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Abstract 

Knowledge about soil moisture and its spatio-temporal dynamics is essential for the improvement of 

climate and hydrological modeling, including drought and flood monitoring and forecasting, as well 

as weather forecasting models. In recent years, several soil moisture products from active and 

passive microwave remote sensing have become available with high temporal resolution and global 

coverage. However, for the improvement of a soil moisture product and for its proper use in models 

or other applications, validation and evaluation of its spatial and temporal patterns are of great 

importance.  

In chapter 2 the Level 2 Soil Moisture and Ocean Salinity (SMOS) soil moisture product and the 

Advanced Scatterometer (ASCAT) surface soil moisture product are validated in the Rur and Erft 

catchments in western Germany for the years 2010 to 2012 against a soil moisture reference created 

by a hydrological model, which was calibrated by in situ observations. Correlation with the modeled 

soil moisture reference results in an overall correlation coefficient of 0.28 for the SMOS product and 

0.50 for ASCAT. While the correlation of both products with the reference is highly dependent on 

topography and vegetation, SMOS is also strongly influenced by radiofrequency interferences in the 

study area. Both products exhibit dry biases as compared to the reference. The bias of the SMOS 

product is constant in time, while the ASCAT bias is more variable. For the investigation of spatio-

temporal soil moisture patterns in the study area, a new validation method based on the temporal 

stability analysis is developed. Through investigation of mean relative differences of soil moisture for 

every pixel the temporal persistence of spatial patterns is analyzed. Results indicate a lower temporal 

persistence for both SMOS and ASCAT soil moisture products as compared to modeled soil moisture.  

ASCAT soil moisture, converted to absolute values, shows highest consistence of ranks and therefore 

most similar spatio-temporal patterns with the soil moisture reference, while the correlation of ranks 

of mean relative differences is low for SMOS and relative ASCAT soil moisture products. 

Chapter 3 investigates the spatial and temporal behavior of the SMOS and ASCAT soil moisture 

products and additionally of the ERA Interim product from a weather forecast model reanalysis on 

global scale. Results show similar temporal patterns of the soil moisture products, but high impact of 

sensor and retrieval types and therefore higher deviations in absolute soil moisture values. Results 

are more variable for the spatial patterns of the soil moisture products: While the global patterns are 

similar, a ranking of mean relative differences reveals that ASCAT and ERA Interim products show 

most similar spatial soil moisture patterns, while ERA and SMOS products show least similarities. 

Patterns are generally more similar between the products in regions with low vegetation. The 

relationships of spatial mean and spatial variance is influenced by sensor and retrieval characteristics 
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in the SMOS product, in particular during wet periods. For ASCAT and ERA products the major 

influencing factor was found to be the precipitation patterns of the respective regions. The impact 

factors on spatial variance were found to be highly dependent on the retrieval methods of the 

respective products. The investigation of the scaling properties of the soil moisture products shows 

that changes of support scales do not have an influence on the spatial variance for any of the 

products. Increasing extent areas lead to an increase of spatial variance for all products, in most 

cases, in particular for the ERA Interim product, according to a power law. 

Chapter 4 focuses on the retrieval of vegetation parameters, as vegetation cover was found to be a 

major factor to reduce the accuracy of the soil moisture products in the previous chapters. One 

solution to deal with this problem is the use of additional sensor data. In addition to a radiometer the 

NASA Aquarius satellite offers a radar on the same platform. Therefore, Aquarius active microwave 

data are used to retrieve vegetation optical depth for further use in passive microwave soil moisture 

retrieval. A relationship between the Radar Vegetation Index (RVI), calculated from Aquarius radar 

backscattering coefficients and vegetation optical depth retrieved from brightness temperatures in 

the Land Parameter Retrieval Model (LPRM) is established on a global basis. This relationship is then 

used to calculate a new set of vegetation optical depth from RVI. It shows similar global spatial 

patterns as the original dataset and SMOS vegetation optical depth. In a selected region in the US 

Midwest, a closer examination of the newly derived vegetation optical depth is conducted. It was 

found to be able to reproduce the spatial and temporal patterns of the vegetation optical depth from 

LPRM. Furthermore, the influence of the vegetation optical depth derived from RVI on soil moisture 

retrieval is tested with the L-MEB model. A comparison to soil moisture retrieved with the original 

optical depth showed very similar results in terms of temporal and spatial patterns. This new method 

to derive vegetation optical depth from radar measurements will be an advantage for the new NASA 

Soil Moisture Active Passive (SMAP) mission, which consists of a radiometer and a radar, as optical 

depth can be calculated without time lag from observations of the satellite in the high resolution of 

the radar. 

In general, this thesis analyzes the different accuracy levels of global soil moisture products and 

identifies the major influencing factors on this accuracy based on a small catchment example. On 

global scale, structural differences between soil moisture products were investigated, in particular 

the representation of spatial and temporal patterns as well as a general scaling law of soil moisture 

variability with extent scale. Both studies identified vegetation to have a high impact on accuracy. 

Therefore, an improved method to consider vegetation characteristics in soil moisture retrieval from 

satellite data was developed. The knowledge gained by this thesis will help to improve soil moisture 

retrieval of current and future microwave remote sensors, such as SMAP.  
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Zusammenfassung 

Fundierte Kenntnisse über Bodenfeuchte und deren räumliche und zeitliche Dynamik sind von 

entscheidender Bedeutung für die Verbesserung von Klima- und hydrologischen Modellen, 

insbesondere zur Überwachung und Vorhersage von Dürren und Hochwassern, sowie auch für 

Wettervorhersagemodelle. In den letzten Jahren wurde eine Reihe von Bodenfeuchteprodukten aus 

Satellitendaten von aktiven und passiven Mikrowellensensoren entwickelt. Diese  Produkte sind 

global und in hoher zeitlicher Auflösung verfügbar, jedoch sind Validierung und Evaluierung der 

räumlichen und zeitlichen Muster erforderlich zur Verbesserung dieser Bodenfeuchteprodukte und 

deren fachgemäße Verwendung in Modellen und anderen Anwendungsgebieten. 

In Kapitel 2 werden die Bodenfeuchte des Soil Moisture and Ocean Salinity (SMOS) Level 2 Produkts 

und des Advanced Scatterometer (ASCAT) in den Einzugsgebieten von Rur und Erft im Westen 

Deutschlands für die Jahre 2010-2012 gegen eine modellierte Bodenfeuchtereferenz, die mit in situ- 

Messungen kalibriert wurde, validiert. Das SMOS Produkt zeigt eine generelle Korrelation von 0.28 

mit der modellierten Referenz, das ASCAT Produkt einen Korrelationskoeffizienten von 0.50. 

Während bei beiden Produkten eine starke Abhängigkeit der Korrelation von Topographie und 

Vegetation besteht, zeigte das SMOS Produkt auch einen starken Einfluss von Frequenzinterferenzen 

im Untersuchungsgebiet. Beide Produkte weisen eine Abweichung gegenüber der feuchteren 

Referenz auf, die beim SMOS Produkt zeitlich stabil ist, und sich beim ASCAT Produkt deutlich 

variabler zeigt. Für die Untersuchung der räumlich-zeitlichen Muster der Bodenfeuchte im 

Untersuchungsgebiet wird eine neue Validierungsmethode basierend auf der „temporal stability 

analysis“ entwickelt. Ausgehend von der mittleren relativen Differenz der Bodenfeuchte für jedes 

Pixel wird die zeitliche Persistenz der räumlichen Muster untersucht. Im Vergleich zur modellierten 

Referenz zeigen die Ergebnisse eine kleinere zeitliche Persistenz der beiden Produkte. Das in absolute 

Bodenfeuchtewerte konvertierte ASCAT Produkt besitzt die höchste Übereinstimmung der Ränge der 

mittleren relativen Differenzen und damit die ähnlichsten räumlich-zeitlichen Muster im Verhältnis 

zur Referenz, während die Rangkorrelation der mittleren relativen Differenzen für SMOS und relative 

ASCAT-Werte gering ist. 

Kapitel 3 untersucht das räumliche und zeitliche Verhalten der SMOS und ASCAT 

Bodenfeuchteprodukte sowie des Bodenfeuchteproduktes von ERA Interim, einer Reanalyse eines 

Wettervorhersagemodells auf globaler Skala. Die drei Bodenfeuchteprodukte zeigen ähnliche 

zeitliche Muster, aber auch einen starken Einfluss vom Sensortyp und von der Methode zur Ableitung 

der Bodenfeuchte aus den Messdaten und damit hohe Abweichungen in den absoluten Werten. Die 

Untersuchung der räumlichen Muster zeigte variablere Ergebnisse: Während alle Produkte ein 
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ähnliches globales Verteilungsmuster aufweisen, zeigt eine Untersuchung der Rangkorrelation, dass 

die Muster der Produkte von ASCAT und ERA am ähnlichsten sind, während die Produkte von ERA 

und SMOS die geringste Übereinstimmung offenbaren. Im Allgemeinen gleichen sich die Muster der 

Bodenfeuchteverteilung bei den unterschiedlichen Produkten am stärksten in Regionen mit niedriger 

Vegetation. Die Beziehung von räumlichem Mittel und räumlicher Varianz der Bodenfeuchte wird 

beim SMOS Produkt von den Charakteristiken des Sensors und der Ableitungsmethode beeinflusst, 

besonders in nassen Perioden. Für die Produkte von ASCAT und ERA wurde als größter Einflussfaktor 

die zeitliche Niederschlagverteilung ermittelt. Die Einflussfaktoren auf die räumliche Varianz stellten 

sich als stark abhängig von Sensortyp und Ableitungsmethode des jeweiligen Produkts heraus. Die 

Untersuchung von Skalierungseigenschaften zeigte keinen Einfluss des „support scale“ auf die 

räumliche Varianz der Produkte. Die Vergrößerung des „extent scale“ dagegen führte zu einem 

Anstieg der räumlichen Varianz aller Produkte, in den meisten Fällen, besonders beim ERA Produkt, 

gemäß einer Potenzfunktion. 

Kapitel 4 beschäftigt sich mit der Ableitung von Vegetationsparametern, da sich die Vegetation in 

den vorherigen Kapiteln als einer der Haupteinflussfaktoren für die Reduktion der Genauigkeit der 

Bodenfeuchteprodukte erwiesen hat. Eine Möglichkeit der Herangehensweise an das Problem ist die 

Nutzung von zusätzlichen Sensordaten. Der NASA Satellit Aquarius bietet zusätzlich zu einem 

Radiometer einen Radarsensor. In dieser Studie werden Radardaten von Aquarius verwendet um die 

optische Dichte der Vegetation zu ermitteln, welche wiederum für die Ableitung der Bodenfeuchte 

aus den Radiometerdaten verwendet werden kann. Eine Beziehung zwischen dem Radar Vegetation 

Index (RVI), berechnet aus den Rückstreukoeffizienten von Aquarius, und der optischen Dichte der 

Vegetation, ermittelt aus den Strahlungstemperaturen von Aquarius im Land Parameter Retrieval 

Model (LPRM), wird auf globaler Basis etabliert. Dieser Zusammenhang wird dann genutzt um einen 

neuen Datensatz der optischen Dichte der Vegetation aus dem RVI zu berechnen. Die auf diese 

Weise ermittelte optische Dichte zeigt die gleichen globalen räumlichen Muster wie der 

Originaldatensatz und wie die optische Dichte des SMOS Produktes. In einem ausgewählten Gebiet 

im mittleren Westen der USA wird eine genauere Analyse der neu berechneten optischen Dichte 

durchgeführt. Es stellte sich heraus, dass es möglich ist die räumlichen und zeitlichen Muster der 

optischen Dichte aus dem LPRM zu reproduzieren. Außerdem wurde der Einfluss der aus dem RVI 

ermittelten optischen Dichte der Vegetation auf die Ableitung der Bodenfeuchte getestet. Ein 

Vergleich mit Bodenfeuchte, berechnet mit der optischen Dichte aus dem LPRM, zeigt ähnliche 

räumliche und zeitliche Muster. Diese neue Methode zur Berechnung der optischen Dichte aus 

Radarmessungen wird von Vorteil für die neue NASA Mission Soil Moisture Active Passive (SMAP) 

sein, die aus einem Radiometer und einem Radar besteht. Die optische Dichte der Vegetation kann 
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somit ohne Zeitverzögerung aus Beobachtungen des Satelliten in der hohen Auflösung des Radars 

abgeleitet werden. 

Diese Arbeit analysiert die Genauigkeit von globalen Bodenfeuchteprodukten und identifiziert deren 

Haupteinflussfaktoren basierend auf dem Beispiel eines kleinen Einzugsgebiets. Auf globaler Skala 

werden die strukturellen Differenzen zwischen den Bodenfeuchteprodukten analysiert, besonders 

die Repräsentation von räumlichen und zeitlichen Mustern und ein generelles Potenzgesetz der 

Bodenfeuchtevarianz mit steigender Ausdehnung des Untersuchungsgebiets. Beide Studien zeigten 

einen hohen Einfluss der Vegetation auf die Genauigkeit der Bodenfeuchteprodukte. Deshalb wurde 

eine Methode zur verbesserten Bestimmung von Vegetationscharakteristiken bei  der Ableitung der 

Bodenfeuchte aus Satellitendaten entwickelt. Die Erkenntnisse, die in dieser Arbeit gewonnen 

wurden, werden helfen die Bodenfeuchteprodukte aktueller und zukünftiger Mikrowellensensoren, 

zum Beispiel von SMAP, zu verbessern.  
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1 Introduction 

1.1 Background & Motivation 

Soil moisture strongly impacts our climate system (Seneviratne et al., 2010). It controls evaporation 

of water from soils and the transpiration of plants. Accordingly, it is a major influence factor on the 

land energy balance, as more than half of the total solar energy absorbed by land surfaces is used in 

the process of evapotranspiration (Trenberth et al., 2009; Jung et al., 2010). The amount of 

evapotranspiration influences the partitioning of incoming energy into latent and sensible heat 

fluxes, and therefore it is directly coupled to air temperature (Zhang et al., 2009). This coupling effect 

has been shown to be important in particular in the occurrence of heat waves (Diffenbaugh et al., 

2007; Miralles et al., 2014). Other processes are also influenced by soil moisture. Precipitation can be 

impacted by the soil water content, either by moisture recycling, meaning that evapotranspirated 

water contributes directly to the amount of precipitation, or by indirect interactions like impacting 

the boundary-layer stability and the formation of precipitation. Through the advection of evaporated 

moisture even non-local feedbacks can be found (Rowell and Blondin, 1990). Surface heterogeneity 

of soil moisture also plays a role for the generation of mesoscale features and precipitation patterns 

(Koster et al., 2003; Guillod et al., 2015). In a variety of modeling studies the impact of soil moisture 

on large scale circulation patterns has been shown. Haarsma et al. (2009), for example, showed the 

effect of soil moisture on pressure systems during a heat wave, while Douville (2002) found a 

relevant impact on African monsoon. 

The role of soil moisture for the continental water cycle is equally important through its high 

influence on various hydrological fluxes. Through evapotranspiration, which is highly influenced by 

soil moisture availability, 60 % of the land precipitation returns to the atmosphere (Oki and Kanae, 

2006). Furthermore, soil moisture controls the partitioning of rainfall into runoff and infiltration. 

Saturation of the soil will increase runoff, increasing the possibility of soil erosion or floods (Kerr, 

2006). Infiltration water influences groundwater recharge (Sophocleous, 2002) and the root water 

uptake of plants (Musters and Bouten, 2000), which again interacts with plant transpiration.  

Moreover, biophysical processes, like the germination of seeds, plant growth and plant nutrition, 

microbial decomposition of soil organic matter or nutrient transformation in the root zone are also 

highly dependent on the availability of soil moisture (Bittelli, 2011). Thereby, droughts are strongly 

endangering food security (Sheffield et al., 2014). 
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Soil moisture also takes influence on biochemical processes, such as the exchange of trace gases on 

land through its role for vegetation. The terrestrial carbon cycle, for example, is impacted by the 

amount of plant available soil water content through the coupling of plant transpiration and 

photosynthesis (Reichstein et al., 2002).  

Thus, a precise quantification of soil moisture is important for improving climate modeling and 

weather prediction models as well as land surface modeling. It is similarly important for the 

improvement of hydrological modeling, including runoff forecasting and natural risk assessment. A 

frequently used method for the application of soil moisture in models is through data assimilation, 

where the soil moisture content predicted by the model is updated when new observations are 

available (Reichle et al., 2004). Information about soil moisture can be used for the monitoring of 

vegetation and can be beneficial for the modeling of infectious diseases, which are forced by weather 

and environmental parameters (Wagner et al., 2013a).  

 

1.2 Measuring soil moisture 

 There is a wide range of possibilities for soil moisture measurements on point scale, for example 

capacitance sensors, time domain reflectometry, electrical resistivity measurements, heat pulse 

sensors, fiber optic sensors or gravimetric sampling (Vereecken et al., 2008). On the scale of 

headwater catchments, wireless soil moisture networks proved to provide good results (Bogena et 

al., 2010). Cosmic ray sensors integrate soil moisture over a larger area, and hydrogeophysical 

methods, in particular ground penetrating radar, electromagnetic induction, and electrical resistivity 

tomography provide information about a larger soil volume than point measurements on field scale 

(Vereecken et al., 2014).  These methods, however, can be work intensive and costly, when high 

temporal and spatial coverage is required. Many applications, like land surface and weather forecast 

models, require large scale or even global information about soil moisture. In sufficient temporal and 

spatial resolution, this information can only be provided by other models or satellite remote sensing. 

Simulated global soil moisture products are available from different models: The Global Land Data 

Assimilation System (Rodell et al., 2004) and the Integrated Forecast Model of the European Centre 

for Medium Range Weather Forecast (ECMWF), for example, provide operational analyses of soil 

moisture. From ECMWF, also long-term time series of soil water content, retrieved with a single 

version of the Integrated Forecast Model, are available. The ECMWF re-analyses (ERA) ERA 40 

(Uppala et al., 2005), ERA Interim (Dee et al., 2011), and ERA Interim/Land (Balsamo et al., 2015) give 
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consistent soil moisture data over the entire retrieval period (Albergel et al., 2012), which is 1957-

2002, 1979-present, and 1979-2010, respectively. 

Remote sensing as well proved to be able to deliver the required soil moisture information with high 

coverage and in reasonable temporal and spatial resolution (Kerr, 2006). Remotely sensed soil 

moisture products were used for runoff forecasting (Scipal et al., 2005) and the estimation of 

antecedent soil moisture conditions (Brocca et al., 2009a). They were also applied for flood (Wanders 

et al., 2014) and drought monitoring (Bolten et al., 2010), in crop yield forecast models (de Wit and 

van Diepen, 2007) and for vegetation monitoring (Gouveia et al., 2009). Another application is the 

modeling of infectious – for example mosquito-borne - diseases (Chuang et al., 2012). Remotely 

sensed soil moisture products are assimilated into hydrological models for runoff forecasting (Brocca 

et al., 2012), into weather prediction models (Scipal et al., 2008; Muñoz-Sabater et al., 2012), and 

into land surface models (Reichle and Koster, 2005).  

Nevertheless, the coarse resolution of remotely sensed soil moisture products is a limiting factor for 

some application. Thus, several downscaling algorithms have been developed, most of them based 

on the application of visible and infrared remote sensing observations with high resolution (Merlin et 

al., 2010; Piles et al., 2011; Chakrabarti et al., 2015). 

 

1.3 Theory of soil moisture retrieval from remote sensing measurements 

Currently, microwave remote sensing, both active and passive, is considered the best method for soil 

moisture retrieval from space (Wang and Qu, 2009). It is independent of illumination and of cloud 

conditions. Various remote sensing satellites differing in sensing technique (active/passive), 

frequency, and retrieval methods are used for the monitoring of soil moisture 

 

1.3.1 Passive microwave remote sensing 

The ability to retrieve soil moisture from passive microwave remote sensing, which measures the 

natural microwave radiation emitted from the soil, is based on the large differences of the dielectric 

constants of water (~80) and dry soil (~4) (Schmugge et al., 1974; Njoku and Entekhabi, 1996). An 

increase of soil moisture will therefore lead to an increase of the complex dielectric constant, 

consisting of a real and an imaginary part. While the real part of the dielectric constant describes the 

propagation characteristics of energy passing upward, the imaginary part contains the energy losses. 
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The determination of the soil dielectric constant needs to take into account its single components, 

for example air, water and rock and influencing factors like temperature, salinity, and soil texture. 

Several models have been developed to calculate the complex soil dielectric constant. These models 

are generally empirical or semi-empirical and based on soil properties (Srivastava et al., 2015). The 

Wang-Schmugge dielectric mixing model (Wang and Schmugge, 1980), for example, is an empirical 

model with a focus on the impact of bound water on the dielectric constant. The semi-empirical 

Dobson approach (Dobson et al., 1985) considers the physical aspects of the dielectric properties of 

free water through the Debye equations and additionally uses fitting parameters from 5 soil types 

with sand fractions < 50 %. It is valid for a large range of microwave frequencies. The semi-emprical 

model of Mironov (Mironov et al., 2009) is a generalized refraction dielectric mixing model. It is 

mineralogy-based and is validated for a large range of soil textures, including the ones of the Dobson 

model. 

By knowing the dielectric constant of the soil, smooth surface reflectivity 𝑟𝑠 can be determined 

through the Fresnel reflection equations by considering the incidence angle of satellite observations. 

Kirchhoff’s law relates surface reflectivity to smooth surface emissivity 𝑒𝑠, which determines the soil 

radiation together with the physical temperature of the soil 𝑇𝑠 [K]. Therefore, the soil microwave 

emission, expressed in brightness temperatures 𝑇𝐵 [K], can be approximated by  

 

 𝑇𝐵 =  𝑒𝑠𝑇𝑠 (1.1) 

 

The smooth surface emissivity has to be corrected by surface roughness effects, as roughness 

increases surface scattering and therefore decreases reflectivity and increases emissivity. Rough 

surface emissivity 𝑒𝑟 is most commonly calculated through the semi-empirical expression of Wang 

and Choudhury (1981), where surface roughness is described by the roughness height h and the 

polarization mixing factor Q 

 

 𝑒𝑟𝑝 =  [(1 − 𝑄) 𝑟𝑠𝑝 + 𝑄 𝑟𝑠𝑞] exp(−ℎ cos (𝑢)) (1.2) 

 

with 𝑝 and 𝑞 denoting the polarization and 𝑢 referring to the incidence angle of the observation. 

Vegetation cover influences the microwave signal of the soil, which is measured by sensors above the 

canopy: It scatters and attenuates or absorbs the radiation from the soil, and it emits its own 

radiation and adds it to the soil signal. An increase of canopy height and density therefore leads to a 
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decrease of sensitivity of the measured signal for soil moisture (Jackson and Schmugge, 1991). The 

radiation measured by a microwave sensor from above a canopy can be expressed in the simple 

radiative transfer equation of the τ - ω model of Mo et al. (1982), which is the basis for the forward 

simulation of brightness temperatures in most algorithms for soil moisture retrieval from passive 

microwave observation. It is given by 

 

 𝑇𝐵𝑝 =  𝑒𝑟𝑇𝑠𝛤𝑝 + (1 − 𝜔𝑝)𝑇𝑐(1 − 𝛤𝑝) + (1 − 𝜔𝑝)𝑇𝑐(1 − 𝛤𝑝)(1 − 𝑒𝑟)𝛤𝑝 (1.3) 

where 𝑇𝑐 denotes the physical temperature of the vegetation canopy, while the vegetation is 

described through single scattering albedo ω and the vegetation transmissivity 𝛤. The first 

component of equation (1.3) describes the signal from the soil, attenuated through the vegetation 

canopy. The second term defines the upward radiation emitted from the canopy layer. The third part 

accounts for the downward radiation from the vegetation, which is reflected by the soil surface and 

attenuated by the canopy layer before reaching the sensor. The vegetation transmissivity is defined 

in terms of vegetation optical depth 𝜏 as 

 

 𝛤 =  𝑒𝑥𝑝−𝜏/cos (𝑢) (1.4) 

Vegetation optical depth (VOD) depicts the attenuation of the soil radiation through the canopy layer 

and is linearly related to the vegetation water content (VWC, Jackson and Schmugge, 1991). VOD is 

furthermore dependent on sensing frequency and the geometrical structure of the vegetation (Njoku 

and Entekhabi, 1996), which is characterized by an empirically derived b-parameter according to 

frequency and vegetation type in the linear relationship with VWC (Van de Griend and Wigneron, 

2004).  

 

1.3.2 Active microwave remote sensing 

Soil moisture retrieval from active microwave remote sensing is equally based on the contrast of the 

dielectric constants of water and dry soil (Dobson and Ulaby, 1986). A radar emits a microwave signal 

and measures the quantity of energy backscattered to the sensor. When the emitted energy reaches 

the soil surface, it can be scattered, transmitted or absorbed. The distribution of the quantities of 

these processes is controlled by the boundary conditions at the air-soil interface, for example surface 

roughness and slope, and by the dielectric properties of the soil. The complex dielectric permittivity 

of soil 𝑘 can again be derived through a dielectric mixing model (see sec. 1.3.1). The air-soil interface 
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can be described through an empirical model or through a correlation function. The correlation 

function can be expressed by root mean square (RMS) height and correlation length (Oh et al., 1992). 

Vegetation cover adds backscatter to the soil signal, and it can attenuate the soil signal through 

volume scattering. The vegetation layer can be described by the characterization of vegetation 

structure. A vegetation index derived directly from radar observations is for example the Radar 

Vegetation Index (RVI), which is calculated from backscattering coefficients of different polarizations 

(Kim and van Zyl, 2009). Another possibility for vegetation characterization is the use of the dielectric 

constant of vegetation or of VOD and VWC (Ulaby et al., 1979). Total radar scattering cross-section 

𝜎𝑝𝑞
𝑡  [dB] in polarization 𝑝𝑞 can therefore be described as  

 

 𝜎0𝑝𝑞
𝑡 =  𝜎0𝑝𝑞

𝑠 (𝑘, 𝑠, 𝑙) exp (−𝜏𝑝𝑞(𝑉𝑊𝐶)) + 𝜎0𝑝𝑞
𝑐  (𝑉𝑊𝐶) + 𝜎0𝑝𝑞

𝑠𝑐 (𝑉𝑊𝐶, 𝑘, 𝑠, 𝑙) (1.4) 

 

where the first term represents the scattering cross-section of the soil surface 𝜎0𝑝𝑞
𝑠 , attenuated by 

vegetation twice (downward and upward). The second term 𝜎0𝑝𝑞
𝑐  determines the scattering cross-

section volume of the vegetation canopy and the third part 𝜎0𝑝𝑞
𝑠𝑐  describes the scattering 

interactions between soil and vegetation. 𝑠 and 𝑙 refer to the RMS height and correlation length, 

respectively, of the correlation function for the soil surface. 

 

1.3.3 Characteristics of remote sensing methods 

In theory, L-band microwave observation (generally at 1.4 GHz) has several advantages for the 

estimation of soil moisture compared to measurements at higher frequencies (Kerr et al., 2012; 

Vitucci et al., 2013). The longer wavelength of L-band (15-30 cm, 1-2G Hz) compared to other 

operational systems (e.g. C-band: 3.8-7.5 cm, 4-8 GHz, X-band: 2.5-3.8 cm, 8-12 GHz) leads to a 

higher vegetation penetration depth (Njoku and Entekhabi, 1996) and a higher soil penetration 

depth, which is about 3-5 cm for L-band systems (Escorihuela et al., 2010) and decreases to 0.5-2 cm 

for C-band systems (Wagner et al., 1999a), depending on the moisture condition of the soil. Passive 

microwave remote sensing systems are in general less sensitive to the effects of surface roughness 

and vegetation structure than active systems (Kerr, 2006), leading to less noise in the passive 

observations.  An advantage of active soil moisture remote sensing, however, is the generally higher 

energy level and therefore higher spatial resolution of current active sensors (Wang and Qu, 2009). 

Moreover, observations from active systems are less affected by radiofrequency interferences (RFI). 
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Contamination of a measured signal with RFI occurs, where signals from man-made sources are 

emitted in the protected band and mistakenly detected by the sensor. RFI occurrences are regularly 

detected in L-band, in particular over continental areas in Europe, South-Eastern Asia, and the 

Middle East (Daganzo-Eusebio et al., 2013). Several strategies were developed to detect and mitigate 

RFI (Misra and Ruf, 2008; Oliva et al., 2012; Piepmeier et al., 2014). 

 

1.4 Satellite sensors for soil moisture monitoring 

Within the last years, a variety of missions, which can be used for soil moisture monitoring, were 

developed. Several remote sensing missions using radiometers are currently in service. The Advanced 

Microwave Scanning Radiometer 2 (ASMR-2) onboard the Global Change Observation Mission 1 - 

Water  (Okuyama and Imaoka, 2015) and Windsat, the radiometer of the Coriolis mission (Gaiser et 

al., 2004), measure at different frequencies between 6 and 37 GHz. AMSR-2 delivers two soil 

moisture products retrieved with different algorithms (Kim et al., 2015). From Windsat, a soil 

moisture product is retrieved from 10.7, 18.7, and 37 GHz channels (Li et al., 2010). The European 

Scape Agency’s (ESA) Soil Moisture and Ocean Salinity (SMOS) mission (Kerr et al., 2001) is the first 

directly designed for the remote sensing of soil moisture. It carries a radiometer recording brightness 

temperatures at L-band on a three day basis. Its measuring performance is 0.8 to 3.0 K for the 

radiometric sensitivity with a spatial resolution of 30 to 50 km. (Kerr et al., 2001). 

Several active microwave sensors with different spectral resolutions are also applicable for soil 

moisture monitoring. There is the Advanced Land Observing Satellite-2 mission carrying a L-band 

radar (Rosenqvist et al., 2007), and the RADARSAT 2 mission (Morena et al., 2004), the Compact-SAR 

on the Radar Imaging Satellite (RISAT) (Misra et al., 2013), and the synthetic aperture radar on 

Sentinel-1 (Torres et al., 2012), measuring in C-band. The X-band radars TerraSAR-X (Werninghaus 

and Buckreuss, 2010) and Tandem-X (Krieger et al., 2007) can also be used for soil moisture 

monitoring, when no vegetation covers the soil (Aubert et al., 2011). The Advanced Scatterometer 

(ASCAT) is a real aperture radar operating in C-band onboard the MetOp satellite, a meteorological 

mission with a sun-synchronous orbit. A triplet of backscattering coefficients at three incidence 

angles is produced at every measurement with a spatial resolution of 25 to 50 km. Global coverage of 

the ASCAT is one to two days (Bartalis et al., 2007; Naeimi et al., 2009).  

Aquarius (Le Vine et al., 2007), a joint mission of National Aeronautics and Space Administration 

(NASA) and the Argentine Space Agency (Comisión Nacional de Actividades Espaciales), is primarily 

designed for measuring sea surface salinity, but a soil moisture product is also retrieved (Bindlish et 
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al., 2015). Brightness temperatures and backscattering coefficients are recorded by a radiometer and 

a radar, both measuring at L-band. The instruments are arranged in a pushbroom configuration at 

three incidence angles and measure in a resolution of 100 km. The satellite achieves global coverage 

in 7 days.  

The recently launched Soil Moisture Active Passive (SMAP) satellite (Entekhabi et al., 2010) also 

consists of a radiometer and a radar, measuring in the same frequencies as Aquarius, but with a 

distinctly higher resolution of 3 km for the radar and 36 km of the radiometer in a single angle of 40° 

and a global coverage within 3 days. Three soil moisture products are available from this mission, one 

retrieved from the radar instrument (Das et al., 2011; Das et al., 2014), one from the radiometer, and 

a combined product in an intermediate resolution of 9 km. 

 

1.5 Soil moisture retrieval algorithms 

Soil moisture is derived from the observations of these missions through several different 

approaches. Retrieval from the passively sensed brightness temperatures is generally conducted by 

simulating brightness temperatures as close as possible to the observations and inversion to soil 

moisture. The inversion is based on the concept of Mo et al. (1982) for most of the approaches 

currently in operational use. There are different ways of accessing VOD in the algorithms. The Single 

Channel Algorithm (Mladenova et al., 2014; Bindlish et al., 2015) is applied for the retrieval of the 

Aquarius soil moisture product and is the baseline algorithm for the SMAP passive soil moisture 

product. It retrieves soil moisture from h-polarized brightness temperatures, while VOD is 

approached through its relationship to VWC obtained from auxiliary data. The SMOS retrieval 

algorithm (Kerr et al., 2012) is mainly based on the L-band Microwave Emission of the Biosphere 

(L-MEB) model (Wigneron et al., 2007). It retrieves soil moisture and VOD simultaneously from dual-

polarization and multi-angular observations by minimizing a cost function. The retrieval of VOD 

requires an initialization value which is again taken from auxiliary data under use of the linear 

relationship to VWC. The Land Parameter Retrieval Model (LPRM, Owe et al., 2001; Owe et al., 2008) 

is for example used for soil moisture retrieval from AMSR-2 (Parinussa et al., 2015) and for the ESA 

Climate Change Initiative soil moisture product (Dorigo et al., 2015). Like the SMOS Level 2 processor, 

it retrieves soil moisture and VOD simultaneously, whereas it derives VOD analytically from the 

Microwave Polarization Difference Index (MPDI, Meesters et al., 2005). 

The algorithms available for active soil moisture remote sensing make use of quite variable 

approaches. The SMAP baseline algorithm is the Time-Series Data Cube Approach (Kim, S. et al., 
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2012), a multichannel algorithm that inverts a forward scattering model and retrieves RMS height s 

and the dielectric constant by minimizing a cost function. Vegetation effects are quantified by 

auxiliary data or by the backscattering coefficient in HV-polarization, which is known to be vegetation 

sensitive. Other approaches suggest using a change detection method for retrieving soil moisture. 

The method of Kim and van Zyl (2009) retrieves volumetric soil moisture by assuming surface 

roughness and vegetation constant over a longer period of time than the changes in soil moisture. 

The ASCAT soil moisture product (Bartalis et al., 2007) is also retrieved through a change detection 

approach. It uses the method of Wagner et al. (1999a), where the observed normalized 

backscattering coefficients are scaled between the lowest and highest backscattering coefficients of 

a long-term time-series. This results in an index between 0 and 1, stating the degree of saturation of 

the soil, which can be converted to absolute soil moisture values through wilting point and saturation 

point of the respective soil. The influence of the vegetation is determined through the long-term 

seasonal behavior of the relationship between backscattering coefficient and incidence angle. 

For the SMAP mission, approaches to combine active and passive remote sensing observations to a 

merged soil moisture product with intermediate resolution are developed. The change detection 

method of Piles et al. (2009) is based on the linear dependence of change in backscattering 

coefficients on soil moisture change at the radiometer resolution and the temporal change in 

backscatter at radar resolution on the previous day soil moisture data. Zhan et al. (2006) developed a 

Bayesian merging approach, where radar measurements are used to downscale radiometer 

observations. The spatial variability technique of Das et al. (2011) blends radar measurements and 

radiometer-based soil moisture by using the linear dependence of backscatter change to soil 

moisture change. The statistical disaggregation approach of Das et al. (2014) is the current SMAP 

baseline algorithm. It is built on the correlation between temporal fluctuations of brightness 

temperatures and backscatter in simultaneous observations at the same incidence angle. Brightness 

temperatures are downscaled using fine-resolution backscattering coefficients and soil moisture is 

then retrieved from the downscaled brightness temperatures. 

 

1.6 Methods for soil moisture product analysis 

The diverse sensors and differences in the retrieval algorithms can introduce structural deviances, as 

well as errors in the soil moisture products. Therefore, the characterization and validation of the 

products is essential. However, the validation of global remotely sensed soil moisture products is 

difficult due to their coarse resolution. In situ measurements are mostly only available on point-scale 
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and are not available globally. Therefore, validation has to be conducted on single pixels with in situ 

point measurements or sensor networks (Jackson et al., 2012). Other possibilities are the validation 

through modeled soil moisture (dall'Amico et al., 2012; Jakkila et al., 2014), through airborne 

remotely sensed data (dall'Amico et al., 2013; Montzka et al., 2013) or the comparison of several 

satellite remote sensing products (Parrens et al., 2012; Leroux et al., 2013). The most common 

validation method is the use of correlation metrics, of root means square error (RMSE) and bias to a 

reference soil moisture (Al Bitar et al., 2012; Albergel et al., 2012; Lacava et al., 2012). Another 

approach is the assimilation of several soil moisture products into a model and the comparison of the 

performance metrics (Pan et al., 2012). 

While validation of the products with common metrics gives valuable information about the 

deviances of a product from another measurement, it does not evaluate the correct retrieval of the 

area-wide variability. Therefore, the evaluation of the spatial and temporal patterns of a soil 

moisture product also needs to be considered. The spatio-temporal variability can be addressed by a 

temporal stability analysis (Vachaud et al., 1985) and by investigating the relationship of spatial mean 

and spatial variance. The concept of temporal stability is mainly used as a method to minimize 

locations of soil moisture measurements on field scale while retrieving the same information about 

soil moisture variability (Brocca et al., 2009b; Cosh et al., 2004; Zhao et al., 2013), but the 

information can also be used to characterize the distribution of soil moisture in time and space. The 

relationship of spatial mean and spatial variance of soil moisture was mainly investigated on small 

scale until now and it was found to be varying in different study areas (Bell et al., 1980; Famiglietti et 

al., 1998; Famiglietti et al., 1999; Brocca et al., 2007). Differences of relationships are caused by a 

variety of factors like topography, radiation, soil characteristics, vegetation, and land use, with 

different strength of influence in the respective study areas. 

 

1.7 General aim and structure of the thesis 

Through the mentioned methods it is possible to exhibit the systematic and statistical characteristics 

of the investigated soil moisture product. These characteristics are important to be aware of in the 

selection process of one or more products for application. Through the knowledge about the 

products’ performance and their structural differences on local and global scale, their applicability 

for a specific project can be evaluated. Moreover, the factors triggering errors and differences 

between the products can be identified. These factors and the problems they are inducing can then 
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be addressed and improvements can be made, for example through implementation of advanced 

parameterization in the retrieval algorithms. 

This thesis analyzes two soil moisture products from different sensors on catchment scale and 

globally, presenting their structural differences and errors and investigating the origins of these 

errors. Finally, it approaches a new method combining data from two sensors to solve one big 

problem of soil moisture retrieval, the characterization of the vegetation layer influencing remotely 

sensed measurements. 

The thesis is structured into three main parts. Chapter 2 focuses on the validation of SMOS and 

ASCAT soil moisture products on catchment scale. The validation is conducted in the Rur and Erft 

catchments in western Germany through a soil moisture reference created by a hydrological model. 

It investigates the performance of the two products in an area with heterogeneous land use and 

analyzes the influencing factors on possible deviances from the reference. 

In chapter 3, the analysis of the same remotely sensed soil moisture products is enhanced to global 

scale, including additionally the modeled soil moisture product of the ERA Interim reanalysis. The 

temporal and spatial characteristics are analyzed globally and for selected regions within various 

climate regions based on the Köppen-Geiger climate classification (Peel et al., 2007). In this chapter, 

structural and statistical differences of the products are analyzed and the factors leading to these 

differences are determined. The suitability of their application in specific regions is investigated. 

Furthermore, the effect of changing scales on the products is analyzed. 

Chapter 4 focuses on the retrieval of vegetation parameters from active remote sensing, as 

vegetation was found to be a major drawback for the accuracy of the soil moisture products. The 

approach establishes a relationship between the RVI, calculated from Aquarius radar backscattering 

coefficients, and VOD, retrieved with the LPRM from Aquarius radiometer brightness temperatures 

on a global basis. This relationship is used to calculate a new set of VOD, which is then analyzed on its 

accuracy, taking into account SMOS VOD. Moreover, in a selected region, the influence of the VOD 

retrieved from RVI on soil moisture retrieval is tested.  

Finally, chapter 5 summarizes the main conclusions of this work and gives a brief outlook on possible 

further research. 
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2 Catchment scale validation of SMOS and ASCAT soil moisture products 

using hydrological modeling and temporal stability analysis1  

2.1 Introduction 

Soil moisture is a key factor both in climate and hydrology: Affecting soil evaporation and 

transpiration, it impacts the heat and mass transfers between soil and atmosphere. Moreover, it 

influences the partitioning of rainfall into runoff and infiltration. Thus, area-wide time series of soil 

moisture are important for climate and hydrological modeling such as flood forecasting, as well as for 

numerical weather prediction, for example at the ECMWF (Muñoz-Sabater et al., 2012; Scipal et al., 

2008). 

In situ soil moisture for a certain area and for a specific moment in time can be acquired through 

different measurement techniques like gravimetric sampling or TDR sensors (Vereecken et al., 2014), 

but this is very time-consuming in case large areal coverage is needed. Using wireless sensor 

networks, it is possible to obtain time series of soil moisture from the field to the headwater 

catchment scale (Bogena et al., 2010). However, for weather forecasting or hydrological applications 

representative soil moisture data for larger regions or even with global coverage is needed (Scipal et 

al., 2008). Apart from modeling, the only way to provide soil moisture data at that scale is through 

remote sensing (Kerr, 2006).  

Therefore, different sensors and methods have been tested for their applicability in soil moisture 

estimation, especially in the microwave region of the electromagnetic spectrum. Synthetic aperture 

radars, scatterometers and passive radiometers are the most important sensor types used for soil 

moisture applications (Fang and Lakshmi, 2014; Wang and Qu, 2009). 

Currently operational sensors that are being used for retrieving soil moisture include the ASCAT 

onboard the meteorological satellite MetOp-A (Bartalis et al., 2007) and the AMSR-2 on the Global 

Change Observation Mission - Water (Su et al., 2013). Since the launch of the SMOS satellite, there is 

also a mission specifically designed for remote sensing of soil moisture (Kerr et al., 2010). The 

                                                 
1 Adapted from: Rötzer, K., Montzka, C., Bogena, H., Wagner, W., Kerr, Y.H., Kidd, R., Vereecken, H. 

(2014): Catchment scale validation of SMOS and ASCAT soil moisture products using hydrological 

modeling and temporal stability analysis. J. Hydrol. 519, 934–946. 
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combined active and passive instruments, Aquarius (Luo et al., 2013) and the SMAP (Entekhabi et al., 

2010), which was launched recently, also provide soil moisture products. 

The remote sensing based methods of soil moisture estimation are differing in their sensing 

technique (active or passive), in frequency and in retrieval method. Thus, the resulting soil moisture 

products show different spatial resolutions and characteristics. Although current C-band active 

systems can provide higher spatial resolutions (Wang and Qu, 2009) and are less affected by RFI, 

L-band radiometry presently is considered to be the most promising technique for the estimation of 

soil moisture (Kerr et al., 2012), not only because of the higher soil penetration depth compared to 

higher frequencies, but also because of better vegetation penetration (Njoku and Entekhabi, 1996). 

Additionally, passive systems are less sensitive to the effects of surface roughness and vegetation 

structure than active systems (Kerr, 2006). Depending on sensing frequency, satellite measurements 

are valid for different soil volumes which again are reliant on a wide range of surface conditions. For 

C-band systems like ASCAT and AMSR-2, soil penetration depth is between 0.5 and 2 cm (Bartalis et 

al., 2007; Naeimi et al., 2009). L-band systems, like SMOS, Aquarius, and SMAP, have a higher 

average soil penetration depth in the range of about 3-5 cm (Escorihuela et al., 2010).  

However, since soil moisture remote sensing is influenced by a large number of factors (e.g. 

atmospheric conditions, vegetation, soil surface roughness etc.), the application and 

parameterization of retrieval methods is not straightforward. A wide range of retrieval methods has 

been developed, which produce different kinds of soil moisture products. For instance, a method for 

soil moisture retrieval from scatterometer data, which is based on change detection, was developed 

by Wagner et al. (1999a) for the European Remote Sensing Satellite. The resulting product consists of 

relative values of surface soil moisture. This method is now applied to ASCAT, the successor of this 

mission. 

In contrast, retrieval of soil moisture from SMOS relies on a radiative transfer model, resulting in 

volumetric soil water content. The SMOS mission’s main objective is to provide global maps of soil 

moisture with accuracy higher than 0.04 m³/m³ (Kerr et al., 2001). 

Covering large areas as compared to common ground measurements, which reveal high variability on 

small scales, validation of the soil moisture products is not straightforward. Nevertheless, point scale 

in situ measurements are often used for the examination of remotely sensed low resolution soil 

moisture. Al Bitar et al. (2012) and Jackson et al. (2012) found high correlation coefficients and low 

RMSE values as well as biases for the SMOS product (version 4.00) with in situ measurements from 

different sites spread over the United States. Bircher et al. (2013) discovered good capture of 
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precipitation and soil moisture dynamics, but a significant dry bias of SMOS compared to in situ data 

for the Skjern River Catchment in Denmark. 

Another frequently applied option is the validation with modeled soil moisture, which accounts for 

the whole extent of a pixel. For example, dall’Amico et al. (2012) found low correlation coefficients 

between SMOS (version 4.00) and modeled soil moisture for the Upper Danube Catchment in 

Germany, with correlation of mostly below 0.3 and biases between 0.11 and 0.3 m³/m³. This was 

charged to the presence of RFI. Brocca et al. (2011) compared CDF-matched ASCAT surface soil 

moisture to in situ and modeled data of test sites of four different European countries and found 

correlation coefficients between 0.64 and 0.81 and an average root mean square difference (RMSD) 

of 0.143 for relative soil moisture.  

Albergel et al. (2012) compared SMOS (version 4.00) and ASCAT products to in situ soil moisture from 

more than 200 stations in Africa, Australia, Europe, and the United States. They found a generally 

good performance of both products, with slightly higher performances of ASCAT: Normalized time 

series of SMOS and in situ data showed an overall correlation coefficient of 0.55 (bias: 0.122, RMSD: 

0.243), for ASCAT the correlation coefficient was 0.55 (bias: 0.056, RMSD: 0.247). In all studies 

moderate to large dry biases for the SMOS soil moisture were observed.  

In order to facilitate a comparison with the aforementioned validation studies, we used the same 

correlation and bias statistics for the validation of the SMOS and ASCAT soil moisture products. In 

addition, we introduced temporal stability analysis as a method for spatio-temporal validation 

through a rank stability correlation. Until now, the temporal stability concept was mainly used as a 

method to minimize locations of soil moisture measurements on field scale through finding a 

reduced number of sampling locations which are representative for the whole area (Brocca et al., 

2009b; Cosh et al., 2004; Vachaud et al., 1985; Zhao et al., 2013). An overview of applications of 

temporal stability, methods for the analysis and influence factors is given in Vanderlinden et al. 

(2012). 

In this study, we analyzed the SMOS Level 2 soil moisture product (SMOS Level 2 Processor, version 

5.51) and time series of soil moisture derived from ASCAT (Water Retrieval Package (WARP) 

software, version 5.5) of the years 2010 to 2012 for the Rur and Erft catchments in Germany by using 

soil moisture information derived from the hydrological model WaSiM-ETH as reference data. 

Modeled reference, validated by in situ data, was used rather than in situ data to account for the 

different spatial resolutions of the soil moisture products. Another advantage is the possibility to 

study a larger area with several pixels, although in situ measurements are not available for all of 

these pixels. Furthermore, the temporal stability analysis method developed by Vachaud et al. (1985) 
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was introduced as an advanced validation approach. This method was used to determine the ability 

of a sensor to capture the spatial and temporal soil moisture patterns rather than absolute values. 

With this approach the information content of the soil moisture signal can be evaluated without the 

influence of a potential bias. 

In the following section, the SMOS and ASCAT soil moisture products, the model used to calculate 

the reference data and the method of the temporal stability analysis are described. Sec. 2.3.1 

validates the soil moisture reference through in situ data, sec. 2.3.2 and 2.3.3 analyze the individual 

accuracy of both SMOS and ASCAT soil moisture products and their suitability for the further use in 

numerical weather prediction and hydrological modeling by comparing them to the soil moisture 

reference. Finally, sec. 2.3.4 discusses the results of the temporal stability analysis and its use as a 

validation method.  

 

2.2 Material and Methods 

2.2.1 Study area 

The study area is located in the west of Germany in the region next to the Belgian-Dutch-German 

border and contains the catchments of the rivers Rur and Erft (Montzka et al., 2013). It covers a total 

area of 4125 km². The river Rur originates in the Eifel Mountains, discharges into the river Maas and 

has a total length of 165 km, while the river Erft is a tributary of the Rhine and has a length of 107 km 

(Bogena et al., 2005). The study area can be divided into a northern and a southern part (Fig. 2.1). 

The northern region is rather plain. It has a relatively low annual long-term precipitation of 650-850 

mm, while annual potential evapotranspiration ranges from 580 to 600 mm. As the soils mainly 

evolved from loess, which accumulated on Tertiary and Quaternary depositions of Rhine and Maas, 

and the principal land use type is agricultural land (Montzka et al., 2008a). The southern part is 

located in the Eifel low mountain range. Annual long-term precipitation is higher than in the northern 

part due to the mountainous influence with 850 – 1300 mm, while annual potential 

evapotranspiration shows moderate values of 450 - 550 mm. The bedrock consists of Devonian and 

Carboniferous sedimentary rocks with low permeability and small groundwater storage volumes, 

causing high interflow and low groundwater runoff rates. Here, the predominant land use types are 

forest and grassland.  
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Fig. 2.1: Location and land use of the study area the TERENO test sites. 

2.2.2 Data 

2.2.2.1 SMOS soil moisture product  

Launched in 2009, SMOS is a sun-synchronous orbiting satellite operating at an altitude of 755 km. 

The radiometer system onboard SMOS records two-dimensional brightness temperatures in the 

L-band at 1.4 GHz on a three day basis. Its measuring performance is 0.8 to 3.0 K for the radiometric 

sensitivity with a spatial resolution of 30 to 50 km. (Kerr et al., 2001). 

In this study we used the SMOS soil moisture product of 2010 -2012, produced in the SMOS Level 2 

Processor version 5.51. The products are provided on the ISEA-4H9 (Icosahedral Snyder Equal Area 

Earth Fixed) grid with approximately 15 km distance between grid points.  

The Level 2 processor (Kerr et al., 2012) is a physically based algorithm applying Level 1C product 

brightness temperature at different incidence angles as input. In addition, the processor uses 

different kinds of auxiliary data: static data like land use and soil texture maps and dynamic data, 

such as snow or temperature, which are obtained from ECMWF forecasts.  

For the retrieval of soil moisture for one pixel a working area of 123 x 123 km is set up, which is 

considered to be the maximum extent contributing to the SMOS signal. The portions of contributions 
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are determined through weighing by the antenna pattern. In many cases, different kinds of land use 

are present in the working area and contribute to the measured brightness temperature. To account 

for that, the different land use types are determined and their fractions are estimated. Retrieval of 

state variables like soil moisture, but also VOD and the dielectric permittivity, only takes place for the 

dominant fraction, the largest fraction of study area. For the remaining land use classes default 

models calculate the state of the variables. The default models are only driven with physical 

parameters obtained from auxiliary data and there may be small differences from the retrieval 

models. These default contributions are assumed to be constant and stay fixed during retrieval, their 

contributions to the measured brightness temperatures are determined according to their cover 

fractions. Thus, the retrieved soil moisture is only valid for the dominant cover fraction. 

In a decision tree the forward model for the dominant fraction is chosen. For the nominal case, a low 

vegetated pixel without snow cover, and for the forest case, the forward models are based on the 

τ - ω approach (Mo et al., 1982). τ and ω hereby refer to the VOD and the single scattering albedo, 

respectively. For calculation of the atmospheric contribution, molecular oxygen, water vapour, 

clouds, and rain are taken into account through an absorption coefficient (Kerr et al. 2011). Bare soil 

emission is simulated using Fresnel laws, whereby the Mironov semi-physical model (Mironov et al., 

2009) is used for the determination of dielectric permittivity. It was first implemented in the Level 2 

Processor version 5.51, replacing the Dobson semi-empirical model (Dobson et al., 1985). Surface 

roughness is taken into account through the correction of the smooth soil reflectivity with the 

empirical relationship of Wang and Choudhury (1981), as proposed by Escorihuela et al. (2007). 

The chosen forward model aims to minimize a cost function through minimizing the sum of squared 

weighted differences between modeled brightness temperature and the measured brightness 

temperature of the dominant soil cover type (Kerr et al., 2012). 

For this study only data from ascending overpasses were used to prevent from influences concerning 

differences between morning and evening overpasses as reported in Rowlandson et al. (2012). 

Through threshold filtering with the soil moisture data quality index SM_DQX > 0.06 outliers were 

removed. All data were tested on raised flags in the snow and frost occurrence, and where flags were 

raised the data were removed. Additionally, the data were tested on the influence of RFI through the 

confidence flags FL_RFI_Prone_H and FL_RFI_Prone_V. The retrieval cases for all pixels in the study 

area are nominal for most time of the year, only in late autumn, winter and early spring sometimes 

cases for snow retrieval were identified. 
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2.2.2.2 ASCAT soil moisture product 

ASCAT is a real aperture radar onboard the MetOp-A satellite operating in the C-band at 5.255 GHz. A 

triplet of backscattering coefficients at three incidence angles is produced within every 

measurement. The satellite has a sun-synchronous orbit in an altitude of  837 km. Coverage is almost 

daily with a spatial resolution of 25 to 50 km (Bartalis et al., 2007; Naeimi et al., 2009).  

Time series of relative soil moisture for the years 2010 - 2012 were retrieved from 25 km resolution 

ASCAT backscattering coefficients at Vienna University of Technology using the WARP 5.5 software. It 

is delivered on a discrete global grid with grid point distances of about 12.5 km.  

The retrieval of relative soil moisture from ASCAT backscattering coefficients is based on the change 

detection method of Wagner et al. (1999a). First, the backscattering coefficients are resampled to a 

discrete global grid (Bartalis et al., 2006a). Then, they are extrapolated to a reference incidence angle 

of 40° using a second order polynomial. The influence of the vegetation is determined through the 

relationship between backscattering coefficient and incidence angle. While the backscattering 

coefficient decreases with higher incidence angles, for both, bare and vegetated soil, backscattering 

is higher for bare soil than for vegetated soil at low incidence angles, but lower at high incidence 

angles. Thus, the curves of bare and vegetated soil will cross over at a specific angle. At this 

“crossover angle”, which is different for dry and wet conditions, the influence of vegetation is 

assumed to be least (Wagner et al., 1999b). By considering the crossover angles, dry and wet 

reference backscattering coefficients are determined from long-term time series derived from the 

measurements of the European Remote Sensing satellites and ASCAT for every grid point. Finally, the 

dry and wet references are used for scaling the backscattering coefficients, assuming a linear 

relationship between the backscattering coefficient and surface soil moisture, and resulting in 

relative soil water content of the surface soil layer with values from 0 to 100 %, stating the degree of 

saturation of the topmost soil layer of 0.5 - 2 cm, as the extreme values of the backscattering 

coefficients are considered to represent a completely dry soil and saturated soil conditions of the 

grid point (Bartalis et al., 2008).  

Filtering of the ASCAT soil moisture product was done using the advisory flags provided with the soil 

moisture product. The flags are not derived from scatterometer data and contain information on 

snow and frozen soil probability. They are based on long-term climate information, the fraction of 

water, derived from the Global Lakes and Wetlands Database Level 3 product, and the topographic 

complexity representing the standard deviation of elevation from GTOPO30 data and normalized to 

values between 0 and 100 %. This information is given for every pixel. Snow and frost probability 
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have one value for every pixel and every day of the year (Bartalis et al., 2008). The filtering included 

the removal of all data points for which the flags indicated the possibility of snow or frozen soil. 

 

2.2.2.3 In situ data 

In situ data from three different test sites within the study area were used to validate the 

hydrological model. The test sites are part of the Terrestrial Environmental Observatories (TERENO) 

initiative (Zacharias et al., 2011), which are typical for the different land use types of the region and 

where in situ soil moisture is recorded on a regular basis. The location of the test sites is illustrated in 

Fig. 2.1. 

The agricultural test site Selhausen is located in the northern part of the study area at an altitude of 

102 – 110 m above sea level (a.s.l.), with a mean annual temperature of 9.8°C, and an average 

precipitation of 690 mm per year. Dominant soils are (gleyic) Cambisol and Luvisol. In situ soil 

moisture is obtained on permanently bare soil from three Stevens Hydra Probe sensors at soil depth 

of 4 cm and 7 cm in 10 minute resolution. For comparison with modeled soil moisture the mean of 

one hour, over the two depths, and of all three Hydra Probe sensors was taken. Data was available 

for the whole period of this study except October 2010. 

Rollesbroich is a grassland site, located in the southern part of the study area and covering an area of 

27 ha with altitudes ranging between 474 and 518 m a.s.l.. Mean annual temperature and 

precipitation are 7.7° C and 1033 mm, respectively. Main soils at this site are (gleyic) Cambisol, 

Stagnosol and Cambisol-Stagnosol. In situ soil moisture for April, May and June 2010 was measured 

every ten minutes using three CR 1000 Time Domain Reflectometry sensors at a depth of 10 cm. 

Hourly averages were taken over all sensors. Since May 2011 a wireless sensor network with 84 

nodes covering 13 ha and using SPADE sensors (Qu et al., 2013), provides soil moisture data every 15 

minutes for three depths (5, 20 and 50 cm). In this study we used the spatial mean of hourly 

averaged measurements at 5 cm depth for the comparison with modeled soil moisture. 

The third test site used in this study is the forest site Wüstebach covering an area of 38.5 ha. It is 

located in the southern part at an altitude of 600 m a.s.l. on average and has a mean annual 

precipitation of 1200 mm. The predominant soil type is cambisols (Montzka et al., 2013). In situ data 

of the test site were obtained from a wireless sensor network of 600 EC-5 sensors and 300 5 TE 

sensors (Decagon Devices, Pullman, WA) covering an area of 27 ha and measuring soil moisture 

through capacitance method at 150 locations at three depths of 5, 20 and 50 cm (Rosenbaum et al., 

2012). The temporal measurement frequency was 15 minutes (Bogena et al., 2010).  For comparison 
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with modeled soil moisture we calculated the spatial mean of the hourly averaged measurements of 

all locations at a depth of 5 cm. 

 

2.2.3 Methods 

2.2.3.1 WaSiM-ETH 

The grid-based hydrological model WaSiM-ETH version 8.8 (Schulla and Jasper, 2007) was used to 

calculate distributed hourly soil moisture of the study area for the years 2010 to 2012 with a 

horizontal spatial resolution of 200 m. A spin-up period of one year was used, which is appropriate 

given the fact that this study mainly focuses on the top soil moisture. The soil was discretized in 

different layers of which the topmost layer was chosen to be 0 - 5 cm, in order to take into account 

the penetration depth of C- and L-band microwave sensors. Since the sensors typically show smaller 

penetration depths for high soil moisture values, discrepancies during very wet soil conditions are 

expected.  

Meteorological forcing data (Temperature, precipitation, relative humidity, sunshine duration and 

wind velocity) were obtained from 62 stations, mainly operated by the German Weather Service 

(DWD). 19 of these stations are located within the study area and 43 stations are within a maximum 

distance of 50 km to the study area. Precipitation is interpolated by height regression within the 

model. It is corrected separately for rain and snow, differentiated through a threshold temperature. 

For both cases there is a fixed correction parameter, while wind speed is used as a second correction 

term. Each of three height ranges is subdivided into 10 subranges, and temperature and wind speed 

are interpolated for the middle of each of these subranges. The correction equation is applied to the 

precipitation value of the center of the subranges. New height gradients are then calculated from the 

corrected precipitation. Height regression is also used for the interpolation of temperature, while 

wind speed, sunshine duration and relative humidity are interpolated by inverse distance weighting. 

Other input data were terrain elevation, taken from the Digital Elevation Model for North Rhine-

Westphalia (DGM 25 NRW), and land use and degree of imperviousness, which were derived from 

multispectral satellite data of Landsat ETM+ (Montzka et al., 2008a; Montzka et al., 2008b). The soil 

hydraulic properties were derived from the Soil Information System of the Federal State of North 

Rhine-Westphalia with a scale of 1:50000.   

WaSiM-ETH was developed to investigate the spatial and temporal variability of hydrological 

processes in complex river basins. It uses the approach of Peschke (1977) for the calculation of 

infiltration, which is based on the Green-Ampt method (Green and Ampt, 1911), and a discrete 
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formulation of the Richards equation for simulating water dynamic in the soil zone. The Richards 

equation is applied to predict the vertical flow of water in the unsaturated multi-layer soil zone 

between two soil layers. The hydraulic properties of the soil are calculated using the relations 

proposed by van Genuchten (1980): The soil water retention curve is estimated for different soil 

textures through five independent parameters (residual water content, saturated water content, and 

shape factors α, n, and m).  A vertical one-dimensional finite difference scheme is applied to solve 

the Richards equation for a discrete soil layer. In the following step, vertical fluxes between the soil 

layers are calculated. Then interflow is generated, and after that exfiltration from groundwater into 

rivers and infiltration from rivers are calculated. The scheme starts with the lowest soil layer that was 

completely saturated at the last step or with the uppermost layer if there was no saturation in the 

last step. Upper boundary condition is the amount of infiltration and the lower boundary condition is 

the depth of the groundwater table. Removal of water for evapotranspiration is done at each time 

step before the soil water transport scheme starts. 

Potential evapotranspiration is estimated through the Penman-Monteith equation (Monteith and 

Unsworth, 1990). Actual evapotranspiration is derived from potential evapotranspiration through a 

reduction approach that takes into account the influence of the soil water content. The model 

considers soil moisture changes induced by topographic gradients and fluctuations of the 

groundwater table. Minimum input data to the model are time series of temperature and 

precipitation as well as grid data on topography, land use and soil properties (Jasper et al., 2006).  

Validation of the model was carried out through in situ data of the TERENO sites within the study 

area, which are described in sec. 2.2.2.3. 

 

2.2.3.2 Correlation analysis 

Correlation analysis was performed on the filtered SMOS and ASCAT soil moisture products in 

relation to the soil moisture reference at the same area, which was averaged over the extent of the 

respective pixels. These pixels are produced by amplifying the area around the respective grid points 

by using a nearest neighbor method. Nevertheless, it has to be kept in mind that this is just an 

approximation of the area that influences the soil moisture value of this grid point.  

As the modeled reference and the SMOS soil moisture product are both given in absolute volumetric 

soil moisture content, while the ASCAT product gives the relative saturation of the soil, a direct 

comparison is complicated. Thus, the latter was rescaled to volumetric values through multiplying 

the relative values with porosity data that are estimated from texture characteristics of the 

Harmonized World Soil Database with the equations of Saxton and Rawls (Saxton and Rawls 2006; 
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Wagner et al. 2013b). An additional comparison was performed with the original relative soil 

moisture values of the ASCAT product and relative modeled values. For this, the absolute modeled 

soil moisture was scaled between 0 and 1 using the minimum and maximum values of every grid cell. 

Pearson’s correlation coefficients were calculated and tested on their significance; only correlation 

coefficients with p < 0.05 were used for this study. Bias was calculated through 

 

 
𝑏𝑖𝑎𝑠 =  

1

𝑀
 ∑ (𝑆𝑀𝑚𝑜𝑑 − 𝑆𝑀𝑠𝑎𝑡)

𝑀

𝑚=1

 (2.1) 

 

where m is the number of observation pairs and SMmod and SMsat are the modeled soil moisture and 

satellite soil moisture product, respectively. All studies were carried out for March to November of 

the respective years, as during winter not enough soil moisture product values were left after 

filtering (i.e. frozen conditions) to perform a reasonable statistical analysis. 

In a separate analysis the influence of different numbers of observation on the correlation analysis 

was investigated. A statistically comparable control sample was created by counting the observations 

of the products and selected the same sampling size at random for every week. This resulted 

primarily in a reduced number of ASCAT observations, which is higher than the number of SMOS 

observations due to higher spatial and temporal resolution of the data. The correlation analysis for 

the whole study area was repeated with this dataset. 

 

2.2.3.3 Temporal stability analysis 

The temporal stability analysis was tested as a new method to validate soil moisture products. 

To assess the temporal stability of the SMOS and ASCAT soil moisture products, mean relative 

differences (MRD) of every pixel and their standard deviations were calculated and ranked for the 

two products and their corresponding averaged modeled soil moisture according to the method of 

Vachaud et al. (1985). In this method the relative difference 𝛿𝑛,𝑡 is calculated for every soil moisture 

value 𝜃𝑛,𝑡 at location n and time t  

 

 𝛿𝑛,𝑡 =  
𝜃𝑛,𝑡 −  𝜃 (𝑡)

𝜃 (𝑡)
 (2.2) 

 

where 𝜃 (𝑡) is the mean value over the whole area for one time step 
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Then mean relative difference 𝛿(𝑛) and standard deviation 𝜎(𝛿(𝑛)) are calculated over all time 

steps for every location: 
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and 

 

 𝜎(𝛿(𝑛))  =  √
1

𝑇 − 1
∑ 𝛿𝑛,𝑡 − 

𝑇

𝑡=1

𝛿(𝑛))² (2.5) 

 

This analysis gives information about the stability of the spatial distribution of soil moisture from one 

time step to another. Higher standard deviations of MRD indicate a lower persistence of soil 

moisture distribution in time. 

The rankings of MRDs illustrate the distribution of soil moisture in the study area.  Generally, drier 

(wetter) areas will get a low (high) MRD and with that low (high) rank. Therefore, the similarity of 

ranks of modeled soil moisture and soil moisture products is a measure of the similarity of their 

spatial distribution.  

The analysis was conducted for the SMOS product, for absolute and relative ASCAT soil moisture, and 

the respective averaged modeled soil moisture from WaSiM-ETH. Moreover, the SMOS product was 

directly compared to the ASCAT product. To avoid biased results through missing values, only data of 

the days on which retrievals for all pixels completely located in the study area were available were 

included in the analysis. Modeled soil moisture was taken for the same time steps.  
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2.3 Results and Discussions 

2.3.1 Validation of modeled soil moisture 

A comparison of the WaSiM-ETH soil moisture simulation with the in situ measurements at the 

TERENO test sites is shown in Fig. 2.2. As the in situ soil moisture measurements are partly influenced 

by freezing during winter time (January, February and December) all following analyses were 

restricted to the period of March to November. It has to be considered, that the in situ data was 

measured with different sensor types at each site. 

For the test site Selhausen, the correlation coefficient was 0.80, indicating that the model captures 

soil moisture dynamics very well, which can also be seen in the corresponding time series (Fig. 

2.2 a)). The bias of −0.05 m³/m³ and the RMSE of 0.07 m³/m³ can be explained by the measurement 

depth of the in situ data, which is a mean of measurements in 4 cm and 7 cm depth, while the model 

simulates a depth of 5 cm, and the fact that the in situ data was obtained from a permanent bare 

soil, while for hydrological modeling crop-covered agricultural land was assumed as it was indicated 

by the Landsat ETM+ land use information of this area.  

The WaSiM-ETH model was also able to capture the soil moisture dynamics of the Rollesbroich and 

Wüstebach test sites (R = 0.84 and 0.63, respectively). However, again biases of −0.05 m³/m³ and 

0.05 m³/m³, respectively, were observed. For Rollesbroich, RMSE is 0.06 m³/m³.  In situ data for the 

year 2010 was measured at a depth of 10 cm, while the rest was done at 5 cm depth with a wireless 

sensor network. In 2010 and 2011, the year the network was installed, the model seems to 

overestimate soil moisture, while for 2012 the measurements are captured better. For Wüstebach, 

the fluctuations of modeled soil moisture are higher than of the in situ data, which explains the 

higher RMSE of 0.09 m³/m³, although the general trend is reproduced. Though, the standard 

deviation of in situ soil moisture is quite high, and mostly modeled data is within this range. 

Additionally, it is possible that the application of the pedotransfer function of Rawls and Brakensiek 

(1985) to the digital soil map information leads to an underestimation of soil porosity for forest sites 

like Wüstebach, since the data base for the pedotransfer function derivation originated mainly from 

arable soils with typically lower porosities compared to forest sites.  
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Fig. 2.2: Time series and scatterplots of in situ measurements and model results of soil moisture for 
a) and b) Selhausen, c) and d) Rollesbroich, e) and f) Wüstebach. 

The overall correlation coefficient for all test sites is 0.72 with a corresponding bias of -0.01 m³/m³. 

Therefore, it is assumed that the modeled reference soil moisture adequately represents the soil 

moisture pattern of the study area and can be used for the validation of the satellite soil moisture 

products.  

 

2.3.2 Time series 

Fig. 2.3 shows soil moisture time series from SMOS for three different pixels covering the TERENO 

test sites Selhausen, Rollesbroich and Wüstebach. In situ soil moisture data from these test sites 

were used to validate the model, since they are representative for the whole study area in terms of 

land use, soil, and topography. The modeled soil moisture in Fig. 2.3 is averaged over the respective 

SMOS pixel and the grey shading shows the standard deviation of the spatial averaging. The 

presented values correspond to the dates of the available observations of the remotely sensed 

products. The time series of ASCAT soil moisture, converted into absolute values, in Fig. 2.4 consist of 

the pixels including the same test sites and the respective averages modeled by WaSiM-ETH. Fig. 2.5 
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shows the same ASCAT pixels in the original relative values and the modeled averages scaled 

between 0 and 1 by using its minimum and maximum values. 

In general, the SMOS soil moisture catches the trend of the model very well, but for the pixels in the 

southern part, it exhibits a substantial bias. ASCAT soil moisture shows no temporal constant bias, 

both for relative and absolute soil moisture values. In addition, ASCAT soil moisture shows high 

fluctuations, which the reference does not reproduce. On the one hand, this impression may partly 

arise, as the time series of ASCAT contain much more data points, thus enhancing the appearance of 

noise. On the other hand, C-band senses a thin layer of about 0.5 - 2 cm, whereas L-band 

observations, as well as the modeled reference, are valid for up to 5 cm. Therefore, ASCAT data is 

bound to vary more quickly. 

The pixels of SMOS and ASCAT, which contain the Selhausen test site have a low topographic relief, 

the ASCAT advisory flags indicate a small topographic complexity of 2 %. According to the land use 

map derived from multispectral satellite data of Landsat ETM+ (Montzka et al., 2008a; Montzka et 

al., 2008b), they consist of a high fraction of agriculturally used land (49 % of the SMOS pixel, 55 % of 

the ASCAT pixel), but also contain some forests (19 % of the SMOS pixel, 15 % of the ASCAT pixel) and 

a small fraction of settlements. Both soil moisture products show the highest correlation with 

modeled data for this pixel, with a correlation coefficient of 0.62 for the SMOS product, 0.59 for the 

absolute ASCAT soil moisture and 0.56 for relative ASCAT soil moisture. SMOS shows a dry bias of 

0.06 m³/m³, while ASCAT exhibits a bias of 0.04 m³/m³ in terms of absolute and 0.09 in terms of 

relative soil moisture.  

Although the intersection of the pixels that include the Rollesbroich test site is rather small, they 

contain similar amounts of grassland (23 % of the SMOS pixel, 26 % of the ASCAT pixel), and forests 

(67 % of the SMOS pixel, 59 % of the ASCAT pixel). The ASCAT pixel comprises a water fraction of 5 %. 

The relief is higher than for the Selhausen pixel; the ASCAT advisory flags show a topographic 

complexity of 7 %. Thus, correlation coefficients are lower with a value of 0.51 for the SMOS product 

and 0.48 both for absolute and relative ASCAT soil moisture. The bias of SMOS is higher with 

0.13 m³/m³, while ASCAT shows biases of 0.09 m³/m³ and 0.07 for absolute and relative soil 

moisture, respectively. 

The pixels containing the Wüstebach test site consist of a high amount of forest (57 % of the SMOS 

pixel, 70 % of the ASCAT pixel), the grassland fraction (26 % of the SMOS pixel, 18 % of the ASCAT 

pixel) is also high. The ASCAT advisory flags show a topographic complexity of 5 %. 
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SMOS shows a lower correlation coefficient than for the other pixels with 0.37 and a higher bias with 

0.19 m³/m³. The ASCAT pixel also shows the lowest correlation coefficient with 0.40 both for 

absolute and relative values, and a bias of 0.08 m³/m³ for absolute and -0.01 of relative soil moisture. 

Although the detailed land use map, derived from Landsat ETM+, sometimes shows a high amount of 

forests, the SMOS retrieval cases for all values included in this study are nominal. This discrepancy 

most probably results from the, compared to the Landsat map, coarse spatial resolution of the 

ECOCLIMAP land use map used in the SMOS processor. A nominal retrieval case means that the 

retrieved soil moisture value is valid for the land use types of low vegetation. As the modeled soil 

moisture gives the value for the whole pixel, a possible explanation for the higher correlation, as well 

as for the smaller bias of SMOS and modeled soil moisture for the pixel that covers Selhausen is, that 

it contains less forest than the other pixels described here.  

 

 

Fig. 2.3: Time series of SMOS (red) and modeled (black) soil moisture for the pixel that includes 
a) Selhausen, b) Rollesbroich, c) Wüstebach. Modeled soil moisture is only plotted for time steps with 
SMOS observations. The grey background indicates ± one standard deviation of the spatial averaging 
of modeled soil moisture. 
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Fig. 2.4: Time series of absolute ASCAT (red) and modeled (black) soil moisture for the pixel that 
includes a) Selhausen, b) Rollesbroich, c) Wüstebach. Modeled soil moisture is only plotted for time 
steps with ASCAT observations. The grey background indicates ± one standard deviation of the spatial 
averaging of modeled soil moisture. 

 

 

Fig. 2.5: Time series of relative ASCAT (red) and modeled (black) soil moisture for the pixel that 
includes a) Selhausen, b) Rollesbroich, c) Wüstebach. Modeled soil moisture is only plotted for time 
steps with ASCAT observations. The grey background indicates ± one standard deviation of the spatial 
averaging of modeled soil moisture. 
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2.3.3 Correlation coefficients and biases for the whole study area 

The spatial distribution of correlation coefficients in the Rur and Erft catchments (Fig. 2.6) shows 

similar to higher correlation coefficients for the ASCAT soil moisture product than for the SMOS 

product. While the SMOS product shows the highest values in the middle of the study area and very 

low values in the northwestern part, in the ASCAT product there is a decline of correlation from 

about 0.4 in the north to nearly 0.7 in the south, both for absolute and relative soil moisture values. 

This indicates that the quality of retrieval of ASCAT soil moisture is dependent on topography and the 

vegetation height, which both influences volume scattering and thus effects the soil moisture 

retrieval.  

Looking at a map of RFI probability (Fig. 2. 7 a)), derived from the values given in the SMOS soil 

moisture product, and averaged over the three years for every pixel, exhibits a pattern, that is very 

similar to that of the SMOS correlation coefficients. The correlation of RFI probability and correlation 

coefficient of the single pixels is shown in Fig. 2.7 b), the resulting correlation coefficient is −0.82. 

That leads to the conclusion, that the SMOS product is highly influenced by RFI in the north-western 

part of the study area, although the RFI flags are not raised. It is possible that the thresholds used for 

setting these flags are not adequate for this study area.  

 

 

Fig. 2.6: Correlation coefficients of modeled soil moisture with a) SMOS soil moisture, b) ASCAT 
absolute soil moisture, and c) ASCAT relative soil moisture for each pixel. 
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Fig. 2.7: Influence of RFI on SMOS correlation coefficients: a) Averaged probability of RFI (values taken 
from the SMOS product) and b) Correlation of three year averaged RFI probability with correlation 
coefficient between soil moisture reference and SMOS product of single pixels. 
 

 

Table 2.1 shows correlations and biases for all pixels completely located in the study area. The ASCAT 

soil moisture product has an overall correlation coefficient of 0.50, for absolute values as well as for 

relative soil moisture. Correlation does not change much over the years and is always similar for 

absolute and relative soil moisture. The small deviations are probably caused by the averaging of the 

relative modeled soil moisture over the ASCAT pixels. 

  

 
Table 2.1: Correlation coefficients and biases of modeled soil moisture to SMOS and absolute and 
relative ASCAT soil moisture  for the years 2010-2012 and all pixels completely located in the study 
area. n is the number of observations, R is the correlation coefficient. bias is in [m³/m³] for SMOS and 
ASCAT (abs) and in terms of relative soil moisture for ASCAT(rel).  

 

 

 

 

 

 

 

 

 SMOS  ASCAT (abs) ASCAT (rel) 

  n R bias   n R bias  n R bias 

2010 1145 0.28 0.12  3735 0.49 0.07  3735 0.48 0.10 

2011 1328 0.41 0.10  3745 0.56 0.09  3745 0.54 0.05 

2012 945 0.14 0.13  3859 0.46 0.10  3859 0.49 0.10 

overall 3438 0.28 0.12   11339 0.50 0.07  11339 0.50 0.09 
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The SMOS product shows an overall correlation coefficient of 0.28, mainly due to the very low 

correlation in 2012. The correlation increases from 2010 to 2011, probably due to the end of the 

commissioning phase of SMOS, which continued until June 2010, and for this time the soil moisture 

product may not be consistent. Additionally, many RFI sources were switched off in 2011 (Oliva et al., 

2012) resulting in a higher correlation. However, the correlation again decreases considerably for 

2012. This is most likely due to a strong new source of RFI, that appeared in Poland in summer 2012, 

resulting in a reduced number of observations, and probably also the remaining retrievals are 

affected. 

The development of correlation coefficient over the seasons (Fig. 2.8) also shows higher values for 

2011 than for 2010 for the SMOS product, but it is still lower than for ASCAT, except for spring 2011. 

The ASCAT product shows a decrease of correlation from spring to summer and an increase from 

summer to autumn for 2011, following the increase and decrease of wet biomass. For 2010, the 

relative soil moisture values show the same behavior, but the absolute soil moisture declines from 

summer to autumn. This decline is caused by the distribution of absolute values in the soil moisture 

reference, which is not visible in the relative soil moisture, as the distribution is smoothed by the 

scaling.  

It is remarkable, that SMOS has very low to no correlations in autumn, although the influence of the 

vegetation canopy is lower during this time of the year. This could indicate problems with the 

parameterization of litter or in the flagging of snow and frost, as to some occasions local weather 

stations show temperatures < 0°C, while the retrievals are not frost-flagged. These frost occurrences 

may be local phenomena, so they may not be visible in the SMOS auxiliary data, which is taken from 

ECMWF, but still influence the retrieval. The low correlations of the SMOS product for 2012 can again 

be observed. While for summer and autumn this may be explained by the new RFI source from 

Poland, which was detected in July 2012, it cannot explain the low correlation in spring. As the 

correlation of the ASCAT product also decreases severely in spring 2012, but again rises to the values 

of the previous years in summer, a likely explanation are inaccuracies in the soil moisture reference 

for this period. In general, the ASCAT soil moisture product shows similar to slightly larger 

correlations than the SMOS product, which is in accordance with Albergel et al. (2012), who found 

slightly higher correlations of ASCAT soil moisture with in situ data than of SMOS Level 2 product in 

Europe.  
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Fig. 2.8: Seasonal correlation coefficients (top) and biases of modeled soil moisture to SMOS and 
absolute ASCAT (middle) and relative ASCAT (bottom) soil moisture products for all pixels completely 
located in the study area. 
 

 

The bias of SMOS in relation to modeled soil moisture shows a clear distinction between the 

northern and southern part of the study area (Fig. 2.9). The southern part of the study area shows 

values up to 0.20 m³/m³ and higher, in the northern region they are constantly lower than that. With 

these values the bias of SMOS and modeled soil moisture is substantially higher than the one of 

modeled and in situ soil moisture and also exceeds the values of standard deviation of the averaging 

of modeled soil moisture (see Fig. 2.2). Montzka et al. (2013) already found the same distribution of 

bias in the study area for the time of May and June 2010, which was still in the commissioning phase 

of SMOS, but this study makes apparent that the dry bias is a temporal stable phenomenon.  
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Fig. 2.9: Bias of modeled soil moisture to a) SMOS soil moisture, b) ASCAT absolute soil moisture, and 
c) ASCAT relative soil moisture for each pixel. 
 

This can also be observed in Table 2.1 and in Fig. 2.8, where the development of the bias over time is 

displayed. The SMOS bias is nearly constant over the seasons during the three years with values 

varying between 0.15 m³/m³ and 0.20 m³/m³. This shows that the bias is not dependent on accuracy 

levels of the vegetation opacity retrieval over the year or the variations of RFI in the region, which 

also show temporal variations due to the RFI probability given in the SMOS product, but is more a 

matter of different kinds of land use or other input parameters to the retrieval model.  

Similar magnitudes of bias are reported by dall’Amico et al. (2012), who found biases of 0.11 m³/m³ 

and 0.3 m³/m³ for the Upper Danube Catchment in Southern Germany. Dry biases, even though 

smaller, are also reported by Lacava et al. (2012) for Italy and Luxembourg, Sánchez et al. (2012) for 

Spain and Bircher et al. (2013) for Western Denmark. 

The implementation of Mironov dielectric mixing model in processor version 5.51 shows an absolute 

improvement of 0.04 m³/m³ respectively for the years 2010 and 2011, as well as for the single 

seasons in these years in comparison to soil moisture retrieved in the processor version 5.00 (not 

shown), which used the Dobson model, but the remaining bias is still considerable. 

The bias of ASCAT soil moisture to modeled soil moisture is more variable with an overall value of 

0.07 m³/m³ for absolute and 0.09 in terms of relative soil moisture for the three years (Table 2.1). 

Consistent seasonal variations cannot be observed, the trends are similar for absolute and relative 

values (Fig. 2.8), and spatial patterns (Fig. 2.9) also do not get obvious, only the negative values in the 

mountainous part of the study area for relative soil moisture are remarkable. The bias of absolute 
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values is similar to lower compared to the SMOS product, but the interpretation of the biases is 

difficult, as they are highly influenced by the porosity data used for conversion. 

The overall performance of the ASCAT soil moisture product, which is the more mature product, is 

slightly better, in correlation as well as in bias. The SMOS product is a rather new product and still 

has some inaccuracies, which have to be overcome. They result mainly from local or low energy RFI, 

which were not detected by the retrieval approach. The reasons for the bias have to be further 

analyzed. 

Nevertheless, a correlation analysis like the one presented here has some limitations, for example it 

could be statistically influenced by different sampling sizes. Thus, correlation coefficients and biases 

were calculated again for SMOS and ASCAT soil moisture products with the same sampling size, 

randomly chosen on a weekly basis. With a number of 3399 observations an overall correlation of 

0.29 for the SMOS product, 0.49 for the absolute ASCAT soil moisture and 0.53 for relative ASCAT soil 

moisture was found. These values are similar to the overall correlation coefficients in Table 2.1, so 

the sampling size does not seem to have a high influence on the results presented in this study. 

Other problems of a correlation analysis are that it does not catch the temporal development of time 

series very well, and it also does not take into account the spatial distribution in an area.  

Therefore, this study continues with the analysis of the temporal stability of the soil moisture 

products, which is less influenced by sampling size and not so much dependent on the absolute 

values of soil moisture, but rather accounts for the distribution of soil moisture. 

 

2.3.4 Temporal stability analysis 

The temporal stability analysis with MRDs and their standard deviations and rankings for SMOS and 

the respective averages of modeled soil moisture is shown in Fig. 2.10.  SMOS has MRDs 

between -0.21 and 0.24 and for the WaSiM-ETH soil moisture the range of MRDs is somehow smaller 

with -0.12 to 0.21. 

Compared to modeled soil moisture time series, standard deviations of the SMOS MRDs are quite 

high, their mean over all pixels is 0.20, while for modeled data it is 0.05. 
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Fig. 2.10: Mean relative differences and their standard deviations for a) WaSiM-ETH soil moisture 
averaged over the extent of SMOS pixels and b) SMOS soil moisture product. The numbers indicate 
the respective grid point IDs. 

 

The same analysis for ASCAT absolute soil moisture and the respective averaged modeled soil 

moisture values (Fig. 2.11) shows MRDs of -0.24 to 0.52 and -0.11 to 0.23, respectively. Standard 

deviations are again very low for the modeled data, with a mean over all pixels of 0.07, while they 

are higher for ASCAT, with a mean of 0.26. 

Fig. 2.12 shows the results for relative ASCAT soil moisture, which has MRDs between -0.22 and 0.45 

and relative modeled soil moisture, which has MRDs of -0.06 to 0.1. Standard deviations are 0.09 for 

modeled and 0.26 for ASCAT soil moisture.  

 

 

Fig. 2.11: Mean relative differences and their standard deviations for a) WaSiM-ETH soil moisture 
averaged over the extent of ASCAT pixels and b) absolute ASCAT soil moisture. The numbers indicate 
the respective grid point IDs. 
 

 

Fig. 2.12: Mean relative differences and their standard deviations for a) WaSiM-ETH relative soil 
moisture averaged over the extent of ASCAT pixels and b) relative ASCAT soil moisture. The numbers 
indicate the respective grid point IDs. 
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The higher ranges of MRDs and higher standard deviations of the soil moisture products compared to 

modeled soil moisture imply more dynamics in the spatio-temporal distribution in the remotely 

sensed products. An explanation for this discrepancy is that the model calculates soil moisture of the 

first 5 cm of the soil, while the remotely sensed soil moisture generally is only valid for a smaller 

depth. Higher standard deviations of the remotely sensed soil moisture products may also partly be 

due to external effects. However, the higher standard deviations of ASCAT may indicate a 

discrepancy in penetration depth, a problem that was already noticed in chapter 2.2.3.2. The 

standard deviations of MRDs indicate that the modeled soil moisture shows higher temporal 

persistency compared to ASCAT and SMOS soil moisture products.  

It is assumed that in heterogeneous regions, like our study area, soil moisture shows distinct 

structured spatial patterns. These patterns should be reflected in both modeled and remote sensing 

based soil moisture. Therefore, the MRD ranks of the individual pixels in the different data sets 

should be alike, i.e., a relatively dryer (wetter) region should have lower (higher) ranks for all soil 

moisture products. To investigate this, MRDs of every pixel were ranked and the ranks of the 

averaged soil moisture were compared to the ranks of the respective soil moisture products in Fig. 

2.13 a) - c). Additionally, the MRD ranks of SMOS and ASCAT pixels were compared, which contribute 

to the study area and overlap to at least 50 % (Fig. 2.13d)).   

As the study area consists of only few pixels, correlation coefficients calculated from the rankings of 

these pixels have merely low significance. Therefore, it was only tested how many pixels are within a 

range of two ranks from modeled to remotely sensed soil moisture. For SMOS and relative ASCAT soil 

moisture in comparison with modeled soil moisture, three pixels are within this range, while for 

absolute ASCAT values 4 pixels are within the range. Nevertheless, the scatterplots show a rather 

negative relationship for SMOS and relative ASCAT soil moisture, while the absolute ASCAT soil 

moisture shows the best results. This relationship of the SMOS product to modeled soil moisture 

probably reflects the distribution of the dry bias, which is higher in the generally wetter southern 

part and therefore counteracts the soil moisture pattern in the study area. 
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Fig. 2.13: Comparison of ranks of the MRDs of WaSiM-ETH pixel averages to ranks of MRDs of a) 
SMOS pixels b) absolute ASCAT pixels c) of ranks of MRDs of WaSiM-ETH pixel averages in relative soil 
moisture values and relative ASCAT pixels and d) of ranks of MRDs of ASCAT and SMOS pixels. The 
dashed line indicates pixels that are two ranks away from the 1:1 line. 
 

Generally, the soil moisture distribution of the different products is highly influenced by the auxiliary 

information (e.g. soil maps) used for the soil moisture estimation. This gets obvious, for example, in 

the comparison of rankings of relative soil moisture, as the scaling of modeled soil moisture between 

highest and lowest values of the time series for every WaSiM-ETH grid cell changes the distribution 

of soil moisture, which is highly influenced by the lower and upper limits (wilting point and saturation 

point) of the respective soil types and these differences are reduced through the conversion into 

relative soil moisture. 

The comparison of SMOS product to ASCAT product also exhibits three pixels within this range of two 

ranks. The differences may arise from the different characteristics of the two products, but also the 

different extents of the area for which they are valid may play a role here. 

In general, the results of this analysis seem to confirm the prior results. Both remote sensing 

products perform similar in the Rur and Erft catchments, with higher fluctuations and a more similar 

distribution of values of ASCAT compared to modeled soil moisture. However, the latter is only valid, 

when the absolute values of the model are considered in comparison with the ASCAT product, the 

relative values compared to rescaled modeled soil moisture, as well as SMOS soil moisture, show less 

correspondence in their spatial patterns.  

When interpreting the results of this study, it has to be taken into account, that the spatial 

distribution of soil moisture in the model and the different products is influenced by different 

factors. As this study analyses only a relative small area compared to the pixel size of the SMOS and 

ASCAT soil moisture products, there were not enough pixels to calculate meaningful statistics, for 

example correlation coefficients of ranks. Further studies are needed to verify this analysis in larger 

areas and for different environments (e.g. semi-arid areas).  
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Nevertheless, it could be shown that temporal stability analysis can be used as an additional tool for 

the validation of soil moisture products. The advantage of this method is that it accounts both for the 

temporal and for the spatial behavior of the products and does not only investigate the performance 

of single pixels. Furthermore, a temporal and spatial stable bias in a soil moisture product would not 

influence the results, and with adequate bias mitigation strategies, the information content of the 

product may still be valuable for a further utilization of the data. 

 

2.4 Conclusions 

The SMOS Level 2 soil moisture product and the ASCAT soil moisture product for the Rur and Erft 

catchments were compared to a soil moisture reference generated by the hydrological model 

WaSiM-ETH for the years 2010 to 2012. Additionally, as a new validation method, a temporal stability 

analysis of the two soil moisture products was performed to investigate the quality of the soil 

moisture products. 

The SMOS soil moisture product showed similar trends compared to modeled soil moisture. 

However, the correlation was highly dependent on RFI. Regions with high RFI probability show lower 

correlations and overall correlations are higher in times with less RFI. Especially in the southern part 

of the study area, a temporally stable dry bias was observed, which was probably influenced by land 

use or other input parameters of the retrieval model. 

ASCAT soil moisture showed generally higher temporal variability, but still good correlation with 

reference data both for the whole study area and for single pixels. The correlation was better for the 

relatively flat northern part of the study area compared to the southern part within the Eifel 

Mountains. The bias did not exhibit specific temporal or spatial patterns. The relative soil moisture 

values and the ones converted into absolute soil moisture showed similar results.  

Further analysis of the products in the study area may include a cdf-matching to investigate them 

with a reduced systematic bias. 

The temporal stability analysis showed a similar spatial distribution for modeled soil moisture and 

the absolute ASCAT values. However, SMOS soil moisture and relative ASCAT soil moisture did not 

exhibit the same spatial patterns as the reference. The temporal stability analysis is recommended as 

a useful tool for a more detailed validation of soil moisture products. 
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3 Spatio-temporal variability of global soil moisture products2
 

3.1 Introduction 

Impacting surface and subsurface runoff as well as evaporation and transpiration, soil moisture is an 

essential variable in energy and water balance (Seneviratne et al., 2010). Thus, information about soil 

moisture and its spatial and temporal dynamics is crucial for improvements in climate and 

hydrological modeling and in numerical weather prediction. These applications require represent-

tative soil moisture time series for large regions or even global coverage.  

Remote sensing techniques showed to be able to provide soil moisture with high coverage and in 

reasonable temporal and spatial resolution (Kerr, 2006). Several sensors differing in sensing 

technique (active/passive), frequency, and retrieval methods are currently used for monitoring soil 

moisture, resulting in soil moisture products with different characteristics and spatial resolution. 

Sensors used for retrieving soil moisture at present are the ASCAT onboard the meteorological 

satellite MetOp-A (Bartalis et al., 2007), the AMSR-2 on the Global Change Observation Mission – 

Water (Su et al., 2013), the SMOS satellite (Kerr et al., 2010), and the combined active and passive 

instruments Aquarius (Luo et al., 2013) and SMAP (Entekhabi et al., 2010). 

Another way to provide soil moisture with high spatial coverage is modeling. Products from different 

models are available, for example from the Global Land Data Assimilation System (Rodell et al., 2004) 

or from the Integrated Forecast Model of the ECMWF. They provide operational analyses for which 

the model is constantly improved, but also reanalyses, that use only one model and thus give 

consistent data (Albergel et al., 2012), for example the ERA Interim (Dee et al., 2011). 

Modeled, but also remotely sensed products show a large range of spatial resolutions. While for 

models the spatial resolution is chosen mainly on consideration about computational and storage 

costs, remotely sensed products are dependent on the technical possibilities of antennas. Currently, 

active microwave systems provide higher spatial resolutions than passive microwave systems 

operating at lower frequencies, such as L-band (Wang and Qu, 2009). Nevertheless, theory says that 

L-band radiometry has several advantages for the estimation of soil moisture compared to higher 

frequencies (Kerr et al., 2012; Vitucci et al., 2013), especially the higher vegetation penetration depth 

                                                 
2 Adapted from: Rötzer, K., Montzka, C., Vereecken, H. (2015): Spatio-temporal variabiliy of global 

soil moisture products. J. Hydrol. 522, 187–202. 
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(Njoku and Entekhabi, 1996) and the higher soil penetration depth, compared to higher frequency 

systems which is between 0.5 and 2 cm for C-band systems like ASCAT and AMSR-2 and about 3-5 cm 

for L-band systems (Escorihuela et al., 2010), like SMOS, Aquarius, and SMAP. 

These differences, as well as diverse modeling and retrieval approaches are the main sources of 

deviations between different modeled and remotely sensed soil moisture products. The validation of 

these products is challenging due to their rather coarse resolution compared to in situ data and the 

lack of extensive in situ measurements. Additionally, the products and in situ data have different 

scaling characteristics. According to Western and Blöschl (1999) “scale” can be defined as a triplet 

consisting of spacing, extent and support. Spacing refers to the distance between samplings or 

neighboring pixels, support to the integrated volume or area of one measurement, and extent to the 

covered area (Vereecken et al., 2014). However, in situ data differs from the global products in these 

three components. Therefore, to estimate the spatial and temporal validity of validation studies, it is 

important to know the spatio-temporal characteristics of the soil moisture products. 

In this study these characteristics are evaluated to exhibit statistical and structural differences and 

similarities between the products, and also between different regions. The influence of sensor and 

retrieval methods on the statistical patterns is analyzed. This knowledge is also important in case that 

several products should be used in one application. The ESA Climate Change Initiative soil moisture 

product (Dorigo et al., 2012; Liu et al., 2011; Liu et al., 2012), for example, combines products from 

different sensors. But also if only one product is used in a designated region, it is important to be 

aware of these characteristics. Applications for soil moisture products are for example usage in 

runoff forecasting (Brocca et al., 2012), vegetation monitoring (Gouveia et al., 2009), and natural risk 

assessment, especially drought (Bolten et al., 2010) and flood monitoring (Wanders et al., 2014). 

Furthermore, the knowledge of systematic differences between soil moisture products is essential 

for usage in hydrological data assimilation (Yilmaz and Crow, 2013). As global soil moisture products 

may not always meet the spatial requirements of the respective applications due to their rather 

coarse resolution, up- and downscaling of soil moisture is of importance. For this task, information 

about spatial variability of soil moisture is crucial (Manfreda et al., 2007). 

On larger extent scales, precipitation patterns and climatic influences are the dominant factors on 

spatial soil moisture distribution (Famiglietti et al., 2008). Nevertheless, its impact is controlled by 

evaporation, soil type, irradiation, vegetation and topography (Dorigo et al., 2012). 

The influence of these factors should be reflected in the soil moisture products. If their spatial and 

temporal patterns are different, these differences will be introduced by the respective estimation 

method.  
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To examine spatial and temporal patterns in the different soil moisture products, we apply several 

frequently used methods on three different soil moisture products in this study: First, a rank stability 

analysis is performed. This is traditionally used for the minimization of sampling locations for soil 

moisture measurements on field scale through the determination of locations that are 

representative for the whole area (Vachaud et al., 1985; Cosh et al., 2004; Brocca et al., 2009b; Zhao 

et al., 2013). In Rötzer et al. (2014) it was introduced as a method for the validation of soil moisture 

products through the correlation of their ranks. Vanderlinden et al. (2012) give an overview on 

methodologies and applications of temporal stability. 

Then the relationship of spatial mean and spatial variance of soil moisture was analyzed. This 

relationship was often investigated on small extent scale and it was found to be quite variable: Bell et 

al. (1980) and Famiglietti et al. (1998) found decreasing variance with decreasing mean, while for 

example Famiglietti et al. (1999), Hupet and Vanclooster (2002) and Brocca et al. (2007) found 

increasing variance with decreasing  mean. Others, like Famiglietti et al. (2008) and Rosenbaum et al. 

(2012) observed a convex upward relationship. The different shapes of relationships are caused by a 

variety of factors like topography, radiation, soil characteristics, vegetation and land use, with 

different strength of influence in the respective study areas. Li and Rodell (2013) analyzed the same 

relationship on the continental extent scale for in situ measurements, modeled and remotely sensed 

soil moisture from AMSR-E and found a convex relationship for in situ measurements over different 

climate zones. For modeled and remotely sensed soil moisture this relationship was less pronounced.  

The third analysis is the examination of influencing factors on the spatial variance of soil moisture 

through its decomposition into temporal variant and temporal invariant parts (Mittelbach and 

Seneviratne, 2012). The analysis considers not only absolute values, but the temporal mean of a site 

and its anomalies and provides information on whether differences between sites are due to 

temporal mean or anomaly (Brocca et al., 2014). The comparison of the single contributors to the 

different products can give added value for improved downscaling algorithms (e.g. Das et al., 2014; 

Merlin et al., 2006; Merlin et al., 2013) and for matching different soil moisture products to generate 

long-term time series (Dorigo et al., 2012; Liu et al., 2011; Liu et al., 2012). For the latter, it is 

important that all products have a similar temporal mean on one study site. Through these analyses, 

the statistical and structural relative differences of the soil moisture products will be assessed. 

The soil moisture products were also analyzed on their behavior on different scales following the 

definition of Western and Blöschl (1999). Changes of one of the three components spacing, support, 

and extent impact the spatial variance of soil moisture. Rodriguez-Iturbe et al. (1995) found a power 

law decay of spatial variance of soil moisture with increasing support for areas up to 1 km², while Ryu 
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and Famiglietti (2006) did not find this behavior for larger support areas of 1 to 140 km². The 

increase of extent was found to increase spatial variance according to a power law function for scales 

of 16 m to 1.6 km (Famiglietti et al., 2008). Scaling functions like this are important information for 

the up- and downscaling of soil moisture. It will be examined if similar relationships can be found on 

varying support and extent scales of modeled and remotely sensed soil moisture and if the scaling 

behavior of the different products is similar.  

In the following, the characteristics of three soil moisture products, the SMOS Level 2 product, the 

ASCAT relative surface soil moisture product, and the soil moisture of the ERA Interim reanalysis 

from ECMWF will be examined for the years 2010-2012. After the description of the used soil 

moisture products and the methods in the following section, first the global patterns of the products 

will be analyzed and then their statistics for specific regions will be compared. In the last chapter the 

behavior of the soil moisture products on different scales will be examined. 

 

3.2 Material and Methods 

3.2.1 The Soil Moisture Products 

3.2.1.1 SMOS Soil Moisture Product 

Launched in 2009, SMOS is a sun-synchronous orbiting satellite at an altitude of 755 km. On three 

day basis, the SMOS radiometer records two-dimensional brightness temperatures in the L-Band at 

1.4 GHz. Its measuring performance is 0.8 to 3.0 K for the radiometric sensitivity with a spatial 

resolution of 30 to 50 km (Kerr et al., 2001). 

Volumetric soil water content is retrieved in the SMOS Level 2 Processor for Soil Moisture, which is 

working with a physically based algorithm (Kerr et al., 2012) from the Level 1C brightness 

temperature product. Resampled on the ISEA-4H9 grid, it is distributed with approximately 15 km 

distance between grid points. 

The SMOS soil moisture product (hereafter referred to as SMOS) used in this study was retrieved 

with the Level 2 Processor version 5.51.  Soil moisture data was filtered through the data quality 

index SM_DQX, which is the standard deviation of the retrieved soil moisture and reflects 

radiometric uncertainty, and the Chi2 parameter, which is a measure for the goodness of retrieval fit. 

Values with SM_DQX > 0.1 m³/m³ and Chi2 < 0.5 and Chi2 > 2.5 were excluded from all analyses. 
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3.2.1.2 ASCAT Soil Moisture Product 

The ASCAT is a real aperture radar onboard the MetOp-A satellite, a meteorological mission with a 

sun-synchronous orbit at an altitude of 837 km. Operating in C-band at 5.255 GHz, within every 

measurement a triplet of backscattering coefficients at three incidence angles is produced. Its global 

coverage is one to two days with a spatial resolution of 25 to 50 km (Bartalis et al., 2007; Naeimi et 

al., 2009). 

The operational ASCAT soil moisture product (hereafter referred to as ASCAT) is a relative measure 

with values between 0 and 100%, stating the degree of saturation of the soil. The retrieval of relative 

soil moisture from the ASCAT backscattering coefficients is based on the change detection method of 

Wagner et al. (1999a). 

This study uses the operational product produced by Eumetsat and retrieved in the Soil Moisture 

Product Processing Facility (SOMO PPF) version 2.0 until August 2011, since then version 3.1 was 

used for retrieval (Eumetsat, 2011). The product is filtered with the soil moisture error (sm_error), 

which is derived by error propagation of the backscatter noise, the frozen soil probability and the 

snow cover probability, both based on long-term climate information. Values with sm_error >= 20 %, 

frozen soil probability >= 50 % and snow cover probability >= 50 % were excluded. 

For a quantitative comparison with the other products, the relative soil moisture values are 

converted to absolute soil moisture by multiplying them with soil porosity values. These were 

calculated at the Vienna University of Technology with the equations of Saxton and Rawls (2006) 

from data from the Harmonized World Soil Database. 

 

3.2.1.3 ERA Interim Soil Moisture 

ERA Interim is a reanalysis of the global atmosphere covering the period from 1979 and continuing in 

real time (Dee et al., 2011). Basing on the Integrated Forecasting System, the numerical weather 

prediction model of the ECMWF, the reanalysis is produced with a single version of forecast model, 

the Integrated Forecast Model release Cy31r2. The data assimilation system, the optimal 

interpolation scheme, is also fixed. Using the Tiled ECMWF Scheme of Surface Exchanges over Land 

for land surface scheme, a large range of gridded data products is provided, including volumetric soil 

water content discretized in 4 layers (Berrisford et al., 2009). In this land surface scheme, the surface 

water balance is computed as the difference of precipitation and evaporation, surface and 

subsurface runoff (Albergel et al., 2012). 
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To account for the sensing depths of the remotely sensed products introduced in the previous 

sections, this study uses the soil moisture of the surface layer of 0 - 0.07m. The ERA Interim soil 

moisture product (hereafter referred to as ERA) is available on grids with different resolutions. For 

this study, the product with a resolution of 0.75° was used. 

 

3.2.2 Study areas 

Assuming that precipitation and climate are the dominant factors on spatial soil moisture distribution 

at global extent scale (Famiglietti et al., 2008), the analyses of spatio-temporal soil moisture behavior 

are based on the Köppen-Geiger climate zones (Fig. 3.1), determined by Peel et al. (2007). The 

classification is based on temperature and precipitation thresholds: There are five main classes, four 

of which are determined by temperature thresholds. These are A (Tropical), C (Temperate), D (cold) 

and E (Polar). The fifth main class B (Arid) is defined by a precipitation threshold. The subclasses 

(second order) are specified by precipitation only. While A and B climate subclasses provide 

information about the absolute precipitation, the C and D climates also describe the temporal 

distribution of precipitation, i.e. mainly summer or winter precipitation or no dry season. The third 

order classes, which are again based on temperature thresholds, were not considered for the 

selection of study regions, as then the choice of homogenous regions in a sufficient size is not 

possible any more for many climate classes.  

 

 

Fig. 3.1: Köppen-Geiger climate classes and for analysis selected regions. Adapted from Peel et al. 
(2007). 
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The regions selected for more particular studies are visible in Fig. 3.1 and are distributed in all 

classes, except classes D and E, which have a high amount of frozen soil during the year and thus long 

time periods of erroneous or missing data. In the Af (Tropical rainforest) climate no study area was 

designated either, due to retrieval problems from remotely sensed data under dense vegetation 

(Leroux et al., 2013). For the locations of the study areas America, Africa and Australia were chosen, 

as these continents are known to be less affected by RFI than Europe and Asia (Daganzo-Eusebio et 

al., 2013). This is important for the quality of passive microwave remote sensing products, such as 

those obtained by SMOS. 

Every study region is a coherent area of ~650,000 km² within one homogenous climate class of the 

second order containing 120 grid points. Due to the shapes of the classes, some study regions have 

an irregular form. No study area was designated in the Am and Cs climates, as the sizes of these 

climate classes did not meet the requirements. This resulted in the selection of five regions, one in 

America, one in Australia, and three in Africa. An overview over the regions is given in Tab. 3.1, their 

locations can be observed in Fig. 3.1. The climate charts in Fig. 3.2 give a more detailed impression on 

the general temporal distribution of temperature and precipitation. The data for these charts is from 

the German Weather Service (DWD) and accounts for the reference period of 1961-1990. The 

respective stations are located within the study areas. 

The first African study area is located in the Aw (Tropical Savannah) climate. The study area is 

situated in the northern hemisphere and covers large parts of the countries of the Central African 

Republic and South Sudan. Small parts from the Democratic Republic of the Congo and Chad are also 

included. Elevation is varying from 339 m to 1421m a.s.l. The topographic complexity, delivered with 

the ASCAT product and showing the standard deviation of elevation in percent calculated from 

GTOPO30, is between 0 % and 10 %.  The respective climate chart (Fig. 3.2 a)) shows high amounts of 

precipitation from March to November and lower precipitation during the winter months. 

The second study region in Africa is in the BS (Arid Steppe) climate with a distinct precipitation 

season from November to March (Fig. 3.2 b)), and covers a large part of the country of Botswana and 

smaller parts of Namibia and South Africa, i.e. it is located on the southern hemisphere. Elevation 

varies between 615 m and 1976 m a.s.l., and topographic complexity is between 0 % and 10 %, 

similar to the first location. 
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Fig. 3.2: Climate charts for stations in the selected study regions, referring to the reference period 
1961-1990. Data provided by the German Weather Service (Deutscher Wetterdienst, 2007), 
Offenbach/Main. 
 

 

The third study area in Africa is situated on the southern hemisphere in the Cw (Temperate with dry 

winter) class in the border region of Angola, the Democratic Republic of the Congo, and Zambia. 

According to the climate chart (Fig. 3.2 d)), the dry season lasts from May to September. Topographic 

complexity is higher here with values between 0 % and 20 %, while elevation varies between 564 m 

and 2498 m a.s.l. 

A study area in the BW (Arid desert) class with low precipitation values throughout the year (Fig. 3.2 

c)) is located in Australia. Please note that the climate chart of the BW region is not located directly 

in the study area, but within a distance of about 300 km. However, it is still representative for its 

climate class. Elevation of this study region is between 184 and 1203 m a.s.l., consequently 

topographic complexity flag shows low values between 0 % and 8 %. The Cf (Temperate without dry 

season) study region (Fig. 3.2 d)) is situated in North America in the United States of America. 

Elevation varies from 12 m to 1625 m a.s.l. and therefore topographic complexity is high with values 

between 0 % and 20 %.   
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Table 3.1: Description of study areas.  Abbreviations for criteria: Tcold, Thot: Temperature of coldest and 
hottest month, respectively. MAP: mean annual precipitation. Pdry: Precipitation of driest month. Pwdry 
and Pswet: Precipitation of driest winter month and wettest summer month (October-March or April-
September, depending on temperature), respectively. Pthreshold: Variable precipitation threshold. For 
further information see Peel et al. (2007). 

Region 
Definition criteria for 

climate class 1st order 

Definition criteria for 

climate class 2nd order 
Min/Max lat Min/Max lon 

Aw Africa Tcold ≥ 18 
Not Af & 

Pdry 100-MAP/25 
4.3°N / 8.7°N 17.0°E / 31.9°E 

BS Africa MAP < 10*pthreshold MAP ≥ 5*Pthreshold 17.6°S / 29.8°S 15.3°E / 28.9°E 

BW Australia MAP < 10*Pthreshold MAP < 5*Pthreshold 19.2°S / 29.5°S 123.4°E / 139.9°E 

Cw Africa 
Thot < 10 & 

0 < Tcold < 18 
Pwdry < Pswet/10 8.7°S / 14.7°S 14.6°E / 31.1°E 

Cf America 
Thot < 10 & 

0 < Tcold < 18 
Not (Cs) or (Cw) 31.8°N / 36.2°N 83.5°W / 98.6°W 

 

 

For the definition criteria of the different climate classes see Tab. 3.1 and Peel et al. (2007).  

For the analysis of scaling differences, three larger regions with an area of 9,000,000 km² each were 

designated on three continents: America, Africa and Asia. An Asian study area was included in spite 

of the aforementioned RFI exposure, because of the difficulty to find an area big enough on the RFI 

free continents like South America or Australia. The selection of these regions was based on the size 

of the respective areas. Their locations and fractions of climate zones are visible in Fig. 3.3. 
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Fig. 3.3: Location and sizes of areas for support and extent scale studies with climate regions. For the 
legend of climate regions please see Fig. 3.1. 
 

 

3.2.3 Methods 

To avoid the influence of different support scales on the results, SMOS, as well as ASCAT are upscaled 

to the ERA Interim grid by allocating the closest ERA grid point for every SMOS and ASCAT grid point 

and taking the average over all points assigned to one ERA grid point. 

 

3.2.3.1 Temporal Stability Analysis 

The temporal stability of the three soil moisture products was examined following the method of 

Vachaud et al. (1985). Using the spatial mean soil moisture 𝜃 (𝑡) over the number of Pixels n for one 

time step t 

 

 𝜃(𝑡) =  
1

𝑁
 ∑ 𝜃𝑛,𝑡

𝑁

𝑛=1

 (3.1) 
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the relative difference 𝛿𝑛,𝑡 is calculated from the respective soil moisture value 𝜃𝑛,𝑡 for every pixel n 

and time step t  

 

 𝛿𝑛,𝑡 =  
𝜃𝑛,𝑡 −  𝜃(𝑡)

𝜃 (𝑡)
 (3.2) 

 

 

Then mean relative difference  𝛿(𝑛) is determined over all time steps t for every location: 

 

 𝛿(𝑛) =  
1

𝑇
∑ 𝛿𝑛,𝑡

𝑇

𝑡=1

 (3.3) 

 

In general, while dry areas get a low MRD, wet areas will exhibit high MRDs. For comparison of the 

products, the MRDs are ranked from lowest to highest for every soil moisture product and the 

correlation of these ranks is analyzed for different climate classes. The power of correlation shows 

the similarity of the spatial distribution of the respective soil moisture products.  

 

3.2.3.2 Spatial variability and its time-variant and time-invariant contributors 

The relationship between spatial mean and spatial variance of soil moisture is a commonly used tool 

for the investigation of spatial variability (Brocca et al., 2007; Famiglietti et al., 2008). In this study, 

this relationship is examined separately for the different soil moisture products and for the five study 

areas in different climate classes. The spatial mean soil moisture 𝜃 (𝑡) was determined following 

equation (3.1). The corresponding spatial variance 𝜎2(𝑡) is 

 

 𝜎2(𝑡) =  
1

𝑁
∑(𝜃𝑛,𝑡 −  𝜃(𝑡) )

2
𝑁

𝑛=1

 (3.4) 

 

The investigation of factors influencing the spatial distribution of soil moisture follows the approach 

of Mittelbach and Seneviratne (2012) and decomposes 𝜎2(𝑡) into its time-varying and time-invariant 

contributors, thereby determining the quantities of contributions from factors linked to soil moisture 

dynamics and temporally stable features. To achieve that, every observation 𝜃𝑛,𝑡 is split into its 

temporal mean 𝜃  (𝑛) that is given by 
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 𝜃  (𝑛)  =  
1

𝑇
∑ 𝜃𝑛,𝑡

𝑇

𝑡=1

 (3.5) 

 

and its temporal anomaly 𝐴𝑛,𝑡, so 𝜃𝑛𝑡 can be described as 

 

 𝜃𝑛,𝑡 = 𝜃  (𝑛)  + 𝐴𝑛,𝑡 (3.6) 

 

Accordingly, 𝜃 (𝑡)  can be expressed as 

  

 𝜃 (𝑡) =   
1

𝑁
∑ 𝜃 (𝑛)

𝑁

𝑛=1

 + 
1

𝑁
∑ 𝐴𝑛,𝑡

𝑁

𝑛=1

=  𝜃 + �̅�(𝑡) (3.7) 

 

Using equations (3.6) and (3.7) for the decomposition of 𝜎2(𝑡) results in 

 

 𝜎2(𝑡) =  
1

𝑁
∑[(𝜃 (𝑛) + 𝐴𝑛,𝑡) − (𝜃 +  �̅�(𝑡) )]

2
𝑁

𝑛=1

 (3.8) 

 

This can be rebuilt to 

 

 𝜎2(𝑡) =  
1

𝑁
∑ [(𝜃 (𝑛) −  𝜃)

2
+ 2(𝜃 (𝑛) −  𝜃)(𝐴𝑛,𝑡 − �̅�(𝑡)) +  (𝐴𝑛,𝑡 − �̅�(𝑡) )

2
]

𝑁

𝑛=1

 (3.9) 

 

leading to the following equation 

 

 𝜎2(𝑡) =  𝜎2 (𝜃 (𝑛)) + 2 𝑐𝑜𝑣(𝜃 (𝑛) 𝐴𝑛,𝑡) + 𝜎2(𝐴𝑛,𝑡) (3.10) 

 

where the variance of the temporal mean 𝜎2 (𝜃 (𝑛)) is the temporal invariant part of the equation, 

and the sum of the covariance between temporal mean and anomalies 𝑐𝑜𝑣(𝜃 (𝑛) 𝐴𝑛,𝑡) and the 

variance of anomalies 𝜎2(𝐴𝑛,𝑡) is the temporal variant part. This allows us to consider the 
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percentage contributions of temporal variant and invariant components to 𝜎2(𝑡) and their temporal 

evolution in the five study areas in different climate classes. 

 

3.2.3.3 Spatial scales of soil moisture 

For the soil moisture products used in this study, spacing refers to the distance between the grid 

points (i.e. 0.75°). Spacing corresponds with support, as the products are assumed to be 

representative for the area around the grid point. Nevertheless it has to be kept in mind, that the 

remotely sensed products already were resampled and averaged on to the ERA Interim grid. 

For analyzing the impact of support size on the 𝜎2(𝑡) on different scales the values of grid points 

were aggregated over areas with increasing sizes of 250 x 250 km to 1000 x 1000 km by taking their 

arithmetic mean. Using an extent area of 3000 x 3000 km, the variance over the newly created pixels 

was calculated for each aggregation level. The support sizes of the pixels and the location of the 

three study areas can be found in Fig. 3.3. 

For investigating the influence of extent scale, 𝜎2(𝑡) was calculated on five different scales from grid 

points in an area of 250 x 250 km to 3000 x 3000 km. This is done on three test sites, whereby the 

3000 km areas correspond to the areas of the support size analysis. The extents of the areas and 

their locations are shown in Fig. 3.3. The areas include 9 to 12 grid points on the smallest scale, while 

on the largest scale they consist of 1547 to 1952 grid points.  

Famiglietti et al. (2008) found that the spatial standard deviation of soil moisture changes as a power 

of the extent scale. They express the spatial variance as 

 

 𝜎2(𝑡) =  𝑐 ∗ 𝑎µ (3.11) 

 

where a is the area of the respective extent scale, µ is a fractal power and c is a parameter. Assuming 

this, the relationship of logarithmic area vs. logarithmic variance will be linear, and then the fractal 

power k corresponds to the slope of a line fitted to that relationship, while the parameter c is equal 

to 10 to the power of intercept of this line. 

Slope and intercept of this relationship were calculated, both for the changes in support and extent 

scale (µs / cs and µe / ce, respectively) for all products. As a measure, how close the relationship of log 

area vs. log variance is to a perfect linear relationship, the coefficient of determination (R²) was 

calculated. The results presented show a mean of 𝜎2(𝑡) over all time steps. Additionally, the change 

of µe with time and the relationship of extent area vs. 𝜃 (𝑡)  are investigated. 
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3.3 Results and Discussion 

3.3.1 Global 

3.3.1.1 Temporal means 

Fig. 3.4 shows the temporal mean of soil moisture for the three products over the whole study 

period. It gives a general overview on their global soil moisture distribution. At first glance, the 

patterns look similar for all of them: They show their lowest values in the big desert regions and 

higher values in temperate and cold climates. 

Though, the range of values is quite different: SMOS (Fig. 3.4 a)) shows relatively low values 

compared to the other products, which is reflected in an overall mean of soil moisture of 0.16 m³/m³. 

The overall mean of ASCAT is considerably higher with 0.21 m³/m³, and the range of values is larger. 

However, the range is obviously influenced by the porosity data used for the conversion of relative 

into absolute soil moisture values. As demonstrated in previous studies (Balsamo et al., 2009; Dorigo 

et al., 2010), ERA shows a very narrow range of values mainly between 0.2 and 0.4 m³/m³, and very 

few small scale variations. High soil moisture can only be observed in the coastal part of Greenland, 

very low values can be found in northern Africa. The overall soil moisture mean is 0.26 m³/m³.  

Discrepancies in the soil moisture patterns can be found in areas with problems affecting soil 

moisture modeling or retrieval. Major drawbacks in soil moisture retrieval from microwave remote 

sensing are for example dense vegetation and frozen or snow covered soil (de Jeu et al., 2008). The 

latter gets obvious when looking at the cold and polar climates, where large differences can be 

observed among the different products despite filtering: While SMOS shows low and ERA moderate 

soil moisture values, ASCAT values are quite high. The problem with high vegetation can be observed 

in the Tropical rainforest region for SMOS, which shows very low soil moisture there, while both 

ASCAT and ERA show moderate values. These sensing and retrieval problems occur, as in the 

brightness temperatures, which are recorded by the SMOS satellite, but also the backscattering 

coefficients recorded by ASCAT contain a lot of information about vegetation and only very few 

about the soil. In tropical rainforest regions there is nearly no soil signal any more. This potentially 

leads to difficulties in the parameterization of retrieval algorithms. 
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Fig. 3.4: Temporal means over the whole study period (2010-2012) of a) SMOS, b) ASCAT, c) ERA 
Interim. 
 

3.3.1.2 Temporal stability 

From the prior section it is obvious, that the correspondence of soil moisture patterns among the 

three products is quite variable between different regions. To get quantified information about the 

similarity of soil moisture distribution, the correlation of MRD rankings was analyzed globally for 

different climate classes (Fig. 3.5).  

Over the entire world, the products show reasonable correlation coefficients of 0.34 (ERA / SMOS), 

0.44 (SMOS / ASCAT), and 0.79 (ERA / ASCAT), which supports our finding of the previous section, 

that the overall soil moisture patterns are similar. However, for the different climate zones, there is 

large variation in correlation coefficients, and the correlation coefficients can be very different for 

the different products within one climate zone. 

High correlations of ranks for all products occur in regions with generally low vegetation, especially in 

the arid regions (BS / BW). In areas, where no high vegetation infers the retrieval of soil moisture, all 

products show similar patterns of soil moisture.  
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Fig. 3.5: Global correlation of ranks of MRDs of the three soil moisture products for different climate 
zones. The lines are just for increasing readability and do not imply any functional relationship. 

 

As in the overall correlation, ERA and ASCAT show the highest correlation of ranks, and with that the 

most similarities in soil moisture distribution, for most climate classes. Except for the B class, the 

correlation is significantly higher than for correlation of both products with SMOS. This indicates that 

in most regions, ERA and ASCAT show similar patterns, while SMOS is quite different from both of 

them. An exception are the Af and Am classes, where the two remotely sensed products show the 

only high correlation, possibly they are both similarly influenced by the vegetation cover. The BW 

class is the only one showing the highest correlation for ERA and SMOS. This is not surprising, as 

ASCAT is known to be less accurate in very dry areas, which is generally assigned to volume 

scattering in dry, loose sand and the systematic orientation of sand ripples and dunes (Bartalis et al., 

2006b; Dorigo et al., 2010). 

 

3.3.2 Selected regions 

3.3.2.1 Time series of spatial mean 

Fig. 3.6 shows time series of 𝜃 (𝑡) of the three different products for the five 120-grid-point-study 

regions presented in sec. 3.2.2. In general, all of them show similar trends in all regions. Seasonality 

of precipitation is visible in the Aw, BS and Cw climates (Fig. 3.2), this trend is reproduced in all soil 

moisture products. But also in the BW climate, all of them show comparable peaks. In the Cf climate, 

having less pronounced peaks and no yearly cycle, they show less similarity. 

The absolute values, however, are different. As was already reported in previous studies (Albergel et 

al., 2012), ERA tends to be wetter than the remotely sensed products. Especially in the Australian 

desert (BW) soil moisture is overestimated with values around 0.2 m³/m³.   
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Fig. 3.6: Time series of spatial mean of the three soil moisture products for the selected regions a) Aw 
Africa, b) BS Africa, c) BW Australia, d) Cw Africa, and e) Cf America. 

 

Showing less variability, it gets obvious that ERA holds not only low spatial variability as was already 

observed in sec. 3.3.1.1, but also lower temporal variability than the other products. SMOS and 

ASCAT show similar absolute values, except for the Aw climate and the BS region until June 2011. In 

both regions ASCAT tends to show higher values than SMOS. For the BS region, ASCAT approaches 

the SMOS values with the introduction of the new SOMO PPF version. In general, ASCAT shows 

higher fluctuations than the other two products, which can be related to lower sensing depth of C-

Band, but is also influenced by the porosity data, used for the conversion of relative into absolute soil 

moisture values. 

Similar peaks in all study regions show that in general temporal patterns are reproduced well in all 

soil moisture products, while the absolute values are highly influenced by the retrieval approach. 

 

3.3.2.2 Spatial mean and variance 

Fig. 3.7 shows the relationship of 𝜃 (𝑡) and 𝜎2(𝑡) for the six example regions and the three soil 

moisture products. Li and Rodell (2013) state that at large extent scales this relationship is mainly 
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controlled by physical processes such as precipitation and evapotranspiration. From the differences 

within the different products in one climate zone, it gets obvious, that it is not only these natural 

factors influencing the relationship, but it is also depending on characteristics inherent to the 

product. 

For most of the example regions, ASCAT and ERA show a similar convex relationship, although less 

pronounced in ERA. This relationship was already found in studies at smaller extent scales. 

Famiglietti et al. (2008) describe the factors influencing this relationship to be quite variable. In the 

cases of Aw, BS, and Cw, the relationship is the result of the strong seasonality of precipitation, and 

with that of soil moisture, that can also be observed in Fig. 3.6 b) and c). During the precipitation 

season (March-November for Aw, November/December-March for BS and Cw, see Fig. 3.2), the 

whole region is wet and thus shows high 𝜃 (𝑡)  and low 𝜎2(𝑡), during the dry season in winter, 𝜃 (𝑡)  

and 𝜎2(𝑡) are low. During the wetting period, 𝜃 (𝑡)  and 𝜎2(𝑡)  rise, when rainfalls start to occur, 

while the drying lowers 𝜃 (𝑡)  and again raises 𝜎2(𝑡). In the Aw and especially in the Cw region, the 

wetting period (around February-April and September-November, respectively) shows higher 𝜎2(𝑡) 

than the drying period (around March-May and October-November, respectively), indicating that the 

drying occurs more homogenous than the wetting.  

The convex relationship is less pronounced in the BS region; especially in ERA the decreasing trend 

with high mean soil moisture is only weak. As the precipitation season lasts from around January 

until May (Fig. 3.2 b)), the whole period shows high 𝜃 (𝑡) and similar 𝜎2(𝑡). 

In the BW region, SMOS and ASCAT show similar low average 𝜃 (𝑡) and average 𝜎2(𝑡), while ERA 

shows rather high 𝜃 (𝑡), corresponding to the finding in sec. 3.3.2.1, that the soil moisture is quite 

high for a desert region. The relationships are more or less positive linear for all three products, with 

many values around the average 𝜃 (𝑡) and few higher soil moisture values. This results from the 

generally dry soil with rare small scale precipitation events causing higher mean soil moisture and 

higher variance at the time of these events.  

The Cf region shows a less prominent convex shape for ASCAT and ERA. However, for both products, 

𝜃 (𝑡) tends to be smaller from June to August than from January to May, but 𝜎2(𝑡) does not show a 

seasonal dependence. Fig. 3.8 shows the same relationship for in situ data from 42 stations of the 

Soil Climate Analysis Network (SCAN) (Schaefer et al., 2007) within the study area, downloaded from 

the International Soil Moisture Network (Dorigo et al., 2011). It was measured with Hydra Probes at a 

depth of 0.05 cm, and therefore consists of point measurements, which are valid for a small soil 

volume only, while the other products give an average value over a much larger area. This explains 
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the higher 𝜎2(𝑡) of the SCAN data. Nevertheless, its relationship of 𝜃 (𝑡) and 𝜎2(𝑡) shows the same 

convex form as ASCAT and ERA and a similar seasonal distribution.  

 

 

Fig. 3.7: Relationship of 𝜃 (𝑡) and 𝜎2(𝑡) of soil moisture for the selected regions. Left side shows 
SMOS, middle left ASCAT, middle right ERA Interim and right is zoomed into the ERA Interim plots. The 

red lines indicate the means of  𝜃 (𝑡) and 𝜎2(𝑡).  
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Fig. 3.8: Relationship of 𝜃 (𝑡) and 𝜎2(𝑡) for in situ measurements of SCAN in the Cf region in America. 
 

SMOS shows a more or less pronounced positive linear relationship of 𝜃 (𝑡) and 𝜎2(𝑡) for all regions. 

This indicates that especially during the wetter periods the relationship is more influenced by the 

retrieval method than by natural factors for this product. A similar behavior was found for an AMSR-E 

soil moisture product in the United States by Li and Rodell (2013), who link it to the fact that the 

median mean of the retrievals is always near or below the mid-range soil moisture. The lack of high 

soil moisture values is probably the cause for the different form of the relationships compared to the 

other products. This is further suggested by the fact that average 𝜃 (𝑡) is lower for SMOS, while the 

average variance is similar for SMOS and ASCAT. The seasonal distribution of data points is similar in 

relation to 𝜃 (𝑡), so the general temporal patterns are covered by all products.  

Overall, the relationship of 𝜃 (𝑡) and 𝜎2(𝑡) can be explained by natural factors, particularly the 

precipitation regimes of the respective study areas, for ERA and ASCAT, while for SMOS the retrieval 

method shows more influence, in particular during wet periods. 

 

3.3.2.3 Contributions to the spatial variance 

Splitting 𝜎2(𝑡) into a temporal invariant part, 𝜎2 (𝜃 (𝑛)), and a temporal variant part, consisting of 

the sum of 𝑐𝑜𝑣(𝜃 (𝑛) 𝐴𝑛,𝑡) and 𝜎2(𝐴𝑛,𝑡), we gain information about the type of influencing factors 

on 𝜎2(𝑡)and their proportions.  

The temporal development of the two components is shown in Fig. 3.9 in percentage of 𝜎2(𝑡) for the 

three soil moisture products and the five example regions. 

For the Aw study area in Africa, a kind of annual cycle can be observed, but it is not the same among 

the different products, and especially in ERA the proportions of contributions of variant and invariant 

parts change quite often. These proportions get up to 1087 % for the temporal invariant part, while 

at the same time the temporal variant parts gets negative with values as low as -1087 %. This is 
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induced by the covariance part of the temporal variant component. Negative values of the latter 

indicate a change of relation between temporal mean and anomaly (Mittelbach and Seneviratne, 

2012). This is the only study area, where ERA and ASCAT show a more similar behavior than SMOS 

and ERA. 

For the BS study region SMOS and ERA show a similar seasonality: While the variant contribution 

dominates in the precipitation season from November to March (see Fig. 3.2 b)), during the dry 

season this part decreases. The maximum value of ERA’s invariant part increases up to 5113 %.  For 

ASCAT, the variant component is higher all the time until August 2011 and from this time on it shows 

a similar behavior as the other products. 

Similar patterns with low temporal invariant part in the precipitation season and high temporal 

invariant part in the dry season can be found for the African Cw region. ASCAT again shows this 

periodic behavior only from 2011 on, indicating that the change of the SOMO PPF version favored 

the seasonal patterns. 

In both regions it gets obvious, that dynamic variables, especially climate variables like precipitation 

and evaporation, control 𝜎2(𝑡) in wet seasons, while in dry seasons invariant factors, for example 

soil characteristics and topography, dominate. 

This partly agrees with the findings of Grayson et al. (1997), who analyzed the control factors of soil 

moisture patterns on the extent scale of catchments. They distinguished between local controls, i.e. 

soil properties and local terrain, dominating spatial patterns in wet seasons and nonlocal controls, 

i.e. catchment terrain, controlling the patterns in dry seasons. However, on the larger extent scale of 

our study, the catchment terrain can be considered as a local control, and precipitation and 

evaporation are less uniform over the larger area. Considering the fact, that the aforementioned 

study analyzes influencing factors distinguished by different scales, while this study differentiates 

between dynamic and constant factors, and that both studies work on different extent scales, the 

results are quite similar.   

The Australian BW study area shows a dominating variant part for ASCAT nearly all the time, while 

for SMOS and ERA there are a lot of fluctuations between the different parts, probably induced by 

local precipitation events. The invariant part of ERA rises up to values of 1514 %. 

In the America Cf region SMOS shows a dominance of the temporal invariant part in summer (June-

August) and of the variant part in winter, while ASCAT is always dominated by the variant part in this 

region. ERA shows a less pronounced seasonality and higher fluctuations, with mostly the invariant 

contribution being the dominant part. 
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Fig. 3.9: Time series of percentages of the single contributors to 𝜎2(𝑡) for the selected regions a) 
Africa Aw, b) Africa BS, c) Australia BW, d) Africa Cw, and e) America Cf.  The top shows SMOS, the 
middle ASCAT and the lower plot ERA. The ERA plots do not always show the maximum values of the 
temporal invariant part and minimum values of the temporal variant parts. These plots are: a) where 
maximum of the temporal invariant part is 1087 %, b) where maximum is 5115 %, and d) where 
maximum is 1514 %. The respective minima of the temporal variant parts are the negative 
counterparts of the maxima. 
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For SMOS, the average contribution of the temporal invariant component to 𝜎2(𝑡) is higher than the 

variant part with values between 62 % and 68 %. An exception is the Aw region, where the invariant 

part only contributes 41 %. The opposite can be observed in ASCAT: With values between 26 % and 

38 % the contribution of the invariant part is always lower than the contribution of the variant part, 

with exception of the Aw region, where the invariant part contributes 53 % to 𝜎2(𝑡). For ERA, 

𝑐𝑜𝑣(𝜃 (𝑛) 𝐴𝑛,𝑡) is often largely negative, and so the whole variable component gets negative, while 

the invariant part balances that with values of more than 100 %, with the exception of the Cf region 

in America, where the contribution of the variable component is 21 %. 

While in previous studies on areas up to 50,000 km² with in situ measurements from networks, a 

dominant influence of the temporal invariant component was found (Mittelbach and Seneviratne, 

2012; Brocca et al., 2014), on large extent scales it could be expected, that the temporal variant part 

controls 𝜎2(𝑡), as precipitation and other climatic influences are generally considered to be the 

prevailing factors on soil moisture distribution (Famiglietti et al., 2008). However, this study shows 

that this may be only seasonally effective. 

It gets obvious, that the contributions to 𝜎2(𝑡) are quite different for the three products. This cannot 

completely reflect natural conditions in the respective regions, but is highly influenced by the 

method of soil moisture estimation. The time series of SMOS and ERA show similar behavior in most 

study areas, and for both the temporal invariant component plays an important role, while ASCAT is 

stronger controlled by the temporal variant part. Calculation of both SMOS and ERA includes 

information about spatial invariant factors, while the change detection method of ASCAT assumes 

invariant factors like topography and surface roughness to be constant (Naeimi et al., 2009), 

therefore does not account for them and essentially measures the temporal variant factors.  

 

3.3.3 Scaling 

Fig. 3.10 shows the effects of scaling for the three soil moisture products and the three study areas. 

The left shows the results for changing support scales, the right for changing extent areas. 

Slopes and intercepts of the line fitted to the log area vs. log 𝜎2(𝑡) relationship (corresponding to the 

fractal power µs and the logarithm of the parameter cs, respectively) and the corresponding R² values 

for the support study can be found in Table 3.2. 
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Fig. 3.10: Relationship of support scale (left) and extent scale (right) area vs. 𝜎2(𝑡) for a) North 
America , b) Africa, and c) Asia. The black lines show the fitted linear relationship. 
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Table 3.2: Slope (fractal power µs), intercept (log cs), and coefficient of determination (R²) for support 
scale changes from 250 km to 1000 km for the three soil moisture products and the three study areas. 

 

  SMOS     ASCAT     ERA   

  slope intercept R² slope intercept R² slope intercept R² 

America -0.10 -1.31 0.48 0.01 -2.25 0.02 -0.08 -2.03 0.64 

Africa -0.03 -2.18 0.04 -0.02 -2.13 0.02 -0.10 -1.19 0.62 

Asia -0.17 -1.02 0.97 0.02 -2.49 0.22 0.05 -3.20 0.44 

 

Fig. 3.10 (left), as well as Table 3.2, show that there is negligible change in 𝜎2(𝑡) with support area. 

For SMOS, the trend is always negative, which indicates a general decrease of 𝜎2(𝑡) with support 

area, although not pronounced. ASCAT shows very low slope values without distinct trend, just like 

ERA, which shows only slightly higher slope values and also no distinct trend. In general, the slopes 

found in this study are distinctly lower than the ones found by Rodriguez-Iturbe et al. (1995) and 

Manfreda et al. (2007), who found slopes between -0.32 and -0.12 for the surface soil layer. The 

intercepts are similar for all of the products and all study areas. For ASCAT, they show the smallest 

range of values, while for ERA they are most variable. The R² values, indicating how good the linear 

fit is, are very low for ASCAT and higher for ERA. For SMOS they are quite variable, with a very low 

value in Africa and a high value in Asia. 

Generally, the pronounced power law decay of 𝜎2(𝑡) with increasing support scale that was found by 

Rodriguez-Iturbe et al. (1995) on scales up to 1 km² could not be detected on the large scale of the 

global soil moisture products. Only SMOS showed a similar behavior in the Asian study area. 

Although neither slopes nor R² values are very similar for the different products, in Fig. 3.10 the 

change of trend in 𝜎2(𝑡) is quite similar for all of them, especially for the study area in Africa, where 

there is a sharp decrease of variance for the 500 km scale and then an increase for the 750 km scale. 

This can be explained by values getting more similar with averaging soil moisture values, because 

small scale characteristics, outliers and noise will average out. 

The relationship of log extent area vs. log 𝜎2(𝑡), on the contrary, shows a distinct slope (fractal 

power µe),  with a positive trend for all soil moisture products in all study areas (Table 3.3 and Fig. 

3.10 (right)). The slope values are always lowest and most variable for SMOS and highest and in a 

narrow range for ERA. The R² values are also higher than for the support study. So, apart from some 

deviances, the linear increase of the log area vs. log variance relationship, and with that the power 

law increase of 𝜎2(𝑡) with extent area, can be observed in the global soil moisture products. 

Especially for ERA, this is true for all study areas. ASCAT shows a lower goodness of the linear fit for 
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Africa, and looking closer on Fig. 3.10, shows, that the linear relationship is stronger for the 500 to 

2000 km scales. For SMOS, the linear relationship is less strong in all study areas except America. 

The linearly increasing variance with extent scale is in accordance with the results of Famiglietti et al. 

(2008), who found a similar behavior for scales of 2.5 m to 50 km. While in the study of Famiglietti et 

al. (2008) the land cover and climatic characteristics did not change much between the different 

scales, the extents worked with here require the inclusion of very different conditions. Deviances of 

the linear fit may be due to these differences: The increase of 𝜎2(𝑡)  with extent is mainly driven by 

the increasing number of climate regions included in the study area. A new climate class in the study 

area will lead to a steeper slope, whereas, if the region is only extended into an already included 

climate class - and especially if the fractions stay similar - the slope is flat. The climate classes 

included in the respective study areas can be observed in Fig. 3.3. The higher variability of climate 

and land use may also be the reason for the higher slopes compared to Famiglietti et al. (2008): 

While a slope of 0.09 was reported for the relationship of log area vs. log standard deviation, which 

corresponds to a slope of 0.18 for the relationship of log area vs. log variance, the slopes found in 

this study are mostly higher than that (see Table 3.3).  

In the African study area, the plots show relatively low slopes and R² values, especially for SMOS and 

ASCAT. All products exhibit a flattened slope between 2000 and 3000 km. The reason can be found in 

quite similar fractions of climate zones in the 2000 km and 3000 km scales (Fig. 3.3). This is also the 

case for the study area in Asia, where for the 1000 km and 2000 km scales the linear relationship is 

more pronounced, because new climate regions are included, and flatten out for the 3000 km scale, 

because the fractions of different climate zones stay similar compared to the smaller scales. As for 

the African area, SMOS is an exception here and does not show a linear relationship at all. The 

American study area, on the contrary, shows very good fits for all products, which can be related to 

the very heterogeneous area already in the smallest extent but also in higher extents (Fig. 3.3). Both, 

slope and R² are quite similar for the three products. 

The intercept (log ce) of the relationship is equal to the logarithm of the parameter c of the scaling 

law and thus corresponds to the theoretical 𝜎2(𝑡) of an area equal to 1 m². Consequently, a smaller 

intercept results in less small scale variability according to the power law. Tab. 3.3 shows that values 

of intercept are always highest for SMOS and lowest for ERA. SMOS also shows the highest deviances 

between the different study areas, while for ERA the intercepts are very close to each other. In 

general, ERA showed, in contrast to the remotely sensed products, similar slopes and intercepts in all 

study areas, and also a high fit to the linear relationship, and thus reveals a universal scaling across 

the different regions at the investigated length scales for a temporal average.   
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Table 3.3: Slope (fractal power µe), intercept (log ce), and coefficient of determination (R²) for extent 
scale changes  from 250 km to 3000 km for the three soil moisture products and the three study 
areas. 

 
  SMOS     ASCAT     ERA   

  slope intercept R² slope intercept R² slope intercept R² 

America 0.47 -18.71 0.99 0.56 -20.96 0.98 0.64 -24.65 0.99 

Africa 0.18 -10.32 0.88 0.39 -16.02 0.88 0.67 -24.56 0.97 

Asia 0.33 -15.42 0.74 0.56 -21.00 0.95 0.67 -25.34 0.97 

 

 

This scaling law is useful for the downscaling of low resolution soil moisture. It has to be considered, 

that this law might not be valid for much smaller scales. This gets obvious from the theoretical 𝜎2(𝑡) 

of 1 m², which corresponds to 10 to the power of intercepts and therefore are extremely small (see 

Tab. 3.3). This results from the large support area of the soil moisture data used in this study, which 

gives a mean value over an area of 0.75° x  0.75° and, in contrast to point-scale in situ data with 

sampling points over a large area, averages out the small scale variance.  

Fig. 3.11 shows the temporal evolution of slopes of the linear relationship log area vs. log 𝜎2(𝑡) for 

the three study areas and the three products over the study period. In all areas a seasonal cycle of 

slopes gets visible for all products. This cycle is most pronounced for ERA, but the other products 

show a similar behavior and similar peaks. This cycle is introduced by seasonal variations in the 

climate classes within the regions. Especially, if the different climate classes within the respective 

study area show different precipitation cycles resulting in different soil moisture conditions in the 

different climate classes at one time and more similar conditions in another season, the change of 

𝜎2(𝑡) with extent scale and with that of the slopes of the scaling function will vary during the year. 

The African region, for example, consists mainly of the Aw climate class on small extent scale, and 

mainly of Aw and BW climate on larger extent scale. While in the BW climate class, the soils are 

rather dry during the whole year, the Aw class shows distinct seasonal variations of soil moisture (see 

Fig. 3.2), resulting in higher variances, and thus steeper slope during the precipitation season in the 

Aw class. 
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Fig. 3.11: Temporal evolution of slope (fractal power µe) of the relationship log extent area vs. 
log 𝜎2(𝑡) for the study area in a) America, b) Africa, and c) Asia. 
 

The relationship of extent area and 𝜃 (𝑡) is illustrated in Fig. 3.12. The trend is similar for all of the 

products, but quite different between the different study areas: While in the American and in the 

Asian study areas, the two study areas with similar climate classes, the mean value increases with 

extent scale, in the African area the mean value shows a pronounced decrease with scale due to the 

large fraction of the BW (desert) climate class at higher extent scales. This shows that the behavior of 

mean value with changing extent is highly dependent on the selection of the study area, as the 

different climate classes have a high influence on the relationship. 
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Fig. 3.12: Relationship of extent scale area vs. 𝜎2(𝑡) for a) America, b) Africa, and c) Asia. 
 

The relationships presented here are useful for up- or downscaling of soil moisture. Especially ERA 

showed a universal scaling across the different study areas. This study shows that it is important to 

account not only for the characteristics of the different products, but also for the climatic conditions, 

land cover and seasonal variations in the region of interest. 
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3.4 Conclusions 

One modeled and two remotely sensed soil moisture products of the years 2010 to 2012 were 

analyzed on their global spatial and temporal variability on basis of the Köppen-Geiger climate 

classification. The products show overall similar patterns of spatial soil moisture distribution, 

although not in absolute values. Deviances in several regions show individual retrieval characteristics 

for the respective products. Based on rankings of MRDs, ASCAT and ERA are most similar, while ERA 

and SMOS show least similarities. Best consistence is found for arid climates, as they normally 

contain low vegetation.  

The analysis of selected regions in different climate classes exhibited, that ASCAT generally shows 

higher variability of soil moisture than SMOS, and especially than ERA. The relationship of 𝜃 (𝑡) and 

𝜎2(𝑡) shows a similar positive linear relationship for SMOS in all regions, indicating that this 

relationship is influenced by sensor and retrieval characteristics. ASCAT and ERA show similar convex 

relationships for most regions. The decomposition of 𝜎2(𝑡) into temporal variant and invariant 

components indicates higher influence of the variant part on ASCAT and of the invariant part on 

SMOS and ERA, which also show similar annual patterns. This is due to ASCAT’s change detection 

method for soil moisture estimation. 

In general, it was found that the temporal patterns are reproduced well in all products, while the 

absolute values are highly affected by acquisition and processing methods. The spatial patterns, 

however, are influenced differently by retrieval approach in different study areas and among the 

different products. The relationship of spatial mean and spatial variance is generally introduced by 

precipitation patterns in the respective regions, while SMOS is affected by its retrieval approach 

especially in wet periods. The factors controlling 𝜎2(𝑡) are also heavily dependent on acquisition 

method. Nevertheless, the analysis of temporal stability shows that the general spatial patterns can 

still be similar.   

The change of 𝜎2(𝑡) with increasing support and extent scale was investigated in three different 

areas. Results indicate that 𝜎2(𝑡)  stays similar in all areas and for all products on support scales of 

250 km to 1000 km. With increasing extent areas from 250 to 3000 km, 𝜎2(𝑡) increases for all 

products and all study areas, most of them according to a power law. The products show a similar, 

but seasonal variable behavior in the extent scale study, with the exception of SMOS, that was less 

close to the power law increase with extent scale in two areas. These relationships of area and 

variance have to be considered in the processes of up- and downscaling of the soil moisture 

products. For the observed range in extent and an average over time, ERA showed a universal scaling 
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across the different regions. Such a consistent scaling behavior was not observed for ASCAT and 

SMOS. For these products, slope and intercept of the scaling laws were found to be dependent on 

the region of interest. It would be of great interest to know whether the ERA scaling behavior is also 

valid for the smaller lengths and under which conditions and at which length scales this scaling 

eventually breaks down.  

This study exhibits that the statistical patterns of soil moisture products are influenced by modeling 

or retrieval method. This influence, as well as spatial and temporal characteristics of the products can 

vary from region to region. Therefore, the results from validation with in situ data cannot be 

transferred to other regions and a global evaluation needs a cross-comparison of soil moisture 

products. For further usage of the products in a specific region, for up- and downscaling and for data 

assimilation, their different spatio-temporal characteristics have to be considered.
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4 Relationship of Vegetation Optical Depth and Radar Vegetation Index for 

the Aquarius mission 

4.1 Introduction 

Microwave remote sensing of soil moisture, both active and passive, have to account for the 

vegetation covering the soil. Vegetation cover affects the emitted passive microwave signal from the 

soil, which contains the information about soil moisture, in several ways: It attenuates or absorbs 

and scatters the soil emission and emits radiation itself (Njoku and Entekhabi, 1996). In active 

microwave remote sensing, vegetation disturbs the signal sent back from the soil to the sensor 

through surface scattering by attenuation and volume scattering effects in the canopy layer (Ulaby et 

al., 1979). Therefore, the influence of vegetation on the microwave signal has to be quantified in any 

algorithm for soil moisture retrieval.  

The most common algorithms for passive microwave sensors are based on the radiative transfer 

equation of the τ-ω model (Mo et al., 1982), where the vegetation is quantified by VOD (τ) and the 

single scattering albedo ω. While the single scattering albedo describes the scattering effects in a 

canopy, VOD describes the attenuation of the soil radiation through the canopy layer. It is primarily 

determined by VWC (Van de Griend and Owe, 1993), and other influencing factors are the 

geometrical structure of the vegetation and microwave frequency (Njoku and Entekhabi, 1996). 

Several studies found a linear relationship of VOD with VWC and an empirically derived b-parameter 

according to frequency and vegetation type (Jackson and Schmugge, 1991; Van de Griend and 

Wigneron, 2004), which also accounts for the vegetation geometry.  

There are several ways to obtain VOD, most of them using vegetation indices of different sources. 

The MPDI, a vegetation index of radiometer brightness temperatures, is used for an analytical 

derivation of VOD together with soil moisture in the LPRM (Owe et al., 2008). This model is used for 

example for the retrieval of soil moisture from passive microwave sensors for the ESA Climate 

Change Initiative product (Dorigo et al., 2015). 

The SMOS satellite is the first mission specifically designed for remote sensing carrying a radiometer 

measuring at L-band (Kerr et al., 2010). In the SMOS Level 2 processor for soil moisture, VOD is 

derived through a 2-parameter retrieval method using multiangular and bi-polarization observation. 

However, for initialization values and if there are not sufficient angular measurements, it is relying on 
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the linear relationship of VWC and VOD. VWC is estimated from Leaf Area Index (LAI) taken from 

ECOCLIMAP (Kerr et al., 2012). 

The Aquarius satellite is equipped with L-band radiometer and radar, both instruments have a 

resolution of about 100 km (Le Vine et al., 2007). It is primarily dedicated to the measurement of 

ocean salinity, but also a soil moisture product is derived from radiometer measurements in a single 

channel algorithm (Bindlish et al., 2015). There, VOD is estimated from VWC, which is derived from 

MODIS Normalized Difference Vegetation Index (NDVI). 

A new instrument for soil moisture monitoring, the SMAP Satellite (Entekhabi et al., 2010) was 

launched recently. Like Aquarius, it consists of a radiometer and radar, the radiometer measuring at 

1.4 GHz in a resolution of 36 km, and a radar instrument at 1.26 GHz with a resolution of 3 km. Three 

soil moisture products will be available from this mission, one retrieved from the radar instrument 

(Das et al., 2011; Das et al., 2014), one from the radiometer, and a combined product in an 

intermediate resolution of 9 km. In the current SMAP baseline algorithm for passive soil moisture 

retrieval the retrieval of VOD from VWC approached by NDVI climatology from MODIS is used 

(O´Neill et al., 2014). 

Although they are widely used, current visible and infrared vegetation indices from optical remote 

sensing have several limitations, as they are only available in daytime and cloud free conditions. 

Furthermore, they get saturated over high vegetation, a problem especially known from NDVI 

(Jackson et al., 2004).  

However, vegetation indices can also be derived from active microwave remote sensing. A common 

index is the RVI (Kim and van Zyl, 2009), derived from backscattering coefficients of different 

polarizations. Because of higher penetration depth of the vegetation, especially at L-band, and the 

independence of daytime and weather conditions, the use of RVI for the estimation of VOD would be 

an advantage for soil moisture retrieval algorithms. Especially for SMAP and Aquarius soil moisture 

products using RVI will be useful, as radar measurements are available from the same platform and 

therefore without time lag to brightness temperature measurements. Therefore, the purpose of this 

study is to develop and analyze a method to derive VOD from RVI.  

Until recently, few studies have tried to link RVI to biophysical vegetation parameters. Kim, Y. et al. 

(2012) found a strong correlation for L-band RVI and VWC, LAI and NDVI for soybean and rice crops 

and could establish linear retrieval equations for estimating VWC from RVI, especially by combining 

both crops. Then again, Colliander (2012) found, that RVI and VWC were not well correlated over a 

variety of croplands (bare soil, soybean, wheat, corn and grass). Rowlandson and Berg (2015) 

investigated soybean, winter wheat and spring wheat fields for a smaller range of VWC than Kim, Y. 
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et al. (2012) and found good correlation for soybean RVI and VWC and a moderate correlation of RVI 

and LAI for soybean and spring wheat and a combination of soybean and wheat.  

However, even if VWC can be derived from RVI, for the estimation of VOD it is still necessary to 

choose the right scale relationship expressed as b-parameter additionally to the estimated 

parameters of the relationship of VWC and RVI. This b-parameter is empirically derived mainly on 

small scale in local studies. If VOD could be derived directly from RVI, this b-parameter could be 

avoided and the parameters of this relationship can be derived on the basis of global statistics. 

Furthermore, the previous studies have focused on croplands, while the estimation of VOD in highly 

vegetated areas like forests would be of high interest due to the problem of saturation of optical 

vegetation indices. 

This study will investigate the direct relationship of RVI and VOD on a global scale for a variety of land 

use classes by using radiometer and radar measurements from the Aquarius satellite. Moreover, it 

will test the influence of VOD derived from RVI on soil moisture retrieval. The following section will 

give an overview on the data and radiative transfer models used in this study. Then VOD, retrieved 

from Aquarius brightness temperatures with LPRM will be verified and in the subsequent section the 

relationship between VOD and RVI will be described and validated. In the last section, the newly 

derived relationship will be tested on its influence on soil moisture inversion in a sample area. 

 

4.2 Data and Methods 

4.2.1 Data 

4.2.1.1 Aquarius 

Aquarius is a joint mission of NASA and the Argentine Space Agency primarily for measuring sea 

surface salinity with active and passive L-band sensors, but a soil moisture product is also available 

(Bindlish et al., 2015). The satellite is in a polar orbit with an altitude of 657 km and has a repeat orbit 

of 7 days. It carries two instruments, a radiometer measuring at 1.413 GHz and a scatterometer at 

1.26 GHz, arranged in a pushbroom configuration at three incidence angles: the inner beam at 28.7°, 

the middle beam at 37.8° and the outer beam at 45.6°. This results in an overall swath width of 390 

km with footprints consisting of ellipses with principal axis dimensions of 76x94 km, 84x120 km and 

96x156 km for the inner, middle and outer beam of the scatterometer, respectively, while the 

radiometer footprints are slightly smaller (Le Vine et al., 2007). 
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This study uses three years of Aquarius Level 2 brightness temperatures and backscattering 

coefficients, version 2.0, from September 2011 to August 2014. Only observations from the middle 

beam (37.8°) are used, as it is closest to the 40° angle of SMAP and the results will be easier to adopt 

for that mission. Brightness temperatures and backscattering coefficients, as well as land surface 

temperature from the Global Data Assimilation System of the National Centers for Environmental 

Prediction, which is delivered with the product, were gridded in footprint scale with a modified 

sampling approach. The first seven days of data were used to define a grid and all subsequent 

observations with centers less than 0.05° away from a grid point are assigned to this grid point. In 

some cases this leads to the inclusion of some observations in multiple grid cells, while observations 

that are not within this distance to a grid point are excluded from the study. More detailed 

information on the gridding scheme can be found in McColl et al. (2014) and Piles et al. (2015). 

 

4.2.1.2 IGBP 

The dominant class of landcover of an Aquarius footprint was determined through the 2005 MODIS 

MCD12Q1 International Geosphere-Biosphere Programme (IGBP) product (Friedl et al., 2002). The 

product distinguishes between 17 land cover classes on a resolution of 500 m. For this study, the 

IGBP data was resampled using the predominant land cover class (Piles et al., 2015; Konings et al., 

submitted).  

 

4.2.1.3 SMOS product 

The SMOS Level 2 product, version 5.51, is compared to VOD and soil moisture retrieved with LPRM 

from the Aquarius brightness temperatures. The SMOS product contains soil moisture and VOD, 

which are retrieved by the Level 2 processor from the Level 1 product brightness temperatures (Kerr 

et al., 2012). The SMOS Level 2 processor is mainly based on the L-MEB model (Wigneron et al., 

2007). SMOS VOD is currently the only publicly available dataset of L-band VOD. 

In the forward model brightness temperatures are simulated and a cost function is minimized 

between simulated values and multi-angle measured brightness temperatures. A higher number of 

different angles allows for a more accurate solution of the cost function. Soil moisture and VOD can 

be retrieved in a 2-parameter retrieval, if enough brightness temperature observations in different 

angles are available, otherwise a 1-parameter retrieval is attempted and only soil moisture is 

retrieved, while VOD is fixed by its initialization value. This starting value of VOD is retrieved from 
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observations of one of the last three days or calculated from VWC, derived from the ECOCLIMAP LAI 

and b-parameter according to vegetation type. 

For this study, SMOS VOD and soil moisture product were filtered by their respective data quality 

indices, which are the retrieved standard deviation reflecting radiometric uncertainty and the Chi2 

values, showing the goodness of retrieval fit (between measured and simulated brightness 

temperature). Both are delivered with the product. 

The Level 2 product is delivered on the ISEA grid, which has a grid spacing of approximately 15 km. 

For proper comparison with the LPRM results, a circle with a radius of 0.5° was defined around each 

Aquarius grid point, which approximately corresponds to the size of the Aquarius footprint. SMOS 

VOD and soil moisture (hereafter referred to as VODSMOS and SMSMOS, respectively) within these 

circles were averaged taking into account their distances from the center grid point.  

 

4.2.1.4 MODIS NDVI 

The MODIS/TERRA NDVI product MOD13C1 was used for an additional comparison of LPRM VOD. Its 

spatial resolution is 0.05°, the temporal resolution 16 days. It was downloaded from NASA’s Earth 

Observing System data gateway (http://reverb.echo.nasa.gov/). The NDVI was aggregated to the size 

of Aquarius footprints using the same method as for SMOS data. 

 

4.2.2 Methods 

Fig. 4.1 gives an overview of the study concept. The single components are presented in the previous 

and following sections. From Aquarius brightness temperatures VODLPRM and soil moisture SMLPRM are 

retrieved in the LPRM, while RVI is derived from Aquarius backscattering coefficients. The 

relationship of VODLPRM and RVI is then analyzed on a global basis. Through the established 

relationship, VODRVI can be derived from RVI. Global VODLPRM and VODRVI patterns are analyzed in 

comparison to VODSMOS and MODIS NDVI, the same is done for SMLPRM and SMSMOS. 

A closer examination of the different VODs is performed in a selected target area. The influence of 

VODRVI in comparison to VODLPRM on soil moisture inversion is tested in the L-MEB model, as each of 

the two is used as input parameter in different model runs. The results with the two different input 

datasets VODLPRM and VODRVI, SMLMEB/LPRM and SMLMEB/RVI, respectively, are analyzed on their 

differences; their patterns and temporal development are compared to SMLPRM and SMSMOS. 
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Fig. 4.1: Overview of the study concept, and the data and models used in the study. Single arrows 
represent the derivation of new information, while double arrows denote the comparison of datasets. 
 

4.2.2.1 RVI 

The RVI (Kim and van Zyl, 2009) uses radar backscattering coefficients of different polarizations for 

characterizing vegetation. It is given by 

 

 𝑅𝑉𝐼 =  
8𝜎0𝐻𝑉

𝜎0𝐻𝐻 + 𝜎0𝑉𝑉 + 2𝜎0𝐻𝑉
 (4.1) 

 

where 𝜎0𝐻𝑉 is the cross-polarization backscattering and 𝜎0𝐻𝐻 and 𝜎0𝑉𝑉 are the co-polarized 

backscattering coefficients in h and v polarization, respectively, all of them in linear units. Being a 

measure of the randomness of the scattering, the RVI generally varies between 0 and 1, with 0 being 

a smooth bare surface, while an increase of vegetation cover will lead to higher roughness and 

therefore to increasing RVI (Kim, Y. et al., 2012).  

RVI is well suited for describing vegetation conditions as it has been shown to have a low sensitivity 

to environmental conditions, i.e. soil moisture. McColl et al. (2014) found, that RVI is able to 

reproduce vegetation patterns and seasonal cycles, but significantly overestimates biomass in dry 

regions. RVI depends on incidence angle, which can be neglected in this study, as only a single 

incidence angle is used. 
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4.2.2.2 LPRM 

VODLPRM was calculated from Aquarius brightness temperatures with the LPRM (Owe et al., 2001; 

Owe et al., 2008). LPRM retrieves soil moisture and VOD by simulating h-polarized brightness 

temperature and minimizing the error to observed brightness temperature. 

The forward simulation of brightness temperature is based on the radiative transfer equation of Mo 

et al. (1982). The dielectric constant k is estimated using the dielectric mixing model of Wang and 

Schmugge (1980). It requires information about soil parameters (sand and clay content and bulk 

density), which were taken from the Harmonized World Soil Database. 

After calculating the surface emissivity in both polarizations from the dielectric constant through the 

Fresnel equations, rough surface emissivity is modeled following the method of Wang and 

Choudhury (1981). Input parameters for this are the polarization mixing factor Q and the roughness 

height h. While Q is set to 0, h is taken from the lookup table of the SMAP Algorithm Theoretical 

Basis Document (O´Neill et al., 2014) according to IGBP land cover classes assigned to the respective 

grid point.  

VOD is derived by an analytical approach, based on the MPDI. It is built on the assumption, that VOD 

is not dependent on polarization. MPDI is defined as 

 

 𝑀𝑃𝐷𝐼 =  
𝑇𝐵𝐻 − 𝑇𝐵𝑉

𝑇𝐵𝐻 + 𝑇𝐵𝑉
 (4.2) 

 

According to Meesters et al. (2005), VOD τ can be described as a function of incidence angle 𝑢 

through MPDI and rough surface emissivities 𝑒𝑟𝑣  and 𝑒𝑟ℎ as 

 

 𝜏 = cos 𝑢  𝑙𝑛 (𝑎𝑑 + √(𝑎𝑑)2 + 𝑎 + 1) (4.3) 

 

where  

 

 𝑎 =  
1

2
 [

𝑒𝑟𝑣(𝑘, 𝑢) − 𝑒𝑟ℎ(𝑘, 𝑢)

𝑀𝑃𝐷𝐼
− 𝑒𝑟𝑣(𝑘, 𝑢) − 𝑒𝑟ℎ(𝑘, 𝑢)]                           (4.4) 

 

and 



 
Relationship of Vegetation Optical Depth and Radar Vegetation Index for the Aquarius mission 

   

77 
 

 𝑑 =  
1

2
 

𝜔

(1 − 𝜔)
 (4.5) 

 

Therefore, single scattering albedo ω is the only vegetation parameter required for the retrieval of 

VOD. In this study it was taken from the lookup table of the SMAP Algorithm Theoretical Basis 

Document (O´Neill et al., 2014) according to the IGBP land cover class. 

As both, VOD and soil moisture, are functions of the dielectric constant of the soil, both values are 

retrieved simultaneously by simulating brightness temperature and minimizing its error to observed 

brightness temperature. 

The resulting VODLPRM and SMLPRM values were smoothed spatially and temporally to eliminate noise 

in the retrievals. A spatial averaging within circles of 0.5° around grid points was used, corresponding 

to the footprint size of the Aquarius radiometer. Thereby the grid was reduced to a tenth of the grid 

points, which is sufficient for our study and the same observations are not repeatedly included in the 

analysis. A temporal smoothing was performed with a moving window of 6 weeks. 

 

4.2.2.3 L-MEB 

To test the suitability of VOD derived from RVI for soil moisture retrieval, soil moisture retrievals with 

VOD from RVI and with VODLPRM were performed for a test area with the L-MEB model (Wigneron et 

al., 2007). L-MEB, which is also used in the SMOS Level 2 processor for soil moisture, is based on the 

τ - ω radiative transfer equation (Mo et al., 1982), just like the LPRM. However, VOD is not retrieved 

in the model but is required as input data, which makes it a useful tool to test the influence of 

different VOD values.  

L-MEB aims to minimize a cost function computed of simulated and measured brightness 

temperatures. In the forward model, dielectric constants are simulated by the Wang dielectric 

model, as the same was used in the LPRM. The same input parameters as for the LPRM were used: h 

and ω were taken from SMAP Algorithm Theoretical Basis Document according to IGBP classes, soil 

data was taken from the Harmonized World Soil Database. h is corrected for polarization in the 

model, while ω as well as VOD were assumed to be independent of polarization and incidence angle. 

These simplifications may influence the results in comparison to SMLPRM and SMSMOS. However, the 

main goal is to investigate the influence of VODRVI on the retrieved soil moisture in comparison to 

VODLPRM, which will not be influenced by the parameterization of the model, as the same was used 

for both model runs. 
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Additionally, L-MEB needs the soil temperature in a depth of 50 cm to properly define the effective 

soil temperature, which was taken from the US Climate Reference Network (USCRN) provided by the 

International Soil Moisture Network (Dorigo et al., 2013).  

 

4.2.2.4 Sample area 

One sample area was chosen to test the newly derived VODRVI in soil moisture retrieval. It is located 

in the United States Midwest (Fig. 4.2) and is a core test site for the SMAP calibration/validation. It 

shows a medium heterogeneity, as gets visible in Fig. 4.2, land use according to IGBP is mainly 

agriculture, grassland, and mixed forests. The area has a size of about 1,300,000 km² and consists of 

960 grid points. It is part of the USCRN soil moisture network (Bell et al., 2013; Diamond et al., 2013). 

The USCRN network consists of 114 stations all over the US and measures soil moisture and soil 

temperature, precipitation, air temperature and surface temperature. The locations of measurement 

sites in and around the sample area are visible in Fig. 4.2. Soil temperature of the USCRN was used 

for simulating soil moisture of the sample area with L-MEB, through finding the closest station for 

every grid point. 

 

 

 
Fig. 4.2: Location and land use of the sample area and locations of USCRN stations. 
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4.3 Results and discussions 

4.3.1 LPRM results 

4.3.1.1 Vegetation optical depth 

Optical depth of vegetation was derived from Aquarius brightness temperatures in the LPRM. Fig. 

4.3 a) shows the distribution of the mean of VODLPRM for the whole study period. Fig. 4.3 b) and c) 

show the mean for VODSMOS and MODIS NDVI, respectively. All of them show a similar overall 

distribution of high and low values, which follows the vegetation zones of the earth. Highest 

deviations amongst the three can be found in the tropical region, where NDVI shows a distinctly 

larger region of high values than the other two. Moreover, in the tropical area, as well as in the 

northern polar region, VODLPRM is clearly higher than VODSMOS.  

This becomes obvious in Fig 4.3 d), which shows the bias between VODLPRM and VODSMOS for all grid 

points. A positive bias indicates higher values of VODLPRM, a negative bias indicates higher values of 

VODSMOS. While in most of the world the bias is smaller than 0.1, in the northern regions values rise 

above 0.2. In regions with tropical rainforests and in areas with high topographic complexity, 

especially the Himalaya, the bias reaches even higher values, with maximum values of 0.6 for single 

grid points. Negative biases are mostly very small, which shows, that VODLPRM tends to have higher 

values than VODSMOS.  

Fig. 4.3 e) provides the correlation of VODLPRM and VODSMOS for every grid point with at least 30 

observation pairs in the study period. The observation pairs for the calculation of correlation 

coefficients, as well as for the calculation of biases, were found by assigning the VODSMOS observation 

with the closest date within a time interval of 2 days to every VODLPRM. The spatial patterns of 

correlation coefficients are not as clear as for bias. While correlation is generally high at the Sahel 

zone and in India, most regions contain grid points with both high and low correlation. Low 

correlation of VODLPRM and VODSMOS may partly result from high noise levels of VODSMOS, which were 

found in previous studies (Patton and Hornbuckle, 2013). They probably arise, as VODSMOS is obtained 

as a soil moisture inversion residual, and is therefore prone to contamination by residuals from 

model error. In polar regions and most of Europe no correlation could be calculated, as too few 

observations were available. This is due to the frequent occurrence of snow and frost and the 

problem with Radiofrequency Interferences. 

For the correlation of VODLPRM and NDVI (Fig. 4.3 f)) values were calculated from observation pairs 

which were coupled by finding the closest date within one week. The time span of one week was 

chosen, as a sufficient number of observations pairs is needed for the analysis and both datasets 
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have a relatively low temporal resolution (1 week and 2 weeks for VODLPRM and NDVI, respectively), 

while the change within this time span is negligible. Again, correlation was only calculated for the 

respective grid point if at least 15 observation pairs were available for the study period. As a result, in 

Europe, most of Asia and a big part of North America, no correlation was calculated.  

Again, the correlation coefficients do not exhibit clear spatial patterns. Still, high correlation gets 

obvious in the desert regions, e.g. the Sahara, while it is quite low and even gets negative in other 

parts. This is in particular valid for the regions of tropical rainforests and the regions where NDVI 

shows extreme values, while VODLPRM does not. This is probably because NDVI is already saturated in 

areas with moderate vegetation cover und thus cannot distinguish within this area anymore, while 

the L-band VOD is able to detect differences in this area. 

 

 

 
Fig. 4.3: Maps of a) VODLPRM, b) VODSMOS, c) NDVI, d) bias of VODLPRM to VODSMOS, e) correlation of 
VODLPRM and VODSMOS, and f) correlation of VODLPRM and NDVI. 
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4.3.1.2 Soil moisture 

In the LPRM, soil moisture is retrieved together with VOD. This is necessary, as the brightness 

temperature contains information about both, soil properties and vegetation and therefore both 

parameters have to be determined for a proper retrieval. Thus, SMLPRM can be analyzed additionally 

to VODLPRM against SMSMOS (Fig. 4.4). The overall distribution of soil moisture around the world is 

similar for SMLPRM and SMSMOS (Fig. 4.4 a) and b)). Nevertheless, SMSMOS tends to be lower than 

SMLPRM, in particular in the polar area of the northern hemisphere. Both soil moisture products are 

rather dry with an overall mean of soil moisture of 0.14 for SMSMOS, while SMLPRM exhibits overall 

mean soil moisture of 0.17.  

Observation pairs for the calculation of bias and correlation coefficients were determined in the 

same way as for VOD. Biases (Fig. 4.4 c)) are generally low within 0.1 m³/m³, with an overall absolute 

value of 0.07 m³/m³. They tend to be highly positive in the northern parts of Asia and the American 

continent, where SMSMOS shows distinctly lower values than SMLPRM. In these regions, the retrieval of 

soil moisture might be more difficult because of snow and frozen soil. Although SMSMOS and SMLPRM, 

are checked for snow and frost conditions, for some occasions the occurrence of snow and frost 

might be undetected, leading to overall higher bias in this area. Highest bias values can be found in 

the alpine Himalayan region, as in the maps of VOD. Again, snow and frost conditions may lead to 

unsuccessful retrievals in this area, together with high topographic complexity. An area with negative 

bias, and therefore lower soil moisture values of SMLPRM than of SMSMOS can be found in the African 

Sahel region, with values of around -0.2 m³/m³. 

Correlation coefficients of SMSMOS and SMLPRM (Fig. 4.4 d)) are mostly high with values over 0.8. Low 

values are found in desert areas, especially in the Sahara, and in the tropical rainforest areas, where 

also correlation coefficients of VODLPRM with VODSMOS and NDVI were low. 
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Fig. 4.4: Maps of a) SMLPRM, b) SMSMOS c) bias of SMLPRM to SMSMOS, and d) correlation of SMLPRM and 
SMSMOS. 

 

4.3.2 Global Relationship for RVI and VOD 

The global relationship of RVI and VODLPRM, visible in Fig. 4.5, was derived from all grid points of the 

reduced grid and all time steps available. It is stable over time, Fig. 4.5 additionally shows the 

relationships for the single years of the study period, and no deviations are visible. The same result is 

also obtained for smaller periods, for example single months. The relationship is a 3rd order 

polynomial equation and is given by 

 

 
𝑉𝑂𝐷𝑅𝑉𝐼 =  𝑉𝑂�̂�𝐿𝑃𝑅𝑀 = 3.8466 ∗ 𝑅𝑉𝐼3 − 5.4551 ∗ 𝑅𝑉𝐼2 + 2.6948 ∗ 𝑅𝑉𝐼 − 0.2230  (4.6) 

with VODRVI being the VOD retrieved from RVI and therefore corresponding to the estimator 

𝑉𝑂�̂�𝐿𝑃𝑅𝑀 of the regression function. The coefficient of determination (R²) is 0.65 for all grid points 

and all IGBP land use classes. It is higher than for a linear regression (0.50) and a 2nd order polynomial 

(0.57). The 4th and 5th order polynomials show only insignificantly higher R² values of 0.66 each.  

The relationship was derived from per-pixel temporally smoothed VODLPRM and RVI values, yet the 

smoothing does not have an influence on the resulting equation. Tests with the unsmoothed grid 

points showed the same relationship; only the value of R² was lower. 
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Fig. 4.5: Relationship of RVI and VODLPRM for the whole study period and all IGBP classes, for single 
years, and for single IGBP classes. 
 

The relationships calculated from observations of single IGBP land use classes only were also 

analyzed on a global basis. The polynomials for agriculture, grassland, forest, shrubland, and barren 

land are also displayed in Fig. 4.5, the coefficients of the respective polynomials can be found in 

Table 4.1. All IGBP forest categories, evergreen needleleaf and broadleaf, deciduous needleleaf and 

broadleaf, and mixed forests, have been aggregated into a single category for the retrieval of the 

polynomial and all following analyses. The same applies to open and closed shrublands. 

Most polynomials of single IGBP classes are similar to the overall relationship. In particular the 

agriculture polynomial shows a comparable relationship to the overall one. Deviations from the 

overall relationship often result from the lack of data in the respective range of RVI values for the 

IGBP class, the part where most RVI and VODLPRM observations are available is close to the overall 

relationship for most IGBP classes. The grassland polynomial is similar to the overall relationship 

mainly for low values of RVI, while the forest polynomial is close to the overall relationship for high 

RVI values > 0.8. Higher deviations can be found for low RVI values, which is due to the lack of RVI 

values < 0.4 in this land use class. The polynomials of shrubland and barren land show least similarity 

to the overall relationship. For barren land, this might partially arise from the fact, that there are no 

high RVI values in the barren land class, but the polynomial deviates from the overall relationship for 

the whole range of RVI. The polynomial for shrubland shows highest deviations from the overall 

relationship for low RVI values. 
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Table 4.1: Coefficients of the IGBP specific polynomials starting with the leading coefficient (p1) ), i.e. 
VODRVI = p1*RVI3 + p2*RVI2 + p3*RVI + p4. 

 

IGBP class p1 p2 p3 p4 

Agriculture 0.87 -0.69 0.42 0.09 

Grass 2.62 -4.31 2.28 -0.13 

Forest 20.52 -42.91 29.69 -6.31 

Shrubland -3.03 4.90 -2.11 0.47 

Barren -1.32 1.11 0.05 0.04 

 

 

It gets obvious, that the highest deviations of land use specific polynomials to the overall relationship 

can be found for the sparsely vegetated IGBP classes of barren land and shrubland, which is 

dominated by open shrubland, containing not more than 60 % vegetation cover (Friedl et al., 2002). 

The RVI is generally a measure for the randomness of scatter (Kim, Y. et al., 2012), implying that it is 

not exclusively influenced by vegetation, but also by soil roughness, which increases the scatter 

randomness as well. In IGBP classes with sparse vegetation, RVI may be highly influenced by surface 

roughness, and therefore the derivation of VOD from RVI may not be applicable there. 

An issue with the overall relationship is the retrieval of extreme values: For RVI values between 0 and 

0.1, a negative value would be obtained for VOD, which, per definition, has to be > 0. Also, VOD 

values > 0.9 cannot be achieved, as long as the RVI gives values between 0 and 1. 

 

4.3.3  VOD derived from RVI 

To examine the relationship described in the previous section, VODRVI was calculated from RVI using 

equation (4.6). VODRVI was calculated for all grid points of the original grid. 

The overall distribution of VODRVI, visible in Fig. 4.6 a), is consistent with the distribution of VODLPRM 

and VODSMOS (Fig. 4.3 a) and b)). Fig. 4.6 b) shows the bias of VODRVI to VODLPRM. By using VODLPRM for 

establishing equation (4.6), it is assumed, that VODLPRM reflects the truth. Therefore, the bias of 

VODRVI to VODLPRM can be seen as a relative error expressing the deviance of VODRVI from the true 

value.  
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Fig. 4.6: Maps of a) VODRVI and b) bias of VODRVI to VODLPRM . 
 

In general, the bias is within a range of +-0.2, with an overall absolute mean of bias of 0.13. While in 

the northern polar region the bias is mostly within a range of 0 to 0.1, there are also negative biases 

of up to 0.2, indicating lower VODRVI than VODLPRM. In contrast, most of the world shows positive bias 

values. On the African continent, the bias is positive, mostly around 0.2, but reaching extremely high 

values in the Sahara desert. This could be expected, as in the previous section it was already noticed 

that there is a pronounced deviation between the overall relationship and the relationship for barren 

land. This is induced by the influence of soil surface roughness on RVI in low vegetated areas, leading 

to high RVI values despite the vegetation being low, thus resulting in an overestimation of VODRVI in 

the respective area. In most tropical regions, especially in South America, the bias is very low with 

values around 0. 

Mean absolute biases of VODRVI and VODLPRM for the world’s most widespread IGBP land use classes 

can be found in Table 4.2. The lowest bias can be observed for agriculture, corresponding to the 

finding of Fig. 4.5, illustrating that the relationship for agriculture is very close to the overall one. 

Highest biases are found in the classes of shrubland and barren land.  

Table 4.2 also displays the overall biases for VOD calculated from RVI with the relationships of the 

single IGBP classes. Highest reduction of bias can be found for forests. This is probably due to the 

problem that extreme values cannot be achieved with the overall relationship, as was already 

addressed in the previous section. The bias for grassland and agriculture did not improve, as their 

respective relationships are very close to the overall one. The high bias that was found for shrubland 

only improved by 0.1 and thus is still quite high. The global distribution of VODRVI derived from the 

IGBP specific polynomials, as well as the distribution of biases to VODLPRM remained quite similar (not 

shown).  
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Table 4.2: Biases between VODRVI and VODLPRM for different IGBP land use classes  derived with the 
global relationship and with IGBP-specific relationships. 

 

IGBP class n overall IGBP  

Agriculture 4568 0.06 0.06 

Grass 7940 0.10 0.10 

Forest 16378 0.12 0.09 

Shrubland 15284 0.17 0.16 

Barren 7940 0.14 0.12 

 

 

Furthermore, as the relationships used in this study were all derived from VOD and RVI of the 

reduced grid only, it was tested, if the results of VODRVI are improving when only the reduced grid is 

considered. Yet, the spatial patterns of VODRVI and the respective bias to VODLPRM stayed the same, 

which further proofs the stability of the derived relationship of equation (4.6).  

 

4.3.4 Performance of the optical depth retrieved from RVI in the sample area 

The sample area in the US Midwest was chosen to enable a closer examination of the newly derived 

VODRVI. Fig. 4.7 shows the spatial patterns of mean VODRVI, VODLPRM, and VODSMOS over the entire 

study period in the sample area. In general, the patterns are similar for the three VODs, and they are 

consistent with the distribution of land use (Fig. 4.2). While the western part of the area, which 

mainly contains grassland, shows rather low values of VOD, the eastern part of the study area with a 

high part of agriculturally used land, shows medium values, with VODRVI showing slightly lower values 

than VODLPRM. The forest area is easily discernable with highest values of VOD, especially for VODRVI 

and VODSMOS. In VODLPRM, the distinction of forest from agricultural land is not that clear. Despite the 

aforementioned problem of the polynomial to produce high values of VOD, the values of VODRVI are 

partially higher than the ones of VODLPRM and come close to VODSMOS. However, highest values of 

VOD are around 0.7, while problems should only occur for VOD values higher than 0.85 and 

therefore in dense forests like tropical rainforests. Overall, the distribution of values of VODRVI tends 

to be closer to VODSMOS than to VODLPRM.  

Kim, Y. et al. (2012) recommend the use of RVI for time series. Therefore, in Fig. 4.8 it is examined, 

whether VODRVI is able to capture the development of vegetation over time in the three most 

common IGBP classes of the sample area, which are agriculture, grassland, and forest. The plots 

show a weekly mean over all grid points of the respective IGBP class for the three VODs. Overall, the 
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absolute values are similar. All of them show a certain level of noise, the highest level gets visible in 

VODLPRM. Differences in noise levels are due to the different sources of the noise and are caused by 

different factors: While the noise in VODLPRM is induced by the noise of brightness temperatures and 

LPRM retrieval, VODRVI directly reflects the noise of RVI. Fig. 4.8 a) shows the time series of 

agriculture VOD, where VODSMOS is slightly lower than VODLPRM and VODRVI. Seasonal variations are 

only faintly visible; the overall ranges of VODSMOS and VODRVI are quite low for agricultural land use 

with 0.17 and 0.20, respectively. The range of VODLPRM is larger, but the seasonal cycle is 

superimposed by noise. Nevertheless, the accordance between VODLPRM and VODRVI is high; the 

overall correlation in the agriculture IGBP class is 0.77, the mean absolute bias is 0.06 and therefore 

the same as on global average. Fig. 4.7 d) also illustrates the correlation of VODLPRM and VODRVI for 

the different IGBP land use classes. The strong correlation of VODs in forests and agriculture gets 

obvious, while the grassland shows higher scattering and no visible relationship. 

 

 

 

Fig. 4.7: Maps of the sample area showing a) VODRVI, b) VODLPRM, and c) VODSMOS and d) scatterplot of 
VODLPRM and VODRVI. 
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Fig. 4.8: Time series of IGBP mean of optical depth for a) agriculture, b) grassland, and c) forest. 
 

The grassland in Fig. 4.8 b) does not show any seasonal variations, which also cannot be expected to 

be high in this land use class. With no visible seasonal cycle and no similarities in peaks, the 

development of the time series is mainly determined by the noise of the data. The overall correlation 

between VODLPRM and VODRVI for grassland is low with a correlation coefficient of 0.13, still, the mean 

absolute bias of 0.08 is lower than the global average for grassland. For forest (Fig. 4.8 c)), both, 

VODRVI and VODLPRM show a similarly high level of noise, while VODSMOS shows a smoother 

development. However, the development of VODRVI and VODLPRM is quite similar, which leads to a 

high correlation coefficient of 0.71. Mean absolute bias is again lower than the global average with 

0.09. 

The influence of VODLPRM and VODRVI on soil moisture retrieval from Aquarius brightness 

temperatures was tested with the L-MEB model to show the independence to the model. L-MEB 

requires VOD as input and as all other input parameters were kept constant, the differences in 

results are only due to VOD and the model selection. The means of the resulting soil moisture 

SMLMEB/RVI and SMLMEB/LPRM with input of VODRVI and VODLPRM, respectively, for the whole study period 

are visible in Fig. 4.9 a) and b). Fig. 4.9 c) and d) show means of SMSMOS and SMLPRM. Both L-MEB 

results show similar spatial patterns. Their distribution, as well as the distribution of SMSMOS and 

SMLPRM, follows the distribution of the IGBP classes and climate. The extremely low values of the 

western part of the grassland area is due to its location in arid climate, while its more eastern part is 
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located in humid climate and therefore shows medium values. In this western part of grassland 

SMLMEB/RVI exceeds the soil moisture values of the other retrievals. Forests also show rather low soil 

moisture values in all maps, while agriculturally used land exhibits medium to high values, the L-MEB 

results being higher than the others. 

High values in the agricultural area can also be observed in the time series in Fig. 4.10 a), which show 

the weekly means of soil moisture over the agriculturally used area for SMSMOS, SMLPRM, and L-MEB 

results SMLMEB/RVI and SMLMEB/LPRM. All of them exhibit a similar seasonal cycle with maximum values in 

December and January. While SMSMOS and SMLPRM show moderate peaks, the L-MEB derived soil 

moisture shows higher values of up to 0.76. The high values of L-MEB results, which were already 

observed in the soil moisture maps in Fig. 4.9, are due to the model and do not depend on VOD 

input, as SMLPRM and SMLMEB/LPRM use the same VODLPRM. 

 

 

 

 
Fig. 4.9: Maps of the sample area showing soil moisture a) SMLMEB/RVI, b) SMLMEB/LPRM, c) SMSMOS, and d) 
SMLPRM. 
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Fig. 4.10: Time series of IGBP mean of soil moisture for a) agriculture, b) grassland, and c) forest. 
 

 

A similar seasonal cycle of soil moisture, even though less pronounced, is visible for forests (Fig. 4.10 

c)). SMLMEB/RVI and SMLMEB/LPRM are nearly identical in this IGBP class, SMSMOS is higher but again shows 

a lower range of the seasonal cycle, peaks (also smaller peaks) are similar for all soil moisture time 

series. The use of VODRVI and VODLPRM in L-MEB showed very similar results for both land use classes. 

The mean time series of grassland (Fig. 4.10 b)) show similarly low soil moisture for all retrievals, and 

similar small peaks, indicating that time series capture the development of soil moisture. Despite the 

low correspondence of VOD inputs (visible in Fig. 4.7 and 4.8) and their low correlation, the input of 

VODRVI did not influence the retrieval negatively. 

Correlation coefficients of the single grid points, visible in Fig. 4.11 b), are mostly > 0.8. This indicates 

that the development of time series of SMLMEB/RVI and SMLMEB/LPRM is not only similar for IGBP means, 

but also for single grid points. Apparently, the different VOD inputs have only minor influence on the 

course of time series, while they primarily affect the absolute height of soil moisture values. 

Therefore, the analysis of bias as the absolute measure of deviations is important.  
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Fig. 4.11: Maps of a) bias and b) correlation coefficients of SMLMEB/LPRM and SMLMEB/RVI. 

 

 

While no seasonal trends are visible in the time series of bias (not shown) for any of the IGBP classes, 

in Fig. 4.11 a) spatial patterns of the bias between SMLMEB/LPRM and SMLMEB/RVI get visible. Low values 

close to zero are achieved for the forested region, while in the grassland area the values are mostly 

higher up to 0.1 m³/m³ and positive, meaning that the input of VODRVI leads to a slight 

overestimation of soil moisture compared to the input of VODLPRM. In the agricultural area, the results 

do not show a specific pattern. While in some parts, soil moisture retrieved with VODRVI 

underestimates soil moisture by up to 0.2 m³/m³, in other parts it is overestimated by values as high 

as 0.37 m³/m³. Some parts show low values around zero. The different results may be due to 

different crop types grown within this area. The small part of the study area classified as 

agricultural/natural vegetation mosaic (see Fig. 4.2) also shows low biases, indicating that VODRVI is 

also useful in areas with mixed vegetation.  

VODRVI derived from the global relationship over all IGBP classes showed to be able to be used as 

input for soil moisture retrieval in the US Midwest area. In dry conditions, it is capable to give results 

with a bias < 0.1 m³/m³, which can be observed in comparing Fig. 4.10 to Fig. 4.11. This is also the 

case under dense forest vegetation. In wet areas, in particular in the agriculturally used area with its 

different crops, however, the bias to soil moisture retrieval with different VOD input can get high. 
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4.4 Conclusions 

This study investigated the relationship of RVI and VOD from Aquarius measurements of three years. 

While RVI was calculated from Aquarius backscattering coefficients, VOD was retrieved from 

Aquarius brightness temperatures in the LPRM through the MPDI with an analytical approach. 

Results show, that a global relationship over all land use classes gives a temporally stable 

relationship, which can be used for retrieving VOD from RVI resulting in a VOD dataset with similar 

spatial patterns as VODLPRM and VODSMOS. Large discrepancies were found in the IGBP classes of 

barren land and shrubland. This is probably resulting from the high influence of soil surface 

roughness on RVI in areas with sparse vegetation cover. VOD calculated from relationships for single 

land use classes did not show significant improvements compared to the global relationship in terms 

of spatial distribution and bias.  

A closer examination of the relationship was performed for the Midwest area in the USA. Here, VOD 

distribution also follows the IGBP land use classes and is similar to VODLPRM and VODSMOS. The 

influence of VODRVI on soil moisture retrieval compared to VODLPRM was tested for the study area by 

retrieving soil moisture with the L-MEB model. Results showed similar spatial patterns and temporal 

development of soil moisture with both VOD inputs in the study area. High bias between the two soil 

moisture retrievals was found for some parts of the agriculturally used land and generally in wet 

areas, lower bias was found in dry areas and areas containing grassland, forest, or vegetation 

mosaics. While the results for soil moisture retrieval are quite variable, an empirical function 

independent of land use and vegetation type for the estimation of VOD can be an advantage 

especially for pixels of mixed land use, as it will give an overall value for the pixel according to RVI. 

Furthermore, the RVI can be calculated from measurements simultaneously available with brightness 

temperature measurements in the Aquarius and SMAP missions without the time lag auxiliary 

information may hold. An additional advantage for the SMAP mission is that the derivation of VOD 

from radar observations leads to a higher resolution than derivation from passive radiometer 

measurements.  

 



Synthesis 
   

93 
 

5 Synthesis  

5.1 Final Conclusions 

Accurate remotely sensed soil moisture products are necessary for improving climate and 

hydrological modeling. This thesis validated two soil moisture products, the SMOS Level 2 soil 

moisture product and the ASCAT surface soil moisture product on catchment scale against a soil 

moisture reference and characterized their spatio-temporal structure on global scale. Furthermore, it 

addressed one major problem of the remote sensing of soil moisture, which also got obvious through 

the analyses in this thesis: The retrieval of soil moisture under dense vegetation showed to be 

complicated for both analyzed soil moisture products. This indicates that the characterization of the 

soil covering vegetation in the various retrieval algorithms still needs improvement. Therefore, a new 

method for vegetation characterization was developed in this thesis. 

In chapter 2 SMOS and ASCAT soil moisture products were validated against a modeled soil moisture 

reference in the Rur and Erft catchments in western Germany. Furthermore, a new validation 

method was investigated: A temporal stability analysis was used for comparing the spatio-temporal 

characteristics of the different products to the modeled soil moisture reference. The ASCAT product 

was investigated in the original relative soil moisture and in absolute values, converted with porosity 

data derived from Harmonized World Soil Database. The relative soil moisture values and the ones 

converted into absolute soil moisture showed similar results for most analyses.  

SMOS showed similar trends compared to modeled soil moisture but a temporally stable dry bias, 

while ASCAT showed generally higher temporal variability in the time series. The southern part of the 

study area, which contains a high amount of forest and a relatively high topographic complexity, 

exhibited a higher dry bias than the remaining part of the catchment for SMOS, and lower 

correlations than the remaining part of the catchment for ASCAT. The northern part, with flat terrain 

and mainly agricultural land use showed better results for the two products. However, the SMOS 

product exhibited a clear influence of RFI in the northwestern part of the study area. Regions with 

high RFI probability showed lower correlations and overall correlations are higher in times with less 

RFI. In terms of spatial patterns, absolute ASCAT values showed the most similar soil moisture 

distribution compared to reference soil moisture. The temporal stability analysis was found to be a 

useful tool for comparing spatio-temporal patterns. 
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In chapter 3 the SMOS and ASCAT soil moisture products were analyzed on their spatio-temporal 

characteristics along with the modeled ERA Interim soil moisture product on a global basis. While 

temporal patterns were found to be reproduced similarly well in the three products, absolute values 

are strongly influenced by acquisition and retrieval methods. Spatial patterns of the three products 

showed a different degree of impact of retrieval approaches dependent on study areas. In general, 

ASCAT exhibited higher soil moisture variability than SMOS, and especially than ERA. The relationship 

of spatial mean and variance is influenced by sensor and retrieval characteristics for the SMOS 

product, while ASCAT and ERA showed similar convex relationships for most regions, introduced by 

the precipitation patterns of the respective regions. The factors controlling the spatial variance were 

found to be strongly dependent on acquisition method. However, a temporal stability analysis 

showed similar spatial patterns mainly in climate regions with low vegetation, in particular for ASCAT 

and ERA products. An examination of the scaling properties of the three products showed that 

different support scales did not have an influence on spatial variance for any of the products. The 

increase of extent areas led to an increase of spatial variance for all products, most of them 

according to a power law, which was particularly the case for the ERA interim product. 

Chapter 4 investigated the relationship of Radar Vegetation Index and vegetation optical depth, both 

calculated from Aquarius measurements. A global temporally stable relationship over all land use 

classes was established, which was then used for retrieving a VOD dataset with the same spatial 

patterns as the original VOD and SMOS VOD from RVI. While for most land use classes errors in the 

new dataset were small, high errors were found for land cover classes with sparse vegetation cover, 

probably due to the high influence of soil surface roughness on RVI in these regions. 

In a sample area the influence of the newly derived VOD on soil moisture retrieval was tested by 

retrieving soil moisture with the L-MEB model. The resulting soil moisture showed similar spatial 

patterns and temporal development as a soil moisture retrieval with L-MEB and the input of the 

original VOD. As the empirical function derived in this study is independent of land use and 

vegetation type, it can be an advantage particularly for the retrieval of VOD for pixels of mixed land 

use, as it will give an overall value for the pixel. Furthermore, the VOD can be calculated from 

measurements simultaneously available with brightness temperature measurements in the Aquarius 

and SMAP missions. 
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In general, the two remotely sensed soil moisture products, as well as the modeled ERA Interim 

product, showed to be suitable for application. Nevertheless, both on catchment scale and on global 

scale, the products have several drawbacks, which one has to be aware of during the application on 

global scale or in a specific region. 

The SMOS product showed to be prone to RFI, especially low-level RFI, which could not be detected 

by the retrieval algorithm in some regions. Complex topography and dense vegetation, in particular 

forests, also limit the performance of the product. Furthermore, the product exhibited to be 

relatively dry compared to reference and to other soil moisture products, both in temporal and 

spatial patterns. 

The ASCAT soil moisture product showed similar difficulties with complex topography and dense 

vegetation. The product exhibited to be less accurate than other products in regions with dry sand, in 

particular in deserts, where volume scattering is high. Another problem of the product is that it is 

only retrieved in terms of relative soil moisture. The conversion to absolute soil moisture needs 

accurate soil moisture information. However, on catchment scale the relative and the derived 

absolute soil moisture showed similar results.  

The modeled ERA Interim soil moisture product exhibited a very narrow range of soil moisture, 

leading to inaccuracies in areas with extreme soil moisture values. It was, for example, found to be 

too wet in deserts. 

Both remotely sensed products showed that the retrieval of soil moisture is more prone to errors 

under dense vegetation, in particular in forested areas. This is an issue for all remotely sensed soil 

moisture products, as the vegetation influences the signal from the soil measured by active and 

passive sensors. This study investigated a new way of retrieving VOD from radar measurements. The 

method showed promising results in terms of VOD and soil moisture retrieved with this VOD. It is 

applicable by the Aquarius mission and the new satellite mission dedicated to soil moisture retrieval, 

the SMAP, which carries both a radiometer and a radar. This method is of advantage for pixels with 

mixed land use, as an overall value can be retrieved for the pixel. VOD can be calculated from 

measurements simultaneously without time lag, which might be the case with auxiliary information 

from optical sensors. Moreover, for the SMAP mission radar observations can provide higher 

resolution VOD than radiometer measurements. 
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5.2 Outlook 

A variety of soil moisture products is operationally available at the moment. The newest products 

available are obtained from the SMAP mission in three different resolutions. The validation of these 

products will be of high importance in the near future. A validation would also be useful in the 

catchments of Rur and Erft, which is a challenging study area for remotely sensed soil moisture 

products due to its small scale heterogeneity. The validation of the new products, also in relation to 

the products already validated in this area, will give insight on the factors influencing the individual 

performance of the active, passive and merged products on different scales.  

The validation of soil moisture products on catchment scale makes obvious, that application of these 

products on a small catchment scale is of limited use. Downscaling therefore is an important task 

that has to be put further effort on. The scaling behavior of SMOS, ASCAT and ERA Interim soil 

moisture products, which was analyzed in chapter 3, can help to improve downscaling algorithms. A 

further investigation on the stability of the discovered power law and the influence of study area 

choice on the power law would be of interest. Moreover, it would be interesting to investigate, down 

to which length this behavior is valid. 

The temporal stability analysis, used in chapters 2 and 3, demonstrated to be a useful tool for the 

investigation of spatio-temporal patterns of soil moisture. However, a more detailed analysis of the 

influencing factors on the metrics and a study on the impact of different scales and sampling sizes on 

the results would be an advantage for the further use of this tool in validation activities. 

First results of retrieving vegetation optical depth from radar measurements showed promising 

results. The next step would be a thorough analysis of the results for different land use classes and in 

different regions of the world. Additionally, the relationship derived in this chapter is completely 

dependent on the accuracy of the VOD retrieved in the LPRM, which was used for establishing its 

relationship to RVI. Therefore, a comprehensive error analysis of VOD from LPRM would be 

interesting before transferring the relationship to SMAP observations. Furthermore, the question if 

RVI is the best radar index for the characterization of vegetation or if the backscattering coefficient in 

HV polarization or other polarization ratios may contain more information about vegetation is not 

finally solved. Further investigation on this topic is needed. 
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