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Abstract 

The dentate gyrus of the hippocampus is thought to subserve important physiological 

functions, such as 'pattern separation'. In chronic temporal lobe epilepsy, the dentate gyrus 

constitutes a strong inhibitory gate for the propagation of seizure activity into the 

hippocampus proper. Both examples are thought to depend critically on a steep recruitment 

of feedback inhibition by active dentate granule cells. Here, I used two complementary 

experimental approaches to quantitatively investigate the recruitment of feedback inhibition 

in the dentate gyrus. I showed that the activity of approximately 4 % of granule cells suffices 

to recruit maximal feedback inhibition within the local circuit. Furthermore, the inhibition 

elicited by a local population of granule cells is distributed non-uniformly over the extent of 

the granule cell layer. Locally and remotely activated inhibition differ in several key aspects, 

namely their amplitude, recruitment, latency and kinetic properties. Finally, I show that net 

feedback inhibition facilitates during repetitive stimulation. Taken together, these data 

provide the first quantitative functional description of a canonical feedback inhibitory 

microcircuit motif. They establish that sparse granule cell activity, within the range observed 

in-vivo, steeply recruits spatially and temporally graded feedback inhibition.  
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1. Introduction 

Across species, the nervous system has evolved to perceive information about the external 

world, process that information in a meaningful way, and initiate appropriate responses to 

it. In order to do this, it is thought to represent the information in networks of neuronal 

cells. These neuronal networks are compartmentalized into modules, each of which 

performs a particular processing function before the information is passed on to the next 

module. The term module here is used to describe any neuronal population which acts as a 

functional unit. Each module is composed of individual neuronal cells which, upon activation, 

produce action potentials (APs), also referred to as spikes, that are transmitted along the 

axon to their target synapses. A projection neuron which innervates cells in a downstream 

module (generally towards the motor output) is termed feedforward while one that projects 

to upstream regions (generally towards the sensory input) is termed feedback. Additionally, 

cells within a given module are often interconnected in various complex ways. The principal 

agents for the transmission of information in the nervous system are networks of 

glutamatergic principal cells, which represent approximately 80 to 90 % of neurons across 

cortical areas. Upon activation, these neurons release the excitatory neurotransmitter 

glutamate and thereby activate their target cells, by eliciting fast excitatory postsynaptic 

currents (EPSCs), which lead to a transient membrane depolarization (EPSP). 

Within modules or local populations, a particular pattern of activity of principal cells is 

thought to represent a particular piece of information about the external or internal world. 

Depending on the brain area, this information may be closely related to individual sensory 

organs; for instance the firing rates of neurons in the visual cortex may represent the 

orientation of a bar in the visual field (Hubel and Wiesel, 1962). Alternatively the information 

represented may be inherently multisensory, such as the representation in the hippocampus 

of the spatial context of an electrical foot shock (Fanselow, 2000). How exactly neuronal 

activity patterns are shaped in space and time in order to represent and process information 

is perhaps the most important unresolved question in neuroscience. In the following I will 

first outline some empirical and computational investigations into the general nature of 
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neuronal representations and computations (chapter 1.1). I will then briefly introduce the 

major form of inhibition in the central nervous system along with the cell types that mediate 

it (chapter 1.2). A major function of inhibition is the temporal organization of network 

activity (chapter 1.3). Next, I will introduce a number of ‘canonical inhibitory microcircuit 

motifs’ which are thought to be the physical substrates of important general network 

functions (chapter 1.4). Finally, I will introduce the dentate gyrus (DG) of the hippocampal 

formation including its anatomy, specific cell types and microcircuit structure (chapter 1.5). 

The DG is one of the best studied brain regions in which a number of these microcircuit 

motifs are thought to be of particular importance for physiological as well as pathological 

reasons. Of particular interest is the function of pattern separation, which is thought to 

critically depend on feedback inhibition (chapter 1.6). I will conclude the introduction by 

precisely formulating the key questions this thesis was designed to answer (chapter 1.7). 

 

 

1.1 Neuronal Representations – Insights from Computational Neuroscience 

How information is represented in the spiking activity of neuronal networks is often referred 

to as the ‘neural code’. In order to investigate the neural code (or codes) neuroscientists 

search for correlations between external stimuli or motor actions and neuronal firing 

patterns. The main challenges in such investigations are the probabilistic nature and the high 

dimensionality of the underlying processes. Additionally, the coded information itself is 

often highly complex. Any investigation of neural representations is therefore by necessity 

reductionist and forced to rely on assumptions about the probabilistic model, the relevant 

dimensions and the coded information. In the following chapter I will first outline empirically 

established individual dimensions of neural coding (section 1.1.1) and introduce the network 

oscillations in which these dimensions appear to be organized (section 1.1.2). I will then 

proceed to briefly describe how computational models have been used to integrate these 

findings, leading to the hypothesis of sparse, temporally parsed coding (section 1.1.3).  

 

  



3 
 

1.1.1 The Neuronal Code in Time and Space 

Due mainly to experimental constraints, most empirical investigations have concentrated on 

the information represented in the temporal organization of spikes in individual neurons, i.e. 

the temporal dimension. The workhorse in empirical as well as theoretical neuroscience has 

been the ‘rate-code’ hypothesis, which posits that information is primarily coded by the 

firing rate of individual neurons within a certain predefined time window (deCharms and 

Zador, 2000). Indeed, rate coded information has been found at a variety of different levels 

of abstraction, ranging from direct sensory parameters (Adrian and Zotterman, 1926) over 

visual orientation selectivity (Hubel and Wiesel, 1962) to inherently multisensory 

representations such as place specific firing (O’Keefe and Dostrovsky, 1971). In addition to 

being a simple readout, rate coding has the practical advantage, that the firing rate for any 

particular neuron can be represented by a single number, making it computationally 

tractable. Frequently reported properties of the input-output function of individual neurons, 

such as gain, sensitivity, and dynamic range, were developed on the basis of the rate code 

assumption (Fig. 1; Silver, 2010). The gain is the slope of the input-output curve (Fig. 1, blue 

bar). It determines the sensitivity with which a neuron can respond to changes in input 

strength. The dynamic range is the total range of input strengths to which a neuron can 

differentially respond (Fig. 1, green bar). It is bounded by the firing threshold and the 

maximal firing rate of the cell (Fig. 1; left and right green dashed line respectively).  

 

However, there is general consensus among neuroscientists that information is represented 

not by individual cells, but by the combined activity of populations of neurons, a notion 

Fig. 1) Properties of input-output functions, Input-output 
functions can be used to describe the rate coded transformation 
of individual neurons as well as for populations of neurons or local 
circuits. Two central properties of the input-output function can 
be described: The gain (blue bar) is the slope of the input-output 
function. It defines the sensitivity of the output to small changes in 
input. The dynamic range (green bar) is the range of inputs to 
which cell/population/circuit can differentially respond. For 
individual neurons the input may be defined as the current during 
a current injection, the stimulus intensity of a sensory stimulus or 
the firing rate of presynaptic cells. The output is then generally the 
firing rate or firing probability of the neuron. At the population or 
local circuit level the input may be measured as the mean firing 
rate or the active fraction of an upstream population. The output 
may then be defined as the mean firing rate or active cell fraction 
of the population itself. In the case of local microcircuits, the 
output can also be measured at the target population.  
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often denoted the ‘population code’ hypothesis (Ince et al., 2010; Trappenberg, 2010). 

Fortunately, the concepts of gain, sensitivity and dynamic range can also be used at the 

population level by considering for instance the mean firing rates across cells (Fig. 1; Busse 

et al., 2009; Pouille et al., 2009). Population coding is attractive because using combinations 

of neurons to code for information dramatically increases the networks capacity (Foldiak, 

2002). A quantitative intuition of how population coding affects network capacity will be 

developed in section 1.1.3. Since individual neurons occupy distinct locations in space, a 

pattern defined by which neurons fire APs and which do not is often referred to as ‘spatial’. 

A central concept in this respect is that of the Hebbian cell assembly (Buzsáki, 2010; Harris, 

2005; Hebb, 1949). According to it, neural representations are held by assemblies of cells, 

where the identity of the representation is defined by the composition of the assembly. It 

has been inspired by the realization that under certain conditions synapses undergo 

plasticity, that is they are strengthened or weakened in a highly specific manner (Bliss and 

Lomo, 1973; Kandel et al., 2000). Two connected principal neurons which fire in close 

temporal proximity, for instance because one participates in the recruitment of the other, 

can undergo associative plasticity forming a strengthened connection with one another. A 

group of neurons, which by this process has formed strengthened or ‘potentiated’ 

connections in response to a particular stimulus, can now be preferentially activated by this 

stimulus. Importantly, a variety of different plasticity mechanisms exist, including long and 

short term potentiation and depression (LTP, LTD, STP, and STD), spike timing dependent 

plasticity (STDP) and many other forms. These mechanisms differ with respect to the 

direction, strength, and duration of plasticity. Each is conveyed by a distinct molecular 

cascade depending on the precise pattern of pre and postsynaptic activity (Bliss and Lomo, 

1973; Kandel et al., 2000). Together these plasticity mechanisms are thought to finely tune 

the synaptic connectivity matrix termed the ‘synapsemble’, which is thought to structurally 

underlie the formation of cell assemblies (Buzsáki, 2010). Direct evidence for the 

representation of information in cell assemblies has emerged only relatively recently due to 

technical advances, which permitted the recording and manipulation of sufficiently sized 

neuronal populations at cellular resolution (Guzowski et al., 1999; Liu et al., 2012; Pastalkova 

et al., 2008; Skaggs et al., 1996). This view focuses on the information represented by the 

spatial dimension. It should be noted however, that the concept of cell assembly is relatively 

lose and may refer to functionally defined groups of cells at a variety of spatial and temporal 
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scales (Buzsáki, 2010). But how are the spatial and temporal dimensions of neuronal coding 

coordinated? One of the most salient aspects of neural network function is its temporal 

organization into various behavior-dependent oscillatory patterns or ‘rhythms’ (Buzsaki, 

2006; Singer, 1999; Steriade and Timofeev, 2003). 

 

1.1.2 Network Oscillations 

The presence of network oscillations has been observed by recording the summed electrical 

fields of multiple neurons since Hans Berger invented the electro-encephalogram (EEG) in 

1929 (Wiedemann, 1994). Field potential oscillations are apparent at a variety of spatial 

scales, from the macroscopic EEG to the mesoscopic local field potential (LFP), and temporal 

scales from the slow delta (0.5-3 Hz) and theta (3-10 Hz) to the fast gamma (30-90 Hz) and 

ultrafast (90-200 Hz) ranges (Buzsáki and Draguhn, 2004). The presence of such oscillations 

has long suggested that they serve to temporally organize network function and it has thus 

been natural to regard them as a temporal reference for the activity of individual neurons. In 

fact, the investigation of how cellular and subcellular activity is organized with respect to 

network oscillations has been a central and fruitful theme in modern neuroscience (Buzsaki, 

2006). The duration of the oscillation cycles is thought to parse neuronal activity into defined 

time windows (Buzsáki, 2010; Roux and Buzsáki, 2014). Such time windows have been 

suggested to define the duration of individual Hebbian cell assemblies and structure their 

progression in time (Buzsáki, 2010). Analogously, the transient synchronization of 

oscillations across brain areas has been suggested to underlie the ‘binding’ of features 

encoded in the respective areas (Gray et al., 1989; Singer, 1999). Finally, the co-occurrence 

of oscillations at different frequencies, such as theta nested gamma, has been suggested to 

serve the hierarchical organization of cell assemblies and subassemblies within and across 

brain regions (Buzsáki, 2010). 

It is the combination of spatial and temporal codes, organized into network rhythms, which 

results in the extraordinarily high dimensionality of neuronal representations. It allows 

information to be coded not only in firing rates of individual cells or spatial patterns of 

activity, but also in the relative timing of spikes to each other or to field potential oscillations 

(Buracăs et al., 1998; deCharms and Merzenich, 1996; O’Keefe and Recce, 1993; Skaggs et 
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al., 1996; Harris, 2005). The central approach to investigate how spatial and temporal codes 

can work together in order to represent information has been computational neuroscience 

(Rolls and Treves, 1998; Trappenberg, 2010). The field has supplied empirical neuroscientists 

not only with mathematical tools to define relevant parameters, but integrates empirical 

findings into a larger framework. By investigating how simplified neuronal population 

models can represent and process information, computational neuroscientists are providing 

means to interpret empirical findings and, perhaps more importantly, generate hypotheses 

which can be tested experimentally. One general result from computational models has 

been that a particularly advantageous mode of coding for neuronal networks is ‘sparse 

coding’ (Foldiak, 2002; Trappenberg, 2010). It combines a relatively high representational 

capacity with high memory capacity, fast learning, good generalization, controlled 

interference, high fault tolerance and parallel processing capacity (Foldiak, 2002). In the next 

section I will develop an intuition on how sparse coding achieves some of these properties 

and what they mean using a highly simplified but intuitive model. 

 

1.1.3 Sparse Coding and the Generalization – Discrimination Trade-off 

Why does the ‘sparseness’ of neuronal representation matter? Firstly, it affects the capacity 

of the network, which is defined as the number of discrete items the network can represent 

or that can be read out from it. This can be seen in various complex network models as 

described in standard textbooks of computational neuroscience (Trappenberg, 2010). 

However, a much simpler model can be used to develop an intuition of the relevance of 

sparsity for the capacity of the network. Let us assume a population of neurons at a single 

time point, where each element can be either ‘on’ or ‘off’. Based on Shannon's (1948) theory 

of information, the number of possible different combinations of active neurons is 

equivalent to the maximum number of discrete pieces of information, which could 

theoretically be represented (Trappenberg, 2010). In such a network the number of distinct 

patterns scales roughly exponentially with the number of cells that participate in a typical 

representation (for small active cell fractions; Trappenberg, 2010). Specifically, the maximal 

number of possible representations is given simply by the binomial operator (Fig. 2A; Eq. 1), 

                  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1                         𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =  (𝑛
𝑘

) 
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where the total population contains n cells and an active pattern contains k cells. The active 

cell fraction is then given by k/n. Importantly this general relation holds true even if neurons 

have more than two states (in fact most computational models rely on rate coded 

information). If more than 50 % of neurons are simultaneously active, the relation can be 

reversed, for instance when assuming the simple two-state model of neurons. However, due 

to the high metabolic cost of firing APs this domain is deemed of little importance in 

biological systems (Fig. 2B). In fact, a biological network is assumed to attempt to minimize 

the number of spikes necessary for any given representation in order to minimize energy 

consumption (Attwell and Laughlin, 2001). Therefore the storage capacity of a neuronal 

population can be increased either by increasing the active cell fraction (k/n with k/n ≤ 50 %) 

or alternatively by increasing the total population size (n), both at the cost of higher energy 

consumption. Importantly, in the simple model described above, the differential activity of a 

single cell changes the identity of the pattern. However, this makes it highly prone to 

misclassification or destructive inference between similar patterns if the inputs are noisy. 

This leads directly to a second central insight from computational neuroscience.  

In any network there is a trade-off between its generalization and discrimination capabilities. 

Generalization refers to the ability to reactivate a complete pattern, even if the input pattern 

is noisy or incomplete, a notion also referred to as pattern recognition or pattern 

completion. Discrimination, on the other hand, refers to the ability of a network to 

differentially represent, respond to, or categorize separate input patterns. The two 

represent fundamentally opposing forces. If a network generalizes one pattern from a 

similar pattern, then it can by definition not discriminate between the two. Although this 

trade-off has been studied primarily in the hippocampus, it is apparent in a variety of 

different network models for different brain areas with different underlying assumptions 

(Barak et al., 2013; Myers and Scharfman, 2009; O’Reilly and McClelland, 1994; Olshausen 

and Field, 1996; Rolls, 2013). 
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But what is the physiological significance of generalization and discrimination? 

Generalization is thought to be the principal goal of associative plasticity and, for instance, 

allow the formation of mnemonic associations. Accordingly it has been the subject of a large 

body of literature including the generalization capabilities of competitive networks and 

Fig. 2) Effect of the active cell fraction on network parameters, A simple population model can be used to 
illustrate the effect of the active cell fraction on central network parameters. It considers a single time point in 
which neurons can be only active or inactive, where n is the total cell number and k the active cell number. A) 
A measure of the maximum storage capacity of such a population is given by the number of possible 

combinations to choose k active cells from n total cells (𝑛
𝑘

). Accordingly, the capacity can be increased by 

increasing the active cell fraction (k/n) or the total population size n. B) An estimate of the energy consumption 
based on (Attwell and Laughlin, 2001), assuming the active cell fraction is assessed in 10 ms windows. The 
authors estimate that due to metabolic constraints the active cell fraction must remain < 15% (green dashed 
lines) C) A measure of the similarity between two representations of a given active cell fraction is the expected 
overlap between the two representations. The expected overlap is given by the mean probability that a cell will 
be active in both representations (k/n)², assuming random sampling. This measure of similarity corresponds to 
the mathematical concept of correlation, where the two populations are viewed as two binary vectors. D) An 
alternative measure of similarity between two binary vectors, common in computer science, is the Hamming 
Distance. It registers not only co-active cells but also co-inactive cells as overlap and is given by (k/n)² + (1-
k/n)². 
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various types of attractor networks (Amit et al., 1987; Hopfield, 1982; Rolls, 2010; 

Trappenberg, 2010). Discrimination, on the other hand is believed to be the basis of the 

separation and categorization of objects and contexts (Santoro, 2013; Trappenberg, 2010). 

The closely related process of making patterns less correlated between one brain region and 

the next, in order to allow more efficient discrimination, is referred to as pattern separation 

or pattern orthogonalization (a detailed introduction into pattern separation will follow in 

section 1.6; for a disambiguation of terms see Santoro, 2013). If the two input patterns are 

noisy or partial representations of the same stimulus or context, generalization reflects fault 

tolerance or correct recognition. However, if the two input patterns reflect different but 

similar stimuli, generalization reflects destructive interference between these patterns, 

leading to defective discrimination. Accordingly, both an ability to generalize and an ability 

to discriminate will affect the functional capacity of the network. Specifically, the capacity of 

the network will be proportional to its discrimination capabilities, but only as long as each 

individual piece of information can be successfully recognized by generalization. 

The trade-off between discrimination and generalization capabilities is controlled by the 

sparseness of representation. This relation has been described in a large body of literature 

based on the work of Marr (1969, 1971), McNaughton and Morris (1987) and O’Reilly and 

McClelland (1994) and developed in the theories such as ‘competitive networks and self-

organizing maps’ (Rolls, 2010; Rolls and Treves, 1998; Trappenberg, 2010) as well as learning 

tools such as ‘support vector machines’ (Aimone et al., 2011; for a general demonstration 

see Barak et al., 2013). An intuitive understanding of the relation between sparseness and 

the discrimination-generalization trade-off can be gained from the realization that the 

sparseness of representation is expected to be inversely related to the overlap between 

individual patterns. To see this, we can again consider the simple two-state neuron model 

introduced above. Assuming a random selection of cells for any two patterns of a given 

active cell fraction, the mean overlap between the two patterns will be given by the square 

of this fraction (Fig. 2C). Mean overlap refers to the fraction of the total population which is 

expected to participate in both patterns and is identical to the correlation of two binary 

population vectors. Increased overlap between two patterns leads to better generalization 

and increased fault tolerance. However, it also leads to increased destructive interference 

implying decreased discrimination capability and decreased functional capacity. ‘Overlap’ as 

a measure of similarity here, is measured only for the co-active elements, as in the more 
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general mathematical measure of ‘correlation’. An alternative measure of similarity common 

in computer science is the ‘Hamming distance’ which counts not only co-active but also co-

inactive elements as overlap (Fig. 2D). The Hamming distance decreases until 50 % of cells 

are active. Though it is not certain which measure of similarity is more appropriate, the use 

of Hamming distance can lead to hypotheses of networks in which close to 50 % of cells are 

active (Myers and Scharfman, 2009), which is not consistent with biological observations and 

not plausible from a metabolic perspective (Attwell and Laughlin, 2001; Foldiak, 2002). 

Finally, it is important to realize that the optimal degree and permissible range of sparsity 

will depend on the precise task of the network, particularly with respect to its generalization 

and discrimination capabilities (Barak et al., 2013).  

In conclusion, computational models have long predicted that sparse coding strikes an 

optimal balance between the different requirements of a network. An abundance of 

experimental evidence across brain regions and species supports the role of sparse coding 

and confirms the nature of the underlying trade-offs (Crochet et al., 2011; Fujisawa et al., 

2008; Hromádka et al., 2008; Lin et al., 2014; Papadopoulou et al., 2011; Schneider and 

Woolley, 2013; Vinje and Gallant, 2000). How then, do networks maintain and regulate 

sparse coding? And how do they accomplish the other network functions such as the 

formation and selection of cell assemblies and their temporal coordination. There are a 

number of relevant factors including the connectivity and plasticity between and within 

excitatory neurons, and intrinsic neuronal properties such as firing threshold, maximal firing 

rate, and dendritic properties. All these parameters, by necessity, play a role. However, 

another essential ingredient of neural network activity is inhibition. It has been suggested as 

a particularly efficient and robust way to regulate sparsity (Binas et al., 2014; Carandini and 

Heeger, 2012; Rolls, 2010) and organize network activity in space and time (Roux and 

Buzsáki, 2014). In the following chapter I will introduce GABAergic inhibition, the most 

important source of inhibition in the central nervous system.  
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1.2 Inhibition 

GABAergic inhibition is exerted by a highly diverse population of inhibitory interneurons 

(Klausberger and Somogyi, 2008). Although they only represent 10 to 20 % of neurons across 

brain areas, they potently control the activity level in the network as well as the 

spatiotemporal organization of principal cell firing (Goldberg and Coulter, 2013; Roux and 

Buzsáki, 2014). This can be achieved by either feedforward or feedback inhibition. The 

unifying feature of all these diverse cells is that, upon activation, they release the 

neurotransmitter γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the 

brain. Binding of GABA to its postsynaptic receptor will generally lead to inhibitory 

postsynaptic currents (IPSCs) and inhibitory postsynaptic potentials (IPSPs). GABA receptors 

can be differentiated into two general types, GABAA and GABAB receptors, which are present 

on virtually every neuron in the brain (Mody and Pearce, 2004).  

 

1.2.1 GABAA Receptors 

GABAA receptors are members of the Cys-loop pentameric ligand gated anion channel 

superfamily and mediate the major form of fast inhibitory neurotransmission in the central 

nervous system (Kandel et al., 2000; Olsen and Sieghart, 2008). The five subunits can be 

selected from eight classes with one to six known isoforms, α1-6, β1-3, γ1-3, δ, ε, π, θ, ρ1-3, 

where the class is denoted by a Greek letter followed by the number of isoforms. A 

receptor’s regional and subcellular expression pattern as well as its pharmacological and 

physiological properties are dependent on its subunit composition (Brickley and Mody, 

2012). Synaptic GABAA receptors give rise to a rapid phasic inhibitory postsynaptic 

conductance and are generally composed of two α, two β and one γ subunit. Depending on 

the exact subunit composition of the receptors within individual cells and even individual 

synapses (Strüber et al., 2015) the conductances they produce differ in time course as well 

as sensitivity for different modulatory mechanisms. On the other hand, extra and 

perisynaptic GABAA receptors have been shown to mediate a tonic inhibitory conductance in 

a variety of cells (Brickley and Mody, 2012; Nusser and Mody, 2002). Subunits associated 

with tonic conductances are most prominently the δ-subunit but also the α5 subunit. Such 

tonic GABA conductances make a major contribution to the total charge flow across the 
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membrane and can modulate the firing mode of neurons as well as their general activity 

level. This is thought to happen primarily due to GABA spillover from synaptic into 

extrasynaptic areas. Both phasic and tonic GABAA conductances generally lead to a 

hyperpolarization of the neuronal cell membrane which is mediated by an inflow of Cl-. 

However, when the Cl- reversal potential is close to or above the resting membrane 

potential, but still below the AP threshold, the GABAergic Cl- conductance can attenuate 

excitatory conductances without affecting the membrane potential, a mechanism denoted 

‘shunting inhibition’. Depending on the relative location of the excitatory and inhibitory 

channels this mechanism can be highly effective (Chiang et al., 2012; Gidon and Segev, 

2012).  

 

1.2.2 GABAB Receptors 

GABAB receptors are members of the G-protein coupled receptor (GPCR) superfamily 

characterized by its seven-transmembrane structure (Kandel et al., 2000). Functional GABAB 

receptors are heterodimers consisting of a GABAB1 and a GABAB2 subunit both of which are 

required for successful membrane trafficking. They can be located either presynaptically or 

postsynaptically depending on the isoform of the GABAB1 subunit (Gassmann and Bettler, 

2012). Upon extracellular binding of the ligand these receptors undergo a conformational 

change resulting in the dissociation of a bound intracellular G-protein trimer. On the one 

hand, the Gαi/o subunit initiates the adenylyl cyclase/protein kinase A second messenger 

cascade affecting a variety of cellular and network processes by complex interactions with 

other intracellular messaging cascades. On the other hand, the Gβγ subunits lead to 

activation of inward-rectifying K+ channels and inhibition of voltage gated Ca2+ channels 

(Bettler, 2004). Both mechanisms are generally thought to lead to slow inhibition and to be 

incapable of the rapid dynamic regulation of network activity ascribed to GABAA mediated 

inhibition (Mott and Lewis, 1994; but see Craig and McBain, 2014).  
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1.2.3 Interneuron Diversity 

Interneurons can be differentiated on the basis of their morphology, connectivity, gene 

expression, and electrophysiological properties (Klausberger and Somogyi, 2008; Somogyi 

and Klausberger, 2005). Although they can be divided into individual classes according to all 

of these criteria, it is important to bear in mind that the resulting classifications are 

sometimes ambiguous and often overlap. Moreover, the number of described interneuron 

classes is growing rapidly (Roux and Buzsáki, 2014). Similar to principal cells, a general 

distinction can be made between interneurons based on their anatomical orientation with 

respect to the inputs and outputs of a given region. Interneurons receiving input from a 

principal cell population and then projecting to the downstream targets of that population 

are termed feedforward. Conversely, if the interneurons project back to the same principal 

cell population by which they are excited, they are termed feedback interneurons. It is 

noteworthy, that while this is generally a valuable functional distinction, most interneurons 

actually receive feedforward as well as feedback inputs from different regions (Roux and 

Buzsáki, 2014; Sambandan et al., 2010). Moreover, the notion of feedforward and feedback 

are dependent on what is functionally conceived of as a population and what is considered 

to be the predominant direction of information flow. A closely related concept is lateral 

inhibition which may be implemented by feedforward or feedback circuits (Lin et al., 2014; 

Olsen et al., 2010; Roux and Buzsáki, 2014). The term describes inhibition of neurons at the 

same level which are in some respect functionally distinct, for instance coding for a 

competing feature of input space such as a different odor. In the following I will only briefly 

introduce the most studied interneuron types, which appear to be repeated across brain 

areas, based on the criteria by Somogyi and Klausberger (2005) as well as Roux and Buzsáki 

(2014). A more detailed description of the specific instances of these cell types in the DG, the 

brain region investigated in this study, will follow in chapter 1.5.2 

A central characteristic, by which interneurons can be differentiated, is their target area 

along the somato-dendritic axis of the postsynaptic cells (Miles, 1990; Miles et al., 1996). 

According to this criterion, the largest group of interneurons is the perisomatically targeting 

group (Roux and Buzsáki, 2014). It contains the probably most studied type of interneuron, 

the fast spiking, parvalbumin expressing (PV+) basket cell (BC), named after its basket like 

axonal plexus around the principal cell soma (Hu et al., 2014). PV+ BCs are characterized by 
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an exceptionally high peak firing rate (>150 Hz at 34° C), short AP duration and fast dendritic 

processing. Other perisomatically targeting interneurons include slower spiking, 

cholecystokinin expressing (CCK+), PV- basket cells and PV+ or PV- axo-axonic cells, the latter 

group selectively innervating the axon initial segment of principal cells. For simplicity, the 

term BC is often used to refer to only the fast spiking, PV+ subpopulation of BC, a 

nomenclature that will be followed here in order to facilitate referencing the relevant 

literature (Savanthrapadian et al., 2014).  

A second highly diverse group of GABAergic cells are the dendrite targeting interneurons. 

Every excitatory pathway in the cortex is matched by a type of feedforward interneuron, 

which is activated by, and inhibits the same subcellular compartments as, this pathway 

(Buzsáki, 1984). Another well studied dendrite targeting interneuron, which appears to be 

repeated across cortical regions, is characterized by its expression of somatostatin (SST+) and 

innervation of only the distal dendrites of their respective principal cell population. This 

group includes the Oriens-Lacunosum Moleculare interneurons and the Hilar Perforant Path 

associated cells (HIPP) in the DG, both of the hippocampal formation. These interneurons 

are considered typical feedback interneurons, since they receive most of their inputs from 

the same principal cell population they innervate. Additional subclasses of interneurons 

target two or more dendritic domains such as the PV+ and SST+ bistratified cells. 

A third group of interneurons preferentially innervates other interneurons effectively 

providing disinhibition of principal cells (Gulyas et al., 1996; Pi et al., 2013). Molecular 

markers associated with such interneurons include vasoactive intestinal polypeptide and 

calretinin. 

Finally, a fourth major group of interneurons are GABAergic cells with long range 

projections. These cells are not ‘interneurons’ in the sense that they are only locally 

connected but are sometimes included in the class of interneurons due to their expression of 

GABA. With respect to their morphology and marker expression these cells are highly diverse 

(Caputi et al., 2013). This extraordinary diversity is thought to reflect the diversity of 

functions that interneurons perform. In the following two chapters I will outline how 

inhibition gives rise to some of the computational functions described in chapter 1.1, 

including mechanisms to temporally organize network activity, to select cells and to regulate 

sparsity. 
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1.3 Temporal Organization of Network Activity 

One of the main functions attributed to interneurons is the generation and organization of 

network oscillations (Bartos et al., 2007; Chrobak and Buzsáki, 1995; Fukunaga et al., 2014; 

for a recent review see Roux and Buzsáki, 2014). By supplying rhythmic inhibition to principal 

cells, interneurons can synchronize principal cells at different time scales thereby effectively 

generating or enhancing mesoscopic field potential oscillations (Bartos et al., 2002; Cardin et 

al., 2009; Dannenberg et al., 2015). By restricting principal cell activity to specific time 

windows, interneurons can create a temporal frame for transiently active cell assemblies 

(Buzsáki, 2010). Furthermore, this synchronization, or more generally temporal organization, 

provides the basis for the various forms of synaptic plasticity that shape the synapsemble. 

Rhythmic interneuron activity may be generated intrinsically (Elgueta et al., 2015; Royer et 

al., 2012), within interneuron networks (Bartos et al., 2007; Hu et al., 2011), or by the 

interactions of interneuron-principal cell networks. Different types of interneurons have 

been suggested to be preferentially involved in different oscillation frequencies. Fast spiking, 

perisomatically inhibiting interneurons in gamma oscillations (Bartos et al., 2007; Hu et al., 

2014; Sohal et al., 2009) and slower dendritically inhibiting interneurons in theta oscillations 

(Fukunaga et al., 2014; Varga et al., 2012; but see Amilhon et al., 2015).  

Beside this general role of creating rhythmicity in neuronal networks, interneurons may also 

define the integration time window of excitatory postsynaptic events during transmission 

from one brain area to the next (Gabernet et al., 2005; Pouille and Scanziani, 2001). This 

mechanism controls the temporal precision of principal cell spiking through perisomatically 

inhibiting interneurons, thereby increasing the temporal fidelity of a population response 

(Pouille and Scanziani, 2001). It may be important if information is coded not only in the 

composition of the assembly within an oscillatory window, but in the precise temporal 

relation of neuronal events. 
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1.4 Inhibitory Microcircuit Motifs 

Together with the cells which supply the excitatory and inhibitory inputs and those that 

receive their postsynaptic outputs, interneurons have been found to form stereotypic 

inhibitory microcircuit motifs, each adapted to a specific function (Douglas and Martin, 1991; 

Roux and Buzsáki, 2014). Such functions include the spatiotemporal organization of inputs 

onto the dendritic trees of principal cells, input normalization, input and output tuning, and 

population activity control. Some of these microcircuit motifs have so far been described in 

detail only in a specific brain region, others have been found in multiple brain regions. It is 

important to point out that any particular function will arise from the interplay between 

most or all the elements of the network, thus generally involving more than one microcircuit 

motif as well as long range connections. Similarly, any given interneuron is likely to 

participate in multiple motifs and functions. However, it has been a valuable approach to 

associate individual motifs to particular functions in order to dissect the underlying network 

mechanisms (Carandini and Heeger, 2012; Hu et al., 2014; Roux and Buzsáki, 2014). Such 

mechanisms have often proven to be generalizable and allow us to reach a better 

understanding of network function as a whole. In the following, I will introduce some of 

these microcircuit motifs and how the specific anatomical connectivity and physiological 

properties of the participating interneurons are believed to give rise to particular functions. 

 

1.4.1 Feedforward Inhibition and Input Normalization 

The computations which can be performed in a network critically depend on the input 

strength of that network. Too large input strengths may lead to saturation, rendering the 

network unable to differentially respond to variations of these inputs. Similarly, too weak 

inputs may be insufficient to activate enough cells to allow for efficient processing. The 

range of input strengths, which an individual neuron or a population of neurons can 

differentially respond to, is denoted the dynamic range (Fig. 1, see section 1.1.1). A canonical 

function of feedforward interneurons is thought to be increasing the dynamic range by 

scaling inhibition with input strength (Liu et al., 2011; Pouille et al., 2009; Silver, 2010). This 

is because feedforward interneurons are ideally suited to integrate information about the 

input strength from an upstream area and proportionally increase their inhibitory drive. The 
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result is horizontal scaling of the input-output curve and an increased dynamic range (Olsen 

et al., 2010; Silver, 2010). The dynamic range ultimately increases because the saturation of 

the population activation curve is shifted to higher input strengths. This phenomenon has 

been described for the behavior of individual neurons (Olsen et al., 2010), but also at the 

population level (Pouille et al., 2009). Notably, in the second case, the dynamic range of 

individual neurons did not change with input strength, illustrating the importance of 

population level investigations (Pouille et al., 2009). Feedforward interneurons often target 

the same subcellular compartments as the excitatory afferents they receive input from 

(Buzsáki, 1984), implying that input normalization can be performed independently for 

different input pathways.  

 

1.4.2 Tuning and Selection of Inputs and Outputs 

A diverse set of functional inhibitory network motifs has been described, which contribute to 

the tuning or selection of inputs onto individual cells or groups of cells. This can be seen 

most directly in sensory cortices, where individual neurons are often found to preferentially 

respond to a specific stimulus. Furthermore, the spatial arrangement of cells with specific 

preferred stimuli is often topographic and repeated in consecutive neuronal populations. A 

fundamental inhibitory motif in this case is lateral inhibition between neurons with different 

preferred stimuli. It can be either feedforward or feedback. The effect is seen most directly 

during ongoing neuronal activity, as the acute removal of inhibition blurs or removes the 

selectivity of individual neurons to their preferred stimuli. Many demonstrations of this have 

been published, mainly for visual cortex (Adesnik et al., 2012; Liu et al., 2011; Sillito, 1975), 

but also for somatosensory (Mountcastle and Powel, 1959), olfactory (Olsen et al., 2010), 

and auditory cortices (Wehr and Zador, 2003). The mechanism by which lateral inhibition 

achieves tuning or selection of principal cells is competition between the principal cells with 

different preferred stimuli. A similar mechanism has been described in more complex, 

multisensory settings. Investigation of hippocampal place cell assemblies has suggested a 

direct involvement of interneurons in the competition between assemblies (Geisler et al., 

2007; Maurer and McNaughton, 2007). Accordingly, lateral inhibition has been termed the 

fundamental mechanism for the selection of neuronal groups (Isaacson and Scanziani, 2011; 

Lee et al., 2014; Roux and Buzsáki, 2014; Wilson et al., 2012).  
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Another interesting motif dynamically shifts inhibition along the somato-dendritic axis 

during repetitive stimulation (Liu et al., 2014; Pothmann et al., 2014; Pouille and Scanziani, 

2004; Stokes and Isaacson, 2010; Tan et al., 2008). It functions by oppositely changing the 

activation and/or output of perisomatically and distal dendritically inhibiting interneurons, 

during an input train. During the course of the train perisomatically inhibiting interneurons 

depress, while dendritically inhibiting interneurons facilitate, resulting in a dynamic shift of 

inhibition from soma to dendrites. Such a motif may subserve a number of different 

functions. Firstly, it can differentially modulate which afferent areas are allowed to transmit 

information to the cell as a function of time (Leão et al., 2012; Lovett-Barron et al., 2014). 

Secondly, it may define separate time windows for AP generation and dendritic plasticity. 

This is, because somatic inhibition is most effective at controlling AP initiation, while 

dendritic inhibition interferes primarily with dendritic electrogenesis and local dendritic 

synaptic plasticity (Chiu et al., 2013; Cichon and Gan, 2015; Cobb et al., 1995; Losonczy et al., 

2008; Miles et al., 1996; Royer et al., 2012). For instance, dendritic disinhibition is necessary 

for associative fear learning in the auditory cortex (Letzkus et al., 2011) and amygdala (Li et 

al., 2013a). Since the various forms of plasticity are thought to be the bases of the long term 

formation of cell assemblies, the involvement of inhibition into neuronal group selection 

extends to the classical Hebbian sense (Buzsáki, 2010). Accordingly, inhibition is thought to 

underlie neuronal group selection in a two-fold way, firstly during ongoing activity through 

direct competition and AP suppression, and secondly in the sculpting of the synapsemble 

over longer time scales. 

 

1.4.3 Feedback Inhibition and Output Normalization 

A large number of computational studies rely on a canonical microcircuit motif, which is 

thought to normalize the population level output, termed ‘max pooling’ (Carandini and 

Heeger, 2012). Briefly, max pooling refers to the measurement of the total activity level 

across the population, in order to produce a global adjustment of this activity level. This 

global adjustment will then suppress all activity, except for that of the cell(s) receiving 

maximum input. The expected result concerning the population level input-output curve is 

scaling along the output axis (Olsen et al., 2010; Silver, 2010). This function is frequently 

assumed to be implemented by feedback inhibition (Binas et al., 2014; Carandini and 
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Heeger, 2012; Rolls and Treves, 1998). A specific instance of this computation is a ‘k-

winners-take-all’ network, in which the k cells with the highest input strengths are allowed 

to fire, while all others are suppressed (Binas et al., 2014; Myers and Scharfman, 2009; Rolls, 

2010). Recent investigations in the drosophila olfactory system revealed a direct 

implementation of this motif by a globally inhibiting feedback interneuron (Lin et al., 2014; 

Papadopoulou et al., 2011). In accordance with long standing computational predictions, the 

inactivation of the global feedback inhibitory interneuron led to impaired odor 

discrimination. Due to the larger size of mammalian neural networks, it is unlikely that the 

max pooling operation is performed by a single inhibitory cell, as demonstrated in 

drosophila. However, the general mechanism is thought to act across species, in multiple 

neural systems (Busse et al., 2009; Carandini and Heeger, 2012; Renno-Costa et al., 2010) 

and be involved in a large number of computations (Binas et al., 2014). The advantage of 

feedback inhibition as a mechanism to implement a winner-take-all rule is that it receives 

information about the population activity level. In contrast to feedforward inhibition, it can 

respond as a function of the population activity level, while the former can respond only as a 

function of the input strength. Specifically, feedforward inhibition lacks the information of 

the activation curves resulting from intrinsic principal cell properties. Though it could be 

tuned to perform a k-winners-take-all function in a static network, for instance by 

evolutionary hard wiring, this task becomes highly challenging in a plastic network. The 

tuning of intrinsic principal cell properties is even less well suited to generate winner-take-all 

like activity, since it lacks a means to implement competition. Though plastic intrinsic 

properties of the population could also be tuned to arrive at the appropriate active cell 

fraction, individual cells do not have access to information about the input or output level of 

their neighbors. Accordingly, the use of feedforward inhibition or intrinsic properties to 

implement a max pooling operation would require additional assumptions about how the 

missing information is generated and communicated. 
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1.5 The Dentate Gyrus of the Hippocampal Formation 

A region in which ‘max pooling’ is deemed of critical importance is the DG of the 

hippocampal formation, one of the best studied regions in the brain. Together with the DG, 

the hippocampus proper is part of the archicortex, which in contrast to neocortex has a clear 

three layered structure and contains only one principal cell layer. In rodents it forms a 

banana shaped structure stretching from the dorsomedial septal pole to the ventrolateral 

temporal pole. Beside the glutamatergic principal cells, all regions of the hippocampus 

contain a variety of different interneurons which are interconnected with the principal cells 

forming complicated microcircuits (Savanthrapadian et al., 2014; Somogyi and Klausberger, 

2005). The hippocampus proper, also called the cornu ammonis (CA), can be subdivided into 

two main sections, namely the CA3 and CA1 area. Together with the DG, it forms the 

canonical trisynaptic circuit of the hippocampus. The DG receives information via the 

perforant path projection from the entorhinal cortex and conveys that information to the 

CA3 area. The CA3 area, which is characterized by pronounced recurrent connectivity, 

projects to the CA1 area which in turn feeds the information back to neocortical areas. The 

hippocampus is essential for the formation of episodic and contextual memories in humans 

as well as rodents (Kandel et al., 2000; Kheirbek et al., 2013; Scoville and Milner, 1957). 

Furthermore, it has been extensively studied as part of the brain system responsible for 

spatial navigation, since it contains cells which show location specific firing, so called ‘place 

cells’ (Moser et al., 2015; O’Keefe and Dostrovsky, 1971). A specific challenge in 

understanding its function is the inherently multisensory nature of the information it 

processes. 

Substantial evidence points to the involvement of the DG in the function of ‘pattern 

separation’ (Bakker et al., 2008; Gilbert et al., 1998; Leutgeb et al., 2007; Neunuebel and 

Knierim, 2014; Rolls, 2013) and it has been associated with the misclassification deficits of 

schizophrenia (Das et al., 2014; Heckers and Konradi, 2015) as well as the memory deficits in 

Alzheimer’s disease (Palmer and Good, 2011). Moreover, it is thought to play a role in 

‘regulating the input to the hippocampus’ thus potentially protecting against the spread of 

over-excitation observed in temporal lobe epilepsy (Goldberg and Coulter, 2013; Heinemann 

et al., 1992; Krook-Magnuson et al., 2015; Lothman et al., 1992). Accordingly, the dentate 

microcircuitry has been a prime target for investigations into the pathology of chronic 
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temporal lobe epilepsy, where it is found to undergo substantial anatomical and 

physiological changes (Coulter, 2000; Hunt et al., 2011; Nadler et al., 1980; Peng et al., 2013; 

Ratzliff et al., 2004; Wright and Jackson, 2014; Zhang et al., 2009). Interestingly, the ‘dentate 

gate’ appears to be only transiently impaired during epileptogenesis, suggesting that the 

observed changes are at least partially compensatory (Ang et al., 2006; Krook-Magnuson et 

al., 2015; Wozny et al., 2005). In this chapter I will briefly outline the anatomical organization 

and function of the rodent DG, with a special section on the hilar microcircuit.  

 

1.5.1 Anatomy and Physiology of the Dentate Gyrus 

The DG is bent around the end of the CA3 region of the hippocampus proper in a ‘V’ or ‘U’ 

shape (Amaral et al., 2007). The two blades are denoted the superior and inferior blade, 

where the superior blade is surrounded by the downstream regions of the hippocampus 

proper. The glutamatergic principal cells of the DG are the granule cells (GCs), which form 

the tightly packed dentate GC layer, in the center of the three layered structure. An 

important feature of the DG is that it contains approximately ten-fold more principal cells 

than the entorhinal cortex and five-fold more cells than the CA3 region (Schmidt et al., 

2012). GCs have several long, spiny dendrites which emanate in a cone-like manner from the 

soma, and span the molecular layer (ML) pointing away from CA3 (Claiborne et al., 1990). 

They receive multisensory input, mainly from the entorhinal cortex via the perforant path. 

On the other side of the GC layer, GCs emit their axons, the mossy fibers, which converge 

within the hilus, also called the polymorphic layer, to form a dense bundle which then runs 

alongside and innervates the principal cells of the CA3 region. The mossy fibers run strictly 

perpendicular to the septo-temporal axis of the hippocampus defining the transverse, 

lamellar or maximum connectivity plane (MCP; Amaral et al., 2007; Andersen et al., 1971; 

Bischofberger et al., 2006). Mossy fibers physiologically innervate local interneurons and 

downstream CA3 cells but not other GCs. This is reflected in the anatomical spread of mossy 

fiber collaterals which spread profusely within the polymorphic layer but never enter the ML 

where GC dendrites are located. The lack of recurrent excitatory connections between 

principal cells is unique to the DG, and makes it ideally suited for a quantitative investigation 

of the feedback inhibitory circuit. In vivo, GCs are characterized by extremely sparse firing 

(Alme et al., 2010; Leutgeb et al., 2007). They have a strongly hyperpolarized resting 
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membrane potential of less than -80 mV and a comparably high AP threshold at -49 mV 

(Staley et al., 1992). Furthermore their dendrites have distinct electrophysiological 

properties including strong voltage attenuation and linearized summation of inputs 

(Krueppel et al., 2011).  

Finally, an important particularity of the DG is that it is one of the few regions displaying 

adult neurogenesis. Adult born, immature GCs display a transient period of markedly greater 

excitability and plasticity than mature GCs (Espósito et al., 2005; Ge et al., 2007). During this 

critical developmental period immature GCs come to respond to significant features of their 

environments (Kee et al., 2007; Tashiro et al., 2007) and are characterized by a much higher 

and less selective firing rate than mature GCs.  

 

1.5.2 Microcircuitry of the Dentate Gyrus 

Interspersed into all three layers of the DG are numerous interneurons which are innervated 

by perforant path (feedforward), mossy fibers (feedback), or both (Hsu et al., 2015; Li et al., 

2013b). Notably, mossy fibers synapse onto up to ten times more GABAergic than 

glutamatergic cells by means of a distinct set of collaterals in the polymorphic layer, 

indicating a potent feedback inhibitory pathway (Acsády et al., 1998). When GABA is 

released from these cells, it inhibits GC activity via shunting, rather than hyperpolarization, 

due to the low GC resting potential (Chiang et al., 2012; Staley and Mody, 1992). 

Additionally, GCs in vitro display a high tonic GABAergic conductance due to GABA spillover 

from synaptic into extra synaptic sites, contributing to their lack of excitability (Nusser and 

Mody, 2002). In the DG there are at least five types of GABAergic interneurons (Amaral, 

1978; Halasy and Somogyi, 1993; Han et al., 1993; Hosp et al., 2014; Lorente De Nó, 1934; 

Mott et al., 1997; Sik et al., 1997). 

The most intensively studied DG interneuron is the fast spiking, PV+ pyramidal BC which is 

typically situated at the edges of the GC layer and provides potent perisomatic inhibition to 

GCs via its basket like axonal plexuses (Amaral et al., 2007; Bartos et al., 2002). It mediates 

feedforward (Zipp et al., 1989) as well as feedback inhibition (Acsády et al., 1998; Geiger et 

al., 1997) and is characterized by extremely fast response characteristics and a high maximal 

AP frequency (Geiger et al., 1997). Another prominent interneuron, which is often 



23 
 

considered a classical feedback interneuron, is the SST+ hilar perforant path associated 

interneuron (HIPP; Han et al., 1993; Hosp et al., 2014; Katona et al., 1999). It receives its 

inputs from GCs and projects to the distal dendrites of GCs together with the perforant path. 

A third major type of DG interneuron is the CCK+ hilar commissural/associational path 

related cell (HICAP), which innervates the inner third of the ML. Beyond these, there appear 

to be additional types of DG interneurons which have not yet been well described (Amaral et 

al., 2007; Hosp et al., 2014; Liu et al., 2014). Beside these GABAergic interneurons the hilus 

contains one type of glutamatergic interneuron, the mossy cell (Amaral, 1978). Mossy cells 

received their name because their proximal dendrites are covered by large thorny 

excrescences which are the termination sites of mossy fiber inputs (Amaral, 1978). They give 

rise to the commissural/associational path, an excitatory tract innervating the inner third of 

the ML in the ipsi- as well as the contralateral hemisphere, where they synapse on GC as well 

as interneuron dendrites (Scharfman, 1995).  

Importantly, these different interneurons (including mossy cells) also innervate each other 

forming complex networks (Larimer and Strowbridge, 2008; Savanthrapadian et al., 2014). In 

a detailed study Savanthrapadian et al. (2014) report inhibitory interactions between HICAP 

cells as well as between HIPP cells. Moreover, both cell types inhibit BCs while BCs and 

HICAP cells rarely target HIPP cells. The time course and reliability of inhibition is defined by 

the identities of both the presynaptic and the postsynaptic cell (Savanthrapadian et al., 

2014). Mossy cells also receive input from, and project to, hilar interneurons (Larimer and 

Strowbridge, 2008). Additionally, interneuron- interneuron synapses show cell type specific 

short term dynamics during trains of activity ranging from facilitation at HICAP-HICAP, 

biphasic modulation at HIPP-HIPP to depression at BC-BC synapses (Savanthrapadian et al., 

2014). Finally, different interneurons display different synaptic properties at their output 

synapse onto GCs concerning the latency, jitter, amplitude, failure rate and short term 

plasticity (Harney and Jones, 2002; Liu et al., 2014). It should be noted, that while the 

functional studies cited above have almost exclusively addressed the local connectivity of an 

acute slice preparation, there is also pronounced translamellar connectivity, most 

prominently by HIPP and mossy cells (Amaral et al., 2007). 

In view of these complex connections, it is questionable whether the recruitment of 

feedback inhibition at a population level can be investigated by probing the behavior of 
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individual interneuron types. However, the ultimately relevant output of the complex 

interactions within the feedback inhibitory microcircuitry is the inhibition elicited in GCs, 

which can be readily recorded. In the following chapter I will review the concept of pattern 

separation in the DG from a historic perspective with a special section on the putative role of 

feedback inhibition. This will lead directly to the key questions and approach of the present 

study (chapter 1.7). 

 

1.6 Pattern Separation in the Dentate Gyrus 

As introduced in section 1.1.3, pattern separation refers to the reduction of correlation 

between two population representations from one brain area to the next. It is thought to be 

a recurring phenomenon throughout the brain but has received particular interest in the DG 

(Aimone et al., 2011). The term pattern separation is often used somewhat ambiguously for 

phenomena at different levels, namely algorithmically (as originally defined), physiologically, 

and behaviorally (Santoro, 2013). Specifically, it is important to distinguish the term pattern 

discrimination, which refers to patterns within one population, from the term of pattern 

separation, which refers to the decrease of correlation between two patterns from one 

population to the next. Although it is prudent to remain aware of the different nature of 

these levels and definitions, their conflation ultimately represents the attempt to 

understand how physiological systems implement algorithms in order to bring forth 

behavior. This is best understood by briefly reviewing the history of the theory of pattern 

separation. The theory originally arose from computational neuroscience (Aimone et al., 

2011). In 1971, David Marr proposed his highly influential ‘theory for archicortex’. It stated 

that the CA3 region of the hippocampus may function as an autoassociation or attractor 

network, ideal for forming memory representations, because it displayed such pronounced 

recurrent connectivity (Marr, 1971). Subsequent work on attractor networks showed, that 

they are highly prone to destructive interference, and that their capacity can be dramatically 

increased if their input, during the encoding phase, is orthogonal (Amit et al., 1987; Hopfield, 

1982; see also section 1.1.3). Due to its sparse projection to CA3 and large cell population 

the DG seemed ideally suited for the task of providing decorrelated input (McNaughton and 

Morris, 1987; Treves and Rolls, 1992). It was the confirmation of several predictions which 
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this theory ‘pattern separation’ made, that ‘solidified a general consensus in the community’ 

(Aimone et al., 2011). Firstly, the discharge of very few GCs should efficiently activate CA3 

cells (Henze et al., 2002). Secondly, the GC population should be characterized by extremely 

sparse firing, possibly being under strong inhibitory control (Nitz and McNaughton, 2004). 

Thirdly, the DG should play an important role during memory encoding rather than during 

recall (Kheirbek et al., 2013; Lee and Kesner, 2004). Fourth, the cellular activity patterns in 

DG should display some form of decorrelation (Leutgeb et al., 2007; Neunuebel and Knierim, 

2014; Schmidt et al., 2012). And finally, the DG should play a role during behavioral 

discrimination tasks (Bakker et al., 2008; Das et al., 2014; Gilbert et al., 2001; McHugh et al., 

2007). In addition there is evidence that adult neurogenesis, a defining trait of the DG, plays 

an important role in pattern separation (Clelland et al., 2009; Sahay et al., 2011).  

While this confluence of evidence has led to a general consensus as to the validity of the 

general concept of pattern separation in the DG, it is important to keep in mind that the 

large majority of the studies actually address discrimination within individual populations or 

at a behavioral level rather than the process of pattern separation as originally defined 

computationally (Santoro, 2013; but see Neunuebel and Knierim, 2014).  

 

1.6.1 The Proposed Role of Feedback Inhibition in Pattern Separation 

As a result of these theoretical considerations and empirical findings the feedback inhibitory 

microcircuitry is deemed of critical importance for DG processing (Ewell and Jones, 2010; 

Faghihi and Moustafa, 2015; Jinde et al., 2012; Nitz and McNaughton, 2004; Sambandan et 

al., 2010; Temprana et al., 2015). It has been assumed to serve two functions in particular: 

‘max pooling’ contributing to sparse firing and ‘neuronal group selection’ leading to 

additional pattern orthogonalization.  

Most computational studies have explicitly or implicitly assumed feedback inhibition to 

implement variations of the k-winners-take-all rule in the DG (de Almeida et al., 2009; Myers 

and Scharfman, 2009; O’Reilly and McClelland, 1994; Petrantonakis and Poirazi, 2015; Rolls 

and Treves, 1998). The sparsification of individual representations is in itself already likely to 

lead to pattern orthogonalization in the sense of a reduced overlap as detailed in section 

1.1.2. Separate from this purely statistical orthogonalization it is possible that active 
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mechanisms of decorrelation exist. Again, feedback inhibition has been the primary suspect 

due to its ability to implement active competition between assemblies of principal cells, 

thereby implementing neuronal group selection (Buzsáki, 2010; Roux and Buzsáki, 2014).  

As detailed above, the feedback inhibitory microcircuit is highly complex. However, the 

relevant parameter at the population level is the inhibition ultimately delivered to dentate 

GCs. Consequently, this study treats the feedback inhibitory microcircuitry as a black box, 

considering only the net output arriving at the GC population. Note that the function of 

immature GC in the learning of discriminable patterns has been proposed to rely on the lack 

of a proper integration into the feedback inhibitory circuit (Aimone et al., 2011; Temprana et 

al., 2014; see also chapter 4.7). Accordingly, this study concentrates on the mature GC 

population. 

 

1.7 Key Questions 

Although decades of computational models have relied on feedback inhibition to implement 

important computational functions such as max pooling and neuronal group selection, the 

underlying microcircuit is poorly understood. To arrive at a better understanding of how 

feedback inhibition may contribute to these functions requires a quantitative 

characterization of the recruitment of feedback inhibition from the population perspective. 

Firstly, what is the dynamic range of the feedback inhibitory circuit? Secondly, what is the 

gain of the circuit and how does this gain develop as more cells are activated? In order to 

answer these questions it is furthermore necessary to understand how feedback inhibition is 

organized in space and time. Specifically, how are the cells receiving inhibition from a given 

GC population distributed in space and what is the time course of this inhibition. Finally, how 

does inhibition behave during trains of GC activity? Although these questions are overtly 

important in the DG of the hippocampal formation, the underlying network motif is likely to 

play an important role throughout the brain. 
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2. Materials and Methods 

2.1 Animals and Slice Preparation 

All animals were treated according to the University of Bonn Animal Experiment Guideline, 

minimizing unnecessary pain and discomfort. Experiments were performed on horizontal 

hippocampal slices of 21 to 97 day old mice. Ca2+ imaging and some dual recording 

experiments were performed in C57/Bl6 mice obtained from Charles River Laboratories 

(Wilmington, Massachusetts, USA). Optogenetic experiments were performed on double 

transgenic offspring of Tg(Prox1-cre)SJ39Gsat/Mmucd) obtained from MMRRC UC Davis as 

cryopreserved sperm and rederived in the local facility (Gong et al., 2003, 2007) and Ai32-

mice (B6;129S-Gt(ROSA)26Sortm32(CAG-COP4*H134R/EYFP)Hze/J, Jackson Laboratory, Bar Harbor, 

USA). For preparation the animals were deeply anesthetized with Isoflurane (Abbott 

Laboratories, Abbot Park, USA) and then decapitated. The head was instantaneously 

submerged in ice-cold carbogen saturated artificial cerebrospinal fluid (containing in mM: 

NaCl, 60; sucrose, 100; KCl, 2.5; NaH2PO4, 1.25; NaHCO3, 26; CaCl2, 1; MgCl2, 5; glucose, 20) 

and the brain removed.  

 

2.2 Obtaining Maximum Connectivity Plane Sections 

Horizontal 350 µm thick slices were cut with a vibratome (VT1200 S, Leica, Wetzlar, 

Germany). The brain was glued to the to the slicing chamber on its dorsal surface, such that 

slices will be parallel to the dorsal brain surface (compare Bischofberger et al., 2006). To 

obtain slices of the MCP the slicing depth at which the temporal pole of the hippocampus 

first became visible was noted (depth = 0 µm). From here the first four sections were 

discarded (up to a depth of 1400 µm). The following two to three sections were secured such 

that one further section before the beginning of the dorsal hippocampus (approximately 

2400 µm) could be discarded. The beginning of the dorsal hippocampus, identified by its oval 

shape and oblique orientation towards the midline, served as an additional control for the 

anatomical position. Slices were then incubated at 35 °C for 20 to 40 minutes. Afterwards, 

slices were stored in normal ACSF (containing in mM: NaCl, 125; KCl, 3.5; NaH2PO4, 1.25; 

NaHCO3, 26; CaCl2, 2.0; MgCl2, 2.0; glucose, 15) at room temperature for up to 6 hours. For 
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the experiments slices were transferred into a submerged recording chamber at 35 °C under 

constant superfusion with normal ACSF (approximately 3 ml/min). Experiments were 

performed in the superior blade unless otherwise indicated. All experiments were conducted 

in accordance with the guidelines of the Animal Care and Use Committee of the University of 

Bonn. 

 

2.3 Electrophysiological Recordings 

Hippocampal dentate GCs were visually identified using infrared oblique illumination 

contrast microscopy in a 20x or 60x water immersion objective (Olympus, XLumPlanFl, 

NA0.95W or Nikon, N60X-NIR Apo, NA1.0W) on an upright microscope (TriMScope®, 

LaVision Biotech, Bielefeld, Germany or Nikon Eclipse FN1, Tokyo, Japan). For voltage clamp 

measurements the whole-cell patch-clamp configuration was established with a low chloride 

cesium-methane-sulfonate based intracellular solution (intracellular solution containing in 

mM: CH3O3SCs, 140; 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES-acid), 5; 

ethylene glycol tetraacetic acid (EGTA), 0.16; MgCl2, 0.5; sodium phosphocreatine, 5; 

glucose, 10). For current clamp experiments a low chloride solution (CC-intracellular solution 

containing in mM: K-gluconate, 140; 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES-acid), 5; ethylene glycol tetraacetic acid (EGTA), 0.16; MgCl2, 0.5; sodium 

phosphocreatine, 5) was used. Cell-attached recordings were performed with normal ACSF 

or in some cases with VC-intracellular solution. The calculated Cl--equilibrium potential with 

low Cl- intracellular solution is given by the Nernst equation (Eq. 2),     

                𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2        𝑉𝐶𝑙− =  
𝑅 × 𝑇

−𝐹
ln (

[𝐶𝑙]𝑒𝑥

[𝐶𝑙]𝑖𝑛
) =  −130.5 𝑚𝑉 

where R is the universal gas constant (R = 8.314 J K−1 mol−1), T is the absolute temperature (T 

= 308.5 K, F is the Faraday constant (F = 9.649 × 104 C mol−1), [Cl-]ex is the extracellular Cl- 

concentration ([Cl-]ex = 136.5 mM), and [Cl-]in is the intracellular Cl- concentration ([Cl-]in = 1 

mM). For voltage clamp experiments the intracellular solution was additionally K+-free in 

order to allow stable recording at 0 mV further increasing the Cl- driving force as well as 

minimizing cation-mediated currents. The electrochemical driving force for Cl- under these 

conditions is given by (Eq. 3), 
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                𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3                        𝑉𝐷𝐹 =  𝑉𝑚 −  𝑉𝐶𝑙− = 130.5 𝑚𝑉 

where VDF is the Cl- driving force and Vm is the membrane potential at which the cell is held 

(Vm = Vh = 0 mV). The high resulting Cl- driving force produces large Cl- mediated outward 

currents with good signal to noise ratio. The input resistance was measured in voltage clamp 

with a 25 ms, -5 mV pulse. Cells with input resistances greater than 300 MΩ were discarded 

in order to exclude immature GCs (Schmidt-Hieber et al., 2004). In all imaging experiments 

and a subset of optogenetic experiments the intracellular solution additionally contained 

100 µM Alexa 594 hydrazide sodium salt (Life Technologies, Carlsbad, USA). The identity of 

visually and electrophysiologically identified mature GC was confirmed by their dendritic 

morphology after dye filling in every case tested. Patch pipettes were made from 

borosilicate glass capillaries (GB150F-8P, Science Products) with a horizontal puller (P-97, 

Sutter Instruments, Novato, USA or Zeitz DMZ, Zeitz-Instruments, München, Germany). 

Pipette resistance of the patch pipettes was 3 – 7 MΩ.  

Voltage-clamp recordings were performed with a Multiclamp 700B (Molecular Devices, 

Sunnyvale, USA) or a BVC-700A amplifier (Dagan Corporation, Minneapolis, USA). Current-

clamp recordings were performed with a Multiclamp 700B. Series resistance was 

compensated for both CC and VC (8 – 30 MΩ). Voltage or current signals were digitized with 

a Digidata 1322A (Molecular Devices) or (Instrutech ITC-16, Heka Electronics, Ludwigshafen, 

Germany) at 10 to 50 kHz and recorded using Clampex 10.2 (Molecular Devices) or Igor Pro 6 

(Wavemetrics, Lake Oswego, USA) on a PC running Windows XP. For IPSC measurements 

cells were held at 0 mV including liquid-junction potential correction (16 mV). The liquid 

junction potential for VC recordings was calculated using the Clampex Junction Potential 

Calculator. For CC-recordings liquid junction potential was not corrected. The IPSC input-

output relationships were only used if they showed saturation. For further analysis they 

were then normalized to the maximally elicited IPSC for the respective cell. Note, that due to 

this normalization all normalized IPSC values are by definition below 100 %. All chemicals for 

electrophysiological experiments were obtained from Sigma-Aldrich (St. Louis, USA). 
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2.4 Pharmacology 

All experiments were performed in the presence of 0.5 µM CGP (CGP 52432) to block GABAB 

receptors. To exclude direct electrical activation of interneurons during Ca2+ imaging 

experiments, 25 µM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) + 50 µM D-2-amino-5-

phosphonovalerate (D-APV) was bath applied at the end of each experiment. DCG-IV (0.5 

µM) and Gabazine (SR 95531 hydrobromide, 10 µM) were also bath applied. For optogenetic 

experiments 40 µM CNQX + 50 µM D-APV was used. All drugs were purchased from Tocris 

Bioscience (Bristol, UK). 

 

2.5 Dual Patch Experiments 

Two GCs within 100 µm of each other were recorded. To test for single GCs induced 

feedback inhibition 10 to 15 trains of 10 APs at 100 Hz were elicited by brief (3 ms) current 

injections in one cell. To monitor inhibition in the other cell it was either injected with a 

positive current such that its membrane potential was approximately -60 mV (for dual CC-

recordings) or held at 0 mV as described above (for VC-recordings, section 2.3). The resulting 

traces were averaged in order to be able to detect even minute IPSCs or IPSPs. This was 

necessary due to the high level of spontaneous activity in MCP slices. 

 

2.6 Ca2+ Imaging 

Dye loading was modified from (Garaschuk et al., 2006) and performed in the submerged 

chamber at 35°C under constant superfusion. A high affinity Ca2+ dye Oregon Green® 488 

BAPTA-1 acetoxy-methyl ester (OGB-1 AM, 50µg) was dissolved in 4.5 µl 20 % pluronic F-127 

in DMSO (both Life Technologies, Carlsbad, USA) by 10 to 15 min of vortexing. The resulting 

stock was diluted 1:10 with simplified Ca2+-free Ringer’s solution (containing in mM: NaCl, 

150; KCl, 2.5; HEPES, 10) to yield a dye concentration of approximately 0.9 mM. Before use, 

the staining solution was filtered with 0.45 µm pore diameter (Merck Millipore, Darmstadt, 

Germany). Approximately 5 µl was filled into a standard patch pipette with a resistance of 3 

– 7 MΩ. The dye was then injected into the slice at 4 to 5 locations along the superior blade 
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of the granule cell layer at 100 µm intervals. Each bolus was injected ~ 30 µm below the slice 

surface for 3 minutes at 500 mbar. Upon application of the dye in this manner, the lipophilic 

OGB-1 AM is taken up through the cell membranes. Intracellularly the acetoxy-methyl group 

is cleaved by unspecific esterases rendering the dye hydrophilic and thus trapped inside the 

cytoplasm. Recordings were started at least 45 minutes after the staining procedure when a 

sufficient amount of dye had accumulated inside the cells. Comparison with cells, filled with 

known concentrations of OGB-1 through a patch pipette, indicate the dye concentration 

achieved by bolus loading was in the range of 50 to 100 µM.  

Population Ca2+ Imaging was performed using a multibeam two-photon fluorescence 

microscope (TriMScope®, LaVision Biotech, Bielefeld, Germany). This system is based on a 

beam splitter that separates the incoming femtosecond laser beam (provided by a 

Ti:Sapphire laser, Chameleon Ultra, Coherent, Santa Clara, USA; excitation wavelength tuned 

to 810 nm) into 64 beams, which are scanned simultaneously through the slice. This allowed 

imaging of a large field of view (320 x 240 µm) with high spatial and temporal resolution 

(1920 x 1440 pixels, 20 Hz) as well as sufficiently low signal to noise ratios for the detection 

of single AP induced Ca2+ transients (see section 3.1.1). Images were acquired with a digital 

CMOS camera (ORCA-Flash, Hamamatsu) through a high numerical aperture 20x water 

immersion Objective (XLumPlanFl, NA-0.95, Olympus). 

Time series were processed with ImageJ 1.48o and IGOR Pro 6.3 in a semiautomatic manner. 

To correct for movement artifacts and drift, time series were first registered. Regions of 

interest were then manually placed onto all well loaded cells in an average projection of the 

series. Individual cellular fluorescence over time traces were extracted and further 

processed with IGOR Pro software. Ca2+ fluorescence increase normalized to baseline (ΔF/F) 

traces of individual cells were calculated without background subtraction. The fraction of 

responders for each time series was extracted by automatic thresholding. The threshold was 

determined by combined cell-attached and Ca2+ imaging experiments (section 3.1.1). Note, 

that for these experiments the stimulation electrode was placed into the hilus in order to 

obtain a sufficient number of true positive responders. Responders and non-responders 

were further confirmed visually. The imaged cell population comprised on average 46 ± 18 

(standard deviation) cells (n = 23 slices). The active cell fraction corresponds to the fraction 

of responders normalized to the dye loaded population within each section. 
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To assess the spatial distribution of cell activation in imaging experiments, ΔF/F projections 

were created by averaging and smoothing four frames during the transient and four frames 

at baseline fluorescence and then calculating the pixel wise ΔF/F.  

 

2.7 Electrical Stimulation 

To electrically elicit feedback inhibition a bipolar cluster microelectrode (FHC, Bowdoin, USA) 

connected to a digital stimulus isolator (AM-systems, Sequim, USA) was placed into stratum 

lucidum in the CA3 region. Stimuli between 50 and 500 µA were applied for 0.1 ms in a 

randomized fashion in order not to mistake decreasing stimulus efficiency at increasing 

power with IPSC saturation. IPSCs at individual powers were elicited 5 to 13 times at 0.1 Hz 

and averaged. The stimulus isolator was constantly monitored to ascertain that the applied 

current could be passed by the electrode. This was sometimes not the case for currents 

between 300 and 500 µA leading to missing data points for these powers. In order to sever 

CA3 backprojections in a subset of experiments two cuts were made along the hilar border 

sparing only the mossy fiber tract. Only experiments in which a complete block of inhibition 

by glutamatergic blockers could be demonstrated were considered for the analysis of 

feedback inhibition (8 of 23, see section 2.4).  

 

2.8 Calculation of the Recruitment of Feedback Inhibition for Imaging 

Experiments  

In order to obtain the input-output relationships of the feedback inhibitory circuit the GC 

activation (input) was related to the GC inhibition (output). To this end data concerning each 

variable was averaged over slices by power. This was necessary since only a small subset of 

experiments in which inhibition was completely blocked could also be successfully imaged (6 

of 8 sections). Due to the small numbers of active cells throughout the entire dataset with 

sufficient dye loading (n = 23) analysis of only these 6 slices leads to a very piecemeal 

recruitment curve. A more accurate estimation of the recruitment of feedback inhibition can 

be obtained by averaging the cell activation and inhibition over all respectively appropriate 

slices and relating them by power. Note, that while the fraction of activated cells in non-MCP 
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sections (not included in the quantitative analysis) was mostly zero (in 7/8 sections; single 

cell in 8th section), IPSCs were almost always present (in 28 of 29 cells in non-MCP sections 

which were not included in analysis). In other words, the exclusion of non-MCP sections 

represents a bias towards larger cell fractions.  

 

2.9 Optogenetic Stimulation 

Optogenetic experiments were performed on double transgenic mice conditionally 

expressing of ChR(H134R)-eYFP in dentate GCs (Prox1-ChR-eYPF mice, (Gong et al., 2003, 

2007; see also Allen Mouse Brain Atlas, Lein et al., 2007). Focal stimulation was achieved 

through a galvanometer driven spot illumination device coupled to a 473 nm DPSS Laser 

(UGA-40, DL-473, Rapp Optoelectronics, Hamburg, Germany) on an upright microscope 

(Nikon Eclipse FN1, Tokyo, Japan). The FWHM of the resulting stimulation spot at the focal 

plane was 8.36 ± 0.04 µm (Nikon 10X Plan Fluor, NA 0.3). It was measured by rendering the 

laser spot on a chrome plate and fitting the resulting intensity profile with a Gaussian. Laser 

powers are given in arbitrary units from 1 to 7 corresponding to 15 ± 1 µW, 107 ± 14 µW, 

292 ± 42 µW, 762 ± 105 µW, 1433 ± 49 µW, 1729 ± 165 µW and 1660 ± 163 µW measured at 

the objective (n = 5 measurements spread over several months). Individual illumination 

spots were placed at approximately 40 µm into the ML at the slice surface thereby activating 

the dendrites of several juxtaposed GC. Stimulation pulses were of 20 ms duration.  

 

2.10 Measurement of the Fluorescence Intensity Profile 

To measure the fluorescence intensity profile throughout a slice the setup was modified to 

be able to image the slice from below while the laser beam was focused to its surface. This 

was achieved by focusing a Surgical Microscope with 36x magnification (M695, Leica 

Microsystems, Wetzlar, Germany) to the lower slice surface. Images were taken with a CCD 

camera (Nikon D60, 0.25 ms exposure, no gain). A neutral density filter (ND4) was 

introduced into the light path in order to avoid saturation. Acute sections of 100, 150, 200, 

250, 300 and 350 µm thickness were cut from Prox1-ChR-eYPF mice as described above. The 

laser was focused to the surface of in the hilus and an image taken at every laser power (P = 
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1 to 7 AU). The stage was moved for every image to avoid bleaching or phototoxicity. The 

two-dimensional profiles of individual slices were roughly isometric. Therefore linear profiles 

were measured in several directions and averaged to obtain a single x profile per section. 

The x-profiles of slices of different thickness were then stacked to obtain the xz-profile. 

Values below 100 µm depth were obtained through fitting a Gaussian function in x-direction 

at 100 µm depth and an exponential function in z-direction. Complete three-dimensional 

intensity profiles of three different locations of two slices within the dentate molecular layer 

were averaged. 

 

2.11 Calculation of the Optogenetically Activated Cell Fraction  

To assess the active fraction of GCs individual cells were recorded in cell-attached mode and 

illumination spots were placed along the GC layer at 100 µm intervals, all approximately 40 

µm into the ML. The entire profile was then probed in triplicate with 1 s intervals between 

individual locations. When the stimulation spot was in sufficient proximity to the recorded 

cell clear APs were generally visible (in 25 of 26 cells). The non-responding cell was pre-

depolarized via the cell-attached pipette and stimulated with very high powers to confirm its 

general ability to spike in response to light stimulation. For stimulation, the focal plane was 

set to the depth at the middle between the highest and lowest point of the slice surface. This 

was generally not the plane of the recorded cell. The dependence of the IPSC and cell spiking 

on focusing 50 µm above or below the slice was tested and no differences were observed (n 

= 6, not shown). Cell-attached spikes were detected by automatic thresholding at 6x 

standard deviation of the baseline. The spatial profile of firing probabilities, centered on the 

recorded cells, was averaged within each section. Probability distributions for sections were 

then averaged to obtain the overall firing probability distribution as a function of the x – 

distance for each power (n = 14 cells). To test if cell activation properties differed between 

blades the maximum firing probabilities (at P = 7) as well as the slopes (increase in firing 

probability from P = 1 to 7) when simply averaging over all location of a given cell were 

compared by t-test (p = 0.490 and 0.684 respectively). Since no difference was observed a 

single firing probability distribution was calculated for all cells.  
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Importantly, the decay of the firing probability with increasing distance from the light focus 

depends on both, the decay of the light intensity and the spread of the dendritic trees of 

GCs. In order to calculate the firing probabilities throughout the slice, the firing probability 

distribution at the surface was correlated to the light intensity distribution at a given power. 

This was done by calculating the firing probability distribution as a function of the ‘virtual 

distance’. The virtual distance is given by the intensity weighted mean distance from a given 

pixel to all other pixels of the light intensity profile at a given power. It therefore 

incorporates the distances from an individual cell to all illuminated pixels weighted by the 

intensity within those pixels. Assigning the firing probabilities of pixels in the top row to their 

respective virtual distance yields the firing probability distribution as a function of virtual 

distance. It can now be used to also calculate the firing probabilities of pixels deeper in the 

slice using the measured light intensity distribution as input. The active cell fraction then 

corresponds simply to the mean firing probability throughout the slice. This calculation is 

independent of the size and number of GC. The procedure was performed for every power 

individually. For comparison the active cell fraction was also computed with alternative 

assumptions about the decay of the firing probability with increasing slice depth. If no firing 

probability decay with increasing depth is assumed, the active cell fraction throughout the 

slice is given simply by the average of the measured firing probabilities at the slice surface. 

Alternatively, the firing probability decay with depth was assumed to be identical to the 

measured decay along the slice surface (isometric firing probability distribution). In this case, 

Gaussian functions were fit to the probability distributions at the surface and these Gaussian 

functions were then assumed to extend also in the z-dimension. This approach assumes that 

the firing probability distribution in x and z is dependent mainly on the dendritic arbor while 

the light intensity distribution is negligible. The active cell fraction was then calculated by 

numerical integration under the two dimensional Gaussian (with the bounds from 0 to 350 

µm in z and -888 to 888 µm in x, which corresponds to the mean GC layer length) normalized 

to the same area with a uniform firing probability of 1. 

Finally, the given cell fractions were corrected by a factor reflecting the fact that a large 

portion of spikes occurred later than the mean IPSC. This factor was calculated simply as the 

number of spikes preceding the mean IPSC for each power and fitting the resulting relation 

with an exponential function. Note that this does not take account of the disynaptic delay 

between mossy fiber output and interneuron input. 
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2.12 Comparison of Focal and Global Activation 

To globally activate the GC population a multimode light fiber (BF-22, Thorlabs, New Jersey, 

USA) coupled to a 473 nm laser (Omicron Phoxx, Rodgau-Dudenhofen, Germany) was placed 

above the slice surface, non-specifically illuminating the entire hippocampus. Analogous to 

focal stimulations, the activated cell fraction was calculated as the firing probability of 

individual cells following 20 ms pulses. Here no spatial normalization is necessary since cells 

were sampled from random locations with respect to the light fiber. Firing probabilities for 

the focal stimulation in these sections was calculated as the simple average of all stimulation 

locations, corresponding to the assumption of no firing probability decay with depth. The 

laser power for global stimulation was measured at the fiber end.  

 

2.13 Spatial Distribution of Feedback Inhibition 

The same stimulation paradigm which was used to assess cell activation was used to assess 

the spatial distribution of feedback inhibition. For individual cells, IPSCs at each location and 

power were averaged. The entire profile was then normalized to the largest measured IPSC 

of that cell, independent of the power and stimulation location at which it occurred. GCs 

were measured at various positions within the superior and inferior blades of the DG. For 

analysis, all IPSC profiles were spatially aligned to the recorded cells. The mean distance to 

apex ± one standard deviation was 356 ± 163 µm and 322 ± 97 µm for superior and inferior 

cells respectively (n = 8, 8 cells). In order to test whether there were any distinct effects of 

the apex, such as a steep decay of inhibition, which would be masked by alignment to the 

recorded cells, I also aligned the profiles to the apex (not shown). However, no such effects 

were visible. To analyze the saturated IPSC profiles, normalized IPSC amplitudes from P = 5 

to 7 were averaged for each cell. In order to analyze the effects of local versus remote 

stimulation for each blade a distance was chosen such that each remote location was still 

within the DG but always in the other blade (800 µm from the recorded cell). Normalized 

IPSCs of the three locations surrounding the recorded cell or this remote location were 

averaged within each power to obtain the IPSC amplitudes for further analysis. The cell 

fraction required for the activation of a half maximal IPSC in each section was assessed for 

each cell by linear interpolation between the measured values.  
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GCs of both blades were pooled to analyze the kinetic properties of IPSCs in order to gain 

power. All parameters were calculated on the multiple trials of individual cells. The latency 

was measured as the time from the beginning of the pulse to when the IPSC superseded 6 

fold standard deviation of the baseline. The jitter was calculated as the standard deviation of 

these latencies for individual cells. The rise time was calculated as the mean 20 to 80 rise 

time of each cell and the decay time was obtained from an exponential fit to the decaying 

phase of the IPSC and corresponds to the fit-parameter tau. 

 

2.14 Frequency Dependence of Feedback Inhibition 

The frequency dependence of inhibition was tested optogenetically with 20 ms pulses at 

powers below saturation (usually P = 2 for local inhibition and P = 3 for remote inhibition). 

For each power and frequency five repeats were recorded and averaged. The peak 

amplitude between 15 and 35 ms following stimulus beginning was extracted and 

normalized to the first IPSC in a train. For comparison of the different stimulation 

frequencies the mean of the last three stimuli normalized to the first was calculated at each 

frequency. AP probabilities were assessed by cell-attached recordings with the stimulation 

site close to the recorded cell. Cell-attached spikes were detected by automatic thresholding 

as above during the exact time window of the pulse for each pulse (0 to 20 ms). 

Antidromic electrical stimulation was also performed at subsaturation powers (usually 100 

to 150 pA). Only cells in which the IPSC could be blocked by > 90 % with glutamatergic 

blockers were used (n = 5 of 6) and the insensitive component was subtracted. Furthermore, 

in contrast to optogenetic stimulation IPSC peaks were detected between 5 and 15 ms 

following the stimulus. All further analysis was identical to that for optogenetic frequency 

stimulation. 

 

2.15 Analysis 

Analyses were performed using ImageJ, Microsoft Excel and Igor Pro. Fits were performed 

using Igor Pro. Statistical analyses were performed using GraphPad Prism 6 or Igor Pro 
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software. In order to maintain consistent statistical assumptions data were always tested 

with parametric tests (this was required to perform two way repeated measures ANOVA). In 

pharmacological experiments, IPSC amplitudes following block were normalized to their 

respective control values and then tested using one sided t-tests. Electrical versus 

optogenetic stimulation paradigms were compared using two sided, paired t-tests. IPSC 

distribution experiments were analyzed by two-way, repeated-measures ANOVA with 

Sidak’s posttest comparing local versus remote stimulation in each blade. Frequency 

dependence experiments were analyzed by two-way ANOVA or one sided t-test with 

Bonferroni-Holm correction. Unless indicated otherwise data are given as mean ± standard 

error of the mean. 
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3. Results 

 

The primary goal of this study was to quantify the recruitment of feedback inhibition within 

the hippocampal dentate GC population. To achieve this, it is necessary to activate 

controlled subpopulations of GCs, while simultaneously monitoring the magnitude of 

feedback inhibition. Electrical stimulation of the mossy fiber tract in CA3 leads to antidromic 

activation of a subpopulation of GCs as well as their local postsynaptic targets. Importantly, 

it allows the selective activation of feedback inhibition, while omitting feedforward 

inhibition. However, for the quantification of the recruitment of feedback inhibition, it is 

necessary to not only control but also monitor the fraction of active GC. This was achieved 

by population Ca2+ imaging. 

 

3.1 Population Ca2+ Imaging Assessment of the Recruitment of Feedback 

Inhibition  

Every AP is accompanied by a transient rise in the intracellular Ca2+ concentration. Ca2+ 

sensitive fluorescent dyes allow recording such transients in a large number of cells 

simultaneously by fast, low-noise imaging techniques. I therefore set out to monitor the 

fraction of antidromically activated GCs via population Ca2+ imaging while recording 

feedback inhibition from a single GC within, or immediately adjacent to, the imaging field. 

With most current imaging approaches single AP induced Ca2+ transients are only marginally 

above noise level. Therefore their reliable detection depends crucially on the exact 

experimental parameters such as cell type, imaging system, imaging parameters, 

intracellular dye, and dye concentration. Accordingly, it was necessary to begin by 

investigating the reliability of detection of single AP induced Ca2+ transients in our settings. 
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3.1.1 Detection of Single Action Potentials by Population Ca2+ Imaging 

In order to assess the relationship between AP firing and Ca2+ fluorescence increase in our 

experimental settings, I recorded from OGB-1-AM bolus loaded GCs in cell-attached mode, 

while simultaneously imaging fluorescence changes with multibeam two-photon microscopy 

(Fig. 3A, B). The stimulation electrode was placed immediately adjacent to the imaging field. 

Cells were differentiated into true responders or non-responders on the basis of the 

presence or absence of stimulus induced cell-attached spikes (Fig. 3C, D, responders green, 

non-responders grey). A histogram of the peak ΔF/F at the soma of non-responders upon a 

single stimulus was fitted with a Gaussian (Fig. 3E, grey dots, grey bars, n = 33). Using a 

threshold of the quadruple standard deviation of this fit (0.94 % ΔF/F, dashed line in Fig. 3E) I 

found that most true responders could also be identified by their Ca2+ signal (Fig. 3E, green 

dots, green bars). In order to explore the expected false positive and false negative rates in 

these settings I plotted both as a function of the detection threshold (Fig. 3F, false positives 

grey, false negatives green). It is important to realize that the resulting rates will depend on 

the true positive rate. The data were well approximated by sigmoidal fits (Fig. 3F, black 

traces). Using the detection threshold of 0.94 %, I found that at a true positive rate of 3 % 

the number of false positives and false negatives would be exactly equal, in effect canceling 

each other out (Fig. 3F, inset). 

Further, I noted a highly variable dye loading of different granule cells raising the question 

whether single AP induced Ca2+ transients may not be detectable below a certain level of 

intracellular dye loading. However, there was no correlation between baseline fluorescence 

and peak ΔF/F of either responders (Fig. 3G, F-test, p = 0.9) or non-responders (not shown, 

F-test, p = 0.92). A further potential source of systematic error is an increase in total 

diffracted light when a larger fraction of cells truly responds. This possibility arises, because 

in multibeam two-photon Ca2+ imaging a CCD camera is used to record the fluorescence of 

the entire imaging field simultaneously. The effect would result in non-responders mimicking 

the transient waveform of responders and ultimately more non-responders being falsely 

detected at higher stimulation powers. However, the peak ΔF/F of non-responders was not 

correlated to stimulation power (Fig. 3H, bottom, F-test, p = 0.67). Thus, our settings allow 

the reliable detection of single AP induced Ca2+ transients and the quantification of the 

active fraction of cells at the population level. 
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Fig. 3) Detection of single action potential induced calcium transients, A section of the dentate gyrus was 
loaded with OGB1-AM and imaged with multibeam two-photon microscopy, while antidromically eliciting 
action potentials and recording from individual cells in cell-attached mode. A) Schematic illustration of the 
experimental setup. B) Example of OGB1-AM loaded GCs. Scale bar: 10 µm C) Cells were stimulated with a 
single pulse (left) or bursts of 5 pulses at 30 Hz (middle) or 100 Hz (right). Cell-attached recordings revealed the 
exact number of induced action potentials (bottom) which could then be correlated with the intracellular 
calcium dynamics (middle). D) Superposition of the calcium fluorescence traces of 49 recorded cells constituted 
of cells identified as responders (green) or non-responders (grey) by cell-attached recordings. E) Peak ΔF/F of 
identified responders and non-responders plotted against their respective baseline fluorescence (left). A 
histogram of the peak ΔF/F of both respective groups revealed a Gaussian distribution of the non-responders 
(right, scale bar = 5 cells). The dashed line indicates the detection threshold at the quadruple standard 
deviation of this fit (0.94% ΔF/F). F)  False positive (grey) and false negative (green) rates were plotted as a 
function of the detection threshold and fitted with sigmoidal functions. A detection threshold of 0.94% leads to 
exactly equal numbers of false positives and false negatives at a true positive rate of 3 % (inset, dashed lines). 
G) To test for potential effects of variable dye loading on detection efficacy, peak ΔF/F of responders and 
baseline fluorescence intensity were tested for correlation. H) Since in multibeam two-photon calcium imaging 
the entire frame is detected simultaneously scattered light from responders at high stimulation powers might 
introduce a systematic error. Peak ΔF/F of non-responders did not increase with stimulation power. Dashed 
lines in (G) and (H) represent the 95 % confidence intervals of linear fits.  
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3.1.2 Determination of the Maximum Connectivity Plane 

Next, I moved the stimulation electrode into stratum lucidum of CA3 in order to 

antidromically activate GCs via the mossy fiber tract, while minimizing direct electrical 

activation of hilar interneurons (Fig. 4A). Two cuts were made around the mossy fiber tract 

to sever CA3 backprojections (Fig. 4A, dashed lines, Scharfman, 2007). Mossy fibers are 

organized in a strictly laminar fashion (Andersen et al., 1971), i.e. they run in the plane 

perpendicular to the septo-temporal axis of the hippocampus. A portion of the hippocampus 

in which this plane is aligned with the dorsal brain surface is the dorsal part of the ventral 

hippocampus (three short dashed lines in Fig. 4C, D, see section 2.2 for details). Sections 

obtained at this depth are therefore expected to contain a maximum of intact mossy fibers 

and were therefore denoted maximum connectivity plane sections (MCP; see also 

Bischofberger et al., 2006; arrow in Fig. 4B). In the sections corresponding to this MCP the 

number as well as fraction of antidromically activatable granule cells was maximal, 

consistent with an intact mossy fiber tract (Fig. 4E, n = 40 sections). Therefore all 

experiments included into the quantitative analyses were carried out in the thus defined 

MCP.  
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Fig. 4) Selection of the maximum connectivity plane; A) Illustration of the experimental setup in which 
GCs in an imaging-region (green square) are stimulated antidromically via a stimulation electrode placed 
into stratum lucidum of the adjacent CA3 region. Two cuts were made to isolate the mossy fiber tract 
while eliminating CA3 backprojections (dashed lines) B) to D) Three dimensional renderings of the mouse 
brain (blue) and hippocampal formation (green) from Allen Mouse Brain Atlas (Lein et al., 2007). D 
indicates dorsal, V ventral, R rostral, C caudal, M medial and L lateral. The maximum connectivity plane 
(MCP) is any plane perpendicular to the septotemporal axis (e.g. arrow in B). The mossy fibers of GCs are 
organized in a strictly lamellar fashion, i.e. they run within the MCP. C,D) Coronal (C) and sagittal (D) 
projections. A portion of the hippocampus in which the MCP is parallel to the dorsal surface of the brain is 
marked by three short dashed white lines. It is located approximately 1400 to 2100 µm from the temporal 
pole, where the temporal pole is defined as the first section in which the three layered hippocampal 
structure was visible (lower white dashed line) E) During antidromic stimulation in the mossy fiber tract 
and simultaneous population calcium imaging a larger fraction of cells within the imaged sample could be 
activated in the sections corresponding to the MCP.  Scale bar 2 mm 
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3.1.3 Selective Activation of Feedback Inhibitory Currents 

In order to quantify the amplitude of feedback inhibition I recorded from single dentate GCs 

in whole-cell voltage clamp mode with a K+ free, low Cl- intracellular solution. Cells were held 

at 0 mV creating a high Cl- driving force. The experimental setup was as described above (Fig. 

5A). Granule cells were filled with Alexa594 during recording to confirm their identity as 

granule cells (Fig. 5B, top). Stratum lucidum stimulation elicited transient outward currents, 

which increased with stimulation strength (Fig. 5B, bottom). The elicited currents were 

completely blocked by 10 µM Gabazine (to 1.5 ± 0.9 %, Fig. 5C, left, n = 6, p <0.001, one-

sided t-test) confirming that they reflected inhibitory currents. Importantly, although the 

stimulation electrode was placed into stratum lucidum of CA3, hilar interneurons may still be 

activated directly. Their dendritic trees are expansive and may in some cases reach into the 

CA3 region. Furthermore, in some cases very high stimulation powers were required in order 

to reach saturation of the IPSC. However, larger stimulation powers also expand the 

stimulated area increasing the probability of direct interneuron stimulation. To ascertain 

that the elicited currents reflected exclusively disynaptic feedback inhibition, only cells in 

which IPSCs were completely abolished by blockage of excitatory neurotransmission (25 µM 

CNQX + 50 µM D-APV) were used (Fig. 5C, middle, n = 8 of 23). An additional way to confirm 

that the IPSCs represented mossy fiber mediated feedback inhibition is to test their 

sensitivity to a selective agonist of the metabotrobic glutamate receptor type 2/3 

(mGluR2/3). This receptor is expressed in presynapses of mossy fibers onto dentate hilar 

border interneurons (Shigemoto et al., 1997). Its selective activation by low concentrations 

of DCG-IV reduces transmission onto these interneurons from mossy fibers but not CA3 

pyramidal cells (Doherty and Dingledine, 1998; Toth et al., 2000). I found that IPSCs were 

reduced to 16.3 ± 6.1 % by 0.5 µM DCG-IV (Fig. 5C, right, n = 4, p < 0.001, one-sided t-test) 

confirming they were mossy fiber mediated feedback IPSCs (Ewell and Jones, 2010; 

Sambandan et al., 2010). 
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3.1.4 Steep Recruitment of Feedback Inhibition (1) 

Combining IPSC recordings (Fig. 5B) with population Ca2+ imaging (Fig. 5D) in individual slices 

allowed probing the relation between the IPSC amplitude and the active fraction of GCs. The 

input-output relation of inhibition was recorded in a GC within or immediately adjacent to 

the imaging field (Fig. 5A). The IPSC amplitudes of all cells were normalized to the 

Fig. 5) Steep recruitment of feedback inhibition assessed by population calcium imaging, Combined IPSC 
recordings and population calcium imaging in MCP sections.  A) Schematic of experimental setup. B) Dentate 
GCs were recorded and filled with Alexa 594 (top, scale bar 20 µm) while eliciting feedback IPSCs with 
incremental stimulation intensities (bottom). C)  IPSCs were completely blocked by 10 µM Gabazine and largely 
by 0.5 µM DCG-IV. Only IPSC measurements in which a complete block with 25 µM CNQX + 50 µM D-APV was 
achieved were used. D) Left, OGB1-AM loaded population of dentate GCs (green) overlaid with a ΔF/F 
projection after stimulation (white). Right, ΔF/F traces of a subpopulation of these cells. GCs detected as active 
are labeled by asterisks. E) Plot of the IPSC amplitude (black) and active cell fraction (green) as a function of 
stimulation power for an individual section. F) Summary plot of the increases of IPSC amplitude and active cell 
fraction with stimulation intensity (n = 8, 22 respectively). The mean IPSC amplitude at saturation was 324.1 ± 
99.2 pA (n = 8) G) Data from F plotted to show the recruitment of feedback inhibition as a function of the 
active cell fraction. 
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amplitudes of their respective saturation. Fig. 5E shows an example from an individual slice 

in which the active cell fraction saturates at 2.4 % of the imaged population. In those 

sections in which both a saturating, CNQX/D-APV sensitive IPSC recordings as well as 

population imaging could be completely obtained IPSCs reached 100 % when 2.9 ± 1.5 % of 

GCs were active (n = 6). However, due to the small number of active cells within each slice, 

this estimate is subject to high variability. A more precise estimate can be gained by pooling 

the data from all appropriate recordings. These include IPSC recordings with successful 

glutamatergic block from 8 sections, of which 2 were excluded from imaging analysis due to 

insufficient dye loading, and videos from 23 sections of which 15 were excluded from IPSC 

analysis due to failure to demonstrate a glutamatergic block. I found a saturation of the IPSC 

at approximately 300 µA stimulation strength, where the mean active cell fraction was 2.2 ± 

0.7 % (Fig. 5F). Accordingly, my results indicate that the magnitude of feedback inhibition 

rises steeply reaching 90 % with less than 2.2 % of granule cells active and complete 

saturation at 3.7 ± 1.7 % of cells (Fig. 5G).  

 

3.2 Optogenetic Assessment of the Recruitment of Feedback Inhibition 

The experimental paradigm described above yielded a first estimate of the recruitment of 

feedback inhibition in GCs. However, it has several advantages as well as disadvantages, 

which will be discussed in detail below (chapter 4.2). The most important caveat is that, 

although the IPSC amplitude appeared to saturate, it was not possible to activate larger cell 

fractions without starting to recruit interneurons directly. Therefore it is necessary to 

confirm that IPSCs are actually saturated. Additionally, antidromic stimulation can be 

expected to activate a disperse population of GCs spread out in three dimensions. Although 

this aspect is likely to correspond to the physiological situation it raises the question, if the 

imaged sample population is representative of the population involved in recruiting the 

interneurons mediating local inhibition. More generally, it raises the question how feedback 

inhibition is spatially distributed. This is important, since cells which are not integrated into 

the feedback inhibitory circuit should not be considered when assessing the active fraction 

of the recruiting population.  

 



47 
 

3.2.1 Optogenetic Activation of Feedback Inhibitory Currents  

We therefore decided to verify the findings from the population Ca2+ imaging approach by 

an alternative method, namely the controlled optogenetic activation of varying fractions of 

GCs at defined locations within the slice. To this end mice selectively expressing 

ChR2(H134R)eYFP in GCs were created by crossing Prox1-Cre mice (Tg(Prox1-cre)SJ39Gsat/Mmucd; 

Gong et al., 2003, 2007) with Ai32-mice (B6;129S-Gt(ROSA)26Sortm32(CAG-COP4*H134R/EYFP)Hze/J). 

Prox1-Cre mice express Cre-recombinase under the prospero-related homeo box 1 promotor 

which, in the central nervous system, is expressed specifically in dentate GCs (Gong et al., 

2003, 2007; see also Allen Mouse Brain Atlas, Lein et al., 2007). Ai32 mice are homozygous 

for the conditional Rosa-CAG-LSL-ChR2(H134R)-EYFP-WPRE construct (Madisen et al., 2012). In 

it a loxP-flanked STOP cassette prevents transcription of ChR2(H134R)-eYFP under the universal 

CAG promotor. The resulting double transgenic mice stably and selectively expressed 

ChR2(H134R)-eYFP in dentate gyrus GCs (Fig. 6). Fluorescence was concentrated in the regions 

of GC processes while the GC-layer itself (Fig. 6A, two short black lines) displayed little 

fluorescence (compare Kheirbek et al., 2013). This is most likely due to a higher membrane 

fraction in these regions, since ChR2(H134R)-eYFP is a membrane bound construct. Note the 

prominent visibility of the mossy fiber tract (Fig. 6A, arrow). 

In order to achieve spatially controlled illumination, we used a laser integrated into the 

microscope light path controlled in x and y direction by galvanometric mirrors (Fig. 6B). At 

the focal plane this resulted in a narrow laser spot with 8.36 ± 0.04 µm FWHM and up to 1.7 

mW power (corresponding to P = 7 AU; Fig. 6B, inset). Use of a low magnification, water 

immersion objective (10x) allowed the rapid placement of this laser spot along the entire 

dentate GC layer (Fig. 6A, field of view indicated by blue square).  



48 
 

 

In order to assess the recruitment of feedback inhibition I recorded feedback inhibitory 

currents upon a single 20 ms light pulse within 100 µm of the recorded cell and 40 µm into 

the molecular layer (Fig. 6C, left). Progressively increasing the laser power led to increasing 

IPSC amplitudes which usually saturated quite rapidly (around P = 3 AU corresponding to 300 

µW, Fig. 6C, right). Optogenetically elicited inhibitory currents were completely abolished by 

40 µM CNQX + 50 µM D-APV, confirming that interneurons were not directly activated (Fig. 

6D, n = 9). In order to compare the optogenetic activation of feedback inhibition to 

antidromic electrical stimulation I combined the two techniques in a subset of sections (Fig. 

6E, F). The maximal CNQX/D-APV sensitive IPSC amplitude achievable through antidromic 

Fig. 6) Optogenetically elicited feedback inhibition, Mice constitutively expressing ChR2
(H134R)

-EYFP controlled 
by the Prox1 promotor reliably and specifically showed EYFP expression in the dentate GC dendritic and axonic 
regions. A) Epifluorescence image of an acute maximum connectivity plane slice. Note the prominent visibility 
of the mossy fiber tract (arrow). The field of view under the 10x water immersion objective used for 
optogenetic stimulation is indicated by a blue square. A portion of the superior blade of the GC layer is outlined 
by two short black lines and the blue dot indicates a typical stimulation site relative to it. B) Schematic of the 
microscope setup used to achieve spatially controlled illumination. The inset shows the intensity profile of the 
laser focus on a non-diffracting surface. C) Top left, reconstruction of an A594 filled dendritic tree from an 
epifluorescence image (scale bar 50 µm).  Left, illustration of the position of the recorded cell in the GC layer 
and the position of the stimulation spot 40 µm into the molecular layer; Right, IPSCs for 20 ms stimulation 
powers at increasing laser power (P = 1 to 7 AU). Each trace represents an average of 3 trials. D) All 
optogenetically elicited IPSCs were completely blocked by 40 µM CNQX + 50 µM D-APV (n=9). E) Schematic of 
the two stimulation paradigms in an individual slice. F) Example traces for IPSCs following electrical or focal 
optogenetic stimulation. G) The maximal IPSC amplitude was similar for the two stimulation paradigms (361 ± 
37 versus 410 ± 13 pA for electrical and optogenetic stimulation respectively, paired t-test, p = 0.28, n = 4) H) 
Summary IPSC amplitudes from cells in the superior blade (n=7 cells). IPSC amplitudes for each cell were 
normalized to the maximum amplitude measured in that respective cell. 
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electrical stimulation was similar to the maximal optogenetically elicited IPSC (Fig. 6G, 361 ± 

37 versus 410 ± 13 pA respectively, paired t-test, p = 0.28, n = 4). Combining the data on IPSC 

recruitment by local stimulation normalized to the maximal individually observed IPSC for 

each cell revealed a clear saturation of inhibition as early as P = 3 AU corresponding to 300 

µW (n = 7, Fig. 6H).  

 

3.2.2 Optogenetic Activation of Granule Cells 

Next, I estimated the GC fraction which is activated at each respective laser power. To this 

end one to two GC were recorded in cell-attached mode in the same slices in which the 

input-output relation of inhibition was recorded (n = 14 sections, 26 cells). Cells were 

recorded in both the superior and inferior blades (n = 13, 13 respectively). Since their 

activation properties did not significantly differ, cells from both blades were pooled. In order 

to assess the spatial distribution of GC activation resulting from a single stimulation spot (as 

used to probe inhibition) illumination spots were placed at 100 µm intervals along the GC 

layer and probed sequentially (Fig. 7A). This allowed the estimation of a mean firing 

probability as a function of the distance between the stimulation spot and the recorded cell 

for each laser power (Fig. 7B, three example powers shown). Here the distance is measured 

at the slice surface, along the GC layer (x-distance in Fig. 7B, D, E, G). However, the firing 

probability of cells in the vicinity of the illumination spot is likely to increase not only as a 

function of the laser power and spread at the surface, but also of the penetration depth of 

the light cone. Accordingly, an accurate estimation of the total active cell fraction in the slice 

requires knowledge about the light intensity distribution throughout the slice at different 

powers. Therefore, I modified the setup in order to record the light intensity distribution at 

the other side of hippocampal slices of varying depth, with the illumination laser focused to 

the slice surface as for GC recordings (Fig. 7C). As expected the light intensity decayed 

rapidly along the slice surface (Fig. 7D, E; x-distance) and less rapidly with increasing slice 

depth (Fig. 7D, F; z-distance). The light intensity profile in x and y (the plane parallel to the 

slice surface) was isometric, so only the x and z dimensions are plotted in Fig. 7D. Since the 

GCs form a narrow cell layer, the spread of GCs is adequately described by the xz-plane, with 

‘x’ again referring to the distance along the GC-layer at the surface and ‘z’ to the slice depth. 

Moreover, since the light intensity profile is isometric in x and y, the curvature of the GC-
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layer can be ignored, because the x-distance from any illumination spot just outside the GC 

layer will correspond to the radial distance from the center of the isometric xy-profile. To 

account for the narrow spread of GCs in y (perpendicular to the xz-plane), GCs were picked 

from randomly chosen y-positions within the GC layer. In order to obtain a measure which 

would allow the estimation of firing probabilities throughout the xz-plane, I calculated the 

light-intensity weighted mean of xz-distances for every pixel along the slice surface (virtual 

distance; Fig. 7G; illustration for a single pixel at 440 µm x-distance from the laser focus). 

This ‘virtual distance’ incorporates the precise profile of the light intensity distribution at a 

given power and can be calculated not only for the pixels in the top row (at the surface) but 

also for all other pixels in the xz-plane. It further allows the assignment of the measured 

probabilities at the top row (Fig. 7B) to the corresponding virtual distances for each 

respective laser power (Fig. 7H). The resulting distribution of firing probabilities is well 

approximated by a Gaussian fit allowing the extrapolation of firing probabilities for all xz-

distances in the slice at a given power. The mean of the firing probabilities across all 

locations corresponds to the mean probability of any cell to be active. Given the entire 

population of GCs, this mean firing probability will be equivalent to the active cell fraction. 

Finally, I noted that a large fraction of the recorded spikes occurred with larger latency than 

the typical IPSC following the beginning of the 20 ms stimulation pulse (Fig. 7I, example from 

a single slice). Since only APs preceding the IPSC can participate in its recruitment, I 

calculated the fraction of total spikes which preceded the mean IPSC latency for every power 

(Fig. 7J). Correction of the active cell fraction by this factor (Fig. 7J, bottom) yields an 

estimate of the active cell fraction responsible for recruiting an IPSC at a given laser power 

(Fig. 7K, black). For comparison the cell fraction was also estimated assuming no firing 

probability decay with increasing slice depth (Fig. 7K, green) or assuming isometric firing 

probability decay (Fig. 7K, blue). 
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Fig. 7) Calculation of the optogenetically activated cell fraction, A) Schematic illustration of the stimulation 
paradigm and example traces of an individual trial. Cells were recorded in cell-attached mode while 
systematically stimulating at varying distances along the GC layer. Traces are from a representative single trial 
at P = 3. B) Calculating the mean firing probability of every location over trials and cells yields a firing 
probability distribution for each laser power (three example powers shown). C) Schematic of the modified 
setup to record the 3D light intensity profile in an acute slice. D) Cross section of the light intensity profile of 
the laser spot at increasing slice depth. The dashed white lines indicate the location of the cross sections 
shown in (E) and (F). Depths below 100 µm were extrapolated from fits to (E) and (F). G) top, Illustration of the 
calculation of the virtual distance for a particular cell/pixel 440 µm lateral to the laser focus. The distances 
between the given cell/pixel and all other pixels (individual xz-distances) were weighted by the intensity at 
those pixels. Bottom, This weighting is illustrated by a histogram displaying the intensities for each respective 
xz-distance. The virtual distance corresponds to the intensity weighted mean of xz-distances. H) The measured 
firing probabilities were assigned to the respective virtual distances. The resulting firing probability distribution 
was well approximated by a Gaussian fit (black line). I) Example of the IPSC and AP latencies upon a stimulation 
pulse from an individual slice. Laser Powers are color coded. J) Top, Example Histogram of the distribution of 
all AP latencies for P = 3 (blue). The black bar indicates the mean IPSC latency ± standard deviation at that 
power. Bottom, The fraction of action potentials that precede the mean IPSC for each power was well 
approximated by an exponential fit (black line). Light stimulation in (I) and (J) was from 0 to 20 ms. K) black, 
Estimated active cell fraction in the slice calculated from the light intensity profiles in (D) and the virtual firing 
probability distributions in (H) and corrected by the fraction of APs occurring after the mean IPSC (J). The 
estimated active cell fraction is identical to the mean firing probability throughout the slice. For comparison 
the cell fraction was also estimated assuming no firing probability decay with increasing depth (green) or 
assuming isometric decay (blue). 
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3.2.3 Steep Recruitment of Feedback Inhibition (2) 

Combining the input-output curves for inhibition and cell activation from sections 3.2.1 and 

3.2.2 respectively yields the feedback inhibition recruitment curve (Fig. 8A). The recruitment 

of feedback inhibition saturates at a comparable active cell fraction as in the Ca2+ imaging 

approach (compare Fig. 5, section 3.1.4; approximately 4 % of GCs). Furthermore, higher 

active cell fractions (up to 12 %) do not lead to any further increase, confirming the 

saturation. However, it is still not certain that larger cell fractions cannot lead to additional 

recruitment of inhibition.  

  

In order to unequivocally confirm the saturation of inhibition within the local network I 

additionally globally activated the GC population in a subset of sections via a light fiber 

positioned over the slice surface, while stimulating at high powers (up to 50 mW; Fig. 8B). 

Under these conditions all cells tested fired APs with 100 % reliability, even though focal 

stimulation in direct proximity to the cell led to much lower maximal firing probabilities (Fig. 

8C, 100.0 ± 0.0 versus 31.2 ± 7.1 % respectively, paired t-test, p < 0.0001, n = 8). However, 

the maximal amplitude of inhibition did not increase further during global stimulation when 

compared to maximal focal stimulation (Fig. 8D, 356.9 ± 76.2 versus 344.3 ± 77.5 pA, paired 

t-test, p = 0.29, n = 10). Thus the recruitment of feedback inhibition in the DG is steep, with 

sparse populations of GCs efficiently leading to maximal recruitment of feedback inhibition. 

 

 

Fig. 8) Recruitment of feedback inhibition assessed optogenetically, A) Data from Figs. 4 and 5 combined 
showing the recruitment of feedback inhibition as a function of the active cell fraction. B) Schematic illustration 
of focal and global optogenetic stimulation. C) Comparison of the maximal firing probability (at the largest 
stimulation power) of individual GCs for focal and global stimulation. D) Comparison of the maximal IPSC 
amplitude under focal and global stimulation for individual GCs. 
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3.3 Absence of Single GC Induced Feedback Inhibition 

Previous work has addressed the initial phase of the recruitment of feedback inhibition in 

various contexts (Kapfer et al., 2007; Miles, 1990; Silberberg and Markram, 2007). The 

authors report the ability of even a single principal cell to activate feedback inhibitory 

interneurons and a supralinear increase of inhibition as the second and third principal cells 

are co-activated (Kapfer et al., 2007). Given my findings so far I asked whether single GCs 

might also suffice to elicit feedback inhibition in the DG. To this end I performed dual patch-

clamp recordings and elicited short trains of ten APs at 100 Hz in one cell while monitoring 

inhibition in the other (Fig. 9A). Inhibition was monitored either in VC, while holding the cell 

a 0 mV to allow the detection of small IPSCs (Fig. 9B, n = 7 cell pairs, 7 directions) or current 

clamp while holding the cell at -60 mV, allowing to probe for inhibition in both directions (n = 

4 cell pairs, 8 directions). However, I did not find clear single GC induced feedback inhibition 

in any case. 

 

 

 

 

 

 

Fig. 9) Absence of single granule cell induced feedback inhibition, Pairs of juxtaposed GCs (< 100 µm distance) 
were patched to test for single GC induced feedback inhibition. A) Schematic illustration of the experimental 
setup. B) Example of a paired recording where cell 1 is fired at 100 Hz in current clamp mode while cell two is 
recorded in voltage clamp mode in order to detect IPSCs. (grey, 10 individual trials; black, average). Note the 
high spontaneous activity rate typical of MCP sections. 
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3.4 Spatial Distribution of Feedback Inhibition 

Recent evidence indicates that inhibition by PV+ fast spiking hilar border interneurons is non-

uniformly distributed over space (Strüber et al., 2015). To test whether feedback inhibition 

by the entire ensemble of feedback inhibitory interneurons also displays a spatial gradient I 

activated cell populations at 100 µm intervals along the GC layer while recording inhibition in 

individual GCs (Fig. 10A). Spatial profiles were recorded for increasing laser powers in cells in 

the superior as well as inferior blade of the DG (Fig. 10B, C respectively; n = 8 cells for each 

blade). IPSC amplitudes across locations and powers were normalized to the maximal IPSC 

amplitude of each respective cell. It did not differ between cells in different blades (366 ± 40 

versus 390 ± 84 pA for superior and inferior blades respectively; t-test, n = 8, 8; p = 0.800).  

 

3.4.1 Amplitude of Local and Remote Inhibition at Saturation 

First, I investigated the distribution of feedback inhibition at stimulation powers at which 

inhibition had saturated (Fig. 10D, E). In all cells tested the inhibition was greatest when 

stimulating in the direct vicinity of the recorded cell (n = 8, 8 for superior and inferior blades 

respectively). Activating cells at increasing distances led to monotonically decreasing IPSC 

amplitudes for both blades. However, even at the most distal stimulation sites the inhibition 

never decreased to zero, indicating that even the most distal cells from the contralateral 

blade contribute to feedback inhibition of a given GC. In order to statistically compare the 

relation of local versus remote stimulation between blades I defined a remote location in the 

contralateral blade at 800 µm from the recorded cell (measured along the granule cell layer 

and equidistant in all slices; Fig. 10D, E; grey lines) and compared it to the local IPSC 

(stimulating in proximity to the recorded cell; black lines). As expected, remote inhibition 

was significantly smaller than local inhibition in both blades (Fig. 10F; two-way repeated-

measures ANOVA, p < 0.0001; recordings within superior as well as inferior blade significant 

in Sidak’s multiple comparison test, both p < 0.0001). No significant differences were 

observed between blades. 
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Fig. 10) Spatial distribution of feedback inhibition, A) Schematic illustration of the stimulation paradigm and 
example of an individual trial. Cells were recorded in whole-cell VC mode while systematically stimulating at 
varying distances along the GC layer. Traces are from a representative single trial at P = 3. B,C) Distribution of 
IPSC amplitudes as a function of the distance of the stimulation site for superior and inferior blade GCs 
respectively (n=8,8). Traces represent the mean of IPSC amplitude for cells aligned to the recording location (0 
mm). The distance of these cells to the apex ± standard deviation is indicated by the black bar and grey area 
respectively. Individual laser powers are color coded.  D,E) IPSC distribution over space at saturation.  Black and 
grey bars indicate a local and a remote location at 800 µm from the recorded cell respectively F) Comparison of 
the amplitude of the locally and remotely activated IPSCs at saturation (two way repeated measures ANOVA, 
overall test indicated by §: Blade p= 0.128; Distance p < 0.0001, Interaction p = 0.089; Sidak’s multiple 
comparison post tests indicated by *: superior blade p < 0.0001, inferior blade p < 0.0001). G,H) Comparison of 
the recruitment curves during local (black) or remote (grey) stimulation for superior and inferior blade 
respectively. I) Comparison of the cell fraction required for halfmaximal IPSC activation between stimulation 
sites and blades (two way repeated measures ANOVA overall test indicated by §: Blade p = 0.470, Distance p = 
0.014, Interaction p = 0.759; Sidak’s multiple comparison post tests not significant: superior blade p = 0.087, 
inferior blade p = 0.189).  (continued on next page)  
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3.4.2 Recruitment of Local and Remote Feedback Inhibition 

Next, I investigated whether there are differences in the recruitment dynamics of local 

versus remote inhibition between blades (black and grey respectively, Fig. 10G, H). To this 

end I calculated the active cell fraction which produces half maximal inhibition during local 

or remote stimulation for each individual cell (Fig. 10I). Comparison of the recruitment 

between the four groups revealed no differences between blades (two-way repeated-

measures ANOVA; p = 0.470). However, local inhibition was significantly more steeply 

recruited than remote inhibition (p = 0.014). While local inhibition had reached 50 % of 

saturation amplitude at 1.99 ± 0.22 % active cells remote inhibition required 3.17 ± 0.57 % 

for halfmaximal activation (pooled over blades). This implies that the smaller amplitude of 

remote compared to local feedback inhibition is even more pronounced in the subsaturation 

domain.  

 

3.4.3 Kinetic Properties of Local and Remote Feedback Inhibition 

Next, I tested if IPSCs elicited by increasing GC populations differed between local and 

remote activation with respect to their kinetic properties. Since all previous data showed no 

indication of blade specific differences the analysis of the kinetics of feedback IPSCs were 

performed on the pooled data for both blades. Interestingly, local and remote inhibition 

differed in all tested respects while the active cell fraction was also often significantly 

correlated to kinetic properties (Fig. 10J - M). Local IPSCs occurred with shorter latency and 

lower jitter than remote IPSCs (Fig. 10J, K; p < 0.0001 and p = 0.0006 respectively). 

Furthermore, both latency and jitter decreased as larger populations were activated (p < 

0.0001 and p = 0.004 respectively). IPSCs were also significantly slower in remote versus 

local inhibition. IPSC rise time was slightly shorter in the larger local IPSCs (Fig. 10L; p = 

J-M) Since no differences were observed between blades in any respect cells from both blades were pooled for 
the analysis of IPSC kinetics between local (black) and remote (grey) stimulation. To test for systematic 
variations of kinetic parameters with increasing active cell fractions as well as stimulation site two way 
repeated measure ANOVAs with no post tests were performed. Overall significance indicated by §. J) Cell 
fraction p < 0.0001, Distance p < 0.0001, Interaction p = 0.031. K) Cell fraction p = 0.037, Distance p < 0.0006, 
Interaction p = 0.707. L) Cell fraction p < 0.633, Distance p = 0.010, Interaction p = 0.388. M) Cell fraction p < 
0.0001, Distance p = 0.0008, Interaction p = 0.1243. 
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0.010) but did not correlate with the active cell fraction (p = 0.633). Similarly, decay times 

were significantly shorter in local versus remote inhibition, at least at larger active cell 

fractions (Fig. 10M; p = 0.0008). Finally, the decay time progressively increased with 

increasing stimulation power (Fig. 10M; p < 0.0001). Accordingly, remote inhibition arrives at 

its target cells up to 10 ms later and with greater jitter. Furthermore, it produces significantly 

slower IPSCs. 

 

3.5 Frequency Dependence of Feedback Inhibition 

As noted in the introduction, the feedback inhibition ultimately arriving in dentate GCs is 

potentially a product of complex interactions within the feedback inhibitory microcircuitry. 

Different connections within this network may facilitate or depress in variable frequency 

dependent manners. I therefore investigated the frequency dependent evolution of 

compound feedback inhibition between 1 Hz and continuous stimulation (Fig. 11). Trains of 

ten feedback IPSCs were elicited by focal light stimulation at a single site (Fig. 11A). For all 

frequencies tested the IPSC amplitudes appeared to either stay constant or slightly depress 

during the train (Fig. 11B, n = 9). Comparison of adaptation between local and remote 

stimulation revealed no overt differences (Fig. 11C; two way ANOVA, stim. location p = 

0.491, n = 9, 10 for local and remote stimulation respectively). To see if individual GCs could 

follow trains of stimulation at these frequencies I also probed the firing probability in 

response to each pulse in cell-attached mode (Fig. 11D). Interestingly, the firing probability 

during a train decreased dramatically, most prominently during continuous stimulation (to 

0.16 ± 0.03, one sample t-test, p < 0.0001, n = 10). This indicates that the number of GCs 

required to maintain a certain level of inhibition decreases during prolonged activity, 

suggesting some facilitative process. To test for facilitation directly I used antidromic 

electrical stimulation trains (Fig. 11E). In contrast to optogenetic stimulation IPSCs facilitated 

over the course of a train for frequencies greater than 10 Hz (Fig. 11G, H, n = 7).  



58 
 

 

  Fig. 11) Frequency dependence of feedback inhibition, Trains of 10 focal optic (A to D) or antidromic electrical 
(E to H) stimulations were applied to elicit feedback inhibition. A) Example traces for optic stimulation at 1, 10, 
30 Hz or continuously for 200ms to a single site close to the recorded cell. B) Evolution of the peak IPSC 
amplitude during a train for each frequency. C) The mean of the last three IPSCs was normalized to the first. 
Comparison of local (dark grey) and remote (light grey) stimulation revealed no significant differences (two way 
ANOVA; Distance p = 0.491).  D) The spike probability due to an optic pulse decreased significantly during a 
train (one sample t-tests with Bonferroni correction; 1 Hz to 0.8, p = 0.006; 10 Hz to 0.5, p < 0.0001; 30 Hz to 
0.3, p < 0.0001; continuous to 0.2, p < 0.0001). E,G) same as (A,B) but with antidromic electrical stimulation 
(black traces). Only cells in which IPSCs were blocked to <10% with 40 µM CNQX and 50 µM D-AP-V (gray 
traces) were used (n=7). H) The mean of the last three IPSCs was normalized to the first (one sample t-test with 
Bonferroni/Holm corrected p-values; 1Hz p = 0.651; 10Hz p = 0.066; 30Hz p = 0.019; 50Hz p = 0.014). 
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4. Discussion  

 

Feedback inhibitory microcircuits are thought to perform the important functions of max 

pooling and assembly competition throughout the brain. In the present study I used a 

combination of electrophysiological, imaging and optogenetic techniques in order to 

quantitatively describe the recruitment of feedback inhibition in space and time in the 

dentate gyrus of the hippocampal formation. 

 

4.1 Major Findings 

I found that feedback inhibition is steeply recruited by sparse populations of GCs. The gain 

and sensitivity of the feedback inhibitory microcircuit are steepest at active cell fractions 

below 3 % and slowly decrease as more cells are activated. Inhibition saturates when 

approximately 4 % of GCs are active. This feedback inhibition is non-uniformly distributed 

over space with regard to its recruitment, amplitude and temporal properties. Local 

inhibition is recruited more steeply and has greater amplitude, shorter latency and faster 

kinetic properties than remote inhibition. Finally, in marked contrast to area CA1, net 

feedback inhibition facilitates during repetitive stimulation. 

In the following I will first discuss the advantages and disadvantages of the experimental 

approaches taken here, including potential sources of variability and errors and some 

conceptual considerations (chapter 4.2). I will then proceed to discuss the individual findings 

and their potential implications (chapters 4.3 to 4.8). 

 

4.2 Methodological Considerations 

The quantification of the recruitment of feedback inhibition in this study is based on two 

complementary approaches. Firstly, GC APs were elicited electrically through antidromic 

stimulation while the activated GC fraction was assessed by population Ca2+ imaging. 

Secondly, GCs were activated optogenetically by focal laser stimulation while the active cell 

fraction was calculated from systematic cell-attached recordings. These approaches are 
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likely to differ with regard to the spatial and temporal properties with which the GC 

population is activated. This is important because both parameters may affect the 

recruitment of inhibitory interneurons. Additionally, each approach has particular sources of 

variability and errors with respect to the estimation of the activated cell fraction. In this 

respect, a general conceptual question is how to define the total population to which the 

population of active cells should be normalized. Functionally, any cell which is integrated 

into the feedback inhibitory circuit should be included in the total population. Anatomical 

findings indicate that most feedback inhibitory interneurons receive input from and project 

to a large number of granule cells over a large area (Acsády et al., 1998; Amaral et al., 2007), 

suggesting that the entire GC population within a hippocampal lamella might function as a 

unit (Andersen et al., 1971). Accordingly, most computational studies have assumed that all 

GCs within individual lamellae are integrated into the feedback inhibitory circuit (de Almeida 

et al., 2009; Myers and Scharfman, 2009). In the present study I followed this assumption for 

descriptive purposes and provided some evidence to support it, which will be discussed in 

chapter 4.4.  

 

4.2.1 Electrical Activation and Population Ca2+ Imaging 

Antidromic electrical stimulation is a standard electrophysiological technique which leads to 

highly synchronous activation of cells with short latency. Since the axons of the entire GC 

layer converge into a dense bundle at the electrical stimulation site in stratum lucidum, it 

can be furthermore expected to lead to cell activation spatially distributed throughout the 

GC layer. A caveat of electrical stimulation is that it is not selective for particular cell types. 

This is particularly problematic, because in the present study it was necessary to increase the 

stimulation power until saturation of the feedback IPSC was observed. However, especially 

the large stimulation currents required to produce a saturated IPSC often led to direct 

activation of interneurons. This was reflected by a component of the IPSC which was 

insensitive to the block of glutamatergic transmission. The problem was addressed by 

including only experiments in which a complete block of inhibitory currents by glutamatergic 

antagonists could be demonstrated (8 of 23).  
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Population Ca2+ imaging allows the monitoring of a large number of cells simultaneously, 

which is a distinct advantage over standard electrophysiological techniques. This is 

particularly important due to the sparse, spatially distributed population activity resulting 

from antidromic stimulation. Electrophysiological probing of a sufficient number of cells to 

detect the small, distributed population of responders within each individual section is not 

feasible. However, the quantification of the active cell fraction by population Ca2+ imaging is 

also accompanied by several caveats. Firstly, the cell fraction is estimated within a two 

dimensional field of view within a single sample plane. Due to methodological constraints, 

such as the maximal imaging depth and the required temporal resolution this plane could 

not be placed randomly. This is a significant source of variability due to the strict laminar 

organization of the mossy fiber tract. In fact, in sections which were not aligned to the MCP 

of the hippocampus the number of antidromically activatable cells within the sampling plane 

was close to zero whereas feedback inhibitory currents were always observed. While using 

only sections from the MCP (see methods chapter 2.2) partially addresses this problem, it 

remains a potential source of variability, because the slicing plane cannot be defined with 

high precision and animals are subject to anatomical variability. Secondly, the active cell 

fraction was calculated by normalizing to the total number of dye loaded cells present in the 

imaging frame. This tacitly assumes that the imaged population is representative of the 

entire GC population integrated into the feedback inhibitory circuitry. Conceptually, it raises 

the question how this feedback inhibitory circuitry is organized in space, which was 

addressed by the optogenetic experiments and will be discussed below. 

A further potential source of error in the estimation of the active cell fraction is the presence 

of a small population of inhibitory interneurons within the GC layer. For the calculation of 

the cell fraction it was not possible to systematically distinguish between GCs and these 

interneurons. However, interneurons are generally located at the inner border of the GC 

layer and are usually twice as large as GCs. Neither of these traits was observed within the 

population of activated cells. Additionally, the sparsity of the interneuron population in the 

DG (approximately 0.5 - 1 %, Amaral, 2007) suggests that the contribution of activated 

interneurons to the estimated active GC fraction is small.  
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Note that most of the sources of error described above are likely to lead to an 

overestimation of the active GC fraction as reported in this study. Accordingly, the data 

should be regarded as an upper bound. 

  

4.2.2 Focal Optogenetic Granule Cell Activation 

In contrast to antidromic electrical stimulation, focal optogenetic stimulation elicited GC 

activity which was spread over more than 10 ms in time, but was spatially localized. Since 

the illumination spot could be rapidly and precisely shifted, it was possible to determine how 

individual GCs responded to focal stimulations at multiple distances, revealing a detailed 

spatial activation profile for each sampled cell. This information could be used to calculate 

the firing probability of potential responders as a function of the distance from the 

stimulation spot. Together with measurements of the three dimensional profile of light 

intensity within the slice, it allowed the estimation of the total responding population for 

individual light pulses. In this approach, GC activation was sampled by cell-attached 

recordings in only a small number of cells in each slice. Nevertheless, the knowledge of how 

the activated cells are spatially distributed offers a distinct advantage over the electrical 

stimulation experiments. This information could also be used to estimate the firing 

probabilities of cells deeper within the slice. The calculation of the active fraction of cells 

now requires an explicit assumption about the total number of cells integrated into a 

feedback inhibitory circuit and their spatial distribution. As stated above, the cell fractions 

reported here rely on the assumption that all cells within the slice are integrated into the 

local circuit. The spatially defined activation of cells provided evidence justifying this 

assumption, which will be discussed in the chapter 4.4. Another difference between the two 

stimulation approaches is that during antidromic activation, responders will preferentially be 

cells with preserved axons. In contrast, during optogenetic stimulation, a portion of cells at 

the slice surface identified as responders may have severed axons. 

In summary, the two experimental approaches are likely to differ in several important ways. 

While antidromic electrical stimulation is expected to produce synchronous but spatially 

distributed GC activation, optogenetic stimulation produces a relatively asynchronous and 

local GC activation. The fact that the results of both approaches are comparable suggests 
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that the recruitment of feedback inhibition is relatively robust towards variations of these 

parameters. Moreover, the two approaches act as controls for each other concerning the 

other potential sources of error mentioned above. 

 

4.3 The Recruitment of Feedback Inhibition 

Previous studies have begun to address the question of how feedback inhibition is recruited 

in other regions, investigating mainly the initial part of recruitment with up to three principal 

cells activated (Kapfer et al., 2007; Miles, 1990; Silberberg and Markram, 2007). Kapfer et al. 

(2007) additionally used their experimental data to model the recruitment of inhibition over 

a larger range of population activity (up to 20 cells). However, the question of how feedback 

inhibition is recruited over the entire range of population activity has to my knowledge 

never been empirically addressed before. 

I found that feedback inhibition is recruited steeply by small percentages of GCs and 

saturates when around 4 % of GCs are active. Importantly, this was the case during spatially 

distributed but synchronous electrical population activation as well as during the spatially 

localized but more desynchronized optogenetic activation. This range corresponds well to 

the activity range of 0.1 to 4 % reported for GCs in vivo (Alme et al., 2010; Chawla et al., 

2005; Jung and Mcnaughton, 1993; Leutgeb et al., 2007; Schmidt et al., 2012; see also 

section 4.3.1). The data further indicate that the gain and sensitivity of the inhibitory 

recruitment curve is very high at values below 3 % of active GCs and gradually decreases as 

more cells are activated. Accordingly, the feedback inhibitory microcircuit responds with 

high gain and sensitivity within the range of physiological GC activity, consistent with its 

purported functions of max pooling and assembly competition. 

In this chapter I will discuss the findings of the present study in comparison to the studies 

mentioned above (sections 4.3.1 and 4.3.2). Additionally, I will compare the recruitment 

curve found here with that of a feedforward inhibitory circuit described by Pouille et al. 

(2009; section 4.3.3). It should be noted that the present study addressed only the 

recruitment of feedback inhibition within the local microcircuit (section 4.3.4). 
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4.3.1 Comparison of the Active Cell Fraction between Studies 

In the present study the active cell fraction was assessed as the population activated by a 

single electrical or optogenetic stimulus, in order to assess the ability of a ‘more or less’ 

synchronously activated GC population to recruit feedback inhibition (see chapter 4.2). It 

covers the temporal range between previous in vitro studies (Pouille et al., 2009) with near 

synchronous electrical stimulation and the less synchronous fundamental assembly window 

of 20 ms proposed by Buzsaki (2010). In both cases, the recruitment of feedback inhibition 

was tuned to a similar range, displaying maximum gain and sensitivity at active cell fractions 

below 3 % and saturating at approximately 4 %. This is in good accordance with the range of 

activity of GCs described in vivo. The estimates gained using immediate early gene studies 

and in vivo recordings range between 0.1 to 4 % (Aimone et al., 2011; Schmidt et al., 2012).  

However, in order to compare the active cell fraction as assessed in the present study to 

estimates of GC activity in vivo, it is necessary to review the methodology with which this 

range was measured in previous studies. This is because the assessment of the active cell 

fraction is associated with specific biases for each experimental approach taken. 

Furthermore, while some approaches, such as immediate early gene studies generally report 

active cell fractions, in vivo electrophysiological studies report firing rates. How the two are 

related requires some theoretical consideration about the temporal window of assembly 

formation and competition. This will be only touched upon here and discussed in more detail 

in section 4.5.1.  

In immediate early gene studies cell activity is typically integrated over time windows of 

several minutes, during which the animals explore an environment. However, this implies, 

that cells active at different time points may cumulate, leading to an overestimation of the 

active cell fraction (Guzowski et al., 1999). On the other hand immediate early gene studies 

will detect as active only a subset of cells undergoing the plasticity mechanism in which the 

gene under study is involved (Bramham et al., 2010; Guzowski et al., 2006). Precisely how 

different levels of activity in individual cells leads to immediate early gene expression is 

unknown, but it may well involve repeated firing, which would suggest that reported active 

cell fractions are underestimations. Furthermore, the population of cells expressing the 

respective gene is then typically normalized to the entire population of anatomically 

detectable cells in the principal cell layer. However, some of these cells may be GABAergic, 
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exclusively involved in unrelated functions, or may not be able to fire at all (Alme et al., 

2010). This would again lead to an underestimation. Depending on the time window and 

behavioral task, the reported active cell fraction in immediate early gene studies of the DG 

varies between 0.1 and 5 % (Alme et al., 2010; Chawla et al., 2005). 

By contrast, extracellular in vivo recordings can detect only cells which display a sufficiently 

high spiking activity. This is likely to bias cell detection toward the more active population of 

immature GCs. Cells which do not fire during the recording period cannot be detected. 

Furthermore, cells with an insufficient firing rate cannot be isolated from noise. Therefore 

the calculation of the mean firing rate combines the omission of insufficiently active cells 

from the denominator with the bias toward more active cells in the numerator. Accordingly, 

estimates gained with this method are likely to represent overestimations. Mean firing rates 

reported for dentate GCs in extracellular in vivo studies vary between 0.4 to 1 Hz (Alme et 

al., 2010; Leutgeb et al., 2007; Nitz and McNaughton, 2004).  

Finally, a recent in vivo whole-cell patch-clamp study of morphologically identified mature 

GCs in awake, behaving animals reported a mean firing rate of approximately 0.25 Hz 

ranging between 0 and 0.6 Hz for individual cells (3/8 GC did not spontaneously fire within 

the > 15 min recording period but only during current injections). Interestingly, the majority 

of APs in the active GC subpopulation occurred as bursts (65 % of events). Though this 

approach is not subject to the biases described above, the technical challenges of obtaining 

long, stable, awake, in vivo recordings and the perturbation of the intracellular milieu may 

lead to alternate biases. Furthermore, the sample size is necessarily small.  

As mentioned above a comparison of these firing rates to the cell fractions of immediate 

early gene studies requires an assumption about the temporal window of a functional cell 

assembly. For instance, if all cells fire on average at 1 Hz, then a temporal window of 20 ms is 

expected to contain on average 2 % active cells (see also section 4.5.1.).  
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4.3.2 Recruitment of Feedback Inhibition with One to Three Principal Cells 

Previous in vitro studies in different brain regions have reported that the activation of a 

single principal cell could elicit feedback inhibition in a simultaneously recorded second 

principal cell (Kapfer et al., 2007; Miles, 1990; Silberberg and Markram, 2007). Disynaptic 

feedback inhibition was observable in approximately 30 % of pairs in the guinea pig CA3 

region (Miles, 1990) as well as the rat somatosensory cortex layer 5 (Silberberg and 

Markram, 2007) and 12 % of pairs in the rat somatosensory cortex layer 2/3 (Kapfer et al., 

2007). By contrast, in the present study no case of single GC induced feedback inhibition was 

found in 11 GC pairs which were tested in a total of 15 directions. In this context it is 

noteworthy, that despite a substantial number of studies presenting data from 

simultaneously recorded pairs of GC and hilar interneurons, all of which characterize the 

interneuron input to GCs, reports of GC input to interneurons is remarkably scarce (Table 1; 

but see Geiger et al., 1997). A potential explanation would be a comparatively low 

connectivity from GC to interneuron with simultaneously high connectivity from interneuron 

to GC. The comparison should be viewed with caution due to differences in species and 

region. Nevertheless, it may reflect differences in the tuning of recruitment curves between 

these regions due to the specific requirements of the DG. For instance, in contrast to area 

CA3, GCs possess an extremely low intrinsic excitability and lack direct recurrent excitatory 

connections. Therefore, adding feedback inhibition when input strengths are very low may 

completely suppress sparse GC activity. Accordingly, very small numbers of GCs may be 

comparatively less efficient at recruiting inhibitory interneurons than other principal cells. A 

step function, in which the recruitment of feedback inhibition begins, only when a certain 

minimum active cell fraction is activated, would also be well suited to constrain the 

maximum active cell fraction, while simultaneously permitting unperturbed activity below 

this minimum. 

In the neocortex, Kapfer et al. (2007) have characterized the initial part of recruitment (with 

only one to three cells active) as ‘supralinear’. The authors estimate that the activation of an 

additional principal cell leads to a five-fold increase in the probability of feedback inhibition. 

This supralinearity results from the convergence of principal cells onto interneurons and the 

fact that two inputs are ten-fold more likely to depolarize the interneuron to threshold than 

one. The mechanism suggests that supralinear recruitment will occur whenever principal cell 
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input converges onto interneurons and individual principal cells do not generally depolarize 

their targets to threshold. Therefore it may well be a general phenomenon when only small 

numbers of principal cells are active. Although no supralinear phase of the recruitment of 

feedback inhibition was observed in the present study, this is very likely due to insufficient 

resolution of GC population activation with small GC numbers.  

In order to address the question of how feedback inhibition is recruited when more than 

three cells are coactive, Kapfer et al. (2007) developed a model based on the experimentally 

determined connectivity and EPSP amplitudes in SST+ interneurons, the subpopulation 

identified to mediate inhibition in their settings. In this model they explore the effects of the 

distribution of EPSP amplitudes in these interneurons on the sensitivity and gain of the 

feedback inhibitory circuit. They predict a half maximal activation of inhibition with 

approximately 10, and complete saturation with 20, active principal cells. By comparison, the 

half maximal activation of inhibition observed for GCs in this study was greater than 1 % of 

the total population independent of the experimental approach taken (up to 4 % in the case 

of exclusively remotely activated inhibition). Assuming that the entire GC population in a 

section comprises approximately 20000 cells (a rough estimate based on the mean cell size 

of OGB-1 loaded GCs and the total volume of the GC layer), 1 % translates to more than 200 

GCs, an order of magnitude greater. Although, the model by Kapfer et al. addressed only one 

interneuron subtype and a different brain region than this study, the discrepancy highlights 

the necessity for more empirical data. 

 

4.3.3 Comparison of Feedforward and Feedback Inhibition 

The recruitment curve for feedback inhibition determined in this study also differs markedly 

from a previously published recruitment curve for feedforward inhibition in the CA1 region 

(Pouille et al., 2009). While the present study found the complete saturation of feedback 

inhibition with around 4 % of the GC population active, Pouille et al. (2009) found a slow 

progressive increase of feedforward inhibition until approximately 40 – 50 % of the total 

input strength. The input strength in their study was measured by the slope of the field EPSP 

in the CA1 input area normalized to the slope observed during the maximal population spike 

amplitude. It is related to the fraction of active cells in the upstream population. This 
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upstream population encompasses all cells of which the output contributes to the 

downstream population spike. The differential recruitment curves in the two cases may 

reflect the different physiological activity ranges of the respective recruiting populations. 

In their study, Pouille et al. went on to investigate the potential network function of 

feedforward inhibition. Their principal finding was that in this region feedforward inhibition 

leads to an increased dynamic range of the population response. In other words it allows 

individual cells to be recruited over a wider range of input strengths, in effect decreasing the 

gain of the population response curve and delaying its saturation. While this normalization 

allows differential responses to a larger range of input strengths, it does the opposite of the 

proposed role of feedback inhibition, which is to compress the population activation curve to 

a small range of active cell fractions. This contrast has been formalized by Olsen et al. (2010) 

in a simple model, based on the normalization equations by Carandini and Heeger (2012; see 

also Silver, 2010). Although this type of equation has been primarily used to model the firing 

rate of individual cells it can also be used to describe populations of cells (Busse et al., 2009). 

In their study Olsen et al. contrast feedforward mediated input normalization, which 

stretches the activation curve along the input axis, to feedback inhibition mediated output 

normalization, which compresses it along the output axis (Fig. 12). Depending on the 

physiological range of input strengths this can have diametric effects on the range of 

population activity, with feedforward inhibition expanding the range and feedback inhibition 

compressing it (Fig. 12).  
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Finally, note that the analysis of Pouille et al. (2009) relies on the synchronicity and short 

latency of an electrically elicited population spike to isolate feedforward inhibition from 

feedback inhibition. Since the entire principal cell population is activated within four to five 

milliseconds following the electrical stimulation, there is no time for feedback inhibition to 

take effect. It is important to realize, that the purported functions of feedback as well as 

feedforward inhibition will depend crucially on the temporal distribution of presynaptic 

inputs and population activity under physiological conditions. The implications of the timing 

of feedback inhibition will be discussed in more detail in chapter 4.5.  

 

4.3.4 Translamellar Feedback Inhibition 

The present study described the recruitment of feedback inhibition in the intralamellar 

microcircuit of an acute slice. It is important to note, that this precludes the detection of 

translamellar feedback inhibition or other long range connections (Amaral et al., 2007; 

Freund and Antal, 1988; Jinde et al., 2012, 2013; Ribak et al., 1986; Sloviter and Brisman, 

Fig. 12, Feedforward and Feedback inhibition in a simplified model, Schematic illustration of the differential 
effects of feedforward and feedback inhibition on the population activation curve based on the model 
proposed by Olsen et al. (2010). A) Feedforward inhibition is proposed to implement input normalization (grey 
arrow in A) stretching the curve along the input axis (blue curve in A). B) Feedback inhibition is proposed to 
implement output normalization (grey arrow in B) compressing the curve along the output axis (blue curve in 
B). In this model for a given range of input strengths (grey area in A and B) feedforward inhibition can expand 
the output range while feedback inhibition compresses it (compare the black and blue vertical bars in A and B). 
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1995). Accordingly, the recruitment function described here applies only for the local 

microcircuit and should be regarded as a fundamental building block. In vivo it will be 

complemented by translamellar and other long range connections. How these fundamental 

building blocks are integrated and coordinated by such long range connections remains an 

important open question. The quantitative description of the local feedback circuit provided 

here will help to address this question. Furthermore, the observation of a spatiotemporally 

graded local feedback circuit, offers qualitatively new insights as will be discussed in the 

following chapter. Such insights can further inform future computational and empirical 

investigation of the macroscopically intact circuit. 

 

 

4.4 Spatial Distribution of Feedback Inhibition 

The spatially restricted GC activation during focal optogenetic stimulation allowed the 

investigation of the spatial distribution of feedback inhibition within the transverse plane. It 

is important to ascertain that remote GCs are integrated into the local feedback inhibitory 

circuit, if they are to be considered part of the total population. The central finding in this 

respect is that every recorded GC received inhibition, no matter where in the slice other GCs 

where activated. Even if the optogenetically activated cells were at the most remote 

locations within the slice, approximately 30 to 40 % of inhibition remained. This was the case 

irrespective of the blade and location of the recorded GC. Thus, the entire population of GC 

within the slice can be regarded as integrated into a single feedback inhibitory circuit. This 

justifies the description of the fraction of active cells as a fraction of the total GC population 

in the slice as used here. However, feedback inhibition was found to be non-uniformly 

distributed over space within this circuit. This implies that the network is actually spatially 

weighted. Accordingly, more elaborate models, which differentially define the recruiting GC 

populations and the resulting spatial distribution of feedback inhibition, may add additional 

insights. In this chapter I will discuss the spatial distribution of feedback inhibition described 

in the present study (section 4.4.1) and its potential functional implications (section 4.4.2). 
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4.4.1 Non-uniform Distribution of Feedback Inhibition 

I found that GCs exert the largest inhibitory effect on cells within an approximately 300 µm 

radius, while increasingly distant GCs receive progressively less inhibition. This spatial profile 

was observed largely independent of laser power. Importantly however, the recruitment of 

remote inhibition required a larger cell fraction for halfmaximal activation. This implies that 

the difference in amplitude between local and remote inhibition is even more pronounced in 

the subsaturation regime. 

Note that during stimulation at the very edge of the GC layer fewer cells can be activated, 

since part of the light cone will be beyond the GC layer. At the smallest power at which the 

IPSC was saturated (P = 3) the active cell population spanned an approximately 300 µm 

region of the GC layer (FWHM of a Gaussian fit: 240 µm; see Fig. 7B). This implies that the 

decrease of inhibition at the very edge of the GC layer is at least partially due to the 

decrease in the activatable population size rather than other spatially organized properties, 

especially for high powers. However, the monotonous decrease in the amplitude of 

inhibition with increasing distance was also consistently observed if the entire active GC 

population was well within the blade (Fig. 10B – E).  

The latencies and kinetic properties of inhibition also differed markedly between local and 

remote stimulation and as a function of laser power (Fig. 10J – M). However, the temporal 

IPSC properties are expected to depend on the temporal distribution of GC population 

activation. While this distribution is identical when comparing local and remote inhibition at 

individual powers, it changes with increasing laser power (Fig. 7). Therefore the temporal 

changes in IPSC properties between laser powers must be interpreted with caution. 

Nevertheless, local and remote inhibition differentially evolve with increasing laser power, 

indicating that factors beyond the change in the temporal distribution of GC population 

activation must play a role. This clearly shows that the properties of feedback inhibition in a 

given GC depends on both, the spatial distribution of the recruiting GC population, and its 

size. Together these findings demonstrate the presence of a spatiotemporally graded 

inhibitory microcircuit. 

Spatiotemporally graded inhibition has recently been described in detail for individual 

perisomatically inhibiting fast-spiking interneurons within the DG (Strüber et al., 2015). The 
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authors describe a spatial gradient of presynaptic release probabilities as well as 

postsynaptic GABAA receptor subunit composition. This leads to a decreased amplitude, an 

increased latency and slower kinetics of IPSCs at more remote synapses, strongly 

reminiscent of the observations presented in the present study. However, the connection 

probability of individual fast spiking interneurons to target GCs decreased to zero within 

approximately 300 µm from the soma (Strüber et al., 2015). By comparison the distance 

dependent changes described here were observed along the entire length of the GC layer 

(~up to 1200 µm from the recorded cell). Moreover, the range of latencies and kinetic 

properties observed by Strüber et al. differ markedly from those observed here. 

Therefore the distance dependent changes in inhibition over the entire GC layer must also 

depend on other factors, such as the distribution of the GC axonal arbor and/or the 

anatomical organization of the feedback inhibitory microcircuitry. Accordingly, this study 

adds to the findings of Strüber et al. in several important ways. Firstly, the spatiotemporal 

grading of unitary IPSCs, described for fast spiking interneurons, is conserved and expanded 

when the entire feedback inhibitory network, with all participating interneurons, is 

activated. Secondly, the spatial gradient observed in the monosynaptic interneuron-GC 

connection is preserved and expanded in the disynaptic GC-interneuron-GC feedback circuit. 

Accordingly, the microcircuit motif of spatially graded inhibition must be supported by both 

arms of the inhibitory feedback loop. How exactly the feedback inhibitory microcircuit may 

bring forth the observed characteristics will be discussed in detail in section 4.6.1. 

 

4.4.2 Functional Implications 

What is the function of the spatially graded feedback inhibition? In their study of fast spiking 

DG interneurons, Strüber et al. explore the impact of non-uniform inhibition in a 

computational network model containing rhythmically and synchronously active fast-spiking 

PV+ interneurons. They find that networks with distance dependent inhibition improve the 

entrainment of principal cell populations in the gamma range. This is essentially because in 

networks with non-distance dependent inhibition, the IPSCs of interneurons at different 

distances from the target GC have different axonal conductance times, producing a 

temporally imprecise compound inhibitory conductance. In contrast, when the same total 
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inhibitory conductance is modelled in a distance dependent manner, the major inhibitory 

contribution for each target GC is from an interneuron in close proximity, thereby decreasing 

the jitter due to axonal conductance delays. The resulting compound inhibitory conductance 

is stronger and sharper leading to increased GC synchronicity. This result is predicated on the 

relatively strong assumption of complete synchronicity in interneuron activity, which may in 

part rely on the finding by Bartos et al (2002) that a large percentage of BC-BC pairs are 

electrically coupled. The strong degree of electrical coupling was found to lead to a near 

synchronous activation of interneuron pairs and an increased ability of the network to 

produce gamma oscillations. However, such substantial electrical coupling has not been 

reported in subsequent work (Larimer and Strowbridge, 2008; Savanthrapadian et al., 2014). 

The differential latencies between local and remote inhibition found in this study are also 

inconsistent with a high degree of electrical coupling between BCs. Nevertheless, under the 

assumption of a sufficient degree of interneuron synchronicity in the DG, my findings are 

consistent with the proposed function described by Strüber et al. (2015). Accordingly, 

spatially graded inhibition would lead to increased GC synchronicity. It remains to be shown 

whether this represents a physiologically significant mechanism. 

As mentioned above, I found that not only the output of interneurons is spatially graded, but 

also their activation. In other words, interneurons which supply inhibition to different 

portions of the GC layer can be independently activated by local GC populations. This would 

be highly relevant if synchronously activated populations of GCs were locally clustered. 

Localized inhibition would then have an equalizing effect on the active cell fraction across 

space, in effect moving all portions of the GC layer closer to the optimal active cell fraction 

(see section 1.1.2). The portion of the DG receiving more input would also receive more 

feedback inhibition, thereby more effectively reducing the active cell fraction compared to 

the portion of the DG receiving less input. Assuming that the total inhibitory conductance 

available in the DG is fixed, such a local allocation of inhibition would increase the pattern 

separation ability by means of a more efficient regulation of the active cell fraction. 

Additionally, competition between active GCs would be most intense locally which may play 

a role in shaping the spatial distribution of individual assemblies. Interestingly, an increased 

spatial clustering of active granule cell ensembles has recently been described during 

spontaneous activity in a model of temporal lobe epilepsy (Feldt Muldoon et al., 2013). 

Moreover, the superior and inferior blade of the DG are known to be differentially active, 
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with inferior GCs displaying much lower levels of activity (Alme et al., 2010; Chawla et al., 

2005). The spatial gradient of inhibition may allow for independent processing of the two 

blades despite this differential activity.  

Finally, the localized application of inhibition only where it is needed will increase the energy 

efficiency of the network. Firstly, inhibition is supplied by interneurons, which have to 

generate AP and release GABA, all of which requires energy. Secondly, localized application 

of inhibition is likely to entail greater overall GC sparsity, thereby reducing energy 

consumption due to GC spiking. This is because current evidence indicates that inhibition in 

GCs is at least partially divisive, i.e. applying the same inhibition to a population with greater 

mean input leads to a stronger reduction of that input (Silver, 2010; Temprana et al., 2015; 

Wilson et al., 2012). Allocating inhibition preferentially to more active sections of the GC 

layer will accordingly cause greater overall sparsification. Additional functional implications 

arise from the differential time courses of inhibition across space as will be discussed in the 

next chapter.  

 

 

4.5 The Time Course of Feedback Inhibition 

So far, I have discussed mainly the spatial aspects of feedback inhibition, mostly neglecting 

the temporal dimension. However, the time course of feedback inhibition and its temporal 

evolution during trains of activity are evidently important for its ultimate function. 

Unfortunately, our knowledge concerning the temporal windows of assembly representation 

and competition remains limited. Nevertheless, an understanding of the possible 

implications of the time course of inhibition onto the proposed information representation 

by sparse GC assemblies requires consideration of these temporal windows (see chapter 

1.1). In the following chapter, I will introduce some considerations about the temporal 

structuring of neural activity proposed by Buzsaki (2010) and discuss the temporal aspects of 

the present findings mainly in this context (section 4.5.1). I will then extend this reasoning to 

the evolution of feedback inhibition during trains of activity (section 4.5.2).  
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4.5.1 The Temporal Window of Assembly Competition 

It is common in computational models to simplify the temporal dimension by discretizing 

time. The winner-take-all rule is then applied by calculating the pre-inhibition population 

activity, the resulting inhibition, and the inhibition-corrected population activity in a single 

discrete time step (Binas et al., 2014; Myers and Scharfman, 2009; Rolls and Treves, 1998; 

Trappenberg, 2010). In physiological neural networks however, the feedback inhibition 

elicited by any group of principal cells must by definition occur with a delay. The implication 

is that the ‘winning’ cell assembly must not only receive stronger inputs than its competitors, 

but must also precede them by at least this delay period. This raises the question of the 

relevant time window for individual assemblies and assembly competition. György Buzsaki 

(2010) suggested a ‘neural syntax’ in which a ‘fundamental assembly window’ lasts 

approximately 20 ms, based on the integration time of EPSPs in postsynaptic neurons, the 

gamma-oscillation and the timeframe for STDP (Lin et al., 2006). He further proposed that 

combinations of such fundamental assemblies could be linked together in 100 to 200 ms 

time windows based on the observation of gamma-nested-theta oscillation and the 

timescale of place cell assemblies in CA1 (Geisler et al., 2007; Maurer et al., 2006). Further 

network oscillations may serve to form different types of assemblies or additional 

hierarchical levels. The ultimately relevant parameter for the temporal window of 

assemblies and assembly-competition in this view, is the reader mechanism, in our case the 

CA3 attractor network (Buzsáki, 2010). More precisely, since the DG pattern separation 

mechanism is thought to act mainly during encoding, it is the time window required for 

recurrent CA3 networks to undergo plasticity (Kheirbek et al., 2013; Lee and Kesner, 2004).  

Based on these considerations, feedback inhibition may contribute to the regulation of 

fundamental cell assembly size, especially through the activation of fast-spiking interneurons 

(Bartos et al., 2002; Chrobak and Buzsáki, 1995; Pernía-Andrade and Jonas, 2014). In fact, a 

recent model addressed how fast, rhythmic gamma-frequency feedback inhibition may 

implement a type of ‘k-winners-take-all’ operation, termed ‘E %-max winner-take-all’ (de 

Almeida et al., 2009). This model suggests, that rather than determining a certain fixed 

fraction of ‘winners’, the network might select all cells with excitation above a certain 

fraction of the maximal excitation. Interestingly, in their model that fraction is determined 

by the ratio of the delay of feedback inhibition and the membrane constant. In the present 
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study, as well as Strüber et al. (2015), the delay of feedback inhibition was found to be non-

uniformly distributed over space. The potential implication is that the effect of feedback 

inhibition decreases with distance not only due to the decreased amplitude but also due to 

the increased delay. It is important to realize that the inhibition described by Strüber et al. 

(2015) and modelled by de Almeida et al. (2009) is exclusively the extremely fast inhibition 

mediated by fast spiking basket cells. Accordingly inhibition reaches its maximum within 

several milliseconds and completely decays within 20 ms. This timeframe is based primarily 

on the observations between individual GC-BC pairs (Geiger et al., 1997; Kraushaar and 

Jonas, 2000) and the understanding that these cells can generate gamma oscillations (Bartos 

et al., 2002, 2007). In fact, recent whole-cell patch-clamp recordings in awake animals have 

demonstrated gamma coherence of IPSCs and GC spiking, consistent with a physiological 

role of such fast mechanisms (Pernía-Andrade and Jonas, 2014).  

The optogenetic activation spread within a 10 to 20 ms window as used in the present study 

might be viewed as mirroring the population activation within a fundamental assembly 

window. The ensuing postsynaptic inhibitory conductance elicited by the entire feedback 

inhibitory network lasted for as long as 100 ms (with a half width of approximately 40 ms) 

most likely because a variety of interneuron types with differing kinetic properties are non-

synchronously activated (Hefft and Jonas, 2005; Savanthrapadian et al., 2014; see also 

section 4.6.1). This suggests that another relevant time scale is that of a theta cycle. 

Especially inhibition at remote sites, which occurs between 5 and 10 ms later than local 

inhibition, may act at theta rather than gamma scales. According to the suggested neural 

syntax, this would imply that early fundamental assemblies within a theta cycle suppress 

those which would otherwise occur later, in effect max pooling in time (Buzsáki, 2010). From 

the perspective of CA3, this would prohibit the synaptic association of fundamental 

assemblies at different phases of a theta cycle. In vivo evidence indicates that the entorhinal 

input to GCs is theta modulated while the spiking activity of GCs is theta as well as gamma 

modulated, consistent with the view that dentate GC activity is temporally structured 

according to theta and gamma cycles (Pernía-Andrade and Jonas, 2014).  
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4.5.2 Facilitation of Net Feedback Inhibition  

Antidromic electrical stimulation revealed that net feedback inhibition arriving at GCs during 

trains of activity facilitates. Moreover, the optogenetic experiments suggest that during a 

train of activity, progressively smaller GC populations are required to maintain the same 

level of inhibition. This differs starkly from area CA1, where feedback inhibition elicited by 

antidromic electrical stimulation strongly depresses (Pothmann et al., 2014; Pouille and 

Scanziani, 2004). Net facilitation of feedback inhibition is likely to further enhance the max 

pooling functionality in time. This may reflect the specific requirement of sparsity over space 

and time of GC population activity, as opposed to CA1. Furthermore, the facilitation is 

maintained over the entire course of a train, suggesting that the max pooling functionality 

can be partially extended to such long time frames. The fact that disynaptic feedback 

inhibition displays robust facilitation is particularly interesting in light of the numerous 

studies describing strong depression of interneuron input to GCs (Table 1). How the 

feedback inhibitory microcircuitry may bring forth these temporal properties as well as the 

spatial properties described above will be discussed in the following chapter.  

 

 

4.6 Implications for the Local Feedback Inhibitory Microcircuitry 

I have discussed distinctive spatial and temporal features of feedback inhibition in the DG 

and their possible functional roles. But how does the feedback inhibitory microcircuitry give 

rise to these properties? Both spatial and temporal features of inhibition are determined by 

at least three fundamental components: First, the spatial and temporal organization of 

mossy fiber input onto the population of feedback inhibitory interneurons (including mossy 

cells); second, the connectivity and temporal properties between, and the intrinsic 

properties of, these interneurons; and third, the spatial and temporal organization of the 

outputs of these interneurons. In this chapter I will first summarize the inferences which can 

be made from the data presented here and propose two simple models of the feedback 

inhibitory microcircuit which can explain the observed spatiotemporal distribution of 

feedback inhibition (section 4.6.1). I will then discuss how net facilitation of feedback 

inhibition during trains of input may arise (section 4.6.2). In order to place these 
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considerations in context it should also be noted that physiologically, feedback inhibition 

acts not in isolation but in close coordination with feedforward inhibition (section 4.6.3). 

 

4.6.1 Spatial Distribution of Feedback Inhibition 

How could the observed spatiotemporal properties of feedback inhibition be implemented 

by the local microcircuit? Since both the axonal distributions of GCs and the various 

interneuron types as well as their dendritic distributions play a role, there are various ways 

to achieve the observed effects. The spatial features may in part be due to the spatially 

graded output of individual interneurons (Strüber et al., 2015). Additionally, the distinct 

morphologies and synaptic properties of different interneuron types could account for the 

observed distribution (Harney and Jones, 2002; Hosp et al., 2014; Savanthrapadian et al., 

2014; see section 1.5.2 for an overview of DG interneurons). Moreover, interconnections 

within the feedback inhibitory microcircuitry, for instance inhibition of interneurons 

responsible for different sections of the DG could play a role (Savanthrapadian et al., 2014; 

Tyan et al., 2014).  

A number of inferences about the anatomical connectivity can be made from the data 

described in the present study. Firstly, since local GC activation leads to locally focused GC 

inhibition, some interneurons must have not only spatially tuned output, but also spatially 

tuned input. In other words, interneurons mediating local inhibition must also be 

preferentially innervated by local GC. A second inference can be made by comparison of the 

different stimulation paradigms. Since global optogenetic and electrical stimulation activate 

local as well as remote GCs these types of stimulation should also elicit combined local and 

remote inhibition in the recorded GC. However, the amplitude of the maximal optogenetic 

IPSC, elicited by local stimulation, did not increase further during global optogenetic or 

electrical stimulation. Since remote activation does produce local inhibition, this must be 

because the ‘remote inhibition mediating’ population is also already activated by local 

stimulation. Further inferences can be drawn from the fact that remote inhibition occurs up 

to 10 ms later than local inhibition and has distinct kinetic properties. In the following I will 

describe the two simplest models which could bring forth these properties (Fig. 13).  
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The most parsimonious model which could explain the observations outlined above contains 

only BCs with spatially graded output as described by Strüber et al. (2015) which are 

innervated by mossy fibers in a spatially graded manner (Fig. 13A). In this model the reduced 

amplitude of remote inhibition would be implemented primarily by a distance dependent 

decrease in the connection probability between mossy fiber axons and BCs. The increased 

latency, higher jitter and slower time course of remote inhibition could be caused by a 

decreased connectivity to BCs, leading to an increased duration until remote interneurons 

are brought to threshold, combined with spatially graded BC output (Kress et al., 2008; 

Strüber et al., 2015). Importantly, due to the curvature of the DG the increasing ‘functional’ 

distance along the GC layer does not correspond to increasing geometrical distance. Yet, in 

the present study inhibition decreased monotonically with increasing ‘functional’ distance 

along the contralateral blade, even if all the stimulation spots involved were geometrically 

Fig. 13, Two simple circuit motifs which could underlie the spatiotemporal distribution of feedback 
inhibition, A) The most parsimonious model to explain the differential amplitude, delay and kinetics of local 
and remote inhibition requires only one type of interneuron, where the connection probability from GC to 
interneurons decreases with distance. B) A slightly more complex model includes two different interneuron 
types which are differentially involved in mediating local and remote inhibition. The stimulation site is 
illustrated by a blue square, active GCs and mossy fibers by black circles and lines respectively and inactive GCs 
by grey circles. Interneurons are illustrated as either blue triangles or green circles with respectively colored 
lines as axons. 
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equidistant. This may reflect the anatomical organization of processes of PV+ perisomatically 

inhibiting interneurons along the GC layer (Amaral et al., 2007; Hosp et al., 2014). The axonal 

tree of these cells is restricted largely to the GC layer, spreading out along its length. 

Furthermore, the connection probability and IPSC amplitude in GCs, decreases with 

increasing distance from the interneuron soma (Strüber et al., 2015). Additionally, the 

dendrites of these cells within the hilus often appear rather restricted, consistent with 

predominantly local activation (Hosp et al., 2014).  

However, in light of the presence of multiple DG interneuron types, which are innervated by 

mossy fibers, it seems unlikely that the effects are carried only by BCs. Interestingly, many 

dendritically targeting interneurons show longer latencies and slower kinetics than 

somatically targeting interneurons, suggesting that the spatial variation of IPSC kinetics 

found here might in part reflect different contributions of these interneuron classes (Harney 

and Jones, 2002; Hefft and Jonas, 2005; Liu et al., 2014). Notably, HIPP like cells frequently 

display dendritic trees spanning large parts of the hilus, consistent with activation more 

independent of GC location (Hosp et al., 2014; Zhang et al., 2009). Moreover, their axons 

cover a significantly larger area, often spanning large parts of the DG ML (Hosp et al., 2014). 

Accordingly, in the second most parsimonious model, fast, local inhibition would be 

mediated by perisomatically inhibiting interneurons such as basket cells, while remote 

inhibition would be mediated predominantly by dendritically inhibiting interneurons (Fig. 

13B). 

Additional models may incorporate mossy cells as well as additional interneuron types. The 

anatomical integration of these cell types into feedback circuit suggests that they do play a 

role. However, given the sparsity of data as to their precise connectivity and its spatial 

distribution, I will refrain from speculation about this role (but see Larimer and Strowbridge, 

2008). Accordingly, the presented models should be viewed as possible microcircuit motifs, 

which may well act together and in cooperation with additional elements. Especially mossy 

cells are likely to contribute to the feedback inhibitory microcircuitry since they can not only 

activate GCs but also hilar interneurons, leading to GC inhibition (Larimer and Strowbridge, 

2008; Scharfman, 1995; see also section 1.5.2). Given the difference in latencies between 

local and remote inhibition (up to 10 ms), the involvement of mossy cells as a relay 

conveying remote inhibition would also be plausible (Larimer and Strowbridge, 2008).  



8
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  From To IN location Method Freq. short term dynamics pulses species Authors   

                      

GC to IN GC BC GC-border dual patch 50 Hz PPD 2 juv. wistar rats Geiger and Jonas (1997)   

e-stim to IN PP & C/A FS  GC-border e-stim/ spike prob. 50 Hz decreased spike prob. 10 juv. SD rats Liu et al. (2014) q 

  PP FS  GC-border e-stim 10 Hz depression to 40% 20 
juv. C57/BL6 
mice Ewell and Jones (2010) q 

  PP & C/A non-FS GC-border e-stim/ spike prob. 50 Hz increased spike prob. 10 juv. SD rats Liu et al. (2014) q 

  PP & MF FS  GC-border e-stim 30 Hz facilitation    juv. wistar rats Sambandan et al. (2010)   

  MF FS  GC-border e-stim  (close) 30 Hz facilitation, PPF    juv. wistar rats Dasgupta et al (2015)   

                      

e-stim to MC MF MC Hilus e-stim 20 Hz facilitation to 500% 5 juv. wistar rat Lysetskiy (2005) q 

                      

IN to GC BC  GC GC-border dual patch 
10 & 50 
Hz depression to ~25% & 0% > 850  juv. wistar rats Kraushaar and Jonas (2000) q 

  CCK &  PV GC GC-border dual patch 50 Hz depression to 20% 10 juv. wistar rats Hefft and Jonas (2005) q 

  SST GC Hilus dual patch 50 Hz depression to 20% 20 adult GIN mice Zhang et al. (2009) q 

  BC  GC GC-border dual patch 20 Hz PPD to 39% 2 
juv. C57/BL6 
mice Bartos et al. (2002) q 

  FS GC GC-border dual patch 10 Hz PPD to 85% 2 juv. SD rats Harney and Jones (2002) q 

  non-FS GC GC-border dual patch 10 Hz PPD to 77 % 2 juv. SD rats Harney and Jones (2002) q 

  PP GC GC-border e-stim 10 Hz depression to 40% 20 
juv. C57/BL6 
mice Ewell and Jones (2010) q 

  FS GC GC-border dual patch 25 Hz depression 5 juv. SD rats Liu et al. (2014)   

  non-FS GC GC-border dual patch 25 Hz facilitation  5 juv. SD rats Liu et al. (2014)   

                      

IN to IN BC  BC GC-border dual patch 50 Hz depression to 50% 10 juv. wistar rats Savanthrapadian et al. (2014) q 

  HICAP HICAP GC-border dual patch 50 Hz facilitation to 160% 10 juv. wistar rats Savanthrapadian et al. (2014) q 

  HIPP HIPP GC-border dual patch 50 Hz facilitative envelope 10 juv. wistar rats Savanthrapadian et al. (2014) q 

  HICAP BC GC-border dual patch 50 Hz no change 10 juv. wistar rats Savanthrapadian et al. (2014) q 

  HIPP BC GC-border dual patch 50 Hz no change 10 juv. wistar rats Savanthrapadian et al. (2014) q 

  BC  BC GC-border dual patch 20 Hz PPD to 26% 2 
juv. C57/BL6 
mice Bartos et al. (2002) q 

  TML (non-FS) TML GC-border dual patch 50 Hz facilitation , PPF to ~220% 8 adult wistar rats Yu et al. (2015)   

  IN IN Hilus dual patch 20 Hz PPD to ~80% 2 juv. SD rats Larimer and Strowbridge (2008) q 

                      

MC  IN MC Hilus dual patch 20 Hz PPD to ~80% 2 juv. SD rats Larimer and Strowbridge (2008) q 

  MC IN / MC Hilus dual patch 20 Hz no change 2 juv. SD rats Larimer and Strowbridge (2008) q 

                      

other MF IN CA3 e-stim 20 Hz facilitation  5 juv. SD rats Toth et al. (2000) q 

    IN CA3 e-stim 20 Hz depression 5 juv. SD rats Toth et al. (2000) q 
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4.6.2 Short Term Dynamics of Feedback Inhibition 

Net facilitation in the DG could similarly be due to a number of different microcircuit 

mechanisms including the dynamics at any of the three fundamental components described 

above (section 4.6). Interestingly a number of previous investigations into the short term 

dynamics at different synapses within the feedback inhibitory circuit showed widely varying 

results (Table 1). Most notably, paired recordings between most known interneuron types 

and GCs quantitatively show depression of the GC IPSC during repetitive stimulation (Bartos 

et al., 2002; Harney and Jones, 2002; Hefft and Jonas, 2005; Kraushaar and Jonas, 2000; 

Zhang et al., 2009). This suggests that a particularly strong facilitation must arise at an 

upstream step of the feedback circuit. Unfortunately, despite this wealth of dual recording 

studies, I could not find any report which quantitatively described the short term dynamics 

of GC inputs onto any hilar interneuron type (but see Geiger et al. 1997). However, a recent 

study by Liu et al. (2014) reports an increase in spiking probability during trains of perforant 

path or commissural/associational stimulation in non-fast spiking but not fast spiking 

interneurons. Anatomical analysis of non-fast spiking interneurons revealed, that they are 

constituted mainly by HIPP and HICAP cells while fast-spiking cells represent predominantly 

BCs. Although they did not differentiate between feedforward and feedback inhibition, the 

timing of spikes suggests that they at least partially reflect feedback activation. In analogy to 

Pouille et al. (2004) they term the non-fast spiking cells ‘late onset’. By contrast, the authors 

found that fast spiking BCs responded only during the initial pulses of the train, and were 

accordingly labeled ‘early onset cells’. In addition to the increased recruitment of non-fast 

spiking interneurons, paired recordings revealed that they also display increased release 

Table 1, Literature on the short term dynamics in the DG microcircuit. Overview over studies reporting on 
the short term dynamics of postsynaptic events, with potential relevance for the feedback inhibitory 
microcircuit. Cell identification was variably based on electrophysiological properties, marker expression, or 
morphology. Cells were activated either by whole-cell current injections or extracellular electrical 
stimulation. Please refer to the respective original studies for more details. 

cells       other     

BC basket cell     blue depression, quantitatively described 
CCK cholecystokinin expressing cell   green  facilitation, quantitatively described 
FS fast spiking cell (> 50Hz peak firing frequency) PPD paired pulse depression 
GC granule cell     PPF paired pulse facilitation 

HICAP hilar commissural/associational path associated cell e- stim extracellular electrical stimulation 
HIPP hilar perforant path associated cell C/A commissural/ associational 
IN not further categorized interneuron MF mossy fiber   
MC mossy cell     PP perforant path   
non- FS non- FS (< 50Hz peak firing frequency) SD rat spraque dawley rats 
SST somatostatin expressing cell   juv. juvenile (12 to 25 days postnatally) 
TML total molecular layer cell   q quantitatively described 
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probability and an increase of the readily releasable pool during stimulation trains. These 

results suggest increased activation and output of non-fast spiking interneurons as a source 

of increasing feedback inhibition during trains of stimulation. Additionally, a number of 

studies report or show trains of depressing or facilitating input to GCs or hilar interneurons 

but do not describe these quantitatively, making any interpretation difficult (Table 1; 

Dasgupta and Sikdar, 2015; Geiger et al., 1997; Sambandan et al., 2010). The facilitation of 

net feedback inhibition may also be partially due to interactions between interneurons in 

the DG (Larimer and Strowbridge, 2008; Savanthrapadian et al., 2014; Yu et al., 2015). For 

instance, BC-BC synapses depress rapidly (Savanthrapadian et al., 2014). Finally, mossy cells 

receive strongly facilitating input from GCs and might act as a boosting relay for inhibition 

during trains of activity (Lysetskiy et al., 2005). In light of the mostly depressing dynamics in 

the majority of the previously reported connections within the circuit, the mossy cell input is 

perhaps the most promising candidate as a source of the net facilitation of feedback 

inhibition in the DG. 

 

4.6.3 Cooperativity between Feedforward and Feedback Inhibition 

Experiments by Ewell et al. (2010) revealed that PV+ BCs are efficiently recruited by 

perforant path stimulation. Moreover, when stimulated with trains at 10 Hz but not at other 

frequencies these cells displayed bursts of APs in which the later spikes were elicited by 

mossy fiber feedback input. Although these experiments demonstrate a frequency 

dependent contribution of BC to feedback inhibition, they also suggest that BC may be most 

efficiently recruited by combined feedforward and feedback input. Indeed, a study by 

Sambandan et al. (2010) demonstrated that PV+ BC display preferential recruitment during 

precisely timed activation of the perforant path and mossy fiber input at a 10 ms interval. 

Moreover, this coactivation can lead to associative LTP at MF synapses strengthening the 

feedback activation of these interneurons. It should be noted, that these studies relied on 

electrical stimulation in the ML and it is therefore possible that they stimulated not only 

perforant path fibers but also other fibers. Nevertheless, it is important to remember that 

feedback inhibition does not act in isolation but in tight coordination with feedforward 

inhibition. 
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4.7 Role of immature GCs 

In the present study I have not addressed the role of adult neurogenesis despite the fact that 

it is considered to be important in the process of pattern separation (Alonso et al., 2012; 

Clelland et al., 2009; Sahay et al., 2011). Immature GCs are thought to play a special role in 

DG processing which partially exempts them from feedback inhibition mediated max pooling 

and assembly competition (Aimone et al., 2011; Li et al., 2012; Marin-Burgin et al., 2012; 

Temprana et al., 2015). Although the present study has accordingly concentrated solely on 

inhibition in mature GCs, the results need to be viewed in the context of the contribution of 

immature GC in order to better understand the implications for pattern separation.  

 

4.7.1 The Temporal Tag Hypothesis 

The temporal tag hypothesis posits that adult born, immature GCs come to represent 

contexts or patterns, which the animal is exposed to during a ‘critical period’ in their 

maturation (Ge et al., 2007; Kee et al., 2007; Tashiro et al., 2006, 2007). Several studies 

combining functional in vitro data with computational models support this general 

hypothesis (Li et al., 2012; Marin-Burgin et al., 2012; Temprana et al., 2014; but see Alme et 

al., 2010; Nakashiba et al., 2012). For instance Temprana et al. (2014) show that immature 

GCs are incompletely integrated into the feedback network both in terms of their output as 

well as their input. They argue that the low inhibition and high intrinsic excitability of young 

adult born granule cells enables them to initially broadly respond to new stimuli.   

Progressive coupling to feedback inhibition and changes in intrinsic properties then slowly 

decrease the size of the input field. At the same time Hebbian learning occurs, ultimately 

allowing the cell to retain a small specific input field. Accordingly, feedback inhibition 

implements its full canonical functions primarily in mature GCs, while it appears to serve 

more complex functions during the maturation of new born GCs (Espósito et al., 2005; Ge et 

al., 2006; Li et al., 2012).  
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4.7.2 Rate Coding or Population Coding 

The fact that immature GCs display much higher firing rates and little response selectivity is 

inconsistent with the classical theory of pattern separation by sparse population coding 

(Aimone et al., 2011; Alme et al., 2010; Espósito et al., 2005; Ge et al., 2007). Instead, a 

comparatively small subpopulation of GCs recorded in vivo have displayed relatively 

unselective responsivity and have been shown to perform pattern separation by rate coding 

rather than population coding (Leutgeb et al., 2007). Some authors have, rather radically, 

interpreted the relative quiescence of the majority of GCs in vivo to indicate that they ‘opt 

for early retirement’, that is, no longer contribute to coding (Alme et al., 2010). However, it 

should be noted that the methodology used for studying in vivo activity is biased toward 

more active GCs since cells with low activity levels are less likely to be successfully isolated 

from extracellular recordings or to express immediate early genes (Alme et al., 2010; 

Leutgeb et al., 2007; see also section 4.3.1). Therefore the finding that pattern separation is 

mediated by rate coding of only a small subset of GC rather than the entire population may 

be partially due to a preselection of cells implicit in the methods used. Nevertheless, the 

presence of a small population of GCs, with relatively high mean firing rates and unselective 

responsivity, conflicts with the classical notion of sparse population coding. Aimone et al. 

(2011) propose a resolution of this inconsistency, where classical sparse coding is 

implemented by the mature GC population while more active immature GCs expand the 

information content of individual assemblies by rate coding (see also sections 0 and 1.1.2). 
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4.8 Implications for DG function in Health and Disease 

What are the functional implications of the present findings? Firstly, the tuning of the 

feedback inhibitory circuit, with exquisite sensitivity when only 1 to 3 % of GCs are active, is 

ideally suited for the purported functions of max pooling and assembly competition among 

the mature GC population. Secondly, the spatial tuning of the inhibitory microcircuit may 

further enhance the efficiency of the max pooling operation during spatially clustered GC 

activity by efficiently allocating inhibition and thereby equalizing GC activity levels over 

space. Such spatial tuning further suggests that assembly competition may be most intense 

at the local level or, more generally, that the feedback inhibitory circuit will shape the 

distribution of functional GC assemblies in space. Thirdly, the long duration of net feedback 

inhibition and its facilitation during trains of activity suggests that feedback inhibition 

mediated max pooling and assembly competition also act over time, segregating consecutive 

assemblies and limiting the number of assemblies that can be activated within longer time 

windows. Accordingly, an impairment of the feedback inhibitory microcircuitry is expected 

to first, increase excitability and activity, second, decrease pattern separation or 

discrimination ability, and third, decrease the information encoding capability and impair 

learning. In particular, my results suggest that impairments of these functions in disease may 

be due not only to the changed excitation/inhibition balance in the DG, but also to changes 

in the finely tuned spatiotemporal organization of the feedback circuit. Indeed, numerous 

studies indicate reorganization of the DG microcircuit in diseases which are characterized by 

deficits in precisely these three functions, namely mesial temporal lobe epilepsy, 

schizophrenia, and Alzheimer’s disease or milder amnestic syndromes, respectively. 

Moreover, the symptoms of these diseases often display significant overlap (Born, 2015; 

Heckers et al., 1998; Hester and Danzer, 2014). In the following, I will present just a brief 

review of evidence linking the named diseases and the respective functional deficits to DG 

dysfunction. 

By far the most intensely studied disease in respect to DG reorganization is mesial temporal 

lobe epilepsy, which is characterized by marked hyperactivity originating in the hippocampal 

region. Notably, this form of epilepsy is also associated with cognitive deficits such as 

impaired learning and is often comorbid with diseases like schizophrenia (Hester and Danzer, 

2014). A hallmark of mesial temporal lobe epilepsy is mossy fiber sprouting, the diffuse 
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outgrowth of GC axons in the hilus and beyond, leading to a profound reorganization of the 

hilar microcircuit (Buckmaster, 2012; Goldberg and Coulter, 2013; Sloviter, 1987). Most 

prominently, there is substantial loss of hilar mossy cells and SST+ interneurons (Buckmaster 

and Jongen-Rêlo, 1999; Huusko et al., 2015; de Lanerolle et al., 1989), while surviving hilar 

neurons undergo substantial morphological changes (Buckmaster et al., 2002; Thind et al., 

2010; Zhang et al., 2009). The scope of these pathological changes strongly suggests that the 

intricate spatiotemporal organization of the physiological feedback inhibitory circuit 

described here may be impaired in temporal lobe epilepsy. Importantly, the question which 

pathological changes are pathogenic and which are compensatory remains controversial. 

However, if any of these outgrowth processes are compensatory in order to maintain the 

overall excitation/inhibition balance in the DG, this would suggest that they may partially 

occur at the cost of an impaired spatiotemporal tuning of the feedback circuit. Whether this 

kind of mechanism may underlie the cognitive deficits accompanying temporal lobe epilepsy 

remains an interesting question for future research. 

The association between schizophrenia and DG dysfunction is still emerging (for review see 

Heckers and Konradi, 2014 and Tamminga et al., 2012). Nevertheless, various authors have 

begun to establish a link between the disambiguation deficits of schizophrenia and DG 

dysfunction at the behavioral and molecular levels in animal models and humans (Das et al., 

2014; Faghihi and Moustafa, 2015; Knable et al., 2004; Stan et al., 2015). A link between 

Alzheimer’s disease and DG dysfunction is also emerging (Andrews-Zwilling et al., 2012; 

Gazzaley et al., 1996; Yassa et al., 2011a; for review see Palmer and Good, 2011). For 

instance, a high resolution functional imaging study reported hyperactivity in the DG/CA3 

area in patients with age related mild amnestic cognitive impairment and behavioral 

discrimination deficits (Yassa et al., 2011b). Interestingly, aged rats with similar symptoms 

displayed selective hilar interneuron loss (Spiegel et al., 2013).  

Whether the spatiotemporal tuning of the DG feedback inhibitory circuit is impaired in these 

conditions remains to be shown. However, the suspicious overlap of symptoms between 

these diseases, all of which are associated with classical DG functions, does suggest an 

association. If this association is confirmed, the precise cellular and molecular alterations 

within the spatiotemporally graded feedback circuit may help to explain not only the 

similarities but also the differences between these diseases.  
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5. Summary 

Perhaps the most powerful approach to understand how populations of neuronal cells can 

code and process information is the combination of computational and empirical studies. 

One recurring theme, consistently predicted by computational work and supported by 

empirical investigations throughout the brain, is the theory of sparse coding. It posits that 

only few neurons are active during the representation of any particular piece of information. 

Sparse coding is thought to optimally balance the different requirements of a network, such 

as its generalization and discrimination capabilities, its storage capacity and its metabolic 

cost. In the majority of computational studies, a canonical feedback inhibitory microcircuit 

motif is used to implement a type of ‘winner-take-all’ operation, enabling information 

representation by sparse coding. More specifically, this motif is thought to normalize the 

output of the population, a function termed max pooling, and to mediate assembly 

competition, a process deemed critical in the selection of neuronal groups. In the dentate 

gyrus of the hippocampus sparse coding, enforced by a feedback inhibitory microcircuit, is 

thought to be of particular importance, critically contributing to the functions of pattern 

separation and information encoding, as well as shielding against over-excitation. Previous 

studies have addressed how single glutamatergic cells or small groups thereof can recruit 

feedback inhibition. However, the feedback inhibitory microcircuit motif has never been 

empirically described over the entire range of population activity. 

Therefore, I set out to quantitatively describe the feedback inhibitory microcircuit in the 

dentate gyrus of the hippocampus. To this end, I used a combination of electrophysiological 

recordings, population Ca2+ imaging and optogenetics to systematically probe the feedback 

inhibition elicited by granule cell populations of various sizes and spatiotemporal 

configurations. The results show that feedback inhibition is steeply recruited by sparse 

granule cell activity. Approximately 4 % of granule cells were sufficient to recruit maximal 

feedback inhibition within the local circuit. Importantly, the gain and sensitivity of the 

feedback inhibitory circuit were highest below 2 to 3 %, close to the physiological range of 

activity reported for GCs in vivo. Furthermore, the inhibition elicited by a local population of 

granule cells is distributed non-uniformly over the extent of the granule cell layer. Locally 

and remotely activated inhibition differ in several key aspects, namely their amplitude, 

recruitment curves, latencies and kinetic properties; local inhibition is larger, more efficiently 
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recruited, earlier and faster. This has important implications for the purported DG functions. 

It implies that the strength of assembly competition is organized in space and time, where 

competition is most intense locally, but an increased delay and decreased amplitude 

attenuate competition between more distant GCs. This will shape the spatial distribution of 

functional GC assemblies and may allow some degree of independent processing between 

DG blades. Furthermore, it may increase the metabolic efficiency and pattern separation 

efficacy during phases of spatially clustered input to GCs, by allocating inhibition only where 

it is needed. Finally, I showed that net feedback inhibition strongly facilitates during 

repetitive stimulation. This is a stark contrast to area CA1 where net feedback inhibition 

strongly depresses. It implies that the max pooling and assembly competition functions 

could also be efficiently implemented in time, thereby separating neuronal assemblies in 

space and time.  

Taken together, these data provide the first quantitative functional description of a 

canonical feedback inhibitory microcircuit motif. They establish that sparse granule cell 

activity, within the range observed in-vivo, steeply recruits spatially and temporally graded 

feedback inhibition.  
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7. List of Abbreviations 

AP action potential 

BC basket cell (PV+ unless otherwise indicated) 

C/A commissural/ associational path 

CA1 cornu ammonis 1 

CA3 cornu ammonis 3 

CC current clamp 

CCD charge coupled device 

CCK cholecystokinin  

DG dentate gyrus 

e- stim extracellular electrical stimulation 

EPSC excitatory postsynaptic current 

EPSP excitatory postsynaptic potential 

FS fast spiking cell (> 50Hz peak firing frequency) 

GC  dentate gyrus granule cell 

HICAP hilar commissural/associational path associated cell 

HIPP hilar perforant path associated cell 

IN not further categorized interneuron 

juv. juvenile (12 to 25 days postnatally) 

LTD long term depression 

LTP long term potentiation 

MC mossy cell 

MCP  maximum connectivity plane  

MF mossy fiber tract 

ML molecular layer 

non- FS non- FS (< 50Hz peak firing frequency) 

OGB-1-AM Oregon Green® 488 BAPTA-1 acetoxymethyl ester 

PP perforant path 

PPD paired pulse depression 

PPF paired pulse facilitation 

PV parvalbumin 

SD rat sprague dawley rats 

SST somatostatin 

STD short term depression 

STDP spike timing dependent plasticity 

STP short term potentiation 

TML total molecular layer cell 

VC voltage clamp 

ΔF/F Ca2+ fluorescence increase normalized to baseline 

 


