
Algorithms for Circuit Sizing in
VLSI Design

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Ulrike Elisabeth Schorr, geb. Suhl

aus

Grünstadt

Bonn, Dezember 2015

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen

Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Jens Vygen

2. Gutachter: Prof. Dr. Stephan Held

Tag der Promotion: 11. März 2016

Erscheinungsjahr: 2016

Acknowledgments

This work would not have been possible without the support of many people.
First and foremost, I would like to express my gratitude to my supervisors Professor
Dr. Jens Vygen and Professor Dr. Stephan Held for their extensive support, and
valuable ideas and feedback.
Special thanks go to Professor Dr. Bernhard Korte for providing outstanding work-
ing conditions at the Research Institute for Discrete Mathematics at the University
of Bonn.
I also wish to thank my past and present colleagues at the institute for the friendly
working atmosphere and productive collaboration over the past years. It was a
pleasure working in the timing optimization team on various topics.
In particular I would like to thank Dr. Nicolai Hähnle and Daniel Rotter for their
support and fruitful discussions.
Further thanks go to Dr. Dirk Müller and Rudi Scheifele for helpful conversations
on resource sharing, and to Dr. Ulrich Brenner and Dr. Jan Schneider for their
helpful feedback.
I also like to thank past and present students from the timing optimization team for
the collaboration, in particular Siad Daboul, Nikolas Kämmerling and Alexander
Timmermeister.
I am thankful to all people at IBM who shared their knowledge on VLSI design,
especially Karsten Muuss, Lakshmi Reddy and Alexander J. Suess.
I am further grateful to Dr. Ulrich Brenner, Dr. Nicolai Hähnle, Dr. Dirk Müller,
Daniel Rotter, Rudi Scheifele and Dr. Jan Schneider for proofreading parts of this
thesis. The remarks have been a huge help.
My personal thanks go to my family and friends for their patience and assistance
while finishing this thesis, and the reminders that not everything is about chip
design.
I wholeheartedly thank my parents and my brother Christian for the best possible
support in the past years.
Last but not least I am grateful to my husband Florian for being there, and the
never-ending encouragement for half of my life.

To say it with the words of a famous song:

“I’ve had the timing of my life” 1

1Freely adapted from “(I’ve Had) The Time of My Life” composed by F. Previte, J. DeNicola,
D. Markowitz and recorded by B. Medley and J. Warnes, 1987.

Contents

1 Introduction 9

2 Timing Optimization in VLSI Design 13
2.1 Transistors and Circuits . 13

2.1.1 Transistors . 13
2.1.2 Circuits . 14

2.2 Integrated Circuit Design . 17
2.3 VLSI Design Flow . 19
2.4 Physical Design Instance . 20
2.5 Timing Analysis . 21

2.5.1 Signals and their Shapes . 21
2.5.2 The Timing Graph and the Gate Graph 22
2.5.3 Signal Propagation . 24
2.5.4 Arrival Time Constraints and Slacks 26
2.5.5 Electrical Constraints . 28
2.5.6 Wire Delay . 28
2.5.7 Circuit Delay . 30

2.6 Physical Design Constraints and Objectives 31
2.6.1 Power Constraints . 31
2.6.2 Logical Correctness . 33
2.6.3 Routing and Placement Constraints 33
2.6.4 Timing Constraints . 33

3 Convex Optimization 35
3.1 Basic Concepts . 35
3.2 Lagrangian Relaxation and Duality 37
3.3 Descent Methods for Constrained Optimization 40

3.3.1 Projection Methods . 41
3.3.2 Feasible Directions and the Conditional Gradient Method . . 42

3.4 Interior Point Methods . 43

4 Gate Sizing and Vt Optimization 45
4.1 Delay Characteristics of Gate Sizes and Vt levels 46
4.2 The Gate Sizing Problem . 48
4.3 The Continuous Relaxation of the Gate Sizing Problem 49
4.4 Convex Program for the Continuous Relaxation 50

4.4.1 Posynomial Delay Models . 50

5

Contents

4.4.2 Simplifying the Timing Constraints 52

4.4.3 The Geometric and the Convex Program 53

4.5 The Vt Optimization Problem . 54

4.6 Computational Complexity . 56

4.7 Previous Work . 56

4.7.1 Industrial Benchmarks . 57

4.7.2 Continuous Approaches . 57

4.7.3 Discrete Approaches . 60

4.8 Rounding a Continuous Solution . 62

4.9 Comparison of Existing Approaches 63

5 Gate Sizing for Power-Delay Tradeoff 65
5.1 The Continuous Power-Delay Tradeoff Problem 66

5.1.1 Properties of tr(x, ω) . 66

5.1.2 Approximating Gate Sizes . 68

5.1.3 Approximating the Value of tr(x, ω) 70

5.2 The Discrete Power-Delay Tradeoff Problem 74

5.2.1 Complexity . 74

5.2.2 Algorithms . 75

5.2.3 FPTAS for Instances with Constant Level Size 78

6 Lagrange Relaxation based Gate Sizing 85
6.1 Lagrangian Relaxation Formulation 86

6.1.1 Separation of the Lagrange Function 86

6.1.2 Optimality Conditions . 87

6.2 The Lagrange Dual Problem . 89

6.2.1 Properties of the Dual Objective Function 89

6.2.2 Solving the Dual Problem . 91

6.3 The Lagrange Primal Problem . 95

6.4 Multiplier Projection . 96

6.4.1 Exact and Approximate Projections 96

6.4.2 Heuristics . 96

6.5 Performance Analysis of Discretized Lagrangian Relaxation 98

6.6 Additional Constraints . 100

6.6.1 Placement Density Constraints 100

6.6.2 Capacitance and Slew Constraints 103

7 The Multiplicative Weights Method for Gate Sizing 107
7.1 The Multiplicative Weights Method 108

7.1.1 The Multiplicative Weights Algorithm for Feasibility Problems108

7.2 The Multiplicative Weights Algorithm for Gate Sizing 112

7.2.1 The Continuous Feasibility Problem 112

7.2.2 The Discrete Feasibility Problem 118

7.2.3 Binary Search over the Objective Function Value 120

6

Contents

7.2.4 Comparison with Lagrangian Relaxation 121

8 The Resource Sharing Framework for Gate Sizing 125
8.1 The Min-Max Resource Sharing Problem 126

8.2 Customers and Resources . 127

8.2.1 Resources . 127

8.2.2 Customers . 127

8.3 Resource Usages and Oracle Functions 128

8.3.1 Gate Customer . 129

8.3.2 Arrival Time Customers . 129

8.3.3 Modeling Timing Objectives 130

8.4 Minimizing the Maximum Resource Usage 131

8.5 Fast Approximation of the Continuous Relaxation 132

8.6 Path Resources instead of Edge Resources 134

8.7 Resource Sharing for the Discrete Problem and Special Cases 135

8.8 Capacitance, Slew and Placement Density Resources 137

8.9 Integration with Global Routing and Repeater Insertion 139

8.10 Evaluation of the Resource Sharing Model 141

8.10.1 Comparison with Lagrangian Relaxation 142

8.10.2 Formulation as Feasibility Problem 142

8.10.3 Comparison with Algorithm 7.4 144

8.10.4 Conclusion . 145

9 Experimental Results 147
9.1 BonnRefine as Oracle Algorithm . 147

9.2 Implementation of a Discrete Lagrangian Relaxation Algorithm . . . 149

9.3 Implementation of a Discrete Resource Sharing Algorithm 150

9.4 Testbed and Setup . 152

9.4.1 Starting Solutions . 153

9.4.2 Evaluation Metrics . 153

9.4.3 Optimization Modes . 155

9.5 Results on Microprocessor Instances 157

9.5.1 Without Vt Optimization . 158

9.5.2 Including Vt Optimization . 159

9.5.3 Multiplicative Multiplier Update 160

9.5.4 Heuristic Oracles . 161

9.5.5 Running Times . 161

9.5.6 Electrical Violations . 161

9.5.7 Convergence Plots . 163

9.6 Results on the ISPD 2013 Benchmarks 163

9.7 Conclusion . 168

10 Post-Routing Latch Optimization for Timing Closure 177
10.1 Motivation and Related Work . 177

7

Contents

10.2 Problem Formulation . 179
10.2.1 Assumptions . 179
10.2.2 Primary Objective . 180
10.2.3 Secondary Objectives . 180

10.3 Greedy Algorithm . 181
10.4 Global Assignment Algorithm . 181

10.4.1 Worst Slack Maximization . 182
10.4.2 Minimizing the Secondary Objective 182

10.5 Extensions . 183
10.6 Implementation Details . 184

10.6.1 Calculating Assignments . 185
10.6.2 Assignments for Less Critical Instances 185
10.6.3 Calculating Slacks and Wire Lengths 185
10.6.4 Dealing with Inaccuracies and Violated Assumptions 186

10.7 Experimental Results . 186

11 Summary 191

List of Figures 195

Notation 197

Glossary 199

Bibliography 203

8

1 Introduction

The basic building blocks of computer chips, also known as integrated circuits, are
electronic switches called transistors. Transistors are connected to realize circuits
and other features on the chip. Circuits in the combinatorial logic, called gates, per-
form the binary computations, and results are stored in memory circuits (registers)
for a certain amount of time. Since the first integrated circuit was built at Texas
Instruments in 1958, the complexity of computer chips has grown exponentially,
and today’s computer chips consist of millions of circuits and billions of transistors.
For example, IBM’s Power 8 CPU contains more than 4 billion transistors.

A key problem in the physical design of a computer chip is to choose a physical
layout for the circuits. This is a complex task, and has high influence on the power
consumption and area of the chip, and also on the speed of electrical signals.

A library offers a discrete set of predesigned layouts with different physical prop-
erties for each logic function and register type on the chip. The same layout can
be used several times on the chip. The most influential characteristics of a circuit
defined by the layout are its size and its voltage threshold (Vt level). The tasks to
choose a size and Vt level for each circuit are referred to as circuit sizing and Vt

optimization.

Different sizes are realized by varying the transistor areas. The Vt level defines
the voltage at which the circuit switches, in other words a logical zero becomes a
logical one or vice versa. Different Vt levels are realized for example by varying the
fabrication material of the transistors, and usually only 3 or 4 levels are available.

While it was relatively easy to meet all constraints imposed on the speed of electrical
signals (timing constraints) in the early days of chip design, a good choice of size
and Vt level for all circuits is nowadays essential. This is illustrated in Figure 1.1,
which depicts signal delay through an inverter circuit for different sizes and Vt
levels.

Additionally, reducing the power consumption of a chip has become an increasingly
important objective in physical design due to the increasing number of transistors
on the chip and the continuing technology scaling. Power consumption of a circuit
can be divided into dynamic and static power. Both types scale linearly with the
area of a circuit, while static power grows exponentially with a lower Vt level. Figure
1.2 shows the static power consumption of an inverter circuit for different sizes and
Vt levels.

Circuit sizing and Vt optimization have been studied extensively, and various heuris-
tic algorithms exist. Both problems were shown to be NP-hard for example by Li
[Li94]. The continuous relaxation of the circuit sizing problem can be formulated
as a convex program and solved in polynomial time. This relaxation poses an in-

9

1 Introduction

Figure 1.1: Signal delay through an inverter for different sizes and Vt levels, taken
from an ISPD 2013 benchmark (Ozdal et al. [Ozd+13]) with a clock
cycle time of 300 ps. The delay peak at area 3 is due to the internal
structure of the inverter.

teresting challenge to researchers because standard interior point solvers fail for the
huge instance sizes occurring in practice.

While both problems have often been treated separately, there is a tendency to op-
timize them simultaneously. Recently, Intel researchers published realistic bench-
mark suites for the ISPD 2012 and 2013 Discrete Gate Sizing Contests (Ozdal et al.
[Ozd+12; Ozd+13]) that enabled comparison of different approaches for gate sizing
and Vt optimization and triggered ongoing research. While none of the contestants
dominated on all 2012 benchmarks, the winner team of the 2013 contest achieved
the best static power consumption on most benchmarks, and further improved their
results in Flach et al. [Fla+14]. The underlying algorithm is a discretized approach
based on Lagrangian relaxation of the convex program, which has been popular in
practice since the groundwork paper of Chen, Chu and Wong [CCW99]. The basic
concept consists of using weights that model criticalities of the timing constraints.
These weights are updated iteratively, and an oracle algorithm that is guided by
these weights computes intermediate solutions until a good solution has been found.
Several seemingly heuristic modifications have been proposed to improve the perfor-
mance of this approach in practice, see for example Tennakoon and Sechen [TS02;
TS08], Livramento et al. [Liv+14], Flach et al. [Fla+14].

The main contributions of this thesis are a theoretical analysis of these modifica-
tions and the subsequent proposal of a new model for gate sizing as a min-max
resource sharing problem. With the new model we obtain a fast approximation for
the continuous relaxation that improves over the Lagrangian relaxation approach.
Under certain assumptions the running time is polynomial. Our experiments illus-

10

Figure 1.2: Static power consumption of an inverter for different sizes and Vt levels,
taken from the ISPD 2013 benchmark library (Ozdal et al. [Ozd+13]).

trate that the new algorithm exhibits the better convergence behavior and results.

This thesis is organized as follows:

Chapter 2 introduces fundamentals and technological aspects of modern computer
chip design with a focus on timing optimization in the physical design phase.

Chapter 3 restates known concepts and results from convex optimization.

Gate sizing and Vt optimization are formally introduced in Chapter 4. The chapter
further contains an overview of previous work.

Chapter 5 deals with the power-delay tradeoff problem that aims to find layouts
minimizing a weighted sum of power and signal delays. We will encounter this as
a subproblem in the Lagrangian relaxation and resource sharing algorithm. We
describe a method that approximates the value of this tradeoff function in pseu-
dopolynomial time for the continuous relaxation. For the discrete problem we
provide a fully polynomial approximation scheme under certain assumptions on the
topology of the chip.

We give the first comprehensive discussion of the Lagrangian relaxation approach
in Chapter 6 and fill gaps in the convergence analysis. Moreover, we show that
additional constraints on the local density of circuits on the chip and electrical
integrity can also be incorporated into this framework.

In Chapter 7 we analyze heuristic modifications that are usually applied to the
Lagrangian relaxation approach in practice. This leads us to the multiplicative
weights method that implies a certain update rule for the weights, and we use this
method to give the first theoretical justification of some of the modifications.

The new model for gate sizing as a min-max resource sharing problem is presented
in Chapter 8. This is a well-known problem in mathematical optimization and
consists of distributing a limited set of resources among a limited set of customers

11

1 Introduction

who compete for the resources. An optimal solution distributes the resources in such
a way that the maximum resource usage is minimized. The model is successfully
applied to other problems in chip design, and the fastest algorithm is a variant
of the multiplicative weights algorithm (Müller et al. [MRV11]). In our context,
the resources are power consumption and signal delays. Although it seems natural
to model each gate as a customer, we show that this is not possible, but a single
customer representing all gates is sufficient. With this model we obtain a fast
approximation for the continuous relaxation.
We further draw comparisons between the performance and running time of the
new algorithm and existing ones, and discuss extensions of this model.
Additionally, we implemented a Lagrangian relaxation and resource sharing algo-
rithm for gate sizing and Vt optimization and conducted experiments on the ISPD
2013 benchmarks and state-of-the-art microprocessor designs provided by our in-
dustrial partner IBM. Chapter 9 describes our implementations and experiments,
which show that the new algorithm improves over our Lagrangian relaxation based
implementation. Both algorithms are part of the BonnTools software package,
which is developed at the Research Institute for Discrete Mathematics at the Uni-
versity of Bonn in cooperation with IBM.
Finally, we consider an algorithm for timing-driven optimization of memory cir-
cuits in Chapter 10. Their sizes and locations on the chip are usually determined
during the clock network design phase. As redesigning the clock network is expen-
sive, these remain mostly unchanged afterwards although the timing criticalities on
which they were based can change. Our algorithm can be applied after this phase
without impairing the clock network, and improves timing of memory circuits on
microprocessor designs by up to 7.8% of design cycle time.

12

2 Timing Optimization in VLSI Design

In this chapter we introduce the fundamentals and technological aspects of modern
computer chip design. Today’s computer chips consist of millions of tiny modules
called circuits which implement logic functions or memory elements and are realized
by transistors. Our focus is on timing optimization in the physical design phase,
and related concepts and notation. Timing optimization algorithms aim to optimize
the electrical signals traversing the chip and comprise for example circuit sizing,
repeater tree insertion, layer assignment etc.

A comprehensive introduction to modern CMOS VLSI design can be found in Weste
and Harris [WH10]. Kahng et al. [Kah+11] and Held [Hel08] give an overview over
the VLSI physical design phase.

For graph theory and combinatorial optimization we use the notation from the book
Combinatorial Optimization by Korte and Vygen [KV12].

2.1 Transistors and Circuits

2.1.1 Transistors

Transistors can be seen as electronic switches with three terminals called source, Transistor

drain and gate. A voltage applied to the control terminal (gate) determines if
source and drain are connected such that a current can flow between them, or if
the transistor is insulating.

The first transistor was build in 1947 by John Bardeen and Walter Brattain at
Bell Laboratories. Although there exists a large number of different technical im-
plementations of a transistor, one can distinguish two substantially different types
, namely n-type and p-type transistors. In an n-type transistor, source and drain n-type, p-type

are connected only if a voltage is applied to the control terminal. A p-type tran-
sistor behaves conversely. Modern designs apply CMOS (Complementary Metal CMOS

Oxide Semiconductor) technology to build the circuits on a chip which implement
logic functions and memory elements. In this technology, both n-type and p-type
transistors are used to realize a circuit. Figure 2.1 shows a sketch of an n-type
metal-oxide semiconductor transistor: The n-type source and drain are adjacent to
the polysilicon gate (originally made of metal). Additionally, the transistor consists
of an insulating oxide layer which is usually made of glass, and the silicon wafer,
also called body, which is of p-type here. If the voltage applied to the gate is high
enough, a thin region below the gate is conducting and a current can flow from
source to drain. For a p-type transistor, the situation is reversed.

The positive voltage applied to the gate is usually called Vdd and represents a logic Vdd

13

2 Timing Optimization in VLSI Design

n+ n+

p−

Source DrainGate

Body

Oxide layer

Figure 2.1: n-type metal-oxide semiconductor transistor.

1 value in digital circuits. The low voltage is called ground or V0 and represents aV0

logic 0 value. The voltage needed at the gate such that current can flow between
source and drain is known as voltage threshold or Vt level with V0 < Vt < Vdd.Voltage threshold

(Vt level) Different thresholds can be realized by varying the degree to which the body is
doped, the thickness of the insulating oxide layer or the fabrication material of the
oxide layer. Only a small number of Vt levels is available, as a separate production
step is needed for each level. A lower Vt level implies a faster operating transistor
but a higher power consumption of the transistor.

2.1.2 Circuits

Transistors are connected to realize circuits, also called cells. We distinguish threeCircuits, Cells

main circuit classes according to their function:

• Combinatorial logic,Circuit classes

• memory circuits (registers) andRegister

• clock drivers.Clock driver

The combinatorial logic performs the binary computations of the chip. Each circuit
in that class realizes a logic function like AND, NAND or INVERTER. Memory
circuits store the binary information for a certain amount of time, and then feed it
back to the combinatorial logic in form of an electrical signal, or the information
leaves the chip. The clock drivers control when a memory circuit receives, stores
or releases information by sending periodic clock signals. Usually a chip contains
many small memory elements that can store one bit at a time (flip-flops or latches).Flip-flop, latch

Often a few large predesigned memory arrays that are able to store many bits
simultaneously can be found on the chip.

The connection points of a circuit with the outer world are called pins and consist
of a piece of metal (aluminium).Pin

Figure 2.2 shows the schematic of a CMOS inverter with one n-type transistor
connected to ground and one p-type transistor connected to Vdd. The gates of
both transistors are connected to the input of the circuit, and their drains to the

14

2.1 Transistors and Circuits

n-type transistor

p-type transistor

ground

input output

Vdd

Figure 2.2: CMOS inverter

output. If the input voltage is high, representing a logical 1, the n-type transistor
is open, i.e. there is a conducting channel between source and drain. The output
of the circuit is then connected to ground, and represents a logical 0. Vice versa, if
the input voltage is low, the p-type transistor is open and the output of the circuit
is connected to Vdd.

Latches have connection points to receive and send binary information, and at
least one input for a periodic control signal from a clock driver. The clock signals
open and close the latch once per computation cycle. When the latch is open, the
information at the data input pin can traverse the latch and is released at the data
output pin.

In literature, one often encounters the term (logic) gate instead of circuit. Formally, (Logic) gate

a gate is a logic circuit representing an elementary boolean function with exactly
one output signal like AND, NOR etc., and more complex circuits are treated as
equivalent to several gates. However, usage of these terms is ambiguous, and often
registers are also referred to as gates. In the remainder of this thesis we will refer
to gates as circuits that compute a boolean function.

Circuit library design

Since the 90’s, the focus shifted away from custom circuit design methods, where
circuits and transistors were designed individually, to circuit library design. The Circuit library

circuit library offers a discrete set of predesigned layouts with different physical
properties for each logic function and register type on the chip. This way, the
same layout can be used for several circuits that implement the same logic func-
tion. Design optimizations are performed on the circuit-level rather than on the
transistor-level. A reason for this shift is the increasing number of transistors on
a chip. Usually, it is not worth the effort to design each of them individually, be-
cause estimating the behaviour of every transistor under realistic assumptions is
time-consuming. For example, it requires solving differential equations to deter-
mine how fast a transistor can switch. The behaviour of predesigned layouts from
the circuit library has usually been tested under realistic circumstances. For each

15

2 Timing Optimization in VLSI Design

layout, timing rules provide information about the behaviour towards a voltageTiming rules

change. Furthermore, the same library can be used for many different chips.
Schneider [Sch14] gives an historical overview on the design of circuit libraries and
presents a tool for fast automatic design of circuit layouts. We only consider digital
designs based on circuit libraries in this thesis, as these constitute the majority of
today’s digital designs.
The most important characteristics of a circuit that influence the speed of electrical
signals are its size and voltage threshold, also called Vt level. The circuit libraryCircuit size

Circuit Vt level provides several layouts for each circuit which implement various sizes and voltage
thresholds. Different sizes are realized by modifying the width of the transistors,
which also changes the electrical capacitance of the circuit. Thereby the relative
sizes between the transistors remain constant. Different Vt levels can be realized
by varying the voltage threshold of the transistors in the layout. As only a small
number of Vt levels is available for each transistor, there is only a small number of
Vt levels available for each circuit.

Power Consumption

Each circuit consumes a certain amount of power which is largely impacted by its
size and Vt level. We distinguish between two types of power consumption: The
power consumed by a circuit when it is not switching is called static power or
leakage power. The dynamic power of a circuit is defined as the power consumedStatic (leakage),

dynamic, and
total power

by the circuit due to switching, and charging and discharging capacitive loads. The
total power consumption, or simply power consumption, of a circuit is the sum of
its static and its dynamic power consumption.
As transistors cannot be fully turned “off”, they always leak a small amount of
current. Static power grows exponentially with falling threshold voltage and is
roughly proportional to

W

L
· e−vt , (2.1)

where V0 < vt < Vdd denotes the Vt level, and W , L are the width and length of
the circuit, more precisely of the underlying transistors (Sheu et al. [She+87]). This
implies that static power consumption of a circuit depends linearly on its width and
grows exponentially when lowering the Vt level. We left out some dependencies in
(2.1), for example the dependency on thermal voltage which we regard as constant,
and the dependency on the voltage at the input pins. Because all possible combi-
nations of voltage states at the input pins (input patterns) cannot be evaluated,
and due to the varying process parameters there is always a modeling error when
the static power consumption of a circuit is computed.
The dynamic power consumption due to charging and discharging capacitances is
roughly proportional to

fswitch ·
1

2
Cktcap ·Vdd

2, (2.2)

16

2.2 Integrated Circuit Design

where fswitch is the switching frequency of the circuit, i.e. how often the voltage Switching
frequencychanges at the circuit, and Cktcap is the total capacitance of the circuit (see also

Lee and Gupta [LG12]). The relation between the capacitance of a circuit and
its area (the area of the underlying transistors) is approximately linear, hence the
dynamic power consumption due to charging and discharging scales linearly with
the circuit size. The second component of dynamic power is the short-circuit power Short-circuit

powerwhich corresponds to the power that is lost internally when both p-type and n-type
transistors are conducting for a short amount of time while the circuit is switching.
Based on the α-power law (Sakurai and Newton [SN90]) it is roughly proportional
to

τ · W
L
· (Vdd−2vt)

α+1

(Vdd−vt)α
, (2.3)

where V0 < vt < Vdd denotes the Vt level, τ is the input transition time, and α is a
technology-dependent coefficient (Sakurai and Newton [SN90]). For fast transition
times and high Vt levels, it is usually negligible.

In practice, several models are in place to estimate the power consumption of a
circuit. We will follow up on these models in Section 2.6.

2.2 Integrated Circuit Design

The basic building blocks of integrated circuits, more commonly known as (com- Integrated circuit

puter) chips, are transistors. The transistors are fabricated on one piece of semi-
conductor material, normally silicon, and realize the circuits and other features on
the chip. Figure 2.3 shows a computer chip with about 600000 circuits. Electrical
wires that connect the transistors are contained on higher layers or planes of the Layer, plane

chip. Vias connect these layers. In the manufacturing process, planes are built one Via

by one in a lithographic process.

Electrical signals enter the chip at primary input pins (primary inputs) and are Primary input
pinspropagated through the combinatorial logic in each computation cycle until they

reach register inputs or leave the chip at the primary output pins (primary outputs). Primary output
pinsRegisters store the binary information until the next computation cycle begins, and

a periodic clock signal determines whether a register is open or closed.

It is a complex task to design the clock network which distributes the clock signals. Clock network

Often, it is implemented as a clock tree or a clock grid . A clock tree is a rooted Clock tree

binary tree whose leaves correspond to the registers. In a clock grid, the clock Clock grid

signal is distributed in a grid-like network where clock drivers dispense the clock
signal. A chip may have several clock networks with different frequencies. We say
that memory elements which are fed by the same clock signals belong to the same
clock domain. Clock domain

The first integrated circuit was built by Jack Kilby in 1958 and contained two
transistors. Since then, the complexity of computer chips has grown enormously:
In 1965, Gordon E. Moore [Moo65] predicted that the number of components per

17

2 Timing Optimization in VLSI Design

Figure 2.3: The placement of a computer chip with approximately 600000 circuits.

integrated circuit will double every year. This prediction was not completely ful-
filled as the number of components doubled every two years, but nonetheless the
complexity of computer chips has grown exponentially, and the prediction is today
known as Moore’s Law.Moore’s Law

Today’s computer chips consist of billions of devices, for example IBM’s POWER8
CPU contains 4 200 000 000 transistors. The term VLSI - very large scale integra-
tion - is used to describe this level of integration. Accordingly, today’s chips areVLSI design

called VLSI chips and the design process is called VLSI design.

The continuous growth of complexity was enabled primarily by scaling down tran-
sistor sizes. Improvements in manufacturing and the increasing automation of the
design process did the rest.

18

2.3 VLSI Design Flow

2.3 VLSI Design Flow

The VLSI design process is highly complex and heavily depends on computer soft-
ware to automate the design steps, so-called electronic design automation (EDA) EDA

software. EDA tools automate the design process and link the steps into a single
flow, which is roughly outlined in Diagram 2.4.

In the first design phase the high-level requirements of the system like functional-
ity, performance and physical dimensions are defined and decisions concerning the
design architecture, for example memory management, power requirements etc. are
made. Once this is set, a logic description of the design is devised in the functional
and logic design phase. Here the functionality and connectivity of each module is
specified using a hardware description language (HDL). A compiler translates this HDL

description into a register transfer level (RTL) description, which maps the desired RTL

functionality to a netlist : Simply put, a netlist consists of circuits, primary input Netlist

and output pins of the chip, and information about the connectivity of primary
pins and circuits.

Specification and Architectural Design

Functional and Logic Design

Placement

Clock Tree Synthesis

Timing Optimization

Routing

Layout verification

Fabrication

Physical design phase

Figure 2.4: VLSI Design Flow

During the physical design phase, the RTL description is transformed into a physical Physical design

layout. First the circuits are placed on the chip area in the placement step. Then Placement

the clock network is realized (clock network design), and the electrical signals are Clock network de-
signoptimized in the timing optimization step. Finally, pins are connected by electrical
Timing optimiza-
tion

wires (routing). Timing optimization ensures that all signals arrive on time and

Routingthat all electrical constraints are fulfilled. Among these algorithms are for example

19

2 Timing Optimization in VLSI Design

circuit sizing, Vt optimization and repeater insertion. In addition, changing the
placement often helps to shorten long timing-critical paths on the chip.

Before the chip can be sent to fabrication, the correct functionality of the physical
layout has to be verified.

In reality, the diagram is not as straightforward as indicated in Figure 2.4, and some
steps are iterated until a certain design goal is achieved. Furthermore, with scal-
ing complexity and decreasing feature sizes the boundaries between the successive
(physical) design steps are blurring and are continuing to do so. As a result, the
design steps are interleaving, and optimization goals formerly used in later design
steps need now be considered in earlier stages. For example, placement must be
aware of timing critical paths. Both placement and timing optimization must be
aware of routing issues and try to ensure that in each region of the chip there is
enough space to route the wires. This is difficult to achieve, as circuit sizing and
repeater insertion in turn need information on the placement of the circuits and the
rough outline of the wires. Consequently, physical design steps are often iterated
or interleave.

2.4 Physical Design Instance

The chip area is a rectangle [xmin, xmax] × [ymin, ymax] in zmax + 1 planes withChip area

xmin, xmax, ymin, ymax, zmax ∈ N. The plane with index 0 is called the placement
plane, as all circuits are realized on that plane. Planes with higher index are calledPlacement plane

routing planes and are reserved for electrical wires. Vias connect two adjacentRouting planes

Via planes.

We denote an axis-parallel rectangle on a plane as shape. If it is realized on theShape

placement plane, we call it a placement shape. Every object on the chip is given as
a set of shapes.

A chip image I consists of the chip area, a set of blockages given as a set of shapes,Chip image

and a set of I/O-ports (the primary input and output pins) which connect the chipI/O-ports

with the outer world. Blockages are predesigned units with a fixed location on the
chip, for example memory arrays or analog circuits, and should not be changed
during physical design.

The netlist of a chipNetlist
(C,P, γ,N) (C,P, γ,N)

consists of a finite set of circuits C, a finite set of pins P, and a finite set of nets
N . A net is a set of pins, and the nets in N form a partition of the set of pins,Net

i.e. a family of disjoint subsets that fulfills
⋃
N∈N N = P. The layout of each pin

p ∈ P is given as a shape set. A mapping γ : P → C ∪̇ I assigns each pin either
to a circuit, or, if it is an I/O-port, to the chip image itself. We denote with G ⊂ CG ⊂ C
the set of gates of the chip.

The circuit library B defines several logically equivalent implementations, so-called
books, for each logic function and register type on the chip. Each book can beCircuit library B

Book seen as a blueprint or layout of a circuit that can be implemented. For example,

20

2.5 Timing Analysis

there are books for different sizes and Vt levels of a circuit. As there can be several
circuits on a chip realizing the same function, the chip can contain several instances
of the same book. For a circuit c ∈ C we denote the set of books that can implement
c on the chip by Bc ⊂ B and

⋃
c∈C Bc = B. A book b ∈ B is described as a set Bc

of shapes, and sets of input and output pins of b. When book b is realized on the
chip, electrical signals enter at the input pins, and leave at the output pins.

A physical design instance consists of a chip image I, a netlist (C,P, γ,N) and a Physical design in-
stancecircuit library B. Additionally, an initial assignment of circuits to books is given

by φ : C → B with φ(c) ∈ Bc for all c ∈ C . φ : C → B

We assume that physical properties of a book b ∈ B transfer to each circuit c ∈ C
implemented by b, and that the shape set of c equals the shape set of b. The
shapes on the placement plane constitute the placement area of c. The placement Circuit area

Placement
location

location of a circuit on the placement plane is given as a tuple (x, y) ∈ [xmin, xmax]×
[ymin, ymax]. This means the circuit is realized on the placement plane such that a
predefined anchor point on the placement area of c is located at (x, y).

Each net n ∈ N has its unique source pin, which is either a primary input pin or an
output pin of a circuit. The sink pins are either primary output pins or input pins
of circuits. The source pin is connected to all sinks of the net by electrical wires
and distributes electrical signals to all sinks. We also say: the source pin drives the
sink pins.

2.5 Timing Analysis

In each computation cycle of the chip, electrical signals are propagated through the
combinatorial logic. For the chip to operate correctly, signals have to fulfill certain
conditions: They need to arrive at the inputs of the memory circuits before these
open again and release the data for the next computation cycle. Vice versa, signals
should not arrive before the current computation cycle is finished to ensure that the
output signal of the memory circuits remains stable. Further, predefined required
arrival times for signals exist at primary output pins.

Timing analysis checks if these conditions are fulfilled. If that is the case, we
speak of timing closure or say the design has closed timing. Usually, this is done Timing closure

by means of static timing analysis first described by Hitchcock et al. [HSC82]. A Static timing
analysis (STA)detailed introduction to timing analysis in VLSI design can be found in Sapatnekar

[Sap04].

2.5.1 Signals and their Shapes

The voltage compared to ground determines the logical state at a given point on
the chip: Vdd represents a logical 1 or true, and V0 represents a logical 0 or false. A
signal σ is defined as the change of voltage over time. If the potential of the signal Signal σ

changes from V0 to Vdd, we say it is a rising signal, otherwise, if it changes from Signal transition
τ(σ)Vdd to V0, we say it is a falling signal. We call the direction of σ its transition

21

2 Timing Optimization in VLSI Design

Voltage

Time

Vdd

10% Vdd

at

50% Vdd

90% Vdd

slew

Voltage

Time

Vdd

10% Vdd

at

50% Vdd

90% Vdd

slew

Figure 2.5: A rising signal and its approximation

τ(σ) ∈ {r, f}, and denote the possible transitions rise and fall with r and f ,
respectively.
A signal is estimated by a piecewise linear function given by its arrival time (at)Arrival time,

slew and slew, see Figure 2.5. Usually, the arrival time is defined as the time when
the voltage change reaches 50%. The slew is usually specified as the time between
10% and 90% of the voltage change, i.e. the range in which the signal is almost
linear. Seldomly, other values like the range between 20% and 80% are used in the
industry.
We distinguish between two types of signals: Data signals represent the logicalData signals

computations of the chip, while periodic clock signals control the memory elements.Clock signals

2.5.2 The Timing Graph and the Gate Graph

Static timing analysis measures signals at the timing points of the design, which areTiming points

usually the pins in the netlist. Additionally, some circuits may have internal timing
points. Primary input pins and register output pins are called timing start points,Timing start

point primary output pins and register input pins are called timing endpoints. Together
Timing endpoint they form the boundary of the chip. The timing points form the vertex set of the
Boundary timing graph, which is the basic data structure used in static timing analysis:

Definition 2.1 (Timing Graph) The timing graph G = (V,E) of a netlistTiming graph

(C,P, γ,N) is the directed acyclic graph with one vertex for each timing point,
and there is an edge between two vertices p and q if a signal at the pin correspond-
ing to p can immediately cause a signal at the pin corresponding to q, i.e. the pins
either belong to the same gate or to the same net. Edges are also called propagation
segments. Timing endpoints have no outgoing edges in G. Similarly, timing startPropagation

segment points have no entering edges in G. The sets of vertices corresponding to timing
start and endpoints are denoted by Vstart and Vend, respectively. The set of verticesVstart, Vend,

Vinner v ∈ V \ {Vstart ∪ Vend} are denoted with Vinner.

22

2.5 Timing Analysis

Output

Inputs

Gates

Figure 2.6: A simplified example of a VLSI Chip on the left, and the corresponding
timing graph on the right.

Figure 2.6 shows a simplified example of a VLSI chip and the corresponding timing
graph. Note that the timing graph does not contain edges traversing memory
elements or clock drivers. One reason is that during the timing optimization phase,
the locations and sizes of clock driver and registers are usually fixed. Furthermore,
it is not uncommon that a signal leaving a register output enters the same register
again at a later stage, and including latches with an internal propagation segment
(transparent latch) would lead to cycles in the timing graph. Consequently, not
every pin p ∈ P is represented by a vertex in G.
In practice, cycles can also be introduced by clock gating, which occurs when the
combinatorial logic changes the clocking behaviour of memory elements. Such cycles
can usually be removed by a two-phase-approach, see for example Szegedy[Sze05],
and we consider the timing graph to be acyclic.

Definition 2.2 (Gate Graph) The gate graph G = (V ,E) of a netlist (C,P, γ,N) Gate graph G =
(V , E)is a directed acyclic graph with one vertex for each gate, each timing start point and

each timing endpoint. It can be constructed from the timing graph by contracting
vertices corresponding to pins of the same gate to a single vertex. There exists an
edge between vertices v, w ∈ V if there exists an edge in the timing graph between
pins that are assigned to the gates corresponding to v and w, respectively.

Figure 2.7 shows a simplified example of a VLSI chip and the corresponding gate
graph.
In later chapters we will need the concept of a neighborhood of pins and a gates:
The reason is that analyzing the impact of a local optimization step, for example

Output

Inputs

Gates

Figure 2.7: A simplified example of a VLSI Chip on the left, and the corresponding
gate graph on the right.

23

2 Timing Optimization in VLSI Design

changing the size of a gate, on signal delays is time-consuming if signal changes
are evaluated in the whole timing graph. Therefore we accept some inaccuracy and
evaluate the impact of the optimization step only in a restricted environment of the
changed gate that captures most effects.

For p ∈ P, let vp be the corresponding vertex in the timing graph, if existent.vp

For an object o ∈ P ∪ G we denote with pred(o) its predecessors, with succ(o) itsPredecessors

successors and with sibl(o) its siblings. The neighborhood of o is the union of itsSuccessors

Siblings

Neighborhood

predecessors, successors and siblings, and o itself. For a pin q ∈ V , these sets are
defined as follows:

pred(q) := {p ∈ V |(p, q) ∈ E}, (2.4)

succ(q) := {p ∈ V |(q, p) ∈ E}, (2.5)

sibl(q) := {p ∈ V |∃v ∈ V : (v, p) ∈ E and (v, q) ∈ E, p 6= q} (2.6)

=

 ⋃
p∈pred(q)

succ(p)

 \ {q}. (2.7)

For g ∈ G, let Pin(g) be the set of input pins and Pout(g) be the set of output pins
of g. Then we have the following definitions:

pred(g) := {g′ ∈ G|∃p ∈ Pout(g′), q ∈ Pin(g) : (vp, vq) ∈ E}, (2.8)

succ(g) := {g′ ∈ G|∃p ∈ Pin(g′), q ∈ Pout(g) : (vq, vp) ∈ E}, (2.9)

sibl(g) := {g′ ∈ G \ {g}|∃p ∈ Pin(g′) and q ∈ Pin(g) : (2.10)

pred(q) ∩ pred(p) 6= ∅}. (2.11)

The successors of g are also called fanout and the predecessors its fanin. FigureFanout, fanin

2.8(a) shows the neighborhood of a gate.

For a gate g ∈ G we call the subgraph of the timing graph G that is induced by the
neighborhood of g the neighborhood graph Gg = (Vg, Eg): The vertex set consists ofNeighborhood

graph
Gg = (Vg , Eg)

all vertices that correspond to a pin of a gate in the neighborhood of g, and vertices
v ∈ Vstart ∪ Vend that are connected to a pin of g in G. Figure 2.8(b) shows the
neighborhood graph of a gate.

2.5.3 Signal Propagation

Static timing analysis propagates signals in topological order through the design by
means of the timing graph. Each signal σ traversing a timing point p is characterized
by its arrival time atp(σ) and slew slewp(σ). If it is clear from the context, we alsoatp(σ)

slewp(σ) write atp and slewp. Signals are characterized by the timing start point at which
they are initiated. We say that signals with different origin have a different phase.Phase

The behaviour of transistors towards different transitions depends on their tech-
nology and their size. Similarly, the performance of circuits for rising and falling
signals differs, and it is necessary that timing analysis computes arrival times and

24

2.5 Timing Analysis

(a) Predecessor circuits are highlighted
in purple, sibling circuits in orange and
the successor circuit in gray.

(b) Edges and vertices in the
neighborhood graph.

Figure 2.8: Neighborhood (left) and neighborhood graph (right) of a circuit (green).

slews for both transitions separately. Additionally, static timing analysis considers
two timing modes (early and late) for the earliest and latest signal occurence. The Timing mode

reason is that signals are required not to arrive too early or too late at timing end-
points, see Section 2.5.4 for details. In this thesis we only consider the late timing
mode because repeaters can be inserted to slow down signals that are too fast.

Naturally, it takes some time until a signal σ released at pin p ∈ V arrives at a
pin q ∈ V . We call the time it takes a signal to travel over a propagation segment
e = (p, q) ∈ E its delay . More formally, the delay is defined as the difference Delay

between the arrival times atq − atp. Also the slew of σ changes during the traversal
of segment e. A delay function delayτe and a slew function slewτe , called timing
functions, provide the delay and slew of σ for each transition: Timing functions

delayτe , slew
τ
e

delayτe : R≥0 × R≥0 → R (2.12)

slewτe : R≥0 × R≥0 → R (2.13)

The first parameter is the total capacitance cap(N) of the net N ∈ N containing
q, and is defined as the sum of the capacitances of all wires and sink pins of N : cap(N)

cap(N) :=
∑

v∈Pout(N)

pincap(v) + wirecap(N), (2.14)

where pincap(q) is the electrical capacitance of pin q and wirecap(N) is the wire
capacitance of N . The second parameter is the slew of σ at p, also called input
slew of e. If e is a wire propagation segment, the timing functions further depend Input slew

on the topology of the corresponding net. This will be specified in Section 2.5.6.

In reality, delays and slews are influenced by chip operating conditions, for example
temperature, and uncertainties during the manufacturing process. These include
that actual physical shapes of the objects on the chip cannot be known in advance.
Even given this knowledge, complicated non-linear differential equations need to
be solved to obtain the exact delays. We will discuss different delay models to Delay model

25

2 Timing Optimization in VLSI Design

approximate signal delays and slews for circuit segments in Section 2.5.7 and for
wire propagation segments in Section 2.5.6. In VLSI design, a computer program
(timing engine) is mostly used to compute these values. Usually, several delayTiming engine

models with varying accuracy are implemented, and the designer can choose the
suitable model for each application.
Static timing analysis is a variant of the critical path method by Kelley and Walker
[JW59]. At each timing start point, a signal is initialized with arrival times and
slews for each transition. These signals are propagated simultaneously through
the timing graph in topological order. At q ∈ V \ Vstart, the arrival time and
slew of signal σ are computed based on the information of all incoming edges that
propagate σ, i.e. all edges that lie on a path between q and a timing start point
initiating σ. We denote this edge set by δ−σ (q) ⊆ δ−(q). The arrival time at q is
the latest arrival time over all edges e ∈ δ−σ (q) and their edge transitions. The slew
propagation on the other hand considers both the slew values and the arrival times
associated with each slew. The extent to which the arrival time is considered is
controlled by a parameter ν ∈ R≥0. This model was proposed independently by
Vygen [Vyg01] and Lee et al. [Lee+01].
Suppose the arrival times and slews atp and slewp of σ for all pins p ∈ V with
e = (p, q) ∈ δ−σ (q) have already been determined. We first define the arrival time
of σ propagated over edge e = (p, q) ∈ δ−σ (q) for τ ∈ {r, f} and q ∈ N ∈ N :

atτe(σ) := atp(σ) + delayτe (cap(N), slewp(σ)), (2.15)

Then the following holds for the arrival time and slew of σ at pin q:

atq(σ) := max{atτe(σ) | e ∈ δ−σ (q), τ ∈ {r, f}}, (2.16)

slewq(σ) := max{slewτe (cap(N), slewp(σ)) + ν · (atτe(σ)− atq(σ)) | (2.17)

e ∈ δ−σ (q), τ ∈ {r, f}}.

For ν = ∞, the slew of the latest signal is propagated. For ν = 0 the slew at q
equals the largest slew. Usually, a timing engine offers a limited set of values for ν.
Vygen [Vyg06] described how the parameter can be chosen efficiently.

Remark 2.3 Sometimes an adjust value is added to the arrival time in equality
(2.15) that can be user defined or computed. For example, an adjust is needed
at latches if the arrival times of data and clock signals do not refer to the same
computation cycle. For the simplicity of notation, we ignore this adjust in the
remainder of this thesis.

2.5.4 Arrival Time Constraints and Slacks

Static timing analysis checks if all constraints on the arrival times of signals are
fulfilled and the design has closed timing. The most typical arrival time constraints
are

• the setup test,

26

2.5 Timing Analysis

• the hold test, and Setup, hold test

• primary output constraints.

Expressed in simplified terms, the setup test checks whether a signal arrives at a
register input before the register closes and releases the data for the next cycle.
Similarly, the hold test verifies that a signal does not arrive too early because the
voltage at the register output must be stable while it is open. As mentioned before,
we are only interested in late mode timing constraints, and do not consider the hold
test further.

Primary output constraints require signals to arrive before predefined required ar-
rival times ratp(σ) at primary outputs p that indicate the latest feasible arrival Required arrival

time ratp(σ)time. The setup test can also be transformed into a required arrival time con-
straint, so for each timing endpoint and each signal σ that reaches this endpoint
we have a constraint of the following form:

atp(σ) ≤ ratp(σ) ∀p ∈ Vend, σ ∈ Sp. (2.18)

For any p ∈ V we denote with Sp the set of signals reaching p, and S is the set S

of signals initialized at any timing start point. Similar to arrival times, required
arrival times can be propagated through the timing graph in reverse topological
order. We denote the resulting required arrival time at p ∈ V with ratp(σ) for
σ ∈ Sp. Intuitively, this is the latest arrival time which ensures that for all timing
endpoints reachable from p the arrival time constraints are fulfilled. Formally, we
have

ratp(σ) := min{ratq(σ)− delayτe (cap(N), slewp(σ))| (2.19)

e = (p, q) ∈ E, τ ∈ {r, f}, q ∈ N ∈ N}.

The slack at p refers to the time a signal σ arrives too late and is defined as slackp(σ)

slackp(σ) := ratp(σ)− atp(σ). (2.20)

Usually, a slack target slacktarget ∈ R≥0 is defined to take into account uncertainties slacktarget

in the delay models, manufacturing etc. that can cause a signal to arrive later than
its estimated arrival time. If the slack is smaller than the target, the signal arrives
too late and we say that p is timing critical : Timing critical

slackp(σ) < slacktarget. (2.21)

The worst slack of a design is defined as WS

WS := min{slackp(σ)|p ∈ Vend, σ ∈ Sp}. (2.22)

A design is called timing critical if the worst slack is smaller than the slack target.

27

2 Timing Optimization in VLSI Design

Apart from the worst design slack, a common measure in timing optimization is the
sum of all negative slacks at timing endpoints, in short SNS. Another interestingSNS

measure is SLS, which is defined as the sum of negative slacks of all subpaths inSLS

the timing graph (see for example Reimann et al. [RSR15] for a definition).

2.5.5 Electrical Constraints

The load capacitance loadcapp, also called downstream capacitance, of a primaryLoad capacitance
loadcapp input pin or circuit output pin p ∈ N is defined as the capacitance cap(N) of net

N ∈ N . The load capacitance of a primary output pin or circuit input pin is defined
as the capacitance of the pin itself. The load capacitance at each primary input pin
and circuit output pin should not exceed a certain limit in order to compute valid
delays and slews: Each circuit/pin can only drive a certain amount of capacitance.
Similarly, the slew at each primary output pin and each circuit input pin needs to
obey a certain slew limit.

Let Pload ⊂ P denote the set of pins with a load capacitance limit, and Pslew ⊂ PPload, Vload
Pslew, Vslew denote the set of pins with a slew limit. Vload and Vslew denote the set of timing

points in G corresponding to Pload and Pslew, respectively.

We denote the load capacitance limit at p ∈ Pload with loadlimp and the slew limitloadlimp

at p ∈ Pslew with slewlimp. We call the following constraints electrical constraints:slewlimp

loadcapp ≤ loadlimp ∀p ∈ Pload, and (2.23)

slewp(σ) ≤ slewlimp ∀p ∈ Pslew, σ ∈ Sp. (2.24)

We call a violation of constraint (2.23) a load violation, and a violation of constraintLoad violation

(2.24) a slew violation.Slew violation

In practice, load violations are usually considered to be more severe than slew
violations. On the one hand, reasonable slews can only be computed for valid load
capacitances. On the other hand, slew limits are often assigned small values by
designers, and are considered to be rather a target than a hard limit.

2.5.6 Wire Delay

The delay over a propagation segment e whose endpoints belong to a net N ∈ N
depends on the topology of that net. Usually, a net is modeled as an electrical
network which consists of resistance and capacitance elements, and the delay is
often called RC-delay . The most commonly used model is the Elmore delay modelRC-delay

[Elm48]. It is a popular delay model because of its simplicity, but it is an upper
bound on the actual wire delay and sometimes too pessimistic. More accurate
delay models are for example SPICE (Simulation Program with Integrated Circuit
Emphasis), which is based on numerical circuit simulation (Nagel and Pederson
[NP73]), and RICE (Rapid Interconnect Circuit Evaluation using AWE, Ratzlaff
and Pillage [RP94]). In the most simple models signal delay depends linearly on
the L1 distance between two pins. Additionally, the circuit capacitances can be

28

2.5 Timing Analysis

Figure 2.9: A rectilinear Steiner tree connecting the source pin (red) of a net with
the sink pins (green).

incorporated. The usage is justified by the assumption that the delay over an
optimal buffered wire depends approximately linear on its length, but is usually
too inaccurate in the context of circuit sizing.

As the delay along a wire depends roughly quadratically on its length, shorter wires
are faster than longer ones. Subdividing a wire by repeaters to refresh the signal
decreases its delay. Elmore delay belongs to the class of quadratic delay models.

The accuracy of delay models increases in later steps of the VLSI design flow. The
focus of this thesis is circuit sizing and Vt optimization, and due to the complexity
of both problems (Section 4) there is little expectation for theoretical guarantees
of algorithms if more complex delay models than the Elmore delay model are used
to approximate wire delay.

Algorithms described in this thesis (Chapter 9 and Chapter 10) are independent of
the delay model in the sense that they use a timing engine as a black box to get signal
delay. Industry-standard engines like Synopsis PrimeTime or Cadence Tempus
provide several models with different accuracy for signal estimation including the
most accurate SPICE simulation.

Elmore Delay Model The Elmore delay model assumes that the physical realiza-
tion of each net N is modeled by a so-called RC-tree consisting of resistance and
capacitance elements. On such a tree, Elmore delay can be computed in linear
time, see Rubinstein et al. [RPH83]. As the actual net topology and capacitances
are not known until after the timing optimization phase, a rectilinear Steiner tree
S with default resistances and wire capacitances estimates the actual RC-tree. An
example is shown in Figure 2.9. The disjointness of Steiner trees is ignored in this
phase of the design flow, and coupling effects of different nets are estimated. The
problem to compute a minimum rectilinear Steiner tree is NP-hard (Garey and
Johnson [GJ77]), and in practice heuristics are deployed for high fanout nets. For
small fanout nets, exact algorithms can still be efficient.

29

2 Timing Optimization in VLSI Design

Let e = (p, q) ∈ E be a propagation segment with p, q ∈ N . Note that we modeled
this propagation segment as a single edge in the timing graph, but in the Steiner
tree S this propagation segment actually is a (unique) path S[p, q] through the tree.
We call the edges of this path wire segments in contrasts to the wire propagationWire segment

segments.

Each wire segment in the RC-tree is modeled as a resistance element encased by
two capacitance elements. We assume that S is oriented from the source to the
sinks of N . The Elmore delay on S[p, q] is calculated as

rcElmore(p, q) :=
∑

e′=(v,w)∈S[p,q]

rese′ ·
(cape′

2
+ loadw

)
. (2.25)

Here rese′ is the (estimated) wire resistance and cape′ the (estimated) capacitance
of the wire segment e′ ∈ S[p, q]. The total (estimated) capacitance of all wire
segments in S and all sink pins of N that are reachable from w is denoted by
loadw. This implies that the whole Steiner tree needs to be built before the delay
of e can be estimated.

It is relatively easy to estimate the resistance of a wire segment as it is approximately
proportional to its length and inversely proportional to its width and thickness.
Capacitances are harder to estimate as they not only depend on the width, thickness
and length of the wire, but also on the capacitances in its environment. As both
the resistance and the capacitance of a wire segment contribute to the delay (2.25),
it depends quadratically on the length of the wire.

Note that the Elmore delay does not depend on the input slew in contrast to
the delay function (2.12) presented earlier. It further approximates the median
of an impulse response of an RC-tree, and not the response to a rising or falling
signal. Industrial timing engines usually provide delay and slew functions for each
e = (p, q) ∈ E, with q in net N ∈ N , that combine rcElmore(p, q) with the input
slew s and environmental factors:

delayτe (cap(N), s) := rcElmore(p, q) · delayElmore(s) (2.26)

slewτe (cap(N), s) := s+ rcElmore(p, q) · slewElmore(s) (2.27)

The parameter cap(N) is implicitly used in the calculation of rcElmore(p, q). We
will use the functions delayElmore(s) and slewElmore(s) as black box functions. The
simplest reasonable estimate sets delayElmore(s) = ln(2) and slewElmore(s) = ln(9),
but more accurate estimates with non-constant slews are common.

2.5.7 Circuit Delay

In this section we are interested in the signal delay over a propagation segment
e = (p, q) ∈ E which traverses a circuit c ∈ C. For all books from the library,
precharacterized delay and slew functions, so-called timing rules, are given. They
depend on the input slew slewp and the load capacitance loadcapq, and only return

30

2.6 Physical Design Constraints and Objectives

dependable values if the input slew and the load capacitance are within their limits.
Both functions are monotonically increasing and have similar shapes.
With the scaling of CMOS technology and arising design challenges, the focus has
been shifted from simple lookup tables to current source based models (CSM) that CSM

characterize circuits as non-linear parasitic capacitances connected to a voltage
dependent current source, see for example Croix and Wong [CW03]. These models
enable more accurate interpolation of electrical effects such as noise.

2.6 Physical Design Constraints and Objectives

We give a brief overview on physical design constraints and objectives that are
considered in this thesis. The focus is on circuit sizing and Vt level optimization
in the timing optimization step of the physical design flow, where clock drivers
(in particular their sizes) are fixed and we use estimates for the wire topology of
nets. For more details and algorithms for physical design we refer to Kahng et al.
[Kah+11].

2.6.1 Power Constraints

The power consumption of a chip has become an increasingly important objective in
VLSI design. This is due to the increasing number of transistors on a chip (Moore’s
Law) which dissipate power, but also the breakdown of Dennard’s Scaling Law
[Den+74]: It roughly states that the power consumption of a transistor scales down Dennard’s Scaling

Lawin proportion with its area. However, since the 45 nm technology node, leakage
current has been growing exponentially, and tradeoffs between power consumption
and delay had to be found.
A development of the feature sizes/technology nodes since 1971 is shown in Figure
2.10. Note that the node of a CMOS technology refers to the minimum transis-
tor length that can be built dependably. Recently, a new type of transistor has
come into operation (FinFETs, or 3d-transistors) with the prospect of reducing
the leakage once again.
Another factor that contributes to the increased power consumption are the higher
operating frequencies that are enabled by a higher supply voltage, which contributes
quadratically to dynamic power consumption. Recall that dynamic power is pro-
portional to 1

2Cktcap · Vdd
2, but a total of Cktcap · Vdd

2 is drawn from the power
source. The remaining power is dissipated as heat. Chips need to be cooled down
as high temperatures cause the chip to fail. Additionally, static power increases
rapidly with rising temperature.
In the physical design phase, circuit sizing, Vt optimization and repeater inser-
tion are the most frequently used algorithms to reduce power consumption. Other
methods include switching off unused parts of the chip temporarily, or to lower the
supply voltage in timing uncritical parts of the chip.
Thereby estimates are used for static and dynamic power consumption. The rea-
son is that power depends on process parameters such as thermal power, switching

31

2 Timing Optimization in VLSI Design

Feature size (nm)

Year

10000

1000

100

10

1970 1980 1990 2000 2010 2020

10000

6000

3000

1500

1000

800

600

350
250

180
130

90

65

45

32
22

14

10

7

5

Figure 2.10: Feature size development with future predictions from [SIA13].

factors, input pin patterns etc., which are not always known and cannot be eval-
uated exactly during physical design due to complexity and runtime reasons. For
example, a constant is often used to estimate the switching activity. In the simplest
model the same constant is used for all circuits, which implies that dynamic power
is proportional to the total capacitance of all input pins on the chip. We assume
that we are given independent functions which return static, dynamic and total
power consumption of a book b ∈ B.

We regard process parameters like temperature, supply voltage and operating fre-
quency as constant and consider only the dependency on parameters that are af-
fected by circuit sizing and Vt optimization. Consequently, wire capacitances are
neglected as these are affected only marginally when pin locations change due to
sizing. Both dynamic and static power functions depend linearly on the size of book
b, and lowering the Vt level affects dynamic power linearly. Short-circuit power is
considered as constant, which is reasonable when low slew limits are imposed on
low Vt circuits. Static power grows exponentially with lower Vt level.

32

2.6 Physical Design Constraints and Objectives

2.6.2 Logical Correctness

During the physical design phase, the netlist is changed by logic restructuring, cir-
cuit sizing, repeater insertion etc. In the end, the chip needs to operate logically
correct. It is NP-hard to decide if two netlists are logically equivalent, and algo-
rithms exploit that in practice usually only local netlist changes are made. During
circuit sizing and Vt optimization, we have to ensure that only logically equivalent
implementations are chosen for each circuit from the library.

2.6.3 Routing and Placement Constraints

In the routing step, the pins of each net are connected by electrical wires. There
are various constraints on the shapes and location of these wires, for example the
distance between wires of different nets and the distance to blockages must be
sufficiently large. Routing algorithms aim to minimize the total wire length of all
nets and the number of vias between different planes, while fulfilling all constraints
on the outline and shapes of the wires. In this thesis we will consider routing
constraints only indirectly in earlier design steps.

Circuits have to be placed disjointly on the chip area, i.e. their placement shapes
should not overlap. Furthermore, their shapes should not overlap with blockage
shapes on the chip.

To improve routability of a design, a fast and simple placement approach consists
of partitioning the chip area into regions, and to assign each circuit to a region.
The placement density of a region is defined as the ratio of the placement area Placement density

covered by the circuits in the region, and the placement area of the region itself. A
global target density is prescribed for all regions and should not be violated. The
intuition of this concept is that a high placement density often implies in turn a
high pin density. This makes it more difficult for routing algorithms to connect the
pins without violating any routing constraints on minimum wire distance etc. We
denote with area(c) the area of the placement shape of c ∈ C. area(b), area(c)

2.6.4 Timing Constraints

Timing constraints are generally understood as being the constraints on the arrival
times of signals, which we discussed in Section 2.5. As the delay and slew functions
only return reliable values when load capacitances and slews are below their limit,
timing constraints imply that the electrical constraints need to be fulfilled as well.
In practice, worst slack (and SNS) improvement and electrical violation removal
are usually treated as different objectives and can even be conflicting: Increasing
the size of a circuit to remove a load violation at its output can degrade the delay
of the entering signal due to the higher input pin capacitances.

Note that arrival time constraints are mostly implied by the clock cycle time of the
design, and designers might aim to reduce the clock frequency. This amounts to
minimizing the longest path delay in the design.

33

2 Timing Optimization in VLSI Design

In the VLSI design flow, a diverse range of timing optimization algorithms is em-
ployed to help close timing of the design. Signal delays over wires can be improved
by shortening wire lengths on critical paths, as signal delay depends approximately
quadratically on wire lengths. This can be achiveved by changing the placement
location of circuits on the timing critical paths, or rerouting timing critical nets.
Also the logic description of the design can be optimized. Nonetheless, the most
important steps to achieve timing closure are circuit sizing, Vt optimization and
repeater insertion. Repeaters (inverter or buffer) subdivide long wires into several
short ones, thereby reducing capacitances and signal delay. We refer to Bartoschek
[Bar14] for an overview of algorithms for the repeater insertion problem.

34

3 Convex Optimization

Convex optimization is a special class of mathematical optimization methods which
studies the problem of minimizing convex functions over convex sets. A fundamental
property of convex optimization problems is that each local optimum is always a
global optimum, making optimization in a way “easier”. Many convex optimization
problems can be solved in polynomial time by interior point or ellipsoid methods,
which is another advantage.

In this chapter we restate well-known concepts and results from convex optimization
needed in later chapters. These include Lagrangian relaxation, descent methods and
interior point methods and can be found in most textbooks on nonlinear optimiza-
tion. We omit proofs of well-known theorems and refer to the textbook of Bazaara,
Sherali and Shetty [BSS06]. For a more comprehensive overview see for example
[BSS06], Boyd and Vandenberghe [BV04] and Bertsekas [Ber99].

3.1 Basic Concepts

Definition 3.1 (Differentiable, gradient, Hessian matrix) A function f : Rn → Rm
is differentiable at x if the partial derivatives Differentiable

∂fi(x)

∂xj
, i = 1, . . . ,m, j = 1, . . . , n

exist. If f is differentiable at every point in its domain, and its domain is open, we
say the function f is differentiable. When f is real-valued, the following vector is
called the gradient of the function: Gradient

∇f(x) =

(
∂f(x)

∂x1
, . . . ,

∂f(x)

∂xn

)t
.

A function is said to be continuously differentiable if its derivative is continuous. Continuously
differentiableA real-valued function f is twice differentiable if its second derivative, or Hessian

matrix Hessian matrix

H(x)ij =
∂2f(x)

∂xi∂xj
, i, j = 1, . . . , n

exists. H(x) ∈ Rn×n is symmetric.

Definition 3.2 (Stationary point) We call x ∈ Rn a stationary point of f : Rn → R Stationary point

if ∇f(x) = 0.

35

3 Convex Optimization

Definition 3.3 (Convex, concave) A function f : X ⊆ Rn → R is convex if X is
convex and if for all x, y ∈ X and for all 0 ≤ θ ≤ 1 the following holds:Convex

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

f is strictly convex if strict inequality holds for all 0 < θ < 1, and strongly convex
with parameter m > 0 if

〈∇f(x)−∇f(y), (x− y)〉 ≥ m ||x− y||2

holds for all x, y ∈ X. In other words, f is strongly convex with parameter m > 0
if ∇2f(x) ≥ m > 0 holds for all x ∈ X.
We say that f is (strictly, strongly) concave if (−f) is (strictly, strongly) convex.Concave

Definition 3.4 (Lipschitz continuous) A function f : X ⊆ Rn → Rm is called
Lipschitz continuous if there exists a constant K ∈ R≥0 such that for all x, y ∈ XLipschitz continu-

ous

||f(x)− f(y)|| ≤ K ||x− y|| .

Definition 3.5 (Convex program) A convex program is an optimization problemConvex program

of the form

min f(x) (3.1)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , l

x ∈ X ⊆ Rn

where X is a convex set, f, g1, . . . , gm are convex and h1, . . . , hl are affine functions,
that is h := (h1, . . . , hl) is of the form h(x) = Ax− b for A ∈ Rl×n, b ∈ Rl.

A concave maximization problem aims to maximize a concave objective function f ′

over constraints which have the same form as the constraints in (3.1). We will not
distinguish between convex and concave optimization problems, as concave maxi-
mization problems can be solved with convex optimization methods by minimizing
(−f ′).

Definition 3.6 (Subgradient) Given a convex function f : Rn → R, a vector
d ∈ Rn is a subgradient of f at x ∈ Rn ifSubgradient

f(z) ≥ f(x) + (z − x)td ∀z ∈ Rn.

If instead f is a concave function, we say that d is a subgradient of f at x if (−d)
is a subgradient of the convex function (−f) at x. The set of all subgradients of a
convex (or concave) function f at x ∈ Rn is called the subdifferential of f at x.

Each subgradient is a non-descent direction. A convex (concave) function which is
differentiable at x ∈ Rn has exactly one subgradient at x, namely the gradient.

36

3.2 Lagrangian Relaxation and Duality

Definition 3.7 (Posynomial, monomial) A posynomial is a function f : Rn>0 →
R>0 of the form

f(x1, x2, . . . , xn) =
∑K

k=1 ckx
a1,k
1 · · ·xan,kn

Posynomial

with ck > 0 and ai,k ∈ R for all i = 1, . . . , n and 1 ≤ k ≤ K ∈ N. A monomial is a Monomial

posynomial with exactly one summand, i.e. K = 1.

Definition 3.8 (Geometric program) A geometric program is an optimization prob- Geometric
programlem of the form

min f(x) (3.2)

subject to gi(x) ≤ 1, i = 1, . . . ,m

hi(x) = 1, i = 1, . . . , l

xj > 0, j = 1, . . . , n

where f, g1, . . . , gm are posynomials and h1, . . . , hl are monomials.

Geometric programs can be transformed to convex programs by variable transfor-
mation yi = log xi. The objective function f is transformed to

f(x1, . . . , xn) = f(ey1 , . . . , eyn) =
K∑
k=1

ck (ey1)a1,k · · · (eyn)an,k .

The same transformation can be applied to the constraint functions. Note that
the equality constraints in (3.1) are affine, but after variable transformation the
monomial equality constraints of (3.2) are of the form ea

t
ky+bk = 1. This can

be resolved by taking the logarithm of all constraint functions and the objective
function. Afterwards, the objective and inequality constraint functions are still
convex, and the equality constraint functions are affine.

3.2 Lagrangian Relaxation and Duality

We focus on results for convex optimization problems, and consider a convex prob-
lem of the form (3.1). We refer to this problem as primal problem. We set Primal problem

g(x) := (g1(x), . . . , gm(x)) and h(x) := (h1(x), . . . , hl(x)).
Usually, constrained optimization problems are harder to solve than unconstrained
problems. A widely used approach is to relax the hard constraints and incorporate
them into the objective function with Lagrange multipliers: Lagrange

multiplier

Definition 3.9 (Lagrange function) The Lagrange function associated with problem Lagrange function

(3.1) is defined as

L(x, λ, µ) := f(x) + λtg(x) + µth(x),

with λ = (λ1, . . . , λm)t ∈ Rm and µ = (µ1, . . . , µl)
t ∈ Rl.

37

3 Convex Optimization

We refer to λi as the Lagrange multiplier associated with the i-th inequality con-
straint gi(x) ≤ 0, and similarly we refer to µj as the Lagrange multiplier associated
with the j-th equality constraint hj(x) = 0.Lagrange primal

problem

Definition 3.10 (Lagrange primal problem) We refer to the problem

inf
x∈X

L(x, λ, µ)

as Lagrange primal problem.

The Lagrange multipliers can be interpreted as variables of an auxiliary optimiza-
tion problem:

Definition 3.11 (Lagrange dual problem) The Lagrange dual problem is the opti-Dual problem

mization problem

sup D(λ, µ) := infx∈X L(x, λ, µ) (3.3)

subject to λ ≥ 0.

The dual function is concave, even if the primal problem (3.1) is not convex (cf.
Theorem 6.3.1 of Bazaara et al. [BSS06]). If the infimum of the Lagrange function
is unbounded in x, the value of the dual objective function is −∞. If the dual
problem is unbounded from above, the primal problem has no feasible solution.
We denote with f∗ the optimal value of the primal problem (3.1), and with D∗ thef∗, D∗

optimal value of the Lagrange dual problem (3.3). By definition, the value of D∗ is
the best lower bound on f∗ that can be obtained from the Lagrange dual function:

Theorem 3.12 (Weak duality) f∗ ≥ D∗.Weak duality

Definition 3.13 (Duality gap) The difference f∗−D∗ is referred to as duality gap.Duality gap

In general, f∗ and D∗ are not equal. Under certain conditions the duality gap
equals zero and an optimal solution for the primal problem can be found by solving
the dual problem, which is often easier to solve. If the duality gap equals zero, we
say that strong duality holds.Strong duality

Definition 3.14 (Strongly feasible solution) Consider the primal problem (3.1),
and let x ∈ X. We say that x is a strongly feasible solution if the following holds:Strongly feasible

solution

gi(x) < 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , l.

The Slater constraint qualification guarantees a zero duality gap if a strongly feasible
solution exists:

Theorem 3.15 (Slater’s condition) If there exists a strongly feasible solution x̂ ∈ X
for the primal problem (3.1), then strong duality holds. Furthermore, if f∗ is finite,Slater’s condition

D∗ is attained at (λ̂, µ̂) with λ̂ ≥ 0. If f∗ is attained at x̂, then λ̂tg(x̂) = 0.

38

3.2 Lagrangian Relaxation and Duality

A necessary and sufficient condition for strong duality is the existence of a saddle
point:

Definition 3.16 (Saddle point) (x̄, λ̄, µ̄) is called saddle point of the Lagrange Saddle point

function L(x, λ, µ) if x̄ ∈ X, λ̄ ≥ 0 and

L(x̄, λ, µ) ≤ L(x̄, λ̄, µ̄) ≤ L(x, λ̄, µ̄)

holds for all x ∈ X and all (λ, µ) with λ ≥ 0.

Theorem 3.17 (Saddle point optimality) A solution (x̄, λ̄, µ̄) with x̄ ∈ X and
λ̄ ≥ 0 is a saddle point for the Lagrange function L(x, λ, µ) if and only if Saddle point opti-

mality

• L(x̄, λ̄, µ̄) = minx∈X L(x, λ̄, µ̄),

• g(x̄) ≤ 0, h(x̄) = 0 and

• λ̄tg(x̄) = 0.

Furthermore, (x̄, λ̄, µ̄) is a saddle point if and only if x̄ and (λ̄, µ̄) are optimal
solutions to the Lagrange primal and dual problems, respectively, and strong duality
holds.

Corollary 3.18 Suppose there exists a strongly feasible solution for problem (3.1).
If x̄ is an optimal solution to the primal problem, then there exists (λ̄, µ̄) with λ̄ ≥ 0
such that (x̄, λ̄, µ̄) is a saddle point.

Definition 3.19 (Complementary slackness) Suppose that f∗ and D∗ are attained
by x̂ and (λ̂, µ̂), and that strong duality holds. Then Complementary

slackness

λ̂igi(x̂) = 0, i = 1, . . . ,m,

which implies that gi(x̂) = 0 if λ̂i > 0, and vice versa that gi(x̂) > 0 implies λ̂i = 0.

The Karush-Kuhn-Tucker (KKT) optimality conditions also play an important role
in optimization. For convex primal problems, the KKT conditions are sufficient for
the optimality of primal and dual solutions:

Definition 3.20 (Karush-Kuhn-Tucker-Point (KKT-point)) Assume that the func-
tions f, g1, . . . , gm, h1, . . . , hl in problem (3.1) are differentiable, and that x̄ is a
feasible solution. If there exists a dual feasible solution (λ̄, µ̄) such that

∇f(x̄) +
m∑
i=1

λ̄i∇gi(x̄) +
l∑

i=1

µ̄i∇hi(x̄) = 0,

λ̄igi(x̄) = 0, i = 1, . . . ,m,

then x̄ is called a Karush-Kuhn-Tucker-Point. Furthermore, x̄ is primal optimal, Karush-Kuhn-
Tucker-Point(λ̄, µ̄) is dual optimal, and strong duality holds.

39

3 Convex Optimization

An interesting relationship exists between the saddle point optimality conditions
and the KKT optimality conditions:

Theorem 3.21 (Karush, Kuhn, Tucker) If x̄ ∈ X is a KKT-point for dual feasible
(λ̄, µ̄), then (x̄, λ̄, µ̄) is a saddle point. Conversely, if (x̄, λ̄, µ̄) is a saddle point,KKT optimality

conditions then x̄ is a KKT-point.

The following results characterize subgradients of the dual function and show that
under certain conditions, the dual function is differentiable.

Theorem 3.22 Let X be a compact set, and let f, g1, . . . , gm, h1, . . . , hl be contin-
uous functions. Let

M(λ, µ) := {x ∈ X : x minimizes L(x, λ, µ)}.

If for dual feasible (λ̄, µ̄) the set M(λ̄, µ̄) contains only one element {x̄}, then
D(λ, µ) is differentiable at (λ̄, µ̄) with gradient ∇D(λ̄, µ̄) = (g(x̄), h(x̄))t.

Note that compactness of the set X is needed to ensure that M(λ, µ) is not empty.
If D(λ, µ) is not differentiable, each x̂ ∈M(λ, µ) yields a subgradient of D at (λ, µ):

Theorem 3.23 Let X be a compact set and f, g1, . . . , gm, h1, . . . , hl be continuous
functions. If x̂ ∈M(λ, µ) for dual feasible (λ, µ), then (g(x̂), h(x̂))t is a subgradient
of D(λ, µ).

The subdifferential is characterized by the following theorem:

Theorem 3.24 Let X be a compact set and f, g1, . . . , gm, h1, . . . , hl be continuous
functions. Then ξ is a subgradient of D(λ, µ) at (λ̂, µ̂) if and only if ξ is an element
of the convex hull of {(g(x), h(x))t | x ∈M(λ̂, µ̂)}.

3.3 Descent Methods for Constrained Optimization

In this section we discuss descent methods to optimize a convex function
f : Rm → R over a convex closed set X ⊆ Rm:

min f(x) (3.4)

subject to x ∈ X

Descent methods generate a series of feasible solutions (also called iterates), and
in each iteration step they advance in a direction of descent at the current iterate
with a certain step size. If f is differentiable, the negative gradient is the direction
of steepest descent. Otherwise subgradients, which are not necessarily a descent
direction, can be used. The literature on descent methods is vast. For constrained
optimization, i.e. X 6= Rm, methods can be divided into two classes: Either the
descent direction and the step size are chosen such that the next iterate belongs to

40

3.3 Descent Methods for Constrained Optimization

X (methods of feasible directions), or the iterates are projected to the constraint
set X after advancing in a direction of descent (projected or constrained methods).

Variants in both classes differ in their choice of step sizes, the computation of
descent directions, problem scaling etc. and give different convergence guarantees.

We give a short overview of methods which are suitable for our later application,
most notably the projected gradient method for f differentiable (in literature also
called constrained gradient method), and the conditional gradient method.

3.3.1 Projection Methods

Definition 3.25 Let X ⊆ Rm be convex, and z ∈ Rm. The orthogonal projection Orthogonal
projectionx0 of z onto X is the “closest” vector to z in X in the sense that

||z − x0||2 ≤ ||z − x||2 ∀x ∈ X.

We denote the orthogonal projection onto X with πX : Rm → X.

The Projected Gradient Method

Algorithm 3.1 shows the projected gradient method to solve problem (3.4) for f
differentiable. This method was first established by Goldstein [Gol64] and Levitin
and Polyak [LP66]. The choice of the step sizes ρ(k) ∈ R≥0 in each iteration
influences the convergence of the method. Projected gradient

method

Algorithm 3.1 Projected Gradient Method

Input: f : X → Rn convex, X ⊆ Rm convex
Output: x ∈ X

1: k ← 0
2: Choose starting point x(0) ∈ X
3: repeat
4: g(k) ← ∇f(x(k))
5: x(k+1) ← πX(x(k) − ρ(k)g(k))
6: k ← k + 1
7: until stopping criterion is satisfied
8: return x(k)

Usually, the stopping criterion is of the form
∣∣∣∣∇f(x(k))

∣∣∣∣
2
< ν for some small ν > 0.

In most implementations, the stopping criterion is checked immediately after the
gradient is computed.

Convergence of the Projected Gradient Method

Generally, convergence rates for Algorithm 3.1 are similar to those of the gradient
method. Convergence can be shown for several step size rules ρ(k), more precisely,

41

3 Convex Optimization

for a sequence {x(k)} generated by Algorithm 3.1, every limit point is station-
ary. Even if the step size is a constant, Algorithm 3.1 converges to a stationary
point if the gradient of f is Lipschitz continuous. Other rules are for example
the exact step size or the inexact Armijo rule, both of which repeatedly evaluate
f(πX(x(k) + ρ(k)g(k))) for several choices of ρ(k). The diminishing step size rule
fulfills

∑∞
k=0 ρ

(k) =∞, and ρ(k) approaches 0 for k tending to ∞.
We are also interested in the rate of convergence. Bertsekas [Ber99] (Section 2.3)
states that the convergence rates are similar to the convergence rates of the un-
constrained steepest descent method (X = Rn). Linear convergence results for the
projected gradient method are typically established under assumptions that the
objective function is strongly convex, twice differentiable and/or is the combina-
tion of a strongly convex function with an affine function, see for example Dunn
[Dun87]. For functions with Lipschitz continuous gradient, the convergence rate
depends linearly on

∣∣∣∣x(0) − x∗
∣∣∣∣, where x∗ ∈ X is an optimal solution, and the Lip-

schitz constant for certain step sizes. It is known that without further assumptions,
the worst-case rate of convergence can be sublinear. For general convex objectives
the convergence rate is, to the best of our knowledge, unknown.

The Projected Subgradient Method

The projected subgradient method solves problem (3.4) if f is not differentiable. ItProjected subgra-
dient method proceeds in a fashion very similar to that of Algorithm 3.1 except for the compu-

tation of a descent direction in line 4 of Algorithm 3.1 and the stopping criterion:
In each iteration, it proceeds in the direction of a subgradient, and its convergence
depends more heavily on the choice of a step size because a subgradient direction
is not always a descent direction. Additionally, the stopping criterion is of the form∣∣∣∣g(k)

∣∣∣∣
2
< η for some small η > 0, where g(k) is the subgradient in iteration k. The

following theorem establishes convergence:

Theorem 3.26 (Polyak [Pol67], Ermoliev [Erm66]) Let f : Rn → Rn be a convex
function, X ⊆ Rn a closed convex set so that either X is bounded or f(x) → ∞
for ||x|| → ∞. If the step sizes (ρk) ∈ RN

>0 are a zero sequence with
∑∞

k=0 ρk =∞,
then the projected subgradient method generates a sequence of feasible solutions that
has a subsequence tending to a minimum of f .

3.3.2 Feasible Directions and the Conditional Gradient Method

We assume that f is continuously differentiable. A feasible direction method starts
with a feasible vector x(0) ∈ X and generates a sequence of feasible iterates {x(k)}
with x(k+1) := x(k) + ρ(k)g(k). Thereby g(k) is a descent direction that is also a
feasible direction, i.e. x(k+1) ∈ X for all step sizes ρ(k) > 0 that are sufficiently
small, and ρ(k) is chosen accordingly.
Convergence to a stationary point can be shown for certain step size rules if each g(k)

is a descent direction. The conditional gradient method or Frank-Wolfe algorithm,Conditional gradi-
ent method which was developed by Frank and Wolfe [FW56], belongs to this class of methods.

42

3.4 Interior Point Methods

A new iterate x(k+1) is computed as a convex combination of the previous iterate
x(k) and a feasible descent direction. The factor of the descent direction in the
convex combination decreases in each iteration. The feasible direction is computed
by solving a minimization problem of the form

min ∇f
(
x(k)

)t (
x− x(k)

)
< 0

subject to x ∈ X.

In order to find a finite solution to the minimization problem, X has to be compact.

3.4 Interior Point Methods

We consider interior point (IP) methods for convex problems of the form (3.1) with
inequality constraints only (i.e. l = 0) and X = Rn. Interior point methods solve
linear and convex optimization problems in polynomial time. The first polynomial
time interior point method was developed by Karmarkar [Kar84] for linear pro-
gramming, and later generalized for convex programming. Many different variants
of this method exist, which all have in common that they traverse the interior of the
feasible region to find an optimal solution. For nonlinear programming, primal-dual
methods are increasingly popular (Forsgren et al. [FGW02]), and outperform the
barrier method on several problem classes including geometric programming (Boyd
and Vandenberghe [BV04]). We give a short description of the basic functionality.
The interior of the set which is defined by the inequality constraints is incorporated
into the objective function by means of a barrier function: This continuous function
is only defined on the interior of this set, and approaches infinity as any of the
inequality constraints approaches 0 from negative values. b(x) = −

∑m
i=1 ln(−gi(x))

is an example of such a barrier function.
Starting at a strongly feasible solution x, the barrier method iteratively solves
minx∈X(f(x) −

∑m
i=1(1/t) ln(−gi(x))), which approximates problem (3.1), with

Newton’s method for increasing t. It returns the solution from the last iteration.
Starting with a strongly feasible solution, primal-dual interior point methods itera-
tively step in a so-called primal-dual search direction with a certain step size. The
search directions are computed by solving a system of modified KKT-conditions
with Newton’s method, and are closely related to the search directions used in the
barrier method. In contrast to barrier methods, primal and dual variables, which
are defined as λi := −1/(t · gi(x)), are updated in each iteration.
Rather informally, the worst-case complexity is approximately proportional to the
number of Newton steps. The idea behind Newton’s method is to approximate the
objective function by a quadratic function, and then take a Newton step towards the
minimum or a saddle point of the quadratic function. The Newton step is defined
as the negative of the gradient multiplied with the inverse of the Hessian matrix. It
is necessary to compute the first and second derivative of the barrier function, and
solving the Newton system has complexity O(n3) in general (Nemirovski [Nem04]).

43

4 Gate Sizing and Vt Optimization

A key challenge in the physical design of a computer chip is to choose a layout
for each gate. Thereby the most common objectives are to minimize the power
consumption or area of the chip subject to constraints on the speed of the electrical
signals. The most influential characteristics of a gate are its size and Vt level, and
we refer to the problem of choosing a layout as gate sizing and Vt optimization
problem. With the continuing technology scaling and growing transistor count,
gate sizing and Vt optimization have become increasingly important (cf. Section
2.1). Additionally, both characteristics have large impact on signal delays and
electrical integrity, and a good choice is essential to achieve timing closure. Often,
gate sizing and Vt optimization are treated separately.

Optimization is deployed at several stages during the physical design flow. Be-
sides the versatility of the objective function, both operations are less disruptive
than changing the placement of circuits or rerouting nets to fix timing constraint
violations, especially in later design stages. The most common application area is
in the timing optimization step. At this point, registers, in particular their sizes,
have usually been fixed along with the clock net routing, and changing them would
require rerouting the clock net. Therefore most algorithms consider only logic gates
for optimization. Often gate sizing is performed incrementally and in combination
with other algorithms for timing optimization, for example repeater insertion and
timing-driven detailed placement.

The application range for sizing and Vt optimization further contains post-routing
optimization, where only small changes should be made, and gate sizing that takes
place after an initial placement, but before the clocks are fixed. Simplified delay
models are used in that early stage.

Having analyzed the power consumption of a gate in Section 2.1, we discuss the
dependency of signal delay on gate layouts in Section 4.1. We continue with a formal
definition of the gate sizing problem, its continuous relaxation and the geometric
program formulation (Section 4.2 - 4.4). In the continuous relaxation, gate sizes
are restricted to intervals. The Vt optimization problem is introduced in Section
4.5. Afterwards, we review existing literature on the computational complexity of
these problems (Section 4.6) and previous work (Section 4.7). Common approaches
can be divided into continuous and discrete approaches. Continuous approaches
target the continuous relaxation of the gate sizing problem, which is solvable in
polynomial time and both of practical and academic interest. Several algorithms
round a continuous solution to a discrete solution. We address the complexity of
rounding in Section 4.8, and draw comparisons between discrete and continuous
approaches in Section 4.9.

45

4 Gate Sizing and Vt Optimization

4.1 Delay Characteristics of Gate Sizes and Vt levels

Gate Sizes

The most influential characteristic of a gate is its size. Modern libraries usually
contain between ten and twenty different sizes for each elementary logic function
which differ in their transistor widths. The number of sizes for registers is usually
smaller. Figure 4.1 shows simplified layouts for an inverter gate. Each layout real-
izes a different size by varying the transistor widths. For larger sizes, the transistors
must be folded which in turn increases the width of the inverter gate. Gates belong
to the class of so-called standard circuits which have in common that they need to
fit in the cell rows between the Vdd and V0 rails, and only vary in their widths. For
details on transistor layout of circuits we refer to Schneider [Sch14].

Input Output

Vdd

V0

p-type transistor

n-type transistor
Width

Width

. .

Figure 4.1: Different layouts for an inverter gate realizing different sizes as seen
from above. In the layout on the right the transistors have been folded
to fit into the gate. Note that the ratio between the sizes of n-type and
p-type transistors usually varies.

A larger size has higher drive strength and allows faster charging and discharging
of load capacitances. It accelerates a voltage change at the output pin of a circuit,
and decreases the outgoing slew. On the downside, a larger size requires more area
on the chip and consumes more total power than a smaller size due to larger input
pin capacitances. Consequently, delay and slew of signals entering the input pin,
which are also propagated to sibling circuits, deteriorate.

Vt Level

The threshold voltage, or Vt level, defines the voltage at which a gate switches.
Usually, only three or four Vt levels are available for each gate (cf. Section 2.1).

46

4.1 Delay Characteristics of Gate Sizes and Vt levels

The highest Vt level corresponds to the highest threshold. Lowering the Vt level
of a gate accelerates signals, as the gate can switch earlier and thereby propagate
signals faster. The impact of Vt level changes on input pin capacitances, and hence
the impact on delay of input signals, is relatively small and usually neglected.

Beta Ratio and Tapering

Two more important characteristics of a gate that influence signals delays are its
beta ratio and tapering. The beta ratio of a gate is the ratio of the sizes of its n- Beta ratio

type and p-type transistors. Changing the ratio either accelerates the rising or the
falling signal. Tapering can be applied to gates with more than one input pin that Tapering

contain serially arranged transistors. Thereby the relative sizes of serially arranged
transistors are modified with the aim to improve the delay of certain propagation
segments in the gate. In this thesis we focus on optimizing sizes and Vt level.

Common Concepts

Both gate sizing and Vt optimization contain the task to choose layouts that re-
alize a good tradeoff between power consumption or area, and signal speed. Vt
optimization is easier than gate sizing in the sense that increasing the power or
area consumption more predictably leads to a delay decrease and vice versa, as the
impact on input pin capacitances is relatively small. The same is not always true
for gate sizing, because larger sizes can slow down predecessor and sibling gates
and increase the sum of delays. This can be disadvantageous, as the sum of delays
on each path in the timing graph needs to be small enough in order to fulfill the
timing constraints.

Gate sizing and Vt optimization are two separate optimization problems in VLSI
design, but there is a tendency to handle them simultaneously. In this thesis we
focus on theory and algorithms for gate sizing that can easily be extended to incor-
porate Vt optimization, for example the Lagrange relaxation approach. Heuristic
subroutines that evaluate the impact of changing a gate layout on signal delays
locally are often used in these algorithms. As changing the Vt level causes less dis-
ruption locally than changing the size, it is often easy to extend sizing algorithms
to incorporate Vt optimization.

This could also lead to the assumption that changing the Vt level of a gate is
preferable to changing its size. On the contrary, the exponential dependency of
static power consumption on the Vt level makes changing the size more preferable
in many situations. Having said that, lowering the Vt level can be preferable to
increasing the gate size, for example if a signal needs to be accelerated, but a larger
size would introduce a load or slew violation at its predecessors or would slow down
the input signal. Handling gate sizing and Vt optimization simultaneously has the
advantage that the better provision can be taken in each situation.

47

4 Gate Sizing and Vt Optimization

4.2 The Gate Sizing Problem

Let size(b) denote the size of a book b ∈ B, and vt(b) its Vt level. Similarly, we usesize(b), vt(b)

size(g) and vt(g) to denote the size and Vt level of gate g ∈ G, which equals thesize(g), vt(g)

size and Vt level of the book φ(g) implementing g.

We assume that the set of books Bg available for g ∈ G contains a book for each
combination of size and Vt level, which is reasonable in practice. Let BV=vt

g ⊂ Bg beBV=vtg

the set of available books with Vt level 0 < vt < Vdd. If it is clear from the context
that the Vt level is fixed, as in this section, we use Bg and BV=vt

g synonymously.

Dynamic and static power consumption, and thus total power consumption, of a
gate scale approximately linear with its size (cf. Section 2.1). Gate sizes differ in the
widths of the transistors, hence the same holds for the area of a gate. We will model
the total power consumption of all gates with a linear cost function cost : B → R≥0

of the formcost(b)

cost(b) := αf(b) · size(b), b ∈ B (4.1)

that can also represent other objectives like static or dynamic power consumption or
total gate area by varying the factor αf(b) ∈ R>0. The factor αf(b) further depends
on the function f(b) that is implemented by b, and of course on the technology of
the underlying design. This mapping can be extended to a mapping cost : G → R≥0

with cost(g) = cost(φ(b)).cost(g)

Gate Sizing Problem

Instance:

• Physical design instance consisting of

– a chip image I
– a netlist (C,P, γ,N), and

– a circuit library B.

• Timing constraints and timing rules.

• An objective function cost : B → R≥0.

Task: Find a size for each gate, i.e. a mapping φ : G → B with φ(g) ∈
Bg such that ∑

g∈G
cost(φ(g))

is minimized and all timing constraints are fulfilled.

48

4.3 The Continuous Relaxation of the Gate Sizing Problem

The delay-minimizing variant of the gate sizing problem aims to optimize the worst
design slack subject to a constraint on total power consumption, and is referred to
as the delay-minimizing gate sizing problem.

We fix an ordering of the gates in G as g1, . . . , gn with n ∈ N and introduce a
discrete size variable xi for each gate gi ∈ G. Let each book b ∈ Bgi be associated xi

with a real number (its “size”) which allows us to represent Bgi by a finite discrete
set Xi

disc ⊂ R, i.e we have a bijective mapping Xi
disc

Bgi → Xi
disc.

The discrete set of feasible gate size vectors is defined as Xdisc

Xdisc := {x = (x1, . . . , xn)t : xi ∈ Xi
disc}. (4.2)

We get back to the discrete size variables at the end of Section 4.4.

4.3 The Continuous Relaxation of the Gate Sizing Problem

By nature, the gate sizing problem is a discrete problem since the circuit library only
offers a discrete set of implementations for each gate. Even so, it can be formulated
as a continuous problem by restricting gate sizes to intervals and approximating
signal delays and slews. The continuous relaxation of the gate sizing problem is
both of academic and practical interest. For example, it can be formulated as a
geometric program (see Section 4.4) and solved in polynomial time with interior
point methods, but is hard to tackle because of the huge instance sizes occurring
in practice. It poses a challenge for researchers because for instance sizes of this
magnitude, standard geometric program solvers fail, see Joshi and Boyd [JB08].

The continuous sizing problem appeared in literature first in the context of transis-
tor sizing, and until the early 1990’s most research focused on this formulation. Still
today some practical approaches are guided by a continuous solution, for example
by applying a rounding step in the end to get discrete sizes as proposed by Hu et
al. [HKH09] and Xie and Chen [XC15].

We introduce a continuous size variable ξg for each gate g ∈ G, and restrict each ξg

ξg to an interval Ĩg = [ιg, µg] ⊂ R . The vector of all gate sizes is denoted by Ĩg = [ιg , µg]

ξ = (ξ1, . . . , ξn), where we use the previously fixed ordering of the gates. Let
further Ξ

Ξ := {ξ ∈ Rn : ιgi ≤ ξi ≤ µgi , gi ∈ G} (4.3)

be the set of all feasible continuous gate size vectors.

Power consumption of a gate scales approximately linear with its size, and we can
naturally extend the cost function cost(x) of the discrete problem to a function
cost : Ξ→ R≥0 with

49

4 Gate Sizing and Vt Optimization

cost(ξ) :=
n∑
i=1

cost(ξi) := αi · ξi.

with αi := αf(φ(gi)) for gate gi (see also (4.1). The timing constraints on signalcost(ξ)

arrival times do not change in the continuous formulation. Under the assumption
that signal delays can be approximated we obtain:

Continuous Gate Sizing Problem

Instance:

• A physical design instance.

• Timing constraints.

• A linear objective function cost : Ξ→ R≥0.

Task: Find a mapping φ′ : G →
⋃
gi∈G Ĩgi with φ′(gi) ∈ Ĩgi such that

n∑
i=1

cost(φ′(gi))

is minimized and all timing constraints are fulfilled.

When signal delays and the objective function are approximated by posynomials,
the continuous relaxation can be formulated as a geometric program.

4.4 Convex Program for the Continuous Relaxation

The benefit of a geometric program formulation is that it can be solved in polyno-
mial time using for example interior point methods. The first posynomial formula-
tion for transistor/gate sizing was introduced by Fishburn and Dunlop [FD85] and
formed the basis for subsequent formulations of the gate sizing problem as geomet-
ric program. Recall from Section 3 that in order to get a geometric program, the
objective function and the inequality constraints need to be formulated as posyn-
omials. The objective function is of the form cost(x) =

∑n
i=1 αiξi, which already

is a posynomial. Edge delays can be expressed as posynomials by modeling gates
and nets as RC-circuits under the Elmore delay model.

4.4.1 Posynomial Delay Models

We model wires and gates likewise as RC-circuits and use the Elmore delay model
to compute the actual delays following Shyu et al. [Shy+88] and Chen, Chu and
Wong [CCW99]. Figure 4.2 shows a 2-input gate gi ∈ G and its representation by

50

4.4 Convex Program for the Continuous Relaxation

capgi

capgi

resgi

Figure 4.2: An AND gate and its switch-level RC circuit model: It contains a ca-
pacitance element capgi for each input pin, and an output resistor resgi .

two capacitors (one for each input pin) and one resistor. To simplify notation, all
input pin capacitances are assumed to be equal. Let ξi be the size of gi. We have

resgi := r̃esgi/ξgi , and

capgi := c̃apgi · ξgi + f̃gi

for the resistance resgi and the capacitance capgi of gi, where r̃esgi , c̃apgi and f̃gi
are gate type specific constants denoting the unit size output resistance, the unit
size gate capacitance and the gate perimeter capacitance of gi, respectively. Wire
segments are modeled by a resistor enclosed by two capacitors. We assume wire
resistances and capacitances (i.e. wire lengths) to be constant because the impact
of gate sizing on wire lengths is marginal. Consequently, load capacitances only
depend on the sizes of the gates in the design, and the same holds for the delay and
slew functions for all edges in the timing graph if we assume input slews at timing
start points to be constant.

Recall from Section 2.5.3 that for each e = (v, w) ∈ E there is a delay function for
each transition and each signal traversing e. For simplicity of notation we assume
from now on that the delay for rising and falling transitions do not differ, and that
there exists only one phase, i.e. we do not distinguish between signals originating
from different timing start points. For e ∈ E let delay′e(ξ), ξ ∈ Ξ

delay′e : Ξ→ R≥0 (4.4)

be the delay function for e that only depends on the gate sizes.

Now let e = (v, w) ∈ E and let N ∈ N be the output net of gate g with wire
capacitance wirecap(N). If e is an edge traversing gate g, we have

delay′e(ξ) :=
r̃esg
ξg

 ∑
g′∈succ(g)

c̃apg′ξg′+

wirecap(N) +
∑

w′∈Vend∩succ(w)

pincap(w′)

 , (4.5)

51

4 Gate Sizing and Vt Optimization

where ξ is the vector of gate sizes and pincap(w′) is constant for w′ ∈ Vend. Other-
wise, if e is a wire edge, its delay is the Elmore delay (2.25) from Section 2.5.6 and
can also be expressed as a function depending on the gate sizes:

delay′e(ξ) :=
∑

e′=(p,q)∈S[v,w]

rese′
(cape′

2
+ loadq(ξ)

)
, (4.6)

where loadq(ξ) is the capacitance of all wire segments in the Steiner tree S realizing
N plus the capacitances of all sink pins of N that are reachable from q. The sink
pin capacitances depend linearly on the sizes of the sink gate or, if they are timing
output pins, are constant.

In reality the delay through a gate edge is a concave function of the load capaci-
tance for constant input slew, and not linear as in (4.5). Furthermore, slews are not
considered in this model which tags it as rather inaccurate. Several variants with
higher accuracy have been proposed that incorporate for example slews, intrinsic
circuit capacitances, rising and falling signal transitions etc. We refer to the tu-
torial on geometric program-based gate sizing by Boyd et al. [Boy+05] for a more
comprehensive overview and references.

4.4.2 Simplifying the Timing Constraints

Recall that the timing constraints require that for each path P in the timing graph,
the signal needs to arrive on time at its endpoint p, i.e.

atq +
∑
e∈P

delay′e(ξ) ≤ ratp

for all paths P in G with required arrival time ratp at its endpoint, and arrival time
atq at its start point. This formulation is impractical as the number of paths in G
depends exponentially on the number of vertices in G. However, the constraints can
be partitioned into constraints on delay across the edges by introducing for each
v ∈ V an arrival time variable av ∈ R for the signal arrival time. For v ∈ VstartArrival time vari-

able av we fix av := atv and for v ∈ Vend we fix av = ratv, where atv and ratv are the
prescribed signal arrival times and required arrival times, respectively. This leads
to the following formulation of the timing constraints:

av + delay′e(ξ) ≤ aw ∀ e = (v, w) ∈ E. (4.7)

Remark 4.1 Note that this simplification is independent of the delay model, and
also holds for discrete size variables. Transition times and more than one phase can
be considered by introducing multiple constraints for each edge.

52

4.4 Convex Program for the Continuous Relaxation

4.4.3 The Geometric and the Convex Program

With the posynomial delay approximations and the simplified timing constraints
we arrive at the geometric program formulation of the continuous relaxation:

Geometric Program for the gate sizing problem

min cost(ξ)

subject to av + delay′e(ξ) ≤ aw ∀ e = (v, w) ∈ E
ξ ∈ Ξ

(4.8)

We transform the geometric program into a convex program by variable transfor-
mation xi = log(ξi) for all i = 1, . . . , n (cf. Section 3.1). Let Xcont

Xcont := {x ∈ Rn : li := log(ιi) ≤ xi ≤ ui := log(µi), i = 1, . . . , n}, (4.9)

denote the set of feasible sizes after variable transformation, and Ic := [lc, uc] ⊂ R. Ic = [lc, uc]

We denote the resulting convex delay functions with delaye(x) for x ∈ Xcont, and delaye(x)

formulate the convex program:

Convex program for the gate sizing problem

min cost(x) :=
n∑
i=1

αie
xi

subject to av + delaye(x) ≤ aw ∀ e = (v, w) ∈ E
x ∈ Xcont

(4.10)

cost(x)

In the remainder of this thesis we will assume that the objective function and all
delay functions are convex functions of load capacitance and input slew and do not
elaborate on the underlying posynomial delay model.

Recall that we have a bijection between Bgi and the set Xi
disc for each gi ∈ G.

To simplify notation in the following chapters, we assume Xdisc ⊂ Xcont and
size(gi) = exi holds for xi ∈ Xi

disc. We denote the cost induced by size xi with
cost(xi) := αie

xi . cost(xi)

Remark 4.2 (Additional constraints) Note that other constraints are also compat-
ible with the geometric program formulation, for example constraints on maximum
load capacitances of primary input pins, or slew. We refer to Section 6.6 and the
tutorial of Boyd et al. [Boy+05] for an overview.

53

4 Gate Sizing and Vt Optimization

4.5 The Vt Optimization Problem

We already established that Vt optimization is easier than gate sizing in the sense
that the impact of changing the Vt level of a gate on delay of entering signals is
smaller: Input pin capacitances only change due to variation in fabrication material
or oxide thickness. In practice, algorithms targeting Vt optimization often neglect
these changes, which are roughly 10% between two Vt levels (Held [Hel08]). Conse-
quently, signals entering the gate are hardly affected, whereas outgoing signals are
accelerated due to a smaller slew. In contrast to gate sizing, a power increase more
predictably leads to a delay decrease, and vice versa.

Vt optimization usually targets static power minimization subject to timing con-
straints. A less common formulation is to minimize the longest path delay (maxi-
mize the worst design slack) subject to a constraint on static power consumption.
In this thesis we focus on the first variant. An exponential function costvt : B → R
of the formcostvt(b)

costvt(b) := δf(b) · e−vt(b), b ∈ B (4.11)

describes the objective. The factor δf(b) depends on the logic function f(b) that is
implemented by b and of course the technology of the underlying design. This map-
ping can be extended to a mapping costvt : G → R≥0 with costvt(g) = costvt(φ(g)).

Vt optimization problem

Instance

• Physical design instance.

• Timing constraints and timing rules.

• An exponential objective function costvt : B → R≥0.

Task Find a Vt level for each gate, i.e. a mapping φ : G → B with
φ(g) ∈ Bg such that ∑

g∈G
costvt(φ(g))

is minimized and all timing constraints are fulfilled.

Connection with the Discrete Time-Cost Tradeoff Problem

Vt optimization is closely connected to the well-known discrete time-cost tradeoff
problem, which originally comes from project scheduling:

54

4.5 The Vt Optimization Problem

discrete time-cost tradeoff problem

Instance

• Acyclic digraph H = (V (H), E(H)).

• Discrete set of edge delays delaye ⊂ R for all e ∈ E(H).

• A cost function coste : delaye → R for all e ∈ E(H).

• a) Deadline D ∈ R≥0 or b) Budget B ∈ R≥0.

Task Choose an edge delay ye ∈ delaye for each e ∈ E(H) such that

a) cost(y) :=
∑

e∈E(H)

coste(ye) is minimized subject to

T (y) := max
P∈P(H)

∑
e∈P

ye ≤ D, or

b) T (y) is minimized subject to cost(y) ≤ B,

where P(H) denotes the set of all paths in H.

The discrete time-cost tradeoff problem is well-studied in literature and was shown
to be NP-hard. Under the simplifying assumption that each gate can be modeled
by one edge, and wire delays are considered as constant, Vt optimization can be
regarded as discrete time-cost tradeoff problem.

Wittke [Wit13] proposed to model Vt optimization as a variant of the discrete time-
cost tradeoff problem that takes several edges within a gate into account. This
problem was also shown to be NP-hard.

The gate sizing problem can be regarded as a harder variant of the discrete time-
cost tradeoff problem, where the sets of available edge delays depend on the current
delay assignment of other edges, as the size of a gate also affects the delay of other
gates. As a matter of fact, most hardness results for the gate sizing problem arise
from modeling it as a discrete time-cost tradeoff problem with simplified delay
models that do not take these delay dependencies into account.

Vt Optimization and the Geometric Program

Vt optimization can be incorporated in the geometric program (4.8), see for example
Boyd et al. [Boy+05] and Chou et al. [CWC05]. However, Vt optimization is a highly
discrete problem in the sense that only a very small amount of feasible options is
available for each variable. Therefore it is even more difficult to force the problem
into a continuous framework, and the geometric program approach combined with
a rounding step has hardly been used in practice. For this reason, we do not include

55

4 Gate Sizing and Vt Optimization

Vt optimization in the theoretical discussions on gate sizing algorithms based on
the convex program formulation.

4.6 Computational Complexity

Having established that all complexity results for the discrete time-cost tradeoff
problem can be transferred to the gate sizing problem and Vt optimization, we also
consider results published in the project scheduling context.

The discrete time-cost tradeoff problem was shown to be strongly NP-hard and the
corresponding decision problem to be strongly NP-complete by De et al. [De+97].
Deineko and Woeginger [DW01] prove that the discrete time-cost tradeoff problem
is APX-hard, and consequently no polynomial time approximation scheme exists
unless P=NP. The problem is at least as hard to approximate as the vertex cover
problem and therefore cannot be approximated within a factor of 1.3606 unless P=
NP, see Dinur and Safra [DS05] and Grigoriev and Woeginger [GW04]. Recently,
it was even shown to be NP-hard to approximate within any constant under the
Unique Games Conjecture by Svensson [Sve13].

Independently, the gate sizing problem was shown to be strongly NP-hard by Li
[Li94], and therefore no pseudo-polynomial algorithm exists unless P=NP. The au-
thor employed a simplified delay model, where the delay of each gate is independent
of its load capacitance and wire delays are ignored, which essentially yields the dis-
crete time-cost tradeoff problem. Earlier, Chan [Cha90] established NP-hardness
under a similar delay model in tree networks, and provided a pseudo-polynomial
algorithm for this special case. An even stronger result from Li et al. [Li+93] states
that gate sizing is already NP-hard for networks consisting of a single chain un-
der this delay model. The authors provided a pseudo-polynomial algorithm for
series-parallel graphs.

Under the unrealistic assumption that the size of antichains in the timing graph is
bounded by a constant, Liao and Hu [LH11] provide a fully polynomial approxima-
tion scheme for the delay-minimizing gate sizing problem under the Elmore delay
model. So far, this result has not been extended to general graphs that are prevalent
in practice, or to the gate sizing problem.

Approximation algorithms for the gate sizing problem might exist for special cases
or simplified delay functions, but for Elmore delay and more complex delay models
no approximation algorithms are known.

4.7 Previous Work

Common approaches for the gate sizing problem can be roughly divided into discrete
and continuous methods. Continuous methods assume gate sizes to be continuous,
and are content with a continuous solution or apply a rounding step in the end.
Discrete approaches tackle the discrete problem directly. A comprehensive intro-
duction to gate sizing and Vt optimization and existing work can for example be

56

4.7 Previous Work

found in Lee and Gupta [LG12].

Until recently, it was hard to compare different algorithms because experimental
results were often generated on industrial designs that were not publicly available.
We start with a brief overview over public benchmarks:

4.7.1 Industrial Benchmarks

The need for publicly available and realistic benchmarks to compare different meth-
ods for gate sizing and Vt optimization was addressed by the organizers of the first
ISPD 2012 Gate Sizing Contest (Ozdal et al. [Ozd+12]). The benchmark suite
contains 14 designs with a realistic standard circuit library and static power infor-
mation. The benchmarks from the ISPD Gate Sizing Contest 2013 by Ozdal et al.
[Ozd+13] constitute a further improvement in this area: Compared to the 2012 con-
test, these benchmarks now provide a realistic distributed RC model for wires. The
largest benchmark chip consists of almost 900000 gates plus latches with fixed size.
As in the previous contest benchmarks, the input consists of a realistic standard
circuit library, and a netlist with timing constraints. The primary objective is to
satisfy all timing constraints, while minimizing the static power consumption. Note
that for each gate different Vt levels are available, and also Vt optimization needs
to be incorporated in an algorithm to achieve timing closure. The 2013 bench-
marks are harder in the sense that more near-critical paths exists even in well-sized
situations.

Apart from the ISPD benchmarks there have been other attempts to construct
benchmarks that enable a classification of existing algorithms. The ISCAS bench-
mark suite by Brglez and Fujiwara [BF85] was often used for comparison, but the
largest chip in this suite contained less than 4000 gates, whereas state-of-the-art
chips contain up to several million gates. Gupta et al. [Gup+10] present the “Eye-
chart” benchmark suite that can be optimally sized with dynamic programming,
but the circuit topologies are not realistic and gate timing is independent of slew.
Kahng and Kang [KK12] use a similar strategy to construct benchmarks with more
realistic topologies, but with a simplified delay model that is independent of slews.
An optimal solution can be found with dynamic programming.

4.7.2 Continuous Approaches

Geometric Program Based

The mathematically best founded approaches rely on the geometric program formu-
lation. A posynomial-based formulation was first presented by Fishburn and Dunlop
[FD85] for the transistor sizing problem with the Elmore delay model [Elm48] for
transistor delays. Sapatnekar et al. [Sap+93] were the first to compute exact so-
lutions for the transistor sizing problem with a general-purpose solver for convex
programs under a variant of the Elmore delay model. Kasamsetty et al. [KKS00]
proposed a more accurate posynomial delay model for gate delays than the El-
more delay model, and applied the same optimization approach as Sapatnekar et

57

4 Gate Sizing and Vt Optimization

al. [Sap+93]. General-purpose solvers for geometric programs usually implement
interior point methods with polynomial running time. Unfortunately, interior point
methods consume significant memory and running time which makes them unsuit-
able for large instance sizes as they occur in gate sizing. The largest instance sizes
reported to be solved (Joshi and Boyd [JB08]) come from gate sizing and contain
up to 100000 gates. The authors reported that for larger instance sizes their cus-
tomized geometric program solver, which implements a primal-dual interior point
method, failed to provide a solution. Additionally, running times were expensive
(“tens of hours”). The authors further developed a truncated Pseudo-Newton ap-
proach that allowed them to tackle larger instance sizes of up to one million gates.
Unfortunately, they could not give any theoretical bounds on the quality of their
solution, and they could only establish optimality of their solutions for the smaller
instances by comparison with a customized geometric program solver.

Additionally, the geometric program for gate sizing was tackled by several re-
searchers using standard solvers as well as custom methods under different posyn-
omial delay models. For example, Menezes et al. [MBP97] applied sequential
quadratic programming and approximated the objective function by a quadratic
function, and the constraints by linear functions.

Boyd et al. [Boy+05] provide a tutorial on the geometric program formulation
and show how more constraints and objectives such as supply voltage and Vt level
optimization can be included in the geometric program.

Lagrangian Relaxation

Marple [Mar89] proposed to relax the timing constraints of the transistor sizing
problem with Lagrange multipliers. He applied the Lagrangian augmentation tech-
nique, where an extra penalty term is added to the Lagrange function to steer the
solution towards the feasible region.

Chen et al. [CCW99] give a thorough introduction into Lagrange relaxation for
the gate sizing problem. They show that the Lagrange function can easily be
simplified when the Lagrange multipliers are restricted to the non-negative network
flow space, in other words they fulfill the flow conservation rule at all vertices
v ∈ V \ {Vstart ∪ Vend}. This is not possible with the Lagrangian augmentation
technique. The projected subgradient method solves the dual problem, and in
each iteration a greedy algorithm for the Lagrange primal problem computes a new
subgradient. The Lagrange multiplier projection to the non-negative flow space can
be formulated as quadratic cost flow problem and is solvable in polynomial time.
Chen et al. [CCW99] observed that exact projection dominated the running time of
their algorithm and used a heuristic projection step instead. Further constraints,
for example on clock skew, can easily be incorporated into the geometric program
and be relaxed by Lagrange multipliers. The approach can be extended to more
accurate posynomial delay models, see for example Rahman et al. [RTS11]. The
fact that the duality gap is zero if a strongly feasible solution for the geometric
program exists further encourages its use. The work of Chen et al. [CCW99] is the

58

4.7 Previous Work

groundwork for Lagrange relaxation based algorithms for both the continuous and
the discrete problem. Wang et al. [WDZ07] provide further theoretical analysis on
this formulation, and show that the dual objective function is differentiable, allowing
the use of the projected gradient method. The Lagrange relaxation approach,
related subproblems and extensions will be discussed in detail in Chapter 6 and
Chapter 7.

Linear Programming and Network Flows

The simplest model of the continuous relaxation linearizes the delays and the objec-
tive function (Berkelaar and Jess [BJ90], Chinnery and Keutzer [CK05]). Nguyen
et al. [Ngu+03] use a linear program to distribute slacks to the gates in the design,
and realize these targets with gate sizing and Vt assignment. Vygen [Vyg01] and
Ren and Dutt [RD08; RD13] model gate sizing as slightly different minimum-cost
network flow problems. Available sizes and their costs are encoded in a graph, and
the flow indicates which sizes are used in an optimal solution.

Continuous-guided

Continuous-guided approaches compute an optimal continuous solution and use it as
a basis for further optimization. However, rounding a continuous solution is not an
easy task and the literature on rounding is sparse. It was observed in practice that
choosing the “closest” discrete solution can lead to large timing violations, see for
example Hu et al. [HKH09] and Rahman et al. [RTS11]. To overcome this problem,
Hu et al. [HKH09] propose to evaluate several discrete sizes close to the continuous
solution with dynamic programming. The gates are traversed via breadth-first
search, and several sizing solutions are propagated for each gate. Solutions are
pruned based on path delays and area consumption. In the branch-and-bound
approach of Rahman et al. [RTS11], the solution set for each gate consists of a set of
sizes close to the continuous solution. Chuang et al. [CSH95] take a linear program
solution and allow the next smaller and next larger size as option for each gate.
Gates already set to their minimum size are not changed, but for the remaining gates
all allowed options are enumerated. This yields near-optimal results, indicating
that the sizes in an optimal discrete solution are not necessarily the closest to
the continuous solution. Wu and Davoodi [WD08] employ a branch-and-bound
algorithm to compute optimal discrete gate sizes, and consider solutions obtained
by different rounding strategies for comparison. They conclude that rounding to
the closest discrete solution yields large timing violations, which are then fixed by
iteratively increasing gate sizes. This comes with an objective function increase
by up to 51%. A branch-and-bound technique with a restricted feasible set that
consists of the next smaller and the next larger gate size returned solutions with
objective function values that are only 0.7% larger than in the optimal solution in
average. A recent paper of Xie and Chen [XC15] presents a modified Elmore delay
model for the ISPD 2012 benchmarks. A continuous solution is computed with

59

4 Gate Sizing and Vt Optimization

a Lagrangian relaxation based algorithm, and nearest rounding combined with a
postoptimization step returns a discrete solution. Shah et al. [Sha+05] propose a
novel formulation for continuous sizing and Vt optimization that models different
Vt levels for a gate as a single circuit which is a parallel combination of the high
and low Vt gate. Without constraints on the gate sizes, the Vt levels are all set to
a feasible discrete value in an optimal solution.

Farshidi et al. [Far+13] regard gate sizing as a multi-objective optimization prob-
lem with objectives power, area and delay minimization. The objective of their
geometric program formulation is the weighted sum of conflicting objectives for
gate sizing, and the weights are also regarded as variables.

4.7.3 Discrete Approaches

Discretized Lagrangian Relaxation

The Lagrange relaxation approach can easily be discretized by solving a discrete
primal problem. However, this leads to a gradient with error in each iteration of
the projected subgradient method. As there exists no approximation algorithm for
minimizing the Lagrange function over a discrete set, the magnitude of this error
is unknown and consequently, no convergence guarantees exist for this approach.

Nonetheless, discretized Lagrange relaxation was employed in several gate sizing
algorithms, for example by the winning algorithm of the ISPD 2013 Gate Sizing
Contest (Ozdal et al. [Ozd+13]), see Flach et al. [Fla+14]. Heuristic variants of the
subgradient method to solve the dual problem were proposed by Tennakoon and
Sechen [TS08], Huang et al. [HHS11], Ozdal et al. [OBH12] and Livramento et al.
[Liv+14]. An advantage of this approach is the easy integration of Vt optimization
and other timing constraints. A recent paper by Roy et al. [Roy+15] optimizes
power consumption for multiple operating conditions of a chip based on discretized
Lagrangian relaxation for gate sizing and Vt optimization. The first multi-threaded
version is described in Sharma et al. [Sha+15] and achieves average speedups of
5.23x with 8 threads compared to a sequential implementation.

We refer the reader to Chapter 6 and Chapter 7 for more details on discretized
Lagrange relaxation.

Sensitivity-based Heuristics

Lagrange relaxation is often combined with local search heuristics or dynamic pro-
gramming algorithms for fine-tuning and to further improve path delays and the
objective function value, see for example Livramento et al. [Liv+14] for a recent
work. Local search heuristics iteratively size gates or change their Vt level, often
in the order of their sensitivity to changes. The basic idea behind the sensitivity
computation is to first optimize those gates that have a large impact on overall
timing, and to achieve a good tradeoff between sometimes conflicting objectives
like power consumption and worst slack or SNS optimization. This idea was first

60

4.7 Previous Work

implemented in the TILOS algorithm (Fishburn and Dunlop [FD85]), and since
then many variants have been developed.
Heuristic algorithms were also proposed as stand-alone flows. For example, the
algorithm of Schietke [Sch99] iteratively chooses an operation that realizes a good
tradeoff between objective function and costs. Changing the size of a gate is a pos-
sible operation. Different objective functions and costs are considered, for example
power consumption and signal delay.
The heuristic gate sizing flow of Hu et al. [Hu+12] consists of two stages: global
timing recovery and power reduction with feasible timing. In the first stage, gates
are iteratively set to a larger size or lower Vt level in the order of their sensitivity
to obtain a timing feasible design. In the second stage, leakage power is reduced
by downsizing or increasing Vt levels in order of the gate sensitivity. Thereby
a set of sensitivity functions is defined and parameterized, such that it can be
traversed in parallel to find the best solution using multistarts. It is remarkable
that none of the sensitivity functions dominated the results, in other words the
best results on the benchmarks were obtained with different sensitivity functions.
[Hu+12] outperformed the best known results on the ISPD 2012 benchmarks, which
is surprising given that only local search heuristics are used. The successor paper
of Kahng et al. [Kah+13] adapted these algorithms to the ISPD 2013 benchmarks
and achieved the second place in the contest.
Li et al. [Li+12a] reduce the power consumption of a Lagrange relaxation solution
with an algorithm that is based on a network-flow formulation. Afterwards, gates
are iteratively set to books with less power in order of their sensitivity. Here
sensitivity is defined as the power change divided by the delay change.

Dynamic Programming

Liu and Hu [LH10] and Ozdal et al. [OBH12] combine Lagrange relaxation with
dynamic programming to solve the primal problem. Ozdal et al. [OBH12] further
point out the importance of using accurate timing information from an industrial
engine to achieve better results on industrial designs.

Delay/Slew Budgeting

Many fast algorithms for gate sizing rely on delay or slew budgeting. In a first
step, a delay or slew budget is assigned to each gate. Secondly, a minimum size
solution is computed that retains these budgets. Dai and Asada [DA89] proposed
the first delay budgeting algorithms for transistor sizing. See for example Nguyen
et al. [Ngu+03] and Held [Hel09] for allocation of slack and slew budgets to gates,
respectively.

Game theoretic approaches

Game theoretic approaches that model gate sizing as a resource allocation prob-
lem and compute a Nash equilibrium can for example be found in Murugavel and

61

4 Gate Sizing and Vt Optimization

Figure 4.3: Rounding to the nearest discrete solution leads to timing violations.

Ranganathan [MR04] and Hanchate and Ranganathan[HR06]. A recent algorithm
of Casagrande and Ranganathan [CR15] is based on fuzzy space games. Thereby
each gate is a player, and strategies of players correspond to available sizes. Due to
runtime reasons, each game consists of three players only: One gate that consumes
a large amount of dynamic power, and its most power-consuming predecessor and
successor gate. In each game, the possible strategies of the players are enumerated,
and infeasible strategies (for example sizes that cause load violations or timing
degradations) are identified.

4.8 Rounding a Continuous Solution

Rather informally, the rounding problem consists of finding a discrete feasible solu-
tion that is “close” to the continuous solution in the following sense: The difference
between the objective function values is small, and the timing constraints are (still)
fulfilled. Ideally, the edge delays in the discrete solution should not be much larger
than in the continuous solution. This is not an easy task, and no approximation
algorithm is known.
Having discussed practical observations in Section 4.7.2, we now consider specific
examples as they might occur in practice that support these observations.

Example 4.3 Consider Figure 4.3: On the left picture you see a continuous solution
for gates in a net. The driver gate and three sink gates have approximately the same
size. In the discrete solution shown in the picture on the right side the driver has
been rounded to a smaller size, while the sink gate sizes have increased. Then the
total capacitance of the net cannot be driven by the smaller driver gate, which leads
to a load capacitance violation at the driver gate, and possibly slew violations at
the sink pins of the net. Even if rounding does not introduce an electrical violation,
the net can be substantially slowed down due to the increased load capacitance,
which in turn leads to smaller slacks.

In consideration of Example 4.3, it would be straightforward to round down all
sizes to a smaller discrete solution. However, power consumption would decrease
but timing violations can still be introduced. To see this, consider Example 4.3 and
assume that the continuous size of the driver gate is (s2 − ε2), with s2 being the

62

4.9 Comparison of Existing Approaches

closest feasible discrete size and ε2 > 0. Similarly, let (s1 + ε1) be the continuous
sizes of the sink gates with s1 being the closest feasible discrete size and ε1 > 0.
Depending on the ratio of ε1 and ε2, the driver gate might be too small to drive the
load capacitance even when all sizes are rounded down.

Alternatively, if optimal continuous arrival times are also known, gate sizes can be
rounded such that these arrival times are fulfilled as best as possible. Unfortunately,
no performance guarantees exist for this method either.

Now consider the discrete time-cost tradeoff problem as a special case of the gate
sizing problem, and suppose we are given a solution of the linear relaxation. It was
established by Skutella [Sku97] that no performance guarantee exists if a feasible
solution to the discrete problem is compared with the optimal solution of the linear
relaxation. We migrated his example to the gate sizing framework and obtain
arbitrarily bad approximations in theory:

ratw = q − 1 + 2datv = 0
delaye = d delaye = d

Figure 4.4: No performance guarantee exists if a feasible solution to the discrete
problem is compared with the optimal solution of the relaxation.

Example 4.4 ([Sku97]) Figure 4.4 shows a single inverter g connected with a
primary input and a primary output pin. We assume that wire delays are constant
d ∈ R, and that two sizes are available for g: Size s1 has gate delay 0 and a
total power consumption of 2. Size s2 has gate delay q ∈ N and consumes 0 total
power. The required arrival time at the primary output is q − 1 + 2d. Then the
optimal solution ξ ∈ [s1, s2] to the continuous relaxation has delay q− 1 and power
consumption 2

q . Rounding ξ to s2 results in a timing violation of 1. Rounding ξ
to s1 leads to a timing feasible solution with power consumption 2, that is larger
than the power consumption of ξ by a factor of q. Since q can be chosen arbitrarily
large, no approximation guarantee can be given.

This example can be extended to more complex graphs or more complex timing
models.

4.9 Comparison of Existing Approaches

It is an interesting question which heuristic performs best in practice, and whether
a discrete approach for the gate sizing problem is preferable to a continuous ap-
proach. On the one hand, continuous approaches provide a solid mathematical
background, except for the rounding step. On the other hand, we deem a discrete
approach preferable for several reasons: Foremost is the fact that industrial circuit
libraries offer only a discrete set of sizes for each gate. Secondly, rounding a contin-
uous solution destroys all performance guarantees. Additionally, it is hard to find

63

4 Gate Sizing and Vt Optimization

good posynomials for delay and slew approximation, since real delays are solutions
of differential equations, and more complex timing constraints should be taken into
account. For example, books realizing the same logic function may scale well with
the gate size, but books for different functions have different delay characteris-
tics. This leads to the use of inaccurate delay models in continuous formulations.
Discrete algorithms can use more accurate table look-up methods or an industrial
timing engine to compute signal delays.
However, there is hope that the error introduced by discretizing a continuous ap-
proach is small at least for server designs. This is based on the observation that the
discrete problem is at least “close to convexity” in the following sense: Timmer-
meister [Tim12] reported that a dynamic programming algorithm rarely improved
the solution found by a local search algorithm, implying that the local solution is
at least close to the global optimum solution.
An interesting research question concerns the integration of algorithms with good
performance on the ISPD benchmarks into an industrial design flow. A very recent
paper of Reimann et al. [RSR15] deals with the arising challenges. We refer to
Chapter 9 for a more detailed discussion and practical observations.

64

5 Gate Sizing for Power-Delay Tradeoff

This chapter deals with the power-delay tradeoff problem which consists of finding Power-delay trade-
off problemgate sizes that minimize a weighted sum of power and signal delays in the timing

graph G = (V,E). We will encounter this as a subproblem in later chapters, where
the weights are updated iteratively until a good solution has been found.

We are interested in the continuous and discrete version of this problem. More
formally, we consider the following problem: tr(x, ω)

Power-delay tradeoff problem

Continuous version:

min
x∈Xcont

tr(x, ω) := ωm+1cost(x) +
∑
e∈E

ωedelaye(x), (5.1)

Discrete version:

min
x∈Xdisc

tr(x, ω) := ωm+1cost(x) +
∑
e∈E

ωedelaye(x). (5.2)

Here ω ∈ Rm+1
≥0 are the weights, with m = |E|. We refer to ωm+1 as the power ω ∈ Rm+1

≥0

weight and to the weights ωe, e ∈ E, as edge (delay) weights. ωe, ωm+1

The functions delaye(x) are the delay functions defined in Section 4.4, and cost(x)
is the objective function of the gate sizing problem modeling power consumption.
For x ∈ Xcont, these functions are continuous and convex.

Without loss of generality we can assume that ωm+1 equals 1, then tr(x, ω) is
equivalent to the Lagrange primal function for gate sizing (see Chapter 6), and the
edge weights correspond to the Lagrange multipliers. The Lagrange primal function
needs to be minimized in each iteration of the projected gradient method to solve
the Lagrange dual problem. The vector

(
delaye(x)

)
e∈E will be used as the gradient,

and thus we are interested in algorithms with an approximation guarantee for the
gate sizes rather than an approximation guarantee for the value of tr(x, ω).

In Chapter 7 and 8 we are interested in an approximation guarantee for the value of
tr(x, ω). We approximately solve a feasibility problem for gate sizing with the mul-
tiplicative weights algorithm in Chapter 7, where the power-delay tradeoff problem
occurs as a subproblem. In the resource sharing framework (Chapter 8), we regard

65

5 Gate Sizing for Power-Delay Tradeoff

power and edge delays as resources. The weighted resource usage of a so-called gate
customer, which has to be minimized, is of the form tr(x, ω).

The remainder of this chapter is organized as follows: In Section 5.1 we consider the
continuous problem (5.1) which can be solved in polynomial time for example with
interior point methods up to any accuracy ε > 0. We first investigate properties
of tr(x, ω). Next we consider the so-called local refinement algorithm which was
originally developed to minimize the Lagrange primal function. Afterwards we show
that the conditional gradient method approximates the value of tr(x, ω) up to any
desired accuracy.

The discrete problem (5.2) is the subject of Section 5.2. We show that under simpli-
fied delay models, approximation algorithms exist. The local refinement algorithm
can be discretized, but no approximation guarantee is known. Section 5.2.3 presents
an FPTAS for problem (5.2) under the assumption that the number of gates per
level in the gate graph, i.e. the size of antichains, is bounded by a constant.

Extension of the tradeoff function Note that tr(x, ω) is of the general form

tr(x) :=
n∑
i=1

ζie
xi +

n∑
i=1

χie
−xi +

n∑
i,j=1

ψije
xi−xj , (5.3)

where ζi, χi, ψij ∈ R≥0 for all 1 ≤ i, j ≤ n are constants (cf. Section 4.4). Note
that no constants occur in the exponents. Here the weights ω are included in the
constants, which also incorporate unit capacitance, unit resistance, the objective
scaling factor, and wire capacitances and resistances. Algorithms for the continuous
relaxation presented in this chapter also minimize functions of the form (5.3). In
later chapters we extend the Lagrange function and the resource sharing framework
to incorporate additional constraints on placement density, capacitance and slew
violations. The resulting subproblems can be brought to the form (5.3).

5.1 The Continuous Power-Delay Tradeoff Problem

Problem (5.1) is solvable in polynomial time for example with interior point meth-
ods. The running time complexity of interior point methods is approximately cubic
in the number of gates (cf. Section 3.4), and we are interested in faster algorithms.
We first examine properties of tr(x, ω), and consider algorithms afterwards.

5.1.1 Properties of tr(x, ω)

Lemma 5.1 tr(x, ω) : Xcont → R is twice differentiable and strictly convex for
x ∈ Xcont, but in general not strongly convex.

Proof. As tr(x, ω) is the sum of exponential functions, it is strictly convex and
twice differentiable. It is not necessarily strongly convex because the second deriva-

66

5.1 The Continuous Power-Delay Tradeoff Problem

tive, which also is a sum of exponential functions, can become arbitrarily small, for
example when cost(x) and delaye(x) become arbitrarily small for all e ∈ E.

For each gi ∈ G we denote with trx(xi, ω) the terms of tr(x, ω) which depend on
the size variable xi, and call it the local refine function of gi: Local refine func-

tion trx(xi, ω)

trx(xi, ω) := ωm+1cost(xi) +
∑
e∈Egi

ωedelaye(x), (5.4)

where all entries of x are fixed except for the i-th entry. Egi are the edges in the
neighborhood graph Ggi of gi, i.e. the edges in the timing graph whose delay changes
when the size of gi is altered. This edge set can be extended if more accurate delay
models are used.

It is reasonable to assume that the fanout of each gate is bounded by a con-
stant in practice. Similarly, the number of input pins of a gate is bounded by
a constant, and thus is the number of edges in the neighborhood graphs. We set
Λ := maxi=1,...,n |Egi |. |Egi | ≤ Λ

It was implicitly shown by Chen et al. [CCW99] in the context of gate and wire
sizing that the derivatives ∂trx

xi
(xi, ω) of the local refine functions are the partial

derivatives of tr(x, ω). Langkau [Lan00] explicitly formulated the derivatives for
gate sizing. The Lipschitz constant of the gradient depends on the weights and is
denoted by lip(ω): lip(ω)

Lemma 5.2 The gradient ∇tr(x, ω) is Lipschitz continuous on the set Xcont with
Lipschitz constant lip(ω) and we have

lip(ω) ≤ max
x∈Xcont

max
1≤i≤n

(
ωm+1cost(xi) + Λ ·max

e∈E
ωedelaye(x)

)
.

Proof. The gradient ∇tr(x, ω) is the vector of derivatives of the local refine func-
tions (5.4). tr(x, ω) is the sum of exponential functions and of the form (5.3), thus
each partial derivative ∂trx

xi
(xi, ω) : [li, ui] → R is the sum of (negated) exponen-

tial functions of xi: If gi is a driver gate, the term γ · e−xi occurs in (5.3), whose
derivative is −γ · e−xi . The other terms remain. We can therefore bound

∂trx
xi

(xi, ω) ≤ trx(xi, ω).

Now recall the definition of the Lipschitz constant:

lip(ω) = max
x,y∈Xcont

||∇tr(x, ω)−∇tr(y, ω)||∞
||x− y||∞

,

≤ max
x,y∈Xcont

max
1≤i≤n

∂trx
∂xi

(xi, ω)− ∂try
∂yi

(yi, ω)

xi − yi

67

5 Gate Sizing for Power-Delay Tradeoff

≤ max
z∈Xcont

max
1≤i≤n

∂trz
∂z2

i

(zi, ω)

≤ max
z∈Xcont

max
1≤i≤n

trz(zi, ω)

= max
z∈Xcont

max
1≤i≤n

ωm+1cost(zi) +
∑
e∈Egi

ωedelaye(zi)

The second inequality follows from the mean value theorem, and for the third
inequality we use the same argument as above, namely that trx(xi, ω) is the sum
of exponential functions. Because the number of edges in the neighborhood graphs
can be bounded by Λ, we have

lip(ω) ≤ max
x∈Xcont

max
1≤i≤n

ωm+1cost(xi) +
∑
e∈Egi)

ωedelaye(xi)

≤ max

x∈Xcont
max

1≤i≤n

(
ωm+1cost(xi) + Λ ·max

e∈E
ωedelaye(x)

)
.

Note that the gradient ∇tr(x, ω) is Lipschitz continuous on Xcont because Xcont

is bounded: On Rn the exponential function becomes arbitrarily steep, and conse-
quently tr(x, ω).

5.1.2 Approximating Gate Sizes

We will consider the local refinement algorithm that belongs to the class of coor-
dinate descent algorithms and which minimizes general functions of the form (5.3)
(Chu and Wong [CW01]). It consists of a series of local refinement operations:

Definition 5.3 (Local refinement operation (Cong and Hu [CH96])) Given a func-
tion tr(x) of the form (5.3) and a solution x′ ∈ Xcont, the local refinement opera-
tion for any variable xi, i = 1, . . . , n is to minimize tr(x) by only varying xi, with
li ≤ xi ≤ ui, while keeping the value of all other variables x′j (j 6= i) fixed.

Local refinement was proposed by several authors to solve the Lagrange primal
problem, for example by Cong and Hu [CH96] and Chu and Wong [CW99] in the
context of transistor/gate and wire sizing. The linear convergence of this algorithm
essentially follows from a general result of Luo and Tseng [LT92], but Chu and
Wong [CW99] first give explicit error estimations and a new proof for the special
case that the timing graph is a tree. This result has been extended by Langkau
[Lan00] and Szegedy [Sze05] in the context of gate sizing for more general topologies
and with simpler proofs.

68

5.1 The Continuous Power-Delay Tradeoff Problem

Chen et al. [CCW99] showed that starting with the smallest size for each gate leads
to convergence towards the optimal solution of the Lagrange primal problem. Later,
Chu and Wong [CW01] extended this result for arbitrary start solutions.

In the following we formulate the local refinement algorithm for minimizing Local refinement
algorithmtr(x, ω) and restate convergence results. The algorithm is summarized in Algo-

rithm 5.1. The local refine function trx(xi, ω) can be minimized by setting its first
derivative with respect to xi to zero. Let x̃i be the solution. Then a vector x̄ ∈ Xcont

minimizes tr(x, ω) if for all x̄i, i = 1, . . . , n, the following holds:

x̄i = min{ui,max{li, x̃i}}. (5.5)

This was proved, for example, by Chen et al. [CCW99] who exploited the convexity
of tr(x, ω). Langkau [Lan00] used Lagrangian relaxation and the KKT-conditions
to establish optimality of x̄: The conditions on the size boundaries, i.e. li ≤ xi ≤ ui
for each size variable xi, were relaxed and incorporated into the objective function.
The resulting duality gap equals zero and the KKT-conditions imply (5.5).

Algorithm 5.1 Continuous Local Refinement

1: procedure LocalRefine(x, ω)
2: k ← 0
3: x(0) ← x
4: while (k = 0 or ∃i : x

(k)
i 6= x

(k−1)
i) do

5: x(k+1) ← x(k)

6: for each gi ∈ G in topologial order do

7: x̃
(k+1)
i ← arg min trx(k+1)(x

(k+1)
i , ω) (local refinement operation)

8: x
(k+1)
i ← min{ui,max{li, x̃i(k+1)}}

9: end for
10: k ← k + 1
11: end while
12: return x(k) = (x

(k)
1 , . . . , x

(k)
n)

13: end procedure

Chu and Wong [CW01] and Langkau [Lan00] essentially used the same techniques
to show convergence of Algorithm 5.1 by generalizing the proofs of Chu and Wong
[CW99], but Chu and Wong [CW01] treated a more general class of optimization
problems. The following theorem is basically due to these works:

Theorem 5.4 ([CW01], [Lan00]) Let x∗ be the optimal solution of (5.1). If the
fanout of each gate is bounded by a constant, Algorithm 5.1 finds a solution x ∈
Xcont with |(x∗i − xi)/x∗i | ≤ ε for all i = 1, . . . , n in O(n log(1/ε)) time for ε > 0.
Each iteration takes O(n) time.

Szegedy [Sze05] proposed a slightly different variant of Algorithm 5.1 that sizes all
gates simultaneously in each iteration, and obtains slightly different error bounds.

69

5 Gate Sizing for Power-Delay Tradeoff

Remark 5.5 The performance of Algorithm 5.1 is unknown if changes are forbidden

that increase load or slew violations. If x
(k)
i is a forbidden size, the most natural

alternative is the closest size that is not forbidden. However, the proof of Theorem
5.4 relies on the fact that the variable changes in each iteration can be bounded
from above and below naturally. This is not necessarily possible if some sizes are
forbidden.

Similarly, no convergence guarantees exist in general if the discrete size is chosen
for which the local refine function is minimal, or if the continuous size is rounded
to the closest discrete size in each local refinement step.

Remark 5.6 Chen et al. [CCW99] apply Lagrangian relaxation to the geomet-
ric program (4.8) and formulate the local refinement algorithm for a posynomial
function. Chu and Wong [CW01] formulate their algorithm for general posyno-
mial functions as well. However, it was pointed out by Wang et al. [WDZ07] that
Lagrangian relaxation should rather be applied to the convex program (4.10) ob-
tained by variable transformation, see also Section 6.1.2 for a discussion. As we
will work with the convex program in the following chapters, we reformulated the
local refinement algorithm and convergence results for the convex problem to avoid
confusion, without changing the tenor of the results.

5.1.3 Approximating the Value of tr(x, ω)

In this section we consider algorithms that provide an approximation guarantee
on the optimal value tropt of (5.1), which is necessary to fit gate sizing into thetropt

multiplicative weights and resource sharing framework.

Theorem 5.4 gives an approximation guarantee on the values of the gate sizes re-
turned by Algorithm 5.1, but it is not clear how to translate this guarantee to a
bound on the difference tr(x(k), ω) − tr(x∗, ω) for the optimal solution x∗. Such
a bound would certainly depend on the value of the weights, which will grow ex-
ponentially in our later application. The conditional gradient method (see Section
3.3), yields a better guarantee. It is summarized in Algorithm 5.2. Algorithm 5.3
provides a multiplicative guarantee on tropt.

An Additive Approximation Guarantee for tr(x, ω)

We denote the diameter of set Xcont withdiamX

diamX := max
1≤i≤n

(ui − li).

Theorem 5.7 For each ε > 0, Algorithm 5.2 finds in O
(
n·diam2

X ·lip(ω)
ε

)
time a

solution x ∈ Xcont with
tr(x, ω) ≤ tropt + ε.

70

5.1 The Continuous Power-Delay Tradeoff Problem

Algorithm 5.2 Conditional Gradient Method

1: procedure ConditionalGradient(ε, ω)
2: Initialize x(0) ∈ Xcont

3: for k = 0 to O
(
diam2

X ·lip(ω)
ε

)
do

4: x(k+1) ← ConditionalGradientIteration(x(k), ω)
5: k ← k + 1
6: end for
7: return x(k) = (x

(k)
1 , . . . , x

(k)
n) with tr(x(k), ω) ≤ tropt + ε

8: end procedure
9:

10: procedure ConditionalGradientIteration(x(k), ω)
11: Compute gradient d(k) ← ∇tr(x(k), ω)
12: Find s(k) ∈ arg mins∈Xcont〈d

(k), s− x(k)〉
13: γ(k) ← 2

k+2

14: x(k+1) ← x(k) + γ(k)(s(k) − x(k))
15: return x(k+1)

16: end procedure

Proof. In iteration k of the conditional gradient method the gradient d(k) :=
∇tr(x(k), ω) is computed and a linear subproblem

s ∈ arg min
s∈Xcont

〈d(k), s− x(k)〉 (5.6)

is solved to obtain a search direction s which guarantees that the next iterate
x(k+1) := x(k) +γ(k)(s−x(k)) belongs to the feasible set Xcont. Here γ(k) is the step
size. In the basic variant, it is set to γ(k) := 2

k+2 .

The subproblem (5.6) can be solved in linear time: For each entry si we set

si =

li if d

(k)
i > 0

ui if d
(k)
i < 0

x
(k)
i otherwise.

(5.7)

Note that d
(k)
i = 0 implies that si can be chosen arbitrarily. However, if we choose

si as above, the i-th entry of x(k+1) equals the i-th entry of x(k), as it is indicated
by the zero gradient. Convergence analysis of this algorithm (see for example Jaggi
[Jag13]) yields that after k ≥ 1 iterations, the following holds for the iterate x(k):

tr(x(k), ω)− tropt ≤
2CL
k + 2

, (5.8)

71

5 Gate Sizing for Power-Delay Tradeoff

where the constant CL is defined as

CL := sup
x,s∈Xcont,γ∈[0,1]

2

γ2

(
tr(x+ γ(s− x), ω)− tr(x, ω)− γ〈s− x,∇tr(x, ω)〉

)
.

The constant CL can be seen as capturing the non-linearity of tr(x, ω), and is zero
for linear functions. For linear functions with bounded domain, the optimal solution
is hence found in iteration k = 0.
The gradient of tr(x, ω) is Lipschitz continuous on the domain Xcont with Lipschitz
constant lip(ω) by Lemma 5.2, in which case CL can be bounded by

CL ≤ max
x,y∈Xcont

(||x− y||2∞) · lip(ω) ≤ diam2
X · lip(ω).

This bound is due to Nesterov [Nes04] (Lemma 1.2.3) and Jaggi [Jag13]. It is
notable that the above holds for any norm. Simple transformation of (5.8) yields

that a solution with accuracy ε can be computed in
⌈
diam2

X ·lip(ω)
ε − 2

⌉
iterations.

The total running time of the conditional gradient method is O
(
n·diam2

X ·lip(ω)
ε

)
, as

computing the gradient and solving the linear subproblem takes O(n) time.

Note that the running time of Algorithm 5.2 depends on the Lipschitz constant
lip(ω), and thus on the weights ω, which can grow exponentially.

Remark 5.8 The gradient is only Lipschitz continuous for x ∈ Xcont, but this is
sufficient to prove the bound on CL: Lipschitz continuity is only needed in Lemma
1.2.3 in Nesterov [Nes04] to show that

|tr(y, ω)− tr(x, ω)− 〈∇tr(x, ω), y − x〉| ≤ lip(ω)

2
||y − x||2

holds for y = x + γ(s − x), x, s ∈ Xcont, γ ∈ [0, 1]. Therefore it is sufficient that
∇tr(x, ω) is Lipschitz continuous only over the domain Xcont.

A Multiplicative Approximation Guarantee for tr(x, ω)

In Chapter 7 we are interested in a multiplicative approximation guarantee on the
optimal value tropt. This requires a slightly different precision and analysis, and
the algorithm is summarized in Algorithm 5.3. Lettrratio

trratio :=
maxx∈Xcont max1≤i≤n {cost(xi) + Λ ·maxe∈E delaye(x)}

minx∈Xcont {cost(x),mine∈E delaye(x)}
.

The running time of Algorithm 5.3 depends on the value of trratio.

Theorem 5.9 Let tropt be the optimal value of (5.1). For each η > 1 Algorithmη > 1

5.3 finds in O
(
n·diam2

X ·trratio
η−1

)
time a solution x ∈ Xcont with

tr(x, ω) ≤ η · tropt.

72

5.1 The Continuous Power-Delay Tradeoff Problem

Proof. Let ε := (η − 1)lbopt, where lbopt is a lower bound on tropt. We will run
the conditional gradient method up to accuracy (η − 1)lbopt. By Theorem 5.7,
Algorithm 5.2 returns a solution x with

tr(x, ω) ≤ tropt + ε ≤ η · tropt

in O(
diam2

X ·lip(ω)
ε) iterations. In each iteration, computing the gradient takes O(n)

time. It remains to find a good lower bound lbopt to get a better bound on total
running time. In particular, we are interested in a running time that is independent
of the weights ω, as these can grow exponentially.

tropt is certainly larger than the largest weight multiplied by the smallest delay or
cost, i.e.

lbopt ≥ max

{
ωm+1,max

e∈E
ωe

}
· min
x∈Xcont

{
cost(x),min

e∈E
delaye(x)

}
.

By Lemma 5.2,

lip(ω) ≤ max
x∈Xcont

max
1≤i≤n

{
ωm+1cost(xi) + Λ ·max

e∈E
ωedelaye(x)

}
≤ max{ωm+1,max

e∈E
ωe} · max

x∈Xcont
max

1≤i≤n

{
cpst(xi) + Λ ·max

e∈E
delaye(x)

}
Putting together, we obtain

lip(ω)

lbopt
≤ maxx∈Xcont max1≤i≤n {cost(xi) + Λ ·maxe∈E delaye(x)}

minx∈Xcont {cost(x),mine∈E delaye(x)}
:= O(trratio).

Algorithm 5.3 Conditional Gradient Method Multiplicative

1: procedure ConditionalGradientMult(η, ω)
2: Initialize x(0) ∈ Xcont

3: for k = 0 to O
(
diam2

X ·trratio
η−1

)
do

4: x(k+1) ←ConditionalGradientIteration(x(k), ω)
5: k ← k + 1
6: end for
7: Return x(k) = (x

(k)
1 , . . . , x

(k)
n) with tr(x(k), ω) ≤ η · tropt

8: end procedure

73

5 Gate Sizing for Power-Delay Tradeoff

Other algorithms

Coordinate descent methods iteratively perform approximate minimization along
the coordinate descent directions. In each step, a single coordinate of the current
iterate is modified by advancing in the direction of the corresponding coordinate of
the gradient. The performance depends on the step size and the choice of the de-
scent directions, and we refer to the recent paper of Wright [Wri15] for an overview.

The local refinement algorithm can be regarded as a variant of coordinate de-
scent: The algorithm does not advance in the direction of a gradient component,
but changes one coordinate in each step and minimizes the corresponding gradient
component. In our application, the conditional gradient method gives a faster ap-
proximation than the basic coordinate descent method, where the descent directions
are traversed in a cyclic manner, or randomized coordinate descent. For functions
with a Lipschitz continuous gradient, the projected gradient method exhibits sim-
ilar theoretical convergence rates as the conditional gradient method. Coordinate
descent methods with descent directions that are more adapted to the problem
might perform better for problem (5.1). It is an open question if there exists an
algorithm that runs in polynomial time and faster than interior point methods.

5.2 The Discrete Power-Delay Tradeoff Problem

5.2.1 Complexity

Problem (5.2) belongs to the class of convex discrete optimization problems which
are NP-hard in general. However, no results on the complexity of problem (5.2)
exist.

The monograph of Onn [Onn10] gives an overview of recent results in the field of
nonlinear discrete optimization. In particular, the author considers convex objec-
tives of the form max{f(Wx) : x ∈ X} with W ∈ Zd×n, X ⊆ Zn and f : Rd → R
convex. If d is a variable part of the input, the maximization problem is NP-hard.
tr(x, ω) can be written as f(Wx), but here the dimension d needs to be equal to n.

Polynomial time algorithms also exist if d = n and f is separable, which does not
hold for tr(x, ω) because of the third term in (5.3).

Under simplified delay models, problem (5.2) can be solved in polynomial time:

Simplified Delay Model Consider the following delay model: The delay of each
edge e = (v, w) is independent of input slew and load capacitance. Wire delays
are constant, and several edges within a gate are contracted to a single edge. Let
further be Xdisc ⊂ Zn, and gate edge delay be proportional to gate size.

Under this delay model, the gate sizing problem is essentially the discrete time-
cost tradeoff problem. Skutella [Sku97] showed that approximation algorithms for
instances of the discrete time-cost tradeoff problem with at most two delay alter-
natives for each edge can be extended to approximation algorithms for arbitrary
instances without losing the convergence guarantee.

74

5.2 The Discrete Power-Delay Tradeoff Problem

s
i1 i2 i3

u

(a)

s
i1 i2

u1

i3

u2

(b)

Figure 5.1: The discretization error of local refinement depends on the path lengths
and the maximum fanout in the design.

We can thus consider the special case of problem (5.2) with at most two alternatives
for each edge. Minimizing tr(x, ω) then amounts to solving a series of independent
sizing problems, and can be done in time linear in the number of edges.

5.2.2 Algorithms

Algorithm 5.1 can be discretized by iteratively choosing the feasible discrete size
for each gate that minimizes its local refine function, while keeping all other gates
fixed. This can lead to a solution that is not “close” to the continuous solution, as
the following example depicts:

Example 5.10 Consider the simple inverter chain in Figure 5.1(a). Let Xdisc ⊂ Z3.
Suppose Algorithm 5.1 returns continuous sizes ξ1 = 1.5, ξ2 = 2.4 and ξ3 = 3.3. We
proceed the gates again in topologial order and for each gate we choose the discrete
size minimizing its local refine function. Let the discrete size for i1 be x1 = 2, i2
gets assigned size x2 = 3 and i3 gets assigned size x3 = 4. In the next traversal,
x1 is set to 3 to drive the increased capacitance, and thus the inaccuracies due
to discretization are propagated through the inverter chain. The worst case gap
between the discrete and continuous solution is in general unknown, but it cannot
be arbitrarily large: If the capacitance of i1 exceeds a certain threshold, the delay
benefit of further increasing its size does not compensate the delay decrease of the
entering edge, because the input s cannot drive the capacitance anymore. Using
the same argument, the sizes of i2 and i3 are bounded.

Additionally, the discretization error depends on the maximum fanout in the design.
Consider the simplified instance in Figure 5.1(b) and suppose that for all gates, the
sizes chosen by the discretized algorithm are larger than the continuous sizes. Then,
using the same argument as in the inverter chain example, the size of i1 increases in
the second iteration of the discretized algorithm to drive the increased capacitance.
The gap between the continuous and the discrete solution thus also depends on the
fanout of i1.

The discretized version of Algorithm 5.1 and variants are commonly applied to
minimize the discrete Lagrange primal function although no convergence guarantees

75

5 Gate Sizing for Power-Delay Tradeoff

exist, for example in Huang et al. [HHS11], Flach et al. [Fla+14] and Livramento
et al. [Liv+14].

Variants of the algorithm choose the discrete size for a gate for which not only the
local refine function is minimized, but which also fulfills additional requirements.
Among these are for example that the sum of load and slew violations does not
increase, the worst slack seen at the gate or the sum of slacks in a certain neighbor-
hood of the gate does not deteriorate etc. Algorithm 5.4 illustrates this concept.

Algorithm 5.4 Discrete Local Refinement (Variant)

1: procedure HeuristicDiscreteLocalRefine(x, ω)
2: k ← 0
3: x(0) ← x
4: while k = 0 or ∃i : x

(k)
i 6= x

(k−1)
i do

5: x(k+1) ← x(k)

6: for each gi ∈ G (in topologial order) do
7: best size← cur size(gi) (current size of gi)
8: best cost← trx(k+1)(best size, ω)
9: for each size s ∈ Xi

disc 6= cur size(gi) do
10: if s increases load or slew violations or degrades the
11: worst slack or the sum of slacks in a neighborhood then
12: continue
13: end if
14: if trx(k+1)(s, ω) < best cost then
15: best cost← trx(k+1)(s, ω)
16: best size← s
17: end if
18: end for
19: x

(k+1)
i ← best size

20: end for
21: k ← k + 1
22: end while
23: return x(k) = (x

(k)
1 , . . . , x

(k)
n)

24: end procedure

To speed up the discrete local refinement algorithm, Szegedy [Sze05] proposed to
only consider gates in iteration k whose neighbors have changed significantly in the
previous iteration.

The approach of Ozdal and Burns [OBH12] relies on a graph-theoretic model: The
graph contains |Xi

disc| vertices for each gate gi, and vertices corresponding to differ-
ent gates are connected if their gates are connected in the gate graph. The Lagrange
function is encoded in vertex and edge weights. The critical trees in the graph are
optimized independently with dynamic programming, where a vertex is chosen for
each gate minimizing total weight.

76

5.2 The Discrete Power-Delay Tradeoff Problem

In Algorithm 5.5 the continuous solution serves as guidance. The optimal contin-
uous size is computed iteratively for each gate, and rounded to the next smaller
discrete feasible solution. We call such an operation a discrete local refinement
operation:

Definition 5.11 (Discrete local refinement operation) Let x′ ∈ Xdisc be a solution
of problem (5.2). A discrete local refinement operation for any variable xi minimizes
tr(x, ω) by only varying xi, while keeping the value of all other variables x′j (j 6= i) in
x′ fixed. Let x̃i be the continuous solution minimizing tr(x, ω). Then x̃i is rounded
down to the next smaller discrete size.

Algorithm 5.5 Discrete Local Refinement Rounded

1: procedure DiscreteLocalRefine(ω)
2: k ← 0
3: x

(k)
i ← li, i = 1, . . . , n

4: while k = 0 or ∃i : x
(k)
i 6= x

(k−1)
i do

5: x(k+1) ← x(k)

6: for each gi ∈ G (in topological order) do

7: x̃
(k+1)
i ← arg min trx(k+1)(x

(k)
i , ω)

8: x
(k+1)
i ← round x̃

(k+1)
i to the next smaller discrete size

9: if x
(k+1)
i < x

(k)
i then

10: x
(k+1)
i ← x

(k)
i

11: end if
12: end for
13: k ← k + 1
14: end while
15: return x(k) = (x

(k)
1 , . . . , x

(k)
n)

16: end procedure

Theorem 5.12 Algorithm 5.5 converges to a solution x ≤ x∗. Each iteration takes
O(n) time.

Proof. The convergence proof for Algorithm 5.1 by Chu and Wong [CW01] can
be discretized to show convergence. We omit the rather technical details here
because convergence also follows from elementary analysis and the fact that Xdisc

is bounded and sizes are monotonically increasing (line 10). By Theorem 5.4,
finding the continuous size for each gate that minimizes the local refine function
takes O(n) time. The running time follows because computing the next smaller
discrete solution takes constant time for each gate.

The quality of the solution returned by Algorithm 5.5 is unknown. Consider the
more straightforward variant of Algorithm 5.5 where we only change line 8 and
round to the closest discrete size. The convergence proof for Algorithm 5.1 by

77

5 Gate Sizing for Power-Delay Tradeoff

Chu and Wong [CW01] cannot be extended to show convergence of this variant in
general.

5.2.3 FPTAS for Instances with Constant Level Size

In this section we present a fully polynomial time approximation scheme (FPTAS)
for instances where the size of the antichains in the gate graph is bounded by a
constant lmax. However, this assumption is unrealistic as lmax also depends on the
instance size in practice. It is fulfilled, for example, by timing graphs consisting of
a single path only.

The core of the algorithm is a modified binary search technique over the value of
tr(x, ω) due to Ergun et al. [ESZ02], which uses an oracle algorithm to check if
the current guess is approximately close to the value of the optimal solution or
not. This search technique was already used by Liao and Hu [LH11] to develop an
FPTAS for the delay-minimizing gate sizing problem, and our oracle algorithm is
a variant of their level based dynamic programming oracle.

To simplify notation we assume that ω = 1 throughout this section, but our results
hold for all values of ω. Let ζ ∈ N denote the maximum number of sizes available forζ

a gate g ∈ G, and let lmax ∈ N be the maximum number of gates in any antichain.lmax

We begin with the oracle algorithm that iteratively enumerates gate sizing solutions.
Note that Vt optimization can easily be included: ζ then refers to the maximum
number of books (combinations of gate sizes and Vt level) available for a gate.

Dynamic Programming Oracle Algorithm

The oracle algorithm decides if a guessed value F for the optimal value of tr(x, ω)
can be approximately attained by a solution x ∈ Xdisc.

Theorem 5.13 For input (F,R, ε) with F, ε > 0 and R ∈ {1
2F, F}, Algorithm 5.6

either returns a solution x with tr(x, ω) ≤ (1 + ε)F , or reports that there exists no
solution with tr(x, ω) ≤ F in time O(nζ3lmax · (mε)lmax).

Proof. We partition the acyclic gate graph into so-called levels, and enumerate
sizing solutions iteratively for each level following Liao and Hu [LH11]. The authors
polynomially bounded the number of sizing solutions by rounding arrival times. We
show that the same holds if we round edge delays appropriately.

The acyclic gate graph G = (V ,E) is partitioned into l ∈ N levels: The level-1
gates are exactly the gates driven by timing start points. For other gates, their
level is defined as the number of vertices on a shortest path in the gate graph from
any timing start point to the corresponding gate vertex.

Let Li be the set of gates in level i, L≤i the set of all gates up to level i, andLi, L≤i

Ei := {e = (v, w) ∈ E| γ(w) ∈ Li} ⊆ E the set of edges entering or traversing aEi

gate in level Li. Recall that γ(w) ∈ G indicates the gate to which pin w ∈ V is
assigned. We have |Ei| ≥ 2 for all levels i, as each level contains at least one gate.

78

5.2 The Discrete Power-Delay Tradeoff Problem

The number of edges entering and traversing a gate are obviously bounded by a
constant, so we can assume that |Ei| is bounded by O(lmax).

A level-i solution is an assignment of sizes to all gates in L≤i+1. Different level-i level-i solution

solutions will be distinguished by the sizes of gates in levels i and i+ 1, the delays
of all edges in Ei and the power of all gates in L≤i+1. Note that a level-i solution
also defines the sizes of all gates in level i+ 1, as these influence the delays through
gates in level i. The basic idea behind the solution enumeration is to iteratively
compute level-i solutions for all 1 ≤ i ≤ l.
Level-1 solutions are computed by enumerating all available sizes for the gates in
levels 1 and 2. For i > 1, the algorithm integrates the size assignments for gates
in Li+1 into the level-(i− 1) solutions by enumerating all possible sizes for gates in
level i + 1. For each combination of level-(i − 1) solution and size assignment for
Li+1, a new solution is generated.

Thereby solutions are pruned as follows: Given two level-i solutions that only differ
in the power consumption of all gates in L≤i+1, we only keep the solution with
the smallest power consumption. As both solutions have the same impact on the
delays in Ei+2, the solution sets generated in the following levels based on these
level-i solutions would only differ in their power consumption. As we are interested
in minimizing tr(x, ω), the solutions with larger power consumption are certainly
not optimal.

There are at most ζ sizes available for each gate and at most lmax gates per level,
therefore at most O

(
ζ2lmax

)
level-1 solutions and at most O

(
ζ3lmax

)
level-2 so-

lutions are computed etc. When reaching level l, the number of solutions would
depend exponentially on l.

Therefore we bound the number of different edge delays in all Ei, and thus the
number of level-i solutions. This can be achieved by rounding edge delays: When
enumerating level-i solutions, we round delays in Ei to the nearest integer multiple
of Rε

m , i.e. delaye(x) is rounded to bdelaye(x) · mRεc ·
Rε
m , x ∈ Xdisc. Then we perform

power pruning using the rounded edge delays for comparison, and only keep the
solution with the smallest power consumption cost(x).

As we are interested in a solution whose value is approximately bounded by F ,
we additionally prune solutions with cost(x) + Dr(x) > F in line 13 of Algorithm
5.6, as these cannot occur in any feasible solution. Here Dr(x) :=

∑
j<iD

j
r(x) + Dr(x), Djr(x)∑

e∈Ei delaye(x), and Dj
r(x) is the sum of rounded edge delays in Ej .D(x) denotes D(x)

the sum of unrounded delays for all edges.

It is easy to see that after rounding in line 15 there exist only O(mε) different
delay assignments for each edge: As solutions with cost(x) +D(x) > F ⇔ D(x) ≤
F −cost(x) are pruned, and edge delays are rounded to the nearest integer multiple
of Rε

m , the largest integer multiple θ that can occur in any solution is bounded:

θ · Rε
m
≤ F − cost(x) ≤ F ⇔ θ ≤ Fm

Rε
≤ O(

m

ε
),

because R ∈ {1
2F, F}. Consequently, there are at most O(mε) different delay

79

5 Gate Sizing for Power-Delay Tradeoff

Algorithm 5.6 Power-delay bounded level based dynamic programming

1: procedure FPTASOracle(F,R, ε)
2: for 1 ≤ i ≤ l do
3: if i = 1 then
4: compute all level-1 solutions
5: else
6: for each level-(i− 1) solution do
7: compute all level-i solutions by enumerating all size

assignments for gates in Li and Li+1
8: end for
9: end if

10: for each level-i solution x do
11: Dr(x)←

∑
j<iD

j
r(x) +

∑
e∈Ei delaye(x)

12: if cost(x) +Dr(x) > F then
13: prune x
14: else
15: round edge delays of all e ∈ Ei to the nearest multiple of Rε/m
16: end if
17: Di

r(x)← sum of rounded delays in Ei
18: if cost(x) > O(x′) and Di

r(x) = Di
r(x
′) for a level-i sol. x′ 6= x then

19: prune x
20: else
21: prune x′

22: end if
23: end for
24: i← i+ 1
25: end for
26: return solution x with cost(x)+

∑
i≤lD

i
r(x) smallest, or no feasible solution

27: end procedure

assignments for each edge in Ei, and O
(
(mε)lmax

)
different delay assignments for

each combination of gate sizes in Li and Li+1. Thus, the number of solutions
generated at each level is O

(
ζ2lmax(mε)lmaxζ lmax

)
, of which O

(
ζ2lmax(mε)lmax

)
are

kept.

For all levels we obtain a running time of O
(
nζ3lmax · (mε)lmax

)
: The number of

levels is bounded by n, and the running time of the pruning step in each level
is O

(
ζ3lmax · (mε)lmax

)
if the solutions are stored in a multidimensional array as in

Liao and Hu [LH11]. Computing the cost of a level-i solution and finding the level-i
solution with the same size assignment in Li and Li+1 and the same delays in Ei
can then be done in O(lmax) time, which is assumed to be bounded by a constant.

The rounding error of each edge is bounded by Rε
m . As there are m edges, the

rounding error of all edges is bounded by Rε. As desired, unscaling the delays of a

80

5.2 The Discrete Power-Delay Tradeoff Problem

solution returned by the algorithm gives

cost(x) +D(x) + εR ≤ F + εR ≤ (1 + ε)F.

A Fully Polynomial Time Approximation Scheme

Algorithm 5.7 FPTAS for the discrete power-delay tradeoff problem

1: procedure FPTAS(ε)
2: Compute lower and upper bounds FL < FU ∈ R on the optimal value F ∗

3: k ← 1, FU1 ← FU, FL1 ← FL
4: while FUk/FLk > 2 do
5: εk ←

√
FUk/FLk − 1, Fk ←

√
FUkFLk/(1 + εk)

6: if FPTASOracle(Fk, Fk, εk) returns a feasible solution then
7: FUk+1 ← (1 + εk)Fk
8: else
9: FLk+1 ← Fk

10: end if
11: k ← k + 1
12: end while
13: return FPTASOracle(FUk, FLk, ε)
14: end procedure

Algorithm 5.7 presents the FPTAS for problem (5.2). It is based on a binary search
technique for the optimal value F ∗ of (5.2) which was originally developed by Ergun
et al. [ESZ02] for the restricted shortest path problem, and adapted by Liao and
Hu [LH11] for delay-minimizing gate sizing.
In each step the oracle Algorithm 5.6 checks if the guessed value F is approximately
close to F ∗. By Theorem 5.13 the oracle either returns a solution x ∈ Xdisc with
tr(x, ω) ≤ (1 + ε)F and we can conclude that F ∗ ≤ (1 + ε)F , or there exists no
solution with tr(x, ω) ≤ F . The approximation ratio ε decreases in each step until
we are sufficiently close to the optimal solution. Hence the last call to Algorithm
5.6 in line 13 with our desired approximation ratio ε dominates the running time
of the binary search.
Let FU ∈ R≥0 be an upper bound and FL ∈ R≥0 be a lower bound on F ∗,
respectively. We obtain a lower bound by summing up the power values of the
smallest sizes available for all gates, and the minimum delay value for each edge.
The upper bound can be computed in a similar fashion.

Theorem 5.14 Algorithm 5.7 computes a solution x ∈ Xdisc with tr(x, ω) ≤ (1 +
ε)F ∗ in time

O(nζ3lmax · (m/ε)lmax)

for 0 < ε < 1 and constant level size ζ. For ε ≥ 1 this is O(nζ3lmaxm).

81

5 Gate Sizing for Power-Delay Tradeoff

Proof. The proof is basically due to Liao and Hu [LH11] and Ergun et al. [ESZ02].

Let FUk and FLk denote the upper and lower bound in iteration k, respectively. WeFUk, FLk

set εk =
√
FUk/FLk−1 and Fk =

√
FUkFLk/(1 + εk) and call Oracle(Fk, Fk, εk)εk, Fk

in iteration k.

If the oracle returns true, FUk+1 will be set to (1 + ε)Fk, and FUk+1/FLk =
(1 + ε)Fk/FLk holds. Otherwise FLk+1 will be updated to Fk and we have
FUk+1/FLk = FUk/Fk. The binary search stops as soon as FUk/FLk < 2 for
some k > 0. Let k̄ be this iteration. In each iteration, the ratio FUk/FLk decreases
because

FUk+1/FLk+1 ≤ (FUk/FLk)
3/4 ∀k, (5.9)

which follows from the definitions of Fk and εk. The running time of the oracle
algorithm in iteration k is O(nζ3lmax · (mεk)lmax). As εk =

√
FUk/FLk − 1 and

FUk > 2FLk until the last step of the binary search, we have√
FLk/FUk ≤ 1/εk ≤ (2 +

√
2)
√
FLk/FUk

by elementary transformation. The total running time of the binary search then is:

O(nζ3lmaxmlmax ·
∑

k≤k̄(1/εk)
lmax)

= O(nζ3lmaxmlmax ·
∑

k≤k̄(
√
FLk/FUk)

lmax).

It remains to show that
∑

k

√
FLk/FUk = O(1) to get the desired running time of

the binary search: ∑
1≤k≤k̄

√
FLk/FUk =

∑
0≤k<k̄

(FLk/FUk)
1
2
·(4

3
)k

≤
∑

0≤k<k̄

2−
1
2
·(4

3
)k

≤ 2−
1
2

∑
0≤k<k̄

δk

≤ 2−
1
2 /(1− δ) ≤ 6.5,

with δ = 2−
1
6 < 1 and FL0 := FL, FU0 := FU . The first equality follows from

equation (5.9). The first and second inequality hold because FUk > 2FLk and

2−
1
2
·(4

3
)k+1 ≤ δ · 2−

1
2
·(4

3
)k . Putting together, binary search takes O(nζ3lmaxmlmax).

Now consider the stage when the binary search terminates and FUk̄/FLk̄ < 2.
We call the oracle once more with input (FUk̄, FLk̄, ε), where ε is the desired
approximation ratio. Solutions x are pruned if cost(x) + Dr(x) > FUk̄, which
ensures that at least one solution is not pruned and Algorithm 5.6 returns a feasible
solution. In the end we choose the solution x with cost(x) +

∑
i≤lD

i
r(x) minimal.

82

5.2 The Discrete Power-Delay Tradeoff Problem

Since we only round down edge delays, the rounded solution fulfills

tr(x, ω) ≤ F ∗ + εFLk̄ ≤ (1 + ε)F ∗.

With the running time from the binary search, the total running time of our algo-
rithm is O(nζ3lmaxmlmax) +O(nζ3lmaxmlmax · (1

ε)
lmax) = O(nζ3lmaxmlmax · (1

ε)
lmax).

For ε > 1 this is O(nζ3lmaxmlmax).

Remark 5.15 Depending on the closeness of the upper and lower bound, the delay
values might all be rounded to zero. This can be checked easily in advance by
rounding the maximum delay value that can occur in any solution. If this value is
rounded to zero, it is not necessary to run the oracle algorithm and we can simply
check if the power of the minimum size solution is smaller than the guessed value
Fk, and use this output to continue with the binary search.

83

6 Lagrange Relaxation based Gate Sizing

Lagrangian relaxation is one of the mathematically best-founded approaches for
gate sizing. A Lagrange multiplier is introduced for each timing constraint in the
convex program, and the arrival time variables can be eliminated if the Lagrange
multipliers fulfill the flow conservation rule at all vertices v ∈ Vinner in the timing
graph. The existence of a strongly feasible solution guarantees a zero duality gap.

Despite being based on the convex program formulation of the continuous relax-
ation, the approach can be discretized by solving a discrete Lagrange primal prob-
lem, which is successfully applied in practice.

The projected gradient method solves the dual problem for the continuous relax-
ation, but the convergence rate is unknown. No convergence guarantee exists for
the discretized algorithm.

The literature on the Lagrange relaxation approach is extensive, but theoretical
aspects were often not considered. We give the first comprehensive discussion of
this approach both from a theoretical and practical perspective.

First we formulate the Lagrange primal and dual problem following the groundwork
paper of Chen, Chu and Wong [CCW99]. In practice, the dual problem is usually
tackled by variants of the projected subgradient method. Wang et al. [WDZ07]
proved that the dual objective function is differentiable, allowing the use of the
projected gradient method. In Section 6.2 we analyze properties of the dual func-
tion, convergence guarantees of the projected gradient method that have not been
considered before, and alternatives to this method.

In each iteration of the projected gradient method, the Lagrange primal problem
needs to be solved in order to get a new descent direction (Section 6.3), which is
the power-delay tradeoff problem discussed in Chapter 5. Because no approxima-
tion algorithms are known for the discrete power-delay tradeoff problem except for
special cases, no convergence guarantees for the discretized Lagrangian relaxation
approach exist.

The Lagrange multipliers are projected to the space of non-negative network flows
in the timing graph in each iteration of the projected gradient method. This can
be formulated as a quadratic minimum cost flow problem and be solved in strongly
polynomial time. We compare exact, approximate and heuristic projection algo-
rithms in Section 6.4.

The performance of the discretized Lagrangian relaxation approach and the diffi-
culties in obtaining approximations are discussed in Section 6.5.

Finally, we show that convergence of the projected gradient method for the contin-
uous relaxation can still be guaranteed if electrical constraints and constraints on
placement density are incorporated into this framework (Section 6.6).

85

6 Lagrange Relaxation based Gate Sizing

6.1 Lagrangian Relaxation Formulation

Recall the convex program (4.10) for the continuous relaxation:

min cost(x)

subject to av + delaye(x) ≤ aw ∀ e = (v, w) ∈ E.

Recall that the arrival time variables are fixed for all v ∈ Vstart ∪ Vend. We relax
the timing constraints as in Chen et al. [CCW99] by introducing a non-negative
Lagrange multiplier λe for each constraint and e ∈ E. Let λ := (λ1, . . . , λm) be
the vector of these multipliers. The upper and lower bounds on the gate sizes (i.e.
x ∈ Xcont) are kept as these are easier to handle. The Lagrange function augmentsL̂(λ, a, x)

the objective function with the relaxed constraints:

L̂(λ, a, x) := cost(x) +
∑

e=(v,w)∈E

λe(av + delaye(x)− aw), (6.1)

and the Lagrange primal problem is to minimize the Lagrange function:

inf L̂(λ, a, x) (6.2)

subject to x ∈ Xcont.

6.1.1 Separation of the Lagrange Function

Chen et al. [CCW99] made the crucial observation that the Lagrange function
L̂(λ, a, x) can be split into two functions

L̂(λ, a, x) = L(λ, x) + Lat(λ, a),

whereL(λ, x)

L(λ, x) := cost(x) +
∑
e∈E

λedelaye(x) (6.3)

only depends on the size variables x, and

Lat(λ, a) :=
∑

e=(v,w)∈E

λe(av − aw) =
∑
v∈V

av

 ∑
e∈δ+(v)

λe −
∑

e∈δ−(v)

λe

only depends on the arrival time variables.

Obviously, the infimum of Lat(λ, a) and thus the corresponding dual function is
unbounded if λ ∈ Rm≥0 does not satisfy the flow conservation rule

∑
e∈δ+(v) λe =Flow conservation

rule
∑

e∈δ−(v) λe for each v ∈ V \ {Vstart ∪ Vend}:
Suppose the flow conservation rule is violated at v. Then the arrival time av can
be chosen infinitely large as arrival time variables are unrestricted, and Lat(λ, a)

86

6.1 Lagrangian Relaxation Formulation

becomes infinitely small. Otherwise, if λ forms a network flow, the minimum of
Dat(λ) is a finite constant.

We therefore constrain λ to the convex set F of nonnegative network flows in the Flowspace F
timing graph that satisfy the flow conservation rule for all v ∈ V \ {Vstart ∪ Vend},
and consider the dual problem Lagrange dual

problem

sup D(λ) := inf
x∈Xcont

L(λ, x) (6.4)

subject to λ ∈ F ,

From now on we refer to L(λ, x) as Lagrange function and to the problem
infx∈Xcont L(λ, x) as Lagrange primal problem. Note that the Lagrange function Lagrange primal

problemis of the form tr(x, ω) defined in Chapter 5 with wm+1 = 1.

When solving the dual problem, the Lagrange multipliers can be regarded as a mea-
sure for the timing criticality of the edges in the timing graph: A larger multiplier
value indicates a higher timing criticality.

Deriving the Flow Constraints from the KKT Conditions

If a strongly feasible solution exists for the primal problem (4.10), i.e. a solution
where all constraints are fulfilled by inequality, the duality gap is zero by Slater’s
condition (Theorem 3.15) and there exists an optimal solution that satisfies the
Karush-Kuhn-Tucker-conditions (KKT-conditions, see Theorem 3.21). In that case,
the flow conservation rule for λ can also be derived from the KKT-conditions (Chen
et al. [CCW99]).

It was pointed out by Wang et al. [WDZ07] that the existence of an optimal solution
satisfying the KKT conditions must be guaranteed first before the conditions can
be applied, a fact that was neglected by Chen et al. [CCW99]. The reason is that
the KKT conditions are a necessary, but not a sufficient condition for the existence
of an optimal solution, and it is possible that no feasible solution satisfying the
KKT conditions exists. Wang et al. [WDZ07] provide simple examples of such a
situation.

Remark 6.1 As described in Langkau [Lan00], it is not necessary to simplify the
Lagrange function and restrict the multipliers. She proposed to apply the subgra-
dient method to the dual problem and in each step minimize the Lagrange function
independently for gate sizes and arrival times, i.e. L(λ, x) and Lat(λ, a) are min-
imized separately. We will encounter this problem again in a similar context in
Section 7.2.1.

6.1.2 Optimality Conditions

Slater’s condition (Theorem 3.15) guarantees a zero duality gap and the existence
of a saddle point (x, a, λ) if there exists a strongly feasible solution of the convex
program.

87

6 Lagrange Relaxation based Gate Sizing

Chen et al. [CCW99], whose work laid the foundation of Lagrange relaxation for
gate sizing, applied Lagrangian relaxation to their geometric program formulation.
They claimed that Slater’s condition applies and guarantees a zero duality gap
because the geometric program can be transformed into a convex program. It was
pointed out by Wang et al. [WDZ07] that this claim does not hold per se. If variable
transformations are required to obtain convexity, Lagrangian relaxation should be
applied to the transformed problem. Only then Slater’s condition can be applied.

Similarly, Chen et al. [CCW99] solve the non-transformed Lagrange primal problem
with posynomial delays, although the convergence proof is based on the ability to
transform it into a convex problem. Their convergence result was improved by Chu
and Wong [CW01] also for the non-transformed problem. In Chapter 5 we adjusted
these results to the convex Lagrange primal problem.

Further, Chen et al. [CCW99] did not ensure the existence of a strongly feasible
solution, which is necessary for Slater’s condition. Wang et al. [WDZ07] guarantee a
zero duality gap without the existence of a strongly feasible solution if the objective
function and the delay functions are strictly convex. This follows from a result of
Rockafellar [Roc71], but does not guarantee a saddle point. Without a saddle point,
the dual problem might not have a finite optimal solution, which in turn implies
that the Lagrange primal problem is infeasible (cf. Section 3.2).

Infeasible Instances and Strongly Feasible Solutions

Gate sizing is often applied at a stage in the design flow where it is acceptable
that not all timing constraints are fulfilled after gate sizing. In other words, the
instances are infeasible. This can for example be the case in early stages of the
design flow, where the constraints are set according to the designer’s experience
and small violations are acceptable. In later stages of the design flow, other timing
optimization like repeater insertion, logic restructuring etc. are usually necessary to
close timing. In those situations, a sizing solution that fulfills all timing constraints
does not necessarily exist.

For timing infeasible instances, we aim to maximize the worst slack in practice,
which is done implicitly in the Lagrangian relaxation approach because the mul-
tiplier values of timing-critical edges increase. But a zero duality gap only exists
under the assumption that a strongly feasible solution exists. Alternatively, the
existence of a strongly feasible solution can be guaranteed by reasserting required
arrival times at timing endpoints:

Given initial sizes x ∈ Xcont for all gates, we compute arrival times av at the timing
points v ∈ V with static timing analysis. Let θ ∈ R be the slack target. We reassert
required arrival times r̃atv at all timing endpoints v ∈ Vend as follows:

r̃atv := ratv − θ + ε, ε > 0.

If the slack target θ equals the worst design slack of the initial solution, the initial
solution is already a strongly feasible solution for the modified timing constraints.

88

6.2 The Lagrange Dual Problem

The same holds if we assign r̃atv := av + ε, ε > 0. The drawback is that initial
timing criticalities are “forgotten”, and optimization will focus on optimizing the
objective function without degrading worst slack and SNS. Ideally, a slack target
should be chosen that is realistic to be achieved by gate sizing.

From now on we assume that a strongly feasible solution exists for the convex
program (4.10).

Lagrangian Relaxation for a Modified Geometric Progam

Chou and Chen [CWC05] apply Lagrangian relaxation to a modified version of the
geometric program (4.8) which is obtained by dividing each delay and size constraint
by the right hand side of the inequality such that the right hand side equals one.
Then the variable transformation xi = log(ξi) is applied and the logarithm of the
constraints is taken. This leads to different KKT-conditions, which also allow a
restriction of the Lagrange multiplier space. However, this formulation does not
allow elimination of the arrival time variables. The authors resort to standard
geometric program solvers for the Lagrange primal problem.

Lagrangian Relaxation for Delay-Minimizing Gate Sizing

Chen, Chu and Wong [CCW99] also consider Lagrangian relaxation of the convex
program for the delay-minimizing gate sizing problem. It is easy to see that the
problem allows a similar simplification of the Lagrange function with a zero duality
gap. Results similar to the ones we discuss in the remainder of this chapter can
also be established for this problem in a straightforward way.

6.2 The Lagrange Dual Problem

The dual problem can be solved with algorithms for convex optimization. We first
study theoretical properties of the dual objective function that allow us to analyze
the convergence rate, and consider convex optimization algorithms afterwards.

6.2.1 Properties of the Dual Objective Function

Lemma 6.2 D(λ) is concave and continuous.

This generally holds for the dual objective function (cf. Section 3.2).

Wang et al. [WDZ07] established that under certain assumptions, the dual objective
function is differentiable for a more general class of gate sizing problems where the
Hessian matrix of the primal objective is positive definite for any x ∈ Xcont. Of
course, this can only hold for the simplified dual objective which depends on x and
λ. Otherwise, the dual function grows to infinity for all λ /∈ F , and is therefore
neither continuous nor differentiable.

Let d(x) ∈ Rm be the vector of delays for x ∈ Xcont. We present a simplified proof d(x) ∈ Rm

89

6 Lagrange Relaxation based Gate Sizing

of the Theorem of Wang et al. [WDZ07] exploiting the convexity of the Lagrange
function:

Theorem 6.3 ([WDZ07]) The dual function D(λ) is differentiable for all λ ≥ 0
with gradient d(x̄), where x̄ is the unique vector in Xcont minimizing L(λ, x).

Proof. The proof is a simplified version of the proof of [WDZ07]. The proof is
based on Theorem 3.22 which states that D(λ) is differentiable if the set M(λ) :=
{x : x minimizes L(λ, x), x ∈ Xcont} is a singleton for all λ ≥ 0, the functions
cost(x) and delaye(x) for e ∈ E are continuous, and Xcont is a convex and compact
set. In that case, the gradient is the vector of delays d(x̄).

Obviously, the domain Xcont of feasible gate sizes is a convex and compact set. The
functions cost(x) and delaye(x) for e ∈ E are continuous for all x ∈ Xcont because
they are the sum of exponential functions, which are continuous on Rn. Hence there
exists for all λ ≥ 0 an xλ ∈M(λ).

It remains to show that M(λ) is a singleton for all λ ≥ 0. We already pointed out
that L(λ, x) is of the form tr(x, ω) defined in Chapter 5, and therefore is strictly
convex (cf. Lemma 5.1). Consequently, M(λ) is a singleton.

When analyzing a problem, certain properties can be checked with the aim to find
the best algorithm with convergence guarantees. The following lemmas analyze if
these properties hold for the dual function.

Lemma 6.4 The dual function is not strictly concave.

Proof. Consider the following set of inequalities:

D((1− t)λ+ tµ) = inf
x∈Xcont

{
cost(x) +

∑
e∈E

(
(1− t)λe + tµe

)
delaye(x)

}

= inf
x∈Xcont

{(
1− t

)(
cost(x) +

∑
e∈E

λedelaye(x)
)

+

t
(
cost(x) +

∑
e∈E

µedelaye(x)
)}

≥ (1− t) · inf
x∈Xcont

{
cost(x) +

∑
e∈E

λedelaye(x)

}
+

t · inf
x∈Xcont

{
cost(x) +

∑
e∈E

µedelaye(x)

}
(6.5)

D(λ) is strictly concave if strict inequality holds for all t ∈ (0, 1) and for all λ, µ ∈
Rm≥0. Now suppose the timing graph consists of a single path, and that λe = λe′ and
µe = µe′ for all e, e′ ∈ E (i.e. λ, µ fulfill the flow conservation rule). If the entries

90

6.2 The Lagrange Dual Problem

of λ, µ are large enough, D(λ) = D(µ) because in that case the unique minimizer x
of the Lagrange function is the vector for which the delay is minimized. The same
vector minimizes D((1− t)λ+ tµ)) and equality holds in (6.5).

Lemma 6.5 The dual function D(λ) is not twice differentiable.

Proof. The gradient at λ ≥ 0 is the vector of delays, which is independent of λ.
The partial derivatives of the delay vector with respect to λ equal zero.

Lemma 6.6 The dual function D(λ) is not strongly concave.

Proof. This follows immediately from Definition 3.3 and Lemma 6.5.

Lemma 6.7 The dual function D(λ) and the gradient ∇D(λ) are Lipschitz contin-
uous.

Proof. The gradient of the dual function is the vector of delays, and each entry
delaye(x) for e ∈ E is bounded for x ∈ Xcont. Moreover, there exists a real constant
K > 0 such that

||∇D(λ)−∇D(µ)|| =
∣∣∣∣∣∣(delaye(xλ))e∈E − (delaye(x

µ))e∈E

∣∣∣∣∣∣ ≤ K ||λ− µ|| ,
where xλ, xµ are the unique minimizers of D(λ, x) and D(µ, x), respectively.

6.2.2 Solving the Dual Problem

The properties of the dual objective function established in the previous section
allow us to analyze the convergence rate of the projected gradient method and al-
ternative algorithms from convex optimization. Thereby the size of the instances
occurring in gate sizing certainly restricts the options from a practical point of view.
Usually variants of the projected subgradient method are used in practice. Wang
et al. [WDZ07] used the conditional gradient method. Szegedy [Sze05] used the
projected gradient method, but without knowing that the subgradient he used was
in fact the gradient. Nonetheless, the best choice for the multiplier update regard-
ing convergence is not evident, and a seemingly heuristic multiplicative multiplier
update is growing in popularity.

Application of the Projected Gradient Method

Let x̄ be the unique minimizer of the Lagrange function. By Theorem 6.3, d(x̄)
is the gradient of the dual objective function. As we aim to maximize the dual
function, the projected gradient method (cf. Algorithm 3.1) iteratively advances in
the gradient direction, and

λ(k+1) := πXcont(λ
(k) + ρ(k)d(x̄k).

91

6 Lagrange Relaxation based Gate Sizing

delaye := atv

delaye := −ratv

PI
PO

t

Figure 6.1: Extended timing graph G′ := (V ′, E′)

Paradoxically, it does not make sense from a practical point of view to update the
multipliers with d(x̄) because its entries are always positive and multipliers would
never decrease. We briefly analyze this paradoxon:

Chen et al. [CCW99] suggested to propagate the arrival times in each iteration,
and to add the negative of the local edge slacks slacke(x) := aw − (av + delaye(x))Local edge slack

slacke(x) to the multipliers. This idea might be based on the fact that arrival times have to
be primal feasible in the end, although they are ignored during optimization.

Szegedy [Sze05] observed that arrival time propagation is not necessary because the
subsequent multiplier projection cancels the effect of adding the arrival times if the
following extension G′ of the timing graph G is used:

Add a dummy node t and connect it with all inputs via edges E′in := {(t, v) :Extended timing
graph
G′ := (V ′, E′)

v ∈ Vin}, and with all outputs via edges E′out := {(v, t) : v ∈ Vout}. We set
E′ := E ∪ E′in ∪ E′out, V ′ := V ∪ {t} and define G′ := (V ′, E′).

The signal delay delaye over an edge e = (t, v) ∈ E′in is defined as the arrival time
atv at v. The signal delay delaye over an edge e = (v, t) ∈ E′out is defined as the
negative required arrival time (−ratv) at v. Figure 6.1 shows the resulting graph.
Note that these delays are independent of gate sizes and yield the additional delay
constraints

delaye ≤ av ∀e = (t, v) ∈ E′in,
av + delaye ≤ 0 ∀e = (v, t) ∈ E′out.

Wang et al. [WDZ07], who proved differentiability of the dual objective, used a
similar construction with two dummy nodes which models the same effect, but
without giving any theoretical justification.

Note that differentiability of the dual function still holds with the additional timing
constraints. Furthermore, the problem is more homogeneous as the flow constraints
now need to hold for all vertices in the model graph. With the extended timing
graph, it makes sense to update the multipliers with the delay vector, as not all
edge delays are positive. The arrival time constraints are now encoded in G′, and
propagation of the timing information in the design is in some sense performed by
the multiplier projection.

On the other side, the vector of local edge slacks which was deployed for example

92

6.2 The Lagrange Dual Problem

in Chen et al. [CCW99] seemingly worked well in practice. The explanation is the
following:

Theorem 6.8 The vector of local edge slacks in G is a subgradient of the non-
separated dual function D̂(λ) := infx∈Xcont,a∈Rn L̂(λ, a, x) defined in equation (6.1).

Proof. Recall that

L̂(λ, a, x) = cost(x) +
∑
e∈E

λedelaye(x) +
∑
v∈V

av

 ∑
e∈δ+(v)

λe −
∑

e∈δ−(v)

λe

where const ∈ R is a constant that accounts for the fixed arrival times and fixed
required arrival times at primary input and output pins, respectively.
When λ fulfills the flow constraints, the last non-constant term equals zero and
the arrival time variables can be chosen arbitrarily. By Theorem 6.3 there exists a
unique x̄ that minimizes the first two terms.
Consequently, there exists in general no unique minimizer of L̂(λ, a, x), and the
Lagrange function has infinitely many subgradients with entries (av + delaye(x̄)−
aw), e ∈ E. Theorem 3.24 proves that these are indeed subgradients.

We conclude that updating the Lagrange multipliers with the delay vector in G′

is equivalent to updating the multipliers in G with the negative local edge slacks,
where the arrival times are computed by static timing analysis.
The projected gradient method is summarized in Algorithm 6.1. πF denotes the
projection to the non-negative network flow space F . Note that we proceed in
positive gradient direction, as we aim to maximize the dual objective.

Algorithm 6.1 Projected Gradient Method for Gate Sizing

Input: Dual objective function D(λ)
Output: λ ∈ F , x ∈ Xcont

1: k ← 0
2: Choose starting point λ(0) ∈ F
3: repeat
4: x(k) ← arg minx∈Xcont L(λ(k), x)

5: g(k) ← (delaye(x
(k)))e∈E′

6: λ(k+1) ← πF
(
λ(k) + ρ(k) · g(k)

)
7: k ← k + 1
8: until stopping criterion is satisfied
9: Return λ(k), x(k)

Convergence and Convergence Rate Given a zero duality gap, the projected
gradient method solves the dual problem up to any desired accuracy. To the best
of our knowledge, the convergence rate for gate sizing has not been considered
before.

93

6 Lagrange Relaxation based Gate Sizing

Among the drawbacks of the projected gradient method are its sensitivity to the
choice of step size and start multipliers, and the slow convergence rate. If the
step size degrades too fast, false decisions in early iterations due to inaccurate
multipliers cannot be undone in later iterations. Line search repeatedly solves
the Lagrange primal problem to determine the step size that maximizes the dual
function. However, this is costly and hardly used for gate sizing in practice.

Because the non-negative network flow space F is convex and closed, Algorithm
6.1 converges to a stationary point for certain step size rules. The fact that the
gradient is Lipschitz continuous ensures convergence even if the step size is con-
stant. Additionally, the convergence rate depends linearly on

∣∣∣∣λ(0) − λ∗
∣∣∣∣ and the

Lipschitz constant of ∇D(λ) for certain step sizes, where λ∗ is an optimal solution
to the dual problem. The set F is unbounded and, to the best of our knowledge,
no bounds on the Lagrange multipliers and hence on

∣∣∣∣λ(0) − λ∗
∣∣∣∣ exist.

Linear convergence rates of the projected gradient method have also been estab-
lished under the assumption that the objective function is strongly convex or twice
differentiable. Both assumptions are in general not fulfilled by the dual objective
function (Lemma 6.4 and Lemma 6.5). For general convex functions, the conver-
gence rate is unknown (cf. Section 3.3).

Finding a Good Start Solution Tennakoon and Sechen [TS02] propose the fol-
lowing heuristic to find good start multipliers: Firstly, a steepest descent method
aims to find gate sizes that satisfy a desired delay target. Secondly, a heuristic aims
to find gate sizes inducing the same delays but a better objective function value.
Finally, the Lagrange multipliers that imply this sizing solution are estimated and
constitute the start multipliers.

Other Methods

Well-known methods like bundle methods or the space dilation method seem to
be impractical for large-scale applications because of the additional computational
and storage requirements.

Heuristics In recent years, heuristic multiplier updates that are more sensitive
to local timing information and independent of a global step size have become
more popular. Tennakoon and Sechen [TS02] were the first to use a multiplicative
multiplier update of the form

λ(k+1)
e = λ(k)

e · crit(k)
e ,

where crit
(k)
e := av

aw−delaye(x) encodes the violation of the timing constraint corre-

sponding to edge e = (v, w) in iteration k. Since then, several variants have been
developed but without any convergence guarantees. We refer to Chapter 7 for a
theoretical justification of this and other modifications to the projected subgradient
method.

94

6.3 The Lagrange Primal Problem

Methods of Feasible Directions Methods of feasible directions generate a se-
quence of iterates by choosing the descent direction and the step size in such a way
that the next iterate is feasible (cf. Section 3.3). The minimization problem that
needs to be solved in order to get a feasible descent direction amounts to minimizing
the scalar product with the gradient in our application (Wang et al. [WDZ07]):

f ∈ arg min
s∈F

〈∇D(λ), s〉. (6.6)

This is essentially a minimum cost flow problem in the extended timing graph, where
edge costs correspond to the negative delay values. The advantage over projected
gradient methods is that no time-consuming projection is necessary, and the feasible
search direction can be computed by solving a linear problem. Furthermore, the
convergence rate is known.

On the downside, the minimum in (6.6) is generally unbounded because F is un-
bounded and the gradient contains negative entries, namely for the artificial edges.
Consider for example an instance consisting of a single path only. The extended
timing graph is a cycle. If the slack of this path is negative, the minimum of (6.6) is
unbounded. Therefore Wang et al. [WDZ07] imposed a non-specified upper bound
u ∈ R on the Lagrange multipliers, but did not claim convergence.

6.3 The Lagrange Primal Problem

The Lagrange primal problem consists of minimizing the Lagrange function (6.3):

L(λ, x) := cost(x) +
∑

e=(u,v)∈E

λe · delaye(x).

Recall that the Lagrangian relaxation approach can be discretized by solving a dis-
crete Lagrange primal problem. L(λ, x) is of the form tr(x, ω) with
ω = (λ1, . . . , λm, 1), and the Lagrange primal problem is an instance of the power-
delay tradeoff problem (5.1). Therefore the continuous problem for x ∈ Xcont can
be solved up to accuracy ε in O(n log(1/ε)) time with the so-called local refinement
algorithm (Theorem 5.4): Given an arbitrary starting solution, Algorithm 5.1 iter-
atively changes the gate sizes until no more improvement can be found. Thus, in
the projected gradient method the solution from the previous iteration can be used
as a starting solution in the next iteration.

Only heuristics are known for the discrete power-delay tradeoff problem except for
special cases (cf. Section 5.2). Algorithm 5.4 is a discrete variant of the local refine
algorithm and has been used in practice. In contrast to the continuous relaxation,
Vt optimization can easily be incorporated by choosing a size and a Vt level that
minimize the Lagrange function locally.

95

6 Lagrange Relaxation based Gate Sizing

6.4 Multiplier Projection

It is a non-trivial task to compute an exact projection of the Lagrange multipliers to
the non-negative flow space. The problem is well-known as the quadratic minimum-
cost flow problem:

Multiplier Projection/Quadratic Minimum-Cost Flow Problem

Instance: Edge weights λ ∈ Rm

Task: Compute edge weights λ′ ∈ Rm≥0 minimizing ‖λ− λ′‖22
subject to

∑
e∈δ−(v)

λ′e =
∑

e∈δ+(v)

λ′e ∀v ∈ Vinner.

Although the problem can be solved in strongly polynomial time (Végh [Vég12]),
the computation of an exact projection is time-consuming in practice.
In the gate sizing context, heuristics with linear running time have been successfully
applied in practice, but theoretical convergence guarantees of Algorithm 6.1 are
thereby lost. We discuss exact, approximate and heuristic projection algorithms
and the resulting convergence of the projected gradient method.

6.4.1 Exact and Approximate Projections

By (Végh [Vég12], an exact multiplier projection can be computed in O(m4 log(m))
time. Minoux [Min84] first presented a polynomial extension of the well-known
Edmonds-Karp algorithm for linear minimum-cost flows to convex quadratic flows.
Ibaraki et al. [IFI91] proposed an algorithm for nonlinear minimum-cost network
flow problems, whose application in the gate sizing context is described in detail in
Langkau [Lan00].
Exact projections turned out to be computationally quite expensive in practice:
Chen et al. [CCW99] reported that the practical running time of their algorithm
was about O(n1.7) for the whole projected subgradient method, and most of the
running time was consumed by the projection step.
Rautenbach and Szegedy [RS04] and Lorenz et al. [LPT14] showed that approximate
projections can be used without losing the convergence guarantee in the continuous
case. Note that both works consider the projected subgradient method, but their
results also hold for the projected gradient method.

6.4.2 Heuristics

The most widely used heuristic with linear running time was presented by Ten-
nakoon and Sechen [TS02]. The timing graph is traversed in reverse topological
order. At each vertex v ∈ V which is not a timing endpoint, the multipliers of in-
coming and outgoing edges are added: µin :=

∑
e∈δ−(v) λe and µout :=

∑
e∈δ+(v) λe.

96

6.4 Multiplier Projection

Note that the multipliers of outgoing edges have already been projected. For each
edge e ∈ δ−(v) its contribution λe/µin to µin is determined, and µout is distributed
to all e ∈ δ−(v) based on this distribution: λe := µout · λe/µin.
Szegedy [Sze05] proposed to project the multiplier flow locally optimal at each ver-
tex in the timing graph. A positive outflow is maintained for each timing endpoint
in the following sense: The outflow is initialized with a non-negative value depend-
ing on its timing criticality. In each iteration of the projected gradient method, the
outflow is increased if the endpoint is still timing critical, otherwise the outflow is
decreased. The outflow change corresponds to the scaled worst slack at the end-
point. The timing graph is then traversed in reverse topological order, and at each
vertex v ∈ V the multiplier sum of outgoing edges is distributed to the multipliers of
entering edges. For timing endpoints, the sum of outgoing multipliers corresponds
to the outflow. At v ∈ V the distribution to the multipliers of incoming edges
is chosen to minimize

∑
e∈δ−(v) ||λ′e − λe||

2. Note that the outflow at the timing
endpoints guarantees that the timing criticality of an endpoint is still visible in the
next iteration of Algorithm 6.1 even if the endoint is not critical anymore. This
prevents the projected gradient method to jump back and forth between solutions.

Comparison with Exact Projection

Heuristic projections are designed to interact well with the often heuristic multiplier
update, and it is not easy to predict which combination of multiplier update and
projection gives the best results in practice. Example 6.9 points out the differences
between an exact projection and the heuristic projections we just described.

Example 6.9 Consider an inverter chain instance I = (V (I), E(I)). The extended
timing graph for I is shown in Figure 6.2. Let the arrival time at primary input
pin s be 0, and assume that slacku := ratu−atu < 0 holds for the slack at primary
output u. To fulfill the flow constraints, the multiplier values of all edges e ∈ E(I)
need to be equal. Recall from Section 6.2.2 that the gradient is the vector of edge
delays, and d(u,t) = −ratu and d(t,s) = ats holds. Suppose we are in iteration k of
Algorithm 6.1, and update the multipliers with step size 1, i.e. the delay of an edge
is added to the corresponding multiplier. Then the sum of all multipliers increases
by the slack of I and an exact projection increases the multipliers proportionally
to −slacku|E(I)| . In other words, it calibrates the path length.

The projection from [Sze05] does not consider the extended timing graph during
the projection. It increases the outflow at u by δ · (−slacku) for some δ > 0, and
propagates this increase through the timing graph. Thus it does not calibrate the
path length. Depending on the value of δ, this leads to larger multipliers compared
to the exact projection, which in turn imply an unnecessary upsizing of all inverters
in the next iteration of the projected gradient method.
The projection of [TS02] propagates the multiplier value of the edge entering u
backwards. As the multiplier update of each edge is based on the local criticality of
the edge itself (au/ratu for the edge entering u), the performance of the projection
is hard to compare with the exact projection.

97

6 Lagrange Relaxation based Gate Sizing

s u n inverter

t

Figure 6.2: Extended timing graph of the inverter chain I.

Considering the Sum of Local Slacks

In timing optimization, usually the sum of negative endpoint slacks SNS and the
worst slack of the design are considered to measure the quality of a current realiza-
tion. However, the sum of local slacks SLS, which is defined as the sum of negative
slacks at all gate output pins and timing start points, should not be overlooked.
Consider a gate g ∈ G with worst negative slack slackp at its output pin p, and
suppose that all paths from g to any timing endpoint merge with more timing crit-
ical paths. Then a slack improvement at g does not result in a better SNS. If only
SNS and worst design slack are considered, it is not beneficial to improve the slack
at g, especially at the cost of higher power and/or area consumption. But still, the
slack at g needs to fulfill the slack target at the end of the physical design phase.

Local slack comes into play during the projection step in Lagrangian relaxation
based gate sizing: If a path is timing critical, but merges with other paths with
smaller slack, the multiplier flow is assigned mostly to the more timing critical
paths, and following iterations focus on optimizing these. Once the more critical
paths are improved, the multipliers on the formerly less critical path increase.

However, gate sizing is often applied to timing infeasible instances, and thus SLS
should be taken into consideration when measuring the quality of a sizing solution,
which was also proposed in Reimann et al. [RSR15]. An improvement of worst slack
and SNS is not preferable if it comes at the cost of a large SLS degradation that
needs to be recovered again.

6.5 Performance Analysis of Discretized Lagrangian
Relaxation

In the discretized Lagrange relaxation approach a discrete primal problem needs to
be solved (cf. Section 5.2). Compared to the continuous relaxation, signal delays can
thereby be computed with accurate delay models or timing engines. Nonetheless,
solving a discrete problem results in a gradient with error in each iteration of the
projected gradient method: the entries in the error vector r(k) are the difference
between the delays induced by the optimal continuous solution and the delays
induced by the discrete solution of the Lagrange primal problem.

Approximation algorithms exist only for special cases of the discrete Lagrange pri-
mal problem, and consequently no convergence guarantees for the discretized La-
grangian relaxation approach are known.

98

6.5 Performance Analysis of Discretized Lagrangian Relaxation

In theory, the error in the gradient can be bounded because the set of feasible sizes
is finite, but it is very large. To see this, suppose the optimal continuous solution
realizes the minimum or maximum possible delay for e ∈ E, and the discrete
solution realizes the maximum or minimum possible delay over e, respectively.

The literature on projected gradient or subgradient methods with error is sparse.
Most works focus on the case where the error decreases in each iteration, which
cannot be guaranteed in our application.

Nedic and Bertsekas [NB10] consider the projected subgradient method with a
deterministic bounded error r(k): The subgradient directions are g̃(k) = g(k) + r(k)
where g(k) is a subgradient. Their results can be transferred to the projected
gradient method. The authors establish convergence for several step size rules, but
require a compact constraint set F or at least a constraint set that fulfills

min
λ∗∈F∗

∣∣∣∣∣∣λ(k) − λ∗
∣∣∣∣∣∣ ≤ K ∀k ≥ 0 (6.7)

for some constant K > 0, the set of optimal solutions F∗ and the iterates λ(k) in
the projected gradient method. Because F is not compact, and no upper bound on
the Lagrange multipliers λ exists, condition (6.7) is not fulfilled in our application.

Additionally, Nedic and Bertsekas [NB10] show convergence for the case that D(λ)
has a so-called sharp set of minima over F , in other words

D(λ)−D∗ ≥ µ · min
λ′∈F∗

∣∣∣∣λ− λ′∣∣∣∣ (6.8)

holds for λ ∈ F , where D∗ is the optimal value of D(λ). D(λ) has this property
for continuous gate sizes, but not for discrete sizes: If ||λ− λ′|| is small, the same
discrete sizes are chosen when the Lagrange function is minimized, and D(λ) =
D∗ = 0 < µ ·minλ′∈F∗ ||λ− λ′||.

Performance for the Discrete Time-Cost Tradeoff Problem

It is an interesting question how the discretized Lagrangian relaxation based ap-
proach performs for the discrete time-cost tradeoff problem, which can be regarded
as an “easier” special case of the gate sizing problem with a simplified delay model.
By Skutella [Sku97] we can also assume without loss of generality that only two
delays are available for each edge, i.e. |τe| = 2 for all e ∈ E.

We demonstrated in Section 4.5 that the discrete primal problem can be solved in
polynomial time. Nonetheless, we still have a gradient with error in the projected
gradient method: For λ ∈ F , the gradient is the vector of delays induced by the
unique minimizer of the Lagrange function, which does not necessarily have to
coincide with the optimal discrete solution. But the error can be bounded.

However, conditions (6.7) and (6.8) are not fulfilled because F is unbounded, and
the dual function has no sharp set of minima using the same argumentation as for
the gate sizing problem. Hence no convergence guarantees can be deduced.

99

6 Lagrange Relaxation based Gate Sizing

6.6 Additional Constraints

In this section we incorporate constraints on maximum load capacitance, maximum
slew and placement density into the Lagrangian relaxation framework.

Boyd et al. [Boy+05] modeled maximum load capacitance and slew constraints as
posynomials and included the constraints in the geometric program. Livramento
et al. [Liv+14] incorporated these constraints in their discretized Lagrangian relax-
ation algorithm with a heuristic multiplier update. Until now, placement density
was taken into account during gate sizing only implicitly or for small instances.

6.6.1 Placement Density Constraints

In the VLSI placement step, the chip area is typically divided into so-called regions,Region,
density target and a density target is dictated for the chip. In each region, the ratio of the

placement area of all non-fixed gates and the placement area of the region should
not exceed this target. This ratio is called placement density (cf. Section 2.6) of
the region. In the placement context, non-fixed gates comprise all gates that can
change their placement position. In the context of gate sizing, non-fixed gates are
those whose size we are allowed to change. A density violation occurs in a regionDensity violation

if the current placement density exceeds the target.

We discussed in Section 2.6 that high placement density in a region in turn often
implies a high pin density, which makes it more difficult for routing algorithms to
connect the pins. The density target is an estimate of the density that can be
realized in each region without impeding routing steps.

Gate sizing can induce local density violations because larger sizes consume more
area. Similarly, gate sizing can create overlaps between gates, which have to be
removed in a subsequent legalization step. A high placement density in a region
complicates the work of the legalization algorithm. For example, Figure 6.3 shows
the movement of gates during legalization after a global gate sizing that neglected
density constraints. We conclude that it is beneficial to consider density in a gate
sizing algorithm.

Previous works

Previous works on gate sizing usually take placement constraints implicitly into
account by minimizing total gate area. Literature on simultaneous placement and
gate sizing only considered small instances due to complexity and running time
reasons. For example, Liu et al. [LSH08] consider delay-optimal placement and
sizing of gate graphs with tree topology. This algorithm is heuristically extended
to general acyclic graphs using Lagrange multipliers. Chen and Pedram [CHP00]
simultaneously size and place the gates on the k most critical paths in a design
based on a geometric program formulation, and round the continuous solutions.

Cong et al. [CLL11] perform sizing and placement with respect to placement density
in a Lagrangian relaxation framework. A constraint requires that the total gate area

100

6.6 Additional Constraints

Figure 6.3: The movement of gates during legalization after a global gate sizing.
Each colored line connects the placement location of a gate before le-
galization with the location after legalization. The different colors cor-
respond to the length of the movement from old to new location ranging
from blue (shortest) to red (longest).

on the chip does not exceed a prescribed value. A parameterised quadratic term
is added to the Lagrange function to punish such a violation. The corresponding
parameter µ is refined by iteratively solving the dual problem with the projected
subgradient method for different values of µ. In the projected subgradient method,
the Lagrange primal problem is solved in each iteration by iteratively minimizing
the Lagrange function with respect to the placement variables and the size variables.

We show how placement density can be incorporated more directly:

Incorporating Placement Density Constraints

Suppose the chip area is partitioned into regions R1, . . . , Rq, q ∈ N. For each region
Rw we are given a placement density target targetw that should be fulfilled. Usually, Rw, targetw

the density targets are equal for all regions, but may differ if certain regions are
known in advance to cause difficulties for the routing tools. We obtain the following

101

6 Lagrange Relaxation based Gate Sizing

constraints:

1

|Rw|
∑
gi∈Rw

area(gi) ≤ targetw, w = 1, . . . , q (6.9)

where |Rw| denotes the free area of region Rw and gi ∈ Rw means that the area
of gate gi is in region Rw. Note that we assigned each gate to exactly one region.
However, there does not necessarily exist a partition of the chip area into regions
where the area of each gate lies in exactly one region. It is more likely that the area
of some gates contributes to more than one region. In that case we assign the gate
to the region that contains its center, or, if the center lies on the border of several
regions, we assign the gate arbitrarily to one of these regions. We discuss how this
assignment can be improved at the end of this section.
The area usage area(gi) of a gate gi depends linearly on its size (cf. Section 4.2)
and exponentially on the size variable xi because of the variable transformation
xi = log(ξi) (cf. Section 4.4.3). We write area(xi) for the area of gate gi to clarify
the dependency on the size variables. For x ∈ Xcont let r(x) ∈ Rq be the vectorr(x)

with entries
rw(x) :=

∑
gi∈Rw

area(xi)− targetw · |Rw|.

Obviously, these are strictly convex functions of x ∈ Xcont. We introduce a La-
grange multiplier µw for each region Rw, w = 1, . . . , q, and relax the constraints
(6.9) in the Lagrange function (6.3):L(λ, µ, x)

L(λ, µ, x) := cost(x) +
∑
e∈E

λe · delaye(x) +

q∑
w=1

µwrw(x), (6.10)

with µ = (µ1, . . . , µw)t. The Lagrange dual problem is defined asD(λ, µ), λ ∈ F ,
µ ≥ 0

sup D(λ, µ) := infx∈Xcont L(λ, µ, x) (6.11)

subject to λ ∈ F , µ ≥ 0.

Solving the Lagrange Primal and Dual Problem

It is easy to see that the Lagrange functions (6.10) and (6.3) are differ by a constant
factor for each gate. Therefore Algorithm 5.1 solves the corresponding Lagrange
primal problem for the continuous relaxation up to any desired accuracy.

Theorem 6.10 D(λ, µ) is differentiable for all λ, µ ≥ 0 with gradient (d(x̄), r(x̄))t,
where x̄ ∈ Xcont is the unique minimizer of L(λ, µ, x).

Proof. The proof of Theorem 6.3 can be extended naturally: The newly added
constraints r(x) are obviously strictly convex and continuous, therefore there exists
a unique minimizer of L(λ, µ, x) for all λ, µ ≥ 0. The statement follows from
Theorem 3.22.

102

6.6 Additional Constraints

Consequently, the projected gradient method finds a solution for the dual problem
(6.11) if a strongly feasible solution exists.

Algorithm 5.4 or Algorithm 5.5 can be used to find a solution for the discretized
Lagrange primal problem, but without any performance guarantees.

Improving the Assignment of Gates to Regions

In our current assignment each gate belongs to the region that contains its center,
and we made the simplifying assumption that this assignment does not change in
Algorithm 6.1. However, the placement area of a gate can contribute to more than
one region. A partial assignment of gate area to regions would assign several region
multipliers to the same gate, each of which relates only to the part of the gate
area that lies in the corresponding region. Sizing the gate then requires computing
the effects on several regions. We consider this adjustment to reduce the error
introduced by allowing assignments to one region only not worth the effort.

Similarly, the location of the center can switch to another region after each sizing
step. This is easy to check, and assigning a gate to a different region multiplier
does not harm convergence of the projected gradient method for the continuous
relaxation. It can be regarded as density decrease in the old region, and as density
increase in the new region.

6.6.2 Capacitance and Slew Constraints

Boyd et al. [Boy+05] showed that constraints on the maximum load capacitance
of primary input pins and constraints on maximum slews can be incorporated into
the geometric program for gate sizing. This was exploited by Livramento et al.
[Liv+14] for discretized Lagrangian relaxation, who also incorporate constraints on
maximum load capacitances of gates into their framework, but without providing
the theoretical background.

Recall that the load capacitance of a pin p ∈ Vload (i.e. a primary input pin or gate
output pin) is defined as the capacitance of the net N ∈ N driven by p, and consists
of the wire capacitance wirecap(N) of N and the capacitances of its sink pins.

In the gate sizing context we assume wire capacitances to be constant. Input pin
capacitances scale linearly with the gate size, and we make the realistic assumption
that the load limit of a gate output pin scales linearly with the size of the gate. After
variable transformation, these values thus scale exponentially with x ∈ Xcont (cf.
Section 4.4). Let loadlimp(x) denote the load capacitance limit associated with pin loadlimp(xi)

p ∈ Vload for x ∈ Xcont. We assume input pin capacitances to be equal for all pins of
a gate, but our model also works for varying capacitances. Let cap(xi) denote the cap(xi)

input pin capacitance of gate gi ∈ G when set to size xi, and gNsink1 , . . . , g
N
sinkl(N)

the gNsinki

sink gates of net N . We set loadcapp(x) :=
∑l(N)

i=1 cap
(
xgNsinki

)
+ wirecap(N) for

x ∈ Xcont and p ∈ Vload driving net N . Note that 1/loadlimp(x) and loadcapp(x) loadcapp(x)

103

6 Lagrange Relaxation based Gate Sizing

are strictly convex functions in x ∈ Xcont.

To impose constraints on the maximum slew, we assume a posynomial delay model
that integrates slew, and a posynomial slew function slewe for each edge e = (v, p)
(see Section 4.4) that returns the slew slewp at p given its load capacitance and
the slew entering e at v. After variable transformation xi = log(ξi), delays and
slews are strictly convex in x ∈ Xcont. The values slewp are computed by forward
propagation in the timing graph (cf. Section 2.5.3). We impose constraints on
the maximum slew over each edge that enters a pin p ∈ Vslew (gate input pins
and primary output pins) with a given slew limit, because slew limits are usually
independent of gates sizes.

Now we can formulate the O(n + m) electrical constraints (2.23) and (2.24) as
strictly convex functions:

loadcapp(x)/loadlimp(x) ≤ 1 ∀p ∈ Vload (6.12)

slewe(x, slewv) ≤ slewlimp ∀p ∈ Vslew, e = (v, p) ∈ E. (6.13)

Note that the left hand side of (6.12) is a convex constraint because it is the product
of convex functions.

The constraints (6.12) and (6.13) are relaxed in the Lagrange function:L(λ, µ, ν, x)

L(λ, µ, ν, x) := cost(x) +
∑
e∈E

λe · delaye(x) + (6.14)∑
p∈Vload

µp(loadcapp(x)/loadlimp(x)− 1)

+
∑

p∈Vslew, e=(v,p)∈E

νp(slewe(x, slewv)− slewlimp)

with multipliers µ = (µ1, . . . , µ|Vload|)
t and ν = (ν1, . . . , νκ)t, where κ is the number

of slew limit constraints. The Lagrange dual problem is defined asD(λ, µ, ν)

sup D(λ, µ, ν) := infx∈Xcont L(λ, µ, ν, x), (6.15)

subject to λ ∈ F , µ, ν ≥ 0.

Theorem 6.11 Let x̄ ∈ Xcont be the unique minimizer of L(λ, µ, ν, x). The dual
objective D(λ, µ, ν) is differentiable for all λ, µ, ν ≥ 0 with gradient

 d(x̄)
(loadcapp(x̄)/loadlimp(x)− 1)p∈Vload
(slewe(x̄, slewv)− slewlimp)p∈Vslew, e=(v,p)∈E

.

Proof. The proof of Theorem 6.3 can be extended naturally: The newly added
constraints are obviously strictly convex and continuous, therefore there exists a
unique minimizer of L(λ, µ, ν, x) for all λ, µ, ν ≥ 0.

104

6.6 Additional Constraints

The Lagrange function (6.14) is of the form (5.3), and Algorithm 5.1 solves the
corresponding Lagrange primal problem up to any desired accuracy. The algorithm
traverses the gates in topological order and can propagate the slews, which ensures
that for e = (v, p) ∈ E, the slew at v is available when the gate is optimized to
which pin p is assigned.
Similarly, Algorithm 5.4 or Algorithm 5.5 propagate the slew and return a solution
to the discretized Lagrange primal problem, but without any performance guaran-
tees.

105

7 The Multiplicative Weights Method
for Gate Sizing

In recent years, the discretized Lagrangian relaxation approach based on the pro-
jected gradient method has often been modified to obtain better convergence.
Among these seemingly heuristic modifications are a multiplicative Lagrange mul-
tiplier update and an additional weight for power consumption, and we will give
the first theoretical justification of these ideas based on the multiplicative weights
method.

The idea of the multiplicative weights method has been widely used in practice,
and lies for example at the core of approximation algorithms for fractional packing
and covering LPs (Plotkin et al. [PST95]) and the multicommodity flow problem
(Garg and Könemann [GK07]).

Chapter 7 and Chapter 8 are dedicated to new mathematical models and algorithms
for the gate sizing problem and its continuous relaxation. Thereby the multiplica-
tive weights method and variants play a central role.

In this chapter we consider the feasibility version of the continuous gate sizing
problem which arises from the convex program (4.10) by transforming the objec-
tive into a constraint. The multiplicative weights algorithm applied to this problem
returns a solution that approximately fulfills all constraints. The discretized algo-
rithm essentially is the modified Lagrangian relaxation approach for the discrete
problem.

In the next chapter we go one step further and demonstrate that gate sizing can
be modeled as a min-max resource sharing problem. This is a key problem in
mathematical optimization and has been successfully applied to (timing-driven)
global routing in VLSI design. The fastest algorithm for this problem is a variant
of the multiplicative weights algorithm (Müller et al. [MRV11]).

The outline of this chapter is as follows: We introduce the multiplicative weights
method in Section 7.1. In Section 7.2, we use the multiplicative weights algorithm
to find gate sizes that (approximately) fulfill all constraints of the feasibility ver-
sion of the convex program. The algorithm can be discretized by solving a discrete
feasibility problem, but without any approximation guarantees (cf. Section 7.2.2).
Additionally, the final solution needs to be rounded. A bound on the objective func-
tion value that is needed to transform the objective into a constraint can be deter-
mined with an approximate binary search (Section 7.2.3). In Section 7.2.4 we point
out the differences between the continuous multiplicative weights approach and the
Lagrangian relaxation approach. Comparison of the discretized algorithms leads
to the conclusion that the ideas behind the most prominent heuristic modifications

107

7 The Multiplicative Weights Method for Gate Sizing

of the projected gradient method can be justified by the discretized multiplicative
weights algorithm.

The algorithms in this chapter can also be applied to the delay-minimizing gate
sizing problem in a straightforward way.

7.1 The Multiplicative Weights Method

In this section we review the multiplicative weights algorithm and restate some
known results following the survey paper of Arora, Hazan and Kale [AHK12].

The multiplicative weights method was introduced in the approximation algorithms
for fractional packing and covering LPs by Plotkin, Shmoys and Tardos [PST95]
and has since been used in a wide range of applications, among them the multicom-
modity flow problem (Garg and Könemann [GK07]) and global routing in VLSI
design (Albrecht [Alb01]).

We introduce the multiplicative weights method in the context of solving concave
feasibility problems, as we will apply it in the remainder of this chapter. The
results are based on the work of Plotkin et al. [PST95] for fractional packing and
covering LPs, and have been adapted to concave feasibility problems by Arora et
al. [AHK12]. For missing proofs and a more general introduction with a broader
overview of applications we refer to this work.

7.1.1 The Multiplicative Weights Algorithm for Feasibility Problems

The multiplicative weights algorithm is often applied to constrained optimization
problems. The basic idea is to assign a positive weight to each constraint in the
problem and iteratively compute potential solutions to the problem with an oracle
algorithm that gets the weights as input. The weights are updated after each
oracle call based on how well the corresponding constraints are satisfied in the
solution returned by the oracle. This implies that a constraint weight is reduced
if the constraint is satisfied, and increased otherwise. In the next iteration, the
oracle should implicitly focus on the constraints with high weight that are poorly
satisfied.

We consider feasibility problems of the following form:Feasibility
problem

∃ ? y ∈ Y : fi(y) ≥ 0 ∀i = 1, . . . ,m, (7.1)

where Y is a convex domain in Rn, and the functions fi : Y → R, i = 1, . . . ,m, are
concave. We use the notation f := (f1, . . . , fm)t.

It is easy to see that optimization problems can be reduced to feasibility problems
by transforming the objective function into a constraint. To this end, a bound
is imposed on the objective function value, which can be determined by binary
search. In each search step, feasibility of the resulting problem is checked. An
example is the approximation algorithm of Garg and Könemann [GK07] for the
multicommodity flow problem.

108

7.1 The Multiplicative Weights Method

We employ the multiplicative weights method to either find a solution y ∈ Y that
fulfills (7.1) up to a given additive error η > 0, or to correctly decide that the
problem is infeasible.
To this end, we need an oracle algorithm Oracle that solves the following problem Oracle

for constraint weights ω ∈ Rm>0:

∃ ? y ∈ Y :

m∑
i=1

ωifi(y) ≥ 0. (7.2)

If there exists a solution y∗ ∈ Y that fulfills the constraints in (7.1), then y∗ is
also a feasible solution of problem (7.2) for any ω ∈ Rm>0. On the other hand, if
there exists ω ∈ Rm>0 such that no y ∈ Y satisfies (7.2), we can deduce that (7.1) is
infeasible.
An oracle algorithm Oracle for problem (7.2) can be implemented by maximizing∑m

i=1 ωifi(y) over y ∈ Y.

Definition 7.1 An ρ-bounded Oracle for ρ ≥ 0 is an algorithm that solves the ρ-bounded
Oraclefeasibility problem (7.2) for input weights ω ∈ Rm>0. Additionally, if Oracle returns

y ∈ Y, we have fi(y) ∈ [−ρ, ρ].

Remark 7.2 We consider ρ-bounded oracles similar to Plotkin et al. [PST95] as
this is sufficient for our later application. Arora et al. [AHK12] use a more advanced
definition to classify the solutions returned by the oracle in order to derive better
running time guarantees.

The ρ-boundedness of Oracle is needed to obtain convergence of the multiplica-
tive weights algorithm for feasibility problems of the form (7.1). The algorithm is
essentially due to Cesa-Bianchi, Mansour and Stoltz [CMS07] and is summarized
in Algorithm 7.1. More precisely, 1

ρfi(y
(t)) ∈ [−1, 1] needs to hold in each iteration

t of Algorithm 7.1, where y(t) is the solution returned by Oracle in that iteration.
Algorithm 7.1 assumes the existence of a ρ-bounded Oracle, and we refer to ρ as
the width of problem (7.1). Problem width ρ

If |fi(y)| is bounded for all y ∈ Y, we can bound ρ := maxy∈Y max1≤i≤m |fi(y)|.

Algorithm 7.1 Multiplicative weights algorithm

Input: Feasibility problem of the form (7.1), ρ-bounded Oracle, T ∈ N
1: Fix 0 ≤ ν ≤ 0.5
2: ω(1) ← 1

3: for t = 1, . . . , T do
4: Compute y(t) with ρ-bounded Oracle for input weights ω(t)

5: if Oracle decides that problem (7.2) is infeasible then return
6: end if
7: Weight update: ω

(t+1)
i := ω

(t)
i

(
1− ν · 1

ρfi(y
(t))
)

for all i = 1, . . . ,m

8: end for
9: return ȳ := 1

T

∑T
t=1 y

(t)

109

7 The Multiplicative Weights Method for Gate Sizing

Theorem 7.3 is essentially due to Cesa-Bianchi, Mansour and Stoltz [CMS07]:

Theorem 7.3 ([CMS07]) After T iterations of Algorithm 7.1 the following holds
for any constraint 1 ≤ i ≤ m:

T∑
t=1

1

ρ
f
(
y(t)
)
· ω(t) ≤

T∑
t=1

1

ρ
fi

(
y(t)
)

+ ν
T∑
t=1

∣∣∣∣1ρfi (y(t)
)∣∣∣∣+

log(m)

ν
. (7.3)

Note that the condition 0 ≤ ν ≤ 0.5 in line 1 of Algorithm 7.1 is necessary for
convergence of the algorithm. The following theorem shows that Algorithm 7.1
approximately solves the feasibility problem (7.1).

Theorem 7.4 ([AHK12]) Let η > 0 and suppose there exists an ρ-bounded Oracle
for the feasibility problem (7.2) for ρ > 0. Assume that ρ ≥ η

2 . Then Algorithm 7.1
either solves problem (7.1) up to an additive error of η, or correctly decides that

the problem is infeasible. Thereby T = O
(
ρ2 log(m)

η2

)
iterations are needed.

Proof. The proof is due to Arora et al. [AHK12]. The assumption ρ ≥ η
2 is needed

for technical reasons. If it is not fulfilled, we can redefine ρ = η
2 . In each iteration

1 ≤ t ≤ T of Algorithm 7.1 we run Oracle with input weights ω(t). If Oracle
returns that problem (7.2) is infeasible, the algorithm stops because then problem
(7.1) is also infeasible.
Now assume that in each iteration t the Oracle returns a solution y(t) ∈ Rm such

that
∑m

i=1 ω
(t)
i fi

(
y(t)
)
≥ 0. It is easy to see that

1

ρ
f
(
y(t)
)
· ω(t) =

1

ρ

m∑
i=1

ω
(t)
i · fi

(
y(t)
)
≥ 0.

By Theorem 7.3, the following holds after T iterations for all i = 1, . . . ,m:

0 ≤
T∑
t=1

1

ρ
fi

(
y(t)
)

+ ν
T∑
t=1

1

ρ
|fi
(
y(t)
)
|+ log(m)

ν

= (1 + ν)
T∑
t=1

1

ρ
fi

(
y(t)
)

+ 2ν
1

ρ

∑
<0

∣∣∣fi (y(t)
)∣∣∣+

log(m)

ν

≤ (1 + ν)

T∑
t=1

1

ρ
fi

(
y(t)
)

+ 2νT +
log(m)

ν
. (7.4)

Here the subscript “< 0” beneath the sum
∑

<0 |fi
(
y(t)
)
| denotes the subset of

iterations t with fi
(
y(t)
)
< 0. The last inequality follows because

∣∣fi (y(t)
)∣∣ ≤ ρ.

We set ȳ := 1
T

∑T
t=1 y

(t). Because Y is a convex set, ȳ ∈ Y. By elementary
transformations of (7.4) we obtain

0 ≤ (1 + ν)fi(ȳ) + 2νρ+
ρ log(m)

νT

110

7.1 The Multiplicative Weights Method

for i = 1, . . . ,m since all fi are concave and thus 1
T

∑T
t=1 fi

(
y(t)
)
≤ fi

(
1
T

∑T
t=1 y

(t)
)

by Jensen’s inequality. We set ν = η
4ρ and T =

⌈
8ρ2 log(m)

η2

⌉
. Then

0 ≤ (1 + ν)fi(ȳ) + η,

which implies
fi(ȳ) ≥ −η.

Note that ρ ≥ η
2 , hence ν ≤ 1

2 . We conclude that ȳ returned by Algorithm 7.1
solves problem (7.1) up to an additive error of η.

Approximate Oracles Algorithm 7.1 approximately solves the feasibility problem
(7.1) also if Oracle solves the weighted feasibility problem (7.2) up to an additive
error.

Definition 7.5 ([AHK12]) An η-approximate Oracle for η > 0 is an algorithm η-approximate
Oraclethat solves the feasibility problem (7.2) for input weights ω ∈ Rm>0 up to an additive

error of η: It either returns y ∈ Y with
∑m

i=1 ωifi(y) ≥ −η, or it decides correctly
that (7.2) is infeasible.

Theorem 7.6 ([AHK12]) Suppose there exists an ρ-bounded η
3 -approximate Ora-

cle for the feasibility problem (7.2) for η > 0. Assume that ρ ≥ η
3 . Then Algorithm

7.1 either solves problem (7.1) up to an additive error of η, or correctly decides that

the problem is infeasible. Thereby T = O
(
ρ2 log(m)

η2

)
iterations are needed.

Proof. The proof is due to Arora et al. [AHK12]. The assumption ρ ≥ η
3 is needed

for technical reasons. If is is not fulfilled, we can redefine ρ = η
3 . We set ν := η

6ρ .
In each iteration 1 ≤ t ≤ T of Algorithm 7.1 we run the approximate Oracle with
input weights ω(t).

If Oracle returns in iteration t that there is no y ∈ Y with
∑m

i=1 ω
(t)
i fi

(
y(t)
)
≥ −η

3
the algorithm stops because problem (7.1) is infeasible.

Now assume that in each iteration 1 ≤ t ≤ T , Oracle returns a solution y(t) ∈ Rm

such that
∑m

i=1 ω
(t)
i fi

(
y(t)
)
≥ −η

3 . It is easy to see that

1

ρ
f
(
y(t)
)
· ω(t) ≥ − η

3ρ
.

We simplify as in the proof of Theorem 7.4 and get that after T iterations,

−η
3
≤ (1 + ν)fi(ȳ) + 2νρ+

ρ log(m)

νT

holds for i = 1, . . . ,m and ȳ = 1
T

∑T
t=1 y

(t). With T =
⌈

18ρ2 log(m)
η2

⌉
we obtain

fi(ȳ) ≥ −η.

111

7 The Multiplicative Weights Method for Gate Sizing

7.2 The Multiplicative Weights Algorithm for Gate Sizing

We consider the multiplicative weights algorithm for gate sizing formulated as fea-
sibility problem based on the convex program (4.10), and assume for now that a
sizing solution x ∈ Xcont exists which fulfills the timing constraints. Infeasible
timing constraints are treated separately at the end of Section 7.2.1.
In this chapter we use the basic version of the multiplicative weights algorithm
as described in Algorithm 7.1 where the problem width contributes to the running
time, although more sophisticated variants exist: Firstly to get a better comparison
with the modified Lagrangian relaxation algorithm for the discrete problem (cf.
Section 7.2.4), and secondly to enable evaluation of the resource sharing model in
Section 8.10.

7.2.1 The Continuous Feasibility Problem

Formulation as Feasibility Problem

Recall the convex program (4.10) of the continuous relaxation:

min cost(x)

subject to av + delaye(x) ≤ aw ∀ e = (v, w) ∈ E
x ∈ Xcont

The arrival time variables av are fixed for all v ∈ Vstart∪Vend and unbounded for all
v ∈ Vinner. Let Ã denote the set of vectors a ∈ R|V | with av fixed for v ∈ Vstart∪VendÃ
to the prescribed arrival time or required arrival time, respectively. We impose an
upper bound budgetpower ∈ R≥0 on the power consumption cost(x), and interpretbudgetpower

the gate sizing problem as feasibility problem of the form (7.1):

Feasibility problem for gate sizing

∃? x ∈ Xcont, a ∈ Ã (7.5)

subject to ze(a, x) := aw − (av + delaye(x)) ≥ 0 ∀e = (v, w) ∈ E
zm+1(a, x) := budgetpower − cost(x) ≥ 0

The functions ze(a, x) : R|V | × Rn → R for all e ∈ E and zm+1 : R|V | × Rn → Rare
obviously concave because the delay functions and cost(x) are convex. We assume
that the edges e ∈ E have a fixed ordering e1, . . . , em, and also use the notation
zi := zei for all i = 1, . . . ,m.zi(a, x)

We intend to find an approximately feasible solution for problem (7.5) with Al-
gorithm 7.1 and therefore introduce weights ω = (ω1, . . . , ωm+1) ∈ Rm+1

>0 for theConstraint weights
w ∈ Rm+1

>0 constraints in (7.5). We refer to ωi for 1 ≤ i ≤ m as edge weights and to ωm+1 as
power weight.

112

7.2 The Multiplicative Weights Algorithm for Gate Sizing

The Oracle Algorithm

Recall that in each iteration of the multiplicative weights algorithm an oracle returns
for given constraint weights ω gate sizes and arrival times that fulfill the weighted
constraints of the form (7.2) up to a small additive error η > 0: η

∃? x ∈ Xcont, a ∈ Ã

subject to
m+1∑
i=1

ωi · zi(a, x) ≥ −η.
(7.6)

We follow Arora et al. [AHK12] and maximize

max
x∈Xcont, a∈Ã

(
m+1∑
i=1

ωi · zi(a, x)

)
(7.7)

we = max
x∈Xcont

(
ωm+1 · (budgetpower − cost(x))−

∑
e∈E

ωe · delaye(x)

)
(7.8)

+ max
a∈Ã

∑
v∈V

av ·

 ∑
e∈δ−(v)

ωe −
∑

e∈δ+(v)

ωe

 (7.9)

We exploit the fact that the arrival time and size variables are independent and
maximize (7.8) and (7.9) separately.

Gate size oracle Obviously, (7.8) is equivalent to

minx∈Xcont
(
ωm+1 · cost(x) +

∑
e∈E ωe · delaye(x)

)
,

which is the power-delay tradeoff problem (5.1). By Theorem 5.7, Algorithm 5.2
returns a solution x ∈ Xcont with

ωm+1 · cost(x) +
∑
e∈E

ωe · delaye(x) ≥ opt− η (7.10)

in O
(
n·diam2

X ·lip(ω)
η

)
time, where diamX is the diameter of Xcont, lip(ω) is the

Lipschitz constant of (7.8) as function of x (cf. Lemma 5.2), and opt the optimal
value of (7.8).

Arrival Time Oracle If the edge weights do not form a network flow in the timing
graph (i.e.

∑
e∈δ−(v) ωe =

∑
e∈δ+(v) ωe for all v ∈ Vinner}), the maximum of (7.9) is

unbounded because the arrival time variables are unbounded.

In the Lagrangian relaxation framework, this obstacle was overcome by restricting
the Lagrange multipliers to the non-negative network flow space. However, the

113

7 The Multiplicative Weights Method for Gate Sizing

multiplier projection is not in line with the multiplicative weights framework from
a theoretical point of view.

We employ the arrival time oracle of Langkau [Lan00] which was developed origi-
nally to minimize the terms in the Lagrange function L(λ, a, x) depending on the
arrival times, which are also of the form (7.9). Held et al. [Hel+15] described
essentially the same oracle in a different context.

Following Langkau [Lan00], we introduce arrival time bounds lv ≤ av ≤ uv for alllv , uv

v ∈ V . For brevity, we denote with A := {a ∈ R|V || lv ≤ av ≤ uv} ⊂ R|V | the set ofA
feasible arrival time assignments, which obviously is a convex set. For timing start
and endpoints, both the lower and upper bound are set to the prescribed arrival and
required arrival time values, respectively, such that the values of the corresponding
arrival times are fixed.

The terms in (7.9) can then be maximized by setting

av :=

{
lv if

∑
e∈δ−(v) ωe <

∑
e∈δ+(v) ωe

uv if
∑

e∈δ−(v) ωe >
∑

e∈δ+(v) ωe.
(7.11)

Otherwise, for v ∈ Vinner with
∑

e∈δ−(v) ωe =
∑

e∈δ+(v) ωe, the value of av can be
chosen arbitrarily in theory. Again we follow Langkau [Lan00] and set av to the
minimum of uv and a′v, where a′v is the arrival time computed by static timing
analysis with respect to the current gate sizes:

av := min{a′v, uv}.

The reason is the following: the constraint weights ωe reflect the criticality of the
timing constraints during the algorithm in the sense that weights increase if the
corresponding constraint is violated. (7.11) implies that av is set to uv if the edges
entering v are considered to be more critical, and vice versa av is set to lv if the
edges leaving v are considered to be more critical. Otherwise, it makes sense to set
av to the smallest (feasible) value that satisfies all timing constraints of edges that
are on a path from a timing start point to v.

Considering this, it is natural to call the gate size oracle before the arrival time
oracle.

To determine the lower and upper bounds on the arrival times, we follow Held et
al. [Hel+15]. For all v ∈ Vinner we set lv to the earliest possible signal arrival time
at v which can be computed by assuming the minimal possible delay on all edges in
the timing graph (see also Lemma 7.7). Similarly, we set uv to the latest possible
arrival time at v which ensures that the timing constraints are fulfilled.

For all v ∈ Vinner, the bounds can be computed by propagating the minimum delays
through the timing graph in topological and reverse topological order, respectively:

lv := max
e=(u,v)∈δ−(v)

lu +min(delaye), and (7.12)

uv := min
e=(v,w)∈δ+(v)

uw −min(delaye).

114

7.2 The Multiplicative Weights Algorithm for Gate Sizing

Here min(delaye) denotes the minimum delay over edge e that can be computed min(delaye)

for each edge independently by sizing all gates with the aim to minimize the delay
over e. If lv > uv for any v ∈ V , the timing constraints are infeasible and cannot
be fulfilled.

Lemma 7.7 The lower and upper bounds (7.12) on the arrival times can be com-
puted by static timing analysis in O(m) time for all v ∈ Vinner.

Proof. Once the minimum delays min(delaye) are known for all e ∈ E, the arrival
time bounds can be determined in O(m) time by traversing the timing graph once
in topological and once in reverse topological order, respectively.
It takes O(m) time to compute the lower delay bounds min(delaye) for all e ∈ E:
The lower delay bounds can be determined independently for each edge by choosing
the gate sizes that minimize the load capacitance and resistance, in other words
choosing the smallest or the largest available size for all gates whose size has an
impact on the delay.

Lemma 7.8 Algorithm 7.2 computes arrival times a ∈ A in O(m) time.

Proof. Static timing analysis traverses each edge once to compute the arrival time
at each pin. Similarly, each edge is traversed a constant number of times when the
weights of incoming and outgoing edges of each pin are added together.

Algorithm 7.2 Arrival time oracle

1: procedure ATOracle(x, ω)
2: Propagate arrival times a′v through G by STA based on delay for sizes x
3:

av :=

lv if

∑
e∈δ−(v) ωei <

∑
e∈δ+(v) ωei

uv if
∑

e∈δ−(v) ωei >
∑

e∈δ+(v) ωei
min{a′v, uv} otherwise

(7.13)

return a ∈ A
4: end procedure

Gate Size and Arrival Time Oracle Algorithm 7.3 combines the gate size and the
arrival time oracle. Oracle algorithm

Algorithm 7.3 Gate size and arrival time oracle

1: procedure Oracle(η, ω)
2: x← ConditionalGradient(η, ω) (Algorithm 5.2)
3: a← ATOracle(x, ω)
4: return x ∈ Xcont and a ∈ A
5: end procedure

115

7 The Multiplicative Weights Method for Gate Sizing

Theorem 7.9 Algorithm 7.3 is a η-approximate oracle for maximizing (7.7) with

running time O
(
n·diam2

X ·lip(ω)
η +m

)
for η > 0, i.e. we can deduce from

ωm+1 ·
(
budgetpower − cost(x)

)
+
∑
e∈E

ωe ·
(
aw − (av + delaye(x))

)
< −η

that problem (7.5) is infeasible.

Proof. The running time follows from Theorem 5.7 and Lemma 7.8. The arrival
time oracle returns the optimum arrival times. The sizing oracle returns a solution
with accuracy η, i.e. the sizes fulfill property (7.10). The statement follows from
Definition 7.5 because the value opt in equation (7.10) is ≥ 0.

The Problem Width ρ

Algorithm 7.3 is a η-approximate oracle, but it does not give any bounds on the
width of problem (7.5) (see Definition 7.1). We bound the width ρ byWidth ρ

ρ := max
x∈Xcont, a∈A

{
max

i=1,...,m+1
|zi(a, x)|

}
(7.14)

= max
x∈Xcont, a∈A

{
max

e=(v,w)∈E
|aw − (av + delaye(x))|, |budgetpower − cost(x)|

}
.

Obviously, ρ is bounded because all variables are bounded. The power constraint
can be bounded by the difference Bu − Bl of a lower and upper bound on power
consumption (cf. Section 7.2.3). The timing constraints can be bounded as follows:

max
x∈Xcont,a∈A

{
max

e=(v,w)∈E
|aw − (av + delaye(x))|

}
= max

{
max
e=(v,w)

uw − (lv +min(delaye)), max
e=(v,w)

|lw − (uv +max(delaye))|
}

≤ max
{

max
w∈V

uw, max
e=(v,w)

|uv +max(delaye)|
}

= max
e=(v,w)

|uv +max(delaye)|,

where max(delaye) denotes an upper bound on the delay over edge e. Multiple
cycle paths can exist in the timing graph, therefore the required arrival times at
timing endpoints, and consequently the bounds uv for all v ∈ V , are bounded by
O(D), where D ∈ R>0 is the clock cycle time of the design.Clock cycle timeD

Under the assumption that we are given a fixed gate library and reasonable wire
lengths, the maximum delay over an edge can be bounded by a (large) constant.
We refer to Section 8.5 for a more detailed discussion.

116

7.2 The Multiplicative Weights Algorithm for Gate Sizing

Constraint Weight Update

In each iteration t of the multiplicative weights algorithm we compute feasible gate
sizes x(t) and arrival times a(t), and use the weight update rule

ω
(t+1)
i := ω

(t)
i

(
1− ν zi(a

(t), x(t))

ρ

)
i = 1, . . . ,m+ 1,

for 0 ≤ ν ≤ 0.5. The cost of constraint i at point (a, x) is zi(a,x)
ρ . Division by

ρ ensures that the costs lie in the range [−1, 1], which is necessary in order to
apply Theorem 7.6. Obviously, weights increase if the corresponding constraint is
violated, and decrease otherwise.

Algorithm for the Feasibility Problem

Given an instance of the continuous relaxation of the gate sizing problem and an
upper bound budgetpower on power consumption, Algorithm 7.4 returns a convex
combination of sizes for each gate g ∈ G:

Algorithm 7.4 Algorithm for the feasibility problem (7.5)

1: procedure FeasibilityProblem(η, budgetpower)
2: Fix 0 ≤ ν ≤ 0.5
3: ω(1) ← 1

4: for t = 1, . . . , T do
5:

(
a(t), x(t)

)
← Oracle

(η
3 , ω

(t)
)

6: if
∑m+1

i=1 ω
(t)
i · zi

(
a(t), x(t)

)
< −η

3
7: then
8: return ~0 //(instance is infeasible)
9: end if

10: for i = 1, . . . ,m+ 1 do

11: ω
(t+1)
i ← ω

(t)
i

(
1− ν zi(a

(t),x(t))
ρ

)
12: end for
13: end for
14: return x̄ = 1

T

∑
t≤T x

(t), ā = 1
T

∑
t≤T a

(t)

15: end procedure

Theorem 7.10 Let budgetpower be an upper bound on the objective function, and

η > 0. Assume that ρ ≥ η
3 . Then Algorithm 7.4 returns in T = O

(
log(m)·ρ2

η2

)
iterations vectors x̄ ∈ Xcont, ā ∈ A with zi(ā, x̄) ≥ −η for all i = 1, . . . ,m+ 1, i.e.

cost(x̄) ≤ budgetpower + η and

āv + delaye(x̄) ≤ āw + η ∀e ∈ E,

117

7 The Multiplicative Weights Method for Gate Sizing

or correctly decides that problem (7.5) is infeasible.

Proof. Lines 6-9 correctly ensure that Algorithm 7.4 aborts only if problem (7.5)
is infeasible (cf. Theorem 7.9). The condition ρ ≥ η

3 is technical, and if it is not
fulfilled we redefine ρ := η

3 .

We apply Theorem 7.6: We call Algorithm 7.3 in line 5 as ρ-bounded η
3 -approximate

oracle and set ν = η
ρ·6 ≤

1
2 . We simplify as in the proof of Theorem 7.4 and get

that after T iterations, the solutions x̄ = 1
T

∑T
t=1 x

(t), ā = 1
T

∑T
t=1 a

(t) returned by
Algorithm 7.4 satisfy

−η
3
≤ (1 + ν)zi(ā, x̄) + 2νρ+

ρ log(m)

νT
.

With T =
⌈

18ρ2 log(m)
η2

⌉
we obtain

−η
3
≤ (1 + ν)zi(ā, x̄) +

η

3
+

ρ logm

η
ρ·6

⌈
18ρ2 log(m)

η2

⌉
≤ (1 + ν)zi(ā, x̄) +

2

3
η.

It follows that −η ≤ zi(ā, x̄) for all i = 1, . . . ,m+ 1, as required.

It is easy to see that increasing the number of iterations improves the approximation
ratio.

Corollary 7.11 Let k be the length of the longest path in G, and x̄, ā be theLongest path
length k solution returned by Algorithm 7.4. Then āp ≤ ratp + η · k holds for all p ∈ Vend.

Proof. Consider a path in G with endpoint p ∈ Vend. For each edge e = (v, w)
on this path we have āv + delaye(x̄) ≤ āw + η. Summing up the timing constraint
violations of all edges on this path gives āp ≤ ratp + η · k.

Infeasible Timing Constraints

For instances with infeasible timing constraints Algorithm 7.4 never returns a fea-
sible sizing solution. If no timing feasible solution exists, we aim to maximize the
worst design slack WS instead. To this end, one can adjust the required arrival
times by an estimate of the worst slack s, i.e. we assign required arrival times
ratw − s to all w ∈ Vend, and perform binary search over s until a feasible solution
has been found. An upper bound for s is 0. A lower bound for s is given by any
sizing solution, for example the smallest size solution for all gates.

7.2.2 The Discrete Feasibility Problem

We now consider the discrete feasibility problem:

118

7.2 The Multiplicative Weights Algorithm for Gate Sizing

Discrete feasibility problem for gate sizing

∃? x ∈ Xdisc, a ∈ Ã
subject to zm+1(a, x) := budgetpower − cost(x) ≥ 0

ze(a, x) := aw − (av + delaye(x)) ≥ 0 ∀e = (v, w) ∈ E
(7.15)

Algorithm 7.4 can be discretized by calling an oracle for the weighted feasibility
problem with w ∈ Rm+1

>0 :

∃ ?x ∈ Xdisc, a ∈ Ã

subject to
m+1∑
i=1

ωi · zi(a, x) ≥ 0
(7.16)

in other words find x ∈ Xdisc, a ∈ Ã maximizing
(∑m+1

i=1 ωi · zi(a, x)
)

.

Similar to Section 7.2.1, the gate size and arrival time variables can be considered
independently, and Algorithm 7.2 returns optimal arrival times a ∈ A. Algorithm
5.5, for example, returns discrete sizes x ∈ Xdisc, but with unknown approximation
ratio. Putting together, Algorithm 7.5 describes an oracle algorithm that returns
arrival times and discrete sizes with unknown oracle error:

Algorithm 7.5 Discrete gate size and arrival time oracle

1: procedure DiscreteOracle(ω)
2: x← DiscreteLocalRefine(ω) (Algorithm 5.5)
3: a← ATOracle(x, ω)
4: return x ∈ Xdisc and a ∈ A
5: end procedure

Because the oracle error is unknown, Algorithm 7.6 for problem (7.15) cannot decide
if an instance is infeasible, and the number of iterations necessary to achieve a
certain accuracy cannot be determined. The algorithm is thus a heuristic that
stops if no more improvement can be found (line 4), in other words if the weighted
sum of cost and delays does not improve further. The convex hull of the vectors in
Xdisc is Xcont, and Algorithm 7.6 returns sizes x̄ ∈ Xcont.

Under the assumption that the error η of the sizing oracle, and thus of Algorithm
7.5, is known, Algorithm 7.6 can decide infeasibility of an instance and determine
the required number of iterations to achieve a desired accuracy. In that case we can
formulate the analogue to Theorem 7.10, with the same approximation guarantee
for the sizes and arrival times.

119

7 The Multiplicative Weights Method for Gate Sizing

Algorithm 7.6 Algorithm for the discrete feasibility problem (7.15)

1: procedure DiscreteFeasibilityProblem(budgetpower)
2: Fix 0 ≤ ν ≤ 0.5
3: ω(1) ← 1, t← 0
4: while improvement do
5: t← t+ 1
6:

(
a(t), x(t)

)
← DiscreteOracle

(
ω(t)

)
7: for i = 1, . . . ,m do

8: ω
(t+1)
i ← ω

(t)
i

(
1− ν zi(a

(t),x(t))
ρ

)
9: end for

10: end while
11: return x̄ = 1

t

∑
t′≤t x

(t′), ā = 1
t

∑
t′≤t a

(t′)

12: end procedure

Rounding the Convex Combination

Unfortunately, the vector x̄ is the convex combination of discrete sizes, but not
necessarily a discrete size itself, and needs to be rounded. Note that the arrival
times need not be rounded.

Rounding gate sizes independently can give arbitrarily bad results, see Section 4.8
for a discussion. The sizing oracle determines gate sizes simultaneously based on
the current constraint weights, and under the assumption that in later iterations
sizes start to converge, the sizes x(t) computed in the last iteration can be a good
choice. A possible explanation why this might work well in practice will be given in
Section 7.2.4: the heuristic modifications of the Lagrangian relaxation approach in
practice essentially lead to Algorithm 7.6 (although variants of the oracle are used),
and in this algorithm, the solution from the last iteration yields good results.

Alternatively, we can simply choose the best solution from all iterations.

We will consider rounding a convex combination of discrete sizes and a special case
from a more theoretical point of view in Section 8.7.

7.2.3 Binary Search over the Objective Function Value

Algorithm 7.4 approximately solves the feasibility problem 7.5 for a given bound
budgetpower which can be determined with an approximate binary search.

The power consumption induced by the smallest sizes for all gates is a lower bound
Bl ∈ R≥0 on power consumption. Similarly, power consumption induced by theBl

largest sizes for all gates is an upper bound Bu ∈ R≥0 . It is an interesting problemBu

to find better bounds in polynomial time. For example, the smallest size solution
without load capacitance violations can be computed in linear time by traversing
the gate graph in reverse topological order.

120

7.2 The Multiplicative Weights Algorithm for Gate Sizing

7.2.4 Comparison with Lagrangian Relaxation

Lagrangian Relaxation vs. Multiplicative Weights for the Continuous
Relaxation

We highlight the differences between the multiplicative weights algorithm (Algo-
rithm 7.4) and the Lagrangian relaxation approach with the projected gradient
method (Algorithm 6.1) for continuous gate sizing from a theoretical point of view.

Objective Function Both approaches are based on the convex program for gate
sizing (4.10). While the projected gradient method (Algorithm 6.1) optimizes the
objective power consumption directly, Algorithm 7.4 requires an upper bound on the
power consumption to transform the objective function into a constraint. The upper
bound can be specified by a designer or determined by binary search, which can
be time-consuming. On the other hand, a weight is assigned to the new constraint,
and updated in Algorithm 7.4 based on its criticality. Intuitively, this makes it
easier to find a better tradeoff between power consumption and delays.

Sizing Oracle and Arrival Times Both algorithms call similar oracle algorithms to
get feasible gate sizes in each iteration, but with different objectives. In Algorithm
6.1 the gradient is the vector of delays, and it is therefore important to find gate
sizes that are close to the optimal sizes. In Algorithm 7.4, one is interested in gate
sizes that minimize the power-delay tradeoff function.

Arrival time variables are disregarded in the Lagrangian relaxation approach, in-
stead the Lagrange multipliers are restricted to the non-negative flow space. Al-
gorithm 7.4 iteratively computes arrival times for all v ∈ V with an arrival time
oracle (Algorithm 7.2). The oracle runs in linear time, whereas an exact multiplier
projection involves minimizing a quadratic function and is time-consuming in prac-
tice. It is easy to see that these are only two equivalent ways of tackling the same
problem:

The function that is (approximately) minimized in each iteration of Algorithm
7.4 is equivalent to the Lagrange primal function before eliminating the arrival
time variables (cf. Section 7.2.1). We conclude that Algorithm 7.4 approximately
minimizes the non-simplified Lagrange function, and Algorithm 6.1 approximately
minimizes the simplified Lagrange function in each iteration (cf. Section 6.1).

In the Lagrangian relaxation framework, the non-simplified Lagrange function and
an arrival time oracle have been used for example by Langkau [Lan00], but this
approach is not common.

Multiplier Update vs. Weight Update The Lagrange multiplier update rule in
Algorithm 6.1 is additive: the new multiplier vector is generated by proceeding
in gradient direction. The same step size applies to each multiplier, and the con-
vergence of the algorithm is very sensitive to this choice. Algorithm 7.4 uses a

121

7 The Multiplicative Weights Method for Gate Sizing

multiplicative update rule, where each weight is updated based on the criticality of
the corresponding constraint, which is more sensitive to local information.

Starting Solution In the Lagrangian relaxation framework, the duality gap is zero,
and convergence of Algorithm 6.1 can be guaranteed only if a strongly feasible solu-
tion exists. In the multiplicative weights framework, a feasible solution is sufficient
(cf. Section 7.2.1).

In theory, both algorithms converge independently of the start multipliers/weights,
but it is well-known that convergence of the projected gradient method is highly
sensitive to the choice of the starting solution. In the gate sizing context, this was for
example observed by Tennakoon and Sechen [TS02], who proposed a preprocessing
step to find a good starting solution.

Convergence and Running Time An advantage of Algorithm 7.4 is that the num-
ber of iterations can be determined depending on the desired accuracy: More it-
erations yield more accurate solutions. The number of iterations of Algorithm 6.1
that are necessary to achieve a certain accuracy is unknown, and hence it is not
clear whether the algorithm even runs in polynomial time (cf. Section 6.2).

Algorithm 7.4 is derived from the basic variant of the multiplicative weights algo-
rithm, where the number of iterations depends on the problem width, and is thus
not polynomial. Other variants, for example the scale-free multiplicative weights
algorithm (see Hähnle [Häh15]), exhibit better running times. We used the basic
variant to enable better comparison between two different models for gate sizing
(see Section 8.10). Additionally, we employ the discretized version of Algorithm 7.4
to justify the discretized and heuristically modified version of Algorithm 6.1 in the
next section.

Discretized Lagrangian Relaxation in Practice

Since Chen et al. [CCW99] published their groundwork on Lagrangian relaxation
for gate sizing, this approach has been widely adopted both for the continuous
and the discrete problem. We start with an overview over previous works and
the most prominent modifications that are usually applied to the discretized La-
grangian relaxation approach in practice in order to improve convergence of the
projected gradient method (Algorithm 6.1). We then observe that the most promi-
nent modifications can be theoretically justified by the discretized multiplicative
weights algorithm.

Multiplicative Multiplier Update Tennakoon and Sechen [TS02] were the first to
propose a multiplicative Lagrange multiplier update rule of the form:

λ(t+1)
e := λ(t)

e · crit(t)e ∀e ∈ E,

122

7.2 The Multiplicative Weights Algorithm for Gate Sizing

where crit
(t)
e encodes the violation of the timing constraint corresponding to edge

e in iteration k. Arrival times are computed by static timing analysis. Their
motivation was to find a multiplier update that is more sensitive to local information
and independent of the global step size.

Although this proposal was made for the continuous relaxation, it was widely
adopted by subsequent works on the discretized approach, and variants can for
example be found in Ozdal et al. [Ozd+12], Li et al. [Li+12a] and Livramento et
al. [Liv+13; Liv+14]. A variant proposed by Flach et al. [Fla+14] incorporates the
clock cycle time D ∈ R>0 in the multiplier update:

λ(t+1)
e :=

 λ
(t)
e ·

(
1 + av+delaye(x)−ratw

D

)1/l
, if av + delaye(x) ≥ ratw

λ
(t)
e ·

(
1 + ratw−av−delaye(x)

D

)−l
, if av + delaye(x) < ratw,

for e = (v, w) ∈ E, where ratw is the required arrival time at w and av the arrival
time at v as computed by static timing analysis based on the sizing solution x in
the current iteration. The value of l ∈ N changes in the course of the algorithm.

Objective Weight Tennakoon and Sechen [TS08] introduced a weight ωpower for
the objective function cost(x) to find a better tradeoff between delay optimization
and power optimization. The authors optimize a modified Lagrange function of the
form ωpower · cost(x) +

∑
e∈E λedelaye(x). The factor ωpower is initialized with a

value smaller than 1, and updated in each iteration based on the timing criticality
of the design as follows:

ω(t+1)
power := ω(t)

power · min
v∈Vend

ratv
atv

.

Livramento et al. [Liv+13] experimentally observed that adding a power weight not
only leads to less power consumption on the ISPD 2012 Gate Sizing Benchmarks
(Ozdal et al. [Ozd+12]), but also to less timing constraint violations compared to
running their algorithm without the power weight.

Multiplier Projection In practice, heuristics with linear running time but without
any approximation guarantees estimate the multiplier projection, as computing an
exact projection is time-consuming in practice, see for example Tennakoon and
Sechen [TS02] and Szegedy [Sze05].

Comparison with Algorithm 7.6 We now compare the discretized projected gradi-
ent method including the modifications presented above with the discretized mul-
tiplicative weights algorithm (Algorithm 7.6) for the feasibility problem. Both
algorithms are heuristics and do not necessarily terminate.

123

7 The Multiplicative Weights Method for Gate Sizing

FeasibilityProblem(budgetpower)

Set ω(1) := 1 ∈ Rm+1, 0 ≤ ν ≤ 0.5, t← 0
while improvement do
t← t+ 1

x(t) ← DiscreteLocalRefine
(
ω(t)

)
a(t) ← ATOracle

(
x(t), ω(t)

)
for e ∈ E do

ω
(t+1)
e ← ω

(t)
e

(
1− ν a

(t)
w −a

(t)
v −delaye(x(t))

ρ

)
end for

ω
(t+1)
m+1 ← ω

(t)
m+1

(
1− ν budgetpower−cost(x(t))

ρ

)
end while
Return x̄ = 1

t

∑
t′≤t x

(t′)

Modified projected gradient

Initialize λ(1) ∈ Rm, ω(1)
power ∈ R, t← 0

while improvement do
t← t+ 1

x(t) ← DiscreteLocalRefine
(
λ(t), ω

(t)
power

)
Compute a(t), rat(t) ∈ R|V | by STA

for e ∈ E do

λ
(t+1)
e ← λ

(t)
e

(
1 +

∣∣∣a(t)v +delaye(x(t))−rat(t)w

∣∣∣
D

)θ(t)e

end for

ω
(t+1)
power := ω

(t)
power ·maxv∈Vend

rat
(t)
v

a
(t)
v

.

Project λ(t+1) to flow space F
end while
return x(t)

Here θ
(t)
e = 1/l if a

(t)
v + delaye(x

(t)) ≥ rat
(t)
w and −l otherwise. STA is the abbreviation of static

timing analysis

The ideas behind the modifications of the discretized projected gradient algorithm
essentially yield the discretized multiplicative weights algorithm.
We already established in this section that the multiplicative weights algorithm
(Algorithm 7.6) tackles the non-simplified Lagrange function, which contains the
arrival time variables, in each iteration. Together with the arrival time oracle,
this is equivalent to optimizing the simplified Lagrange function combined with the
multiplier projection.
Although the multiplier update in the modified projected gradient algorithm is
heuristic and based on arrival times and required arrival times computed by static
timing analysis, the ideas behind the multiplicative update rule and the power
weight ωpower for the objective function can now be theoretically justified by
Algorithm 7.6.
Recall that even under the assumption that an approximation algorithm is known
for the discrete power-delay tradeoff problem, it is unknown if the projected gra-
dient method converges because no bound on the Lagrange multipliers exist (cf.
Section 6.5). In the multiplicative weights algorithm, the oracle error would di-
rectly translate into the final approximation. The number of iterations required to
get a desired accuracy can still be determined and depends on the oracle error (cf.
Section 7.2.2).
A drawback of Algorithm 7.6 is that the vector x̄ returned is not necessarily feasible
discrete. However, the modified projected gradient has been successfully used in
practice, which indicates that the solution vector from the last iteration can be a
good choice. Additionally, a binary search for budgetpower is necessary.

124

8 The Resource Sharing Framework for
Gate Sizing

The min-max resource sharing problem is a fundamental problem in mathematical
optimization. It consists of distributing a limited set of resources among a limited
set of customers who compete for the resources. An optimal solution distributes
the resources in such a way that the maximum resource usage is minimized. This
model has been successfully applied to (timing-driven) global routing in VLSI de-
sign, and the fastest approximation algorithm for this problem is a variant of the
multiplicative weights algorithm. Having established the effectiveness of the multi-
plicative weights method for gate sizing, this chapter is dedicated to gate sizing as
a min-max resource sharing problem.

We begin with a formal problem definition in Section 8.1 and demonstrate in Sec-
tions 8.2 and 8.3 how the continuous relaxation of the gate sizing problem fits into
this framework using a single gate customer. With the algorithm of Müller, Radke
and Vygen [MRV11] for the min-max resource sharing problem we get a fast ap-
proximation for the continuous relaxation of the gate sizing problem in Section 8.4.
Under certain assumptions the running time is polynomial.

Subsequently, we compare its running time with existing algorithms for the contin-
uous relaxation in Section 8.5. Section 8.6 models gate sizing as min-max resource
sharing problem with path delay resources. This model was proposed by Hähnle
[Häh15]. The approximation can easily be discretized, although with unknown per-
formance guarantee because the discrete power-delay tradeoff problem occurs as
a subproblem (cf. Section 5.2). Additionally, the convex combination returned by
the resource sharing algorithm needs to be rounded. We consider rounding in Sec-
tion 8.7 and give a bound on the approximation guarantee of randomized rounding
for a special case. Section 8.8 describes how constraints on load capacitance, slew
and placement density, which need to be taken into account in practice, fit into
the resource sharing framework. Integration with timing-driven global routing and
repeater insertion is the subject of Section 8.9. The chapter concludes with an
evaluation of the resource sharing model in Section 8.10.

The interpretation of gate sizing as a resource sharing problem has been used before
in game-theoretic approaches for the discrete problem, but without any performance
guarantee (cf. Section 4.7). However, our interpretation as min-max resource shar-
ing problem with one gate customer is novel.

The results in this chapter are joint work with Nicolai Hähnle and Stephan Held.

125

8 The Resource Sharing Framework for Gate Sizing

8.1 The Min-Max Resource Sharing Problem

In the min-max resource sharing problem, we are given a finite set R of resources,Resources R

a finite set C of customers, and for each customer c ∈ C an implicitly given convexCustomers C

set Bc of feasible solutions and a convex resource usage function gc : Bc → R|R|≥0 .Feas. solution Bc

We assume that these functions can be computed efficiently.

We are further given an oracle function fc : R|R|≥0 → Bc for each customer, also

called block solver, which computes for given resource weights ω ∈ R|R|>0 a feasibleReource weights
ω ∈ R|R| solution bc ∈ Bc with ωtgc(bc) ≤ η · optc(ω), where optc(ω) := infb∈Bc ω

tgc(b), and
optc(ω) η ≥ 1 is the approximation factor of the oracle.

The task is to find a feasible solution bc ∈ Bc for each customer c ∈ C such that
the maximum resource usage maxr∈R

∑
c∈C (gc(bc))r is approximately minimized.

Note that the block solver for customer c requires input resource weights ω ∈ R|R|.
The algorithms presented in this chapter are based on the multiplicative weights
algorithm, and the resource weights grow proportionally to their usages.

Grigoriadis and Khachiyan [GK94] presented the first combinatorial fully polyno-
mial approximation scheme for the general problem. The problem was also studied
by Khandekar [Kha04], Jansen and Zhang [JZ08], and the fastest algorithm for the
general problem was developed by Müller et al. [MRV11] for application in global
routing in chip design. We refer to this paper for a broader overview of previous
work.κ∗

min-max resource sharing problem

Instance:

• A finite set R of resources

• A finite set C of customers

• For each customer c ∈ C

– a convex set Bc of feasible solutions

– a convex function gc : Bc → RR
≥0 that describes its

resource usages

Task: Find feasible solutions bc ∈ Bc for each c ∈ C minimizing the
largest resource usage, i.e.

κ∗ := inf{max
r∈R

∑
c∈C

(gc(bc))r| bc ∈ Bc}

is approximately attained.

126

8.2 Customers and Resources

Figure 8.1: The delay of the red edges is affected when the green gate is sized.

8.2 Customers and Resources

We first introduce the resources and customers that are needed to model gate sizing
as a resource sharing problem.

8.2.1 Resources

Edge delay resources Recall that in the convex program (4.10) we have a con-
straint for each edge in the timing graph. Similarly, we introduce a delay resource
for each edge.

Power resource Additionally, we add a power resource to represent the objective
function. Note that the objective power consumption of the convex program (4.10)
can be transformed into a constraint by imposing an upper bound on the power
consumption of all gates, which can be determined by binary search.

8.2.2 Customers

Gate customer The most natural choice is to introduce one customer for each
gate, and to define that each customer consumes delay from the edge resources in
its neighborhood graph. Figure 8.1 shows the neighborhood graph of the green gate
in the center.

However, most edge delays depend on several gates in a non-separable way, because
the load capacitance and resistance usually depend on the size of more than one
gate. The same holds for the input slew of an edge in a delay model that incorpo-
rates slew effects. Thus changing the size of one gate, while keeping all other gates
fixed, also impairs the delay usage of other gates. This is illustrated in Figure 8.1:

Changing the size of the green gate in the center impacts the delays of all edges
indicated in red. Thus the delay usage of the customers corresponding to the red
gates is affected, even though these customers are not changed. This implies that
we cannot specify convex resource usage functions for the gate customers.

We overcome this difficulty with one gate customer that represents all gates. The
convex set of feasible solutions for this customer is the set Xcont, and the customer
uses power from the power resource and delay from all edge resources.

127

8 The Resource Sharing Framework for Gate Sizing

Arrival time customer The task of gate sizing is to find a sizing solution such
that the path delays in the timing graph do not exceed the delay limits imposed by
(required) arrival times at timing start and endpoints, respectively. In other words,
we aim to find a good distribution of the available delay to the edges, and thus to
the gate customer, such that these constraints are fulfilled.

To this end, an arrival time customer atcusv is introduced for each vertex v ∈ V inArrival time cus-
tomer atcusv the timing graph, which consumes delay of all edges entering and leaving v in the

timing graph. Feasible solutions for arrival time customers are arrival times av with
atminv ≤ av ≤ atmaxv for all v ∈ V similar to Section 7.2.1. For v ∈ Vstart ∪ Vend,atmaxw, atminv

arrival times are fixed and we set both atminv and atmaxv to the fixed value. For
the other vertices, we will specify the values of the bounds in Section 8.3.3. We
denote with A = {a ∈ R|V ||atminv ≤ av ≤ atmaxv} the set of feasible solutions fora ∈ A
all arrival time customers to simplify notation.

The idea behind the arrival time customers originates from Held et al. [Hel+15] in
the context of timing-driven global routing. Their purpose is to implicitly perform
a delay budgeting of the available path delays, and to introduce a global view to
the delay usage. Whereas Held et al. [Hel+15] work with a reduced graph, the set
of our arrival time customers comprises all vertices in the timing graph.

Note that equivalently one arrival time customer modeling all vertices can be used.
This increases the problem width, but is not apparent in the running time of the
resource sharing algorithm.

Remark 8.1 (Path resources) With the above considerations, it seems more nat-
ural to use paths as resources rather than edges, and to omit the arrival time
customers. However, the number of paths in the timing graph depends exponen-
tially on its size. It was shown in Hähnle [Häh15] how timing-driven global routing
can be modeled with path resources without the exponential dependency, and we
adapt this model to gate sizing in Section 8.6.

8.3 Resource Usages and Oracle Functions

In this section we specify the resource usages and oracle functions of the gate and
arrival time customers, and discuss how minimizing the maximum resource usage
corresponds to the objectives in timing optimization.

We denote with budgetpower ∈ R≥0 the upper bound imposed on the power con-budgetpower

sumption of all gates (cf. Section 8.2.1). Let further budgete := atmaxw−atminv+
he ∈ R≥0 be a delay budget for each edge e = (v, w) ∈ E in the timing graph, wherebudgete, he

he > 0 is a constant for all e ∈ E. The budgets will be chosen as in Held et al.
[Hel+15] and Traub [Tra15] in such a way that minimizing the maximum resource
usage is equivalent to maximizing the worst design slack. Before we consider the
choice of the delay budgets in Section 8.3.3, we describe the resource usages of the
customers.

128

8.3 Resource Usages and Oracle Functions

8.3.1 Gate Customer

The resource usage of the gate customer gatecus is gatecus

delaye(x) + he
budgete

for each e = (v, w) ∈ E, and (8.1)

cost(x)

budgetpower
for power, (8.2)

where delaye(x) and cost(x) are the delay and cost functions as in the convex
program (4.10). All resource usages are convex as required in the problem definition.
The oracle function for the gate customer minimizes its weighted resource usage

ωm+1
cost(x)

budgetpower
+
∑
e∈E

ωe
delaye(x)

budgete
+ constant, (8.3)

which is the power-delay tradeoff problem (5.1). The weight ωm+1 is referred to
as power weight. The constant comprises the terms he for all e ∈ E and can be

disregarded in the oracle algorithm. We set ω̃ :=
(

ωe1
budgete1

, . . . , ωem
budgetem

, ωm+1

budgetpower

)
and choose η > 1. Algorithm 5.3 returns for input (η, ω̃) a solution x ∈ Xcont with η > 1

ωm+1
cost(x)

budgetpower
+
∑
e∈E

ωe
delaye(x)

budgete
≤ η · optgatecus(ω)

in O
(
|G|·diam2

X ·trratio
η−1

)
time, with trratio =

maxx∈Xcont maxi{cost(xi)+Λ·maxe∈E delaye(x)}
minx∈Xcont{cost(x), mine∈E delaye(x)}

and diamX = maxg∈G ||ug − lg|| (Theorem 5.9).

8.3.2 Arrival Time Customers

The resource usage of customer atcusv is

av − atminv
budgete

for e = (v, w) ∈ E, and (8.4)

atmaxv − av
budgete

for e = (u, v) ∈ E, (8.5)

with budgete = atmaxv − atminv + he.

Putting this together with the gate customer, we get the delay resource usages

atmaxwi − awi + avi − atminvi + delayei(x) + hei
budgetei

(8.6)

for i = 1, . . . ,m, and ei = (vi, wi). As the arrival time customers are needed to
implicitly perform a delay budgeting, the choice of the budgets naturally plays an
important role:

129

8 The Resource Sharing Framework for Gate Sizing

8.3.3 Modeling Timing Objectives

Recall that the Lagrangian relaxation approach (Algorithm 6.1) and the multi-
plicative weights algorithm (Algorithm 7.4) aim to solve the convex program (4.10)
where the constraints on path delays are split into constraints on edges. They
require the existence of a (strongly) timing feasible solution. Algorithm 7.4 then
returns a solution that approximately fulfills the timing constraints on the edges.
By Corollary 7.11, this implies ap ≤ ratp + η · k for all p ∈ Vend, such that a lower
bound on the worst slack of the solution depends on the length k of the longest
path in the timing graph G.

Additionally, we established in Section 6.1.2 that gate sizing is often applied at a
stage in the design flow where a sizing solution that fulfills all timing constraints
does not necessarily exist, and we aim to maximize the worst slack instead. This
can be achieved by relaxing the required arrival times ratw at timing endpoints
w ∈ Vend by a lower bound s ∈ R on worst slack and a binary search over s: In
each step we relax the required arrival times to ratw − s for all w ∈ Vend, and
test if a feasible solution for the gate sizing problem exists. However, initial timing
criticalities can thereby be “forgotten” in the sense that timing critical paths can
appear to be uncritical, and are therefore not optimized.

We conclude that Algorithm 7.4 is disadvantageous in the sense that a binary search
is necessary to optimize the worst slack, and that the approximation guarantee on
the edge constraints introduces a dependency on k in the worst slack bound.

The situation is different in the resource sharing framework. It turns out that for
an appropriate choice of delay budgets, minimizing the maximum resource usage is
equivalent to maximizing the worst slack:

Theorem 8.2 ([Hel+15; Tra15]) Given a lower bound slackmin ∈ R on the worst
design slack, then intervals [atminv, atmaxv], constants he and arrival times a ∈ A
can be computed in linear time such that for each sizing solution x ∈ Xcont, where
the slack at each vertex v is larger than min{uv− lv, slackmin}, the following holds:

min

{
max

e=(v,w)∈E

atmaxw − aw + av − atminv + delaye(x) + he
budgete

}
= 1− WSx

hout
.

Here WSx is the worst slack of solution x, and

hout = max
P path in G

∑
e=(v,w)∈P

atmaxw − atminv.

The idea is to choose the delay budgets budgete in such a way that each inclusion-
wise maximal path in the timing graph has the same delay budget.

Originally, Theorem 8.2 was formulated in the context of timing-driven global rout-
ing, but can be transferred to gate sizing in a straightforward way.

130

8.4 Minimizing the Maximum Resource Usage

8.4 Minimizing the Maximum Resource Usage

In the previous sections we have outlined how gate sizing can be formulated as a
min-max resource sharing problem. The algorithm of Müller et al. [MRV11] returns
an η(1 + ε) approximation of the optimal solution for any given ε > 0 and oracle
error η > 1. Combined with a binary search over the power budget this is a fast
approximation for the continuous relaxation of the gate sizing problem (cf. Section
8.5). In particular, we apply the following theorem:

Theorem 8.3 ([MRV11]) The min-max resource sharing problem can be solved
with approximation ratio η(1 + ε) in O(θ(|C |+ |R|) log |R|(log log |R|+ ε−2)) time
for any ε > 0. Here η ≥ 1 is a constant bounding the approximation ratio of the
oracle functions, and θ bounds the running time of an oracle call. The running
time reduces to O(θ(|C |+ |R|)ε−2 log |R|) if 1

2 ≤ κ
∗ ≤ 2 holds for the optimum κ∗.

The underlying algorithm is a variant of the multiplicative weights algorithm with
approximation guarantee η(1 + ε) if the optimum κ∗ lies within the interval [1

2 , 2].
Otherwise a preceding binary search finds an appropriate scaling factor for the
resource usages. During the binary seach, the algorithm is called log log |R| times
with an early stopping criterion, which explains this factor in the running time
depicted in Theorem 8.3. We give a short description of the underlying algorithm,
and refer to it as the resource sharing algorithm: Resource sharing

algorithmResource weights are initialized with 1. In each iteration t, the customers are
processed in arbitrary order, and each customer at least once per iteration. For
each customer, its oracle function is called with the current resource weights, and
subsequently the resource weights ωi are updated based on their resource usages as
follows:

ω
(t+1)
i := ω

(t)
i eδαr ,

where αr is the scaled usage of resource i by the customer (αr ≤ 1 holds), and
the parameter δ is part of the input. In the end the algorithm returns the scaled
arithmetic mean of the solutions computed in the course of the algorithm.

Note that resource weights grow exponentially in the course of the algorithm.

In Theorem 8.3, the running time of an oracle call is bounded by θ. In other words,
θ is bounded by the highest running time of all oracles, which is the gate customer
oracle in our application. Together with the results from the previous sections, we
get the following approximation ratio for gate sizing as min-max resource sharing
problem:

Theorem 8.4 For η > 1 fixed, the continuous relaxation of the gate sizing problem
modeled as min-max resource sharing problem can be solved with approximation
ratio η(1 + ε) in time

O(θ(|V |+ |E|) log |E|(log log |E|+ ε−2))

for any ε > 0, where θ is bounded by the running time of the sizing oracle

131

8 The Resource Sharing Framework for Gate Sizing

O
(
|G|·diam2

X ·trratio
η−1

)
. The running time reduces to O(θ(|V | + |E|) log |E|ε−2) if

1
2 ≤ κ

∗ ≤ 2.

η is the approximation ratio of the sizing oracle and can be chosen arbitrarily close
to 1. If η cannot be regarded as bounded by a constant, the running time depends
quadratically on η and is O(θ log |E|

[
(|V |+ |E|) log log |E|+ (|V |+ |E|η)ηε−2

]
)

(Müller et al. [MRV11]).

Remark 8.5 In the context of global routing, the resource sharing algorithm con-
verges faster if the arrival time oracles are run multiple times in the algorithm
before continuing with the next customer type. Details can be found in Held et al.
[Hel+15].

8.5 Fast Approximation of the Continuous Relaxation

The continuous relaxation of the gate sizing problem can be solved up to a desired
accuracy ε > 0 in polynomial time for example with interior point methods (cf.
Section 4.7). However, the complexity of interior point methods is approximately
cubic in the number of variables (cf. Section 3.4). The instance sizes reported to be
solved with interior point methods are usually small. The largest instance contained
100000 gates, and it took “tens of hours” to solve it, see Joshi and Boyd [JB08].
The projected gradient method for the Lagrange dual problem converges to an
optimal solution if a strongly feasible solution exists for the convex program. How-
ever, the convergence rate is unknown, and it is not clear if the running time is
polynomial (cf. Section 6.2).
In Section 8.4 we established that for a given power budget the resource sharing
algorithm approximates the continuous relaxation of the gate sizing problem up to
a factor of η(1+ ε) in time O(θ(|V |+ |E|) log |E|(log log |E|+ ε−2)). Combined with
a binary search, this gives an approximation of the continuous relaxation:

Theorem 8.6 For η > 1 fixed, the continuous relaxation of the gate sizing problem
can be approximated up to accuracy η(1 + ε) in time

O(θ(|V |+ |E|) log |E|(log log |E| log log(K) + ε−2)),

where K :=
maxpower
minpower

, and minpower > 0 and maxpower > 0 denote the minimumminpower,
maxpower and maximum power consumption of any book in the gate library, respectively.

Proof. We start with Bu := |G| ·maxpower and Bl := |G| ·minpower as an upper
and lower bound on the power budget, respectively. Note that initially, Bu =
K · Bl. With a binary search technique described in Young [You01] and Müller et
al. [MRV11] we reduce the ratio between Bu and Bl such that they differ by only
a factor of 2 after O(log log(K)) search steps. In each step, the resource sharing
algorithm is called with ε = 1, and feasibility of the current power budget is verified
if the power resource usage is less or equal than η(1 + ε) = 2η. In a second phase,

132

8.5 Fast Approximation of the Continuous Relaxation

the precision ε of the resource sharing algorithm is iteratively decreased such that
the running time is dominated by the last call to the algorithm. It was shown that
for ζ > 0 the ratio Bu/Bl can be reduced to (1 + ζ) in O(log(1/ζ)) binary search
steps. We run the second phase until Bu/Bl = (1 + ε).

The running time is pseudopolynomial because the running time of the sizing oracle

θ = O
(
|G|·diam2

X ·trratio
η−1

)
is pseudopolynomial (Algorithm 5.3). Of course, interior

point methods can also be used as oracle algorithms, but this introduces a cubic
dependency on |G| (cf. Section 5.1).

We consider the running time of the resource sharing algorithm more closely:

The term log log |E| is introduced by a binary search to find an appropriate scaling
factor for the resource usages (cf. Section 8.4). The term (|V |+ |E|) log |E| bounds
the number of oracle calls of all customers during the algorithm. In each iteration of
the algorithm, a customer oracle is called more than once only if the corresponding
customer usage of any resource is larger than 1. This introduces the term |E| log |E|
(see Müller et al. [MRV11]). It is easy to see that this situation can occur only for
the gate customer (consider (8.2) and (8.6)).

Fixed Gate Library and Reasonable Wire Lengths We consider the pseudopoly-

nomial terms diamX and trratio =
maxx∈Xcont maxi{cost(xi)+Λ·maxe∈E delaye(x)}

minx∈Xcont{cost(x), mine∈E delaye(x)} in the

running time of the sizing oracle under the assumption that we are given a fixed
gate library:

Under this assumption, diamX = maxg∈G ||ug − lg|| can be regarded as bounded
by a constant. Similarly, minpower and maxpower can be regarded as bounded by a
constant from below and above, respectively, and hence K.

Then 1
minx∈Xcont cost(x) ≤

1
|G|·minpower ≤

1
minpower

. Additionally, it is realistic to

assume that the bound Λ on the maximum fanout of a gate is constant (cf. Section
5.1).

The situation is more involved for the delay of an edge e ∈ E: It is reasonable to
assume that the minimum delay of any edge is bounded by a constant from below.
However, the maximum delay can be very large due to large input slews or load
capacitances. If e is a wire edge, the underlying wires can be very long such that
the speed of the signals degrades.

Therefore we make the additional assumption that our algorithm is called at a state
of the design flow where wires are reasonably long due to repeater insertion, and thus
their length does not induce huge load capacitances or degrade slews significantly.
Large load capacitances and slews are then induced by inadequate gate sizes, but
our gate library is fixed and thus, in combination with a bounded fanout, load
capacitances and slews are bounded by a constant. Then the maximum delay over
an edge is bounded by a constant, but can become very large for inadequate gate
sizes.

Putting all preceding considerations together, the terms in trratio can be regarded

133

8 The Resource Sharing Framework for Gate Sizing

as bounded by a constant, and consequently trratio. We regard the oracle approxi-
mation ratio η as fixed. This yields a running time of

O
(
|G| · (|V |+ |E|)) log |E|(log log |E|+ ε−2)

)
for the approximation of the continuous relaxation of the gate sizing problem.

8.6 Path Resources instead of Edge Resources

Hähnle [Häh15] proposed to treat paths as delay resources in the context of timing-
driven global routing. More precisely, the timing graph G is extended by a unique
source s and a unique sink t, and the set of resources corresponds to the set PP

of directed s-t-paths. This reduces the number of customers significantly, as the
arrival time customers are no longer necessary to perform delay budgeting. But
most importantly, the approximation guarantee for κ∗ now directly translates to
the path delays without the construction of Theorem 8.2.

Hähnle [Häh15] uses a scale-free variant of the multiplicative weights algorithm,
where resource usages y ∈ R|R|, with yr :=

∑
c∈C (gc(bc))r for resource r, are

computed by the customer oracles in each iteration and then scaled with 1/ ||y||∞
in the weight update. Formally, the algorithm optimizes over a set of resource
usages and only implicitly over the set of gate sizes, and a convex combination of
resource usages is returned in the end. As resource usages are convex functions,
the approximation guarantee of the convex combination of resource usages transfers
to the convex combination of the sizes computed in each iteration with the same
factors.

In the context of gate sizing, the resources are now the set of s-t paths and the
power resource. The gate customer is the only customer, and Algorithm 5.3 serves
as sizing oracle because the path resource weights and budgets can be decomposed
into weights and budgets on the edges in the timing graph. For more details we
refer to Hähnle [Häh15] and Section 9.3, where we describe an implementation of
this algorithm. The following theorem is implied by Hähnle [Häh15]:

Theorem 8.7 Given η > 1 fixed, the continuous relaxation of the gate sizing prob-
lem modeled as min-max resource sharing problem can be solved with approximation
ratio η(1 + ε) in

O
(
(θ + |E|)ε−2|E| log |P|

)
time for any ε > 0, where θ = O

(
|G|·diam2

X ·trratio
η−1

)
is the running time bound for

the sizing oracle.

Note that the number of s − t paths depends exponentially on the instance size,
but the running time of the algorithm depends on log |P| only.

With a binary search as described in the proof of Theorem 8.6, we obtain a fast
approximation of the continuous relaxation of the gate sizing problem.

134

8.7 Resource Sharing for the Discrete Problem and Special Cases

Under the assumption that we are given a fixed gate library and reasonable wire
lengths as discussed in Section 8.5, the running time is polynomial.

Note that the oracle approximation ratio η does not contribute to the number of
oracle calls even if it is variable, in contrast to Theorem 8.4.

We discuss in Section 8.7 that this model is useful when it comes to randomized
rounding of special cases of the discrete problem that allow more than one gate
customer. In Chapter 9 we compare an implementation of this algorithm for gate
sizing with an implementation of the discretized Lagrangian relaxation approach,
and refer to is as the path resource sharing algorithm.

8.7 Resource Sharing for the Discrete Problem and Special
Cases

Given the good approximation for the continuous relaxation of the gate sizing prob-
lem, we now turn towards the discrete problem. The obstacles that lie in the way of
an approximation algorithm are a discrete sizing oracle, which is equivalent to the
discrete power-delay tradeoff problem (5.2) treated in Section 5.2, and rounding.

Under the assumption that an approximation algorithm for the discrete sizing oracle
exists, the oracle error would directly translate into the final approximation ratio
and running time, and pseudopolynomial running time could be guaranteed.

We now analyze rounding from a theoretical point of view and provide a bound on
the rounding error for a special case, the discrete time-cost tradeoff problem.

Discrete Gate Sizing as Resource Sharing Problem

The resource sharing algorithms from Section 8.4 and Section 8.6 can be discretized
by calling a discrete sizing oracle. In both cases, the resource sharing algorithm
returns a convex combination of gate size vectors, which is not necessarily a discrete
solution and needs to be rounded. The arrival time variables, if existent, need not
be rounded.

We discussed rounding of a convex combination of discrete sizes already in Section
7.2.2, and similar considerations apply here. It seems natural to take the best
solution over all iterations, i.e. the sizes that minimize the maximum resource usage,
but no approximation guarantees can be given. Alternatively, the solution from the
last iteration can be a good choice.

We are also interested in theoretical guarantees that can be obtained by randomized
rounding, which is used in Müller et al. [MRV11] in the context of global routing.
Here random variables are scaled resource usages of the customers, in other words
one random variable is introduced for each combination of customer and resource.

In our application we only have one customer whose solution needs to be rounded,
and we shortly point out why randomized rounding is not reasonable here. At the
end of this section we transfer these considerations to a special case of gate sizing.

135

8 The Resource Sharing Framework for Gate Sizing

By a lemma from Raghavan [Rag88], the sum of usages of resource i for a rounded
solution is larger than a certain threshold with a probability that depends on

ρi := max{gc(b)/κ | b ∈ Bc, c ∈ C , b occurs in convex combination}. (8.7)

Here we used the general notation from Section 8.1, and κ is the solution returned
by the resource sharing algorithm. Let κ̂ be the maximum resource usage after
rounding. Then the probability that κ̂ ≤ κ(1+δ) is at least 1−

∑
resources i e

−h(δ)/ρi ,
with h(δ) := (1 + δ) ln(1 + δ)− δ for δ > 0 (see Müller et al. [MRV11]). Obviously,
δ cannot be chosen arbitrarily. In the global routing context, the values of ρi are
small, and thus δ can be chosen quite small in order to have a positive probability.

In the context of gate sizing, we have only one customer and thus one random
variable for each resource. Consequently, the value of each ρi will be relatively large,
irrespective of whether we model timing constraints by edge or by path resources:
For the model with path resources, ρi will be larger than one for most resources.
For edge resources, the arrival time customers additionally consume from the delay
resources. Here the magnitude of each ρi depends on the ratio of the delay budget
to the maximum edge delay.

Discrete Time-Cost Tradeoff as Resource Sharing Problem

We proceed with the analysis of randomized rounding for a special case of the gate
sizing problem. The discrete time-cost tradeoff problem can be regarded as gate
sizing with a very simplified, and unrealistic, delay model, see also Section 5.2: The
delay of each edge is independent of input slew and load capacitance. Wire edge
delays are constant, and several edges within a gate are contracted to a single edge.
Let further be Xdisc ⊂ Zn, and assume that each gate edge delay is proportional
to the gate size. In particular, edge delays only depend on the size of one gate,
and we can model each gate as a separate customer. We already established in
Section 5.2.1 that the corresponding discrete sizing oracle can be implemented in
polynomial time.

Edge Resources Consider the resource sharing model with edge delay resources.
We have one random variable for each resource, and randomized rounding intro-
duces an additional factor of (1 + δ) into the approximation of each edge resource
usage. It is easy to see that the timing constraint violation at any timing endpoint
w ∈ V is bounded by the sum of timing constraint violations on a path to w, and
that this bound depends on the length k of a longest path in the timing graph. Due
to randomized rounding, this bound increases by a factor of (1 + δ).

Path Resources In view of that, we model paths as resources (cf. Section 8.6) such
that the additional factor (1 + δ) in the approximation guarantee due to rounding
directly translates to the path delays, and the bound on timing constraint violations
at timing endpoints does not depend on k.

136

8.8 Capacitance, Slew and Placement Density Resources

As before, the random variables are the scaled resource usages of the customers,
and again we consider the probability that κ̂ ≤ κ(1 + δ), where κ̂ is the maximum
resource usage after rounding the gate sizes. Obviously, δ cannot be chosen arbi-
trarily small, because the probability 1 −

∑
resources i e

−h(δ)/ρi needs to be larger
than zero, and preferably be larger than 1

2 . This condition is certainly fulfilled if
for all resources i

e−h(δ)/ρi < 1/(2|P|+ 1)⇔
h(δ) > ln(2|P|+ 1)ρi.

holds. In contrast to gate sizing with one gate customer, ρi as defined in (8.7) is
usually quite small for path resources and the power resource, because one single
gate customer does not contribute much to the delay of a path in G or total power
consumption. Nonetheless, in the worst case ρi can still be larger than one.

Lemma 8.8 The discrete time-cost tradeoff problem modeled as a min-max resource
sharing problem can be solved with approximation ratio η(1 + ε)(1 + δ) in

O(θε−2|E| log |P|)

time for any ε > 0, where θ is the running time bound for the discrete sizing oracles,
η > 1 is the oracle error, and δ is chosen such that h(δ) > maxi ln(2|P|+ 1)ρi.

The discrete sizing oracle can be implemented to run in polynomial time, but η > 1
holds for the oracle error: Similar to Section 6.5, the min-max resource sharing
problem is a convex problem in the sense that resource usages and feasible solu-
tions are convex. For each customer, the minimum weighted resource usage is not
necessarily attained by the discrete oracle solution. This implies a sizing oracle
error η > 1. We shortly discuss a bound on η. Assume that the optimal con-
tinuous oracle solution x̃i ∈ Xcont of gate gi lies between two discrete solutions
xi ≤ x̃i ≤ x̄i. One of these is the optimal discrete solution. Thus η can be bounded

by max1≤i≤n
2tr(x̄i,ω)

tr(x̄i,ω)−tr(xi,ω) for ω ∈ R|R|, where ei is the single edge traversing gate

gi whose delay only depends on the size of gi by construction.

It is an interesting problem to decide if the dependency of δ on the number of paths
can be transferred to a dependency on the number of edges in the timing graph,
which would lead to a better approximation ratio.

8.8 Capacitance, Slew and Placement Density Resources

Similar to the Lagrangian relaxation approach (cf. Section 6.6), we can incorpo-
rate constraints on load capacitance, slew and placement density into the resource
sharing framework under certain assumptions. We use the notation from Section
6.6.

137

8 The Resource Sharing Framework for Gate Sizing

Capacitance Resources We introduce a resource for each net N ∈ N to model
the convex constraints on load capacitances (6.12):

loadcapp(x)/loadlimp(x) ≤ 1 ∀p ∈ Vload, x ∈ Xcont.

The gate customer uses from all capacitance resources. Intuitively, the resource
usage of a net N increases if the size of the source gate decreases and the size of a
sink gate increases. It is specified as:

loadcapp(N)(x)

loadlim(x)
, (8.8)

where p(N) ∈ Vload is the driver pin of net N . In other words, the budget of the
net resource equals 1. With the considerations from Section 6.6.2, this is a convex
function under the assumption that the load limit of a gate scales linearly with its
size.

Slew Resources Recall the convex slew constraints (6.13)

slewe(x, slewv) ≤ slewlimp ∀p ∈ Vslew, e = (v, p) ∈ E, x ∈ Xcont.

Slew effects can be incorporated into our convex delay model, and we assume a
convex slew function slewe(x, slewv), x ∈ Xcont for each edge e = (v, p) ∈ E
(cf. Section 4.4.1 and Section 6.6). Similar to delay functions, the slew over an
edge depends on the sizes of several gates. We introduce a slew resource for each
e = (v, p) ∈ E with p ∈ Vslew and budget slewlimp, which is usually independent
of the size of gate γ(p). The slew resource usage by the gate customer is

slewe(x, slewv)

slewlimp
, x ∈ Xcont, (8.9)

and it is easy to see that this is convex. Thereby we can assume the input slew to
be a default slew, or we can use input slews computed by the oracle algorithm, as
will be described at the end of this section.

Alternatively, slew constraints can be modeled by requesting that edge delays should
not exceed a certain budget, because slew functions have shapes similar to delay
functions. However, the model we propose is more accurate.

Remark 8.9 (Vt optimization) The slew limit of a gate input pin p ∈ Vslew is
usually independent of the size, but not the Vt level of the gate. We can model
a changing slew limit slewlimp similar to the way we modeled a changing load
capacitance limit in (8.8), however, the resulting resource usage is in general not
convex.

138

8.9 Integration with Global Routing and Repeater Insertion

Placement Density Resources Recall the placement density constraints (6.9):

1

|Rw|
∑
gi∈Rw

area(xi) ≤ targetw, w = 1, . . . , q. (8.10)

The chip area is partitioned into regions R1, . . . , Rq, and for each region Rw we
are given a placement density target targetw. Gates are assigned to regions as
described in Section 6.6.

We introduce a resource for each region, and each gate uses area from the region
it is assigned to. The area budget of region Rw is |Rw| · targetw, and the resource

usage of a single gate gi with size xi of region Rw is area(xi)
|Rw|·targetw . Consequently, the

usage of a region resource by the gate customer is∑
gi∈Rw

area(xi)

|Rw| · targetw
, (8.11)

where gi ∈ Rw means that the area of gate gi is in region Rw. As required, this is a
convex function in x ∈ Xcont, see Section 6.6. Similar considerations as in Section
6.6 to improve the assignment of gates to regions apply here.

Oracle Function Putting together, the weighted resource usage of the gate cus-
tomer, from all resources we have introduced until now, is

ωm+1
cost(x)

budgetpower
+
∑
e∈E

ωe
delaye(x)

budgete
+ ωRw

∑
gi∈Rw

area(xi)

|Rw| · targetw
(8.12)

+
∑
N∈N

ωN
loadcapp(N)(x)

loadlim(x)
+

∑
e=(v,p)∈E

ωp
slewe(x, slewv)

slewlimp
.

The resource usages defined in this section are convex functions of x ∈ Xcont, and
it is easy to see that (8.12) is of the form (5.3). As before, the conditional gradient
method can be used as oracle (cf. Section 5.1.3). In each iteration, the input slews
induced by the previous iterate can serve to compute the slew resource usages.

For discrete gate sizes, we can for example deploy Algorithm 5.5, but without any
performance guarantee. Here the gate graph is traversed in topological order, which
enables us to propagate the correct input slew values.

8.9 Integration with Global Routing and Repeater Insertion

Modeling gate sizing as a resource sharing problem allows a better integration
with other optimization in VLSI design steps like timing-driven global routing and
repeater insertion, which can also be interpreted as a min-max resource sharing
problem (Müller et al. [MRV11], Held et al. [Hel+15]).

139

8 The Resource Sharing Framework for Gate Sizing

Timing-Driven Global Routing

Global routing algorithms generate an approximate wiring of each net in a coarse
global routing graph, which restricts the search space for the actual connections
of a net in the subsequent detailed routing step. Global routing is also used in
earlier design steps for congestion estimation, for example in the placement stage
by Brenner et al. [Bre+15]. Müller et al. [MRV11] model global routing as a min-
max resource sharing problem and show that it is easy to include several objectives
into this framework, among them power usage, wiring length, manufacturing yield
etc. In this context, customers are nets and each edge in the global routing graph
corresponds to a resource. The usage of an edge resource is the usage of the Steiner
tree realizing this net. The algorithm proposed by Müller et al. [MRV11] deploys
oracles that return convex combinations of Steiner trees. In the end, a Steiner tree
for each net is computed by randomized rounding of the fractional solution.

As mentioned before, Held et al. [Hel+15] integrated timing constraints into this
framework in the form of arrival time customers and a timing- and congestion-aware
computation of Steiner trees. They introduced an arrival time customer for each
pin in the timing graph except for gate output pins, and a resource for each net
edge in the timing graph. Gate delays are integrated in the delay over nets. A
notable difference to the algorithm described in Müller et al. [MRV11] is that first
the net customers are processed, and then an internal loop processes the arrival time
customers for a fixed number of iterations to obtain a better fractional solution.

Integrating Gate Sizing

In order to incorporate gate sizing into this framework, we extend the set of cus-
tomers such that each pin in the timing graph is represented by an arrival time
customer, and add the gate customer. Additionally, each edge in the timing graph
is now a resource and not only the net edges.

However, the delay usage of a net customer cannot be specified independent of the
gate customer and vice versa, as both customer types have an impact on the delay
usage of the other one. This is illustrated in Figure 8.2:

For net customers, the delay usage of wire edges is determined by the Steiner tree
realizing the net. For a gate edge, the load capacitance of the Steiner tree con-
tributes to the load capacitance at the gate output pin. Changing the sizes of the
green gates in the left picture affects the delay usages of the net customers corre-
sponding to the red nets, even though these customers are not changed. Similarly,
rerouting the purple net in the right picture affects the delays of all gate edges
indicated in red. Thus we cannot specify convex resource usage functions for the
gate and net customers.

For the gate sizing problem we resolved this dependency with a single gate customer.
For combined sizing and routing with a single customer for all gates and nets it
is an interesting question whether an oracle algorithm for simultaneous gate sizing
and routing exists.

140

8.10 Evaluation of the Resource Sharing Model

Figure 8.2: Changing the gate customer (left side) or the purple net customer (right
side) impairs the delay usage of other customer types.

For practical application we propose a heuristic algorithm that alternately pro-
ceeds the net customers, the gate customer and the arrival time customers in each
iteration. For each customer type, several iterations are performed before moving
on with the next customer type. This algorithm has no theoretical performance
guarantee, even for the continuous relaxation.

We further need lower and upper bounds on earliest and latest possible arrival times
for each pin to compute the delay budgets. Non-trivial bounds can be computed
in polynomial time for all v ∈ Vinner for example as follows: Given a lower bound
on all edge delays, earliest and latest arrival times can be computed by forward
and backward propagation through the timing graph as in (7.12). We assign the
smallest possible load capacitance at the output pin of each gate, and choose the
largest size for the gate. The resulting delay is a lower bound on gate delays.
The load capacitance is the sum of wire capacitances of its net and the input pin
capacitances of the sinks. We get a lower bound on load capacitance when the sink
pin capacitances are smallest possible (for gate input pins we assign the smallest
size to the gate), and the capacitance of the Steiner tree is smallest possible, i.e.
it is a shortest Steiner tree. The shortest Steiner tree problem is NP-hard, but for
example the minimum maximum capacitance of a shortest source-sink connection
in the net is a lower bound.

For net edges, we assign the largest size to the driver gate (if the driver pin is a
gate pin) and the smallest size to the sink gates. As in Held et al. [Hel+15] we
choose as lower delay bound the delay which results from connecting source and
sink individually with a shortest connection.

8.10 Evaluation of the Resource Sharing Model

This section is dedicated to an evaluation of the resource sharing model for gate
sizing by comparison with the approaches already discussed in this thesis. To this
end, we formulate the continuous relaxation of gate sizing modeled as a min-max
resource sharing problem as feasibility problem of the form (7.1) and apply the
multiplicative weights algorithm. We compare its running time and performance
with that of Algorithm 7.4 for problem (7.5). We will again use the basic variant
of the multiplicative weights algorithm that divides the costs by the problem width

141

8 The Resource Sharing Framework for Gate Sizing

instead of the more sophisticated scaled variant to point out the differences in the
models. Furthermore, we use the resource sharing model with edge delay resources,
as this is compliant with the convex program.

8.10.1 Comparison with Lagrangian Relaxation

The resource sharing algorithm is a variant of the multiplicative weights algorithm,
and a detailed comparison between the Lagrangian relaxation approach and the
multiplicative weights approach for gate sizing can be found in Section 7.2.4. The
main insights concerning the objective function handling, the oracle functions, the
weight update and starting solution are also valid in the resource sharing framework.

Additionally, we now optimize over the set of resource usage vectors and only im-
plicitly over the set of gate sizes. This impacts the approximation of the timing
constraints and will become clear in Section 8.10.3 when we compare the multi-
plicative weights algorithm applied to the different problem formulations.

The running times of the resource sharing algorithm and the projected gradient
method for the continuous relaxation have already been discussed in Section 8.5.

8.10.2 Formulation as Feasibility Problem

We assume we are given a power budget budgetpower ∈ R≥0 that can be determined
by binary search (cf. Section 7.2.3). Further assume that he = 0 for all e ∈ E and
we set atminv := lv, atmaxv := uv for earliest and latest signal arrival times lv
and uv at v ∈ V , respectively, such that we have the same constraints on arrival
times as in Algorithm 7.4 (cf. Section 7.2.1). This implies budgete = uv − lv. For
feasible arrival times and sizes (a, x) ∈ A × Xcont we denote the power and delay
resource usages by yi(a, x) for i = 1, . . . ,m + 1. Let Y ⊂ Rm+1

≥0 denote the setyi(a, x), Y
of feasible resource usage vectors induced by (a, x) ∈ A × Xcont, and let further
u := min{budgetpower,mine∈E budgete}, U := max{budgetpower,maxe∈E budgete}.u, U

Lemma 8.10 ([Hel+15]) The power budget budgetpower is met and the timing con-
straints of the convex program (4.10) are fulfilled if yi ≤ 1 for all i = 1, . . . ,m+ 1.

The feasibility problem of the form (7.1) for gate sizing modeled as min-max re-
source sharing problem differs from the feasibility version of the convex program
(7.5) insofar as we are now optimizing over the set of resource usage vectors and
only implicitly over the gate sizes:

142

8.10 Evaluation of the Resource Sharing Model

Feasibility problem for resource sharing

∃? y ∈ Y

subject to 1− ym+1(a, x) = 1− cost(x)

budgetpower
≥ 0

1− ye(a, x) =
aw − (av + delaye(x))

budgete
≥ 0 ∀ e ∈ E

(8.13)

We introduce a weight ωi for each constraint/resource, and the multiplicative
weights algorithm increases a weight if the corresponding constraint is violated.

The width ρr According to Definition 7.1, the width of problem (8.13) can be

bounded by the smallest number ρr ≥ 0 such that 1−yi(a,x)
ρr

≤ 1 for i = 1, . . . ,m+1: Width ρr

ρr := max
x∈Xcont,a∈A

{
max
e∈E
|aw − (av + delaye(x))

budgete
|, |1− cost(x)

budgetpower
|
}
.(8.14)

This can be bounded by O(ρu), where ρ is the width of problem (7.5) defined in
equation (7.14).

Oracle Similar to Section 7.2.1, the multiplicative weights algorithm requires an
oracle that solves a weighted feasibility problem of the form (7.2) up to accuracy
η > 0 for resource weights ω ∈ Rm+1

>0 :

maxx∈Xcont,a∈A

(
m+1∑
i=1

ωi · (1− yi(a, x))

)

= maxx∈Xcont

(
ωm+1 ·

(
1− cost(x)

budgetpower

)
−
∑
e∈E

ωe
delaye(x)

budgete

)
(8.15)

+ maxa∈A

∑
v∈V

av

 ∑
e∈δ−(v)

ωe
budgete

−
∑

e∈δ+(v)

ωe
budgete

 . (8.16)

Finding the maximum in (8.15) is equivalent to problem (7.8), whereas (8.16) can
be solved with Algorithm 7.2 as in Section 7.2.1. Hence we can use Algorithm 7.3

as η-approximate oracle (Theorem 7.9) with running time O(
n·diam2

X ·lip(ω̃)
η + m),

where ω̃ := (
ωe1

budgete1
, . . . , ωem

budgetem
, ωm+1

budgetpower
).

Algorithm Algorithm 8.1 is essentially the same as Algorithm 7.4, but the algo-
rithms differ in the weight update. Moreover, Algorithm 7.4 calls Algorithm 7.3

143

8 The Resource Sharing Framework for Gate Sizing

(for the weighted feasibility problem) in line 5 with weights ω ∈ Rm+1
>0 not scaled

by budgets.

Algorithm 8.1 Solving the feasibility problem for resource sharing

1: procedure FeasibilityProblemRS(η, budgete1 , . . . , budgetem , budgetpower)
2: Fix ν ≤ 0.5
3: ω(1) ← 1

4: for t = 1, . . . , T do

5: (a(t), x(t))← Oracle

(
η
3 , (

ω
(t)
e1

budgete1
, . . . ,

ω
(t)
em

budgetem
,

ω
(t)
m+1

budgetpower
)

)
6: y

(t)
e ← atmaxw−a(t)w +a

(t)
v −atminv+delaye(x(t))
budgete

∀e = (v, w) ∈ E

7: y
(t)
m+1 ←

cost(x(t))
budgetpower

8: if
(∑m+1

i=1 ω
(t)
i · (1− yi(a(t), x(t)))

)
< −η

3 then

9: return ~0
10: end if
11: ω

(t+1)
i ← ω

(t)
i (1− ν

ρr
· (1− y(t)

i)) for all i = 1, . . . ,m
12: end for
13: Return ȳ := 1

T

∑
t≤T y

(t) , x̄ := 1
T

∑
t≤T x

(t), ā := 1
T

∑
t≤T a

(t)

14: end procedure

Theorem 8.11 Let budgetpower be an upper bound on the objective function, and

η > 0. Assume that ρr ≥ η
3 . Then Algorithm 8.1 returns in T = O(log(m)·ρ2r

η2
)

iterations vectors x̄ ∈ Xcont, ā ∈ A and ȳ ∈ Y with ȳ ≤ 1 + η, in other words

cost(x̄) ≤ budgetpower(1 + η), and

āv + delaye(x̄) ≤ āw + η · budgete ∀e ∈ E,

or correctly decides that problem (8.13) is infeasible.

Proof. The proof is essentially the same as for Theorem 7.10, which is based on

Theorem 7.6. We set ν = η
ρr·6 ≤

1
2 and T = d18ρ2r log(m)

η2
e.

Corollary 8.12 follows immediately from Corollary 7.11:

Corollary 8.12 Let k be the length of the longest path in G, and x̄, ā be the
solution returned by Algorithm 8.1. Then āp ≤ ratp+U ·η ·k holds for all p ∈ Vend.

8.10.3 Comparison with Algorithm 7.4

Running Times By Theorem 8.11 and Theorem 7.10, the running times of Algo-
rithm 8.1 and Algorithm 7.4 depend quadratically on the problem widths ρr and ρ,
respectively. Thus the number of iterations in Algorithm 8.1 is by factor u2 smaller

144

8.10 Evaluation of the Resource Sharing Model

than in Algorithm 7.4. The same holds for the upper bounds on the constraint
weights. Furthermore, for ω ∈ Rm+1

>0 and ω̃ = (
ωe1

budgete1
, . . . , ωem

budgetem
, ωm+1

budgetm+1
) we

have that

lip(ω̃) ≤ max
x∈Xcont

max
1≤i≤n

{
ωm+1

budgetpower
cost(xi) + Λ ·max

e∈E

ωe
budgete

delaye(x)

}
≤ 1

u
· max
x∈Xcont

max
1≤i≤n

(
ωm+1cost(xi) + Λ ·max

e∈E
ωedelaye(x)

)
=

1

u
· lip(ω)

holds for the Lipschitz constants lip(ω̃) and lip(ω) of the sizing subproblems (8.15)
and (7.8) that arise in each iteration of Algorithm 8.1 and Algorithm 7.4, respec-
tively. Algorithm 7.3 approximately solves the sizing subproblems, and its running
time depends linearly on the Lipschitz constants, which in turn depend on the
constraint weights. As the weights computed in the course of Algorithm 8.1 and
Algorithm 7.4 differ, we cannot directly compare running times of these algorithms.
Nonetheless, the worst case running time of an iteration is larger in Algorithm 7.4
due to the larger Lipschitz constant of the sizing subproblem, and the larger upper
bound on the weights that is implied by the larger number of iterations.

Worst Slack Maximization By Corollary 7.11, āw ≤ ratw + η · k holds for all w ∈
Vend and the solution returned by Algorithm 7.4. Similarly, we have by Corollary
8.12 that āw ≤ ratw + η · k · U holds for all w ∈ Vend and for the solution returned
by Algorithm 8.1. This implies an inferior guarantee on the timing constraints for
the solution returned by Algorithm 8.1 if U > 1, which is a reasonable assumption.
Additionally, more accurate (smaller) budgets imply a better approximation ratio.
On the other hand, maximizing the weighted feasibility problem (8.15) can be done
independently for the size variables and arrival time variables. Therefore we can
also use, without a running time degradation, the delay budgets of Held et al.
[Hel+15] with he 6= 0 (cf. Theorem 8.2). It is easy to see that this does not increase
the width ρr. Then minimizing the maximum resource usage, which is equivalent
to maximizing 1− yi(a, x) for all i = 1, . . . ,m+ 1, is equivalent to maximizing the
worst slack.

8.10.4 Conclusion

The resource sharing algorithms described in Section 8.5 and Section 8.6 improve
over Algorithm 8.1 and Algorithm 7.4 because their running times are independent
of the resource weights and problem widths. We conclude that the resource sharing
model for the gate sizing problem leads to a fast approximation of the continuous
relaxation, and allows to model timing objectives like worst slack maximization
more directly (see also Section 8.3.3).

145

9 Experimental Results

Having compared the resource sharing with the Lagrangian relaxation approach for
gate sizing from a theoretical point of view, we now turn towards a comparison in
practice.

We implemented a Lagrangian relaxation approach and a new resource sharing
algorithm with path resources for discrete sizing and Vt optimization. Both algo-
rithms are built around a common oracle algorithm for sizing and Vt optimization
that can be run in parallel. Resource weights and Lagrange multipliers are updated
sequentially in each iteration and fed into the oracle algorithm, which queries the
resource weights and Lagrange multipliers as needed.

Using the same oracle algorithm enables us to directly compare the different weight
update schemes. The purpose of this chapter is to get a direct comparison between
both algorithms, and a first evaluation of the resource sharing model for gate sizing
and Vt optimization in practice.

As a sizing oracle we extend the local search based sizing tool BonnRefine (Held
[Hel09]) that is part of the BonnTools optimization suite for VLSI physical design.

We start with a description of the sizing oracle in Section 9.1 followed by imple-
mentation details of our Lagrangian relaxation (LR) algorithm in Section 9.2 and
path resource sharing (RS) algorithm in Section 9.3. The framework for the path
resource weights was provided by S. Daboul. We describe our testbed and setup
in Section 9.4, including our choice of starting solutions, evaluation metrics and
different optimization modes. Finally, both algorithms are compared in Section 9.5
on a testbed consisting of 8 microprocessor units provided by our industrial partner
IBM with 22 nm and 14 nm technology, and the ISPD 2013 benchmarks (Ozdal et
al. [Ozd+13]) in Section 9.6. We conclude the chapter with a short summary and
an outlook on future research.

9.1 BonnRefine as Oracle Algorithm

Our oracle algorithm returns a solution to the discrete power-delay tradeoff problem
(5.2), but in general not an optimal solution. As discussed in Section 5.2.1, no
approximation algorithms are known for this problem.

We employ a discretized version of Algorithm 5.1 that is widely used in practice.
This algorithm optimizes gates iteratively in reverse topological order, and for each
gate the discrete solution which minimizes its local refine function as defined in (5.4)
is chosen. Recall that the local refine function for a gate gi ∈ G is the weighted
sum of its power consumption and the edge delays in its neighborhood graph Egi

147

9 Experimental Results

(cf. page 24). More formally,

trx(xi, ω) := ωm+1cost(xi) +
∑
e∈Egi

ωedelaye(x)

for x ∈ Xdisc and weights ωm+1 ∈ R≥0, ωe ∈ R≥0 for e ∈ E. Here all entries of x
are fixed except for the i-th entry.

In the LR algorithm, ωm+1 equals 1 and the weights ωe for e ∈ E correspond to
the Lagrange multipliers. In the RS algorithm, the weights correspond to the edge
weights that are derived from the path resource weights, divided by the resource
budgets. This will become clear in Section 9.3. We integrated the budgets into the
weights to simplify notation.

Recall that in the LR algorithm we aim to find sizes and Vt levels that are close
to the optimal solution, while in the RS algorithm we are interested in sizes and
Vt levels such that the value of the power-delay tradeoff function is close to the
optimum. In both cases, no approximation algorithms are known, and we do not
distinguish between the two objectives in the following.

Furthermore, recall that the local refine function of a gate gi depends on the sizes
of other gates. The oracle algorithm aims to minimize the power-delay tradeoff
function for given weights, but in practice it is not clear with which sizes and Vt
levels to start when optimizing the gates iteratively. It is reasonable in practice to
start with the solution computed in the last iteration of the LR and RS algorithm,
which is what we did in our implementations. In the RS algorithm, a convex
combination of the solutions computed in the previous iterations can also be used
by assigning capacitances and slews appropriately, because existing convergence
guarantees refer to convex combinations of solutions.

Our oracle uses the infrastructure of the sizing tool BonnRefine, which, in its
general setting, computes local slack optima under arbitrary delay models based
on local search. We added as new solution evaluation metric the value of the local
refine function, to which we refer from now on as refine cost. Furthermore, weRefine cost

integrated Vt optimization into BonnRefine and refer to a new size or Vt level for
a gate, or a combination of both, as solution candidate.Solution candidate

The industrial timing engine IBM EinsTimer is used for all delay, slew and slack
calculations under the Elmore delay model [Elm48]. Wires are estimated as ap-
proximately shortest Steiner trees. To bound the running time of the algorithm,
delay recalculations are restricted to a bounded number of logic levels around each
gate by the timing engine. This prevents propagation of delay and slew changes
through the whole timing graph in each sizing and Vt optimization step, but in-
troduces small inaccuracies. In our setting, we restrict delay recalculations to the
neighborhood graph of the gate.

Nonetheless, it is time-consuming to evaluate the local refine function for each
solution candidate of a gate. Therefore we skip some candidates as follows: Let s
be the size of the current solution of a gate g ∈ G. Starting with the next smaller
size than s, all smaller sizes are tested in order of decreasing size. For each size,

148

9.2 Implementation of a Discrete Lagrangian Relaxation Algorithm

all Vt levels are evaluated. Now let s̃ be a size that is smaller than s. If for all Vt
levels of s̃, the refine costs are larger than the refine cost of the current solution, no
size smaller than s̃ is evaluated. Afterwards, larger sizes are evaluated and pruned
similarly once no Vt levels of a size could improve upon the initial solution.

We largely neglected electrical constraints in our theoretical discussions, which is
not reasonable in practice. Solution candidates that increase the sum of load or
slew violations of the vertices in the neighborhood graph of the currently optimized
gate are rejected. A solution that improves either the sum of load or slew violations,
but does not degrade the other, is accepted if the worst slack in the neighborhood
graph is not degraded. The reason is that a large increase of violations can be very
hard to fix afterwards, and designs have to be free of violations in the end.

For gates with positive slack we added a heuristic check not to choose a larger size
or lower Vt level even if this improves the refine cost, as our optimization goals are
timing closure and power minimization.

Translating Power Consumption into Delay

Local refine functions are weighted sums of power and signal delays, both measured
in different units. In the RS algorithm, power and signal delays are divided by their
budgets and we optimize weighted resource usages, therefore it is not necessary to
translate between different units.

To allow a meaningful evaluation of the local refine functions in the LR algorithm,
we translate power to delay by means of a technology-dependent translation fac-
tor. This factor is computed by simulating infinite and optimally buffered repeater
chains as in Bartoschek [Bar14]. This gives a notion of the power consumption per
unit distance induced by the repeaters in the chain, and the delay per unit distance.
We perform this simulation for different repeater sizes and Vt level, and choose the
average ratio of power per unit distance and delay per unit distance for the different
repeater types as our translation factor.

9.2 Implementation of a Discrete Lagrangian Relaxation
Algorithm

For the continuous relaxation of the gate sizing problem, the dual objective function
is differentiable, and the gradient is the vector of delays. We conducted experiments
in which we employed the extended timing graph, and updated the Lagrange multi-
pliers with the vector of delays as described in Section 6.2. The multiplier projection
was computed with the IBM ILOG CPLEX Optimizer. For each edge in the ex-
tended timing graph, the delay which induced the worst slack over this edge was
used in the multiplier update.

For comparison, we implemented an alternative multiplier update and a heuristic
projection step: The Lagrange multipliers are updated with the local edge slacks of
the corresponding edges in the timing graph, which are defined as the worst slack

149

9 Experimental Results

induced by the edge over all phases and transitions (cf. Section 2.5.1 and 2.5.3). We
established in Section 6.2 that this is equivalent to updating the multipliers in the
extended timing graph with the delay vector. As a heuristic multiplier projection
we implemented the algorithm proposed by Tennakoon and Sechen [TS02], which
is also described in Section 6.4.2. The running time is linear in the number of edges
in the timing graph.

We observed in practice that the results obtained with the exact projection and
delay multiplier update were not superior to the results obtained with the local
edge slacks in the multiplier update and the heuristic projection, both with respect
to timing constraints and power consumption. We thus use the latter variant in
our implementation, as it is faster than an exact projection. For example, exact
projection of an instance with approximately 2.3 million edges and 1.86 million
vertices took 206 seconds on an Intel Xeon CPU with a clock frequency of 3.47
GHz, whereas the heuristic projection took only a few seconds.

Lagrange multipliers are initialized with a small percentage of the local edge slacks
instead of a fixed value for each multiplier, such that the current timing criticalities
are reflected from the start. As step size during the multiplier update we deploy
the ratio 1/(current iteration).

We did not implement a stopping criterion for the algorithm but rather performed
a predefined number of iterations as in the RS algorithm to enable a comparison of
both algorithms over a fixed number of iterations.

9.3 Implementation of a Discrete Resource Sharing
Algorithm

We implemented a resource sharing algorithm with path resources and a power
resource as described in Section 8.6. The timing graph G is extended by a unique
source s and a unique sink t, and the set of resources R corresponds to the set of
s-t-paths plus a power resource.

Let Pvw denote the edge sets of all paths from v to w for v, w ∈ V ∪{s}∪ {t}, and
we set P := Pst. The path resource budgets correspond to the clock cycle time DP

of the design, and the resource usage of a path P ∈ P is given as delayP (x)
D . HeredelayP (x)

D

delayP (x) is the signal delay of P as incurred by sizes x ∈ Xdisc, more formally
delayP (x) =

∑
e∈P delaye(x).

The only customer is the gate customer. Resource weights are updated exponen-
tially based on their scaled resource consumption. More precisely, let y(t) ∈ R|R| be
the vector of resource usages computed in iteration t of the path resource sharing
algorithm. We set

ω(t+1)
r := ω(t)

r · exp

(
δ · y

(t)
r∣∣∣∣y(t)
∣∣∣∣
∞

)
, (9.1)

for the weight of resource r in iteration t+ 1 for δ > 0.

150

9.3 Implementation of a Discrete Resource Sharing Algorithm

Path resources were proposed in Hähnle [Häh15] in the context of timing-driven
global routing, and it was also shown in this work that the path resource weights
can be decomposed into weights on the edges in the timing graph in linear time.

To see this, suppose we are in iteration t of the RS algorithm, and let ωP be the

current weight of path P ∈P. Let further d̃elayP and d̃elaye be the convex com-
binations of delays of path P and edge e ∈ E computed in the previous iterations,
respectively.

To simplify notation, we leave out the division by
∣∣∣∣y(t)

∣∣∣∣
∞ and D in the following

formula. The weight ωe of e = (v, w) ∈ E can then be computed as follows:

ωe :=
∑

P∈P,P3e
ωP =

∑
P∈P,P3e

exp
(
δ · d̃elayP

)

=
∑

P∈Psv

∑
Q∈Pwt

exp

δ · ∑
f∈P∪Q∪{e}

d̃elayf

= exp(δ · d̃elaye) ·

 ∑
P∈Psv

exp

δ ·∑
f∈P

d̃elayf

︸ ︷︷ ︸

ωsv

·

 ∑
Q∈Pwt

exp

δ ·∑
f∈Q

d̃elayf

︸ ︷︷ ︸

ωwt

(9.2)

All edge weights can be computed by traversing the timing graph once in topological
and once in reverse topological order.

This implies that minimizing the weighted path resource usages of the gate customer
is equivalent to minimizing the weighted sum of edge delays in the timing graph.

Hence minimizing the weighted resource usage of the gate customer is the power-
delay tradeoff problem, and we can deploy BonnRefine as gate customer oracle
that gets as input the edge weights and the power weight.

Path weights are only computed implicitly when computing the edge weights.

The edge delays used in the weight computation are the delays that correspond
to the phase and transition attaining the worst slack over this edge. These are
divided by the cycle time of the phase inducing the slack. We come back to these
inaccuracies in Section 9.7. When analyzing our experimental results we make the
simplifying assumption that we have only one clock phase and clock cycle time and
that the required arrival times at timing endpoints are induced by this clock cycle
time. Under this assumption the worst path resource usage is induced by a path
attaining the worst slack.

Edge weights are initialized based on the resource usages of the starting solution.
Note that starting with a value of 1 for each weight, as it is done in theory, would
lead to large timing and power degradations until the weights are more balanced and

151

9 Experimental Results

reflect the status of the design. Furthermore, more iterations of the algorithm would
be needed. In an industrial design flow, instances have already been optimized by
other algorithms before gate sizing, and it is not reasonable to “forget” about this
information by starting with uniform weights.
Recall that we need to specify a power budget in order to determine the power
resource usage of a solution. For experimental purposes, we specified a budget for
each instance individually. This will be described in Section 9.5 and Section 9.6,
respectively.

9.4 Testbed and Setup

All algorithms are implemented in C++ and the industrial timing engine IBM
EinsTimer is used for all delay computations. Tests on microprocessor instances
and the ISPD 2013 benchmarks were performed on Intel XEON machines with
clock frequencies of 3.1 GHz and 2.9 GHz, respectively.
Table 9.1 shows our industrial testbed consisting of 8 microprocessor units.

Design Technology # Circuits Cycle time (ps) Edges Pins

Unit1 22nm 50520 208 218507 170630
Unit2 22nm 54709 174 277141 259207
Unit3 14nm 66843 240 168093 148929
Unit4 14nm 74136 174 263197 228221
Unit5 14nm 169327 174 637107 501126
Unit6 14nm 219749 264 917523 726164
Unit7 22nm 474312 208 2745919 2166512
Unit8 22nm 542544 208 2222887 1790123

Table 9.1: Microprocessor units used in our experiments. Column two and three
indicate the technology of the units and the number of circuits. The last
three columns show the cycle time, and the number of edges and pins in
the timing graph, respectively.

In the previous chapters we considered algorithms for gate sizing only, as latches
(registers) are usually fixed along with the clock net routing in earlier design stages.
On the ISPD 2013 benchmarks, latch sizes are fixed, but on the microprocessor
designs we include non-fixed latches in our optimization. We will treat latch sizing
again in Chapter 10.
The oracle algorithm is called once in each iteration of the LR and RS algorithms
in parallel with 8 threads. Thereby the netlist is partitioned into logical regions
with an algorithm provided by IBM, and threads iteratively process the regions.
Thereby circuits that lie in the boundary of two regions, which means that they are
connected with circuits in another region by an edge in the timing graph, are not
optimized. For this reason the netlist is partitioned a second time after the first

152

9.4 Testbed and Setup

processing of all regions. This is done in such a way that each former boundary
circuit now lies within a single region. Afterwards, each circuit has been processed
at least once. Within the regions, circuits are traversed in reverse topological order.

We performed 25 iterations of each algorithm as the RS algorithm runs a specified
number of iterations in theory. Placement locations of the circuits on the ISPD
2013 benchmarks benchmarks are unknown, and designs cannot be legalized. We
also did not run a legalization algorithm on the microprocessor designs in order to
evaluate the raw behavior of the LR and RS algorithm without considering effects
that are caused by legalization.

9.4.1 Starting Solutions

Algorithms were run incrementally on optimized instances instead of starting with
the smallest size and highest Vt level solution as it is usually done on the ISPD 2013
benchmarks. The microprocessor designs are placed and already timing optimized
with tools for repeater insertion, layer assignment, sizing and Vt optimization etc.

For the ISPD 2013 benchmarks, we generated a starting solution similar to Li et
al. [Li+12a] and Flach et al. [Fla+14]: Starting with the smallest available sizes
and highest Vt levels, all gates were traversed in topological order and the smallest
solution that incurred no load violations was chosen for each gate.

9.4.2 Evaluation Metrics

Existing convergence guarantees of the LR algorithm refer to the solution computed
in the last iteration of the algorithm, while for the RS algorithm estimations refer
to the weighted average of the solutions computed in the course of the algorithm.
This is not necessarily a feasible discrete solution. Given that, it is not clear which
solution to analyze from our experiments because rounding can be arbitrarily bad
(cf. Section 8.7). We can choose for example the solution that minimizes the maxi-
mum resource usage. Note that under our simplifying assumptions (cf. Section 9.3)
the worst path resource usage is induced by a path that attains the worst slack WS
of the design. However, the sum of negative endpoint slacks SNS and the sum of
negative slacks of all subpaths SLS in the timing graph can be poor in this solution
(see page 27 and 28 for a definition of these metrics). In our evaluation we consider
the solutions returned after the last iteration of the algorithms. We will see that
this usually is a good choice.

We shortly describe the metrics we employ to evaluate the solutions returned by
our algorithms. These metrics are also depicted in our result tables (Table 9.3 -
9.6).

We measured the worst slack of the design WS, the sum of negative endpoint slacks
SNS, and the sum of negative slacks of all subpaths SLS , which was also proposed
as evaluation metric in Reimann et al. [RSR15]. We refer to the these metrics as
timing metrics. Timing metrics

153

9 Experimental Results

In literature, SLS is often not considered. We use it as an additional measure for the
following reason: In an industrial design flow, gate sizing is often applied at a stage
where the design cannot become timing clean by sizing and Vt optimization only,
and further optimizations like repeater insertion are necessary. Using edge weights
in the oracle algorithm, regardless if they are Lagrange multipliers or resource
weights, sometimes leads to delay improvements on timing critical paths, which do
not appear in the SNS that is most commonly used as a measure for the timing
quality of a design. Consider for example a gate with 2 inputs a and b, and suppose
the edge from input a to the gate output pin c lies on a very critical path that
cannot be significantly improved by gate sizing. If the edge from input b to c is less
timing critical than the edge from a to c, a delay improvement of this edge will not
change the worst slack at c. Thus improving the delay of the edge from b to c will
only be visible in the SLS.
Additionally, a WS and SNS improvement is not preferable if it comes at the cost
of a large SLS degradation that needs to be recovered again by later algorithms to
achieve timing closure.
“Pstatic” denotes the static power consumption of all gates. Minimizing the static
power consumption is the objective for the ISPD 2013 benchmarks. On the mi-
croprocessor instances, the relation between the total power consumption of the
solutions returned by our algorithms was usually of the same magnitude as the re-
lation between the static power consumptions except for one design. Therefore we
omit the total power consumption in our result tables and point out the discrepancy
in Section 9.5.
The column headed by “Pusage” shows the usage of the static power resource, i.e. the
ratio of static power consumption and its budget. Due to the exponential number
of paths in the timing graph, we do not evaluate the usage of all path resources.
Instead we depict the worst usage, which is induced by a path that attains the worst
slack under our simplifying assumptions, in column ”WSusage“. Both metrics are
also evaluated for the LR algorithm to provide a better comparison.
As performance guarantees for the RS algorithm refer to the convex combination
of resource usages (and the convex combination of the solutions) computed in the
course of the algorithm, the two columns headed with ”∅ Usages“ show the convex
combination of the power and worst path resource usage over all iterations of this
algorithm, respectively.
Column ”RT“ denotes the running times of the algorithms in minutes. Most of it
is spent for delay computations in the solution evaluation of the oracle, and only to
a minor extent for updating the resource weights. It serves as an indicator for the
number of solutions that have been evaluated in the course of the algorithm, and
usually the number of gates that have been changed correlates with the running
time.
However, updating the resource weights takes approximately three times as long as
updating the Lagrange multipliers. This can be contributed to the fact that here
the timing graph needs to be traversed twice in order to compute the new edge
weights. Additionally, the worst path resource usage needs to be determined first

154

9.4 Testbed and Setup

to compute
∣∣∣∣y(t)

∣∣∣∣
∞ for y(t) ∈ R|R| in each iteration t of the RS algorithm, which

is also needed in the weight computation (cf. equation (9.1)).

As the sum of load and slew violations were of the same magnitude for the LR
and RS algorithm, and never degraded significantly except for two microprocessor
designs, we omit these numbers in our tables and indicate the exceptions in Section
9.5.

9.4.3 Optimization Modes

Mode Weight update rule Local oracle objective Power weight

Init - - -
LR Lagrangian relaxation Sum of weighted delays No
RS Resource sharing Sum of weighted delays Yes
LRM Multiplicative Sum of weighted delays No
LRH Lagrangian relaxation Sum of weighted delays No

and local SNS
RSH Resource sharing Sum of weighted delays Yes

and local SNS
APPR Resource sharing Weighted local SNS Yes

Table 9.2: Optimization modes.

Table 9.2 shows our optimization modes that will be explained in the following.
The modes are classified by the update rule for the edge weights and multipliers,
the objective that is optimized locally in the oracle algorithm (the refine costs),
and whether a power weight is considered.

Mode “Init” refers to the initial values before optimization. Modes ”LR“ and ”RS“
indicate the base LR and RS algorithm whose implementations we have described
in Section 9.2 and Section 9.3, respectively.

Recall that our analysis of the heuristic modifications of the LR algorithm in prac-
tice led us to the multiplicative weights algorithm (cf. Section 7.2.4) and further
to the new model as a min-max resource sharing problem. Naturally, the question
arises how the LR algorithm with heuristic modifications performs compared to
the base LR algorithm, and in particular to the RS algorithm. We divide these
modifications into two classes: Firstly, changes proposed for the projected gradi-
ent method, and secondly changes to the oracle algorithm described in Section
9.1. As various heuristics exist and it is impossible to implement and test all the
combinations, we implemented only a selected choice that we deem reasonable.

Among these are a multiplicative multiplier update proposed in Flach et al. [Fla+14]
that was employed in the winning algorithm of the ISPD 2013 Discrete Gate Sizing
Contest. This mode is indicated by ”LRM“ in our tables. Here the Lagrange multi-
pliers are updated multiplicatively based on their local timing criticality (cf. Section

155

9 Experimental Results

7.2.4). Although the weight update rule in the RS algorithm is also multiplicative,
it is based on the resource usages and differs significantly from this heuristic rule.
Similar update rules were proposed for example by Tennakoon and Sechen [TS02]
and Livramento et al. [Liv+14].
It also is an interesting question how other heuristic oracles influence the perfor-
mance of the algorithms. As mentioned before, our oracle algorithm is a heuristic
and no approximation guarantees are known. Based on our observations in practice,
we believe that better results can be obtained when the relevant timing metrics like
WS, SNS and SLS are considered more directly in the oracle algorithm instead of
letting the weights guide the optimization.
Modes ”LRH“ and ”RSH“ refer to the LR and RS algorithm with such a heuristic
oracle algorithm, which we will shortly describe. Let g ∈ G. We refer to the
local SNS of g as the sum of negative slacks at the sibling and predecessor pins ofLocal SNS

the input pins of g and the successor pins of the data output pin of g (cf. Section
2.5.2). Based on our practical observation that the LR and RS algorithm tend to use
larger sizes and lower Vt levels unnecessarily, we included both the negative slacks at
predecessor and sibling pins in this metric to put more emphasis on signals entering
g. We deploy as refine costs the sum of weighted delays in the neighborhood graph
as before, but reject solutions that degrade the local SNS of the initial solution by
more than a factor of Φ > 0 similar to Flach et al. [Fla+14]. For the ISPD 2013
benchmarks, the value of Φ is updated after each iteration based on the criticality
of the design: If the worst slack improves, Φ decreases. For the microprocessor
designs the worst slack does not necessarily improve by sizing and Vt optimization.
On designs with a worst slack that is strongly negative, Φ would then remain large
and hardly any solution would be rejected due to a local SNS degradation. For this
reason we set Φ to a fixed value of 1.05. This proved to be efficient in practice, but
can possibly be improved by fine-tuning. We also prohibit degradations of the 1%
most critical slacks of the design. This oracle algorithm is a variant of Algorithm
5.4.
Additionally, we evaluate an optimization mode called ”APPR“ with another
heuristic oracle algorithm that optimizes the weighted local SNS for each gate in
the oracle algorithm similar to Daboul [Dab15]. Here the slack at v ∈ V is weighted
with ωsv ·ωvt, and these pin weights can be computed simultaneously with the edge
weights by equation (9.2). In each iteration, the refine costs of g ∈ G are the sum
of the weighted negative slacks at the pins that are considered in the local SNS of
g. The differences to minimizing the weighted sum of delays are as follows: Firstly,
the delays of a few edges are not ”captured“, which is illustrated in Figure 9.1.
The picture shows the neighborhood graph of gate g in the center. Edges whose
delay contributes to the local SNS are indicated in green and blue, otherwise edges
are colored red. The reason why the edge delays of some edges are not considered
is that at predecessor pins and output pins of g only the criticalities and thus the
delays of the most timing critical edges are propagated further. We conclude that
the weighted sum of negative slacks at sibling and successor pins equals the sum of
weighted delays when the currently sized gate and the predecessor gates are invert-

156

9.5 Results on Microprocessor Instances

g−10

−15

−15

−20

−15

−5

−15

−20

−8

Figure 9.1: The weighted sum of negative slacks in the neighborhood of gate g
approximates the weighted sum of delays.

ers, as these have only one traversing edge. Otherwise, it is a lower bound on the
sum of weighted delays.

Secondly, we include the weighted negative slacks at the predecessor pins in the
refine cost function to put more emphasis on signals entering g.

9.5 Results on Microprocessor Instances

For our microprocessor instances, we choose a power budget individually for each
design. It was obtained by heuristic sizing and Vt optimization algorithms on our
instances, which also improved the timing metrics of the initial solution (Init).
Hence, these budgets are realistic targets for our RS algorithm.

It requires some tuning to find a good number of iterations and a corresponding
value of δ in the update of the resource weights. We ran 25 iterations of the RS
algorithm and compared different values for δ. It turned out that δ = 1 provided
the best results: For a larger value of 5, power consumption improved significantly
at the cost of large timing degradations. This is probably caused by numerical
issues due to very large values of the resource weights in the sense that all resource
weights are very large and timing criticalities are overlooked. An implementation
that is more aware of numerical issues might solve this problem.

Note that although the sum of weights in the last iterations can be bounded (see
Hähnle [Häh15]), the weights grow exponentially with the resource usages, and can
become rather large.

A smaller δ value of 0.2 improved SNS on some designs at the cost of higher power
consumption, and led to inferior timing and power consumption on others. Running
100 iterations with δ = 0.25 yielded almost the same results as 25 iterations with
δ = 1 both with respect to timing metrics and power consumption. This shows
that the behavior of the RS algorithm is stable, because in theory the number of
iterations depends linearly on 1

δ .

157

9 Experimental Results

9.5.1 Without Vt Optimization

We first conducted experiments with fixed Vt levels, as including Vt optimization
makes the problem in a way harder. This will become clear in Section 9.5.2.
Table 9.3 shows the results after 25 iterations of the LR and RS algorithm with
fixed Vt levels.

Timing metrics Power Usages ∅ Usages
Chip Mode WS SNS SLS Pstatic Pstatic WS Pstatic WS RT

[ps] [ns] [ns] [µW] [min]

Unit1 Init -47.1 -30.7 -189.5 42.57 1.01 1.23
LR -77.2 -52.3 -319.6 45.91 1.09 1.37 13.4
RS -54.1 -33.4 -193.6 44.74 1.06 1.26 1.10 1.29 14.7

Unit2 Init -545.1 -879.3 -1490.4 437.06 1.04 1.78
LR -545.1 -917.3 -1552.0 409.12 0.97 1.78 9.0
RS -545.1 -895.2 -1500.6 446.47 1.06 1.78 1.03 1.78 14.3

Unit3 Init -310.5 -88.3 -297.5 19.00 1.14 1.49
LR -335.1 -102.9 -339.0 20.79 1.25 1.52 20.4
RS -307.2 -92.4 -298.7 16.98 1.02 1.48 0.94 1.48 23.3

Unit4 Init -292.7 -300.0 -1153.0 92.07 1.27 2.68
LR -292.5 -298.3 -1160.2 89.82 1.24 2.68 22.0
RS -292.3 -291.8 -1107.1 85.03 1.17 2.68 1.18 2.69 25.4

Unit5 Init -153.8 -216.4 -2750.9 125.63 1.02 1.88
LR -151.2 -244.3 -3126.8 119.28 0.97 1.87 46.4
RS -151.2 -210.6 -2640.7 122.06 0.99 1.87 1.00 1.87 55.8

Unit6 Init -196.3 -846.8 -6198.2 130.09 1.17 1.74
LR -205.3 -864.8 -6717.8 125.79 1.13 1.78 75.0
RS -194.9 -749.7 -5634.9 128.00 1.15 1.74 1.18 1.75 89.9

Unit7 Init -338.2 -1443.2 -10460.9 339.82 0.92 2.63
LR -372.3 -1502.5 -10206.9 369.67 1.00 2.79 320.6
RS -353.3 -1225.8 -8267.6 403.19 1.09 2.70 1.07 2.69 348.8

Unit8 Init -182.8 -445.3 -4341.3 416.37 0.93 1.88
LR -185.8 -482.2 -4381.8 476.49 1.07 1.89 135.8
RS -186.0 -419.6 -3923.5 496.47 1.11 1.89 1.10 1.88 171.9

Table 9.3: 25 iterations of the LR and RS algorithms with fixed Vt levels on micro-
processor designs.

Compared with the LR algorithm, the RS algorithm exhibits better SNS and SLS
on all designs. On most of the designs, this comes with a higher power consumption,
for example Unit7.
Compared to the starting solution, the LR algorithm degrades either SNS, SLS or
both metrics on all designs, and WS degrades on all units except Unit2, Unit4 and
Unit5.
The RS algorithm degrades WS on Unit7 and Unit8, but at the same time improves
SNS and SLS. On the three smallest designs, it degrades either SNS or SLS, or both
metrics.
On the smallest design Unit1, both algorithms degraded not only the timing metrics,
but also power consumption. However, degradations are more significant for the
LR algorithm.
An exception where the LR algorithm performs better than the RS algorithm is
Unit2, where both algorithms degrade timing, but the LR algorithm causes a sig-
nificantly smaller power consumption and even improves over the initial value.

158

9.5 Results on Microprocessor Instances

The running time differences between the LR and RS algorithm are mostly due to
the slower weight computation for the RS algorithm.

We believe that the timing and power degradations and the improvements of small
magnitude can be contributed to the fact that increasing the size of a gate of-
ten improves the sum of weighted delays, but actually degrades the slacks in the
neighborhood graph of the gate.

Consider for example a gate g with more than one edge traversing the gate. In-
creasing the size of g has the largest effect on the delay of the edges traversing g. In
comparison, delay changes of the other edges in the neighborhood graph are rela-
tively small. If the edges traversing g are timing critical and g only has a few timing
critical sibling gates, it takes several iterations until the weights of the edges in the
neighborhood have increased sufficiently such that a larger size does not improve
the sum of weighted delays in the neighborhood graph. This effect is enhanced if
additionally g has a large fanout with critical gates.

It can be reduced by choosing a larger value for δ, such that differences in timing
criticality are more pronounced from the beginning, and running more iterations.

To verify our hypothesis, we ran 100 iterations of the RS algorithm on two smaller
designs. On Unit3 and Unit1, this further improved the worst slack by a few pico
seconds, and static power consumption by approximately 10%.

SNS and SLS further degraded on both designs. This is in accordance with the
objective of the RS algorithm to minimize the maximum resource usage, and shows
that the weights of the most critical path resources increased sufficiently. The usage
of less critical path resources thereby degraded.

Running 100 iterations of the LR algorithm did not improve the results significantly.

9.5.2 Including Vt Optimization

We also ran the LR and RS algorithm with an oracle that optimizes both sizes
and Vt level. The results are presented in row 2 and 3 of each design in Table 9.4.
Including Vt optimization makes the problem in a way harder because a lower Vt
level does not have such a large impact on entering signals, and thus will improve
the weighted sum of delays in most cases. A power weight is necessary to prevent
setting too many gates to the lowest Vt level, which is also illustrated by our results.

While the power consumption of the LR algorithm without Vt optimization was on
some designs smaller than after the RS algorithm, the situation is reverted when
Vt optimization is included, for example on Unit5, Unit6 and Unit8.

For the LR algorithm, power is larger on all designs except Unit2 compared to
optimization with fixed Vt levels. This does not come with a timing improvement,
in fact timing degraded significantly on several designs, for example on Unit6 and
Unit7. This can be contributed to the fact that there is no power weight in the LR
algorithm, and that minimizing the sum of weighted delays locally degraded the
timing metrics.

Similar considerations as in the previous section apply when comparing the LR and
RS algorithm with respect to the timing metrics. The RS algorithm exhibits better

159

9 Experimental Results

SNS and SLS than the LR algorithm on all designs except Unit3, and improves over
the initial solution on all designs except the smallest ones. The better timing of the
RS algorithm comes with a higher power consumption on Unit2 and Unit7. Power
consumption is also larger than for the RS algorithm with fixed Vt levels on Unit3,
Unit5, Unit7 and Unit8. Compared to this algorithm, timing metrics have slightly
degraded on most designs. This shows that often a lower Vt level or larger size was
chosen, although the timing metrics degraded. While the average worst slack usage
is almost the same with and without Vt optimization, the average power usage is
significantly larger with Vt optimization on the larger designs, for example by 9%
on Unit5 and 8% on Unit8, respectively. More iterations are necessary to reduce
power again. On Unit2, Unit3 and Unit4, the average power usage improved.

Another explanation for the SLS and SNS degradation caused by the LR algorithm
and the RS algorithm on the smaller designs is that on real-life designs, the worst
slacks cannot always be improved by gate sizing and Vt optimization. In that case
the weights of edges on these paths will continue to grow and can dominate the
weights of other, less critical edges. If only the sum of weighted delays is considered
in the oracle algorithm, slacks on less critical paths can decrease.

We mentioned in Section 9.4.2 that the relation between the total power consump-
tion and the static power consumption of the solutions were of the same magnitude
except for one design. On Unit3, static power consumption is larger for mode LR,
but total power consumption is the same as for mode RS, which indicates that more
gates were set to a lower Vt level, but to smaller sizes than compared to the RS
algorithm. The same holds for mode LRM, whose results we will now describe.

9.5.3 Multiplicative Multiplier Update

Row 4 in Table 9.4 depicts the mode LRM with a multiplicative multiplier update
in the Lagrangian relaxation algorithm. Interestingly, this update rule degraded
timing metrics compared to the base LR approach, but improved static power on
all designs. For example on Unit6, static power was improved by almost 10%. This
leads to the conclusion that the Lagrange multipliers are smaller and weighted
delays are not as dominating in the local refine functions as before. Furthermore,
the Lagrange multipliers reflect the timing criticality of the design not as good as
in the base LR algorithm.

Multiplicative update rules were often used in combination with a heuristic oracle.
Therefore we also conducted experiments of this update rule in combination with
the heuristic oracle that considers the local SNS of the gates and which is also
used in mode LRH and RSH. Using this oracle algorithm improved both power and
timing metrics significantly. In comparison with mode LRH, which is the base LR
algorithm combined with this oracle, LRM revealed less power on all units except
Unit3, and worse SNS and SLS. Hence we omitted these results in Table 9.4.

Given that this multiplicative update rule was successfully applied to the ISPD
2013 benchmark suite by Flach et al. [Fla+14], our results indicate that more care-
ful tuning of the algorithmic components is necessary to obtain similar power im-

160

9.5 Results on Microprocessor Instances

provements and dispose of the timing degradations. This assumption is supported
by the fact that on the ISPD 2013 benchmarks, this mode performs better than
on the microprocessor designs compared to mode LR. A variant of this update rule
was also successfully applied to industrial microprocessor designs by Reimann et al.
[RSR15]. Here the timing criticalities were measured in relation to the criticality of
the starting solution instead of the slack target of the design. This is more adapted
to the fact that real-life instances are usually not timing clean after sizing and Vt
optimization.

9.5.4 Heuristic Oracles

Finally, we consider the optimization modes LRH, RSH and APPR with the heuris-
tic oracle algorithms that consider the local SNS or weighted local SNS.

Avoiding large degradations of the local SNS in the oracle algorithms as in mode
LRH and RSH introduced more stability to the LR and RS algorithms. The results
are shown in line 5 and 6 of Table 9.4, respectively.

We observe that modes LRH and RSH improve over modes LR and RS, respectively,
regarding timing metrics and power consumption. Timing metrics are better for
mode RSH compared to LRH on all designs except Unit3. Better timing metrics
come at the cost of a higher power consumption on Unit2 and Unit7.

Line 7 shows the results for the optimization mode APPR, which finds the best
tradeoff between power consumption and timing metrics on these designs. It im-
proves over mode RSH with respect to power consumption except for Unit3, Unit4
and Unit6.

We believe this is due to the fact that the objective function in the oracle approxi-
mates the weighted sum of delays as in the RS algorithm, but is more aware of the
actual timing criticalities and considers the timing metrics more directly.

9.5.5 Running Times

Running times are of approximately the same magnitude for all modes except
APPR, which is significantly faster especially on the larger designs. This indi-
cates that a smaller number of solutions has been evaluated in the course of the
algorithm. Modes LRH and RSH are only slightly faster than modes LR and RS.

The contribution of computing the resource weights to the running time of mode
RS is approximately 10%, and thus larger for modes RSH and APPR.

9.5.6 Electrical Violations

We already mentioned that the sum of load capacitance and slew violations were
of approximately the same magnitude for all designs, and improved the values
of the initial solution except for the sum of slew violations on Unit1 and Unit8.
We observed in practice that restricting delay and slew calculations to a bounded
number of logic levels when optimizing a gate in the oracle algorithm (cf. Section

161

9 Experimental Results

Timing metrics Power Usages ∅ Usages
Chip Mode WS SNS SLS Pstatic Pstatic WS Pstatic WS RT

[ps] [ns] [ns] [µW] [min]

Unit1 Init -47.1 -30.7 -189.5 42.57 1.01 1.23
LR -81.7 -52.0 -298.1 53.71 1.28 1.39 31.8
RS -51.2 -39.5 -231.4 43.92 1.04 1.25 1.14 1.30 36.2
LRM -79.1 -67.3 -490.0 52.25 1.24 1.38 31.5
LRH -47.1 -29.8 -170.4 45.35 1.08 1.23 28.2
RSH -47.1 -26.6 -150.5 44.28 1.05 1.23 1.06 1.23 33.4
APPR -47.1 -23.7 -134.5 42.93 1.02 1.23 1.01 1.23 19.8

Unit2 Init -545.1 -879.3 -1490.4 437.06 1.04 1.78
LR -545.1 -916.0 -1570.8 384.58 0.91 1.78 27.7
RS -545.1 -895.1 -1506.3 442.45 1.05 1.78 1.00 1.78 35.1
LRM -545.1 -921.9 -1595.9 371.24 0.88 1.78 28.3
LRH -545.1 -912.7 -1561.7 381.45 0.90 1.78 27.2
RSH -545.1 -892.6 -1502.9 444.89 1.05 1.78 1.00 1.78 34.5
APPR -545.1 -880.2 -1490.0 431.11 1.02 1.78 1.02 1.78 27.1

Unit3 Init -310.5 -88.3 -297.5 19.00 1.14 1.49
LR -332.7 -94.7 -312.6 23.54 1.41 1.52 69.4
RS -312.1 -96.5 -308.3 17.43 1.05 1.49 0.91 1.49 72.8
LRM -323.8 -102.7 -339.3 22.55 1.35 1.51 71.0
LRH -295.1 -87.4 -282.7 18.98 1.14 1.46 66.0
RSH -295.2 -91.6 -293.0 16.82 1.01 1.46 0.86 1.46 73.5
APPR -295.1 -90.6 -297.9 17.84 1.07 1.46 1.07 1.46 53.0

Unit4 Init -292.7 -300.0 -1153.0 92.07 1.27 2.68
LR -302.1 -354.5 -1532.1 91.70 1.26 2.74 75.2
RS -292.2 -291.0 -1098.9 80.16 1.10 2.68 1.11 2.69 78.1
LRM -301.7 -446.3 -2011.9 83.16 1.14 2.74 73.2
LRH -292.8 -322.6 -1327.3 86.62 1.19 2.68 72.0
RSH -292.8 -287.6 -1086.2 81.03 1.11 2.68 1.09 2.68 77.6
APPR -292.8 -294.8 -1115.0 84.78 1.17 2.68 1.19 2.68 58.1

Unit5 Init -153.8 -216.4 -2750.9 125.63 1.02 1.88
LR -150.4 -233.7 -3135.4 136.72 1.11 1.86 149.9
RS -150.4 -215.2 -2670.2 132.28 1.08 1.86 1.09 1.86 158.6
LRM -150.4 -268.6 -3900.6 129.47 1.05 1.86 151.2
LRH -150.4 -223.4 -2966.0 127.51 1.04 1.86 148.3
RSH -150.4 -211.2 -2624.7 124.22 1.01 1.86 1.02 1.86 154.1
APPR -150.4 -209.9 -2612.7 118.69 0.97 1.86 0.97 1.86 120.8

Unit6 Init -196.3 -846.8 -6198.2 130.09 1.17 1.74
LR -222.3 -1082.2 -7576.7 136.94 1.23 1.84 184.4
RS -194.3 -737.6 -5711.2 124.61 1.12 1.74 1.19 1.74 193.7
LRM -246.4 -1287.5 -10315.1 125.33 1.13 1.93 180.9
LRH -194.8 -1005.5 -6951.6 132.95 1.20 1.74 182.3
RSH -194.7 -719.3 -5682.7 126.66 1.14 1.74 1.18 1.74 193.1
APPR -194.7 -742.4 -5987.8 126.65 1.14 1.74 1.15 1.74 141.1

Unit7 Init -338.2 -1443.2 -10460.9 339.82 0.92 2.63
LR -392.8 -1594.9 -10512.9 397.97 1.07 2.89 879.6
RS -353.3 -1233.9 -8342.9 412.45 1.11 2.70 1.10 2.69 820.3
LRM -392.8 -1786.6 -15040.4 383.16 1.03 2.89 805.7
LRH -325.0 -1509.2 -9939.4 379.82 1.02 2.56 810.0
RSH -325.0 -1214.9 -8319.0 392.65 1.06 2.56 1.05 2.57 791.7
APPR -325.0 -1198.6 -8275.5 355.23 0.96 2.56 0.95 2.56 531.0

Unit8 Init -182.8 -445.3 -4341.3 416.37 0.93 1.88
LR -186.1 -483.7 -4515.1 536.30 1.20 1.89 334.3
RS -187.6 -426.3 -4010.5 516.96 1.16 1.90 1.18 1.89 354.7
LRM -186.1 -573.1 -6269.2 519.55 1.16 1.89 338.5
LRH -181.2 -426.7 -3987.7 486.96 1.09 1.87 329.4
RSH -181.2 -385.8 -3682.4 479.06 1.07 1.87 1.05 1.87 333.0
APPR -181.2 -390.7 -3580.8 427.12 0.96 1.87 0.94 1.87 204.8

Table 9.4: 25 iterations of all optimization modes with sizing and Vt optimization
on microprocessor designs.

162

9.6 Results on the ISPD 2013 Benchmarks

9.1) sometimes leads to slew violations in the logic levels that were not included.
This can happen for example when the slew is just slightly below the limit at a
pin within a considered logic level, and above the limit in the next level that is not
considered.
Recall that the oracle algorithms reject solution candidates that increase the sum
of load or slew violations in all optimization modes. Hence small differences in
the sum of violations can rather be contributed to random effects and the limited
delay and slew propagation when sizing a gate, and not to differences between the
optimization modes.

9.5.7 Convergence Plots

Figure 9.2, Figure 9.3 and Figure 9.4 show the WS, static power consumption and
SNS, respectively, in each iteration of our optimization modes for Unit6. The num-
ber of iterations is plotted on the x-axis. Depicted on the y-axis are the WS, static
power consumption and SNS, respectively. For the resource sharing based opti-
mization modes we also plotted the bare values to get a notion on the convergence
behavior. The resource sharing based algorithms (mode RS, RSH and APPR) ex-
hibit better and more predictable convergence behavior in all three metrics. In
mode LR and LRM the changes between WS and SNS are more significant between
iterations, and both metrics jump back and forth. The worst slack is relatively
stable in mode LRH, as we prohibit degradations of the most critical slacks locally.

9.6 Results on the ISPD 2013 Benchmarks

We ran the optimization modes as depicted in Table 9.2 also on the ISPD 2013
benchmarks. We chose as static power budget for each benchmark 105% of the
best static power consumption reported to be achieved without timing or electrical
violations by Flach et al. [Fla+14].
However, in our first experiments the RS algorithm increased power consumption
dramatically in the first iterations, and power consumption not nearly recovered
after 25 iterations. The reason was that the power consumption of our starting so-
lution with mostly small sizes and high Vt levels (cf. Section 9.4.1) was significantly
smaller than the power budget, which led to a very small power weight that was
hardly considered in the first iterations.
Therefore we generated new starting solutions by running a global gate sizing algo-
rithm (Held [Hel08]) and a global Vt optimization algorithm (Wittke [Wit13] and
Daboul [Dab15]) to further optimize the design. Afterwards, the power consump-
tion was larger than our budget.
Table 9.5 and Table 9.6 show our results after 25 iterations of all our optimization
modes on the ISPD 2013 benchmarks for the fast designs and the slow designs,
respectively. The fast designs and the corresponding slow designs have the same
netlist, but the clock cycle time is smaller for the fast designs. Note that also the
cycle times of the netlists differ.

163

9 Experimental Results

For δ we chose a value of 0.1 instead of 1 as paths in the timing graph tend to be
longer than on the microprocessor instances. A larger value of δ led to numerical
issues similar to the ones described in the previous section.

Figure 9.2: Convergence of WS for Unit6 and all optimization modes.

164

9.6 Results on the ISPD 2013 Benchmarks

Figure 9.3: Convergence of static power consumption for Unit6 and all optimization
modes.

165

9 Experimental Results

Figure 9.4: Convergence of SNS for Unit6 and all optimization modes.

166

9.6 Results on the ISPD 2013 Benchmarks

On these benchmarks, the differences we observed between mode LR and mode
RS for the microprocessor designs are more pronounced: Not only does the RS
algorithm exhibit the better timing metrics, also power consumption is smaller on
all designs except for the smallest netlist usb phy in fast and slow mode. Designs
are also close to timing closure. In both modes, designs were free of load capacitance
and slew violations
The multiplicative multiplier update in mode LRM improved power significantly
compared to mode LR, in some cases at the cost of timing degradations. With
the oracle algorithm used in mode LRH and RSH, results were further enhanced.
Nonetheless, the RS algorithm improved over mode LRM on almost all designs in
all metrics.
On these benchmarks, the improvements achieved by using heuristic sizing oracles
that consider the local SNS (mode LRH and RSH) are enormous: Mode LRH im-
proved all metrics on all designs, and power consumption was sometimes decreased
by more than 50% for example on cordic and matrix mult with fast clock period
compared to mode LR.
Mode RSH improved power consumption on all designs, and timing metrics on 10
out of 16 designs compared to mode RS. On the remaining 6 designs, the power
improvement caused a timing degradation, which is most pronounced on the fast
and slow versions of netlist des perf and edit dist.
On these two netlists, the timing degradations are caused by numerical issues similar
to the ones we have observed on the microprocessor designs for a larger value of δ.
It is interesting that mode APPR does not improve over the RS based modes as
significantly as for the microprocessor designs. This can be contributed to the fact
that the ISPD 2013 benchmarks can become timing clean by sizing and Vt opti-
mization, such that it is not as important to optimize the timing metrics as directly
as for designs for which no timing feasible solution for sizing and Vt optimization
exists.
Similar to the microprocessor designs, running times are of approximately the same
magnitude for all modes except APPR, which is significantly faster. Modes LRH
and RSH are slightly faster than mode LR and RSH, and on some larger designs
LRH is faster than RS, for example on netcard with slow clock period.
The contribution of computing the resource weights to the running time of mode RS
is approximately 10%, and thus larger for modes RSH and APPR. The contribution
is slightly larger than for the microprocessor designs.
The high power consumption of the solutions returned at the end of the algorithms
certainly is an issue. We chose a rather small and ambitious power budget for each
design, hence this cannot be attributed to a small power weight. The problem is that
minimizing the sum of delays locally in the sizing oracle often leads to unnecessarily
large sizes and lower Vt levels, as we have discussed already in Section 9.5.1. This
observation is reinforced here by the fact that the heuristic modes LRH, RSH and
APPR return solutions with significantly smaller power on almost all designs.
It also implies that several iterations are often necessary until gates with a large
size and low Vt level in the starting solution get a smaller size or higher Vt level.

167

9 Experimental Results

From that point of view, it is preferable to use small sizes and high Vt levels as
starting solutions. However, this requires a better handling of the power weight,
which will be discussed in more detail Section 9.7.

Figure 9.5, Figure 9.6 and Figure 9.7 show the convergence of our algorithms for
design matrix mult with fast clock period with respect to WS, static power con-
sumption, and SNS. As for the microprocessor designs, the RS based modes (RS,
RSH and APPR) reveal the better and more stable convergence behavior.

9.7 Conclusion

Our experiments illustrate that the RS algorithm exhibits better and more stable
convergence behavior than the LR algorithm, and improves over the LR algorithm
with respect to the timing metrics, and often also with respect to power consump-
tion. Nonetheless we see a gap between theory and practice, and there is room left
for improvement. This is illustrated by the fact that heuristic sizing oracles con-
sidering the timing metrics more directly (mode LRH, RSH and APPR) improved
both algorithms with respect to power and timing metrics. On the microprocessor
designs, mode APPR that directly targets the timing metrics achieved the best
tradeoff between power consumption and timing optimization. Recall that no ap-
proximation guarantees are known for our oracle algorithms. Optimizing the local
refine function for each gate as it is done in the local refine algorithm for the con-
tinuous relaxation (cf. Section 5.1) appears to be the best way to minimize the
weighted sum of edge delays and power in the timing graph. In practice, this does
not achieve the best results, and we discussed some possible reasons in Section 9.5
and Section 9.6. Careful tuning of the algorithmic components and parameters can
further improve the results.

One issue that arises in the RS algorithm is the power budget. Usually, there is no
budget available or known for a design, and binary search is expensive. Additionally,
we observed on the ISPD 2013 benchmarks that a budget which is large compared to
the initial solution can cause an extensive power increase during the first iterations
because the power resource weight is relatively small. The power increase then needs
to be recovered. Similar to global routing in VLSI design, a heuristic solution to
this problem could be to specify a budget that is iteratively adapted during the
algorithm (Müller et al. [MRV11]). Alternatively, the power weight can be updated
after each local sizing step in the oracle algorithm such that it grows faster, or be
computed based on the timing criticality of the design as proposed by Tennakoon
and Sechen [TS08]. We deem the latter approach most promising based on practical
observations, as it directly sets power and timing metrics into relation.

Lower bounds on resource usages that introduce more stability into the algorithm
can help avoiding degradations of resources with low usage due to small weights (see
also Müller et al. [MRV11]). For path resources, it is not clear how to specify these
lower bounds, as path weights are only computed implicitly. This would be clear
for edge delay resources in combination with arrival time customers as proposed in

168

9.7 Conclusion

Timing metrics Power Usages ∅ Usages
Design Run WS SNS SLS Pstatic Pstatic WS Pstatic WS RT

[ps] [ns] [ns] [µW] [min]

usb phy LR -75.8 -0.7 -1.5 19.2 11.85 1.25 1.2
usb phy RS -314.0 -5.8 -29.1 9.7 5.99 2.05 6.91 1.58 1.5
usb phy LRM -94.5 -0.9 -2.1 25.8 15.92 1.32 1.3
usb phy LRH 0.0 0.0 0.0 1.7 1.04 1.00 1.1
usb phy RSH 0.1 0.0 0.0 1.7 1.04 1.00 1.05 1.00 1.1
usb phy APPR 0.1 0.0 0.0 1.7 1.05 1.00 1.05 1.00 0.9
pci bridge32 LR -373.2 -134.2 -422.1 578.1 6.25 1.50 23.5
pci bridge32 RS -96.2 -2.2 -3.6 251.4 2.72 1.13 2.68 1.08 24.9
pci bridge32 LRM -258.8 -158.7 -423.8 541.8 5.85 1.35 24.1
pci bridge32 LRH -12.4 -0.5 -1.1 150.9 1.63 1.02 22.2
pci bridge32 RSH 0.0 0.0 0.0 123.0 1.31 1.00 1.38 1.00 23.7
pci bridge32 APPR 0.0 0.0 0.0 122.3 1.32 1.00 1.36 1.00 16.4
fft LR -868.9 -190.5 -3219.1 947.0 4.42 1.62 32.5
fft RS -68.4 -0.8 -4.0 828.3 3.87 1.05 3.75 1.04 37.2
fft LRM -731.2 -199.9 -3879.1 792.1 3.70 1.52 32.8
fft LRH 0.0 0.0 0.0 330.9 1.54 1.00 33.5
fft RSH 0.0 0.0 0.0 351.0 1.64 1.00 1.67 1.01 35.6
fft APPR 0.0 0.0 0.0 355.2 1.66 1.00 1.68 1.01 30.8
cordic LR -1572.9 -544.9 -9537.6 3117.7 1.78 1.60 34.0
cordic RS -112.2 -7.9 -69.4 2257.3 1.29 1.04 1.26 1.04 33.5
cordic LRM -1388.2 -377.0 -7445.2 2940.4 1.68 1.53 33.7
cordic LRH -28.9 -1.7 -14.5 1267.5 0.73 1.01 29.4
cordic RSH -38.4 -0.6 -9.8 1312.2 0.75 1.01 0.77 1.02 32.6
cordic APPR -91.2 -3.8 -56.9 1368.5 0.78 1.03 0.75 1.03 24.7
des perf LR -377.8 -119.1 -1190.5 6845.0 8.69 1.33 86.1
des perf RS -84.7 -3.1 -6.2 2445.6 3.11 1.07 3.55 1.06 86.7
des perf LRM -272.9 -124.2 -1157.7 6267.1 7.96 1.24 86.8
des perf LRH -315.6 -56.1 -384.6 6223.9 7.90 1.28 83.3
des perf RSH∗ -384.6 -363.4 -7976.4 418.7 0.53 1.34 1.88 1.15 86.3
des perf APPR -7.9 -0.3 -0.5 1328.4 1.69 1.01 2.20 1.03 59.2
edit dist LR -566.2 -138.1 -647.1 3823.2 6.36 1.19 102.5
edit dist RS -172.0 -61.0 -179.0 2773.6 4.61 1.06 4.32 1.05 110.3
edit dist LRM -478.2 -142.7 -693.6 3212.8 5.34 1.16 106.9
edit dist LRH -153.0 -65.3 -202.0 2302.1 3.83 1.05 98.2
edit dist RSH∗ -1726.5 -2161.6 -8934.3 1478.8 2.46 1.58 3.17 1.15 109.3
edit dist APPR -176.1 -107.4 -376.6 2297.2 3.82 1.06 3.62 1.06 82.0
matrix mult LR -650.1 -45.2 -6565.5 7047.9 3.30 1.30 117.9
matrix mult RS -58.4 -3.1 -56.0 5042.4 2.36 1.03 2.44 1.03 126.2
matrix mult LRM -847.9 -63.1 -7752.1 6748.9 3.16 1.39 117.6
matrix mult LRH -39.6 -1.2 -30.0 3232.8 1.51 1.02 108.1
matrix mult RSH -54.0 -0.6 -12.9 2790.0 1.31 1.02 1.47 1.02 120.1
matrix mult APPR -24.8 -0.6 -8.2 3312.0 1.55 1.01 1.60 1.03 96.1
netcard LR -142.3 -24.7 -35.2 7067.6 1.31 1.07 753.4
netcard RS -29.0 -0.4 -0.8 6110.3 1.13 1.01 1.13 1.02 806.6
netcard LRM -51.2 -3.3 -6.2 7270.5 1.35 1.03 751.8
netcard LRH 0.0 0.0 0.0 5371.6 0.99 1.00 735.7
netcard RSH 0.0 0.0 0.0 5395.4 1.00 1.00 1.01 1.01 851.4
netcard APPR -9.1 -0.1 -0.4 5416.6 1.00 1.00 1.01 1.02 569.4

Table 9.5: 25 iterations of all optimization modes with sizing and Vt optimization
on the ISPD 2013 benchmarks with faster clock period. Modes marked
with a star indicate a possible numerical overflow.

169

9 Experimental Results

Timing metrics Power Usages ∅ Usages
Design Run WS SNS SLS Pstatic Pstatic WS Pstatic WS RT

[ps] [ns] [ns] [µW] [min]

usb phy LR -41.6 -0.1 -1.3 4.2 3.72 1.09 1.1
usb phy RS -189.0 -1.4 -6.4 8.7 7.70 1.42 5.52 1.27 1.2
usb phy LRM -43.9 -0.1 -0.1 2.7 2.39 1.10 1.0
usb phy LRH 0.7 0.0 0.0 1.1 0.97 1.00 1.0
usb phy RSH 0.4 0.0 0.0 1.1 0.97 1.00 0.97 1.00 1.0
usb phy APPR 1.6 0.0 0.0 1.1 0.97 1.00 0.97 1.00 0.8
pci bridge32 LR -199.8 -12.3 -632.7 274.3 4.57 1.20 22.5
pci bridge32 RS -6.2 -0.0 -0.1 104.5 1.74 1.01 1.67 1.03 23.5
pci bridge32 LRM -139.3 -51.2 -117.2 212.4 3.54 1.14 22.8
pci bridge32 LRH 0.1 0.0 0.0 61.1 1.02 1.00 21.1
pci bridge32 RSH 0.2 0.0 0.0 62.0 1.03 1.00 1.04 1.00 23.0
pci bridge32 APPR 0.0 0.0 0.0 60.0 1.00 1.00 1.00 1.00 15.6
fft LR -532.3 -31.5 -498.9 540.0 5.89 1.30 31.2
fft RS -46.5 -0.4 -1.0 297.7 3.25 1.03 2.98 1.03 34.3
fft LRM -517.8 -35.2 -604.3 524.6 5.73 1.29 31.2
fft LRH 0.1 0.0 0.0 104.3 1.14 1.10 31.3
fft RSH 0.0 0.0 0.0 106.2 1.16 1.00 1.18 1.00 33.2
fft APPR 0.0 0.0 0.0 106.5 1.16 1.00 1.17 1.01 28.7
cordic LR -1422.1 -279.2 -4083.9 2343.0 7.21 1.47 32.5
cordic RS -200.6 -5.9 -114.8 1209.7 3.73 1.07 3.37 1.04 33.6
cordic LRM -987.8 -178.7 -2773.6 2167.2 6.68 1.33 32.5
cordic LRH -102.6 -3.8 -61.7 723.5 2.23 1.04 29.1
cordic RSH -123.6 -3.2 -57.4 762.0 2.35 1.04 2.06 1.04 31.4
cordic APPR -108.5 -7.9 -10.6 761.3 2.35 1.04 1.87 1.04 24.3
des perf LR -201.2 -34.2 -142.1 3980.0 11.18 1.15 80.7
des perf RS -54.3 -2.5 -4.4 1407.1 3.95 1.04 4.45 1.04 80.9
des perf LRM -243.6 -97.3 -667.0 2934.2 8.25 1.19 83.4
des perf LRH -182.6 -30.2 -117.9 2249.4 6.32 1.14 69.5
des perf RSH∗ -314.6 -360.1 -8812.4 566.5 1.59 1.24 2.57 1.08 75.8
des perf APPR -19.7 -0.4 -0.6 664.9 1.87 1.02 2.34 1.03 55.3
edit dist LR -372.9 -178.8 -599.5 1698.0 3.77 1.10 94.9
edit dist RS -189.6 -56.2 -133.7 1378.1 3.06 1.05 3.08 1.05 102.6
edit dist LRM -397.4 -98.0 -303.6 1599.2 3.55 1.11 96.4
edit dist LRH -237.6 -93.6 -266.5 1252.1 2.78 1.07 92.4
edit dist RSH∗ -501.8 -547.0 -5236.6 1316.6 2.92 1.14 2.44 1.05 100.9
edit dist APPR -230.4 -76.9 -208.5 1223.6 2.71 1.06 2.62 1.05 78.0
matrix mult LR -353.0 -12.8 -1156.6 2347.4 4.83 1.13 103.7
matrix mult RS -83.2 -2.5 -26.2 1711.9 3.52 1.03 3.41 1.04 111.6
matrix mult LRM -381.6 -16.2 -1500.0 1892.8 3.89 1.13 105.4
matrix mult LRH -102.3 -2.1 -54.5 1190.3 2.45 1.04 96.1
matrix mult RSH -94.7 -1.6 -23.6 1030.8 2.12 1.03 2.10 1.03 108.7
matrix mult APPR -108.1 -2.8 -58.5 1135.8 2.34 1.04 2.06 1.04 87.4
netcard LR -53.5 -1.8 -1.8 5525.5 1.03 1.02 721.8
netcard RS -39.8 -0.3 -0.6 5404.6 1.01 1.02 1.00 1.01 832.1
netcard LRM -42.8 -1.4 -1.8 5601.6 1.04 1.02 738.3
netcard LRH 0.0 0.0 0.0 5212.8 0.97 1.00 740.1
netcard RSH 0.0 0.0 0.0 5216.2 0.97 1.00 0.97 1.00 839.2
netcard APPR 0.1 0.0 0.0 5213.2 0.97 1.00 0.97 1.00 571.6

Table 9.6: 25 iterations of all optimization modes with sizing and Vt optimization
on the ISPD 2013 benchmarks with slower clock period. Modes marked
with a star indicate a possible numerical overflow.

170

9.7 Conclusion

Section 8.2 - 8.5.
Another reason to implement the model with edge delay resources is that the num-
ber of path resources is exponential, and edge weights can be dominated by the
number of paths passing through it. This issue can be avoided with arrival time
customers.
Also a larger value of δ can address this problem, as it makes the differences between
timing criticalities more pronounced. In our experiments we encountered numerical
problems with larger values of δ on both testbeds, which need to be addressed.
Resource weights became relatively large in later iterations such that the differences
between timing criticalities were not really ”seen“ anymore. This requires careful
tuning of the number of iterations and the value of δ.
An advantage of path resources certainly is that the weights can be transferred to
pin weights, which is exploited in mode APPR. On the microprocessor designs, this
mode finds the best tradeoff between power consumption and timing metrics on
most designs.
On the ISPD 2013 benchmarks, the situation is not that clear, as on several designs
RSH improves over APPR.
To improve accuracy of the timing computations, copies of the timing graph can
be maintained to model different phases. Also the signal transitions (rise, fall)
can be taken into account. However, it is not clear if this would improve results
significantly.
As was also observed by Reimann et al. [RSR15], algorithms for sizing and Vt
optimization need to address different issues when applied to real-life instances that
cannot necessarily become timing clean instead of the ISPD 2013 benchmarks. For
one thing, sizing tools need to be able to run incrementally. In an industrial design
flow, other optimizations were performed in advance, and it makes no sense to
”forget“ about their results by resetting sizes and Vt levels to an arbitrary solution
beforehand. In that case, it would take several iterations until the weights are more
balanced and reflect the actual timing criticalities. From this point of view, the
RS algorithm also improves over the LR algorithm because the initial weights we
computed better reflect the status of the design. This is illustrated in Figure 9.2
and Figure 9.4 where worst slack and SNS degrade significantly in the first iteration
on Unit6 for the LR algorithm, whereas in the RS algorithm WS is relatively stable
and SNS improves. The situation is similar for the ISPD 2013 benchmarks (Figure
9.5 and Figure 9.7).
Another challenge is that on real-life instances, the critical paths cannot always be
improved. This can lead to timing degradations of less critical paths, because the
critical path weights increase faster and can dominate other paths.
In our discussion of the results, we usually referred to the solution returned in
the last iteration of all algorithms, although for the RS algorithm convergence
guarantees refer to the average of the solutions computed in each iteration. It is
reasonable to store intermediate solutions, and return the ”best“ solution over all
iterations, although this term is ambiguous in this context: The solution minimizing
the maximum resource usage can incur a poor SNS or SLS.

171

9 Experimental Results

For a practical application, we propose a stopping criterion that sets power and slack
improvements into relation. This can also save running time, which is quite large
in our experiments with 25 iterations despite our multi-threaded implementations.
A stopping criterion would also improve the results of the LR algorithm.
An advantage of our implementation is that BonnRefine is already used suc-
cessfully in a design flow, and multi-threading reveals high speedups in its general
setting. For the RS algorithm, speedups are likely to be the same. Running time
can also be improved by restricting the number of solutions to be evaluated in
each oracle call, for example by only considering gates for which edge weights in
the neighborhood graph have changed by more than a certain threshold since the
last iteration. Also the solution candidates that are evaluated for each gate can be
further restricted.
We conclude that our first evaluation of the resource sharing approach is promising
as the weights better reflect the status of the design, and the algorithm improves
over Lagrangian relaxation regarding results and convergence behavior. For a prac-
tical application, further improvements are necessary.

172

9.7 Conclusion

Figure 9.5: Convergence of WS for design matrix mult with fast clock period and
all optimization modes.

173

9 Experimental Results

Figure 9.6: Convergence of static power consumption for design matrix mult with
fast clock period and all optimization modes.

174

9.7 Conclusion

Figure 9.7: Convergence of SNS for design matrix mult with fast clock period and
all optimization modes.

175

10 Post-Routing Latch Optimization for
Timing Closure

In the clock network design phase, timing constraints are often considered only
indirectly during latch placement and sizing [Alp+07; Tre+04]. Afterwards, their
placement and sizes remain mostly unchanged even if the criticalities of data signals
change, as redesigning the clock network and clock routing is costly.
We present an algorithm for timing-driven optimization of latches that maintains
the clock footprint and routing and can therefore be applied late in the design flow.
The algorithm permutes latch positions and sizes in so-called latch clusters and finds
an optimal solution under mild assumptions. Figure 10.1 shows an example of a
latch cluster, where the latches are arranged around a clock buffer in a structured
fashion.
We start with a motivation and related work, and provide a formal problem for-
mulation in Section 10.2. It will become clear in Section 10.3 why a simple swap
heuristic will not work in general. Then, in Section 10.4, we give a detailed descrip-
tion of our algorithm that is based on binary search and bipartite matchings which
are fast in theory and practice. Extensions to more placement or sizing choices
are given in Section 10.5, followed by implementation details in Section 10.6. Our
experimental results demonstrate how the algorithm improves slacks on industrial
microprocessors by up to 7.8% of cycle time in Section 10.7.
The results in this chapter are joint work with Stephan Held [HS14].

10.1 Motivation and Related Work

Clock network design for high performance microprocessors is one of the most chal-
lenging problems in VLSI design. The clock network distributes the clock signals
that open and close the registers once per cycle, and is often realized by a clock
tree or a clock grid with latches and flip-flops at the bottom level stage (cf. Chap-
ter 2). In the following we use the term latch for both flip-flops and transparent
latches. Local clock buffers (LCBs) dispense the clock signal. To bound clock skew LCB

and power consumption, latches are often clustered and placed next to a common
local clock buffer (LCB) in a structured fashion (Chan et al. [Cha+03], Cho et
al. [Cho+13], Papa et al. [Pap+11], Ward et al. [War+13]). Figure 10.1 shows an
example of a latch cluster with an LCB in the center and latches arranged tightly Latch cluster

around it in circuit columns. The clock signal is distributed by the (red) clock net
with a fishbone structure having a wide horizontal backbone for minimum latency
and skew.

177

10 Post-Routing Latch Optimization for Timing Closure

l1 l2 l3 l4
LCB

l8 l7 l6 l5

Figure 10.1: A local clock buffer (LCB) and net (red) with latches (blue). The black
line indicates the worst slack data path starting at l5 leading into the
lower left.

Previous approaches for latch clustering and placement are mostly intended for
global optimization and consider timing constraints indirectly using net weights or
barriers, or with simplifying linear delay models.

The main goal of the structured latch placement in Chan et al. [Cha+03], Cho et al.
[Cho+13], Papa et al. [Pap+11], Ward et al. [War+13] is to minimize clock power
and skew, while trying to keep the changes to an initial global placement small.

There is a broad range of literature for timing-driven detailed placement that is
intended for or can be applied to latch placement. In Papa et al. [Pap+08] and Luo
et al. [Luo+08] timing-driven placement refinements based on linear delay models
are proposed and particularly applied to latch placement. In addition to so-called
activity based signal net weights, latches are clustered in Cheon et al. [Che+05]
to reduce the power consumption of clock networks and the whole chip. Power
reduction is also the main focus in the clustering and placement of pulsed latches
in Chuang et al. [Chu+11a; Chu+11b].

Once the clock placement and routing is determined, data paths can be optimized
given the precise knowledge of the clock signals Alpert et al. [Alp+07], Li et al.
[Li+12b], Trevillyan et al. [Tre+04]. Thereby the latch clusters remain unchanged.
However, during this process the initial timing criticalities on which the latch place-
ment was based may change, and the given latch placement and sizes might not be
favorable anymore.

Figure 10.1 shows an example of a latch cluster that was similarly observed in
practice. The critical data path starts at the upper right latch l5 aiming to a sink
in the lower left (outside the figure). With this knowledge, the latch should rather
be placed at the bottom left corner of the cluster. In addition, the latch l5 would
benefit from a higher drive strength, e.g. the size of l1.

Our algorithm fills a gap in restructuring latch clusters late in the design flow.
The algorithm permutes latch positions and sizes within a cluster to maximize

178

10.2 Problem Formulation

the worst slack. Subsequently, secondary objectives such as the sum of negative
endpoint slacks or wire length are minimized. It preserves the clock footprint and
routing, such that the top-level clock network does not need to be redesigned, and
can therefore be applied late in the design flow after clock network design and
analysis. It works for arbitrary circuit and wire delay models.

Remark 10.1 (Optimizing clock domains) A chip may have several clock networks
with different frequencies. We say that memory elements which are fed by the same
clock signal belong to the same clock domain. Our algorithm is intended for but
not limited to optimizing local clusters. It could also be used to optimize a group of
clusters or a whole clock domain at once, allowing swaps between different clusters.

10.2 Problem Formulation

An instance of the latch re-assignment problem consists of a set of n ∈ N latches
L = {l1, . . . , ln} with logically equivalent implementation in a common clock do- L = {l1, . . . , ln}
main. Each latch must be assigned to a placement location and a discrete size. We
call such a pair a slot and denote by S = {s1, . . . , sn} the set of available slots. S = {s1, . . . , sn}
We will assume that the set of available slots are the initial latch positions, and the
size of a slot is the size of the latch initially placed at this position and therefore
fixed. Extensions of this formulation are considered in Section 10.5.
We are looking for an assignment of latches to slots. The assignment can be ex-
pressed by binary variables xij ∈ {0, 1} that equal one if and only if li is assigned xij ∈ {0, 1}
to slot sj (1 ≤ i, j ≤ n), and the following assignment constraints:

∑
i xij = 1 ∀ 1 ≤ j ≤ n,∑
j xij = 1 ∀ 1 ≤ i ≤ n,
xij ∈ {0, 1} ∀ 1 ≤ i, j ≤ n.

(10.1)

Note that the sizes of the slots are fixed, such that assigning latch li to slot sj also
implies that latch li gets the size of the latch initially placed in sj .
We then denote by WSij the minimum of the worst (late) slack at the data pins of WSij

li when assigned to sj and a slack target. We assume the slack target to be zero,
thus WSij ≤ 0. Furthermore, by WLij we denote the total wire length of the nets WLij

attached to the data pins of li when assigned to sj .
As before, we consider late mode slacks only, because late mode timing constraints
are usually harder to meet than early mode constraints. In practice our method
does hardly affect the final early mode padding.

10.2.1 Assumptions

We make the simplifying assumption that the values WSij can be computed for each
latch li (1 ≤ i ≤ n) independently from the other latches and their assignments.
In reality, data paths may of course start in one latch in L and end in one or

179

10 Post-Routing Latch Optimization for Timing Closure

several other latches in L. However, assuming that critical paths cover rather long
distances it is unlikely that two latches in proximity affect their critical data paths
mutually. Thus this assumption is reasonable when L contains latches from a local
region, in particular from a structured cluster.
Similarly, one data net could be the input to several latches in L and therefore
the wire lengths of the data nets attached to latches in L may not be considered
independently. But this scenario will rarely occur, as latches in proximity storing
the same bit could be merged.
Note that without these assumptions, the problem would become significantly
harder. E.g. the problem of finding an assignment minimizing the wire length with
two-terminal nets only would be as hard as the quadratic (unweighted) assignment
problem, which is even hard to approximate, see Queyranne [Que86].

10.2.2 Primary Objective

The primary objective of our latch optimization problem is to maximize the worst
slack of the cluster L, i.e.

max
x
{min
i,j
{WSij : xij = 1} : x satisfies (10.1)} (10.2)

10.2.3 Secondary Objectives

Improving the worst slack of an instance involves changing positions and sizes of
two or more latches and could degrade the total wire length or sum of negative
slacks. Thus, we consider as a secondary objective the minimization of the sum of
slacks at the clusterSCS

SCS :=
∑
i,j

−WSijxij (10.3)

or the wire length ∑
i,j

WLijxij . (10.4)

Another objective could be the overall disruption:

||x− x̃||1 =
∑
i,j

(1− x̃ij)xij , (10.5)

where the values x̃ij refer to the initial assignment.
We assume the slack target to be zero, therefore WSij ≤ 0 holds for all i, j and
(10.3) is non-negative. Note that a clock routing that is feasible for one assignment
is feasible for any other assignment, because the set of slots and in particular their
sizes remain the same, and each slot is used by a latch. Thus, clock nets are not
considered in the objectives.

180

10.3 Greedy Algorithm

10.3 Greedy Algorithm

l1 l2 l3 l4
LCB

l8 l7 l6 l5

(a) When latches l1 and l5 are swapped,
the new slack of l1 might become even
worse than the initial slack of l5.

l1 l2 l3 l4
LCB

l8 l7 l6 l5

(b) A cyclic sequence might improve the
worst slack at l5 and could bound a possi-
ble slack degradation of l1, l3, and l4 due
to the short moves.

Figure 10.2: A cyclic sequence is necessary to improve the worst slack data path
starting at l5 and leading to the lower left without degrading the slacks
at other latches.

A simple greedy method to optimize a latch cluster would be to iteratively swap
pairs of latches if this improves the slacks. However, such a pair may not exist. E.g.
when latches l1 and l5 are swapped in the example in Figure 10.2(a) to improve the
worst slack data path starting at l5 and leading to the lower left, the new slack of
l1 when moved to the upper right corner might become even worse than the initial
slack of l5. As the initial size of l4 is smaller than the size of l5, swapping these
two latches might degrade the slack at l5 even though it is moved in the direction
of its predecessor on the critical data path. Therefore no improvement might be
found by iteratively swapping pairs of latches only. Instead a cyclic sequence as in
Figure 10.2(b) could bound a possible slack degradation of l1, l3, and l4 due to the
short moves. To overcome this limitation we propose a globally optimum algorithm
in the next section.

10.4 Global Assignment Algorithm

Our algorithm for slack optimal latch assignments works in two phases. In the
first phase the worst slack is maximized whereas in the second phase the secondary
objective is optimized while preserving the best possible worst slack found in the
first phase.

Algorithms to solve the arising matching respectively minimum-cost flow problems

181

10 Post-Routing Latch Optimization for Timing Closure

providing the given running times can be found in text books such as by Korte and
Vygen [KV12], which also contain references to the original papers.

10.4.1 Worst Slack Maximization

The idea of the worst slack maximization is to perform a binary search on the
worst slack values WSij (1 ≤ i, j ≤ n) in the cluster, as finally the worst slack of
the cluster will be equal to one of these values.

The achievability of a guessed slack value can be checked with a maximum cardi-
nality matching algorithm in a bipartite graph as shown in Figure 10.3(a): The
vertex set V consists of vertices for all latches (blue vertices) and all slots (black
vertices). The edge set E contains a directed (blue) edge from each latch li to each
slot sj (1 ≤ i, j ≤ n).

Theorem 10.2 There is an assignment x fulfilling (10.1) with worst slack at least
Θ ∈ R if and only if there is a matching of cardinality n between the set of latches
L and the set of slots S that uses only edges (li, sj) with WSij ≥ Θ (1 ≤ i, j ≤ n).

The proof of this theorem is straight-forward. A maximum cardinality matching
in a bipartite graph with 2n vertices and at most n2 edges can be found in O(n3)
using a maximum-flow algorithm. The overall running time for maximizing the
worst slack is given as follows:

Theorem 10.3 Given all values WSij (1 ≤ i, j ≤ n), the maximum worst slack
can be computed in O(n3 log n) time.

Proof. We carry out a binary search on the set {WSij : 1 ≤ i, j ≤ n} of cardinality
O(n2). Sorting the set takes O(n2 log n) time. The binary search tests O(log n)
possible values for the best achievable worst slack. As each test requires O(n3)
time the overall running time bound is O(n3 log n).

For implementation details, see Section 10.6.

10.4.2 Minimizing the Secondary Objective

When minimizing a secondary objective, we want to preserve the previously max-
imized worst slack Θ?. Thus we maintain the final assignment instance from the
worst slack maximization (Section 10.4.1) that contains only edges (li, sj) with
WSij ≥ Θ?, implying that all latches are assigned to slots where their estimated
slack is larger than or equal to Θ?, such that the worst cluster slack is Θ?.

An assignment that minimizes the linear objectives (10.3), (10.4), or (10.5) and
guarantees that all slacks are at least Θ? can be found in O(n3) time by a minimum
weight perfect matching algorithm in the pruned bipartite graph by choosing edge
weights appropriately.

The wire length minimization is similar to the minimum-cost network optimization
from Cho et al. [Cho+13] except that we prohibit assignments (i, j) that would

182

10.5 Extensions

l1

l2

s1

s2

(a) Basic network

l1

l2

s1
1

s2
1

s1
2

s2
2

pos1

pos2

(b) Extended network

Figure 10.3: The network model allowing (a) one latch and (b) multiple sizes at a
placement position.

result in a poor worst slack, i.e. those with WSij < Θ?. In fact, the underlying
algorithm for computing a minimum-weight perfect matching is a minimum-cost
flow algorithm:

Each latch vertex li has a flow supply of b(li) = 1 and each slot vertex a flow demand
of b(sj) = −1. Each edge e ∈ E is assigned a capacity u(e) = 1. An integral b-flow
of value n corresponds to an assignment of the latches to slots, where a feasible
b-flow f is defined by flow conservation and capacity constraints as follows:∑

e∈δ+(v) f(e)−
∑

e∈δ−(v) f(e) = b(v) ∀v ∈ V,
0 ≤ f(e) ≤ u(e) ∀e ∈ E. (10.6)

As all edge capacities and supply/demand values on vertices are integral, there
exists an integral minimum cost flow if any feasible flow exists, regardless of the
assigned edge costs.

10.5 Extensions

Our algorithm can be extended to allow additional latch positions or sizes with a
greater potential for slack improvement.

Additional latch positions

If the structure of latches around their driving LCB is not fixed, it is also possible
to allow additional latch positions for example at free spaces around the cluster.
This results in additional slots in the assignment problem and |S| ≥ n = |L|.
The matching problems from Section 10.4 would turn into a maximum cardinality
matching and a minimum weight matching problem of cardinality n, respectively,
but could still be solved by a minimum-cost flow algorithm. The total running
time bound for optimizing the primary and secondary objective would become
O(n2|S| log(|S|)). The difficulty lies in finding reasonable additional positions.

183

10 Post-Routing Latch Optimization for Timing Closure

Additional sizes

A slightly more involved extension is to allow different sizes for each available
placement position. Assume that for each latch position posk, k = 1, . . . , n, there
are nk available sizes respectively slots sjk (1 ≤ j ≤ nk). We can find an assignment

of the latches l1, . . . ln to the slots {sjk : 1 ≤ k ≤ n; 1 ≤ j ≤ nk} such that no
two latches use the same slot with the extended network flow model shown in
Figure 10.3(b):

We introduce additional (red) vertices for all placement positions. The edge set
E contains a directed (blue) edge from each latch li (i = 1, . . . , n) to each slot sjk
(1 ≤ k ≤ n; 1 ≤ j ≤ nk) and a (black) edge from each slot to its unique placement
position posk. All edge capacities equal one. Flow demands of latch vertices are as
before, while all slot vertices should preserve the flow conservation b(sjk) = 0 and
position vertices have flow demand of b(posi) = −1. Now an integral b-flow of value
n corresponds to an assignment of the latches to placement slots.

Because the flow demand of the position vertices posi (1 ≤ i ≤ n) equals one,
exactly one latch is assigned to each position.

The worst slack can be maximized by binary search and edge pruning as in Sec-
tion 10.4.1. Secondary objectives can be considered by choosing edge weights on the
(blue) edges appropriately, while (black) edges would have weight zero. Similar to
Theorem 10.2, Θ is achievable if and only if there is a b-flow for the corresponding
“pruned” network.

Of course, it is also possible to consider additional positions and multiple sizes at
once. However, in both scenarios the clock footprint can change and a re-synthesis
of the lower levels of the clock tree might become necessary, i.e. a re-routing of the
clock nets. Depending on how additional positions and sizes are chosen, overlaps
with other circuits can occur that would have to be resolved as well.

Remark 10.4 (Vt optimization) Vt optimization can be incorporated in our algo-
rithm using the same construction as in Figure 10.3(b). We did not implement this
feature because changing the Vt level has no impact on the clock footprint, and can
thus be part of any other algorithm for Vt optimization. Additionally, it requires
significantly more running time to compute the values WSij , as will become clear
in the next section.

10.6 Implementation Details

As we are focusing on late optimization, we implemented and tested only the al-
gorithm described in Section 10.4 for the problem defined in Section 10.2, i.e. we
compute new assignments of latches to slots within a latch cluster, thereby keeping
the sizes of the slots fixed.

184

10.6 Implementation Details

10.6.1 Calculating Assignments

Instead of using algorithms with the best worst-case running time to solve the as-
signment problems, we apply the network simplex algorithm that typically shows
faster running times in practice. The network simplex algorithm (see for exam-
ple Korte and Vygen [KV12], Chapter 9), as most prevalent minimum-cost flow
algorithms, will find integral solutions or decide that no feasible b-flow exists.

10.6.2 Assignments for Less Critical Instances

We found that the worst slack maximization sometimes comes with a degradation
of the sum of negative endpoint slacks in the design. Thus we apply the worst slack
maximization only to clusters that are in a 10 ps window above the initial worst
design slack. The value of 10 ps is an experimentally observed upper bound on the
achievable design slack improvement. For the remaining instances we optimize only
the secondary objectives preserving the initial worst slack of the cluster.

10.6.3 Calculating Slacks and Wire Lengths

We assume that a legal placement of the latches and the clock network is given and
that data path optimization like gate sizing, Vt optimization, repeater insertion or
timing-driven detailed placement have been performed extensively.

We place each latch li (1 ≤ i ≤ n) tentatively in each slot sj (1 ≤ j ≤ n) and
compute the resulting total wire length WLij and worst slack WSij at its data
pins. The clock arrival times and slews are simply transferred from the latch initially
assigned to sj .

Data signals can be re-analyzed using arbitrarily accurate delay models. In our
experiments we used the industrial timing engine IBM-Einstimer for all delay, slew,
and slack calculations under the RICE delay model (Ratzlaff and Pillage [RP94]),
which was also used in the preceding data path optimization. Wires are estimated
as Steiner trees that are computed by a Prim-heuristic.

To speed up the calculations, the timing engine can restrict delay re-calculations
to a bounded number of logic levels around a latch. This prevents delays, slews
and arrival times from being propagated through the whole logic cone, but can
introduce small inaccuracies.

Sometimes data inputs are feeding pass-gates with tight slew constraints. We prune
assignments resulting in slew or capacitance violations except for the input assign-
ment x̃ that we always allow.

Wire lengths of data nets are estimated by the Steiner trees that are used for the
delay calculation, and WLij is simply the total length of all data nets attached to
li.

185

10 Post-Routing Latch Optimization for Timing Closure

10.6.4 Dealing with Inaccuracies and Violated Assumptions

The restricted timing updates in Section 10.6.3 and the assumptions we made in
Section 10.2.1 introduce small inaccuracies in our algorithm, and the improvement
predicted by our algorithm might not hold true after realizing the new assignment
and a new timing analysis.

In such situations we revert our change and keep the initial solution. In Section
10.7 we will see that this does not occur too often.

10.7 Experimental Results

We implemented our latch assignment algorithm in C++. Experiments were made
on a Linux cluster of Intel Xeon CPUs with clock frequencies between 2.9–3.4 GHz.
Our testbed consists of a set of nine microprocessor units in 22nm technology with
733–50861 latches provided by our industrial partner IBM, and is summarized in
Table 10.1.

Design # latches #cluster cycle time (ps)

Unit 1 733 26 174
Unit 2 4526 213 176
Unit 3 4759 167 340
Unit 4 5137 255 174
Unit 5 8010 300 174
Unit 6 17089 834 174
Unit 7 36756 1796 208
Unit 8 45372 1870 340
Unit 9 50861 2222 208

Table 10.1: Microprocessor units in our experiments

The algorithm is integrated into a physical synthesis flow after the clock network
has been fixed and latches are clustered and placed in a structured fashion in
groups of up to 32 latches using algorithms from Chan et al. [Cha+03], Cho et al.
[Cho+13], Papa et al. [Pap+11], Ward et al. [War+13]. After the latch placement,
timing optimization such as size and Vt optimization, repeater insertion, detailed
placement, and logic restructuring have been performed, but no signal routing has
been done yet.

We say that a cluster is critical if the worst slack found at one of its latches is below
the slack target. For each unit, we ran our algorithm on the 20% most critical latch
clusters based on the worst cluster slack, but at least 50 clusters except for unit
U1, which has only 26 clusters. The clusters were optimized one after another.

For running time reasons, we did not include optimization of whole clock domains
in our final tests.

When looking at the final design slacks, we found that minimizing the sum of slacks

186

10.7 Experimental Results

Mode secondary objective data path refinement

S SNS (10.3) no
SR SNS (10.3) yes
N wire length (10.4) no
NR wire length (10.4) yes
R no latch optimization yes

Table 10.2: Four experimental setups

(10.3) at the cluster (SCS) can lead to slight decreases in the sum of negative slacks
at all endpoints in the design (SNS). An explanation could be that (10.3) captures
the slacks in the cluster but not all slacks in the design: Experimentally we observed
that preserving the initial worst slack instead of maximizing the worst slack in phase
one improves the sum of slacks SCS locally, but can degrade the sum of negative
endpoint slacks SNS globally. In our final experiments we minimized the sum of
slacks (10.3) and wire length as secondary objectives. As data paths might again
become improvable after changing latch positions and sizes, we also conducted
experiments refining the placement and sizes of the immediately preceding and
succeeding data gates of the latches in a cluster. This was done by a local search gate
sizing and placement, maintaining a legal placement throughout. For comparison,
we conducted experiments performing only these refinement steps. Table 10.2 shows
the four combinations of secondary objective and potential subsequent data path
refinement for which we conducted experiments.

The results for all designs and all modes are presented in Table 10.3. The first
column shows the instance names, and the second column the optimization modes.

The next 3 columns show the number of most critical clusters “#Cl” (which is the
maximum of 50 and 20% of all clusters) that were optimized by our algorithm,
the number of improved clusters “Impr” (either worst slack or secondary objective
preserving the initial worst slack) and the number of clusters that were reverted
after new timing or wire length analysis, respectively, “Fail” (as described in Sec-
tion 10.6.4).

Columns 6-8 show the best worst slack improvement “Best” seen at a cluster, its
percentage of the cycle time “%cycle” and the average worst slack improvement
among all clusters where the aim was to improve worst slack “∅WS”.

The next columns show the worst design slack “WS” and worst design slack change
“∆WS”. “SNS” denotes the sum of all slacks, and “WL” the wire length of the
whole unit. Finally, the last column shows the CPU running time “RT” of the
latch assignment plus the data path refinement, if performed.

For each unit the first row shows the initial values before any optimization, and the
following five rows show the results of the modes according to Table 10.2.

The number of fails, i.e. when solutions were reverted, is small for mode “S” (< %7)
and mode “N” (< 15%). The number is larger for runs with data path refinement,
as it can decrease cluster slacks and cluster wire length, respectively, to reduce elec-

187

10 Post-Routing Latch Optimization for Timing Closure

trical capacitances and delays on more critical nets hidden from latch optimization.
The maximum slack improvement seen at a cluster is between 1.1 and 14.2 ps and
up to 7.8% of the cycle time for the plain latch assignment, which is in the expected
range of a local optimization routine. The average worst slack improvement per
cluster is between 0.3 and 3.0 ps.
Data path refinement increases the maximum slack improvement to 39.4 ps and
up to 21% of cycle time. The average worst slack improvement per cluster is then
between 0.4 and 4.8 ps.
Even for the most critical latch clusters relatively large improvements can be ob-
served, e.g. the worst design slack increased for example by 9.9 ps on unit U9 or
by 9.2 ps on unit U3. Particularly U3 demonstrates an application scenario where
design closure is almost achieved and the latch assignment yields a substantial im-
provement to timing closure. These worst design slacks are not achieved by running
data path refinement without preceding latch optimization (mode “R”), except for
unit U1.
There are moderate changes in the sum of negative endpoint slacks “SNS” and wire
length. A refinement step on the whole design instead of only the latch neighbor-
hood will likely improve these numbers further.
On some units, e.g. U6, we observe a slight decrease in the sum of negative endpoint
slacks, even when they are considered as a secondary objective. This can be a
consequence of the worst slack maximization. Another reason is that we do not
capture all endpoints in the design in our objective. In side experiments we observed
that preserving the initial worst slack instead of maximizing it improves the sum of
slacks SCS locally, but can degrade the sum of endpoint slacks globally. In contrast,
the wire length, which is measured locally, often improves and never degrades when
considered as a secondary objective.
The running times are fast, usually 1–3 seconds per cluster, allowing the algorithm
to be applied several times in the design flow, potentially on a smaller set of most
critical instances.
Figure 10.4 shows the re-assignment results for a cluster on unit U3. There is a
line between slot si and sj if either a latch was moved from si to sj or the other
way around. Solutions to the assignment problem can be partitioned into circuits,
which are the basis for the line colors. When minimizing the sum of slacks SCS
in Figure 10.4(a), most latches are assigned to another slot in this example. When
minimizing wire length in Figure 10.4(b), the changes are less pronounced.

188

10.7 Experimental Results

(a) Minimizing the sum of slacks (b) Minimizing wire length

Figure 10.4: A cluster on unit U3 on which the worst slack improved from -29.8 to
-21.4 ps. Latches are colored blue, the LCB red, and data logic is gray.
The lines indicate the permutation of the latches. They are colored by
circuits into which the global assignment is partitioned.

189

10 Post-Routing Latch Optimization for Timing Closure

Unit Mode #Cl Impr Fail Best %cycle ∅WS WS ∆WS SNS WL RT
(ps) (ps) (ps) (ps) (100ps) (mm) (sec)

U1 init -182.5 -29.5 694
S 25 25 0 6.4 3.7 1.7 -180.7 1.8 -28.9 696 57
SR 25 21 4 6.4 3.7 3.4 -176.9 5.6 -27.5 696 213
N 25 13 0 1.1 0.6 0.5 -180.7 1.8 -29.3 693 72
NR 25 8 1 4.8 2.8 1.7 -176.9 5.6 -28.2 693 114
R 25 23 2 3.7 2.1 0.9 -176.2 6.3 -28.5 694 104

U2 init -132.0 -101.6 1724
S 50 47 3 5.6 3.2 1.2 -130.5 1.5 -99.8 1732 130
SR 50 43 7 7.9 4.5 1.5 -130.5 1.5 -101.7 1732 276
N 50 8 7 1.4 0.8 0.5 -130.5 1.5 -101.8 1724 112
NR 50 7 8 7.9 4.5 0.5 -130.5 1.5 -101.8 1724 153
R 50 46 4 7.9 4.5 0.6 -132.0 0.0 -103.5 1725 126

U3 init -29.8 -26.1 1125
S 50 45 0 8.4 2.5 2.5 -21.8 8.0 -23.0 1133 115
SR 50 45 0 22.3 6.6 4.8 -20.6 9.2 -17.6 1133 395
N 50 17 3 8.4 2.5 1.0 -26.1 3.7 -25.0 1125 111
NR 50 17 1 22.1 6.5 2.7 -26.1 3.7 -22.0 1125 237
R 50 47 3 22.1 6.5 3.4 -27.7 2.1 -19.5 1126 310

U4 init -138.3 -197.4 2230
S 51 47 1 5.0 2.8 1.2 -137.2 1.1 -195.3 2247 182
SR 51 44 4 8.8 5.0 1.9 -137.4 0.9 -193.5 2246 386
N 51 11 2 2.8 1.6 0.4 -137.2 1.1 -197.3 2229 163
NR 51 9 5 8.8 5.0 1.0 -137.4 0.9 -197.1 2230 210
R 51 47 4 3.2 1.8 0.2 -138.4 -0.1 -195.0 2230 256

U5 init -53.9 -156.5 2409
S 60 57 2 6.7 3.9 1.4 -50.3 3.6 -154.8 2415 160
SR 60 53 6 36.5 21.0 2.6 -44.3 9.6 -153.3 2414 352
N 60 31 0 6.3 3.6 1.4 -50.3 3.6 -156.4 2409 151
NR 60 26 4 36.2 20.8 2.6 -44.3 9.6 -155.5 2409 259
R 60 57 3 35.4 20.3 1.1 -47.8 6.1 -154.5 2409 215

U6 init -109.9 -274.9 3827
S 167 157 5 13.5 7.8 1.5 -110.7 -0.8 -275.1 3838 237
SR 167 126 36 14.4 8.3 1.3 -109.2 0.7 -274.9 3837 711
N 167 67 20 12.4 7.1 0.7 -109.5 0.4 -275.4 3827 227
NR 167 42 45 11.4 6.5 0.5 -109.5 0.4 -275.4 3828 424
R 167 134 33 9.1 5.2 0.4 -109.9 0.0 -276.0 3828 388

U7 init -101.8 -890.7 14451
S 360 347 5 8.2 3.9 1.0 -100.8 1.0 -895.0 14480 882
SR 360 319 33 11.3 5.4 1.0 -100.8 1.0 -892.3 14479 2827
N 360 125 53 7.6 3.6 0.3 -100.8 1.0 -894.6 14449 827
NR 360 118 62 7.6 3.6 0.4 -100.8 1.0 -893.0 14450 1776
R 360 339 21 10.5 5.0 0.5 -100.9 0.9 -886.5 14452 1395

U8 init -256.1 -2733.8 12126
S 374 366 3 12.2 3.6 1.3 -253.8 2.3 -2718.7 12156 1021
SR 374 297 72 14.8 4.4 1.2 -253.8 2.3 -2717.0 12118 2498
N 374 151 46 4.9 1.5 1.0 -253.8 2.3 -2730.1 12124 991
NR 374 115 84 9.0 2.6 1.0 -253.8 2.3 -2727.5 12125 2171
R 374 345 29 14.8 4.4 0.6 -256.1 0.0 -2729.7 12129 1624

U9 init -153.4 -14123.4 20095
S 445 425 20 14.2 6.8 2.9 -145.3 8.1 -14109.9 20129 1164
SR 445 375 70 39.4 18.9 3.5 -143.5 9.9 -14099.8 20135 3523
N 445 177 14 8.8 4.2 2.6 -145.5 7.9 -14125.9 20073 1154
NR 445 166 25 10.6 5.1 2.6 -145.5 7.9 -14121.9 20074 2085
R 445 403 42 31.1 14.9 0.8 -151.8 1.6 -14115.0 20097 2296

Table 10.3: Experimental results on 9 microprocessor units with optimization
modes explained in Table 10.2.

190

11 Summary

One of the key problems in the physical design of a computer chip consists of
choosing a physical realization for the logic gates and memory circuits on the chip
from a discrete set of predefined layouts given by a library. Thereby the most
common objective is to minimize total power consumption of the chip subject to
constraints on the delay of signal paths. In this thesis we present new algorithms
for the problem of choosing sizes for the circuits and its continuous relaxation, and
we evaluate these in theory and practice.

In the continuous relaxation of the sizing problem, sizes are restricted to intervals.
Under the Elmore delay model, it can be formulated as a convex program and
solved in polynomial time, but it poses a challenge to researchers because of the
huge instance sizes that can occur in practice. The discrete problem is NP-hard.

In Chapter 6 we consider an approach that is based on Lagrangian relaxation of
the convex program. Thereby the constraints on the delays of signal paths (timing
constraints) are relaxed using Lagrange multipliers and are incorporated into the
objective function. We provide the first comprehensive discussion of this approach
and fill gaps in the convergence analysis of the projected gradient method for this
problem. The method iteratively computes new multipliers based on an additive
update rule until a good solution has been found. In each iteration, an oracle that
is guided by the multipliers computes intermediate solutions. We point out why
the running time for the continuous relaxation is not necessarily polynomial, and
highlight difficulties in obtaining convergence guarantees for the discrete problem.

In practice, variants of the projected gradient method are usually employed to find a
good solution, among them a multiplicative multiplier update rule and an additional
weight for the objective power consumption. We show in Chapter 7 that the well-
known multiplicative weights algorithm applied to the feasibility version of the
convex program returns a solution that approximately fulfills all constraints. The
discretized algorithm essentially is the modified Lagrangian relaxation approach
and justifies these modifications.

In Chapter 8 we consider gate sizing modeled as a min-max resource sharing prob-
lem, which consists of distributing a limited set of resources among a limited set
of customers. An optimal solution distributes the resources in such a way that the
maximum resource usage is minimized. In the resource sharing algorithm (Müller
et al. [MRV11]), a weight is maintained for each resource and updated iteratively
based on its usage and a multiplicative update rule. Customer oracle algorithms
compute solutions that approximately minimize the weighted resource usages of the
customers.

191

11 Summary

In our context, we have a power resource and resources for signal delays. We
show how gate sizing fits into this framework with a single customer representing
all gates. We obtain a fast approximation of the continuous relaxation that im-
proves over the Lagrangian relaxation approach. Under the assumption that we
are given a fixed library and reasonably long electrical wires, we obtain an η(1 + ε)
approximation in polynomial time for ε > 0, where the error of the customer oracle
algorithms is bounded by η > 0. Additionally, timing optimization objectives like
worst slack maximization can be modeled more directly. The power resource weight
allows to find a better tradeoff between power minimization and timing constraint
optimization. We further show that constraints on local placement density and
electrical constraints can be integrated without impairing convergence guarantees
of the continuous relaxation.
For the discrete problem, a discrete oracle algorithm needs to be solved. The
solution returned by the algorithm is then a convex combination of the intermediate
solutions and not necessarily feasible.
In Chapter 5 we consider the subproblem that occurs in the Lagrangian relaxation
and resource sharing algorithms, and which needs to be solved by the oracle algo-
rithms. It consists of minimizing a weighted sum of power consumption and signal
delays. While in the former algorithm, the task is to compute sizes close to the
optimal solution, the aim in the latter is to find a good approximation on the value
of the weighted sum. We show that the conditional gradient method is a pseudo-
polynomial approximation algorithm for this problem and continuous sizes. It is
polynomial under certain assumptions. For the discrete problem, we provide a fully
polynomial approximation scheme for instances where the size of the antichains in
the graph containing all gates is bounded by a constant.
In Chapter 9 we describe our implementations of the discrete Lagrangian relaxation
and resource sharing algorithm as part of the BonnTools optimization suite for VLSI
physical design, developed at the Research Institute for Discrete Mathematics in
Bonn in an industrial cooperation with IBM. Both implementations are extended to
incorporate Vt optimization. We compare the implementations on state-of-the-art
microprocessor instances provided by IBM and the ISPD 2013 benchmarks (Ozdal
et al. [Ozd+13]). Our results show that the resource sharing algorithm exhibits
more stable convergence behavior and better timing on almost all instances. On
several designs, power consumption was also improved. We further observed that
oracle algorithms which considered timing objectives more directly often performed
better than those which relied solely on the resource weights and the Lagrange
multipliers, respectively. Similar observations have been reported in previous works
on Lagrangian relaxation. We conclude this chapter with an outlook on future
research. For example, a few challenges that arise by integrating the algorithm into
an industrial environment remain.
In the clock network design phase, timing constraints are often considered only
indirectly when latches are sized and placed on the chip area. Because redesigning
the clock network and clock routing is costly, latch placement and sizes remain
mostly unchanged afterwards. Often, latches are arranged around a common local

192

clock buffer in a structured fashion in clusters. The algorithm presented in Chapter
10 permutes latch positions and sizes in latch clusters and thereby maintains the
clock footprint, such that it can be applied late in the design flow. Under mild
assumptions, our algorithm efficiently maximizes the worst slack. Our experiments
illustrate that it can improve slacks on industrial microprocessor instances effec-
tively by up to 7.8% of design cycle time. As the algorithm is fast in theory and
practice it has been integrated into an industrial design flow. It can be extended
to optimize several clusters or whole clock domains simultaneously.

193

List of Figures

1.1 Signal delay through an inverter for different sizes and Vt levels, taken
from an ISPD 2013 benchmark (Ozdal et al. [Ozd+13]) with a clock
cycle time of 300 ps. The delay peak at area 3 is due to the internal
structure of the inverter. 10

1.2 Static power consumption of an inverter for different sizes and Vt
levels, taken from the ISPD 2013 benchmark library (Ozdal et al.
[Ozd+13]). 11

2.1 n-type metal-oxide semiconductor transistor. 14

2.2 CMOS inverter . 15

2.3 The placement of a computer chip with approximately 600000 circuits. 18

2.4 VLSI Design Flow . 19

2.5 A rising signal and its approximation 22

2.6 A simplified example of a VLSI Chip on the left, and the correspond-
ing timing graph on the right. 23

2.7 A simplified example of a VLSI Chip on the left, and the correspond-
ing gate graph on the right. 23

2.8 Neighborhood (left) and neighborhood graph (right) of a circuit
(green). 25

2.9 A rectilinear Steiner tree connecting the source pin (red) of a net
with the sink pins (green). 29

2.10 Feature size development with future predictions from [SIA13]. . . . 32

4.1 Different layouts for an inverter gate realizing different sizes as seen
from above. In the layout on the right the transistors have been
folded to fit into the gate. Note that the ratio between the sizes of
n-type and p-type transistors usually varies. 46

4.2 An AND gate and its switch-level RC circuit model: It contains a
capacitance element capgi for each input pin, and an output resistor
resgi . 51

4.3 Rounding to the nearest discrete solution leads to timing violations. 62

4.4 No performance guarantee exists if a feasible solution to the discrete
problem is compared with the optimal solution of the relaxation. . . 63

5.1 The discretization error of local refinement depends on the path
lengths and the maximum fanout in the design. 75

195

List of Figures

6.1 Extended timing graph G′ := (V ′, E′) 92
6.2 Extended timing graph of the inverter chain I. 98
6.3 The movement of gates during legalization after a global gate sizing.

Each colored line connects the placement location of a gate before
legalization with the location after legalization. The different colors
correspond to the length of the movement from old to new location
ranging from blue (shortest) to red (longest). 101

8.1 The delay of the red edges is affected when the green gate is sized. . 127
8.2 Changing the gate customer (left side) or the purple net customer

(right side) impairs the delay usage of other customer types. 141

9.1 The weighted sum of negative slacks in the neighborhood of gate g
approximates the weighted sum of delays. 157

9.2 Convergence of WS for Unit6 and all optimization modes. 164
9.3 Convergence of static power consumption for Unit6 and all optimiza-

tion modes. 165
9.4 Convergence of SNS for Unit6 and all optimization modes. 166
9.5 Convergence of WS for design matrix mult with fast clock period

and all optimization modes. 173
9.6 Convergence of static power consumption for design matrix mult

with fast clock period and all optimization modes. 174
9.7 Convergence of SNS for design matrix mult with fast clock period

and all optimization modes. 175

10.1 A local clock buffer (LCB) and net (red) with latches (blue). The
black line indicates the worst slack data path starting at l5 leading
into the lower left. 178

10.2 A cyclic sequence is necessary to improve the worst slack data path
starting at l5 and leading to the lower left without degrading the
slacks at other latches. 181

10.3 The network model allowing (a) one latch and (b) multiple sizes at
a placement position. 183

10.4 A cluster on unit U3 on which the worst slack improved from -29.8
to -21.4 ps. Latches are colored blue, the LCB red, and data logic
is gray. The lines indicate the permutation of the latches. They are
colored by circuits into which the global assignment is partitioned. . 189

196

Notation

R, R≥0, R>0 Set of real numbers, nonnegative real
numbers and positive real numbers

N Set of natural numbers
Z Set of integers
Vdd High voltage 13
V0 Ground/zero voltage 14
I Chip image 20
C Set of circuits 20
G Set of gates 20
P Set of pins 20
N Set of nets 20
γ : P → C ∪̇ I Mapping of pins to circuits and I 20
B Circuit library 20
φ : C → B Mapping of circuits to books 21
Bc ⊂ B Set of books available for circuit c 21
σ Signal 21
τ(σ) ∈ {rise, fall} Transition of signal σ 21
G = (V,E) Timing graph 22
Vstart ⊂ V Vertices corresp. to timing start points 22
Vend ⊂ V Vertices corresp. to timing endpoints 22
Vinner Vertices corresp. to V \ {Vstart ∪ Vend} 22
G = (V ,E) Gate graph 23
Gg = (Vg, Eg) Neighborhood graph of g ∈ G 24
atp(σ) Arrival time of σ at p ∈ V 24
slewp(σ) Slew of σ at p ∈ V 24
delayτe Delay function for e ∈ E 25
slewτe Slew function for e ∈ E 25
cap(N) Total capacitance of net N 25
ratp(σ) Required arrival time of σ at p ∈ V 27
slackp(σ) Slack at p ∈ V for signal σ 27
WS Worst design slack 27
SNS Sum of negative timing endpoint slacks 28
SLS Sum of subpath slacks 28
loadcapp Load capacitance seen at pin p ∈ P 28
Pload/Vload Set of pins with a load limit 28
Pslew/Vslew Set of pins with a slew limit 28
loadlimp Load capacitance limit at p ∈ Pload 28

197

Notation

slewlimp Slew limit at p ∈ Pslew 28
area(o) Area usage of object o ∈ C ∪ B 33
size(o) Size of object o ∈ C ∪ B 48
xg Size variable for g ∈ G 49
Xdisc Set of feasible discrete gate size vectors 49
av ∈ R Arrival time variable for v ∈ V 52
Xcont Set of feasible continuous gate sizes after

variable transformation
53

Ig = [lg, ug] Feasible interval for variable xg ∈ Xcont 53
cost(x) Objective function for gate sizing (convex

for x ∈ Xcont)
53

delaye(x) Delay over e ∈ E (convex for x ∈ Xcont) 53
cost(xi) Cost (power) of gi induced by size xi 53
tr(x, ω) Power-delay tradeoff function 65

ω ∈ Rm+1
≥0 Vector of delay and power weights 65

trx(xi, ω) Local refine function for gi ∈ G 67
lip(ω) Lipschitz constant of ∇tr(x, ω) 67
diamX Diameter of set Xcont 70
trratio Running time of Algorithm 5.3 depends

on this value
72

F Set of nonnegative network flows in G 87
L(λ, x) Lagrange function 87
D(λ) Lagrange dual objective function 87

A ⊂ R|V | Feasible arrival time assignments 114
D Clock cycle time 116
gatecus Gate customer 129
atcusv Arrival time customer for v ∈ V 128
budgetpower ∈ R≥0 Power budget for all gates 128
budgete ∈ R≥0 Delay budget for e ∈ E 128

198

Glossary

Arrival time (of a signal) The time when the voltage change of the signal reaches
50% (pages 22 and 24).

Book Blueprint of a circuit (page 20).

Chip → Integrated circuit.

Chip area A rectangle distributed over a placement plane and several routing
planes (page 20).

Chip image Consists of the chip area, a set of blockages and I/O-ports (page 20).

Circuit area Rectangular area occupied by the circuit’s shapes on the placement
plane (page 21).

Circuit library Defines a set of logically equivalent books for each logic function
and register type on the chip (page 15 and 20).

Clock domain Set of registers controlled by the same clock signal (page 17).

Clock network A network that distributes the clock signal to the registers and is
often realized by a clock tree or a clock grid (page 17).

Delay (of a signal) Amount of time it takes a signal to traverse a certain distance
between two timing points (page 25).

Conditional gradient method Descent method for constrained optimization prob-
lems that computes a series of descent directions such that the next iterate is
feasible (page 42).

Convex Program Optimization problem over a convex set where the objective func-
tion and the inequality constraints are convex, and the equality constraints
are affine functions (page 36).

Delay model Used to approximate the delay of electrical signals over wires (and
circuits) in integrated circuits (page 25).

Dynamic power (of a circuit) The power consumed by a circuit due to switching
(short circuit power) and charging and discharging capacitances (page 16).

EDA (Electronic design automation) Software tools to design electronic systems
(page 19).

199

Glossary

Elmore delay A widely-used delay model that approximates signal delay over wire
segments in a net modeled as RC-tree. (page 28).

Fanin/Fanout → Neighborhood.

Feasibility Problem Consists of finding a solution that fulfills a given set of con-
straints, or decide that no such solution exists (page 108).

FPTAS (fully polynomial time approximation scheme) An algorithm that approx-
imates the optimal solution within a factor of (1 + ε) in time polynomial in
the input size and 1/ε.

Gate A circuit that computes a boolean function (page 15).

Gate graph A directed graph that arises from the timing graph by contracting the
vertices that correspond to pins of the same gate to a single vertex (page 23).

Gate sizing problem Formal definition of the problem to choose a size for each gate
on the chip (page 48).

Integrated Circuit An electrical circuit made from one piece of semiconductor ma-
terial, more commonly known as chip (page 17).

I/O-ports Connection points of the chip with the outer world by which electrical
signals enter and leave the chip. They are also referred to as primary input
and output pins (page 20).

Lagrange relaxation A method for constrained optimization that relaxes difficult
constraints in the objective function with Lagrange multipliers. The resulting
function is called Lagrange function, and the Lagrange primal problem con-
sists of minimizing this function. The Lagrange multipliers can be interpreted
as variables of the Lagrange dual problem (page 37).

Latch → Register.

Latch cluster Latches arranged around an LCB in a structured fashion (page 177).

LCB (Local clock buffer) Dispenses clock signals to memory circuits (page 177).

Load capacitance The electrical capacitance driven by a pin or a circuit (page 28).

Load violation A load violation occurs if the load capacitance of a pin exceeds its
prescribed load capacitance limit (page 28).

Local refine function (of a gate): Terms in the power-delay tradeoff function that
depend on the size of this gate (page 67).

Min-max resource sharing problem Formal definition of the problem to distribute
a finite set of resources to a finite set of customers such that the largest
resource consumption is minimized.

200

Moore’s law A prediction of Gordon Moore from 1965 (revised in 1975) that the
number of components per integrated circuit will double every two years
(page 18).

Multiplicative weights method Broader term for algorithms that maintain weights
for elements of a certain set, and iteratively change these weights based on a
multiplicative update rule (page 108).

Neighborhood (graph) The neighborhood of a pin/gate contains the immediate
successor pins/gates (fanout), predecessor pins/gates (fanin), and the
pins/gates that have a common driver. The neighborhood graph of a gate
is a subgraph of the timing graph (page 24).

Net A set of pins connected by electrical wires (page 20).

Netlist (of a chip) Consists of finite sets of circuits, pins and nets, and a mapping
of pins to circuits or the chip image (I/O ports) (page 20).

Pin Connection point of a circuit (page 14) or the chip itself → I/O ports.

Placement density (of a region) The ratio of the placement area covered by circuits
and the placement area of the region itself (page 33).

Placement (location) A placement is a mapping of circuits to the placement plane.
The placement location of a circuit is the location of its anchor point on the
placement plane (page 21).

Physical design A step in VLSI design that maps a netlist to a chip image and
circuits in the netlist to books (page 19).

Physical design instance Consists of a chip image, a netlist and a circuit library
with an initial binding of circuits to books (page 21).

Power-delay tradeoff problem Problem to find gate sizes minimizing a weighted
sum of power and signal delays (the power-delay tradeoff function) (page 65).

Primary input/output pin → I/O ports.

Projected gradient method Descent method for constrained optimization prob-
lems that computes a series of iterates and projects them to the constraint
set in each iteration (page 41).

Register Memory element that can store one bit at a time (page 14).

Required arrival time (of a signal) The latest arrival time of a signal which ensures
that the timing constraints are fulfilled (page 27).

Signal Voltage change over time (page 21). We distinguish between data signals
that represent the logical computations of the chip (page 22) and clock signals
that control the memory elements on the chip (page 22).

201

Glossary

Slack (of a signal) The difference between the arrival time and the required arrival
time of a signal at a timing point (page 27). For slack target see page 27.

Slew (of a signal) The slew is usually given as the time between 10% and 90% of
the voltage change of the signal (page 22).

Slew violation A slew violation occurs if the slew exceeds its prescribed slew limit
at a timing point (page 28).

SNS, SLS The sum of negative timing endpoint slacks (page 28) and the sum of
subpath slacks in the timing graph (page 28).

Static power (leakage) (of a circuit) The power consumed when the circuit is not
switching (page 16).

Static timing analysis (STA) Checks if conditions on the speed of electrical signals
on a chip are fulfilled (page 21).

Timing closure A design has closed timing if all timing constraints on the signals
are fulfilled (page 21).

Timing constraints Constraints on signal arrival times. In this thesis we are only
interested in late mode timing constraints which demand that all signals arrive
on time at primary output pins and register input pins (page 33).

Timing engine A computer program to compute approximate signal delays over
wires and circuits (page 26).

Timing graph A directed acyclic graph whose vertices correspond to the timing
points, which usually comprise the pins in the netlist (page 22).

Timing rules Provide information for each book in the circuit library about the
behaviour towards a voltage change (page 16).

Total power (of a circuit) The sum of static and dynamic power consumption of
the circuit (page 16).

Transistor An electronic switch with three external connections. The voltage ap-
plied to the control terminal determines when the transistor is conducting
(page 13).

Transition (of a signal) The direction of the signal (rising or falling) (page 21).

VLSI design The process to design integrated circuits whose integration level is
referred to as very large scale integration (VLSI) (page 18).

Voltage threshold (Vt level) (of a circuit) The voltage of the signal needed at the
circuit’s input pins so that the circuit switches (page 14).

Vt optimization problem Formal definition of the problem to choose a Vt level for
each gate on the chip (page 54).

202

Bibliography

[AHK12] Sanjeev Arora, Elad Hazan, and Satyen Kale. The Multiplica-
tive Weights Update Method: A Meta-Algorithm and Applica-
tions. In: Theory of Computing 8 (2012), pages 121–164. doi:
10.4086/toc.2012.v008a006.

[Alb01] Christoph Albrecht. Global routing by new approximation algorithms
for multicommodity flow. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 20.5 (2001), pages 622–632.
doi: 10.1109/43.920691.

[Alp+07] Charles J. Alpert, Shriran K. Karandikar, Zhuo Li, Gi-Joon Nam,
Stephen T. Quay, Haoxing Ren, Cliff N. Sze, Paul Villarrubia,
and Mehmet C. Yildiz. Techniques for Fast Physical Synthesis.
In: Proceedings of the IEEE 95.3 (2007), pages 573–599. doi:
10.1109/JPROC.2006.890096.

[Bar14] Christoph Bartoschek. Fast Repeater Tree Construction. PhD thesis.
University of Bonn, 2014.

[Ber99] Dimitri P. Bertsekas. Nonlinear programming. Athena Scientific, 1999.
ISBN 9781886529007.

[BF85] Frank Brglez and Hideo Fujiwara. A Neutral Netlist of 10 Combina-
tional Benchmark Circuits and a Target Translator in Fortran. In:
Proceedings of the IEEE International Symposium on Circuits and
Systems, ISCAS 1985, pages 677–692.

[BJ90] Michel R. C. M. Berkelaar and Jochen A. G. Jess. Gate Sizing in
MOS Digital Circuits with Linear Programming. In: Proceedings of
the Conference on European Design Automation, EURO-DAC 1990,
pages 217–221. doi: 10.1109/EDAC.1990.136648.

[Boy+05] Stephen B. Boyd, Seung-Jean Kim, Dinesh D. Patil, and Mark A.
Horowitz. Digital Circuit Optimization via Geometric Programming.
In: Geometric Operations Research 53.6 (2005), pages 899–932. doi:
10.1287/opre.1050.0254.

[Bre+15] Ulrich Brenner, Anna Hermann, Nils Hoppmann, and Philipp
Ochsendorf. BonnPlace: A Self-Stabilizing Placement Framework. In:
Proceedings of the International Symposium on Physical Design, ISPD
2015, pages 9–16. doi: 10.1145/2717764.2717778.

203

Bibliography

[BSS06] Mokhtar S. Bazaraa, Hanif D. Sherali, and C.M. Shetty. Nonlinear
Programming: Theory and Algorithms. Wiley, 2006. ISBN 978-0-471-
48600-8.

[BV04] Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization.
Cambridge University Press, 2004. ISBN 0521833787.

[CCW99] Chung-Ping Chen, Chris C. N. Chu, and D.F. Wong. Fast and Exact
Simultaneous Gate and Wire Sizing by Lagrangian Relaxation. In:
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 18.7 (1999), pages 1014–1025. doi: 10.1109/43.771182.

[CH96] Jason Cong and Lei He. An efficient approach to simultaneous tran-
sistor and interconnect sizing. In: IEEE/ACM International Confer-
ence on Computer-Aided Design, ICCAD 1996, pages 181–186. doi:
10.1109/ICCAD.1996.569580.

[Cha+03] Yiu-Hing Chan, Prabhakar Kudva, Lisa Lacey, Greg Northrop, and
Thomas Rosser. Physical Synthesis Methodology for High Perfor-
mance Microprocessors. In: Proceedings of the 40th IEEE/ACM
Design Automation Conference, DAC 2003, pages 696–701. doi:
10.1145/775832.776009.

[Cha90] Pak K. Chan. Algorithms for library-specific sizing of combinational
logic. In: Proceedings of the 27th IEEE/ACM Design Automation Con-
ference, DAC 1990, pages 353–356. doi: 10.1109/DAC.1990.114881.

[Che+05] Yongseok Cheon, Pei-Hsin Ho, Andrew B. Kahng, Sherief Reda, and
Qinke Wang. Power-aware Placement. In: Proceedings of the 42nd
IEEE/ACM Design Automation Conference, DAC 2005, pages 795–
800. doi: 10.1145/1065579.1065791.

[Cho+13] Minsik Cho, Hua Xiang, Haoxing Ren, Matthew M. Ziegler, and
Ruchir Puri. LatchPlanner: Latch Placement Algorithm for Datapath-
oriented High-Performance VLSI Designs. In: IEEE/ACM Inter-
national Conference on Computer-Aided Design, ICCAD 2013,
pages 342–348. doi: 10.1109/ICCAD.2013.6691141.

[CHP00] Wei Chen, Cheng-Ta Hseih, and M. Pedram. Simultaneous Gate Sizing
and Placement. In: IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 19.2 (2000), pages 206–214. doi:
10.1109/43.828549.

[Chu+11a] Yi-Lin Chuang, Sangmin Kim, Youngsoo Shin, and Yao-Wen
Chang. Pulsed-Latch Aware Placement for Timing-Integrity Opti-
mization. In: IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems 30.12 (2011), pages 1856–1869. doi:
10.1109/TCAD.2011.2165717.

204

Bibliography

[Chu+11b] Yi-Lin Chuang, Hong-Ting Lin, Tsung-Yi Ho, Yao-Wen Chang, and
D. Marculescu. PRICE: Power Reduction by Placement and Clock-
Network Co-Synthesis for Pulsed-Latch Designs. In: IEEE/ACM In-
ternational Conference on Computer-Aided Design, ICCAD 2011,
pages 85–90. doi: 10.1109/ICCAD.2011.6105310.

[CK05] David Chinnery and Kurt Keutzer. Linear Programming for Sizing, Vth
and Vdd Assignment. In: Proceedings of the 2005 International Sympo-
sium on Low Power Electronics and Design, ISLPED 2005, pages 149–
154. doi: 10.1109/LPE.2005.195505.

[CLL11] Jason Cong, John Lee, and Guojie Luo. A Unified Optimiza-
tion Framework for Simultaneous Gate Sizing and Placement un-
der Density Constraints. In: IEEE International Symposium on Cir-
cuits and Systems, ISCAS 2011, pages 1207–1210. doi: 10.1109/IS-
CAS.2011.5937786.

[CMS07] Nicolò Cesa-Bianchi, Yishay Mansour, and Gilles Stoltz. Improved
second-order bounds for prediction with expert advice. In: Machine
Learning 66.2-3 (2007), pages 321–352. doi: 10.1007/s10994-006-5001-
7.

[CR15] Tony Casagrande and Nagarajan Ranganathan. GTFUZZ: A Novel
Algorithm for Robust Dynamic Power Optimization via Gate Sizing
with Fuzzy Games. In: Proceedings of the 2015 Design, Automation &
Test in Europe Conference & Exhibition, DATE 2015, pages 677–682.
doi: 10.7873/DATE.2015.0560.

[CSH95] Weitong Chuang, Sachin S. Sapatnekar, and Ibrahim N. Hajj. Timing
and Area Optimization for Standard-Cell VLSI Circuit Design. In:
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 14.3 (1995), pages 308–320. doi: 10.1109/43.365122.

[CW01] Chris C. N. Chu and D.F. Wong. VLSI Circuit Performance Optimiza-
tion by Geometric Programming. In: Annals of Operations Research
105.1-4 (2001), pages 37–60. doi: 10.1023/A:1013345330079.

[CW03] John F. Croix and D.F. Wong. Blade and Razor: Cell and interconnect
delay analysis using current-based models. In: Proceedings of the 40th
IEEE/ACM Design Automation Conference, DAC 2003, pages 386–
389. doi: 10.1109/DAC.2003.1219030.

[CW99] Chris C. N. Chu and D. F. Wong. Greedy Wire-sizing is Linear Time.
In: IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 18.4 (1999), pages 398–405. doi: 10.1109/43.752924.

205

Bibliography

[CWC05] Hsinwei Chou, Yu-Hao Wang, and Charlie C.-P. Chen. Fast and ef-
fective gate-sizing with multiple-Vt assignment using generalized La-
grangian Relaxation. In: Proceedings of the 13th Asia and South Pa-
cific Design Automation Conference, ASP-DAC 2005, pages 381–386.
doi: 10.1109/ASPDAC.2005.1466193.

[DA89] Z.-J. Dai and K. Asada. MOSIZ: a two-step transistor sizing algorithm
based on optimal timing assignment method for multi-stage complex
gates. In: Proceedings of the IEEE Custom Integrated Circuits Confer-
ence, CICC 1989, pages 17.3.1–17.3.4. doi: 10.1109/CICC.1989.56775.

[Dab15] Siad Daboul. Algorithms for the gate sizing and Vt assignment prob-
lem. Master thesis. University of Bonn, 2015.

[De+97] Prabuddha De, E. James Dunne, Jay B. Ghosh, and Charles E. Wells.
Complexity of the Discrete Time-Cost Tradeoff Problem for Project
Networks. In: Operations Research 45.2 (1997), pages 302–306. doi:
10.1287/opre.45.2.302.

[Den+74] Robert H. Dennard, Fritz H. Gaensslein, Hwa-Nien Yu, V. Leo
Rideout, Ernest Bassous, and Andre R. LeBlanc. Design of Ion-
Implanted MOSFET’S with Very Small Physical Dimensions. In:
IEEE Journal of Solid-State Circuits 9.5 (1974), pages 256–268. doi:
10.1109/JSSC.1974.1050511.

[DS05] Irit Dinur and Samuel Safra. On the Hardness of Approximating Min-
imum Vertex Cover. In: Annals of Mathematics. Second Series 162.1
(2005), pages 439–485. doi: 10.4007/annals.2005.162.439.

[Dun87] J. C. Dunn. On the convergence of projected gradient processes to
singular critical points. In: Journal of Optimization Theory and Ap-
plications 55.2 (1987), pages 203–216. doi: 10.1007/BF00939081.

[DW01] Vladimir G. Deineko and Gerhard J. Woeginger. Hardness of ap-
proximation of the discrete time-cost tradeoff problem. In: Opera-
tions Research Letters 29.5 (2001), pages 207–210. doi: 10.1016/S0167-
6377(01)00102-X.

[Elm48] William C. Elmore. The Transient Response of Damped Linear Net-
works with Particular Regard to Wideband Amplifiers. In: Journal of
Applied Physics 19.1 (1948), pages 55–63. doi: 10.1063/1.1697872.

[Erm66] Yuri M. Ermoliev. Methods for solving nonlinear extremal problems.
In: Kybernetika 4 (1966), pages 1–17.

[ESZ02] Funda Ergun, Rakesh Sinha, and Lisa Zhang. An Improved FPTAS
for Restricted Shortest Path. In: Information Processing Letters 83.5
(2002), pages 287–291. doi: 10.1016/S0020-0190(02)00205-3.

206

Bibliography

[Far+13] Amin Farshidi, Logan Rakai, Laleh Behjat, and David Westwick. Op-
timal Gate Sizing Using a Self-Tuning Multi-Objective Framework.
In: Integration, the VLSI Journal 47.3 (2013), pages 347–355. doi:
10.1016/j.vlsi.2013.10.008.

[FD85] Jack P. Fishburn and Al E. Dunlop. TILOS: A posynomial program-
ming approach to transistor sizing. In: Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, ICCAD 1985,
pages 326–328. doi: 10.1007/978-1-4615-0292-0˙23.

[FGW02] Anders Forsgren, Philip E. Gill, and Margaret H. Wright. Interior
Methods for Nonlinear Optimization. In: SIAM Review 44.4 (2002),
pages 525–597. doi: 10.1137/S0036144502414942.

[Fla+14] Guilherme Flach, Tiago Reimann, Gracieli Posser, Marcelo Johann,
and Ricardo Reis. Effective Method for Simultaneous Gate Sizing and
Vt Assignment Using Lagrangian Relaxation. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 33.4
(2014), pages 546–557. doi: 10.1109/TCAD.2014.2305847.

[FW56] Marguerite Frank and Philip Wolfe. An algorithm for quadratic pro-
gramming. In: Naval Research Logistics 3 (1956), pages 95–110. doi:
10.1002/nav.3800030109.

[GJ77] Michael R. Garey and David S. Johnson. The Rectilinear Steiner Tree
Problem is NP-Complete. In: SIAM Journal on Applied Mathematics
32.4 (1977), pages 826–834. doi: 10.1137/0132071.

[GK07] Naveen Garg and Jochen Könemann. Faster and Simpler Algorithms
for Multicommodity Flow and Other Fractional Packing Problems.
In: SIAM Journal on Computing 37.2 (2007), pages 630–652. doi:
10.1137/S0097539704446232.

[GK94] Michel D. Grigoriadis and Leonid G. Khachiyan. Fast Approximation
Schemes for Convex Programs with Many Blocks and Coupling Con-
straints. In: SIAM Journal on Optimization 4.1 (1994), pages 86–107.
doi: 10.1137/0804004.

[Gol64] A. A. Goldstein. Convex programming in Hilbert space. In: Bulletin
of the American Mathematical Society 70 (1964), pages 709–710. doi:
10.1090/S0002-9904-1964-11178-2.

[Gup+10] Puneet Gupta, Andrew B. Kahng, Amarnath Kasibhatla, and Puneet
Sharma. Eyecharts: Constructive benchmarking of gate sizing heuris-
tics. In: Proceedings of the 47th ACM/IEEE Design Automation Con-
ference, DAC 2010, pages 597–602. doi: 10.1145/1837274.1837421.

[GW04] Alexander Grigoriev and Gerhard J. Woeginger. Project scheduling
with irregular costs: complexity, approximability, and algorithms. In:
Acta Informatica 41.2-3 (2004), pages 83–97. doi: 10.1007/s00236-004-
0150-2.

207

Bibliography

[Häh15] Nicolai Hähnle. Time-Cost Tradeoff and Steiner Tree Packing with
Multiplicative Weights. Technical report no. 1511115. Research Insti-
tute for Discrete Mathematics, University of Bonn, 2015.

[Hel+15] Stephan Held, Dirk Müller, Daniel Rotter, Vera Traub, and Jens Vy-
gen. Global Routing with Inherent Static Timing Constraints. In:
IEEE/ACM International Conference on Computer-Aided Design, IC-
CAD 2015, pages 102–109.

[Hel08] Stephan Held. Timing Closure in Chip Design. PhD thesis. University
of Bonn, 2008.

[Hel09] Stephan Held. Gate Sizing for Large Cell-Based Desings. In: Proceed-
ings of the Conference on Design, Automation Test in Europe, DATE
2009, pages 827–832. doi: 10.1109/DATE.2009.5090777.

[HHS11] Yi-Le Huang, Jiang Hu, and Weiping Shi. Lagrangian Relaxation for
Gate Implementation Selection. In: Proceedings of the 2011 Interna-
tional Symposium on Physical Design, ISPD 2011, pages 167–174. doi:
10.1145/1960397.1960436.

[HKH09] Shiyan Hu, Mahesh Ketkar, and Jiang Hu. Gate Sizing for Cell-
Library-Based Designs. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 28.6 (2009), pages 818–825.
doi: 10.1109/TCAD.2009.2015735.

[HR06] Narender Hanchate and Nagarajan Ranganathan. Post-layout gate siz-
ing for interconnect delay and crosstalk noise optimization. In: 7th
International Symposium on Quality Electronic Design, ISQED 2006,
pages 92–97. doi: 10.1109/ISQED.2006.101.

[HS14] Stephan Held and Ulrike Schorr. Post-Routing Latch Optimiza-
tion for Timing Closure. In: Proceedings of the 51st IEEE/ACM
Design Automation Conference, DAC 2014, pages 1–6. doi:
10.1145/2593069.2593182.

[HSC82] Robert B. Hitchcock, Gordon L. Smith, and David D. Cheng. Timing
Analysis of Computer Hardware. In: IBM Journal of Research and
Development 26.1 (1982), pages 100–105. doi: 10.1147/rd.261.0100.

[Hu+12] Jin Hu, Andrew B. Kahng, Seokhyeong Kang, Myung-Chul Kim,
and Igor L. Markov. Sensitivity-guided metaheuristics for accu-
rate discrete gate sizing. In: IEEE/ACM International Confer-
ence on Computer-Aided Design, ICCAD 2012, pages 233–239. doi:
10.1145/2429384.2429428.

[IFI91] Satoru Ibaraki, Masao Fukushima, and Toshihide Ibaraki. Dual-based
Newton methods for nonlinear minimum cost network flow problems.
In: Journal of the Operations Research Society of Japan 34.3 (1991),
pages 263–286.

208

Bibliography

[Jag13] Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse con-
vex optimization. In: International Conference on Machine Learning,
ICML 2013, pages 427–435.

[JB08] Siddharth Joshi and Stephen P. Boyd. An Efficient Method for Large-
Scale Gate Sizing. In: IEEE Transactions on Circuits and Systems I
55.9 (2008), pages 2760–2773. doi: 10.1109/TCSI.2008.920087.

[JW59] James E. Kelley Jr and Morgan R. Walker. Critical-path Planning and
Scheduling. In: Papers Presented at the December 1-3, 1959, East-
ern Joint IRE-AIEE-ACM Computer Conference, IRE-AIEE-ACM
’59 (Eastern), pages 160–173. doi: 10.1145/1460299.1460318.

[JZ08] Klaus Jansen and Hu Zhang. Approximation algorithms for general
packing problems and their application to the multicast congestion
problem. In: Mathematical Programming 114.1 (2008), pages 183–206.
doi: 10.1007/s10107-007-0106-8.

[Kah+11] Andrew B. Kahng, Jens Lienig, Igor L. Markov, and Jin Hu.
VLSI Physical Design: From Graph Partitioning to Timing Closure.
Springer, 2011. ISBN 9789048195909.

[Kah+13] Andrew B. Kahng, Seokhyeong Kang, Hyein Lee, Igor L. Markov, and
Pankit Thapar. High-performance gate sizing with a signoff timer.
In: IEEE/ACM International Conference on Computer-Aided Design,
ICCAD 2013, pages 450–457. doi: 10.1109/ICCAD.2013.6691156.

[Kar84] Narendra Karmarkar. A New Polynomial-time Algorithm for Linear
Programming. In: Proceedings of the Sixteenth Annual ACM Sym-
posium on Theory of Computing, STOC 1984, pages 302–311. doi:
10.1145/800057.808695.

[Kha04] Rohit Khandekar. Lagrangian Relaxation Based Algorithms for Con-
vex Programming Problems. PhD thesis. Indian Institute of Technol-
ogy, Delhi, 2004.

[KK12] Andrew B. Kahng and Seokhyeong Kang. Construction of Realistic
Gate Sizing Benchmarks with Known Optimal Solutions. In: Proceed-
ings of the 2012 ACM International Symposium on Physical Design,
ISPD 2012, pages 153–160. doi: 10.1145/2160916.2160949.

[KKS00] Kishore Kasamsetty, Mahesh Ketkar, and Sachin S. Sapatnekar. A
new class of convex functions for delay modeling and its application
to the transistor sizing problem [CMOS gates]. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 19.7
(2000), pages 779–788. doi: 10.1109/43.851993.

[KV12] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory
and Algorithms. 5th edition. Springer Publishing Company, Incorpo-
rated, 2012. ISBN 9783642244889.

209

Bibliography

[Lan00] Katharina Langkau. Gate Sizing in VLSI Design (in German).
Diploma thesis. University of Bonn, 2000.

[Lee+01] Jin-Fuw Lee, D.L. Ostapko, Jeffery Soreff, and C.K. Wong. On the
signal bounding problem in timing analysis. In: IEEE/ACM In-
ternational Conference on Computer Aided Design, ICCAD 2001,
pages 507–514. doi: 10.1109/ICCAD.2001.968693.

[LG12] John Lee and Puneet Gupta. Discrete Circuit Optimization: Library
Based Gate Sizing And Threshold Voltage Assignment. In: Founda-
tions and Trends in Electronic Design Automation 6.1 (2012), pages 1–
120. doi: 10.1561/1000000019.

[LH10] Yifang Liu and Jiang Hu. A New Algorithm for Simultaneous Gate
Sizing and Threshold Voltage Assignment. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 29.2
(2010), pages 223–234. doi: 10.1109/TCAD.2009.2035575.

[LH11] Chen Liao and Shiyan Hu. Approximation scheme for restricted dis-
crete gate sizing targeting delay minimization. In: Journal of Combina-
torial Optimization 21.4 (2011), pages 497–510. doi: 10.1007/s10878-
009-9267-0.

[Li+12a] Li Li, Peng Kang, Yinghai Lu, and Hai Zhou. An efficient algorithm
for library-based cell-type selection in high-performance low-power de-
signs. In: IEEE/ACM International Conference on Computer-Aided
Design, ICCAD 2012, pages 226–232. doi: 10.1145/2429384.2429427.

[Li+12b] Zhuo Li, Charles J. Alpert, Gi-Joon Nam, Cliff N. Sze, Natarajan
Viswanathan, and Nancy Y. Zhou. Guiding a physical design closure
system to produce easier-to-route designs with more predictable tim-
ing. In: Proceedings of the 49th IEEE/ACM Design Automation Con-
ference, DAC 2012, pages 465–470. doi: 10.1145/2228360.2228442.

[Li+93] Wing-Ning Li, Andrew Lim, Prathima Agrawal, and Sartaj Sahni.
On the circuit implementation problem. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 12.8
(1993), pages 1147–1156. doi: 10.1109/43.238607.

[Li94] Wing Ning Li. Strongly NP-hard discrete gate-sizing problems. In:
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 13.8 (1994), pages 1045–1051. doi: 10.1109/43.298040.

[Liv+13] Vinicius S. Livramento, Chrystian Guth, Jose Luis Guntzel, and
Marcelo O. Johann. Fast and efficient Lagrangian Relaxation-based
Discrete Gate Sizing. In: Proceedings of the Conference on Design,
Automation Test in Europe, DATE 2013, pages 1855–1860. doi:
10.7873/DATE.2013.370.

210

Bibliography

[Liv+14] Vinicius S. Livramento, Chrystian Guth, José Lúıs Güntzel, and
Marcelo O. Johann. A Hybrid Technique for Discrete Gate Sizing
Based on Lagrangian Relaxation. In: ACM Transactions on De-
sign Automation of Electronic Systems 19.4 (2014), 40:1–40:25. doi:
10.1145/2647956.

[LP66] Evgeny S. Levitin and Boris T. Polyak. Constrained minimization
methods. In: USSR Computational Mathematics and Mathematical
Physics (english translation) 6.5 (1966), pages 1–50.

[LPT14] Dirk A. Lorenz, Marc E. Pfetsch, and Andreas M. Tillmann. An
Infeasible-point Subgradient Method Using Adaptive Approximate
Projections. In: Computational Optimization and Applications 57.2
(2014), pages 271–306. doi: 10.1007/s10589-013-9602-3.

[LSH08] Yifang Liu, Rupesh S. Shelar, and Jiang Hu. Delay-optimal si-
multaneous technology mapping and placement with applications
to timing optimization. In: IEEE/ACM International Conference
on Computer-Aided Design, ICCAD 2008, pages 101–106. doi:
10.1109/ICCAD.2008.4681558.

[LT92] Zhiquan Q. Luo and Paul Tseng. On the Convergence of the Coor-
dinate Descent Method for Convex Differentiable Minimization. In:
Journal of Optimization Theory and Applications 72.1 (1992), pages 7–
35. doi: 10.1007/BF00939948.

[Luo+08] Tao Luo, David A. Papa, Zhuo Li, Cliff N. Sze, Charles J. Alpert,
and David Z. Pan. Pyramids: An efficient computational geometry-
based approach for timing-driven placement. In: Proceedings of the
IEEE/ACM International Conference onComputer-Aided Design, IC-
CAD 2008, pages 204–211. doi: 10.1109/ICCAD.2008.4681575.

[Mar89] David Marple. Transistor Size Optimization in the Tailor Layout Sys-
tem. In: Proceedings of the 26th IEEE/ACM Design Automation Con-
ference, DAC 1989, pages 43–48. doi: 10.1145/74382.74391.

[MBP97] Noel Menezes, Ross Baldick, and Lawrence T. Pileggi. A sequential
quadratic programming approach to concurrent gate and wire sizing.
In: IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 16.8 (1997), pages 867–881. doi: 10.1109/43.644611.

[Min84] Michel Minoux. A polynomial algorithm for quadratic minimum-cost
flow problems. In: European Journal of Operational Research 18.3
(1984), pages 377–387. doi: 10.1016/0377-2217(84)90160-7.

[Moo65] Gordon E. Moore. Cramming More Components onto Inte-
grated Circuits. In: Electronics 38.8 (1965), pages 114–117. doi:
10.1109/JPROC.1998.658762.

211

Bibliography

[MR04] Ashok K. Murugavel and N. Ranganathan. Gate sizing and buffer in-
sertion using economic models for power optimization. In: Proceedings
of the 17th International Conference on VLSI Design, VLSID 2004,
pages 195–200. doi: 10.1109/ICVD.2004.1260924.

[MRV11] Dirk Müller, Klaus Radke, and Jens Vygen. Faster min-max resource
sharing in theory and practice. In: Mathematical Programming Com-
putation 3.1 (2011), pages 1–35. doi: 10.1007/s12532-011-0023-y.

[NB10] Angelia Nedic and Dimitri P. Bertsekas. The Effect of Determinis-
tic Noise in Subgradient Methods. In: Math. Program. 125.1 (2010),
pages 75–99. doi: 10.1007/s10107-008-0262-5.

[Nem04] Arkadi Nemirovski. Interior point polynomial time methods in convex
programming. In: Lecture Notes (2004). url: http://www2.isye.
gatech.edu/~nemirovs/Lect_IPM.pdf.

[Nes04] Yurii Nesterov. Introductory Lectures on Convex Optimization. A Ba-
sic Course. Kluwer, 2004.

[Ngu+03] David Nguyen, Abhijit Davare, Michael Orshansky, David Chinnery,
Brandon Thompson, and Kurt Keutzer. Minimization of dynamic and
static power through joint assignment of threshold voltages and sizing
optimization. In: Proceedings of the 2003 International Symposium on
Low Power Electronics and Design, ISLPED 2003, pages 158–163. doi:
10.1109/LPE.2003.1231853.

[NP73] Laurence W. Nagel and D.O. Pederson. SPICE (Simulation Program
With Integrated Circuit Emphasis). Technical Report Memorandum,
ERL-M382. University of California, Berkeley, 1973.

[OBH12] Muhammet M. Ozdal, Steven Burns, and Jiang Hu. Algorithms for
Gate Sizing and Device Parameter Selection for High-Performance
Designs. In: IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems 31.10 (2012), pages 1558–1571. doi:
10.1109/TCAD.2012.2196279.

[Onn10] Shmuel Onn. Nonlinear Discrete Optimization: An Algorithmic The-
ory. European Mathematical Society Publishing House, 2010. ISBN
9783037190937.

[Ozd+12] Muhammet M. Ozdal, Chirayu Amin, Andrey Ayupov, Steven Burns,
Gustavo Wilke, and Cheng Zhuo. The ISPD-2012 Discrete Cell Sizing
Contest and Benchmark Suite. In: Proceedings of the 2012 ACM Inter-
national Symposium on International Symposium on Physical Design,
ISPD 2012, pages 161–164. doi: 10.1145/2160916.2160950.

212

Bibliography

[Ozd+13] Muhammet M. Ozdal, Chirayu Amin, Andrey Ayupov, Steven Burns,
Gustavo Wilke, and Cheng Zhuo. An Improved Benchmark Suite for
the ISPD-2013 Discrete Cell Sizing Contest. In: Proceedings of the 2013
ACM international symposium on International symposium on physi-
cal design, ISPD 2013, pages 168–170. doi: 10.1145/2451916.2451959.

[Pap+08] David A. Papa, Tao Luo, Michael D. Moffitt, Cliff N. Sze, Zhou
Li, Gi-Joon Nam, Charles J. Alpert, and Igor L. Markov. RUM-
BLE: An Incremental, Timing-Driven, Physical-Synthesis Optimiza-
tion Algorithm. In: Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems 27.12 (2008), pages 2156–2168. doi:
10.1109/TCAD.2008.2006155.

[Pap+11] David A. Papa, Charles J. Alpert Cliff N. Sze, Zhuo Li, Natarajan
Viswanathan, Gi-Joon Nam, and Igor L. Markov. Physical Synthesis
with Clock-Network Optimization for Large Systems on Chips. In:
EEE Micro 31.4 (2011), pages 51–62. doi: 10.1109/MM.2011.41.

[Pol67] Boris T. Polyak. A general method for solving extremum problems.
In: Doklady Akademii Nauk SSSR 174/1 (in Russian). Translated in
Soviet Mathematics Doklady 8.3 (1967), pages 593–597.

[PST95] Serge A. Plotkin, David B. Shmoys, and Éva Tardos. Fast Approxi-
mation Algorithms for Fractional Packing and Covering Problems. In:
Mathematics of Operations Research 20 (1995), pages 257–301. doi:
10.1287/moor.20.2.257.

[Que86] Maurice Queyranne. Performance ratio of polynomial heuristics for
triangle inequality quadratic assignment problems. In: Operations
Research Letters 4.5 (1986), pages 231–234. doi: 10.1016/0167-
6377(86)90007-6.

[Rag88] Prabhakar Raghavan. Probabilistic Construction of Deterministic Al-
gorithms: Approximating Packing Integer Programs. In: Journal of
Computer and System Sciences 37.2 (1988), pages 130–143. doi:
10.1016/0022-0000(88)90003-7.

[RD08] Huan Ren and Shantanu Dutt. A Network-Flow Based Cell Sizing
Algorithm. In: The International Workshop on Logic Synthesis, 2008,
pages 7–14.

[RD13] Huan Ren and Shantanu Dutt. Fast and Near-Optimal Timing-Driven
Cell Sizing under Cell Area and Leakage Power Constraints Using a
Simplified Discrete Network Flow Algorithm. In: VLSI Design - Spe-
cial issue on New Algorithmic Techniques for Complex EDA Problems
2013 (2013). doi: 10.1155/2013/474601.

[Roc71] R. Tyrrell Rockafellar. Ordinary convex programs without a duality
gap. In: Journal of Optimization Theory and Applications 7.3 (1971),
pages 143–148. doi: 10.1007/BF00932472.

213

Bibliography

[Roy+15] Subhendu Roy, Derong Liu, Junhyung Um, and David Z. Pan. OSFA:
A New Paradigm of Gate Sizing for Power/Performance Optimiza-
tions under Multiple Operating Conditions. In: Proceedings of the 52nd
IEEE/ACM Design Automation Conference, DAC 2015, 129:1–129:6.

[RP94] Curtis L. Ratzlaff and Lawrence T. Pillage. RICE: Rapid inter-
connect circuit evaluation using AWE. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 13.6
(1994), pages 763–776.

[RPH83] Jorge Rubinstein, Jr. Paul Penfield, and Mark A. Horowitz. Signal
Delay in RC Tree Networks. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and System 2.3 (1983), pages 202–
211. doi: 10.1109/TCAD.1983.1270037.

[RS04] Dieter Rautenbach and Christian Szegedy. A Subgradient Method us-
ing Alternating Projections. Technical report no. 04940. Research In-
stitute for Discrete Mathematics, University of Bonn, 2004.

[RSR15] Tiago Reimann, Cliff N. Sze, and Ricardo Reis. Gate sizing and thresh-
old voltage assignment for high performance microprocessor designs.
In: 20th Asia and South Pacific Design Automation Conference, ASP-
DAC 2015, pages 214–219. doi: 10.1109/ASPDAC.2015.7059007.

[RTS11] Mohammad Rahman, Hiran Tennakoon, and Carl Sechen. Power re-
duction via near-optimal library-based cell-size selection. In: Proceed-
ings of the Conference on Design, Automation Test in Europe, DATE
2011, pages 1–4. doi: 10.1109/DATE.2011.5763293.

[Sap+93] Sachin S. Sapatnekar, Vasant B. Rao, Pravin M. Vaidya, and Sung-
Mo Kang. An exact solution to the transistor sizing problem for
CMOS circuits using convex optimization. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 12.11
(1993), pages 1621–1634. doi: 10.1109/43.248073.

[Sap04] Sachin S. Sapatnekar. Timing. Kluwer Academic Publishers, 2004.

[Sch14] Jan Schneider. Transistor-Level Layout of Integrated Circuits. PhD
thesis. University of Bonn, 2014.

[Sch99] Jürgen Schietke. Timing-Optimierung beim physikalischen Layout von
nicht-hierarchischen Designs hochintegrierter Logikchips. PhD thesis.
University of Bonn, 1999.

[Sha+05] Saumil Shah, Ashish Srivastava, Dushyant Sharma, Dennis Sylvester,
David Blaauw, and Vladimir Zolotov. Discrete Vt assignment and gate
sizing using a self-snapping continuous formulation. In: IEEE/ACM
International Conference on Computer-Aided Design, ICCAD-2005,
pages 705–712. doi: 10.1109/ICCAD.2005.1560157.

214

Bibliography

[Sha+15] Ankur Sharma, David Chinnery, Sarvesh Bhardwaj, and Chris
Chu. Fast Lagrangian Relaxation Based Gate Sizing Using Multi-
Threading. In: Proceedings of the IEEE/ACM International Confer-
ence on Computer-Aided Design, ICCAD ’15, pages 426–433.

[She+87] Jang-ping Sheu, Don L. Scharfetter, Ping-keung Ko, and Min-Chie
Jeng. BSIM: Berkeley short-channel IGFET model for MOS transis-
tors. In: IEEE Journal of Solid-State Circuits 22.4 (1987), pages 558–
566. doi: 10.1109/JSSC.1987.1052773.

[Shy+88] Jyao-Min Shyu, Jack P. Fishburn, Al E. Dunlop, and Alberto
L. Sangiovanni-Vincentelli. Optimization-based transistor sizing. In:
IEEE Journal of Solid-State Circuits 23.2 (1988), pages 400–409. doi:
10.1109/4.1000.

[SIA13] Semiconductor Industry Association (SIA). International Technology
Roadmap for Semiconductors. 2013.

[Sku97] Martin Skutella. Approximation Algorithms for the Discrete Time-
cost Tradeoff Problem. In: Proceedings of the Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 1997, pages 501–
508. doi: 10.1287/moor.23.4.909.

[SN90] Takayasu Sakurai and A. Richard Newton. Alpha-power law MOSFET
model and its applications to CMOS inverter delay and other formulas.
In: IEEE Journal of Solid-State Circuits 25.2 (1990), pages 584–594.
doi: 10.1109/4.52187.

[Sve13] Ola Svensson. Hardness of Vertex Deletion and Project Schedul-
ing. In: Theory of Computing 9.24 (2013), pages 759–781. doi:
10.4086/toc.2013.v009a024.

[Sze05] Christian Szegedy. Some Applications of the weighted combinatorial
Laplacian. PhD thesis. University of Bonn, 2005.

[Tim12] Alexander Timmermeister. Exakte Algorithmen für das Gate Sizing
(in German). Master’s thesis. University of Bonn, 2012.

[Tra15] Vera Traub. Global Routing mit Delay-Beschränkungen (in German).
Master’s thesis. University of Bonn, 2015.

[Tre+04] Louise Trevillyan, David Kung, Ruchir Puri, Lakshmi N. Reddy, and
Michael A. Kazda. An integrated environment for technology closure
of deep-submicron IC designs. In: IEEE Design & Test of Computers
21.1 (2004), pages 14–22. doi: 10.1109/MDT.2004.1261846.

[TS02] Hiran Tennakoon and Carl Sechen. Gate Sizing Using Lagrangian Re-
laxation Combined with a Fast Gradient-Based Pre-Processing Step.
In: IEEE/ACM International Conference on Computer Aided Design,
ICCAD 2002, pages 395–402. doi: 10.1109/ICCAD.2002.1167564.

215

Bibliography

[TS08] Hiran Tennakoon and Carl Sechen. Nonconvex Gate Delay Modeling
and Delay Optimization. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 27.9 (2008), pages 1583–
1594. doi: 10.1109/TCAD.2008.927758.

[Vég12] László A. Végh. Strongly Polynomial Algorithm for a Class of
Minimum-cost Flow Problems with Separable Convex Objectives. In:
Proceedings of the Forty-fourth Annual ACM Symposium on Theory of
Computing, STOC 2012, pages 27–40. doi: 10.1145/2213977.2213981.

[Vyg01] Jens Vygen. Theory of VLSI layout. Habilitation. University of Bonn,
2001.

[Vyg06] Jens Vygen. Slack in static timing analysis. In: IEEE Transactions
on Computer Aided Design of Integrated Circuits and Systems 25.9
(2006), pages 1876–1885. doi: 10.1109/TCAD.2005.858348.

[War+13] Samuel I. Ward, Natarajan Viswanathan, Nancy Y. Zhou, Cliff N. Sze,
Zhuo Li, Charles J. Alpert, and David Z. Pan. Clock Power Minimiza-
tion Using Structured Latch Templates and Decision Tree Induction.
In: Proceedings of the International Conference on Computer-Aided
Design, ICCAD ’13, pages 599–606.

[WD08] Tai-Hsuan Wu and Azadeh Davoodi. PaRS: Fast and near-optimal
grid-based cell sizing for library-based design. In: IEEE/ACM In-
ternational Conference on Computer-Aided Design, ICCAD 2008,
pages 107–111. doi: 10.1109/ICCAD.2008.4681559.

[WDZ07] Jia Wang, D. Das, and Hai Zhou. Gate sizing by lagrangian relaxation
revisited. In: IEEE/ACM International Conference on Computer-
Aided Design, ICCAD 2007, pages 111–118. doi: 10.1109/IC-
CAD.2007.4397252.

[WH10] Neil Weste and David Harris. CMOS VLSI Design: A Circuits and Sys-
tems Perspective. 4th edition. Addison-Wesley Publishing Company,
2010. ISBN 9780321547743.

[Wit13] Sonja Wittke. Discrete Time-Cost Tradeoff Problems in Timing Opti-
mization. Master thesis. University of Bonn, 2013.

[Wri15] Stephen J. Wright. Coordinate descent algorithms. In: Mathemati-
cal Programming 151(1) (2015), pages 3–34. doi: 10.1007/s10107-015-
0892-3.

[XC15] Jiani Xie and C.Y. Roger Chen. Lookup Table Based Discrete Gate
Sizing for Delay Minimization with Modified Elmore Delay Model. In:
Proceedings of the 25th Edition on Great Lakes Symposium on VLSI,
GLSVLSI ’15, pages 361–366. doi: 10.1145/2742060.2742094.

[You01] Neal E. Young. Sequential and parallel algorithms for mixed packing
and covering. In: In 42nd Annual IEEE Symposium on Foundations
of Computer Science, pages 538–546.

216

