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Introduction

This thesis comprises four essays that belong to different strands of the theoretical economic

literature. Chapter 1 and Chapter 2 study competitions among heterogeneous agents. Chapter

1 investigates the effects of head starts in innovation contests in which firms invest over time

to find innovations. Chapter 2 studies how firms and managers pair up with each other when

firms play an imperfect competition in the same goods market. Chapter 3 and Chapter 4 are

on optimal disclosure policies in contests. Chapter 3 models a contest as an all-pay auction

and studies whether a contest organizer should disclose the actual number of participating

bidders if each bidder’s participation is random. Chapter 4 considers whether an innovation

contest organizer, upon receiving a submission of an innovation, should reveal the information

of the submitted innovation in time. Chapter 1 and Chapter 3 are based on joint work with

Xiandeng Jiang and Dmitriy Knyazev. For this reason, I use the pronoun “we” in these

chapters, whereas I use “I” in Chapter 2 and Chapter 4.

Chapter 1 considers innovation contests among firms with heterogeneous starting positions.

This topic derives from some phenomena observed in the market. On one hand, many com-

panies, such as Nokia, that once “ruled the roost” of their respective industries got knocked

off by more innovative competitors and came crashing down. On the other hand, some com-

panies, such as Tesla, gave up patents for their technologies in early stages of their business.

What are the effects of head starts in innovation contests

Attempting to answer the this question, this chapter analyzes a two-firm winner-takes-all

contest in which there is a deadline and each firm decides when to stop a privately observed

search for innovations (with recall). The firm with a superior innovation at the outset has a

head start, and the firm with the most successful innovation at a common deadline wins. It

is found that a large head start guarantees a firm victory without incurring cost. However, In

contrast to what a naive person would expect, a medium-sized head start ensures defeat for

the firm if the deadline is sufficiently long. In the latter case, the competitor wins the entire

rent of the contest. A key insight is that when having a large head start a firm loses incentive

to innovate. Hence, a head start firm might want to get rid of its head start and commit to

innovate.
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Chapter 2 considers matchings between firms and managers. Firms compete in the goods

market. A firm’s production cost of the good depends on both this firm’s technology and the

human capital of the manager hired. However, if a manager is hired by one firm, this manager

cannot be hired by the other firms. Hence, a firm’s hiring decision has externalities on the

other firms’ profits and managers’ salaries.

In this chapter, I model the problem as a two-stage game: A first stage of simultaneous

1-to-1 matching and a second stage of Cournot competition among matched pairs. If firm

technology and human capital are complementary, it is rational for each firm-manager pair

to expect that the remaining agents will form a positive assortative matching (PAM), and

PAM on the whole market is a stable matching under rational expectations. Even if they are

substitutable yet the substitutive effect is relatively small, PAM is still stable. However, if

the goods market is sufficiently large, a negative assortative matching is stable. Social welfare

induced by matchings is discussed.

Chapter 3 considers information disclosure problem of a contest organizer. In many con-

tests, such as job promotions and patent races, each contestant has private information about

her valuation on the prize for winning and faces an uncertain number of competitors. The

organizer, although having no information on the values of the prize to the contestants, may

know the actual number of participating contestants. In such a case, to maximize the total

expected revenue, should the organizer commit to revealing or concealing the number of active

contestants?

This chapter models such a contest as an all-pay auction with stochastic entry. The contest

entails one prize and n potential bidders. Each bidder receives a signal about the value of the

prize and has a signal-dependent participation probability. All bidders bear a cost of bidding

that is an increasing function of their bids. It is shown that the contest organizer prefers

fully concealing (disclosing) the information about the number of participating bidders when

the cost functions are convex (concave). If bidders have independent and private values, this

result holds even if the probability of participating is endogenous. However, this result does

not hold when firms have heterogeneous participation probabilities.

Chapter 4 considers an information disclosure problem of an organizer when she is organiz-

ing a winner-takes-all dynamic contest to procure a valuable innovation. Contestants innovate

and submit innovations. Generally, submissions are made in the course of time but not at the

same time. Should the principal choose (1) to publish the information on a submission upon

receiving it or (2) to conceal the information until all contestants have made submissions?

I answer this question in a two-agent winner-takes-all contest in which each agent decides

when to stop a privately observed search for innovations. Each agent makes one-time sub-

2



mission of her best discovery to the organizer. The contest ends when both submissions are

make, and the agent that submitted the best innovation wins. I find that the organizer prefers

revealing information on a submitted innovation upon receiving it to concealing it until the

end not only because the former policy elicits a higher expected revenue but also because it

is more efficient. Any hidden equal sharing rule is outcome equivalent to the winner-takes-all

contest with information concealment.
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Chapter 1

Head Starts and Doomed Losers:

Contest via Search

Introduction

“[U]nfortunately, for every Apple out there, there are a thousand other companies

. . . like Woolworth, Montgomery Ward, Borders Books, Blockbuster Video,

American Motors and Pan Am Airlines, that once ‘ruled the roost’ of their respec-

tive industries, to only get knocked off by more innovative competitors and come

crashing down.” (Forbes, January 8, 2014)

This chapter studies innovation contests, which are widely observed in a variety of indus-

tries. In many innovation contests, some firms have head starts: One firm has a more advanced

existing technology than its rivals at the outset of a competition. The opening excerpt address-

es a prominent phenomenon that is often observed in innovation contests: Companies with a

head start ultimately lose a competition in the long run. It seems that having a head start

sometimes results in being trapped. The failure of Nokia, the former global mobile communi-

cations giant, to compete with the rise of Apple’s iPhone is one example. James Surowiecki

(2013) pointed out that Nokia’s focus on (improving) hardware, its existing technology, and

neglect of (innovating) software contributed to the company’s downfall. In his point of view,

this was “a classic case of a company being enthralled (and, in a way, imprisoned) by its past

success” (New Yorker Times, September 3, 2013).

Motivated by these observations, we investigate the effects of head starts on firms’ com-

petition strategies and payoffs in innovation contests. Previous work on innovation contests

focuses on reduced form games and symmetric players, and previous work on contests with

head starts considers all-pay auctions with either sequential bidding or simultaneous bidding.

By contrast, we consider a stochastic contest model in which one firm has a superior existing

innovation at the outset of the contest and firms’ decisions are dynamic. The main contri-

bution of our study is the identification of the long-run effects of a head start. In particular,
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in a certain range of the head start value, the head start firm becomes the ultimate loser

in the long run and its competitor (or competitors) benefits greatly from its initial apparent

“disadvantage”. The key insight to the above phenomenon is that a large head start (e.g., a

patent) indicates a firm’s demise as an innovator.

Specifically, the model we develop in Section 1.1 entails two firms and one fixed prize. At

the beginning of the game, each firm may or may not have an initial innovation. Whether

a firm has an initial innovation, as well as the value of the initial innovation if this firm has

one, is common knowledge. If a firm conducts a search for innovations, it incurs a search

cost. As long as a firm continues searching, innovations arrive according to a Poisson process.

The value of each innovation is drawn independently from a fixed distribution. The search

activity and innovation process of each firm are privately observed. At any time point before a

common deadline, each firm decides whether to stop its search process. At the deadline, each

firm releases its most effective innovation to the public, and the one whose released innovation

is deemed superior wins the prize.

First, we consider equilibrium behavior in the benchmark case, in which no firm has any

innovation initially, in Section 1.2. We divide the deadline-cost space into three regions (as

in figure 1.1). For a given deadline, (1) if the search cost is relatively high, there are two

equilibria, in each of which one firm searches until it discovers an innovation and the other

firm does not search; (2) if the search cost is in the middle range, each firm searches until

it discovers an innovation; (3) if the search cost is relatively low, each firm searches until it

discovers an innovation with a value above a certain positive cut-off value. In the third case,

the equilibrium cut-off value strictly increases as the deadline extends and the arrival rate of

innovations increases, and it strictly decreases as the search cost increases.

We then extend the benchmark case to include a head start: The head start firm is

assigned a better initial innovation than its competitor, called the latecomer. Section 1.3

considers equilibrium behavior in the case with a head start and compares equilibrium payoffs

across firms, and Section 1.4 analyzes the effects of a head start on each firm’s equilibrium

payoff.

Firms’ equilibrium strategies depend on the value of the head starter’s initial innovation

(head start). Our main findings concern the case in which the head start lies in the middle

range. In this range, the head starter loses its incentive to search because of its high initial

position. The latecomer takes advantage of that and searches more actively, compared to

when there is no head start.

An immediate question is: who does the head start favor? When the deadline is short, the

latecomer does not have enough time to catch up, and thus the head starter obtains a higher
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expected payoff than the latecomer does. When the deadline is long, the latecomer is highly

likely to obtain a superior innovation than the head starter, and thus the latecomer obtains

a higher expected payoff. In the latter case, the latecomer’s initial apparent “disadvantage”,

in fact, puts it in a more favorable position than the head starter. When the deadline is

sufficiently long, the head starter is doomed to lose the competition with a payoff of zero

because of its unwillingness to search, and all benefits of the head start goes to the latecomer.

Then, does the result that the latecomer is in a more favorable position than the head

starter when the deadline is long imply that the head start hurts the head starter and benefits

the latecomer in the long run? Focus on the case in which the latecomer does not have an

initial innovation. When the search cost is relatively low, the head start, in fact, always

benefits the head starter, but the benefit ceases as the deadline extends. It also benefits the

latecomer when the deadline is long. When the search cost is relatively high, the head start

could potentially hurt the head starter.

If the head start is large, neither firm will conduct a search, because the latecomer is

deterred from competition. In this scenario, no innovation or technological progress is created,

and the head starter wins the contest directly. If the head start is small, both firms play the

same equilibrium strategy as they do when neither firm has an initial innovation. In both

cases, the head start benefits the head starter and hurts the latecomer.

Section 1.5.1 extends our model to include stages at which the firms sequentially have an

option to discard their initial innovation before the contest starts. Suppose that both firms’

initial innovations are of values in the middle range and that the deadline is long. If the head

starter can take the first move in the game, it can increase its expected payoff by discarding its

initial innovation and committing to search. When search cost is low, by sacrificing the initial

innovation, the original head starter actually makes the competitor the new head starter; this

new head starter has no incentive to discard its initial innovation or to search any more. It is

possible that by discarding the head start, the original head starter may benefit both firms.

When search cost is high, discarding the initial innovation is a credible threat to the latecomer,

who will find the apparent leveling of the playing field discouraging to conducting a high-cost

search. As a result, the head starter suppresses the innovation progress.

In markets, some firms indeed give up head starts (Ulhøi, 2004), and our result provides

a partial explanation of this phenomenon. For example, Tesla gave up its patents for its

advanced technologies on electric vehicles at an early stage of its business.1 While there may

be many reasons for doing so, one significant reason is to maintain Tesla’s position as a leading

innovator in the electronic vehicle market.2 As Elon Musk (2014), the CEO of Tesla, wrote,

1Toyota also gave up patents for its hydrogen fuel cell vehicles at an early stage.
2Another reason is to help the market grow faster by the diffusion of its technologies. A larger market
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technology leadership is not defined by patents, which history has repeatedly shown

to be small protection indeed against a determined competitor, but rather by the

ability of a company to attract and motivate the world’s most talented engineers.3

Whilst Tesla keeps innovating to win a large share of the future market, its smaller competi-

tors have less incentive to innovate since they can directly adopt Tesla’s technologies. One

conjecture which coincides with our result is that “Tesla might be planning to distinguish

itself from the competitors it helps . . . by inventing and patenting better electric cars than

are available today” (Discovery Newsletter, June 13, 2014).

Section 1.5.2 considers intermediate information disclosure. Suppose the firms are required

to reveal their discoveries at an early time point after the starting of the contest, how would

firms compete against each other? If the head start is in the middle range, before the revelation

point, the head starter will conduct a search, whereas the latecomer will not. If the head

starter obtains a very good innovation before that point, the latecomer will be deterred from

competition. Otherwise, the head starter is still almost certain to lose the competition. Hence,

such an information revelation at an early time point increases both the expected payoff to

the head starter and the expected value of the winning innovation.

Section 1.6 compares the effects of a head start to those of a cost advantage and points out

a significant difference. A cost advantage reliably encourages a firm to search more actively

for innovations, whereas it discourages the firm’s competitor.

Section 1.7 concludes this chapter. The overarching message this chapter conveys is that

a market regulator who cares about long-run competitions in markets may not need to worry

too much about the power of the current market dominating firms if these firms are not in

excessively high positions. In the long run, these firms are to be defeated by latecomers. On

the other hand, if the dominating firms are in excessively high positions, which deters entry,

a regulator can intervene the market.

Literature

There is a large literature on innovation contests. Most work considers reduced form models

(Fullerton and McAfee, 1999; Moldovanu and Sela, 2001; Baye and Hoppe, 2003; Che and Gale,

2003).4 Head starts are studied in various forms of all-pay auctions. Leininger (1991), Konrad

(2002), and Konrad and Leininger (2007) model a head start as a first-mover advantage in a

increases demand and lowers cost.
3See “All Our Patent Are Belong To You,” June 12, 2014, on

http://www.teslamotors.com/blog/all-our-patent-are-belong-you.
4Also see, for example, Hillman and Riley (1989), Baye et al. (1996), Krishna and Morgan (1998), Che and

Gale (1998), Cohen and Sela (2007), Schöttner (2008), Bos (2012), Siegel (2009, 2010, 2014), Kaplan et al.
(2003), and Erkal and Xiao (2015).
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sequential all-pay auction and study the first-mover’s performance. Casas-Arce and Martinez-

Jerez (2011), Siegel (2014), and Seel (2014) model a head start as a handicap in a simultaneous

all-pay auction and study the effect on the head starter. Kirkegaard (2012) and Seel and

Wasser (2014) also model a head start as a handicap in a simultaneous all-pay auction but

study the effect on the auctioneer’s expected revenue. Segev and Sela (2014) analyzes the

effect a handicap on the first mover in a sequential all-pay auction. Unlike these papers, we

consider a framework in which players’ decisions are dynamic.

The literature considering settings with dynamic decisions is scarce, and most studies focus

on symmetric players. The study by Taylor (1995) is the most prominent.5 In his symmetric T -

period private search model, there is a unique equilibrium in which players continue searching

for innovations until they discover one with a value above a certain cut-off. We extend Taylor’s

model to analyze the effects of a head start and find the long-run effects of the head start,

which is our main contribution.

Seel and Strack (2013, forthcoming) and Lang et al. (2014) also consider models with

dynamic decisions. Same as in our model, in these models each player also solves an optimal

stopping problem. However, the objectives and the results of these papers are different from

ours. In the models of Seel and Strack (2013, forthcoming), each player decides when to stop

a privately observed Brownian motion with a drift. In their earlier model, there is no deadline

and no search cost and a process is forced to stop when it hits zero. They find that players do

not stop their processes immediately even if the drift is negative. In their more resent model,

each search incurs a cost that depends on the stopping time. This more recent study finds that

when noise vanishes the equilibrium outcome converges to the symmetric equilibrium outcome

of an all-pay auction. Lang et al. (2014) consider a multi-period model in which each player

decides when to stop a privately observed stochastic points-accumulation process. They find

that in equilibrium the distribution over successes converges to the symmetric equilibrium

distribution of an all-pay auction when the deadline is long.

Our study also contributes to the literature on information disclosure in innovation con-

tests. Aoyagi (2010), Ederer (2010), Goltsman and Mukherjee (2011), and Wirtz (2013) study

how much information on intermediate performances a contest designer should disclose to the

contestants. Unlike what we do, these papers consider two-stage games in which the value of

a contestant’s innovation is its total outputs from the two stages. Bimpikis et al. (2014) and

Halac et al. (forthcoming) study the problem of designing innovation contests, which includes

both the award structures and the information disclosure policies. Halac et al. (forthcom-

ing) consider a model in which each contestant searches for innovations, but search outcomes

5Innovation contests were modeled as a race in which the first to reach a defined finishing line gains a prize,
e.g., Loury (1979), Lee and Wilde (1980), and Reinganum (1981, 1982).
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are binary. A contest ends after the occurrence of a single breakthrough, and a contestant

becomes more and more pessimistic over time if there has been no breakthrough. Bimpikis

et al. (2014) consider a model which shares some features with Halac et al. (forthcoming). In

the model, an innovation happens only if two breakthroughs are achieved by the contestants,

the designer decides whether to disclose the information on whether the first breakthrough

has been achieved by a contestant, and intermediate awards can be used. In both models,

contestants are symmetric. In contrast, the contestants in our model are always asymmetric.

Rieck (2010) studies information disclosure in the two-period case of Taylor’s (1995) model. In

contrast to our finding, he shows that the contest designer prefers concealing the outcome in

the first stage. Unlike all the above papers, Gill (2008), Yildirim (2005), and Akcigit and Liu

(2015) address the incentives for contestants, rather than the designer, to disclose intermediate

outcomes.

Last but most importantly, our study contributes to the literature on the relationship

between market structure and incentive for R&D investment. The debate over the effect of

market structure on R&D investment dates back to Schumpeter (1934, 1942).6 Due to the

complexity of the R&D process, earlier theoretical studies tend to focus on one facet of the

process. Gilbert and Newbery (1982), Fudenberg et al. (1983), Harris and Vickers (1985a,b,

1987), Judd (2003), Grossman and Shapiro (1987), and Lippman and McCardle (1987) study

preemption games. In these models, an incumbent monopolist has more incentive to invest

in R&D than a potential entrant. In fact, a potential entrant sees little chance to win the

competition, because of a lag at the starting point of the competition, and is deterred from

competition. In our model, the intuition for the result in the case of a large head start is

similar to this “preemption effect”, except that no firm invests in our case.

By contrast, Arrow (1962) and Reinganum (1983, 1985) show, in their respective models,

that an incumbent monopolist has less incentive to innovate than a new entrant.7 The cause for

this is what is called the “replacement effect” by Tirole (1997). While an incumbent monopolist

can increase its profit by innovating, it has to lose the profit from the old technology once

it adopts a new technology. This effectively reduces the net value of the new technology to

the incumbent. It is then natural that a firm who has a lower value of an innovation has less

incentive to innovate, which is exactly what happens in our model with asymmetric costs. On

the other hand, our main result, on medium-sized head start, has an intuition very similar to

the “replacement effect”. Rather than a reduction in the value of an innovation to the head

starter, a head start decreases the increase in the probability of winning from innovating. In

6See Gilbert (2006) for a comprehensive survey.
7Doraszelski (2003) generalizes the models of Reinganum (1981, 1982) to a history-dependent innovation

process model and shows, in some circumstances, the catching-up behavior in equilibrium.
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both Reinganum’s models and our model, an incumbent could have a lower probability of

winning than a new entrant. However, different from her models, in our model an incumbent

(head starter) can also have a lower expected payoff than a new entrant (latecomer).

1.1 The Model

Firms and Tasks

There are two risk neutral firms, Firm 1 and Firm 2, competing for a prespecified prize,

normalized to 1, in the contest. Time is continuous, and each firm searches for innovations

before a deadline T . At the deadline T , each firm releases to the public the best innovation it

has discovered, and the firm who releases a superior innovation wins the prize. If no firm has

discovered any innovation, the prize is retained. If there is a tie between the two firms, the

prize is randomly allocated to them with equal probability.

At any time point t ∈ [0, T ) before the deadline, each firm decides whether to continue

searching for innovations. If a firm continues searching, the arrival of innovations in this firm

follows a Poisson process with an arrival rate of λ. That is, the probability of discovering

m innovations in an interval of length δ is e−λδ(λδ)m

m! . The values of innovations are drawn

independently from a distribution F , defined on (0, 1] with F (0) := lima→0 F (a) = 0. F is

continuous and strictly increasing over the domain.

Each firm’s search cost is c > 0 per unit of time. We assume that c < λ, because if c > λ

the cost is so high that no firm is going to conduct a search. To illustrate this claim, suppose

Firm 2 does not search, Firm 1 will not continue searching if it has an innovation with a value

above 0, whereas Firm 1’s instantaneous gain from searching at any moment when it has no

innovation is

lim
δ→0

∑+∞
m=1

e−λδ(λδ)m

m! − cδ
δ

= λ− c,

which is negative if c > λ.

Information

The search processes of the two firms are independent and with recall. Whether the opponent

firm is actively searching is unobservable; whether a firm has discovered any innovation, as

well as the values of discovered innovations, is private information until the deadline T .

For convenience, we say a firm is in a state a ∈ [0, 1] at time t if the value of the best

innovation it has discovered by time t is a, where a = 0 means that the firm has no innovation.

The initial states of Firm 1 and Firm 2 are denoted by aI1 and aI2, respectively. Firms’ initial
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states are commonly known.

Strategies

In our model, each firm’s information on its opponent is not updated. Hence, the game

is static, although the firms’ decisions are dynamic. Then, the solution concept we use is

Nash equilibrium. In accordance with the standard result from search theory that each firm’s

optimal strategy is a constant cut-off rule, we make the following assumption.8

Assumption 1.1. We focus on equilibria that consist of constant cut-off rules: Denote â∗i

as an equilibrium strategy. â∗i ∈ Si := {−1} ∪ [aIi , 1].

If a constant cut-off strategy â∗i ∈ [aIi , 1] is played, at any time point t ∈ [0, T ), Firm i

stops searching if it is in a state above â∗i and continues searching if in a state below or at â∗i .
9

The strategy âi = −1 represents that Firm i does not conduct a search.

Suppose both firms have no initial innovation. Without this assumption, for any given

strategy played by a firm’s opponent, there is a constant cut-off rule being the firm’s best

response. Such a cut-off value being above zero is the unique best response strategy, ignoring

elements associated with zero probability events. However, in the cases in which a firm is

indifferent between continuing searching and not if it is in state 0, this firm has (uncountably)

many best response strategies. The above assumption helps us to focus on the two most

natural strategies: not to search at all and to search with 0 as the cut-off.10 A full justification

for this assumption is provided in the appendix.

Let P̃ [a|âi, aIi ] denote the probability of Firm i ending up in a state below a if it adopts a

strategy âi and its initial state is aIi ; let E[cost|âi] denote Firm i’s expected cost on search if

it adopts a strategy âi. Firm i’s ex ante expected utility is

Ui =

∫ 1

0
P [a|â−i, aI−i]dP [a|âi, aIi ]− E[cost|âi].

Now, we are ready to study equilibrium behavior. Before solving the head start case, we

first look at the case with no initial innovation.

8See Lippman and McCall (1976) for the discussion on optimal stopping strategies for searching with finite
horizon and recall.

9Once Firm i stops searching at some time point it shall not search again later.
10Without this assumption, there can be additional best response strategies of the following type: a firm

randomizes between searching and not searching until a time T ′ < T with cutoff 0 and stops at T ′ even if no
discovery was made.
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1.2 The Symmetric-Firms Benchmark (aI1 = aI2 = 0)

In this section, we look at the benchmark case, in which both firms start with no innovation.

It is in the spirit of Taylor’s (1995), except that it is in continuous time. The equilibrium

strategies are presented below.11

Theorem 1.1. Suppose aI1 = aI2 = 0.

i. If c ∈ [1
2λ(1 + e−λT ), λ), there are two equilibria, in each of which one firm searches with

0 as the cut-off and the other firm does not search.

ii. If c ∈ [1
2λ(1 − e−λT ), 1

2λ(1 + e−λT )), there is a unique equilibrium, in which both firms

search with 0 as the cut-off.

iii. If c ∈ (0, 1
2λ(1 − e−λT )), there is a unique equilibrium, in which both firms search with

a∗ as the cut-off, where a∗ > 0 is the unique value that satisfies

1

2
λ[1− F (a∗)]

[
1− e−λT [1−F (a∗)]

]
= c. (1.1)

Proof. See Appendix 1.A.2.

0

λ
2

λ

Region 1

Region 3

Region 2

c = 1
2
λ(1 + e−λ))

c = 1
2
λ(1− e−λ))

T value

c
va

lu
e

Figure 1.1

The result is illustrated in figure 1.1. The deadline-cost space is divided into three regions.12

In Region 1, the search cost is so high that it is not profitable for both firms to innovate. In

Region 2, both firms would like to conduct a search in order to discover an innovation with

11When search cost is low, the equilibrium is unique even without Assumption 2.1. When search is high,
without Assumption 2.1, there are additional symmetric equilibria of the following type: each firm randomizes
between not participating and participating until a time T ′ < T with 0 as the cutoff.

12An “ area” we say is the interior of the corresponding area.
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any value, but none has the incentive to spend additional effort to find an innovation with

a high value. In Region 3, both firms exert efforts to find an innovation with a value above

a certain level. In this case, a firm in the cut-off state is indifferent between continuing and

stopping searching. This is represented by equation (1.1), in which 1 − e−λT [1−F (a∗)] is the

probability of a firm’s opponent ending up in a state above a∗ and 1
2 [1−F (a∗)] is the increase

in the probability of winning if the firm, in state a∗, obtains a new innovation. Hence, this

equation represents that, in the cut-off state, the instantaneous increase in the probability of

winning from continuing searching equals the instantaneous cost of searching. As T goes to

infinity, c = λ
2 becomes the separation line for Case [i] and Case [iii].

Generally, there is no closed form solution for the cut-off value in Case [iii]. However, if

the search cost is very low, we have a simple approximation for it.

Corollary 1.1. Suppose aI1 = aI2 = 0. When c is small, a∗ ≈ F−1
(

1−
√

2c
λ2T

)
.

Proof. First, we assume that λT [1 − F (a∗)] is small, and we come back to check that it is

implied by that c is small. Applying equation (1.1), we have

c

λ
=

1

2
[1− F (a∗)]

[
1− e−λT [1−F (a∗)]

]
≈ 1

2
λT [1− F (a∗)]2

⇔[1− F (a∗)]2 ≈ 2c

λ2T

⇔a∗ ≈ F−1

(
1−

√
2c

λ2T

)
and λT [1− F (a∗)] ≈

√
2cT .

For later reference we, based on the previous theorem, define a function a∗ : (0, λ) ×

[0,+∞)→ [0, 1] where

a∗(c, T ) =


0 for c ∈ [1

2λ(1− e−λT ), λ)

the a∗ that solves (1.1) for c ∈ (0, 1
2λ(1− e−λT )).

A simple property which will be used in later sections is stated below.

Lemma 1.1. In Region 3, a∗(c, T ) is strictly increasing in T (and λ) and strictly decreasing

in c.

There are two observations. One is that a∗(c, T ) = 0 if c ≥ λ
2 . The other is that a∗(c, T )

converges to F−1(1− 2c
λ ) as T goes to infinity if c < λ

2 , which derives from taking the limit of
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equation (1.1) w.r.t. T . Let us denote a∗L as the limit of a∗(c, T ) w.r.t. T :

a∗L := lim
T→+∞

a∗(c, T ) =


0 for c ≥ λ

2 ,

F−1(1− 2c
λ ) for c < λ

2 .

We end this section by presenting a full rent dissipation property of the contest when the

deadline approaches infinity.

Lemma 1.2. Suppose aI1 = aI2 = 0. If c < λ
2 , each firm’s expected payoff in equilibrium goes

to 0 as the deadline T goes to infinity.

Proof. See Appendix 1.A.2.

The intuition is as follows. The instantaneous increase in the expected payoff from search-

ing for a firm who is in state a∗(c, T ), the value of the equilibrium cut-off, is 0 (it is indifferent

between continuing searching and not). If the deadline is finite, a firm in a state below a∗(c, T )

has a positive probability of winning even if it stops searching. Hence, the firms have positive

rents in the contest. As the deadline approaches infinity, there is no difference between being

in a state below a∗(c, T ) and at a∗(c, T ), because the firm will lose the contest for sure if it does

not search. In either case the instantaneous increase in the expected payoff from searching is

0. Hence, in the limit the firms’ rents in the contest are fully dissipated.

Though the equilibrium expected payoff goes to 0 in the limit, it is not monotonically de-

creasing to 0 as the deadline approaches infinity, because each firm’s expected payoff converges

to 0 as the deadline approaches 0 as well.13

1.3 Main Results: Exogenous Head Starts (aI1 > aI2)

In this section, we add head starts into the study. Without loss of generality, we assume that

Firm 1 has a better initial innovation than does Firm 2 before competition begins, i.e., aI1 > aI2.

We first derive the equilibrium strategies, and then we explore equilibrium properties.

1.3.1 Equilibrium Strategies

Theorem 1.2. Suppose aI1 > aI2.

1. For aI1 > F−1(1− c
λ), there is a unique equilibrium, in which no firm searches, and thus

Firm 1 wins the prize.

13In fact, by taking the derivative of (1.12) (as in the appendix) w.r.t. T , one can show that the derivative
at T = 0 is λ− c > 0 and that, if c < λ

2
, (1.12) is increasing in T for T < min{ 1

λ
ln λ

c
, 1
λ

ln λ
λ−2c
} and decreasing

in T for T > max{ 1
λ

ln λ
c
, 1
λ

ln λ
λ−2c
}.
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2. For aI1 = F−1(1 − c
λ), there are many equilibria. In one equilibrium, both firms do not

search. In the other equilibria, Firm 1 does not search and Firm 2 searches with a value

â2 ∈ [aI2, a
I
1] as the cut-off.

3. For aI1 ∈ (a∗(c, T ), F−1(1− c
λ)), there is a unique equilibrium, in which Firm 1 does not

search and Firm 2 searches with aI1 as the cut-off .

4. For aI1 = a∗(c, T ), there are two equilibria. In one equilibrium, both firms search with

aI1 as the cut-off. In the other equilibrium, Firm 1 does not search and Firm 2 searches

with aI1 as the cut-off.

5. For aI1 ∈ (0, a∗(c, T )), there is a unique equilibrium, in which both firms search with

a∗(c, T ) as the cut-off.

Proof. See Appendix 1.A.3.

Remark. Case [4] and [5] exist only when c ≤ 1
2λ[1− e−λT ] (Region 3).

− 1
λ

ln(1− 2c
λ

) T
0

F−1(1− 2c
λ

)

F−1(1− c
λ

)

1

Td

a∗(c, T ) for c < λ
2

a∗(c, T ) for c ≥ λ
2

No firm searches.

Firm 1 does not search, Firm 2 searches.

Both firms search.

a
I 1

va
lu

e

Figure 1.2: Thresholds (when c < λ
2

(1− e−λT ) ).

The thresholds in the theorem are depicted in figure 1.2. The leading case is Case [3], when

the head start is in the middle range. A head start reduces the return of a search, in terms of

the increase in the probability of winning. Having a sufficiently large initial innovation, Firm

1 loses incentive to search because the marginal increase in the probability of winning from

searching for Firm 1 is too small compared to the marginal cost of searching, whether Firm

2 searches or not. Firm 2 takes advantage of that and commits to search until it discovers

an innovation better than Firm 1’s initial innovation. Hence, compared to its equilibrium

behavior in the benchmark case, Firm 2 is more active in searching (in terms of a higher

cut-off value) when Firm 1 has a medium-sized head start, and a larger value of head start

forces Firm 2 to search more actively.
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In Case [1], Firm 1’s head start is so large that Firm 2 is deterred from competition because

Firm 2 has little chance to win if it searches. Firm 1 wins the prize without incurring any

cost. Moreover, it is independent of the deadline T .

In Case [5], in which Firm 1’s head start is small, the head start has no effect on either

firm’s equilibrium strategy, and both firms search with a∗(c, T ) as the cut-off, same as in the

benchmark case. The only effect of the head start is an increase in Firm 1’s probability of

winning (and a decrease in Firm 2’s).

In brief, a comparison of Theorem 1.2 and Theorem 1.1 shows that a head start of Firm 1

does not alter its own equilibrium behavior but Firm 2’s. The effect on Firm 2’s equilibrium

strategy is not monotone in the head start of Firm 1. The initial state of Firm 2, the latecomer,

is irrelevant to the equilibrium strategies. Figure 1.3 illustrates how each firm’s equilibrium

strategy changes as the value of the initial innovation of Firm 1, the head starter, varies.

a∗(c,T ) 1

-1

0

a∗(c,T )

1

aI1

â1

(a) Firm 1

a∗(c,T ) 1

-1

0

a∗(c,T )

F−1(1− c
λ

)

1

F−1(1− c
λ

)

aI1

â2

(b) Firm 2

Figure 1.3: Firms’ equilibrium cut-off values as the value of Firm 1’s initial innovation,
aI1, varies.

Figure 1.4 illustrates Firm 2’the best responses (when it has no initial innovation) to Firm

1’s strategies for various values of Firm 1’s initial states. The case in which Firm 1 has a

high-value initial innovation is significantly different from the case in which Firm 1 has no

initial innovation.

Turning back to Case [3] in the previous result, we notice that the lower bound for this

case to happen does not converge to the upper bound as the deadline approaches infinity, i.e.,

a∗L < F−1(1 − c
λ). The simplest but most interesting result of this study, the case of “head

starts and doomed losers”, derives.

Corollary 1.2. Suppose aI1 ∈ (a∗L, F
−1(1− c

λ)).
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-1 1

-1

α
α′
α′′

1
BR1: when aI1 = 0

BR2: when aI1 = α

BR3: when aI1 = α′

BR4: when aI1 = α′′

a∗(c, T )

â1

â2

Figure 1.4: Best response projections for Firm 2 as aI1 takes values in {−1, α, α′, α′′}
(c < λ

2
(1− e−λT ) and aI2 = 0 ).

BR1 represents Firm 2’s best responses when no firm has an initial innovation. If Firm
1 does not search, Firm 2 would search with 0 as the cut-off. If Firm 1 searches with 0
as the cut-off, Firm 2 would search with a cut-off higher than the equilibrium cut-off. As
Firm 1 further rises its cut-off, Firm 2 would first rise its cut-off and then lower its cut-off.
When the deadline is long, Firm 2 would not search if Firm 1’s cut-off is high. BR2 and
BR3 represent Firm 2’s best responses when Firm 1 has an initial innovation with a value
slightly above a∗(c, T ), the equilibrium cut-off when there is no initial innovation. In this
case, if Firm 1 does not search, Firm 2’s best response is to search with the value Firm
1’s initial innovation as the cut-off. If Firm 1 searches with a cut-off slightly above the
value of its initial innovation, Firm 2’s best response is still to search with the value of
Firm 1’s initial innovation as the cut-off. Once Firm 1’s cut-off is greater than a certain
value, Firm 2 would not search. BR4 represents Firm 2’s best responses when Firm 1 has
a high-value initial innovation. In this case, if Firm 1 does not search, Firm 2 would still
search with the value of Firm 1’s initial innovation as the cut-off; if Firm 1 searches, Firm
2 would have no incentive to search. On the other hand, when the value of Firm 1’s initial
innovation is above a∗(c, T ), Firm 1’s best response to any strategy of Firm 2 is not to
search.
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1. Firm 2’s (Firm 1’s) probability of winning increases (decreases) in the deadline.

2. As T goes to infinity, Firm 2’s probability of winning goes to 1, and Firm 1’s goes to 0.

Proof. In equilibrium Firm 1 does not search and Firm 2 searches with aI1 as the cut-off. Firm

2’s probability of winning is thus

1− e−λT [1−F (aI1)],

which is increasing in T , and it converges to 1 as T goes infinity. Firm 1’s probability of

winning is e−λT [1−F (aI1)], which is, in the contrast, decreasing in T , and it converges to 0 as T

approaches infinity.

This property results from our assumption that search processes are with recall. The

larger the head start is, the smaller the marginal increase in the probability of winning from

searching is, given any strategy played by the latecomer. Hence, even if the head starter knows

that in the long run the latecomer will almost surely obtain an innovation with a value higher

than its initial innovation, the head starter is not going to conduct a search as long as the

instantaneous increase in the probability of winning is smaller than the instantaneous cost of

searching.

1.3.2 Payoff Comparison across Firms

A natural question arises: which firm does a head start favor? Will Firm 1 or Firm 2 achieve

a higher expected payoff? To determine that, we need a direct comparison of the two firms’

expected payoffs. When aI1 ∈ (a∗(c, T ), F−1(1− c
λ)), the difference between the payoffs of Firm

1 and Firm 2 is14

DF (T, aI1) := e−λT [1−F (aI1)] − (1− e−λT [1−F (aI1)])(1− c

λ[1− F (aI1)]
). (1.2)

The head start of Firm 1 favors Firm 1 (Firm 2) if DF (T, aI1) > (<)0.

DF (T, aI1) is increasing in aI1 and decreasing in T . Hence, a longer deadline tends toward

to favor Firm 2 when the head start is in the middle range. Since

DF (0, aI1) = 1 > 0

141− e−λT [1−F (aI1)] is Firm 2’s probability of obtaining an innovation better than Firm 1’s initial innovation,
aI1, and 1

λ[1−F (aI1)]
is the unconditional expected interarrival time of innovations with a value higher than aI1.

The second term in DF (T, aI1) thus represents the expected payoff of Firm 2.
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and

lim
T→∞

DF (T, aI1) = −(1− c

λ[1− F (aI1)]
) < 0 for any aI < F−1(1− c

λ
),

there must be a unique T̂ (aI1) > 0 such that DE(T̂ (aI1), aI1) = 0. The following result derives.

Proposition 1.1. For aI1 ∈ (a∗L, F
−1(1 − c

λ)), there is a unique T̂ (aI1) > 0 such that Firm 1

(Firm 2) obtains a higher expected payoff if T < (>)T̂ (aI1).

That is, for any given value of the head start in the middle range (a∗L, F
−1(1− c

λ)), the head

start favors the latecomer (head starter) if the deadline is long (short). The effects of a head

start do not vanish as the deadline approaches infinity. In fact, as the deadline approaches

infinity, the head start eventually pushes the whole share of the surplus to Firm 2.

Lemma 1.3. As the deadline increases to infinity,

1. for aI1 ∈ (0, a∗L), both Firms’ equilibrium payoffs converge to 0;

2. for aI1 ∈ (a∗L, F
−1(1− c

λ)), Firm 1’s equilibrium payoff converges to 0, whereas Firm 2’s

equilibrium payoff converges to 1− c
λ[1−F (aI1)]

∈ (0, 1
2).

Proof. [1] follows from Lemma 1.2. [2] follows from Corollary 1.2 and the limit of Firm 2’s

expected payoff

(1− e−λT [1−F (aI)])

(
1− c

λ[1− F (aI1)]

)
(1.3)

w.r.t. T .

A comparison to Lemma 1.2 shows that, just as having no initial innovation, when Firm

1 has an innovation whose value is not of very high, its expected payoff still converges to 0

as the deadline becomes excessively long. When there is no initial innovation, the expected

total surplus for the firms (i.e., the sum of the two firms’ expected payoff) converges to 0. In

contrast, when there is a head start with a value above a∗L, the expected total surplus is strictly

positive even when the deadline approaches infinity. However, as it approaches infinity, this

total surplus created by the head start of Firm 1 goes entirely to Firm 2, the latecomer, if the

head start is in the middle range. The intuition is as follows. For Firm 1, it is clear that its

probability of winning converges to 0 as the deadline goes to infinity. For Firm 2, we first look

at the case that aI1 = F−1(1 − c
λ). In this case Firm 2 is indifferent between searching and

not searching, and thus the expected payoff is 0. As the deadline approaches infinity, both

expected cost of searching and the probability of winning converges to 1, if Firm 2 conducts

a search. Then, if aI1 is below F−1(1− c
λ) (but above a∗L), as the deadline approaches infinity,
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Firm 2’s probability of winning still goes to 1, but the expected cost of searching drops to a

value below 1 because it adopts a lower cut-off for stopping. Hence, Firm 2’s expected payoff

converges to a positive value.

The relationship between the rank order of the two Firms’ payoffs and the deadline is

illustrated in figure 1.5, in each of which Firm 2 obtains a higher expected payoff at each point

in the colored area. (a) is for the cases in which c ≤ λ
2 . In these cases a longer deadline tends

to favor the latecomer. (b) and (c) are for the cases in which c > λ
2 . In these cases, the rank

order is not generally monotone in the deadline and the head start.
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Figure 1.5: When (aI1, T ) lies in the colored area, the head start favors the latecomer.

We notice in all the figures that if the deadline is sufficiently short, a head start is ensured

to bias toward Firm 1, whereas if it is long, only a relatively large head start biases toward

Firm 1.

21



1.4 Effects of Head Starts on Payoffs

In this section, we study the effects of a head start on both firms’ payoffs. Suppose Firm

2 has no initial innovation, who does a head start of Firm 1 benefit or hurt? The previous

comparison between Theorem 1.1 and Theorem 1.2 already shows that a head start aI1 benefits

Firm 1 and hurts Firm 2 if aI1 < a∗(c, T ) or aI1 > F−1(1− c
λ). In the former case, which happens

only when a∗(c, T ) > 0 (Region 3 of figure 1.1), both firms search with a∗(c, T ) as the cut-off,

the same as when there is no head start, and the head start increases Firm 1’s probability of

winning and decreases Firm 2’s. As the deadline goes to infinity, the expected payoffs to both

firms converge to 0, with the effect of the head start disappearing. In the latter case, Firm 1

always obtains a payoff of 1, and Firm 2 always 0.

The interesting case occurs then when the head start is in the middle range, aI1 ∈ (a∗(c, T ), F−1(1−
c
λ)), which will be the focus in the remaining parts of this study. To answer the above question

regarding the head start being in the middle range, we first analyze the case that point (c, T )

lies in Regions 2 and 3 (in figure 1.1), and then we turn to analyze the case of Region 1.

1.4.1 Regions 2 and 3

In the previous section, we showed that for T being sufficiently long, Firm 1 is almost surely

going to lose the competition if aI1 is in the middle range. Although it seems reasonable that

in this case a head start may make Firm 1 worse off, the following proposition shows that this

conjecture is not true.

Proposition 1.2. Suppose aI2 = 0. In Regions 2 and 3, in which c < 1
2λ(1 + e−λT ), a head

start aI1 > 0 always benefits Firm 1, compared to the equilibrium payoff it gets in the benchmark

case.

To give the intuition, we consider the case of a∗(c, T ) > 0. Suppose Firm 1 has a head start

aI1 = a∗(c, T ). As shown in Case [4] of Theorem 1.2, we have the following two equilibria: in

one equilibrium both firms search with a∗(c, T ) as the cut-off; in another equilibrium Firm 1

does not search and Firm 2 searches with a∗(c, T ) as the cut-off. Firm 1 is indifferent between

these two equilibria, hence its expected payoffs from both equilibria are e−λT [1−F (a∗(c,T ))], the

probability of Firm 2 finding no innovation with a value higher than a∗(c, T ). However, Firm

1’s probability of winning increases in its head start, hence a larger head start gives Firm 1 a

higher expected payoff.

The above result itself corresponds to expectation. What unexpected is the mechanism

through which Firm 1 gets better off. As a head start gives Firm 1 a higher position, we

would expect that it is better off by (1) having a better chance to win and (2) spending less
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on searching. Together with Theorem 1.2, the above proposition shows that Firm 1 is better

off purely from an increase in the probability of winning when aI1 < a∗(c, T ); purely from

spending nothing on searching when aI1 ∈ (a∗(c, T ), F−1(1− c
λ)) (though there could be a loss

from a decrease in the probability of winning); from an increase in the probability of winning

and a reduction in the cost of searching when aI1 > F−1(1− c
λ).

In contrast to the effect of a head start of Firm 1 on Firm 1’s own expected payoff, the

effect on Firm 2’s expected payoff is not clear-cut. Instead of giving a general picture of the

effect, we present some properties in the following.

Proposition 1.3. Suppose aI2 = 0.

1. A head start aI1 ∈ (0, F−1(1− c
λ)) hurts Firm 2 if the deadline T is sufficiently small.

2. If c < λ
2 , a head start aI1 ∈ (a∗L, F

−1(1− c
λ)) benefits Firm 2 if the deadline is sufficiently

long.

Proof. See Appendix 1.A.3.

Case [1] occurs because a head start of Firm 1 reduces Firm 2’s probability of winning and

may increase its expected cost of searching. Case [2] follows from Propositions 1.2 and 1.1.

Because a head start of Firm 1 always benefits Firm 1 and a long deadline favors Firm 2, a

head start must also benefit Firm 2 if the deadline is long.15

Figure 1.6 illustrates how Firm 2’s equilibrium payoff changes as Firm 1’s head start

increases. In particular, a head start of Firm 1 slightly above a∗(c, T ), the equilibrium cut-off

when there is no initial innovation, benefits Firm 2 if a∗(c, T ) is low. Some more conditions

under which a head start benefits or hurts the latecomer are given below.

-1 0 α̃ ˜̃α F−1(1− c
λ

) 1

When a∗(c, T ) = α̃

When a∗(c, T ) = ˜̃α

aI1

U2

Figure 1.6: Firm 2’s equilibrium payoffs as a∗(c, T ) varies.

Proposition 1.4. In Region 2 and 3, in which c < 1
2λ(1 + e−λT ),

15Alternatively, it also follows from Lemmas 1.2 and 1.3. If the deadline is very long and the head start of
Firm 1 is in the middle range, Firm 2’s payoff converges to 0 same as in the benchmark case and some positive
value in head start case.
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1. if

(1− e−λT [1−F (a∗(c,T ))])− 1

2
(1− e−2λT ) > 0, (1.4)

there exists a ãI1 ∈ (a∗(c, T ), F−1(1 − c
λ)) such that the head start aI1 hurts Firm 2 if

aI1 ∈ (ãI1, F
−1(1− c

λ)) and benefits Firm 2 if aI1 ∈ (a∗(c, T ), ãI1);

2. if (1.4) holds in the opposite direction, any head start aI1 ∈ (a∗(c, T ), F−1(1− c
λ)) hurts

Firm 2.

Proof. See Appendix 1.A.3.

The first term on the left side of inequality (1.4) is Firm 2’s probability of winning in the

equilibrium in which Firm 2 searches and Firm 1 does not search in the limiting case that

Firm 1 has a head start of a∗(c, T ). The second term, excluding the minus sign, is Firm 1’s

probability of winning when there is no head start. The expected searching costs are the same

in both cases. The following corollary shows some scenarios in which inequality (1.4) holds.

Corollary 1.3. In Region 2, when a∗(c, T ) = 0, inequality (1.4) holds.

This shows that for search cost lying in the middle range, a head start of Firm 1 must

benefit Firm 2, if it is slightly above 0. The simple intuition is as follows. When Firm 1 has

such a small head start, Firm 2’s cut-off value of searching increases by only a little bit, and

thus the expected cost of searching also increases slightly. However, the increase in Firm 2’s

probability of winning is very large, because Firm 1, when having a head start, does not search

any more. Thus, in this case Firm 2 is strictly better off.

Lastly, even though Firm 1 does not search when the head start aI1 > a∗(c, T ), it seems

that a low search cost may benefit Firm 2. On the contrary, a head start of Firm 1 would

always hurt Firm 2 when the search cost is sufficiently small.

Corollary 1.4. For any fixed deadline T , if the search cost is sufficiently small, inequality

(1.4) holds in the opposite direction.

Proof. As c being close to 0, a∗(c, T ) is close to 1, and thus the term on left side of inequali-

ty (1.4) is close to −1
2(1− e−2λT ) < 0.

That is because when c is close to 0, a∗(c, T ) is close to 1, and the interval in which Firm

1 does not search while Firm 2 searches is very small, and thus the chance for Firm 2 to win

is too low when aI1 > a∗(c, T ), even though the expected cost of searching is low as well.
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1.4.2 Region 1

Since there are multiple equilibria in the benchmark case when (c, T ) lies in Region 1, whether

a head start hurts or benefits a firm depends on which equilibrium we compare to. If we

compare the two equilibria in each of which Firm 1 does not search and Firm 2 searches, then

the head start benefits Firm 1 and hurts Firm 2. If we compare to the other equilibrium in

the benchmark case, the outcome is not clear-cut.

Proposition 1.5. Suppose aI2 = 0. In Region 1, in which c > 1
2λ(1 + e−λT ) and a∗(c, T ) = 0,

for aI1 ∈ (0, F−1(1− c
λ)), if

(1− e−λT )(1− c

λ
)− e−λT [1−F (aI1)] < 0, (1.5)

Firm 1’s equilibrium payoff is higher than its expected payoff in any equilibrium in the bench-

mark case. If the inequality holds in the opposite direction, Firm 1’s equilibrium payoff is

lower than its payoff in the equilibrium in which Firm 1 searches and Firm 2 does not search

in the benchmark case.

This result is straightforward. The first term on the left side of inequality (1.5) is Firm

1’s expected payoff in the equilibrium in which Firm 1 searches and Firm 2 does not in the

benchmark case and the second term, excluding the minus sign, is its expected payoff when

there is no head start.

Moreover, the left hand side of inequality (1.5) strictly increases in T , and it reaches −1

when T approaches 0 and 1− c
λ when T approaches infinity. The intermediate value theorem

insures that inequality (1.5) holds in the opposite direction for the deadline T being large.

As a result of the above property, when the head start is small and the deadline is long,

in an extended game in which Firm 1 can publicly discard its head start before the contest

starts, there are two subgame perfect equilibria: in one equilibrium, Firm 1 does not discard

its head start and Firm 2 searches with the Firm 1’s initial innovation value as the cut-off; in

the other equilibrium, Firm 1 discards the head start and searches with 0 as the cut-off and

Firm 2 does not search. Hence, there is the possibility that Firm 1 can improve its expected

payoff if it discards its head start.

Last, we discuss Firm 2’s expected payoff. The result is also straightforward.

Proposition 1.6. Suppose aI2 = 0. In Region 1, in which c > 1
2λ(1 + e−λT ), for aI1 ∈

(0, F−1(1− c
λ)), Firm 2’s equilibrium payoff is

• less than its expected payoff in the equilibrium in which Firm 1 does not search and Firm

2 searches in the benchmark case, and
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• higher than the payoff in the equilibrium in which Firm 1 searches and Firm 2 does not

search in the benchmark case.

Proof. Compared to the equilibrium in which Firm 2 searches in the benchmark case, in the

equilibrium when Firm 1 has a head start, Firm 2 has a lower expected probability of winning

and a higher expected cost because of a higher cut-off, and and thus a lower expected payoff.

But this payoff is positive.

1.5 Extended Dynamic Models (aI1 > aI2)

In this section, we study two extended models.

1.5.1 Endogenous Head Starts

We first study how the firms would play if each firm has the option to discard its initial inno-

vation before the contest starts. Formally, a game proceeds as below.

Model∗:

• Stage 1: Firm i decides whether to discard its initial innovation.

• Stage 2: Firm i’s opponent decides whether to discard its initial innovation.

• Stage 3: Upon observing the outcomes in the previous stages, both firms simultaneously

start playing the contest as described before.

The incentive for a head starter to discard its initial innovation when the latecomer has no

initial innovation has been studied in the previous section. The focus of the section is on the

case in which both firms have an initial innovation in the middle range.16 The main result of

this section is as follows.

Proposition 1.7. Suppose aI1, a
I
2 ∈ (a∗L, F

−1(1− c
λ)). In Model∗ with Firm 1 having the first

move, there is a T̆ (aI1, a
I
2) > 0 such that

• if T > T̆ (aI1, a
I
2), there is a unique subgame perfect equilibrium (SPE), in which Firm 1

discards its initial innovation and searches with aI2 as the cut-off and Firm 2 keeps its

initial innovation and does not search;

• if T < T̆ (aI1, a
I
2), subgame perfect equilibria exist, and in each equilibrium Firm 2 searches

with aI1 as the cut-off and Firm 1 keeps its initial innovation and does not search.

16As shown in Proposition 1.2, when (c, T ) lies in Regions 2 and 3, the head starter with a medium-sized
initial innovation has no incentive to discard its head start if the latecomer has a no innovation. The head
starter would also have no incentive to discard its initial innovation when the latecomer has a low-value initial
innovation.
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Proof. See Appendix 1.A.4.

This proposition shows that in the prescribed scenario Firm 1 is better off giving up its

initial innovation if the deadline is long.17 The intuition is simple. For the deadline being long,

Firm 1’s expected payoff is low, because its probability of winning is low. By giving up its

initial innovation, it makes Firm 2 the head starter, and thus Firm 1 obtains a higher expected

payoff than before by committing to searching whereas Firm 2 has no incentive to search. Yet

the reasoning for the case in which c ≤ λ
2 differs from that for the case in which c > λ

2 . After

Firm 1 discards its initial innovation, Firm 2 turns to the new head start firm. In the former

case, Firm 2 would then have no incentive to discard its initial innovation any more as shown

in Proposition 1.2, and its dominant strategy in the subgame is not to search whether Firm

1 is to search or not. In the latter case, Firm 2 may have the incentive to discard its initial

innovation and search if the deadline is long. However, discarding the initial innovation is a

credible threat for Firm 1 to deter Firm 2 from doing that.

Remark. When the deadline is sufficiently long, by giving up the initial innovation, Firm 1

makes itself better off but Firm 2 worse off. However, if the deadline is not too long, by doing

so, Firm 1 can benefit both firms. This is because the total expected cost of searching after

Firm 1 discards its initial innovation is lower than before and hence there is an increase in the

total surplus for the two firms. It is then possible that both firms get a share of the increase

in the surplus. We illustrate that in the following example.

17Discarding a head start is one way to give up one’s initial leading position. In reality, a more practical
and credible way is to give away the head start innovation. A head start firm could give away it patent for its
technology. By doing so, any firm can use this technology for free. That is, every firm’s initial state becomes
aI1. If firms can enter the competition freely, the value of the head start technology is approximately zero to any
single firm, because everyone has approximately zero probability to win with this freely obtained innovation.
For a head start being in the middle range, the market is not large enough to accommodate two firms to
compete. Hence, to model giving away head starts with free entry to the competition, we can study a com-
petition between two firms but with some modified prize allocation rules. Formally, the game proceeds as below.

Model∗∗:

• Stage 1: Firm 1 decides whether to give away its initial innovation.

• Stage 2: Upon observing the stage 1 outcome, Firm 1 and Firm 2 simultaneously start playing the
contest as described before.

• If Firm 1 gives away its initial innovation:

– Both firms’ states at time 0 become aI1.

– The prize is retained if no firm is in a state above aI1 at the deadline T .

– The firm with a higher state, which is higher than aI1, at the deadline wins.

• If Firm 1 retains its initial innovation, the firm with a higher state at the deadline wins.

Suppose aI1 ∈ (a∗L, F
−1(1− c

λ
)). If the deadline is long, in Model∗∗ there are two subgame perfect equilibria.

In one equilibrium, Firm 1 gives away its initial innovation and searches with aI1 as the cut-off and Firm
2 does not search. In the other equilibrium, Firm 1 retains its initial innovation and does not search and
Firm 2 searches with aI1 as the cut-off. However, forward induction selects the first equilibrium as the refined
equilibrium, because giving away a head start is a credible signal of Firm 1 to commit to search.
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Example 1.1. Suppose F is the uniform distribution, c = 1
3 , λ = 1, aI1 = 1

2 , and aI2 = 1
3 . If

Firm 1 discards its initial innovation, then its expected payoff would be 1
2(1− e−

T
3 ), and Firm

2’s expected payoff would be e−
T
3 ; if Firm 1 does not discard its initial innovation, then its

expected payoff would be e−
T
2 , and Firm 2’s expected payoff would be 1

3(1− e−
T
2 ).

Firm 1 would be better off by discarding its initial innovation if T > 2.52. If T ∈
(2.52, 3.78), by discarding the initial innovation, Firm 1 makes both firms better off. If T

is larger, then doing so would only make Firm 2 worse off.

The previous result is conditional on Firm 1 having the first move. If Firm 2 has the first

move, it may, by discarding its initial innovation, be able to prevent Firm 1 from discarding

its own head start and committing to searching. However, if the deadline is not sufficiently

long, Firm 1 would still have the incentive to discard its initial innovation.

Proposition 1.8. Suppose aI1, a
I
2 ∈ (a∗L, F

−1(1− c
λ)). In Model∗ with Firm 2 having the first

move, there is a T̂ (aI1, a
I
2) > 0 such that

• for T > T̂ (aI1, a
I
2), there is a unique SPE, in which Firm 2 discards its initial innovation

and searches with aI2 as the cut-off and Firm 1 keeps the initial innovation and does not

search;

• for T ∈ (T̆ (aI1, a
I
2), T̂ (aI1, a

I
2)), there is a unique SPE, in which Firm 2 keeps its initial

innovation and does not search and Firm 1 discards its initial innovation and searches

with aI1 as cut-off;

• for T < T̆ (aI1, a
I
2), subgame perfect equilibria exist, and in each equilibrium Firm 2

searches with cut-off aI1 and Firm 1 keeps its initial innovation and does not search.

Proof. See Appendix 1.A.4.

In the middle range of the deadline, even though Firm 2 can credibly commit to searching

and scare Firm 1 away from competition by discarding its initial innovation, it is not willing

to do so, yet Firm 1 would like to discard its initial innovation and commit to searching. This

is because Firm 1’s initial innovation is of a higher value than Firm 2’s. The cut-off value of

the deadline at which Firm 2 is indifferent between discarding the initial innovation to commit

to searching, and keeping the initial innovation, is higher than that of Firm 1.

1.5.2 Intermediate Information Disclosure

In the software industry, it is common to preannounce with a long lag to launch (Bayus et al.,

2001). Many firms do that by describing the expected features or demonstrating prototypes at

trade shows. Many other firms publish their findings in a commercial disclosure service, such
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as Research Disclosure, or in research journals.18 Suppose there is a regulator who would like

to impose an intermediate information disclosure requirement on innovation contests. What

are the effects of the requirement on firms’ competition strategies and the expected value of

the winning innovation. Specifically, suppose there is a time point t0 ∈ (0, T ) at which both

firms have to reveal everything they have, how would firms compete against each other?

When the head start aI1 is larger the threshold F−1(1− c
λ), it is clear that no firm has an

incentive to conduct any search. When the head start is below this threshold, if t0 is very

close to T , information revelation has little effect on the firms’ strategies. Both firms will

play approximately the same actions before time t0 as they do when there is no revelation

requirement. After time t0, the firm in a higher state at time t0 stops searching. The other

firm searches with this higher state as the cut-off if this higher state is below F−1(1− c
λ), and

stops searching as well if it is higher than F−1(1− c
λ).

Our main finding in this part regards the cases in which the head start is in the middle

range and the deadline is sufficiently far from the information revelation point.19 That is,

firms have to reveal their progress at an early stage of a competition.

Proposition 1.9. Suppose at a time point t0 ∈ (0, T ) both firms have to reveal their discov-

eries. For aI1 ∈ (a∗L, F
−1(1− c

λ)) and aI2 < aI1, if T − t0 is sufficiently large, there is a unique

subgame perfect equilibrium, in which

• Firm 1 searches with F−1(1− c
λ) as the cut-off before time t0 and stops searching from

time t0;

• Firm 2 does not search before time t0 and searches with aI1 as the cut-off from time t0 if

aI1 < F−1(1− c
λ).

Proof. See Appendix 1.A.4.

In the proof, we show that between time 0 and time t0, the dominant action of Firm 2

is not to search, given that the equilibria in the subgames from time t0 are described as in

Theorem 1.2. If Firm 1 is in a state higher than the threshold F−1(1 − c
λ) at time t0, Firm

2’s effort will be futile if it searches before time t0. If Firm 1 is in a state in between its initial

state aI1 and and the threshold F−1(1− c
λ) at time t0, Firm 2 has the chance to get into a state

above the threshold F−1(1 − c
λ) and thus a continuation payoff of 1, but this instantaneous

benefit only compensates the instantaneous cost of searching. Firm 2 also has the chance to

get into a state above that of Firm 1 but below the threshold F−1(1 − c
λ) at time t0, which

18Over 90% of the world’s leading companies have published disclosures in Research Disclosure’s pages (see
www.researchdisclosure.com).

19Generally, for the cases in which aI1 < a∗L, there are many subgame perfect equilibria, including two
equilibria in each of which one firm searches with F−1(1 − c

λ
) as the cut-off between time 0 and time t0 and

the other firm does not.
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results in a continuation payoff of approximately 0 if the deadline is sufficiently long, whereas

it obtains a strictly positive payoff if it does not search before time t0. It is thus not worthwhile

for Firm 2 to conduct a search before time t0. If Firm 2 does not search before time t0, Firm 1

then has the incentive to conduct a search if the deadline is far from t0. If it does not search,

it obtains a payoff of approximately 0 when T − t0 is sufficiently large. If it conducts a search

before time t0, the benefit from getting into a higher state can compensate the cost.

An early stage revelation requirement therefore hurts the latecomer and benefits the head

starter. It gives the head starter a chance to get a high-value innovation so as to deter the

latecomer from competition. It also increases the expected value of the winning innovation.

1.6 Discussion: Asymmetric Costs (aI1 = aI2 = 0, c1 < c2)

In this section, we show that, compared to the effects of head starts, the effects of cost

advantages are simpler. A head start probably discourages a firm from conducting searching

and can either discourage its competitor from searching or encourage its competitor to search

more actively. In contrast, a cost advantage encourages a firm to search more actively and

discourages its opponent.

We now assume that the value of pre-specified prize to Firm i, i = 1, 2, is Vi and that

the search cost is for Firm i is Ci per unit of time. However, at each time point Firm i only

makes a binary decision on whether to stop searching or to continue searching. Whether it

is profitable to continue searching depends on the ratio of Ci
Vi

rather than the scale of Vi and

Ci. Therefore, we can normalize the valuation of each player to be 1 and the search cost to

be Ci
Vi

=: ci. W.l.o.g, we assume c1 < c2. For convenience, we define a function

I(ai|aj , ci) := λ

∫ ā

ai

[Z(a|aj)− Z(ai|aj)]dF (a)− ci,

where Z(a|aj) is defined, in Lemma 4.2 in the appendix, as Firm j’s probability of ending up

in a state below a if it searches with aj as the cut-off. We emphasize on the most important

case, in which both firms’ search costs are low.

Proposition 1.10. For 0 < c1 < c2 <
1
2λ(1 − e−λT ), there must exist a unique equilibrium

(a∗1, a
∗
2), in which a∗1 > a∗2 ≥ 0. Specifically,

1. if I
(

0|F−1
(

1−
√

2c1
λ(1−e−λT )

)
, c2

)
> 0, the unique equilibrium is a pair of cut-off rules

(a∗1, a
∗
2), a∗1 > a∗2 > 0, that satisfy

λ

∫ ā

a∗i

[
Z(a|a∗j , T )− Z(a∗i |a∗j , T )

]
dF (a) = ci;
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2. if I
(

0|F−1
(

1−
√

2c1
λ(1−e−λT )

)
, c2

)
≤ 0, the unique equilibrium is a pair of cut-off rules(

F−1
(

1−
√

2c1
λ(1−e−λT )

)
, 0
)

.

Proof. See Appendix 1.A.5.

The existence of equilibrium is proved by using Brouwer’s fixed point theorem. As expect-

ed, a cost (valuation) advantage would drive a firm to search more actively than its opponent.

The following statement shows that while an increase in cost advantage of the firm in advan-

tage would make the firm more active in searching and its opponent less active, a further cost

disadvantage of the firm in disadvantage would make both firms less active in searching.

Proposition 1.11. For 0 < c1 < c2 <
1
2λ(1−e−λT ) and I

(
0|F−1

(
1−

√
2c

λ(1−e−λT )

)
, c2

)
> 0,

in which case there is a unique equilibrium (a∗1, a
∗
2), a∗1, a

∗
2 > 0,

1. for fixed c2,
∂a∗1
∂c1

< 0 and
∂a∗2
∂c1

> 0;

2. for fixed c1,
∂a∗1
∂c2

< 0 and
∂a∗2
∂c2

< 0.

Proof. See Appendix 1.A.5.

The intuition is simple. When the cost of the firm in advantage decreases, this firm would

be more willing to search, while the opponent firm would be discouraged because the marginal

increase in the probability of winning from continuing searching in any state is reduced, and

therefore the opponent firm would lower its cut-off. When the cost of the firm at a disadvantage

increases, the firm would be less willing to search, and the opponent firm would consider it

less necessary to search actively because the probability of winning in any state has increased.

A comparison between the equilibrium strategies in this model and that of the benchmark

model can be made.

Corollary 1.5. For 0 < c1 < c2 <
1
2λ(1 − e−λT ) and I

(
0|F−1

(
1−

√
2c

λ(1−e−λT )

)
, c2

)
> 0,

in which case there is a unique equilibrium (a∗1, a
∗
2), a∗1 > a∗2 > 0, a∗1 and a∗2 satisfy

1. a∗1 < a∗(c, T ) for the corresponding c = c2 > c1;

2. a∗2 < a∗(c, T ) for the corresponding c = c1 < c2.

Based on the benchmark model, a cost reduction for Firm 1 will result in both firms

searching with cut-offs below the original one; a cost increase for Firm 2 will certainly result

in Form 2 searching with a cut-off below the original one.

The equilibrium for the other non-marginal cases (conditional on c1 < c2), together with

the above case, are stated in Table 1.1 without proof. The regions in Table 1.1 are the same as

in Figure 1.1. The row (column) number indicates in which region c1 (c2) lies, and each element
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c2 \ c1 Region 1 Region 2 Region 3

Region 1 (a∗1, a
∗
2)

(
F−1

(
1−

√
2c1

λ(1−e−λT )

)
, 0
)

(0,−1)

Region 2 / (0, 0) (0,−1)

Region 3 / / (0,−1), (−1, 0)

Table 1.1: Equilibria in all non-marginal cases.

in each cell represents a corresponding equilibrium. For example, the element in the cell at

the second row and the second column means that for c1, c2 ∈ (1
2λ(1− e−λT ), 1

2λ(1 + e−λT )),

there is a unique equilibrium, in which both firms search with cut-off 0. This shows that Firm

1 is more active in searching than is Firm 2.

Remark. Similar results can be found in a model with the same search cost but with different

arrival rates of innovations for the two firms.

1.7 Concluding Remarks

In this chapter, we studied the long-run effects of head starts in innovation contests in which

each firm decides when to stop a privately observed repeated sampling process before a preset

deadline. Unlike an advantage in innovation cost or innovation ability, which encourages a

firm to search more actively for innovations and discourages its opponent, a head start has

non-monotone effects. The head starter is discouraged from searching if the head start is large,

and its strategy remains the same if the head start is small. The latecomer is discouraged

from searching if the head start is large but is encouraged to search more actively if it is in

the middle range. Our main finding is that, if the head start is in the middle range, in the

long run, the head starter is doomed to lose the competition with a payoff of zero and the

latecomer will take the entire surplus for the competing firms. As a consequence, our model

can exhibit either the “preemption effect” or the “replacement effect”, depending on the value

of the head start.

Our results have implications on antitrust problems. Market regulators have concerns that

the existence of market dominating firms, such as Google, may hinder competitions, and they

take measures to curb the monopoly power of these companies. For instance, the European

Union voted to split Google into smaller companies.20 Our results imply that in many cases

the positions of the dominant firms are precarious. In the long run, they will be knocked

off their perch. These firms’ current high positions, in fact, may promote competitions in

20“Google break-up plan emerges from Brussels,” Financial Times, November 21, 2014.
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the long run because they encourage their rivals to exert efforts to innovate and reach high

targets. Curbing the power of the current dominating firms may benefit the society and these

firms’ rivals in the short run, but in the long run it hurts the society because it discourages

innovation. However, the the dominating firms’ positions are excessively high, which deters

new firms from entering the the market, a market regulator could take some actions.

The results have also implications on R&D policies. When selecting an R&D policy, policy

makers have to consider both the nature of the R&D projects and the market structure.

If the projects are on radical innovations, subsidizing innovation costs effectively increases

competition when the market is blank (no advanced substitutive technology exists in the

market). However, when there is a current market dominating firm with an existing advanced

technology, a subsidy may not be effective. The dominating firm has no incentive to innovate,

and the latecomer, even if it is subsidized, will not innovate more actively.

In our model we have only one head starter and one latecomer. The model can be extended

to include more than two firms, and similar results still hold. One extension is to study the

designing problem in our framework. For example, one question is how to set the deadline. If

the designer is impatient, she may want to directly take the head starter’s initial innovation

without holding a contest; if she is patient, she may set a long deadline in order to obtain

a better innovation. Some other extensions include: to consider a model with a stochastic

number of firms; to consider a model with cumulative scores with or without regret instead of

a model with repeated sampling.

1.A Appendix

1.A.1 Preliminaries

To justify Assumption 2.1, we show in the following that, for any given strategy played by

a firm’s opponent, there is a constant cut-off rule being the firm’s best response. If the cut-

off value is above zero, it is actually the unique best response strategy, ignoring elements

associated with zero probability events. We argue only for the case that both firms’ initial

states are 0. The arguments for the other cases are similar and thus are omitted.

Suppose aI1 = aI2 = 0. For a given strategy played by Firm j, we say at time t

ati := inf{ã ∈ A|Firm i weakly prefers stopping to continuing searching in state ã}

is Firm i’s lower optimal cut-off and

āti := inf{ã ∈ A|Firm i strictly prefers stopping to continuing searching in state ã}

33



is Firm i’s upper optimal cut-off .

Lemma 1.4. Suppose aI1 = aI2 = 0. For any fixed strategy played by Firm j, Firm i’s best

response belongs to one of the three cases.

i. Not to search: āti = ati = −1 for all t ∈ [0, T ],

ii. Search with a constant cut-off rule âi ≥ 0: āti = ati = âi ≥ 0 for all t ∈ [0, T ].

iii. Both not to search and search until being in a state above 0: āti = 0 and ati = −1 for all

t ∈ [0, T ).

Proof of Lemma 4.1. Fix a strategy of Firm j. Let P (a) denote the probability of Firm j

ending up in a state below a at time T . P (a) is either constant in a or strictly increasing

in a. It is a constant if and only if Firm j does not search.21 If this is the case, Firm i’s

best response is to continue searching with a fixed cut-off âti = āti = ati = 0 for all t. In the

following, we study the case in which P (a) is strictly increasing in a.

Step 1. We argue that, given a fixed strategy played by Firm j, Firm i’s best response is

a (potentially history-dependent) cut-off rule. Suppose at time t Firm i is in a state ã ∈ [0, 1].

If it is strictly marginally profitable to stop (continue) searching at t, then it is also strictly

marginally profitable to continue searching if it is in a state higher (lower) than ã. Let the

upper and lower optimal cut-offs at time t be āti and ati, respectively, as defined previously.

Step 2. We show that {āti}Tt=0 and {ati}Tt=0 should be history-independent. We use a

discrete version to approximate the continuous version. Take any t̃ ∈ [0, T ). Let {tl}kl=0,

where tl − tl−1 = T−t̃
k =: δ for l = 1, ..., k, be a partition of the interval [t̃, T ]. Suppose Firm

i can only make decisions at {tl}kl=0 in the interval [t̃, T ]. Let {ātl}k−1
l=0 and {atl}k−1

l=0 be the

corresponding upper and lower optimal cut-offs, respectively, and Gδ(a) be Firm i’s probability

of discovering no innovation with a value above a in an interval δ.

At tk−1, for Firm i in a state a, if it stops searching, the expected payoff is P (a); if it

continues searching, the expected payoff is

Gδ(a)P (a) +

∫ 1

a
P (ã)dGδ(ã)− δci

=P (a) +

∫ 1

a
[P (ã)− P (a)]dGδ(ã)− δci.

The firm strictly prefers continuing searching if and only if searching in the last period strictly

increases its expected payoff,

eδ(a) :=

∫ 1

a
[P (ã)− P (a)]dGδ(ã)− δci > 0.

eδ(a) strictly decreases in a and eδ(1) ≤ 0. Because eδ(0) can be either negative or positive,

we have to discuss several cases.
21More generally, it is constant if and only if the opponent firm conducts search with a measure 0 over [0, T ].
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Case 1. If eδ(0) < 0, Firm i is strictly better off stopping searching in any state a ∈ [0, 1].

Thus, ātk−1 = atk−1 = −1.

Case 2. If eδ(0) = 0, Firm i is indifferent between stopping searching and continuing searching

with 0 as the cut-off, if it is in state 0; strictly prefers stopping searching, if it is in any state

above 0. Then ātk−1 = 0 and atk−1 = −1.

Case 3. If eδ(0) > 0 ≥ lima→0 e
δ(a), Firm i is strictly better off continuing searching in state

0, but stopping searching once it is in a state above 0. Thus, ātk−1 = atk−1 = 0.

Case 4. If lima→0 e
δ(a) > 0, then Firm i’s is strictly better off stopping searching if it is in a

state above âtk−1 and continuing searching if it is in a state below âtk−1 , where the optimal

cut-off âtk−1 > 0 is the unique value of a that satisfies,∫ 1

a
[P (ã)− P (a)]dGδ(ã)− δc = 0.

Thus, in this case ātk−1 = atk−1 = âtk−1 .

Hence, the continuation payoff at tk−1 ≥ 0 for Firm i in a state a ∈ [0, 1] is

ω(a) =

P (a) +
∫ 1
a [P (ã)− P (a)]dGδ(ã)− δc for a < atk−1

P (a) for a ≥ atk−1 .

Then, we look at the time point tk−2. In the following, we argue that ātk−2 = ātk−1 . The

argument for atk−2 = atk−1 is very similar and thus is omitted.

First, we show that ātk−2 ≤ ātk−1 . Suppose ātk−2 > ātk−1 . Suppose Firm i is in state ātk−2

at time tk−2. Suppose Firm i searches between tk−2 and tk−1. If it does not discover any

innovation with a value higher than ātk−2 , then at the end of this period it stops searching

and takes ātk−2 . However, ātk−2 > ātk−1 implies

0 =

∫ 1

ātk−2

[P (ã)− P (ātk−2)]dGδ(ã)− δci

<

∫ 1

ātk−1

[P (ã)− P (ātk−1)]dGδ(ã)− δc ≤ 0.

The search cost is not compensated by the increase in the probability of winning from searching

between tk−2 and tk−1, and thus the firm strictly prefers stopping searching to continuing

searching at time tk−2, which contradicts the assumption that ātk−2 is the upper optimal

cut-off. Hence, it must be the case that ātk−2 ≤ ātk−1 .

Next, we show that ātk−2 = ātk−1 .

In Case 1, it is straightforward that Firm i strictly prefers stopping searching at tk−2, since

it is for sure not going to search between tk−1 and tk. Hence, Firm i stops searching before

tk−1, and ātk−2 = ātk−1 = atk−2 = atk−1 = −1.

For ātk−1 ≥ 0, we prove by contradiction that ātk−2 < ātk−1 is not possible. Suppose the

inequality holds. If Firm i stops searching at tk−2, it would choose to continue searching at
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tk−1, and its expected continuation payoff at tk−2 is ω(ātk−2). If the firm continues searching,

its expected continuation payoff is

ω(ātk−2) +

∫ 1

ātk−2

[ω(a)− ω(ātk−2)]dGδ(a)− δc. (1.6)

In Cases 2 and 3, ātk−1 = 0 implies ātk−2 = −1. Then,∫ 1

ātk−2

[ω(a)− ω(ātk−2)]dGδ(a)− δci

=

∫ 1

−1
[P (a)]dGδ(a)− δci

=eδ(−1)

≥0

which means that Firm i in state 0 is weakly better off continuing searching between tk−2 and

tk−1, which implies that ātk−2 ≥ 0, resulting in a contradiction.

For Case 4, in which ātk−1 > 0, we have in (1.6)∫ 1

ātk−2

[ω(a)− ω(ātk−2)]dGδ(a)

=

∫ ātk−1

ātk−2

[(
P (a) +

∫ 1

a
[P (ã)− P (a)]dGδ(ã)

)
−
(
P (ātk−2) +

∫ 1

ātk−2

[P (ã)− P (ātk−2)]dGδ(ã)

)]
dGδ(a)

+

∫ 1

ātk−1

[
P (a)−

(
P (ātk−2) +

∫ 1

ātk−2

[P (ã)− P (ātk−2)]dGδ(ã)

)]
dGδ(a)

=

∫ 1

ātk−2

[
P (a)− P (ātk−2)

]
dGδ(a) +

∫ ātk−1

ātk−2

[∫ 1

a
[P (ã)− P (a)]dGδ(ã)

]
dGδ(a)

−
∫ 1

ātk−2

[∫ 1

ātk−2

[P (ã)− P (ātk−2)]dGδ(ã)

]
dGδ(a)

=Gδ(ātk−2)

∫ 1

ātk−2

[
P (a)− P (ātk−2)

]
dGδ(a) +

∫ ātk−1

ātk−2

[∫ 1

a
[P (ã)− P (a)]dGδ(ã)

]
dGδ(a)

>0.

Hence, at tk−2 Firm i would strictly prefer continuing searching, which again contradicts the

assumption that ātk−2 is the upper optimal cut-off. Consequently, ātk−2 = ātk−1 .

By backward induction from tk−1 to t0, we have āt0 = ātk−1 . Taking the limit we get

āt = lim
δ→0

āT−δ =: ā for all t ∈ [0, T ).

Similarly,

at = lim
δ→0

aT−δ =: a for all t ∈ [0, T ).
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In addition, ā 6= a when and only when ā = 0 and a = −1.

As a consequence, Firm i’s best response is not to search, if ā = a = −1; to continue

searching if it is in a state below ā and to stop searching once the firm in a state above ā, if

ā = a ≥ 0.

In brief, the above property is proved by backward induction. Take Case [ii] for example.

If at the last moment a firm is indifferent between continuing and stopping searching when

it is in a certain state, which means the increase in the probability of winning from contin-

uing searching equals the cost of searching, and therefore there is no gain from searching.

Immediately before the last moment the firm should also be indifferent between continuing

searching and not given the same state. This is because, if the firm reaches a higher state

from continuing searching, it weakly prefers not to search at the last moment, and thus the

increase in the probability of winning from continuing searching at this moment equals the

cost of searching as well. By induction, the firm should be indifferent between continuing and

stopping searching in the same state from the very beginning.

In Case [iii], Firm i generally has uncountably many best response strategies. By Assump-

tion 2.1, we rule out most strategies and consider only two natural strategies: not to search

at all and to search with 0 as the cut-off.

Lemma 1.5. Suppose a firm’s initial state is 0, and she searches with a cut-off â ≥ 0. Then,

the firm’s probability of ending up in a state below a ∈ [0, 1] at time T is

Z(a|â, T ) =


0 if a = 0

e−λT [1−F (a)] if 0 < a ≤ â

e−λT [1−F (â)] +
[
1− e−λT [1−F (â)]

] F (a)−F (â)
1−F (â) if a > â.

1−e−λT [1−F (â)] is the probability that the firm stops searching before time T, and F (a)−F (â)
1−F (â)

is the conditional probability that the innovation above the threshold the firm discovers is in

between â and a.

Proof of Lemma 4.2. For a = 0, it is clear that Z(a|â, T ) = 0.

For 0 < a ≤ â,

Z(a|â, T ) =

∞∑
l=0

e−λT (λT )l

l!
F l(a) = e−λT [1−F (a)].

For a > â, we approximate it by a discrete time model. Let {tl}kl=0, where 0 = t0 < t1 <

... < tk = T , be a partition of the interval [0, T ], and let δl = tl − tl−1 for l = 1, 2, ..., k. Define
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π as

‖ π ‖= max
1≤l≤k

|δl|.

Then,

Z(a|â, T ) =Z(â|â, T ) + lim
‖π‖→0

k∑
l=1

Z(a|â, tl−1)

[ ∞∑
n=1

e−λδl(λδl)
n

n!
[Fn(a)− Fn(â)]

]

=Z(â|â, T ) + lim
‖π‖→0

k∑
l=1

e−λtl−1[1−F (â)]λe−λδl
(
[F (a)− F (â)] +O(δl)

)
δl

=Z(â|â, T ) +

∫ T

0
λe−λt[1−F (â)][F (a)− F (â)]dt

=Z(â|â, T ) +
[
1− e−λT [1−F (â)]

] F (a)− F (â)

1− F (â)
,

where the second term on the right hand side of each equality is the firm’s probability of ending

up in a state between â and a. The term Z(â|â, tn) used here is a convenient approximation

when δl is small. The second equality is derived from the fact that

∞∑
n=2

(λδl)
n

n!
[Fn(a)− Fn(a∗)] <

λ2δ2
l

2(1− λδl)
= o(δl).

Lemma 1.6. Given a > a′, Z(a|ã, T )− Z(a′|ã, T )

1. is constant in ã for ã ≥ a;

2. strictly decreases in ã for ã ∈ (a′, a);

3. strictly increases in ã for ã ≤ a′.

This single-peaked property says that the probability of ending up in a state between a′

and a is maximized if a firm chooses strategy a′.

Proof of Lemma 1.6. First, we show that 1−e−λTx
x strictly decreases in x over (0, 1] as

follows. Define s := λT and take x1, x2, 0 < x1 < x2 ≤ 1, we have

1− e−sx1
x1

>
1− e−sx2

x2
,

implied by

∂(1− e−sx1)x2 − (1− e−sx2)x1

∂s
= x1x2(e−sx1 − e−sx2) ≥ 0 (= 0 iff s = 0) and

(1− e−sx1)x2 − (1− e−sx2)x1 = 0 for s = 0.
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Next, define x := 1− F (a), x′ := 1− F (a′), and x̃ := 1− F (ã). We have

Z(a|ã, T )− Z(a′|ã, T ) =


e−λTx − e−λTx′ for ã ≥ a

(1− e−λTx′)− (1− e−λT x̃)xx̃ for ã ∈ (a′, a)

(1− e−λT x̃)x
′−x
x̃ for ã ≤ a′.

It is independent of ã for ã ≥ a, strictly increasing in x̃ and thus strictly decreasing in ã for

ã ≤ a′, and strictly decreasing in x̃ and thus strictly increasing in ã for ã ≤ a′.

Lemma 1.7. Suppose Firm j with initial state 0 plays a strategy âj. Then, the instantaneous

gain on payoff from searching for Firm i in a state a is

λ

∫ 1

ai

[Z(a|âj , T )− Z(ai|âj , T )]dF (a)− c.

Proof of Lemma 2.2. For convenience, denote H(a) as Z(a|âj , T ) for short. The instanta-

neous gain from searching for Firm i in a state ai is

lim
δ→0

(
e−λδH(ai) + λδe−λδ

[∫ 1
ai
H(a)dF (a) + F (ai)H(ai)

]
+ o(δ)− δc

)
−H(ai)

δ

= lim
δ→0

−(1− e−λδ)H(ai) + λδe−λδ
[∫ 1
ai
H(a)dF (a) + F (ai)H(ai)

]
+ o(δ)− δc

δ

= lim
δ→0

−λδe−λδH(ai) + λδe−λδ
[∫ 1
ai
H(a)dF (a) + F (ai)H(ai)

]
+ o(δ)− δc

δ

=− λH(ai) + λ

[∫ 1

ai

H(a)dF (a) + F (ai)H(ai)

]
− c

=λ

∫ 1

ai

[Z(a|âj , T )− Z(ai|âj , T )] dF (a)− c.

1.A.2 Proofs for the Benchmark Case

Proof of Theorem 1.1. We prove the theorem case by case.

Case[i]. When Firm i does not search, Firm j’s best response is to search with cut-off 0.

For 1
2λ(1 + e−λT ) ≤ c, when Firm j searches with any cut-off aj ≥ 0, Firm i’s best response
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is not to search, since the instantaneous gain from searching for Firm i in state 0 is

λ

∫ 1

0
Z(a|aj , T )dF (a)− c

≤λ
∫ 1

0
Z(a|0, T )dF (a)− c

=λ

∫ 1

0

[
e−λT + (1− e−λT )F (a)]dF (a)− c

=λ

[
e−λT +

1

2
(1− e−λT )

]
− c

=
1

2
λ(1 + e−λT )− c

≤0 (= 0 iff
1

2
λ(1 + e−λT ) = c),

where the first inequality follows from Lemma 1.6. Hence, there are two pure strategy equi-

libria, in each of which one firm does not search and the other firm searches with 0 as the

cut-off, and if 1
2λ(1 + e−λT ) = c there is also an equilibrium in which both firms search with

0 as the cut-off.

Case [ii]. First, we show that any strategy with a cut-off value higher than zero is a

dominated strategy. When Firm j does not search, Firm i prefers searching with 0 as the

cut-off to any other strategy. Suppose Firm j searches with âj ≥ 0 as the cut-off. The

instantaneous gain from searching for Firm i in a state ai > 0 is

λ

∫ 1

ai

[Z(a|âj , T )− Z(ai|âj , T )]dF (a)− c

≤λ
∫ 1

ai

[Z(a|ai, T )− Z(ai|ai, T )]dF (a)− c

=
1

2
λ(1− e−λT )[1− F (ai)]

2 − c

<0,

where the first inequality follows from Lemma 1.6. Hence, once Firm i is in a state above

0, it has no incentive to continue searching any more. In this case, Firm i prefers either not

to conduct any search or to search with 0 as the cut-off to any strategy with a cut-off value

higher than zero.

Second, we show that the prescribed strategy profile is the unique equilibrium. It is

sufficient to show that searching with 0 as the cut-off is the best response to searching with

0 as the cut-off. Suppose Firm j searches with 0 as the cut-off, the instantaneous gain from
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searching for Firm i in state a = 0 is

λ

∫ 1

0
Z(a|0, T )dF (a)− c

=
1

2
λ(1 + e−λT )− c

>0.

That is, Firm i is strictly better off continuing searching if it is in state 0, and strictly better

off stopping searching once it is in a state above 0. Hence, the prescribed strategy profile is

the unique equilibrium.

Case [iii]. First, we prove that among the strategy profiles in which each firm searches with

a cut-off higher than 0, the prescribed symmetric strategy profile is the unique equilibrium.

Suppose a pair of cut-off rules (a∗1, a
∗
2), in which a∗1, a

∗
2 > 0, is an equilibrium, then Firm i in

state a∗i is indifferent between continuing searching and not. That is, by Lemma 2.2, we have

λ

∫ 1

a∗i

[
Z(a|a∗j , T )− Z(a∗i |a∗j , T )

]
dF (a)− c = 0. (1.7)

Suppose a∗1 6= a∗2. W.l.o.g., we assume a∗1 < a∗2. Then,

c =λ

∫ 1

a∗1

[Z(a|a∗2, T )− Z(a∗1|a∗2, T )]dF (a)

>λ

∫ 1

a∗2

[Z(a|a∗2, T )− Z(a∗2|a∗2, T )]dF (a)

>λ

∫ 1

a∗2

[Z(a|a∗1, T )− Z(a∗2|a∗1, T )]dF (a) = c

resulting in a contradiction. Hence, it must be the case that a∗1 = a∗2.

Next, we show the existence of equilibrium by deriving the unique equilibrium cut-off value

a∗ := a∗1 = a∗2 explicitly. Applying Lemma 4.2 to (1.7), we have

λ

∫ 1

a∗

[
1− e−λT [1−F (a∗)]

] F (a)− F (a∗)

1− F (a∗)
dF (a) = c

⇔1

2
[1− F (a∗)]

[
1− e−λT [1−F (a∗)]

]
=
c

λ
. (1.8)

The existence of a solution is ensured by the intermediate value theorem: when F (a∗) = 1,

the term on the left hand side of (1.8) equals to 0, smaller than c
λ ; when F (a∗) = 0, it equals

to 1−e−λT
2 , larger than or equals to c

λ . The uniqueness of the solution is insured by that the

term on the left hand side of the above equality is strictly decreasing in a∗.

Second, we show that there is no equilibrium in which one firm searches with 0 as the

cut-off. Suppose Firm j searches with 0 as the cut-off. The instantaneous gain from searching
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for Firm i in a state ai > 0 is

λ

∫ 1

ai

[Z(a|0, T )− Z(ai|0, T )]dF (a)− c

=λ

∫ 1

ai

(1− e−λT )[F (a)− F (ai)]dF (a)− c

=
1

2
λ(1− e−λT )[1− F (ai)]

2 − c, (1.9)

which is positive when ai = 0 and negative when ai = 1. By the intermediate value theorem,

there must be a value âi > 0 such that (1.9) equals 0 when ai = âi. Hence, Firm i’s best

response is to search with âi as the cut-off. However, if Firm i searches with âi as the cut-off,

it is not Firm j’s best response to search with 0 as the cut-off, because

0 =

∫ 1

âj

[Z(a|0, T )− Z(âj |0, T )]dF (a)− c

<

∫ 1

âj

[Z(a|âj , T )− Z(âj |âj , T )]dF (a)− c

<

∫ 1

0
[Z(a|âj , T )− Z(0|âj , T )]dF (a)− c,

which means that Firm j strictly prefers continuing searching when it is in a state slightly

above 0.

Last, we show that there is no equilibrium in which one firm does not search. Suppose

Firm j does not search. Firm i’s best response is to search with 0 as the cut-off. However,

Firm j then strictly prefers searching when it is in state 0, since the instantaneous gain from

searching for the firm in state 0 is again

λ

∫ 1

0
Z(a|ai, T )dF (a)− c > 0.

Proof of Lemma 1.2. The expected total cost of a firm who searches with a cut-off a ≥ 0

is

c

[∫ T

0

∂(1− Z(a|a, t))
∂t

tdt+ TZ(a|a, T )

]
=(1− e−λT [1−F (a)])

c

λ[1− F (a)]
, (1.10)

which strictly increases in a. In Regions 2 and 3, in equilibrium, the probability of winning
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for each firm is

1

2
[1− Z2(0|a∗(c, T ), T )]

=
1

2
(1− e−2λT ), (1.11)

and thus the expected payoff to each firm is the difference between the expected probability

of winning (1.11) and the expected search cost (1.10), setting a to be a∗(a, T ):

1

2
(1− e−2λT )− (1− e−λT [1−F (a∗(c,T ))])

c

λ[1− F (a∗(c, T ))]
. (1.12)

The limit of (1.12) as T approaches infinity is 0.

1.A.3 Proofs for the Head Start Case

First, we state two crucial lemmas for the whole section.

Lemma 1.8.

1. For aI1 > a∗(c, T ), not to search is Firm 1’s strictly dominant strategy.

2. For aI1 = a∗(c, T ), not to search is Firm 1’s weakly dominant strategy. If Firm 2 searches

with cut-off aI1, Firm 1 is indifferent between not to search and search with aI1 as the

cut-off; Otherwise, Firm 1 strictly prefers not to search.

Proof of Lemma 1.8. Suppose Firm 2 does not search, Firm 1’s best response is not to

search. Suppose Firm 2 searches with cut-off a2 ≥ aI1. If Firm 1 searches with cut-off a1 ≥ aI1,

following from Lemma 1.6, the instantaneous gain from searching for Firm 1 in any state

a1 ≥ aI1 ≥ a∗(c, T ) is

λ

∫ 1

a1

[Z(a|a2, T )− Z(a1|a2, T )]dF (a)− c

≤λ
∫ 1

a∗(c,T )
[Z(a|a∗(c, T ), T )− Z(a∗(c, T )|a∗(c, T ), T )]dF (a)− c, (1.13)

where equality holds if and only if a1 = a2 = a∗(c, T ). The right hand side of inequality (1.13)

is less than or equal to 0 (it equals to 0 iff c ≥ 1
2λ[1 − e−λT ]). Hence, the desired results

follow.

Lemma 1.9.

1. For aI1 > F−1(1− c
λ), not to search is Firm 2’s strictly dominant strategy.

2. For aI1 = F−1(1− c
λ), not to search is Firm 2’s weakly dominant strategy. If Firm 1 does

not search, Firm 2 is indifferent between not to search and search with any â2 ∈ [aI2, a
I
1]

as the cut-off. If Firm 1 searches, Firm 2’s strictly prefers not to search.
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Proof of Lemma 1.9. If Firm 1 does not search, the instantaneous gain from searching for

Firm 2 in a state a2 ≤ aI1 is

lim
δ→0

λδe−λδ[1− F (aI1)] + o(δ)− cδ
δ

= λ[1− F (aI1)]− c

< 0 in Case [1]

= 0 in Case [2].

If Firm 1 searches, Firm 2’s instantaneous gain is even lower. Hence, the desired results

follow.

Proof of Theorem 1.2. [1],[2], and [3] directly follow from Lemmas 1.8 and 1.9. We only

need to prove [4] and [5] in the following.

[4]. Following Lemma 1.8, if Firm 2 searches with cut-off aI1, Firm 1 has two best responses:

not to search and search with cut-off aI1. If Firm 1 searches with cut-off aI1, the instantaneous

gain from searching for Firm 2 is

λ

∫ 1

aI1

Z(a|aI1, T )dF (a)− c

=λ

∫ 1

aI1

[
e−λT [1−F (aI1)] + (1− e−λT [1−F (aI1)])

F (a)− F (aI1)

1− F (aI1)

]
dF (a)− c

=
1

2
λ(1 + e−λT [1−F (aI1)])[1− F (aI1)]− c

>λ[1− F (aI1)]− c

>0

if it is in a state a2 < aI1 = a∗(c, T ); it is

λ

∫ 1

a2

[Z(a|aI1, T )− Z(a2|aI1, T )]dF (a)− c < 0

if it is in a state a2 > aI1 = a∗(c, T ). Hence, the two prescribed strategy profiles are equilibria.

[5]. First, there is no equilibrium in which either firm does not search. If Firm 2 does not

search, Firm 1’s best response is not to search. However, if Firm 1 does not search, Firm 2’s

best response is to search with cut-off aI1 rather than not to search. If Firm 2 searches with

cut-off aI1, then not to search is not Firm 1’s best response, because the instantaneous gain

from searching for Firm 1 in state aI1 is

λ

∫ 1

aI1

[Z(a|aI1, T )− Z(aI1|aI1, T )]dF (a)− c

=
1

2
λ(1− e−λT [1−F (aI1)])[1− F (aI1)]− c

>0,

where inequality holds because aI1 < a∗(c, T ).
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Next, we argue that there is no equilibrium in which either firm searches with cut-off aI1.

Suppose Firm i searches with cut-off aI1. Firm j’s best response is to search with a cut-off

âj ∈ [aI1, a
∗(c, T )). This is because the instantaneous gain from searching for Firm j in a state

a′ ≥ aI1 is

λ

∫ 1

a′
p2[Z(a|aI1, T )− Z(a′|aI1, T )]dF (a)− c. (1.14)

(1.14) is larger than 0 when a′ = aI1. It is less than 0 if a′ = a∗(c, T ), because by Lemma 1.6

we have

λ

∫ 1

a∗
p2[Z(a|aI1, T )− Z(a∗|aI1, T )]dF (a)− c

<λ

∫ 1

a∗(c,T )
[Z(a|a∗(c, T ), T )− Z(a∗|a∗(c, T ), T )]dF (a)− c

=0.

Then, the intermediate value theorem and the strict monotonicity yield the unique cut-off

value of âj ∈ (aI1, a
∗(c, T )).

However, if Firm j searches with cut-off âj ∈ [aI1, a
∗(c, T )), Firm i’s best response is to

search with a cut-off value âi ∈ (âj , a
∗(c, T )) rather than aI1, because the instantaneous gain

from searching for Firm i in a state ã is

λ

∫ 1

ã
[Z(a|â1, T )− Z(ã|â1, T )]dF (a)− c

< 0 for ã = a∗(c, T )

> 0 for ã = â1

and it is monotone w.r.t. ã. This results in contradiction. Hence, there is no equilibrium in

which either firm searches with aI1 as the cut-off.

Last, we only need to consider the case in which each firm searches with a cut-off higher

than aI1. Following the same argument as in the proof of Theorem 1.1, we have (a∗(c, T ), a∗(c, T ))

being the unique equilibrium.

Proof of Proposition 1.2. We apply Theorem 1.2 here for the analysis. We only need to

show the case for aI1 ∈ (a∗(c, T ), F−1(1− c
λ)). In this case, Firm 1 does not to search and Firm

2 searches with aI1 as the cut-off. Now, take the limit aI1 → a∗(c, T ) from the right hand side

of a∗(c, T ). In the limit, where Firm 2 searches with a∗(c, T ) as the cut-off, Firm 1 weakly

prefers not to search. If aI1 = a∗(c, T ), Firm 1 is actually indifferent between searching and

not. Hence, a head start in the limit makes Firm 1 weakly better off. Firm 1’s payoff when

it does not search is e−λT [1−F (aI1)], the probability of Firm 2 ending up in a state below aI1,

is strictly increasing in aI1. Hence, a higher value of the head start makes Firm 1 even better

off.
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Proof of Proposition 1.3. [1]. For T being small, a∗(c, T ) = 0. DM (0, aI1) = 0, and the

partial derivative of DM (T, aI1) w.r.t. T when T is small is

∂DM (T, aI1)

∂T
= λ(1− aI1)e−λT (1−aI1)[1− c

λ(1− aI1)
]− λe−2λT + ce−λT ,

which equals to −λaI1 < 0 at the limit of T = 0.

[2]. Follows from Propositions 1.1 and 1.2.

Proof of Proposition 1.4. DM (T, aI1) is strictly decreasing in aI1, and it goes to the opposite

of (1.12), which is less than 0, as aI1 goes to F−1(1− c
λ), and

(1− e−λT [1−F (a∗(c,T ))])− 1

2
(1− e−2λT ) (1.15)

as aI1 goes to a∗(c, T ). Hence, if (1.15) is positive, Case 1 yields from the intermediate value

theorem; Case 2 holds if (1.15) is negative.

1.A.4 Proofs for the Extended Models

Proof of Proposition 1.7. We argue that, to determine a subgame perfect equilibrium, we

only need to consider two kinds of strategies profiles:

a Firm 1 retains its initial innovation and does not search, and Firm 2 searches with aI1 as

the cut-off;

b Firm 1 discards its initial innovation and searches with aI2 as the cut-off, and Firm 2

retains its initial innovation.

First, suppose c < λ
2 (1 + e−λT ). If Firm 1 retains the initial innovation, it will have no

incentive to search, and Firm 2 is indifferent between discarding the initial innovation and

not. In either case, Firm 2 searches with aI1 as the cut-off. Given that Firm 1 has discarded

its initial innovation, Firm 2 has no incentive to discard its initial innovation as shown in

Proposition 1.2.

Second, suppose c > λ
2 (1 + e−λT ). In the subgame in which both firms discard their initial

innovation, there are two equilibria, in each of which one firm searches with 0 as the cut-off

and the other firm does not search. Hence, to determine a subgame perfect equilibrium, we

have to consider another two strategy profiles, in addition to [a] and [b]:

c Firm 1 discards its initial innovation and searches with 0 as the cut-off, and Firm 2

discards its initial innovation and does not search.

d Firm 1 discards its initial innovation and does not search, and Firm 2 discards its initial

innovation and searches with 0 as the cut-off.
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However, we can easily rule out [c] and [d] from the candidates for equilibria. In [c], Firm

2 obtains a payoff of 0. It can deviate by retaining its initial innovation so as to obtain a

positive payoff. Similarly, in [d], Firm 1 can deviate by retaining its initial innovation to

obtain a positive payoff rather than 0.

Last, it remains to compare Firm 1’s payoff in [a] and [b]. In [a], Firm 1’s payoff is

e−λT [1−F (aI1)]. (1.16)

In [b], it is

(1− e−λT [1−F (aI2)])(1− c

λ[1− F (aI2)]
). (1.17)

The difference between these two payoffs, (1.17) and (1.16), is increasing in T , and it equals

−1 when T = 0 and goes to 1 − c
λ[1−F (aI2)]

> 0 as T approaches infinity. Hence, the desired

result is implied by the intermediate value theorem.

Proof of Proposition 1.8. The backward induction is similar to the proof of Proposition 1.7,

and thus is omitted.

Proof of Proposition 1.9. The equilibrium for the subgame starting from time t0 derives

from Theorem 1.2. Suppose at time t0, Firm i is in a state a0
i , where max{a0

1, a
0
2} ≥ aI1.

Assume a0
i > a0

j . If a0
i > F−1(1− c

λ), then Firm i obtains a continuation payoff of 1, and Firm

j obtains 0. If a0
i ∈ (a∗(c, T − t0), F−1(1 − c

λ)), then Firm i obtains a continuation payoff of

e−λ(T−t0)[1−F (a0i )], and Firm j obtains (1− e−λ(T−t0)[1−F (a0i )])(1− c
λ[1−F−1(a0i )]

).

To prove this result, we first show that not to search before t0 is Firm 2’s best response

regardless of Firm 1’s action before time t0. It is equivalent to showing that not to search

before t0 is Firm 2’s best response if Firm 2 knows that Firm 1 is definitely going to be in any

state a0
1 ≥ a∗L at time t0.

As we have shown before, for any a0
1 ≥ (>)F−1(1 − c

λ), Firm 2 (strictly) prefers not to

conduct searching before time t0.

If a0
1 ∈ [a∗L, F

−1(1− c
λ)), Firm 2’s unique best response before time t0 is not to search. The

instantaneous gain from searching at any time point before t0 for Firm 2 in a state below a0
1

is

λ
[
[1− F (F−1(1− c

λ
))] +

∫ F−1(1− c
λ

)

a01

e−λ(T−t0)[1−F (a)]dF (a)

− [1− F (a0
1)](1− e−λ(T−t0)[1−F (a0i )])(1− c

λ[1− F−1(a0
i )]

)
]
− c

=λ
[ ∫ F−1(1− c

λ
)

a01

e−λ(T−t0)[1−F (a)]dF (a)

− [1− F (a0
1)](1− e−λ(T−t0)[1−F (a0i )])(1− c

λ[1− F−1(a0
i )]

)
]
,
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which is strictly negative when T − t0 is sufficiently large, and thus conducting a search before

time t0 actually makes Firm 2 strictly worse off in this case.

Next, we show that Firm 1’s best response before time t0 is to search with F−1(1− c
λ) as

the cut-off, if Firm 2 does not search before t0. To see this, look at the instantaneous gain

from searching for Firm 1 in a state below F−1(1− c
λ):

λ
[
[1− F (F−1(1− c

λ
))]

+

∫ F−1(1− c
λ

)

aI1

e−λ(T−t0)[1−F (a)]dF (a)− [1− F (aI1)]e−λ(T−t0)[1−F (aI1)]
]
− c

=

∫ F−1(1− c
λ

)

aI1

e−λ(T−t0)[1−F (a)]dF (a)− [1− F (aI1)]e−λ(T−t0)[1−F (aI1)]

>

∫ F−1(1− c
λ

)

ã
e−λ(T−t0)[1−F (a)]dF (a)− [1− F (ã)]e−λ(T−t0)[1−F (aI1)]

>(1− c

λ
− F (ã))e−λ(T−t0)[1−F (ã)] − [1− F (ã)]e−λ(T−t0)[1−F (aI1)]

=e−λ(T−t0)[1−F (aI1)][1− c

λ
− F (ã)]

(
eλ(T−t0)[F (ã)−F (aI1)] − 1− F (ã)

1− c
λ − F (ã)

)
,

where ã is any value in (aI1, F
−1(1− c

λ)). The term on the right hand side of the last equality

is strictly positive if T − t0 is sufficiently large. Hence, the desired result yields.

1.A.5 Proofs for the Case with Asymmetric Costs

Proposition 1.12. If 0 < c1 < c2 <
1
2λ(1−e−λT ) there exists a pure strategy equilibrium (a∗1,

a∗2) with a∗1, a
∗
2 ≥ 0.

Proof of Proposition 1.12. We prove the existence of equilibrium by applying Brouwer’s

fixed point theorem. First, same as in the previous proofs, if Firm j searches with a cut-off

âj ≥ 0, the instantaneous gain from searching for Firm i in state 0 is

λ

∫ 1

0
Z(a|1, T )− ci > 0,

and thus Firm i is better off continuing searching if it is in state 0.

Next, let us define for each Firm j a critical value

αj = sup{aj ∈ [0, 1] | I(0|αj , ci) = λ

∫ 1

0
[Z(a|αj)− Z(0|αj)]dF (a)− ci > 0}.

Suppose there is a αj ∈ (0, 1) such that

I(0|αj , ci) = λ

∫ 1

0
[Z(a|αj)− Z(0|αj)]dF (a)− ci = 0.
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For any âj ∈ [0, αj ],

I(0|âj , ci) ≥ 0 and

I(1|âj , ci) < 0.

By the intermediate value theorem and the strict monotonicity of Q(a|âj , ci) in a, there must

exist a unique ãi ∈ [0, 1) such that

I(ãi|âj , ci) = 0.

That is, if Firm j searches with cut-off âj , Firm i’s best response is to search with cut-off ãi.

For any âj ∈ (αj , 1], if the set is not empty,

I(0|âj , ci) < 0.

That is, Firm i’s best response is to search with cut-off 0.

Then, we could define two best response functions BRi : [0, 1]→ [0, 1] where

BRi(âj) :=

0 for âj ∈ (αj , 1] if it is not empty

ãi where I(ãi|âj , ci) = 0 for âj ∈ [0, αj ].

It is also easy to verify that BRi is a continuous function over [0, 1]. Hence, we have a

continuous self map BR : [0, 1]2 → [0, 1]2 where

BR = (BR1, BR2)

on a compact set, and by Brouwer’s fixed point theorem, there must exist of a pure strategy

equilibrium in which each Firm searches with a cut-off higher than or equal to 0.

Proof of Proposition 3.3. First, using the same arguments as in the proof of Proposi-

tion 1.1, we claim that if there exists an equilibrium it must be the case that each firm

searches with a cut-off higher than or equal to 0 with one strictly positive value for one firm.

Next, we show that there can be no equilibrium in which Firm 2 searches with a cut-off

â2 > 0 and Firm 1 searches with cut-off 0. Such a strategy profile (0, â2) is an equilibrium if

and only if

λ

∫ 1

0
[Z(a|â2, T )− Z(0|â2, T )]dF (a)− c1 ≤ 0, and

λ

∫ 1

â2

[Z(a|0, T )− Z(â2|0, T )]dF (a)− c2 = 0.
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However,

0 = λ

∫ 1

â2

[Z(a|0, T )− Z(â2|0, T )]dF (a)− c2

< λ

∫ 1

â2

[Z(a|â2, T )− Z(â2|â2, T )]dF (a)− c2

< λ

∫ 1

0
[Z(a|â2, T )− Z(0|â2, T )]dF (a)− c1 ≤ 0,

resulting in a contradiction.

Next, we derive the necessary and sufficient conditions for the existence of an equilirbium

in which Firm 2 searches with a cut-off 0 and Firm 1 searches with a cut-off strictly higher

than 0. A pair of cut-off rules (â1, 0), â1 > 0, is an equilibrium if and only if

λ

∫ 1

â1

[Z(a|0, T )− Z(â1|0, T )]dF (a)− c1 = 0 and (1.18)

λ

∫ 1

0
[Z(a|â1, T )− Z(0|â1, T )]dF (a)− c2 ≤ 0, (1.19)

where

(1.18)⇔1

2
λ(1− e−λT )[1− F (â1)]2 − c = 0⇔ âj = F−1

(
1−

√
2c1

λ(1− e−λT )

)
. (1.20)

Then, (1.20) and (1.19) together imply that (âi, 0) is an equilibrium if and only if

I

(
0|F−1

(
1−

√
2c1

λ(1− e−λT )

)
, c2

)
≤ 0. (1.21)

We will see that if (1.21) holds there is no other equilibrium.

When (1.21) does not hold, there is a unique equilibrium, in which each firm searches

with a cut-off strictly higher than 0. Because by Proposition 1.12 an equilibrium must exists.

Let (a∗1, a
∗
2) be such an equilibrium. We first show that a∗1 > a∗2 must hold by proof by

contradiction, and then we show that it must be a unique equilibrium. Such a pair (a∗1, a
∗
2) is

an equilibrium if and only if

λ

∫ 1

a∗i

[Z(a|a∗j , T )− Z(a∗i |a∗j , T )]dF (a) = ci for i = 1, 2 and j 6= i. (1.22)
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Suppose a∗1 ≤ a∗2. Applying Lemma 1.6, we have

c1 =λ

∫ 1

a∗1

[Z(a|a∗2, T )− Z(a∗1|a∗2, T )]dF (a)

≥λ
∫ 1

a∗2

[Z(a|a∗2, T )− Z(a∗2|a∗2, T )]dF (a)

≥λ
∫ 1

a∗2

[Z(a|a∗1, T )− Z(a∗2|a∗1, T )]dF (a) = c2,

resulting in a contradiction.

Then, we show the uniqueness of the equilibrium for Cases [1]− [3] by contradiction. For

Case [1] we show that the solution to (1.22) is unique, and for Cases [2] and [3] we show that

there can be no equilibrium in which each firm searches with a cut-off higher than 0 coexisting

with equilibrium
(
F−1

(
1−

√
2c1

λ(1−e−λT )

)
, 0
)

. We can prove all of them together. Suppose

there are two equilibria (a∗1, a
∗
2) and (ã∗1, ã

∗
2), where (a∗1, a

∗
2) is a solution to (1.22) and (ã∗1, ã

∗
2)

is either
(
F−1

(
1−

√
2c1

λ(1−e−λT )

)
, 0
)

or a solution to (1.22). It is sufficient to show that the

following two cases are not possible:

1. ã∗1 > a∗1 > a∗2 > ã∗2 ≥ 0 and

2. a∗1 > ã∗1 > a∗2 > ã∗2 ≥ 0.

Suppose ã∗1 > a∗1 > a∗2 > ã∗2 ≥ 0. Applying Lemma 1.6 we have

0 =λ

∫ 1

a∗1

[Z(a|a∗2, T )− Z(a∗1|a∗2, T )]dF (a)− c1

<λ

∫ 1

ã∗1

[Z(a|a∗2, T )− Z(ã∗1|a∗2, T )]dF (a)− c1

<λ

∫ 1

ã∗1

[Z(a|ã∗2, T )− Z(ã∗1|ã∗2, T )]dF (a)− c1 = 0,

resulting in a contradiction.

Suppose a∗1 > ã∗1 > a∗2 > ã∗2 ≥ 0. Applying Lemma 1.6 again, we have

0 ≥λ
∫ 1

ã∗2

[Z(a|ã∗1, T )− Z(ã∗2|ã∗1, T )]dF (a)− c2

>λ

∫ 1

a∗2

[Z(a|ã∗1, T )− Z(a∗2|ã∗1, T )]dF (a)− c2

>λ

∫ 1

a∗2

[Z(a|a∗1, T )− Z(a∗2|a∗1, T )]dF (a)− c2 = 0,

resulting in another contradiction.
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Proof of Proposition 1.11. For fixed c2 we have

∂a∗2
∂a∗1

= −

∂
∫ 1
a∗2

[Z(a|a∗1,T )−Z(a∗2|a∗1,T )]dF (a)

∂a∗1

∂
∫ 1
a∗2

[Z(a|a∗1,T )−Z(a∗2|a∗1,T )]dF (a)

∂a∗2

=

∫ 1
a∗2

∂[Z(a|a∗1,T )−Z(a∗2|a∗1,T )]
∂a∗1

dF (a)

∂Z(a∗2|a∗1,T )
∂a∗2

< 0.

Then,

∂a∗1
∂c1

= − −1

λ
∫ 1
a∗1

[
∂[Z(a|a∗2,T )−Z(a∗1|a∗2,T )]

∂a∗2

∂a∗2
∂a∗1
− ∂Z(a∗1|a∗2,T )

a∗1

]
dF (a)

< 0 and

∂a∗2
∂c1

=
∂a∗2
∂a∗1

∂a∗1
∂c1

> 0.

For fixed c1 we have

∂a∗1
∂a∗2

= −

∂
∫ 1
a∗1

[Z(a|a∗2,T )−Z(a∗1|a∗2,T )]dF (a)

∂a∗2

∂
∫ 1
a∗1

[Z(a|a∗2,T )−Z(a∗1|a∗2,T )]dF (a)

∂a∗1

=

∫ 1
a∗1

∂[Z(a|a∗2,T )−Z(a∗1|a∗2,T )]
∂a∗2

dF (a)

∂Z(a∗1|a∗2,T )
∂a∗1

> 0.

Then,

∂a∗2
∂c2

= − −1

λ
∫ 1
a∗2

[
∂[Z(a|a∗1,T )−Z(a∗2|a∗1,T )]

∂a∗1

∂a∗1
∂a∗2
− ∂Z(a∗2|a∗1,T )

a∗2

]
dF (a)

< 0 and

∂a∗1
∂c1

=
∂a∗1
∂a∗2

∂a∗2
∂c2

< 0.
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Chapter 2

Matching Prior to Cournot Competition:

An Assignment Game with Externalities

Introduction

Recently, an observation was addressed in the following piece of news:

“Apple is reported to be working on an electric car . . . The . . . company has

been on a hiring spree attracting key members of rival car manufacturers’ electric

and new vehicle system teams. . . . A new team has reportedly been . . . under

the control of the former Ford executive Steve Zadesky and former chief executive

of Mercedes-Benz’s research and development Johann Jungwirth.” (The Guardian

February 20, 2015)

When making hiring decisions, a large firm does not only care about the ability of the

workers to be hired by itself but also the ability of the workers to be hired by its rival firms.

A worker does not only affect her employer’s competing strategy but also her employer’s rival

firms’ strategies in the goods market. That is, each firm’s hiring decision has externalities

on the other firms and workers. If such externalities are taken into account, what would be

a stable matching outcome between firms and workers? And what would be the consequent

goods market outcome? Such a labor market matching problem could not be solved by the

standard models introduced by Gale and Shapley (1962) and Shapley and Shubik (1971) since

externalities are not considered in these models.1

This chapter extends the literature on matching with externalities. It is the first attempt

to link the labor market matching problem to the imperfect competition problem in a goods

market. Specifically, the problem is modeled as a two-stage game in which firms and managers

simultaneously for a 1-to-1 matching before a Cournot competitions starts among all firm-

manager pairs. I provide sufficient conditions for the outcomes that good firms hire good

1See Roth and Sotomayor (1992) for a detailed discussion of literature.
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managers and that good firms hire lesser managers, respectively.

To analyze the above problem, one needs a proper concept of stable matching. I start by

a review of the general model for 1-to-1 assignment games with externalities in Section 2.1.

The solution concept I use is an adaption of Sasaki and Toda’s (1996) conjectural equilibrium

(Hahn, 1987) for pessimistic (Aumann and Peleg, 1960) agents. A matching is stable if there

is an associated feasible payoff profile such that: (1) the matching is consistent with agents’

conjectures (expectations about the resulting matchings), i.e., the matching is in the expecta-

tion of each pair of agents; (2) no pair of agents can block the outcome. A result parallel to

the finding of Sasaki and Toda in matching with externalities and ordinal preferences is that

a stable matching is ensured to exist if and only if each agent considers all matchings possible.

Section 2.2 puts the genera framework of 1-to-1 assignment games into use in the environ-

ment of a Cournot competition. Firms produce a homogeneous good and sell it to the same

market, and the market price of the good is decided by the aggregate output. Hence, each

firm’s hiring outcome affects all other firm’s production decisions and profits, which in turn

affects these firms’ hiring decisions. I assume that (i) each firm has to hire one manager to

produce the good; (ii) the market demand function is linear; (iii) the unit production cost of

a firm depends only on the technology the firm and the human capital of the manager hired

by the firm. Under these assumptions, it is shown in Section 2.3 that if the unit cost function

is submodular, it is rational for each firm-manager pair to believe that, if they are to pair up,

the remaining agents will form a positive assortative matching (PAM) among themselves, and

the PAM on the whole market is a stable matching under these rational conjectures. That

is, if firm technology and human capital are complementary, it will be a stable matching that

a good manager works for a good firm and a lesser manager works for a lesser firm. Even

if the the unit cost function is supermodular, as long as the cross derivative is sufficiently

smaller than the product of the partial derivatives, the PAM is still stable under rational con-

jectures. That is, if firm technology and human capital are substitutable, yet the substitutive

effect is dominated by the marginal effects of technology and human capital, it would still

be a stable matching that good firms hire good managers. However, if the market demand

level is sufficiently high, the negative assortative matching is a stable matching. Because of

multi-dimensionality of externalities, it is not easy to provide a short-cut to prove the above

results. I prove them in a recursive method, using Sharpley and Shubik’s linear programming

technology. On the other hand, an example shows that a stable matching does not generally

exist.

Afterwards, I analyze social welfare induced by matchings. A surprising result is that

when technology and human capital are complementary, the social welfare induced by a PAM,
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which is stable, could be lower than that induced by some other matching. Hence, when firm

technology and human capital are substitutable, a government may improve social welfare by

subsidizing production cost to induce a more desirable matching outcome in the labor market.

Literature

Ever since Gale and Shapley’s (1971) and Shapley and Shubik’s (1971) pioneer work, there

has been a huge literature on matching and assignment games. Two-sided matching with

externalities was first studied by Sasaki and Toda (1996), but the literature had been very

scarce until the past few years. In Sasaki and Toda’s one-to-one matching model, externalities

are captured by preferences over the set of complete matchings rather than the set of agents

on the other side of the market. Each pair of deviators have exogenously given conjectures

about the possible matchings resulting from their block. They provide a concept of conjectural

equilibrium for their model and show that a stable matching is guaranteed to exist if and only

if each conjecture consists of all possible matchings.2 My model applies Sasaki and Toda’s

abstract framework into the concrete environment of a Cournot competition.3

Most existing work on matching with externalities focuses on the cases with non-trasferable

utilities. Hafalir (2008) perfects Sasaki and Toda’s model of one-to-one matching with ordinal

preferences by proposing endogenized “sophisticated conjectures” and shows the existence of

stable matchings under these conjectures. In contrast to Sasaki and Toda’s far-sighted notions,

Mumcu and Saglam (2010) consider a setting of one-to-one matching in which each pair of

deviators hold the actions of all other players constant when considering their block. Fisher and

Hafalir (2016) study stable matchings in a setting of one-to-one matching in which each agent’s

utility is affected by the aggregate level of externality and each agent has little influence on

the externality level. Similar to Mumcu and Saglam (2010), Bando (2012, 2014) studies stable

matchings and analyzes deferred acceptance algorithm in a setting of many-to-one matching

allowing externalities in the choice behavior of firms but not of workers. Pycia and Yenmez

(2015) consider a general many-to-many matching market with contracts and externalities.

They extend the classical substitutes condition to allow for externalities and establish existence

of stable matchings under the condition. In another recent study, Teytelboym (2012) looks

at multilateral matching markets in networks with contacts and externalities and shows that

2The proof is for the case of two-sided externalities. The same negative result holds under one-sided exter-
nalities, and the existence of stable matching is not guaranteed under rational conjectures as well.

3There is an independent study by Gudmundsson and Habis (2013). Their model is similar to the one here
for general assignment games. The major difference in the settings is on specifying the agents pairs’ values of
deviation. In their setting, a value of deviation is directly given. By contrast, in my setting a pair’s value of
deviation subjects to their conjecture and a stable matching has to be consistent with conjectures. Their study
complements this study by showing properties of equilibria of general two-sided one-to-one assignment games
with externalities. I emphasize on the application of the framework.
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a stable matching exists if and only if agents’ preferences are pairwise aligned in the sense of

Pycia (2012). There is also a literature that examines externalities between couples matched

to the same firm or among peers matched to the same college (Dutta and Massó, 1997; Klaus

and Klijn, 2005; Echenique and Yenmez, 2007; Pycia, 2012; Kojima et al., 2013; Ashlagi et al.,

2014; Inal, 2015). In contrast to all the above papers, my study considers transferable utilities

and focuses on sorting patterns of stable matchings.

A recent study by Chade and Eeckhout (2016) is closely related to this chapter. They also

consider a two-stage game: A first stage of one-to-one matching and a second stage pairwise

competition among agent pairs (teams). Their model has three distinguishing features: (1)

Each agent has only two possible types; (2) there is a mass of agents, so each agent pair’s

actions have no effect on the overall market; (3) each agent pair (team) competes only against

another pair and thus has no effect on the other teams. Due to these features, a complete

solution to the game can be derived. They also study sorting patterns of stable matchings

and efficiency. My model is also, in some sense, an extension to that of Jehiel and Moldovanu

(1996). Unlike my model in which there are multiple agents on each side of the matching

market, their auction model entails many buyers but only one seller with one indivisible good.

They emphasize on individual strategic play and show that agents might be better off not

participating.

Besides the above theoretical work, there has also been some work emphasizing on appli-

cations and methodologies for quantifying externality effects in matching problems. Baccara

et al. (2012) study an office assignment problem with transferable utilities and quantify the

effects of network externalities on choices and outcomes. Uetake and Watanabe (2012) con-

duct a comprehensive analysis of an industry game in which firms enter a market by merging

an incumbent firm, using a matching model with externalities.

Apart from the studies of matching, I would also like to mention a study by Brander and

Spencer (1985). The Stackelberg-Cournot version of their model is a two-stage game: At the

first stage, a government decides whether to subsidize the production of a domestic firm; at

the second stage firms play a Cournot competition. Under some conditions, subsidization may

increase domestic social welfare. The two-stage game of this chapter shares some features

with Brander and Spencer’s model. Comparing to a lesser manager, a good manager can

relatively reduce the unit production cost of a firm. Thus, my model can be regarded as a

model in which the good managers choose firms to subsidize before the firms start a Cournot

competition.
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2.1 The Model

General Matching and Assignment

Let I be the set of agents on one side (firms) of the market and J be the set of agents

on the other side (managers). I and J are finite and disjoint. The market is denoted by

M = I ∪ J . To simplify the exposition, I assume (i) that I and J have the same cardinality

(i.e., n = |I| = |J | ≥ 2) and (ii) that each of the agents must be matched to one agent on the

other side of the market. Let i and j denote a generic firm and manager, respectively.

A matching is a bijection function µ : I ∪ J → I ∪ J such that: (i) for each m ∈ I ∪ J ,

µ ◦ µ(m) = m; (ii) µ(i) ∈ J , µ(j) ∈ I for all i ∈ I and for all j ∈ J . µ(i) = j (or

equivalently, µ(j) = i) is written as (i, j) ∈ µ. Let A(I, J) be the set of all matchings. For

each (i, j) ∈ I × J, A(i, j) = {µ ∈ A(I, J)|(i, j) ∈ µ}.

Let π : I × J × A(I, J)→ R+ denote a surplus function. π(i, j, µ) is interpreted as the

surplus agent i and j create (for themselves) in matching µ. I denote π(µ) :=
∑

(i,j)∈µ π(i, j, µ)

as the total surplus of the agents on a matching µ.

Let (u, v) ∈ R|I|+ × R
|J |
+ denote a payoff profile.4 A payoff profile is a redistribution of the

surpluses to the agents. For simplicity, I assume both π and (u, v) to be nonnegative.5

The triplet < I, J, π > is called an assignment game (matching with transferable

utilities) with externalities.

Estimation Function

The notion of stability in this chapter is pair-wise stability. When a firm and a manager are

trying to leave their current respective partner and form a new partnership between themselves,

they need to take into account how the other agents will behave. I here adapt the non-Bayesian

setting proposed by Sasaki and Toda (1996). Let ϕ(i, j) ⊂ A(i, j) be the set of matchings that

agent i and j consider possible if they form a partnership. ϕ is called an estimation function

by Sasaki and Toda. Agents are assumed to be “pessimistic”. That is, a pair of agents not

matched would like to pair up if they believe they can gain by pairing to each other. Let us

denote the value of deviation by

V (ij|ϕ) := min
µ∈ϕ(i,j)

π(i, j, µ).

4The lower bound of the payoffs is normalized to be 0. Typically, in some market games, if an agent quits
from the market, this agent gets 0 profit, and the resulting matching among the remaining agents do not
influence this agent’s payoff.

5So that I can directly apply the linear programming method without modification.
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Equilibrium Concept

The equilibrium concept I propose is defined as below.

Definition 2.1. Given an estimation function ϕ, a triplet (µ, u, v) is a ϕ-equilibrium if

1. ϕ-admissibility: for any pair (i, j) ∈ µ, µ ∈ ϕ(i, j);

2. ϕ-stability: there is no pair of agents (i, j) for whom V (ij|ϕ) > ui + uj ;

3. feasibility: for all (i, j) ∈ µ, ui + vj = π(i, j, µ).

This matching µ is called a ϕ-stable matching.

ϕ-admissibility requires a matching to be consistent with agents’ conjectures (i.e., if a

matching is going to be an equilibrium matching, it must be in the expectations of the agent

pairs). ϕ-stability requires that the outcome cannot be blocked by any pair of agents who are

not paired to each other. Feasibility requires that there is no cross-pair monetary transfer and

that no money is left on the table.6

Let Eϕ(I, J, π) denote the set of all ϕ-equilibria. A negative result, which parallel to that

of Sasaki and Toda (1996) for the case with ordinal preferences, can be shown.

Theorem 2.1. The set Eϕ(I, J, π) of ϕ-equilibria is non-empty for any surplus function π if

and only if ϕ(i, j) = A(i, j) for all i ∈ I and j ∈ J .

Proof. See Appendix 2.A.1.

2.2 Cournot Competition among Firm-Manager Pairs

Suppose that firms produce a homogeneous consumer good and sell in the same goods market.

Firms differ in production technologies. Each firm must employ one manager so can it produce

the good. Managers differ in human capital. The unit production cost of a firm depends on

both the production technology of the firm and the human capital of the manager hired by

the firm. Each firm wants to maximize its profit, and each manager goes to the firm that is

willing to pay her the highest salary.

The question is whether high-type (with good production technology) firms would hire

high-type managers (with high human capital). It seems ambiguous because there are two

effects. On the one hand, a high-type manager can help a firm produce more output at a

lower production cost and occupy a larger share of the market. On the other hand, if high-

type managers work for high-type firms, the total output would be high, which results in a

6This requirement can be relaxed.

58



low market price, and thus a high-type firm may not be willing to pay a high salary to hire a

high-type manager.

To study this problem, I model it as a two stage game and put the previous framework

into use. The timeline of the two-stage game is as below.

• Stage 1: Firms pair up with managers.

• Stage 2: Firms play a Cournot competition.

At the first stage, firms and managers simultaneously form partnerships, and at the sec-

ond stage firms simultaneously decide their respective output quantities after observing the

matching formed at the first stage. Since each firm’s output quantity has some influence on

the market price of the good, the surplus of a firm-manager pair depends on the full matching

realized. The game is very complicated because of the multi-dimensionality brought by ex-

ternalities. However, some clear results can be derived under some mild assumptions. Before

solving problem, I need to specify the surplus function π and the estimation function ϕ.

2.2.1 Specification of π

Firms and managers are assigned to types via maps f : I → F and s : J → S, where

F := [f, f ] and S := [s, s] are compact subsets of R. Their types are publicly known. fi is

firm i’s technology type and sj is manager j’s human capital type. Then, I make the following

assumptions.

Assumption 2.1. The inverse demand function is linear, i.e.,

p(µ, q) := max{ A− α
∑

(i,j)∈µ

qij , 0}.

A is a constant, µ is the matching on the labor market, qij ≥ 0 is the amount of the good

produced and sold by firm i who employs manager j, and q is a vector of qij’s.

Assumption 2.2. The unit production cost of each firm-manager pair is constant.

Let us denote the unit cost function by c : F × S → [c, c], where c > 0. c(f, s) represents

the unit production cost of a type-f firm who hires a type-s manager.

Assumption 2.3. The unit production cost function c(·, ·) is twice continuously differentiable

and decreasing in both types (i.e., c1 < 0 and c2 < 0).

Then, the maximum value of c is c = c(f, s), and the minimum is c = c(f, s).

Assumption 2.4. The value of c is bounded from above by A
n , i.e., A

n > c.
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By imposing Assumption 2.4, I restrict attention to the cases in which no manager or firm

will leave the market or produce 0 output. While this saves us some tedious computational

work, this is without loss of generality for the analysis.7 Further more, I say firm technology

and human capital are substitutable if c12 ≥ 0; complementary if c12 ≤ 0.

Hence, for a given matching µ, the surplus8 created by (i, j) ∈ µ, given the other firm-

manager pairs produce q−(ij), is

π(i, j, µ| q−(ij)) = max
qij≥0

qij · [p(µ, q)− c(fi, sj)].

For a realized matching µ, the solution to the Cournot competition in the second stage is as

follows.

Lemma 2.1. Suppose Assumptions 2.1, 2.2, and 2.4 hold. For a given matching µ, in a

Cournot game among the matched pairs in µ, a pair (i, j) ∈ µ produce

qij(µ) =
1

(n+ 1)α
[A− (n+ 1)c(fi, sj) +

∑
(i′,j′)∈µ

c(fi′ , sj′)]

and get a surplus of

π(i, j, µ) =
1

(n+ 1)2α
[A− (n+ 1)c(fi, sj) +

∑
(i′,j′)∈µ

c(fi′ , sj′)]
2. (2.1)

Proof. See Appendix 2.A.2.

In the two-stage game, when (i, j) believe that if they pair to each other, µ is going to be

the resulting matching and firms will play a Cournot competition in the second stage, qij(µ) is

the amount of output that (i, j) are going to produce. That is, qij(µ) is (i, j)’s best response

to their conjecture, and π(i, j, µ) is the corresponding surplus for (i, j).

2.2.2 Specification of ϕ

According to Theorem 2.1, if each agent’s conjectures consist of all possible matchings, a stable

matching must exist. However, it is not a good idea to assume that agents have universal

conjectures, because that would include many unreasonable matchings. In the following, I will

focus on rational conjectures: conjectures based on rational deductions. Although Theorem 2.1

does not apply any more in this case, the same techniques are used in the proofs.

7If I do not impose the upper bound on the c value, there are cases in which the high-type firms and managers
would produce a large amount of the good, and then the market price is too low for the low-type firms and
managers to survive. For these cases, I can simply exclude these low-type agents from the analysis.

8Notice that although other firms’ output quantities are also involved in the surplus function of a pair of
agents (i, j), this does not mean that there are indeed externalities. A simple example is that if c(f, s) = f + s,
then the output and the surplus of a pair of agents (i, j) do not depend on how the other agents are going to
match since the value of

∑
(i,j)∈µ fi + sj does not depend on µ.
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Rational Conjectures

First, rational conjectures are formally described below. Let Mc := Ic ∪ Jc be a submarket

in which |Ic| = |Jc|, and let Ms := Is ∪ Js = M\Mc be the complement of set Mc. Let µc

denote a generic matching on Mc, and µs a generic matching on Ms. For a given conditional

reduced market

Mr := {Ms | µc},

denote firm i and manager j’s conjecture, when considering to pair to each other, on this

conditional reduced market by

ϕMr(i, j) ⊂ {µs ∈ A(Is, Js) | (i, j) ∈ µs}.

Denote a further conditional reduced market by

M ij
r := {Ms\{i, j} | (i, j) ∪ µc}

and the corresponding conditional conjecture function by ϕM
ij
r . Then, I say ϕMr(i, j) is ra-

tional (on market Mr) if: (1) for any matching µs ∈ ϕMr(i, j), µs\{(i, j)} is a ϕM
ij
r -stable

matching on the reduced market M ij
r ; (2) for any i′ ∈ Is\{i} and j′ ∈ Js\{j}, ϕM

ij
r (i′, j′) is

rational (on market M ij
r ).9 When Ms consists of only 4 agents, every firm-manager pair’s

conjecture is rational since each conjecture contains exactly one sub-matching.10 ϕMr is ra-

tional if ϕMr(i, j) is rational for any i, j ∈ Ms. I illustrate this concept by the following

example.

Example 2.1. Consider a matching market with 5 agents on each side of the market. I show

an example of forming rational conjectures by backward deduction.

First, suppose conditional on (i1, j1), (i2, j2), and (i3, j3) being paired up, respectively, it

is an equilibrium11 that i4 hires j4 and i5 hires j5 on the reduced market {i4, i5, j4, j5}. Then,

consider the reduced market {i3, i4, i5, j3, j4, j5} conditional on (i1, j1) and (i2, j2) being paired

up, respectively. With a little abuse of notation, I denote this conditional reduced market by

M ′′ := {i3, i4, i5, j3, j4, j5 | (i1, j1), (i2, j2)}.

9Notice that I can not directly kick i and j out, since they still have an role at the Cournot competition
stage of the game.

10Li (1993) applies the idea of rational expectations to his model of a one-to-one matching with externalities
and shows that the existence of the equilibrium is ensured when externalities are very weak.

11Since there are only 4 agents, a stable matching must exist.
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If conjectures are rational, it must be the case that

ϕM
′′
(i3, j3) = {{(i3, j3), (i4, j4), (i5, j5)}}.

Next, suppose {(i3, j3), (i4, j4), (i5, j5)} is indeed a ϕM
′′
-stable matching on market M ′′ con-

ditional on (i1, j1) and (i2, j2) being paired up, respectively. Consider the conditional reduced

market

M ′ := {i2, i3, i4, i5, j2, j3, j4, j5 | (i1, j1)}

in which (i1, j1) are paired up. If conjectures are rational, it must be the case that

ϕM
′
(i2, j2) = {{(i2, j2), (i3, j3), (i4, j4), (i5, j5)}}.

Finally, suppose {(i2, j2), (i3, j3), (i4, j4), (i5, j5)} is indeed a ϕM
′
-stable matching on mar-

ket M ′ conditional on (i1, j1) being paired up. Consider the full market

M := {i1, i2, i3, i4, i5, j1, j2, j3, j4, j5}.

If conjectures are rational, it must be the case that

ϕ(i1, j1) = {{(i1, j1), (i2, j2)), (i3, j3), (i4, j4), (i5, j5)}}.

That is, when firm i1 and manager j1 are considering to pair up, they believe that this matching

will be the resulting matching.

In brief, a rational conjecture, e.g., ϕ(i1, j1), requires agents i1 and j1 to have a correct

belief about what i2 and j2, when considering to pair up conditional on (i1, j1) being paired up,

believe about what i3 and j3, when considering to pair up conditional on (i1, j1) and (i2, j2)

being paired up, respectively, believe about what matching will be formed among {i4, i5, j4, j5}
conditional on(i1, j1), (i2, j2), and (i3, j3) being paired up, respectively.

Assortative Matchings and Assortative Conjectures

It is complicated to derive rational conjectures, and I now consider assortative matchings as

natural candidates. It will be shown that in many cases conjectures consisting of assortative

matchings on the reduced markets are rational. Let’s review the following definition adapted

to the model in which no two agents share the same type.

Definition 2.2. A matching µ on market M is a positive assortative matching (PAM) if for

any two pairs (i, j), (i′, j′) ∈ µ,

fi > fi′ ⇔ sj > sj′ .
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A negative assortative matching (NAM) is defined similarly.12

Let us denote µM+ as the PAM on M and µ
M(ij)
+ = (i, j) ∪ µM\{i,j}+ as the matching in

which the submatching µM\{i,j} is the PAM on M\{i, j}. Similarly, denote µM− as the NAM

on M and µ
M(ij)
− = (i, j) ∪ µM\{i,j}− as the matching in which the submatching µM\{i,j} is the

NAM on M\{i, j}. For a given conditional reduced market M r, denote

ϕMr
+ (i, j) := {µMs(ij

+ }, for i, j ∈Ms

as the i and j’s conjecture in which it is a PAM on the corresponding further reduced market.

Similarly, denote

ϕMr
− (i, j) := {µMs(ij

− }, for i, j ∈Ms

as the i and j’s conjecture in which it is a NAM on the corresponding further reduced market.

2.3 Main Results

First, unfortunately, a stable matching in this two-stage game may not necessarily exist under

rational conjectures.

Proposition 2.1. In the two-stage game with Assumptions 2.1-2.4, a stable matching may

not exist under rational conjectures.

It is proved by the following example.

Example 2.2. Consider a game with 3 firms and 3 managers. Let the parameters be as

follows: Agents’ types are (f1, f2, f3) = (0.2, 0.25, 0.8) and (s1, s2, s3) = (0.2, 0.5, 0.8); the unit

production cost function is c(f, s) = 1
f ·s ; A = 80 and α = 1. The surplus function assigns

(approximately) values to the pairs of agents in the six matchings as follows.

µ1

13 426 733
f1 f2 f3

s1 s2 s3
µ2

10 535 657
f1 f2 f3

s1 s3 s2
µ3

320 62 693
f1 f2 f3

s2 s1 s3

µ4

234 412 363
f1 f2 f3

s2 s3 s1
µ5

438 52 609
f1 f2 f3

s3 s1 s2
µ6

356 293 356
f1 f2 f3

s3 s2 s1

Let r(ij) denote the stable matchings in the conditional reduced market {M \ {i, j}|(i, j)}.
For n = 2, there are no externalities, and then rational conjectures can be easily obtained by

12See Legros and Newman (2007) for more on general assortative matchings.
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looking at the maximal total surplus of the four agents. Thus,

r(11) = {µ2} r(12) = {µ4} r(13) = {µ5}

r(21) = {µ5} r(22) = {µ1} r(23) = {µ2}

r(31) = {µ6} r(32) = {µ2} r(33) = {µ1}.

These are also agents’ estimations. Consequently, the values for the characteristic function

are obtained as follows.

V (11) = 10 V (12) = 234 V (13) = 438

V (21) = 52 V (22) = 426 V (23) = 535

V (31) = 356 V (32) = 656 V (33) = 733.

Putting these values into the primal problem, I obtain the maximum value zmax = V (13) +

V (22)+V (31) = 1221. The only admissible matching here is µ2. However, µ2 can only achieve

a total surplus of 1201 which is smaller than zmax. Hence, there exists no stable matching

under rational conjectures in this game.

Remark. Taxing the unit production cost or subsidizing the production cost can change the

existence of stable matching. In the above example, if the government either taxes on produc-

tion cost by 10 percent (unit production cost function is then 1.1
f ·s) or subsidizes production cost

by 10 percent (unit production cost function is effectively 0.9
f ·s), µ2 = {(i1, j1), (i2, j3), (i3, j2)}

would be stable. If the government subsidizes production cost by 30 percent (unit production

cost function is then 0.7
f ·s), the NAM µ6 = {(i1, j3), (i2, j2), (i3, j1)} would be stable.

Nevertheless, existence of stable matching under rational conjectures could be ensured in

some restricted scenarios. Denote (c2)12 as the cross derivative of c2. The following theorem

provides sufficient conditions to ensure ϕMr
+ and ϕMr

− to be stable under rational conjectures

in the corresponding scenarios.

Theorem 2.2. In the two-stage game with Assumptions 2.1-2.4,

1. if c12 ≤ 0, then ϕMr
+ is rational for Mr, and µM+ is a stable matching under rational

conjectures;

2. if c12 > 0 and (c2)12
c12

≥ 4 · n2−n
n2+1

· An , then ϕMr
+ is rational for Mr, and µM+ is a stable

matching under rational conjectures;

3. if c12 > 0 and (c2)12
c12

≤ 2 · n2−n
n2+1

· An , then ϕMr
− is rational for Mr, and µM− is a stable

matching under rational conjectures.

Proof. See Appendix 2.A.3.
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These sufficient conditions are based on (i) the complementary and substitutive effects be-

tween technology and human capital (captured by c12), (ii) the relationship between marginal

effects (captured by c1 and c2) and the substitutive effect, and (iii) the market size. In Sce-

nario 1, in which firm technology and human capital are complementary, a PAM is ensured

to be a stable matching under rational conjectures.13 In Scenario 2, in which firm technology

and human capital are substitutable, if the ratio of the cross derivative of the square of the

cost function and the cross derivative of the unit cost function is sufficiently large, the PAM is

still stable. In Scenario 3, in which the market demand is very high, a change in the resulting

matching has little influence on the final total output and the market price. In this case a

NAM is stable under rational conjectures. The proof is a top-down recursive method. The

intuition is provided as below.

We first analyze Scenario 1. Increase the human capital of the manager hired by the best

firm (i.e., firm 1) increases by ∆ > 0 and keep the other variables constant. Firm 1’s best

response to this is to produce more, and the other firms’ best responses to firm 1’s action

are to produce less. In the matching framework, there must be some other manager (hired

by some firm i other than firm 1) whose human capital decreases by ∆. Firm i would then

produce even less, and the other firms response to this by producing more. However, when

firm technology and human capital are complementary, for firms other than firm 1 and firm

i, firm 1’s effect dominates. Hence, by hiring the best manager (i.e., manager 1) firm 1 is the

only firm that gains and all other firms suffer. This logic can be applied recursively to firm 2

and manager 2, firm 3 and manager 3, and so on. As a consequence, in this scenario the game

ends up with a PAM.

In Scenario 2, the ratio, (c2)12
c12

, can be written as c1c2
c12

+ c. The condition is based on

the marginal effects to the substitutive effect. The marginal effects and the substitutive

effect counter each other. To give the intuition, I start from an assignment game with no

externalities. Suppose each firm can only produce one unit and the market price of the good

is fixed, but the unit production cost still depends on firm type and manager type. The

separation point is c12 = 0: the PAM is stable if and only if c12 ≤ 0. Then, take into account

the effects of c1, c2. c2 < 0 implies that by hiring a marginally better manager, a firm can

produce marginally more at a lower cost, and thus get a higher profit. Hence, even when

c12 > 0, as long as c12 is not too large, a good firm is still willing to spend a little more money

to hire a better manager, and the higher the |c2| value is, the more the firm is willing to pay.

Similar logic applies to c1. Therefore, the separation point, in terms of the value of c12, for

PAM being stable and unstable moves upward. As a consequence, when the marginal effects

13Noticed that although µ
M(ij)
+ is the worse case for agents i and j when they are paired to each other, I

cannot directly apply Theorem 2.1 to prove the result for this case.
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dominate the substitutive effect, good firms should hire good managers; otherwise, good firms

may hire lesser managers and lesser firms may hire good managers.

Theorem 2.2 does not provide a complete solution to the problem, and there are cases

not covered. A natural question follows is, could a non-assotative matching be stable when

technology and human capital are substitutive but neither condition 3 nor condition 2 is

satisfied? The answer is yes, and I prove it by the the following example, which is a modification

of Example 2.2.

Example 2.3 (A non-assortative matching being stable.). Consider a game with 3 firms and

3 managers. Let the parameters be as follows: agents’ types are (f1, f2, f3) = (0.2, 0.5, 0.8)

and (s1, s2, s3) = (0.2, 0.5, 0.8); the unit production cost function is c(f, s) = 1
f ·s ; A = 80 and

α = 1. The surplus function assigns (approximately) values to the pairs of agents in the six

matchings as follows.

µ1

7 559 680
f1 f2 f3

s1 s2 s3
µ2

6 625 625
f1 f2 f3

s1 s3 s2
µ3

237 237 568
f1 f2 f3

s2 s1 s3

µ4

216 492 340
f1 f2 f3

s2 s3 s1
µ5

340 216 493
f1 f2 f3

s3 s1 s2
µ6

320 405 320
f1 f2 f3

s3 s2 s1

The stable matchings in the conditional reduced market {M \ {i, j}|(i, j)}, r(ij), can be

easily obtained by looking at the maximal total surplus of the four agents in this market.

r(11) = {µ2} r(12) = {µ4} r(13) = {µ6}

r(21) = {µ5} r(22) = {µ1} r(23) = {µ2}

r(31) = {µ6} r(32) = {µ2} r(33) = {µ1}.

These are also agents’ estimations. Consequently, the values for the characteristic function

are obtained:

V (11) = 7 V (12) = 237 V (13) = 340

V (21) = 237 V (22) = 559 V (23) = 625

V (31) = 340 V (32) = 625 V (33) = 680.

Putting these values into the primal problem, I obtain the maximum value zmax = V (11) +

V (23) + V (32) = 1257. The only admissible matching here is µ2, and µ2 can achieve a

total surplus of 1257. Therefore, this matching µ2, neither positive assortative nor negative

assortative, is stable under rational conjectures.
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2.4 Social Welfare

In this section, I conduct an analysis of social welfare induced by matchings. I say a matching

µ dominates a matching µ′ if the social surplus (i.e., total consumer benefit minus total

production cost) generated in the Cournot game conditional on µ being formed is higher than

that induced by matching µ′, and µ is a dominant matching if no other matching induces a

higher social surplus than µ does. The result is describes as follows.

Proposition 2.2. In the two-stage game with Assumptions 2.1-2.4,

(0). if c12 < 0 and n ≤ 3, then µM+ is ensured to be a dominant matching;

(1). if c12 < 0 and n > 3, then µM+ is not ensured to be a dominant matching;

(2). if c12 < 0 and c1c2
c12
≤ − A

nα , then µM+ is a dominant matching;

(3). if c12 > 0 and c1c2
c12
≥ 3 · Anα , then µM+ is a dominant matching;

(4). if c12 > 0 and A
nα is sufficiently large, then µM− is a dominant matching;

(5). if c12 = 0, then µM+ is a dominant matching.

Proof. See Appendix 2.A.4.

A naive guess is that when firm technology and human capital are complementary, the

PAM should induce the highest social welfare since it induces the highest total output and low

cost agents produces more; when substitutable, the NAM is more likely to be dominant. The

above result shows that this conjecture is not correct. In the proof for case (1), I constructe an

example to show that when (i) the gap between of the average unit cost of the best n−2 firms,

who positive assortatively hire the best n− 2 managers, respectively, and the unit cost of the

second worst firm, who hires the second worst manager, is sufficiently large and (ii) it makes

little difference on the unit cost for the worst firm to hire the worst manager or the second

worst manager, matching {(in, jn−1), (in−1, jn)}∪µM\{in−1,jn−1,in,jn}
+ dominates the PAM. (2)

and (3) say that the PAM is dominant if the marginal effects are sufficiently larger than the

complementary or substitutive effect, respectively. (4) says that the NAM is dominant if the

market is sufficiently large. (5) is about the cases in which no externalities present. Similar

results can be found for producer surpluses.

2.5 Concluding Remarks

This chapter studies a matching problem in the environment of a Cournot competition. A

PAM can be a stable matching under rational expectations when firm technology and human
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capital are either complimentary or substitutable, while a NAM can be stable under rational

expectations only when the two production factors are substitutable and the goods market is

sufficiently large. An example was given to show that a stable matching under rational beliefs

may not exist when technology and human capital are substitutable. Although I discussed

about the existence of stable matchings among assortative matchings, I did not give a general

pattern about stable matchings. Example 2.3 and some other simulations lead to the guess

that, when firm technology and human capital are substitutable, if a stable matching exists

under rational beliefs, this stable matching satisfies a partition pattern: Firms and managers

are sorted from the highest type to the lowest type and are partitioned into to several groups,

and firms and managers in each group match assortatively. Come back to the existence of

equilibrium, some other meaningful sufficient conditions may also be found. Moreover, the core

and the equilibrium payoffs are not characterized, and hence further work might be done.14

2.A Appendix

2.A.1 Review of Linear Programming (LP)

Given a conditional reduced market Mr := {Ms|µc} and a conjecture function ϕMr , we can

use Shapley and Shubik’s (1971) Linear Programming method to find a ϕMr -stable matching.

(Primal)

max
x

z =
∑
i∈Is

∑
j∈Js

V (ij|ϕMr)xij

s.t.
∑

i∈Is xij ≤ 1, ∀j ∈ Js∑
j∈Js xij ≤ 1, ∀i ∈ Is

xij ≥ 0

(Dual)

min
u,v

w =
∑
i∈Is

ui +
∑
j∈Js

vj

s.t. ui + vj ≥ V (ij|ϕMr), ∀i ∈ Is, ∀j ∈ Js

ui ≥ 0

vj ≥ 0

The maximum value zmax of the primal problem is attained with all xij = 0 or 1. By

strong duality both the primal and the dual have the same optimal value, i.e., zmax = wmin.

By complementary slackness, if x∗ij = 1 then the corresponding dual constraint must be tight

which implies ui + vj ≥ V (ij|ϕMr).

Take an extreme solution x∗ to the PP , I construct a matching µ∗s such that it satisfies

14Generally, it is complicated to define a core. First, for example, in my to-stage game members of a coalition
must not only have beliefs about what kind of matchings the agents outside of the coalition will form but also
what kind of actions they will play at the second stage. A coalition at the matching stage can play either
non-cooperatively or cooperatively at the Cournot competition stage. If they play cooperative, they can ask
the best firm (to hire the best manager) to produce at the lowest unit cost for all the firms in the coalition.
Hence, one has to be careful about specifying values to the characteristic function.
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that

(i, j) ∈ µ∗s if and only if x∗ij = 1.

Take an solution (u∗, v∗) to the dual problem.

Lemma 2.2. µ∗s is a ϕMr -stable matching if and only if µ∗s is admissible.

Proof. Define u′i := π(i, j, µ∗s)−v∗j for i, j ∈ µ∗s. Then, the triplet (µ∗, u′, v∗) is a ϕ-equilibrium.

The estimation function ϕ plays the key role in this problem, since problems arise if there

is no admissible matching with a total surplus of the agents being larger than or equal to zmax.

Remark. For a matching µ to be a ϕMr -stable matching it is necessary but not sufficient

that15,16

i. µ is ϕMr -admissible and

ii. zmax ≤ π(µ).

However, following from Lemma 2.2, the following conditions are sufficient.

Lemma 2.2’. A matching µs is a ϕMr -stable matching if

i. µs = arg maxµ′s∈A(Is,Js) V (µ′s|ϕMr);

ii. µs is ϕMr -admissible.

Example.(More efficient matching may not be stable): Let n = 3. Then, there are six possible

matchings. Consider a surplus function which assigns values to the pairs of agents in the six

matchings as follows.

Let the universal conjectures hold: ϕi(j) = ϕj(i) = A(i, j) for all i ∈ I, j ∈ J . Then, all

the matchings are admissible, and the values for the characteristic function are as following:

V (i2j2) = V (i3j3) = 0

V (ij) = 1 for all (i, j) /∈ {(i2, j2), (i3, j3)}.

15In assignment games with no externalities, these two conditions are sufficient. Moreover, it is also possible
that between two admissible matchings, the less efficient (with lower total surplus) matching is a stable matching
while the more efficient matching is not. It is illustrated by the following example that follows.

16This result differs from Proposition 3.4 of Gudmundsson and Habis (2013). In their proof, the tricky case
that when a pair of agents want to increase their payoffs they must take (back) some money from the other
agents was overlooked.
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µ1

100 0 0
i1 i2 i3
j1 j2 j3

µ2

1 1 1
i1 i2 i3
j2 j3 j1

µ3

1 1 1
i1 i2 i3
j3 j1 j2

µ4

1 1 1
i1 i2 i3
j1 j3 j2

µ5

1 1 1
i1 i2 i3
j3 j2 j1

µ6

1 1 1
i1 i2 i3
j2 j1 j3

Hence, the maximum value to the primal problem is zmax = 1, and µ2, µ3, µ4, µ5, and µ6 are

all stable matchings. But matching µ1, the most efficient matching, is not a stable matching

since it is blocked by (i2, j3) and (i3, j2).

Proof of Theorem 2.1. First, for any given problem (I, J, π), if ϕ(i, j) = A(i, j) for all i ∈ I
and all j ∈ J , the set Eϕ(I, J, π) of ϕ-equilibria is non-empty. This follows from Lemma 2.2,

because a µ∗ constructed in the above way is admissible.

Second, I show that, for a problem (I, J, π), if ϕ(i, j) 6= A(i, j) for some pair of i ∈ I and

for j ∈ J , then there exists a surplus function π such that Eϕ(I, J, π) = ∅. Notice that this

can not happen if there are only two agents on each side of the market, I only need to look at

the cases in which n = |I| = |J | ≥ 3. The proof is divided into several steps.

Step 1. Let us first consider a sub-LP problem of a pair of agents (i′, j′), by ignoring the

characteristic value related them. Let zmax(i′, j′) denote the maximum value to the following

PP :17

max
x

z =
∑
i∈I′

∑
j∈J ′

V (ij|A(i, j))

s.t.
∑
i∈I′

xij ≤ 1 ∀j ∈ J ′,

∑
j∈J ′

xij ≤ 1 ∀i ∈ I ′,

xij ≥ 0 ∀i ∈ I ′ and j ∈ J ′,

where I ′ = I \ {i′} and J ′ = J \ {j′}.

Let wmin(i′, j′) denote the minimum value to the following DP :

min
u,v

w =
∑
i∈I′

ui +
∑
j∈J ′

vj

st. ui + vj ≥ V (ij|A(i, j)) ∀i ∈ I ′ and ∀j ∈ J ′,

ui ≥ 0 and vj ≥ 0 ∀i ∈ I ′ and ∀j ∈ J ′.

17V (ij|A(i, j)) = min{π(i, j, µ)| (i, j) ∈ µ, µ ∈ A(i, j)}. That is, although I ignore i′ and j′, the characteristic
value of a pair (i, j) is still taken from all the full matchings in A(i, j), but not necessarily in A(i, j)∩A(i′, j′).
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Again, the fundamental duality theorem tells us that wmin(i′, j′) = zmax(i′, j′), where wmin(i′, j′)

is the minimum value of the sum of the payoffs that the other agents demand when (i′, j′) are

going to pair up.

Step 2. W.l.o.g., assume that ϕ(i1, j2) 6= A(i1, j2). Then there is a µ ∈ A(i1, j2) \
ϕ(i1, j2).Let us denote j′k = µ(ik) for all k ≥ 2. For all k ≥ 3, let π satisfy

π(ik, j
′
k, µ̃) + zmax(ik, j

′
k) >π(µ̃′)

for all µ̃ ∈ A(ik, j
′
k) and for all µ̃′ /∈ A(ik, j

′
k). This is equivalent to

π(ik, j
′
k, µ̃) >π(µ̃′)− wmin(ik, j

′
k)

for all µ̃ ∈ A(ik, j
′
k) and for all µ̃′ /∈ A(ik, j

′
k). Then any matchings other than µ and µ′ =

{(i1, j′2), (i2, j2), (i3, j
′
3), ..., (in, j

′
n)} are blocked by some pair (ik, j

′
k) for k ≥ 3. Then, similarly,

let π satisfy

π(i1, j
′
2, µ̄) >π(µ)− wmin(i1, j

′
2)

for all µ̄ ∈ A(i1, j
′
2). Then µ is blocked by (i1, j

′
2). Lastly, let π satisfy

π(i1, j2, µ̂) >π(µ′)− wmin(i1, j2)

for all µ̂ ∈ ϕ(i1, j2). Then, I have that µ′ is blocked by (i1, j2). Therefore, Eϕ(I, J, π) = ∅ for

the problem (I, J, π) constructed in this way.

2.A.2 Cournot Competition

Proof of Lemma 2.1. It is a quadratic problem and thus can be solved by a linear system. In

the Cournot game each pair (i, j) ∈ µ, (i, j) chooses qij(µ) (also written as q(i, j, µ)) such that

qij(µ) = arg max
q≥0

q · [A− α(q +
∑

(i′,j′)∈µ,i′ 6=i,j′ 6=j

qi
′j′)− c(fi, sj)]

The first order condition for each pair (i, j) ∈ µ gives us the following linear system:
A− c(fi1 , sµ(i1))

A− c(fi2 , sµ(i2))
...

A− c(fin , sµ(in))

 = α


2 1 . . . 1

1 2 1 . . .
...

...
...

...

1 . . . 1 2




q(i1, µ(i1), µ)

q(i2, µ(i2), µ)
...

q(in, µ(in), µ)

 .
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Thus,
q(i1, µ(i1), µ)

q(i2, µ(i2), µ)
...

q(in, µ(in), µ)

 =
1

α


n
n+1 − 1

n+1 . . . − 1
n+1

− 1
n+1

n
n+1 − 1

n+1 . . .
...

...
...

...

− 1
n+1 . . . − 1

n+1
n
n+1




A− c(fi1 , sµ(i1))

A− c(fi2 , sµ(i2))
...

A− c(fin , sµ(in))

 .

Therefore, for a pair (i, j) ∈ µ, their optimal output quantity for a realized matching µ is

qij(µ) =
1

(n+ 1)α
[A− (n+ 1)c(fi, sj) +

∑
(i′,j′)∈µ

c(fi′ , sj′)] > 0.

Substituting back the above solution to the surplus function, I get

π(i, j, µ) =
1

(n+ 1)2α
[A− (n+ 1)c(fi, sj) +

∑
(i′,j′)∈µ

c(fi′ , sj′)]
2 = α

[
qij(µ)

]2
.

2.A.3 Stable Matchings under Rational Conjectures

For all the following proofs, I do the following computations with the surplus function derived

from above. Let [M1,M2] be a partition of market M , in which

M1 =I1 ∪ J1 := {i1, ..., in−2} ∪ {j1, ..., jn−2} and

M2 =I2 ∪ J2 := M\M1 = {l, p} ∪ {l, p} where fl > fp and sl > sp.

We write c(fi, sj) by cij for short sometimes. For a given µM1 ∈ A(I1, J1), I have the following

equations:

[
π2(il, jl, µ

M1 ∪ µM2
+ ) + π2(ip, jp, µ

M1 ∪ µM2
+ )
]
−
[
π2(il, jp, µ

M1 ∪ µM2
− ) + π2(ip, jl, µ

M1 ∪ µM2
− )
]

=
[
π2(il, jl, µ

M1 ∪ µM2
+ )− π2(il, jp, µ

M1 ∪ µM2
− )
]
−
[
π2(ip, jl, µ

M1 ∪ µM2
− )− π2(ip, jp, µ

M1 ∪ µM2
+ )
]

=
1

(n+ 1)2α
·
[
−n(cll − clp) + (cpp − cpl)

]
·

2A− n(cll + clp) + (cpp + cpl) + 2
∑

(i,j)∈µM1

cij


− 1

(n+ 1)2α
·
[
−n(cpl − cpp) + (clp − cll)

]
·

2A− n(cpp + cpl) + (clp + cll) + 2
∑

(i,j)∈µM1

cij

 .

For convenience, denote T 1, T 2, T 3, T 4 as the terms in the 4 big brackets on the right hand

side of the last equality in order.

Lemma 2.3. In the two-stage game with Assumptions 2.2-2.4, for a given [M1,M2] and a
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µM1 ∈ A(I1, J1),

1. if c12 ≤ 0, then T1T2 − T3T4 > 0;

2. if c12 > 0 and (c2)12
c12
≥ 2 · n2−n

n2+1
· A+

(
n−2
)
c

n , then T1T2 − T3T4 > 0;

3. if c12 > 0 and (c2)12
c12
≤ 2 · n2−n

n2+1
· An , then T1T2 − T3T4 < 0.

Proof. First, I have

c2 < 0 ⇒ T 1, T 3 > 0;

A

n
− c > 0 ⇒ T 2, T 4 > 0.

For [1], it is sufficient to show T 1 ≥ T 3 and T 2 > T 4.

T 1 − T 3 =− (n− 1)[(cll − clp)− (cpl − cpp)] = −(n− 1)

∫ fl

fp

∫ sl

sp

c12(f̂ , ŝ)dŝdf̂ ≥ 0.

T 2 − T 4 =− (n+ 1)
[
(cll + clp)− (cpp + cpl)

]
= −(n+ 1)

∫ fl

fp

[c1(f̂ , sl) + c1(f̂ , sp)]df̂ > 0.

For [2] and [3],

T1T2 − T3T4 =− (n− 1)
[
(cll − clp)− (cpl − cpp)

]2A+ 2
∑

(i,j)∈µM1

cij


+ (n2 + 1)

[((
cll
)2 − (clp)2)− ((cpl)2 − (cpp)2)]

=− (n− 1)

∫ fl

fp

∫ sl

sp

c12( ˜f, s̃)ds̃df̃

2A+ 2
∑

(i,j)∈µM1

cij


+ (n2 + 1)

∫ fl

fp

∫ sl

sp

(
c12( ˜f, s̃)

)2
ds̃df̃ ,

greater than 0 in [2] and less than 0 in [3].

Proof of Theorem 2.2. I will prove by generalization. Take a conditional reduced market

M t
r := {M t

s|µtc} where M t
s := Its ∪ J ts = {i1, i2, ..., it} ∪ {j1, j2, ..., jt} for a t in {2, ..., n}.

For [1] and [2], want to show that if ϕ
Mt
r

+ is rational on M t
r then ϕM

t+1
r

+ is rational on M t+1
r .

When t = 2 it holds, following from Lemma 2.3. When t > 2, it is sufficient to show

(i). µ
Mt
s

+ := arg max
µ∈A(Its,J

t
s)
V (µ|ϕM

t
r

+ )

where V (µ|ϕM
t
r

+ ) =
∑

(i,j)∈µ π
2(i, j, µ

Mt
s(ij)

+ ∪ µtc). I prove it in a recursive method. That is,

µ
Mt
s

+ induced by a solution to the PP of the sub-game (see Lemma 2.2’ in Appendix 2.A.1).
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W.o.l.g., assume fi1 > fi2 > ... > fit and si1 > si2 > ... > sit . Take a matching

µ ∈ A(Its, J
t
s). If (i1, j1) /∈ µ, replace µ by another matching µ′ := {(i1, j1), (µ(j1), µ(i1))} ∪

[µ\{(i1, µ(i1)), (µ(j1), j1)}]. By Lemma 2.3, I have

V (µ′|ϕM
t
r

+ ) > V (µ|ϕM
t
r

+ ).

V is maximized only if (i1, j1) are paired to each other.

Next, repeat the above procedure, I can get that, conditional on (i1, j1) being paired to

each other, V is maximized only if (i2, j2) are paired to each other. By repeating these steps

recursively, I have the V value maximized at µ
Mt
s

+ .

[3] is proved in a similar way.

2.A.4 Social Welfare

Proof of Proposition 2.2. W.l.o.g., assume α = 1 since α is a scaler, and suppose f1 > f2 >

... > fn and s1 > s2 > ... > sn. For a given matching µ, the social benefit is

B(µ) :=

∫ Q(µ)

0
A− q dq

=AQ(µ)− Q2(µ)

2

=
A

n+ 1
[nA− c(µ)]− 1

2(n+ 1)2
[nA− c(µ)]2

=
1

n+ 1

([
n− n2

2(n+ 1)

]
A2 − 1

n+ 1
·Ac(µ)− 1

2(n+ 1)
· [c(µ)]2

)
,

and the total cost of production is

C(µ) :=
1

n+ 1

∑
(i,j)∈µ

cij [A− (n+ 1)cij + c(µ)]

=
1

n+ 1

Ac(µ)− (n+ 1)
∑

(i,j)∈µ

(
cij
)2

+ [c(µ)]2

 .
The social surplus is then

B(µ)− C(µ)

=
1

n+ 1

[n− n2

2(n+ 1)

]
A2 − n+ 2

n+ 1
Ac(µ)− 2n+ 3

2(n+ 1)
[c(µ)]2 + (n+ 1)

∑
(i,j)∈µ

(
cij
)2 .

For the following part, I take a matching µ′ 6= µM+ and a matching µ 6= µM− . (i, j′), (i′, j) ∈
µ′, in which i > i′ and j > j′, and µ := {(i, j), (i′, j′)}∪ [µ′\{(i, j′), (i′, j)}]. Then, I derive the

74



following equations:

[B(µ)− C(µ)]− [B(µ′)− C(µ′)]

=− n+ 2

n+ 1
A[c(µ)− c(µ′)]− 2n+ 3

2(n+ 1)
· [c(µ)− c(µ′)][c(µ) + c(µ′)]

+ (n+ 1)

([(
cij
)2

+
(
ci
′j′
)2
]
−
[(
cij
′
)2

+
(
ci
′j
)2
])

=− n+ 2

n+ 1
A[(cij − cij′)− (ci

′j − ci′j′)]− 2n+ 3

2(n+ 1)
· [(cij − cij′)− (ci

′j − ci′j′)][c(µ) + c(µ′)]

+ (n+ 1)
[
(cij − cij′)[(cij + cij

′
)− (ci

′j′ + ci
′j)] + [(cij − cij′)− (ci

′j − ci′j′)](ci′j′ + ci
′j)
]
.

=− n+ 2

n+ 1
A[(cij − cij′)− (ci

′j − ci′j′)]− 2n+ 3

2(n+ 1)
· [(cij − cij′)− (ci

′j − ci′j′)][c(µ) + c(µ′)]

+ (n+ 1)
[
[(cij − cij′)− (ci

′j − ci′j′)](cij + cij
′
) + (ci

′j − ci′j′)[(cij + cij
′
)− (ci

′j′ + ci
′j)]
]
.

For Case 0, I have

[B(µ)− C(µ)]− [B(µ′)− C(µ′)]

≥− n+ 2

n+ 1
A[(cij + ci

′j′)− (cij
′
+ ci

′j)]

− 2n+ 3

2(n+ 1)
· [(cij + ci

′j′)− (cij
′
+ ci

′j)][(cij + ci
′j′) + (cij

′
+ ci

′j)]

+ (n+ 1)[(c2
ij + c2

i′j′)− (c2
ij′ + c2

i′j)]

=− n+ 2

n+ 1
A[(cij + ci

′j′)− (cij
′
+ ci

′j)] +
n2 − 2

n+ 1
·
([(

cij
)2

+
(
ci
′j′
)2
]
−
[(
cij
′
)2

+
(
ci
′j
)2
])

+
2n+ 3

2(n+ 1)
[(cij − ci′j′)2 − (cij

′ − ci′j)2]

>− n+ 2

n+ 1
A[(cij + ci

′j′)− (cij
′
+ ci

′j)] +
n2 − 2

n+ 1
· [(cij − cij′)− (ci

′j − ci′j′)](ci′j + ci
′j′)

>− 1

n+ 1

[∫ fi

fi′

∫ fi

fi′

c12(f̂ , ŝ)df̂dŝ

]
[(4 + 2n− n2) · A

n
]

>0 when n ≤ 3.

Hence, when n ≤ 3, for any matching µ′ 6= µM+ , there is another matching that dominates µ′,

and therefore µM+ is a dominant matching.

Case 1. I construct the following example. Let us take two values

ĉ :=
1

n− 2

n−2∑
k=1

ckk and c̃ :=
cn−1n−1 + cn−1n

2
,

where ĉ < c̃. Take matching µ′′ := {(in, jn−1), (in−1, jn)} ∪ [µM+ \{(in−1, jn−1), (in, jn)}]. I
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show in the following that there are some scenarios in which µ′′ dominates µM+ .

[B(µM+ )− C(µM+ )]− [B(µ′′)− C(µ′′)]

=(cn−1n−1 − cn−1n)
[
− n+ 2

n+ 1
A− 2n+ 3

2(n+ 1)
· [(cn−1n−1 + cn−1n) + (cnn−1 + cnn)]

+ (n+ 1)(cn−1n−1 + cn−1n)
]

− 2n+ 3

2(n+ 1)
· (cn−1n−1 − cn−1n) · 2

n−2∑
k=1

ckk

+
2n+ 3

2(n+ 1)
· (cnn−1 − cnn)[c(µ) + c(µ′)]

− (n+ 1)(cnn−1 − cnn)(cnn + cnn−1)

<(cn−1n−1 − cn−1n)

(
−n+ 2

n+ 1
A+

[
(n+ 1)− 2n+ 3

2(n+ 1)

]
· 2ĉ− 2n+ 3

2(n+ 1)
· 2 · A

n

)
− (2n+ 3)(n− 2)

n+ 1
· (cn−1n−1 − cn−1n) · c̃

+ (cnn−1 − cnn)

[
2n+ 3

2(n+ 1)
· [c(µ) + c(µ′)]− (n+ 1)(cnn + cnn−1)

]
=(cn−1n−1 − cn−1n) · 2n2 + 2n− 1

n+ 1
·
[
ĉ− n2 + 4n+ 3

2n2 + 2n− 1
· A
n
− 2n2 − n− 6

2n2 + 2n− 1
· c̃
]

+ (cnn−1 − cnn)

[
2n+ 3

2(n+ 1)
· [c(µ) + c(µ′)]− (n+ 1)(cnn + cnn−1)

]
<(cn−1n−1 − cn−1n) · 2n2 + 2n− 1

n+ 1
·
[
(ĉ− c̃)− n2 + 4n+ 3

2n2 + 2n− 1
· A
n

]
+ (cnn−1 − cnn)

[
2n+ 3

2(n+ 1)
· [c(µ) + c(µ′)]− (n+ 1)(cnn + cnn−1)

]
,

in which n2+4n+3
2n2+2n−1

< 1 when n > 3. Thus, the term on the right hand side of the last inequality

is less than 0 when: cnn−1−cnn → 0, n > 3, and ĉ− c̃ > n2+4n+3
2n2+2n−1

· An . Hence, µM+ is dominated

by µ′.

Case 2.

[B(µ)− C(µ)]− [B(µ′)− C(µ′)]

>[(cij − cij′)− (ci
′j − ci′j′)]

(
− n+ 2

n+ 1
A+ 2n

A

n
+ (n+ 1)

(cij − cij′)[(cij − ci′j) + (cij
′ − ci′j′)]

(cij − cij′)− (ci′j − ci′j′)
)

>

[∫ fi

fi′

∫ sj

sj′

c12(f̂ , ŝ)dŝdf̂

] ( n

n+ 1
A+ (n+ 1) ·

[∫ sj
sj′
c2(fi, ŝ)dŝ

]
·
[∫ fi
fi′

[c1(f̂ , sj) + c1(f̂ , sj′)]df̂
]

∫ fi
fi′

∫ sj
sj′
c12(f̂ , ŝ)dŝdf̂

)

>

[∫ fi

fi′

∫ fi

fi′

c12(f̂ , ŝ)df̂dŝ

] ( n

n+ 1
A+ (n+ 1) ·

∫ fi
fi′

∫ sj
sj′
c1(f̂ , ŝ) · c2(f̂ , ŝ)dŝdf̂∫ fi

fi′

∫ sj
sj′
c12(f̂ , ŝ)dŝdf̂

)
≥0.
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Hence, µM+ is a dominant matching.

Case 3.

[B(µ)− C(µ)]− [B(µ′)− C(µ′)]

>

[∫ fi

fi′

∫ sj

sj′

c12(f̂ , ŝ)dŝdf̂

] (
− n+ 2

n+ 1
A− 2n+ 3

2(n+ 1)
· 2A

+ (n+ 1)

[∫ sj
sj′
c2(fi′ , ŝ)dŝ

]
·
[∫ fi
fi′

[c1(f̂ , sj) + c1(f̂ , sj′)]df̂
]

∫ fi
fi′

∫ sj
sj′
c12(f̂ , ŝ)dŝdf̂

)

>

[∫ fi

fi′

∫ sj

sj′

c12(f̂ , ŝ)dŝdf̂

] (
− 3n+ 5

n+ 1
A+ (n+ 1) ·

∫ fi
fi′

∫ sj
sj′
c1(f̂ , ŝ) · c2(f̂ , ŝ)dŝdf̂∫ fi

fi′

∫ sj
sj′
c12(f̂ , ŝ)dŝdf̂

)
≥0.

Hence, µM+ must be the most efficient matching.

Case 4. [B(µ)− C(µ)]− [B(µ′)− C(µ′)] < 0 when A
n is sufficiently large.

Case 5.

[B(µ)− C(µ)]− [B(µ′)− C(µ′)] =

[∫ sj

sj′

c2(fi′ , ŝ)dŝ

]
·

[∫ fi

fi′

[c1(f̂ , sj) + c1(f̂ , sj′)]df̂

]
> 0.

Hence, µM+ is a dominant matching.
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Chapter 3

On Disclosure Policies in

All-pay Auctions with Stochastic Entry

Introduction

Many real-world competitions, such as rent seeking, political campaigns, and job promotions,

are commonly viewed as contests. In these contests, participants spend resources in order to

win some prizes. Classic studies of contest theory focused on setting in which there is fixed

and known number of contestants and contestants have no private information. However, in

many competitions, an individual has no information about the actual number of contestants

she has to compete with nor the values of the prizes to the other competitors. For instance,

when an individual seeks a job promotion, she has to compete not only with colleagues whom

she knows but also anonymous candidates from outside, and she does not know the values of

the position to the others. Similarly, in a patent race, a firm may not be aware of the number

of other firms who are developing similar products nor the values of the patent to those

firms. With some government-contract contests, the government invites selected contractors

to submit proposals. In this type of contests, although the contest organizer does not know

the values of prizes to the competitors, he may know the exact number of contestants who are

participating. In order to maximize his own expected revenue, should he reveal or conceal the

actual number of participants?

We address the above issue in a setting of all-pay auctions with a stochastic number of

bidders. There is one prize and a fixed number of potential risk neutral bidders, each of

whom can receive a signal on the value of the prize to her and an the signal and has a signal-

dependent probability of participating in the auction. The realized number of participants

is known privately to the organizer. The organizer chooses between two policies: (1) fully

revealing the actual number of participants, or (2) fully concealing the number. He publicly

announces the chosen policy before the contest starts and commits to implement it during

the contest (before bidders start bidding). Each bidder upon participating receives a private
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signal about her valuation of the prize. The function governing the joint distribution of the

signals is common knowledge. Each participating bidder makes a private bid for the prize.

The prize is assigned to the bidder with the highest bid, and it is retained if there is no bid.

All bidders incur a cost that is a strictly increasing function of their bid. As in the model

of Gavious et al. (2002), we differentiate three cases where the cost function is, respectively,

convex, concave, or linear.1 Each bidder chooses her bid to maximize her expected utility, and

the organizer chooses a disclosure policy to maximize the expected total bids.

Our first main finding is that the optimal disclosure policy depends on the curvature of

bidders’ cost function. Specifically, if the cost function is concave (convex), concealing the

actual number of participating bidders leads to a lower (higher) expected total bids. However,

the ex ante expected utilities of each potential bidder are the same under these two disclosure

policies. The key reason is that a participating bidder’s interim expected utility, at the time

when she learns her signal but not the number of bidders, is invariant to both the curvature of

the cost function and the disclosure policy. The cost a participating bidder incurs under full

concealment is simply the average value over the costs he incurs under full disclosure. Hence,

if the cost function is concave (and the inverse function is convex), under full disclosure the

organizer extracts a risk premium from each bidder. Because bidders are indifferent between

the two disclosure policies, the optimal disclosure policy for the organizer is thus also Pareto

dominant.

We further consider disclosure under endogenous entry: A bidder incurs a cost to enter

the contest. Our second and third main results apply the first main result and show that

under endogenous entry, concealing the actual number of participating bidders still leads to a

lower (higher) expected total bids if the cost function is concave (convex). The reason is that,

implied the payoff equivalence result for the potential bidders with exogenous entry, disclosure

policies are irrelevant to the potential bidders’ entry decisions.

However, the main result cannot be extended to the cases with asymmetric participation

probabilities. To illustrate that, we analyze a two-player contest with linear bid cost functions

and uniformly distributed independent and private values. The bidder with a lower probability

of participation tends to bid more aggressively than her opponent. The contest organizer

prefers fully revealing the number of participating bidders to fully concealing it.

This chapter contributes to the scarce literature on information revelation and stochastic

entry in contests.2 Lim and Matros (2009) are the first to study information disclosure policies

in Tullock contests with a stochastic number of contestants. In their paper, each potential

1See Gavious et al. (2002) for interpretations.
2See Morath and Münster (2008), Fu et al. (2014), and Serena (2015) for studies on disclosure policies on

contestants’ abilities.
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contestant has an exogenous probability of participation, and they find that the disclosure

policies are irrelevant to the expected total effort. Based on their work, Fu et al. (2011)

investigate the same problem in a similar setting with a more general contest success function.

They find that the disclosure irrelevance principle does not hold in non-Tullock contests and

the optimal disclosure policy depends on the curvature of the characteristic function they

define.3 This is similar to our first main result. Fu et al. (forthcoming) study disclosure policies

in a two-player Tullock contest with asymmetric valuations and asymmetric probabilities of

participation. In these papers, contestants’ valuations of the prize are commonly known,

costs are linear, and the probabilities of participation is exogenous. In contrast, our model’s

major innovation is private information on valuations.4 We link the optimal disclosure policy

with the curvature of the cost function under both exogenous and endogenous probability of

participation.

This chapter is also closely related to McAfee and McMillan’s (1987) work. They study

disclosure policies in first price sealed bid auctions with a stochastic number of participants

and independent and private values. Their setting is with a more general exogenous and

correlated participation probability structure, and they relate the optimal disclosure policy to

bidders’ risk altitudes.5 More specifically, the seller prefers concealing the number of bidders

if the bidders have constant absolute risk aversion. They also find that a (potential) bidder’s

interim expected utilities are the same across the two disclosure policies. We go beyond their

paper by considering signal-dependent participation probabilities and endogenous entry.

3.1 The Model

Consider a contest with a set N = {1, 2, ..., n} potential risk neutral bidders and one indivisible

prize. Each potential bidder participates in the contest with an independent probability. The

number of participants is only observable to the contest organizer, and the organizer has to

announce publicly and commit to his disclosure policy — either to disclose or conceal the

information about the number of participating bidders.

Each bidder i can receive a private signal, Xi ∈ [0, 1] about her valuation of the prize. The

3In Tullock contests, contestant i wins with a probability
xri∑
j x
R
j

. Fu et al. (2011) generalize the winning

probability function to f(xi)∑
j f(xj)

and define the characteristic function as f(xi)
f ′(xi)

.
4See Matthews (1987), Levin and Ozdenoren (2004), Levin and Smith (1994), and Ye (2004) for studies on

auctions with a stochastic number of bidders.
5Take a participating bidder and fixed her interim probability of winning. He is effectively risk averse if the

curvature of the cost function is convex, and our result shows that the organizer is better off concealing the
information.
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value of the prize to the bidder i is

Vi = u(Xi, {Xj}j∈N\i)

where u : [0, 1]n → [0, 1] is continuous, strictly increasing in the first variable, and weakly

increasing and symmetric in the other variables.

The random variables X1, ..., Xn are governed by the joint distribution function F , with

the density function f . f is strictly positive and symmetric in the signals. Let FX denote the

marginal distribution of a signal.

Stochastic participation and believe updating. A bidder with a signal Xi has a

conditional independent probability (CIP) p(Xi) of participating the contest.6 Because of the

dependency of bidders’ probabilities of participation on their signals, a bidder updates her

belief about the distribution of the other potential bidders’ signals according to the Bayesian

rule, based on the actual number of participants. Suppose there is a subset M ⊂ N of partici-

pating bidders, besides bidder i /∈M . With a little abuse of notation, denote random variable

Y m = max{Xj}j∈M , where m = |M |, as the highest signal among the participating bidder-

s other than i, and let F̃Ym(·|x) denote the corresponding updated cumulative distribution

function of Y m given Xi = x, and f̃Ym(·|x) be the density function. The updated distribution

F̃Ym(y|x) is

∫ y
0 ...

∫ y
0

[∫ 1
0 ...

∫ 1
0

∏m+1
k=2 p(xk)

∏n
l=m+2(1− p(xl))fX−1(x2, ..., xn|x)dx2...dxm+1

]
dxm+2...dxn∫ 1

0 ...
∫ 1

0

∏m+1
k=2 p(xk)

∏n
l=m+2(1− p(xl))fX−1(x2, ..., xn|x)dx2...dxn

.

Define vm(x, y) = E[Vi|Xi = x, Y m = y] as the participating bidder i’s expected value of the

prize conditional on when there are m participating opponent bidders, i’s signal is x, and the

highest signal among the m other bidders is y.

Each participating bidder i submits a bid bi, and bids are submitted simultaneously and

independently of each other. The bidder with the highest bid wins the prize, but all partici-

pating bidders pay their bids. Ties are resolved by random allocation. A bid b causes a cost

g(b), where function g : R+ → R+ is strictly increasing, twice continuously differentiable with

g(0) = 0. When there is a subset M of participating bidders, each bidder bids bi and the

6At this moment, we assume that potential bidder’s probability of participation is exogenous but depends
on her signal.
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payoffs are:

Wi =


Vi − g(bi) if bi > maxj∈M\{i} bj

−g(bi) if bi < maxj∈M\{i} bj

1
#{k∈M :bk=bi}Vi − g(bi) if bi = maxj∈M\{i} bj .

In detail, the model has the following timing:

1. The contest organizer commits to reveal or conceal her private information before the

contest starts.

2. Bidders receive signals, and nature chooses the number of participating bidders.

3. The organizer implements his commitment.7

4. Bidders submit their bids privately.

5. The one with the highest bid wins the prize.

3.2 Exogenous Participation Probabilities

We will give symmetric equilibrium strategies under the two disclosure policies and compare

the expected revenues for the organizer. It is beyond the scope of this chapter to discuss

the existence of symmetric equilibrium, and we directly maintain the following assumption

throughout the chapter:

Assumption 3.1. The environment is such that a symmetric pure strategy equilibrium bidding

function exists, and it is increasing.8 In particular, this assumption is true if signals are

independent.

3.2.1 Contests with Full Disclosure

We first consider the subgame in which the organizer reveals the actual number of bidders

before they make their bids.

Lemma 3.1. Suppose the organizer commits to disclose the number of participating bidders.

[i.] In a subgame with m + 1 participating bidders, in a symmetric equilibrium a bidder with

a signal x bids

βm(x) = g−1
( ∫ x

0
vm(s, s)f̃Ym(s|s)ds

)
7A thorough analysis on the issue of commitment is beyond the scope of this chapter.
8As shown by Krishna and Morgan (1997), a sufficient condition for the existence of a symmetric equilibrium

in each case of our model is vm(x, s)f̃Ym(s|x) increasing in x for m = 1, 2, ..., n− 1.
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and the associated expected payoff is

πm(x) =

∫ x

0
vm(x, s)f̃Ym(s|x)ds−

∫ x

0
vm(s, s)f̃Ym(s|s)ds.

[ii.] The organizer’s ex ante expected revenue is

ERD = n

n−1∑
m=0

∫ 1

0
p(x)Pm(x)βm(x)dFX(x),

where Pm(x) :=
(
n−1
m

) ∫ 1
0 ...

∫ 1
0

∏m+1
k=2 p(xk)

∏n
l=m+2(1−p(xl))fX−1(x2, ..., xn|x1)dx2...dxn is the

probability of a participating bidder with a signal x facing m opponents.

Proof. [i.] Krishna and Morgan (1997) have shown, in their heuristic derivation, that each

bidder’s equilibrium strategy in terms of spending is

cm(x) =

∫ x

0
vm(s, s)f̃Ym(s|s)ds.

Hence, the equilibrium strategy in terms of bid is βm(x) = g−1
(
cm(x)

)
. The associated

expected payoff is πm(x) =
∫ x

0 vm(x, y)fYm(y|x)dx− g(βm(x)).

[ii.] The organizer’s ex ante expected revenue is

ERD =

n−1∑
m=0

(
n

m+ 1

)∫ 1

0
...

∫ 1

0

m+1∏
k=1

p(xk)

n∏
l=m+2

(1− p(xl))
m+1∑
i=1

βm(xi)f(x1, ..., xn)dx1....dxn

=

n−1∑
m=0

(
n

m+ 1

)∫ 1

0
...

∫ 1

0

m+1∏
k=1

p(xk)

n∏
l=m+2

(1− p(xl))(m+ 1)βm(x1)f(x1, ..., xn)dx1....dxn

=

n−1∑
m=0

∫ 1

0
p(x1)βm(x1)fX1(x1)

· n
(
n− 1

m

)∫ 1

0
...

∫ 1

0

m+1∏
k=2

p(xk)

n∏
l=m+2

(1− p(xl))f(x2, ..., xn|x1)dx2....dxndx1

=n

n−1∑
m=0

∫ 1

0
p(x1)Pm(x1)βm(x1)fX1(x1)dx1.

In this case a participating bidder with a signal x and facing m opponents has a expected

payoff of

πm(x) =

∫ x

0
vm(x|y)f̃Ym(y|x)dy − g(βm(x)).
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3.2.2 Contests with Full Concealment

Next, we analyze the subgame in which the organizer conceals the information about the

actual number of bidders.

Lemma 3.2. Suppose the organizer commits to conceal the number of participating bidders.

[i.] In a symmetric equilibrium, a bidder with a signal x bids

β(x|p) = g−1
( n∑
m=0

Pm(x)

∫ x

0
vm(s, s)f̃Ym(s|s)ds

)
and the associated expected payoff is

π(x|p) =

n−1∑
m=0

Pm(x)

[∫ x

0
vm(x, y)f̃Ym(y|x)dy −

∫ x

0
vm(s, s)f̃Ym(s|s)ds

]
.

[ii.] The organizer’s ex ante expected revenue is

ERC = n

∫ 1

0
p(x)β(x|p)dFX(x).

Proof. [i.] Suppose each of the other participating bidders plays the symmetric strategy β(·|p).
Suppose bidder i receives a signal x. She bids b to maximize her expected payoff

π(b, x|p) =

n−1∑
m=0

Pm(x)

∫ β−1(b|p)

0
vm(x, y)f̃Ym(y|x)dy − g(b). (3.1)

The first order condition with respect to b yields

n−1∑
m=0

Pm(x)f̃Ym(β−1(b|p)|x)vm(x, β−1(b|p)) 1

β′(β−1(b|p)|p)
− g′(b) = 0. (3.2)

At a symmetric equilibrium, β(x|p) = b and thus (3.2) becomes

n−1∑
m=0

Pm(x)f̃Ym(x|x)vm(x, x)− g′(β(x|p))β′(x|p) = 0

and thus

β(x|p) = g−1
( n−1∑
m=0

Pm(x)

∫ x

0
v(s, s)f̃Ym(s|s)ds

)
.
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The associated expected payoff is π(x|p) = π(x, x|p). [ii.] The organizer’s expected revenue is

ERC =
n−1∑
m=0

∫ 1

0
...

∫ 1

0

(
n

m+ 1

)m+1∏
k=1

p(xk)
n∏

l=m+2

(1− p(xl))
m+1∑
i=1

β(xi|p)f(x1, ..., xn)dx1...dxn

=n
n−1∑
m=0

∫ 1

0
p(x1)Pm(x1)β(x1|p)fX1(x1)dx1

=n

∫ 1

0
p(x1)β(x1|p)fX1(x1)dx1.

3.2.3 Comparison across Disclosure Policies

Before we compare the ex ante expected revenues to the organizer across the two disclosure

policies, we first consider the ex ante expected payoffs to each potential bidder. It is found

that each potential bidder is actually indifferent between these two policies no matter what

the cost function is.

Proposition 3.1. With exogenous and CIP’s {p(x)}x∈[0,1], for whatever g is, under either

disclosure policy a participating bidder’s interim expected payoff is

π(p) =

∫ 1

0

n−1∑
m=0

Pm(x)

[∫ x

0
vm(x, y)f̃Ym(y|x)dy −

∫ x

0
vm(s, s)f̃Ym(s|s)ds

]
dFX(x).

Proof. From Lemmas 3.1 and 3.2, π(p) =
∫ 1

0

∑n−1
m=0 Pm(x)πm(x)dFX(x) =

∫ 1
0 π(x|p)dFX(x).

This result is similar to that of McAfee and McMillan (1987). They find payoff equivalence

in their setting with independent and private values and constant absolute risk aversion utili-

ties. The intuition is that, under full concealment, a bidder expected value of prize conditional

on winning and the cost she exerts, respectively, simply average those under full disclosure. In

particular, under each disclosure policy the curvature of the cost function irrelevant to each

bidder’s interim expected utility and cost, because the allocation rule and bidders’ information

remain exactly the same and a similar logic of the revenue equivalence theorem applies.9

The curvature of the cost function has no effect on a bidder’s interim cost, and it translates

into the curvature of the bidding function. Hence, it has an effect on the rank of the expected

revenues to the organizer between the two disclosure policies. The first main result is stated

as below.

Theorem 3.1. With exogenous and CIP’s {p(x)}x∈[0,1],

9The incentive compatibility constraints are the same under different cost functions, and the bidder with
the lowest signal receives a payoff of 0.
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1. if g is convex, the organizer prefers to conceal the number of participating bidders;

2. if g is concave, the organizer prefers to disclose the number of participating bidders;

3. if g is linear, the organizer is indifferent between concealing and revealing.

Proof. We only show the case of g being convex. g−1 is then concave. Applying Jensen’s

inequality to β(x|p), we have

ERC = n

∫ 1

0
p(x)β(x|p)dFX(x)

= n

∫ 1

0
p(x)g−1

( n−1∑
m=0

Pm(x)

∫ x

0
vm(s, s)f̃Ym(s|s)ds)dFX(x)

)
≥ n

∫ 1

0

n∑
m=0

p(x)Pm(x)g−1
( ∫ x

0
vm(s, s)fYm(s|s)ds)dFX(x)

)
= n

∫ 1

0

n∑
m=0

p(x)Pm(x)βm(x)dFX(x)

= ERD.

The above theorem states that the organizer prefers concealing the number of participating

bidders if the marginal cost of bidding is increasing, whereas he prefers disclosing the informa-

tion if the marginal cost is decreasing. It is a result similar to that of Fu et al. (2011).10 They

link the disclosure policies to the curvature of their characteristic function in a public infor-

mation setting. In contrast, we link disclosure policies to the curvature of the cost function

in a private information setting. Both findings result from the fact that uncertainty in the

number of participating bidders smooths the bidding strategy of each participating bidder.

The organizer extracts a risk premium from each participating bidder under full disclosure

in our model with a concave cost function, same as in their model with a concave impact

function. It can be further shown that full concealment (disclosure) is an optimal disclosure

policy among all disclosure policies if the cost function is convex (concave).11 Together with

Proposition 3.1, this property also implies that the optimal disclosure policy for the organizer

is also Pareto optimal.

10Unlike our finding, in Fu et al. (2011) the ex ante expected payoffs to each potential participant under the
two disclosure policies are not equivalent.

11The organizer can choose a set of signals, each signal corresponds to a set of numbers of bidders. He can
then design a consistent rule to release signals upon observing the actual number of bidders.
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3.3 Endogenous Entry Decisions

Previously, we assumed that each agent has an exogenous probability of participation. In this

section we consider endogenous participation decisions. Entry is costly, and thus potential

bidders decide whether to incur a cost to enter. We make two case distinctions. In one case,

a potential bidder receives her signal on the value of the prize only after entering the auction

(henceforth, ex ante participation decision). In the other case, a potential bidder receives her

signal before making her entry decision (henceforth, interim participation decision). The main

result can be applied to these cases.

3.3.1 Ex ante Participation Decisions

We start from ex ante participation decisions and discuss two types of participation costs,

fixed and publicly known participation cost and private and independent participation cost.

Before proceeding to solve the problems, we make a technical assumption for this section.

Assumption 3.2. Under disclosure policy D, the interim expected payoff of each bidder is

strictly decreasing in the number of opponents, i.e., πm(x) > πm+1(x).12

This assumption is not unnatural. A bidder wins only if her signal is higher than all the

other participating bidders’ signals. Hence, an additional opponent brings a bad news to the

winner. We derive a crucial property which leads to our second main result.

Lemma 3.3. Suppose p(x) = q for all x ∈ [0, 1]. Under Assumption 3.2, π(q) is strictly

decreasing in q.

Proof.

π(q) =
n−1∑
m=0

Pm(x)

∫ 1

0
πm(x)dFX(x) =

∫ 1

0

n−1∑
m=0

(
n− 1

m

)
qm(1− q)n−1−mπm(x)dFX(x).

By Assumption 3.2, πm(x) is strictly decreasing in m. A binomial distribution with a higher

probability of success first order stochastic dominates a binomial distribution with a lower

probability of success (see Lemma 8.3 of Wolfstetter, 1999). Then, the desired result follows

from the property of first order stochastic dominance.

The strict monotonicity of π(q) helps us to rule out the case of multiple symmetric equilibria

under each disclosure policy. In the following, we study two types of endogenous entry, and

show that the ex ante probabilities of participation of each potential bidder under the two

disclosure policies are identical.

12For example, this assumption is satisfied if bidders have independent and private values (IPV), because
under IPV πm(x) =

∫ x
0
Fm(y)dFX(y).

88



Fixed Participation Cost. First, we consider fixed and publicly known participation cost.

Suppose it costs a potential bidder an amount c to participate. Under disclosure policy K,

K = C,D, an equilibrium participation probability qK satisfies

qK = 1 if πK(1) ≥ c

qK ∈ (0, 1) if πK(qK) = c, and

qK = 0 if πK(0) ≤ c.

That is, a potential bidder will definitely participate in bidding if the expected benefit from

bidding is higher than the cost even if all the other potential bidders participate; she is

indifferent between participating or not participating if the other players also play a mixed

strategy; she prefers staying outside of the auction if the participation cost is higher than the

expected value of the prize (π(0) = E[Vi]).

Since πC(q) = πD(q) = π(q) and π(q) is strictly decreasing in q by Lemma 3.3, there

must be a unique equilibrium participation probability qK under disclosure policy K, and the

equilibrium probabilities must be of the same value, i.e., qC = qD.

Proposition 3.2. Suppose the participation cost for each agent is c. Each agent participates in

bidding with the same probability in the symmetric equilibria under the two disclosure policies.

Private Participation Costs. Second, we consider private and independent participation

costs. Each potential bidder i’s cost ci ∈ [0, 1] is governed by distribution G, with a probability

density function G′(c) > 0 for all c ∈ [0, 1]. Each potential bidder learns her participation

cost before she participates (and her private signal after joining). In a symmetric equilibrium,

each agent’s participation decision must be a cut-off rule. That is, low cost types participate

and high cost types do not. Under disclosure policy K, K = C,D, an equilibrium cut-off type

cK is indifferent between participating and not, and thus cK satisfies13

πK(q(cK)) = cK , where q(c) = G(c).

As πK(q) is strictly decreasing in q and q(c) is strictly increasing in c, the solution, cK , of

the above equation must be unique. Because πC(q) = πD(q) = π(q), the equilibrium cut-off

types under the disclosure policies must be of the same value, i.e., cC = cD. A bidder with

any signal x has a probability q(cC) of participation.

Proposition 3.3. Suppose each potential bidder has an independent and private participation

cost ci. Each potential bidder has the same probability of participation in the symmetric

equilibria under the two disclosure policies.

13Notice that πK(1) < 1 and πK(0) > 0.
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As a consequence of Theorem 4.1 and Propositions 3.2 and 3.3, we have the following

result.

Theorem 3.2. Under ex ante participation decisions,

1. if g is convex, the organizer prefers to conceal the number of participating bidders;

2. if g is concave, the organizer prefers to disclose the number of participating bidders;

3. if g is linear, the organizer is indifferent between concealing and revealing.

3.3.2 Interim Participation Decisions

Next, we discuss interim participation decisions, and we consider fixed and publicly known

participation cost. Suppose it costs a potential bidder c to participate. Each potential bidder

independently decides whether to participate after learning her own valuation of the prize.

In a symmetric equilibrium, each potential bidder’s participation decision must be a cut-off

rule. That is, only those who receive high-value signals will participate. Denote xK as the

equilibrium cut-off type under disclosure policy K, K = C,D. A potential bidder who receives

a signal above xK strictly prefers participating the contest, and a potential bidder who receives

a signal below xK strictly prefers not to participate. We ignore all zero probability events.

Claim 3.1. Under disclosure policy K, K = C,D, in a symmetric equilibrium with monotone

bidding strategies, the cut-off value xK = x̂, where x̂ solvesFY n−1(x̂)E[vn−1(x̂, y)|y ≤ x̂] = c if c < E[vn−1(1, y)],

x̂ = 1 if c ≥ E[vn−1(1, y)].

If c ≥ E[vn−1(1, y)], the participation cost is so high that no one is to participate. If c <

E[vn−1(1, y)], a potential bidder who receives a signal xK is in different between participating

and not. She obtains a payoff of 0 if she does not participate. If she participates, she will bid 0,

because a participating bidder with the lowest type has no incentive to bid more than 0. She

loses for sure if there is another participant. She wins only when there is no other participant,

which happens only when all other potential bidders’ signals are below x̂. Her expected payoff

is thus the expected value of the prize minus the entry cost, FY n−1(x̂)E[vn−1(x̂, y)|y ≤ x̂]− c.

Equating this term to zero yields the value of x̂.

The cut-off type for participation, x̂, is invariant to the cost function g and the disclosure

policy. Hence, regardless of the disclosure policy, each potential bidder with a signal x has a
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conditional independent probability of participation

p(x) =


1 if x > x̂

0 if x < x̂.

Applying Theorem 4.1, we have the third main result of this chapter.

Theorem 3.3. Under interim participation decisions,

1. if g is convex, the organizer prefers to conceal the number of participating bidders;

2. if g is concave, the organizer prefers to disclose the number of participating bidders;

3. if g is linear, the organizer is indifferent between concealing and revealing.

3.4 Asymmetric Entry with IPV

In the previous sections, agents are symmetric ex ante. However, in many cases agents have

different probabilities of participation. For instance, an agent who faces a higher entry cost

has a lower probability of participation. A question is, does the main result hold if agents

have different probabilities of participation? The answer is no.

To show that, we turn back to exogenous and independent probabilities of participation:p1

for bidder 1 and p2 for bidder 2. Without loss of generality, assuming that p1 > p2 > 0,

we conduct an analysis of a case of two agents with independent and private values, i.e.,

Vi = Xi and f(x1, ..., xn) =
∏n
i=1 f(xi), and linear bid cost functions, i.e., g(b) = b. The

distribution functions of the two agents’ valuations are identical. However, the result for

a general distribution function of valuations is not traceable. We thus consider only the

uniform distribution, F (x) = x, under which the equilibrium bidding strategies can be derived

explicitly.

Contests with Full Disclosure. First, suppose the organizer commits to reveal the num-

ber of participants. Because a participating bidder bids 0 if she is the only participant, the

organizer earns revenue only when both agents participate. In the case that both agents par-

ticipate, in the symmetric equilibrium (of this subgame) the bid function of each participating

bidder is

β1(v) =

∫ x

0
sdF (s) =

∫ x

0
sds =

x2

2
.
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The organizer’s ex ante expected revenue can be computed:

ERD = 2p1p2

∫ 1

0
β1(x)dF (x) = 2p1p2

∫ 1

0

x2

2
dx =

p1p2

3
.

Lemma 3.4. Suppose F (x) = x and g(b) = b. If the organizer commits to disclose the number

of participating bidders, the ex ante expected revenue is ERD = p1p2
3 .

Contests with Full Concealment. Next, suppose the organizer commits to conceal the

number of participants. The equilibrium in our auction with asymmetric entry probabilities

is then solved below.

Lemma 3.5. Suppose F (x) = x and g(b) = b. If the organizer commits to conceal the number

of participating bidders, there is a unique increasing bidding equilibrium, in which

β1(x|p1, p2) =
x
p1
p2

+1

1
p1

+ 1
p2

and β2(x|p1, p2) =
x
p2
p1

+1

1
p1

+ 1
p2

.

Proof. See the appendix.

In equilibrium bidder 2, who has a higher probability of entry, bids more aggressively than

bidder 1. This is due to the special assumption we made on the distribution. In general, this

is not true, although it seems to be very intuitive.14

Comparison across Disclosure Policies. Now, we are ready to compare the expected

revenues across the disclosure policies. A direct comparison shows that the organizer prefers

to reveal the number of participating bidders. The result is formally stated below.

Proposition 3.4. Suppose F (x) = x and g(b) = b. Full disclosure generates a higher expected

revenue than full concealment.

Proof. See the appendix.

Hence, our main result can not be extended to the case with asymmetric participation

probabilities. Due to the technical difficulty, we are only able to compare the expected payoffs

under uniform the distribution. However, we suspect under linear cost it is always true that

full disclosure induces a higher expected revenue than full concealment, because full disclosure

symmetrizes the game and the bidders in a symmetric game should compete more vigorously.

14Intuitively, one may guess that bidder 2 tends to bid more aggressively than bidder 1, because bidder
1 has a higher probability of entry. This is not true. Suppose the distribution function takes the form of
F (x) = xk, k > 0. Then, bidder 1 bids less aggressively than bidder 2 if k < 1; more aggressively if k ≥ 1
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3.5 Concluding Remarks

We examine the impact of disclosure on expected revenue in all-pay auctions with a stochastic

number of bidders, and give important insights into the designing problem. We show that

whenever the cost function is convex (concave), concealing the number of bidders yields a

higher (lower) expected revenue to the organizer. However, any bidder is indifferent between

the two policies. The results hold even when participation is endogenous. Although the proof

of our main result is similar to that of Fu et al. (2011), the logic behind it is closer to that of

McAfee and McMillan (1987).

We end this chapter with two remarks. First, the better policy between full disclosure and

full concealment is actually optimal among all disclosure policies, including partial disclosure

policies. Second, the question on general revenue comparison under asymmetric participation

probabilities is still open. To solve the problem, one has to find a proper methodology.

3.A Appendix

Proof of Lemma 3.5. Firstly, It is a standard result that in equilibrium the maximal bids of

the potential bidders are the same. Denote [0, b̄] as each potential agent’s biding range. A

bidder who has a value of 0 will bid 0, and a bidder who has a value of 1 will bid b̄. In an

increasing strategy equilibrium, it must be the case that

max{β1(x|p1, p2), β2(x|p1, p2)} > 0 for all x > 0. (3.3)

Otherwise, an bidder with a valuation close to 0 can increase her expected payoff significantly

by bidding slightly above 0 to secure her winning.

Secondly, let φi be bidder i’s inverse equilibrium bidding function over the domain [0, b̄)

and define φi(b̄) := min{x|βi(x|p1, p2) = b̄}. Suppose bidder i receives a signal x ∈ (0, φi(b̄)).

She bids b to maximize her expected payoff

π(b, x) = (1− p−i)x+ p−iF (φ−i(b))x− b (3.4)

The first order condition with respect to b yields

p−iF
′(φ−i(b))φ

′
−i(b)x = 1 (3.5)

In equilibrium, x = φi(b) and thus (3.5) becomes

p−iF
′(φ−i(b))φ

′
−i(b)φi(b) = 1. (3.6)
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Substituting F (x) = x back to (3.6), we have

p−iφ
′
−i(b)φi(b) = 1. (3.7)

⇔ p−i ·
φ′−i(b)

φ−i(b)
= pi ·

φ′i(b)

φi(b)

⇔
∫ b̄

y
p−i ·

φ′−i(b)

φ−i(b)
=

∫ b̄

y
pi ·

φ′i(b)

φi(b)

⇔ p−i
[

lnφ−i(b̄)− lnφ−i(y)
]

= pi
[

lnφi(b̄)− lnφi(y)
]
. (3.8)

Thirdly, incentive compatibility also requires φi(b̄) = 1. If this is not true, then bidder i

bids b̄ if her valuation is in between φi(b̄) and 1. Then, if her opponent has a type very close

to 1, the opponent can obtain a substantial increase in payoff by bidding slightly above b̄ to

secure her winning rather than bid below b̄. To see that, suppose φi(b̄) < 1, then

(1− p−i)x+ p−iF (1)x− (b̄+ ε) > (1− p−i)x+ p−iF (φ−i(b))x− b (3.9)

when b < b̄, x→ 1−, and ε→ 0+,

where the term on the left hand side is bidder −i’s expected payoff if she bids b̄+ ε, and the

term on the right hand side is the expected payoff if she bids φ−i(b).

Substituting φi(b̄) = 1 back to equation (3.8), we have

p−i lnφ−i(y) = pi lnφi(y)

⇔
(
φ−i(y)

)p−i =
(
φi(y))pi

⇔ φi(y) =
(
φ−i(y))

p−i
pi . (3.10)

Together with 3.3, equation (3.10) implies that φ1(0) = φ2(0) = 0. Substituting equation

(3.10) back to equation (3.7), we have

(
φ−i(y))

p−i
pi φ′−i(b) = 1

⇔
∫ y

0

(
φ−i(b)

) p−i
pi φ′−i(b)db = y

⇔
p−i
(
φ−i(y)

) p−i
pi

+1

p−i
pi

+ 1
= y

⇔
(
φ−i(y)

) p−i
pi

+1

1
pi

+ 1
p−i

= y. (3.11)

Hence, in equilibrium bidders’ bidding strategies are, for x ∈ [0, 1],

β1(x|p1, p2) =
x
p1
p2

+1

1
p1

+ 1
p2

and β2(x|p1, p2) =
x
p2
p1

+1

1
p1

+ 1
p2

.
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Proof of Proposition 3.4. Using the equilibrium bidding functions in Lemma 3.5, we have the

expected revenue under full concealment being

ERC = p1

∫ 1

0
β1(x|p1, p2)dx+ p2

∫ 1

0
β2(x|p1, p2)dx

= p1

∫ 1

0

x
p1
p2

+1

1
p1

+ 1
p2

dx+ p2

∫ 1

0

x
p2
p1

+1

1
p1

+ 1
p2

dx

=
p1(

1
p1

+ 1
p2

)(p1
p2

+ 2
) +

p2(
1
p1

+ 1
p2

)(p2
p1

+ 2
)

= p1p2 ·
(p1
p2

+ 1
)(p2

p1
+ 2
)

+
(p2
p1

+ 1
)(p1

p2
+ 2
)(p2

p1
+ 1
)(p1

p2
+ 2
)(p1

p2
+ 1
)(p2

p1
+ 2
)

= p1p2 ·
3 + 2 · p1p2 + p2

p1
+ 3 + 2 · p2p1 + p1

p2(
2 + p2

p1
+ p1

p2

)(
5 + 2 · p1p2 + 2 · p2p1

)
= p1p2 ·

6 + 3 · p1p2 + 3 · p2p1
14 + 9 · p1p2 + 9 · p2p1 + 2

(p2
p1

)2
+ 2
(p1
p2

)2
< p1p2 ·

6 + 3 · p1p2 + 3 · p2p1
14 + 9 · p1p2 + 9 · p2p1 + 4

=
p1p2

3
= ERD,

where the strict inequality holds because p1 6= p2.
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Chapter 4

On Disclosure Policies in

Innovation Contests

Introduction

Contests have been practical and prevalent mechanisms for procuring innovations. Prior to

World War II, the U.S. Army Air Corps regularly sponsored prototype tournaments to award

production contracts to the winning manufacturers. The Federal Communication Commis-

sion (FCC) determined the American broadcast standard for high-definition television by a

tournament. IBM sponsors annual tournaments to grant winning contestants to develop their

projects for commercial use. In 2006 the Internet television company Netflix announced a $1

million prize to induce a 10 percent improvement in the accuracy of its movie recommendation

algorithm.

This chapter studies information disclosure in innovation contests. Most existing studies

on information disclosure in innovation contests are input oriented. They focus on how to

optimally disclosing intermediate performances so as to elicit a higher deterministic total

input (effort). However, in many cases, two ways that elicits the same total input may induce

two different outcomes with one outcome strictly dominates the other. In contrast to those

studies, my study is output oriented. It is on how to optimally choose disclosure policies to

induce a more desirable outcome. In my model, agents search for innovations privately over

time — exerting costly effort and observing their own outcomes. At each moment an agent

can decide whether to continue searching and whether to submit her best discovery. The

game ends once both agents have made a submission, and the organizer only values the best

submitted innovation. In such a contest, in order to maximize his own benefit, should the

organizer choose (1) to reveal the information on a submission upon receiving it or (2) to

conceal the information until all agents have made submissions.

The timing of the game is as follows. First, the organizer announces publicly and commits

to his disclosure policy. Second, the organizer implements his commitment throughout the
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game, and each agent searches for innovations and makes a one-time irrevisable submission of

the best innovation she has discovered. Finally the agents who submitted a better innovation

wins a prize.

I show that the organizer prefers revealing the information on a submission upon receiving

it. On the one hand, it elicits a higher expected revenue to the organizer. On the other

hand, the expected length the contest lasts is shorter under this policy. However, each agent

is indifferent between these two disclosure policies if the marginal cost of search is low and

prefers information concealing if it is high. Moreover, under information concealment, equally

share the prize to agents who submit an innovation with a type above a certain cut-off is

outcome equivalent to let the agent who submits the best innovation to take the whole prize.

When the organizer chooses to reveal the information on a submission immediately, the

contest turns out to be a war of attrition. When the organizer chooses concealing the infor-

mation until the end, the game effectively turns out to be a special case of Taylor’s (1995)

model.

There is a rich literature on information disclosure in innovation contests.1 Aoyagi (2010),

Ederer (2010), Goltsman and Mukherjee (2011), and Wirtz (2013) consider two-stage games

and study how much information on intermediate performances a contest designer should dis-

close to elicit the optimal total input. Bimpikis et al. (2014) and Halac et al. (forthcoming)

study innovation contest design, which includes both award structures and information dis-

closure policies. Their models are also output oriented. However, contrasting to my setting,

they model an innovation process as a repeated costly sampling process with binary outcomes:

failure and success. Therefore, the organizers in their models care about the probability of

success rather than the value of the winning innovation. Another common trait in their mod-

els but not in my model is believe updating: There is uncertainty about the environment

and agents update their beliefs about the environment over time through their past sampling

outcomes. If an organizer chooses to make intermediate outcomes public, each agent also

updates her belief through her opponents’ past sampling outcomes. They show that, among

all winner-takes-all contests, the public winner-takes-all contest elicits the highest probability

of obtaining an innovation to the organizer. However, the hidden equal sharing rule may be

even better for the organizer. On the one hand, I also find, in my winner-takes-all model,

that full information disclosure induces a strictly higher expected revenue than full informa-

tion concealment. On the other hand, any hidden equal sharing rule, however, is outcome

equivalent to the winner-takes-all contest with full information concealment and thus elicits

a strictly lower expected revenue than the winner-takes-all contest with full information dis-

1The incentives for contestant to voluntarily reveal information is also investigated by Yildirim (2005), Gill
(2008), and Akcigit and Liu (2015).
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closure. Rieck (2010) investigates the organizer’s incentive to reveal each agent’s innovation

progress in the two-period case of Taylor’s (1995) multi-period repeated sampling model. He

shows that revealing intermediate outcomes would lower the organizer’s expected revenue but

increase the agents’ expected payoff, totally contrasting to my results. This is due to the

finiteness and discreteness of his model.

4.1 The Model

In order to obtain an innovation, a risk neutral principal organizes a contest between two risk

neutral agents, Agent 1 and Agent 2. Time is continuous and runs from 0 to infinity. At every

instance t ≥ 0, each agent makes three decisions in the following order:

D1. Whether to continue searching for innovations.

D2. Whether to submit the best innovation discovery to the organizer.

When an agent searches actively, innovations privately arrive to this agent according to a

Poisson process with an arrival rate of λ. λ is publicly known, and I assume that λ > c to

ensure there is at least one participant. The types of innovations are drawn independently

from a distribution F , defined on (0, 1]. F is continuous and has a strictly positive density f

over the domain. The cost of conducting a search is c > 0 per unit of time for each agent.

Whether an agent is actively searching is not observable to her rival and the organizer.

For convenience, I say an agent is in a state a ∈ [0, 1] at time t if the type of the best

innovation she has discovered by time t is a, where a = 0 means that the agent has discovered

no innovation. Both agents start from state 0.

Each agent can make at most one submission.2 In particular, I say an agent chooses to

quit the contest if she submits a “type-0 innovation”. In this case, this previous one-time

submission assumption means that once she quits she can not re-enter the contest. The

contest ends when both agents have made a submission. When the contest ends, the agent

who submitted a better innovation wins a prize normalized to 1. If both agents quit, the prize

is reserved; otherwise, a tie between the two submissions is solved by a random allocation of

the prize with equal probabilities.

An innovation with a type a is worth v(a) to the organizer, and the organizer only needs

one innovation. v(a) is strictly increasing in a. Before the contest starts, the organizer has

to announce publicly and commit to one of the two disclosure policies: fully revealing (R) or

fully concealing (C) the information about the submissions of the agents. Under full revelation,

once the organizer receives a submission he reveals the information on the submission to the

2This assumption is without loss of generality and simplifies the analysis.

99



public, and thus the public knows when and who has submitted what type of innovation or

has quit; under full concealment, the organizer reveals the information on the submissions

only when the game ends.

In detail, the model has the following timing:

1. The organizer publicly announces and commits to Policy R or Policy C.

2. Each agent decides on D1−D2 as described above, based on the information about the

opponent’s submission and her own state.

3. Once an agent has made submission, the organizer implements his commitment.

4. Once both agents have made a submission, the game ends and the agent who submitted

a better innovation wins the prize.

4.2 Results

In this part I solve the contest under the two disclosure policies and then compare the expected

revenues to the organizer across the two disclosure policies.

4.2.1 Contests with Full Disclosure

We first consider the case in which the organizer reveals the information a submission upon

receiving it. The solution concept I use here is the subgame perfect equilibrium. I focus on

symmetric (strategy) equilibrium.

Proposition 4.1. Under disclosure policy R, there is a symmetric equilibrium described as

below.3

i. On the equilibrium path:

a. Both agents continue searching if no one has submitted an innovation with a type

above F−1(1− c
λ).

b. Once an agent discovers an innovation with a type above F−1(1 − c
λ), this agent

stops searching and submits this innovation immediately.

c. An agent submits (or equivalently quits) immediately once the opponent has sub-

mitted an innovation with a type above F−1(1− c
λ).

ii. Off the equilibrium path:

– If an agent’s opponent has submitted something with a type a below F−1(1− c
λ), this

agent continues searching until finding an innovation with a type above a. Once she

finds such an innovation, she submits it immediately.

3Elements which are associated with zero probability events are ignored throughout the chapter.
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Each agent’s ex ante expected payoff in equilibrium is 0.

Proof. We prove this proposition by backward induction. I first argue for the off the equi-

librium path. Suppose an agent j’s opponent, agent i, submitted something with a type

ai < F−1(1 − c
λ). If agent j is in a state aj above ai, stopping searching and submitting the

innovation aj is a best response. If agent j is in a state below ai, her instantaneous gain from

continuing searching is

λ[1− F (ai)]− c > 0,

where λ[1− F (ai)] is the instantaneous rate of obtaining an innovation with a type above ai,

or say the instantaneous rate of winning. Therefore, agent j would continue searching until

reaching a state above ai.

Next, I argue for the on the equilibrium path. Suppose an agent j’s opponent, agent i,

submitted something with a type ai > F−1(1 − c
λ). For agent j, in a state aj < ai, stop

searching and submit aj is a best response, because the instantaneous gain from continuing

searching is

λ[1− F (ai)]− c < 0.

Then, given [i(c)], each agent who has discovered an innovation with a type above F−1(1−
c
λ) should submit it immediately so as to deter her opponent and win the contest.

Last, it is easy to verify that given [ii] and [i(c)]when no when no submission has been

made, it is optimal to continue searching until one agent reaches a state above F−1(1 − c
λ).

Given that agent j plays the prescribed strategy, agent i can win the contest only if she is the

first to submit an innovation with a type above F−1(1− c
λ). However, the instantaneous rate

of obtaining such innovation from searching is λ[1 − F (F−1(1 − c
λ))], which equals to c. She

is indifferent between continuing search and not. Hence, continuing searching until one agent

reaches a state above F−1(1 − c
λ) is a best response. To this point, I have shown that the

prescribed strategy profile is a subgame perfect equilibrium.

Additionally, I can also show that, given [ii] and [i(c)], in a symmetric equilibrium, no

agent would like to submit an innovation with a type below F−1(1 − c
λ). Suppose there is a

none-zero probability event that an agent submits an innovation with a type below F−1(1− c
λ).

I argue that when no submission has been made and the event has not happened, an agent in

a state below F−1(1− c
λ) strictly prefers continuing searching to stopping searching. Suppose

agent i is in a state below F−1(1 − c
λ). If she makes a submission, by [ii], she will lose the

contest for sure, obtaining an expected continuation payoff of 0. However, if she continues

searching, she can obtain a strictly positive continuation payoff: At any instance, she has a

rate of c to obtain an innovation with a type above F−1(1 − c
λ) to win the contest; there is

also a positive probability that agent j submits an innovation with a type below F−1(1− c
λ),

in which case, by [ii], agent i can obtain a strictly positive continuation payoff.
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In equilibrium, an agent’s instantaneous payoff is always 0, and thus her ex ante expected

payoff is also 0.

In fact, under policy R the contest turns to be a war of attrition. Both agents continue

investing until eventually one agent gets into a high state and the other agent gives up. It

then is natural that each agent obtains an ex ante expected payoff of zero.

Remark. 1. There are many other outcome equivalent equilibria.4 I choose a most fast-

ended equilibrium, in which there is no lag between stopping searching and making a

submission, because this is robust to small perturbations on the setting. Adding a discount

rate and a small reward for quiting the contest, this equilibrium would be the unique

equilibrium.

2. The setting with full disclosure is equivalent to award the prize to the agent who is the

first to submit an innovation with a type above F−1(1− c
λ).5

4.2.2 Contests with Full Concealment

Next, I analyze the case in which the organizer conceals the information about the first sub-

mission. This is, however, effectively the same as the model of Taylor (1995) in the case that

the deadline approaches infinity. In both models each agent’s searching and submission deci-

sions and searching outcomes are privately known. If the deadline in the Taylor’s model goes

to infinity, the contest effectively ends when both agents stop searching, which is exactly the

case here. Hence, the solution my model should coincide with the solution to the continuous

time version of Taylor’s model (see Chapter 1). Same as these two mentioned papers, I only

consider constant cut-off equilibrium.6,7

Proposition 4.2. Suppose the organizer commits to policy C.

i. If c < λ
2 , there is an equilibrium, in which each agent continue searching with F−1(1− 2c

λ )

as the cut-off and submits the innovation once she stops searching.

ii. If c > λ
2 , there are two equilibria, in each of which one agent does not search and the

other agent searches with F−1(1− 2c
λ ) as the cut-off and submits the innovation once she

stops searching.

Proof. See Theorem 1.1 of Chapter 1 and take the limit of the deadline in the benchmark

model to be infinity.

4For example, another equilibrium would be the above equilibrium strategy profile with a modification on
i(c): An agent quits some time after the opponent has submitted an innovation with a type above F−1(1− c

λ
).

5There are many outcome equivalent designs for the contest. My focus is on information disclosure policies.
6A cut-off is a value of an agent’s state, above which this agent stops searching and at or below which she

continues searching.
7Same as in before, I select the most fast-ended equilibrium (or equilibria).
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Lemma 4.1. Suppose the organizer commits to policy C.

i If c < λ
2 , each agent’s ex ante expected payoff is 0.

ii If c > λ
2 , in an equilibrium, the agents who searches has an ex ante expected payoff of

1− c
λ and the other agent has an ex ante expected payoff of 0.

Proof. See Lemma 1.2 of Chapter 1 for [i]. For [ii], the firm who searches wins the contest

with a probability of 1, and thus her expected duration of search is 1
λ . Therefore, her expected

payoff is 1− c
λ . The other agent does not search, and thus obtains a payoff of 0.

Remark. Another realistic disclosure policy is partial revealing (P), in which it is publicly

known whether an agent has submitted an innovation or not, but type of any submitted inno-

vation is not. One can easily verify that all equilirbia under policy R and policy C are equilibria

under policy P.

4.2.3 Comparison across Disclosure Policies

Under policy R, there is only one effective submission in equilibrium, because the other agent

quits. The effective submission is of an innovation with a type above F−1(1− c
λ). Under policy

C, if c > λ
2 there is also only one submission, but the submission could be an innovation with

a type below F−1(1− c
λ). Hence, for c > λ

2 , policy R elicits a higher expected revenue to the

organizer.

However, if c < λ
2 there are two effective submissions in equilibrium. Although both

submitted innovations are of types only above F−1(1− 2c
λ ), only the better submission matters

to the organizer. It is thus not straightforward which disclosure policy is better for the

organizer in this case, one submission above a higher cut-off or two submissions above a lower

cut-off. A comparison of the ex ante expected revenues for the organizer across the two

disclosure policies shows that policy R elicits a strictly higher expected revenue than policy C

does.

Theorem 4.1. The contest organizer strictly prefers policy R to policy C.

Proof. The case that c > λ
2 is argues as above, I only need to show for the case that c < λ

2 .

Under policy R, the expected revenue for the organizer is the expected revenue a submission

can generate conditional on the type of the submitted innovation is higher than F−1(1− c
λ),

∫ 1

F−1(1− c
λ

)

f(a)

1− F (F−1(1− c
λ))
· v(a)da.

Under policy C, in the case when there are two submissions, the expected revenue is the

expected value of the better submission conditional on the types of both submitted innovations
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are higher than F−1(1− 2c
λ ),

∫ 1

F−1(1− 2c
λ

)

2f(a)F (a)

1− [F (F−1(1− 2c
λ ))]2

· v(a)da.

To prove that policy R elicits a higher revenue than C does to the organizer, it is sufficient to

show that, the distribution of the winning innovation type under policy R first order stochastic

dominates the one under policy C. Let us defineGD : [F−1(1−2c
λ ), 1]→ [0, 1] as the distribution

under policy D ∈ {R,C}. For a ∈ [F−1(1− 2c
λ ), F−1(1− c

λ)],

GR(a) = 0 ≤
F 2(a)− [F (F−1(1− 2c

λ ))]2

1− [F (F−1(1− 2c
λ ))]2

= GC(a).

For a ∈ (F−1(1− c
λ), 1],

GR(a)

GC(a)
=
F (a)− F (F−1(1− c

λ))

1− F (F−1(1− c
λ))

/
F 2(a)− [F (F−1(1− 2c

λ ))]2

1− [F (F−1(1− 2c
λ ))]2

=
F (a)− (1− c

λ)
c
λ

/
F 2(a)− (1− 2c

λ )2

1− (1− 2c
λ )2

=
F (a)− (1− c

λ)
c
λ

/
F 2(a)− (1− 2c

λ )2

2c
λ (2− 2c

λ )

=
4[F (a)− (1− c

λ)](1− c
λ)

F 2(a)− (1− 2c
λ )2

=
F 2(a)− [2(1− c

λ)− F (a)]2

F 2(a)− (1− 2c
λ )2

=
F 2(a)− [(2− F (a)− 2c

λ )]2

F 2(a)− (1− 2c
λ )2

≤ 1 (= 1 iff a = 1).

Hence, the desired result derives.

As what is shown in the proof, although there could be two submissions in the equilibrium

under policy C, the probability of obtaining a good submission is lower than that under policy

R, whatever the distribution of innovation types is.

Though the organizer prefers policy R to policy C, the agents’ preferences have two pos-

sibilities. If search cost is below λ
2 , agents are indifferent between the two policies. As shown

previously, each agent obtains an ex ante expected payoff of 0 under either disclosure policy

in this case. If search cost is above λ
2 , then the agents prefer policy C to policy R, as under

policy C each of them has some probability to be the single player in the contest and thus can

obtain a positive expected payoff, whereas under policy R both of them obtain an expected

payoff of 0. Formally, I state the result as below.
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Corollary 4.1.

i. For c < λ
2 , agents are indifferent between policy R and policy C.

ii. For c > λ
2 , agents prefers policy C to policy R.

The next question is, which game is more efficient, or say, under which policy does the

contest ends quicker in expectation? The answer is unambiguous.

For search cost being below λ
2 , under either policy, an agent obtains the prize with a

probability of 1
2 and an expected payoff of 0. Hence, each agent’s expected cost on search

is 1
2 , and the expected during of search is 1

2c under either disclosure policy. However, under

policy R agents stop searching at the same time, whereas under policy C agents stop searching

independently. The game ends when both agents stop searching. Therefore, expectedly, the

contest ends quicker under policy R in this case. For search cost being above λ
2 , under policy

R the expected duration is still 1
2c , whereas under policy C it is 1

λ , a standard result from the

probability theory. Because 1
2c <

1
λ , the contest ends quicker under policy R in this case as

well. I formally state this result as below.

Corollary 4.2. The expected duration of the contest is shorter under disclosure policy R than

under policy C.

Hence, the organizer prefers policy R not only for that it elicits a higher expected revenue

but also that it is more efficient.

In contrast to my results, Rieck (2010) finds, in a multi-period model of Taylor (1995),

that revealing intermediate outcomes would, however, lower the organizer’s expected revenue

but increases the agents’ expected payoffs. This is because of the finiteness of the deadline

in his model. In a continuous time version of his model, taking the limit of the deadline

to be infinity, the equilibrium under information revealing policy actually coincides with the

equilibrium in my model.8

Halac et al. (forthcoming) builds a continuous time model in which sampling outcomes of

each agent are binary and beliefs about the state of the world are updated over time based

on the past sampling outcomes. They also find in their model that the public winner-takes-all

contest is optimal among all winner-takes-all contests. However, the hidden equal-sharing

contest may induce a higher probability of success than the public winner-takes-all contest.

In my setting, there is no belief updating. There could also be hidden equal-sharing rules:

ER: the prize is shared equally to both agents if both submitted innovations are above certain

8In the multi-period model of Rieck (2010), in the limit of the deadline being infinity, it is not an equilibrium
that both agents continue searching until one obtains an innovation with a type above a certain cut-off.
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cut-off and the prize is given to the agent who submitted a better innovation otherwise.9

However, unlike the finding of Halac et al. (forthcoming), in my setting any hidden equal-

sharing rule is strictly dominated by the winner-takes-all contest with policy R. In fact, I can

make the following claim.

Claim 4.1. Any hidden equal-sharing rule is outcome equivalent to the winner-takes-all contest

with policy C.

Proof. We first analyze the case that c < λ
2 . If the cut-off set by the organizer is below or

equal to F−1(1 − 2c
λ ), it is not effective, because no agent is going to search with that value

as the cut-off. The game is exactly the same as the winner-takes-all contest with policy C. If

the cut-off set by the organizer is above F−1(1− 2c
λ ), the expected share of the prize an agent

can win is still 1
2 , same as that in the winner-takes-all contest with policy C, and thus both

agents will still search with F−1(1− 2c
λ ) as the cut-off in equilibrium.

The analysis for the cases that c > λ
2 is similar and thus is omitted.

In short, a hidden equal-sharing rule is just a modification of the winner-takes-all contest

with policy C. It merely changes the realized prize allocation but not the expected share of the

prize each agent will win, and thus it does not alter agents’ incentives for searching. Hence,

the competition strategy of each agent remains the same.

4.3 Concluding Remarks

In this study, I found that in innovation contests revealing information on contestants’ sub-

mitted innovations yields a higher expected revenue to the organizer and is more efficient than

concealing it until the end. However, contestants are indifferent between the two policies if the

search cost is low and prefer information concealment if the search cost is high. The results

can be extended to the cases with more than two agents (see the appendix). There are two

other possible extensions. One is on contests with asymmetric agents and the other is on con-

tests with a deadline.10 Unfortunately, due to lack of closed form equilibrium solutions, one

cannot make direct comparisons of the expected revenues across disclosure policies. Proper

methodologies have to be found. However, I conjecture that the main result holds in these

two extensions. Last, like in many studies on information disclosure, the organizer’s ability of

commitment is also an issue in my model. When announced to reveal information, the orga-

nizer may want to hide the information when he receives a submission so that the remaining

agent(s) may submit an even better innovation.

9One can also look at another rule, in which the prize is shared equally to agents who submitted innovations
above a certain cut-off and the prize is reserved otherwise.

10One can refer to Section 1.6 of Chapter 1 for the case with heterogeneous search costs.
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4.A Appendix

I discuss the extension to include N > 2 agents. In this extension, the main result still holds.

Under disclosure policy R, when there are more than 2 agents, there are uncountably many

symmetric equilibria. Some properties a (most fast-ended) symmetric strategy equilibrium has

to satisfy are describe below.

i. On the equilibrium path:

a. Before some agent submit an innovation with a type above or at F−1(1 − c
λ), no

agent stops searching before she discovers an innovation.

b. Once an agent discovers an innovation with a type above F−1(1 − c
λ), this agent

stops searching and submits this innovation immediately.

c. An agent stops searching and submits immediately once one of the opponent has

submitted an innovation with a type above F−1(1− c
λ).

ii. Off the equilibrium path:

a. If N − 1 agents have submitted but no submission is of an innovation with a type

above F−1(1 − c
λ), the last agent continues searching until finding an innovation

with a type above a. Once she finds such an innovation, she submits it immediately.

b. If N − 2 agents have submitted but no submission is of an innovation with a type

above F−1(1− c
λ), the remaining 2 agents continue searching until one of them finds

an innovation with a type above a. Once an agent finds such an innovation, she

submits it immediately.

For example, suppose there are three agents. One equilibrium path can be like that: All

agents continue searching until some agent reaches a state above or at F−1(1− c
λ) and makes

a submission, and then both other agents quit.

Some other symmetric equilibria paths can be like follows. At the beginning, each agent

continues searching with ã ∈ [0, F−1(1 − c
λ)) as the cut-off. The first agent who discovers

an innovation with a type above this value submits it immediately. If the first submitted

innovation is with a type above F−1(1− c
λ), all other agents quit and the contest ends. If the

first submitted innovation is with a type below F−1(1− c
λ), the remaining two agents continue

searching until one agent reaches a state above or at F−1(1− c
λ).

In brief, on an equilibrium path there must be at least two agents playing the war of

attrition. The distribution of the winning innovation type is the distribution of an innovation
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type conditional on it being above F−1(1 − c
λ), i.e., GR(·), same as when there are only two

agents.

Under disclosure policy C, equilibrium strategies are also similar to the case when there

are two agents.

i. If c ∈ (0, λN ), there is a unique equilibrium, in which all agents continue searching with

F−1(1− Nc
λ ) as the cut-off.

ii. If c ∈ ( λm ,
λ

m−1), m = 2, 3, ..., N , there are
(

N
N−m+1

)
equilibria, in each of which m − 1

agents search with 0 as the cut-off and the other agents do not search.

Hence, if c ∈ (0, λN ), the distribution of the winning innovation type is the distribution

of the first order statistic for a sample of N from the distribution of an innovation type

conditional on it being above F−1(1 − Nc
λ ); if c ∈ ( λm ,

λ
m−1), m = 2, 3, ..., N , the distribution

of the winning innovation type is the distribution of the first order statistic for a sample of

m− 1 from the distribution F .

I can show that the main result still holds when there are N agents.

Claim 4.2. Given N > 2 agents, the contest organizer strictly prefers policy R to policy C.

Proof. It is sufficient to prove for the case that c ∈ (0, λN ). As what I do in the proof of

Theorem 4.1, I prove it by showing that the distribution of the winning innovation type under

policy R first order stochastic dominates that under policy C.

Let us define the the distribution of the winning innovation type under policy C by G̃C :

[F−1(1− Nc
λ ), 1]→ [0, 1]. For a ∈ [F−1(1− Nc

λ ), F−1(1− c
λ)],

GR(a) = 0 ≤
FN (a)− [F (F−1(1− 2c

λ ))]N

1− [F (F−1(1− 2c
λ ))]N

= G̃C(a).
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For a ∈ (F−1(1− c
λ), 1],

GR(a)− G̃C(a) =
F (a)− F (F−1(1− c

λ))

1− F (F−1(1− c
λ))

−
FN (a)− [F (F−1(1− 2c

λ ))]N

1− [F (F−1(1− 2c
λ ))]N

=
[F (a)− (1− c

λ)][1− (1− 2c
λ )N ]− c

λ [FN (a)− (1− 2c
λ )N ]

c
λ [1− (1− 2c

λ )N ]

=
[F (a)− (1− c

λ)− F (a)(1− 2c
λ )N + (1− 2c

λ )N+1]− c
λF

N (a)− [ cλ(1− 2c
λ )N ]

c
λ [1− (1− 2c

λ )N ]

=
c
λ [1− FN (a)]− [1− (1− 2c

λ )N ][1− F (a)]]
c
λ [1− (1− 2c

λ )N ]

=
[1− F (a)]

[
c
λ

∑N−1
k=0 F k(a)− Nc

λ

∑N−1
k=0 (1− Nc

λ )k
]

c
λ [1− (1− 2c

λ )N ]

=
[1− F (a)]

[(∑N−1
k=0 F k(a)−N

)
−
∑N−1

k=1 (1− Nc
λ )k

]
1− (1− 2c

λ )N

≤ 0 (= 0 iff a = 1).

Hence, the desired result derives.
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