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Overview

In recent years advances in data collection and storage allow us to observe and analyze

many financial, economic or environmental processes with higher precision. This in turn

reveals new features of the underlying processes and creates a demand for the development

of new econometric techniques. The aim of this thesis is to tackle some of these challenges

in the filed of panel data and time series models. In particular, the first and the last

chapters contribute to the issue of testing and estimating heterogeneous panel models

with random coefficients. The second chapter discusses a generalization of the classical

linear time series models to asymmetric ones and presents a test statistic to help empirical

researchers to choose the appropriate modeling framework in this context. Finally, the

objective of the third chapter is to extend the available (nonlinear) time series techniques

on big data sets or functional data.

In more detail, Chapter1, which is joint work with Joerg Breitung and Christoph

Roling, employs the Lagrange Multiplier (LM) principle to test parameter homogeneity

across cross-section units in panel data models. The test can be seen as a generalization

of the Breusch-Pagan test against random individual effects to all regression coefficients.

While the original test procedure assumes a likelihood framework under normality, several

useful variants of the LM test are presented to allow for non-normality, heteroskedasticity

and serially correlated errors. Moreover, the tests can be conveniently computed via

simple artificial regressions. We derive the limiting distribution of the LM test and show

that if the errors are not normally distributed, the original LM test is asymptotically valid

if the number of time periods tends to infinity. A simple modification of the score statistic

yields an LM test that is robust to non-normality if the number of time periods is fixed.

Further adjustments provide versions of the LM test that are robust to heteroskedasticity

and serial correlation. We compare the local power of our tests and the statistic proposed

by Pesaran and Yamagata. The results of the Monte Carlo experiments suggest that the

LM-type test can be substantially more powerful, in particular, when the number of time

periods is small.

Chapter 2, which is joint work with Thomas Nebeling, develops a Lagrange multi-

plier test statistic and its variants to test for the null hypothesis of no asymmetric effects

of shocks on time series. In asymmetric time series models that allow for different re-

sponses to positive and negative past shocks the likelihood functions are, in general, non-
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differentiable. By making use of the theory of generalized functions Lagrange multiplier

type tests and the resulting asymptotics are derived. The test statistics possess standard

asymptotic limiting behavior under the null hypothesis. Monte Carlo experiments illus-

trate the accuracy of the asymptotic approximation and show that conventional model

selection criteria can be used to estimate the required lag length. We provide an empirical

application to the U.S. unemployment rate.

In Chapter 3, written in collaborative work with Alexander Gleim, statistical tools

for forecasting functional times series are developed, which for example can be used to

analyze big data sets. To tackle the issue of time dependence we introduce the notion

of functional dependence through scores of the spectral representation. We investigate

the impact of time dependence thus quantified on the estimation of functional principal

components. The rate of mean squared convergence of the estimator of the covariance

operator is derived under long range dependence of the functional time series. After that,

we suggest two forecasting techniques for functional time series satisfying our measure of

time dependence and derive the asymptotic properties of their predictors. The first is the

functional autoregressive model which is commonly used to describe linear processes. As

our notion of functional dependence covers a broader class of processes we also study the

functional additive autoregressive model and construct its forecasts by using the k-nearest

neighbors approach. The accuracy of the proposed tools is verified through Monte Carlo

simulations. Empirical relevance of the theory is illustrated through an application to

electricity consumption in the Nordic countries.

In Chapter 4, which was jointly done with Joerg Breitung, three main estimation

procedures for the panel data models with heterogeneous slopes are discussed: pooling,

generalized LS and mean-group estimator. In our analysis we take an explicit account

of the statistical dependence that may exists between regressors and the heterogeneous

effects of the slopes. It is shown that under systematic slope variations: (i) pooling gives

inconsistent and highly misleading estimates, and (ii) generalized LS in general is not

consistent even in settings when N and T are large, (iii) while mean-group estimator

always provide consistent result at a price of higher variance. We contribute to the

literature by suggesting a simple robustified version of the pooled based on Mundlak type

corrections. This estimator provides consistent results and is asymptotically equivalent

to the mean-group estimator for large N and T . Monte Carlo experiments confirm our

theoretical findings and show that for large N and fixed T new estimator can be an

attractive option when compare to the competitors.
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Chapter 1

LM-type Tests for Slope

Homogeneity in Panel Data Models

1.1 Introduction

In classical panel data analysis it is assumed that unobserved heterogeneity is captured by

individual-specific constants, whether they are assumed to be fixed or random. In many

applications, however, it cannot be ruled out that slope coefficients are also individual-

specific. For instance, heterogenous preferences among individuals may result in individual-

specific price or income elasticities. Ignoring this form of heterogeneity may result in bi-

ased estimation and inference. Therefore, it is important to test the assumption of slope

homogeneity before applying standard panel data techniques such as the least-squares

dummy-variable (LSDV) estimator for the fixed effect panel data model.

If there is evidence for individual-specific slope parameters, economists are interested

in estimating a population average like the mean of the individual-specific coefficients.

Pesaran and Smith (1995) advocate mean group estimation, where in a first step the

model is estimated separately for each cross-section unit. In a second step, the unit-

specific estimates are averaged to obtain an estimator for the population mean of the

parameters. Alternatively, Swamy (1970) proposes a generalized least squares (GLS)

estimator for the random coefficients model, which assumes that the individual regression

coefficients are randomly distributed around a common mean.

In this paper we derive a test for slope homogeneity by employing the LM principle

within a random coefficients framework, which allows us to formulate the null hypothesis

of slope homogeneity in terms of K restrictions on the variance parameters. Hence, the

LM approach substantially reduces the number of restrictions to be tested compared to

the set of K(N − 1) linear restrictions on the coefficients implied by the test proposed

by Pesaran and Yamagata (2008), henceforth referred to as PY. This does not mean,

however, that our test is confined to detect random deviation in the coefficients. In fact
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our test is optimal against the alternative of random coefficients but it is also powerful

against any systematic variations of the regression coefficients.

Our approach is related but not identical to the conditional LM test recently suggested

by Juhl and Lugovskyy (2014) which is referred to as the JL test. The main difference

is that the latter test is derived for a more restrictive alternative, where it is assumed

that the individual-specific slope coefficients attached to the K regressors have identical

variances. In contrast, our test focuses on the alternative that the coefficients have dif-

ferent variances which allows us to test for heterogeneity in a subset of the regression

coefficients. Furthermore, the derivation of our test follows the original LM principle

involving the information matrix, whereas the JL test employs the outer product of the

scores as an estimator of the information matrix. Our simulation study suggest that both

non-standard features of the latter test may result in size distortions in small samples and

a sizable loss in power. An important advantage of the JL test is however that it is robust

against non-Gaussian and heteroskedastic errors. We therefore propose variants of the

original LM test that share the robustness against non-Gaussian and heteroskedastic er-

rors. Furthermore, we also suggest a modified LM test that is robust to serially correlated

errors. Another contribution of the paper is the analysis of the local power of the test

that allows us to compare the power properties of the LM and PY tests. Specifically, we

find that the location parameter of the LM test depends on the cross-section dispersion

of the regression variances, whereas the location parameter of the PY test only depends

on the mean of the regressor variances. Thus, if the regressor variances differ across the

panel groups, the gain in power from using the LM test may be substantial.

The outline of the paper is as follows. In Section 1.2 we compare two tests for slope

heterogeneity recently proposed in the literature. We introduce the random coefficients

model in 1.3 and lay out the (standard) assumptions for analyzing the large-sample prop-

erties. In Section 1.4 we derive the LM statistic and establish its asymptotic distribution.

Section 1.5 discusses several variants of the proposed test. First, we relax the normality

assumption and extend the result of the previous section to this more general setting.

Second, we propose a regression-based version of the LM test. Section 1.6 investigates

the local asymptotic power of the LM test. Section 1.7 describes the design of our Monte

Carlo experiments and discusses the results. Section 1.8 concludes.

1.2 Existing tests

To prepare the theoretical discussion in the following sections, we briefly review the ran-

dom coefficients model and existing tests. Following Swamy (1970), consider a linear

panel data model

yit = x′itβi + εit,

10



for i = 1, 2, . . . , N , and t = 1, 2, . . . , T , where yit is the dependent variable for unit i at

time period t, xit is a K × 1 vector of explanatory variables and εit is an idiosyncratic

error with zero mean and variance E (ε2it) = σ2
i . For the slope coefficient βi we assume

βi = β + vi ,

where β is a fixed K×1 vector and vi is a i.i.d. random vector with zero mean and K×K
covariance matrix Σv.

1

The null hypothesis of slope homogeneity is

β1 = β2 = · · · = βN = β, (1.1)

which is equivalent to testing Σv = 0. To test hypothesis (1.1), Swamy suggests the

statistic

Ŝ∗ =
N∑
i=1

(
β̂i − β̂WLS

)′(X ′iXi

s2
i

)(
β̂i − β̂WLS

)
,

with Xi = (xi1, . . . , xiT )′ and β̂i = (X ′iXi)
−1X ′iyi is the ordinary least squares (OLS)

estimator of (1.2) for panel unit i, and t = 1, . . . , T . The common slope parameter β is

estimated by the weighted least-squares estimator

β̂WLS =

(
N∑
i=1

X ′iXi

s2
i

)−1( N∑
i=1

X ′iyi
s2
i

)
,

where s2
i denotes the standard OLS estimator of σ2

i .

Intuitively, if the regression coefficients are identical, the differences between the in-

dividual estimators and the pooled estimator should be small. Therefore, Swamy’s test

rejects the null hypothesis of homogenous slopes for large values of this statistic, which

possesses a limiting χ2 distribution with K(N − 1) degrees of freedom as N is fixed and

T →∞.

Pesaran and Yamagata (2008) emphasize that in many empirical applications N is

large relative to T and the approximation by a χ2 distribution is unreliable. PY adapt

the test to a setting in which N and T jointly tend to infinity. In particular, they assume

1For more details and extensions of the basic random coefficient model see Hsiao and Pesaran (2008).
As pointed out by a referee, this specification may be replaced by some systematic variation of the coeffi-
cients that depends on observed variables. For example, we may specify the deviations as βi−β = Γzi+ηi,
where zi is some vector of observed variables possibly correlated with xit. The corresponding variant of
the LM test (which is different from our LM test based assuming that vi and xit are independent) will be
optimal against this particular form of systematic variation. In general, our test assuming independent
variation with Γ = 0 will also have power against systematic variations but admittedly our test is not
optimal against alternative with systematically varying coefficients.
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individual-specific intercepts and derive a test for the hypothesis β1 = · · · = βN = β in

yit = αi + x′itβi + εit. (1.2)

The analogue of the pooled weighted least squares estimator above eliminates the unob-

served fixed effects,

β̂WFE =

(
N∑
i=1

X ′iMιXi

σ̂2
i

)−1( N∑
i=1

X ′iMιyi
σ̂2
i

)
,

where Mι = IT − ιT ι′T/T , and ιT is a T × 1 vector of ones. A natural estimator for σ2
i is

σ̂2
i =

(
yi −Xiβ̂i

)′
Mι

(
yi −Xiβ̂i

)
T −K − 1

,

where β̂i = (X ′iMιXi)
−1 (X ′iMιyi) and the test statistic becomes

Ŝ =
N∑
i=1

(
β̂i − β̂WFE

)′(X ′iMιXi

σ̂2
i

)(
β̂i − β̂WFE

)
.

Employing a joint limit theory for N and T , PY obtain the limiting distribution as

∆̂ =
Ŝ −NK√

2NK

d→ N (0, 1) , (1.3)

provided that N → ∞, T → ∞ and
√
N/T → 0. Thus, by appropriately centering and

standardizing the test statistic, inference can be carried out by resorting to the standard

normal distribution, provided the time dimension is sufficiently large relative to the cross-

section dimension. PY propose several modified versions of this test, which for brevity

we shall refer to as the ∆ tests or statistics. In particular, to improve the small sample

properties of the test, PY suggest the adjusted statistic under normally distributed errors

(see Remark 2 in PY),

∆̃adj =
√
N(T + 1)

(
N−1S̃ −K√

2K (T −K − 1)

)
, (1.4)

where S̃ is computed as Ŝ but replacing σ̂2
i by the variance estimator

σ̃2
i =

(
yi −Xiβ̃FE

)′
Mι

(
yi −Xiβ̃FE

)
T − 1

, (1.5)
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where β̃FE =

(
N∑
i=1

X ′iMιXi

)−1( N∑
i=1

X ′iMιyi

)
is the standard ’fixed effects’ (within-group)

estimator. Note that this asymptotic framework does not seem to be well suited for typical

panel data applications where N is large relative to T . Therefore, it will be of interest to

derive a test statistic that is valid when T is small (say T = 10) and N is very large (say

N = 1000), which, for instance, is encountered in microeconomic panels.

The test statistic proposed by Juhl and Lugovskyy (2014) is based on the individual

scores

Si = û′iMιXiX
′
iMιûi − σ̂2

i tr(X ′iMιXi),

where ûi = yi − Xiβ̃FE and tr (A) denotes the trace of the matrix A. The (conditional)

LM statistic results as

CLM =
N∑
i=1

S ′i

(
N∑
i=1

SiS ′i

)−1 N∑
i=1

Si . (1.6)

It is interesting to compare this test statistic to the PY test which is based on the sum

Ŝ =
∑N

i=1 Ŝi with

Ŝi =
(
β̂i − β̂WFE

)′(X ′iMιXi

σ̂2
i

)(
β̂i − β̂WFE

)
=

1

σ2
i

u′iMιXi(X
′
iMιXi)

−1X ′iMιui + op(1)

if N and T tend to infinity. Note that limN→∞ E(Ŝi) = K. The main difference be-

tween the JL and the PY statistics is that the statistic Si neglects the additional inverse

(σ2
iX
′
iMιXi)

−1 in the statistic Ŝi. Thus, although these two test statistics are derived from

different statistical principles, the final test statistics are essentially testing the indepen-

dence of ui and MιXi or E(u′iMιXiWiX
′
iMιui) = σ2

iE(tr [MιXiWiX
′
iMι]) with Wi = IK

for the JL test and Wi = (σ2
iX
′
iMιXi)

−1 for the PY test.

1.3 Model and Assumptions

Consider a linear panel data model with random coefficients,

yi = Xiβi + εi, (1.7)

βi = β + vi, (1.8)

for i = 1, 2, . . . , N , where yi is a is a T×1 vector of observations on the dependent variable

for cross-section unit i, and Xi is a T × K matrix of possibly stochastic regressors. To
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simplify the exposition we assume a balanced panel with the same number of observation

in each panel unit (see also Remark 1 of Lemma 1). The vector of random coefficients

is decomposed into a common non-stochastic vector β and a vector of individual-specific

disturbances vi. Let X = [X ′1, X
′
2, . . . , X

′
N ]′.

In order to construct the LM test statistic for slope homogeneity we start with model

(1.7)-(1.8) under stylized assumptions. However, in Section 5 these assumptions will be

relaxed to accommodate more general and empirically relevant setups. The following

assumptions are imposed on the errors and the regressor matrix:

Assumption 1 The error vectors are distributed as εi|X
iid∼ N (0, σ2IT ) and vi|X

iid∼
N (0,Σv), where Σv = diag

(
σ2
v,1, . . . , σ

2
v,K

)
. The errors εi and vj are independent from

each other for all i and j.

Assumption 2 For the regressors we assume E|xit,k|4+δ < C <∞ for some δ > 0, for all

i = 1, 2 . . . , N , t = 1, 2, . . . , T and k = 1, 2 . . . , K. The limiting matrix lim
N→∞

N−1E (X ′X)

exists and is positive definite for all N and T .

In Assumption 1, the random components of the slope parameters are allowed to have

different variances but we assume that there is no correlation among the elements of vi.

Note that this framework is more general than the one considered by Juhl and Lugovskyy

(2014) who assume E(viv
′
i) = σ2

vIK . The latter assumption seems less appealing if there

are sizable differences in the magnitudes of the coefficients. Furthermore, the power of

the test depends on the scaling of regressors, whereas the (local) power of our test is

invariant to a rescaling of the regressors (see Theorem 5). The alternative hypothesis

can be further generalized by allowing for a correlation among the elements of the error

vector vi. However, this would increase the dimension of the null hypothesis to K(K+1)/2

restrictions and it is therefore not clear whether accounting for the covariances helps to

increase the power of the test. Obviously, if all variances are zero, then the covariances

are zero as well.2

Let ui = Xivi + εi. Stacking observations with respect to i yields

y = Xβ + u, (1.9)

where y = (y′1, . . . , y
′
N)′ and u = (u′1, . . . , u

′
N)′. The NT × NT covariance matrix of u is

given by

Ω ≡ E [uu′|X] =


X1ΣvX

′
1 + σ2IT 0

. . .

0 XNΣvX
′
N + σ2IT

 .
2We also conducted Monte Carlo simulations allowing for non-zero diagonal elements in the matrix

Σv. We found that the results are quite similar to the setting where Σv is diagonal.
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The hypothesis of fixed homogeneous slope coefficients, βi = β for all i, corresponds to

testing

H0 : σ2
v,k = 0, for k = 1, ..., K,

against the alternative

H1 :
K∑
k=1

σ2
v,k > 0, (1.10)

that is, under the alternative at least one of the variance parameters is larger than zero.

1.4 The LM Test for Slope Homogeneity

Let θ =
(
σ2
v,1, ..., σ

2
v,K , σ

2
)′

. Under Assumption 1 the corresponding log-likelihood function

results as

` (β, θ) = −NT
2

log(2π)− 1

2
log |Ω (θ)| − 1

2
(y −Xβ)′Ω (θ)−1 (y −Xβ) . (1.11)

The restricted ML estimator of β under the null hypothesis coincides with the pooled OLS

estimator β̃ = (X ′X)−1X ′y and the corresponding residual vector and estimated residual

variance are denoted by ũi = yi − Xiβ̃ and σ̃2. The following lemma presents the score

and the information matrix derived from the log-likelihood function in (1.11).

Lemma 1 The score vector evaluated under the null hypothesis is given by

S̃ ≡ ∂`

∂θ

∣∣∣∣
H0

=
1

2σ̃4



N∑
i=1

(
ũ′iX

(1)
i X

(1)′
i ũi − σ̃2X

(1)′
i X

(1)
i

)
...

N∑
i=1

(
ũ′iX

(K)
i X

(K)′
i ũi − σ̃2X

(K)′
i X

(K)
i

)
0


, (1.12)

where X(k) is the k-th column of X for k = 1, 2, . . . , K.
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The information matrix evaluated under the null hypothesis is

I(σ̃2) ≡ − E
[
∂2`

∂θ∂θ′

]∣∣∣∣
H0

=
1

2σ̃4



N∑
i=1

(
X

(1)′
i X

(1)
i

)2

· · ·
N∑
i=1

(
X

(1)′
i X

(K)
i

)2

X(1)′X(1)

N∑
i=1

(
X

(2)′
i X

(1)
i

)2

· · ·
N∑
i=1

(
X

(2)′
i X

(K)
i

)2

X(2)′X(2)

...
. . .

...
...

N∑
i=1

(
X

(K)′
i X

(1)
i

)2

· · ·
N∑
i=1

(
X

(K)′
i X

(K)
i

)2

X(K)′X(K)

X(1)′X(1) · · · X(K)′X(K) NT


, (1.13)

where X
(k)
i denotes the k-th column of the T × K matrix Xi, k = 1, 2, . . . , K and i =

1, ..., N .

Remark 1 It is straightforward to extend Lemma 1 to unbalanced panel data, where

observations are assumed to be missing at random. Let Xi be a Ti×K matrix and ũi be

a conformable Ti × 1 vector. The score vector is given by

S̃ =
1

2σ̃4



N∑
i=1

(
ũ′iX

(1)
i X

(1)′
i ũi − σ̃2X

(1)′
i X

(1)
i

)
...

N∑
i=1

(
ũ′iX

(K)
i X

(K)′
i ũi − σ̃2X

(K)′
i X

(K)
i

)
0


,

where

σ̃2 =
1

N∑
i=1

Ti

N∑
i=1

ũ′iũi .

The information matrix is computed accordingly.

Remark 2 If individual-specific constants αi are included in the regression, then a con-

ditional version of the test is available (cf. Juhl and Lugovskyy (2014)). The individual

effects can be “conditioned out” by considering the transformed regression

Mιyi = MιXiβ +Mιui , (1.14)

with Mι as defined in Section 2. The typical elements of the corresponding score vector

result as
1

σ̃4

(
ũ′iMιX

(j)
i X

(j)′
i Mιûi − σ̃2X

(j)′
i MιX

(j)
i

)
, j = 1, . . . , K,
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where ũi = Mιyi −MιXiβ̃ and β̃ is the pooled OLS estimator of the transformed model

(1.14), and σ̃2 is the corresponding estimated residual variance. It follows that we just

have to replace the vector X
(j)
i by the mean-adjusted vector MιX

(j)
i in Theorem 1.

Remark 3 It is easy to see that under the more restrictive alternative E(viv
′
i) = σ2

vIK of

Juhl and Lugovskyy (2014), where σ2
v,1 = · · · = σ2

v,k = σ2
v, the score is simply the sum of

all elements of S̃.

Remark 4 Notice also that the LM-type statistics do not require the restriction K < T ,

which is important for the PY approach. This is of course not an issue for the asymptotic

framework, where T →∞, however, it can be a substantive restriction in many empirical

applications when T is small.

In the following theorem it is shown that when T is fixed, the LM statistic possesses a χ2

limiting null distribution with K degrees of freedom as N →∞.

Theorem 1 Under Assumptions 1, 2 and the null hypothesis

LM = S̃
′
I(σ̃2)−1S̃ = s̃ ′ Ṽ

−1
s̃

d→ χ2
K , (1.15)

as N →∞ and T is fixed, where s̃ is defined as the K × 1 vector with typical element

s̃k =
1

2σ̃4

N∑
i=1

(
T∑
t=1

ũitxit,k

)2

− 1

2σ̃2

N∑
i=1

T∑
t=1

x2
it,k, (1.16)

and the (k, l) element of the matrix Ṽ is given by

Ṽk,l =
1

2σ̃4

 N∑
i=1

(
T∑
t=1

xit,kxit,l

)2

− 1

NT

(
N∑
i=1

T∑
t=1

x2
it,k

)(
N∑
i=1

T∑
t=1

x2
it,l

) . (1.17)

Remark 5 If T is fixed, normality of the regression disturbances is required. If we relax

the normality assumption, an additional term enters the variance of the score vector and

the information matrix becomes an inconsistent estimator. Theorem 2 discusses this issue

in more details and derives the asymptotic distribution of the LM test if the errors are

not normally distributed.

Remark 6 It may be of interest to restrict attention to a subset of coefficients. For

example, in the classical panel data model it is assumed that the constants are individual-

specific and, therefore, the respective parameters are not included in the null hypothesis.

Another possibility is that a subset of coefficients is assumed to be constant across all

panel units. To account for such specifications the model is partitioned as

yit = β′1iX
a
it + β′2X

b
it + β′3iX

c
it + uit .
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The K1× 1 vector Xa
it includes all regressors that are assumed to have individual-specific

coefficients stacked in the vector β1i. The K2 × 1 vector Xb
it comprises all regressors that

are supposed to have homogenous coefficients. The null hypothesis is that the coefficient

vector β3i attached to the K3 × 1 vector of regressors Xc
it is identical for all panel units,

that is, β3i = β3 for all i, where β3i = β3 + v3i. The null hypothesis implies Σv3 = 0. Let

Z =


Xa

1 0 · · · 0 Xb
1 Xc

1

0 Xa
2 · · · 0 Xb

2 Xc
2

...
. . .

...

0 0 · · · Xa
N Xb

N Xc
N

 ,

where Xa
i = [Xa

i1, . . . , X
a
iT ]′ and the matrices Xb

i and Xc
i are defined accordingly. The

residuals are obtained as ũ = (I − Z(Z ′Z)−1Z ′)y and the columns of the matrix Xc

are used to compute the LM statistic. Some caution is required if a set of individual-

specific coefficients are included in the panel regression since in this case the ML estimator

σ̃2 = (NT )−1
∑N

i=1

∑T
t=1 ũ

2
it is inconsistent for fixed T and N →∞. This implies that the

expectation of the score vector (1.12) is different from zero. Accordingly, the unbiased

estimator

σ̂2 =
1

NT −K1 −K2 −K3

N∑
i=1

T∑
t=1

ũ2
it (1.18)

must be employed. As a special case, assume that the constant is included in Xc
i , whereas

all other regressors are included in the matrix Xb
i , and Xa

i is dropped. This case is

equivalent to the test for random individual effects as suggested by Breusch and Pagan

(1980). The LM statistic then reduces to

LM =
NT

2 (T − 1)

[
1− ũ′ (IN ⊗ ιT ι′T ) ũ

ũ′ũ

]2

,

where ιT is a T × 1 vector of ones, which is identical to the familiar LM statistic for

random individual effects.

1.5 Variants of the LM Test

In this section we generalized the LM test statistic by allowing for non-normally dis-

tributed, heteroskedastic and serially dependent errors. First we show in Section 1.5 that

the proposed LM test is robust against non-normally distributed errors once we assume

N, T → ∞ jointly and specific restrictions on the existence of higher-order moments.

Moreover, the variants of the test with non-normally distributed errors are proposed for
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the settings when N → ∞ and T is fixed. Second, in Section 1.5.2 we propose a variant

of the LM test that is robust to heteroskedastic errors. Finally, Section 1.5.3 discusses

how to robustify the LM test, when the errors are serially correlated.

1.5.1 The LM statistic under non-normality

In this section we consider useful variants of the original LM statistic under the assumption

that the errors are not normally distributed. Therefore, we replace Assumptions 1 and 2

by:

Assumption 1′ εit is independently and identically distributed with E(εit|X) = 0, E(ε2it|X) =

σ2 and E (|εit|6|X) < C < ∞ for all i and t. Furthermore, εit and εjs are independently

distributed for i 6= j and t 6= s.

Assumption 2 ′ For the regressors we assume E|xit,k|6 < C <∞ for some δ > 0, for all

i = 1, 2 . . . , N , t = 1, 2, . . . , T and k = 1, 2 . . . , K. Further, lim
T→∞

T−1
T∑
t=1

E [xitx
′
it] tend to

a positive definite matrix Qi and the limiting matrix Q := lim
N,T→∞

(NT )−1
N∑
i=1

T∑
t=1

E [xitx
′
it]

exists and is positive definite.

Assumption 3 The error vector vi is independently and identically distributed with

E(vi|X) = 0, E(viv
′
i|X) = Σv, where Σv = diag

(
σ2
v,1, . . . , σ

2
v,K

)
and E

(
|vik|2+δ |X

)
<

C < ∞ for some δ > 0, for all i and k = 1, ..., K. Further, vi and εj are independent

from each other for all i and j.

Notice that, as in Section 1.3 under the null hypothesis Σv or vi = 0 for all i. Hence,

Assumption 3 is not required for the derivation of the asymptotic null distribution. To

study the behaviour of the LM test statistic under (local) alternatives, Assumption 3 will

be used in Section 1.6.

With these modifications of the previous setup, the limiting distribution of the LM

statistic is given in

Theorem 2 Under Assumptions 1′, 2 ′ and the null hypothesis,

LM
d→ χ2

K , (1.19)

as N →∞, T →∞ jointly.

Generalizing the model to allow for non-normally distributed errors introduces a new term

into the variance of the score: the (k, l) element of the covariance matrix now becomes
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(see equation (A.5) in appendix A.2)

Vk,l +

(
µ

(4)
u − 3σ4

(2σ4)2

)
N∑
i=1

T∑
t=1

(
x2
it,k −

1

NT

N∑
i=1

T∑
t=1

x2
it,k

)(
x2
it,l −

1

NT

N∑
i=1

T∑
t=1

x2
it,l

)
,

(1.20)

where µ
(4)
u denotes the fourth moment of the error distribution, and Vk,l is as in (1.17)

with σ̃4 replaced by σ4. The additional term depends on the excess kurtosis µ
(4)
u − 3σ4.

Clearly, for normally distributed errors, this term disappears, but it deviates from zero

in the more general setup. Under Assumptions 1′ and 2 ′, the first term Vk,l is of order

NT 2, while the new component is of order NT , such that, when the appropriate scaling

underlying the LM statistic is adopted, it vanishes as T →∞. Therefore, the LM statistic

as presented in the previous section continues to be χ2
K distributed asymptotically. By

incorporating a suitable estimator of the second term in (1.20), however, a test statistic

becomes available that is valid in a framework with non-normally distributed errors as

N →∞, whether T is fixed or T →∞. Therefore, denote the adjusted LM statistic by

LMadj = s̃ ′
(
Ṽadj

)−1

s̃,

where Ṽadj is as in (1.20) with Vk,l, σ
4 and µ

(4)
u replaced by the consistent estimators Ṽk,l

defined in (1.17), σ̃4 and µ̃
(4)
u = (NT )−1∑N

i=1

∑T
t=1 ũ

4
it for k, l = 1, ..., K. As a consequence

of Theorem 2 and the preceding discussion, we obtain the following result.

Corollary 1 Under Assumptions 1′, 2 and the null hypothesis

LMadj
d→ χ2

K ,

as N →∞ and T is fixed. Furthermore,

LMadj − LM
p→ 0,

as N →∞, T →∞ jointly.

As mentioned above, once the regression disturbances are no longer normally distributed,

the fourth moments of the error distribution enter the variance of the score. It is insight-

ful to identify exactly which terms give rise to this new form of the covariance matrix.

According to Lemma 1, the contribution of the i-th panel unit to the k-th element of the

score vector is

ũ′iX
(k)
i X

(k)′
i ũi − σ̃2X

(k)′
i X

(k)
i =

(
T∑
t=1

x2
it,k

(
ũ2
it − σ̃2

))
+

T∑
t=1

∑
s 6=t

ũitũisxit,kxis,k. (1.21)
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The variance of the first term on the right hand side depends on the fourth moments of

the errors. Since the contribution of this term vanishes if T gets large, it can be dropped

without any severe effect on the power whenever T is sufficiently large. Hence, we consider

a modified score vector as presented in the following theorem.

Theorem 3 Under Assumptions 1′, 2 and the null hypothesis, the modified LM statistic

LM∗ = s̃∗ ′
(
Ṽ ∗
)−1

s̃∗
d→ χ2

K ,

as N →∞ and T fixed, where s̃∗ is K × 1 vector with contributions for panel unit i

s̃∗i,k =
1

σ̃4

T∑
t=2

t−1∑
s=1

ũitũisxit,kxis,k, (1.22)

for i = 1, ..., N , k = 1, ..., K, and the (k, l) element of Ṽ ∗ is given by

Ṽ ∗k,l =
1

σ̃4

N∑
i=1

T∑
t=2

t−1∑
s=1

xit,kxit,lxis,kxis,l, (1.23)

for k, l = 1, ..., K.

Remark 7 It is important to note that this version of the LM test is invalid if the panel

regression allows for individual-specific coefficients (cf. Remark 3). Consider for example

the regression

yit = αi + x′itβi + uit (1.24)

where αi are fixed individual effects and we are interested in testing H0 : var(βi) = 0.

The residuals are obtained as

ũit = yit − yi − (xit − xi)′β̃ = uit − ui − (xit − xi)′(β̃ − β).

It follows that in this case E(ũitũisxit,kxis,k) 6= 0 and, therefore, the modified scores (1.22)

result in a biased test. To sidestep this difficulty, orthogonal deviations (e.g. Arellano

and Bover (1995)) can be employed to eliminate the individual-specific constants yielding

y∗it = β′x∗it + u∗it t = 2, 3, . . . , T,

with y∗it =

√
t− 1

t

[
yit −

1

t− 1

(
t−1∑
s=1

yis

)]
,

where x∗it and u∗it are defined analogously. It is well known that if uit is i.i.d. so is u∗it. It

follows that the modified LM statistic can be constructed by using the OLS residuals ũ∗it
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instead of ũit. This approach can be generalized to arbitrary individual-specific regressors

xait. Let Xa
i = [xai1, . . . , x

a
iT ]′ denote the individual-specific T ×K1 regressor matrix in the

regression

yi = Xa
i β1i +Xb

i β2 +Xc
i β3i + ui, (1.25)

(see Remark 3). Furthermore, let

Ma
i = IT −Xa

i (Xa′
i X

a
i )−1Xa′

i ,

and let M̃a
i denote the (T −K1)×T matrix that results from eliminating the last K1 rows

from Ma
i such that (Ma

i M
a′
i ) is of full rank. The model (1.25) is transformed as

y∗i = Xb∗
i β2 +Xc∗

i β3i + u∗i , (1.26)

where y∗i = Ξa
i yi and Ξa

i = (M̃a
i M̃

a′
i )−1/2M̃a

i . It is not difficult to see that E(u∗iu
∗′
i ) =

σ2IT−K1 and, thus, the modified scores (1.22) can be constructed by using the residuals

of (1.26), where the time series dimension reduces to T − K1. Note that orthogonal

deviations result from letting Xa
i be a vector of ones.

To review the results of this section, the important new feature in the model without

assuming normality is that the fourth moments of the errors enter the variance of the

score. The information matrix of the original LM test derived under normality does not

incorporate higher order moments, but the test remains applicable as T →∞. To apply

the LM test in the original framework when T is fixed and errors are no longer normal we

can proceed in two ways. A direct adjustment of the information matrix to account for

higher order moments yields a valid test. Alternatively, we can adjust the score itself and

restrict attention to that part of the score that does not introduce higher order moments

into the variance. In the next section, we further pursue the second route of dealing

with non-normality and thereby robustify the test against heteroskedasticity and serial

correlation.

1.5.2 The regression-based LM statistic

In this section we offer a convenient way to compute the proposed LM statistic via a

simple artificial regression. Moreover, the regression-based form of the LM test is shown

to be robust against heteroskedastic errors. Following the decomposition of the score

contribution in (1.21) and the discussion thereafter, we construct the “Outer Product of

Gradients” (OPG) variant of the LM test based on the second term in (1.21). Rewriting
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the corresponding elements of the score contributions of panel unit i as

s̃∗i,k =
T∑
t=2

t−1∑
s=1

ũitũisxit,kxis,k, (1.27)

for k = 1, ..., K. Note that we dropped the factor 1/σ̃4 as this factor cancels out in the

final test statistic. This gives the usual LM-OPG variant

LMopg =

(
N∑
i=1

s̃∗i

)′( N∑
i=1

s̃∗i s̃
∗′
i

)−1( N∑
i=1

s̃∗i

)
, (1.28)

where s̃∗i =
[
s̃∗i,1, ..., s̃

∗
i,K

]′
. An asymptotically equivalent form of the LM-OPG statistic

can be formulated as a Wald-type test for the null hypothesis ϕ = 0 in the auxiliary

regression

ũit =
K∑
k=1

z̃it,kϕk + eit, for i = 1, . . . , N, t = 1, . . . , T (1.29)

where

z̃it,k = xit,k

t−1∑
s=1

ũisxis,k

for k = 1, ..., K. Therefore, with the Eicker-White heteroskedasticity-consistent variance

estimator, the regression based test statistic results as

LMreg =

(
N∑
i=1

T∑
t=2

ũitz̃it

)′( N∑
i=1

T∑
t=2

ũ2
itz̃itz̃

′
it

)−1( N∑
i=1

T∑
t=2

ũitz̃it

)
, (1.30)

It follows from the arguments similar as in Theorem 3 that Mreg test statistic is

asymptotically χ2 distributed but it turns out to be robust against heteroskedasticity:

Corollary 2 Under Assumption 1′ but allowing for heteroscedastic errors such that E[ε2it|X] =

σ2
it < C <∞, Assumption 2 and the null hypothesis

LMreg
d→ χ2

K , (1.31)

as N →∞ and T is fixed.

It is important to note that the LM-OPG variant cannot be applied to residuals from a

fixed effect regression, see Remark 7. Furthermore, the replacement of the residuals by

orthogonal forward deviation will not fix this problem since orthogonal forward deviations

are no longer serially uncorrelated if the errors are heteroskedastic. Therefore, a version

of the test is required that is robust against autocorrelated errors.
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1.5.3 The LM statistic under serially dependent errors

In this section we propose a variant of the LM test statistic that accommodates serially

correlated errors, that is, we relax Assumptions 1′ as follows:

Assumption 1′′ The T × 1 error vector εi is independently and identically distributed

with E(εi|X) = 0, E(εiε
′
i|X) = E(εiε

′
i) = Σ and E

[
|εit|4+δ|X

]
< C < ∞ for some δ > 0

and all i and t. The T × T matrix Σ is positive definite with typical element σts for

t, s = 1, . . . , T .

Note that Assumption 1′′ allows for heteroscedasticity and serial dependence across time,

however, it restricts the error vector εi to be iid across individuals.

Under this assumption the expectation of the score vector (1.22) is under the null

hypothesis

E[uituisxit,k, xis,k] = σtsE[xit,kxis,k].

We therefore suggest a modification for autocorrelated errors based on the adjusted K×1

score vector s̃∗∗ with typical element s̃∗∗k =
∑N

i=1 s̃
∗∗
i,k for k = 1, . . . , K and

s̃∗∗i,k =
T∑
t=2

t−1∑
s=1

(ũitũis − σ̃ts)xit,kxis,k , (1.32)

where σ̃ts = 1
N

∑N
i=1 ũitũis. The asymptotic properties of the LM statistic based on the

modified score vector are presented in

Theorem 4 Let

LMac = s̃∗∗ ′
(
Ṽ ∗∗
)−1

s̃∗∗,

where Ṽ ∗∗ is a K ×K matrix with typical element

Ṽ ∗∗k,l =
N∑
i=1

T∑
t=2

T∑
τ=2

t−1∑
s=1

t−1∑
q=1

δ̂tsτqxit,kxis,kxiτ,lxiq,l (1.33)

and δ̂tsτq =
1

N

(
N∑
j=1

ũjtũjsũjτ ũjq − σ̃tsσ̃τq

)
.

Under Assumptions 1′′, 2, the null hypothesis (1.1) and as N →∞ with T fixed the LMac

statistic has a χ2
K limiting distribution.

Note that this version of the test has a good size control irrespective of serial depen-

dence in errors. However, the test involves some power loss relative to the original test

statistics when errors are serially uncorrelated, which is not surprising given a more gen-

eral setup of this variant of the test. The respective asymptotic power results are analyzed

in the next section (see Remark 10). Section 1.7 elaborates in detail on the size-power

properties of the LMac in finite samples.
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1.6 Local Power

The aim of this section is twofold. First, we investigate the distributions of the LM-type

test under suitable sequences of local alternatives. Two cases are of interest, N → ∞
with T fixed and N, T →∞ jointly, which are presented in the respective theorems below.

Second, we adopt the results of PY to our model in order to compare the local asymptotic

power of the two tests. To formulate an appropriate sequence of local alternatives, we

specify the random coefficients in (1.8) in a setup in which T is fixed. The error term vi

is as in Assumption 1 with elements of Σv given by

σ2
v,k =

ck√
N
, (1.34)

where ck > 0 are fixed constants for k = 1, . . . , K. The asymptotic distribution of the

LM statistic results as follows.

Theorem 5 Under Assumptions 1, 2 and the sequence of local alternatives (1.34),

LM
d→ χ2

K (µ) ,

as N → ∞ and T fixed, with non-centrality parameter µ = c′Ψc, where c = (c1, . . . , cK)′

and Ψ is a K ×K matrix with (k, l) element

Ψk,l =
1

2σ4
plim
N→∞

 1

N

N∑
i=1

(
T∑
t=1

xit,kxit,l

)2

− 1

T

(
1

N

N∑
i=1

T∑
t=1

x2
it,k

)(
1

N

N∑
i=1

T∑
t=1

x2
it,l

) .
In order to relax the assumption of normally distributed errors we adopt Assumption 1′

for vi, where the sequence of local alternatives is now given by

σ2
v,k =

ck

T
√
N
, (1.35)

for k = 1, . . . , K. Note that according to Theorem 2 we require T →∞.

Theorem 6 Under Assumptions 1′, 2 ′, 3 and the sequence of alternatives (1.35),

LM
d→ χ2

K (µ) ,

as N →∞, T →∞, with non-centrality parameter µ = c′Ψc, where c = (c1, . . . , cK)′ and

Ψ is a K ×K matrix with (k, l) element

Ψk,l =
1

2σ4
plim
N,T→∞

1

N

N∑
i=1

(
1

T

T∑
t=1

xit,kxit,l

)2

.
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Remark 8 As in Section 1.5.1 above, when the normality assumption is relaxed, local

power can be studied for LM∗ under Assumptions 1′, 2 and 3 when T is fixed. The

specification of local alternatives as in Theorem 5 applies. The non-centrality parameter

of the limiting non-central χ2 distribution results as µ∗ = c′Ψ∗c with

Ψ∗k,l =
1

σ4
plim
N→∞

1

N

N∑
i=1

T∑
t=2

t−1∑
s=1

xit,kxit,lxis,kxis,l ,

for k, l = 1, ..., K.

Remark 9 Given the results for the modified statistic LM∗ in remark 8, and the fact that

s̃∗ =
∑N

i=1 s̃
∗
i =

(
Z̃ ′ũ∗

)
, we expect a similar result for the regression-based LM statistic

LMreg to hold. Recall that LM∗ uses N−1Ṽ ∗ as an estimator of the variance of s̃∗ (see

(1.23)), while LMreg employs
(
N−1

∑N
i=1

∑T
t=2 ũ

2
itz̃itz̃

′
it

)
. Under the null hypothesis, it is

not difficult to see that these two estimators are asymptotically equivalent. Under the

alternative, when studying the (k, l) element of the variance of LMreg, we obtain (see

appendix A.2 for details)

1

N

N∑
i=1

T∑
t=2

ũ2
itz̃it,kz̃it,l =

1

N

N∑
i=1

T∑
t=2

ε2itxit,kxit,l

(
t−1∑
s=1

εisxis,k

)(
t−1∑
s=1

εisxis,l

)

+
1

N

N∑
i=1

T∑
t=2

ε2itv
′
iB

X
it vi + op (1) , (1.36)

with the K × K matrix BX
it =

(
xit,k

∑t−1
s=1 xisxis,k

) (
xit,l

∑t−1
s=1 x

′
isxis,l

)
. The first term

on the right-hand side in (1.36) has the same probability limit as N−1Ṽ ∗k,l, the limiting

covariance matrix element Ψ∗k,l. In contrast to LM∗, however, the variance estimator of

the regression-based test involves additional quadratic forms such as v′iB
X
it vi, contributing

to the estimator. Since, in a setup with fixed T and the local alternatives σ2
v,k = ck√

N
,

1

N

N∑
i=1

T∑
t=2

ε2itv
′
iB

X
it vi = Op

(
N−1/2

)
,

the variance estimator remains consistent. In small samples, however, the additional

term results in a bias of the variance estimator and may deteriorate the power of the

regression-based test. See the appendix for details about the above result and the Monte

Carlo experiments in Section 1.7.

Remark 10 The arguments of Remark 8 can be used to derive the local power of the

LMac statistic that accounts for serial correlation in errors. The same specification of
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local alternatives applies. The non-centrality parameter of the limiting non-central χ2

distribution takes the quadratic form µ∗∗ = c′Ψ∗∗c with

Ψ∗∗k,l = plim
N→∞

1

N

N∑
i=1

T∑
t=2

t−1∑
s=1

T∑
τ=2

t−1∑
q=1

(uituisuiτuiq − σtsστq)xit,kxis,kxiτ,lxiq,l,

for k, l = 1, ..., K. In the absence of serial correlation it can be shown that the LMac test

involve a loss of power. To illustrate this fact assume for simplicity that K = 1 (single

regressor case). Further, the score vector in (1.32) can be equivalently written as

ŝ∗∗ =
N∑
i=1

T∑
t=2

t−1∑
s=1

(ũitũis − σ̃ts)xit,kxis,k =
N∑
i=1

T∑
t=2

t−1∑
s=1

ũitũis
(
xit,kxis,k − Cts

)
, (1.37)

where Cts = 1
N

∑N
i=1 xitxis. Thus, demeaning of ũitũis is equivalent with demeaning of

xit,kxis,k. In the case of no autocorrelation and (1.37) it follows that Ψ∗ −Ψ∗∗ is positive

semi-definite. Therefore, the modification (1.32) tends to reduce the power of the LMac

test when compared to LM∗.

We now proceed to examine the local power of the ∆ statistic of PY in model (1.7)

and (1.8) under the sequence of local alternatives (1.35). In our homoskedastic setup, the

dispersion statistic becomes

S̃ =
N∑
i=1

(
β̃i − β̃

)′(X ′iXi

σ̃2

)(
β̃i − β̃

)
,

with β̃ as the OLS estimator in (1.9) as above. Using this expression, the ∆̂ statistic is

computed as in (1.3). The next theorem presents the asymptotic distribution of the ∆̂

statistic under the local alternatives as specified above. This result follows directly from

Section 3.2 in PY.

Theorem 7 Under Assumptions 1′, 2 ′, 3 and the sequence of local alternatives (1.35)

∆̂
d→ N (λ, 1) ,

as N →∞, T →∞, provided
√
N/T → 0, where λ = Λ′c/

√
2K and Λ is a K × 1 vector

with typical element

Λk =
1

σ2
plim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

x2
it,k,

for k = 1, . . . , K.
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In Theorem 7, the mean of the limiting distribution of ∆̂ is slightly different from the

result in Section 3.2 in PY. Here, vi is random and independently distributed from the

regressors and, therefore, the second term of the respective expression in PY is zero.

Remark 11 Consider for simplicity a scalar regressor xit that is i.i.d. across i and t

with uniformly bounded fourth moments. Let E [xit] = 0 and E [x2
it] = σ2

i,x, that is, the

regressor is assumed to have a unit-specific variation which is constant over time for a

given unit. We obtain

E

( 1

T

T∑
t=1

x2
it

)2
 =

(
σ2
i,x

)2
+O

(
T−1

)
,

implying µ = c2/2σ4 limN→∞N
−1
∑N

i=1

(
σ2
i,x

)2
in Theorem 6. To gain further insight,

we think of
(
σ2
i,x

)2
as being randomly distributed in the cross-section such that the non-

centrality parameter results as

µ =
c2

2σ4
E
[(
σ2
i,x

)2
]

=
c2

2σ4

(
V ar

[
σ2
i,x

]
+
(
E
[
σ2
i,x

])2
)
. (1.38)

Similarly, under these assumptions, we find

λ =
c

σ2
√

2
E
[
σ2
i,x

]
. (1.39)

Comparing the mean of the normal distribution of the ∆ statistic in (1.39) with the non-

centrality parameter of the asymptotic χ2
1 distribution of the LM statistic in (1.38), we

see that the main difference between the two tests is that the variance of σ2
i,x contributes

to the power of the LM statistic but not to the power of the ∆ test. If V ar
[
σ2
i,x

]
= 0 such

that σ2
i,x = σ2

x for all i, the LM test and the ∆ test have the same asymptotic power in

this example. If, however, V ar
[
σ2
i,x

]
> 0, so that there is variation in the variance of the

regressor in the cross-section, the LM test has larger asymptotic power. To illustrate this

point, we examine the local asymptotic power functions of the LM and the ∆ test for two

cases, using the expressions in (1.38) and (1.39). Figure 1.1 (see appendix C) shows the

local asymptotic power of the LM (solid line) and the ∆ test (dashed line) as a function

of c when σ2
i,x has a χ2

1 distribution. Figure 1.2 repeats this exercise for σ2
i,x drawn from a

χ2
2 distribution. In both cases, the LM test has larger asymptotic power. The power gain

is substantial for the first case, but diminishes for the second. This pattern is expected,

as the variance of σ2
i,x contributes relatively more to the non-centrality parameter in the

first specification.

This discussion exemplifies the difference between the LM-type tests and the ∆ statistic

in terms of the local asymptotic power in a simplified framework. The analysis suggests
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that the LM-type tests are particularly powerful in an empirically relevant setting in

which there is non-negligible variation in the variances of the regressors between panel

units. Having studied the large samples properties of the LM tests under the null and

the alternative hypothesis in our model, we now evaluate the finite-sample size and power

properties of the LM-type tests in a Monte Carlo experiment.

1.7 Monte Carlo Experiments

1.7.1 Design

After deriving LM-type tests in the random coefficient model, we now turn to study the

small-sample properties of the proposed test and it variants. The aim of this section is to

evaluate the performance of the tests in terms of their empirical size and power in several

different setups, relating to the theoretical discussion of Sections 1.4 - 1.6. We consider the

following test statistics: the original LM statistic presented in Theorem 1, the adjusted

LM statistic that adjusts the information matrix to account for fourth moments of the

error distribution (see Corollary 1), the score-modified LM statistics (see Theorem 3 and

Theorem 4) and the regression-based, heteroskedasticity-robust LM statistic (see Section

1.5.2). As a benchmark, we consider PY’s statistic ∆̃adj given in (1.4). Following the notes

in Table 1 in PY, the test using ∆̃adj is carried out as a two-sided test. In addition, the

CLM test in (1.6) is included, which is also a two-sided test. We consider the following

data-generating process with normally distributed errors as the standard design:

yit = αi + x′itβi + εit,

εit
iid∼ N (0, 1) , (1.40)

αi
iid∼ N (0, 0.25) ,

xit,k = αi + ϑxit,k, k = 1, 2, 3,

ϑxit,k
iid∼ N

(
0, σ2

ix,k

)
,

βi
iid∼ N3 (ι3,Σv) ,

under the null hypothesis: Σv = 0 (1.41)

under the alternative: Σv =

0.03 0 0

0 0.02 0

0 0 0.01

 , (1.42)

where i = 1, 2, . . . , N , t = 1, 2, . . . , T . Hence, to simulate a model under the null the slope

vector βi is generated as a 3 × 1 vector of ones ι3 for all i. As discussed in Section 1.6

the variances of the regressors play an important role. In our benchmark specification we

29



generate the variances as

σ2
ix,k = 0.25 + ηi,k

ηi,k
iid∼ χ2

1, (1.43)

The choice of the χ2 distribution for σ2
ix,k is made analogous to the Monte Carlo experiment

in PY. We then consider variations of this specification below. All results are based on

5,000 Monte Carlo replications. We choose

N ∈ {10, 20, 30, 50, 100, 200} ,

T ∈ {10, 20, 30} ,

as we would like to study the small sample properties of the test procedures when the time

dimension is small. In our first set of Monte Carlo experiments the errors are normally

distributed; therefore we focus on the standard LM test. We also include their respective

heteroskedasticity-robust regression variants for this exercise.

1.7.2 Normally distributed errors

Panel A of Table 1.1 (see Appendix B) shows the rejection frequencies when the null

hypothesis is true. The ∆̃adj test has rejection frequencies close to the nominal size of 5%

for all combinations of N and T , while the CLM test rejects the null hypothesis too often,

in particular for small N . Deviations from the nominal size for the the standard LM test

and the regression-based test are small and disappear as N increases, as expected from

Theorem 1. Panel B of Table 1.1 shows the corresponding rejections frequencies under the

alternative hypothesis. The LM test outperforms the ∆̃adj and the CLM test in general.

This observation holds in particular for T = 10 where the power gain is considerable. The

LMreg variant, although as powerful as the ∆̃adj test for T = 10, suffers from a power loss

relative to the standard LM test. This power loss may be due to the small sample bias of

the variance estimator, see Remark 9.

Following Remark 7 the variants of the LM tests are computed as follows. First, the

individual-specifc fixed effects αi are eliminated by transforming the data using orthogonal

forward deviations (see Arellano and Bover (1995)). The LM statistics are then computed

using the transformed data. The results presented in Panel A of Table 1.2 indicate that

by employing forward orthogonalization all variants of the LM test have size reasonably

close to the nominal level. By comparing panel B of Table 1.1 and the rejection rates

under the alternative in panel B of Table 1.2 we see that the power is very similar in both

setups confirming usefulness of the forward orthogonalization procedure for the LM tests.
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1.7.3 Non-normal errors

We now investigate the LM test when the errors are no longer normally distributed,

thereby building on the results of Section 1.5.1. The errors in (1.40) are generated from

a t-distribution with 5 degrees of freedom, scaled to have unit variance. All other speci-

fications of the standard design remain unchanged. In addition to the statistics already

considered, we now include the adjusted LM statistic (see corollary 1) and the score-

modified statistic (see Theorem 3). Panel A in Table 1.3 reports the rejection frequencies

under the null hypothesis in this case. We notice that the LM test has substantial size

distortions when T is fixed and N increases, which is expected from Theorem 2. However,

the adjusted LM statistic LMadj and the modified score statistic LM∗ are both successful

in controlling the type-I error.

Panel B of Table 1.3 shows rejection frequencies under the alternative hypothesis.

The power gain of the LM test relative to the ∆̃adj test is noticeable when T = 10 or

T = 20. We found similar results when the errors are χ2 distributed with two degrees of

freedom, centered and standardized to have mean zero and variance equal to one. Given

the similarity of the results for t and χ2 distributed errors, we do not present the latter

results.

1.7.4 Serially correlated errors

To study the impact of serially correlated errors on the test statistics we adjust the DGP

as follows:

yit = x′itβi + εit,

εit = ρεit−1 +
(
1− ρ2

)1/2
eit,

for i = 1, 2, . . . , N , t = 1, 2, . . . , T , where eit
iid∼ N (0, 1). Under the null hypothesis βi = 1

for all i while under the alternative βi is generated as in (1.42). The regressors, xit,k,

k = 1, 2, 3 are generated as

xit,k = φi,kxit−1,k +
(
1− φ2

i,k

)1/2
ϑxit,k,

φi,k
iid∼ U [0.05, 0.95],

ϑxit,k
iid∼ N

(
0, σ2

ix,k

)
,

where σ2
ix,k = 0.25 + ηi,k with ηi,k

iid∼ χ2
1. Parameters φi,k and σix,k are fixed across

replications.

Results of this simulation experiment are reported in Table 1.4. Panel A and B show

the rejection frequencies under the null hypothesis in case of “small” serial dependence

(i.e., ρ = 0.2, Panel A) and “moderate” dependence (i.e., ρ = 0.5, Panel B). For all LM

31



based test statistics, except the LMac test, we observe substantial size deviations from

the nominal level. However, the LMac test is successful in controlling the type-I error.

Further, size properties of PY test are also significantly affected by autocorrelated errors.

Note that this fact is already documented and studied in Blomquist and Westerlund

(2013).

Panel C of Table 1.4 reports power properties of the test under no serial correlation

(i.e., ρ = 0), building on the discussion in Remark 10. We observe that the LMac test

involve a 5− 10% power loss compared to the LM∗ test. This relative power loss dies out

if T increases.

1.8 Concluding remarks

In this paper we examine the problem of testing slope homogeneity in a panel data model.

We develop testing procedures using the LM principle. Several variants are considered

that robustify the original LM test with respect to non-normality, heteroscedasticity and

serially correlated errors. By studying the local power we identify cases where the LM-

type tests are particularly powerful relative to existing tests. In sum, our Monte Carlo

experiments suggest that the LM test are powerful testing procedures to detect slope

homogeneity in short panels in which the time dimension is small relative to the cross-

section dimension. The LM approach suggested in this paper may be extended in future

research by allowing for dynamic specifications with lagged dependent variables and cross

sectionally or serially correlated errors.
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A Appendix: Proofs

To economize on notation we use
∑
i

and
∑
t

instead of full expressions
N∑
i=1

and
T∑
t=1

through-

out this appendix.

A.1 Preliminary results

We first present an important result concerning the asymptotic effect of the estimation
error β̃ − β on the test statistics. Define

A
(k)
i = X

(k)
i X

(k)′
i −

(
1

NT

∑
i

X
(k)′
i X

(k)
i

)
IT .

Lemma A.1 Let R
(k)
XAX =

∑
i

X ′iA
(k)
i Xi and R

(k)
XAu =

∑
i

X ′iA
(k)
i ui for k = 1, ..., K. Fur-

thermore let

R
(k)
N =

(
σ̃4

σ4

)
1

2σ2

((
β̃ − β

)′
R

(k)
XAX

(
β̃ − β

)
− 2

(
β̃ − β

)′
R

(k)
XAu

)
,

for k = 1, ..., K. Under Assumptions 1, 2 and the null hypothesis the following properties
hold if T is fixed:

(i) R
(k)
XAX = Op (N),

(ii) R
(k)
XAu = Op

(
N1/2

)
,

(iii) R
(k)
N = Op (1),

for k = 1, ..., K.

Proof. (i) Using the definition of A
(j)
i yields

R
(k)
XAX =

∑
i

X ′i

(
X

(k)
i X

(k)′
i

)
Xi −

1

NT

(∑
i

∑
t

x2
it,k

)(∑
i

X ′iXi

)
.

The first term is a K ×K matrix with typical (l,m) element

∑
i

(∑
t

xit,lxit,k

)(∑
t

xit,mxit,k

)
= Op (N) ,

as a consequence of Assumption 2, while
∑

i

∑
t x

2
it,k/NT = Op (1) and

∑
iX
′
iXi = Op (N).

(ii) Recall that under the null hypothesis, ui = εi. Thus

R
(k)
XAu =

∑
i

(
X ′iX

(k)
i

)(
X

(k)′
i ui

)
− 1

NT

(∑
i

∑
t

x2
it,k

)(∑
i

X ′iui

)
.
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The first and the second term are Op

(
N1/2

)
by a the central limit theorem (CLT) for

independent random variables and Assumption 2. (iii) Combining (i) and (ii) together

with the fact that
√
N
(
β̃ − β

)
= Op(1) yields the result.

Lemma A.2 Under Assumptions 1′, 2 ′ and the null hypothesis the following properties
hold for N →∞ and T →∞:

(i) R
(k)
XAX = Op (NT 2),

(ii) R
(k)
XAu = Op

(
N1/2T 3/2

)
,

(iii) R
(k)
NT = Op (T ) , which is defined as R

(k)
N in Lemma A.1,

for k = 1, ..., K.

Proof. Following the proof of Lemma A.1 the element of the first term of R
(k)
XAX is

Op (NT 2), whereas the second term is Op (NT ) by Assumption 2 ′ which yields state-

ment (i). Notice in (ii) R
(k)
XAu has two terms as in Lemma A.1, where the first one has

zero mean and variance of order T 3. Therefore by Lemma 1 in Baltagi et al. (2011) we

have that X ′iX
(j)
i X

(j)′
i ui = Op(T

3/2) and by Lemma 2 in PY that
∑
i

(
X ′iX

(j)
i

)(
X

(j)′
i ui

)
=

Op

(
N1/2T 3/2

)
and

(∑
i

X ′iui

)
= Op

(
N1/2T 1/2

)
. These results and the fact that

√
NT

(
β̃ − β

)
=

Op (1) imply (iii).

A.2 Proofs of the main results

Proof of Lemma 1

We use the following rules for matrix differentiations:

∂`

∂θk
= −1

2
tr

[
Ω−1 ∂Ω

∂θk

]
+

1

2

[
u′Ω−1 ∂Ω

∂θk
Ω−1u

]
, (A.1)

−E
[

∂`

∂θk∂θl

]
=

1

2
tr

[
Ω−1

(
∂Ω

∂θk

)
Ω−1

(
∂Ω

∂θl

)]
, (A.2)

for k, l = 1, 2, . . . , K + 1, see, e.g., Harville (1977) and Wand (2002). First,

XiΣvX
′
i =

∑
k

σ2
v,kX

(k)
i X

(k)′
i ,

with X
(k)
i denoting the k-th column vector of Xi. Hence X1ΣvX

′
1 0

. . .

0 XNΣvX
′
N

 =
∑
k

σ2
v,kAk,
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with the NT ×NT matrix ,

Ak =

 X
(k)
1 X

(k)′
1 0

. . .

0 X
(k)
N X

(k)′
N

 ,
for k = 1, . . . , K, and X

(k)
i denotes the k-th column of the T ×K matrix Xi. Thus,

Ω =
∑
k

σ2
v,kAk + σ2INT

and
∂Ω

∂θk
=

{
Ak, for k = 1, 2, . . . , K,

INT , for k = K + 1.

Under the null hypothesis we have Ω = σ2INT . Using (A.1) we obtain

∂`

∂θk

∣∣∣∣
H0

=

{
− 1

2σ̃2 tr [Ak] + 1
2σ̃4 ũ

′Akũ, for k = 1, 2, . . . , K

0, for k = K + 1,

where

σ̃2 =
1

NT
ũ′ũ,

ũ =
(
INT −X (X ′X)

−1
X ′
)
y.

The representation of the score vector follows from

tr [Ak] =
∑
i

∑
t

X2
it,k = X(k)′X(k),

where X(k) denotes the k-th column of the NT ×K matrix X. Similarly, (A.2) yields

−E
[

∂`

∂θk∂θl

]∣∣∣∣
H0

=


1

2σ4 tr [AkAl] , for k, l = 1, 2, . . . , K,
1

2σ4X
(k)′X(k), for k = 1, 2, . . . , K, and l = K + 1,

NT
2σ4 , for k = l = K + 1,

Using the fact that Ak and Al are block-diagonal,

tr [AkAl] =
∑
i

tr
[(
X

(k)
i X

(k)′
i

)(
X

(l)
i X

(l)′
i

)]
=
∑
i

(
X

(k)′
i X

(l)
i

)2

,

where X
(k)
i denotes the i-th column of Xi, which yields the form of the information matrix

presented in the lemma.

Proof of Theorem 1

35



Recall that

A
(k)
i = X

(k)
i X

(k)′
i −

(
1

NT

∑
i

X
(k)′
i X

(k)
i

)
IT ,

and rewrite the elements of the scores as

s̃k =

(
σ̃4

σ4

)
1

2σ4

∑
i

ũ′iA
(k)
i ũi,

for k = 1, ..., K. Since ũi = ui −Xi(β̃ − β) we have

1√
N
s̃k =

1√
N

(
σ4

σ̃4

)
1

2σ4

∑
i

u′iA
(k)
i ui +

1√
N
R

(k)
N ,

where R
(k)
N = Op (1) from Lemma A.1. Since

∑
i tr
[
A

(k)
i

]
= 0 it follows that E(u′iA

(k)
i ui) =

0 and, therefore,

lim
N→∞

E
(

1√
N
s̃

)
= 0.

The covariances are obtained as

Cov
(
u′iA

(k)
i ui, u

′
iA

(l)
i ui

∣∣ X) = 2σ4tr
[
A

(k)
i A

(l)
i

]
= 2σ4

(
X

(k)′
i X

(l)
i

)2

−

(
1

NT

∑
i

X
(k)′
i X

(k)
i

)(
X

(l)′
i X

(l)
i

)
−

(
1

NT

∑
i

X
(l)′
i X

(l)
i

)(
X

(k)′

i X
(k)
i

)
+ T

(
1

NT

∑
i

X
(k)′
i X

(k)
i

)(
1

NT

∑
i

X
(l)′
i X

(l)
i

)
,

and since u′iA
(k)
i ui is independent of u′jA

(l)
i uj for all i 6= j conditional on X,(

1

2σ4

)2

Cov

(∑
i

u′iA
(k)
i ui,

∑
i

u′iA
(l)
i ui

∣∣∣∣ X
)

=
1

2σ4

(∑
i

(
X

(k)′
i X

(l)
i

)2

− 1

NT

(∑
i

X(k)′X(k)

)(∑
i

X
(l)′
i X

(l)
i

))
= Vk,l.

The Liapounov condition in the central limit theorem for independent random variables
(see White (2001), Theorem 5.10) is satisfied by Assumption 2 and therefore(

1

N
Ṽ

)−1/2(
1√
N
s̃

)
d→ N (0, IK) ,

where Ṽ replaces σ4 in V by σ̃4. By the formula for the partitioned inverse{
I(σ̃2)−1

}
1:K,1:K

= Ṽ −1,
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where {·}1:K,1:K denotes the upper-left K ×K block of the matrix, it follows finally that

S̃ ′I(σ̃2)−1S̃ = s̃′Ṽ −1s̃
d→ χ2

K .

Proof of Theorem 2

The proof proceeds in three steps: (i) we derive the covariance matrix of the score vector,
(ii) we establish the asymptotic normality of the score vector and (iii) we use these results
to establish the asymptotic distribution of the LM statistic.

(i) Define the K × 1 vector s = [s1, ..., sK ]′ with typical element

sk =
1

2σ4

∑
i

u′iA
(k)
i ui =

1

2σ4

∑
i

si,k, (A.3)

where si,k = u′iA
(k)
i ui and 1 ≤ k ≤ K. Using standard results for quadratic forms (see

e.g., Ullah (2004), appendix A.5),

E
[
si,k
∣∣X] = σ2tr

[
A

(k)
i

]
E
[
si,ksi,l

∣∣X] = 2σ4tr
[
A

(k)
i A

(l)
i

]
+ σ4tr

[
A

(k)
i

]
tr
[
A

(l)
i

]
+
(
µ(4)
u − 3σ4

)
a

(k)′
i a

(l)
i ,

where a
(k)
i is a vector consisting of the main diagonal elements of the matrix A

(k)
i and µ

(4)
u

denotes the fourth moment of uit. Since

E
[
si,k
∣∣X]E [si,l∣∣X] = σ4tr

[
A

(k)
i

]
tr
[
A

(l)
i

]
,

we have
Cov

(
si,k, si,l

∣∣X) = 2σ4tr
[
A

(k)
i A

(l)
i

]
+
(
µ(4)
u − 3σ4

)
a

(k)′

i a
(l)
i . (A.4)

Due to the independence of u′iA
(k)
i ui and u′jA

(l)
j uj for i 6= j, it follows that

Cov

(∑
i

si,k,
∑
i

si,l

∣∣∣∣X
)

= 2σ4
∑
i

tr
[
A

(k)
i A

(l)
i

]
+
(
µ(4)
u − 3σ4

)∑
i

a
(k)′
i a

(l)
i .

Let VNT denote the covariance matrix of s. Inserting the expression for tr
[
A

(k)
i A

(l)
i

]
, we

determine the (k, l) element of VNT as

Vk,l =
1

2σ4

∑
i

(∑
t

xit,kxit,l

)2

− 1

NT

(∑
i

∑
t

x2
it,k

)(∑
i

∑
t

x2
it,k

)
+

(
µ

(4)
u − 3σ4

(2σ4)2

)∑
i

∑
t

(
x2
it,k −

1

NT

∑
i

∑
t

x2
it,k

)(
x2
it,l −

1

NT

∑
i

∑
t

x2
it,l

)
= V1,k,l + V2,k,l. (A.5)

(ii) To verify that a central limit theorem applies to s, let λ ∈ Rk, ||λ|| = 1 and Zi,T =
1
T
λ′si, where si is a K × 1 vector with elements si,k for 1 ≤ k ≤ K. Further, E [Zi,T ] = 0
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and E
[
Z2
i,T

]
= 1

T 2λ
′E [Vi,T ]λ, where Vi,T is a K×K matrix with the typical (k, l) element

defined in (A.4) for 1 ≤ k, l ≤ K. From the Cramer-Wold device we conclude that it is
sufficient to show that

1√
N

∑
i

Zi,T
d−→ N (0,V) , (A.6)

where V ≡ lim
N,T→∞

1
NT 2

∑
i λ
′E [Vi,T ]λ. Assumption 2 ′ and (A.4) ensure that V exists and

is positive definite.
The asymptotic normality result (A.6) follows from the central limit theorem for the

double indexed process (see e.g., Phillips and Moon (1999), Theorem 2) if the following
condition holds ∑

i

E
[
Z2
i,T

VNT
1

(∣∣∣∣Z2
i,T

VNT

∣∣∣∣ > ε

)]
−→0 for all ε > 0, (A.7)

where VNT = 1
T 2

∑
i λ
′E [Vi,T ]λ. In turn the Lindeberg condition (A.7) holds provided

that

sup
i,T

E ‖Zi,T‖3 ≤ sup
i,T

E
∥∥∥si
T

∥∥∥3

<∞. (A.8)

To study wether si/T is uniformly L3 bounded for all i and T it suffices to consider si/T
elementwise. Furthermore, each element of si/T can be written in terms of quadratic
forms i.e.,

1

T
si,k =

1

T

(
u′iBi,kui − E

[
(u′iBi,kui)

∣∣∣∣X]) ,
where Bi,k = X

(k)
i X

(k)′
i for 1 ≤ k ≤ K and by the triangle inequality

E
∣∣∣∣ 1

T
si,k

∣∣∣∣3 =
1

T 3
E
∣∣∣∣u′iBi,kui − E

[
(u′iBi,kui)

∣∣∣∣X]∣∣∣∣3 ≤ 1

T 3
E |u′iBi,kui|3

+
3

T 3
E |u′iBi,kui|2

∣∣∣∣E [(u′iBi,kui)

∣∣∣∣X]∣∣∣∣+
3

T 3
E |u′iBi,kui|

∣∣∣∣E [(u′iBi,kui)

∣∣∣∣X]∣∣∣∣2
+

1

T 3

∣∣∣∣E [(u′iBi,kui)

∣∣∣∣X]∣∣∣∣3 . (A.9)

For the first term on the r.h.s of (A.9) we make use of a formula for the third moment
of a quadratic form (see e.g., Wiens (1992) or Ullah (2004), appendix A.5), the law of
iterated expectations and uniform bounds E [|uit|6|X] < C < ∞ and E|xit,k|6 < C < ∞
given in Assumptions 1′ and 2 ′, i.e.,

1

T 3
E |u′iBi,kui|3 =

1

T 3
E
[
E
[
|u′iBi,kui|3

∣∣∣∣X]]
=

1

T 3
E

[
E

[∣∣∣∣∣∑
t1

∑
t2

∑
t3

u2
it1
u2
it2
u2
it3
x2
it1,k

x2
it2,k

x2
it3,k

∣∣∣∣∣
∣∣∣∣X
]]

+O
(
T−1

)
. (A.10)

Further, from Assumptions 1′ we have E
[∣∣u2

it1
u2
it2
u2
it3

∣∣∣∣∣∣X] < C < ∞ and from Assump-

tions 2 ′ the term E
[∣∣x2

it1,k
x2
it2,k

x2
it3,k

∣∣] is uniformly bounded for all i and T . Then it
follows from triangle inequality that the first term on the r.h.s. of (A.10) is uniformly
bounded. The same reasoning applies to the rest of the terms in (A.9) to show their
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uniform boundedness. This concludes the proof of (A.8) and the asymptotic normality of
the score vector s.

(iii) Rewrite the first K elements of the score as

s̃ =

(
σ̃4

σ4

)
s+RNT ,

where RNT is given in Lemma A.2 and s has typical element as defined in (A.3). By (ii),

s′ (VNT )−1 s
d→ χ2

K , (A.11)

as N → ∞, T → ∞, where VNT has (k, l) element Vk,l as in (A.5). Under Assumptions
1′ and 2 ′

V1 = Op

(
NT 2

)
,

V2 = Op (NT ) ,

where V1 and V2 are specified elementwise in (A.5). Given the expression for Ṽ in Theorem
1,

Ṽ

NT 2
− V1

NT 2

p→ 0

and hence
s′Ṽ −1s− s′ (VNT )−1 s

p→ 0 (A.12)

as N →∞, T →∞. The LM statistic can be expanded as

LM = s̃ ′Ṽ −1s̃

=

((
σ̃4

σ4

)
s+RNT

)′
Ṽ −1

((
σ̃4

σ4

)
s+RNT

)
=

(
σ̃4

σ4

)(
s′Ṽ −1s

)
+Op

(
N−1/2

)
. (A.13)

where the last line follows from Lemma A.2. The theorem follows by combining (A.11),
(A.12) and (A.13).

Proof of Corollary 1

The result follows immediately from the proof of Theorem 2 and the fact that µ̃
(4)
u =

(NT )−1∑
i

∑
t

ũit is a consistent estimator of µ
(4)
u .

Proof of Theorem 3

Using similar arguments as in the proof of Theorem 1,

1√
N
s̃∗ =

1√
N

(
σ4

σ̃4

)


1
σ4

∑
i

∑
t

t−1∑
s=1

xit,1uitxis,1uis

...

1
σ4

∑
i

∑
t

t−1∑
s=1

xit,Kuitxis,Kuis

+ op(1). (A.14)
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Let u∗it = uit/σ and z∗itk = xit,ku
∗
it. Clearly, E

[∑
t

∑t−1
s=1 z

∗
itkz

∗
isk

]
= 0. Since conditional on

X,
∑

t

∑t−1
s=1 z

∗
it,kz

∗
is,k and

∑
t

∑t−1
s=1 z

∗
jtlz
∗
jsl are independent for i 6= j, the covariances for

two elements k and l of the vector (A.14) are

E
[
s∗ks
∗
l

∣∣∣ X] =
1

σ4

∑
i

E

[(
T∑
t=2

t−1∑
s=1

z∗itkz
∗
isk

)(
T∑
t=2

t−1∑
s=1

z∗itlz
∗
isl

)∣∣∣∣∣X
]

=
1

σ4

∑
i=1

(
T∑
t=2

xit,kxit,l

)(
t−1∑
s=1

xis,kxis,l

)
= V ∗k,l.

since all cross terms have zero expectation and E
[
(u∗it)

2] = 1. The central limit theorem
for independent random variables and Slutsky’s theorem imply(

1

N
V ∗
)−1/2(

1√
N
s∗
)

d→ N (0, IK)

and the result follows.

Proof of Corollary 2

Using the arguments in Theorem 1 and 3 (under Assumption 1′, 2 and allowing for
E[ε2it|X] = σ2

it), LMreg is asymptotically χ2
K if the Liapounov condition is satisfied and the

asymptotic covariance matrix of the score vector is equal to the limit of
∑
i

∑
t

ũ2
itz̃it,kz̃it,l

as N →∞ and T is fixed.
Regarding the Liapounov condition it suffices to show that E

∣∣s∗i,k∣∣2+δ
< C < ∞ for

k = 1, ..., K. By Minkowski inequality,

E
∣∣s∗i,k∣∣2+δ ≤

(∑
t

t−1∑
s=1

(
E |uituisxit,kxis,k|2+δ

)2+δ
) 1

2+δ

.

Further by the Cauchy-Schwartz inequality, the law of iterated expectations, Assumptions
1′ and 2,

E |xit,1uitxis,1uis|2+δ ≤ E

[√
E
[
|u2
itu

2
is|

2+δ |X
]
|xit,1xis,1|2+δ

]

= E

[√
E
[
|uit|4+δ

]
E
[
|uis|4+δ |X

]
|xit,1xis,1|2+δ

]
< C <∞.

Hence the Liapounov condition holds.
Regarding the (k, l) element of the covariance matrix of s̃∗, note that

∑
i

E

[(∑
t

xit,kuit

(
t−1∑
s=1

xis,kuis

))(∑
t

xit,luit

(
t−1∑
s=1

xis,luis

))∣∣∣∣∣X
]

=
∑
i

∑
t

t−1∑
s=1

σ2
itσ

2
isxit,kxit,lxis,kxis,l.
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Next let zit,k = xit,k
∑t−1

s=1 uisxis,k and notice that

E

[∑
i

∑
t

u2
itzit,kz

′
it,l

∣∣∣∣∣X
]

=
∑
i

∑
t

t−1∑
s=1

σ2
itσ

2
isxit,kxit,lxis,kxis,l.

Furthermore

1

N

∑
i

∑
t

ũ2
itz̃it,kz̃it,l −

1

N

∑
i

∑
t

u2
itzit,kzit,l

p→ 0,

and result (1.31) follows.

Proof of Theorem 4

Consider the normalized scores

1√
N
s̃∗∗ =

1√
N
s∗∗ + op(1)

where the k-element of the vector s∗∗ is given by

s∗∗k =
N∑
i=1

T∑
t=2

t−1∑
s=1

(uituis − σts)xit,kxis,k

By construction E [s∗∗k ] = 0 for k = 1, . . . , K under the null hypothesis. Same arguments
as for result (1.31) apply to show the Liapounov condition and make use of the central
limit theorem for independent and heterogeneously random variables . It remains to show
that the (k, l) element of the covariance matrix of s∗∗ takes form (1.33). Since conditional
on X , contributions s∗∗i,k and s∗∗j,k are independent for i 6= j, the covariances for two
elements k and l of the vector s∗∗ normalized with N are

E
[
s∗∗k s

∗∗
l

∣∣∣ X] =

=
∑
i

E

[(
T∑
t=2

t−1∑
s=1

(uituis − σts)xit,kxis,k

)(
T∑
τ=2

t−1∑
q=1

(uiτuiq − στq)xiτ,lxiq,l

)∣∣∣∣∣X
]

=
∑
i

T∑
t=2

t−1∑
s=1

xit,kxis,k

(
T∑
τ=2

t−1∑
q=1

E [(uituis − σts) (uiτuiq − στq) |X]xiτ,lxiq,l

)
,

Further,
E [(uituis − σts) (uiτuiq − στq) |X] = E [uituisuiτuiq|X]− σtsστq,

and the (k, l) element can be written as

E
[
s∗∗k s

∗∗
l

∣∣∣ X] =
N∑
i=1

T∑
t=2

t−1∑
s=1

xit,kxis,k

(
T∑
τ=2

t−1∑
q=1

δtsτqxiτ,lxiq,l

)

=
N∑
i=1

T∑
t=2

t−1∑
s=1

T∑
τ=2

t−1∑
q=1

δtsτqxit,kxis,kxiτ,lxiq,l,
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where δtsτq = E[ujtujsujτujq|X]− σtsστq. Substituting δtsτq by an appropriate consistent

estimator δ̂tsτq = 1/N
(∑N

j=1 ũjtũjsũjτ ũjq − σ̃tsσ̃τq
)

yields the limiting distribution of the

modified test statistic.

Proof of Theorem 5

As in Honda (1985) the proof of the theorem proceeds in three steps: (i) first we show
that σ̃2 remains consistent under the local alternative; (ii) second, we incorporate the
local alternative into the score vector and (iii) establish the asymptotic distribution of
the LM statistic. (i) Note first that with MX = INT −X (X ′X)−1X ′

ũ = MXu = MX (DXv + ε) ,

where

DX =


X1 0

X2

. . .

0 XN

 .
Hence,

ũ′ũ

NT
=

1

NT
(ε′ε− ε′PXε+ v′D′XMXDXv + v′D′XMXε+ v′MXDXε) .

Using Assumptions 1′, 2 and 3, it is straightforward to show that

1

N
ε′X (X ′X)

−1
X ′ε = op (1) ,

1

N
v′D′XMXDXv = op (1) ,

1

N
v′D′XMXε = op (1) .

and, thus, σ̃2 = σ2 + op (1) .

(ii) Since ui = Xivi + εi and

ũi = Xivi + εi −Xi

(
β̃ − β

)
,

we obtain

1√
N
s̃k =

1√
N

(
σ4

σ̃4

)
1

2σ4

∑
i

ε′iA
(k)
i εi

+
1√
N

(
σ4

σ̃4

)
1

2σ4

∑
i

v′i

(
X ′iA

(k)
i Xi

)
vi + op(1), (A.15)

for k = 1, ..., K, where the order of the remainder term follows by similar arguments as
in lemma A.1.

(iii) Using the same arguments as in the proof of Theorem 1, the first term of s̃/
√
N in
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(A.15) is asymptotically normally distributed. Regarding the second term

1√
N

∑
i

v′i

(
X ′iA

(k)
i Xi

)
vi =

1

N

∑
i

(
N1/4vi

)′ (
X ′iA

(k)
i Xi

) (
N1/4vi

)
,

and by standard results for quadratic forms,

E
[(
N1/4vi

)′ (
XiA

(k)
i Xi

) (
N1/4vi

)∣∣∣X] = tr
[(
XiA

(k)
i Xi

)
Dc

]
.

with Dc = diag(c1, . . . , cK). Thus by the law of large numbers for sums of independent
random variables,
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Define the K × 1 vector ψ elementwise by

ψk ≡
K∑
l=1

cl plim
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 1
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By Slutsky’s theorem theorem we obtain(

1

N
V

)−1/2(
1√
N
s̃

)
d→ N (ψ, IK) ,

and the theorem follows by the definition of the non-central χ2 distributed random variable
with ψ = Ψc and c = (c1, . . . , cK)′.

Proof of Theorem 6

The proof is analogous to the proof of Theorem 5. To show that σ̃2 remains consistent
under the sequence of alternatives we note that

ε′X (X ′X)
−1
X ′ε = Op (1) ,

v′D′XMXDXv = Op

(
N1/2T

)
,

v′D′XMXε = Op

(
NT 1/2

)
+Op

(
T 1/2

)
.

Using the same arguments as in the proof of Theorem 2, s̃/(T
√
N) has a limiting normal

distribution with nonzero mean which is determined by applying the law of large numbers
to the second term in (A.15) with proper normalization.

Proof of Theorem 7 With the Swamy statistic as described in the text, the proof follows

the steps outlined in Appendix A.6 in PY.

43



Details for Remark 9

We study the (k, l) element of
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∑T
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2
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ũ2
it = (εit + x′itvi)

2
+
(
β̃ − β

)′
xitx

′
it

(
β̃ − β

)
− 2 (εit + x′itvi)x

′
it

(
β̃ − β

)
, (A.16)

and
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(A.17)

First, from the first term on the right hand sides of (A.16) and (A.17), we obtain

1
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t=2

ε2itxit,kxit,l

(
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s=1
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)
.

Notice that this term has the same probability limit as Ṽ ∗k,l/N , which is equal to Ψ∗k,l.
Next, from the first term on the right-hand side in (A.16) and the second term on the
right-hand side in (A.17),
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Since εit and vi are independent conditional on X,
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Using the properties of εit, vi and the fact that

(
β̃ − β

)
= op (1), it can be shown in a

similar manner that all of the remaining terms are of lower order.
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B Appendix: Tables

Table 1.1: Rejection frequencies for H0 : all coefficients are homogenous

A) Size B) Power

∆̃adj CLM LM LMreg ∆̃adj CLM LM LMreg

T = 10
N = 10 6.3 11.8 2.6 4.7 5.5 5.4 11.3 4.1
N = 20 5.6 12.0 3.2 4.3 8.4 4.2 24.8 7.0
N = 30 5.5 11.4 3.7 4.3 11.5 6.3 35.2 10.4
N = 50 5.2 8.9 3.7 4.1 18.9 15.9 51.2 19.6
N = 100 5.4 8.3 4.7 4.8 36.1 46.5 77.5 47.0
N = 200 4.6 7.5 4.9 4.6 65.6 87.3 96.9 83.1

T = 20
N = 10 5.3 15.1 2.6 6.3 17.1 3.4 28.1 12.4
N = 20 5.7 14.2 3.4 5.7 35.0 9.5 53.0 25.8
N = 30 5.9 12.8 3.8 5.8 50.7 23.4 70.5 43.2
N = 50 5.1 10.8 4.1 5.3 74.6 53.5 88.9 71.8
N = 100 4.5 8.3 4.3 4.7 95.7 90.1 99.1 96.5
N = 200 5.1 7.1 5.2 5.5 99.9 98.8 100.0 100.0

T = 30
N = 10 4.7 15.6 2.4 7.0 34.4 4.6 43.0 22.4
N = 20 4.5 14.5 3.5 6.2 64.8 19.7 74.3 50.9
N = 30 5.2 13.2 3.9 5.6 81.9 42.5 88.9 73.3
N = 50 5.3 11.6 4.5 5.9 96.3 76.9 98.2 94.5
N = 100 5.2 8.9 4.3 4.7 100.0 96.0 100.0 99.9
N = 200 5.2 7.4 5.0 5.8 100.0 99.3 100.0 100.0

Notes: Rejection frequencies (in %) for K = 3 under the null (panel A) and the alternative hypothesis
(panel B). Nominal size is 5%.
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Table 1.2: Rejection frequencies: model with individual effects

A) Size B) Power

LM LM∗ LMreg LMac ∆̃adj CLM LM LM∗ LMreg LMac

T = 10
N = 10 2.6 2.9 4.8 3.4 5.7 5.3 8.3 8.6 4.2 7.8
N = 20 3.3 4.0 5.2 3.8 8.1 4.3 21.6 20.2 6.8 17.8
N = 30 3.1 3.9 4.7 4.1 8.7 5.3 26.5 24.2 8.8 22.5
N = 50 3.8 4.6 4.3 4.5 13.1 10.8 42.0 38.9 15.7 35.8
N = 100 4.1 4.8 4.7 4.6 29.2 40.8 73.4 67.7 40.4 64.5
N = 200 4.2 4.8 4.7 4.7 49.0 79.5 91.8 87.9 72.9 84.9

T = 20
N = 10 2.3 2.2 6.4 2.4 19.1 3.6 31.4 30.8 13.1 26.3
N = 20 3.4 3.5 6.0 3.9 39.1 9.4 59.3 57.8 31.7 53.6
N = 30 3.8 4.1 5.4 4.2 40.0 15.8 60.2 58.0 33.0 53.8
N = 50 3.8 4.2 5.1 3.8 72.5 53.9 89.0 88.1 73.3 84.7
N = 100 4.3 4.6 5.5 4.5 91.4 89.0 98.2 97.7 93.9 96.9
N = 200 4.8 4.8 5.3 4.7 99.8 98.4 100.0 100.0 99.9 100.0

T = 30
N = 10 2.8 2.9 8.0 3.5 26.6 3.9 37.8 37.6 18.0 29.4
N = 20 3.6 3.5 6.2 3.8 66.8 24.6 78.0 77.3 56.3 72.2
N = 30 3.7 3.7 5.8 4.1 91.8 47.8 95.3 94.9 86.4 93.7
N = 50 4.7 4.5 5.8 4.8 94.6 67.1 97.0 96.9 91.8 96.1
N = 100 4.4 4.4 5.1 4.7 99.9 92.8 100.0 100.0 99.9 99.9
N = 200 4.6 4.6 4.8 4.6 100.0 98.4 100.0 100.0 100.0 100.0

Notes: Left panel: rejection frequencies (in %) under the null hypothesis with same design as in
Table 1.1 and orthogonal forward orthogonalization to eliminate fixed effects. Right panel: rejection
frequencies (in %) under the alternative hypothesis and forward orthogonalization to eliminate fixed
effects. Nominal size is 5%.
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Table 1.3: Size and power for t-distributed errors

A) Size ∆̃adj CLM LM LMadj LM∗ LMreg

T = 10
N = 10 6.3 9.0 3.5 2.9 4.0 3.9
N = 20 6.1 10.5 5.4 4.0 6.1 4.5
N = 30 5.6 10.2 6.9 5.0 6.2 4.9
N = 50 5.1 8.9 7.5 5.3 6.6 4.4
N = 100 5.0 7.5 9.8 6.2 7.2 4.9
N = 200 5.5 6.9 10.7 5.7 7.6 5.2

T = 20
N = 10 5.5 13.2 3.5 2.8 3.6 6.0
N = 20 5.8 13.0 5.1 4.0 4.6 6.3
N = 30 5.4 11.7 5.5 4.3 4.8 5.6
N = 50 5.2 10.4 6.7 4.8 5.1 5.3
N = 100 4.9 8.0 8.0 5.5 5.9 5.1
N = 200 5.1 7.0 8.9 5.5 5.4 4.8

T = 30
N = 10 5.8 15.0 3.0 2.6 3.0 7.0
N = 20 5.0 13.6 4.5 3.5 3.9 5.7
N = 30 4.7 12.4 5.2 4.3 4.2 5.5
N = 50 5.1 11.3 5.9 4.7 5.1 5.9
N = 100 5.0 8.5 6.4 5.0 4.8 5.1
N = 200 5.3 7.7 7.3 5.0 5.2 4.9

B) Power ∆̃adj CLM LM LMadj LM∗ LMreg

T = 10
N = 10 5.9 3.4 12.4 10.9 11.8 4.9
N = 20 9.7 3.9 25.6 22.7 22.9 7.5
N = 30 13.6 6.9 36.1 31.8 32.4 11.9
N = 50 24.1 16.0 52.4 46.7 47.9 22.6
N = 100 45.3 44.4 78.9 71.8 73.9 49.4
N = 200 76.1 83.1 95.7 92.6 93.8 83.2

T = 20
N = 10 20.0 3.2 30.5 28.6 29.4 13.7
N = 20 39.5 10.1 53.6 50.0 52.5 29.7
N = 30 57.3 22.8 70.5 67.3 68.5 46.7
N = 50 80.0 51.5 88.3 85.5 86.7 72.2
N = 100 97.8 89.5 99.0 98.4 99.0 96.4
N = 200 100.0 98.8 100.0 100.0 100.0 100.0

T = 30
N = 10 37.5 3.7 45.8 43.8 45.1 25.4
N = 20 67.7 19.6 74.3 71.9 73.3 54.3
N = 30 85.4 43.0 88.6 86.6 87.4 74.4
N = 50 97.3 76.2 98.0 97.2 97.7 93.8
N = 100 100.0 95.9 100.0 100.0 100.0 99.9
N = 200 100.0 99.4 100.0 100.0 100.0 100.0

Notes: Rejection frequencies (in %) for K=3 under the null (panel A) and the alternative hypothesis
(panel B) when εit is drawn from a t-distribution with five degrees of freedom. Nominal size is 5%.

48



Table 1.4: Size and power in a model with autocorrelated errors

∆̃adj CLM LM LM∗ LMreg LMac

A) Size: ρ = 0.2

T = 10
N = 10 5.3 7.4 4.8 4.8 3.9 5.5
N = 50 9.0 4.6 12.1 13.1 5.3 4.3
N = 100 15.9 6.0 17.1 21.0 7.6 5.0

T = 20
N = 10 7.6 6.8 6.4 6.7 4.4 4.5
N = 50 16.3 4.9 15.1 15.7 6.3 4.9
N = 100 34.7 9.7 23.8 25.7 11.5 4.4

T = 30
N = 10 7.3 6.6 6.7 6.9 5.1 4.1
N = 50 27.9 5.2 16.1 16.9 6.3 3.6
N = 100 46.7 12.7 25.6 27.6 12.4 4.1

B) Size: ρ = 0.5

T = 10
N = 10 6.5 3.4 9.3 11.0 3.6 7.7
N = 50 48.2 14.3 52.6 63.5 22.3 4.8
N = 100 68.6 25.9 67.7 79.8 30.9 4.8

T = 20
N = 10 14.3 3.0 8.8 9.6 4.4 4.7
N = 50 88.9 32.8 65.1 71.4 39.0 4.3
N = 100 99.4 74.8 90.5 94.2 73.8 4.6

T = 30
N = 10 32.9 4.1 24.6 25.6 9.6 4.7
N = 50 94.7 36.7 66.6 71.1 42.0 4.5
N = 100 99.9 81.1 92.1 94.6 77.2 4.5

C) Power: ρ = 0

T = 10
N = 10 5.4 8.1 8.3 8.1 4.3 7.7
N = 50 10.5 7.0 46.0 43.6 10.5 34.2
N = 100 16.9 23.2 69.1 65.2 22.3 54.5

T = 20
N = 10 11.6 3.7 26.7 26.4 9.6 17.9
N = 50 59.3 34.6 89.6 88.7 60.2 82.4
N = 100 85.9 80.0 99.0 99.0 90.5 97.9

T = 30
N = 10 14.4 4.6 28.3 27.7 10.3 18.2
N = 50 88.6 63.9 97.5 97.4 85.8 94.9
N = 100 99.7 95.7 100.0 100.0 99.9 100.0

Notes: Panel A) and B) present rejection frequencies (in %) for K=3 under serial correlation of errors
(ρ = 0.2 and ρ = 0.5, respectively) and the null hypothesis. Panel C) presents rejection frequencies
(in %) under the alternative hypothesis without serial correlation in errors. Nominal size is 5%.

49



C Appendix: Figures

Figure 1.1: Asymptotic local power of the LM (solid line) and the ∆ test (dahed line)
when σ2

i,x ∼ χ2
1.
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Figure 1.2: Asymptotic local power of the LM (solid line) and the ∆ test (dashed line)
when σ2

i,x ∼ χ2
2.
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Chapter 2

LM Tests for Shock Induced

Asymmetries in Time Series

2.1 Introduction

“Losses loom larger than corresponding gains”

D. Kahneman and A. Tversky

In the last decades there has been a significant increase in findings from empirical

studies in economics and finance indicating that processes react differently to positive

and negative shocks. For instance, Koutmos (1999) tests and finds asymmetries in the

conditional mean and the conditional standard deviation of the stock returns distribu-

tion of the G7 national stock markets. Karras and Stokes (1999) examine asymmetric

effects of money-supply shocks in OECD countries and report that negative shocks have

a stronger effect on output than positive ones. Other examples can be found in Elwood

(1998), Kilian and Vigfusson (2011) and Brännäs et al. (2012) among others. In univariate

time series settings this led to an asymmetric time series paradigm introduced by Wecker

(1981). As the main framework to model asymmetries induced by the sign of innovations,

Wecker (1981) suggests asymmetric moving average models (AsMA, hereafter). Com-

plementary to the AsMA model we consider an extension of the autoregressive process

to an asymmetric one (AsAR, hereafter). Note that the asymmetric time series models

considered in this paper introduce a type of nonlinearity to the dynamics of the process,

which differs from the one described by the threshold autoregressive model (TAR). In

particular, the TAR model splits the sample into groups (regimes) based on the observed

threshold variable and the unknown threshold parameter, while AsMA and AsAR models

describe nonlinearity through the sign of shocks.

The potential presence of shock induced asymmetries raises the natural question of

(pre)testing for the correct model specification. This testing problem has already been

discussed in the literature. To test for the conventional moving average model against
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AsMA, Wecker (1981) suggests a likelihood ratio test (LR, hereafter), while Brännäs and

De Gooijer (1994) construct a Wald-type test to choose the correct model specification.

Besides this, Brännäs et al. (1998) consider a test statistic based on the artificial re-

gression constructed from the Lagrange multiplier (LM, hereafter) principle. However,

the asymmetric nature of the AsMA model makes the corresponding likelihood function

non-differentiable.1 This in turn prevents the use of classical likelihood based tests, such

as LM, LR and Wald test, since the standard approach of deriving the gradient and the

Hessian from the likelihood function as well as the asymptotic behavior of these statistics

are not valid anymore.

In this paper we contribute to the literature by constructing new test statistics based

on the LM approach that account for the non-differentiability of the likelihood function.

The tests are derived for AsMA and AsAR models. To deal with the absence of smoothness

in the log-likelihood function we resort to the treatment of non-differentiability offered

by Phillips (1991) for LAD estimators. The idea is to examine the problem in the space

of generalized functions (distributions) whose derivatives do not exist in the classical

sense, but can be accommodated by distributional derivatives. This approach allows us

to operate with first order conditions and derive LM type test statistics. Moreover, with

this generalization the asymptotic properties of the test statistics can be obtained. We

show that the limiting distribution is a standard χ2 distribution under the null hypothesis

of no asymmetric effects. Further, by means of Monte Carlo simulations the finite sample

properties of the new test statistics are explored in different setups. Finally, in order to

make the testing procedures more accessible to potential users, it is shown via Monte Carlo

experiments that the standard model selection criteria, such as BIC or HQ, applied to a

linear model provide a reliable estimate of the lag length for the asymmetric counterpart

model.

To illustrate the use of the proposed techniques, we apply the test to the U.S. unem-

ployment rate. Our results show strong evidence that the growth of the unemployment

rate is affected by an asymmetric impact of positive and negative shocks.

The remainder of this paper is as follows. Section 2.2 introduces the modelling frame-

work for asymmetric time series. The construction of the LM type tests is described in

Section 2.3. In Section 2.4 the asymptotic properties of the proposed statistics are inves-

tigated. In Section 2.5 we present results from a simulation study. An empirical example

is discussed in Section 2.6. The final section contains concluding remarks. Proofs, figures

and tables are relegated to the Appendix.

1Section 2.3 provides a detailed discussion on the type of non-differentiability present in log-likelihood
functions obtained for asymmetric time series.
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2.2 Preliminaries

This section lays out a basis of the asymmetric time series models as a counterpart to

the usual linear moving average and autoregressive models. The main characteristic of

this model class that distinguishes it from other well established nonlinear models (such

as threshold AR models for instance) is that two different filters, one for positive and one

for negative innovations are employed. In particular, Wecker (1981) advocated the use of

the asymmetric moving average model which takes the form

yt = εt + α1εt−1 + ...+ αpεt−p + β1ε
+
t−1 + ...+ βpε

+
t−p, (2.1)

where ε+
t = εt1 (εt ≥ 0) and 1 (·) defines an indicator function. We also complement

Wecker’s approach by considering the asymmetric autoregressive model defined as

yt = εt − α1yt−1 − ...− αpyt−p − β1y
+
t−1 − ...− βpy+

t−p, (2.2)

where y+
t = yt1 (εt ≥ 0). In both models it is assumed that yt = 0 for t ≤ 0 and that

the random disturbance term εt is a real i.i.d. sequence with N(0, σ2) distribution. The

normality assumption is necessary only for the derivation of the LM statistics. For the

application as well as for the derivation of the asymptotic results, this assumption is

relaxed. In general, for the asymptotic analysis we require the process yt to be stationary

and invertible under the null hypothesis of no asymmetric effects. For this reason it is

assumed that the roots of α(z) = 1 +
∑p

i=1 αiz
i lie outside the unit circle. We discuss the

consequences of a violation of the stationarity assumption for the asymptotics in Remark

12 of Section 2.4.

To express model (2.1) and (2.2) in matrix notations, define B as a T × T backshift

matrix with typical element Bij = 1 if i − j = 1 and zero otherwise. As a convention

B0 = I is set to be the identity matrix. Matrix D1(ε) = diag{1 (ε1 ≥ 0) , ..., 1 (εT ≥ 0)}
defines a T × T diagonal matrix and α ≡ (α1, ..., αp)

′, β ≡ (β1, ..., βp)
′ are vectors of

parameters. Then models (2.1) and (2.2) can be rewritten as

y =
(
Mα + MβD1(ε)

)
ε, (2.3)

and (
Mα + MβD1(ε)

)
y = ε, (2.4)

respectively, where Mα =
∑p

i=0 αiB
i and Mβ =

∑p
i=1 βiB

i with α0 = 1, y = (y1, ..., yT )′

denotes a T ×1 vector of observations and ε = (ε1, ..., εT )′ is a T ×1 vector of error terms.

The representations (2.3) and (2.4) are convenient for our discussion since deviations

from the conventional symmetric MA(p) or AR(p) models are now represented in both
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cases by matrix Mβ. Therefore, the main question of interest can be formulated as

H0 : Mβ = 0, (or β = 0),

against the two alternatives that HA : {yt} is generated by (2.3) or HB : {yt} is generated

by (2.4).

2.3 The Lagrange multiplier test

The corresponding log-likelihood function for time series processes (2.3) and (2.4) is given

by

L
(
α,β, σ2

)
= const− T

2
ln
(
σ2
)
− 1

2σ2
ε′ε, (2.5)

where ε =
(
Mα + MβD1(ε)

)−1
y for the AsMA(p) case and ε =

(
Mα + MβD1(ε)

)
y

for the AsAR(p) model. Denote θ = (α
′
,β
′
)
′

as the parameter vector of interest and

θ̂0 = (α̂
′
,0)

′
as the restricted ML estimator of θ0 =

(
α
′
,0
)′

. The parameter σ2

can be concentrated out. Furthermore, let s (θ) = ∂L (θ) /∂θ denote the score and

H (θ) = − plimT→∞ T
−1∂2L (θ) /∂θ∂θ′ the asymptotic Hessian of the log-likelihood (2.5).

It is convenient in this testing framework to use a partitioning of the score s (θ) =(
sα (θ)′ , sβ (θ)′

)′
, with sα (θ) = ∂L (θ) /∂α, and sβ (θ) = ∂L (θ) /∂β. The asymptotic

Hessian matrix can be expressed as

H (θ) =

[
Hαα (θ) Hαβ (θ)

Hβα (θ) Hββ (θ)

]
.

HereHαα (θ) = − plimT→∞ T
−1∂2L (θ) /∂α∂α′,Hαβ (θ) = − plimT→∞ T

−1 ∂2L (θ) /∂α∂β′,

etc. Then the usual form of the LM test for testing H0 can be written as,

LMT =
1

T
sβ

(
θ̂0

)′
V−1
β

(
θ̂0

)
sβ

(
θ̂0

)
, (2.6)

where Vβ (θ) represents the variance of the score sβ (θ) and is taken from the appropriate

diagonal block of the H (θ) matrix, i.e., Vβ (θ) = Hββ (θ)−Hβα (θ) Hαα (θ)−1Hαβ (θ) .

Notice that the presence of the indicator functions in the likelihood function (2.5)

makes it non-differentiable for εt at zero for all t = 1, ..., T . Therefore, the standard

framework for deriving the LM test (and its asymptotics) with absence of smoothness is

in general not applicable. We suggest here to resort to Phillips (1991), where a solution

to nonregular problems like discontinuities in the criterion function is proposed on the

example of the LAD estimator. In particular, if derivatives do not exist in the usual sense,

these may be accomodated directly by the use of generalized functions or distributions

(See, e.g., Gelfand and Shilov (1964) for more detailed overview of the theory of general-
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ized functions). As presented below, this generalization of the classical approach does not

only provide a justification of the derivation of the LM test but it also helps to develop

generalized Taylor series expansions of the first order conditions which in turn are useful

to extract the asymptotic theory.

We start with the derivative of the indicator function that can be written as the Dirac

delta (generalized) function, i.e.,

∂1(x≥0)/∂x = δ(x).

The required properties of the δ(x) function are given in Appendix A, Lemma A.5. Then

for the convenience of the notations we define matrix Mαβ ≡Mα+MβD1(ε) which essen-

tially represents the filtering (structure) of the processes (2.3) and (2.4). By proceeding

in a purely formal way the derivative of Mαβ with respect to θ can be compactly written

as
∂Mα,β

∂θi
=

{
Bi + MβDδ(ε)D∂ε/∂θi

BiD1(ε) + MβDδ(ε)D∂ε/∂θi

for θi = αi

for θi = βi
, (2.7)

where Dδ(ε) is a T × T diagonal matrix defined as diag{δ(ε1), ..., δ(εT )} and D∂ε/∂θi =

diag {∂ε1/∂θi , ..., ∂εT/∂θi}. Further, under the null hypothesis Mβ = 0 and ∂Mα,β/∂θi

takes a simple matrix form Bi or BiD1(ε). Finally, using standard results for matrix

derivatives (see, e.g., Lütkepohl, 1996), the elements of the score vector sβ

(
θ̂0

)
under

the null hypothesis can be presented for process (2.3) in a quadratic form as

sβ,i

(
θ̂0

)
=

1

σ̂2
ε̂′
(
M̂−1
α BiD̂1(ε)

)′
ε̂, (2.8)

and for process (2.4) as

sβ,i

(
θ̂0

)
= − 1

σ̂2
ε̂′
(
BiD̂1(ε)M̂

−1
α

)′
ε̂, (2.9)

where i = 1, ..., p, ε̂ is the ML estimator of ε under H0 and D̂1(ε) = diag{1(ε̂1≥0), ...,

1(ε̂T≥0)}. The vector ε̂ is estimated from the MA as M̂−1
α y or from the AR process as

M̂αy, respectively, where M̂α =
∑p

i=0 α̂iB
i.

2.3.1 Variants of the LM test

There are as many different ways to compute the LM statistic (2.6) as there are asymp-

totically valid ways to estimate the covariance matrix Vβ (θ0). So far, we have assumed

that Vβ (θ0) is derived from the asymptotic Hessian matrix evaluated under the null.

However, any method that allows us to estimate Vβ (θ0) consistently can be used. In

what follows, several different approaches that are commonly used in the literature are

discussed.
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Empirical Hessian and information matrix

The most straightforward method, based on (2.6), to compute the negative of the Hessian

evaluated at the restricted vector of ML estimates θ̂0, which is referred to as the empirical

Hessian estimator, i.e.,

V
(H)
β

(
θ̂0

)
=

1

T

(
Hββ

(
θ̂0

)
−Hβα

(
θ̂0

)
Hαα

(
θ̂0

)−1

Hαβ

(
θ̂0

))
,

where Hαα

(
θ̂0

)
= −∂2L

(
θ̂0

)
/∂α∂α′, Hαβ

(
θ̂0

)
= ∂2L

(
θ̂0

)
/∂α∂β′, etc. However,

this estimator cannot be easily handled in practice due to the presence of the Dirac delta

functions and its derivatives even under the null.

However, it can be shown that by taking the expectation the terms that include

delta functions in the expression of the Vβ (θ0) can be eliminated. This follows from the

definition of the delta function and so called sifting property (see Lemma A.5). Therefore,

the information matrix approach can be used instead of the empirical Hessian to obtain

an efficient and applicable estimator of Vβ (θ0). Hence, in what follows the estimator

V
(IM)
β

(
θ̂0

)
is constructed as

V
(IM)
β

(
θ̂0

)
=

1

T

(
Jββ

(
θ̂0

)
− Jβα

(
θ̂0

)
Jαα

(
θ̂0

)−1

Jαβ

(
θ̂0

))
, (2.10)

where Jαα (θ) = E
[
sα (θ) sα (θ)′

]
, Jαβ (θ) = E

[
sα (θ) sβ (θ)′

]
, etc.

Finally, to derive an analytical expression for V
(IM)
β we relax the Gaussian distri-

butional assumption of εt for more specific restrictions on the existence of higher-order

moments. This allows to robustify the estimator V
(IM)
β

(
θ̂0

)
to non-normal disturbances.

Assumption 2′′

(i) {εt} is an i.i.d. sequence with zero mean and E [ε2
t ] = σ2 > 0;

(ii) There is a positive constant C > 0 such that E |εt|4+r < C < ∞ for some r > 0 and

all t;

(iii) The density function of εt, defined as fε (·), is continuous and differentiable at zero.

Assumption 3 constitutes sufficient conditions for the asymptotic results obtained in this

paper. While part (i) and (ii) are standard identification assumptions in the time series

literature, part (iii) restricts the analysis to innovations with a smooth density function

at zero.

The matrix Jαα (θ0) is obtained by using standard results for quadratic forms (see,

e.g., Ullah, 2004, Appendix A.5) and has the same shape for both HA and HB alternatives,

with typical Ji,j (θ0) element

Ji,j (θ0) ≡ E [sα,i (θ0) sα,j (θ0)] = tr
[
(M−1

α Bi)(M−1
α Bj)′

]
, (2.11)
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for i, j = 1, ..., p. However, the results for other components Jαβ (θ), Jβα (θ) and Jββ (θ)

differ depending on the modeling framework as presented below. Note, that in the fol-

lowing Lemmas we omit the argument θ0 in Ji,j, sα,i and sβ,i to lighten the notational

load.

Lemma A.3 Let φk = E
(
ε+
t

)k
for k = 1, 2. Then under the data generating process

(2.3), assumption 3 and the null hypothesis,

E [sα,isβ,j] = γ1Ji,j, (2.12)

E [sβ,isβ,j] = (γ1 − γ2) Ji,j + γ2Wi,j (2.13)

where 1 ≤ i, j ≤ p, γ1 = φ2/σ
2, γ2 = (φ1)2 /σ2 and Wi,j = l′(M−1

α Bi)(M−1
α Bj)′l with l

being a T × 1 vector of ones.

The invertibility of the process yt ensures the existence of the inverse of Mα under the

null. Hence,

M−1
α =

(
p∑
i=0

αiB
i

)−1

=
∞∑
i=0

ψiB
i, (2.14)

where ψ0 = 1 and
∑∞

i=0 |ψi| <∞.

Lemma A.4 Let φk = E
(
ε+
t

)k
for k = 1, 2. Then under the data generating process

(2.4), assumption 3 and the null hypothesis,

E [sα,isβ,j] =

{
F0Ji,j for i > j

F0Ji,j + γ1ψ|i−j| for i ≤ j
, (2.15)

E [sβ,isβ,j] =

{
F0Ji,j + γ1 for i = j

F2
0Ji,j + γ2 for i 6= j

, (2.16)

where 1 ≤ i, j ≤ p, F0 = (1 − Fε (0)) and Fε(·) denotes the distribution function of ε;

γ1 = (T − i)(φ2 − σ2F0)/σ2, γ2 = γ1F0ψ|i−j| + φ2
1/σ

2 (T −max(i, j)).

Therefore, to test for no asymmetric effects of innovations it is sufficient to estimate

parameter vector α and error vector ε under the null and use them to construct the

components of the LM test (2.6), i.e.,

LM
(IM)
T = s

(
θ̂0

)′ [
V

(IM)
β

(
θ̂0

)]−1

s
(
θ̂0

)
, (2.17)

where s
(
θ̂0

)
is given by (2.8) or (2.9) and V

(IM)
β

(
θ̂0

)
is derived in (2.11) and Lemma

A.3 or Lemma A.4 under the null hypothesis of the interest, respectively.
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OPG variant

The second method is the one that can be most easily obtained. It is based on the

outer product of the gradient and is referred to as the OPG estimator. First, recall that

the inverse of Mα under the null is given by M−1
α =

∑∞
k=0 ψkB

k =
∑T−1

k=0 ψkL
k, where

ψ0 = 1 and
∑∞

k=0 |ψk| < ∞. Then we can write the score vector s
(
θ̂0

)
as the sum of T

contributions

sθ,i

(
θ̂0

)
=

T∑
t=1

gt,i

(
θ̂0

)
, (2.18)

where i = 1, ..., p, gt,i

(
θ̂0

)
=
∑t−i

s=1 εtεsψ̂t−s−i for θi = αi, and if θi = βi then gt,i

(
θ̂0

)
=∑t−i

s=1 εtε
+
s ψ̂t−s−i for the AsMA model and gt,i

(
θ̂0

)
=
∑t−i

s=1 εtεs1(εt−1 ≥ 0)ψ̂t−s−i for the

AsAR model. Define the T × 2p matrix G
(
θ̂0

)
with typical element gt,i

(
θ̂0

)
. Hence, if

the OPG estimator is used in (2.6) the statistic becomes

LM
(OPG)
T = s

(
θ̂0

)′ [
G
(
θ̂0

)′
G
(
θ̂0

)]−1

s
(
θ̂0

)
. (2.19)

Furthermore, statistic (2.19) can readily be computed by use of an artificial regression,

which has the form

l = G
(
θ̂0

)
c+ u, (2.20)

where l is the vector of ones, c is a parameter vector and u is a residual vector. The

explained sum of squares obtained from (2.20) is numerically equal to the OPG variant

of the LM statistic (2.19).

This OPG variant has the advantage of being easy to calculate and is known to provide

a heteroskedasticity robust version of the LM test (2.6). Nevertheless, it should be used

with caution since there is evidence (see e.g., Davidson and MacKinnon, 1983 among

others) suggesting that this form tends to be less reliable in finite samples. Section 2.5

provides a further discussion of this issue.

Other regression based variants

Other variants of the LM test presented in the from of artificial regressions can be used for

our testing purpose. In this section we discuss one of the best known artificial regression

forms of the LM test that is based on the Gauss-Newton regressions. For a review of other

available regression based procedures see for instance Davidson and MacKinnon (2001).

This approach simply involves regressing the disturbances from the restricted model on

the derivatives of the criterion function with respect to all parameters of the unrestricted

model.
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More precisely, consider the following auxiliary test regression

ε̂ = Xα

(
θ̂0

)
ρα + Xβ

(
θ̂0

)
ρβ + v, (2.21)

where Xα

(
θ̂0

)
=
[
∂ε
∂α1

(
θ̂0

)
, . . . , ∂ε

∂αp

(
θ̂0

)]
and Xβ

(
θ̂0

)
=
[
∂ε
∂β1

(
θ̂0

)
, . . . , ∂ε

∂βp

(
θ̂0

)]
.

Both regression matrices Xα

(
θ̂0

)
and Xβ

(
θ̂0

)
can be easily computed using the ex-

pressions for ∂ε
∂θi

derived in items (ii) and (iii) of Lemma A.5 (see Appendix A). Testing

the null hypothesis H0 : β = 0 is asymptotically equivalent to test whether ρβ = 0 in

the test regression (2.21). Therefore, the test statistic can be computed as the standard

Wald test from the Gauss-Newton regressions (2.21). In what follows we will refer to this

variant of the LM test as regression based and denote it by LM
(Reg)
T .

A careful inspection shows that this form of the statistic for the HA alternative re-

sembles closely the test proposed by Brännäs et al. (1998). Therefore, the arguments and

the results obtained in this paper can be used to justify the derivation of the statistics in

Brännäs et al. (1998) and establish its asymptotics.

2.4 Asymptotics

The difference between the LM-type test statistics discussed above lies in the estimation

of Vβ. Since all considered approaches are known to provide a consistent estimator for the

covariance matrix of the score vector under the null, the LM
(IM)
T , LM

(OPG)
T and LM

(Reg)
T

are asymptotically equivalent and behave as χ2 distribution with p degrees of freedom.

This result is summarized in the following theorem.

Theorem 8 For processes (2.3) and (2.4), under assumption 3 and the null hypothesis

LMT → χ2
p,

as T →∞.

Remark 12 Notice that, if the stationarity assumption is violated under the null hypoth-

esis the underlying asymptotics will differ from the ones obtained in Theorem 8. For

instance, consider the underlying process yt to be near integrated under the null, i.e.,

yt =
(

1 +
c

T

)
yt−1 + εt. (2.22)

Then, the LM test to test for AsAR(1) behaves asymptotically as

LMT
p→

(∫ 1

0
Jc(r)dW (r)

)2

∫ 1

0
J2
c (r)dr

, (2.23)
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where Jc(r) is an Orhstein-Uhlenbeck process and W (r) is a Brownian motion.2 However,

at this point it is not clear how to discriminate nonstationarity from asymmetry. There-

fore, pretesting for the unit root before applying the LM test for asymmetries might provide

invalid results. We do not pursue this problem in this paper. However, this presents an

interesting line of research for further investigation.

2.5 MC simulations

After deriving LM-type tests for testing asymmetries induced by shocks in time series and

their asymptotics, we now turn to study the small sample properties of the proposed test

and its variants. The main aim of this section is to evaluate the performance of the tests

in terms of their size and power in different empirically relevant setups.

2.5.1 Normally distributed errors

As a benchmark specification we consider two types of time series processes given as

yt = εt + αε−t−1 + βε+
t−1, (2.24)

yt = εt + αy−t−1 + βy+
t−1, (2.25)

with εt ∼ N (0, 1) , (2.26)

where (2.24) corresponds to the AsMA(1) and (2.25) to the AsAR(1) model. We examine

different combinations of α and β selected from the set {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9} and three sample sizes T = 50, T = 100 and T = 200. All Monte Carlo

simulations are based on N = 2000 replications and are executed for tests of a nominal size

of 10%, 5% and 1%. Only the results for the size of 5% are reported since no qualitative

differences were observed.

The left panel of Table 2.1 (see Appendix B) shows rejection frequencies under the

null hypothesis when the underlying processes are MA(1) and AR(1) (i.e., α = β in

(2.24)) with a lag coefficient α ∈ {0, ..., 0.9}. In the case of the MA(1) and T = 50

we observe moderate deviation from the nominal size for the LM
(OPG)
T and the LM

(Reg)
T

test when the parameter α is close to unity. For the AR(1) process and T = 50 the

obtained results show that the LM
(OPG)
T and the LM

(Reg)
T perform equally well, while

LM
(IM)
T slightly underrejects. The size properties of all tests approach the nominal level

fast as T increases.

Figure 2.1 (see Appendix C) illustrates the corresponding rejection frequencies under

the alternative. In particular, parameter β in (2.24) and (2.25) is fixed to zero, while α

takes values from the set {0, ..., 0.9} as described above. At this point we report that the

2The proof of this fact is almost identical to the proof presented in Phillips (1997).
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setup with fixing α and allowing β to change will produce symmetric results and is omitted

from the discussion. The left panel shows the results for the AsMA alternative and the

right one for the AsAR alternative. All three tests performs equally well except for the

case of T = 50 where the LM
(IM)
T test has marginally bigger power than its variants for

the AsMA alternative and suffers slightly from a power loss relatively to the other tests

in the case of the AsAR alternative.

2.5.2 Errors with skewed distribution

We now investigate the behavior of the LM tests when the errors are no longer normally

distributed. Since we construct test statistics that are built to distinguish the contribution

of positive and negative errors, it is of special interest to study if the obtained tests are

robust to a skewed distribution of the underlying errors. For this reason the errors in

(2.24) and (2.25) are generated from a beta distribution, i.e.,

εt ∼ B(µ, σ, ξ, κ), (2.27)

where the parameters (µ, σ, ξ, κ) are fixed to the values such that assumption 3 is satisfied.

In particular, µ = 0 and refers to the mean of the distribution, σ = 1 and refers to

the standard deviation, ξ = 0.8 and κ = 3 refer to the skewness and to the kurtosis

respectively. All other specifications of the MC design remain the same.

The middle panel of Table 2.1 (see Appendix B) shows the rejection frequencies under

the null hypothesis for setups (2.24) and (2.25) with (2.27). The reported results have

only marginal changes to the one obtained for the benchmark case where εt ∼ N (0, 1).

This indicates that all three test statistics are robust in terms of their size property to

setups where innovations are drawn from a non-normal skewed distribution.

Turning to the power analysis, Figure 2.2 (see Appendix C) illustrates the obtained

rejection frequencies under the alternative. As a deviation point from the benchmark

design each panel reports two setups, one with α = 0 and β ∈ {0, ..., 0.9} and one

with β = 0 and α ∈ {0, ..., 0.9}. It is clear from the Figure 2.2 that while the power

properties of the LM
(OPG)
T and LM

(Reg)
T do not change qualitatively compared to the

scenario with normal errors, a practical weakness of LM
(IM)
T is revealed. In particular,

the power properties of the test are asymmetric with respect to the fixed α and fixed β

setups. The problem vanishes fast as T increases. However, the LM
(IM)
T test seems to be

less robust in small samples against skewed error distributions.

2.5.3 Conditional heteroskedasticity

To investigate the effect of conditional heteroskedasticity on the performance of the pro-

posed LM type tests we use instead of (2.26) a GARCH(1,1) specification to generate
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errors of the processes (2.24) and (2.25), i.e.,

εt =
√
htνt, (2.28)

ht = κ+ δht−1 + θε2
t−1, (2.29)

νt ∼ N (0, 1) (2.30)

with κ = 0.01, δ = 0.08 and θ = 0.9. In this simulation the chosen parameters are

motivated by empirical results estimating a GARCH(1,1) on daily stock market returns

(see Pelagatti and Lisis, 2009).

The right panel of Table 2.1 (see Appendix B) presents type I errors for this setup. As

expected the OPG variant of the LM test shows the most conservative and close to the

nominal level size performance, while the other two variants are oversized for all sample

sizes.

Figure 2.3 reports the rejection frequencies under the alternative of the tests when

errors are conditional heteroscedastic. In comparison to our benchmark specification we

observe only marginal changes in power for all cases.

2.5.4 Model Selection

In practice knowledge of the lag length is required prior to the implementation of the

LM test. Hence, in this section we study the estimation of the true order, which shall

be called p0, and its impact on the test statistics. Our primary aim is to establish the

small sample behavior of p̂ estimated using a standard model selection approach within

a linear time series model when the true underlying model is in fact a AsMA(p0) or

AsAR(p0). Specifically, the lag length is estimated from a linear MA(p) or AR(p) model

with 1 ≤ p ≤ Pmax where Pmax is known a priori. The model selection criteria such as the

AIC, BIC or HQ are used for the estimation of the p0. The second aim of this section is

to investigate the influence of the estimated lag length on the size-power properties of the

LM test.

In a first step we investigate the performance of the three mentioned model selection

criteria in two model setups each with two different parameterizations. In particular, we

use the following specifications

yt = εt + α1ε
−
t−1 + α2ε

−
t−2 + β1ε

+
t−1 + β2ε

+
t−2 (2.31)

yt = εt + α1y
−
t−1 + α2y

−
t−2 + β1y

+
t−1 + β2y

+
t−2 (2.32)

where the first corresponds to an AsMA(2) and the latter to an AsAR(2). We use the

parameter combinations α1 = 0.5, α2 = 0.4, β1 = 0.3, β2 = 0.2 and α1 = 0.5, α2 = 0.3,

β1 = 0.1, β2 = 0.1. Further, we calculate the selected lag length frequencies up to a lag
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of six periods (i.e., Pmax = 6) for sample sizes T = 100, T = 200 and T = 400 using

N = 2000 replications.

The results are given in Table 2.2 and are qualitatively similar for both model specifi-

cations. For T = 100 the BIC has a clear tendency to underselect the lag length for both

parametrizations. However, this improves rapidly with an increase of T and furthermore

BIC shows the highest percentage of correct lag selection (above 94%). Similar observa-

tions are made for the HQ criterion. As for the linear time series models, the AIC has

a tendency to overselect for all sample sizes. For the first parameter specification, when

T = 400, the AIC overselects in 25.6% cases for AsMA model and 28.95% for the AsAR

model. When we compare to overselection rates of BIC and HQ it is 2.15% and 9.1%

for theAsMA model, respectively, and 2.85% and 11.1% for the AsAR model. The same

message holds for the second parameter specification.

Which criterion is preferable is nevertheless context specific and depends on the taste

of the researcher. For our purposes it is important to note that standard criteria can be

used to determine the lag length in finite samples, although one should be aware of a

potential overselection of the AIC criterion.

In the second step, we turn to the influence of a preliminary model selection stage

on the power of the LM test. For this reason we use the BIC in our baseline setup with

normally distributed errors and compare outcomes with the benchmark model in Section

2.5.1. BIC values are calculated up to a lag of six periods. The results are shown in

Figure 2.4. In this setup we only observe minor power deviations compared to the case

with a known lag structure of the process.

2.6 Example: Growth of the U.S. unemployment rate

In this section we explore by using the AsAR model the presence of asymmetries in the

growth of the U.S. unemployment. We use monthly, seasonally adjusted unemployment

data of the U.S. population at the age of 16 and above, available from the Bureau of

Labor Statistics. The sample runs from January 1958 to December 2014 and is plotted

in Figure 2.5.

Based on BIC and HQ, with a maximum number of lags Pmax = 12, the AR(4)

model is selected as the appropriate test specification. We use the LM
(OPG)
T test which is

robust to heteroscedasticity, since there is evidence of residual heteroscedasticity in the

model under the null. The null hypothesis of no asymmetric effects of innovations on the

growth of unemployment is rejected at the 1% significance level with LM
(OPG)
T = 19.35.

Furthermore, we can analyze the asymmetric effects lagwise. This can be simply done

by using the same testing routine for the restricted asymmetric model. For instance, to

test for asymmetry of innovations in the k-th lag, the LM test can be constructed for the
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model yt = εt − α1yt−1 − ...− αpyt−p − βky+
t−k with k = 1, ..., p in the same way as for the

unrestricted model (2.2) in Section 2.3. The obtained results in our case are as follows

LM
(OPG)
1,T = 7.79, LM

(OPG)
2,T = 1.58, LM

(OPG)
3,T = 1.26, LM

(OPG)
4,T = 0.69,

where LM
(OPG)
k,T is the OPG version of the test for asymmetry in the k-th lag. Only the

first test rejects the null hypothesis (at the 1% level). This indicates that shock induced

asymmetries are only present for the first lag of the series. Our findings suggest that

the appropriate model specification for the growth of the unemployment rate takes the

following form

yt = εt + α1yt−1 + α2yt−2 + α3yt−3 + α4yt−4 + β1y
+
t−1. (2.33)

A thorough theoretical discussion of estimating asymmetric time series models goes

beyond the scope of this paper. However, to illustrate how asymmetries can influence

the dynamics of the process we complete this example by estimating model (2.33). To

estimate asymmetric time series models, Wecker (1981) suggests the maximum likelihood

approach. As argued in Section 2.3 the likelihood function is not differentiable (in a

classical sense) and standard search techniques for the maximum can produce misleading

or biased estimates. For this reason we suggest a simple iterative procedure:3

Step 1. First, the model (in our case AR(4)) is estimated under the null to obtain an

estimation of the innovations
{
ε̂

(1)
t

}
. For this, standard OLS/GLS can be used. Estimates{

ε̂
(1)
t

}
are used to construct the asymmetric components ŷ+

t−i = yt−i1
(
ε̂

(1)
t−i ≥ 0

)
for

i = 1, ..., p ;

Step 2. The AsAR model can be estimated with OLS/GLS approach by replacing

the true asymmetric components y+
t−i with estimated quantities ŷ+

t−i for i = 1, ..., p. This

step in turn will produce the estimated residuals from the asymmetric model
{
ε̂

(2)
t

}
;

Step 3. The innovations
{
ε̂

(2)
t

}
from Step 2 are used to recalculate the asymmetric

components, i.e. ŷ+
t−i = yt−i1

(
ε̂

(1)
t−i ≥ 0

)
for i = 1, ..., p. Then Step 2 is repeated and new

estimated residuals are produced
{
ε̂

(3)
t

}
.

Step 4. Step 2 and 3 can be repeated N times until the fit of the model does not

change between iterations, i.e.,

∥∥σ̂2
N − σ̂2

N−1

∥∥ < ε,

where σ̂2
N =

(
ε̂(N)

)′
ε̂(N)/T is the estimate of the fitted variance in iteration N and ε is

the precision constant chosen by the researcher.

3The consistency of the suggested estimation procedure remains an open topic and the obtained
estimates serve only for illustrative purposes.
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In our example we choose ε = 10−4. Convergence of the estimation procedure is

achieved after two iterations. Table 2.3 reports the parameter estimates and the respective

t-statistics. In addition, we report that the residuals for the given AsAR process are not

serially correlated, if we look at the Ljung-Box test for serial correlation up to 6 lags.

The most noticeable result is that the first lag of yt effects only through the asymmetric

component y+
t−1 but not through the linear one yt−1. Since it is difficult to assess the

dynamics of the autoregressive process only through point estimates the corresponding

impulse-response functions are constructed. To isolate the effects of positive and negative

innovations we consider two shocks of one standard deviation, that is, ε0 = σ̂ and ε0 =

−σ̂. In Figure 2.6, we plot the obtained impulse-response functions. The blue line with

diamonds represents the impulse of the positive shock and the red line with triangles

depicts the negative shock mirrored with respect to the time-axis for a better comparison.

For completeness we also add the impulse of the standard AR(4) model (line with squares).

This figure presents the difference between “positiv” and “negative” impulses that pertain

in the first year after the shock. It becomes apparent that the positive shock affects

immediately while the effect of the negative one is less pronounced and delayed.

This finding complements the existing literature on nonlinear behavior of the unem-

ployment rate (see e.g., Hansen (1997), Yilanci (2008) and Caporale and Gil-Alana (2007)

among others) and creates potentially a new discussion on what type of nonlinearity is

present in the U.S. unemployment rate.

2.7 Conclusion

In this paper we used the theory of generalized functions to derive the Lagrange multiplier

test when the likelihood function is not differentiable. In particular, we derived different

variants of the LM test to detect asymmetries induced by positive and negative past

shocks on time series. Further, we investigated the asymptotic properties of the test. In a

simulation study, we examined the small sample properties of the LMT test under different

model specifications. It is also shown by means of Monte Carlo simulations that standard

model selection criteria can be used for the implementation of the test. In an empirical

example to the growth of the U.S. unemployment rate, we demonstrate the relevance of

our testing procedure.
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A Appendix: Proofs

First, some auxiliary results are collected in the following Lemma to simplify the exposi-
tion of the subsequent proofs.

Lemma A.5 (i) Sifting property of delta functions∫
Ω

δ (x) f (x) dx = f (0) and

∫
Ω

δ̇ (x) f (x) dx = −ḟ (0) ,

where ∆̇ (x) defines the derivative of the delta function and ḟ(x) is the derivative of f (x);
(ii) For process (2.3) it holds

∂ε

∂θi
=

{
−M̃−1

α,βBiε, if θi = αi

−M̃−1
α,βBiD1(ε)ε, if θi = βi

where M̃α,β = Mα + MβD̃ and D̃ = D1(ε) + Dδ(ε)Dε for i = 1, ..., p;
(iii) For process (2.4) it holds

∂ε

∂θi
=

{
Aα,βBiM−1

α,βε, if θi = αi

Aα,βBiD1(ε)M
−1
α,βε, if θi = βi

where Aα,β = I−MβDδ(ε)Dy and y = M−1
α,βε for i = 1, ..., p.

Proof. Sifting property (i) summarizes some of the features of delta functions (see, e.g.,
Gelfand and Shilov, 1964).

Property (ii) comes directly from differentiation of (2.3) and standard results for
matrix derivatives (see, e.g., Lütkepohl, 1996), i.e.,

∂ε

∂βi
= −M−1

α,β

[
BiD1(ε) + MβDδ(ε)D∂ε/∂βi

]
ε

= −M−1
α,βBiD1(ε)ε+ MβDδ(ε)Dε∂ε/∂βi.

Solving the last equality for ∂ε
∂βi

yields the required result. The same calculations are

required for ∂ε
∂αi

.
Finally, the last item (iii) follows from similar arguments, i.e.,

∂ε

∂βi
=

[
BiD1(ε) + MβDδ(ε)D∂ε/∂βi

]
M−1
α,βε

= BiD1(ε)M
−1
α,βε+ MβDδ(ε)Dy∂ε/∂βi

where y = M−1
α,βε. Again solving the last equation for ∂ε

∂βi
yields item (iii). The proof for

∂ε
∂αi

is identical.
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Proof of Lemma A.3

Recall that invertibility of process yt ensures the existence of the inverse of Mα under the
null, i.e.,

M−1
α =

(
p∑

k=0

αkB
k

)−1

=
∞∑
l=0

ψlB
l =

T−1∑
i=0

ψlB
l,

where ψ0 = 1 and
∑∞

k=0 |ψk| <∞.
(i) We have that

sα,i =
1

σ2
ε′
(
M−1
α Bi

)′
ε =

1

σ2

T∑
t=1+i

t−i∑
s=1

εtεsψt−s−i,

sβ,j =
1

σ2

(
ε+
)′ (

M−1
α Bj

)′
ε =

1

σ2

T∑
t=1+j

t−j∑
s=1

εtε
+
s ψt−s−j.

Hence the expectation of sα,isβ,j can be rewritten as

E [sα,isβ,j] =
1

σ4

T∑
t=1+i

t−i∑
s=1

T∑
l=1+j

l−j∑
k=1

ψt−s−iψl−k−jE
[
εtεsεlε

+
k

]
.

Note that the above expectations are nonzero only if the four indices of εt are pairwise
equal. More precisely, the only possible case is when t = l and s = k. We thus obtain the
following expression

E [sα,isβ,j] =
φ2

σ2

T∑
t=1+max(i,j)

t−max(i,j)∑
s=1

ψt−s−iψt−s−j =
φ2

σ2
tr
[(

M−1
α Bi

) (
M−1
α Bj

)′]
.

(ii) Proof of fact (2.13) goes along the same line. Rewrite the expectation of sβ,isβ,j
as

E [sβ,isβ,j] =
1

σ4

T∑
t=1+i

∑
s≤t−1

T∑
l=1+j

∑
k≤l−1

ψt−s−iψt−s−jE
[
εtε

+
s εlε

+
k

]
.

In this situations the expectations are nonzero only if the indices of ε satisfy conditions
t = l 6= s = k and s 6= k 6= t = l. Which in turn leads to (2.13) since

E [sβ,isβ,j] =
φ2

σ2

T∑
t=1+max(i,j)

t−max(i,j)∑
s=1

ψt−s−iψt−s−j

+
φ2

1

σ2

T∑
t=1+max(i,j)

∑∑
1≤s 6=k≤t−max(i,j)

ψt−s−iψt−k−j,

where
T∑

t=1+max(i,j)

t−max(i,j)∑
s=1

ψt−s−iψt−s−j = tr
[(

M−1
α Bi

) (
M−1
α Bj

)′]
,
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T∑
t=1+max(i,j)

t−max(i,j)∑
s=1

ψt−s−i

t−max(i,j)∑
k=1

ψt−k−j = l′(M−1
α Bi)(M−1

α Bj)′l,

with l being a T × 1 vector of ones.

Proof of Lemma A.4

(i) Consider the following decomposition of the elements of sβ,i into two terms

sβ,i = − 1

σ2

T∑
t=1+i

t−i−1∑
s=1

εtεs1 (εt−i ≥ 0)ψt−s−i −
1

σ2

T∑
t=1+i

εtε
+
t−i, (A.1)

for i = 1, ..., p. Hence the expectation of sβ,isβ,j can be expressed as

E [sβ,isβ,j] =
1

σ4

T∑
t=1+i

t−i−1∑
s=1

T∑
l=1+j

l−j−1∑
k=1

E [εtεsεlεk1 (εt−i ≥ 0) 1 (εl−j ≥ 0)]ψt−s−iψl−k−j

+
1

σ4

T∑
t=1+i

t−i−1∑
s=1

T∑
l=1+j

E
[
εtεsεlε

+
l−j1 (εt−i ≥ 0)

]
ψt−s−i (A.2)

+
1

σ4

T∑
t=1+j

t−j−1∑
s=1

T∑
l=1+i

E
[
εtεsεlε

+
l−i1 (εt−j ≥ 0)

]
ψt−s−j

+
1

σ4

T∑
t=1+i

T∑
l=1+j

E
[
εtε

+
t−iεlε

+
l−j
]
.

Consider first i = j. Then the second and the third term in (A.2) are zero. The only
relevant cases when expectation is non zero for the first term are when t = l; s = k and
for the fourth term when t = l. These facts together with the fact that

F0 := E [1 (εt−i ≥ 0)] =

∫ ∞
0

dFε (x) = 1− Fε (0) ,

implies that

E [sβ,isβ,i] = F0

T∑
t=1+i

t−i−1∑
s=1

ψ2
t−s−i +

φ2

σ2
(T − i)

= F0

T∑
t=1+i

t−i∑
s=1

ψ2
t−s−i +

φ2 − σ2F0

σ2
(T − i) (A.3)

= F0 tr
[
(M−1

α Bi)(M−1
α Bi)′

]
+
φ2 − σ2F0

σ2
(T − i). (A.4)

When i > j, the second term in (A.2) as well is zero and the only relevant case for the
first term is when t = l; s = k and for the fourth term when t = l. However, the third
term in (A.2) when t = l and s = t− i has non zero expectation and can be expressed as
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σ2φ2 (1−F0)
∑T

t=1+i ψi−j. This results in the following outcome

E [sβ,i, sβ,j] = F2
0 tr

[
(M−1

α Bi)(M−1
α Bj)′

]
+

(T − i)
σ2

(
(φ2 − σ2F0)F0ψi−j + φ2

1

)
. (A.5)

Finally, for i < j the results are identical to those obtained for i > j due to the symmetry
of the variance covariance matrix.

(ii) The same techniques are used to find the covariance between sα,i and sβ,j. For
the case when j < i we have that

E [sα,isβ,j] = F0

T∑
t=1+i

t−i∑
s=1

ψ2
t−s−i (A.6)

= F0 tr
[
(BiM−1

α )(BjM−1
α )′
]
, (A.7)

and for j ≥ i additional terms enter the expression, i.e.,

E [sα,isβ,j] = F0 tr
[
(BiM−1

α )(BjM−1
α )′
]

+
(φ2 − σ2F0)

σ2
ψi−j (T − j) , (A.8)

which completes the proof of the Lemma.

Proof of Theorem 8

To lighten the notational load in what follows we omit the argument θ0. Then rewrite

the score vector as sβ = 1
σ2

∑
t Zt,T , where Zt,T =

(
Z

(1)
t,T , ..., Z

(p)
t,T

)′
with Z

(i)
t,T defined as

Z
(i)
t,T =

t−i∑
s=1

εtε
+
s ψt−s−i = εtξt−i,

and ξt−i denotes
t−i∑
s=1

ε+
s ψt−s−i. To investigate the limiting behavior the Cramer-Wold

device will be applied which tells that it is sufficient to study the limiting distribution of
a sequence of scalars ηt,T = λ′Zt,T , where λ is a p× 1 vector such that ‖λ‖ = 1 and ‖·‖
defines an L2 vector norm.

The central limit theorem for martingale difference sequences (hereafter, mds) applies
to the {ηt,T} if the following holds: 4

(i) {ηt,T ,Ft,T} is mds, where Ft,T is defined as an associated σ-algebra to the sequence
ηt,T such that ηt,T is measurable with respect to Ft,T ;

(ii) E |ηt,T |2+r < C <∞ for some r > 0 and all t;

(iii) define σ2
η,T ≡ 1

T
E

[(∑
t

ηt,T

)2
]

, where σ2
η,T > r′ > 0 and

1

T

∑
t

η2
t,T − σ2

η,T

p→ 0.

4see, e.g., White (2001), Corollary 5.26
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It is straightforward to see that condition (i) is satisfied since E [ηt,T |Ft−1,T ] = λ′E [Zt,T |Ft−1,T ] =
0 and the assumption on εt assures that E |ηt,T | <∞. To verify condition (ii) notice first
that by Cauchy- Schwarz and Minkowski’s inequalities

E |ηt,T |2+r ≤ ‖λ‖2+r E ‖Zt,T‖2+r ≤

(∑
i

(
E
∣∣∣Z(i)

t,T

∣∣∣2+r
) 1

2+r

)2+r

.

Hence, condition (ii) follows from uniform L4+r boundedness of εt, uniform L4+r bound-
edness of ε+

t (implied by assumption 3) and the following arguments

E
∣∣∣Z(i)

t,T

∣∣∣2+r

≤
(
E |εt|4+r E |ξt−i|4+r) 1

2

≤ C

(
t−i∑
s=1

(
E
∣∣ε+
s ψt−s−i

∣∣4+r
) 1

4+r

)2+r

≤ C1

(
t−1∑
s=1

|ψt−s−i|

)2+r

<∞,

where the second inequality follows from the Minkowski’s inequality and the last one from
invertibility and stability of the process.

Regarding condition (iii), first it is clear that σ2
η,T is bounded away from zero, i.e.,

σ2
η,T =

1

T
E

(∑
t

λ′Zt,T

)2
 =

1

T
λ′V

(IM)
β λ > 0.

Second, to show the convergence of 1
T

∑
t η

2
t,T−σ2

η,T it is sufficient to show the convergence
of

1

T

∑
t

Z
(i)
t,TZ

(j)
t,T −

1

T
Vβ(i, j) =

1

T

∑
t

(
ε2
t − σ2

)
ξt−iξt−j +

1

T
σ2
∑
t

Xt−1, (A.9)

where Xt−1 ≡
∑

t

(
ξt−iξt−j − γ2

(∑T
t=1+max(i,j) ψ

(i)

t ψ
(j)

t − Ji,j
))

. The first term on the

r.h.s. of (A.9) satisfies the mds property and E
∣∣(ε2

t − σ2) ξ2
t−1

∣∣2+r
< ∆ < ∞. Therefore

the law of large numbers for mds gives that 1
T

∑
t (ε2

t − σ2) ξt−iξt−j
p→ 0. Moreover,

assumption 3 with standard arguments (see, e.g., Hamilton, 1994, Chapter 7, pp.192-
193) implies that Xt−1 is uniformly integrable L1 mixingale which in turn gives that
1
T

∑
tXt−1

p→ 0.
Proofs of limiting results of AsAR model are similar to those given for AsMA and

hence are omitted.

B Appendix: Tables
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Table 2.1: Rejection frequencies (in% ) under the null of no asymmetric effects for AsMA and AsAR processes

εt ∼ N(0, 1) εt ∼ B(0, 1, 0.8, 3) εt ∼ GARCH(1, 1)

MA(1) AR(1) MA(1) AR(1) MA(1) AR(1)

α LM
(IM)
T LM

(OPG)
T LM

(Reg)
T LM

(IM)
T LM

(OPG)
T LM

(Reg)
T LM

(IM)
T LM

(OPG)
T LM

(Reg)
T LM

(IM)
T LM

(OPG)
T LM

(Reg)
T LM

(IM)
T LM

(OPG)
T LM

(Reg)
T LM

(IM)
T LM

(OPG)
T LM

(Reg)
T

T = 50

0.0 7.9 6.3 6.5 5.8 6.0 4.9 5.6 7.4 5.7 4.8 7.1 4.8 9.1 6.6 8.8 7.8 6.3 8.9
0.1 6.1 7.2 5.6 4.2 6.5 6.1 6.6 7.7 5.9 4.6 7.3 5.9 9.1 6.8 8.9 6.5 5.0 7.5
0.2 7.1 5.8 4.7 4.4 5.5 5.1 5.5 5.4 5.6 4.1 6.4 5.2 8.9 6.4 9.1 6.9 6.2 9.0
0.3 6.6 7.7 6.3 4.2 5.3 4.8 6.4 8.0 6.1 3.4 7.3 5.2 8.5 6.0 8.2 6.1 5.3 8.3
0.4 6.7 8.0 6.9 3.8 5.5 4.3 6.0 7.9 5.4 2.7 6.8 5.8 8.4 5.0 8.8 5.3 5.2 7.5
0.5 7.3 6.5 5.1 3.0 5.0 4.7 6.8 7.1 4.9 2.5 6.1 4.8 8.4 6.1 8.9 4.5 4.8 7.0
0.6 7.4 7.8 5.8 2.6 6.0 5.2 7.8 8.5 6.1 2.4 5.8 4.7 8.1 6.0 9.1 3.5 5.0 7.2
0.7 8.3 8.4 6.4 3.2 5.1 4.4 8.1 9.9 6.7 2.1 7.0 5.1 8.5 7.1 10.9 3.4 5.1 7.4
0.8 8.7 10.9 7.4 1.9 5.3 4.7 9.4 11.5 8.0 2.3 5.1 3.5 8.6 8.8 12.2 4.1 5.5 7.7
0.9 7.9 11.9 9.6 3.0 5.7 4.6 8.9 13.9 9.0 2.6 5.6 4.5 7.1 11.8 12.2 5.0 5.8 8.7

T = 100

0.0 5.9 5.2 4.7 5.1 5.8 5.3 4.8 6.3 5.3 4.9 5.8 5.4 8.0 6.1 8.9 7.9 5.2 8.2
0.1 5.5 5.8 5.4 4.7 6.0 4.9 4.5 6.2 4.9 4.7 6.2 5.3 9.2 5.9 9.0 8.5 6.0 9.0
0.2 5.0 5.5 4.5 4.1 5.7 4.6 4.9 6.7 5.8 5.2 5.2 4.3 8.7 6.1 8.7 7.3 5.8 8.1
0.3 5.7 5.3 4.8 4.3 5.6 4.8 4.0 5.8 4.5 4.5 6.6 5.5 8.3 4.9 7.6 6.1 4.8 7.8
0.4 5.0 5.3 4.7 3.8 5.9 4.9 5.1 5.8 5.5 3.9 6.3 5.4 8.5 4.8 8.7 6.4 5.5 7.8
0.5 5.4 5.1 4.6 3.5 5.8 4.8 4.4 5.0 4.6 3.5 5.6 4.6 8.3 4.8 7.1 5.0 4.6 6.8
0.6 4.5 6.4 5.7 3.6 5.3 5.3 4.3 6.1 6.2 2.6 4.7 4.2 7.6 5.4 8.5 5.4 5.7 7.4
0.7 4.9 5.3 4.8 3.2 5.3 5.1 4.4 6.1 5.7 3.0 5.7 4.7 8.0 4.7 8.9 3.9 4.0 6.0
0.8 5.2 6.2 6.4 3.3 5.7 4.8 5.2 6.2 5.8 3.4 5.3 4.1 7.2 5.5 8.9 5.4 5.0 7.2
0.9 5.3 7.4 7.7 3.7 5.2 4.3 5.9 8.5 6.3 3.2 5.2 4.1 6.8 8.1 10.8 6.4 5.6 8.2

T = 200

0.0 4.8 6.1 5.9 5.0 5.5 5.1 4.1 5.6 5.5 4.9 6.1 5.5 8.3 5.1 8.4 9.4 6.2 9.5
0.1 4.2 5.4 4.8 4.6 5.6 4.6 4.7 6.3 5.8 5.5 5.5 5.3 9.5 6.0 9.5 7.8 5.2 8.2
0.2 5.0 5.1 5.1 4.8 5.4 5.0 4.0 5.8 5.6 5.3 6.4 5.7 8.2 4.6 7.8 9.3 6.3 9.4
0.3 4.2 5.4 5.2 5.2 6.5 5.9 3.8 4.6 4.1 4.9 6.0 5.9 9.6 6.0 9.4 7.6 4.9 7.9
0.4 4.3 6.7 6.5 4.1 4.7 4.4 4.3 5.2 5.1 5.0 5.6 4.6 7.8 4.7 7.7 7.1 5.3 8.0
0.5 4.7 5.0 5.2 4.9 5.7 5.5 4.4 5.7 5.2 3.8 5.2 4.2 9.1 5.3 8.7 7.0 5.5 8.2
0.6 4.0 5.1 5.0 4.1 4.8 4.5 3.4 5.3 5.0 4.8 6.1 5.3 8.0 5.1 8.1 6.1 4.8 7.9
0.7 4.5 5.7 5.9 3.8 5.0 4.6 3.8 6.4 6.8 3.5 5.3 4.6 7.5 4.5 7.7 7.0 5.7 8.3
0.8 4.4 4.9 4.6 4.1 5.7 5.3 4.8 5.4 5.1 3.7 6.3 5.4 7.3 5.2 8.5 7.2 6.5 9.2
0.9 4.5 6.3 7.2 3.9 4.4 4.5 5.4 5.6 5.5 3.5 4.4 4.1 7.7 6.5 10.2 6.4 5.3 7.7

Notes: The nominal size is 5%. The errors εt are drawn from N(0, 1) (left panel), B(0, 1, 0.8, 3) (middle panel) and GARCH(1,1) (right panel).
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Table 2.2: Lag selection frequencies (in% ) under different AsMA and AsAR DGPs

yt = εt + 0.5ε−t−1 + 0.4ε−t−2 + 0.3ε+
t−1 + 0.2ε+

t−2 yt = εt + 0.5y−t−1 + 0.4y−t−2 + 0.3y+
t−1 + 0.2y+

t−2

T \ p 1 2 3 4 5 6 1 2 3 4 5 6

100
AIC 3.9 67 12.2 6.3 5.6 5 6.05 68.15 12 5.4 4.35 4.05
BIC 20.05 75.95 3.2 0.5 0.15 0.15 20.75 75.85 2.65 0.5 0.25 0
HQ 9.85 77.5 7.6 2.75 1.25 1.05 11.7 77.45 7.15 1.75 1.3 0.65

200
AIC 0.25 73.75 10.85 6.7 4.75 3.7 0.15 73.55 12.65 6 4.5 3.15
BIC 2.1 95.45 2.05 0.4 0 0 2.35 94.95 2.6 0.05 0.05 0
HQ 0.45 89.95 5.8 2.4 0.85 0.55 0.75 88.5 7.85 1.4 1.25 0.25

400
AIC 0 74.4 11.75 6.9 3.95 3 0 71.05 13.9 5.9 5.3 3.85
BIC 0 97.85 1.9 0.25 0 0 0.05 97.1 2.6 0.2 0.05 0
HQ 0 90.9 6.4 2 0.4 0.3 0 88.9 8.35 1.75 0.5 0.5

yt = εt + 0.5ε−t−1 + 0.3ε−t−2 + 0.1ε+
t−1 + 0.1ε+

t−2 yt = εt + 0.5y−t−1 + 0.3y−t−2 + 0.1y+
t−1 + 0.1y+

t−2

100
AIC 19.45 53.2 10.4 6.95 5.65 4.35 21.1 55.5 10.05 5.8 4.4 3.15
BIC 49.95 46.7 2.35 0.8 0.15 0.05 50.2 47.85 1.45 0.35 0.15 0
HQ 32.65 55.8 6.55 2.7 1.65 0.65 34.5 56.75 5.2 1.9 1.3 0.35

200
AIC 4.8 65.1 13.25 7.45 5.15 4.25 5.05 69.35 11.3 5.9 5.05 3.35
BIC 23.45 71.4 2 0.25 0.2 0 22.05 76.15 1.3 0.45 0.05 0
HQ 10.65 78 2.4 2.4 0.9 0.65 10.9 81.2 4.7 2.05 0.85 0.3

400
AIC 0.15 67.95 14.05 7.75 5.3 4.8 0.15 67.25 10.7 8.2 7.25 6.45
BIC 2.65 94.3 2.7 0.35 0 0 2.3 95.45 1.7 0.45 0.1 0
HQ 0.5 88.1 7.5 2.4 0.95 0.55 0.7 89.15 4.8 2.95 1.7 0.7

Table 2.3: Estimation results for the growth
of U.S. unemployment rate

Regressor Estimate t-statistic

yt−1 -0.0500 -0.9343
yt−2 0.2124 5.7014*
yt−3 0.1452 3.9078*
yt−4 0.1265 3.3830*
y+
t−1 0.1658 2.3093*

Notes: * denotes significance at the 1% level

C Appendix: Figures
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Figure 2.1: Power of the LMT variants when εt ∼ N (0, 1). Figures are generated for β = 0 and α
runs from 0 to 0.9 with step 0.1. The left panel presents results for the AsMA DGP and the right
panel for the AsAR one. Number of MC replications for each output is 2000
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Figure 2.2: Power of the LMT variants when εt ∼ B (0, 1, 0.8, 3). All figures are generated for two
scenarios: β = 0, α runs from 0 to 0.9 with step 0.1, and α = 0, β runs from 0 to 0.9 with step 0.1.
The left panel presents results for the AsMA DGP and the right panel for the AsAR one. Number
of MC replications for each output is 2000
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Figure 2.3: Power of the LMT variants when εt ∼ GARCH (1, 1). Figures are generated for β = 0
and α runs from 0 to 0.9 with step 0.1. The left panel presents results for the AsMA DGP and the
right panel for the AsAR one. Number of MC replications for each output is 2000
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Figure 2.4: Power of the LMT variants when the lag length is determined using the BIC. Errors are
generated as N (0, 1). Each figure is generated for β = 0 and α runs from 0 to 0.9 with step 0.1.
The left panel presents results for the AsMA DGP and the right panel for the AsAR one. Number
of MC replications for each output is 2000
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Figure 2.5: The growth of the U.S. unemployment rate from January 1958
to December 2014.
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Chapter 3

Forecasting Methods for Functional

Time Series

3.1 Introduction

In recent years advances in data collection and storage led to the possibility of recording

many real life processes at increasingly high accuracy. Examples include high frequency

data such as financial transactions, environmental data such as ozone or insolation maps

and economic data such as income distributions or yield curves. The availability of large

amounts of data offers manifold opportunities for researchers to obtain a better under-

standing of the underlying processes. However, to make use of this growing information

and efficiently handle big data sets, suitable statistical tools are required to describe,

model and forecast the relevant characteristics of this data. Functional data analysis

(FDA) has emerged as a response to this request and has consequently been growing into

an important field of statistical research.

In FDA, where large data sets are utilized in the form of functional observations (or

curves), the focus has been mostly on independent and identically distributed observa-

tions. In many empirical applications data is collected sequentially over time. Conse-

quently, we expect that the functional observations in a given time period are affected by

past observations. Therefore, additional tools are required to analyze data that is given in

the form of a functional time series (FTS). This paper studies the problem of describing

and forecasting FTS and consists of two main parts. In a first step we provide a simple yet

broad framework to quantify time dependencies in FTS. Second, we develop forecasting

techniques for FTS under the given definition of time dependency.

Stochastic processes with time dependencies have been considered in the statistical

literature. In the context of classical (i.e., finite dimensional) time series analysis, er-

godicity and various mixing conditions are well established and frequently used (see, e.g.

Hamilton (1994) and Davidson (1994) for a review). In the functional context, however,
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only few concepts are available when dealing with time-dependent observations. A key

reference is Hörmann and Kokoszka (2010) who introduce a moment based notion of weak

dependence using m-dependence. In this paper we complement the approach of Hörmann

and Kokoszka (2010) by suggesting an alternative concept of time dependencies for FTS.

Using the spectral Karhunen-Loeve representation functional observations can be repre-

sented by their functional principal component (FPC) scores. Therefore, the dependence

between functional observations can be quantified through their respective FPC scores.

This approach allows us to adapt various concepts of dependence available in the time

series literature to the functional context. In particular, we consider dependence based

on the autocovariances and cumulants of FPC scores. Further, since FPCs play a major

role in explaining time dependencies it is necessary to establish the consistency of their

estimates. We derive the convergence rates for the estimators of the FPCs under quite

general serial dependence that allows for the long range dependence of the FPC scores.

This in turn extends the result in Hörmann and Kokoszka (2010).

In the second part of the paper we discuss forecasting methods for FTS. Most work

dedicated to the prediction of (FTS) has focused on the functional autoregressive model

of order one (FAR(1)) suggested in Bosq (2000). In particular, Bosq (2000) derives the

estimator and the predictor for the FAR model using the Yule Walker equation and shows

their consistency. Besse et al. (2000) propose a local adaptation of the FAR(1) model by

introducing a nonparametric weighted kernel estimator. The issue of weak convergence

for estimates of the FAR(1) model is addressed in Mas (2007). Kargin and Onatski (2008)

develop a predictive factor technique for the estimation of the autoregressive operator.

Park and Qian (2012) apply the FAR(1) framework to model FTS of distributions. Did-

ericksen et al. (2012) provide a small sample simulation study of the performance of the

FAR(1) model and several competing prediction techniques. More recently, Kokoszka and

Reimherr (2013) suggest a testing procedure to determine the lag order for more general

FAR(p) processes. Aue et al. (2015) suggest a simple alternative procedure to transform

the FAR model into a vector autoregressive model of functional principal scores, where

standard multivariate techniques can be used to model and predict FTS.

In order to forecast FTS that follow our concept of time dependence we discuss two

forecasting techniques. First, FTS processes that have a linear response to the past func-

tional observations can be forecasted by the FAR model. We show that the autocovariance

estimator given in Bosq (2000) is consistent under our notion of time dependence and de-

rive its convergence rate. However, the concept of time dependence we introduce covers

a broader class of processes than described by FAR. More precisely, the behavior of the

autocovariances of the FPC scores is less restrictive (in particular we can allow for long

range dependence) and non-linear responses are possible. For this reason we generalize

the FAR model to the functional additive autoregressive model (FAAR). The idea of

functional additive models was introduced by Müller and Yao (2008) in the context of
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functional linear regressions. This approach gives rise to a more flexible and essentially

nonparametric model and allows us to consider the problem of prediction as a problem

of nonlinear response of the FPC scores. To estimate the nonlinear responses we pro-

pose a k-nearest neighbors classification approach that is simple to implement and in

the finite-dimensional setting well understood. As this approach has been successfully

applied to classical time series analysis (see, e.g., Cover and Hart (1967), Stone (1977),

Stute (1984) and Yakowitz (1987)), we can use the available theoretical results to derive

the convergence rate of our predictor in the FAAR model.

To assess the performance of the proposed forecasting methods in small samples we

provide a Monte Carlo simulation study. In particular, we compare the accuracy of the

prediction of the FAAR model to the FAR model, the multivariate score model suggested

by Aue et al. (2015) and benchmark models such as mean predictor, naive predictor and

prediction of VAR for discrete observations. Further, we compare the performance of the

above mentioned FTS models in forecasting electricity consumption in Denmark, Finland,

Norway and Sweden. Our results show that FAAR models and multivariate score models

provide the most accurate forecasts.

The remainder of this paper is organized as follows. Section 3.2 introduces the notion of

dependence for functional time series. Section 3.3 discusses the impact of time dependence

on the estimators of the functional principal components. In Section 3.4 we address

the FAR model, while a generalization of the FAR model to FAAR, its estimation and

asymptotic properties are presented in Section 3.5. A supporting small sample study is

presented in Section 3.6. An empirical application to electricity consumption is described

in Section 3.7 and concluding remarks are given in Section 3.8. All proofs, figures and

tables are collected in the Appendix.

3.2 Methodology and Assumptions

We shall assume that we observe a series of functional observations {Xi(t)} for t ∈ [a, b]

and i = 1, ..., N , where the interval [a, b] is normalized to [0, 1]. For each i the observation

Xi belongs to the Hilbert space H = L2 ([0, 1], ‖ · ‖) of square integrable functions which

is equipped with a norm ‖ · ‖ induced by the inner product 〈x, y〉 ≡
∫ 1

0
x(t)y(t)dt. The

object {Xi(t)}Ni=1 is referred to as functional time series (see e.g., Horváth and Kokoszka,

2012, Chapter 13-16 and Bosq, 2000 for a survey on FTS analysis) and we refer to i as the

time index. In what follows the data {Xi} are assumed to be given in a functional form

since the problem of data representation in functional form has been extensively studied

in the literature (see, e.g., Ramsay and Silverman, 2005 for a review of the available

techniques and general description of FDA).

Our attention is restricted to weakly stationary processes allowing for the standard
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time series representation

Xi = G (εi, εi−1, . . .) , (3.1)

where {εi} denotes the series of errors or innovations which are i.i.d elements from Hilbert

space H, and G is a measurable function G : H∞ → H. In this paper two cases of

representation (3.1) are considered. The first is the functional autoregressive (FAR) model

that models linear responses of a FTS to its lags (see Section 3.4). Second, To account

for possible nonlinear responses we extend the FAR framework to more general settings

using the functional additive approach suggested in Müller and Yao (2008) for functional

regressions (see Section 3.5). Representation (3.1) can also be extended to non-stationary

sequences {Xi}. We do not pursue this topic in our paper and refer the interested reader

to Horváth et al. (2014) for additional insights. For future reference, S denotes the

space of Hilbert-Schmidt operators from H to H and is equipped with the operator norm

‖ · ‖S (i.e., for some Ψ ∈ S, ‖Ψ‖S = (
∑∞

h=1 ‖Ψ(eh)‖2)
1/2

for any orthonormal basis

{eh}h≥1) and the space of bounded linear operators on H is denoted by L with the norm

‖Ψ‖L = sup‖x‖≤1 {‖Ψ(x)‖, x ∈ H}.
We begin by describing the concept of time dependency in functional time series. It

is founded on the spectral decomposition of random functions as follows. All random

functions are defined on a common probability space (Ω,A, P ). Let LpH (Ω,A, P ) denote

the space of H valued random variables X such that for p ≥ 1, E‖X‖p < ∞. Every

function X ∈ L2
H possesses a mean function µ := E (X) and a covariance operator C(x) :=

E [〈X − µ, x〉X − µ], where x ∈ L2 and C admits the spectral decomposition. That is,

C(x) =
∞∑
`=1

λ`〈ψ`, x〉ψ`, (3.2)

where {λ`}`≥1 is the strictly positive decreasing sequence of eigenvalues and {ψ`}`≥1 de-

notes the corresponding sequence of eigenfunctions (i.e., C(ψ`) = λ`ψ`) which forms an

orthonormal basis system of H. It follows that X admits the Karhunen-Loève represen-

tation

X(t) = µ(t) +
∞∑
`=1

θ`ψ`(t), (3.3)

where θ` = 〈X,ψ`〉 denotes the `-th functional principal component score of X. By

construction, the sequence of functional principal component scores {θ`}`≥1 is such that

the elements θ` are uncorrelated across the spectral dimension `, have mean zero and

variance λ`. Then for a given weakly stationary FTS {Xi} (such that for each i = 1, ..., N ,

Xi ∈ L2
H) Xi admits a Karhunen-Loève decomposition which in turn yields a sequence

of scores {θi,`}, and the corresponding sequences of eigenvalues {λ`} and eigenfunctions

{ψ`}`≥1.

The following assumption formalizes how time dependencies between functional obser-
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vations {Xi} are translated into their score series. Let κ`1,...,`q (0,τ1,...,τq−1) denote the q-th

order cumulant of (θi,`1 , θi+τ1,`2 , . . . , θi+τq−1,`q), where τ1, . . . , τq−1 ∈ N are integers (see,

e.g., Brillinger, 2001, p.19 for a more detailed description of cumulants). Then we shall

assume:

Assumption 3′′

(i) For some α > 2 and all ` ≥ 1,

λ` − λ`+1 ∼ `−α−1.

(ii) Define B
(h)
`,s := sup

i
|E [θi,`θi−h,s]|. Then there exists a constant B > 0 and some

β > 0 such that

B
(h)
`,s ≤ B h−β

√
λ`λs.

(iii) For fixed q ≥ 3 and some constant B > 0, the joint q-th order cumulants are

absolutely summable

∞∑
. . .
∑

τ1,...,τq−1=−∞

∣∣κ`1,...,`q (0,τ1,...,τq−1)

∣∣ ≤ B

q∏
j=1

λ
1/2
`j
.

Part (i) of Assumption 3′′ is the standard assumption that prevents the spacing be-

tween adjacent eigenvalues λ` from being too small. It also implies that λ` ∼ `−α. The

importance of spacing property (i) will become particularly apparent from the results of

Corollary 4, where the asymptotic properties of eigenfunction estimators are studied.

Part (ii) and (iii) of Assumption 3′′ describe the form of time dependencies that

we allow for the scores {θi,`}i,`≥1. The assumed behavior of B
(h)
`,s , which represents a

measure of absolute covariances between score series {θi,`} and lagged series {θi−h,s}, is

only a mild restriction. In particular, part (ii) implies an intuitive restriction on the

absolute summability of the h-th autocovariances of the score series {θi,`}i across the

spectral dimension `, since
∑

`≥1 |E [θi,`θi−h,`]| ≤
∑

`≥1B
(h)
`,` ≤ Ch−β. However, absolute

summability of the autocovariances of the score series is not required across the time

dimension i and fixed spectral dimention `. More precisely, for 0 < β < 1 one can

conclude that
∑N

h=1 E [θi,`θi−h,`] ≤
∑N

h=1 B
(h)
`,` is of order N1−βλ` which diverges for fixed

` and large N . In what follows we refer to this as a long range dependence property. A

similar restriction holds for the covariances of the score series across time dimension with

fixed the spectral dimensions ` 6= s, i.e.,

N∑
h=1

|E [θi,`θi−h,s]| = O
(
N1−β

√
λ`λs

)
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Finally, Assumption 3′′ (iii) requires absolute summability of the joint cumulants of

{θi,`} up to q-th order. This allows us to control the temporal dependencies in the q-th

moments of the score series across spectral and time dimension. In particular, condition

(iii) for one fixed spectral direction `,
∑∞

τ1,...,τq−1=−∞ |κ`,...,`(0,τ1,...,τq−1)| ≤ Cλ
q/2
` , implies

the finiteness of the q-th moment, i.e., E‖Xi‖q < ∆ < ∞ for all i. For more details on

how moments are related to cumulants see Appendix A equation (A.1). In general this

cumulant condition is standard for the time series literature (see, e.g. Andrews, 1991,

Brillinger, 2001, and Demetrescu et al., 2008) and provides us with a useful measure of

the joint statistical dependence of higher order moments and a convenient tool for deriving

the rates of convergence. It should be noted that the value of q is method-specific and as

we shall see in the sequel relaxing linear structure of the model may require strengthening

the restrictions on the moments.

Furthermore, note that the concept of α-mixing is closely related to the form of time

dependencies assumed in (ii)-(iii). In fact, α-mixing together with finite sixth moments

implies absolute summability of the joint cumulants up to sixth order (see, e.g. Andrews,

1991 or Gonçalves and Kilian, 2007). Hence, the main difference between the two ap-

proaches lies in the way autocovariances are handled. In general we find that conditions

(ii) and (iii) have several advantages in a functional setting. First, they allow for a

broader scope of time dependencies (in that absolutely summable autocovariances are not

necessary which can be controlled through parameter β). Second, incorporating decay

across the spectral dimension ` is straighforward, which is crucial for the analysis. Third,

the stated conditions have an intuitive interpretation of the time dependence concept for

functional data when compared to various mixing properties. Moreover, using standard

time series techniques it can be easily verified in practice if there is time dependence

between the scores of the FTS.

3.3 Properties of Functional Principal Components

The fundamental ingredients for describing time dependence in functional data are princi-

pal component scores. However, in practice scores and other FPC (C and its eigenvalues

and eigenfunctions) are not known and must be estimated. Therefore, before developing

forecasting methods that rely on Assumption 3′′, it is crucial to verify the convergence

of the estimated FPC to their population counterparts. Consistency results for the FPC

are available for independent observations (see, e.g., Dauxois et al., 1982) and for L4-m-

dependent functional data (see e.g., Hörmann and Kokoszka, 2010). In this section we

show that consistency of the corresponding estimators extends to our time dependency

settings.

We start with the preliminaries. Suppose we observe X1, ..., XN . The standard es-
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timators for the mean function, µ, and the covariance operator, C(x), are given by the

following sample averages

µ̂(t) =
1

N

N∑
i=1

Xi (t) , (3.4)

ĈN(x) =
1

N

N∑
i=1

〈Xi − µ̂, x〉 (Xi (t)− µ̂ (t)) , x ∈ L2. (3.5)

Further, we denote the estimators of eigenvalues and eigenfunctions as {λ̂`}L`=1 and {ψ̂`}L`=1,

respectively. Using ĈN(t), they are computed from the eigenequation

ĈN(ψ̂`) = λ̂`ψ̂`.

Typically estimates of eigenelements (λ̂` and ψ̂`) can be obtained for an arbitrary fixed

level L such that L < N . The asymptotic results in Section 3.4 and 3.5 provide a discussion

of this issue, where L is set to be a function of N , such that L→∞ as N →∞. Ramsay

and Silverman (2005, Section 6.4) discuss practical/computational methods for solving

eigenequations.

Remark 13 In what follows we shall assume without loss of generality that Xi have

means equal to zero for all i = 1, ..., N . For any practical application the methodology

introduced in this paper remains unchanged if data are centered prior to the forecasting

exercise. For the completeness of the discussion we state the following result for the

estimator of µ. For the weakly stationary FTS {Xi}Ni=1 that fulfills Assumption 3′′ (i)-(ii)

we have

E ‖µ̂N − µ‖2 = O
(
max

{
N−β, N−1

})
.

The following result establishes the consistency of estimator (3.5).

Theorem 9 If a weakly stationary FTS {Xi}Ni=1 fulfills Assumption 3′′ with joint cumu-

lants up to order 4 then

E
∥∥∥ĈN − C∥∥∥2

S
= O

(
N−2β∗

)
,

where β∗ := min{β, 1/2}.

Theorem 9 implies that the fastest convergence speed that can be achieved for the

empirical estimator of the covariance operator is N−1 when β ≥ 1/2. This extends

previously obtained results in Bosq (2000) and Hörmann and Kokoszka (2010) showing

that the fastest convergence can also be achieved for processes that potentially posses long

range dependencies. In other words, the absolute summability of the autocovariances of

the functional principal component score series {θi,`}i≥1 across the time dimension i, is

not necessary to get rate N−1. If one is only interested in establishing the consistency of
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the covariance operator estimator, part (ii) of Assumption 3′′ can be relaxed to B
(h)
`,s ≤

Bbh
√
λ`, λs with

∑∞
h=1 h

−1bh < ∞. This condition allows for a slow decay of the time

dependencies represented by component bh that can even be of logarithmic order bh =

O
(

ln (h)−1−β
)

for β > 0 (see, e.g., Davidson, 1994, Theorem 2.31).

The autocovariance operator defined as

Γh = E [〈Xi, x〉Xi−h] , (3.6)

for i = 1, ..., N and some h, can estimated similarly by the sample analogue

Γ̂h,N =
1

N − 1

N−1∑
i=1

〈Xi, x〉 (Xi (t)) . (3.7)

Furthermore, the following holds for any autocovariance operator of order h.

Corollary 3 If a weakly stationary FTS {Xi}Ni=1 fulfills Assumption 3′′ with joint cumu-

lants up to order 4 then

E
∥∥∥Γ̂h,N − Γh

∥∥∥2

S
= O

(
N−2β∗

)
.

Our next result gives explicit bounds for the mean squared error of the eigenelement

estimators.

Corollary 4 If a weakly stationary FTS {Xi}Ni=1 fulfills Assumption 3′′ with joint cumu-

lants up to order 4 then

(i) E
(

sup
`≥1

∣∣∣λ̂` − λ`∣∣∣2) = O
(
N−2β∗

)
,

(ii) E
(

sup
1≤`≥L

∥∥∥a`ψ̂` − ψ`∥∥∥2
)

= O
(
δ2
`N
−2β∗

)
,

where a` := sign(〈ψ̂`, ψ`〉), δ` := max1≤k≤`(λk − λk+1)−1.

The results in Corollary 4 indicate that, as ` increases, it becomes more difficult to esti-

mate the eigenfunctions ψ` associated with λ` since the expected L2 error is proportional

to δ2
` . As a consequence, the spacing between adjacent eigenvalues {λ`}`≥1 cannot decrease

too fast. In particular, by Assumption 3′′(i) E
(

sup
1≤`≥L

∥∥∥a`ψ̂` − ψ`∥∥∥2
)

= O
(
L2(1+α)N−2β∗

)
.

Therefore, restriction L = o
(
Nβ∗/(1+α)

)
has to hold for estimators {ψ̂`}L`=1 to be consis-

tent. Further, the estimator ψ̂l of ψl is only identified up to a change in sign. As is

standard in the literature, we shall tacitly assume that the sign of ψ̂l is chosen such that∫
ψ̂lψl ≥ 0.

Note, recently Hörmann and Kidziński (2015) proofed that for the consistency of FPCs

estimators the spacing property given in Assumption 3′′(i) can be relaxed to more general
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settings. However, our subsequent analysis of the forecasting techniques in Sections 3.4

and 3.5 requires explicit rates of convergence for the estimators λ̂` and ψ̂` and consequently

the spacing property.

3.4 Forecasting Linear FTS

In this section we discuss estimation and forecasting techniques for FAR models. As

pointed out in the introduction the FAR(1) model is the model most commonly used in

the FTS analysis and it is natural to use it as the main linear FTS benchmark model.

The theory of FAR(1) processes in Hilbert and Banach spaces is studied in Bosq (2000)

to which we refer the reader for a general overview. In this section we study the estimator

suggested in Bosq (2000) and derive its convergence rate under the time dependency

assumption stated in Section 3.2. For simplicity of exposition we consider the FAR model

of order one.1 The model takes the form

Xi = ρ (Xi−1) + εi, (3.8)

where εi is a strong white noise in L2
H , i.e., εi is a zero mean iid sequence in L2

H with

the covariance operator Cε(x) := E [〈εi, x〉εi] being a positive definite Hilbert-Schmidt

operator. The autoregressive operator ρ is a assumed to be Hilbert-Schmidt operator

satisfying

‖ρk‖L < 1 for some k ≥ 1. (3.9)

This condition assures strict stationarity for process Xi (see, e.g., Bosq, 2000, Theorem

3.1). In other words, if (3.9) holds then function G(·) in FTS representation (3.1) takes

an additive linear form

Xi =
∞∑
h=1

ρh(εi−h).

To formulate the estimator of ρ(·) and derive its convergence rate we first address

the well known issue often referred to as an ill-posed inverse problem. Recall that

C(x) = E [〈Xi, x〉Xi] and Γh(x) = E [〈Xi, x〉Xi−h], and both operators allow for spec-

tral representations

C(x) =
∞∑
`=1

λ`〈ψ`, x〉ψ`, (3.10)

Γh(x) =
∞∑
`=1

∞∑
s=1

E [θi,`, θi−h,s] 〈ψ`, x〉ψs. (3.11)

1See, e.g., Bosq (2000, Section 5) and Horváth and Kokoszka (2012, Chapter 15.1) for the review on
how to estimate higher order FAR models
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It follows from (3.8) that operator equation Γ1 = ρC holds and formally gives the solution

ρ = Γ1C
−1. However, the operator C does not have a bounded inverse on the entire space

H. It follows from (3.10) that C−1 =
∑∞

`=1 λ
−1
` 〈ψ`, x〉ψ`, where λ−1

` → ∞ as ` → ∞
and the domain of C−1 is restricted to D (C−1) = {y ∈ H |

∑∞
`=1〈y, ψ`〉2/λ2 <∞}. The

standard method in the literature to circumvent this problem is to use only the first L

functional components. That is, for λ1 > λ2 > . . . > 0 we define HL, a subspace of H

spanned by the L-eigenvectors ψ1, ..., ψL associated with λ1 > . . . > λL, and consider

C−1
L =

L∑
`=1

λ−1
` 〈ψ`, x〉ψ`, (3.12)

where C−1
L is the inverse of C on HL and L is the function of N such that L → ∞ as

N →∞. Then the estimator of ρ is based on (3.7), the sample analog of (3.12) and can

be formulated as

ρ̂N (x) =
1

N − 1

N∑
i=1

L∑
`,s=1

λ̂−1
` 〈ψ̂`, x〉θ̂i,`θ̂i+1,sψ̂s. (3.13)

Remark 14 Note that the FAR process (3.8)-(3.9) satisfies the time dependence notion

discussed in Section 3.2, however it impose stricter conditions on the autocovariances of

the FPC scores:

1. The FAR process (3.8)-(3.9) does not posses the long range dependence property (i.e.,

β > 1). Indeed, condition (3.9) implies
∑∞

h=1

∥∥ρh∥∥L < ∞ which in turn implies∑∞
h=1 ‖Γh‖L <∞. Using expression (3.11) one can conclude that

∑∞
h=1 ‖Γh‖L <∞

if β > 1.

2. The autocovariances of the FPC scores E[θi,`θi−h,`] decay faster then the variances

E[θi,`θi,`] across spectral dimension `. To see this note that the autoregressive oper-

ator ρ admits the representation

ρ(x) =
∞∑
`=1

∞∑
s=1

a`,s〈ψ`, x〉ψs, with x ∈ H, (3.14)

where a`,s = E [θi,`, θi−1,s]λ
−1
` denote the spectral coefficients. Further, we adopt the

approach of Hall and Horowitz (2007) for functional linear regressions and substitute

Assumption 3′′ (ii) with one, that allows us to control the decrease of the spectral

coefficients a`,s with more flexibility (see Assumption 3.3 in Hall and Horowitz,

2007). That is, instead of Assumption 3′′ (ii) assume there exists a constant B > 0,

some β > 1 and γ > 1/2 + α such that for all ` ≥ 1,

B
(h)
`,s ≤ B h−β`−γs−γ. (3.15)
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Then, since ρ is the Hilbert-Schmidt operator we have
∑∞

s=1

∑∞
`=1 a

2
`,s < ∞. The

squared summability of a`,s is assured if and only if γ > 1/2 + α. In turn, the

autocovariances of the FPC scores behave as E[θi,`θi−h,`] = O(`2γ) and decay faster

then the variances E[θi,`θi,`] = O(`α).

The following result shows the consistency of ρ̂N and its speed of convergence.

Theorem 10 If a FAR process (3.8)-(3.9) satisfies Assumption 3′′ (i) and (iii) with joint

cumulants up to order 4, and condition (3.15) then

‖ρ̂N − ρ‖L = Op

(
max

{
L2α+ 3

2

√
N

,L1+2(α−γ)

})
. (3.16)

The rate of convergence for the estimator of the autoregressive operator consists of two

parts. The first one, L
2α+3

2√
N

, characterizes the convergence of estimator ρ̂N to the truncated

true operator ρL = Γ1C
−1
L . Moreover, it restricts L for the estimator ρ̂N to be consistent

such that L = o
(
N1/(4α+3)

)
and L→∞ as N →∞. The second part, L1+2(α−γ), describes

asymptotic behaviour of the reminder ‖ρL − ρ‖L, which converge in probability to zero

since 1+2(α−γ) < 0. Note that the fastest convergence rate Op

(
N−1/2

)
can be achieved

when space H is finite dimensional which is inline with the results for the OLS estimator

of stationary multivariate autoregressive models (such as VAR for instance).

3.5 Forecasting Nonlinear FTS

As the correct model specification for FTS is not known in practice it might be too

restrictive to assume a linear modeling framework, as for instance, FAR model. For

this reason, in this section we propose a simple, yet robust and versatile approach to

tackle potential nonlinearity in FTS. We use the functional additive approach of Müller

and Yao (2008) to generalize FAR(1) model (3.8) and rewrite it as a functional additive

autoregressive model. Using equation (3.14) the FAR model can be rewritten as standard

linear regression model with infinitely many FPC score as predictors,

E [Xi+1|Xi] =
∞∑
s=1

∞∑
`=1

a`,sθi,`ψs,

In particular, the relationship between the response and predictor scores is modeled lin-

early as E [θi+1,s|Xi] =
∑∞

s=1 a`,sθi,`. Furthermore, the linear framework of the FAR

model and the uncorrelatedness of the FPS scores imply that E [θi+1,s|θi,`] = a`,sθi,`. As

suggested in Müller and Yao (2008), this model can be generalized by replacing the linear

terms a`,sθi,` by functional counterparts m`,s(θ`). This transforms the FAR model into a
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functional additive autoregressive model (FAAR)

E [Xi+1|Xi] =
∞∑
s=1

∞∑
`=1

m`,s(θi,`)ψs, (3.17)

where it is assumed that E[m`,s(θi,`)] = 0 for all `, s ≥ 1 to assure identifiability. We

impose a mild restriction on the model (3.17). Let the random principal component scores

θi,` have unconditional probability density function f`(θi,`), and write f`,s(θi+1,s|θi,`) for

the conditional probability density of θi+1,s given θi,`.

Assumption 2 m`,s(·), f` (·) and f`,s (·) are twice continuously differentiable and f`(·),

and f`(·) are bounded. Furthermore, the functional principal component scores θi,` and

θi,s are independent for ` 6= s.

That is, the only requirement for functions m`,s(·) is smoothness. Further, Assumption

2 strengthens contemporaneous uncorrelatedness of the FPC scores to independency. This

in turn implies that

E [θi+1,s|θi,`] = E [E [θi+1,s|Xi] |θi,`] = E

[
∞∑
q=1

mq,s(θi,q)|θi,`

]
= m`,s (θi,`) .

The simple and flexible framework of model (3.17) provides us with a non-linear alter-

native to the FAR model. In particular, representation (3.17) motivates a straightforward

forecasting scheme to predict the expected value of XN+1 through estimates of the con-

ditional means m`,s(θN,`). Define the predictor M(XN) := E [XN+1|XN ]. Then using the

approximation X̂i,L =
∑L

`=1 θ̂i,`ψ̂` instead of real functions Xi the estimator of M(XN)

can be constructed as

M̂N,L(X̂N,L) =
L∑
`=1

L∑
s=1

m̂`,s(θ̂N,`)ψ̂s, (3.18)

where L is set to be a function of N such that L→∞ as N →∞. While the estimation

of the functional principal components ψ` and θi,` has already been discussed in Section

3.3, we propose in the following section an estimator for the conditional means m`,s(θi,`).

3.5.1 k-Nearest Neighbors Estimator

In this section a simple method based on the k-nearest neighbors approach (KNN) is

suggested to estimate predictor M(XN). The main idea behind forecasting with KNN is

to identify the past observations of the time series that are most similar (in terms of some

distance) to the last onservation and use a combination of their future values to predict

the next value of the series.
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If FTS satisfies model (3.17) and Assumptions 3′′ and 2 then the KNN method can

be adopted directly to the series of the FPC scores. The estimation procedure consists of

three basic steps:

1. Use data X1, ..., XN and the FPC analysis to compute estimates ψ̂`, λ̂` and FPC

scores {θ̂i,`}Ni=1 for ` = 1, ..., L (as described in Section 3.3).

2. Compute the distance between the most recent FPC score θ̂N,` and each element

in the rest of the score series {θ̂i,`}N−1
i=1 . A typical choice for this task Minkowski

distance. Denote the index set of the kN closest neighbors to the feature score

component θ̂N,` by I(kN ; θ̂N,`), where the number of neighbors depends on sample

size N such that kN →∞ as N →∞.

3. Once the kN closest elements are identified their subsequent values are averaged to

obtain the final estimator, i.e.,

m̂`,s(θ̂N,`) :=
1

kN

∑
i∈Î(kN ;θ̂N,`)

θ̂i+1,`, (3.19)

for `, s = 1, ..., L.

Substituting estimates m̂`,s(θ̂N,`) and ψ̂s where `, s = 1, ..., L back to (3.18) gives the

functional predictor. Note that KNN estimator (3.19) is presented with equal weights

1/kN . Alternative weighting schemes can be considered as well. For instance, weights can

be set to be inversely proportional to the distance between the last observation θ̂N,` and

a neighbor from Î
(
kN ; θ̂N,`

)
, i.e.,

wi =
1
di

kN∑
j=1

1
dj

,

where di is a distance between θ̂N,` and a neighbor i ∈ Î
(
kN ; θ̂N,`

)
.

3.5.2 Asymptotic properties of FKNN

We split the investigation of the asymptotic properties of predictor (3.18)-(3.19) for FAAR

model into two parts as follows. Consider the infeasible estimator of m`,s(θ`) given by

m̃`,s(θN,`) :=
1

kN

∑
i∈I(kN ;θN,`)

θi+1,`.

where all quantities of spectral decomposition, λ`, ψ` and θi,` are assumed to be known.

Consequently, the infeasible functional predictor MN,L(xL) with the additional smoothing
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step based on a approximation Xi,L(t) =
∑L

`=1 θi,`ψ`(t) is defined by

MN,L (XN,L) :=
L∑
`=1

L∑
s=1

m̃`,s(θN,`)ψs.

Then to obtain the convergence rate of the estimator (3.18)-(3.19) to the true predictor

it suffices to obtain the convergence rate of infeasible estimator to the true predictor,

E‖MN,L(XN,L)−M(XN)‖2, and convergence rate of the feasible estimator (3.18)-(3.19) to

infeasible one, E
∥∥∥M̂N,L(x̂L)−MN,L(xL)

∥∥∥2

. The following theorems present the respective

convergence rates.

Theorem 11 Let a weakly stationary FTS {Xi}Ni=1 fulfills Assumption 3′′ with joint cu-

mulants up to order 4, Assumption 2 and follows model (3.17). Moreover, it is assumed

that Lα−1
∑∞

`=L E
[
m2
`,s(θi,`)

]
= O (λs). Then we have

E‖MN,L(XN,L)−M(XN)‖2 = O
(
max

{
k−1
N , L1−α}) ,

where kN ∼ N4/5.

Theorem 12 If a weakly stationary FTS {Xi}Ni=1 fulfills Assumption 3′′ with joint cu-

mulants up to order 6, Assumption 2 and follows model (3.17) then

E
∥∥∥M̂N,L(x̂L)−MN,L(xL)

∥∥∥2

= O

(
L3+2α log(N)

N2β∗

)
, (3.20)

where β∗ = min {β, 1/2}.

The result of Theorem 11 implies that the infeasible estimator is consistent and its

convergence rate consists of two parts. The first part, k−1
N , describes the convergence of the

infeasible estimator to the truncated true predictor ML(XN,L) =
∑L

s,`=1m`,s(θN,`)ψs. It

also shows that the consistency result requires the number of neighbors to be the function

of the sample size such that kN ∼ N4/5. The second one characterizes the convergence of

the remainder E‖ML(XN,L)−M(XN)‖2 which is of order O (L1−α).

Theorem 12 delivers the convergence between feasible and infeasible estimators. One

benefit of this result is that it allows us to state the restrictions on the principal component

cutoff L. It is required that L = o
(
N2β∗/(2α+3)/ log(N)1/(2α+3)

)
and L → ∞ as N → ∞

to obtain the consistent FAAR predictor.

3.6 Small Sample Performance

We now turn to study the small-sample properties of the proposed models. The objective

of this section is twofold. The first objective is to evaluate the forecasting performance
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of the FAR and the FAAR frameworks in different setups, relating to the asymptotic

results obtained in Sections 3.4 and 3.5. The second one is to conduct a comparison of

the proposed models with other alternatives available in the related forecasting/functional

literature. The last aspect is covered by examining the comparative forecast performance

of the FAR model and FAAR approach with that of the

1. VAR model. It is natural to investigate when functional settings provide an ad-

vantage compared to standard multivariate techniques. For this reason we include

the VAR method, where functional observations Xi are treated as T × 1 vectors

Xi = [Xi(t1), ..., Xi(tK)]′. These vectors are obtained by evaluating the original

functions at T equidistant points ts = s−1
T−1

, s = 1, ..., T and i = 1, ..., N ;

2. Improved FAR [iFAR]. This approach is suggested by Kokoszka and Zhang (2010)

to control for possibly small values of λ̂` that potentially can be translated into large

errors in λ̂−1
` . It is suggested to add a positive baseline to λ̂` in (3.13) for ` ≥ 2;

3. Multivariate score model. This model is recently suggested by Aue et al. (2015) and

is based on the standard multivariate techniques applied to the vector of scores.

Here we employ the VAR model for the score series which provides a simplified and

elegant alternative for the FAR model.. In what follows this method will be referred

to as MSM method.

We also supplement our comparative analysis with two standard benchmarks commonly

employed in functional data analysis (see, e.g., Didericksen et al., 2012). The first is

Mean prediction [MP], where predictors are obtained as the mean of the sample X̂N+1 =
1
N

∑N
i=1Xi, and the second is Naive Prediction [NP] given as X̂N+1 = XN .

We use the FAR(1) model as the main benchmark design for FTS processes

Xi(t) =

∫ 1

0

ρ(t, s)Xi−1(s)ds+ εi(t), (3.21)

for i = 1, ..., N . The error terms are generated as Brownian bridges

εi(t) = W (t)− tW (1), (3.22)

where W (·) is the standard Wiener process generated as W ( k
K

) = 1√
K

∑k
j=1 Zj for k =

1, ..., K and Zj are independent standard normals.

Three different forms of the kernel ρ(t, s) are used: ρ(t, s) = Ce
−(t2+s2)

2 , ρ(t, s) = C

and ρ(t, s) = Ct. In all cases the constant C is chosen such that ‖ρ‖S = 0.5. Samples

of size N = 50, 100 and 200 have been generated with a burn-in period of 100 functional

observations. In all cases N − 1 observations where used for the estimation and on

the last observation a one-step ahead forecast was computed. All results were repeated
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Nr = 1000 times. For the FAAR model, the number of nearest neighbors kN was set to

N4/5 as suggested by Theorem 11. To estimate and forecast with the VAR model the size

of the grid has to be specified and the following rule was applied T = 0.1N . Finally, to

measure the forecasts performance, the mean squared error (MSE) and the mean median

error (MME) were computed, i.e.,

MSE ≡ 1

Nr

Nr∑
j=1

‖Xj
N+1 − X̂

j
N+1‖

2, (3.23)

MME ≡ 1

Nr

Nr∑
j=1

∫ 1

0

∣∣∣Xj
N+1(s)− X̂j

N+1(s)ds
∣∣∣ , (3.24)

where Xj
N+1 and X̂j

N+1 represent real observations and obtained forecasts, respectively,

for j’s replication. It should be mentioned that we used two approaches to estimat the

number of FPC L. First, L is selected such that FPCs explain at least 99% or 95% of

the variability in the sample. Second, we apply the selection criteria suggested in Aue

et al. (2015). We report that the second approach provides forecasts with smaller MSE

and MME errors. Therefore, the results based on the first approach are omitted here and

are available upon request.

We report our results in the form of boxplots of the errors MSE and MME for different

sample sizes and kernels. Figures 3.1, 3.2 and 3.3 present the results for the case when the

kernel is given as ρ(t, s) = Ce
−(t2+s2)

2 , ρ(t, s) = C and ρ(t, s) = Ct, respectively. All models

based on functional observations (e.g., FAAR, FAR, iFAR and MSM) perform significantly

better than the benchmark predictors and the VAR model, except for the special case

when ρ(t, s) = C. In this setup, the mean predictor provides the best forecasting results

due to the structure of the DGP. In general, none of the FAR, iFAR and MSM dominates

the others, while the FAAR model has marginally higher median and variance of the

forecast errors. This stems from the fact that the aim of the FAAR model is to forecast

general autoregressive processes while FAR, iFAR and MSM are explicitly tailored for the

considered FAR DGP.

3.7 Forecasting electric load demand in the Nordic

countries

In this section we are considering the prediction of daily electric load demand curves

in the Nordic countries from a functional perspective. This problem has been of high

interest to decision makers in the energy sector and has seen numerous contributions in

the statistical literature. Traditionally, parametric time series models have been applied

to this problem - both classical time series methods and machine learning type methods
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such as artificial neural networks and support vector machines (see, e.g., Kyriakides and

Polycarpou, 2007, Feinberg and Genthliou, 2005, Hippert et al. (2001) and Chen et al.

(2004) among others). This section describes the implementation and comparison of the

FTS models discussed in Section 3.6.

The data that is used in this application has been provided by Nord Pool Spot AS, the

energy exchange of the Nordic and Baltic countries in Oslo, Norway 2. Hourly demand

data is made available for Denmark, Finland, Norway and Sweden since 2013. The time

stamps of the raw data are converted to UTC such that every day has always 24 hours.

That is, our sample for each country consist of N = 987 daily observations from January

1, 2013 till September 15, 2015, where each one is observed at 24 equidistant time points

(e.g., hourly). Figure 3.4 plots a typical daily observation in a summer period. Further, a

visual inspection of the data reveals that the level of the electricity demand significantly

changes between different seasons of the year. Therefore, the data was centered and

adjusted for monthly seasonality by subtracting from each observation the corresponding

monthly average. Figure 3.5 plots the seasonal monthly components for each country.

Since we treat discrete observations as realizations of continuous functions, a prelim-

inary smoothing step is required to reconstruct the underlying functional observations.

For reconstruction of the deseasonalized load demand functions we consider a basis rep-

resentation in terms of fourth-order B-splines with knots placed at each observed hour.

Thus, the number of employed basis functions is 24 per curve. This amount of basis

functions leads inevitably to overfitting the data and we thus penalize the sum of squared

errors for roughness (as measured through the squared second derivative). The optimal

choice of the smoothing parameter λ can be determined through minimizing a generalized

cross-validation criterion (GCV). The FDA package offered by Ramsay et al. (2009) for

the Matlab was applied here.3

We start with the report on the estimation of the functional principal components.

For each country the first three principle components combined account for more than

90% of the total variation in the sample. Figure 3.6 plots the eigenfunctions and their

respective percentages. Further, an analysis of the estimated score series provides evidence

of the time dependencies for each sample. In particular, we verify the presence of the

dependencies by looking at autocovariances and partial autocovariances of the score series.

Figure 3.7 illustrates our findings for the first FPC score series.

We apply FAAR, FAR, iFAR, MSM, VAR models and benchmark models such as the

naive prediction and the mean prediction to obtain forecasts for the deseasonalized electric

load demand functions. The original sample is split into two parts. The first one from

January 1, 2013 till December 31, 2014 is reserved for the estimation and learning purposes

and the second for the evaluation of the one step ahead forecast performance. Finally,

2http://www.nordpoolspot.com/historical-market-data/
3http://www.psych.mcgill.ca/misc/fda/downloads/FDAfuns/
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MSE and MME given in (3.24) and (3.24), respectively, are used for the comparison of

the quality of the competing procedures. The number of principal components and lags

is selected according to the selection criteria suggested in Aue et al. (2015). Further,

more attention is paid to choosing the number of neighbors for the predictor in the FAAR

model. More precisely, we forecast the last observation in the estimating part of the

sample using (3.18)-3.19 with different values of kN = 1, ..., N4/5. Then the number kN is

selected to minimize the MSE between the obtained predictors and the last observation.

The results are reported in Figure 3.7 in the form of boxplots of the MSE and the

MME errors. In general the MSM model is the best framework for forecasting electricity

demand in Nordic countries except Denmark. In the case of Denmark the FAAR model

provides forecasts with smaller errors when compared to MSM and for other cases is a

runner-up. This finding indicates that there is a nonlinear response of the FPC score

series to the past observations. This statement is also supported by the evidence from

scatter plots illustrated in Figure 3.9. The bold lines show the best polynomial fit of order

3. In all countries but Denmark we can see that the relationship between the current first

FPC score value and its lag is linear. Finally, FAR, iFAR and VAR models deliver equally

good results and in general are able to outperform the naive predictors.

3.8 Conclusion

In this paper a time dependence concept for functional observations is proposed. It is

based on the idea of the Karhunen-Loève decomposition of functional observations which

gives us the vector valued time series of FPC scores. In particular, time dependence in

FTS is quantified through the autocovariances and cumulants of its FPC scores series.

To operate with this concept in practice we show that the estimates of the FPCs are

consistent under the described dependencies. Further, two forecasting techniques for

functional time series are discussed. The first one is the FAR model for processes that

have a linear relation with the past observations. We then extend this linear framework

using the functional additive approach suggested in Müller and Yao (2008) and offer

a simple forecasting technique based on the kNN approach. Asymptotic consistency is

derived. Further our simulations indicate that the loss of efficiency against the FAR model

when the true underlying DGP is linear is only marginal.

99



A Appendix: Auxiliary results

To economize notations we use
∑N

i,j=1 and
∑N

i 6=j=1 instead of full expressions
∑N

i=1

∑N
j=1

and
∑N

i=1

∑N
j=1,j 6=i throughout this appendix. Further, the following combinatorial repre-

sentation of p-th order moments in terms of joint cumulants is often used for proofs and
is stated here for future reference. For a set of random variables x1, . . . , xp one has

E [x1 · . . . · xp] =
∑
π

∏
B∈π

κ(xi:i∈B), (A.1)

were π cycles through all possible partitions of the set {1, 2, . . . , p} and B cycles through
all blocks of partition π. For instance, zero mean random variables satisfies the following
expressions: κ(x1,x2) = E [x1, x2] for p = 2, κ(x1,x2,x3) = E [x1, x2, x3] for p = 3 and

κ(x1,x2,x3,x4) = E [x1, x2, x3, x4]− E [x1, x2]E[x3, x4]

− E [x1, x3]E[x2, x4]− E [x1, x4]E[x2, x3] .

To facilitate understanding of the following proofs we collect intermediate steps into
auxiliary Lemmas.

Lemma A.1 Let a weakly stationary FTS {Xi}Ni=1 satisfies Assumption 3′′ with q = 4
then

sup
`≥1

∣∣∣λ̂` − λ`∣∣∣ ≤ ∥∥∥ĈN − C∥∥∥
L
, (A.2)∥∥∥c`ψ̂` − ψ`∥∥∥ ≤ Cδ`

∥∥∥ĈN − C∥∥∥
L
, for 2 ≤ ` ≤ L (A.3)

where c` = sign
(
〈ψ̂`, ψ`〉

)
, δ` = max1≤k≤` (λk − λk+1)−1, and C is some positive constant.

Proof. Both results (A.2) and (A.3) follow from Bosq (2000, Lemma 4.2 and 4.3),
respectively.

Lemma A.2 A FAR process (3.8)-(3.9) satisfies Assumption 3′′ (i) and (iii) with joint
cumulants up to order 4, and condition (3.15) then:

(i) 1
N

∑N
i=1 ‖Xi‖2 =

∑∞
`=1 λ` +Op

(
N−1/2

)
;

(ii) λ̂−1
L = Op (Lα) as N →∞, L→∞ and Lα

N1/2 → 0;

(iii)
∥∥∥Γ̂1,N

∥∥∥
L

= Op(1);

(iv)
∥∥∥Γ̂1,N

(
ψ̂`

)∥∥∥ ≤ 2λ̂
1/2
`

(
1
N

∑N
i=1 ‖Xi‖2

)1/2

;

(v)
∑∞

`=L

∥∥∥ρ(ψ̂`)∥∥∥2

= Op

(
max

{
L2+α

N1/2 , L
1+2(α−γ)

})
;

Proof.

Proof of item (i): To establish item (i) we show that E
∣∣∣ 1
N

∑N
i=1 ‖Xi‖2 −

∑∞
`=1 λ`

∣∣∣2 =
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O (N−1) and then by Chebyshev inequality (i) will follow. First, notice that 1
N

∑N
i=1 ‖Xi‖ =

1
N

∑N
i=1

∑∞
`=1 θ

2
i,`, and denote Zi =

∑∞
`=1 θ

2
i,`, ZN = 1

N

∑N
i=1 Zi and m =

∑∞
`=1 λ`. Then

V ar
(
ZN

)
=

1

N2

N∑
i,j=1

∞∑
`,s=1

E
[
θ2
i,`θ

2
j,s

]
−m2

=
1

N2

N∑
i,j=1

∞∑
`,s=1

(
κ`,`,s,s(0,0,|i−j|,|i−j|) + 2E [θi,`θj,s]

2) ,
where the last equality comes from relation (A.1). For the first term by Assumption
3′′(iii) we have

1

N2

N∑
i,j=1

∞∑
`,s=1

κ`,`,s,s(0,0,|i−j|,|i−j|) ≤ B

N2

N∑
i=1

∞∑
`,s=1

λ`λs = O
(
N−1

)
,

and for the second

2

N2

N∑
i,j=1

∞∑
`,s=1

E [θi,`θj,s]
2 =

2

N2

N∑
i 6=j=1

∞∑
`,s=1

E [θi,`θj,s]
2 +

2

N

∞∑
`=1

λ2
`

≤ 4

N2

N−1∑
h=1

N∑
i=h+1

∞∑
`,s=1

(
B

(h)
`,s

)2

+
2

N

∞∑
`=1

λ2
`

≤ B

N

N−1∑
h=1

h−2β

∞∑
`,s=1

`−γs−γ +
2

N

∞∑
`=1

λ2
` = O

(
N−1

)
,

where the last result comes from Assumption 3′′ (i) and (iii) and condition 3.15.
Proof of item (ii): It follows immediately from Corollary 4 and Chebyshev inequality

λ̂` = Op

(
max

{
L−α, N−1/2

})
and λ̂−1

` = Op

(
1

max{L−α,N−1/2}

)
. The item (ii) will follow

from the fact N−1/2 will go to zero faster then L−α since Lα/N1/2 → 0.
Proof of item (iii): Follows from Corollary 3 and Chebyshev inequality.
Proof of item (iv): Follows from Lemma 8.3 in Bosq (2000).
Proof of item (v): Item (v) is obtained by using the proof from Lemma 8.2 in Bosq

(2000) and the facts that
∥∥∥ĈN − C∥∥∥

L
= Op(N

−1/2),
∑L

`=1 δ` = O(L2+α) and
∑∞

`=L ‖ρ (ψ`)‖2 =

O
(
L1+2(α−γ)

)
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B Appendix: Proofs

Proof of Remark 13

We have

E ‖µ̂− µ‖2 =
1

N2

N∑
i,j=1

E 〈Xi − µ,Xj − µ〉 =
1

N2

N∑
i,j=1

∞∑
`,s=1

E [θi,`, θj,s]

=
1

N2

N∑
i=1

∞∑
`=1

E [θi,`, θi,`] +
1

N2

N∑
i 6=j=1

∞∑
`,s=1

E [θi,`, θj,s] .

As a consequence of Assumption 3′′ part (i)
∑∞

`=1 λ` < ∞ such that the first term in
the last equation above behaves as O (N−1). Rearranging the second term and invoking
Assumption 3′′ (ii) gives

1

N2

N∑
i 6=j=1

∞∑
`,s=1

E [θi,`, θj,s] =
2

N2

N−1∑
h=1

N∑
i=h+1

∞∑
`,s=1

E [θi,`, θj,s]

≤ 2

N2

N−1∑
h=1

N∑
i=h+1

∞∑
`,s=1

B
(h)
`,s

≤ C

N2

N−1∑
h=1

(N − h)h−β
∞∑

`,s=1

√
λ`λs = O

(
max

{
N−β, N−1

})
.

The last equality uses Davidson (1994, Theorem 2.27) and the fact that
∑∞

`=1

√
λ` < ∞

which follows from Assumption 3′′.

Proof of Theorem 9

We have,

E
∥∥∥ĈN − C∥∥∥2

S
=

∞∑
`=1

E

∥∥∥∥∥ 1

N

N∑
i=1

(〈Xi, ψ`〉Xi − E [〈Xi, ψ`〉Xi])

∥∥∥∥∥
2

=
1

N2

N∑
i,j=1

∞∑
`=1

(
∞∑
s=1

E [θi,`θj,`θi,sθj,s]− λ2
`

)
(A.4)

=
1

N2

N∑
i,j=1

∞∑
`=1

(
E
[
θ2
i,`θ

2
j,`

]
− λ2

`

)
+

1

N2

N∑
i,j=1

∞∑
` 6=s=1

E [θi,`θj,`θi,sθj,s] := a+ b. (A.5)

It follows from relation (A.1) that

a =
1

N2

N∑
i,j=1

∞∑
`=1

(
κ`,`,`,`(0,0,|i−j|,|i−j|) + 2E [θi,`θj,`]

2) ,
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where 1
N2

∑N
i,j=1

∑∞
`=1 κ`,`,`,`(0,0,|i−j|,|i−j|) = O (N−1) by Assumption 3′′(iii) and

2

N2

N∑
i,j=1

∞∑
`=1

E [θi,`θj,`]
2 =

2

N2

N∑
i 6=j=1

∞∑
`=1

E [θi,`θj,`]
2 +

2

N

∞∑
`=1

λ2
`

≤ 4

N2

N−1∑
h=1

N∑
i=h+1

∞∑
`=1

(
B

(h)
`,`

)2

+
2

N

∞∑
`=1

λ2
`

≤ B

N

N−1∑
h=1

h−2β

∞∑
`=1

λ2
` +

2

N

∞∑
`=1

λ2
`

= O
(
max

{
N−2β, N−1

})
,

where the last equality comes from Assumption 3′′(i) and (ii).
Similar arguments apply to term b, i.e.,

1

N2

N∑
i,j=1

∞∑
6̀=s=1

E [θi,`θj,`θi,sθj,s] =
1

N2

N∑
i,j=1

∞∑
` 6=s=1

(κ`,`,s,s(0,0,|i−j|,|i−j|)+ (A.6)

+ E [θi,`θj,`]E [θi,sθj,s] + E [θi,`θj,s]E [θi,sθj,`]) (A.7)

by relation (A.1). The first terms on the r.h.s of (A.6) is O (N−1) by Assumption 3′′(iii).
The second and the third terms on the r.h.s of (A.6) are O

(
max{N−2β, N−1}

)
by the

same arguments as above. In particular, for the third term we have

1

N2

N∑
i,j=1

∞∑
6̀=s=1

E [θi,`θj,s]E [θi,sθj,`] ≤
1

N2

N∑
i,j=1

∞∑
` 6=s=1

(
B

(i−j)
`,s

)2

=
2

N2

N−1∑
h=1

N∑
i=h+1

∞∑
`6=s=1

(
B

(h)
`,s

)2

≤ B

N

N−1∑
h=1

h−2β

∞∑
`6=s=1

λ`λs = O
(
max

{
N−2β, N−1

})
.

Putting together rates for a and b yields the statement of the theorem.

Proof of Theorem 10

Recall that HL = span{ψ1, ..., ψL} and let ĤL = span{ψ̂1, ..., ψ̂L} and denote πL and π̂L
projections onHL and ĤL, respectively. Then we can consider the following decomposition

(ρ̂N − ρ) (x) = (ρ̂N − ρπL(x)) + (ρπL(x)− ρπ̂L(x)) + (ρπ̂L(x)− ρ(x))

:= aN(x) + bN(x) + cN(x).
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Further, denote aN(x) =
∑4

k=1 ak,N(x), where

a1,N(x) = Γ̂1,N

(
L∑
`=1

(
λ̂−1
` − λ

−1
`

)
〈x, ψ̂`〉ψ̂`

)
,

a2,N(x) = Γ̂1,N

(
L∑
`=1

λ−1
`

(
〈x, ψ̂`〉 − 〈x, ψ′`〉

)
ψ̂`

)
,

a3,N(x) = Γ̂1,N

(
L∑
`=1

λ−1
` 〈x, ψ

′
`〉
(
ψ̂` − ψ′`

))
,

a4,N(x) =
(

Γ̂1,N − Γ
)( L∑

`=1

λ−1
` 〈x, ψ

′
`〉ψ′`

)
.

For the first term we have

‖aN,1(x)‖ ≤
L∑
`=1

|λ̂` − λ`|
λ̂`λ`

|〈x, ψ̂`〉|
∥∥∥Γ̂1,N(ψ̂`)

∥∥∥ .
Using (A.2), Cauchy-Schwartz inequality and item (iv) of Lemma A.2 we obtain

‖aN,1‖L ≤ 2

(
1

N

N∑
i=1

‖Xi‖2

)1/2

‖CN − C‖L

(
L∑
`=1

λ̂
−1/2
` λ−1

`

)
.

From Theorem 9 and Chebyshev inequality ‖CN − C‖L = Op(N
−1/2). Assume for now

that Lα/N1/2 → 0, then by using item (i) and (ii) of Lemma A.2 one gets

‖aN,1‖L = Op

(
L

3
2
α+1

N1/2

)
. (A.8)

Finally, to archive the consistency it is required that L
3
2
α+1/N1/2 → 0 which in turn

implies the condition Lα/N1/2 → 0 has to hold. That is, Lα/N1/2 → 0 is necessary but
not sufficient to obtain the statement of the theorem.

Turning to aN,2(x), from item (iv) of Lemma A.2 and Cauchy-Schwartz inequality we
have

‖aN,2‖L ≤ 2

(
1

N

N∑
i=1

‖Xi‖2

)1/2 L∑
`=1

λ̂
1/2
` λ−1

`

∥∥∥ψ̂` − ψ`∥∥∥ ,
where (A.3) together with and the fact that

∑L
`=1 δ` = O(Lα+2) yield

‖aN,2‖L = Op

(
L

3
2
α+2

N1/2

)
. (A.9)

Concerning aN,3(x), Cauchy-Schwartz inequality and orthogonality of ψ̂` and ψ` yield
the bound

‖aN,3‖L ≤
∥∥∥Γ̂1,N

∥∥∥
L

(
L∑
`=1

λ−2
` 〈x, ψ̂`〉

2
∥∥∥ψ̂` − ψ`∥∥∥2

)1/2

.
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Then using item (iii) of Lemma A.2 and the fact that
(∑L

`=1 σ
2
`

)1/2

= O(Lα+3/2) yield

‖aN,3‖L = Op

(
L2α+ 3

2

N1/2

)
. (A.10)

Finally,

‖aN,4‖L =
∥∥∥Γ̂1,N − Γ

∥∥∥
L

(
L∑
`=1

λ−2
` 〈x, ψ`〉

2

)1/2

.

Then Corollary 3 entail

‖aN,4‖L = Op

(
Lα+ 1

2

N1/2

)
. (A.11)

Next we turn to bN(x) and cN(x). First observe that

‖bN‖L ≤ C

(
∞∑
`=L

∥∥∥ρ(ψ̂`)∥∥∥2

+
∞∑
`=L

‖ρ (ψ`)‖2

)
. (A.12)

which behave as Op

(
max

{
L2+α

N1/2 , L
1+2(α−γ)

})
by item (v) of Lemma A.2. For cN(x) we

have ‖cN‖L =
∑∞

`=L ‖ρ (ψ`)‖2 = Op

(
L1+2(α−γ)

)
and statement of the theorem is proofed.
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Proof of Theorem 11

First, define ML(XN,L) :=
∑L

s,`=1 E [θN+1,s|θN,`]ψs =
∑L

s,`=1m`,s(θN,`)ψs, where in com-
parison to MN,L (xL) the kN -NN estimators of the scores have been replaced by the corre-
sponding conditional population means. Since our interest is in analyzing E‖MN,L(XN,L)−
M(XN)‖2, it suffices, upon adding and subtracting ML(XN,L) in the argument of our ob-
ject of interest, to consider the two terms

E‖ML(XN,L)−M(XN)‖2 and E‖MN,L(XN,L)−ML(XN,L)‖2 (A.13)

For simplicity of notation let θ` denote θN,`. Then for the first term in (A.13) by using
the orthonormality of the {ψ`} we have

E‖ML(XN,L)−M(XN)‖2 = E

∥∥∥∥∥
L∑

s,`=1

m`,s(θ`)ψ` −
∞∑

s,`=1

m`,s(θ`)ψ`

∥∥∥∥∥
2

=
∞∑

s,`=L+1

E
[
m`,s(θ`)

2
]

+
∞∑

s=L+1

L∑
`=1

E
[
m`,s(θ`)

2
]

+
L∑
s=1

∞∑
`=L+1

E
[
m`,s(θ`)

2
]
. (A.14)

Now observe that from Lα−1
∑∞

`=L E
[
m2
`,s(θi,`)

]
= O (λs) it follows immediately that∑∞

s,`=L+1 E [m`,s(θ`)
2] = O(L2(1−α)),

∑∞
s=L+1

∑L
`=1 E [m`,s(θ`)

2] = O(L1−α) and∑L
s=1

∑∞
`=L+1 E [m`,s(θ`)

2] = O(L1−α)
Now we consider the second term in (A.13) which can be written as

E‖MN,L(XN,L)−ML(XN,L)‖2 = E

∥∥∥∥∥
L∑

s,`=1

(m̃`,s(θl)−m`,s(θl))ψl

∥∥∥∥∥
2

=
L∑

s,`=1

E
[
(m̃`,s(θ`)−m`,s(θ`))

2] , (A.15)

where the second equality follows from the orthonormality of the sequence of eigenfunc-
tions (ψ`)

L
`=1. For fixed ` = 1, . . . , L, rates of convergence of the mean squared error

in (A.15) can be derived by following results in Yakowitz (1987). A careful inspection
of the proofs in Yakowitz (1987) reveals that analyzing the second moment of the dis-
tance between (the given) θl and its farthest (of the kN) neighbor is of key importance.
Denote this farthest neighbor to θl by θN(kN ),l and write Ri,l(θl) := |θi,l − θl| such that
R(kN ),l(θl) := |θN(kN ),l − θl| denotes the kN -th order statistic of the Ri,l(θl). Results in

Yakowitz (1987) indicate that E[R(kN ),l(θl)
2] ≤ C1(l)k

−1/2
N , where C1(l) is some constant

that depends only on l. While this holds true for fixed l, we have to consider asymptotics
where L goes to infinity. Now observe that

E
[
R(kN ),l(θl)

2
]

= E
[
|θN(kN ),l − θl|2

]
≤ C2(N)λl

for fixed N , where C2(N) is some constant only depending on N . Combining these results

gives us E[R(kN ),l(θl)
2] ≤ C3k

−1/2
N λl, where now C3 is a constant that is independent of

both l and N . Moreover, Yakowitz (1987) shows that the number of neighbors kN has to
grow with the sample size where kN ∼ bN4/5c.

The desired result now follows from the Theorem 2.1 Yakowitz (1987) and the argu-
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ments presented above.

Proof of Theorem 12

Denote, for i = 1, . . . , kN , by N(i) ∈ I(kN ; θ`) the index of the i-th nearest neigh-

bor to θ`. Then upon adding and subtracting
∑L

`,s=1 m̃`,s(θ`)ψ̂s to the argument of

E
∥∥∥M̂N,L(x̂L)−MN,L(xL)

∥∥∥2

it suffices to analyze the quantities

E

∥∥∥∥∥
L∑

`,s=1

m̃`,s(θ`)
(
ψ̂s − ψs

)∥∥∥∥∥
2

and E

∥∥∥∥∥
L∑

`,s=1

(
m̂`,s(θ̂`)− m̃`,s(θ`)

)
ψ̂s

∥∥∥∥∥
2

.

For the first term we have

E

∥∥∥∥∥
L∑

`,s=1

m̃`,s(θ`)
(
ψ̂s − ψs

)∥∥∥∥∥
2

= E

[
L∑

`,s=1

L∑
k,τ=1

m̃`,s(θ`)m̃k,τ (θk)
〈
ψ̂s − ψs, ψ̂τ − ψτ

〉]

≤ E

[
L∑

`,s=1

L∑
k,τ=1

m̃`,s(θ`)m̃k,τ (θk)
∥∥∥ψ̂s − ψs∥∥∥∥∥∥ψ̂τ − ψτ∥∥∥]

≤ 1

k2
N

L∑
`,s=1

L∑
k,τ=1

kN∑
i,j=1

E
[
θN(i)+1,`θN(j)+1,kδsδτ

∥∥∥ĈN − C∥∥∥2

S

]
, (A.16)

where the last inequality follows from Lemma A.1. As already discussed in the proof of
Theorem 9 we have∥∥∥ĈN − C∥∥∥2

S
=

1

N2

N∑
n,m=1

(
∞∑

h1,h2=1

θn,h1θn,h2θm,h1θm,h2

+
∞∑

h1=1

λ2
h1
−

∞∑
h1=1

λh1θ
2
n,h1
−

∞∑
h1=1

λh1θ
2
m,h1

)
.

Thus the expression in (A.16) can be rewritten as

1

k2
N

L∑
`,s=1

L∑
k,τ=1

kN∑
i,j=1

E
[
θN(i)+1,`θN(j)+1,kδsδτ

∥∥∥ĈN − C∥∥∥2

S

]
= A1 + A2 − 2A3,

where

A1 :=
1

k2
NN

2

L∑
`,s=1

L∑
k,τ=1

kN∑
i,j=1

N∑
n,m=1

∞∑
h1,h2=1

δsδτE
[
θN(i)+1,`θN(j)+1,kθn,h1θn,h2θm,h1θm,h2

]
,

A2 :=
1

k2
NN

2

L∑
`,s=1

L∑
k,τ=1

kN∑
i,j=1

N∑
n,m=1

∞∑
h1=1

δsδτλ
2
h1
E
[
θN(i)+1,`θN(j)+1,k

]
,

A3 :=
1

k2
NN

2

L∑
`,s=1

L∑
k,τ=1

kN∑
i,j=1

N∑
n,m=1

∞∑
h1=1

δsδτλh1E
[
θN(i)+1,`θN(j)+1,kθ

2
n,h1

]
.
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The analysis of the terms above now proceeds by considering the relationship between
higher order moments and joint cumulants as defined in (A.1) and noting that the random
variables θ·,h = 〈X·, ψh〉 have zero mean by construction and are independent across h by
assumption.

We start with term A2. The relevant case for us to consider is ` = k as otherwise
A2 = 0 by the above arguments. Distinguishing the cases where ` 6= h1 and ` = h1 then
yields

A2 =
1

k2
NN

2

L∑
`,s=1

L∑
τ=1

kN∑
i,j=1

N∑
n,m=1

∞∑
h1 6=`=1

δsδτλ
2
h1
κ`,`(0,|N(i)−N(j)|)

+
1

k2
NN

2

L∑
`,s=1

L∑
τ=1

kN∑
i,j=1

N∑
n,m=1

δsδτλ
2
`κ`,`(0,|N(i)−N(j)|)

=: A2,1 + A2,2. (A.17)

Now consider the term A3 and again note that it suffices to consider only the case
` = k. Again distinguishing the cases where ` 6= h1 and ` = h1 we have by (A.1) that

A3 = 1
k2NN

2

∑L
l=1

∑∑kN
i,j=1

∑∑N
n,m=1

∑∞
h1=L+1 δ

2
l λ

2
h1
κl(0,|N(i)−N(j)|)

+ 1
k2NN

2

∑L
l=1

∑∑kN
i,j=1

∑∑N
n,m=1 δ

2
l λlκ`,`(0,|N(i)−N(j)|,|N(i)+1−n|,|N(i)+1−n|)

+ 2
k2NN

2

∑L
l=1

∑∑kN
i,j=1

∑∑N
n,m=1 δ

2
l λlκl(0,|N(i)+1−n|)κl(0,|N(j)+1−n|)

+ 1
k2NN

2

∑L
l=1

∑∑kN
i,j=1

∑∑N
n,m=1 δ

2
l λlκl(0,|N(i)−N(j)|)κl(0,0)

=: A3,1 + A3,2 + A3,3 + A3,4. (A.18)

Note that the term A3 enters the object of interest twice with a negative sign, such that
all terms of which A2 is comprised are canceled in view of A2,1 = A3,1 and A2,2 = A3,4

and since κl(0,0)=λl.
We now tun to term A1 and first decompose into the cases where h1 6= h2 and h1 = h2.

The second case is furthermore decomposed into cases where l = k and l 6= k. This yields

A1 = 1
k2NN

2

∑∑L
l,k=1

∑∑kN
i,j=1

∑∑N
n,m=1

∑∑∞
h1 6=h2 δlδkE

[
θN(i)+1,lθN(j)+1,kθn,h1θn,h2θm,h1θm,h2

]
+ 1
k2NN

2

∑∑L
l 6=k
∑∑kN

i,j=1

∑∑N
n,m=1

∑∞
h1=1 δlδkE

[
θN(i)+1,lθN(j)+1,kθ

2
n,h1

θ2
m,h1

]
+ 1
k2NN

2

∑L
l=1

∑∑kN
i,j=1

∑∑N
n,m=1

∑∞
h1=1 δ

2
l E
[
θN(i)+1,lθN(j)+1,kθ

2
n,h1

θ2
m,h1

]
=: A1,1 + A1,2 + A1,3. (A.19)

Now note that A1,2 = 0 by the same arguments as above. For term A1,3, we decompose
into the cases where l 6= h1 and l = h1 which yields

A1,3 = 1
k2NN

2

∑L
l=1

∑∑kN
i,j=1

∑∑N
n,m=1 δ

2
l E
[
θN(i)+1,lθN(j)+1,lθ

2
n,lθ

2
m,l

]
+ 1
k2NN

2

∑L
l=1

∑∑kN
i,j=1

∑∑N
n,m=1

∑∞
h1=L+1 δ

2
l E
[
θN(i)+1,lθN(j)+1,l

]
E
[
θ2
n,h1

θ2
m,h1

]
.(A.20)

We consider first the first term of (A.20). By (A.1) and writing, with some abuse of
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notation, κ(p) for the p-th order cumulant, we have

E
[
θN(i)+1,lθN(j)+1,lθ

2
n,lθ

2
m,l

]
= κ

(6)
l + 15κ

(4)
l κ

(2)
l + 10κ

(3)
l κ

(3)
l + 15κ

(2)
l κ

(2)
l κ

(2)
l .

There are 15 instances of κ
(2)
l which are of the form

1× κl(0,|N(i)−N(j)|)

2× κl(0,|N(i)+1−n|)

2× κl(0,|N(i)+1−m|)

2× κl(|N(i)−N(j)|,|N(i)+1−n|)

2× κl(|N(i)−N(j)|,|N(i)+1−m|)

4× κl(|N(i)+1−n|,|N(i)+1−m|)

1× κl(|N(i)+1−n|,|N(i)+1−n|)

1× κl(|N(i)+1−m|,|N(i)+1−m|)

Now note that there are precisely four instances where κ
(2)
l is such that the first term in

(A.20) takes the form

1

k2
NN

2

L∑
l=1

kN∑∑
i,j=1

N∑∑
n,m=1

δ2
l λlκl(0,|N(i)+1−n|)κl(0,|N(j)+1−n|)

and precisely one instance where κ
(2)
l is such that the first term in (A.20) takes the form

1

k2
NN

2

L∑
l=1

kN∑∑
i,j=1

N∑∑
n,m=1

δ2
l λ

2
l κl(0,|N(i)−N(j)|)

which are canceled by A3,3 and A3,4, respectively, since these terms enters twice with a

negative sign. By similar arguments, we have two instances in which κ
(4)
l is such that the

first term in (A.20) takes the form

1

k2
NN

2

L∑
l=1

kN∑∑
i,j=1

N∑∑
n,m=1

δ2
l λlκl(0,|N(i)−N(j)|,|N(i)+1−n|,|N(i)+1−n|)

which are canceled by A3,2, again since that term enters twice with a negative sign. The
remaining terms of the first term in (A.20) do not provide the dominant rate of convergence
such that we skip the further analysis and consider next the second term in (A.20). By
(A.1) we have

E
[
θ2
n,h1

θ2
m,h1

]
= κh1 (0,0,|n−m|,|n−m|)+κh1 (0,0) κh1 (|n−m|,|n−m|)+2κh1 (0,|n−m|) κh1 (0,|n−m|)
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such that we obtain for the second term of (A.20)

1
k2NN

2

∑L
l=1

∑∑kN
i,j=1

∑∑N
n,m=1

∑∞
h1=L+1 δ

2
l E
[
θN(i)+1,lθN(j)+1,l

]
E
[
θ2
n,h1

θ2
m,h1

]
= 1

k2NN
2

∑L
l=1

∑∑kN
i,j=1

∑∑N
n,m=1

∑∞
h1=L+1 δ

2
l λ

2
h1
E
[
θN(i)+1,lθN(j)+1,l

]
+ 1
k2NN

2

∑L
l=1

∑∑kN
i,j=1

∑∑N
n,m=1

∑∞
h1=L+1 δ

2
l E
[
θN(i)+1,lθN(j)+1,l

]
κh1 (0,0,|n−m|,|n−m|)

+2 1
k2NN

2

∑L
l=1

∑∑kN
i,j=1

∑∑N
n,m=1

∑∞
h1=L+1 δ

2
l E
[
θN(i)+1,lθN(j)+1,l

]
κh1 (0,|n−m|)2.

Observe now that the first term in the above display is canceled by A3,1 as it enters twice
with a negative sign. As a consequence, the terms A2, A3 and parts of A1 cancel each
other out. The dominant rate of convergence is now obtained by considering the third
term in the above display for which we have

2
k2NN

2

∑L
l=1

∑∑kN
i,j=1

∑∑N
n,m=1

∑∞
h1=L+1 δ

2
l E
[
θN(i)+1,lθN(j)+1,l

]
κh1 (0,|n−m|)2

= 2
(

1
kNN

∑L
l=1 δ

2
l

∑∑kN
i,j=1 E

[
θN(i)+1,lθN(j)+1,l

])
×(

1
kNN

∑∞
h1=L+1

∑∑N
n,m=1 κh1 (0,|n−m|)2

)
. (A.21)

For the first term in brackets in (A.21) we have, for some constant C > 0,

(. . .) ≤ 1
kNN

∑L
l=1 δ

2
l

∑kN
i=1 E

[
θ2
N(i)+1,l

]
+ 1

kNN

∑L
l=1 δ

2
l

∑∑kN
i 6=j

∣∣E [θN(i)+1,lθN(j)+1,l

]∣∣
≤ 1

kNN

∑L
l=1 δ

2
l

∑kN
i=1 λl + 2

kNN

∑kN−1
m=1

∑kN
i=m+1

∑L
l=1 δ

2
lBm,l

≤ 1
N

∑L
l=1 δ

2
l λl + C

kNN

∑kN−1
m=1 (kN −m)m−β

∑L
l=1 δ

2
l λl

= O

(
k1−β̃N L3+α

N

)
,

where the last equality follows from Assumption 3′′. For the second term in brackets in
(A.21) we have by similar arguments for some constants C,C∗ > 0,

(. . .) ≤ 1

kNN

∞∑
h1=1

N∑∑
n,m=1

E [θn,h1θm,h1 ]
2

≤ 1

kNN

∞∑
h1=1

N∑
n=1

E
[
θ2
n,h1

]2
+

1

kNN

∞∑
h1=1

N∑∑
n6=m

|E [θn,h1θm,h1 ]|
2

≤ 1

kN

∞∑
h1=1

λ2
h1

+
2

kNN

N−1∑
m=1

N∑
i=1

∞∑
h1=1

B2
m,h1

≤ C

kN
+

C∗

kNN

N−1∑
m=1

N∑
i=1

m−2β

∞∑
h1=1

λ2
h1

= O

(
N1−2β∗

kN

)
.

where β∗ = min {β, 1/2}. Combining these results we obtain the following rate of conver-
gence

O

(
L3+α

kβ
∗

N N
2β∗∗

)
.
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Note that we omit the analysis of term A1,1 for brevity as it follows by the same arguments
presented above and yields the same rate of convergence.
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C Appendix: Figures
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Figure 3.1: Boxplots of the prediction errors MSE (left panel) and MME

(right panel) when DGP has kernel ρ(t, s) = Ce
−(t2+s2)

2 .
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Figure 3.2: Boxplots of the prediction errors MSE (left panel) and MME
(right panel) when DGP has kernel ρ(t, s) = C.
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Figure 3.3: Boxplots of the prediction errors MSE (left panel) and MME
(right panel) when DGP has kernel ρ(t, s) = Ct.
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Figure 3.4: Typical daily discrete observation and reconstructed func-
tional observation for electricity demand in Norway (June 1, 2013).
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Figure 3.5: Seasonal monthly averages of the electricity demand in the
Nordic countries.
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Figure 3.6: The first three estimated eigenfunctions of the electricity de-
mand in the Nordic countries. The percentages indicate the amount of
total variation accounted for by each eigenfunction.
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Figure 3.7: Time dependencies in score series. Left panel: sample auto-
correlation of the first empirical FPC score series. Right panel: sample
partial autocorrelation function of the first empirical FPC score series.
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Figure 3.8: Boxplots of the prediction errors MSE (left panel) and MME
(right panel).
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Chapter 4

On Estimation of Heterogeneous

Panels with Systematic Slope

Variations

4.1 Introduction

It becomes common in the panel data analysis to allow unobserved heterogeneity not only

enter the model through the individual specific constant but also through the slope of the

model. One of the standard and common approaches to handle the slope heterogeneity

is to consider a random coefficient model where the slope coefficients are randomly dis-

tributed across individuals with a common mean parameter (See, e.g., Hsiao and Pesaran,

2008). This topic gained considerable attention in the resent literature, where number

of testing procedures have been developed to test for slope homogeneity (see, e.g., Pe-

saran and Yamagata, 2008, Juhl and Lugovskyy, 2014 and Breitung et al., 2016). It is

also widely recognized that such a modeling framework can have important consequences

for the estimation and inference in the panel models (see, e.g., Pesaran et al., 1996 and

Breitung, 2014 for a review of this topic).

The main aim of this paper is to analyze estimation procedures in heterogeneous panels

with a particular focus on systematic slope variations - dependence of any form between

covariates and their respective coefficients. The properties of the random coefficient panel

model when coefficients are assumed to be independent of the covariates are well studied.

However, this setup provides a restrictive modeling framework for many economic appli-

cations. (See, e.g., Wooldridge, 2005, who stress the importance of this issue) Therefore,

estimators robust to (potentially) systematically varying slopes have to be developed.

There are two general concepts to construct an estimator of a slope or a common

parameter in heterogeneous panel models.1 The first one uses pooled data across indi-

1See for instance Pesaran and Smith (1995) for a detailed review of different estimation concepts in
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viduals and time for estimation (pooled or within-group estimator), while the second one

estimates the parameter for each individual/group which later are pooled to obtain a sin-

gle estimator (mean-group estimator). In the presence of the systematic slope variations

the within-group estimator (and also the GLS estimator) provides inconsistent results,

whereas the mean-group estimator is robust in this situation. On the other hand the

robustness of the mean group estimator comes at the price of a higher variance in com-

parison with pooled type estimator. For this reason a Hausman test can be used to choose

an appropriate estimator as suggested in Pesaran et al. (1996).

In this work we develop an alternative solution to the estimation problem of a het-

erogeneous panel with (potentially) systematically varying slopes. We propose an esti-

mation procedure that is based on the pooled estimator with Mundlak type correction

(see, Mundlak, 1978 for more details). This solution is appealing due to its simplicity of

implementation since it only requires to add well define addition regressor to the panel

model and then perform the pooled estimation procedure. Further, it is asymptotically

equivalent to the mean-group estimator in terms of bias and efficiency when N and T are

large. This in turn allows to concentrate on one estimation technique and to avoid the

additional testing as suggested in Pesaran et al. (1996). Finally, when N is large and T

is fixed the new estimation procedure can provide an attractive alternative in terms of

efficiency when compared to the mean-group estimator. This findings are supported with

Monte Carlo experiments in small samples.

The reminder of the paper is structured as follows. Section 2 discusses the modeling

framework, available estimation procedures and suggests a robust pooled estimator. In

Section 3 asymptotic properties of the estimator are derived and discussed. The finite

sample properties are studied Section 4. Section 5 concludes.

4.2 Model, Assumptions and Estimators

We assume that data are generated by the random coefficient model for panels, where the

slope coefficients are constant over time but differ randomly across individuals, i.e.,

yit = x′itβββi + εit, (4.1)

βββi = βββ + vi, (4.2)

for i = 1, 2, ..., N and t = 1, ..., T , where xit is a K × 1 vector of exogenous regressors.

The vector of (random) coefficients consist of a common non-stochastic vector βββ and a

vector of a individually specific disturbances vi. Inserting (4.2) into (4.1) and stacking

panels. This work also considers the other types of estimators based on the between-group regression
and the time series regression. However, these estimators are found to be less efficient than the pooled
and mean-group ones and are not considered in this paper

123



over the time dimetion yields

yi = Xiβββ + ui , (4.3)

where ui = [ui1, ..., uiT ]′ with uit = x′itvi+εit, Xi = (xi1, . . . ,xiT )′ and yi = (yi1, . . . , yiT )′.

Assumption 3 (i) The error vector εεεi is iid(0, σ2
εIT ), where IT is T ×T identity matrix.

Moreover, εεεi is independent of Xi and vi for all i.

Assumption 4 (i) The K×1 strictly exogenous vector of regressors xit is weakly station-

ary and E |xit,k|4+δ < C <∞ for some δ > 0, C > 0 and all i = 1, ..., N and t = 1, ..., T .

(ii) Further, matrices Si,T ≡ X′iXi/T and SN,T ≡
∑N

i=1 X′iXi/NT are positive definite

for all N and T and have non-stochastic positive definite limits, i.e.,

Si ≡ plim
T→∞

Si,T = lim
T→∞

1

T

T∑
t=1

E[xitx
′
it],

S ≡ plim
N,T→∞

SN,T = lim
N→∞

1

N

N∑
t=1

Si.

Assumption 5 (i) The error vectors vi|X ∼ iid(0,Θi,NT ), where is Θi,NT diagonal. (ii)

For each i, j = 1, ..., N and t = 1, ..., T vi is independent of εjt

Estimators:

There are two well established approaches to estimate the common parameter βββ that

represents the central tendency among heterogeneous responses.

First, we may just ignore parameter heterogeneity and pool the data which will yield

the pooled OLS estimator

β̂ββp =

(
N∑
i=1

X′iXi

)−1( N∑
i=1

X′iyi

)
. (4.4)

Furthermore, it is customary to use generalized LS version of the pooled estimator

β̂ββgls =

(
N∑
i=1

X′iΩ
−1
i Xi

)−1( N∑
i=1

X′iΩ
−1
i yi

)
. (4.5)

where Ωi = E(uiu
′
i|Xi) = XiΘi,NTX′i + σ2

ε IT , and ui = (ui1, . . . , uiT )′.

Second, the parameter βββ may be estimated separately for each group and then the

individual specific estimators are pooled to obtain an estimator of βββ. This approach was

advocated by Pesaran and Smith (1995) and it is referred to as mean-group estimator,
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i.e.,

β̂ββmg =
1

N

N∑
i=1

β̂ββi , (4.6)

where β̂ββi = (X′iXi)
−1 (X′iyi).

It can be easily seen that the consistency of (4.4) and (4.5) depends on the relation

between the xit and uit:

E

(
N∑
i=1

X′iui

)
= TE

(
N∑
i=1

Si,Tvi

)
+ E

(
N∑
i=1

X′iεεεi

)
. (4.7)

Under assumption 3 we have E (X′iεεεi) = 0 for all i. Hence, it follows that for the consis-

tency of these estimators we require that Si,T and vi are uncorrelated. For this reason

Wooldridge (2005) advocated a sufficient condition, E (vi|xit) = 0 for all t, to make the

pooled estimator unbiased. In this work we propose to consider more general settings by

following the Mundlak (1978) and introduce the auxiliary regression

Assumption 3 ′

vi = (Si,T − SN,T )γγγ + ξξξi, (4.8)

where ξξξi is iid(0,∆IK), ξξξi is uncorrelated with Si,T and εjt for all i, j = 1, ..., N .

The demeaning Si,T − SN,T in (4.8) is used to ensure that E (vi) = 0. Clearly, γγγ = 0 if

and only if the Si,T are uncorrelated with the effects vi. It also follows from assumption

5 and 3 ′ that Θi,NT = ∆IK + (Si,T − SN,T )γγγγγγ′ (Si,T − SN,T ). Further, model (4.1) under

assumption 3 ′ takes the form

yit = x′itβββ + z′itγγγ + ηit,

where zit = (Si,T − SN,T ) xit and ηit = x′itξξξi + εit. Accordingly, a consistent estimator of

βββ can be obtained as

β̃ββp = (X′MzX)
−1

(X′Mzy) , (4.9)

where Mz = INT − Z
(∑N

i=1 Z′iZi

)−1

Z′, Z = (Z′1, ...,Z
′
N)′ and Zi =

(
z′i,1, ..., z

′
i,T

)
for

i = 1, ..., N .

4.3 Asymptotic Properties

In this section we investigate the asymptotic properties of the estimators considered in

the previous section: β̃ββp, β̂ββp, β̂ββgls and β̂ββMG. Next two propositions present first order

asymptotics of the considered estimators.
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Proposition 1 (Bias) Given model (4.1)-(4.2) satisfies the assumptions 3, 4 and 3 ′ then

for a fixed T and N →∞ the following holds

(i) For the pooled estimator:

plim
N→∞

β̂ββp − βββ = S−1S(2)γγγ, (4.10)

where S(2) ≡ limN→∞
1
N

∑N
i=1 V ar [Si,T ].

(ii) For the GLS estimator:

plim
N→∞

β̂ββgls − βββ = Ω−1Λγγγ +Op(T
−1/2), (4.11)

where Ω ≡ lim
N→∞

1
N

∑N
i=1 Θ−1

i , Λ ≡ lim
N→∞

1
N

∑N
i=1 Θ−1

i (Si − S) and Θi ≡ lim
N,T→∞

Θi,NT .

(iii) For the pooled-Mundlak estimator:

plim
N→∞

β̃ββp − βββ = 0, (4.12)

(iv) For the mean-group estimator:

plim
N→∞

β̂ββmg − βββ = 0. (4.13)

Proof. See Appendix.

Proposition 1 illustrates several key facts and findings about the consistency of estima-

tors of heterogeneous panels with systematically varying slopes. First, as discussed above

the standard pooled OLS estimator β̂ββp has bias which will vanish only if γγγ = 0, which

in turn is associated with no correlation between disturbances vi and second empirical

moment of the covariates. Second, an interesting result is obtained for β̂ββgls estimator that

is known to be asymptotically equivalent to β̂ββmg and consistent for heterogeneous panels

when N, T → ∞. Item (ii) of Proposition 1 shows that in fact under systematic slope

variations (γγγ 6= 0) the GLS estimator will be consistent only if Λ = 0. That is, the mean

of scaled variances of covariates has to be equal zero. Further, it is shown in Proposition

1 item (iii) that inclusion of the additional regressor zi in the model can fix the problem

of the bias of the pooled estimator. Finally, item (iv) confirms the consistency of the

mean-group estimator.

The next question of interest is the efficiency of relevant (consistent) estimators. For

simplicity of exposition (and without loss of generality) we analyze the case where the

model contains only one regressor (K = 1), generated independently across i, t and iden-

tically across t, i.e.,

xit ∼ id(0, Si). (4.14)
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Our next result presents the asymptotic variance of the pooled estimator with Mundlak

correction.

Proposition 2 (Efficiency) If model (4.1)-(4.2) satisfies the assumptions 3, 4, 3 ′ and

additionally covariates behaves as in (4.14) with E |xit,k|8 < ∞ for all i = 1, ..., N and

t = 1, ..., T , then

lim
N→∞

N Var
(
β̃p

)
=
σ2
ε

T
S−1 + ∆ΣSS

−2 +O(T−1), (4.15)

where S ≡ limN→∞
1
N

∑N
i=1 Si and ΣS ≡ limN→∞

1
N

∑N
i=1 S

2
i .

Recall that for the mean group estimator a similar result is obtained (see, e.g., Hsiao

and Pesaran, 2008)

N Var
(
β̂MG

)
→

N→∞

σ2
ε

T
lim
N→∞

1

N

N∑
i=1

1

Si
+ ∆. (4.16)

Further, from Cauchy-Schwarz inequality and Jensen’s inequality it follows that [S]−1 ≤
1
N

∑N
i=1

1
Si

and ΣS ≥ S2, respectively. Therefore, it becomes clear from (4.15) and (4.16)

that in the settings with large N and fixed T both estimators can have gains in terms of

the efficiency, when compared to each other. In particular, if the variance of idiosyncratic

errors dominates the variance of the slope coefficients (i.e., σ2
ε >> ∆) then β̃p will provide

more efficient estimates, otherwise (i.e., ∆ >> σ2
ε) β̂MG will be preferred option in terms

of efficiency.

4.4 Monte Carlo Experiments

In this section we investigate the finite sample properties of the estimation procedures for

heterogeneous panels discussed in this paper, β̂p, β̃p, β̂gls and β̂mg. The aim of this section

is to evaluate and compare the performance of the estimators in terms of their bias and

efficiency for several different setups, relating to the theoretical discussion of Section 4.3.

The following data-generating process is used to conduct experiments

yit = xitβi + εit,

xit ∼ iidN(0, Si),

where εit ∼ iidN(0, 1). Variances of the regressors we generate as Si = 1, Si ∼ χ2
1 and

Si ∼ U [0.5, 3.5]. The dependencies between vi and si are modeled as in the assumption

3 ′, i.e., vi = γ (si − s) + ξi. Therefore, in our benchmark specification we generate the
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Est. Bias Var Ratio Bias Var Ratio Bias Var Ratio Bias Var Ratio

Si = 1, γ = 0 γ = 0.5

T = 20 T = 100 T = 20 T = 100

N = 20

β̂p 0.002 0.058 1.08 0.000 0.052 1.02 0.048 0.057 1.09 0.001 0.051 1.02

β̂gls 0.003 0.054 1.00 -0.000 0.051 1.00 0.003 0.052 1.00 -0.009 0.050 1.00

β̃p 0.003 0.054 1.01 -0.000 0.051 1.00 0.002 0.053 1.01 -0.009 0.050 1.00

β̂MG 0.003 0.054 · -0.000 0.051 · 0.002 0.052 · -0.009 0.050 ·

N = 100
β̂p -0.002 0.011 1.08 0.001 0.010 1.02 0.011 0.053 1.02 0.007 0.011 1.02

β̂gls -0.001 0.011 1.00 0.001 0.010 1.00 0.001 0.052 1.00 -0.003 0.010 1.00

β̃p -0.001 0.011 1.00 0.001 0.010 1.00 0.001 0.052 1.00 -0.003 0.010 1.00

β̂MG -0.001 0.011 · 0.001 0.010 · 0.001 0.052 · -0.003 0.010 ·

Si ∼ χ2 (1),

N = 20
β̂p 0.002 0.144 0.07 -0.008 0.141 0.26 0.968 0.588 0.24 0.888 0.394 0.75

β̂gls 0.003 0.066 0.03 -0.001 0.058 0.11 -0.054 0.077 0.03 -0.078 0.066 0.13

β̃p 0.004 0.126 0.06 -0.006 0.120 0.22 -0.005 0.124 0.05 -0.002 0.118 0.22

β̂MG -0.007 2.084 · 0.008 0.545 · 0.020 2.443 · 0.010 0.527 ·

N = 100
β̂p -0.001 0.032 0.07 -0.000 0.030 0.33 1.106 0.183 0.39 0.995 0.112 1.28

β̂gls -0.001 0.013 0.03 -0.001 0.012 0.13 -0.051 0.016 0.03 -0.089 0.014 0.16

β̃p 0.001 0.030 0.07 -0.001 0.028 0.31 0.002 0.030 0.06 0.000 0.029 0.33

β̂MG -0.003 0.453 · -0.001 0.091 · 0.017 0.467 · 0.005 0.087 ·

Si ∼ U [0.5, 3.5],

N = 20
β̂p -0.004 0.082 1.65 -0.001 0.017 1.62 1.580 0.301 5.82 1.652 0.067 6.51

β̂gls -0.004 0.050 1.00 -0.000 0.011 1.00 -0.218 0.100 1.92 -0.231 0.020 1.96

β̃p -0.005 0.072 1.44 -0.002 0.016 1.47 0.000 0.074 1.43 -0.002 0.015 1.48

β̂MG -0.004 0.050 · -0.000 0.011 · 0.001 0.052 · -0.002 0.010 ·

N = 100
β̂p -0.007 0.080 1.54 -0.002 0.016 1.60 1.656 0.068 6.54 1.369 0.035 3.52

β̂gls -0.002 0.052 1.00 -0.001 0.010 1.00 -0.228 0.020 1.91 -0.179 0.020 1.97

β̃p -0.001 0.069 1.33 0.000 0.014 1.42 -0.002 0.015 1.49 -0.000 0.014 1.44

β̂MG -0.002 0.052 · -0.001 0.010 · -0.000 0.010 · 0.000 0.010 ·
Table 4.1: Bias and efficiency of the estimators for heterogeneous panels with systematic slope varia-

tions.

slopes as

βi ∼ N(1,∆) + γ(si − s),

where ∆ = 1, γ = {0, 0.5}. All results are based on 5000 relications. We examine four

combinations of (N, T ) = {(20, 20), (20, 100), (100, 20), (100, 100)}.
Results of the simulations are presented Table 1. In particular, the bias, the MSE of

the estimators and ratio of the estimator’s MSE with respect to the MSE of the mean-

group estimator are reported. Finally, the left panel represents the case when parameter

γ = 0 indicating no correlation between vi and si, while ∆ = 0 presents the case when

three is no heterogeneity in slopes. The main results of the experiments confirm the

theoretical findings of Proposition 1 and 2.
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A Appendix: Proofs

First, an auxiliary Lemma is provided.

Lemma A.3 Given that xit ∼ id(0, Si) and E |xit|8 <∞ for all i and t then the first four
moments of Si,T = x′iITxi/T are

(i) E[Si,T ] = Si,

(ii) E[S2
i,T ] = S2

i

(
1 +

λ1,i
T

)
,

(iii) E[S3
i,T ] = S3

i

(
1 + 3

λ1,i
T

+
λ2,i
T 2

)
,

(iv) E[S4
i,T ] = S4

i

(
1 + 6

λ1,i
T

+
λ3,i
T 2 +

λ4,i
T 3

)
,

where λ1,i =
(

2 + p
(2)
i

)
, λ2,i =

(
8 + p

(4)
i + 12p

(2)
i + 10

(
p

(1)
i

)2
)

, λ3,i =
(

44 + 60p
(2)
i + 4p

(4)
i

+40
(
p

(1)
i

)2

+ 3
(
p

(2)
i

)2
)

, λ4,i =

(
48 + 144p

(2)
i + 24p

(4)
i + p

(6)
i + 240

(
p

(1)
i

)2

+ 32
(
p

(2)
i

)2

+56p
(1)
i p

(3)
i

)
and p

(1)
i and p

(2)
i are Persons measure of skewness and kurtosis of the xit

distribution and p
(3)
i , ..., p

(6)
i are regarded as measure for deviation from normality as in

Ullah (2004).

Proof. To obtain (i), (ii) and (iii) we make use of results derived in Appendix A.5 of
Ullah (2004). Item (iv) follows from Theorem 2 of Bao and Ullah (2010).

Proof of Proposition 1

Item (i)

For the pooled estimator it holds

β̂ββp − βββ =

(
1

N

N∑
i=1

X′iXi

)−1(
1

N

N∑
i=1

X′iXivi

)
+Op(N

−1/2)

= [SN,T ]−1

[
1

N

N∑
i=1

S2
i,T − S2

N,T

]
γγγ +Op(N

−1/2),

where in turn by Assumption 4 SN,T
p→ S and LLN for independent heterogeneous dis-

tributed random variables (see, e.g., White, 2001, Corrolary 3.9) we have[
1

N

N∑
i=1

S2
i,T − S2

N,T

]
−

[
1

N

N∑
i=1

(
E
[
S2
i,T

]
− E [Si,T ]2

)] a.s.→ 0,

as N →∞ and
a.s.→ denotes almost sure convergence. 1.
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Item (ii)

The GLS estimator can be written as a matrix weighted average of the least squares
estimator for each cross-sectional unit i.e.,

β̂ββgls =
1

N

∑
i

Riβ̂ββi, (A.1)

where

Ri =

[
1

N

∑
j

(
σ2
ε

(
X′jXj

)
+ Θi,NT

)−1

]−1 (
σ2
ε (X′iXi) + Θi,NT

)−1
,

Θi,NT ≡ E[viv
′
i|X] = ∆IK + (Si,T − SN,T )γγγγγγ′ (Si,T − SN,T )′ .

Further rewrite weights Ri as Ri = [QN,T ]−1 Qi,T where Qi,T = (σ2
ε (X′iXi) + Θi,NT )

−1

and QN,T =
∑

i Qi,T/N .
Remark 1: The following holds

(i) Si,T = Si +Op

(
T−1/2

)
;

(ii) S−1
i,T = S−1

i +Op

(
T−1/2

)
;

(iii) Θi,NT = Θi,N + Op

(
T−1/2

)
, where Θi,N = (Si − SN)γγγγγγ′ (Si − SN)′ + ∆IK and

SN = 1
N

∑
i Si.

(iv) Θi,NT = Θi +Op

(
N−1/2

)
+Op

(
T−1/2

)
, where Θi = (Si − S)γγγγγγ′ (Si − S)′ + ∆IK

Proof of Remark 1: (i) follows from Lindeberg-Levy CLT; (ii) comes from the fact that
Si is positive definite and first order Taylor expansion of the inverse function g (Si,T ) =
S−1
i,T in the local neighborhood of Si. For item (iii) and (iv) notice that SNT = SN +

Op

(
T−1/2

)
= S +Op

(
T−1/2

)
+Op

(
N−1/2

)
. Then results will follow from (i) and uniform

L4+δ boundedness of regressors (i.e., Assumption 4). �
Remark 2:

(i) Qi,T = Θ−1
i,N − 1

T
Wi,N +Op

(
T−1/2

)
, where Wi,N = σ2

εΘ
−1
i,NS−1

i Θ−1
i,N .

(ii) [QN,T ]−1 = Ω−1
N + 1

T
Ω−1
N WNΩ−1

N +Op

(
T−1/2

)
, where ΩN = 1

N

∑N
i=1 Θ−1

i,N and WN =
1
N

∑N
i=1 Wi,N .

Proof of Remark 2: By the Remark 1 we have Q−1
i,T = Θi,N+ 1

T
σ2
εS
−1
i +Op

(
T−1/2

)
. Then

by using the first order Taylor expansion of the inverse of matrix sum (i.e., (A + B)−1 =
A−1 −A−1BA−1) it follows

Qi,T =

[
Θi,N +

1

T
σ2
εS
−1
i

]−1

+Op

(
T−1/2

)
= Θ−1

i,N −
1

T
σ2
εΘ
−1
i,NS−1

i Θ−1
i,N +Op

(
T−1/2

)
.

Summing Qi,T over i and using again Taylor expansion for the inverse will yield item (ii)
of Remark 2. �
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Notice that Ω−1
N = O(1) and WN = O(1) hence [QN,T ]−1 = Ω−1

N + Op

(
T−1/2

)
. Then

by putting together expression for GLS estimator (A.1) and Remark 2 we have

β̂ββgls =
(
Ω−1
N +Op

(
T−1/2

))( 1

N

N∑
i=1

Θ−1
i,Nβ̂ββi −

1

NT

N∑
i=1

W−1
i,Nβ̂ββi +Op

(
T−1/2

))

= Ω−1
N

1

N

N∑
i=1

Θ−1
i,Nβ̂ββi +Op

(
T−1/2

)
.

where the last equality comes from the fact that 1
NT

∑N
i=1 W−1

i,N β̂i = Op (T−1). Further

from Remark 1 and since β̂ββi−βββ = vi +Op

(
T−1/2

)
the result for item (ii) will follow, i.e.,

Ω−1
N

1

N

N∑
i=1

Θ−1
i,Nβ̂ββi = βββ + Ω−1

N

1

N

N∑
i=1

Θ−1
i (Si − S)γγγ +Op

(
T−1/2

)
+Op

(
N−1/2

)
.

Item (iii) and (iv)

(iii) Mundlak-type pooled estimator:

β̃ββp − βββ = (X′MZX)
−1

(X′MZ(X� ηηη)) = Op(N
−1/2),

where� denotes Hadamard product, ηηη isNT×1 vector with typical element ηit = xitξi+εit
and the last equality comes from the Kolmogorov LLN.
(iv) Mean-group estimator:

β̂ββmg − βββ =
1

N

N∑
i=1

(X′iXi)
−1

(X′iXivi) +Op(N
−1/2)

=
1

N

N∑
i=1

(Si,T − SNT )γγγ +Op(N
−1/2) = Op(N

−1/2).

Proof of Proposition 2

First note that

N Var
(
β̃p

)
= σ2E

(
X′MZX

N

)−1

+ ∆E

((
X′MZX

N

)−1(
X′MZDXD′XMZX

N

)(
X′MZX

N

)−1
)
,

whereDX = diag{X1, ...,XN}. Then by LLN for independent heterogeneously distributed
observations and Lemma A.3 it follows,

X′X

N
− T

N

N∑
i=1

E [Si,T ]
a.s.→ 0,
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where 1
N

∑N
i=1 E [Si,T ] = 1

N

∑N
i=1 Si → S as N → ∞. Same techniques will provide the

rest of the results

X′Z

N

a.s.→ lim
N→∞

T

N

N∑
i=1

(
E(S2

i,T )− E (Si,T )2) = lim
N→∞

1

N

N∑
i=1

(
S2
i

(
2 + p

(2)
i

))
,

Z′Z

N

a.s.→ lim
N→∞

T

N

N∑
i=1

(
E[S3

i,T ]− 2E[S2
i,T ]E[Si,T ] + E[Si,T ]3

)
= lim

N→∞

1

N

N∑
i=1

(
S3
i

(
2 + p

(2)
i

))
+O(T−1);

X′DXD′XX

N

a.s.→ lim
N→∞

T 2

N

N∑
i=1

E[S2
i,T ] = T 2 lim

N→∞

1

N

N∑
i=1

S2
i +O(T );

X′DXD′XZ

N

a.s.→ lim
N→∞

T 2

N

N∑
i=1

E[S3
i,T ]− E[S2

i,T ]E[Si,T ]

= T lim
N→∞

1

N

N∑
i=1

S3
i

(
2(2 + p

(2)
i )
)

+O(1);

Z′DXD′XZ

N

a.s.→ lim
N→∞

T 2

N

N∑
i=1

E[S4
i,T ]− 2E[S3

i,T ]E[Si,T ] + E[S2
i,T ]E[Si,T ]2

= T lim
N→∞

1

N

N∑
i=1

S4
i

(
(2 + p

(2)
i )
)

+O(1).

Putting together all results from above will yield,

X′MZX

N

p→ ST +O(1),

X′MZDXD′XMZX

N

p→ ΣST
2 +O(T ),

where S ≡ limN→∞
1
N

∑N
i=1 Si and ΣS ≡ limN→∞

1
N

∑N
i=1 S

2
i , which in turn yield the

statement of the proposition.
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