A natural idea is thus to inject two types of T-cells in future therapies as suggested in [91].
To model this scenario, we add T-cells attacking the dedifferentiated cells as new actors to the
setting described above. We denote them by zy. The system contains one more predator-prey
term between y and zy:

ṅx = nx
(
b(x)− d(x)− c(x, x)nx− c(x, y)ny− sw(x, y)nw− s(x, y)− t(zx, x)nzx

)
+ s(y, x)ny

ṅy = ny
(
b(y)− d(y)− c(y, y)ny− c(y, x)nx− s(y, x)− t(zy, y)nzy

)
+
(
sw(x, y)nw+ s(x, y)

)
nx

ṅzx = nzx(b(zx, x)nx − d(zx))
ṅzy = nzy(b(zy, y)ny − d(zy))
ṅw = −nwd(w) + (`kill

w (zx, x) t(zx, x) + `prod
w (zx, x) b(zx, x))nxnzx

+ (`kill
w (zy, y) t(zy, y) + `prod

w (zy, y) b(zy, y))nynzy (4.3.4)

In addition to parameters (4.3.2), we use the following ones:

t(zy, y) = 28 `kill
w (zy, y) = 1 d(zy) = 3

b(zy, y) = 14 `prod
w (zy, y) = 0 (4.3.5)

and initial conditions:

(nx, ny, nzx , nzy , nw)(0) = (2, 0, 0, 0.05, 0.2, 0). (4.3.6)

The introduction of zy adds two new fixed points: Pxyzxzyw is the new stable fixed point
with all non-zero populations, and Pxy0zyw corresponds to the absence of the T-cell population
of type zx. The invariant subspaces are now {nzx = 0}, in which Pxy0zyw is stable, {nzy = 0}, in
which Pxyzx0w is stable and {nzx = 0} ∩ {nzy = 0}, in which Pxy000 is stable. Note that Pxyzx0w,
corresponding to Pxyzxw from the last subsection, is unstable in the enlarged space.

With the same initial conditions as before and nzy(0) small but positive, the deterministic
system is attracted to the stable fixed point Pxyzxzyw: the T-cell population, nzx , increases in
presence of its target x, TNF-α is secreted, and the differentiated melanoma population shrinks
due to killing and switching, the population of dedifferentiated melanoma grows, but is regulated
and kept at a low level by the T-cells of type zy. Similarly, nx is regulated by nzx .

We choose the parameters such that the minima of the two types of T-cells during remission
are low, so that they have a large enough probability to die out in the stochastic system. Since
at the beginning of therapy no or only very few dedifferentiated melanoma cells are present, the
population of T-cells of type zy starts growing only later. In order to avoid their early extinction a
higher initial amount of these T-cells can be injected. There are now five main different scenarios
in the stochastic system (see Figure 4.2). Either the T-cells of type zx (B), or the T-cells of type
zy (C), or both of them die out (D). Also all populations can survive for some time fluctuating
around their joint equilibrium (A). The fifth scenario is a cure, i.e. the extinction of the entire
tumour due to the simultaneous attack of the two different T-cell types (F). T-cells and TNF-α
vanish since they are not produced any more in the absence of their target. Of course, transitions
between the different scenarios are also possible, e.g. the system could pass from Case (A) to (B)
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A B

C D

E F

Figure 4.2: Simulations of the stochastic evolution of melanoma under T-cell therapy for parameters
(4.3.3) and (4.3.5). The graphs show the number of individuals divided by 200 versus time. Possible
scenarios for therapy with T-cells of two specificities: (A) T-cells zx and zy survive and the system stays
close to Pxyzxzyw, (B) T-cells zx die out and the system is attracted to Pxy0zyw, (C) T-cells zy die out and
the system is attracted to Pxyzx0w, (D) Both T-cell types zx and zy die out and the system is attracted to
Pxy000. (E) Transition between cases (A) and (C). (F) the tumour is eradicated (corresponding to P00000).

or (C) and then to (D), see Figure 4.2 (E). Furthermore, note that setting the switch from x
to y to zero introduces an additional scenario: it is then possible that a relapse appears, which
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Pxyzxzyw

Pxy0zyw

Pxyzx0w
Pxy000

zy = 0

zx = 0
initial conditioninvariant space

invariant space

deterministic system

stochastic system

P00000

Figure 4.3: Sketch of the invariant subspaces, stability of the fixed points, and schematic representation
of the dynamics of the deterministic and the stochastic processes.

consists only of differentiated melanoma cells.
Starting from our choice of initial conditions, the deterministic system converges to Pxyzxzy ,

but the stochastic system can hit one of the invariant hyperplanes due to fluctuations, and is
driven to different possible fixed points, see Figure 4.3. The transitions between the different
scenarios can be seen as a metastability phenomenon.

4.3.3 Reproduction of experimental observations and predictions

Comparison of experimental observations and simulations

The parameters of Subsections 4.3.1 and 4.3.2 are chosen ad hoc to highlight the influence of
randomness and the possible behaviour of the system. Let us now show that our models are
capable to reproduce the experimental data of Landsberg et al. [91] quantitatively. The choice of
parameters is explained below (Subsection 4.3.4).

Figure 4.4 (A) shows the experimental data of [91], whereas Figure 4.4 (B) shows the results of
our simulations. Each curve describes the evolution of the diameter of the tumour over time. In
the stochastic system two situations can occur: first, the relapse consists mainly of differentiated
melanoma cells and the tumour reaches its original size again after 90 days. This is the case if
the T-cells die out. Second, the relapse consists mainly of dedifferentiated cells and the tumour
reaches its original size again after roughly 190 days. This is the case if the T-cells survive the
phase of remission, become active again and kill differentiated cancer cells. In the simulations
the therapy with one type of T-cells pushes the tumour down to a microscopic level for 50 to
60 days, as in the experimental data. The curves marked ACT in the experimental data in
Figure 4.4 (A) are matched by simulation data when the T-cells die out (Differentiated relapse
in Figure 4.4 (B)). In the experiments there might be T-cells, which lose their function, e.g. due
to exhaustion, and cannot kill the differentiated melanoma cells. This effect is to be seen as
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included in the death rate of T-cells in the model. They can be re-stimulated and become active
again, which is marked as ACT+Re in Figure 4.4 (A). Although our model does not include
re-stimulation, the case of surviving T-cells in the simulations (Dediff. relapse in Figure 4.4(B))
can qualitatively be interpreted as the case of ACT+Re. Note that the scales of the axes are the
same in both figures and that the experimental findings are met very well by the simulations.
The simulated curves under treatment start at the beginning of the treatment and not at day
zero. The detailed pictures showing the evolution of melanoma and T-cell populations during the
therapy are given in Figure 4.5.

A
B

Figure 4.4: Comparison of experimental data obtained by Landsberg et al. with simulations for bio-
logically reasonable parameters. The graphs show the diameter of the tumour measured in millimeters
versus time in days after tumour initiation: (A) experimental data, (B) simulated data (K = 105 and
nzx

(0) = 0.02).

4.3.4 Predictions about success of therapy with two T-cell types and the in-
fluence of the initial dose

As there is no data for the case of two T-cells, numerical simulations of such a therapy strategy
should be seen as predictions. For the new T-cell population (of type zy) we choose the same
parameters as for the first population (of type zx), just the target is different. The therapy seems
to be very promising: almost all simulations show a cure for these parameters, only very few
times a relapse occurs. Nevertheless, the behaviour of the system (e.g. the probability to end up
in the different scenarios) depends strongly on the choice of certain parameters, as pointed out
in Subsections 4.3.1 and 4.3.2. In order to give a reliable prediction we need data to obtain safer
estimates for the most important parameters, which seem to be the switching and therapy rates
as well as initial values.

The initial values play an important role for the success of a therapy. In the case of therapy
with T-cells of one specificity, increasing the initial amount of T-cells has the following effect:
the melanoma cells are killed faster, the population of differentiated melanoma cells reaches a
lower minimum and as a consequence the T-cells pass through a lower and broader minimum.
The probability that the T-cells die out increases, and a differentiated relapse is more likely
than in the case of a smaller initial T-cell population. Moreover, the broadening of the minima
causes a “delay” and both kind of relapses (consisting mainly of differentiated or dedifferentiated
cells) appear later. But since the extinction of T-cells is more likely, the tumour may reach its
original size earlier, see Figure 4.6. For an initial value ten times as large as in Figure 4.4 (B) the
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A B

C D

Figure 4.5: Simulations for biological parameters. Therapy with one T-cell type: (A) differentiated relapse
(T-cells zx die out), (B) dedifferentiated relapse (T-cells zx survive), Therapy with two T-cell types: (C)
cure, (D) differentiated relapse (both T-cell types die out).

Figure 4.6: Simulations for different initial doses of T-cells: nzx(0) = 0.2 and nzx(0) = 0.02.

probability of an eradication of the tumour is still very small. If the number of T-cells initially
is half the number of tumour cells, the probability of a favourable outcome is much higher. But
such a high amount of T-cells is unrealistic.
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Physiologically reasonable parameters

We explain here how we choose the biological parameters. Some parameters can be estimated
from the experimental data. Recall that the subject of [91] is to investigate the behaviour of
melanoma under T-cell therapy in mice. Without therapy the tumour undergoes only natural
birth, death and switch events.

• Choice of birth and death rates: We assume that the number of cells in the tumour is
described by

Nt ≈ N0 exp(rt), (4.3.7)

where Nt denotes the number of cells at time t, N0 the initial population size and r the
overall growth rate. Note that the estimate of the growth rate is independent of the initial
value. Figure 4.4 (A) shows that the tumour needs roughly 50 days (without therapy)
to grow from 2 mm diameter to 10 mm diameter. Since the structure of a melanoma is
3-dimensional, this corresponds roughly to N50 = 125N0, which implies r = 0.1. Unfor-
tunately, no data that allow to estimate the ratio of birth and death events are provided.
As long as mutations are not considered this should not have a big impact and we choose
b = 0.12 and d = 0.02 for the differentiated as well as the dedifferentiated cells. Landsberg
et al. observed that the growth kinetics appear to be the same for both cell types, see Sup-
plementary Figure 11 in [91].

• Choice of the competition: We assume that the competition has a very little effect here
because the tumour grows exponentially in the observed time frame and does not come
close to its equilibrium. We choose the competition between melanoma cells of the same
type as c(x, x) = c(y, y) = 0.00005 and between different types of melanoma cells as
c(x, y) = c(y, x) = 0.00002. The values are not set to 0 since the melanoma can grow
only up to a finite size.

• Choice of the switch parameters: We can now estimate the switching parameters by using
the data of Supplementary Figure 9e in [91]. In this experiment where cell division is
inhibited, we can set b = 0. Furthermore, the amount of TNF-α is constant and we set here
nw = 2. Thus, the dynamics of the melanoma populations is described by

ṅx = nx
(
− d(x)− c(x, x)nx − c(x, y)ny − 2sw(x, y)− s(x, y)

)
+ s(y, x)ny

ṅy = ny
(
− d(y)− c(y, y)ny − c(y, x)nx − s(y, x)

)
+ (2sw(x, y) + s(x, y)) nx

(4.3.8)

At the beginning of their observations the switch is very slow and speeds up after the first
24 hours. We assume that there is a delay until the reaction really starts and thus we choose
the proportions at day 1 (nx = 0.81 and ny = 0.19) as initial data and choose switching
parameters such that roughly the concentrations at day 2 (nx = 0.45 and ny = 0.54) and
3 (nx = 0.24 and ny = 0.72) are reached as shown in Figure 4.7. Thereby we obtain
s(x, y) = 0.0008, s(y, x) = 0.065 and sw(x, y) = 0.33. Note that the experiments we refer to
provide only in vitro data and it is not clear if the in vivo situation is similar.
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Figure 4.7: Switch in the in vitro experiments for inhibited cell division and constant concentration of
TNF-α. Dashed lines indicate experimental data.

• Choice of parameters concerning T-cells: It remains to characterise the T-cells. Their
natural birth rate is set to 0 since they are transferred by adoptive cell transfer and
not produced by the mice themselves and do not proliferate in absence of targets. We
assume that they have a relatively high birth rate depending on the amount of cancer
cells present, b(zx, x) = b(zy, y) = 2 and produce one TNF-α molecule when they divide,
`prod
w (zx, x) = `prod

w (zy, y) = 1. Furthermore, we assume that 4.5 cancer cells can be killed
per hour (including indirect mechanisms), t(zx, x) = t(zy, y) = 108. The rate of death for
the T-cell population is chosen as d(zx) = d(zy) = 0.12. These parameters are chosen such
that the qualitative behaviour of the tumour was recovered. We choose the same parame-
ters for the second T-cell type as for the first one because there are no data concerning the
second T-cell type.

• Choice of starting values and the scale K: We set K = 105, the initial value for the dif-
ferentiated melanoma cell population to 1 and to 0 for the population of dedifferentiated
melanoma cells. The ratio of differentiated and dedifferentiated cells is not known for small
tumours, which do not result from cell transfer of cells of in vitro cell lines. The initial
value of the T-cell population is set to 0.02. We assume that the T-cells appear directly in
the tumour, i.e. the migration phase into the tumour is not modelled.

To sum up, biological rates (per day) and initial conditions (in 100 000 cells) are:

b(x) = 0.12 b(y) = 0.12 b(zx, x) = 2 `prod
w (zx, x) = 1

d(x) = 0.02 d(y) = 0.02 t(zx, x) = 108 `kill
w (zx, x) = 0

c(x, x) = 5 · 10−5 c(x, y) = 2 · 10−5 d(zx) = 0.12 d(w) = 0.2
c(y, x) = 2 · 10−5 c(y, y) = 5 · 10−5 sw(x, y) = 0.33
s(x, y) = 0.0008 s(y, x) = 0.065
nx(0) = 1 ny(0) = 0 nzx(0) = 0.02 K = 105

(4.3.9)
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The additional parameters in the case where a second T-cell is used are:

t(zy, y) = 108 `prod
w (zy, y) = 1 d(zy) = 0.12

b(zy, y) = 2 `kill
w (zy, y) = 0 nzy(0) = 0.02 (4.3.10)

4.4 Mutations

This section studies the appearance of rare mutations in large populations.
One part of [11] is concerned with the interaction of rare mutations and fast switches in a setup

without therapy. It is pointed out by examples that the initial growth rate of a mutant of type
(g, p) cannot be used as a fitness concept in this setting. Instead it is proposed to use multi-type
branching processes to describe a mutant population of genotype g including all its associated
phenotypes, when the mutant arrives in a resident population at equilibrium. Moreover, it is
sketched how a trait substitution sequence or even a polymorphic evolution sequence on the
genotypic space can be obtained in future work. These processes are rigorously studied in [25]
and [31] in a framework where only rare mutations but no switches are allowed. The behaviour
of multi-type branching processes is for example investigated in [7, 8, 85, 86, 87].

4.4.1 Interplay of mutation and therapy

When competition for resources, as for example nutrients or oxygen, lowers the cell division rate
of cells, more cell divisions and thus mutations may appear in populations at a size smaller than
the corresponding equilibrium of this monomorphic population. This phenomenon is particularly
interesting in the context of therapy, when tumours shrink under treatment. For such conditions
earlier mutations may appear during therapy and the evolution of cancer may be accelerated.

The simplest setup to study this effect in our model consists of a monomorphic population of
cancer cells of type (g, p), which can mutate to one fitter type (g′, p′). For the sake of simplicity we
exclude switching and consider only birth-reducing competition (the competition kernel increasing
the death rate is set to 0). To include the effect of therapy, we consider one type of T-cells, z,
targeting cancer cells of type (g, p) but not of type (g′, p′), and neglect the role of cytokines in line
with excluding switches. We are interested in the case of rare mutations in large populations, i.e.
when mutation probabilities µK tend to zero as K tends to infinity. More precisely, we assume
that µK � 1/(K logK). This condition ensures that ecological and evolutionary time-scales are
separated, i.e. that the system has time to equilibrate before a next mutant appears.

The limiting deterministic system that describes the interactions of the populations of type
(g, p), (g′, p′) and z has the following form

ṅ(g,p) = n(g,p)
(
b(p)− d(p)− cb(p, p)n(g,p) − cb(p, p′)n(g′,p′) − t(z, p)nz

)
ṅ(g′,p′) = n(g′,p′)

(
b(p′)− d(p′)− cb(p′, p′)n(g′,p′) − cb(p′, p)n(g,p)

)
ṅz = nz(b(z, p)n(g,p) − d(z)). (4.4.1)

The mutation term does not appear in the deterministic system and the difference between
birth-reducing competition and usual competition is thus not visible. The effects we are looking
for are intrinsically stochastic and happen on time-scales diverging with K.

We define r(p) ≡ b(p)− d(p), and assume that r(p) 6= 0 and that d(z)
b(z,p) 6=

r(p)
cb(p,p) . The system

(4.4.1) without the mutant population of type (g′, p′) has at least three equilibria,
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1.
n̄1 = (0, 0), (4.4.2)

where the cancer and the T-cell population are absent,

2.
n̄2 =

(
r(p)
cb(p, p)

, 0
)
, (4.4.3)

where the cancer population reaches an equilibrium mediated via competition and the T-cell
population is absent and

3.

n̄3 =

 d(z)
b(z, p) ,

r(p)− cb(p, p) d(z)
b(z,p)

t(z, p)

 , (4.4.4)

where both populations are present.

The stability of these fixed points can be analysed by the eigenvalues of the Jacobian of the
system (4.4.1) without the equation describing the mutant population. This Jacobi matrix is
given by (

r(p)− 2cb(p, p)n(g,p) − t(z, p)nz −t(z, p)n(g,p)
b(z, p)nz b(z, p)n(g,p) − d(z)

)
. (4.4.5)

Evaluating the matrix at the equilibria, we obtain the following set of eigenvalues and criteria for
stability:

1. The eigenvalues corresponding to n̄1 are λ1
1 = r(p) and λ1

2 = −d(z). Thus, when r(p) > 0
this fixed point is unstable.

2. The eigenvalues corresponding to n̄2 are λ2
1 = −r(p) and λ2

2 = b(z, p) r(p)
cb(p,p) − d(z). Thus,

when r(p) > 0 and d(z)
b(z,p) >

r(p)
cb(p,p) this fixed point is stable.

3. The eigenvalues corresponding to n̄3 are

λ3
1,2 = −cb(p, p)d(z)

2b(z, p) ±
√

(cb(p, p)d(z))2

4b(z, p)2 − d(z)
b(z, p) (b(z, p)r(p)− cb(p, p)d(z)). (4.4.6)

Thus, when

d(z)
b(z, p)(b(z, p)r(p)− cb(p, p)d(z)) > 0⇔ r(p)

cb(p, p)
>

d(z)
b(z, p) , (4.4.7)

this fixed point is stable.

Let us now consider the behaviour of the stochastic system. The total mutation rate of the
population of type (g, p) at time t is given by

m(νKt (g, p)) ≡ µK(p)
⌊
b(p)− cb(p, p)νKt (g, p)

⌋
+
νKt (g, p)K. (4.4.8)

The function m(νKt (g, p)) is strictly positive as long as νKt (g, p) ∈ (0, b(p)/cb(p, p)); it is a parabola
opened downwards and attaining its maximum at b(p)/(2cb(p, p)).
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Let us consider a tumour population of type (g, p) at an equilibrium without or before therapy,
i.e.

νKt (g, p) = n̄2
(g,p) = r(p)

cb(p, p)
. (4.4.9)

Note that for d(p) < b(p)/2 it holds that n̄2
(g,p) > b(p)/(2cb(p, p)). Thus, for such parameters the

total mutation rate at this equilibrium is not maximal and smaller populations,

νKt (g, p) ∈
(

d(p)
cb(p, p)

,
r(p)
cb(p, p)

)
, (4.4.10)

have a higher total mutation rate.
The time until a (not necessarily successful) mutation occurs is exponentially distributed with

approximate parameter equal to

µK(p)K ·
(
b(p)− cb(p, p)n̄2

(g,p)

)
n̄2

(g,p) = µK(p)K · d(p) r(p)
cb(p, p)

. (4.4.11)

For a therapy, where n̄3 is stable and the tumour remains at a smaller equilibrium created by
the constant presence of therapeutic agents, the effect of birth-reducing competition becomes
apparent. The waiting time for a mutation for such an equilibrium is exponentially distributed
with approximate parameter

µK(p)K ·
(
b(p)− cb(p, p)n̄3

(g,p)

)
n̄3

(g,p) = µK(p)K ·
(
b(p)− cb(p, p)

d(z)
b(z, p)

)
d(z)
b(z, p) . (4.4.12)

Thus, the expected waiting time for a mutation is smaller during treatment if

n̄3
(g,p) ∈

(
d(p)
cb(p, p)

,
r(p)
cb(p, p)

)
. (4.4.13)

This is illustrated in Figure 4.8, which was generated with parameters and initial values as
indicated in (4.4.14).

In this example, treatment leads to earlier mutations and thereby accelerates the evolution
towards more aggressive tumour variants. The long-term evolution of the system is crucially
influenced.
Remark 4.4.1. Note that in a situation where competition increases death rates, a mutation is
more unlikely during therapy since less mutations happen in smaller populations.

Depending on the choice of parameters, the appearance of a mutant in a population at an
equilibrium of the form n̄3 can induce several different scenarios. By varying the cross-competition
between the resident and the mutant population in the above example we observe the following
three scenarios: first, the mutant invades, but the resident and the T-cell population survive at
a different equilibrium, see Figure 4.9 (A). Second, the mutant invades, the resident population
drops to a lower level due to competition and the T-cell population becomes extinct, when there
are not enough target cells, see Figure 4.9 (B). Third, the mutant invades, replaces the resident
type and the T-cell population becomes extinct, see Figure 4.8 (B).

Treatment strategies have to be adapted to these different situations. If the mutant is resistant
to the former therapy (as assumed in our choice of parameters) a different treatment approach is
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A B

Figure 4.8: Simulations of mutation events under the influence of birth-reducing competition.
(A) For a population at high equilibrium without therapy and with few cell divisions.
(B) For a population at low equilibrium under therapy with many cell divisions.

A B

Figure 4.9: Simulations of mutation events in a cancer population under treatment with different values
of the birth-reducing competition felt by the resident type from the mutant type.
(A) For a low value, here cb(p, p′) = 0.1, the resident and the T-cell population survive.
(B) For an intermediate value, here cb(p, p) = 0.5, the resident survives but the T-cell population becomes
extinct.

necessary. When the resident and the mutant population are present, a combination therapeutic
approach might be indicated.
The simulations are obtained with the following parameters:

b(p) = 5 b(p′) = 6 b(z, p) = 1 m((g, p), (g′, p′)) = 1
d(p) = 1 d(p′) = 1 t(z, p) = 1 µK(p) = 3 · 10−5

cb(p, p) = 1 cb(p′, p) = 0.5 d(z) = 3 K = 103

cb(p, p′) = 0.8 cb(p′, p′) = 1
n(g,p)(0) = 4 n(g′,p′)(0) = 0 nz(0) = 0 or 0.5

(4.4.14)

The values for cb(p, p′) were adapted to obtain Figure 4.9 as indicated in the caption of that
figure.

4.5 Discussion, outlook and open questions

Phenotypic and genotypic heterogeneity within single tumours are crucial for therapy resistance.
We proposed a stochastic model from population dynamics, which includes both, phenotypic and
genotypic alterations. It describes the experimental findings reported in [91] and can be used to
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simulate and analyse new treatment protocols. Realistic predictions require reliable parameter
estimates. To obtain such estimates further experimental data are necessary.

Furthermore, in future work our model can help to analyse the different impacts of phenotypic
and genotypic changes. Such changes occur on different timescales and vary with respect to
stability and heritability. Questions regarding these differences are also addressed experimentally,
see [66].

In order to better approximate the reality, the model can be extended by including other cell
populations, e.g. macrophages, different T-cell subpopulations, the effect of exhaustion or general
networks of cytokine-immune-cell interactions.

Mutations are of particular interest in the context of cancer evolution. Not only from the
biological point of view but also mathematically, it is interesting and challenging to consider
different types of mutations. For example, mutations may happen on so-called care taker genes,
which are relevant for DNA repair mechanisms, [84]. Such mutations can induce a lot of follow-up
mutations since errors at DNA replication are not corrected as reliable as before. Mathematically
spoken, such mutations change mutation probabilities themselves. Proliferation rates are impor-
tant for the development of mutations and thus cancer, too. This was illustrated by the example
on the accelerated evolution of cancer under treatment in a context, where competition lowers
cell division rates.

Another challenging line of generalisation is to introduce a spatial structure into the model,
taking into account that a tumour is a three-dimensional tissue with different areas. These areas
show for example different types of cancer cells or variable levels of oxygen and acidosis. As a
consequence therapeutic agents can target and infiltrate the tumour only inhomogeneously. A
better understanding of this structure can help to find effective treatment strategies.
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