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Abstract

The interaction of applied geometry and numerical simulation is a growing field in the interplay of com-
puter graphics, computational mechanics and applied mathematics known as isogeometric analysis. In
this thesis we apply and analyze Loop subdivision surfaces as isogeometric tool because they provide
great flexibility in handling surfaces of arbitrary topology combined with higher order smoothness.
Compared with finite element methods, isogeometric methods are known to require far less degrees
of freedom for the modeling of complex surfaces but at the same time the assembly of the isogeo-
metric matrices is much more time-consuming. Therefore, we implement the isogeometric subdivision
method and analyze the experimental convergence behavior for different quadrature schemes. The
mid-edge quadrature combines robustness and efficiency, where efficiency is additionally increased
via lookup tables. For the first time, the lookup tables allow the simulation with control meshes of
arbitrary closed connectivity without an initial subdivision step, i.e. triangles can have more than one
vertex with valence different from six.
Geometric evolution problems have many applications in material sciences, surface processing and
modeling, bio-mechanics, elasticity and physical simulations. These evolution problems are often
based on the gradient flow of a geometric energy depending on first and second fundamental forms
of the surface. The isogeometric approach allows a conforming higher order spatial discretization of
these geometric evolutions. To overcome a time-error dominated scheme, we combine higher order
space and time discretizations, where the time discretization based on implicit Runge–Kutta methods.
We prove that the energy diminishes in every time-step in the fully discrete setting under mild time-step
restrictions which is the crucial characteristic of a gradient flow. The overall setup allows for a general
type of fourth-order energies. Among others, we perform experiments for Willmore flow with respect
to different metrics.
In the last chapter of this thesis we apply the time-discrete geodesic calculus in shape space to the
space of subdivision shells. By approximating the squared Riemannian distance by a suitable energy,
this approach defines a discrete path energy for a consistent computation of geodesics, logarithm and
exponential maps and parallel transport. As approximation we pick up an elastic shell energy, which
measures the deformation of a shell by membrane and bending contributions of its mid-surface. Bézier
curves are a fundamental tool in computer-aided geometric design. We extend these to the subdivision
shell space by generalizing the de Casteljau algorithm. The evaluation of Bézier curves depends on all
input data. To solve this problem, we introduce B-splines and cardinal splines in shape space by gluing
together piecewise Bézier curves in a smooth way. We show examples of quadratic and cubic Bézier
curves, quadratic and cubic B-splines as well as cardinal splines in subdivision shell space.
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1. Introduction

In this thesis we develop numerical schemes for the isogeometric approximation of variational prob-
lems for shells. A shell is a three-dimensional solid whose thickness is very small when compared
with other dimensions and can be represented by a mid-surface which is a two-dimensional embedded
surface in R3. The geometric quantities of shells are characterized by its first and second fundamental
forms. Consequently, the resulting Euler-Lagrange – or equilibrium – equations of the corresponding
energy functionals are fourth-order partial differential equations. It is well-known from approximation
theory, that these problems require suitable C1 resp. H2-finite elements. With standard finite elements
many problems arise in the construction of C1 -elements and hence, the numerical treatment of varia-
tional shell problems has a long history which is dominated by non-conforming approaches [21, 30].
During the last years, isogeometric analysis (IgA) [82, 37] was invented to unify the previously dis-

joint technologies of geometric design and numerical simulation. However, the isogeometric paradigm
offers also many advantages in scientific computing that were hard to achieve with the finite element
method. For instance, the discretization of higher-order geometric problems is straightforward with the
isogeometric approach because of its smooth discretization spaces. Isogeometric surface representa-
tions are based on NURBS for quadrilateral meshes [58, 82] resp. box splines as their generalization to
arbitrary polygonal meshes [40]. Unfortunately, spline surfaces are restricted to regular grids, so-called
patches [58, 82]. There exist two dominating concepts for the construction of smooth surfaces of ar-
bitrary topology. The most common approach in computer-aided design (CAD) for the last decades
was to glue many different patches together to form so-called multi-patch spline surfaces. Modeling
complex surfaces with multi-patch spline surfaces is time-consuming and complicated, because the
gluing has to be done in the right way which requires user interaction. Subdivision surfaces creates
higher-order smoothness by solving the N -sided hole filling problem [116]. More precisely, the sub-
division approach generalizes the subdivision property near regular vertices to vertices of arbitrary
connectivity so-called extraordinary vertices. When using the subdivision approach one can select ver-

Figure 1.1.: Computation of the first 24 eigenfunctions of the Laplace-Beltrami operator computed on
a complex surface using the isogeometric subdivision approach.
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1. Introduction

tices, edges or faces of the control mesh to manipulate the entire shape. Using standard additional split
and extrude commands subdivision surfaces combine the power of parametric modeling with the flex-
ibility of direct modeling. This way, the subdivision methodology changed the modeling paradigms in
computer-aided design systems over the last years tremendously, see e.g. the Freestyle module of PTC
Creor, the PowerSurfacing add-on for SolidWorksr or NX RealizeShape of Siemens PLMr which
employ the subdivision concept. Traditionally, subdivision schemes are widespread in geometry pro-
cessing and computer graphics. Among the most popular subdivision schemes are the Catmull-Clark
[26] and Doo-Sabin [46] schemes on quadrilateral meshes, and Loop’s scheme on triangular meshes
[97]. In this thesis we focus on Loop’s subdivision scheme for closed meshes [97] but the developed
numerical schemes can also be obtained using Catmull-Clark subdivision. Loop subdivision surfaces
have been extensively studied in the literature, in particular regarding their smoothness [116], curva-
ture integrability [117], (local) linear independence of their basis functions [112, 144], approximation
power [5], and robust evaluation around extraordinary vertices [131]. Furthermore, Loop subdivision
surfaces have been introduced as a finite element discretization technique for linear thin shell equa-
tions by Cirak and co-authors in [33]. Before the advent of isogeometric analysis, Cirak and co-authors
[32] introduced subdivision surfaces for geometric modeling and mechanical simulation of thin shell
structures.

Isogeometric Subdivision Method A bottleneck of isogeometric schemes is the efficient numer-
ical integration of the discretized Euler-Lagrange systems. Indeed, the higher degree and multi-element
support of the basis functions seriously affect the cost of robust numerical integration. Consequently,
numerical quadrature in IgA is an active area of research [3, 83, 101, 100, 126]. Hence, one of the
crucial steps in the implementation of the isogeometric subdivision method is the choice of numerical
quadrature. The computational cost, consistency, robustness and the observed order of convergence are
important parameters to evaluate the appropriateness of each numerical integration technique. Here, we
focus on robust and efficient quadrature in the context of second and fourth-order PDEs. The robust
integration is much more critical for subdivision surfaces than for NURBS because of the singular
configuration at extraordinary vertices. In [33] the authors observe optimal convergence rates using the
one-point barycenter quadrature rule in the energy-norm for all test cases. Our experiments suggest
that the one-point barycenter quadrature rule can fail for fourth-order problems. Therefore, we pro-
pose the mid-edge quadrature, because it combines robustness and efficiency, where we additionally
increase the efficiency via lookup tables. Furthermore, the natural parameterization introduced by Stam
[131] only allows for triangles with at most one extraordinary vertex. Because the implementation is
already very demanding the extension to triangles with more than one extraordinary vertex has not been
done in the literature, yet. In these cases the subdivision control mesh has to be subdivided once to be
parametrized by Stam’s method. For the first time, our subdivision lookup tables allow the simulation
with subdivision control meshes of arbitrary connectivity. This allows for a straightforward extension
of existing subdivision modeling codes to simulations with subdivision surfaces for applications as
performed in Figure 1.1.

Parametric Gradient Flows Because subdivision surfaces offer a great flexibility in modeling
surfaces with C1-smoothness they are ideally suited for the simulation of geometric evolution prob-
lems which have many theoretical and practical applications in mathematics and engineering sciences
[18, 38, 52, 11, 7, 110, 20, 56, 138]. These evolutions are often based on the gradient flow of a geo-
metric energy of the surface. We consider a general type of energies which involve the first and second
derivatives of the surface leading to fourth-order partial differential equations for the corresponding
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Euler-Lagrange equations. For the discretization with standard C0-finite elements, these fourth-order
equations have to be split in second-order problems which introduces additional degrees of freedom
with possibly no geometric meaning. Furthermore, the splitting has to be performed for each fourth-
order problem on its own. We review such a splitting for the case of anisotropic Willmore flow of
curves and surfaces and present results for the evolution of curves. As a consequence of the splitting
approach one can choose time steps of the size of the spatial grid size. In contrast, the direct, conform-
ing discretization of fourth-order gradient flows with subdivision surfaces only allows time steps of the
size of the squared spatial grid size. On the other hand, the discretization with subdivision elements
results in a higher order spatial approximation. An effective implicit Euler time discretization would
result in a time-error dominated scheme. Therefore, we apply a higher order time discretization based
on implicit Runge–Kutta methods to balance the error terms. The crucial characteristic of a gradient
flow is that the energy decreases in time. We prove that the energy diminishing property holds in the
fully (time and space) discrete setting under mild time step restrictions. We apply the proposed scheme
to a variety of geometric gradient flows, such as mean curvature and Willmore flow.

Geodesics, Bézier Curves and Splines in Subdivision Shell Space Bézier curves as well
as B-splines and cardinal splines are fundamental tools in computer-aided geometric design. Appli-
cations range from vector graphics to CAD, from computer graphics or animation to computational
engineering. All three concepts are linked by the de Casteljau algorithm [58] which is a robust and
efficient approach to draw Bézier curves. In Euclidean space, the de Casteljau algorithm constructs
polynomials by a weighted recursive combination of straight lines.
We consider the space of shells, where each shell is a point in space. Applying the direct computation
of straight lines, Bézier curves and splines to shells as objects in Euclidean space results in many visual
problems such as self-penetration of shells [78]. The reason is that the distance of two shells cannot
effectively be measured by the Euclidean metric because it does not invoke the inherent structure of
shells. Thus, the space of shells is often understood as a Riemannian manifold induced by a Rieman-
nian metric. In the Riemannian setting, geodesics, i.e. paths of shortest distance, are the generalizations
of straight lines in Euclidean space. Because the geodesic equations require a time stepping method
which is usually not robust, Rumpf and Wirth [123] developed the time-discrete geodesic calculus
for general shape spaces by introducing a suitable approximation of the squared Riemannian distance.
Heeren and co-authors [78, 77, 79] applied the time-discrete geodesic calculus to the space of shells
by defining an elastic deformation energy between two shells, which measures membrane and bending
contributions. For the numerical implementation they applied a suitable discrete approximation of their
previously defined continuous deformation energy using schemes from discrete differential geometry.
Instead we will discretize their continuous deformation energy with subdivision elements such that
we obtain time-discrete geodesics in the subdivision shell space. With geodesics as generalization of
straight lines we define Bézier curves in shape space as a result of a generalized de Casteljau algo-
rithm. Because the evaluation depends on all input shapes of the Bézier curve, we construct B-splines
in shape space by gluing together piecewise Bézier curves analogously to the Euclidean setting. Since
both approaches do not interpolate all input shapes, we additionally define cardinal splines in shape
space.

Publications and collaborations Parts of this thesis have already been published and resulted
from the collaboration with other researchers. The content of the isogeometric subdivision method in
Section 2.2 and Chapter 3 was done in collaboration with Bert Jüttler, Angelos Mantzaflaris and Martin
Rumpf and resulted in the preprint [86]. Section 4.1 is a summary of the joint work with Paola Pozzi
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1. Introduction

and Martin Rumpf on nested variational time discretization for anisotropic Willmore flow published in
[110]. Finally, Chapter 4 arose from the collaboration with Dhia Mansour and Martin Rumpf, which
has not yet been published but is in preparation [99].
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2. Foundations

The aim of this thesis is to develop numerical schemes for higher order geometric PDEs. Therefore,
we will recapitulate some basic definitions from differential geometry, where we follow [94, 45], as
well as the definitions of Sobolev spaces [57]. Furthermore, we review Loop subdivision surfaces as a
suitable H2-conforming space discretization.

2.1. Differential Geometry for Parametric Surfaces

LetM be a two-dimensional surface embedded in R3. Assume their is a mapping

x : Ω→M⊂ R3

ξ 7→ x(ξ) = p

that assigns to all ξ from the domain manifold Ω a point p ∈M. Then, we say x is a parameterization
ofM and we writeM =M[x]. Furthermore, we assume that det(Dx(ξ)TDx(ξ)) 6= 0 for all ξ ∈ Ω
where

Dx =
(
x,1 x,2

)
=

x1,1 x1,2

x2,1 x2,2

x3,1 x3,2

 =


∂x1(ξ)
∂ξ1

∂x1(ξ)
∂ξ2

∂x2(ξ)
∂ξ1

∂x2(ξ)
∂ξ2

∂x3(ξ)
∂ξ1

∂x3(ξ)
∂ξ2

 =

(
∂x(ξ)

∂ξi

)
i=1,2

denotes the Jacobian of the parameterization x. In particular, this means thatM is a regular surface in
R3.
Let S2 be the unit sphere in R3. The Gauß map is defined as the normal mapping

n :M→ S2

p 7→ n(p) = n,

where n is the outer normal on the surfaceM at point p ∈M. Using the Jacobian we can represent n
in local coordinates of the parameterization x

n = n(p) = n(x(ξ)) =
x,1 × x,2
|x,1 × x,2|

,

where |p| =
√
pT p =

√
p · p =

√
p2

1 + p2
2 + p2

3 denotes the vector norm of R3 and v · w = vTw the
corresponding scalar product of vectors v and w. The tangent space TpM is the two-dimensional linear
subspace of R3 that is orthogonal to the normal n = n(p) at a point p ∈M, i.e.

TpM = {v ∈ R3 | v · n = 0}.
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2. Foundations

For a parameterization x we can identify the tangent space for a point x(ξ) = p ∈M by

TpM = Tx(ξ)M =

{
2∑
i=1

vi
∂x(ξ)

∂ξi
∈ R3 | v = [v1, v2]T ∈ R2

}
= {Dx(ξ) · v | v ∈ R2}.

Now, we introduce the first fundamental form gp of a surfaceM at a point p ∈M by

gp : TpM×TpM→ R, gp(U,W ) := U ·W, U,W ∈ TpM

which allows us to measure on the surface. For two tangent vectors U,W ∈ TpM, using the basis
representation U = Dx · u and W = Dx ·w for u,w ∈ R2, we can express the first fundamental form
in local coordinates of Ω (called pull-back) by

gp(U,W ) = uT
(
DxTDx

)
w = uT g · w = gξ(u,w).

In the following we will often write g instead of gp or gξ and assume that the context is clear, but most
of the time we will refer to the bilinear form g = (gij)i,j=1,2 = (x,i · x,j)i,j=1,2. Furthermore, we
denote the inverse of g by g−1.
Now, we want to introduce the notion of curvature of a regular manifoldM, i.e. we want measure how
the normal field n changes on the surfaceM. Therefore, we assume that n is a smooth normal field,
i.e. Dn = Dn(p) =

(
n,1 n,2

)
exists for all p ∈ M and that n is at least continuous which implies

that the surfaceM is orientable. Then, using the relation n · n = 1, we obtain

n ·Dn = 0

which implies that n,1 and n,2 lie in the tangent space TpM. This motivates the definition of a second
scalar product on the tangent space TpM known as the second fundamental form bp : TpM×TpM→
R with

bp(V,U) = −(Dn · v) · (Dx · u) = vT (−DnTDx) · u = vT b u = bξ(v, u),

where V = Dn · v ∈ TpM and U = Dx · u ∈ TpM. To get an easier representation of the matrix b
we compute the derivative of nTDx = 0 and obtain for i, j = 1, 2 that

bij = −n,i · x,j = n · x,ij ,

where

D2x =

(
∂2x(ξ)

∂ξj∂ξi

)
i,j=1,2

denotes the Hessian of x.
Because n ·Dn = 0 and n ·Dx = 0, i.e. Dn and Dx lie in same subspace, there exists a linear map
sp : TpM→ TpM such that

bq(V,U) = gp(sp · V,U), ∀ V,U ∈ TpM

6



2.1. Differential Geometry for Parametric Surfaces

known as embedded Weingarten map or embedded shape operator. If we further assume that sp ·n = 0,
sp has the unique representation

sp = −Dng−1DxT = Dxg−1bg−1DxT ,

where we use that

bq(V,U) = −(Dn · v) · (Dx · u) = (spDx · v) · (Dx · u) = gp(sp · V,U), ∀ V,U ∈ TpM,

with

−Dn = spDx.

In addition to sq we can define sξ as the Weingarten map on the corresponding tangent space in R2.
Then, sξ has to fulfill the following condition

bξ(v, u) = gξ(sξ · v, u), ∀ v, u ∈ R2,

such that

sξ = b · g−1

respectively

sp = Dxg−1 · sξDxT .

Let us remark that the main difference between sp and sξ is that sp is independent of the parameteriza-
tion and sξ depends on the parameterization. In many cases one can directly work with sξ (e.g. because
it is faster), but since we work with parameterizations it is important to define all quantities with respect
to sq. Then, we can compute the corresponding representation in sξ, e.g. the Frobenius norm of sp is
not equal to the Frobenius norm of sξ. In particular,

|sq|2F = tr(sTp sp) = tr
((
Dxg−1 · sξDxT

)T (
Dxg−1 · sξDxT

))
= tr

((
g−1 · sξDxT

)T (
sξDx

T
))

= tr (sξ · sξ) 6= tr
(
sTξ · sξ

)
= |sξ|2F,

where |A|F =
√∑n

i=1

∑m
j=1Aij denotes the Frobenius norm of a matrix A ∈ Rn×m. Furthermore, sp

is symmetric and has the eigenvalues κ1, κ2 and 0, where κ1 and κ2 denote the principal curvatures of
the surfaceM at the point p, where sξ has the eigenvalues κ1 and κ2. In both cases these eigenvalues
exist because sp and sξ are self-adjoint with respect to the metric gp respectively gξ, i.e. gp(sp ·V,U) =
gp(V, sp · U) for U, V ∈ TpM. Now, we have everything at hand to introduce the mean curvature h at
a point x(ξ) = p ∈M by

h = tr(sp) = tr(sξ) = κ1 + κ2

7



2. Foundations

(here, the mean curvature is the sum of the eigenvalues instead of the mean).
Let u :M→ R be a smooth scalar function defined onM. Then the gradient of u onM

∇Mu(x) =

∇1
Mu(x)
∇2
Mu(x)
∇3
Mu(x)

 =

(DxT1 g−1∇ξ(u ◦ x)
)

(ξ)(
DxT2 g

−1∇ξ(u ◦ x)
)

(ξ)(
DxT3 g

−1∇ξ(u ◦ x)
)

(ξ)

 =
(
Dxg−1∇ξ(u ◦ x)

)
(ξ)

is known as the tangential gradient or surface gradient. Here,∇ξũ(ξ) =

(
∂ũ(ξ)
∂ξ1
∂ũ(ξ)
∂ξ2

)
denotes the gradient

of a scalar function ũ : Ω → R on Ω. Furthermore, divξ ṽ = ∂ṽ1
∂ξ1

+ ∂ṽ2
∂ξ2

denotes the divergence of a
vector field ṽ : Ω→ R2 on Ω. Then, we define the Laplace-Beltrami operator by

∆Mu(x) = ∇M · ∇Mu(x) = divM∇Mu(x) =
1√

det g
divξ

(√
det gg−1∇ξ(u ◦ x)

)
(ξ).

Both definitions can be generalized to mappings y : Ω→ R3 by

∇My =

(∇My1)T

(∇My2)T

(∇My3)T

 resp. ∆My =

∆My1

∆My2

∆My3

 .

Let us conclude this section by introducing the Sobolev spaces Wm,p(M,R) for functions u : M→
R and Wm,p(M,R3) of parameterizations x. First, let us define the corresponding Lp spaces for the
function itself, its surface gradient and surface Hessian by

‖u‖Lp(M,R) =

(∫
M
|u|p da

) 1
p

,

‖∇Mu‖Lp(M,R) =

(∫
M
|∇Mu|p da

) 1
p

,

where |∇Mu|p =
∑

k(∇kMu)p, and

‖∇2
Mu‖Lp(M,R) =

(∫
M
|∇2
Mu|p da

) 1
p

,

where |∇2
Mu|p =

∑
i,j(∇iM∇

j
Mu)p and da =

√
det g dξ denotes the area element. Then,

‖u‖W 0,p(M,R) = ‖u‖Lp(M,R),

‖u‖W 1,p(M,R) = (‖u‖pLp(M,R) + ‖∇Mu‖pLp(M,R))
1
p ,

‖u‖W 2,p(M,R) = (‖u‖pLp(M,R) + ‖∇Mu‖pLp(M,R) + ‖∇2
Mu‖pLp(M,R))

1
p ,
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2.2. Subdivision Surfaces

and

‖u‖Hm(M,R) = ‖u‖Wm,2(M,R) ∀ m = 0, 1, 2.

The definitions can be generalized to mappings y : Ω→M by

‖y‖Lp(M,R3) =

(∫
M
|y1|p + |y2|p + |y3|p da

) 1
p

,

‖∇My‖Lp(M,R3) =

(∫
M
|∇My1|p + |∇My2|p + |∇My3|p da

) 1
p

and

‖∇2
My‖Lp(M,R3) =

(∫
M
|∇2
My1|p + |∇2

My2|p + |∇2
My3|p da

) 1
p

.

All other definitions are analog to the scalar function case. Let us note that we write Wm,p instead of
Wm,p(M,R) respectivelyWm,p(M,R3) and call a function or parameterization inWm,p if ‖u‖Wm,p <
∞ respectively ‖y‖Wm,p <∞.

2.2. Subdivision Surfaces

In this section we describe theH2-conforming discretization based on Loop’s subdivision scheme [97].
As already mentioned before, subdivision surfaces generalize the subdivision property of box spline
surfaces (see [40] for a definition) to meshes of arbitrary topology. For a comprehensive introduction
to subdivision methods in general we refer to [111, 128] and [25]. For the integration of subdivision
methods in CAD systems, we refer to [4, 19] and the references therein.

Since their invention in the late 1970s (the first schemes were based on quadrilaterals [26, 46])
subdivision surfaces attracted much attention from researchers and designers because of their elegant
and efficient way to produce visually appealing surfaces of arbitrary topology. But it took more than two
decades before Reif [116] developed a unified framework to proof the conjectured C1-property using
the characteristic map embedding and Reif and Schröder [117] could show the H2-property which is
essential for higher order finite element simulations, which were first performed by Cirak, Ortiz and
Schröder in [33] for linear thin shell equations. In [70, 31] the setup was extended to the nonlinear
regime. For the linear thin shell problem described in [33], Green and co-authors [68] developed a
multigrid preconditioned conjugate gradient algorithm based on the subdivision matrix which scales
almost linearly to account for large scale engineering simulations.

In the following we introduce the refinement rules used in Loop’s subdivision scheme [97] for sur-
faces, the corresponding subdivision matrix and their eigenvalue structure needed for the smoothness
analysis. Furthermore, we describe how to construct the domain manifold and basis functions. Based
on these we briefly discuss the concept of the characteristic map based on eigenfunctions and list the
main results of the smoothness analysis. Finally, we discuss the evaluation of positions, tangents and
curvatures using the natural parameterization introduced by Stam [131].

9



2. Foundations

Figure 2.1.: Loop’s original subdivision stencils. On the left we depict the topological splitting of
a triangle into four smaller triangles called quadrisection. The corresponding edge and
vertex rules are depicted in the middle respectively on the right where β = β(N) =
1
N

(
5
8 −

(
3
8 + 1

4 cos
(

2π
N

))2).

Subdivision matrix Let us first clarify some notation. We denote by T a closed simplicial mesh
where Iv ⊂ Z denotes the vertex index set, Ic ⊂ Z the cell (triangle) index set and Ie ⊂ Ic × Ic the
edge index set, which is assumed to be symmetric

(i, j) ∈ Ie ⇒ (j, i) ∈ Ie

and irreflexive
∀i ∈ Z : (i, i) 6∈ Ie.

Each edge is described by a symmetric pair of edge indices ((i, j), (j, i)) ∈ Ie×Ie. Since we consider
triangle meshes, each cell contributes to exactly three edges

∀i ∈ Ic : |{j ∈ Ic : (i, j) ∈ Ie}| = 3.

Furthermore, C̄ = (C̄i)i∈Iv denotes the vertex positions where C̄i ∈ R3. The valence of a vertex
denotes the number of vertices that share an edge with this vertex denoted here by N . Then, we call
a vertex ordinary if this vertex has valence six and consequently extraordinary (EV) if the vertex has
a valence unequal to six. By N1(i) we denote the 1–ring of a vertex i, i.e. the set of all vertices that
share an edge with this vertex and the vertex itself, i.e. |N1(i)| = N + 1. The definition of a k–ring of
a vertex i denoted byNk(i) is then analog. Furthermore, the 1–ring of an element denotes all triangles
that share a vertex with this triangle and the triangle itself which is also denoted as patch. Then, we say
that a patch is regular if the three inner vertices are ordinary and irregular if there is at least one inner
extraordinary vertex (see Figure 2.5 for a regular and irregular patch).

As mentioned earlier subdivision defines smooth surfaces by applying a refinement process to an
initial control polyhedral of arbitrary topology. Assume T0 denotes a triangle mesh which contains only
ordinary vertices denoted by C̄0. Then, for each vertex i ∈ Iv we denote by C̄0

local = (C̄0
0 , C̄

0
1 , . . . , C̄

0
6 )

all vertex positions inN1(i) where C̄0
0 corresponds to the center vertex. From the theory of box splines

we know that we can compute a refined mesh T1 by quadrisecting each triangle of T0 and then recom-
pute the old vertex positions (called vertex rule) by

C̄1
0 =

5

8
C̄0

0 +

6∑
i=1

1

16
C̄0
i

10



2.2. Subdivision Surfaces

T0 T1 T2 T3 T∞

surface
Figure 2.2.: Loop Subdivision surface: We depict the control mesh T0, the first three subdivision levels

T1, T2, T3 and the resulting limit surface T∞.

and the vertex positions for newly introduced vertices (called edge rule) by

C̄1
i =

C̄0
i + 3C̄ki−1 + C̄ki + 3C̄ki+1

8
, i = 1, . . . , N, (2.1)

where the index i has to be understood in modulo arithmetic. This process can easily be applied for
some refinement step k which creates a triangle mesh Tk with vertex position C̄k. In the limit, i.e.
k →∞, this process produces a smooth surface. Here, the described weights correspond to the quartic
box spline which produces smooth C2-surfaces (again see e.g. [40]). Unfortunately, the only surface
which can be constructed consisting only of ordinary vertices is topologically a torus (Figure 2.2).

In 1985, Charles Loop generalized the subdivision vertex rule of quartic triangular box splines to
meshes of arbitrary arbitrary topology, see Figure 2.1. Then, for each vertex i ∈ Iv with valence N we
compute the new vertex position at refinement level k by

C̄k+1
0 = (1−Nβ(N))C̄k0 +

N∑
i=1

β(N)C̄ki (2.2)

where C̄0
local = (C̄k0 , C̄

k
1 , . . . , C̄

k
N ) follows analogously to the above definition and β(N) = 1

N

(
5
8 −(

3
8 + 1

4 cos
(

2π
N

))2) denotes the generalized subdivision weight. A subdivision surface is then defined
as the limit of this process, i.e. k → ∞, where we denote the smooth surface byM = T∞, and we
denote T0 as the coarse control mesh. Let us remark that the subdivision process only inserts ordinary
vertices, i.e. vertices with valence six. This implies that each subdivision of an irregular patch produces
three regular and one irregular patch. As a consequence, the refined control meshes consist of large
regions which are entirely regular (i.e. consist of quartic box spline patches) with isolated vertices
whose valence is different from six. Let us remark that this process also applies to vectors of scalars
instead of vectors of three–dimensional vectors C̄local.
Since (2.2) and (2.1) are linear combinations of C̄klocal we can express this subdivision scheme between
level k and k + 1, i.e. C̄klocal and C̄k+1

local , by the so-called the local subdivision matrix S ∈ RN+1×N+1,
i.e.

C̄k+1
local = SC̄klocal. (2.3)

Since Loop subdivision is a stationary subdivision scheme, i.e. the subdivision rules are the same for
each subdivision step, we can study the limit point C̄∞i of C̄0

i for all i ∈ Iv by examining the local
subdivision process

C̄∞local = lim
k→∞

SkC̄0
local. (2.4)

11



2. Foundations

Eigenvalues and eigenvectors of the subdivision matrix Now, we want to understand the
limit process of (2.3) better. Therefore, we consider the left W j and right V j eigenvectors of S, i.e. for
i = j, . . . , N + 1

SV j = λjV
j

and

W j · S = λjW
j

with eigenvalues λj ordered by magnitude, i.e.

|λ1| ≥ |λ2| ≥ |λ3| ≥ |λ4| ≥ . . . ≥ |λN+1|

and W j · V i = δi,j for i, j = 1, . . . , N + 1. From [131] we know that these eigenvalues are real,
i.e. λj ∈ R and the eigenvectors W j and V j can also be constructed to be real-valued. Then, we can
consider the eigendecomposition of C̄0

local, i.e.

C̄0
local =

N∑
j=0

djV
j ,

where dj = W j · C̄0
local. If we apply this decomposition to (2.4) we obtain

C̄∞local = lim
k→∞

Sk
N+1∑
j=1

djV
j = lim

k→∞

N+1∑
j=1

λjdjV
j . (2.5)

From this it immediately follows that the limit surface cannot exist if λ1 > 1. In particular, we have
λ1 = 1 denoted as dominant eigenvalue, V 1 = (1, . . . , 1)T andW 1 = (1−N`(N), `(N), . . . , `(N))T

with `(N) = ( 3
8β(N) +N)−1. Furthermore, S has the so-called sub-dominant eigenvalue

1 > λ2 = λ3 = λ =
3

8
+

1

4
cos

(
2π

N

)
of algebraic and geometric multiplicity 2 and

λ > λ4 = µ =


1
8 N = 3,

λ2 N = 4, 5,
1
4 N = 6,
3
8 + 1

4 cos
(

4π
N

)
N > 6.

Using this information we immediately obtain from (2.5)

C̄∞local = d1V
1 with d1 = W 1 · C̄0

local,

12



2.2. Subdivision Surfaces

i.e. we have a well-defined limit point

C̄∞i = (1−N`(N))C̄0
i +

∑
j∈N1(i)

`(N)C0
j (2.6)

for all extraordinary vertices i ∈ Iv, such that we can compute the limit position of an arbitrary control
vertex without going to the limit.

Domain manifold The domain of a Loop subdivision surface is a topological manifold obtained by
gluing together copies of a standard triangle. First, we define the domain pre-manifold

Ω̂ = 4× Ic (2.7)

as the cartesian product of the unit triangle

4 = {(ξ1, ξ2) ∈ R2 | 0 ≤ ξ1 + ξ2 ≤ 1, ξ1, ξ2 ≥ 0} ⊂ R2 (2.8)

and the cell index set Ic. To construct the domain manifold from the pre-manifold we need to identify
points on the common boundary of two triangles. Therefore, we associate with each edge index (i, j) ∈
Ie a displacement δij , which is one of the 18 isometries (3 · 3 · 2) that map the unit triangle to one
of its three neighbor triangles obtained by reflection and index permutation. These displacements in
particular identify the common edges of neighboring triangles and their orientation with respect to
the two triangles. They need to satisfy the following two conditions. Firstly, the identification of the
common edge and its orientation has to be consistent for each edge, thus

∀(i, j) ∈ Ie : δij = (δji )
−1.

Secondly, each edge of a triangle is identified with exactly one edge of another triangle,

∀(i, j) ∈ Ie : ∀(i, k) ∈ Ie : δij(∆) ∩∆ = δik(∆) ∩∆⇒ j = k.

Two points of the pre-manifold (ξ, i), (η, j) ∈ Ω̂ are identified, denoted by (ξ, i) ∼ (η, j), if (i, j) is
an edge index and the displacement δij transforms η into ξ. This implies that ξ and η are located on
the boundary of the unit triangle. We denote with ∼̂ the reflexive and transitive closure of this relation.
This closure leads to the obvious identification of common vertices. Then, the topological manifold

Ω = (4× Ic)/∼̂ (2.9)

is the domain manifold of the Loop subdivision surface.

Subdivision basis functions Now, we describe the construction of basis functions needed for
finite element simulation.

Therefore, we consider a triangulation Tk and the spaces

Lk = {f ∈ C0(Tk) | f |i ∈ P∀i ∈ Ic} (2.10)

of piecewise linear functions on Tk. Here, each function is uniquely described by its nodal values, i.e.,
by its values at the vertices of the triangulation. Analog to the local subdivision matrix we can define a

13



2. Foundations

Loop subdivision operator Sk : Lk−1 → Lk that transform a piecewise linear function fk−1 ∈ Lk−1

into a function fk = Skf
k−1. Again, Sk reflects the subdivision vertex rule (2.2) and edge rule (2.1).

The space of Loop subdivision splines consists of the limit functions generated by these subdivision
operators,

{ lim
k→∞

SkSk−1 · · ·S1f : f ∈ L0}.

Now we have everything at hand to define the nodal functions for all i ∈ Iv by

Φi = lim
k→∞

SkSk−1 · · ·S1Λi,

where Λi ∈ L0 denotes the associated piecewise linear hat function which takes the nodal value 1 at
the associated vertex i ∈ Iv and 0 else. Assume that all extraordinary vertices of T0 are isolated, i.e.
two extraordinary vertices are separated by at least one ordinary vertex.

Theorem 2.2.1. The set of Loop subdivision nodal functions are globally linearly independent over
the domain manifold Ω, i.e. if ∀(ξ, k) ∈ Ω :

∑
i∈Iv aiΦi(ξ, k) = 0, then ai = 0 for all i ∈ Iv.

Proof. See Corollary 2.3 in [112].

Because of the compact support of the subdivision rules, the support of a Loop basis function is
the two-ring of the vertex i ∈ Iv in the coarsest triangulation T0. If the support does not contain EVs
in its interior, then it consists of 24 triangles at the coarsest level and the Loop basis function is the
C2-smooth quartic box spline. Now we have everything at hand to introduce a Loop subdivision surface

X : Ω→ R3 : X(ξ, k) =
∑
i∈Iv

C̄iΦi(ξ, k) , (2.11)

which is obtained by assigning control points C̄ = (C̄i)i∈Iv , where C̄i ∈ R3, to the Loop basis
functions with ξ = (ξ1, ξ2) ∈ 4. For a visualization of the curved triangles X(4, k) see Figure 2.3.

Figure 2.3.: Visualization of a spherical subdivision limit surface with extraordinary vertices of valence
5 and 12. Instead of the control meshes we depicted the limit surface with the smooth
curved triangles on different subdivision levels.

Eigenfunctions, the characteristic map and spline rings Now, we have almost everything
at hand to understand the behavior in the vicinity of an extraordinary vertex. Therefore, we consider
the extended left eigenvectors W j ∈ RN+6 which correspond to all vertices in the 1-ring of an ir-
regular element (still ordered with respect to magnitude of the corresponding eigenvalues λj ∈ R,

14



2.2. Subdivision Surfaces

j = 1, . . . , N + 6). Then, we define for fixed k the eigenfunctions ∀ j = 1, . . . , N + 6 by

νj(ξ, k) =

N+6∑
i=1

W j
i Φi(ξ, k), ξ ∈ 4. (2.12)

Here, the term eigenfunction is reflected by the following scaling relation (holds for N > 3)

νj(ξ/2
l, k) = λljνj(ξ, k) ∀ ξ ∈ 4, l > 0. (2.13)

Then, we can decompose the unit triangle4 by

4 =

∞⋃
l=1

4l, where41 = 4\1

2
4 and4l+1 =

1

2
4l.

This means that νj(4l+1, k) = λljνj(41, k), i.e. νj(4l+1, k) is a scaled copy of νj(41, k). ForN = 3
the situation changes barely. Here, the subdivision matrix cannot be diagonalized, but a Jordan decom-
position can be computed. This contains only one non–trivial Jordan block and an efficient factorization
can be used (see [131]). Then, the definitions apply again as above. Now we can define the character-
istic map by

Ψ(ξ, k) =

(
ν2(ξ, k)
ν3(ξ, k)

)
. (2.14)

Then, we have the scaling relation Ψ(4l+1, k) = λlΨ(41, k) for all k ∈ Ic in the neighborhood of
an extraordinary vertex, and, since both eigenfunctions correspond to the same eigenvalue, the sub-
dominant eigenvalue λ. The fact that νj(4l, k) is again a quartic box spline for all k ∈ Ic, l > 1 and
j ∈ Iv motivated the term spline ring and is the crucial difference between multi-patched box spline
surfaces (including NURBS) and subdivision surfaces. In subdivision, surfaces of arbitrary topology
are obtained by solving the N -sided hole–filling problem instead of gluing together patches. The ex-
traordinary vertices are at the center of irregular patches which can be thought of as consisting of
an infinite geometric sequence of rings of regular patches (see Figure 2.4). From the scaling relation
we see that the size of the sequence of rings is determined by the so-called sub-dominant eigenvalue
λ which depends on the valence of the extraordinary vertex. Because of these observations the ana-
lytic properties of the limit surface are given by the properties of the quartic box spline, except at the
extraordinary vertex where we have a singularity.

Smoothness of Loop’s subdivision surfaces Finally, we have everything almost everything
at hand to list the smoothness properties of Loop’s subdivision surfaces. First, let us remark that from
the scaling relation (2.13) we see for j = 2, 3 and N > 6

∂νj(ξ/2
l, k)

∂ξ
= (2λ)l

∂νj(ξ, k)

∂ξ
∀ ξ ∈ 4, k ∈ Ic,

i.e. the derivatives of νj diverge because λ > 1
2 which means that the first derivatives of Loop’s

subdivision surfaceX diverge in this setting. Let us now come to the breakthrough result by Reif [116]
which characterizes a C1-smooth subdivision surface.
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2. Foundations

Figure 2.4.: N -sided hole filling problem for N = 4, 5, 8. Here, the green ring is always a λ-scaled
copy and the yellow ring a λ2-scaled copy of the orange ring, where λ denotes the sub-
dominant eigenvalue of the subdivision scheme. For subdivision surfaces, the rings are
spline rings and the infinite sequence of these rings is the approach of subdivision to con-
struct smooth surfaces of arbitrary topology with a singularity at the centered extraordinary
vertex.

Theorem 2.2.2. If λ2 = λ3, 1 > |λ2| > |λ4|, is a real eigenvalue with algebraic and geometric
multiplicity 2 and if the characteristic map is regular (i.e. ∂Ψ(ξ,k)

∂ξ 6= 0 for all ξ ∈ 4 and k ∈ Ic) and
injective, then subdivision surface

X̃ = X ◦Ψ−1 : Ω̃ 7→ R3

is C1 at an extraordinary vertex where

Ω̃ = Ψ(Ω) =
∑
k

Ψ(4, k)

denotes the embedded domain manifold.

Proof. See Theorem 3.6 in [116].

Applying this fundamental result to Loop’s subdivision scheme, Umlauf [137] showed the follow-
ing result.

Theorem 2.2.3. Loop subdivision surfaces are C1-smooth using the characteristic map embedding.

Proof. See Lemma 6.1 in [137].

Unfortunately, for finite element or isogeometric simulations we don’t want to compute the inverse
of the characteristic map and instead work with X . Here, Reif and Schröder [117] underlined the
justification for Loop subdivision surfaces to be used in higher order finite element simulations.

Theorem 2.2.4. Loop’s subdivision surfaces are H2-integrable, i.e. ‖X‖H2 <∞.
In particular,

X ∈


C2 iff all vertices have valence 6,

W 2,p, p <∞ iff all vertices have valence 4, 5 or 6,

W 2,p, p < 2 ln |λ|
2 ln |λ|−ln |µ| else.
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Figure 2.5.: Local numbering of a regular box spline patch with 12 control points on the right and the
local numbering of an irregular patch with N + 6 nodes on the left.

Proof. See Theorem 2 in [117].

The natural parameterization Let us now describe the evaluation algorithm by Stam [131] in
detail. First we assumeX(ξ, k) is the left gray patch in Figure 2.5 with (ξ, k) ∈ Ω. Because all vertices
are ordinary we can write

X(ξ, k) =

12∑
i=1

C̄iNi(ξ1, ξ2) = C̄TN(v, w),

where C̄i ∈ Rd (d = 1, 2, 3) are the coordinates of the nodes with the local numbering as in Figure 2.5
and Ni are the corresponding shape functions (see Appendix A.1).

The situation around an extraordinary vertex of valence N is different. In this case we have K =
N + 6 vertices surrounding the patch. We assume that the extraordinary vertex is located at ξ = (0, 0),
i.e. at the origin of the unit triangle. Then we can write the control vertices in a K × 3-matrix given by

C0 = (C̄0
1 , C̄

0
1 , . . . , C̄

0
K).

Then we define the extended K × K subdivision matrix which describes the next subdivision step
entirely by

A =

(
A11 0
A21 A22

)
and an even bigger subdivision matrix by

Ã =

A11 0
A21 A22

A31 A32


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2. Foundations

and we get the new vertices by

C1 = AC0 and C̃1 = ÃC0,

where C̃1 = (C̄1
1 , C̄

1
2 , . . . , C̄

1
K , C̄

1
K+1, . . . , C̄

1
M ) with M = K + 6 = N + 12. In the definition of A

Ã, we used

A11 =



1−Nβ(N) β(N) β(N) β(N) β(N) . . . β(N) β(N) β(N)
c c d 0 0 . . . 0 0 d
c d c d 0 . . . 0 0 0
c 0 d c d . . . 0 0 0

...
c d 0 0 0 . . . 0 d c


,

A21 =
1

16


2 6 0 0 . . . 0 0 6
1 10 1 0 . . . 0 0 1
2 6 6 0 . . . 0 0 0
1 1 0 0 . . . 0 1 10
2 0 0 0 . . . 0 6 6

 , A22 =
1

16


2 0 0 0 0
1 1 1 0 0
0 0 2 0 0
1 0 0 1 1
0 0 0 0 2

 ,

A31 =
1

8



0 3 0 0 . . . 0 0 1
0 3 0 0 . . . 0 0 0
0 3 1 0 . . . 0 0 0
0 1 0 0 . . . 0 0 3
0 0 0 0 . . . 0 0 3
0 0 0 0 . . . 0 1 3

 and A32 =
1

8



3 1 0 0 0
1 3 1 0 0
0 1 3 0 0
3 0 0 1 0
1 0 0 3 1
0 0 0 1 3

 .

where c = 3
8 and d = 1

8 . Then, by repeating this process, we obtain an infinite sequence of control
vertices by

C̃n = ÃCn−1 = ÃAn−1C0, n ≥ 1.

For each n ≥ 1 the subdivision process produces 3 regular patches and 1 irregular patch (see Figure
2.6). The vertices are now in C̃n and we only have to pick the right vertices corresponding to the
desired patch. Therefore we define the picking matrices Pm for m = 1, 2, 3, such that we choose the
right vertices for three regular patches. Hence, we define

C̃n,m = PmC̃n, m = 1, 2, 3.

Each row of the picking matrix Pm is filled with zeros expect for the column corresponding to the
index which is filled with a one (see Figure 2.6). Each surface patch is then defined as follows:

Xn,m(ξ, k) = C̃T
n,mN(ξ1, ξ2) = PT

mC̃T
nN(ξ1, ξ2).

Since this is just a parameterization of a part of our triangle, we seek for a parameterization of the whole
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2.2. Subdivision Surfaces

triangle X(ξ, k). As explained above we have an infinite number of patches4n
m which are given by

4n
1 = {(ξ1, ξ2) | ξ1 ∈ [2−n, 2−n+1] and ξ2 ∈ [0, 2−n+1 − ξ1]}
4n

2 = {(ξ1, ξ2) | ξ1 ∈ [0, 2−n] and ξ2 ∈ [0, ξ1]}
4n

3 = {(ξ1, ξ2) | ξ1 ∈ [0, 2−n] and ξ2 ∈ [2−n, 2−n+1 − ξ1]}.

The surface patch is then defined by its restriction to each of these triangle

X(ξ, k) |4n
m

= Xn,m(tn,m(ξ, k)) = CT
0 (PmĀAn−1)TN(tn,m(ξ1, ξ2))

with

tn,1(ξ1, ξ2) = (2nξ1 − 1, 2nξ2),

tn,2(ξ1, ξ2) = (1− 2nξ1, 1− 2nξ2),

tn,3(ξ1, ξ2) = (2nξ1, 2
nξ2 − 1).

Furthermore the picking matrices are

P1(N) =
(
I2 IN+3 IN+4 I3 I1 IN+1 IN+2 IN+7 IN+8 IN+9 IN+10 IN+5

)T
,

P2(N) =
(
IN+2 IN+1 IN+5 IN+10 IN+7 IN+3 I2 I1 IN IN+6 I3 IN+4

)T
,

P3(N) =
(
IN+1 IN+2 I2 I1 IN IN+6 IN+5 IN+10 IN+7 IN+3 IN+11 IN+12

)T
,

where Ij ∈ RN+12 denote the zero vectors except at the j-th position where the value is one.
Since we will evaluate the basis functions only on a given set of quadrature points, this can be

done in a pre-processing step. For a more efficient implementation using the eigenstructure of A see
the original paper [131] (where the computation is made almost independent of n). Here, the extended
subdivision matrix A can be diagonalized for N > 3, i.e.

A = V ΛV −1.

Hence, we can write

Xn,m(tn,m(ξ, k)) = (V −1C0)TΛn−1(PmÃV )tN(tn,m(ξ1, ξ2)).

For N = 3 the extended subdivision matrix has a non-trivial Jordan block, but can still be treated in
a similiar fashion (see [131]). For a detailed description of V , J , and Λ see [131], where the eigende-
composition A = V ΛV −1 is not ordered with respect to the magnitude of the eigenvalues λj . Finally,
let us remark that the eigenfunctions νi defined before are given by

νi(ξ, k) |4n
m

=
(
Λn−1(PmĀV )tN(tn,m(ξ1, ξ2))

)
i
,

if V is ordered with respect to the magnitude of the eigenvalues. Hence, we could evaluate the charac-
teristic map Ψ(ξ, k) = (ν2(ξ, k), ν3(ξ, k))T as well.
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Figure 2.6.: Patch refinement near an extraordinary vertex. On the top the corresponding irregular patch
is filled red on the left. On the right after one subdivision step the three blue triangles are
again regular and the red patch is still irregular. On the bottom all four newly created
patches.
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3. Isogeometric Subdivision Method

In this chapter we focus on the formulation and implementation of subdivision surfaces in the context
of numerical simulation using the isogeometric approach. A particular focus of this chapter is on the
convergence order of Loop’s subdivision for isogeometric simulations, which will be analyzed through
a detailed experimental convergence study in dependence of an efficient assembly of the correspond-
ing isogeometric matrices. Let us remark that Loop’s subdivision surfaces were first considered for
finite element simulations by Cirak, Oritz and Schröder [33] before the invention of the isogeometric
paradigm and Cirak and co-authors [32] suggested to use subdivision surfaces as integrated tool for
modeling and simulation.

First we transform the concepts from differential geometry to our discrete setting. Because the
basis functions of subdivision surface are almost everywhere C2-smooth, a point-wise definition of
all concepts from Chapter 2 is straightforward. Furthermore, we will focus on the efficient numerical
integration based on quadrature. Therefore, we consider three model problems, the Laplace-Beltrami
equation

−∆Mu = f onM , (3.1)

the surface bi-Laplacian equation

(−∆M)2u = f onM (3.2)

as well as the eigenvalue problem

−∆Mu = λu onM . (3.3)

We will consider the assembly of the corresponding isogeometric matrices for the model problems
in detail and discuss different quadrature schemes. In addition we discuss the previously proposed
adaptive strategies around extraordinary vertices [104] and provide a look-up table for the mid-edge
quadrature based on [70] which facilitates the implementation and results in a fairly robust simulation
tool and a very efficient assembly of finite element matrices.

3.1. Spatial Discretization

In the previous chapter we have seen that Loop subdivision surfaces have a basis function representa-
tion cf. (2.11). We will now introduce the notions for the differential geometric concepts in our discrete
setting. Therefore, let us repeat the definition of a Loop subdivision from a domain manifold Ω to the
embedded surfaceM by

X : Ω→ R3 : X(ξ, k) =
∑
i∈Iv

C̄iΦi(ξ, k) ,
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3. Isogeometric Subdivision Method

where k ∈ Ic denotes an element index, ξ ∈ 4 and C̄ = (C̄i)i∈Iv denotes the vector of three-
dimensional control point coordinates C̄i. In the context of isogeometric analysis, this parameterization
X of the manifold is referred to as the geometry mapping. Then, the definition of the Jacobian and
Hessian of X become

DX(ξ, k) =
(
X,1 X,2

)
=
∑
i∈Iv

C̄i
(
Φi,1(ξ, k) Φi,2(ξ, k)

)
=
∑
i∈Iv

C̄i∇ξΦi(ξ, k),

where Φi,j(ξ, k) = ∂Φi(ξ,k)
∂ξj

denotes the first partial derivative with respect to ξj for j = 1, 2 and

D2X(ξ, k) =

(
X,11 X,12

X,21 X,22

)
=
∑
i∈Iv

C̄i

(
Φi,11(ξ, k) Φi,12(ξ, k)
Φi,21(ξ, k) Φi,22(ξ, k)

)
=
∑
i∈Iv

C̄i∇2
ξΦi(ξ, k),

where Φi,jl(ξ, k) = ∂2Φi(ξ,k)
∂ξl∂ξj

denotes the second partial derivative with respect to ξj and to ξl for
j, l = 1, 2.
With these three ingredients at hand we can now define the discrete counterparts to the geometric
objects from Chapter 2. First the matrix of the first fundamental form is now denoted by

G(ξ, k) = DX(ξ, k)TDX(ξ, k)

instead of g, the entries of the second fundamental form are

Bij(ξ, k) = X,ij(ξ, k)N(ξ, k)

instead of b where

N(ξ, k) =
Y,1(ξ, k)× Y,2(ξ, k)

|Y,1(ξ, k)× Y,2(ξ, k)|
denotes the discrete normal to Y (ξ, k). Second, the notion of the Weingarten maps sp and sξ and the
mean curvature h retain. The evaluation for a point (ξ, k) ∈ Ω becomes

sp(ξ, k) = DX(ξ, k) ·G−1(ξ, k) ·B(ξ, k) ·G−1(ξ, k) ·DX(ξ, k)T

resp.

sξ(ξ, k) = B(ξ, k) ·G−1(ξ, k)

and h(ξ, k) = tr(sp(ξ, k)) = tr(sξ(ξ, k)) = tr(B(ξ, k) ·G−1(ξ, k)) where p = X(ξ, k) ∈M.
Then, the basis functions ϕi of the associated isogeometric function space are the push-forwards of the
subdivision basis functions

ϕi(p) = Φi ◦X−1(p),

where p = X(ξ, k), i.e. the basis functions are defined by the discretization X . We define the dis-
cretization space as

Vh =
{
uh ∈ spani∈Iv{ϕi}

}
. (3.4)
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3.2. Weak Formulation

Here, h indicates the grid size of the control mesh, i.e. h = max(i,j)∈Ie |Ci − Cj |.
Furthermore, for a function u :M→ R

∇Mu(p) =
(
DX ·G−1∇ξ(u ◦X)

)
(ξ, k)

is the (embedded) tangential gradient or surface gradient and

∆Mu(p) =
1√

detG
divξ

(√
detGG−1∇ξ(u ◦X)

)
(ξ, k)

the Laplace-Beltrami operator, where p = X(ξ, k). Additionally if u has a basis function representa-
tion, i.e. u(p) =

∑
i∈Iv

uiϕ(p), then

∇Mu(p) =
∑
i∈Iv

ui
(
DX ·G−1∇ξΦi

)
(ξ, k)

and

∆Mu(p) =
∑
i∈Iv

ui
1√

detG
divξ

(√
detGG−1∇ξΦi

)
(ξ, k).

3.2. Weak Formulation

In the classical context of calculus of variations we try to find a solution of the weak formulation for
a given partial differential equation instead of solving the strong formulation of the partial differential
equation (e.g. problems (3.1) – (3.3)). Usually this is done by considering a suitable energy functional
of which a weak form is derived by calculating the variation. Instead of considering the energy func-
tional we directly start with the weak formulation. For the numerical treatment of partial differential
equations using the isogeometric subdivision approach we make us of this weak formulation as it is
done in the classical finite element method.

In the following we assume such a weak formulation is given. As general type we consider varia-
tional problems

a(u, v) = `f (v) ∀ v ∈ V, (3.5)

where a : V ×V → R is a bilinear form and `f : V → R a linear form for a given function f ∈ L2(M)
on the function space V , where `f (v) =

∫
M fv da. Furthermore we assume problem (3.5) has a unique

solution. If a is symmetric, coercive and bounded on a Hilbert space V , i.e.

a(u, v) = a(v, u),

there exists a constant c > 0 such that

a(u, u) ≥ c‖u‖, ∀ u ∈ V,

and there exists a constant M ∈ R such that

a(u, v) ≤M‖u‖‖v‖, ∀ u, v ∈ V,
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3. Isogeometric Subdivision Method

where ‖.‖ denotes the norm of V , then there exists a unique solution u ∈ V of the variational problem
(3.5). For a proof see e.g. ([30, 22]).

For our test problems (3.1) – (3.3) the weak formulation is well known. The bilinear form a reads

a(u, v) =

∫
M
∇Mu · ∇Mv da

and
a(u, v) =

∫
M

∆Mu∆Mv da

for the Laplace-Beltrami (3.1) and the surface bi-Laplacian problem (3.2), respectively. The existence
and uniqueness of the model problems can be found e.g. in [21, 49, 6]. Let us remark that on closed,
smooth surfaces the kernel of the Laplace-Beltrami and the surface bi-Laplacian operators are the
constant functions. Hence, we consider the weak function spaces

V = H1(M) ∩
{∫
M
v da = 0

}
for problem (3.1) and

V = H2(M) ∩
{∫
M
v da = 0

}
for problem (3.2).

Next, we want to approximate the solution of the weak problem (3.5) in the finite-dimensional sub-
spaces Vh. The associated Galerkin approximation asks for the unique solution uh ∈ Vh of the discrete
variational problem

a(uh, vh) = `f (vh), ∀ vh ∈ Vh , (3.6)

i.e. instead of solving the weak formulation in V we solve the weak formulation in Vh. Due to the
known H2-regularity of the Loop subdivision splines (see Chapter 2 or [117]) this Galerkin approxi-
mation is conforming, i.e. Vh ⊂ V . Because {ϕj}j∈Iv is a basis of Vh, (3.6) transforms to

a(uh, ϕj) = `f (ϕj), ∀ j ∈ Iv .

Using the basis expansion uh(p) =
∑
i∈Iv

uiϕi(p) for uh with coefficients ui ∈ R and p ∈ M one

obtains the linear system

a(uh, ϕj) = a

(∑
i∈Iv

ui · ϕi, ϕj
)

=
∑
i∈Iv

ui · a(ϕi, ϕj) = `f (ϕj)

which can be written as

SU = B, (3.7)

where U = (ui)i∈Iv ∈ R|Iv | denotes the coefficient vector, Sij = a(ϕi, ϕj) ∈ R|Iv |×|Iv | the stiffness
matrix, and Bj =

∫
M fϕj da ∈ R|Iv | the right-hand side.
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3.3. Numerical Integration

For our model problems we have to switch to the discrete ansatz space

V 0
h = Vh ∩

{∫
M
vh da = 0

}
instead of Vh on the subdivision surfaceM. Again, the reason is that all constant functions lie in the
kernel of all problems (3.1) – (3.3). Then, the stiffness matrix for the Laplace-Beltrami problem (3.1)
is given by

S∆
ij =

∫
M
∇Mϕi · ∇Mϕj da =

∑
k∈Ic

∫
4

(
∇ξΦi ·G−1∇ξΦj

√
detG

)
(ξ, k) dξ (3.8)

and for the surface bi-Laplacian problem (3.2) we obtain

S∆2

ij =

∫
M

∆Mϕi ·∆Mϕj da

=
∑
k∈Ic

∫
4

divξ

(√
detGG−1∇ξΦi

)
divξ

(√
detGG−1∇ξΦj

)
√

detG

 (ξ, k) dξ . (3.9)

The right-hand side is given by

Bj =

∫
M
f · ϕj da =

∑
k∈Ic

∫
4

((f ◦X) · Φj) (ξ, k) dξ

for a given function f : M→ R. Let us remark that this differs from the finite element setting in the
following way. The function f is directly defined on the fixed surfaceM and hence does not have to be
interpolated as for polygonal meshes hat interpolateM. The variational formulation of the eigenvalue
problem (3.3) consists in finding a discrete solution (uh, λh) ∈ V 0

h × R such that

a(uh, vh) = λh ·m(uh, vh), ∀ vh ∈ V 0
h ,

where m(uh, vh) =
∫
M uh vh da denotes the L2-product on M. Furthermore, we denote by M the

mass matrix with

Mij = m(ϕi, ϕj) =

∫
M
ϕi · ϕj da =

∑
k∈Ic

∫
4
ΦiΦj

√
detG dξ. (3.10)

We obtain the discrete eigenvalue problem SU = λhMU which can be solved by inverse vector
iteration with projection [125].

3.3. Numerical Integration

During the assembly of the matrix entries (3.8), (3.9) and (3.10) we have to integrate functions on
the unit triangle 4. In contrast to the finite element method the area element is not constant on the
triangle 4 because the embedded triangles are curved. Hence, we cannot integrate the product of the
basis functions resp. their derivatives in a preprocessing step and have to perform the integration on the
fly for given data. Furthermore, the isogeometric subdivision approach is based on higher order spline
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3. Isogeometric Subdivision Method

discretizations with basis functions Φi that are quartic polynomials and thus for the mass matrix the
integrand is a polynomial of degree 8 and for the stiffness matrix (3.8) of degree 6 and for (3.9) of
degree 4 if we assume that the metric G is constant on a regular patch. In the presence of extraordinary
vertices we cannot even integrate the matrix entries (3.8), (3.9) and (3.10) exactly because of the
singular configuration explained in Chapter 2. This implies that we will solve a system

S̃U = B̃

instead of solving (3.7), where S̃ approximates S and B̃ approximates B. The associated, modified
variational problem reads as follows: Find ũh ∈ V 0

h such that

ã(ũh, vh) = ˜̀
f (vh), ∀ vh ∈ V 0

h , (3.11)

where ã(ϕi, ϕj) = S̃ij and ˜̀
f (ϕj) = B̃j . If ã(., .) is uniformly Vh-elliptic (S̃ positive definite) exis-

tence and uniqueness of the discrete solution ũh is ensured (cf. [22], for instance).
Remark Strang’s Lemma (see [132, 22]) provides the following error estimate for the numerical
solution ũh of (3.11)

‖u− ũh‖ ≤ ‖u− uh‖︸ ︷︷ ︸
Approximation error (Cea’s Lemma)

+ ‖uh − ũh‖︸ ︷︷ ︸
Consistency error (Strang’s Lemma)

≤ inf
vh∈V 0

h

(
‖u− vh‖+ sup

wh∈V 0
h

|a(vh, wh)− ã(vh, wh)|
‖wh‖

)
+ sup
wh∈V 0

h

|`(wh)− ˜̀(wh)|
‖wh‖

where u is the continuous solution of (3.5) and uh is the discrete solution of (3.6). The last two terms
measure the consistency of ã and ˜̀

f . Here, ‖.‖ = ‖.‖H1 for the Laplace-Beltrami problem (3.1) and
‖.‖ = ‖.‖H2 for the surface bi-Laplacian problem (3.2). In fact, if a scheme with exact integration
fulfills infvh∈Vh ‖u − vh‖ ≤ Chp (with p ≥ 1 and a constant C), we ask for a numerical quadrature
that preserves this order, i.e.

sup
wh∈Vh

(
|a(uh, wh)− ã(uh, wh)|

‖wh‖
+
|`(wh)− ˜̀(wh)|

‖wh‖

)
≤ Chp.

The optimal wh =
∑

i∈Iv wiϕi ∈ V 0
h for fixed h is given by wh = zh√

a(zh,zh)
, where zh ∈ V 0

h is the

solution of

a(zh, ϕj) = a(uh, ϕj)− ã(uh, ϕj), ∀ j ∈ Iv,

with
∫
M zh da = 0 and zh =

∑
i∈Iv ziϕi. Figure 3.2 plots the resulting consistency error depending

on the mesh size h of the control mesh. We observe an improved consistency by two orders for the
mid-edge rule compared to the barycenter rule for the surface bi-Laplacian problem (3.2).

Hence, in the presence of extraordinary vertices, we will always solve (3.11) instead of (3.7) we
just have to approximate it in a sufficient way. Therefore, we choose numerical quadrature for the
integration, i.e. we perform a weighted evaluation-based assembly of the previously defined discrete
variational formulations (3.8), (3.9) and (3.10). As quadrature schemes we use standard Gaussian,
barycentric and mid-edge assembly and discuss the special treatment at extraordinary vertices intro-
duced in [104]. For the mid-edge scheme we pick up an idea from [70] and provide a lookup table
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3.3. Numerical Integration

of the basis function values and their derivatives based on the valencies of the adjacent vertices. As
advantages we can integrate over edges instead of facets and we do not have to implement the natural
parameterization discussed in Chapter 2. Additionally, these lookup tables allow for the simulation
with arbitrary input meshes (i.e. more than one extraordinary vertex in a patch) which is essential for
real-world applications as considered in Chapter 5.

For a general function g : Ω→ R the evaluation-based quadrature on4 reads∫
4
g(ξ)dξ ≈

K∑
q=1

wqg(ξq) ,

where ξq ∈ 4 are the quadrature points, wq the weights and K denotes the number of quadrature
points. Now, the stiffness matrices, the mass matrix, and the right-hand side are now replaced by the
following quadrature-based counterparts

S̃∆
ij =

∑
k∈Ic

K∑
q=1

wq

(
∇ξΦTi G−1∇ξΦj

√
detG

)
(ξq, k) (3.12)

and

S̃∆2

ij =
∑
k∈Ic

K∑
q=1

wq

(
divξ

(√
detGG−1∇ξΦi

)
divξ

(√
detGG−1∇ξΦj

) 1√
detG

)
(ξq, k) (3.13)

as well as

M̃ij =
∑
k∈Ic

K∑
q=1

wq

(
Φi · Φj

√
detG

)
(ξq, k) (3.14)

and

B̃j =
∑
k∈Ic

K∑
q=1

wq

(
(f ◦X) · Φj

√
detG

)
(ξq, k). (3.15)

Gaussian quadrature For second-order elliptic problems, standard error estimates for finite el-
ement schemes with Gaussian quadrature [30, Chapter 4.1] imply that the expected order of conver-
gence, in case of exact integration, is preserved if the quadrature scheme is exact for polynomials of
degree p = 6. Transferring this to fourth-order problems we request exactness for polynomials of de-
gree p = 4. This suggests to choose a Gaussian quadrature rule GA(p) which guarantees this required
exactness. For the Laplace-Beltrami equation (3.1) K = 12 and for the surface bi-Laplacian equation
(3.2)K = 6 quadrature points have to be taken into account on the reference triangle4 (for symmetric
Gaussian quadrature points on triangles see [47] or Appendix A.2).

Adaptive Gaussian quadrature Special care is required close to EVs [111], because the ba-
sis functions Φi are no longer polynomials and the second-order derivatives are singular at the EV.
Furthermore, the natural parametrization [131] produces only C0-surfaces at EVs instead of C1-
parametrizations.
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3. Isogeometric Subdivision Method

Because of the structure of the subdivision scheme, the subdivision surface and correspondingly
the basis functions Φi are spline functions on local triangular mesh rings around each EV, cf. Figure
2.4. In [104] this subdivision ring structure was used as an adaptive refinement strategy of the reference
triangle4 around the EV and an application of Gaussian quadrature on the resulting adaptive reference
mesh to overcome the limitation of the standard Gaussian quadrature on the reference triangle. More
explicitly, for triangles with an EV we decompose the associated reference triangle4 into finer trian-
gles4l

i (l = 1, . . . , L) of level L (see Figure 3.1, left), perform the corresponding Gaussian quadrature
GA(p) on all finer triangles 4l

i and call this adaptive Gaussian quadrature AG(p, L). Hence, the num-
ber of quadrature points K on these adaptively refined triangles depends on L: K = (3 · L + 1) · 12
for the Laplace-Beltrami equation (3.1) and K = (3 · L+ 1) · 6 for the surface bi-Laplacian equation
(3.2). It is worth mentioning that this expensive scheme has to be applied only for a small number of
triangles around the finitely many EVs. Finally, let us remark that standard Romberg extrapolation does
not lead to any improvement of the adaptive Gaussian quadrature due to the lack of smoothness of the
integrands in the mesh size parameter and an adaption of the Romberg method for singular problems
failed because the type of singularity is not explicitly known. Furthermore, even with a high number
of adaptive steps we never integrate exactly because of the infinite sequence of spline rings discussed
above.

Barycenter quadrature Implementation of the adaptive Gaussian quadrature is a tedious issue.
In particular for large scale engineering problems, where the achievable maximal order of consistency
is not needed, already the computing cost of the usual Gaussian quadrature is significant. Therefore,
reduced quadrature assembly is a common practice when implementing modeling or simulation tools
based on NURBS as well as on subdivision surfaces (e.g. [83, 33]). The simplest and for subdivision
surfaces widespread quadrature is the barycentric quadrature (BC) with the center point ξ1 = (1

3 ,
1
3) of

the triangle 4 and the weight w1 = 1
2 . This rule is applied to regular as well as to irregular triangles

and integrates only affine functions exactly. The method is also used in [33] and leads to a reasonable
consistency at least in the energy norm, if only a few EVs in the mesh are present (cf. Figure 3.6 for an
example with many EVs).

Mid-edge quadrature An alternative, which shows superior performance with respect to the achiev-
able convergence rates (cf. Section 3.4), is the mid-edge quadrature (ME) with K = 3 quadrature
points at the midpoints of the edges, i.e. ξ1 = (1

2 , 0), ξ2 = (1
2 ,

1
2) and ξ3 = (0, 1

2) with weights
w1 = w2 = w3 = 1

6 . The ME quadrature integrates exactly polynomials of degree p = 2. Addi-
tional to the standard facet-based implementation we follow [70] for a direct implementation of (3.12),
(3.13), (3.14) and (3.15) with geometry-independent lookup tables of the basis function values and
their derivatives on the unit triangle 4 at midpoints of the edges. This substantially simplifies the
implementation.

Figure 3.1 (right) depicts a sketch of a generic local control mesh with two, possibly extraordinary,
vertices. The valence of the first extraordinary vertex p0

1 is denoted by N1, while the valence of the
other vertex p0

2 is denoted byN2. These two control points are surrounded by a fan of additional control
points p0

i (i = 3, ..., N1 + N2 − 2) and p0 = (p0
1, p

0
2, . . . , p

0
N1+N2−1p

0
N1+N2−2) denotes the vectors

of all control points. To compute the limit position of the surface p∞ and their Jacobian (p∞,1 , p
∞
,2 )

and Hessian (p∞,11, p
∞
,12, p

∞
,22) in local coordinates (ξ1, ξ2) ∈ 4 at edge mid-point (edge between p0

1

and p0
2) we improve the approach in [70]. Subdividing the vector p0 corresponds to a matrix-vector

multiplication p1 = Sp0 where p1 denotes the vector of new control points p1
0, . . . , p

1
6 and S the
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Figure 3.1.: Left: decomposition of the unit triangle4 in smaller triangles corresponding to the spline
rings of the adaptive Gaussian quadrature AG(p, L) for L = 3. Right: illustration of the
vertex configuration two possibly extraordinary vertices p0

1 of valenceN1 and p0
2 of valence

N2 surrounded by the one-ring of both vertices. The red lines indicate the new vertices and
edges in the 1-neighborhood of p1

0 after one level of subdivision.

corresponding local subdivision matrix.
In [70] the Taylor expansion (hence the derivatives) is approximated by a polynomial that inter-

polates limit points on the surface. This approach, which is equivalent to numerical differentiation,
provides approximations of the derivatives. Instead, we make use of the well-known exact limit masks
for regular vertices [89] and compute the exact limit position p∞ and derivatives p∞,1 , p∞,2 , p∞,11, p∞,12

and p∞,22 depending on the vertices p0 of the coarse mesh. Let us remark that these values can also be
easily obtained by evaluating the basis functions and their derivatives in Appendix A.1 at ξ = (1/2, 0).

Assume the matrix L ∈ R6×7 collects up all limit masks, then

p∞

p∞,1
p∞,2
p∞,11

p∞,12

p∞,22

 = Lp1 =



1
2

1
12

1
12

1
12

1
12

1
12

1
12

0 2
3

1
3 −1

3 −2
3 −1

3
1
3

0 1
3

2
3

1
3 −1

3 −2
3 −1

3
−8 4 0 0 4 0 0
−4 2 2 −2 2 2 −2
−8 0 4 0 0 4 0

p1 = LSp0,

where

S =



3
8

3
8

1
8 0 0 . . . 0 0 1

8 0 0 . . . 0 0
β2 1-β2 ·N2 β2 0 0 . . . 0 0 β2 β2 β2 . . . β2 β2
1
8

3
8

3
8 0 0 . . . 0 0 0 0 0 . . . 0 1

8
3
8

1
8

3
8

1
8 0 . . . 0 0 0 0 0 . . . 0 0

1-β1 ·N1 β1 β1 β1 β1 . . . β1 β1 β1 0 0 . . . 0 0
3
8

1
8 0 0 0 . . . 0 1

8
3
8 0 0 . . . 0 0

1
8

3
8 0 0 0 . . . 0 0 3

8
1
8 0 . . . 0 0


for N1, N2 > 4, β1 = β(N1), β2 = β(N2) and S ∈ R7×N1+N2−2. More explicitly, for the hat
functions Λi (see Chapter 2) associated with a control vertex p0

i , the value of the basis functionΦi(ξe, k)
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at the midpoint of the edge e ∈ Ie (connecting p0
1 and p0

2 with local coordinates ξe in the triangle (4, k)
corresponding to the vertices p0

1, p0
2, and p0

3) is a constant solely depending on N1 and N2. The same
holds for the derivatives Φi,1, Φi,2, Φi,11, Φi,12 and Φi,22 at ξe in the directions on the reference triangle
4. This means that the resulting matrix L · S is a lookup table for the evaluation of the basis functions
and their derivatives for any valencies N1, N2 > 4. For all other cases, i.e. N1 < 5 or N2 < 5,
we list the corresponding matrices in appendix A.2. Let us remark that, if p0

1 and p0
2 are EVs it is

not clear if the global set of basis functions are linearly independent. Here, the corresponding natural
parameterization has to be considered in the same way as in [112] to proof this assumption. In all our
test cases the resulting isogeometric matrices were linearly independent.

Based on this lookup table approach the isogeometric subdivision approach can be implemented
by iterating over all edges retrieving values from these lookup tables without implementing the box
spline basis functions, their derivatives and the complex subdivision process itself. The iteration over
edges instead of elements avoids to evaluate basis function values twice. Furthermore, the involved
local matrices in the assembly of the mass and stiffness matrices are smaller for the mid-edge rule than
for the barycenter rule. More explicitly, in the regular case, the local IgA–matrices have 144 entries for
the BC rule versus 100 for the ME rule. Thus, based on the lookup tables, this leads to an overall faster
assembly of mass and stiffness matrices than for the BC rule, even though the number of edges is 3

2
times the number of triangles on closed surfaces (e.g. see Table 3.1). The mid-edge assembly process
based on lookup tables can easily be generalized to other subdivision schemes like the Catmull–Clark
[26] or the Doo–Sabin scheme [46]. Finally, let us remark that the mid-edge assembly can also be
performed for many existing finite element codes with a little extension. Here, one needs an additional
array of two integer values (corresponding to the element indices) and a boolean, that tells us if this
edge (as a pair of the element indices, cf. the definition of the edge index Ie = Ic×Ic) has been already
assembled, i.e. (i, j, b) where i, j ∈ Ic and b = 0 or b = 1. Then, while iterating over elements, by
iterating over the neighbor element one can easily check if the corresponding local matrix has been
added to the global matrix, if not, assemble and set (i, j, 1) and (j, i, 1).
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Figure 3.2.: The consistency error is shown in a log-log plot for the Laplacian problem on the torus
(cf. Figure 3.3) for varying grid size of the control mesh and for the barycenter quadrature
(BC) and the midedge quadrature (ME).
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Figure 3.3.: Results for the torus: in the first row from left to right we depict the subdivision limit
surface with control lines, isolines and color coding of the right-hand side f(y) =
sin(πy1) sin(πy2) sin(πy3) (−1.0 1.0), the (numerical reference) solution of the
Laplace-Beltrami problem (−0.054 0.054), and the (numerical reference) solution
of the surface bi-Laplacian problem (−0.003 0.003) onM; in the second and third
row log-log plots of the error are reported for the Laplace-Beltrami problem (2nd row)
and the surface bi-Laplacian problem (3rd row), respectively (from left to right: L2-norm,
H1-semi-norm and H2-semi-norm).

We have implemented the proposed methods in C++ and performed tests for four different subdi-
vision surfaces: a torus surface with regular control mesh, a spherical surface (Spherical-3-4) with a
control mesh with EVs of valence 3 and 4, a spherical surface (Spherical-5-12) with a control mesh
with EVs of valence 5 and 12 and a complex real world hand model where the control mesh has alto-
gether 119 EVs of valence 4, 5, 7, 8, 9 and 10. Let us emphasize that, in the spirit of the isogeometric
approach, the control mesh determining the limit subdivision geometry is kept fixed. Furthermore,
the limit surface differs from a torus (Figure 3.3) with circular centerline and cross-section or a per-
fect sphere (Figure 3.5). Then, we successively refine the control mesh using subdivision refinement to
improve the accuracy of the discrete PDE solution. To run the simulations for Spherical-3-4, Spherical-
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3. Isogeometric Subdivision Method

5-12 and the hand model with Stam’s parameterization (see Section 2.2) the initial control mesh has to
be subdivided at least once to avoid EVs in direct neighborhood. This can be avoided using the mid-
edge quadrature with our lookup tables. For comparison, we list only the cases where both approach
are possible. In all plots, the mesh size h refers to the mesh size of these control meshes.
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Figure 3.4.: Results for Spherical-3-4: As in Figure 3.3 we show in the top row the limit surface,
f(y) = sin(3πy1) sin(3πy2) sin(3πy3) (−1.0 1.0), the solution of the Laplace-
Beltrami problem (−5.25e − 3 5.25e − 3), and the solution of the surface bi-
Laplacian problem (−9.78e − 5 9.78e − 5), together with the error-plots for the
Laplace-Beltrami problem (2nd row) and the surface bi-Laplacian problem (3rd row) (from
left to right: L2-norm, H1-semi-norm and H2-semi-norm).

On all of these surfaces we solve the two model problems (3.1) and (3.2) for a given right-hand side
f and compare the asymptotic error for different norms: the L2-norm, the H1-semi-norm and the H2-
semi-norm. To evaluate the experimental order of convergence (eoc), we have computed a reference
solution for a control mesh with one additional level of global refinement compared to the finest mesh.
Furthermore to compute the reference solution we used the adaptive Gaussian quadrature AG(p,L)
with L = 3 for (3.1) and L = 6 for (3.2) (the estimated convergence rates did not change for larger L).
As a consequence, the error plots for the finest discretization are less reliable as it becomes apparent
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Figure 3.5.: Results for Spherical-5-12: We follow the presentation in Figure 3.4 and plot the limit sur-
face with IgA-element lines, the (same) right-hand side function f now on this surface, the
solution of the Laplace-Beltrami problem (−1.58e− 2 1.58e− 2), and the solution
of the surface bi-Laplacian problem (−1.27e − 3 1.27e − 3), again together with
the error-plots for the Laplace-Beltrami problem (2nd row) and the surface bi-Laplacian
problem (3rd row) (from left to right: L2-norm, H1-semi-norm and H2-semi-norm).

in Figure 3.5 for the L2-error plot for problem (3.2) and the spherical shape with low valence EVs
(Spherical-3-4).

Figure 3.3 shows our results for the torus with regular control mesh without EVs. All quadrature
rules achieve optimal convergence rates (cf. [90]) for the second-order problem (3.1), i.e. 4 in the L2-
norm, 3 in the H1-semi-norm and 2 in the H2-semi-norm (with non-adaptive Gaussian quadrature
GA(p)). Here, “optimal” reflects what we expect for the quartic box spline [90]. For the fourth-order
problem (3.2) all quadrature rules achieve optimal rates 4 in the L2-norm, 3 in theH1-semi-norm and 2
in the H2-semi-norm (with non-adaptive Gaussian quadrature GA(p)), except the BC rule. In all cases
GA(p) performed best.

The numerical results of the spherical control mesh with EVs of valence 3 and 4 (Spherical-3-4)
are depicted in Figure 3.4. For the second-order PDE (3.1) Gaussian quadrature and adaptive Gaussian
quadrature achieve the optimal order of convergence. On finer resolutions ME and BC do not achieve
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3. Isogeometric Subdivision Method

GA(p) AG(p,L) BC ME
Geometry | Iv | −∆M (−∆M)2 −∆M (−∆M)2 −∆M (−∆M)2 −∆M (−∆M)2

Spherical-5-12 9218 1.209 1.417 1.374 1.563 0.164 0.272 0.107 0.136
Hand 11586 1.914 2.233 2.615 3.424 0.269 0.460 0.157 0.198

Table 3.1.: Comparison of assembly times for the stiffness matrices (3.12) and (3.13) and the different
quadrature rules (Gaussian GA(p), adaptive Gaussian AG(p,L), barycenter (BC) and mid-
edge (ME)). All times reported in seconds.

optimal convergence rates. GA, AG and ME achieve similar behavior for the fourth-order problem and
again the BC method performs worse. The reduced convergence rate in the L2-norm (3 instead of 4
in the regular case) for the fourth-order problem is expected to reflect the reduced regularity C1 ∩H2

compared to the regular case (C2-regularity), which seems to preclude an additional application of an
Aubin-Nitsche type argument.

For the control mesh with EVs of valence 5 and 12 (Spherical-5-12) the convergence results are
depicted in Figure 3.5 and coincide with our general findings for control meshes with EVs of valence
greater than 6. Here, all quadrature schemes show a similar performance, for the Laplace-Beltrami
problem (3.1): order 3 in the L2-norm, order 2 in the H1-semi-norm and order 1 in the H2-semi-norm,
and for the surface bi-Laplacian problem (3.2): order 2 in L2-norm, order 2 in the H1-semi-norm
and order 1 in the H2-semi-norm. This observed loss of approximation order compared to the quartic
box spline coincides with the theoretical work by Arden [5] with the reasoning that Loop subdivision
functions cannot reproduce cubic polynomials around extraordinary vertices of valence greater than 6.

Finally, we consider the hand model as a complex subdivision surface with many EVs (119 EVs
of valence 4, 5, 7, 8, 9 and 10) in Figure 3.6. For both model problems, the Laplace-Beltrami and
surface bi-Laplacian problem, the experimental order of converge is not optimal, which suggests that
the asymptotic regime of error reduction seems not to be reached even though the reference solution is
computed on a mesh with 750k vertices. A reason for this could be the presence of many so-called polar
artifacts (e.g in Figure 2.3 the subdivision process produces a polar configuration at the north pole).
The triangles close to EVs with valence greater than six become much larger during the subdivision
process compared to regular regions. If the input configuration (as the valence 10 vertex close to the
bottom in Figure 3.6) at the EVs with valence greater than six have already larger triangles than the
regular configurations, these errors cannot be compensated during the subdivision process. Here, the
one point quadrature does not convergence at all for the surface bi-Laplacian problem which is a serious
limitation of the barycenter rule for practical engineering problems (e.g. thin shell problems [33]). In
this case the mid-edge quadrature still converges and we considered it as the preferable choice because
of robustness and efficiency reasons. As already explained above, the efficiency can even be increased
by iterating over edges instead of facets.

Figure 1.1 shows eigenfunctions of the Laplace-Beltrami operator computed via inverse vector
iteration with projection. The depicted results underline that the methods discussed so far are also ap-
plicable in the numerical eigenmode analysis, which turned out to be an indispensable tool in geometric
data analysis and modeling.

Compared to Gaussian quadrature and in particular to the adaptive Gaussian quadrature the mid-
edge and the barycenter quadrature are significantly cheaper as reported in Table 3.1. Because of our
implementation, the mid-edge rule based on lookup tables and assembly via an edge-iterator performs
even better than the (non-optimized) barycenter rule.
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Figure 3.6.: Results for complex hand shape: We follow the presentation in Figure 3.4 and plot the limit
surface with IgA-element lines, the (same) right-hand side function f now on this surface,
the solution of the Laplace-Beltrami problem (−1.47e − 2 1.14e − 2) and the so-
lution of the surface bi-Laplacian problem (−8.14e.4 7.56e.4), again together with
the error-plots for the Laplace-Beltrami problem (2nd row) and the surface bi-Laplacian
problem (3rd row) (from left to right: L2-norm, H1-semi-norm and H2-semi-norm).
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4. Parametric Gradient Flows

In this chapter we combine our higher order spatial discretization based on Loop subdivision introduced
in Chapter 2 and 3 with higher order time discretization based in implicit Runge–Kutta methods for the
computation of parametric gradient flows.

Let {M(t)}t≥0 be a family of closed 2-dimensional surfacesM =M(t) embedded in R3, where
y = y(t) denotes a parametrization ofM(t) =M[y]. For a given initial surfaceM0 =M(0), metric
gy : TM× TM→ R and energy e :M→ R the evolution ofM0 under

yt = − gradgy
e′[y] (4.1)

with e[y(s)] < e[y(t)] ∀ s > t denotes the corresponding gradient flow, where TM denotes the
tangent bundle ofM and yt the partial derivative with respect to time t.

For the numerical computation we consider the weak formulation of (4.1)

gy(yt, ϕ) = −e′[y](ϕ) ∀ϕ ∈ V, (4.2)

where e′[y](ϕ) denotes the first variation of e[.] at y in direction of a trial function ϕ and V denotes
the function space of suitable trial functions. This formulation inherently fulfills the crucial energy
diminishing property of gradient flows

d

dt
e[y(t)] = e′[y](yt) = −gy(yt, yt) < 0, ∀ t > 0.

These problems typically arise in applications as material sciences, surface processing and modeling,
biological membranes, elasticity and physical simulation. Here, during the evolution, the surface often
has to fulfill a constraint c[y] = 0. Then, the corresponding constrained gradient flow reads

gy(yt, ϕ) = −e′[y](ϕ)− λc′[y](ϕ) ∀ϕ, (4.3a)

c′[y](yt) = 0, (4.3b)

where λ = λ(t) ∈ R denotes the Lagrange multiplier.
Instead of focusing on one particular application, the aim of this chapter is to develop a scheme for a
wide range of gradient flows, i.e. for different metrics gy and energies e. Hence, we consider a general
type of higher order energies

e[y] =

∫
Ω
r(y,Dy,D2y), da (4.4)

where r is an arbitrary function of y : Ω → R3 with Ω ⊂ R2, its Jacobian Dy =
(
∂yi(ξ)
∂ξj

)
ij

and its

Hessian D2y =
(
∂2yi(ξ)
∂ξk∂ξj

)
ijk

. Furthermore, we measure the evolution not only in the L2-metric but
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4. Parametric Gradient Flows

consider metrics of higher order derivatives

gβ0,β1y (v, w) =

∫
M[y]

vw + β0∇Mv : ∇Mw + β1∆Mv∆Mw da, (4.5)

where β0, β1 ∈ [0, 1] and ∇M denotes the surface gradient, ∆M the Laplace-Beltrami operator on
M and A : B = tr(ATB). For g = g0,0

y the gradient flow is measured in the L2-metric and for
g = g1,0

y in the H1-metric. Furthermore, we denote by H2
∆ the g1,1

y -metric. Let us remark that many
other metrics fit into the described framework and could be used instead as g.

The numerical treatment of parametric gradient flows has been studied extensively in the literature
with different approaches for the spatial discretization of (4.2) and (4.3). The most common approach
uses standard C0–Lagrangian finite elements for energies of type (4.4). For the discretization of the
fourth-order PDEs the problem is split into two second-order PDEs, see e.g. [52, 11, 7, 110] for linear
and [20, 56] for quadratic finite elements. These splittings are problem dependent and introduce addi-
tional degrees of freedom which sometimes need an explicit initial approximation, e.g. approximation
of mean curvature [52]. An alternative to overcome the splitting into two problems is to use noncon-
forming finite elements (e.g. Crouzeix-Raviart elements [138]) or classical C1–finite elements. Both
approaches offer a direct discretization of (4.2) by losing conformity resp. by introducing additional
degrees of freedom with potentially no geometric meaning. In contrast, discrete differential geometry
(DDG) seeks to describe continuous geometric objects by discrete counterparts instead of discretizing
these geometric objects, see e.g. [18, 38]. In this paper we use subdivision (spline) surfaces for the
spatial discretization of (4.2) and (4.3). The discretization space isH2-conforming, where higher order
smoothness is achieved by increasing the support of the basis functions instead of introducing addi-
tional degrees of freedom. Subdivision surfaces have already been applied to parametric gradient flow
problems, e.g. in [59].

During the evolution of a gradient flow system the energy decreases exponentially in time. Hence,
in the time discrete setting large time steps can result in huge deformations of the surface. These
problems typically result in stiff situations and explicit time integrators are no longer appropriate. Semi-
implicit methods, which solve a linear system for each time step, improve the situation but implicit
time integrators allow for much larger time steps (see [108, 107, 7, 110]). Since we discretize in space
with higher order elements an implicit Euler time discretization would lead to a time-error dominated
scheme. For the fully discrete scheme we expect that the error behaves like

max
m∈N
‖y(tk)− Yk‖L2 ≤ C(τ q + hp)

(this is not proven here!), where y(tk) denotes the exact solution at time tk, Yk its discrete approxi-
mation, q the convergence order of the time scheme and p the convergence order of the discretization
space. For implicit Euler q = 1 the time step size has to scale like hp to recover the full higher order
spatial approximation power for p > 1. To overcome this limitation we consider higher order implicit
Runge-Kutta methods [75]. Here, the crucial characteristic, the energy diminishing property

e[y(t)] ≤ e[y(s)] ∀s < t (4.6)

has to be fulfilled by the fully discrete scheme. In Section 4.4 we show that (4.6) holds for the fully
discrete scheme under mild time step size restrictions.

We apply the proposed scheme to a variety of geometric gradient flows among mean curvature
and Willmore flow. In our presentation we differentiate between second and fourth-order problems
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because of two reason. First, the time step size restrictions for second resp. fourth-order problems are
τ = O(h2) resp. τ = O(h4) in the fully discrete setting with explicit time integrators. Here, the
natural question is how these restriction transfer to implicit time integrators. Second, the discretization
of fourth-order problems with conforming C1-elements brings back the beauty of the classical Ritz-
Galerkin method as for second-order problems. In particular, we consider energies of type (4.4)

eα0,α1 [y] =

∫
M[y]

α0 +
α1

2
h2 da, (4.7)

where da =
√

det(DyTDy) denotes the area element, h is the sum of the principle curvatures and
α0, α1 ∈ [0, 1]. For e = e1,0 the gradient flow (4.1) measured in L2, i.e. gy = g0,0

y , becomes the
well-known mean curvature flow, a classical nonlinear 2nd order parabolic evolution problem

yt = ∆My = −hn,

where n = n[y] denotes the normal field and ∆M the Laplace-Beltrami operator. For a detailed discus-
sion of the numerical treatment of mean curvature flow see [50, 51, 41]. For e = e0,1 the gradient flow
(4.1) measured in L2 is known as the Willmore flow, a classical nonlinear 4th order parabolic evolution
problem

yt =

(
∆Mh + h(|S|22 −

1

2
h2)

)
n

where S denotes the shape operator onM and |.|2 the Frobenius norm on the space of endomorphisms
on the tangent bundle TM. To apply the scheme in the context of constraint gradient systems we add
volume constraints

c[y] =
1

3

∫
M[y]

y · n da− V0 (4.8)

where V0 = 1
3

∫
M0

y0 · n[y0] da.

The finite element approximation of Willmore flow was first investigated by Rusu [124] based on a
mixed method for the surface parametrization x and the mean curvature vector hn as independent vari-
ables. In [36] the scheme was applied to the problem of surface restoration. Deckelnick and Schieweck
established convergence of aC1-conforming finite element approximation for axial symmetric surfaces
[42], i.e. applying one-dimensional C1-elements. An alternative scheme, which in particular ensures
a better distribution of nodes on the evolving surface was presented by Barrett, Garcke and Nürnberg
[9, 10]. In [20] Bonito, Nochetto and Pauletti develop a novel vector formulation and derive a scheme
based on quadratic elements for the simulation of biomembranes. Again, for the simulation of biomem-
branes Feng and Klug apply subdivision surfaces in [59]. Ohlischläger and Rumpf [108, 107, 7] derive
a novel nested time discretization of Willmore flow and apply this to surface restoration and blending.
In [110] the scheme was extended to the corresponding anisotropic flow.

This chapter is organized as follows. In Section 4.1 we review the nested time discretization for
anisotropic Willmore flow. In Section 4.2 we apply the spatial discretization derived in Chapter 2 to the
energies and metrics. The higher order implicit Runge-Kutta time discretization is described in Section
4.3. In Section 4.4 we prove that our scheme preserves the crucial energy diminishing property and
discuss the time step restrictions based on our space discretization. Then, the fully discrete algorithm is
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4. Parametric Gradient Flows

described in Section 4.5. Finally, in Section 4.6 various computational results are presented. Appendix
A.3 lists energies and metrics and its discrete variations to facilitate the implementation.

4.1. Excursion: Nested Variational Time Discretization for
Willmore Flow

In this section we will briefly recall the nested time discretization of anisotropic Willmore flow as
proposed in [110]. The approach of nested variational time discretization of isotropic Willmore flow
was introduced in [108, 107, 7] to overcome the limitations of semi-implicit time discretizations. The
time discretization proposed in [7] builds upon the general paradigm of natural time discretization. In
the context of geometric flows, this approach was studied by Luckhaus and Sturzenhecker [98] leading
to a fully implicit variational time discretization for mean curvature motion in the space of functions
of bounded variation and by Chambolle [28], who reformulated this scheme in terms of a level set
method and generalized it for the approximation of anisotropic mean curvature motion in [15, 27]. The
approach of [7] was adapted in [110] to the time discretization of the anisotropic Willmore flow which
is fully consistent with Finsler geometry.

Natural time discretization For a given initial surfaceM0 = M[y0] with parameterization y0,
we define a time discrete family (yk)k=0,··· with the desired property yk ≈ y(kτ) for the given time
step size τ . Then, we successively solve a sequence of variational problems

yk+1 = arg miny dist(yk, y)2 + 2τ e[y] , (4.9)

where

dist(yk, y) = inf
c∈Γ[yk,y]

∫ 1

0

√
gc(s)(ċ(s), ċ(s))ds

denotes the Riemannian distance of y from yk on the manifold (known as the path length in Riemannian
geometry) and

Γ[yk, y] =
{
c ∈ C1 | c(0) = yk, c(1) = y

}
is the set of smooth curves c connecting yk with y. This generalized approach to gradient flows was
developed to describe classical gradient flows in a different setup, e.g. the classical heat flow is known
to be the L2-gradient flow of the Dirichlet energy but it is also the L2-Wasserstein gradient flow of the
entropy functional (cf. [85, 109]). Here, the striking observation is that one immediately obtains the
energy diminishing property, i.e.

e[yk+1] +
1

2τ
dist(yk, yk+1)2 ≤ e[yk] .

Typically, in the context of geodesics in Riemannian geometry, one studies the path energy instead path
length

sqrdist(yk, y) = inf
c∈Γ[yk,y]

∫ 1

0
gc(s)(ċ(s), ċ(s))ds.
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The reason is that the treatment is easier and the Cauchy-Schwartz inequality gives us

dist(yk, y)2 ≤ sqrdist(yk, y),

where equality holds if and only if gc(s)(ċ(s), ċ(s)) is constant. Then, the natural time discretization
(4.9) becomes

yk+1 = arg miny sqrdist(yk, y) + 2τ e[y] .

Again, we immediately obtain the energy diminishing property

e[yk+1] +
1

2τ
sqrdist(yk, yk+1) ≤ e[yk] .

For a detailed discussion on this topic see [107]. This formulation gives us classical discretization
schemes, e.g. for g = g0,0 and e[y] = e1,0[y] we obtain the well-known implicit Euler method for
mean curvature flow

yk+1 = arg miny

∫
M[yk]

(yk − y)2 da+ 2τ

∫
M[y]

da .

Finsler geometry Finsler manifolds are the extensions of Riemannian manifolds where the norm
is not necessarily induced by an inner product. For a comprehensive introduction to general Finsler
geometry see [8] and for the special topic of gradient flows see [103, 115]. Let us assume that γ :
Rd+1 → [0,∞) is a sufficiently smooth function in co-dimension one, where d = 1, 2. Furthermore,
we assume that γ is

• positive,

• 1–homogeneous (i.e. γ(λp) = |λ|γ(p) for all λ ∈ R, p ∈ Rd+1) and

• satisfies the ellipticity condition

γ′′(p)qq ≥ c0‖q‖2 ∀ p, q ∈ Rd+1, ‖p‖ = 1, p · q = 0

for some positive constant c0 and the Euclidean norm ‖ · ‖.

The function γ(n) represents the anisotropic area weight for a surface normal n such that the anisotropic
area functional becomes

a[y] =

∫
M[y]

γ(n[y])da =

∫
Ω
γ(n[y])

√
det g[y] dξ =

∫
Ω
γ(ñ[y]) dξ, (4.10)

where γ(n[x])da denotes the anisotropic area element and ñ = y,1×y,2 the unnormalized normal field
to y. We define the dual function of γ as

γ∗(x) = sup{〈x, ψ〉 | ψ ∈ Bγ} ∀ x ∈ Rd+1 ,

where Bγ denotes the unit Ball in the γ-norm. The ellipticity assumption ensures that (Rd+1, γ) and
its dual space (Rd+1, γ∗) are uniformly convex Banach spaces and the duality map T : (Rd+1, γ∗) →

43



4. Parametric Gradient Flows

(Rd+1, γ), with

T (x) =
1

2
∂(γ∗(x)2)

is an odd single-valued bijective continuous map. More precisely T (0) = 0,

T (x) = γ∗(x)∇γ∗(x)

for x 6= 0, and
T−1(ξ) = γ(ξ)∇γ(ξ)

for ξ 6= 0. For details we refer to [115]. Now, based on the anisotropy γ and its dual γ∗ we define an
anisotropic distance sqrdist of a manifoldM[y] from a manifoldM[x] by

sqrdist(M[x],M[y]) =

∫
M[x]

γ∗(y − x)2γ(n[x]) da (4.11)

for parameterizations x and y. The isotropic case is recovered by choosing γ(·) = ‖ · ‖. The unit ball
F = {x ∈ Rd+1 : γ(x) ≤ 1} in (Rd+1, γ) is called the Frank diagram, the associated dual unit
ball W = {x ∈ Rd+1 : γ∗(x) ≤ 1} is the corresponding Wulff shape. Clarenz [35] showed that
Wulff shapes are the minimizers of the corresponding anisotropic Willmore functional. For a detailed
discussion of anisotropic functions in the context of gradient flows we refer to [103].

Nested time discretization Based on these considerations let us first consider anisotropic mean
curvature flow, which is defined as the gradient flow of the anisotropic area functional (4.10) with
respect to the anisotropic metric (4.11). In this case the variational time discretization is associated
with the minimization of

ein[x, y] = sqrdist(M[x],M[y]) + 2τ̃

∫
M[y]

γ(n[y])da

=

∫
M[x]

γ∗(y − x)2 γ(n[x])da + 2τ̃

∫
M[y]

γ(n[y])da ,

with respect to y for a given surfaceM[x] and τ̃ > 0. Let us denote by y[x] the minimizer for a given
surface parameterization x. By computing the variation of ein[x, y] with respect to y we obtain

0 =

∫
M[x]

(γ∗(y − x)∇γ∗(y − x) · θ) γ(n[x])da + τ̃a′[y](θ)

= τ̃

∫
M[x]

T

(
y − x
τ̃

)
· θ γ(n[x])da + τ̃a′[y](θ)

for smooth test functions θ :M[x]→ Rd+1. Together with

yt(kτ̃) ≈ y − x
τ̃
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this reflects the weak formulation of anisotropic mean curvature flow given by∫
M[y]

T (yt) · θ γ(n[y])da = −a′[y](θ) =

∫
M[y]

hγ [y]
n[y]

γ(n[y])
· θ γ(n[y])da , (4.12)

for a parametrization y and smooth test functions θ defined onM[y], where

hγ [y] = divM[y](∇γ(n[y]))

denotes the anisotropic mean curvature (see [34] and [115]). Thus, from (4.12) we deduce that

T (yt) = −hγ [y]
n[y]

γ(n[y])

or equivalently we achieve the strong formulation of anisotropic mean curvature flow

yt = T−1

(
−hγ [y]

n[y]

γ(n[y])

)
= γ

(
−hγ [y]

n[y]

γ(n[y])

)
∇γ
(
−hγ [y]

n[y]

γ(n[y])

)
= − hγ [y]

γ(n[y])
γ(n[y])∇γ(n[y])

= −hγ [y]∇γ(n[y]) = κγ [y], (4.13)

where the last equality holds due to the 1–homogeneity of γ. This corresponds to the isotropic case
where γ(.) = ‖.‖ and yt = −h[y]n[y].

Next, we deal with the actual anisotropic Willmore flow and consider the anisotropic Willmore
functional defined as follows for a parametrization x ofM[x]

w[x] =
1

2

∫
M[x]

hγ [x]2 γ(n[x])da.

Then the abstract variational time discretization of anisotropic Willmore flow reads as follows:

GivenM[xk] and time step τ find a mapping x such that x minimizes

xk+1 = arg minx sqrdist(M[xk],M[x]) + 2τw[x]

First, let us remark that this is the implicit Euler method corresponding to (4.2) where e[x] = w[x],
xt ≈ xk+1−xk

τ and

sqrdist(M[xk],M[x]) = gxk

(
xk+1 − xk

τ
,
xk+1 − xk

τ

)
=

∫
M[xk]

γ∗
(
xk+1 − xk

τ

)2

∇γ(n[xk]) da.

Again, for discretization of this functional we need C1-elements. We will now replace the anisotropic
mean curvature vector κγ by the discrete speed extracted from a scheme for a single time step of
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Figure 4.1.: The evolution of a unit circle under isotropic Willmore flow is plotted on the left.
For the computation we used as initial grid size h = 0.0981 resulting from 64 ver-
tices. Furthermore, τ = h, τ̃ = h2 and the resulting discrete curves are shown for
t = 0, 10τ, 50τ, 100τ, 500τ . In the middle we display the evolution of an ellipse (with
half axes 6 and 1) under anisotropic Willmore flow with 256 elements and h = 0.0984.
Here, we consider τ = h, τ̃ = h2 and display the approximate solutions for t =
0, 10τ, 50τ, 100τ, 500τ . Next, the associated L2-errors are plotted over time on the right,
where the lower error curve corresponds to the evolution results on the left.

anisotropic curvature flow (4.12). First, we use that γ is 1–homogeneous and γ∗(∇γ(ξ)) = 1 for all
ξ ∈ Rd+1 such that

γ∗(κγ)2 = γ∗ (−hγ∇γ(n))2 = h2
γγ
∗ (−∇γ(n))2 = h2

γ .

Then, we obtain

w[x] =
1

2

∫
M[x]

hγ [x]2 γ(n[x])da =
1

2

∫
M[x]

γ∗(κγ [x])2 γ(n[x])da .

Second, we apply the approximated speed

yt(kτ̃) ≈ y − x
τ̃

to (4.13) such that

y − x
τ̃
≈ κγ [y]

and hence
w[x] ≈ 1

2τ̃2

∫
M[x]

γ∗(y − x)2∇γ(n[x]) da.

Finally, based on this approximation we derive the actual time discretization of anisotropic Willmore
flow. For a given surface parametrization xk of the surfaceM[xk] at a time step k we define the outer
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L2-error L2-error
n h(t) (τ = τ̃ = h2

0) eoc h(t) (τ = τ̃ = h0) eoc

4 4.166e-1 4.830e-3 4.482e-1 1.916e-2
5 2.096e-1 1.328e-3 1.879 2.258e-1 1.087e-2 0.826
6 1.049e-1 3.403e-4 1.969 1.132e-1 5.804e-3 0.909
7 5.249e-2 8.561e-5 1.992 5.668e-2 3.000e-3 0.954
8 2.625e-2 2.144e-5 1.998 2.836e-2 1.525e-3 0.977

Table 4.1.: The L2-error between the exact solution of the self-similar evolution of circles under Will-
more flow and the discrete solution of the fully implicit variational time discretization is
listed at time t = 0.1542 for a grid size h(t) (left) and t = 0.3927 (right). On the left we
consider time step sizes τ and τ̃ of the order of the squared spatial grid size h0 at the initial
time t = 0, whereas on the right both time step sizes are taken equal to the grid size h0. In
both cases we have considered 2n vertices for the polygon, resulting in an initial grid size
h0 = 2π

2n .

functional

eout[xk, x, y] =

∫
M[xk]

γ∗(x− xk)2 γ(n[xk])da +
τ

τ̃2

∫
M[x]

γ∗(y − x)2 γ(n[x])da ,

and we end up with the following fully nonlinear variational time discretization of anisotropic Willmore
flow:

Given an initial surfaceM[x0] with parametrization x0 we define a sequence of surfacesM[xk]
with parametrizations xk for k = 1, . . . via the solution of the following sequence of nested variational
problems

xk+1 = arg minx eout[xk, x, y[x]], where (4.14)

y[x] = arg miny ein[x, y] .

It is worth to mention that this variational time discretization does not involve derivatives of the
anisotropy γ resp. its dual γ∗. Nevertheless, in the context of the actual computation, differentiation
is required to run Newton methods for the associated Lagrangian functional. Indeed, for this we will
need γ, γ∗ ∈ C3(Rd+1 \ {0}); moreover, unless (γ∗)2 ∈ C3(Rd+1) (which holds for γ(p) =

√
Ap · p

with a symmetric positive definite matrix A), a regularization will is required.

Numerical results In [110] the minimization problem (4.14) has been discretized with piecewise
affine finite elements based on the approach developed in [107, 7]. This corresponds to the surface
finite elements introduced by Dziuk in [49]. For the computation we have to solve an optimization
for the associated Lagrangian function as described in [110]. For a general discussion of optimization
with Lagrangian functions see [106] and in the context of nested time discretization see[107, 7]. Let
us remark that the minimization problem (4.14) could easily be discretized with Loop’s subdivision
surfaces.
Now, we show applications of the proposed algorithm to the evolution of curves inR2 under anisotropic
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L2-error L2-error
n h(t) (τ = τ̃ = h2

0) eoc h(t) (τ = τ̃ = h0) eoc

5 1.435e+0 1.648e-1 1.274e+0 1.942e-1
6 6.487e-1 3.476e-2 1.960 5.875e-1 7.089e-2 1.303
7 3.069e-1 8.762e-3 1.841 2.842e-1 3.424e-2 1.002
8 1.525e-1 2.182e-3 1.987 1.396e-1 1.724e-3 0.966

Table 4.2.: As in Table 4.1 experimental orders of convergence are reported, now for the self-similar
evolution of the ellipses (with half axis 6 and 1) under anisotropic Willmore flow. Here,
again polygons with 2n vertices are considered, equi-distributed along the initial ellipse
with an initial grid size h0 = 24.172

2n . On the left the error is evaluated at time t = 0.596576
and on the right at time t = 0.77238.

Figure 4.2.: Evolution of the unit sphere with respect to the regularized `∞-norm under anisotropic
Willmore flow for the anisotropy ‖·‖`1ε with ε = 0.0001. For this computation we consider
200 vertices leading to an initial grid size h0 = 0.04. Furthermore, τ = h0 and τ̃ = h2

0

and the resulting discrete curves are shown for t = 0, 10τ, 50τ, 100τ, 200τ .
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Figure 4.3.: Evolution of the unit sphere with respect to the regularized `1-norm under anisotropic
Willmore flow for the anisotropy γ(·) = ‖ · ‖`∞ε . The parameters are h0 = 0.0078, ε =
0.001, τ = τ̃ = h2

0 and curves are plotted at times t = 0, 10τ, 50τ, 100τ, 500τ, 1000τ on
the left and h0 = 0.0283, ε = 0.0001, τ = h0, τ̃ = h2

0, t = 0, 10τ, 50τ, 100τ, 200τ, 275τ
in the middle. On the right the associated L2-errors are plotted over time, where the lower
error curve corresponds to the evolution results on the left.

Willmore flow, i.e. d = 1.
Beside anisotropies with ellipsoidal Wulff shapes we study regularized crystalline anisotropies

based on a suitable regularization. In contrast to previous definitions of anisotropic Willmore flow [107]
this formulation results in self-similar growing of Wulff shapes under the corresponding anisotropic
Willmore flow like in the isotropic case. A remarkable fact is that time steps up to the order of the
spatial grid size are possible, i.e. τ = O(h), which is caused by the fact that only second-order prob-
lems appear compared to the original fourth-order problem. A detailed discussion of the anisotropic
functions and its duals considered here can be found in [103].
At first, we study anisotropies of the type

γ(z) =
√
a2

1z
2
1 + a2

2z
2
2

for given a1, a2 > 0. In that case the dual anisotropy is given by

γ∗(z) =

√
z2

1

a2
1

+
z2

2

a2
2

.

Figure 4.1 compares the evolution of a circle of radius R0 = 1 under isotropic Willmore flow for
a1 = a2 = 1 with the evolution of an ellipse with half-axes a1 = 6 and a2 = 1 under the corresponding
anisotropic flow. In contrast to previous schemes [7], the initial curve M0 expands in a self-similar
fashion, i.e. M[x(t)] = R(t)M0 with R(t) = 4

√
R4

0 + 2t for R0 > 0. In Figure 4.1 we plot the
evolution of the error err(h) = ‖Ihx(t)− xh(t)‖L2 in time. Thereby, the L2-error is evaluated on the
polygonal curve xh(t) and Ih denotes the nodal interpolation of x(t) at the projected positions of the
nodes of xh(t) in direction ∇γ(n[xh(t)]). In Table 4.1 and 4.2 we provide results on the experimental
order of convergence eoc = log(err(h1)/err(h2))/ log(h1/h2), with h1 > h2, for varying grid and
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Figure 4.4.: The impact of the parameter λ is shown for the evolution of a circle to an ellipse with
aspect ratio 4 : 1 (i.e. a1 = 4 and a2 = 1). We evolve polygons with 160 vertices approxi-
mating the unit sphere as initial curve, h0 = 0.0393 and τ = τ̃ = 0.01, h = 0.000393. On
the left λ = 0.025 and on the right λ = 4.

time step size for the evolution of the circle and the ellipse.
Now, we want to study crystalline anisotropies as considered in [103] for z ∈ R2

γ(z) = ‖z‖`1 = |z1|+ |z2|

and

γ(z) = ‖z‖`∞ = max{|z1|, |z2|} =
|z1 + z2|

2
+
|z1 − z2|

2
.

As already pointed out, even though the formulation of the scheme itself doesn’t explicitly need as-
sumptions on the smoothness of γ, the application of Newton method (i.e. the optimization algorithm)
requires the computation of derivatives of γ up to order 3. In fact, we use the following regularization:
For a small parameter ε > 0 we regularize the `1-norm by

`1ε(z) =

2∑
l=1

√
ε|z|2 + z2

l .

Since in R2 the `∞-norm equals a rotated and scaled `1-norm we use as regularization of the `∞-norm

`∞ε (z) =

√
ε|z|2 + (z1 + z2)2

2
+

√
ε|z|2 + (z1 − z2)2

2
.

Figure 4.2 shows the evolution of a sphere with respect to the regularized `∞-norm under the associated
anisotropic Willmore flow with anisotropy γ(·) = ‖ · ‖`1ε for ε = 0.0001. Results on the self-similar
evolution of spheres with respect to the regularized `1-norm are depicted in Figure 4.3. In these simu-
lations, we use the analogous regularization for the dual anisotropy γ∗ required in the algorithm.
Next, we generalize Willmore flow and replace the Willmore energy by the modified energy∫

M[x]

(
1

2
h2
γ + λ

)
γ(n[x])da ,

with a second term given by the anisotropic area weighted with a constant λ > 0. The incorporation of
this generalized energy in our computational approach is straightforward. The generalized flow com-
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Figure 4.5.: The evolution of different initial shapes for different anisotropies is displayed. For all
computations we use 100 vertices and choose λ = 0.25. On the left we start with an el-
lipse with aspect ratio 4 : 1 under an isotropic flow with γ(·) = ‖ · ‖ (h0 = 0.1739,
τ = h0, τ̃ = h2

0). Results are shown at t = 0, 0.1739, 0.5218, 1.739, 3.478, 6.956, 173.9.
In the middle and on the right an ellipsoidal anisotropy with aspect ratio 2 : 1 is used
(i.e. a1 = 2, a2 = 1). In the first case (middle), we take as initial shape the unit
sphere for the l1-norm (h0 = 0.0566, τ = τ̃ = 0.001h0) and results are displayed at
t = 0, 0.00017, 0.00085, 0.00169, 0.006, 0.056, 0.251). In the second example (right), the
initial shape is the unit sphere for the l∞-norm (h0 = 0.08 and τ = τ̃ = 0.01h0) and
results are depicted for t = 0, 0.0024, 0.008, 0.04, 0.08, 0.8, 4.8.

bines expansive forcing with respect to the anisotropic Willmore flow of curves with contractive forcing
due to the anisotropic mean curvature motion associated to the anisotropic area functional. Thus, for
the generalized model we expect convergence to a limit shape given by a scaled Wulff shape, where the
scaling depends on the factor λ. Figure 4.4 shows the impact of the factor λ on the evolution, whereas
in Figure 4.5 we compare the evolution of different initial shapes under the generalized anisotropic
Willmore flow for different anisotropies.

4.2. Spatial Discretization

In Chapter 2 and 3 we described the spatial discretization with Loop’s subdivision surfaces to study
partial differential equations on a given surfaceM. Therefore, we introduced the Loop discretization
space Vh in (3.4). Since we do not deal with scalar functions on a surface but with vector functions
describing the surface itself we define the corresponding discretization space by

Vh =
{
Y : Ω→ R3 | Yk ∈ Vh, k = 1, 2, 3

}
. (4.15)

Therefore we will denote the basis functions i ∈ Iv and coordinates k = 1, 2, 3 of Vh by Ψk
i where

Ψ1
i = (Ψi, 0, 0)T , Ψ2

i = (0,Ψi, 0)T and Ψ3
i = (0, 0,Ψi)

T .
For a given discrete initial surfaceM0 represented by Y0 = Y (0), we want to compute the spatially

discrete counterpart to (4.2) for a family of parameterizations {Y (t)}t>0 where Y (t) ∈ Vh by solving

GY (Yt,Ψ) = −E′[Y ](Ψ) ∀ Ψ ∈ Vh. (4.16)

In the presence of constraints we look for a spatially discrete solution of (4.3) by solving

GY (Yt,Ψ) = −E′[Y ](Ψ)− λC′[Y ](Ψ) ∀ Ψ ∈ Vh, (4.17a)
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C′[Y ](Yt) = 0, (4.17b)

where λ = λ(t) ∈ R denotes the discrete Lagrange multiplier. Because spani∈Iv ,k=1,2,3{Ψk
i } are a

basis of Vh the problem reduces to finding a solution of

GY (Yt,Ψ
k
i ) = −E′[Y ](Ψk

i )− λC′[Y ](Ψk
i ) i ∈ Iv, k = 1, 2, 3, (4.18a)

C′[Y ](Yt) = 0 (4.18b)

and analogously for (4.16).
Now we can introduce the straightforward spatially discrete counterparts of (4.2) resp. (4.3). First,

for a given discretization Y of a surfaceM, we define the discrete energy functionals to (4.4) by

E[Y ] =

∫
Ω
r(Y,DY,D2Y ) da =

∑
k∈Ic

∫
4
r(Y (ξ, k), DY (ξ, k), D2Y (ξ, k)) dξ. (4.19)

For given functions Ψ,Φ ∈ Vh we define the discrete metric to (4.5) by

Gβ0,β1
Y (Ψ,Φ) =

∫
M[Y ]

ΨΦ + β0∇MΨ : ∇MΦ + β1∆MΨ∆MΦ da

=
∑
k∈Ic

∫
4

(ΨΦ + β0∇MΨ : ∇MΦ + β1∆MΨ∆MΦ) ◦ Y (ξ, k)
√

detG(ξ, k) dξ.

(4.20)

Accordingly for our test problems, we define the discrete counterpart of (4.4) by

Eα0,α1 [Y ] =

∫
M[Y ]

α0 +
α1

2
h2 da

=
∑
k∈Ic

∫
4

(α0 +
α1

2
(h(ξ, k))2)

√
detG(ξ, k) dξ (4.21)

and analogously the constraint (4.8) is discretized by

C[Y ] =
1

3

∑
k∈Ic

∫
4
N(ξ, k) · Y (ξ, k)

√
detG(ξ, k) dξ − V0. (4.22)

The evaluation of (4.20), (4.21) and (4.22) is then performed by quadrature as discussed in Chapter 3
but here we will always apply the full Gaussian quadrature of the corresponding regular element.

4.3. Higher Order Implicit Runge–Kutta Methods in Time

In this section we describe the higher order time discretization of (4.2) and (4.3) with implicit Runge–
Kutta methods. First, we give a brief review of the time integration of ordinary differential equations
via implicit Runge–Kutta methods. For a more comprehensive overview on this topic, we recommend
[73, 76] and [75]. Second, we apply implicit Runge–Kutta schemes to our discrete gradient flow setups
(4.16) and (4.17).
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Figure 4.6.: Implicit Runge-Kutta time discretization: For a given Butcher tableau we compute the
solution Ym+1 at the new time step tm + τ by solving the gradient flow for the internal
stages Ymi.

Implicit Runge–Kutta methods for ODEs Let us consider the following first-order ordinary
differential equation in standard form

Yt = F (t, Y )

Y0 = Y (0)

where F : [0, T ] × Vh → R|Iv | and Y (0) is given. To determine the approximations Y1, . . . , Yn of
Y (t1), . . . , Y (tn) for a given time-equidistant grid 0 = t0 < t1 < · · · tn ≤ T with step size τ we first
compute the internal stages Ym1, . . . , Yms (see Figure 4.6) via

Ymi = Ym + τ
s∑
j=1

aijF (tm + ciτ, Ymj) i = 1, . . . , s,

then the approximation at time tm+1 = tm + τ is found by setting

Ym+1 = Ym + τ
s∑
i=1

biF (tm + ciτ, Ymi).

We note that these two steps are carried out at each time step t1, t2, . . . , tn. In general, the first step
requires solving a nonlinear system of equations, which is usually done by using Newton’s method.

An s-stage implicit Runge–Kutta method is uniquely defined by its coefficients A = (aij), b
T =

(b1, . . . , bs) and cT = (c1, . . . , cs). It is typically represented by the so-called Butcher tableau

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
. . .

...
cs as1 as2 . . . ass

b1 b2 . . . bs

.
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We say that the method is of stage order r ≥ 1 if this is the largest integer such that

max
0≤m≤n

max
1≤i≤s

‖Ymi − Y (tm + ciτ)‖ = O(τ r).

The classical order q ≥ r is the largest integer such that

max
0≤m≤n

‖Ym − Y (tm)‖ = O(τ q).

It is important to note that the terms O(τ r) and O(τ q) do not only depend on the coefficients of the
Runge–Kutta method but also on the regularity of the right-hand side F .

Implicit Runge-Kutta for gradient flows Now, we want to solve for given surfaceM0 =M[Y0]

GY (Ẏ ,Ψ) = −E′[Y ](Ψ)− ΛC′[Y ](Ψ) ∀ Ψ ∈ Vh, (4.23a)

C′[Y ](Ẏ ) = 0, (4.23b)

where E and C are twice continuously differentiable, Λ = Λ(t) ∈ R denotes the Lagrange multiplier
and · = ∂

∂t denotes the partial derivative with respect to time t for notational reasons. Then, along every
exact solution we have

d

dt
E[Y (t)] = E′[Y (t)](Ẏ (t)) = E′[Y (t)](Ẏ (t)) + ΛC′[Y ](Ẏ (t)) = −GY (Ẏ (t), Ẏ (t)) ≤ 0

implying that E[Y (t)] is monotonically decreasing.

Method formulation For the numerical integration of the ordinary differential equation (4.23), we
consider an s–stage implicit Runge–Kutta method with time-step size τ = tn+1 − tn, given by

Ym+1 = Ym + τ
s∑
i=1

biẎmi, (4.24a)

Ymi = Ym + τ
s∑
j=1

aij Ẏmj , i = 1, . . . , s, (4.24b)

where the internal stages satisfy

GYmi(Ẏmi,Ψ) = −E′[Ymi](Ψ)− ΛiC
′[Ymi](Ψ) ∀ Ψ ∈ Vh, i = 1, . . . , s, (4.24c)

C′[Ymi](Ẏmi) = 0. (4.24d)

Gauss methods Here, the {bi}si=1 are the weights of the s-stage Gaussian-quadrature and the
{ci}si=1 are the nodes of this quadrature transformed to the interval [0, 1]. The coefficients of the matrix
A are determined from the conditions

s∑
j=1

aijc
k−1
j =

cki
k
, i, k = 1, · · · , s.
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4.3. Higher Order Implicit Runge–Kutta Methods in Time

It is known that the Gauss–Runge–Kutta method (GRK) is of stage order r = s and classical order
q = 2s.
The lowest order method of this class is the implicit midpoint rule. For the sake of completeness, we
list the Gauss–Runge–Kutta methods of classical order up to 6 in Table 4.3.

1
2

1
2

1

(a)

1
2 −

√
3

6
1
4

1
4 −

√
3

6

1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

(b)

1
2 −

√
15

10
5
36

2
9 −

√
15

15
5
36 −

√
15

30

1
2

5
36 +

√
15

24
2
9

5
36 −

√
15

24

1
2 +

√
15

10
5
36 +

√
15

30
2
9 +

√
15

15
5
36

5
18

4
9

5
18

(c)

Table 4.3.: Butcher tables of different Gauss-Runge-Kutta methods: (a) 1-stage 2nd order Gauss
method (Implicit Midpoint Rule), (b) 2-stage 4th order Gauss method and (c) 3-stage 6th
order Gauss method.

RadauIIA methods Analogously to the previous paragraph, the {bi}si=1 are the weights of the
s-stage Radau-quadrature and the {ci}si=1 are the roots of the polynomial

ds−1

dxs−1

(
xs−1(x− 1)s

)
.

The coefficients of the matrix A are determined from the conditions

s∑
j=1

aijc
k−1
j =

cki
k

i, k = 1, · · · , s.

It is known that the RadauIIA method is of stage order r = s and classical order q = 2s− 1.
The lowest order method of this class is the backward Euler method (implicit Euler). Here, we also list
the RadauIIA methods up to classical order 5 in Table 4.4.

1 1

1

(a)

1
3

5
12 - 1

12

1 3
4

1
4

3
4

1
4

(b)

4−
√

6
10

88−7
√

6
360

296−169
√

6
1800

−2+3
√

6
225

4+
√

6
10

296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

1 16−
√

6
36

16+
√

6
36

1
9

16−
√

6
36

16+
√

6
36

1
9

(c)

Table 4.4.: Butcher tableaus of different RadauIIA methods: (a) 1-stage 1st order RadauIIA method
(Implicit Euler), (b) 2-stage 3rd order RadauIIA method and (c) 3-stage 5th order RadauIIA
method.
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4. Parametric Gradient Flows

4.4. Robustness and Energy Decay

Hairer and Lubich proved in [74] that under certain assumptions, implicit Runge–Kutta methods di-
minish the energy of gradient systems in every step. In this section, we adapt their theorem to our
situation. Since we are dealing with a problem depending on the mesh size h, we will show which
kind of time step size restriction is needed in order to fulfill the required assumptions guaranteeing the
energy decay.

In the following we will differentiate between second and fourth-order problems indicated by the
variable `. Here, ` = 1 refers to the second-order case, i.e. r(Y,DY,D2Y ) = r(Y,DY ), and ` = 2 to
the fourth-order case.

Assumptions. We assume that

(i) the Runge-Kutta method is algebraically stable, i.e.

bi ≥ 0, i = 1, · · · , s,
(mij)ij = (biaij + bjaji − bibj)ij is symmetric positive semi-definite

It is known that the GRK method as well as the RadauIIA method are both algebraically stable.

(ii) there exists a δ > 0 such that

‖Ym+1 − Ym‖W `,∞ ≤ δ, ‖Ymi − Ym‖W `,∞ ≤ δ, i = 1, . . . , s and ` = 1, 2. (4.25)

(iii) there exists a C∗ > 0 such that

‖D2
0r‖∞, ‖D2

1r‖∞, ‖D2
2r‖∞, ‖D0D1r‖∞, ‖D0D2r‖∞, ‖D1D2r‖∞ ≤ C∗,

where D0, D1 and D2 denote the partial derivative with respect to the first, second and third
argument of r, respectively.

(iv) the operator A : (H`)s × (H`)s −→ R defined by

A(Z,W) =

s∑
i=1

biGYmi(Zi,Wi) +
τ

2

s∑
i,j=1

mijE
′′[Ym](Zi,Wj)

is positive definite, i.e.

A(Z,Z) ≥ α
s∑
i=1

‖Zi‖2L2 with α > 0.

We used the notation Z = (Z1, . . . , Zs)
T and W = (W1, . . . ,Ws)

T .

Theorem 4.4.1. Consider the system (4.24) with twice differentiable functions E[Y ] and C[Y ]. If the
above assumptions (i)-(iv) are satisfied and if τδh−2` is bounded by a sufficiently small constant, then
we have

E[Ym+1] ≤ E[Ym].
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4.4. Robustness and Energy Decay

Proof. The proof uses similar arguments as in the proof of Theorem 2.1 in [74]. We define p(t) =
E[Ym + t(Ym+1 − Ym)], then Taylor expansion yields

p(1) = p(0) + p′(0) +
1

2
p′′(ρ) where ρ ∈ [0, 1].

Thus we have

E[Ym+1] = E[Ym] + E′[Ym](Ym+1 − Ym) +
1

2
E′′[Ym + ξ(Ym+1 − Ym)](Ym+1 − Ym, Ym+1 − Ym).

(4.26)

On the other hand, we again use the Taylor expansion to get for all i = 1, . . . s

E′[Ymi](Ym+1 − Ym) = E′[Ym](Ym+1 − Ym) +

∫ 1

0
E′′[Ym + θ(Ym+1 − Ym)](Ymi − Ym, Ym+1 − Ym)dθ.

Using the Runge–Kutta relation (4.24) to express the terms Ym+1 − Ym and Ymi − Ym, extracting
E′[Ym](Ym+1 − Ym) from the last equation and inserting it into (4.26), it follows that

E[Ym+1] =E[Ym] + τ
s∑
i=1

bi(E
′[Ymi](Ẏmi) + ΛiC

′[Ymi](Ẏmi))

+
1

2
τ2

s∑
i,j=1

bibjE
′′[Ym + ξ(Ym+1 − Ym)](Ẏmi, Ẏmj)

− τ2
s∑

i,j=1

biaij

∫ 1

0
E′′[Ym + θ(Ymi − Ym)](Ẏmi, Ẏmj)dθ

=E[Ym]− τ
s∑
i=1

biGYmi(Ẏmi, Ẏmi) +
τ2

2

s∑
i,j=1

bibjE
′′[Ym + ξ(Ym+1 − Ym)](Ẏmi, Ẏmj)

− τ2

2

s∑
i,j=1

biaij

∫ 1

0
E′′[Ym + θ(Ymi − Ym)](Ẏmi, Ẏmj)dθ

− τ2

2

s∑
i,j=1

bjaji

∫ 1

0
E′′[Ym + θ(Ymj − Ym)](Ẏmj , Ẏmi)dθ

=E[Ym]− τ
s∑
i=1

biGYmi(Ẏmi, Ẏmi)−
τ2

2

 s∑
i,j=1

mijE
′′[Ym](Ẏmi, Ẏmj) +Rij

 .

=E[Ym]− τ
(
A(Ẏm, Ẏm) +

τ

2
R(Ẏm, Ẏm)

)
where

R(Ẏm, Ẏm) =

s∑
i,j=1

2biaij

∫ 1

0
E′′[Ym + θ(Ymi − Ym)](Ẏmi, Ẏmj)−E′′[Ym](Ẏmi, Ẏmj)dθ
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4. Parametric Gradient Flows

−
s∑

i,j=1

bibj

(
E′′[Ym + ξ(Ym+1 − Ym)](Ẏmi, Ẏmj)−E′′[Ym](Ẏmi, Ẏmj)

)
and Ẏm = (Ẏm1, . . . , Ẏms)

T . By assumption (iv) we have A(Ẏm, Ẏm) ≥ α
∑s

i=1 ‖Ẏmi‖2L2 . There-
fore, our problem reduces to show that

τR(Ẏm, Ẏm) ≤ cα
s∑
i=1

‖Ẏmi‖2L2 ,

with cα ≤ α.
For U,Ψ,Υ ∈ Vh we first observe that

E′[U ](Ψ) =

∫
Ω
D0r(U,DU,D

2U)(Ψ) +D1r(U,DU,D
2U)(DΨ) +D2r(U,DU,D

2U)(D2Ψ) dξ,

E′′[U ](Ψ,Υ) =

∫
Ω
D2

0r(U,DU,D
2U)(Ψ,Υ) +D2

1r(U,DU,D
2U)(DΨ, DΥ)

+D2
2r(U,DU,D

2U)(D2Ψ, D2Υ) +D1D0r(U,DU,D
2U)(Ψ, DΥ)

+D2D0r(U,DU,D
2U)(Ψ, D2Υ) +D0D1r(U,DU,D

2U)(DΨ,Υ)

+D0D2r(U,DU,D
2U)(D2Ψ,Υ) +D2D1r(U,DU,D

2U)(DΨ, D2Υ)

+D1D2r(U,DU,D
2U)(D2Ψ, DΥ) dξ.

Thus, by assumption (iii), Cauchy-Schwarz inequality, Young’s inequality and inverse inequality, it
follows that for all U, Ũ ,Ψ,Υ ∈ Vh

|E′′[U ](Ψ,Υ)−E′′[Ũ ](Ψ,Υ)| ≤ C∗‖U − Ũ‖W `,∞

(∑̀
i=0

‖DiΨ‖2L2 + ‖DiΥ‖2L2

)
≤ C∗h−2`‖U − Ũ‖W `,∞

(
‖Ψ‖2L2 + ‖Υ‖2L2

)
.

This relation together with assumption (ii) yield

R(Ẏm, Ẏm) ≤ C0δh
−2`

s∑
i=1

‖Ẏmi‖2L2 ,

where C0 is independent of h and τ but depends on C∗ and the Runge–Kutta coefficients. Thus the
assumption that τδh−2` is sufficiently small completes the proof.

Time-step restriction We now illustrate that under a mild time step size restriction, assumptions
(i)-(iv) can be fulfilled.

(i) Independently of the time step size, it is known that the GRK method as well as the RadauIIA
method are both algebraically stable. In particular mij = 0 for all GRK methods.

(ii) • ` = 1 (e.g. MCF): We expect that ‖y(tm)− Ym‖W 1,∞ ≤ C(τ q + hp̃) with p̃ > 0 , we get

‖Ym+1 − Ym‖W 1,∞ ≤ ‖Ym+1 − y(tm+1)‖W 1,∞ + ‖y(tm+1)− y(tm)‖W 1,∞ + ‖y(tm)− Ym‖W 1,∞
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4.4. Robustness and Energy Decay

≤ Cτ + Chp̃.

Thus it follows that in this case δ = O(τ + hp̃) which means that we have to have

τ = O(hmax(1,2−p̃))

in order to satisfy the assumption that τδh−2 is sufficiently small. For Loop subdivision we
expect that p̃ = 2 which results in τ = O(h) (see the theoretical results obtained by Arden
[5] or our experimental study in Chapter 3).

• ` = 2 (e.g. Willmore flow): We expect that ‖y(tm)− Ym‖W 2,∞ ≤ C(τ q + hp̂) with p̂ > 0,
we get

‖Ym+1 − Ym‖W 2,∞ ≤ C(τ + hp̂).

Thus, for ` = 2, we expect that δ = O(τ + hp̂). Therefore, we need a stronger time step
size restriction, namely

τ = O(hmax(2,4−p̂)),

in order to satisfy the assumption that τδh−4 is sufficiently small. For arbitrary valences a
Loop subdivision surface is only in W 2,p∗ with p∗ <∞ (see Chapter 2 or [117]) and only
purely regular meshes (i.e. a torus) this requirement is fulfilled and we expect that p̂ = 2
(see [86]) such that τ = O(h2). In all other cases we expect that the time step size depends
much stronger on the spatial grid size.

(iii) Since we consider only algebraically stable Runge–Kutta methods (i.e. bi > 0), and we expect
that there exists a constant γ > 0 such that GYmi(ϕ,ϕ) ≥ γGYm(ϕ,ϕ) for all i = 1, . . . , s, we
observe

A(Z,Z) =

s∑
i=1

biGYmi(Zi, Zi) +
τ

2

s∑
i,j=1

mijE
′′[Ym](Zi, Zj)

≥ Cγ
s∑
i=1

‖Zi‖2L2 +
τ

2

s∑
i,j=1

mijE
′′[Ym](Zi, Zj).

We now study the following two cases.

• Case 1: mij = 0 or E′′[Ym](·, ·) is positive semi-definite. Then it is clear, thanks to the
algebraic stability of the method, assumption (iv) is fulfilled. Thus, in this case, we don’t
require any extra restriction.

• Case 2: mij 6= 0 and E′′[Ym](·, ·) is not positive semi-definite. This is the worst case
that can happen in term of time step size restriction. Then we will have to use the inverse
inequality in order to bound the last term

τ

2

s∑
i,j=1

mijE
′′[Ym](Zi, Zj) ≤ Cτh−2`

s∑
i=1

‖Zi‖2L2 ,
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4. Parametric Gradient Flows

Figure 4.7.: Experimental order of convergence study for the spatial discretization of problem (ex.1),
left and (ex.2), right. As initial approximation of a sphere with radius r0 = 2.0 we used
a triangulation with |Iv| = 18. For every refinement step we solve the corresponding
interpolation problem to approximate the initial sphere. The error is measured in L2 at
time t = 1.0.

which means that we need to have a time step size restriction

τ = O(h2`).

Conclusion. For second-order problem (` = 1, e.g. MCF), we have a time step size restriction τ =
O(h), and in the worst case τ = O(h2). For fourth-order problem (` = 2, e.g. Willmore flow), in
the best-case scenario the time step size scales like O(hp), where p ∈ [2, 4), and in the worst case
τ = O(h4).

4.5. Algorithm

In this section we describe how to solve the system of equations (4.16) and (4.17). Here, we consider
only the case (4.18) and the non-constrained problem follows analogously.

First, instead of considering the stage shapes Ymi we consider Ẏmi as unknowns. For a given s-
stage Runge-Kutta method and a time step m with parameterization Ym we compute the next time step
Ym+1 by first computing the roots of the following objective function

F[Ẏ,Λ] =
(
F1[Ẏ,Λ] . . . Fs[Ẏ,Λ] Fs+1[Ẏ,Λ] . . . F2s[Ẏ,Λ]

)T
,

where

Fi[Ẏ,Λ] =
(
GYmi(Ẏmi,Ψ

κ
l ) + E′[Ymi](Ψ

κ
l ) + ΛiC

′[Ymi](Ψ
κ
l )
)
l∈Iv ,κ=1,2,3

,

Fs+i[Ẏ,Λ] = C′[Ymi](Ẏmi),

where
Ẏ = (Ẏm1, . . . , Ẏms) ∈ Vh × . . .× Vh,
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4.5. Algorithm

Λ = (Λ1, . . . ,Λs) ∈ Rs

and

Ymi = Ym + τ

s∑
j=1

aij Ẏmj

for i = 1, . . . , s. This is done by solving the full Newton method where the Jacobian of F[Ẏ,Λ] has
the structure

DF[Ẏ,Λ] =



∂F1[Ẏ,Λ]

∂Ẏm1
. . . ∂F1[Ẏ,Λ]

∂Ẏms

∂F1[Ẏ,Λ]
∂Λ1

. . . ∂F1[Ẏ,Λ]
∂Λs

...
. . .

...
...

. . .
...

∂Fs[Ẏ,Λ]

∂Ẏm1
. . . ∂Fs[Ẏ,Λ]

∂Ẏms

∂Fs[Ẏ,Λ]
∂Λ1

. . . ∂Fs[Ẏ,Λ]
∂Λs

∂Fs+1[Ẏ,Λ]

∂Ẏm1
. . . ∂Fs+1[Ẏ,Λ]

∂Ẏms
0 . . . 0

...
. . .

...
...

. . .
...

∂F2s[Ẏ,Λ]

∂Ẏms
. . . ∂F2s[Ẏ,Λ]

∂Ẏms
0 . . . 0


with

∂Fi[Ẏ,Λ]

∂Ẏmj
= δij

(
GYmi(Ψ

κ
l ,Ψ

η
k) + aijGYmi,Y (Ẏmi,Ψ

κ
l )(Ψη

k)

+aijE
′′[Ymi](Ψ

κ
l ,Ψ

η
k) + aijΛiC

′′[Ymi](Ψ
κ
l ,Ψ

η
k)
)
l,k∈Iv ,κ,η=1,2,3

,

∂Fs+i[Ẏ,Λ]

∂Ẏmj
=
(
aijC

′′[Ym1](Ẏm1,Ψ
η
k) + C′[Ym1](Ψη

k)
)T
k∈Iv ,η=1,2,3

,

∂Fi[Ẏ,Λ]

∂Λj
= δij

(
C′[Ymi](Ψ

κ
l )
)
l∈Iv ,κ=1,2,3

for i = 1, . . . , s. For every Newton step σ ≥ 0 we solve the linear system

DF[Ẏσ,Λσ] ·∆[Ẏσ,Λσ] = −F[Ẏσ,Λσ]

and compute the next Newton step by

[Ẏσ+1,Λσ+1] = [Ẏσ,Λσ] + η∆[Ẏσ,Λσ],

where η ∈ [0, 1] is the step size computed by ([125], p.129). Finally, we compute the next time step

Ym+1 = Ym + τ

s∑
i=1

biẎmi.

For a detailed computation of the first and second variation of Eα0,α1 , C and Gβ0,β1
Y as well as the

constraints see Appendix A.3.
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4.6. Numerical Results

We have implemented the proposed method in C++ and performed various tests for different gradient
flows, e.g. mean curvature flow and L2-Willmore flow. We demonstrate the higher order consistency
in space and in time through an experimental convergence study. Furthermore, we underline the ro-
bustness and stability of the proposed scheme with time steps up to the order of the spatial grid size
h whereby the crucial discrete energy decay property is fulfilled. We will now refer to the s–stage
RadauIIA method by RADAUs, i.e. RADAU1, RADAU2 and RADAU3, and for the s–stage Gauss–
Runge–Kutta by GAUSSs, i.e. GAUSS1, GAUSS2 and GAUSS3.

At first, we numerically solve the evolution of the gradient flows with energy and metric

(ex.1) e = e1,0 and gy = g0,0
y ,

(ex.2) e = e1,1 and gy = g0,0
y .

Both gradient flows shrink spheres in time t with initial radius r0 under the law r(t) =
√
r2

0 − 4t
(see e.g. [107]). In Figure 4.7 we compare the continuous and the discrete solution of problem (ex.1)
(on the left) and (ex.2) (on the right) and show the experimental order of convergence for the spatial

Figure 4.8.: Experimental order of convergence study for the time discretization of problem (ex.1), left
and (ex.2), right. As initial approximation of a sphere with radius r0 = 2.0 we used a
triangulation with |Iv| = 1026 and h = 0.27. The error is measured in L2 at time t = 0.8.

Figure 4.9.: Energy plot of E1,0 for the shrinking of a sphere with different metrics L2, H1 and H2
∆.

The initial surface approximates a sphere of radius r0 = 1 with |Iv| = 258, h = 0.27 and
E1,0[Y0] = 12.57. Here, we have chosen RADAU2 as time scheme with τ = 1.e-3.
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t0 = 0 t25 = 2.5 t50 = 5 t100 = 10 t260 = 26

Figure 4.10.: Left: L2-Willmore flow of torus towards the Clifford torus with |Iv| = 384, h = 0.6 and
E0,1[Y0] = 62.39 for the initial surface at t0 = 0. Here, the time discretization scheme is
RADAU2 with τ = 0.1 and depicted time steps are 0, 25, 50, 100 and 260. Right: Energy
plot of E0,1[Ym] for the corresponding L2-, H1- and H2

∆-Willmore flow.

t0 = 0 t10 = 1e-4 t20 = 2e-4 t30 = 3e-4 t100 = 1e-3

Figure 4.11.: Left: L2-Willmore flow of an ellipsoid towards the sphere with |Iv| = 450, h = 7.48e-
2 and E0,1[Y0] = 28.57 for the initial surface at t0 = 0. Here, the time discretization
scheme is RADAU2 with τ = 1.0e-5 and depicted time steps are 0, 10, 20, 30 and 100.
Right: Energy plot of E0,1[Ym] for the corresponding L2-, H1- and H2

∆-Willmore flow.

discretization measured in L2. Here, the experimental behavior agrees with the suspected consistency
error O(τ q + hp) with p = 3 for Loop subdivision surfaces. In particular, for RADAU1 with time step
τ = hs the experimental order of convergence scales like O(hs) for s = 1, 2, 3. In contrast, a time
discretization with RADAU2 and τ = h results in a consistency errorO(h3) which allows much larger
time steps with higher order consistency.

Now, we fix the spatial discretization, i.e. h is constant. In Figure 4.8 we depict an experimental
convergence study of the higher order Runge-Kutta methods measured in L2 for the shrinking of a
sphere, i.e. problems (ex.1) and ((ex.2). Here, we have chosen the spatial discretization such that the
error is completely dominated by the time discretization error. Again, the results in Figure 4.8 agree
with the suspected higher order consistency error O(τ q).

In Figure 4.9 we depict the energy plot for the evolution of the shrinking sphere of the area func-
tional E1,0 measured in L2, H1 and H2

∆. For the L2 gradient flow we see a very fast evolution towards
the singular configuration at time t = 0.25 whereas the corresponding H1 and H2 gradient flows
evolve much smoother in time. Furthermore, in Figure 4.10 and 4.11 we depict the energy plot for the
evolution of a torus resp. a deformed sphere for the Willmore energy E0,1 measured in L2, H1 and
H2

∆.
Now we investigate the evolution of described gradient flows for more complex examples. In Figure

4.12 and 4.13 we consider the evolution of a bunny surface towards a sphere with different gradient
flows. In Figure 4.12 we depict three time steps of the L2-Willmore flow. As described earlier by other
authors [11, 20] the L2-gradient can produce degenerate meshes for the evolution of complex surfaces.
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4. Parametric Gradient Flows

Figure 4.12.: L2-Willmore flow of a complex surface towards a singular configuration with |Iv| = 842
and h = 0.12987. On the left we depict the initial mesh with t0 = 0. In the middle the
mesh after 10 time steps with τ = 10−8. After 60 time steps the green triangle degenerate
for the mesh on the right.

In contrast, the evolution measured in metrics based on higher order derivatives (see Figure 4.13) does
not form degenerate meshes. The resulting flows are stable and allow for large time steps.

Finally, the examples in Figure 4.14 and 4.15 underline again the robustness of the proposed
method.
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t0 = 0
E1,0[Y0] = 2.18

E0,1[Y0] = 256.92

t1 = 0.5

t2 = 1

t3 = 1.5

t5 = 2.5

t10 = 5

t40 = 20

E1,0[Y1] = 1.8964

E1,0[Y2] = 1.7462

E1,0[Y3] = 1.6821

E1,0[Y5] = 1.6429

E1,0[Y10] = 1.6355

E1,0[Y40] = 1.6354

t10 = 2.5e-3

t25 = 6.25e-3

t50 = 1.25e-2

t100 = 2.5e-2

t200 = 5.0e-2

t600 = 1.5e-1

E0,1[Y10] = 79.52

E0,1[Y25] = 58.86

E0,1[Y50] = 39.59

E0,1[Y100] = 31.92

E0,1[Y200] = 27.31

E0,1[Y600] = 25.28

t1 = 0.75

t2 = 1.5

t3 = 2.25

t4 = 3.0

t6 = 4.5

t20 = 15.0

E0,1[Y1] = 64.29

E0,1[Y2] = 41.36

E0,1[Y3] = 30.85

E0,1[Y4] = 27.22

E0,1[Y6] = 25.89

E0,1[Y20] = 25.43

Volume-constrained H1-Area flow H1-Willmore flow H2
∆-Willmore flow

Initial Surface

Figure 4.13.: Evolution of a bunny surface towards a sphere with different gradient flows. The initial
surface is depicted at the top with |Iv| = 842 and h = 0.12987 (left: coarse mesh, right:
subdivision surface).
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t0 = 0 t1 = 0.75 t2 = 1.5 t3 = 2.25 t4 = 3

E0,1[Y0] = 195.76 E0,1[Y1] = 41.36 E0,1[Y2] = 28.24 E0,1[Y3] = 25.86 E0,1[Y4] = 25.37

Figure 4.14.: Evolution of a frog under H2
∆-Willmore flow towards a sphere with |Iv| = 1028, h =

0.112182 and τ = 0.75.

t0 = 0 t2 = 0.4 t8 = 1.6 t16 = 3.2 t32 = 6.4 t256 = 51.2 t4096 = 819.2

E0,1[Y0] = 766.08 E0,1[Y2] = 177.10 E0,1[Y8] = 117.19 E0,1[Y16] = 83.19 E0,1[Y32] = 51.69 E0,1[Y256] = 41.16 E0,1[Y4096] = 39.87

Figure 4.15.: Evolution of an elk toy under H2
∆-Willmore flow towards a Möbius transformed Clifford

torus with |Iv| = 900, h = 0.22 and τ = 0.2.
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5. Geodesics, Bézier Curves and Splines in
Subdivision Shell Space

In this chapter we apply the concept of time-discrete geodesic calculus to the space of subdivision
shells. Furthermore, we extend the concept of Bézier curves to the corresponding subdivision shell
space by generalizing the de Casteljau algorithm and define B-splines and cardinal splines in shape
space by gluing together piecewise Bézier curves in a smooth way.

Curves and surfaces in Euclidean space consist of points in Rd (d ≥ 2) and the natural Euclidean
metric is effective in measuring the distance between two points. In contrast, shape spaces consist
of curves, surfaces, images or volumetric objects and every shape has to be understood as a point
in space. Hence, the Euclidean distance is not appropriate anymore to measure the distance between
two objects. In computer graphics, a common approach is to rewrite the problem via local geometric
quantities such as edge lengths and dihedral angles of triangulated surfaces [139, 64]. In this setup,
interpolating and morphing shapes is done by linear interpolation of edge lengths and dihedral angles
and an optimal fitting step. Another approach, which incorporates more information of the underlying
shape space, considers the problem as a gradient flow of a corresponding energy that measures the
mismatch between a template and a reference shape [29, 53].

The dominating approach in the literature treats the space of shapes as a Riemannian manifold.
Here, the distance between two objects in shape space is measured with respect to the underlying
Riemannian metric and a path connecting two objects is the minimizer of all possible paths called a
geodesic. Solving the corresponding geodesic equations involves a time stepping method. On the other
hand, geodesic paths (i.e. the path connecting two shapes with minimal distance) can also be approxi-
mated via the minimization of discretized path length [127] or path energy [65]. Here, the main chal-
lenge consists in designing respectively approximating a suitable Riemannian metric which induces a
notion of distance. We follow the approach of time-discrete geodesic calculus in shell space developed
in [78, 77, 79]. This approach relies on a more general natural time discretization by Rumpf, Wirth and
co-authors developed in the last decade [119, 118, 140, 141, 120, 142, 121, 77, 122, 123, 79], which
constructs a corresponding energy that approximates the squared Riemannian distance and computes
geodesic paths by minimizing the path energy. The concept of natural time discretization is linked to
variational integrators [75] used in mechanics [95] and can be seen as a space-time discretization (see
e.g. [69]). From a mathematical perspective, the physically motivated continuous energy of [78, 77, 79]
relies on analytical results for smooth surfaces in three-dimensional nonlinear elasticity theory which
are obtained by the so-called Γ-limit [62, 63, 61, 93].

For other approaches to Riemannian metrics for surfaces see [88, 96, 91, 92, 13, 84, 12, 23, 2]
respectively for a Riemannian approach to curves see [102, 129, 133, 130, 134] and for volumetric
objects, such as images, see [65, 60, 48, 17, 14]. The underlying shape spaces have again an own
structure, e.g. curvature of shape space. For an exploration of the structure of space shapes see e.g.
[96, 79]. Furthermore, in [79] and [143] the eigenvectors of the Hessian of the elastic energy were
used, following [80, 136], to perform so-called animation without animating, respectively to perform a
principle component analysis in the space of shells.
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5. Geodesics, Bézier Curves and Splines in Subdivision Shell Space

Bézier curves as well as B-splines and cardinal splines are a fundamental tool in applied geometry.
Applications range from vector graphics to CAD, from computer graphics or animation to computa-
tional engineering. All three concepts are linked by the de Casteljau algorithm [58] which is a robust
and efficient approach for drawing Bézier curves. In Euclidean space, the de Casteljau algorithm con-
structs polynomials by a weighted recursive combination of straight lines. In the context of Riemannian
calculus, where straight lines correspond to geodesics, Bézier curves have already been investigated by
generalizing the de Casteljau algorithm, see e.g. [113, 67, 54, 1]. The evaluation at any parameter po-
sition of Bézier curves always involves all input shapes. Therefore, one usually considers B-splines
which solve the problem that the evaluation depends on all input shapes. Bézier curves and B-splines
do not interpolate all input shapes which is a desired property in applications. Cardinal splines inter-
polate all input shapes and have only local dependence of input shapes but they are less smooth than
equivalent B-splines. Here, we generalize B-splines and Cardinal splines to shape spaces.

Another approach is to generalize the natural splines from Euclidean space to shape space, see
e.g. [105, 39, 24, 66, 135, 114]. A straightforward approach is to generalize the gluing of cubic Bézier
segments to obtain the smoothness of cubic B-splines and the interpolation property of cardinal splines
but the evaluation depends on all input shapes. In contrast to B-splines and cardinal splines, this results
in a global system of constraints which is very hard to solve in arbitrary shape spaces (in Euclidean
space efficient algorithms are known [58]). Therefore, the main approach in the literature is to general-
ize the following observation: natural splines are the minimizers of the energy

∫ 1
0 |ÿ(t)|2t. in Euclidean

space among all curves (y(t))t∈[0,1] with prescribed supporting points y(tj) = yj at times tj ∈ [0, 1]
for j = 0, . . . , J and appropriate boundary conditions. This results in a global system involving all in-
put shapes and all desired parameter positions. For an approach to construct higher order Riemannian
polynomials in the context of polynomial regression on Riemannian manifolds see [81].

A crucial step for the numerical treatment of the space of shells or surfaces is a suitable spatial
discretization of shells or surfaces. In [78, 77, 79] the continuous elasticity energy functional is dis-
cretized by applying concepts from discrete differential geometry [72, 71] and discrete exterior calculus
[43, 44]. A discrete shell model for triangular meshes, which consists of a membrane and a bending
term, is derived by transferring the concepts of first and second fundamental forms to triangular meshes
instead of discretizing these by a finite element approach. Here, the critical part is the bending term
which requires C1-elements. A non-conforming discretization for the bending term is derived in [16]
with the Crouzeix-Raviart-element. We use subdivision surfaces as discretization tool such that our
approach combines higher order (time) paths in shape space (Bézier curves and splines) with higher
order C1-elements.

In Section 5.1 we review the time-discrete geodesic calculus developed in [123]. Then, we introduce
generalized Bézier curves via the de Casteljau algorithm and define B-splines and cardinal splines
in shape space in Section 5.2. The introduced shell model of [78, 77, 79] is described in Section
5.3 and discretized with subdivision surfaces. The detailed implementation and further algorithms are
discussed in Section 5.4 and we present results in Section 5.5.

5.1. Time-Discrete Geodesics Calculus in Shape Space

In this section we review the variational time discretization of geodesic calculus developed in [123]
by Rumpf and Wirth, which includes the notions of discrete geodesics, discrete logarithm and expo-
nential map, and discrete parallel transport. Let us remark that we consider infinite-dimensional shape
spaces in the continuous setting and existence of geodesics for complete Riemannian manifolds is not
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5.1. Time-Discrete Geodesics Calculus in Shape Space

guaranteed by the Hopf-Rinow theorem (see [78]). A detailed discussion of existence is beyond the
scope of this chapter and we refer to [123]. In general, for infinite-dimensional shape spaces a cor-
responding analysis has to be performed. In Section 5.3 we will introduce the corresponding discrete
setting based on the isogeometric subdivision method. Here, the existence is guaranteed following the
results in [123]. In the following we will define the tools of time-continuous and time-discrete geodesic
calculus and assume the existence.

Time-continuous geodesic calculus We denote by S a shape space which can have various
form, for example it can consist of images [17, 54], two-dimensional surfaces embedded inR3 [77, 79].
Furthermore, for a shape y ∈ S we denote the corresponding tangent space by TyS. Let (S,G) be a
smooth, complete Riemannian manifold with Riemannian metric G : TyS × TyS → R for y ∈ S .
Given a smooth path (y(t))t∈[0,1], the path length is defined by

L[(y(t))t∈[0,1]] =

∫ 1

0

√
Gy(t)(ẏ(t), ẏ(t)) dt, (5.1)

where ẏ(t) ∈ TyS denotes the derivative with respect to time t. Given two shapes yA and yB in S, the
minimizing path (y(t))t∈[0,1] of (5.1) is a geodesic and

dist(yA, yB) = L[(y(t))t∈[0,1]] = min
(ỹ(t))t∈[0,1]⊂S

ỹ(0)=yA,ỹ(1)=yB

L[(ỹ(t))t∈[0,1]]

denotes the corresponding Riemannian distance, i.e. the distance is the minimal path length. In general
the existence of geodesics, and hence the overall concept, is not guaranteed and a detailed study has to
be performed. Then, we define the path energy of a path (y(t))t∈[0,1] ⊂ S by

E [(y(t))t∈[0,1]] =

∫ 1

0
Gy(t)(ẏ(t), ẏ(t)) dt. (5.2)

A minimizer of (5.1) is also a minimizer of (5.2) where the constant speed property Gy(t)(ẏ(t), ẏ(t)) =
L2[(y(t))t∈[0,1]] holds in these cases (see [123]). This is due to the fact that the covariant derivative
∇y(t)ẏ(t) = 0 for all t ∈ [0, 1] such that d

dtGy(t)(ẏ(t), ẏ(t)) = Gy(t)(∇y(t)ẏ(t), ẏ(t)) = 0 respectively
Gy(t)(ẏ(t), ẏ(t)) = c2 for fixed c ∈ R. Again, for given shapes yA and yB in S we define the geodesic
interpolation at t ∈ [0, 1] by

I(yA, yB, t) = y(t) =

 arg min
(ỹ(s))s∈[0,1]⊂S,
ỹ(0)=yA,ỹ(1)=yB

E [(ỹ(s))s∈[0,1]]

 (t).

Here, we used the path energy for the definition of geodesic interpolation because in the discrete setting
the corresponding discrete geodesic will be defined via the discrete path energy. The logarithm map

LOGyA [yB] = v,

assigns a tangent vector v ∈ TyAS to a shape yB with respect to a shape yA, where v = ẏ(0) is the
initial velocity of a geodesic (y(t))t∈[0,1] connecting yA with yB . The inverse operation is known as
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5. Geodesics, Bézier Curves and Splines in Subdivision Shell Space

the exponential map, i.e. a shape yA and a tangent vector v ∈ TyAS are mapped onto the end shape yB
of a geodesic starting at yA with initial speed v denoted by

EXPyA [v] = yB,

where v = ẏ(0) is again the initial velocity of this geodesic (y(t))t∈[0,1] connecting yA with yB .
Finally, the parallel transport of a given vector v0 along a path (y(t))t∈[0,1] (not necessarily geodesic)
is the resulting vector v(1) = v1 from the solution of ∇ẏ(t)v(t) = 0 for t ∈ [0, 1] and initial data
v(0) = v0 denoted by

P(y(t))t∈[0,1] [v0] = v1,

where∇ẏ denotes the covariant derivative via the Levi-Civita connection∇ (see e.g. [78]).

Time-discrete geodesic calculus We will now introduce the discrete counterparts to the previ-
ous time-continuous tools in shape space. Let us now sample the continuous path (y(t))t∈[0,1] at time
steps tk = kτ for k = 0, . . . ,K and τ = 1

K , defining yk = y(tk) ∈ S where K ≥ 2. In this case we
obtain the estimates

L[(y(t))t∈[0,1]] ≥
K∑
k=1

dist(yk−1, yk)

and

E [(y(t))t∈[0,1]] ≥
1

τ

K∑
k=1

dist2(yk−1, yk),

where equality holds for geodesic paths due to the constant speed property. The first estimate is straight-
forward, and application of Jensen’s inequality yields the second estimate

K∑
k=1

dist2(yk−1, yk) ≤
K∑
k=1

τ

∫ kτ

(k−1)τ
Gy(t)(ẏ(t), ẏ(t)) dt ≤ τE [(y(t))t∈[0,1]].

The starting point of [123] is now the local approximation of the squared Riemannian distance dist2

by a smooth functionalW : S × S → R. Here the key act is thatW has to fulfill

dist2(y, ỹ) =W[y, ỹ] + dist3(y, ỹ), (5.3)

whereW has to fulfill additional properties (again see [123] for details). In general, Gy = 1
2W,22[y, y]

implies the previous statement for smooth G and W . Note that W is not required to be symmetric.
Now, we have everything at hand to introduce the discrete path length

L[y0, . . . , yK ] =
K∑
k=1

√
W[yk−1, yk] (5.4)
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5.1. Time-Discrete Geodesics Calculus in Shape Space

Figure 5.1.: Conceptual sketch of time-discrete geodesics for K = 2, 3, 4, 5 where the black line is the
time-continuous geodesic (y(t))t∈[0,1].

and the discrete path energy

E[y0, . . . , yK ] = K

K∑
k=1

W[yk−1, yk] (5.5)

of a discrete path (y0, . . . , yK). For given input shapes yA and yB in S we call the discrete path
(y0, . . . , yK) a discrete geodesic, if (y0, . . . , yK) is a minimizer of the discrete path energy (5.5), i.e.
(y0, . . . , yK) fulfills the necessary condition

K
K−1∑
k=1

(W,2[yk−1, yk] +W,1[yk, yk+1]) = 0

with y0 = yA and yK = yB (see Figure 5.1). Here, W,1[y, ỹ] denotes the variation to a direction
Φ with respect to the first argument W,1[y, ỹ] =

(
d
dsW[y + sΦ, ỹ]

)
s=0

and analogously W,2[y, ỹ]
denotes the variation with respect to the second argument. The existence of discrete geodesics and
thus the well-posedness of the concept has been shown in Theorem 4.3 in [123] and convergence of
discrete geodesics to continuous geodesics for K → ∞ has been shown in Theorems 4.8-4.10 in
[123]. Note that if (y0, . . . , yK) is a discrete geodesic, then so is any subsegment (yi, yi+1, . . . , yi+k).
Let us remark that in the discrete setting there a is difference in minimizing (5.4) and (5.5). Minimizers
of the discrete path length (5.4) are in general not related to discrete geodesics (and thus also not to
continuous geodesics as K →∞) as discussed in Figure 2.3 in [122]. The reason is that minimizers of
(5.4) can take short-cuts (e.g. for end-points close to each other on a curved two-dimensional manifold
embedded inR3 but separated by the ambient space, the minimizer of (5.4) will take a short-cut through
the ambient space by putting discrete points close to the end points) which is prohibited for minimizers
of (5.5) due to the equidistribution of points along discrete geodesics (see Theorem 4.8 in [123]). Then
a discrete geodesic interpolation for 0 < k < K is defined by

IK(yA, yB, k) = yk =

 arg min
y0,...,yK∈S,
y0=yA,yK=yB

E[y0, . . . , yK ]


k

.

Given a continuous geodesic (y(t))t∈[0,1] with y(0) = yA and y(1) = yB and a discrete geodesic
(y0, . . . , yK) with y0 = yA and yK = yB , we may view y1−y0 as the discrete counterpart to τ ẏ(0) for
τ = 1

K . Motivated by the fact that
(

1
K

)
LOGyA [yB] = τ ẏ(0) we hence give the following definition
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Figure 5.2.: Conceptual difference between continuous (top) and discrete (bottom) logarithm and expo-
nential map. In contrast to the continuous setting, where νk ∈ Ty( k

K
)S are tangent vectors,

in the discrete setting ξk = yk − yk−1 are displacements.

of a discrete logarithm. Suppose we have a discrete geodesic unique (y0, . . . , yK) with y0 = yA and
yK = yB , we define the discrete logarithm by

1

K
LOGyA [yB] = y1 − y0 = ξ,

where we call ξ a displacement which is the discrete counterpart to the tangent vector. As in the
continuous case, the discrete logarithm can be considered as the linear representation of the nonlinear
variation yB to yA. The convergence of the discrete logarithm to the continuous logarithm, fir instance
for a sequence of successively refined discrete geodesics 1

KLOGyA [yB] → LOGyA [yB] for K →
∞, was proven under additional assumptions in Theorem 5.1 in [123]. As already explained, in the
continuous case the exponential maps a shape y and a tangential vector ν ∈ TyS to a shape ỹ, where a
geodesic connects y and ỹ with initial velocity ν. The definition of the discrete exponential will result
from our definition of the discrete path energy. Consider a discrete geodesic of length K = 2, i.e.
(y0, y1, y2) fulfills the condition

0 = 2W,2[y0, y1] + 2W,1[y1, y2].

Let us assume for a moment that y0 = y, the shape y2 depends on y1, and that y1 = y + ξ ∈ S for any
sufficiently small displacement ξ, then y2 = y2[y, ξ] and

0 = 2W,2[y, y + ξ] + 2W,1[y + ξ, y2[y, ξ]], (5.6)

i.e. for given y ∈ S and ξ ∈ TySsufficiently small such that y + ξ ∈ S , the solution y2[y, ξ] ∈ S of
(5.6) gives us a discrete counterpart to EXPy[2ξ] = y2. Obviously, EXPyA [ kK ν] = y( kK ) holds for
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5.1. Time-Discrete Geodesics Calculus in Shape Space

k = 0, . . . ,K if (y(t))t∈[0,1] is a geodesic with y(0) = yA, y(1) = yB and ν = ẏ(0) ∈ TyAS. We
now aim at approximating EXPyA [k·] via a discrete counterpart EXPk

yA
. Therefore we consider the

recursive relations

y

(
1

K

)
= EXPy[ν̃] = (

1

1
LOGy)−1[ν̃]

y

(
2

K

)
= EXPy[2 ν̃] = (

1

2
LOGy)−1[ν̃]

y

(
k

K

)
= EXPy[k ν̃] = EXPy( k−2

K )[2νk−1]

where νk−1 = LOGy( k−2
K )

[
y

(
k − 1

K

)]
for given y ∈ S, ν ∈ TyS where ν̃ = ν

K ∈ TyS. Then, consider a y0 ∈ S and a tangent vector
ξ ∈ Ty0S sufficiently small with y0 + ξ ∈ S we define the discrete exponential map recursively as
follows

y1 = EXP1
y0 [ξ] =

1

1
LOG−1

y0 [ξ] = y0 + ξ

y2 = EXP2
y0 [ξ] =

1

2
LOG−1

y0 [ξ]

yk = EXPk
y0 [ξ] = EXP2

EXPk−2
y0

(ξ)
[ξk−1] = EXP2

yk−2
[ξk−1],

where ξk−1 =
1

1
LOGyk−2

[yk−1] = yk−1 − yk−2

and

EXP2
yk−2

[ξk−1] = arg min
ỹ∈S

(W,2[yk−2, yk−2 + ξk−1] + 2W,1[yk−2 + ξk−1, ỹ]) . (5.7)

Convergence to the continuous exponential map has been proven in Theorem 5.10 in [123]. For the
conceptual difference of continuous and discrete logarithm and exponential map we refer to Figure
5.2.

Finally, we want to define the discrete counterpart of the parallel transport. Schild’s ladder ([55, 87])
is a well-known first-order approximation of parallel transport already in the continuous case, which
is based on the construction of a sequence of geodesic parallelograms (see Figure 5.3). Given a path
(y(t))t∈[0,1] and a tangent vector νk−1 ∈ Ty((k−1)τ)S the approximation of the parallel transported
vector at time kτ via a geodesic parallelogram can be expressed as

ypk−1 = EXPy((k−1)τ)[νk−1]

yck = EXPypk−1
[LOGypk−1

[y(kτ)]]

ypk = EXPy((k−1)τ)[2LOGy((k−1)τ)[y
c
k]] where

νk = LOGy(kτ)[y
p
k].

Let (y0, . . . , yK) be a discrete path in S with yk − yk−1 sufficiently small for k = 1, . . . ,K. Then the
discrete parallel transport of a sufficiently small displacement ξ0 at y0 along (y0, . . . , yK) is defined

75
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Figure 5.3.: Conceptual difference between continuous (top) and discrete (bottom) parallel transport.
In contrast to continuous setting, where νk ∈ TykS are tangent vectors, in the discrete
setting ξk = ypk − yk are displacements and PK

yk+1,yk
[ξk] = ξk+1 maps a displacement ξk

from a shape yk to a displacement ξk+1 at shape yk+1.

for k = 1, . . . ,K via the iteration

ypk−1 = yk−1 + ξk−1

yck = ypk−1 +
1

2
LOGypk−1

[yk]

ypk = EXP2
yk−1

[yck − yk−1]

ξk = ypk − yk,

where ξk is the transported displacement at yk. We denote this process by

PK
(yK ,...,y0)[ξ0] = ξK .

The well-definedness of the above iteration as well as the convergence against the continuous parallel
transport are treated in Theorem 5.11 in [123]. Last but not least, we compute the discrete parallel
transport of a displacement ξk−1 from a shape yk−1 to yk, where ξk−1 can be large, by first computing
the intermediate shape yck for M ≥ 2

yck = I2M (yk−1 + ξk−1, yk,M)

between ypk−1 = yk−1 + ξk−1 and yk. In a second step we compute the discrete extrapolated shape by

ypk = EXPM+1
IK(yk−1,y

c
k,K−1)

[yck − IK(yk−1, y
c
k,M − 1)]

and obtain the parallel transport shape displacement ξk = ypk − yk, i.e. PK
(yk,yk−1)[ξk−1] = ξk (see

Figure 5.3).
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5.2. Bézier Curves and Splines in Shape Space

Now, we consider Bézier curves in shape space [54] and extend quadratic and cubic Bézier curves
to quadratic respectively cubic B-splines in shape space. Furthermore, we use the relation between
cubic Bézier curves and cubic Hermite curves [58] to define cardinal splines in shape space. Let us
remark, that the existence of the concepts in infinite-dimensional shapes spaces is again not guaranteed
as in the previous section. But in the discrete spatial setting, introduced in Section 5.3, the existence of
geodesics discussed in [123] will imply the existence of the concepts introduced in this section.

Time-discrete Bézier curves in shape space Consider a set of control shapes (y0
0, . . . , y

0
n)

with y0
j ∈ S for j = 0, . . . , n and the mapping

B : S × . . .× S︸ ︷︷ ︸
n+1

×[0, 1]→ S

which is recursively defined via the de Casteljau algorithm

B(yi, . . . , yj , t) = I(B(yi, . . . , yj−1, t),B(yi+1, . . . , yj , t), t)

for i, j ∈ {0, . . . , n} and i < j. In other words for (y0
0, . . . , y

0
n) and fixed t ∈ [0, 1] we compute for

j = 1, . . . , n and i = j, . . . , n the shapes

yji = I(yj−1
i−1 , y

j−1
i , t)

and after n steps we obtain

B(y0
0, . . . , y

0
n, t) = ynn.

We call the resulting curve

(B(y0
0, . . . , y

0
n, t))t∈[0,1]

a Bézier curve in shape space of degree n.
Compared to the Euclidean case the shapes yji do not lie on a straight line but on a geodesic
(I(yj−1

i−1 , y
j−1
i , t))t∈[0,1] connecting yj−1

i−1 with yj−1
i . Again, in the Euclidean setting, it is well-known

that cubic Hermite curves can be expressed with cubic Bézier curves (see [58]). Assume we have two
points p0, p1 ∈ Rd (d ≥ 2) with tangentsm0 andm1 at p0 respectively p1. Then, the corresponding cu-
bic Hermite curve of p0,m0,m1 and p1 can be expressed by cubic Bézier control points (b0, b1, b2, b3)
by

b0 = p0,

b1 = p0 +
m0

3
,

b2 = p1 −
m1

3
,

b3 = p1,
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5. Geodesics, Bézier Curves and Splines in Subdivision Shell Space

Figure 5.4.: Sketch of the discrete de Casteljau algorithm for the definition of a discrete quadratic
Bézier curve in shape space.

where bi ∈ Rd. We will now transfer this to the shape space setting. For given shapes yA, yB ∈ S and
tangent vectors νA ∈ TyAS and νB ∈ TyBS we can compute a cubic Hermite curve by

H(yA, νA, νB, yB, t) = B(y0, y1, y2, y3, t), where

y0 = yA

y1 = EXPyA
[

1

3
· νA

]
y2 = EXPyB

[
1

3
· νB

]
y3 = yB.

Here, we did not write a minus in front of νB , because we assume that νB points to the right direction
in the tangent space TyBS.

Now, we transfer the Bézier curve to our time-discrete setup. Consider a set of control shapes
(y0

0, . . . , y
0
n) with y0

j ∈ S for j = 0, . . . , n and the mapping

BK : S × . . .× S︸ ︷︷ ︸
n+1

×{0, . . . ,K} → S

which is recursively defined via the discrete de Casteljau algorithm

BK(yi, . . . , yj , k) = IK(BK(yi, . . . , yj−1, k),BK(yi+1, . . . , yj , k), k)

for i, j ∈ {0, . . . , n} and i < j. In other words for (y0
0, . . . , y

0
n) and fixed k ∈ {0, . . . ,K} we compute

for j = 1, . . . , n and i = j, . . . , n the shapes

yji = IK(yj−1
i−1 , y

j−1
i , k)

and after n steps we obtain

BK(y0
0, . . . , y

0
n, k) = ynn.
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Figure 5.5.: Sketch of the discrete de Casteljau algorithm for the definition of a discrete cubic Bézier
curve in shape space.

We call the resulting discrete path

(BK(y0, . . . , yn, k))k∈{0,...,K}

a discrete Bézier curve in shape space of degree n.
In the following we will focus on the cases n = 2 and n = 3 known as quadratic respectively

cubic Bézier curve. For n = 2 (i.e. for given shapes (y0
0, y

0
1, y

0
2)) and given K > 1, the evaluation at

k ∈ {0, . . . ,K} requires the following computation (see Figure 5.4)

BK(y0
0, y

0
1, y

0
2, k) = y2

2

= IK(y1
1, y

1
2, k)

= IK(IK(y0
0, y

0
1, k), IK(y0

1, y
0
2, k), k).

From an implementation point of view we will perform a two-step algorithm. First, we compute the
discrete geodesics y1

1(k) = (IK(y0
0, y

0
1, k))k∈{0,...,K} and (y1

2(k) = IK(y0
1, y

0
2, k))k∈{0,...,K} and then

we will compute K-times the discrete geodesic (IK(y1
1(k), y1

2(k), j))j∈{0,...,K}. The computational
effort increases for n = 3. Consider the input shapes (y0

0, y
0
1, y

0
2, y

0
3) and K > 1, then the evaluation at

k ∈ {0, . . . ,K} requires the following computation (see Figure 5.5)

BK(y0
0, y

0
1, y

0
2, y

0
3, k) = y3

3

= IK(y2
2, y

2
3, k)

= IK(IK(y1
1, y

1
2, k), IK(y1

2, y
1
3, k), k)

= IK(IK(IK(y0
0, y

0
1, k), IK(y0

1, y
0
2, k), k), IK(IK(y0

1, y
0
2, k), IK(y0

2, y
0
3, k), k), k).

Again, from an implementation point of view we will perform a three-step algorithm (again see Figure
5.5). In general the evaluation of a Bézier curve of degree n with input shapes (y0

0, . . . , y
0
n), internal

geodesics of order K and parameter position k ∈ {0, . . . ,K} reads (i.e. the discrete de Casteljau
algorithm):

for j = 1 to n do
for i = j to n do
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5. Geodesics, Bézier Curves and Splines in Subdivision Shell Space

yji = IK [yj−1
i−1 , y

j−1
i , k]

end for
end for
BK [y0

0, . . . , y
0
n, k] = ynn .

Finally, we define the discrete cubic Hermite curve (HK(yA, ξA, ξB, yB, k))k∈{0,...,K} for given shapes
yA, yB ∈ S, displacements ξA, ξB and K > 1 by

HK(yA, ξA, ξB, yB, k) = BK(y0, y1, y2, y3, k) where

y0 = yA,

y1 = EXPK
yA

[
1

3K
ξA

]
,

y2 = EXPK
yB

[
1

3K
ξB

]
,

y3 = yB.

One of the main drawbacks of Bézier curves is that the evaluation at any parameter position (except
k = 0 and k = K) requires all input shapes which results in a really expensive tool for high n.
Therefore we will now introduce quadratic and cubic B-splines in shape space.

Time-discrete B-splines in shape space Consider a set of control shapes (y0, . . . , ym) with
yj ∈ S for j = 0, . . . ,m, m > 2 and the mapping

QBS : S × . . .× S︸ ︷︷ ︸
m+1

×[0,m− 1]→ S

which is defined piecewise for t ∈ [l, l + 1] where l = 0, . . . ,m− 2 by

QBS(y0, . . . , ym, t) = B(d2l, d2l+1, d2l+2, tl)

with

d0 = y0,

d2j+1 = yj+1, j = 0, . . . ,m− 2,

d2j = I(yj , yj+1, 0.5), j = 1, . . . ,m− 2,

d2(m−1) = ym

and tl = t− l ∈ [0, 1]. We call the resulting curve

(QBS(y0, . . . , ym, t))t∈[0,m−1]

the quadratic B-splines in shape space. This definition results in a curve that interpolates the first and
last control shape as for Bézier curves but the evaluation process (except the computation of interme-
diate Bézier control shapes) requires only the computation of quadratic Bézier curves. For m = 2 we
would obtain the quadratic Bézier curve. The transfer to the discrete setting is as follows. Consider a
set of control shapes (y0, . . . , ym) with yj ∈ S for j = 0, . . . ,m, m > 2 and K ≥ 2, M ≥ 1 the
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5.2. Bézier Curves and Splines in Shape Space

Figure 5.6.: Sketch of the construction of the Bézier control shapes for the discrete quadratic B-spline
curve in shape space.

mapping

QBSK,M : S × . . .× S︸ ︷︷ ︸
m+1

×{0, . . . , (m− 1) ·K} → S

which is defined piecewise for k ∈ {l ·K, . . . , (l + 1) ·K] where l = 0, . . . ,m− 2 by

QBSK,M (y0, . . . , ym, k) = B(d2l, d2l+1, d2l+2, kl)

with (see Figure 5.6 for an example)

d0 = y0,

d2j+1 = yj+1, j = 0, . . . ,m− 2,

d2j = I2M (yj , yj+1,M), j = 1, . . . ,m− 2,

d2(m−1) = ym

and kl = k − l ·K ∈ {0, . . . ,K}. We call the resulting curve

(QBSK,M (y0, . . . , ym, k))k∈{0,...,(m−1)·K}

the discrete quadratic B-spline in shape space. In contrast to the Bézier curves we introduced an ad-
ditional parameter M ≥ 1 in the definition. Here, M controls the precision of the control shape d2j

which lies on the geodesics between input shapes yj and yj+1.
Now, we increase the degree and consider cubic B-splines in shape space. Consider a set of control

shapes (y0, . . . , ym) with yj ∈ S for j = 0, . . . ,m, m > 3 and the mapping

CBS : S × . . .× S︸ ︷︷ ︸
m+1

×[0,m− 2]→ S

which is defined piecewise for t ∈ [l, l + 1] and l = 0, . . . ,m− 3 by

CBS(y0, . . . , ym, t) = B(d3l, d3l+1, d3l+2, d3l+3, tl)
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Figure 5.7.: Sketch of the construction of the Bézier control shapes for the discrete cubic B-spline curve
in shape space.

with

d0 = y0,

d1 = y1,

d2 = I(y1, y2,
1/2),

d3j−1 = I(yj , yj+1,
2/3), j = 2, . . . ,m− 3,

d3j = I(d3j−1, d3j+1,
1/2), j = 1, . . . ,m− 3,

d3j+1 = I(yj+1, yj+2,
1/3), j = 1, . . . ,m− 4,

d3(m−2)−2 = I(ym−2, ym−1,
1/2),

d3(m−2)−1 = ym−1,

d3(m−2) = ym

and tl = t− l ∈ [0, 1]. We call the resulting curve

(CBS(y0, . . . , ym, t))t∈[0,m−2]

the cubic B-spline in shape space. Again, the curve interpolates the first and last control shape by
defining m−2 segments of cubic Bézier curves and gluing them together. For m = 3 we would obtain
the cubic Bézier curve. Again, let us transfer this definition to the discrete setting. Consider a set of
control shapes (y0, . . . , ym) with yj ∈ S for j = 0, . . . ,m, m > 3 and K ≥ 2, M ≥ 1 the mapping

CBSK,M : S × . . .× S︸ ︷︷ ︸
m+1

×{0, . . . , (m− 2) ·K} → S

which is defined piecewise for k ∈ {l ·K, . . . , (l + 1) ·K] where l = 0, . . . ,m− 3 by

CBSK,M (y0, . . . , ym, k) = B(d3l, d3l+1, d3l+2, d3l+3, kl)
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with (see Figure 5.7 for an example)

d0 = y0,

d1 = y1,

d2 = I2M (y1, y2,M),

d3j−1 = I3M (yj , yj+1, 2M), j = 2, . . . ,m− 3,

d3j = I2M (d3j−1, d3j+1,M), j = 1, . . . ,m− 3,

d3j+1 = I3M (yj+1, yj+2,M), j = 1, . . . ,m− 4,

d3(m−2)−2 = I2M (ym−2, ym−1,M),

d3(m−2)−1 = ym−1,

d3(m−2) = ym

and kl = k − l ·K ∈ {0, . . . ,K}. We call the resulting curve

(CBSK,M (y0, . . . , ym, k))k∈{0,...,(m−2)·K}

the discrete cubic B-spline in shape space.
Unfortunately, both curves produces visually discrete paths but do not interpolate the input (control)
shapes. Therefore, we will now glue together piecewise cubic Hermite curves to obtain a curve that is
less visually smooth but interpolates the input shapes.

Time-discrete cardinal splines in shape space Consider a set of control shapes (y0, . . . , ym)
with yj ∈ S for j = 0, . . . ,m, m > 3 and κ ∈ [0, 3] the mapping

CSκ : S × . . .× S︸ ︷︷ ︸
m+1

×[0,m]→ S

which is defined piecewise for t ∈ [k, k + 1] where k = 0, . . . ,m− 1 by

CSκ(y0, . . . , ym, t) = B(d3k, d3k+1, d3k+2, d3k+3, tk)

with

d3j = yj , j = 0, . . . ,m,

d1 = I(y0, y1,
κ/3),

d3m−1 = I(ym−1, ym, 1− κ/3) = I(ym, ym−1,
κ/3),

d3j−1 = EXPd3j+1

[
2LOGd3j+1

[d3j ]
]
, j = 1, . . . ,m− 1,

d3j+1 = EXPyj [νpj ], j = 1, . . . ,m− 1 where

νpj = P(I(yj−1,yj ,t))t∈[0,1] [ν
g
j ],

νgj = LOGyj−1 [ygj ],

ygj = I(yj−1, yj+1,
κ/3)
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Figure 5.8.: Sketch of the construction of the control shapes d3j−1 and d3j+1 for the cardinal spline in
the continuous (top) and discrete (bottom) setting.

and tk = t− k ∈ [0, 1]. We call the resulting curve

(CSκ(y0, . . . , ym, t))t∈[0,m]

the cubic cardinal spline in shape space where κ ∈ [0, 3] denotes the tension parameter. Because
d3j = yj the curve interpolates all control shapes (y0, . . . , ym).

Let us now define the corresponding discrete setting. Consider a set of control shapes (y0, . . . , ym)
with yj ∈ S for j = 0, . . . ,m, m > 3 and K ≥ 2, M ≥ 1 the mapping

CSKκ : S × . . .× S︸ ︷︷ ︸
m+1

×{0, . . . ,m ·K} → S

which is defined piecewise for k ∈ {l ·K, . . . , (l + 1) ·K] where l = 0, . . . ,m− 1 by

CSKκ (y0, . . . , ym, k) = B(d3l, d3l+1, d3l+2, d3l+3, kl)

with (see Figure 5.8 for an example)

d3j = yj , j = 0, . . . ,m,
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d1 = EXP1
y0

[
κ/3

1

K
LOGy0 [y1]

]
,

d3m−1 = EXP1
ym

[
κ/3

1

K
LOGym [ym−1]

]
,

d3j−1 = EXPK+1
EXP1

yj
[ξpj ]

[
−κ

3
ξpj

]
, j = 1, . . . ,m− 1,

d3j+1 = EXPK
yj

[κ
3
ξpj

]
, j = 1, . . . ,m− 1, where

ξpj = PK
(IK(yj−1,yj ,k))k={K,...,0}

[
ξgj

]
,

ξgj =
1

K
LOGyj−1 [yj+1] =

1

1
LOGyj−1 [ygj ],

ygj = IK(yj−1, yj+1, 1)

and kl = k − l ·K ∈ {0, . . . ,K}. We call the resulting curve

(CSKκ (y0, . . . , ym, k))k∈{0,...,m·K}

the discrete cubic cardinal spline in shape space with tension κ ∈ [0, 3]. For the computation of the
control shapes d3j−1 and d3j+1 we refer again to the sketch in Figure 5.8. Let us remark that this
is equivalent to the construction with discrete cubic Hermite splines where a segment consists of the
shapes yj and yj+1 and displacements ξpj and −ξpj+1.

5.3. Subdivision Shell Space

In the previous sections we described the conceptual framework for discrete geodesics, discrete log-
arithm and exponential map, discrete parallel transport, discrete Bézier curves, discrete B-splines
and discrete cardinal splines. All these concepts are based on the definition of a suitable energy
W : S × S 7→ R which approximates the squared Riemannian distance dist2. As already stated
there are many possibilities to choose such an energy functional. Here, we follow [78, 77, 79] where
the authors derive an energy functional that is related to the elastic properties of thin shells by measur-
ing membrane and bending contributions of deformations. This gives the underlying shape space the
structure for shells which motivates the term shell space. Furthermore, we will discretize the smooth
energy with subdivision surfaces, i.e. we define the subdivision shell space.

Deformation mapping Let M̄ be a smooth, embedded surface in R3, then we denote by

M̄δ = M̄ × [−δ
2
,
δ

2
]

a shell with thickness δ, i.e. a shell is a thin, curved three dimensional object where the thickness
is relatively small compared the overall mid-surface M̄. Assume that there is a force effect on the
boundary ∂M̄δ of M̄δ, where some part of the shell boundary is fixed, induced by a deformation
φδ : M̄δ → R3 with φ(M̄δ) = Mδ, i.e. for every point x̄ ∈ M̄δ is mapped to a point x ∈ Mδ by
the deformation map φδ. We call M̄δ the undeformed shell andMδ the deformed shell. The overall
deformation can be measured by an elastic energy functional Wδ[φδ]. In the context of shells one
usually transfers the setting to the mid-surface, i.e. instead of considering the elastic energy functional
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Wδ[φδ] we consider a δ-scaled variant W[φ] where φ : M̄ → R3 with φ(M̄) = M denotes the
deformation mapping of the mid-surface. In [78, 77, 79] Heeren and co-authors consider the following
elastic energy

W[φ] =W[M̄, φ(M̄)] =W[M̄,M] = δWmem[φ] + δ3Wbend[φ]

= δ

∫
M̄
Wmem[φ] da+ δ3

∫
M̄
Wbend[φ] da

= δ

∫
M̄
Wmem[M̄,M] da+ δ3

∫
M̄
Wbend[M̄,M] da.

The definition reflects the two predominating mechanisms by the deformation of a shell. On one hand
tangential respectively shear contributions, i.e. changes of the first fundamental forms measured by the
membrane energyWmem, and on the other hand bending contributions are measured, i.e. changes of the
second fundamental forms measured by the bending energy Wbend. Let us remark that this fits into our
setting of a smooth path as follows. For a given mid-surfaces M̄ andM we define a deformation path
(φ(t))t∈[0,1] where φ(t,M̄) = M(t), φ(0,M̄) = M̄ and φ(1,M̄) = M as the path with minimal
elastic energy, which corresponds to the path energy E . Here, (M(t))t∈[0,1] is the smooth path between
M̄ andM respectively for parameterizations y(t) ofM(t) the smooth path is (y(t))t∈[0,1] which fits
perfectly into the setting described in the last sections.
Let us now recall the membrane and bending energy as defined in [78, 77, 79].

Membrane energy As already explained, the membrane energy measures changes in the first fun-
damental forms of the undeformed mid-surface M̄ and the deformed mid-surface φ(M̄) = M. This
can be captured by a field A = A[φ] acting on the tangent space of M̄. Assume that M̄ = M̄[ȳ]
and M = M̄[y], i.e. ȳ is a parameterization of M̄ and y is a parameterization of M (see Chapter
2). Furthermore, assume we have a point p̄ = ȳ(ξ̄) with ξ ∈ Ω̄ where Ω̄ denotes the correspond-
ing domain manifold of M̄, i.e. ȳ : Ω̄ → M̄. Then, the deformation map φ maps p̄ to a point
p = y(ξ) ∈ M with ξ ∈ Ω (analogously to the previous definition). Then, for tangent vectors
Ū = Dȳ u, W̄ = Dȳ w ∈ Tp̄M̄ and U = Dy u,W = Dyw ∈ TpM for the same u,w ∈ R2

and the corresponding matrices of the first fundamental forms ḡ = DȳTDȳ respectively g = DyTDy
we have the following relation

gp̄(Ap̄Ū , W̄ ) = gφ(p̄)(Dφ(V̄ ), Dφ(W̄ )) = gp(U,W )

where

Ap̄ = Dȳḡ−1Aξ̄Dȳ
T ∈ R3×3

and

Aξ̄ = g · ḡ−1 ∈ R2×2

such that

gξ̄(Aξ̄u,w) = gξ(u,w).
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Finally, the membrane energy for all points p̄ of the undeformed mid-surface M̄ to points p = φ(p̄) of
the deformed mid-surface φ(M̄) =M reads

Wmem[φ] = Wmem[M̄,M] = Wmem(Ap̄) =
µ

2
trAp̄ +

λ

4
detAp̄ −

2µ+ λ

4
log detAp̄ − µ−

λ

4

=
µ

2
trAξ̄ +

λ

4
detAξ̄ −

2µ+ λ

4
log detAξ̄ − µ−

λ

4
.

Here, λ and µ are the Lamé constants (see [78] for details) and tr and det denote the trace and the
determinant of Ap̄ respectively Aξ̄ where detAp̄ describes area distortion, while trAp̄ measures length
distortion. The function Wmem(A) is rigid body motion invariant and the identity map, i.e. no defor-
mation at all, is the minimizer. The log detAp̄ term penalizes material compression, which prevents
degeneration of triangles in the discrete setting. For the actual computation we will use Aξ̄ because it
is easier to compute and faster in the discrete setting.

Bending energy In contrast to the membrane energy, we measure bending by the so-called relative
Weingarten map. Therefore, we consider a matrix Q[φ] = Qp̄ = K̄p̄ − Kp̄ as difference of linear
operators acting on tangential vectors on M̄ (we assume the same notation as for the membrane en-
ergy). Here, the matrices K̄p̄ and Kp̄ are the shape operators on M̄ respectively the pulled–back shape
operator onM to M̄ defined by

gp̄(K̄p̄Ū , W̄ ) = bp(Ū , W̄ )

and

gp̄(Kp̄Ū , W̄ ) = bφ(p̄)(Dφ(V̄ ), Dφ(W̄ )) = bp(U,W ).

In Chapter 2 we have seen that

K̄p̄ = sp̄ = Dx̄ḡ−1sξ̄Dx̄
T ∈ R3×3

and

Kp̄ = Dx̄ḡ−1bḡ−1Dx̄T ∈ R3×3.

Then

Q[φ] = Qp̄ = K̄p̄ −Kp̄ = Dx̄ḡ−1(b̄− b)ḡ−1Dx̄T = Dx̄ḡ−1Qξ̄Dx̄
T

where

Qξ̄ = (b̄− b)ḡ−1

where we call Qp̄ denotes the embedded relative Weingarten map and Qξ̄ the relative Weingarten
map. Since, Qξ̄ is a parameterization-dependent and Qp̄ is a parameterization-independent linear map,
we have to define all continuous objects with respect to Qp̄. This is crucial for our discrete setting
because we will use the mid-edge quadrature weights developed in Chapter 3. The bending energy is
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the Frobenius norm of the embedded relative Weingarten map, i.e.

Wbend(Q[φ]) = Wbend(Qp̄) = tr(QTp̄Qp̄) = tr(Qξ̄ ·Qξ̄).

For the last equality we refer again to Chapter 2.

Discretization with subdivision surfaces Now we can plug all together and obtain the elastic
energy

W[φ] =W[M̄,M] = δ

∫
M̄
Wmem[φ] da+ δ3

∫
M̄
Wbend[φ] da

= δ

∫
Ω̄

(
µ

2
tr
(
ḡ−1g

)
+
λ

4
det
(
ḡ−1g

)
− 2µ+ λ

4
log det

(
ḡ−1g

)
− µ− λ

4

)√
det ḡ dξ

+ δ3

∫
Ω̄

tr
(
(b̄− b)ḡ−1 · (b̄− b)ḡ−1

)√
det ḡ dξ (5.8)

which measures the deformation φδ from an undeformed shell M̄δ to a deformed shellMδ by com-
paring the membrane and bending energy of the corresponding mid-surfaces M̄ and M scaled by
the thickness δ. Furthermore, the δ-scaling is not artificial but relies on analytical results obtain in
[62, 63, 61, 93] by Γ-convergence for δ → 0. Let us first remark that the energy W in 5.8 is rigid
body motion invariant, i.e. for all points p̄ ∈ M̄ and a coordination transformation p̃ = Rp̄+ b where
R ∈ SO(3) we obtain

Wmem(Ap̄) = Wmem(Ap̃)

and

Wbend(Ap̄) = Wbend(Ap̃).

The central ingredient of the proposed framework is the approximation of the squared Riemannian
distance by a functional (5.3) that reflects the structure of the underlying shape space S. For the energy
functional we approximated the path energy (5.5) as the second central ingredient and in (5.8) we have
defined the continuous elastic energy to compare two shells of thickness δ.

Therefore, we will only spatially discretize the path energy (5.5) by discretizing the elastic energy
(5.8) as follows. Assume that we have two subdivision surfaces Yk−1 and Yk given (see Chapter 2 and
3) then we write the discretized elastic energy W ofW as

W[Yk−1, Yk] =
∑
k∈Ic

∫
4

(µ
2

tr
(
G−1[Yk−1(ξ, k)]G[Yk(ξ, k)]

)
+
λ

4
det
(
G−1[Yk−1(ξ, k)]G[Yk(ξ, k)]

)
−2µ+ λ

4
log det

(
G−1[Yk−1(ξ, k)]G[Yk(ξ, k)]

)
− µ− λ

4

)√
detG[Yk−1(ξ, k)] dξ

+ δ2

∫
4

tr
((

(B[Yk−1(ξ, k)]−B[Yk(ξ, k)])G−1[Yk−1(ξ, k)]
)2)√

detG[Yk−1(ξ, k)] dξ.

(5.9)

In this definition we multipliedW by 1
δ which is numerically more stable in the later implementation.

Let YA, YB ∈ Sh be two given subdivision surfaces, then a sequence Y0, . . . , YK ∈ Sh of subdivi-
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sion surfaces with Y0 = YA, YK = YB and Yk ∈ Sh has a path energy

E[Y0, . . . , YK ] = K

K∑
k=1

W[Yk−1, Yk],

where Sh = Vh denotes the subdivision shell space (see equation (4.15) for a definition of Vh), i.e.
all Yk ∈ Sh have a subdivision parameterization and describe a mid-surface of a shell with thickness
δ. All other definitions such as discrete path length, discrete geodesic interpolation, discrete logarithm
and exponential map, discrete parallel transport, discrete Bézier curve, discrete B-spline and discrete
cardinal splines follow from this definition.

5.4. Numerical Implementation

In this section we describe the implementation of the previously defined concept with subdivision
surfaces. The main ingredient is the minimization of the elastic path energy using Newton’s method
for the corresponding Lagrangian incorporating rigid body motions.

Computing discrete geodesics Now, we want to describe how we compute a discrete geodesic
in the space of subdivision shells. Therefore, consider a K + 1-tupel of subdivision surfaces Yk =∑

i∈Iv(Ȳk)iΦi ∈ Sh with k = 0, . . . ,K. Here, we used the notation Ȳk = (Ȳ 1
k , Ȳ

2
k , Ȳ

3
k )T ∈ R3×|Iv |

and (Ȳk)i = ((Ȳk)
1
i , (Ȳk)

2
i , (Ȳk)

3
i )
T ∈ R3 (for details see Chapter 2). Furthermore, we assume we

have two given shapes, the first shape Y0 = YA ∈ Sh and the end shape YK = YK ∈ Sh, and that
both control meshes have the same connectivity. The task is now to compute all intermediate shapes
(Y1, . . . , YK−1) ∈ Sh × . . .× Sh︸ ︷︷ ︸

K−1

(again, all with the same connectivity as the input shapes YA and

YB) such that (Y0, Y1, . . . , YK−1, YK) is a minimizer of the following optimization problem

min
(Y0,...,YK)

E[(Y0, . . . , YK)] = K
K∑
k=1

W[Yk−1, Yk] (5.10a)

s.t. Y0 = YA, YK = YB, (5.10b)

(translation)
∫
M[Y0]

Y0 − Yk da = 0, k = 1, . . . ,K − 1, (5.10c)

(rotation)
∫
M[Y0]

Y0 × Yk da = 0, k = 1, . . . ,K − 1. (5.10d)

The constraints (5.10c) and (5.10d) reflect that the energy W is invariant under rigid body motion,
i.e. translation and rotation. We write the minimization problem (5.10) to the associate Lagrangian
function

L(Y,Λ,Θ) = K

K∑
k=1

W[Yk−1, Yk] +

K−1∑
k=1

3∑
i=1

∫
M[Y0]

λik(Y
i

0 − Y i
k ) da

+
K−1∑
k=1

∫
M[Y0]

θ1
k

(
Y 1

0 Y
2
k − Y 2

0 Y
1
k

)
+ θ2

k

(
Y 2

0 Y
3
k − Y 3

0 Y
2
k

)
+ θ3

k

(
Y 3

0 Y
1
k − Y 1

0 Y
3
k

)
da,
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where Y = (θ̄1, . . . , θ̄K−1) ∈ R3·(K−1)·|Iv | denotes the vector of the control vectors Ȳk ∈ R3·|Iv | of the
subdivision surface Yk, Λ = (λ̄1, . . . , λ̄K−1) ∈ R3·(K−1) is the vector of Lagrange multipliers for the
translation constraints and Θ = (Ȳ1, . . . , ȲK−1) ∈ R3·(K−1) is the vector of Lagrange multipliers for
the rotation constraints. Here, we used that θ̄k =

(
θ1
k θ2

k θ3
k

)T ∈ R3 and λ̄k =
(
λ1
k λ2

k λ3
k

)T ∈
R3. Then, the necessary condition that (Y,Λ,Θ) is a minimizer of (5.10) reads

DL(Y,Λ,Θ) =


∂L(Y,Λ,Θ)

∂Y

∂L(Y,Λ,Θ)
∂Λ

∂L(Y,Λ,Θ)
∂Θ

 = 0,

where

∂L(Y,Λ,Θ)

∂Y
=



∂L(Y,Λ,Θ)
∂Ȳ 1

1

∂L(Y,Λ,Θ)
∂Ȳ 2

1

∂L(Y,Λ,Θ)
∂Ȳ 3

1
...

∂L(Y,Λ,Θ)
∂Ȳ 1

K−1

∂L(Y,Λ,Θ)
∂Ȳ 2

K−1

∂L(Y,Λ,Θ)
∂Ȳ 3

K−1



,
∂L(Y,Λ,Θ)

∂Λ
=



∂L(Y,Λ,Θ)
∂λ11

∂L(Y,Λ,Θ)
∂λ21

∂L(Y,Λ,Θ)
∂λ31

...
∂L(Y,Λ,Θ)
∂λ1K−1

∂L(Y,Λ,Θ)
∂λ2K−1

∂L(Y,Λ,Θ)
∂λ3K−1



and
∂L(Y,Λ,Θ)

∂Θ
=



∂L(Y,Λ,Θ)
∂θ11

∂L(Y,Λ,Θ)
∂θ21

∂L(Y,Λ,Θ)
∂θ31
...

∂L(Y,Λ,Θ)
∂θ1K−1

∂L(Y,Λ,Θ)
∂θ2K−1

∂L(Y,Λ,Θ)
∂θ3K−1



.

To set up a Newton method we further need the Hessian of L

D2L(Y,Λ,Θ) =


∂2L(Y,Λ,Θ)

∂2Y
∂2L(Y,Λ,Θ)

∂Λ∂Y
∂2L(Y,Λ,Θ)

∂Θ∂Y

∂2L(Y,Λ,Θ)
∂Y∂Λ 0 0

∂2L(Y,Λ,Θ)
∂Y∂Θ 0 0

 ,

where 0 denotes the corresponding zero matrix.

∂2L(Y,Λ,Θ)

∂2Y
=



∂L(Y,Λ,Θ)
∂Ȳ 1

1 ∂Ȳ
1
1

∂L(Y,Λ,Θ)
∂Ȳ 2

1 ∂Ȳ
1
1

∂L(Y,Λ,Θ)
∂Ȳ 3

1 ∂Ȳ
1
1

. . . ∂L(Y,Λ,Θ)
∂Ȳ 1

K−1Ȳ
1
1

∂L(Y,Λ,Θ)
∂Ȳ 2

K−1Ȳ
1
1

∂L(Y,Λ,Θ)
∂Ȳ 3

K−1Ȳ
1
1

∂L(Y,Λ,Θ)
∂Ȳ 1

1 ∂Ȳ
2
1

∂L(Y,Λ,Θ)
∂Ȳ 2

1 ∂Ȳ
2
1

∂L(Y,Λ,Θ)
∂Ȳ 3

1 ∂Ȳ
2
1

. . . ∂L(Y,Λ,Θ)
∂Ȳ 1

K−1Ȳ
2
1

∂L(Y,Λ,Θ)
∂Ȳ 2

K−1Ȳ
2
1

∂L(Y,Λ,Θ)
∂Ȳ 3

K−1Ȳ
2
1

∂L(Y,Λ,Θ)
∂Ȳ 1

1 ∂Ȳ
3
1

∂L(Y,Λ,Θ)
∂Ȳ 2

1 ∂Ȳ
3
1

∂L(Y,Λ,Θ)
∂Ȳ 3

1 ∂Ȳ
3
1

. . . ∂L(Y,Λ,Θ)
∂Ȳ 1

K−1Ȳ
3
1

∂L(Y,Λ,Θ)
∂Ȳ 2

K−1Ȳ
3
1

∂L(Y,Λ,Θ)
∂Ȳ 3

K−1Ȳ
3
1

...
...

...
. . .

...
...

...
∂L(Y,Λ,Θ)
∂Ȳ 1

1 ∂Ȳ
1
K−1

∂L(Y,Λ,Θ)
∂Ȳ 2

1 ∂Ȳ
1
K−1

∂L(Y,Λ,Θ)
∂Ȳ 3

1 ∂Ȳ
1
K−1

. . . ∂L(Y,Λ,Θ)
∂Ȳ 1

K−1Ȳ
1
K−1

∂L(Y,Λ,Θ)
∂Ȳ 2

K−1Ȳ
1
K−1

∂L(Y,Λ,Θ)
∂Ȳ 3

K−1Ȳ
1
K−1

∂L(Y,Λ,Θ)
∂Ȳ 1

1 ∂Ȳ
2
K−1

∂L(Y,Λ,Θ)
∂Ȳ 2

1 ∂Ȳ
2
K−1

∂L(Y,Λ,Θ)
∂Ȳ 3

1 ∂Ȳ
2
K−1

. . . ∂L(Y,Λ,Θ)
∂Ȳ 1

K−1Ȳ
2
K−1

∂L(Y,Λ,Θ)
∂Ȳ 2

K−1Ȳ
2
K−1

∂L(Y,Λ,Θ)
∂Ȳ 3

K−1Ȳ
2
K−1

∂L(Y,Λ,Θ)
∂Ȳ 1

1 ∂Ȳ
3
K−1

∂L(Y,Λ,Θ)
∂Ȳ 2

1 ∂Ȳ
3
K−1

∂L(Y,Λ,Θ)
∂Ȳ 3

1 ∂Ȳ
3
K−1

. . . ∂L(Y,Λ,Θ)
∂Ȳ 1

K−1Ȳ
3
K−1

∂L(Y,Λ,Θ)
∂Ȳ 2

K−1Ȳ
3
K−1

∂L(Y,Λ,Θ)
∂Ȳ 3

K−1Ȳ
3
K−1


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and analogously for ∂2L(Y,Λ,Θ)
∂Λ∂Y and ∂2L(Y,Λ,Θ)

∂Θ∂Y . Furthermore, ∂2L(Y,Λ,Θ)
∂Y∂Λ =

(
∂2L(Y,Λ,Θ)

∂Λ∂Y

)T
and

∂2L(Y,Λ,Θ)
∂Y∂Θ =

(
∂2L(Y,Λ,Θ)

∂Θ∂Y

)T
.

For given initial start vectors (Y0,Λ0,Θ0) we solve for every Newton step ` ≥ 0 the linear system

D2L(Y`,Λ`,Θ`)∆(Y`+1,Λ`+1,Θ`+1) = −DL(Y`,Λ`,Θ`),

compute the next Newton steps by

(Y`+1,Λ`+1,Θ`+1) = (Y`,Λ`,Θ`) + η∆(Y`+1,Λ`+1,Θ`+1)

until

‖∆(Y`+1,Λ`+1,Θ`+1)‖ < ρ

where η ∈ [0, 1] is the step size computed by ([125],p.129) and ρ << 1 is given. The crucial step in the
implementation is the choice of a starting shapes Y0 (Λ`, Θ` can be chosen to be zero vectors in order
to make the iteration work). One possibility is a linear blend between the input shapes YA and YB , but
as Heeren [78] demonstrated self-penetration is a problem for complex shapes. Therefore, we consider
the following example. Given two points Y0 = YA, Y2 = YB ∈ R2, an unknown point Y1 ∈ R2 and the
functional

F [Y1] =
1

τ1
W[Y0, Y1] +

1

τ2
W[Y1, Y2],

where

W[Yi, Yj ] = |Yi − Yj |2 = (Y 1
i − Y 1

j )2 + (Y 2
i − Y 2

j )2,

i.e. W is the squared Euclidean distance. Then, the optimality condition reads

F,k[Y1] = ∂Y k
1

(
1

τ1
W[Y0, Y1] +

1

τ2
W[Y1, Y2]

)
= − 2

τ1
(Y k

0 − Y k
1 ) +

2

τ2
(Y k

1 − Y k
2 ) = 0,

which has a unique solution

Y k
1 =

1

τ1 + τ2

(
τ2Y

k
0 + τ1Y

k
2

)
.

For the special case τ1 = t, τ2 = 1− t with t ∈ (0, 1) we have

Y k
1 = (1− t)Y k

0 + tY k
2 ,

i.e. Y1 lies on the straight line between Y0 and Y2.

Based on this observation we compute initial values for the Newton method by solving K − 1
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smaller problems. Consider a 3-point geodesic, i.e. K = 2, and the functional

F τ [Y1] =
1

τ
W[Y0, Y1] +

1

1− τW[Y1, Y2]

where W is again defined as in (5.9). The basic idea is now to compute a K + 1-geodesic, i.e.
(Y0, . . . , YK) with Y0 = YA and YK = YB , the initial shapes Y 0

k for Y0 as the minimizer of
arg minF τ [Y1] = Y 0

k for τ = k
K . Let us be more precise, we want to optimize the corresponding

Lagrangian

Lτ (Y,Λ,Θ) = F τ [Y1] +

3∑
i=1

∫
M[Y0]

λi1(Y i
0 − Y i

1 ) da

+

∫
M[Y0]

θ1
1

(
Y 1

0 Y
2

1 − Y 2
0 Y

1
1

)
+ θ2

1

(
Y 2

0 Y
3

1 − Y 3
0 Y

2
1

)
+ θ3

1

(
Y 3

0 Y
1

1 − Y 1
0 Y

3
1

)
da

by computing the root

∇Lτ (Y,Λ,Θ) =



F τ,1[Y1]− λ1
1M1 − θ1

1M2
0 + θ3

1M3
0

F τ,2[Y1]− λ2
1M1 − θ2

1M3
0 + θ1

1M1
0

F τ,3[Y1]− λ3
1M1 − θ3

1M1
0 + θ2

1M2
0

1
TM

(
Ȳ 1

0 − Ȳ 1
1

)
1
TM

(
Ȳ 2

0 − Ȳ 2
1

)
1
TM

(
Ȳ 3

0 − Ȳ 3
1

)
(Ȳ 1

0 )TMȲ 2
1 − (Ȳ 2

0 )TMȲ 1
1

(Ȳ 2
0 )TMȲ 3

1 − (Ȳ 3
0 )TMȲ 2

1

(Ȳ 3
0 )TMȲ 1

1 − (Ȳ 1
0 )TMȲ 3

1


,

where

F τ,i [Y1] =
∂

∂Ȳ i
1

(
1

τ
W[Y0, Y1] +

1

1− τW[Y1, Y2]

)
,

and M1 = M ·1, Mi
0 = M ·Y i

0 , 1 is the vector with ones and M denotes the subdivision mass matrix
(see definition (3.10)). To set up a Newton method we compute the Hessian by

∇2Lτ (Y,Λ,Θ) =



F τ,11[Y1] F τ,12[Y1] F τ,13[Y1] −M1 0 0 −M2
0 0 M3

0

F τ,21[Y1] F τ,22[Y1] F τ,23[Y1] 0 −M1 0 M1
0 −M3

0 0

F τ,31[Y1] F τ,32[Y1] F τ,33[Y1] 0 0 −M1 0 M2
0 −M1

0

−(M1)T 0 0 0 0 0 0 0 0
0 −(M1)T 0 0 0 0 0 0 0
0 0 −(M1)T 0 0 0 0 0 0

−(M2
0)T (M1

0)T 0 0 0 0 0 0 0
0 −(M3

0)T (M2
0)T 0 0 0 0 0 0

(M3
0)T 0 −(M1

0)T 0 0 0 0 0 0


,
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where

F τ,ij [Y1] =
∂2

∂Ȳ j
1 ∂Ȳ

i
1

(
1

τ
W[Y0, Y1] +

1

1− τW[Y1, Y2]

)
.

Again, the root Y1 of Lτ for τ = k
K is then used as the starting value Y 0

k for the optimization of L for
all K. For a detailed derivation of the derivatives of W with respect to the subdivision control points
see Appendix A.4. Let us remark, that IK(YA, YB, k) = Yk is the k-th component of the solution
Y = (Y1, . . . , YK−1). Furthermore, the computation of BK , QBSK,M , and CBSK,M is just the
computation of recursively defined discrete geodesics which can be found in Section 5.1 and 5.2.

Discrete exponential map Let us now shortly describe the computation of the discrete exponen-
tial map EXPK

Y0 [Ξ0] for a given subdivision surface Y0 and a displacement subdivision function Ξ0,
i.e. corresponding displacement vector Ξ̄0 with respect to the subdivision control points Ȳ0. In system
(5.7) we have seen that everything reduces to the computation of EXP2

Y0 [Ξ0]. Analogously to the
spatial continuous case we want to compute the root Y2 ∈ Sh of

E1[Y2]
E2[Y2]
E3[Y2]

 =


∂
∂Ȳ 1

1
(2W[Y0, Y1] + 2W[Y1, Y2])

∂
∂Ȳ 2

1
(2W[Y0, Y1] + 2W[Y1, Y2])

∂
∂Ȳ 3

1
(2W[Y0, Y1] + 2W[Y1, Y2])


where Y1 = Y0 + Ξ0 is defined via the control points Ȳ1 = Ȳ0 + Ξ̄0. As for the discrete geodesics we
need to incorporate rigid body motions such that we will compute the roots of the following gradient
of the Lagrangian

DL(Y,Λ,Θ) =



E1[Y2]− λ1
1M · 1− θ1

1M2
0 + θ3

1M3
0

E2[Y2]− λ2
1M · 1− θ2

1M3
0 + θ1

1M1
0

E3[Y2]− λ3
1M · 1− θ3

1M1
0 + θ2

1M2
0

1
TM

(
Ȳ 1

0 − Ȳ 1
2

)
1
TM

(
Ȳ 2

0 − Ȳ 2
2

)
1
TM

(
Ȳ 3

0 − Ȳ 3
2

)
(Ȳ 1

0 )TMȲ 2
2 − (Ȳ 2

0 )TMȲ 1
2

(Ȳ 2
0 )TMȲ 3

2 − (Ȳ 3
0 )TMȲ 2

2

(Ȳ 3
0 )TMȲ 1

2 − (Ȳ 1
0 )TMȲ 3

2


.

Again, to set up the Newton method we need the Hessian

D2L(Y,Λ,Θ) =



E1,1[Y2] E1,2[Y2] E1,3[Y2] −M1 0 0 −M2
0 0 M3

0

E2,1[Y2] E2,2[Y2] E2,3[Y2] 0 −M1 0 M1
0 −M3

0 0
E3,1[Y2] E3,2[Y2] E3,3[Y2] 0 0 −M1 0 M2

0 −M1
0

−(M1)T 0 0 0 0 0 0 0 0
0 −(M1)T 0 0 0 0 0 0 0
0 0 −(M1)T 0 0 0 0 0 0

−(M2
0)T (M1

0)T 0 0 0 0 0 0 0
0 −(M3

0)T (M2
0)T 0 0 0 0 0 0

(M3
0)T 0 −(M1

0)T 0 0 0 0 0 0


,
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where

Ei,j [Y2] =
∂2

∂Ȳ j
2 ∂Ȳ

i
1

(2W[Y0, Y1] + 2W[Y1, Y2]) .

Finally, we obtain the solution Y2 by solving the corresponding system with the Newton iteration
described above.
Let us remark that the computation of PK respectively CSKκ is just the recursive computation of
discrete geodesics and discrete exponential map (for details see Section 5.1 and 5.2).

Eigenmodes of the elastic deformation energy Let us conclude this section by introducing
the computation of eigenmodes of the discrete elastic energy W respectively W which results in a
fairly easy tool for animation as demonstrated in Section 5.5. The authors of [79] call the concept
behind this animation without animating, because it allows an intrinsic animation based on the defined
elastic energyW respectively W. In particular, eigenmodes ofW have to be understood as eigenmodes
of the Hessian ofW

HessW[1](φ, ψ) =

(
d

ds

(
d

dt
W[y0, y0 + tφ+ sψ]

)
t=0

)
s=0

,

where y0 ∈ S is a given shape, φ = 1 denotes the identity map and φ, ψ ∈ S are test functions.
Analogously, in the discrete setting this becomes

A = Hess W[1](Φ,Ψ) =

(
∂2

∂2Y1
W[Y0, Y1]

)
Y1=Y0

for a given shape Y0 ∈ Sh. Then, the eigenvectors V̄k respectively the eigenmodes Vk can easily be
computed using inverse vector iteration (see [125]) for the system

AV̄k = Λk

M 0 0
0 M 0
0 0 M

 V̄k,

where Λk denotes the eigenvalue corresponding to Vk. Because Vk is just the eigenmode of the de-
formation, the resulting deformed subdivision surface with respect to Vk reads Xk = Y0 + Vk ∈ Sh
respectively for the control points X̄k = Ȳ0 + V̄k ∈ R3·|Iv |. Let us remark, that we have to incorporate
rigid body motions into the solver if we do not want to have the first six eigenmodes to be the trivial
ones, i.e translations and rotations.

5.5. Numerical Results

We have implemented the proposed method in C++ and tested it for a set of input shapes. Let us
emphasize that all computations were done with the coarse control meshes and that all meshes have at
least one element (i.e. triangle) that has more than two extraordinary vertices. To our knowledge, this is
the first work that presents results for subdivision surfaces without subdividing the coarse control mesh
for analysis in this case (i.e. for meshes with triangles with more than two extraordinary vertices). This
is possible due to the mid-edge evaluation process developed in Chapter 3. Furthermore, as discussed
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Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10

Figure 5.9.: Discrete Geodesics: Four different discrete geodesics for different input poses of a hand
andK = 10. The input shapes are visualized as control meshes and the shapes on a discrete
geodesic with K = 10 are shown as smooth subdivision surfaces in green. All meshes
have the same connectivity and |Iv| = 610 vertices. Furthermore, all computations were
performed with δ = 0.01.

in Chapter 2, we consider only closed surfaces, i.e. closed meshes in the discrete setting. Finally, let
us remark, that we use a consistent color coding in all pictures. Curves and shapes shown in green
imply respectively were computed via discrete geodesics, in pink imply respectively were computed
via either discrete exponential maps or discrete parallel transport and in blue imply respectively were
computed via discrete Bézier curves including discrete B-splines and discrete cardinal splines.

The fundamental tools for the development of discrete geodesic Bézier curves, B-splines and car-
dinal splines are discrete geodesics, discrete logarithm and exponential map, the eigenmodes of the
elastic deformation energy and the discrete parallel transport developed in [123, 78, 77, 79] and de-
scribed in detail in Section 5.1. Furthermore, the definition of the underlying shape space, i.e. the shell
space defined in Section 5.3, was again taken from [78, 77, 79]. In comparison to [78, 77, 79] we dis-
cretized the continuous elastic energy (5.8) and thus the overall concept of discrete geodesic calculus
with conforming subdivision isogeometric elements (see Chapter 2 and 3) instead of discretizing the
continuous elastic energy with discrete differential geometry as done in [78, 77, 79]. We obtain visually
similar results as in [78, 77, 79] but for smooth subdivision surfaces with coarse control meshes instead
of pure triangle meshes with many degrees of freedom. For instance in Figure 5.9 we depict four dis-
crete geodesics between different poses of a hand with relatively few degrees of freedom (|Iv| = 610
vertices). In Figure 5.10 we visualize the discrete extrapolation of the motion of an elephant as a result
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Y0 Y1 Y2 Y3 Y4 Y5 Y6

Y7 Y8 Y9 Y10 Y11 Y12 Y13

Figure 5.10.: Discrete Exponential Map: First, we computed a discrete geodesic between shape
Y0 and Y10 with K = 10 and extrapolated the deformation three times, i.e. Y11 =
EXP2

Y9 [Y10 − Y9], Y12 = EXP2
Y10 [Y11 − Y10] and Y13 = EXP2

Y10 [Y12 − Y11]. The
input shapes (Y0 and Y10) in row one respectively two are depicted as control meshes
(|Iv| = 1000), while the computed discrete geodesics (the green shapes in row one
and two) and the extrapolated shapes (pink shapes in row two) are shown as smooth
subdivision surfaces. In the third and fourth row we depict the bending energy den-
sities Wbend[Yk−1, Yk] and in the fifth and six row the membrane energy densities
Wmem[Yk−1, Yk] each plotted on shape Yk. In both cases, the color code from white to
yellow to red reflects the strength of the deformations, i.e. from no deformation to strong
deformation. The computation was performed with δ = 0.8.
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Figure 5.11.: Eigenmodes of the Elastic Energy W: Discrete extrapolation from a shell (depicted in
gray, which is Y10 taken from 5.10) along two different initial displacements, given by
the first (top) and seventh (bottom) non-trivial eigenmode of the Hessian of W where
δ = 0.8. Besides the input shape, the eigenmode (left and right scaled by−1 respectively
+1) and in each case two extrapolated shapes.

of a discrete geodesic and in Figure 5.11 a discrete extrapolation of the first and seventh non-trivial
eigenmode of the elastic energyW respectively W in the discrete setting. Finally, we transferred the
motion of a cat via discrete parallel transport to a lion with same connectivity in Figure 5.12. Let us
remark that we actually never computed the discrete logarithm map and worked instead directly with
the meshes from the discrete geodesic respectively discrete exponential map. The reason is simple, all
computations were done with respect to rigid body motions, i.e. we never fixed at least two vertices
of the meshes. In this case, the discrete logarithm 1

1LOGYk [Yk+1] = Yk+1 − Yk of two shapes Yk
and Yk+1 has to be understood with respect to rigid body motions, i.e. with respect to translation and
rotation invariance, and not pointwise!

In Figure 5.13 and 5.14 we depict a discrete quadratic Bézier curve with K = 10 respectively a
discrete cubic Bézier curve withK = 12. In both cases the generated discrete path interpolates the first
and last shape but not the shapes in between. As a result the motion of the hand tends to this intermedi-
ate shapes but never reaches them which enables the generation of arbitrary smooth discrete paths. For
Bézier curves the number of input shapes determines the polynomial degree of the underlying curve. In
contrast, for discrete B-splines we can fix the underlying polynomial degree, i.e. the applied discrete de
Casteljau algorithm, for any number of input shapes by computing additional Bézier control shapes. In
Figure 5.15 and 5.16 we depict the extension of discrete quadratic and cubic Bézier curves to discrete
quadratic and cubic B-splines in shape space. Unfortunately, the discrete geodesic B-splines do not
interpolate the input shapes as their Euclidean counterparts. Therefore, we extended cardinal splines
from Euclidean space to Riemannian shape space. In Figure 5.17 and 5.18 we show two discrete car-
dinal splines in shape space for the same input poses of a hand but for different tension parameter κ.
To compute the discrete path, we first computed the Bézier control shapes, whereby the green shapes
were computed via discrete geodesics and the pink shapes via discrete parallel transport. Then, we
compute the discrete cardinal spline via the corresponding discrete Bézier curve for the four segments.
Finally, we present the difference of a discrete geodesic and discrete cardinal splines in dependence of
the tension parameter κ in more detail in Figure 5.19 for three input poses of a cactus.
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Figure 5.12.: Discrete Parallel Transport: Transfer of the motion of a cat as discrete geodesic with
K = 4 (bottom) to a lion (top row). The parallel transport was performed in five steps.
First, we computed a discrete geodesic withK = 4 between the two similar looking poses
of the cat and the lion (first column), then we transfered the motion of the cat iteratively
to the shapes on this discrete geodesics until we end up with the motion of the the lion.
The three input meshes have the same connectivity with Iv = 1009 and all computations
were done with δ = 0.9.
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Figure 5.13.: Discrete Quadratic Bézier Curve: Visualization of a discrete quadratic Bézier curve
B10 for three input poses of a hand with K = 10 and δ = 0.01.

Figure 5.14.: Discrete Cubic Bézier Curve: Visualization of a discrete cubic Bézier curve B12 for
four input poses of a hand with δ = 0.01.
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Figure 5.15.: Discrete Quadratic B-spline: Visualization of a discrete quadratic B-spline curve
QBS5,2 for four input poses of a hand with δ = 0.01. Here, we first computed the
missing Bézier control point (green shape) and then performed the discrete de Casteljau
algorithm for the two discrete quadratic Bézier curves (cf. with Figure 5.4).
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Figure 5.16.: Discrete Cubic B-spline: Visualization of a discrete cubic B-spline curve CBS8,2 for
five input poses of a hand with δ = 0.01. Here, we first computed the missing three Bézier
control points (green shapes) and then performed the discrete de Casteljau algorithm for
the two discrete cubic Bézier curves (cf. with Figure 5.5).
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Figure 5.17.: Discrete Cardinal Spline (κ = 1/2): We depict a discrete cardinal spline (gray and cyan
shapes) for five input poses of a hand (all gray shapes, the control meshes are depicted in
Figure 5.9) as well as the corresponding control shapes of the four discrete cubic Bézier
curves (gray, green and pink shapes).
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Figure 5.18.: Discrete Cardinal Spline (κ = 3/2): Visualization of a discrete cardinal spline for the
same input shapes as in Figure 5.17 but with κ = 3/2.
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Figure 5.19.: Influence of κ for Discrete Cardinal Splines: We depict three input shapes of a cactus
(i.e. m = 2) on the left, followed by a piecewise discrete geodesic (i.e. κ = 0) and
by three different discrete cardinal splines for κ = 1/2, κ = 1 and κ = 3/2. The input
shapes have all the same connectivity with |Iv| = 264 vertices and all computations
where performed withK = 17. As for the piecewise discrete geodesics, the three discrete
cardinal splines still interpolate the input shapes but the paths have more tension for
increasing κ.
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A. Appendix

A.1. Quartic Box Spline Shape Functions

Here we list the 12 shape quartic box spline functions corresponding to the indexing in Fig. 2.5, left.

N1(ξ1, ξ2) =
1

12
(ξ4

3 + 2ξ3
3ξ1)

N2(ξ1, ξ2) =
1

12
(ξ4

3 + 2ξ3
3ξ2)

N3(ξ1, ξ2) =
1

12
(ξ4

3 + 2ξ3
3ξ2 + 6ξ3

3ξ1 + 6ξ2
3ξ1ξ2 + 12ξ2

3ξ
2
1 + 6ξ3ξ

2
1ξ2 + 6ξ3ξ

3
1 + 2ξ3

1ξ2 + ξ4
1)

N4(ξ1, ξ2) =
1

12
(6ξ4

3 + 24ξ3
3ξ2 + 24ξ2

3ξ
2
2 + 8ξ3ξ

3
2 + ξ4

2 + 24ξ3
3ξ1 + 60ξ2

3ξ1ξ2

+ 36ξ3ξ1ξ
2
2 + 6ξ1ξ

3
2 + 24ξ2

3ξ
2
1 + 36ξ3ξ

2
1ξ2 + 12ξ2

1ξ
2
2 + 8ξ3ξ

3
1 + 6ξ3

1ξ2 + ξ4
1)

N5(ξ1, ξ2) =
1

12
(ξ4

3 + 6ξ3
3ξ2 + 12ξ2

3ξ
2
2 + 6ξ3ξ

3
2 + ξ4

2 + 2ξ3
3ξ1 + 6ξ2

3ξ1ξ2 + 6ξ3ξ1ξ
2
2 + 2ξ1ξ

3
2)

N6(ξ1, ξ2) =
1

12
(ξ4

1 + 2ξ3ξ
3
1)

N7(ξ1, ξ2) =
1

12
(ξ4

3 + 6ξ3
3ξ2 + 12ξ2

3ξ
2
2 + 6ξ3ξ

3
2 + ξ4

2 + 8ξ3
3ξ1 + 36ξ2

3ξ1ξ2

+ 36ξ3ξ1ξ
2
2 + 8ξ1ξ

3
2 + 24ξ2

3ξ
2
1 + 60ξ3ξ

2
1ξ2 + 24ξ2

1ξ
2
2 + 24ξ3ξ

3
1 + 24ξ3

1ξ2 + 6ξ4
1)

N8(ξ1, ξ2) =
1

12
(ξ4

3 + 8ξ3
3ξ2 + 24ξ2

3ξ
2
2 + 24ξ3ξ

3
2 + 6ξ4

2 + 6ξ3
3ξ1 + 36ξ2

3ξ1ξ2

+ 60ξ3ξ1ξ
2
2 + 24ξ1ξ

3
2 + 12ξ2

3ξ
2
1 + 36ξ3ξ

2
1ξ2 + 24ξ2

1ξ
2
2 + 6ξ3ξ

3
1 + 8ξ3

1ξ2 + ξ4
1)

N9(ξ1, ξ2) =
1

12
(ξ4

2 + 2ξ3ξ
3
2)

N10(ξ1, ξ2) =
1

12
(ξ4

1 + 2ξ3
1ξ2)

N11(ξ1, ξ2) =
1

12
(2ξ3ξ

3
2 + ξ4

2 + 6ξ3ξ1ξ
2
2 + 6ξ1ξ

3
2 + 6ξ3ξ

2
1ξ2 + 12ξ2

1ξ
2
2 + 2ξ3ξ

3
1 + 6ξ3

1ξ2 + ξ4
1)

N12(ξ1, ξ2) =
1

12
(ξ4

2 + 2ξ3
2ξ1)

where ξ3 = 1− ξ1 − ξ2.

A.2. Additional Subdivision Matrices for Edge Evaluation and
Quadrature Points

Here, we list the subdivision matrices for the edge evaluation process if N1, N2 ≯ 4.
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• N1 = 3, N2 > 4:

S =



3
8

3
8

1
8

1
8 0 0 0

β(N2) 1− β(N2)N2 β(N2) β(N2) β(N2) β(N2) β(N2)
1
8

3
8

3
8 0 0 0 1

8
3
8

1
8

3
8

1
8 0 0 0

1− β(N1)N1 β(N1) β(N1) β(N1) 0 0 0
3
8

1
8

1
8

3
8 0 0 0

1
8

3
8 0 3

8
1
8 0 0



• N1 = 4, N2 > 4:

S =



3
8

3
8

1
8 0 1

8 0 0 0
β(N2) 1− β(N2)N2 β(N2) 0 β(N2) β(N2) β(N2) β(N2)

1
8

3
8

3
8 0 0 0 0 1

8
3
8

1
8

3
8

1
8 0 0 0 0

1− β(N1)N1 β(N1) β(N1) β(N1) β(N1) 0 0 0
3
8

1
8 0 1

8
3
8 0 0 0

1
8

3
8 0 0 3

8
1
8 0 0



• N1 = N2 = 4:

S =



3
8

3
8

1
8 0 1

8 0
β(N2) 1− β(N2)N2 β(N2) 0 β(N2) β(N2)

1
8

3
8

3
8 0 0 1

8
3
8

1
8

3
8

1
8 0 0

1− β(N1)N1 β(N1) β(N1) β(N1) β(N1) 0
3
8

1
8 0 1

8
3
8 0

1
8

3
8 0 0 3

8
1
8



• N1 = 3, N2 = 4:

S =



3
8

3
8

1
8

1
8 0

β(N2) 1− β(N2)N2 β(N2) β(N2) β(N2)
1
8

3
8

3
8 0 1

8
3
8

1
8

3
8

1
8 0

1− β(N1)N1 β(N1) β(N1) β(N1) 0
3
8

1
8

1
8

3
8 0

1
8

3
8 0 3

8
1
8



108



A.2. Additional Subdivision Matrices for Edge Evaluation and Quadrature Points

• N1 = 4, N2 = 3:

S =



3
8

3
8

1
8 0 1

8
β(N2) 1− β(N2)N2 β(N2) 0 β(N2)

1
8

3
8

3
8 0 1

8
3
8

1
8

3
8

1
8 0

1− β(N1)N1 β(N1) β(N1) β(N1) β(N1)
3
8

1
8 0 1

8
3
8

1
8

3
8

1
8 0 3

8


• N1 > 4, N2 = 4:

S =



3
8

3
8

1
8 0 0 0 1

8 0
β(N2) 1− β(N2)N2 β(N2) 0 0 0 β(N2) β(N2)

1
8

3
8

3
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8
3
8

1
8

3
8

1
8 0 0 0 0

1− β(N1)N1 β(N1) β(N1) β(N1) β(N1) β(N1) β(N1) 0
3
8

1
8 0 0 0 1

8
3
8 0

1
8

3
8 0 0 0 0 3

8
1
8


• N1 > 4, N2 = 3:

S =



3
8

3
8

1
8 0 0 0 1

8
β(N2) 1− β(N2)N2 β(N2) 0 0 0 β(N2)

1
8

3
8

3
8 0 0 0 1

8
3
8

1
8

3
8

1
8 0 0 0

1− β(N1)N1 β(N1) β(N1) β(N1) β(N1) β(N1) β(N1)
3
8

1
8 0 0 0 1

8
3
8

1
8

3
8

1
8 0 0 0 3

8


Furthermore, in Table A.1, A.2, A.3, A.4 and A.5 we list the quadrature points and weights on the

unit traingle4 for exact integration of polynomials of degree p = 1, p = 2, p = 4, p = 6 and p = 8.

wq ξq1 ξq2
1.0 1/3

1/3

Table A.1.: Barycenter quadrature rule: exact for degree p = 1 with K = 1.

wq ξq1 ξq2
1/6

1/2 0.0
1/6 0.0 1/6
1/6

1/2
1/2

Table A.2.: Exact Gaussian quadrature rule for degree p = 2 with K = 3.
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wq ξq1 ξq2
0.22338158967801 0.44594849091597 0.44594849091597
0.22338158967801 0.44594849091597 0.10810301816807
0.22338158967801 0.10810301816807 0.44594849091597
0.10995174365532 0.09157621350977 0.09157621350977
0.10995174365532 0.09157621350977 0.81684757298046
0.10995174365532 0.81684757298046 0.09157621350977

Table A.3.: Exact Gaussian quadrature rule for degree p = 4 with K = 6.

wq ξq1 ξq2
0.11678627572638 0.24928674517091 0.24928674517091
0.11678627572638 0.24928674517091 0.50142650965818
0.11678627572638 0.50142650965818 0.24928674517091
0.05084490637021 0.06308901449150 0.06308901449150
0.05084490637021 0.06308901449150 0.87382197101700
0.05084490637021 0.87382197101700 0.06308901449150
0.08285107561837 0.31035245103378 0.63650249912140
0.08285107561837 0.63650249912140 0.05314504984482
0.08285107561837 0.05314504984482 0.31035245103378
0.08285107561837 0.63650249912140 0.31035245103378
0.08285107561837 0.31035245103378 0.05314504984482
0.08285107561837 0.05314504984482 0.63650249912140

Table A.4.: Exact Gaussian quadrature rule for degree p = 6 with K = 12.
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wq ξq1 ξq2
0.14431560767778 0.33333333333333 0.33333333333333
0.09509163426728 0.45929258829272 0.45929258829272
0.09509163426728 0.45929258829272 0.08141482341455
0.09509163426728 0.08141482341455 0.45929258829272
0.10321737053471 0.17056930775176 0.17056930775176
0.10321737053471 0.17056930775176 0.65886138449647
0.10321737053471 0.65886138449647 0.17056930775176
0.03245849762319 0.05054722831703 0.05054722831703
0.03245849762319 0.05054722831703 0.89890554336593
0.03245849762319 0.89890554336593 0.05054722831703
0.02723031417443 0.26311282963463 0.72849239295540
0.02723031417443 0.72849239295540 0.00839477740995
0.02723031417443 0.00839477740995 0.26311282963463
0.02723031417443 0.72849239295540 0.26311282963463
0.02723031417443 0.26311282963463 0.00839477740995
0.02723031417443 0.00839477740995 0.72849239295540

Table A.5.: Exact Gaussian quadrature rule for degree p = 8 with K = 16.

A.3. First and Second Discrete Derivatives for Area and Willmore
Functional and the Metrics

In this section we list in detail the energies and the metrics used in the examples as well as their
derivatives to set up the full Newton method. In the following we consider Y =

∑
i∈Iv Ȳi · Φi with

Ȳi = (Ȳ 1
i , Ȳ

2
i , Ȳ

3
i )T and Ẏ =

∑
i∈Iv

¯̇Y i · Φi with ¯̇Y i = ( ¯̇Y
1

i ,
¯̇Y

2

i ,
¯̇Y

3

i )
T . Please note, that in the

described setup in Chapter 4 the computation of a variation of a functional and then discretizing is
equivalent to discretizing the functional and than computing the discrete derivative, i.e. E′[Y ](Ψj

i ) =
∂E[Y ]

∂Ȳ j
i

. First, we rewrite the energy functional as

Eα0,α1 [Y ] =

∫
M[Y ]

α0 +
α1

2
h2 da =

∫
Ω
α0

√
D[Y ] +

α1

2

F [Y ]2

D[Y ]
5
2

dξ

where D[Y ] = detG[Y ], F [Y ] = (G22[Y ]B̃11[Y ] + G11[Y ]B̃22[Y ] − 2G12[Y ]B̃12[Y ]), B̃ij [Y ] =
Y,ij · Ñ [Y ] and Ñ [Y ] = Y,1 × Y,2. The first variation is

∂Eα0,α1 [Y ]

∂Ȳ j
i

=

∫
Ω

α0

2
√
D[Y ]

∂D[Y ]

∂Ȳ j
i

+ α1

(
F [Y ]

(D[Y ])
5
2

· ∂F [Y ]

∂Ȳ j
i

− 5

4

F [Y ]2

D[Y ]
7
2

· ∂D[Y ]

∂Ȳ j
i

)
dξ

and the second variation is

∂2E[Y ]

∂Ȳ k
l ∂Ȳ

j
i

=

∫
Ω

α0

2
√
D[Y ]

∂2D[Y ]

∂Ȳ k
l ∂Ȳ

j
i

− α0

4(D[Y ])
3
2

∂D[Y ]

∂Ȳ k
l

· ∂D[Y ]

∂Ȳ j
i
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+
α1

D[Y ]
5
2

∂F [Y ]

∂Ȳ k
l

· ∂F [Y ]

∂Ȳ j
i

+
α1F [Y ]

(D[X])
5
2

∂2F [Y ]

∂Ȳ k
l ∂Ȳ

j
i

− 5

2

α1F [Y ]

D[Y ]
7
2

(
∂F [Y ]

∂Ȳ k
l

· ∂D[Y ]

∂Ȳ j
i

+
∂F [Y ]

∂Ȳ j
i

· ∂D[Y ]

∂Ȳ k
l

)

− 35

8

α1F [Y ]2

D[Y ]
7
2

· ∂D[Y ]

∂Ȳ k
l

· ∂D[Y ]

∂Ȳ j
i

− 5

4

α1F [Y ]2

D[Y ]
7
2

· ∂
2D[Y ]

∂Ȳ k
l ∂Ȳ

j
i

dξ.

The first derivatives of D[Y ] and F [Y ] are

∂D[Y ]

∂Ȳ j
i

= 2

(
Yj,1
Yj,2

)T (
G22[Y ] −G12[Y ]
−G12[Y ] G11[Y ]

)(
Φi,1
Φi,2

)

and

∂F [Y ]

∂Ȳ j
i

= 2

(
Yj,1
Yj,2

)T (
B̃22[Y ] −B̃12[Y ]

−B̃12[Y ] B̃11[Y ]

)(
Φi,1
Φi,2

)
+G22[Y ]

(
Φi,11 · Ñj [Y ] + Y,11 ·

∂Ñ [Y ]

∂Ȳ j
i

)

+G11[Y ]

(
Φi,22 · Ñj [Y ] + Y,22 ·

∂Ñ [Y ]

∂Ȳ j
i

)
− 2G12[Y ]

(
Φi,12 · Ñj [Y ] + Y,12 ·

∂Ñ [Y ]

∂Ȳ j
i

)

where

∂Ñ [Y ]

∂Ȳ 1
i

=

 0
Y3,1Φi,2 − Y3,2Φi,1
Y2,2Φi,1 − Y2,1Φi,2

 ,
∂Ñ [Y ]

∂Ȳ 2
i

=

Y3,2Φi,1 − Y3,1Φi,2
0

Y1,1Φi,2 − Y1,2Φi,1


and

∂Ñ [Y ]

∂Ȳ 3
i

=

Y2,1Φi,2 − Y2,2Φi,1
Y1,2Φi,1 − Y1,1Φi,2

0

 .

Furthermore, the second derivatives of D[Y ] and F [Y ] are

∂2D[Y ]

∂Ȳ k
l ∂Ȳ

j
i

= 2

(
Φl,1
Φl,2

)T [( −Yk,2Yj,2 Yk,1Yj,2 − Yk,2Yj,1
−Yk,1Yj,2 + Yk,2Yj,1 −Yk,1Yj,1

)
+ δkj

(
G22[Y ] −G12[Y ]
−G12[Y ] G11[Y ]

)](
Φi,1
Φi,2

)
and

∂2F [Y ]

∂Ȳ k
l ∂Ȳ

j
i

= δkj2
(
Φl,2Φi,2B̃11[Y ] + Φl,1Φi,1B̃22[Y ]− (Φl,1Φi,2 + Φl,2Φi,1)B̃12[Y ]

)
+ 2(Yj,2Φi,2)

(
Φl,11 · Ñk[Y ] + Y,11 ·

∂Ñ [Y ]

∂Ȳ k
l

)
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+ 2(Yj,1Φi,1)

(
Φl,22 · Ñk[Y ] + Y,22 ·

∂Ñ [Y ]

∂Ȳ k
l

)

− 2(Yj,1Φi,2 + Yj,2Φi,1)

(
Φl,12 · Ñk[Y ] + Y,12 ·

∂Ñ [Y ]

∂Ȳ k
l

)

+ 2(Yk,2Φl,2)

(
Φi,11 · Ñj [Y ] + Y,11 ·

∂Ñ [Y ]

∂Ȳ j
i

)

+ 2(Yk,1Φl,1)

(
Φi,22 · Ñj [Y ] + Y,22 ·

∂Ñ [Y ]

∂Ȳ j
i

)

− 2(Yk,1Φl,2 + Yk,2Φl,1)

(
Φi,12 · Ñj [Y ] + Y,12 ·

∂Ñ [Y ]

∂Ȳ j
i

)

+G22[Y ]

(
Φi,11 ·

∂Ñj [Y ]

∂Ȳ k
l

+ Φl,11 ·
∂Ñk[Y ]

∂Ȳ j
i

+ Y,11 ·
∂2Ñ [Y ]

∂Ȳ k
l ∂Ȳ

j
i

)

+G11[Y ]

(
Φi,22 ·

∂Ñj [Y ]

∂Ȳ k
l

+ Φl,22 ·
∂Ñk[Y ]

∂Ȳ j
i

+ Y,22 ·
∂2Ñ [Y ]

∂Ȳ k
l ∂Ȳ

j
i

)

− 2G12[Y ]

(
Φi,12 ·

∂Ñj [Y ]

∂Ȳ k
l

+ Φl,12 ·
∂Ñk[Y ]

∂Ȳ j
i

+ Y,12 ·
∂2Ñ [Y ]

∂Ȳ k
l ∂Ȳ

j
i

)

where

∂2Ñ [Y ]

∂Ȳ 1
l ∂Ȳ

1
i

=

0
0
0

 ,
∂2Ñ [Y ]

∂Ȳ 2
l ∂Ȳ

1
i

=

 0
0

Φl,2Φi,1 − Φl,1Φi,2

 ,
∂2Ñ [Y ]

∂Ȳ 3
l ∂Ȳ

1
i

=

 0
Φl,1Φi,2 − Φl,2Φi,1

0

 ,

∂2Ñ [Y ]

∂Ȳ 1
l ∂Ȳ

2
i

=

 0
0

Φl,1Φi,2 − Φl,2Φi,1

 ,
∂2Ñ [Y ]

∂Ȳ 2
l ∂Ȳ

2
i

=

0
0
0

 ,
∂2Ñ [Y ]

∂Ȳ 3
l ∂Ȳ

2
i

=

Φl,2Φi,1 − Φl,1Φi,20
0

 ,

∂2Ñ [Y ]

∂Ȳ 1
l ∂Ȳ

3
i

=

 0
Φl,2Φi,1 − Φl,1Φi,2

0

 ,
∂2Ñ [Y ]

∂Ȳ 2
l ∂Ȳ

3
i

=

Φl,1Φi,2 − Φl,2Φi,10
0

 and
∂2Ñ [Y ]

∂Ȳ 3
l ∂Ȳ

3
i

=

0
0
0

 .

Now, for a basis function Ψj
i of Vh the metrics are

Gβ0,β1
Y (Ẏ ,Ψj

i ) =

∫
M[Y ]

ẎjΦi + β0∇MẎj∇MΦi + β1∆MẎj∆MΦi da

=

∫
Ω

(
ẎjΦi + β0(∇Ẏj)TG−1[Y ]∇Φi + β1∆MẎj∆MΦi

)√
D[Y ] dξ

where ∆MΦi = 1
D[Y ]K1[Y, Φi]− 1

D[Y ]2
K2[Y, Φi] and

∆MẎj∆MΦi
√
D[Y ] =

1

D[Y ]
3
2

(
K1[Y, Ẏj ]−

K2[Y, Ẏj ]

D[Y ]

)(
K1[Y, Φi]−

K2[Y, Φi]

D[Y ]

)
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with

K1[Y, Φi] = (Y,2 · Y,12 − Y,1 · Y,22)Φi,1 + (Y,1 · Y,12 − Y,2 · Y,11)Φi,2 +G22[Y ]Φi,11

− 2G12[Y ]Φi,12 +G11[Y ]Φi,22

and

K2[Y, Φi] =
[
G22[Y ]2(Y,1 · Y,11) +G11[Y ]G22[Y ](Y,2 · Y,12)−G12[Y ]G22[Y ](Y,2 · Y,11 + 2Y,1 · Y,12)

−G12[Y ]G11[Y ](Y,2 · Y,22) +G12[Y ]2(Y,2 · Y,12 + Y,1 · Y,22)
]
Φi,1 +

[
G11[Y ]2(Y,2 · Y,22)

+G11[Y ]G22[Y ](Y,1 · Y,12)−G12[Y ]G11[Y ](Y,1 · Y,22 + 2Y,2 · Y,12)

−G12[Y ]G22[Y ](Y,1 · Y,11) +G12[Y ]2(Y,2 · Y,11 + Y,1 · Y,12)
]
Φi,2.

Then

Gβ0,β1
Y,Y (Ẏ ,Ψj

i ) =
∂Gβ0,β1

Y (Ẏ ,Ψj
i )

∂Ȳ k
l

=

∫
Ω

ẎjΦi

2
√
D[Y ]

∂D[Y ]

∂Ȳ k
l

− β0

2
√
D[Y ]

(
Ẏj,1
Ẏj,2

)T
G−1[Y ]

(
Φi,1
Φi,2

)
∂D[Y ]

∂Ȳ k
l

+
β0√
D[Y ]

(
Ẏj,1
Ẏj,2

)T (
2Yk,2Φl,2 −Yk,1Φl,2 − Yk,2Φl,1

−Yk,1Φl,2 − Yk,2Φl,1 2Yk,1Φl,1

)(
Φi,1
Φi,2

)
− 3β1

2D[Y ]
5
2

∂D[Y ]

∂Ȳ k
l

(
K1[Y, Ẏj ]−

K2[Y, Ẏj ]

D[Y ]

)(
K1[Y, Φi]−

K2[Y, Φi]

D[Y ]

)

+
β1

D[Y ]
3
2

(
∂K1[Y, Ẏj ]

∂Ȳ k
l

+
K2[Y, Ẏj ]

D[Y ]2
∂D[Y ]

∂Ȳ k
l

− 1

D[Y ]

∂K2[Y, Ẏj ]

∂Ȳ k
l

)

·
(
K1[Y, Φi]−

K2[Y, Φi]

D[Y ]

)
+

β1

D[Y ]
3
2

(
K1[Y, Ẏj ]−

K2[Y, Ẏj ]

D[Y ]

)

·
(
∂K1[Y, Φi]

∂Ȳ k
l

+
K2[Y, Φi]

D[Y ]2
∂D[Y ]

∂Ȳ k
l

− 1

D[Y ]

∂K2[Y, Φi]

∂Ȳ k
l

)
dξ

with

∂K1[Y, Φi]

∂Ȳ k
l

=
(
Φl,2Yk,12 + Yk,2Φl,12 − Φl,1Yk,22 − Yl,1Φk,22

)
Φi,1(

Φl,1Yk,12 + Yk,1Φl,12 − Φl,2Yk,11 − Yk,2Φl,11

)
Φi,2

+ 2Yk,2Φl,2Φi,11 − 2(Yk,1Φl,2 + Yk,2Φl,1)Φi,12 + 2Yk,1Φl,1Φi,22
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and

∂K2[Y, Φi]

∂Ȳ k
l

=
[
4G22[Y ](Φl,2Yk,2)(Y,1 · Y,11) +G22[Y ]2

(
Φl,1Yk,11 + Yk,1Φl,11

)
+G11[Y ]G22[Y ]

(
Φl,2Yk,12 + Yk,2Φl,12

)
+
(
2Φl,1Yk,1G22[Y ] + 2G11[Y ]Φl,2Yk,2

)
(Y,2 · Y,12)

−
(
G22[Y ](Φl,1Yk,2 + Φl,2Yk,1)

+ 2G12[Y ]Φl,2Yk,2
)
(Y,2 · Y,11 + 2Y,1 · Y,12)

−G12[Y ]G22[Y ]
(
Φl,2Yk,11 + Yk,2Φl,11 + 2Φl,1Yk,12 + 2Yk,1Φl,12

)
− (G11[Y ](Φl,1Yk,2 + Φl,2Yk,1) + 2G12[Y ]Φl,1Yk,1)(Y,2 · Y,22)

−G12[Y ]G11[Y ](Φl,2Yk,22 + Yk,2Φl,22)

+G12[Y ]2(Φl,2Yk,12 + Φl,1Yk,22 + Yk,2Φl,12 + Yk,1Φl,22)

+ 2G12[Y ](Φl,1Yk,2 + Φl,2Yk,1) · (Y,2 · Y,12 + Y,1 · Y,22)
]
Φi,1

+
[
4G11[Y ]Φl,1Yk,1(Y,2 · Y,22) +G11[Y ]2

(
Φl,2Yk,22 + Yk,2Φl,22

)
+
(
2G22[Y ]Φl,1Yk,1 + 2G11[Y ]Φl,2Yk,2

)
(Y,1 · Y,12)

+G11[Y ]G22[Y ]
(
Φl,1Yk,12 + Yk,1Φl,12

)
− (2G12[Y ]Φl,1Yk,1 +G11[Y ](Φl,2Yk,1 + Φl,1Yk,2))(Y,1 · Y,22 + 2Y,2 · Y,12)

−G12[Y ]G11[Y ](Φl,1Yk,22 + 2Φl,2Yk,12 + Yk,1Φl,22 + 2Yk,2Φl,12)

− (2G12[Y ]Φl,2Yk,2 +G22[Y ](Φl,2Yk,1 + Φl,1Yk,2))(Y,1 · Y,11)

−G12[Y ]G22[Y ](Φl,1Yk,11 + Yk,1Φl,11)

+ 2G12[Y ](Φl,2Yk,1 + Φl,1Yk,2)(Y,2 · Y,11 + Y,1 · Y,12)

+G12[Y ]2(Φl,2Yk,11 + Φl,1Yk,12 + Yk,2Φl,11 + Yk,1Φl,12)
]
Φi,2.

Let us now come to the volume constraint C[Y ] = 1
3

∫
M[Y ] Y ·N [Y ] da−V0 =

∫
Ω Y · Ñ [Y ] dξ−V0.

Here, the first variation is

∂C[Y ]

∂Ȳ j
i

=
1

3

(∫
Ω

Φi · Ñj [Y ] + Y · ∂Ñ [Y ]

∂Ȳ j
i

dξ

)

and the second

∂2C[Y ]

∂Ȳ k
l ∂Ȳ

j
i

=
1

3

(∫
Ω

Φi ·
∂Ñj [Y ]

∂Ȳ k
l

+ Φl ·
∂Ñk[Y ]

∂Ȳ j
i

+ Y · ∂
2Ñ [Y ]

∂Ȳ k
l ∂Ȳ

j
i

dξ

)
.

A.4. First and Second Discrete Derivatives for the Elastic Energy
in Shape Space

For the computation of discrete geodesics, discrete exponential map, discrete parallel transport, dis-
crete Bézier curves, discrete B-splines and discrete cardinal splines it is to compute the first and second
derivatives of the discrete elastic energy W with respect to the control points of the underlying Sub-
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division surface. Therefore, we consider now two Subdivision functions X =
∑

i∈Iv X̄iΦi and Y =∑
i∈Iv ȲiΦi, X̄i, Ȳi ∈ R3 for the discrete elastic energy W[X,Y ] = Wmem[X,Y ] + δ2Wbend[X,Y ].

We will split the computation with respect to Wmem[X,Y ] and Wbend[X,Y ].

Energy functionals

Before we compute the actual derivatives we rewrite the energy functional to set up a recursive algo-
rithm (actually we make use of the chain rule).

Membrane energy

Wmem[X,Y ] =

∫
M[X]

Wmem(A[X,Y ]) da

=

∫
Ω

(
µ

2
tr(A[X,Y ]) +

λ

4
detA[X,Y ]

−2µ+ λ

4
log detA[X,Y ]− µ− λ

4

)√
detG[X] dξ

where

A[X,Y ] = G[X]−1G[Y ] =
1

detG[X]

(
G22[X] −G12[X]
−G12[X] G11[X]

)(
G11[Y ] G12[Y ]
G12[Y ] G22[Y ]

)
=

1

detG[X]

(
G22[X]G11[Y ]−G12[X]G12[Y ] G22[X]G12[Y ]−G12[X]G22[Y ]
−G12[X]G11[Y ] +G11[X]G12[Y ] −G12[X]G12[Y ] +G11[X]G22[Y ]

)
.

Using this we can write

Wmem[X,Y ] =

∫
Ω

(
µ

2

1

detG[X]
(G22[X]G11[Y ] +G11[X]G22[Y ]− 2G12[X]G12[Y ])

+
λ

4

detG[Y ]

detG[X]
− 2µ+ λ

4
(log detG[Y ]− log detG[X])

−µ− λ

4

)√
detG[X] dξ

=

∫
Ω

(
µ

2
T [X,Y ] +

λ

4

D[Y ]

D[X]
− 2µ+ λ

4
(logD[Y ]− logD[X])

− µ− λ

4

)√
D[X] dξ

where

T [X,Y ] =
1

D[X]
(G22[X]G11[Y ] +G11[X]G22[Y ]− 2G12[X]G12[Y ]).
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Bending energy

Wbend[X,Y ] =

∫
M[X]

Wbend(Q[X,Y ]) da =

∫
Ω

tr((G[X]−1(B[X]−B[Y ]))2)
√

detG[X] dξ

=

∫
Ω

tr
(
Z[X,Y ]2

)√
detG[X] dξ

=

∫
Ω

 2∑
m,p=1

Zmp[X,Y ] · Zpm[X,Y ]

√detG[X] dξ

=

∫
Ω

(
Z11[X,Y ]2 + 2 · Z12[X,Y ]Z21[X,Y ] + Z22[X,Y ]2

)√
detG[X] dξ

where

Z[X,Y ] = G[X]−1(B[X]−B[Y ])

=
1

detG[X]

(
G22[X] −G12[X]
−G12[X] G11[X]

)(
B11[X]−B11[Y ] B12[X]−B12[Y ]
B12[X]−B12[Y ] B22[X]−B22[Y ]

)

and

Z11[X,Y ] =
G22[X]

detG[X]
(B11[X]−B11[Y ])− G12[X]

detG[X]
(B21[X]−B21[Y ])

= C1111[X,Y ] + C1212[X,Y ],

Z12[X,Y ] =
G22[X]

detG[X]
(B12[X]−B12[Y ])− G12[X]

detG[X]
(B22[X]−B22[Y ])

= C1121[X,Y ] + C1222[X,Y ],

Z21[X,Y ] = − G21[X]

detG[X]
(B11[X]−B11[Y ]) +

G11[X]

detG[X]
(B21[X]−B21[Y ])

= C2111[X,Y ] + C2212[X,Y ],

Z22[X,Y ] = − G21[X]

detG[X]
(B12[X]−B12[Y ]) +

G11[X]

detG[X]
(B22[X]−B22[Y ])

= C2121[X,Y ] + C2222[X,Y ],

where

Cmnpq[X,Y ] =
G̃−1
mn[X]

D[X]

(
B̃pq[X]√
D[X]

− B̃pq[Y ]√
D[Y ]

)

and

G−1
mn[X] =

G̃−1
mn[X]

D[X]
.
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First derivatives of energy functionals

Now we compute the first derivatives of Wmem and Wbend with respect toX and Y , and in dependence
of the first derivatives of T [X,Y ], D[X], D[Y ] and Z[X,Y ].

Membrane energy

∂Wmem[X,Y ]

∂X̄j
i

=

∫
Ω

(
µ

2

∂T [X,Y ]

∂X̄j
i

− λ

4

D[Y ]

(D[X])2
· ∂D[X]

∂X̄j
i

+
2µ+ λ

4

1

D[X]
· ∂D[X]

∂X̄j
i

)√
D[X]

+

(
µ

2
T [X,Y ] +

λ

4

D[Y ]

D[X]
− 2µ+ λ

4
(logD[Y ]− logD[X])− µ− λ

4

)
· 1

2
√
D[X]

∂D[X]

∂X̄j
i

dξ

∂Wmem[X,Y ]

∂Ȳ j
i

=

∫
Ω

(
µ

2

∂T [X,Y ]

∂Ȳ j
i

+
λ

4

1

D[X]
· ∂D[Y ]

∂Ȳ j
i

− 2µ+ λ

4

1

D[Y ]
· ∂D[Y ]

∂Ȳ j
i

)√
D[X] dξ

Bending energy

∂Wbend[X,Y ]

∂X̄j
i

=

∫
Ω

 2∑
m,p=1

Zmp[X,Y ] · ∂Zpm[X,Y ]

∂X̄j
i

+
∂Zmp[X,Y ]

∂X̄j
i

· Zpm[X,Y ]

√D[X] dξ

+
1

2

∫
Ω

 2∑
m,p=1

Zmp[X,Y ] · Zpm[X,Y ]

 1√
D[X]

· ∂D[X]

∂X̄j
i

dξ

∂Wbend[X,Y ]

∂Ȳ j
i

=

∫
Ω

 2∑
m,p=1

Zmp[X,Y ] · ∂Zpm[X,Y ]

∂Ȳ j
i

+
∂Zmp[X,Y ]

∂Ȳ j
i

· Zpm[X,Y ]

√D[X] dξ

Second derivatives of energy functionals

Now we compute the second derivatives of Wmem and Wbend with respect to X and Y , and in depen-
dence of the first and second derivatives of T [X,Y ], D[X], D[Y ] and Z[X,Y ].

Membrane energy

∂2Wmem[X,Y ]

∂X̄k
l ∂X̄

j
i

=

∫
Ω

(
µ

2

∂2T [X,Y ]

∂X̄k
l ∂X̄

j
i

− λ

4

D[Y ]

(D[X])2
· ∂

2D[X]

∂X̄k
l ∂X̄

j
i

+
λ

2

D[Y ]

(D[X])3
· ∂D[X]

∂X̄k
l

· ∂D[X]

∂X̄j
i

−2µ+ λ

4

1

(D[X])2
· ∂D[X]

∂X̄k
l

· ∂D[X]

∂X̄j
i

+
2µ+ λ

4

1

D[X]
· ∂

2D[X]

∂X̄k
l ∂X̄

j
i

)√
D[X]
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+

(
µ

2

∂T [X,Y ]

∂X̄j
i

− λ

4

D[Y ]

(D[X])2
· ∂D[X]

∂X̄j
i

+
2µ+ λ

4

1

D[X]
· ∂D[X]

∂X̄j
i

)

· 1

2
√
D[X]

∂D[X]

∂X̄k
l

+

(
µ

2

∂T [X,Y ]

∂X̄k
l

− λ

4

D[Y ]

(D[X])2
· ∂D[X]

∂X̄k
l

+
2µ+ λ

4

1

D[X]
· ∂D[X]

∂X̄k
l

)
· 1

2
√
D[X]

∂D[X]

∂X̄j
i

+

(
µ

2
T [X,Y ] +

λ

4

D[Y ]

D[X]
− 2µ+ λ

4
(logD[Y ]− logD[X])− µ− λ

4

)
(
− 1

4(D[X])
3
2

· ∂D[X]

∂X̄k
l

· ∂D[X]

∂X̄j
i

+
1

2
√
D[X]

∂2D[X]

∂X̄k
l ∂X̄

j
i

)
dξ

∂2Wmem[X,Y ]

∂Ȳ k
l ∂X̄

j
i

=

∫
Ω

(
µ

2

∂2T [X,Y ]

∂Ȳ k
l ∂X̄

j
i

− λ

4

1

(D[X])2
· ∂D[Y ]

∂Ȳ k
l

· ∂D[X]

∂X̄j
i

)√
D[X]

+

(
µ

2

∂T [X,Y ]

∂Ȳ k
l

+
λ

4

1

D[X]
· ∂D[Y ]

∂Ȳ k
l

− 2µ+ λ

4

1

D[Y ]
· ∂D[Y ]

∂Ȳ k
l

)
· 1

2
√
D[X]

∂D[X]

∂X̄j
i

dξ

∂2Wmem[X,Y ]

∂X̄k
l ∂Ȳ

j
i

=

∫
Ω

(
µ

2

∂2T [X,Y ]

∂X̄k
l ∂Ȳ

j
i

− λ

4

1

(D[X])2
· ∂D[X]

∂X̄k
l

· ∂D[Y ]

∂Y j
i

)√
D[X]

+

(
µ

2

∂T [X,Y ]

∂Ȳ j
i

+
λ

4

1

D[X]
· ∂D[Y ]

∂Ȳ j
i

− 2µ+ λ

4

1

D[Y ]
· ∂D[Y ]

∂Ȳ j
i

)

· 1

2
√
D[X]

∂D[X]

∂X̄k
l

dξ

∂2Wmem[X,Y ]

∂Ȳ k
l ∂Ȳ

j
i

=

∫
Ω

(
µ

2

∂2T [X,Y ]

∂Ȳ k
l ∂Ȳ

j
i

+
λ

4

1

D[X]
· ∂

2D[Y ]

∂Ȳ k
l ∂Ȳ

j
i

−2µ+ λ

4

(
− 1

(D[Y ])2
· ∂D[Y ]

∂Ȳ k
l

· ∂D[Y ]

∂Ȳ j
i

+
1

D[Y ]
· ∂

2D[Y ]

∂Ȳ k
l ∂Ȳ

j
i

))√
D[X] dξ

Bending energy

∂2Wbend[X,Y ]

∂X̄k
l ∂X̄

j
i

=

∫
Ω

 2∑
m,p=1

∂Zmp[X,Y ]

∂X̄k
l

· ∂Zpm[X,Y ]

∂X̄j
i

+
∂Zmp[X,Y ]

∂X̄j
i

· ∂Zpm[X,Y ]

∂X̄k
l
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+Zmp[X,Y ] · ∂
2Zpm[X,Y ]

∂X̄k
l ∂Ȳ

j
i

+
∂2Zmp[X,Y ]

∂X̄k
l ∂Ȳ

j
i

· Zpm[X,Y ]

)√
D[X]

+
1

2

 2∑
m,p=1

Zmp[X,Y ] · ∂Zpm[X,Y ]

∂Xj
i

+
∂Zmp[X,Y ]

∂X̄j
i

· Zpm[X,Y ]


· 1√

D[X]

∂D[X]

∂X̄k
l

+
1

2

 2∑
m,p=1

Zmp[X,Y ] · ∂Zpm[X,Y ]

∂X̄k
l

+
∂Zmp[X,Y ]

∂X̄k
l

· Zpm[X,Y ]


· 1√

D[X]

∂D[X]

∂X̄j
i

+

 2∑
m,p=1

Zmp[X,Y ] · Zpm[X,Y ]


·
(
−1

4

1

(D[X])
3
2

· ∂D[X]

∂X̄k
l

· ∂D[X]

∂X̄j
i

+
1

2

1√
D[X]

· ∂
2D[X]

∂X̄k
l ∂X̄

j
i

)
dξ

∂2Wbend[X,Y ]

∂Ȳ k
l ∂X̄

j
i

=

∫
Ω

 2∑
m,p=1

∂Zmp[X,Y ]

∂Ȳ k
l

· ∂Zpm[X,Y ]

∂X̄j
i

+
∂Zmp[X,Y ]

∂X̄j
i

· ∂Zpm[X,Y ]

∂Ȳ k
l

+Zmp[X,Y ] · ∂
2Zpm[X,Y ]

∂Ȳ k
l ∂X̄

j
i

+
∂2Zmp[X,Y ]

∂Ȳ k
l ∂X̄

j
i

· Zpm[X,Y ]

)√
D[X] dξ

+
1

2

∫
Ω

 2∑
m,p=1

Zmp[X,Y ] · ∂Zpm[X,Y ]

∂Ȳ j
i

+
∂Zmp[X,Y ]

∂Ȳ j
i

· Zpm[X,Y ]


· 1√

D[X]
· ∂D[X]

∂X̄k
l

dξ

∂2Wbend[X,Y ]

∂X̄k
l ∂Ȳ

j
i

=

∫
Ω

 2∑
m,p=1

∂Zmp[X,Y ]

∂X̄k
l

· ∂Zpm[X,Y ]

∂Ȳ j
i

+
∂Zmp[X,Y ]

∂Ȳ j
i

· ∂Zpm[X,Y ]

∂X̄k
l

+Zmp[X,Y ] · ∂
2Zpm[X,Y ]

∂X̄k
l ∂Ȳ

j
i

+
∂2Zmp[X,Y ]

∂X̄k
l ∂Ȳ

j
i

· Zpm[X,Y ]

)√
D[X] dξ

+
1

2

∫
Ω

 2∑
m,p=1

Zmp[X,Y ] · ∂Zpm[X,Y ]

∂Ȳ k
l

+
∂Zmp[X,Y ]

∂Ȳ k
l

· Zpm[X,Y ]


· 1√

D[X]
· ∂D[X]

∂X̄j
i

dξ
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∂2Wbend[X,Y ]

∂Ȳ k
l ∂Ȳ

j
i

=

∫
Ω

 2∑
m,p=1

∂Zmp[X,Y ]

∂Ȳ k
l

· ∂Zpm[X,Y ]

∂Ȳ j
i

+
∂Zmp[X,Y ]

∂Ȳ j
i

· ∂Zpm[X,Y ]

∂Ȳ k
l

+Zmp[X,Y ] · ∂
2Zpm[X,Y ]

∂Ȳ k
l ∂Ȳ

j
i

+
∂2Zmp[X,Y ]

∂Ȳ k
l ∂Ȳ

j
i

· Zpm[X,Y ]

)√
D[X] dξ

First Derivatives of D[X], T [X, Y ] and Z[X, Y ]

First Derivatives of D[X]

∂D[X]

∂X̄j
i

= 2(G22(Xj,1Φi,1) +G11(Xj,2Φi,2)−G12(Xj,1Φi,2 +Xj,2Φi,1))

= 2

(
Xj,1

Xj,2

)T (
G22 −G12

−G12 G11

)(
Φi,1
Φi,2

)

First Derivatives of T [X, Y ]

∂T [X,Y ]

∂X̄j
i

= − 1

D[X]2
∂D[X]

∂Xj
i

(G22[X]G11[Y ] +G11[X]G22[Y ]− 2G12[X]G12[Y ])

+
1

D[X]
(2G11[Y ](Φi,2Xj,2) + 2G22[Y ](Φi,1Xj,1)− 2G12[Y ](Φi,1Xj,2 + Φi,2Xj,1))

and

∂T [X,Y ]

∂Ȳ j
i

=
1

D[X]
(2G22[X](Φi,1Yj,1) + 2G11[X](Φi,2Yj,2)− 2G12[X](Φi,1Yj,2 + Φi,2Yj,1)).

First Derivatives of Z[X.Y ]

Because

Zmp[X,Y ] = Cm1p1[X,Y ] + Cm2p2[X,Y ]

and

∂Zmp[X,Y ]

∂X̄j
i

=
∂Cm1p1[X,Y ]

∂X̄j
i

+
∂Cm2p2[X,Y ]

∂X̄j
i

resp.

∂Zmp[X,Y ]

∂Ȳ j
i

=
∂Cm1p1[X,Y ]

∂Ȳ j
i

+
∂Cm2p2[X,Y ]

∂Ȳ j
i
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the computation of the derivatives reduces to compute the derivatives of

Cmnpq[X,Y ] =
G̃−1
mn[X]

D[X]

(
B̃pq[X]√
D[X]

− B̃pq[Y ]√
D[Y ]

)
.

Hence,

∂Cmnpq[X,Y ]

∂X̄j
i

=

(
1

D[X]

∂G̃−1
mn[X]

∂X̄j
i

− G̃−1
mn[X]

D[X]2
∂D[X]

∂X̄j
i

)(
B̃pq[X]√
D[X]

− B̃pq[Y ]√
D[Y ]

)

+
G̃−1
mn[X]

D[X]

(
1√
D[X]

∂B̃pq[X]

∂X̄j
i

− B̃pq[X]

2D[X]
3
2

∂D[X]

∂X̄j
i

)

and

∂Cmnpq[X,Y ]

∂Ȳ j
i

=
G̃−1
mn[X]

D[X]

(
− 1√

D[Y ]

∂B̃pq[Y ]

∂Ȳ j
i

+
B̃pq[Y ]

2D[Y ]
3
2

∂D[Y ]

∂Ȳ j
i

)

where

∂G̃−1
mn[X]

∂X̄j
i

=


2 ·Xj,2Φi,2 m = n = 0,

−(Xj,1Φi,2 +Xj,2Φi,1) m = 1, n = 0,

−(Xj,1Φi,2 +Xj,2Φi,1) m = 0, n = 1,

2 ·Xj,1Φi,1 m = n = 1.

and

∂B̃pq[X]

∂X̄j
i

= Φi,pqÑj [X] +X,pq ·
∂Ñ [X]

∂X̄j
i

where

Ñ [X] =

X2,1X3,2 −X3,1X2,2

X3,1X1,2 −X1,1X3,2

X1,1X2,2 −X2,1X1,2

 ∂Ñ [X]

∂X̄1
i

=

 0
X3,1Φi,2 −X3,2Φi,1
X2,2Φi,1 −X2,1Φi,2


∂Ñ [X]

∂X̄2
i

=

X3,2Φi,1 −X3,1Φi,2
0

X1,1Φi,2 −X1,2Φi,1

 ∂Ñ [X]

∂X̄3
i

=

X2,1Φi,2 −X2,2Φi,1
X1,2Φi,1 −X1,1Φi,2

0



Second Derivatives of D[X], T [X, Y ] and Z[X, Y ]

Second Derivatives of D[X]

If k 6= j:

∂2D[X]

∂X̄ l
k∂X̄

j
i

= 2((Xk,2Φl,2)(Xj,1Φi,1) + (Xk,1Φl,1)(Xj,2Φi,2)
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− (Xk,2Φl,1 +Xk,1Φl,2)(Xj,1Φi,2 +Xj,2Φi,1))

= 2(Xk,2Xj,1Φl,2Φi,1 +Xk,1Xj,2Φl,1Φi,2 −Xk,2Xj,1Φl,1Φi,2 −Xk,2Xj,2Φl,1Φi,1

−Xk,1Xj,1Φl,2Φi,2 −Xk,1Xj,2Φl,2Φi,1)

= 2

(
Φl,1
Φl,2

)T ( −Xk,2Xj,2 Xk,1Xj,2 −Xk,2Xj,1

−Xk,1Xj,2 +Xk,2Xj,1 −Xk,1Xj,1

)(
Φi,1
Φi,2

)
If k = j:

∂2D[X]

∂X̄k
l ∂X̄

j
i

= 2

(
Φl,1
Φl,2

)T ( −Xk,2Xj,2 Xk,1Xj,2 −Xk,2Xj,1

−Xk,1Xj,2 +Xk,2Xj,1 −Xk,1Xj,1

)(
Φi,1
Φi,2

)
+ 2(G22(Φl,1Φi,1) +G11(Φl,2Φi,2)−G12(Φl,1Φi,2 + Φl,2Φi,1))

= 2

(
Φl,1
Φl,2

)T ( −Xk,2Xj,2 Xk,1Xj,2 −Xk,2Xj,1

−Xk,1Xj,2 +Xk,2Xj,1 −Xk,1Xj,1

)(
Φi,1
Φi,2

)
+ 2

(
Φl,1
Φl,2

)T (
G22 −G12

−G12 G11

)(
Φi,1
Φi,2

)

Second Derivatives of T [X, Y ]

∂2T [X,Y ]

∂X̄k
l ∂X̄

j
i

= − δjk
D[X]2

∂2D[X]

∂X̄k
l ∂X̄

j
i

(G22[X]G11[Y ] +G11[X]G22[Y ]− 2G12[X]G12[Y ])

+
2

D[X]3
∂D[X]

∂X̄k
l

∂D[X]

∂X̄j
i

(G22[X]G11[Y ] +G11[X]G22[Y ]− 2G12[X]G12[Y ])

− 1

D[X]2
∂D[X]

∂X̄j
i

(2G11[Y ](Φl,2Xk,2) + 2G22[Y ](Φl,1Xk,1)

− 2G12[Y ](Φl,1Xk,2 + Φl,2Xk,1))− 1

D[X]2
∂D[X]

∂X̄k
l

(2G11[Y ](Φi,2Xj,2)

+ 2G22[Y ](Φi,1Xj,1)− 2G12[Y ](Φi,1Xj,2 + Φi,2Xj,1))

+
δjk
D[X]

(2G11[Y ](Φi,2Φl,2) + 2G22[Y ](Φi,1Φl,1)− 2G12[Y ](Φi,1Φl,2 + Φi,2Φl,1))

∂2T [X,Y ]

∂Ȳ k
l ∂X̄

j
i

= − 1

D[X]2
∂D[X]

∂X̄j
i

(2G22[X](Φl,1Yk,1) + 2G11[X](Φl,2Yk,2)

− 2G12[X](Φl,1Yk,2 + Φl,2Yk,1)) +
1

D[X]
(4(Φl,1Yk,1)(Φi,2Xj,2)

+ 4(Φl,2Yk,2)(Φi,1Xj,1)− 2(Φl,1Yk,2 + Φl,2Yk,1)(Φi,1Xj,2 + Φi,2Xj,1))

∂2T [X,Y ]

∂X̄k
l ∂Ȳ

j
i

= − 1

D[X]2
∂D[X]

∂X̄k
l

(2G22[X](Φi,1Yj,1) + 2G11[X](Φi,2Yj,2)
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− 2G12[X](Φi,1Yj,2 + Φi,2Yj,1)) +
1

D[X]
(4(Φl,2Xk,2)(Φi,1Yj,1)

+ 4(Φl,1Xk,1)(Φi,2Yj,2)− 2(Φl,1Xk,2 + Φl,2Xk,1)(Φi,1Yj,2 + Φi,2Yj,1))

∂2T [X,Y ]

∂Ȳ k
l ∂Ȳ

j
i

=
δjk
D[X]

(2G22[X](Φi,1Φl,1) + 2G11[X](Φi,2Φl,2)− 2G12[X](Φi,1Φl,2 + Φi,2Φl,1)).

Second Derivatives of Z[X, Y ]

As for th first derivatives ofZ[X,Y ] the computation reduces to compute the derivatives ofCmnpq[X,Y ].

∂2Cmnpq[X,Y ]

∂X̄k
l ∂X̄

j
i

=

(
1

D[X]

∂2G̃−1
mn[X]

∂X̄k
l ∂X̄

j
i

− 1

D[X]2
∂G̃−1

mn[X]

∂X̄j
i

∂D[X]

∂X̄k
l

− 1

D[X]2
∂G̃−1

mn[X]

∂X̄k
l

∂D[X]

∂X̄j
i

+2
G̃−1
mn[X]

D[X]3
∂D[X]

∂X̄k
l

∂D[X]

∂X̄j
i

− G̃−1
mn[X]

D[X]2
∂2D[X]

∂X̄k
l ∂X̄

j
i

)(
B̃pq[X]√
D[X]

− B̃pq[Y ]√
D[Y ]

)

+

(
1

D[X]

∂G̃−1
mn[X]

∂X̄j
i

− G̃−1
mn[X]

D[X]2
∂D[X]

∂X̄j
i

)(
1√
D[X]

∂B̃pq[X]

∂X̄k
l

− B̃pq[X]

2D[X]
3
2

∂D[X]

∂X̄k
l

)

+

(
1

D[X]

∂G̃−1
mn[X]

∂X̄k
l

− G̃−1
mn[X]

D[X]2
∂D[X]

∂X̄k
l

)(
1√
D[X]

∂B̃pq[X]

∂X̄j
i

− B̃pq[X]

2D[X]
3
2

∂D[X]

∂X̄j
i

)

+
G̃−1
mn[X]

D[X]

(
1√
D[X]

∂2B̃pq[X]

∂X̄k
l ∂X̄

j
i

− 1

2D[X]
3
2

∂B̃pq[X]

∂X̄j
i

∂D[X]

∂X̄k
l

− 1

2D[X]
3
2

∂B̃pq[X]

∂X̄k
l

∂D[X]

∂X̄j
i

+
3B̃pq[X]

4D[X]
5
2

∂D[X]

∂X̄j
i

∂D[X]

∂X̄k
l

− B̃pq[X]

2D[X]
3
2

∂2D[X]

∂X̄k
l ∂X̄

j
i

)
,

∂2Cmnpq[X,Y ]

∂Ȳ k
l ∂X̄

j
i

=
1

D[X]

∂G̃−1
mn[X]

∂X̄j
i

(
− 1√

D[Y ]

∂B̃pq[Y ]

∂Ȳ k
l

+
B̃pq[Y ]

2D[Y ]
3
2

∂D[Y ]

∂Ȳ k
l

)

− G̃−1
mn[X]

D[X]2
∂D[X]

∂X̄j
i

(
− 1√

D[Y ]

∂B̃pq[Y ]

∂Ȳ k
l

+
B̃pq[Y ]

2D[Y ]
3
2

∂D[Y ]

∂Ȳ k
l

)
,

∂2Cmnpq[X,Y ]

∂X̄k
l ∂Ȳ

j
i

=
1

D[X]

∂G̃−1
mn[X]

∂X̄k
l

(
− 1√

D[Y ]

∂B̃pq[Y ]

∂Ȳ j
i

+
B̃pq[Y ]

2D[Y ]
3
2

∂D[Y ]

∂Ȳ j
i

)

− G̃−1
mn[X]

D[X]2
∂D[X]

∂X̄k
l

(
− 1√

D[Y ]

∂B̃pq[Y ]

∂Ȳ j
i

+
B̃pq[Y ]

2D[Y ]
3
2

∂D[Y ]

∂Ȳ j
i

)
,

and

∂2Cmnpq[X,Y ]

∂Ȳ k
l ∂Ȳ

j
i

=
G̃−1
mn[X]

D[X]
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∂2Ñ [X]

∂X̄1
l ∂X̄

1
i

=

0
0
0

 ,
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∂2Ñ [X]

∂X̄2
l ∂X̄

3
i

=

Φl,1Φi,2 − Φl,2Φi,10
0

 ,
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quadratic and cubic splines in isogeometric analysis. Computer Methods in Applied Mechanics
and Engineering, 277:1–45, 2014.

[127] F. R. Schmidt, M. Clausen, and D. Cremers. Shape matching by variational computation of
geodesics on a manifold. In Pattern Recognition, volume 4174 of LNCS, pages 142–151.
Springer, 2006.
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