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Introduction

Motivated by the recent availability of extensive macroeconomic data sets, this thesis consists of

three independent chapters that examine the ways to approach to this issue from various angles.

CHAPTER 1. The first chapter, which is a joint work with Matei Demetrescu, discusses the
particularities of forecasting with factor-augmented predictive regressions under general loss
functions. In line with the literature, principal component analysis is employed to extract
factors from the set of predictors. We also extract information on the volatility of the series to be
predicted, since volatility is forecast-relevant under non-quadratic loss functions. Moreover, the
predictive regression is estimated by minimizing the in-sample average loss, to ensure asymptotic
unbiasedness of forecasts under the relevant loss. Finally, to select the most promising predictors
for the series to be forecast, we employ an information criterion tailored to the relevant loss.
Using the Stock and Watson data set, we assess the proposed adjustments in a pseudo out-of-
sample forecasting exercise. Expectedly, the use of estimation under the relevant loss is found
to be effective. In other words, the forecasting exercises we employ suggest that evaluating
forecasts under the chosen asymmetric loss function lead to smaller forecast losses. Using an
additional volatility proxy as predictor and conducting model selection tailored to the relevant
loss function further enhance forecasts. Both the theoretical and the empirical results emphasize
the importance of using the relevant loss functions while performing forecasting exercises with

extracted factors.

CHAPTER 2. The second chapter is a joint paper with Kerem Tuzcuoglu and is linked to the
first chapter in the factor analysis sense. Researches have not found a way to assign economic
meaning to factors although factor analysis has been widely used as a dimension reduction

method. In this paper, we propose a Threshold Factor Augmented Vector Autoregression model

iii
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to address this issue. The novelty is the interpretation of factors by observing how frequently
factor loadings fall below estimated thresholds and become irrelevant. The results indicate that
we are able to relate most of the factors to specific categories of the data without any prior
specification on the data set. Furthermore, the interpretable factors, e.g., real activity factor,
unemployment factor and such, are each given shocks along with policy shock to observe the
responses of the other factors and individual series. The resulting impulse responses are of
expected sign and magnitude in general. Overall, our results yield an intensive layout on which
factor is associated with different aspects of the economy. We are able to associate the extracted
factors with certain macroeconomic activities, such as real economy, unemployment, inflation.
We present impulse response analysis to show how a contractionary monetary shock affects the

factors and variables. Our results are consistent with what the economic theory suggests.

CHAPTER 3. The third chapter, written in collaborative work with Jeremy Chiu, uses the large
information sets in vector autoregression sense. Motivated by the desire to probe macroeco-
nomic tail events and to capture nonlinear economic dynamics, we estimate two types of regime
switching models with Bayesian estimation methods: Threshold VAR and Markov switching
VAR. We also use linear Bayesian VAR model as a benchmark. For each of the non-linear mod-
els, we estimate regimes which carry the interpretation of recessionary/normal and financially
stressful/stable periods. Using the recursiveness assumption and conditional on shocks of one-
standard-deviation, we show that (i) financial shocks hitting during times of recessions create
disproportionately more severe contractions in output; (ii) output growth shocks hitting in finan-
cially stressful times result in disproportionately further financial stress. We also demonstrate
the power of a feedback loop between real and financial sectors when extremely large shocks
hit the economy in normal/financially stable periods. Afterwards, we perform out-of-sample
forecasting exercises, and find that the Threshold VAR model has the potential to predict tail
events in conditional forecasting compared to the Markov switching VAR and Bayesian VAR.
Our findings provide strong evidence of nonlinearities and shock amplification mechanisms in the

United Kingdom data, and hence useful information to investigate macroeconomic tail events.
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CHAPTER 1

Macroeconomic Forecasting with Large Data Sets under Asymmetric Loss

1.1 Motivation

In forecasting macroeconomic series, the past decade has witnessed the increased availability
and use of comprehensive data sets consisting of a large number of predictor time series. When
forecasting macroeconomic aggregates like inflation or GDP, the appeal of such auxiliary data-
rich sets is understandable: the additional informational content of the series helps improving
forecasts compared to a benchmark (vector) autoregression of the variable to be predicted. At
the same time, dealing with an increased number of predictor series poses problems, since the
number of time observations is typically comparable with the number of series in such sets.
This leads to imprecise coefficient estimates in an augmented predictive autoregression, and
consequently to a trade-off between availability and usability of information. The literature has
therefore focussed on complexity reduction and information extraction. Factor-based forecasting
models, for which it is assumed that unobserved common components of the auxiliary series are

good predictors for the variable of interest, are particularly popular in this respect.

Since the predictors are not observed directly for factor-based forecasts, the forecasting procedure
boils down to estimating a feasible predictive regression using lags of the dependent variable and
extracted factors as right-hand side variables. Several contributions have shown that a relatively

small number of estimated factors successfully summarize the contemporaneous information in
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the data set of predictors. Stock and Watson (2002¢) demonstrate Principal Component Analy-
sis [PCA] of the predictors to produce consistent estimates of the space spanned by the common
factors. Their factor model forecasts outperforms other benchmark models to forecast personal
income and output growth; see also the earlier work in Stock and Watson (1998). Focussing on
estimation and inference in approximate factor models, Bai (2003) derives asymptotic distribu-
tions and uniform convergence results while Bai and Ng (2002) provide information criteria for

estimating the number of factors; see also Alessi et al. (2010).

The popularity of factor models in forecasting is reflected by the large number of contributions in
the applied literature. Ludvigson and Ng (2009a,c) use factors from a large number of macroe-
conomic series to predict excess bond returns and to show that the predictability of future excess
returns is related to macroeconomic activity. These are just the tip of the iceberg; see Marcellino
et al. (2003), Artis et al. (2005), den Reijer (2005), Forni et al. (2005), Banerjee et al. (2008),
Engel et al. (2012) or Godbout and Lombardi (2012) to name but a few more contributions to the
literature on factor-based forecasting. While there are alternative approaches such as soft /hard
thresholding or forecast combinations, they appear to be less popular than factor-based models.
One reason to prefer factor-based forecasting procedures may be their interpretability; see e.g.
the discussion in Ludvigson and Ng (2009a,c). For instance, Ludvigson and Ng (2009¢) regress
each macroeconomic variable in their data set on the PCA-extracted factors. The R?s of these
regressions are informative of the relations between the factors and the variables. They are
thus able to identify e.g. stock market, inflation or real factors. More recently, Hacioglu Hoke
and Tuzcuoglu (2014) work on factor augmented VAR models with a threshold structure of the
loadings (which are dynamic in their setup). The periods where the loadings are set to zero
or where the factors load more heavily on the variables are also informative on the relations
between factors and variables. The point is that predictors with economic meaning prevent the
interpretation of forecasting procedures as “crystal-ball” or “black-box” econometrics and are

more likely to produce forecasts understandable by wider audiences.

The focus of the work cited above is on forecasts which are optimal in the mean squared-error
[MSE] sense, i.e. on procedures minimizing the expected squared forecast error. The literature
documents, however, a significant number of cases where more general — and in particular asym-
metric — cost-of-error functions are employed. For instance, IMF and OECD forecasts of the
deficit of G7 countries are found by Artis and Marcellino (2001) to be systematically biased
towards over or under-prediction when compared with MSE-optimal forecasts. Elliott et al.
(2005b) propose formal methods of inference on the degree of asymmetry of the loss function
and testing the rationality of forecasts; see also Patton and Timmermann (2007b). Building
on the work of Elliott et al., Christodoulakis and Mamatzakis (2008, 2009) find asymmetric
preferences of EU institutional forecasts. Clements et al. (2007) discuss the loss function of the
Federal Reserve and Capistran (2008) even finds that, for inflation, the forecasting preferences

of the Fed are time-varying. The loss function of the Bank of Canada is analyzed by Pierdzioch

2
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et al. (2011). More recently, Tsuchiya (2016) examines the asymmetry of the loss functions of
the Japanese government, the IMF and private forecasters for Japanese growth and inflation

forecasts.

We therefore study factor-augmented forecasting under asymmetric loss. For a given predictive
model, there is little debate as to how to obtain point forecasts under a given loss function: it has
been known since Weiss and Andersen (1984) and Weiss (1996) that the forecast model should
be estimated under the relevant loss.! Estimation of the feasible predictive regression under the
relevant loss would therefore improve forecasts. This prompts the question, first, whether such
estimation may indeed be conducted with estimated factors in a manner analogous to the MSE-
optimal case. Less obvious however, is the second question of whether the forecast model should
be the same under any asymmetric loss function. To put it bluntly, are the PCA-extracted
factors still forecast-relevant under an asymmetric loss function? Considering the theory of
forecasting under asymmetric loss functions, see Granger (1969), Granger (1999), Weiss (1996),
Christoffersen and Diebold (1996), McCullough (2000), Elliott and Timmermann (2004), Elliott
et al. (2005b), Patton and Timmermann (2007a) or Patton and Timmermann (2007b), the least
what may be expected is that the relative importance, as a predictor changes, for the extracted
factors or even for the lags of the dependent variable in the augmented predictive autoregression.
So, rather than relying on the summarizing power of, say, the first principal component, one may
have to select the predictors (lagged dependent variables or factors) that are most informative
under the relevant loss.? Third, perhaps even more importantly, one should ask whether the usual
factor extraction does actually capture all information relevant under the given loss function.
PCA essentially delivers linear combinations of the “many predictors” data set. In a linear
predictive model under squared-error loss, this may be a convenient dimensionality reduction
procedure. But the optimal forecast function under an asymmetric loss function may depend on
the auxiliary series in a non-linear fashion, even if the optimal forecast function is linear in the
MSE-optimal case. Thus, the informational content of the data set may not be fully exploited

under an asymmetric loss function.

Our contributions are as follows. We show in Section 1.2 that, regularity conditions provided, one
may indeed use PCA-extracted factors as predictors even when estimating forecast regressions
using the relevant loss function. To make sure that relevant information is not wasted, we make
use in Section 1.3 of the insight that the optimal point forecast under a general loss depends
on the conditional variance of the variable to be predicted (Christoffersen and Diebold, 1996;
Patton and Timmermann, 2007b). Thus, adding information on the wvolatility of the series to

be predicted in the forecasting model improves forecasts under asymmetric loss. While the

! An alternative, more demanding, procedure is to model the entire predictive distribution and derive the point
forecasts based on it; see e.g. McCullough (2000) for an ingenious bootstrap-based version.

2In fact, focussing on extracting the factors with the highest associated eigenvalue might not be a good idea
in the MSE-case either, since a factor even if explaining most of the variance of the raw predictor series, need not
capture the information relevant for forecasting.
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volatility of interest is not observed directly, it is plausibly related to the variability of the
auxiliary series. The relation is not a forced one, since the volatility of the overall economic
environment should be reflected — at least to some extent — by the volatility of all series involved.
This common component can in turn be extracted from the auxiliary data set. Concretely, we
extract additional factors from the log-squared residuals of the factor model to increase the
quality of the forecasts under the relevant loss. This delivers a larger number of predictors, of
which not all need be equally relevant. To find the ones with the highest predictive power, we

resort to a suitable information criteria.’

We then illustrate the proposed procedure in Section 1.4 by means of a forecasting exercise
with US personal income, industrial production, unemployment rate and retail sales. We use
a data set which has become widely known as the “Stock and Watson” data set (Stock and
Watson, 2005). Expanded by Ludvigson and Ng (2009a), the data set spans the period from
January 1964 to the end of 2007. Although the original data set includes more time series than
we work with here, the use of this particular selection of 131 series has been quite popular
in the literature; see e.g. Belviso and Milani (2006), Boivin and Ng (2006), D’Agostino and
Giannone (2006), Ludvigson and Ng (2009a,c) and Bai and Ng (2011). The detailed description
and other features of the data can be found in Appendix 1.D. Here, we are interested in one-
year-ahead forecasts; working with monthly data, we thus work at forecast horizon h = 12. We
compare the average forecast losses of all four variables in every single case we look into. We
find, expectedly, that average losses of forecasts produced under the relevant loss function give
smaller losses compared to the losses produced by forecasts obtained via OLS estimation of the
predictive regression. At the same time, we also show that adding information from the volatility
of the series and having parsimonious models by assessing the relevance of the extracted factors

improve the average losses.

The final section concludes, and some mathematical details and additional results have been

gathered in the Appendix.

1.2 The basic forecasting problem

Let y; be the series for which an h-step ahead forecast is required. Given the available information
set Ft = {ft ks Yt,Yt—1, ...}, the optimal forecast is given by

yrty, = argmin E (€ (yern — yign) [F1) (L.1)

Yi+n

3The issue of model selection is not restricted to our setup: e.g. Schumacher (2007) compares the forecast
accuracy of variety of factor models to MSE-predict German GDP, and finds that results may change when
different information criteria to select factors are used.
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where L (+) is the relevant loss function quantifying the cost incurred by discrepancies between
a given forecast y;, , of the variable y at some time ¢ + h and the actual realization y;,p.
According to Granger (1999), loss functions should be uniquely minimized at the origin, and be
quasi-convex. We shall work with a specific class of loss functions, introduced by Elliott et al.

(2005b); a forecast y;, ; is thus evaluated by means of

L (Yern — Yran) = (@+ (1 =20) T (yesn — Yien < 0)) |vetn — vinl” - (1.2)

This class of loss functions is quite flexible: it includes as special cases the widely used symmetric
(for @ = 0.5) and asymmetric (for 0 < a < 0.5 or 0.5 < « < 1); linear and quadratic loss
functions (for p = 1 and p = 2). Moreover, it only requires mild moment conditions on ¥, in

contrast e.g. to the well-known linex loss.

We start with the usual linear forecasting model

q r
Yerh =C+ D aye—ji1+ Y Opfep + vegn, t=1,2,....T, (1.3)
=1 k=1

where the forecast error v;15 cannot be predicted under £. This does not imply, however, that
verp could not be forecast under another loss function. The lack of predictability of vy, under £
implies that the so-called generalised forecast error £’ (v4) is uncorrelated with the predictors
Yt—j+1 and fi ; see Granger (1999) and Patton and Timmermann (2007a). The optimal forecast
is thus given by .
r
yr =+ > aiyi—je1+ Y bifik (1.4)
j=1 k=1

In practice, one resorts to a two-stage procedure, given that observations on N auxiliary variables
x¢; are available, from which f;; may be estimated in a first stage. Maintaining the typical

assumption of linear measurement equations for the factors, we have that

I8
Tt = Z i fe g + g (1.5)
k=1

With additional conditions on \;; and w; (in particular orthogonality of the common and
idiosyncratic components f;; and wu;;), extraction of the unknown factors can be conducted,
leading to ft,k (we resort to PCA to this end). This ultimately takes us to the feasible predictive
regression

q T
Yerh = C+ > @Y1+ O befer + vipn, (1.6)
=1 k=1
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to be estimated under the relevant loss in a second stage, i.e.

T—h q r
SR " A
¢,aj, by = arg min T SLlygn—c =D aiy—jpr— Y bifir | (1.7)
c*,ak,by t=q j=1 k=1

from which the forecast is obtained as

q T
G =+ > a1+ Y bifuk (1.8)
= k=1

Its quality hinges on the precision of the factor approximation; recall that factors cannot be

consistently estimated in a fixed-INV setup.

The justification to use the feasible forecast from (1.8) is provided by the following proposition
establishing its consistency as T, N — oo for the unfeasible optimal forecast from (1.4) under

the relevant loss L.

Proposition 1. Let the auziliary variables x;; obey Assumptions A-E in Bai (2003). Further-
more, assume that the factors f; . and the forecast errors vy, are strictly stationary and ergodic,
and that the generalised forecast errors L' (viyn) satisfy E (L' (vern)| Yt Ye—1, - -+, fre) = 0 and
have no atom at 0. Finally, let all series have finite moments of order p with p from (1.2) integer
and positive. It then holds for the estimated optimal forecast from (1.8) that, point-wise in t,

~opt DP_ opt
Yirh = Yeth

as N,T — oo such that T/N — 0.

Proof: See Appendix 1.B.

Remark 2. Assumptions A-E in Bai (2003) ensure the uniform (in t) consistency of the ex-
tracted factors, which, in that framework, may be heteroskedastic and even locally trending. The
additionally required strict stationarity simplifies the proofs; while it is slightly more restrictive
than the often made assumption of weak stationarity (see e.g. Stock and Watson, 2002¢c), it is
a convenient price to pay for being able to use non-MSFE loss functions. Strict stationarity of
the factors might be relaxed at the expense of additional conditions, but we do not pursue the
topic here as we would rather focus on the forecasting procedure than on more involved technical
details. The critical requirement is that the generalised forecast error is a martingale difference
sequence, which is a standard condition in the literature on forecasting under asymmetric loss

(Patton and Timmermann, 2007a). In a nutshell, the forecast errors must be unforecastable

6
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under the relevant loss. The finiteness of the pth order moments ensures that the forecast risk

1s finite and an optimal forecast exists.

Remark 3. In factor models, the factors are only identified up to a rotation. But it follows from
the proof that rotations do not affect the result: essentially, > j_; Bkﬁk consistently estimates
> k1 bk fr i which is the quantity required for forecasting yivp. E.g. Bai and Ng (2006) consider

this explicitly; to keep notational effort at a minimum, we assume identification directly.

Remark 4. The loss function does not play any role in estimating the factors, but only in the
subsequent forecasting step. The main reason to do so is to maintain the interpretability of the
factors as economic driving forces (not depending on individual loss preferences), but we also
wish to stay in line with the literature on factor-based forecasting. While Tran et al. (2014)
discuss estimation of factors under asymmetric linear and asymmetric quadratic losses, these
losses refer to the idiosyncratic components and not to the actual forecast errors; we leave the

integration of the two approaches to further work.

1.3 Extracting additional relevant information

The two-step procedure for forecasting under asymmetric loss discussed in the previous section is
the natural extension of the original method of Stock and Watson (2002¢), for which the second
step — i.e. estimation of the predictive regression — has been modified to account for the use of
a specific loss function. But we should ask at this point whether the first stage — i.e. extracting
the information carried by the auxiliary variables x;; — is to be left unmodified. In other words,
is the factor model (1.5) exhausting the possibilities of finding predictors for y;y; under the

relevant loss?

It should be pointed out that the linear model (1.5) is only sufficient under conditions which
are not plausible for macroeconomic data sets. Namely, Patton and Timmermann (2007b) show

that, for loss functions of the type given in (1.2), the optimal forecast has the form

?Jfﬁ =E(Yernl vt yi-1,- -5 03) + C\/Var (Yern| e Ye—1,- -+ Teq) (1.9)

for some constant C' depending on the loss function and the shape of the conditional distribu-
tion.? The first summand on the r.h.s. of (1.9) is nothing else that the conditional mean which

the original factor-based model does indeed capture. The coefficient C, and thus the second

4Their result actually holds for any homogenous loss function.
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summand, is zero e.g. when a = 0.5 and p = 2, or when o = 0.5 and the conditional distri-
bution of y; 4, is symmetric, but not in general. When estimated under the relevant loss, the

intercept ¢ of the predictive regression (1.3) only captures the average of the so-called bias term

C \/ Var (Yetn| Y, Ye—1,- .., 2+;) and misses the fact that the conditional standard deviation of

Yith, if time-varying, is actually a predictor for y;45, under L.

And indeed, the volatility of macroeconomic variables is not constant in general. The Great
Moderation is the perhaps best known case of time-varying volatility. The term coins the
downward trend in the variance of inflation and economic growth since the 1980s (e.g., Stock
and Watson, 2002b); Clark (2009) finds that the recent financial crisis has reversed the trend,
thus strengthening the evidence of time-varying volatility. Along the same lines, Sensier and
van Dijk (2004) find that four out of five of over two hundred U.S. macroeconomic time series

exhibit unconditional volatility changes during the period 1959-1999.

What is more, it is expected that such volatility trends are common to the variables in the data
set used for forecasting: the series stem, after all, from the same economic environment. Thus,

we may resort to the same data set {z;;} in order forecast the conditional standard deviation

of Yrin-

To exploit the above insight, we assume a stochastic volatility model of the form

Vepn = eg e2 (920 Ghet),

We follow Nelson (1991) in using the exponential “link” function, since it allows us to avoid
positivity restrictions on the components g; and h;; and assume — in line with the very idea of
factor-based forecasting — that h;; could be forecast using information from the auxiliary series
Z¢4; g is an unforecastable component. When the conditional variance of the idiosyncratic

components in the factor model depend in a similar manner on h;;, we write

Ut; = € e%(gfvi+2f:1 ht,lgl,i)’

where g;; are individual volatility components specific for z;;. As usually, e; and e;; are stan-

dardised variables, mutually independent and independent of h;;, g; and g;;. Then,
S
loguy; =logei; + gri+ Y &ihe1,
=1

which is nothing else than a factor model for the log squares of wu;; with h;; the common

components and log e?’i + g+,; the idiosyncratic ones.

Since the variables wu;; are not observed directly, we resort to the idiosyncratic components

extracted in the first-stage PCA. Thus we are now able to extract h;; from log ﬁ?l using a

8
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second-stage PCA, leading to ;Lt’l. Note that the factors f; themselves may be (conditionally)
heteroskedastic; we assume that they do not bear additional predictive power for the conditional

variance of 1,14, but one may of course consider their log squares when extracting hy ;.

This is related to decomposition of the yield spreads in Ludvigson and Ng (2009a,c). In both
papers, additional information carried by the yield risk premium (or term premium) is acknowl-
edged, due to the inability of the yield curve to explain business cycle variations in bond risk
premia. The yield risk premium can be seen as an idiosyncratic error which should be constant
under the expectation hypothesis. Ludvigson and Ng estimate this term via the average multi-
step estimates of bond returns. They show that the predictive factors are not sufficient to display
the countercyclical form of bond risk premia since the predictive power of these factors does not
imply explaining the yield curve. In this respect, the additional information used, namely the

yield risk premium, parallels the volatility factor we use in this paper.

Equation (1.9) shows that a nonlinear forecast may be better suited in an asymmetric loss
context. Clearly, extracting factors from log ufl is not the only way to consider nonlinearities;
for instance Bai and Ng (2008a) employ quadratic PCA. But Equation (1.9) motivates us to
look directly for variables driving the volatility.

Ideally, we would include a term of the form Ces 2o fiher i the predictive regression with
additional parameters & (with g; not being predictable, e!/29t i absorbed in the error component
e; multiplicatively). But a non-linear regression equation is perhaps too cumbersome to deal
with numerically, even if we must anyway resort to numerical optimization under non-MSE loss.”
We therefore linearize the exponential, e* =~ 1 + z, and trade some misspecification in exchange

for increased clarity of the final procedure.

The component g; is in principle not forecastable, at least not from x;;, and we treat it as such

by absorbing it in the forecast error. We thus obtain as estimated predictor for y;yp
" q L S .
G =+ ajye—j1 + Y bifir+ > Ghy, (1.10)
j=1 k=1 =1

where the parameter estimates are obtained like before by minimising the observed forecast loss.

Due to the linearization, the estimators & in (1.10) do not converge to the population values.
The following proposition guarantees that the fitted predictor is the best linear predictor under

the given loss.

Proposition 5. Define the (unfeasible) linear predictor

q r S
(Y frohe) = ¢+ > alye—jir + > bifer+ > & hay
= =1 =1

5See Demetrescu (2006) for a tailored optimization method.

9
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and assume that sup, VLM — h“‘ = 0,(1). Under the assumptions of Proposition 1, it holds for
g]f_% from (1.10) that
g7, & argmin E (L (gran — 7(ye, f1 1))

e 0% by &

pointwise in t.

Proof: Analogous to the proof of Proposition 1 and omitted.

Remark 6. In the case of the squared-error loss, the bias-variance decomposition of the MSE
indicates that the fitted linear model minimizes the expected squared difference between the lin-
ear fit and the nonlinear regression curve (where the expectation is taken with respect to the
marginal distribution of the predictors). In the case of asymmetric power losses, such a clean

decomposition is not available, but the interpretation of the proposition remains the same.

Remark 7. The quality of the linear approximation depends on the signal-to-noise ratio in the
series y j_; &ﬁt,l. One could improve it by taking a quadratic approximation for the exponential,
e® ~ 1+ x+ x2/2. When not imposing the coefficient restrictions resulting from the quadratic
approzimation of the exponential function to avoid further numerical complications, this results

i a linear model with interactions,

q s s S
G =+ Ay + Y bkfrr + > > G€mbihem.
j=1 k=1 =1 m=1

To sum up, the factor-based forecasting procedure is modified under asymmetric loss as follows.

1. Clean/prepare the auxiliary data set and the variable to be predicted.
2. Extract factors from auxiliary series (PCA).

3. Extract factors (demean, standardise, PCA) from log-squared extracted idiosyncratic com-

ponents.
4. Augment the predictive autoregression with the factors extracted in steps 2 and 3.
5. Estimate under the relevant loss.

6. Suitably select the predictors to enter the predictive model.

Compared to the usual factor-based forecasting approach, steps 3 and 5 are new and specific

to forecasting under a general loss function. Step 6 should of course be conducted even under

10
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squared-error loss, but requires here a careful consideration of the used selection tool. Concretely,
to conduct predictor selection in (1.10), we resort to an information criterion, but tailored to

the relevant loss. For a model of complexity k, we thus compute

ATCE (k) = > 1n (S0 £ (ouen(k) +

with 04 (k) in-sample fitted errors from the respective model, and choose the model minimizing

the criterion. See Appendix 1.A for a justification of this particular choice.

We work with an information criterion because of the widespread use of information criteria
in general, but partly also for computational convenience; we also examined the numerically
more involved least absolute shrinkage and selection operator [LASSO] (Tibshirani, 1994) as an
alternative, alongside with refinements due to Belloni and Chernozhukov (2013). Other choices
such as targeting the predictors 4 la Bai and Ng (2008a) (see also Dias et al., 2010) are not

considered, but may of course be incorporated in the forecasting procedure.

We present in the following section the empirical results obtained using only the tailored in-
formation criterion AIC, for model selection. The corresponding LASSO and post-fit LASSO
results are presented in Appendix 1.C. While we find that they (in particular the post-fit LASSO)
improve on AIC,, the computational requirements are higher and we leave the decision of which

model selection procedure to use to the practitioner.

1.4 Forecasting under asymmetric loss

The goal of the exercise is to forecast several macroeconomic variables, such as Personal Income
(PI), Industrial Production (IP), Unemployment Rate (UN) and Retail Sales (SL), under
asymmetric loss. We evaluate the out-of-sample forecasts that use the factors recursively ex-
tracted from the auxiliary data. The factors are extracted by PCA analysis in a linear fashion.
We pursue the empirical analysis by taking them as observable. The exercise follows that of
Ludvigson and Ng (2009c¢)’s.

1.4.1 Setup

The data set employed for the forecasting exercise is often referred to as the Stock and Watson
data set (Stock and Watson, 2005) which consists of 131 macroeconomic aggregates. Ludvigson
and Ng (2009c) updated this data set so it now spans the time period 1964:01 — 2007:12. The

consistency of the estimated forecast function relies, among others, on the assumption that
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observable series are stationary. The series are therefore transformed to stationarity by taking
differences, by taking logarithms — and in some cases by doing both; see Appendix 1.D for
details. Finally, all transformed variables are standardized to have zero sample mean and unit

sample variance for factor extraction.

We use a recursive pseudo out-of-sample forecasting scheme to allow for a comparison of the
different forecasting procedures considered in the following. Concretely, we start with data from
1964:1 through 1984:12; we run the forecasting regression with dependent variables from 1965:1
to 1984:12 and predictors from 1964:1 to 1983:12. The outcome is used to forecast PI, IP,
UN and SL for 1985:12. We then expand the data set by one period to obtain the forecasts for
1986:1. The procedure is iterated until we obtain the last forecast, for 2007:12. (At the last step,
the independent variables from 1964:1 through 2005:12 and dependent variables from 1965:1 to

2006:12 are used to run the forecasting regressions to forecast 2007:12.)

1.4.2 Extracted factors

This section directs our focus to forecasting by using PCA-extracted factors from the data.
The results of this section shed light on whether forecasting with factors under asymmetric
loss is effective. Furthermore, we emphasize the importance of model selection and additional

information presented by volatility factor(s).

One of the common issues associated with factor-based forecasting approaches is the number
of factors to be extracted from the auxiliary data set. To set this in stone, we start by per-
forming the information criteria developed by Bai and Ng (2002), and used by Ludvigson and
Ng (2009a,c) and Bai and Ng (2011).% The criteria find eight factors in the Stock and Watson
data set. Factors are identified up to a rotation, so a comprehensive interpretation of extracted
factors is not straightforward. Stock and Watson (2002a) and Ludvigson and Ng (2009¢) report
marginal R?s of the regressions of each of the series against each of the eight factors they infer
from the information criteria. In line with their pre-classification of the dataset, they relate these
factors with real economy, output and unemployment series, Treasury Bills, commodity prices

and such. Note, however, that the forecasting procedure does not hinge on this classification.

For a closer look on the number of factors, we employ the tailored AIC, for a preliminary
check of the number of factors for the full time span. This preliminary exercise starts with
selecting among the 8 largest PCA-extracted factors which are chosen by the Bai and Ng (2002)
information criteria. In the second step, 9 factors are extracted from the auxiliary data and

selection is conducted among these 9, and so on. We stop at selection among the 15 largest

5Bai and Ng (2002) information criteria do not consider generalised loss functions. We apply these criteria to
give a preliminary idea about the number of the factors.
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PCA-extracted factors. The factors in each step are used in the predictive regressions to forecast
all four variables of interest after being subject to the model selection. The potential forecast
relevance of the factors then assessed; Table 1.1 reports the model (i.e. the factors) chosen by
minimizing AIC, among all factors in that particular step. The loss function is asymmetric
quadratic with p =2 and « € {0.1,0.3,0.5,0.7,0.9}.

As shown in the columns of Table 1.1, not all factors in each step are selected as predictors, at
least for the full data span. For example, for forecasting PI, in case of a = 0.1, all but fourth
factor are selected when selecting among the first 8 factors in total. For the same variable, when
a = 0.5, the forth and sixth factors are not identified as forecast relevant in the first step. For
all «, it turns out that the first 8 factors given by the information criteria are not all forecast-
relevant.” Increasing the number of factors to select from one by one, the already selected factors
do not generally change. In the last step of our exercise, we contemplate all 15 PCA-extracted
factors and note that some of the additional ones appear to be forecast relevant, while some
of the commonly used 8 largest factors do not. Changes on the selected factors are observed
depending on the chosen « values. This emphasises the differences on the relative importance

of the factors which changes with the loss function.

Evidence from this preliminary exercise suggests that the 9** factor is rarely chosen by the
tailored AIC, while forecasting PI and PI. On the contrary, it is consistently chosen in the
cases of UN and SL, for all a values. Additionally, factors beyond 9 appear to be forecast
relevant. Thus, we use 15 factors (the largest PCA-extracted ones) as benchmark rather than 8
largest factors found by the information criteria. To keep the complexity tractable, we do not

consider classical factors beyond these.

The extracted volatility factor(s) give(s) information which is not (linearly) contained in the
original series. According to the mentioned information criteria,® the PCA of the log-squared
residuals from the first-step factor analysis leads to only one additional factor to be taken into
account. We consider it as a predictor along with the factors extracted from the data in the
first step. While selecting the concrete predictive model for a given span of observations, the
volatility factor is subject to model selection with the tailored AIC alongside the other factors.

We also consider the squared volatility factor to better account for nonlinearities.

"The objective function of the AIC, targets the dependent variable whereas the PCA analysis aims to max-
imize the variance explained by factors. Due to the difference in the objective functions, the factors selected by
the information criteria do not always appear to be forecast relevant.

8Following Bai and Ng (2002), we rely on PC,, and PCp, as the other criteria tend to — unrealistically —
over-parameterize the model in our case.
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Table 1.1. Factors selected for predicting for all predictor series by AIC,; full data span
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1.4.3 Results

In this section, we discuss the results when model selection is conducted with the tailored
information criterion AIC,. For each «, we first estimate the respective predictive regression
by ordinary least squares (OLS) relying on the regressors in the benchmark models in recursive
manner. We construct one-year-ahead forecasts in each given step and evaluate the occurring
loss via the forecast errors under the relevant loss function. This approach is henceforth named
as OLS-Asymmetric Loss (OLS— AL). The second route to take here is estimating the regression
coefficients numerically directly by the aggregated observed loss and using them to construct
forecasts. This approach is named as Asymmetric Loss (AL) henceforth. For each variable of
interest, first OLS — AL losses are presented and followed by the AL losses. For a = 0.5, the
results of consecutive columns are the same, since for p = 2 and o = 0.5 the quadratic loss is

recovered.

Concentrating on the evaluation of the forecasts obtained using OLS vs. those obtained via
estimation under the relevant loss, one expects the average forecast loss of AL to be smaller
than the loss which occurs under OLS — AL; see the early work of Weiss and Andersen (1984).

We consider six cases in total. The first case uses only 15 factors for the forecasting exercise.
The second case also includes the factor extracted from the log-squared idiosyncratic components
Ut;. Thus, there are in total 16 factors for this case. The third case adds the squared volatility
factor after which we end up with 17 factors. We do not conduct model selection for Case 1,
Case 2 or Case 3. Case 4 is the counterparty of Case 1 with model selection by the tailored
AIC,. Similarly, Case 5 and 6 are model selection versions of Case 2 and 3, respectively. Note
that the model selection is performed in each recursive step. Moreover, one lag of the dependent
variable is added to the set of predictors in all cases (and is subject to model selection in Cases
4, 5 and 6). A second lag did not improve forecasting ability in any of the cases or for any of
the loss functions so we do not present those results here. Appendix 1.C contains the additional

results based on LASSO and post-fit LASSO model selection and estimation.

Table 1.2 summarizes the pseudo out-of-sample average forecast loss for each of the six cases.
We fix p = 2 and allow for different degrees of asymmetry by considering five as for the loss
function in Equation (1.2). For each of the six cases we consider, the goal is to forecast PI, IP,

UN and SL under two alternatives of forecast evaluation.

Evaluating the forecasts by the asymmetric loss function of choice leads to lower average losses

with the only exception of forecasting I P with o = 0.7 in Case 5.°

In some cases, we see that adding one extra factor, the volatility factor, improves the forecast

accuracy. OLS — AL and AL losses reported in case of & = 0.1 numerically demonstrate the

9Model selection conducted by LASSO and post-fit LASSO leads to similar findings; see Appendix 1.C.
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Table 1.2. Losses Evaluated for OLS-Asymmetric Loss and Asymmetric Loss

Alpha  Cases Plors-ar  Plar  IPors—ar IPar  UNors-ar UNar SLors-ar SLar

Case 1 0.2536 0.2023 0.1793 0.0988 0.0092 0.0054 0.8751 0.6065
Case 2 0.2532 0.2004 0.1845 0.1019 0.0092 0.0054 0.8978 0.6089
Case 3 0.2520 0.2042 0.1785 0.1009 0.0093 0.0055 0.8896 0.6129

0-1 Case 4 0.2493 0.1866 0.1852 0.0913 0.0086 0.0054 0.8236 0.6023
Case 5 0.2502 0.1872 0.1853 0.0911 0.0086 0.0054 0.8236 0.6023
Case 6 0.2501 0.1871 0.1832 0.0935 0.0086 0.0054 0.8236 0.6023
Case 1 0.2369 0.2232 0.1695 0.1494 0.0098 0.0092 0.8668 0.8149
Case 2 0.2365 0.2218 0.1728 0.1532 0.0099 0.0093 0.8794 0.8158
03 Case 3 0.2366 0.2231 0.1695 0.1520 0.0100 0.0093 0.8805 0.8220
Case 4 0.2345 0.2179 0.1650 0.1369 0.0094 0.0089 0.8235 0.7895
Case 5 0.2345 0.2179 0.1650 0.1369 0.0094 0.0089 0.8235 0.7895
Case 6 0.2345 0.2179 0.1655 0.1372 0.0094 0.0089 0.8235 0.7895
Case 1 0.2201 0.2201 0.1598 0.1598 0.0105 0.0105 0.8586 0.8586
Case 2 0.2198 0.2198 0.1611 0.1611 0.0106 0.0106 0.8611 0.8611
05 Case 3 0.2212 0.2212 0.1604 0.1604 0.0107 0.0107 0.8714 0.8714
Case 4 0.2162 0.2162 0.1419 0.1419 0.0099 0.0099 0.7930 0.7930
Case 5 0.2162 0.2162 0.1419 0.1419 0.0099 0.0099 0.7930 0.7930
Case 6 0.2162 0.2162 0.1419 0.1419 0.0099 0.0099 0.7934 0.7934
Case 1 0.2034 0.2006 0.1500 0.1419 0.0111 0.0098 0.8503 0.7890
Case 2 0.2031 0.2016 0.1494 0.1403 0.0113 0.0099 0.8427 0.7948
0.7 Case 3 0.2058 0.2035 0.1514 0.1404 0.0114 0.0100 0.8623 0.8086
Case 4 0.1980 0.1968 0.1288 0.1286 0.0106 0.0093 0.8033 0.7355
Case 5 0.1980 0.1968 0.1289 0.1292 0.0106 0.0093 0.8034 0.7389
Case 6 0.1980 0.1968 0.1293 0.1286 0.0106 0.0094 0.8033 0.7387
Case 1 0.1866 0.1537 0.1403 0.0848 0.0118 0.0064 0.8420 0.5554
Case 2 0.1864 0.1555 0.1377 0.0834 0.0121 0.0066 0.8244 0.5674
0.9 Case 3 0.1903 0.1577 0.1423 0.0839 0.0121 0.0065 0.8531 0.5840
Case 4 0.1936 0.1484 0.1194 0.0819 0.0114 0.0063 0.8122 0.5309
Case 5 0.1936 0.1484 0.1193 0.0835 0.0116 0.0064 0.8091 0.5357

Case 6 0.1936 0.1484 0.1224 0.0816 0.0114 0.0065 0.8109 0.5356

Notes: The losses are evaluated using asymmetric quadratic loss functions within a recursive pseudo-out-of-sample setup. See the text for
details. The dataset for factor extraction includes the dependent variables.

improvement from Case 1 to Case 2. Due to the exceptions, this cannot be generalised over
all cases and all variables. Adding the squared volatility factor improves the forecasts of some
variables under different loss forecast asymmetries, such as for Plprs_ a1, for a = 0.1. However,
for the same asymmetry switching from Case 2 to Case 3 in AL, PI forecast losses point out

otherwise, illustrated by increasing forecast losses with the inclusion of this additional factor.

We shape our analysis to proceed with forecasting four macroeconomic variables with forecast
relevant factors. As shown in Table 1.2, selecting among all the factors included in the system
results with smaller forecast losses. Comparisons of Case 1 and 4, Case 2 and 5 and Case 3 and 6
point out that variable selection leads to smaller losses. Given the small number of exceptions!?,

the analysis addresses strong evidence for variable selection by the tailored information criterion

10 he exceptions are OLS — AL IP Cases 4, 5 and 6 for « = 0.1. Plors—ar Cases 4, 5 and 6 for a = 0.9.
Plap Case 5 for a =0.9
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AIC, being useful.

Our analysis is not designed to select an “optimal” «, since « is imposed by the beneficiary of
the forecast i.e. the corresponding loss preferences. Yet, our results can still deliver some insight
on the matter. For forecasting unemployment rate, « = 0.1 appears to be the optimal value
which leads to the smallest forecast losses for all cases. For the other three variables, a = 0.9

results with the smallest forecast errors for all cases.

We additionally compared the OLS — AL and AL forecasts with the help of the Diebold-Mariano
[DM] test for predictive accuracy (Diebold and Mariano, 1995). The null hypothesis is that the
expected forecast loss is equal for both procedures of interest, gﬁr)h and gjt(i)h. The losses implied
by these forecasts are E(f)&)h) and /L(T)ﬁ) ). Under the null hypothesis, Hy : E (E(f)gr)h)) =
E (E(ﬁg)h» or Hy : E(d;) = 0 where d; = E(ﬁg)h) - E(f)gr)h) is the loss differential, the DM
test statistic is S = d/(Lrv(d)/T)"> ~ N(0,1) where T is the number of forecast errors available
for comparison and LRV is an estimate of the asymptotic (long-run) variance of VTd. Since
we compute differences between AL and OLS — AL, we may expect test statistics to be smaller

than -1.645 at the 5% significance level when OLS — AL is inferior.

Table 1.3. Tests of equal predictive accuracy of OLS and AL based forecasts

Alpha Cases DM Test PI DM Test I[P DM Test UN DM Test SL

Case 1 —3.07% —3.07% —2.971% —2.72%
Case 2 -3.67* —-2.93* —2.85* —2.76*
0.1 Case 3 —3.46* —2.68* —2.80* —2.72*
: Case 4 —2.69* —-3.61* —2.83* —2.57*
Case 5 —2.70* -3.63* —2.83* —2.57*
Case 6 —-2.70* -3.16* —2.83* —2.57*

Case 1 —2.28% —1.57 —0.91 —1.50

Case 2 —2.82* —1.44 —0.87 —1.85*

0.3 Case 3 —2.54* —1.22 -0.93 —1.76*
) Case 4 —3.04* —2.28* —0.79 —1.32
Case 5 —3.04* —2.28* —0.79 —-1.32

Case 6 —3.04* —2.15* —0.79 —-1.32

Case 1 —0.29 —2.30% —1.62 —0.37

Case 2 0.76 0.89 —1.85* 1.99

05 Case 3 —0.62 0.98 —1.04 0.52
: Case 4 0.92 —1.36 —0.33 0.99
Case 5 0.92 —1.36 -0.33 0.99

Case 6 0.92 —0.87 -0.33 1.55

Case 1 —0.48 —0.65 —1.54 —2.88%

Case 2 —0.27 —0.70 —1.65* —2.25*

0.7 Case 3 -0.39 —0.80 —1.50 —2.32*
) Case 4 —0.27 -0.01 —1.92* —2.69*
Case 5 -0.27 0.03 —1.92* —2.45*

Case 6 —0.27 —0.06 —1.79* —2.46*

Case 1 —2.02% —2.19% —2.93% —4.97%

Case 2 —-1.73* —2.18* —3.06* —4.86*

0.9 Case 3 —1.78* —2.20* —2.97* —4.60*
) Case 4 —-2.51* —1.74* -3.37* —3.83*
Case 5 —2.51* —1.59 —3.51* —3.62*

Case 6 —2.51% —1.83* —-3.13* —-3.63*

Notes: The null hypothesis for the test is Ho : F[d¢] = 0 where d¢ = L(044p) — L(Tpqp) with 04
the forecast errors from OLS based forecasts and ¥; ) the asymmetric loss forecast errors. For the
one sided test with the alternative hypothesis Hqg : E[d¢] > 0, the test statistic should be smaller than
-1.645 for 5% significance. Significant outcomes are marked with an asterisk.
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Table 1.3 reports the DM statistics of the comparison between the OLS based forecasts and
Asymmetric Loss based forecasts. The test statistics confirm our expectations for o = 0.1
without any exceptions. Except for PI, test statistics are insignificant for o = 0.3. The forecasts
are not significantly better or worse for o = 0.5 '' but remain insignificant for @ = 0.7 except
significant results for Sales. For a being 0.9 the test gives significant results for all six cases and

all variables.

1.5 Concluding remarks

The forecasting literature often focusses on MSE-optimal forecasts. Yet there is evidence em-
phasising the relevance of more general loss functions in concrete situations. In this paper, we
incorporate some aspects of forecasting under asymmetric loss functions in factor-based predic-
tive regressions. First, we show that one may estimate predictive regressions under the relevant
loss by plugging in factors extracted from a data set by means of a first-step principal components
analysis. The estimated optimal forecast from the feasible regression converges in probability
to the theoretical optimal forecast. Second, we address the relevance of the estimated factors
by assessing whether they are forecast-relevant under a given loss function. To this end, we
employ tailored information criteria and consider the factors with highest predictive powers for
forecasting purposes. Moreover, we argue that principal component analysis does not always
extract all relevant information: we analyze the variability of the predictor series and include
corresponding additional information in the forecasting model, namely a factor extracted from

the log-squared idiosyncratic components estimated in the first-step PCA.

We then illustrate the discussion by forecasting the Personal Income, Industrial Production,
Unemployment Rate and Retail Sales series from the Stock and Watson data set. We resort to a
recursive pseudo out-of-sample forecast evaluation scheme where the factors are extracted from
a subset of the Stock and Watson data and used for forecasting one-year-ahead values of PI, I P,
UN and SL under several asymmetric power loss functions. We compare six forecasting models
(Case 1: fifteen factors; Case 2: fifteen factors and the volatility factor; Case 3: fifteen factors,
the volatility factor and squared volatility factor, Case 4: selection of forecast-relevant factors
among fifteen, Case 5: selection of forecast-relevant factors among sixteen, Case 6: selection
of forecast-relevant factors among seventeen) for different parameter values when the p = 2
is fixed. Expectedly, fitting the forecasting model under the relevant loss function leads to

smaller averaged losses compared to the case when we use MSE in the majority of cases. Adding

"The loss differential should be zero when o = 0.5 and p = 2 as OLS — AL and AL are identical for this
particular case. The OLS — AL and the AL estimators for o = 0.5 are however computed in a different manner
(via the QR decomposition for OLS and by numerical optimization for AL), hence some negligible numerical
differences arise resulting in non-zero but insignificant DM statistics.
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volatility information sometimes improves the forecasts. Model selection taking the relevant loss

into account leads to overall best results.

Both our theoretical and empirical results underscore the importance of using forecast-relevant
information by estimating factors from an auxiliary data set to exploit the additional information
(i.e. the volatility factor in our case). Also relevant, if not even more so, is the issue of choosing
the most relevant information for the particular loss function used to define optimality of the

forecast.
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Appendix 1

1.A An information criterion

Following Akaike (1973), the definition of the information criterion in form of a penalized log-
likelihood leads to
AIC (k) = =210 (L (k) + 2k

with L (k) denoting the maximum of the likelihood function for model complexity k.

Suppose now that the error term in the model of interest follows an asymmetric (exponential)
power distribution as characterized by Ayebo and Kozubowski (2003) and Komunjer (2007)'2

with density function

1 P
ox —6($I(v§0)+ml(v>0)> El

J0)= ——e
)

Q
=
N
[u—
+
>

20 (1—a )

where 0 = P an™ Quasi-ML estimation of a regression model assuming v; ~ f is then
easily shown to be equivalent to estimation under the loss function £ with parameters p = A
and o = 1=

(T—an)P+al

After concentrating out o, some algebra leads to
2 . 2k
AICE (K) = ~In (> L)+ =

with 0, the residuals from estimation of the predictive regression under the relevant loss L.

This reduces to the AIC when L is the squared-error loss function. Note that AIC, differs from
the IC proposed by (Weiss, 1996, Section 5) in two important respects. First, Weiss focusses
on comparing forecasts from models based on different loss functions, while we are interested in
selecting the best forecasting model for a given loss function; second, the expression he arrives

at is not scale invariant, whereas, for the loss function in (1.2), AIC is.

1.B Proof of Proposition 1

Note first that £ is continuous and piecewise linear for p = 1, while, for p > 1 it is smooth with

continuous and piecewise linear p — 1st order derivative.

2They introduce asymmetry in the exponential power (also generalized power, or generalized error) distribution
by using the method discussed in Fernandez et al. (1995). An alternative way of “skewing” the exponential power
distribution is based on the approach of Azzalini (1985).
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The target function is given by
Q (a;7 b27 C*v Qaj, bk7 C)

1 T * d * a * [
=7 > L (yt+h =Y Ay = Y bkftvk)
j=1 k=1

t=p+1

T T T
= % Z L (Ut-i—h —(c*—¢) — Z (a; — a_j) Yt—j+1 — Z (b — b) fr + Z by, (ft,k — ftk)) .
k=1

t=p+1 j=1 k=1

In a first step, we show that
Q (a;f, by, ¢*, aj, by, C)

T T
= % Z E (Ut+h — (C* — C) — Z (a;< — aj) ytfj+1 — Z (bz - bk) fak) + Op (1)

t=p+1 j=1 k=1
where the op,(1) term is uniform in ¢ as follows.

Let
q r

G = Vepn — (" —¢) — Z (a; - aj) Yt—j+1 — Z (b, = br) fr.
j= k=1
and Ag = > 5 b, (ft,k - ftk)

For p =1, £ is Lipschitz such that
1L (g + Aqr) — L(q)| < C|Aq,

which can be re-written as

L(q+ Aq) = L(q) +C&

where [&| < [Ag.

For p = 2, use the mean value theorem, and, for p > 2, a Taylor expansion of order p — 1 with

the rest term in differential form, to obtain that

1
(p—1)!

L(q+Aq)=L(q)+ L (q) Agr + ...+ L0V (g + &) (Ag)P ™

21



Chapter 1

where again || < |Ag|. Summing up, we obtain

1 T
Q(a;,bz,c*,a]‘,bk,C) _T Z E(Qt+Aqt)

t=p+1

Sl () J 1 L\ (r-1) Ag, P!
szzllet:p;l‘E (Qt)"(AQt)‘+(p_1)!Tt:§p;r1’£ (Qt+§t)H( at) ‘

Note that £P~Y is Lipschitz continuous, so we have that
070 (4 &) = L0V (ar)| < Ol < ClAg

and it follows that

1 T
Q(Q;,bz7c*7aj7bk76) _T Z E(Qt‘i‘Aqt)

t=p+1

<CZ Z 1£9) (g, ‘|Aqt|]+C’ Z ]cp Y (g0)| | Al 1+0T Z Agel”.
1 t=p+1 t=p+1

Proposition 2 in Bai (2003) establishes that sup, ‘ fie — ftk’ 25 0 for all k, so we have immediately
that sup, |Ag |’ 2 0, such that

— Z |Aqt|p —> 0.
_P+1

Moreover, for all 1 < j7 <p—1,

T Z ‘ﬁp b (gt ”ACMP 1<SUP|AQt|p ! Z ‘ﬁj) Qt‘
t p+1 t p+1

since ‘L'(j) (qt)‘ <C |qt]j for suitable C', and ¢ has finite pth order moments (because vy p, Yt
and f;; do), such that, thanks to the Markov’s inequality, % ZtT:p 1 \qt|j is uniformly bounded
in probability.

Then, we resort to the ergodic law of large numbers to establish that
T

P,
Z L(g:) = E (L (at))

t=p+1

pointwise in the parameter space. To this end note that y,; is a stable AR filtering of vy, and

Y ohe1bkftk, SO Yt,Yt—1, ..., ftk, Vesn is a jointly stationary and ergodic process, and that the
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finiteness of E (|£ (¢)|) is given since
L(g) < Clasl”,

where the expectation of the r.h.s. is finite whenever [|¢[|, = {/E (|¢:|") is finite. But Minkowski’s
inequality indicates that [|g[|, is finite whenever the L, norm of y; and f is finite, which is

the case given that y; and f;; have finite pth order moments.

Hence

Q (a;abZ;aC*’aj,bk,C) g E (E (Ut-i-h _ (C* _ C) _

i (a;’ - aj) Ye—j+1 — XT: (b — k) ft,k))
=1

J k=1

pointwise. Since £ is convex, Lemma II.1 of Andersen and Gill (1982) applies such that the

above convergence is uniform on any compact set.

Finally, we only have to check that the above expectation is minimized for a; = aj, by = by

and c* = ¢; given the continuity of Q, consistency of the estimators aj;, b and ¢ follows via
the continuity of the argmin operator w.r.t. the sup norm. To this end, note that, since the
generalized forecast error is a martingale difference sequence with no atom at the origin, it holds
that

argmin E (£ (veyn — 0™ yi—j, fr)) =0

V¥

uniquely, implying that, for any v* # 0,

E(£ (Ut+h —'U*)) = E(E (ﬁ(vt+h_v*|yt7j7ft)))
> E(E(L(virnlyi—j, J1) = E (L (vign))

such that E (C (vt+h — Z?Zl (aj — a]-) Yt—j+1 — 2ope (07 — bi) Ftk>> must be minimized for
‘ (a;f - aj) Yieji1 — by (b5 — bg) for = 0 which, with y; and f,; linearly independent

stochastic processes, is only the case when a —a; = by —by =0foralll1 <j<gand 1<k <r.

The consistency of the forecast function follows immediately.

1.C Model selection using the LASSO

The basic flavor

The LASSO estimator minimizes here the target function

Z‘C (vign) + X871,
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where B* stacks all parameters of the predictive regression (1.10), vy, , are the forecast errors
implied by 8*, and || - ||; stands for the L; vector norm. The penalty parameter A controls the
relative importance of the shrinkage term A |[|8*[|;. In spite of this not being a penalized OLS
regression as originally discussed by Tibshirani (1994), the essential properties of the LASSO
plausibly hold: if £ is smooth, the non-smooth nature of the L; constraint may still force some of
the estimates to be exactly zero — which is in effect selection among the regressors; cf. Tibshirani
(1994).

For the full data span, we compare now the LASSO-supported model selection with the exercise
in Table 1.1. Choosing a high A leads to a parsimonious model; the penalty parameter is
decreased to allow for more flexible models. Table 1.4 gives an outline of the resulting models
selected for the dependent variable Personal Income over the the full data span. We restrict
ourselves to a = 0.5 for the illustration, but otherwise this is the LASSO analog of Table 1.1.
The columns of Table 1.4 show the selected factors while we consider model selection among 8
through 15 factors. In the initial stage of the step with a total of 8 factors (second column),
LASSO with high penalty parameter selects the first factor. The smaller the penalty parameters
gets, the more flexible the model becomes and includes other factors one at the time when
wise decreasing A. The seventh factor is chosen as the second relevant which is followed by the
selection of the fifth. Eventually A reaches 0 and LASSO chooses all 8 factors. The same is done

for a total of 9 factors in the third column etc.

The main message is, again, concerning the order in which the factors are included in the
forecasting model. The LASSO attaches different importance on the factors which is indeed
different than the order of the PCA extraction of these factors. For instance, the second factor
by PCA is the sixth most important among 8 factors as exhibited in the second column of Table
1.4. Added factors as A decreases also show resemblance with the tailored AIC results when
we contemplate more than 8 factors. Jumping right to the case with 15 factors, in the last
column of the table, the steps demonstrate the relevance of the factors starting with the most
parsimonious model just with the first factor. As A gets smaller, eleventh, seventh, tenth factors
and so on are chosen until the process ends with the selection of the twelfth factor, the most

irrelevant one.
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Table 1.4. Selection of Factors (LASSO), full data span

Stage Added Factors
1] 1 1 1 1 1 1 1 1
207 7 7 11 11 11 11 11
3 5 5 10 7 7 7 7 7
41 8 8 5 10 10 10 10 10
51 3 3 8 5 5 13 13 13
6] 2 2 3 8 8 5 5 5
7| 6 6 2 3 3 8 8 15
8| 4 9 6 2 2 3 3 8
9 4 9 6 6 2 2 3
10 4 9 9 6 14 2
11 4 4 9 6 14
12 12 4 9 6
13 12 4 9
14 12 4
15 12

Notes: The LASSO is investigated for model selection when the dependent vari-

able is Personal Income and the loss is quadratic. See the text for details.

For the actual forecasting exercise with LASSO as model selection tool, the actual selection of

the penalty parameter A (implying the selection of a specific predictive model) is conducted with
the help of the modified AIC.

Some refinements

Belloni and Chernozhukov (2013) proposed several refinements of the LASSO. The most promi-
nent variant is the post-fit LASSO which performs as good as LASSO, in some cases even better
and has smaller bias (at least for OLS-based LASSO). In addition to post-fit LASSO, Belloni
and Chernozhukov proposed post-LASSO and post-threshold LASSO; the former has slightly
inferior performance compared to the post-fit LASSO while the latter is beyond the scope of
this exercise. Therefore, we also considered the post-fit LASSO.

Tables 1.5 and 1.6 illustrate the losses evaluated the same way as the construction of Table 1.2

(see Section 2.4) however the model selection method differs here. Basically, both LASSO and
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post-fit LASSO are employed instead of tailored AIC. Hence, the results of Cases 4, Case 5 and

Case 6 are reported below for both methods.

For the post-fit LASSO, Tables 1.5 and 1.6 use different penalty parameters which is enabled by
the different choice of a tuning parameter introduced by Belloni and Chernozhukov (2013). The
penalty parameter for the former table is simulated to be high, while, for the latter, we generate
the results by using a low penalty parameter which leads a more flexible model.'> The average
losses for Case 1, 2 and 3 are the same as in Table 1.2 and Case 4 LASSO, Case 5 LASSO and
Case 6 LASSO results are numerically identical on the Tables 1.5 and 1.6 which are provided

just for comparison. The interpretation of the results is almost similar to the case of tailored
AIC.

BFor Table 1.5, a high penalty parameter is obtained by choosing the tuning parameter low, 0.05 for this
particular case. Table 1.6 is generated with a low penalty parameter which is simulated when the tuning parameter
is chosen to be 0.95.
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Table 1.5. Average Losses with LASSO-based model selection - Parsimonious post-fit LASSO

Alpha  Cases Plops—ar  Plar  IPors—arL IPar  UNops—ar UNar SLorLs—arL SLar
Case 1 0.2536 0.2023 0.1793 0.0988 0.0092 0.0054 0.8751 0.6065

Case 2 0.2532 0.2004 0.1845 0.1019 0.0094 0.0054 0.9153 0.6035

Case 3 0.2520 0.2042 0.1785 0.1009 0.0096 0.0055 0.9176 0.6137

Case 4 LASSO 0.2570 0.1861 0.1799 0.0949 0.0092 0.0052 0.8556 0.5883

0.1 Case 5 LASSO 0.2587 0.1877 0.1847 0.0967 0.0092 0.0052 0.8535 0.5874
Case 6 LASSO 0.2529 0.1944 0.1765 0.0966 0.0092 0.0052 0.8515 0.5934

Case 4 post-fit LASSO 0.2386 0.1791 0.1690 0.0851 0.0085 0.0051 0.7947 0.5443

Case 5 post-fit LASSO 0.2385 0.1791 0.1676 0.0846 0.0085 0.0051 0.7943 0.5440

Case 6 post-fit LASSO 0.2389 0.1823 0.1697 0.0898 0.0085 0.0051 0.7946 0.5444

Case 1 0.2369 0.2232 0.1695 0.1494 0.0098 0.0092 0.8668 0.8149

Case 2 0.2365 0.2218 0.1728 0.1532 0.0100 0.0092 0.8859 0.8119

Case 3 0.2366 0.2231 0.1695 0.1520 0.0102 0.0093 0.8945 0.8247

Case 4 LASSO 0.2425 0.2241 0.1716 0.1477 0.0098 0.0090 0.8271 0.7843

0.3 Case 5 LASSO 0.2391 0.2188 0.1719 0.1469 0.0099 0.0091 0.8160 0.7716
Case 6 LASSO 0.2374 0.2177 0.1694 0.1482 0.0098 0.0090 0.8176 0.7760

Case 4 post-fit LASSO 0.2234 0.2079 0.1580 0.1335 0.0091 0.0086 0.7859 0.7466

Case 5 post-fit LASSO 0.2234 0.2079 0.1560 0.1316 0.0091 0.0086 0.7859 0.7466

Case 6 post-fit LASSO 0.2235 0.2083 0.1576 0.1350 0.0091 0.0086 0.7859 0.7466

Case 1 0.2201 0.2201 0.1598 0.1598 0.0105 0.0105 0.8586 0.8586

Case 2 0.2198 0.2198 0.1611 0.1611 0.0106 0.0106 0.8564 0.8564

Case 3 0.2212 0.2212 0.1604 0.1604 0.0108 0.0108 0.8714 0.8714

Case 4 LASSO 0.2233 0.2233 0.1599 0.1599 0.0103 0.0103 0.8093 0.8093

0.5 Case 5 LASSO 0.2229 0.2229 0.1593 0.1593 0.0105 0.0105 0.8079 0.8079
Case 6 LASSO 0.2229 0.2229 0.1591 0.1591 0.0104 0.0104 0.8086 0.8086

Case 4 post-fit LASSO 0.2104 0.2104 0.1400 0.1400 0.0098 0.0098 0.7792 0.7792

Case 5 post-fit LASSO 0.2104 0.2104 0.1399 0.1399 0.0098 0.0098 0.7792 0.7792

Case 6 post-fit LASSO 0.2111 0.2111 0.1409 0.1409 0.0098 0.0098 0.7792 0.7792

Case 1 0.2034 0.2006 0.1500 0.1419 0.0111 0.0098 0.8503 0.7890

Case 2 0.2031 0.2016 0.1494 0.1403 0.0111 0.0099 0.8269 0.7889

Case 3 0.2058 0.2035 0.1514 0.1404 0.0114 0.0102 0.8484 0.8047

Case 4 LASSO 0.2030 0.2011 0.1506 0.1439 0.0110 0.0099 0.8044 0.7413

0.7 Case 5 LASSO 0.2036 0.2015 0.1490 0.1440 0.0112 0.0100 0.8010 0.7392
Case 6 LASSO 0.2052 0.2029 0.1500 0.1428 0.0112 0.0101 0.8037 0.7411

Case 4 post-fit LASSO 0.1975 0.1950 0.1255 0.1257 0.0104 0.0090 0.7726 0.7099

Case 5 post-fit LASSO 0.1975 0.1950 0.1254 0.1253 0.0105 0.0091 0.7726 0.7099

Case 6 post-fit LASSO 0.1987 0.1958 0.1321 0.1294 0.0105 0.0091 0.7726 0.7099

Case 1 0.1866 0.1537 0.1403 0.0848 0.0118 0.0064 0.8420 0.5554

Case 2 0.1864 0.1555 0.1377 0.0834 0.0117 0.0066 0.7975 0.5728

Case 3 0.1903 0.1577 0.1423 0.0839 0.0119 0.0066 0.8253 0.5922

Case 4 LASSO 0.1836 0.1500 0.1411 0.0877 0.0116 0.0064 0.8062 0.5314

0.9 Case 5 LASSO 0.1868 0.1511 0.1386 0.0890 0.0119 0.0066 0.8001 0.5321
Case 6 LASSO 0.1872 0.1516 0.1415 0.0891 0.0119 0.0065 0.8016 0.5383

Case 4 post-fit LASSO 0.1845 0.1515 0.1186 0.0817 0.0111 0.0055 0.7659 0.4984

Case 5 post-fit LASSO 0.1845 0.1515 0.1166 0.0810 0.0112 0.0056 0.7659 0.4984

Case 6 post-fit LASSO 0.1862 0.1526 0.1216 0.0810 0.0112 0.0056 0.7659 0.4984

Notes: The construction of this table follows that of Table 1.2. The only difference is that there are two selection methods reported for Case 3 and 4. First method uses LASSO by Tibshirani (1994) with AIC,
choice of the penalty parameter A, while the second uses post-fit LASSO by Belloni and Chernozhukov (2013). Post-fit LASSO require pre specification of a tuning parameter which is used to simulate the penalty
parameter. Here, the penalty is chosen to be high through the tuning parameter (0.05) which leads to a parsimonious model.
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Table 1.6. Average Losses with LASSO-based model selection - Flexible post-fit LASSO

Alpha  Cases Plors—ar  Plar  IPors—arL IPar  UNops—ar UNar SLors—arL SLar
Case 1 0.2536 0.2023 0.1793 0.0988 0.0092 0.0054 0.8751 0.6065

Case 2 0.2532 0.2004 0.1845 0.1019 0.0094 0.0054 0.9153 0.6035

Case 3 0.2520 0.2042 0.1785 0.1009 0.0096 0.0055 0.9176 0.6137

Case 4 LASSO 0.2570 0.1861 0.1799 0.0949 0.0092 0.0052 0.8556 0.5883

0.1 Case 5 LASSO 0.2587 0.1877 0.1847 0.0967 0.0092 0.0052 0.8535 0.5874
Case 6 LASSO 0.2529 0.1944 0.1765 0.0966 0.0092 0.0052 0.8515 0.5934

Case 4 post-fit LASSO 0.2529 0.1907 0.1737 0.0925 0.0088 0.0052 0.7998 0.5732

Case 5 post-fit LASSO 0.2515 0.1904 0.1722 0.0888 0.0087 0.0052 0.7946 0.5683

Case 6 post-fit LASSO 0.2511 0.1889 0.1696 0.0924 0.0088 0.0052 0.7948 0.5762

Case 1 0.2369 0.2232 0.1695 0.1494 0.0098 0.0092 0.8668 0.8149

Case 2 0.2365 0.2218 0.1728 0.1532 0.0100 0.0092 0.8859 0.8119

Case 3 0.2366 0.2231 0.1695 0.1520 0.0102 0.0093 0.8945 0.8247

Case 4 LASSO 0.2425 0.2241 0.1716 0.1477 0.0098 0.0090 0.8271 0.7843

0.3 Case 5 LASSO 0.2391 0.2188 0.1719 0.1469 0.0099 0.0091 0.8160 0.7716
Case 6 LASSO 0.2374 0.2177 0.1694 0.1482 0.0098 0.0090 0.8176 0.7760

Case 4 post-fit LASSO 0.2351 0.2178 0.1664 0.1460 0.0096 0.0090 0.8165 0.7943

Case 5 post-fit LASSO 0.2352 0.2182 0.1676 0.1458 0.0096 0.0090 0.8202 0.7983

Case 6 post-fit LASSO 0.2374 0.2205 0.1647 0.1456 0.0097 0.0090 0.8303 0.8065

Case 1 0.2201 0.2201 0.1598 0.1598 0.0105 0.0105 0.8586 0.8586

Case 2 0.2198 0.2198 0.1611 0.1611 0.0106 0.0106 0.8564 0.8564

Case 3 0.2212 0.2212 0.1604 0.1604 0.0108 0.0108 0.8714 0.8714

Case 4 LASSO 0.2233 0.2233 0.1599 0.1599 0.0103 0.0103 0.8093 0.8093

0.5 Case 5 LASSO 0.2229 0.2229 0.1593 0.1593 0.0105 0.0105 0.8079 0.8079
Case 6 LASSO 0.2229 0.2229 0.1591 0.1591 0.0104 0.0104 0.8086 0.8086

Case 4 post-fit LASSO 0.2163 0.2163 0.1624 0.1624 0.0103 0.0103 0.8264 0.8264

Case 5 post-fit LASSO 0.2172 0.2172 0.1601 0.1601 0.0103 0.0103 0.8263 0.8263

Case 6 post-fit LASSO 0.2193 0.2193 0.1605 0.1605 0.0103 0.0103 0.8211 0.8211

Case 1 0.2034 0.2006 0.1500 0.1419 0.0111 0.0098 0.8503 0.7890

Case 2 0.2031 0.2016 0.1494 0.1403 0.0111 0.0099 0.8269 0.7889

Case 3 0.2058 0.2035 0.1514 0.1404 0.0114 0.0102 0.8484 0.8047

Case 4 LASSO 0.2030 0.2011 0.1506 0.1439 0.0110 0.0099 0.8044 0.7413

0.7 Case 5 LASSO 0.2036 0.2015 0.1490 0.1440 0.0112 0.0100 0.8010 0.7392
Case 6 LASSO 0.2052 0.2029 0.1500 0.1428 0.0112 0.0101 0.8037 0.7411

Case 4 post-fit LASSO 0.2007 0.1995 0.1483 0.1409 0.0109 0.0096 0.8350 0.7524

Case 5 post-fit LASSO 0.2012 0.1995 0.1498 0.1435 0.0110 0.0097 0.8322 0.7506

Case 6 post-fit LASSO 0.2038 0.2022 0.1510 0.1434 0.0110 0.0097 0.8497 0.7690

Case 1 0.1866 0.1537 0.1403 0.0848 0.0118 0.0064 0.8420 0.5554

Case 2 0.1864 0.1555 0.1377 0.0834 0.0117 0.0066 0.7975 0.5728

Case 3 0.1903 0.1577 0.1423 0.0839 0.0119 0.0066 0.8253 0.5922

Case 4 LASSO 0.1836 0.1500 0.1411 0.0877 0.0116 0.0064 0.8062 0.56314

0.9 Case 5 LASSO 0.1868 0.1511 0.1386 0.0890 0.0119 0.0066 0.8001 0.5321
Case 6 LASSO 0.1872 0.1516 0.1415 0.0891 0.0119 0.0065 0.8016 0.5383

Case 4 post-fit LASSO 0.1842 0.1520 0.1338 0.0843 0.0116 0.0063 0.8472 0.5338

Case 5 post-fit LASSO 0.1853 0.1523 0.1302 0.0840 0.0118 0.0064 0.8452 0.56303

Case 6 post-fit LASSO 0.1870 0.1557 0.1439 0.0896 0.0118 0.0065 0.8547 0.5408

Notes: Here, the penalty is chosen to be low through the tuning parameter (0.95) which leads to a more flexible model. See Tablel.5 for further details.
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1.D Data description

All series are from the Global Insights Basic Economics Database, unless the source is listed (in parentheses) as TCB (The Conference Boards Indicators Database) or AC

(authors calculation based on Global Insights or TCB data). Transformation codes are indicated in the column named Tcode. 1 indicates levels of the series, 2 and 3 denote

the first and the second differences, respectively and 4 means logarithm, 5 and 6 respectively indicate the first and the second differences of the logarithm of the series.

Mnemonic  Short Desc Tcode  Description
1 ypr PI 5 Personal Income (Ar, Bil. Chain 2000 $)
2 a0mo051 PI less transfers 5 Personal Income Less Transfer Payments (Ar, Bil. Chain 2000 $)
3  consr Consumption 5 Real Consumption (Ac) AOM224/Gmdc
4 mtq M&T sales 5 Manufacturing And Trade Sales (Mil. Chain 1996 $)
5 a0m059 Retail sales 5 Sales Of Retail Stores (Mil. Chain 2000 $)
6 ipsl0 IP: total 5 Industrial Production Index - Total Index
7  ipsll IP: products 5 Industrial Production Index - Products, Total
8  ips299 IP: final prod 5 Industrial Production Index - Final Products
9 ipsl2 IP: cons gds 5 Industrial Production Index - Consumer Goods
10 ipsl3 IP: cons dble 5 Industrial Production Index - Durable Consumer Goods
11 ipsl8 iIP:cons nondble 5 Industrial Production Index - Nondurable Consumer Goods
12 ips25 IP:bus eqpt 5 Industrial Production Index - Business Equipment
13 ips32 IP: matls 5 Industrial Production Index - Materials
14  ips34 IP: dble mats 5 Industrial Production Index - Durable Goods Materials
15  ips38 IP:nondble mats 5 Industrial Production Index - Nondurable Goods Materials
16  ips43 IP: mfg 5 Industrial Production Index - Manufacturing (Sic)
17 ips307 IP: res util 5 Industrial Production Index - Residential Utilities
18  ips306 IP: fuels 5 Industrial Production Index - Fuels
19 pmp NAPM prodn 1 NAPM Production Index (Percent)
20 utlll Cap util 2 Capacity Utilization (Mfg)
21 lhel Help wanted indx 2 Index Of Help-Wanted Advertising In Newspapers (1967=100;Sa)
22 lhelx Help wanted/emp 2 Employment: Ratio; Help-Wanted Ads:No. Unemployed Clf
23 lhem Emp CPS total 5 Civilian Labor Force: Employed, Total (Thous.,Sa)
24  lhnag Emp CPS nonag 5 Civilian Labor Force: Employed, Nonagric.Industries (Thous.,Sa)
25  lhur U: all 2 Unemployment Rate: All Workers, 16 Years & Over (%,5a)
26 1hu680 U: mean duration 2 Unemploy.By Duration: Average(Mean)Duration In Weeks (Sa)
27  lhub U < 5 wks 5 Unemploy.By Duration: Persons Unempl.Less Than 5 Wks (Thous.,Sa)
28  lhul4 U 5-14 wks 5 Unemploy.By Duration: Persons Unempl.5 To 14 Wks (Thous.,Sa)
29  lhulb U 15+ wks 5 Unemploy.By Duration: Persons Unempl.15 Wks + (Thous.,Sa)
30 1hu26 U 15-26 wks 5 Unemploy.By Duration: Persons Unempl.15 To 26 Wks (Thous.,Sa)
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Mnemonic  Short Desciption Tcode  Description
31  1hu27 U 27+ wks 5 Unemploy.By Duration: Persons Unempl.27 Wks + (Thous,Sa)
32  claimuii UI claims 5 Average Weekly Initial Claims, Unemploy. Insurance (Thous.)
33 ces002 Emp: total 5 Employees On Nonfarm Payrolls - Total Private
34 ces003 Emp: gds prod 5 Employees On Nonfarm Payrolls - Goods-Producing
35  ces006 Emp: mining 5 Employees On Nonfarm Payrolls - Mining
36  cesO11 Emp: const 5 Employees On Nonfarm Payrolls - Construction
37  ces015 Emp: mfg 5 Employees On Nonfarm Payrolls - Manufacturing
38  ces017 Emp: dble gds 5 Employees On Nonfarm Payrolls - Durable Goods
39  ces033 Emp: nondbles 5 Employees On Nonfarm Payrolls - Nondurable Goods
40  ces046 Emp: services 5 Employees On Nonfarm Payrolls - Service-Providing
41  ces048 Emp: TTU 5 Employees On Nonfarm Payrolls - Trade, Transportation, And Utilities
42 ces049 Emp: wholesale 5 Employees On Nonfarm Payrolls - Wholesale Trade
43 ces053 Emp: retail 5 Employees On Nonfarm Payrolls - Retail Trade
44 ces088 Emp: fire 5 Employees On Nonfarm Payrolls - Financial Activities
45  ces140 Emp: Govt 5 Employees On Nonfarm Payrolls - Government
46  cesl5l Avg hrs 1 Avg WKkly Hours, Prod Wrkrs, Nonfarm - Goods-Producing
47  ceslbb Overtime: mfg 2 Average Weekly Hours Of Production Or Nonsupervisory Workers On Private Nonfar
48  a0mo001 Avg hrs: mfg 1 Average Weekly Hours, Mfg. (Hours)
49 pmemp NAPM empl 1 NAPM Employment Index (Percent)
50  hsfr HStarts: Total 4 Housing Starts:Nonfarm(1947-58);Total Farm&Nonfarm(1959-) (Thous.,Sa)
51  hsne HStarts: NE 4 Housing Starts:Northeast (Thous.U,Sa).
52  hsmw HStarts: MW 4 Housing Starts:Midwest (Thous.U,Sa).
53  hssou HStarts: South 4 Housing Starts:South (Thous.U,Sa)
54  hswst HStarts: West 4 Housing Starts:West (Thous.U,Sa)
55  hsbr BP: total 4 Housing Authorized: Total New Priv Housing Units (Thous.,Saar)
56  hsbne BP: NE 4 Houses Authorized By Build. Permits:Northeast (Thous.U,Sa)
57  hsbmw BP: MW 4 Houses Authorized By Build. Permits:Midwest (Thous.U,Sa)
58  hsbsou BP: South 4 Houses Authorized By Build. Permits:South (Thous.U,Sa)
59  hsbwst BP: West 4 Houses Authorized By Build. Permits:West (Thous.U,Sa)
60 pmi PMI 1 Purchasing Managers Index (Sa)
61  pmno NAPM new ordrs 1 NAPM New Orders Index (Percent)
62  pmdel NAPM vendor del 1 NAPM Vendor Deliveries Index (Percent)
63 pmnv NAPM Invent 1 NAPM Inventories Index (Percent)
64 alm008 Orders: cons gds 5 Mifrs New Orders, Consumer Goods And Materials (Bil. Chain 1982 $)
65 a0mO007 Orders: dble gds 5 Mfrs New Orders, Durable Goods Industries (Bil. Chain 2000 $)
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Mnemonic  Short Desciption Tcode Description
66  a0m027 Orders: cap gds 5 Mfrs New Orders, Nondefense Capital Goods (Mil. Chain 1982 §)
67 alm092 Unf orders: dble 5 Mfrs Unfilled Orders, Durable Goods Indus. (Bil. Chain 2000 $)
68  a0mO070 M&T invent 5 Manufacturing And Trade Inventories (Bil. Chain 2000 $)
69  a0m077 M&T invent/sales 2 Ratio, Mfg. And Trade Inventories To Sales (Based On Chain 2000 $)
70  fml M1 6 Money Stock: M1(Curr,Trav.Cks,Dem Dep,Other Ck Able Dep)(Bil$,Sa)
71 fm2 M2 6 Money Stock:M2(M1+O Nite Rps,Euro$,G/P&B/D Mmmfs&Sav&Sm Time Dep(Bil$,
72 fmscu M3 6 Money Stock: M3(M2+Lg Time Dep,Term Rp S&Inst Only Mmmfs)(Bil$,Sa)
73 fm2r M2 (real) 5 Money Supply - M2 In 1996 Dollars (Bci)
74 fmfba MB 6 Monetary Base, Adj For Reserve Requirement Changes(Mil$,Sa)
75  fmrra Reserves tot 6 Depository Inst Reserves:Total,Adj For Reserve Req Chgs(Mil$,Sa)
76  fmrnba Reserves nonbor 6 Depository Inst Reserves:Nonborrowed,Adj Res Req Chgs(Mil$,Sa)
77 fclnbw C&lI loans 6 Commercial & Industrial Loans Oustanding In 1996 Dollars (Bci)
78  fclbmce C&I loans 1 Wkly Rp Lg Com L Banks:Net Change Com L & Indus Loans(Bil$,Saar)
79  ccinrv Cons credit 6 Consumer Credit Outstanding - Nonrevolving(G19)
80  ccipy Inst cred/PI 2 Ratio, Consumer Instalment Credit To Personal Income (Pct.)
81 fspcom S&P 500 5 S&P S Common Stock Price Index: Composite (1941-43=10)
82  fspin S&P: indust 5 S&P S Common Stock Price Index: Industrials (1941-43=10)
83  fsdxp S&P div yield 2 S&P S Composite Common Stock: Dividend Yield (% Per Annum)
84  fspxe S&P PE ratio 5 S&P S Composite Common Stock: Price-Earnings Ratio (%,Nsa)
85  fyff FedFunds 2 Interest Rate: Federal Funds (Effective) (% Per Annum,Nsa)
86  cp90 Commpaper 2 Commercial Paper Rate (Ac)
87 fygm3 3 mo T-bill 2 Interest Rate: U.S.Treasury Bills,Sec Mkt,3-Mo.(% Per Ann,Nsa)
88  fygm6 6 mo T-bill 2 Interest Rate: U.S.Treasury Bills,Sec Mkt,6-Mo.(% Per Ann,Nsa)
89 fygtl 1 yr T-bond 2 Interest Rate: U.S.Treasury Const Maturities,1-Yr.(% Per Ann,Nsa)
90 fygth 5 yr T-bond 2 Interest Rate: U.S.Treasury Const Maturities,5-Yr.(% Per Ann,Nsa)
91 fygtlO 10 yr T-bond 2 Interest Rate: U.S.Treasury Const Maturities,10-Yr.(% Per Ann,Nsa)
92 fyaaac Aaabond 2 Bond Yield: Moody S Aaa Corporate (% Per Annum)
93 fybaac Baa bond 2 Bond Yield: Moody S Baa Corporate (% Per Annum)
94 scp90 CP-FF spread 1 Cp90-Fyff
95  sfygm3 3 mo-FF spread 1 Fygm3-Fyff
96  sfygm6 6 mo-FF spread 1 Fygm6-Fyff
97  sfygtl 1 yr-FF spread 1 Fygtl-Fyff
98  sfygth 5 yr-FF spread 1 Fygt5-Fyft
99  sfygtl0 10 yr-FF spread 1 Fygt10-Fyff
100  sfyaaac Aaa-FF spread 1 Fyaaac-Fyff




(43

Mnemonic  Short Desciption Tcode  Description
101  sfybaac Baa-FF spread 1 Fybaac-Fyff
102 exrus Ex rate: avg 5 United States;Effective Exchange Rate(Merm)(Index No.)
103 exrsw Ex rate: Switz 5 Foreign Exchange Rate: Switzerland (Swiss Franc Per U.S.$)
104  exrjan Ex rate: Japan 5 Foreign Exchange Rate: Japan (Yen Per U.S.$)
105  exruk Ex rate: UK 5 Foreign Exchange Rate: United Kingdom (Cents Per Pound)
106  exrcan EX rate: Canada 5 Foreign Exchange Rate: Canada (Canadian $ Per U.S.$)
107  pwfsa PPI: fin gds 6 Producer Price Index: Finished Goods (82=100,5a)
108  pwicsa PPI: cons gds 6 Producer Price Index:Finished Consumer Goods (82=100,Sa)
109 pwimsa PPI: int matls 6 Producer Price Index:Intermed Mat.Supplies & Components(82=100,Sa)
110  pwcmsa PPI: crude matls 6 Producer Price Index:Crude Materials (82=100,Sa)
111  psccom Commod: spot price 6 Spot Market Price Index:Bls & Crb: All Commodities(1967=100)
112 pwl02 Sens matls price 6 Index Of Sensitive Materials Prices (1990=100)(Bci-99A)
113 pmcp NAPM com price 1 NAPM Commodity Prices Index (Percent)
114  punew CPI-U: all 6 Cpi-U: All Items (82-84=100,5Sa)
115 pu83 CPI-U: apparel 6 Cpi-U: Apparel & Upkeep (82-84=100,Sa)
116 pu84 CPI-U: transp 6 Cpi-U: Transportation (82-84=100,Sa)
117 pu85 CPI-U: medical 6 Cpi-U: Medical Care (82-84=100,Sa)
118  puc CPI-U: comm. 6 Cpi-U: Commodities (82-84=100,Sa)
119  pucd CPI-U: dbles 6 Cpi-U: Durables (82-84=100,Sa)
120 pus CPI-U: services 6 Cpi-U: Services (82-84=100,5a)
121  puxf CPI-U: ex food 6 Cpi-U: All Items Less Food (82-84=100,Sa)
122 puxhs CPI-U: ex shelter 6 Cpi-U: All Items Less Shelter (82-84=100,Sa)
123  puxm CPI-U: ex med 6 Cpi-U: All Items Less Medical Care (82-84=100,Sa)
124  gmdc PCE defl 6 Pce,Impl Pr Defl:Pce (1987=100)
125 gmdcd PCE defl: dlbes 6 Pce,Impl Pr Defl:Pce; Durables (1987=100)
126  gmdcn PCE defl: nondble 6 Pce,Impl Pr Defl:Pce; Nondurables (1996=100)
127 gmdcs PCE defl: services 6 Pce,Impl Pr Defl:Pce; Services (1987=100)
128  ces275 AHE: goods 6 Average Hourly Earnings Of Production Or Nonsupervisory Workers On Private No
129 ces277 AHE: const 6 Average Hourly Earnings Of Production Or Nonsupervisory Workers On Private No
130  ces278 AHE: mfg 6 Average Hourly Earnings Of Production Or Nonsupervisory Workers On Private No
131 hhsntn Consumer expect 2 U. Of Mich. Index Of Consumer Expectations(Bcd-83)
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CHAPTER 2

Interpreting Latent Dynamic Factors by Threshold FAVAR Model

2.1 Introduction

Data availability has evolved rapidly in the recent years. Hundreds of variables are readily
available for use. However, using such large data sets introduce a challenge by bringing model
specification and estimation problems along. Employing factor models can deal with these seem-
ingly adverse issues. Factor models beneficially adapt large information sets to the analysis by
providing a convenient tool to reduce dimensions and to extract information. True specifications
of the models that researchers are interested in have been successfully accomplished thanks to
factor models, particularly by including the large information sets available to policy makers.
However, interpreting factors is still a black box. To this purpose, we propose a factor-augmented
VAR model by introducing a latent threshold which induces the factor loadings onto zero when
the factors are found irrelevant given the estimated threshold level. The shut down rate of the
factor loadings, which we can construct by observing the frequency of factor loadings induced

onto zero, reveals the relationship between factors and macroeconomic variables.

Researchers might simply want to use large information sets to make use of all the relevant
information available. To overcome the difficulty of using many indicators up to some extend,

vector autoregressions (VARs) are designed to include more than one evolving variable, as a
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generalization of autoregression models. VARs have been acknowledged as successfully identify-
ing the direction and the magnitude of monetary shocks since the time they were proposed by
Bernanke and Blinder (1992) and Sims (1992b).

Despite VARs’ common use, especially among macroeconomists, the relatively small number of
macroeconomic variables in VARs cannot capture all the necessary information and might cause
omitted variable bias. Another point worth noting in VARs is the selection of the variables.
There are generally different measures of the same series, e.g. output, inflation or unemploy-
ment. Even for the same country these series can differ but all might include some information
that others do not. Unfortunately, VAR results heavily depend on the choice of these series.
Furthermore, adding more variables to VARs creates degrees of freedom issues. In this matter,
factor models play an important role in enabling us to use large information sets by extracting
common factors. These factors are latent variables capturing the common fluctuations in the
data. One can imagine the set of factors as the summary of the information in that particular

data set. Therefore, the curse of dimensionality does not occur in factor-augmented models.

Nevertheless, factor models alone cannot explain the effects of, e.g. monetary policy, shocks
on all macroeconomic variables. However, due to the nature of factor models, macroeconomic
shocks cannot be traced back to the variables. Therefore, Bernanke et al. (2005) combined
factor models with VARSs to be able to use both large information sets and explain the effects of
monetary shocks on various indicators. This new model, factor augmented VAR (FAVAR) can

be used to assess vast data sets and to observe impulse response functions of all variables.

Factor models, and consequently FAVAR models, are useful at a cost. It is unfortunately not
possible to interpret the factors which actually might have been beneficial to link them to
macroeconomic indicators. Belviso and Milani (2006) acknowledged this problem and proposed
the Structural FAVAR (SFAVAR) model. Their SFAVAR model divides the large information
set into subgroups of particular economic activities. Only one factor is extracted from each
category. Thereby this factor is simply associated with the corresponding group. Certainly
others have attempted to interpret factors by using different approaches, e.g. Negro and Otrok
(2008), Ludvigson and Ng (2009b,c), Bork (2009).

Nakajima and West (2013b) proposes the threshold procedure on the factor loadings. The
adapted approach aims to use threshold structure for modeling in dynamic factor volatility
models as an extension in Bayesian sparsity modeling. In this paper, we extend their model and
propose a latent threshold FAVAR model. The adaptation is based on the following: the factors
to be extracted from the data may not be relevant for some time periods. Here, some of the
loadings are induced to zero for the particular time periods unless they are above a threshold
level which is endogenously estimated. This strategy implicitly allows us to detect the factor

loadings that are frequently or rarely shut down for specific macroeconomic variables.
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Overall, we ask the following questions: What if a factor loading is shut down particularly for
one or more groups of macroeconomic variables throughout time and only a few (preferably
one) of the factors are related to particular variables? Can we infer which factor(s) might be
related to one particular subgroup of data? The unique intent of this paper is to estimate latent
threshold FAVAR model to develop a new method to assign economic interpretation to estimated
factors. A likely alternative to SFAVAR, this analogous model comes with the difference of a
latent threshold structure on the factor loadings matrix. The main objective is to detect the

irrelevancy of some factors for certain time periods, especially for some variables.

The data driven shrinkage clearly defines a more sparse model. Therefore, this allows us to iden-
tify the factors which might carry information about some subgroups of the data or the factors
which are totally irrelevant for some. We do so by inquiring the frequency of the shut down and
surviving factor loadings to infer the relationships between the factors and the variables, and
relate them. The strategy we use clarifies the interpretation of the factors by approaching these
questions from a different angle compared to Belviso and Milani (2006)’s SFAVAR approach.
Our approach does not require a prespecification of the data set. We boldly aim to let whole
data decide on which variables factors have effects. Therefore, the approach we propose here is

more general in the sense of detecting the factors related to certain subgroups in the data set.

The proposed method may seem similar to the time varying parameter FAVAR (TVP-FAVAR)
where the factor loadings and some other parameters are allowed to differ over time as in
Korobilis (2009), Liu et al. (2011), Baumeister et al. (2010) and Eickmeier et al. (2011a,b)
among numerous others. In the time varying parameter models, the point when the loadings
become sufficiently small and, hence, irrelevant is not easily identifiable since we do not have a
strict measure of the threshold under which the factors become redundant. The factor loadings
in this paper are also time varying. However our approach concentrates more on a specific time
varying loadings scheme to interpret the factors. The threshold structure enables us to observe

this measure and induce the loadings to zero for irrelevant factors on associated time periods.

We estimate the model with Bayesian techniques where we use a data set constructed by quar-
terly macroeconomic indicators running from 1964:Q1 to 2013:Q1. The first set of our results
presents the survival rates which we observe the frequency of shut downs in factor loadings. The
factors are mainly assigned to one group of macroeconomic indicators such as unemployment,
inflation/finance or real economy. The second set of findings depicts the impulse response func-
tions. The responses of factors to monetary contraction are generally of expected sign. Impulse
response functions of factors against shocks on factors and of individual variables against interest

rate shock generally are in line with economic theory suggests.

The paper proceeds as follows. Section 2.2 introduces our model and summarizes the Bayesian

estimation along with the restrictions we impose. The data set we use is discussed in section
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2.3. Section 2.4 presents the results for number of the factors to be used and elaborates on
interpretation of the factors. The details of impulse response functions are displayed in section
2.5. Section 2.6 concludes and presents the future work. All other relevant information, including
the impulse response functions which are not discussed throughout the main sections, different

identification restrictions and the data description are given in Appendix.

2.2 The Model

2.2.1 Model Specification

The model used in this paper comprises a VAR system along with a factor model. Let X; be a
N x 1 vector of observed macroeconomic series. These series form an information set in factor
analysis. We seek to observe the impact of the observable policy variable, m x 1 vector Y;, on
the large data set of economic activity, X;. Hence, monetary economists frequently take Y; as
Federal Funds Rate (FFR), as in this paper, but in practice this is not a restriction. We can
also have several (policy) variables in Y;. The unobserved variables are factors f, k x 1 vector,

and the time varying factor loading matrix A; of dimension N X k.

The model has 3 main equations: a state equation where f; and Y; follow a VAR(q) process, a
measurement equation which illustrates how the large data set X, is related to the latent factors
ft and the policy variables Y;, and lastly the autoregressive process for the latent threshold
factor loadings. Typical FAVAR model has first two parts. The threshold part is borrowed from
Nakajima and West (2013a,b).

Assume the joint process of the factors and the policy variable can be represented in the state

equation as a reduced VAR,

Ji

+e&, fort=1,...,T, (2.1)
Y:

where e; ~ N(0,%) and ®(L) = &1L + ®2L? + --- + &,L7 is a lag polynomial of order ¢ with
each ®; is K x K matrix for j = 1,..., ¢ satisfying stationarity, where K = k +m. We need to
solve the structural VAR form to obtain impulse-response functions which will be discussed in

the following sections.

The state equation cannot be estimated by itself since the factors are unobservable. A small
number of factors, k << N, is extracted from the data as the representatives of the common

fluctuations and used in the state equation to interact with Y;. Therefore we need the following
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measurement equation,
Xe=ct+Mfe +7yYe+e, fort=1,...,T, (2.2)

where e; is N x 1 vector of idiosyncratic components such that e; ~ N(0,€;) where € is
N x N diagonal time varying covariance matrix and E(e; | F},Y;) = 0 with E(ej¢, e) = 0 for all
j,l=1,...,N and j # [. We assume that the diagonal elements of matrix €2; follow a stochastic

hi,t
,.

volatility process, that is, 0, = diag{e ..,eMt}is in the form of

he = pp + an(he—1 — pp) + vpe

with vy, ~ N (0, V},) where both «, and V3, are N x N diagonal matrices and hy = (hig, ..., hny) .

The time varying intercept follows a stationary autoregressive process
et = fe + ac(C—1 = pe) + Vet

with v ~ N(0,V,) where both a. and V. are N x N diagonal matrices. The time varying
constant and variance help us capturing the changes in the data over time, especially when the

time varying parameters tend to create unstable results, e.g. as in the Great Recession period.

Factors are representatives of the variations in the data however their relevance might depend
on the particular time periods and therefore change over time. Hence, the factor loadings in
our model are not left unrestricted but instead represented by a threshold structure. Intuitively,
the idea is to examine the relative importance of the factors in each time period. This specific
representation enables us to observe whether factor loadings are below a threshold and which

should be induced to zero for the associated time periods.

To exploit the above insight, we stack all the non-zero elements in the loadings matrix A;.!
Let us denote each non-zero element of A; as Aj;. Then the threshold structure on the factor
loadings is,

Njt = B¢ 1(|Bje] = 05), forj=1,...,p,

where p = (N — k + 1)k is the number of the non-zero loadings, 1(-) denotes the indicator
function, 6; > 0 is the latent threshold for j = 1,...,p which is to be estimated. The latent

time varying parameter vector 8; = (B1t, . .., Bpt) follows stationary VAR(1) model

B = g + ag(Bi—1 — pg) + va1, (2.3)

where vgy ~ N(0,V3), pg is px 1, ag and Vi are both p x p diagonal matrices. The AR coefficient
of 3 satisfies the stationarity of AR(1) processes for each factor loading, i.e. |ag;| < 1. Suffice

!The zero elements are due to the identification restrictions, which will be explained in the next sections.
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it to say, we assume that the errors of different equations are jointly normal and independent.
That is, (e, et, Ve, Vet, Une)' ~ N (0, diag(, X, Vi, Ve, V3,)), where diag(-) creates a block diagonal
matrix. Moreover, all of the covariance matrices except 3 are diagonal. The Appendix provides

details on the priors and the posteriors of the parameters.

This threshold factor model has some advantages over continuous time-varying loading models
and Markov switching (MS) loading models. In continuous time-varying loadings framework,
the (time-varying) importance of a factor can be inferred through the magnitude of the loading
over time. However, there is no scale which indicates how small \;; should be so that the factor
is considered redundant. Hence, when a factor becomes important is very subjective. In the
threshold model, on the other hand, the threshold is estimated. Therefore the data decide when
a factor should be included in the analysis. In an MS setup, one can have two (or a finite number
of) regimes for the loadings: significant and insignificant regimes. Both MS and the threshold
model behave similarly when a loading is shut-down to 0. However, for the time periods when
a factor is significant, the threshold model allows continuous loadings which ensures a better fit

than MS loading models.

2.2.2 Bayesian Estimation

The estimation of the parameters and latent processes of the factor model relies mostly on the
results of Nakajima and West (2013b). We employ the Markov chain Monte Carlo (MCMC)
method to estimate the joint distribution of the unobserved variables. The full posterior density
conditional on the data is p(Wo.r, 0, 0,7, ®, X[ X(1:n1.:7)5 Y(1:m,1:7)) Where Yo.7 = {co.7, Bo.1, fr.15 ho1}
are the latent time-varying processes, 6 = {J1,...,0,} are the latent thresholds for each non-zero
element of the loading matrix, § = {0.,0y,03} where 0, = {,ug,ag,ag} for g € {¢,h, B}, v is

N x m matrix of measurement equation parameter, ® and X are the VAR parameters, and

{ X~y Yaim,1:m) s the data Xy and Yy fori=1,...,N, j=1,...,mandt =1,...,T.

The estimation of cy.7 and fi.7 can be performed by forward filtering backward sampling algo-
rithm conditional on the hyperparameters, the time-varying volatility and the data. In this paper
we use Carter and Kohn (1994) algorithm which draws the time series of the latent process in a
state space representation. The volatility process hg.7 is sampled by standard MCMC techniques
developed for univariate stochastic volatility models conditional on the measurement equation
parameters and the data. The parameters 6. and 6}, are sampled easily after conditioning on

co.r and hg.p, respectively, as in simple univariate AR(1) models.

We use Metropolis-Hasting algorithm to draw d, Bo.7,03. The estimation of these parameters
is deeply analyzed in Nakajima and West (2013a). The candidate for § is drawn from a dis-

tribution as if there is no threshold. The draws for 6z are required to be compatible with the
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threshold parameters because the prior and the posterior of 4 depends on 63. We performed
25000 iterations and discarded the first 20000 draws as burn-in period. Convergence of most
of the parameters is achieved. Some details are given in the Appendix, but for further details
readers should refer Nakajima and West (2013a,b).

2.2.3 Identification Restrictions for Factors

As widely covered in the literature, the estimation of the true factors cannot be achieved. Instead
only the space spanned by the factors can be estimated. Moreover, unless we apply some
restrictions, we cannot identify the factors and loadings separately. In other words, for any given
factor f and loadings A the following observational equivalence holds: Af = ARR™1f = Af for
invertible k£ x k£ matrix R, i.e., same results can be achieved by two different sets of factors and
factor loadings. Thus we need to fix the rotation of the factors, namely fixing the matrix R, by

putting k? restrictions.

In Principal Component Analysis, a statistical method to extract factors from data sets, the most
common restrictions are to assume ff’/T being identity matrix (k(k + 1)/2 restrictions) and
AN’ being diagonal (k(k — 1)/2 restrictions). However different restrictions have been adopted
by both dynamic factor and FAVAR models. For instance Bernanke et al. (2005) and numerous
others following their work restrict the top k x k block of A to be identity. Some of the dynamic
factor model papers such as Aguilar and West (2000) and Nakajima and West (2013b) restrict
the top k x k block of A to be lower triangular with unit diagonals which leads k(k + 1)/2
restrictions. Additionally they restrict the covariance matrix of the factors, ¥ to be diagonal

which brings along k(k — 1)/2 more restrictions.

We believe that restricting the covariance matrix of the factors by forcing for unit diagonals
and no correlation between factors is a very strong restriction. The impulse response functions
are generated through the covariance matrix. Thus, such restrictions are indeed undesirable.
Furthermore, we would like to keep the factor loadings as free as possible since the interpretation
of the factors are based on the loadings. In our paper, we imposed diagonality on the lower & x k
block of A and set the diagonals of the top k x k block of ¥ to be one. Restricting the bottom
part of the factor loadings has some intuitive grounds. The ordering of our data set allows
us to assume that each of the last k variables is only explained by one factor.? Moreover,
setting the variances of the unobserved factors, the corresponding diagonal elements of 3, as 1
is just a normalization. Leaving off-diagonal elements of the covariance matrix of the factors
unrestricted indicates that correlation among factors is allowed, e.g. the correlation between

so called ‘inflation factor’ and ‘interest rate factor’ is left unrestricted in our analysis. The

2The corresponding variables in the data set are the credit variables.
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restrictions on both covariance matrix, k, and the factor loadings, k? — k, provide us the total

number of restrictions, k2, we need for identification.

2.3 The Data

Factor models entail large information sets. Our data consist of 158 US macroeconomic aggre-
gates and are inspired by Stock and Watson (2005) (SW) data set. The original SW data set and
its modified versions have been used by numerous papers, such as Belviso and Milani (2006) and
Ludvigson and Ng (2009b,c). In the latter, the authors touch upon the interpretation of factors
and 131 monthly series in their data cover the time span of January 1964 - December 2007.
Nevertheless, their data set is governed most by couple of specific groups of macroeconomic
aggregates. For instance, the real activity variables are plenty whereas the financial market
variable are just handful. We are fond of a more even distribution of the variables over the
subgroups. Therefore we update and extended the SW data set. Although the original SW data
set is monthly, we prefer to work with a quarterly data set to keep the computation tractable.
Hence the resulting data set is from 1964:Q1 to 2013:Q1.2> The number of lags in the VAR(q)
is taken to be 4 throughout the analysis. Yet, the model yields similar results under different

choice of lags.

We do not require any ex ante categorization of the data. However, we can benefit from looking
at it in detail and also reporting the results in accordance with the different classes of variables.
The subgroups and the corresponding number of variables are shown in Table 2.1 below. The
data set for factor extraction includes 157 variables. The last variable, Federal Funds Rate is
used as the policy variable thus it is not included in the data set from which we extract the

factors.

The analysis requires all series to be stationary. This is ensured by taking differences or loga-
rithms of the series and in some cases both. Adding more series into the data and the longer
time span now require different transformations than SW’s. The resulting codes are presented

in the data description.

3 Appendix presents the full data description including the data source. Most of the series are taken from St.
Louis Fed Economic Research database (henceforth FRED) unless otherwise indicated.
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Table 2.1. Subgroups in the Data Set

Macroeconomic Subgroups Number of Variables

Production 20
(Un)Employment 27
Housing 13
Interest Rate 15
Inflation 29
Finance 13
Money 22
Expectations 7
Credit 11
Federal Funds Rate (FFR) 1

Notes: Appendix explains which series form these cate-

gories.

2.4 Results

We employ a Bayesian framework to extract the factors and estimate the hyperparameters. To
do so first requires to determine the exact number of factors in the data. The next step is to

analyze the factor loadings over time to assign an economic meaning to the factors .

2.4.1 Number of Factors in the Data

All factor related models require an initial step of determining the number of factors. There
are statistical ways to seek the optimal number. Among all, the most frequently used is the
information criteria for static factors proposed by Bai and Ng (2002). The crucial point in
determining the optimal number is to realize that different time spans might offer different

number of factors. Table 2.2 shows the results of a naive inspection on this matter.

The table presents how many factors are suggested by the information criteria for the corre-
sponding time span of the data set. The data until the end of 2000 suggest 6 factors. However
adding just the first quarter of 2001 into the time span changes the suggested number of factors.
This dramatic change is not because of a sudden appearance of an actual meaningful factor.

Instead, probably, there is nonlinearity caused by immediate changes in the data set, such as
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Table 2.2. Number of Factors for Different Time Spans

Time Range ‘ Number of Factors

1964Q1 - 2000Q4 6
1964Q1 - 2001Q1
1964Q1 - 2007Q4
1964Q1 - 2008Q1
1964Q1 - 2013Q1

0 00~

the dot—com bubble in the beginning of 2001 for this particular case. The same notion can be
observed in the third and fourth rows. Even though the information criteria suggests 7 factors
until the end of 2007, adding the first quarter of 2008 leads to another factor, in this case due to
the Great Recession. As said, the additional factors given by information criteria after extreme
data movements do possibly capture the nonlinearity. Hence caution should be taken before

treating these factors as latent variables although they survive the information criteria.

The Bai and Ng (2002) information criteria suggest that there are 8 factors in our data for
the whole time span. The FAVAR model of Stock and Watson (2005) used 7 factors, only
some of which were later shown to accurately construct the forecast error decomposition for
individual series. Analogously, Ludvigson and Ng (2009b,c) used SW data set and extracted 8
factors as suggested by the information criteria. We, similar to Stock and Watson (2005), use 7
factors in this paper. The results of the subsequent sections show that only 5 to 6 factors are
assigned economic meanings.* This also supports the fact that the immediate appearance of the

additional factors is artificial. The remaining ‘unmeaningful’ factors are generally shut down.

2.4.2 Interpreting the Factors

Given that the factor loadings are shut down for so-called irrelevant time periods, we can observe
the remaining (non-zero) loadings. This enables us to relate the factors and variables to particu-
lar data groups. If a factor’s loadings are rarely induced to zero only for a specific group of macro
variables, we will link that factor to the corresponding data group. The interpretation of factors
depends on the ‘survival rate’ of the process 3;;. The survival rate aims to show how frequently
the factor loadings are above the estimated threshold, i.e., not shut down to zero, and therefore
the corresponding factors are relevant. We take this ratio by averaging both over simulations
and time periods. Mathematically, survival rate of the j*" loading is 1/(T'S) Dot ]l(/\gf? # 0)
where S is the number of simulations after burn-in period and )\ﬁ) is the s iteration of MCMC
estimate of A\j;. This is one of the ways of interpreting factors, which we pursue in this paper.

Another would be to obtain a time-varying survival rate by averaging only over the simulations

“The same analysis was also repeated for 8 factors but there were no considerable changes in the results.
Similarly, only 5 to 6 factors are found meaningful.
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and checking the time series of loadings but interpreting the factors would be comparably harder

in this case.

We introduce the subgroups of the data in Section 4 even though we treat the data as a whole
for the MCMC. We ultimately intend to attach the factors to these different subgroups. Table
2.3 demonstrates the survival rates of all 7 factors for each of these subgroups. The rows indicate
the average the survival rates of the top 60% of the factor loadings for the corresponding factors.
This is just an adaptation for the ease of interpretability. The selection of the top percentile

does not change the results but makes the interpretation straightforward.

The bold numbers emphasize the highest survival rates of the corresponding factors. For the
production variables, for instance, the first factor is not shut down 63% of the time. Over
time and simulations, this signifies that the first factor is above the estimated threshold with
63% probability. The fourth factor has by far the highest survival rate, 78%, among others for
production. One factor might be related to other categories of the data as well, e.g. the fourth
factor is also influential on housing variables with 85% survival rate. Production and housing
are two highly related economic indicators hence the fourth factor can be processed as the real

activity factor and is now called as ‘Real’ as an abbreviation.

Table 2.3. Survival Rates of the Factor Loadings

fi fa f3 f4 f5 fe f7

Emp InfFn —  Real Fxpc —  IntR
Production 0.63 032 0.40 0.78 0.36 0.56 0.58
(Un)employment 0.85 0.21 0.16 0.42 0.64 0.09 0.37
Housing 0.47 0.17 0.13 0.85 0.10 0.11 0.55
Interest Rate 0.12 0.04 0.09 044 0.18 0.06 0.51
Inflation 0.33 0.67 031 025 0.27 036 0.52
Finance 0.38 0.57 0.09 033 0.12 0.27 043
Money 0.22 0.22 021 029 018 0.37 0.36
Expectations 0.59 022 0.05 029 0.75 0.25 0.38

Following the above mentioned analogy, we mark the first factor as employment factor, ‘Emp’. In
our framework, one should be careful about what a factor is truly capturing. The (un)employment
partition of the data includes variables for both unemployment and employment. Can we know
for sure whether the employment factor is really an employment factor or rather an unemploy-
ment factor? Visual inspection helps us to determine the actual interpretation of this factor.?

We can simply check the correlations of every single variable with the employment factor.

5To identify the nature of this factor we can also put some sign restrictions on factor loadings at the beginning
of the analysis.
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Correlation of Factor 1 and the Variables
1
I I I

08—

-1
IndP Emp Hous IntRate Infl Finance Money Expec  Credit

Figure 2.1. The correlation between the variables and the first factor

The positive correlations accumulated in Figure 2.1 correspond to the unemployment variables.
Other variables in this same data category exhibit negative relationships with the first factor.
Moreover, most of the variables (such as production, housing, expectation) are negatively cor-
related with this factor. Therefore, this factor can safely be identified as the unemployment

factor.b

The second factor loads on inflation and financial variables. We cannot distinctly name this
factor due to the difficulty of differentiating the effects of inflation and financial variables, hence
it is indicated as ‘InfFn’. The third factor is the most insignificant factor among all. This
also supports the idea that some factors might be generated artificially due to capturing the
nonlinearity in the data. Hence, this factor does not carry any essential information and can be

left without a specific name.

The fifth factor clearly explains the expectation variables hence is indicated as ‘Expc’. Expec-
tation measures are highly related to other subgroups in the data. Stock and Watson (2005)
included these indexes into the corresponding subgroups. For instance the ISM Production In-
dex in our expectation data group is included in the real activity variables in SW data set.
Nevertheless, we are able to find a strongly distinctive factor associated with the expectation

variables. The existence of this factor should not be ignored in our case.

Money related variables have not been assigned to a particular factor with confidence. Even

5When we observe the impulse response functions of the factors after an unemployment shock in the following
sections, this notion also becomes more clear.
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though the most significant factor for these variables is factor 6, it might not be a conclusive
result thereby it brings this factor into question. The last factor very distinctively loads on
interest rate and real economy variables. It is not surprising that one factor affects more than
one group as in the case of the second factor. Yet, we call the last factor as the interest rate

factor.

The restrictions imposed to the model fix the rotation of the factors, i.e. we are choosing basis
functions for the space spanned by the factors. Papers which forcefully assign meaning to the
factors (by extracting one factor from a subgroup for instance) might end up having factors more
than the dimension of the true factor space. Therefore, we believe that some of these extracted
factors are either orthogonal to the true factor space or a linear combination of the true factors.
According to our results here and those of similar papers’; there are only 5 to 6 factors in this
data set. Whichever different identification schemes we use for the estimation, we could not find

any factor that explains credit variables. That is, there is no ‘Credit’ factor in the data based

on our results from several different restrictions.”

2.5 Impulse Response Functions

This section presents the impulse response functions of the factors and some selected variables
to particular shocks. The graphs here and in the appendix are evaluated by identifying the
system with Cholesky decomposition. Attached meanings on the factors would enable us to
impose better VAR identification restrictions. Cholesky decomposition is represented here just
for computational advantages. The confidence bands of the impulse response functions is 68%
instead of a 95% confidence interval. We prefer this due to the sampling uncertainty coming
along with the estimation of the factors. Appendix provides the impulse response functions of

other factors.

Figure 2.2 reports the responses of the factors to a 1 unit shock on FFR. The last of the 8 plots
in each figure presents response of FFR itself. The responses are generally of the expected sign.
The contractionary monetary policy shock has a relatively positive impact on unemployment
factor, consistent with what economic theory suggests. Inflation and financial market factor
might seem insignificant according to the response scales but has a small downward tendency

at the beginning. Immediate response of the financial variables might cause this behavior.

The FFR shock has almost no effect on the third factor as the figure suggests. This supports the

appearance of artificial factors as discussed in the previous sections. The real economy factor

" Appendix provides details on the results when we impose different identification restrictions.
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Figure 2.2. The responses of the factors and FFR to a 1 unit shock on FFR.

(we can also think of it as production and housing factor) declines. Namely, positive shock to
FFR leads a drop in GDP. Expectations factor has a small upward adjustment first but then its
response becomes negative, consistent with the deteriorating expectations following monetary
contraction. The recovery period for expectations factor is almost the same as the real activity
factor. The money factor responds positively and stays that way until the effect slowly fades.
The corresponding series in the data include reserve aggregates. Therefore observing an increase
in the money factor is intuitive. Lastly, interest rate factor has an upward tendency in general

which is a natural response after a monetary contraction.

It is worthwhile to discuss the responses of the factors to the shocks on other factors. This is
one of the crucial conveniences of FAVAR models. Interpretable factors might help to make
sense of some dynamics in accordance with the impulse response functions. As an example,
we concentrate on the impulse response functions of the factors and the FFR when there is
an one unit positive shock to unemployment factor. The resulting responses are displayed in
Figure 2.3. A sudden jump in unemployment decreases inflation and finance factor over time.
In addition, impulse responses support our expectations of observing a drop in the real activity
and expectations factors. Moreover, the money factor and FFR are also negatively affected by

this shock whereas the response of interest rate has an upward move in the first quarters.

Another advantage of FAVAR models is that we can observe the impulse response functions of

the individual variables. This provides a more intensive check on the model specification. Hence
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Figure 2.3. The responses of the factors and FFR to a 1 unit shock on unemployment factor.

we analyze the responses of various macroeconomic measures against a one unit contractionary

monetary shock. We have a selection of different types of variables chosen from the subgroups

of the data. The ordering of these variables on the data set are given next to the variable names

20

on Figure 2.4.
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Figure 2.4. The responses of the variables to a 1 unit shock on FFR.
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The responses of the variables are as anticipated: contradictory monetary shock leads a decline in
industrial production, capacity utilization for manufacturing replies with a drop, the employment
measure in the third plot has a downward adjustment along with the decrease in housing starts
in the fourth plot, the FFR shock increases the 3-month Treasury Bill interests which is very
similar to FFR response, similar to the findings of Bernanke et al. (2005). Dividend yields first
exhibit an upward move however drop over time. Price earnings ratio of S&P declines, credit

variables are expected to have a downward adjustment after a positive monetary shock.

In theory, monetary tightening should decrease the prices. However, as first identified by Sims
(1992b), VAR literature suffers from a phenomenon so called price puzzle where prices commonly
respond with an increase. That is artificially created by impulse response functions of VAR
models and does not reflect what theory suggests. One of the novelties of FAVAR models is
to eliminate price puzzle by making use of large data sets. In our model, CPI reacts slightly
positively at the first quarter but the response becomes negative afterwards. Therefore we can

infer that this model eliminates the price puzzle while this response might seem insignificant.

The results which are not displayed here are available upon request. Surely, responses of some
variables are inconsistent with what the theory suggests, both in magnitude and sign. However,
numerous variables are exhibiting the foreseen responses in all data categories. Moreover, the
factors that we easily manage to interpret and name, such as unemployment, expectations or

real activity, react as expected.

2.6 Concluding Remarks

The recent literature has focused on the techniques to efficiently use large information sets.
Combining vector autoregressions with factor models is a relatively recent but very fruitful
method in this regard. However, factor augmented VAR models are not designed to interpret
the extracted factors. In this paper, we attempt to designate an economic meaning to the factors

through a latent threshold FAVAR model.

We apply a Bayesian approach to extract the factors, interpret them according to their factor
loadings, and employ a VAR analysis to observe impulse response functions of the various mea-
sures. For the identification of the factors, we need to impose some restrictions on both loadings

and covariance matrices of the factors. These would be altered according to the question at
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hand. We intend to keep the data as a whole and employ the proposed FAVAR model. As
hard as this could be for the factor interpretation, the proposed threshold structure serve our
purposes well in this respect. Observing the factor loadings assists to identify irrelevant factors
through the estimated threshold. Moreover, some factors seem to be more associated with some

data categories.

The empirical evidence suggests that most factors could be related to certain subcategories of
the data. Although Bai and Ng (2002) information criteria suggests the use of 8 factors for our
data set, we are able to find 5 to 6 meaningful factors, e.g. real activity factor, unemployment
factor. Unmeaningful factors might indicate the nonlinearity in the data which occurs after

extreme economic activities, such as crises.

There are couple areas that might benefit from this approach. The potential implementation
of the model, among many others, is two fold. First, it can be used on the stress testing front
by performing structural analysis. Recently, central banks heavily invest on their stress testing
framework alongside stress test scenarios published every year. Federal Reserve, for instance,
published its 2015 severe adverse scenario where the unemployment increases by 4 percentage
points, real GDP is 4.5% lower than its level in the third quarter of 2014 and CPI reaches 4.3%,
see Board of Governers of the Federal Reserve System (2015). Bank of England, see Bank of
England (2014), published a tail risk scenario starts with an initial shock to productivity which
leads to the monetary policy response where the Bank Rate rising about 4%. Following these,
unemployment rate rises to 12% and 35% fall in house prices is observed and eventually real
GDP growth troughs at about 3.5%. Calibrating these numbers is only the one side of the
coin. The other is the need to investigate where shocks originate. From the macroeconomic
perspective, the effects of two shocks that come from different sources should have different
impacts on the big scale of the economy. For instance, a real GDP fall originating from financial
sector shock should have different impacts on the economy, both qualitatively and quantitatively,
and different transmission mechanism than a same size fall in real GDP driven by a shock arising
from unemployment or housing market. Calibrating the variations in macroeconomic indicators
under stress should account for where shocks arise from even if they eventually materialize a
same size change. Our approach can identify initial shocks by using interpretable factors which
carry information on specific sectors of the economy and help gauging the ultimate numbers to

be used in stress scenarios.

Second, this method can be easily extended to perform small open economy analysis. The
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first possible implication of this extension is to exploit the effects of the monetary contrac-
tion/expansion in a large open economy to a small open economy. Especially recently, this
channel attracts more attention due to the uncertainty that might arise in small open economies,
such as Canada, United Kingdom, as a response to a change in the US interest rate. With the
proposed method, we have an official tool to investigate the transmission of the monetary policy
from one country to another by also capturing the features of different sectors in each coun-
try. Similarly, we can explore the interconnectedness of two countries’ financial sectors and/or
housing sectors etc. We can easily study the propagation mechanism of, for example, a financial
shock to the US economy on other countries along with the magnitude, duration and persistence

of this particular shock.

The paper is open to some extensions. We seek to obtain the results under different restrictions,
such as different structural VAR restrictions. They might lead to better impulse responses.
Looking for the best factor identification restrictions might yield the most meaningful factors.
Forecasting of particular macroeconomic series can be performed by using the proposed model.
A noteworthy extension is to repeat this exercise with different data sets although compiling
such data sets might be overwhelming. More micro-oriented series, such as consumption-saving
measures and various indexes, or different geographical variables would create very large data

sets and these can be analyzed with the aid of this model.
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Appendix 2

2.A Priors and Posteriors

Prior and posterior specifications and MCMC mostly rely on Nakajima and West (2013a). This

section is designed to analyze all in detail however readers can refer the original source if needed.

2.A.1 Priors
For g € {f3, ¢, h} the priors of the parameters are as follows

pirg ~ N (pio, o)
(aig+1)/2 ~ Beta(aor, ao2)
02-_,; ~ G(v0i/2, V0i/2)
Birlbs ~ N (pig, 07 /(1 — 07 )

dil0p ~ U (0, |pipl + Kvi) ,

where 12 = Uz 5/ (1 — 0412’ 5) and 01‘2, 5 1s the i*® diagonal element of V. Basically, the term v? is

the unconditional variance of B;.

2.A.2 MCMC Estimation Steps

To perform MCMC, we use Gibbs sampling, and Metropolis-Hasting (MH) algorithm for vari-
ables related to the threshold §. Here is the outline and some details of the MCMC estimation.

Sampling f:

The process So.r is sampled by Metropolis-within-Gibbs sampling method. In particular, MH
sampling is used for f; conditional on B_; and {63, 9, hi.7, fi.7, Yior, X1.p} for ¢t =1,...,T. If
there was no threshold, we could have easily sampled §;’s by using Kalman filter type algorithm.
Hence, in the accept-reject algorithm, £ which is sampled from a hypothetically no-threshold
model is used as a proposal. Note that €; has 0 in the off-diagonals, thus the variables in each

row of the measurement equation is uncorrelated over ¢. That is, we can sample each row of A;
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independently from other rows. The conditional posterior of £ x 1 vector ; under this case is

N (B¢|my, My) where i =1,...,N and fort =2:T — 1
MY =e Mg fl 4 Vﬂ_l(I + ajzap)
my = My[e™"* fi Xy + Vi H{ap(Bio1 — Br1) + (I — 20 + afsop) s )]
fort=1andt=T
-1 _ _—h;1 / -1 -1 /
M =e f1f1+V570 +Vb’ ([—FO(ﬁOéB)

my = Mife ™ fiXo + Vigug+ Vi 'as{B2 — (I — ap)us}]

Myt =e T frfr+ Vit
myp = Mple ™™ frXip + Vi {agBr1 — (I — ag)us}],
where Vj o is the unconditional variance of ; and X = Xit — 7Y

The acceptance probability is

a(Bt, Bf) = min {1, x(Xitfé)\:7exp(hit))j\[(ﬁt|mt, M) } ‘

(Xit‘ft{)‘ta eXp(hit))N(ﬁﬂmu Mt)

Sampling §:

The posterior distribution of ¢; is conditioned on (k—1)x 1 vector d_; and {95, hir, fr.10, Y10, X117}
The threshold is also sampled by MH algorithm. The proposal is drawn from the conditional
prior distribution §f ~ U (|u;| + Kv;). The acceptance probability is

LN (Xl fiNg exp(h-m}
5175: = . 17 ~ ! ¢ .
o9, 07) m"{ W i exping)

The parameter K is a tuning parameter. It determines how large the threshold can be, thus
in return, it determines the shut-down frequency of . Nakajima and West (2013a) suggested
K = 3 based on simulation performances, that is the threshold is drawn from a 3-standard-
deviation interval. Our estimation results were pretty robust to changes in K - we estimated

the model with K € {1.65,2,3}.

Sampling {13, ag, Oi—,BZ}:
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These are the parameters associated with the autoregressive process for B;. The posteriors of
these parameters are typical except that they are truncated on a set where the parameter draws

are compatible with the upper bound of the threshold: D; = {§; < |uig| + Kv;}.

The posterior density of g is p(1ig|cig, 02-25, Bix1, 6i) < TN p, (wigl i, @2) (|pig| + Kvi)~1 where
TN p, denotes the density of truncated normal on the set D;, and

. {1+ (L-a) + (T -1)(1 —a1>2}‘1

2
wio Oiv

fi = Wi § —5 p)
Wio Oiv

2 {Mz‘o n (1—af)Ba + (1 — i) X/ (Birsr — ifBir) } ‘

Acceptance rate for the candidate which is drawn from the conditional posterior density is

: lpigl+Kv;
min {1’ luigl+Kvi [

The conditional posterior density of a;g is
a2 B Y Betalas)(1 — a2V 2 TN 5 o2 . Ku) 1
p(a16’N167 i8> /Bz,lzTa z) X be a(alﬂ)( azﬁ) (—=1,1)xD; (am O‘ai)(‘ﬂzﬁ| + VZ) )

where &; = 30" Bi1Bi/ Sf—s B2 and 02, = 075/ St B2 with B = Bir — .

The candidate drawn from the conditional posterior density is accepted with the probability

[ Beta(o}) (1 — )" { sl + Kv}
min < 1, PRYVE .
Beta(aup)(1 — ajg) '/ ?{|pig| + Kvi}

The conditional posterior density of o, [?

p(o; 3 1ig, cig, i 6:) < TG, (07 510:/2, Vi /2) (|igl + Kvi) ™

where the TG p, is the density of the implied gamma distribution truncated on D;, U; = vo; + T
and V; = Vo, + (1 — o) B3 + (5 (Bier1 — cipBin).

Accepting the candidate, drawn from the conditional posterior density, with probability

- gl + Kv;
min < 1, —=——-— 1.
gl + Kv;
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Initial Values: We need to choose initial values for some processes to start the Markov chain.
Moreover, the Monte Carlo estimation results should be robust to different initial values. In this
regard, we have tested the analysis against different initial values. The results are not intensely
different. However it is worthwhile to note that there are some ‘bad’ initial values. The chains
produced by these construct non-positive-definite covariance matrix estimates. In this case,
the chain cannot proceed. Yet, once we avoid these initial values, our estimation is robust to

different initial values.

For the factors, we choose the principal component analysis estimates as initial values. For
other processes Bo.1, co.T, ho.1, the initial values are drawn from the corresponding unconditional

distributions. For instance, bt ~ N (up, 02 /(1 — a2)).

Next, we outline briefly the steps of the MCMC estimation. Note that in each step, updated

variables from the previous steps are used.

Step 1: Draw So.r
Conditional on {03, 6, c1.1, hi.1, fi.7, 7, Yi.7, X1.7}, we draw (. by MH algorithm as explained

above, where the candidate is drawn from a no-threshold model distribution.

Step 2: Draw §
Conditional on {03, B1.7, c1.1, hi.1, fi.1, 7, Y17, X1.7}, we draw the threshold 6. The candidate

is drawn from the conditional prior.

Step 3: Draw 03 = {ug, ag, Va}
Conditional on {f1.7, ¢}, estimation of 64 is performed as in a typical AR(1) process. The only

difference is that the estimated parameters need to be consistent with the threshold set D;.

Step 4: Draw cq.r
Conditional on {0.,4d, B1.1, h1.7, f1.17,7, Y1.7, X1.7}, the model can be written easily in a state

representation.

Xi=ct + Mo fy +7Yi 4 e

et = phe + ac(ci—1 — pe) + Vet

Then the process cp.r is drawn in a forward filtering backwards sampling algorithm (Carter and

Kohn (1994)).
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Step 5: Draw 6. = {u., ac, V.}

Conditional on ¢g.7, we draw 6. in a simple AR(1) model.

Step 6: Draw hg.r
Conditional on {0y,9, B1.1, c1.1, f1.1,7, Y1.7, X1.7}, the stochastic volatility hg.z is drawn in a
typical SV estimation method. We use MH algorithm step to accept/reject a candidate drawn

from the conditional posterior.

Step 7: Draw 0, = {un, an, Vi }

Conditional on hgy.p, we draw 6}, in a simple AR(1) model as in Step 5.

Step 8: Draw fi.7
Conditional on {0, B1.7, c1.7, h1.7, 7, Y1.1, X1.7}, the latent factors can be drawn in a similar way
as cg.r is drawn in Step 4. To transform the model into state space representation, we need to

first transform the factors and Y; into companion form.

Let Fy = (f/,Y/) be (K x 1) where K = k +m, F, = (F/,...,F_,.,) be (Kgx 1), Ay =
[At, 7, Ovx (kq—K))) e (N x Kq), & = (E:‘/’OZKq—K)Xl)/ be (Kgqx 1), and (K¢ x Kq) matrix ® is
the companion form of the VAR(q) matrices ®(L). Then the state space representation of the

factors together with the policy variables is as follows.

Xt = ¢ +Atﬁt + e

F=®F | +4&

Note that the covariance matrix of &; is degenerate, therefore we need to adjust the Kalman

filter accordingly and take the corresponding the first (K x 1) part of the final draw.

Step 9: Draw ®,%
Conditional on {fi.7,Y1.7}, estimation of ® and ¥ is done as in a typical VAR(1) setting
F,=®F_ 1 +4.

Step 10: Draw ~
Conditional on {4, 5.7, c1.1, hi.1, fi.1r, Y17, X1.7}, drawing ~ is like drawing a coefficient in a

simple linear regression: X; — A fi — ¢t = 7Y + e
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2.B Different Restrictions on A;

The results presented in Table 2.3 are obtained when 7 credit variables are placed at the end of
the data set. Hence each of them are forced to be loaded only by one factor. Given these iden-
tification restrictions, our model leads us to the above mentioned interpretation of the factors.
Regarding this matter, can we improve the results somehow by changing the restrictions in the
loadings? The answer is ‘not necessarily’. The zero restrictions in the loading matrix fix the
rotation of the factors. Even though we assign new restrictions inspired by the results above
(e.g. restricting an unemployment variable to be loaded only by the first factor, an expectation
variable to be loaded by only the fifth factor etc.), imposing different restrictions changes the

rotation of the factors, thereby changing the meanings of the factors.

Table 2.4 below presents the results when we impose new restrictions on A;. These new restric-
tions are imposed according to the results in Table 3. As one can easily see, the names and the
importance of the factors change dramatically. Now, there is a very distinct ‘Hous’ factor. The
fourth factor now loads on both production and employment variables. The meaning of the fifth
factor does not change, it can still be called as expectation factor. Unlike the results of Table
2.3, here finance and inflation factors can be differentiated. Again, one factor, fo, cannot not
explain any significant part of any variable; and one factor, f7 is uninterpretable as it does not
load a particular category.

Table 2.4. Survival Rates of the Factor Loadings under Different Restrictions

fl f2 f3 f4 f5 f6 f.7

Hous —  Fin  PrEm FExpc Inf  —
Production 053 0.15 042 0.78 041 0.43 0.38
(Un)Employment 0.49 0.16 0.24 0.72 0.50 0.20 0.46
Housing 093 034 026 016 0.27 027 0.34
Interest Rate 0.33 0.04 026 038 020 0.26 0.26
Inflation 023 033 036 020 036 0.45 0.30
Finance 0.24 0.12 0.69 0.15 0.27 045 0.24
Money 0.13 0.15 0.34 0.07 019 0.33 0.25
Credit 046 024 045 0.25 0.12 0.13 0.37
Expectations 053 034 0.26 0.77 0.76 0.01 0.16
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2.C Impulse response functions
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Figure 2.5. The responses of the factors and FFR to a 1 unit shock on inflation and finance factor.
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Figure 2.6. The responses

of the factors and FFR to a 1 unit shock on third factor.
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Figure 2.7. The responses of the factors and FFR to a 1 unit shock on real activity factor.
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Figure 2.8. The responses of the factors and FFR to a 1 unit shock on expectations factor.
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Figure 2.9. The responses of the factors and FFR to a 1 unit shock on money factor.
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Figure 2.10. The responses of the factors and FFR to a 1 unit shock on interest rate factor.
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2.D Data Description For SW Updated Data

Series are from generally from FRED. The series indicated whose source is indicated as FRED+SW are mainly gathered from FRED however the missing time periods
are patched from Stock and Watson data set. There are two stock exchange variables taken from Shiller’s data set, used in Stock Market Data Used in ”Irrational
Exuberance” Princeton University Press, 2000, 2005, updated. Moreover there are two stock exchange series taken from Stock and Watson data set but patched from
www.multpl.com’ for the missing values for the last months of the time period. Oil price is included in the data set however has not been used for the analysis in this
paper. The analysis requires all series to be stationary. This is ensured by generally by taking differences or logarithms (and in some cases both). The rates are
transformed either by keeping them as they are or taking the first or second differences. Similarly the levels are transformed by either taking logarithms or the first or
second differences of logarithms. in this respect, 1: levels, 2: first difference, 3: second difference, 4: logarithm, 5: first difference of logarithm, 6: second difference of

logarithm.
Series ID Tcode Description Units Seasonal Adjustment Source
1 INC DDURRG3MO086SBEA 6 Personal consumption expenditures: Durable goods (chain-type price index) Index 09=100 SA FRED
2 INC DNDGRG3MO86SBEA 5 Personal consumption expenditures: Nondurable goods (chain-type price index) Index 09=100 SA FRED
3 CONS DPCERA3MO0O86SBEA 5 Real personal consumption expenditures (chain-type quantity index) Index 09=100 SA FRED
4 CONS DSERRG3MO086SBEA 6 Personal consumption expenditures: Services (chain-type price index) Index 09=100 SA FRED
5 CONS PCEPI 6 Personal Consumption Expenditures: Chain-type Price Index Index 09=100 SA FRED
6 > INC RPI 5 Real Personal Income Bil. of Chained 09 $ SAAR FRED
7 = INC W875RX1 5 Real personal income excluding current transfer receipts Bil. of Chained 09 $ SAAR FRED
8 ; IND INDPRO 5 Industrial Production Index Index 07=100 SA FRED
9 ; IND IPFINAL 5 Industrial Production: Final Products (Market Group) Index 07=100 SA FRED
10 0 IND IPCONGD 5 Industrial Production: Consumer Goods Index 07=100 SA FRED
11 < IND IPDCONGD 5 Industrial Production: Durable Consumer Goods Index 07=100 SA FRED
12 A IND IPNCONGD 5 Industrial Production: Nondurable Consumer Goods Index 07=100 SA FRED
13 < IND IPBUSEQ 5 Industrial Production: Business Equipment Index 07=100 SA FRED
14 o) IND IPMAT 5 Industrial Production: Materials Index 07=100 SA FRED
15 = IND IPDMAT 5 Industrial Production: Durable Materials Index 07=100 SA FRED
16 IND IPNMAT 5 Industrial Production: nondurable Materials Index 07=100 SA FRED
17 IND IPFPNSS 5 Industrial Production: Final Products and Nonindustrial Supplies Index 07=100 SA FRED
18 IND IPFUELN 5 Industrial Production: Fuels Index 07=100 NSA FRED
19 UTIL TCU 1 Capacity Utilization: Total Industry % of Capacity SA FRED+SW
20 UTIL MCUMFN 1 Capacity Utilization: Manufacturing (NAICS) % of Capacity SA FRED+SW
21T EMP CLF160V 5 Civilian Labor Force Thous. of Persons SA FRED
22 EMP CE160V 5 Civilian Employment Thous. of Persons SA FRED
23 UNEMP UNRATE 2 Civilian Unemployment Rate % SA FRED
24 UNEMP UEMPMEAN 2 Average (Mean) Duration of Unemployment Weeks SA FRED
25 UNEMP UEMPLTS5 5 Civilians Unemployed - Less Than 5 Weeks Thous. of Persons SA FRED
26 UNEMP UEMP5TO14 5 Civilians Unemployed for 5-14 Weeks Thous. of Persons SA FRED
27 ; UNEMP UEMP150V 5 Civilians Unemployed - 15 Weeks & Over Thous. of Persons SA FRED
28 3] UNEMP UEMP15T26 5 Civilians Unemployed for 15-26 Weeks Thous. of Persons SA FRED
29 s UNEMP UEMP270V 5 Civilians Unemployed for 27 Weeks and Over Thous. of Persons SA FRED
30 >~ EMP PAYEMS 5 All Employees: Total nonfarm Thous. of Persons SA FRED
31 e} EMP USPRIV 5 All Employees: Total Private Industries Thous. of Persons SA FRED
32 E EMP CES1021000001 5 All Employees: Mining and Logging: Mining Thous. of Persons SA FRED
33 s EMP USCONS 5 All Employees: Construction Thous. of Persons SA FRED
34 @ EMP MANEMP 5 All Employees: Manufacturing Thous. of Persons SA FRED
35 EMP DMANEMP 5 All Employees: Durable goods Thous. of Persons SA FRED
36 EMP NDMANEMP 5 All Employees: Nondurable goods Thous. of Persons SA FRED
37 EMP SRVPRD 5 All Employees: Service-Providing Industries Thous. of Persons SA FRED
38 EMP USTPU 5 All Employees: Trade, Transportation & Utilities Thous. of Persons SA FRED
39 EMP USWTRADE 5 All Employees: Wholesale Trade Thous. of Persons SA FRED
40 EMP USTRADE 5 All Employees: Retail Trade Thous. of Persons SA FRED
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Series ID Tcode Description Units Seasonal Adjustment Source
41 B EMP USFIRE 5 All Employees: Financial Activities Thous. of Persons SA FRED
a2 &  BumP USGOVT 5 All Employees: Government Thous. of Persons SA FRED
43 g  EMP CES0000000010 5 Women Employees: Total Nonfarm Thous. of Persons SA FRED
44 S EMP CES0600000007 1 Average Weekly Hours of Production and Nonsupervisory Employees: Goods-Producing Hours SA FRED
45 2 EMP AWOTMAN 2 Average Weekly Overtime Hours of Production and Nonsupervisory Employees: Manufacturing Hours SA FRED
46 ; EMP AWHMAN 1 Average Weekly Hours of Production and Nonsupervisory Employees: Manufacturing Hours SA FRED
47 @  EMP AWHI 5 Index of Aggregate Weekly Hours: Production and Nonsupervisory Employees: Total Private Industries Index 02=100 SA FRED
18 HOUS HOUST 4 Housing Starts: Total: New Privately Owned Housing Units Started Thous. of Units SAAR FRED
49 HOUS HOUSTNE 5 Housing Starts in Northeast Census Region Thous. of Units SAAR FRED
50 HOUS HOUSTMW 5 Housing Starts in Midwest Census Region Thous. of Units SAAR FRED
51 HOUS HOUSTS 5 Housing Starts in South Census Region Thous. of Units SAAR FRED
52 © HOUS HOUSTW 4 Housing Starts in West Census Region Thous. of Units SAAR FRED
53 %  HOUS PERMIT 4 New Private Housing Units Authorized by Building Permits Thous. of Units SAAR FRED
54 3 HOUS PERMITNE 4 New Private Housing Units Authorized by Building Permits in the Northeast Census Region Thous. of Units SAAR FRED
55 O HOUS PERMITMW 5 New Private Housing Units Authorized by Building Permits in the Midwest Census Region Thous. of Units SAAR FRED
56 ©  HOUS PERMITS 4 New Private Housing Units Authorized by Building Permits in the South Census Region Thous. of Units SAAR FRED
57 HOUS PERMITW 4 New Private Housing Units Authorized by Building Permits in the West Census Region Thous. of Units SAAR FRED
58 HOUS PERMIT1 5 New Private Housing Units Authorized by Building Permits - In Structures with 1 Unit Thous. of Units SAAR FRED
59 HOUS HOUSTLF 5 Privately Owned Housing Starts: 1-Unit Structures Thous. of Units SAAR FRED
60 HOUS MSACSR 5 Monthly Supply of Homes in the United States Months’ Supply SA FRED
61 BILL CPF3M 2 3-Month AA Financial Commercial Paper Rate % NSA FRED4SW
62 BILL TB3MS 2 3-Month Treasury 