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Abstract

This thesis is comprised of several contributions to the field of mathematical statis-
tics, particularly with regards to computational issues of Bayesian statistics and func-
tional data analysis.

The first two chapters are concerned with computational Bayesian approaches that
allow one to generate samples from an approximation to the posterior distribution in
settings where the likelihood function of some statistical model of interest is unknown.
This has led to a class of Approximate Bayesian Computation (ABC) methods whose
performance depends on the ability to effectively summarize the information content
of the data sample by a lower-dimensional vector of summary statistics. Ideally, these
statistics are sufficient for the parameter of interest. However, it is difficult to establish
sufficiency in a straightforward way if the likelihood of the model is unavailable.

In Chapter 1 we propose an indirect approach to select sufficient summary statistics
for ABC methods that borrows its intuition from the indirect estimation literature in
econometrics. More precisely, we introduce an auxiliary statistical model that is large
enough as to contain the structural model of interest. Summary statistics are then iden-
tified in this auxiliary model and mapped to the structural model of interest. We show
sufficiency of these statistics for Indirect ABC methods based on parameter estimates
(ABC-IP), likelihood functions (ABC-IL) and scores (ABC-IS) of the auxiliary model.
A detailed simulation study investigates the performance of each proposal and compares
it to a traditional, moment-based ABC approach. Particularly, the ABC-IL and ABC-IS
algorithms are shown to perform better than both standard ABC and the ABC-IPmeth-
ods.

In Chapter 2 we extend the notion of Indirect ABC methods by proposing an effi-
cientway ofweighting the individual entries of the vector of summary statistics obtained
from the score-based Indirect ABC approach (ABC-IS). In particular, theweightingma-

xv



trix is given by the inverse of the asymptotic covariancematrix of the score vector of the
auxiliarymodel and allows us to appropriately assess the distance between the true pos-
terior distribution and the approximation based on the ABC-IS method. We illustrate
the performance gain in a simulation study. An empirical application then implements
the weighted ABC-IS method to the problem of estimating a continuous-time stochas-
tic volatility model based on non-Gaussian Ornstein-Uhlenbeck processes. We show
how a suitable auxiliary model can be constructed and confirm estimation results from
concurring Bayesian estimation approaches suggested in the literature.

In Chapter 3 we consider the problem of sampling from high-dimensional probabil-
ity distributions that exhibit multiple, well-separated modes. Such distributions arise
frequently, for instance, in the Bayesian estimation of macroeconomic DSGE models.
Standard Markov Chain Monte Carlo (MCMC) methods, such as the Metropolis-
Hastings algorithm, are prone to get trapped in local neighborhoods of the target dis-
tribution thus severely limiting the use of these methods in more complex models. We
suggest the use of a SequentialMarkov ChainMonte Carlo approach to overcome these
difficulties and investigate its finite sample properties. The results show that Sequential
MCMCmethods clearly outperform standardMCMC approaches in amultimodal set-
ting and can recover both the location aswell as themixtureweights in a12-dimensional
mixture model. Moreover, we provide a detailed comparison of the effects different
choices of tuning parameters have on the approximation to the true sampling distribu-
tion. These results can serve as valuable guidelines when applying this method to more
complex economic models, such as the (Bayesian) estimation of Dynamic Stochastic
General Equilibrium models.

Chapters 4 and 5 study the statistical problem of prediction from a functional per-
spective. In many statistical applications, data is becoming available at ever increasing
frequencies and it has thus become natural to think of discrete observations as realiza-
tions of a continuous function, say over the course of one day. However, as functions are
generally speaking infinite-dimensional objects, the statistical analysis of such functional
data is intrinsically different from standard multivariate techniques.

InChapter 4we consider prediction in functional additivemodels of first-order auto-
regressive type for a time series of functional observations. This is a generalization of
functional linear models that are commonly considered in the literature and has two
advantages to be applied in a functional time series setting. First, it allows us to intro-
duce a very general notion of time dependencies for functional data in this modeling
framework. Particularly, it is rooted at the correlation structure of functional principal

xvi



component scores and even allows for long memory behavior in the score series across
the timedimension. Second, prediction in thismodeling framework is straightforwardly
implemented as it only concerns conditional means of scalar random variables and we
suggest a k-nearest neighbors classification scheme. The theoretical contributionsof this
paper are twofold. In a first step, we verify the applicability of the functional principal
components analysis under our notion of time dependence and obtain precise rates of
convergence for the mean function and the covariance operator associated with the ob-
served sample of functions. In a second step, we derive precise rates of convergence of
the mean squared error for the proposed predictor, taking into account both the effect
of truncating the infinite series expansion at some finite integer L as well as the effect of
estimating the covariance operator and associated eigenelements based on a sample of
N curves.

In Chapter 5 we investigate the performance of functional models in a forecasting
study of ground-level ozone-concentration surfaces over the geographical domain of
Germany. Our perspective thus differs from the literature on spatially distributed func-
tional processes (which are considered to be (univariate) functions of time that show
spatial dependence) in that we consider smooth surfaces defined over some spatial do-
main that are sampled consecutively over time. In particular, we treat discrete obser-
vations that are sampled both over a spatial domain and over time as noisy realizations
of some time series of smooth bivariate functions. In a first step we therefore discuss
how smooth functions can be reconstructed from such noisy measurements through a
finite element spline smoother that is defined over some triangulation of the spatial do-
main. In a second stepwe consider two forecasting approaches to functional time series.
The first one is a functional linear model of first-order auto-regressive type, whereas the
second considers the non-parametric extension to functional additivemodels discussed
in Chapter 4. Both approaches are applied to predicting ground-level ozone concen-
tration measured over the spatial domain of Germany and are shown to yield similar
predictions.
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1
Approximate Bayesian computation with

indirect summary statistics

1.1 Introduction

Bayesian inference has become increasingly popular in empirical research in the last
decades. Based on efficient Markov chain Monte Carlo methods and the availability
of powerful computational resources, Bayesian problems that, years ago, appeared to be
intractable, can now easily be computed on average desktop computers with standard
software packages. Simultaneously, however, highly complex stochastic models have
been developed for which standard Bayesian methods are insufficient. These models
are characterized by the fact that their likelihood function does not admit a closed form
expression or is just (computationally) too costly to be evaluated at a specific point.
Classical estimators such as Maximum Likelihood estimators, but also Bayesian estima-
tors based onMarkov Chain Monte Carlomethods, heavily rely on the evaluation of the
likelihood at any given point in the parameter space. To overcome the complexity of
themodel, likelihood-free inferencemethods, calledApproximate BayesianComputation
(ABC), have been proposed in the population genetics literature (see Beaumont et al.
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[12], Fu and Li [49], Pritchard et al. [89], Tanaka et al. [104], Tavaré et al. [106] and
the references therein) and used in different areas. For instance, Bortot et al. [17] and
Erhardt and Smith [44] apply this approach to the estimation of models for (spatial)
extremes and Peters et al. [88] consider this method for Bayesian inference in α-stable
models. For a more detailed overview we refer to Marin et al. [81] and Sisson and Fan
[99] and the references therein.

The general idea of ABC methods is (in accordance to Monte Carlo algorithms in
general) to generate sampleddrawsof parameters θ ∈ Θ from theposterior distribution
without relying on the computation of values of the likelihood function. Instead, they
require that it is possible to simulate from the model, i.e. to generate a simulated sample
of variables for any given parameter value θ ∈ Θ. This is an assumption that is usually
met in most applications.

The problem in Bayesian inference is that if the likelihood function l : Y × Θ →
R+ is unavailable, it is not possible to obtain (draws from) the (exact) posterior distri-
bution with density¹

p(θ|ỹ) ∝ l(ỹ, θ)π(θ), (1.1)

using standard algorithms such as Markov chain Monte Carlo methods, where θ ∈ Θ
with Θ denoting the parameter space, ỹ ∈ Y the observed data, π : Θ → R+ the
density of the prior distribution and p : Θ × Y → R+ the density of the posterior
distribution. Toovercome this problem, theABCapproach successfully absorbs thewell
established method of data augmentation from likelihood based Bayesian inference to
the likelihood free case. Themain idea is to introduce an ancillary variable that can take
on values on the same set of possible observations as the observed data, ŷ ∈ Y , such
that the joint posterior density of the ancillary variable and the parameter of interest can
be written as

p(θ, ŷ|ỹ) ∝ g(ỹ|ŷ, θ)l(ŷ, θ)π(θ). (1.2)

Usually, the interest is in the marginal posterior distribution of the parameter which is
obtained from (1.2) by integrating out the ancillary variable, i.e.

p(θ|ỹ) ∝
∫
Y

g(ỹ|ŷ, θ)l(ŷ, θ)π(θ)d ŷ = π(θ)

∫
Y

g(ỹ|ŷ, θ)l(ŷ, θ)d ŷ. (1.3)

¹Throughout the paper we denote any quantities based on the observed data sample by tilde (e.g. ỹ)
and all quantities based on simulated data samples by hat (e.g. ŷ). Furthermore, we use the letters π,
l, and p to denote the density of the prior distribution, the likelihood function, and the density of the
posterior distribution, respectively.
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Comparing (1.1) with (1.3) it becomes obvious that the posterior density (1.3) is only
exact if g puts mass only on ỹ.

In its simplest form, any ABC algorithm can be thought of as being a special case of a
general accept-reject algorithm. An obvious way to implement likelihood-free rejection
sampling based on (1.3) would be to generate a candidate value θ∗ ∈ Θ from the prior
distributionwith density function π and then to simulate a data sample ŷ ∈ Y from the
stochastic model according to the likelihood function for the sampled parameter value
θ∗. The candidate value θ∗ would then be accepted if the simulated sample ŷ matched
the observed sample ỹ. The resulting (exact) algorithm is outlined in Algorithm 1.

Algorithm 1ABC Reject Algorithm - Exact Case

1. Generate a proposal θ∗ from the prior distribution with density π.

2. Simulate ŷ from the model according to the likelihood function for θ = θ∗.

3. Accept θ∗ if ŷ = ỹ.

4. Return to 1.

Although such an algorithm would result in exact draws from the true posterior dis-
tribution with density p without involving the computation of the (unknown) likeli-
hood function, it has some severe drawbacks. An exact match between simulated data ŷ
and observed data ỹ has a non-prohibitive acceptance probability only in discrete low-
dimensional models. In the case of high-dimensional data, the acceptance probability
will be too small to allow for a feasible application and will be even strictly zero in a
continuous setting. For these reasons approximate approaches have been introduced,
generalizing the above concept as follows.

Instead of putting all the mass on ỹ, the mass is spread out in the neighborhood of ỹ,
i.e. g becomes gϵ with

gϵ(ỹ|ŷ, θ) =
1
ϵ

Kϵ

(
|ỹ − ŷ|

ϵ

)
, (1.4)

where Kϵ : Y → R+ is a standard smoothing kernel density and ϵ ≥ 0. Moreover,
the dimensionality of the data is reduced by summarizing the information in the data by
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a vector of summary statistics S : Y → S such that (1.4) becomes

g(S)ϵ (ỹ|ŷ, θ) =
1
ϵ

K(S)
ϵ

(
|S(ỹ)− S(ŷ)|

ϵ

)
,

with K(S)
ϵ : S → R+ again a standard smoothing kernel, but nowdefined on the range

space of the summary statistics S.
Naturally, different kernels are available and have been considered in the literature,

e.g.Ratmannet al. [94]use anonparameteric density estimator, whereasBeaumont et al.
[12] adopt the Epanechnikov kernel. In this paper we present our results based on the
uniform kernel density which has been widely used in the literature, e.g. Marjoram et al.
[82] andSisson et al. [100]. This choice allows for a simple representation of g(S)ϵ which
is given by

g(S)ϵ (ỹ|ŷ, θ) ∝

1 if d (S (ỹ) , S (ŷ)) < ϵ,

0 otherwise,

where d : S × S → R+ is a metric defined over the summary statistics. A straightfor-
ward implementation of the sampling algorithm is outlined in Algorithm 2. For this al-

Algorithm 2ABC Reject Algorithm - General Case

1. Generate a proposal θ∗ from the prior distribution with density π.

2. Simulate ŷ from the model according to the likelihood function for θ = θ∗.

3. Accept θ∗ if d(S(ŷ), S(ỹ)) ≤ ϵ.

4. Return to 1.

gorithm, ϵ canbe interpreted as a tolerance levelwhich is chosen such that any candidate
value θ∗ is accepted if the distance between simulated and observed data, as measured
by the metric d over the summary statistics, is below ϵ.

For ϵ close to 0 and summary statistics that are (approximately) sufficient, the ABC
posterior with density

p(ABC)(θ|S(ỹ)) ∝ π(θ)

∫
Y

g(S)ϵ (ỹ|ŷ, θ)l(ŷ, θ)d ŷ

is a reasonable approximation to the true posterior distribution p that is based directly
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on the observed data. Naturally, the performance of any ABC algorithm depends cru-
cially on the particular choice of summary statistics S, the choice of themetric d and the
tolerance level ϵ. In particular, the (automatic) choice of summary statistics has been
an open question in the literature and gave rise to a number of different proposals that
we are going to briefly review in Section 1.2. Existing approaches on choosing summary
statistics have been mainly based on empirical considerations. Moreover, the existence
of sufficient summary statistics has been assumed to not be verifiable, although in the
light of theprecedingdiscussion this property is highly desirable, as, intuitively speaking,
sufficient statistics summarize all the information contained in the data that is relevant
for the estimation of the model.

In this paper we address the question of how to choose sufficient summary statistics
S. While searching for sufficient summary statistics, we borrow methods from the indi-
rect estimation literature. In particular, we suggest the use of a suitably-chosen auxiliary
model that captures the data generating process well and admits a tractable likelihood
function. We develop (indirect) summary statistics that are sufficient for the parameters
of the auxiliary model and derive conditions under which sufficiency carries over to the
model of interest. This is a novel result in that sufficient summary statistics have long
thought to be unidentifiable for ABC, with the exception of the special case of mod-
els of the exponential family. We thus refer to the ABC approach using indirect sum-
mary statistics as Approximate Bayesian Computation with Indirect Summary Statistics or,
in short, Indirect Approximate Bayesian Computation.

Another important question that is addressed in the literature is how to improve the
acceptance rate of proposed candidate values that are sampled from the prior distribu-
tion. Even in the approximate case (Algorithm 2), the acceptance probabilities may still
be too small. A number of extensions have been recently suggested that address this is-
sue of computational efficiency. Marjoram et al. [82] implemented anMCMC step into
the algorithm which can result in more accepted draws from p(ABC) but at the usual
cost of retaining serially dependent draws. Based on the work of Del Moral et al. [36]
on Sequential Monte Carlo, Sisson et al. [100] tried to overcome the issue of serially de-
pendent posterior draws by an adaptive scheme. But, as Beaumont et al. [13] pointed
out, their approach results in biased draws from the posterior. Currently, it seems that
the Population Monte Carlo approach as introduced by Cappé et al. [22] is one of the
computationally most efficient versions of the ABC scheme. In this paper we focus on
the selection of summary statistics for the original ABC sampling (Algorithm 2) but, of
course, all arguments remain valid if a more efficient sampling scheme is used.
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This paper is organized as follows. In Section 1.2 we review the existing literature on
the problem of choosing summary statistics and establish linkages to the indirect esti-
mation literature which is also discussed in some detail. Section 1.3 then develops our
notion of Indirect ABC, shows how to systematically choose summary statistics and es-
tablishes sufficiency results for these statistics. In Section 1.4 we assess the performance
of Indirect ABC in a simulation study and compare the results to traditional moment
based ABC approaches. Section 1.5 concludes.

1.2 Literature review and preliminaries

In this sectionwe review the existing literature on the construction and selection of sum-
mary statistics for ABC sampling schemes. We further present in some detail the con-
cept of indirect estimation methods in general and discuss their linkages to ABC meth-
ods. This serves the purpose of introducing and establishing the necessary concepts for
our notion of Indirect ABC.

1.2.1 Existing approaches to choosing summary statistics

Although the choice and construction of summary statistics is crucial in making ABC
methods applicable, the current state of the literature is highly based on empirical con-
siderations (see, e.g., Beaumont et al. [12] and Csilléry et al. [34]). With the notable
exception of Gibbs Random Fields, sufficient statistics have not been proven to exist in
general. The reason why it is possible to construct sufficient summary statistics in the
special case of Gibbs Random Fields is that the model structure is given by an expo-
nential family for which a simple form of sufficient statistics is known to exist - a fact
that can be fruitfully exploited (see, e.g., Grelaud et al. [63]). For more general (non-
exponential) settings, however, sufficient statistics have not been thought to exist in gen-
eral and instead it is usually argued on an ad-hoc consideration of the problem at hand
which statistics might be suitable to summarize the amount of information contained in
the sample of observed variables. Consequently, a number of proposals have beenmade
in the literature that address the question of dimension reduction within ABC sampling
schemes. They share the common belief that by including a large number of summary
statistics one can depict the main characteristic features of the data. However, the ex-
perimenter is facing a trade-off between a good description of the data and the curse of
dimensionality as implied by the Kernel smoothing function g(S)ϵ from before. A recent
review of these proposals has been given in Blum et al. [16] and we are referring to their
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work for more details on a comparative analysis. In what follows, we are giving a brief
discussion of the main concepts.

Blum et al. [16] categorize the existing methods of choosing summary statistics into
three (non-mutually exclusive) classes. The first class concerns best subset selection tech-
niques that involve specifying a (possibly very large) initial set of summary statistics sub-
sets of which are subsequently scored as to retain those statistics that contain the most
amount of information as measured by some suitable criterion. Joyce and Marjoram
[76] consider to this end a notion of sufficiency that they call ϵ-sufficiency. A given
set of k summary statistics {S1, . . . , Sk} is said to be ϵ-sufficient relative to some new
statistic Sk+1 if

sup
θ∈Θ

log l(Sk+1|S1, . . . , Sk, θ)− inf
θ∈Θ

log l(Sk+1|S1, . . . , Sk, θ) ≤ ϵ.

Based on this definition, they propose a sequential scoring scheme with which one de-
cides on the inclusion of a new summary statistic Sk+1 by considering whether this
statistic will contribute significantly to the quality of inference as measured by a like-
lihood ratio statistic. Once the contribution of a statistic is below a certain pre-specified
threshold, the inclusion of more statistics is stopped. As Marin et al. [81] point out,
however, this method is not only paramount to the ordering in which the statistics are
considered but, more importantly, it results in highly correlated summary statistics. A
related method was introduced by Nunes and Balding [86] in that they consider an en-
tropymeasure instead of a sufficiency criterion tomeasure informativeness of summary
statistics.

The second class of proposed methods is comprised of projection techniques. Rather
than just considering some initial set of candidate statistics one allows for (non-)linear
combinations of those statistics. As such one adds a regression layer to theABC scheme,
the rationale ofwhichbeing that one can considerablydecrease thedimensionality of the
summary statistics while keeping the information they contain unaltered. Consider for
brevity the uni-variate case and a given set of summary statistics {Si}k

i=1. Then, in the
simplest case, one considers a homoskedastic regression, i.e.

θi = m(Si) + ϵi,

where (θi, Si) are draws from the prior predictive distribution l(S|θ)π(θ),
i = 1, . . . , k and m(Si) = E[θ|S = Si] is the (conditional) mean function. Beau-
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mont et al. [12] assume a linear model, i.e. m(Si) = α + βTSi whereas Blum and
François [15] consider a heteroskedastic extension.

The third class of methods consists of regularization techniques which are essentially
basedonprojection techniqueswhere one additionally penalizes the outcome formodel
complexity. Blum et al. [16] propose an approach based on ridge regression where the
regression coefficients are shrunk to zero such that uninformative summary statistics are
associated with the smallest coefficients.

In a related contribution, Fearnhead and Prangle [46] take a different perspective
on ABCmethods in that they consider ABC to be an inferential scheme in its own right
rather than a simplemethod to obtain non-parametric estimates of the posterior density.
Instead of requiring p(ABC) to be a good approximation to the true posterior distribu-
tion globally, they only require that p(ABC) is a good approximation locally, that is only
for certain parameter estimates. As such, the desired scheme should be able to represent
the uncertainty in the parameters accurately. In particular, consider the probability that
the ABC posterior p(ABC) assigns to the eventA ⊂ Θ which can be written as

Pr(ABC)(θ ∈ A|S(ỹ)) =
∫
A

p(ABC)(θ|S(ỹ))d θ.

Fearnhead and Prangle [46] then call an inferential scheme calibrated if

Pr(θ ∈ A|Pr(ABC)(θ ∈ A|S(ỹ)) = q) = q,

i.e. events that have probability q assigned by the ABC posterior will indeed have prob-
ability q to occur. Although standard ABC is not calibrated they show that this can be
achieved by considering a slight (randomizing)modificationwhich they callNoisy ABC.
They show that the optimal choice of such summary statistics is given by the posterior
means of the parameters which can be estimated by standard least-squares regression
techniques.

In this paper, however, we take a fully automatic approach on finding sufficient sum-
mary statistics. We approach this by using an indirect procedure that originated in the
frequentist statistics literature. The linkage between ABC and indirect estimationmeth-
ods has already been recognized in the literature. In independent and concurrent work
Creel and Kristensen [32], Fearnhead and Prangle [46] and Drovandi et al. [41] dis-
cuss the usage of the parameter estimates of an auxiliary model as summary statistics
within ABC. However, other indirect summary statistics can be constructed that have
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favorable statistical properties and that are based on the likelihood function or its score
of some auxiliary model. In the following subsection we provide a brief review of these
indirect estimation methods and discuss in more detail how they can be linked to ABC
particularly with regards to choosing summary statistics.

1.2.2 The indirect estimation approach

Like any other (parametric) estimation method, indirect estimation aims to estimate a
statistical model

MS = (YS,PS) ,

whereYS is the set of possible observations and

PS = {PS (θ) , θ ∈ Θ}

is a family of probability distributions on this space that is parametrized by θ which can
take on values on the structural parameter space Θ ⊂ Rq. In the following, we call
MS the structural model for reasons that will become clear shortly and denote this with
a subscript S. Indirect estimation methods were developed to overcome the problem
where the likelihood function lS : YS × Θ → R+ of the probability distributions for
the structural model,PS, (with respect to a dominatingmeasure) is not available or too
costly to evaluate.

A first attempt to estimate amodel without the knowledge of the likelihood function,
based on simulations of the model, would be to minimize the distance between some
carefully selected empirical moments (e.g. mean, variance or autocovariance) and their
population counterparts computed by Monte Carlo methods. This approach was im-
plemented in the Simulated Method of Moments (SMM) which was proposed by Duffie
and Singleton [42], Lee and Ingram [79], McFadden [83] and Pakes and Pollard [87].
SMM is a simulation based extension of the GeneralizedMethod ofMoments (GMM),
proposed by Hansen [69], in so far as the population moments can be computed by
Monte Carlo methods and must not be available in closed form.² Obviously, the ABC
approach is theBayesian counterpart to the SMM.Theappropriate selection of informa-

²Note that GMM as an extension to the Method of Moments of Karl Pearson does not require the
availability of the likelihood function either. However, the moments need to be expressed in terms
of the structural parameters, which is often at least as challenging as the formulation of the likelihood
function, and is rarely possible in practical applications. Indirect estimation methods, however, are
applicable if neither a likelihood function nor closed formmoment conditions are available.
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tivemoment conditions is a challenging task andmight for both, ABCandSMM,heavily
depend on the model to be estimated. A successful approach for moment selection in
the SMM setup is given by indirect estimation methods and we propose to extend this
approach to the setting of ABC in the next section.

Indirect estimation methods assume the existence of an auxiliary model

MA = (YA,PA) ,

with
PA = {PA (ω) , ω ∈ Ω} ,

where the parameter space of the auxiliary model is given by Ω ⊂ Rp with q ≤ p.
The key assumption for the auxiliary model is the availability of the likelihood function
lA : YA × Ω → R+. In practical applications it is moreover desirable to use an aux-
iliary model for which an efficient computation of the likelihood function is feasible,
or - even better - for which a maximum likelihood estimator is available in closed form.
The parameters of the auxiliary model, ω ∈ Ω, are often referred to as auxiliary pa-
rameters. Furthermore, it is assumed that the auxiliary model provides an adequate rep-
resentation of the data generating process. Very often it is assumed that the structural
model is nested within the auxiliary model,PS ⊂ PA, and that there exists a mapping
η : Θ → Ω which maps the parameters of the structural model into the parameter
space of the auxiliary model, such that³

PS = {PA (η(θ)) , θ ∈ Θ} .

In frequentist statistics, the existence of themap can be relaxed to only hold in the neigh-
borhood of the true parameter. However, for Bayesian inference this seems impossible,
such that this presentation follows Gallant and McCulloch [51, Assumption 1] and re-
quires the existence of this map for all θ ∈ Θ.⁴

Due to the availability of the likelihood function for the auxiliary model, its estima-
tion via maximum likelihood is feasible yielding an estimate ω̃(ML). The general idea
of indirect estimation is now to choose a structural model (identified by a parameter
θ̄(IE) ∈ Θ) that is close to the estimated auxiliary model. As such, these estimation

³This map is also called binding function in the literature.

⁴A slightlymore general assumptionwould require the existenceof themap in the regionsof positive
prior probability mass.
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methods concentrate the available information of the data in the (parametric) auxiliary
model. An estimator for the structural parameter is thus found byminimizing some ob-
jective functionQ(IE) : Θ → R which measures the distance between the structural
model and the auxiliary model, i.e. one has

θ̄(IE) = argmin
θ∈Θ

Q(IE)(θ)

for the estimated structural parameter.
The existing indirect estimation methods can be distinguished with respect to the

employed objective function, i.e. how the distance between the structural model and
the auxiliary model is measured. At least three propositions have been made in the lit-
erature:

1. The Indirect Inference (II) method was proposed by Gouriéroux et al. [62] and
Smith [101] and is based on the distance between the parameters of the auxiliary
model, i.e.

Q(I I) (θ) =
(

ω̃(ML) − η (θ)
)

W
(

ω̃(ML) − η (θ)
)T

where W ∈ S++ is a positive-definite weighting matrix.

2. The Efficient Method of Moments (EMM)was introduced by Gallant and Tauchen
[54] and is based on the score of the auxiliary model, i.e.

Q(EMM) (θ)

=

(
∂ log lA(ỹ, ω)

∂ω

∣∣∣∣
ω=ω̃(ML)

− Eθ

[
∂ log lA(Y, ω)

∂ω

∣∣∣∣
ω=ω̃(ML)

])
W

×
(

∂ log lA(ỹ, ω)

∂ω

∣∣∣∣
ω=ω̃(ML)

− Eθ

[
∂ log lA(Y, ω)

∂ω

∣∣∣∣
ω=ω̃(ML)

])T

= Eθ

[
∂ log lA(Y, ω)

∂ω

∣∣∣∣
ω=ω̃(ML)

]
W Eθ

[
∂ log lA(Y, ω)

∂ω

∣∣∣∣
ω=ω̃(ML)

]T
with Eθ denoting the expectation operator with respect to the structural model
with parameter θ, i.e. Y is distributed according to the structural model with pa-
rameter θ such that

Eθ

[
∂ log lA(Y, ω)

∂ω

∣∣∣∣
ω=ω̃(ML)

]
=

∫
YS

∂ log lA(y, ω)

∂ω

∣∣∣∣
ω=ω̃(ML)

lS(y, θ)d y.
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Note that the score of the auxiliary model is zero when evaluated at the Maxi-
mum Likelihood Estimator ω̃(ML). Here W ∈ S++ is again a positive-definite
weighting matrix.

3. The Simulated Quasi-Maximum Likelihood (SQML) estimator was proposed by
Smith [101] and is based on the distance between the log-likelihood values, i.e.

Q(SQML) (θ) = log lA(ỹ, ω̃(ML))− log lA(ỹ, η(θ)) ∝ − log lA(ỹ, η(θ)).

These three indirect estimation approaches differ only in their choice of summary
statistics of the auxiliary model. As such, they readily lend themselves to be employed
within ABC. Parameter estimates of the auxiliary model have been considered by Dro-
vandi et al. [41] whereas the auxiliary likelihood function was employed in Gallant and
McCulloch [51] in an approach that is somewhat related toABCand that was applied to
asset pricing in Aldrich and Gallant [1]. In this paper we particularly propose to follow
the Efficient Method of Moments approach of Gallant and Tauchen [54] in using the
scores of the auxiliary log-likelihood function as indirect summary statistics.

To facilitate the remaining discussion in the paper we introduce the following no-
tation: we refer to general ABC methods with indirect summary statistics as ABC-I.
We further differentiate these methods with respect to the employed indirect summary
statistics. In particular, ABC-IP refers to ABC-I where the summary statistics are given
by the parameter estimates of the auxiliary model. ABC-IL then refers to ABC-I with
the likelihood function of the auxiliary model as summary statistic, while our approach,
that makes use of the score of the auxiliary model, is denoted by ABC-IS.

1.3 Indirect Approximate Bayesian Computation

After establishing the necessary preliminaries, we now introduce our notion of Indirect
ABC and establish sufficiency of these summary statistics for the structural modelMS.
To prove sufficiency of our indirect summary statistics we first establish sufficiency for
the auxiliary model MA and then derive conditions under which sufficiency carries
over to the structural model. We end this section with a discussion of implementation
details.
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1.3.1 Indirect summary statistics

Let us consider a structural model MS with likelihood function given by lS(y, θ) :
YS × Θ → R+. The likelihood function of the structural model (lS) may not be
available in closed form but we assume that it is possible to simulate from the model,
i.e. we can obtain draws ŷ ≡ (ŷt)

n
t=1 that are a sample from y 7→ lS (y, θ) for any

given parameter value θ ∈ Θ. For brevity of exposition we consider the special case of
a stationary stochastic process (yt)

∞
t=−∞ with transition density given by l†

S such that
the likelihood function lS can be factorized as

lS(y, θ) = l‡
S(x0, θ)

n∏
t=1

l†
S(yt|xt−1; θ), (1.5)

where xt−1 denotes the vector of state variables (e.g. the first L lagged variables of the
series itself, (yt−1, yt−2, . . . , yt−L)).

We base the estimation of the parameters of the structural model on summary statis-
tics of some auxiliary model MA. To this end, we consider the (tractable) likelihood
function lA(y, ω) : Y × Ω → R+ of a given auxiliary modelMA and denote by

ω̃(ML) = argmax
ω∈Ω

lA(ỹ, ω)

theMaximumLikelihood estimator of the parameters of the auxiliarymodel for the ob-
served data sample ỹ ≡ (ỹt)

n
t=1. As in the indirect estimation literature, we distinguish

three choices for indirect summary statistics as discussed in Section 1.2.2.
In analogy to the Indirect Inference approach, indirect summary statistics SIP can be

identified by considering parameter estimates of the auxiliary modelMA, i.e.

SIP(y) = argmax
ω∈Ω

lA(y, ω) (1.6)

which results in the ABC-IP algorithm of Drovandi et al. [41]. Following the Simulated
Quasi-Maximum Likelihood approach, one can identify indirect summary statistics SIL

by considering the likelihood function lA of the auxiliary model, i.e.

SIL(y, ω) = lA(y, ω) (1.7)

which yields the ABC-IL algorithm. Finally, indirect summary statistics can be devised
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by following the Efficient Method of Moments approach in which summary statistics SIS

are based on the score of the auxiliary model, i.e.

SIS(y, ω) =
∂

∂ω′ log lA
(
y, ω′)∣∣∣∣

ω′=ω

(1.8)

which results in the ABC-IS algorithm.
It is important to note that these summary statistics depend on the structural param-

eter θ through the simulated sample ŷ. Furthermore, in the case of ABC-IS we observe
that (1.8) evaluated at the observed data is zero for all values of θ, i.e.
SIS(ỹ, ω̃(ML)) = 0, by construction. A generic implementation of indirect summary
statistics within ABC is outlined in Algorithm 3. All ABC-I algorithms are initialized by
specifying and estimating an auxiliary model MA on the observed data ỹ. Steps 4.a -
4.c then calculate the indirect summary statistics for ABC-IP, ABC-IL and ABC-IS re-
spectively.

1.3.2 Sufficiency results

In this section we show sufficiency of our indirect summary statistics defined in (1.6),
(1.7) and (1.8). By the sufficiency principle, any inference about the parameter of in-
terest should depend on the data y only through some statistic T : Y → T . In other
words, any sufficient statistic T contains as much information as the whole sample y
itself, thus providing a convenient method to reduce the complexity of our data. Our
approach is to first review some theoretical results on sufficient statistics. We then show
sufficiency of the indirect summary statistics for the auxiliary model and discuss condi-
tions under which sufficiency carries over to the structural model.

To make these ideas more precise, it proves insightful to think of sufficiency of a
statistic T in terms of σ-fields over the space of observations Y that are induced by the
statistic T (see Bahadur [6] and Halmos and Savage [67] for more details on this view
on sufficiency). Consider themeasure space (Y ,S,P)whereY andP are our sample
space and family of probability measures, respectively, from before and the σ-fieldS is
comprised of all subsets A ⊂ Y such that any member P ∈ P assigns a well-defined
probability P(A) to any event of the form {y ∈ A}. Corresponding to the σ-fieldS
we denote with T the σ-field comprised of sets B such that T−1(B) = {y : T(y) ∈
B} is anS-measurable subset ofY . WewriteS0 for the sub-σ-field ofS that is induced
by the statistic T, i.e. it is comprised of all sets {T−1(B),B ∈ T}. We furthermore de-
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Algorithm 3ABC-IP, ABC-IL and ABC-IS Reject Algorithm

1. Compute theMLE of the auxiliarymodel parameter (ω̃(ML)) based on observa-
tions ỹ = (ỹt)

n
t=1.

2. Generate a proposal θ∗ from the prior with density π.

3. Simulate ŷ = (ŷt)
n
t=1 from the structural model with likelihood function y 7→

lS(y, θ∗).

4.a For ABC-IP, compute SIP(ŷ) by

SIP(ŷ) = argmax
ω∈Ω

lA(ŷ, ω)

and calculate the overall distance d by

d = ∥SIP(ỹ)− SIP(ŷ)∥2.

4.b For ABC-IL, compute SIL(ŷ, ω̃(ML)) by

SIL(ŷ, ω̃(ML)) = lA(ŷ, ω̃(ML))

and calculate the overall distance d by

d = |SIL(ỹ, ω̃(ML))− SIL(ŷ, ω̃(ML))|

4.c For ABC-IS, compute SIS(ŷ, ω̃(ML)) by

SIS(ŷ, ω̃(ML)) =
∂

∂ω
log lA (ŷ, ω)

∣∣∣∣
ω=ω̃(ML)

and calculate the overall distance d by

d = SIS(ŷ, ω̃(ML))TSIS(ŷ, ω̃(ML)).

5. If d < ϵ

accept θ∗ as a draw from the ABC posterior.

6. Return to 2.
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note with Q the set of probability measures of the form {Q = P(T−1(·))} for any
P ∈ P .

FollowingBahadur [6, Definition 3.1], we say that a statistic T is sufficient for a family
of probability measures P if for anyS-measurable setA there exists a T-Q-integrable
function φA(y) such that for allB ∈ T and all P ∈ P one has∫

A∩T−1(B)
d P =

∫
B

φA(y)d P(T−1(y)).

Equivalently, one can define sufficiency in terms of the σ-fieldS0 that is induced by the
statistic T alone. Following Bahadur [6, Definition 5.1], we say that a σ-fieldS0 ⊆ S

is sufficient for a family of probability measures P if for any S-measurable set A there
exists anS0-measurable function φA(y) such that one as

φA(y) = EP(IA(y)|S0)

modulo S-P-nullsets. In other words, a statistic T is sufficient for P if and only if the
sub-σ-field S0 induced by T is for which it has to hold that the conditional probabil-
ity of a set A given S0 is the same for each P ∈ P . If we furthermore assume that
the family of probability measures P is dominated by some measure µ (e.g. Lebesgue
measure) we can give a more practical condition for the sufficiency of S0 in terms of
Radon-Nikodym derivatives. Halmos and Savage [67, Theorem 1] (see also Bahadur
[6,Theorem6.1 (iii)]) showed that a necessary and sufficient condition for a sub-σ-field
S0 tobe sufficient forP is that for any P ∈ P there exists a non-negativeS0-measurable
function gP such that on has

gP =
d P
d µ

onS. In other words, the Radon-Nikodym derivative of any P ∈ P with respect to the
dominating measure µ has to beS0-measurable.

Weconsidernowsufficiencyofour indirect summary statistics for the auxiliarymodel
MA = (YA,SA,PA) to which we added the σ-fieldSA generated by YA to make
MA a measure space. Assume that the family of probability measuresPA = {P(ω) :
ω ∈ Ω} is dominated by some measure µ (e.g. Lebesgue measure) and write

lA(y, ω) =
d P(ω)

d µ
(y) (1.9)
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for some version of the Radon-Nikodym derivative on the right hand side of (1.9). De-
note by LA the σ-field generated by the likelihood functions lA(·, ω). Obviously, the
functions lA(·, ω) are LA-measurable from which we conclude that the σ-field LA is
sufficient forPA. This provides us with a rigorous formulation of what one would intu-
itively regard as the sufficiency of the likelihood function. It moreover holds that any statis-
tic T that generates the same partition of the sample space as the likelihood function is
also sufficient (see Barndorff-Nielsen et al. [11]) and following Barndorff-Nielsen and
Cox [8] we can thus argue that the first derivative of the log-likelihood function, and
thus our indirect summary statistics, are indeed sufficient forPA.

What remains tobediscussedare conditionsunderwhich sufficiency for the auxiliary
parameters carries over to the parameters of the structural model. Assume that there
exists a map from the parameter space Θ of the structural model to the parameter space
Ω of the auxiliary model such that

lS(y, θ) = lA(y, η(θ))

for all θ ∈ Θ (and y ∈ YS) for which our prior beliefs have positive probability mass.
The idea is that given such a map η we can think of the auxiliary modelMA to be large
enough to contain the structural modelMS as a special case or, in other words, model
MS is nested in model MA in the region where our prior distribution has positive
probability mass. Then any statistic T : YA → T that is sufficient for PA is also suf-
ficient forPS such that our sufficient statistic for the auxiliary model is also a sufficient
statistic for the structuralmodel (seeGouriéroux andMonfort [61, Property 3.5]). This
argument completes the derivation of our sufficiency result for the here proposed ABC-
IS method and also applies to the ABC-IL method based on the likelihood functions of
the auxiliarymodel alone. Since, asBarndorff-Nielsen [7]points out, also theMaximum
Likelihood estimator is itself asymptotically sufficient⁵ of orderO(n−1/2), the above ar-
gument establishes an asymptotic sufficiency result for theABC-IPmethod as proposed
by Drovandi et al. [41] as well.

⁵Asymptotics are takenherewith respect to letting the sample sizen tend to infinity. Theasymptotic
sufficiency of the ML estimator is essentially due to the fact that the (normed) likelihood function can
be expressed in a Taylor series to any desired degree.
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1.3.3 Discussion

Using an indirect approach to parameter estimation requires the specification of two dif-
ferent models for the same data set. This often causes confusion about how we should
thinkof the twomodels, namely the structural and the auxiliarymodel. Ifwe can approx-
imate the (underlying) data generating process (to any desired degree) by some fully
parametrized auxiliary model, then why shall we consider to estimate a highly complex
structural model in the first place? The answer to this question depends on how the ex-
perimenter thinks of the data at hand. If the auxiliary model gave a sensible explanation
of how theobserveddatawas generated, thenwewouldnot have to rely on computation-
ally involved indirect methods to solve the estimation problem since, per assumption, a
Maximum Likelihood Estimator is readily available for the auxiliary model.

Indirect estimation methods indeed only make sense when we have good reason to
believe that the structural model explains the data well, but is too complex to be esti-
mated by standardmethods. The auxiliary model is thus merely seen as the best statisti-
cal fit on the data andmay also be called the statistical model in contrast to the structural,
e.g. economic, model. Especially in research areas where the interest is in structural
and causal relationships, these methods allow for the simple and straightforward esti-
mation of otherwise hard to estimate structural models based on easy to estimate aux-
iliary models. It is therefore not surprising that these methods have found widespread
use especially in mathematical biology and economics. Prominent economic examples
are the estimation of stochastic differential equations, e.g. see Andersen et al. [3] and
Gallant and Long [50]; the estimation of stochastic volatility models, e.g. see Chernov
et al. [26]; the estimation of dynamic stochastic general equilibriummodels, see Le et al.
[78], and the estimation of labormarketmodels, seeMagnac et al. [80] andTopa [107].

In comparison to the parameter and likelihood based indirect estimators (i.e. II and
SQML in the frequentist setting and ABC-IP and ABC-IL for ABC) the score based
approaches (i.e. EMMandABC-IS) have the advantage that the computation of the ob-
jective function is more efficient. Thus, the estimation time is significantly smaller. This
is due to the fact that they do not require the computation of the map (i.e. the binding
function), which involves the estimation of the auxiliarymodel. So far, we have assumed
that the map η is available and known. However, with the exception of very simple ex-
amples, this is rarely the case and the parameter and likelihood based indirect estimators
therefore rely on aMonteCarlo approach to estimate themap. In particular, in theABC-
IL, II and SQML approach, M samples

{
(ŷm,t)

n
t=1
}M

m=1 of length n are first generated
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from the structural modelMS for a given structural parameter vector θ. Based on these
simulated samples, the map is computed as

η̂(θ) =
1
M

M∑
m=1

ω̂m

with
ω̂m = argmax

ω∈Ω
lA(ŷm, ω).

The ABC-IP method, in contrast, only requires the estimation of the map for one sim-
ulated data set (for a given structural parameter). In fact, even if the map is known it is
only of limited use in the ABC-IP case. To illustrate this, consider the case where the
map is known and the tolerance level is rather small such that the draws from the ABC
posterior are concentrated around the structural parameter that yields the smallest value
of the objective function which is not necessarily consistent with the posterior distribu-
tion. This will not be the case if we allow for sample variation in the computation of
the map (for ABC-IP) and the computation of the score (for ABC-IS). It is important
to note that for realistic auxiliary models the maximization problem of the likelihood
function is rarely solvable in closed form such that the use of numerical optimization
methods is often inevitable. This can result in significant computational costs. In con-
trast, the score basedmethods only require the computation of the score. For the EMM
case, the expectation of the score of the auxiliary model under the structural model can
be estimated by

Êθ

[
∂ log lA(Y, ω)

∂ω

∣∣∣∣
ω=ω̃(ML)

]
≈ 1

M

M∑
m=1

∂ log lA(ŷm, ω)

∂ω

∣∣∣∣
ω=ω̃(ML)

,

whereas in the ABC-IS case only one sample is used since the same arguments apply as
in the ABC-IP case.

The missing optimization step in the computation of the objective function leads to
a significant reduction of computing time. In the setting of the simulation study of Sec-
tion 1.4 the difference is of factor 50 for ABC-IP vs ABC-IS, that is for M = 1. For
more realistic models, e.g. high-dimensional and nonlinear models, this effect will be
even more pronounced as for each candidate value from the prior distribution a non-
trivial estimation step is involved.
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1.4 Illustration and simulation results

In this section we illustrate the usage and performance of indirect approaches to ABC.
We consider a simplemodel that admits a closed form expression for the associated pos-
terior distribution such that exact Bayesian inference can be carried out. We then inves-
tigate the accuracy of the indirect ABC algorithms to the true posterior in a simulation
study and compare the results to standard ABC methods.

1.4.1 Model setting

We consider the data y ≡ (yt)n
t=1 to be an i.i.d. sample from an exponential distribu-

tion E(λ) with parameter λ > 0 such that the structural model is given by

MS =
(
Rn

+,
{
E(λ)⊗n, λ > 0

})
,

where the exponential distributionhas a densitywith respect toLebesguemeasure given
by

z 7→ λ exp(−λz) Iz≥0.

We take the conjugate prior on the parameter λ of the structural modelMS to be λ ∼
G
(

α(π), β(π)
)

with G denoting the gamma distribution which allows us to perform
exact Bayesian inference. The likelihood of the model (with respect to Lebesgue mea-
sure) then reads as

lS (y, λ) = λn exp

(
−λ

n∑
t=1

yt

)
such that the closed form solution of the posterior distribution is given by

λ|y ∼ G
(

α(π) + n, β(π) +
n∑

t=1

yt

)
. (1.10)

To conduct Indirect ABC we have to specify an auxiliary model. In this example
we consider the same model structure as for the structural model but with Gamma dis-
tributed observations, i.e.

MA =
(

Rn
+,
{
G (α, β)⊗n , (α, β) ∈ (R+ × R+)

})
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with density

z 7→ βα

Γ (α)
zα−1 exp (−βz) Iz>0.

It is obvious that the mapping assumption is satisfied for η: λ 7→ (1, λ) such that the
structural model is nested within the auxiliary model, i.e.

{
E(λ)⊗n, λ > 0

}
⊂
{
G (α, β)⊗n , (α, β) ∈ (R+ × R+)

}
.

This setup enables us to illustrate thedifferences between the summary statistics used
in ABC-IP, ABC-IS and ABC-IL and compare them to the true posterior distribution.
To this end note that

∂ log l†
A (yt, α, β)

∂α
= log(β)− ψ(α) + log(yt),

and

∂ log l†
A (yt, α, β)

∂β
=

α

β
− yt,

where ψ(z) = Γ(z)′/Γ(z) is the digamma function. Moreover, the Fisher informa-
tion for the auxiliary model is given by[

ψ̄(α) − 1/β

− 1/β α/β2

]

with ψ̄ the trigamma function, i.e. the first derivative of the digamma function.
Taking expectations with respect to an exponentially distributed random variable

(i.e. Y ∼ E(λ)) we obtain after some algebra

Eλ

[
∂ log l†

A (Y, α, β)

∂α

]
= log(β)− ψ(α)− γ − log(λ),

and

Eλ

[
∂ log l†

A (Y, α, β)

∂β

]
=

α

β
− 1

λ
,

with γ = −ψ(1) ≈ 0.5772156649015 . . . the Euler–Mascheroni constant.
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Ignoring in a first analysis the estimation uncertainty for the auxiliary model, i.e.
α̃(ML) = 1 and β̃(ML) = λ0, it becomes obvious that the objective function Q(IE)

of any indirect estimation procedure is minimized (yields a value of zero) at λ = λ0.
Thus, assuming a known map, the II, EMM and SQML methods yield the same esti-
mate, i.e. λ̃(EMM) = λ̃(I I) = λ̃(SQML) = λ0. However, in realistic applications
the estimation uncertainty can not be ignored such that in general α̃(ML) ̸= 1 and
β̃(ML) ̸= λ0. This results in different estimators for the different moment conditions
underlying the II, EMM and SQML principle or, correspondingly, the Indirect ABC
approaches. Figure 1.1 highlights the difference for a simulated data set with 500 obser-
vations from the structural model with λ0 = 1. The solid black vertical line depicts the
manifold in the parameter space of the auxiliarymodel induced by the structural model.
Without loss of generality, we consider the case of equally weighted moments. The II
estimator is obtained byminimizing the distance between theMaximumLikelihood es-
timate (α̃(ML), β̃(ML)) and themanifold of the structural model. The SQML estimator
is given at the point on themanifold for which the auxiliary likelihood function is maxi-
mal. In Figure 1.1, this is the point where the contour lines of the likelihood function are
tangential to themanifold. TheEMMobjective function is indicated by the vectors orig-
inating from themanifold. They represent the (expectation) of the score of the auxiliary
likelihood function at the manifold. At a first glance one would expect to see vectors
pointing towards the steepest ascent of the log likelihood function. However, this intu-
ition ismisleading, as the objective function is the score of the auxiliarymodel evaluated
at the maximum likelihood estimates of the parameters of the auxiliary model, such that
the observed pattern in Figure 1.1 is in fact reasonable. The resulting EMM estimator
θ̃(EMM) is thus given by the structural parameter for which the length of the vector is
minimal.

However, the minimum of the respective objective functions is only of limited inter-
est in Bayesian inference. Even for this simple example an analytical analysis of the ABC
approach with different indirect summary statistics is infeasible and we thus proceed
with a simulation study.

1.4.2 Simulation study

In this study we analyze the approximation error of different ABC methods. In partic-
ular we consider a simple ABC approach using the mean and the variance of the data
sample as summary statistics (ABC-M), the indirect ABC approach using the parameter
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1 α

β

ω̃(ML) = (α̃(ML), β̃(ML))

θ̃(EMM) = (1, β̃(EMM))

θ̃(II) = (1, β̃(II))

θ̃(SQML) = (1, β̃(SQML))

01

Figure 1.1: Estimates based on different indirect estimation methods. This figure
illustrates for a simulated data set the parameter estimates of a structural model (ex-
ponential distribution) based on different indirect estimation methods using an aux-
iliary model (gamma distribution). The dashed lines represent the contours of the aux-
iliary log likelihood function, the horizontal line is the parameter space of the structural
model, and the arrows represent the objective function of the EMM estimator. The
points give the estimates resulting from the II, SQML and the EMM principles.

estimates of the auxiliary model (ABC-IP), the indirect ABC approach using the likeli-
hood function of the auxiliary model (ABC-IL) and the indirect ABC approach using
the score of the auxiliarymodel as summary statistics (ABC-IS).The corresponding dis-
tances are summarized inTable 1.1. In our analysis we consider the following simulation
setup. For a given prior distribution (specified by απ and βπ) we simulate 1, 000 sam-
ples of 100 exponentially distributed random variables with λ0 = 1 (implying a mean
and variance of one) representing our observed data. For every sample we compute the
exact posterior distribution according to (1.10) and approximate the posterior distribu-
tion using the different ABCmethods. To obtain the approximate posterior distribution
we simulate for every observed data set100, 000proposal draws from the prior distribu-
tion and compute the distance implied by the different ABC approaches to the observed
data. Discarding 99% of these proposals leaves us for each ABC method 1, 000 draws
from the approximate posterior distribution. Although this (implicit) selection proce-
dure for ϵ is rather crude, it allows for a fair comparison between thesemethods in terms
of computing time and is standard practice in the literature (see Marin et al. [81]).

We then consider different statistics tomeasure the distance between the true poste-
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Model Distance over summary statistics: d(S(ỹ), S(ŷ))

ABC-M
∥∥∥∥( 1

n
∑n

t=1 ỹt
1
n
∑n

t=1(ỹt − ¯̃y)2

)
−
( 1

n
∑n

t=1 ŷt
1
n
∑n

t=1(ŷt − ¯̂y)2

)∥∥∥∥
2

ABC-IP
∥∥∥ω̃(ML) − ω̂(ML)

∥∥∥
2

ABC-IL |lA(ỹ, ω̃(ML))− lA(ŷ, ω̃(ML))|

ABC-IS ∂
∂ωT log lA (y, ω)

∣∣∣
ω=ω̃(ML)

∂
∂ω log lA (y, ω)

∣∣∣
ω=ω̃(ML)

Table 1.1: Different distances over summary statistics. This table shows the different
summary statistics employed and how the respective distances are calculated.

rior distribution and the approximations and compute for each statistic the average over
all 1, 000 samples. This is repeated for several combinations of α(π) and β(π) to ana-
lyze the effect of different priors, i.e. we compare informative prior distributions against
rather flat prior distributions, andprior distributions that are in accordancewith the data
against prior distributions that are not. The results are presented in Table 1.2 and 1.3.
To facilitate the interpretation of the output we order the results by the mean and the
variance of the prior distribution which is in a one to one relation to the parameters of
the prior distribution.

Table 1.2 reports the average of the (absolute) distance between the exact posterior
mean and the respective ABC approximations. Interestingly, the simple ABC approach
(ABC-M) that uses the sample mean and variance as summary statistics almost always
performs worse than any of the indirect methods and exhibits the largest difference be-
tween the true and the approximated posterior mean. This is insofar surprising as the
mean is a sufficient statistic for the exponential distribution.

The table also shows that the Indirect ABC approach with parameter estimates as
summary statistics (ABC-IP) performs slightly better than plain ABC, but worse than
score based approach and mostly worse than the likelihood based approach. Overall, it
seems that the best results are obtained by the ABC-IS and ABC-IL with a slightly bet-
ter performance of the ABC-ISmethod. Compared to the simple ABC-Mapproach, the
reduction of the distance between the exact posteriormean and the ABC-IS approxima-
tion is at least of factor0.37 (meanof2 and varianceof0.25) and very often substantially
better.

24



estimator moments of the prior distribution

variance mean

0.5 1 2

ABC-M

0.
25

0.0183 0.0090 0.0434
ABC-IP 0.0141 0.0070 0.0560
ABC-IL 0.0110 0.0127 0.0258
ABC-IS 0.0103 0.0057 0.0288
ABC-M

0.
5

0.0228 0.0132 0.0290
ABC-IP 0.0175 0.0090 0.0186
ABC-IL 0.0119 0.0117 0.0131
ABC-IS 0.0127 0.0069 0.0122
ABC-M

1

0.0289 0.0149 0.0351
ABC-IP 0.0241 0.0114 0.0135
ABC-IL 0.0126 0.0111 0.0123
ABC-IS 0.0168 0.0086 0.0095
ABC-M

2

0.0419 0.0216 0.0159
ABC-IP 0.0317 0.0164 0.0132
ABC-IL 0.0213 0.0121 0.0118
ABC-IS 0.0209 0.0121 0.0091
ABC-M

4

0.0592 0.0315 0.0175
ABC-IP 0.0469 0.0198 0.0135
ABC-IL 0.0750 0.0166 0.0156
ABC-IS 0.0287 0.0145 0.0101

Table 1.2: Distance between the true posteriormean and the posteriormeanbased
on different ABCmethods. This table shows the distance between the true posterior
mean and the posteriormean based ondifferentABCmethods and different prior distri-
butions that are specified by their mean and variance. ABC-M corresponds to the ABC
approach with sample mean and variance as summary statistics, ABC-IP corresponds
to the Indirect ABC approach with parameter estimates as summary statistics, ABC-IL
corresponds to the IndirectABCapproachwith likelihoodbased summary statistics and
ABC-IS corresponds to the Indirect ABCapproachwith score based summary statistics.
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Although the posteriormean is an important functional of the posterior distribution,
it is just one statistic andmay not be representative for the whole posterior distribution.
We therefore also aim to compare the exact posterior distribution with the approxima-
tion obtained by the different ABC approaches. To this end we repeat the procedure as
described above but instead of considering the mean we focus on the chi-squared dis-
tance

20∑
i=1

(oi − ei)
2

ei

where ei is the expected number of observations in cell i (obtained from the exact pos-
terior distribution for a given simulated data set) and oi is the number of realized obser-
vations in cell i. We use 20 cells that are computed in such a way that every cell contains
5% of the data, i.e. for the i-th cell we choose the interval given by

[Q(0.05(i − 1)), Q(0.05i)]

withQ : [0, 1] → R+∪∞denoting thequantile functionof theposterior distribution
(1.10), Q(0) = 0 and Q(1) = ∞. Table 1.3 shows the averages of the chi-squared
statistics over all 1, 000 replications using the same prior distributions as in Table 1.2.

Table 1.3 shows that, again that the ABC-IL and ABC-ISmethod clearly outperform
the standard ABC approach as well as the parameter based ABC-IP method. However,
a clear ranking between ABC-IL and ABC-IS seems to depend on the specification of
the prior distribution.

The chi-squared statistic also allows us to analyze the approximation quality for dif-
ferent prior distributions. As may be expected, the best results will be obtained if the
prior mean is equal to the value of the unknown parameter (note that λ0 = 1 implies
a mean of one) and if the prior variance is small. This ensures that the proposed draws
(from the prior distributions) are very often close to the posterior distribution.

Increasing the variance of the prior distribution has two opposing effects. In fact, an
increase of the variance leads to a larger variance of the proposal draws but also increases
the support of the prior distribution that receives considerable probabilitymass. Which
of those two effects will dominate depends on the relative position of the prior distri-
bution with respect to the posterior distribution. If the mean of the prior distribution
is relatively close to the (unknown) posterior mean, the first effect will clearly domi-
nate: as the prior variance increases, the variance of the proposed draws increases aswell
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whereas the increase in support is insignificant such that the approximation gets worse.
In contrast, if the prior mean is far away from the posterior mean, the second effect will
dominate at first: an increase in the prior variance leads to an increase of the support
that receives sufficient probability mass, resulting in more proposal draws that are close
to the posterior distribution. As such, the approximation gets better by increasing the
variance. However, this effect will be eventually dominated by the increased variance
of the proposal draws and the approximation gets worse again by further increasing the
prior variance once the benefits of an increased prior support have been exploited.

These effects are also seen in Table 1.3. For draws from the prior with a mean of 0.5
(which is relatively close to 1) increasing the variance leads to a worse approximation as
does for a mean of 1. Whereas ABC-IL performs better for draws from the prior with
mean 0.5, ABC-IS performs better for draws from the prior with mean 1. However, for
draws from the prior with a mean of 2, the approximation gets better by increasing the
variance up until a value of 2 and gets worse again by increasing the prior beyond that
value. In these cases, ABC-IS performs better than ABC-IL.

1.5 Conclusion

In this paperwe formalizeda selectionmechanism for sufficient summary statisticswithin
the ABC framework that is based on an auxiliary model and borrows its intuition from
the indirect estimation literature in statistics, particularly in econometrics. Three such
mechanisms have been considered, based on the auxiliary parameter estimates (ABC-
IP), the auxiliary log-likelihood function (ABC-IL) and on the auxiliary score vector
(ABC-IS).

The ABC-IS and ABC-IL proposals have been shown to give rise to (exactly) suffi-
cient summary statistics (whereas the ABC-IP method yields asymptotically sufficient
summary statistics) for the structuralmodelunder the assumption that the latter is nested
within the auxiliarymodel. A detailed simulation study investigated the performance of
each proposal and compared it to a traditional, moment-based ABC approach. Partic-
ularly, the ABC-IL and ABC-IS algorithms performed better than both standard ABC
and the ABC-IP methods.
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estimator variance mean

0.5 1 2

ABC-M

0.
25

141.8813 54.2198 573.2338
ABC-IP 151.6284 47.7336 922.7216
ABC-IL 67.6088 76.9999 211.2614
ABC-IS 46.9136 27.0765 377.0657
ABC-M

0.
5

318.7890 100.2351 355.1234
ABC-IP 210.1628 73.0205 198.0316
ABC-IL 68.5202 60.9606 67.7523
ABC-IS 60.3490 31.1686 57.9846
ABC-M

1

301.3400 98.0395 143.1314
ABC-IP 367.2982 107.2002 143.3554
ABC-IL 62.9832 54.8310 70.2524
ABC-IS 94.7804 40.0977 51.4272
ABC-M

2

558.0046 183.6534 111.9762
ABC-IP 567.3480 193.4671 137.2659
ABC-IL 88.7074 57.7679 62.2512
ABC-IS 134.7983 58.0195 43.1016
ABC-M

4

1223.4122 612.3418 201.342
ABC-IP 1109.0594 264.1298 136.0284
ABC-IL 174.9038 61.1863 67.0217
ABC-IS 276.6809 78.0879 45.2486

Table 1.3: Chi-squared distance between the true posterior distribution and the
posterior distribution based on different ABC methods. This table shows the chi-
squared statistics formeasuring the distance between the true posterior distribution and
the posterior distribution based on different ABCmethods and different prior distribu-
tions that are specified by their mean and variance. The results are reported for the ABC
methods and the prior distributions discussed in Table 1.2.
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2
Efficiently weighted IndirectABC: an
application of estimating a stochastic

volatility model of OU type

2.1 Introduction

In this paper we apply the Indirect Approximate Bayesian Computation methodology
developed in the previous chapter to the problem of estimating a continuous-time sto-
chastic volatility model of Ornstein-Uhlenbeck type which is driven by a non-Gaussian
Lévy process. This class of models was introduced by Barndorff-Nielsen and Shephard
[9] and Barndorff-Nielsen and Shephard [10] and has gained wide popularity in the
literature as it effectively captures stylized facts of financial time series such as volatil-
ity clustering, heavy tails in the return distribution and most importantly, jumps in the
volatility process. The estimation of these models is challenging as the model structure
induces two characteristics that cannot be handled by standard estimation methods.
First, the volatility process is unobservable and second, the model is formulated in con-
tinuous timewhereas the data is observed only at discrete time points. These challenges
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have lead to the development of different estimation approaches. Taufer et al. [105],
for example, use the affine structure of the characteristic function to estimate themodel
in a frequentist setup. Bayesian estimation was considered in Frühwirth-Schnatter and
Sögner [48], Griffin and Steel [64] and Roberts et al. [97]. In the Bayesian setup, the
jump times and jump sizes of the background driving Lévy process are modeled as un-
observed variables and are integrated out.

In contrast to these approaches, the proposed IABCmethod only requires the possi-
bility to generate simulations from the structural model. For the considered stochastic
volatility model this simulation is straightforward when the driving Lévy processes is of
finite activity and can be implemented to any desired degree if the process is of infinite
activity (see Asmussen and Glynn [5, Chapter 12] and the references therein). As the
observed data is condensed in an auxiliary model, it is further more required to specify
an adequate model which describes the (observed) data sufficiently well. Especially for
financial data the semi-nonparametric model of Gallant and Nychka [52] seems to be
very successful as indicated by several studies, e.g. see Andersen et al. [3] or Chernov
et al. [26].

The paper is organized as follows. Section 2.2 briefly discusses the employed esti-
mation methodology based on Indirect Approximate Bayesian Computation where the
summary statistics are given by the score vector of some suitable auxiliarymodel. More-
over, we consider a modification to the exposition in the previous chapter in that we
introduce an efficient weighting scheme for the individual summary statistics. The ef-
fect of weighting is illustrated in a simulation study in Section 2.3 where we follow the
same setup as in the previous chapter. Section 2.4 reviews the structural model, i.e. the
Ornstein-Uhlenbeck type stochastic volatilitymodel, while Section 2.5 presents the em-
ployed auxiliary model based on a semi-nonparametric density approach. Our estima-
tion results are presented in Section 2.6. Section 2.7 concludes.

2.2 ApproximateBayesianComputationwithweighted indirect

score-based summary statistics

As discussed in the previous chapter, Indirect ABC methods consider the interplay be-
tween a structural modelMS = (YS,PS) and a statistical modelMA = (YA,PA).
Here,YS andYA denote the sample space of the structural and auxiliarymodel, respec-
tively whereasPS = {PS(θ), θ ∈ Θ} andPA = {PA(ω), ω ∈ Ω} denote families
of probability distributions that are parametrized by some structural and auxiliary pa-
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rameter vector θ and ω, respectively. While MS is our model of interest, it is thought
that its likelihood function lS(y, θ) : YS × Θ → R+ is not available in closed form
(or too computationally involved to compute). However, it is assumed that one can gen-
erate, for each θ∗ ∈ Θ, a simulated data sample (ŷt)

n
t=1 according to y 7→ lS (y, θ∗).

As before, we consider for brevity of exposition the special case of a stationary stochastic
process (yt)

∞
t=−∞ with transition density given by l†

S such that the likelihood function
lS can be factorized as

lS(y, θ) = l‡
S(x0, θ)

n∏
t=1

l†
S(yt|xt−1; θ), (2.1)

where xt−1 denotes the vector of state variables (e.g. the first L lagged variables of the
series itself, (yt−1, yt−2, . . . , yt−L)).

In contrast, MA is seen as a purely statistical model that represents the data gener-
ating process suitably well and admits a tractable likelihood function which we denote
by lA(y, ω) : Y × Ω → R+. Similarly to above, we can factorize lA in the stationary
case as

lA(y, ω) = l‡
A(x0, ω)

n∏
t=1

l†
A(yt|xt−1; ω), (2.2)

where l†
A denotes the transition density and xt−1 denotes again the vector of state vari-

ables (e.g. the first L lagged variables of the series itself, (yt−1, yt−2, . . . , yt−L)). Since
it is assumed that lA is available in closed form we can devise theMaximum Likelihood
estimator ω̃(ML) of the auxiliary parameter ω based on a sample of size n of observed
data (ỹt)

n
t=1 as

ω̃(ML) = argmax
ω∈Ω

lA(ỹ, ω).

Asmentioned in the previous chapter, indirect summary statistics can be devised by fol-
lowing the Efficient Method of Moments (EMM) approach of Gallant and Tauchen [54].
ABC-IS thus bases summary statistics SIS ≡ SIS(y, ω) on the score of the auxiliary
model, i.e.

SIS(y, ω) =
∂

∂ω′ log lA
(
y, ω′)∣∣∣∣

ω′=ω

. (2.3)

Similarly to EMM, the question arises how the different summary statistics (ormore
precisely, deviations between summary statistics based on observed and simulated data)
should be weighted in the ABC-IS approach. In the EMM approach, the weighting is
irrelevant in the exactly identified case, i.e. if the dimensions of the parameter spaces of
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the auxiliarymodel andof the structuralmodel are identical. In contrast, if the structural
model is overidentified, i.e. the parameter space of the auxiliary model exceeds that of
the structuralmodel, then the specification of theweightingmatrix has an impact on the
(asymptotic) variance of the estimator and it is therefore crucial to choose a weighting
matrix that minimizes the asymptotic variance. In the Indirect ABC setup, however, the
specification of the weighting matrix is relevant in both cases: in the case of overidenti-
fication as well as in the case of exact identification. The reason is that in contrast to the
frequentist interpretation, we are not only interested in the minimum of the objective
function but, more generally, in the whole posterior distribution. To see this, note that
for a given tolerance level ϵ, a simple weighting of the summary statistics implies an ac-
ceptance area that is a p-dimensional ball centered around the summary statistic of the
data. However, not all statistics carry the same information content and, thus, different
weights may be helpful. Moreover, if two statistics are highly dependent, it is preferable
to take this property into account by choosing an appropriateweighting scheme. Hence,
a careful weighting of the summary statistics is a relevant issue.

One of the main advantages in using a score based indirect summary statistic (ABC-
IS) is the possibility to obtain an efficient weighting scheme for the individual entries of
the summary statistic vector S. Note that the score based summary statistic SIS in (2.3)
evaluated at the observed data is zero for all values of θ, i.e. SIS(ỹ, ω̃(ML)) = 0, by con-
struction. Hence, when comparing the distance between score based summary statis-
tics evaluated at observed and simulated data, we determine how far SIS(ŷ, ω̃(ML)) is
away from zero. Following the analogy of ABC-IS to EMM, we therefore consider the
weighted quadratic formwhich, in the frequentist setting, is a well establishedweighting
scheme with desirable properties. For S denoting the space of summary statistics it is
given by

dI−1 : S → R, s 7→ sTI−1
A s

with

IA = V

(
∂ ln lA (Y, ω)

∂ω

)
= −E

(
∂2 ln lA (Y, ω)

∂ω∂ωT

)
(2.4)

denoting the corresponding information matrix (of the auxiliary model). Depending
on the auxiliary model, an estimator for the information matrix can very often derived
in a straightforward way. Under the assumption of stationarity, an estimator for the in-
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formation matrix in (2.4) based on observed data ỹ = (ỹt)
n
t=1 is given by

ĨA =
n∑

t=1

[
∂

∂ω
log lA(ỹt|x̃t−1; ω)

∣∣∣∣
ω=ω̃(ML)

] [
∂

∂ω
log lA(ỹt|x̃t−1; ω)

∣∣∣∣
ω=ω̃(ML)

]T
.

The resulting distance between summary statistics S for the ABC-IS method is then
given by

SIS(ŷ, ω̃(ML))T Ĩ−1
A SIS(ŷ, ω̃(ML)). (2.5)

This weighting scheme accounts for different variances of the different elements in the
score and, moreover, appropriately captures the dependence structure of the summary
statistics. In contrast to the case with equal weights (i.e., where Ĩ−1

A is the identity ma-
trix) this weighting implies an (possibly rotated) ellipsoid for the acceptance area.

2.3 Simulation study

To illustrate the effect that the introduced weighting scheme has on the approximation
properties of the ABC-IS algorithm we recapture the setup of the simulation study of
the previous chapter. As before, we take the structural model to be given by

MS =
(
Rn

+,
{
E(λ)⊗n, λ > 0

})
,

where the observed data (ỹt)
n
t=1 is sampled independently and identically from the ex-

ponential distribution with parameter λ such that the associated likelihood function of
the structural model (with respect to Lebesgue measure) reads as

lS (y, λ) = λn exp

(
−λ

n∑
t=1

yt

)
.

We again consider the conjugate prior on the parameter λ of the structural model
MS to be λ ∼ G

(
α(π), β(π)

)
with G denoting the gamma distribution such that the

closed form solution of the posterior distribution is given by

λ|y ∼ G
(

α(π) + n, β(π) +
n∑

t=1

yt

)
. (2.6)
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The auxiliary model is specified in terms of gamma distributed observations, i.e.

MA =
(

Rn
+,
{
G (α, β)⊗n , (α, β) ∈ (R+ × R+)

})
.

Thesimulation setup is as follows. For a given prior distribution (specified by απ and
βπ)we simulate 1, 000 samples of 100 exponentially distributed randomvariables with
λ0 = 1 (implying a mean and variance of one) representing our observed data. For ev-
ery sample we compute the exact posterior distribution according to (2.6) and approxi-
mate the posterior distribution using both the unweighted (ABC-IS∗) and theweighted
(ABC-IS) version of the score-based indirect ABCmethods. To obtain the approximate
posterior distribution we simulate for every observed data set 100, 000 proposal draws
from the prior distribution and compute the distance implied by the different ABC ap-
proaches to the observed data. Discarding 99% of these proposals leaves us for each
ABC method 1, 000 draws from the approximate posterior distribution.

As before, different statistics are considered tomeasure the distance between the true
posterior distribution and the approximations and for each statistic the average over all
1, 000 samples is computed. This is repeated for several combinations of α(π) and β(π)

to analyze the effect of different priors. The results are presented in Table 2.1 and 2.2.
Whereas in Table 2.1 we consider the distance between the true posterior mean and the
mean of the posterior approximation based on ABC-IS∗ and ABC-IS, Table 2.2 consid-
ers the chi-squared distance

20∑
i=1

(oi − ei)
2

ei

where ei is the expected number of observations in cell i (obtained from the exact pos-
terior distribution for a given simulated data set) and oi is the number of realized obser-
vations in cell i. We use 20 cells that are computed in such a way that every cell contains
5% of the data, i.e. for the i-th cell we choose the interval given by

[Q(0.05(i − 1)), Q(0.05i)]

withQ : [0, 1] → R+∪∞denoting thequantile functionof theposterior distribution
(2.6), Q(0) = 0 and Q(1) = ∞.

As the results in Tables 2.1 and 2.2 indicate, employing a suitable weighting scheme
greatly improves the approximation properties of the ABC-IS algorithm. This is indeed
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estimator moments of the prior distribution

variance mean

0.5 1 2

ABC-IS∗ 0.25 0.0103 0.0057 0.0288
ABC-IS 0.0028 0.0028 0.0163
ABC-IS∗ 0.5 0.0127 0.0069 0.0122
ABC-IS 0.0036 0.0030 0.0089
ABC-IS∗ 1 0.0168 0.0086 0.0095
ABC-IS 0.0051 0.0033 0.0047
ABC-IS∗ 2 0.0209 0.0121 0.0091
ABC-IS 0.0074 0.0038 0.0040
ABC-IS∗ 4 0.0287 0.0145 0.0101
ABC-IS 0.0137 0.0048 0.0039

Table 2.1: Distance between the true posteriormean and the posteriormeanbased
on different ABCmethods. This table shows the distance between the true posterior
mean and the posterior mean based on different ABC methods and different prior dis-
tributions that are specified by their mean and variance. ABC-IS∗ corresponds to the
unweighted Indirect ABC approach with score based summary statistics, while ABC-IS
considers the inverse information matrix as weighting matrix.

the case uniformly over different specifications of themean and variance of the prior dis-
tributions. If we furthermore compare these results to the ABC-ILmethod discussed in
the previous chapter, weighted ABC-IS shows the best performance of all indirect ABC
methods and has the additional advantage of being computationally efficient. These
considerationsmakeweighted ABC-IS an ideal contender to be employed in a challeng-
ing estimation problem such as the one considered in the next sections.
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estimator variance mean

0.5 1 2

ABC-IS∗ 0.25 46.9136 27.0765 377.0657
ABC-IS 28.2088 20.9334 285.9329
ABC-IS∗ 0.5 60.3490 31.1686 57.9846
ABC-IS 34.4208 22.2936 47.4405
ABC-IS∗ 1 94.7804 40.0977 51.4272
ABC-IS 49.8150 25.0106 29.3161
ABC-IS∗ 2 134.7983 58.0195 43.1016
ABC-IS 84.0525 32.0681 26.9558
ABC-IS∗ 4 276.6809 78.0879 45.2486
ABC-IS 204.8259 42.8542 28.1143

Table 2.2: Chi-squared distance between the true posterior distribution and the
posterior distribution based on different ABC methods. This table shows the chi-
squared statistics formeasuring the distance between the true posterior distribution and
the posterior distribution based on different ABCmethods and different prior distribu-
tions that are specified by their mean and variance. The results are reported for the ABC
methods and the prior distributions discussed in Table 2.1.

2.4 Thestructuralmodel: AnOrnstein-Uhlenbecktypestochas-

tic volatility model

Our structuralmodelMS is defined in terms of the following two stochastic differential
equations:

d x∗(t) = (µ + βσ2(t))d t + σ(t)d W(t) (2.7)

d σ2(t) = −λσ2(t)d t + d Z(λt). (2.8)

Here we denote with (x∗(t))t≥0 the log price process of an asset, (W(t))t≥0 is a stan-
dard Brownian motion and

(
σ2(t)

)
t≥0 is the underlying latent instantaneous volatility

process ofOU type, independent of (W(t))t≥0, with (Z(λt))t≥0 being the background
driving Lévy process (BDLP).The parameters µ and β are denoting the drift and risk pre-
mium, respectively, in the SDE for the log-price x∗(t) (2.7), whereas the parameter λ

governs both the exponential decay of σ2(t) and the rate at which jumps in (instanta-
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neous) volatility occur in (2.8). As in Barndorff-Nielsen and Shephard [9], we use the
unusual timing concept of λt instead of t for theBDLPas in that case themarginal distri-
bution of σ2(t) turns out to be independent of the parameter λ. The distribution (and
qualitative properties) of the volatility process depends moreover on the specification
of the BDLP of which several proposals have been made in the literature. For example
it is possible to specify a process with finite jump activity or with infinite jump activity.
A widely used process is the Gamma-OU process which implies a gamma G(α, δ) law
for the marginal distribution of the process (σ2(t))t≥0. Several studies show the ade-
quacy of this process for modeling financial time series, e.g. see Griffin and Steel [64]
and Frühwirth-Schnatter and Sögner [48], who also consider the Bayesian estimation
of these processes.

Consider now aggregated returns over an interval of length ∆, given by

yn =

∫ n∆

(n−1)∆
d x∗(t) = x∗(n∆)− x∗((n − 1)∆).

Using the discretization of the so-called actual volatility process in Barndorff-Nielsen and
Shephard [9, Equation 3] we can write

σ2
n = σ2∗(n∆)− σ2∗((n − 1)∆) =

∫ n∆

(n−1)∆
σ2(u)d u

=
1
λ

[
Z(λn∆)− Z(λ(n − 1)∆)− (σ2(n∆)− σ2((n − 1)∆))

]
,

where we denote by
(
σ2∗(t)

)
t≥0 the integrated volatility process. It can be shown that

the conditional distribution of yn given σ2
n is given by

yn|σ2
n ∼ N (µ∆ + βσ2

n, σ2
n).

Nonetheless, exploiting this result for estimation purposes is difficult since the condi-
tional distribution of yn, although normal, depends on the latent processes σ2. Conse-
quently, a standard Maximum Likelihood approach is not feasible in this context since
the likelihood function of the structural parameter vector θ = (µ, β, λ, α, δ) takes no
explicit form.

Another problem that arises from the formulation of the stochastic volatility model
as in (2.7) - (2.8) is that it fails to capture the dependence structure between squared re-
turns properly. Barndorff-Nielsen and Shephard [9, Equation 44] show that if the OU
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process for the instantaneous volatility process σ2(t) admits a finite variance, the corre-
lation between squared returns will be given by

cor(y2
n, y2

n+s) = C exp {−λ∆(s − 1)} , s > 0,

for C some constant that depends on the (finite) variance of σ2(t), thus implying an ex-
ponential decay in the autocorrelation function of squared returns. Empirical evidence,
however, suggests that the autocorrelation function of squared returns initially falls very
steeply and decays rather slowly at greater lags (see e.g. Ding and Granger [39]). This
dependence structure cannot be modeled by a single OU process. However, a linear
combination or superposition of severalOUprocesses can give rise to such a dependence
structure. We therefore consider the instantaneous volatility process σ2 to be given by a
sum of m Gamma-OU processes σ2

i , each with a respective BDLP Zi and parametrized
with parameter λi and marginal distribution parameters αi, δi. Formally, we have

σ2(t) =
m∑

i=1

σ2
i (t),

with σ2
i being the solution of

d σ2
i (t) = −λiσ

2
i (t)d t + d Zi(λit), i = 1, . . . , m.

Particularly, such a formulation leads to an autocorrelation function of squared returns
given by

cor(y2
n, y2

n+s) =
m∑

i=1

Ci exp {−λi∆(s − 1)} , s > 0,

where the constants Ci, i = 1, . . . , m depend on the (finite) variances of the processes
σ2

i (t). As we will see in Section 2.6, a superposition of only m = 2 components is al-
ready sufficient to capture the dependence structure appropriately. Naturally, the results
for the special case m = 1 from above extend easily, and one has

yn|σ2
n ∼ N (µ∆ + βσ2

n, σ2
n).
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where now the actual volatility is given by

σ2
n =

m∑
i=1

1
λi

[
Zi(λin∆)− Zi(λi(n − 1)∆)− (σ2

i (n∆)− σ2
i ((n − 1)∆))

]
.

(2.9)

2.5 Theauxiliarymodel: Asemi-nonparametricdensityapproach

Using the Indirect ABC procedure requires us to specify an auxiliary model that is both
analytically tractable andprovides a good approximationof the true data generating pro-
cess. The SNP model as introduced by Gallant and Nychka [52] seems to meet these
requirements: it is certainly analytically tractable and its empirical adequacy for our data
set is demonstrated in Section 2.6. In the following we briefly review the SNP model.¹

To this end consider the location-scale transformation for yt to be of the form

yt = µxt−1 + Rxt−1zt (2.10)

where the innovation is denoted as zt andwhere the subscripts indicate the dependence
of R and µ on the lagged state vector xt−1 for reasons to become clear below.

The SNP density approach is based on the fact that a Hermite expansion can be used
as a general purpose approximation to a density function. More precisely, we expand the
square root of an innovation density h in a Hermite expansion and truncate the infinite
polynomial at some integer Kz which, togetherwith other tuning parameters of the SNP
density, has tobedetermined throughamodel selection criterion (suchasBIC).Nowwe
take the leading term of theHermite expansion to follow aGaussianGARCHmodel. In
other words, we expand

√
h(z) into a polynomial in z of degree Kz whose coefficients

are polynomials in x of degree Kx. The truncated density of an innovation zt given past
values of yt up to lag L (which we denoted xt−1) can now be written as

¹Considering our example of a stochastic volatility model for financial data it may be somewhat
natural to choose a GARCH model as our auxiliary model. GARCH models allow us to reproduce
several stylized facts of financial data such as dependence in conditional variances, skewness and excess
kurtosis. However, standard GARCHmodels for financial data aim at a parsimonious model structure
for financial applications, such that these models may not be the appropriate choice for an auxiliary
model which should provide a detailed description of the data.
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hK(zt | xt−1) =
P2(zt, xt−1)φ(zt)∫
P2(u, xt−1)φ(u)du

=

(∑Kz
|α|=0

(∑Kx
|β|=0 aαβxβ

t−1

)
zα

t

)2
φ(zt)∫ (∑Kz

|α|=0

(∑Kx
|β|=0 aαβxβ

t−1

)
uα
)2

φ(u)du
.

The normalization in the denominator is necessary for hK to integrate to one. In the
expression above, φ denotes the standard normal density function, β is an index vector
of length L and xβ =

∏L
i=1 xβi

i . Note furthermore that since

P2(z, x)/
∫

P2(u, x)φ(u)du

is a homogeneous function of the coefficients of the polynomial P, P can only be de-
termined up to a scalar multiple. To achieve a unique representation, the constant term
a00 of the polynomial P is normalized to unity. Therefore, hK can be interpreted as a
series expansion whose leading term is the normal density φ and whose higher-order
terms induce departures from normality.

To complete our auxiliary model we have to specify the scale-location transforma-
tion in (2.10). As mentioned in Gallant and Tauchen [53] it proves advantageous in
applications to allow the scale Rxt−1 to explicitly depend on the lagged state vector xt−1

as that reduces the degree Kx required to obtain a good approximation for our structural
model l†

S. We followChernov et al. [26] and specify Rxt−1 by a univariate GARCH-like
specification:

Therefore, let

R2
xt−1

= β0 +
Lr∑

i=1

βi
(
yt−1−Lr+i − µxt−2−Lr+i

)2

+

Lg∑
i=1

γi R2
xt−2−Lg+i

.

40



For the location µxt−1 we propose an AR process of the form

µxt−1 = α0 +

Lµ∑
i=1

αi xt−2−Lµ+i,

where the lag-length of µxt−1 is denoted by Lµ. In summary, the different lag-lengths
Lr, Lg, Lµ govern the location-scale transformation for yt and hence, determine the na-
ture of the leading term of the Hermite expansion. On the other hand, Kz, Kx govern
the degree of the polynomial of theHermite expansion and, hence, determine the nature
of the innovation process zt. Finally, a change of variable is the last step in our deriva-
tion of the SNPdensity of the auxiliarymodel and leads to the likelihood of the auxiliary
model:

lA(y, ω) =
T∏

t=1

hK

(
R−1

xt−1
(yt − µxt−1) | xt−1

)
Rxt−1

,

where all auxiliary parameters are collected in ω.

2.6 Estimation results

Our study of the OU type stochastic volatility model is based on daily stock returns of
the IBM stock ranging from 1990/01/03 to 2011/12/30, yielding 4787 observations.
Figure 2.1 illustrates the usual stylized facts, such as volatility clustering and fat tails in
the return data.

Specification of the auxiliary model

The key for a successful application of indirect methods in general is the specification of
an auxiliary model. It has to both capture the characteristic information of the data, and
be computationally tractable². Naturally, there is little hope to find a universal model
suited for every application. However, in the context of financial data analysis, the SNP
densities introduced above turn out to provide an adequate description (see, e.g. Cher-
nov et al. [26]).

Whenfitting anSNPauxiliarymodel to our data set, we rely on theBayesian informa-
tion criterion (BIC). In a first step, we increase the order of the auto-regressive polyno-

²This has to hold particularly for the ABC-IP and ABC-IL (or SQML and II) approach as they
require the estimation of the auxiliary model for every proposal from the prior distribution.
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Figure 2.1: Daily returns. Time series plot of the daily percentage logarithmic return.
The panel shows the evolvement of the return of the IBM stock (January 3rd, 1990 until
December 30th, 2011).

mial and then the order of the GARCH model. This results in an AR(1)-GARCH(1,1)
model, and the polynomial order Kx is chosen to be 8 whereas Kz is taken to be zero.
A more detailed description of the model selection procedure can be found in Ander-
sen et al. [3] and Chernov et al. [26]. Table 2.3 reports the parameter estimates and the
corresponding asymptotic t-values.

Prior distributions

In our application we estimate the Ornstein-Uhlenbeck type stochastic volatility model
from Section 2.4 where we consider modeling the instantaneous volatility σ2 both as a
single OU process and as a superposition of several OU processes. These OU processes
are taken to have marginal gamma distribution so that the structural parameter vectors
are given by

θ1 = (µ, β, λ, α, δ)

θ2 = (µ, β, λ1, λ2, . . . , λm, α1, α2, . . . , αm, δ1, δ2, . . . , δm)

respectively.
In accordance with the literature (see, e.g. Frühwirth-Schnatter and Sögner [48];

Griffin and Steel [64] and Roberts et al. [97]) we found in preliminary analyses the risk
premium β to be negligible and thus exclude it from the structural parameter vectors
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parameter estimate t-values

µ0 0.1893 3.4158
β0 0.0339 6.1020
β1 0.0626 8.9223
γ1 0.9364 152.5255

α0,1 −0.0881 −2.6380
α0,2 −0.2241 −10.5103
α0,3 0.0289 2.1246
α0,4 0.0514 7.1445
α0,5 −0.0033 −1.5877
α0,6 −0.0043 −4.9306
α0,7 0.0001 1.1581
α0,8 0.0002 4.7374

Table 2.3: Auxiliary model. Reported are the parameter estimates and t-values of the
auxiliary model.

θ1 and θ2 in the remainder of this section. Following Griffin and Steel [64], we choose
a weakly informative prior on the drift parameter µ, taken to be the N (0, 90) Normal
distributionwithmeanzero andvariance90. In the casewhereweconsideronlyoneOU
process, we follow the abovementioned authors and choose as a prior for the parameter
λ the G(1, 1) Gamma distribution with shape and rate one which implies a B(1, 1)
prior for the autocorrelation e−λ∆ of the instantaneous volatility process σ2. The priors
on the shape (α) and rate (δ) parameters of the marginal Gamma distribution of σ2 are
then taken to be given by theG(1, 1) andG(1, 100)Gammadistributions, respectively.

The case where we consider a superposition of m OUprocesses tomodel σ2 is more
involved since, asFrühwirth-Schnatter andSögner [48] remark, the superpositionmodel
in Section 2.4 is identified only up to relabeling the indices of the m components since
the expression for the actual volatility in (2.9) is invariant under such relabeling. As
Frühwirth-Schnatter and Sögner [48] point out, in the case of m = 2 the likelihood
function of the parameters θ = (µ, β, λ1, λ2, α1, α2, δ1, δ2) is the same as the one
for the relabeled parameters θ⋆ = (µ, β, λ2, λ1, α2, α1, δ2, δ1), thus giving rise to two
equivalentmodal regions. Using anMCMCsampler basedon symmetric independence
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priors for the parameters in the superposition model of the form

p(λ1, λ2, . . . , λm, α1, α2, . . . , αm, δ1, δ2, . . . , δm) =
m∏

i=1

p(λi)p(αi)p(δi)

can lead to label-switching if the localmodes arenotwell-separated. Frühwirth-Schnatter
and Sögner [48] thus suggest to use an asymmetric prior of the form

p(λ1, λ2, . . . , λm, α1, α2, . . . , αm, δ1, δ2, . . . , δm)

= p(λ1, λ2, . . . , λm)
m∏

i=1

p(αi)p(δi),

where

p(λ1, λ2, . . . , λm) = p(λ1)
m∏

i=2

p(λi|λi−1).

The prior on λ1 is taken to be the E(1) Exponential distribution, whereas for i =

2, . . . , m we consider, given the value for λi−1, the parameter λi to follow an E(1) Ex-
ponential distribution left truncated atλi−1. Concerning theparameters of themarginal
Gamma distribution of the OU processes σ2

i we adopt the following priors. The shape
parameters (α1, α2, . . . , αm) are taken to independently follow a G(1, 1) Gamma dis-
tribution whereas we restrict the rate parameters δ1 = δ2 = . . . = δm ≡ δ which we
take to follow aG(1, 100)Gamma distribution. The prior on the drift parameter µ will,
as before, be given by aN (0, 90)Normal distribution.

Estimation results

We first estimate the stochastic volatility model in (2.7) based on the instantaneous
volatility process being modeled by only one non-Gaussian Ornstein-Uhlenbeck pro-
cess. The structural parameter vector of interest is thus given by θ1 = (µ, λ, α, δ). We
generate 3, 000, 000 proposal draws of θ1 and retain the 0.1% percentile of sampled
distances, yielding a total of 3, 000 draws from the approximate posterior distribution.
Figure 2.2 shows the corresponding (marginal) histograms for the structural parameters
as well as the estimated autocorrelation function of the volatility process σ2

n . As is to be
expected, such a simple formulation cannot depict the complex dependence structure
appropriately, as indicated by the exponential decay of the autocorrelation function (see
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Figure 2.2: Histogramsandautocorrelation function. Thisfigure showsmarginal his-
tograms of the structural parameters α, δ, λ, µ based on 3, 000 accepted draws from the
ABC-IS approximation to the posterior distribution based on a single OU process. The
tolerance level ϵ is chosen implicitly through retaining the 0.1% percentile of sampled
distances. The estimated autocorrelation function of the volatility process σ2

n is plotted.

also Frühwirth-Schnatter and Sögner [48] and Chernov et al. [26]).
We thus proceedwith estimating themodel in (2.7) with the instantaneous volatility

process given by a superposition of two non-Gaussian Ornstein-Uhlenbeck processes.
In addition, we follow Frühwirth-Schnatter and Sögner [48] and restrict the rate pa-
rameters of the marginal Gamma distribution of the respective OU processes by taking
δ1 = δ2 ≡ δ such that the structural parameter vector of interest is now given by
θ2 = (µ, λ1, λ2, α1, α2, δ). The tolerance level is again chosen implicitly by discard-
ing 99% of the proposed draws of θ2. Figure 2.3 shows the (marginal) histograms for
the sampled structural parameters µ, λ1, λ2, α1, α2, δ based on 3, 000 accepted draws
of the ABC-IS algorithm. Summary statistics of the respective (marginal) posterior dis-
tributions are reported in 2.4.

Furthermore, the last row in Figure 2.3 shows the (estimated) autocorrelation func-
tion of the individual volatility processes σ2

1 (n) and σ2
2 (n) aswell as their superposition
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parameter feature of the posterior distribution

mean median standard deviation

δ 0.5562 0.5581 0.1385
α1 0.6059 0.6071 0.1683
λ1 0.0140 0.0127 0.0098
α2 0.6902 0.6808 0.2139
λ2 0.9666 0.8360 0.4585
µ 0.0685 0.0667 0.0129

α1/δ 1.1659 1.0837 0.4811
α1/δ2 2.4529 1.9283 1.9698
λ1α1 0.0086 0.0073 0.0067
e−λ1 0.9861 0.9873 0.0097

α2/δ 1.2318 1.2239 0.1840
α2/δ2 2.3595 2.2254 0.7162
λ2α2 0.6410 0.5918 0.3008
e−λ2 0.4158 0.4334 0.1537

Table 2.4: Summary statistics of posterior distribution. Themean, median and stan-
dard deviation of several parameters are presented, based on draws from the posterior
distribution.

σ2(n) = σ2
1 (n) + σ2

2 (n). As is to be expected, the first OU process clearly models
long-term persistence in the volatility process, indicated by a rather small value of the
decaying rate λ1. Opposed to that, the second OU process exhibits an autocorrelation
function that decays sharply and thus reflects short-term variation in the volatility pro-
cess which is indicated by amuch larger value of λ2. As such, a superposition of just two
OU processes can give rise to an adequate representation of the dependence structure
in that the joint autocorrelation function decays sharply at initial lags whereas the decay
is much slower at longer lags.
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Figure 2.3: Histograms and autocorrelation functions. This figure shows marginal
histograms of the structural parameters α1, α2, δ, λ1, λ2, µ based on 3, 000 accepted
draws from the ABC-IS approximation to the posterior distribution based on the su-
perposition of two OU processes. The tolerance level ϵ is chosen implicitly through
retaining the 0.1% percentile of sampled distances. The third row shows the estimated
autocorrelation functions of the individual volatility processes σ2

1 (n) and σ2
2 (n) as well

as their superposition σ2(n) = σ2
1 (n) + σ2

2 (n).
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2.7 Conclusion

In this paper we extended the notion of Indirect ABCmethods by proposing an efficient
way ofweighting the individual entries of the vector of summary statistics obtained from
the score-based Indirect ABC approach (ABC-IS). In particular, the weighting matrix
was given by the inverse of the asymptotic covariance matrix of the score vector of the
auxiliarymodel andallowedus to appropriately assess thedistancebetween the truepos-
terior distribution and the approximation based on the ABC-IS method. We illustrated
the performance gain in a simulation study. An empirical application then implemented
the weighted ABC-IS method to the problem of estimating a continuous-time stochas-
tic volatility model based on non-Gaussian Ornstein-Uhlenbeck processes. We showed
howa suitable auxiliarymodel canbe constructed andconfirmedestimation results from
concurring Bayesian estimation approaches suggested in the literature.

48



3
Exploringmultimodal sampling distributions

3.1 Introduction

Economic models have become increasingly more complex over the past decades and
their empirical validation therefore heavily relies on efficient and accurate estimation
procedures. Traditional econometric approaches adopted a frequentist perspective in
that one was seeking to optimize a certain objective function L : Θ × X → R over
the parameter set Θ and an estimator of the parameter of interest was thus given by

θ̂ = argmax
θ∈Θ

L (θ, x) ,

with x ∈ X denoting the sample. Examples of these estimators include the maximum
likelihood (ML) estimator and the generalizedmethod of moments (GMM) estimator.
Although these estimators have attractive properties under rathermild assumptions, the
computational challenge is to find the global optimum θ̂ in a reasonable amount of time
if the estimator is not given as an explicit function. Numerical (standard) optimization
algorithms work well if the objective function is smooth and if the global maximum is the
only local maximum.
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However, the objective function of many important econometric methods and em-
pirical applications is rather inappropriate for these algorithms, and alternative estima-
tion procedures are required. In the light of vastly increasing computational possibili-
ties, Bayesian methods have become more and more popular. Instead of maximizing an
objective function they analyze the posterior distribution with density given by

µ (θ|x) ∝ f (x|θ)π (θ) ,

where f : X × Θ → R denotes the likelihood function of a data sample x and π

denotes the probability density function (pdf) of the prior distribution on Θ. Param-
eter estimates are then obtained as functionals of the posterior distribution depending
on the loss function, e.g. the posterior mean in the case of a quadratic loss function.
Since these quantities are rarely available in closed form, Markov Chain Monte Carlo
(MCMC) algorithms, such as the Metropolis-Hastings algorithm or Gibbs-sampling,
can be used to sample from the posterior distribution. In this case the posterior dis-
tribution is approximated by a sample of simulated parameter values and the estimates
are the corresponding statistics of the sample. Informally speaking, MCMC algorithms
work by constructing a Markov chain on the parameter space Θ such that its stationary
distribution equals the posterior distribution.

In contrast to other Monte Carlo based methods, such as importance sampling,
MCMC has the advantage that while the precise construction of an importance func-
tion is not required, it is still able to depict the characteristics of µ(θ|x) (see Robert
[95, section 6.3]). These appealing properties can also be used in estimation settings
that are not grounded on the Bayesian paradigm. Chernozhukov and Hong [27] for
instance proposed the so-called Laplace type estimators (LTEs). Based on a prior dis-
tribution with pdf π these estimators are functionals such as themean, median or other
quantiles of the so-called quasi-posterior distribution with density given by

µ (θ|x) = eL(θ,x) π (θ)∫
Θ eL(θ,x) π (θ)d θ

∝ eL(θ,x) π (θ) , (3.1)

which depends on the choice of the objective function L. If, for example, L is the log
likelihood function of the model then µ is the pdf of the posterior distribution in the
Bayesian setting. However, the setup is much more general as other objective functions
such as GMM-like moment conditions can also be considered. The specific statistic
computed from the quasi-posterior distribution depends, as in the genuine Bayesian set-
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ting, on the loss function that is employed.
The performance of MCMC methods relies on constructing a Markov chain on the

parameter space Θ whose empirical distribution gets close to the stationary distribu-
tion in a practically reasonable computing time. Of particular importance is the require-
ment that the Markov chain explores the relevant sample space efficiently. If the target
distribution of interest is reasonable well behaved (not necessarily unimodal) MCMC
methods are not as sensitive as classical estimation/optimization methods. However,
this requirement can limit standard MCMC methods severely in cases where the target
distribution exhibits areas of high probability mass that are separated from each other
by areas of very low probabilitymass, i.e. such that the relevant areas of the sample space
are not connected. For suchmultimodal target distributionsMCMCmethods are prone
to be trapped locally in one of the areas of high probability mass. This behavior is well
known in the statistical literature and becomes particularly apparent in the case of mix-
ture models (see Celeux et al. [25]; Jasra et al. [75]; Robert and Casella [96] and the
references therein). In an economic context, An and Schorfheide [2] show that the use
of unmodified MCMC methods to generate samples from the posterior distribution of
dynamic stochastic general equilibrium (DSGE) models may be problematic.

In this paper we propose the use of sequential MCMC methods to generate draws
from a possibly ill shaped distribution, e.g. a multimodal (quasi-)posterior distribution.
So far, sequentialMCMCmethodshavebeenprimarily used tofilter, forecast and smooth
in nonlinear state-space models, see e.g. Creal [31], Flury and Shephard [47] and the
references therein. In these applications, particles are used to approximate the distribu-
tion of the unobserved states. In our setup, however, we generate an artificial sequence
of distributions and use particles to approximate these artificial distributions. The initial
distribution is chosen such that no distinctmodes are available and plainMCMCmeth-
ods are appropriate to explore the global characteristics of this distribution. Sometimes,
it may be even possible to sample directly from the initial distribution. The final distri-
bution is then the original target distribution, e.g. the (quasi-)posterior distribution.

Informally speaking, the proposed method interpolates between an easily sampled
initial probability distribution µ0 and the target distribution of interest µn in some suit-
able sense. One starts by generating a large sample of particles from the initial probability
distributionµ0 onΘ. Theseparticles are thenpropagated such that they canbe regarded
as a sample of particles from the first interpolant µ1. By iterating this procedure we fi-
nally obtain a sample of particles from the target distribution µn.

Compared to standard MCMC methods this sequential approach guarantees that
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the parameter space is indeed well explored. As we will demonstrate in the simulation
studyof Section3.3, the sequential approach successfully bothdetects high-dimensional
modes that are (very) far apart and is able to adjust the probability mass assigned to the
respective modes at each iteration of the algorithm. This gain in accuracy is, however,
not for free. In fact, the computational burden of the sequential MCMC algorithm is
significantly larger than for the plain Metropolis-Hastings method. Nonetheless, the
most time-consuming part can be easily and effectively parallelized. Hence, in contrast
to classical MCMC methods, this algorithm is computational efficient since it supports
modern multicore central processing unit architectures.

Thispaper is organizedas follows. Section3.2 formallydescribes the samplingmethod
whereas Section 3.3 investigates the finite sample properties in an extensive simulation
study. Section 3.4 concludes.

3.2 The SequentialMCMC sampling method

In this section we formally describe the proposed sequential MCMC sampling proce-
dure. The algorithm we present is based on the Sequential Monte Carlo literature and
can be regarded as adaptations or simple special cases of the algorithms proposed in
Gordon et al. [60], Cappé et al. [23] and Del Moral et al. [36]. The links of the here
proposed method to this literature is discussed below.

3.2.1 Pitfalls of standard sampling approaches

Asmentioned in the introduction, using standard sampling approaches to draw from ill-
shapedprobability distributions canhave severe drawbacks. We thus first give a heuristic
illustration of possible pitfalls with standard MCMC based sampling schemes. As an
illustrative example we consider a bivariate normal mixture model, i.e. our interest is to
obtain sampled draws from the distribution with density

p(θ) = ω fN
(

θ; µ(1), V (1)
)
+ (1 − ω) fN

(
θ; µ(2), V (2)

)
, (3.2)

where θ ∈ R2. This example is constructed in analogy to Chib and Ramamurthy
[28] and can be regarded as a simplified representation of the marginal distribution of a
DSGEmodel presented by An and Schorfheide [2]. Of particular interest is to consider
the case where themodes are well separated. FollowingChib andRamamurthy [28] we
take the modes to be located at µ(1) = [1,−1]T and µ(2) = 8 × µ(1) and we set the
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Figure 3.1: Bivariate surface plot. This figure shows the surface plot of a bivariate mix-
ture normal distribution in analogy to Chib and Ramamurthy [28].

mixtureweight to ω = 0.99. The covariancematrices are set toV (1) = diag[1.3, 1.3]
and V (2) = diag[0.05, 0.05], respectively. Figure 3.1 depicts the surface of the poste-
rior density p(θ) and the corresponding contour lines.

Using a standard MCMC sampling scheme such as the Metropolis-Hastings algo-
rithm leads to the unfortunate behavior that the Markov chain can get stuck in local
regions of high probability mass and fails to explore the entire sampling space. This be-
havior is illustrated in Figure 3.2 which shows the sampling paths of twoMarkov chains
initialized at different starting values. The chain in the left panel is started at [1,−1]T

and the chain in the right panel is started at [8,−8]T. The acceptance rate of both chains
is approximately 0.27. Obviously, the chains only explore themode that is closest to the
starting value. While this behavior is not critical for the first chain (left panel) as 99%
of the sample is correctly sampled, the consequences for the second chain (right panel)
are severe. Only 1% of the random variables are correctly assigned. Bayesian estimates
based on this deficient sample are necessarily inconsistent and lead to invalid inference.
Of course, there exist several ad-hoc proposals to obtain a more realistic sample. One
approach is to simply increase the variance of the proposal distribution. However, in
practical applications the variance of the proposal distribution is commonly chosen to
meet a rejection rate of approximately 0.2-0.3, such that this kind of behavior is often
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Figure 3.2: Metropolis-Hastings Algorithm. This figure shows two samples from a
Metropolis-Hastings algorithmwith target density (3.2) and a (zeromean) normal ran-
domwalk proposal. The scaling of the proposal distribution is chosen in such a way that
the rejection rate is approximately 0.27. The initial value of the chain in the left (right)
panel is [1,−1]T ([8,−8]T), respectively.

undiscovered and realistic. Another idea, proposed by Chib and Ramamurthy [28],
is to search for all modes before using a MCMC algorithm. This is a reasonable ap-
proach in a low dimensional setup or if the modes are known, but in high dimensional
problems the localization of all modes is quite challenging. This strong dependency of
the Metropolis-Hastings algorithm on the starting points at which the Markov chain is
initialized becomes even more cumbersome in high dimensional settings and standard
techniques to monitor the convergence behavior of the Markov chain fail to recognize
that there are subspaces that the chain has not visited yet.

Contrary to methods that construct a Markov chain with prescribed stationary dis-
tribution, sequentialMCMCmethods first construct a particle system from some easily
sampled distribution µ0. Each particle is thenpropagated in such away as to be regarded
as a particle approximation to some intermediate distribution µ1 which is closer to the
target distribution µn in some suitable sense. This process is iterated until one obtains a
system of particles that can be regarded as draws from the the target µn. Figure 3.3 illus-
trates the univariate marginal densities of the sequence of distributions from µ0 to µn.
Note that the initial distribution µ0 has a density that is rather flat thus enabling us to
draw samples efficiently by standard techniques. Moreover, the algorithm not only suc-
ceeds in detecting both modes but is also able to shift probability mass from one mode
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to another as to establish the correct mixture weights of the two components. In the
following Section we describe the algorithm in more detail.

3.2.2 A sequential sampling approach

In this section we give a formal presentation of the sequential MCMC algorithm and
discuss its links to the particle filtering literature.

Formal description

Let the target µn be a probability distribution on a state space E that depends on the
sample size n and where E can be taken, for example, to be Rd. In our application µn is
the (quasi-)posterior distribution but in general µn can be any probability distribution.
For f : E → R a measurable function we want to numerically approximate

µn( f ) =
∫

E
f (x)µn(d x).
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Note that for f the identity function and µn the (quasi-)posterior distributionweobtain
the (quasi-)posterior mean as a standard Bayesian estimator (under quadratic loss).

The approximation of µn( f ) can now be based on sampled draws from the distribu-
tion µn. Assume we are given a collection of N such draws

(
ξ i

n
)N

i=1, ξ i
n ∈ E which we

call a particle system. The integral µn( f ) is then approximated by the Monte Carlo sum

ηN
n ( f ) =

1
N

N∑
i=1

f (ξ i
n),

i.e. the empirical mean of the f (ξ i
n). Monte Carlo methods have found widespread

use in econometrics, e.g. for simulation based estimation methods such as the efficient
method of moments estimation of Gallant and Tauchen [54], the indirect inference ap-
proachGouriéroux et al. [62] or the simulatedmaximum likelihoodmethod ofDurham
and Gallant [43].

We are now interested in settings where we can not readily sample from the target
distribution µn. A prominent case where this is not possible is, for example, when the
distribution µn exhibitsmultiple well-separated modes. Contrary to the standard notion
of MCMC methods we assume an initial probability distribution µ0 on E that is easily
sampled. We generate an initial particle system

(
ξ i

0
)N

i=1 of draws sampled from µ0 and

propagate each particle ξ i
0 sequentially as to obtain a particle system

(
ξ i

n
)N

i=1 that can
be regarded as a set of draws sampled from µn.

To this end assume that there is a sequence of probability distributions (µk)
n−1
k=1

which interpolate between µ0 and µn in the following sense: For k = 0, . . . , n − 1,
the distributions µk and µk+1 are mutually absolutely-continuous with ḡk,k+1 denot-
ing the relative (Radon-Nikodym) density of µk+1 with respect to µk, i.e.

µk+1( f ) = µk(ḡk,k+1 f )

for any measurable function f : E 7→ R. To capture the idea of interpolation, we
assume that there exists a constant γ > 1 such that ḡk,k+1(x) < γ for all x ∈ E.
Thus, the weight assigned to a point in E by µk+1 can be bounded by γ times theweight
assigned by µk. Note that the availability of this interpolation sequence is essential for
the proposed algorithm. This may seem to be a rather strong assumption. However,
we present a simple approach below to derive the interpolating sequence for general
distributions.
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To formulate the algorithm we need to introduce a sequence of transition kernels
Kk(x, dy) on E where Kk has stationary distribution µk. Kk can thus be thought of
as many steps of a local Metropolis dynamics with respect to µk. We discuss this issue
in more detail below.

The algorithm alternates between two steps: (i) an Importance Sampling Resampling
step which moves each particle from µk−1 to µk and (ii)MCMC steps with respect to
µk.

The algorithm is thus given by:

1. For k = 0, generate N particles (ξ i
0)

N
i=1 from the initial distribution µ0.

2. For k = 0, . . . , n generate N preliminary particles (ξ̂ i
k)

N
i=1 from the distribution

µk through an Importance Sampling step with (multinomial) Resampling:
The particles ξ̂ i

k are drawn conditionally independently from the empirical distri-
bution of the particles (ξ̂ i

k−1)
N
i=1 weighted with the relative density ḡk−1,k, i.e.

P
(

ξ̂ i
k = ξ

j
k−1|ξ

1
k−1, . . . , ξN

k−1

)
=

ḡk−1,k(ξ
j
k−1)∑N

l=1 ḡk−1,k(ξ
l
k−1)

.

3. The (resampled) preliminary particles ξ̂ i
k are eachmoved conditionally indepen-

dently in theMCMC step by the kernel Kk to generate the new particle positions
ξ i

k, i.e.

P
(

ξ i
k ∈ dx|ξ̂1

k , . . . , ξ̂N
k

)
= Kk(ξ̂

i
k, dx).

Let us discuss the individual steps of the algorithm in more detail. Consider the im-
portance sampling step first. Assume we are given a particle approximation

(
ξ i

k−1

)N
i=1

for the measure µk−1. We now wish to obtain a particle approximation for the mea-
sure µk. Importance sampling now transforms each particle ξ i

k−1 (i.e. an approximate
draw from µk−1) to a new particle ξ i

k (i.e. an approximate draw from µk) by assign-
ing an importance weight ωi

k. These importance weights are equal to the relative den-
sity of the measure µk with respect to µk−1 evaluated at a certain particle. We thus ob-
tain for thenormalized importanceweights{ω1

k , . . . , ωN
k } associatedwith theparticles

{ξ1
k , . . . , ξN

k } the expression

ωi
k =

ḡk−1,k(ξ
i
k−1)∑N

l=1 ḡk−1,k(ξ
l
k−1)

, i = 1, . . . , N.
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Nextwe consider the resampling stepwhich is a crucial component in this algorithm.
To see why resampling is necessary we observe that if a particle has a high importance
weight at one iteration of the algorithm it is likely to have a high importance weight in
the next iteration as well. Consequently, without resampling most probability mass will
be eventually concentrated in only a few particles, a phenomenon that is commonly re-
ferred to as weight degeneration. The resampling step can thus be seen as a method of
allocating the particles proportionally to their probability mass at every step of the al-
gorithm. In the above algorithm we have proposed multinomial resampling. There are,
however, also other resampling schemes available in the literature which we discuss and
compare in detail below.

Although resampling can prevent weight degeneration, it has to be used cautiously.
Consider a sample of particles ξ1

k , . . . , ξN
k distributed as µk. Now resample, i.e. gener-

ate a new sample ξ̃1
k , . . . , ξ̃N

k by drawing N times independently and uniformly from
{ξ1

k , . . . , ξN
k }. The empirical distribution of the new sample still approximates µk, but

the quality of the sample is worse since some values from the original sample are lost
while others are duplicated. This effect gets even stronger when the procedure is iter-
ated until at some point all ξ i

k have the same value. Hence, the implications of the re-
sampling step are double-edged. On the one hand it prevents the degeneration of the
particle approximation but on the other hand it worsens the approximation.

It is important to note that the Importance Sampling Resampling step alone leaves
the initial positions of the particles generated from the initial distributionµ0 unchanged.
Old particles are propagated sequentially to serve as an approximation to the target dis-
tribution µn only through changes in the assigned importance weights. To overcome
the problems with importance sampling and resampling an MCMC step is included at
each iteration. After resampling aMetropolisMarkov chain is initialized at each particle
with stationary distribution µk that moves the particles apart but leaves their empirical
distribution unchanged. The MCMC steps thus serve at least two purposes in the al-
gorithm: (i) they help to better explore the target distribution, and (ii) they decrease
the dependence between the particles bymoving apart particles that duplicate the same
predecessor.

In what follows we discuss the specification of the key ingredients of the Sequen-
tial MCMC algorithm, namely how to choose the sequence of interpolating probability
distributions, the Markov Kernel K for the MCMC steps and we discuss and compare
different resampling schemes.

58



Specification of the interpolating sequence of probability distributions

In the formal description of the Sequential MCMC algorithm we have so far assumed
that the sequence of interpolating probability distributions (µk)

n−1
k=1 is known. Based

on the literature on Simulated Annealing and Tempering algorithms we define µk to be
given by a slight variation of the quasi-posterior distribution for Laplace type estimators,
i.e.

µk(dx) ∝ eβk L(x)µ0(dx).

where (βk)
n
k=1 is an increasing sequence of numbers on (0, 1]. Choosing the sequence

of probability distributions, hence, amounts to choosing a sequence of numbers on the
interval (0, 1]. This choice can be conducted in an adaptive way. More precisely, we
choose for k = 1, . . . , n− 1 the corresponding sequence of positive numbers (βk)

n
k=1

such that the maximal ratio between the two interpolating distributions µk+1 and µk is
bounded by some constant γ, i.e.

max
x∈E

ḡk,k+1(x) = max
x∈E

dµk+1

dµk
(x) ≤ γ

for γ ∈ (1, ∞). It is obvious that when choosing the constant γ one is facing a trade-
off. A larger value of γ results in fewer interpolating distributions and the algorithm
reaches the target distribution sooner. This reduction in run time may, however, results
in too crude an approximation to the final target distribution. How specific values of γ

effect the performance of the Sequential MCMC algorithm will be investigated in Sec-
tion 3.3.3.

We moreover note that in order to run this algorithm, it is sufficient to know the
relative densities only up to a normalizing factor. In what follows we denote by gk−1,k

the unnormalized version of ḡk−1,k.

Specification of the Markov kernel

For the sake of completeness we give a general description of the MCMC step of our
algorithm. For a general treatment we refer the interested reader to Robert and Casella
[96]. Inparticularwediscuss the choice of theMarkovKernelKk. Startingwith a resam-
pled particle ξ̂ i

k at the k-th iteration of the Sequential MCMC algorithmwe generate an
ergodic Markov chain with stationary distribution µk. This method is indeed the defin-
ing characteristic feature at the heart of all MCMC methods of which the Metropolis-
Hastings algorithm is regarded to be the first and foremost example. Note that, since
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any MCMC method generates serially dependent draws that approximate the distribu-
tion µk, ergodicity is a key requirement in that it allows us to use the obtained sample
as if it were in fact independently and identically distributed according to µk in order to
estimate

ηN
n ( f ) =

1
N

N∑
i=1

f (ξ i
n).

A generic definition of the Metropolis-Hastings algorithm is given below.

1. For t = 0 we start the Markov chain with initial value ξ i
k(0) = ξ̂ i

k.

2. For t = 1, . . . and given the current state of the Markov chain ξ i
k(t) we first

generate a preliminary random variable Xt from some proposal distribution with
density q(x|ξ i

k(t)). The next state of the Markov chain is taken to be

ξ i
k(t + 1) =

Xt with probability ρ(ξ i
k(t), Xt)

ξ i
k(t) with probability 1 − ρ(ξ i

k(t), Xt)

where the acceptance probability is given by

ρ(ξ i
k, x) = min

{
dµk(ξ

i
k)

dµk(x)
q(ξ i

k|x)
q(x|ξ i

k)
, 1

}
.

The transition kernel associated with this algorithm is given by

Kk(ξ
i
k, x) = ρ(ξ i

k, x)q(x|ξ i
k) + (1 − r(ξ i

k))δξ i
k
(x)

where r(ξ i
k) =

∫
ρ(ξ i

k, x)q(x|ξ i
k)dx and δξ i

k
denotes the Dirac mass in ξ i

k. It is easy
to see that we have

ρ(ξ i
k, x)q(x|ξ i

k)dµk(ξ
i
k) = ρ(x, ξ i

k)q(ξ
i
k|x)dµk(x)

(1 − r(ξ i
k))δξ i

k
(x)dµk(ξ

i
k) = (1 − r(x))δx(ξ

i
k)dµk(x)

which together establish the detailed balance equation with dµk and it follows that µk is
indeed the stationary distribution of the thus generated Markov chain. It moreover fol-
lows that the specification of theMarkov kernel Kk essentially entails choosing a suitable
proposal distribution with density q, the possible choices of which are nearly endless.
Throughout the paper we restrict ourselves to a symmetric Random Walk proposal of

60



the form
Xt = ξ i

k(t) + ε, ε ∼ N (0, σ2
ε ).

Specification of the resampling algorithm

In this subsection we are going to discuss different resampling schemes that have been
proposed in the literature. For a detailed discussion we refer to Douc and Cappé [40]
and Hol et al. [71]. Generally speaking, the resampling step removes particles with low
importance weight and duplicates particles with high importance weight as to obtain
a sample of particles that all have equal importance weight 1/N. Four different re-
sampling schemes have been widely used in applications, namely Multinomial resam-
pling, Residual Resampling, Stratified resampling and Systematic resampling. The reason
why one would consider different resampling schemes is the possibility to decrease the
Monte Carlo variance of the particle sample and consequently to improve the qual-
ity of any estimator based on these particles. We will denote by {ξ1

k , . . . , ξN
k } the set

of particles approximating probability distribution µk at the k-th step of the Sequen-
tial MCMC algorithm with corresponding set of importance weights {ω1

k , . . . , ωN
k }.

We denote by {ξ̃1
k , . . . , ξ̃N

k } the set of resampled particles approximating µk and write
{N1

k , . . . , NN
k } for the set of duplicate counts, i.e. Ni

k = ♯{j, 1 ≤ j ≤ N : ξ̃
j
k = ξ i

k}
denotes how many times a particle ξ i

k is going to be duplicated through resampling.

1. Multinomial resampling: The general idea is to generate resampled draws inde-
pendently from the common point mass distribution

∑N
i=1 ωi

kδξ i
k
. This can be

be done by using the inversion method:

Firstwe generate N uniform randomvariables
(
Ui)N

i=1 on the interval (0, 1]. We
define the index Ii = F−1

ω (Ui) where F−1
ω is the inverse of the cumulative dis-

tribution function of the (normalized) importance weights
(
ωi

k
)N

i=1, i.e. we have

F−1
ω (u) = i if u ∈

(∑i−1
j=1 ω

j
k,
∑i

j=1 ω
j
k

]
. We then take as the multinomially

resampled particle
ξ̃ i

k = ξ Ii

k , i = 1, . . . , N.

As such the duplicate counts will be multinomially distributed, i.e.

(N1
k , . . . , NN

k ) ∼ Mult(N; ω1
k , . . . , ωN

k ).

2. Residual resampling: In this resampling scheme the number of duplicates of a par-
ticle ξ i

k is determined by its importance weight ωi
k plus a remainder term that is
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again multinomially distributed. In particular we have for i = 1, . . . , N

Ni
k = ⌊Nωi

k⌋+ N̄i
k,

where ⌊·⌋denotes the integerpart of its argument and the N̄1
k . . . . , N̄N

k aremulti-
nomially distributed according to Mult(N − R; ω̄1

k , . . . , ω̄N
k )where the resid-

ual part R is given by

R =
N∑

i=1

⌊Nωi
k⌋

with associated residual importance weights

ωi
k =

Nωi
k − ⌊Nωi

k⌋
N − R

, i = 1, . . . , N.

In practice, the multinomial counts N̄1
k . . . . , N̄N

k are generated by the inversion
method as for Multinomial resampling.

3. Stratified resampling: We start with partitioning the interval (0, 1] into N disjoint
subsets, i.e.

(0, 1] =
(

0,
1
N

]
∪ . . . ∪

(
N − 1

N
, 1
]

.

Thenauniformly distributed randomvariableUi is drawn fromeachof these sub-
intervals, i.e.

Ui ∼ U
((

i − 1
N

,
i
N

])
, i = 1, . . . , N.

Finally we use again the inversion method as in Multinomial resampling.

4. Systematic resampling: This resampling scheme works similar to Stratified resam-
pling with the difference being that all the uniform variables drawn in each of the
sub-intervals are deterministically linked. Particularly only one uniform random
variable U ∼ U

((
0, 1

N

])
is drawn and we compute

Ui =
i − 1

N
+ U, i = 1, . . . , N.

Again we use the inversion method as in Multinomial resampling.

Douc and Cappé [40] and Hol et al. [71] compared these four resampling schemes
in detail. All algorithms are shown to be unbiased in that, conditional on all particles and
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associated importance weights up to and including iteration k, one has E(Ni
k) = Nωi

k
for all i = 1, . . . , N. Furthermore, the importance weight of each particle after resam-
pling is equal to ω̃i

k = 1/N. Considering the Monte Carlo variance of the estimator

ηN
k ( f ) =

1
N

N∑
i=1

f (ξ i
k),

Douc and Cappé [40] show that the conditional variance by using Residual and Strat-
ified Resampling is always lower than the one based on Multinomial resampling. The
case of Systematic Resampling is more difficult to analyze theoretically, mainly, since all
the systematically resampled particles are (conditionally) dependent. A conjecture that
is often raised in the literature is that Systematic resampling does outperform Stratified
resampling and as such Multinomial resampling. Douc and Cappé [40] however show
with a counter example that this is generally not true and in fact the conditional vari-
ance can even become larger than the one obtained through Multinomial resampling.
Hol et al. [71] provide a small simulation study on the computational complexity of the
four resampling schemes discussed here. They conclude that both Stratified and Sys-
tematic resampling perform better than Multinomial resampling. The general message
is thus that one can always do better by using any other resampling scheme than Multi-
nomial resampling. In terms of robustness, Residual and Stratified resampling seem to
be the best choice for themoment whereas Systematic resampling has to be applied cau-
tiously.

Discussion

As mentioned above, Sequential MCMC is closely related to the literature on Particle
Filters (see e.g. Del Moral et al. [36]). In fact, Sequential MCMC and Particle Filters
are virtually identical methods that differ only in the question of which parameters are
choice parameters and which parameters are part of the problem. Generally speaking,
filtering is the problem of extracting information about the current state of some unob-
servable variable (the so-called signal) from noisy or partially revealing observations. In
this interpretation, the state space E is the set of possible values of the signal and the dis-
tributionµk is the distributionof the signal at time k conditional on all informationup to
and including time k. It is clear that in filtering problems the entire sequence (µk)

n
k=0 is

given, whereas in Sequential MCMC only the target distribution µn is fixed and the se-
quence (µk)

n−1
k=0 is a choice parameter that can be chosen such that the algorithmworks
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best. Notably, while the distributions µk can be thought of as smoothed versions of µn

in Sequential MCMC this is typically not the case in filtering problems. Furthermore,
in filtering the sequence (µk)

n
k=0 only becomes available over time. In typical appli-

cations, integrals with respect to µk need to be approximated at time k before µk+1 is
known.

3.3 Finite sample properties - a simulation study

In this section we analyze the finite sample behavior of the proposed algorithm in dif-
ferent setups. In particular, we consider a 12-dimensional mixture model with four well
separatedmodes. This example is constructed in analogy to the second example of Chib
and Ramamurthy [28].

3.3.1 The model

Consider the distribution of a 12-dimensional random variable which is modeled as a
four component Gaussian mixture with density

f (x|θ) = w(1) fN
(

x; µ(1), V (1)
)
+ w(2) fN

(
x; µ(2), V (2)

)
+ w(3) fN

(
x; µ(3), V (3)

)
+ w(4) fN

(
x; µ(4), V (4)

)
(3.3)

where x ∈ R12, w(1) = 0.05, w(2) = 0.75, w(3) = 0.05, w(4) = 0.15, fN (.; m, S)
is the density of the Gaussian distribution with mean vector m ∈ R12 and covariance
matrix S ∈ S+

12,¹

µ(1) =
[
µT, 1.5 × µT

]T
; µ(2) =

[
−10 × µT, 10 × µT

]T
;

µ(3) =
[

10 × µT, 5 × µT
]T

; µ(4) =
[

4 × µT,−15 × µT
]T

;

with
µ = [1.41, 0.81, 0.49, 0.80, 1.07, 0.30]T .

¹In the following R (S+
d ) denotes the set of real numbers (cone of d × d positive-semidefinite

matrices), respectively.
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µ(2) µ(3) µ(4)

µ(1) 30.3268 21.0665 36.5859
µ(2) 0 44.9740 62.5084
µ(3) . 0 45.5523

Table 3.1: Distance of the modes. This table shows the Euclidean distance between
the different modes of the distribution.

Furthermore,

V (1) =

[
Σ(1) 0

0 Σ(1)

]
; V (2) =

[
Σ(1) 0

0 Σ(2)

]
;

V (3) =

[
Σ(2) 0

0 Σ(1)

]
; V (4) =

[
Σ(2) 0

0 Σ(2)

]
;

with

Σ(1) =



0.0885 −0.0023 0.0077 0.0041 −0.0229 −0.0025
−0.0023 0.0055 0.0015 0.0028 0.0013 0.0001

0.0077 0.0015 0.0031 0.0018 −0.0011 −0.0002
0.0041 0.0028 0.0018 0.0029 0.0004 −0.0012

−0.0229 0.0013 −0.0011 0.0004 0.0169 0.0004
−0.0025 0.0001 −0.0002 −0.0012 0.0004 0.0024


and

Σ(2) =



0.1365 −0.0009 0.0063 0.0075 −0.0119 −0.0101
−0.0009 0.0082 0.0021 0.0048 0.0045 −0.0049

0.0063 0.0021 0.0020 0.0018 0.0011 −0.0018
0.0075 0.0048 0.0018 0.0137 0.0042 −0.0078

−0.0119 0.0045 0.0011 0.0042 0.0153 −0.0051
−0.0101 −0.0049 −0.0018 −0.0078 −0.0051 0.0096


.

It is important tonote that the four components of thedistribution arewell separated.
Table 3.1 shows theEuclideandistances between themodes (means of the components)
of the distribution. However, we note that the distance between the modes is not very
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E (2) E (3) E (4)

E (1) 26.6997 17.2649 32.4987
E (2) 0 40.8195 57.7571
E (3) . 0 41.3448

Table 3.2: Distance of the 99.99999 99999 9999% ellipsoids. This table shows
the minimal Euclidean distance between the 99.99999 99999 9999% ellipsoids of the
components of the distribution.

informative since the separation also depends on the variances of the components. To
illustrate this we also compute the (minimal) distance between the α% ellipsoids of the
components. To this end note that for a d-dimensional Gaussian random vector with
mean vector m ∈ R12 and covariance matrix S ∈ S+

12 the quadratic form

C = (x − m) S−1 (x − m)T (3.4)

is chi-squared distributed with d degrees of freedom, C ∼ χ2 (d). The α% ellipsoids
E (i) (α) are defined by

E (i) =

{
x ∈ R12 :

(
x − µ(i)

)(
V (i)

)−1 (
x − µ(i)

)T
≤ qα

}
∀i ∈ {1, . . . , 4}

with qα denoting the α% quantile of the chi-squared distribution with 12 degrees of
freedom.

Table 3.2 shows the minimal distance between the 99.99999 99999 9999% ellip-
soids. Obviously, the distance between the ellipsoids is decreased relative to the (Eu-
clidean) distance of the modes, but the distance is still huge. In practical terms this
means that the masses from the components do not overlap.² We use this fact in the
following evaluation of the distance between a particle approximation and the continu-
ous target distribution.

²The term practical heremeans that there is no point in the support of themixture distribution such
that the density of two components is different from zero for double precision floating point numbers.
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3.3.2 Measuring the distance

To evaluate different combinations of particle numbers, target ratios,MCMCdraws and
resampling algorithms with respect to the quality of the particle approximation it is im-
portant tohave a reliablemeasureof distancebetween the continuous target distribution
and the discrete particle approximation. In the univariate case it would be reasonable to
consider some moments and compare the approximation to the true moments. How-
ever, this approach is not feasible in our 12-dimensional example, as even considering
only the mean and the elements of the covariance matrix would result in 90 statistics.
Moreover, the sole use of these moments is problematic in most relevant situations, as
the first and second moments of multimodal distributions are not highly informative
about the distributional shape. Rather than testing whether some statistics are identi-
cal to the values under the null hypothesis it seems therefore more appropriate to test
whether the particles are sampled from the continuous target distribution.

Two prominent tests have been suggested in the literature. The Kolmogorov-Smirnov
test uses the distance between the empirical distribution function and the distribution
function under the null to test whether the distributions are reasonably close. The test,
however, is mainly applied in the univariate case as multivariate extensions (see e.g. Jus-
tel et al. [77]) and relies on the computationof conditional distributionswhich are rarely
available. For this reason, the Pearson’s chi-squared test is adopted here. The Pearson’s
chi-squared test uses a partition of the support of the target distribution and compares
the empirical frequencies with the theoretical frequencies in these disjoint subsets. Let
S be the support of the distribution (under the null) and {Bi}b

i=1 a partition of S , i.e.

S = ∪b
i=1Bi with Bi ∩ Bj = ∅ ∀i ̸= j.

Then, the test statistic is given by

Z =
b∑

i=1

(∑n
j=1 IBi

(
ξ j
)
− nP (ζ ∈ Bi)

)2

nP (ζ ∈ Bi)
, (3.5)

with I denoting the indicator function³,
{

ξ j
}n

j=1 the sample and ζ a d-dimensional ran-
dom variable that is distributed according to the distribution under the null. The test
statisticZ is asymptotically chi-squared distributed with b − 1 degrees of freedom.

³Note that IA (x) = 1 if x ∈ A and IA (x) = 0 if x ̸∈ A.
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Figure 3.4: Different partitions of the support. The left panel shows a partition of the
support into rectangular subsets. The right panel shows a partition of the support into
ellipsoids.

To obtain a partition of the support one usually divides the support by splitting ev-
ery dimension in di segments resulting in

∏d
i=1 di bins, i.e. rectangular subsets of the

support (see left panel of Figure 3.4 for a graphical illustration in terms of the bivari-
ate example from before). This procedure is, however, not applicable in our example.
Even if we used only two segments in each dimension (di = 2 ∀i) we would end up
with 212 = 4096 bins. We thus propose a different approach, taking into account the
fact that the components of the distribution are well separated as has been shown in the
preceding section. We choose b = 101 cells and assign 100 cells to the modes and
keep one cell for the remaining area. The cells for the modes are allocated among the
modes according to their weights, i.e. in our example b(1) = 5, b(2) = 75, b(3) = 5,
b(4) = 15. To obtain cells with approximately⁴ equal mass (of 1/101) we compute
b(i) ellipsoids {B̃(i)

j }b(i)
j=1 around the corresponding mean µ(i) such that

P
(

ζ(i) ∈ B̃(i)
j

)
=

1
w(i)

j
101

∀j = 1, . . . , b(i) and i ∈ {1, . . . , 4}

⁴“Approximately” means here that we ignore the (practically non existent) overlapping probability
masses.
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Significance level Number of particles
10,000 100,000 1,000,000 10,000,000

α

0.500 0.4998 0.4998 0.5032 0.5084
0.250 0.2502 0.2498 0.2524 0.2539
0.100 0.1007 0.0995 0.1024 0.1053
0.050 0.0503 0.0494 0.0508 0.0527
0.025 0.0254 0.0246 0.0246 0.0270
0.010 0.0102 0.0095 0.0101 0.0105

Table 3.3: Size of the Pearson’s chi-squared test. Reported are the rejection probabil-
ities of the Pearson’s chi-squared test based on our selected cells for different number of
particles.

with ζ(i) ∼ N
(

µ(i), V (i)
)
. Using property (3.4) the ellipsoids are given by

B̃(i)
j =

{
x ∈ R12 :

(
x − µ(i)

)(
V (i)

)−1 (
x − µ(i)

)T
< qj/(101w(i))

}
∀j = 1, . . . , b(i) and i ∈ {1, . . . , 4}

where again qα denotes the α %quantile of the chi-squared distributionwith 12 degrees
of freedom. The final cells are the ellipsoidal disks given by

B(i)
j = B̃(i)

j \ B̃(i)
j−1 ∀j = 1, . . . , b(i) and i ∈ {1, . . . , 4}

with B̃(i)
0 = ∅ ∀i ∈ {1, . . . , 4} and one additional cell for the remaining support

B∗ = R12 \
(
B̃(1)

5 ∪ B̃(2)
75 ∪ B̃(3)

5 ∪ B̃(4)
15

)
,

(see right panel of Figure 3.4 for a graphical illustration in terms of the bivariate example
from before).

Table 3.3 reports the rejection probabilities of the Pearson’s chi-squared test (3.5) for
different numbers of particles. The results are based on 100, 000 replications. The table
nicely illustrates that the asymptotic chi-squared distribution is quite accurate even for
finite samples, i.e. for a finite number of particles.

To assess the power of the test we simulate from different alternative distributions.
Scenario I considers independent and identically distributed (i.i.d.) random variables
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Scenario Quantiles of the test statisticZ
1% 50% 99%

I 9.9916 × 107 9.9925 × 107 9.9934 × 107

II 3.2998 × 105 3.3014 × 105 3.3030 × 105

III 1.1005 × 105 1.1011 × 105 1.1018 × 105

IV 5.2173 × 104 5.2210 × 104 5.2256 × 104

V 5.2173 × 104 5.2210 × 104 5.2257 × 104

Table 3.4: Power of the Pearson’s chi-squared test. The table reports selected quan-
tiles of the Pearson’s chi-squared test statistic associated with different sampling scenar-
ios.

from a Gaussian distribution with mean and covariance matrix equal to the mean and
variance of the mixture distribution, i.e. they are given by

µ̃ =
4∑

i=1

w(i)µ(i) =
[
−6.350 × µT, 5.575 × µT

]T
and

4∑
i=1

w(i)
(

µ(i)µ(i)T + V (i)
)
− µ̃µ̃T =[

42.1275 −46.0238
−46.0238 79.0319

]
⊗ µµT +

[
0.8Σ(1) + 0.2Σ(2) 0

0 0.1Σ(1) + 0.9Σ(2)

]
,

respectively, where⊗denotes theKronecker product. InScenario IIwe sample from the
second component of themixture distribution, which is the component with the largest
weight. Adding the component with the second largest weight (component 4) and set-
ting the weights proportional to the original weights gives Scenario III, while adding the
first (third) component yields Scenario IV (V).

In Table 3.4 we highlight the power of the Pearson’s chi-squared test by reporting
selected quantiles of the test statistic associated with the above scenarios. The number
of particles used to this end has been set to 1, 000, 000. As the table indicates, the test
highly rejects at any reasonable error level. Furthermore, it can be observed that for dis-
tributions closer to the null distribution the statistic decreases. Thismakes the Pearson’s
chi-squared test statistic a reasonable distance measure for our application.
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3.3.3 Simulation results

In this section we employ the distancemeasure proposed in Section 3.3.2 to analyze the
effect of changes in the hyperparameters of the algorithm on the approximation quality.
To this end, we first consider the different resampling algorithms discussed in Section
3.2.2. Thereafter we assess the effect of different MCMC iterations and, finally, we ana-
lyzedifferent bounds for the relativedensity (which restricts thenumberof interpolating
distributions considered to move from the initial µ0 to the target µn).

Table 3.5 reports selected quantiles of our chi-squared test statistic Z for different
resampling algorithms. As one would expect, the simple multinomial resampling algo-
rithm performs worst. Any other resampling algorithm performs considerably better. It
is interesting that it is systematic resampling that delivers an excellent approximation.
This seems in line with our previous discussion of the different resampling algorithms
and highlights the need to cross-validate the approximation obtained through different
resampling schemes. Furthermore, we note that the computational resources for the
systematic resampling approach are less demanding than for any other algorithm such
that systematic resampling seems recommendable in this setting.

Algorithm Quantiles of the test statisticZ
1% 50% 99%

multinomial 1.5099 × 102 1.1387 × 103 1.2747 × 105

residual 1.1408 × 102 9.2459 × 102 2.4044 × 104

stratified 1.1698 × 102 9.1358 × 102 2.3637 × 104

systematic 1.1599 × 102 8.7246 × 102 2.1869 × 104

Table 3.5: Effect of resampling. The table reports selected quantiles of the Pearson’s
chi-squared test statistic associated with different resampling algorithms.

Table 3.6 shows the results for different MCMC iterations. We observe that a larger
number ofMCMC iterations leads to a better final approximation. This is not surprising
as the MCMC step serves two aims. First, it explores the new (intermediate) target dis-
tribution, and second, it removes the dependency between particles with the same an-
chor particle. Both effects are improved if a larger number of steps is considered. How-
ever, even for values that are realistic in most applications, e.g. 40, the approximation is
very good and only improves slightly if we consider more MCMC steps.
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MCMC Quantiles of the test statisticZ
iterations 1% 50% 99%

5 8.0336 × 102 2.2599 × 104 1.0440 × 105

10 3.8555 × 102 5.4592 × 103 7.1441 × 104

20 2.5786 × 102 2.5940 × 103 6.3691 × 104

40 2.2558 × 102 1.4254 × 103 3.7246 × 104

80 1.2725 × 102 1.2259 × 103 1.6089 × 105

160 1.6105 × 102 1.1373 × 103 1.1262 × 105

Table 3.6: Effect ofMCMC iterations. The table reports selected quantiles of the Pear-
son’s chi-squared test statistic associated with different iterations of the MCMC step.

The results with respect to changes in the adaptive scheme are presented in Table
3.7. First we note that the smaller the maximal ratio of the interpolating distribution,
the more interpolating distributions are considered. This has two, potentially conflict-
ing, effects on the final approximation. On the one hand, a smaller value leads to an
interpolating distribution that is closer to the previous distribution and therefore the
approximation error decreases. On the other hand, as the approximating distributions
are closer, there are more intermediate distributions required to reach the target distri-
bution and a greater number of intermediate distributions may lead to a higher Monte
Carlo variance leading to a worse approximation. However, as shown in Table 3.7, the
first effect clearly dominates.

Max. ratio Quantiles of the test statisticZ
1% 50% 99%

1.5 1.5982 × 102 1.1565 × 103 1.5723 × 105

2 1.7856 × 102 1.4827 × 103 7.1441 × 105

2.5 2.7304 × 102 1.5522 × 104 3.7076 × 106

5 1.1484 × 103 2.7330 × 104 8.6816 × 106

Table 3.7: Effect of interpolation sequence. The table reports selected quantiles of
the Pearson’s chi-squared test statistic associated with different bounds on the maximal
ratio of interpolating distributions.
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3.4 Conclusion

In this paper we have discussed a promising approach to overcome the difficulties stan-
dard MCMC methods have when facing multimodal sampling distributions. We have
studied aSequentialMCMCalgorithm in anextensive simulation study and investigated
its finite sample properties. As we demonstrated, this algorithm is capable of detecting
all modes in a 12-dimensional mixture model where the modes are chosen such that
they are considerably far apart from each other. Such models proved very difficult to
estimate by standard MCMC methods and so served as our benchmark case for the in-
vestigation of the Sequential MCMC approach. We introduced a measure of distance
that takes into account the covariance structure of the modes, and, based on this met-
ric, proposed a test statistic that allows us to assess through a simulation study the finite
sample properties of the Sequential MCMC sampler.

The results show that Sequential MCMC methods clearly outperform standard
MCMC approaches in a multimodal setting. Not only did the Sequential MCMC al-
gorithm detect all four well-separated modes in a 12−dimensional setting. More im-
portantly, the algorithm is capable of yielding correct estimates for the mixture weights.
This is mainly due to the fact that the Sequential MCMC sampler can shift probabil-
ity mass between different regions of the parameter space efficiently whenmoving from
the initial probability distribution to the final target distribution of interest. This holds
true evenwhen for some intermediary distribution the respectivemodes are alreadywell
pronounced. An additional advantage of the Sequential approach is that the resulting
particle system approximating the target distribution is not subject to the same serial
dependence problems as a standard MCMC chain.

Moreover, we confirmed results in the literature on the use of different resampling
schemes and provided a detailed comparison of the effects different choices of tuning
parameters have on the approximation to the true sampling distribution. These results
can serve as valuable guidelines when applying this method tomore complex economic
models, such as the (Bayesian) estimation of Dynamic Stochastic General Equilibrium
models.
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4
Prediction in dynamic functional additive
models: a k-nearest neighbors approach

4.1 Introduction

Inmany statistical applications, data is becoming available at ever increasing frequencies.
It has thus become natural to think of discrete observations as realizations of a contin-
uous function, say over the course of one day. The statistical analysis of such functional
data is intrinsically different from standard multivariate techniques and has seen much
attention in the literature recently (see, e.g. the monographs of Ramsay and Silverman
[92], Ramsay and Silverman [91] andHorváth and Kokoszka [73] for a general discus-
sion and applications).

In the most general context of functional regression, the interest is to model the rela-
tionship between a functional response Y and a functional predictor X, i.e. to model

M(x) := E [Y|X = x] . (4.1)
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Typically, the framework for M(x) considered in the literature is through functional
linearmodels (seeCardot et al. [24], Yaoet al. [110],Cai andHall [21],Hall andHorowitz
[66] andCrambes et al. [30]). The scope of functional regressionmodels can, however,
be widened by considering generalizations to functional additivemodels that were pro-
posedbyMüller andYao[84]. As the authors pointout, this gives rise to farmoreflexible
and essentially nonparametricmodels, all thewhile avoiding the curse of dimensionality
that is inevitable if no structure on the regression model in (4.1) were imposed.

In this paper, we are interested in modeling functional regression functions of first-
order auto-regressive type, i.e. where the functional predictor X is a lagged version of the
functional responseY such that the settingwe are concernedwith is the one of functional
time series. Functional linear models of auto-regressive type have been studied exten-
sively by Bosq [18], and the aim of this paper is to provide an extension to the class of
functional additivemodels (FAM) as proposed byMüller and Yao [84]. Particularly, we
are interested in the problem of prediction of some future function XN+1 given a sam-
ple of N functional observations Xi, i = 1, . . . , N and the suggested FAM modeling
approach has several advantages in this regard.

First, it allows us to introduce a notion of time-dependence for functional data that
is rooted directly at the functional principal component scores. AsMüller and Yao [84]
show, functional additive models emerge naturally in view of uncorrelatedness of the
functional principal component scores across the spectral dimension. While we fur-
thermore strengthen this condition to independence across the spectral dimension, we
do allow for very general dependencies across the time dimension, and particularly do
not rule out long memory behavior.

Second, it allows us to consider the problem of prediction in a very natural way, as
only functions of the principal component scores have to be predicted. To this end, we
propose a k-nearest neighbors classification approach that is very intuitive and easy to
implement. In the finite-dimensional setting, this method is well understood and has
been successfully applied to classical time series analysis such that theoretical results are
readily available (see Cover and Hart [29], Stone [102], Stute [103], Yakowitz [108]
and Rakotomarolahy [90]).

This gives rise to our notion of FAM-knn models that we present in more detail in
Section 4.2, where we furthermore state and discuss the relevant assumptions. Predic-
tion, as much as estimation, in functional regressionmodels needs regularization which
we achieve by projecting on finitely many eigenfunctions of the covariance operator of
the functional observations. In Section 4.3 we thus verify the applicability of functional
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principal components analysis, particularly under the assumption of some suitably de-
fined dependence over time between the functional observations. Implementation as
well as theoretical results on the consistency of the proposed FAM-knn predictor are
then stated in Section 4.4. The proofs of all results are collected in Section 4.5 while
Section 4.6 concludes.

4.2 Modeling framework

In this section we present inmore detail our modeling framework of functional additive
models of first-order auto-regressive type and discuss the relevant assumptions we im-
pose. Consider to this end a sample of N functional observations (Xi(t))N

i=1 that are
assumed to belong to the Hilbert space L2 ≡ L2(T , ∥ · ∥) of square integrable func-
tions defined over some domain T = [0, T] and equipped with a norm ∥ · ∥ induced
by an innerproduct which we denote as ⟨·, ·⟩. We refer to i as the time index, such that
the sample (Xi)

N
i=1 is given by consecutively observed functions that are defined over

the domain T .

4.2.1 A functional additive model of first-order auto-regressive type

It is well known that every function X in L2 (and as such all functional regression mod-
els) admits a spectral decomposition in terms of eigenfunctions of the covariance oper-
ator associated with X. Let us define by

µ := E[X] (4.2)

CX[x] := E [⟨X, x⟩X] , x ∈ L2 (4.3)

themean function and covariance operator of the random function X, respectively. For
future reference we denote the space of Hilbert-Schmidt operators from L2 7→ L2

by S and equip it with the operator norm ∥ · ∥S , i.e. for some Ψ ∈ S , ∥Ψ∥S :=(∑∞
h=1 ∥Ψ[eh]∥2)1/2 for any orthonormal basis (eh)h≥1. Let us furthermore denote

by λ1 > λ2 > . . . the decreasing sequence of eigenvalues associated with CX and
denote by ψ1, ψ2, . . . the corresponding eigenfunctions. The eigenfunctions (ψl)l≥1

are referred to as functional principal components and constitute an orthonormal basis
system that span the space L2 and as such any X ∈ L2 admits the Karhunen-Loève
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decomposition of the form

X(t) = µ(t) +
∞∑

l=1

⟨X, ψl⟩ψl(t) = µ(t) +
∞∑

l=1

θlψl(t) (4.4)

where θl := ⟨X, ψl⟩ denotes the l-th functional principal component score of X and
convergence of the right-hand-side in (4.4) is understood to be in L2. By construction,
the sequence of functional principal component scores (θl)l≥1 is such that the θl are
uncorrelated across the spectral dimension l, have mean zero and variance λl . In what
follows, we strengthen uncorrelatedness of the θl to independence across l, an assump-
tion that is for example satisfied if X is a Gaussian process (see Müller and Yao [84]).

Now assume we are given a sample of N functional observations (Xi)
N
i=1 with

Karhunen-Loève decomposition Xi = µ +
∑

l≥1 θi,lψl and consider a functional re-
gression model of first-order auto-regressive type, given by

M(x) = E [Xi|Xi−1 = x] , i = 1, . . . , N, (4.5)

where the realization x of Xi−1 also admits a Karhunen-Loève decomposition of the
form x = µ +

∑
l≥1 θlψl and is thus characterized by a countable sequence of func-

tional principal component scores (θl)l≥1.
We propose a functional additive model in analogy to Müller and Yao [84] in which

the functional regression model defined in (4.5) takes the form

E [Xi|Xi−1 = x] = µ +
∞∑

k=1

∞∑
l=1

mk,l(θk)ψl.

Note that the relationship between the functional response Xi and the predictor scores
θk is now modeled additively through the function mk,l(θk). This distinguishes this
approach from linear functional models where this relationship is linear in the predictor
scores θk. Moreover, it follows fromMüller andYao[84] thatmk,l(θk) = E[θi,l|θi−1,k =

θk] and in view of the assumption on independence of the θi,l across l we have that
mk,l(θk) = 0 if k ̸= l and ml,l(θl) ≡ ml(θl) = E[θi,l|θi−1,l = θl]. Hence,

77



the functional additive model of first-order auto-regressive type we consider is given by

M(x) := µ +
∞∑

l=1

ml(θl)ψl

= µ +
∞∑

l=1

E [θi,l|θi−1,l = θl]ψl, i = 1, . . . , N, (4.6)

and identifiability is ensured since

E[ml(θl)] = E[E [θi,l|θi−1,l = θl]] = E[θi,l] = 0 ∀ l ≥ 1.

As already mentioned in the introduction, this modeling framework has several ad-
vantages to be considered in the context of predicting functional time series. First it
allows for a straightforward implementation of very general notions of time dependen-
cies for functional data as it effectively boils down to considering the correlation struc-
ture of the functional principal component scores θi,l across the time dimension i. As
will become apparent in the proofs of the theoretical results, these time dependencies
can be as general as to allow for long memory behavior. Second, as we are interested
in prediction, this modeling framework provides us with an intuitive approach, as we
can consider prediction of the functional principal component scores component-wise
across the spectral dimension. More precisely, we are interested in estimating the con-
ditional mean of a function at some future time point N + 1 given that at time point
N it takes on some realized value x. Then, in the modeling framework considered here,
this functional regression model takes on the form

M(x) = E [XN+1|XN = x]

= µ +
∞∑

l=1

E [θN+1,l|θN,l = θl]ψl. (4.7)

As a consequence, in order to form a prediction X f
N+1 of a future function XN+1, it

suffices to estimate the conditional means E [θN+1,l|θN,l = θl], which only involves
scalar random variables. To this end, we suggest a k-nearest neighbors classification
approach that is very easy to implement. In addition, both the mean function and the
eigenelements of the covariance operator are unknown and have to be estimated based
on a sample of N functional observations. Regularization in our modeling framework
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is achieved through projection on a finite number of functional principal components.
We discuss this point inmore details in Section 4.3 and give implementation details and
theoretical consistency results of the here proposed FAM-knn predictor in Section 4.4.

4.2.2 Assumptions

In this section we discuss the relevant assumptions we make. Particularly, we propose
a general notion of time dependencies for functional additive models of auto-regressive
type. Time dependent stochastic processes have been considered in the statistical liter-
ature in many ways. In the context of classical (i.e. finite dimensional) time series analy-
sis, ergodicity and variousmixing conditions have been very popular (see, e.g. Hamilton
[68] and Davidson [35]). In the functional context, however, only few results are avail-
able when dealing with time-dependent curves. Among them, Bosq [18] studies the
theory of linear functional time series, focusing on functional auto-regressive models
while Hörmann and Kokoszka [72] introduce a moment based notion of weak depen-
dence and show that in that case eigenfunctions and eigenvalues can still be consistently
estimated.

In this paperwe attempt to introduce amore general notion of time dependencies for
functional time series which in view of the previous discussion is rooted at the correla-
tion structure of the θi,l across the time dimension i. As in classical time series analysis,
our starting point is to restrict our attention to the class of stationary processes which
we define below.

Definition 4.1. A functional time series (Xi)i≥1 with Xi ∈ L2 is called stationary if there
exists a function µ ∈ L2 and a sequence (cm (t, s))m≥0 such that for each i, j ∈ N one
has

E [Xi] (t) = µ(t),

E
[
(Xi(t)− µ(t))

(
Xj(s)− µ(s)

)]
= c|i−j|(t, s).

For a given stationary functional time series (Xi)i≥1 that admits a Karhunen-Loève
decomposition as in (4.4), let the random principal component scores θi,l have uncon-
ditional probability density function fl(θi,l), andwrite fl(θi+1,l|θi,l = θl) for the con-
ditional probability density of θi+1,l given that θi,l = θl . Moreover, for p = 3, . . . , 6,
let κl(0,τ1,...,τp−1) denote the p-th order cumulant of (θi,l, θi+τ1,l, . . . , θi+τp−1,l), where
τ1, . . . , τp−1 are integers (see, e.g. Brillinger [19, p.19]). As before, we write ml(θl) =
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E[θN+1,l|θN,l = θl]. Finally, we note that in what follows, we adopt the convention
that constants will generally be denoted by C, without distinguishing them unless it is
required. Then we shall assume the following.

Assumption 4.1.

(i) E ∥Xi∥6 < ∆ < ∞ for all i ≥ 1.

(ii) We have for some α > 1 and all l ≥ 1,

λl − λl+1 ∼ l−α−1.

(iii) ml(·) and fl (·) are twice continuously differentiable and fl(·) is bounded. Further-
more, the functional principal component scores θi,l are independent across l.

(iv) Define Bm,l := sup
i

|E [θi,lθi−m,l]|. Then there exists a constant C > 0 and some

β > 0 such that for all l ≥ 1,

Bm,l ≤ C m−βλl.

(v) Forall l ≥ 1and p = 3, . . . , 6, the score sequence (θi,l)i≥1 has absolutely summable
p-th order cumulants with

∞∑
. . .
∑

τ1,...,τp−1=−∞

|κl(0,τ1,...,τp−1)| ≤ Cλ
p/2
l .

Part (i) of Assumption 4.1 enhances the standard assumption of finite fourth mo-
ments that is usually employed in functional data analysis under i.i.d. sampling (see,
e.g. Horváth and Kokoszka [73]) to the existence of sixth moments. This assumption
is in line with the standard time series literature where higher moment restrictions are
imposed as a trade off for allowing time dependencies.

Condition (ii) is standard and prevents the spacing between adjacent eigenvalues
λl from being too small. It also implies that λl ∼ l−α. Furthermore, note that we
can restrict ourselves to the case α > 1 since it follows from the moment condition in
(i) that the eigenvalues have to be summable, i.e.

∑
l≥1 λl < ∞. The importance of

this spacing property (ii) will particularly become apparent in the proofs of Corollary
4.1 and Theorem 4.3. Intuitively, as l increases, it becomes more difficult to estimate
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the eigenfunctions ψl associated with λl as the expected L2 error is proportional to δ2
l

where δl := max1≤k≤l (λk − λk+1)
−1. As a consequence, the sequence of eigenval-

ues (λl)l≥1 cannot decrease too fast for the estimation error of the eigenfunctions ψl

not to explode.
The principal component scores θi,l of the Karhunen-Loève decomposition are un-

correlated across the spectral dimension l by construction. In Part (iii) of Assumption
4.1we strengthen this condition to independence across l. Moreover, both the principal
component regression function ml and their density fl need to be sufficiently smooth
as to allow for a Taylor expansion of up to second order. This is essentially a requirement
for the consistency results of the k-nearest neighbors estimator of ml to hold.

Part (iv) and (v) restrict the form of time dependencies that we allow for the score
series (θi,l)i≥1, for all l ≥ 1. The assumed behavior of the Bm,l , which represent a
measure of absolute autocovariances of the score series (θi,l)i≥1, is only a mild restric-
tion. In particular, part (iv) implies a natural restriction on the absolute summability
of the m-th autocovariances of the score series across the spectral dimension l, since∑

l≥1 Bm,l ≤ Cm−β. However, absolute summability of the autocovariances of the
score series is not required across the time dimension i. More precisely, for 0 < β < 1
one can conclude that

∑N
m=1 Bm,l is of order N1−βλl which has explosive behavior

for fixed l and large N. In fact, if one is interested in only establishing consistency of the
functional principal components method, part (iv) can be relaxed further to

(iv)′ For Bm,l defined as before there exists a constant C > 0 such that for all l ≥ 1

Bm,l ≤ Cbmλl with
∞∑

m=1

m−1bm < ∞.

Condition (iv)′ allows for a very slow decay of the time dependencies (as measured
through absolute autocovariances) represented by the component bm that can even be
of logarithmic order (see, e.g. Davidson [35, Theorem 2.31]), i.e.

bm = O
(

ln (m)−1−β
)

for β > 0.

Finally, condition (v) of Assumption 4.1 in general rules out long range dependence
in the p-th moments of the (θi,l)i≥1, for p = 3, . . . , 6 and all l ≥ 1. The given
cumulant condition is standard in the time series literature (see, e.g. Brillinger [19],
Andrews [4] and Demetrescu et al. [38]) and will provide us with a useful measure of
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the joint statistical dependence of higher order moments and a convenient tool for de-
riving rates of convergence. The following combinatorial representation of p-th order
moments in terms of joint cumulants will be particularly useful. For a set of random
variables θ1, . . . , θp one has

E
[
θ1 · . . . · θp

]
=
∑

π

∏
B∈π

κ (θi : i ∈ B) , (4.8)

wereπ cycles throughall possiblepartitionsof the set{1, 2, . . . , p} and B cycles through
all blocks of partition π.

Furthermore, note that the concept of α-mixing is closely related to the form of time
dependencies assumed in (iv)-(v). In fact, α-mixing together with finite sixth mo-
ments implies absolute summability of the joint cumulants up to sixth order (see, e.g.
Andrews [4] or Gonçalves and Kilian [59]). Hence, the main difference between the
two approaches lies in the way how autocovariances are handled. In general we find that
conditions (iv) and (v) have several advantages in a functional setting: first, they allow
for a broader scope of time dependencies (in that absolutely summable autocovariances
are not necessary which can be controlled through the β parameter); second, incorpo-
rating the decay across the spectral dimension l is straighforward, which is crucial for
the analysis; and third, the stated conditions have an intuitive interpretation of the em-
ployed time dependency concept for functional data when compared to various mixing
properties.

4.3 Applicability of functional principal components analysis

In this sectionwe showthat functional principal components analysis is applicableunder
the stated assumptions on time dependent functional data. As mentioned before, reg-
ularization in our modeling framework is achieved through projection on finitely many
functional principal components. In practice this means that the infinite sum in (4.4)
is truncated at some finite integer L, yielding a sample of truncated Karhunen-Loève
decompositions (Xi,L)

N
i=1 where

Xi,L(t) := µ(t) +
L∑

l=1

⟨Xi, ψl⟩ψl(t) = µ(t) +
L∑

l=1

θi,lψl(t). (4.9)
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As a consequence, an initially infinite-dimensional object such as Xi,L can be reduced
to a finite, countable set of functional principal component scores (θi,1, . . . , θi,L). Nat-
urally, all quantities above that involve an expectations operator (such as the eigenele-
ments of the covariance operator in (4.3)) have to be estimated on the basis of an ob-
served sample of functions (Xi)

N
i=1 which gives rise to empirical expansions that ap-

proximate (4.4). Thestandardempirical approximationsofµ(t) andCX[x](t) are given
by the following sample averages,

µ̂(t) =
1
N

N∑
i=1

Xi (t) , (4.10)

ĈX[x](t) =
1
N

N∑
i=1

⟨Xi − µ̂, x⟩ (Xi (t)− µ̂ (t)) , x ∈ L2. (4.11)

We denote the eigenelements of ĈX by (λ̂l)l≥1 and (ψ̂l)l≥1, respectively, such that,
upon truncation after the first L functional principal components, the Karhunen-Loève
approximation of each function Xi is defined as

X̂i,L(t) := µ̂(t) +
L∑

l=1

⟨Xi, ψ̂l⟩ψ̂l(t) = µ̂(t) +
L∑

l=1

θ̂i,lψ̂l(t) (4.12)

where now θ̂i,l := ⟨Xi, ψ̂l⟩ denotes the l-th estimated functional principal component
score.

The following results show that in the setting presented above and given a sample
of curves (Xi)

N
i=1, the mean function µ and the covariance operator CX as defined in

(4.2)-(4.3) can be consistently estimated by µ̂ and ĈX , respectively. All proofs are given
in Section 4.5.

Theorem 4.1. If a stationary functional time series (Xi)
N
i=1 fulfills Assumption 4.1 then

(i) E ∥µ̂ − µ∥2 = O
(

N−β∗
)

,

(ii) E

∥∥∥ĈX − CX

∥∥∥2

S
= O

(
N−2β∗∗

)
,

where β∗ := β I(0 < β < 1) + I(β ≥ 1), β∗∗ := β I(0 < β < 1/2) + 1
2 I(β ≥

1/2) and I(·) denotes the indicator function.
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If, instead, we assume Assumption 4.1 with (iv)′, then we have the following corol-
lary to Theorem 4.1.

Corollary 4.1. If a stationary functional time series (Xi)
N
i=1 fulfills Assumption 4.1 with

(iv)′ then

(i) E ∥µ̂ − µ∥2 = o (1) ,

(ii) E

∥∥∥ĈX − CX

∥∥∥2

S
= o (1) .

The results ofTheorem 4.1 should be interpreted as follows. The fastest convergence
speed that can be achieved for the empirical estimator of the mean function and the
covariance operator to their population counterparts is N−1 when β > 1. In other
words, as soon as we allow for absolute summability of the autocovariances in the func-
tional principal component score series (θi,l)i≥1 across the time dimension i, the speed
of convergencewill be the same as under i.i.d. sampling (see, e.g. Horváth andKokoszka
[73, Theorems 2.3 and 2.5]).

Our next result gives explicit bounds for themean squared error of the eigenelement
estimators, again under the time dependency assumption stated in Assumption 4.1.

Corollary 4.2. If a stationary functional time series (Xi)
N
i=1 fulfills Assumption 4.1 then

for every l ≥ 1,

(i) E

∥∥∥clψ̂l − ψl

∥∥∥2
= O

(
δ2

l N−2β∗∗
)

,

(ii) E
∣∣λ̂l − λl

∣∣2 = O
(

N−2β∗∗
)

,

where cl := sign(⟨ψ̂l, ψl⟩), δl := max1≤k≤l(λk − λk+1)
−1 and where (λl)l≥1 and

(ψl)l≥1 are the eigenelements of the covariance operator CX defined in (4.3) and (λ̂l)l≥1

and (ψ̂l)l≥1 are the eigenelements of the estimated covariance operator ĈX defined in (4.11).

The results in Corollary 4.2 indicate that the estimator ψ̂l of ψl is only identified up
to a change in sign. As is standard in the literature, we shall tacitly assume that the sign
of ψ̂l is chosen such that

∫
ψ̂lψl ≥ 0.
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4.4 Theoretical results

In this section we investigate the statistical properties of the functional one-step ahead
predictor X f

N+1 of some future function XN+1. Assume, without loss of generality, that
the functions Xi have mean zero. In the modeling framework considered here, and as
discussed in Section 4.2, a future function XN+1 satisfies

M(x) = E [XN+1|XN = x]

=
∞∑

l=1

ml(θl)ψl,

where ml(θl) = E[θN+1,l|θN,l = θl]. A predictor X f
N+1 can thus be devised by

providing estimators for the functional principal components ψl as well as for the con-
ditionalmeans ml(θl) and truncating the infinite sum in the above display at somefinite
integer L. The predictor X f

N+1 then takes on the form

X f
N+1 = M̂(x̂) =

L∑
l=1

m̂l(θ̂l)ψ̂l.

While estimation of the functional principal components ψl has already been discussed
in Section 4.3, we propose to estimate the conditional means ml(θl) by a k-nearest
neighbors classificationapproach. Informally speaking, this considers estimatingml(θl)

by a sample average of those θi+1,l ’s for which the preceding θi,l ’s are closest to the fea-
ture score component θl .

In what follows, we make this approach precise and define several quantities that al-
low us to separately analyze the effects of truncation and estimation.

4.4.1 Definitions and notation

Consider first the effect of truncating the (infinite-dimensional) Karhunen-Loève ex-
pansion of the functions Xi at some finite integer L but assuming all quantities in the
expansion to be known. We denote these truncated expansions by

Xi,L(t) :=
L∑

l=1

θi,lψl(t)
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and the truncated realization by

xL(t) :=
L∑

l=1

θlψl(t).

As before, the truncated feature element xL is thus characterized by a finite, countable
set of functional principal component scores (θ1, . . . , θL).

Now take, for each l = 1, . . . , L, the number of neighbors to θl to depend on the
sample size N in that kN → ∞ as N → ∞. Furthermore, denote the index set of
the kN closest neighbors of the series (θi,l)

N
i=1 to the feature score component θl by

I(kN; θl) and define the infeasible estimator ml,N(θl) of ml(θl) to be given by

ml,N(θl) :=
1

kN

∑
i∈I(kN ;θl)

θi+1,l. (4.13)

This is a straightforward implementation of the kN-NN classifier to estimate ml(θl) =

E[θN+1,l|θN,l = θl]. Consequently, the infeasible functional predictor X f
N+1 =

MN,L(xL) based on a truncated sample (Xi,L)
N
i=1 is defined by

MN,L (xL) :=
L∑

l=1

ml,N(θl)ψl. (4.14)

For future reference we furthermore define

ML(xL) :=
L∑

l=1

E [θN+1,l|θN,l = θl]ψl

=
L∑

l=1

ml(θl)ψl, (4.15)

where in comparison to (4.14) the kN-NN estimators of the scores have been replaced
by the corresponding conditional population means.

While the truncated estimator MN,L(xL) is infeasible since the elements of the
Karhunen-Loève decomposition are unknown, we consider a feasible version that re-
places the elements in the series expansion of the Xi,L with estimated quantities. As
above, this yields a series of truncatedKarhunen-Loève approximations which are given
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by

X̂i,L(t) :=
L∑

l=1

θ̂i,lψ̂l(t).

Note that in comparison to Xi,L, all quantities involved in the series expansion are now
estimated on a sample of N functional observations. Similarly to above, we denote the
corresponding truncated and estimated realization by

x̂L(t) :=
L∑

l=1

θ̂lψ̂l(t)

which is now characterized by a finite, countable set of estimated functional principal
component scores (θ̂1, . . . , θ̂L). Denote the index set of the kN closest neighbors of the
series (θ̂i,l)

N
i=1 to the estimated feature score component θ̂l by Î(kN; θ̂l) anddefine the

feasible estimator m̂l,N(θ̂l) of ml(θl) to be given by

m̂l,N(θl) :=
1

kN

∑
i∈Î(kN ;θ̂l)

θ̂i+1,l. (4.16)

Consequently, the feasible functional predictor X f
N+1 = M̂N,L(x̂L) based on a trun-

cated sample of Karhunen-Loève approximations (X̂i,L)
N
i=1 is defined by

M̂N,L (x̂L) :=
L∑

l=1

m̂l,N(θ̂l)ψ̂l. (4.17)

The remainder of this section proceeds by first considering the effect of truncation,
i.e. showing that MN,L(xL) converges to M(x) with a suitable rate. In a second step
we show convergence of M̂N,L(x̂L) to MN,L(xL).

4.4.2 The effect of truncation

In this section we consider the infeasible estimator MN,L(xL) based on a truncated
sample (Xi,L)

N
i=1. More precisely, we study convergence rates of

E∥MN,L(xL)− M(x)∥2. (4.18)
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Upon adding and subtracting ML(xL) to the argument in (4.18), and imposing the
standard triangle inequality for L2-norms, the Cauchy-Schwarz and Jensen’s inequality
it suffices to consider the terms

E∥ML(xL)− M(x)∥2 and E∥MN,L(xL)− ML(xL)∥2,

for which we obtain the following rates of convergence, the proof of which is given in
Section 4.5.

Theorem 4.2. We have for some α > 1 and kN ∼ ⌊N4/5⌋,

(i) E∥ML(xL)− M(x)∥2 = O
(
(L + 1)1−α

)
,

(ii) E∥MN,L(xL)− ML(xL)∥2 = O
(

k−1
N

)
.

Here ⌊·⌋ denotes the integer part of the argument. As a consequence, we obtain the
following convergence rate for the mean squared error of truncation,

E∥MN,L(xL)− M(x)∥2 = O
(

max
(
(L + 1)1−α, k−1

N , (L + 1)(1−α)/2k−1/2
N

))
.

Note that α > 1 in view of summability of the sequence of eigenvalues (λl)l≥1 which
implies convergence to zero of all terms in the above display as both N and L tend to
infinity.

4.4.3 The effect of estimation

Wenowconsider the effectof estimationby showing that the feasible estimator M̂N,L(x̂L)

based on a sample of approximated functions (X̂i,L)
N
i=1 converges to the infeasible ver-

sion MN,L(xL), i.e we study

E

∥∥∥M̂N,L(x̂L)− MN,L(xL)
∥∥∥2

. (4.19)

Using (4.17) and (4.14) and upon adding and subtracting
∑L

l=1 ml,N(θl)ψ̂l to the
argument of the quantity of interest it suffices (again in view of the triangle, Cauchy-
Schwarz and Jensen inequalities) to analyze the quantities

E

∥∥∥∥∥
L∑

l=1

ml,N(θl)
(

ψ̂l − ψl

)∥∥∥∥∥
2

and E

∥∥∥∥∥
L∑

l=1

(
m̂l,N(θ̂l)− ml,N(θl)

)
ψ̂l

∥∥∥∥∥
2

.
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The convergence rates for these quantities are given in the following theorem, the proof
of which can again be found in Section 4.5. Note that if we were not to assume that the
Xi have mean zero, then an additional term E∥µ̂ − µ∥2 would have to be considered.
Convergence rates for this expression have, however, been already derived in Theorem
4.1 and, as the following theorem shows, are of faster order.

Theorem 4.3. We have for some α > 1, β∗ := β I(0 < β < 1) + I(β > 1),
β∗∗ := β I(0 < β < 1/2) + 1

2 I(β > 1/2) and kN ∼ ⌊N4/5⌋,

(i) E

∥∥∥∥∥
L∑

l=1

ml,N(θl)
(

ψ̂l − ψl

)∥∥∥∥∥
2

= O
(

L3+α

kβ∗

N N2β∗∗

)
,

(ii) E

∥∥∥∥∥
L∑

l=1

(
m̂l,N(θ̂l)− ml,N(θl)

)
ψ̂l

∥∥∥∥∥
2

= O
(

max

(
L3+2α log(N)

N2β∗∗
,

L
3
2−

α
2 (log(N))

1
4

N
1
2 β∗∗

))
.

Theresults ofTheorem4.3 now allow us to precisely state how fast L can grow for the
proposed FAM-knn method to still be consistent. Assume that the number of principal
components considered depends on the sample size such that L ∼ ⌊Nγ⌋ for some
γ > 0. Then from part (i) in Theorem 4.3 we need

γ(3 + α) <
4
5

β∗ + 2β∗∗.

In the most favorable case, β∗ = 1 and β∗∗ = 1/2 such that for α just larger than 1
one obtains γ < 9/20. By the same arguments, the first term on the right hand side of
part (ii) inTheorem 4.3 dominates. Sincemoreover the log(N) term is asymptotically
negligible, we need

γ(3 + 2α) < 2β∗∗

which in the most favorable case of β∗∗ = 1/2 and α just larger than 1 gives γ <

4/20. Intuitively, both the sample size and the number of principal components of the
Karhunen-Loève decomposition has to go to infinity. However, the number of principal
components L cannot grow too fast as it becomes increasingly difficult to estimate the
corresponding eigenelements of the covariance operator.
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4.5 Proofs

4.5.1 Preliminary results

We first state some preliminary results as a series of lemmata.

Lemma 4.1. If (xn)n≥1 is a real positive sequence with xn ∼ nα then

(i) if α > −1 then
∑n

m=1 xm ∼ n1+α;

(ii) if α = −1 then
∑n

m=1 xm ∼ log(n);

(iii) if α < −1 then
∑∞

m=1 xm < ∞ and
∑∞

m=n xm = O(n1+α).

Proof. The proof can be found in Davidson [35, Theorem 2.27].

A direct consequence of Lemma 4.1 is the following Lemma on the behavior of the
sequence of eigenvalues (λl)l≥1.

Lemma 4.2. We have for the series of eigenvalues (λl)l≥1 with λl ∼ l−α for some α > 1

(i)
∑∞

l=1 λl < ∞;

(ii)
∑∞

l=L+1 λl = O((L + 1)1−α);

(iii)
∑∞

l=1 λ2
l < ∞.

4.5.2 Proof of Theorem 4.1

Proof of statement (i). We have

E ∥µ̂ − µ∥2 =
1

N2

N∑
i=1

N∑
j=1

E
⟨
Xi − µ, Xj − µ

⟩
=

1
N2

N∑
i=1

E ∥Xi − µ∥2 +
1

N2

N∑∑
i ̸=j

E
⟨

Xi − µ, Xj − µ
⟩

.

As a consequence of part (i) of Assumption 4.1 the second moments of Xi are finite
for all i ≥ 1 such that the first term in the last equation above behaves as O

(
N−1).
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Rearranging the second term and invoking Assumption 4.1 (iv) gives

1
N2

N∑∑
i ̸=j

E
⟨

Xi − µ, Xj − µ
⟩
=

2
N2

N−1∑
m=1

N∑
i=m+1

∞∑
l=1

E (θi,l, θi−m,l)

≤ 2
N2

N−1∑
m=1

N∑
i=m+1

∞∑
l=1

Bm,l

≤ C
N2

N−1∑
m=1

(N − m)m−β
∞∑

l=1

λl.

Assumption 4.1 (i) again implies that
∑∞

l=1 λl is bounded. Then using that (N −
m)/N < 1 the result follows in view of Lemma 4.1.

Proof of statement (ii). Assume for simplicity andwithout loss of generality that µ = 0.
Then by definition of theHilbert-Schmidt norm and orthonormality of the sequence of
eigenfunctions (ψh)h≥1,

E

∥∥∥ĈX − CX

∥∥∥2

S

=
∞∑

h1=1

E

∥∥∥∥∥ 1
N

N∑
i=1

(⟨
Xi, ψh1

⟩
Xi − E

[⟨
Xi, ψh1

⟩
Xi
])∥∥∥∥∥

2

≤ 1
N2

N∑
i=1

∞∑
h1=1

E
∥∥Yi,h1

∥∥2
+

1
N2

N∑∑
i ̸=j

∞∑
h1=1

E
⟨
Yi,h1Yj,h1

⟩
, (4.20)

where Yi,h := ⟨Xi, ψh⟩ Xi − E [⟨Xi, ψh⟩ Xi].
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The first term in (4.20) is of orderO
(

N−1) since
1

N2

N∑
i=1

∞∑
h1=1

E
∥∥⟨Xi, ψh1

⟩
Xi − E

[⟨
Xi, ψh1

⟩
Xi
]∥∥2 ∥

≤ 1
N2

N∑
i=1

E

 ∞∑
h1=1

∥∥⟨Xi, ψh1

⟩
Xi
∥∥2


=

1
N2

N∑
i=1

E

∥Xi∥2
∞∑

h1=1

⟨
Xi, ψh1

⟩2


=

1
N2

N∑
i=1

E ∥Xi∥4 ≤ C
N

.

The second term in (4.20) is handled as follows. First note that in view of the definition
of the Yn,h and the Karhunen-Loève decomposition of each Xi, Xj we have

∞∑
h1=1

E
⟨
Yi,h1Yj,h1

⟩
=

∞∑∑
h1,h2=1

E
[
θi,h1θj,h1θi,h2θj,h2

]
−

∞∑
h1=1

λ2
h1

,

which yields

1
N2

N∑∑
i ̸=j

∞∑
h1=1

E
⟨
Yi,h1Yj,h1

⟩
=

1
N2

N∑∑
i ̸=j

∞∑∑
h1,h2=1

E
[
θi,h1θj,h1θi,h2θj,h2

]
− 1

N2

N∑∑
i ̸=j

∞∑
h1=1

λ2
h1

.

Distinguishing the cases h1 = h2 and h1 ̸= h2 in the above display then gives

1
N2

N∑∑
i ̸=j

∞∑
h1=1

E
⟨
Yi,h1Yj,h1

⟩
=

1
N2

N∑∑
i ̸=j

∞∑
h1=1

E
[
θ2

i,h1
θ2

j,h1

]
+

1
N2

N∑∑
i ̸=j

∞∑∑
h1 ̸=h2

E
[
θi,h1θj,h1θi,h2θj,h2

]
− 1

N2

N∑∑
i ̸=j

∞∑
h1=1

λ2
h1

. (4.21)
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For the first term in (4.21) we have by the relationship of higher-ordermoments to joint
cumulants (4.8),

1
N2

N∑∑
i ̸=j

∞∑
h1=1

E
[
θ2

i,h1
θ2

j,h1

]
=

1
N2

N∑∑
i ̸=j

∞∑
h1=1

κh1 (0,0,|i−j|,|i−j|)

+
1

N2

N∑∑
i ̸=j

∞∑
h1=1

E
[
θ2

i,h1

]
E
[
θ2

j,h1

]

+
2

N2

N∑∑
i ̸=j

∞∑
h1=1

E
[
θi,h1θj,h1

]2 . (4.22)

First note that the second term in (4.22) cancels out the third term in (4.21) since
E[θ2

i,h1
] = E[θ2

j,h1
] = λh1 . The first term in (4.22) is of orderO(N−1) since

1
N2

N∑∑
i ̸=j

∞∑
h1=1

κh1 (0,0,|i−j|,|i−j|)

≤ 1
N2

N∑
i=1

∞∑
h1=1

∞∑∑∑
τ1,τ2,τ3=−∞

∣∣κh1 (0,τ1,τ2,τ3)
∣∣

≤ C
N

∞∑
h1=1

λ2
h1

≤ C
N

.

For the second term in (4.22) we have, for some constant C > 0,

2
N2

N∑∑
i ̸=j

∞∑
h1=1

E
[
θi,h1θj,h1

]2 ≤ 4
N2

N−1∑
m=1

N∑
i=m+1

∞∑
h1=1

B2
m,h1

≤ C
N

N−1∑
m=1

m−2β
∞∑

h1=1

λ2
h1

= O
(

N−2β∗∗
)

,

where β∗∗ := β I(0 < β < 1/2) + 1
2 I(β ≥ 1/2).
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What remains to be discussed is the second term in (4.21) for which we have by
similar arguments

1
N2

N∑∑
i ̸=j

∞∑∑
h1 ̸=h2

E
[
θi,h1θj,h1

]
E
[
θi,h2θj,h2

]
≤ 1

N2

N∑∑
i ̸=j

∞∑∑
h1 ̸=h2

∣∣E [θi,h1θj,h1

]∣∣ ∣∣E [θi,h2θj,h2

]∣∣
≤ 1

N2

N−1∑
m=1

N∑
i=m+1

∞∑∑
h1,h2=1

Bm,h1 Bm,h2

≤ C
N

N−1∑
m=1

m−2β
∞∑

h1=1

λh1

∞∑
h2=1

λh2

= O
(

N−2β∗∗
)

,

where β∗∗ := β I(0 < β < 1/2) + 1
2 I(β ≥ 1/2). The desired result now

follows upon observing that the dominant convergence rate is precisely of the required
order.

4.5.3 Proof of Corollary 4.1

Proof. It suffices to show convergence of 1
N
∑N−1

m=1 bm to zero as N → ∞. For this we
make use ofKronecker’s lemmawhich states that for positive real sequences (xi)i≥1 and
(ai)i≥1 with ai ↑ ∞ one has

N∑
i=1

xi

ai
→ C implies

1
aN

N∑
i=1

xi → 0,

as N → ∞. The corollary now follows from the proof of theTheorem 4.1 together with
the fact that 1

N
∑N−1

m=1 bm → 0.
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4.5.4 Proof of Corollary 4.2

Proof. This proof requires two auxiliary results formulated in the following lemma.

Lemma 4.3. Under the conditions ofTheorem 4.1, one has for each l ≥ 1

∣∣λ̂l − λl
∣∣ ≤

∥∥∥ĈX − CX

∥∥∥
L

, (4.23)∥∥∥clψ̂l − ψl

∥∥∥ ≤ Cδl

∥∥∥ĈX − CX

∥∥∥
L

, (4.24)

where cl = sign
(
⟨ψ̂l, ψl⟩

)
, δl = max1≤k≤l (λk − λk+1)

−1, C > 0 and ∥·∥L
denotes the operator norm for the space of bounded linear operatorsL on L2(T , ∥ · ∥).

Both results (4.23) and (4.24) follow from Bosq [18, Lemma 4.2 and 4.3], respec-
tively. Given the result in Lemma 4.3, the proof of Corollary 4.2 is straightforward since
the inequalities (4.23) and (4.23) together with the fact that ∥·∥L ≤ ∥·∥S yield

∣∣λ̂l − λl
∣∣2 ≤

∥∥∥ĈX − CX

∥∥∥2

S∥∥∥clψ̂l − ψl

∥∥∥2
≤ δ2

l

∥∥∥ĈX − CX

∥∥∥2

S
.

Then Theorem 4.1 implies the desired results.

4.5.5 Proof of Theorem 4.2

Since our interest is in analyzingE∥MN,L(xL)− M(x)∥2, it suffices, upon adding and
subtracting ML(xL) in the argument of our object of interest, to consider the two terms

E∥MN,L(xL)− ML(xL)∥2, (4.25)

E∥ML(xL)− M(x)∥2. (4.26)

Proof of statement (i). We start with analyzing (4.26) and first recall that we have

M(x) =
∞∑

l=1

E [θN+1,l|θN,l = θl]ψl

=
∞∑

l=1

ml(θl)ψl. (4.27)
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We then have, using the definitions in (4.15) and (4.27) and orthonormality of the ψl

E∥ML(xL)− M(x)∥2 = E

∥∥∥∥∥
L∑

l=1

ml(θl)ψl −
∞∑

l=1

ml(θl)ψl

∥∥∥∥∥
2

= E

∥∥∥∥∥∥
∞∑

l=L+1

ml(θl)ψl

∥∥∥∥∥∥
2

=
∞∑

l=L+1

E
[
ml(θl)

2
]

. (4.28)

Now observe that the summand in (4.28) can be expressed as

E
[
ml(θl)

2
]
= E

[
E [θN+1,l|θN,l = θl]

2
]

= E
[
θ2

N+1,l

]
− E [V [θN+1,l|θN,l = θl]]

≤ λl,

where the last inequality follows in view of V [θN+1,l] = E
[
θ2

N+1,l

]
= λl and the

fact that 0 ≤ E [V [θN+1,l|θN,l = θl]] ≤ V [θN+1,l]. Now note that by assumption,
λl ∼ l−α for some α > 1. We thus have that (4.28) is of order O((L + 1)1−α) in
view of the second statement of Lemma 4.2.

Proof of statement (ii). Now we consider (4.25) which, upon using the definitions in
(4.14) and (4.15), can be written as

E∥MN,L(xL)− ML(xL)∥2 = E

∥∥∥∥∥
L∑

l=1

(ml,N(θl)− ml(θl))ψl

∥∥∥∥∥
2

=
L∑

l=1

E
[
(ml,N(θl)− ml(θl))

2
]

, (4.29)

where the second equality follows again in view of the orthonormality of the sequence
of eigenfunctions (ψl)

L
l=1. For fixed l = 1, . . . , L, rates of convergence of the mean

squared error in (4.29) can be derived by following results in Yakowitz [108]. A care-
ful inspection of the proofs in Yakowitz [108] reveals that analyzing the second mo-
ment of the distance between (the given) θl and its farthest (of the kN) neighbor is of
key importance. Denote this farthest neighbor to θl by θN(kN),l and write Ri,l(θl) :=
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|θi,l − θl| such that R(kN),l(θl) := |θN(kN),l − θl| denotes the kN-th order statistic of
the Ri,l(θl). Results in Yakowitz [108] indicate that E[R(kN),l(θl)

2] ≤ C1(l)k−1/2
N ,

where C1(l) is some constant that depends only on l. While this holds true for fixed l,
we have to consider asymptotics where L goes to infinity. Now observe that

E
[

R(kN),l(θl)
2
]
= E

[
|θN(kN),l − θl|2

]
≤ C2(N)λl

for fixed N, where C2(N) is some constant only depending on N. Combining these
results gives us E[R(kN),l(θl)

2] ≤ C3k−1/2
N λl , where now C3 is a constant that is in-

dependent of both l and N. Moreover, Yakowitz [108] shows that the number of neigh-
bors kN has to grow with the sample size where kN ∼ ⌊N4/5⌋.

The desired result now follows in view of Lemma 4.1, the main result of Yakowitz
[108, Theorem 2.1] and the arguments presented above.

4.5.6 Proof of Theorem 4.3

Proof of statement (i). We assume for simplicity, and without loss of generality, that the
functions (Xi)

N
i=1 havemean zero. As before, we denote, for i = 1, . . . , kN , by N(i) ∈

I(kN; θl) the index of the i-th nearest neighbor to θl . We then have in view of the
Cauchy-Schwarz inequality, definition (4.14) and Lemma 4.3

E

∥∥∥ml,N(θl)
(

ψ̂l − ψl

)∥∥∥2

= E

 L∑∑
l,k=1

ml,N(θl)mk,N(θk)
⟨

ψ̂l − ψl, ψ̂k − ψk

⟩
≤ E

 L∑∑
l,k=1

ml,N(θl)mk,N(θk)
∥∥∥ψ̂l − ψl

∥∥∥∥∥∥ψ̂k − ψk

∥∥∥


≤ 1
k2

N

L∑∑
l,k=1

kN∑∑
i,j=1

E

[
θN(i)+1,lθN(j)+1,kδlδk

∥∥∥ĈX − CX

∥∥∥2

S

]
. (4.30)
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As already detailed in Section 4.3, we define, for any sequence (eh)h≥1 of orthonormal
basis functions, Yn,h := ⟨Xn, eh⟩ Xn − E [⟨Xn, eh⟩ Xn] such that we have

∥∥∥ĈX − CX

∥∥∥2

S
=

∞∑
h1=1

∥∥∥∥∥ 1
N

N∑
n=1

Yn,h1

∥∥∥∥∥
2

=
1

N2

∞∑
h1=1

N∑∑
n,m=1

⟨
Yn,h1 , Ym,h1

⟩
.

The expression in (4.30) can thus be written as

1
k2

N

L∑∑
l,k=1

kN∑∑
i,j=1

E

[
θN(i)+1,lθN(j)+1,kδlδk

∥∥∥ĈX − CX

∥∥∥2

S

]

=
1

k2
N

L∑∑
l,k=1

kN∑∑
i,j=1

E

θN(i)+1,lθN(j)+1,kδlδk
1

N2

N∑∑
n,m=1

∞∑
h1=1

⟨
Yn,h1 , Ym,h1

⟩
=

1
k2

N N2

L∑∑
l,k=1

kN∑∑
i,j=1

N∑∑
n,m=1

∞∑
h1=1

δlδkE
[
θN(i)+1,lθN(j)+1,k

⟨
Yn,h1 , Ym,h1

⟩]
.

(4.31)
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Observe that by definition of the Yn,h and properties of the θn,h = ⟨Xn, ψh⟩ we have
upon taking (eh)h≥1 = (ψh)h≥1,

∞∑
h1=1

⟨
Yn,h1 , Ym,h1

⟩
=

∞∑
h1=1

⟨⟨
Xn, ψh1

⟩
Xn,

⟨
Xm, ψh1

⟩
Xm
⟩

+
∞∑

h1=1

⟨
E
[⟨

Xn, ψh1

⟩
Xn
]

, E
[⟨

Xm, ψh1

⟩
Xm
]⟩

−
∞∑

h1=1

⟨⟨
Xn, ψh1

⟩
Xn, E

[⟨
Xm, ψh1

⟩
Xm
]⟩

−
∞∑

h1=1

⟨⟨
Xm, ψh1

⟩
Xm, E

[⟨
Xn, ψh1

⟩
Xn
]⟩

,

=
∞∑∑

h1,h2=1

θn,h1θn,h2θm,h1θm,h2

+
∞∑

h1=1

λ2
h1
−

∞∑
h1=1

λh1θ2
n,h1

−
∞∑

h1=1

λh1θ2
m,h1

. (4.32)

In view of (4.32), the expression in (4.31) can be decomposed into

A1 + A2 − 2A3,

where

A1 :=
1

k2
N N2

L∑∑
l,k=1

kN∑∑
i,j=1

N∑∑
n,m=1

∞∑∑
h1,h2=1

δlδkE
[
θN(i)+1,lθN(j)+1,kθn,h1θn,h2θm,h1θm,h2

]
,

A2 :=
1

k2
N N2

L∑∑
l,k=1

kN∑∑
i,j=1

N∑∑
n,m=1

∞∑
h1=1

δlδkλ2
h1

E
[
θN(i)+1,lθN(j)+1,k

]
,

A3 :=
1

k2
N N2

L∑∑
l,k=1

kN∑∑
i,j=1

N∑∑
n,m=1

∞∑
h1=1

δlδkλh1E
[
θN(i)+1,lθN(j)+1,kθ2

n,h1

]
.

The analysis of the terms above now proceeds by considering the relationship between
higher order moments and joint cumulants as defined in (4.8) and noting that the ran-
dom variables θ·,h = ⟨X·, ψh⟩ have zero mean by construction and are independent
across h by assumption.
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We start with term A2 and first note that the relevant case for us to consider is l = k
as otherwise A2 = 0 by the above arguments. Distinguishing the cases where l ̸= h1

and l = h1 then yields

A2 =
1

k2
N N2

L∑
l=1

kN∑∑
i,j=1

N∑∑
n,m=1

∞∑
h1=L+1

δ2
l λ2

h1
κl(0,|N(i)−N(j)|)

+
1

k2
N N2

L∑
l=1

kN∑∑
i,j=1

N∑∑
n,m=1

δ2
l λ2

l κl(0,|N(i)−N(j)|)

=: A2,1 + A2,2. (4.33)

Now consider the term A3 and again note that it suffices to consider only the case
l = k. Again distinguishing the cases where l ̸= h1 and l = h1 we have by (4.8) that

A3 =
1

k2
N N2

L∑
l=1

kN∑∑
i,j=1

N∑∑
n,m=1

∞∑
h1=L+1

δ2
l λ2

h1
κl(0,|N(i)−N(j)|)

+
1

k2
N N2

L∑
l=1

kN∑∑
i,j=1

N∑∑
n,m=1

δ2
l λlκl(0,|N(i)−N(j)|,|N(i)+1−n|,|N(i)+1−n|)

+
2

k2
N N2

L∑
l=1

kN∑∑
i,j=1

N∑∑
n,m=1

δ2
l λlκl(0,|N(i)+1−n|)κl(0,|N(j)+1−n|)

+
1

k2
N N2

L∑
l=1

kN∑∑
i,j=1

N∑∑
n,m=1

δ2
l λlκl(0,|N(i)−N(j)|)κl(0,0)

=: A3,1 + A3,2 + A3,3 + A3,4. (4.34)

Note that the term A3 enters theobject of interest twicewith anegative sign, such that all
terms of which A2 is comprised are canceled in view of A2,1 = A3,1 and A2,2 = A3,4

and since κl(0,0)=λl .
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We now tun to term A1 and first decompose into the cases where h1 ̸= h2 and
h1 = h2. The second case is furthermore decomposed into cases where l = k and
l ̸= k. This yields

A1 =
1

k2
N N2

L∑∑
l,k=1

kN∑∑
i,j=1

N∑∑
n,m=1

∞∑∑
h1 ̸=h2

δlδkE
[
θN(i)+1,lθN(j)+1,kθn,h1θn,h2θm,h1θm,h2

]
+

1
k2

N N2

L∑∑
l ̸=k

kN∑∑
i,j=1

N∑∑
n,m=1

∞∑
h1=1

δlδkE
[
θN(i)+1,lθN(j)+1,kθ2

n,h1
θ2

m,h1

]

+
1

k2
N N2

L∑
l=1

kN∑∑
i,j=1

N∑∑
n,m=1

∞∑
h1=1

δ2
l E
[
θN(i)+1,lθN(j)+1,kθ2

n,h1
θ2

m,h1

]
=: A1,1 + A1,2 + A1,3. (4.35)

Nownote that A1,2 = 0by the samearguments as above. For term A1,3, wedecompose
into the cases where l ̸= h1 and l = h1 which yields

A1,3 =
1

k2
N N2

L∑
l=1

kN∑∑
i,j=1

N∑∑
n,m=1

δ2
l E
[
θN(i)+1,lθN(j)+1,lθ

2
n,lθ

2
m,l

]

+
1

k2
N N2

L∑
l=1

kN∑∑
i,j=1

N∑∑
n,m=1

∞∑
h1=L+1

δ2
l E
[
θN(i)+1,lθN(j)+1,l

]
E
[
θ2

n,h1
θ2

m,h1

]
.

(4.36)

We consider first the first term of (4.36). By (4.8) and writing, with some abuse of
notation, κ(p) for the p-th order cumulant, we have

E
[
θN(i)+1,lθN(j)+1,lθ

2
n,lθ

2
m,l

]
= κ

(6)
l + 15κ

(4)
l κ

(2)
l + 10κ

(3)
l κ

(3)
l + 15κ

(2)
l κ

(2)
l κ

(2)
l .
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There are 15 instances of κ
(2)
l which are of the form

1 × κl(0,|N(i)−N(j)|)

2 × κl(0,|N(i)+1−n|)

2 × κl(0,|N(i)+1−m|)

2 × κl(|N(i)−N(j)|,|N(i)+1−n|)

2 × κl(|N(i)−N(j)|,|N(i)+1−m|)

4 × κl(|N(i)+1−n|,|N(i)+1−m|)

1 × κl(|N(i)+1−n|,|N(i)+1−n|)

1 × κl(|N(i)+1−m|,|N(i)+1−m|)

Now note that there are precisely four instances where κ
(2)
l is such that the first term in

(4.36) takes the form

1
k2

N N2

L∑
l=1

kN∑∑
i,j=1

N∑∑
n,m=1

δ2
l λlκl(0,|N(i)+1−n|)κl(0,|N(j)+1−n|)

and precisely one instance where κ
(2)
l is such that the first term in (4.36) takes the form

1
k2

N N2

L∑
l=1

kN∑∑
i,j=1

N∑∑
n,m=1

δ2
l λ2

l κl(0,|N(i)−N(j)|)

which are canceled by A3,3 and A3,4, respectively, since these terms enters twice with
a negative sign. By similar arguments, we have two instances in which κ

(4)
l is such that

the first term in (4.36) takes the form

1
k2

N N2

L∑
l=1

kN∑∑
i,j=1

N∑∑
n,m=1

δ2
l λlκl(0,|N(i)−N(j)|,|N(i)+1−n|,|N(i)+1−n|)

which are canceled by A3,2, again since that term enters twice with a negative sign. The
remaining terms of the first term in (4.36) do not provide the dominant rate of conver-
gence such that we skip the further analysis and consider next the second term in (4.36).
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By (4.8) we have

E
[
θ2

n,h1
θ2

m,h1

]
= κh1 (0,0,|n−m|,|n−m|)+κh1 (0,0) κh1 (|n−m|,|n−m|)+2κh1 (0,|n−m|) κh1 (0,|n−m|)

such that we obtain for the second term of (4.36)

1
k2

N N2

L∑
l=1

kN∑∑
i,j=1

N∑∑
n,m=1

∞∑
h1=L+1

δ2
l E
[
θN(i)+1,lθN(j)+1,l

]
E
[
θ2

n,h1
θ2

m,h1

]

=
1

k2
N N2

L∑
l=1

kN∑∑
i,j=1

N∑∑
n,m=1

∞∑
h1=L+1

δ2
l λ2

h1
E
[
θN(i)+1,lθN(j)+1,l

]
+

1
k2

N N2

L∑
l=1

kN∑∑
i,j=1

N∑∑
n,m=1

∞∑
h1=L+1

δ2
l E
[
θN(i)+1,lθN(j)+1,l

]
κh1 (0,0,|n−m|,|n−m|)

+ 2
1

k2
N N2

L∑
l=1

kN∑∑
i,j=1

N∑∑
n,m=1

∞∑
h1=L+1

δ2
l E
[
θN(i)+1,lθN(j)+1,l

]
κh1 (0,|n−m|)2.

Observe now that the first term in the above display is canceled by A3,1 as it enters twice
with a negative sign. As a consequence, the terms A2, A3 and parts of A1 cancel each
other out. The dominant rate of convergence is now obtained by considering the third
term in the above display for which we have

2
k2

N N2

L∑
l=1

kN∑∑
i,j=1

N∑∑
n,m=1

∞∑
h1=L+1

δ2
l E
[
θN(i)+1,lθN(j)+1,l

]
κh1 (0,|n−m|)2

= 2

 1
kN N

L∑
l=1

δ2
l

kN∑∑
i,j=1

E
[
θN(i)+1,lθN(j)+1,l

]×

 1
kN N

∞∑
h1=L+1

N∑∑
n,m=1

κh1 (0,|n−m|)2

 . (4.37)
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For the first term in brackets in (4.37) we have, for some constant C > 0,

(. . .) ≤ 1
kN N

L∑
l=1

δ2
l

kN∑
i=1

E
[
θ2

N(i)+1,l

]
+

1
kN N

L∑
l=1

δ2
l

kN∑∑
i ̸=j

∣∣E [θN(i)+1,lθN(j)+1,l
]∣∣

≤ 1
kN N

L∑
l=1

δ2
l

kN∑
i=1

λl +
2

kN N

kN−1∑
m=1

kN∑
i=m+1

L∑
l=1

δ2
l Bm,l

≤ 1
N

L∑
l=1

δ2
l λl +

C
kN N

kN−1∑
m=1

(kN − m)m−β
L∑

l=1

δ2
l λl

= O
(

k1−β∗

N L3+α

N

)
,

where β∗ := β I(0 < β < 1) + I(β > 1) and the last equality follows in view
of Assumption 4.1 (ii) and (iv) and Lemma 4.1. For the second term in brackets in
(4.37) we have by similar arguments for some constants C, C∗ > 0,

(. . .) ≤ 1
kN N

∞∑
h1=1

N∑∑
n,m=1

E
[
θn,h1θm,h1

]2
≤ 1

kN N

∞∑
h1=1

N∑
n=1

E
[
θ2

n,h1

]2
+

1
kN N

∞∑
h1=1

N∑∑
n ̸=m

∣∣E [θn,h1θm,h1

]∣∣2
≤ 1

kN

∞∑
h1=1

λ2
h1
+

2
kN N

N−1∑
m=1

N∑
i=1

∞∑
h1=1

B2
m,h1

≤ C
kN

+
C∗

kN N

N−1∑
m=1

N∑
i=1

m−2β
∞∑

h1=1

λ2
h1

= O
(

N1−2β∗∗

kN

)

where β∗∗ := β I(0 < β < 1/2) + 1
2 I(β > 1/2) and since

∑
h1≥1 λ2

h1
is

bounded in view of Lemma 4.2. Combining these results we obtain the desired rate
of convergence

O
(

L3+α

kβ∗

N N2β∗∗

)
.
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Note that we omit the analysis of term A1,1 for brevity as it follows by the same argu-
ments presented above and yields the same dominant rate of convergence.

Proof of statement (ii). We have in view of orthonormality of the ψ̂l and using the defi-
nitions of m̂l,N(θ̂l) and ml,N(θl)

E

∥∥∥∥∥
L∑

l=1

(
m̂l,N(θ̂l)− ml,N(θl)

)
ψ̂l

∥∥∥∥∥
2

=
L∑

l=1

E
[(

m̂l,N(θ̂l)− ml,N(θl)
)2
]

=
L∑

l=1

E


 1

kN

∑
i∈Î(kN ;θ̂l)

θ̂i+1,l −
1

kN

∑
i∈I(kN ;θl)

θi+1,l


2
 (4.38)

As before, wewrite R(kN),l(θl) := |θN(kN),l − θl| for the distance of the farthest of the
kN neighbors θN(kN),l to some θl and similarly define R̂(kN),l(θ̂l) := |θ̂N(kN),l − θ̂l|
in terms of estimated quantities. Nowdefine by Bθl(R(kN),l(θl)) and Bθ̂l

(R̂(kN),l(θ̂l))

the balls with centers θl and θ̂l and radii R(kN),l(θl) and R̂(kN),l(θ̂l), respectively. In
fact, although the balls just defined correspond to intervals on the real line, we adopt
the notion of balls for this proof. It helps for the remainder of the analysis to express
the summations in (4.38) in terms of indicator functions of events ωi,l := {θi,l ∈
Bθl(R(kN),l(θl))} and ω̂i,l := {θ̂i,l ∈ Bθ̂l

(R̂(kN),l(θ̂l))}, respectively. Moreover, we
note that in view of the Cauchy-Schwarz inequality we have

sup
i≤N

[
|θ̂i,l − θi,l|2

]
= sup

i≤N

⟨
Xi, ψ̂l − ψl

⟩2
≤ sup

i≤N
∥Xi∥2

∥∥∥ψ̂l − ψl

∥∥∥2
=: ∆l

(4.39)

and we shall furthermore assume that for some constant C > 0, supi≤N ∥Xi∥2 ≤
C log(N) almost-surely. As a consequence we have supi≤N |θ̂i,l − θi,l| ≤ ∆1/2

l and∣∣∣R̂(kN),l(θ̂l)− R(kN),l(θ̂l)
∣∣∣ ≤ ∣∣∣θ̂N(kN),l − θN(kN),l

∣∣∣ ≤ ∆1/2
l (4.40)

in view of the reverse triangle inequality.
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We can then write for (4.38)

L∑
l=1

E


 1

kN

∑
i∈Î(kN ;θ̂l)

θ̂i+1,l −
1

kN

∑
i∈I(kN ;θl)

θi+1,l


2


=
L∑

l=1

E

( 1
kN

N−1∑
i=1

θ̂i+1,lI(ω̂i,l)−
1

kN

N−1∑
i=1

θi+1,lI(ωi,l)

)2
=

1
k2

N

L∑
l=1

E

(N−1∑
i=1

θ̂i+1,lI(ω̂i,l)− θi+1,lI(ωi,l)

)2
=

1
k2

N

L∑
l=1

N−1∑
i=1

E
[(

θ̂i+1,lI(ω̂i,l)− θi+1,lI(ωi,l)
)2
]

+
1

k2
N

L∑
l=1

N−1∑∑
i ̸=j

E
[(

θ̂i+1,lI(ω̂i,l)− θi+1,lI(ωi,l)
) (

θ̂j+1,lI(ω̂j,l)− θj+1,lI(ωj,l)
)]

=: B + C. (4.41)

We are going to analyze the terms B and C separately and start with the former. Adding
and subtracting the quantity θi+1,lI(ω̂i,l) to the argument in B and expanding the sec-
ond degree polynomial gives

1
k2

N

L∑
l=1

N−1∑
i=1

E
[(
(θ̂i+1,l − θi+1,l)I(ω̂i,l) + θi+1,l(I(ω̂i,l)− I(ωi,l))

)2
]

=
1

k2
N

L∑
l=1

N−1∑
i=1

E
[
(θ̂i+1,l − θi+1,l)

2I(ω̂i,l)
2
]

+
1

k2
N

L∑
l=1

N−1∑
i=1

E
[
θ2

i+1,l(I(ω̂i,l)− I(ωi,l))
2
]

+
2

k2
N

L∑
l=1

N−1∑
i=1

E
[
(θ̂i+1,l − θi+1,l)I(ω̂i,l)θi+1,l(I(ω̂i,l)− I(ωi,l))

]
=: B1 + B2 + 2B3. (4.42)
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We start with B1 and first observe that we always have

E
[
(θ̂i+1,l − θi+1,l)

2I(ω̂i,l)
2
]
≤ E

[
(θ̂i+1,l − θi+1,l)

2
]
≤ E [∆l] ,

and that second, there are precisely kN instances in which I(ω̂i,l) = 1. As a conse-
quence, we have in view of Corollary 4.2 and for some constant C > 0,

B1 ≤ 1
k2

N

L∑
l=1

kNE [∆l]

=
1

kN

L∑
l=1

E

[
sup
i≤N

∥Xi∥2∥ψ̂l − ψl∥2

]

≤ C
kN

L∑
l=1

log(N)δ2
l N−2β∗∗

= O
(

L3+2α log(N)

kN N2β∗∗

)
.

We proceed with B2 and observe that by the Cauchy-Schwarz inequality we have

E
[
θ2

i+1,l(I(ω̂i,l)− I(ωi,l))
2
]
≤
(

E
[
θ4

i+1,l

]) 1
2
(

E
[
(I(ω̂i,l)− I(ωi,l))

4
]) 1

2 .

Now consider the first term in brackets for which we have, again using the relationship
between higher-order moments of θi,l and associated cumulants (4.8), and for some
constant C > 0,

(
E
[
θ4

i+1,l

]) 1
2 ≤

 ∞∑∑∑
τ1,τ2,τ3=−∞

κl(0,τ1,τ2,τ3)+3E
[
θ2

i+1,l

]
E
[
θ2

i+1,l

] 1
2

≤ C
√

λ2
l = Cλl.

For the second term in brackets we first observe that there are at most 2kN instances
in which (I(ω̂i,l)− I(ωi,l))

2 = 1. Now denote by △ the symmetric set difference
operator, and observe that we have

E
[
(I(ω̂i,l)− I(ωi,l))

4
]
= E [I(ω̂i,l△ωi,l)] ≤ E [I(ω̂i,l ∪ ωi,l)] .
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Recall that the balls defined above correspond to intervals of the real line such that the
event ω̂i,l ∪ ωi,l is associated with an interval with length bounded by
R := R(kN),l(θ̂l) + 2∆1/2

l + R(kN),l(θl). AsR is random, wemake use of the law of
total expectations and by arguments similar to those presented in Rakotomarolahy [90]
we have, for some constant C > 0,

(E [I(ω̂i,l ∪ ωi,l)])
1
2 = (E [E [I(ω̂i,l ∪ ωi,l)|R]])

1
2

≤ C
(

E
[

R(kN),l(θ̂l) + 2∆1/2
l + R(kN),l(θl)

]) 1
2 .

Now observe that in view of the proof of Theorem 4.3 (i), we have upon using Jensen’s
inequality that for some constant C > 0,

E
[

R(kN),l(θ̂l)
]
≤ Ck−1/4

N λ1/2
l ,

E
[

R(kN),l(θl)
]
≤ Ck−1/4

N λ1/2
l ,

such that it is through ∆1/2
l that the dominant rate of convergence is achieved. Com-

bining the above results then yields, for some constant C > 0,

B2 ≤ C
k2

N

L∑
l=1

kNλl(log(N))
1
4 δ1/2

l N− 1
2 β∗∗

= O
(

L
3
2−

α
2 (log(N))

1
4

kN N
1
2 β∗∗

)
.

We omit the analysis of B3 for brevity as, in view of the Cauchy-Schwarz inequality, the
dominant rate of convergence is determined through the consideration of B1 and B2.
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Let us now turn to term C in (4.41) and observe that, again in view of the Cauchy-
Schwarz inequality, we have to consider essentially the same terms as in B1 and B2, the
difference being that an additional sum over the time index j enters the expressions. As
a consequence, to obtain rates of convergence for the corresponding terms C1 and C2 it
suffices tomultiply the respective rates for B1 and B2 by an additional factor of kN . This
gives the following rates of convergence,

C1 = O
(

L3+2α log(N)

N2β∗∗

)
,

C2 = O
(

L
3
2−

α
2 (log(N))

1
4

N
1
2 β∗∗

)
.

which establishes the desired result. By the same arguments as for B3 we omit the anal-
ysis of C3 for brevity as, in view of the Cauchy-Schwarz inequality, the dominant rate of
convergence is determined through the consideration of C1 and C2.

4.6 Conclusion

In this paper we were concerned with the statistical analysis of functional time series,
particularly with regards to the problem of prediction. Within the framework of first-
order auto-regression, we proposed a functional additivemodel that extends the current
literature to the functional time series scenario. Theproposedmodeling framework pro-
vided several advantages. First, it allowed us to introduce a general notion of time de-
pendencies for functional data that is rooted at the correlation structure of the functional
principal components scores and borrows its intuition from classical time series analy-
sis. Second, it allowed us to consider a very intuitive and easy to implement predictor of
some future function that is based on a k-nearest neighbors classification scheme.

The theoretical contributions in this paper were two-fold. In a first step, we verified
the applicability of the functional principal components analysis and obtained precise
rates of convergence for the mean function and the covariance operator associated with
the observed sample of functions. In a second step, we derived precise rates of conver-
gence of the mean squared error for the proposed predictor, taking into account both
the effect of truncating the infinte series expansion at some finite integer L as well as
the effect of estimating the covariance operator and associated eigenelements based on
a sample of N curves.
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5
Forecasting ground-level ozone

concentration surfaces: a functional
perspective

5.1 Introduction

In this paper we are concerned with the prediction of ground-level ozone concentration
surfaces over the geographical area of Germany from a functional perspective. Ground-
level ozone is a harmful pollutant and the importance of obtaining reliable forecasts has
given rise to a largebodyof literature. Thechallenge that this problemposes lie in the fact
that spatial and temporal information interact and have to be taken into account when
developing a forecasting method.

In classical spatial statistics, space-time models have been very popular where the
focus of analysis is in modeling the space-time covariance structure of the underlying
(finite-dimensional) spatiotemporal process{

Ys,t : s ∈ Rd, t ∈ R
}

(5.1)
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(see Cressie and Huang [33] and Gneiting [58] and the references therein). Applica-
tions to the spatiotemporal modeling of ozone concentration can be found in Guttorp
et al. [65], Huang and Hsu [74] and Bruno et al. [20]. Typically, the process Y is sam-
pled at spatial locations s = s1, . . . , sN and discrete times t = 1, . . . , T. The question
of interest is then in predicting the value ofY at some unmonitored site s∗ and at a spe-
cific point in time t∗.

This problem has also been considered recently from a functional perspective. Anal-
ogously to above, a spatial functional process is defined as

{Ys(t) : s ∈ D, t ∈ T } (5.2)

where D ⊂ Rd is a generic set of spatial locations and T ⊂ R is the time-horizon
of observation (see Delicado et al. [37]). For each fixed spatial location s, Ys(t) is
thought to be a random function taking values in some suitable function space, such
as L2, i.e. the space of square integrable functions defined on T . Assume one observes a
family of N functions (Ysi)

N
i=1 at locations s1, . . . , sN . As opposed to standard Func-

tional Data Analysis (see Ramsay and Silverman [92] for more information), the curves
Ys1 , . . . ,YsN are thought to exhibit spatial dependencies. The interest is thus to take this
dependence structure into account when predicting a function Ys∗(·) at some unmon-
itored site s∗. Several approaches have been suggested in the recent literature that are
mainly based on the framework of functional linear regression models. For example,
Giraldo et al. [55], Giraldo et al. [56] and Nerini et al. [85] extend the methodology of
kriging from classical geostatistics to the functional setting while Yamanishi and Tanaka
[109] consider additional functional covariates.

In this paper we take an alternative functional perspective in that we consider the
ozone concentration over some spatial domainD for some fixed time point t to be given
by a smooth surface that belongs to a suitably defined function space, such that we con-
sider a time series of spatial surfaces defined by

{Xt(s) : s ∈ D, t ∈ T } . (5.3)

In particular we consider the space of square-integrable functions defined over the spa-
tial domainD and equipped with the norm ∥ · ∥, i.e. Xt(s) ∈ L2(D, ∥ · ∥).

While the processes defined in (5.2) and (5.3) appear to be related, their interpre-
tation, and the initial prediction problem for which they have been formulated, differs.
Whereas the prediction problem in (5.2) is spatial in nature, we are interested in a dy-
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Figure 5.1: Smoothed ozone concentration surfaces. This figure shows ozone con-
centration surfaces over Germany for the first three days in June 2011 that are obtained
through a finite element smoothing approach of discrete measurements.

namic perspective. As such, the prediction problem that we have inmind ismore related
to the classical time series scenario, in that we wish to obtain forecasts of some future
surface XT+1(·), say, based on a functional time series (Xt(s))T

t=1, s ∈ D. In Figure
5.1 we plot the (smoothed) surface of ozone concentration across Germany for three
consecutive days from 2011/06/01 until 2011/06/03.

The data that motivated this research consists of daily measurements of ozone con-
centrationmade available through AirBase - the European air quality database provided
by the European Environment Agency¹. For the case of Germany, daily measurements
of ozone concentration are available at N = 171 stations for the year 2011 (see the left
panel of Figure 5.2).

Given the nature of the data, we are in a first step concerned with obtaining a spa-
tial smooth over the spatial domain D of discrete measurements for each fixed time
point t = 1, . . . , T. As many other environmental data, ozone concentration displays
strong seasonality over the yearly horizon. Froma statistical perspective, it is desirable to
work with a stationary sequence of surfaces and we thus filter the raw data bymeans of a
Hodrick-Prescott filter (seeHodrick and Prescott [70]). This yields a decomposition of
the original time series for each station into a seasonal and a residual component. From
here on, the term “ozone concentration” is understood tomean the residual component

¹http://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-
7tab-data-by-country
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Figure 5.2: Spatial locations ofmeasurement stations and triangularmesh. The left
panel shows the spatial locations of ozone measurement stations together with the bor-
der of Germany. The middle panel shows the Delaunay triangulation where the nodes
are placed at ozone sample stations. The right panel shows the corrected Delaunay tri-
angular mesh where triangles that cover the exterior of Germany have been removed.

of some suitable filter applied to the original data. As we are working with spatial data,
we are furthermore interested in taking the geographical boundaries of Germany into
account and thus opt for a finite element smoothing approach as suggested in Ramsay
[93] and Sangalli et al. [98] where they consider finite element basis functions that are
locally defined over a triangulation of the spatial domain (see the right panel of Figure
5.2).

As in the case of spatial functional processes, prediction in a dynamic functional set-
ting has also beenmainly considered in the context of functional linear regressionmod-
els of first-order auto-regressive type. Ettinger et al. [45] consider the ozone concen-
tration Ys∗,t at some particular site s∗ ∈ D and time point t as the scalar response to
a functional linear model where the functional covariate Xt−1 is given by the surface
over the entire domainD at the previous time point. Tacitly assuming that all stochastic
quantities have mean zero, the model then takes the form

E [Ys∗,t|Xt−1] =

∫
D

γ(s)Xt−1(s)ds, t = 1, . . . , T, (5.4)

which can be seen as a special case of functional first-order auto-regressivemodels of the
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form

E [Xt(s)|Xt−1 = x] . (5.5)

Without imposing additional structure on the modeling framework, estimation of such
functional regressionmodels is subject to the curseofdimensionality (as, generally speak-
ing, functions are infinite-dimensional objects). Thus a prominent suggestion in the lit-
erature (see Bosq [18]) is to restrict the attention to functional linear models of first-
order auto-regressive type, FAR(1) for short, of the form

E [Xt|Xt−1 = x] = Γ [x] , t = 1, . . . , T, (5.6)

where Γ is now a linear operator mapping an element of L2 to L2 that admits an integral
representation of the form

Γ [Xt] (s) =
∫
D

γ(s, u)Xt(u)du. (5.7)

Once the operator Γ is estimated by some empirical estimator ΓT based on a sample
of functions (Xt)T

t=1, this model lends itself readily for predicting a future valueXT+1

given thatXT = x through

X f
T+1 = ΓT [x] .

Application of the FAR(1) model can be found in Besse et al. [14] where it performs
favorably in a forecasting study of functional climatic variations.

Whereas the FAR(1)model assumes a linear first-order auto-regressive structure, an
essentially nonparametric extensionwas recently suggested byGleim and Salish [57]. It
takes the form

E [Xt|Xt−1 = x] = M(x), (5.8)

and the authors suggest modeling M(x) by a functional additivemodel (FAM) as pro-
posed byMüller and Yao [84] andwhere predictions are formed bymeans of a k-nearest
neighbors classification scheme (FAM-knn). Such a formulation considerably broad-
ens the scope of functional regression models and we compare its performance relative
to functional linear models in a forecasting study of ground-level ozone concentration
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surfaces over Germany. Similarly to above, the prediction of some future value of the
surfaceXT+1 given thatXT = x is then given by

X f
T+1 = MT(x),

where MT denotes an empirical estimator of M.
The remainderof thepaper is organizedas follows. Section5.2 considershowsmooth

surfaces can be obtained from noisy discrete spatial measurements by using a finite el-
ement spline smoother. The key tool to analyze and estimate both the FAR(1) and
FAM-knn models is the functional principal components analysis. This considers the
spectral decomposition of the surfaces Xt in terms of eigenfunctions of the associated
covariance operator and regularization in these models is achieved through projection
on a finite number of functional principal components. Section 5.3 briefly discusses the
so-called Karhunen-Loève decomposition of L2-functions and details the estimation
steps for both FAR andFAM-knnmodels. Bothmodels are then compared in a forecast-
ing study of ground-level ozone concentration surfaces over the geographical domain of
Germany and the results are reported in section 5.4. Section 5.5 concludes.

5.2 Spatial smoothingwith finite element splines

In this sectionwe are concernedwith the fact that althoughwe think of the (Xt)T
t=1 as a

time series of surfaces over some spatial domainD we only observe X∗
t (si) at discrete

locations si, i = 1, . . . , N where X∗
t = Xt + ηt is a noisy observation of Xt with ηt

denoting some mean zero error term with finite variance. As a consequence, some sta-
tistical smoothing procedure is required to approximateXt from the noisy observations
X∗

t (si). Any smoothing method is employing some penalization term that governs the
roughness (or smoothness) of the obtained approximation. A very common approach
is to measure roughness through a (suitably defined) notion of squared second deriva-
tives. We thus restrict our attention to L2-functions that have square-integrable deriva-
tives up to second order and denote the corresponding function space by H2. In this
paper we are going to employ a finite element spline smoother and we denote the thus
approximated surface by X̃t. We give a detailed account of this approach following the
exposition in Ramsay [93] and Sangalli et al. [98].
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5.2.1 The minimization problem

In order to develop a finite element basis representation X̃ of some functionX we con-
sider minimizing the penalized sum of squared residual functional J given by

Jλ(X ) =
N∑

i=1

(X∗(si)−X (si))
2 + λ

∫
D
(∆X )2 → min! (5.9)

where λ > 0 is a smoothing parameter and ∆ denotes a differential operator of sec-
ond order. Note that we consider a genericX ∈ H2 and omit the subscript time index
t to lighten the notational load. Moreover, we require that the smoothing problem be
independent of the underlying spatial coordinate system so that the roughness penalty
should be invariant under translation and rotation of the spatial coordinates. This is en-
sured if ∆ is comprised of polynomials of the Laplacian operator. Since we are working
in the Hilbert space H2 we define ∆, for anyX ∈ H2, to be given by

∆X (s) = ∆X (x, y) :=
∂2X
∂x2 (x, y) +

∂2X
∂y2 (x, y),

wherewe note that the spatial locations s can be represented by pairs (x, y) of longitude
and latitude coordinates.

Sangalli et al. [98] show that a unique solution X to theminimization problem given
in (5.9) exists if one imposes a boundary condition on X, such as X ∈ H2

n0(D) where
H2

n0(D) denotes the space of L2-functions that have square-integrable partial deriva-
tives up to second order and assume zero normal derivatives at the boundary. Let us
denote for any function X ∈ H2(D) by XN := (X(s1), X(s2), . . . , X(sN))

T the
N-vector of evaluations of the function X at the N spatial sampling locations. The so-
lution X is then characterized by

UT
NXN + λ

∫
D
(∆U) (∆X) = UT

NX∗
N (5.10)

for every U ∈ H2
n0(D).

While the variational problem in (5.9) searches for a solution in the infinite dimen-
sional space H2, thefinite element approachapproximates this solution in afinite-dimensional
subspace of the larger space H1. Consequently, the characterization of the solution
given in (5.10) has to be reformulated such that it is well defined in the space H1 while
still being in H2. Sangalli et al. [98] show that (5.10) is equivalent to finding a pair of
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functions (X, Z) ∈ H2(D)× H2(D) such that

UT
NXN − λ

∫
D
(∇U) (∇Z) = UT

NX∗
N (5.11)

∫
D

ZV +

∫
D
(∇X)(∇V) = 0 (5.12)

for every (U, V) ∈ H2(D) × H2(D). Here we denote by ∇ the spatial gradient
operator. The importance of this representation stems from the fact that all quantities
involved are well-defined in the space H1(D), all the while the solution X being still in
H2(D).

Given this reformulation, the finite element approachproceeds by approximating the
solution X in the finite-dimensional space H1(△D)which is comprised of polynomials
defined piecewise over triangles that make up a triangulation △D of the domain D.
In the remainder of this section we detail the construction of the finite element space
H1(△D) and show how to obtain the finite element approximation X̃ to X.

5.2.2 The finite element space H1(△D)

Thefinite-dimensional subspace H1(△D) is constructed by partitioning the spatial do-
main D into disjoint sets (i.e. finite elements). We take each of the finite elements to
be given by a triangle where the spatial locations s1, s2, . . . , sN correspond to vertices
of the resulting triangular mesh. How to choose the set of triangles in practice is dif-
ficult and many possibilities have been offered in the literature. For our purposes, the
Delaunay triangular mesh seems the most plausible as it chooses the triangulation such
that it maximizes the minimum angle over all possible triangulations. As a result, the
Delaunay triangulation avoids thin triangles and favors triangles that are as equiangu-
lar as possible. As long as no four or more nodes lie on a common circle, the Delaunay
triangulation is uniquely defined and implementation routines are readily available for
most statistical software. The middle panel of Figure 5.2 shows the Delaunay triangular
mesh as the convex hull of the spatial location of ozonemeasurement stations. However,
some triangles also cover the exterior ofGermany and have been removed. The resulting
triangular mesh we consider in the remainder of the paper is shown in the right panel of
Figure 5.2 and we denote the thus approximated spatial domain by△D .

The surface we wish to construct over △D is assumed to be polynomial of second
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order in the spatial coordinates s = (x, y) over any triangle while being continuous
over edges and vertices. Note that in order to construct a quadratic polynomial over a
triangle, the function value has to be specified at six nodal points which we take to be
the vertices and the midpoints of each edge of a triangular finite element as indicated in
Figure 5.3 for the right unit triangle. With each of the local nodal points we associate a
shape functionwhich is a second order polynomial in the spatial coordinates s = (x, y)
that takes the value one at one local nodal point and the value zero at all other local nodal
points. The six shape functions that are constructed in such a way are plotted in Figure
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Figure 5.3: Reference triangular finite element. This figure shows a reference triangle
with corresponding nodal shape functions of a triangular finite reference element.

5.4.
Let us denote the nodal points of the triangulation (i.e. vertices and midpoints of

edges) by ξk, k = 1, . . . , K, and for ease of notationwenumber the nodal points in such
as way as to have the spatial locations si, i = 1, . . . , N, correspond to the first N nodal
points. We associate with each node ξk, k = 1, . . . , K, a nodal basis function ϕk that
corresponds to the shape function associatedwith this nodewhen restricted to a triangle
which has the k-th node as a vertex. Nodal basis functions are thus implicitly defined by
combining the shape functions of those triangles that share a certain node. In Figure 5.5
we plot the resulting finite element nodal basis function associated with the nodal point
(0, 0) which is shared by the four unit triangles. This set of K basis functions spans a
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Figure 5.4: Quadratic finite element shape functions. This figure shows the six shape
functions of a triangular finite reference element.

function space that we denote by H1(△D), i.e. the space of continuous functions on
D that are piecewise quadratic polynomials when restricted to some triangular finite
element.

5.2.3 Spatial finite element approximation

In this section we give a computable representation of the finite element spline approx-
imation X̃ to the solution X in the finite-dimensional space H1(△D). Particularly, we
show that this estimation problem is equivalent to solving a linear system of equations.

To this end we denote by ϕK := (ϕ1, ϕ2, . . . , ϕK)
T the K-vector of spatial ba-

sis functions ϕk. Moreover, for any function X ∈ H1(D) we denote by XK :=
(X(ξ1), X(ξ2), . . . , X(ξK))

T the K-vector of evaluations of X at the K nodal points
ξk. As the nodal points ξk are numbered such that the first N nodes correspond to the
spatial locations of measurement stations, we denote by

X∗
K := (X∗(s1), X∗(s2), . . . , X∗(sN), 0, . . . , 0)T
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Figure 5.5: Quadratic finite element basis function. This figure shows the pyramid
plot of a quadratic finite element basis function associated with the nodal point (0, 0).

the K-vector which has on the first N entries the observations X∗
N at the N spatial loca-

tions and zeros otherwise. By construction of the finite element space we can write any
approximation X̃ ∈ H1(△D) to the solution X as

X̃(s) =
K∑

k=1

ckϕk(s) =
K∑

k=1

X̃(ξk)ϕk(s) =
(

X̃K

)T
ϕK(s). (5.13)

Let us furthermore denote theK-vectors of partial derivatives of the nodal basis func-
tionswith respect to spatial x and y coordinates as ϕ

(x)
K := (∂ϕ1/∂x, . . . , ∂ϕK/∂x)T
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and ϕ
(y)
K := (∂ϕ1/∂y, . . . , ∂ϕK/∂y)T and define the order K matrices

AK,K :=
∫
△D

(ϕK) (ϕK)
T

BK,K :=
∫
△D

(
ϕ
(x)
K

)(
ϕ
(x)
K

)T
+
(

ϕ
(y)
K

)(
ϕ
(y)
K

)T
.

Moreover, we denote by DK,K that order K diagonal matrix that has i-th diagonal el-
ement 1 if the i-th node is a data point and 0 otherwise. The estimation problem in
(5.11)-(5.12) can now be formulated as finding K-vectors

(
X̃K, ZK

)
∈ RK × RK

that satisfy the equations

UT
KDK,KX̃K − λUT

KBK,KZK = UT
KX∗

K

VT
K AK,KZK + VT

KBK,KX̃K = 0K

for all (UK, V K) ∈ RK × RK . Solving this system for X̃K and ZK is then equivalent
to solving the system given by(

−DK,K λBK,K

λBK,K λAK,K

)(
X̃K

ZK

)
=

(
−X∗

K

0K

)
. (5.14)

In view of (5.13) this defines the representation of X̃ in terms of finite element basis
function ϕk.

Froma computational perspective, this systemof linear equations is very fast to solve.
Even though the number of basis functions K can be very large (K = 646 in our appli-
cation), the system is highly sparse.

5.2.4 Choosing the smoothing parameter

What remains tobediscussed is theoptimal choiceof the smoothingparameterλ. Let us
denote by C2K,2K the order 2K matrix on the left-hand side of (5.14) and set S2K,2K =

−C−1
2K,2K . Furthermore we denote by SN,N the order N matrix corresponding to the

first N rows and N columns of S2K,2K . The order N vector of the spatial smooth X̃
evaluated at the N sampling stations is then given by X̃N = SN,NX∗

N such that the
smoothedvalues X̃N at the N sampling stations are thus givenbya linear transformation
of the measurements X∗

N .
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Figure 5.6: Smoothed ozone concentration surfaces. This figure shows ozone con-
centration surfaces over Germany for the first three days in June 2011 that are obtained
through a finite element smoothing approach of discrete measurements.

Onemethod commonly used in the literature is to considerminimization of the gen-
eralized cross-validation criterion given by

GCV(λ) =
1

N (1 − tr(SN,N)/N)2 (X∗
N − SN,NX∗

N)
T (X∗

N − SN,NX∗
N)

(5.15)

(see Ramsay and Silverman [92]). In our application theGCV criterion wasminimized
for a value of the smoothing parameter given by λ = 0.01. Associated with this value
we call the spatially smoothed surface X̃ an optimal FEM-spline smooth. In Figure 5.6 we
plot the optimal FEM-spline smooths of ozone concentration across Germany for three
consecutive days from 2011/06/01 until 2011/06/03 with the values of measurements
included.

5.3 Forecasting bivariate surfaces with FAR and FAMmodels

In this section we consider computational implementation and prediction within the
frameworks of FAR(1) and FAM-knn models. Our approach is based on a spectral de-
composition of the surfaces (Xt)

T
t=1 in terms of eigenfunctions of the associated covari-
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ance operator. Let us define by

µ := E[X ] (5.16)

C[x] := E [⟨X , x⟩X ] , x ∈ L2 (5.17)

the mean function and covariance operator of some random (bivariate) functionX ∈
L2(D), respectively. Note that sincewe areworking in the space L2(D), the covariance
operator C defined in (5.17) admits a representation as an integral operator in view of

C[x](s) =
∫
D

σ(s, u)x(u)du,

where the kernel of the covariance operator is given by

σ(s, u) := E [(X (s)− µ(s)) (X (u)− µ(u))] ,

i.e. the covariance function associated with X . Let us furthermore denote by λ1 >

λ2 > . . . the decreasing sequence of eigenvalues associated with C and denote by
ψ1, ψ2, . . . the correspondingeigenfunctions. SinceC is a symmetricpositive-semidefinite
Hilbert-Schmidt operator, it admits the singular value decomposition

C[x] =
∞∑

l=1

λl⟨x, ψl⟩ψl, x ∈ L2(D). (5.18)

Moreover, the eigenfunctions (ψl)l≥1 constitute an orthonormal basis system that span
the space L2 and as such anyX ∈ L2(D) admits the Karhunen-Loève decomposition
of the form

X (s) = µ(s) +
∞∑

l=1

θlψl(s) (5.19)

where now θl := ⟨X , ψl⟩ denotes the l-th functional principal component score of
X and convergence of the right-hand-side in (5.19) is understood to be in L2. By con-
struction, the sequence of functional principal component scores (θl)l≥1 is such that
the θl are uncorrelated across the spectral dimension l, have mean zero and variance λl .
In what follows, we strengthen uncorrelatedness of the θl to independence across l, an
assumption that is for example satisfied if X is a Gaussian process (see Müller and Yao
[84]).
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In practice, all quantities above involving an expectation operator need to be esti-
mated on a sample of functions (Xt)T

t=1. Moreover, as discussed in the previous sec-
tion, the functions (Xt)

T
t=1 are reconstructed from discrete observations through finite

element splines, yielding a sample of reconstructed functions (X̃t)T
t=1 where X̃t =∑K

k=1 ck,tϕk. Results from Gleim and Salish [57] indicate that, allowing for very gen-
eral notions of time dependence of the functional time series, the mean function µ and
the covariance operator C as defined in (5.16)-(5.17) can be consistently estimated by

µ̂ =
1
T

T∑
t=1

X̃t (5.20)

Ĉ[x] = 1
T

T∑
t=1

⟨
X̃t − µ̂, x

⟩(
X̃t − µ̂

)
, x ∈ L2. (5.21)

As a consequence, for each t = 1, . . . , T, the Karhunen-Loève approximation X̂t,L of
X̃t is then given by a truncated empirical version of expression (5.19), i.e.

X̂t,L(s) := µ̂(s) +
L∑

l=1

θ̂t,lψ̂l(s), (5.22)

where now the (ψ̂l)
L
l=1 are the eigenfunctions associated with the L largest eigenvalues

of the estimated covariance operator Ĉ defined in (5.21) and the estimated principal
component scores are defined as θ̂t,l := ⟨X̂t,L, ψ̂l⟩.

5.3.1 Forecasting with an FAR(1) model

In this section we discuss the estimation and prediction of first-order auto-regressive
functional linear models in the space L2(D). Theoretical results can be found in Bosq
[18] whereas computational issues are detailed in Horváth and Kokoszka [73]. We
closely follow the exposition in Horváth and Kokoszka [73, Chapters 13.2-13.3] and
assume for brevity a mean zero process (Xt)

T
t=1 such that the model is given by

E [Xt|Xt−1] = Γ [Xt−1] , t = 1, . . . , T (5.23)
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where Γ denotes a linear operator, which, as we are working in the space L2, admits an
integral representation with respect to some kernel γ in view of

Γ[x](s) =
∫
D

γ(s, u)x(u)du, x ∈ L2(D).

We apply the Yule-Walker estimation procedure to estimate the auto-regressive op-
erator Γ (or equivalently, its kernel γ) which follows analogously to the classical time
series scenario. Note that if Γ is such that there exists an integer j0 with ∥Γj0∥L :=
sup(∥Γ[x]∥ : ∥x∥ ≤ 1) < 1, we have, for any x ∈ L2,

E [⟨Xt, x⟩Xt−1] = E [⟨Γ [Xt−1] , x⟩Xt−1] .

Let us define by

C1 := E [⟨Xt, x⟩Xt+1]

the lag-1 covariance operator. Horváth andKokoszka [73] show that the following iden-
tity holds, i.e.

C1 = ΓC, (5.24)

which suggests a natural approach in estimating Γ by considering a finite sample version
of the relation Γ = C1C−1. However, as the authors point out, the covariance operator
C does not have a bounded inverse on the whole of L2(D). They argue that as C admits
a singular value decomposition as in (5.18) this implies that C−1 [C[x]] = x, where

C−1[y] =
∞∑

l=1

λ−1
l ⟨y, ψl⟩ψl, y ∈ L2(D),

which is then defined if all eigenvalues λl of C are positive. Unboundedness of C−1 now
follows in view of ∥C−1[ψl]∥ = λ−1

l → ∞ as l → ∞. As a consequence, estimating
the bounded operator Γ through the relationship Γ = C1C−1 is difficult and some form
of regularization has to be employed. A typical approach is, in analogy to theKarhunen-
Loève approximation in (5.22), to consider projection on a finite number L of most
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important empirical principal components ψ̂l , and to define

ÎCL[x] =
L∑

l=1

λ̂−1
l ⟨x, ψ̂l⟩ψ̂l.

This inverse operator is defined on the whole of L2(D) and it is bounded if λ̂l > 0
for l ≤ L. As in (5.22), the truncation integer L has to be chosen carefully to trade
off relevant information in the sample and the explosive behavior of reciprocals of small
eigenvalues λ̂l .

A computable estimator of Γ is then derived by using an empirical version of the
relationship (5.24) and replacing the sample of functions (Xt)T

t=1 with a sample of re-
constructed functions (X̃t)T

t=1. Since C1 is estimated by

Ĉ1[x] =
1

T − 1

T−1∑
t=1

⟨X̃t, x⟩X̃t+1,

we obtain, for any x ∈ L2(D),

Γ̂[x] = Ĉ1 ÎCL[x] = Ĉ1

( L∑
l=1

λ̂−1
l ⟨x, ψ̂l⟩ψ̂l

)

=
1

T − 1

T−1∑
t=1

⟨
X̃t,

L∑
l=1

λ̂−1
l ⟨x, ψ̂l⟩ψ̂l

⟩
X̃t+1

=
1

T − 1

T−1∑
t=1

L∑
l=1

λ̂−1
l ⟨x, ψ̂l⟩⟨X̃t, ψ̂l⟩X̃t+1.

Whereas this estimator canbeused inprinciple, the authors suggest anadditional smooth-
ing stepby replacing X̃t with itsKarhunen-Loève approximation X̂t,L = µ̂+

∑L
l=1 θ̂t,lψ̂l .

This leads to the estimator

Γ̂L[x] =
1

T − 1

T−1∑
t=1

L∑
k=1

L∑
l=1

λ̂−1
k ⟨x, ψ̂k⟩⟨X̃t, ψ̂k⟩⟨X̃t+1, ψ̂l⟩ψ̂l. (5.25)
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Moreover, the authors show that kernel γ of Γ can be estimated by

γ̂L(s, u) =
1

T − 1

T−1∑
t=1

L∑
k=1

L∑
l=1

λ̂−1
k ⟨X̃t, ψ̂k⟩⟨X̃t+1, ψ̂l⟩ψ̂k(s)ψ̂l(u). (5.26)

Based on these estimators, the prediction of a new function X̃T+1 can now be calcu-
lated as

X̃ f
T+1(s) =

∫
D

γ̂L(s, u)X̃T(u)du =
L∑

l=1

( L∑
k=1

γ̂lk⟨X̃T, ψ̂k⟩
)

ψ̂l(s) (5.27)

where

γ̂lk = λ̂−1(T − 1)−1
T−1∑
t=1

⟨X̃t, ψ̂k⟩⟨X̃t+1, ψ̂l⟩.

5.3.2 Forecasting with an FAM-knn model

As mentioned before and as can be inferred from (5.25), the FAR(1) model is linear
in the predictor scores ⟨x, ψ̂k⟩. Gleim and Salish [57] extend this linear structure by
considering a functional additive model (as suggested by Müller and Yao [84]) for the
regression function

E [XT+1|XT = x] = M(x),

inwhich the linear relationshipbetween the functional response and thepredictor scores
is now allowed to follow a non-parametricmodel. Now assume that the realization x has
a Karhunen-Loève decomposition of the form

x =
∞∑

l=1

⟨x, ψl⟩ψl,

where the ψl are the functional principal components from before and the function x
is thus characterized by a countable sequence of feature score components θl := ⟨x, ψl⟩.
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The functional regression model we consider takes then the form

M(x) =
∞∑

l=1

E [θT+1,l|θT,l = θl]ψl, (5.28)

where θt,l := ⟨Xt, ψl⟩ are the true functional principal component scores and where
we again tacitly assume that theXt have mean zero.

As in the linear FAR(1) model, we approach estimation of (5.28) by regularization
where we truncate the infinite sum at some finite integer L. Moreover, the conditional
means E [θT+1,l|θT,l = θl] are estimated by considering a k-nearest neighbors classi-
fication scheme. This approach was proposed in the functional time series context by
Gleim and Salish [57] and consistency results have been derived under very general no-
tions of time dependence between the functional principal component scores θt,l across
the time dimension t and under the assumption of independence across the spectral
dimension l. It proceeds by selecting the kT neighbors that are closest to the feature
score component θl and we denote the index set of those kT nearest neighbors to θl by
I(kT; θl)². If all quantities in (5.28) were known, this would yield an infeasible estima-
tor of M(x) of the form

MT,L(x) =
L∑

l=1

 1
kT

∑
t∈I(kT ;θl)

θt+1,l

ψl. (5.29)

However, both the functional principal components ψl and the functional principal
component scores θt,l have to be estimated based on a times series of reconstructed sur-
faces (X̃t)T

t=1. As discussed above, this yields Karhunen-Loève approximations X̂t,L,
and particularly the feature function x can be written as

x̂L =
L∑

l=1

⟨x, ψ̂l⟩ψ̂l, (5.30)

such that it is characterized by estimated feature score components θ̂l := ⟨x, ψ̂l⟩. This

²Note that the number of neighbors has to depend on the sample size in that kT → ∞ as T → ∞
for the estimator to be consistent.
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leads to the feasible estimator M̂T,L(x̂L) which can be written as

M̂T,L (x̂L) =
L∑

l=1

 1
kT

∑
t∈Î(kT ;θ̂l)

θ̂t+1,l

 ψ̂l,

where now Î(kT; θ̂l) denotes the index set of the kT closest neighbors to the estimated
feature score component θ̂l (out of a sample (θ̂t,l)

T
t=1 of estimated scores).

The forecasted surface for time point T + 1 is thus given in terms of its Karhunen-
Loève approximation where the corresponding principal component scores are them-
selves forecasted with k-NN, i.e.

X̃ f
T+1 = M̂T,L(x̂L).

5.4 Empirical results

In this section we present the results of forecasting ground-level ozone concentration
surfaces over the geographical area of Germany from a dynamic functional perspective.
Both the FAR(1) and FAM-knn method as described above have been implemented.

5.4.1 Data

The data that motivated this research consists of daily measurements of ozone concen-
tration made available through AirBase - the European air quality database provided
by the European Environment Agency. This is a public database containing air quality
monitoring information for more than 35 countries throughout Europe. We analyzed
raw data of daily ozone concentration for Germany which consists of measurements at
1656 stations dating back as far as 1984/01/01. However, not all stations have been
operated continuously and continuousmeasurements are available at N = 171 stations
for the year 2011. As the raw data set was very large (ca. 5GB), consisting of roughly
20, 000 text files that also contain recordings of other air pollutants, the data was first
parsed with a Python script to generate a dataset that could be analyzed further.

5.4.2 Forecasting

In a first step, we reconstructed the sample of T = 365 surfaces (X̃t)T
t=1 from dis-

crete observations at N = 171 sample measurement stations using the FEM spline
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approach presented in section 5.2. The optimal value of the smoothing parameter λ

has been determined throughminimizing the generalized cross validation criterion pre-
sented in (5.15) which resulted in a parameter value of λ = 0.01.

In a second step, we obtained theKarhunen-Loève approximations (X̂t,L)
T
t=1 froma

functional principal components analysis where the expansion was truncated at L = 5
components. The truncation integer L is commonly chosen by means of a scree plot
which suggests to find L where the decrease of the (estimated) eigenvalues appears to
level off. This truncation adds an additional smoothing step as can be seen when com-
paring the top left and right panel of Figure 5.7.

In a third step, the forecasts with both the FAR(1) and FAM-knn method have been
built using an increasing sample designwhere thenumber of neighbors for theFAM-knn
method has been taken as k = 10. To this end an initial T0 = 31 surfaces (X̂t,L)

T0
t=1

have been selected as training sample to predict the one-step ahead value at time T1 =

T0 + 1. This corresponds to considering data for the month of January 2011 to predict
the value for 2011/02/01. The training sample is then increased by one to contain the
surfaces (X̂t,L)

T1
t=1 and again a one-step ahead prediction is formed to obtain the value

at time T2 = T1 + 1. This procedure continues until we reach the end of the sample at
time T = 365. In terms of computing time, both methods are equally fast and require
ca. 0.56 seconds per forecast step.

5.4.3 Discussion

The bottom two panels of Figure 5.7 show the forecasts obtained with the FAR(1) and
FAM-knn method, respectively for 2011/05/15. Both methods provide a good predic-
tion of the general shape of the ozone concentration surface at that date, with the FAM-
knn method capturing the range of the true function X̃t considerably better. However,
such behavior cannot be inferred uniformly over the forecast horizon. In Figure 5.8 we
plot the rootmean squared error (RMSE) for the FAM-knn (red line) andFAR(1) (blue
line) one-step ahead forecastswhen comparing X̃ f

t to X̃t. Bothmethods seem tobe per-
forming similarly, yielding predictions that are reasonably close to each other.

To get amore differentiated viewof forecasting performance, we compare the predic-
tions X̃ f

t evaluated at sampling locations atwhichozonemeasurements have been taken.
A typical trajectory of forecasts and (smoothed) real data is pictured inFigure 5.9 for sta-
tion DEBY063 in Regensburg, Germany. Again, the red line corresponds to FAM-knn
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Figure 5.7: Smoothed ozone concentration surfaces. The top two panels show the
optimal FEM spline smooth and corresponding Karhunen-Loève approximation of the
ozone concentration surface over Germany on 2011/05/15. The bottom two panels
show the FAR(1) and FAM-knn prediction of ozone concentration at the same date.

forecasts evaluated at at that specific sampling station for the time period 2011/02/01
until 2011/12/31. Similarly, the blue line corresponds to FAR(1) forecasts and the
gray line corresponds to smoothed measurements taken at that station (i.e. evaluations
of X̃t at sampling locations). As is to be expected, the FAR(1) forecasts exhibit far less
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Figure 5.8: Rootmean squared error of functional predictions. This figure plots the
root mean squared error for the FAM-knn (red line) and FAR(1) (blue line) one-step
ahead forecasts from 2011/02/01 until 2011/12/31.
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Figure 5.9: Functional prediction evaluations. This figure plots the evaluations at
sampling station DEBY063 (Regensburg, Germany) for the FAM-knn (red line) and
FAR(1) (blue line) one-step ahead forecasts together with smoothed real data (gray
line) from 2011/02/01 until 2011/12/31.

variabilitywhencompared to realmeasurements. This is in fact an intrinsic characteristic
of forecast performance of the FAR(1) model (see Horváth and Kokoszka [73, Chap-
ter 13.3] for a more detailed discussion). As opposed to the FAR(1) model, the FAM-
knn forecasts are somewhat less prone to such behavior. In Figure 5.10 we plot the root
mean squared error of forecast evaluations at all sampling locations (where averaging is
done over the time dimension). As can be inferred from the plots, the FAR(1) forecasts
tend to yield smaller RMSE than the FAM-knnmethod, even though the differences are
small. On average over all sampling locations, the RMSE of the FAR(1)model amounts
to 13.8 compared to 14.8 for the FAM-knn method.
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Figure 5.10: Root mean squared error of functional predictions. This figure shows
the root mean squared error of evaluations of the FAR(1) (left panel) and FAM-knn
(right panel) forecast evaluations at all N = 171 sampling stations.

5.5 Conclusion

In this paper we were concerned with the problem of forecasting ground-level ozone
concentration from a dynamic functional perspective. As opposed to the literature on
spatial functional processes, we considered smooth surfaces (i.e. bivariate functions)
defined over some spatial domain that are sampled consecutively over time.

As the data was only made available at discrete spatial locations, smooth functions
had to be reconstructed by means of a suitable statistical smoothing procedure. In or-
der to take the complex shape of the geographical boundary of the spatial domain into
account, we opted for a finite element spline smoother where basis functions are locally
defined over a triangulation of the spatial domain.

Two functional first-order auto-regressive models have been applied in a forecasting
study, a functional linear and a functional additive model. The non-linear relationship
between the predictor scores and the functional response in the FAM model was esti-
matedbymeans of a k-nearest neighbors classifier. As the results indicate, both the linear
FAR(1) and the non-linear FAM-knnmodel yield predictions that are very close to each
other, with the linear model performing slightly better on average.
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