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Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn

http://hss.ulb.uni-bonn.de/diss online elektronisch publiziert.



Acknowledgements

When preparing this thesis, I received support from many people to whom I am

grateful. First of all, I wish to express my sincere gratitude to my supervisor Daniel

Krähmer for his enduring support, guidance, and valuable feedback. It was a pleasure

to have him as a supervisor. Secondly, I want to thank Benny Moldovanu, who acts as

a referee in the thesis committee, for his advice.

I am particularly indebted to my friend and coauthor Benjamin Schickner. I am

very grateful for his endless patience and friendlyness, as well as all the time he spent

on giving detailed feedback for my entire thesis. I am also very grateful to Tobias

Gamp for many very fruitful, inspiring discussions in our joint office.

For comments and many helpful discussions I owe many thanks to Andreas Asseyer,

Daniel Garrett, Bruno Jullien, Andreas Kleiner, Martin Pollrich, and many others I met

at the University of Bonn, the Toulouse School of Economics, and various conferences.

For material support, I want to thank the Bonn Graduate School of Economics.

I want to thank the Bonn Graduate School of Economics, in particular Britta Al-

tenburg, Silke Kinzig, Benny Moldovanu, and Urs Schweizer, for the efforts in providing

an excellent research environment.

Finally, I am greatly indebted to my partner Anja who always supported me, as

well as my family and my friends.

i





Contents

0 Introduction 1

1 Pricing Heterogeneous Goods under Ex Post Private Information 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 The two goods model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 First best . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.3.1 Decreasing mean . . . . . . . . . . . . . . . . . . . . . 15

1.2.3.2 Increasing mean . . . . . . . . . . . . . . . . . . . . . 25

1.3 The continuous goods model . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2 Exchange Fees as a Price Discrimination Device 57

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.3 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.3.1 Differing Degrees of Uncertainty Resolution . . . . . . . . . . . 63

2.3.2 Differing Uncertainty about the Position on the Hotelling Line . 66

2.3.3 Differing Transportation Cost . . . . . . . . . . . . . . . . . . . 67

2.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.6.1 Exchange Fees vs Limited Exchange Contacts . . . . . . . . . . 77

2.6.2 The FOSD Ordering . . . . . . . . . . . . . . . . . . . . . . . . 79

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

iii



2.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3 Dynamic Formation of Teams: When Does Waiting for Good Matches

Pay Off? 89

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.3 Optimal Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.3.1 The Regular Case . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.3.2 Extension: Non-regular Case . . . . . . . . . . . . . . . . . . . . 114

3.4 Incomplete Information and Implementation . . . . . . . . . . . . . . . 117

3.4.1 Observable Arrivals . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.4.2 Extension: Simple Payments . . . . . . . . . . . . . . . . . . . . 122

3.4.3 Extension: Asymmetric Match Value Splits . . . . . . . . . . . . 124

3.4.4 Unobservable Arrivals . . . . . . . . . . . . . . . . . . . . . . . 126

3.4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . 129

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3.7 Appendix: Supporting Calculations . . . . . . . . . . . . . . . . . . . . 148

Bibliography 157

iv



Chapter 0

Introduction

For the design of markets and contractual relationships dynamics play an important

role. Dynamic aspects are, for example, information that evolves over time, or changing

environments such as the arrival of agents and changing preferences. This collection of

three essays contributes to the corresponding area of microeconomic theory: Chapters

1 and 2 address dynamic contracting problems and Chapter 3, which is written jointly

with Benjamin Schickner, studies a dynamic market design framework.

The three chapters have in common that they study a dynamic design question

by applying concepts from the theory of dynamic mechanism design. Formulated in

general terms, mechanism design studies which social choice functions a designer can

implement when agents have private information about their preferences over outcomes.

A social choice function maps agents’ private information into outcomes. As the de-

signer does not have access to the agents’ information, he needs to provide the right

incentives for the agents. Specifically, he needs to design a game in which the agents

participate and which has an equilibrium in which for each profile of private informa-

tion the intended outcome results. A social choice function is said to be implementable

if such a game exists. Dynamic mechanism design is the extension of mechanism design

to account for dynamic environments.

While all three essays use concepts from dynamic mechanism design, the essays

study two substantially different applications. Chapters 1 and 2 study the optimal

contract design by a revenue-maximizing monopolist. The designer of the mechanism

is, hence, the monopolist. From a theoretical perspective, the problem in this case is

to find the social choice function among all implementable functions that maximizes

the designer’s revenue. The essays are mainly interested in the characterization of this

social choice function. The dynamic aspect in both chapters is that the buyer learns

his preferences over the goods offered by the monopolist only gradually over time.

Chapter 3 examines the welfare-maximizing design of a dynamic matching market.

The designer’s problem is to decide when and how to form groups of heterogeneous
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agents that arrive gradually over time to a matching market. While the welfare-

maximizing policy is first found in the absence of informational fictions, the second

part relates to dynamic mechanism design. It is shown that the welfare-maximizing

social choice rule is implementable when the agents’ types are their private information.

From the conceptual perspective, the problem differs from Chapters 1 and 2 as a given

social choice rule is shown to be implementable. The remainder of the introduction

explains the model, its motivation, and the findings of each chapter in more detail.

All three chapters present independent models, however, Chapters 1 and 2 are

connected. Both chapters study the optimal contract design of a firm which offers

horizontally differentiated goods to consumers. Goods are horizontally differentiated

when the consumers do potentially not agree on the ranking of the products according

to their preferences. The dimension along which goods are differentiated is for example

the departure time flights, or other product characteristics like size and color. Differ-

ently from a standard model of horizontal product differentiation, the consumers learn

their preferences only gradually over time. This means at the first point in time where

contracting is possible, the consumer has some idea about his preferences. However,

he learns his exact preferences only when consumption takes place. This information

structure applies for example when booking a flight well in advance, when shopping

online, when purchasing experience goods, or when buying goods in behalf of other

persons. In many environments concerned, the firms react to the consumers’ initial

uncertainty by offering a menu of contracts which equip the consumer with differently

generous exchange and refund policies. Chapters 1 and 2 explore the reasons why firms

offer these menus, they study the optimal design of exchange policies, and they identify

which characteristics of the model drive the particular design of exchange policies.

Chapter 1 specifies further structure on the information arrival. It studies con-

sumers who are initially uncertain about their favorite variants, but do know how

much importance they attach to the feature which differentiates the goods. Only later

they learn which variant of the good they favor. For example, when booking a flight

well in advance, travelers initially do not know the departure time they will actually

prefer. Travelers do, however, know whether their journey is for business or leisure,

which indicates their flexibility in terms of time. First, the essay shows that in this

framework exchange policies with varying flexibility are employed as a price discrimina-

tion device. Second, it provides a novel reason for the occurrence of partially restrictive

exchange policies. Third, it studies the optimal design of restrictive exchange policies.

Any optimal restrictive exchange policy can be implemented by a Limited Exchange

Contract. A deterministic Limited Exchange Contract specifies a price, an initial prod-

uct choice and a limited range of products within which free exchange is possible. The

key property of Limited Exchange Contracts is that prices are completely pinned down
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at the contracting stage. In particular, the use of exchange fees to govern exchanges is

not optimal.

While there is a number of situations in which Limited Exchange Contracts are

commonly used to govern exchanges1, contracts that restrict exchanges via exchange

fees are also widespread in real world situations. Therefore, Chapter 2 analyzes when

a menu of contracts with exchange fees maximizes the seller’s profits. The use of

exchange fees is optimal if two key properties are satisfied: When contracting takes

place, the buyer is uncertain about his difference in valuations and the seller does not

know which magnitude of differences the buyer roughly expects. The chapter provides

several foundations when this information structure applies. It furthermore shows that

dynamic screening is not beneficial at all when buyers initially only differ in their

belief which good they prefer but expect similar magnitudes of valuation differences.

The first key property differentiates Chapter 2 from Chapter 1. In Chapter 1 the

consumers know how much they suffer from obtaining the “wrong” good already at

the contracting stage. A consequence is that the agents’ private information at the

contracting stage already determines how much flexibility the designer wants to grant

each consumer. The most advantageous way to implement this flexibility is via Limited

Exchange Contracts. In Chapter 2 the buyer learns only after contracting how much

he suffers from ending up with the “wrong” good. This provides an incentive for the

designer to adapt the consumer’s flexibility to this ex post information. The only way

to implement such an allocation is via exchange fees.

Chapter 3 is concerned with dynamic market design. It studies a dynamic version of

a simple, cardinal, one-sided matching model. Agents that arrive gradually over time

join forces in order to generate output. The agents are heterogeneous and when forming

a group their characteristics are complements in the production function. Matches are

irrevocable. In a static environment, the complementarity of the agents’ characteristics

implies that it is beneficial to match agents of similar characteristics. This outcome is

called a positive assortative matching. The dynamic arrival of agents combined with

impatience, however, poses a challenge to positive assortativeness. If future outcomes

are discounted, the desirability of early matches increases both from a social welfare

as well as an participating individual’s perspective. This chapter studies the resulting

trade-off between matching agents early and waiting for a thickening of the market to

match assortatively. The model addresses a trade-off underlying a wide range of situa-

tions including the formation of teams and task assignment within firms, as well as the

establishment of partnerships that constitute organizations themselves. Examples are

amongst others consultancy in firms, coauthoring at universities, education in groups,

1 An example is the contract design by the ferry companies DFDS Seaways and P&O Ferries. Also
airlines often offer costless or very cheap same-day exchanges and stand-by options.
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or team sports in clubs.

First, the essay addresses the welfare-maximizing matching procedures under com-

plete information. It develops a tool that allows for solving for the welfare-maximizing

matching policy in closed form without imposing restrictions on the policy. Second,

it studies implementability of the welfare-maximizing matching policy when agents

have private information about their types. The essay proves that the policy is imple-

mentable in a strong solution concept with contracts that satisfy natural requirements.

Furthermore, it identifies situations in which the central authority can abstain from

using monetary incentives. Finally, it addresses the case in which the agents can, in

addition to their private type, hide their arrival.
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Chapter 1

Pricing Heterogeneous Goods

under Ex Post Private Information

This paper studies optimal contract design by a firm which faces consumers who know

how important the good is to them but only later learn which variant of the good they

favor. Exchange policies with varying flexibility are employed as a price discrimination

device. I provide a novel reason for the occurrence of partially restrictive exchange

policies. Optimal contracts specify a price, an initial product choice, and a limited

range of products within which exchange is costless. Crucially, optimal contracts do

not use exchange fees to govern exchanges. This contrasts with standard results in the

literature on sequential screening.

1.1 Introduction

In many situations, firms contract with consumers who know about their desire to buy

a certain kind of good, but only later learn which variant they favor. An example is

the sale of tickets for means of transportation such as planes, buses, trains, or ships

to customers who do not yet know their favorite departure times. Further instances

include online shopping and the sale of experience (e.g. packaged) goods when there

are several variants of the good as well as various procurement settings in which the

contractor’s favorite delivery time of the good or service is uncertain. Firms apparently

react to the consumers’ uncertainty by designing an elaborate system of exchange poli-

cies that are part of the sales contract. For example, in the airline industry, consumers

are typically offered comparatively cheap tickets, which, however, entail restrictions

regarding refund and exchange. More flexible tickets for the same flight are offered at

a higher price.

This paper derives the firm’s optimal pricing policy in the situations described

above, which amounts to providing a theory of exchange policies. I capture the com-
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mon structure underlying the examples by considering a firm which sells horizontally

differentiated goods to consumers. The consumers are initially uncertain about their

favorite variants, but do know how much importance they attach to the feature which

differentiates the variants. The paper departs from the classical literature on sequen-

tial screening that to date has primarily studied the sale of homogeneous goods to

consumers who learn their valuations for the good gradually over time.1 Extending the

model to heterogeneous goods enables me to address product choice.

My first contribution is to give a price-discrimination based explanation for the

observation that firms offer menus of contracts with different exchange policies. Sec-

ond, the paper provides a novel reason for offering contracts with an intermediately

restrictive exchange policy. Third, I study the optimal design of restrictive exchange

policies. Any optimal restrictive exchange policy can be implemented by a Limited

Exchange Contract. A deterministic Limited Exchange Contract specifies a price, an

initial product choice and a limited range of products within which free exchange is

possible in the second period.2 The key property of Limited Exchange Contracts is

that prices are completely pinned down at the contracting stage. In particular, the

use of exchange fees to restrict exchanges is not optimal. The concept of Limited Ex-

change Contracts is observed in practice: many US airlines offer costless or very cheap

same-day exchanges and stand-by options. The use of Limited Exchange Contracts

is also widespread among European ferry companies.3 Finally, I compare the optimal

mechanisms of the classical homogeneous goods model with those of my heterogeneous

goods model. Both mechanisms have in common that each agent is screened sequen-

tially. However, in the homogeneous goods model, screening necessarily involves type

dependent prices in each period, whereas screening in the heterogeneous goods model

involves prices only in the initial period.

My results are driven by three main features of the model, which reflect character-

istics from the applications in mind. The first feature is the heterogeneity of the goods.

I consider a monopolist which may offer horizontally differentiated goods to consumers

with unit demand and single-peaked preferences. Applied to the airline example, tick-

ets are differentiated by the departure time of the flight. In the shopping examples,

products differ in a characteristic such as size, fit, or color. And in the procurement

setting, any order specifies a delivery time for the good or service.

The second main feature of the model is the information arrival. Consumers learn

their valuations for the goods in two stages. In the first period, henceforth referred to

1 The canonical contribution is Courty and Li (2000). More papers are cited in the literature review.
2 Stochastic Limited Exchange Contracts are an extension to distributions over goods.
3 An example is the contract design by DFDS Seaways and P&O Ferries. While DFDS Seaways

permits customers to take one ferry earlier or later, P&O Ferries specifies time intervals around the
booking time in which costless exchange is possible.
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as the ex ante stage, consumers are uncertain about their favorite variant, but differ in

the privately known valuation of the favorite variant and the relative valuation losses

from obtaining non-favorite products.4 In the second period, the consumers privately

learn which variant they prefer most, and consumption takes place. For example,

when booking a flight well in advance, travelers initially do not know the departure

time they will actually prefer. A traveler’s valuation loss associated with flying at a

time other than the favorite departure time is a measure of his flexibility in terms

of time. This flexibility crucially depends on whether the journey is for business or

not, which is known ex ante. Online shopping and the purchase of experience goods

have in common that the shopper cannot entirely evaluate the product immediately

and hence the favorite variant is uncertain to the consumer. Despite this uncertainty,

consumers already know how important the product feature which differentiates the

variants is to them. And upon the conclusion of many procurement contracts, the con-

tractor has uncertainty regarding his internal work-flow and hence about his preferred

delivery time. He knows, however, how tightly operational procedures are packed in

his company which influences the cost of amending delivery times.

The third main feature is a positive relation between the valuation of the most

preferred product, which will be referred to as the top valuation, and the relative

loss in valuation when obtaining non-favorite products. Compared to leisure travel-

ers, business travelers value the flight at their favorite time more, but are less flexible

concerning departure times. Typically, shoppers who attach importance to a product

group value its consumption a lot, but are at the same time relatively selective concern-

ing specific product features. And contractors with tighter operational schedules use

fewer resources for the same task and hence generate higher revenues, but rearranging

processes to hold delivery times is comparatively costly to them.

In this framework, I explain the observation that firms offer menus of contracts

with different exchange policies by a price discrimination based motive. The revenue-

maximizing menu, which is found using a mechanism design approach without restric-

tions on contracts, consists of two offers. It contains an expensive contract that allows

for costless exchange with any other variant, and a cheaper contract that limits ex-

changes of products in the second period. Consumers that care a lot about obtaining

the favorite variant choose the expensive contract, whereas consumers who attach less

importance to whether they consume the favorite variant take the cheaper one. This

menu corresponds to common observations in the airline, train, and ship industry.5

The driving force behind the establishment of the menu of contracts with differing

4 In other words, the consumers are uncertain about their ordinal preferences over the goods, but
have private information about their intensity of preferences.

5 Many countries forbid the use of restrictive exchange policies in the shopping examples. For these
applications, this paper, hence, predicts what changes would occur in case the law was repealed.
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exchange policies is a price discrimination motive: the utility consumers derive from a

contract which allows them to exchange variants arbitrarily equals their top valuation.

If only this contract is offered, the firm has to trade off leaving rent to the consumers

with high top valuations against excluding those with low top valuations. The firm can,

however, exploit the fact that consumers with high top valuations also have a strong

demand for flexibility in product choice in the second stage. This makes it profitable

to offer a second contract with little such flexibility in order to extract more rent from

consumers with high top valuations.

In particular, the present paper provides a non-standard explanation for the ap-

pearance of contracts that partially restrict exchanges - an observation that is often

made, for example in ticket pricing. This means that the consumer is neither granted

free exchange to whatever variant he prefers nor is he restricted to definitively staying

with the initially purchased good.6 In particular, this result shows that the restriction

on contracts made by Gale (1993) in his pioneering work on contracting in situations

with ex post private information, excludes the optimal solution. The partial flexibility

restriction in the cheaper contract is a result of countervailing incentives in the sense of

Lewis and Sappington (1989). “Countervailing incentives” means that it depends on

the contract whether the consumer’s incentive to over- or understate his top valuation is

a binding constraint for revenue maximization. The origin of countervailing incentives

is that it depends on the specific contract whether it is valued more or less by con-

sumers with higher top valuations.7 This is the case in the present model: a consumer

with a higher top valuation also suffers more from ending up with unfavorable goods.

Consequently, contracts with very restrictive exchange policies might be valued less by

him. The contract with unrestricted exchange is, however, valued more by consumers

with higher top valuations. This paper provides a particularly tractable method for

solving problems with countervailing incentives in linear environments. I show that in

my model the optimal cheaper contract is designed such that each consumer values it

the same. This is the case for the partially distorted contract.

Finally, I answer the question of how the partial restriction in flexibility is optimally

designed. The key optimality condition requires that the price is entirely pinned down

at the contracting stage. The remaining way to induce the consumer to not always

obtain his favorite variant is then to reduce the range of goods the consumer can choose

from in the second period.8 A contract is partially restrictive if this range contains more

6 The optimality of such contracts is unusual in linear environments like in my model, in which
optimal mechanisms typically satisfy the “bang-bang” property.

7 The connection between these two statements follows from the well known result that binding
incentive constraints are the ones where consumers understate the utility they drive from a contract.

8 In order to provide a clear intuition, in the introduction I describe optimal mechanisms which are
deterministic. In the main text, I allow for stochastic allocations, which are probability distributions
over goods.
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than one variant but not all variants. Contracts with this structure are implementable

by Limited Exchange Contracts. Connecting transfers to the consumer’s second period

choice as a way to induce consumers to not always consume their favorite good is not

optimal. This can best be seen when considering the use of exchange fees to limit

exchanges. Even though initially consumers do not know their favorite variant, they

already have private information about the extent to which they react to the exchange

fee: consumers who care a lot about obtaining their favorite variant will often be

willing to pay the exchange fee as compared to consumers who don’t care much about

the variant. As this information is privately known by the consumers already at the

contracting stage, this forces the monopolist to leave additional information rents to

the agents. The firm can shut down this source of information rents by offering Limited

Exchange Contracts: consumers’ plans for how to act in the second period then do not

depend on their information held at the contracting stage.

The result on the optimality of Limited Exchange Contracts implies an interesting

relation to the literature on sequential screening. Similar to my results, the optimal

mechanism in Courty and Li (2000) screens the consumers in each period.9 Because

in their model there is just a homogeneous good, the only incentive compatible way

to screen agents in the second period is via a price difference, which is the refund

for giving back the good. But for the same reason as in my model, this gives rise to

information rents to the consumers. The presence of heterogeneous goods in my model

equips the monopolist with the ability to screen agents in the second period without

setting prices that depend on the second period choice. From this perspective, the new

tool is superior for the firm as it gives rise to less information rents left to consumers.

Related Literature. This paper contributes to the growing literature on con-

tracting with agents whose private information evolves dynamically over time, which

has its origin in the primary contribution by Baron and Besanko (1984). In particu-

lar, I expand the canonical sequential screening model introduced by Courty and Li

(2000) to differentiated goods. Courty and Li (2000) set up a theory of intertempo-

ral pricing to explain the prevalence of partial refund contracts. In their model there

is one homogeneous type of good and consumers initially have individual uncertainty

about their final valuation for it. This uncertainty is then resolved in the second

period, which is also when consumption takes place. As both the initial valuation dis-

tributions and the final valuations differ between agents and are private information,

a revenue-maximizing monopolist sequentially screens the agents. The authors show

that for some cases revenue maximization occurs by offering menus of partial refund

9 In my model, consumers are screened in the second period in the sense that depending on their
favorite good, consumers end up with different variants.
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contracts.10 A partial refund contract consists of an initial payment in order to receive

the good and a later option to return it and receive a partial refund. Since Courty

and Li (2000), the design of revenue-maximizing contracts has been examined in many

variants and extensions of their model. Examples are Battaglini (2005), Nocke et al.

(2011), Boleslavsky and Said (2013), Akan et al. (2015), and Deb and Said (2015).11

12 In contrast to the present paper, all the papers cited above have in common that

there is just one homogeneous good involved.

There is a handful of papers in which agents’ preferences over differentiated goods

are gradually learned over time. Gale (1993) studies intertemporal pricing policies in

a setting similar to the two-goods version of my model. In order to obtain a fruitful

comparison between monopolistic and oligopolistic pricing behavior, Gale, however,

restricts his considerations to two types of contracts: late purchases with a single price

for both goods and early purchases at an advance-purchase discount but without any

possibility of exchange or refund. As I will show, allowing for the full range of possible

contracts further raises the monopolist’s revenue. A major contribution of my paper is

the characterization of this new type of contract. Furthermore, Gale considers a two-

product case with special attention to advance-purchase discounts. However, it turns

out that it is specifically the richness of my setting which allows an understanding

of the underlying effects and enables a modeling of exchange policies as such. The

two papers Gale and Holmes (1992, 1993) start with the same basic framework as

Gale (1993) but depart from price discrimination and focus on how intertemporal

pricing rules can optimally resolve capacity problems. In contrast, my focus is on pure

price discrimination motives without any capacity constraints. Recently, Möller and

Watanabe (2016) rediscovered the early model on advance-purchase discounts with

differentiated goods as a way to introduce oligopolistic competition. In order to obtain

a tractable analysis of strategic interaction, they use a stylized two-goods model and

restrict strategies to advance-purchase discounts as well.

My paper points out that in the presence of differentiated goods, the monopolist

can eliminate one source of information rents as compared to the standard sequential

10 In their model, the results better match reality when a business traveler’s valuation distribution
differs from a leisure traveler’s distribution by a spread, rather than by first order stochastic dom-
inance, which they initially considered to be natural. My model provides a foundation for this
assumption made by Courty and Li (2000). Paralleling their initial intuition, my model exhibits
a higher top valuation for business travelers. However, the relative valuation loss from consuming
unfavorable goods is also larger for them. When the variant that can be offered is fixed, as assumed
in Courty and Li (2000), distances to the favorite product vary and the steeper loss function for
business travelers leads to greater fluctuations in valuation for the offered variant.

11 For a textbook treatment see Chapter 11 in Borgers et al. (2015).
12 Additionally, there is an extensive literature restricting considerations to advance-purchase dis-

counts. An advance-purchase discount enables an agent to buy a certain good at an early point in
time at a discount, but without any possibility of refund. Examples are DeGraba (1995), Courty
(2003b,a), and Möller and Watanabe (2010).

10



screening setup with one homogeneous good. This relates my work to further contribu-

tions to the literature on sequential screening that focus on information rents and the

question of whether disclosure of ex post private information to the agents is beneficial

for the monopolist. Examples are Eső and Szentes (2007a,b), Krähmer and Strausz

(2015a,b), and Li and Shi (2015). While the latter papers study a model with one

homogeneous good, Eső and Szentes (2015) study the role of information rents in a

more general setting. The design of incentive-compatible mechanisms in dynamic set-

tings in which information gradually evolves over time has been studied in a general

environment by Pavan et al. (2014).

Finally, my analysis relates to mechanism design problems with continuous types

and type-dependent outside options. The pioneering contribution is Lewis and Sap-

pington (1989). A continuative analysis is done by Maggi and Rodriguez-Clare (1995)

and a general exposition is Jullien (2000). While the latter two papers apply results

from optimal control theory to obtain a solution, Nöldeke and Samuelson (2007) provide

an alternative approach. I add to this literature by providing a particularly tractable

method for solving problems with countervailing incentives in linear environments.

The paper is organized as follows. In Section 1.2, I introduce a simple version of

my model to present the method I use to solve the maximization problem, to show

basic properties of optimal mechanisms and to clarify the relation to Gale (1993). A

key feature of optimal contracts is that some consumers are partially restricted in their

flexibility to exchange variants in the second period. In Section 1.3, a more general

model is introduced in order to study the optimal design of this partial limitation of

flexibility and its implementation. Finally, Section 1.4 concludes.

1.2 The two goods model

1.2.1 Model

Consider a firm that sells two differentiated goods to a consumer with unit demand.

The consumer learns his valuations for good 1 and good 2 gradually over two periods.

In the first period, the consumer learns his valuations for the preferred good and for

the alternative good. The consumer is, however, uncertain which good he prefers. In

the second period, the consumer’s uncertainty is resolved.

The consumer’s information in the first period is represented by ex ante types τ

and his information in the second period by the ex post type θ.13 The ex ante type

τ ∈ T = [0, τ ] determines two valuation levels v+(τ) and v−(τ) with v+(τ) ≥ v−(τ).

13 The consumer can alternatively be interpreted as representing a continuum of consumers with unit
demand and total mass normalized to one.
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The valuation of the preferred good, v+(τ), is referred to as top valuation and v−(τ)

is the valuation of the alternative good. The ex post type θ ∈ Θ = {θ1, θ2} determines

which valuation level is associated with which good. I denote this information by ex

post types θ1 and θ2 for preferring good 1 and 2 respectively.14 Ex post types are

equally likely, independent of ex ante types.15

The ex ante type determines the valuation premium v+(τ) − v−(τ), which is the

loss of ending up with the wrong good. I assume that both the top valuation and the

valuation premium are increasing in ex ante types. Let the lowest ex ante type be

indifferent between the goods, implying that the valuation premium is zero.

For the sake of tractability, I assume that valuations are linear in ex ante types. It

turns out to be helpful to rescale ex ante types such that valuations are

v+(τ) = v − δτ + τ

and v−(τ) = v − δτ − τ

with δ < 1.16 The upper bound on δ ensures that both the top valuation v+(τ) and

the valuation premium v+(τ)− v−(τ) = 2τ are increasing in ex ante types. Note that

I allow for v−(τ) to be decreasing in ex ante types. Likewise, the common trend in

both valuations −δτ may be in- or decreasing in ex ante types depending on δ. Let

the basic valuation v be high enough such that v+(τ) and v−(τ) are positive.

Ex ante types τ are continuously distributed over the type space T = [0, τ ] with

density function f(τ) and probability distribution function F (τ). Let the distribution

satisfy the standard assumption of increasing virtual values τ − 1−F (τ)
f(τ)

.

The firm is a revenue-maximizing monopolist that can produce good 1 and good 2

at constant marginal cost which is normalized to zero. The firm has full commitment

and can contract the consumer in the first period. At that stage the consumer already

privately knows his ex ante type but is still uncertain about his ex post type. At the

contracting stage the consumer has an outside option of zero. In the second period, the

consumer privately learns his ex post type and afterwards consumption takes place.

1.2.2 First best

In order to convey a basic economic intuition for the firm’s problem, I briefly discuss

the firm’s optimal behavior under complete information. In the absence of private

14 An abstract way to view the information arrival is the following: The ex post type reveals the
preference-order, which is the ordinal dimension of preferences. The ex ante type provides informa-
tion only about the intensity of preferences, which is the cardinal dimension of preferences.

15 Given independence, the extension to any distribution is technically without further complications.
16 The general formulation of the linear valuation levels is v+(τ) = v + βτ and v−(τ) = v + γτ with
β > 0 and γ < β. Rescale by multiplying ex ante types with β−γ

2 . Then define δ = β+γ
γ−β .
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information, the firm can extract the entire surplus. Thus the revenue-maximizing

firm maximizes welfare. The corresponding first best provision of goods is to always

give the consumer his preferred good. This is surplus maximizing, as all valuations

by assumption exceed production costs and the provision of all goods is equally costly.

The firm achieves first best profits if it implements this allocation rule and then extracts

all rents by charging the consumer with ex ante type τ his top valuation v+(τ).

Next, consider the case when the consumer has private information. If the con-

sumer’s top valuation was independent of the ex ante type τ , which would be the case

for δ = 1, the firm could indeed achieve first best profits. A simple way to attain

these profits would be to charge the consumer a first period payment equal to his top

valuation and then allow him to pick his favorite good in the second period. However,

by assumption the top valuation is increasing in τ . To achieve first best profits, the

firm would need to induce different types to sign contracts that differ in payments but

still guarantee the consumer his top choice. This is not possible. Hence, when only

offering contracts that guarantee the consumer to obtain his favorite good, the firm

faces the standard monopoly trade-off of leaving rents to high types and excluding low

types. As shown in the full analysis of the problem, the firm can, however, do better

by offering a contract that does not always guarantee the consumer his favorite good.

The reason is that the firm can profitably price discriminate exploiting the fact that

with increasing τ also the valuation premium is increasing.

1.2.3 Analysis

As the firm has full commitment power, the revelation principle applies (see Myerson

(1986)), which allows me to concentrate on direct and incentive compatible mecha-

nisms. A direct mechanism specifies for any reported pair of types (τ̂ , θ̂) a price p paid

by the consumer to the firm and an allocation X. A general allocation is a probability

distribution over all possible sets of goods that the consumer can end up with. These

are ”only good 1”, ”only good 2”, ”both goods” and ”no good”. An allocation is de-

scribed by X = (x1, x2, x1&2) with x1, x2, x1&2 ∈ [0, 1] and x1 +x2 +x1&2 ≤ 1. The three

entries denote the probabilities for the first three sets of goods, respectively. Hence, a

direct mechanism is the combination of an allocation rule {X(τ̂ , θ̂) : τ̂ ∈ T, θ̂ ∈ Θ} and

a payment rule {p(τ̂ , θ̂) : τ̂ ∈ T, θ̂ ∈ Θ}. For a given report about the ex ante type, τ̂ ,

I call {X(τ̂ , θ̂), p(τ̂ , θ̂) : θ̂ ∈ Θ} a contract. A contract is defined as a mapping from

ex post type reports into allocations and prices. The choice of the ex ante report then

corresponds to the choice of a contract and the choice of an ex post report determines

an option within that contract.

Given a pair of types (τ, θi), i ∈ {1, 2}, and an allocation determined by a pair of

reports (τ̂ , θ̂) the consumer’s second period utility is
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u(τ, τ̂ , θi, θ̂) = v+(τ) ·
(
xi(τ̂ , θ̂) + x1&2(τ̂ , θ̂)

)
+ v−(τ) · xj(τ̂ , θ̂)− p(τ̂ , θ̂), (1.1)

where j 6= i. The consumer values having both goods with v+(τ), as he only consumes

the favorite good out of the two. The consumer’s second period strategy is described

by a function σ : Θ × T × T → Θ, where σ(θ, τ, τ̂) denotes the consumer’s ex post

report, which may depend on his ex ante and ex post type as well as his ex ante report.

The consumer’s first period expected utility is then17

U(τ̂ , τ, σ) = Eθ[u(τ, τ̂ , θ, σ(θ, τ, τ̂))].

Denote σ(θ, τ, τ̂) ≡ θ by the identity idθ. Define further the first period expected utility

from truthful reporting about the ex ante and ex post type by U(τ) := U(τ, τ, idθ).

The firm‘s maximization problem (P) can then be formulated:

max
X,p

τ∫
0

f(τ)Eθ[p(τ, θ)]dr

s.t.

U(τ) ≥ U(τ̂ , τ, σ) ∀τ, τ̂ 6= τ, σ, (IC1)

U(τ) ≥ 0 ∀τ, (IR)

u(τ, τ, θ, θ) ≥ u(τ, τ, θ, θ̂) ∀τ, θ, θ̂ (IC2)

x1(τ̂ , θ̂), x2(τ̂ , θ̂), x1&2(τ̂ , θ̂) ≥ 0, x1(τ̂ , θ̂) + x2(τ̂ , θ̂) + x1&2(τ̂ , θ̂) ≤ 1 ∀τ̂ , θ̂. (F)

In this application of the dynamic revelation principle, the second period incentive

constraints (IC2) ensure that the consumer, if he has truthfully reported his ex ante

type, also truthfully reports his ex post type. The first period incentive constraints

(IC1) say that telling the truth in the first and second period must be better than any

combination of lying about the ex ante type potentially followed by another lie about

the ex post type. This means the first period incentive constraints must ensure against

double deviations. Furthermore, the individual rationality constraints (IR) must hold

in the first period, and (F) is the feasibility constraint for the allocation.

The following Lemma simplifies the problem. It states that as there is unit demand,

17 Since θ is uniformly distributed on the binary support {θ1, θ2}

Eθ[u(τ, τ̂ , θ, σ(θ, τ, τ̂))] =
1

2
u(τ, τ̂ , θ1, σ(a1, τ, τ̂)) +

1

2
u(τ, τ̂ , θ2, σ(a2, τ, τ̂))
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I can restrict attention to allocations that assign at most one good.

Lemma 1. For any direct mechanism that satisfies the constraints of P, there exists

a direct mechanism with the same payments that never assigns both goods and satisfies

the constraints of P. Thus without loss of generality, x1&2 = 0.

The proof follows by a replication argument.18 The assignment of several goods at

a time can be replaced by assigning the single good which is claimed to be preferred

among those. In equilibrium, consumption and hence on-path utilities are unchanged.

Incentive compatibility is preserved as well, because off-path utilities are weakly low-

ered. As in the modified mechanism payments are unchanged, the mechanisms are

equivalent in terms of profit. Therefore it is without loss to only consider mechanisms

that assign at most one good. Formally, I from now on set x1&2 to zero for all reports

(τ̂ , θ̂) and drop it.

As ex post types are equally likely for each ex ante type, the expected valuation in

the first period for any allocation with x1 + x2 = 1 is v − δτ . Whether it increases in

or decreases in ex ante types depends on the sign of δ. Since the solution technique

and results differ for these two possibilities, the analysis of the problem is split into

two cases.

1.2.3.1 Decreasing mean

The analysis begins with the case δ ≥ 0. In this case the loss of the increasing valuation

premium outweighs the increase in valuation of the preferred alternative such that the

expected valuation of a particular good assigned in the first period decreases in τ .

I solve this maximization problem with the help of a technique that is common in

the literature on sequential screening:19 I consider the relaxed problem with publicly

observable ex post types and find the set of solutions to it. The relaxed problem equals

the original problem except that it does not contain IC2 constraints as well as all

those IC1 constraints which ensure against first period deviations which are followed by

another lie. The profit generated by the solutions to the relaxed problem constitutes an

upper bound on the profit that can be achieved in the original maximization problem.

Then I show that each solution to the relaxed problem satisfies the constraints which

are left out. Hence, these are solutions to the original problem.

18 The proof of Lemma 1 as well as all subsequent ones are given in the appendix.
19 See for example Gale and Holmes (1993) and Eső and Szentes (2007b).
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The relaxed maximization problem (Po) is

max
X,p

τ∫
0

f(τ) · Eθ[p(τ, θ)]dr

s.t.

U(τ) ≥ U(τ̂ , τ, idθ) ∀τ, τ̂ , θ, (IC ′1)

U(τ) ≥ 0 ∀τ, (IR)

x1(τ̂ , θ̂), x2(τ̂ , θ̂) ≥ 0, x1(τ̂ , θ̂) + x2(τ̂ , θ̂) ≤ 1 ∀τ̂ , θ̂. (F)

In the next step, I exploit the model’s symmetry with respect to the two goods.

Instead of identifying goods by their name, I distinguish between preferred and un-

desired goods. Denote x+(τ̂) = 1
2
x1(τ̂ , θ1) + 1

2
x2(τ̂ , θ2) and correspondingly x−(τ̂) =

1
2
x2(τ̂ , θ1) + 1

2
x1(τ̂ , θ2). The probabilities x+(τ̂) and x−(τ̂) are specific to the contract

determined by ex ante report τ̂ . Formed in the first period, they indicate the proba-

bility of the assignment of a preferred and an undesirable good in the second period

given truthful revelation of ex post types. With this notation, the expected utility can

be rewritten as

U(τ̂ , τ, idθ) = x+(τ̂) · v+(τ) + x−(τ̂) · v−(τ)− Eθ[p(τ̂ , θ)]

= v[x+(τ̂) + x−(τ̂)] + r ·K(τ̂ , δ)− Eθ[p(τ̂ , θ)]
(1.2)

with K(τ̂ , δ) = x+(τ̂)− x−(τ̂)− δ(x+(τ̂) + x−(τ̂)).

Lemma 2. The first period incentive constraints IC ′1 are satisfied if and only if

∂U(τ)/∂τ = K(τ, δ) a.e. (ENV )

and K(τ, δ) is mon. increasing in τ. (MON)

Even though Lemma 2 and its proof are familiar from the literature on static mecha-

nism design, it is non-standard in the literature on sequential screening. In the standard

sequential screening problem, it is generally not possible to find necessary and sufficient

conditions for incentive compatibility using the envelope theorem.20 Difficulties arise,

because the analoga to ENV and MON in Lemma 2 hold only in expectation over

the ex post type and are generally not sufficient for incentive compatibility. In my

model, this problem is overcome due to the symmetry that stems from the horizontal

differentiation of goods: The utility level just depends on whether the obtained good is

20 For an exposition see Courty and Li (2000) and Eső and Szentes (2007b).
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favorite or non-favorite, but the identity of goods does not play any role. This permits

to rewrite the expected utility of a contract as a probability distribution over utility

levels as done in (1.2).

Lemma 2 implies that maximizing with respect to the constraints (IC ′1), (IR) and

(F) is equivalent to taking (ENV ), (MON), (IR) and (F) as constraints. If (ENV )

and (MON) hold, the ex ante utility is convex in types.

What distinguishes this maximization problem also from a standard static screening

problem with continuous types and linear utility is that, depending on the contract,

K(τ, δ) can take both positive and negative values. Hence, expected utility might

monotonically increase or decrease on T , but it might also be the case that expected

utility is U-shaped as a function of ex ante types. Consequently, it is not clear which

ex ante type will have the lowest expected utility which will then be set to zero in the

optimum by the individual rationality constraints.

The economic intuition for this non-standard situation emerges from the horizontal

differentiation of goods. While in a usual setting with vertical differentiation the order-

ing of the consumer’s types induced by the valuation of an allocation is independent of

the allocation considered, in the case with horizontally differentiated goods there is no

such clear ordering. In my model, an ex ante type that values getting the right good

more also suffers more from ending up unfavorably. As a consequence, any contract

that has a tendency towards assigning the ’wrong’ good is valued less by higher types.

On the contrary, contracts that have a tendency towards assigning the ’right’ good, are

valued more by higher types. As usual, the binding incentive constraints are those that

ensure that the consumer does not understate the valuation he derives from a given

contract. In my model it therefore depends on the contract whether understating the

utility from a contract amounts to over- or underreporting the ex ante type.

Models in which the type with binding individual rationality constraint is am-

biguous have first been considered in screening problems with type-dependent outside

options (see Lewis and Sappington (1989), Maggi and Rodriguez-Clare (1995), Jullien

(2000) and Samuelson and Nldeke (2007) for an exposition). However, their results

cannot directly be applied, because all of the latter papers by assumption exclude

my case of pure revenue maximization. Furthermore, in my model a consequence of

Lemma 2 is the convexity of the utilities in τ given truthtelling. This allows for a

particularly tractable method of solving the maximization problem: Convexity implies

that in every solution, there is an ex ante type z ∈ [0; τ ] that has the lowest ex ante

utility. Making use of this fact, in a first step I solve the relaxed problem (Po) with

the additional constraint U(τ, idθ) ≥ U(z, idθ) for all τ ∈ T and some arbitrary but

fixed ex ante type z. Denote this problem by Pzo . This results in the description of an
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optimal allocation dependent on z for all z ∈ T , where z is the exogenously given ex

ante type with the lowest expected utility. In a second step I then maximize the profit

in z.

Having fixed ex ante type z, Lemma 2 can be employed to reformulate the max-

imization problem: In the optimum, z’s expected utility is zero by the binding indi-

vidual rationality constraint. By (ENV ) and absolute continuity21 any ex ante type’s

expected utility can then be written as

U(τ) = U(z) +

τ∫
z

K(y, δ)dy =

τ∫
z

K(y, δ)dy. (1.3)

By (1.2) and (1.3) prices can be written as a function of the allocation rule:

Eθ[p(τ, θ)] = v[x+(τ) + x−(τ)] + τ ·K(τ, δ)−
τ∫
z

K(y, δ)dy. (1.4)

Plugging (1.4) into the objective reduces problem Pzo to:

max
x

τ∫
0

f(τ)

(
v[x+(τ) + x−(τ)] + τ ·K(τ, δ)−

τ∫
z

K(y, δ)dy

)
dτ

s.t. (MON), (F) and U(z) ≤ U(τ) ∀τ ∈ T .

By integration by parts and rearranging terms, the objective can be rewritten as

max
x

z∫
0

f(τ)

[
v[x+(τ) + x−(τ)] +K(τ, δ) ·

(
τ +

F (τ)

f(τ)

)]
dτ

+

τ∫
z

f(τ)

[
v[x+(τ) + x−(τ)] +K(τ, δ) ·

(
τ − 1− F (τ)

f(τ)

)]
dτ

(1.5)

s.t. (MON), (F) and U(z) ≤ U(τ) ∀τ ∈ T .

Let b = sup{τ ∈ T |τ − 1−F (τ)
f(τ)

≤ 0} be the highest ex ante type with a non-positive

virtual value.

21 For a proof of absolute continuity see for example Theorem 2 in Milgrom and Segal (2002).
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Lemma 3. Any solution to problem Pzo has the following properties:22

x+(τ) =
1 + δ

2
and x−(τ) =

1− δ
2

if τ ≤ max{b, z},

x+(τ) = 1 and x−(τ) = 0 if τ > max{b, z}.

For any z ∈ T a solution does exist.

Lemma 3 is proven by pointwise maximization of objective (1.5) for every ex ante

type τ . Unlike in standard pointwise maximization problems familiar from the liter-

ature on mechanism design,23 the monotonicity constraint is not entirely ignored at

that point. Instead, pointwise maximization is done subject to a relaxed version of the

constraints. The constraints are weakened in the sense that I only pay attention to the

bounds on both x+(τ) + x−(τ) and K(τ, δ) that are implied by (MON), (F) and z to

be the type with minimal utility.

As a consequence, the pointwise maximization itself is not trivial. I show that

contracts with the properties given in Lemma 3 lead to an upper bound on pointwise

profits given the relaxed constraints. Then I show the existence of a feasible allocation

rule with these properties. Finally, it can immediately be seen that allocation rules

with the derived properties satisfy (MON) and z is the type with lowest expected

utility, which completes the proof of the Lemma.

This allows me to turn to the second step now, the maximization with respect to

the worst-off type z.

Lemma 4. z is optimal if and only if z ≤ b.

Lemma 4 results from inserting the properties from Lemma 3 into objective (1.5).

By the optimality conditions from Lemma 3, both the virtual value for types τ < z

as well as the virtual value for types z < τ < b are multiplied by zero and hence do

not influence profits. Thus for ex ante types τ ≤ b the relative position to z, which

determines the virtual value associated with the ex ante type, has no relevance even

though for a given τ virtual values are not equal. The virtual value for types τ > b,

however, enters the objective strictly positively if and only if τ > z. Therefore, profit

maximization requires that τ > z if τ > b.

22 W.l.o.g. let b and ex ante types with τ − 1−F (τ)
f(τ) = 0 get the allocations of low types.

23 See Myerson (1981)
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Lemma 5. The set of mechanisms which solve problem Po is the following: Ex ante

types τ > b always obtain their favorite good and prices satisfy Eθ[p(τ, θ)] = v+b(1−δ).

Ex ante types τ ≤ b obtain contracts with Eθ[p(τ, θ)] = v. There is a continuum of

optimal allocation rules for ex ante types τ ≤ b characterized by α ∈ [δ, 1]:

x1(τ, θ1) = α, x2(τ, θ1) = 1− α,

x1(τ, θ2) = α− δ, x2(τ, θ2) = 1 + δ − α.

The set of optimal allocation rules is obtained as the solution to a system of linear

equations, which are the feasibility requirements and the optimality conditions given

by Lemmas 3 and 4. As the relaxed problem takes into account only first period

incentives, only expected prices matter. They are pinned down by (1.4).

A thorough interpretation of the results in Lemma 5 is postponed until the expla-

nation of Proposition 1. Before turning to implementability in the original problem, I

introduce a measure for the quality of a contract using a property of the solution to the

relaxed problem. Any optimal contract satisfies x+(τ) + x−(τ) = 1. This means that

the consumer always obtains a good and the event ’no assignment’ does not occur. I

call this property ’full market coverage’. It pays off to insert the full market coverage

property into expected utility (1.2). This yields

U(τ̂ , τ, idθ) = v − τδ + τ [x+(τ̂)− x−(τ̂)]− Eθ[p(τ, θ)]. (1.6)

I denote the term x+(τ̂)−x−(τ̂) as ‘responsiveness’ of the corresponding contract. The

responsiveness is the difference between the ex ante probability to obtain the right and

the ex ante probability to obtain the wrong good and is central for the analysis. It is

a measure for quality of the contract from an ex ante point of view. Due to feasibility,

responsiveness is bounded above by x+(τ̂)−x−(τ̂) = 1, the case in which the consumer

always obtains the good he prefers, and bounded below by x+(τ̂) − x−(τ̂) = −1, the

case in which the consumer never obtains the preferred good. The responsiveness of

a contract that maps any ex post type into the same allocation is zero. These are

contracts that fix an allocation in the first period that cannot be influenced by any ex

post report. If the responsiveness is positive, the contract is said to positively respond

to the consumer’s needs. As the first best allocation rule has maximum responsiveness,

contracts with lower values of responsiveness are considered as distorted and distortion

is measured by the difference of responsiveness to one. Note that any contract with

responsiveness unequal to one, minus one, or zero assigns nondegenerate allocations to

at least some ex post type. I call such contracts stochastic.

Having found the set of solutions to the relaxed problem with observable ex post
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types (Po), I will finally address its implementation in the original problem with private

ex post types (P). When ex post types are private, two additional types of incentive

constraints have to be satisfied: The second period incentive constraints (IC2) have to

hold, which means if the consumer has truthfully revealed his ex ante type, he does not

have an incentive to lie about his ex post type. And in the first period, there may not

exist profitable double deviations (IC1), i.e., a first period lie followed by another lie in

the second period. Proposition 1 states that the entire set of optimal allocation rules

from Lemma 5 is also implementable in the original problem with private ex post types.

Proposition 1. Let the mean be decreasing. The set of allocation rules which solve

the problem with private ex ante and ex post types is the following:

• For τ > b: The consumer always obtains his favorite good.

• For τ ≤ b: x1(τ, θ1) = α, x1(τ, θ2) = α− δ with arbitrary α ∈ [δ, 1] and

x2(τ, θ) = 1− x1(τ, θ) for θ ∈ {θ1, θ2}.

Necessary conditions for prices are:

• For τ > b: Eθ[p(τ, θ)] = v + b(1− δ).

• For τ ≤ b: Eθ[p(τ, θ)] = v.

Ex post type independent prices p(τ, θ1) = p(τ, θ2) are always sufficient for incentive

compatibility.

In order to prove incentive compatibility, I show that a stronger condition than

(IC2) holds: Each ex post type has an incentive to truthfully reveal his type no matter

what his ex ante report was. This is sufficient for incentive compatibility. The (IC2)

constraints are then trivially satisfied. However, (IC1) is satisfied as well: lying in the

second stage and thus complex deviations are never optimal. Unilateral first period

deviations are not profitable either, because the solutions satisfy the relaxed problem’s

(IC ′1) constraints. For problem Po only expected prices matter and hence by Lemma

5 for each ex ante type only the sum of the prices p(τ, θ1) + p(τ, θ2) is pinned down.

When dealing with implementability in the original problem, single ex post prices are

relevant due to second period incentives. Setting p(τ, θ1) = p(τ, θ2) for all ex ante types

implies that the price is fixed by the reported ex ante type and is independent of the

report on the ex post type. Given any report τ̂ , the consumer then reports honestly

about θ, because the contract provides him with the good which is announced to be

the ’good’ one with a higher probability. Hence, it is the positive responsiveness that

makes the solutions to the relaxed problem implementable in the original problem.
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As the set of optimal allocation rules from Lemma 5 is identical to those of Propo-

sition 1, the full market coverage property carries over to Proposition 1. The solution

is a step function as illustrated in Figure 1.1. High ex ante types above a certain

threshold type b always receive the good they prefer x+(τ)− x−(τ) = 1, which implies

the classical ’no distortion at the top’ result. This is implementable, for example, by

selling the goods for a uniform price in the second period or selling a good in the first

period but with an option for free exchange. All ex ante types lower than the critical

type get a contract from the continuum of contracts with responsiveness δ. Recall, this

means that the contracts positively respond to the consumer’s needs in the sense that

the likelihood to obtain a good is increasing when it is announced to be favorite. Con-

sider for example the contract α = 1 from Lemma 5. The contract gives the consumer

good 1 with certainty if he announces this good to be the favorite one. However, if

the consumer prefers good 2, there is a chance of δ that he obtains good 2. For the

firm a possible implementation of this contract is to sell good 1 in the first period, but

if the consumer afterwards reports that he would prefer the other good, give him a

chance of δ to exchange the good. In practice, the stochastic element can - for example

- be implemented by allowing for exchange subject to availability. For the special case

δ = 0 and hence x+(τ) − x−(τ) = 0 an optimal contract chosen by low ex ante types

fixes an arbitrary allocation that always assigns a good in the first period and does not

respond to ex post reports in any way.

τ

x+(τ)− x−(τ), U

τb

δ

1

Figure 1.1: Solution to the decreasing mean case. The solid line represents the respon-
siveness of the contracts, the dashed line expected utility.

The optimal menu of contracts is the result of price discrimination. A higher type

has a higher first period expected utility from the contract with full flexibility than

lower types because his valuation of the preferred good, which he will get with certainty,

is higher. When offering just one contract with full flexibility, the firm would have to

trade off leaving rent to high types and excluding low types. However, the monopolist
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uses responsiveness as a screening device. The firm exploits that flexibility between

goods has a higher value to the higher ex ante types. By offering less responsive

contracts to lower ex ante types, the loss from the lower types is smaller than the

gain from extracting rent from higher types. In technical terms, the firm exploits a

single-crossing property with respect to responsiveness: Given full market coverage,

the marginal expected utility with respect to x+(τ) − x−(τ) is increasing in ex ante

types. The single crossing condition is obvious in (1.6). From (1.6) it is furthermore

apparent that x+(τ) − x−(τ) enters the expected utility linearly. It is a well-known

result in the literature on screening that this linearity leads to step solutions. The

problem is linear, as there are no costs for the firm to increase the responsiveness of a

contract.

Another common feature of solutions to linear screening problems is the ‘bang-

bang’ property: The consumer either obtains the best allocation of goods or the worst.

However, in the present problem it is not optimal to distort contracts for low ex ante

types to zero responsiveness. Instead, low ex ante types sign contracts that positively

respond to the consumer’s needs. The contracts are hence not maximally downward

distorted.24 These contracts for low ex ante types are the main object of study in this

paper. I first give economic intuition for this result and then relate it to the literature

on mechanism design with type dependent outside options.

In the decreasing-mean case considered in this section, the valuation of the non-

favorite good, v−(τ), decreases faster in ex ante types than the top valuation v+(τ)

increases. The expected utility gross of payments derived from a contract with respon-

siveness zero, x+ = x− = 1/2, is, hence, decreasing in ex ante types. The optimal

distorted contracts are designed such that the expected utility of a given contract gross

of payments is the same for all ex ante types: The optimal contract entails a larger

probability x+ than x− to exactly offset the two ‘valuation effects’. The higher δ, the

stronger is the low valuation decreasing compared to the increase in the top valuation

and, hence, the higher is the responsiveness of contracts for low ex ante types.25 When

implementing this allocation rule, the monopolist can set a price to extract all rents

from the ex ante types τ ≤ b. Rents left to high types τ > b are linearly increasing.

The firm has no reason to offer more distorted contracts to the lowest ex ante types:

Firstly, this reduces the overall surplus as the consumer derives less utility from the

allocation rule. Secondly, it induces the firm to leave higher rents to the consumer:

24 There exist incentive compatible contracts with zero responsiveness; for example any contract whose
allocation is independent of ex post reports.

25 If δ = 1, which means the top valuation is constant in ex ante types, only the first best contract is
offered. This is intuitive, because the trade-off between the two ‘valuation effects’ is balanced by
contracts with high responsiveness. If δ = 0, the expected utility of a contract with responsiveness
zero is constant among ex ante types.
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Expected utility would be U-shaped with an interior type’s participation constraint

binding; ex ante types at both sides would obtain rents. Hence, in the optimum the

expected utility of ex ante types below the type with minimum expected utility is

’ironed’ to zero.

The appearance of ’intermediately distorted’ contracts is in line with the established

literature on mechanism design with type-dependent outside options. The setup can be

rewritten as a mechanism design problem with increasing expected utility everywhere

and an increasing outside option such that the rents can be potentially U-shaped and

correspond to the expected utility in the framework presented.26 The unusual type of

contracts stems from the fact that the binding first period incentive constraints change

from upward constraints to downward constraints at the interior ex ante type whose

participation constraint is binding.27 In the standard case, under certain assumptions

the optimal incentive compatible contract gives zero rent from participating to an inter-

val of types around this critical type.28 In my model this interval is [0, b] and providing

those types with their outside option is achieved via bunching on that interval.29

Another special feature of the optimal menu of contracts is the multiplicity of

solutions. Contracts for high ex ante types τ > b are uniquely determined. For each

low ex ante type τ ≤ b there is a continuum of optimal contracts. The multiplicity

arises by allowing for stochastic contracts and by the symmetry in the sense that the

consumer does not cares about the identity of the goods: In the first period, buying

good 1 with a stochastic exchange option for good 2 is valued the same as buying good

2 with a stochastic exchange option for good 1. Contracts for low ex ante types can

be arbitrarily combined in the menu. The reason for this is that ex ante types are

indifferent among all the contracts for any τ̂ ≤ b. In particular this means that there

exist optimal menus which consist of only two contracts, the first best contract and

one distorted contract.

Proposition 1 shows that the restriction on contracts imposed by Gale (1993) is

with consequences. Gale looked at a setting which is very close to the one examined

here. However, he did not use a general mechanism design approach to derive the

revenue-maximizing menu of contracts. Instead, there is a restriction to selling in the

26 In the presented setup, expected utility is given by (1.6) and the outside option is zero. A possible
transformation: Define expected utility as U(τ̂ , τ, idθ) = v + τ [1 + x+(τ̂)− x−(τ̂)]−Eθ[p(τ, θ)] and
the outside option as τ(1 + δ). The monopolist’s problem is identical under the original setup and
the transformation. By the first order constraint for incentive compatibility, expected utility of the
transformation is increasing everywhere.

27 This is meant by ’countervailing incentives’, see Lewis and Sappington (1989) and Maggi and
Rodriguez-Clare (1995).

28 See in particular the exposition by Jullien (2000).
29 For the same reason bunching occurs in problems with linear type-dependent outside options and

linear utility, see Maggi and Rodriguez-Clare (1995).
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first period without any later flexibility or selling the good in the second period, which

corresponds to a contract with full flexibility. In his pioneering work, this restric-

tion was imposed in order to obtain a fruitful comparison between monopolistic and

oligopolistic behavior in a setting with individual demand uncertainty. For the monop-

olistic case, my analysis shows that by allowing for intermediately distorted contracts,

which are stochastic contracts, it is possible to achieve even more. Analytically spo-

ken, Gale allows for the first-best contract, which is shown to actually be optimal for

high types. However, as ’discrimination’ alternative he only allows for a contract with

x+(τ) = x−(τ) = 1
2
, which differs from the optimal contract for any δ > 0. δ = 0 is

the case in which the expected utility of a fixed allocation stays constant over ex ante

types. For this case, my model also predicts a contract with zero responsiveness to be

optimal for low types. Corollary 1 summarizes the relation to Gale (1993):

Corollary 1. Whenever the expected utility of a given good is decreasing in ex ante

types, the solution to the revenue-maximization problem includes stochastic contracts.

They strictly improve upon a menu of contracts without possibility for exchange on the

one hand and goods sold in the second period on the other hand.

1.2.3.2 Increasing mean

The analysis is completed with the examination of the case δ < 0. In this case the

increase in top valuation dominates the loss of the increasing valuation premium in

the sense that the expected valuation of a particular good assigned in the first period,

v − τδ, is increasing in ex ante types. More generally, the expected valuation of any

contract with zero responsiveness is weakly increasing in ex ante types.

Define e = sup{τ ∈ T |τ − 1−F (τ)
f(τ)

≤ v
δ
} whenever the supremum exists and e = 0

otherwise. As δ < 0, the constant v/δ is negative and from the increasing virtual value

assumption it follows that e < b.

Proposition 2. Let the mean be increasing (δ < 0). The set of allocation rules that

solve the problem with private ex ante and ex post types is the following:

• For τ > b: The consumer always obtains his favorite good.

• For τ ∈ [e, b]: x1(τ, θ) = α, x2(τ, θ) = 1− α ∀a and α ∈ [0, 1] arbitrary.

• For τ < e: No assignment.

Necessary conditions for prices are:
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• For τ > b: Eθ[p(τ, θ)] = v + b(1− δ).

• For τ ∈ [e, b]: Eθ[p(τ, θ)] = v − δe.

• For τ < e: Eθ[p(τ, θ)] = 0.

Ex post type independent prices p(τ, θ1) = p(τ, θ2) are always sufficient for incentive

compatibility.

For δ < 0, the problem P is solved again by considering a relaxed problem P∗. P∗
differs from Po by the additional constraint

x1(τ, θ1) + x2(τ, θ2) ≥ x1(τ, θ2) + x2(τ, θ1) ∀τ, (*)

which is a necessary condition for second period incentive compatibility and states

that responsiveness is weakly positive. In Po second period incentives are completely

ignored. As for positive δ the solution to Po is implementable in P , (*) is not strictly

binding there.30 This changes when δ is negative. The solution to Po, which is stated in

Lemma 5, for negative δ violates (*) and hence second period incentive compatibility.

The upper bound on profits attained by the solution to P∗ is hence lower than the one

derived from Po.
Due to the similar structure of incentive contraints in the problems Po and P∗,

Lemma 2 applies. A difference, however, is that from (*) and δ < 0 it follows that the

expected valuation of any incentive compatible contract is increasing in ex ante types.

Consequently, in the optimum the lowest ex ante type’s individual rationality constraint

binds and a solution to P∗ is found following standard steps including integration

by parts, reformulations and pointwise maximization. By the same way as for the

decreasing mean case, the allocation rule is then shown to be implementable in P .

For e > 0 the solution is illustrated in Figure 1.2. Ex ante types above b again

always obtain their preferred good. Ex ante types between e and b always obtain a

good, the contract is however maximally distorted with the limit given by (*). This

contract has responsiveness zero and hence does not respond to the announcement of

ex post types at all. Types lower than e are excluded, which means the full market

coverage property does not hold if e > 0. First period expected utility is increasing

over all types that obtain a good. This menu of contracts can be implemented using

advance-purchase discounts, which are well known from numerous studies.31

30 This can also be seen directly from the properties of optimal contracts as stated in Proposition 1.
31 See for example Gale and Holmes (1993), Gale (1993), Möller and Watanabe (2010) or Nocke et al.

(2011).
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x+(τ)− x−(τ), U

τbe

1

Figure 1.2: Solution to the increasing mean case with interior e. The solid line repre-
sents the responsiveness of the chosen contracts, the dashed line expected utility.

The interpretation of the result as one of price discrimination is the logical con-

tinuation of the decreasing mean case. Assume for a moment that second period

incentive compatibility would be no binding constraint, as is the case when the mean

is decreasing in ex ante types. When ignoring second period incentive constraints, the

monopolist would like to distort the contracts for ex ante types lower than b such that

x+(τ) − x−(τ) = δ < 0. This is an immediate consequence of Lemma 5. Distortions

would be comparatively large, as there is much rent from high ex ante types to be

extracted. The upper bound derived from Po would be achieved and ex ante utility

for these low ex ante types would then be zero. However this contract violates (*),

the necessary condition for second period incentive compatibility. By (*) the maximal

distortion is x+(τ) − x−(τ) = 0. From the single crossing property it then follows

that expected utility is increasing in ex ante types even for the maximally distorted

contract. This creates an incentive for the firm to completely exclude very low ex ante

types. To put it another way: For the increasing mean case, distortions in the quality

of contracts are not sufficient to extract the high types’ rents and therefore additional

quantity distortions are used.

1.3 The continuous goods model

In the previous section, I solved a model of sequential screening with horizontally dif-

ferentiated goods without ad-hoc restrictions on contracts. If the ex ante expected

valuation of a certain good is decreasing in ex ante types, the optimal menu contains

contracts that partially restrict consumers’ flexibility. This part further studies the

optimal design of the partial restriction of flexibility and thereby characterizes optimal

exchange policies. To that end I consider a more comprehensive model with a contin-
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uum of goods, which is more specific only in that it focuses on the decreasing mean

case exclusively.

1.3.1 Model

A firm can sell a continuum of horizontally differentiated goods s ∈ S = [0, 1] to a

consumer with unit demand. The consumer learns his preferences over two periods. In

period 1, before contracting takes place, he learns his ex ante type τ , and subsequently

after contracting, he learns his ex post type θ. His utility function over S depending

on the his ex ante type τ ∈ T = [0; τ ] and his ex post type θ ∈ Θ = [0, 1] is given by

vτ,θ(s) = v + (1− δ)τ − τc(θ, s) (1.7)

with δ < 1. The utility loss from getting a non-favorite good is captured by a continuous

function c(θ, s) that is quasi-convex in s for any θ with the minimum at θ where

c(θ, θ) = 0. Hence, the ex post type θ represents the consumer’s favorite good s = θ

and consumption of a good s 6= θ entails a utility loss which is increasing in the distance

of the consumed to the favorite good.32 Assume further that c(θ, s) is bounded such

that vτ,θ(s) ≥ 0 for all τ, θ, and s. The continuum of ex post types θ ∈ Θ is distributed

according to G. The distribution G is continuous, independent of ex ante types, and has

full support. Thus each good could possibly be the favorite one.33 The independence

assumption means that the ex ante type does not provide any information about the

ex post type. The specification (1.7) means further that both the utility derived from

the favorite good and the utility loss from getting a non-favorite good are linearly

increasing in ex ante types. Let the continuous distribution F of ex ante types τ over

type space T satisfy the standard assumption of increasing virtual values τ − 1−F (τ)
f(τ)

.

As already explained, I focus on the case where the expected utility from any good is

decreasing in ex ante types: Eθ[c(θ, k)] > 1− δ for all k ∈ S. Note that like in Section

1.2 the favorite good is valued by v+ τ − τδ, and unlike in Section 1.2 Eθ[c(θ, k)] varies

in k. The firm can produce arbitrary amounts of each good without cost. Any other

assumptions about the firm and timing are as before.

1.3.2 Analysis

I first apply the technique presented in Section 1.2 to solve the principal’s relaxed prob-

lem with observable second period types. Its solution closely resembles the solutions

32 Note that I do not restrict the utility loss to be symmetric around θ, and for a given distance |θ−s|
the utility loss may depend on θ.

33 Note that in this model the valuation for a given good varies gradually in the ex-post type, a key
property that helps to reveal more characteristics of exchange-policies.
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to the corresponding problem in the two goods model. The key difference to the two

goods model is that only a strict subset of the solutions is implementable in the original

problem. The main purpose of this section is to characterize this subset.

With the same argument as in Lemma 1, it can be shown that it is without loss of

generality to exclude the possibility that multiple goods are assigned to the consumer.

An allocation X is, hence, a probability distribution over elements of the set of goods

S and ’no assignment’. The payment p is transferred from the consumer to the firm. A

direct mechanism consists of an allocation rule {X(τ̂ , θ̂) : τ̂ ∈ T, θ̂ ∈ Θ} and a payment

rule {p(τ̂ , θ̂) : τ̂ ∈ T, θ̂ ∈ Θ}, where τ̂ and θ̂ are the sequentially reported types.34 Let

X(s̃|τ̂ , θ̂) be the probability that the allocation X(τ̂ , θ̂) assigns a good s ≤ s̃ to the

consumer. Note that X(s|τ̂ , θ̂) differs from a cumulative distribution function over S

in that 1−X(1|τ̂ , θ̂), the probability of no assignment, can be positive. The notion of

a contract carries over from Section 1.2. Let σ(θ, τ, τ̂) be the consumer’s strategy for

reporting an ex post type upon having reported τ̂ , and truthtelling is denoted by idθ.

The consumer’s first period expected utility from reporting τ̂ when being type τ is

U(τ̂ , τ, σ) =

1∫
0

 1∫
0

vτ,θ(s)dX(s|τ̂ , σ(θ, τ, τ̂))

− p(τ̂ , σ(θ, τ, τ̂)) dG(θ).

Define further U(τ) := U(τ, τ, idθ). Respecting the incentive compatibility, individ-

ual rationality, and feasibility constraints, the firm’s maximization problem (P) is:

max
X,p

τ∫
0

f(τ)

1∫
0

p(τ, θ)dG(θ)dr

s.t.

U(τ) ≥ U(τ̂ , τ, σ) ∀τ, τ̂ 6= τ, σ, (IC1)

U(τ) ≥ 0 ∀τ, (IR)

1∫
0

vτ,θ(s)dX(s|τ, θ)− p(τ, θ) ≥
1∫

0

vτ,θ(s)dX(s|τ, θ̂)− p(τ, θ̂) ∀τ, τ̂ , θ̂, (IC2)

0 ≤ X(s|τ̂ , θ̂) ≤ X(s′|τ̂ , θ̂) ≤ 1 ∀τ̂ , θ̂, s, s′ with s ≤ s′. (F )

Similarly to the two goods model, the principal has to account for double deviations,

but needs to ensure participation only in the first period. The consumer’s expected

34 The restriction to direct mechanisms is without loss of generality. For an appropriate revelation
principle see Myerson (1986).
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utility can be rewritten as

U(τ̂ , τ, idθ) = v

 1∫
0

X(1|τ̂ , θ)dG(θ)

+ τ ·K(τ̂ , δ)−
1∫

0

p(τ̂ , θ)dG(θ) (1.8)

with K(τ̂ , δ) =
1∫
0

1∫
0

1 − δ − c(θ, s)dX(s|τ̂ , θ)dG(θ). As in the two goods model, the

expected utility is linear in ex ante types and K(τ̂ , δ) can take both positive or negative

values. Hence, I can proceed as in Section 1.2 and first consider the relaxed problem

with observable second period types (Po), which I solve by applying the technique

introduced in Section 1.2.

Problem Po differs from P by omitting all IC2 constraints and relaxing IC1 to

U(τ) ≥ U(τ̂ , τ, idθ) ∀τ, τ̂ , a. (IC ′1)

To state the solutions to problem Po and then to problem P , I introduce the notions

of full market coverage and responsiveness corresponding to the definitions for the two

goods model.

A mechanism satisfies ‘full market coverage’ if
∫ 1

0
X(1|τ, θ)dG(θ) = 1 for all τ , which

is equivalent to X(1|τ, θ) = 1 for almost all θ and all τ . This means that generically35

the consumer ends up with some good, independent of the reported pair of types.

I refer to

R(τ̂) =

1∫
0

1∫
0

1− c(θ, s)dX(s|τ̂ , θ)dG(θ) (1.9)

as the responsiveness of a contract. If the mechanism satisfies the full market coverage

property, R(τ̂) captures the extent to which a contract is distorted by not assigning the

favorite good to the consumer.36 This can be best seen when plugging the full market

coverage property into (1.9) in which case

R(τ̂) = 1−
1∫

0

1∫
0

c(θ, s)dX(s|τ̂ , θ)dG(θ).

Responsiveness is equal to 1 minus the expected utility loss that accrues when the

contract does not always assign the favorite good, where expectations are taken with

respect to the ex post type and the possibly stochastic allocations. Hence, R(τ̂) is

35 Except for a set on Θ of probability measure zero. Note that selling to a mass of consumer-types
with probability measure zero on T ×Θ has no impact on profits.

36 In the following, a contract is referred to as ‘more distorted’ than another contract when his re-
sponsiveness is lower.
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maximal and equal to 1 under the first best contract, where each ex post type θ ob-

tains his favorite good s = θ with certainty. An immediate consequence of the model

assumption Eθ[c(θ, k)] > 1− δ for all k ∈ S is that any contract in which the consumer

obtains the same good irrespective of his ex post type has a responsiveness less than δ.

Before stating the set of solutions to problem Po in Lemma 7, I finally establish

the existence of a contract with R(τ) = δ for any δ < 1 which is any possible δ. The

existence of such a contract is needed in the proof of Lemma 7 and unlike in the two

goods model not trivially obtained. The existence is shown on hand of contract (RD)

that is the simplest example from a class of contracts that plays an important role

for the upcoming results. Contract (RD) is deterministic; let xRD(τ, θ) be the good

obtained upon the pair of reports (τ, θ):

xRD(τ, θ) = I if θ < I,

xRD(τ, θ) = θ if θ ∈ [I; 1− I],

xRD(τ, θ) = 1− I if θ > I,

and p(τ, θ) = v ∀θ.

(RD)

In the first period, contract (RD) specifies a price to be paid by the consumer and an

interval of goods. The price does not depend on the report of the ex post type - the

pricing structure is, hence, very simple. In the second period, the consumer obtains

his favorite good from that interval. Let the interval be positioned ‘in the middle’ and

define I such that the interval is [I, 1− I].

Lemma 6. For any possible δ, c(.), and G there exists an I(δ, c(.), G) with I < 1/2

such that contract (RD) satisfies R(τ) = δ.

Lemma 6 is proved by showing that responsiveness of contract (RD) is continuous

in the interval boundary I. As the responsiveness of contract (RD) is 1 for I = 0 and

less than δ for I = 1/2, the lemma then follows from the intermediate value theorem.

Using the technique introduced in Section 1.2, I now obtain the solution to problem

Po. Let b = sup{τ ∈ T |τ − 1−F (τ)
f(τ)

≤ 0} be the highest ex ante type with a non-positive

virtual value.
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Lemma 7. A mechanism solves problem Po if and only if it satisfies (F ), the full

market coverage property, and has the following properties:

For τ ≤ b : R(τ) = δ and

1∫
0

p(τ, θ)dG(θ) = v;

For τ > b : R(τ) = 1 and

1∫
0

p(τ, θ)dG(θ) = v + b(1− δ).

Any optimal allocation rule is again a step function in ex ante types with threshold-

type b. Types above b always get their favorite good, which implies no distortion at

the top and maximum responsiveness. Ex ante types lower than b get a contract with

responsiveness δ which gives them utility v gross of payments. On the one hand, this

means that types τ ≤ b do not always end up with the favorite good. On the other

hand, the contract is less distorted than contracts that assign the same allocation

irrespective of the ex post type.

The incentive constraints in problem Po pin down only the expected price for each

ex ante type. As a consequence, there is a rich class of mechanisms that solve problem

Po. A simple example for a menu of contracts satisfying the conditions of Lemma 7 is

the combination of contract (RD) and the first best contract. High ex ante types τ > b

obtain the first best contract with price p(τ, θ) = v+b(1−δ) that is independent of the

ex post type, and low ex ante types τ ≤ b obtain contract (RD) with responsiveness δ.

I refer to this menu as menu (RD).

In contrast to the two-goods model, the sets of solutions to the relaxed and the

original problem do not coincide. In the sequel, I characterize the set of solutions to

the original problem. By showing that menu (RD) is incentive compatible in the orig-

inal problem P , Lemma 8 provides a necessary condition for a mechanism to solve P :

Lemma 8. Any solution to the original problem satisfies the conditions of Lemma 7.

Due to the stronger incentive compatibility requirements in P , maximal profits in

Po are weakly higher than profits in P . If a mechanism that is optimal in Po satisfies

all constraints of P , it is hence a solution to problem P and the maximal profit in Po
can also be attained in P . The set of solutions to problem P is then a subset of the set

solutions to problem Po. To prove the lemma, it hence suffices to show that the menu

(RD) is implementable in the original problem with private ex post types.
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As in Section 1.2, I show that the consumer has an incentive to truthfully report his

ex post type no matter what his ex ante report was. As already argued, this is sufficient

to show incentive compatibility. The intuition for why in the menu (RD) truthtelling

in the second period is always optimal is straightforward: Assume some arbitrary type

τ ∈ T has reported τ̂ ≤ b. The price he pays is v independent of the ex post type

he reports. Furthermore, the contract specifies the interval [I; 1 − I] of potentially

assigned goods. Out of this set, the consumer obtains the good which maximizes the

utility of his reported ex post type. Therefore, it follows immediately that truthtelling

about the ex post type is optimal. Assume some arbitrary type τ ∈ T has reported

τ̂ > b. The price he pays is v + b(1− δ) and the consumer simply gets what he claims

to prefer. It can immediately be seen that the consumer will report honestly about the

ex post type.

Building on Lemma 8, the following lemma provides a second necessary condition

for mechanisms to be a solution to the original problem:

Lemma 9. In any solution to the original problem, prices for low types τ ≤ b gener-

ically do not depend on ex post types: p(τ, θ) = p(τ, θ′) for all τ ≤ b, for almost all

θ, θ′ ∈ Θ.

Even though Lemma 9 is proved by contradiction, the argument gives valuable

intuition. Note first that the continuous set of low ex ante types τ ∈ [0, b] includes

types that care arbitrarily little about which good they get. Assume that there is some

low ex ante type τ ′ < b who is confronted with two different prices depending on the

ex post type he reports. There will always be ex ante types that care sufficiently little

about which good they obtain, such that they would irrespectively of their preferences

go for the smaller price, if they had the choice. This would imply lying about the ex

post type. Any low ex ante type has this choice, when having reported type τ ′.

The conditions of Lemma 7 imply that any ex ante type’s expected utility from -

possibly untruthfully - claiming to be of any type τ ≤ b and then truthtelling about ex

post types is zero. Consider the following double deviation for very low ex ante types:

First, falsely report to be of ex ante type τ ′ and then profitably deviate from truthfully

reporting about the ex post type. This strategy would yield a positive expected utility

for these ex ante types because they profitably deviate from a strategy that gives them

zero utility. In the optimum, this cannot occur, because by incentive compatibility,

their expected utility from truthful reporting would then have to be strictly positive

as well, which has been shown to be not optimal.
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Lemma 9 means that in every optimal mechanism the price the consumer of ex ante

type τ ≤ b pays is entirely determined by his ex ante report and not dependent on the

ex post type report. The ex post type independence of prices significantly reduces the

set of optimal contracts as compared to the optimal contracts in Po: Using (9), from

the second period incentive constraints (IC2) it follows

1∫
0

c(θ, s)dX(s|τ, θ) ≤
1∫

0

c(θ, s)dX(s|τ, θ′) ∀τ ≤ b for almost all θ, θ′ ∈ Θ. (1.10)

Equation (1.10) means that given the consumer has reported a low ex ante type τ ≤ b,

truthtelling about θ minimizes the expected utility loss from obtaining non-favorite

goods. Intuitively, for each ex post type θ the consumer is assigned his favorite allo-

cation from the set {X(τ, θ) : θ ∈ Θ} which is the set of all allocations he can obtain

by varying the ex post type report. I say that a contract has the restricted delegation

property if it has an ex post type independent price and (1.10) holds. The reason is

that the consumer’s choice in the second period is not connected to transfers - a situa-

tion that is familiar from the literature on delegation. The menu (RD) is a particularly

tractable mechanism in which all contracts satisfy the restricted delegation property.

Finally, Proposition 3 states the set of optimal mechanisms. Therefore, it shows a

sufficiency condition: Any menu of contracts that satisfies the conditions of Lemma 7

and in which each contract satisfies the restricted delegation property is a solution to P :

Proposition 3. The set of allocation rules which solve the original problem with private

ex ante and ex post types is the following:

• Each type τ > b obtains his favorite good.

• Each type τ ≤ b obtains a contract form the set of all contracts that satisfy (1.10),

(F ), full market coverage, and responsiveness equals δ.

Necessary conditions for prices are:

• For type τ > b:
1∫
0

p(τ, θ)dG(θ) = v + b(1− δ).

• For type τ ≤ b: p(τ, θ) = v for almost all θ.

Ex post type independent prices are sufficient for incentive compatibility.
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Lemmas 7 to 9 show that the properties given in the four bullet points are necessary

for a solution. In particular, as Lemma 7 pins down expected prices, Lemmas 7 and 9

together completely determine optimal prices for types τ ≤ b. It remains to be shown

that the necessary conditions joint with ex post type independent prices are sufficient

for a mechanism to solve P . The four bullet points of Proposition 3 imply all conditions

of Lemma 7. Hence, if the conditions of Lemma 7 and ex post type independent prices

are sufficient for incentive compatibility, the proof is completed. The proof of incentive

compatibility is a straightforward generalization of the corresponding proof for the

menu (RD) as done in Lemma 8. Note that in the optimal mechanism the monopolist

can assigns any ex post type his favorite allocation from a set of allocations without

knowing the true ex ante type τ . This is crucial for implementability and possible only

because the ordinal ranking of goods given one ex post type θ does not depend on the

ex ante type.

As the set of solutions is a subset of the set of solutions to the relaxed problem,

the properties from Lemma 7 carry over to Proposition 3. As in the two goods model,

each solution satisfies the full market coverage property and is a step solution. Ex ante

types above the threshold-type always obtain the good they prefer most, which implies

the classical ’no distortion at the top’ result. Ex ante types below the threshold-

type choose intermediately distorted contracts. The corresponding contracts satisfy

the restricted delegation property.37 In each distorted contract, the set of allocations

{X(τ, θ) : θ ∈ Θ} is designed such that the responsiveness is equal to δ.

Again, contracts for low ex ante types τ ≤ b are not uniquely determined. The set

of optimal contracts consists of every set of allocations {X(τ, θ) : θ ∈ Θ} that induces

responsiveness δ, and price v. Contracts for low ex ante types can be arbitrarily

combined in the menu as ex ante types are indifferent among all the contracts for any

τ̂ ≤ b. In particular this means that there exist optimal menus which consist of only

two contracts, the first best contract and one distorted contract. All ex ante types

that take the distorted contracts get an expected utility of zero, because the expected

utility from the allocation is equal to v, which is completely skimmed by the price.

For low ex ante types, in optimal contracts that are deterministic, the set of allo-

cations takes the form of a subset of goods. This set of goods is chosen such that the

responsiveness is equal to δ. As δ < 1, not all goods are contained in this set. Optimal

mechanisms that are deterministic do exist; an example is the menu (RD).

In any optimal menu, distorted contracts lead to the consumption of non-favorite

37 The consumer’s choice of contracts then corresponds to the choice amongst pairs that consist of
a price and a set of allocations. The consumer always prefers larger sets of allocations to sub-
sets. Preferences over sets of allocations that have this structure are studied in the literature on
preferences for flexibility; for a canonical contribution see Kreps (1979).
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goods by restricting the set of allocations that can be chosen from in the second period.

For the decision which allocation to consume in the second period, prices do not play

any role in the sense that the choice does not affect the price.

An alternative way to induce consumer to not always consume the favorite good is

to charge prices that depend on the report about the ex post type and hence on the

allocation the consumer gets. In contrast to the instrument of restricted delegation,

the consumer might voluntarily consume an allocation different from the favorite good

if the associated loss in valuation is outweighed by the price difference.

Proposition 3 states that the use of ex post type-dependent prices is not optimal

for a revenue-maximizing monopolist. The reason is that differing ex ante types react

differently to price differences. Even though the consumer does not know yet how

precisely he will act in the second period when choosing a contract, he already has

information about his intensity of preferences and hence about the extent to which he

reacts to price differences. This enables the consumer to plan ahead deviations in the

second period which induces the firm to leave information rents to the consumer at

the contracting stage for potential deviations in the second period. As some ex ante

types always choose the lowest price, the only way to avoid differing reactions to price

differences is to make these differences large enough such that no ex ante type chooses

the expensive contract. This is equivalent to restricted delegation.

The result on the optimality of ex post type-independent prices implies an interest-

ing relation to the literature on sequential screening. Since the contribution by Courty

and Li (2000), the literature on sequential screening has concentrated on firms that sell

homogeneous goods to consumers who learn their valuations for the good gradually

over time. In both the homogeneous goods model and the differentiated goods model,

a common property of the revenue-maximizing mechanisms is that the consumer is

screened sequentially. In the first period, different ex ante types choose different con-

tracts from a menu and these contracts exhibit allocations that depend on the ex post

type, which is screening in the second period. In the model with homogeneous goods,

the only screening variable in the second period is the probability with which the good

is assigned to the consumer. Independently of the second period information, the con-

sumer prefers higher chances to obtain the good to lower chances. Hence, screening ex

post types in the second period must involve prices that vary with the report about the

ex post type such that some ex ante types prefer having lower chances to obtain the

good. These ex post type-dependent prices are undesirable, as they induce the firm to

leave information rents to the consumer following the logic described in the previous

paragraph. In my model, the presence of differentiated goods allows the firm to set

up an allocation rule that exhibits allocations with are ex post type-dependent and

incentive compatible without ex post type-dependent prices at the same time. The
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additional instrument that is available to the firm in the presence of heterogeneous

goods is restricted delegation. As shown in Lemma 8, any desired response of the allo-

cation to ex post types, measured as the responsiveness, can be achieved by restricted

delegation. From this perspective, the new tool is superior for the firm as it gives rise

to less rents left to the consumer.

1.3.3 Implementation

Direct mechanisms are rarely observed in practice. A general concern in the literature

on mechanism design is therefore to find simple indirect mechanisms that are equivalent

in terms of outcomes to the optimal direct mechanism. Ideally, the indirect mechanisms

match observations in the economic context the theory addresses.

In this paper, the simple indirect mechanisms are menus of Limited Exchange Con-

tracts. A Limited Exchange Contract is a triple 〈π,X,Ψ〉, where π ∈ R is a price, X is

an allocation, and Ψ a set of allocations with X ∈ Ψ. In the first period, the consumer

pays π and obtains allocation X. In the second period, the consumer can exchange

his allocation with any allocation in Ψ without any monetary transfers. There is no

possibility at all to exchange with allocations which are not in the set Ψ.

Proposition 4. Every optimal allocation rule from Proposition 3 can be implemented

by a menu of Limited Exchange Contracts.

The Limited Exchange Contract 〈v + b(1− δ), s, S〉, in which s is a good from the

set of all goods S, implements the optimal contract for high ex ante types τ > b. For

any ex ante type τ ≤ b denote by Ψ(τ) the set of all allocations the consumer can

obtain in the second period in the optimal contract by varying the ex post type report.

The corresponding Limited Exchange Contract is 〈v, y,Ψ(τ)〉 with y contained in Ψ(τ).

Potentially, these Limited Exchange Contracts differ for each τ ≤ b.

Note that the first best contract for high ex ante types can be seen as a special

case of a Limited Exchange Contract, where the limitation on the exchange set is

not binding in the sense that the consumer never favors an allocation which does not

belong to the set. As already argued for direct mechanisms, offering just one optimal

restrictive Limited Exchange Contracts joint with the not restrictive Limited Exchange

Contract is an optimal menu as well. The menu of Limited Exchange Contracts that

implements the optimal menu (RD), which is simple and deterministic, is given in

Example 1.
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Example 1: Implementation of menu (RD)

Offer the following two Limited Exchange Contracts:

(i) Contract 〈v + b(1− δ), s, S〉, in which s is a good from the set of all goods S.

(ii) Contract 〈v, 1/2, [I, 1− I]〉, in which I is defined as in the optimal menu (RD).

The menu of Example 1 contains only one distorted contract, in which the exchange

set is an interval of goods around the initially purchased good. It is easy to verify that

for δ close to one, contract (ii) allows for almost free exchange, which means the contract

is only slightly distorted. The lower δ, the smaller is the set of goods with which free

exchange is possible and for δ = 0 contract (ii) does not give any opportunity for

exchange.

Applied to ticket pricing for transportation services, the optimal menu (RD) has

an intuitive interpretation. On the one hand, tickets with free exchange to any other

departure time are offered . On the other hand, for any departure time tickets are sold

that include the option to change departure time for free within a certain time span

around the initially purchased departure time. Many airlines have explicitly designed

such options by introducing costless same-day exchange possibilities and stand-by op-

tions. A same-day exchange option usually is an extra amendment to the terms and

conditions of a flight ticket, which allows consumers to change flight within the same

day for free or at a symbolic price. Stand-by options are closely related amendments,

which - upon availability - enable passengers to take an earlier flight if they arrive early

at the airport or to take a later one if they miss their flight. An implicit equivalent to

these contracts emerges when airlines create a reputation for being obliging concern-

ing their refund and exchange policy. The use of Limited Exchange Contracts is also

common among ferry companies; examples are P&O Ferries and DFDS Seaways. Both

companies offer tickets which explicitly specify a time interval around the purchased

departure time within which costless exchange is possible. Tickets that provide full

flexibility can be obtained at higher prices. Note that the first best contract can also

be implemented by offering expensive tickets for each variant at the point in time of

consumption.

An alternative concept to abstain the consumer from always purchasing his favorite

good is to introduce exchange fees. When the consumer’s valuation for the initially

acquired good is close to the top valuation, the consumer might prefer to stay with the

non-favorite good in order to save the exchange fee.

Proposition 5. Contracts that limit responsiveness via exchange fees are not optimal.
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The use of exchange fees to limit responsiveness is not optimal, because their use

implies ex post type-dependent prices: If the consumer decided to buy a certain allo-

cation for some price p in the first period, it depends on his ex post type whether he

prefers to stay with the allocation or to pay an additional exchange fee pe and get a

preferred distribution over goods. This means for some ex post types the price is p and

for some ex post types it is p + pe. Ex post type dependent prices are, however, not

optimal by Lemma 9.

With the help of Proposition 5, I finally argue that the optimal mechanism cannot

simply be constructed as a combination of partial refund contracts. A menu of partial

refund contracts implements the revenue-maximizing mechanism in the homogeneous

good setting of Courty and Li (2000). As giving one good back and buying a new one

is essentially equivalent to exchange, one might think that the optimal mechanism in

the heterogeneous goods model is obtained when combining the optimal mechanisms

of multiple homogeneous goods models. However, the optimal mechanism in my model

can not be implemented by a combination of partial refund contracts. To see this,

start by noting that the first best contract, which is optimal for high ex ante types, can

indeed be implemented by combining full refund contracts for each good. However, the

optimal distorted contracts cannot be implemented by giving back a good for a partial

refund and buying a new one. The latter procedure entails a cost, which is the money

for the returned good which is not being refunded. This is equivalent to an exchange

fee whose use is shown to be not optimal.

1.4 Conclusion

In this paper, I have characterized revenue-maximizing contracts for situations in which

consumers learn their valuations for horizontally differentiated goods gradually over

time. Initially, consumers know about their desire to obtain a certain type of product

and differ in terms of their preference intensity and their highest valuation, but are

uncertain about their favorite variant. Let higher ex ante types have higher valua-

tions for their favorite good and larger cost from consuming non-favorite goods. The

mechanism design approach without ad-hoc restrictions on contracts shows that in the

optimum the flexibility to choose among allocations in the second period is used as a

price discrimination device. The revenue-maximizing contract is a step solution. Con-

sumers with high ex ante types always receive their favorite good. If the valuation of

undesirable goods is sufficiently decreasing in ex ante types, contracts for consumers

with low ex ante types partially restrict the flexibility to choose between goods. The

optimal device to restrict flexibility is restricted delegation. The key feature of re-
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stricted delegation is that prices are completely determined in the first period and

cannot be influenced by the consumer in the second period. This contrasts the optimal

contracts in the standard sequential screening problem in which a homogeneous good

is sold. Restricted delegation can be implemented by Limited Exchange Contracts. A

deterministic Limited Exchange Contract consists of an initial good offered in the first

period at some price and the option to exchange it to some good out of a fixed subset

of goods later on for free. The use of exchange fees as a price discrimination device is

not optimal.

There are several versions of and extensions to the model which are worth being

examined. This paper studies the benchmark case in which the ex ante type com-

pletely the the level of top valuation. Relaxing this assumption about the information

structure could have an impact on the model’s predictions. A model in which the

ex ante type leaves a sufficiently high degree of uncertainty about the top valuation

may imply that optimal policies involve both exchanges and refunds. Furthermore, an

important task is to check if the optimal contract design changes when moving from

the monopoly to an oligopolistic environment; of particular interest is the robustness

of the optimality of restricted delegation. Finally, the question of how capacity con-

straints influence optional exchange policies in the presence of aggregate uncertainty

deems interesting as well: The revenue-maximizer then faces an additional trade-off

between giving consumers the optimal amount of flexibility and directing them towards

available capacity.

1.5 Appendix

Proof of Lemma 1:

Consider any mechanism {X(τ̂ , θ̂), p(τ̂ , θ̂) : τ̂ ∈ T, θ̂ ∈ Θ}.
Construct an alternative mechanism {X̃(τ̂ , θ̂), p̃(τ̂ , θ̂) : τ̂ ∈ T, θ̂ ∈ Θ} such that

• p̃(τ̂ , θ̂) = p(τ̂ , θ̂) ∀τ̂ , θ̂,

• x̃1&2(τ̂ , θ̂) = 0 ∀τ̂ , θ̂,

• x̃i(τ̂ , θi) = xi(τ̂ , θi) + x1&2(τ̂ , θi) ∀τ̂ ,∀i ∈ {1, 2},

• x̃3−i(τ̂ , θi) = x3−i(τ̂ , θi) ∀τ̂ ,∀i ∈ {1, 2}.

From (1.1) can immediately be seen that for any given τ, τ̂ , and a, u(τ, τ̂ , θ, θ) is equal

for both mechanisms, whereas for a 6= θ̂ ex post utility u(τ, τ̂ , θ, θ̂) is weakly higher

under mechanism
(
X(τ̂ , θ̂), p(τ̂ , θ̂)

)
. From this follows that the modified mechanism

satisfies (IC1) and (IC2) if mechanism
(
X(τ̂ , θ̂), p(τ̂ , θ̂)

)
does. �
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Proof of Lemma 2:

Recall that K(τ̂ , δ) = x+(τ̂)− x−(τ̂)− δ(x+(τ̂) + x−(τ̂)).

By (IC ′1), for any τ, τ ′ with τ > τ ′ it holds that

U(τ) ≥ U(τ ′, τ, idθ)

= v[x+(τ ′) + x−(τ ′)] + τ ′ ·K(τ ′, δ)− Eθ[p(τ ′, θ)] + (τ − τ ′) ·K(τ ′, δ)

= U(τ ′) + (τ − τ ′) ·K(τ ′, δ).

Analogeously,

U(τ ′) ≥ U(τ) + (τ ′ − τ) ·K(τ, δ).

Combining the two inequalitities yields

(τ − r′) ·K(τ, δ) ≥ U(τ)− U(τ ′) ≥ (τ − τ ′) ·K(τ ′, δ).

Dividing by (τ − τ ′) yields:

K(τ, δ) is monotonically increasing in τ (MON).

Letting τ ′ converge to τ yields:

∂U(τ)/∂τ = K(τ, δ) almost everywhere (ENV ).

To proof the invers direction, note that from (ENV ) and absolute continuity it follows

that for any τ, τ ′ with τ > τ ′

U(τ) = U(τ ′, τ, idθ) +

τ∫
r′

K(y, δ)dy.

For a proof of absolute continuity see for example Theorem 2 in Milgrom and Segal

(2002).

From the monotonicity condition (MON) it follows that

U(τ ′, τ, idθ) +

τ∫
τ ′

K(y, δ)dy ≥ U(τ ′, τ, idθ) +

τ∫
τ ′

K(τ ′, δ)dy

= U(τ ′) + (τ − τ ′) ·K(τ ′, δ)

= U(τ ′, τ, idθ).
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�

Proof of Lemma 3:

Maximization problem (1.5) is solved by pointwise maximization for every ex ante type

τ subject to constraints:

As z by definition has minimal expected utility, from (ENV ) and (MON) follows

K(τ, δ) ≤ 0 for τ < z

and K(τ, δ) ≥ 0 for τ > z.
(1.11)

Furthermore from the feasibility constraints (F) follows

x+(τ) + x−(τ) ≤ 1

and K(τ, δ) ≤ x+(τ) + x−(τ)− δ(x+(τ) + x−(τ)) ≤ 1− δ.
(1.12)

Case 1: τ ≥ z

The optimal allocation rule maximizes

v[x+(τ) + x−(τ)] +K(τ, δ) ·
(
τ − 1− F (τ)

f(τ)

)
.

Case 1.1: τ > b

The virtual value is positive. If there exists a contract such that x+(τ)+x−(τ) = 1

and K(τ, δ) = 1− δ, by (1.12) it is optimal at point τ .

Case 1.2: τ ≤ b

The virtual value is weakly negative.38 If there exists a contract such that

x+(τ) + x−(τ) = 1 and K(τ, δ) = 0, by (1.11) and (1.12) it is optimal at point τ .

Case 2: τ < z

The optimal allocation rule maximizes

v[x+(τ) + x−(τ)] +K(τ, δ) ·
(
τ +

F (τ)

f(τ)

)
.

The virtual value
(
τ + F (τ)

f(τ)

)
is positive for all τ ∈ R. If there exists a contract

such that x+(τ) + x−(τ) = 1 and K(τ, δ) = 0, by (1.11) and (1.12) it is optimal

38 w.l.o.g. let b and types with τ − 1−F (τ)
f(τ) = 0 get the contract that is optimal for types with

τ − 1−F (τ)
f(τ) < 0
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at point τ .

The two pairs of optimality conditions can be solved for x+(τ) and x−(τ):

x+(τ) + x−(τ) = 1, K(τ, δ) = 0 ⇔ x+(τ) =
1 + δ

2
, x−(τ) =

1− δ
2

x+(τ) + x−(τ) = 1, K(τ, δ) = 1− δ ⇔ x+(τ) =1, x−(τ) =0

The properties suggested above are stated in the lemma. It is left to be proven that

there exists an allocation rule with the properties of Lemma 3 that satisfies (F ), and

any allocation rule satisfying the properties of Lemma 3 satisfies (MON) and U(z) ≥
U(τ) ∀τ ∈ T . The conditions (MON) and U(z) ≥ U(τ) ∀τ ∈ T are immediately

implied by the properties of Lemma 3. Existence of a feasible allocation rule with the

desired properties is shown by construction of an example:

For τ > max{b, z} : xi(τ, θi) = 1, xi(τ, θ3−i) = 0 ∀i ∈ {1, 2}

For τ ≤ max{b, z} : xi(τ, θi) =
1 + δ

2
, xi(τ, θ3−i) =

1− δ
2

∀i ∈ {1, 2}

�

Proof of Lemma 4:

Insert the optimality conditions from Lemma 3 into objective (1.5):

z∫
0

f(τ)

[
v[x+(τ) + x−(τ)] +K(τ, δ) ·

(
τ +

F (τ)

f(τ)

)]
dr

+

τ∫
z

f(τ)

[
v[x+(τ) + x−(τ)] +K(τ, δ) ·

(
τ − 1− F (τ)

f(τ)

)]
dr

=

z∫
0

f(τ)

[
v + 0 ·

(
τ +

F (τ)

f(τ)

)]
dr +

τ∫
z

f(τ)vdr

+

τ∫
max{b,z}

f(τ)(1− δ) ·
(
τ − 1− F (τ)

f(τ)

)
dr

=v +

τ∫
max{b,z}

f(τ)(1− δ) ·
(
τ − 1− F (τ)

f(τ)

)
dr

By definition, τ − 1−F (τ)
f(τ)

> 0 ∀r > b. Hence, z is optimal if and only if z ≤ b. �
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Proof of Lemma 5:

Lemma 4 implies that max{b, z} = b. The conditions from Lemma 3 are then

x+(τ) =
1 + δ

2
and x−(τ) =

1− δ
2

if τ ≤ b,

x+(τ) = 1 and x−(τ) = 0 if τ > b.

Via (1.4) these characteristics determine the sum of prices p(τ, θ1) + p(τ, θ2) for each

ex ante type τ .

Finally, it is left to state the nonempty set of feasible allocation rules that satisfy the

optimality conditions. For all types τ > b from the optimality condition x+(τ) = 1

and x−(τ) = 0 together with feasibility (F), it follows x1(τ, θ1) = x2(τ, θ2) = 1 and

x2(τ, θ1) = x1(τ, θ2) = 0. For τ ≤ b feasibility and optimality can be described by the

following system of equations:

x1(τ, θ1) + x2(τ, θ2) = 1 + δ,

x2(τ, θ1) + x1(τ, θ2) = 1− δ,

x1(τ, θ) + x2(τ, θ) ≤ 1 ∀θ,

xi(τ, θ) ∈ [0, 1] ∀θ, i.

There is one degree of freedom and the non-empty set of solutions to this system is the

following:

x1(τ, θ1) = α ∈ [δ, 1],

x2(τ, θ1) = 1− α,

x1(τ, θ2) = α− δ,

x2(τ, θ2) = 1 + δ − α.

�

Proof of Proposition 1:

It is left to prove that for p(τ, θ1) = p(τ, θ2) ∀τ any contract satisfies (IC1) and (IC2).

Proposition 1 follows then from Lemma 5.

Define the following strengthening of condition (IC2):

u(τ, τ̂ , θ, θ) ≥ u(τ, τ̂ , θ, θ̂) ∀τ, τ̂ , θ, θ̂. (ICs
2)
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(ICs
2) states that in the second period truthtelling is optimal for any ex ante report.

Claim 1: (ICs
2) and (IC ′1) imply (IC2) and (IC1).

(IC2) trivially follows from (ICs
2). (IC1) is implied as well: Consider some ex ante

type and an arbitrary reporting strategy. By (ICs
2), the consumer can always weakly

improve by reporting truthfully about his ex post type. Given truthful reporting about

the second period type, by (IC ′1) the consumer can then weakly improve by reporting

truthfully about the ex ante type.

Claim 2: Any element from the set of allocation rules from Proposition 1 satisfies (ICs
2)

if p(τ, θ1) = p(τ, θ2) ∀τ .

The claim is shown by plugging an arbitrary element of the set and corresponding

prices into (ICs
2) using (1.1):

Case 1: τ̂ ≤ b

(ICs
2) is satisfied, as

α(v−δτ+τ)+(1−α)(v−δτ−τ)−v ≥ (α−δ)(v−δτ+τ)+(1−α+δ)(v−δτ−τ)−v ∀τ, α

and

(1−α+δ)(v−δτ+τ)+(α−δ)(v−δτ−τ)−v ≥ (1−α)(v−δτ+τ)+α(v−δτ−τ)−v ∀τ, α

hold if and only if δ ≥ 0.

Case 2: τ̂ > b

(ICs
2) is satisfied, as

1·(v−δτ+τ)+0·(v−δτ−τ)−v−b(1−δ) ≥ 0·(v−δτ+τ)+1·(v−δτ−τ)−v−b(1−δ) ∀τ, α.

�

Proof of Proposition 2:

To prove the proposition, I first solve a relaxed problem, which gives an upper bound

on profits, and then show that any solution to the relaxed problem is implementable

in P .
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Define P∗ as Po with the additional constraint

x1(τ, θ1) + x2(τ, θ2) ≥ x1(τ, θ2) + x2(τ, θ1) ∀τ. (*)

Claim 1: P∗ is a relaxed problem of P

It is sufficient to show that (*) follows from IC2. IC2 states that ∀τ hold

u(τ, τ, θ1, θ1) ≥ u(τ, τ̂ , θ1, θ2) and

u(τ, τ, θ2, θ2) ≥ u(τ, τ̂ , θ2, θ1).

This is equivalent to

v+(τ) · (x1(τ, θ2)− x1(τ, θ1)) + v−(τ) · (x2(τ, θ2)− x2(τ, θ1))

≤ p(τ, θ2)− p(τ, θ1)

≤ v+(τ) · (x2(τ, θ2)− x2(τ, θ1)) + v−(τ) · (x1(τ, θ2)− x1(τ, θ1)) ∀τ.

An immediate consequence is

v+(τ) · [(x2(τ, θ2)− x2(τ, θ1))− (x1(τ, θ2)− x1(τ, θ1))]

≥ v−(τ) · [(x2(τ, θ2)− x2(τ, θ1))− (x1(τ, θ2)− x1(τ, θ1))] ∀τ,

which is equivalent to

x1(τ, θ1) + x2(τ, θ2) ≥ x1(τ, θ2) + x2(τ, θ1) ∀τ. (*)

Define e = sup{τ ∈ R|r − 1−F (τ)
f(τ)

≤ v
δ
}) whenever the supremum exists and e = 0

otherwise.

Claim 2: The solution to P∗ is the following:

For r > b : x1(τ, θ1) = x2(τ, θ2) = 1, x1(τ, θ2) = x2(τ, θ1) = 0

and Eθ[p(τ ′, θ)] = v + b(1− δ).

For r ∈ [e, b] : x1(τ, θ1) = x1(τ, θ2) = α, x2(τ, θ2) = x2(τ, θ1) = 1− α α ∈ [0, 1]

and Eθ[p(τ ′, θ)] = v − δe.

For r < e : xi(τ, θj) = 0 ∀i, j ∈ 1, 2

and Eθ[p(τ ′, θ)] = 0.

As the first period incentive constraints are identical in Po and P∗, Lemma 2 applies.
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Lemma 2: The first period incentive constraints IC ′1 are satisfied if and only if

∂U(τ)/∂τ = K(τ, δ) a.e. (ENV )

and K(τ, δ) is mon. increasing in r. (MON)

(*) is equivalent to x+(τ) ≥ x−(τ) and from (*) and δ < 0 follows K(τ, δ) ≥ 0.

Hence in the optimum expected utility is increasing in ex ante types everywhere and

the lowest ex ante type’s participation constraint is binding. Following the standard

approach, the problem can be restated as

max
x

τ∫
0

f(τ)

[
v[x+(τ) + x−(τ)] +K(τ, δ)

(
τ − 1− F (τ)

f(τ)

)]
dr

s.t. MON , (F), (*).

A solution to this problem is found by pointwise maximization of the relaxed version

without the monotonicity constraint.

Case 1: τ > b

Virtual value is positive. Pointwise maximization gives x+(τ) = 1 and x−(τ) = 0.

For a formal derivation see Lemma 3. The contract trivially satisfies (*).

Case 2: τ ≤ b

Virtual value is negative. Maximization is done in two steps:

First, for any fixed x+(τ) + x−(τ) = m, under the restriction (*) virtual surplus

is maximized for x+(τ) = x−(τ) = m/2.

Second, m is chosen to satisfy (F) and maximize

v ·m− δ ·m
(

1− 1− F (τ)

f(τ)

)
.

The solution to this linear problem is

m =

{
1, if τ − [1− F (τ)]/f(τ) ≥ v/δ

0, if τ − [1− F (τ)]/f(τ) < v/δ

Cases 1 and 2 give the allocation rules of Claim 2, which satisfy the monotonicity

constraint. Expected prices are fixed by equation (1.4).

Claim 3: Any solution to P∗ is implementable in P if prices are ex post type indepen-
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dent.

It is left to prove that for p(τ, θ1) = p(τ, θ2) ∀r any solution to P∗ satisfies (IC1) and

(IC2).

According to the proof of Proposition 1 it suffices to show that for p(τ, θ1) = p(τ, θ2)

any solution to P∗ satisfies ICs
2 .

As shown in the proof of Proposition 1, the contract for types τ > b satisfies ICs
2 . The

contract for types τ ≤ b trivially satisfies ICs
2 , as the report about the ex post type

has no influence on the allocation.

Claims one, two and three imply the proposition. �

Proof of Lemma 6:

First, note that contract (RD) satisfies∫ 1

0

X(1|τ, θ)dG(θ) = 1 ∀I ∈ [0; 1/2]. (1.13)

Second, plugging contract (RD) and (1.13) into (1.9) yields

R(τ) = 1−
I∫

0

c(θ, I)dG(θ)−
1∫

1−I

c(θ, 1− I)dG(θ) =: R(τ, I). (1.14)

Note that R(τ, 0) = 1, and from the model assumption Eθ[c(θ, k)] > 1−δ it follows that

R(τ, 1/2) < δ. If R(τ, I) is continuous in I, there is an I ′ such that R(τ, I ′) = 0 by the

intermediate value theorem. I show that the second summand in (1.14) is continuous.

The argument for the third summand is analogous.

To begin with, note that

I+γ∫
0

c(θ, I+γ)dG(θ)−
I∫

0

c(θ, I)dG(θ) =

I∫
0

c(θ, I+γ)−c(θ, I)dG(θ)+

I+γ∫
I

c(θ, 1−I)dG(θ).

c(.) is bounded above by v and hence

I+γ′∫
I

c(θ, 1− I)dG(θ) ≤ γ′v.

As c(.) is a continuous function that maps from a compact subset of the R2 into the

the real numbers, it is uniformly continuous by the Heine-Cantor theorem. Hence, for
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any ε′ there is a γ′′ such that

I∫
0

c(θ, I + γ′′)− c(θ, I)dG(θ) ≤
I∫

0

ε′dG(θ) ≤ ε′.

For an arbitrary ε, choose γ′ = ε/2v, γ′′ such that ε′ = ε/2, and γ = min{γ′, γ′′}. Then

I+γ∫
0

c(θ, I + γ)dG(θ)−
I∫

0

c(θ, I)dG(θ) ≤ ε.

�

Proof of Lemma 7:

Recall that K(τ̂ , δ) =
1∫
0

1∫
0

1− δ − c(θ, s)dX(s|τ̂ , θ)dG(θ).

An immediate consequence from the similar structure of the expected utilities (1.8)

and (1.2) is the following characterization of incentive compatibility:

The first period incentive constraints (IC ′1) are satisfied if and only if

∂U(τ)/∂τ = K(τ, δ) a.e. (ENV )

and K(τ, δ) is mon. increasing in τ. (MON)

Therefore maximizing with respect to the constraints (IC ′1), (IR) and (F ) is equivalent

to taking (ENV ), (MON), (IR) and (F ) as constraints. Depending on τ , the term

K(τ, δ) can take both negative and positive values.

The solution concept introduced for the two-goods model is applied here as well: In

every solution, there exists an ex ante type z ∈ [0, τ ] such that U(z) ≤ U(τ) ∀τ ∈ T .

First, I arbitrarily fix z and solve problem Pzo , which is problem Po with the additional

constraint U(τ) ≥ U(z) ∀τ ∈ T . Second, I maximize profit in z.

Preliminary Step: Reformulation of Pzo

By (ENV ) and individual rationality, in the optimum, U(z) = 0 and any ex ante type’s

expected utility can then be written as

U(τ) = U(z) +

τ∫
z

K(y, δ)dy =

τ∫
z

K(y, δ)dy. (1.15)
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By (1.8) and (1.15) prices can be written as a function of the allocation:

1∫
0

p(τ, θ)dG(θ) = v

 1∫
0

X(1|τ, θ)dG(θ)

+ τ ·K(τ, δ)−
τ∫
z

K(y, δ)dy. (1.16)

Plugging (1.16) into the objective reduces problem Pzo to

max
x

τ∫
0

f(τ)

(
v

1∫
0

X(1|τ, θ)dG(θ) + τ ·K(τ, δ)−
τ∫
z

K(y, δ)dy

)
dτ

s.t. (MON), (F ) and U(z) ≥ U(τ) ∀τ ∈ T .

By integration by parts and rearranging terms, the problem can be rewritten as

max
x

z∫
0

f(τ)

v 1∫
0

X(1|τ, θ)dG(θ) +K(τ, δ) ·
(
τ +

F (τ)

f(τ)

) dτ
+

τ∫
z

f(τ)

v 1∫
0

X(1|τ, θ)dG(θ) +K(τ, δ) ·
(
τ − 1− F (τ)

f(τ)

) dτ
(1.17)

s.t. (MON), (F ) and U(z) ≥ U(τ) ∀τ ∈ T .

Claim 1: A feasible allocation rule which satisfies condition (RO) is a solution to Pzo .

If there exists a feasible allocation rule that satisfies (RO) then this condition is also

necessary for an allocation rule to be a solution to Pzo .∫ 1

0

X(1|τ, θ)dG(θ) =1 and K(τ, δ) = 0 if τ ≤ max{b, z}∫ 1

0

X(1|τ, θ)dG(θ) =1 and K(τ, δ) = 1− δ if τ > max{b, z}
(RO)

Maximization problem (1.17) is solved by pointwise maximization for every ex ante

type τ . Recall b = sup{τ ∈ R|(τ − 1−F (τ)
f(τ)

≤ 0}.
As z by definition has minimal expected utility, from (ENV ) and (MON) it follows

K(τ, δ) ≤ 0 for τ < z

and K(τ, δ) ≥ 0 for τ > z.
(1.18)

Furthermore from the feasibility constraints (F ) it follows∫ 1

0

X(1|τ, θ)dG(θ) ≤ 1 and (1.19)
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K(τ, δ) =

∫ 1

0

∫ 1

0

(1− δ − c(θ, s))dX(s|τ, θ)dG(θ)

≤
∫ 1

0

∫ 1

0

(1− δ)dX(s|τ, θ)dG(θ)

≤ 1− δ.

(1.20)

Case 1: τ > z

The optimal allocation rule maximizes

v

1∫
0

X(1|τ, θ)dG(θ) +K(τ, δ) ·
(
τ − 1− F (τ)

f(τ)

)
.

Case 1.1: τ > b

The virtual value is positive. If there exists a contract such that
∫ 1

0
X(1|τ, θ)dG(θ) =

1 and K(τ, δ) = 1− δ, by (1.19) and (1.20) it is optimal at point τ .

Case 1.2: τ ≤ b

The virtual value is weakly negative.39 If there exists a contract such that∫ 1

0
X(1|τ, θ)dG(θ) = 1 and K(τ, δ) = 0, by (1.18), (1.19) and (1.20) it is op-

timal at point τ .

Case 2: τ < z

The optimal allocation rule maximizes

v

1∫
0

X(1|τ, θ)dG(θ) +K(τ, δ) ·
(
τ +

F (τ)

f(τ)

)
.

The virtual value
(
τ + F (τ)

f(τ)

)
is positive for all τ ∈ T . If there exists a contract

such that
∫ 1

0
X(1|τ, θ)dG(θ) = 1 and K(τ, δ) = 0, by (1.18), (1.19) and (1.20) it

is optimal at point τ .

Provided the existence of a feasible allocation rule with the determined characteristics,

any solution to the relaxed problem has the properties (RO). Monotonicity is satisfied.

Claim 2: Given feasible allocation rules that satisfy (RO) exist, z is optimal if and only

if z ≤ b.

39 w.l.o.g. let b and types with τ − 1−F (τ)
f(τ) = 0 get the allocation of low types
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Insert the optimality conditions (RO) into objective (1.17):

z∫
0

f(τ)

v 1∫
0

X(1|τ, θ)dG(θ) +K(τ, δ) ·
(
τ +

F (τ)

f(τ)

) dτ
+

τ∫
z

f(τ)

v 1∫
0

X(1|τ, θ)dG(θ) +K(τ, δ) ·
(
τ − 1− F (τ)

f(τ)

) dτ
=

z∫
0

f(τ)

[
v + 0 ·

(
τ +

F (τ)

f(τ)

)]
dτ +

τ∫
z

f(τ)vdτ +

τ∫
max{b,z}

f(τ)(1− δ) ·
(
τ − 1− F (τ)

f(τ)

)
dτ

=v +

τ∫
max{b,z}

f(τ)(1− δ) ·
(
τ − 1− F (τ)

f(τ)

)
dτ

By definition, τ − 1−F (τ)
f(τ)

> 0 ∀τ > b. Hence, z is optimal if and only if z ≤ b.

Claim 3: A feasible allocation rules that satisfies (RO) does exist.

I construct a mechanism whose deterministic allocation rule is feasible and satisfies

(RO). I refer to the mechanism as menu (RD): Ex ante types τ > b obtain the first

best contract for price p(τ, θ) = v + b(1− δ) ∀θ, and low ex ante types τ ≤ b obtain

contract (RD) with responsiveness δ. Contract (RD) with responsiveness δ does exist

by Lemma 6.

By construction, the allocation rule is feasible. The final step is to show that menu

(RD) satisfies (RO): First, note that obviously the mechanism satisfies the full market

coverage property ∫ 1

0

X(1|τ, θ)dG(θ) = 1 ∀τ. (1.21)

Second, plugging the full market coverage property into K(τ, δ) yields

K(τ, δ) = R(τ)− δ. (1.22)

When plugging menu (RD) into (1.22), I obtain K(τ, δ) = 0 if τ ≤ b, and K(τ, δ) = 1−δ
if τ > b.

The lemma follows from claims 1 to 3. �

Proof of Lemma 8:

It suffices to show that menu (RD) is implementable in the original problem with
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private ex post types. Lemma 8 then follows from Lemma 5.

In line with Section 1.2 I show that menu (RD) satisfies the following strengthened

version of IC2:

1∫
0

vτ,θ(s)dX(s|τ̂ , θ)− p(τ̂ , θ) ≥
1∫

0

vτ,θ(s)dX(s|τ̂ , θ̂)− p(τ̂ , θ̂) ∀τ, τ̂ , θ, θ̂. (ICs
2)

(ICs
2) states that the consumer has an incentive to truthfully report his ex post type

independent of his ex ante report. As argued in the proof of Proposition 1, this is

sufficient to show incentive compatibility.

As menu (RD) satisfies p(τ̂ , θ̂) = p(τ̂ , θ̂′) ∀τ ≤ b ∀θ̂, θ̂′ ∈ Θ, menu (RD) satisfies (ICs
2)

if and only if:

1∫
0

vτ,θ(s)dX(s|τ̂ , θ) ≥
1∫

0

vτ,θ(s)dX(s|τ̂ , θ̂) ∀τ, τ̂ , θ, θ̂.

As menu (RD) is deterministic, denote the allocation by xRD
τ̂,θ̂
∈ S. Then menu (RD)

satisfies (ICs
2) if and only if:

vτ,θ(x
RD
τ̂,θ ) ≥ vτ,θ(x

RD
τ̂,θ̂

) ∀τ, τ̂ , θ, θ̂

⇔ v + (1− δ)τ − τc(θ, xRDτ̂,θ ) ≥ v + (1− δ)τ − τc(θ, xRD
τ̂,θ̂

) ∀τ, τ̂ , θ, θ̂.
(1.23)

A sufficient condition for (1.23) is:

⇔ c(θ, xRDτ̂,θ ) ≤ c(θ, xRD
τ̂,θ̂

) ∀τ, τ̂ , θ, θ̂. (1.24)

Case 1: τ̂ ≤ b

Case 1.1: θ ∈ [I; 1− I]

By definition, xRD
τ̂,θ̂

= θ̂ ∀θ̂ ∈ [I; 1− I].

(1.24) is satisfied, as c(θ;xRDτ̂,θ ) = 0 ≤ c(θ, xRD
τ̂,θ̂

) ∀τ, θ, θ̂.

Case 1.2: θ < I

By definition, xRD
τ̂,θ̂
≥ I ∀θ̂.

(1.24) is satisfied, as c(θ, xRDτ̂,θ ) = c(θ, I) ≤ c(θ, xRD
τ̂,θ̂

) ∀τ, θ, θ̂.

Case 1.3: θ > 1− I
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By definition, xRD
τ̂,θ̂
≤ I ∀θ̂.

(1.24) is satisfied, as c(θ, xRDτ̂,θ ) = c(θ, 1− I) ≤ c(θ, xRD
τ̂,θ̂

) ∀τ, θ, θ̂.

Case 2: τ̂ > b

By definition, xRD
τ̂,θ̂

= θ̂ ∀θ̂.
(1.24) is satisfied, as c(θ, xRDτ̂,θ ) = 0 ≤ c(θ, xRD

τ̂,θ̂
) ∀τ, θ, θ̂. �

Proof of Lemma 9:

Assume there is a solution such that ∃τ ′ < b and Θ′,Θ′′ ⊆ Θ with positive probability

measure such that p(τ ′, θ′) > p(τ ′, θ′′) ∀θ′ ∈ Θ′, θ′′ ∈ Θ′′.

Claim 1: For all (θ′, θ′′) ∈ Θ′ ×Θ′′ ∃τθ′,θ′′ > 0 such that ∀τ ≤ τθ′,θ′′ truthtelling about

the ex post type is not optimal for at least one θ ∈ {θ′, θ′′}.

Take any pair θ′, θ′′ with θ′ ∈ Θ′ and θ′′ ∈ Θ′′. An arbitrary ex ante type τ that has

reported τ ′ will report honestly about his ex post type only if the following inequalities

hold:

1∫
0

vτ,θ′(s)dX(s|τ ′, θ′)− p(τ ′, θ′) ≥
1∫

0

vτ,θ′(s)dX(s|τ ′, θ′′)− p(τ ′, θ′′), (1.25)

1∫
0

vτ,θ′′(s)dX(s|τ ′, θ′′)− p(τ ′, θ′′) ≥
1∫

0

vτ,θ′′(s)dX(s|τ ′, θ′)− p(τ ′, θ′). (1.26)

Using the full market coverage property, (1.25) and (1.26) are equivalent to 1∫
0

c(θ′, s)dX(s|τ ′, θ′)−
1∫

0

c(θ′, s)dX(s|τ ′, θ′′)

 ∗ τ
≤ p(τ ′, θ′′)− p(τ ′, θ′)

≤

 1∫
0

c(θ′′, s)dX(s|τ ′, θ′)−
1∫

0

c(θ′′, s)dX(s|τ ′, θ′′)

 ∗ τ.
(1.27)

Since p(τ ′, θ′′) − p(τ ′, θ′) 6= 0, ∃τθ′,θ′′ > 0 such that ∀τ ≤ τθ′,θ′′ (1.27) does not hold.

Hence, by (1.25) and (1.26) any type τ ≤ τθ′,θ′′ that has claimed to be of type τ ′ has a

strict incentive to lie about his ex post type when being either θ′ or θ′′.

Claim 2: Define τΘ′,Θ′′ = inf {τθ′,θ′′ |θ′ ∈ Θ′, θ′′ ∈ Θ′′}. Any type τ ≤ τΘ′,Θ′′ that has
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claimed to be of type τ ′ has a strict incentive to lie on a set of ex post types that has

positive probability measure.

By construction, any type τ ≤ τΘ′,Θ′′ has a strict incentive to lie when being either

θ′ or θ′′ for any pair (θ′, θ′′) ∈ (Θ′,Θ′′). Assume first ∃θ′ ∈ Θ′ and Θ′′s ⊆ Θ′′ with

positive probability measure such that types (τ, θ′), τ ≤ τΘ′,Θ′′ have no strict incentive

to deviate to any θ ∈ Θ′′s . But then by Claim 1 the types τ ≤ τΘ′,Θ′′ have an incentive

to deviate on Θ′′s , which has positive measure. Second, assume that for any θ′ there is

no such subset Θ′′s . But then by Claim 1 the types τ ≤ τΘ′,Θ′′ have a strict incentive

to deviate on the entire set Θ′, which has positive measure.

Claim 3: If an ex ante type τ reports τ ′′ ≤ b and then truthfully reveals his ex post type

θ, his first period expected utility is zero (U(τ ′′, τ, idθ) = 0).

By assumption, the allocation rule is optimal and therefore by Lemma 8 satisfies the

properties of Lemma 7. Inserting the optimality properties from Lemma 7 into utility

(1.8) reveals that

U(τ ′′, τ, idθ) = U(τ ′′′′, τ ′′′, idθ) ∀τ, τ ′′′ ∈ T, ∀τ ′′, τ ′′′′ < b.

It follows that

U(τ ′′, τ, idθ) = U(τ ′′) = U(z) = 0 ∀τ ∈ T, ∀τ ′′ < b.

Final Step: By Claim 3 U(τ ′, τ, idθ) = 0. If an ex ante type τ with τ ≤ min{τΘ′,Θ′′ , b}
reports τ ′, by Claim 2 he has a strict incentive to deviate from truthfully revealing his

ex post type θ on a set of ex post types with positive probability measure. From this

follows U(τ ′, τ, σ∗) > 0 ∀r ≤ τΘ′,Θ′′ , where σ∗(θ, τ, r′) is the consumer’s optimal strat-

egy about reporting ex post types as a function of his true θ, when being of type τ and

having reported τ ′. From IC1 follows then U(τ) ≥ U(τ ′, τ, σ∗) > 0. This contradicts

optimality condition U(τ) = v − v = 0 which follows from Lemma 7. �

Proof of Proposition 3:

Lemmas 7 to 9 show that the properties given in the four bullet points are necessary

for a solution. The conditions of Proposition 3 imply all conditions of Lemma 7.

Hence, if the properties and ex post type independent prices are sufficient for incentive

compatibility, the proof is completed.

Again, it is sufficient to show that (ICs
2) is satisfied. Using ex post type independence
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of prices p(τ, θ) = p(τ, θ′) ∀τ ∈ R ∀θ, θ′ ∈ Θ, (ICs
2) can be reformulated:

1∫
0

vτ,θ(s)dX(s|τ̂ , θ)− p(τ̂ , θ) ≥
1∫

0

vτ,θ(s)dX(s|τ̂ , θ̂)− p(τ̂ , θ̂) ∀τ, τ̂ , θ, θ̂

⇔
1∫

0

v + (1− δ)τ − τc(θ, s)dX(s|τ̂ , θ) ≥
1∫

0

v + (1− δ)τ − τc(θ, s)dX(s|τ̂ , θ̂) ∀τ, τ̂ , θ, θ̂

⇔
1∫

0

c(θ, s)dX(s|τ̂ , θ) ≤
1∫

0

c(θ, s)dX(s|τ̂ , θ̂) ∀τ, τ̂ , θ, θ̂

Case 1: τ̂ ≤ b

(ICs
2) is independent of the true ex ante type τ and relabeling τ̂ as τ gives (1.10). By

the second property of Proposition 3 (1.10) is satisfied.

Case 2: τ̂ > b

By the first property,

1∫
0

c(θ, s)dX(s|τ̂ , θ) = 0 ≤
1∫

0

c(θ, s)dX(s|τ̂ , θ̂) ∀τ, τ̂ , θ, θ̂.

�

Proof of Proposition 4:

The proof follows from the main text.

�

Proof of Proposition 5:

The proof follows from the main text.

�
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Chapter 2

Exchange Fees as a Price

Discrimination Device

We consider a monopolist who sells horizontally differentiated goods to a buyer who

learns his valuations for the goods gradually over time. We analyze when a menu

of contracts with exchange fees maximizes the seller’s profits. The use of exchange

fees is optimal if two key properties are satisfied: When contracting takes place, the

buyer is uncertain about his difference in valuations and the seller does not know which

magnitude of differences the buyer roughly expects. We provide several foundations

when this is the case. The contracts in the optimal menu consist of a price payed

upfront for an initially obtained good and an exchange fee. Contracts with higher

upfront prices have lower exchange fees. Exchange fees are not beneficial when buyers

initially only differ in their belief which good they prefer but expect similar magnitudes

of valuation differences.

2.1 Introduction

In a substantial part of seller-buyer relationships, the buyer is granted the possibility

to exchange his good or service after contracting has taken place. Often the buyer’s

choice to exchange his good is connected to some extra cost. This cost may explicitly

take the form of exchange fees, it may consist of a partial refund for the returned good

combined with the necessity to buy the new good, or it takes the form of service charges

and other kinds of fees. Examples are the purchase of tickets for public transport, the

hotel industry, car rental services, buying experience goods, but it also fits the pricing

policy of online shopping platforms and mail order companies. More or less explicitly,

firms often offer a menu of contracts which differ in the height of the exchange fee and

the base price. An economically important example is the airline industry. Typically,

the consumer can buy a ticket for the same seating class in the same flight for different
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prices which depend on how costly exchange options are.

The underlying prerequisite for these exchange options to create value to the buyer

is that the buyer’s preferences or his information is changing over time. Therefore, this

paper considers a monopolist who sells horizontally differentiated goods to a buyer who

learns his valuations for the goods gradually over time. We identify conditions under

which it is optimal for the firm to offer a menu of contracts that leave the buyer different

degrees of flexibility in product choice in order to price-discriminate. In particular, we

study when the seller optimally uses exchange fees to govern exchanges. We identify

two key properties under which the use of exchange fees is optimal. First, the buyer is

uncertain about his difference in valuations for the goods when contracting takes place.

Second, the seller does not know which magnitude of differences the buyer roughly

expects. In particular, the second property is not satisfied when buyers initially only

differ in their belief which good they prefer but expect similar magnitudes of valuation

differences. We show that in this case the use of exchange fees is not beneficial. While

we show our results by means of a reduced-form model, we provide three foundations

which help to identify which kind of situations the reduced-form model represents.

The model consists of a seller who can sell two horizontally differentiated goods

to a buyer with unit demand. The variable along which the goods are differentiated

might be the departure time of a transportation ticket or any other product feature.

At the point in time when contracting takes place, the buyer is, however, uncertain

about his own valuations for the two goods. Reasons for this uncertainty are that his

preferences might change when there is time between contracting and consumption, he

cannot perfectly assess certain product features because he buys the good online, the

good is an experience good, or he buys the good for another person. Still, the buyer

does already have some private information about whether he tends to have a large or

small difference in valuations. This information about the difference is not perfect in

that any difference may realize.1 Before consumption takes place, the buyer learns his

actual valuations.

We show that in our reduced-form model the seller sequentially screens the buyer.

At the time of contracting, the seller optimally price-discriminates according to how

large the buyer’s valuation differences tend to be by offering contracts with different

degrees of flexibility to change between the goods. At a later point in time, the seller

screens according to the realized difference in valuations. The revenue-maximizing

menu of contracts can be implemented by a menu of contracts that allow for exchanges

subject to an exchange fee: A contract specifies a good, a price, and an exchange fee.

At the contracting stage, the buyer obtains the goods against a price. Later, the buyer

has the option to exchange goods when additionally paying the exchange fee. The menu

1 The three foundations for the model are foundations for when this information structure applies.
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satisfies the classical no-distortion-at-the-top condition: The buyer type that expects

the largest valuation differences obtains the first best contract, which is a contract with

a costless exchange option. The menu contains a continuum of contracts with positive

exchange fees. The menu is designed such that there is a negative relation between the

height of the exchange fee and the initial price for the good.

In order to better assess when our results apply, we provide several foundations for

the model. First, we can transform our model to one in which the seller can sell the

goods at both ends of a Hotelling line. The buyer’s transportation cost is known, but

when contracting takes place, his position on the line is uncertain. The buyer’s initial

information is about the spread of the distribution from which his position on the line

is drawn. The interpretation enabled by this foundation is that the consumers simply

differ in their uncertainty about which good they favor. This uncertainty might for

example depend on how far in advance contracting takes place or whether the consumer

buys the good for himself or as a gift. Very uncertain consumers then choose expensive

contracts which give them flexibility through low exchange fees.

Another interpretation of this model as a Hotelling model is that all buyer types

share the same belief about the distribution their position is drawn from, but they

differ in their transportation cost functions. The interpretation of this foundation is

that the buyer knows how choosy he is in general, which is his private information.

More choosy consumers know their desire to obtain a good which perfectly matches

their taste and are hence willing to pay higher prices initially in order to avoid high

charges when exchanging the good.

An important further foundation is not based on preferences but purely on the

information structure: Let all buyer types share the same belief about their final dis-

tribution of valuations. Instead, the buyer types differ in how much they expect to

know about their valuations when they have to make the final decision which good to

consume. When the buyer is not perfectly sure about his final valuations, he decides

based on the expected valuations. Note that expectations are less dispersed than the

actual valuations. If the buyer expects to obtain less information until the last point in

time when he must take his decision, his distribution of expected valuations is less dis-

persed. The buyer typically has less information when he has to fix the terms of trade

early. We will argue that a business trip is often subject to less rigid circumstances than

a holiday trip, meaning that leisure travelers have to fix the terms of trade earlier and

with less information than business travelers. Interpreting the optimal menu that way

means that business travelers choose contracts with low exchange fees because they

simply know more about their preferences and hence have a stronger opinion which

good is best at the latest point when there is the possibility to exchange goods.

Next, we give here a short intuition why price discrimination is profitable in our
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setup. We refer to buyer types which expect larger valuation differences as choosy and

to the other buyer types as unconcerned. The first prerequisite for price discrimination

to be profitable is that choosy buyer types have a higher expected valuation for the

first best contract. This follows as the valuation for the favorite good, which is the

valuation for the first best contract, is on average higher when the buyer expects large

differences in the valuations. When only offering the first best contract, the seller would

have to trade-off excluding unconcerned buyer types and leaving rents to choosy buyer

types. The seller can, however, profitably price-discriminate by offering an additional

contract that is cheaper but has a positive exchange fee. The exchange fee is chosen

such that price and exchange fee together exceed the price for the first best contract.

As choosy buyer types expect to pay the exchange fee often, this alternative contract

is unattractive for them compared to unconcerned buyer types. When offering the

alternative contract to the unconcerned buyer types, the seller can extract more rent

from the choosy buyer types.

The paper furthermore shows that price discrimination is only profitable when

the buyer initially has private information about the size of valuation differences he

expects. The seller does not screen the buyer’s information about which good he tends

to prefer. To make that point, we consider the extreme case in which the buyer initially

has only information about which good he is likely to prefer but the expected valuation

difference is kept constant across buyer types. We show that a sequential screening

structure is not profitable in this environment. Furthermore, we argue intuitively why

dynamic screening is also not possible in this setup even if it would be desirable.

Our paper adds to the literature on sequential screening, which studies the optimal

design of contracts when buyers privately learn their final valuations only after con-

tracting but before consumption takes place. With a few exceptions, the literature has

focused on the sale of homogeneous goods to buyers who learn their valuation for this

good over time.2 Although we study a model with heterogeneous goods, our model

shares many features with this literature. In particular, the buyer learns the payoff

relevant variable only after contracting. We follow most of the literature on sequential

screening by solving our problem via a first order approach. However, because we are

analyzing a model with horizontally differentiated goods, several steps require careful

consideration. The technical difficulty is that at both the contracting stage and the

consumption stage it is a priori unclear which buyer type has the lowest utility.3 While

2 Important contributions to the literature on sequential screening are Baron and Besanko (1984),
Courty and Li (2000), Battaglini (2005), Eső and Szentes (2007a,b, 2015), Inderst and Peitz (2012),
Boleslavsky and Said (2013), Pavan et al. (2014), Deb and Said (2015), Li and Shi (2015), Battaglini
and Lamba (2015), and Krähmer and Strausz (2015a,b).

3 This kind of problems is studied in the literature on mechanism design with type-dependent outside
options. For an exposition see Lewis and Sappington (1989), Maggi and Rodriguez-Clare (1995),
Jullien (2000), and Nöldeke and Samuelson (2007).
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it turns out that this peculiarity does not have any impact in the consumption-stage,

we identify conditions under which the expected utility is monotone in the buyer’s

“choosiness” in the contracting stage.

There is only a small number of papers which explicitly treat a dynamic screening

model in which the buyer learns about his preferences over heterogeneous goods. The

most related paper is Herbst (2016). In both papers, exchange policies with varying

flexibility are employed as a price discrimination device. However, optimal contracts

specify a price, an initial product choice, and a limited range of products within which

exchange is costless. These optimal contracts contrast with the results presented in this

paper: While in our paper the seller uses transfers to sometimes prevent the buyer from

exchanging his good, in the other paper flexibility is restricted by an appropriately de-

signed interdiction. The key difference in the setup in Herbst (2016) is that consumers

know already at the point in time of contracting how large valuation differences are for

them but only later learn which good they favor. As one main objective of our paper

is to advance the understanding of which model features drive the optimal design of

exchange policies, the comparison of the two papers is discussed in Section 2.6.1.

Furthermore, Gale (1993) studies intertemporal pricing policies in a setting which

is similar to the two-goods version of Herbst (2016). In order to obtain a fruitful com-

parison between monopolistic and oligopolistic pricing behavior, the paper, however,

restricts to setting a uniform price in each period. Instead, the major contribution of

our paper consists of the characterization of optimal contracts. Furthermore, we gen-

eralize the model in Gale (1993) in that the buyer initially does not perfectly know his

difference in valuations, but still every difference can realize. The two papers Gale and

Holmes (1992, 1993) start with the same basic framework as Gale (1993) but depart

from price discrimination and focus on how intertemporal pricing rules can optimally

resolve capacity problems. In contrast, we focus on pure price discrimination motives

without any capacity constraints. Recently, Möller and Watanabe (2016) rediscovered

the early model on advance-purchase discounts with differentiated goods as a way to

introduce oligopolistic competition. In order to obtain a tractable analysis of strategic

interaction, they as well restrict strategies to uniform prices per period.

The paper is organized as follows. In Section 2.2, we introduce the model in reduced

form. In Section 2.3, we discuss three foundations for the reduced-form model, which

help to identify situations in which the use of our model is appropriate. In Section

2.4 the model is solved. The indirect implementation through contracts that govern

exchanges via exchange fees is presented in Section 2.5. Section 2.6 relates our model

to Herbst (2016) and discusses the case of first order stochastic dominance. Finally,

Section 2.7 concludes.
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2.2 Model

Consider a seller (she) that sells two differentiated goods to a buyer (he) with unit

demand. The buyer’s valuations v1 for good 1 and v2 for good 2 depend on his ex post

type θ in the following way:

v1(θ) = v + θ

and v2(θ) = v − θ.

The ex post type θ ∈ Θ = [θ, θ] with 0 ∈ (θ, θ) determines both the valuation premium

|v1(θ)− v2(θ)| and which good is preferred. Let the basic valuation v be large enough

such that valuations are always positive, v > max{θ, θ}.
The seller’s constant marginal cost of production is c with c ∈ (0, v). The terms of

trade are described by an allocation X = (x1, x2), where xi is the probability to trade

good i such that x1 + x2 ≤ 1, and a payment t from the buyer to the seller.4 Given

the terms of trade (x1, x2, t), the buyer of ex post type θ has ex post utility

ũ(θ,X, t) = v1(θ) · x1 + v2(θ) · x2 − t. (2.1)

When the seller and buyer contract, the buyer’s true ex post type θ is unknown

to both parties. The buyer is, however, better informed about θ than the seller. The

buyer’s informational advantage at the contracting stage is expressed through a pri-

vately known ex ante type τ ∈ T = [τ , τ ]. The ex ante type is drawn from the distri-

bution Fτ (τ) with density fτ (τ) that has an increasing hazard rate fτ (τ)/(1− Fτ (τ)).

Each ex ante type τ specifies a distribution F (·|τ) over Θ from which his ex post type

is privately drawn at a later point in time. For any τ , F (·|τ) permits a density function

f(·|τ), which is bounded from above and bounded away from 0 on Θ. The derivatives

∂F (θ|τ)/∂τ and ∂Fτ (τ)/∂τ also exist and are bounded.

The family of distributions {F (·|τ)|τ ∈ T} is ordered by the rotation order with

constant means, which is a form of mean preserving spread.5

Definition 1. Rotation Order. The family of distributions {F (·|τ)|τ ∈ T} is rotation-

ordered if there exists a θ† ∈ Θ such that for all τ, τ ′ ∈ T with τ > τ ′ holds F (θ|τ) ≥
F (θ|τ ′) if θ < θ† and F (θ|τ) ≤ F (θ|τ ′) if θ > θ†.

The rotation order has been introduced by Johnson and Myatt (2006). The defi-

nition implies that higher ex ante types have more spread distributions of θ implying

4 Excluding the possibility to trade both goods at the same time is without loss of generality: As the
buyer has unit demand, it is never optimal for the seller to assign both goods to the buyer at the
same time. For a formal argument see Herbst (2016).

5 Theorem 3.A.44 in Shaked and Shanthikumar (2007) shows that joint with a constant mean the
rotation order implies second order stochastic dominance and hence a mean preserving spread.
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larger differences in valuations on average. Section 2.3 provides several formal founda-

tions for this assumption.

The seller has full commitment and can contract with the buyer after he has pri-

vately learned his ex ante type τ but before he learns his ex post type θ. At the

contracting stage, the buyer has an outside option of zero. After contracting, the con-

sumer privately learns his ex post type and then consumption takes place. The timing

is illustrated in Figure 2.1.

2.3 Foundations

2.3.1 Differing Degrees of Uncertainty Resolution

The model presented can be interpreted in several ways other than the buyer having

some prior information about his choosiness. Instead of being a statement about pref-

erences, the model also results from the buyer expecting differing degrees of uncertainty

resolution.

Assume there is just one distribution F from which the buyer draws his ex post type

θ, independent of his ex ante type. In this case the buyer does not posses private

information about his preferences in the first period. However, it might happen that

the buyer is forced to fix the terms of trade before his actual ex post type is fully

revealed. There are many reasons why this may occur in practice, one being that the

buyer must make other investments which are connected to the purchase but which

cannot be adapted ex post. Think for example of a leisure traveler planning holiday:

He must request holiday, he has to coordinate the timing with his companions or the

persons he visits, he has to book a hotel, etc. In that case the buyer has to choose an

option within his contract based on his latest expectation about his ex post type.

The buyer types differ ex ante in how precise information they expect to obtain until

they have to make a final decision on the good they finally consume. Typically, the

reason for this difference is that buyer types differ in how far in advance of consumption

they have to fix the terms of trade. For example, a business trip is often subject to

less rigid circumstances than a holiday trip. Compared to a business traveler, a leisure

traveler hence has to decide which option to take far in advance of the flight, when he

has obtained less information.
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If the buyer chooses the final terms of trade when he is still uncertain about his type,

he acts as if he was of the ex post type that equals the expected ex post type given

all the information he has obtained up to that point.6 The important point to note is

that when the buyer has less information, his expected values are more concentrated

around the mean. Since for each ex post distribution over θ the buyer evaluates the

terms of trade as if he was of the expected ex post type, we can equivalently replace

ex post distributions by the corresponding expected ex post types.7 Those buyer types

which expect to obtain more information are, hence, the more dispersed ones. This

might for example be business travelers.

We illustrate the verbal execution by means of a simple formal demonstration.8 As-

sume that the buyer’s ex post type θ is drawn from the uniform distributionH on [−1, 1].

The buyer’s ex ante type τ learned in the first period does not provide information

about the true θ such that H(θ|τ) = H(θ) for all τ . Instead, the ex ante type pro-

vides information about the informativeness of the signal s drawn in the second period.

Signal s can take values in [−1, 1]. Its distribution is informative about θ and has a

truth-or-noise structure: With probability r signal s equals θ, with probability 1 − r
signal s is drawn from the uniform distribution H. We refer to r ∈ (0, 1] as the infor-

mativeness of the signal.9 The signal does always contain some information and can

be perfectly informative. In the second period, the buyer learns the signal s and its

informativeness r. This means that he updates and has a posterior distribution about

θ. The ex ante type learned in the first period specifies a distribution G(·|τ) from which

r is drawn. For any τ the distribution G(·|τ) has full support (0, 1] and the family of

distributions {G(·|τ)|τ ∈ T} is ordered by first order stochastic dominance such that

G(·|τ) first order stochastically dominates all other distributions.10 This means that

higher ex ante types expect more informative signals which results in less dispersed

posterior distributions.

Given the buyer observes signal s with informativeness r, his posterior expected ex

6 To state this point formally, denote the information by a signal s the buyer obtains ex post, which
induces ex post distribution Fs(θ). Due to the linear utility

E(ũ(θ,X, t)|s) = E(v(x1 + x2) + θ(x1 − x2)− t|s) = v(x1 + x2) + E(θ|s)(x1 − x2)− t = ũ(E(θ|s), X, t).

7 We are not the first to do this transformation, see e.g. Eső and Szentes (2007b).
8 Our foundation further develops an idea from Johnson and Myatt (2006). Dai et al. (2006) also

captures the idea that screening can be based on the buyer’s information structure.
9 The assumption r 6= 0 is for notational convenience only.
10 For convenience we assume that G is continuously differentiable with respect to θ and τ .
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Figure 2.2: Support of the joint distribution of r and EH(θ|s, r).

post type EH(θ|s, r) is

EH(θ|s, r) := r · s+ (1− r) · EH(θ) = r · s+ (1− r) · 0. (2.2)

For a fixed r, EH(θ|s, r) is a random variable which is distributed uniformly on [−r, r],
because it is a function of s which is drawn from H[−1, 1].11 Denote the corresponding

cumulative distribution function by Fr with density fr(x) = 1/2r.

Each ex ante type τ induces a distribution over r. Joint with the posterior expected

ex post type we can say each ex ante type τ induces a two-dimensional distribution

over (r,EH(θ|s, r)) with density g(r|τ)fr(EH(θ|s, r))).
The marginal distribution over EH(θ|s, r) indicates the probability with which ex

ante type τ ends up with a particular expected ex post type. We denote this distribution

F (·|τ) with density f(·|τ), which is12

f(x|τ) =

1∫
0

fr(x)g(r|τ)dr =

1∫
|x|

g(r|τ)

2r
dr. (2.3)

Finally, we find that the family of functions {F (·|τ)|τ ∈ T} satisfies the conditions

specified for our model:

Proposition 1. The family of functions {F (·|τ)|τ ∈ T} is rotation-ordered.

To prove the proposition, we calculate F (·|τ) explicitly to show that ∂F (x|τ)/∂τ >

0 for x < 0 and ∂F (x|τ)/∂τ < 0 for x > 0.

The intuition for Proposition 1 can be conveyed by means of Figure 2.2. Figure

2.2 displays the support A of the two-dimensional distribution induced by ex ante

11 We ease notation by not distinguishing formally between random variables and realizations.

12 At x = 0 we have f(0|τ) = lim
ε→0

1∫
ε

fr(x)g(r|τ)dr.
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type τ over (r,EH(θ|s, r)). The support A is independent of τ . Each ex ante type τ

induces a two-dimensional distribution with density g(r|τ)fr(x) on support A. The

second multiplier fr(x) is decreasing in r, independent of x, and independent of τ . The

density f(·|τ) is the marginal distribution of the two-dimensional distribution over x

as stated in (2.3).

The crucial step is to consider f(x|τ) as a convex combination of the densities

fr(x) = 1/(2r) with weights g(r|τ) for r ≥ |x|, and 0 with weight G(|x||τ). Note

that the weights depend on the ex ante type. The first order stochastic dominance

relation on G(·|τ) implies that for a higher ex ante type τ ′ > τ these weights are more

concentrated on lower values of r. The effect of this shift on f(x|τ) can be decomposed

into two components. The first component can be seen best when considering x = 0

such that G(0|τ) = 0. As the density 1/(2r) decreases in r, we conclude f(0|τ ′) <
f(0|τ). However, for values x 6= 0 there is an opposing second effect on f(x|τ): Weights

of mass G(|x||τ)−G(|x||τ ′) are shifted from 0 to positive densities. This second aspect

is effective in favor of f(x|τ) to increase in τ . When |x| is large, the second effect

dominates, and for small |x| the first effect dominates.

2.3.2 Differing Uncertainty about the Position on the Hotelling

Line

This section interprets the model as a Hotelling model where consumers have uncer-

tainty about their position on the Hotelling line.

More specifically, the seller can sell the two goods at both ends of the Hotelling

line. The buyer’s transportation cost is linear and common knowledge. In the first

period, the buyer is, however, uncertain about his position on the Hotelling line. The

ex ante types determines the buyer’s distribution over positions on the Hotelling line.

Larger ex ante types indicate more uncertainty about the position, leading to extremer

positions on average and hence larger valuation differences. The situation is illustrated

in Figure 2.3.

Formally, we can reformulate the preferences given in the model section as typical

Hotelling preferences: First, define x′ = −θ. We obtain v1 = v − x′ and v2 = v + x′.

Second, define x = x′ + 1 such that v1 = v + 1 − x and v2 = v − 1 + x. Third, define

v′ = v + 1 and obtain the valuations for a Hotelling model with linear transportation

cost and length 2:

v1 = v′ − x (2.4)

and v2 = v′ − (2− x). (2.5)
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Figure 2.3: Denote by s the Hotelling line. An “extreme” position on the line means
that the peak of the valuation function is close to 0 or 1. In that case the difference
between the valuations of good 0 and good 1 is large.

This interpretation nicely contrasts the setup in Herbst (2016) in which the ex ante

type defines the transportation cost, but the distributions over the postition on the

line is the same for all ex ante types. Instead, in our paper the ex ante type defines

the distribution from which the position on the Hotelling line, but the transportation

cost is the same for any ex ante type.

2.3.3 Differing Transportation Cost

Finally, we can interpret the model as a Hotelling model in which the buyer is initially

uncertain about his position, but always faces the same distribution over positions on

the Hotelling line. However, ex ante types specify differing transportation cost func-

tions. The transportation cost functions at one side of the favorite good are rotation

ordered as illustrated in Figure 2.4. The solid line represents a low ex ante type, the

dotted line a high ex ante type and the dashed line an intermediate type.

This interpretation of the model also relates to the setup in Herbst (2016). The

key difference is that the seller can only sell the goods at the ends of the Hotelling line,

whereas she can sell any good in the other paper.

2.4 Analysis

As the seller has full commitment power, the revelation principle applies (see Myerson

(1986)), which allows us to restrict to direct and incentive compatible mechanisms.

A direct mechanism specifies for any reported pair of types (τ̂ , θ̂) an allocation X

and a price t. Hence, a direct mechanism is the combination of an allocation rule

{X(τ̂ , θ̂) : τ̂ ∈ T, θ̂ ∈ Θ} and a payment rule {t(τ̂ , θ̂) : τ̂ ∈ T, θ̂ ∈ Θ}. For a given
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Figure 2.4: Denote by s the Hotelling line. In this example, the transportation cost
functions are rotation ordered around point k on the Hotelling line.

report about the ex ante type, τ̂ , we call {X(τ̂ , θ̂), p(τ̂ , θ̂) : θ̂ ∈ Θ} a contract. A

contract is defined as a mapping from ex post type reports into allocations and prices.

The choice of the ex ante report then corresponds to the choice of a contract and the

choice of an ex post report determines an option within that contract.

Given a pair of types (τ, θ) and an allocation determined by a pair of reports (τ̂ , θ̂)

we write u(τ̂ , θ̂, θ) := ũ(θ,X(τ̂ , θ̂), t(τ̂ , θ̂)) and define u(τ, θ) := u(τ, θ, θ). Given the

agent always truthfully reports the ex post type, the ex ante utility is

U(τ, τ ′) =

∫
Θ

u(τ̂ , θ)dF (θ|τ). (2.6)

To simplify notation, we define U(τ) := U(τ, τ). A direct mechanism is incentive

compatible, if the following two conditions hold:

U(τ) ≥ U(τ, τ ′) ∀τ, τ ′, (IC1)

u(τ, θ) ≥ u(τ, θ, θ̂) ∀θ, θ̂, τ. (IC2)

Applying of the dynamic revelation principle, the first-period incentive constraints

(IC1) state that telling the truth in the first period is optimal given the second period

type is always revealed truthfully. This requirement is less restrictive than the general

requirement of incentive compatibility, which is that truthtelling in both periods must

be better than any combination of lying about the ex ante type potentially followed

by another lie about the ex post type. Conditions (IC1) and (IC2) are sufficient for

incentive compatibility because the model satisfies two properties: First, the true ex

ante type is not payoff relevant, meaning that the true ex ante type does not appear

in (2.1). Second, the model satisfies a “non-shifting support property”, which means

that the support of ex post types does not depend on the ex ante type. These two
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assumptions and the resulting simplified characterization of incentive compatibility are

standard in the literature on sequential screening since the seminal contribution Courty

and Li (2000).13

At the point in time of contracting, the buyer has an outside option of 0. The seller

hence faces the individual rationality constraints

U(τ) ≥ 0 ∀τ. (IR)

Note that there is no outside option for the buyer after he learned his ex post type.14

Clearly, the seller is also restricted in that he may offer only feasible allocations:

x1(τ, θ), x2(τ, θ) ≥ 0, x1(τ, θ) + x2(τ, θ)) ≤ 1 ∀τ, θ. (F)

Now, we are ready to write down the seller’s maximization problem (P):

max
X(τ,θ),t(τ,θ)

τ∫
τ

θ∫
θ

t(τ, θ)dF (θ|τ)dFτ (τ)

s.t. (IC1), (IC2), (IR), and (F ).

In order to solve problem (P), we first exploit the incentive compatibility conditions

to rewrite expected transfers as a function of the allocation rule. Then we maximize

a relaxed version of (P) and obtain an upper bound on the profits which are achiev-

able. Finally, we identify regularity conditions which ensure that the upper bound is

achievable.

To begin with, we provide necessary and sufficient conditions for the second period

incentive constraints IC2 to be satisfied.

Lemma 1. IC2 is satisfied if and only if u(τ, θ) is absolutely continuous in θ and the

following conditions are satisfied:

∂u(τ, θ)/∂θ = x1(θ, τ)− x2(θ, τ) (FOC2)

and x1(θ, τ)− x2(θ, τ) is non-decreasing in θ. (MON2)

To understand Lemma 1 note that the ex post utility can be rewritten as

u(θ, τ) = v · [x1(θ, τ) + x2(θ, τ)] + θ · [x1(θ, τ)− x2(θ, τ)]− t(θ, τ). (2.7)

13 For an in-depth discussion of this aspect, see Krähmer and Strausz (2008). A textbook treatment
is Borgers et al. (2015).

14 Krähmer and Strausz (2015b) show that with an outside option after learning the ex post type
dynamic screening is not profitable.
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The true ex ante type enters (2.7) linearly in the second summand and the first sum-

mand is independent of the true type but only depends on reported types. The re-

mainder of the proof is then standard in the literature on mechanism design.

An immediate consequence of Lemma 1 is that the ex post utility is convex as a

function of the ex post type. However, the sign of x1(θ, τ)−x2(θ, τ) is unclear a priori.

This implies that the ex post utility might increase, decrease, or be U-shaped in the

ex post type. Which ex post types have the lowest ex post utility thus depends on

the allocation rule. As there is no ex post outside option, this will not complicate the

analysis, while it would have strong effects otherwise.15

In contrast to the characterization of second period incentive compatibility, we can-

not provide necessary and sufficient conditions for first-period incentive compatibility.

This difficulty is standard in the literature on sequential screening.16 The following

lemma states necessary conditions for first-period incentive compatibility, which we

take into account when maximizing the objective. The solution is then checked for

incentive compatibility.

Lemma 2. IC1 is satisfied only if the following conditions are satisfied:

∂U(τ)/∂τ =

∫ θ

θ

(x1(τ, θ)− x2(τ, θ)) · −∂F (θ|τ)

∂τ
dθ, (FOC1)∫ θ

θ

∂[x1(τ, θ)− x2(τ, θ)]

∂τ
· −∂F (θ|τ)

∂τ
dθ ≥ 0. (SOC1)

The proof of Lemma 2 closely resembles the part of the proof in Lemma 1 which

shows necessity. In particular, Lemma 2 shows that for any incentive compatible mech-

anism the ex ante utility is pinned down by the allocation rule up to a constant. Thus,

also the expected payment is pinned down by the allocation rule implying a “revenue-

equivalence” result in the sense of Myerson (1981).

In contrast to the standard framework as introduced in Courty and Li (2000), in

our model it is not obvious that the ex ante utility is increasing in the buyer’s ex ante

type. As the following lemma shows, this is, however, still the case.

Lemma 3. For any incentive compatible mechanism holds ∂U(τ)/∂τ ≥ 0.

Lemma 3 is not trivial in our setup. Indeed it only follows when combining not only

first-period and second-period incentive compatibility but also the rotation ordering

and the constant mean.
15 For static mechanism design problems this issue is addressed in the literature on “countervailing

incentives”. For an exposition see Jullien (2000) and Maggi and Rodriguez-Clare (1995).
16 See for example Courty and Li (2000); Pavan et al. (2014) and Eső and Szentes (2007a).
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An immediate consequence of the rotation order is ∂F (θ|τ)/∂τ ≥ 0 for all θ ≤
θ† and ∂F (θ|τ)/∂τ ≤ 0 for all θ ≥ θ†. From Lemma 1 we furthermore know that

x1(τ, θ)−x2(τ, θ) increases in θ. Combining these two observations with (FOC1) which

follows from first-period incentive compatibility, we obtain

∂U(τ)/∂τ =

∫ θ

θ

(x1(τ, θ)− x2(τ, θ)) · −∂F (θ|τ)

∂τ
dθ

≥
∫ θ

θ

(x1(τ, θ†)− x2(τ, θ†)) · −∂F (θ|τ)

∂τ
dθ.

(2.8)

As all distributions F (θ|τ) have the same mean, ∂Eθ[θ|τ ]/∂τ = 0. Integration by

parts reveals that this is equivalent to
∫ θ
θ
∂F (θ|τ)/∂τdθ = 0, which in turn implies

∫ θ

θ

(x1(τ, θ†)− x2(τ, θ†)) · −∂F (θ|τ)

∂τ
dθ = 0. (2.9)

The proof follows from (2.8) and (2.9).

The lemma states that the buyer’s ex ante utility is weakly higher if he expects to

have larger valuation differences. As we now know that the lowest ex ante type τ has

the lowest ex ante utility, we can proceed as is standard in the literature on mechanism

design. We rewrite the payments as the difference between surplus and ex ante utility,

use (FOC1) to express the ex ante utility as a function of the allocation and U(τ), and

do integration by parts. We solve the resulting optimization problem P ′.

max
X(τ,θ),U(τ)

τ∫
τ

θ∫
θ

(v − c) · (x1 + x2) + (x1 − x2)ψ(θ, τ)dF (θ|τ)dFτ (τ)− U(τ)

s.t. (MON2), (IR), and (F ),

(P ′)

where ψ(θ, τ) is the virtual valuation

ψ(θ, τ) = θ − 1− Fτ (τ)

fτ (τ)

∂(1− F (θ|τ))/∂τ

f(θ|τ)
. (2.10)

Problem P ′ is not equivalent to problem P as the constraints in P ′ are not sufficient

to guarantee incentive compatibility. In particular, P ′ does neither contain SOC1 nor

are FOC1 and SOC1 sufficient for first-period incentive compatibility. Mechanisms

that solve problem P ′ are only solutions to the original problem P if they are incentive

compatible.
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The virtual value (2.10) is well known from the literature on sequential screening.17

As in our setting the virtual value is associated with x1−x2, it consists of the additional

value for obtaining the preferred good, θ, and a virtual cost. The virtual cost consists

of the inverse hazard rate 1−Fτ (τ)
fτ (τ)

reflecting the fact that when improving type (θ, τ)’s

allocation all higher ex ante types have to be left additional rent, which is multiplied by

an informativeness measure. The informativeness measure accounts for the fact that

larger ex ante types only profit through having advantageous ex post types more often.

However, whether the advantageous ex post types are those which are larger than

θ or those which are smaller than θ depends on which ex post type has the lowest

utility in our setting. Notably, the functional form of ψ does not depend on whether

the second period incentive constraints are binding upwards or downwards, which is is

different from the standard static mechanism design framework. This fact leads to a

significant facilitation when solving problem P ′, as it implies that we do not need any

prior information about which incentive constraints are binding in the second period.18

In order to state the first property of solutions to P ′, we need one further definition.

Definition 2. Full market coverage. An allocation rule satisfies the full market cover-

age property, if x1(θ, τ) + x2(θ, τ) = 1 ∀θ, τ .

We say a mechanism satisfies the full market property if its allocation rule does.

Full market coverage means that the buyer always obtains some good. Note that this

does not mean the buyer always obtains his favorite good. Now, we can state Lemma

4.

Lemma 4. Each mechanism that solves problem P ′ satisfies the full market coverage

property.

To prove the first part of Lemma 4, note that by the feasibility conditions (F ) we

know x1 + x2 ∈ [0, 1] and x1 − x2 ∈ [−1, 1]. The key observation that leads to the full

market coverage property is that any feasible level of x1−x2 can also be obtained when

fixing x1 +x2 = 1. This means that the two summands in the argument of the integral

in the objective of P ′ can essentially be maximized separately. When maximizing the

first of these summands, the full market coverage obtains.

In the following paragraph we identify conditions on the virtual valuation under

which the solution to P ′ is incentive compatible. To this end, we present and interpret

17 See for example Baron and Besanko (1984); Courty and Li (2000); Pavan et al. (2014) and Eső and
Szentes (2007a).

18 The combination of two facts explains why ψ does not depend on which incentive constraints

are binding: First, the constant in the information measure does not matter, as ∂(1−F (θ|τ))/∂τ
f(θ|τ) =

∂(−F (θ|τ))/∂τ
f(θ|τ) . Second, when doing pointwise maximization, ex post types which prefer good 2 have

a valuation of −θ and obtain their favorite good when ψ is smaller than zero.
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assumptions on the distributions Fτ (τ) and F (θ|τ), and relate them to assumptions

which are frequently used in standard models of sequential screening.

Assumption 1. Regularity Conditions

1.1)
∣∣∣∂(1−F (θ|τ))/∂τ

f(θ|τ)

∣∣∣ decreases in τ for all θ.

1.2) ψ(θ, τ) increases strictly in θ for all τ .

We call our model regular if it satisfies Assumption 1. Assumption 1.1 implies

that for higher ex ante types τ a change in the ex ante type has less impact on the

distribution of the ex post type. We can hence say that the informativeness of the ex

ante type is decreasing in ex ante types. As the first summand in ψ is increasing in θ

with slope one, Assumption 1.2 basically means that the distortion due to information

rents is not excessively high.

Assumption 1 is the natural extension of the corresponding assumptions introduced

for the first order stochastic dominance ordering in the literature on sequential screen-

ing to the rotation order.19 When considering the the family of distribution functions

{Fτ (τ)|τ ∈ T} only on [θ†, θ], the ordering resembles the first order stochastic dom-

inance ordering. On [θ†, θ], Assumption 1 equals the standard assumptions in the

literature on sequential screening. On [θ, θ†] the distributions’ ordering also resembles

a first order stochastic dominance, but the ordering is inverted. Assumption 1 is chosen

to account for this fact.

An illustration of two examples for ψ that satisfy the regularity condition is given

in Figure 2.5. Note that ∂(1−F (θ|τ))/∂τ
f(θ|τ)

= 0 at θ, θ and at the rotation point θ†. For

θ > θ† the virtual value is distorted downwards and for θ < θ† the virtual value is

distorted upwards. A consequence of our model assumptions is that the virtual value

is continuous in θ.

In the following, we solve the model taking Assumption 1 as given. Using the

regularity condition, we can characterize the mechanisms that solve problem P as

stated in Proposition 2.

Proposition 2. If the regularity condition is satisfied, each mechanism that solves

problem P ′ is incentive compatible, and hence solves problem P. Every optimal alloca-

tion has the following properties:

(i) For each τ ∈ T there exists a cutoff m(τ) such that x2(θ, τ) = 1 if θ < m(τ) and

x1(θ, τ) = 1 if θ > m(τ),

(ii) |m(τ)| decreases in τ and m(τ) = 0,

(iii) m(τ) ≥ 0 if θ† < 0 and m(τ) ≤ 0 if θ† > 0.
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θ†
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(0,−1)
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m(τ ′)

m(τ)

0

Figure 2.5: The graph shows the virtual values for two ex ante types τ (dashed line)
and τ ′ (solid line) such that τ ′ > τ . For illustrative purposes we chose [θ, θ] = [−1, 1].

The optimal allocation rule maximizes the objective in P ′ pointwise. Because of the

second part of the regularity assumption, the pointwise maximization of the objective

in P ′ results in an allocation rule that satisfies (MON2) and hence solves problem P ′.
The subtle part of proof is to show that the solution to P ′ is incentive compatible.

For a better understanding of the optimal allocation we first describe the welfare-

maximizing allocation rule. As the production of both goods is equally costly to the

seller and the buyer’s basic valuation v exceeds this cost, the first best allocation rule

satisfies the full market coverage property and the buyer always obtains the preferred

good. In terms of cutoffs, the first best cutoff me(τ) is 0 for all τ . We thus call

a contract more distorted than another, if the absolute value of the cutoff |m(τ)| is

larger. Obviously, a more distorted contract generates lower welfare, because inefficient

consumption decisions are more likely.

The optimal allocation is a cutoff solution: There is a cutoff ex post type. If the

buyer has stronger preferences for good one than the cutoff type, he obtains this good

and vice versa. Hence, the contract is deterministic in the sense that the optimal

allocation is no non-degenerate lottery over goods. In particular, agents that have

strong preferences ex post about which good they prefer always end up with this good.

Furthermore, the cutoff has the same sign for each ex ante type. This means that

19 See for example Eső and Szentes (2007b).
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independently of the ex ante type there is overconsumption of the same good. The

good which is more likely to be consumed is the one which is preferred by the ex post

type that equals the rotation point. Apart from extreme cases this equals the good

which is preferred in expectation.

Our optimal allocation yields the classical no distortion at the top-result: The

highest ex ante type always obtains his favorite good. Contracts for lower ex ante

types are increasingly distorted. This means that if the buyer is more uncertain about

his ex post type, he obtains contracts which are less distorted. In particular, this

implies that depending on the ex ante type the buyer can obtain different allocations

even when being of the same ex post type. The next section provides an in-depth

discussion of the optimal mechanism from a price discrimination based perspective.

2.5 Implementation

Direct mechanisms are rarely observed in practice. A general concern in the literature

on mechanism design is therefore to find simple indirect mechanisms that are equivalent

in terms of outcomes to the optimal direct mechanism. Ideally, the indirect mechanisms

match observations in the economic context the theory addresses. In this paper, the

simple indirect mechanisms are menus of contracts which allow for exchanges subject

to exchange fees. A contract consists of a price p for a specific good z and an exchange

fee w. If the buyer chooses this contract, he pays p and obtains good z in the first

period. In the second period, he may either consume his good or exchange it with the

other good, which costs him the exchange fee w in addition.

Proposition 3. If the regularity condition is satisfied, every mechanism that solves

problem P is implementable by a menu of contracts which allow for exchanges subject

to exchange fees, {z, p(τ), w(τ)|τ ∈ T}. The menu has the following properties:

(i) p(τ) increases in τ ,

(ii) w(τ) decreases in τ , and w(τ) = 0

Note that in our model the good which is sold in the first period is always the same,

which is the good that is preferred by the ex post type that equals the rotation point.

Of course, the buyer stays with his initially purchased good when he learns in the

second period that he prefers it to the alternative good. But also when his valuation

for the alternative good slightly exceeds the valuation of the good he possesses, he stays

with his good in order to save the exchange fee. Only when the difference in valuations

exceeds the exchange fee w, the buyer is willing to incur the cost w of exchanging

goods. The exchange fee is chosen such that the cutoff ex post type equals m(τ).
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The price p and the exchange fee w both depend on the ex ante type τ . If the

buyer is of the highest ex ante type, he chooses the contract with the highest price

which however guarantees him free exchange. The contracts for lower ex ante types

have cheaper prices, however, they feature higher exchange fees.

The seller offers the menu of contracts in order to price-discriminate following a

logic which has similarities to the intuition in Courty and Li (2000). The first step to

understand why price discrimination is profitable in our environment is to note that

different ex ante types have different expected valuations for the first best allocation.

Higher ex ante types have on average more extreme values of θ, which implies that

on average the valuation for the favorite good is larger for them. As the first best

contract always guarantees the buyer his favorite variant, the expected valuation of

this allocation increases in the ex ante type. If the seller would offer only the first best

allocation, she would hence have to trade off leaving rent to high ex ante types and

excluding low ex ante types. The second step is to understand how price discrimination

is possible in this framework. Therefore, we compare the first best contract to the

contract for τ ′ with p(τ ′) < p(τ) and w(τ ′) > w(τ) = 0. For illustration, assume

z = 2. We know from first-period incentive compatibility that p(τ ′) + w(τ ′) > p(τ).

This means that conditional on consuming good 1, the buyer is better off when having

chosen the first best contract. Conditional on consuming good 2, the buyer is better

off when having chosen the first best contract for τ ′. The crucial observation is that a

higher ex ante type expects to pay the exchange fee more often than a lower ex ante

type, which is the case because he draws θ from a more dispersed distribution. This

makes the contract for τ ′ less attractive for τ than for τ ′ in the following sense: When

choosing p(τ ′), w(τ ′) and p(τ) such that in the first period ex ante type τ ′ is indifferent

between the contracts, ex ante type τ strictly prefers the first best contract. Then we

can increase profits by increasing p(τ).

The use of exchange fees to govern exchanges is widespread in important industries.

Most prominently, menus of tickets that differ in the height of their exchange fees are

common in the transportation industry, the hotel business, and the car rental industry.

In particular for those industries we believe that firms discriminate between buyers that

expect differing degrees of resolution of uncertainty before they have to make a final

decision. This means that business travelers know in advance that they may change

their travel plans until shortly before the trip. Consequently they are better informed

than leisure travelers at the point in time they eventually have to fix the terms of

trade. Therefore they expect to have stronger preferences over the time of the flight,

car rental, and hotel stay resulting in a more frequent desire to change the plans they

set up initially. Hence, business travelers choose contracts with higher prices and lower

exchange fees compared to leisure travelers.

76



In other situations it seems more plausible that firms discriminate between buyers

that are just differently choosy. Examples are online shopping platforms and mail order

companies. Note that another indirect mechanism that is equivalent to the optimal

direct mechanism is to offer a partial refund for giving back the initially purchased

good and then give the buyer the opportunity to purchase the other good. Besides

explicitly declared fees for refunding goods, e.g. tickets for events, they take the form

of service fees as frequently observed for example for online shopping platforms and

mail order companies.

2.6 Discussion

2.6.1 Exchange Fees vs Limited Exchange Contacts

In the optimal direct mechanism, the transfer from the buyer to the seller depends on

the reported ex post type. This is obvious when considering the implementation via a

menu of contracts with exchange fees: The final price depends on whether the buyer

exchanges the good in the second period or not. The difference is equal to the exchange

fee. This means that in principle the agent is able to consume any good in the second

period, but through an appropriate design of transfers he is incentivized to not always

consume his favorite good.

Herbst (2016) studies an alternative setup in which the seller also offers a menu of

contracts that leave the buyer with differing degrees of flexibility to exchange products.

However, in that paper the seller optimally uses an alternative concept to govern ex-

changes, namely Limited Exchange Contracts. In the two goods model of our paper, a

Limited Exchange Contract gives the buyer one of the goods in the first period. In the

second period, the buyer may either stay with his good or take the option for a costless

exchange with the other good. Exchange is, however, possible only with a pre-specified

probability. More flexible contracts feature a higher probability with which exchange

is possible. While in our paper exchange is limited by incentivizing the buyer in the

second period to not exchange, in Herbst (2016) exchange is impossible to a certain

probability.

In this paragraph we relate the differences in the setups to the difference in how the

restriction of flexibility is optimally designed. First, we compare our model with the two

goods case in Herbst (2016). In Herbst (2016) the ex ante type fixes two valuations and

the only information contained in the ex post type is which good is valued with which

of the two valuations. Hence the buyer perfectly knows the difference in valuations,
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which is his cost of ending up with the wrong good, in the first period.20 When the

seller learns the buyer’s ex ante type in the first period, she already knows how much

flexibility she wants to grant the buyer in the second period. When governing this

flexibility via restricted but costless exchange, restricting the flexibility is not connected

to additional information rents in the second period. In our paper, the buyer does not

know his difference in valuations in the first period. Instead, the buyer has noisy

information about the extent of the difference in valuations, but he learns the exact

difference only in the second period. This makes it desirable for the seller to adapt the

flexibility between the goods to the realized valuation difference ex post. The only way

to prevent the buyer from misrepresenting his ex post type then to incentivize him via

payments which depend on the ex post type.

A natural question concerning the comparison of the two papers is when which

design of exchange policies fits best. Therefore we first consider the foundation for our

model in which the consumer is uncertain about his position on the hotelling line. Also

Herbst (2016) can be generalized to a Hotelling model. The crucial difference is that

while in our model the seller can only trade the two goods at the end of the hotelling

line, she can trade any good on the line in the other paper.21 This comparison suggests

that we observe Limited Exchange Contracts primarily in environments in which many

varieties of the good can be offered. Applied to the transportation industry this means

that Limited Exchange Contracts should appear for connections which are served in

small intervals. Indeed we can observe this phenomenon in the ferry industry: While

P&O Ferries has established Limited Exchange Contracts for the highly frequented

connection from Dover to Calais, they charge exchange fees for less frequently served

connections.22

So far we have discussed how the restriction of flexibility is optimally designed

in both models and why this is the case. One further aspect which differentiates

the models is the motive for offering contracts which partially restrict exchanges. In

Herbst (2016) the seller’s motivation stems from the fact that higher ex ante types have

higher transportation cost and higher maximal valuations but on average valuations

are lower due to the high cost. When adding this feature to the model presented

in this paper, it seems likely that optimal contracts will combine Limited Exchange

Contracts with exchange fees: Already without paying an exchange fee the buyer is

20 This setup is interpreted as the buyer obtaining the cardinal dimension of his preferences in the
first period and the ordinal information in the second period.

21 Herbst (2016) also differs in that all ex ante types expect the same distribution for the position on
the Hotelling line but differ in the transportation cost function instead. The foundation which is
close with that respect is the one with uncertainty about the transportation cost function. Herbst
(2016) differs also from this foundation in that the seller may offer any good.

22 Note that with multiple goods a Limited Exchange Contract can for example consist of a time
interval around the initially booked departure time in with changes are free.
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given some flexibility to exchange goods. This flexibility is granted as in Limited

Exchange Contracts and will be the same for any contract of the menu. When paying

an extra exchange fee, the buyer can, however, change to any good he prefers.23 Menus

of contracts of this shape are common in the US airline industry. Many US airlines

offer costless same day exchanges and stand-by options for any flight ticket. Only if

the departure time needs to be changed a different day, exchange fees apply.

2.6.2 The FOSD Ordering

In this paper we study a model which can be interpreted as one in which agents

gradually receive information about their position on the Hotelling line. Ex ante types

differ in that the respective distributions of the ex post type θ are ordered by a mean

preserving spread. This means the ex ante type only provides information about how

extreme valuation differences are and how large the valuation for the favorite good is

in expectation, but the ex ante type does not provide information about which good

is preferred. In this section, we consider the other extreme in which the ex ante type

only provides information about which good is preferred but the expected valuation

for the favorite good is kept constant across ex ante types.

Our first result in this section, stated in Proposition 4, is that price discrimination

is not desirable. After providing the intuition, we argue why we think price discrim-

ination is also not possible in this modified model even if it would be desirable from

the seller’s perspective.

The model we consider differs from the main model of this paper only in the assump-

tions about the distributions Fτ (τ) and F (θ|τ). In addition, we assume θ = −θ. First,

we assume that Fτ (τ) is symmetric around (τ+τ)/2, which means fτ (τ+τ) = fτ (τ−τ).

Second, we put structure on F (θ|τ), which amounts to a special case of first order

stochastic dominance in τ : We assume that F (θ|τ) is linear in the ex ante type, in

particular that there is a “most left” distribution Fτ (θ) and a “most right” distribu-

tion Fτ (θ) which are symmetric to each other in that fτ (θ) = fτ (−θ) for all ex post

types. Fτ (θ) is first order stochastically dominated by Fτ (θ). For any intermediate τ ,

we define

fτ (θ) =
τ − τ
τ − τ

fτ (θ) +
τ − τ
τ − τ

fτ (θ). (2.11)

23 While the result seems rather trivial given the results of Herbst (2016) and this paper, deriving the
result is analytically challenging because in this dynamic mechanism design problem the support of
the ex post type depends on the ex ante type.
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Proposition 4. The revenue-maximizing mechanism assigns the first best contract to

all ex ante types.

As payoffs are unchanged compared to the main model, the first best contract co-

incides with the one from Section 2.4. The key step to understand this result is to

note that by construction every ex ante type has the same expected utility from the

first best contract. The valuation of the first best contract is determined by the ex-

pected valuation of the favorite good, which is proportional to the expected minimum

of θ− θ and θ− θ. As the distributions Fτ (θ) and Fτ (θ) are symmetric, their expected

minimum and hence their expected valuation for the first best contract coincides. As

any other distribution Fτ (θ) is constructed as a linear combination of the two distribu-

tions, also their expected valuation is a linear combination of the expected valuations

of the two extreme distributions, and is hence constant over ex ante types. This implies

that the seller can extract the first best surplus by offering the first best allocation-rule

and skimming all utility, which is clearly revenue-maximizing. This means that there is

no need for the seller to price discriminate in order to extract more rent from the buyer.

We finish this section by explaining why we think price discrimination is generally

not possible in this modified model. Following the intuition of this paper or Courty and

Li (2000), the scheme to do price discrimination would be the following: The lowest

ex ante type obtains the first best contract. Increasing ex ante types sign contracts

consisting of a decreasing upfront price for x2 = 1, but an increasing exchange fee

for obtaining good one. This means the difference in prices that is payed ex post for

the left good minus the right good is increasing. As the lower ex ante type expects

to consume the left good more often, the contracts with larger price differences are

unattractive for him.

However, in contrast to the intuition provided Section 2.5, we would like to do the

same type of price discrimination starting from the highest ex ante type by making the

price for good 1 larger than the price for good 2 ex post. The problem with this intuition

is that both discrimination schemes jointly violate global incentive compatibility: For

example, the highest ex ante type prefers any contract in which good 2 is cheaper than

good 1 to the first best contract which is designed for him. This ex ante type would

hence misreport a low ex ante type. This is an essential problem the seller faces when

she intends to do price discrimination according to the position on the Hotelling line,

when ex ante types are ordered by first order stochastic dominance.24

24 While this impossibility-result is intuitive, it is hard to prove in environments which are more general
than the particular order defined in this section. The reason is that when ex ante types are ordered
by first order stochastic dominance, the on-path expected utility is not necessarily increasing in the
ex ante type. As on-path the ex ante utility is furthermore a non-trivial function of the ex ante
type, it is difficult to apply results from optimal control theory as done for example in Jullien (2000)
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2.7 Conclusion

In this paper we studied environments in which a monopolist sells two horizontally

differentiated goods to a buyer who only gradually learns his valuations for the goods.

The seller optimally price discriminates by offering a menu of contracts that allow for

exchange subject to an exchange fee. The optimal menu consists of contracts with

high base prices for which the exchange fees are comparatively low and contracts with

smaller base prices but higher exchange fees. There are two key ingredients to the model

that lead to the optimality of restricting the buyer’s flexibility between the goods via

exchange fees. First, the buyer is initially uncertain about the difference in valuations

ex post. This means it is possible that he ends up having very strong preferences for

one of the goods but there is also a chance he is indifferent. Second, at the point of

contracting the buyer has private information about the extent of valuation differences

he expects on average.

The paper provides several foundations for the reduced form model. One founda-

tion is that buyers have different amounts of uncertainty about their position on the

Hotelling line, another foundation is that buyers have the same uncertainty about their

position on the line but differ in their transportation cost. Finally, there is s foundation

which is not based on preferences but on information structure instead: Buyers have

different expectations about how much information they obtain until they eventually

have to decide among their options.

When buyers differ in that they have tendencies to prefer one of the goods, the

characterization of the revenue-maximizing mechanism is technically challenging. For

a special case we show that price discrimination is not desirable from the seller’s per-

spective. We provide an intuition for why price discrimination is difficult in this setup

even when it would be desirable. Solving a general model where ex ante types are

ranked by first order stochastic dominance is hence an interesting avenue for future re-

search. An additional benefit from solving such a model is that it enables a comparison

to the competitive setting in which each good is offered by one seller respectively.25

We also compared our model to Herbst (2016) which is related in that it also studies

optimal exchange policies. The optimal design of the partial restriction of exchange

is implementable via Limited Exchange Contracts which is a fundamentally different

concept than using exchange fees to govern exchanges. The difference originates in

two differences in the setup: Buyers know already ex ante their precise difference in

valuations and the expected valuation for a given good varies in the ex ante type.

A formal approach to combining the two models is a further aspect to be studied.

Studying this combinations seems worthwhile as we regularly observe combinations of

for canonical economic settings.
25 Conceptually, this is a generalization of Gale (1993) and Möller and Watanabe (2016).
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the two concepts in applications.

2.8 Appendix

Proof of Proposition 1:

To proof Proposition 1, we first calculate Fr(x) for all x 6= 0. Then we show that

∂Fr(x|τ)/∂τ > 0 for x < 0 and ∂Fr(x|τ)/∂τ < 0 for x > 0. The last step is to proof

continuity of Fr at 0.

For x 6= 0 the cumulative distribution Fr(x) is defined as

Fr(x) =

x∫
−1

fr(l)dl =

x∫
−1

1∫
|l|

g(r|τ)

2r
drdl. (2.12)

We first consider the case x < 0. By changing the order of integration we obtain

x∫
−1

1∫
|l|

g(r|τ)

2r
drdl =

x∫
−1

1∫
l

g(r|τ)

2r
drdl

=

1∫
−x

x∫
−r

g(r|τ)

2r
dldr

=

1∫
−x

(x+ r)
g(r|τ)

2r
dr.

Through integration by parts we obtain

Fr(x) =
1

2
+
x

2

(
1 +

∫ 1

−x

G(r|τ)

r2
dr
)
. (2.13)

Analogously we obtain for x > 0

Fr(x) =
1

2
+
x

2

(
1 +

∫ 1

x

G(r|τ)

r2
dr
)
. (2.14)

The next step is to show that ∂Fr(x|τ)/∂τ > 0 for x < 0 and ∂Fr(x|τ)/∂τ < 0 for

x > 0. This follows from directly taking the derivative and from ∂G(r|τ)/∂τ < 0 which

holds by the assumption that G(r|τ) is ordered by first order stochastic dominance:

∂Fr(x)

∂τ
=


x
2

( ∫ 1

−x
∂G(r|τ)/∂τ

r2 dr
)
> 0 for x < 0,

x
2

( ∫ 1

x
∂G(r|τ)/∂τ

r2 dr
)
< 0 for x > 0.

(2.15)
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The inequalities (2.15) only imply that the family {Fr|r ∈ (0, 1]} is rotation-ordered

if Fr is continuous at 0. This is proven in the final step by showing lim
x↗0

Fr(x|τ) = 1/2 =

lim
x↘0

Fr(x|τ), which is sufficient for continuity as Fr is increasing by definition. We proof

lim
x↗0

Fr(x|τ) = 1/2. Showing lim
x↘0

Fr(x|τ) = 1/2 is analogous.

We start by rewriting the expression as

lim
x↗0

Fr(x|τ) = lim
x↗0

1

2
+
x

2

(
1 +

∫ 1

−x

G(r|τ)

r2
dr
)

=
1

2
+ lim

x↗0

∫ 1

−x
G(r|τ)
r2 dr
2
x

.

As we do not have information about lim
x↗0

∫ 1

−x
G(r|τ)
r2 dr, we make a case distinction.

Case 1: lim
x↗0

∫ 1

−x
G(r|τ)
r2 dr = m with |m| <∞

It follows immediately lim
x↗0

Fr(x|τ) = 1/2.

Case 2:
∣∣lim
x↗0

∫ 1

−x
G(r|τ)
r2 dr

∣∣ =∞
We can apply l’Hospital’s rule and obtain

lim
x↗0

Fr(x|τ) =
1

2
+ lim

x↗0

G(x|τ)/x2

−2/x2
=

1

2
+ lim

x↗0
− G(x|τ)

2
=

1

2
.

As
∫ 1

−x
G(r|τ)
r2 dr is monotone in x for x ∈ (∞, 0), one of the two cases applies.

As lim
x↗0

Fr(x|τ) = 1/2 = lim
x↘0

Fr(x|τ) and Fr(x|τ) is increasing, we know that Fr(0|τ) =

1/2 and hence 0 is the rotation point.

�

Proof of Lemma 1:

The proof is standard in the literature on mechanism design and hence omitted. �

Proof of Lemma 2:

We first derive condition (FOC1). By the envelope-theorem we know

∂U(τ)

∂τ
=
∂U(τ, τ̂)

∂τ

∣∣∣∣
τ=τ̂

=

∫ θ

θ

u(τ, θ)
∂f(θ|τ)

∂τ
dθ.

By integration by parts and using Lemma IC1 we obtain

∂U(τ)

∂τ
=

∫ θ

θ

(x1(τ, θ)− x2(τ, θ)) ·
(
−∂F (θ|τ)

∂τ

)
dθ. (FOC1)
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Second, we derive (SOC1). By (2.6) we know

U(τ) ≥ U(τ, τ̂)

=

∫
Θ

u(τ̂ , θ)dF (θ|τ)

= U(τ̂) +

∫
Θ

u(τ̂ , θ)d[F (θ|τ)− F (θ|τ̂)]

which is equivalent to

U(τ)− U(τ̂) ≥
∫

Θ

u(τ̂ , θ)d[F (θ|τ)− F (θ|τ̂)]. (2.16)

Analogously we obtain

U(τ̂)− U(τ) ≥
∫

Θ

u(τ, θ)d[F (θ|τ̂)− F (θ|τ)]. (2.17)

Combining (2.16) and (2.17) we obtain

∫
Θ

[u(τ, θ)− u(τ̂ , θ)]d[F (θ|τ̂)− F (θ|τ)] ≥ 0.

Dividing by (τ − τ̂)2 and taking limits we obtain

∫ θ

θ

∂x1(τ, θ)− x2(τ, θ)

∂τ
·
(
−∂F (θ|τ)

∂τ

)
dθ ≥ 0. (SOC1)

�

Proof of Lemma 3:

From (FOC1) we obtain

∂U(τ)/∂τ =

∫ θ

θ

(x1(τ, θ)− x2(τ, θ)) ·
(
−∂F (θ|τ)

∂τ

)
dθ. (2.18)

As by assumption F (θ|τ) is differentiable in both arguments, the rotation order implies

∂F (θ|τ)/∂τ ≥ 0 for all θ ≤ θ† and ∂F (θ|τ)/∂τ ≤ 0 for all θ ≥ θ†. From Lemma 1

we furthermore know that x1(τ, θ) − x2(τ, θ) increases in θ for any τ . Consequently,

for any τ we know that x1(τ, θ) − x2(τ, θ) ≤ x1(τ, θ†) − x2(τ, θ†) for all θ < θ† and

x1(τ, θ)− x2(τ, θ) ≥ x1(τ, θ†)− x2(τ, θ†) for all θ > θ†. By a pointwise comparison we
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can conclude ∫ θ

θ

(x1(τ, θ)− x2(τ, θ)) ·
(
−∂F (θ|τ)

∂τ

)
dθ

≥
∫ θ

θ

(x1(τ, θ†)− x2(τ, θ†)) ·
(
−∂F (θ|τ)

∂τ

)
dθ.

(2.19)

By assumption all distributions F (θ|τ) have the same mean. A consequence is that

∂Eθ[θ|τ ]/∂τ = 0 for all τ . Through integration by parts we obtain

0 = ∂Eθ[θ|τ ]/∂τ =∂

∫ θ

θ

θf(θ|τ)dθ
/
∂τ

=∂
(
θ −

∫ θ

θ

F (θ|τ)dθ
)/

∂τ.

=

∫ θ

θ

∂F (θ|τ)

∂τ
dθ. (2.20)

This in turn implies

∫ θ

θ

(x1(τ, θ†)− x2(τ, θ†)) · −∂F (θ|τ)

∂τ
dθ = 0. (2.21)

The proof follows from (2.18), (2.19), and (2.21). �

Proof of Lemma 4:

The proof is done in the main text.

Proof of Proposition 2:

The first step is to solve Problem P ′. The second step is to show that the solution is

incentive compatible.

The seller minimizes U(τ) while maintaining individual rationality. When setting

U(τ) = 0, (IR) is satisfied by Lemma 3 and Problem P ′ simplifies to

max
X(τ,θ)

(v − c) +

τ∫
τ

θ∫
θ

[
x1(τ, θ)− x2(τ, θ)

]
ψ(θ, τ)dF (θ|τ)dFτ (τ)

s.t. (MON2) and (F ),

(2.22)
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where ψ(θ, τ) is the virtual valuation

ψ(θ, τ) = θ − 1− Fτ (τ)

fτ (τ)

∂(1− F (θ|τ))/∂τ

f(θ|τ)
.

Maximizing objective (2.22) subject to feasibility (F ) gives

x1(τ, θ)− x2(τ, θ) =

1 if ψ(θ, τ) > 0,

−1 if ψ(θ, τ) < 0.
(2.23)

By Assumption 1.2 the allocation defined by (2.23) and the full market coverage prop-

erty satisfies (MON2) and hence solves Problem P ′. For each ex ante type denote the

ex post type defined via ψ(θ, τ) = 0 by m(τ). m(τ) is the cutoff-ex post type at which

the virtual valuation ψ(θ, τ) gets positive. The cutoff exists by the intermediate-value

theorem, as ψ is continuous, strictly increasing, ψ(θ, τ) = θ < 0, and ψ(θ, τ) = θ > 0.

From Assumption 1.1 joint with the continuity of ψ(θ, τ) follows furthermore that m(τ)

is continuous and |m(τ)| decreases in τ . For the highest ex ante type τ there are no

distortions:

ψ(θ, τ) =θ − 1− Fτ (τ)

fτ (τ)

∂(1− F (θ|τ))/∂τ

f(θ|τ)

=θ − 1− 1

fτ (τ)

∂(1− F (θ|τ))/∂τ

f(θ|τ)

=θ.

As the solution is obtained by pointwise maximization, ψ(θ, τ) = 0 immediately implies

m(τ) = 0. In the main text we furthermore show that m(τ) < 0 if θ† > 0 and m(τ) > 0

if θ† < 0.

The final step is to show that the solution to Problem P ′ satisfies IC1. Assume

without loss of generality that τ > τ ′. By construction the solution to Problem P ′

satisfies FOC1. Hence, we can write

U(τ) =U(τ ′) +

∫ τ

τ ′

∫ θ

θ

(x1(y, θ)− x2(y, θ)) · −∂F (θ|y)

∂y
dθdy.

The crucial step is then to note that

∫ τ

τ ′

∫ θ

θ

(x1(y, θ)− x2(y, θ)) · −∂F (θ|y)

∂y
dθdy

≥
∫ τ

τ ′

∫ θ

θ

(x1(τ ′, θ)− x2(τ ′, θ)) · −∂F (θ|y)

∂y
dθdy.

(2.24)
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To explain inequality (2.24), we do a case distinction. Let us first consider m(τ) < 0.

We know x1(τ ′, θ)− x2(τ ′, θ) > x1(y, θ)− x2(y, θ) for all y ∈ [θ, θ]. We also know that

x1(τ ′, θ)−x2(τ ′, θ) = x1(y, θ)−x2(y, θ) for all y ∈ [θ†, θ], where θ† is the rotation point.

A consequence of the rotation order is
(
− ∂F (θ|y)

∂y

)
< 0 for all θ < θ†. Combined, this

implies (2.24) pointwise.

Second, consider m(τ) > 0. In that case x1(τ ′, θ) − x2(τ ′, θ) < x1(y, θ) − x2(y, θ)

for all y ∈ [θ, θ]. However, in that case x1(τ ′, θ) − x2(τ ′, θ) = x1(y, θ) − x2(y, θ) for

all y ∈ [θ, θ†]. A consequence of the rotation order is
(
− ∂F (θ|y)

∂y

)
> 0 for all θ > θ†.

Combined, this implies (2.24) pointwise.

Using (2.24) and interchanging the order of intervals we obtain

U(τ) ≥ U(τ ′)−
∫ θ

θ

(x1(τ ′, θ)− x2(τ ′, θ)) · (F (θ|τ)− F (θ|τ ′))dθ. (2.25)

Employing Lemma 1 and using integration by parts we finally obtain

U(τ) ≥U(τ ′)−
∫ θ

θ

(x1(τ ′, θ)− x2(τ ′, θ)) · (F (θ|τ)− F (θ|τ ′))dθ

=U(τ ′) +

∫ θ

θ

u(τ ′, θ)(f(θ|τ)− f(θ|τ ′))dθ

=U(τ, τ ′).

�

Proof of Proposition 3:

We show that for any optimal mechanism as described in Proposition 2 we can construct

a menu {z, p(τ), w(τ)|τ ∈ T} that is equivalent in terms of allocation rule and payment

rule.

We start by writing down the payment rule of the optimal direct mechanism. Using

the definition of the ex post utility (2.7) and Lemma 1, the payment structure of the

direct mechanism is

t(θ, τ) = v + θ(x1(θ, τ)− x2(θ, τ))− u(m(τ), τ)−
θ∫

m(τ)

x1(θ, τ)− x2(θ, τ))dy. (2.26)

Using the optimality properties from Lemma 4 and Proposition 2 we can rewrite the
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payments (2.26) as

t(θ, τ) =

v + θ − u(m(τ), τ)− (θ −m(τ)) if θ > m(τ),

v − θ − u(m(τ), τ)− (m(τ)− θ) if θ < m(τ),

=

v − u(m(τ), τ) +m(τ) if θ > m(τ),

v − u(m(τ), τ)−m(τ) if θ < m(τ).
(2.27)

Now we can construct the indirect mechanism: First, if m(τ) > 0 set z = 1 and

if m(τ) < 0 set z = 2. Second, let the exchange fee be w(τ) = 2|(m(τ)|. And

third, p(τ) = v − u(m(τ), τ) is the upfront price. The indirect mechanism is obviously

equivalent to the optimal indirect in terms of payments and the allocation.

Finally, we need to show that p(τ) increases in τ . The proof is done by contradic-

tion. Assume there exist two ex ante types τ and τ ′ such that p(τ) > p(τ ′). Then we

know that p(τ) > p(τ ′), w(τ) > w(τ ′), and z(τ) > z(τ ′). It follows immediately that

for ex ante type τ it pays off to misreport his ex ante type and report τ ′ instead. This

is a contradiction to incentive compatibility. �

Proof of Proposition 4:

We need to show that any ex ante type has the same utility from the first best allocation.

The rest of the proof is then obvious.

To circumvent notational complications, we do an indirect proof. First, note that

∂Fτ (θ)

∂τ
=
−1

τ − τ
Fτ (θ) +

1

τ − τ
Fτ (θ) (2.28)

which is independent of τ . Second, using (2.28) we see that from symmetry of Fτ

and Fτ follows that ∂Fτ (θ)
∂τ

is symmetric in θ. Third, note that FOC1 as a necessary

condition for incentive compatibility is unchanged. When plugging the allocation of

the first best contract into FOC1 and using the symmetry of ∂Fτ (θ)
∂τ

in θ, we obtain

∂U(τ)/∂τ = 0 for all τ . This means that in any incentive compatible mechanism in

which each ex ante type obtains the first best allocation, the ex ante utility is the same

for each ex ante type. Since each ex ante type obtains the same allocation, the only

incentive compatible payment rule is to charge each ex ante type the same expected

payment. From this follows that the expected utility derived from the first best allo-

cation is constant across ex ante types. �
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Chapter 3

Dynamic Formation of Teams:

When Does Waiting for Good

Matches Pay Off?

This paper studies the trade-off between realizing match values early and waiting for

good matches that arises in a dynamic matching model with discounting. We consider

heterogeneous agents that arrive stochastically over time to a centralized matching

market. First, we derive the welfare-maximizing assignment rule, which displays the

subtle trade-off between matching agents early and accumulating agents to form assor-

tative matches. Second, we show that the welfare-maximizing policy is implementable

when agents have private information about their types. The corresponding mecha-

nism satisfies natural requirements. Furthermore, we identify situations in which the

designer can abstain from using monetary incentives.

3.1 Introduction

We study a canonical situation in which agents that arrive gradually over time join

forces in order to generate output. Agents are heterogeneous and when forming a

group their characteristics are complements in the production function. In a static

world, when all agents are present from the beginning, positive assortative matchings

are both stable and efficient with this kind of production function.1 The dynamic

arrival of agents combined with impatience, however, poses a challenge to positive

assortativeness. If future outcomes are discounted, the desirability of early matches

increases both from a social welfare as well as an participating individual’s perspective.

This paper analyses the emerging trade-off between realizing match values early and

1 This is a well established result in the matching literature. For a study of necessary and sufficient
conditions for positive assortative matchings see Legros and Newman (2002).
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waiting for good matches. For this purpose it tackles the question of assortativeness

in a centralized dynamic matching market. We address both the welfare-maximizing

matching procedures under complete information, and socially optimal mechanisms

when agents have private information. We develop a tool that allows us to solve for

the welfare-maximizing matching policy in closed form without imposing any restriction

on the policy. This provides clear insights into the effects involved. Then we prove

implementability of the welfare-maximizing matching policy when agents have private

information about their types. Furthermore, we identify situations in which the market

organizer can abstain from using monetary incentives. Finally, we address the case in

which the agents can, in addition to their private type, hide their arrival.

Applications comprise a wide range of situations including the formation of teams

and task assignment within firms, as well as the establishment of partnerships that

constitute organizations themselves. Nowadays, output within organizations is mostly

created by teams: Examples are consultancy in firms, coauthoring at universities, or

team sports in clubs. Complementarities of experts’ skill in production processes is

clearly illustrated in the well-known O-Ring Theory in Kremer (1993). Employees ar-

rive over time when having finished previous projects or being hired newly. There are

furthermore various industries, in which entrepreneurs team up to found companies;

an example are doctors who found group practices to share the burden of the large in-

vestment in medical equipment. Complementarity arises when patients are risk-averse

concerning the quality of treatment and the dynamic friction is that doctors arrive

over time in a local market. Our framework equally well fits situations of education in

groups, e.g. language courses, as group member’s skills typically are complements and

participants arrive over time. Finally, the model applies to the wide-spread practice

of group-lending in the market for microcredits: Borrowers who cannot offer collat-

eral obtain loans for individual projects only if they pool the default risk with peers

conducting independent projects. A borrower’s type is the individual default risk.

Following the standard assumption that the default risks of the group members are

independent leads to the complementarity of the individual default risks.2

Our paper aims at closing the gap between static matching models and the litera-

ture on search and matching. The growing literature on search and matching studies

matching patterns using search models. Each agent from a continuous population

meets random fellows one by one and then decides whether to match with that partner

or to continue search. Major contributions are Shimer and Smith (2000), Smith (2006),

and Atakan (2006).3 While search and matching models modify the static matching

2 Explicit models of group-lending with complementarities in individual default risks are for exam-
ple given in the publications on microcredit group-lending Ghatak (1999, 2000) and Ghatak and
Guinnane (1999).

3 See also the early contributions by Sattinger (1995), Lu and McAfee (1996), and Burdett and Coles
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model by introducing a time and a search friction jointly, we isolate the effect of the

time friction. To that end, we study the centralized organization of matching markets

using a mechanism design approach.4

We consider a population of heterogeneous agents that differ in a binary characteris-

tic. Matched agents jointly produce socially valuable output according to a production

function which is supermodular in the agents’ characteristics. Once matches are made,

they are irrevocable. Following most of the literature, we assume that matchings are

pairwise.5 Agents arrive according to a Poisson process and types are drawn indepen-

dent of past arrivals. This model is flexible with respect to four key features: The degree

of complementarity of the partners’ characteristics in the output function, the relative

size of absolute values of output generated by two possible matchings of similar agents,

the probability distribution of arriving agents’ types, and the patience represented by

discounting.6

The irrevocability of matches may originate from the matched group’s need to ini-

tially make sunk investments, which make any later split economically unprofitable.

Investments may be capital investments for example in medical equipment or adver-

tisement for a newly founded company, or social investments like trust and social

arrangements within a group of workers. An alternative view is that pairs simply leave

the market and do not return even in case of a split.

For the sake of tractability, we assume characteristics to be binary. This enables

us to find a closed-form solution to an otherwise still unsolved optimization problem.

Apart from the insights provided by the solution to this problem, both the knowledge

of the exact shape of this solution and the solution technique developed in this paper

may help to tackle more comprehensive problems. We refer to the type that generates

the higher output when being paired with itself as ‘productive’.

In the first part of the paper, we derive the welfare-optimal matching policy when

the designer can observe both arrivals and the arriving agents’ types. As opposed to the

literature on search and matching, we do not impose any restrictions on the technology

the central organizer may use.7 This allows us to analyze the role of assortativeness

(1997) on two-sided matching. For a literature survey on search and matching models see Smith
(2011).

4 The environment can be interpreted as small in the sense that the arrival process is discrete, rep-
resenting single agents arriving. In small matching markets central organization is naturally more
appropriate than decentralized search models.

5 For an exception see Ahlin (2015).
6 More precisely, the combination of the discount rate and the frequency with which arrivals are

expected. While in the introduction little discounting between two arrivals is interpreted as patience,
a higher frequency of arrivals, which can be interpreted as a larger market, has the same effect.

7 In the literature on search and matching there is little work on social optimality. Shimer and Smith
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Positive Assortative Policy: H H H L L L H H H L L

Provident Impatient Policy: H H H L L L H H H L L

Myopic Impatient Policy: H H H L L L H H H L L

Figure 3.1: H stands for a productive agent, L represents an unproductive agent, and
circles indicate matches. The policies are illustrated by means of two freely chosen
sets of agents. The first set of agents consists of three productive agents and three
unproductive agents. The second set consists of three productive agents and two un-
productive agents.

from an efficiency perspective. We obtain the welfare-optimal policy in closed form

depending on the four key characteristics. This allows for a clear-cut analysis of the

dynamic friction on efficiency.

First, assume that the outputs produced by two productive agents and two unpro-

ductive agents do not differ too drastically. Depending on the remaining three key

features, always one of three matching policies is optimal. The Positive Assortative

Policy matches agents with equal types whenever possible and lets every agent wait

otherwise. The Provident Impatient Policy matches two similar agents with priority

whenever possible, but it also matches two unequal types if only those are left. Finally,

the Myopic Impatient Policy always matches pairs of productive agents. If the number

of productive agents is uneven, the remaining one is then matched with priority to

an ‘unproductive’ agent. Only then remaining unproductive agents are matched. The

differences between the matching policies are illustrated in Figure 3.1.

The relation between patience and the optimal policies is monotone in the sense

that there are two cut-off levels: When discounting is weak, the Positive Assortative

Policy is optimal, for intermediate levels of patience the Provident Impatient Policy

maximizes welfare, and in an impatient environment it is best to apply the Myopic

Impatient Policy. The intuition for this result is perspicuous: The stronger future

payoffs are discounted, the less willing is the designer to give up immediate output for

the option of realizing gains from positive assortativeness in the future. Whereas the

Positive Assortative Policy always respects these options, the Myopic Impatient Policy

only maximizes current payoff.

An immediate insight is that positive assortative matchings are not always welfare-

maximizing. This means in particular that a failure of positive assortativeness in

search models triggered by agents that are ‘too’ impatient to wait for good matches

(2001b) and Shimer and Smith (2001a) study socially optimal policies, however, the search friction
is taken as given.
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may indeed be welfare-enhancing.8

Considered from the opposite point of view, the result tells us that for small rates

of discounting the efficient matching pattern resembles the standard pattern from fric-

tionless matching. The dynamic model approaches the static frictionless version when

discounting gets negligible. This implies that the result that positive assortative match-

ings are efficient in static environments is robust to small dynamic frictions.

The role of the degree of complementarity of the matched agents’ characteristics is

closely related to the degree of patience. The stronger the complementarity, the greater

are the gains from positive assortativeness. Consequently, ceteris paribus, for little

complementarities the Myopic Impatient Policy is optimal, for intermediate levels the

Provident Impatient Policy, and for strong complementarities the Positive Assortative

Policy maximizes welfare.

Surprisingly, the relation between the distribution of arriving agents’ types and

optimal policies may be non-monotone. There are situations in which ceteris paribus

the Positive Assortative Policy is optimal for intermediate probabilities of arriving

agents to be productive but for both small and very high probabilities the Provident

Impatient Policy is optimal. For illustrative purposes, consider the state in which there

is one agent of either type in the market. When applying the Positive Assortative

Policy, both agents are matched with the next arriving peer. When the probability

of arriving agents’ types takes extreme values, abstaining from the creation of mixed

matches implies that one type has large expected waiting cost. The designer might be

more willing to enforce the Positive Assortative Policy if he knows that arrivals of both

types happen such that all agents get matched in near future.

Next, we consider the situation in which the output produced by two unproductive

agents is drastically smaller than the one generated by two productive agents. If in

addition complementarities are weak such that the Myopic Impatient Policy is strongly

preferred to the Positive Assortative Policy, different matching policies may be welfare-

maximizing. It may become optimal to store unproductive types on the market only

for the purpose of matching productive agents with them immediately upon arrival

and thereby avoiding losses from letting productive agents wait.9 The reason for the

optimality of these policies is the strongly heterogeneous waiting cost induced by the

big differences in productivity joint with discounting.

Besides the insights gained from the design of the optimal policies, there is a tech-

nical contribution in the paper. We solve for the welfare-maximizing matching policy

8 Examples from the search and matching literature in which supermodular output functions are not
sufficient for positive assortativeness are Shimer and Smith (2000) and Smith (2006).

9 This aspect relates to the basic thought of optimal inventory. See Arrow et al. (1951) for the
fundamental thought and Whitin (1954) and Veinott Jr (1966) for early literature surveys.
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using methods from dynamic programming. As the problem has discrete but infinitely

many states, a guess and verify approach implies the need to check all possible devia-

tions on infinitely many states. We develop a tool to do an involved form of induction,

which we call a ‘State Space Reduction’. This tool enables us to solve the problem via

a guess and verify approach by only checking deviations on a small set of states. This

tool might well be applicable to a broader range of problems, in particular, it might be

used to solve the problem with richer types spaces.

In the second part of the paper, we treat implementability of the welfare-maximizing

matching policies by an intermediary which faces agents that have private information

and care only about their own matches’ output. Match values are split equally. We

follow Bergemann and Välimäki (2010) and consider mechanisms that satisfy ‘efficient

exit’ and are interim incentive compatible. We show that the welfare-maximizing pol-

icy is always implementable if agents have private information about their type but

the designer can observe their arrival. This holds even under the most disadvantageous

information structure for implementation: Reports are public such that agents in equi-

librium have all information about the set of agents in the market when arriving.10

Note that in our setup no general implementation theorem applies, as agents’ values

are interdependent and types are uncorrelated in this dynamic setting. While with

observable arrivals the implementation of the Provident Impatient Policy and the My-

opic Impatient Policy turns out to be generally unproblematic, the possibility result is

surprising concerning the Positive Assortative Policy. In static environments, positive

assortativeness can be implemented using a single-crossing property with respect to

each other agent’s type. By this we mean that the gain from matching with a pro-

ductive agent instead of an unproductive one is higher for agents which are productive

themselves. However, the time friction is not only a friction to efficiency but also to

the incentive constraints. When the expected time until getting matched depends on

the reported type, it might be more attractive for unproductive agents to report being

productive than it does for productive agents. Whenever this is the case, the Positive

Assortative Policy is not implementable. However, it turns out that whenever this

happens, the Positive Assortative Policy is not welfare-maximizing either.

In addition, we show that if the complementarity of the match value function is

sufficiently strong or equivalently the environment is sufficiently patient, the welfare-

maximizing policy can be implemented with transfers that only depend on the agent’s

reported type. This simple structure of payments is reminiscent of the one that imple-

ments the positive assortative matching in the static model. Thus, besides the optimal

10 In our model this is equivalent to the notion of periodic ex post equilibrium as defined in Bergemann
and Välimäki (2010).

94



policy also the implementation in the static matching model is robust to small dynamic

frictions. We prove further that whenever this is possible, there exists a splitting rule

for the match value of mixed matches such that the optimal policy can be implemented

without transfers.

Finally, we address implementation when agents’ arrivals are unobservable to the

principal. In this case the agents’ private information is two-dimensional: It consists of

the type and the arrival time. Deviations from truthful reporting may, hence, consist

of misreports about the type combined with strategic delays of the report about the

arrival. We proof that even in this environment the optimal policy is always imple-

mentable. The contract that implements the Positive Assortative Policy when arrivals

are observable is also incentive compatible with unobservable arrivals. Concerning the

Provident Impatient Policy and the Myopic Impatient Policy, we crucially exploit that

for their implementation the authority does not always need to elicit information about

arriving agents’ types.

Besides the literature on search and matching, our paper relates to further con-

tributions that study the efficiency of positive assortativeness in dynamic matching

models. Shi (2005) considers two-sided matching with a supermodular production

function where matches get split after random durations. Shi, however, endogenizes

one side’s quality choice which turns out to make the problem of our paper uninter-

esting. The focus of his paper is on an additionally introduced coordination friction

that cannot be overcome by the central authority. Anderson and Smith (2010) ana-

lyzes the trade-off between creating a payoff-maximizing positive assortative matching

in the current period and having an advantageous distribution over characteristics in

the next period. Agents can be rematched each period, but the trade-off arises as the

evolution of agents characteristics depends on their current match.

Similar to our model, Baccara et al. (2015) considers a matching market with dy-

namically arriving agents that is organized by a benevolent central planner. There

are three key differences in their setup: The market is two-sided, waiting cost are

homogeneous, and each period two agents arrive. A consequence of these differences

is that the analytical problem and hence both the solution technique and the opti-

mal matching policies differ remarkably from ours. Furthermore, the authors do not

consider implementation with private information. Instead, they are interested in a

welfare-comparison between the outcome of a decentralized organization of the market

and the socially optimal outcome.

Dynamic matching markets that are organized by a central authority are further

studied in the growing literature on dynamic kidney exchange. Respective papers are

Ünver (2010), Ashlagi et al. (2013), Anderson et al. (2015), Akbarpour et al. (2016), and
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Ashlagi et al. (2016). The objective in these papers is to minimize waiting times and

therefore maximize the number of matches respecting restrictions on feasible matches

that are exogenously given on medical grounds. Opposed to this literature, we focus

on maximizing total match value in an environment in which any match is feasible.

Fershtman and Pavan (2015) studies a centralized two-sided matching market in

which the agent’s private valuations for partners change over time. The profit-maximizing

intermediary faces restrictions on re-matching agents. Besides the invariant set of

agents in the market, an important difference to our study is that agents have id-

iosyncratic valuations for partners. First, this means that their paper is not about

assortativeness, and second, values are not interdependent.

In a broader perspective, our paper adds to the literature on dynamic assignment

problems. One strand of this literature considers the assignment of dynamically ar-

riving agents to goods which are present from the beginning. Examples are Gallien

(2006), Gershkov and Moldovanu (2009, 2010), Mierendorff (2015), Board and Skrzy-

pacz (2015), Dizdar et al. (2011), and Pai and Vohra (2013). Another strand treats the

assignment of dynamically arriving goods to agents that are queuing for these goods.

Examples are Leshno (2015) and Bloch and Cantala (2016). The housing literature

combines these two strands: Agents arrive over time and are matched with houses that

get back to the market when the assigned agents have moved out. Examples are Kurino

(2014), Bloch and Houy (2012), and Bloch and Cantala (2013). The housing literature

and our paper share the property that both matching partners arrive over time. There

are, however, two substantial differences. First, whereas in the housing literature the

arriving stream of houses is determined by the allocation, in our paper it is entirely

exogenous. Second, in our environment both matching partners have preferences over

partners and both have private information.

Finally, we relate to a small literature that treats the implementability of welfare-

maximizing social choice functions in general dynamic environments. Bergemann and

Välimäki (2010) presents a dynamic VCG mechanism that implements socially opti-

mal social choice functions in dynamic environments with private values. Liu (2014)

and Noda (2016) develop dynamic versions of payment schemes found in Cremer and

McLean (1985, 1988) to implement welfare-optimal social choice functions in environ-

ments with interdependent values and correlated types. Nath et al. (2015) extents the

idea of Mezzetti (2004) to dynamic settings. Their payment scheme allows to imple-

ment the optimal social choice in general environments if payments are made in periods

subsequent to the agent’s report. As in our environment values are interdependent,

types are uncorrelated and payments have to be made immediately upon reports, none

of the latter results can be applied.

96



The rest of the paper is organized as follows: Section 3.2 presents the setup, Sec-

tion 3.3 derives the welfare-maximizing matching policies, Section 3.4 addresses imple-

mentability of the policies under private information and Section 3.5 concludes.

3.2 Model

We consider agents that arrive over time to a matching market. Time is continuous,

and the time horizon is infinite, t ∈ [0,∞). Having arrived to the market, agents

remain in the market until they are matched, i.e., agents are long-lived. Agents are

characterized by the tuple (θ, a), where θ is the agent’s type and a ∈ [0,∞) is his

arrival time. An agent’s type reflects his productivity; he is either productive H or

unproductive L, H > L > 0.

Arrivals are described by a Poisson process (Nt)t≥0 with arrival rate λ. A Pois-

son process is a counting processes and thus describes discrete arrivals. The random

variable Nt describes the number of arrivals up to time t. Let tn be the time of the

n-th arrival. Arriving agents’ types are drawn from a Bernoulli distribution that is

independent of the process (Nt)t≥0 and i.i.d. across time; we denote the probability

of the productive type by p ∈ (0, 1). We refer to the process induced by (Nt)t≥0 joint

with the Bernoulli distributions as arrival process.

There exists a central authority, the designer, which organizes the market. Once an

agent arrives, the designer may assign him to another agent that is in the market. After

being assigned a partner, an agent cannot be reassigned. This could be, for example,

because agents leave the market after forming a group and are thus no longer available

for the designer or because they make sunk investments that are too costly to forfeit.

Together agents produce a match value depending on the pair’s types. Formally,

m : R>0 × R>0 −→ R≥0,

θ1 × θ2 7−→ m(θ1, θ2).

In accordance with the literature, the match value function m is assumed to be sym-

metric and strictly increasing in both arguments. Given the binary type space, m can

be described by three match values mLL, mHL, and mHH , where mθ1θ2 := m(θ1, θ2).11

We refer to pairs where both agents have the same type as homogeneous matches; pairs

of agents with different types are termed mixed matches. We assume that the match

value function is supermodular, which in our setup boils down to 2mHL ≤ mHH +mLL.

Supermodularity implies that in a static model, where all agents are present simulta-

11 As will become clear from the analysis below, one could normalize only one of these three values.
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neously, positive assortative matching maximizes the sum of match values.12 Alter-

natively, if we regard the two match partners as contributing to the match value, the

types, interpreted as input factors, may vary from negligible degrees of complementar-

ity to perfect complementarity. In addition, we require that the match value of the

unproductive pair is not too small compared to the match value of the productive pair,

3mLL ≥ mHH .13

In the absence of additional payments, an agent’s utility from a match, his premu-

neration value cf. Mailath et al. (2013, 2015), equals his share of the match value. In

the first part of the paper, the precise share and the way it is determined, endogenously

or exogenously, may be arbitrary. All agents discount future payoffs with a common

discount rate r ∈ (0,∞).

The designer seeks to maximize the expected discounted sum of match values, i.e.,

the expected sum of discounted utilities. If we assume that all agents are present from

t = 0 but only enter the market at their arrival time a, our objective corresponds to

maximizing the expected sum of utilities. In yet another, less benevolent, interpretation

the designer maximizes output. For a formal description of the designer’s objective

denote by at = (a1, a2, . . . , aNt) the history of arrival times up to time t and by θt =

(θ1, θ2, . . . , θNt) the corresponding history of types. Let ϕs = (ϕHHs , ϕHLs , ϕLLs ) ∈ Z3
≥0

be the action taken by the designer at time s, where ϕHHs is the number of homogeneous

pairs of productive agents, ϕHLs is the number of mixed pairs, and ϕLLs is the number of

homogeneous pairs of unproductive agents formed at time s. Denote by ϕt the history

of the designer’s actions up to time t, ϕt = {ϕs}0≤s<t. Altogether, a history up to time

t, ht, is given by ht = (t, at, θt, ϕt). Let Ht be the set of all histories up to time t. A

matching policy ρ is a family of functions ρ = (ρt)t∈R≥0
where ρt is defined as

ρt : Ht −→ Z3
≥0

ρt(h
t) 7−→ ϕt.

We write ρt = (ρHHt , ρHLt , ρLLt ), where ρθ1θ2t maps the history ht into the number of

θ1θ2-pairs created at time t. The value generated by this policy at time t after history

ht is

vρt (h
t) = ρHHt (ht)mHH + ρHLt (ht)mHL + ρLLt (ht)mLL.

12 A positive assortative matching is a pairing of all agents in the market, in which productive types
pair with productive types and unproductive types pair with unproductive types.

13 In Section 3.3.2 we analyze the case 3mLL < mHH .
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Denote by ϑt the corresponding realized value at time t. Let x(ht) and y(ht) be

the number of productive and unproductive types that are still available in the market

given history ht. Formally, x(ht) and y(ht) are given by14

x(ht) = #{i | θi ∈ θt, θi = H} −
∑
s:ϑs>0
s<t

(2ϕHHs + ϕHLs ),

and

y(ht) = #{i | θi ∈ θt, θi = L} −
∑
s:ϑs>0
s<t

(2ϕLLs + ϕHLs ).

We call a matching policy ρ feasible if it never matches more agents than available

in the market, i.e., for all t and ht,

2ρHHt (ht) + ρHHt (ht) ≤ x(ht)

2ρLLt (ht) + ρHLt (ht) ≤ y(ht).

The designer’s expected payoff from ρ can be written as

E[

∫ ∞
s=0

e−rsvρs(h
s) ds], (3.1)

where the expectation is taken over histories with respect to the probability measure

induced by ρ and the arrival process. We refer to a feasible matching policy ρ that

maximizes (3.1) as welfare-maximizing. Define the expected payoff at time t after

history ht, i.e., the continuation value, from ρ

Vρ(h
t) = E[

∫ ∞
s=t

e−r(s−t)vρs(h
s) ds|ht], (3.2)

where the expectation is taken with respect to the probability measure induced

by the arrival process and (ρs)s≥t. We call a feasible matching policy ρ optimal if it

maximizes (3.2) for any time t and any history ht. Therefore, an optimal matching

policy is a refinement of a welfare-maximizing matching policy, requiring maximization

of the designer’s payoff not only ex ante but after any path of play. In particular, every

optimal matching policy is welfare-maximizing.

Recursive Formulation. As a first step, we derive a recursive formulation. Start

by noting that at every point in time, after any history, x and y are a sufficient statistic

to summarize the maximization problem: Firstly, feasibility depends only on x and y.

Secondly, the arrival process is independent of the history. This is a consequence of

14 Here we slightly abuse notation. By θi ∈ θt we refer to the components of the vector θt.
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the memorylessness of the Poisson process, the independence of interarrival times, and

the independence of the Bernoulli distributions from the arrival times. Thus, the state

of our problem is (x, y) with state space S := {(x, y) ∈ N2
≥0| x ≥ 0, y ≥ 0, x+ y > 0}.15

In particular, time is not part of the state. Thus, there exists an optimal policy that

matches only upon agents’ arrival: Whenever an action is optimal on a given state, the

policy that takes this action on this state is optimal and only matches upon arrival.

A policy that conditions the action, for some state (x, y), on variables different from

x and y, e.g. time, is only optimal if all actions that the policy might take in that state

are optimal. Vice versa, if there is a unique optimal policy among those that match

only upon arrival, then at every state exactly one action is optimal which implies that

this policy is the unique optimal policy in the set of all policies.16

In the following, we restrict attention to feasible matching policies that condition

solely on (x, y). As we will prove generic uniqueness of the optimal policy, the restric-

tion will turn out to be without loss, and we will obtain a sharp characterization of

all optimal matching policies. Accordingly, we suppress the dependence on time and

history in the notation for continuation values and policies and write them merely as

a function of x and y.

It is convenient to define the expected discount factor until the arrival of the next

agent

δ := E[e−rt1 ] =
λ

λ+ r
. (3.3)

Building upon the preceding insights, we are thus led to study the Bellman equation

V (x, y) = max
ϕHH , ϕHL, ϕLL

{
ϕHHmHH + ϕHLmHL + ϕLLmLL

+ δ
[
pV (x− 2ϕHH − ϕHL + 1, y − 2ϕLL − ϕHL) (3.4)

+ (1− p)V (x− 2ϕHH − ϕHL, y − 2ϕLL − ϕHL + 1)
]}
,

subject to:

2ϕHH + ϕHL ≤ x, 2ϕLL + ϕHL ≤ y, ∀x, y ∈ S.

Given the recursive formulation of the designer’s problem (3.4), the difference be-

tween optimal matching policies and welfare-maximizing matching policies has an in-

tuitive interpretation. Every matching policy defines, together with the arrival process,

15 Note, that this formulation implies that a state represents the set of agents in the market including
the new arrival.

16 Whenever the optimal policy is unique, there does not exist a stochastic policy which yields a higher
payoff.
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a Markov chain over states in S. As matching policies are deterministic, there are two

possible successors for each state with transition probabilities p and 1− p. Depending

on the policy, this Markov chain might have a recurrent set. If the Markov chain has

a recurrent set and the market is initially, i.e., at the point in time at which the policy

is enforced, in a state within the recurrent set, then no state outside the recurrent set

is reached with positive probability. A policy is then welfare-maximizing if it maxi-

mizes the designer’s expected payoff at all states in the recurrent set. The criterion

welfare maximization does not restrict policies on states outside of the recurrent set.

An optimal matching policy maximizes the designer’s expected payoff at every state

in S. In the following, we solve for optimal policies.17 Firstly, this allows us to solve

the designer’s problem for any initial state of the market. Secondly, an optimal policy

maximizes the designer’s payoff even if in the past several agents arrived at the same

point in time. Also, as we will see below, focusing on optimal policies elucidates the

economic trade-offs connected to welfare maximization and their resolution.

3.3 Optimal Policy

We start by considering the welfare maximization problem under complete information.

This means at the point in time of an agent’s arrival, the authority observes both the

agent’s arrival and his type. Incentive constraints arising from the agents’ informational

advantage are added in Section 3.4.

3.3.1 The Regular Case

By means of the assumption mHH ≤ 3mLL we have guaranteed that the match value

of a pair of productive agents is not extremely high compared to the output generated

by two unproductive agents. In this case there are three important policies to be

considered, which are portrayed in the following.

Definition 1. Positive Assortative Policy

The Positive Assortative Policy creates in each state (x, y) the maximal number of

homogeneous pairs of both kinds of agents. Mixed matches are never created.

The matching pattern produced by this policy is positive assortative. In the absence

of discounting, this policy maximizes the overall match value. Whenever there is

exactly one agent of either kind left in the market, the policy lets both agents wait

despite waiting costs.

17 As will become clear from the analysis below, solving for optimal policies is indispensable even if
we are only interested in welfare-maximizing policies. See the outline of the proof of Theorem 1 for
an explanation.
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Definition 2. Provident Impatient Policy

The Provident Impatient Policy creates in each state (x, y) the maximal number of

homogeneous pairs of both kinds of agents. If both x and y are uneven, one mixed

match is created in addition.

The matching pattern produced by this policy is not positive assortative but con-

tains a relatively large number of homogeneous matches. Only when there is exactly

one mixed pair left in the market after all homogeneous pairs have been created, the

mixed match is created as well. In that sense homogeneous matches are given priority

over mixed matches. However, the policy never lets two agents wait.

Definition 3. Myopic Impatient Policy

The Myopic Impatient Policy creates in each state (x, y) the maximal number of pairs

of productive agents. If x is uneven and y ≥ 1, one mixed match is created. The

maximal number of pairs from the pool of remaining unproductive agents is formed.

The matching pattern produced by this policy is not positive assortative and con-

tains a relatively little number of homogeneous matches. Again, the policy first creates

the maximal number of productive matches. If afterwards there is a productive agent

left, it is matched to an unproductive agent with priority. Only then pairs of unpro-

ductive agents are formed. In that sense productive agents are given priority over

homogeneous matches. The policy acts entirely myopic in the sense that it maximizes

the sum of immediate match values. The three matching policies are illustrated in

Figure 3.1 in the introduction.

In order to state the main theorem, we define two functions that partition the space

of parameter constellations (p, δ,mHH ,mLL,mHL). Denote

m1
HL := mHH

δp

1− δ(1− 2p)
+mLL

δ(1− p)
1 + δ(1− 2p)

(3.5)

and

m2
HL := mHH

δp

1− δ(1− 2p)
+mLL

1− δ(1− p)
1− δ(1− 2p)

. (3.6)

Note that for any mHH ,mLL,mHL, δ and p it holds that m1
HL < m2

HL.

Theorem 1. For any given parameter constellation (p, δ,mHH ,mLL,mHL) one of three

matching policies is optimal:

If mHL ≤ m1
HL, the Positive Assortative Policy is optimal.

If mHL ∈ [m1
HL,m

2
HL], the Provident Impatient Policy is optimal.

If mHL ≥ m2
HL, the Myopic Impatient Policy is optimal.

The optimal policy is unique if mHL /∈ {m1
HL,m

2
HL}.
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In the following we first elaborate on the statement of Theorem 1. Then we provide

an economic intuition for the result and the underlying trade-offs. The treatment of

the theorem is completed with an outline of the proof.

Immediate implications. First, Theorem 1 is surprisingly simple in the sense

that only three policies are generically optimal. In particular, it is generically not

optimal to let two unproductive agents wait when there is nobody else in the market.

As we show in the extension to this section, this crucially hinges on the regularity

assumption 3mLL ≥ mHH .

The second comment addresses the difference between optimal and welfare-maximizing

policies. The Provident Impatient Policy and the Myopic Impatient Policy do not differ

on states which are reached once one of the two policies is established. Once they are

installed, the total number of agents in the market never exceeds two and both policies

form a pair whenever possible, which is each second arrival. We call the set of policies

which always form a pair as soon as two agents are present the set of Impatient Poli-

cies. For a discussion why to focus on optimal policies we refer the reader to Section 3.2.

Intuition. There are two major driving forces. We refer to the first one as the

gain of assortative matching. The value of matching two productive agents and two

unproductive agents is higher than the value of two mixed matches. In order to achieve

positive assortative matchings, it might be necessary to accumulate agents. This is the

case whenever pairing agents in the order of their arrivals induces creating mixed pairs.

Hence, the gain of assortative matching is effective in favor of waiting with agents in

the market. The second force is the loss from deferring matches. Having agents wait in

the market is costly because of discounting. This force is effective in favor of creating

match values early; this may include creating mixed pairs.

We first comment on the influence of complementarity of the match value func-

tion on optimal policies. Given all other parameters, the match value of a mixed pair

characterizes the degree of supermodularity of the match value function in the agents’

types. The larger mHL, the more are the partners’ types substitutes, and perfect sub-

stitutability is achieved at the upper bound mHL = 1/2(mHH + mLL). The theorem

states that the relation between the match value of a mixed pair and the optimal poli-

cies is monotone in the sense that there are two cut-off levels: When complementarity

is strong, the Positive Assortative Policy is optimal, for intermediate levels the Provi-

dent Impatient Policy is optimal, and for high degrees of substitutability it is optimal

to apply the Myopic Impatient Policy. The intuition is perspicuous: The higher the

value of mixed matches, the smaller is the gain from assortative matching. As all other
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parameters are kept fixed, the loss from deferring matches is unchanged. Hence, with

increasing match values for mixed pairs the losses from deferring matches more and

more outweigh the gains from positive assortativeness. Whereas the Positive Assor-

tative Policy fully realizes gains from positive assortativeness, the Myopic Impatient

Policy solely prevents losses from deferring matches.

Second, for given match values we discuss how the choice of optimal policies depends

on the impatience, represented by the discount factor δ. Recall that δ is a compound

expression of the arrival rate and the discounting rate. The discount factor increases

when the discount rate decreases, or when the arrival rate increases. The arrival rate of

agents can be interpreted as the size of the market. We obtain the following consequence

of Theorem 1:

Corollary 1. There exist two functions δ1 and δ2 that map any parameter constellation

(p,mHH ,mLL,mHL) into [0, 1] with δ1 > δ2 such that:

If δ ≥ δ1, the Positive Assortative Policy is optimal.

If δ ∈ [δ2, δ1], the Provident Impatient Policy is optimal.

If δ ≤ δ2, the Myopic Impatient Policy is optimal.

We call δ1 and δ2 cut-off levels. The existence of two cut-off levels follows from

showing that ∂m1
HL/∂δ ≥ 0 and ∂m2

HL/∂δ ≥ 0 independent of the specific choice

of parameters. This means that when fixing all parameters but δ, the monotonicity

in mHL carries over to monotonicity in δ. 1 ≥ δ1 ≥ δ2 ≥ 0 implies that given any

parameter constellation (p,mHH ,mLL,mHL), for each of the three policies there exists

a δ such that the policy is optimal.

Implication 1: The relation between patience and the optimal policies is also mono-

tone. The stronger discounting, the greater are the losses from deferring matches.

Hence, the stronger future payoffs are discounted, the less willing is the designer to

give up immediate output for the option of realizing gains from positive assortative-

ness in the future.

Implication 2: The result tells us that for little rates of discounting the efficient

matching pattern resembles the standard pattern from frictionless matching. More

precisely, note that for δ = 1 holds m1
HL = 1/2(mHH + mLL), which is the maximum

value for mHL, and whenever m1
HL is interior, then δ1 is interior as well. m1

HL and thus

δ1 is interior for all p, δ 6= {0, 1}. From an economic perspective, the dynamic model

approaches the static frictionless model when discounting gets negligible. Combin-

ing the above statements, this implies that the efficiency result of positive assortative

matchings in static environments is robust to small dynamic frictions.
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Third, we examine the role of the distribution of arriving agents’ types represented

by p. Surprisingly, there are situations in which ceteris paribus the Provident Impa-

tient Policy is optimal for small and high probabilities but for intermediate values of

p the Positive Assortative Policy is optimal. This non-monotonicity arises from the

presence of two different effects. For an illustration, consider the state in which there

is one agent of either type in the market. First, a higher probability of productive

arrivals decreases the expected time until the next productive arrival. For the produc-

tive agent in the market this means that the likelihood that he can be matched with a

productive peer in the near future increases. This raises the expected value of letting

the productive agent wait instead of creating a mixed match. This effect implies that

the attractiveness of the Positive Assortative Policy is increasing in p, implying that

the cut-off δ1 should decrease in p. However, there is an opposite second effect originat-

ing from the unproductive agent. For high levels of p abstaining from the creation of

mixed matches implies a large expected waiting time for the unproductive agent. This

implies that the value the unproductive agent contributes to is strongly discounted.

In isolation, δ1 should increase in p . In particular, if the values mLL and mHH do

not differ much, the second effect is strong enough such that as p approaches one, δ1

increases in p. Then δ1 has its minimum at some interior value, decreases for small p,

and increases for high values of p. In this case the designer is more willing to enforce

the Positive Assortative Policy because he knows that arrivals of both types happen

regularly such that all agents get matched in near future.

The dependence of the optimal matching policy on p and δ is graphically illus-

trated for match values that represent three canonical match value functions: The case

of perfect complements (Figure 3.2), the multiplicative case (Figure 3.3), and the case

of (almost) perfect substitutes (Figure 3.4). The red line depicts δ1, the boundary

between the parameter regions in which the Positive Assortative Policy and the Prov-

ident Impatient Policy are optimal. The blue line depicts δ2, the boundary between

the Provident Impatient Policy and the Myopic Impatient Policy. As mentioned, for

large values of δ the Positive Assortative Policy is optimal, for intermediate values the

Provident Impatient Policy, and for small values the Myopic Impatient Policy.

In the case of perfect complements, Figure 3.2, the match value of a mixed match

equals the match value of a homogeneous match of unproductive agents. A consequence

is that the Provident Impatient Policy dominates the Myopic Impatient Policy in the

sense that the expected welfare from the Provident Impatient Policy is weakly higher

on each possible state. The reason is that, starting on a given state, both policies

generate the same sum of match values in the first period using the same number of

agents. However, the Myopic Impatient policy uses weakly more productive agents for
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Figure 3.2: Perfect complements: m(H,L) = min{H,L}; Here H = 3 and L = 1. The
red line depicts δ1; the blue line depicts δ2.

it than the Provident Impatient Policy.18 Furthermore, as the match value function

is strongly supermodular, the gain of assortative matching is high, and the parameter

region in which the Positive Assortative Policy is optimal is large.

The case of multiplication, illustrated in Figure 3.3, is regularly used to model

complementarities in the match value function. All three policies from Theorem 1 are

optimal on a parameter region with positive measure. Note that for p close to one,

the Positive Assortative Policy is never optimal - the designer always wants to avoid

leaving unproductive agents unmatched.

In the case of perfect substitutes, approximated by Figure 3.4, there are no com-

plementarities in the match value function. As there are no gains from assortative

matching, the parameter regions, for which the Positive Assortative Policy and the

Provident Impatient Policy are optimal, vanish.19

Outline of the proof. The problem is solved using a Guess & Verify method. We

guess three candidate matching policies, which turn out to be optimal on some subset

of the parameter space. As a side product of the verification, we obtain both the precise

parameter region where the verified policy is optimal and its (generic) uniqueness on

that parameter region. It turns out that the respective parameter regions of the three

matching policies constitute a partitioning of the parameter space. The challenging

18 Consider, for example, the state (1, 2). The Provident Impatient Policy matches the two unpro-
ductive agents, whereas the Myopic Impatient Policy creates a mixed match. Both match values
are equal, but the Provident Impatient Policy leaves a productive agent in the market whereas the
Myopic Impatient Policy leaves an unproductive agent in the market.

19 From ∂m1
HL/∂δ ≥ 0 and ∂m2

HL/∂δ ≥ 0 joint with m1
HL = m2

HL = 1/2(m(H,H) + m(L,L)) at
δ = 1 follows that when m(H,L) approaches 1/2(m(H,H) + m(L,L)), m(H,L) > m1

HL,m
2
HL for

almost all δ.

106



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

δ

Figure 3.3: Product: m(H,L) = H · L; Here H =
√

3 and L = 1.
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Figure 3.4: Almost perfect substitutes: Almost m(H,L) = H + L; Here H = 1.5,
L = 0.5 and m(H,L) = 1, 98 < H + L.
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step is the verification, as it involves checking deviations on a discrete but infinite state

space. We cope with the situation by developing a procedure we call ‘State Space

Reduction’.

Guess. We guess the Positive Assortative Policy, the Provident Impatient Policy,

and the Myopic Impatient Policy as candidate matching policies. Remember that joint

with the arrival process a matching policy defines a Markov chain over future states S.

For all three candidates, the induced Markov chains jumps to a finite recurrent set after

the first period. This means that (apart from the initial state) only a finite number

of states realize. For the Provident Impatient Policy and the Myopic Impatient Policy

only the five states (1, 0), (0, 1), (0, 2), (2, 0), and (1, 1) can occur. For the Positive

Assortative Policy the recurrent set is {(1, 0), (0, 1), (1, 1), (0, 2), (2, 0), (2, 1), (1, 2)}.20

As these recurrent sets are finite, the value function of each candidate at every state

in the respective recurrent set can be computed as the solution to a finite system of

equations. The reason is that the value function at an element in the recurrent set only

depends on payoffs generated from states in that set and the transition probabilities.

For illustrative reasons, we state here the system of equations for the Myopic Impatient

Policy. Denote the corresponding values by VMIP :

VMIP (0, 1) =δ
[
pVMIP (1, 1) + (1− p)VMIP (0, 2)

]
VMIP (1, 0) =δ

[
pVMIP (2, 0) + (1− p)VMIP (1, 1)

]
VMIP (0, 2) =mHH + δ

[
pVMIP (1, 0) + (1− p)VMIP (0, 1)

]
VMIP (2, 0) =mLL + δ

[
pVMIP (1, 0) + (1− p)VMIP (0, 1)

]
VMIP (1, 1) =mHL + δ

[
pVMIP (1, 0) + (1− p)VMIP (0, 1)

]
.

(3.7)

The value functions on states outside the respective recurrent sets can then easily be

computed as they only differ from the ones on the recurrent set by the payoff generated

in the starting period. We illustrate this by a short example.

20 Note that the state represents the set of agents in the market including the new arrival.
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Example 1. The example shows how the value function of the Myopic Impatient Policy

at state (6, 5) can be written as a function of the immediate payoff and the value at a

state in the recurrent set:

VMIP (6, 5) =3mHH + 2mLL + δ
[
pVMIP (1, 1) + (1− p)VMIP (0, 2)

]
=3mHH + 2mLL + δVMIP (0, 1).

Policies that differ only on states outside the recurrent set have the same value

function at states inside the recurrent set and the recurrent sets coincide. In partic-

ular, the values of the Provident Impatient Policy (VPIP ) equal those of the Myopic

Impatient Policy on the recurrent set. If the initial state lies in the recurrent set, a

policy is welfare-maximizing if it maximizes the value on each state in the recurrent

set. Any policy that differs outside of the recurrent set is welfare-maximizing as well.21

Verification. Verifying the optimality of the three candidates can potentially be

cumbersome. We describe the procedure that we apply to all three candidate policies.

Fix one candidate. In the previous step, we determined the value on each state. The

verification consists of showing for any state that following the policy is better than

deviating on the particular state and subsequently following the candidate solution.

By the principle of optimality, if all conditions are checked, we have shown both the

matching policy, defined as a course of actions, and the associated value function to

be optimal. When following the candidate is strictly better than any deviation on any

state, the optimal policy is unique.

The difficulty in the verification is that there is a large number of potential de-

viations to be checked: First, the number of states on which deviations have to be

checked is (countably) infinite; second, on states with many agents in the market there

is a large number of deviations possible.

This problem can not be avoided by restricting attention to welfare-maximizing

policies that start with the very first arrival. Even though in the latter case welfare

maximization demands optimality only on a finite set of states, the verification still

demands guessing the optimal policy on each possible state. The reasoning is as follows:

On each state in the recurrent set, applying the candidate policy must be better than

any alternative action. These alternative actions might, however, lead to states outside

the recurrent set as illustrated in Example 2.

21 For the difference of optimality and welfare maximization see the model section.
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Example 2. The example illustrates how checking deviations from the Myopic Impa-

tient Policy at state (1, 1), a state in the respective recurrent state, involves the value

on states (2, 1) and (2, 1), which are not in the recurrent set for that candidate. The

(only possible) deviation considered here is to not create the mixed pair:

VMIP (1, 1) =mHL + δ
[
pVMIP (1, 0) + (1− p)VMIP (0, 1)

]
>δ
[
pVMIP (2, 1) + (1− p)VMIP (1, 2)

]
.

In order to evaluate whether the value associated with a deviation is strictly lower

than the candidate course of action, we must make statements about the upper bound

of the value when being in this ‘off-path’ state. As we want to determine for which

parameter configurations precisely the candidate policy is optimal, we need to know

exactly the maximal value of the ‘off-path’ state. Therefore, we need to know what the

optimal policy does on that state. In order to find the optimal policy on that ‘off-path’

state we guess it and again check deviations, which may lead to more ‘off-path’ states.

As there is always the possibility of not matching anything, any state in the state space

is reached by the procedure. Hence, it is necessary to set up a candidate that is optimal

and verify it.

We tackle the problem of checking the large number of deviations by a proof strategy

that involves what we call ‘State Space Reduction’. The State Space Reduction is an

elaborate induction argument and is the crucial step of the proof. We believe that

the concept of the ‘State Space Reduction’ can be used to address comprehensive

maximization problems, in particular the related problem with more than two types

of agents. The State Space Reduction works as follows: Instead of checking deviations

on each state, we set up a number of general statements. On an arbitrary state, these

statements identify deviations, which are not optimal, given the candidate policy will

be continued in the following states and given the candidate policy is optimal on smaller

states.22 We call these statements ‘principles’ that specify which kind of deviations do

not have to be considered. Then we identify states on which these principles capture

every possible deviation. We show that there is only a finite number of states including

the smallest ones, on which the principles do not capture every possible deviation.

When explicitly showing that on this finite set there are no profitable deviations, we

have shown that there are no profitable deviations at all. Note, that this set of states

does not equal the recurrent set and also differs between the Provident Impatient Policy

and the Myopic Impatient Policy. To state the principles, we use one further definition.

22 State (x, y) is smaller than state (x′, y′) if and only if x ≤ x′ and y ≤ y′ with at least one inequality
being strict.
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Definition 4. A policy ρ is consistent iff for any state (x, y) ∈ S and any (θ1, θ2) ∈
Θ2 holds: ρθ1θ2(x, y) > 0 ⇒ ρθ1θ2(x − 1{θ1=L} − 1{θ2=L}, y − 1{θ1=H} − 1{θ2=H}) =

ρθ1θ2(x, y)− 1 and ρθ3θ4(x− 1{θ1=L} − 1{θ2=L}, y − 1{θ1=H} − 1{θ2=H}) = ρθ3θ4(x, y) for

all (θ3, θ4) /∈ {(θ1, θ2), (θ2, θ1)}.

The meaning of consistency is best illustrated by an example: Suppose on a given

state the policy creates matches with at least one pair of productive agents amongst

them, θ1 = θ2 = H. Then, on the state with two productive agents less, the policy

creates the same matches except for one pair of productive agents. This definition is

used in order to formulate the first principle. Each of our candidates is consistent.

Lemma 1. (Principle 1) Assume that the candidate policy is consistent. Then in

every state, deviations that form a pair that is also formed under the candidate policy,

do not have to be checked.

For example, consider a consistent candidate policy and a state on which it forms

a homogeneous pair of productive types. On that state no deviations have to be

considered that also match two productive agents.

The reason is based on two observations. First, note that the match value of the

pair that is created under the candidate and the deviation can be canceled out from

the inequality that corresponds to checking the deviation. Second, due to consistency,

the candidate policy creates the same matches except for one pair of productive agents

on the state with two productive agents less. Combining the two observations, the

deviation is not profitable given there was no profitable deviation on the state with

two productive agents less. The same holds for homogeneous pairs of unproductive

agents and mixed pairs. The following example illustrates this point:

Example 3. The example shows how a deviation from the Positive Assortative Policy

as in Principle 1 on state (6, 5) can be traced back to a deviation on a smaller state.

Denote VPAP the value under the Positive Assortative Policy. The deviation considered

matches exactly one pair of productive agents:

VPAP (6, 5) =3mHH + 2mLL + δ
[
pVPAP (1, 1) + (1− p)VPAP (0, 2)

]
>mHH + δ

[
pVPAP (5, 5) + (1− p)VPAP (4, 6)

]
⇔ 2mHH + 2mLL + δ

[
pVPAP (1, 1) + (1− p)VPAP (0, 2)

]
>δ
[
pVPAP (5, 5) + (1− p)VPAP (4, 6)

]
⇔ VPAP (4, 5) > δ

[
pVPAP (5, 5) + (1− p)VPAP (4, 6)

]
.
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Figure 3.5: This graph represents the state space. It visualizes Lemmas 4, 5 and 6.
Deviations on states below the lines do not have to be verified. The red line corresponds
to Lemma 4 and 5, the green line to Lemma 6.

Lemma 2. (Principle 2) Assume that the candidate policy is consistent. Consider

a state and a deviation on it that leaves two agents with types θ1 and θ2 unmatched.

If after the following arrival the candidate policy creates a pair (θ1, θ2) independent of

the arriving agent’s type, this deviation does not have to be checked.

For example, consider a deviation which lets two productive types in the market.

The deviation does not have to be checked, if in the next period (upon the next arrival)

a match of two productive agents is created independently of the type of arrival. The

reason is that a better deviation exists. The more profitable deviation equals the

excluded deviation except that the match, which would be made later for sure, is

created immediately. Because of discounting, this deviation has a higher value. It

suffices to check against the best deviation instead of all deviations.

Lemma 3. (Principle 3) In every state, deviations that create more than one mixed

pair do not have to be considered.

The reason is similar to the one of Principle 2. There exists another deviation which

is more profitable. The more profitable deviation exploits the supermodularity of the

match value function and creates one homogeneous pair of either type instead of two

mixed pairs.

In the next step, we apply the principles to all three candidate matching policies.

For each candidate we identify the set of states for which all deviations can be excluded.

Lemma 4. When the Positive Assortative Policy is the candidate, there is no need to

verify deviations on all states that contain more than two agents of the same type.

The proof consists of applying Principles 1 to 3 to the Positive Assortative Policy

and then combining them. By Principle 1, deviations that create a homogeneous pair

do not have to be checked. By Principle 2, deviations that leave more than one agent

of the same type in the market do not have to be checked. The application of Principle

3 to the Positive Assortative Policy is straightforward.
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Finally, we combine the applications of the principles: Consider a state with three

productive types. Principle 1 implies that there is no need to consider deviations

that match two productive types. Principle 2 states that we do not need to treat

deviations that leave two or more productive types unmatched. The only deviations

left to consider match two or more productive types with unproductive ones. For those

deviations, Principle 2 applies. The proof for unproductive agents is analogous.

Lemma 5. When the Provident Impatient Policy is the candidate, there is no need to

verify deviations on all states that contain more than two agents of the same type.

The application of the three principles to the Provident Impatient Policy follows

similar thoughts, even though there are differences. There are states in which the

candidates do not create homogeneous matches even though this is possible and in

addition there are states in which mixed matches are created.

Lemma 6. When the Myopic Impatient Policy is the candidate, there is no need to

verify deviations on all states that contain more than two productive agents or more

than three unproductive agents.

When the Myopic Impatient Policy is the candidate solution, the sets of remain-

ing states that are to be verified one by one is slightly larger than for the other two

candidates. The reason is that if two unproductive agents stay in the market, it might

happen that one of them is matched with a productive arrival in the next period.

Hence, the statement that two unproductive agents get matched in the next period

anyways if they are not matched, does not hold.

The deviations on the remaining states are verified one by one. Some deviations

are unprofitable only under certain conditions on parameters. These conditions define

the region of the parameter space in which a candidate is optimal. It turns out that

these regions constitute a partitioning of the entire parameter space. The condition

mHL ≤ m1
HL ensures that creating the mixed match in (1, 1) is unprofitable if the

candidate is the Positive Assortative Policy. mHL ≥ m1
HL ensures that creating the

mixed match in (1, 1) is profitable if the candidate is the Provident Impatient Policy.

m2
HL takes the corresponding role for the question whether to create the homogeneous

match or the mixed match in (1, 2): If the candidate is the Provident Impatient Policy,

the condition mHL ≤ m2
HL ensures that the homogeneous match is optimal, and if the

candidate is the Myopic Impatient Policy, the condition mHL ≥ m2
HL ensures that the

mixed match is value-maximizing.
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3.3.2 Extension: Non-regular Case

In this extension we drop the assumption mHH ≤ 3mLL. This means we allow for

extreme differences in the productivity of agents. When the value of unproductive

agents is very low compared to the value of productive agents, new matching policies

can be optimal. Optimality sometimes requires two unproductive agents to wait in the

market, when nobody else is in the market. Therefore we need to define a new class of

matching policies.

Definition 5. Matching Policy Pk
The Matching Policy Pk creates in each state (x, y) the maximal number of pairs of

productive agents. If x is uneven and y ≥ 1, one mixed matches is created. If a mixed

match is created, the maximal number of pairs from the pool of max{0, y − 1 − k}
unproductive agents is formed. If no mixed match is created, the maximal number of

pairs from the pool of max{0, y − k} unproductive agents is formed.

Policy Pk has similarities to the Myopic Impatient Policy. The difference is that

less than the maximum number of homogeneous matches of unproductive agents is

created. When there are only unproductive agents in the market, the policy always

keeps at least k of them in the market. For example, Policy P1 creates no match in

state (0, 2).

Proposition 1. For any given mLL,mHH such that mHH > 3mLL, there exist param-

eter constellations (p, δ,mHL) for which matching policy P1 is optimal.

In order to proof Proposition 1 we apply the same strategy as for proving Theorem

1. An application of the three principles reduces the verification to a finite set of states

on which deviations are verified by hand.

At first glance it might be surprising that it can be optimal to abstain from creating

the homogeneous match but to let two unproductive agents wait in the market. To

gain intuition for this result, we reconsider the two basic effects in the maximization

problem. Consider a situation in which the gain of assortative matching is very small

such that the sorting into matches is not decisive. The effect of the loss from deferring

matches is then to match agents early with priority given to productive agents. The

implication, however, requires careful consideration: Strong discounting does not only

make it attractive to match agents which are currently present in the market. It also

provides incentives to lay the foundation to quickly match productive agents which

arrive in the future. The latter can be achieved by storing an unproductive agent in

the market such that a productive agent that arrives in the future can be matched

immediately upon arrival. If the value of this availability exceeds the cost of deferring

the match of two unproductive agents, it is optimal to abstain from creating a match
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in order to keep an unproductive agent as stock in the market. Proposition 1 states

that there are parameter constellations for which this does happen.

Policy P1 is optimal when complementarities are low, the differences in the pro-

ductivity of agents are large, arrivals of productive agents are likely, and discounting

is intermediate. A prerequisite for Policy P1 to be optimal is that there is a strong

preference to match a single productive agent with an unproductive agent even if there

are two unproductive agents in the market. Therefore, the gain of assortative matching

and hence complementarities must be small. Under Policy P1, two unproductive types

incur waiting costs in order to save the waiting cost of a potentially arriving produc-

tive type in the future. This is optimal if the productive agent’s loss from waiting

significantly exceeds the unproductive agents’ loss, which is the case only for strong

differences in productivity. Furthermore, letting two unproductive agents wait in the

market is only optimal if the probability that it pays off, namely that a productive

agent arrives in the next period, is sufficiently high. Finally, Policy P1 is optimal for

intermediate values of δ. When discounting is very little, there is no desire to create

mixed matches anyways and clearly Policy P1 is not optimal. The smaller δ, the higher

is the value of having unproductive agents available when an productive agent arrives.

This dominates the increased cost of accumulating unproductive agents. However,

when discounting is very strong, Policy P1 is not optimal either: The designer does

not care about the option to match productive agents earlier, because the option only

increases payoffs in the strongly discounted future.

In Figure 3.6 we fix match values such that for each possible (p, δ) one of the policies

listed in Theorem 1 or the Policy P1 is optimal. The figure illustrates the respective

parameter regions (p, δ). The red and the blue line are δ1 and δ2 as before. The black

line depicts the boundary between the parameter regions on which the Myopic Impa-

tient Policy and Matching Policy P1 are optimal. Matching Policy P1 has no boundary

to the Provident Impatient Policy. Policy P1 is optimal for large values of p.

Policy P1 is optimal for low levels of complementarity. Corollary 2 shows that the

monotonicity of optimal policies with respect to mHL extends to Matching Policy P1.

Corollary 2. If mHH > 3mLL, there exist two continuous functions m3
HL and m4

HL

that map any parameter constellation (p, δ,mHH ,mLL) into R≥0 satisfying m3
HL <

1/2(mLL +mHH) and m2
HL ≤ m3

HL ≤ m4
HL such that:

If mHL ≤ m1
HL, the Positive Assortative Policy is optimal.

If mHL ∈ [m1
HL,m

2
HL], the Provident Impatient Policy is optimal.

If mHL ∈ [m2
HL,m

3
HL], the Myopic Impatient Policy is optimal.

If mHL ∈ [m3
HL,min{m4

HL, 1/2(mLL +mHH)}], the Matching Policy P1 is optimal.

A consequence of Corollary 2 is that the condition mHH ≤ 3mLL is not only
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Figure 3.6: Parameter choice: m(H,H) = 10,m(L,L) = 1,m(H,L) = 4.8. The
black line depicts the boundary between the parameter regions on which the Myopic
Impatient Policy and Matching Policy P1 are optimal. Matching Policy P1 has no
boundary to the Provident Impatient Policy.

sufficient for the statement of Theorem 1 to hold but also necessary. Whenever

mHH > 3mLL, there exist parameters (p, δ) such that none of the three matching

policies from Theorem 1 is optimal if mHL = 1/2(mLL +mHH).

Note, that for some parameter constellations m4
HL < 1/2(mLL + mHH). This may

happen for some values of (p, δ) if the ratio mHH/mLL is extremely high and mHL is

close to its upper limit. In that case none of the four matching policies is optimal.

Following the logic presented in this extension, our guess is that in these special cases

it would be optimal to hold even more than one unproductive agent on stock to prepare

for the case that several productive agents arrive to the market in row. Proposition 2

describes an extreme case in which this stock is even infinite.

Proposition 2. Policy P∞ is optimal only if mLL = 0.

Policy P∞ never matches two unproductive agents. Potentially, it accumulates an

unbounded stock of unproductive agents. When two unproductive agents generate no

value, there is no loss of deferring homogeneous matches of unproductive agents. If

in addition the creation of mixed pairs is strictly profitable when a single productive

agent is in the market, Policy P∞ is uniquely optimal.

However, we show that apart from the extreme case mLL = 0, Policy P∞ is never

optimal: This means that generically Policy P∞ is not optimal. Hence, if a policy

that keeps unproductive agents on stock is optimal and there is a positive cost of wait-

ing with the agents, there is a maximum number of unproductive agents above which

two of them get matched. The reason for keeping k unproductive agents on stock is

to prepare for the event that k productive agents arrive in row. The probability for
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this event is exponentially decreasing in k; the cost of holding an additional agent

on stock is, however, not decreasing in k. Therefore, at some number of agents the

additional cost from accumulating a larger stock exceeds the additional expected profit.

The previous propositions have identified parameter constellations on which none

of the three initially introduced policies is optimal. Recall that we interpret the three

match values as describing the possible outcomes of a function that maps tuples of types

(θ1, θ2) into match values m(θ1, θ2). Despite the results of this extension, there is a large

number of natural match value functions for which on each parameter constellation

either the Positive Assortative Policy, the Provident Impatient Policy, or the Myopic

Impatient Policy is optimal. An important functional form, which is regularly used to

represent complementarities in matching, is the product case.

Proposition 3. Assume m(θ1, θ2) = θ1 · θ2. For any values of H,L, p and δ one of the

following matching policies is optimal: The Positive Assortative Policy, the Provident

Impatient Policy, or the Myopic Impatient Policy.

Note, that this result holds irrespective of the ratio H/L. This means that even

when the ration is large such that mHH > 3mLL unproductive agents are never accu-

mulated.

3.4 Incomplete Information and Implementation

In our model, agents are characterized by their productivity θ and their arrival time

a. In Section 3.3, we assumed that the designer can observe agents’ characteristics.

We now consider situations in which the designer cannot observe agents’ entry into the

market or their productivity, which are thus private information to the agents. There-

fore, the designer needs to elicit private information from agents. As the designer’s

and agents’ interests are not aligned, e.g. either type of agent wants to be assigned a

productive partner, the presence of private information gives rise to an incentive prob-

lem. In this section we analyze ways of implementing the welfare-maximizing policies

under various information structures.

Henceforth, we assume that the match value is divided equally among the two part-

ners. This splitting-rule can be justified as the Nash Bargaining Solution: In our model,

the designer assigns two agents to a pair. Once the match is formed, both agents leave

the market and can not return. This implies that once they are matched, both partners

have an outside option of zero. If both agents have equal bargaining power, they share
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the surplus of their cooperation, the match value, equally.23 We allow the designer to

use monetary transfers and assume that agents have quasilinear utility. Thus, they

maximize (half of the) match value minus payments.24 We study the market begin-

ning with the first arrival. Therefore, initially the market is in the recurrent set of

all optimal policies, and we may focus on the implementation of welfare-maximizing

policies. In particular, we only distinguish between the Positive Assortative Policy and

the Impatient Policy.

In the following, we will prove a possibility result for the implementation of the

optimal policies. To strengthen this result, we consider a setting which impedes imple-

mentation. Firstly, we will impose strong requirements on the mechanism. Secondly,

agents will draw on a rich information structure, allowing for many deviations. Fi-

nally, regarding the designer’s information, we assume that he does not observe arriving

agents’ types. We consider both observable and unobservable arrivals.

3.4.1 Observable Arrivals

First, we analyze the case in which the designer observes arrivals. We consider direct

mechanisms in which agents report their type. Upon arrival, an agent observes the

past reports of all other agents in the market and reports his type. With a slight abuse

of notation we denote by S the set of agents that are already in the market and by

ΘS the vector containing their types. We adopt the convention to denote reported

types with hats. We call the vector Θ̂S market report. Given policy ρ, market report

Θ̂S, and an agent entering the market and reporting type θ̂, we denote the (random)

variable describing the type of that agent’s partner by θ̃ρ(Θ̂S ,θ̂) and the random variable

describing the time when the agent will be matched by tρ(Θ̂S ,θ̂)
. A mechanism maps

the market report into the allocation given by the welfare-maximizing policy and a

payment.

We begin by stating the properties of the mechanism. We concentrate on mecha-

nisms that support efficient exit meaning that an agent who stops to affect current and

future matches also stops to receive and pay transfers.25 In particular, payments do

not condition on realized match values and agents cannot reveal their partner’s type

to the designer after being matched. This is in accordance with our interpretation that

agents leave the market after forming a group. Thus, we focus on payments τ Θ̂S(θ̂)

23 For a strong justification of uniform sharing rules in static settings see also Dizdar and Moldovanu
(2013).

24 Recall that agents discount the future.
25 See also Bergemann and Välimäki (2010). In the dynamic assignment literature an analogous

condition is the requirement that mechanisms are online, cf. Gershkov and Moldovanu (2010).
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that are charged upon arrival and depend on the market report and the agent’s report.

We study direct mechanisms that have a truthful equilibrium in which welfare is

maximized. Agents arrive to the market, observe past reports of all agents in the mar-

ket, form Bayesian expectations with respect to the future, and maximize their utility

given that all other agents report truthfully. Observe that this notion of incentive com-

patibility coincides with interim incentive compatibility in Bergemann and Välimäki

(2010). Formally, the incentive compatibility constraints are given by:

1

2
E[e−rtρ(ΘS,θ)m(θ̃ρ(ΘS ,θ), θ)]− τΘS(θ) ≥ 1

2
E[e
−rt

ρ(ΘS,θ̂)m(θ̃ρ(ΘS ,θ̂), θ)]− τΘS(θ̂), ∀θ, θ̂,ΘS,

(3.8)

where the expectation is taken with respect to the partner’s type and the matching

time.26 There are other perceivable specifications of the agents’ information struc-

ture in which agents observe only the number of reports, i.e., the number of agents

in the market, or do not observe reports at all. If the designer can implement the

welfare-maximizing policies under this information structure, he can implement the

welfare-maximizing policies under any information structure in which agents have less

information.27

As agents participate in the mechanism voluntarily, the following individual ratio-

nality constraints have to be satisfied

1

2
E[e−rtρ(ΘS,θ)m(θ̃ρ(ΘS ,θ), θ)]− τΘS(θ) ≥ 0, ∀θ,ΘS. (3.9)

Observe that (3.9) entails a strong notion of individual rationality because, in addi-

tion to observing his type, an agent also observes the market report before he decides

whether to participate.28

As last condition, we impose that the mechanism requires no external injection of

money:

τΘS(θ) ≥ 0, ∀θ,ΘS (3.10)

i.e., all payments are positive, which implies that the mechanism runs no deficit at

26 As types do not change over time, (3.8) implies that the mechanism is periodic ex post incentive
compatible in the sense of Bergemann and Välimäki (2010). Thus, the mechanism exhibits the no-
regret property with respect to past agents’ types. Also, as noted by Dizdar and Moldovanu (2013),
ex post implementation is intuitively closer to the complete information environment of traditional
matching models.

27 See also Myerson (1986). For example, the designer can reveal any information that is missing to
agents and use the original mechanism.

28 As will become clear from the analysis below the outside option could be any sufficiently small
positive value.
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any point in time.

Implementation in our setting is not straightforward. Consider the Positive Assor-

tative Policy: An agent that reports a productive type will be assigned a productive

partner; an agent that reports an unproductive type will be assigned an unproductive

partner. Consider an agent that arrives to a market with one productive agent and

one unproductive agent. This situation resembles the static model: Independently of

his report, the third agent will be matched immediately with a partner whose report

coincides with his report. Either type of arriving agent would like to form a group with

the productive agent. Supermodularity of the match value is equivalent to increasing

differences, mHH−mHL ≥ mHL−mLL.29 Intuitively, increasing differences implies that

a match with a productive partner instead of a match with an unproductive partner is

valued more by a productive agent than by an unproductive agent. This gap allows the

designer to construct payments that make truthful revelation incentive compatible.30

Next, consider an agent that arrives to a market with one unproductive agent.

Reporting the productive type is less attractive because of the waiting costs incurred

until the arrival of the next productive agent. If he reports the unproductive type, he

is matched immediately. Therefore, in this case, supermodularity does not necessarily

imply increasing differences. The theorem below establishes that, despite these time

constraints, the optimal policy is implementable whenever it is welfare-maximizing.

As mentioned in the introduction, there is no general implementation result for our

environment as we have a dynamic setting with interdependent values, independent

types, and payments that satisfy efficient exit.31 Our positive implementation result is

also surprising in light of the impossibility result for implementing efficient allocations

in static settings with interdependent values, cf. Jehiel and Moldovanu (2001).

Theorem 2. There exist payments such that the implementation of the welfare-maximizing

policies is incentive compatible, individual rational, runs no deficit, and supports effi-

cient exit.

Impatient Policy. If the designer observes arrivals, the implementation of the

Impatient Policy is straightforward. As the policy does not condition on the type

but matches every two consecutive agents, irrespective of their types, there is no need

to elicit agents’ private information. Hence, it is possible to set all payments equal to

29 This is the discrete analogon of the single-crossing property from mechanism design with continuous
types.

30 If the unproductive agent would have a larger incentive to report the productive type than the
productive agent, separation would be possible but would induce both types of agents to lie.

31 For settings with: (i) private values cf. Bergemann and Välimäki (2010), (ii) correlated types cf.
Liu (2014), and (iii) without efficient exit cf. Nath et al. (2015).
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zero. Furthermore, this is individual rational, runs no deficit, and satisfies efficient exit.

Positive Assortative Policy. In case of the Positive Assortative Policy, the

situation is more intricate as the agents’ report affects their match. It is useful to

aggregate the market report ΘS into a tuple. Under the Positive Assortative Policy

there can be either no agent (0,0), an agent with a productive report (1,0), an agent with

an unproductive report (0,1), or two agents with one productive and one unproductive

report (1,1) in the market. Denote by ∆θ(p, δ) the expected discount factor until the

next arrival of type θ. In accordance with our intuition, ∆θ(p, δ) is increasing in δ,

∆L(p, δ) is decreasing in p, and ∆H(p, δ) is increasing in p.

The incentive constraint for the productive type given market report (0, 1) can be

written as

1

2
∆H(p, δ)mHH − τ (0,1)(H) ≥ 1

2
mHL − τ (0,1)(L). (3.11)

Analogously, the incentive constraint for the unproductive type in (0, 1) is

1

2
∆H(p, δ)mHL − τ (0,1)(H) ≤ 1

2
mLL − τ (0,1)(L). (3.12)

Rearranging yields the following condition on the payment difference

1

2

(
∆H(p, δ)mHH −mHL

)
≥ τ (0,1)(H)− τ (0,1)(L) ≥ 1

2

(
∆H(p, δ)mHL −mLL

)
. (3.13)

Therefore,

∆H(p, δ)mHH −mHL ≥ ∆H(p, δ)mHL −mLL (3.14)

is a necessary and sufficient condition for the existence of an incentive compatible

payment pair in (0, 1).

Observe that the left side of (3.14) decreases quicker than the right side as the

excepted discount factor decreases. Especially for low discount factors δ or low values

of p, (3.14) might be violated. Similarly, we can derive conditions for the existence

of incentive compatible payments for all other market reports, (0, 0), (1, 0), (1, 1). It

turns out, if (3.14) holds, the conditions for the other market reports are also satisfied.

Comparing (3.14) to the boundary of the Positive Assortative Policy (3.5), shows that

for all parameters for which the Positive Assortative Policy is welfare-maximizing (3.14)

holds. Thus there exist incentive compatible payments that satisfy efficient exit, for

all market reports.

We proceed by charging the unproductive type the maximum individual rational
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payment for all market reports,

τ (0,0)(L) = τ (1,0)(L) =
1

2
∆L(p, δ)mLL, (3.15)

τ (0,1)(L) = τ (1,1)(L) =
1

2
mLL. (3.16)

Given the unproductive type’s payment, we choose, for every market report, the max-

imal payment for the productive type such that the payment pair is incentive com-

patible, cf. e.g. (3.13). Individual rationality of the unproductive type and incentive

compatibility of the productive type yield individual rationality for the productive

type. The proof concludes by verifying that all payments are positive.

The proof of Theorem 2 reveals that if positive assortative matching fails to be

incentive compatible, it also fails to be welfare-maximizing. Intuitively, if (3.14) is

violated, the incentive for an unproductive agent to report the productive type is

stronger than the incentive for a productive agent. This means that an unproductive

agent’s gain of being matched with a productive agent instead of being matched with

an unproductive agent outweighs the respective loss for a productive agent. Then, it

is plausible that it is welfare-maximizing to create mixed matches.

Note that the mechanism constructed in the proof of Theorem 2 generates revenues:

Firstly, we set the unproductive type’s expected utility to zero for all market reports

by charging the highest payment that is individual rational. Secondly, we choose the

maximal incentive compatible payment for the productive type. By reducing payments,

the mechanism could account for more lucrative outside options.

The payments of the unproductive type that implement the Positive Assortative

Policy depend on the market report only through the presence or absence of an agent

in the market whose type coincides with the agent’s reported type. That is, payments

are equal for market reports (0, 0), (1, 0) and for market reports (0, 1), (1, 1). This is

a consequence of the agent’s report fixing his (future) partner’s type and his expected

waiting costs under the Positive Assortative Policy.

3.4.2 Extension: Simple Payments

The payments that implement the Positive Assortative Policy in Theorem 2 depend on

the market report. In applications it is often desirable to use simple mechanisms that

condition on as few parameters as possible. In this section, we examine under which

conditions the Positive Assortative Policy is implementable with transfers that depend

solely on the reported type but not on the market report. We refer to these payments as

simple payments. In addition, this elucidates the relation of implementation of positive
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Figure 3.7: Incentive compatible payment differences

assortative matching in our dynamic model and in the static analogon. In the static

model payments condition only on the agent’s own report. Therefore, our analysis

investigates when positive assortative matching can be implemented in the dynamic

model with ‘static’ payments.

Proposition 4. The Positive Assortative Policy is implementable with simple pay-

ments if

mHL ≤ ∆H(p, δ)
mHH

2
+ ∆L(p, δ)

mLL

2
. (3.17)

This parameter region is a strict subset of the parameter region where the Positive

Assortative Policy is optimal.

In Theorem 2 we proved that the conditions for the existence of incentive compat-

ible payment differences hold. However, the conditions differ across market reports.

Therefore, the main issue is to find a single payment pair (τ(H), τ(L)) that is incentive

compatible for all possible market reports. To this end, it is instructive to consider

Figure 3.7. Rows correspond to market reports. The green part of each line marks

the region where payment differences are incentive compatible, whereas payment dif-

ferences that lie within the red region are not incentive compatible. We are looking

for a payment difference τ(H)− τ(L) which lies in the green interval across all market

reports. As the boundaries vary significantly with p and δ, existence of such a payment

difference is not guaranteed. As illustrated in Figure 3.7, the left boundary of market

report (1, 0) and the right boundary of market report (0, 1) are most restrictive. In-

tuitively, (1, 0) is the most attractive market report for reporting the productive type,

whereas (0, 1) is the most attractive market report for reporting the unproductive type.

Combining these two conditions yields (3.17).

Observe that (4) holds as δ approaches one, that is, as the time friction vanishes.

This means that as the time constraints fades, we can draw on simple payments, which
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reflect the payments used in the static model to implement the Positive Assortative

Policy. Similarly, an increase in complementarities, i.e., a decrease in mHL, strengthens

the increasing differences property and thus allows for an implementation with simple

payments.

3.4.3 Extension: Asymmetric Match Value Splits

Hitherto, we assumed that partners share their match value equally. While this seems

intuitive if partners are homogeneous, i.e., have the same type, one can imagine other

sharing rules in case of mixed pairs.32 An appropriate sharing rule might alleviate the

incentive problem.33 This section investigates under which conditions there exists a

sharing rule which induces truthful revelation of types without further intervention,

that is to say, without incentivizing agents with payments. In the following, denote

by α the productive type’s share of the match value when he forms a group with an

unproductive type.

Proposition 5. There exists a share α such that the welfare-maximizing policies are

implementable without payments if and only if the welfare-maximizing policies are im-

plementable with simple payments.

Recall that the implementation of the Impatient Policy in Theorem 2 is straight-

forward. Hence, we may concentrate on the Positive Assortative Policy. Consider the

incentive constraints for market report (0, 1). The productive agent reports truthfully

if

1

2
∆H(p, δ)mHH ≥ αmHL. (3.18)

Analogously, the unproductive agent reports truthfully if

1

2
mLL ≥ (1− α)∆H(p, δ)mHL. (3.19)

Observe that the incentive constraint of the productive agent gives an upper bound

on α, whereas the incentive constraint of the unproductive agent gives a lower bound

on α. We proceed similar for the remaining market reports. As in the previous section,

the most restrictive conditions arise in (1, 0) and (0, 1). In particular, (3.18) yields the

lowest upper bound on α, whereas the incentive constraint of the unproductive type

for market report (1, 0)

32 The precise way of how these ‘premuneration values’ are determined may depend on the specific
legal or institutional environment and may lie beyond the designer’s control, see Mailath et al.
(2015) for an exhaustive discussion.

33 A different interpretation is that agents share the match value equally but the designer can prescribe
internal transfers within matched pairs.
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1

2
∆L(p, δ)mLL ≥ (1− α)mHL (3.20)

yields the highest lower bound on α. Thus, an incentive compatible sharing rule

exists if

1

2

∆H(p, δ)mHH

mHL

≥
mHL − 1

2
∆L(p, δ)mLL

mHL

. (3.21)

Reformulating (3.21) shows that it coincides with (3.17), which concludes the proof.

To get some intuition for Proposition 5, we reformulate the crucial incentive con-

straints (3.18) and (3.20). The difference between the equal split and the α split can

be interpreted as a substitute for payments:

1

2
∆H(p, δ)mHH ≥

1

2
mHL +

(
αmHL −

1

2
mHL

)
, (3.22)

1

2
∆L(p, δ)mLL ≥

1

2
mHL −

(
αmHL −

1

2
mHL

)
. (3.23)

Recall that the boundaries on the difference of incentive compatible, simple pay-

ments in the proof of Proposition 4 are determined by exactly the same incentive

constraints:

1

2
∆H(p, δ)mHH ≥

1

2
mHL + (τ(H)− τ(L)), (3.24)

1

2
∆L(p, δ)mLL ≥

1

2
mHL − (τ(H)− τ(L)). (3.25)

Because α is contained in [0, 1], (3.22) and (3.23) provide less flexibility than (3.24)

and (3.25). The value that can be redistributed through a sharing rule is bounded by

the total match value that is generated in the mixed match, whereas there is no bound

on the payment difference. Hence, if there exists an incentive compatible sharing rule,

we can also find an incentive compatible, simple payment difference. Proposition 5

states, however, that the converse is true as well. A conclusion is that for any incentive

compatible pair of simple payments, the payment difference never exceeds the total

match value. Put differently, incentive compatibility does not require extreme transfer

differences.

Inequality (3.20) implies that for any incentive compatible sharing rule α, it holds

α > 1
2
, i.e., the productive type receives a larger share of the match value when he forms

a group with an unproductive type. In the Positive Assortative Policy, the mixed group
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never occurs on path. Thus, changes in the sharing rule only affect the attractiveness of

deviations. When the market consists of one productive agent, an unproductive agent’s

misreport increases the match value that he creates with his partner from mLL to mHL

and reduces the time until he is matched. Consequently, in the absence of payments,

truth-telling is incentive compatible only if the unproductive agent’s share of the output

is lower when being matched with an productive agent. Under the condition identified

in Proposition 5, also the productive agent’s incentive constraints are satisfied, even

though he receives a larger share of the match value when misreporting. The reason is

that for the productive agent the total value that is shared is smaller if he misreports.

3.4.4 Unobservable Arrivals

Depending on the organizational details of the market, the designer might not ob-

serve agents’ arrivals to the market. Instead, agents report their arrival to the de-

signer. Given the welfare-maximizing policies, agents may want to exploit this ad-

ditional source of private information by strategically delaying their arrival report.

We maintain the assumption of private types. This renders implementation of the

welfare-maximizing policy a multidimensional screening problem. The current section

examines conditions under which the designer can overcome this additional challenge

and implement the welfare-maximizing policies.

As in Section 3.4.1, we give arriving agents the informational advantage of past re-

ports being public. We focus on incentive compatible, individual rational, direct mech-

anisms that run no deficit, satisfy efficient exit, and implement the welfare-maximizing

policies. We modify the market report to contain the reported types of all agents in

the market that have reported their type and arrival. We construct payments that

depend on the reported type, the market report, and the reported arrival time. Agents

can report their arrival only after actually arriving to the market, and only agents who

have reported their arrival may report their type.

Because of substantially different issues, we discuss the Positive Assortative Policy

and the Impatient Policy separately.

Positive Assortative Policy. When type spaces have more than one dimension,

incentive constraints pose a severe challenge to the design of incentive compatible

mechanisms as one has to account for double deviations, i.e., deviations in several

dimensions at the same time. Surprisingly, the mechanism constructed in the proof of

Theorem 2 also implements the Positive Assortative Policy with unobservable arrivals.
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Proposition 6. There exists an incentive compatible, individual rational mechanism

that runs no deficit, supports efficient exit, and implements the Positive Assortative

Policy when both, arrivals and types, are private information to the agents.

Proof. To prove Proposition 6, we show that agents report their type truthfully

and that also the timing of the report remains unchanged, which means that agents

reveal their arrival immediately, i.e., truthfully.

We naturally adjust the payments constructed in the proof of Theorem 2 to account

for the two-dimensional type space: If an agent reveals his arrival and his type at the

same time, payments are as in the proof of Theorem 2. If an agent reveals his arrival

strictly before his type, he is punished by a payment of mHH .

To tackle the issue of double deviations in the framework of our model, we divide

the problem of showing incentive compatibility into two steps:

(i) First, we show that whenever agents report their type, they report truthfully.

(ii) Second, we argue that given agents report their type truthfully, agents report

their arrival time truthfully.

By the memorylessness of the Poisson process, the incentive problem faced by an

agent at an arbitrary point in time is the same as the incentive problem at the time

of the last arrival. This latter problem, however, resembles the incentive problem with

observable arrivals. As the payments solve the incentive problem with observable ar-

rivals, we deduce that (i) holds.

Now, we prove (ii). Given our specification of payments, agents report arrival time

and type simultaneously. By the first step, agents report their type truthfully. It re-

mains to be shown that agents want to report their arrival as early as possible. Under

the Positive Assortative Policy, an agent’s report fixes his match partner’s type. The

agent’s partner is, depending on the market report, either an agent with the same type

that is already in the market, or the next agent of his type that arrives to the market.

By memorylessness of the Poisson process, delaying an arrival may only be profitable

for an agent if the market report changes compared to the market report at the ar-

rival time. By our choice of payments, the unproductive type receives zero expected

utility upon arrival for every market report. Therefore, it is an optimal strategy for

the unproductive agent to report his arrival time truthfully. Given our payments, the

expected utility of a productive type at the point of his arrival is ∆L(p, δ) (mHL −mLL)

for market reports (0, 0) and (1, 0), and mHL−mLL for market reports (0, 1) and (1, 1).
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We see that the productive agent’s expected utility is highest if an unproductive agent

is already in the market. Thus, if the productive agent arrives in (1, 1) or (0, 1), he

reports his arrival immediately. On the other hand, if the productive agent arrives

in (0, 0) or (1, 0), he might consider waiting for the arrival of an unproductive agent

before he reports his arrival to get a higher level of expected utility. Yet, the waiting

time until the next arrival of an unproductive agent discounts future payoffs with an

expected discount factor of at least ∆L(p, δ) thereby mitigating the advantage of wait-

ing. Hence, also in (0, 0) and (1, 0) it is unprofitable for the productive type to delay

his arrival report.34 This concludes the proof of Step (ii).

Jointly, (i) and (ii) imply that the Positive Assortative Policy together with our

payments is incentive compatible even when arrivals are unobservable. Individual ra-

tionality, no deficit, and efficient exit remain satisfied, completing the construction of

the mechanism. �

Impatient Policy. Implementing the Impatient Policy in a market where the

designer can observe arrivals turned out to be straightforward. As the designer may

ignore agents’ private information to implement the Impatient Policy, he can abstain

from using payments. Yet, if the designer cannot observe agents’ arrivals, information

relevant for implementing the welfare-maximizing policies, implementation of the Im-

patient Policy becomes more difficult.

In contrast to the Positive Assortative Policy, the agent’s reported type does not

fix his match partner’s type in the Impatient Policy. The agent’s partner is, depending

on the market report, either the only agent that is present in the market or the next

agent that arrives to the market, irrespective of his type. If the designer asks an agent

for his type, future agents may condition their reporting strategy on that report. Con-

sider, for example, a productive agent that arrives to a market with one agent that has

reported an unproductive type. If the productive agent reveals his arrival immediately,

he will form a group with the unproductive agent. If the productive agent delays his

arrival report until after the next arrival, he has the opportunity to be matched with

a productive agent. Therefore, depending on the parameter constellation, it might be

profitable for the productive agent to delay his arrival report.

34 To avoid issues with large states that occur because several agents report their arrival simultaneously,
we punish agents reporting the same arrival time with a sufficiently high payment, say, mHH . In
equilibrium this entails no welfare loss. The deviations checked are, thus, an upper bound for the
most profitable deviation.
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The designer can circumvent this problem by separating the agents’ arrival report

from their type report. To implement the Impatient Policy, the designer only needs

agents’ arrival times but not their types. If the designer asks agents only for their

arrival time, future agents only observe arrival reports. Given that agents only observe

arrival reports, it is optimal for the agents to report their arrival as early as possible,

i.e., truthfully. Therefore, anticipating the agents’ informational advantage from re-

ported types, the designer strategically chooses not to ask the agents for their type in

order to implement the Impatient Policy.

Combining the insights of the last two sections, we find that even if the designer does

not observe arrivals to the market, the welfare-maximizing policies are implementable.

3.4.5 Concluding Remarks

Remark 1. When implementing the Impatient Policy with unobservable arrivals, we

demonstrated that it can be beneficial for the designer to strategically not ask agents

for their type. Transferring this thought, we can construct another mechanism which

implements the Positive Assortative Policy with observable arrivals: As opposed to the

Impatient Policy, the Positive Assortative Policy exploits information about agents’

types. There exists exactly one situation in which the designer does not need this in-

formation upon an agent’s arrival: When an agent arrives to an empty market. In this

case, the designer needs the agent’s information only upon arrival of the next agent, as

there is no decision to be taken before. Thus, the designer could set up a mechanism in

which an agent that arrives to an empty market does not report his type immediately

but only upon arrival of the next agent. The difference to the mechanism studied in

Section 3.4.1 is that the second agent arriving to the market does not know the first

agent’s type. Recall, the most critical situation when implementing the Positive As-

sortative Policy in Section 3.4.1 arose when the market consisted of one unproductive

agent and for small values of p. Under the new mechanism, the subtle difference is

that in this situation the agent does not know that the first agent is unproductive but

attaches a high probability to this event.

Remark 2. Observe that throughout Section 3.4, we did not use the assumption

of Section 3.3 that the value of the productive pair is not too large compared to the

value of the unproductive pair. Hence, our implementation results carry over to the

case mHH > 3mLL whenever the Positive Assortative Policy and the Impatient Policy

are welfare-maximizing.
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3.5 Conclusion

This paper studies a dynamic matching market organized by a central authority. Agents

of different types that arrive to the market according to a discrete process are matched

by a social planner. The model is flexible with respect to four key features: The degree

of complementarity of the partners’ characteristics in the match value function, the

relative size of absolute values of output generated by the two possible homogeneous

matchings, the probability distribution of arriving agents’ types and the patience repre-

sented by discounting. We first address the optimal matching policies under complete

information. We develop a tool that helps us to solve for the optimal matching policy

in closed form without imposing any restriction on the policy. Whenever the agents’

productivities do not differ too much, one of three policies is optimal: The Positive As-

sortative Policy, the Provident Impatient Policy, or the Myopic Impatient Policy. The

social planner is more willing to abstain from creating mixed matches in order to wait

for positive assortative matchings when discounting is little or complementarities are

strong. This has two immediate implications: a) The optimality of positive assortative

matchings in static matching is robust to small discounting frictions. b) When because

of impatience mixed matches are created in models of search and matching, this might

be welfare-enhancing. The role of the distribution of arriving agents’ types is more

sophisticated: The designer might abstain from mixed matches only for intermediate

probabilities of productive arrivals. When the match value of two productive agents

exceeds the match value of the unproductive counterpart by far, it is sometimes optimal

to stock unproductive agents in the market in order to ensure that arriving productive

agents can get paired immediately. In the second part, we consider implementability of

the optimal policy in the presence of private information. We prove implementability

of the optimal matching policy when agents have private information about their types

and can hide their arrival to the market. We show that if the complementarity of the

match value function is sufficiently strong or the environment is sufficiently patient,

the welfare-maximizing policy can be implemented with payments that are reminiscent

of those that implement the welfare-maximizing policy in the static model. Finally,

we identify situations in which the market organizer can abstain from using monetary

incentives.

The simple structure of our model helps to expose the trade-off between accumulating

agents to achieve positive assortative matchings and matching agents early in order to

avoid waiting costs. We conjecture that the State Space Reduction developed in this

paper can also be employed to find optimal policies in the extended model with an

arbitrary but finite number of types. While we focus on a supermodular match value,

we conjecture that in the submodular case it is optimal to form exclusively mixed pairs
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as the time friction vanishes. Therefore, policies which store both homogeneous groups

of productive and unproductive agents might be optimal. Analyzing a model with a

continuum of types, but discrete arrivals, would allow for a more detailed compari-

son between the centralized matching market and decentralized search and matching

models. This is an interesting avenue for future research.

3.6 Appendix

The proof of Theorem 1 uses Lemma 1 to 6, which are, hence, proven first.

Preliminaries for Lemma 1 to 3. We denote the candidate policy by ρ, fix an

arbitrary state (x, y) ∈ S, and denote by d = (dHH , dHL, dLL) a one-period deviation

that matches on (x, y) dHH homogeneous pairs of productive agents, dHL mixed pairs,

and dLL homogeneous pairs of unproductive agents. The value of ρ on (x, y) can be

written as

Vρ(x, y) = ρHH(x, y)mHH+ρHL(x, y)mHL + ρLL(x, y)mLL

+δ[pVρ(x
′ + 1, y′) + (1− p)Vρ(x′, y′ + 1)] (3.26)

with

x′ = x− 2ρHH(x, y)− ρHL(x, y), y′ = y − 2ρLL(x, y)− ρHL(x, y).

Similarly, the value of deviation d from ρ on (x, y) can be expressed as

V d
ρ (x, y) = dHHmHH+dHLmHL + dLLmLL

+δ[pVρ(x
′′ + 1, y′′) + (1− p)Vρ(x′′, y′′ + 1)] (3.27)

with

x′′ = x− 2dHH(x, y)− dHL(x, y), y′′ = y − 2dLL(x, y)− dHL(x, y).

In each of the lemmas we will argue that the value of ρ exceeds the value of a certain

class of deviations.

Proof of Lemma 1. Assume that ρHH(x, y) > 0 and dHH > 0. Subtracting mHH

from Vρ(x, y) and V d
ρ (x, y), we observe that the deviation is unprofitable if and only if

(ρHH(x, y)− 1)mHH + ρHL(x, y)mHL + ρLL(x, y)mLL + Vρ(x
′, y′) (3.28)

≥ (dHH − 1)mHH + dHLmHL + dLLmLL + δ[pVρ(x
′′ + 1, y′′) + (1− p)Vρ(x′′, y′′ + 1)].

By consistency the left hand side of the above inequality coincides with Vρ(x − 2, y).
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As the deviation dHH − 1, dHL, and dLL is feasible on (x − 2, y), (3.28) describes a

deviation from ρ on (x− 2, y). Given that no deviation is profitable on smaller states,

the inequality holds. Thus, deviation (dHH , dHL, dLL) is not profitable on (x, y) either.

The proof is analogous for the cases ρHL(x, y), dHL > 0 and ρLL(x, y), dLL > 0. �

Proof of Lemma 2. Consider a deviation (dHH , dHL, dLL) such that ρHH(x′′ +

1, y′′) > 0 and ρHH(x′′, y′′ + 1) > 0. The proof constructs an auxiliary deviation

d′ = (d′HH , d
′
HL, d

′
LL) on (x, y) with V d′

ρ (x, y) ≥ V d
ρ (x, y). Hence, if (d′HH , d

′
HL, d

′
LL) is

not profitable, then (dHH , dHL, dLL) is not profitable either.

Set (d′HH , d
′
HL, d

′
LL) = (dHH+1, dHL, dLL). By our choice of (dHH , dHL, dLL), (d′HH , d

′
HL, d

′
LL)

is feasible. From consistency of ρ, ρHH(x′′+ 1, y′′) > 0, and ρHH(x′′, y′′+ 1) > 0 follows

Vρ(x
′′ + 1, y′′) = mHH + Vρ(x

′′ − 1, y′′) and Vρ(x
′′, y′′ + 1) = mHH + Vρ(x

′′ − 2, y′′ + 1).

Together with δ < 1 this implies for V d
ρ (x, y):

dHHmHH + dHLmHL + dLLmLL + δmHH

+ δ[pVρ(x
′′ − 1, y′′) + (1− p)Vρ(x′′ − 2, y′′ + 1)]

< (dHH + 1)mHH + dHLmHL + dLLmLL

+ δ[pVρ(x
′′ − 1, y′′) + (1− p)Vρ(x′′ − 2, y′′ + 1)].

We conclude by observing that the latter term is V d′
ρ (x, y). The two remaining cases

ρHL(x′′+1, y′′), ρHL(x′′, y′′+1) > 0 and ρLL(x′′+1, y′′), ρLL(x′′, y′′+1) > 0 follow from

an analogous argument. �

Proof of Lemma 3. Consider a deviation (dHH , dHL, dLL) with dHL ≥ 2. As in

Lemma 2, we construct an auxiliary deviation d′ = (d′HH , d
′
HL, d

′
LL) with higher value.

Set (d′HH , d
′
HL, d

′
LL) = (dHH + 1, dHL − 2, dLL + 1). (d′HH , d

′
HL, d

′
LL) is feasible because

(dHH , dHL, dLL) is feasible. As next period states are identical under both deviations,

V d′
ρ (x, y)− V d

ρ (x, y) = mHH +mLL − 2mHL ≥ 0, where the inequality follows from the

supermodularity of the match value function. Thus, V d′
ρ (x, y) ≥ V d

ρ (x, y). �

Proof of Lemma 4. By construction, the Positive Assortative Policy ρPAP is consis-

tent. Fix a state (x, y) with x ≥ 3 and consider a deviation (dHH , dHL, dLL) on (x, y).

As ρHHPAP (x, y) > 0, only deviations with dHH = 0 have to be verified by Lemma 1.

Subsequent to following (dHH , dHL, dLL) there are at least x− 2dHH − dHL productive

agents in the market after the next arrival. As ρHHPAP (x′, y′) > 0, ∀x′ ≥ 2, only devia-

tions with x − 2dHH − dHL < 2 have to be checked by Lemma 2. By Lemma 3, only
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deviations with dHL < 2 have to be checked. As x ≥ 3, the set of deviations satisfying

the latter three conditions is empty, i.e., no deviation on (x, y) with x ≥ 3 has to be

checked. Similarly, no deviation on (x, y) with y ≥ 3 has to be checked. �

Proof of Lemma 5. As all arguments used for the Positive Assortative Policy ρPAP

also apply to the Provident Impatient Policy ρPIP , the proof is exactly the same as the

proof of Lemma 4. �

Proof of Lemma 6. By construction, the Myopic Impatient Policy ρMIP is consistent.

The proof for states (x, y) with x ≥ 3 parallels the proof of Lemma 4. For states with

many unproductive agents, however, we need to alter the argument slightly. When

applying Lemma 2, we can only exclude deviations with y − 2dLL − dHL ≥ 3 because

ρLLMIP (x′, y′) > 0 holds only ∀y′ ≥ 3. We can apply Lemma 1 and Lemma 3 as before.

Thus, no deviation has to checked on states (x, y) with y ≥ 4. �

Proof of Theorem 1. For each candidate policy, Lemmas 4 to 6 identify the set of

states on which every possible deviation has to be verified for its unprofitability by hand.

As is shown in the following, for all parameter constellations (p, δ,mHH ,mLL,mHL)

such that mHL /∈ {m1
HL,m

2
HL}, deviations from the respective candidate policy give a

strictly lower payoff. This implies uniqueness of the optimal policy.

Claim 1: The Positive Assortative Policy is optimal for all parameter constellations

(p, δ,mHH ,mLL,mHL) such that mHL ≤ m1
HL.

The value function VPAP at states in the recurrent set is determined by the following

equations:

VPAP (1, 0) =δ[pVPAP (2, 0) + (1− p)VPAP (1, 1)], (3.29)

VPAP (0, 1) =δ[pVPAP (1, 1) + (1− p)VPAP (0, 2)], (3.30)

VPAP (1, 1) =δ[pVPAP (2, 1) + (1− p)VPAP (1, 2)], (3.31)

VPAP (2, 0) =mHH + δ[pVPAP (1, 0) + (1− p)VPAP (0, 1)], (3.32)

VPAP (0, 2) =mLL + δ[pVPAP (1, 0) + (1− p)VPAP (0, 1)], (3.33)

VPAP (2, 1) =mHH + δ[pVPAP (1, 1) + (1− p)VPAP (0, 2)], (3.34)

VPAP (1, 2) =mLL + δ[pVPAP (2, 0) + (1− p)VPAP (1, 1)]. (3.35)

Define VPAP (0, 0) := δ[pVPAP (1, 0) + (1 − p)VPAP (0, 1)]. The value at all remaining
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states (x, y) is given by

VPAP (x, y) =ρHHPAP (x, y) + ρLLPAP (x, y) + ρHLPAP (x, y) + VPAP (x′, y′)

with x′ = x− 2ρHHPAP (x, y)− ρHLPAP (x, y) < 2

and y′ = y − 2ρLLPAP (x, y)− ρHLPAP (x, y) < 2.

Observe that this determines VPAP (x, y) uniquely on the entire state space. By Lemma

4, the set of states on which the unprofitability of deviations has to be verified is

{(x, y)|x ≤ 2, y ≤ 2, x+ y ≥ 2)}.35

On states (2, 0) and (0, 2) the only possible deviation is (dHH , dHL, dLL) = (0, 0, 0). In

both states this deviation does not have to be considered by Lemma 2.

On state (1, 2) there are two possible deviations: (0, 0, 0) and (0, 1, 0). Deviation (0,

0, 0) does not have to be considered by Lemma 2. Deviation (0, 1, 0) is not profitable

if

VPAP (1, 2) = mLL + VPAP (1, 0) ≥ mHL + VPAP (0, 1). (3.36)

On state (2, 1) there are two possible deviations: (0, 0, 0) and (0, 1, 0). Deviation (0,

0, 0) does not have to be considered by Lemma 2. Deviation (0, 1, 0) is not profitable

if

VPAP (2, 1) = mHH + VPAP (0, 1) ≥ mHL + VPAP (1, 0). (3.37)

On state (2, 2) there are five possible deviations: (0, 0, 0), (0, 1, 0), (1, 0, 0), (0, 0, 1)

and (0, 2, 0). Deviations (0, 0, 0), (1, 0, 0) and (0, 0, 1) do not have to be considered by

Lemma 2. Deviation (0, 2, 0) does not have to be considered by Lemma 3. Deviation

(0, 1, 0) is not profitable if

VPAP (2, 2) = mHH +mLL + VPAP (0, 0) ≥ mHL + VPAP (1, 1). (3.38)

On state (1, 1) there is one possible deviation, which is (0, 1, 0). The condition for

deviation (0, 1, 0) to be unprofitable is

VPAP (1, 1) ≥ mHL + VPAP (0, 0). (3.39)

The final step is to observe that inequalities (3.36) to (3.39) hold if and only if

mHL ≤ m1
HL, in particular, (3.39) corresponds exactly to mHL ≤ m1

HL. For com-

35 Note that on states (1, 0) and (0, 1) there is no possible deviation and hence no profitable deviation.

134



putational details see Appendix 3.7.

Claim 2: The Provident Impatient Policy is optimal for all parameter constellations

(p, δ,mHH ,mLL,mHL) such that m1
HL ≤ mHL ≤ m2

HL.

The value function VPIP at states in the recurrent set is given by the following equations:

VPIP (1, 0) =δ[pVPIP (2, 0) + (1− p)VPIP (1, 1)], (3.40)

VPIP (0, 1) =δ[pVPIP (1, 1) + (1− p)VPIP (0, 2)], (3.41)

VPIP (1, 1) =mHL + δ[pVPIP (1, 0) + (1− p)VPIP (0, 1)], (3.42)

VPIP (2, 0) =mHH + δ[pVPIP (1, 0) + (1− p)VPIP (0, 1)], (3.43)

VPIP (0, 2) =mLL + δ[pVPIP (1, 0) + (1− p)VPIP (0, 1)]. (3.44)

Define VPIP (0, 0) := δ[pVPIP (1, 0)+(1−p)VPIP (0, 1)]. The value at all remaining states

(x, y) is determined as follows:

VPIP (x, y) =ρHHPIP (x, y) + ρLLPIP (x, y) + ρHLPIP (x, y) + VPIP (x′, y′)

with x′ = x− 2ρHHPIP (x, y)− ρHLPIP (x, y) < 2

and y′ = y − 2ρLLPIP (x, y)− ρHLPIP (x, y) < 2.

Solving the system gives

VPIP (0, 0) =
δ2

1− δ2
[(p2 + (1− p)2)mHL + (1− p)p(mHH +mLL)], (3.45)

VPIP (1, 0) =δVPIP (0, 0) + δ(pmHH + (1− p)mHL), (3.46)

VPIP (0, 1) =δVPIP (0, 0) + δ(pmHL + (1− p)mLL), (3.47)

VPIP (1, 1) =mHL + δVPIP (0, 0), (3.48)

VPIP (2, 0) =mHH + δVPIP (0, 0), (3.49)

VPIP (0, 2) =mLL + δVPIP (0, 0). (3.50)

By Lemma 5, the set of states on which the unprofitability of deviations has to be

verified is {(x, y)|x ≤ 2, y ≤ 2, x+ y ≥ 2)}.

On states (2, 0) and (0, 2) the only possible deviation is (dHH , dHL, dLL) = (0, 0, 0). In

both states this deviation does not have to be considered by Lemma 2.

On state (2, 1) there are two possible deviations: (0, 0, 0) and (0, 1, 0). Deviation (0,

0, 0) does not have to be considered by Lemma 2. The inequality corresponding to
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deviation (0, 1, 0) is

VPIP (2, 1) = mHH + VPIP (0, 1) ≥ mHL + VPIP (1, 0). (3.51)

On state (2, 2) there are five possible deviations: (0, 0, 0), (0, 1, 0), (1, 0, 0), (0, 0, 1)

and (0, 2, 0). Deviations (0, 0, 0), (1, 0, 0) and (0, 0, 1) do not have to be considered by

Lemma 2. Deviation (0, 2, 0) does not have to be considered by Lemma 3. Deviation

(0, 1, 0) is not profitable if

mHH +mLL + VPIP (0, 0) ≥ mHL + δ[pVPIP (2, 1) + (1− p)VPIP (1, 2)]. (3.52)

On state (1, 1) there is one possible deviation, which is (0, 0, 0). The condition for

deviation (0, 0, 0) to be not profitable is

VPIP (1, 1) = mHL + VPIP (0, 0) ≥ δ[pVPIP (2, 1) + (1− p)VPIP (1, 2)]. (3.53)

On state (1, 2) there are two possible deviations: (0, 0, 0) and (0, 1, 0). Deviation (0,

0, 0) does not have to be considered by Lemma 2. Deviation (0, 1, 0) is not profitable

if

VPIP (1, 2) = mLL + VPIP (1, 0) ≥ mHL + VPIP (0, 1). (3.54)

The final step is to show that inequalities (3.51) to (3.54) hold if and only if m1
HL ≤

mHL ≤ m2
HL. Inserting the explicit solution for VPIP into (3.53) and solving for mHL

shows that (3.53) corresponds to mHL ≥ m1
HL. Similarly, (3.54) yields mHL ≤ m2

HL.

See Appendix 3.7 for calculatory details.

Claim 3: The Myopic Impatient Policy is optimal for all parameter constellations

(p, δ,mHH ,mLL,mHL) such that mHL ≥ m2
HL.

The Myopic Impatient Policy has the same recurrent set as the Provident Impa-

tient Policy, R := {(x, y)|1 ≤ x + y ≤ 2}. Define VMIP (0, 0) := δ[pVMIP (1, 0) +

(1 − p)VMIP (0, 1)]. By construction, ρMIP (x, y) = ρPIP (x, y), ∀(x, y) ∈ R, hence,

VMIP (x, y) = VPIP (x, y), ∀(x, y) ∈ R with explicit solution (3.45) to (3.50). At all

remaining states (x, y) the value is given by

VMIP (x, y) =ρHHMIP (x, y) + ρLLMIP (x, y) + ρHLMIP (x, y) + VMIP (x′, y′)

with x′ = x− 2ρHHMIP (x, y)− ρHLMIP (x, y) < 2

and y′ = y − 2ρLLMIP (x, y)− ρHLMIP (x, y) < 2.
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By Lemma 6, the set of states on which the unprofitability of deviations has to be

verified is {(x, y)|x ≤ 2, y ≤ 3, x+ y ≥ 2)}.

On state (2, 0) the only possible deviation is (dHH , dHL, dLL) = (0, 0, 0). This deviation

does not have to be considered by Lemma 2.

On state (2, 1) there are two possible deviations: (0, 0, 0) and (0, 1, 0). Deviation (0,

0, 0) does not have to be considered by Lemma 2. Deviation (0, 1, 0) is not profitable

either: The corresponding inequality is

VMIP (2, 1) = mHH + VMIP (0, 1) ≥ mHL + VMIP (1, 0). (3.55)

As VMIP (0, 1) = VPIP (0, 1) and VMIP (1, 0) = VPIP (1, 0), (3.55) equals (3.51) which

holds.

On state (1, 1) the only possible deviation is (0, 0, 0) which is unprofitable if

VMIP (1, 1) = mHL + VMIP (0, 0) ≥ δ[pVMIP (2, 1) + (1− p)VMIP (1, 2)]. (3.56)

On state (2, 2) there are five possible deviations: (0, 0, 0), (0, 1, 0), (1, 0, 0), (0, 0, 1)

and (0, 2, 0). Deviations (0, 0, 0), and (1, 0, 0) do not have to be considered by Lemma

2. Deviation (0, 2, 0) does not have to be considered by Lemma 3. Deviation (0, 0, 1)

does not have to be considered by Lemma 1. Deviation (0, 1, 0) is not profitable if

mHH +mLL + VMIP (0, 0) ≥ mHL + δ[pVMIP (2, 1) + (1− p)VMIP (1, 2)]. (3.57)

On state (0, 3) the only possible deviation is (0, 0, 0) which does not have to be

considered by Lemma 2.

On state (1, 3) there are three possible deviations: (0, 0, 0), (0, 0, 1) and (0, 1, 0).

Deviations (0, 0, 1) and (0, 1, 0) do not have to be considered by Lemma 1. Deviation

(0, 0, 0) does not have to be considered by Lemma 2.

On state (2, 3) there are five possible deviations: (0, 0, 0), (0, 1, 0), (1, 0, 0), (0, 0, 1)

and (0, 2, 0). Deviations (0, 0, 0), and (1, 0, 0) do not have to be considered by Lemma

2. Deviation (0, 2, 0) does not have to be considered by Lemma 3. Deviation (0, 0, 1)

does not have to be considered by Lemma 1. Deviation (0, 1, 0) is not profitable if

mHH +mLL + VMIP (0, 1) ≥ mHL + δ[pVMIP (2, 2) + (1− p)VMIP (1, 3)]. (3.58)

On state (0, 2) the only possible deviation is (0, 0, 0) which is unprofitable if

VMIP (0, 2) = mLL + VMIP (0, 0) ≥ δ[pVMIP (1, 2) + (1− p)VMIP (0, 3)]. (3.59)
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On state (1, 2) there are two possible deviations: (0, 0, 0) and (0, 0, 1). Deviation (0,

0, 1) is not profitable if

mHL + VMIP (0, 1) ≥ mLL + VMIP (1, 0), (3.60)

and deviation (0, 0, 0) is not profitable if

mHL + VMIP (0, 1) ≥ δ[pVMIP (2, 2) + (1− p)VMIP (1, 3)]. (3.61)

The final step is to show that inequalities (3.56) to (3.61) hold if and only if mHL ≥
m2
HL. Using the explicit solution for VMIP and solving for mHL, we find that (3.60) is

equivalent to mHL ≥ m2
HL and that (3.59) corresponds to mHL ≤ m3

HL. Supporting

calculations can be found in Appendix 3.7.

To conclude the proof, observe that mHL ≤ m3
HL for all p, δ,mHH ,mLL,mHL such that

mHH ≤ 3mLL. Thus, the parameter regions on which the three candidates are optimal

span the entire parameter space. �

Proof of Corollary 1. The existence of two cut-off levels follows from showing that
∂m1

HL

∂δ
≥ 0 and

∂m2
HL

∂δ
≥ 0, independent of the specific choice of parameters. Using the

definitions of m1
HL and m2

HL from (3.5) and (3.6), we obtain

∂m1
HL

∂δ
= mHH

p

[1− δ(1− 2p)]2
+mLL

1− p
[1 + δ(1− 2p)]2

> 0

and

∂m2
HL

∂δ
=mHH

p

[1− δ(1− 2p)]2
+mLL

−p
[1− δ(1− 2p)]2

>mHH
p

[1− δ(1− 2p)]2
+mHH

−p
[1− δ(1− 2p)]2

= 0.

Furthermore, m1
HL < m2

HL implies δ1 > δ2. Finally, m1
HL = m2

HL = 0 for δ = 0 and

m1
HL = m2

HL = 1/2(mHH +mLL) for δ = 1 and imply δ1, δ2 ∈ [0, 1]. �

Proof of Proposition 1. We follow the same steps as for the other candidate policies

above. Denote Matching Policy P1 by ρP1.

Claim 1: To verify candidate policy ρP1 it is sufficient to verify deviations on {(x, y)|x ≤
2, y ≤ 4, x+ y ≥ 2)}.
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By construction, ρP1 is consistent. For states (x, y) with x ≥ 3 the argument is the

same as in Lemma 4. Analogously to Lemma 6, we need to adjust the proof slightly

for states with many unproductive agents when applying Lemma 2. In this case, we

can only exclude deviations on states (x, y) with y ≥ 5.

Claim 2: There exists a parameter region on which there is no profitable deviation from

ρP1 on {(x, y)|x ≤ 2, y ≤ 4, x+ y ≥ 2)}.

Define VP1(0, 0) := δ[pVP1(1, 0) + (1− p)VP1(0, 1)]. The value function VP1 at states in

the recurrent set is determined by

VP1(1, 0) =δ[pVP1(2, 0) + (1− p)VP1(1, 1)], (3.62)

VP1(0, 1) =δ[pVP1(1, 1) + (1− p)VP1(0, 2)] (3.63)

VP1(1, 1) =mHL + δ[pVP1(1, 0) + (1− p)VP1(0, 1)], (3.64)

VP1(2, 0) =mHH + δ[pVP1(1, 0) + (1− p)VP1(0, 1)], (3.65)

VP1(0, 2) =δ[pVP1(1, 2) + (1− p)VP1(0, 3)], (3.66)

VP1(0, 3) =mLL + δ[pVP1(1, 1) + (1− p)VP1(0, 2)], (3.67)

VP1(1, 2) =mHL + δ[pVP1(1, 2) + (1− p)VP1(0, 3)]. (3.68)

The value at all remaining states (x, y) is

VP1(x, y) =ρHHP1 (x, y) + ρLLP1(x, y) + ρHLP1 (x, y) + VP1(x′, y′)

with x′ = x− 2ρHHP1 (x, y)− ρHLP1 (x, y) < 2

and y′ = y − 2ρLLP1(x, y)− ρHLP1 (x, y) < 3.

On state (2, 0) the only possible deviation is (dHH , dHL, dLL) = (0, 0, 0) which does not

have to be considered by Lemma 2.

On state (2, 1) there are two possible deviations: (0, 0, 0) and (0, 1, 0). Deviation (0,

0, 0) does not have to be considered by Lemma 2. Deviation (0, 1, 0) is not profitable

if

VP1(2, 1) = mHH + VP1(0, 1) ≥ mHL + VP1(1, 0). (3.69)

On state (1, 1) the only possible deviation is (0, 0, 0) which is unprofitable if

VP1(1, 1) = mHL + VP1(0, 0) ≥ δ[pVP1(2, 1) + (1− p)VP1(1, 2)]. (3.70)
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On state (2, 2) there are five possible deviations: (0, 0, 0), (0, 1, 0), (1, 0, 1), (0, 0,

1) and (0, 2, 0). Deviation (0, 0, 0) does not have to be considered by Lemma 2.

Deviation (0, 2, 0) does not have to be considered by Lemma 3. Deviations (0, 0, 1)

and (1, 0, 1) do not have to be considered by Lemma 1. Deviation (0, 1, 0) is not

profitable if

mHH +mLL + VP1(0, 0) ≥ mHL + δ[pVP1(2, 1) + (1− p)VP1(1, 2)]. (3.71)

On state (0, 3) the only possible deviation is (0, 0, 0) which is unprofitable if

VP1(0, 3) = mLL + VP1(0, 1) ≥ δ[pVP1(1, 3) + (1− p)VP1(0, 4)]. (3.72)

On state (1, 3) there are three possible deviations: (0, 0, 0), (0, 0, 1) and (0, 1, 1).

Deviation (0, 1, 1) does not have to be considered by Lemma 1. Deviation (0, 0, 0)

does not have to be considered by Lemma 2. Deviation (0, 0, 1) is not profitable if

mHL + VP1(0, 2) ≥ mLL + δ[pVP1(2, 1) + (1− p)VP1(1, 2)]. (3.73)

On state (0, 2) the only possible deviation is (0, 0, 1) which is unprofitable if

VP1(0, 2) = δ[pVP1(1, 2) + (1− p)VP1(0, 3)] ≥ mLL + VP1(0, 0). (3.74)

On state (1, 2) there are two possible deviations: (0, 0, 0) and (0, 0, 1). Deviation (0,

0, 1) is not profitable if

mHL + VP1(1, 0) ≥ mLL + VP1(1, 0), (3.75)

and deviation (0, 0, 0) is not profitable if

mHL + VP1(0, 1) ≥ δ[pVP1(2, 2) + (1− p)VP1(1, 3)]. (3.76)

On state (2, 3) there are five possible deviations: (0, 0, 0), (0, 1, 0), (1, 0, 0), (0, 0,

1) and (0, 2, 0). Deviation (0, 0, 0) does not have to be considered by Lemma 2.

Deviation (0, 2, 0) does not have to be considered by Lemma 3. Deviations (1, 0, 0)

and (0, 0, 1) do not have to be considered by Lemma 1. Deviation (0, 1, 0) is not

profitable if

mHH +mLL + VP1(0, 1) ≥ mHL + δ[pVP1(2, 2) + (1− p)VP1(1, 3)]. (3.77)

On state (0, 4) there are two possible deviations: (0, 0, 0) and (0, 0, 2). Deviation (0,

0, 0) does not have to be considered by Lemma 2. Deviation (0, 0, 2) does not have to
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be considered by Lemma 1.

On state (1, 4) there are four possible deviations: (0, 0, 0), (0, 1, 0), (0, 0, 1) and (0,

0, 2). Deviations (0, 0, 0) and (0, 1, 0) do not have to be considered by Lemma 2.

Deviations (0, 0, 1) and (0, 0, 2) do not have to be considered by Lemma 1.

On state (2, 4) there are nine possible deviations: (0, 0, 0), (0, 1, 0), (1, 0, 0), (0, 1,

1), (0, 0, 2), (0, 2, 1), (1, 0, 2), (0, 0, 1) and (0, 2, 0). Deviations (0, 0, 0) and (0, 1,

0) do not have to be considered by Lemma 2. Deviations (0, 2, 0) and (0, 2, 1) do not

have to be considered by Lemma 3. Deviations (1, 0, 0), (1, 0, 2), (0, 0, 2), (0, 1, 1),

(0, 2, 1) and (0, 0, 1) do not have to be considered by Lemma 1.

(3.69) to (3.77) hold if and only if m3
HL ≤ mHL ≤ m4

HL, where

m4
HL =

1

1− δ(1− 2p)

[
mHHδp+mLL

(
2− δ(2− p) +

1− δ + δp(1− δ)2

δ2p2

)]
. (3.78)

(3.72) coincides with mHL ≤ m4
HL, and (3.74) is equivalent to mHL ≥ m3

HL. All other

inequalites are then implied. See Appendix 3.7 for supporting calculations.

We conclude the proof by showing that P1 actually arises. First, we argue that m3
HL ≤

m4
HL. Note that in the definition of m4

HL and m3
HL the factors in front of mHH coincide.

Therefore, m3
HL ≤ m4

HL is equivalent to

2(1− δ) + δp+
1− δ
δ2p2

+
(1− δ)2

δp
≥ 1− δ + δp+

1− δ
δp

(3.79)

which holds as δ, p ∈ (0, 1). Second, as argued in the last part of the proof to Theorem

1, if mHH > 3mLL, then there exist p, δ,mHL such that m3
HL <

1
2
mHH + 1

2
mLL. �

Proof of Corollary 2. The corollary follows from Theorem 1 and the proof of Propo-

sition 1. �

Proof of Proposition 2. Assume that there exists an optimal policy ρ that never

matches two unproductive agents and denote its value function on (x, y) by Vρ(x, y).

We derive a lower bound a and an upper bound a for Vρ(x, y) such that a > a, which

yields a contradiction.

Lower bound. Observe that by optimality

Vρ(0, k) ≥
⌊
k

2

⌋
mLL + Vρ(0, k − 2

⌊
k

2

⌋
) ≥

⌊
k

2

⌋
mLL = a, (3.80)
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where the second inequality holds because Vρ(0, 0), Vρ(0, 1) ≥ 0.

Upper bound. As ρ never matches two unproductive agents, we can derive an upper

bound on the number of matches created in each period when starting in state (0, k)

and following policy ρ. When being in state (0, k) in period t, the maximal number of

matches in period t+ s is bounded from above by s, for any s ∈ N. Hence, Vρ(0, k) is

bounded from above by the value generated from creating the highest match value as

often as possible and as early as possible, i.e., matching two productive agents in every

subsequent period which yields

Vρ(0, k) ≤ mHH
1

1− δ
= a.

For every parameter constellation (p, δ,mHH ,mLL,mHL) there exists a k such that

a > a, which is a contradiction. �

Proof of Proposition 3. It is sufficient to proof that if m(θ1, θ2) = θ1 · θ2 then

mHL ≤ m3
HL = mHH

δp

1− δ(1− 2p)
+mLL

1− δ(1− p) + 1−δ
δp

1− δ(1− 2p)
, ∀H,L, p, δ

with H > L > 0. Inserting m(θ1, θ2) = θ1 · θ2, dividing by (L)2, and rearranging terms

yields

0 ≤
(
H

L

)2

δp− H

L
(1− δ(1− 2p)) +

(
1− δ(1− p) +

1− δ
δp

)
. (3.81)

The parabola in H
L

on the right side of (3.81) is minimized at

H

L
= 1 +

1− δ
2pδ

. (3.82)

Plugging (3.82) into (3.81) gives

0 ≤ 3− 2δ − δ2,

which holds true as δ < 1. This completes the proof. �

Proof of Theorem 2. The Impatient Policy is implementable by setting τΘS(θ) = 0,

for all θ and ΘS. The implementability of the Positive Assortative Policy requires a

proof. We define

∆H(p, δ) =
δp

1− δ(1− p)
, ∆L(p, δ) =

δ(1− p)
1− δp

. (3.83)
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The incentive constraint for the productive and the unproductive type are, for market

report (0,0),

1

2
∆H(p, δ)mHH − τ (0,0)(H) ≥ 1

2
∆L(p, δ)mHL − τ (0,0)(L),

1

2
∆H(p, δ)mHL − τ (0,0)(H) ≤ 1

2
∆L(p, δ)mLL − τ (0,0)(L),

for market report (1,1),

1

2
mHH − τ (1,1)(H) ≥ 1

2
mHL − τ (1,1)(L),

1

2
mHL − τ (1,1)(H) ≤ 1

2
mLL − τ (1,1)(L),

for market report (1,0),

1

2
mHH − τ (1,0)(H) ≥ 1

2
∆L(p, δ)mHL − τ (1,0)(L),

1

2
mHL − τ (1,0)(H) ≤ 1

2
∆L(p, δ)mLL − τ (1,0)(L),

and for market report (0,1),

1

2
∆H(p, δ)mHH − τ (0,1)(H) ≥ 1

2
mHL − τ (0,1)(L),

1

2
∆H(p, δ)mHL − τ (0,1)(H) ≤ 1

2
mLL − τ (0,1)(L).

Combining the incentive constraint of the productive type with the incentive constraint

of the unproductive type yields the following conditions on the payment differences:

∆H(p, δ)
mHH

2
−∆L(p, δ)

mHL

2
≥ τ (0,0)(H)− τ (0,0)(L) ≥ ∆H(p, δ)

mHL

2
−∆L(p, δ)

mLL

2
,

(3.84)

1

2
(mHH −mHL) ≥ τ (1,1)(H)− τ (1,1)(L) ≥ 1

2
(mHL −mLL) , (3.85)

mHH

2
−∆L(p, δ)

mHL

2
≥ τ (1,0)(H)− τ (1,0)(L) ≥ mHL

2
−∆L(p, δ)

mLL

2
,

(3.86)

∆H(p, δ)
mHH

2
− mHL

2
≥ τ (0,1)(H)− τ (0,1)(L) ≥ ∆H(p, δ)

mHL

2
− mLL

2
.

(3.87)

Thus, an incentive compatible payment difference exists if and only if the following
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conditions are satisfied:

∆H(p, δ)mHH −∆L(p, δ)mHL ≥ ∆H(p, δ)mHL −∆L(p, δ)mLL, (3.88)

mHH −mHL ≥ mHL −mLL, (3.89)

mHH −∆L(p, δ)mHL ≥ mHL −∆L(p, δ)mLL, (3.90)

∆H(p, δ)mHH −mHL ≥ ∆H(p, δ)mHL −mLL. (3.91)

Observe that ∆θ(p, δ) ≤ 1, for all θ. Hence, (3.91) implies (3.88) to (3.90). To prove

that (3.91) holds whenever the Positive Assortative Policy is optimal, we show that

(3.91) holds if mHL ≤ m1
HL. Reformulating (3.91) gives

mHL ≤
∆H(p, δ)

1 + ∆H(p, δ)
mHH +

1

1 + ∆H(p, δ)
mLL. (3.92)

We argue that the right-hand side of (3.92) is larger than m1
HL. To this end, we will

show that the multipliers of mHH and mLL in (3.92) are (weakly) larger than the

corresponding factors in m1
HL. First, consider the factor attached to mHH . By (3.83),

∆H(p, δ)

1 + ∆H(p, δ)
=

δp

1− δ + 2δp

which coincides with the multiplier of mHH in m1
HL. Second, for the factor attached

to mLL we obtain

1

1 + ∆H(p, δ)
=

1− δ + δp

1− δ + 2δp
. (3.93)

(3.93) is larger than the multiplier of mLL in m1
HL if and only if

1− δ + δp

1− δ + 2δp
≥ δ(1− p)

1 + δ − 2δp
⇔ δ ≤ 1.

Thus, whenever the Positive Assortative Policy is optimal, we can find an incentive

compatible payment pair, for every market report Θs.

We construct payments which are positive and individual rational: Set

τ (0,0)(L) = τ (1,0)(L) =
1

2
∆L(p, δ)mLL ≥ 0, (3.94)

τ (0,1)(L) = τ (1,1)(L) =
1

2
mLL ≥ 0. (3.95)

By construction, payments (3.94) and (3.95) set the unproductive agent’s expected

utility to zero and are therefore individual rational. For every market report, choose,

given the unproductive type’s payment, the maximal payment for the productive type
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that is consistent with (3.84) - (3.87), i.e., such that the payment pair is incentive

compatible:

τ (0,0)(H) =
1

2

(
∆L(p, δ)mLL + ∆H(p, δ)mHH −∆L(p, δ)mHL

)
,

τ (1,1)(H) =
1

2
(mLL +mHH −mHL) ,

τ (1,0)(H) =
1

2

(
∆L(p, δ)mLL +mHH −∆L(p, δ)mHL

)
,

τ (0,1)(H) =
1

2

(
mLL + ∆H(p, δ)mHH −mHL

)
.

Individual rationality of the payments for the unproductive type and incentive com-

patibility yield individual rationality for the productive type.

Given that (3.88) - (3.91) are satisfied whenever the Positive Assortative Policy is

optimal, we can deduce that

τ (0,0)(H) ≥ 1

2

(
∆L(p, δ)mLL + ∆H(p, δ)mHL −∆L(p, δ)mLL

)
=

1

2
∆H(p, δ)mHL ≥ 0,

τ (1,1)(H) ≥ 1

2
(mLL +mHL −mLL) =

1

2
mHL ≥ 0,

τ (1,0)(H) ≥ 1

2

(
∆L(p, δ)mLL +mHL −∆L(p, δ)mLL

)
=

1

2
mHL ≥ 0,

τ (0,1)(H) ≥ 1

2

(
mLL + ∆H(p, δ)mHL −mLL

)
=

1

2
∆H(p, δ)mHL ≥ 0.

As all payments are positive, the mechanism runs no deficit. Furthermore, payments

support efficient exit because they are charged upon arrival. �

Proof of Proposition 4. For incentive compatibility, we need to find a single pay-

ment pair (τ(H), τ(L)) such that the difference τ(H)− τ(L) satisfies conditions (3.84)

to (3.87). Observe that (3.87) yields the lowest upper bound, whereas (3.86) yields

the highest lower bound on the payment difference. Hence, (τ(H), τ(L)) is incentive

compatible if and only if

1

2

(
∆H(p, δ)mHH −mHL

)
≥ τ(H)− τ(L) ≥ 1

2

(
mHL −∆L(p, δ)mLL

)
. (3.96)

Rearranging terms, note that incentive compatible payments exist iff

mHL ≤ ∆H(p, δ)
mHH

2
+ ∆L(p, δ)

mLL

2
. (3.97)

To see that (3.97) describes a strict subset of the parameter region in which the Positive

Assortative Policy is optimal, we compare it to the boundary of the Positive Assortative

Policy m1
HL. We show that (3.97) is more restrictive than mHL ≤ m1

HL by separately
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comparing the factors in front of mHH and mLL. For the factor attached to mHH we

note that

1

2

δp

(1− δ(1− p))
<

δp

1− δ(1− 2p)
⇔ δ < 1. (3.98)

Similarly, for the factor in front of mLL observe that

1

2

δ(1− p)
1− δp

<
δ(1− p)

1 + δ(1− 2p)
⇔ δ < 1. (3.99)

Set τ(L) = 1
2
∆L(p, δ)mLL ≥ 0. For market reports (1,1) and (0,1), an arriving unpro-

ductive type’s expected utility from reporting truthfully is

1

2
mLL −

1

2
∆L(p, δ)mLL ≥ 0.

For market reports (1,0) and (0,0), an arriving unproductive type’s expected utility is

1

2
∆L(p, δ)mLL −

1

2
∆L(p, δ)mLL = 0.

Given τ(L), we choose

τ(H) =
1

2

(
∆L(p, δ)mLL + ∆H(p, δ)mHH −mHL

)
which is consistent with incentive compatibility by (3.96). Given τ(H), the productive

type’s expected utility from truthtelling is

1

2
(1−∆H(p, δ))mHH +

1

2
mHL −

1

2
∆L(p, δ)mLL ≥ 0,

for market reports (1,1) and (1,0), and

1

2
mHL −

1

2
∆L(p, δ)mLL ≥ 0

for market reports (0,0) and (0,1). Thus, the pair (τ(H), τ(L)) is individual rational.

Furthermore, for the parameter region characterized by (3.97) it holds that

τ(H) ≥ 1

2

(
∆L(p, δ)mLL +mHL −∆L(p, δ)mLL

)
=

1

2
mHL ≥ 0,

therefore, the mechanism runs no deficit. Payments are charged only upon arrival and

hence support efficient exit. �

Proof of Proposition 5. Fix the share α of the productive agent in the mixed pair.
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The incentive constraint for the productive and the unproductive type are, for market

report (0,0),

1

2
∆H(p, δ)mHH ≥ ∆L(p, δ)αmHL, ∆H(p, δ)(1− α)mHL ≤

1

2
∆L(p, δ)mLL,

for market report (1,1),

1

2
mHH ≥ αmHL, (1− α)mHL ≤

1

2
mLL,

for market report (1,0),

1

2
mHH ≥ ∆L(p, δ)αmHL, (1− α)mHL ≤

1

2
∆L(p, δ)mLL,

and for market report (0,1),

1

2
∆H(p, δ)mHH ≥ αmHL, ∆H(p, δ)(1− α)mHL ≤

1

2
mLL.

Observe that, for every market report, the incentive constraint of the productive agent

provides an upper bound on α, whereas the incentive constraint of the unproductive

agent gives a lower bound on α:

1

2

∆H(p, δ)mHH

∆L(p, δ)mHL

≥ α ≥
∆H(p, δ)mHL − 1

2
∆L(p, δ)mLL

∆H(p, δ)mHL

, (3.100)

1

2

mHH

mHL

≥ α ≥
mHL − 1

2
mLL

mHL

, (3.101)

1

2

mHH

∆L(p, δ)mHL

≥ α ≥
mHL − 1

2
∆L(p, δ)mLL

mHL

, (3.102)

1

2

∆H(p, δ)mHH

mHL

≥ α ≥
∆H(p, δ)mHL − 1

2
mLL

∆H(p, δ)mHL

. (3.103)

The incentive constraint of the productive agent given market report (0,1) yields the

lowest upper bound, cf. (3.103), and the incentive constraint of the unproductive

agent for market report (1,0) provides the highest lower bound, cf. (3.102). Thus, any

incentive compatible match value split has to satisfy

1

2

∆H(p, δ)mHH

mHL

≥ α ≥
mHL − 1

2
∆L(p, δ)mLL

mHL

. (3.104)

Note that

1

2

∆H(p, δ)mHH

mHL

≥ 0 and 1 ≥
mHL − 1

2
∆L(p, δ)mLL

mHL

≥ 1

2
.
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(3.104) reveals that an incentive compatible match value split exists iff

1

2

∆H(p, δ)mHH

mHL

≥
mHL − 1

2
∆L(p, δ)mLL

mHL

.

Rearranging terms yields

mHL ≤ ∆H(p, δ)
mHH

2
+ ∆L(p, δ)

mLL

2
(3.105)

which coincides with (3.97).

The Positive Assortative Policy without payments supports efficient exit and provides

all agents with (expected) utility of at least zero. Thus, individual rationality is satisfied

which concludes the proof. �

3.7 Appendix: Supporting Calculations

Calculations for the proof of Theorem 1.

Preliminaries for equations (3.36)-(3.39). We derive a couple of useful relationships.

Using the definition of VPAP (0, 0) and inserting VPAP (2, 0), VPAP (0, 2), VPAP (2, 1),

VPAP (1, 2), the system (3.29) - (3.35) can be reformulated to

VPAP (0, 0) = δ[pVPAP (1, 0) + (1− p)VPAP (0, 1)], (3.106)

VPAP (1, 0) = δ[p(mHH + VPAP (0, 0)) + (1− p)VPAP (1, 1)], (3.107)

VPAP (0, 1) = δ[pVPAP (1, 1) + (1− p)(mLL + VPAP (0, 0))], (3.108)

VPAP (1, 1) = δ[p(mHH + VPAP (0, 1)) + (1− p)(mLL + VPAP (1, 0))]. (3.109)

Firstly, consider VPAP (1, 0)− VPAP (0, 1). By (3.107) and (3.108), we obtain

VPAP (1, 0)− VPAP (0, 1) =

= δ[p(mHH + VPAP (0, 0)− VPAP (1, 1)) + (1− p)(−mLL + VPAP (1, 1)− VPAP (0, 0))],

which yields, inserting (3.106) and (3.109), the equation

VPAP (1, 0)− VPAP (0, 1) =δp [mHH + δp(VPAP (1, 0)−mHH − VPAP (0, 1))

+δ(1− p)(VPAP (0, 1)−mLL + VPAP (1, 0))]

+δ(1− p) [−mLL + δp(mHH + VPAP (0, 1)− VPAP (1, 0))

+δ(1− p)(mLL + VPAP (1, 0)− VPAP (0, 1))] .
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Solving for VPAP (1, 0)− VPAP (0, 1) gives

VPAP (1, 0)− VPAP (0, 1) =
δ[pmHH(1− 2pδ + δ)− (1− p)mLL(1− δ + 2pδ)]

1− δ2(1− 2p)2
. (3.110)

Similarly, by (3.109) and (3.106), we obtain

VPAP (1, 1)− VPAP (0, 0) =

δ[p(mHH + VPAP (0, 1)− VPAP (1, 0)) + (1− p)(mLL + VPAP (1, 0)− VPAP (0, 1))],

which gives, inserting (3.107) and (3.108), the equation

VPAP (1, 1)− VPAP (0, 0) =δp [mHH + δp(VPAP (1, 1)−mHH − VPAP (0, 0))

+δ(1− p)(mLL + VPAP (0, 0)− VPAP (1, 1))]

+δ(1− p) [mLL + δp(mHH + VPAP (0, 0)− VPAP (1, 1))

+δ(1− p)(VPAP (1, 1)−mLL − VPAP (0, 0))] .

Solving for VPAP (1, 1)− VPAP (0, 0) yields

VPAP (1, 1)− VPAP (0, 0) =
δ[pmHH(1− 2pδ + δ) + (1− p)mLL(1− δ + 2pδ)]

1− δ2(1− 2p)2
. (3.111)

Comparing (3.111) to (3.110), observe that

VPAP (1, 1)− VPAP (0, 0) = VPAP (1, 0)− VPAP (0, 1) +mLL ·
2δ(1− p)

1 + δ − 2pδ︸ ︷︷ ︸
:=A

(3.112)

with

0 < A < 1. (3.113)

Exploiting (3.112), inequalities (3.36) to (3.39) can be reformulated to

VPAP (1, 0)− VPAP (0, 1) ≥ mHL −mLL, (3.114)

mHH −mHL ≥ VPAP (1, 0)− VPAP (0, 1), (3.115)

mHH +mLL −mHL ≥ VPAP (1, 0)− VPAP (0, 1) +mLLA, (3.116)

VPAP (1, 0)− VPAP (0, 1) ≥ mHL −mLLA. (3.117)

Deriving equation (3.36). It is immediate that (3.117) implies (3.114), i.e., that (3.39)

implies (3.36).
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Deriving equation (3.38). Similarly (3.115) implies (3.116), i.e., (3.37) implies (3.38).

Deriving equation (3.39). Inserting (3.110), (3.117) can be written as

mHL ≤ mHH
δp

1− δ + 2pδ
+mLL

δ(1− p)
1 + δ − 2pδ

(3.118)

which corresponds exactly to mHL ≤ m1
HL.

Deriving equation (3.37). We argue that (3.39) implies (3.37), i.e., (3.118) implies

(3.115).

Inserting (3.110), (3.115) can be written as

mHL ≤ mHH

(
1− δp

1− δ + 2pδ

)
+mLL

δ(1− p)
1 + δ − 2pδ

. (3.119)

Therefore (3.118) implies (3.115) if

2δp

1− δ + 2pδ
≤ 1 ⇔ δ ≤ 1, (3.120)

which holds.

Deriving equation (3.51). Rearranging terms to isolate VPIP (1, 0) − VPIP (0, 1) and

inserting the expression for VPIP (1, 0)− VPIP (0, 1), (3.51) can be rewritten as

mHH −mHL > δ[pmHH + (1− 2p)mHL − (1− p)mLL]. (3.121)

If (3.121) holds for δ = 1, it holds for any δ. Setting δ = 1 and rearranging terms yields

mHH +mLL > 2mHL which is satisfied by assumption.

Deriving equation (3.61). We argue that (3.60) implies (3.61):

δ[pVMIP (2, 2) + (1− p)VMIP (1, 3)]

= δ[p(mHH +mLL + VMIP (0, 0)) + (1− p)(mHL +mLL + VMIP (0, 0))]

= δmLL + VMIP (1, 0)

< mLL + VMIP (1, 0)

≤ mHL + VMIP (0, 1),

where the last inequality follows from (3.60).

Deriving equation (3.58). We show (3.58) exploiting supermodularity and optimality
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of (0, 1, 0) on state (1, 2):

mHL + δ[pVMIP (2, 2)) + (1− p)VMIP (1, 3)] ≤ mHL + VMIP (1, 2)

= 2mHL + VMIP (0, 1)

≤ mHH +mLL + VMIP (0, 1).

Deriving equation (3.57). We show (3.57) exploiting supermodularity and optimality

of (0, 1, 0) on state (1, 1):

mHL + δ[pVMIP (2, 1)) + (1− p)VMIP (1, 2)] ≤ mHL + VMIP (1, 1)

= 2mHL + VMIP (0, 0)

≤ mHH +mLL + VMIP (0, 0).

Deriving equation (3.56). (3.59) and (3.60) imply (3.56): (3.56) is equivalent to

δVMIP (0, 1)− VMIP (0, 0) ≤ mHL − δpmHH − δ(1− p)mHL,

similarly, (3.59) is equivalent to

δVMIP (0, 1)− VMIP (0, 0) ≤ mLL − δpmHL − δ(1− p)mLL.

Therefore, a sufficient condition for (3.56) to hold is

mLL − δpmHL − δ(1− p)mLL ≤ mHL − δpmHH − δ(1− p)mHL,

which is equivalent to mHL ≥ m2
HL, i.e. (3.60).

Deriving mHL ≤ m3
HL. First, note that whenever there exists a mHL such that mHL >

m3
HL, then 1

2
mHH + 1

2
mLL > m3

HL. Reformulating mHL ≤ m3
HL, ∀p, δ,mHH ,mLL, gives

mHL −mLL ≤
1− δ
δp

mLL + δ[p(mHH −mHL) + (1− p)(mHL −mLL)], ∀p, δ,mHH ,mLL.

Inserting mHL = 1
2
mHH + 1

2
mLL and rearranging terms yields

1

2
(mHH −mLL) ≤ mLL

δp
, ∀p, δ,mHH ,mLL.

This holds if and if

1

2
(mHH −mLL) ≤ mLL, ∀mHH ,mLL,
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i.e., mHH ≤ 3mLL, ∀mHH ,mLL.

Calculations for the proof of Proposition 1.

Preliminaries for equations (3.69) - (3.77). It is instructive to rewrite (3.62) - (3.68):

VP1(0, 0) =δ[pVP1(1, 0) + (1− p)VP1(0, 1)], (3.122)

VP1(1, 0) =δ[p(mHH + VP1(0, 0)) + (1− p)(mHL + VP1(0, 0))], (3.123)

VP1(0, 1) =δ[p(mHL + VP1(0, 0)) + (1− p)VP1(0, 2)], (3.124)

VP1(0, 2) =δ[p(mHL + VP1(0, 1)) + (1− p)(mLL + VP1(0, 1))]. (3.125)

Plugging (3.123) into (3.122) gives

VP1(0, 0) = δp (δVP1(0, 0) + δ(pmHH + (1− p)mLL)) + δ(1− p)VP1(0, 1). (3.126)

For VP1(0, 1)− δVP1(0, 2) we obtain, inserting (3.124) and (3.125),

VP1(0, 1)− δVP1(0, 2) =δp(mHL + VP1(0, 0)− δmHL − δVP1(0, 1))

+ δ(1− p)(VP1(0, 2)− δmLL − δVP1(0, 1)). (3.127)

Rearranging (3.125) we see that

VP1(0, 2)− δVP1(0, 1) = δ(pmHL + (1− p)mLL). (3.128)

Inserting (3.124), (3.126), and (3.128) into (3.127), we can solve for VP1(0, 1)−δVP1(0, 2)

which is explicitly given by

VP1(0, 1)− δVP1(0, 2) =
δp [mHL − δmLL +mHHp

2δ2 −mHLp
2δ2 +mLLpδ −mHLpδ]

1 + p2δ2 − pδ2
.

(3.129)

Next, we derive a closed-form expression for VP1(0, 0) − δVP1(0, 1). To this end, note

that

VP1(0, 0)− δVP1(0, 1) =δp(VP1(1, 0)− δmHL − δVP1(0, 0))

+ δ(1− p)(VP1(0, 1)− δVP1(0, 2)). (3.130)

Furthermore by (3.123)

VP1(1, 0)− δVP1(0, 0) = δ(pmHH + (1− p)mHL). (3.131)
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Inserting (3.131) and (3.129) into (3.130) gives

VP1(0, 0)−δVP1(0, 1) =
pδ2 [mHHp+mHL(1− 2p− pδ + p2δ) +mLL(−δ + 2pδ − p2δ)]

1− pδ2 + p2δ2
.

(3.132)

Deriving equation (3.72). Rearranging terms in (3.72) gives

VP1(0, 1)− δVP1(0, 2) ≥ δ [pmHL + (1− p)mLL]−mLL. (3.133)

Plugging (3.129) into (3.133) and rewriting (3.133) as a condition on mHL, we obtain

mHL ≤
1

1− δ(1− 2p)

[
mHHδp+mLL

(
2− δ(2− p) +

1− δ + δp(1− δ)2

δ2p2

)]
.

(3.134)

The term on the right side of (3.134) is m4
HL.

Deriving equation (3.74). We argue that (3.74) holds if and only if mHL ≥ m3
HL.

Inserting VP1(1, 2) and VP1(0, 3) in (3.74) gives

δ [p(mHL + VP1(0, 1)) + (1− p)(mLL + VP1(0, 1))] ≥ mLL + VP1(0, 0).

Rearranging terms yields

δ [pmHL + (1− p)mLL]−mLL ≥ VP1(0, 0)− δVP1(0, 1). (3.135)

Plugging (3.132) into (3.135) and some algebra yields

mHL ≥ mHH
δp

1− δ(1− 2p)
+mLL

1− δ(1− p) + 1−δ
δp

1− δ(1− 2p)
. (3.136)

Observe that the right side of (3.136) coincides with m3
HL.

Deriving equation (3.76). We show that (3.72) and (3.74) imply (3.76). Reformulating

(3.72) gives

mLL − δpmHL − δ(1− p)mLL ≥ δVP1(0, 2)− VP1(0, 1), (3.137)

and (3.76) gives

mHL − δpmHH − δ(1− p)mHL ≥ δVP1(0, 2)− VP1(0, 1). (3.138)

(3.137) implies (3.138) if

153



mHL −mLL ≥ δp(mHH −mHL) + δ(1− p)(mHL −mLL). (3.139)

Note that (3.139) coincides with mHL ≥ m2
HL. As (3.74) requires mHL ≥ m3

HL and

m3
HL ≥ m2

HL, (3.139) is implied by (3.74).

Deriving equation (3.70). We argue that (3.74) implies (3.70). Note that we can rewrite

(3.74) as

VP1(0, 0)− δVP1(0, 1) ≤ δ (pmHL + (1− p)mLL)−mLL, (3.140)

and (3.70) as

VP1(0, 0)− δVP1(0, 1) ≥ δ (pmHH + (1− p)mHL)−mHL. (3.141)

Plugging (3.132) into (3.140) and (3.141) yields, after some algebra, for (3.140)

δ2p2(mHH−mHL)+mLL(1−δ) ≤ δ2p2(mHL−mLL)+(1−δ)pδ(mHL−mLL), (3.142)

and for (3.141)

δp(mHH −mHL)(1− δp− δ2p(1− p)) + (1− p)p2δ3(mHL −mLL) ≤

mHL(1− δ) + (1− p)pδ3(mHL −mLL). (3.143)

It is sufficient for (3.140) to imply (3.141), i.e. (3.142) to imply (3.143), if it holds that

(δp(mHL −mLL) + (1− δ)(mHL −mLL))(1− δp− δ2p(1− p)) ≤

mHL(1− δ) + (1− p)2pδ3(mHL −mLL). (3.144)

For (3.144) in turn it is sufficient if

(δp+ (1− δ))(1− δp− δ2p(1− p)) ≤ (1− δ) + (1− p)2pδ3. (3.145)

Simplifying (3.145) shows that the term on the left side coincides with the term on the

right side.

Deriving equation (3.69). Supermodularity and (3.74) imply (3.69). Inserting (3.123)

and (3.124) into (3.69) and rearranging terms yields

mHH −mHL ≥ δ [p(mHH −mHL) + (1− p)(mHL + VP1(0, 0)− VP1(0, 2))] . (3.146)
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By (3.74) it is sufficient for (3.146) to hold that

mHH −mHL ≥ δ [pmHH + (1− 2p)mHL − (1− p)mLL] . (3.147)

Reformulating yields

mHH −mHL

mHL −mLL

≥ δ(1− p)
1− δp

. (3.148)

By supermodularity the left side of (3.148) is larger than one, whereas the right side

of (3.148) is smaller than one. Therefore, (3.74) implies (3.69).

Deriving equation (3.77). (3.77) is implied by (3.75), (3.76), and supermodularity:

Given (3.75) and (3.76), from optimality on state (1, 2) we know

mHL + δ[pVP1(2, 2) + (1− p)VP1(1, 3)] ≤ 2mHL + VP1(0, 1), (3.149)

and from supermodularity follows

2mHL + VP1(0, 1) ≤ mHH +mLL + VP1(0, 1). (3.150)

Combining (3.149) and (3.150) gives (3.77).

Deriving equation (3.71). (3.71) is implied by (3.70) and supermodularity: Given

(3.70), from optimality on state (1, 1) we know

mHL + δ[pVP1(2, 1) + (1− p)VP1(1, 2)] ≤ 2mHL + VP1(0, 0), (3.151)

and from supermodularity follows

2mHL + VP1(0, 0) ≤ mHH +mLL + VP1(0, 0). (3.152)

Combining (3.151) and (3.152) gives (3.71).

Deriving equation (3.73). (3.73) is implied by (3.74), (3.70), and supermodularity:

Given (3.74), from optimality on state (0, 2) we know

mHL + VP1(0, 2) ≥ mHL +mLL + VP1(0, 0), (3.153)
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and given (3.70), from optimality on state (1, 1) follows

mHH +mLL + VP1(0, 0) ≤ mLL + δ[pVP1(2, 1) + (1− p)VP1(1, 2)]. (3.154)

Combining (3.153) and (3.154) gives (3.73).

Deriving equation (3.75). We argue that (3.74) implies (3.75) by showing that ‘not

(3.75)’ implies ‘not (3.74)’. Applying ‘not (3.75)’ and (3.74) leads to a contradiction:

mLL + VP1(0, 0) ≤ δ[p(mHL + VP1(0, 1)) + (1− p)(mLL + VP1(0, 1))]

≤ δ[p(mLL + VP1(1, 0)) + (1− p)(mLL + VP1(0, 1))]

= δmLL + VP1(0, 0).
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