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CONSTRUCTION OF A RAPOPORT-ZINK SPACE FOR SPLIT

GU(1, 1) IN THE RAMIFIED 2-ADIC CASE

DANIEL KIRCH

Abstract. Let F |Q2 be a finite extension. In this paper, we construct an RZ-space

NE for split GU(1, 1) over a ramified quadratic extension E|F . For this, we first

introduce the naive moduli problem N
naive

E and then define NE ⊆ N
naive

E as a

canonical closed formal subscheme, using the so-called straightening condition. We
establish an isomorphism between NE and the Drinfeld moduli problem, proving

the 2-adic analogue of a theorem of Kudla and Rapoport. We also give the definition

of a local model for NE as a flat projective scheme over OF which, locally for the
étale topology, models the singularities of NE . The formulation of the straightening

condition uses the existence of certain polarizations on the points of the moduli space

N
naive

E . We show the existence of these polarizations in a more general setting over

any quadratic extension E|F , where F |Qp is a finite extension for any prime p.
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2 DANIEL KIRCH

1. Introduction

In this paper, we give a new example of a 2-adic Rapoport-Zink space. Rapoport-Zink
spaces are moduli spaces of p-divisible groups that are endowed with certain additional
structure. There are two major classes of Rapoport-Zink spaces, namely the (EL) type
and the (PEL) type. Here the abbreviations (EL) and (PEL) indicate whether the extra
structure comes in form of endomorphisms and level structure (in the (EL) case) or
in form of polarizations, endomorphisms and level structure (in the (PEL) case). In
[RZ96], Rapoport and Zink define RZ-spaces for the (EL) type, and for the (PEL) type
whenever p �= 2. They prove that these moduli spaces are pro-representable by formal
schemes.
A general definition for RZ-space of (PEL) type in the case p = 2 remains still unknown.
In this paper, we construct the 2-adic Rapoport-Zink space NE corresponding to the
group of unitary similitudes of size 2 relative to any (wildly) ramified quadratic extension
E|F , where F |Q2 is a finite extension. Furthermore, we show that there is a natural
isomorphism η : MDr → NE , where MDr is Deligne’s formal model of the Drinfeld
upper halfplane (cf. [BC91]). This result is in analogy with [KR11], where Kudla and
Rapoport construct a corresponding isomorphism for p �= 2 and also for p = 2 when E|F
is an unramified extension. The formal scheme MDr solves a certain moduli problem of
p-divisible groups and, in this way, it carries the structure of an RZ-space of (EL) type.
In particular, MDr is defined even for p = 2.

We will now explain the results of this paper in greater detail. Let F be a finite extension
of Q2 and E|F a ramified quadratic extension. Following [Jac62], we consider the
following dichotomy for this extension (see section 2):

(R-P) There is a uniformizer π0 ∈ F , such that E = F [Π] with Π
2 = π0. Then the

rings of integers OF and OE of F and E satisfy OE = OF [Π].

(R-U) E|F is generated by the square root ϑ of a unit in F . We can choose ϑ such that

ϑ
2 = 1 + π

2k+1
0 ε for a unit ε ∈ O×

F and for an integer k with |2| < |πk
0 | ≤ |1|, where | · |

is the (normalized) absolute value on F .

An example for an extension of type (R-P) is Q2(
√

2)|Q2, whereas Q2(
√

3)|Q2 is of type
(R-U).
The results in the cases (R-P) and (R-U) are similar, but different. We first describe
our results in the case (R-P). Let E|F be of type (R-P).

We first define a naive moduli problem N naive
E , that merely copies the definition from

p �= 2 (cp. [KR11]). Let F̆ be the completion of the maximal unramified extension of F

and ŎF its ring of integers. Then N naive
E is a set-valued functor on NilpŎF

, the category

of ŎF -schemes where π0 is locally nilpotent. For S ∈ NilpŎF
, the set N naive

E (S) is the set

of equivalence classes of tuples (X, ι, λ, �). Here, X/S is a formal OF -module of height
4 and dimension 2, equipped with an action ι : OE → End(X). This action satisfies the
Kottwitz condition of signature (1, 1), i. e., for any α ∈ OE , the characteristic polynomial
of ι(α) on Lie X is given by

char(Lie X, T | ι(α)) = (T − α)(T − α).

Here, α �→ α denotes the Galois conjugation of E|F . The right hand side of this equation

is a polynomial with coefficients in OS via the structure map OF �→ ŎF → OS . The
third entry λ is a principal polarization λ : X → X∨ such that the induced Rosati
involution satisfies ι(α)∗ = ι(α) for all α ∈ OE . Finally, � is a quasi-isogeny of height
0 (and compatible with all previous data) to a fixed framing object (X, ιX, λX) over

k = ŎF /π0. This framing object is unique up to isogeny under the condition that

{ϕ ∈ End0(X, ιX) | ϕ
∗(λX) = λX} � U(C, h),
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for a split E|F -hermitian vector space (C, h) of dimension 2, see Lemma 3.2.

It turns out that the definition of N naive
E is not the correct one. In order to illustrate

this, let us recall the definition of the Drinfeld moduli problem MDr. It is the functor
on NilpŎF

, mapping a scheme S to the set MDr(S) of equivalence classes of tuples

(X, ιB , �). Again, X/S is a formal OF -module of height 4 and dimension 2. Let B
be the quaternion division algebra over F and OB its ring of integers. Then ιB is an
action of OB on X, satisfying the special condition of Drinfeld (see [BC91] or section
3.3 below). The last entry � is an OB-linear quasi-isogeny of height 0 to a fixed framing
object (X, ιX,B) over k. This framing object is unique up to isogeny (cf. [BC91, II. Prop.
5.2]).

Fix an embedding OE �→ OB and consider the involution b �→ b∗ = Πb�
Π

−1 on B,
where b �→ b� is the standard involution. By Drinfeld (see Prop. 3.12 below), there
exists a principal polarization λX on the framing object (X, ιX,B) of MDr, such that the

induced Rosati involution satisfies ιX,B(b)∗ = ιX,B(b∗) for all b ∈ OB . This polarization

is unique up to a scalar in O×
F . Furthermore, for any (X, ιB , �) ∈ MDr(S), the pullback

λ = �
∗(λX) is a principal polarization on X.

We now set

η(X, ιB , �) = (X, ιB |OE
, λ, �).

By Lemma 3.13, this defines a closed embedding η : MDr �→ N naive
E . But η is far from

being an isomorphism, as follows from the following proposition:

Proposition 1.1. The induced map η(k) : MDr(k) → N naive
E (k) is not surjective.

Let us sketch the proof here. Using Dieudonné theory, we can write N naive
E (k) naturally

as a union

N naive
E (k) =

�

Λ⊆C

P(Λ/ΠΛ)(k),

where the union runs over all OE-lattices Λ in the hermitian vector space (C, h) that are

Π
−1-modular, i. e., the dual Λ

� of Λ with respect to h is given by Λ = Π
−1

Λ
� (see Lemma

3.6). By Jacobowitz ([Jac62]), there exist different types (i. e. U(C, h)-orbits) of such
lattices Λ ⊆ C that are parametrized by their norm ideal Nm(Λ) = �{h(x, x)|x ∈ Λ}� ⊆
F . In the case at hand, Nm(Λ) can be any ideal with 2OF ⊆ Nm(Λ) ⊆ OF . If the norm
ideal of Λ is minimal, that is, if Nm(Λ) = 2OF , we call Λ hyperbolic. Equivalently, the
lattice Λ has a basis consisting of isotropic vectors. Now, the image under η of MDr(k)
is the union of all lines P(Λ/ΠΛ)(k) where Λ ⊆ C is hyperbolic. This is a consequence
of Remark 3.11 and Theorem 3.14 below.
On the framing object (X, ιX, λX) of N naive

E , there exists a principal polarization �λX such
that the induced Rosati involution is the identity on OE . This polarization is unique

up to a scalar in O×
E (see Thm. 6.2 (1)). On C, the polarization �λX induces an E-linear

alternating form b, such that det b and det h differ only by a unit (for a fixed basis of C).

After possibly rescaling b by a unit in O×
E , a Π

−1-modular lattice Λ ⊆ C is hyperbolic
if and only if b(x, y) + h(x, y) ∈ 2OF for all x, y ∈ Λ. This enables us to describe the

“hyperbolic” points of N naive
E (i. e., those that lie on a projective line corresponding to

a hyperbolic lattice Λ ⊆ C) in terms of polarizations.
We now formulate the closed condition that characterizes NE as a closed formal sub-

scheme of N naive
E . For a suitable choice of (X, ιX, λX) and �λX, we may assume that

1
2 (λX + �λX) is a polarization on X. The following definition is a reformulation of Def.
3.10.

Definition 1.2. Let S ∈ NilpŎF
. An object (X, ι, λ, �) ∈ N naive

E (S) satisfies the straight-

ening condition, if λ1 = 1
2 (λ + �λ) is a polarization on X. Here, �λ = �

∗(�λX).
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We remark that �λ = �
∗(�λX) is a polarization on X. This is a consequence of Theorem

6.2, which states the existence of certain polarizations on points of a larger moduli space
ME containing N naive

E , see below.
For S ∈ NilpŎF

, let NE(S) ⊆ N naive
E (S) be the subset of all tuples (X, ι, λ, �) that satisfy

the straightening condition. By [RZ96, Prop. 2.9], this defines a closed formal subscheme

NE ⊆ N naive
E . An application of Drinfeld’s Proposition (see Prop. 3.12) shows that the

image of MDr under η lies in NE . The main theorem in the (R-P) case can now be
stated as follows, cf. Theorem 3.14.

Theorem 1.3. η : MDr → NE is an isomorphism of formal schemes.

We next turn our attention towards the construction of a local model Nloc
E for NE . We

start with an OE-lattice Λ ⊆ C that is selfdual with respect to the hermitian form h
and is hyperbolic. After twisting b by a scalar in O×

E if necessary, we may assume that
1
2 (h + b) is integral on Λ. The forms h and b induce OF -bilinear alternating forms � , �,
( , ) and � , �1 on Λ, where

�x, y�1 =
1

2
(�x, y� + (x, y)),

for all x, y ∈ Λ. Recall that C has dimension 2 over E, so Λ is an OF -lattice of rank 4.

Let R be an OF -algebra. We define Nloc
E (R) as the set of direct summands F ⊆ Λ⊗OF

R
of rank 2 that are OE-stable and totally isotropic with respect to � , �, ( , ) and � , �1.
Additionally, we impose the Kottwitz condition on the quotient (Λ ⊗OF

R)/F , i. e., the
characteristic polynomial for the action of any α ∈ OE is given by

char((Λ ⊗OF
R)/F , T | α) = (T − α)(T − α).

The functor Nloc
E is representable by a closed subscheme of a Grassmanian over OF . In

particular, Nloc
E is projective. Let F (2)|F be the unramified quadratic extension and let

O
(2)
F be its ring of integers. We denote the local model for the Drinfeld moduli problem

by Mloc
Dr, cf. [RZ96, Def. 3.27].

Proposition 1.4. Fix an embedding OE �→ OB. There is an isomorphism

µ : Mloc
Dr ⊗OF

O
(2)
F

∼−→ Nloc
E ⊗OF

O
(2)
F .

In particular, Nloc
E is flat.

Let �Nloc
E be the π0-adic completion of Nloc

E ⊗OF
ŎF . We have a local model diagram for

NE in the sense of [RZ96], i. e., a diagram

M

f

��

g

��

NE
�Nloc

E

(1.1)

of surjective and formally smooth morphisms of formal schemes of identical relative
dimension. It follows that the completed local rings at points of NE are isomorphic to

completed local rings at points of Nloc
E . The diagram (1.1) is compatible with the local

model diagram for the Drinfeld case.
Note that there is no good notion of a “naive local model” corresponding to N naive

E ,
since there are different types of selfdual lattices Λ ⊆ (C, h), cp. Prop. 2.4. Thus there
is no such thing as a “standard lattice” and it is not clear how one should define a local
model for N naive

E .

This concludes our discussion of the (R-P) case. From now on, we assume that E|F is
of type (R-U).
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In the case (R-U), we have to make some adaptions for N naive
E . For S ∈ NilpŎF

, let

N naive
E (S) be the set of equivalence classes of tuples (X, ι, λ, �) with (X, ι) as in the (R-P)

case. But now, the polarization λ : X → X∨ is supposed to have kernel ker λ = X[Π] (in
contrast to the (R-P) case, where λ is a principal polarization). As before, the Rosati
involution of λ induces the conjugation on OE . There exists a framing object (X, ιX, λX)

over Spec k for N naive
E , which is unique under the condition that

{ϕ ∈ End0(X, ιX) | ϕ
∗(λX) = λX} � U(C, h),

where (C, h) is a split E|F -hermitian vector space of dimension 2 (cf. Prop. 4.2). Finally,
� is a quasi-isogeny of height 0 from X to X, respecting all structure.
Fix an embedding E �→ B. Using some subtle choices of elements in B (these are de-
scribed in Lemma 2.3 (2)) and by Drinfeld’s Proposition, we can construct a polarization
λ as above for any (X, ιB , �) ∈ MDr(S). This induces a closed embedding

η : MDr −→ N naive
E , (X, ιB , �) �−→ (X, ιB |OE

, λ, �).

We can write N naive
E (k) as a union of projective lines,

N naive
E (k) =

�

Λ⊆C

P(Λ/ΠΛ)(k),

where the union now runs over all selfdual OE-lattices Λ ⊆ (C, h) with Nm(Λ) ⊆ π0OF .
As in the (R-P) case, these lattices Λ ⊆ C are classified up to isomorphism by their
norm ideal Nm(Λ). Since Λ is selfdual with respect to h, the norm ideal can be any
ideal satisfying 2

π
k

0

OF ⊆ Nm(Λ) ⊆ OF . We call Λ hyperbolic when the norm ideal is

minimal, i. e., Nm(Λ) = 2

π
k

0

OF . Equivalently, the lattice Λ has a basis consisting of

isotropic vectors. Recall that here k is an integer, depending on the (R-U) extension

E|F , with |2| < |πk
0 | ≤ |1|. So we always have | 2

π
k

0

| ≤ |π0| and hence there exists at least

one type of selfdual lattices Λ ⊆ C with Nm(Λ) ⊆ π0OF . In the case (R-U), it may

happen that |2| = |πk+1
0 |, in which case all lattices Λ in the description of N naive

E (k) are
hyperbolic.
The image of MDr(k) under η in N naive

E (k) is the union of all projective lines corre-

sponding to hyperbolic lattices. Unless |2| = |πk+1
0 |, it follows that η(k) is not surjective

and thus η cannot be an isomorphism. For the case |2| = |πk+1
0 |, we will show that η is

an isomorphism on reduced loci (MDr)red
∼−→ (N naive

E )red (see Remark 4.12), but η is
not an isomorphism of formal schemes. This follows from the non-flatness of the “naive
local model” Nnaive

E for N naive
E , see section 5.3.

On the framing object (X, ιX, λX) of N naive
E , there exists a polarization �λX such that

ker �λX = X[Π] and such that the Rosati involution induces the identity on OE . After a

suitable choice of (X, ιX, λX) and �λX, we may assume that π
k

0

2 (λX + �λX) is a polarization
on X. The straightening condition for the (R-U) case is given as follows (cp. Def. 4.11).

Definition 1.5. Let S ∈ NilpŎF
. An object (X, ι, λ, �) ∈ N naive

E (S) satisfies the straight-

ening condition, if λ1 = π
k

0

2 (λ + �λ) is a polarization on X. Here, �λ = �
∗(�λX).

Note that �λ = �
∗(�λX) is a polarization on X by Theorem 6.2.

The straightening condition defines a closed formal subscheme NE ⊆ N naive
E that con-

tains the image of MDr under η. The main theorem in the (R-U) case can now be
stated as follows, cf. Theorem 4.15.

Theorem 1.6. η : MDr → NE is an isomorphism of formal schemes.
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We now define a local model Nloc
E for NE . Let Λ ⊆ C be a Π-modular lattice with

respect to h (i. e., Λ = ΠΛ
�). The forms h and b induce OF -linear alternating forms

� , �, ( , ) and � , �1 with

�x, y�1 =
π

k
0

2
(�x, y� + (x, y)),

for all x, y ∈ Λ.

Let R be an OF -algebra. Then Nloc
E (R) is the set of direct summands F ⊆ Λ ⊗OF

R
of rank 2 that are OE-stable and totally isotropic with respect to the forms induced
by � , �, ( , ) and � , �1. Since Λ is Π-modular, the alternating forms � , � and ( , ) are not

perfect on Λ, thus we have to twist by Π
−1 here, see (5.8). We also impose the Kottwitz

condition on (Λ ⊗OF
R)/F , see the (R-P) case above. The functor Nloc

E is representable
by a closed subscheme of a Grassmanian over OF and, in particular, is projective. We
have the following proposition, cf. Prop. 5.8.

Proposition 1.7. Fix an embedding E �→ B and let O
(2)
F be the unramified quadratic

extension of OF . There is an isomorphism µ : Mloc
Dr ⊗OF

O
(2)
F

∼−→ Nloc
E ⊗OF

O
(2)
F . In

particular, Nloc
E is flat over OF .

As in the (R-P) case, there exists a local model diagram (1.1) connecting NE and Nloc
E .

It is compatible with the local model diagram for the Drinfeld case.

When formulating the straightening condition in the (R-U) and the (R-P) case, we

mentioned that �λ = �
∗(�λX) is a polarization for any (X, ι, λ, �) ∈ N naive

E (S). This fact is
a corollary of Theorem 6.2, that states the existence of this polarization in the following
more general setting.
Let F |Qp be a finite extension for any prime p and E|F an arbitrary quadratic extension.
We consider the following moduli space ME of (EL) type. For S ∈ NilpŎF

, the set

ME(S) consists of equivalence classes of tuples (X, ιE , �), where X is a formal OF -
module of height 4 and dimension 2 and ιE is an OE-action on X satisfying the Kottwitz
condition of signature (1, 1), see above. The entry � is an OE-linear quasi-isogeny of
height 0 to a supersingular framing object (X, ιX,E).
The points of ME are equipped with polarizations in the following natural way, cf.
Theorem 6.2.

Theorem 1.8. (1) There exists a principal polarization �λX on (X, ιX,E) such that the

Rosati involution induces the identity on OE, i. e., ι(α)∗ = ι(α) for all α ∈ OE. This

polarization is unique up to a scalar in O×
E .

(2) Fix �λX as in part (1). For any S ∈ NilpŎF
and (X, ιE , �) ∈ ME(S), there exists a

unique principal polarization �λ on X such that the Rosati involution induces the identity

on OE and such that �λ = �
∗(�λX).

If p = 2 and E|F is ramified of (R-P) or (R-U) type, then there is a canonical closed
embedding NE �→ ME that forgets about the polarization λ. In this way, it follows

that �λ is a polarization for any (X, ι, λ, �) ∈ N naive
E (S).

The statement of Theorem 1.8 can also be expressed in terms of an isomorphism of
moduli spaces ME,pol

∼−→ ME . Here ME,pol is a moduli space of (PEL) type, defined

by mapping S ∈ NilpŎF
to the set of tuples (X, ι, �λ, �) where (X, ι, �) ∈ ME(S) and �λ

is a polarization as in the theorem.

We now briefly describe the contents of the subsequent sections of this paper. In section
2, we recall some facts about the quadratic extensions of F , the quaternion algebra B|F
and hermitian forms. In the next two sections, sections 3 and 4, we define the moduli
spaces N naive

E , introduce the straightening condition describing NE ⊆ N naive
E and prove

our main theorem in both the cases (R-P) and (R-U). Although the techniques are quite
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similar in both cases, we decided to treat these cases separately, since the results in both

cases differ in important details. In section 5, we define the local model Nloc
E , prove that

it is isomorphic to Mloc
Dr and construct the local model diagram connecting Nloc

E and NE .
Again, we explain these results separately for the cases (R-P) and (R-U). The section

5.3 is dedicated to a discussion of the naive local model Nnaive
E for N naive

E , in the case

where E|F is of type (R-U) with |2| = |πk+1
0 |. In particular, we prove the necessity of

the straightening condition in that specific case. Finally, in section 6, we prove Theorem

1.8 on the existence of the polarizations �λ.

Acknowledgements. First of all, I am very grateful to my advisor M. Rapoport for
suggesting this topic and for his constant support and helpful discussions. I thank the
members of our Arbeitsgruppe in Bonn for numerous discussions at lunch time and I
also would like to thank the audience of my two AG talks for many helpful questions
and comments. This work is the author’s PhD thesis at the University of Bonn, which
was supported by the SFB/TR45 ‘Periods, Moduli Spaces and Arithmetic of Algebraic
Varieties’ of the DFG (German Research Foundation). Parts of this paper were written
during the fall semester program ‘New Geometric Methods in Number Theory and
Automorphic Forms’ at the MSRI in Berkeley.

2. Preliminaries on quaternion algebras and hermitian forms

Let F |Q2 be a finite extension. In this section we will recall some facts about the
quadratic extensions of F , the quaternion division algebra B|F and certain hermitian
forms. For more information on quaternion algebras, see for example the book by
Vigneras [Vig80]. A systematic classification of hermitian forms over local fields has
been done by Jacobowitz in [Jac62].
Let E|F be a quadratic field extension and denote by OF resp. OE the rings of integers.
There are three mutually exclusive possibilities for E|F :

• E|F is unramified. Then E = F [δ] for δ a square root of a unit in F . We can choose

δ such that δ
2 = 1 + 4ε0 for some ε0 ∈ O×

F . In this case, OE = OF [ 1+δ
2 ]. In the

following we will write F (2) instead of E and O
(2)
F instead of OE when talking about the

unramified extension of F .

• E|F is ramified and E is generated by the square root of a uniformizer in F . That

is, E = F [Π] and Π
2 = π0 is a uniformizing element in OF . We also have OE = OF [Π].

Following Jacobowitz, we will say E|F is of type (R-P) (which stands for “ramified-
prime”).

• E|F is ramified and E is generated by the square root of a unit in F . Here E = F [ϑ]

with ϑ
2 ∈ O×

F . We can choose ϑ such that ϑ
2 is of the form ϑ

2 = 1+π
2k+1
0 ε. Here π0 is a

uniformizer of OF , ε ∈ O×
F and k is a non-negative integer such that |2| < |π0|k ≤ |1| for

the (normalized) absolute value |·| on F . A uniformizer of OE is given by Π = (1+ϑ)/π
k
0

and OE = OF [Π]. In this case E|F is said to be of type (R-U) (for “ramified-unit”).

Throughout the paper, we use this notation for the (R-U) case.

Remark 2.1. (1) The isomorphism classes of quadratic extension of F correspond to

the non-trivial equivalence classes of F ×/(F ×)2. We have F ×/(F ×)2 � H1(GF ,Z/2Z)

for the absolute Galois group GF of F and dim H1(GF ,Z/2Z) = 2+d, where d = [F : Q2]
is the degree of F over Q2 (see, for example, [NSW00, Cor. 7.3.9]).

A representative of an equivalence class in F ×/F ×2 can be chosen to be either a
prime or a unit, and exactly half of the classes are represented by prime elements, the

others being represented by units. It follows that there are, up to isomorphism, 21+d

different extensions E|F of type (R-P) and 21+d − 2 extension of type (R-U). (We have
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to exclude the trivial element 1 ∈ F ×/F ×2 and one unit element corresponding to the
unramified extension.)

(2) Note that 1 + π
2k+1
0 ε is never a square in OF /π

2k+2
0 for any unit ε and any k with

|2| < |π0|k ≤ |1|. It follows that, if two elements 1 + π
2k+1
0 ε and 1 + π

2k
�

+1
0 ε

� lie in

the same equivalence class of F ×/F ×2 (i.e. they induce the same quadratic extension of
type (R-U)), then k = k� and ε ≡ ε

� mod π0.

Lemma 2.2. The inverse different of E|F is given by D
−1
E|F = 1

2Π
OE in the case (R-P)

and by D
−1
E|F = π

k

0

2 OE in the case (R-U).

Proof. The inverse different is defined as

D
−1
E|F = {α ∈ E | TrE|F (αOE) ⊆ OF }.

It is enough to check the condition on the trace for the elements 1 and Π ∈ OE . If we
write α = α1 + Πα2 with α1, α2 ∈ F , we get

TrE|F (α · 1) = α + α = 2α1 + α2(Π + Π),

TrE|F (α · Π) = αΠ + αΠ = α1(Π + Π) + α2(Π2 + Π
2).

In the case (R-P) we have Π + Π = 0 and Π
2 + Π

2 = 2π0, while in the case (R-U),

Π + Π = 1+ϑ

π
k

0

+ 1−ϑ

π
k

0

= 2

π
k

0

and Π
2 + Π

2 = ( 1+ϑ

π
k

0

)2 + ( 1−ϑ

π
k

0

)2 = 4

π
2k

0

+ 2π0ε. It is now easy

to deduce that the inverse different is of the claimed form. �

Over F , there exists up to isomorphism exactly one quaternion division algebra B,
with unique maximal order OB . For every quadratic extension E|F , there exists an
embedding E �→ B and this induces an embedding OE �→ OB . If E|F is ramified,
a basis for OE as OF -module is given by (1, Π). We would like to extend this to an
OF -basis of OB .

Lemma 2.3. (1) If E|F is of type (R-P), there exists an embedding F (2)
�→ B such

that δΠ = −Πδ. An OF -basis of OB is then given by (1, 1+δ
2 , Π, 1+δ

2 · Π).

(2) If E|F is of type (R-U), there exists an embedding E1 �→ B, where E1|F is of type (R-
P), such that ϑΠ1 = −Π1ϑ. The tuple (1, ϑ, Π1, ϑΠ1) is an F -basis of B. Furthermore,

there is also an embedding �E �→ B with �E|F of type (R-U), such that ϑ�ϑ = −�ϑϑ and
�ϑ2 = 1 + (4/π

2k+1
0 ) · �ε. In terms of this embedding, an OF -basis of OB is given by

(1, Π, �Π, Π · �Π/π0). Also,

Π · �Π
π0

=
1 + δ

2
(2.1)

for some embedding F (2)
�→ B of the unramified extension and δ

2 = 1 + 4ε0 with
ε0 = −ε�ε. Hence, OB = OF [Π, 1+δ

2 ] as OF -algebra.

Proof. (1) This is [Vig80, II. Cor. 1.7].

(2) By [Vig80, I. Cor. 2.4], it suffices to find a uniformizer Π
2
1 ∈ F × \ NmE|F (E×) in

order to prove the first part. But NmE|F (E×) ⊆ F × is a subgroup of order 2 and

F ×2 ⊆ NmE|F (E×). On the other hand, the residue classes of uniformizing elements in

F ×/F ×2 generate the whole group. Thus they cannot all be contained in NmE|F (E×).

For the second part, choose a unit δ ∈ F (2) with δ
2 = 1 + 4ε0 ∈ F × \ F ×2 for some

ε0 ∈ O×
F . Let �E|F be of type (R-U), generated by �ϑ with �ϑ2 = 1 + (4/π

2k+1
0 ) · �ε and

ε0 = −ε�ε. We have to show that �ϑ2 is not contained in NmE|F (E×).



NEW EXAMPLE OF A 2-ADIC RZ-SPACE 9

Assume it is a norm, so �ϑ2 = NmE|F (b) for a unit b ∈ E×. After multiplying with a

scalar in F ×, we can write b as b = 1 + (2/π
k+1
0 ) · b2Π for some b2 ∈ F . Now,

NmE|F (b) = (1 +
2

π
k+1
0

· b2Π) · (1 +
2

π
k+1
0

· b2Π)

= 1 +
4

π
2k+1
0

(b2 − εb2
2),

and it follows from Remark 2.1 (2), that b2 is a unit with

�ε ≡ b2 − εb2
2 mod π0.

After multiplying the equation with ε and setting x = −εb2, this becomes

ε0 = x + x2 mod π0.

But a solution of this equation would lift to OF by Hensel’s Lemma, and then

(1 + 2x)2 = 1 + 4ε0,

contradicting our assumptions on δ. Hence �ϑ2 /∈ NmE|F (E×) and we can choose an

embedding �E �→ B such that ϑ�ϑ = −�ϑϑ.

We have Π = (1 + ϑ)/π
k
0 and �Π = (1 + �ϑ)/ (2/π

k+1
0 ), thus

Π · �Π
π0

=
(1 + ϑ) · (1 + �ϑ)

2
=

1 + ϑ + �ϑ + ϑ · �ϑ
2

,

and

(ϑ + �ϑ + ϑ · �ϑ)2 = ϑ
2 + �ϑ2 − ϑ

2 · �ϑ2

= (1 + π
2k+1
0 ε) + (1 +

4

π
2k+1
0

�ε) − (1 + π
2k+1
0 ε)(1 +

4

π
2k+1
0

�ε)

= 1 + 4ε0.

Hence 1+δ
2 �→ Π·�Π

π0
induces an embedding F (2)

�→ B.

It remains to prove that the tuple u = (1, Π, �Π, Π · �Π/π0) is a basis of OB as OF -module.
By [Vig80, I. Cor. 4.8], it suffices to check that the discriminant

disc(u) = det(Trd(uiuj)) · OF

is equal to disc(OB). An easy calculation shows det(Trd(uiuj)) · OF = π0OF and then
the assertion follows from [Vig80, V, II. Cor. 1.7]. �

For the remainder of this section, we will consider lattices Λ in a 2-dimensional E-
vector space C with a split E|F -hermitian form h. Recall from [Jac62] that, up to
isomorphism, there are 2 different E|F -hermitian vector spaces (C, h) of fixed dimension

n, parametrized by the discriminant disc(C, h) ∈ F ×/ NmE|F (E×). A hermitian space
(C, h) is called split whenever disc(C, h) = 1. In our case, where (C, h) is split of
dimension 2, we can find a basis (e1, e2) of C with h(ei, ei) = 0 and h(e1, e2) = 1.

Denote by Λ
� the dual of a lattice Λ ⊆ C with respect to h. The lattice Λ is called

Π
i-modular if Λ = Π

i
Λ

� (resp. unimodular or selfdual when i = 0). In contrast to the

p-adic case with p > 2, there exists more than one type of Π
i-modular lattices in our

case (cf. [Jac62]):

Proposition 2.4. Define the norm ideal Nm(Λ) of Λ by

Nm(Λ) = �{h(x, x)|x ∈ Λ}� ⊆ F. (2.2)
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Any Π
i-modular lattice Λ ⊆ C is determined up to the action of U(C, h) by the ideal

Nm(Λ) = π
�
0OF ⊆ F . For i = 0 or 1, the exponent � can be any integer such that

|2| ≤ |π0|� ≤ |1| (for E|F (R-P), unimodular Λ),

|2π0| ≤ |π0|� ≤ |π0| (for E|F (R-P), Π-modular Λ),

|2/π
k
0 | ≤ |π0|� ≤ |1| (for E|F (R-U), unimodular Λ),

|2/π
k
0 | ≤ |π0|� ≤ |π0| (for E|F (R-U), Π-modular Λ),

where | · | is the (normalized) absolute value on F . �

For any other i, the possible values of � for a given Π
i-modular lattice Λ are easily

obtained by shifting. In fact, we can choose an integer j such that Π
j
Λ is either uni-

modular or Π-modular. Then Nm(Λ) = π
−j
0 Nm(Πj

Λ) and we can apply the proposition
above.
Since (C, h) is split, any Π

i-modular lattice Λ contains an isotropic vector v (i. e., with
h(v, v) = 0). After rescaling with a suitable power of Π, we can extend v to a basis of
Λ. Hence there always exists a basis (e1, e2) of Λ such that h is represented by a matrix
of the form

HΛ =

�
x Π

i

Π
i

�
, x ∈ F. (2.3)

If x = 0 in this representation, then Nm(Λ) = π
�
0OF is as small as possible, or in other

words, the absolute value of |π0|� is minimal. On the other hand, whenever |π0|� takes

the minimal absolute value for a given Π
i-modular lattice Λ, there exists a basis (e1, e2)

of Λ such that h is represented by HΛ with x = 0. Indeed, this follows because the ideal
Nm(Λ) already determines Λ up to isomorphism. In this case (when x = 0), we call Λ

a hyperbolic lattice. By the arguments above, a Π
i-modular lattice is thus hyperbolic

if and only if its norm is minimal. In all other cases, where Λ is Π
i-modular but not

hyperbolic, we have Nm(Λ) = xOF .
For further reference, we explicitly write down the norm of a hyperbolic lattice for the
cases that we need later. For other values of i, the norm can easily be deduced from
this by shifting (see also [Jac62, Table 9.1]).

Lemma 2.5. Let Λ be a hyperbolic Π
i-modular lattice. Then,

Nm(Λ) = 2OF , for E|F (R-P), i = 0 or − 1,

Nm(Λ) = 2π
−k
0 OF , for E|F (R-U), i = 0 or 1.

The norm ideal of Λ is minimal among all norm ideals for Π
i-modular lattices in C. �

In the following, we will only consider the cases i = 0 or 1. We want to study the
following question:

Question 2.6. Fix a selfdual lattice Λ0 ⊆ C (not necessarily hyperbolic). How many
Π-modular lattices Λ1 ⊆ Λ0 are there and what norms Nm(Λ1) can appear? Dually, for
a fixed Π-modular lattice Λ1 ⊆ C, how many unimodular lattices Λ0 with Λ1 ⊆ Λ0 do
exist and what are their norms?

Of course, such an inclusion is always of index 1. The inclusions Λ1 ⊆ Λ0 of index 1
correspond to lines in Λ0/ΠΛ0. Denote by q the number of elements in the common
residue field of OF and OE . Then there exist at most q + 1 such Π-modular lattices
Λ1 for a given Λ0. The same bound holds in the dual case, i. e., there are at most
q + 1 selfdual lattices containing a given Π-modular lattice Λ1. The Propositions 2.7
and 2.8 below provide an exhaustive answer to Question 2.6. Since the proofs consist of
a lengthy but simple case-by-case analysis, we will leave it to the interested reader.
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Proposition 2.7. Let E|F of type (R-P).

(1) Let Λ0 ⊆ C be a hyperbolic selfdual lattice. There are 2 hyperbolic Π-modular lattices
Λ1 ⊆ Λ0 and q − 1 non-hyperbolic Π-modular lattices Λ1 ⊆ Λ0 with Nm(Λ1) = 2OF .

(2) Let Λ0 ⊆ C be selfdual non-hyperbolic with Nm(Λ0) = π
�
0OF . There exists one

Π-modular lattice Λ1 ⊆ Λ0 with Nm(Λ1) = π
�+1
0 OF and, unless � = 0, there are q

non-hyperbolic Π-modular lattices Λ1 ⊆ Λ0 with Nm(Λ1) = π
�
0OF .

(3) Let Λ1 ⊆ C be a hyperbolic Π-modular lattice. There are q +1 hyperbolic unimodular
lattices containing Λ1.

(4) Let Λ1 ⊆ C be a non-hyperbolic Π-modular lattice of norm Nm(Λ1) = π
�
0OF . Then

Λ1 is contained in q selfdual lattices of norm π
�−1
0 OF and in one selfdual lattice Λ0 with

Nm(Λ0) = π
�
0OF .

Note that the total amount of selfdual resp. Π-modular lattices found for Λ = Λ1 resp.
Λ0 is q + 1 except in the case of Prop. 2.7 (2) when � = 0. In that particular case, there
is just one Π-modular lattice contained in Λ0. The same phenomenon also appears in
the case (R-U), compare part (2) of the following proposition.

Proposition 2.8. Let E|F of type (R-U).

(1) Let Λ0 ⊆ C be a hyperbolic selfdual lattice. There are q + 1 hyperbolic Π-modular
lattices Λ1 ⊆ Λ0.

(2) Let Λ0 ⊆ C be selfdual non-hyperbolic with Nm(Λ0) = π
�
0OF . There is one Π-

modular lattice Λ1 ⊆ Λ0 with norm ideal Nm(Λ1) = π
�+1
0 OF and if � �= 0, there are also

q non-hyperbolic Π-modular lattices Λ1 ⊆ Λ0 with Nm(Λ1) = π
�
0OF .

(3) Let Λ1 ⊆ C be a hyperbolic Π-modular lattice. There are 2 selfdual hyperbolic lattices

containing Λ1 and q − 1 selfdual lattices Λ0 with Λ1 ⊆ Λ0 and Nm(Λ0) = (2/π
k+1
0 ) · OF .

(4) Let Λ1 ⊆ C be a non-hyperbolic Π-modular lattice of norm Nm(Λ1) = π
�
0OF . The

lattice Λ1 is contained in q selfdual lattices of norm π
�−1
0 OF and in one selfdual lattice

Λ0 with Nm(Λ0) = π
�
0OF .

If E|F is a quadratic extension of type (R-U) such that |πk+1
0 | = |2|, there exist only

hyperbolic Π-modular lattices in C and hence case (4) of Prop. 2.8 does not appear.
(See page 7 for the definition of the parameter k in the (R-U) case.)

3. The moduli problem in the case (R-P)

Throughout this section, E|F is a quadratic extension of type (R-P), i.e. there exists a

uniformizing element Π ∈ E such that π0 = Π
2 is a uniformizer of F . Then OE = OF [Π]

for the rings of integers OF and OE of F and E, respectively. Let k be the common

residue field with q elements, k an algebraic closure, and F̆ the completion of the maximal
unramified extension of F , with ring of integers ŎF = WOF

(k). Let σ be the lift of the

Frobenius in Gal(k|k) to Gal(ŎF |OF ).

3.1. The definition of the naive moduli problem N naive
E . We first construct a

functor N naive
E on NilpŎF

, the category of ŎF -schemes S such that π0OS is locally

nilpotent. We consider tuples (X, ι, λ), where

• X is a formal OF -module over S of dimension 2 and height 4.

• ι : OE → End(X) is an action of OE satisfying the Kottwitz condition: The charac-
teristic polynomial of ι(α) on Lie X for any α ∈ OE is

char(Lie X, T | ι(α)) = (T − α)(T − α).

Here α �→ α is the non-trivial Galois automorphism and the right hand side is a poly-
nomial with coefficients in OS via the embedding OF [T ] �→ ŎF [T ] → OS [T ].
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• λ : X → X∨ is a principal polarization on X such that the Rosati involution satisfies
ι(α)∗ = ι(α) for α ∈ OE .

Definition 3.1. A quasi-isogeny (resp. an isomorphism) ϕ : (X, ι, λ) → (X �, ι
�, λ

�) of
two such tuples (X, ι, λ) and (X �, ι

�, λ
�) over S is an OE-linear quasi-isogeny of height 0

(resp. an OE-linear isomorphism) ϕ : X → X � such that λ = ϕ
∗(λ�).

For S = Spec k we have the following proposition:

Proposition 3.2. Up to isogeny, there exists only one tuple (X, ιX, λX) over Spec k such
that the group

G(X,ιX,λX) =
�

ϕ ∈ Aut0(X, ιX, λX)
��� det ϕ = 1

�
(3.1)

is isomorphic to SU(C, h) for a 2-dimensional E-vector space C with split E|F -hermitian
form h.

Here Aut0(X, ιX, λX) is the group of quasi-isogenies ϕ : (X, ιX, λX) → (X, ιX, λX). Both
G(X,ιX,λX) and SU(C, h) are considered as linear algebraic groups over F .

Remark 3.3. We will show uniqueness of the tuple (X, ιX, λX) even for the slightly
weakened condition that we have just a closed embedding SU(C, h) �→ G(X,ιX,λX) of
linear algebraic groups over F (and not necessarily an isomorphism).

Proof. We first show uniqueness. Let (X, ι, λ)/ Spec k be such a tuple. Its rational

Dieudonné module NX is a 4-dimensional vector space over F̆ with an action of E and
an alternating form � , � such that for all x, y ∈ NX ,

�x, Πy� = −�Πx, y�. (3.2)

The space NX has the structure of a 2-dimensional vector space over Ĕ = E ⊗F F̆ and

we can define an Ĕ|F̆ -hermitian form on it via

h(x, y) = δ(�Πx, y� + Π�x, y�), (3.3)

where δ ∈ ŎF is a unit generating the unramified quadratic extension of F , chosen in
such a way that δ

2 = 1 + 4ε0 for some ε0 ∈ O×
F . The alternating form can be recovered

from h by

�x, y� = TrĔ|F̆

�
1

2Πδ
· h(x.y)

�
. (3.4)

Furthermore we have on NX a σ-linear operator F, the Frobenius, and a σ
−1-linear

operator V, the Verschiebung, that satisfy VF = FV = π0. Recall that σ is the lift of

the Frobenius on ŎF . Since � , � comes from a polarization, we have

�Fx, y� = �x, Vy�σ,

and together with δ
σ = −δ, this yields

h(Fx, y) = −h(x, Vy)σ,

for all x, y ∈ NX . Let us consider the σ-linear operator τ = ΠV−1. Its slopes are all
zero, since NX is isotypical of slope 1

2 . (This follows from the condition on G(X,ιX,λX).)

We set C = Nτ
X . This is a 2-dimensional vector space over E and NX = C ⊗E Ĕ. Now

h induces an E|F -hermitian form on C since

h(τx, τy) = h(FΠ
−1x, ΠV−1y) = −h(Π−1x, Πy)σ = h(x, y)σ.

A priori, there are up to isomorphism two possibilities for (C, h), either h is split on C
or non-split. But automorphisms of (C, h) with determinant 1 correspond to elements
of G(X,ιX,λX). The special unitary groups of (C, h) for h split and h non-split are not
isomorphic and thus they cannot contain each other as a Zariski-closed subgroup for
dimension reasons. Hence the condition on G(X,ιX,λX) implies that h is split.
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Assume now we have two different objects (X, ι, λ) and (X �, ι
�, λ

�) as in the proposition.
These give us isomorphic vector spaces (C, h) and (C �, h�) and an isomorphism between
these extends to an isomorphism between NX and N �

X (respecting all rational structure)
which corresponds to a quasi-isogeny between (X, ι, λ) and (X �, ι

�, λ
�).

The existence of (X, ιX, λX) now follows from the fact that a 2-dimensional E-vector
space (C, h) with split E|F -hermitian form contains a selfdual lattice Λ. Indeed, this

gives us a lattice M = Λ ⊗OE
ŎE ⊆ C ⊗E Ĕ. We extend h to N = C ⊗E Ĕ and define

the F̆ -linear alternating form � , � as in (3.4). Now M is selfdual with respect to � , �,
because 1

2Πδ
ŎE is the inverse different of Ĕ|F̆ (see Lemma 2.2). We choose the operators

F and V on M such that FV = VF = π0 and Λ = Mτ for τ = ΠV−1. This makes
M a (relative) Dieudonné module and we define (X, ιX, λX) as the corresponding formal
OF -module. �

We fix such a framing object (X, ιX, λX) over Spec k.

For arbitrary S ∈ NilpŎF
, let S = S ×Spf ŎF

Spec k. We define N naive
E (S) as the set of

equivalence classes of tuples (X, ι, λ, �) over S, where (X, ι, λ) as above and

� : X ×S S −→ X ×Spec k S

is a quasi-isogeny between the tuple (X, ι, λ) and the framing object (X, ιX, λX) (after
base change to S). Two objects (X, ι, λ, �) and (X �, ι

�, λ
�, �

�) are equivalent if and only
if there exists an isomorphism ϕ : (X, ι, λ) → (X �, ι

�, λ
�) such that � = �

� ◦ (ϕ ×S S).

Remark 3.4. (1) The morphism � is a quasi-isogeny in the sense of Def. 3.1, i. e., we
have λ = �

∗(λX). Similarly, we have λ = ϕ
∗(λ�) for the isomorphism ϕ. We obtain an

equivalent definition of N naive
E if we replace strict equality by the condition that, locally

on S, λ and �
∗(λX) (resp. ϕ

∗(λ�)) only differ by a scalar in O×
F . This variant is used in

the definition of RZ-spaces of (PEL) type for p > 2 in [RZ96]. In this paper we will use
the version with strict equality, since it simplifies the formulation of the straightening
condition, see Def. 3.10 below.

(2) N naive
E is pro-representable by a formal scheme, formally locally of finite type over

Spf ŎF . This follows from [RZ96, Thm. 3.25].

As a next step, we use Dieudonné theory in order to get a better understanding of the
special fiber of N naive

E . Let N = NX be the rational Dieudonné module of the base

point (X, ιX, λX) of N naive
E . This is a 4-dimensional vector space over F̆ , equipped with

an E-action, an alternating form � , � and two operators V and F. As in the proof of
Proposition 3.2, the form � , � satisfies condition (3.2):

�x, Πy� = −�Πx, y�. (3.2)

A point (X, ι, λ, �) ∈ N naive
E (k) corresponds to an ŎF -lattice MX ⊆ N . It is stable

under the actions of the operators V and F and of the ring OE . Furthermore MX is
selfdual under � , �, i.e. MX = M∨

X , where

M∨
X = {x ∈ N | �x, y� ∈ ŎF for all y ∈ MX}.

We can regard N as a 2-dimensional vector space over Ĕ with the Ĕ|F̆ -hermitian form
h defined by

h(x, y) = δ(�Πx, y� + Π�x, y�). (3.3)

Let ŎE = OE ⊗OF
ŎF . Then MX ⊆ N is an ŎE-lattice and we have

MX = M∨
X = M �

X ,
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where M �
X is the dual lattice of MX with respect to h. The latter equality follows from

the formula

�x, y� = TrĔ|F̆

�
1

2Πδ
· h(x.y)

�
(3.4)

and the fact that the inverse different of E|F is D
−1
E|F = 1

2Π
OE (see Lemma 2.2). We

can thus write the set N naive
E (k) as

N naive
E (k) = {ŎE-lattices M ⊆ NX | M � = M, π0M ⊆ VM ⊆ M}. (3.5)

Let τ = ΠV−1. This is a σ-linear operator on N with all slopes zero. The elements
invariant under τ form a 2-dimensional E-vector space C = Nτ . The hermitian form
h is invariant under τ , hence it induces a split hermitian form on C which we denote
again by h. With the same proof as in [KR11, Lemma 3.2], we have:

Lemma 3.5. Let M ∈ N naive
E (k). Then:

(1) M + τ(M) is τ -stable.

(2) Either M is τ -stable and Λ0 = Mτ ⊆ C is selfdual (Λ�
0 = Λ0) or M is not τ -stable

and then Λ1 = (M + τ(M))τ ⊆ C is Π
−1-modular (Λ�

1 = ΠΛ1).

Under the identification N = C ⊗E Ĕ, we get M = Λ0 ⊗OE
ŎE for a τ -stable Dieudonné

lattice M . If M is not τ -stable, we have M + τM = Λ1 ⊗OE
ŎE and M ⊆ Λ1 ⊗OE

ŎE

is a sublattice of index 1. The next lemma is the analogue of [KR11, Lemma 3.3].

Lemma 3.6. (1) Fix a Π
−1-modular lattice Λ1 ⊆ C. There is an injective map

iΛ1
: P(Λ1/ΠΛ1)(k) �−→ N naive

E (k)

mapping a line � ⊆ (Λ1/ΠΛ1)⊗k to its preimage in Λ1⊗ŎE. Identify P(Λ1/ΠΛ1)(k) with

its image in N naive
E (k). Then P(Λ1/ΠΛ1)(k) ⊆ P(Λ1/ΠΛ1)(k) is the set of τ -invariant

Dieudonné lattices M ⊆ Λ1 ⊗ ŎE.

(2) The set N naive
E (k) is a union

N naive
E (k) =

�

Λ1⊆C

P(Λ1/ΠΛ1)(k), (3.6)

ranging over all Π
−1-modular lattices Λ1 ⊆ C. The projective lines corresponding to the

lattices Λ1 and Λ
�
1 intersect in N naive

E (k) if and only if Λ0 = Λ1 ∩ Λ
�
1 is selfdual. In this

case, their intersection consists of the point M = Λ0 ⊗ ŎE ∈ N naive
E (k).

Proof. We only have to prove that the map iΛ1
is well-defined. Denote by M the

preimage of � ⊆ (Λ1/ΠΛ1) ⊗ k in Λ1 ⊗ ŎE . We need to show that M is an element

in N naive
E (k) under the identification of (3.5). It is clearly a sublattice of index 1 in

Λ1 ⊗ ŎE , stable under the actions of F, V and OE .

Let e1 ∈ Λ1 ⊗ ŎE such that e1 ⊗ k generates �. We can extend this to a basis (e1, e2) of
Λ1 and with respect to this basis, h is represented by a matrix of the form

�
x Π

−1

−Π
−1 y

�
,

with x, y ∈ Π
−1ŎE ∩ ŎF = ŎF . The lattice M ⊆ Λ1 ⊗ ŎE is generated by e1 and Πe2.

With respect to this new basis, h is now given by the matrix
�

x 1
1 −π0y

�
.

Since all entries of the matrix are integral, we have M ⊆ M �. But this already implies

M � = M , because they both have index 1 in Λ1 ⊗ ŎE . Thus M ∈ N naive
E (k) and iΛ1

is
well-defined. �
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Remark 3.7. (1) Recall from Prop. 2.4 that the isomorphism type of a Π
i-modular

lattice Λ ⊆ C only depends on its norm ideal Nm(Λ) = �{h(x, x)|x ∈ Λ}� = π
�
0OF ⊆ F .

In the case that Λ = Λ0 or Λ1 is selfdual or Π
−1-modular, � can be any integer such

that |1| ≥ |π0|� ≥ |2|. In particular, there are always at least two possible values for �.
Recall from Lemma 2.5, that Λ is hyperbolic if and only if Nm(Λ) = 2OF .

(2) The intersection behaviour of the projective lines in N naive
E (k) can be deduced from

Prop. 2.7. In particular, for a given selfdual lattice Λ0 ⊆ C with Nm(Λ0) ⊆ π0OF ,

there are q + 1 lines intersecting in M = Λ0 ⊗ ŎE . If Nm(Λ0) = OF , the lattice

M = Λ0 ⊗ ŎE is only contained in one projective line. On the other hand, a projective
line P(Λ1/ΠΛ1)(k) ⊆ N naive

E (k) contains q + 1 points corresponding to selfdual lattices
in C. By Lemma 3.6 (1), these are exactly the k-rational points of P(Λ1/ΠΛ1).

(3) If we restrict the union at the right hand side of (3.6) to hyperbolic Π
−1-modular

lattices Λ1 ⊆ C (i. e., Nm(Λ1) = 2OF , see Lemma 2.5), we obtain a canonical subset

NE(k) ⊆ N naive
E (k) and there is a description of NE as a pro-representable functor on

NilpŎF
(see below). We will see later (Theorem 3.14) that NE is isomorphic to the

Drinfeld moduli space MDr, described in [BC91, I.3]. In particular, the underlying
topological space of NE is connected. (The induced topology on the projective lines is
the Zariski topology, see Prop. 3.8.) Moreover, each projective line in NE(k) has q + 1
intersection points and there are 2 projective lines intersecting in each such point (also
cp. Prop. 2.7).

We fix such an intersection point P ∈ NE(k). Now going back to N naive
E (k), there are

q − 1 additional lines going through P ∈ N naive
E (k) that correspond to non-hyperbolic

lattices in C (see Prop. 2.7). Each of these additional lines contains P as its only “hy-
perbolic” intersection point, all other intersection points on this line and the line itself
correspond to selfdual resp. Π

−1-modular lattices Λ ⊆ C of norm Nm(Λ) = (2/π0)OF

(whereas all hyperbolic lattices occuring have the norm ideal 2OF , see Lemma 2.5).

Assume P(Λ/ΠΛ)(k) ⊆ N naive
E (k) is such a line and let P � ∈ P(Λ/ΠΛ)(k) be an inter-

section point, where P �= P �. There are again q more lines going through P � (always

q+1 in total) that correspond to lattices with norm ideal Nm(Λ) = (2/π
2
0)OF , and these

lines again have more intersection points and so on. This goes on until we reach lines
P(Λ�/ΠΛ

�)(k) with Nm(Λ�) = OF . Each of these lines contains q points that correspond
to selfdual lattices Λ0 ⊆ C with Nm(Λ0) = OF . Such a lattice is only contained in one

Π
−1-modular lattice (see part 2 of Prop. 2.7). Hence, these points are only contained

in one projective line, namely P(Λ�/ΠΛ
�)(k).

In other words, each intersection point P ∈ NE(k) has a “tail”, consisting of finitely

many projective lines, which is the connected component of P in (N naive
E (k) \ NE(k)) ∪

{P}. Figure 1 shows a drawing of (N naive
E )red for the cases F = Q2 (on the left hand

side) and F |Q2 a ramified quadratic extension (on the right hand side). The “tails” are
indicated by dashed lines.

Fix a Π
−1-modular lattice Λ = Λ1 ⊆ C. Let X+

Λ
be the formal OF -module over Spec k

associated to the Dieudonné lattice M = Λ ⊗ ŎE ⊆ N . It comes with a canonical
quasi-isogeny

�
+
Λ

: X −→ X+
Λ

of F -height 1. We define a subfunctor NE,Λ ⊆ N naive
E by mapping S ∈ NilpŎF

to

NE,Λ(S) = {(X, ι, λ, �) ∈ N naive
E (S) | (�+

Λ
× S) ◦ � is an isogeny}. (3.7)

Note that the condition of (3.7) is closed, cf. [RZ96, Prop. 2.9]. Hence NE,Λ is rep-

resentable by a closed formal subscheme of N naive
E . On geometric points, we have a
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(a) e = 1, f = 1. (b) e = 2, f = 1.

Figure 1. The reduced locus of N naive
E for E|F of type (R-P) where

F |Q2 has ramification index e and inertia degree f . Solid lines are given
by subschemes NE,Λ for hyperbolic lattices Λ.

bijection
NE,Λ(k) ∼−→ P(Λ/ΠΛ)(k), (3.8)

as a consequence of Lemma 3.6 (1).

Proposition 3.8. The reduced locus of N naive
E is given by

(N naive
E )red =

�

Λ⊆C

NE,Λ,

where Λ runs over all Π
−1-modular lattices in C. For each Λ, there is an isomorphism

of reduced schemes
NE,Λ

∼−→ P(Λ/ΠΛ),

inducing the map (3.8) on k-valued points.

Proof. The embedding �

Λ⊆C

(NE,Λ)red �−→ (N naive
E )red (3.9)

is closed, because each embedding NE,Λ ⊆ N naive
E is closed and, locally on (N naive

E )red,
the left hand side is always only a finite union of (NE,Λ)red. It follows already that (3.9)

is an isomorphism, since it is a bijection on k-valued points (see the equations (3.6) and

(3.8)) and (N naive
E )red is reduced by definition and locally of finite type over Spec k by

Remark 3.4 (2).
For the second part of the proposition, we follow the proof presented in [KR11, 4.2].

Fix a Π
−1-modular lattice Λ ⊆ C and let M = Λ ⊗ ŎE ⊆ N , as above. Now X+

Λ
is the

formal OF -module associated to M , but we also get a formal OF -module X−
Λ

associated

to the dual M � = ΠM of M . This comes with a natural isogeny

natΛ : X−
Λ

−→ X+
Λ

and a quasi-isogeny �
−
Λ

: X−
Λ

→ X of F -height 1. For (X, ι, λ, �) ∈ N naive
E (S) where

S ∈ NilpŎF
, we consider the composition

�
−
Λ,X = �

−1 ◦ (�−
Λ

× S) : (X−
Λ

× S) −→ X.

By [KR11, Lemma 4.2], this composition is an isogeny if and only if (�+
Λ

× S) ◦ � is an
isogeny, or, in other words, if and only if (X, ι, λ, �) ∈ NE,Λ(S). Let D

X
−

Λ

(S) be the

(relative) Grothendieck-Messing crystal of X−
Λ

evaluated at S (cf. [ACZ, Def. 3.24] or
[Ahs11, 5.2]). This is a locally free OS-module of rank 4, isomorphic to Λ/π0Λ ⊗OF

OS .
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The kernel of D(natΛ)(S) is given by (Λ/ΠΛ)⊗OF
OS , locally a direct summand of rank 2

of D
X

−

Λ

(S). For any (X, ι, λ, �) ∈ NE,Λ(S), the kernel of �
−
Λ,X is contained in ker(natΛ).

It follows from [VW11, Cor. 4.7] (cp. Prop. 4.6 in [KR11]) that kerD(�−
Λ,X)(S) is locally

a direct summand of rank 1 of (Λ/ΠΛ) ⊗OF
OS . This induces a map

NE,Λ(S) −→ P(Λ/ΠΛ)(S),

functorial in S, and the arguments of [VW11, 4.7] show that it is an isomorphism. (One
easily checks that their results indeed carry over to the relative setting over OF .) �

3.2. Construction of the closed formal subscheme NE ⊆ N naive
E . We now use a

result from section 6. By Theorem 6.2 and Remark 6.1 (2), there exists a principal

polarization �λX : X → X
∨ on (X, ιX, λX), unique up to a scalar in O×

E , such that the
induced Rosati involution is the identity on OE . Furthermore, for any (X, ι, λ, �) ∈
N naive

E (S), the pullback �λ = �
∗(�λX) is a principal polarization on X.

The next proposition is crucial for the construction of NE . Recall the notion of a
hyperbolic lattice from Prop. 2.4 and the subsequent discussion.

Proposition 3.9. It is possible to choose (X, ιX, λX) and �λX such that

λX,1 =
1

2
(λX + �λX) ∈ Hom(X,X∨).

Fix such a choice and let (X, ι, λ, �) ∈ N naive
E (k). Then, 1

2 (λ + �λ) ∈ Hom(X, X∨) if and

only if (X, ι, λ, �) ∈ NE,Λ(k) for some hyperbolic lattice Λ ⊆ C.

Proof. The polarization �λX on X induces an alternating form ( , ) on the rational Dieu-

donné module N = MX ⊗ŎF
F̆ . For all x, y ∈ N , the form ( , ) satisfies the equations

(Fx, y) = (x, Vy)σ,

(Πx, y) = (x, Πy).

It induces an Ĕ-alternating form b on N via

b(x, y) = (Πx, y) + Π(x, y).

On the other hand, we can describe ( , ) in terms of b,

(x, y) = TrĔ|F̆

�
1

2Π
· b(x, y)

�
. (3.10)

The form b is invariant under τ = ΠV−1, since

b(τx, τy) = b(FΠ
−1x, ΠV−1y) = b(Π−1x, Πy)σ = b(x, y)σ.

Hence b defines an E-linear alternating form on C = Nτ , which we again denote by b.
Denote by � , � the alternating form on MX induced by the polarization λX and let h
be the corresponding hermitian form, see (3.3). On NX, we define the alternating form
� , �1 by

�x, y�1 =
1

2
(�x, y� + (x, y)).

This form is integral on MX if and only if λX,1 = 1
2 (λX + �λX) is a polarization on X.

We choose (X, ιX, λX) such that it corresponds to a selfdual hyperbolic lattice Λ0 ⊆ (C, h)
under the identifications of (3.5) and Lemma 3.5. There exists a basis (e1, e2) of Λ0 such
that

h �=
�

1
1

�
, b �=

�
u

−u

�
, (3.11)
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for some u ∈ E×. Since �λX is principal, the alternating form b is perfect on Λ0, thus

u ∈ O×
E . After rescaling �λX, we may assume that u = 1. We now have

1

2
(h(x, y) + b(x, y)) ∈ OE ,

for all x, y ∈ Λ0. Thus 1
2 (h + b) is integral on MX = Λ0 ⊗OE

ŎE . This implies that

�x, y�1 =
1

2
(�x, y� + (x, y)) =

1

2
TrĔ|F̆

�
1

2Πδ
· h(x.y) +

1

2Π
· b(x, y)

�

= TrĔ|F̆

�
1

2Πδ
·

1

2
(h(x, y) + b(x, y))

�
+

δ − 1

2δ
· TrĔ|F̆

�
1

2Π
· b(x, y)

�
∈ ŎF ,

for all x, y ∈ MX. Indeed, in the definition of h (see (3.3)), the unit δ has been chosen

such that 1+δ
2 ∈ ŎF , so the second summand is in ŎF . The first summand is integral,

since 1
2 (h + b) is integral. It follows that λX,1 = 1

2 (λX + �λX) is a polarization on X.

Let (X, ι, λ, �) ∈ N naive
E (k) and assume that λ1 = 1

2 (λ + �λ) = �
∗(λX,1) is a polarization

on X. Then � , �1 is integral on the Dieudonné module M ⊆ N of X. By the above
calculation, this is equivalent to 1

2 (h+b) being integral on M . In particular, this implies
that

h(x, x) = h(x, x) + b(x, x) ∈ 2ŎF ,

for all x ∈ M . Let Λ = Mτ resp. Λ = (M+τ(M))τ as in Lemma 3.5. Then h(x, x) ∈ 2OF

for all x ∈ Λ, hence Nm(Λ) ⊆ 2OF . By Lemma 2.5 and because of minimality, we have
Nm(Λ) = 2OF and Λ is a hyperbolic lattice. It follows that (X, ι, λ, �) ∈ NE,Λ

�(k) for

some hyperbolic Π
−1-modular lattice Λ

� ⊆ C. Indeed, either Λ is Π
−1-modular and

Λ
� = Λ, or, if Λ is selfdual, it is contained in some Π

−1-modular hyperbolic lattice Λ
�,

cp. Prop. 2.7.
Conversely, assume that (X, ι, λ, �) ∈ NE,Λ(k) for some hyperbolic lattice Λ ⊆ C. It

suffices to show that 1
2 (h + b) is integral on Λ. Indeed, it follows that 1

2 (h + b) is integral
on the Dieudonné module M . Thus � , �1 is integral on M and this is equivalent to

λ1 = 1
2 (λ + �λ) ∈ Hom(X, X∨).

Let Λ
� ⊆ C be the Π

−1-modular lattice generated by Π
−1e1 and e2, where (e1, e2) is the

basis of the lattice Λ0 corresponding to the framing object (X, ιX, λX). By (3.11), h and

b have the following form with respect to the basis (Π−1e1, e2),

h �=
�

−Π
−1

Π
−1

�
, b �=

�
Π

−1

−Π
−1

�
.

In particular, Λ
� is hyperbolic and 1

2 (h + b) is integral on Λ
�. By Prop. 2.4, there exists

an automorphism g ∈ SU(C, h) mapping Λ onto Λ
�. Since det g = 1, the alternating

form b is invariant under g. It follows that 1
2 (h + b) is also integral on Λ. �

From now on, we assume (X, ιX, λX) and �λX chosen in a way such that

λX,1 =
1

2
(λX + �λX) ∈ Hom(X,X∨).

Note that this determines the polarization �λX up to a scalar in 1 + 2OE . If we replace
�λX by �λ�

X = �λX ◦ ιX(1 + 2u) for some u ∈ OE , then λ
�
X,1 = λX,1 + �λX ◦ ιX(u).

We can now formulate the straightening condition.

Definition 3.10. Let S ∈ NilpŎF
. An object (X, ι, λ, �) ∈ N naive

E (S) satisfies the

straightening condition if

λ1 ∈ Hom(X, X∨), (3.12)

where λ1 = 1
2 (λ + �λ) = �

∗(λX,1).
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This definition is clearly independent of the choice of the polarization �λX. We define
NE as the functor that maps S ∈ NilpŎF

to the set of all tuples (X, ι, λ, �) ∈ N naive
E (S)

that satisfy the straightening condition. By [RZ96, Prop. 2.9], NE is representable by a

closed formal subscheme of N naive
E .

Remark 3.11. The reduced locus of NE can be written as

(NE)red =
�

Λ⊆C

NE,Λ �
�

Λ⊆C

P(Λ/ΠΛ),

where we take the unions over all hyperbolic Π
−1-modular lattices Λ ⊆ C. By Prop.

2.7 and Lemma 3.6, each projective line contains q + 1 points corresponding to selfdual
lattices and there are two lines intersecting in each such point. Recall from Remark
3.7 (1) that there exist non-hyperbolic Π

−1-modular lattices Λ ⊆ C, thus we have

NE(k) �= N naive
E (k), and in particular (NE)red �= (N naive

E )red.

3.3. The isomorphism to the Drinfeld moduli problem. We now recall the Drin-
feld moduli problem MDr on NilpŎF

. Let B be the quaternion division algebra over F

and OB its ring of integers. Let S ∈ NilpŎF
. Then MDr(S) is the set of equivalence

classes of objects (X, ιB , �) where

• X is a formal OF -module over S of dimension 2 and height 4,

• ιB : OB → End(X) is an action of OB on X satisfying the special condition, i.e.

Lie X is, locally on S, a free OS ⊗OF
O

(2)
F -module of rank 1, where O

(2)
F ⊆ OB is any

embedding of the unramified quadratic extension of OF into OB (cf. [BC91]),

• � : X ×S S → X×Spec k S is an OB-linear quasi-isogeny of height 0 to a fixed framing

object (X, ιX) ∈ MDr(k).

Such a framing object exists and is unique up to isogeny. By a proposition of Drinfeld,
cf. [BC91, p. 138], there always exist polarizations on these objects, as follows:

Proposition 3.12 (Drinfeld). Let Π ∈ OB a uniformizer with Π
2 ∈ OF and let b �→ b�

be the standard involution of B. Then b �→ b∗ = Πb�
Π

−1 is another involution on B.

(1) There exists a principal polarization λX : X → X
∨ on X with associated Rosati

involution b �→ b∗. It is unique up to a scalar in O×
F .

(2) Let λX as in (1). For (X, ιB , �) ∈ MDr(S), there exists a unique principal polariza-
tion

λ : X −→ X∨

with Rosati involution b �→ b∗ such that �
∗(λX) = λ on S.

We now relate MDr and NE . For this, we fix an embedding E �→ B. Any choice of a
uniformizer Π ∈ OE with Π

2 ∈ OF induces the same involution b �→ b∗ = Πb�
Π

−1 on B.
For the framing object (X, ιX) of MDr, let λX be a polarization associated to this
involution by Prop. 3.12 (1). Denote by ιX,E the restriction of ιX to OE ⊆ OB . For any

object (X, ιB , �) ∈ MDr(S), let λ be the polarization with Rosati involution b �→ b∗

that satisfies �
∗(λX) = λ, see Prop. 3.12 (2). Let ιE be the restriction of ιB to OE .

Lemma 3.13. (X, ιX,E , λX) is a framing object for N naive
E . Furthermore, the map

(X, ιB , �) �−→ (X, ιE , λ, �)

induces a closed embedding of formal schemes

η : MDr �−→ N naive
E .
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Proof. There are two things to check: that G(X,ιX,E ,λX) � SU(C, h), with (C, h) split as in

Prop. 3.2, and that ιE satisfies the Kottwitz condition. Indeed, once these two assertions
hold, we can take (X, ιX,E , λX) as a framing object for N naive

E and the morphism η is
well-defined. For any S ∈ NilpŎF

, the map η(S) is injective, because (X, ιB , �) and

(X �, ι
�
B , �

�) ∈ MDr(S) map to the same point in N naive
E (S) under η if and only if the

quasi-isogeny �
� ◦ � on S lifts to an isomorphism on S, i. e., if and only if (X, ιB , �) and

(X �, ι
�
B , �

�) define the same point in MDr(S). The functor

F : S �−→ {(X, ι, λ, �) ∈ N naive
E (S) | ι extends to an OB-action}

is pro-representable by a closed formal subscheme of N naive
E by [RZ96, Prop. 2.9]. Now,

the formal subscheme η(MDr) ⊆ F is given by the special condition. But the special
condition is open and closed (see [RZ14, p. 7]), thus η is a closed embedding.
It remains to show the two assertions from the beginning of this proof. We first prove
that G(X,ιX,E ,λX) � SU(C, h). Let G(X,ιX) be the group of OB-linear quasi-isogenies

ϕ : (X, ιX) → (X, ιX) of height 0 and determinant 1. Then we have (non-canonical)
isomorphisms G(X,ιX) � SL2,F and SL2,F � SU(C, h), since h is split (cp. [KR11, p. 3]).

The uniqueness of the polarization λX (up to a scalar in O×
F ) implies that G(X,ιX) ⊆

G(X,ιX,E ,λX). This is a closed embedding of linear algebraic groups over F , since a quasi-

isogeny ϕ ∈ G(X,ιX,E ,λX) lies in G(X,ιX) if and only if it is OB-linear, and this defines a

closed condition on G(X,ιX,E ,λX). Thus G(X,ιX,E ,λX) contains a closed subgroup isomorphic

to SU(C, h) and this already implies that G(X,ιX,E ,λX) � SU(C, h), see Remark 3.3.

Finally, the special condition implies the Kottwitz condition for any element b ∈ OB

(see [RZ14, Prop. 5.8]), i. e., the characteristic polynomial for the action of ι(b) on Lie X
is

char(Lie X, T | ι(b)) = (T − b)(T − b�),

where the right hand side is a polynomial in OS [T ] via the structure homomorphism

OF �→ ŎF → OS . From this, the second assertion follows. �

Let O
(2)
F ⊆ OB be an embedding such that conjugation with Π induces the non-trivial

Galois action on O
(2)
F , cf. Lemma 2.3 (1). Fix a generator 1+δ

2 of O
(2)
F with δ

2 ∈ O×
F .

On (X, ιX), the principal polarization �λX given by

�λX = λX ◦ ιX(δ)

has a Rosati involution that induces the identity on OE . For any (X, ιB , �) ∈ MDr(S),

we set �λ = �
∗(�λX) = λ ◦ ιB(δ). The tuple (X, ιE , λ, �) = η(X, ιB , �) satisfies the

straightening condition (3.12), since

λ1 =
1

2
(λ + �λ) = λ ◦ ιB

�
1 + δ

2

�
∈ Hom(X, X∨).

In particular, the tuple (X, ιX,E , λX) is a framing object of NE and η induces a natural
transformation

η : MDr �−→ NE . (3.13)

Note that this map does not depend on the above choices, as NE is a closed formal
subscheme of N naive

E .

Theorem 3.14. η : MDr → NE is an isomorphism of formal schemes.

We will first prove this on k-valued points:

Lemma 3.15. η induces a bijection η(k) : MDr(k) → NE(k).
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Proof. We can identify the k-valued points of MDr with a subset MDr(k) ⊆ N naive
E (k).

The rational Dieudonné-module N of X is equipped with an action of B. Fix an em-

bedding F (2)
�→ B as in Lemma 2.3 (1). This induces a Z/2-grading N = N0 ⊕ N1 of

N , where

N0 = {x ∈ N | ι(a)x = ax for all a ∈ F (2)},

N1 = {x ∈ N | ι(a)x = σ(a)x for all a ∈ F (2)},

for a fixed embedding F (2)
�→ F̆ . The operators V and F have degree 1 with respect

to this decomposition. Recall that λ has Rosati involution b �→ Πb�
Π

−1 on OB which

restricts to the identity on O
(2)
F . The subspaces N0 and N1 are therefore orthogonal

with respect to � , �.
Under the identification (3.5), a lattice M ∈ MDr(k) respects this decomposition, i.e.
M = M0 ⊕ M1 with Mi = M ∩ Ni. Furthermore it satisfies the special condition:

dim M0/VM1 = dim M1/VM0 = 1.

We already know that MDr(k) ⊆ NE(k), so let us assume M ∈ NE(k). We want to
show that M ∈ MDr(k), i. e., that the lattice M is stable under the action of OB on
N and satisfies the special condition. It is stable under the OB-action if and only if
M = M0 ⊕ M1 for Mi = M ∩ Ni. Let y ∈ M and y = y0 + y1 with yi ∈ Ni. For any
x ∈ M , we have

�x, y� = �x, y0� + �x, y1� ∈ ŎF . (3.14)

We can assume that λX,1 = λX ◦ ιB

�
1+δ

2

�
with 1+δ

2 ∈ O
(2)
F under our fixed embedding

F (2)
�→ B. Let � , �1 be the alternating form on M induced by λX,1. Then,

�x, y�1 =
1 + δ

2
· �x, y0� +

1 − δ

2
· �x, y1� ∈ ŎF . (3.15)

From the equations (3.14) and (3.15), it follows that �x, y0� and �x, y1� lie in ŎF . Since
x ∈ M was arbitrary and M = M∨, this gives y0, y1 ∈ M . Hence M respects the
decomposition of N and is stable under the action of OB .
It remains to show that M satisfies the special condition: The alternating form � , � is
perfect on M , thus the restrictions to M0 and M1 are perfect as well. If M is not special,
we have Mi = VMi+1 for some i ∈ {0, 1}. But then, � , � cannot be perfect on Mi. In
fact, for any x, y ∈ Mi+1,

�Vx, Vy�σ = �FVx, y� = π0 · �x, y� ∈ π0ŎF .

Thus M is indeed special, i.e. M ∈ MDr(k), and this finishes the proof of the lemma. �

Proof (of Theorem 3.14). We already know that η is a closed embedding

η : MDr �−→ NE .

Let (X, ιX) be the framing object of MDr and choose an embedding O
(2)
F ⊆ OB and a

generator 1+δ
2 of O

(2)
F as in Lemma 2.3 (1). We take (X, ιX,E , λX) as a framing object

for NE and set �λX = λX ◦ ιX(δ).

Let (X, ι, λ, �) ∈ NE(S) and �λ = �
∗(�λX). We have

�
−1 ◦ ιX

�
1 + δ

2

�
◦ � = �

−1 ◦ λ
−1
X

◦ λX,1 ◦ � = λ
−1 ◦ λ1 ∈ End(X),

where λX,1 = 1
2 (λX + �λX) and λ1 = 1

2 (λ + �λ). Since OB = OF

�
Π, 1+δ

2

�
, this induces

an OB-action ιB on X and makes � an OB-linear quasi-isogeny. We have to check that
(X, ιB , �) satisfies the special condition.
Recall that the special condition is open and closed (see [RZ14, p. 7]), so η is an open
and closed embedding. Furthermore, η(k) is bijective and the reduced loci (MDr)red
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and (NE)red are locally of finite type over Spec k. Hence η indcues an isomorphism on
reduced subschemes. But any open and closed embedding of formal schemes, that is an
isomorphism on the reduced subschemes, is already an isomorphism. �

4. The moduli problem in the case (R-U)

Let E|F be a quadratic extension of type (R-U), generated by a unit ϑ ∈ O×
E with

ϑ
2 = 1 + π

2k+1
0 ε for some ε ∈ O×

F and for an integer k such that |2| < |π0|k ≤ |1| for the

(normalized) absolute value | · | of F . A uniformizer of E is given by Π = (1 + ϑ)/π
k
0

and for the rings of integers OF and OE of F and E, we have OE = OF [Π]. As in the

case (R-P), let k be the common residue field, k an algebraic closure, F̆ the completion

of the maximal unramified extension with ring of integers ŎF = WOF
(k) and σ the lift

of the Frobenius in Gal(k|k) to Gal(ŎF |OF ).

4.1. The naive moduli problem. Let S ∈ NilpŎF
. Consider tuples (X, ι, λ), where

• X is a formal OF -module over S of dimension 2 and height 4.

• ι : OE → End(X) is an action of OE on X satisfying the Kottwitz condition: The
characteristic polynomial of ι(α) for some α ∈ OE is given by

char(Lie X, T | ι(α)) = (T − α)(T − α).

Here α �→ α is the Galois conjugation of E|F and the right hand side is a polynomial in

OS [T ] via the structure morphism OF �→ ŎF → OS .

• λ : X → X∨ is a polarization on X with kernel ker λ = X[Π], where X[Π] is the
kernel of ι(Π). Further we demand that the Rosati involution of λ satisfies ι(α)∗ = ι(α)
for all α ∈ OE .

Definition 4.1. A quasi-isogeny (resp. an isomorphism) ϕ : (X, ι, λ) → (X �, ι
�, λ

�) of
two tuples (X, ι, λ) and (X �, ι

�, λ
�) over S ∈ NilpŎF

is an OE-linear quasi-isogeny of

height 0 (resp. an OE-linear isomorphism) ϕ : X → X � such that λ = ϕ
∗(λ�).

Let Aut0(X, ι, λ) be the group of quasi-isogenies ϕ : (X, ι, λ) → (X, ι, λ). We have:

Proposition 4.2. Up to isogeny, there exists exactly one such tuple (X, ιX, λX) over
S = Spec k under the condition that the group

G(X,ιX,λX) = {ϕ ∈ Aut0(X, ιX, λX) | det ϕ = 1} (4.1)

is isomorphic to SU(C, h) for a 2-dimensional E-vector space C with split E|F -hermitian
form h.

Remark 4.3. As in the case (R-P), we consider G(X,ιX,λX) and SU(C, h) as linear alge-
braic groups over F . We will prove uniqueness for the slightly weakened condition that
SU(C, h) is only a Zariski-closed subgroup of G(X,ιX,λX) (and it will follow implicitly that
this is already an isomorphism).

Proof. We first show uniqueness of the object. Let (X, ι, λ)/ Spec k be a tuple as in the
proposition and consider its rational Dieudonné-module NX . This is a 4-dimensional
vector space over F̆ equipped with an action of E and an alternating form � , � such that

�x, Πy� = �Πx, y� (4.2)

for all x, y ∈ NX . Let E(2) = F (2) ⊗F E the unramified quadratic extension of E and

choose elements c1, c2 ∈ E(2) as follows: The element π0 ∈ OF has even valuation in E,

hence we can find an element c2 ∈ E(2) with Nm
E

(2)
|E

(c2) = π0. Note that

Nm
E

(2)
|E

�
σ(c2)

c2

�
=

σ(c2) · c2

c2 · σ(c2)
=

π0

π0

= 1,
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where α �→ α is the conjugation in Gal(Ĕ|F̆ ) and σ is the lift of the Frobenius inducing

the conjugation in Gal(E(2)|E). By Hilbert 90, there exists a unit c1 ∈ E(2) with

c1

σ(c1)
=

σ(c2)

c2

.

Let Ĕ = F̆ ⊗F E. Now NX is a 2-dimensional vector space over Ĕ with a hermitian
form h given by

h(x, y) = c1(�Πx, y� − Π�x, y�). (4.3)

Let F and V be the σ-linear Frobenius and the σ
−1-linear Verschiebung on NX . We

have FV = VF = π0 and, since � , � comes from a polarization,

�Fx, y� = �x, Vy�σ.

Consider the σ-linear operator τ = c2V−1 = Fc−1
2 . The hermitian form h is invariant

under τ :

h(τx, τy) = h(Fc−1
2 x, c2V−1y) =

c2

σ(c2)
· h(Fx, V−1y)

=
c2

σ(c2)
·

c1

σ(c1)
· h(x, y)σ = h(x, y)σ.

From the condition on G(X,ιX,λX) it follows that NX is isotypical of slope 1
2 and thus

the slopes of τ are all zero. Let C = Nτ
X . This is a 2-dimensional vector space over

E with NX = C ⊗E Ĕ and h induces an E|F -hermitian form on C. A priori, there
are two possibilities for (C, h), either h is split or non-split. The group SU(C, h) of
automorphisms of determinant 1 is isomorphic to G(X,ιX,λX). But the special unitary
groups for h split and h non-split are not isomorphic and do not contain each other as
a closed subgroup for dimension reasons. Thus the condition on G(X,ιX,λX) implies that
h is split.
Assume we are given two different objects (X, ι, λ) and (X �, ι

�, λ
�) as in the proposition.

Then there is an isomorphism between the spaces (C, h) and (C �, h�) extending to an
isomorphism of NX and NX

� respecting all structure. This corresponds to a quasi-

isogeny ϕ : (X, ι, λ) → (X �, ι
�, λ

�).
Now we prove the existence of (X, ιX, λX). We start with a Π-modular lattice Λ in a 2-

dimensional vector space (C, h) over E with split hermitian form. Then M = Λ⊗OE
ŎE

is an ŎE-lattice in N = C ⊗E Ĕ. The σ-linear operator τ = 1 ⊗ σ on N has slopes are
all 0. We can extend h to N such that

h(τx, τy) = h(x, y)σ,

for all x, y ∈ N . Furthermore, we choose c1, c2 ∈ E(2) as in the first part of the proof.
The operators F and V are given by the equations τ = c2V−1 = Fc−1

2 . Finally, the
alternating form � , � is defined via

�x, y� = TrĔ|F̆

�
π

k
0

2ϑc1

· h(x, y)

�
,

for x, y ∈ N . The lattice M ⊆ N is the Dieudonné module of the object (X, ιX, λX). We
leave it to the reader to check that this is indeed an object as considered above. �

We fix such an object (X, ιX, λX) over Spec k from the proposition. We define the functor

N naive
E on NilpŎF

as follows:

Let S ∈ NilpŎF
and write S = S ×Spf ŎF

Spec k. Then N naive
E (S) is the set of equivalence

classes of tuples (X, ι, λ, �) over S where (X, ι, λ) is a tuple as above and � is a quasi-
isogeny

� : (X, ι, λ) ×S S −→ (X, ιX, λX) ×Spec k S
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in the sense of Def. 4.1. Two objects (X, ι, λ, �) and (X �, ι
�, λ

�, �
�) are equivalent if there

exists an isomorphism ϕ : (X, ι, λ) → (X �, ι
�, λ

�), such that � = �
� ◦ (ϕ ×S S).

We refer to Remark 3.4 (1) for a comparison of the definition of N naive
E with [RZ96]

(strict equality versus equality up to a unit).

Remark 4.4. N naive
E is pro-representable by a formal scheme, formally locally of finite

type over Spf ŎF , cf. [RZ96, Thm. 3.25].

We now study the k-valued points of the space N naive
E . Let N = NX be the rational

Dieudonné-module of (X, ιX, λX). This is a 4-dimensional vector space over F̆ , equipped
with an action of E, with two operators F and V and an alternating form � , �.
Let (X, ι, λ, �) ∈ N naive

E (k). This corresponds to an ŎF -lattice M = MX ⊆ N which is
stable under the actions of F, V and OE . The condition on the kernel of λ implies that
M = ΠM∨ for

M∨ = {x ∈ N | �x, y� ∈ ŎF for all y ∈ M}.

The alternating form � , � induces an Ĕ|F̆ -hermitian form h on N , seen as 2-dimensional

vector space over Ĕ:
h(x, y) = c1(�Πx, y� − Π�x, y�). (4.3)

Recall that c1 is a unit in Ĕ and that

�x, y� = TrĔ|F̆

�
π

k
0

2ϑc1

· h(x, y)

�
. (4.4)

Since the inverse different of E|F is D
−1
E|F = π

k

0

2 OE (see Lemma 2.2), this implies that

M is Π-modular with respect to h, as ŎE-lattice in N . We denote the dual of M with

respect to h by M �. There is a natural bijection

N naive
E (k) = {ŎE-lattices M ⊆ N | M = ΠM �, π0M ⊆ VM ⊆ M}. (4.5)

Recall that τ = c2V−1 is a σ-linear operator on N with slopes all 0. Further C = Nτ

is a 2-dimensional E-vector space with hermitian form h.

Lemma 4.5. Let M ∈ N naive
E (k). Then:

(1) M + τ(M) is τ -stable.

(2) Either M is τ -stable and Λ1 = Mτ ⊆ C is Π-modular, or M is not τ -stable and
then Λ0 = (M + τ(M))τ ⊆ C is selfdual (with respect to h).

The proof is the same as that of [KR11, Lemma 3.2]. We identify N with C ⊗E Ĕ. For

any τ -stable lattice M ∈ N naive
E (k), we have M = Λ1 ⊗OE

ŎE . If M ∈ N naive
E (k) is not

τ -stable, there is an inclusion M ⊆ Λ0 ⊗OE
ŎE of index 1. Recall from Prop. 2.4 that

the isomorphism class of a Π-modular or selfdual lattice Λ ⊆ C is determined by the
norm ideal

Nm(Λ) = �{h(x, x)|x ∈ Λ}�.
There are always at least two types of selfdual lattices. However, not all of them appear
in the description of N naive

E (k).

Lemma 4.6. (1) Let Λ ⊆ C be a selfdual lattice with Nm(Λ) ⊆ π0OF . There is an
injection

iΛ : P(Λ/ΠΛ)(k) �−→ N naive
E (k),

that maps a line � ⊆ Λ/ΠΛ ⊗k k to its inverse image under the canonical projection

Λ ⊗OE
ŎE −→ Λ/ΠΛ ⊗k k.

The k-valued points P(Λ/ΠΛ)(k) ⊆ P(Λ/ΠΛ)(k) are mapped to τ -invariant Dieudonné

modules M ⊆ Λ ⊗OE
ŎE under this embedding.
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(2) Identify P(Λ/ΠΛ)(k) with its image under iΛ. The set N naive
E (k) can be written as

N naive
E (k) =

�

Λ⊆C

P(Λ/ΠΛ)(k),

where the union is taken over all lattices Λ ⊆ C as described in part (1) of this lemma.

Proof. Let Λ ⊆ C be a selfdual lattice. For any line � ∈ P(Λ/ΠΛ)(k), denote its

preimage in Λ ⊗ ŎE by M . The inclusion M ⊆ Λ ⊗ ŎE has index 1 and M is an

ŎE-lattice with Π(Λ ⊗ ŎE) ⊆ M . Furthermore Λ ⊗ ŎE is τ -invariant by construction,

hence Π(Λ ⊗ ŎE) = V(Λ ⊗ ŎE) = F(Λ ⊗ ŎE). It follows that M is stable under the

actions of F and V. Thus M ∈ N naive
E (k) if and only if M = ΠM �. The hermitian form

h induces a symmetric form s on Λ/ΠΛ. Now M is Π-modular if and only if it is the
preimage of an isotropic line � ⊆ Λ/ΠΛ ⊗ k. Note that s is also anti-symmetric since we
are in characteristic 2.
We first consider the case Nm(Λ) ⊆ π0OF . We can find a basis of Λ such that h has the
form

HΛ =

�
x 1
1

�
, x ∈ π0OF ,

cf. (2.3). It follows that the induced form s is even alternating (because x ≡ 0 mod π0).
Hence any line in Λ/ΠΛ ⊗ k is isotropic. This implies that iΛ is well-defined, proving
part 1 of the Lemma.
Now assume that Nm(Λ) = OF . There is a basis (e1, e2) of Λ such that h is represented
by

HΛ =

�
1 1
1

�
.

The induced form s is given by the same matrix and � = k · e2 is the only isotropic line
in Λ/ΠΛ. Since � is already defined over k, the corresponding lattice M ∈ N naive

E (k)

is of the form M = Λ1 ⊗ ŎE for a Π-modular lattice Λ1 ⊆ Λ. But, by Prop. 2.8, any
Π-modular lattice in C is contained in a selfdual lattice Λ

� with Nm(Λ�) ⊆ π0OF .

It follows that we can write N naive
E (k) as a union

N naive
E (k) =

�

Λ⊆C

P(Λ/ΠΛ)(k),

where the union is taken over all selfdual lattices Λ ⊆ C with Nm(Λ) ⊆ π0OF . This
shows the second part of the Lemma. �

Remark 4.7. We can use Prop. 2.8 to describe the intersection behaviour of the projec-
tive lines in N naive

E (k). A τ -invariant point M ∈ N naive
E (k) corresponds to the Π-modular

lattice Λ1 = Mτ ⊆ C. If Nm(Λ1) ⊆ π
2
0OF , there are q + 1 lines going through M . If

Nm(Λ1) = π0OF , the point M is contained in one or 2 lines, depending on whether
Λ1 is hyperbolic or not, see part (3) and (4) of Prop. 2.8. The former case (i. e., Λ1 is
hyperbolic) appears if and only if π0OF = Nm(Λ1) = 2

π
k

0

OF (see Lemma 2.5), which

is equivalent to |πk+1
0 | = |2|. This is a condition that only depends on the quadratic

extension E|F , see page 7. We refer to Remark 4.9, Remark 4.12 and Section 5.3 for a
further discussion of this special case.
On the other hand, each projective line in N naive

E (k) contains q + 1 τ -invariant points.
Such a τ -invariant point M is an intersection point of 2 or more projective lines if and

only if |πk+1
0 | = |2| or Λ1 = Mτ ⊆ C has a norm ideal satisfying Nm(Λ1) ⊆ π

2
0OF .

Let Λ ⊆ C as in Lemma 4.6. We denote by X+
Λ

the formal OF -module corresponding

to the Dieudonné module M = Λ ⊗ ŎE . There is a canonical quasi-isogeny

�
+
Λ

: X −→ X+
Λ



26 DANIEL KIRCH

(a) e = 2, f = 1, k = 0. (b) e = 2, f = 1, k = 1.

Figure 2. The reduced locus of N naive
E for an (R-U) extension E|F

where e and f are the ramification index and the inertia degree of F |Q2.

We always have 0 ≤ k ≤ e − 1. The solid lines lie in NE ⊆ N naive
E .

of F -height 1. For S ∈ NilpŎF
, we define

NE,Λ(S) = {(X, ι, λ, �) ∈ N naive
E (S) | (�+

Λ
× S) ◦ � is an isogeny}.

By [RZ96, Prop. 2.9], the functor NE,Λ is representable by a closed formal subscheme

of N naive
E . On geometric points, we have

NE,Λ(k) ∼−→ P(Λ/ΠΛ)(k), (4.6)

as follows from Lemma 4.6 (1).

Proposition 4.8. The reduced locus of N naive
E is a union

(N naive
E )red =

�

Λ⊆C

NE,Λ

where Λ runs over all selfdual lattices in C with Nm(Λ) ⊆ π0OF . For each Λ, there
exists an isomorphism

NE,Λ
∼−→ P(Λ/ΠΛ),

inducing the bijection (4.6) on k-valued points.

The proof is analogous to that of Prop. 3.8.

Remark 4.9. Similar to Remark 3.7 (3), we let (NE)red ⊆ (N naive
E )red be the union of

all projective lines NE,Λ corresponding to hyperbolic selfdual lattices Λ ⊆ C. Later, we
will define NE as a functor on NilpŎF

and show that NE � MDr, where MDr is the

Drinfeld moduli problem (see Theorem 4.15, a description of the formal scheme MDr

can be found in [BC91, I.3]). In particular, (NE)red is connected and each projective
line in (NE)red has q + 1 intersection points and there are 2 lines intersecting in each
such point.
It might happen that (NE)red = (N naive

E )red (see, for example, Figure 2(b)), if there are
no non-hyperbolic selfdual lattices Λ ⊆ C with Nm(Λ) ⊆ π0OF . In fact, this is the case

if and only if |πk+1
0 | = |2|, cp. Prop. 2.4 and Lemma 2.5. (Note however that we still

have NE �= N naive
E , see Remark 4.12 and Section 5.3.)

Assume |πk+1
0 | �= |2| and let P ∈ NE(k) be an intersection point. Then, as in the case

where E|F is of type (R-P) (cp. Remark 3.7 (3)), the connected component of P in

((N naive
E )red \ (NE)red) ∪ {P} consists of a finite union of projective lines (corresponding

to non-hyperbolic lattices, by definition of (NE)red). In Figure 2(a), these components
are indicated by dashed lines (they consist of just one projective line in that case).



NEW EXAMPLE OF A 2-ADIC RZ-SPACE 27

4.2. The straightening condition. As in the case (R-P), cp. section 3.2, we use the

results of section 6 to define the straightening condition on N naive
E . By Theorem 6.2 and

Remark 6.1 (2), there exists a principal polarization �λ0
X on the framing object (X, ιX, λX)

such that the Rosati involution is the identity on OE . We set �λX = �λ0
X ◦ ιX(Π), which is

again a polarization on X with the Rosati involution inducing the identity on OE , but

with kernel ker �λX = X[Π]. This polarization is unique up to a scalar in O×
E , i. e., any

two polarizations �λX and �λ�
X with these properties satisfy

�λ�
X = �λX ◦ ι(α),

for some α ∈ O×
E . For any (X, ι, λ, �) ∈ N naive

E (S),

�λ = �
∗(�λX) = �

∗(�λ0
X) ◦ ι(Π)

is a polarization on X with kernel ker �λ = X[Π], see Theorem 6.2 (2).
Recall that a selfdual or Π-modular lattice Λ ⊆ C is called hyperbolic if there exists a
basis (e1, e2) of Λ such that, with respect to this basis, h has the form

�
Π

i

Π
i

�
,

for i = 0 resp. 1. By Lemma 2.5, this is the case if and only if Nm(Λ) = 2

π
k

0

OF .

Proposition 4.10. For a suitable choice of (X, ιX, λX) and �λX, the quasi-polarization

λX,1 =
π

k
0

2
(λX + �λX)

is a polarization on X. Let (X, ι, λ, �) ∈ N naive
E (k) and �λ = �

∗(�λX). Then λ1 = π
k

0

2 (λ+�λ)

is a polarization if and only if (X, ι, λ, �) ∈ NE,Λ(k) for a hyperbolic selfdual lattice
Λ ⊆ C.

Proof. On the rational Dieudonné module N = MX ⊗ŎF
F̆ , denote by � , �, ( , ) and � , �1

the alternating forms induced by λX, �λX and λX,1, respectively. The form � , �1 is integral
on MX if and only if λX,1 is a polarization on X. We have

(Fx, y) = (x, Vy)σ,

(Πx, y) = (x, Πy),

�x, y�1 =
π

k
0

2
(�x, y� + (x, y)),

for all x, y ∈ N . The form ( , ) induces an Ĕ-bilinear alternating form b on N by the
formula

b(x, y) = c3((Πx, y) − Π(x, y)). (4.7)

Here, c3 = Π/c2 is a unit in ŎE . The dual of M with respect to this form is again

M � = Π
−1M , since

(x, y) = TrĔ|F̆

�
π

k
0

2ϑc3

· b(x, y)

�
,

and the inverse different of E|F is given by D
−1
E|F = π

k

0

2 OE , cf. Lemma 2.2. Now b is

invariant under the σ-linear operator τ = c2V−1 = Fc−1
2 , because

b(τx, τy) = b(Fc−1
2 x, c2V−1y) =

c3

σ(c3)
· b(c−1

2 x, σ
−1(c2)y)σ

=
c3 · c2

σ(c3) · σ(c2)
· b(x, y)σ = b(x, y)σ.
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Hence b defines an E-linear alternating form on C.
We choose the framing object (X, ιX, λX) such that MX is τ -invariant (see Lemma 4.5)
and such that Λ1 = Mτ

X is hyperbolic. We can find a basis (e1, e2) of Λ1 such that

h �=
�

Π

Π

�
, b �=

�
u

−u

�
,

for some u ∈ E×. Since �λX has the same kernel as λX, we have u = Πu� for some unit

u� ∈ O×
E . We can choose �λX such that u� = 1 and u = Π. Now π

k

0

2 (h(x, y) + b(x, y)) is

integral for all x, y ∈ Λ1. Hence π
k

0

2 (h(x, y) + b(x, y)) is also integral for all x, y ∈ MX.
For all x, y ∈ MX, we have

�x, y�1 =
π

k
0

2
(�x, y� + (x, y)) =

π
k
0

2
TrĔ|F̆

�
π

k
0

2ϑc1

· h(x, y) +
π

k
0

2ϑc3

· b(x, y)

�

= TrĔ|F̆

�
π

k
0

2ϑc1

·
π

k
0

2
(h(x, y) + b(x, y))

�
+ TrĔ|F̆

�
π

k
0

2ϑc1c3

·
π

k
0 (c1 − c3)

2
b(x, y)

�
.

The first summand is integral since π
k

0

2 (h(x, y) + b(x, y)) is integral. Recall that c1 is a

unit in Ŏ×
E with c1/σ(c1) = σ(c2)/c2. After multiplying with a suitable scalar in O×

E ,

we may assume that c1 is of the form c1 = c3 + 2

π
k

0

α for some α ∈ OE . Indeed, c1c−1
3

satisfies the equation

c1c−1
3

σ(c1c−1
3 )

=
σ(c2) · c2

c2 · σ(c2)
=

c2

c2

= 1 mod 2/π
k
0 ,

thus we can modify c1 by a scalar in O×
E such that c1c−1

3 = 1 mod 2/π
k
0 . It follows that

the second summand above is integral as well. Hence � , �1 is integral on MX and this
implies that λX,1 is a polarization on X.

Now let (X, ι, λ, �) ∈ N naive
E (k) and denote by M ⊆ N its Dieudonné module. Assume

that λ1 = π
k

0

2 (λ + �λ) is a polarization on X. Then � , �1 is integral on M . But this is

equivalent to π
k

0

2 (h(x, y) + b(x, y)) being integral for all x, y ∈ M . For x = y, we have

h(x, x) = h(x, x) + b(x, x) ∈ 2

π
k
0

· ŎF .

Let Λ ⊆ C be the selfdual or Π-modular lattice given by Λ = Mτ resp. Λ = (M+τ(M))τ ,

see Lemma 4.5. Then h(x, x) ∈ (2/π
k
0 ) · OF for all x ∈ Λ. Thus Nm(Λ) ⊆ (2/π

k
0 ) · OF

and, by minimality, this implies that Nm(Λ) = 2

π
k

0

OF and Λ is hyperbolic (cf. Lemma

2.5). Hence, in either case, the point corresponding to (X, ι, λ, �) lies in NE,Λ
� for a

hyperbolic lattice Λ
�.

Conversely, assume that (X, ι, λ, �) ∈ NE,Λ(k) for some hyperbolic lattice Λ ⊆ C. We
want to show that λ1 is a polarization on X. This follows if � , �1 is integral on M , or

equivalently, if π
k

0

2 (h(x, y) + b(x, y)) is integral on M . For this, it is enough to show

that π
k

0

2 (h(x, y) + b(x, y)) is integral on Λ. Let Λ
� ⊆ C be the selfdual lattice generated

by Π
−1e1 and e2, where (e1, e2) is the basis of the Π-modular lattice Λ1 = MX. With

respect to the basis (Π−1e1, e2), we have

h �=
�

1
1

�
, b �=

�
1

−1

�
.
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In particular, Λ
� is a hyperbolic lattice and π

k

0

2 (h + b) is integral on Λ
�. By Prop. 2.4,

there exists an element g ∈ SU(C, h) with gΛ = Λ
�. Since det g = 1, the alternating

form b is invariant under g. Thus π
k

0

2 (h + b) is also integral on Λ. �

From now on, we assume that (X, ιX, λX) and �λX are chosen in a way such that

λX,1 =
π

k
0

2
(λX + �λX) ∈ Hom(X,X∨).

Definition 4.11. A tuple (X, ι, λ, �) ∈ N naive
E (S) satisfies the straightening condition if

λ1 =
π

k
0

2
(λ + �λ) ∈ Hom(X, X∨). (4.8)

This condition is independent of the choice of �λX. In fact, we can only change �λX

by a scalar of the form 1 + 2u/π
k
0 , u ∈ OE . But if �λ�

X = �λX ◦ ι(1 + 2u/π
k
0 ), then

λ
�
X,1 = λX,1 + �λX ◦ ι(u) and λ

�
1 = λ1 + �λ ◦ ι(u). Clearly, λ

�
1 is a polarization if and only

if λ1 is one.
For S ∈ NilpŎF

, let NE(S) be the set of all tuples (X, ι, λ, �) ∈ N naive
E (S) that satisfy

the straightening condition. By [RZ96, Prop. 2.9], the functor NE is representable by a

closed formal subscheme of N naive
E .

Remark 4.12. The reduced locus of NE is given by

(NE)red =
�

Λ⊆C

NE,Λ �
�

Λ⊆C

P(Λ/ΠΛ),

where the union goes over all hyperbolic selfdual lattices Λ ⊆ C. Note that, depending
on the form of the (R-U) extension E|F , it may happen that all selfdual lattices are hy-

perbolic (when |πk+1
0 | = |2|) and in that case, we have (NE)red = (N naive

E )red. However,

the equality does not extend to an isomorphism between NE and N naive
E . This will be

discussed in section 5.3.

4.3. The main theorem for the case (R-U). As in the case (R-P), we want to
establish a connection to the Drinfeld moduli problem. Therefore, fix an embedding
of E into the quaternion division algebra B. Let (X, ιX) be the framing object of the
Drinfeld problem. We want to construct a polarization λX on X with ker λX = X[Π]

and Rosati involution given by b �→ ϑb�
ϑ

−1 on B. Here b �→ b� denotes the standard
involution on B.
By Lemma 2.3 (2), there exists an embedding E1 �→ B of a ramified quadratic extension
E1|F of type (R-P), such that Π1ϑ = −ϑΠ1 for a prime element Π1 ∈ E1. From

Proposition 3.12 (1) we get a principal polarization λ
0
X on X with associated Rosati

involution b �→ Π1b�
Π

−1
1 . If we assume fixed choices of E1 and Π1, this is unique up to

a scalar in O×
F . We define

λX = λ
0
X ◦ ιX(Π1ϑ).

Obviously ker λX = X[Π] and the Rosati involution of λX is indeed b �→ ϑb�
ϑ

−1. On the
other hand, any polarization on X satisfying these two conditions can be constructed in
this way (using the same choices for E1 and Π1). Hence:

Lemma 4.13. (1) There exists a polarization λX : X → X
∨, unique up to a scalar in

O×
F , with ker λX = X[Π] and associated Rosati involution b �→ ϑb�

ϑ
−1.

(2) Fix λX as in (1) and let (X, ιB , �) ∈ MDr(S). There exists a unique polarization

λ on X with ker λ = X[Π] and Rosati involution b �→ ϑb�
ϑ

−1 such that �
∗(λX) = λ on

S = S ×Spf ŎF
k.
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Note also that the involution b �→ ϑb�
ϑ

−1 does not depend on the choice of ϑ ∈ E. We
write ιX,E for the restriction of ιX to E ⊆ B and, in the same manner, we write ιE for
the restriction of ιB to E for any (X, ιB , �) ∈ MDr(S). Fix a polarization λX of X as in
Lemma 4.13 (1). Accordingly for a tuple (X, ιB , �) ∈ MDr(S), let λ be the polarization
given by Lemma 4.13 (2).

Lemma 4.14. The tuple (X, ιX,E , λX) is a framing object of N naive
E . Moreover, the map

(X, ιB , �) �−→ (X, ιE , λ, �)

induces a closed embedding of formal schemes

η : MDr �−→ N naive
E .

Proof. We follow the same argument as in the proof of Lemma 3.13. Again it is enough
to check that G(X,ιX,E ,λX) � SU(C, h) and that ιE satisfies the Kottwitz condition.

By [RZ14, Prop. 5.8], the special condition on ιB implies the Kottwitz condition for ιE .
It remains to show that G(X,ιX,E ,λX) � SU(C, h). But the group G(X,ιX) of automorphisms

of determinant 1 of (X, ιX) is isomorphic to SL2,F and G(X,ιX) ⊆ G(X,ιX,E ,λX) is a Zariski-

closed subgroup by the same argument as in Lemma 3.13. Hence the statement follows
from the exceptional isomorphism SL2,F � SU(C, h) and Remark 4.3. �

As a next step, we want to show that this already induces a closed embedding

η : MDr �−→ NE . (4.9)

Let �E �→ B an embedding of a ramified quadratic extension �E|F of type (R-U) as in

Lemma 2.3 (2). On the framing object (X, ιX) of MDr, we define a polarization �λX via

�λX = λX ◦ ιX(�ϑ),

where �ϑ is a unit in �E of the form �ϑ2 = 1+(4/π
2k+1
0 ) · �ε, see Lemma 2.3 (2). The Rosati

involution of �λX induces the identity on OE and we have

λX,1 =
π

k
0

2
(λX + �λX) =

π
k
0

2
· λX ◦ ιB(1 + �ϑ) = λX ◦ ιB(�Π/π0)

= λX ◦ ιB(Π−1 ·
1 + δ

2
) ∈ Hom(X,X∨),

using the notation of Lemma 2.3 (2). For (X, ιB , �) ∈ MDr(S), we set �λ = λ ◦ ιB(�ϑ).

By the same calculation, we have λ1 = π
k

0

2 (λ + �λ) ∈ Hom(X, X∨). Thus the tuple
(X, ιE , λ, �) = η(X, ιB , �) satisfies the straightening condition. Hence we get a closed

embedding of formal schemes η : MDr → NE which is independent of the choice of �E.

Theorem 4.15. η : MDr → NE is an isomorphism of formal schemes.

We first check this for k-valued points:

Lemma 4.16. η induces a bijection η(k) : MDr(k) → NE(k).

Proof. We only have to show surjectivity and we will use for this the Dieudonné theory
description of N naive

E (k), see (4.5). The rational Dieudonné-module N = NX of X now

carries additionally an action of B. The embedding F (2)
�→ B given by

1 + δ

2
�−→ Π · �Π

π0

, (2.1)

cf. Lemma 2.3 (2), induces a Z/2-grading N = N0 ⊕ N1. Here,

N0 = {x ∈ N | ι(a)x = ax for all a ∈ F (2)},

N1 = {x ∈ N | ι(a)x = σ(a)x for all a ∈ F (2)},
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for a fixed embedding F (2)
�→ F̆ . The operators F and V have degree 1 with respect to

this grading. The principal polarization

λX,1 =
π

k
0

2
(λX + �λX) = λX ◦ ιX(Π−1 ·

1 + δ

2
)

induces an alternating form � , �1 on N that satisfies

�x, y�1 = �x, ι(Π−1 ·
1 + δ

2
) · y�,

for all x, y ∈ N . Let M ∈ NE(k) ⊆ N naive
E (k) be an ŎF -lattice in N . We claim that

M ∈ MDr(k). For this, it is necessary that M is stable under the action of O
(2)
F (since

OB = OF [Π, 1+δ
2 ] = O

(2)
F [Π], cf. Lemma 2.3 (2)) or equivalently, that M respects the

grading of N , i.e. M = M0 ⊕ M1 for Mi = M ∩ Ni. Furthermore M has to satisfy the
special condition:

dim M0/VM1 = dim M1/VM0 = 1.

We first show that M = M0 ⊕M1. Let y = y0 +y1 ∈ M with yi ∈ Ni. Since M = ΠM∨,
we have

�x, ι(Π)−1y� = �x, ι(Π)−1y0� + �x, ι(Π)−1y1� ∈ ŎF ,

for all x ∈ M . Together with

�x, y�1 = �x, y0�1 + �x, y1�1 = �x, ι(�Π/π0)y0� + �x, ι(�Π/π0)y1�

=
1 + δ

2
· �x, ι(Π−1)y0� +

1 − δ

2
· �x, ι(Π−1)y1� ∈ ŎF ,

this implies that �x, ι(Π−1)y0� and �x, ι(Π−1)y1� lie in ŎF for all x ∈ M . Hence,
y0, y1 ∈ M and this means that M respects the grading. It follows that M is stable
under the action of OB .
In order to show that M is special, note that

�Vx, Vy�σ
1 = �FVx, y�1 = π0 · �x, y�1 ∈ π0ŎF ,

for all x, y ∈ M . The form � , �1 comes from a principal polarization, so it induces a
perfect form on M . Now it is enough to show that also the restrictions of � , �1 to M0

and M1 are perfect. Indeed, if M was not special, we would have Mi = VMi+1 for some
i and this would contradict � , �1 being perfect on Mi. We prove that � , �1 is perfect on

Mi by showing �M0, M1�1 ⊆ π0ŎF .
Let x ∈ M0 and y ∈ M1. Then,

�x, y�1 =
1 − δ

2
�x, ι(Π)−1y�,

�x, y�1 = −�y, x�1 = −1 + δ

2
�y, ι(Π)−1x� =

1 + δ

2
�x, ι(Π)−1y�.

We take the difference of these two equations. From Π ≡ Π mod π0, it follows that
�x, ι(Π)−1y� ≡ 0 mod π0 and thus also �x, y�1 ≡ 0 mod π0. The form � , �1 is hence
perfect on M0 and M1 and the special condition follows. This finishes the proof of
Lemma 4.16. �

Proof (of Theorem 4.15). Let (X, ιX) be a framing object for MDr and let further

η(X, ιX) = (X, ιX,E , λX)
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be the corresponding framing object for NE . We fix an embedding F (2)
�→ B as in

Lemma 2.3 (2). For S ∈ NilpŎF
, let (X, ι, λ, �) ∈ NE(S) and �λ = �

∗(�λX). We have

�
−1 ◦ ιX

�
1 + δ

2

�
◦ � = �

−1 ◦ ιX(Π) ◦ λ
−1
X

◦ λX,1 ◦ �

= ι(Π) ◦ λ
−1 ◦ λ1 ∈ End(X),

for λ1 = π
k

0

2 (λ + �λ), since ker λ = X[Π]. But OB = OF [Π, 1+δ
2 ] (see Lemma 2.3 (2)), so

this already induces an OB-action ιB on X. It remains to show that (X, ιB , �) satisfies
the special condition (see the discussion before Prop. 3.12 for a definition).
The special condition is open and closed (see [RZ14, p. 7]) and η is bijective on k-points.
Hence η induces an isomorphism on reduced subschemes

(η)red : (MDr)red
∼−→ (NE)red,

because (MDr)red and (NE)red are locally of finite type over Spec k. It follows that
η : MDr → NE is an isomorphism. �

5. The local model of NE

In this section we will construct a local model of the moduli problem NE in both the
cases (R-P) and (R-U). As before, we will treat these two cases separately, although the
methods used are similar. See [PRS13] for an introduction to the theory of local models.

Note that there is no good notion of a “naive local model” for the functor N naive
E (in the

sense of [RZ96]). In fact, let E|F be of type (R-P), or of type (R-U) with |πk+1
0 | > |2|,

and let (C, h) be a 2-dimensional E-vector space with split hermitian form h. Then, by
Prop. 2.4, there are at least two isomorphism classes of selfdual resp. Π-modular lattices
Λ ⊆ C. This means that there is no such thing as a “standard lattice” and hence it is
not clear how one should define a local model of N naive

E . In the remaining case, E|F of

type (R-U) such that |πk+1
0 | = |2|, all Π-modular lattices Λ ⊆ C are hyperbolic and we

can write down a naive local model functor Nnaive
E . However, this naive local model is

not flat over Spec OF , as we will show in section 5.3.

5.1. The case (R-P). In this paragraph, E|F will be a ramified quadratic extension
of type (R-P). Let C be a 2-dimensional vector space over E and let h be a split E|F -
hermitian form on C. We can (and will) choose a basis (e1, e2) of C such that h has the
form �

1
1

�

and, with respect to this basis, we define an E-linear alternating form b given by the
matrix �

1
−1

�
.

We denote by Λ the OE-lattice generated by e1 and e2. It is hyperbolic with respect to
h and it satisfies the straightening condition in the sense that

1

2
(h(x, y) + b(x, y)) ∈ OE ,

for all x, y ∈ Λ. This setting is unique in the following sense.

Lemma 5.1. Let Λ be a free OE-module of rank 2 with a perfect split E|F -hermitian
form h and a perfect alternating form b, such that 1

2 (h(x, y) + b(x, y)) ∈ OE for all
x, y ∈ Λ. Then there exists an isomorphism Λ ⊗OE

E = C, a basis (e1, e2) of Λ and a
unit u ∈ 1 + 2OE such that h and u · b are as given above.
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Proof. We have an isomorphism Λ⊗OE
E ∼−→ C, since there exists only one split hermit-

ian vector space of dimension 2. If we identify Λ ⊗OE
E with C, the perfectness of h im-

plies that Λ ⊆ C is a selfdual lattice. From the condition that 1
2 (h(x, y) + b(x, y)) ∈ OE ,

we get that h(x, x) ∈ 2OF for all x ∈ Λ. By Lemma 2.5, it follows that Λ is hyperbolic,
i. e., there exists a basis (e1, e2) of Λ such that h is as given above. With respect to this
basis, the alternating form b has the form

�
u

−u

�
,

for some unit u ∈ O×
E . But we have u ∈ 1+2OE , since 1

2 (h(e1, e2)+b(e1, e2)) ∈ OE . �

We can also interpret C as a 4-dimensional F -vector space. The forms h and b induce
F -linear symplectic forms � , � and ( , ) via

�x, y� = TrE|F

�
1

2Π
· h(x, y)

�
,

(x, y) = TrE|F

�
1

2Π
· b(x, y)

�
,

for x, y ∈ C. Then Λ is selfdual with respect to these forms and the equation

�x, y�1 =
1

2
(�x, y� + (x, y))

defines another alternating form � , �1 that is integral on Λ. In terms of the OF -basis
(e1, e2, Πe1, Πe2) of Λ, we have

� , � �=




1
1

−1
−1


 , ( , ) �=




1
−1

1
−1


 , (5.1)

� , �1 �=




1
0

0
−1


 .

Remark 5.2. Note that the forms � , � and � , �1 are defined not quite in the same way
as on the rational Dieudonné module N = NX in section 3. On N , there is in fact a
twist by δ in the formulae relating h and � , �, see (3.3) and (3.4). But since we want

to define the local model Nloc
E over OF (and δ �∈ OF ), we cannot make this twist here.

However, if we change the base to an unramified extension O�
F of OF and twist h or b by

a unit in (O�
F ⊗OF

OE)× such that the conditions of Lemma 5.1 are still fulfilled, then

the description of Nloc
E itself will remain the same, as condition (2) is invariant under

such a twist.

We now define the local model Nloc
E as a functor on schemes over Spec OF . For an OF -

scheme S, we let Nloc
E (S) be the set of all locally free direct summands F ⊆ Λ ⊗OF

OS

of rank 2 over OS that satisfy the following conditions:

(1) F is OE-linear, i. e., it is an OE ⊗OF
OS-submodule of Λ ⊗OF

OS .

(2) Via base change, � , �, ( , ) and � , �1 induce alternating forms of the type

(Λ ⊗ OS) × (Λ ⊗ OS) −→ OS .

The direct summand F is totally isotropic with respect to all these forms.

(3) The last condition is the Kottwitz condition. For any α ∈ OE , the characteristic
polynomial for the action of α ⊗ 1 on the quotient (Λ ⊗OF

OS)/F is given by

char((Λ ⊗OF
OS)/F , T | α ⊗ 1) = (T − α)(T − α).
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Here the polynomial on the right hand side has a priori coefficients in OF and it becomes
a polynomial in OS [T ] via the structure morphism OF → OS .

The functor Nloc
E is representable by a closed subscheme of Gr(2, Λ)OF

, the Grassmanian

of rank 2 direct summands of Λ. In particular, Nloc
E is projective over Spec OF .

Recall from [RZ96] the definition of the local model Mloc
Dr for the Drinfeld moduli prob-

lem. Let Λ
� be a free OF -module of rank 4 with an OB-action. Let S be a scheme over

Spec OF . Then Mloc
Dr(S) is the set of locally free direct summands F ⊆ Λ

� ⊗OF
OS of

rank 2 over OS that are OB-stable.

The functor Mloc
Dr is representable by a flat closed subscheme of Gr(2, Λ)OF

, cf. [PRS13,

Example 2.4]. Clearly, Mloc
Dr(F ) = ∅, hence Nloc

E and Mloc
Dr cannot be isomorphic over OF .

However, they are isomorphic after base change to the unramified quadratic extension

O
(2)
F of OF .

Proposition 5.3. Fix an embedding OE �→ OB. Then Λ
� ⊗OF

O
(2)
F and Λ ⊗OF

O
(2)
F are

isomorphic as free OE ⊗OF
O

(2)
F -modules. For a fixed isomorphism

ϕ : Λ
� ⊗OF

O
(2)
F

∼−→ Λ ⊗OF
O

(2)
F ,

there is a canonical isomorphism

µ : Mloc
Dr ⊗OF

O
(2)
F

∼−→ Nloc
E ⊗OF

O
(2)
F .

In particular, Nloc
E is flat.

Proof. Once the isomorphism is established, the flatness of Nloc
E follows from the flatness

of Mloc
Dr.

In order to construct the isomorphism, we want to identify Λ
� ⊗OF

O
(2)
F with Λ⊗OF

O
(2)
F

and then we show that the conditions on the direct summands F ⊆ Λ ⊗OF
OS for

F ∈ Nloc
E (S) and F ∈ Mloc

Dr(S) are equivalent for any scheme S over O
(2)
F .

Therefore, we define alternating forms � , �, ( , ) and � , �1 on Λ
�. First of all, if we choose

an isomorphism Λ
� � OB as OB-modules, there is a symmetric form s on Λ

� given by

s(x, y) = Trd(xy�),

where x, y ∈ OB and y �→ y� is the standard involution of B. For any b ∈ OB , we have
s(bx, y) = s(x, b�y). If we change the isomorphism Λ

� � OB by a scalar in b ∈ O×
B , the

form s is replaced by s� with

s�(x, y) = s(bx, by) = bb� · s(x, y).

Thus s is canonical up to scalar in O×
F . Note that s is not a perfect bilinear form. In

fact, (det s) · OF = disc OB = π0OF by definition of the discriminant. We now fix the

embedding OE �→ OB and take an embedding of O
(2)
F as in Lemma 2.3 (1). We set

�x, y� = s(x, Π
−1y),

(x, y) = s(x, Π
−1

δy),

�x, y�1 = s(x, Π
−1 ·

1 + δ

2
y).

Then these forms satisfy all conditions of Lemma 5.1 with the one exception that � , �
induces a non-split hermitian form. After base change to O

(2)
F , the latter becomes

equivalent to a split hermitian form and we can identify Λ
� ⊗OF

O
(2)
F with Λ ⊗OF

O
(2)
F .



NEW EXAMPLE OF A 2-ADIC RZ-SPACE 35

Now Λ
(2) = Λ ⊗OF

O
(2)
F splits into a direct sum Λ

(2) = Λ
(2)
0 ⊕ Λ

(2)
1 with

Λ
(2)
0 = {x ∈ Λ

(2) | ι(α)x = αx for all α ∈ O
(2)
F },

Λ
(2)
1 = {x ∈ Λ

(2) | ι(α)x = σ(α)x for all α ∈ O
(2)
F }.

For clarity, we denote the OB-action on Λ
(2) by ι here, and σ is the lift of the Frobenius,

as usual. Let x ∈ Λ
(2)
0 and y ∈ Λ

(2)
1 . Then,

1 + δ

2
· �x, y� = �x, ι(

1 − δ

2
)y� = �ι(Π ·

1 + δ

2
· Π

−1)x, y� =

= �ι(1 − δ

2
)x, y� =

1 − δ

2
· �x, y�. (5.2)

Hence �x, y� = 0 for all x ∈ Λ
(2)
0 , y ∈ Λ

(2)
1 . By the same argument, we also get (x, y) = 0

and �x, y�1 = 0.

Let R be an O
(2)
F -algebra and assume F ∈ Mloc

Dr(R). Then F ⊆ Λ⊗OF
R is an OB-stable

direct summand of rank 2. We want to show that F ∈ Nloc
E (R).

Clearly, F is stable under the action of OE , and the Kottwitz condition follows from
the fact that (Λ ⊗OF

R)/F is OB-stable. It remains to prove that F is totally isotropic
with respect to � , �, ( , ) and � , �1. Since F is stable under OB , it splits into a direct

sum F = F0 ⊕ F1 where Fi ⊆ Λ
(2)
i ⊗

O
(2)

F

R is a direct summand of rank 1. But now

�F0, F1� = 0 by the calculation of (5.2), i. e., F is totally isotropic with respect to � , �.
Analogously, this also follows for the alternating forms ( , ) and � , �1. Hence F ∈ Nloc

E (R).

Conversely, assume that F ∈ Nloc
E (R). We claim that F ∈ Mloc

Dr(R), i. e., F is stable
under the OB-action.

First we show that F is stable under the action of O
(2)
F ⊆ OB . Assume it is not, i. e.,

there is a x ∈ F such that ι( 1+δ
2 )x �∈ F . Since F is totally isotropic with respect to

� , � and � , �1, we get �y, ι(1+δ
2 )x� = 0 for all y ∈ F . But � , � is a perfect form, hence a

maximal totally isotropic direct summand has rank 2, contradicting our assumption. It

follows that F is OB-stable, since OB = O
(2)
F [Π] by Lemma 2.3 (1). Thus F ∈ Nloc

E (R)

if and only if F ∈ Mloc
Dr(R), q.e.d. �

Remark 5.4. We can also compute explicit equations for Nloc
E by restricting standard

affine charts of Gr(2, Λ)OF
and prove the flatness of Nloc

E directly this way.
Let R be an OF -algebra and consider a direct summand F ⊆ Λ ⊗OF

R such that

F ∈ Nloc
E (R). We choose a basis (e1, e2, Πe1, Πe2) of Λ ⊗OF

R such that the alternating
forms � , �, ( , ) and � , �1 are given by the matrices in (5.1). Since F is OE-linear, we can
choose a R-basis (v1, v2) of F such that either v2 = Πv1 or F lies in the chart around
(Πe1, Πe2). Thus we only need to consider three of the six standard affine charts.

(1) The chart around (Πe1, Πe2). We assume that the vectors v1 and v2 have the form

[v1 v2] =




x11 x21

x12 x22

1
1


 ,

for some xij ∈ R. The conditions (1) - (3) on F can be reduced to the following set of
equations:

x11 + x22 = 0,

x11x22 − x12x21 = −π0,

x11 = 0.
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Hence, the restriction of Nloc
E to this affine chart is given by

U(Πe1,Πe2) = Spec OF [x12, x21]/(x12x21 − π0).

(2) The chart around (e1, Πe1). We now assume that v2 = Πv1 and that they are of the
form

[v1 v2] =




1
x12 π0x14

1
x14 x12


 ,

for xij ∈ R. The conditions on F are equivalent to x12 = 0. Thus this affine chart of

Nloc
E is isomorphic to U(e1,Πe1) = Spec OF [x14].

(3) The chart around (e2, Πe2). Equations for this chart are obtained by exchanging e1

and e2 in the calculation for the second chart. It follows that on this chart Nloc
E is again

an affine line over Spec OF . The flatness of Nloc
E is now evident.

We want to relate NE and Nloc
E via a local model diagram, cf. [RZ96, Chapter 3]. For

S ∈ NilpŎF
, let M(S) be the set of tuples (X, ι, λ, �; γ), where (X, ι, λ, �) ∈ NE(S) and

γ is an isomorphism of OE ⊗OF
OS-modules

γ : DX(S) ∼−→ Λ ⊗OF
OS . (5.3)

Here, DX(S) denotes the Grothendieck-Messing crystal of X evaluated at S (in other
words, it is the Lie algebra of the universal OF -vector extension of X, cf. [Ahs11, 5.2]).

The polarizations λ, �λ = �
∗(�λX) and λ1 = 1

2 (λ + �λ) induce alternating forms � , �X ,

( , )X and � , �X
1 on DX(S). We demand that the isomorphism γ induces the following

equalities for all x, y ∈ DX(S):

γ
∗�x, y� = δ · �x, y�X ,

γ
∗(x, y) = (x, y)X ,

γ
∗�x, y�1 = �x, y�X

1 +
δ − 1

2
· �x, y�X .

Recall that δ ∈ ŎF is a unit generating the unramified quadratic extension of F with
1+δ

2 ∈ ŎF . These become elements in OS via the structure map ŎF �→ OS . For an
explanation why we need these twists, see Remark 5.2.
This defines the functor M on NilpŎF

. There is a forgetful morphism

f : M −→ NE . (5.4)

Let Aut(Λ) over Spec OF be the affine group scheme of automorphisms of Λ respecting
all structure, i. e., for any OF -scheme S, let Aut(Λ)(S) be the group of automorphisms
of OE ⊗OF

OS-modules

ϕ : Λ ⊗OF
OS

∼−→ Λ ⊗OF
OS ,

that leave all alternating forms invariant. Let P = Aut(Λ) ×Spec OF
Spf ŎF . Then M is

an P-torsor over NE , hence it is pro-representable by a formal scheme which is of finite
type over NE .

We denote by �Nloc
E the π0-adic completion of Nloc

E ⊗OF
ŎF . We have a second morphism

g : M −→ �Nloc
E (5.5)

that maps a point (X, ι, λ, �; γ) ∈ M(S) to

F = ker(Λ ⊗OF
OS

γ
−1

−−→ DX(S) −→ Lie X) ⊆ Λ ⊗OF
OS .
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This morphism is formally smooth by Grothendieck-Messing theory (see [Mes72, V.1.6]
for OF = Zp, the other cases follow from the definition of DX in [Ahs11, Chap. 5.2]).
The local model diagram now looks as follows:

M

f

��

g

��

NE
�Nloc

E

(5.6)

In order to be able to use the results from [RZ96, Chapter 3], we need the following
result:

Proposition 5.5. f is smooth and surjective.

Remark 5.6. Here, f is smooth in the sense that for any scheme S and any morphism
S → NE , the morphism of schemes S ×NE

M → S is smooth. Thus f is smooth if and
only if Aut(Λ) is smooth over OF .
By saying f is surjective, we mean that f is surjective as a map of étale sheaves. However,
if f is smooth, this is equivalent to f being surjective on geometric points.

Proof. For an OF -algebra R, let g ∈ Aut(Λ)(R). Then g leaves the form � , �1 invariant
on Λ ⊗ R, hence it also leaves invariant ker � , �1 = {x ∈ Λ ⊗ R | �x, y�1 = 0 ∀y}, which is
a direct summand of rank 2 of Λ ⊗ R. Furthermore gΠ = Πg, i. e., with respect to the
basis (e1, e2, Πe1, Πe2), the element g is given by a 4 × 4 matrix of the form

g �=




a π0b
d π0c
b a

c d


 ,

with coefficients in R. From �ge1, gΠe2�1 = �e1, Πe2�1, we deduce the condition

ad − π0bc = 1.

Conversely, it is easily checked that any g ∈ GLR(Λ ⊗ R) of this form is an element of
Aut(Λ)(R). Therefore we have an isomorphism of schemes,

Aut(Λ) � Spec OF [a, b, c, d]/(ad − π0bc − 1).

The smoothness of Aut(Λ) follows.
By the previous remark, this shows the smoothness of f . It now suffices to check
the surjectivity of f on geometric points. Thus we have to show that for any tuple
(X, ι, λ, �) ∈ NE(k), there exists an isomorphism

γ : DX(k) ∼−→ Λ ⊗OF
k

as in (5.3). We can write DX(k) = MX/π0MX , where MX is the Dieudonné module of
X. Hence, we only need to construct an isomorphism

γ : MX
∼−→ Λ ⊗OF

ŎF .

This isomorphism has to be OE-equivariant and compatible with the alternating forms
� , �, ( , ) and � , �1 on both sides. Such an isomorphism is equivalent to an isomorphism

of ŎE-lattices

γ : MX
∼−→ Λ ⊗OE

ŎE ,

such that the induced forms h and b on Λ and on MX coincide. But it is easy to check

that, up to ŎE-linear isomorphism of MX , there is only one possible choice for the forms
h and b such that 1

2 (h + b) is integral. Hence, there exists such an isomorphism γ. �
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Thus (5.6) is indeed a local model diagram in the sense of [RZ96]. It is compatible with
the local model diagram for MDr in the following sense. Let M� be the functor on
NilpŎF

that maps S to the set of tuples (X, ιB , �; γ
�), where (X, ιB , �) ∈ MDr(S) and

γ
� is isomorphism of OB ⊗OF

OS-modules

γ
� : DX(S) ∼−→ Λ

� ⊗OF
OS .

By [RZ96, Chapter 3], M� is pro-representable by a formal scheme of finite type. Fur-
thermore, we have a smooth projection p : M� → MDr and a formally smooth morphism

q : M� → Mloc
Dr that maps (X, ιB , �; γ

�) to

F = ker(Λ� ⊗OF
OS

γ
−1

−−→ DX(S) −→ Lie X) ⊆ Λ
� ⊗OF

OS .

It factors over �Mloc
Dr, the π0-adic completion of Mloc

Dr ⊗OF
ŎF . Now the following diagram

is commutative.

MDr

η

��

M�p
��

q
��

��

�Mloc
Dr

µ

��

NE M
f

��
g
�� �Nloc

E

(5.7)

In fact, let

ϕ : Λ
� ⊗OF

O
(2)
F

∼−→ Λ ⊗OF
O

(2)
F

be the isomorphism inducing µ (cf. Prop. 5.3). The morphism in the middle then maps
(X, ιB , �; γ

�) to (η(X, ιB , �); (ϕ ⊗
O

(2)

F

OS) ◦ γ
�).

5.2. The case (R-U). Let E|F be a quadratic extension of type (R-U) and let (C, h)
be a 2-dimensional vector space over E with split hermitian form h. We choose a basis
(e1, e2) of C such that h has the form

�
1

1

�

and we define an E-linear alternating form b given by the matrix
�

1
−1

�
.

Let Λ be the OE-lattice generated by (e1, Πe2). The lattice Λ is Π-modular hyperbolic
with respect to h and satisfies the straightening condition, i. e.,

π
k
0

2
· (h(x, y) + b(x, y)) ∈ OE ,

for all x, y ∈ Λ. The datum (C, h, b, Λ) with the above conditions is unique up to E-

linear isomorphism of C and up to multiplying b by a scalar u ∈ 1 + (2/π
k
0 ) · OE , cp.

Lemma 5.1. We now interpret C as an F -vector space of dimension 4 and define F -linear
symplectic forms � , � and ( , ) on C via

�x, y� = TrE|F

�
π

k
0

2ϑ
· h(x, y)

�
,

(x, y) = TrE|F

�
π

k
0

2ϑ
· b(x, y)

�
.

The dual of Λ with respect to each of these forms is Λ
� = Π

−1
Λ. Furthermore the

alternating form � , �1 defined by

�x, y�1 =
π

k
0

2
(�x, y� + (x, y)),
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for all x, y ∈ C, is integral on Λ. In terms of the basis (e1, e2, Πe1, Πe2) of C, the forms
� , �, ( , ) and � , �1 are represented by the following matrices:

� , � �=




1

1

−1

−1


, ( , ) �=




1

−1

1 2

π
k

0

−1 − 2

π
k

0




,

� , �1 �=




π
k
0

0

0 1

−π
k
0 −1


 .

Remark 5.7. As in the (R-P) case, there will be some twists by units in Ŏ×
F involved

if one compares the forms � , �, ( , ) and � , �1 to those coming from a point (X, ι, λ, �) ∈
NE(S). However, this does not affect the construction of Nloc

E , see Remark 5.2.

We now give the definition of the local model functor Nloc
E . For an OF -scheme S, we let

Nloc
E (S) be the set of locally free direct summands F ⊆ Λ ⊗OF

OS of rank 2 over OS

such that

(1) F is an OE ⊗OF
OS-submodule of Λ ⊗OF

OS .

(2) The forms � , � and ( , ) induce perfect bilinear forms on Λ ⊗OF
OS via base change

of the compositions

Λ × Λ
(1,Π

−1
)−−−−−→ Λ × Λ

� −→ OF . (5.8)

We require that F is totally isotropic with respect to these induced forms.

(3) F is totally isotropic with respect to the alternating form induced by � , �1 on Λ⊗OS .

(4) The Kottwitz condition holds. For any element α ∈ OE , the action of α ⊗ 1 on the
quotient (Λ ⊗OF

OS)/F has the characteristic polynomial

char((Λ ⊗OF
OS)/F , T | α ⊗ 1) = (T − α)(T − α).

The functor Nloc
E is representable by a closed subscheme of the Grassmanian Gr(2, Λ)OF

.
In particular, it is projective over Spec OF . For the following proposition, recall from

section 5.1 that Mloc
Dr is a flat closed subscheme of Gr(2, Λ)OF

.

Proposition 5.8. Fix an embedding E �→ B and let O
(2)
F be the unramified quadratic

extension of OF . Then, Λ
�⊗OF

O
(2)
F and Λ⊗OF

O
(2)
F are isomorphic as free OE ⊗OF

O
(2)
F -

modules. For a fixed isomorphism ϕ : Λ
� ⊗OF

O
(2)
F

∼−→ Λ ⊗OF
O

(2)
F , there is a canonical

isomorphism µ : Mloc
Dr ⊗OF

O
(2)
F

∼−→ Nloc
E ⊗OF

O
(2)
F . In particular, Nloc

E is flat over OF .

Proof. Let Λ
� be a free OF -module of rank 4 with an OB-action. For an OF -algebra R,

the set Mloc
Dr(R) is the set of direct summands F ⊆ Λ

� ⊗OF
R of rank 2 that are stable

under the OB-action. Assume now that R is even an O
(2)
F -algebra. In order to construct

the claimed isomorphism, we want to identify Λ
� ⊗OF

O
(2)
F with Λ ⊗OF

O
(2)
F . Then we

only have to show that a direct summand F ⊆ Λ ⊗OF
R lies in Mloc

Dr(R) if and only if it

lies in Nloc
E (R).

Recall from section 5.1 that there is a canonical symmetric form s on Λ
� that is defined

up to a scalar in O×
F . We now fix the embedding E �→ B and choose embeddings �E �→ B

and F (2)
�→ B as in Lemma 2.3 (2). In order to identify Λ

� ⊗OF
O

(2)
F with Λ ⊗OF

O
(2)
F ,
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we have to define alternating forms � , �, ( , ) and � , �1 on Λ
� ⊗OF

O
(2)
F . These forms are

given by the following equations:

�x, y� = s(x, ϑy),

(x, y) = s(x, ϑ�ϑy),

�x, y�1 = s(x, ϑ ·
1 + �ϑ
2/π

k
0

y) = s(x, ϑ · Π
−1 1 + δ

2
y).

One easily checks that, after twisting these forms by some units in (O
(2)
F ⊗OF

OE)× if

necessary, we indeed have Λ
� ⊗OF

O
(2)
F � Λ ⊗OF

O
(2)
F . In the following, we denote the

OB-action by ι for clarity.

Let F ∈ Mloc
Dr(R) for some O

(2)
F -algebra R. Then F is clearly OE-linear and the Kottwitz

condition follows from the fact that (Λ⊗OF
R)/F is OB-stable. Furthermore, F is totally

isotropic with respect to all forms of the type (x, y) �→ s(x, ι(b)y) for some b ∈ Π
−1OB .

Indeed, it suffices to show this for one b ∈ Π
−1O×

B and this has already been done in
the proof of Prop. 5.3. Thus F also satisfies the conditions (2) and (3) above, hence

F ∈ Nloc
E (R).

Conversely, let F ∈ Nloc
E (R). Then,

�x, ι(Π−1)y� = 0,

�x, y�1 = �x, ι(Π−1 ·
1 + δ

2
)y� = 0,

for all x, y ∈ F . It follows that ι(1+δ
2 ) · F ⊆ F , since (x, y) �→ �x, ι(Π−1)y� is a perfect

bilinear form on Λ ⊗OF
R and F is a maximal totally isotropic direct summand. But

OE and 1+δ
2 generate OB , so F is OB-stable. Hence we have shown that F ∈ Mloc

Dr(R)

if and only if F ∈ Nloc
E (R). �

Remark 5.9. We can also calculate local equations for Nloc
E by using standard affine

charts of Gr(2, Λ)OF
. As in the case (R-P), it suffices to consider only three of the six

affine charts. Indeed, let R be an OF -algebra and let F ⊆ Λ⊗OF
R be a direct summand

with F ∈ Nloc
E (R). Since F is OE-linear, we may assume that it is generated by an R-

basis (v1, v2) such that either Πv1 = Πv2 = 0 or v2 = Πv1. We fix (e1, e�
2, Πe1, (π0/Π)e�

2)
as an R-basis for Λ ⊗OF

R where e�
2 = Πe2 and thus (π0/Π)e�

2 = π0e2. Then the charts
one by one are:

(1) The chart around (Πe1, (π0/Π)e�
2). In terms of our fixed basis, we assume that the

vectors (v1, v2) have the form

[v1 v2] =




x11 x21

x12 x22

1
1


 ,

for some xij ∈ R. The conditions on F are equivalent to

x11 + εx22 = 0,

(x11 +
2

π
k
0

) · x22 − x12x21 = −π0,

x22 = −π
k+1
0 .

Recall that E = F (ϑ) for ϑ ∈ O×
E with ϑ

2 = 1 + π
2k+1
0 ε for some unit ε ∈ O×

F . The

restriction of Nloc
E to this affine chart is thus given by

U(Πe1,(π0/Π)e
�

2) � Spec OF [x12, x21]/(x12x21 + ϑ
2
π0).
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(2) The chart around (e1, Πe1). Here v2 = Πv1 and the basis (v1, v2) has the form

[v1 v2] =




1
x12 x22

1
x14 x24


 ,

for xij ∈ R. We have

x24 = εx12,

x22 = π0x14 +
2

π
k
0

x12,

x12 = −π
k+1
0 x14.

Hence this affine chart intersected with Nloc
E is an affine line U(e1,Πe1) � Spec OF [x14].

(3) The chart around (e�
2, Πe�

2). We assume that v2 = Πv1 and

[v1 v2] =




x11 x22

1 2

π
k

0

x13 x23

ε


 ,

for some xij ∈ R. The affine chart U(e
�

2,Πe
�

2) is then given by the equations

x21 = επ0x13,

x23 = x11 +
2

π
k
0

x13,

x11 = π
k
0 x21.

Hence we have U(e
�

2,Πe
�

2) � Spec OF [x13].

We can now relate the moduli problem NE and the local model Nloc
E via a local model

diagram as in (5.6). Here, M(S) for some S ∈ NilpŎF
is the set of tuples (X, ι, λ, �; γ)

where (X, ι, λ, �) ∈ NE(S) and γ is an isomorphism of OE ⊗OF
OS-modules

γ : DX(S) ∼−→ Λ ⊗OF
OS ,

satisfying the conditions below. The polarizations λ, �λ = �
∗(�λX) and λ1 on X induce

alternating forms � , �X , ( , )X and � , �X
1 on DX(S). Under the isomorphism γ, we can

compare these forms to the alternating forms � , �, ( , ) and � , �1 on Λ ⊗ OS . We demand
that

γ
∗�x, y� = �x, c1y�X ,

γ
∗(x, y) = (x, c3y)X ,

γ
∗�x, y�1 = �x, c3y�X

1 + �x,
π

k
0 (c1 − c3)

2
y�,

for any x, y ∈ DX(S). Here, c1 and c3 are units in ŎE , acting via the structure map

ŎE = ŎF ⊗OF
OE → OS ⊗OF

OE . Note that these are exactly the twists in the
equations (4.3) and (4.7) defining the forms h and b on the Dieudonné module MX for
(X, ι, λ, �) ∈ NE(k).
With the same reasoning as in the case (R-P), the functor M is pro-representable by
a formal scheme of finite type over NE . We have to show that the forgetful morphism
f : M → NE (as in (5.4)) is smooth and surjective. This is a consequence of the two
propositions below.
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Proposition 5.10. Let Aut(Λ) be the affine group scheme over Spec OF whose S-valued
points are automorphisms

ϕ : Λ ⊗OF
OS

∼−→ Λ ⊗OF
OS ,

respecting all structure. Then Aut(Λ) is smooth over Spec OF .

Proof. Let R be an OF -algebra and let g ∈ Aut(Λ)(R). Now, g is an automorphism of
Λ ⊗OF

R that commutes with the action of Π and satisfies

�x, y�1 = �gx, gy�1, (5.9)

for all x, y ∈ Λ ⊗ R. In particular, it leaves ker� , �1 invariant which is a direct summand

of rank 2 generated by (e1 − π
k
0 · Πe1, (π0/Π)e�

2). We set e�
1 = e1 − π

k
0 · Πe1. With

respect to the basis (e�
1, e�

2, Πe�
1, (π0/Π)e�

2), the automorphism g is given by a matrix in
GLR(Λ ⊗ R) of the form

g �=




a π0b
d π0c
b a

c d


 ,

for some a, b, c, d ∈ R. From (5.9), we get that ad − π0bc = 1. Conversely, any g of this
form lies in Aut(Λ)(R). Hence,

Aut(Λ) � Spec OF [a, b, c, d]/(ad − π0bc − 1),

which is obviously smooth. �

Proposition 5.11. Let (X, ι, λ, �) ∈ NE(S) for some S ∈ NilpŎF
. Locally on S for

the étale topology, there exists an isomorphism γ : DX(S) ∼−→ Λ ⊗OF
OS, such that

(X, ι, λ, �; γ) ∈ M(S).

Proof. We can prove this in the same way as in the (R-P) case. In particular, it suffices
to check this on geometric points, see Remark 5.6. Hence, for (X, ι, λ, �) ∈ NE(k), it is

enough to find an ŎF -linear isomorphism

γ : MX
∼−→ Λ ⊗OF

ŎF ,

compatible with the OE-action and all alternating forms. This is equivalent to an ŎE-
linear isomorphism γ such that the induced forms h and b on both sides coincide. It
is now easy to check that, up to ŎE-linear isomorphism, there exists only one possible
choice for the forms h and b on MX . It follows that such an isomorphism γ exists. �

Thus we have local model diagram connecting NE and Nloc
E as in the (R-P) case, see

(5.6). This is compatible with the local model diagram of the Drinfeld case, in the sense
that the diagram (5.7) is commutative.

5.3. The naive local model in the case of minimal different. Let E|F be of type

(R-U) such that |πk+1| = |2| (see page 7 for the definition of the parameter k). As in the
previous paragraphs, let (C, h) be a 2-dimensional E-vector space with E|F -hermitian
form h. With respect to a suitable chosen basis (e1, e2), the hermitian form is given by

h �=
�

1
1

�
.

Now the OE-lattice Λ generated by e1 and e�
2 = Πe2 is Π-modular and hence automati-

cally hyperbolic by Prop. 2.8. The datum (C, h, Λ) as above is unique up to isomorphism.
The form h induces an F -linear alternating form � , � on C via the formula

�x, y� = TrE|F

�
π

k
0

2ϑ
· h(x, y)

�
.
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We will now define an OF -scheme Nnaive
E , called the naive local model, which mimics the

construction of the scheme Nloc
E , but “forgets” about the forms ( , ) and � , �1 (cp. the

(PEL)-case of [RZ96, Def. 3.27]). In other words, Nnaive
E (S) for an OF -scheme S is the

set of direct summands F ⊆ Λ ⊗OF
OS of rank 2 over OS such that

(1) F is an OE ⊗OF
OS-submodule of Λ ⊗OF

OS ,

(2) F is totally isotropic with respect to the bilinear form induced by � , � on Λ ⊗OF
OS ,

cf. (5.8), and

(3) the Kottwitz condition holds, see condition (4) on page 39.

This functor is representable by a closed subscheme of the Grassmanian Gr(2, Λ)OF
, in

particular it is a projective scheme over Spec OF .

Proposition 5.12. Nnaive
E is not flat over Spec OF .

Proof. Let (e1, e�
2, Πe1, (π0/Π)e�

2) be an OF -basis of Λ, where e�
2 = Πe2. It suffices

to show that Nnaive
E is not flat when restricted to one of the standard affine charts of

Gr(2, Λ)OF
. We consider the chart around (Πe1, (π0/Π)e�

2). Let R be an OF -algebra.

A direct summand F ⊆ Λ ⊗OF
R in Nnaive

E (R) is given by a basis (v1, v2) of the form

[v1 v2] =




x11 x21

x12 x22

1
1


 .

The elements xij ∈ R satisfy the following equations:

x11 + εx22 = 0,

(x11 +
2

π
k
0

) · x22 − x12x21 = −π0,

π0(x22 + π
k+1
0 ) = 0,

x12(x22 + π
k+1
0 ) = x21(x22 + π

k+1
0 ) = x22(x22 + π

k+1
0 ) = 0.

The restriction of Nnaive
E to this chart is isomorphic to Spec OF [x12, x21, x22] (modulo

the equations above). This is indeed not flat over OF , since OF [x12, x21, x22], seen as
OF -module, decomposes into a direct sum

OF [x12, x21, x22] = OF [x12, x21, x22]/(x22 + π
k+1
0 ) ⊕ x22 · OF /π0OF ,

and the second summand is obviously torsion. Geometrically, the special fiber of this
chart is a union of two affine lines intersecting transversally, but with an infinitesimally
thickened intersection point (see Figure 3). �

Figure 3. The special fiber of Nnaive
E , with thickened intersection point.

Let Mnaive be the functor mapping S ∈ NilpŎF
to the set of tuples (X, ι, λ, �; γ) with

(X, ι, λ, �) ∈ N naive
E (S) and γ an isomorphism of OE ⊗OF

OS-modules

γ : DX(S) ∼−→ Λ ⊗OF
OS ,
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such that γ
∗�x, y� = �x, c1y�X for the bilinear form � , �X induced by the polarization λ.

We can write down a naive local model diagram,

Mnaive

f

��

g

��

N naive
E

�Nnaive
E

where �Nnaive
E is the π0-adic completion of the base change Nnaive

E ⊗OF
ŎF . This is a local

model diagram in the sense of [RZ96], in particular we have the following result.

Proposition 5.13. f is smooth and surjective.

We will omit the proof of this proposition. It uses exactly the same methods as in the
cases (R-P) and (R-U) (in the non-naive setting). Instead, we will end this chapter with
the following proposition.

Proposition 5.14. N naive
E is not flat over Spf ŎF .

Proof. Let x ∈ N naive
E be the intersection point of two projective lines in the reduced

locus (cf. Remark 4.7 and Prop. 4.8). Consider its first infinitesimal neighborhood

Spec O
N

naive
E ,x

/m2
x in N naive

E . For N naive
E to be flat over Spf ŎF , this neighborhood

would have to be flat over Spec ŎF /π
2
0ŎF . But by Grothendieck-Messing theory, it is

isomorphic to the first infinitesimal neighborhood of the intersection point in �Nnaive
E ,

which is not flat (see the proof of the Prop. 5.12 and Figure 3). �

In particular, N naive
E is not isomorphic to NE and this shows the necessity of the straight-

ening condition, cf. Remark 4.12.

6. A theorem on the existence of polarizations

In this section, we will prove the existence of the polarization �λ for any (X, ι, λ, �) ∈
N naive

E (S) as claimed in the sections 3.2 and 4.2 in both the cases (R-P) and (R-U). In

fact, we will show more generally that �λ exists even for the points of a larger moduli
space ME where we forget about the polarization λ.
We start with the definition of the moduli space ME . Let F |Qp be a finite extension
(not necessarily p = 2) and let E|F be a quadratic extension (not necessarily ramified).
We denote by OF and OE the rings of integers, by k the residue field of OF and by k

the algebraic closure of k. Furthermore, F̆ is the completion of the maximal unramified
extension of F and ŎF its ring of integers. Let B be the quaternion division algebra
over F and OB the ring of integers.
If E|F is unramified, we fix a common uniformizer π0 ∈ OF ⊆ OE . If E|F is ramified

and p > 2, we choose a uniformizer Π ∈ OE such that π0 = Π
2 ∈ OF . If E|F is ramified

and p = 2, we use the notations of section 2 for the cases (R-P) and (R-U).
For S ∈ NilpŎF

, let ME(S) be the set of isomorphism classes of tuples (X, ιE , �) over S.

Here, X is a formal OF -module of dimension 2 and height 4 and ιE is an action of OE

on X satisfying the Kottwitz condition for the signature (1, 1), i. e., the characteristic
polynomial for the action of ιE(α) on Lie(X) is

char(Lie X, T | ι(α)) = (T − α)(T − α), (6.1)

for any α ∈ OE , cp. the definition of N naive
E in the sections 3 and 4. The last entry � is

an OE-linear quasi-isogeny

� : X ×S S −→ X ×Spec k S,
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of height 0 to the framing object (X, ιX,E) defined over Spec k. The framing object for
ME is the Drinfeld framing object (X, ιX,B) where we restrict the OB-action to OE

for an arbitrary embedding OE �→ OB . The special condition on (X, ιX,B) implies the
Kottwitz condition for any α ∈ OE by [RZ14, Prop. 5.8].

Remark 6.1. (1) Up to isogeny, there is more than one pair (X, ιE) over Spec k satisfy-
ing the conditions above. Indeed, let NX be the rational Dieudonné module of (X, ιE).

This is a 4-dimensional F̆ -vector space with an action of OE . The Frobenius F on NX

commutes with the action of OE . For a suitable choice of a basis of NX , it may be of
either of the following two forms,

F =




1
1

π0

π0


σ or F =




π0

π0

1
1


σ.

This follows from the classification of isocrystals, see for example [RZ96, p. 3]. In the
left case, F is isoclinic of slope 1/2 (the supersingular case), and in the right case, the
slopes are 0 and 1. Our choice of the framing object above assures that we are in the
supersingular case, since the framing object for the Drinfeld moduli problem can be
written as a product of two formal OF -modules of dimension 1 and height 2 (cf. [BC91,
p. 136-137]).

(2) Let p = 2 and E|F ramified of type (R-P) or (R-U). We can identify the framing

objects (X, ιX,E) for N naive
E , MDr and ME by Lemma 3.12 and Lemma 4.14. In this

way, we obtain a forgetful morphism N naive
E → ME . This is a closed embedding, since

the existence of a polarization λ for (X, ιE , �) ∈ ME(S) is a closed condition by [RZ96,
Prop. 2.9].

By [RZ96, Thm. 3.25], ME is pro-representable by a formal scheme, formally locally of

finite type over Spf ŎF . We will prove the following theorem in this section.

Theorem 6.2. (1) There exists a principal polarization �λX on (X, ιX,E) such that the

Rosati involution induces the identity on OE, i. e., ι(α)∗ = ι(α) for all α ∈ OE. This

polarization is unique up to a scalar in O×
E , that is, for any two polarizations �λX and

�λ�
X of this form, there exists an element α ∈ O×

E such that �λ�
X = �λX ◦ ιX,E(α).

(2) Fix �λX as in part (1). For any S ∈ NilpŎF
and (X, ιE , �) ∈ ME(S), there exists a

unique principal polarization �λ on X such that the Rosati involution induces the identity

on OE and such that �λ = �
∗(�λX).

We will split the proof of this theorem into several lemmata. As a first step, we use
Dieudonné theory to prove the statement for all geometric points.

Lemma 6.3. Part (1) of theorem holds. Furthermore, for a fixed polarization �λX on

(X, ιX,E) and for any (X, ιE , �) ∈ ME(k), the pullback �λ = �
∗(�λX) is a polarization on

X.

Proof. We consider 4 different cases for the quadratic extension E|F . The cases are

(1) E|F is unramified,

(2) E|F is ramified and p > 2,

(3) p = 2 and E|F is ramified of (R-P) type,

(4) p = 2 and E|F is ramified of (R-U) type.

(1) We start with the case where E|F is unramified. Let N = MX ⊗ŎF
F̆ be the

rational Dieudonné module of (X, ιX,E). This is a 4-dimensional vector space over F̆
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with two operators F and V, the Frobenius and the Verschiebung. The action ι = ιX,E

of OE ⊆ ŎF induces a direct sum decomposition N = N0 ⊕ N1 where

N0 = {x ∈ N | ι(a)x = ax for all a ∈ OE},

N1 = {x ∈ N | ι(a)x = σ(a)x for all a ∈ OE}.

Here σ is the Frobenius of F̆ |F . The operators F and V have degree 1 with respect to

this decomposition, since they are σ-linear resp. σ
−1-linear and commute with ι.

A point (X, ιE , �) ∈ ME(k) corresponds to a lattice MX ⊆ N that respects the above
decomposition, i. e., MX = M0⊕M1 for Mi = M∩Ni. Moreover, π0MX ⊆ V MX ⊆ MX .
The relative index of MX and MX is 0, in other words,

[MX : MX ∩ MX] = [MX : MX ∩ MX].

Write MX = MX,0⊕MX,1. The Kottwitz condition implies that the inclusions V M0 ⊆ M1

resp. V MX,0 ⊆ MX,1 are of index 1. It follows that

[M0 : M0 ∩ MX,0] = [MX,0 : M0 ∩ MX,0],

[M1 : M1 ∩ MX,1] = [MX,1 : M1 ∩ MX,1].
(6.2)

Let τ = FV−1. This is a σ
2-linear operator on N of degree 0 and with all slopes

zero. Thus C = Nτ
0 is a vector space of dimension 2 over E. We may assume that

FMX,0 = VMX,0 for MX = MX,0 ⊕ MX,1, cf. [BC91, II.4]. Then MX,0 is τ -invariant and
Λ = Mτ

X,0 ⊆ C is an OE-lattice.

The datum of a polarization �λX on X as in the Theorem corresponds to an alternating
form ( , ) on N such that MX is selfdual with respect to this form and such that

(Fx, y) = (x, Vy)σ,

(ι(α)x, y) = (x, ι(α)y),
(6.3)

for all x, y ∈ N and α ∈ OE . The second equation of (6.3) implies that (x, y) = 0 for
x ∈ N0 and y ∈ N1. By the first equation, the form ( , ) is already determined by its
values on N0. For all x, y ∈ N , the alternating form ( , ) satisfies

(τx, τy) = (FV−1x, FV−1y) = (V−1x, Fy)σ = (x, y)σ
2

.

Hence ( , ) corresponds to an alternating form b on C such that Λ ⊆ C is selfdual with

respect to b. Such an alternating form exists and is unique up to a unit in O×
E . Thus

�λX exists and is unique up to a unit in O×
E , which proves part (1) of the theorem in this

case.
In order to show that �λ = �

∗(�λX) is a polarization on X, we have to see that ( , ) is
integral on MX . But ( , ) respects the decomposition N = N0 ⊕ N1, so ( , ) induces an

alternating form on the 2-dimensional F̆ -vector space Ni for i = 0, 1, and it is invariant

under the action of Sp2(F̆ ) = SL2(F̆ ). The lattices M0 and MX,0 resp. M1 and MX,1

have relative index 0, cp. the equations in (6.2). Thus there exists a gi ∈ SL2(F̆ ) such
that Mi = giMX,i, and since ( , ) is integral on MX, it is also integral on MX .

(2) We now assume that E|F is ramified and p > 2. Again, let N = MX ⊗ŎF
F̆ be the

rational Dieudonné module of (X, ιX,E). This is a 4-dimensional vector space over F̆
with two operators, the Frobenius F and the Verschiebung V, and an OE-action. Let

Ĕ = F̆ ⊗F E. Then N has the structure of a 2-dimensional Ĕ-vector space.

A point (X, ιE , �) ∈ ME(k) corresponds to an ŎE-lattice MX ⊆ N such that

π0MX ⊆ VMX ⊆ MX .

The ŎE-lattices MX and MX have relative index 0, i. e.,

[MX : MX ∩ MX] = [MX : MX ∩ MX].
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Let τ = ΠV−1 = FΠ
−1. This is a σ-linear operator with slopes 0. The τ -invariant

points C = Nτ form a 2-dimensional vector space over E. By [BC91, II.4], we may
assume that MX is invariant under τ . Then Λ = Mτ

X ⊆ C is an OE-lattice.

A polarization �λX on X as in the Theorem corresponds to an alternating form ( , ) on N
such that MX is selfdual with respect to this form and such that

(Fx, y) = (x, Vy)σ,

(αx, y) = (x, αy),
(6.4)

for all x, y ∈ N and α ∈ OE . Such a form ( , ) induces an Ĕ-bilinear alternating form b
on N by setting

b(x, y) = (Πx, y) + Π(x, y),

We can recover ( , ) from b via the formula

(x, y) = TrĔ|F̆

�
1

2Π
· b(x, y)

�
.

The form b is then invariant under τ = ΠV−1, since

b(τx, τy) = b(FΠ
−1x, ΠV−1y) = b(Π−1x, Πy)σ = b(x, y)σ.

Hence b defines an E-bilinear alternating form on C, again denoted by b. The lattice
Λ = Mτ

X ⊆ C is selfdual with respect to b. Thus b is unique up to a unit in O×
E . It

follows that �λX is unique up to a unit in O×
E . On the other hand, such an alternating

form b exists and it induces an alternating form ( , ) on N satisfying the conditions of

(6.4). This implies the existence of �λX.
We have to show that the alternating form b is integral on MX ⊆ N , where MX is

the Dieudonné module for a point (X, ιE , �) ∈ ME(k). But the ŎE-lattices MX and

MX have relative index 0, so there exists an element g ∈ SL2(Ĕ) = Sp2(Ĕ) such that

MX = gMX. Since b is invariant under the action of Sp2(Ĕ) and integral on MX, it is
also integral on MX .

(3) Let p = 2 and assume E|F is ramified of type (R-P). The proof here is verbatim the
same as in case (2) where E|F ramified and p > 2.

(4) Finally, consider the case where p = 2 and E|F is ramified of type (R-U). We follow
the argumentation of the case (2) (where E|F ramified, p > 2) and make the following
adaptions.
The operator τ on N is now given by τ = c2V−1 = Fc−1

2 where c2 ∈ Ĕ is a uniformizer
satisfying c2 · σ(c2) = π0. Then τ is σ-linear and has slopes 0 on N .

An alternating form ( , ) on N satisfying the conditions in (6.4) induces an Ĕ-linear
alternating form b by

b(x, y) = Π/c2 · ((Πx, y) − Π(x, y)).

Accordingly,

(x, y) = TrĔ|F̆

�
π

k
0 c2

2ϑΠ
· b(x, y)

�
.

The form b is invariant under τ , since

b(τx, τy) = b(Fc−1
2 x, c2V−1y) =

σ(c2)

c2

· b(c−1
2 x, σ

−1(c2)y)σ = b(x, y)σ,

for all x, y ∈ N . The rest of the proof is analogous to the case (2). �

In the following, we fix a polarization �λX on (X, ιX,E) as in Theorem 6.2 (1). Let

(X, ιE , �) ∈ ME(S) for S ∈ NilpŎF
and consider the pullback �λ = �

∗(�λX). In general,

this is only a quasi-polarization. It suffices to show that �λ is a polarization on X. Indeed,
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since � is OE-linear and of height 0, this is then automatically a principal polarization
on X such that the Rosati involution is the identity on OE .
Define a subfunctor ME,pol ⊆ ME by

ME,pol(S) = {(X, ιE , �) ∈ ME(S) | �λ = �
∗(�λX) is a polarization on X}.

This is a closed formal subscheme by [RZ96, Prop. 2.9]. Moreover, Lemma 6.3 shows
that ME,pol(k) = ME(k).

Remark 6.4. Equivalently, we can describe ME,pol as follows. For S ∈ NilpŎF
, we

define ME,pol(S) to be the set of equivalence classes of tuples (X, ιE , �λ, �) where

• X is a formal OF -module over S of height 4 and dimension 2,

• ιE is an action of OE on X that satisfies the Kottwitz condition in (6.1) and

• �λ is a principal polarization on X such that the Rosati involution induces the identity
on OE .

• Furthermore, we fix a framing object (X, ιX,E , �λX) over Spec k, where (X, ιX,E) is the

framing object for ME and �λX is a polarization as in Theorem 6.2 (1). Then � is an
OE-linear quasi-isogeny

� : X ×S S −→ X ×Spec k S,

of height 0 such that, locally on S, the (quasi-)polarizations �
∗(�λX) and �λ on X only differ

by a scalar in O×
E , i. e., there exists an element α ∈ O×

E such that �
∗(�λX) = �λ ◦ ιE(α).

Two tuples (X, ιE , �λ, �) and (X �, ι
�
E , �λ�, �

�) are equivalent if there exists an OE-linear

isomorphism ϕ : X ∼−→ X � such that ϕ
∗(�λ�) and �λ only differ by a scalar in O×

E .

In this way, we gave a definition for ME,pol by introducing extra data on points of the
moduli space ME , instead of extra conditions. It is now clear, that ME,pol describes a
moduli problem for p-divisible groups of (PEL) type. It is easily checked that the two
descriptions of ME,pol give rise to the same moduli space.

Theorem 6.2 now holds if and only if ME,pol = ME . This equality is a consequence of
the following statement.

Lemma 6.5. For any point x = (X, ιE , �) ∈ ME,pol(k), there is an identity of completed

local rings �OME,pol,x
= �OME ,x.

For the proof of this Lemma, we use the theory of local models, cf. [RZ96, Chap. 3]. We
postpone the proof of this lemma to the end of this section and we first introduce the

local models Mloc
E and Mloc

E,pol for ME and ME,pol.

Remark 6.6. Note here that ME is an RZ-space of (EL) type. The local model Mloc
E

has been defined in [RZ96, Chap. 3] for any prime p. Furthermore, loc. cit. establishes

a local model diagram connecting ME and Mloc
E . In particular, it follows that the

completed local rings at geometric points of ME and Mloc
E are isomorphic.

On the other hand, ME,pol is an RZ-space of (PEL) type. In loc. cit., the authors always
make the assumption that p > 2 for the (PEL) case. Hence, for p > 2, the definition

of the local model Mloc
E,pol is known and there also is a local model diagram. In this

case, Lemma 6.5 will already follow from the fact that Mloc
E,pol = Mloc

E , cf. Lemma 6.7.

For the case p = 2, we give a definition of the local model Mloc
E,pol and establish a local

model diagram, see Prop. 6.9 below. Lemma 6.5 then again follows from the equality

Mloc
E,pol = Mloc

E in Lemma 6.7.

We now give the definition of the local models Mloc
E and Mloc

E,pol for ME and ME,pol.
Let C be a 4-dimensional F -vector space with an action of E and let Λ ⊆ C be an
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OF -lattice that is stable under the action of OE . Furthermore, let ( , ) be an F -bilinear
alternating form on C with

(αx, y) = (x, αy), (6.5)

for all α ∈ E and x, y ∈ C and such that Λ is selfdual with respect to ( , ). It is easily
checked that ( , ) is unique up to an isomorphism of C that commutes with the E-action
and that maps Λ to itself.

For an OF -algebra R, let Mloc
E (R) be the set of all direct summands F ⊆ Λ ⊗OF

R
of rank 2 that are OE-linear and satisfy the Kottwitz condition. That means, for all
α ∈ OE , the action of α on the quotient (Λ ⊗OF

R)/F has the characteristic polynomial

char(Lie X, T | α) = (T − α)(T − α).

The subset Mloc
E,pol(R) ⊆ Mloc

E (R) consists of all direct summands F ∈ Mloc
E (R) that are

in addition totally isotropic with respect to ( , ) on Λ ⊗OF
R.

The functor Mloc
E is representable by a closed subscheme of Gr(2, Λ)OF

, the Grassmanian

of rank 2 direct summands of Λ, and Mloc
E,pol is representable by a closed subscheme of

Mloc
E . In particular, both Mloc

E and Mloc
E,pol are projective schemes over Spec OF .

Lemma 6.7. Mloc
E,pol = Mloc

E . In other words, for an OF -algebra R, any direct summand

F ∈ Mloc
E (R) is totally isotropic with respect to ( , ).

Proof. As in the proof of Lemma 6.3, we will split this proof into several cases, depending
on whether p > 2 or p = 2 and depending on whether E|F is unramified or ramified.
The main idea here is always the same, namely fix a basis for Λ and then check the
assertion for each chart of the Grassmanian Gr(2, Λ)OF

. However, the calculations in
each case differ at certain points.
We first consider the case where E|F is unramified and p > 2. Here OE = OF [δ], where
δ is the square root of a unit in OF . We choose a basis (e1, e2, δe1, δe2) of Λ such that
the alternating form ( , ) is given by the matrix




1
−1

1
−1


 . (6.6)

Let F ∈ Mloc
E (R) for an OF -algebra R. Then F is direct summand F ⊆ Λ⊗OF

R of rank
2 over R. Let v1, v2 be an R-basis for F . We have to prove that F is totally isotropic
with respect to ( , ). Since ( , ) is alternating, it suffices to see that

(v1, v2) = 0.

We can check this hypothesis on each of the affine charts of the Grassmanian Gr(2, Λ)OF
.

We claim that, on each chart, the conditions describing Mloc
E ⊆ Gr(2, Λ)OF

as a closed
subscheme already imply that (v1, v2) = 0. The charts one by one are:

(1) The chart around (e1, δe1). In terms of the basis (e1, e2, δe1, δe2), we have

[v1 v2] =




1
x12 x22

1
x14 x24


 ,

for some xij ∈ R. The OE-linearity of F implies that

x24 = x12,

x22 = δ
2x14.

It follows that (v1, v2) = x24 − x12 = 0. The calculation for the chart (e2, δe2) is
analogous to this one.
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(2) The chart around (δe1, δe2). We write

[v1 v2] =




x11 x21

x12 x22

1
1


 .

From the Kottwitz condition, we get

x11 + x22 = 0,

x11x22 − x21x12 = −δ
2.

Thus we have (v1, v2) = x11 + x22 = 0.

Since δ ∈ OE is a unit and F is OE-linear, we can replace vi by δvi without loss of
generality. Hence from the calculation in (2), the claim also follows for the charts around

(e1, e2), (e1, δe2) and (δe1, e2). Thus (v1, v2) = 0 for all F ∈ Mloc
E (R). In other words,

F is totally isotropic with respect to ( , ), which implies that F ∈ Mloc
E,pol(R). Thus

Mloc
E (R) = Mloc

E,pol(R) and, since R is an arbitrary OF -algebra, we have Mloc
E = Mloc

E,pol.
This finishes the proof for the case where E|F is unramified and p > 2.
Next we treat the case where E|F is unramified and p = 2. In this case, we have

OE = OF [ 1+δ
2 ], where δ is a unit in OE such that δ

2 = 1 + 4ε0 ∈ OF (cp. section 2).

We can choose a basis (e1, e2, 1+δ
2 e1, 1+δ

2 e2) for Λ, such that, with respect to this basis,
the alternating form ( , ) is given by the matrix




1
−1

1 1
−1 −1


 . (6.7)

Let F ∈ Mloc
E (R) and let v1, v2 be an R-basis for F ⊆ Λ ⊗OF

R. We want to show that
(v1, v2) = 0.

(1) The chart around (e1, 1+δ
2 e1). In terms of the basis (e1, e2, 1+δ

2 e1, 1+δ
2 e2), we have

[v1 v2] =




1
x12 x22

1
x14 x24


 .

From the OE-linearity of F , we get that

x24 = x12 + x14,

x22 = ε0x14.

Hence, (v1, v2) = x24 − x12 − x14 = 0. For symmetry reasons, this also follows for the
chart (e2, 1+δ

2 e2).

(2) The chart around ( 1+δ
2 e1, 1+δ

2 e2). Here, we write

[v1 v2] =




x11 x21

x12 x22

1
1


 .

From the Kottwitz condition, we deduce that

x11 + x22 = −1,

x11x22 − x21x12 = ε0.

Thus, we have (v1, v2) = x11 + x22 + 1 = 0.
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Note that 1+δ
2 ∈ OE is a unit, hence we can replace vi by 1+δ

2 vi without loss of gener-
ality. The calculations of (2) then also prove our claim for the charts around (e1, e2),

(e1, 1+δ
2 e2) and ( 1+δ

2 e1, e2). Hence, we have (v1, v2) = 0 for all F ∈ Mloc
E (R) for any

OF -algebra R.
Assume now that E|F is ramified and p > 2. Then OE = OF [Π] for some uniformizer

Π ∈ OE with Π
2 = π0 ∈ OF . We choose a basis (e1, e2, Πe1, Πe2) for Λ such that ( , ) is

represented by the matrix in (6.6) with respect to this basis.

Let F ∈ Mloc
E (R) and let v1, v2 be an R-basis for F ⊆ Λ ⊗OF

R. It suffices to show that
(v1, v2) = 0. As in the unramified case, we check this on the charts of the Grassmanian
Gr(2, Λ)OF

.

(1) The chart around (e1, Πe1). In terms of the basis (e1, e2, Πe1, Πe2), we write

[v1 v2] =




1
x12 x22

1
x14 x24


 ,

for some xij ∈ R. Since F is OE-linear, we have

x24 = x12,

x22 = π0x14.

Now, (v1, v2) = x24 − x12 = 0. The calculation for the chart (e2, Πe2) is analogous to
this one.

(2) The chart around (Πe1, Πe2). Let

[v1 v2] =




x11 x21

x12 x22

1
1


 .

The Kottwitz condition gives us the following equations,

x11 + x22 = 0,

x11x22 − x21x12 = −π0.

Thus, we have (v1, v2) = x11 + x22 = 0.

It is easily checked that the 3 remaining charts of Gr(2, Λ)OF
contain no additional

points of Mloc
E , so we do not need to consider these. It follows that (v1, v2) = 0 for all

F ∈ Mloc
E (R) and any OF -algebra R. Thus Mloc

E = Mloc
E,pol also in this case.

The proof in the case where p = 2 and E|F is ramified of type (R-P) is exactly the same
as in the case where p > 2 and E|F is ramified.
Finally, let p = 2 and E|F be ramified of type (R-U). We use the notation of section
2 for this case. In particular, OE = OF [Π] for some uniformizer Π ∈ OE of the form

Π = 1+ϑ

π
k

0

and ϑ is the square root of a unit in OF , satisfying ϑ
2 = 1 + επ

2k+1
0 for some

unit ε ∈ OF .
We fix a basis (e1, e2, Πe1, Πe2) of Λ such that

( , ) �=




1
−1

1 2

π
k

0

−1 − 2

π
k

0




with respect to this basis.

As usual, let v1, v2 be a basis of F ∈ Mloc
E (R). We want to show that (v1, v2) = 0. We

check this on each chart of Gr(2, Λ)OF
.
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(1) First we consider the chart around (e1, Πe1). We have

[v1 v2] =




1
x12 x22

1
x14 x24


 ,

for some xij ∈ R. The OE-linearity of F implies that

x24 = x12 +
2

π
k
0

x14,

x22 = επ0x14.

Now, (v1, v2) = x24 − x12 − 2

π
k

0

x14 = 0. The same argument also works for the chart

around (e2, Πe2).

(2) The chart around (Πe1, Πe2). We write

[v1 v2] =




x11 x21

x12 x22

1
1


 .

Then the Kottwitz condition implies that

x11 + x22 = − 2

π
k
0

,

x11x22 − x21x12 = επ0.

It follows that (v1, v2) = x11 + x22 + 2

π
k

0

= 0.

As in the case E|F ramified and p > 2, it suffices to consider these 3 charts of Gr(2, Λ)OF
,

because the 3 remaining charts contain no additional points of Mloc
E . Thus we have shown

that (v1, v2) = 0 for all F ∈ Mloc
E (R). Hence Mloc

E (R) = Mloc
E,pol(R) for any OF -algebra

R. It follows that Mloc
E = Mloc

E,pol. �

The moduli spaces ME and ME,pol are related to the local models Mloc
E and Mloc

E,pol

via local model diagrams, cf. [RZ96, Chap. 3]. Let Mlarge
E be the functor that maps a

scheme S ∈ NilpŎF
to the set of isomorphism classes of tuples (X, ιE , �; γ). Here,

(X, ιE , �) ∈ ME(S),

and γ is an OE-linear isomorphism

γ : DX(S) ∼−→ Λ ⊗OF
OS .

On the left hand side, DX(S) denotes the (relative) Grothendieck-Messing crystal of X
evaluated at S, cf. [Ahs11, 5.2].

Let �Mloc
E be the π0-adic completion of Mloc

E ⊗OF
ŎF . Then there is a local model diagram:

Mlarge
E

f

��

g

��

ME
�Mloc

E

The morphism f on the left hand side is the projection (X, ιE , �; γ) �→ (X, ιE , �). The

morphism g on the right hand side maps (X, ιE , �; γ) ∈ Mlarge
E (S) to

F = ker(Λ ⊗OF
OS

γ
−1

−−→ DX(S) −→ Lie X) ⊆ Λ ⊗OF
OS .
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By [RZ96, Thm. 3.11], the morphism f is smooth and surjective. The morphism g
is formally smooth by Grothendieck-Messing theory, see [Mes72, V.1.6], resp. [Ahs11,
Chap. 5.2] for the relative setting (i. e., when OF �= Zp).

Remark 6.8. Recall from [RZ96, 3.29] that Mlarge
E is a torsor over ME via f for (the

π0-adic completion of) the smooth affine group scheme representing the functor

S �−→ {OE-linear automorphisms of Λ ⊗OF
OS}.

In particular, Mlarge
E is representable by a formal scheme and f is relatively representable

in the category of schemes. Now, f is smooth in the sense that for any scheme S and

any morphism S → ME , the morphism of schemes S ×ME
Mlarge

E → S is smooth.
When we say that the morphism f is surjective, we mean here that f is surjective as
a map of étale sheaves. However, since f is smooth, this is equivalent to saying that f
is surjective on geometric points or, again equivalently, that f induces a surjective map
on underlying topological spaces.

We also have a local model diagram for the space ME,pol. We define Mlarge
E,pol as the

subfunctor of Mlarge
E that maps S ∈ NilpŎF

to the set of tuples (X, ιE , �; γ) ∈ Mlarge
E (S)

where (X, ιE , �) ∈ ME,pol(S) and where γ satisfies the following compatibility condition.

The polarization �λ = �
∗(�λX) on X induces an alternating form ( , )X on DX(S). We

demand in addition that ( , )X is the pullback of the alternating form ( , ) on Λ ⊗OF
OS

under the isomorphism γ.
The local model diagram for ME,pol now looks as follows.

Mlarge
E,pol

fpol

��

gpol

��

ME,pol
�Mloc

E,pol

(6.8)

Here, �Mloc
E,pol is the π0-adic completion of Mloc

E,pol⊗OF
ŎF and fpol and gpol are the restric-

tions of the morphisms f and g above. Again, gpol is formally smooth by Grothendieck-
Messing theory. For p > 2, the morphism fpol is smooth and surjective by [RZ96, Thm.
3.16]. For p = 2, we prove the analogous result in Prop. 6.9 below.
We can now finish the proof of Lemma 6.5.

Proof (of Lemma 6.5). We have the following commutative diagram.

ME,pol Mlarge
E,pol

fpol
��

gpol
�� �Mloc

E,pol

ME Mlarge
E

f
��

g
�� �Mloc

E

��

��

��

��
(6.9)

The equality on the right hand side follows from Lemma 6.7. The other vertical arrows
are closed embeddings.

Let x ∈ ME,pol(k). Since fpol is surjective, we can choose y ∈ Mlarge
E,pol(k) such that

fpol(y) = x. Moreover, we set x� = gpol(y) ∈ �Mloc
E,pol. The theory of local model

diagrams (cf. [RZ96, Chap. 3]) induces an isomorphism of completed local rings,

�OME,pol,x
� �O�Mloc

E,pol,x
� .

We have an analogous isomorphism for the bottom row,

�OME ,x � �O�Mloc
E ,x

� .
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The equality �Mloc
E,pol = �Mloc

E on the right hand side implies that �O�Mloc
E,pol,x

� = �O�Mloc
E ,x

� ,

and this in turn implies that �OME,pol,x
= �OME ,x. �

It remains to prove that the diagram (6.8) is a local model diagram in the sense of
[RZ96] even in the case where p = 2. This is a consequence of the following proposition.

Proposition 6.9. Let p = 2. The morphism fpol in the diagram (6.8) is smooth and
surjective.

Recall that, for p > 2, the morphism fpol is smooth and surjective by [RZ96, Thm. 3.16].

Proof. Let Aut(Λ) be the affine group scheme over Spec OF representing the following
set-valued functor. We map an OF -algebra R to the set of all OE-linear automorphisms

ϕ : Λ ⊗OF
R ∼−→ Λ ⊗OF

R,

such that the alternating form ( , ) on Λ ⊗OF
R is invariant under pullback of ϕ, i. e.,

(x, y) = (ϕx, ϕy) for all x, y ∈ Λ ⊗OF
R. Via the morphism fpol, the formal scheme

Mlarge
E,pol is a Aut(Λ)-torsor over ME,pol, thus the formal smoothness of fpol follows if

Aut(Λ) is smooth over Spec OF , cf. [RZ96, 3.29].
We now prove the smoothness of Aut(Λ) via explicit calculation. We consider three
different cases, where E|F is unramified, E|F is of type (R-P) and E|F is of type
(R-U), respectively. (Note that we are already assuming that p = 2.)
Let E|F be unramified. Then OE = OF [ 1+δ

2 ], where δ ∈ OE is a unit such that

δ
2 = 1 + 4ε0 ∈ OF . We fix a basis (e1, e2, 1+δ

2 e1, 1+δ
2 e2) of Λ such that ( , ) is given by

the matrix

BΛ =




1
−1

1 1
−1 −1


 .

Let R be an OF -algebra. We can now express an element g ∈ Aut(Λ)(R) with respect
to the chosen basis of Λ by a 4×4-matrix A with values in R, such that 1+δ

2 ·A = A · 1+δ
2

and AtBΛA = BΛ. After some calculations, we get

A =




a b ε0e ε0f
c d ε0g ε0h
e f a + e b + f
g h c + g d + h


 ,

for some elements a, . . . , h ∈ R satisfying the equations

ah − bg − cf + de + eh − fg = 0,

ad − bc + ε0eh − ε0fg = 1.

Hence Aut(Λ) = Spec OF [a, . . . , h] modulo these equations. Using the Jacobi criterion,
one now easily checks that Aut(Λ) is smooth.
Let E|F be ramified of type (R-P). We write OE = OF [Π] where Π is a uniformizer of

OE such that Π
2 = π0 ∈ OF . We fix a basis (e1, e2, Πe1, Πe2) of Λ such that ( , ) is given

by

BΛ =




1
−1

1
−1


 .
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Let R be an OF -algebra. In terms of the basis above, we can write g ∈ Aut(Λ)(R) as a

4 × 4-matrix A such that ΠA = AΠ and AtBΛA = BΛ. It follows that A is of the form

A =




a b π0e π0f
c d π0g π0h
e f a b
g h c d


 ,

where a, . . . , h ∈ R satisfy the following equations.

ah − bg − cf + de = 0,

ad − bc + π0eh − π0fg = 1.

Now, Aut(Λ) = Spec OF [a, . . . , h] modulo these equations. By the Jacobi criterion, we
have that Aut(Λ) is smooth over Spec OF .
Let E|F be ramified of type (R-U). We have OE = OF [Π] for some uniformizer Π ∈ OE

of the form Π = (1 + ϑ)/π
k
0 , where ϑ is a unit with ϑ

2 = 1 + επ
2k+1
0 ∈ OF . We fix a

basis (e1, e2, Πe1, Πe2) of Λ such that ( , ) is given by

BΛ =




1
−1

1 2

π
k

0

−1 − 2

π
k

0


 .

Let R be an OF -algebra and let g ∈ Aut(Λ)(R). The 4 × 4-matrix A representing g

satisfies the equations ΠA = AΠ and AtBΛA = BΛ. This time, it has the following
form:

A =




a b επ0e επ0f
c d επ0g επ0h
e f a + 2

π
k

0

e b + 2

π
k

0

f

g h c + 2

π
k

0

g d + 2

π
k

0

h


 ,

with a, . . . , h ∈ R satisfying

ah − bg − cf + de +
2

π
k
0

eh − 2

π
k
0

fg = 0,

ad − bc + επ0eh − επ0fg = 1.

We have Aut(Λ) = Spec OF [a, . . . , h] modulo these equations. It is smooth by the Jacobi
criterion.
We have shown that Aut(Λ) is smooth in all cases, hence fpol is smooth. We want to
show the surjectivity of fpol. It suffices to check this for geometric points, see Remark
6.8.
Let (X, ι, �λ, �) ∈ ME,pol(k). Then the Grothendieck-Messing crystal DX and the Dieu-

donné module MX are related via the equation DX(k) = MX/π0MX . We want to show
that there is an OE-linear isomorphism

γ : DX(k) ∼−→ Λ ⊗OF
k,

such that the pullback of the alternating form ( , ) on Λ under γ coincides with the

alternating form induces by �λ. It is enough to show that there exists an isomorphism

γ : MX
∼−→ Λ ⊗OF

ŎF .

But both sides are free modules of rank 2 over OE ⊗OF
ŎF and, up to automorphism

of MX , there exists only one perfect alternating form ( , ) on MX such that

(αx, y) = (x, αy),
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for all x, y ∈ MX and α ∈ OE . Hence such an isomorphism γ exists. This proves the
surjectivity of fpol. �

Remark 6.10. With the Theorem 6.2 established, one can now give an easier proof of
the isomorphism NE

∼−→ MDr for the cases where E|F is unramified or E|F is ramified
and p > 2, which is the main theorem of [KR11]. Indeed, the main part of the proof in
loc. cit. consists of the Propositions 2.1 and 3.1, which claim the existence of a certain
principal polarization λ

0
X for any point (X, ι, λ, �) ∈ NE(S). But there is a canonical

closed embedding NE �→ ME and under this embedding, λ
0
X is just the polarization

�λ of Theorem 6.2, for a suitable choice of �λX on the framing object. More explicitly,

using the notation on page 2 of loc. cit., we take �λX = λX ◦ ι
−1
X

(Π) = λ
0
X ◦ ιX(−δ) in the

unramified case and �λX = λX ◦ ιX(ζ−1) in the ramified case.
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Zusammenfassung

In der vorliegenden Arbeit befasse ich mich mit der Konstruktion von 2-adischen Rapo-

port-Zink-Räumen (kurz RZ-Räumen) von PEL-Typ, mit anderen Worten, Modulräu-

men von p-dividierbaren Gruppen mit Zusatzdaten in Form von Polarisierungen, En-

domorphismen und Levelstrukturen. Derartige Räume wurden erstmals von Rapoport

und Zink in ihrem Buch von 1996 definiert, allerdings wird dort neben Modulräumen

von EL-Typ der PEL-Typ im p-adischen Fall für beliebiges p, p > 2 betrachtet.

In meiner Untersuchung beschränke ich mich auf den RZ-Raum NE zugehörig zur spal-

tenden unitären Gruppe GU(1, 1) über einer (wild) verzweigten quadratischen Erweite-

rung E|F von einer endlichen Erweiterung F |Q2. Hierbei unterscheide ich zwei Fälle,

(R-P) und (R-U), je nachdem ob die quadratische Erweiterung erzeugt wird von der

Quadratwurzel eines uniformisierenden Elements oder der Quadratwurzel einer Einheit.

(Als Beispiele seien hier Q2(
√

2)|Q2 und Q2(
√

3)|Q2 erwähnt.) In beiden Fällen definie-

re ich zuerst das naive Modulproblem N naive

E , das der bereits bekannten Definition für

p > 2 nachempfunden ist. Im weiteren Verlauf kann ich jedoch nachweisen, dass N naive

E

in keinem der betrachteten Fälle die Mindestanforderung von Flachheit über OF , dem

Ganzheitsring von F , erfüllt und diese naive Definition somit nicht ausreichend ist.

Vereinfacht gesagt kann diese Aussage zurückgeführt werden auf die Existenz mehrerer

Isomorphieklassen von selbstdualen Gittern in einem zweidimensionalen Vektorraum

mit spaltender hermitescher Form bezüglich der quadratischen Erweiterung E|F . Es er-

gibt sich daraus die Notwendigkeit einer zusätzlichen Bedingung auf den Punkten des

Modulproblems N naive

E , die NE ⊆ N naive

E als abgeschlossenes formales Unterschema be-

schreibt. Diese „ausrichtende Bedingung“ (engl. straightening condition) formuliere ich

mithilfe einer zusätzlichen Polarisierung auf den formalen OF -Moduln (mit Zusatzda-

ten), deren Isomorphieklassen den Punkten von N naive

E entsprechen. Ich beweise, dass

der so erhaltene Modulraum NE flach ist über OF und überdies isomorph zum Drinfeld-

Modulproblem MDr, einem RZ-Raum von EL-Typ, der dargestellt wird durch Delignes

formales Modell der Drinfeldschen oberen Halbebene. Dieses Resultat steht in Analo-

gie zu einem Satz von Kudla und Rapoport, der einen Isomorphismus zwischen den

entsprechenden RZ-Räumen für p > 2 beschreibt.

Für den Modulraum NE definiere ich ein lokales Modell Nloc

E , für das ein lokales-Modell-

Diagramm im Sinne von Rapoport und Zink existiert. Insbesondere kann man damit für

das formale Schema NE , lokal für die étale Topologie, explizite Gleichungen angeben.

Das lokale Modell ist, wie erwartet, flach und, nach Übergang zur unverzweigten qua-

dratischen Erweiterung von F , kanonisch isomorph zum lokalen Modell des Drinfeld-

Modulproblems MDr. Ich berechne außerdem Gleichungen, die auf affinen Karten das

lokale Modell Nloc

E als abgeschlossenes Unterschema einer Grassmannschen beschreiben.

Abschließend zeige ich die Existenz und Eindeutigkeit (bis auf Multiplikation mit einer

Einheit) der in der ausrichtenden Bedingung verwendeten Polarisierungen auf einem grö-

ßeren Modulraum ME , der N naive

E als formales abgeschlossenes Unterschema enthält.



Dabei betrachte ich nicht nur 2-adische verzweigte quadratische Erweiterungen E|F ,

sondern allgemeiner beliebige quadratische Erweiterungen E|F über endlichen Erweite-

rungen F |Qp für eine beliebige Primzahl p. Unter Verwendung dieses Satzes kann ich

unter anderem auch einen vereinfachten Beweis für den Satz von Kudla und Rapoport

geben.


