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Introduction

Motivated by the recent availability of extensive macroeconomic data sets, this thesis consists of

three independent chapters that examine the ways to approach to this issue from various angles.

CHAPTER 1. The first chapter, which is a joint work with Matei Demetrescu, discusses the

particularities of forecasting with factor-augmented predictive regressions under general loss

functions. In line with the literature, principal component analysis is employed to extract

factors from the set of predictors. We also extract information on the volatility of the series to be

predicted, since volatility is forecast-relevant under non-quadratic loss functions. Moreover, the

predictive regression is estimated by minimizing the in-sample average loss, to ensure asymptotic

unbiasedness of forecasts under the relevant loss. Finally, to select the most promising predictors

for the series to be forecast, we employ an information criterion tailored to the relevant loss.

Using the Stock and Watson data set, we assess the proposed adjustments in a pseudo out-of-

sample forecasting exercise. Expectedly, the use of estimation under the relevant loss is found

to be effective. In other words, the forecasting exercises we employ suggest that evaluating

forecasts under the chosen asymmetric loss function lead to smaller forecast losses. Using an

additional volatility proxy as predictor and conducting model selection tailored to the relevant

loss function further enhance forecasts. Both the theoretical and the empirical results emphasize

the importance of using the relevant loss functions while performing forecasting exercises with

extracted factors.

CHAPTER 2. The second chapter is a joint paper with Kerem Tuzcuoglu and is linked to the

first chapter in the factor analysis sense. Researches have not found a way to assign economic

meaning to factors although factor analysis has been widely used as a dimension reduction

method. In this paper, we propose a Threshold Factor Augmented Vector Autoregression model
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to address this issue. The novelty is the interpretation of factors by observing how frequently

factor loadings fall below estimated thresholds and become irrelevant. The results indicate that

we are able to relate most of the factors to specific categories of the data without any prior

specification on the data set. Furthermore, the interpretable factors, e.g., real activity factor,

unemployment factor and such, are each given shocks along with policy shock to observe the

responses of the other factors and individual series. The resulting impulse responses are of

expected sign and magnitude in general. Overall, our results yield an intensive layout on which

factor is associated with different aspects of the economy. We are able to associate the extracted

factors with certain macroeconomic activities, such as real economy, unemployment, inflation.

We present impulse response analysis to show how a contractionary monetary shock affects the

factors and variables. Our results are consistent with what the economic theory suggests.

CHAPTER 3. The third chapter, written in collaborative work with Jeremy Chiu, uses the large

information sets in vector autoregression sense. Motivated by the desire to probe macroeco-

nomic tail events and to capture nonlinear economic dynamics, we estimate two types of regime

switching models with Bayesian estimation methods: Threshold VAR and Markov switching

VAR. We also use linear Bayesian VAR model as a benchmark. For each of the non-linear mod-

els, we estimate regimes which carry the interpretation of recessionary/normal and financially

stressful/stable periods. Using the recursiveness assumption and conditional on shocks of one-

standard-deviation, we show that (i) financial shocks hitting during times of recessions create

disproportionately more severe contractions in output; (ii) output growth shocks hitting in finan-

cially stressful times result in disproportionately further financial stress. We also demonstrate

the power of a feedback loop between real and financial sectors when extremely large shocks

hit the economy in normal/financially stable periods. Afterwards, we perform out-of-sample

forecasting exercises, and find that the Threshold VAR model has the potential to predict tail

events in conditional forecasting compared to the Markov switching VAR and Bayesian VAR.

Our findings provide strong evidence of nonlinearities and shock amplification mechanisms in the

United Kingdom data, and hence useful information to investigate macroeconomic tail events.
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CHAPTER 1

Macroeconomic Forecasting with Large Data Sets under Asymmetric Loss

1.1 Motivation

In forecasting macroeconomic series, the past decade has witnessed the increased availability

and use of comprehensive data sets consisting of a large number of predictor time series. When

forecasting macroeconomic aggregates like inflation or GDP, the appeal of such auxiliary data-

rich sets is understandable: the additional informational content of the series helps improving

forecasts compared to a benchmark (vector) autoregression of the variable to be predicted. At

the same time, dealing with an increased number of predictor series poses problems, since the

number of time observations is typically comparable with the number of series in such sets.

This leads to imprecise coefficient estimates in an augmented predictive autoregression, and

consequently to a trade-off between availability and usability of information. The literature has

therefore focussed on complexity reduction and information extraction. Factor-based forecasting

models, for which it is assumed that unobserved common components of the auxiliary series are

good predictors for the variable of interest, are particularly popular in this respect.

Since the predictors are not observed directly for factor-based forecasts, the forecasting procedure

boils down to estimating a feasible predictive regression using lags of the dependent variable and

extracted factors as right-hand side variables. Several contributions have shown that a relatively

small number of estimated factors successfully summarize the contemporaneous information in

1



Chapter 1

the data set of predictors. Stock and Watson (2002c) demonstrate Principal Component Analy-

sis [PCA] of the predictors to produce consistent estimates of the space spanned by the common

factors. Their factor model forecasts outperforms other benchmark models to forecast personal

income and output growth; see also the earlier work in Stock and Watson (1998). Focussing on

estimation and inference in approximate factor models, Bai (2003) derives asymptotic distribu-

tions and uniform convergence results while Bai and Ng (2002) provide information criteria for

estimating the number of factors; see also Alessi et al. (2010).

The popularity of factor models in forecasting is reflected by the large number of contributions in

the applied literature. Ludvigson and Ng (2009a,c) use factors from a large number of macroe-

conomic series to predict excess bond returns and to show that the predictability of future excess

returns is related to macroeconomic activity. These are just the tip of the iceberg; see Marcellino

et al. (2003), Artis et al. (2005), den Reijer (2005), Forni et al. (2005), Banerjee et al. (2008),

Engel et al. (2012) or Godbout and Lombardi (2012) to name but a few more contributions to the

literature on factor-based forecasting. While there are alternative approaches such as soft/hard

thresholding or forecast combinations, they appear to be less popular than factor-based models.

One reason to prefer factor-based forecasting procedures may be their interpretability; see e.g.

the discussion in Ludvigson and Ng (2009a,c). For instance, Ludvigson and Ng (2009c) regress

each macroeconomic variable in their data set on the PCA-extracted factors. The R2s of these

regressions are informative of the relations between the factors and the variables. They are

thus able to identify e.g. stock market, inflation or real factors. More recently, Hacioglu Hoke

and Tuzcuoglu (2014) work on factor augmented VAR models with a threshold structure of the

loadings (which are dynamic in their setup). The periods where the loadings are set to zero

or where the factors load more heavily on the variables are also informative on the relations

between factors and variables. The point is that predictors with economic meaning prevent the

interpretation of forecasting procedures as “crystal-ball” or “black-box” econometrics and are

more likely to produce forecasts understandable by wider audiences.

The focus of the work cited above is on forecasts which are optimal in the mean squared-error

[MSE] sense, i.e. on procedures minimizing the expected squared forecast error. The literature

documents, however, a significant number of cases where more general – and in particular asym-

metric – cost-of-error functions are employed. For instance, IMF and OECD forecasts of the

deficit of G7 countries are found by Artis and Marcellino (2001) to be systematically biased

towards over or under-prediction when compared with MSE-optimal forecasts. Elliott et al.

(2005b) propose formal methods of inference on the degree of asymmetry of the loss function

and testing the rationality of forecasts; see also Patton and Timmermann (2007b). Building

on the work of Elliott et al., Christodoulakis and Mamatzakis (2008, 2009) find asymmetric

preferences of EU institutional forecasts. Clements et al. (2007) discuss the loss function of the

Federal Reserve and Capistrán (2008) even finds that, for inflation, the forecasting preferences

of the Fed are time-varying. The loss function of the Bank of Canada is analyzed by Pierdzioch

2
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et al. (2011). More recently, Tsuchiya (2016) examines the asymmetry of the loss functions of

the Japanese government, the IMF and private forecasters for Japanese growth and inflation

forecasts.

We therefore study factor-augmented forecasting under asymmetric loss. For a given predictive

model, there is little debate as to how to obtain point forecasts under a given loss function: it has

been known since Weiss and Andersen (1984) and Weiss (1996) that the forecast model should

be estimated under the relevant loss.1 Estimation of the feasible predictive regression under the

relevant loss would therefore improve forecasts. This prompts the question, first, whether such

estimation may indeed be conducted with estimated factors in a manner analogous to the MSE-

optimal case. Less obvious however, is the second question of whether the forecast model should

be the same under any asymmetric loss function. To put it bluntly, are the PCA-extracted

factors still forecast-relevant under an asymmetric loss function? Considering the theory of

forecasting under asymmetric loss functions, see Granger (1969), Granger (1999), Weiss (1996),

Christoffersen and Diebold (1996), McCullough (2000), Elliott and Timmermann (2004), Elliott

et al. (2005b), Patton and Timmermann (2007a) or Patton and Timmermann (2007b), the least

what may be expected is that the relative importance, as a predictor changes, for the extracted

factors or even for the lags of the dependent variable in the augmented predictive autoregression.

So, rather than relying on the summarizing power of, say, the first principal component, one may

have to select the predictors (lagged dependent variables or factors) that are most informative

under the relevant loss.2 Third, perhaps even more importantly, one should ask whether the usual

factor extraction does actually capture all information relevant under the given loss function.

PCA essentially delivers linear combinations of the “many predictors” data set. In a linear

predictive model under squared-error loss, this may be a convenient dimensionality reduction

procedure. But the optimal forecast function under an asymmetric loss function may depend on

the auxiliary series in a non-linear fashion, even if the optimal forecast function is linear in the

MSE-optimal case. Thus, the informational content of the data set may not be fully exploited

under an asymmetric loss function.

Our contributions are as follows. We show in Section 1.2 that, regularity conditions provided, one

may indeed use PCA-extracted factors as predictors even when estimating forecast regressions

using the relevant loss function. To make sure that relevant information is not wasted, we make

use in Section 1.3 of the insight that the optimal point forecast under a general loss depends

on the conditional variance of the variable to be predicted (Christoffersen and Diebold, 1996;

Patton and Timmermann, 2007b). Thus, adding information on the volatility of the series to

be predicted in the forecasting model improves forecasts under asymmetric loss. While the

1An alternative, more demanding, procedure is to model the entire predictive distribution and derive the point
forecasts based on it; see e.g. McCullough (2000) for an ingenious bootstrap-based version.

2In fact, focussing on extracting the factors with the highest associated eigenvalue might not be a good idea
in the MSE-case either, since a factor even if explaining most of the variance of the raw predictor series, need not
capture the information relevant for forecasting.
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volatility of interest is not observed directly, it is plausibly related to the variability of the

auxiliary series. The relation is not a forced one, since the volatility of the overall economic

environment should be reflected – at least to some extent – by the volatility of all series involved.

This common component can in turn be extracted from the auxiliary data set. Concretely, we

extract additional factors from the log-squared residuals of the factor model to increase the

quality of the forecasts under the relevant loss. This delivers a larger number of predictors, of

which not all need be equally relevant. To find the ones with the highest predictive power, we

resort to a suitable information criteria.3

We then illustrate the proposed procedure in Section 1.4 by means of a forecasting exercise

with US personal income, industrial production, unemployment rate and retail sales. We use

a data set which has become widely known as the “Stock and Watson” data set (Stock and

Watson, 2005). Expanded by Ludvigson and Ng (2009a), the data set spans the period from

January 1964 to the end of 2007. Although the original data set includes more time series than

we work with here, the use of this particular selection of 131 series has been quite popular

in the literature; see e.g. Belviso and Milani (2006), Boivin and Ng (2006), D’Agostino and

Giannone (2006), Ludvigson and Ng (2009a,c) and Bai and Ng (2011). The detailed description

and other features of the data can be found in Appendix 1.D. Here, we are interested in one-

year-ahead forecasts; working with monthly data, we thus work at forecast horizon h = 12. We

compare the average forecast losses of all four variables in every single case we look into. We

find, expectedly, that average losses of forecasts produced under the relevant loss function give

smaller losses compared to the losses produced by forecasts obtained via OLS estimation of the

predictive regression. At the same time, we also show that adding information from the volatility

of the series and having parsimonious models by assessing the relevance of the extracted factors

improve the average losses.

The final section concludes, and some mathematical details and additional results have been

gathered in the Appendix.

1.2 The basic forecasting problem

Let yt be the series for which an h-step ahead forecast is required. Given the available information

set Ft = {ft,k, yt, yt−1, . . .}, the optimal forecast is given by

yoptt+h = arg min
y∗
t+h

E
(
L
(
yt+h − y∗t+h

)
|Ft
)
, (1.1)

3The issue of model selection is not restricted to our setup: e.g. Schumacher (2007) compares the forecast
accuracy of variety of factor models to MSE-predict German GDP, and finds that results may change when
different information criteria to select factors are used.
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where L (·) is the relevant loss function quantifying the cost incurred by discrepancies between

a given forecast y∗t+h of the variable y at some time t + h and the actual realization yt+h.

According to Granger (1999), loss functions should be uniquely minimized at the origin, and be

quasi-convex. We shall work with a specific class of loss functions, introduced by Elliott et al.

(2005b); a forecast y∗t+h is thus evaluated by means of

L
(
yt+h − y∗t+h

)
=
(
α+ (1− 2α) I

(
yt+h − y∗t+h < 0

)) ∣∣yt+h − y∗t+h∣∣p . (1.2)

This class of loss functions is quite flexible: it includes as special cases the widely used symmetric

(for α = 0.5) and asymmetric (for 0 < α < 0.5 or 0.5 < α < 1); linear and quadratic loss

functions (for p = 1 and p = 2). Moreover, it only requires mild moment conditions on yt, in

contrast e.g. to the well-known linex loss.

We start with the usual linear forecasting model

yt+h = c+
q∑
j=1

ajyt−j+1 +
r∑

k=1
bkft,k + vt+h, t = 1, 2, . . . , T , (1.3)

where the forecast error vt+h cannot be predicted under L. This does not imply, however, that

vt+h could not be forecast under another loss function. The lack of predictability of vt+h under L
implies that the so-called generalised forecast error L′ (vt+h) is uncorrelated with the predictors

yt−j+1 and ft,k; see Granger (1999) and Patton and Timmermann (2007a). The optimal forecast

is thus given by

yoptt+h = c+
q∑
j=1

ajyt−j+1 +
r∑

k=1
bkft,k. (1.4)

In practice, one resorts to a two-stage procedure, given that observations on N auxiliary variables

xt,i are available, from which ft,k may be estimated in a first stage. Maintaining the typical

assumption of linear measurement equations for the factors, we have that

xt,i =
r∑

k=1
λi,kft,k + ut,i. (1.5)

With additional conditions on λi,k and ut,i (in particular orthogonality of the common and

idiosyncratic components ft,k and ut,i), extraction of the unknown factors can be conducted,

leading to f̂t,k (we resort to PCA to this end). This ultimately takes us to the feasible predictive

regression

yt+h = c+
q∑
j=1

ajyt−j+1 +
r∑

k=1
bkf̂t,k + vt+h, (1.6)
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to be estimated under the relevant loss in a second stage, i.e.

c̃, ãj , b̃k = arg min
c∗,a∗j ,b

∗
k

1
T

T−h∑
t=q
L

yt+h − c∗ − q∑
j=1

a∗jyt−j+1 −
r∑

k=1
b∗kf̂t,k

 , (1.7)

from which the forecast is obtained as

ỹoptt+h = c̃+
q∑
j=1

ãjyt−j+1 +
r∑

k=1
b̃kf̂t,k. (1.8)

Its quality hinges on the precision of the factor approximation; recall that factors cannot be

consistently estimated in a fixed-N setup.

The justification to use the feasible forecast from (1.8) is provided by the following proposition

establishing its consistency as T,N → ∞ for the unfeasible optimal forecast from (1.4) under

the relevant loss L.

Proposition 1. Let the auxiliary variables xt,i obey Assumptions A-E in Bai (2003). Further-

more, assume that the factors ft,k and the forecast errors vt+h are strictly stationary and ergodic,

and that the generalised forecast errors L′ (vt+h) satisfy E (L′ (vt+h)| yt, yt−1, . . . , ft,k) = 0 and

have no atom at 0. Finally, let all series have finite moments of order p with p from (1.2) integer

and positive. It then holds for the estimated optimal forecast from (1.8) that, point-wise in t,

ỹoptt+h
p→ yoptt+h

as N,T →∞ such that T/N → 0.

Proof: See Appendix 1.B.

Remark 2. Assumptions A-E in Bai (2003) ensure the uniform (in t) consistency of the ex-

tracted factors, which, in that framework, may be heteroskedastic and even locally trending. The

additionally required strict stationarity simplifies the proofs; while it is slightly more restrictive

than the often made assumption of weak stationarity (see e.g. Stock and Watson, 2002c), it is

a convenient price to pay for being able to use non-MSE loss functions. Strict stationarity of

the factors might be relaxed at the expense of additional conditions, but we do not pursue the

topic here as we would rather focus on the forecasting procedure than on more involved technical

details. The critical requirement is that the generalised forecast error is a martingale difference

sequence, which is a standard condition in the literature on forecasting under asymmetric loss

(Patton and Timmermann, 2007a). In a nutshell, the forecast errors must be unforecastable
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under the relevant loss. The finiteness of the pth order moments ensures that the forecast risk

is finite and an optimal forecast exists.

Remark 3. In factor models, the factors are only identified up to a rotation. But it follows from

the proof that rotations do not affect the result: essentially,
∑r
k=1 b̃kf̂t,k consistently estimates∑r

k=1 bkft,k which is the quantity required for forecasting yt+h. E.g. Bai and Ng (2006) consider

this explicitly; to keep notational effort at a minimum, we assume identification directly.

Remark 4. The loss function does not play any role in estimating the factors, but only in the

subsequent forecasting step. The main reason to do so is to maintain the interpretability of the

factors as economic driving forces (not depending on individual loss preferences), but we also

wish to stay in line with the literature on factor-based forecasting. While Tran et al. (2014)

discuss estimation of factors under asymmetric linear and asymmetric quadratic losses, these

losses refer to the idiosyncratic components and not to the actual forecast errors; we leave the

integration of the two approaches to further work.

1.3 Extracting additional relevant information

The two-step procedure for forecasting under asymmetric loss discussed in the previous section is

the natural extension of the original method of Stock and Watson (2002c), for which the second

step – i.e. estimation of the predictive regression – has been modified to account for the use of

a specific loss function. But we should ask at this point whether the first stage – i.e. extracting

the information carried by the auxiliary variables xt,i – is to be left unmodified. In other words,

is the factor model (1.5) exhausting the possibilities of finding predictors for yt+h under the

relevant loss?

It should be pointed out that the linear model (1.5) is only sufficient under conditions which

are not plausible for macroeconomic data sets. Namely, Patton and Timmermann (2007b) show

that, for loss functions of the type given in (1.2), the optimal forecast has the form

yoptt+h = E (yt+h| yt, yt−1, . . . , xt,i) + C
√

Var (yt+h| yt, yt−1, . . . , xt,i) (1.9)

for some constant C depending on the loss function and the shape of the conditional distribu-

tion.4 The first summand on the r.h.s. of (1.9) is nothing else that the conditional mean which

the original factor-based model does indeed capture. The coefficient C, and thus the second

4Their result actually holds for any homogenous loss function.
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summand, is zero e.g. when α = 0.5 and p = 2, or when α = 0.5 and the conditional distri-

bution of yt+h is symmetric, but not in general. When estimated under the relevant loss, the

intercept c of the predictive regression (1.3) only captures the average of the so-called bias term

C
√

Var (yt+h| yt, yt−1, . . . , xt,i) and misses the fact that the conditional standard deviation of

yt+h, if time-varying, is actually a predictor for yt+h under L.

And indeed, the volatility of macroeconomic variables is not constant in general. The Great

Moderation is the perhaps best known case of time-varying volatility. The term coins the

downward trend in the variance of inflation and economic growth since the 1980s (e.g., Stock

and Watson, 2002b); Clark (2009) finds that the recent financial crisis has reversed the trend,

thus strengthening the evidence of time-varying volatility. Along the same lines, Sensier and

van Dijk (2004) find that four out of five of over two hundred U.S. macroeconomic time series

exhibit unconditional volatility changes during the period 1959-1999.

What is more, it is expected that such volatility trends are common to the variables in the data

set used for forecasting: the series stem, after all, from the same economic environment. Thus,

we may resort to the same data set {xt,i} in order forecast the conditional standard deviation

of yt+h.

To exploit the above insight, we assume a stochastic volatility model of the form

vt+h = et e
1
2 (gt+

∑s

l=1 ξlht,l).

We follow Nelson (1991) in using the exponential “link” function, since it allows us to avoid

positivity restrictions on the components gt and ht,l and assume – in line with the very idea of

factor-based forecasting – that ht,l could be forecast using information from the auxiliary series

xt,i; gt is an unforecastable component. When the conditional variance of the idiosyncratic

components in the factor model depend in a similar manner on ht,l, we write

ut,i = et,i e
1
2 (gt,i+

∑s

l=1 ht,lξl,i),

where gt,i are individual volatility components specific for xt,i. As usually, et and et,i are stan-

dardised variables, mutually independent and independent of ht,l, gt and gt,i. Then,

log u2
t,i = log e2

t,i + gt,i +
s∑
l=1

ξl,iht,l,

which is nothing else than a factor model for the log squares of ut,i with ht,l the common

components and log e2
t,i + gt,i the idiosyncratic ones.

Since the variables ut,i are not observed directly, we resort to the idiosyncratic components

extracted in the first-stage PCA. Thus we are now able to extract ht,l from log û2
t,i using a
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second-stage PCA, leading to ĥt,l. Note that the factors ft,k themselves may be (conditionally)

heteroskedastic; we assume that they do not bear additional predictive power for the conditional

variance of yt+h, but one may of course consider their log squares when extracting ht,l.

This is related to decomposition of the yield spreads in Ludvigson and Ng (2009a,c). In both

papers, additional information carried by the yield risk premium (or term premium) is acknowl-

edged, due to the inability of the yield curve to explain business cycle variations in bond risk

premia. The yield risk premium can be seen as an idiosyncratic error which should be constant

under the expectation hypothesis. Ludvigson and Ng estimate this term via the average multi-

step estimates of bond returns. They show that the predictive factors are not sufficient to display

the countercyclical form of bond risk premia since the predictive power of these factors does not

imply explaining the yield curve. In this respect, the additional information used, namely the

yield risk premium, parallels the volatility factor we use in this paper.

Equation (1.9) shows that a nonlinear forecast may be better suited in an asymmetric loss

context. Clearly, extracting factors from log u2
t,i is not the only way to consider nonlinearities;

for instance Bai and Ng (2008a) employ quadratic PCA. But Equation (1.9) motivates us to

look directly for variables driving the volatility.

Ideally, we would include a term of the form Ce
1
2
∑s

l=1 ξlĥt,l in the predictive regression with

additional parameters ξl (with gt not being predictable, e1/2gt is absorbed in the error component

et multiplicatively). But a non-linear regression equation is perhaps too cumbersome to deal

with numerically, even if we must anyway resort to numerical optimization under non-MSE loss.5

We therefore linearize the exponential, ex ≈ 1 + x, and trade some misspecification in exchange

for increased clarity of the final procedure.

The component gt is in principle not forecastable, at least not from xt,i, and we treat it as such

by absorbing it in the forecast error. We thus obtain as estimated predictor for yt+h

ỹoptt+h = c̃+
q∑
j=1

ãjyt−j+1 +
r∑

k=1
b̃kf̂t,k +

s∑
l=1

ξ̃lĥt,l, (1.10)

where the parameter estimates are obtained like before by minimising the observed forecast loss.

Due to the linearization, the estimators ξ̃l in (1.10) do not converge to the population values.

The following proposition guarantees that the fitted predictor is the best linear predictor under

the given loss.

Proposition 5. Define the (unfeasible) linear predictor

π(yt, ft, ht) = c∗ +
q∑
j=1

a∗jyt−j+1 +
r∑

k=1
b∗kft,k +

s∑
l=1

ξ∗l ht,l

5See Demetrescu (2006) for a tailored optimization method.
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and assume that supt
∣∣∣ĥt,l − ht,l∣∣∣ = op(1). Under the assumptions of Proposition 1, it holds for

ỹoptt+h from (1.10) that

ỹoptt+h
p→ arg min
c∗,a∗j ,b

∗
k
,ξ∗
l

E (L (yt+h − π(yt, ft, ht)))

pointwise in t.

Proof: Analogous to the proof of Proposition 1 and omitted.

Remark 6. In the case of the squared-error loss, the bias-variance decomposition of the MSE

indicates that the fitted linear model minimizes the expected squared difference between the lin-

ear fit and the nonlinear regression curve (where the expectation is taken with respect to the

marginal distribution of the predictors). In the case of asymmetric power losses, such a clean

decomposition is not available, but the interpretation of the proposition remains the same.

Remark 7. The quality of the linear approximation depends on the signal-to-noise ratio in the

series
∑s
l=1 ξlĥt,l. One could improve it by taking a quadratic approximation for the exponential,

ex ≈ 1 + x + x2/2. When not imposing the coefficient restrictions resulting from the quadratic

approximation of the exponential function to avoid further numerical complications, this results

in a linear model with interactions,

ỹoptt+h = c̃+
q∑
j=1

ãjyt−j+1 +
r∑

k=1
b̃kf̂t,k +

s∑
l=1

s∑
m=1

ξ̃lξ̃mĥt,lĥt,m.

To sum up, the factor-based forecasting procedure is modified under asymmetric loss as follows.

1. Clean/prepare the auxiliary data set and the variable to be predicted.

2. Extract factors from auxiliary series (PCA).

3. Extract factors (demean, standardise, PCA) from log-squared extracted idiosyncratic com-

ponents.

4. Augment the predictive autoregression with the factors extracted in steps 2 and 3.

5. Estimate under the relevant loss.

6. Suitably select the predictors to enter the predictive model.

Compared to the usual factor-based forecasting approach, steps 3 and 5 are new and specific

to forecasting under a general loss function. Step 6 should of course be conducted even under
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squared-error loss, but requires here a careful consideration of the used selection tool. Concretely,

to conduct predictor selection in (1.10), we resort to an information criterion, but tailored to

the relevant loss. For a model of complexity k, we thus compute

AICL (k) = 2
p

ln
(∑

L (v̂t+h(k))
)

+ 2k
T

with v̂t+h(k) in-sample fitted errors from the respective model, and choose the model minimizing

the criterion. See Appendix 1.A for a justification of this particular choice.

We work with an information criterion because of the widespread use of information criteria

in general, but partly also for computational convenience; we also examined the numerically

more involved least absolute shrinkage and selection operator [LASSO] (Tibshirani, 1994) as an

alternative, alongside with refinements due to Belloni and Chernozhukov (2013). Other choices

such as targeting the predictors á la Bai and Ng (2008a) (see also Dias et al., 2010) are not

considered, but may of course be incorporated in the forecasting procedure.

We present in the following section the empirical results obtained using only the tailored in-

formation criterion AICL for model selection. The corresponding LASSO and post-fit LASSO

results are presented in Appendix 1.C. While we find that they (in particular the post-fit LASSO)

improve on AICL, the computational requirements are higher and we leave the decision of which

model selection procedure to use to the practitioner.

1.4 Forecasting under asymmetric loss

The goal of the exercise is to forecast several macroeconomic variables, such as Personal Income

(PI), Industrial Production (IP ), Unemployment Rate (UN) and Retail Sales (SL), under

asymmetric loss. We evaluate the out-of-sample forecasts that use the factors recursively ex-

tracted from the auxiliary data. The factors are extracted by PCA analysis in a linear fashion.

We pursue the empirical analysis by taking them as observable. The exercise follows that of

Ludvigson and Ng (2009c)’s.

1.4.1 Setup

The data set employed for the forecasting exercise is often referred to as the Stock and Watson

data set (Stock and Watson, 2005) which consists of 131 macroeconomic aggregates. Ludvigson

and Ng (2009c) updated this data set so it now spans the time period 1964:01 – 2007:12. The

consistency of the estimated forecast function relies, among others, on the assumption that
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observable series are stationary. The series are therefore transformed to stationarity by taking

differences, by taking logarithms – and in some cases by doing both; see Appendix 1.D for

details. Finally, all transformed variables are standardized to have zero sample mean and unit

sample variance for factor extraction.

We use a recursive pseudo out-of-sample forecasting scheme to allow for a comparison of the

different forecasting procedures considered in the following. Concretely, we start with data from

1964:1 through 1984:12; we run the forecasting regression with dependent variables from 1965:1

to 1984:12 and predictors from 1964:1 to 1983:12. The outcome is used to forecast PI, IP ,

UN and SL for 1985:12. We then expand the data set by one period to obtain the forecasts for

1986:1. The procedure is iterated until we obtain the last forecast, for 2007:12. (At the last step,

the independent variables from 1964:1 through 2005:12 and dependent variables from 1965:1 to

2006:12 are used to run the forecasting regressions to forecast 2007:12.)

1.4.2 Extracted factors

This section directs our focus to forecasting by using PCA-extracted factors from the data.

The results of this section shed light on whether forecasting with factors under asymmetric

loss is effective. Furthermore, we emphasize the importance of model selection and additional

information presented by volatility factor(s).

One of the common issues associated with factor-based forecasting approaches is the number

of factors to be extracted from the auxiliary data set. To set this in stone, we start by per-

forming the information criteria developed by Bai and Ng (2002), and used by Ludvigson and

Ng (2009a,c) and Bai and Ng (2011).6 The criteria find eight factors in the Stock and Watson

data set. Factors are identified up to a rotation, so a comprehensive interpretation of extracted

factors is not straightforward. Stock and Watson (2002a) and Ludvigson and Ng (2009c) report

marginal R2s of the regressions of each of the series against each of the eight factors they infer

from the information criteria. In line with their pre-classification of the dataset, they relate these

factors with real economy, output and unemployment series, Treasury Bills, commodity prices

and such. Note, however, that the forecasting procedure does not hinge on this classification.

For a closer look on the number of factors, we employ the tailored AICL for a preliminary

check of the number of factors for the full time span. This preliminary exercise starts with

selecting among the 8 largest PCA-extracted factors which are chosen by the Bai and Ng (2002)

information criteria. In the second step, 9 factors are extracted from the auxiliary data and

selection is conducted among these 9, and so on. We stop at selection among the 15 largest

6Bai and Ng (2002) information criteria do not consider generalised loss functions. We apply these criteria to
give a preliminary idea about the number of the factors.
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PCA-extracted factors. The factors in each step are used in the predictive regressions to forecast

all four variables of interest after being subject to the model selection. The potential forecast

relevance of the factors then assessed; Table 1.1 reports the model (i.e. the factors) chosen by

minimizing AICL among all factors in that particular step. The loss function is asymmetric

quadratic with p = 2 and α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

As shown in the columns of Table 1.1, not all factors in each step are selected as predictors, at

least for the full data span. For example, for forecasting PI, in case of α = 0.1, all but fourth

factor are selected when selecting among the first 8 factors in total. For the same variable, when

α = 0.5, the forth and sixth factors are not identified as forecast relevant in the first step. For

all α, it turns out that the first 8 factors given by the information criteria are not all forecast-

relevant.7 Increasing the number of factors to select from one by one, the already selected factors

do not generally change. In the last step of our exercise, we contemplate all 15 PCA-extracted

factors and note that some of the additional ones appear to be forecast relevant, while some

of the commonly used 8 largest factors do not. Changes on the selected factors are observed

depending on the chosen α values. This emphasises the differences on the relative importance

of the factors which changes with the loss function.

Evidence from this preliminary exercise suggests that the 9th factor is rarely chosen by the

tailored AICL while forecasting PI and PI. On the contrary, it is consistently chosen in the

cases of UN and SL, for all α values. Additionally, factors beyond 9 appear to be forecast

relevant. Thus, we use 15 factors (the largest PCA-extracted ones) as benchmark rather than 8

largest factors found by the information criteria. To keep the complexity tractable, we do not

consider classical factors beyond these.

The extracted volatility factor(s) give(s) information which is not (linearly) contained in the

original series. According to the mentioned information criteria,8 the PCA of the log-squared

residuals from the first-step factor analysis leads to only one additional factor to be taken into

account. We consider it as a predictor along with the factors extracted from the data in the

first step. While selecting the concrete predictive model for a given span of observations, the

volatility factor is subject to model selection with the tailored AIC alongside the other factors.

We also consider the squared volatility factor to better account for nonlinearities.

7The objective function of the AICL targets the dependent variable whereas the PCA analysis aims to max-
imize the variance explained by factors. Due to the difference in the objective functions, the factors selected by
the information criteria do not always appear to be forecast relevant.

8Following Bai and Ng (2002), we rely on PCp2 and PCp3 as the other criteria tend to – unrealistically –
over-parameterize the model in our case.
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Table 1.1. Factors selected for predicting for all predictor series by AICL; full data span

α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9
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3 3 7 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 6 3 3 3 3 3 3

4 4 8 6 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6 6

6 6 9 7 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 7 7 7 7 7 7

7 7 10 8 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 8 8 8 8 8 8

8 8 9 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

9 10 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

11 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13

13 13 13 14 14 14 14 14 14 14 14

14 14 15 15 15 15

R
e
t
a
il

S
a
le

s

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 3 3 3 3 3 3 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 4 4 4 4 4 4 5 5 5 5 5 4 5 5 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 5 5 5 5 5 5 6 6 6 6 6 5 6 6 6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 6 6 6 6 6 6 7 7 7 7 7 6 7 7 7 7 7 7 7 7 7 7

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 7 7 7 7 7 7 8 8 8 8 8 7 8 8 8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 8 8 8 8 8 8 9 9 9 9 8 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 9 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 12 10 12 12 12 12 12 12

11 11 11 12 11 11 11 11 11 11 11 11 11 11 11 12 13 13 13 13 13

12 12 13 12 12 12 12 12 12 12 12 12 13 14 14 14 14

13 14 13 13 13 13 13 13 13 15 15

14 14 14 14 14

15 15 15

Notes: Asymmetric quadratic loss; see the text for details. The number of factors considered given a particular α and variable are given in bold. The analysis is for the whole time span.
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1.4.3 Results

In this section, we discuss the results when model selection is conducted with the tailored

information criterion AICL. For each α, we first estimate the respective predictive regression

by ordinary least squares (OLS) relying on the regressors in the benchmark models in recursive

manner. We construct one-year-ahead forecasts in each given step and evaluate the occurring

loss via the forecast errors under the relevant loss function. This approach is henceforth named

as OLS-Asymmetric Loss (OLS−AL). The second route to take here is estimating the regression

coefficients numerically directly by the aggregated observed loss and using them to construct

forecasts. This approach is named as Asymmetric Loss (AL) henceforth. For each variable of

interest, first OLS − AL losses are presented and followed by the AL losses. For α = 0.5, the

results of consecutive columns are the same, since for p = 2 and α = 0.5 the quadratic loss is

recovered.

Concentrating on the evaluation of the forecasts obtained using OLS vs. those obtained via

estimation under the relevant loss, one expects the average forecast loss of AL to be smaller

than the loss which occurs under OLS −AL; see the early work of Weiss and Andersen (1984).

We consider six cases in total. The first case uses only 15 factors for the forecasting exercise.

The second case also includes the factor extracted from the log-squared idiosyncratic components

ût,i. Thus, there are in total 16 factors for this case. The third case adds the squared volatility

factor after which we end up with 17 factors. We do not conduct model selection for Case 1,

Case 2 or Case 3. Case 4 is the counterparty of Case 1 with model selection by the tailored

AICL. Similarly, Case 5 and 6 are model selection versions of Case 2 and 3, respectively. Note

that the model selection is performed in each recursive step. Moreover, one lag of the dependent

variable is added to the set of predictors in all cases (and is subject to model selection in Cases

4, 5 and 6). A second lag did not improve forecasting ability in any of the cases or for any of

the loss functions so we do not present those results here. Appendix 1.C contains the additional

results based on LASSO and post-fit LASSO model selection and estimation.

Table 1.2 summarizes the pseudo out-of-sample average forecast loss for each of the six cases.

We fix p = 2 and allow for different degrees of asymmetry by considering five αs for the loss

function in Equation (1.2). For each of the six cases we consider, the goal is to forecast PI, IP ,

UN and SL under two alternatives of forecast evaluation.

Evaluating the forecasts by the asymmetric loss function of choice leads to lower average losses

with the only exception of forecasting IP with α = 0.7 in Case 5.9

In some cases, we see that adding one extra factor, the volatility factor, improves the forecast

accuracy. OLS − AL and AL losses reported in case of α = 0.1 numerically demonstrate the

9Model selection conducted by LASSO and post-fit LASSO leads to similar findings; see Appendix 1.C.
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Table 1.2. Losses Evaluated for OLS-Asymmetric Loss and Asymmetric Loss

Alpha Cases PIOLS−AL PIAL IPOLS−AL IPAL UNOLS−AL UNAL SLOLS−AL SLAL

0.1

Case 1 0.2536 0.2023 0.1793 0.0988 0.0092 0.0054 0.8751 0.6065

Case 2 0.2532 0.2004 0.1845 0.1019 0.0092 0.0054 0.8978 0.6089

Case 3 0.2520 0.2042 0.1785 0.1009 0.0093 0.0055 0.8896 0.6129

Case 4 0.2493 0.1866 0.1852 0.0913 0.0086 0.0054 0.8236 0.6023

Case 5 0.2502 0.1872 0.1853 0.0911 0.0086 0.0054 0.8236 0.6023

Case 6 0.2501 0.1871 0.1832 0.0935 0.0086 0.0054 0.8236 0.6023

0.3

Case 1 0.2369 0.2232 0.1695 0.1494 0.0098 0.0092 0.8668 0.8149

Case 2 0.2365 0.2218 0.1728 0.1532 0.0099 0.0093 0.8794 0.8158

Case 3 0.2366 0.2231 0.1695 0.1520 0.0100 0.0093 0.8805 0.8220

Case 4 0.2345 0.2179 0.1650 0.1369 0.0094 0.0089 0.8235 0.7895

Case 5 0.2345 0.2179 0.1650 0.1369 0.0094 0.0089 0.8235 0.7895

Case 6 0.2345 0.2179 0.1655 0.1372 0.0094 0.0089 0.8235 0.7895

0.5

Case 1 0.2201 0.2201 0.1598 0.1598 0.0105 0.0105 0.8586 0.8586

Case 2 0.2198 0.2198 0.1611 0.1611 0.0106 0.0106 0.8611 0.8611

Case 3 0.2212 0.2212 0.1604 0.1604 0.0107 0.0107 0.8714 0.8714

Case 4 0.2162 0.2162 0.1419 0.1419 0.0099 0.0099 0.7930 0.7930

Case 5 0.2162 0.2162 0.1419 0.1419 0.0099 0.0099 0.7930 0.7930

Case 6 0.2162 0.2162 0.1419 0.1419 0.0099 0.0099 0.7934 0.7934

0.7

Case 1 0.2034 0.2006 0.1500 0.1419 0.0111 0.0098 0.8503 0.7890

Case 2 0.2031 0.2016 0.1494 0.1403 0.0113 0.0099 0.8427 0.7948

Case 3 0.2058 0.2035 0.1514 0.1404 0.0114 0.0100 0.8623 0.8086

Case 4 0.1980 0.1968 0.1288 0.1286 0.0106 0.0093 0.8033 0.7355

Case 5 0.1980 0.1968 0.1289 0.1292 0.0106 0.0093 0.8034 0.7389

Case 6 0.1980 0.1968 0.1293 0.1286 0.0106 0.0094 0.8033 0.7387

0.9

Case 1 0.1866 0.1537 0.1403 0.0848 0.0118 0.0064 0.8420 0.5554

Case 2 0.1864 0.1555 0.1377 0.0834 0.0121 0.0066 0.8244 0.5674

Case 3 0.1903 0.1577 0.1423 0.0839 0.0121 0.0065 0.8531 0.5840

Case 4 0.1936 0.1484 0.1194 0.0819 0.0114 0.0063 0.8122 0.5309

Case 5 0.1936 0.1484 0.1193 0.0835 0.0116 0.0064 0.8091 0.5357

Case 6 0.1936 0.1484 0.1224 0.0816 0.0114 0.0065 0.8109 0.5356

Notes: The losses are evaluated using asymmetric quadratic loss functions within a recursive pseudo-out-of-sample setup. See the text for
details. The dataset for factor extraction includes the dependent variables.

improvement from Case 1 to Case 2. Due to the exceptions, this cannot be generalised over

all cases and all variables. Adding the squared volatility factor improves the forecasts of some

variables under different loss forecast asymmetries, such as for PIOLS−AL for α = 0.1. However,

for the same asymmetry switching from Case 2 to Case 3 in AL, PI forecast losses point out

otherwise, illustrated by increasing forecast losses with the inclusion of this additional factor.

We shape our analysis to proceed with forecasting four macroeconomic variables with forecast

relevant factors. As shown in Table 1.2, selecting among all the factors included in the system

results with smaller forecast losses. Comparisons of Case 1 and 4, Case 2 and 5 and Case 3 and 6

point out that variable selection leads to smaller losses. Given the small number of exceptions10,

the analysis addresses strong evidence for variable selection by the tailored information criterion

10The exceptions are OLS − AL IP Cases 4, 5 and 6 for α = 0.1. PIOLS−AL Cases 4, 5 and 6 for α = 0.9.
PIAL Case 5 for α = 0.9

16



Chapter 1

AICL being useful.

Our analysis is not designed to select an “optimal” α, since α is imposed by the beneficiary of

the forecast i.e. the corresponding loss preferences. Yet, our results can still deliver some insight

on the matter. For forecasting unemployment rate, α = 0.1 appears to be the optimal value

which leads to the smallest forecast losses for all cases. For the other three variables, α = 0.9
results with the smallest forecast errors for all cases.

We additionally compared the OLS−AL and AL forecasts with the help of the Diebold-Mariano

[DM] test for predictive accuracy (Diebold and Mariano, 1995). The null hypothesis is that the

expected forecast loss is equal for both procedures of interest, ỹ
(1)
t+h and ỹ

(2)
t+h. The losses implied

by these forecasts are L(ṽ(1)
t+h) and L(ṽ(2)

t+h). Under the null hypothesis, H0 : E
(
L(ṽ(1)

t+h)
)

=

E
(
L(ṽ(2)

t+h)
)

or H0 : E(dt) = 0 where dt = L(ṽ(1)
t+h) − L(ṽ(2)

t+h) is the loss differential, the DM

test statistic is S = d̄/(L̂RV (d̄)/T̄ )0.5 ∼ N(0, 1) where T̄ is the number of forecast errors available

for comparison and L̂RV is an estimate of the asymptotic (long-run) variance of
√
T̄ d̄. Since

we compute differences between AL and OLS −AL, we may expect test statistics to be smaller

than -1.645 at the 5% significance level when OLS −AL is inferior.

Table 1.3. Tests of equal predictive accuracy of OLS and AL based forecasts

Alpha Cases DM Test PI DM Test IP DM Test UN DM Test SL

0.1

Case 1 −3.07∗ −3.07∗ −2.91∗ −2.72∗

Case 2 −3.67∗ −2.93∗ −2.85∗ −2.76∗

Case 3 −3.46∗ −2.68∗ −2.80∗ −2.72∗

Case 4 −2.69∗ −3.61∗ −2.83∗ −2.57∗

Case 5 −2.70∗ −3.63∗ −2.83∗ −2.57∗

Case 6 −2.70∗ −3.16∗ −2.83∗ −2.57∗

0.3

Case 1 −2.28∗ −1.57 −0.91 −1.50
Case 2 −2.82∗ −1.44 −0.87 −1.85∗

Case 3 −2.54∗ −1.22 −0.93 −1.76∗

Case 4 −3.04∗ −2.28∗ −0.79 −1.32
Case 5 −3.04∗ −2.28∗ −0.79 −1.32
Case 6 −3.04∗ −2.15∗ −0.79 −1.32

0.5

Case 1 −0.29 −2.30∗ −1.62 −0.37
Case 2 0.76 0.89 −1.85∗ 1.99
Case 3 −0.62 0.98 −1.04 0.52
Case 4 0.92 −1.36 −0.33 0.99
Case 5 0.92 −1.36 −0.33 0.99
Case 6 0.92 −0.87 −0.33 1.55

0.7

Case 1 −0.48 −0.65 −1.54 −2.88∗

Case 2 −0.27 −0.70 −1.65∗ −2.25∗

Case 3 −0.39 −0.80 −1.50 −2.32∗

Case 4 −0.27 −0.01 −1.92∗ −2.69∗

Case 5 −0.27 0.03 −1.92∗ −2.45∗

Case 6 −0.27 −0.06 −1.79∗ −2.46∗

0.9

Case 1 −2.02∗ −2.19∗ −2.93∗ −4.97∗

Case 2 −1.73∗ −2.18∗ −3.06∗ −4.86∗

Case 3 −1.78∗ −2.20∗ −2.97∗ −4.60∗

Case 4 −2.51∗ −1.74∗ −3.37∗ −3.83∗

Case 5 −2.51∗ −1.59 −3.51∗ −3.62∗

Case 6 −2.51∗ −1.83∗ −3.13∗ −3.63∗

Notes: The null hypothesis for the test is H0 : E[dt] = 0 where dt = L(v̂t+h) − L(ṽt+h) with v̂t+h
the forecast errors from OLS based forecasts and ṽt+h the asymmetric loss forecast errors. For the
one sided test with the alternative hypothesis H0 : E[dt] > 0, the test statistic should be smaller than
-1.645 for 5% significance. Significant outcomes are marked with an asterisk.
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Table 1.3 reports the DM statistics of the comparison between the OLS based forecasts and

Asymmetric Loss based forecasts. The test statistics confirm our expectations for α = 0.1
without any exceptions. Except for PI, test statistics are insignificant for α = 0.3. The forecasts

are not significantly better or worse for α = 0.5 11 but remain insignificant for α = 0.7 except

significant results for Sales. For α being 0.9 the test gives significant results for all six cases and

all variables.

1.5 Concluding remarks

The forecasting literature often focusses on MSE-optimal forecasts. Yet there is evidence em-

phasising the relevance of more general loss functions in concrete situations. In this paper, we

incorporate some aspects of forecasting under asymmetric loss functions in factor-based predic-

tive regressions. First, we show that one may estimate predictive regressions under the relevant

loss by plugging in factors extracted from a data set by means of a first-step principal components

analysis. The estimated optimal forecast from the feasible regression converges in probability

to the theoretical optimal forecast. Second, we address the relevance of the estimated factors

by assessing whether they are forecast-relevant under a given loss function. To this end, we

employ tailored information criteria and consider the factors with highest predictive powers for

forecasting purposes. Moreover, we argue that principal component analysis does not always

extract all relevant information: we analyze the variability of the predictor series and include

corresponding additional information in the forecasting model, namely a factor extracted from

the log-squared idiosyncratic components estimated in the first-step PCA.

We then illustrate the discussion by forecasting the Personal Income, Industrial Production,

Unemployment Rate and Retail Sales series from the Stock and Watson data set. We resort to a

recursive pseudo out-of-sample forecast evaluation scheme where the factors are extracted from

a subset of the Stock and Watson data and used for forecasting one-year-ahead values of PI, IP ,

UN and SL under several asymmetric power loss functions. We compare six forecasting models

(Case 1: fifteen factors; Case 2: fifteen factors and the volatility factor; Case 3: fifteen factors,

the volatility factor and squared volatility factor, Case 4: selection of forecast-relevant factors

among fifteen, Case 5: selection of forecast-relevant factors among sixteen, Case 6: selection

of forecast-relevant factors among seventeen) for different parameter values when the p = 2
is fixed. Expectedly, fitting the forecasting model under the relevant loss function leads to

smaller averaged losses compared to the case when we use MSE in the majority of cases. Adding

11The loss differential should be zero when α = 0.5 and p = 2 as OLS − AL and AL are identical for this
particular case. The OLS − AL and the AL estimators for α = 0.5 are however computed in a different manner
(via the QR decomposition for OLS and by numerical optimization for AL), hence some negligible numerical
differences arise resulting in non-zero but insignificant DM statistics.
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volatility information sometimes improves the forecasts. Model selection taking the relevant loss

into account leads to overall best results.

Both our theoretical and empirical results underscore the importance of using forecast-relevant

information by estimating factors from an auxiliary data set to exploit the additional information

(i.e. the volatility factor in our case). Also relevant, if not even more so, is the issue of choosing

the most relevant information for the particular loss function used to define optimality of the

forecast.

19



Chapter 1

Appendix 1

1.A An information criterion

Following Akaike (1973), the definition of the information criterion in form of a penalized log-

likelihood leads to

AIC (k) = −2 ln
(
L̂ (k)

)
+ 2k

with L̂ (k) denoting the maximum of the likelihood function for model complexity k.

Suppose now that the error term in the model of interest follows an asymmetric (exponential)

power distribution as characterized by Ayebo and Kozubowski (2003) and Komunjer (2007)12

with density function

f (v) = δ
1
λ

σΓ
(
1 + 1

λ

) e−δ
(

1
αλ∗
I(v≤0)+ 1

(1−α∗)λ
I(v>0)

)
| vσ |

λ

where δ = 2αλ∗ (1−α∗)λ

αλ∗+(1−α∗)λ
. Quasi-ML estimation of a regression model assuming vt ∼ f is then

easily shown to be equivalent to estimation under the loss function L with parameters p = λ

and α = (1−α∗)p
(1−α∗)p+αp∗

.

After concentrating out σ, some algebra leads to

AICL (k) = 2
p

ln
(∑

L (v̂t+h)
)

+ 2k
T

with v̂t the residuals from estimation of the predictive regression under the relevant loss L.

This reduces to the AIC when L is the squared-error loss function. Note that AICL differs from

the IC proposed by (Weiss, 1996, Section 5) in two important respects. First, Weiss focusses

on comparing forecasts from models based on different loss functions, while we are interested in

selecting the best forecasting model for a given loss function; second, the expression he arrives

at is not scale invariant, whereas, for the loss function in (1.2), AICL is.

1.B Proof of Proposition 1

Note first that L is continuous and piecewise linear for p = 1, while, for p > 1 it is smooth with

continuous and piecewise linear p− 1st order derivative.

12They introduce asymmetry in the exponential power (also generalized power, or generalized error) distribution
by using the method discussed in Fernandez et al. (1995). An alternative way of “skewing” the exponential power
distribution is based on the approach of Azzalini (1985).
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The target function is given by

Q
(
a∗j , b

∗
k, c
∗, aj , bk, c

)
= 1
T

T∑
t=p+1

L

yt+h − c∗ − q∑
j=1

a∗jyt−j+1 −
r∑

k=1
b∗kf̂t,k


= 1
T

T∑
t=p+1

L

vt+h − (c∗ − c)−
q∑
j=1

(
a∗j − aj

)
yt−j+1 −

r∑
k=1

(b∗k − bk) ft,k +
r∑

k=1
b∗k

(
ft,k − f̂t,k

) .
In a first step, we show that

Q
(
a∗j , b

∗
k, c
∗, aj , bk, c

)
= 1
T

T∑
t=p+1

L

vt+h − (c∗ − c)−
q∑
j=1

(
a∗j − aj

)
yt−j+1 −

r∑
k=1

(b∗k − bk) ft,k

+ op (1)

where the op(1) term is uniform in t as follows.

Let

qt = vt+h − (c∗ − c)−
q∑
j=1

(
a∗j − aj

)
yt−j+1 −

r∑
k=1

(b∗k − bk) ft,k

and ∆qt =
∑r
k=1 b

∗
k

(
ft,k − f̂t,k

)
.

For p = 1, L is Lipschitz such that

|L (qt + ∆qt)− L (qt)| ≤ C |∆qt| ,

which can be re-written as

L (qt + ∆qt) = L (qt) + Cξt

where |ξt| ≤ |∆qt| .

For p = 2, use the mean value theorem, and, for p > 2, a Taylor expansion of order p − 1 with

the rest term in differential form, to obtain that

L (qt + ∆qt) = L (qt) + L′ (qt) ∆qt + . . .+ 1
(p− 1)!L

(p−1) (qt + ξt) (∆qt)p−1
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where again |ξt| ≤ |∆qt|. Summing up, we obtain

∣∣∣∣∣∣Q
(
a∗j , b

∗
k, c
∗, aj , bk, c

)
− 1
T

T∑
t=p+1

L (qt + ∆qt)

∣∣∣∣∣∣
≤

p−2∑
j=1

1
j!

1
T

T∑
t=p+1

∣∣∣L(j) (qt)
∣∣∣ ∣∣∣(∆qt)j∣∣∣+ 1

(p− 1)!
1
T

T∑
t=p+1

∣∣∣L(p−1) (qt + ξt)
∣∣∣ ∣∣∣(∆qt)p−1

∣∣∣ .
Note that L(p−1) is Lipschitz continuous, so we have that

∣∣∣L(p−1) (qt + ξt)− L(p−1) (qt)
∣∣∣ ≤ C |ξt| ≤ C |∆qt|

and it follows that∣∣∣∣∣∣Q
(
a∗j , b

∗
k, c
∗, aj , bk, c

)
− 1
T

T∑
t=p+1

L (qt + ∆qt)

∣∣∣∣∣∣
≤ C

p−2∑
j=1

1
T

T∑
t=p+1

∣∣∣L(j) (qt)
∣∣∣ |∆qt|j + C

1
T

T∑
t=p+1

∣∣∣L(p−1) (qt)
∣∣∣ |∆qt|p−1 + C

1
T

T∑
t=p+1

|∆qt|p .

Proposition 2 in Bai (2003) establishes that supt
∣∣∣ft,k − f̂t,k∣∣∣ p→ 0 for all k, so we have immediately

that supt |∆qt|
j p→ 0, such that

1
T

T∑
t=p+1

|∆qt|p
p→ 0.

Moreover, for all 1 ≤ j ≤ p− 1,

1
T

T∑
t=p+1

∣∣∣L(p−1) (qt)
∣∣∣ |∆qt|p−1 ≤ sup

t
|∆qt|p−1 1

T

T∑
t=p+1

∣∣∣L(j) (qt)
∣∣∣ p→ 0

since
∣∣∣L(j) (qt)

∣∣∣ ≤ C |qt|j for suitable C, and qt has finite pth order moments (because vt+h, yt

and ft,k do), such that, thanks to the Markov’s inequality, 1
T

∑T
t=p+1 |qt|

j is uniformly bounded

in probability.

Then, we resort to the ergodic law of large numbers to establish that

1
T

T∑
t=p+1

L (qt)
p→ E (L (qt))

pointwise in the parameter space. To this end note that yt is a stable AR filtering of vt+h and∑r
k=1 bkft,k, so yt, yt−1, . . . , ft,k, vt+h is a jointly stationary and ergodic process, and that the
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finiteness of E (|L (qt)|) is given since

L (qt) ≤ C |qt|p ,

where the expectation of the r.h.s. is finite whenever ‖qt‖p = p

√
E (|qt|p) is finite. But Minkowski’s

inequality indicates that ‖qt‖p is finite whenever the Lp norm of yt and ft,k is finite, which is

the case given that yt and ft,k have finite pth order moments.

Hence

Q
(
a∗j , b

∗
k, c
∗, aj , bk, c

)
p→ E

L
vt+h − (c∗ − c)−

q∑
j=1

(
a∗j − aj

)
yt−j+1 −

r∑
k=1

(b∗k − bk) ft,k


pointwise. Since L is convex, Lemma II.1 of Andersen and Gill (1982) applies such that the

above convergence is uniform on any compact set.

Finally, we only have to check that the above expectation is minimized for a∗j = aj , b
∗
k = bk

and c∗ = c; given the continuity of Q, consistency of the estimators ãj , b̃k and c̃ follows via

the continuity of the argmin operator w.r.t. the sup norm. To this end, note that, since the

generalized forecast error is a martingale difference sequence with no atom at the origin, it holds

that

arg min
v∗

E (L (vt+h − v∗| yt−j , ft)) = 0

uniquely, implying that, for any v∗ 6= 0,

E (L (vt+h − v∗)) = E (E (L (vt+h − v∗| yt−j , ft)))

> E (E (L (vt+h| yt−j , ft))) = E (L (vt+h))

such that E
(
L
(
vt+h −

∑q
j=1

(
a∗j − aj

)
yt−j+1 −

∑r
k=1 (b∗k − bk)Ft,k

))
must be minimized for∑q

j=1

(
a∗j − aj

)
yt−j+1 −

∑r
k=1 (b∗k − bk) ft,k = 0 which, with yt and ft,k linearly independent

stochastic processes, is only the case when a∗j −aj = b∗k− bk = 0 for all 1 ≤ j ≤ q and 1 ≤ k ≤ r.
The consistency of the forecast function follows immediately.

1.C Model selection using the LASSO

The basic flavor

The LASSO estimator minimizes here the target function

∑
L
(
v∗t+h

)
+ λ ‖β∗‖1
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where β∗ stacks all parameters of the predictive regression (1.10), v∗t+h are the forecast errors

implied by β∗, and ‖ · ‖1 stands for the L1 vector norm. The penalty parameter λ controls the

relative importance of the shrinkage term λ ‖β∗‖1. In spite of this not being a penalized OLS

regression as originally discussed by Tibshirani (1994), the essential properties of the LASSO

plausibly hold: if L is smooth, the non-smooth nature of the L1 constraint may still force some of

the estimates to be exactly zero – which is in effect selection among the regressors; cf. Tibshirani

(1994).

For the full data span, we compare now the LASSO-supported model selection with the exercise

in Table 1.1. Choosing a high λ leads to a parsimonious model; the penalty parameter is

decreased to allow for more flexible models. Table 1.4 gives an outline of the resulting models

selected for the dependent variable Personal Income over the the full data span. We restrict

ourselves to α = 0.5 for the illustration, but otherwise this is the LASSO analog of Table 1.1.

The columns of Table 1.4 show the selected factors while we consider model selection among 8

through 15 factors. In the initial stage of the step with a total of 8 factors (second column),

LASSO with high penalty parameter selects the first factor. The smaller the penalty parameters

gets, the more flexible the model becomes and includes other factors one at the time when

wise decreasing λ. The seventh factor is chosen as the second relevant which is followed by the

selection of the fifth. Eventually λ reaches 0 and LASSO chooses all 8 factors. The same is done

for a total of 9 factors in the third column etc.

The main message is, again, concerning the order in which the factors are included in the

forecasting model. The LASSO attaches different importance on the factors which is indeed

different than the order of the PCA extraction of these factors. For instance, the second factor

by PCA is the sixth most important among 8 factors as exhibited in the second column of Table

1.4. Added factors as λ decreases also show resemblance with the tailored AIC results when

we contemplate more than 8 factors. Jumping right to the case with 15 factors, in the last

column of the table, the steps demonstrate the relevance of the factors starting with the most

parsimonious model just with the first factor. As λ gets smaller, eleventh, seventh, tenth factors

and so on are chosen until the process ends with the selection of the twelfth factor, the most

irrelevant one.

24



Chapter 1

Table 1.4. Selection of Factors (LASSO), full data span

Stage Added Factors

1 1 1 1 1 1 1 1 1

2 7 7 7 11 11 11 11 11

3 5 5 10 7 7 7 7 7

4 8 8 5 10 10 10 10 10

5 3 3 8 5 5 13 13 13

6 2 2 3 8 8 5 5 5

7 6 6 2 3 3 8 8 15

8 4 9 6 2 2 3 3 8

9 4 9 6 6 2 2 3

10 4 9 9 6 14 2

11 4 4 9 6 14

12 12 4 9 6

13 12 4 9

14 12 4

15 12

Notes: The LASSO is investigated for model selection when the dependent vari-

able is Personal Income and the loss is quadratic. See the text for details.

For the actual forecasting exercise with LASSO as model selection tool, the actual selection of

the penalty parameter λ (implying the selection of a specific predictive model) is conducted with

the help of the modified AIC.

Some refinements

Belloni and Chernozhukov (2013) proposed several refinements of the LASSO. The most promi-

nent variant is the post-fit LASSO which performs as good as LASSO, in some cases even better

and has smaller bias (at least for OLS-based LASSO). In addition to post-fit LASSO, Belloni

and Chernozhukov proposed post-LASSO and post-threshold LASSO; the former has slightly

inferior performance compared to the post-fit LASSO while the latter is beyond the scope of

this exercise. Therefore, we also considered the post-fit LASSO.

Tables 1.5 and 1.6 illustrate the losses evaluated the same way as the construction of Table 1.2

(see Section 2.4) however the model selection method differs here. Basically, both LASSO and
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post-fit LASSO are employed instead of tailored AIC. Hence, the results of Cases 4, Case 5 and

Case 6 are reported below for both methods.

For the post-fit LASSO, Tables 1.5 and 1.6 use different penalty parameters which is enabled by

the different choice of a tuning parameter introduced by Belloni and Chernozhukov (2013). The

penalty parameter for the former table is simulated to be high, while, for the latter, we generate

the results by using a low penalty parameter which leads a more flexible model.13 The average

losses for Case 1, 2 and 3 are the same as in Table 1.2 and Case 4 LASSO, Case 5 LASSO and

Case 6 LASSO results are numerically identical on the Tables 1.5 and 1.6 which are provided

just for comparison. The interpretation of the results is almost similar to the case of tailored

AIC.

13For Table 1.5, a high penalty parameter is obtained by choosing the tuning parameter low, 0.05 for this
particular case. Table 1.6 is generated with a low penalty parameter which is simulated when the tuning parameter
is chosen to be 0.95.
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Table 1.5. Average Losses with LASSO-based model selection - Parsimonious post-fit LASSO

Alpha Cases PIOLS−AL PIAL IPOLS−AL IPAL UNOLS−AL UNAL SLOLS−AL SLAL

0.1

Case 1 0.2536 0.2023 0.1793 0.0988 0.0092 0.0054 0.8751 0.6065
Case 2 0.2532 0.2004 0.1845 0.1019 0.0094 0.0054 0.9153 0.6035
Case 3 0.2520 0.2042 0.1785 0.1009 0.0096 0.0055 0.9176 0.6137
Case 4 LASSO 0.2570 0.1861 0.1799 0.0949 0.0092 0.0052 0.8556 0.5883
Case 5 LASSO 0.2587 0.1877 0.1847 0.0967 0.0092 0.0052 0.8535 0.5874
Case 6 LASSO 0.2529 0.1944 0.1765 0.0966 0.0092 0.0052 0.8515 0.5934
Case 4 post-fit LASSO 0.2386 0.1791 0.1690 0.0851 0.0085 0.0051 0.7947 0.5443
Case 5 post-fit LASSO 0.2385 0.1791 0.1676 0.0846 0.0085 0.0051 0.7943 0.5440
Case 6 post-fit LASSO 0.2389 0.1823 0.1697 0.0898 0.0085 0.0051 0.7946 0.5444

0.3

Case 1 0.2369 0.2232 0.1695 0.1494 0.0098 0.0092 0.8668 0.8149
Case 2 0.2365 0.2218 0.1728 0.1532 0.0100 0.0092 0.8859 0.8119
Case 3 0.2366 0.2231 0.1695 0.1520 0.0102 0.0093 0.8945 0.8247
Case 4 LASSO 0.2425 0.2241 0.1716 0.1477 0.0098 0.0090 0.8271 0.7843
Case 5 LASSO 0.2391 0.2188 0.1719 0.1469 0.0099 0.0091 0.8160 0.7716
Case 6 LASSO 0.2374 0.2177 0.1694 0.1482 0.0098 0.0090 0.8176 0.7760
Case 4 post-fit LASSO 0.2234 0.2079 0.1580 0.1335 0.0091 0.0086 0.7859 0.7466
Case 5 post-fit LASSO 0.2234 0.2079 0.1560 0.1316 0.0091 0.0086 0.7859 0.7466
Case 6 post-fit LASSO 0.2235 0.2083 0.1576 0.1350 0.0091 0.0086 0.7859 0.7466

0.5

Case 1 0.2201 0.2201 0.1598 0.1598 0.0105 0.0105 0.8586 0.8586
Case 2 0.2198 0.2198 0.1611 0.1611 0.0106 0.0106 0.8564 0.8564
Case 3 0.2212 0.2212 0.1604 0.1604 0.0108 0.0108 0.8714 0.8714
Case 4 LASSO 0.2233 0.2233 0.1599 0.1599 0.0103 0.0103 0.8093 0.8093
Case 5 LASSO 0.2229 0.2229 0.1593 0.1593 0.0105 0.0105 0.8079 0.8079
Case 6 LASSO 0.2229 0.2229 0.1591 0.1591 0.0104 0.0104 0.8086 0.8086
Case 4 post-fit LASSO 0.2104 0.2104 0.1400 0.1400 0.0098 0.0098 0.7792 0.7792
Case 5 post-fit LASSO 0.2104 0.2104 0.1399 0.1399 0.0098 0.0098 0.7792 0.7792
Case 6 post-fit LASSO 0.2111 0.2111 0.1409 0.1409 0.0098 0.0098 0.7792 0.7792

0.7

Case 1 0.2034 0.2006 0.1500 0.1419 0.0111 0.0098 0.8503 0.7890
Case 2 0.2031 0.2016 0.1494 0.1403 0.0111 0.0099 0.8269 0.7889
Case 3 0.2058 0.2035 0.1514 0.1404 0.0114 0.0102 0.8484 0.8047
Case 4 LASSO 0.2030 0.2011 0.1506 0.1439 0.0110 0.0099 0.8044 0.7413
Case 5 LASSO 0.2036 0.2015 0.1490 0.1440 0.0112 0.0100 0.8010 0.7392
Case 6 LASSO 0.2052 0.2029 0.1500 0.1428 0.0112 0.0101 0.8037 0.7411
Case 4 post-fit LASSO 0.1975 0.1950 0.1255 0.1257 0.0104 0.0090 0.7726 0.7099
Case 5 post-fit LASSO 0.1975 0.1950 0.1254 0.1253 0.0105 0.0091 0.7726 0.7099
Case 6 post-fit LASSO 0.1987 0.1958 0.1321 0.1294 0.0105 0.0091 0.7726 0.7099

0.9

Case 1 0.1866 0.1537 0.1403 0.0848 0.0118 0.0064 0.8420 0.5554
Case 2 0.1864 0.1555 0.1377 0.0834 0.0117 0.0066 0.7975 0.5728
Case 3 0.1903 0.1577 0.1423 0.0839 0.0119 0.0066 0.8253 0.5922
Case 4 LASSO 0.1836 0.1500 0.1411 0.0877 0.0116 0.0064 0.8062 0.5314
Case 5 LASSO 0.1868 0.1511 0.1386 0.0890 0.0119 0.0066 0.8001 0.5321
Case 6 LASSO 0.1872 0.1516 0.1415 0.0891 0.0119 0.0065 0.8016 0.5383
Case 4 post-fit LASSO 0.1845 0.1515 0.1186 0.0817 0.0111 0.0055 0.7659 0.4984
Case 5 post-fit LASSO 0.1845 0.1515 0.1166 0.0810 0.0112 0.0056 0.7659 0.4984
Case 6 post-fit LASSO 0.1862 0.1526 0.1216 0.0810 0.0112 0.0056 0.7659 0.4984

Notes: The construction of this table follows that of Table 1.2. The only difference is that there are two selection methods reported for Case 3 and 4. First method uses LASSO by Tibshirani (1994) with AICL
choice of the penalty parameter λ, while the second uses post-fit LASSO by Belloni and Chernozhukov (2013). Post-fit LASSO require pre specification of a tuning parameter which is used to simulate the penalty
parameter. Here, the penalty is chosen to be high through the tuning parameter (0.05) which leads to a parsimonious model.
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Table 1.6. Average Losses with LASSO-based model selection - Flexible post-fit LASSO

Alpha Cases PIOLS−AL PIAL IPOLS−AL IPAL UNOLS−AL UNAL SLOLS−AL SLAL

0.1

Case 1 0.2536 0.2023 0.1793 0.0988 0.0092 0.0054 0.8751 0.6065
Case 2 0.2532 0.2004 0.1845 0.1019 0.0094 0.0054 0.9153 0.6035
Case 3 0.2520 0.2042 0.1785 0.1009 0.0096 0.0055 0.9176 0.6137
Case 4 LASSO 0.2570 0.1861 0.1799 0.0949 0.0092 0.0052 0.8556 0.5883
Case 5 LASSO 0.2587 0.1877 0.1847 0.0967 0.0092 0.0052 0.8535 0.5874
Case 6 LASSO 0.2529 0.1944 0.1765 0.0966 0.0092 0.0052 0.8515 0.5934
Case 4 post-fit LASSO 0.2529 0.1907 0.1737 0.0925 0.0088 0.0052 0.7998 0.5732
Case 5 post-fit LASSO 0.2515 0.1904 0.1722 0.0888 0.0087 0.0052 0.7946 0.5683
Case 6 post-fit LASSO 0.2511 0.1889 0.1696 0.0924 0.0088 0.0052 0.7948 0.5762

0.3

Case 1 0.2369 0.2232 0.1695 0.1494 0.0098 0.0092 0.8668 0.8149
Case 2 0.2365 0.2218 0.1728 0.1532 0.0100 0.0092 0.8859 0.8119
Case 3 0.2366 0.2231 0.1695 0.1520 0.0102 0.0093 0.8945 0.8247
Case 4 LASSO 0.2425 0.2241 0.1716 0.1477 0.0098 0.0090 0.8271 0.7843
Case 5 LASSO 0.2391 0.2188 0.1719 0.1469 0.0099 0.0091 0.8160 0.7716
Case 6 LASSO 0.2374 0.2177 0.1694 0.1482 0.0098 0.0090 0.8176 0.7760
Case 4 post-fit LASSO 0.2351 0.2178 0.1664 0.1460 0.0096 0.0090 0.8165 0.7943
Case 5 post-fit LASSO 0.2352 0.2182 0.1676 0.1458 0.0096 0.0090 0.8202 0.7983
Case 6 post-fit LASSO 0.2374 0.2205 0.1647 0.1456 0.0097 0.0090 0.8303 0.8065

0.5

Case 1 0.2201 0.2201 0.1598 0.1598 0.0105 0.0105 0.8586 0.8586
Case 2 0.2198 0.2198 0.1611 0.1611 0.0106 0.0106 0.8564 0.8564
Case 3 0.2212 0.2212 0.1604 0.1604 0.0108 0.0108 0.8714 0.8714
Case 4 LASSO 0.2233 0.2233 0.1599 0.1599 0.0103 0.0103 0.8093 0.8093
Case 5 LASSO 0.2229 0.2229 0.1593 0.1593 0.0105 0.0105 0.8079 0.8079
Case 6 LASSO 0.2229 0.2229 0.1591 0.1591 0.0104 0.0104 0.8086 0.8086
Case 4 post-fit LASSO 0.2163 0.2163 0.1624 0.1624 0.0103 0.0103 0.8264 0.8264
Case 5 post-fit LASSO 0.2172 0.2172 0.1601 0.1601 0.0103 0.0103 0.8263 0.8263
Case 6 post-fit LASSO 0.2193 0.2193 0.1605 0.1605 0.0103 0.0103 0.8211 0.8211

0.7

Case 1 0.2034 0.2006 0.1500 0.1419 0.0111 0.0098 0.8503 0.7890
Case 2 0.2031 0.2016 0.1494 0.1403 0.0111 0.0099 0.8269 0.7889
Case 3 0.2058 0.2035 0.1514 0.1404 0.0114 0.0102 0.8484 0.8047
Case 4 LASSO 0.2030 0.2011 0.1506 0.1439 0.0110 0.0099 0.8044 0.7413
Case 5 LASSO 0.2036 0.2015 0.1490 0.1440 0.0112 0.0100 0.8010 0.7392
Case 6 LASSO 0.2052 0.2029 0.1500 0.1428 0.0112 0.0101 0.8037 0.7411
Case 4 post-fit LASSO 0.2007 0.1995 0.1483 0.1409 0.0109 0.0096 0.8350 0.7524
Case 5 post-fit LASSO 0.2012 0.1995 0.1498 0.1435 0.0110 0.0097 0.8322 0.7506
Case 6 post-fit LASSO 0.2038 0.2022 0.1510 0.1434 0.0110 0.0097 0.8497 0.7690

0.9

Case 1 0.1866 0.1537 0.1403 0.0848 0.0118 0.0064 0.8420 0.5554
Case 2 0.1864 0.1555 0.1377 0.0834 0.0117 0.0066 0.7975 0.5728
Case 3 0.1903 0.1577 0.1423 0.0839 0.0119 0.0066 0.8253 0.5922
Case 4 LASSO 0.1836 0.1500 0.1411 0.0877 0.0116 0.0064 0.8062 0.5314
Case 5 LASSO 0.1868 0.1511 0.1386 0.0890 0.0119 0.0066 0.8001 0.5321
Case 6 LASSO 0.1872 0.1516 0.1415 0.0891 0.0119 0.0065 0.8016 0.5383
Case 4 post-fit LASSO 0.1842 0.1520 0.1338 0.0843 0.0116 0.0063 0.8472 0.5338
Case 5 post-fit LASSO 0.1853 0.1523 0.1302 0.0840 0.0118 0.0064 0.8452 0.5303
Case 6 post-fit LASSO 0.1870 0.1557 0.1439 0.0896 0.0118 0.0065 0.8547 0.5408

Notes: Here, the penalty is chosen to be low through the tuning parameter (0.95) which leads to a more flexible model. See Table1.5 for further details.
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1.D Data description

All series are from the Global Insights Basic Economics Database, unless the source is listed (in parentheses) as TCB (The Conference Boards Indicators Database) or AC

(authors calculation based on Global Insights or TCB data). Transformation codes are indicated in the column named Tcode. 1 indicates levels of the series, 2 and 3 denote

the first and the second differences, respectively and 4 means logarithm, 5 and 6 respectively indicate the first and the second differences of the logarithm of the series.

Mnemonic Short Desc Tcode Description

1 ypr PI 5 Personal Income (Ar, Bil. Chain 2000 $)

2 a0m051 PI less transfers 5 Personal Income Less Transfer Payments (Ar, Bil. Chain 2000 $)
3 cons r Consumption 5 Real Consumption (Ac) A0M224/Gmdc

4 mtq M&T sales 5 Manufacturing And Trade Sales (Mil. Chain 1996 $)

5 a0m059 Retail sales 5 Sales Of Retail Stores (Mil. Chain 2000 $)
6 ips10 IP: total 5 Industrial Production Index - Total Index

7 ips11 IP: products 5 Industrial Production Index - Products, Total
8 ips299 IP: final prod 5 Industrial Production Index - Final Products

9 ips12 IP: cons gds 5 Industrial Production Index - Consumer Goods

10 ips13 IP: cons dble 5 Industrial Production Index - Durable Consumer Goods
11 ips18 iIP:cons nondble 5 Industrial Production Index - Nondurable Consumer Goods

12 ips25 IP:bus eqpt 5 Industrial Production Index - Business Equipment

13 ips32 IP: matls 5 Industrial Production Index - Materials
14 ips34 IP: dble mats 5 Industrial Production Index - Durable Goods Materials

15 ips38 IP:nondble mats 5 Industrial Production Index - Nondurable Goods Materials
16 ips43 IP: mfg 5 Industrial Production Index - Manufacturing (Sic)
17 ips307 IP: res util 5 Industrial Production Index - Residential Utilities

18 ips306 IP: fuels 5 Industrial Production Index - Fuels

19 pmp NAPM prodn 1 NAPM Production Index (Percent)
20 utl11 Cap util 2 Capacity Utilization (Mfg)

21 lhel Help wanted indx 2 Index Of Help-Wanted Advertising In Newspapers (1967=100;Sa)

22 lhelx Help wanted/emp 2 Employment: Ratio; Help-Wanted Ads:No. Unemployed Clf
23 lhem Emp CPS total 5 Civilian Labor Force: Employed, Total (Thous.,Sa)

24 lhnag Emp CPS nonag 5 Civilian Labor Force: Employed, Nonagric.Industries (Thous.,Sa)
25 lhur U: all 2 Unemployment Rate: All Workers, 16 Years & Over (%,Sa)

26 lhu680 U: mean duration 2 Unemploy.By Duration: Average(Mean)Duration In Weeks (Sa)

27 lhu5 U < 5 wks 5 Unemploy.By Duration: Persons Unempl.Less Than 5 Wks (Thous.,Sa)
28 lhu14 U 5-14 wks 5 Unemploy.By Duration: Persons Unempl.5 To 14 Wks (Thous.,Sa)

29 lhu15 U 15+ wks 5 Unemploy.By Duration: Persons Unempl.15 Wks + (Thous.,Sa)

30 lhu26 U 15-26 wks 5 Unemploy.By Duration: Persons Unempl.15 To 26 Wks (Thous.,Sa)
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Mnemonic Short Desciption Tcode Description

31 lhu27 U 27+ wks 5 Unemploy.By Duration: Persons Unempl.27 Wks + (Thous,Sa)
32 claimuii UI claims 5 Average Weekly Initial Claims, Unemploy. Insurance (Thous.)
33 ces002 Emp: total 5 Employees On Nonfarm Payrolls - Total Private

34 ces003 Emp: gds prod 5 Employees On Nonfarm Payrolls - Goods-Producing
35 ces006 Emp: mining 5 Employees On Nonfarm Payrolls - Mining
36 ces011 Emp: const 5 Employees On Nonfarm Payrolls - Construction

37 ces015 Emp: mfg 5 Employees On Nonfarm Payrolls - Manufacturing
38 ces017 Emp: dble gds 5 Employees On Nonfarm Payrolls - Durable Goods
39 ces033 Emp: nondbles 5 Employees On Nonfarm Payrolls - Nondurable Goods

40 ces046 Emp: services 5 Employees On Nonfarm Payrolls - Service-Providing
41 ces048 Emp: TTU 5 Employees On Nonfarm Payrolls - Trade, Transportation, And Utilities
42 ces049 Emp: wholesale 5 Employees On Nonfarm Payrolls - Wholesale Trade

43 ces053 Emp: retail 5 Employees On Nonfarm Payrolls - Retail Trade
44 ces088 Emp: fire 5 Employees On Nonfarm Payrolls - Financial Activities

45 ces140 Emp: Govt 5 Employees On Nonfarm Payrolls - Government
46 ces151 Avg hrs 1 Avg Wkly Hours, Prod Wrkrs, Nonfarm - Goods-Producing
47 ces155 Overtime: mfg 2 Average Weekly Hours Of Production Or Nonsupervisory Workers On Private Nonfar

48 a0m001 Avg hrs: mfg 1 Average Weekly Hours, Mfg. (Hours)
49 pmemp NAPM empl 1 NAPM Employment Index (Percent)
50 hsfr HStarts: Total 4 Housing Starts:Nonfarm(1947-58);Total Farm&Nonfarm(1959-) (Thous.,Sa)

51 hsne HStarts: NE 4 Housing Starts:Northeast (Thous.U,Sa).
52 hsmw HStarts: MW 4 Housing Starts:Midwest (Thous.U,Sa).
53 hssou HStarts: South 4 Housing Starts:South (Thous.U,Sa)

54 hswst HStarts: West 4 Housing Starts:West (Thous.U,Sa)
55 hsbr BP: total 4 Housing Authorized: Total New Priv Housing Units (Thous.,Saar)
56 hsbne BP: NE 4 Houses Authorized By Build. Permits:Northeast (Thous.U,Sa)

57 hsbmw BP: MW 4 Houses Authorized By Build. Permits:Midwest (Thous.U,Sa)
58 hsbsou BP: South 4 Houses Authorized By Build. Permits:South (Thous.U,Sa)
59 hsbwst BP: West 4 Houses Authorized By Build. Permits:West (Thous.U,Sa)
60 pmi PMI 1 Purchasing Managers Index (Sa)

61 pmno NAPM new ordrs 1 NAPM New Orders Index (Percent)
62 pmdel NAPM vendor del 1 NAPM Vendor Deliveries Index (Percent)
63 pmnv NAPM Invent 1 NAPM Inventories Index (Percent)
64 a1m008 Orders: cons gds 5 Mfrs New Orders, Consumer Goods And Materials (Bil. Chain 1982 $)

65 a0m007 Orders: dble gds 5 Mfrs New Orders, Durable Goods Industries (Bil. Chain 2000 $)
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Mnemonic Short Desciption Tcode Description

66 a0m027 Orders: cap gds 5 Mfrs New Orders, Nondefense Capital Goods (Mil. Chain 1982 $)
67 a1m092 Unf orders: dble 5 Mfrs Unfilled Orders, Durable Goods Indus. (Bil. Chain 2000 $)
68 a0m070 M&T invent 5 Manufacturing And Trade Inventories (Bil. Chain 2000 $)

69 a0m077 M&T invent/sales 2 Ratio, Mfg. And Trade Inventories To Sales (Based On Chain 2000 $)
70 fm1 M1 6 Money Stock: M1(Curr,Trav.Cks,Dem Dep,Other Ck Able Dep)(Bil$,Sa)
71 fm2 M2 6 Money Stock:M2(M1+O Nite Rps,Euro$,G/P&B/D Mmmfs&Sav&Sm Time Dep(Bil$,

72 fmscu M3 6 Money Stock: M3(M2+Lg Time Dep,Term Rp S&Inst Only Mmmfs)(Bil$,Sa)
73 fm2 r M2 (real) 5 Money Supply - M2 In 1996 Dollars (Bci)

74 fmfba MB 6 Monetary Base, Adj For Reserve Requirement Changes(Mil$,Sa)

75 fmrra Reserves tot 6 Depository Inst Reserves:Total,Adj For Reserve Req Chgs(Mil$,Sa)
76 fmrnba Reserves nonbor 6 Depository Inst Reserves:Nonborrowed,Adj Res Req Chgs(Mil$,Sa)

77 fclnbw C&I loans 6 Commercial & Industrial Loans Oustanding In 1996 Dollars (Bci)
78 fclbmc C&I loans 1 Wkly Rp Lg Com L Banks:Net Change Com L & Indus Loans(Bil$,Saar)

79 ccinrv Cons credit 6 Consumer Credit Outstanding - Nonrevolving(G19)

80 ccipy Inst cred/PI 2 Ratio, Consumer Instalment Credit To Personal Income (Pct.)
81 fspcom S&P 500 5 S&P S Common Stock Price Index: Composite (1941-43=10)

82 fspin S&P: indust 5 S&P S Common Stock Price Index: Industrials (1941-43=10)
83 fsdxp S&P div yield 2 S&P S Composite Common Stock: Dividend Yield (% Per Annum)
84 fspxe S&P PE ratio 5 S&P S Composite Common Stock: Price-Earnings Ratio (%,Nsa)

85 fyff FedFunds 2 Interest Rate: Federal Funds (Effective) (% Per Annum,Nsa)

86 cp90 Commpaper 2 Commercial Paper Rate (Ac)
87 fygm3 3 mo T-bill 2 Interest Rate: U.S.Treasury Bills,Sec Mkt,3-Mo.(% Per Ann,Nsa)

88 fygm6 6 mo T-bill 2 Interest Rate: U.S.Treasury Bills,Sec Mkt,6-Mo.(% Per Ann,Nsa)

89 fygt1 1 yr T-bond 2 Interest Rate: U.S.Treasury Const Maturities,1-Yr.(% Per Ann,Nsa)
90 fygt5 5 yr T-bond 2 Interest Rate: U.S.Treasury Const Maturities,5-Yr.(% Per Ann,Nsa)

91 fygt10 10 yr T-bond 2 Interest Rate: U.S.Treasury Const Maturities,10-Yr.(% Per Ann,Nsa)
92 fyaaac Aaabond 2 Bond Yield: Moody S Aaa Corporate (% Per Annum)
93 fybaac Baa bond 2 Bond Yield: Moody S Baa Corporate (% Per Annum)

94 scp90 CP-FF spread 1 Cp90-Fyff
95 sfygm3 3 mo-FF spread 1 Fygm3-Fyff
96 sfygm6 6 mo-FF spread 1 Fygm6-Fyff

97 sfygt1 1 yr-FF spread 1 Fygt1-Fyff
98 sfygt5 5 yr-FF spread 1 Fygt5-Fyff

99 sfygt10 10 yr-FF spread 1 Fygt10-Fyff

100 sfyaaac Aaa-FF spread 1 Fyaaac-Fyff
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Mnemonic Short Desciption Tcode Description

101 sfybaac Baa-FF spread 1 Fybaac-Fyff
102 exrus Ex rate: avg 5 United States;Effective Exchange Rate(Merm)(Index No.)
103 exrsw Ex rate: Switz 5 Foreign Exchange Rate: Switzerland (Swiss Franc Per U.S.$)
104 exrjan Ex rate: Japan 5 Foreign Exchange Rate: Japan (Yen Per U.S.$)

105 exruk Ex rate: UK 5 Foreign Exchange Rate: United Kingdom (Cents Per Pound)
106 exrcan EX rate: Canada 5 Foreign Exchange Rate: Canada (Canadian $ Per U.S.$)
107 pwfsa PPI: fin gds 6 Producer Price Index: Finished Goods (82=100,Sa)

108 pwfcsa PPI: cons gds 6 Producer Price Index:Finished Consumer Goods (82=100,Sa)
109 pwimsa PPI: int matls 6 Producer Price Index:Intermed Mat.Supplies & Components(82=100,Sa)
110 pwcmsa PPI: crude matls 6 Producer Price Index:Crude Materials (82=100,Sa)
111 psccom Commod: spot price 6 Spot Market Price Index:Bls & Crb: All Commodities(1967=100)

112 pw102 Sens matls price 6 Index Of Sensitive Materials Prices (1990=100)(Bci-99A)
113 pmcp NAPM com price 1 NAPM Commodity Prices Index (Percent)
114 punew CPI-U: all 6 Cpi-U: All Items (82-84=100,Sa)
115 pu83 CPI-U: apparel 6 Cpi-U: Apparel & Upkeep (82-84=100,Sa)
116 pu84 CPI-U: transp 6 Cpi-U: Transportation (82-84=100,Sa)

117 pu85 CPI-U: medical 6 Cpi-U: Medical Care (82-84=100,Sa)
118 puc CPI-U: comm. 6 Cpi-U: Commodities (82-84=100,Sa)
119 pucd CPI-U: dbles 6 Cpi-U: Durables (82-84=100,Sa)

120 pus CPI-U: services 6 Cpi-U: Services (82-84=100,Sa)
121 puxf CPI-U: ex food 6 Cpi-U: All Items Less Food (82-84=100,Sa)
122 puxhs CPI-U: ex shelter 6 Cpi-U: All Items Less Shelter (82-84=100,Sa)

123 puxm CPI-U: ex med 6 Cpi-U: All Items Less Medical Care (82-84=100,Sa)
124 gmdc PCE defl 6 Pce,Impl Pr Defl:Pce (1987=100)
125 gmdcd PCE defl: dlbes 6 Pce,Impl Pr Defl:Pce; Durables (1987=100)

126 gmdcn PCE defl: nondble 6 Pce,Impl Pr Defl:Pce; Nondurables (1996=100)
127 gmdcs PCE defl: services 6 Pce,Impl Pr Defl:Pce; Services (1987=100)
128 ces275 AHE: goods 6 Average Hourly Earnings Of Production Or Nonsupervisory Workers On Private No

129 ces277 AHE: const 6 Average Hourly Earnings Of Production Or Nonsupervisory Workers On Private No
130 ces278 AHE: mfg 6 Average Hourly Earnings Of Production Or Nonsupervisory Workers On Private No
131 hhsntn Consumer expect 2 U. Of Mich. Index Of Consumer Expectations(Bcd-83)
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CHAPTER 2

Interpreting Latent Dynamic Factors by Threshold FAVAR Model

2.1 Introduction

Data availability has evolved rapidly in the recent years. Hundreds of variables are readily

available for use. However, using such large data sets introduce a challenge by bringing model

specification and estimation problems along. Employing factor models can deal with these seem-

ingly adverse issues. Factor models beneficially adapt large information sets to the analysis by

providing a convenient tool to reduce dimensions and to extract information. True specifications

of the models that researchers are interested in have been successfully accomplished thanks to

factor models, particularly by including the large information sets available to policy makers.

However, interpreting factors is still a black box. To this purpose, we propose a factor-augmented

VAR model by introducing a latent threshold which induces the factor loadings onto zero when

the factors are found irrelevant given the estimated threshold level. The shut down rate of the

factor loadings, which we can construct by observing the frequency of factor loadings induced

onto zero, reveals the relationship between factors and macroeconomic variables.

Researchers might simply want to use large information sets to make use of all the relevant

information available. To overcome the difficulty of using many indicators up to some extend,

vector autoregressions (VARs) are designed to include more than one evolving variable, as a
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generalization of autoregression models. VARs have been acknowledged as successfully identify-

ing the direction and the magnitude of monetary shocks since the time they were proposed by

Bernanke and Blinder (1992) and Sims (1992b).

Despite VARs’ common use, especially among macroeconomists, the relatively small number of

macroeconomic variables in VARs cannot capture all the necessary information and might cause

omitted variable bias. Another point worth noting in VARs is the selection of the variables.

There are generally different measures of the same series, e.g. output, inflation or unemploy-

ment. Even for the same country these series can differ but all might include some information

that others do not. Unfortunately, VAR results heavily depend on the choice of these series.

Furthermore, adding more variables to VARs creates degrees of freedom issues. In this matter,

factor models play an important role in enabling us to use large information sets by extracting

common factors. These factors are latent variables capturing the common fluctuations in the

data. One can imagine the set of factors as the summary of the information in that particular

data set. Therefore, the curse of dimensionality does not occur in factor-augmented models.

Nevertheless, factor models alone cannot explain the effects of, e.g. monetary policy, shocks

on all macroeconomic variables. However, due to the nature of factor models, macroeconomic

shocks cannot be traced back to the variables. Therefore, Bernanke et al. (2005) combined

factor models with VARs to be able to use both large information sets and explain the effects of

monetary shocks on various indicators. This new model, factor augmented VAR (FAVAR) can

be used to assess vast data sets and to observe impulse response functions of all variables.

Factor models, and consequently FAVAR models, are useful at a cost. It is unfortunately not

possible to interpret the factors which actually might have been beneficial to link them to

macroeconomic indicators. Belviso and Milani (2006) acknowledged this problem and proposed

the Structural FAVAR (SFAVAR) model. Their SFAVAR model divides the large information

set into subgroups of particular economic activities. Only one factor is extracted from each

category. Thereby this factor is simply associated with the corresponding group. Certainly

others have attempted to interpret factors by using different approaches, e.g. Negro and Otrok

(2008), Ludvigson and Ng (2009b,c), Bork (2009).

Nakajima and West (2013b) proposes the threshold procedure on the factor loadings. The

adapted approach aims to use threshold structure for modeling in dynamic factor volatility

models as an extension in Bayesian sparsity modeling. In this paper, we extend their model and

propose a latent threshold FAVAR model. The adaptation is based on the following: the factors

to be extracted from the data may not be relevant for some time periods. Here, some of the

loadings are induced to zero for the particular time periods unless they are above a threshold

level which is endogenously estimated. This strategy implicitly allows us to detect the factor

loadings that are frequently or rarely shut down for specific macroeconomic variables.
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Overall, we ask the following questions: What if a factor loading is shut down particularly for

one or more groups of macroeconomic variables throughout time and only a few (preferably

one) of the factors are related to particular variables? Can we infer which factor(s) might be

related to one particular subgroup of data? The unique intent of this paper is to estimate latent

threshold FAVAR model to develop a new method to assign economic interpretation to estimated

factors. A likely alternative to SFAVAR, this analogous model comes with the difference of a

latent threshold structure on the factor loadings matrix. The main objective is to detect the

irrelevancy of some factors for certain time periods, especially for some variables.

The data driven shrinkage clearly defines a more sparse model. Therefore, this allows us to iden-

tify the factors which might carry information about some subgroups of the data or the factors

which are totally irrelevant for some. We do so by inquiring the frequency of the shut down and

surviving factor loadings to infer the relationships between the factors and the variables, and

relate them. The strategy we use clarifies the interpretation of the factors by approaching these

questions from a different angle compared to Belviso and Milani (2006)’s SFAVAR approach.

Our approach does not require a prespecification of the data set. We boldly aim to let whole

data decide on which variables factors have effects. Therefore, the approach we propose here is

more general in the sense of detecting the factors related to certain subgroups in the data set.

The proposed method may seem similar to the time varying parameter FAVAR (TVP–FAVAR)

where the factor loadings and some other parameters are allowed to differ over time as in

Korobilis (2009), Liu et al. (2011), Baumeister et al. (2010) and Eickmeier et al. (2011a,b)

among numerous others. In the time varying parameter models, the point when the loadings

become sufficiently small and, hence, irrelevant is not easily identifiable since we do not have a

strict measure of the threshold under which the factors become redundant. The factor loadings

in this paper are also time varying. However our approach concentrates more on a specific time

varying loadings scheme to interpret the factors. The threshold structure enables us to observe

this measure and induce the loadings to zero for irrelevant factors on associated time periods.

We estimate the model with Bayesian techniques where we use a data set constructed by quar-

terly macroeconomic indicators running from 1964:Q1 to 2013:Q1. The first set of our results

presents the survival rates which we observe the frequency of shut downs in factor loadings. The

factors are mainly assigned to one group of macroeconomic indicators such as unemployment,

inflation/finance or real economy. The second set of findings depicts the impulse response func-

tions. The responses of factors to monetary contraction are generally of expected sign. Impulse

response functions of factors against shocks on factors and of individual variables against interest

rate shock generally are in line with economic theory suggests.

The paper proceeds as follows. Section 2.2 introduces our model and summarizes the Bayesian

estimation along with the restrictions we impose. The data set we use is discussed in section
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2.3. Section 2.4 presents the results for number of the factors to be used and elaborates on

interpretation of the factors. The details of impulse response functions are displayed in section

2.5. Section 2.6 concludes and presents the future work. All other relevant information, including

the impulse response functions which are not discussed throughout the main sections, different

identification restrictions and the data description are given in Appendix.

2.2 The Model

2.2.1 Model Specification

The model used in this paper comprises a VAR system along with a factor model. Let Xt be a

N × 1 vector of observed macroeconomic series. These series form an information set in factor

analysis. We seek to observe the impact of the observable policy variable, m × 1 vector Yt, on

the large data set of economic activity, Xt. Hence, monetary economists frequently take Yt as

Federal Funds Rate (FFR), as in this paper, but in practice this is not a restriction. We can

also have several (policy) variables in Yt. The unobserved variables are factors ft, k × 1 vector,

and the time varying factor loading matrix Λt of dimension N × k.

The model has 3 main equations: a state equation where ft and Yt follow a VAR(q) process, a

measurement equation which illustrates how the large data set Xt is related to the latent factors

ft and the policy variables Yt, and lastly the autoregressive process for the latent threshold

factor loadings. Typical FAVAR model has first two parts. The threshold part is borrowed from

Nakajima and West (2013a,b).

Assume the joint process of the factors and the policy variable can be represented in the state

equation as a reduced VAR,

ft
Yt

 = Φ(L)

ft
Yt

+ εt, for t = 1, . . . , T, (2.1)

where εt ∼ N (0,Σ) and Φ(L) = Φ1L + Φ2L
2 + · · · + ΦqL

q is a lag polynomial of order q with

each Φj is K ×K matrix for j = 1, . . . , q satisfying stationarity, where K = k +m. We need to

solve the structural VAR form to obtain impulse-response functions which will be discussed in

the following sections.

The state equation cannot be estimated by itself since the factors are unobservable. A small

number of factors, k << N , is extracted from the data as the representatives of the common

fluctuations and used in the state equation to interact with Yt. Therefore we need the following
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measurement equation,

Xt = ct + Λtft + γYt + et, for t = 1, . . . , T, (2.2)

where et is N × 1 vector of idiosyncratic components such that et ∼ N (0,Ωt) where Ωt is

N ×N diagonal time varying covariance matrix and E(et |Ft, Yt) = 0 with E(ejt, elt) = 0 for all

j, l = 1, . . . , N and j 6= l. We assume that the diagonal elements of matrix Ωt follow a stochastic

volatility process, that is, Ωt = diag{eh1,t , . . . , ehN,t} is in the form of

ht = µh + αh(ht−1 − µh) + vht

with vht ∼ N (0, Vh) where both αh and Vh are N×N diagonal matrices and ht = (h1,t, . . . , hN,t)′.
The time varying intercept follows a stationary autoregressive process

ct = µc + αc(ct−1 − µc) + vct

with vct ∼ N (0, Vc) where both αc and Vc are N × N diagonal matrices. The time varying

constant and variance help us capturing the changes in the data over time, especially when the

time varying parameters tend to create unstable results, e.g. as in the Great Recession period.

Factors are representatives of the variations in the data however their relevance might depend

on the particular time periods and therefore change over time. Hence, the factor loadings in

our model are not left unrestricted but instead represented by a threshold structure. Intuitively,

the idea is to examine the relative importance of the factors in each time period. This specific

representation enables us to observe whether factor loadings are below a threshold and which

should be induced to zero for the associated time periods.

To exploit the above insight, we stack all the non-zero elements in the loadings matrix Λt.1

Let us denote each non-zero element of Λt as λjt. Then the threshold structure on the factor

loadings is,

λjt = βjt1(|βjt| ≥ δj), for j = 1, . . . , p,

where p = (N − k + 1)k is the number of the non-zero loadings, 1(·) denotes the indicator

function, δj ≥ 0 is the latent threshold for j = 1, . . . , p which is to be estimated. The latent

time varying parameter vector βt = (β1t, . . . , βpt) follows stationary VAR(1) model

βt = µβ + αβ(βt−1 − µβ) + vβt, (2.3)

where vβt ∼ N (0, Vβ), µβ is p×1, αβ and Vβ are both p×p diagonal matrices. The AR coefficient

of βjt satisfies the stationarity of AR(1) processes for each factor loading, i.e. |αβj | < 1. Suffice

1The zero elements are due to the identification restrictions, which will be explained in the next sections.
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it to say, we assume that the errors of different equations are jointly normal and independent.

That is, (et, εt, vβt, vct, vht)′ ∼ N (0,diag(Ωt,Σ, Vβ, Vc, Vh)), where diag(·) creates a block diagonal

matrix. Moreover, all of the covariance matrices except Σ are diagonal. The Appendix provides

details on the priors and the posteriors of the parameters.

This threshold factor model has some advantages over continuous time-varying loading models

and Markov switching (MS) loading models. In continuous time-varying loadings framework,

the (time-varying) importance of a factor can be inferred through the magnitude of the loading

over time. However, there is no scale which indicates how small λjt should be so that the factor

is considered redundant. Hence, when a factor becomes important is very subjective. In the

threshold model, on the other hand, the threshold is estimated. Therefore the data decide when

a factor should be included in the analysis. In an MS setup, one can have two (or a finite number

of) regimes for the loadings: significant and insignificant regimes. Both MS and the threshold

model behave similarly when a loading is shut-down to 0. However, for the time periods when

a factor is significant, the threshold model allows continuous loadings which ensures a better fit

than MS loading models.

2.2.2 Bayesian Estimation

The estimation of the parameters and latent processes of the factor model relies mostly on the

results of Nakajima and West (2013b). We employ the Markov chain Monte Carlo (MCMC)

method to estimate the joint distribution of the unobserved variables. The full posterior density

conditional on the data is p(Ψ0:T , δ, θ, γ,Φ,Σ|X(1:N,1:T ), Y(1:m,1:T )) where Ψ0:T = {c0:T , β0:T , f1:T , h0:T }
are the latent time-varying processes, δ = {δ1, . . . , δp} are the latent thresholds for each non-zero

element of the loading matrix, θ = {θc, θh, θβ} where θg = {µg, αg, σ2
g} for g ∈ {c, h, β}, γ is

N × m matrix of measurement equation parameter, Φ and Σ are the VAR parameters, and

{X(1:N,1:T ), Y(1:m,1:T )} is the data Xit and Yjt for i = 1, . . . , N , j = 1, . . . ,m and t = 1, . . . , T .

The estimation of c0:T and f1:T can be performed by forward filtering backward sampling algo-

rithm conditional on the hyperparameters, the time-varying volatility and the data. In this paper

we use Carter and Kohn (1994) algorithm which draws the time series of the latent process in a

state space representation. The volatility process h0:T is sampled by standard MCMC techniques

developed for univariate stochastic volatility models conditional on the measurement equation

parameters and the data. The parameters θc and θh are sampled easily after conditioning on

c0:T and h0:T , respectively, as in simple univariate AR(1) models.

We use Metropolis–Hasting algorithm to draw δ, β0:T , θβ. The estimation of these parameters

is deeply analyzed in Nakajima and West (2013a). The candidate for β is drawn from a dis-

tribution as if there is no threshold. The draws for θβ are required to be compatible with the
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threshold parameters because the prior and the posterior of δ depends on θβ. We performed

25000 iterations and discarded the first 20000 draws as burn-in period. Convergence of most

of the parameters is achieved. Some details are given in the Appendix, but for further details

readers should refer Nakajima and West (2013a,b).

2.2.3 Identification Restrictions for Factors

As widely covered in the literature, the estimation of the true factors cannot be achieved. Instead

only the space spanned by the factors can be estimated. Moreover, unless we apply some

restrictions, we cannot identify the factors and loadings separately. In other words, for any given

factor f and loadings Λ the following observational equivalence holds: Λf = ΛRR−1f = Λ̃f̃ for

invertible k × k matrix R, i.e., same results can be achieved by two different sets of factors and

factor loadings. Thus we need to fix the rotation of the factors, namely fixing the matrix R, by

putting k2 restrictions.

In Principal Component Analysis, a statistical method to extract factors from data sets, the most

common restrictions are to assume ff ′/T being identity matrix (k(k + 1)/2 restrictions) and

ΛΛ′ being diagonal (k(k − 1)/2 restrictions). However different restrictions have been adopted

by both dynamic factor and FAVAR models. For instance Bernanke et al. (2005) and numerous

others following their work restrict the top k×k block of Λ to be identity. Some of the dynamic

factor model papers such as Aguilar and West (2000) and Nakajima and West (2013b) restrict

the top k × k block of Λ to be lower triangular with unit diagonals which leads k(k + 1)/2
restrictions. Additionally they restrict the covariance matrix of the factors, Σ to be diagonal

which brings along k(k − 1)/2 more restrictions.

We believe that restricting the covariance matrix of the factors by forcing for unit diagonals

and no correlation between factors is a very strong restriction. The impulse response functions

are generated through the covariance matrix. Thus, such restrictions are indeed undesirable.

Furthermore, we would like to keep the factor loadings as free as possible since the interpretation

of the factors are based on the loadings. In our paper, we imposed diagonality on the lower k×k
block of Λ and set the diagonals of the top k × k block of Σ to be one. Restricting the bottom

part of the factor loadings has some intuitive grounds. The ordering of our data set allows

us to assume that each of the last k variables is only explained by one factor.2 Moreover,

setting the variances of the unobserved factors, the corresponding diagonal elements of Σ, as 1

is just a normalization. Leaving off–diagonal elements of the covariance matrix of the factors

unrestricted indicates that correlation among factors is allowed, e.g. the correlation between

so called ‘inflation factor’ and ‘interest rate factor’ is left unrestricted in our analysis. The

2The corresponding variables in the data set are the credit variables.
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restrictions on both covariance matrix, k, and the factor loadings, k2 − k, provide us the total

number of restrictions, k2, we need for identification.

2.3 The Data

Factor models entail large information sets. Our data consist of 158 US macroeconomic aggre-

gates and are inspired by Stock and Watson (2005) (SW) data set. The original SW data set and

its modified versions have been used by numerous papers, such as Belviso and Milani (2006) and

Ludvigson and Ng (2009b,c). In the latter, the authors touch upon the interpretation of factors

and 131 monthly series in their data cover the time span of January 1964 - December 2007.

Nevertheless, their data set is governed most by couple of specific groups of macroeconomic

aggregates. For instance, the real activity variables are plenty whereas the financial market

variable are just handful. We are fond of a more even distribution of the variables over the

subgroups. Therefore we update and extended the SW data set. Although the original SW data

set is monthly, we prefer to work with a quarterly data set to keep the computation tractable.

Hence the resulting data set is from 1964:Q1 to 2013:Q1.3 The number of lags in the VAR(q)
is taken to be 4 throughout the analysis. Yet, the model yields similar results under different

choice of lags.

We do not require any ex ante categorization of the data. However, we can benefit from looking

at it in detail and also reporting the results in accordance with the different classes of variables.

The subgroups and the corresponding number of variables are shown in Table 2.1 below. The

data set for factor extraction includes 157 variables. The last variable, Federal Funds Rate is

used as the policy variable thus it is not included in the data set from which we extract the

factors.

The analysis requires all series to be stationary. This is ensured by taking differences or loga-

rithms of the series and in some cases both. Adding more series into the data and the longer

time span now require different transformations than SW’s. The resulting codes are presented

in the data description.

3Appendix presents the full data description including the data source. Most of the series are taken from St.
Louis Fed Economic Research database (henceforth FRED) unless otherwise indicated.
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Table 2.1. Subgroups in the Data Set

Macroeconomic Subgroups Number of Variables

Production 20

(Un)Employment 27

Housing 13

Interest Rate 15

Inflation 29

Finance 13

Money 22

Expectations 7

Credit 11

Federal Funds Rate (FFR) 1

Notes: Appendix explains which series form these cate-

gories.

2.4 Results

We employ a Bayesian framework to extract the factors and estimate the hyperparameters. To

do so first requires to determine the exact number of factors in the data. The next step is to

analyze the factor loadings over time to assign an economic meaning to the factors .

2.4.1 Number of Factors in the Data

All factor related models require an initial step of determining the number of factors. There

are statistical ways to seek the optimal number. Among all, the most frequently used is the

information criteria for static factors proposed by Bai and Ng (2002). The crucial point in

determining the optimal number is to realize that different time spans might offer different

number of factors. Table 2.2 shows the results of a naive inspection on this matter.

The table presents how many factors are suggested by the information criteria for the corre-

sponding time span of the data set. The data until the end of 2000 suggest 6 factors. However

adding just the first quarter of 2001 into the time span changes the suggested number of factors.

This dramatic change is not because of a sudden appearance of an actual meaningful factor.

Instead, probably, there is nonlinearity caused by immediate changes in the data set, such as
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Table 2.2. Number of Factors for Different Time Spans

Time Range Number of Factors

1964Q1 - 2000Q4 6
1964Q1 - 2001Q1 7
1964Q1 - 2007Q4 7
1964Q1 - 2008Q1 8
1964Q1 - 2013Q1 8

the dot–com bubble in the beginning of 2001 for this particular case. The same notion can be

observed in the third and fourth rows. Even though the information criteria suggests 7 factors

until the end of 2007, adding the first quarter of 2008 leads to another factor, in this case due to

the Great Recession. As said, the additional factors given by information criteria after extreme

data movements do possibly capture the nonlinearity. Hence caution should be taken before

treating these factors as latent variables although they survive the information criteria.

The Bai and Ng (2002) information criteria suggest that there are 8 factors in our data for

the whole time span. The FAVAR model of Stock and Watson (2005) used 7 factors, only

some of which were later shown to accurately construct the forecast error decomposition for

individual series. Analogously, Ludvigson and Ng (2009b,c) used SW data set and extracted 8

factors as suggested by the information criteria. We, similar to Stock and Watson (2005), use 7

factors in this paper. The results of the subsequent sections show that only 5 to 6 factors are

assigned economic meanings.4 This also supports the fact that the immediate appearance of the

additional factors is artificial. The remaining ‘unmeaningful’ factors are generally shut down.

2.4.2 Interpreting the Factors

Given that the factor loadings are shut down for so-called irrelevant time periods, we can observe

the remaining (non-zero) loadings. This enables us to relate the factors and variables to particu-

lar data groups. If a factor’s loadings are rarely induced to zero only for a specific group of macro

variables, we will link that factor to the corresponding data group. The interpretation of factors

depends on the ‘survival rate’ of the process βjt. The survival rate aims to show how frequently

the factor loadings are above the estimated threshold, i.e., not shut down to zero, and therefore

the corresponding factors are relevant. We take this ratio by averaging both over simulations

and time periods. Mathematically, survival rate of the jth loading is 1/(TS)
∑
t,s 1(λ(s)

jt 6= 0)
where S is the number of simulations after burn-in period and λ

(s)
jt is the sth iteration of MCMC

estimate of λjt. This is one of the ways of interpreting factors, which we pursue in this paper.

Another would be to obtain a time-varying survival rate by averaging only over the simulations

4The same analysis was also repeated for 8 factors but there were no considerable changes in the results.
Similarly, only 5 to 6 factors are found meaningful.
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and checking the time series of loadings but interpreting the factors would be comparably harder

in this case.

We introduce the subgroups of the data in Section 4 even though we treat the data as a whole

for the MCMC. We ultimately intend to attach the factors to these different subgroups. Table

2.3 demonstrates the survival rates of all 7 factors for each of these subgroups. The rows indicate

the average the survival rates of the top 60% of the factor loadings for the corresponding factors.

This is just an adaptation for the ease of interpretability. The selection of the top percentile

does not change the results but makes the interpretation straightforward.

The bold numbers emphasize the highest survival rates of the corresponding factors. For the

production variables, for instance, the first factor is not shut down 63% of the time. Over

time and simulations, this signifies that the first factor is above the estimated threshold with

63% probability. The fourth factor has by far the highest survival rate, 78%, among others for

production. One factor might be related to other categories of the data as well, e.g. the fourth

factor is also influential on housing variables with 85% survival rate. Production and housing

are two highly related economic indicators hence the fourth factor can be processed as the real

activity factor and is now called as ‘Real’ as an abbreviation.

Table 2.3. Survival Rates of the Factor Loadings

f1 f2 f3 f4 f5 f6 f7
Emp InfFn — Real Expc — IntR

Production 0.63 0.32 0.40 0.78 0.36 0.56 0.58
(Un)employment 0.85 0.21 0.16 0.42 0.64 0.09 0.37
Housing 0.47 0.17 0.13 0.85 0.10 0.11 0.55
Interest Rate 0.12 0.04 0.09 0.44 0.18 0.06 0.51
Inflation 0.33 0.67 0.31 0.25 0.27 0.36 0.52
Finance 0.38 0.57 0.09 0.33 0.12 0.27 0.43
Money 0.22 0.22 0.21 0.29 0.18 0.37 0.36
Expectations 0.59 0.22 0.05 0.29 0.75 0.25 0.38

Following the above mentioned analogy, we mark the first factor as employment factor, ‘Emp’. In

our framework, one should be careful about what a factor is truly capturing. The (un)employment

partition of the data includes variables for both unemployment and employment. Can we know

for sure whether the employment factor is really an employment factor or rather an unemploy-

ment factor? Visual inspection helps us to determine the actual interpretation of this factor.5

We can simply check the correlations of every single variable with the employment factor.

5To identify the nature of this factor we can also put some sign restrictions on factor loadings at the beginning
of the analysis.
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Figure 2.1. The correlation between the variables and the first factor

The positive correlations accumulated in Figure 2.1 correspond to the unemployment variables.

Other variables in this same data category exhibit negative relationships with the first factor.

Moreover, most of the variables (such as production, housing, expectation) are negatively cor-

related with this factor. Therefore, this factor can safely be identified as the unemployment

factor.6

The second factor loads on inflation and financial variables. We cannot distinctly name this

factor due to the difficulty of differentiating the effects of inflation and financial variables, hence

it is indicated as ‘InfFn’. The third factor is the most insignificant factor among all. This

also supports the idea that some factors might be generated artificially due to capturing the

nonlinearity in the data. Hence, this factor does not carry any essential information and can be

left without a specific name.

The fifth factor clearly explains the expectation variables hence is indicated as ‘Expc’. Expec-

tation measures are highly related to other subgroups in the data. Stock and Watson (2005)

included these indexes into the corresponding subgroups. For instance the ISM Production In-

dex in our expectation data group is included in the real activity variables in SW data set.

Nevertheless, we are able to find a strongly distinctive factor associated with the expectation

variables. The existence of this factor should not be ignored in our case.

Money related variables have not been assigned to a particular factor with confidence. Even

6When we observe the impulse response functions of the factors after an unemployment shock in the following
sections, this notion also becomes more clear.
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though the most significant factor for these variables is factor 6, it might not be a conclusive

result thereby it brings this factor into question. The last factor very distinctively loads on

interest rate and real economy variables. It is not surprising that one factor affects more than

one group as in the case of the second factor. Yet, we call the last factor as the interest rate

factor.

The restrictions imposed to the model fix the rotation of the factors, i.e. we are choosing basis

functions for the space spanned by the factors. Papers which forcefully assign meaning to the

factors (by extracting one factor from a subgroup for instance) might end up having factors more

than the dimension of the true factor space. Therefore, we believe that some of these extracted

factors are either orthogonal to the true factor space or a linear combination of the true factors.

According to our results here and those of similar papers’, there are only 5 to 6 factors in this

data set. Whichever different identification schemes we use for the estimation, we could not find

any factor that explains credit variables. That is, there is no ‘Credit’ factor in the data based

on our results from several different restrictions.7

2.5 Impulse Response Functions

This section presents the impulse response functions of the factors and some selected variables

to particular shocks. The graphs here and in the appendix are evaluated by identifying the

system with Cholesky decomposition. Attached meanings on the factors would enable us to

impose better VAR identification restrictions. Cholesky decomposition is represented here just

for computational advantages. The confidence bands of the impulse response functions is 68%

instead of a 95% confidence interval. We prefer this due to the sampling uncertainty coming

along with the estimation of the factors. Appendix provides the impulse response functions of

other factors.

Figure 2.2 reports the responses of the factors to a 1 unit shock on FFR. The last of the 8 plots

in each figure presents response of FFR itself. The responses are generally of the expected sign.

The contractionary monetary policy shock has a relatively positive impact on unemployment

factor, consistent with what economic theory suggests. Inflation and financial market factor

might seem insignificant according to the response scales but has a small downward tendency

at the beginning. Immediate response of the financial variables might cause this behavior.

The FFR shock has almost no effect on the third factor as the figure suggests. This supports the

appearance of artificial factors as discussed in the previous sections. The real economy factor

7Appendix provides details on the results when we impose different identification restrictions.
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UnEmp Infl & Fin factor 3

Prod & Hous Expectation Money ?

IntRate FFR

Figure 2.2. The responses of the factors and FFR to a 1 unit shock on FFR.

(we can also think of it as production and housing factor) declines. Namely, positive shock to

FFR leads a drop in GDP. Expectations factor has a small upward adjustment first but then its

response becomes negative, consistent with the deteriorating expectations following monetary

contraction. The recovery period for expectations factor is almost the same as the real activity

factor. The money factor responds positively and stays that way until the effect slowly fades.

The corresponding series in the data include reserve aggregates. Therefore observing an increase

in the money factor is intuitive. Lastly, interest rate factor has an upward tendency in general

which is a natural response after a monetary contraction.

It is worthwhile to discuss the responses of the factors to the shocks on other factors. This is

one of the crucial conveniences of FAVAR models. Interpretable factors might help to make

sense of some dynamics in accordance with the impulse response functions. As an example,

we concentrate on the impulse response functions of the factors and the FFR when there is

an one unit positive shock to unemployment factor. The resulting responses are displayed in

Figure 2.3. A sudden jump in unemployment decreases inflation and finance factor over time.

In addition, impulse responses support our expectations of observing a drop in the real activity

and expectations factors. Moreover, the money factor and FFR are also negatively affected by

this shock whereas the response of interest rate has an upward move in the first quarters.

Another advantage of FAVAR models is that we can observe the impulse response functions of

the individual variables. This provides a more intensive check on the model specification. Hence
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UnEmp Infl & Fin factor 3

Prod & Hous Expectation Money ?

IntRate FFR

Figure 2.3. The responses of the factors and FFR to a 1 unit shock on unemployment factor.

we analyze the responses of various macroeconomic measures against a one unit contractionary

monetary shock. We have a selection of different types of variables chosen from the subgroups

of the data. The ordering of these variables on the data set are given next to the variable names

on Figure 2.4.

11-IP Durable 20-Capacity Util 40-Employment 59-Housing

62-TBill 92-CPI 107-SP Div Yield 109-SP PE Ratio

132-Credit-Reserves 140-Comm and Ind Loans

Figure 2.4. The responses of the variables to a 1 unit shock on FFR.
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The responses of the variables are as anticipated: contradictory monetary shock leads a decline in

industrial production, capacity utilization for manufacturing replies with a drop, the employment

measure in the third plot has a downward adjustment along with the decrease in housing starts

in the fourth plot, the FFR shock increases the 3-month Treasury Bill interests which is very

similar to FFR response, similar to the findings of Bernanke et al. (2005). Dividend yields first

exhibit an upward move however drop over time. Price earnings ratio of S&P declines, credit

variables are expected to have a downward adjustment after a positive monetary shock.

In theory, monetary tightening should decrease the prices. However, as first identified by Sims

(1992b), VAR literature suffers from a phenomenon so called price puzzle where prices commonly

respond with an increase. That is artificially created by impulse response functions of VAR

models and does not reflect what theory suggests. One of the novelties of FAVAR models is

to eliminate price puzzle by making use of large data sets. In our model, CPI reacts slightly

positively at the first quarter but the response becomes negative afterwards. Therefore we can

infer that this model eliminates the price puzzle while this response might seem insignificant.

The results which are not displayed here are available upon request. Surely, responses of some

variables are inconsistent with what the theory suggests, both in magnitude and sign. However,

numerous variables are exhibiting the foreseen responses in all data categories. Moreover, the

factors that we easily manage to interpret and name, such as unemployment, expectations or

real activity, react as expected.

2.6 Concluding Remarks

The recent literature has focused on the techniques to efficiently use large information sets.

Combining vector autoregressions with factor models is a relatively recent but very fruitful

method in this regard. However, factor augmented VAR models are not designed to interpret

the extracted factors. In this paper, we attempt to designate an economic meaning to the factors

through a latent threshold FAVAR model.

We apply a Bayesian approach to extract the factors, interpret them according to their factor

loadings, and employ a VAR analysis to observe impulse response functions of the various mea-

sures. For the identification of the factors, we need to impose some restrictions on both loadings

and covariance matrices of the factors. These would be altered according to the question at
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hand. We intend to keep the data as a whole and employ the proposed FAVAR model. As

hard as this could be for the factor interpretation, the proposed threshold structure serve our

purposes well in this respect. Observing the factor loadings assists to identify irrelevant factors

through the estimated threshold. Moreover, some factors seem to be more associated with some

data categories.

The empirical evidence suggests that most factors could be related to certain subcategories of

the data. Although Bai and Ng (2002) information criteria suggests the use of 8 factors for our

data set, we are able to find 5 to 6 meaningful factors, e.g. real activity factor, unemployment

factor. Unmeaningful factors might indicate the nonlinearity in the data which occurs after

extreme economic activities, such as crises.

There are couple areas that might benefit from this approach. The potential implementation

of the model, among many others, is two fold. First, it can be used on the stress testing front

by performing structural analysis. Recently, central banks heavily invest on their stress testing

framework alongside stress test scenarios published every year. Federal Reserve, for instance,

published its 2015 severe adverse scenario where the unemployment increases by 4 percentage

points, real GDP is 4.5% lower than its level in the third quarter of 2014 and CPI reaches 4.3%,

see Board of Governers of the Federal Reserve System (2015). Bank of England, see Bank of

England (2014), published a tail risk scenario starts with an initial shock to productivity which

leads to the monetary policy response where the Bank Rate rising about 4%. Following these,

unemployment rate rises to 12% and 35% fall in house prices is observed and eventually real

GDP growth troughs at about 3.5%. Calibrating these numbers is only the one side of the

coin. The other is the need to investigate where shocks originate. From the macroeconomic

perspective, the effects of two shocks that come from different sources should have different

impacts on the big scale of the economy. For instance, a real GDP fall originating from financial

sector shock should have different impacts on the economy, both qualitatively and quantitatively,

and different transmission mechanism than a same size fall in real GDP driven by a shock arising

from unemployment or housing market. Calibrating the variations in macroeconomic indicators

under stress should account for where shocks arise from even if they eventually materialize a

same size change. Our approach can identify initial shocks by using interpretable factors which

carry information on specific sectors of the economy and help gauging the ultimate numbers to

be used in stress scenarios.

Second, this method can be easily extended to perform small open economy analysis. The
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first possible implication of this extension is to exploit the effects of the monetary contrac-

tion/expansion in a large open economy to a small open economy. Especially recently, this

channel attracts more attention due to the uncertainty that might arise in small open economies,

such as Canada, United Kingdom, as a response to a change in the US interest rate. With the

proposed method, we have an official tool to investigate the transmission of the monetary policy

from one country to another by also capturing the features of different sectors in each coun-

try. Similarly, we can explore the interconnectedness of two countries’ financial sectors and/or

housing sectors etc. We can easily study the propagation mechanism of, for example, a financial

shock to the US economy on other countries along with the magnitude, duration and persistence

of this particular shock.

The paper is open to some extensions. We seek to obtain the results under different restrictions,

such as different structural VAR restrictions. They might lead to better impulse responses.

Looking for the best factor identification restrictions might yield the most meaningful factors.

Forecasting of particular macroeconomic series can be performed by using the proposed model.

A noteworthy extension is to repeat this exercise with different data sets although compiling

such data sets might be overwhelming. More micro-oriented series, such as consumption-saving

measures and various indexes, or different geographical variables would create very large data

sets and these can be analyzed with the aid of this model.
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Appendix 2

2.A Priors and Posteriors

Prior and posterior specifications and MCMC mostly rely on Nakajima and West (2013a). This

section is designed to analyze all in detail however readers can refer the original source if needed.

2.A.1 Priors

For g ∈ {β, c, h} the priors of the parameters are as follows

µi,g ∼ N (µi0, ω2
i0)

(αi,g + 1)/2 ∼ Beta(α01, α02)

σ−2
i,g ∼ G(v0i/2, V0i/2)

βi1|θβ ∼ N (µi,β, σ2
i,β/(1− α2

i,β))

di|θβ ∼ U (0, |µi,β|+Kνi) ,

where ν2
i = σ2

i,β/(1 − α2
i,β) and σ2

i,β is the ith diagonal element of Vβ. Basically, the term ν2
i is

the unconditional variance of βit.

2.A.2 MCMC Estimation Steps

To perform MCMC, we use Gibbs sampling, and Metropolis-Hasting (MH) algorithm for vari-

ables related to the threshold δ. Here is the outline and some details of the MCMC estimation.

Sampling β:

The process β0:T is sampled by Metropolis-within-Gibbs sampling method. In particular, MH

sampling is used for βt conditional on β−t and {θβ, δ, h1:T , f1:T , Y1:T , X1:T } for t = 1, . . . , T . If

there was no threshold, we could have easily sampled βt’s by using Kalman filter type algorithm.

Hence, in the accept-reject algorithm, β∗t which is sampled from a hypothetically no-threshold

model is used as a proposal. Note that Ωt has 0 in the off-diagonals, thus the variables in each

row of the measurement equation is uncorrelated over i. That is, we can sample each row of Λt
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independently from other rows. The conditional posterior of k × 1 vector βt under this case is

N (βt|mt,Mt) where i = 1, . . . , N and for t = 2 : T − 1

M−1
t = e−hitftf

′
t + V −1

β (I + α′βαβ)

mt = Mt[e−hitftX̃it + V −1
β {αβ(βt−1 − βt+1) + (I − 2αβ + α′βαβ)µβ}]

for t = 1 and t = T

M−1
1 = e−hi1f1f

′
1 + V −1

β,0 + V −1
β (I + α′βαβ)

m1 = M1[e−hi1f1X̃i1 + V −1
β,0 µβ + V −1

β αβ{β2 − (I − αβ)µβ}]

M−1
T = e−hiT fT f

′
T + V −1

β

mT = MT [e−hiT fT X̃iT + V −1
β {αββT−1 − (I − αβ)µβ}],

where Vβ,0 is the unconditional variance of βt and X̃it = Xit − γ′iYt

The acceptance probability is

α(βt, β∗t ) = min
{

1, N (X̃it|f ′tλ∗t , exp(hit))N (βt|mt,Mt)
N (X̃it|f ′tλt, exp(hit))N (β∗t |mt,Mt)

}
.

Sampling δ:

The posterior distribution of δi is conditioned on (k−1)×1 vector δ−i and {θβ, h1:T , f1:T , Y1:T , X1:T }.

The threshold is also sampled by MH algorithm. The proposal is drawn from the conditional

prior distribution δ∗i ∼ U (|µi|+Kνi). The acceptance probability is

α(δi, δ∗i ) = min

{
1,

T∏
t=1

N (X̃it|f ′tλ∗t , exp(hit))
N (X̃it|f ′tλt, exp(hit))

}
.

The parameter K is a tuning parameter. It determines how large the threshold can be, thus

in return, it determines the shut-down frequency of β. Nakajima and West (2013a) suggested

K = 3 based on simulation performances, that is the threshold is drawn from a 3-standard-

deviation interval. Our estimation results were pretty robust to changes in K - we estimated

the model with K ∈ {1.65, 2, 3}.

Sampling {µβ, αβ, σ−2
i,β }:
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These are the parameters associated with the autoregressive process for βt. The posteriors of

these parameters are typical except that they are truncated on a set where the parameter draws

are compatible with the upper bound of the threshold: Di = {δi < |µiβ|+Kνi}.

The posterior density of µiβ is p(µiβ|αiβ, σ2
iβ, βi,1:T , δi) ∝ T NDi(µiβ|µ̂i, ω̂2

i )(|µiβ|+Kνi)−1 where

T NDi denotes the density of truncated normal on the set Di, and

ω̂2
i =

{
1
ω2
i0

+ (1− α2
i ) + (T − 1)(1− α1)2

σ2
iV

}−1

µ̂i = ω̂2
i

{
µi0
ω2
i0

+ (1− α2
i )βi1 + (1− αi)

∑T−1
t=1 (βi,t+1 − αiβit)

σ2
iV

}
.

Acceptance rate for the candidate which is drawn from the conditional posterior density is

min
{

1, |µiβ |+Kνi|µ∗
iβ
|+Kνi

}
.

The conditional posterior density of αiβ is

p(αiβ|µiβ, σ2
iβ, βi,1:T , δi) ∝ Beta(αiβ)(1− α2

iβ)1/2T N (−1,1)×Di(α̂i, σ
2
αi)(|µiβ|+Kνi)−1,

where α̂i =
∑T−1
t=1 β̄i,t+1β̄it/

∑T−1
t=2 β̄2

it and σ2
αi = σ2

i,β/
∑T−1
t=2 β̄2

it with β̄it = βit − µi.

The candidate drawn from the conditional posterior density is accepted with the probability

min
{

1, Beta(α∗i )(1− α∗2i )1/2{|µiβ|+Kν∗i }
Beta(αiβ)(1− α2

iβ)1/2{|µiβ|+Kνi}

}
.

The conditional posterior density of σ−2
i,β

p(σ−2
i,β |µiβ, αiβ, βi,1:T , δi) ∝ T GDi(σ−2

i,β |v̂i/2, V̂i/2)(|µiβ|+Kνi)−1

where the T GDi is the density of the implied gamma distribution truncated on Di, v̂i = v0i + T

and V̂i = V0i + (1− α2
iβ)β̄2

i1 +
∑T−1
t=1 (β̄i,t+1 − αiββ̄it)2.

Accepting the candidate, drawn from the conditional posterior density, with probability

min
{

1, |µiβ|+Kνi
|µiβ|+Kν∗i

}
.
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Initial Values: We need to choose initial values for some processes to start the Markov chain.

Moreover, the Monte Carlo estimation results should be robust to different initial values. In this

regard, we have tested the analysis against different initial values. The results are not intensely

different. However it is worthwhile to note that there are some ‘bad’ initial values. The chains

produced by these construct non-positive-definite covariance matrix estimates. In this case,

the chain cannot proceed. Yet, once we avoid these initial values, our estimation is robust to

different initial values.

For the factors, we choose the principal component analysis estimates as initial values. For

other processes β0:T , c0:T , h0:T , the initial values are drawn from the corresponding unconditional

distributions. For instance, ht ∼ N (µh, σ2
h/(1− α2

h)).

Next, we outline briefly the steps of the MCMC estimation. Note that in each step, updated

variables from the previous steps are used.

Step 1: Draw β0:T

Conditional on {θβ, δ, c1:T , h1:T , f1:T , γ, Y1:T , X1:T }, we draw β0:T by MH algorithm as explained

above, where the candidate is drawn from a no-threshold model distribution.

Step 2: Draw δ

Conditional on {θβ, β1:T , c1:T , h1:T , f1:T , γ, Y1:T , X1:T }, we draw the threshold δ. The candidate

is drawn from the conditional prior.

Step 3: Draw θβ = {µβ, αβ, Vβ}

Conditional on {β1:T , δ}, estimation of θβ is performed as in a typical AR(1) process. The only

difference is that the estimated parameters need to be consistent with the threshold set Di.

Step 4: Draw c0:T

Conditional on {θc, δ, β1:T , h1:T , f1:T , γ, Y1:T , X1:T }, the model can be written easily in a state

representation.

Xt = ct + Λtft + γYt + et

ct = µc + αc(ct−1 − µc) + vct

Then the process c0:T is drawn in a forward filtering backwards sampling algorithm (Carter and

Kohn (1994)).
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Step 5: Draw θc = {µc, αc, Vc}

Conditional on c0:T , we draw θc in a simple AR(1) model.

Step 6: Draw h0:T

Conditional on {θh, δ, β1:T , c1:T , f1:T , γ, Y1:T , X1:T }, the stochastic volatility h0:T is drawn in a

typical SV estimation method. We use MH algorithm step to accept/reject a candidate drawn

from the conditional posterior.

Step 7: Draw θh = {µh, αh, Vh}

Conditional on h0:T , we draw θh in a simple AR(1) model as in Step 5.

Step 8: Draw f1:T

Conditional on {δ, β1:T , c1:T , h1:T , γ, Y1:T , X1:T }, the latent factors can be drawn in a similar way

as c0:T is drawn in Step 4. To transform the model into state space representation, we need to

first transform the factors and Yt into companion form.

Let Ft = (f ′t , Y ′t )′ be (K × 1) where K = k + m, F̃t = (F ′t , . . . , F ′t−q+1)′ be (Kq × 1), Λ̃t =

[Λt, γ, 0(N×(Kq−K))] be (N ×Kq), ε̃t = (ε′t, 0′(Kq−K)×1)′ be (Kq×1), and (Kq×Kq) matrix Φ is

the companion form of the VAR(q) matrices Φ(L). Then the state space representation of the

factors together with the policy variables is as follows.

Xt = ct + Λ̃tF̃t + et

F̃t = ΦF̃t−1 + ε̃t

Note that the covariance matrix of ε̃t is degenerate, therefore we need to adjust the Kalman

filter accordingly and take the corresponding the first (K × 1) part of the final draw.

Step 9: Draw Φ,Σ

Conditional on {f1:T , Y1:T }, estimation of Φ and Σ is done as in a typical VAR(1) setting

F̃t = ΦF̃t−1 + ε̃t.

Step 10: Draw γ

Conditional on {δ, β1:T , c1:T , h1:T , f1:T , Y1:T , X1:T }, drawing γ is like drawing a coefficient in a

simple linear regression: Xt − Λtft − ct = γYt + et.
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2.B Different Restrictions on Λt

The results presented in Table 2.3 are obtained when 7 credit variables are placed at the end of

the data set. Hence each of them are forced to be loaded only by one factor. Given these iden-

tification restrictions, our model leads us to the above mentioned interpretation of the factors.

Regarding this matter, can we improve the results somehow by changing the restrictions in the

loadings? The answer is ‘not necessarily’. The zero restrictions in the loading matrix fix the

rotation of the factors. Even though we assign new restrictions inspired by the results above

(e.g. restricting an unemployment variable to be loaded only by the first factor, an expectation

variable to be loaded by only the fifth factor etc.), imposing different restrictions changes the

rotation of the factors, thereby changing the meanings of the factors.

Table 2.4 below presents the results when we impose new restrictions on Λt. These new restric-

tions are imposed according to the results in Table 3. As one can easily see, the names and the

importance of the factors change dramatically. Now, there is a very distinct ‘Hous’ factor. The

fourth factor now loads on both production and employment variables. The meaning of the fifth

factor does not change, it can still be called as expectation factor. Unlike the results of Table

2.3, here finance and inflation factors can be differentiated. Again, one factor, f2, cannot not

explain any significant part of any variable; and one factor, f7 is uninterpretable as it does not

load a particular category.

Table 2.4. Survival Rates of the Factor Loadings under Different Restrictions

f1 f2 f3 f4 f5 f6 f7
Hous — Fin PrEm Expc Inf —

Production 0.53 0.15 0.42 0.78 0.41 0.43 0.38
(Un)Employment 0.49 0.16 0.24 0.72 0.50 0.20 0.46
Housing 0.93 0.34 0.26 0.16 0.27 0.27 0.34
Interest Rate 0.33 0.04 0.26 0.38 0.20 0.26 0.26
Inflation 0.23 0.33 0.36 0.20 0.36 0.45 0.30
Finance 0.24 0.12 0.69 0.15 0.27 0.45 0.24
Money 0.13 0.15 0.34 0.07 0.19 0.33 0.25
Credit 0.46 0.24 0.45 0.25 0.12 0.13 0.37
Expectations 0.53 0.34 0.26 0.77 0.76 0.01 0.16
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2.C Impulse response functions

UnEmp Infl & Fin factor 3

Prod & Hous Expectation Money ?

IntRate FFR

Figure 2.5. The responses of the factors and FFR to a 1 unit shock on inflation and finance factor.

UnEmp Infl & Fin factor 3

Prod & Hous Expectation Money ?

IntRate FFR

Figure 2.6. The responses of the factors and FFR to a 1 unit shock on third factor.
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UnEmp Infl & Fin factor 3

Prod & Hous Expectation Money ?

IntRate FFR

Figure 2.7. The responses of the factors and FFR to a 1 unit shock on real activity factor.

UnEmp Infl & Fin factor 3

Prod & Hous Expectation Money ?

IntRate FFR

Figure 2.8. The responses of the factors and FFR to a 1 unit shock on expectations factor.
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UnEmp Infl & Fin factor 3

Prod & Hous Expectation Money ?

IntRate FFR

Figure 2.9. The responses of the factors and FFR to a 1 unit shock on money factor.

UnEmp Infl & Fin factor 3

Prod & Hous Expectation Money ?

IntRate FFR

Figure 2.10. The responses of the factors and FFR to a 1 unit shock on interest rate factor.
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22.D Data Description For SW Updated Data
Series are from generally from FRED. The series indicated whose source is indicated as FRED+SW are mainly gathered from FRED however the missing time periods
are patched from Stock and Watson data set. There are two stock exchange variables taken from Shiller’s data set, used in Stock Market Data Used in ”Irrational
Exuberance” Princeton University Press, 2000, 2005, updated. Moreover there are two stock exchange series taken from Stock and Watson data set but patched from
www.multpl.com’ for the missing values for the last months of the time period. Oil price is included in the data set however has not been used for the analysis in this
paper. The analysis requires all series to be stationary. This is ensured by generally by taking differences or logarithms (and in some cases both). The rates are
transformed either by keeping them as they are or taking the first or second differences. Similarly the levels are transformed by either taking logarithms or the first or
second differences of logarithms. in this respect, 1: levels, 2: first difference, 3: second difference, 4: logarithm, 5: first difference of logarithm, 6: second difference of
logarithm.

Series ID Tcode Description Units Seasonal Adjustment Source

1

R
E
A
L

A
C
T
IV

IT
Y

INC DDURRG3M086SBEA 6 Personal consumption expenditures: Durable goods (chain-type price index) Index 09=100 SA FRED
2 INC DNDGRG3M086SBEA 5 Personal consumption expenditures: Nondurable goods (chain-type price index) Index 09=100 SA FRED
3 CONS DPCERA3M086SBEA 5 Real personal consumption expenditures (chain-type quantity index) Index 09=100 SA FRED
4 CONS DSERRG3M086SBEA 6 Personal consumption expenditures: Services (chain-type price index) Index 09=100 SA FRED
5 CONS PCEPI 6 Personal Consumption Expenditures: Chain-type Price Index Index 09=100 SA FRED
6 INC RPI 5 Real Personal Income Bil. of Chained 09 $ SAAR FRED
7 INC W875RX1 5 Real personal income excluding current transfer receipts Bil. of Chained 09 $ SAAR FRED
8 IND INDPRO 5 Industrial Production Index Index 07=100 SA FRED
9 IND IPFINAL 5 Industrial Production: Final Products (Market Group) Index 07=100 SA FRED
10 IND IPCONGD 5 Industrial Production: Consumer Goods Index 07=100 SA FRED
11 IND IPDCONGD 5 Industrial Production: Durable Consumer Goods Index 07=100 SA FRED
12 IND IPNCONGD 5 Industrial Production: Nondurable Consumer Goods Index 07=100 SA FRED
13 IND IPBUSEQ 5 Industrial Production: Business Equipment Index 07=100 SA FRED
14 IND IPMAT 5 Industrial Production: Materials Index 07=100 SA FRED
15 IND IPDMAT 5 Industrial Production: Durable Materials Index 07=100 SA FRED
16 IND IPNMAT 5 Industrial Production: nondurable Materials Index 07=100 SA FRED
17 IND IPFPNSS 5 Industrial Production: Final Products and Nonindustrial Supplies Index 07=100 SA FRED
18 IND IPFUELN 5 Industrial Production: Fuels Index 07=100 NSA FRED
19 UTIL TCU 1 Capacity Utilization: Total Industry % of Capacity SA FRED+SW
20 UTIL MCUMFN 1 Capacity Utilization: Manufacturing (NAICS) % of Capacity SA FRED+SW

21

E
M

P
L
O
Y
M

E
N
T

EMP CLF16OV 5 Civilian Labor Force Thous. of Persons SA FRED
22 EMP CE16OV 5 Civilian Employment Thous. of Persons SA FRED
23 UNEMP UNRATE 2 Civilian Unemployment Rate % SA FRED
24 UNEMP UEMPMEAN 2 Average (Mean) Duration of Unemployment Weeks SA FRED
25 UNEMP UEMPLT5 5 Civilians Unemployed - Less Than 5 Weeks Thous. of Persons SA FRED
26 UNEMP UEMP5TO14 5 Civilians Unemployed for 5-14 Weeks Thous. of Persons SA FRED
27 UNEMP UEMP15OV 5 Civilians Unemployed - 15 Weeks & Over Thous. of Persons SA FRED
28 UNEMP UEMP15T26 5 Civilians Unemployed for 15-26 Weeks Thous. of Persons SA FRED
29 UNEMP UEMP27OV 5 Civilians Unemployed for 27 Weeks and Over Thous. of Persons SA FRED
30 EMP PAYEMS 5 All Employees: Total nonfarm Thous. of Persons SA FRED
31 EMP USPRIV 5 All Employees: Total Private Industries Thous. of Persons SA FRED
32 EMP CES1021000001 5 All Employees: Mining and Logging: Mining Thous. of Persons SA FRED
33 EMP USCONS 5 All Employees: Construction Thous. of Persons SA FRED
34 EMP MANEMP 5 All Employees: Manufacturing Thous. of Persons SA FRED
35 EMP DMANEMP 5 All Employees: Durable goods Thous. of Persons SA FRED
36 EMP NDMANEMP 5 All Employees: Nondurable goods Thous. of Persons SA FRED
37 EMP SRVPRD 5 All Employees: Service-Providing Industries Thous. of Persons SA FRED
38 EMP USTPU 5 All Employees: Trade, Transportation & Utilities Thous. of Persons SA FRED
39 EMP USWTRADE 5 All Employees: Wholesale Trade Thous. of Persons SA FRED
40 EMP USTRADE 5 All Employees: Retail Trade Thous. of Persons SA FRED
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41

E
M

P
L
O
Y
M

E
N
T EMP USFIRE 5 All Employees: Financial Activities Thous. of Persons SA FRED

42 EMP USGOVT 5 All Employees: Government Thous. of Persons SA FRED

43 EMP CES0000000010 5 Women Employees: Total Nonfarm Thous. of Persons SA FRED

44 EMP CES0600000007 1 Average Weekly Hours of Production and Nonsupervisory Employees: Goods-Producing Hours SA FRED

45 EMP AWOTMAN 2 Average Weekly Overtime Hours of Production and Nonsupervisory Employees: Manufacturing Hours SA FRED

46 EMP AWHMAN 1 Average Weekly Hours of Production and Nonsupervisory Employees: Manufacturing Hours SA FRED

47 EMP AWHI 5 Index of Aggregate Weekly Hours: Production and Nonsupervisory Employees: Total Private Industries Index 02=100 SA FRED

48

H
O

U
S
IN

G

HOUS HOUST 4 Housing Starts: Total: New Privately Owned Housing Units Started Thous. of Units SAAR FRED

49 HOUS HOUSTNE 5 Housing Starts in Northeast Census Region Thous. of Units SAAR FRED

50 HOUS HOUSTMW 5 Housing Starts in Midwest Census Region Thous. of Units SAAR FRED

51 HOUS HOUSTS 5 Housing Starts in South Census Region Thous. of Units SAAR FRED

52 HOUS HOUSTW 4 Housing Starts in West Census Region Thous. of Units SAAR FRED

53 HOUS PERMIT 4 New Private Housing Units Authorized by Building Permits Thous. of Units SAAR FRED

54 HOUS PERMITNE 4 New Private Housing Units Authorized by Building Permits in the Northeast Census Region Thous. of Units SAAR FRED

55 HOUS PERMITMW 5 New Private Housing Units Authorized by Building Permits in the Midwest Census Region Thous. of Units SAAR FRED

56 HOUS PERMITS 4 New Private Housing Units Authorized by Building Permits in the South Census Region Thous. of Units SAAR FRED

57 HOUS PERMITW 4 New Private Housing Units Authorized by Building Permits in the West Census Region Thous. of Units SAAR FRED

58 HOUS PERMIT1 5 New Private Housing Units Authorized by Building Permits - In Structures with 1 Unit Thous. of Units SAAR FRED

59 HOUS HOUST1F 5 Privately Owned Housing Starts: 1-Unit Structures Thous. of Units SAAR FRED

60 HOUS MSACSR 5 Monthly Supply of Homes in the United States Months’ Supply SA FRED

61

IN
T
E
R
E
S
T

R
A
T
E

BILL CPF3M 2 3-Month AA Financial Commercial Paper Rate % NSA FRED+SW

62 BILL TB3MS 2 3-Month Treasury Bill: Secondary Market Rate % NSA FRED

63 BILL TB6MS 2 6-Month Treasury Bill: Secondary Market Rate % NSA FRED

64 BOND GS1 2 1-Year Treasury Constant Maturity Rate % NSA FRED

65 BOND DGS3 2 3-Year Treasury Constant Maturity Rate Avrg. NSA FRED

66 BOND GS5 2 5-Year Treasury Constant Maturity Rate % NSA FRED

67 BOND GS10 2 10-Year Treasury Constant Maturity Rate % NSA FRED

68 BOND AAA 2 Moody’s Seasoned Aaa Corporate Bond Yield % NSA FRED

69 BOND BAA 2 Moody’s Seasoned Baa Corporate Bond Yield % NSA FRED

70 SPRD T1YFF 1 1-Year Treasury Constant Maturity Minus Federal Funds Rate % NSA FRED+SW

71 SPRD T5YFF 1 5-Year Treasury Constant Maturity Minus Federal Funds Rate % NSA FRED

72 SPRD T10YFF 1 10-Year Treasury Constant Maturity Minus Federal Funds Rate % NSA FRED+SW

73 INTR INTDSRUSM193N 2 Interest Rates, Discount Rate for United States % per Annum NSA FRED

74 INTR MPRIME 2 Bank Prime Loan Rate % NSA FRED

75 INTR INTGSBUSM193N 2 Interest Rates, Government Securities, Government Bonds for United States % per Annum NSA FRED

76

IN
F
L
A
T
IO

N PPI PPIFGS 6 Producer Price Index: Finished Goods Index 82=100 SA FRED

77 PPI PPIFCG 5 Producer Price Index: Finished Consumer Goods Index 82=100 SA FRED

78 PPI PPIITM 5 Producer Price Index: Intermediate Materials: Supplies & Components Index 82=100 SA FRED

79 PPI PPICMM 5 Producer Price Index: Commodities: Metals and metal products: Primary nonferrous metals Index 82=100 NSA FRED

80 PPI PFCGEF 5 Producer Price Index: Finished Consumer Goods Excluding Foods Index 82=100 SA FRED
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81

IN
F
L
A
T
IO

N

PPI PPIACO 5 Producer Price Index: All Commodities Index 82=100 NSA FRED

82 PPI PPICPE 5 Producer Price Index: Finished Goods: Capital Equipment Index 82=100 SA FRED

83 PPI PPICRM 5 Producer Price Index: Crude Materials for Further Processing Index 82=100 SA FRED

84 PPI PPIENG 5 Producer Price Index: Fuels & Related Products & Power Index 82=100 NSA FRED

85 PPI PPIFCF 5 Producer Price Index: Finished Consumer Foods Index 82=100 SA FRED

86 PPI PPIFGS 6 Producer Price Index: Finished Goods Index 82=100 SA FRED

87 PPI PPIIDC 5 Producer Price Index: Industrial Commodities Index 82=100 NSA FRED

88 CPI CPIAUCSL 6 Consumer Price Index for All Urban Consumers: All Items Index 82-84=100 SA FRED

89 CPI CPIAPPSL 6 Consumer Price Index for All Urban Consumers: Apparel Index 82-84=100 SA FRED

90 CPI CPITRNSL 5 Consumer Price Index for All Urban Consumers: Transportation Index 82-84=100 SA FRED

91 CPI CPIMEDSL 6 Consumer Price Index for All Urban Consumers: Medical Care Index 82-84=100 SA FRED

92 CPI CUSR0000SAC 5 Consumer Price Index for All Urban Consumers: Commodities Index 82-84=100 SA FRED

93 CPI CUUR0000SAD 6 Consumer Price Index for All Urban Consumers: Durables Index 82-84=100 NSA FRED

94 CPI CUSR0000SAS 6 Consumer Price Index for All Urban Consumers: Services Index 82-84=100 SA FRED

95 CPI CPIULFSL 6 Consumer Price Index for All Urban Consumers: All Items Less Food Index 82-84=100 SA FRED

96 CPI CUUR0000SA0L2 6 Consumer Price Index for All Urban Consumers: All items less shelter Index 82-84=100 NSA FRED

97 CPI CUSR0000SA0L5 6 Consumer Price Index for All Urban Consumers: All items less medical care Index 82-84=100 SA FRED

98 CPI CUSR0000SAF11 5 Consumer Price Index for All Urban Consumers: Food at home Index 82-84=100 SA FRED

99 CPI CUUR0000SEFV 6 Consumer Price Index for All Urban Consumers: Food away from home Index 82-84=100 NSA FRED

100 EARN CES0600000008 6 Average Hourly Earnings of Production and Nonsupervisory Employees: Goods-Producing $ per Hour SA FRED

101 EARN CES2000000008 6 Average Hourly Earnings of Production and Nonsupervisory Employees: Construction $ per Hour SA FRED

102 EARN CES3000000008 6 Average Hourly Earnings of Production and Nonsupervisory Employees: Manufacturing $ per Hour SA FRED

103 EARN AHETPI 6 Average Hourly Earnings of Production and Nonsupervisory Employees: Total Private $ per Hour SA FRED

104 EARN CES0500000030 6 Average Weekly Earnings of Production and Nonsupervisory Employees: Total Private $ per Week SA FRED

105

F
IN

A
N
C
IA

L
M

A
R
K

E
T

S&P SP500 5 S&P 500 Stock Price Index Index NSA FRED

106 S&P SP600DIV 2 S&P 500 Stock Price Index: Dividend Percent Shiller

107 S&P SP500DIVY 2 S&P 500 Dividend Yield % per Annum SW+Multpl

108 S&P SP500EARN 4 S&P 500 Stock Price Index: Earnings % NSA Shiller

109 S&P SP500PE 5 S&P 500 Price Earnings Ratio Ratio SW+Shiller

110 EXRT EXSZUS 5 Switzerland / U.S. Foreign Exchange Rate Swiss Francs per Dollar NSA FRED+SW

111 EXRT EXJPUS 5 Japan / U.S. Foreign Exchange Rate Japanese Yen per Dollar NSA FRED+SW

112 EXRT EXUSUK 5 U.S. / U.K. Foreign Exchange Rate Dollar per British Pound NSA FRED+SW

113 EXRT EXCAUS 5 Canada / U.S. Foreign Exchange Rate Canadian Dollar per One U.S. Dollar NSA FRED+SW

114 DOWJ DJCA 2 Dow Jones Composite Average Index NSA FRED

115 DOWJ DJIA 2 Dow Jones Industrial Average Index NSA FRED

116 DOWJ DJTA 2 Dow Jones Transportation Average Index NSA FRED

117 DOWJ DJUA 2 Dow Jones Utility Average Index NSA FRED

118

M
O

N
E
Y MS M1SL 6 M1 Money Stock Bil. of $ SA FRED

119 MS M2SL 6 M2 Money Stock Bil. of $ SA FRED

120 MS M2REAL 6 Real M2 Money Stock Bil. of 82-83 $ SA FRED
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121

M
O

N
E
Y

MS AMBSL 6 St. Louis Adjusted Monetary Base Bil. of $ SA FRED

122 DEPO TOTRESNS 6 Total Reserves of Depository Institutions Bil. of $ NSA FRED

123 DEPO NONBORRES 3 Reserves Of Depository Institutions, Nonborrowed Mil. of $ NSA FRED

124 MS BOGAMBSL 5 Board of Governors Monetary Base, Adjusted for Changes in Reserve Requirements (DISCONTINUED SERIES) Bil. of $ SA FRED

125 MS CURRSL 6 Currency Component of M1 Bil. of $ SA FRED

126 DEPO DEMDEPSL 6 Demand Deposits at Commercial Banks Bil. of $ SA FRED

127 DEPO EXCRESNS 5 Excess Reserves of Depository Institutions (DISCONTINUED SERIES) Bil. of $ NSA FRED

128 MS MABMM301USM189S 5 M3 for the United States Natinonal Currency SA FRED

129 MS MBCURRCIR 6 Monetary Base; Currency In Circulation Mil. of $ NSA FRED

130 DEPO NFORBRES 3 Net Free or Borrowed Reserves of Depository Institutions (DISCONTINUED SERIES) Bil. of $ NSA FRED

131 DEPO REQRESNS 6 Required Reserves of Depository Institutions Bil. of $ NSA FRED

132 DEPO RESBALNS 5 Total Reserve Balances Maintained with Federal Reserve Banks Bil. of $ NSA FRED

133 DEPO SAVINGSL 5 Savings Deposits - Total Bil. of $ SA FRED

134 DEPO STDCBSL 5 Small Time Deposits at Commercial Banks Bil. of $ SA FRED

135 DEPO STDSL 5 Small Time Deposits - Total Bil. of $ SA FRED

136 DEPO SVGCBSL 5 Savings Deposits at Commercial Banks Bil. of $ SA FRED

137 DEPO TCDSL 6 Total Checkable Deposits Bil. of $ SA FRED

138 MS M2MOWN 2 M2 Minus Own Rate % NSA FRED

139 MS M2MSL 5 M2 Less Small Time Deposits Bil. of $ SA FRED

140

C
R
E
D

IT

CRED BUSLOANS 5 Commercial and Industrial Loans, All Commercial Banks Bil. of $ SA FRED

141 CRED CONSUMER 5 Consumer Loans at All Commercial Banks Bil. of $ SA FRED

142 CRED OTHSEC 5 Other Securities at All Commercial Banks Bil. of $ SA FRED

143 CRED REALLN 5 Real Estate Loans, All Commercial Banks Bil. of $ SA FRED

144 CRED TOTALSL 5 Total Consumer Credit Owned and Securitized, Outstanding Bil. of $ SA FRED

145 CRED NONREVSL 5 Total Nonrevolving Credit Owned and Securitized, Outstanding Bil. of $ SA FRED

146 CRED INVESTNSA 5 Securities in Bank Credit, All Commercial Banks Bil. of $ NSA FRED

147 CRED LOANINVNSA 5 Bank Credit, All Commercial Banks Bil. of $ NSA FRED

148 CRED LOANS 5 Loans and Leases in Bank Credit, All Commercial Banks Bil. of $ SA FRED

149 CRED OLLACBM027NBOG 5 Other Loans and Leases, All Commercial Banks Bil. of $ NSA FRED

150 CRED USGSEC 5 Treasury and Agency Securities at All Commercial Banks Bil. of $ SA FRED

151

E
X
P
E
C
T
A
T
IO

N
S PRIX NAPMPI 1 ISM Manufacturing: Production Index Index SA FRED

152 EMIX NAPMEI 1 ISM Manufacturing: Employment Index Index SA FRED

153 NEWO NAPMNOI 1 ISM Manufacturing: New Orders Index Index SA FRED

155 VEND NAPMSDI 1 ISM Manufacturing: Supplier Deliveries Index Index SA FRED

155 INVT NAPMII 1 ISM Manufacturing: Inventories Index Index NSA FRED

156 COMM NAPMPRI 1 ISM Manufacturing: Prices Index Index NSA FRED

157 PURC NAPM 1 ISM Manufacturing: PMI Composite Index Index SA FRED

158 FFR FEDFUNDS 2 Effective Federal Funds Rate % NSA FRED

OIL OILPRICE 5 Spot Oil Price: West Texas Intermediate (DISCONTINUED SERIES) $ per Barrel NSA FRED
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CHAPTER 3

Macroeconomic Tail Events with Non-linear BVARs

3.1 Introduction

This paper seeks to enhance the understanding of macroeconomic tail events. We define macroe-

conomic tail events as high-impact economic outcomes which arise with a small probability. We

adopt a regime switching modeling approach to capture potential nonlinearities in the data and

consequently study tail events in the macroeconomy. Using regime switching vector autore-

gressive (VAR) models, in the spirit of Alessandri and Mumtaz (2014) and Hubrich and Tetlow

(2015), we exploit changes in economic dynamics during stressful times,. These non-linear VARs

enable us to assign proper economic meanings to different states of the world and to perform

structural analyses.

Economic dynamics during economically or financially stressful times are potentially different

from normal times. Of particular importance are the nonlinearities induced by the switches in

economic regimes and the existence of adverse feedback loops between real and financial sectors,

as highlighted by Brunnermeier and Sannikov (2014). Various empirical papers also discuss the

importance of nonlinearities, including Hamilton (1989), Kim and Nelson (1999a), Piger et al.

(2005), Primiceri (2005), Mishkin (2010). In such situations, linear models lose appeal. As
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Drehmann et al. (2007) discusses, linear approximations might sufficiently work in the middle of

the distributions but can behave badly in the tails. Consequently, linear models are not adequate

for studying tail events and for capturing the possible impacts of adverse shocks. Our adoption

of regime switching models explicitly addresses this issue.

We build on Hubrich and Tetlow (2015)’s seminal findings to explore different dynamics of

the economy in different states. Apart from Markov switching models, we additionally consider

threshold VAR models to study non-linear dynamics. By employing generalized impulse response

function analysis, we demonstrate the powerful feedback loops between financial and real sectors,

which would otherwise be missed with the conditionally linear impulse responses commonly used

in the literature such as by Hubrich and Tetlow (2015), among others. We go one step further to

show that out-of-sample conditional forecasting exercises performed with threshold VARs carry

big potential in forecasting macroeconomic tail events.

We construct a simple system of five variables summarising real economic activity along with

its linkages to, and the linkages between, the banking sector and financial markets in the UK.

We estimate a linear Bayesian VAR (henceforth BVAR) model as a benchmark, and Threshold

VAR (TVAR) models and Markov switching VAR (MSVAR) model.

We consider two different threshold variables in the TVAR exercise: real GDP growth rate and

aggregate corporate bond spreads. The use of the real GDP growth rate as a threshold variable is

motivated by the desire to study macroeconomic recessions. In our case, the estimated threshold

value hovers around zero percent, consistent with the common definition of recessions. Hence we

can discern recessionary regimes from non-recessionary ones. The use of corporate bond spreads

as the threshold variable is motivated by the observation that not all recessions are related to

financial stress, and so our desire to study regimes which are financially stressful.

As for the MSVAR, we assume one Markov chain which governs the transition of regimes for

both variance and coefficient regimes in a two regime economy. The latent regimes captured by

this model are broadly similar to the stressful regimes picked up by our TVARs, on top of the

periods characterised by high interest rate and inflation rates in the mid 1980s and early 1990s.

Taken together, our regime switching models are able to identify periods of extreme stress in

the UK economy.

To study structural shock transmission under different regimes, we adopt the common recur-

siveness assumption. We study financial shocks (proxied by exogenous jumps in corporate bond

65



Chapter 3

spreads), negative output growth shocks and monetary policy shocks, and compute the gen-

eralised impulse response functions as described in Koop et al. (1996). The TVAR models

successfully capture three valuable facts. First, financial shocks hitting during recessionary pe-

riods create disproportionately more severe recessions and significant declines in aggregate bank

excess returns. Second, negative output growth shocks occurring during times of financial stress

lead to disproportionately higher financial stress. In particular, these shocks in financially stress-

ful periods generate a surge in corporate bond spreads seven times as large as growth shocks of a

similar size in the financially non-stressful regime. Third, we find some evidence that the drop in

output growth induced by interest rate shocks is deeper, but much less persistent in recessions.

Aggregate bank excess returns drop in recessions, as opposed to a rise, as predicted by the linear

model. Our MSVAR model also generates qualitatively similar results. These results, which the

linear BVAR model fails to capture, point out the significance of acknowledging nonlinearities

and provide useful information to investigate tail events conditional on structural shocks.

We also provide evidence for the existence of powerful feedback loops between real and financial

sectors. Here, we shift our attention to shocks deep in tails (proxied by the size of three-standard-

deviation shocks in our exercise) hitting during normal times, especially in booms.1 For example,

an extremely large credit spread shock during normal times leads to disproportionately large

falls in output, which then feed back into the financial sector resulting in a further increase in

financial stress. Such feedback effects can be explained by the endogenous switches of regimes

from non-stressful to stressful ones, which adds to the existing non-linear dynamics in the model.

The above findings also carry important empirical implications for the theoretical results high-

lighted in Brunnermeier and Sannikov (2014). Their prediction that small shocks can be ampli-

fied once the economy is already in crisis regimes is supported by our empirical results that the

economic impact is more severe when small shocks hit during recessions or financially stressful

times. Our results also speak to their prediction that the economy reacts to large exogenous

shocks differently compared to small ones. In particular, our simulations exploiting tail shocks

show that the impact on the real and financial sectors are disproportionately larger relative to

smaller shocks, suggesting that large shocks are strongly amplified. On the whole, we present

strong empirical evidence that reactions to shocks in an economic system can be highly nonlinear.

We then turn to a reduced-form out-of-sample forecasting analysis. Having re-estimated our

1This is motivated by the belief that the provability of tail events occurring is time-varying and may depend
on financial or business cycles. In the context of supervisory stress-testing, Bank of England (2015) postulates
that ’the severity [of scenario] is likely to be greater in a boom, for example, when growth in credit is rapid and
asset prices unsustainable high’ and hence proposes a counter–cyclical approach in the design of stress scenario.
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models with data until 2007:Q2, right before the Great Recession set in, we produce multi–step

ahead predictive densities for the variables in the system and compare them against the out-

turns during the Great Recession period. We seek answers to the following two questions. First,

do non-linear models produce unconditional density forecasts that are more informative in the

tail than their linear counterparts? Second, could we produce more reliable predictive densities

when we condition on variable paths consistent with stressful times? Notice that we are not

trying to predict the timing of crises or any stress events, but rather assessing the capabilities

of different models to generate a broad view on the occurrence and nature of tail events.

The answers to the two questions are sequentially ‘slightly more’ and ‘potentially substantial’.

We find that unconditional density forecasts produced by the MSVAR and TVAR do not exhibit

huge advantages in generating a broad view of tail event forecasts. On the other hand, when

we follow Waggoner and Zha (1999) to perform conditional forecasting based on variable path

of corporate bond spreads during the Great Recession, TVAR, and, to a lesser extent MSVAR,

show substantial improvements in the tail density forecasts for the output growth. Our findings

confirm the importance of incorporating nonlinearities in modelling macro data, and demonstrate

the usefulness of such non-linear models to generate reasonable tail forecasts.

There are a range of studies examining tail events/risks. In finance, value-at-risk models are

commonly used to measure the loss event on a specific portfolio of financial exposures. This

concept has been recently adopted to macroeconomics. Boucher and Maillet (2015) estimate

value–at–risk of US output using quantile regressions, and produces a fan chart for out-of-

sample forecasts of industrial production growth. This use of quantile regression highlights

the importance of outliers, which are associated with extreme events and undoubtedly provide

valuable information for modeling and forecasting future tail events. This point is shown in

Covas et al. (2014) who use fixed effect quantile autoregressive models to capture the dynamic

of banks losses and revenues and to project capital shortfalls, and in Adrian and Brunnermeier

(2014) who propose a measure of systemic risk conditional on an institution under stress with

quantile regressions. Recently, White et al. (2015) provide a theoretical framework to estimate

and make inference in multivariate, multi-quantile models.

While acknowledging the usefulness of quantile regressions, we see two advantages of using non-

linear VARs. First, we can explicitly identify different regimes of the economy. Second, we

can refrain from making assumptions on which quantiles shocks have to originate in order to

contribute to macroeconomic tail events. Our approach fully accommodates scenarios where
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small shocks can be amplified to create big economic impact.

Our paper is related to an active area of empirical research using non-linear VAR models. Sims

and Zha (2006) employ a multivariate regime switching model for US monetary policy in a

structural VAR framework. Alessandri and Mumtaz (2014) construct a set of linear and non-

linear econometric models to study predictive densities, especially by focusing on tails to assess

the power of financial indicators for output and inflation in the US. Last but not the least,

Hubrich and Tetlow (2015) investigate the interaction between a financial stress index for the

US and real activity, inflation, monetary policy using a Markov switching VAR model. The

empirical findings support the inadequacy of single regime models to capture the dynamics of

the economy.

The remainder of this paper proceeds as follows. We introduce the econometric models used in

this paper in section 3.2. This section also provides details on which priors we use and how they

are incorporated to the Gibbs sampler. Section 3.3 presents the features of our data set. We

illustrate the estimation results of the proposed procedure in section 3.4. Section 3.5 provides

our analysis on the structural shock transmission in our models. Section 3.6 follows with the

forecasting results. We conclude with section 3.7 and some other details such as the graphs of

individual series are given in the appendix.

3.2 Model Specifications

This section describes the three models we deploy: threshold VAR, the Markov switching VAR

and the linear VAR. One major difference between the first two types of models is that in a

TVAR, the researcher has to pre-define a threshold variable. In other words, any switches of

regimes in TVAR are solely determined by the dynamics of the chosen threshold variable. In

contrast, regime switches in MSVAR are determined by the joint dynamics of the economic

system but the interpretation of such regimes might not be as straightforward.

We give a brief overview of each of the models below, and refer the readers to the appendix and

Barnett et al. (2010) for technical details. All models are estimated with two lags.
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3.2.1 Threshold VAR

A threshold VAR model comprises an explicit threshold variable which allows regimes to switch

endogenously. The associated model is

Yt =

c1 +
P∑
j=1

β1,jYt−j + vt

Rt +

c2 +
P∑
j=1

β2,jYt−j + vt

 (1−Rt)

where

Rt = 1⇐⇒ Zt−d ≤ Z∗ (or Zt−d ≥ Z∗depending on the threshold variable)

and vt ∼ N(0,ΩRt).

The delay parameter, d, is also referred as threshold lag. We consider two different threshold

variables: real GDP growth rate and the level of aggregate corporate bond spreads. We define

Rt = 1 as the recessionary regime if and only if the real GDP growth is below an estimated

threshold rate for d = 0 and d = 1 simultaneously, given the common definition of recessions

associated with two consecutive periods of negative output growth. Otherwise, the regimes are

defined as non-recessionary. Our estimated threshold rate hovers around zero percent, which

validates this definition. We denote this system as TVAR-Y.

The use of corporate bond spreads as the threshold variable is motivated by the observation

that not all recessions are related to financial stress, and by our desire to explicitly define

financially stressful regimes. We define Rt = 1 as the financially stressful regime if and only if

the credit spreads rise beyond an estimated threshold value for d = 1. Otherwise, the regimes

are financially non-stressful. Our estimated threshold value for the credit spreads is 290 basis

points. We denote this system as TVAR-S.

To estimate this model, we follow Alessandri and Mumtaz (2014) in using the Gibbs sampling

algorithm which includes a Metropolis-Hastings step for sampling the threshold value in each

simulation. The threshold Z∗ is assumed to have a normal prior, Z∗ ∼ N(Z̄, V̄ ) where Z̄ and

V̄ are the sample mean and variance of the threshold variable, respectively.
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3.2.2 Markov Switching Vector Autoregression Models

The Markov switching VAR Model (MSVAR) is written as

Yt = cSt +B1,StYt−1 +B2,StYt−2 + · · ·+Bl,StYt−L + vt, (3.1)

where vt ∼ N(0,ΩSt).

The regime switches follow a joint dynamic for coefficients and variance at the same time. The

latent regimes St are assigned as S = 1, 2. The switch between these latent states is governed

by the transition matrix, P :

 p11 p12

p21 p22


where pij = prob(St = i|St−1 = j) indicates regime i is followed by regime j. There are no

restrictions on regime switches, i.e they are left unrestricted to jump back and forth. The

columns sum up to 1.

3.2.3 Benchmark Bayesian VAR

We use a Bayesian VAR model a benchmark against which to compare our non-linear VAR

models, and it is given by

Yt = c+B1Yt−1 +B2Yt−2 + · · ·+BlYt−L + vt, (3.2)

For all models, we impose normal inverse Wishart priors following Bańbura et al. (2010), see

the Appendix for more details.

3.3 Data

We use quarterly data from 1965:Q2 to 2014:Q2. We have a 5 variable system including output

growth (measured by quarterly change in real GDP), inflation (measured by the quarterly change

in consumer price index), excess bank returns, corporate bond spreads (proxied by the difference

between UK Corporate Bond Yield and UK 10-year Government Bond Yield) and the short term
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interest rate (proxied by the three month interest rate). Except for the short term interest rate

and corporate bond spreads, all series are annualised.

Using corporate bond spreads as a measure of financial frictions follows mainly from Gilchrist

and Zakraǰsek (2012) and Philippon (2009). The former examines the relationship between

corporate bond spreads and economic activity. Excess bond premium, which is one of the two

components of GZ index representing the cyclical changes between measured default event and

credit spreads, is found to be a predictor of economic activity. Philippon (2009) looks at a

similar concept from the market’s perspective. It shows that, similar to Tobin’s q, a market–

based measure of a q can be constructed from corporate bond prices and it performs much better

than the traditional one. Furthermore, it is worthwhile to note that the Financial Stress Index

constructed by Hubrich and Tetlow (2015) for the US economy includes corporate bond spreads.

Our rationale of choosing corporate bond spreads as a proxy of financial stress is, in addition to

the use in the literature, for the search of a consistent and long enough series reflecting financial

stress. In a similar spirit, excess bank returns are used as a proxy of aggregate bank profitability.

The choice of variables reflects our goal to capture the overall dynamics in the economy and

to link the real economic sector to the banking and financial sectors while maintaining a parsi-

monious model. Tables 3.1 and 3.2 describe the basic statistics of the data alongside the data

sources, and Figure 3.2 plots the five variables of interest.

3.4 Full sample estimation results

This section reports the estimation results for both non-linear models using the full sample

from 1965:Q2 to 2014:Q2. Figures 3.1 and 3.2 respectively illustrate the recessionary and non-

recessionary regimes and financially stressful and non-stressful regimes as modeled by the TVAR-

Y and TVAR-S models. Figure 3.3 reports the estimated regime probabilities addressing high

and low stress states implied by our MSVAR model.

In a TVAR model, the regime changes are abrupt and the economy is either in one regime or the

other. Therefore the probabilities accompanying the regimes are either 0 or 1. The first regime

in Figure 3.1 is labelled as recessionary whereas the second regime as non-recessionary periods.

The first two recessions coincide with the mid–1970s recessions. They are associated with the

1973 oil crisis and stagflation that are followed by the decline of traditional British industries
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and inefficient production caused by excessive union wage demands. The next is the recession

in the early 1980s due to deflationary government policies including spending cuts, pursuance

of monetarism to reduce inflation, and switches from a manufacturing economy to a services

economy. The fourth is the recession in the early 1990s which started in the third quarter of

1990 and went on for five quarters. It was primarily caused by high interest rates, falling house

prices and an overvalued exchange rate. Membership of the Exchange Rate Mechanism (1990–

1992) was the key factor in keeping interest rates high. The last recession is the Great Recession

when the annualised GDP fell almost −7% in the first quarter of 2009.

Notes: The threshold variable is the real GDP growth which is overlapped with the regimes.

Figure 3.1. Full sample regimes for TVAR-Y

Similarly, Figure 3.2 presents the regimes where the corporate bond spreads are used as the

threshold variable. The first financial stress period corresponds to the second quarter of 1970.

The second reflects the impact of the oil crisis and stagflation on the corporate bond market over

the periods 1974:Q3–1975:Q2. The third and fourth are associated with 1977:Q1 and 1984:Q2.

The former may correspond to the period of introduction of small number of floating–rate issues.

The latter is the deregulation of the Eurobond market and opening of international markets.

The last financial stress periods show the effects of the Great Recession onto the market and

overlap with the recessionary regimes with an exception of the second quarter of 2008.

The regimes given by the MSVAR model in Figure 3.3 suggest a similar interpretation. In
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Notes: The threshold variable is the corporate bond spreads series which is overlapped with the regimes.

Figure 3.2. Full sample regimes for TVAR-S

accordance with the data we use (shown in Figure 3.2), the ‘high stress regimes’ do not only

pick up recessionary or financially stressful periods, but also times when the inflation rate and

short term interest rates were both high. High stress periods start around 1973 and mute by

early 1990s with a significant low stress periods in between 1982 and 1985. Stable periods last

for around fifteen years after 1992, followed by the stress periods during the Great Recession.

3.5 Impulse Response Analysis of Structural Shocks

Our setup of different models provides us a convenient platform to study structural shocks

based on historical data. We are particularly interested in the potential differences in the shock

transmission under specific regimes. This is crucial as the linear models are generally found

to be inadequate to explore tail events and to investigate different shock transmission during

stressful times.2

Broadly, there are two main findings. First, the transmission of shocks in recessionary or finan-

2Such a set–up offers insights on the impact of adverse shocks hitting certain bad states of the world, which
can be potentially useful in calibrating macro scenarios where multiple adverse shocks hit an economy sequentially,
for instance, in stress testing.
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Figure 3.3. Full sample regime probabilities for MSVAR

cially stressful periods is different than normal times. The distinction between the reaction of

the economy in crises and normal times is highlighted Brunnermeier and Sannikov (2014). Our

results stress the importance of acknowledging nonlinearities and distinguishing different states

of the world. Second, we illustrate Brunnermeier and Sannikov (2014)’s point that the large

shocks are strongly amplified by simulating our models with extremely big shocks. We discuss

how these tail shocks cause disproportionately deeper stress and materialise feedback loops.

3.5.1 Generalised impulse response functions and shock identification

Koop et al. (1996) discuss that impulse responses in non-linear models are dependent on size,

sign and history, which is in contrast to those computed by linear models. They introduce the

generalised impulse response functions (GIRFs), which fully takes into account of the possibility

of endogenous switches of regimes during simulations.

Following Koop et al. (1996), we calculate these impulse responses as

GIRF = E(y∗,pt+k|yt,Υ,4)− E(y∗t+k|yt,Υ)

where k is the forecast horizon, Υ denotes the hyperparameters, 4 indicates the perturbed
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shocks while superscript p marks the forecasts with the perturbed path of errors. The appendix

reports the steps on the non-linear impulse response functions for both TVAR and MSVAR

models.

We adopt the Cholesky decomposition for our purposes, which is common in the empirical

macroeconomic literature to identify macro structural shocks. As is well known, the order of

variables matters. In our case, we order the variables as: (i) real GDP growth; (ii) inflation

rate; (iii) aggregate bank excess returns; (iv) corporate bond spreads; (v) short term interest

rate. This order is consistent with the monetary policy literature as real variables respond to

monetary policy shocks with a time lag whereas monetary policy responds to shocks from the

real sector and the financial sector contemporaneously. Our identification strategy is closely in

line with Christiano et al. (1998) and Gilchrist and Zakraǰsek (2012).3

In this section we consider three structural shocks: (i) corporate bond shocks which proxy for

shocks in the financial market; (ii) output growth shocks; (iii) interest rate shocks. We seek to

investigate the implications of one-standard-deviation shocks alongside three-standard-deviation

shocks.

3.5.2 Shock propagation and macro tail events

Figures 3.4 to 3.13 depict the impulse response functions of all three models to three structural

shocks of one-standard-deviation size. We first study financial shocks. Gilchrist and Zakraǰsek

(2012) explain that credit spreads can reflect the changes in the quality of corporate firms’

balance sheet and their external finance as well as the capital position of financial intermediaries

who supplies credit. Nevertheless, we interpret any exogenous rise in the corporate bond spreads

as shocks to the financial intermediation process which is orthogonal to shocks to the real sector.

In our linear model given in Figure 3.4, this particular shock leads to a contraction in output

growth, an initial drop in bank returns and inflation in the linear model.

The responses of non-linear models, on the other hand, have noticeably different features. Figures

3.5, 3.6 and 3.7 show the impulse responses of of TVAR-Y, TVAR-S, MSVAR, respectively,

3We checked alternative orderings of the last three variables. Results are mostly robust except when we order
corporate spreads after the interest rate, i.e. when corporate bond spreads react to monetary policy shocks with a
time lag but not the other way round. We note that such an ordering is used by Hubrich and Tetlow (2015) where
they construct a monthly system. We stress that our baseline ordering is in line with Gilchrist and Zakraǰsek
(2012) who place excess bond premium (a component of credit spreads) before the effective Federal funds rate,
and is more convincing because monetary policy is able to respond to financial shocks within the same quarter.

75



Chapter 3

corresponding to a one-standard-deviation shock to corporate bond spreads. In TVAR-Y (Figure

3.5), a one-standard-deviation financial shock in the recessionary world (80 basis point jump in

bond spreads) generates a significant and deep decline in output growth with a maximum fall

of 50 basis points 5 quarters after the shock. If such shocks happen in the non-recessionary

world, the recessionary impact is comparatively much shallower (after factoring in the different

size of the shocks). The financial shock also leads to a deeper and more persistent drop in the

short-term interest rate in the recessionary world. Interestingly, this shock leads to a rise in

inflation rate, which can be explained by the association of the identified recessionary regimes

with high inflation rate rates in the 1970s. The most compelling implication is the response of

the excess bank returns, a proxy for bank profits. In the recessionary regimes, financial shocks

lead to almost 10 pp drop in aggregate bank excess returns two quarters after the shock, whereas

there is a slight rise in the non-recessionary world. This reflects that aggregate excess returns

of banks are seriously affected when financial shocks hit during recessions.

The GIRFs in TVAR-S, shown in figure 3.6, point a similar picture. A financial shock in an

initially financially stressful regime leads to a much greater contraction of output and greater

drop in aggregate bank returns when compared to the financially non-stressful world, although

the significance is marginal. Similarly, the responses of the MSVAR model in figure 3.7 are

qualitatively similar to those of the TVAR-Y and the VAR-S models. Our observation related

to excess bank returns rising in the good state also holds for the MSVAR.

These results are consistent with the predictions of the theoretical literature. During times

where the real economy is in recession or the financial market is under stress, where balance

sheets of the financial and non-financial sectors are weak, any shocks in the financial market

further amplify the recessionary effects through the well-known financial accelerator mechanisms

as described in Kiyotaki and Moore (1997) and Bernanke et al. (1999). This undoubtedly leads

to an erosion of aggregate banks’ profits. Our results are also in line with Brunnermeier and

Sannikov (2014) whose theoretical model predicts that small shocks can be amplified once the

economy is in crisis regimes.

We carry out a similar exercise by hitting in the system with a negative output growth shock.

Since our identification scheme does not allow us to distinguish aggregate supply shocks from

aggregate demand shocks4, we consider this shock as proxying exogenous changes in the real

4Aggregate supply shocks are characterised by a fall in output growth and a rise in inflation rate, whereas
aggregate demand shocks are characterised by both decrease in output growth and inflation. These two shocks
can be further identified by sign restrictions, which is left for future research.
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economy that reduces output growth, which could originate domestically from productivity or

demand shocks or internationally through the export-import channel.

Figures 3.9 and 3.10 display the impulse response functions of two threshold VAR variants. As

inflation jumps on impact, the models seem to be picking up aggregate supply shocks. Relative to

its impact in the non-recessionary/financially non-stressful regimes, this shock leads to a larger

and more persistent rise in the inflation rate in the recessionary/financially stressful regimes.

This is again heavily driven by the stagflation experience in the UK. The rise in corporate bond

spreads is also significant, especially in the financially stressful regimes. In Figure 3.10, the

spread can rise up to 22 basis points on impact in the financially stressful regimes as opposed to

3 basis points otherwise, even though the size of growth shocks is similar (about 1.7 pp) across

the two states of the world. This shows that when the economy is under financial stress, further

bad shocks originating in the real economy lead to heightened stress in the financial system.

This point is not picked up by the linear BVAR response as shown in Figure 3.8. GIRFs from

the MSVAR model exhibit similar features.

We also consider the generalised impulse response functions of short term interest rate shocks,

defined as any interest rate movement unexplained by the systematic responses of policy makers

to variations in the state of the economy (see Christiano et al. (1998)). Examining the impulse

responses of the linear model in Figure 3.12, we observe that the identified interest rate shock

leads to a hump–shaped response of real output growth. Corporate spreads rise significantly

two years after the shock. These results are consistent with the traditional monetary policy

literature.5 Aggregate bank excess returns go down by 3 percent (annualised), one quarter after

the shock.

Figure 3.13 shows the GIRFs of the TVAR-Y model to the interest rate shock under recessionary

and non-recessionary regimes. There are several major differences relative to the linear impulse

responses. First, the drop in output growth is deeper but much less persistent in recessions.

Second, aggregate bank returns drop by about 2 pp (annualised) in recessions as opposed to

a rise otherwise. This may be an evidence that banks are particularly vulnerable to monetary

policy shocks during recessions. Slightly puzzling is the initial significant drop in corporate bond

spreads in recessions.6

5The inflation rate rises as a result of the shock. This constitutes the price puzzle, which is at odds with the
theoretical literature which predicts a fall in prices with contractionary monetary policy shocks. A vast literature
has discussed the puzzle and proposed solutions, see Sims (1992a), Castelnuovo and Surico (2010), Hürtgen and
Cloyne (forthcoming), Christiano et al. (1996) and Balke and Emery (1994).

6The TVAR-S model produces a boom conditional on an unexpected rise in short term interest rate. The
results seem counterintuitive so we do not report them here.
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3.5.3 Tail shocks and the feedback loop

Our non-linear models allow us to investigate shock transmission mechanisms when extremely

large shocks hit the economy, especially when the economy is in normal times. This is motivated

by the belief that the occurrence of tail events is time varying and may depend on financial or

business cycles. This point is addressed by Bank of England (2013) in the context of scenario

design in stress testing.7

We repeat our GIRF simulations with three-standard-deviations shocks, which arguably repre-

sent tail events. We first consider a tail shock in output growth during non-recessionary regimes

in the TVAR-Y model, the results of which are reported in the grey shades in Figure 3.14.

When compared with an output growth tail shock of the size 8 pp (annualised) in the reces-

sionary regimes which leads to a maximum rise in credit spreads of 26 bp, a 4 pp shock in the

non-recessionary regimes cause as a surge in spreads as high as 30 bps within the first five quar-

ters. Not only the magnitude but also the persistence in the rise in credit spreads becomes very

severe. Particularly noticeable is its hump shape response starting from the third quarter. Such

response is markedly different from those attributed to the standard one-standard-deviation

shock shown in Figure 3.9. Such significant response in financial stress then feeds back to the

real sector, giving rise to a far deeper and protracted recession as shown in the GDP growth

response in Figure 3.14.

We perform similar simulations with credit spread shocks in the TVAR-S model. A tail shock

comprising a 120 bp surge in credit spreads in financially non-stressful regimes, as shown in

Figure 3.15, results in a very deep and persistent recession, with the trough occurring three years

after the shock. The contraction reaches 1.2 pp, as opposed to the much shallower recession of

a maximum contraction of 0.1 pp with the one-standard-deviation shock displayed in Figure

3.6. Again, due to the powerful feedback effects from the real sector, the persistence and rise

in corporate spreads in the future horizon are more protracted. These responses are not only

disproportionately larger when compared to the one-standard-deviation shock scenario, but also

larger relative to the responses in the financially stressful regimes.

These results can be intuitively explained by the simulations which allow endogenous switches

7Bank of England (2013) states that one way to explore the severity of the scenarios in stress-testing is ‘to
recognise the variation in the probability and impact of systemic stresses over time’. For example, as credit condi-
tions ease and leverage builds up, the banking system may be susceptible to more severe shocks. Conversely, in a
downturn, with tightening credit conditions and lower leverage, a less severe scenario might be more appropriate.
Our set-up also enables us to carry out an experiment in this regard.
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of regimes from non-stressful to stressful when such tail shocks hit, which further amplifies the

existing non-linear dynamics. Our empirical findings provide strong support to non-linear general

equilibrium models for financial stress as pioneered by Boissay et al. (2013) and Brunnermeier

and Sannikov (2014), among others.

3.6 Forecasting analysis

In this section, we investigate how well these models are able to forecast tail events. In particular,

we perform unconditional and conditional forecasting. We are interested in the following two

questions. First, do non-linear models produce more informative unconditional density forecasts

in the tail? Second, could we produce more reliable predictive densities when we condition on

variable paths consistent with stressful times? It is worth emphasizing that we are interested

in checking whether our models are able to provide a broad view of plausible macro tail events.

We do not seek to predict the exact timing of stresses. Both exercises involve re–estimating

the three models using data until 2007:Q2 and produce multi–step ahead, pseudo-out-of-sample

forecasts for 12 quarters. We compare the predictive densities against the periods including the

Great Recession in 2008–09.

The rationale for performing an unconditional forecasting exercise is to investigate whether the

non-linear models are able to generate forecast densities which properly characterize tail events

without conditioning on any information. Figure 3.16 reports the fan charts of the output growth

and the credit spreads for all three models.8 The black lines are the median forecasts whereas the

shaded areas are the error bands from 20th to 80th percentiles with 5% increments. The charts

are overlapped with the realisations of both series which are given by the red lines. Visually

speaking, none of these models are capable of capturing the drop in output growth during the

2008-09 Great Recession, a truly extreme event in the post-war sample although there may be

some slight improvement in the coverage of tails for MSVAR model.

We then study conditional forecasting to investigate whether our models are better at capturing

tail events if we ex ante feed into specific paths of variables under stress.9 This enables the models

to exploit the correlational dynamics between the conditioning variable and the other variables

8To keep the charts concise, we only report TVAR-Y results for the forecasting exercises.
9Conditional forecasting is a common exercise among policy makers. For example, in the Inflation Reports

produced by the Bank of England, the fan chart projections for GDP growth and CPI inflation are generated
conditional on ‘market interest rate expectations’ and ’the stock of purchased assets financed by the issuance of
central bank reserves’.
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being modeled. We employ the conditional forecasting techniques proposed by Waggoner and

Zha (1999) and used by Bańbura et al. (2015a). The algorithm first involves sampling the

residuals of the VAR system which are consistent with the exogenously imposed scenario paths,

and then constructs forecast densities of other variables conditional on the imposed paths. In

this exercise, we impose the actual out-turns of corporate bond spreads between 2007:Q3 and

2010:Q2. Figure 3.17 reports the corresponding fan charts.

We draw the following conclusions. First, the linear BVAR model consistently falls short of

producing reasonable probe of macro tail events, as shown in the first column of Figure 3.17.

Second, the TVAR-Y model in the second column shows the most significant improvement in

the forecast densities compared to other models. Third, the MSVAR model in the third column

shows some improvement in the forecast density of the output growth, although the improvement

is not as significant as in TVAR-Y.

These results highlight the importance of incorporating nonlinearities in forecasting macro-

financial variables, especially in the conditional forecasting exercise. This appears to support

Clements and Smith (2000) that non-linear models can potentially perform better than the linear

counterparts in terms of the density forecast precision, as long as the data contain non-linear

features.

3.7 Concluding remarks

In this paper, we estimate a set of non-linear Bayesian VARs to study macroeconomic tail events.

We utilise regime switching models to estimate the regimes governed by different time periods.

Our estimated regimes are associated with recessionary/non-recessionary and financially stress-

ful/stable periods. We obtain substantial evidence that financial shocks during recessionary

periods cause disproportionately more severe contractions in the real sector. We also demon-

strate the existence of a powerful feedback loop between the real and financial sectors as a result

of tail shocks hitting the economy in non-recessionary/stable time periods. These findings serve

as empirical support to the theoretical predictions in Brunnermeier and Sannikov (2014). More-

over, we check each model’s out-of-sample forecasting power, and find that conditional predictive

densities produced by TVARs hold the potential to explore downside events.

Future work involves extending our results to the literature of forecasting macroeconomic tail

risks, as in Boucher and Maillet (2015) and De Nicolo and Lucchetta (2016), where the prob-
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abilities of the occurrence of tail events are also under investigation. Our generalised impulse

responses provide the densities of ‘variables’ at each forecast horizon conditional on a structural

shock hitting at a particular economic or financial regime. With additional information on the

densities of the ‘regimes’, conditional distributions of variables can be further transformed to

marginal distributions to study tail risks. We leave this for future research.
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Notes: The error bands correspond to the 68% error bands.

Figure 3.4. Impulse Responses to a 1 SD adverse shock to corporate bond spreads in BVAR model

Notes: The error bands correspond to the 68% error bands. The red shaded area corresponds to the error bands of recessionary

regimes. The grey shades correspond to those of non-recessionary regimes. The green line is the median response of the

BVAR model to the same shock.

Figure 3.5. Generalised Impulse Responses to a 1 SD adverse shock to corporate bond spreads in TVAR-Y model
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Notes: The error bands correspond to the 68% error bands. The red shaded area corresponds to the error bands of financial

stress regimes. The grey shades correspond to those of financially non-stressful regimes. The green line is the median response

of the BVAR model to the same shock.

Figure 3.6. Generalised Impulse Responses to a 1 SD adverse shock to corporate bond spreads in TVAR-S model

Notes: The error bands correspond to the 68% error bands. The red shaded area corresponds to the error bands of high

stress regimes. The grey shades correspond to those of low stress regimes. The green line is the median response of the

BVAR model to the same shock.

Figure 3.7. Generalised Impulse Responses to a 1 SD adverse shock to corporate bond spreads in MSVAR model
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Notes: The error bands correspond to the 68% error bands.

Figure 3.8. Impulse Responses to a 1 SD adverse shock to real GDP growth in BVAR model

Notes: The error bands correspond to the 68% error bands. The red shaded area corresponds to the error bands of recessionary

regimes. The grey shades correspond to those of non-recessionary regimes. The green line is the median response of the

BVAR model to the same shock.

Figure 3.9. Generalised Impulse Responses to a 1 SD adverse shock to real GDP growth in TVAR-Y model
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Notes: The error bands correspond to the 68% error bands. The red shaded area corresponds to the error bands of financial

stress regimes. The grey shades correspond to those of financially non-stressful regimes. The green line is the median response

of the BVAR model to the same shock.

Figure 3.10. Generalised Impulse Responses to a 1 SD adverse shock to real GDP growth in TVAR-S model

Notes: The error bands correspond to the 68% error bands. The red shaded area corresponds to the error bands of high

stress regimes. The grey shades correspond to those of low stress regimes. The green line is the median response of the

BVAR model to the same shock.

Figure 3.11. Generalised Impulse Responses to a 1 SD adverse shock to real GDP growth in MSVAR model
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Notes: The error bands correspond to the 68% error bands.

Figure 3.12. Impulse Responses to a 1 SD adverse shock to short term interest rate in BVAR model

Notes: The error bands correspond to the 68% error bands. The red shaded area corresponds to the error bands of recessionary

regimes. The grey shades correspond to those of non-recessionary regimes. The green line is the median response of the

BVAR model to the same shock.

Figure 3.13. Generalised Impulse Responses to a 1 SD adverse shock to short term interest rate in TVAR-Y model
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Notes: The error bands correspond to the 68% confidence intervals. The red shaded area corresponds to the error bands of

recessionary regimes. The grey shades correspond to those of non-recessionary regimes.

Figure 3.14. Generalised Impulse Responses to a 3 SD adverse shock to real GDP growth in TVAR-Y model (to
be compared with Figure 3.9)

Notes: The error bands correspond to the 68% confidence intervals. The red shaded area corresponds to the error bands of

financial stress regimes. The grey shades correspond to those of financially non-stressful regimes.

Figure 3.15. Generalised Impulse Responses to a 3 SD adverse shock to corporate bond spreads in TVAR-S
model (to be compared with Figure 3.6)
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Notes: Unconditional forecast densities of BVAR, TVAR-Y, and MSVAR models are respectively shown in the the first, second and third columns. Actual out turns are indicated by the red lines. Fan charts

indicate forecast bands between 20th and 80th percentile with 5% increments. The densities correspond to the 12-horizon pseudo-out-of-sample forecasts between 2007:Q3 and 2010:Q2, generated based on data

between 1965:Q2 and 2007:Q2.

Figure 3.16. Unconditional predictive densities for the three models
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Notes: Conditional forecast densities of BVAR, TVAR-Y, and MSVAR models are respectively shown in the the first, second and third columns. Actual out turns are indicated by the red lines. Fan charts indicate

forecast bands between 20th and 80th percentile with 5% increments. The densities correspond to the 12-horizon pseudo-out-of-sample forecasts between 2007:Q3 and 2010:Q2, generated based on data between

1965:Q2 and 2007:Q2.

Figure 3.17. Conditional predictive densities based on the path of Corporate Bond Spreads
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Appendix 3

3.A Normal Inverse Wishart priors

We impose normal inverse Wishart priors following Bańbura et al. (2010). For the prior means,

we assume that the variables included in the VAR system follow an AR(1) process. The priors

of the variance, on the other hand, has a sophisticated structure and defined as

(
λ1
`λ3

)2
if i = j(

σiλ1λ2
σj`λ3

)2

if i 6= j

(σiλ4)2 for the constant

where i is the dependent variable in ith equation and j is the independent variables in that

equation. Therefore when i = j, it refers to the coefficients on the own lags of variable i. the

variances σi and σj are the OLS estimations of the variances from AR regressions by using the

VAR variables. The lag length in that particular step is shown by `. The parameters λs are to

control the tightness of the prior.

• λ1 controls the standard deviation of the prior on own lags.

• λ2 is the weight of own lag of dependent variable versus other lags. A value of unity implies

that there is no difference on the lags of the dependent variable and other variables. It

controls the standard deviation of the prior on lags of variables other than the dependent

variable.

• λ3 represents the lag decay. When its value increases, the coefficients on higher lags shrink

to zero more tightly.

• λ4 controls the prior variance on the constant term.

We choose our hyperparameters as λ1 = 0.1, λ2 = 1, λ3 = 1 and λ4 = 105 which are broadly

similar to Canova (2007) and Blake and Mumtaz (2012).
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3.B The Gibbs Sampling algorithm for TVAR

The following describes the Gibbs sampler for TVAR:

1. Given a value for the threshold variable, observations are separated into two regimes.

2. Given the observations in each regime, draw the coefficients and covariances.

3. Given values for coefficients and covariances, draw the threshold value.

Z∗new = Z∗old + Ψ1/2ε

where Ψ1/2 is abscaling factor and ε is distributed as N(0, 1). Since the posterior dis-

tribution of the threshold value is not analytically tractable, we perform a Metropolis

Hastings step, along with the Gibbs sampler. The scaling factor is chosen to ensure that

the acceptance rate is in 20–40% interval.

4. Conditional on the threshold value, we sample the delay parameter d. Chen and Lee (1995)

showed that the conditional posterior density of this parameter is multinomial distribution

with probability L(Yt)∑d
L(Yt)

where L(.) is the likelihood function. Note that we skip this

step and fix d to our desired values based on our definitions of recessionary regimes and

financially stressful regimes.

5. We run 100,000 draws and burn in the first 60,000 to ensure convergence.

3.C The Gibbs Sampling algorithm for MSVAR

The following describes the Gibbs sampling procedure:

1. Sampling the states, St:

Given values of VAR parameters and the covariances, we use multi–move Gibbs sam-

pling proposed by Kim and Nelson (1999b). This method, conditional on data and

the parameters, predicts the unobserved state and then updates it by running a sim-

ulation smoother in order to obtain a draw from the joint posterior densities, namely

f(St|Yt, cS , B1,S , . . . , BL,S , P ).

91



Chapter 3

• We first calculate f(ST |YT ). Hamilton (1989) provides a filter to evaluate f(St|Yt)

for t = 1, 2, . . . , T.

• We then calculate f(St|St+1, Yt). Kim and Nelson (1999b) show that

f(St|St+1, Yt) ∝ f(St|St+1)f(St|Yt) (3.3)

where the Hamilton filter provides f(St|Yt) and f(St|St+1).

2. Sampling the covariances, ΩS :

Given the states, we sample the covariance matrices from inverse Wishart distribution,

ΩS ∼ iW (H̄S , ϕS)

where S = 1, 2. H̄S refers to the covariance matrix in regime S, and the parameter ϕS

refers to the number of the observations in each regime.

3. Sampling the VAR coefficients, cSt , B1,St , B2,St , . . . , BL,St :

Given the states and the covariances, we sample cSt , B1,St , B2,St , . . . , BL,St .

The conditional posterior of the VAR coefficients is

vec(B) | Ωs, Y ∼ N(vec(B̃),ΩS ⊗ (X∗′X∗)−1).

4. Sampling the transition probabilities, P :

As the last step we sample the transition probabilities. We impose Dirichlet priors for the

non–zero elements of the transition matrix, pij :

p0
ij = D(uij)

where D(.) represents the Dirichlet distribution. The posterior distributions of the transi-

tion probabilities are

pij = D(uij + ηij)

where ηij denotes the number of times regime i is followed by regime j. The value of uij

equals 20, which implies a prior belief that probability of staying in the same regime to be

is 0.85.
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5. We employ 50,000 iterations for the Gibbs sampling. We discard the first 10,000 draws as

burn in and keep every tenth draw to ensure convergence.

3.C.1 An extension: MSVAR with two independent Markov chains

We can extend the MSVAR system by exploiting two independent Markov chains separately for

variance and slope coefficients, as in Barnett et al. (2010). Again, we assume two regimes for

each chains.

In this specific case, we can also make use of time varying transition probabilities which are

indicated by the subscript t. Naturally, the representation of the model and the Gibbs sampling

algorithm have to be modified accordingly. Here, the MSVAR model is written as

Yt = cSt +B1,StYt−1 +B2,StYt−2 + · · ·+Bl,StYt−L + vt, (3.4)

where et ∼ N(0,Ωst). This VAR model incorporates regime changes both in its coefficients,

denoted by St = 1, ...,M , and the variance of the error terms, denoted by st = 1, ...,m. The

changes of coefficient and variance regimes are independent of each other.

The first set of latent regimes St are denoted as S = 1, 2 which we refer as variance regimes.

The regimes associated with the coefficients are denoted as s = 3, 4. They are assumed to follow

two independent first order Markov chains. Therefore we have two transition matrices, one for

each regime, P and Q,

 p11 p12

p21 p22

 and

 q11 q12

q21 q22


where pij = prob(St = i|St−1 = j) indicates regime i is followed by regime j in variance regimes

and qij = prob(st = i|st−1 = j) indicates regime i is followed by regime j in coefficient regimes.

The probability of high variance regime is followed by low variance regime is p21 while q21

corresponds to high coefficient regime being followed by low coefficient regime. The columns

sum up to 1.

The Gibbs sampling is more involved because we have to take into account of independent

switches of regimes for variances and slope coefficients. Conditional on the variance regimes and

the corresponding covariances, we rewrite the model as:
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Y ∗ = Aj,sX
∗ + Vt (3.5)

where Y ∗ = I(St = 1)[(Ω−1
1 ⊗ I∗t )−1/2 × vec(Yt)] + I(St = 2)[(Ω−1

2 ⊗ I∗t )−1/2 × vec(Yt)], X∗ =

I(St = 1)[(Ω−1
1 ⊗ I∗t )−1/2× (Xt⊗ IN )] + I(St = 2)[(Ω−1

2 ⊗ I∗t )−1/2× (Xt⊗ IN )] where Yt includes

the observations corresponding to the relevant variance regimes. This new representation is an

MSVAR model with homoscedastic covariance matrix. We can make use of multi–move Gibbs

sampling to draw the coefficient states, f(st|Yt, cS , B1,S , . . . , BL,S , P,Q).

Similarly, we sample the variance regimes and covariance matrices conditional on the slope

coefficient regimes and the sampled coefficients.

The estimation results of this extension is given by Figure 3.1. The first set of regimes are

identified as high variance regimes given that they successfully capture high volatility periods

before Great Moderation and around the Great Recession. The second set of the regimes are

attributed to the high and low mean states. High mean states appear to capture the high

inflation and interest rates periods before the 1990s.

Figure 3.1. Full sample regimes for MSVAR with 2 independent Markov chains
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3.D Generalized Impulse Response Functions

We compute the nonlinear impulse response functions of MSVAR and TVAR models by following

Koop et al. (1996), Baum and Koester (2011) and Afonso et al. (2011).

3.D.1 GIRFs for TVAR

The following steps are separately employed for each regime for both TVAR–Y and TVAR–S

models .

1. Run the estimation and save all parameter draws.

2. Given a Gibbs draw, pick a random history from the set recessionary/financially stressful

observations.

3. Draw random shocks and form a set of unconditional forecasts which are denoted as yTht+k

where Th indicates the TVAR model and k is forecast horizon. The output is a (horizon×

N) matrix of forecasts for all N variables and these forecasts serve as a baseline.

4. Form another set of forecasts with the same random shocks except that a specific shock is

perturbed at horizon 0. Refer these forecasts as yTh,pt+k . The output is a (horizon×N × 1)

matrix for a given shock. If one is interested in shocking all the variables, the resulting

matrix is size of (horizon×N ×N).

5. Repeat steps 3 to 5 for Simm = 500.

6. Take the means of the forecasts over Simm and calculate the difference between the means

such that 1
Simm

∑
Simm y

Th,p
t+k −

1
Simm

∑
Simm y

Th
t+k.

7. Repeat steps 3 to 7 for all Gibbs draws and all histories. The result of this step is the time

varying impulse response functions.

8. Take the mean of the resulting impulse response functions from all Gibbs draws. The

output is the ultimate GIRFs of recessionary regime in TVAR model.

9. Repeat steps 3 to 9 for the non-recessionary/financially stressful regimes.
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3.D.2 GIRFs for MSVAR

1. Run the estimation and save all parameter draws.

2. Given a Gibbs draw and at time t, projecting the ergodic probabilities and draw random

shocks to form a set of unconditional forecasts yMt+k where k is the forecast horizon and

superscript M marks the MSVAR model. The output is a (horizon×N) matrix of forecasts

for all N variables and these forecasts serve as a baseline.

3. Form another set of forecasts with the same random shocks except with perturbed shocks

at horizon 0. Refer these forecasts as yM,p
t+k where the additional superscript addresses the

perturbed shocks. The output is a (horizon ×N × 1) matrix for a given shock. If one is

interested in shocking all the variables, the resulting matrix is size of (horizon×N ×N).

4. Repeat both steps 2 and 3 for Simm = 500.

5. Take the mean of the resulting forecasts over Simm and the difference between the means

such that 1
Simm

∑
Simm y

M,p
t+k −

1
Simm

∑
Simm y

M
t+k. This difference is for a given Gibbs draw

and given time period.

6. Repeat steps 2 to 5 for all Gibbs draws and for all t = 1, 2, 3, ..., T .

7. Take the mean of the time varying impulse response functions from the previous step over

the high stress regimes as identified by the model. The output of this step gives the GIRFs

of MSVAR model.

3.E Variables

We us Global Financial Data to construct the following variables: real GDP growth rate

(mnemonic: GDPCGBR), inflation rate (mnemonic: CPGBRCM) and the short-term interest

rate (mnemonic: ITGBR3D). To construct the aggregate credit bond spread series, we take the

difference between UK corporate bond yield (mnemonic: INGBRW) and UK 10 year government

bond yield (mnemonic: IGGBR10D).

Data for bank excess returns, UK equity index (mnemonic: TOTMKUK) and UK banks equity

index (mnemonic: BANKSUK), are taken from DataStream.
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The tables in this section give the descriptive statistics and the correlation matrix of these

variables. The charts for these variables for the whole data span of 1965:Q2 to 2014:Q2 are also

given below. The dashed vertical lines indicate the observation in 2007:Q2 which is the quarter

when we separate the data for conditional forecasting purposes.

Table 3.1. Summary statistics

Real GDP Growth Inflation Rate Agg. Bank Excess Returns Corporate Bond Spreads Short Term Interest Rate

Mean 2.39 5.55 1.26 1.30 7.19

Median 2.60 3.88 0.43 1.03 6.56

Maximum 12.78 41.90 120.85 6.64 16.27

Minimum -6.52 -5.96 -112.36 -0.33 0.32

Std Deviation 2.49 6.11 33.34 1.02 3.88

Skewness -0.82 2.06 0.11 2.07 0.15

Kurtosis 6.23 9.78 4.53 9.67 2.54

Observations 197 197 197 197 197

Table 3.2. Contemporaneous correlation coefficients of variables

Real GDP Growth Inflation Rate Agg. Bank Excess Returns Corporate Bond Spreads Short Term Interest Rate

Real GDP Growth 1

Inflation Rate -0.2070 1

Agg. Bank Excess Returns 0.0053 0.0223 1

Corporate Bond Spreads -0.4356 0.2302 -0.0151 1

Short Term Interest Rate 0.0002 0.4850 0.0001 -0.1141 1
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Bańbura, M., D. Giannone, and M. Lenza (2015a). Conditional forecasts and scenario analysis

with vector autoregressions for large cross-sections. International Journal of Forecasting .

Bańbura, M., D. Giannone, and M. Lenza (2015b). Conditional forecasts and scenario analysis

with vector autoregressions for large cross-sections. International Journal of Forecasting .
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Covas, F. B., B. Rump, and E. ZakrajÅ¡ek (2014). Stress-testing US bank holding companies:

A dynamic panel quantile regression approach. International Journal of Forecasting 30 (3),

691–713.

D’Agostino, A. and D. Giannone (2006). Comparing alternative predictors based on large-panel

factor models. Working Paper Series 0680, European Central Bank.

De Nicolo, G. and M. Lucchetta (2016). Forecasting tail risks. Journal of Applied Econometrics,

http://onlinelibrary.wiley.com/doi/10.1002/jae.2509/pdf.

Demetrescu, M. (2006). An extension of the Gauss–Newton algorithm for estimation under

asymmetric loss. Computational Statistics & Data Analysis 50 (2), 379–401.

den Reijer, A. H. J. (2005). Forecasting Dutch GDP using large scale factor models. DNB

Working Papers 28, Netherlands Central Bank, Research Department.

Dias, F., M. Pinheiro, and A. Rua (2010). Forecasting using targeted diffusion indexes. Journal

of Forecasting 29 (3), 341–352.

Diebold, F. X. and R. S. Mariano (1995). Comparing predictive accuracy. Journal of Business

& Economic Statistics 13 (3), 253–263.

105



Drehmann, M., A. J. Patton, and S. Sorensen (2007). Non-linearities and stress testing. Risk

Measurement and Systemic Risk .

Eichenbaum, M. (1992). Comments on interpreting the macroeconomic time series facts: the

effects of monetary policy by c.a. sims. European Economic Review 36 (5), 1001 – 1011.

Eickmeier, S., W. Lemke, and M. Marcellino (2011a). Classical time-varying FAVAR models -

estimation, forecasting and structural analysis. Discussion Paper Series 1: Economic Studies

2011,04, Deutsche Bundesbank, Research Centre.

Eickmeier, S., W. Lemke, and M. Marcellino (2011b). The changing international transmission

of financial shocks: evidence from a classical time-varying FAVAR. Discussion Paper Series 1:

Economic Studies 2011,05, Deutsche Bundesbank, Research Centre.

Elliott, G., I. Komunjer, and A. Timmermann (2005a, Oct.). Estimation and testing of forecast

rationality under flexible loss. The Review of Economic Studies 72 (4), 1107–1125.

Elliott, G., I. Komunjer, and A. Timmermann (2005b). Estimation and testing of forecast

rationality under flexible loss. Review of Economic Studies 72 (4), 1107–1125.

Elliott, G., I. Komunjer, and A. Timmermann (2008). Biases in macroeconomic forecasts:

irrationality or asymmetric loss? Journal of the European Economic Association 6 (1), 122–

157.

Elliott, G. and A. Timmermann (2004). Optimal forecast combinations under general loss

functions and forecast error distributions. Journal of Econometrics 122 (1), 47–79.

Elliott, G. and A. Timmermann (2008). Economic forecasting. Journal of Economic Litera-

ture 46 (1), 3–56.

Engel, C., N. C. Mark, and K. D. West (2012). Factor model forecasts of exchange rates. Working

Paper 18382, National Bureau of Economic Research.

Fernandez, C., J. Osiewalski, and M. F. Steel (1995). Modeling and inference with υ-spherical

distributions. Journal of the American Statistical Association 90 (432), 1331–1340.

Forni, M., M. Hallin, M. Lippi, and L. Reichlin (2005). The generalized dynamic factor model:

One-sided estimation and forecasting. Journal of the American Statistical Association 100,

830–840.

106
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