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Abstract

The Standard Model comprises most of today’s knowledge of particle physics and is over-
all well tested and understood. However the dynamics of strong interactions, given by
Quantum Chromodynamics (QCD), are still a challenge at low energies. The running cou-
pling constant prevents a direct perturbative calculation of QCD at the hadronic scale and
therefore other methods have to be employed.

In this thesis we apply dispersion theory to study strong final-state interactions in
three-particle decays and investigate the J/ψ → π0γ∗ transition form factor.

In the first part of this thesis we introduce a dispersive framework for three-body de-
cays, based on Khuri–Treiman equations, that satisfies analyticity, unitarity, and crossing
symmetry by construction and includes crossed-channel rescattering effects. We explicitly
display the derivation of the Khuri–Treiman equations on general vector-meson decays into
three pions V → 3π with V ∈ {ω, φ, J/ψ}. These decays provide an ideal test case as the
equations are of simple form. In this context we study the general dependence of the re-
sulting amplitude on the vector-meson mass and investigate the employed iterative solution
strategy and its convergence.

Building on the obtained J/ψ → 3π amplitude we study the J/ψ transition form factor.
The transition form factors of light vector mesons have been of great interest over the
last years because of their importance in the theoretical determination of the anomalous
magnetic moment of the muon. However the available experimental data is difficult to
understand theoretically. With the larger phase space available, the J/ψ → π0γ∗ transition
may shed light onto the lighter vector-meson transition form factors.

In the second part we resume our study of three-particle decays on the Cabibbo-favored
D+ → Kππ+ decays. Heavy-flavor three-body decays into light mesons provide a valuable
source for Standard Model tests and beyond. They play an important role due to their
richer kinematic structure compared to two-body decays which can be exploited e.g. in CP-
violation studies. So far the Khuri–Treiman-type equations have been applied successfully
to light meson decays but not to heavy-flavor decays. Thus the Cabibbo favored D+ →
Kππ+ decays provide an ideal test to establish the framework in the open-charm sector. We
introduce a new numerical method to solve the Khuri–Treiman-type equations, compare the
obtained decay amplitudes to the data from the CLEO, FOCUS, and BES III collaboration
as well as previous theoretical studies and discuss the impact of crossed-channel rescattering
effects in these decays.

Parts of this thesis have been published in the following articles:

• F. Niecknig and B. Kubis, Dispersion-theoretical analysis of the D+ → K−π+π+

Dalitz plot, JHEP 1510 142 (2015)

• B. Kubis and F. Niecknig, Analysis of the J/ψ → π0γ∗ transition form factor, Phys.
Rev. D 91, no. 3, 036004 (2015).
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Furthermore, the material presented in Chapter I generalizes results published in

• F. Niecknig, B. Kubis and S. P. Schneider, Dispersive analysis of ω → 3π and φ→ 3π
decays, Eur. Phys. J. C 72 2014 (2012)

• S. P. Schneider, B. Kubis and F. Niecknig, The ω → π0γ∗ and φ → π0γ∗ transition
form factors in dispersion theory, Phys. Rev. D 86 054013 (2012)

• M. Hoferichter, B. Kubis, S. Leupold, F. Niecknig and S. P. Schneider, Dispersive
analysis of the pion transition form factor, Eur. Phys. J. C 74, 3180 (2014).
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Chapter 1

Introduction

The understanding and prediction of natural phenomena has been at the heart of human
desire since time immemorial—especially the strive to discover the smallest building blocks
and how these form the world as we see it today.

At the center of today’s knowledge of theoretical particle physics stands the Standard
Model. The Standard Model, introduced in the 60s and 70s, see Refs. [1–4], is a local
SU(3) × SU(2) × U(1) gauge quantum field theory, which unifies the strong, the electro-
magnetic and the weak force, three of the four fundamental forces.

The constituents of the SM are the six quarks (u, d, c, s, t, b), the six leptons (ℓ, νℓ with
ℓ ∈ {e, µ, τ}) and the force carriers, the vector bosons: eight gluons mediating the strong
interaction, the W± and Z bosons responsible for the weak interaction and the photon
γ for the electromagnetic interaction. Furthermore a scalar boson, the Higgs boson, was
proposed to give the otherwise massless weak gauge bosons (W± and Z) and chiral fermions
(quarks and leptons) a mass. The recent experimental confirmation, see Ref. [5, 6], caught
world wide attention.

Over the last decades the Standard Model has withstood numerous challenges, exper-
imental and theoretical, and is regarded as one of the best tested theories up to date.
However the unification of the Standard Model with the gravitational force is still an on-
going endeavor and further caveats like the hierarchy problem, the dark matter and dark
energy puzzle, matter-antimatter asymmetry in the universe to name a few, suggest that
the Standard Model may be embedded in a more global yet to unravel theory.

Focusing on intrinsic issues, Standard Model calculations have historically relied heavily
on the well developed and successful technique of perturbation theory, pioneered in Quan-
tum Electrodynamics (QED), which spurred the progress in the energy regions where the
perturbative expansion converges. However at low energies, strongly interacting processes
do not permit perturbative calculations, since the running coupling constant of the strong
interaction becomes too large. Therefore the strong dynamics at low energies are still not
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adequately understood. The field of theoretical hadron physics is dedicated to this issue
and alternative solution methods have been developed. Besides effective field theory and
lattice QCD, dispersion theory is one of these alternatives. Based on the fundamental prin-
ciples of unitarity, analyticity and crossing symmetry, the analytic structure of the process
in question is exploited to obtain integral equations that are solved to obtain the amplitude
in question.

In this thesis we will employ dispersion relations to investigate in particular three-
body decays. Heavy-meson three-body decays have caught much attention in Standard
model tests and beyond, for example in CP-violation studies. The more involved kinematic
structure, compared to two-body decays, makes these decays a prime target to test our
knowledge of low-energy QCD and Standard Model physics.

Not only from the theoretical side precision tools for low-energy strong processes are
required, but also from the experimental side. Most experimental analyses are performed
in the so-called isobar model where two-particle interactions are often expressed by pure
resonance exchange in the form of Breit–Wigner parametrizations and additional back-
ground terms. Beside that some resonances are by no means of Breit–Wigner shape, these
analyses often violate basic physical principles like unitarity and analyticity, see Ref. [7],
and suffer from not taking interactions beyond two-particle interactions into account. Thus
also from the experimental point of view there is a need for more rigorous approaches like
the dispersion relations employed in this thesis.

The thesis is structured as follows: After a short introduction into the dynamics of
strong interactions and non-perturbative approaches needed at low energies, we display the
concept of dispersion theory and give a first application, the pion vector form factor. In
part I the dispersive treatment of three-particle decays with Khuri–Treiman equations is
introduced on the example of V → 3π decays. The Khuri–Treiman-type equations for these
decays have a simple form and therefore serve as a test ground to study the dependence on
the decaying mass and the convergence of the iterative solution strategy. We will explicitly
study the J/ψ → 3π decay. Chapter 3 is devoted to the study of the J/ψ → π0γ∗ transition
form factor taking the J/ψ → 3π decay amplitude obtained in Chapter 2 as input. In part II
we extend the Khuri–Treiman formalism to decays of the open-charm sector, namely the
D+ → Kππ+ decays, construct a new solution strategy, discuss the influence of crossed-
channel rescattering effects and compare the obtained decay amplitudes to data and other
theoretical approaches.

1.1 Strong interaction

The fundamental theory of strong interactions is QCD. It is a non-abelian quantum field
theory with the underlying SU(3) color symmetry group (Yang–Mills theory), stemming
from the SU(3) part of the Standard Model, see Ref. [1]. The QCD Lagrangian (omitting
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Figure 1.1: The graph, taken from Ref. [8], shows the summary of the measurements of the

running coupling constant αs(Q) with respect to the energy scale Q. The QCD perturbative

order used in the extraction of the strong coupling constant is given in the brackets (NLO:

next-to-leading order; NNLO: next-to-next-to-leading order; res. NNLO: NNLO matched

with resummed next-to-leading logs; N3LO: next-to-NNLO).

the Θ-term) is given by

LQCD = ψ̄f(iDµγ
µ −mf )ψf −

1

4
F i
µνF

µν
i , (1.1)

with the quark fields ψf , which come in six flavors, f ∈ {u, d, c, s, t, b} andDµ = ∂µ−igsAiµti
is the covariant derivative with the SU(3) generators ti and the eight corresponding gauge
fields Ai being the gluons. The field strength tensor is defined by

F i
µν = ∂µA

i
ν − ∂νA

i
µ + gsf

ijkAjµA
k
ν , (1.2)

with the strong coupling constant gs or αs = g2s/(4π) and f ijk the structure constants of
the SU(3) Lie algebra. The appearance of a connection igAiµt

i and curvature F i
µν is the

consequence of the local nature of the gauge symmetry. The non-abelian nature of this
theory induces gluon-gluon interaction terms (the last term in Eq. (1.2)). These are also
responsible for the peculiar nature of asymptotic freedom, see Ref. [9, 10], encoded in the
βQCD-function of the renormalization group equation of QCD. We state βQCD to one loop
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order

βQCD(αs) ≡ Q2dαs(Q
2)

dQ2
= −

(

11− 2nf
3

)
αs(Q

2)

2π
+O(α3

s)

⇒ αs(Q
2) ≈ αs(µ

2)

1 + (33− 2nf )/(12π) ln
(
Q2

µ2

) , (1.3)

where Q denotes the momentum transfer, µ the reference scale, often taken to be the mass
of the Z boson, and nf the number of flavors. The minus sign in βQCD gives rise to a
small coupling at high-momentum transfer (asymptotic freedom), while for low momentum
transfer a strong coupling is realized, see Fig. 1.1. As the strong coupling constant is
the expansion parameter of perturbative QCD, other methods have to be devised in the
low-energy region.

1.2 Non-perturbative QCD

We have seen above that the nature of the strong interaction admits to perturbative cal-
culations at very high energies but not at low energies due to the nature of the running
coupling constant. Thus the asymptotic freedom of QCD leads to the fact that other means
than perturbative QCD have to be applied to study low-energy strong interactions. The
major pillars of non-perturbative QCD calculations are lattice QCD, effective field theories,
and dispersion theory.

The main idea of lattice QCD is to reformulate QCD on a discretized space-time lattice
with finite extension. On this lattice correlation functions are calculated numerically via
the path integral formalism and the obtained results are extrapolated back to continuous
space-time. However these calculations come at a great expense of computational resources
and have to be performed on supercomputers. Additionally, the signal-to-noise ratio as
well as the sign problem can present issues which are difficult to overcome.

A second ansatz are effective field theories (EFTs). EFTs exploit the conjecture made
by Weinberg [11], that any quantum field theory has no content besides unitarity, analyt-
icity, cluster decomposition and symmetries: analyticity which stems from microcausality,
unitarity which ensures probability conservation, cluster decomposition, meaning that dis-
tant experiments are uncorrelated, and the symmetries which are the characteristic features
of the underlying theory directly linked to its conservation laws.

The effective Lagrangian for the relevant degrees of freedom at the considered length
scale is thus given by the most general Lagrangian which inherits the symmetries of the
underlying theory. To obtain a meaningful and powerful effective theory it is imperative that
we have a large scale separation between the considered low-energy scale and the integrated
out high-energy scale. The ratio of the two scales, the expansion parameter, provides an
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ordering scheme (power counting) of the operators in the Lagrangian. Operators with higher
order in the expansion parameter are suppressed compared to low order operators. Thus
we have a systematic ordering of the operators by their contribution strength. Every term
in the Lagrangian comes with a prefactor a priori not known, called low-energy constants
(LECs). These have to be determined either from experiment or from the underlying
theory and incorporate higher-energy effects. Having a small expansion parameter renders
the theory more predictive since less terms in the Lagrangian and therefore less LECs have
to be considered.

In the following we will briefly discuss the low-energy effective field theory of QCD,
namely chiral perturbation theory (ChPT), before introducing dispersion theory in more
detail in the ensuing section. To construct the low-energy effective theory of QCD we have
to first specify the relevant degrees of freedom. Since the fundamental degrees of freedom
of QCD, the quarks and gluons, are confined to color neutral composites at the hadronic
scale (mesons, baryons, . . . ) it is not directly apparent how the fundamental and hadronic
degrees of freedom are connected. The connection is the approximate chiral symmetry of
QCD for the lightest quark flavors at the hadronic scale. With the quark fields decomposed
in its chiral left- and right-handed spinors

ψR/L ≡ 1± γ5
2

ψf , (1.4)

we obtain for the QCD Lagrangian Eq. (1.1)

LQCD = iψ̄RDµγ
µψR + iψ̄LDµγ

µψL − ψ̄RmfψL − ψ̄LmfψR − 1

4
F i
µνF

µν
i . (1.5)

The left- and right-handed field equations decouple if the quark mass term is neglected. In
this scenario the QCD Lagrangian gains the additional symmetry

UR(nf)× UL(nf ) = SUL(nf )× SUR(nf )× UV (1)× UA(1) , (1.6)

with V = L + R (vector) and A = L − R (axial). The UV (1) symmetry corresponds
to the baryon number conservation and UA(1) is anomalously broken, meaning that this
symmetry does not survive quantization. Considering only the lightest quarks u, d and s,
their masses are much smaller than the typical hadronic scale (≈ 1GeV). We can therefore
expect that the remaining SUL(3) × SUR(3) symmetry is approximately realized in the
hadronic spectrum. In principle there are two realizations of a symmetry in the particle
spectrum: the Wigner–Weyl mode, where the symmetry is realized in degenerate particle
multiplets, or the Goldstone mode, in which the symmetry is spontaneously broken. In
the Wigner-Weyl realization we should observe degenerate states of opposite parity since
left- and right-handed operators have opposite parity. This is not observed. Also the
vacuum expectation value of the axial- and vector current should be equal. This again is
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not observed in experiments. What one observes is that the SUL(3) × SUR(3) symmetry
is spontaneously broken to an SUV (3) symmetry where the arising Goldstone bosons are
interpreted as the pseudoscalar ground-state mesons. These include the pion triplet, the
four kaons and the eta-meson. We could have restricted ourselves to a pure pionic theory
considering only u and d quarks, such that the SU(3) symmetries reduce to SU(2). Since
the pion masses are much smaller than the kaon and eta-meson masses, the systematic
error of SU(2) ChPT is smaller than that of SU(3) ChPT.

We choose the one-parameter subgroup exponentiation representation of the Goldstone
bosons octet given by

U = exp

(
iφ

f

)

with φ ≡
8∑

i=1

φiti =






π0 + 1√
3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η

√
2K0

√
2K− √

2K̄0 − 2√
3
η




 , (1.7)

where tj , j ∈ {1, 2, . . . , 8}, are the 8 generators of the [SUL(3)× SUR(3)] /SUV (3) ≃ SU(3)
quotient space in the Gell-Mann representation, f can be identified with the meson octet
decay constant in the chiral limit. As we work in the low-energy region the number of small
momenta p, small compared to a yet to determine scale Λχ, or equivalently the number of
derivatives, give us a natural power counting scheme of the importance of operators. The
general ChPT Lagrangian is thus ordered via

L = L(2) + L(4) + L(6) + ... , (1.8)

where the upper index denotes the number of derivatives. Note that odd numbers of
derivatives are forbidden by Lorentz invariance and the L0 term amounts to an irrelevant
constant. We know that chiral symmetry is an approximate symmetry and that the mass
term explicitly breaks the symmetry. To account for non-zero quark and meson masses
one introduces an explicit symmetry-breaking mass term that breaks the chiral symmetry
exactly as the QCD mass term does. The leading order Lagrangian L(2) consistent with
the imposed symmetry, mass term and Eq. (1.7) reads

L(2) =
f 2
π

4

〈
∂µU∂

µU + 2B0(M†U + U †M)
〉
, M ≡





mu 0 0

0 md 0

0 0 ms



 . (1.9)

with 〈〉 denoting the SU(3) trace and the quark masses count like O(p2), due to the Gell–
Mann–Oakes-Renner relation. The validity range of ChPT, as discussed above, is given by
the breaking scale Λχ, which is estimated by the mass of the lightest resonance (ρ(770)-
resonance) or by next-to-leading order considerations

Mρ ≈ 0.775GeV ≤ Λχ ≤ 4πfπ ≈ 1.2GeV . (1.10)

For a deeper introduction into ChPT we refer the reader to Refs. [12, 13].
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1.3 The S-matrix

This section is dedicated to the exploration of the analytic properties of the S-matrix and
a successive introduction into dispersion relations. Let us consider an initial multi-particle
state |i〉 scatter or decay. The probability of measuring a state |f〉 as a final state is given
by the squared modulus of the S-matrix element

|〈f |S|i〉|2 . (1.11)

For a consistent definition, the S-matrix has to comply with the following properties, see
Ref. [14]:

1. short-range character of the force

Demanding a short-range character of the force is necessary in order to have asymp-
totically free initial and final states.

2. superposition principle of quantum theory

The superposition principle is fundamental to describe quantum phenomena and ren-
ders the S-matrix linear.

3. requirement of special relativity

It is clear that the S-matrix has to abide to the laws of special relativity. Lorentz
invariance dictates that 〈f |S|i〉 = 〈Lf |S|Li〉 with L a proper Lorentz transformation.

4. probability conservation

The requirement of probability conservation is mandatory for the probability interpre-
tation of Eq. (1.11). Summing over all possible measured final states we should always
retain unity. This directly translates into the unitarity of the S-matrix SS† = 1.

5. causality

Causality states that signals can not be received before transmission. This property
has severe impact on the analytic properties and the pole structure of the S-matrix.

We note that the link between perturbation theory and the S-matrix is given by the LSZ
reduction formula, see Ref. [15]. The S-matrix can be decomposed further into a non-
interacting part and an interacting part, the T -matrix

S = 1I + iT . (1.12)

In the following we will study the analytic structure of the S-matrix.
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1.3.1 Unitarity relation and analyticity

For simplicity we will consider in the following a two-particle scattering process with spinless
and identical particles of mass M

A(p1)B(p2) → C(k1)D(k2) , (1.13)

with the four-momenta p1, p2, k1, k2. The Lorentz invariance of the S-matrix infers that the
S-matrix element 〈k1, k2|S|p1, p2〉 can only depend on scalar products of the four momenta.
With the Lorentz scalar Mandelstam variables defined as follows

s = (p1 + p2)
2, t = (p1 − k1)

2, u = (p1 − k2)
2 , and s+ t+ u = 4M2 , (1.14)

the scattering amplitude M(s, t, u) is defined via

M(s, t, u) ≡ (2π)4δ4
(
p1 + p2 − k1 − k2

)〈
k1, k2|T |p1, p2

〉
, (1.15)

where the δ-distribution imposes energy and momentum conservation. To investigate the
analytic structure of the scattering amplitude we study the implications of the unitarity of
the S-matrix. With Eq. (1.12) we have

T †T = i
(
T † − T

)
. (1.16)

Inserting the orthogonal projection we obtain
∑

m

〈f |T †|m〉〈m|T |i〉 = i〈f |(T † − T )|i〉

⇒ Tif − T ∗
fi = i

∑

m

(2π)4δ(pm − pf )T
∗
mfTmi , (1.17)

with Tif ≡ 〈f |T |i〉 and
∑

m

denoting the sum and phase-space integral over all possible

intermediate states m. In the case Tif = Tfi holds, true for elastic two-particle scattering,
we can identify the left-hand side of Eq. (1.17) with 2 ImTif . More generally causality
dictates that the physical scattering amplitude is given by

lim
ǫ→0

M(s+ iǫ, t, u) = δ4(pi − pf) Tif , (1.18)

and due to hermitian analyticity, see Ref. [16],

lim
ǫ→0

M(s− iǫ, t, u) = δ4(pi − pf ) T
∗
fi . (1.19)

We thus obtain

discM(s, t, u) ≡ M(s+ iǫ, t, u)−M(s− iǫ, t, u) = i
∑

m

(2π)4δ(pm − pf)T
∗
mfTmi . (1.20)
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Re s

Im s

−u0 − 12M2 −u0 − 5M2 −u0 4M2 9M2 16M2

Figure 1.2: Analytic structure of the identical particle scattering amplitude for fixed u = u0
in the complex s-plane. The colored lines indicate the right- and left-hand branch cuts

starting at the corresponding multi-particle thresholds: two-particle (red), three-particle

(blue) and four-particle (gray).

This relation is known as the unitarity relation. Whenever an intermediate state can
go on-shell we obtain a contribution to the discontinuity and thus a branch cut opens
with corresponding additional Riemann sheets. The first branch cut thus opens at the
elastic threshold (s = 4M2) followed by the three-particle threshold (s = 9M2) spanning
to infinity. These cuts are called right-hand cuts. Moreover, intermediate bound states
can exist, which would give singular points on the real axis below the elastic threshold.
However, there are more non-analytic structures present. Due to crossing symmetry, or
in other words due to analytic continuation in the Mandelstam variables, the scattering
amplitude also covers the crossed scattering processes

A(p1)C̄(−k1) → B̄(−p2)D(k2) t-channel process

A(p1)D̄(−k2) → B̄(−p2)C(k1) u-channel process , (1.21)

where Ā denotes the antiparticle of particle A and similarly for B,C, and D. These crossed
processes exhibit branch cuts for t ≥ 4M2 (t-channel) and u ≥ 4M2 (u-channel), stemming
from the corresponding unitarity relations. Note that, due to CPT symmetry (charge
conjugation, parity and time reversal) combined with crossing symmetry, we have six pro-
cesses described by the same scattering amplitude M(s, t, u). In the case of additional
PT symmetry, we have twelve. The branch cuts of the t- and u-channel are connected to
the s-channel through the relation s + t + u = 4M2, see Eq. (1.14). For example fixing
u = u0, the first t-channel branch cut (t ≥ 4M2) begins at s = −u0 and spans to s→ −∞,
see Fig. 1.2. These branch cuts in the complex s-plane stemming from the crossed t- and
u-channels are called left-hand cuts.
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γcut
Re

γc

γs

(a)

Im

γcut

γcut

Re

Re

ai

Im

Im

ana0

(b)

(c)

γa0 γai γan

Figure 1.3: The complex plane with the branch cut (gray) starting at the elastic threshold

(xth) and different integration contours. Figure (a) depicts the closed circular contour γs of

Cauchy’s integral formula around point s, see Eq. (1.22), and the enlargement to γc+γcut.

Figure (b) depicts the resulting integration contour taking the radius of contour γc to

infinity and (c) the additional contributions from the subtraction points ai if subtractions

are introduced.

1.3.2 Dispersion relations

Dispersion relations exploit the analytic structure of the physical amplitude in question.
They provide a model-independent tool based on the fundamental principles of any mean-
ingful quantum field theory: micro causality (analyticity), probability conservation (uni-
tarity of the S-matrix) and crossing symmetry. The construction of dispersion relations
relies on basic complex analysis theorems.

Let us assume that the only non-analytic structure of a complex function f(s) on the
physical sheet stems from the discontinuity given by the unitarity relation (maximal ana-
lyticity) and no crossed-channel contributes. In other words, f(s) is analytic on the open
set C \ {x|x ≥ xth, x ∈ R}, with the branch point xth. Cauchy’s integral formula states
that on this open set we can rewrite f(s) by

f(s) =
1

2πi

∮

γs

f(x)

x− s
dx , (1.22)

where the integration path γs is depicted in Fig. 1.3 encircling the point s. We can enlarge
the closed contour γs by Cauchy’s theorem to γc+ γcut provided that in the swept area the
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function is analytic. Assuming that the function f(s) vanishes fast enough approaching
complex infinity the radius of the contour can be taken to infinity such that the integral
over γc vanishes. Thus only the integral over γcut remains, see Fig 1.3 b),

f(s) =
1

2πi

∫

γcut

f(x)

x− s
dx =

1

2πi

∫ ∞

xth

disc f(x)

x− s
dx . (1.23)

Since we have information on the right-hand-cut discontinuity of f(s) from the unitarity
relation we can reconstruct the function f(s) in the whole complex plane with this local-
ized information. Thus the function satisfies the unitarity relation and the imposed analytic
constraints by construction. In the case where f(s) does not fall off fast enough in the com-
plex infinity limit, subtractions are introduced: f(s) is divided by a polynomial such that
the resulting function vanishes sufficiently fast approaching complex infinity. However this
introduces further singularities which result in unknown subtraction constants which have
to be determined beyond the scope of dispersion theory either by theoretical considerations
or experimental data. We define

g(s) ≡ f(s)
n∑

i=0

ci(x− ai)i
, (1.24)

where ai are called the subtraction points. Starting again with Cauchy’s theorem we have
enlarging the circular integration contour, see Fig. 1.3 c),

g(s) =
1

2πi

∫

γcut

g(x)

(x− s)
dx+

n∑

i=0

1

2πi

∫

γai

g(x)

(x− s)
dx . (1.25)

We determine the sum of integrals encircling the subtraction points ai via the residue
theorem,

1

2πi

∫

γai

g(x)

(x− s)
dx =

1

2πi
Res

(
g(x)

x− s
, ai

)

= lim
x→ai

[

(x− ai)
g(x)

x− s

]

=
f(ai)

(ai − s)
n∑

j=0, j 6=i
cj(ai − aj)j

. (1.26)

We therefore obtain from Eq. (1.25)

f(s) = hn−1(s) +
pn(s)

2πi

∫ ∞

xth

disc f(x)

pn(x)(x− s)
dx , (1.27)
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π+

π−

Jµ

m

Figure 1.4: The diagrammatic contribution to the discontinuity of the pion vector form

factor. The gray circle denotes the Jµ → m transition amplitude and the black circle

stands for the m → π+π− amplitude, where m denotes the possible intermediate states.

In the elastic case they correspond to the pion vector form factor and π+π− → π+π−

amplitude respectively. The dashed gray line shows the Cutkosky cuts.

with the polynomials pn(s) =
n∑

i=0

ci(s− ai)
i being of order n and

hn−1(s) = pn(s)

n∑

i=0

f(ai)

(ai − s)
n∑

j=0, j 6=i
cj(ai − aj)j

, (1.28)

being of order n−1. In the following we will always subtract at the origin ai = 0 and ci = 1
without any loss of generality

f(s) = h̃n−1(s) +
sn

2πi

∫ ∞

xth

disc f(x)

xn(x− s)
dx , (1.29)

where the subtraction polynomial h̃n−1(s) is of order n− 1.

1.4 Pion vector form factor and Omnès problem

The first physical application we want to discuss is the pion vector form factor at low
energies (. 1GeV) defined by the following matrix element,

〈π+(p′)π−(p)|Jµ(0)|0〉 = (p′ − p)µFV (q
2) , (1.30)

with q = p′ + p and Jµ the electromagnetic current. The dispersive representation of the
pion vector form factor is a good pedagogic advent towards the study of three-particle
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decays in a dispersive framework and the challenges in the description of non-perturbative
QCD at low energies. The dispersive analysis of the pion vector form factor will also
serve as input in the following studies. The pion vector form factor is a key subprocess in
many hadronic reactions also providing the biggest hadronic contribution to the anomalous
magnetic moment of the muon. Experimentally the form factor is directly accessible via
the processes e+e− → π+π− or via τ− → π−π0ντ if we assume isospin symmetry. Large
isospin violating corrections explicitly include the ρ − ω mixing, which is only present in
the neutral current.

Although ChPT provides an effective theory for low energy QCD dynamics it does in-
clude only the lowest pseudoscalar mesons as dynamical degrees of freedom. Therefore the
applicability range of ChPT in the vector channel with the prominent broad ρ(770) reso-
nance is reduced to well below the ρ(770) resonance. A natural procedure is the extension
of ChPT to include higher resonances, like the vector-meson octet, in a suitable manner
(e.g. Refs. [17–21]). However these theories suffer from an unclear scale separation and are
therefore not as rigorous or precise as ChPT.

This calls for a precision tool that respects the fundamental principles of relativistic
quantum phenomena. The precision tool we will employ is dispersion theory and in the
following we will explicitly treat the pion vector form factor in a dispersive setting known as
the Omnès problem. The Omnès problem is a classic subject, first discussed in Refs. [22,23]
and widely utilized in pion vector form factor studies, see e.g. Refs. [24–27]. Let us first note
that due to Bose symmetry the ππ system has isovector quantum numbers as it couples to
the vector current and is therefore in a pure P -wave state. The inaugural step to employ
dispersion relations lies in the study of the analytic structure of the amplitude in question.
In this respect the pion vector form factor is a simple example having only a right-hand
cut (see Fig. 1.4), due to lacking crossed channels. The unitarity relation thus reads

(p′ − p)µ discFV (q
2) =

i

2

∑

m

(2π)4δ4(pm − q)
〈
π+(p′)π−(p)|T |m

〉 〈
m|Jµ(0)|0

〉
, (1.31)

where the sum runs over all possible intermediate states m with overall four momentum
pm. At low energies the discontinuity relation is saturated by low-lying intermediate states.
In the following we will assume elastic unitarity, so only the ππ intermediate state is
considered. This is a legitimate approximation in the energy region in question. The
next higher inelastic contribution would be induced by 4π intermediate states, strictly
contributing at s ≥ 16M2

π , but phenomenologically found to set in noticeable around the
ωπ threshold. As we consider a P -wave, the inset of inelasticities is mild and we can
conclude that up to the region of 1GeV the elastic description gives a good approximation.
Beyond, a treatment of inelastic channels is certainly required. For further information and
a thorough inclusion of inelastic effects in a multi-channel approach we refer the reader to
Ref. [27] and references therein.
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We will now consider the elastic unitarity relation, Eq. (1.31) with only ππ intermediate
states

(p′ − p)µ discFV (q
2) =

i

2

∫
dk4

(2π)2
δ((q − k)2 −M2

π)δ(k
2 −M2

π)Tππ(q, k) (q − 2k)µFV (q
2) ,

(1.32)

with Tππ(q, k) ≡
〈
π+(p′)π−(p)|T |π+(q− k)π−(k)

〉
. The partial-wave decomposition for the

ππ scattering amplitude
〈
π+(p′)π−(p)|T |π+(k − q)π−(k)

〉
is given by

Tππ(s, zs) = 32π
∑

L

(2L+ 1)h1L(s)PL(zs) , (1.33)

where h1L(s) denotes the partial wave of angular momentum L and isospin I = 1, PL(zs) the
Legendre polynomials and zs the cosine of the scattering angle. We obtain with the above
partial-wave decomposition and the orthogonality relation for the Legendre polynomials

discFV (s) = 2iσπ(s)FV (s)h
1 ∗
1 (s)Θ

(
s− 4M2

π

)
, (1.34)

with σπ(s) ≡
√

1− 4M2
π/s. Rewriting h11(s), in the elastic approximation, in favor of the

vector-isovector scattering phase shift δ11(s),

h11(s) =
sin δ11(s)e

iδ11(s)

σπ(s)
, (1.35)

we finally obtain the following discontinuity equation for FV (s) solely depending on the
phase shift δ11(s),

1

2i
discFV (s) = ImFV (s) = FV (s) sin δ

1
1(s)e

−iδ11(s)Θ
(
s− 4M2

π

)
. (1.36)

The first equality relating the discontinuity to the imaginary part holds as the form factor
satisfies the Schwarz reflection principle FV (s

∗) = F ∗
V (s). Note that since ImFV (s) is real

the right-hand side of Eq. (1.36) has to be also real. Therefore in the elastic region the
phase of the pion vector form factor agrees with the ππ phase shift. This is known as
Watson’s final-state theorem [28]. Recasting Eq. (1.36) into an homogeneous Hilbert-type
equation,

FV (s+)e−2iδ11(s) − FV (s−) = 0 with FV (s±) ≡ lim
ǫ→0

FV (s± ǫ) , (1.37)

we arrive at the classical Muskhelishvili–Omnès problem studied in Refs. [22,23]. Note that
multiplying any solution with an arbitrary entire function yields also a solution. So we can
define equivalence classes on the solution space

A(s) ∼ B(s) if ∃ f(s) ∈ C∞(C) with A(s) = f(s)B(s) ∨ B(s) = f(s)A(s) , (1.38)
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Figure 1.5: Real and imaginary part of the Omnès function given in Eq. (1.40). The error

bands stem from the different phase inputs. The dashed line denotes the ππ threshold.

Without loss of generality we assume that the form factor has no zeros and take the loga-
rithm of Eq. (1.37),

ln
(
FV (s+)

)
− ln

(
FV (s−)

)
= 2i δ11(s) Θ

(
s− 4M2

π

)
,

Im ln
(
FV (s)

)
= δ11(s) Θ

(
s− 4M2

π

)
.

Rewriting ln
(
FV (s)

)
into a once subtracted dispersion relation yields

ln(FV (s)) = a+
s

π

∫ ∞

4M2
π

δ11(s
′)

s′(s′ − s− iǫ)
ds′ . (1.39)

The solution is given via exponentiating Eq. (1.39) by the so-called Omnès function
Ω1

1(s) [22, 23], times an entire function P 1
1 (s)

FV (s) = P 1
1 (s)Ω

1
1(s) , Ω1

1(s) = exp

{
s

π

∫ ∞

4M2
π

ds′
δ11(s

′)

s′(s′ − s)

}

. (1.40)

The subtraction constant a is absorbed in the overall normalization condition FV (0) = 1
dictated by gauge invariance. The solution is thus only dependent on the phase input
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δ11(s) and an entire function P 1
1 (s), which we can approximate by a polynomial in the

energy region in question. The phase-shift input is taken from the dispersive analysis of ππ
scattering using Roy equations in Refs. [29–31] (Bern phase) and Ref. [32] (Madrid-Krakow
phase). The resulting Omnès function is depicted in Fig. 1.5, with the different phase
inputs taken as an estimate of the inherent uncertainty.



Part I

V → 3π decays and the J/ψ → π0γ∗

transition form factor





Chapter 2

Dispersive analysis of V → 3π decays

2.1 Introduction

In this part of the thesis we introduce the dispersive treatment of three-body decays, based
on Khuri–Treiman equations, while studying the decay of a vector-meson into three pions
V → 3π. The cases V = {ω, φ} have already been studied in Refs. [33, 34]. Apart from
the interest in these decays themselves, with ongoing experimental and theoretical activi-
ties, they are important ingredients in a scheme to pin down the light-by-light scattering
contribution to the muon anomalous magnetic moment, see Refs. [35, 36]. They serve as
input to the studies of the vector-meson transition form factors, with ω/φ→ π0γ∗ studied
in Ref. [37] and J/ψ → π0γ∗ studied in the next chapter of this thesis, or, extended to
model the process γ∗ → 3π, to the pion transition form factor π0 → e+e−γ in Ref. [38].

The theoretical framework we base our analysis on are Khuri–Treiman equations [39].
The dispersive framework adapted to study three-body decays was originally introduced
for the decay K → 3π [39], and subsequently further developed [40–44]. The formalism
has been resurrected in a modern form in Refs. [45,46]. The Khuri–Treiman equations are
based on elastic two-body unitarity respecting maximal analyticity and crossing symmetry
and explicitly generate crossed-channel rescattering between the three final-state particles.
The equations are constructed by setting up dispersion relations for the crossed scattering
processes, with a subsequent analytic continuation back into the decay region. This contin-
uation is performed along the lines of the continuation of the perturbative triangle graph
and is extensively discussed in Ref. [40].

The explicit V → 3π Khuri–Treiman equations and the numerics have been studied and
developed in Refs. [33,34] on ω/φ→ 3π. The process is maximal symmetric interchanging s-
t- and u-channel and due to Bose symmetry only odd partial waves contribute. Restricting
to the partial P -wave and neglecting contributions to the discontinuity from higher partial
waves, the decay amplitude depends only on the input of the ππ P -wave phase shift which



20 Chapter 2: Dispersive analysis of V → 3π decays

we take from Roy equation analysis of Refs. [29–32]. The equations employed are thus
simple in structure and ideal cases to introduce and study the concept of Khuri–Treiman
equations.

We will explicitly study the J/ψ → 3π decay, the dependence of crossed-channel rescat-
tering contributions on the decaying vector-meson mass and the convergence of the stan-
dard iterative solution strategy used to solve the Khuri–Treiman equations. Studying the
J/ψ → 3π decay stretches the elastic two-body unitarity assumption beyond its validity.
We justify it by the observation that the Dalitz plot is dominated by the quasi elastic ππ
ρ(770) resonance and no further inelastic resonance like the ρ(1450) or ρ(1700) resonance
is observed, see Ref. [48]. However, the result should not be understood as a precision
study of the J/ψ → 3π Dalitz plot, but as an input to the later study of the J/ψ transition
form factor, for which the accuracy of the thus obtained J/ψ → 3π amplitude is more than
satisfactory considering the available experimental data.

2.2 Kinematics and decay amplitude

We begin with kinematic definitions concerning the decay

V (pV ) → π+(p+)π
−(p−)π

0(p0) , (2.1)

and define the Mandelstam variables as follows,

s = (p+ + p−)
2 = (pV − p0)

2 ,

t = (p− + p0)
2 = (pV − p+)

2 ,

u = (p+ + p0)
2 = (pV − p−)

2 , (2.2)

which satisfy the usual identity s + t + u = M2
V + 3M2

π ≡ 3s0. We further define the
crossed-channel scattering angles Θ by

cosΘs = ∠ (~p+, ~p0) =
t− u

κ(s)
, cosΘt = ∠ (~p+, ~p−) =

s− u

κ(t)
,

cosΘu = ∠ (~p−, ~p0) =
t− s

κ(u)
, (2.3)

with κ(x) defined by

κ(s) =

√

1− 4M2
π

s
λ1/2(s,M2

V ,M
2
π) , (2.4)

with the Källén function λ(x, y, z) = x2+y2+z2−2(xy+xz+yz). The V → π+π−π0 decay
is of odd intrinsic parity; we have an odd number of pseudoscalars (pions) contributing and
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thus the decay is driven by the following term, which gives the only possible kinematic
structure of odd intrinsic parity,

∝ Tr

{

ǫµναβVµ∂νπ
+∂απ

−∂βπ
0

}

, (2.5)

where Vµ is the vector-meson field. We can therefore decompose the decay amplitude
M(s, t, u) as follows,

M(s, t, u) = ǫµναβnµp
+
ν p

−
αp

0
βF(s, t, u) , (2.6)

where nµ is the polarization vector of the vector meson and F(s, t, u) is a scalar amplitude
independent of the polarization vector. With this decomposition we obtain

|M(s, t, u)|2 = s

16
κ2(s) sin2 (Θs) |F(s, t, u)|2 , (2.7)

where we have summed over all possible polarizations. Therefore the cross section of the
crossed scattering processes V π → ππ is given by

σ(s) =
1

3072π2s
(s− 4M2

π)
3
2

∫

|F(s, t, u) sin(Θs)|2 dΩ . (2.8)

We choose to investigate the scalar amplitude F(s, t, u) in the helicity basis. The helicity
formalism is favorable, since we do not have to investigate the orbital angular momentum
and spin structure separately. The helicity is invariant under rotations such that states of
definite angular momentum and helicity can be constructed. This is fundamental to obtain
a consistent partial-wave description in the helicity formalism. The following considerations
and notations are taken from Ref. [50].

Instead of using the standard spin-quantization axis (conventionally the z-axis), we use
the particle trajectory as the spin-projection axis. This projection is called helicity λ.
We choose the helicity plane wave state ψpλ to have momentum p and helicity λ in the
z-direction. Arbitrary directions can be obtained by rotation,

Rαβγ = e−iαJze−iβJye−iγJz , (2.9)

where Jx are the angular momentum operators. We define the rotated state by

|p; Θ, φ;λ〉 ≡ RφΘ−φψpλ . (2.10)

This formalism can be extended naturally to a two-particle state and simplified in the
center-of-mass system

ψpλ1λ2 ≡ ψpλ1 ⊗ χpλ2 , (2.11)
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where the momentum of χpλ2 is orientated in the negative z-direction, p being the relative
momentum and the overall helicity λ = λ1−λ2 being invariant under rotations. An arbitrary
direction of this two-particle state is then obtained by applying Eq. (2.9). Thus by switching
to a common eigenbasis |p; J,M ;λ1, λ2〉 we get a (unitary) irreducible representation of
rotations,

Dj
m′m(α, β, γ) = 〈jm′|Rαβγ |jm〉 = e−im

′αdjm′m(β)e
−imγ . (2.12)

Dj
m′m(α, β, γ) are the Wigner D-matrices and djm′m(β) are called small Wigner d-matrices.
In the following we are mainly interested in the partial-wave projection of F(s, t, u).

The plan is to deduce from the cross section and partial-wave decomposition of M(s, t, u)
the form of the partial-wave decomposition of the scalar amplitude. We implement the
following agenda with the explicit derivation given in Appendix B:

1. Derive the transition matrix from plane wave states |p; Θ, φ;λ1, λ2〉 to helicity states
with definite angular momenta and z-component |p; J,M ;λ1, λ2, 〉.

2. Rewrite the S-matrix elements in this basis and deduce the partial-wave decomposi-
tion of M(s, t, u).

3. Calculate the form of the cross section in the helicity formalism and compare with
the cross section of Eq. (2.8) to obtain the partial-wave decomposition of F(s, t, u).

In the helicity basis we obtain for the cross section

σ =

∫
∣
∣
∣
∣
∣

1

2
√
s

∑

J

2J + 1
√

J(J + 1)
〈0, 0|T J(s)|1, 0〉P ′

J(cosΘ)

∣
∣
∣
∣
∣

2

sin2(Θ) dΩ . (2.13)

A comparison of Eq. (2.8) with Eq. (2.13) yields for the partial-wave decomposition

F(s, t, u) =
∑

J

fJ(s)P
′
J(cosΘs) . (2.14)

Additionally, bose symmetry dictates that only odd partial waves contribute; considering
the scattering process V π → ππ the final-state two-pion system has to have isospin one.
To obtain a symmetric two-pion wave function the angular momentum of the two pions has
to be odd. Applying the orthogonality relation of the differentiated Legendre polynomials,

1

2

∫ 1

−1

P ′
j(z)(Pl−1(z)− Pl+1(z))dz = δlj , (2.15)

we obtain for the P -wave projection of F(s, t, u)

f1(s) =
3

8π

∫

F(s, t, u) sin2(Θ) dΩ . (2.16)
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Figure 2.1: The analytic structure and dispersive integration path of the fixed-u dispersion

relation fixed at u0. γcut denotes the integration path around the right-hand cut, which

starts at the two-particle threshold (here s ≥ 4M2
π) and γt gives the integration contour

around the left-hand cut which originates from the t-channel discontinuity t > 4M2
π and

translates into the s-channel to give s < M2
V −M2

π − u0.

The P -wave projection is in accordance with Ref. [51]. The next higher contributing partial
wave would be the F -wave. It was extensively argued in Appendix A of Ref. [34] that
contributions are negligible for the ω/φ decays. For the J/ψ decay we again refer to
the phenomenological findings of Ref. [48] that no F -wave resonances, e.g. the ρ3(1690)
resonance, or higher partial-wave resonances are observed. Note also that only the P -wave
is of importance for the transition form factor study. In the next section we will introduce
and develop the dispersive framework for three-body decays.

2.3 Dispersive treatment of three-body decays

In this section we will introduce the dispersive description of three-particle decays built
on Khuri–Treiman equations. Once more, the inaugural step is the study of the analytic
structure of the decay amplitude in question. The scalar decay amplitude F(s, t, u) as
such depends on two kinematical variables and therefore exhibits an elaborate analytic
structure. Setting up a dispersion relation directly is thus not easy. To simplify the task we
employ a decomposition of the decay amplitude into amplitudes depending on one single
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kinematical variable only (single-variable amplitudes) known as reconstruction theorem,
see Refs. [46, 52–56].

We start our considerations with the crossed-channel scattering processes of the V → 3π
decay, namely V π → ππ . Furthermore, we restrict ourselves to vector-meson masses of
MV < 3Mπ such that the vector-meson decay into three pions is kinematically forbidden.
This is mandatory since the left- and right-hand cuts would otherwise overlap. In this sce-
nario the scalar amplitude F(s, t, u) has a much simpler analytic structure. We can set up
a fixed-x dispersion relation in a particular crossed-channel, where x is the placeholder for
Mandelstam s, t, or u. Fixed-x dispersion relations are dispersion relations with the Man-
delstam variable x fixed to a constant. Additionally, we utilize a partial-wave expansion,
which directly leads to a decomposition of the scalar amplitude in single-variable ampli-
tudes. This has to be performed generally for all three channels (s-, t-, and u-channel),
however, the V → 3π amplitude is fully symmetric in the s-, t-, and u-channel assuming
isospin symmetry. Thus we only have to study one of these fixed dispersion relations. The
full amplitude is then given by symmetrization.

Explicitly we study the s-channel process by fixing the Mandelstam variable u = u0
with u0 arbitrary but fixed. The resulting analytic structure in the s-plane is depicted
in Fig. 2.1 with the right-hand cut (s ≥ 4M2

π) and the left-hand cut stemming from the
t-channel discontinuity (t ≥ 4M2

π). The fixed-u dispersion relation thus reads

F(s, t, u0) =P
n−1(s, t, u0) +

sn

2iπ

∫ ∞

4M2
π

discF(s′, t′(s′), u0)

s′n(s′ − s)
ds′

+
tn

2iπ

∫ ∞

4M2
π

disc F(s′(t′), t′, u0)

t′n(t′ − t)
dt′ , (2.17)

with the number of subtractions n not fixed yet. We decompose the amplitude F(s, t, u0)
in s- and t-channel partial waves following Eq. (2.14),

s-channel: F(s, t(s), u0) =
∑

odd l

f 1
l (s)P

′
l (zs) ,

t-channel: F(s(t), t, u0) =
∑

odd l

f 1
l (t)P

′
l (zt) , (2.18)

where again we only consider the P -wave and neglect higher partial waves. We thus have

F(s, t, u0) = P n−1(s, t, u0) +
sn

2iπ

∫ ∞

4M2
π

disc f 1
1 (s

′)

s′n(s′ − s)
ds′ +

tn

2iπ

∫ ∞

4M2
π

disc f 1
1 (t

′)

t′n(t′ − t)
dt′ , (2.19)

and similar results for fixed-t and fixed-s dispersion relations. The symmetrization of all



2.3 Dispersive treatment of three-body decays 25

fixed dispersion relations is thus trivial and we obtain

F(s, t, u) =P n−1(s, t, u) +
sn

2iπ

∫ ∞

4M2
π

disc f 1
1

s′n(s′ − s)
ds′ +

tn

2iπ

∫ ∞

4M2
π

disc f 1
1

t′n(t′ − t)
dt′

+
un

2iπ

∫ ∞

4M2
π

disc f 1
1 (u

′)

u′n(u′ − t)
du′ . (2.20)

The number of subtractions as explained in Section 1.3.2 depends on the assumed asymp-
totic behavior of the decay amplitude and is chosen such that the dispersion integrals
converge. We loosely base our assumption on the asymptotic behavior upon the Froissart
bound [57]. The Froissart bound gives an asymptotic bound on the absolute value of elastic
scattering amplitudes; the absolute value of the crossed scattering amplitude V π → ππ is
therefore bounded asymptotically by s ln2(s). The phase-space factor of Eq. (2.6) scales
like p3 and thus F(s, t, u) and also f 1

1 (s) are asymptotically of order s−1/2 ln2(s) or smaller.
To obtain convergent integrals in Eq. (2.20) we thus need at least one subtraction. The full
decay amplitude is hence decomposed into

F(s, t, u) = F(s) + F(t) + F(u) , (2.21)

with

F(s) = c0 +
s

2iπ

∫ ∞

4M2
π

discF(s′, t′(s′), u0)

s′(s′ − s)
ds′ , (2.22)

with an arbitrary subtraction constant c0 such that P n−1(s, t, u) = 3c0. To this end
Eq. (2.22) gives the corresponding crossed-channel scattering amplitudes V π → ππ for
MV < 3π. The description of the decay channel thus necessitates an analytic continuation
to physical vector-meson masses as well as into the decay region. However, it is not directly
apparent how this continuation can be performed. Worst of all the solutions to dispersion
relations of the form of Eq. (2.22) are generally not unique, see Ref. [45]. Therefore they
are not suited to treat three-particle decay processes.

In the following, we will rectify this caveat and introduce Khuri–Treiman-type dispersion
relations. Again we choose the mass of the vector particle such that the decay into three
pions is kinematically forbidden, MV < 3Mπ. From here on, we will work in the helicity
basis introduced in Section 2.2. To clarify the angular dependencies we first write the
unitarity relation Eq. (1.20) with explicit helicity states defined in Section 2.2, following
Ref. [47]. The reference frame is chosen such that the overall amplitude depends only on
one angle and the CMS energy. As noted in Appendix B it suffices to study the helicity
λ = 1 initial state. The unitarity relation in the s-channel (V π0 → π−π+) reads

discMfi(s,Θ) = i
∑

m,µ

(2π)4 δ4(pm − pi)M∗
fm(s, µ,Ωm,Θ)Mmi(s, µ,Ωm) , (2.23)
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where the sum runs over all possible intermediate states m with helicity settings µ, Ωm
denotes the solid angle between initial and intermediate states, Θ stands for the scattering
angle, and the amplitudes expressed in the helicity basis

Mfi(s,Θ) ≡ 〈pf ; Jf ,Mf ; 0, 0|T (s)|pi, Ji,Mi; 1, 0〉 ,
M∗

fm(s, µ,Ωm,Θ) ≡ 〈pf ; Jf ,Mf ; 0, 0|T ∗(s)|pm; Jm,Mm;λA, λB〉 ,
Mmi(s, µ,Ωm) ≡ 〈pm; Jm,Mm;λA, λB|T (s)|pi; Ji,Mi; 1, 0〉 . (2.24)

Restricting to the elastic case we obtain

discMfi(s,Θ) =
i

(2π)2

∑

µ

∫
d3p−d

3p+
4E1E2

δ4 (p− + p+ − pi)M∗
ff ′(s, µ,Ωm,Θ)Mf ′i(s, µ,Ωm)

=
i

4(2π)2

√

s− 4M2
π

s

∑

µ

∫

dΩmM∗
ff ′(s, µ,Ωm,Θ)Mf ′i(s, µ,Ωm) .

(2.25)

The partial-wave decompositions read, following Appendix B Eq. (B.7),

Mf ′i(s, µ,Ω) =
∑

odd l

f 1
l (s)D

l
µ1(Ω) ,

Mff ′(s, µ,Ω) =
∑

odd j

h1j(s)D
j
µ0(Ω) , (2.26)

where f 1
L and h1L denote the partial waves with isospin I = 1 and angular momentum L

and Dl
µ1(Ω) the Wigner D-matrices. Using the addition theorems for Wigner D-matrices

+J∑

µ=−J
DJ
µ0(α, β, γ)

(
DJ
µ1(ψ,Θ, φ)

)†
=
(
DJ

01(ψ
′,Θ′, φ′)

)†
, (2.27)

together with the Wigner–Eckart theorem

〈pf ; Jf ,Mf ;λcλd|T (s)|pi; Ji,Mi;λaλb〉 = 〈λc, λd|TJ(s)|λa, λb〉δJJiδ
Mf

Mi
δJJf , (2.28)

we obtain from Eq. (2.25) with the partial-wave decompositions Eq. (2.26)

∑

l

Dl
01(Ω)disc f

1
l (s) =

i

4π

√

s− 4M2
π

s

∑

l

g1l (s)
∗f 1
l (s)D

l
01(Ω)Θ

(
s− 4M2

π

)
. (2.29)

The unitarity relation for the P -wave reads

Im f 1
1 (s) =

1

8π

√

s− 4M2
π

s
g11(s)

∗f 1
1 (s) Θ

(
s− 4M2

π

)
. (2.30)
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We can deduce that the partial wave f 1
1 (s) has to have the same phase as the ππ scattering

partial wave g11 since the right-hand side of Eq. (2.30) has to be real. This is known by
Watson’s final state theorem [28]. Similarly we construct the unitary relation for elastic
ππ P -wave scattering,

Im g11(s) =
1

8π

√

s− 4M2
π

s
|g11(s)|2Θ

(
s− 4M2

π

)
. (2.31)

Combining Eq. (2.30) and Eq. (2.31) the unitarity relation for the partial wave f 1
1 (s) reads

Im f 1
1 (s) = f 1

1 (s)e
−iδff ′(s) sin δff ′(s) , (2.32)

which depends only on the ππ-P -wave scattering phase shift. In order to rewrite Eq. (2.32)
in terms of the single-variable amplitude F(s) we apply the Sokhotsky–Weierstrass theorem
to Eq. (2.22) and read off

Im f 1
1 (s) = ImF(s)

⇒ f 1
1 (s) = F(s) + F̂(s) , (2.33)

with a yet unknown function F̂(s), called inhomogeneity, that is real on the right-hand cut.
Rewriting Eq. (2.32) with respect to the single-variable amplitude F(s) using Eq. (2.33)
we finally obtain

discF(s) = 2i
(
F(s) + F̂(s)

)
e−iδff ′(s) sin δff ′(s)Θ

(
s− 4M2

π

)
. (2.34)

This unitarity relation looks similar to the one of the pion vector form factor Eq. (1.36)
except that we have the additional inhomogeneous term F̂(s). We will see in the following
that the inhomogeneity is related to left-hand-cut contributions and will correspond in the
decay region to crossed-channel rescattering (see Fig. 2.2).

Inhomogeneous solution

In this section we want to solve Eq. (2.34) for F(s). The homogeneous case (F̂(s) = 0) has
been solved in Section 1.4 and is given by the Omnès function. We use a product ansatz
to obtain the inhomogeneous solution, very similar to solving inhomogeneous ordinary
differential equations,

F(s) = Ω1
1(s)Φ(s) , (2.35)

with the Omnès function Ω1
1(s) satisfying the homogeneous equation Eq. (1.36). Thus we

get from Eq. (2.34) a discontinuity equation for Φ(s),

exp
[
− 2iδ11(x)

]
F(s+)− F(s−) = 2iF̂(s)e−iδ

1
1(s) sin δ11(s) Θ

(
s− 4M2

π

)

⇔
[
Φ(s+)− Φ(s−)

]
Ω(s−) = 2iF̂(s)e−iδ

1
1(s) sin δ11(s) Θ

(
s− 4M2

π

)

⇔ disc Φ(s) = 2i
F̂(s) sin δ(s)

|Ω(s)| Θ
(
s− 4M2

π

)
, (2.36)
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Figure 2.2: Figure a) depicts the diagrammatic two-particle rescattering contributions of the

Omnès function and the corresponding continuation into the decay region with the third

pion as spectator. Figure b) shows the additional crossed-channel rescattering topology

(triangle graph) and its continuation into the decay region. The blue and gray dashed lines

denote the additional contributions to the unitarity relation on top of the pure two-particle

contribution denoted by the red dashed line.

which enables us to write Φ(s) in the following dispersion relation,

Φ(s) = Pn−1(s) +
sn

π

∫ ∞

4M2
π

ds′

s′n
sin δ11(s

′)F̂(s′)

|Ω(s′)|(s′ − s)
, (2.37)

with n subtractions chosen such that the convergence of the dispersion integral is guaranteed
and Pn−1(s) is the subtraction polynomial of order n− 1.

Again the number of subtractions needs to be determined by the high-energy behavior
of the integrand. We assume that the ππ scattering phase asymptotically reaches π and
according to Appendix A.1 the Omnès function thus asymptotically behaves like 1/s. This
is motivated by the naive high energy behavior of the pion vector form factor F V

π (s), which
is dominated by the one-gluon exchange,

F V
π (s) ∝ α(s)

s
→ 1

s
, (2.38)

up to logarithmic corrections. The inhomogeneity F̂(s) is asymptotically like F(s) of order
s−1/2 ln2(s) or lower, see Eq. (2.33). Therefore, we need again one subtraction to obtain a
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convergent dispersion integral

F(s) = Ω(s)

{

c0 +
s

π

∫ ∞

4M2
π

ds′

s′
sin δ11(s

′)F̂(s′)

|Ω1
1(s

′)|(s′ − s)

}

. (2.39)

To obtain an integral equation for F(s) we have to rewrite the inhomogeneity F̂(s) in terms
of F(s). With F̂(s) defined by Eq. (2.33) we have

F̂(s) = f 1
1 (s)− F(s) =

3

8π

∫

sin2(Θ)
[
F(s) + F

(
t(s,Θ)

)
+ F

(
u(s,Θ)

)]
dΩ− F(s)

=
3

4

∫

sin3(Θ)
[
F
(
t(s,Θ)

)
+ F

(
u(s,Θ)

)]
dΘ (2.40)

= 3〈(1− z2)F〉 , (2.41)

with the angular average 〈znF〉 defined by

〈
znF

〉
≡ 1

2

∫ 1

−1

znF
(
3s0 − s+ zκ(s)

2

)

dz , (2.42)

and z = cosΘs. The inhomogeneities thus give the contributions from the crossed channels,
see Eq. (2.40), or in other words the left-hand-cut contributions to the partial wave. While
the homogeneous Omnès solutions give the two-body final-state rescattering, the disper-
sive integrals over the inhomogeneities produce crossed-channel three-particle rescattering
among the final states, see Fig. 2.2. Finally we need to continue Eq. (2.39) to physical
decay masses and into the decay region. This is extensively explained in Appendix B of
Ref. [34]. However, the continuation is not straight forward. Performing the z-integration
in Eq. (2.42) naively can lead to crossing the branch cut when MV is continued beyond
3Mπ. This is a feature of the arising three-particle cut, which becomes physically accessible,
and thus a integration path deformation is mandatory.

The analytic continuation is performed along the lines of the continuation of the per-
turbative triangle graph into the decay region and is extensively discussed in Ref. [40]. We
have seen above in Fig. 2.2 that these triangle topologies are exactly the ones the dispersion
integral over the inhomogeneities produces. To obtain the correct analytic behavior, con-
sistent with the triangle topology continuation, we need to give the squared vector-meson
mass an infinitesimal positive imaginary part, M2

V + iǫ. The continuation into the decay
region is then trivial. The only MV -dependent pieces we have to carefully analytically con-
tinue are the angular-average integrations Eq. (2.42). We rewriting the angular integral as
follows,

1

2

∫ 1

−1

znF

(
3s0 − s+ zκ(s)

2

)

dz =
1

κ(s)

∫ s+(s)

s−(s)

ds′
(
2s′ − 3s0 + s

κ(s)

)n

F(s′) , (2.43)
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where we have substituted s′ = 3s0 − s + zκ(s) and the integration points are thus given
by

s± =
1

2
(3s0 − s± κ(s)) . (2.44)

The critical MV dependence resides now only in the integration limits s±(s). Employing
the M2

V + iǫ description yields

s±(s,M
2
V + iǫ) = s±(s,M

2
V ) + iǫ

∂s±(s,M
2
V )

∂M2
V

. (2.45)

Explicitly we thus obtain

2s+(s) =







3s0 − s+ |κ(s)|+ iǫ , s ∈ [4M2
π , a] ,

3s0 − s+ i|κ(s)| , s ∈ [a, b] ,

3s0 − s− |κ(s)| , s ∈ [b,∞] ,

2s−(s) =







3s0 − s− |κ(s)|+ iǫ , s ∈
[

4M2
π ,

M2
V −M2

π

2

]

,

3s0 − s− |κ(s)| − iǫ , s ∈
[
M2

V −M2
π

2
, a
]

,

3s0 − s− i|κ(s)| , s ∈ [a, b] ,

3s0 − s+ |κ(s)| , s ∈ [b,∞] ,

(2.46)

where a ≡ (MV −Mπ)
2 and b ≡ (MV +Mπ)

2. The angular integration limits thus avoid
the branch cut and the integration has to be performed such that the branch cut is not
crossed. All further details are given in Ref. [34] and references therein.

2.4 Solution strategy and numerical implementation

With the Khuri–Treiman-type equations Eq. (2.39) constructed we come to the numerical
solution strategy of these integral equations. We follow the numerical strategies employed
for example in Refs. [45,46]. The equation is linear in the single-variable amplitude F(s) and
also in the subtraction constants. Denoting the number of subtraction constants by n, we
therefore have an n-dimensional solution space. The basis functions that span this solution
space can be obtained by choosing a maximal set of linearly independent subtraction-
constant configurations and solve the integral equations for each configuration. Thus the
general solution can be written as a linear combination

F(s, t, u) =

n∑

i

ciFi(s, t, u) , (2.47)



2.4 Solution strategy and numerical implementation 31

input calculate F̂ calculate F

result accuracy?

Figure 2.3: The standard numerical iteration scheme to solve the Khuri–Treiman equa-

tions is shown. Starting with an arbitrary input for the single-variable amplitudes, most

efficiently the Omnès function, the inhomogeneities are calculated. With these a new set

of single-variable amplitudes is calculated. The procedure is resumed until satisfactory

convergence is achieved.

where the Fi(s, t, u) are the basis functions, the solutions to the subtraction-constant con-
figuration, for example cj = δij , j ∈ {0, 1, .., n− 1}. In our explicit V → 3π case, given by
Eq. (2.39), we have only one subtraction and thus only one basis function. The subtrac-
tion constant can be seen as just an overall normalization such that the obtained energy
dependence of the calculated decay amplitude is a pure prediction.

Generally, the integral equations, for a fixed subtraction configuration, are solved by an
iterative solution procedure depicted in Fig. 2.3. It is the standard method used to solve
these equations, being numerically simple and fast. Starting with an arbitrary input for the
single-variable amplitudes, the inhomogeneities are evaluated. With these the dispersion
integrals are determined to obtain a new set of single-variable amplitudes. This cycle is
repeated until satisfactory convergence is reached. In the case of convergence the solution
is unique as we will see later in Section 4.4 when we review and develop a new solution
strategy. However, it is not guaranteed that the iteration does converge to a solution and
we will show numerically that under some circumstances the iteration procedure indeed
breaks down.

The numerical implementation of the iterative procedure has been described in many
previous works. We will display the most common implementation method performed in
Refs. [33, 46, 58], to name a few. The dispersion relation we have to solve is given by
Eq. (2.39)

F(s) = Ω(s)

{

c0 +
s

π

∫ ∞

4M2
π

ds′

s′
sin δ11(s

′)F̃(s′)

|Ω1
1(s

′)|κ3(s′)(s′ − s)

}

. (2.48)
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s+(s)

s−(s)
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B
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CD

E

E Re s±(s)

Im s±(s)

Figure 2.4: The contours of the integration end points s±(s) of Eq. (2.46). The contours

start at the same point A
(
s±(4M

2
π)
)
above the branch cut. At point B

(
s±((M

2
V −M2

π)/2)
)

the s− contour reaches 4M2
π and moves below the cut. From point C (s±(a)) onwards to

point D
(
s±(b)

)
, s− and s+ have the same real part but opposite imaginary part. The

contours finally meet at point D. From point D onwards both contours are purely real

with s− moving towards zero and s+ to minus infinity.

where we have expressed the inhomogeneity by a singularity-free function F̃ divided by κ3 ,

F̃(s) ≡ κ3(s)F̂ = 3

∫ s+(s)

s−(s)

ds′
(
κ2(s)− (2s′ − 3s0 + s)2

)
F(s′) . (2.49)

This decomposition enables us to carefully investigate the singularity structure later on.
Following the iteration scheme in Fig. 2.3 the first step is the determination of the

inhomogeneity or equivalently F̃(s), Eq. (2.49), from the input function. The integrand
of Eq. (2.49) is well-behaving and poses no numerical problem, however the integration
contour does. As discussed above the direct line integration from s−(s) to s+(s) can cross
the branch cut and therefore the integration contour needs to be deformed. Explicitly the
contours of the integration end points Eq. (2.46) are sketched in Fig. 2.4. The issue of
integrating across the branch cut arises after point B where s−(s) moves below the branch
cut while s+(s) stays above. Additionally, we can exploit the contours of the integration end
points and take these as integration path. This has the advantage that the integrand needs
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to be evaluated only on these integration end point contours. As we want to interpolate
the integrand to save computation time this hugely simplifies the task to a one-dimensional
interpolation rather than interpolating a two-dimensional grid. We will now discuss in more
detail how the angular integration is performed. For s < (M2

V −M2
π)/2 both integration end

points are above the branch cut and the integral can be performed directly. This changes
for the interval (M2

V − M2
π)/2 < s < a. We choose the following integration contour:

starting below the cut we integrate from s−(s) to 4M2
π − iǫ and then move above the cut

and integrate from 4M2
π + iǫ to s+(s). This translates to

F̃(s) =3

∫ 4M2
π−iǫ

s−(s)

ds′
(
κ2(s)− (2s′ − 3s0 + s)2

)
F(s′)

+ 3

∫ s+(s)

4M2
π+iǫ

ds′
(
κ2(s)− (2s′ − 3s0 + s)2

)
F(s′) . (2.50)

In the interval a ≤ s ≤ b we want to exploit the fact that s+(b) = s−(b) and parametrize the
integration contours via s±(s). Unfortunately this parametrization has a singular Jacobian
at the roots of κ(s), namely s = a and s = b. To bypass this issue we further substitute in
Eq. (2.49)

ys(s
′) =







√√
s′+(MV −Mπ)

2
−
√√

s′−(MV −Mπ)
2

, for s′ ∈
[
a, a+b

2

]

√
(MV +Mπ)+

√
s′

2
−
√

(MV +Mπ)−
√
s′

2
, for s′ ∈

]
a+b
2
, b
] , (2.51)

to obtain a non-singular Jacobian. The integration in the interval a ≤ s ≤ b is performed
as follows. We start by integrating from s−(s) to s−(b) (point D in Fig. 2.4), where the
s−(s) and s+(s) contours meet, change to the s+(s) parametrization and integrate similarly
to s+(s). Expressed in formulas this gives

F̃(s) =3

[
∫ ys(s−(b))

ys(s−(s))

[
F(s′(ys))κ

2(s)− (2s′(ys)− 3s0 + s)2F(s′(ys))
] ds′

dys
dys

+

∫ ys(s+(s))

ys(s+(b))

[
F(s′(ys))κ

2(s)− (2s′(ys)− 3s0 + s)2F(s′(ys))
] ds′

dys
dys

]

. (2.52)

The angular integrals evaluated for s > b again can be directly performed.
With the inhomogeneity calculated we have to perform the dispersive integral to obtain

the single-variable amplitude, see iteration scheme Fig. 2.3. The dispersion integrand in
Eq. (2.48) has in addition to the Cauchy kernel three characteristic points, the roots of
κ(s): the threshold (4M2

π), the pseudothreshold (a) and the scattering threshold (b). The
threshold point is well under control since not only F̃(s) vanishes but the P -wave phase
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shift behaves like ∼
(
1−4M2

π/s
)3/2

near the threshold and thus cancels the κ3(s) root such
that the singularity is removed. In the following we will split up the integration in different
parts such that the characteristic points together with the Cauchy kernel can be treated
separately. The mathematical framework of the following numerical implementation comes
from the field of hypersingular integrals and Hadamard finite part integration, which is
often referred to as the generalization of Cauchy’s principle value. We refer the reader to
Refs. [59–61] and references therein for further detail.

First of all we will introduce a cutoff Λ2 to the dispersion integral. Strictly the integral
has to be performed up to infinity but the contributions of higher energies are suppressed
and for the sake of numerical simplification we will neglect contributions higher than the
cutoff energy. Varying the cutoff will become one source of the error estimation. Further-
more, we split the integral

∫ Λ2

4M2
π

=

∫ b

4M2
π

+

∫ Λ2

b

, (2.53)

and define for further convenience

G(s) ≡ F̃(s) sin δ11(s)

s

(√
s−4M2

π

s

√
b− s

)3

|Ω1
1(s)|

, H(s) ≡ sG(s)
(a− s)

3
2

. (2.54)

Let us assume s ∈ [4M2
π , a[ first. Thus we have two singularites that we need to treat

separately; the Cauchy singularity and a. To separate these two singularities we define
p = (a+ s)/2 and obtain

∫ Λ2

4M2
π

G(s′)
(a− s′)

3
2 (s′ − s− iǫ)

ds′ =

∫ p

4M2
π

H(s′)−H(s)

s′(s′ − s− iǫ)
ds′

+

∫ b

p

G(s′)− G(a)− (a− s′)G ′

(a)

(a− s′)
3
2 (s′ − s− iǫ)

ds′ +

∫ Λ2

b

G(s′)
(a− s′)

3
2 (s′ − s− iǫ)

ds′

+H(s)

∫ p

4M2
π

1

s′(s′ − s− iǫ)
ds′ +

∫ b

p

G(a) + G ′

(a)(a− s′)

(a− s′)
3
2 (s′ − s− iǫ)

ds′ , (2.55)

where the first three integrals can be evaluated straightforwardly numerically and the second
integral given by

∫ b

p

G(s′)− G(a)− (a− s′)G ′

(a)

(a− s′)
3
2 (s′ − s− iǫ)

ds′ =

∫ b

p

ds′







a2+(a−s′)
1
2 a3+(a−s′)a4

(s′−s−iǫ) ds′ |x− a| < 2h
G(s′)−G(a)−(a−s′)G′

(a)

(a−s′)
3
2 (s′−s−iǫ)

ds′ |x− a| > 2h
,

(2.56)
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with an appropriate small value for h and the expansion

G(s) = G(a) + (a− s)G ′

(a) + (a− s)
3
2a2 + (a− s)2a3 + (a− s)

5
2a4 . (2.57)

The last two integrals of Eq. (2.55) can be calculated analytically in the spirit of hypersin-
gular integrals. The first simply gives

∫ p

4M2
π

1

s′(s′ − s− iǫ)
ds′ =

1

s+ iǫ
log

(
4M2

π(p− s− iǫ)

p(4M2
π − s− iǫ)

)

, (2.58)

and for the second integral we find

∫ b

p

1

(a− s′)
n
2 (s′ − s− iǫ)

ds′ (2.59)

=







2
(a−s−iǫ)1/2

(

arctanh
√
a−p√

a−s−iǫ − arctanh
√
a−b√

a−s−iǫ

)

, n = 1 ,

2
(a−s−iǫ)

(

1√
a−b −

1√
a−p

)

+ 2
(a−s−iǫ)3/2

(

arctanh
√
a−p√

a−s−iǫ − arctanh
√
a−b√

a−s−iǫ

)

, n = 3 ,

(2.60)

Note that to obtain the correct branches it is sometimes advisable to give a an infinitesimal
positive imaginary part analogously to the prescription M2

V + iǫ.
For s ∈]a, b] the procedure works similarly only that the integration is split differently

to separate the integration over a and the Cauchy singularity s,

∫ Λ2

4M2
π

G(s′)
(a− s′)

3
2 (s′ − s− iǫ)

ds′ =

∫ p

4M2
π

G(s′)− G(a)− (a− s′)G ′

(a)

(a− s′)
3
2 (s′ − s− iǫ)

ds′

+

∫ b

p

H(s′)−H(s)

s′(s′ − s− iǫ)
ds′ +

∫ Λ2

b

G(s′)
(a− s′)

3
2 (s′ − s− iǫ)

ds′

+H(s)

∫ b

p

1
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ds′ +
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4M2
π

G(a) + G ′

(a)(a− s′)

(a− s′)
3
2 (s′ − s− iǫ)

ds′ (2.61)

For s > b the Cauchy singularity is already well separated by Eq. (2.53) and thus we have

∫ Λ2

4M2
π

G(s′)
(a− s′)

3
2 (s′ − s− iǫ)

ds′ =

∫ b

4M2
π

G(s′)− G(a)− (a− s′)G ′

(a)

(a− s′)
3
2 (s′ − s− iǫ)

ds′

+

∫ Λ2

b

H(s′)−H(s)

s′(s′ − s− iǫ)
ds′ +

∫ b

4M2
π

G(a) + G ′

(a)(a− s′)

(a− s′)
3
2 (s′ − s− iǫ)

ds′

+H(s)

∫ Λ2

b

1

s′(s′ − s− iǫ)
ds′ , (2.62)
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Figure 2.5: Results for the real part (left panel) and imaginary part (right panel) of the

single-variable amplitude F(s) with the subtraction constant c0 = 1. The black line denotes

the Omnès solution and the red line the full dispersive solution. The error band stems from

the different phase inputs. The vertical dashed lines denote the boundaries of the decay

phase space (4M2
π and a)

where the first two integrals can be calculated numerically and the third and fourth ana-
lytically. The integration for s < 4M2

π or complex s is simpler as the Cauchy singularity is
not present and we only have to treat the pseudothreshold a

∫ Λ2

4M2
π

G(s′)
(a− s′)

3
2 (s′ − s− iǫ)

ds′ =

∫ b

4M2
π

G(s′)− G(a)− (a− s′)G ′

(a)

(a− s′)
3
2 (s′ − s− iǫ)

ds′

+

∫ Λ2

b

G(s′)
(a− s′)

3
2 (s′ − s− iǫ)

ds′ +

∫ b

4M2
π

G(a) + G ′

(a)(a− s′)

(a− s′)
3
2 (s′ − s− iǫ)

ds′ . (2.63)

Certainly the implementation displayed above is not the one and only way. We could have
introduced integration kernels similar to Ref. [62] or discretized the integrals and sought a
way to calculate the integrals following the iǫ prescription in a more analytic way. Later in
this thesis we will devise a discretization method and convert the integral equation into a
matrix equation to solve D-meson three-particle decays.
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Figure 2.6: The figure shows the calculated J/ψ → 3π Dalitz plot normalized to one in the

center of the Dalitz plot (|F(s0, s0, s0)|2 = 1 with s0 = (M2
V + 3M2

π)/3).

2.5 Results

In this section we present the calculated J/ψ → 3π decay amplitude and Dalitz plot. We
will further discuss the dependence of F(s) on the decaying vector-meson mass and study
the convergence of the iteration procedure.

Following the iterative procedure we obtain the solution for the single-variable ampli-
tude F(s) of Eq. (2.39). The resulting single-variable amplitude together with the Omnès
function, which serves as our input function, is depicted in Fig. 2.5, with the subtraction
constant taken to be c0 = 1. We have noted above that, due to the linearity of the integral
equation with respect to the subtraction constant, the subtraction constant serves as an
overall normalization. The J/ψ → 3π Dalitz plot depicted in Fig. 2.6 is thus a pure predic-
tion based only on the ππ P -wave phase-shift input and the masses of the involved particles.
The difference between the Omnès function and F(s) is a measure of the importance of
crossed-channel rescattering effects. We clearly see that compared to the ω/φ→ 3π results
in Ref. [34] the crossed-channel rescattering effects are considerably smaller. This raises
the question of how these effects depend on the decaying vector-meson mass.
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2.5.1 Basis functions in the MV → ∞ limit

Intuition suggests, as we also see when going from the ω and φ mass to the J/ψ mass, that
the crossed-channel rescattering effects become less important for higher decaying masses
relative to two-particle rescattering. The third particle at fixed two-particle energies is more
energetic and therefore has less time to rescatter with the two-particle system. To investi-
gate this matter further, we solve the single-variable amplitude F(s) for different decaying
masses. Figure 2.7 shows the resulting single-variable amplitudes. Up to MV = 2 GeV we
observe a significant impact of crossed-channel rescattering effects which also induce minor
shifts of the ρ(770)-peak position. For decaying masses MV > 2 GeV the crossed-channel
rescattering effects become smaller and for MV > 6GeV the single-variable amplitudes are
indistinguishable from the Omnès function input. Thus the intuitive picture is confirmed.
However, we want to stress again that for higher decaying masses inelastic effects play
a major role. Therefore the resulting higher mass single-variable amplitudes depicted in
Fig. 2.7 serve as entities to investigate the nature of the Khuri–Treiman equations. They
should not be taken as precise physical amplitudes.

Additionally, we note that the number of iterations needed to reach convergence changes
when going to higher masses. This brings us directly to the question of convergence of the
iteration procedure which we will investigate in the following section.

2.5.2 Convergence of the iteration procedure

With the input phase fixed, the convergence of the iteration procedure depends on two pa-
rameters: the mass of the decaying vector meson and the number of subtractions. We have
strong existence and uniqueness statements for well-behaving integral equations, e.g. the
Banach fixed-point theorem, Schauder fixed-point theorem to name a few. Unfortunately
a rigorous purely analytic investigation of the convergence issue of these Khuri–Treiman-
type equations is not known to us. The Banach fixed-point theorem for example comes
with an explicit iterative strategy to determine the fixed point, which in the case of first
order differential equations (Picard-Lindelöf theorem) is analogous to our iteration scheme.
However, due to the singular structure of the Khuri–Treiman integrand and explicitly at
the pseudothreshold a such theorems are not directly applicable.

In the following we therefore investigate the dependence of the convergence on the
vector-meson mass and the number of subtractions numerically. To test the uniform con-
vergence we take 50 evenly distributed points in the interval [0GeV, 1GeV] and define the
convergence of the iteration procedure as follows: the iteration is converged if an additional
iteration step does not change the value of the single-variable amplitude at these points
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more than ±1%. Generally, for n subtractions the single-variable amplitude is given by

F(s) = Ω(s)

{ n−1∑

j=0

cjs
j +

sn

π

∫ ∞

4M2
π

ds′

s′n
sin δ11(s

′)F̂(s′)

|Ω1
1(s

′)|(s′ − s)

}

, (2.64)

with the subtraction constants cj . For each order of subtraction we investigate all basis
functions. The ith order basis function of subtraction order m is obtained by solving
Eq. (2.64) for n = m and the subtraction constant set cj = δij , j ∈ {0, 1, .., n− 1}.

The results are shown in Fig. 2.8 and Fig. 2.9. The plots show the zeroth and the
first basis functions (Fig. 2.8) and the second and third basis functions (Fig. 2.9). We
observe that the convergence behavior with varying vector-meson mass depends heavily on
the the number of subtractions chosen. Up to two subtractions no convergence problems
are observed, yet more iterations are needed for the twice-subtracted dispersion relation
compared to the once-subtracted. The iteration procedure breaks down for three and four
subtractions in the region of MV ≈ 0.95GeV and MV ≈ 0.85GeV, respectively. This
suggests that higher subtractions paired with higher decaying masses can induce a failure
of the iteration procedure. This will become important in the following, when we want to
investigate decays in the charm sector. Within the chosen subtraction the convergence is
almost independent of the basis function investigated.
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Figure 2.8: Upper plot: the zeroth basis functions are shown for the once, twice, three

times, and four times subtracted dispersion integral. Lower plot: the first basis functions

are depicted for the twice, three times, and four times subtracted dispersion integrals.
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Chapter 3

The J/ψ → π0γ∗ transition form

factor1

3.1 Introduction

The transition form factors of light vector mesons (ω and φ in particular) have garnered
increased interest in the last few years due to their impact on the transition form factors
of the lightest pseudoscalars [38, 64], and hence on hadronic light-by-light scattering [36].
While e.g. the transition φ → ηe+e− [65] seems compatible with a vector-meson dominance
picture [66], other experimental results, in particular for ω → π0µ+µ− and φ → π0e+e−,
seem to indicate strong deviations [67–69], which are hard to understand theoretically [70].

Recently the first measurements of the analogous transition form factors from char-
monium into light pseudoscalars have been reported by the BES III collaboration [71],
which has determined the branching fractions for J/ψ → Pe+e−, P = π0, η, η′, and
the transition form factor for the η′ final state. The latter was parametrized in a sim-
ple monopole form [72], with the scale found in the characteristic charmonium mass re-
gion. On the other hand, in Ref. [72], such monopole form factors were assumed for
all three final-state pseudoscalars, and the corresponding branching fractions were esti-
mated; interestingly enough, experiment agrees well with these predictions for η and η′,
while there seems to be a tension for the π0: the experimental determination arrives at
B (J/ψ → π0e+e−) = (7.56 ± 1.32 ± 0.50) × 10−7 [71], while the theory prediction was
B (J/ψ → π0e+e−) =

(
3.89+0.37

−0.33

)
× 10−7 [72].

The assumption that the q2-dependence of the J/ψ → π0γ∗ form factor should be
determined by the charmonium mass scale seems implausible, given that this would imply
an isospin-breaking transition, while the decay can proceed in an isospin-conserving manner,

1This part has been published in Ref. [63].
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with the (virtual) photon being an isovector state, hence dominated by light-quark degrees
of freedom. Indeed, it was pointed out by Chen et al. [73] very recently, in an effective-
Lagrangian-based analysis, that the contributions of light vector mesons ought to be very
sizable in this decay.

In this part, we consider the J/ψ → π0γ∗ transition form factor, defined in Section 3.2,
in dispersion theory. Using the formalism employed previously for the analogous decays
of the light isoscalar ω and φ mesons [74], we show in Section 3.3 that it is dominated by
the lightest, ππ, intermediate state, although not quite to the extent this dominance was
found for ω and φ. We give rough estimates of possible further light contributions beyond
two pions, as well as from charmonium states. While these induce a sizable uncertainty in
the form factor, our results in Section 3.4 show that the experimentally observable decay
spectra for J/ψ → π0ℓ+ℓ−, ℓ = e, µ, as well as the integrated branching fractions are rather
stable, as they are dominated by the low-energy region. We close with a summary.

3.2 Definitions, kinematics

The J/ψ → π0γ∗ transition form factor is defined according to

〈ψ(pV , λ)|jµ(0)|π0(p)〉 = −iǫµναβǫν∗(pV , λ)pαqβfψπ0(s), (3.1)

where jµ denotes the electromagnetic current, λ the polarization of the J/ψ with ǫν(pV , λ)
the corresponding polarization vector, q = pV − p, and s = q2. The form factor fψπ0(s)
defined in this way has dimension GeV−1. Sometimes also the corresponding normalized
form factor is used, denoted by Fψπ0(s) = fψπ0(s)/fψπ0(0). The differential cross section
for the decay J/ψ → π0ℓ+ℓ−, normalized to the real-photon width, is given by

dΓψ→π0ℓ+ℓ−

Γψ→π0γ ds
=

16α

3π

(

1 +
2m2

ℓ

s

)
qℓ(s)q

3
ψπ0(s)

(M2
ψ −M2

π0)3
|Fψπ0(s)|2, (3.2)

where α is the fine-structure constant, the real-photon width is determined by

Γψ→π0γ =
α(M2

ψ −M2
π0)3

24M3
ψ

|fψπ0(0)|2, (3.3)

and the kinematical variables are

qℓ(s) =
1

2

√

s− 4m2
ℓ , qAB(s) =

λ1/2(M2
A,M

2
B, s)

2
√
s

, (3.4)

where λ(a, b, c) = a2 + b2 + c2 − 2(ab+ ac+ bc) is the usual Källén function. The universal
(QED) radiative corrections to Eq. (3.2) have been calculated in Ref. [75].
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Figure 3.1: Two-pion contribution to the discontinuity of the J/ψ → π0ℓ+ℓ− transition

form factor. The gray circle denotes the J/ψ → 3π P -wave amplitude, whereas the white

circle represents the pion vector form factor.

3.3 Dispersive analysis

Dispersion theory attempts to reconstruct form factors from the corresponding discontinuity
across the cut along the positive real axis. In principle, one would expect an unsubtracted
dispersion relation to work for the J/ψ → π0γ∗ form factor, i.e.

fψπ0(s) =
1

2πi

∫ ∞

4Mπ

dx
disc fψπ0(x)

x− s
, (3.5)

where contributions to the discontinuity are given by multiparticle intermediate states as
well as single-particle pole contributions. The lower limit of the integral is given by the
lightest possible intermediate state, π+π−, that we will discuss in the following section.

3.3.1 ππ intermediate states

The contribution of the two-pion intermediate state to the discontinuity of the J/ψ → π0γ∗

transition form factor, see Fig. 3.1, is given by [74, 76]

disc fππψπ0(s) =
i q3ππ(s)

6π
√
s
F V ∗
π (s)f1(s) θ

(
s− 4Mπ

)
, (3.6)

where F V
π (s) is the pion vector form factor. f1(s) is the projection of the J/ψ → 3π decay

amplitude onto the P partial wave determined in the previous Chapter 2 of this thesis:
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with the amplitude M3π = M(ψ → π+(p+)π
−(p−)π

0(p0)) decomposed according to

M3π = iǫµναβǫ
∗µpν+p

α
−p

β
0F(s, t, u), (3.7)

it is given by

f1(s) =
3

4

∫ 1

−1

dz
(
1− z2

)
F(s, t, u), (3.8)

where z = (t− u)/(4qππ(s)qψπ0(s)), and s = (p+ + p−)
2, t = (p− + p0)

2, u = (p+ + p0)
2.

To describe the J/ψ → 3π amplitude, we rely on the phenomenological observation that
the Dalitz plot for this decay is entirely dominated by πρ intermediate states, i.e. by the
lowest resonance in the ππ P -wave; neither higher resonances, nor resonant higher partial
waves are observed [48]. We do not attempt to explain this suppression of additional struc-
tures [77], but just take it as the starting point for a generalized partial-wave decomposition
that stops at P -wave contributions only [34, 78],

F(s, t, u) = F(s) + F(t) + F(u) . (3.9)

Final-state interactions between all three pions are implemented in a Khuri–Treiman-type
formalism [39], leading to [34] (compare also Ref. [79])

F(s) = aΩ(s)

{

1 +
s

π

∫ ∞

4Mπ

dx

x

sin δ(x)F̂(x)

|Ω(x)|(x− s)

}

,

F̂(s) = 3〈(1− z2)F〉(s), (3.10)

where δ(s)
.
= δ11(s) is the isospin 1 ππ P -wave phase shift taken from Refs. [80, 81] and

〈.〉 denotes angular averaging. Ω(s) is the Omnès function calculated from the phase shift
δ(s),

Ω(s) = exp

{
s

π

∫ ∞

4Mπ

dx
δ(x)

x(x − s)

}

. (3.11)

The function F̂ denotes the partial-wave projection of the crossed-channel contributions,
which are fed into the dispersive solution for F . The partial wave f1(s) is related to
both by f1(s) = F(s) + F̂(s). The single subtraction constant a only affects the overall
normalization of the amplitude and can be fixed, up to a phase, from the total J/ψ → 3π
branching fraction. For the pion vector form factor F V

π (s), we also employ a representation
based on the Omnès function Eq. (3.11); see Ref. [74] for details. This fully determines
Eq. (3.6).

In particular, we can calculate the two-pion contribution to the real-photon transition
J/ψ → π0γ in the form of a sum rule [74]:

fππψπ0(0) =
1

12π2

∫ ∞

4Mπ

dx
q3ππ(x)

x3/2
F V ∗
π (x)f1(x). (3.12)
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As the partial wave f1(s) depends on an unknown overall normalization constant a,
the cleanest prediction following from Eq. (3.12) is in principle the ratio B (J/ψ →
π0γ)/B (J/ψ → 3π) [74], which is determined by the phase shift δ(s) alone.

The experimental branching fraction for J/ψ → π0γ [82], together with Eq. (3.3), leads
to |fψπ0(0)| = (6.0± 0.3)× 10−4GeV−1, whereas the sum rule Eq. (3.12) results in

|fππψπ0(0)| = (4.8± 0.2)× 10−4GeV−1, (3.13)

where the uncertainty is a combination of the experimental uncertainties in B (J/ψ → 3π)
and the width of the J/ψ, as well as the one in the dispersive integral. We therefore conclude
that the two-pion intermediate state alone saturates the sum rule for the transition form
factor normalization to about 80%. Note that this presents a very significant enhancement
over a simple vector-meson dominance estimate based on the decay chain J/ψ → ρ0π0,
ρ0 → γ (see e.g. Ref. [73]), which would rather result in |f ρψπ0(0)| ≈ 3.3× 10−4GeV−1.

This result is to be compared to similar sum rules for the decays ω → π0γ and φ→ π0γ,
which were observed to be saturated to more than 90% accuracy [74]. The difference
looks rather plausible, as the branching fractions of the J/ψ into more than three pions
are actually larger: B (J/ψ → 3π) = (2.11 ± 0.07)%, B (J/ψ → 5π) = (4.1 ± 0.5)%,
B (J/ψ → 7π) = (2.9±0.6)% [82]. It would therefore not come as a surprise if the inelastic
contributions to the J/ψ → π0γ∗ transition form factor, coming from the discontinuities
due to four and more pions, played a much more significant role than e.g. for the ω → π0γ∗

transition. However, the information on the branching fractions alone does not lend itself
easily to an improvement of the radiative decay/the transition form factor before more
differential information in the form of a partial-wave analysis becomes available. From
data on e+e− → [hadrons]I=1, the most important inelastic intermediate state of isospin
I = 1 ought to be 4π, which couples strongly to the ρ′(1450) resonance. In a very simplistic
model approach, we therefore add a ρ′(1450) resonance to the J/ψ → π0γ∗ transition
form factor as an approximation to the possible effects of multipion intermediate states,
which we allow to contribute between 10% and 30% of the dominant ππ channel to the
sum rule for fψπ0(0). Note that in a more complete/realistic description the dispersive
contributions from ππ and inelastic states would have to be treated as coupled channels;
see e.g. Ref. [27] for a corresponding analysis of the pion vector form factor. We reconstruct
the ρ′(1450) propagator dispersively from the imaginary part of an energy-dependent Breit–
Wigner function,

disc f ρ
′

ψπ0(s) =
2i
√
sM2

ρ′Γρ′(s)

(M2
ρ′ − s)2 + sΓ2

ρ′(s)
,

Γρ′(s) =

(
M2

ρ′

s

)2 [
s− 16Mπ

M2
ρ′ − 16Mπ

]7/2

Γρ′
(
M2

ρ′

)
θ
(
s− 16Mπ

)
, (3.14)
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thus maintaining a reasonable analytic behavior. Γρ′(s) reproduces the near-threshold
behavior of four-pion phase space [27]. With Mρ′ = 1.6GeV, Γ(M2

ρ′) = 0.6GeV, the
dispersive integral over Eq. (3.14) results in a function of which the peak position and
width agree with the Particle Data Group Breit–Wigner parameters [82].

3.3.2 Light isoscalar contributions to J/ψ → η, η′γ∗

Given the strong impact of light-quark degrees of freedom on the J/ψ → π0γ∗ transition,
to what extent may something similar be true for the decays J/ψ → η, η′γ∗? In the limit
of isospin conservation, here only the light isoscalar vector mesons ω and φ can contribute,
which in the context of this study we consider as sufficiently narrow that we can approximate
their contribution to the discontinuity by δ-functions,

disc fVψP (s) = 2πi
∑

V=ω,φ

cPV FVMV δ(s−M2
V ), (3.15)

where P = η, η′. Here, FV denote the vector-meson decay constants, determined from the
corresponding electron–positron decay rates by

ΓV→e+e− =
4πα2

3

F 2
V

MV

(3.16)

(neglecting the mass of the electron), while the effective coupling constants cPV are fixed
from the decay rates J/ψ → PV by

ΓJ/ψ→PV =
|cPV |2
96πM3

ψ

λ3/2
(
M2

ψ,M
2
V ,M

2
P

)
. (3.17)

We do not attempt a symmetry-based analysis of the couplings cPV here (compare Refs. [73,
83,84] and references therein), but just estimate them individually from data; we note that
SU(3) symmetry suggests constructive interference of ω and φ contributions for the η final
state, but destructive interference for the η′. Individually, the estimated contributions of
ω and φ to the transition form factors at the real-photon point, given simply by fVψP (0) =
cPV FV /MV , amount to

∣
∣f

{ω,φ}
ψη (0)

∣
∣ ≈ {0.9, 0.8} × 10−4GeV−1,

∣
∣f

{ω,φ}
ψη′ (0)

∣
∣ ≈ {0.3, 0.7} × 10−4GeV−1, (3.18)

whereas the decay rates for J/ψ → η, η′γ [82] suggest |fψη(0)| = (35 ± 1) × 10−4GeV−1,
|fψη′(0)| = (85± 3)× 10−4GeV−1. We conclude, in accordance with Ref. [73], that for the
isoscalar transition form factors, light-quark resonances contribute only at the percent level,
so the corresponding spectral functions are entirely dominated by charmonium intermediate
states, in the loose sense of both cc̄ resonances and open charm–anticharm continuum
contributions.
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3.3.3 Estimate of charmonium contributions

Given the vast dominance of charmonium in the transition form factors for η and η′, we
may wonder if such effects cannot also be sizable for J/ψ → π0γ∗, even though in that case,
they break isospin symmetry. Indeed, in the same narrow-width approximation employed
in the previous section, we can determine the contribution specifically of the ψ(2S), using
experimental information on the branching fractions for ψ(2S) → J/ψπ0 and ψ(2S) →
e+e− [82] and analogous relations to Eq. (3.16) and Eq. (3.17) to determine the decay
constant Fψ(2S) and an effective coupling cπ0ψ(2S). Surprisingly, one finds

|fψ(2S)ψπ0 (0)| = (5.3± 0.1)× 10−4GeV−1, (3.19)

which is larger than the two-pion contribution, see Eq. (3.13). However, the comparison to
the J/ψ → ηγ∗ transition form factor demonstrates that this observation is too simplistic.
Here, branching fractions into J/ψη (and e+e−) are known for the excited charmonium
resonances ψ(2S), ψ(3770), and ψ(4040), so we can determine their contributions to the
sum rule for fψη(0). Their moduli turn out to be (117 ± 2) × 10−4GeV−1, (25 ± 6) ×
10−4GeV−1, and (70 ± 7) × 10−4GeV−1, respectively, compared to the total |fψη(0)| =
(35 ± 1) × 10−4GeV−1. We conclude that there need to be strong cancellation effects
between different charmonium resonances (as well as, probably, open-charm continuum
channels) in the J/ψ → ηγ∗ form factor spectral function in order to explain the observed
rate for J/ψ → ηγ.

To estimate the total charmonium contribution to J/ψ → π0γ, |f cc̄ψπ0(s)|, we therefore

assume that the ratio of ψ(2S) contributions to the transitions into π0 and η gives a useful
indication of the ratio of overall cc̄ effects:

0.01 .
|f cc̄ψπ0(0)|
|f cc̄ψη(0)|

.
|fψ(2S)ψπ0 (0)|
|fψ(2S)ψη (0)|

≈ 0.045. (3.20)

We assume this to be an upper limit due to the observation that the ψ(2S) → J/ψπ0

decay rate is somewhat enhanced relative to ψ(2S) → J/ψη due to charmed-meson loop
effects [85]. The lower limit of 1% is the size of a typical, nonenhanced isospin-breaking
effect, which requires cancellation of individual charmonium resonances by no more than
one order of magnitude. We therefore estimate (with |f cc̄ψη(0)| ≈ |fψη(0)|)

0.3× 10−4GeV−1 . |f cc̄ψπ0(0)| . 1.6× 10−4GeV−1. (3.21)

For the s-dependence of this contribution, we adopt the simple monopole ansatz [72],

f cc̄ψπ0(s) =
f cc̄ψπ0(0)

1− s/Λ2
, (3.22)

and vary the effective scale Λ between the mass of the J/ψ and the mass of the ψ(2S).
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Figure 3.2: Modulus of the transition form factor |fψπ0(s)|. See the main text for the

discussion of the uncertainty band. The dashed curve denotes the upper limit of the band

in the case that the scale Λ for the charmonium contribution is fixed to the ψ(2S) mass.

3.4 Results and discussion

In Fig. 3.2, we show the modulus of our total form factor

fψπ0(s) = fππψπ0(s) + f ρ
′

ψπ0(s) + f cc̄ψπ0(s). (3.23)

While fππψπ0(s) is fixed within its (rather narrow) uncertainty, we vary the effective ρ′ and
charmonium contributions within the rather generous error bands discussed in the previous
sections, with unknown relative signs, but subject to the constraint that the J/ψ → π0γ sum
rule be fulfilled within experimental uncertainties, |fψπ0(0)| = (6.0 ± 0.3) × 10−4GeV−1.
This variation in the normalization determines the error band in the form factor at low
energies, while the theoretical variation within our rather crude estimates of the ρ′ and
cc̄ contributions dominates the uncertainty above

√
s & 1GeV. While all the light-quark
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resonance contributions drop like 1/s above their respective characteristic scales (the masses
of ρ and ρ′), f cc̄ψπ0(s) rises close to the upper limit of the accessible decay phase space
and dominates the total form factor there. In particular, if the characteristic scale Λ
is set to the J/ψ mass, f cc̄ψπ0(s) is enhanced by roughly a factor Mψ/(2Mπ0) ≈ 11.5 at√
s = Mψ − Mπ0 . Figure 3.2 also shows the upper form factor limit using Λ = Mψ(2S)

only, which limits the rise significantly. In addition, Fig. 3.3 shows the resulting differential
decay rates for J/ψ → π0e+e− and J/ψ → π0µ+µ−. For comparison, we also display
the distributions obtained by setting fψπ0(s) ≡ fψπ0(0). For both final states, the clear
enhancement due to the ρ resonance in the ππ intermediate state is the dominating form
factor feature, while dΓψ→π0e+e−/ds rises strongly near

√
s = 0. The sizable form factor

uncertainty at large energies occurs in a region where phase space already suppresses the
decay distributions strongly; in particular, a potential strong rise in the form factor due to
J/ψ pole contributions is probably not experimentally observable.

Integrating over the respective spectra, we can calculate the branching fractions for the
two dilepton final states. We find

B (J/ψ → π0e+e−) = (5.5 . . . 6.4)× 10−7,

B (J/ψ → π0µ+µ−) = (2.7 . . . 3.3)× 10−7. (3.24)

This can be compared to the numbers obtained from QED spectra with a constant form
factor, B (J/ψ → π0e+e−) = (3.7 ± 0.4) × 10−7, B (J/ψ → π0e+e−) = (0.9 ± 0.1) ×
10−7. A monopole form factor as in Eq. (3.22), with the scale given by the mass of the
ψ(2S) [72], magnifies these by a few percent only. Our dispersive result therefore enhances
the branching fractions very considerably, almost by a factor of 3 for the muon final state.
Note that the dispersive prediction Eq. (3.24) is remarkably stable due to the dominance
of the low-energy region in the integrated rate.

It is rather unclear how to compare Eq. (3.24) to the experimental result B (J/ψ →
π0e+e−) = (7.56±1.32±0.50)×10−7 [71], as this has purportedly been obtained subtracting
the ρ contribution to the form factor. Our analysis above demonstrates that such an
attempt does not make sense: there is no theoretically sound way to separate the ρ resonance
from the nonresonant ππ background, and we have demonstrated that the ππ contribution
to the form factor normalization is actually dominant. In particular also the energy region
below the ρ mass would have to be heavily affected by such a subtraction, leading to a form
factor normalization that is in stark contradiction with the J/ψ → π0γ decay rate. This
is obviously quantitatively different from removing the isoscalar ω and φ resonances from
J/ψ → η, η′γ∗ transition form factors due to the overall smallness of their contribution.

It would be interesting and most desirable to experimentally extract the full, unchanged,
transition form factor without any parts subtracted, given that it is precisely the interplay
between three energy regions of the J/ψ → π0γ∗ form factor that is most challenging
theoretically: low energies below 1GeV with the dominance of the ρ; potentially sizable
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Figure 3.3: Differential decay rates dΓ/ds for J/ψ → π0e+e− (left) and J/ψ → π0µ+µ−

(right); the insert in the right panel displays the same distribution on a logarithmic scale.

The full gray bands correspond to our form factor prediction, while the dashed bands show

the QED distributions for comparison, i.e. with the form factor set to a constant.
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contributions of excited light ρ′ resonances between 1 and 2GeV; and the contribution from
charmonium in the spectral function most visible near the upper limit of the decay region.

3.5 Summary

To summarize, we have analyzed the J/ψ → π0γ∗ transition form factor using dispersion
theory. We have shown that the corresponding spectral function is dominated by the π+π−

intermediate state, of which the contribution can be calculated using the J/ψ → 3π P -
wave decay amplitude as well as the pion vector form factor. A sum rule for the form
factor normalization, which determines the decay rate J/ψ → π0γ, is saturated to about
80% by the ππ contribution only, showing that this transition form factor is dominated by
light-quark dynamics. We have given rough estimates for the contributions of four pions,
approximated by an effective ρ′(1450) resonance, and charmonium states, comparing to the
latter’s (dominant) effect on the J/ψ → η, η′γ∗ transitions.

For the differential decay rates J/ψ → π0ℓ+ℓ−, the ρ resonance in the ππ spectrum is
the dominating feature, leading to very stable values for the integrated branching fractions
despite large form factor uncertainties at high energies. An experimental confirmation of
the decay spectra predicted here, as well as a determination of the branching fractions
taking the full, unmodified form factor into account, would be highly desirable.





Part II

Dispersive analysis of the

D+ → Kππ+ Dalitz plots2

2Parts of this part have been published in Ref. [86].





Chapter 4

The dispersion-theoretical decay

amplitudes

4.1 Introduction

Heavy-flavor three-body decays into light mesons provide a valuable source for Standard
Model tests and beyond. While they are driven, at short distances, by the weak interactions,
their rich kinematic structure accessible in Dalitz plot distributions makes them a prime
example for the application of modern tools of amplitude analysis [87]. A major motivation
for the investigation of heavy-flavor decays is the study of CP violation, which manifests
itself in the appearance of (weak) phases and requires the interference of different amplitudes
with, at the same time, different phases in the strong final-state interactions (see, e.g.,
Ref. [88] for an in-depth overview). In contrast to (quasi-)two-body decays occurring at
fixed total energies, three-body decays offer a resonance-rich environment with rapidly
varying strong phases throughout the phase space available, which may strongly magnify
the effects of CP violation in certain parts of the Dalitz plot.

Obviously, in order to turn the search for potentially very small CP -violating phases in
such complicated hadronic environments into a precision instrument, it is inevitable to con-
trol the strong dynamics in the final state as accurately as possible, in a model-independent
fashion that, however, incorporates a maximum of theoretical and phenomenological con-
straints. The traditional approach to model Dalitz plots in terms of isobars, i.e. a series of
subsequent two-body decays, and describe the relevant line shapes in terms of Breit–Wigner
(or Flatté) functions, has clear limitations: it fails to describe in particular the phase mo-
tion of the broad S-wave resonances such as the f0(500) in pion–pion or the K∗

0(800) in
pion–kaon scattering (see e.g. Refs. [89, 90] in the context of heavy-flavor decays), and
neglects corrections beyond two-body rescattering in an unquantified manner.

It has therefore been advocated to employ the framework of dispersion theory for ampli-
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tude analyses [87], which is built on unitarity, maximal analyticity, and crossing symmetry.
The dispersion framework we will utilize is once more based on Khuri–Treiman dispersion
relations.

Khuri–Treiman equations have been successfully applied to various low-energy meson
decays, like e.g. η → 3π [45, 46, 91, 92], η′ → ηππ [58] or ω/φ → 3π [34, 93] and general
V → 3π decays in the previous part of this thesis. In this part, we extend this formalism
to three-body decays of open-charm mesons, analyzing the Cabibbo-favored decays D+ →
K−π+π+/K̄0π0π+. As input we solely rely on ππ and πK phase-shift input. While these are
not yet decay channels of major interest to study CP violation, the final-state interactions
are going to be similar for others that are, such as the Cabibbo-suppressed decays D →
3π/πKK̄. For the decays at hand, inelastic effects are small in large regions of the Dalitz
plots, and therefore elastic unitarity provides a good approximation: the ππ channel allows
for isospin 1 and 2 only, but no isoscalar components, which would necessitate a coupled-
channel treatment, as a strong coupling to KK̄ occurs. The major inelasticities in the πK
channel are found to set in at the η′K threshold [94–96].

Thus with the high-statistics experimental data available [97–100], these decays provide
a good test case to establish this dispersive framework in higher energy regions and set the
path to Cabibbo-suppressed decays where traces of physics beyond the Standard Model may
be searched for. Besides, it allows for a further test of low-energy πK and ππ dynamics as
well as the importance of crossed-channel rescattering effects in three-body decays. It may
also provide an insight into scattering phase shifts at higher energies in the future.

The decays under consideration has been the subject of a number of previous theoretical
publications, focusing on different issues raised by the experimental results. One challenge
is the proper treatment of the isospin 1/2 S-wave with the very broad, non-Breit–Wigner-
shaped K∗

0 (800) (or κ) resonance [101], and the inclusion of two scalar resonances K∗
0 (800)

and K∗
0 (1430) in a way that conserves unitarity. Furthermore, the width of the K∗

0(1430)
extracted from the experimental analyses in Refs. [97, 98] is found to be inconsistent with
PDG values [82]. In addition, the explicit comparison of the πK partial-wave phases
extracted from these decays [99, 102] with πK scattering results [103] seems to indicate
deviations from Watson’s final-state theorem.

Ref. [104] focuses on the isospin 1/2 S-wave final-state interactions, based on coupled-
channel partial waves for Kπ, Kη, and Kη′ constructed dispersively in Ref. [94]. Decay
and scattering data could be reconciled, although no three-body rescattering effects, isospin
3/2 components, or ππ channel were included. Ref. [105] similarly observes mutual con-
sistency of πK scattering and the D-meson decay, using related input to take two-body
final-state interactions in the πK isospin 1/2 S- and P -wave into account in terms of the
corresponding scalar and vector form factors. Furthermore, the short-distance weak in-
teractions are described with the help of an effective Hamiltonian based on a factorization
ansatz. Again, weak repulsive partial waves (of isospin 3/2 and in the ππ system) as well as
crossed-channel rescattering are neglected. We mention that similar approaches, using dis-
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persively constructed form factors for two-body rescattering, but neglecting third-particle
interactions, have also been applied to B → Kππ decays [106, 107].

In Ref. [108], a Faddeev-like equation is solved that builds up three-particle rescattering
effects. The underlying two-particle πK amplitudes are obtained form unitarized chiral per-
turbation theory fitted to experimental data. The decay amplitude is simplified to include
only the isospin 1/2 S-wave, aiming mainly at a study of the importance of rescattering
effects and the reproduction of the experimental S-wave phases [99,102]. The model for the
weak vertex has subsequently been improved [109]. Ref. [110] applies a similar approach
with the addition of the isospin 3/2 πK S-wave, but is still restricted to S-waves only.
The only theoretical analysis known to us with all relevant partial waves, three-particle
rescattering effects, and effects of the intermediate state K̄0π0π+ included, is Ref. [111].
The author performs a full Dalitz plot analysis on pseudo data, which we will later compare
to.

4.2 Kinematics

The Mandelstam variables of the D-meson decay

D+(pD) → K̄(pK)π(p1)π
+(p2) (4.1)

are given by s = (pD − p1)
2, t = (pD − p2)

2, and u = (pD − pK)
2. The corresponding

scattering angles θ in the (crossed) scattering processes are given by

zs ≡ cos θs =
s(t− u)−∆

κs(s)
, zt ≡ cos θt =

t(s− u)−∆

κt(t)
, zu ≡ cos θu =

t− s

κu(u)
,

κs/t(x) = λ1/2(x,M2
K ,M

2
π)λ

1/2(x,M2
D,M

2
π) , κu(u) = λ1/2(u,M2

D,M
2
K)

√

1− 4M2
π

u
,

(4.2)

with ∆ =
(
M2

D−M2
π

)(
M2

K −M2
π

)
. Furthermore, we can express the Mandelstam variables

in the x-channel by x and the cosine of scattering angle zx which we will need in the
following.

1. s-channel

t =
1

2

(

Σ0 − s+
∆

s
+
κs(s)

s
zs

)

, u =
1

2

(

Σ0 − s− ∆

s
− κs(s)

s
zs

)

. (4.3)

2. t-channel

s =
1

2

(

Σ0 − t+
∆

t
+
κt(t)

t
zt

)

, u =
1

2

(

Σ0 − t− ∆

t
− κt(t)

t
zt

)

. (4.4)
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Figure 4.1: The Mandelstam plane with Mandelstam u plotted against s − t. The gray

shaded areas are the decay region (Dalitz plot) and the s-, t-, and u-channel scattering

regions respectively. The white area is the unphysical region.

3. u-channel

t =
1

2
(Σ0 − u+ κu(u)zu) , s =

1

2
(Σ0 − u− κu(u)zu) . (4.5)

The different kinematical regions (decay and scattering) are depicted in Fig. 4.1.

4.3 Dispersive treatment

In this section we will derive the Khuri–Treiman dispersive integral equations analogously
to the V → 3π analysis previously. Since here the three final-state particles are not identical
the structure will be more evolved. We again start out decomposing the decay amplitude
into functions of one variable via the reconstruction theorem, rewrite these in terms of
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Khuri–Treiman-type equations, determine the number of subtraction constants needed,
and solve the equations.

4.3.1 Reconstruction theorem

We start the dispersive endeavor with the reconstruction theorem introduced in Section 2.3.
Opposed to the symmetric 3π state with maximal symmetry in s, t, and u, in the K−π+π+

final state we have only an s ↔ t symmetry, corresponding to the interchange of the
two final-state pions. For the K̄0π0π+ state no such symmetry is present and we have to
study all fixed-s, fixed-t, and fixed-u dispersion relations. We will start with the K−π+π+

final state without πK D-wave amplitudes. The inclusion of πK D-waves is discussed in
Appendix C.2.1 as well as the reconstruction of the K̄0π0π+ final state in Appendix C.2.2.
Starting with the fixed-u dispersion relation (fixing Mandelstam u = u0) we obtain

M−++(s, t, u0) =pn−1(s, t, u0) +
tn

π

∫ ∞

tth

ImM−++(s
′(t′), t′, u0)

t′n(t′ − t)
dt′

+
sn

π

∫ ∞

sth

ImM−++(s
′, t′(s′), u0)

s′n(s′ − s)
ds′ , (4.6)

where pn−1(s, t, u) denotes a polynomial of order n − 1 in s, t, and u and the thresholds

sth/tth =
(
MK +Mπ

)2
. The partial-wave decomposition of the s- and t-channel amplitudes

read

M−++(s(t), t, u0) =
∑

L

fL(t)PL(zt) , M−++(s, t(s), u0) =
∑

L

fL(s)PL(zs) . (4.7)

As the decay amplitude is symmetric interchanging the two final-state pions the decom-
position yields the same partial waves. Inserting the partial-wave decomposition Eq. (4.7)
into Eq (4.6) we find with L < 2

M−++(s, t, u0) = pn−1(s, t, u0) +
tn

π

∫ ∞

tth

Im f0(t
′)

t′n(t′ − t)
dt′

+
tn

π

∫ ∞

tth

(
t′(s′(t′)− u0)−∆

)
Im f1(t

′)

κt(t′)t′n(t′ − t)
dt′ + (t↔ s) . (4.8)

The first dispersion integral, the S-wave contribution in the t-channel, can be written
directly as a function depending on one variable, while the other terms require further
transformations. With s′(t′) = Σ− u0 − t′ and Σ = s+ t+ u0 we have

t′(s′(t′)− u0) = t′(t− t′ − u0 + s) , (4.9)



62 Chapter 4: The dispersion-theoretical decay amplitudes

and therefore we obtain for the second term in Eq. (4.8)

tn

π

∫ ∞

tth

(
t′(s′(t′)− u0)−∆

)
Im f1(t

′)

κt(t′)t′n(t′ − t)
dt′ =

tn

π

∫ ∞

tth

t′(s− u0)Im f1(t
′)

κt(t′)t′n(t′ − t)
dt′

−∆
tn

π

∫ ∞

tth

Im f1(t
′)

κt(t′)t′n(t′ − t)
dt′ +

tn

π

∫ ∞

tth

t′(t− t′)Im f1(t
′)

κt(t′)t′n(t′ − t)
dt′

= pn(s, t, u0) +
(
t(s− u0)−∆

)tn−1

π

∫ ∞

tth

Im f1(t
′)

κt(t′)t′n−1(t′ − t)
dt′ . (4.10)

This results in

M−++(s, t, u0) = pn(s, t, u0) +
tn+1

π

∫ ∞

tth

Im f0(t
′)

t′n+1(t′ − t)
dt′

+
(
t(s− u0)−∆

)tn−1

π

∫ ∞

tth

Im f1(t
′)

κt(t′)t′n−1(t′ − t)
dt′ + (t↔ s) , (4.11)

where we have subtracted the S-wave one time further. Similarly we obtain for the fixed-t
dispersion relation (t = t0)

M−++(s, t0, u) =pn−1(s, t0, u) +
un

π

∫ ∞

uth

ImM−++(s
′(u′), t0, u

′)

u′n(u′ − u)
dt′

+
sn

π

∫ ∞

sth

ImM−++(s
′, t0, u

′(s′))

s′n(s′ − s)
ds′ . (4.12)

With the partial-wave decomposition

M−++(s(u), t0, u) =
∑

L

hL(u)PL(zu), M−++(s, t0, u(s)) =
∑

L

fL(s)PL(zs) , (4.13)

the s-channel contributions follow as above. In the u-channel we retain only the S-wave
contribution as due to Bose symmetry only even angular momenta are allowed in the π+π+-
system and we truncate at L < 2,

M−++(s, t0, u) = pn(s, t0, u) +
un

π

∫ ∞

uth

Imh0(u
′)

u′n(u′ − u)
du′ +

sn+1

π

∫ ∞

sth

Im f0(s
′)

s′n+1(s′ − s)
ds′

+
(
s(t0 − u)−∆

)sn−1

π

∫ ∞

sth

Im f1(s
′)

κs(s′)s′n−1(s′ − s)
dt′ . (4.14)

The fixed-s dispersion relation is symmetric to the fixed t-dispersion relation since
M−++(s, t, u) = M−++(t, s, u).The symmetrization of the three fixed dispersion relations
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to obtain the full decay amplitude yields

M−++(s, t, u) = pn(s, t, u) +
un

π

∫ ∞

uth

Imh0(u
′)

u′n(u′ − u)
du′ +

sn+1

π

∫ ∞

sth

Im f0(s
′)

s′n+1(s′ − s)
ds′

+
tn+1

π

∫ ∞

tth

Im f0(t
′)

t′n+1(t′ − t)
dt′

+
(
s(t− u)−∆

)sn−1

π

∫ ∞

sth

Im f1(s
′)

κs(s′)s′n−1(s′ − s)
ds′

+
(
t(s− u)−∆

)tn−1

π

∫ ∞

tth

Im f1(t
′)

κt(t′)t′n−1(t′ − t)
dt′ . (4.15)

Additionally, we would like to decompose the single-variable amplitudes further into definite
isospin states. We associate the isospin structure of the strong final-state current in Fig. 4.2
with the D+ meson. Since one ūu/d̄d pair is strongly produced, the associated isospin of the
D meson is given by I = 3/2, Iz = 3/2. Thus the isospin decomposition of the respective
(crossed) scattering processes reads

s/t-channel u-channel

MD+π0→K̄0π+ =

√

3

5
F3/2 , MD+K0→π0π+ =

1

2
√
2

(
F2 −

√
3F1

)
,

MD+π−→K−π+ =

√

2

15
F3/2 − 1√

3
F1/2 , MD+K0→π+π0 =

1

2
√
2

(
F2 +

√
3F1

)
,

MD+π−→K̄0π0 =
2√
15

F3/2 +
1√
6
F1/2 , MD+K+→π+π+ = F2 . (4.16)

With the phase condition employed in Appendix C.1 we obtain

M−++(s, t, u) =pn(s, t, u) +
un

π

∫ ∞

uth

Imh20(u
′)

u′n(u′ − u)
du′

+

{
1√
3

sn+1

π

∫ ∞

sth

Im f
1/2
0 (s′)

s′n+1(s′ − s)
ds′ −

√

2

15

sn+1

π

∫ ∞

sth

Im f
3/2
0 (s′)

s′n+1(s′ − s)
ds′

+
1√
3

(
s(t− u)−∆

)sn−1

π

∫ ∞

sth

Im f
1/2
1 (s′)

κs(s′)s′n−1(s′ − s)
ds′

−
√

2

15

(
s(t− u)−∆

)sn−1

π

∫ ∞

sth

Im f
3/2
1 (s′)

κs(s′)s′n−1(s′ − s)
ds′ + (s↔ t)

}

,

(4.17)

where the f IL(s) and h
I
L(u) denote the partial waves of angular momentum L and isospin

I. Thus all dispersion integrals are functions of one variable with corresponding angular
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Figure 4.2: Quark line diagrams of the D+ → K−π+π+/K̄0π0π+ decays: W+ as a spectator

(a) and internal W+ conversion (b).

momentum polynomials in front. The only piece not fitting into the decomposition yet is
the subtraction polynomial, which as a last hurdle needs to be incorporated as subtraction
constants of the single dispersion integrals. As a last step we need to specify the number
of subtractions and distribute the components of the subtraction polynomial pn. With no
loss of generality we take n = 2 in Eq. (4.15) and together with the (s ↔ t) symmetry we
obtain the general polynomial

p2(s, t, u) = a0 + a1(s+ t) + a2(s
2 + t2) + b1

(
s(t− u) + t(s− u)

)
. (4.18)

The ai can be interpreted as S-wave subtraction constants and b1 as the P -wave subtraction
constants of order 0 (tuned by ai). Thus we obtain the following decomposition into single-
variable amplitudes,

M−++(s, t, u) = F2
0 (u) +

{
1√
3
F1/2

0 (s)−
√

2

15
F3/2

0 (s)

+
[
s(t− u)−∆

]
(

1√
3
F1/2

1 (s)−
√

2

15
F3/2

1 (s)

)

+ (s↔ t)

}

, (4.19)

where the amplitudes F I
L(x) of definite angular momentum L and isospin I in the x-channel

are given by

F0
0 (u) ≡

u2

π

∫ ∞

uth

Imh00(u
′)

u′2(u′ − u)
du′ , F1/2

0 (s) ≡ d0 + d1s + d2s
2 +

s3

π

∫ ∞

sth

Im 1/2f0(s
′)

s′3(s′ − s)
ds′ ,
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F3/2
0 (s) ≡ s3

π

∫ ∞

sth

Im f
3/2
0 (s′)

s′3(s′ − s)
ds′ , F1/2

1 (s) ≡ d3 +
s

π

∫ ∞

sth

Im f
1/2
1 (s′)

κs(s′)s′(s′ − s)
ds′ ,

F3/2
1 (s) ≡ s

π

∫ ∞

sth

Im f
3/2
1 (s′)

κs(s′)s′(s′ − s)
ds′ . (4.20)

Note that assigning the subtraction constants to certain single-variable amplitudes can be
ambiguous. In particular the subtraction constants of F1/2

0 can be shifted freely to F3/2
0

and back.
Likewise, the reconstruction procedure is applied to the M0̄0+(s, t, u) decay amplitude

in Appendix C.2.2 resulting in

M0̄0+(s, t, u) =
1

2
√
2

(
− F2

0 (u) +
√
3(t− s)F1

1 (u)
)
+

√

3

5
F3/2

0 (s)

+

√

3

5

[
s(t− u)−∆

]
F3/2

1 (s) +

√
3

2
√
5

[
3
(
s(t− u)−∆

)2 − κ2s(s)
]
F3/2

2 (s)

−
(

2√
15

F3/2
0 (t) +

1√
6
F1/2

0 (t)

)

−
[
t(s− u)−∆

]
(

2√
15

F3/2
1 (t) +

1√
6
F1/2

1 (t)

)

, (4.21)

The M0̄0+(s, t, u) amplitude exhibits an explicit contribution from the ππ P -wave single-
variable amplitude F1

1 (u) not present in the M−++(s, t, u) decay amplitude. The inclusion
of D-waves is discussed in Appendix C.2.1. In order to rigorously prove the symmetrized
decomposition including the D-waves in the spirit of the reconstruction theorem, one needs
to include a subtraction polynomial of higher order (i.e., a larger number of unknown
parameters) than what we have allowed for above and will allow for below. Otherwise
the number of subtraction constants that have to be fixed by other means, experimental
or theory beyond the dispersive treatment, will become too large. We mainly want to
retain the πK D-wave to test the effect of the K∗

2(1430) resonance, which is kinematically
accessible in the decay phase space. The way we implement this approximately will be
discussed in Section 4.3.5. The inclusion of the πK D-wave is thus heuristic and the
decomposition including the D-wave reads

M−++(s, t, u) = F2
0 (u) +

{
1√
3
F1/2

0 (s)−
√

2

15
F3/2

0 (s)

+
[
s(t− u)−∆

]
(

1√
3
F1/2

1 (s)−
√

2

15
F3/2

1 (s)

)

+
1

2

[
3
(
s(t− u)−∆

)2 − κ2s(s)
]
(

1√
3
F1/2

2 (s)−
√

2

15
F3/2

2 (s)

)

+ (s↔ t)

}

,
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K i
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D+

π− π+
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Figure 4.3: The associated s-channel scattering diagram D+π− → K−π+ via the interme-

diate states Kiπj . The gray vertex stands for the crossed decay amplitude D+π− → Kiπj

denoted by Mij+ and the white vertex the Kiπj → K−π+ scattering amplitude denoted

by T ij,−+. The dashed line gives the contribution to the discontinuity [112]. The other

channels follow analogously.

M0̄0+(s, t, u) =
1

2
√
2

(
− F2

0 (u) +
√
3(t− s)F1

1 (u)
)
+

√

3

5
F3/2

0 (s)

+

√

3

5

[
s(t− u)−∆

]
F3/2

1 (s) +

√
3

2
√
5

[
3
(
s(t− u)−∆

)2 − κ2s(s)
]
F3/2

2 (s)

−
(

2√
15

F3/2
0 (t) +

1√
6
F1/2

0 (t)

)

−
[
t(s− u)−∆

]
(

2√
15

F3/2
1 (t) +

1√
6
F1/2

1 (t)

)

− 1

2

[
3
(
t(s− u)−∆

)2 − κ2t (t)
]
(

2√
15

F3/2
2 (t) +

1√
6
F1/2

2 (t)

)

, (4.22)

with the additional πK D-waves given by (see Eq. (C.16))

F1/2
2 (s) ≡ 1

π

∫ ∞

sth

Im f
1/2
2 (s′)

κ2s(s
′)(s′ − s)

ds′ , F3/2
2 (s) ≡ 1

π

∫ ∞

sth

Im f
3/2
2 (s′)

κ2s(s
′)(s′ − s)

ds′ . (4.23)

4.3.2 Unitarity and Khuri–Treiman equations

In this section we will derive the coupled Khuri–Treiman dispersive integral equations for the
D+ → Kππ+ decays, which we solve for the single-variable amplitudes following Section 2.3.
We begin with the dispersive treatment of the associated scattering processes linked to the
decay by crossing symmetry, D+π̄ → Kπ andD+K̄ → ππ, where Ā denotes the antiparticle
of particle A with mometum of opposite sign. The D-meson mass is artificially set to
MD < MK+2Mπ such that the corresponding decay is kinematically forbidden. The simpler
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analytic structure of these scattering processes can be exploited to construct dispersion
relations for the single-variable amplitudes valid for s, t > (MD+Mπ)

2 and u > (MD+MK)
2,

respectively. The analytic continuation back to the physical D-meson mass as well as into
the kinematic region (MK +Mπ)

2 < (s, t) < (MD −Mπ)
2, 4M2

π < u < (MD −MK)
2 yields

the anticipated decay amplitudes [40].
We demonstrate the framework for the example of the s-channel processes; the t- and u-

channel amplitudes are constructed analogously. Elastic unitarity gives for the discontinuity
(see Fig. 4.3 for M−++)

discM−++(s, zs) = i

∫
d4l

(2π)2

∑

(i,j)

Mij+(s, z
′
s)T ij,−+∗(s, z′′s )δ

(
l2 −M2

i

)
δ
(
(q − l)2 −M2

j

)
,

discM0̄0+(s, zs) = i

∫
d4l

(2π)2

∑

(i,j)

Mij+(s, z
′
s)T ij,0̄0∗(s, z′′s )δ

(
l2 −M2

i

)
δ
(
(q − l)2 −M2

j

)
,

(4.24)

where T ij,−+(x, zx) (K
iπj → K−π+) and T ij,0̄0(x, zx) (K

iπj → K̄0π0) are the intermediate-
to-final-state scattering amplitudes. q = pK+p2 = (

√
s,~0) defines the center-of-mass frame,

in which z′s = cos θ′s, the cosine of the angle between initial and intermediate states, and
z′′s = cos θ′′s , the cosine of the angle between intermediate and final state, are evaluated. The
intermediate-state summation runs over the tuple (i, j) ∈ {(−,+), (0̄, 0)}. The partial-wave
decompositions for the πK (ππ) amplitudes T ij,kl and full decay amplitudes Mijk read

T ij,kl(s, zs) =
∑

I,L

aij,klI,L PL(zs) t
I
L(s) ,

Mijk(s, zs) =
∑

I,L

aijkI,L PL(zs) f
I
L(s) , (4.25)

where the sum runs over isospin and angular momentum components I and L. Furthermore,
we use the Clebsch–Gordan coefficients aI,L, the Legendre polynomials PL(z), and the
corresponding partial waves tIL(s) and f

I
L(s).

1 Exploiting the unitarity relation for elastic
πK and ππ scattering we obtain the following partial-wave unitarity relations,

disc f IL(s) = 2i f IL(s) sin δ
I
L(s)e

−iδIL(s)θ
(
s− sth

)
, (4.26)

where δIL(s) denotes the elastic final-state scattering phase shift. The thresholds in the
different channels are sth = tth = (MK +Mπ)

2 for πK and uth = 4M2
π for ππ scattering,

1Note that in contrast to the definition of the single-variable amplitudes in Eq. (4.22), we have not defined

the partial waves in Eq. (4.25) to be free of kinematical zeros. This is independent of the singularities these

partial waves display at the corresponding pseudo-thresholds or upper limits of the physical decay region,

s = (MD −Mπ)
2 or u = (MD −MK)2, which are well understood, see e.g. Ref. [34] or the discussion in

Ref. [113] in a perturbative context.
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respectively. Since the discontinuity of f IL and the according single-variable amplitude
κLs F I

L coincide on the right-hand cut, we have

disc f IL(s) = κLs (s) discF I
L(s)

⇒ f IL(s) = κLs (s)
(
F I
L(s) + F̂ I

L(s)
)
, (4.27)

where we have introduced the inhomogeneities F̂ I
L(s) that are free of discontinuities on the

right-hand cut by construction. They incorporate the left-hand cut contributions and will
be further discussed in Section 4.3.3. From Eqs. (4.26) and(4.27) we obtain

discF I
L(s) = 2i

(
F I
L(s) + F̂ I

L(s)
)
θ(s− sth) sin δ

I
L(s)e

−iδIL(s) , (4.28)

which has again the form of an inhomogeneous Hilbert-type equation already encountered
in Section 2.3. The homogeneous solution F̂ I

L(s) = 0 is given by the Omnès function
ΩIL(s) [23] times an analytic function P I

L(s) (see Section. 1.4),

F I
L(s) = P I

L(s)Ω
I
L(s) , ΩIL(s) = exp

{
s

π

∫ ∞

sth

ds′
δIL(s

′)

s′(s′ − s)

}

. (4.29)

The inhomogeneous solution is obtained by a product ansatz, see Section 2.3, and gives

F I
L(s) = ΩIL(s)

{

P I
L(s) +

sn

π

∫ ∞

sth

ds′

s′n
sin δIL(s

′)F̂ I
L(s

′)

|ΩIL(s′)|(s′ − s)

}

, (4.30)

where P I
L(s) is now a polynomial of order n−1, and the number of subtractions n is chosen

such that the convergence of the dispersion integral is guaranteed.
As our approach relies on elastic unitarity (see Ref. [114] for a generalization of the

Khuri–Treiman formalism to coupled channels), the formalism breaks down when inelastic
channels become important. We assume that Watson’s theorem [28] is a good approxima-
tion up to the η′K threshold in the πK channel. Inelastic effects in the prominent πK
S-wave systems are found to become sizable above the η′K threshold [94–96]. The main in-
elastic contributions in the isospin 1/2 P -wave come from the πK∗ and ρK channels, which
become noticeable in the energy region where they couple to K∗(1410) and K∗(1690) [96].
In all exotic partial waves, i.e. the isospin 2 ππ system as well as I = 3/2 πK partial waves,
inelastic effects are assumed to be negligible.

4.3.3 Inhomogeneities

With the scattering phase shifts given as fixed input, the only quantities left in the dis-
persion integrals Eqs. (4.30) are the inhomogeneities F̂ I

L, which are determined as the
projections of the crossed-channel amplitudes onto the considered channel. They can be
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re-expressed in terms of the single-variable amplitudes F I
L(x), such that we obtain integral

equations that can be solved for the F I
L(x). With the aid of Eq. (4.27) we find

f IL(x) =
2L+ 1

2aijkI,L

∫

dzxMIx
ijk(x, zx)PL(zx) = κLx (x)

(
F I
L(x) + F̂ I

L(x)
)

⇒ F̂ I
L(x) =

2L+ 1

2aijkI,L κ
L
x (x)

∫ 1

−1

dzxMIx
ijk(x, zx)PL(zx)− F I

L(x) , (4.31)

where MIx
ijk(x, zx) denotes the projection of the full decay amplitude Mijk(x, zx) onto

isospin Ix eigenfunctions in the x-channel. One term of the projection integral over
MIx

ijk(x, zx) is always F I
L(x), such that the right-hand-cut discontinuity is canceled. The

inhomogeneities are then indeed free of discontinuities on the right-hand cut as anticipated.
The resulting inhomogeneities are given in Appendix C.3.

The interpretation of Eq. (4.31) as an angular integration is valid in the scattering
region and needs to be analytically continued into the unphysical and decay regions as was
done in Section 2.3 Performing the angular integration naively in the decay region results
in crossing the unitarity cut. The prescription on how to perform the continuation has
been extensively discussed in Ref. [40], motivated by the continuation of the (perturbative)
triangle graph into the decay region. It ultimately leads to the prescriptionM2

D →M2
D+ iǫ,

which allows one to derive an integration path that avoids the unitarity cut.

4.3.4 Angular integration

In this section we will display the continuation of the angular integrals following theM2
D →

M2
D+iǫ prescription similar to what has been done in Section 2.3. Here we have six angular

integrals corresponding to the three channels projected onto each other

〈znM〉us ≡
1

2

∫ 1

−1

dzs z
n
sM(u), 〈znM〉ts ≡

1

2

∫ 1

−1

dzs z
n
sM(t) ,

〈znM〉st ≡
1

2

∫ 1

−1

dzt z
n
t M(s), 〈znM〉ut ≡

1

2

∫ 1

−1

dzt z
n
t M(u) ,

〈znM〉su ≡ 1

2

∫ 1

−1

dzu z
n
uM(s), 〈znM〉tu ≡ 1

2

∫ 1

−1

dzu z
n
uM(t) , (4.32)

where 〈〉xy denotes the angular zy integral of single-variable amplitudes depending on Man-
delstam x(y, zy). Furthermore, with the kinematic relations of Eqs. (4.3), (4.4), and (4.5)
we can relate three of the above angular average integrals to obtain three independent
angular integrations,

〈znM〉us = 〈znM〉ut, 〈znM〉ts = 〈znM〉st, and〈znM〉tu = (−1)n〈znM〉su . (4.33)
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Starting with the 〈〉us angular integration we have

〈znM〉us ≡
1

2

∫ 1

−1

dzs z
n
sM(u) = (−1)n

s

κs(s)

∫ s+(s)

s−(s)

ds′
(
2s′s− 3s0s+ s2 +∆

κs(s)

)n

M(s′) ,

(4.34)

where we used the substitution 2s′ = 3s0−s− ∆
s
− κs(s)

s
zs. The integration end points s±(s)

are the only non-trivial MD dependend piece in Eq. (4.34) and the continuation following
the M2

D →M2
D + iǫ prescription gives

2s s+(s) =







3s0s− s2 −∆+ |κs(s)|+ iǫ , s ∈ [(MK +Mπ)
2, at/u] ,

3s0s− s2 −∆+ i|κs(s)| , s ∈ [as/t, bs/t] ,

3s0s− s2 −∆− |κs(s)| , s ∈ [bs/t,∞] ,

2s s−(s) =







3s0s− s2 −∆− |κs(s)|+ iǫ , s ∈
[

(MK +Mπ)
2, cs

]

,

3s0s− s2 −∆− |κs(s)| − iǫ , s ∈
[

cs, as/t

]

,

3s0s− s2 −∆− i|κs(s)| , s ∈ [as/t, bs/t] ,

3s0s− s2 −∆+ |κs(s)| , s ∈ [bs/t,∞] ,

(4.35)

with

as/t ≡ (MD −Mπ)
2 , bs/t ≡ (MD +Mπ)

2 , and cs ≡
1

2

(
M2

D +M2
K − 2M2

π

)
. (4.36)

The trajectories of the integration end points s±(s) are depicted in Fig. 4.4. Point A
denotes the starting point of the trajectories s+(sth) = s−(sth) = cu + iǫ above the branch
cut. The integration point s+(s) moves up the branch cut until it reaches its maximal
real part at B

(
s+(smax) = au + iǫ with smax = MDMK +M2

π

)
. From point B the upper

integration limit moves to point D
(
s+(as)

)
. On the other hand, the lower integration

limit s−(s) starts from point A and moves down the cut until it reaches the threshold
at point C

(
s−(cs) = sth

)
. Then the lower integration limit moves below the cut and

reaches point D
(
s−(as) = s∗+(as)

)
. From point D onwards to point E, s±(s) are related by

complex conjugation and both trajectories obtain a sizable imaginary part. After point E,
(
s±(bs) = −umax ≡ −(M2

D −M2
K)Mπ/(MD −MK)

)
both trajectories are purely real with

s+(s) moving to negative infinity.

Similarly we have for the 〈〉tu angular integration

〈znM〉tu ≡ 1

2

∫ 1

−1

dzu z
n
uM(t) =

1

κu(u)

∫ u+(u)

u−(u)

(
2u′ − 3s0 + u

κu(u)

)n

M(u′)du′ , (4.37)
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Figure 4.4: Plot of the s±(s) trajectories in the complex plane according to Eq. (4.35).

From point A to D we have exaggerated the infinitesimal imaginary parts to visualize the

trajectories better. The values of the characteristic points A to E are explained in the text.

The thick brown line symbolizes the right-hand cut.

with the integration limits

2u+(u) =







3s0 − u+ |κu(u)|+ iǫ , u ∈ [4M2
π , au] ,

3s0 − u+ i|κu(u)| , u ∈ [au, bu] ,

3s0 − u− |κu(u)| , u ∈ [bu,∞] ,

2u−(u) =







3s0 − u− |κu(u)|+ iǫ , u ∈
[

4M2
π , cu

]

,

3s0 − u− |κu(u)| − iǫ , u ∈
[

cu, au

]

,

3s0 − u− i|κu(u)| , s ∈ [au, bu] ,

3s0 − u+ |κu(u)| , u ∈ [bu,∞] ,

(4.38)
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where

au ≡ (MD −MK)
2 , bu ≡ (MD +MK)

2 , and cu ≡
(M2

D −M2
K)Mπ

MK +Mπ
. (4.39)

The trajectories of the integration end points u±(u) are shown in Fig. 4.5. Akin to above,
the trajectories start at A

(
u±(4M

2
π) = cs + iǫ

)
. The upper integration limit moves first

to B
(
u+(umax) = as/t + iǫ with umax = (M2

D −M2
K)Mπ/(MD −MK)

)
and turns around

to move to point D (u+(au) = smax + iǫ). The lower integration limit moves down to C
(
s−(cs) = 4M2

π

)
and below the cut to D

(
u−(au) = smax − iǫ

)
. From D onwards to E,

(
u±(bu) =M2

π −MDMK

)
the integration limits are related by complex conjugation. After

point E, u+(u) moves to minus infinity.
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For the 〈〉st angular integration we obtain

〈znM〉st ≡
1

2

∫ 1

−1

dzt z
n
t M(s) =

t

κt(t)

∫ t+(t)

t−(t)

dt′
(
2t′t− 3s0t+ t2 −∆

κt(t)

)n

M(t′) , (4.40)

with the integration limits given by

2t t+(t) =







3s0t− t2 +∆+ |κt(t)|+ iǫ , u ∈ [(MK +Mπ)
2, as/t] ,

3s0t− t2 +∆+ i|κt(t)| , u ∈ [as/t, bt/u] ,

3s0t− t2 +∆− |κt(t)| , u ∈ [bt/u,∞] ,
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2t t−(u) =







3s0t− t2 +∆− |κt(t)|+ iǫ , t ∈
[

(MK +Mπ)
2, ct

]

,

3s0t− t2 +∆− |κt(t)| − iǫ , t ∈
[

ct, as/t

]

,

3s0t− t2 +∆− i|κt(t)| , t ∈ [as/t, bs/t] ,

3s0t− t2 +∆+ |κt(t)| , t ∈ [bs/t,∞] ,

(4.41)

and

ct ≡
M2

DMK +M3
π

MK +Mπ

−MKMπ . (4.42)

The contours of the integration end points t±(t) are depicted in Fig. 4.6. The trajectories
start at A

(
t±(tth) = ct + iǫ

)
. The upper integration limit moves to B

(
t+(tmax) = as/t + iǫ

with tmax = (M2
DMπ − M3

π + MD(M
2
K − M2

π))/(MD − Mπ)
)
and turns around to move

down to point D
(
t+(at) = tmax + iǫ

)
. The lower integration limit moves down to C

(
t−(ct) = tth

)
and below the cut to D

(
t−(au) = tmax − iǫ

)
. From D onwards to E,

(
t±(bt) =

(
MD(M

2
K −M2

π) +M3
π −M2

DMπ

)
/(MD +Mπ)

)
the integration limits are related

by complex conjugation. After point E, t+(t) moves to minus infinity.

4.3.5 Number of subtraction constants

The minimal number of subtractions needed is dictated by the asymptotic behavior of the
integrands in Eqs. (4.30). The decay amplitude and thus the inhomogeneities are assumed
to grow at most linearly asymptotically, loosely based on the Froissart bound [57]. Assuming
the phase shifts to approach constant values δIL(∞) for large energies, the Omnès functions
ΩIL(x) behave like ∝ x−δ

I
L(∞)/π asymptotically. The phase shift inputs are taken from Roy

equation analyses of ππ scattering (Refs. [29–32]) and πK scattering (Ref. [115]) . With
the following assumption for the phase shifts δIL at high energies:

lim
x→∞

δ
1/2
0 (x) = 2π , lim

x→∞
δ
1/2
1 (x) = π , lim

x→∞
δ
1/2
2 (x) = π ,

lim
x→∞

δ
3/2
0 (x) = 0 , lim

x→∞
δ
3/2
1 (x) = 0 , lim

x→∞
δ
3/2
2 (x) = 0 ,

lim
x→∞

δ20(x) = 0 , lim
x→∞

δ11(x) = π , (4.43)

we need two subtractions for F2
0 , F1

1 , and F3/2
0 , four subtractions for F1/2

0 , and one sub-

traction for F1/2
1 to obtain convergent dispersion integrals. Note that the difference in the

number of subtractions for F1
1 and F1/2

1 , despite identical phase asymptotics, is due to the
different kinematic prefactors for P -waves with equal and unequal masses, see Eq. (4.22).

F3/2
1 needs no subtraction, but as the πK isospin 3/2 P -wave phase shift is very small and

assumed to vanish at high energies, we neglect it altogether. Similarly, also the I = 3/2
D-wave is put to zero.
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The inclusion of the D-wave F1/2
2 is delicate. Formally it requires no subtractions,

but the kinematical pre-function corresponding to the L = 2 Legendre polynomial, mul-
tiplied with the required momentum factors to make it free of kinematical singularities,
see Eq. (4.22), violates the assumed high-energy behavior of the decay amplitude and thus
of all inhomogeneities. Therefore we will follow a “hybrid approach” for the D-wave: we
will only consider the projections of S- and P -waves of other channels in order to gener-
ate the D-wave inhomogeneity, but will exclude D-wave projections, thus eschewing the
need for further subtractions. This is loosely motivated by analogous observations in low-
energy processes calculated in chiral perturbation theory, where higher partial waves are
dominated by crossed-channel loop diagrams that correspond to low partial waves in those
crossed channels.

In total we have eleven subtraction constants. However, the resulting representations of
the decay amplitudes Eq. (4.22) are not unique due to the linear dependence of the Mandel-
stam variables s, t, and u: one can construct polynomial contributions to the single-variable
amplitudes that leave the complete decay amplitudes M−++(s, t, u) and M0̄0+(s, t, u) in-
variant; this is obvious in a standard dispersive representation, however slightly less trivial
to demonstrate in the Omnès representations discussed above [116]. The polynomial coef-
ficients can be tuned such that a maximal number of subtraction constants is eliminated to
obtain a linearly independent set. These polynomials span the so-called invariance group of
the decay amplitudes. Details are discussed in Appendix C.4. We choose to eliminate the
subtraction constants in the non-resonant I = 3/2 πK and I = 2 ππ S-waves, the rationale
being solely to retain them in presumably large, resonant partial waves. This leaves seven
linearly independent complex subtraction constants,

F2
0 (u) = Ω2

0(u)
u2

π

∫ ∞

uth

du′

u′2
F̂2

0 (u
′) sin δ20(u

′)
∣
∣Ω2

0(u
′)
∣
∣(u′ − u)

,

F1
1 (u) = Ω1

1(u)

{

c0 + c1u+
u2

π

∫ ∞

uth

du′

u′2
F̂1

1 (u
′) sin δ11(u

′)
∣
∣Ω1

1(u
′)
∣
∣(u′ − u)

}

,

F1/2
0 (s) = Ω

1/2
0 (s)

{

c2 + c3s+ c4s
2 + c5s

3 +
s4

π

∫ ∞

sth

ds′

s′4
F̂1/2

0 (s′) sin δ
1/2
0 (s′)

∣
∣Ω

1/2
0 (s′)

∣
∣(s′ − s)

}

,

F3/2
0 (s) = Ω

3/2
0 (s)

{
s2

π

∫ ∞

sth

ds′

s′2
F̂3/2

0 (s′) sin δ
3/2
0 (s′)

∣
∣Ω

3/2
0 (s′)

∣
∣(s′ − s)

}

,

F1/2
1 (s) = Ω

1/2
1 (s)

{

c6 +
s

π

∫ ∞

sth

ds′

s′
F̂1/2

1 (s′) sin δ
1/2
1 (s′)

∣
∣Ω

1/2
1 (s′)

∣
∣(s′ − s)

}

,

F1/2
2 (s) = Ω

1/2
2 (s)

1

π

∫ ∞

sth

ds′
F̂1/2

2 (s′) sin δ
1/2
2 (s′)

∣
∣Ω

1/2
2 (s′)

∣
∣(s′ − s)

. (4.44)
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The subtraction constants cannot be determined in the framework of dispersion theory and
have to be obtained either by matching to a more fundamental dynamical theory, or, as in
this work, by a fit to experimental data. The solution space of the coupled system Eq. (4.44)
has thus dimension seven, corresponding to the seven complex subtraction constants. We
employ again the concept of basis functions explained in Section 2.4. In particular, we
choose for the ith basis function Mi(s, t, u) the set of subtraction constants cj = δij with
i, j = 0 . . . 6. The full solution M(s, t, u) is then obtained by

M(s, t, u) =
∑

i

ciMi(s, t, u) . (4.45)

The basis functions are entirely determined by the phase shift input as well as the masses
of all particles involved (taken from Ref. [82]).

4.4 Solution strategy

In this section we discuss different solution strategies of the Khuri–Treiman-type equations
Eq. (4.44), their issues, and present our new solution strategy.

The standard solution strategy for the linear coupled double integral equations (4.44)
has been an iteration procedure as performed for example in Refs. [34,58,91] and described
in Section 2.4 or with the introduction of integral kernels in Ref. [62]. Unfortunately, the
convergence of this iterative procedure is not always guaranteed, depending on the mass of
the decaying particle and the number of subtractions as seen in Section 2.5.2. For larger
decay masses and more subtractions applied, the corrections in each iteration step can be
too large to reach the fixed-point solution. We find this to be the case in the D-meson
decays considered here.

This necessitates a different solution strategy. Since the set of integral equations is
linear in the single-variable amplitudes it is convenient to set it up in the form of a matrix
equation instead. Provided that the matrix is invertible a unique solution exists. One such
inversion strategy is known as the Pasquier inversion [43, 44] (see Ref. [117] for a recent
comparison of Pasquier inversion and iterative solution), where a method to reduce the
double integral equation to a single integral equation is introduced. The procedure involves
the deformation of the integral contours of both integrals, allowing one to interchange the
order of integrations such that a unique kernel function is obtained. The coupled single
integral equations thus obtained do allow for a direct solution via matrix inversion.

We will follow a slightly modified strategy, constructing a matrix equation without per-
forming a Pasquier inversion. In this context it is beneficial to solve for the inhomogeneities
instead of the single-variable amplitudes, the advantage being that the inhomogeneities need
to be evaluated only on the right-hand cuts and not also on the complex angular integration
paths (Figs. 4.4, 4.5 and 4.6). The single-variable amplitudes themselves can be obtained in
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the whole complex plane in a straightforward manner by performing the dispersion integral
over the determined inhomogeneities once. We have tested this new solution strategy on
the V → 3π system displayed in part 2 and found agreement with the standard iterative
solution procedure, that is applicable in for these decays.

To illustrate the solution strategy we limit ourselves to one hypothetical inhomogeneity
equation without any loss of generality,

F̂L(s) =
1

2

∫ 1

−1

dzs z
m
s F

(
t(s, zs)

)
, (4.46)

and focus on the functions F̃(s) ≡ F̂L(s)κ
2L+1
s (s) that are free of singularities at the

pseudo-threshold or upper limit of the kinematically accessible decay region (which is a
zero in κs(s)). Inserting Eq. (4.30) into Eq. (4.46) yields

F̃(s) =
κ2L+1
s (s)

2

∫ 1

−1

dzs z
m
s Ω

(
t(s, zs)

)
{

P
(
t(s, zs)

)

+
t(s, zs)

n

π

∫ ∞

sth

dx

xn
F̃(x) sin δ(x)

|Ω(x)|κ2L+1
s (x)

(
x− t(s, zs)

)

}

≡ A(s) +
1

π

∫ ∞

sth

F̃(x)K(s, x)dx . (4.47)

The function A(s) contains the dependence on the subtraction polynomial, while the inte-
gration kernel K(s, x) is independent of any subtraction constants,

A(s) =
κ2L+1
s (s)

2

∫ 1

−1

dzs z
m
s P

(
t(s, zs)

)
Ω
(
t(s, zs)

)
,

K(s, x) = κ2L+1
s (s)

sin δ(x)

xn|Ω(x)|κ2L+1
s (x)

∫ 1

−1

dzs
t(s, zs)

n

2

zms Ω
(
t(s, zs)

)

x− t(s, zs)
. (4.48)

Eq. (4.47) is thus a linear integral equation for F̃(s), to be solved for a given set of sub-
traction constants. Discretizing Eq. (4.47) yields

A(si) =
∑

j

(

δij −
∫ sj+1

sj

K(si, x) dx

)

F̃(sj) , (4.49)

where F̃(x) is factorized out of the integral since it is approximately constant over the
considered integration intervals [sj, sj+1]. Equation (4.49) is solved by matrix inversion.
The explicit implementation is unfolded in the next section.
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Figure 4.7: The distribution of the integration points s[i] (black curve) and u[i] (red curve).

The characteristic points (as, bs, smax, and au, bu, umax) are visualized by the dotted lines.

4.5 Numerical implementation

After the short introduction into the new solution strategy we will display the numerical
treatment of the D → Kππ matrix equation, Eq. (4.49), explicitly. We first discuss the
choice of integral points necessary to evaluate the discretized integrals of Eq. (4.49). Since s-
and t-channel kinematics are identical and we have exploited this symmetry in the derivation
of the final dispersive integrals, we have to choose the same s/t integration points. Thus
we have one integration point set for the u-channel

(
ui, i ∈ {0, . . . , Nsupp}

)
and one for the

s/t-channel
(
si, i ∈ {0, . . . , Nsupp}

)
. Strictly the upper limit of the dispersion integral is

infinity. However, the integral saturates much earlier as higher energy contributions become
quickly negligible. We choose an upper integration cutoff of 12GeV2. To test the impact
of the cutoff, we vary the cutoff between 12GeV2 and 20GeV2. It turns out that these
changes are negligible. Furthermore, the dispersive integrands inherit characteristic points,
see Section 4.3.4, such as thresholds

(
4M2

π , (MK +Mπ)
2
)
, scattering thresholds

(
bs/t and

bu
)
, pseudothresholds

(
as/t and au

)
, and turning points of the angular average integration

limits
(
cs, ct, and cu

)
, where we would like to have high numerical precision. The integration

points are therefore distributed unevenly, see Fig 4.7, to have a higher accumulation of



4.5 Numerical implementation 79

points at these characteristic points. With the numerical method discussed below, we find
that Nsupp = 1100 is sufficient. For completeness we state the full matrix equation for the
D+ → K̄ππ+ decays. Rewriting the inhomogeneities given in Appendix C.3 into the matrix
equation, analogously to Eq. (4.49), gives













~A2
0

~A1
1

~A
1/2
0

~A
3/2
0

~A
1/2
1

~A
1/2
2













=













1I 0 − 2√
3
N0
su

2
√
2√

15
R0
su

2√
3
P 0
su 0

0 1I −2N1
su −2

√
10R1

su 2P 1
su 0

− 5
2
√
3
M0

us −1
2
G0
us 1I− 2

3
N0
ts

√
10
3

2
3
R0
su −2

3
P 0
ts 0

√
5

2
√
6
M0

us −
√
5

2
√
2
G0
us

√
10
6
N0
ts 1I + 2

3
R0
su

√
10
6
P 0
ts 0

−5
√
3

2
M1

us −3
2
G1
us −2N1

ts

√
10R1

su 1I− 2P 1
ts 0√

15
2
√
2
M1

us −3
√
5

2
√
2
G1
us

√
10
2
N1
ts 2R1

su

√
10
2
P 1
ts 1I



























~̃F2
0

~̃F1
1

~̃F1/2
0

~̃F3/2
0

~̃F1/2
1

~̃F1/2
2















,

(4.50)

where the vector components
(
~AIL
)

i
and

( ~̃F I
L

)

i
are given by AIL(si) and F̃ I

L(si) respectively
defined in Appendix C.3. The submatrices of size Nsupp ×Nsupp are given by

(
Mm

us

)

ij
=

∫ uj+1

uj

dx

π

κ2m+1
s (si) sin δ

2
0(x)

x2|Ω2
0(x)|κu(x)

〈

u2
Pm(z)Ω

2
0(u)

x− u

〉

us

(si) ,

(
Gm
us

)

ij
=

∫ uj+1

uj

dx

π

κ2m+1
s (si) sin δ

1
1(x)

x2|Ω1
1(x)|κ2m+1

u (x)

〈

u2
Pm(z)

(
Asizs +Dsi

)
Ω1

1(u)

x− u

〉

us

(si) ,

(
Nm
su

)

ij
=

∫ sj+1

sj

dx

π

κ2m+1
u (ui) sin δ

1/2
0 (x)

x4|Ω1/2
0 (x)|κ2m+1

s (x)

〈

s4
Pm(z)Ω

1/2
0 (s)

x− s

〉

su

(ui) ,

(
Nm
ts

)

ij
=

∫ sj+1

sj

dx

π

κ2m+1
s (si) sin δ

1/2
0 (x)

x4|Ω1/2
0 (x)|κ2m+1

s (x)

〈

t4
Pm(z)Ω

1/2
0 (t)

x− t

〉

ts

(si) ,

(
Pm
su

)

ij
=

∫ sj+1

sj

dx

π

κ2m+1
u (ui) sin δ

1/2
1 (x)

x|Ω1/2
1 (x)|κ2m+1

s (x)

〈

s
Pm(z)

(
Auiz

2
u − Buizu − Cui

)
Ω

1/2
1 (s)

x− s

〉

su

(ui) ,

(
Pm
ts

)

ij
=

∫ sj+1

sj

dx

π

κ2m+1
s (si) sin δ

1/2
1 (x)

x|Ω1/2
1 (x)|κ2m+1

s (x)

〈

t
Pm(z)

(
A2
si
z2s +Bsizs + Csi
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Ω

1/2
1 (t)

x− t

〉
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(si) ,

(
Rm
su

)

ij
=

∫ sj+1

sj

dx

π

κ2m+1
u (ui) sin δ

3/2
0 (x)

x2|Ω3/2
0 (x)|κ2m+1

s (x)

〈

s2
Pm(z)Ω

3/2
0 (s)

x− s

〉

su

(ui) ,

(
Rm
ts

)

ij
=

∫ sj+1

sj

dx

π

κ2m+1
s (si) sin δ

3/2
0 (x)

x2|Ω3/2
0 (x)|κ2m+1

s (x)

〈

t2
Pm(z)Ω

3/2
0 (t)

x− t

〉

ts

(si) , (4.51)
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with the Legendre polynomials Pm(z) and As/u, Bs/u, Cs/u, andDs defined in Appendix C.3.

The subtraction-constant-dependent
(
~AIL
)

i
are given by

(
~A2
0

)

i
=

2√
3

〈
(c2 + c3s+ c4s

2 + c5s
3)Ω

1/2
0 + c6(Auiz

2 +Buiz
3 + Cui)Ω

1/2
1

〉

su
(ui) ,

(
~A1
1

)

i
=2
〈
(c2 + c3s+ c4s

2 + c5s
3)zΩ

1/2
0 + c6(Auiz

3 +Buiz
2 + Cuiz)Ω

1/2
1

〉

su
(ui) ,

(
~A
1/2
0

)

i
=
2

3

〈
(c2 + c3t + c4t

2 + c5t
3)Ω

1/2
0 + c6(A

2
si
z2 + Bsiz + Csi)Ω

1/2
1

〉

ts
(si)

+
1

2

〈
(Asiz +Dsi)(c0 + c1u)Ω

1
1

〉

us
(si) ,

(
~A
3/2
0

)

i
=−

√
10

6

〈
(c2 + c3t+ c4t

2 + c5t
3)Ω

1/2
0 + c6(A

2
si
z2 +Bsiz + Csi)Ω

1/2
1

〉
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(si)

−
√
5

2
√
2

〈
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1
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(
~A
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)
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+
3

2

〈
(Asiz

2 +Dsiz)(c0 + c1u)Ω
1
1

〉
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2

)

i
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(

z2 − κ2s(si)
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(si)
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〈
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(
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(A2
si
z2 +Bsiz + Csi)Ω

1/2
1

〉

ts
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+
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2
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(

z2 − κ2s(si)

3

)

(Asiz +Dsi)Ω
1
1

〉

us
(si) . (4.52)

The numerical solution scheme we will follow is depicted in Fig. 4.8. For each of the seven
subtraction constant configurations the AIL of Eq. (4.52) are straightforwardly evaluated.
The angular integrals are evaluated following the prescription given in Section 4.3.4.

Calculating the matrix elements of Eq. (4.51) is more involved. The difficulty resides
within the correct treatment of the Cauchy and pseudo singularities. The Cauchy singu-
larities become relevant in the decay region as here the integration paths of the angular
average overlap with the dispersive integration. Furthermore, we have to obtain an optimal
balance between computation time and numerical accuracy.

First we need to specify how we calculate the discretized integrals. Routines like the
standard Gauß-Legendre method which are commonly used for Cauchy kernels, see e.g.
Refs. [94,118–121], cannot be applied due to the more evolved singularity structure. What
we will employ is a semi-analytic ansatz.

We combine all functions in the integrands that prevent an analytic calculation and
linearly interpolate these in the intervals [si, si+1]. Since the combined functions are slowly
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~A, ci = δi0

inhomogeneities basis functions

m
atrix−

vector
m

u
ltip

lication

M0(s, t, u)

M1(s, t, u)
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Figure 4.8: Sketch of the matrix equation solution strategy. The starting point is the cal-

culation of the seven subtraction-constant-dependent ~A. We set up the matrix given in

Eq. (4.50), calculate the inverse and multiply the inverse matrix with the calculated ~A vec-

tors and obtain the inhomogeneities. The basis functions are then obtained by calculating

the dispersion integrals Eq. (4.44) in the corresponding subtraction constant configuration.

varying over the considered interval lengths this is legitimate. The emerging integrals are
then calculated analytically. This procedure drastically improves the accuracy compared
to simple integration routines. The treatment of the singular structures is then performed
along the lines of hypersingular integrals.

To illustrate the determination of the matrix elements we will restrict to the s-channel
case of Eq. (4.47)

κ2L+1
s (s)

∫ ∞

sth

F̃(x) sin δ(x)

xn|Ω(x)|κ2L+1
s (x)

〈

tn
zmΩ(t)

x− t

〉

ts

dx

= s κ2L−ms (s)

∫ ∞

sth

F̃(x) sin δ(x)

xn|Ω(x)|κ2L+1
s (x)

∫ t+(s)

t−(s)

tn
ζm(s, t)Ω(t)

x− t
dt dx , (4.53)

with ζ(s, t) =
(
2ts− 3s0s+ s2 −∆

)
and 3s0 =M2

D +M2
K + 2M2

π .
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First we study the case s > as = (MD −Mπ)
2. The angular integral poses no problem

as the two integral paths do not cross each other, see Fig. 4.6. We may simply use

s κ2L−ms (s)

∫ ∞

sth

F̃(x) sin δ(x)

xn|Ω(x)|κ2L+1
s (x)

W (s, x) dx , W (s, x) ≡
∫ t+(s)

t−(s)

tn
ζm(s, t)Ω(t)

x− t
dt ,

(4.54)
where W (s, x) can be determined numerically in a straightforward way. The discretized
integral reads

∫ ∞

sth

F̃(x) sin δ(x)

xn|Ω(x)|κ2L+1
s (x)

W (s, x) dx =
∑

j

F̃(sj)

∫ sj+1

sj

F̃(x) sin δ(x)

xn|Ω(x)|κ2L+1
s (x)

W (s, x) dx

=







∑

j F̃(sj)
∫ sj+1

sj

cj0(s,bs)+c
j
1(s,bs)x(

λ(x,M2
K ,M

2
π)(as−x)

)L+1/2 dx , sj ≤ as+bs
2

∑

j F̃(sj)
∫ sj+1

sj

cj0(s,as)+c
j
1(s,as)x(

λ(x,M2
K ,M

2
π)(bs−x)

)L+1/2 dx , sj >
as+bs

2

, (4.55)

where cj0(s, v) + cj1(s, v)x is the linear interpolation of the function
W (s, x) sin δ(x)/(xn|Ω(x)|(v − x)L+1/2) in the interval [sj , sj+1] for fixed s. Note
that the resulting integrals can be performed analytically with the singularities moved into
the upper complex plane to obtain the correct (physical) branch.

For the case s < (MD −Mπ)
2 the Cauchy kernel needs to be handled carefully as the

integration paths meet. We rewrite

∫ ∞

sth

F̃(x)
sin δ(x)

xn|Ω(x)|κ2L+1
s (x)

∫ t+(t)

t−(t)

tn
ζm(s, t)Ω(t)

x− t
dt dx

=

∫ ∞

sth

F̃(x) sin δ(x)

xn|Ω(x)|κ2L+1
s (x)

∫ t+(t)

t−(t)

ζm(s, t)
tnΩ(t)− xnΩ(x)

x− t
dt dx

+

∫ ∞

sth

∫ t+(t)

t−(t)

F̃(x)eiδ(x) sin δ(x)

κs(x)2L+1(x− t)
dt dx . (4.56)

The first summand is treated analogously to Eq. (4.55). For the second summand we obtain

∫ ∞

sth

∫ t+(t)

t−(t)

F̃(x)eiδ(x) sin δ(x)

κ2L+1
s (x)(x− t)

dt dx
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



∑

j F̃(sj)
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sj

∫ t+(t)

t−(t)
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j
1(bs)x(

λ(x,M2
K ,M

2
π)(as−x)

)L+1/2 dt dx , sj ≤ as+bs
2

,

∑

j F̃(sj)
∫ sj+1

sj

∫ t+(t)

t−(t)

aj0(as)+a
j
1(as)x(

λ(x,M2
K ,M

2
π)(bs−x)

)L+1/2 dt dx , sj >
as+bs

2
,

(4.57)
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where now aj0(v) + aj1(v)x is the linear interpolation of eiδ(x) sin δ(x)/(v − x)L+1/2 in the
interval [sj , sj+1]. Once the matrix is set up the equation is solved by inverting the matrix

and multiplying consecutively with the seven ~A to obtain the inhomogeneities for each
subtraction configuration.

To finally obtain the single-variable amplitudes F I
L of each basis function, we have to

perform the dispersion integral. We can either perform the dispersion integral similarly
to the iteration scheme, explicitly outlined in Section 2.4, or follow the line employed for
the matrix method, namely discretizing the integral and calculating the integrals semi-
analytically. The second is straightforwardly read off from the above considerations

F(s) =

∫ ∞

sth

F̃(x) sin δ(x)

xn|Ω(x)|κ2L+1
s (x)(x− s)

dx =
∑

j

F̃(sj)

∫ sj+1

sj

F̃(x) sin δ(x)

xn|Ω(x)|κ2L+1
s (x)(x− s)

dx

=







∑

j F̃(sj)
∫ sj+1

sj

dj0(s,bs)+d
j
1(s,bs)x(

λ(x,M2
K ,M

2
π)(as−x)

)L+1/2

(x−s)
dx , sj ≤ as+bs

2
,

∑

j F̃(sj)
∫ sj+1

sj

dj0(s,as)+d
j
1(s,as)x(

λ(x,M2
K ,M

2
π)(bs−x)

)L+1/2

(x−s)
dx , sj >

as+bs
2

,
(4.58)

with dj0(s, bs) + dj1(s, bs)x the linear interpolation of sin δ(x)/(xn|Ω(x)|(v − x)L+1/2) in the
interval [sj , sj+1] for a fixed s.

4.6 Numerical results

Solving the coupled integral Eq. (4.44) with the algorithm presented in the previous section,
we obtain the single-variable basis functions (F I

L)i depicted in Figs. 4.9 and 4.10. The vector

resonances K∗(892) (in F1/2
1 ) and ρ(770) (in F1

1 ) as well as the πK D-wave resonance

K∗
2 (1430) (in F1/2

2 ) are clearly visible. The F1/2
0 basis functions include the effects of the

scalar states K∗
0 (800) and K

∗
0(1430), while the exotic F2

0 and F3/2
0 basis functions are free

of resonances.
The error bands in Figs. 4.9 and 4.10 are determined by a conservative error estimate

of the phase shifts: For the S-wave πK and ππ phases the error is assumed to rise linearly
from zero at the threshold to ±20◦ at 2GeV. Beyond 2GeV the error is fixed to ±20◦.
The πK isospin 1/2 P - and D-wave phase errors and ππ P -wave phase errors are similarly
obtained, with the only difference that the linear rise of the error sets in after the K∗(892),
K∗

2 (1430), and ρ(770) resonances, respectively. In the ππ P -wave case we additionally vary
between the phase-shift data from Refs. [29–32].
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Figure 4.9: Real (red) and imaginary (blue) parts of the single-variable functions (F I
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Chapter 5

Experimental comparison

In this chapter we will display the comparison of our theoretical decay amplitude to the
experimental D+ → K−π+π+ Dalitz plot data from the CLEO [97] and FOCUS [98] col-
laborations and the D+ → K̄0π−π+ Dalitz plot measured by BES III [100]. With the
seven basis functions calculated, we will determine the subtraction constants with individ-
ual fits to the available three data sets and try to study the significance of crossed-channel
rescattering effects in these decays as well as compare to other approaches. We conclude
with combined fits to all data sets in order to probe the simultaneous treatment of the two
isospin-related decay channels.

5.1 D+ → K−π+π+ Dalitz plots

We begin with the comparison to the D+ → K−π+π+ Dalitz plot data from the CLEO
and FOCUS collaboration. As the decay is symmetric under the interchange of the two
final-state pions, we can restrict the comparison to the region s < t and mirror the s > t
half of the Dalitz plot into the s < t region.

The experimental events are collected in equidistant bins of size 0.044GeV2 ×
0.044GeV2. Bins which overlap with the phase space boundary are discarded, resulting
in 493 bins over the considered fit region (s < t < (MK +Mη′)

2). The following event
distribution function was used for the fit analogously to the experimental analyses

P(si, ti) =

∫ ti+δ

ti−δ

∫ si+δ

si−δ

[

fsigNS|M−++(s, t, u)|2ǫ(s, t) + (1− fsig)NBB(s, t)
]

ds dt , (5.1)

with (si, ti) being the center of the corresponding bin and 2δ the bin width, ǫ(s, t) the
efficiency parametrization, B(s, t) the background parametrization, Nsig and NB normal-
ization constants such that the background and signal term are normalized to unity, and
the signal fraction fsig.
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We minimize the following χ2,

χ2 =

492∑

i=0

[
NP(si, ti)− (#events/bin)i

]2

(#events/bin)i
, (5.2)

where N is the number of events, the sum runs over the number of bins and the error
on the binned data is assumed to be purely statistical. In addition to the full dispersive
representation Eq. (4.44), we also fit a simplified decay amplitude to data, which is given
by a sum of Omnès functions multiplied by polynomials:

M−++(s, t, u) = c′0Ω
2
0(u)−

√

2

15
c′1Ω

3/2
0 (s) +

1√
3

(
c′2 + c′3s+ c′4s

2 + c′5s
3
)
Ω

1/2
0 (s)

+
c′6√
3

[
s(t− u)−∆

]
Ω

1/2
1 (s) +

c′7
2
√
3

[

3
(
s(t− u)−∆

)2 − κ2s(s)
]

Ω
1/2
2 (s)

+ (t↔ s) , (5.3)

where the c′i are again complex fit constants. Equation (5.3) emulates a dispersively im-
proved isobar model that neglects any crossed-channel rescattering effects. The number
of polynomial fit constants is chosen to resemble the number of degrees of freedom in the
full dispersive result Eq. (4.44) as far as possible; with certain caveats that preclude an
immediate quantification of three-particle rescattering effects in the same straightforward
way as performed for φ → 3π decays in Ref. [34]. In Eq. (4.44), two subtraction constants
c0 and c1 are contained in the ππ P -wave, which only contributes indirectly via the interme-
diate state K̄0π0π+ to the decay and thus does not show up in the pure Omnès amplitude
Eq. (5.3). In addition, every Omnès function in Eq. (5.3) needs at least a normalization
constant to adjust the strength of individual amplitudes, while some single-variable am-
plitudes do not have any subtraction constants. Finally, once the D-wave is included we
have one additional complex fit parameter c′7 in the pure Omnès fits. For that reason we
consider both Omnès and the full dispersive fits without (Omnès 1, full 1) and with D-wave
(Omnès 2, full 2).

We have the freedom to fix one subtraction constant, as both the overall normalization
and the overall phase are arbitrary and factorized out; we choose c2 = c′2 = 1. This leaves
13 (15) real fit constants for the full / Omnès fits.

Following experimental custom, we will employ so-called fit fractions to characterize the
relative importance of various single-variable functions. These are defined in the following
way

FFIJ =

∫
|PJ(x(s, t))F I

J(x(s, t))|2 ds dt∫
|M−++(s, t, u)|2 ds dt

, (5.4)

where the PJ denote the angular prefactors of the corresponding single-variable amplitudes
in the total amplitude. The integration runs over the fitted Dalitz plot region. In general
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these fit fractions are not unique due to the freedom of adding an element of the invariance
group Eq. (C.41); the projections onto partial-wave amplitudes then will lead to different
fit fractions.

5.1.1 CLEO data

The Dalitz plot measured by the CLEO collaboration [97] contains 140793 events. The
efficiency and background parametrizations are given explicitly. We have refitted the
parametrizations to the Monte Carlo and background samples and found agreement, ex-
ception for the threshold factors.1 Our fit result to the CLEO Dalitz plot are summarized
in Table 5.1, together with the fit fractions in Table 5.2. In the full dispersive fits (full
fits 1/2), the resulting values for the subtraction constants in Table 5.1 have similar order
of magnitude with the exception c6, which is rather small. This can be understood by
the large F1/2

1 single-variable amplitude in this particular basis function (see Fig. 4.10).
Furthermore the phases of the F1

1 subtraction constants (c0, c1) nearly agree modulo π.

The same holds for the F1/2
0 subtraction constants (c2 to c5) especially for the full fit 2.

This suggests that with overall phases factorized, the subtraction constants for the F1
1 and

likewise the F1/2
0 amplitude are almost real. The differences of the single-variable amplitude

phases to the elastic phase shifts depicted in Fig. 5.3 are thus predominantly due to the
dispersion integrals, i.e. the crossed-channel rescattering effects.

Including the D-wave improves the χ2/d.o.f. slightly from 1.18 ± 0.03 to 1.10 ± 0.02.
Note that in the full dispersive representation, no additional fit constants are introduced
when the D-wave is added. The inclusion of the D-wave does not change the phases of most
subtraction constants beyond their uncertainties, with the exception of c6; the magnitudes,
in contrast, change significantly for almost all subtractions. Considering the fit fractions in
Table 5.2, we observe that the inclusion of the D-wave in the full fit 2 reduces the highly
destructive interference between the two S-wave amplitudes in the πK channel. We wish
to point out that also in Ref. [98], a large cancellation between the isospin 1/2 and isospin
3/2 S-wave components of −164% is seen, with individual fit fractions of (207± 24)% and
(40± 9)%, respectively, which show a comparable behavior to our full fit 1. Although the
fit fraction of the D-wave itself is very small, it thus has a rather large impact on the S-
and P -waves. A similar phenomenon is seen in Ref. [97] where the fit quality deteriorates
considerably when removing the small D-wave. Although we do not fit the whole Dalitz
plot, the fit fractions for the resonant single-variable amplitudes for F1/2

0 , F1/2
1 and F1/2

2

1The threshold factors T (x) used in there read [122]

T (x) =

{

sin
(
πEth,x|x− xmax|

)
, for 0 < Eth,x|x− xmax| < 1/2 ,

1, for Eth,x|x− xmax| ≥ 1/2 .
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Full 1 Full 2 Omnès 1 Omnès 2

|c0| ×GeV2 2.7± 0.8 1.2± 0.2 |c′0| 0.9± 0.3 0.9± 0.7

|c1| ×GeV4 3.8± 1.2 2.2± 0.5 |c′1| 3.0± 1.5 4.0± 1.3

c2 1 (fixed) 1 (fixed) c′2 1 (fixed) 1 (fixed)

|c3| ×GeV2 2.8± 0.4 2.2± 0.1 |c′3| ×GeV2 1.9± 0.2 2.0± 0.2

|c4| ×GeV4 2.0± 0.5 1.4± 0.1 |c′4| ×GeV4 0.9± 0.1 1.1± 0.1

|c5| ×GeV6 0.7± 0.3 0.4± 0.1 |c′5| ×GeV6 0.13± 0.3 0.19± 0.02

|c6| × 102GeV4 4± 3 6± 2 |c′6| ×GeV4 0.11± 0.05 0.10± 0.03

|c′7| × 103GeV8 — 6± 4

arg c0 0.1± 0.2 1.1± 0.3 arg c′0 0.2± 0.8 0.4± 0.4

arg c1 0.3± 0.2 1.2± 0.3 arg c′1 −0.8± 0.3 −0.4± 0.2

arg c3 −0.2± 0.1 0.0± 0.1 arg c′3 0.2± 0.2 0.3± 0.2

arg c4 −0.5± 0.1 0.0± 0.1 arg c′4 0.4± 0.2 0.2± 0.2

arg c5 −0.1± 0.1 0.1± 0.1 arg c′5 0.2± 0.4 0.0± 0.3

arg c6 −0.3± 1.2 −0.9± 0.2 arg c′6 0.0± 0.1 0.0± 0.3

arg c′7 — 0.4± 0.3

χ2/d.o.f. 1.18± 0.03 1.10± 0.02 1.30± 0.06 1.08± 0.02

Table 5.1: Fit to CLEO data: Numerical fit results for the subtraction constants ci and

c′i and the corresponding χ2/d.o.f.. Four fit scenarios are considered: the full dispersive

fit, without D-wave (full 1) and with D-wave (full 2), and the Omnès fits of Eq. (5.3),

without D-wave (Omnès 1) and with D-wave (Omnès 2). The errors on the parameters are

evaluated by varying the basis functions within their error bands.
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Figure 5.1: From top to bottom: The experimental data from CLEO [97] depicted in a

binned Dalitz plot. Below that the theoretical Dalitz plot fitted to the data (fit 2). The

dashed line denotes the η′K threshold. The lowest plots show slices through the Dalitz

plot. The red and blue curves correspond to the full fits 1 and 2, respectively.
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Fit FF2
0 2× FF

1/2
0 2× FF

1/2
1 2× FF

3/2
0 2× FF

1/2
2

Full 1 (37± 23)% (190± 60)% (11± 3)% (65± 35)% —

Full 2 (8± 3)% (72± 12)% (10± 2)% (16± 3)% (0.1± 0.05)%

Omnès 1 (48± 16)% (178± 22)% (7± 1)% (395± 35)% —

Omnès 2 (9.5± 8)% (91± 22)% (8± 0.5)% (240± 40)% (0.13± 0.03)%

Table 5.2: Fit fractions CLEO: The resulting fit fractions of Eq. (5.4) for the different fit

scenarios; the errors on the parameters are evaluated by varying the basis functions within

their error bands. The fit fractions for the πK amplitudes are multiplied by two to account

for the s↔ t symmetry.

agree well with the results from Refs. [97,98]. The F2
0 fit fraction corresponds to the isospin 2

ππ S-wave component of FF ≈ (9.8 . . . 15.5)% found in Ref. [97] within different fit models,

and together with the fit fraction of F3/2
0 agrees with the non-resonant contribution found

in Ref. [98] of FF ≈ (29.7± 4.5)%.
Although the Omnès fits (Omnès 1, 2) yield overall similar χ2 results, the strengths of

the individual amplitudes shown in Table 5.2 are highly implausible and probably sufficient
to reject this model. In particular the contribution of the non-resonant isospin 3/2 πK S-
wave is vastly beyond all reasonable expectations, and cannot be justified. In contrast to the
full fit, this situation is not ameliorated significantly by including the D-wave. We conclude
that crossed-channel rescattering effects are essential to obtain sensible fit fractions.

The resulting Dalitz plot as well as a one-dimensional representation in terms of slices
through it are displayed in Fig. 5.1. The bin numbering for the latter is organized in terms
of t-slices for constant s, subsequently glued together with the next slice of higher s. We
evaluate the event distribution function Eq. (5.1) over each bin and compare to experimental
data. The rather small error band on the fit results suggests that the uncertainty in the basis
functions is largely compensated by interference effects between the different single-variable
amplitudes, as well as by corresponding variations in the fitted subtraction constants.

5.1.2 FOCUS

The FOCUS Dalitz plot data [98] includes 52460 ± 245 signal and 1897 ± 39 background
events. With the resulting signal fraction of ∼ 96.5% we perform the full and Omnès fits as
above. Table 5.3 summarizes the fit results together with the fit fractions in Table 5.4. The
overall picture is very similar to the CLEO fit results with a slightly bigger χ2/d.o.f. ≈ 1.2.
The Omnès fits again result in nonphysical fit fractions (see Table 5.4), and from here on we
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Fit constant Full 1 Full 2 Omnès 1 Omnès 2

|c0| ×GeV2 3.0± 0.8 0.6± 0.3 |c′0| 0.4± 0.2 0.6± 0.3

|c1| ×GeV4 3± 1 0.9± 0.3 |c′1| 1.9± 0.8 2.2± 0.5

c2 1 (fixed) 1 (fixed) c′2 1 (fixed) 1 (fixed)

|c3| ×GeV2 2.8± 0.8 1.9± 0.1 |c′3| ×GeV2 1.7± 0.2 1.8± 0.2

|c4| ×GeV4 2.5± 0.6 1.1± 0.1 |c′4| ×GeV4 0.9± 0.2 1.0± 0.2

|c5| ×GeV6 0.4± 0.2 0.3± 0.1 |c′5| ×GeV6 0.1± 0.2 0.3± 0.1

|c6| ×GeV4 0.2± 0.1 0.0± 0.1 |c′6| ×GeV4 0.1± 0.4 0.1± 0.1

|c′7| × 103GeV8 — 7± 4

arg c0 0.5± 0.3 0.9± 0.3 arg c′0 0.7± 0.5 0± 1

arg c1 0.6± 0.4 1.1± 0.2 arg c′1 −1.1± 0.4 0.2± 0.3

arg c3 0.0± 0.2 0.0± 0.1 arg c′3 0.4± 0.2 0.2± 0.2

arg c4 −0.2± 0.3 0.0± 0.1 arg c′4 0.6± 0.2 0.2± 0.3

arg c5 0.2± 0.3 0.0± 0.1 arg c′5 0.8± 0.2 0.2± 0.3

arg c6 −0.6± 0.7 −1.0± 0.4 arg c′6 −0.7± 0.3 −0.9± 0.3

arg c′7 — −1.1± 0.5

χ2/d.o.f. 1.20± 0.01 1.21± 0.02 1.25± 0.02 1.17± 0.01

Table 5.3: Fit to FOCUS data: Numerical fit results for the subtraction constants ci and c
′
i

and the corresponding χ2/d.o.f.. The same four fit scenarios as in Table 5.1 are considered.

The errors on the parameters are evaluated by varying the basis functions within their error

bands.
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Figure 5.2: From top to bottom: The experimental data from FOCUS [98] depicted in a

binned Dalitz plot. Below that the theoretical Dalitz plot fitted to the data (fit 2). The

dashed line denotes the η′K threshold. The lowest plots show slices through the Dalitz

plot. The red and blue curves correspond to the full fits 1 and 2, respectively.
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Fit FF2
0 2× FF

1/2
0 2× FF

1/2
1 2× FF

3/2
0 2× FF

1/2
2

Full 1 (12± 4)% (59± 25)% (7.5± 2.5)% (39± 27)% —

Full 2 (5± 3)% (67± 10)% (12± 1)% (8± 6)% (0.17± 0.07)%

Omnès 1 (33± 17)% (91± 37)% (9± 1)% (215± 135)% —

Omnès 2 (89± 42)% (20± 12)% (11± 1)% (180± 60)% (0.4± 0.05)%

Table 5.4: Fit fractions FOCUS: The resulting fit fractions of Eq. (5.4) for the different fit

scenarios; the errors on the parameters are evaluated by varying the basis functions within

their error bands. The fit fractions for the πK amplitudes are multiplied by two to account

for the s↔ t symmetry.

will only compare the full fits of both experimental data sets. Starting with the fit without
D-wave (full fit 1) we observe similar moduli of the subtraction constants compared to the
CLEO results, however the phases do differ. The fit does not show the large destructive
interference effects between the isospin 1/2 and isospin 3/2 S-wave that we find in the
CLEO fit.

No improvement in the χ2/d.o.f. is observed when we include the D-wave (full fit 2).
However, the contribution from the non-resonant amplitudes, the isospin 2 and isospin 3/2
S-waves, are reduced (see Table 5.4). The fit fractions of the full fit 2 differ slightly from
the CLEO fits; in particular the non-resonant S-waves contribute less in the FOCUS data.

In the full fit 2 the phases of the F1
1 subtraction constants persist to nearly agree modulo

π; the same holds for F1/2
0 subtraction constants. It is reassuring that the overall picture

of the phases of various subtraction constants is consistent in the full fit 2 results for both
CLEO and FOCUS.

In Fig. 5.3, we compare moduli and phases of the resulting single-variable amplitudes
as fitted to the two data sets; the phases are also compared to the input phase shifts used
in the Omnès functions. The resulting phase motions largely agree in the two analyses
within uncertainties, with the possible exception of some deviations in F1/2

0 in the region
of the K∗

0 (800) resonance, where the phase extracted from the CLEO fit rises more quickly.
There are significant deviations from the input phase shifts throughout: there is no naive
realization of Watson’s theorem in the presence of three-body rescattering effects, see e.g.
recent discussions in Refs. [37,117]. This is also the explanation for the observed discrepancy
of the πK I = 1/2 S-wave phase as extracted from these decays by the E791 [99] and
FOCUS [102] collaborations, compared to the scattering phase-shift analyses [103]: while
the phase shift rises to about 67◦–97◦ at

√
s = 1.3GeV [115], the experimental analyses of

D-decay data suggest an increase in the phase from threshold by about 133◦–164◦ (read off
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Figure 5.3: Left column: Absolute values of the single-variable amplitude in arbitrary units

of full fit 2 (CLEO in red, FOCUS in blue). The overall normalization is chosen such that

the absolute values in the K∗(892) peak agree. Right column: Phases of the single-variable

amplitudes (CLEO: red, FOCUS: blue) and input scattering phases (black) in radiant. The

phases are fixed to zero at the two-particle (ππ, πK) thresholds. The dotted lines visualize

the fitted area; for the πK amplitudes from threshold to the η′K threshold and the full

phase space for the ππ amplitudes.
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via Ref. [108]). Figure 5.3 shows that in the dispersive formalism, the phase at 1.3GeV is
about 182◦–198◦ (CLEO) or 170◦–183◦ (FOCUS)—even larger than found in Refs. [99,102].
We emphasize that these results are based on a formalism that uses the scattering phase
shifts [115] as input: the deviations in the decay amplitude S-wave are due to complex
phases induced by three-body rescattering effects.

In general, the corrections compared to input phase shifts are smallest for narrow res-
onances, in particular in the I = 1/2 πK P - and D-waves. The largest phase differences

are observed in the non-resonant amplitudes, where the phases of F2
0 and F3/2

0 show a 2π
rise due to zeros in imaginary or real parts close to threshold in individual basis functions.
Note how these seemingly drastic differences are accompanied by very small absolute mag-
nitudes of the amplitudes in question: in view of the aim to control the phase behavior
of the complete, combined decay amplitude accurately, these specific deviations are still
rather small.

Turning to the moduli of the single-variable amplitudes, the relative strength of the
K∗(892) resonance (in F1/2

1 ) compared with the K∗
2 (1430) (in F1/2

2 ) agrees between CLEO

and FOCUS fits. However the dip in the F1/2
0 amplitude is shifted to higher energies in

the FOCUS fit and slightly more pronounced. The moduli of the non-resonant amplitudes
F3/2

0 and F2
0 turn out to be smaller in the FOCUS fit, which is also underlined by the fit

fractions (compare Tables 5.2 and 5.4).

5.1.3 Combined fits

As a last step we want to perform combined fits including both data sets. Besides serving
as a consistency check, the main motivation for a combined fit lies in the comparison to the
adjacent D+ → K0

sπ
0π+ Dalitz plot analysis. Given the rough agreement of both CLEO

and FOCUS fits, with the exception of the modulus of the subtraction constant c1 and the
strengths of the non-resonant-amplitudes, see Fig. 5.3, there is little tension to be expected.
We perform moreover the previously specified fit scenarios (full fits 1/2 and Omnès fits 1/2)
and define the to be minimized χ2

combined via the sum of the individual χ2 values

χ2
combined ≡ χ2

CLEO + χ2
FOCUS . (5.5)

The fits yield consistent results with χ2
combined values of 1.23 ± 0.02 (1.21 ± 0.02) for the

full 1 (full 2) fit. Since the combined and individual fits are more or less redundant, we
relegate the tables specifying the subtraction constant results as well as the fit fractions
to the Appendix C.5. The resulting single-variable amplitudes are included in Fig. 5.6.
In the individual fits we have restrained from showing the ππ P -wave amplitude since
these fits do not constrain the P -wave amplitude well. However in Fig. 5.6 we will show
all single-variable amplitudes in order to have a first hint on the viability of a combined
treatment.
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5.1.4 Comparison to other approaches

So far the only theoretical approach known to us that includes all relevant partial waves,
three-particle rescattering effects, and the isospin coupled intermediate state K̄0π0π+ is
Ref. [111]. The treatment is based on a unitary coupled-channel framework. The two-
particle rescattering contributions are fixed by the πK and ππ scattering data, phases, and
moduli. Three-body rescattering effects are generated by solving a Faddeev equation. In
addition to the three-body rescattering a three-body potential, based on hidden local sym-
metry, is introduced modeling vector meson exchanges. The author studies the influence of
individual rescattering contributions by considering different fit scenarios; crossed-channel
rescattering effects and three-body potential turned off (isobar fit), three-body potential
turned off (Z fit), and the full fit. An additional contact term breaking unitarity is allowed
for, which in the full fit turns out to be negligible. The decay amplitude depends on 27 to
39 degrees of freedom depending on the considered fit model, which is more than twice the
number of parameters included in our full fit.

To compare the fit fractions obtained in Ref. [111], we note that the isobar fit theo-
retically compares closest to our Omnès fits, while the Z fit does to our full fits. However
the isobar fit has a large contribution from the unitarity-breaking contact term (considered
as a “background” contribution) of 17.7%, such that a direct comparison is not sensible.
Concerning the full and the Z fit, a large destructive interference between the isospin 1/2
and isospin 3/2 S-waves is seen, similar to our CLEO fit 1 configuration. The isospin 1/2
P -waves are of similar size, ∼ 15% compared to our 10 − 14%, but the ππ S-wave contri-
bution is smaller (1.8− 3.8%) than our contributions in either full fit 1 or CLEO full fit 2.
It agrees only with the FOCUS full fit 2. — Concerning this comparison, we should stress
once more that in contrast to Ref. [111], we do not fit the full Dalitz plot.

Unfortunately the improvement due to crossed-channel rescattering cannot be quantified
in a simple way in Ref. [111] either. The improvement going from the isobar to the Z and
then further to the full model can also be due to the introduction of further degrees of
freedom; as discussed above, we encounter a similar problem in our analysis. However
the background term, which gives an indication for missing physics, reduces dramatically
once the crossed-channel rescattering effects and the coupled intermediate state K̄0π0π+

are included. This is a similar conclusion as drawn from the dispersive analysis of φ→ 3π
Dalitz plots [34], which rendered phenomenological contact terms [123, 124] superfluous.

5.2 D+ → K̄0π0π+ Dalitz plot

In this section we compare our theoretical D+ → K̄0π0π+ decay amplitude to the Dalitz
plot data of theD+ → K0

Sπ
0π+ decay measured by the BES III collaboration, see Ref. [100].

Strictly, the K0
S is a mixture of the K̄0 and K0 state and in principle the D+ → K0π0π+
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Figure 5.4: Quark line diagrams of the Cabibbo favored D+ → K̄0π0π+ decay (a) (from

Fig. 4.2) and the doubly Cabibbo suppressed D+ → K0π0π+ decay with c→ d and s→ u

quark conversions (b).

decay should be considered as well. However the D+ → K0π0π+ decay is doubly Cabibbo
suppressed: We have a c→ d and s→ u quark transition, see Fig. 5.4 b), and the relative
contribution to the Dalitz plot is crudely approximated by the ratio

|M00+(s, t, u)|2
|M0̄0+(s, t, u)|2

∼ |Vcd|2|Vsu|2
|Vcs|2|Vud|2

≈ 0.3% , (5.6)

and therefore negligible, with the values of the Cabibbo matrix elements taken from
Ref. [82].

The data2 comprises of 166694 events in the Dalitz plot with a signal purity of about
85% provided in a binned t × u Dalitz plot with a bin size of 0.05GeV2 × 0.05GeV2.
The binned data is already efficiency and background corrected and the event distribution
function is, analogously to Eq. (5.1), given by

P(ti, ui) =

∫ ti+δ

ti−δ

∫ ui+δ

ui−δ
|M0̄0+(s(t, u), t, u)|2du dt , (5.7)

with (ti, ui) being the center of the corresponding bin and 2δx = 0.05GeV2 the bin width.

We perform the fits analogously to the CLEO and FOCUS fits in Section 5.1 and restrict

2We are grateful to the BES III collaboration, in particular Li Haibo, Fu Chengdong and Andrzej Kupsc,

for providing the data to us.
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Figure 5.5: From top to bottom: The experimental data from BES III [100] is depicted in a

binned Dalitz plot. Below that the theoretical Dalitz plot fitted to the data (fit 2) is shown.

The dashed lines denote the restriction of the fits to the region (s, t) < (Mη′ +MK)
2. The

lowest plots show slices through the Dalitz plot. The red and blue curves correspond to

the full fits 1 and 2, respectively.
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Figure 5.6: Left column: Absolute values of the single-variable amplitude in arbitrary units

of full fit 2 (BES III in red, CLEO/FOCUS in blue). The overall normalization is chosen

such that the absolute values in the K∗(892) peak agrees with the ones in Fig. 5.3. Right

column: Phases of the single-variable amplitudes (BES III in red, CLEO/FOCUS in blue)

and input scattering phases (black) in radiant. The phases are fixed to zero at the two-

particle (ππ, πK) thresholds. Note that we obtain two separate solutions for the F2
0 phase.

The dotted lines visualize the fitted area; for the πK amplitudes from threshold to the η′K

threshold and the full phase space for the ππ amplitudes.
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Full 1 Full 2 Full 1 Full 2

|c0| ×GeV2 0.17± 0.01 0.21± 0.08 arg c0 0.4± 0.1 0.5± 0.2

|c1| ×GeV4 0.26± 0.03 0.21± 0.09 arg c1 −0.5± 0.3 −0.2 ± 0.3

c2 1 (fixed) 1 (fixed) arg c2 0 (fixed) 0 (fixed)

|c3| ×GeV2 1.8± 0.05 1.6± 0.1 arg c3 0.07± 0.02 0.05± 0.01

|c4| ×GeV4 0.88± 0.08 0.7± 0.1 arg c4 0.03± 0.01 0± 0.05

|c5| ×GeV6 0.2± 0.05 0.15± 0.05 arg c5 −0.12± 0.04 −0.14± 0.2

|c6| × 102GeV4 3± 6 5± 2 arg c6 −0.05± 0.02 −0.14± 0.5

χ2/d.o.f. 1.27± 0.01 1.35± 0.07 — — —

Table 5.5: Fit to BES III data: Numerical fit results for the subtraction constants ci and the

corresponding χ2/d.o.f.. Two fit scenarios are considered: the full dispersive fit, without

D-wave (full 1) and with D-wave (full 2). The errors on the parameters are evaluated by

varying the basis functions within their error bands.

the fit to the region t, s < (Mη′ +MK)
2 obtaining 746 bins. The χ2 is given by

χ2 =
746∑

i=1

[
NP(ti, ui)− (#corrected events/bin)i

]2

(#corrected events/bin)i
, (5.8)

where N is the overall normalization to the corrected data.
We refrain to perform a pure Omnès fit, since in this decay channel we have a ma-

jor direct ρ(770) resonance contribution and we would like to test the coupling of both
K̄0π0π+/K−π+π+ channels explicitly. Furthermore, every Omnès function needs at least
one normalization constant in order to adjust its strength relative to the other Omnès
functions. This would introduce an additional complex normalization constant to the set
of constants ci already given in Eq. (5.3) to accommodate for the additional ππ P -wave
Omnès function. Consequently, a pure Omnès fit requires more complex fit constants than
the full Khuri–Treiman fits and the information gained is therefore very limited. Instead
we perform only the two full fit scenarios; without the πK D-wave F1/2

2 (full 1 fit) and
including the D-wave (full 2 fit).

The corresponding fit results for the subtraction constants are summarized in Table 5.5
and the emanating fit fractions in Table 5.6. The fit fractions are defined analogously
to Eq. (5.4), with the fit fractions of the same s- and t-channel single-variable amplitude
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Fit FF2
0 FF1

1 FF
1/2
0 FF

1/2
1 FF

3/2
0 FF

1/2
2

Full 1 (5± 2)% (21± 5)% (39± 5)% (9± 0.5)% (6± 2)% —

Full 2 (5± 0.3)% (16± 3)% (43± 4)% (7± 2)% (9± 3)% (1.5± 0.05)%

Table 5.6: Fit fractions BES III: The resulting fit fractions of Eq. (5.4) for the different

fit scenarios; the errors on the parameters are evaluated by varying the basis functions

within their error bands. The fit fractions of the πK amplitudes in the s- and t-channel

are summed together.

combined. In Fig. 5.5 we display the experimental and the fitted theoretical Dalitz plot
together with the affiliated slices through the Dalitz plot. The two fits show little dif-
ference in the subtraction constant values and fit fractions, opposed to our findings in
the earlier D+ → K−π+π+ analysis, where the D-wave has a sizable impact on the sub-
traction constants and fit fractions. Including the D-wave worsens the fit quality from
χ2/d.o.f. = 1.27± 0.01 (without D-wave) to χ2/d.o.f. = 1.35± 0.07 (with D-wave). How-
ever, no region of particular disagreement is observed in the Dalitz plot. The modulus of the
subtraction constants is significantly different to the ones extracted from the CLEO/FOCUS
fits. It is therefore interesting to note that the phases of the subtraction constants attained
in the BES III fit are comparable (modulo 2π) to the CLEO/FOCUS phases, with the
exception of the phase of c1: We note that c1 is the linear ππ P -wave subtraction constant,
which contributes only through intermediate states to the D+ → K−π+π+ decay ampli-
tude. The F1/2

0 subtraction constants mutually agree modulo π and can again be chosen
nearly real with an overall phase factored out. This no longer holds for the F1

1 amplitude,
although the tendency is also seen.

To compare the individual strengths of the F I
L amplitudes between the BES III and

the combined CLEO/FOCUS fits we again choose to normalize the decay amplitudes in

such a way that the F1/2
0 amplitudes agree in the K∗(892) peak. The arising single-variable

amplitudes are shown in Fig. 5.6. Immediately we observe that we obtain two separated
phase results for the ππ S-wave amplitude (F2

0 ). On closer inspection the effective difference
is located in the low-energy region around 0.3 GeV. While one phase solution keeps rising,
the other starts to decrease. Beyond 0.5 GeV both phases are separated by about 2π
and therefore equivalent. Note that the monotonously rising phase is consistent with the
CLEO/FOCUS combined fit. The modulus of F2

0 also agrees with the combined fit while

the large error band stands out. Furthermore, we observe in three amplitudes (F1
1 , F1/2

2 ,

F3/2
2 ) major difference.

The F1
1 amplitude bears a clear ρ-meson peak, prominently also seen in the Dalitz plots
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(see Fig 5.5). In comparison, the resulting combined CLEO/FOCUS fit F1
1 amplitude does

not show the prominent ρ-meson, being weakly constrained by the D+ → K−π+π+ Dalitz
plot. In particular the phase emanating from the combined fit is more or less flat whereas
the phase of the BES III fit shows a clear ρ resonance and is close to the input phase,
though rising for higher energies.

Furthermore, the relative strengths of theK∗(892) resonance (in F1/2
1 ) and theK∗

2(1430)

(in F1/2
2 ) do not agree. The BES III fit gives a much stronger F1/2

2 than the combined

CLEO/FOCUS fit, however the phases mutually agree. In contrast, the phases of the F3/2
0

waves do not agree nor do their moduli. The BES III F3/2
0 amplitude is much smaller.

We observe mutual agreement in the modulus and phases of the F1/2
0 amplitude. Also the

F1/2
1 amplitudes which are matched in the K∗(892) peak agree very nicely in modulus and

phase.
Strictly, due to isospin symmetry, the CLEO, FOCUS, and BES III fits should result

in the same values for the subtraction constants. Seeing that the BES III fit results clash
with the combined CLEO/FOCUS results it is however doubtful that a combined fit will
succeed. With the overall χ2 given by the the sum of the individual χ2,

χ2
combined = χ2

CLEO + χ2
FOCUS + χ2

BES , (5.9)

we attempt to perform simultaneous fits of all data sets (CLEO, FOCUS and BES III)
available to us. The fit gives χ2

combined values of 1.7± 0.1 (2.5± 0.2) for the full fit 1 (fit 2).
The inclusion of the πK D-wave in the combined fit considerably worsens the fit quality.
This suggests that the heuristic inclusion of the πK D-wave, which is necessary to obtain
sensible fit fractions in the individual CLEO fit, may be sufficient for the individual fits but
not for a combined analysis.

5.3 Alternative D-wave model

In this section we will assess the origin of the bad fit qualities. Since the prime candidate is
the πK D-wave we devise the following fit scenarios. We neglect the F1/2

2 single-variable am-
plitude throughout, similarly to the full 1 fit scenarios, but add the corresponding D-wave
Omnès function multiplied by an additional subtraction constant c7 and the corresponding
Clebsch–Gordan coefficients. This provides a more flexible D-wave contribution,

M′
−++(s, t, u) =M−++(s, t, u)|F1/2

2 =0
+

c7

2
√
3

{
[
3
(
t(s− u)−∆

)2 − κ2t (t)
]
Ω

1/2
2 (t)

+
[
3
(
s(t− u)−∆

)2 − κ2s(s)
]
Ω

1/2
2 (s)

}

,

M′
0̄0+(s, t, u) =M0̄0+(s, t, u)|F1/2

2 =0
− c7

2
√
6

[
3
(
t(s− u)−∆

)2 − κ2t (t)
]
Ω

1/2
2 (t) . (5.10)
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BES III CLEO/FOCUS CLEO/FOCUS/BES

|c0| ×GeV2 0.18± 0.02 1.2± 0.4 0.14± 0.03

|c1| ×GeV4 0.18± 0.01 1.3± 0.4 0.16± 0.03

c2 1 (fixed) 1 (fixed) 1 (fixed)

|c3| ×GeV2 1.6± 0.1 1.6± 0.2 1.7± 0.1

|c4| ×GeV4 0.7± 0.1 0.85± 0.15 0.8± 0.1

|c5| ×GeV6 0.18± 0.02 0.19± 0.03 0.18± 0.01

|c6| × 102GeV4 3.3± 0.2 8± 2 3.6± 0.4

|c7| × 103GeV8 2.2± 0.1 3.5± 0.5 2.8± 0.2

arg c0 0.32± 0.08 −1.0± 0.4 0.4± 0.1

arg c1 −0.24± 0.07 −1.0± 0.4 −0.5± 0.4

arg c3 −0.08± 0.02 −0.09± 0.04 −0.11± 0.02

arg c4 −0.03± 0.01 0.15± 0.08 −0.08± 0.04

arg c5 −0.06± 0.02 −0.25± 0.15 −0.08± 0.04

arg c6 −0.6± 0.2 0.30± 0.10 −0.4± 0.5

arg c7 −0.6± 0.1 −0.25± 0.10 −0.8± 0.2

χ2
CLEO/d.o.f. — 1.12± 0.01 1.17± 0.02

χ2
FOCUS/d.o.f. — 1.25± 0.01 1.28± 0.01

χ2
BES/d.o.f. 1.08± 0.01 — 1.22± 0.02

χ2
Combined/d.o.f. 1.08± 0.01 1.17± 0.01 1.18± 0.02

Table 5.7: Alternative D-wave fits: Numerical fit results for the subtraction constants

ci and the corresponding individual and combined χ2/d.o.f.. Three fit scenarios are

considered: fit to the BES III data only (BES III), combined fit to CLEO and FO-

CUS data (CLEO/FOCUS), and combined fit to CLEO, FOCUS and BES III data

(CLEO/FOCUS/BES). The errors on the parameters are evaluated by varying the basis

functions within their error bands.
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Individual fits FF2
0 FF1

1 FF
1/2
0 FF

1/2
1 FF

3/2
0 FF

1/2
2

BES III (2± 1)% (16± 1)% (49± 2)% (7± 1)% (10± 1)% (0.2± 0.1)%

CLEO/FOCUS (11± 2)% — (24± 6)% (9± 1)% (6± 3)% (0.2± 0.1)%

CLEO/FOCUS/BES FF2
0 FF1

1 FF
1/2
0 FF

1/2
1 FF

3/2
0 FF

1/2
2

BES III (1± 0.5)% (21± 3)% (41± 3)% (8± 1)% (7± 1)% (0.3± 0.1)%

CLEO/FOCUS (3± 1)% — (53± 3)% (11± 1)% (0.6± 0.1)% (0.3± 0.1)%

Table 5.8: Alternative D-wave fit fractions: The resulting fit fractions for the different

fit scenarios: individual fits to the BES III data and the CLEO/FOCUS data, and a

combined fit to all three data sets simultaneously (CLEO/FOCUS/BES). The errors on

the parameters are evaluated by varying the basis functions within their error bands. The

fit fractions of the πK amplitudes in the s- and t-channel are summed together.

These modified decay amplitudes are fitted to the Dalitz plot data sets. We consider the
following three fit scenarios: fit to the BES III data alone (BES III), simultaneous fit to the
CLEO and FOCUS data sets (CLEO/FOCUS), and a combined fit to the CLEO, FOCUS,
and BES III data sets (CLEO/FOCUS/BES). The individual and combined fit results are
summarized in Table 5.7 and the ensuing fit fractions in Table 5.8.

The BES III fit results for the subtraction constants turn out to be very similar to
the full 1/2 BES III fits, see Table 5.5 for comparison. This is an anticipated result,
since in the previous full 1/2 fit scenarios the inclusion of the D-wave did not change
the subtraction constants substantially but led to a poorer χ2 result. Similarly the fit
fractions are alike, with the exception of the F2

0 and F1/2
2 single-variable amplitudes. The

fit quality with the more flexible D-wave is improved to χ2
BES/d.o.f. = 1.08±0.01 compared

to χ2/d.o.f. = 1.27± 0.01 (χ2/d.o.f. = 1.35± 0.01) for the full 1 (full 2) fit.
Considering the combined D+ → K−π+π+ data sets from CLEO and FOCUS collabora-

tions we observe that the subtraction constants differ severely from the previous combined
fit results, see Table C.2. However, the fit quality differs marginally. It seems that the
D+ → K−π+π+ decay data does not constrain the values of the subtraction constants well.
Furthermore, the subtraction constants c2 up to c5 do not agree modulo π. Thus the F1/2

0

subtraction constants cannot be chosen real relative to each other as we have seen previ-
ously. The fit fractions hint to large constructive interference effects, with a much smaller
F1/2

0 fit fraction compared to the full 2 fit results given in Table C.1.
With all data sets combined in the CLEO/FOCUS/BES fit we obtain a combined
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χ2/d.o.f. = 1.18 ± 0.02 which is hugely improved to the previous combined full 1/2 fits
(χ2/d.o.f. = 1.7 ± 0.1/2.5 ± 0.2). The χ2 thus advocates that the discrepancy in the
full 1/2 fits comes from the heuristically built-in D-wave. However, we note again that a
thorough inclusion of theD-wave in the Khuri–Treiman formalism would necessitate further
subtraction constants as discussed previously in Section 4.3.1.

The subtraction-constant results are very similar to the individual BES III fit values
but the χ2

BES worsens from 1.08±0.01 to 1.22±0.02. In contrast, we find that the obtained
χ2
CLEO and χ2

FOCUS values are similar to the individual fit qualities although the subtraction
constants are significantly different. This suggests that the D+ → K̄0π0π+ data constrains
the subtraction constants much better than the D+ → K−π+π+ decay data. The subtrac-
tion constants of the F1/2

0 single-variable amplitude can be chosen real relative to each other
and thus the previously found relation is restored. The fit fractions for the D+ → K̄0π0π+

decay amplitude are very similar to the BES III fit while the large constructive interference
effects seen in the CLEO/FOCUS fit do not show up as prominently in the D+ → K−π+π+

fit fractions. Additionally, we observe that the fit fractions of the non-resonant waves F2
0

and F3/2
0 reduce compared to the individual BES III and CLEO/FOCUS fits.

5.4 Conclusion

In this part of the thesis we have analyzed the D+ → K−π+π+ and D+ → K̄0π0π+

decays with a dispersive framework based on the Khuri–Treiman formalism that satisfies
analyticity, unitarity, crossing symmetry, and includes crossed-channel rescattering among
the three final-state particles.

We have simultaneously constructed the formalism for the decay D+ → K̄0π0π+, which
is directly related to D+ → K−π+π+ by charge exchange and can be constructed from
different linear combinations of the same (isospin) amplitudes. The theoretical decay am-
plitudes depend on seven complex subtraction constants, one of which can be absorbed
into an overall phase and normalization of the amplitudes. The remaining parameters
are fitted to the experimental Dalitz plot data from the CLEO [97], FOCUS [98] and
BES III [100] collaborations, restricting the kinematic region to below the η′K threshold
(
(s, t) < (Mη′ +MK)

2
)
, where the elastic approximation is assumed to work well.

In the case of the D+ → K−π+π+ decays we have considered different fit scenarios
with (full) and without (Omnès) crossed-channel rescattering effects, as well as with and
without the πK isospin 1/2 D-wave. Although the Omnès fits give reasonable χ2/d.o.f., we
obtain large destructive interferences between single-variable amplitudes, which manifest
themselves in unphysical fit fractions. The full fits result in good χ2/d.o.f. around 1.1 for the
CLEO data (1.2 for the FOCUS data), with sensible fit fractions throughout. Including
the πK isospin 1/2 D-wave does not significantly improve the χ2/d.o.f., however the fit
fractions of the non-resonant waves are reduced, giving small interference effects between
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the single-variable amplitudes. Furthermore the simultaneous fits to CLEO and FOCUS
data provide consistent results.

Regarding the D+ → K̄0π0π+ decay amplitude we have confined ourselves to the full
fit scenarios with and without the πK isospin 1/2 D-wave. The full fit results show good
agreement with the data with a χ2/d.o.f. of 1.27±0.01 for the full 1 fit (without πK isospin
1/2 D-wave) and 1.35 ± 0.07 for the full 2 fit scenario, including the D-wave. In contrast
to the CLEO/FOCUS fit results we obtain sensible fit fractions for both fit scenarios.

We have shown that we can describe the D+ → Kππ+ Dalitz plot data sets in the
region where we deem elastic unitarity to hold approximately, solely relying on ππ and πK
scattering phase-shift input and exploiting the constraints of dispersion theory.

Three-body rescattering effects suspend any strict relation between the phase of the de-
cay partial waves and scattering phase shifts: we have shown that the significantly stronger
rise of the πK S-wave phases, as observed in analyses of these D-meson decays [99,102] in
comparison to phase-shift data, can be understood at least qualitatively in the framework
of Khuri–Treiman equations.

A simultaneous analysis of both Dalitz plots, D+ → K−π+π+ and D+ → K̄0π0π+,
shows disagreement with the χ2

combined values of 1.7 ± 0.05 (2.5 ± 0.2) for the full fit 1 (fit
2) scenario. To investigate the discrepancy, we have devised a more flexible inclusion of
the D-wave. We replace the single-variable D-wave amplitude with the corresponding D-
wave Omnès function times an additional complex normalization fit constant. With these
modified decay amplitudes we repeat the fits to the BES III data, combined CLEO/FOCUS
data and the fit to all three data sets combined (CLEO, FOCUS, and BES III). The BES
III and CLEO/FOCUS fits give χ2/d.o.f. of 1.08 and 1.17 respectively, although the fit
fractions show large constructive interference effects for the CLEO/FOCUS results.

The combined fit with this modified D-wave gives good fit results with a combined
χ2/d.o.f. = 1.18 ± 0.02 and sensible fit fractions. Furthermore the individual χ2/d.o.f.
amount to χ2

CLEO/d.o.f. = 1.17, χ2
FOCUS/d.o.f. = 1.28, and χ2

BES/d.o.f. = 1.22. We have
thus traced the source of the disagreement to the more heuristically included πK D-wave.
We have shown that we can consistently describe the combined D+ → K−π+π+ and D+ →
K̄0π0π+ data with an alternative D-wave in the region where the elastic approximation is
approximately realized.

Overall we have shown that the Khuri–Treiman-type equations are a powerful tool
to analyze three-particle decays also in the open-charm sector, but obstacles are still to
be overcome. For example an analysis of the whole Dalitz plot region necessitates the
inclusion of inelastic channels (most prominently η′π) in a coupled-channel framework. To
do so more experimental input is required. Moreover the question on how to include higher
partial waves consistently without loosing predictive power has to be addressed.



Summary and Outlook

In this thesis we have studied the three-body decays V → 3π with V ∈ {ω, φ, J/ψ, . . .} and
the isospin coupled D+ → K−π+π+/K̄0π0π+ decays in the framework of Khuri–Treiman
dispersion relations. Furthermore we investigated the J/ψ → γ∗π transition form factor
dispersively. With the theoretically hard to understand ω → π0µ+µ− and φ → π0e+e−

experimental data at the high-energy end of the phase space, there is the hope that the
larger phase space of the J/ψ → γ∗π transition form factor might help to resolve the
puzzle. We predicted the differential decay rates as well as the branching ratios of J/ψ →
π0e+e−/π0µ+µ− where we used the prior obtained J/ψ → 3π amplitude to pin down the
dominant ππ contribution to the spectral function.

The main aim of this thesis was to establish the dispersive framework for three-body
decays with high decaying mass. While Khuri–Treiman equations are well established for
lower decaying masses (. 1 GeV), the method has not been utilized in the higher mass
region. However these higher mass decays have become important tests of the Standard
Model and the search for new physics. A thorough understanding of the strong three-
particle final-state interactions is thus required. The dispersion relations employed in this
thesis provide an ideal tool for this endeavor [131]. Based on the fundamental properties of
analyticity, unitarity, and crossing symmetry, they incorporate crossed-channel rescattering
effects among the three-particles, which have been proven to be vital in low mass three-body
decays [34].

On the basis of the V → 3π decays we have studied the dependence of the dispersion
relations on the vector-meson mass. This system is particularly fruitful since the disper-
sive equations have a very simple form. We examined the dependence of crossed-channel
rescattering effects on the vector-meson mass and found that in the very high mass limit
the crossed-channel rescattering effects become negligible. Furthermore we have tested
the stability of the commonly used iterative solution method and observed that for higher
decaying masses and more subtractions the method fails.

We therefore devised a new solution strategy to solve the Khuri–Treiman equations and
applied it to the Cabbibo favored and isospin related D+ → K−π+π+/K̄0π0π+ decays.
These provide an ideal test case for a first application in the open-charm sector since
experimental data with good statistics is available and the relation of the two channels via
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isospin symmetry allows for a simultaneous description with the same degrees of freedom.
The obtained theoretical amplitudes have been fitted to D+ → K−π+π+ data sets from
the CLEO and FOCUS collaborations as well as D+ → K̄0π0π+ data provided by the
BES III collaboration. We have performed a multitude of fit scenarios: fits to each data
set alone, with/without crossed-channel rescattering effects, with and without D-wave as
well as combined fits to all data sets. Summarizing, we observed that we can describe all
data sets consistently in the region where the elastic approximation is assumed to be valid
and we have seen that crossed-channel rescattering effects are essential to obtain sensible
fit results. However to obtain consistent results for the combined fit to all data sets we
had to introduce an alternative D-wave to the heuristically included Khuri-Treiman D-
wave. Since a fully included D-wave would necessitate further subtractions and this fact is
inherent for the Khuri–Treiman equations the consistent inclusion of higher partial waves
without loosing predictive power remains a challenge. Additionally, to have a description
of the full Dalitz plot region inelastic contributions need to be taken into account. A
thorough inclusion would call for a coupled-channel approach, which necessitates further
yet unavailable experimental input.

Overall, Khuri–Treiman-type equations provide an impressive device to analyze three-
particle decays also for higher decaying masses. With the above challenges on the to-do
list and the ultimate goal to study the CP violation and beyond the Standard Model
relevant D- and B-meson decays, the dispersive approach can possibly profit from the
progress in other non-perturbative QCD approaches. For example it has been seen in
the past that the synergy between dispersion relations and effective field theories in the
low-energy regime has been fruitful. The appearance of unknown subtraction constants is
immanent in dispersion theory and thus limits the predictive power especially when high-
order partial waves have to be considered. Therefore for lower mass three-body decays, e.g.
η → 3π [45,46,91] and η′ → ηππ [58], chiral effective field theories were utilized to determine
these subtractions constants. One can therefore hope that also for higher decaying masses
the subtraction constants can be constrained by matching to effective theories, e.g. heavy-
quark effective theory, to obtain a pure theoretical prediction. Recently, short-distance
matchings to Khuri–Treiman-type equations have been performed, e.g. in Ref. [129] for the
semileptonic B → ππℓν̄ℓ decays where the subtraction constants were matched to heavy-
meson chiral perturbation theory or for the Υ(3S) → Υ(1s)ππ decay in Ref. [130] where a
chiral effective theory for heavy quarkonia was applied.

Where to go next? The natural next candidates the framework ought to be unleashed
upon are the D → KKπ/3π decays. These decays provide a prime opportunity to extend
the approach to coupled-channel Khuri–Treiman equations, since we have a good theoretical
knowledge and a strong dispersive description of the pion and kaon scalar isoscalar form
factors, based on the coupled-channel Omnès framework, see Refs. [132,133] and references
therein.
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Appendix A

Omnès functions and phase shifts

In this appendix we discuss the asymptotic behavior of the Omnès function with respect
to the assumed asymptotic behavior of the phase-shift inputs. We display our numerical
implementation and depict the resulting Omnès functions and the corresponding phase-shift
inputs, taken from Refs. [29–32] (ππ phase shifts) and Ref. [115] (πK phase shifts).

A.1 Asymptotic behavior of the Omnès function

The Omnès function (Eq. (1.40)), evaluated on the right-hand cut, is given by

Ω(s) = exp

[
s

π

∫ ∞

sth

δ(s′)

s′(s′ − s− iǫ)
ds′
]

Using Sokhotsky–Weierstrass we obtain for the exponent

s

π

∫ ∞

sth

δ(s′)

s′(s′ − s− iǫ)
ds′ = iδ(s) +

s

π
−
∫ ∞

sth

δ(s′)

s′(s′ − s)
ds′

= iδ(s) +
1

π
−
∫ ∞

sth

(
1

s′ − s
− 1

s′

)

δ(s′) ds′ ,

where −
∫

denotes the Cauchy principal value. Assuming that the phase is approximately
constant (= cπ) for s ≥ Λ2

Ω we have

= iδ(s) +
1

π
−
∫ Λ2

Ω

sth

(
1

s′ − s
− 1

s′

)

δ(s′) ds′ + c−
∫ ∞

Λ2
Ω

(
1

s′ − s
− 1

s′

)

ds′ .

Taking the s → ∞ limit and applying Lebesgue’s dominated convergence theorem to the
second term we can interchange the integration with the limit and obtain

= cπi− 1

π
−
∫ Λ2

Ω

sth

δ(s′)

s′
ds′ + lim

s→∞
c ln

(∣
∣
∣
∣

Λ2
Ω

Λ2
Ω − s

∣
∣
∣
∣

)

. (A.1)
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The asymptotic limit of the Omnès function thus yields

lim
s→∞

Ω(s) = exp

[

cπi− 1

π
−
∫ Λ2

Ω

sth

δ(s′)

s′
ds′

︸ ︷︷ ︸

=constant

+ lim
s→∞

(

c ln

(∣
∣
∣
∣

Λ2
Ω

Λ2
Ω − s

∣
∣
∣
∣

))]

. (A.2)

The asymptotic behavior of the Omnès function expressed in terms of the assumed phase
shift asymptotics is hence given by.

lim
s→∞

Ω(s) ∼ s−c . (A.3)

A.2 Numerical implementation

In the following we present the numerical evaluation of the Omnès function. Since the
phase information is limited to the low-energy region we will match the phases from a
certain energy

√
Λ (the phase matching point) onwards to the assumed asymptotic behavior

(integer multiplicands of π). The Omnès function is given as such by

ΩIL(s) = exp

{
s

π

∫ ∞

sth

δIL(x)

x(x− s)
dx

}

= exp

{
s

π

∫ Λ

sth

δIL(x)

x(x− s)
dx+

s

π

∫ ∞

Λ

δIL(x)

x(x− s)
dx

}

,

(A.4)

where the integral is split into a low-energy (below the matching point) and high-energy
(above the matching point) part. Since we have explicit expressions for the continued phase
shifts above the continuation point Λ the second integral in Eq. (A.4) can be calculated
analytically. We define the high-energy integral by

C(s) ≡ exp

{
s

π
−
∫ ∞

Λ

δIL(x)

x(x− s)
dx

}

, (A.5)

where −
∫

denotes the Cauchy principal value and use the following two different phase
continuation scenarios:

1. constant phase matching δ(s) = cπ for s > Λ with an arbitrary integer c

C(s) = exp

{

c−
∫ ∞

Λ

s

x(x− s)
dx

}

=

(
Λ

Λ− s

)c

; (A.6)

2. asymptotic continuation to a constant value cπ at infinity, with an arbitrary integer
c: δ(s) = cπ − AIL/(B

I
L − s) for s > Λ, where AIL, B

I
L are determined for each phase

individually

C(s) = exp

{
s

π
−
∫ ∞

Λ

cπ − AI
L

BI
L−x

x(x− s)
dx

}

= |Λ|−
AI
L

BI
L
π
+c|Λ−BI

L|
− AI

Ls

BI
L
π(BI

L
−s) |Λ− s|−c+

AI
L

π(BI
L
−s) .

(A.7)
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Figure A.1: Left column: The ππ phase-shift input δIL from Refs. [29–32] with isospin I

and angular momentum L are depicted. The errors are assumed to be ±20◦ above 2 GeV.

While for the S-wave we assume a generous linear rise of the error from threshold to 2 GeV

for the P -wave we assume a linear rise of the error well after the ρ(770) resonance. Below

the ρ(770) resonance the error is entirely given by the different phase-shift inputs. Right

column: The real (blue) and imaginary (red) parts of the corresponding Omnès functions

ΩIL with isospin I and angular momentum L are plotted. The error bands are entirely given

by the phase-shift errors.

Unless the Omnès function is evaluated on the branch cut (infinitesimally above or below)
the Cauchy kernel is well behaving and we have

ΩIL(s) = exp

{
s

π

∫ ∞

sth

δIL(x)

x(x− s)
dx

}

= exp

{
s

π

∫ Λ

sth

δIL(x)

x(x− s)
dx

}

C(s)

(A.8)

The remaining integral can be numerically calculated without any further treatment. The
variation of the phase matching point Λ is considered in the error estimation. On the
branch cut we run into the Cauchy singularity and therefore treat this issue numerically as
follows
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Figure A.2: Left column: The πK phase-shift input δIL from Ref. [115] with isospin I and

angular momentum L are depicted. The errors are assumed to be ±20◦ above 2 GeV. For

the S-waves the error is approximated by a linear rise from threshold to 2 GeV while for the

P - and D-wave the linear rise starts after the prominant K∗(892) and K∗
2 (1430) resonance

respectively. Right column: The real (blue) and imaginary (red) parts of the corresponding

Omnès functions ΩIL with isospin I and angular momentum L are plotted. The error bands

are entirely given by the phase-shift errors.
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ΩIL(s± iǫ) = exp

{
s

π

∫ ∞

sth

δIL(x)

x(x− s∓ iǫ)
dx

}

= exp

{
s

π
−
∫ Λ

sth

δIL(x)

x(x− s)
dx± iδ(s)

}

C(s)

= exp

{
s

π
−
∫ Λ

sth

δIL(x)− δIL(s)

x(x− s)
dx+

s

π
δIL(s)−

∫ Λ

sth

1

x(x− s)
dx± iδ(s)

}

C(s)

=

∣
∣
∣
∣

sth(s− Λ)

Λ(s− sth)

∣
∣
∣
∣

δ(s)/π

exp

{
s

π
−
∫ Λ

sth

δIL(x)− δIL(s)

x(x− s)
dx± iδ(s)

}

C(s) . (A.9)

The integrand of the remaining integral is finite at the Cauchy singularity and can be eval-
uated numerically. The phase shifts are taken from Roy equation analyses of ππ scattering
by the Bern [29–31] and the Madrid–Kraków [32] groups, as well as from the Roy–Steiner
analysis of πK scattering by the Orsay group [115]. The phases and the corresponding
Omnès functions are depicted in Figs. A.1-A.2.





Appendix B

Helicity formalism

We follow the agenda given in Section 2.2 and construct the orthonormal helicity basis with
definite total angular momentum and z-component out of the plane wave helicity states.
With the addition theorem for Wigner D-matrices we obtain, following Ref. [125]

∑

R
DJ ∗
L′M ′(R)R|p; J,M ;λ1, λ2〉 =

∑

R,L
DJ ∗
L′M ′(R)DJ ′

LM(R)|p; J, L;λ1, λ2〉

=
∑

L

2

2J + 1
δJJ ′δMM ′δLL′|p; J, L;λ1, λ2〉 = δJJ ′δMM ′

2

2J + 1
|p; J, L′;λ1, λ2〉 , (B.1)

where R denotes an arbitrary rotation operator acting on the helicity state |p; J,M ;λ1, λ2〉.
We can therefore construct an orthonormal basis with definite total angular momentum J
and z-component M from the plane waves ψp,λ1,λ2 via

|p; J,M ;λ1, λ2〉 =
1

2π

(
2J + 1

4π

) 1
2
∫

DJ
Mλ(α, β, γ)

†RφΘ−φψp,λ1,λ2dω

=
1

2π

(
2J + 1

4π

) 1
2
∫

DJ
Mλ(α, β, γ)

†|p,Θ, φ;λ1, λ2〉dω , (B.2)

with ∫

dω ≡
∫ 2π

0

dα

∫ π

0

sin(β) dβ

∫ 2π

0

dγ . (B.3)

We obtain for the transformation matrix between the two basis

〈Θ, φ;λ′1, λ′2|J,M ;λ1, λ2〉 = δλ1λ′1δλ2λ′2

(
2J + 1

4π

) 1
2

DJ†
Mλ(φ,Θ,−φ) . (B.4)

In the case of Θ = 0 we have

〈J,Mλa, λb|0, φ, λa, λb〉 =
(
2J + 1

4π

) 1
2

DJ
Mλ(φ, 0,−φ) =

(
2J + 1

4π

) 1
2

δMλ . (B.5)
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Thus the basis transformed S-matrix elements read

〈Θ, φ, λc, λd|S(s)|0, 0, λa, λb〉
=
∑

JM

〈Θ, φ, λc, λd|J,M, λc, λd〉〈J,M, λc, λd|S(s)|J ′,M ′, λa, λb〉〈J ′,M ′, λa, λb|0, 0, λa, λb〉

=
1

4π

∑

J,J ′

√
2J + 1D†

Mµ(φ, θ,−φ)〈J,M, λc, λd|S(s)|J ′,M ′, λa, λb〉
√
2J ′ + 1δM ′λ

=
1

4π

∑

J

(2J + 1)〈λc, λd|SJ(s)|λa, λb〉DJ†
λµ(φ, θ,−φ) , (B.6)

where λ = λa−λb, µ = λc−λd, and S
J(s) denotes the S-matrix restricted to the subspace

J where we used in addition the Wigner–Eckart theorem. From the Eq. (B.6) we infer the
partial-wave decomposition for the decay amplitude

M(s,Θs) =
∑

J

fJ(s)D
J†
λµ(φ, θ,−φ) , (B.7)

with fJ(s) the partial wave of angular momentum J . Inserting these results into the cross
section

dσ(s,Ω) =
4π2

s
|〈Θ, φ, λc, λd|T (s)|0, 0, λa, λb〉|2dΩ , (B.8)

we obtain

σ(s) =

∫

|fλcλd;λaλb(s, ϕ,Θ)|2 dΩ , (B.9)

with

fλc,λd;λa,λb(s, ϕ,Θ) =
1√
s

∑

J

(

J +
1

2

)

〈λc, λd|T J(s)|λa, λb〉ei(λ−µ)ϕdJλµ(Θ) . (B.10)

In the case of V π → ππ we have λ = ±1, 0 and µ = 0. The zero helicity component does
not contribute due to the vanishing phase space factor. It suffices to consider only the case
λ = 1, see Appendix V of Ref. [126]

dJ10(Θ) = − 1
√

J(J + 1)
sinΘP ′

J (cosΘ) . (B.11)

We obtain for the cross section

σV π→ππ(s) =

∫
∣
∣
∣
∣
∣

1

2
√
s

∑

J

2J + 1
√

J(J + 1)
〈0, 0|T J(s)|1, 0〉P ′

J(cosΘ)

∣
∣
∣
∣
∣

2

sin2ΘdΩ . (B.12)
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The partial-wave expansion of the scalar amplitude F(s, t, u) can now be read off by com-
paring Eq. (B.12) to

σ =
1

64π2s

|~k′1|out
|~k1|in

∫

|M(s, t, u)|2 dΩ , (B.13)

with

|~k′1|out =
λ

1
2 (s,m′2

1 , m
′2
2 )

2
√
s

, |~k1|in =
λ

1
2 (s,m2

1, m
2
2)

2
√
s

.

We obtain for the cross section with m′
1 = m′

2 = m2 =Mπ and m1 =MV

σ =
1

64π2s

λ
1
2 (s,M2

π ,M
2
π)

λ
1
2 (s,M2

V ,M
2
π)

∫

|M(s, t, u)|2 dΩ . (B.14)

As we have three polarization states we have to divide by a factor 3 to obtain the unpolarized
cross section. With |M(s, t, u)|2 from Eq. (2.7) we find

σ(s) =
1

3072π2s
(s− 4m2

π)
3
2

∫

|F (s, t, u)|2 sin Θ2dΩ . (B.15)

Comparing the Θ-dependent pieces of Eq. (B.12) and Eq. (B.15) we arrive at

F(s, t, u) =
∑

J

fJ(s)P
′
J(cosΘ) . (B.16)





Appendix C

Supplementary notes on

D+ → Kππ+

In this appendix we specify the phase convention of charge conjugation for the pion and
kaon states and complete the reconstruction of the D+ → Kππ+ decay amplitudes into
single-variable amplitudes. We show the explicit construction of the inhomogeneities, the
derivation of the invariance group, and the fit results of the combined analysis of CLEO
and FOCUS data.

C.1 Phase conventions for isospin and charge conju-

gation

The phase convention we employ for the isospin and charge conjugation operator follows
Ref. [127]. We adopt the Condon–Shortley phase convention from here on. Let UC be
the charge conjugation operator and I3 the third component of the isospin operator. By
definition we have

UCI3U
−1
C = −I3 . (C.1)

To determine how the isospin eigenstates behave under charge conjugation we investigate
the impact of UC on the ladders operators I±. The ladder operators of the charge conjugate
particle multiplet are given by

IC± ≡ UCI±U
−1
C .

They must satisfy
[
IC3 , I

C
±
]
= ±IC± , (C.2)

with IC3 = UCI3U
−1
C . Combining Eq. (C.1) and Eq. (C.2) we obtain

[
I3, I

C
±
]
= ∓IC± . (C.3)
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Thus up to a phase we can identify IC± with I∓ and choose the standard convention

IC± ≡ UCI±U
−1
C = −I∓ . (C.4)

We now define the kaon isospin wave functions by

|K+〉 =
∣
∣
∣
∣

1

2
,
1

2

〉

, |K−〉 =
∣
∣
∣
∣

1

2
,−1

2

〉

, |K̄0〉 =
∣
∣
∣
∣

1

2
,
1

2

〉

, |K0〉 =
∣
∣
∣
∣

1

2
,−1

2

〉

,

where |I, Iz〉 denotes the eigenstate with isospin I and z-component Iz. Thus we obtain
with Eq. (C.4)

I+UC |K+〉 = −UCI−|K+〉 = −UC |K0〉 . (C.5)

Thus we can choose the charge conjugation phases in accordance with the Gell-Mann–
Nishijima formula [128]

UC |K0〉 = −|K̄0〉, UC |K+〉 = |K−〉 ,

With the pion isospin triplet defined as follows

|π+〉 = |1, 1〉, |π0〉 = |1, 0〉, |π−〉 = |1,−1〉,

we again deduce the phases of the pion triplet under charge conjugation

I+UC |π+〉 = −UCI−|π+〉 = −UC |π0〉 ,
I−UC |π−〉 = −UCI +−|π−〉 = −UC |π0〉 .

With the physical necessity UC |π0〉 = |π0〉 we have

UC |π+〉 = −|π−〉 , UC |π−〉 = −|π+〉 .

C.2 Reconstruction theorem

We resume the study of the reconstruction theorem and discuss the inclusion of the πK
D-wave as well as the reconstruction of the D+ → K̄0π0π+ decay amplitude.

C.2.1 Extension to the πK D-wave

In the following we discuss the inclusion of πK D-wave in the reconstruction theorem. We
start out with the fixed-u dispersion relation of Eq. (4.8) extended to L ≤ 2

M−++(s, t, u0) = pn−1(s, t, u0) +
tn

π

∫ ∞

tth

Im f0(t
′)

t′n(t′ − t)
dt′
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+
tn

π

∫ ∞

tth

(
t′(s′(t′)− u0)−∆

)
Im f1(t

′)

κt(t′)t′n(t′ − t)
dt′

+
tn

π

∫ ∞

tth

(
3
(
t′(s′(t′)− u0)−∆

)2 − κ2t (t
′)
)
Im f2(t

′)

κ2t (t
′)t′n(t′ − t)

dt′ + (t↔ s) . (C.6)

Following the derivation without D-wave in Section 4.3.1 we need to rewrite the dispersion
integrals into general polynomial factors and a dispersion integral dependent on only one
variable. We start with the additional D-wave piece

tn

π

∫ ∞

tth

(
3
(
t′(t− t′ + s− u0)−∆

)2 − κ2t (t
′)
)
Im f2(t

′)

κ2t (t
′)t′n(t′ − t)

dt′

=
tn

π

∫ ∞

tth

3
(
t′2(t− t′)2 + t′2(t− t′)(s− u0) + t′2(s− u0)

2
)
Im f2(t

′)

κ2t (t
′)t′n(t′ − t)

dt′

+
tn

π

∫ ∞

tth

(
6(−t′(t− t′)∆− t′(s− u0)∆) + 3∆2 − κ2t (t

′)
)
Im f2(t

′)

κ2t (t
′)t′n(t′ − t)

dt′ . (C.7)

In the following we separate the t-independent dispersive integrals which are absorbed in the
overall subtraction polynomial. Furthermore we aim to retain a D-wave polynomial factor
in front of the dispersion integral. For further convenience we define κ2t (t) ≡

∑4
i=0 ait

′i and
obtain

=
tn

π

∫ ∞

tth

3
(
t′2(t− t′)2 + t′2(t− t′)(s− u0) + t′2(s− u0)

2
)
Im f2(t

′)

κ2t (t
′)t′n(t′ − t)

dt′

+
tn

π

∫ ∞

tth

(
6(−t′(t− t′)∆− t′(s− u0)∆) + 3∆2 − κ2t (t

′)
)
Im f2(t

′)

κ2t (t
′)t′n(t′ − t)

dt′

= − tn

π

∫ ∞

tth

(
3(t− t′) + (s− u0)

)
Im f2(t

′)

κ2t (t
′)t′n−2

dt′

︸ ︷︷ ︸

O(tn+1)+O(tn(s−u0))

+ 3t2(s− u0)
2 t
n−2

π

∫ ∞

tth

Im f2(t
′)

κ2t (t
′)t′n−2(t′ − t)

dt′ − 6∆
tn

π

∫ ∞

tth

Im f2(t
′)

κ2t (t
′)t′n−1

dt′

︸ ︷︷ ︸

O(tn)

− 6t(s− u0)∆
tn−2

π

∫ ∞

tth

Im f2(t
′)

κ2t (t
′)t′n−2

(
1

t′ − t
− 1

t′
︸︷︷︸

O(tn−1(s−u0))

)

dt′

+ 3∆2 t
n−2

π

∫ ∞

tth

Im f2(t
′)

κ2t (t
′)t′n−2

(
1

t′ − t
− 1

t′

)

dt′ − 3∆2 t
n−1

π

∫ ∞

tth

Im f2(t
′)

κ2t (t
′)t′n

dt′

︸ ︷︷ ︸

O(tn−1)
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− tn

π

∫ ∞

tth

(
∑4

i=0 ait
′i
)

Im f2(t
′)

κ2t (t
′)t′n(t′ − t)

dt′

= pn+1(s, t, u0) + 3
(
t(s− u0)−∆

)2 tn−2

π

∫ ∞

tth

Im f2(t
′)

κ2t (t
′)t′n−2(t′ − t)

dt′

−
( 4∑

i=0

ait
′i
)
tn−2

π

∫ ∞

tth

Im f2(t
′)

κ2t (t
′)t′n−2(t′ − t)

dt′ ,

(C.8)

where in the last term we pulled out the ai factors and subtracted each term accordingly.
The additional polynomial terms are absorbed in pn+1(s, t, u0). We thus get

tn

π

∫ ∞

tth

(
3
(
t′(t− t′ + s− u0)−∆

)2 − κ2t (t
′)
)
Im f2(t

′)

κ2t (t
′)t′n(t′ − t)

dt′

= pn+1(s, t, u0) +

[

3
(
t(s− u0)−∆

)2 − κ2t (t)

]
tn−2

π

∫ ∞

tth

Im f2(t
′)

κ2t (t
′)t′n−2(t′ − t)

dt′ . (C.9)

The S- and P -wave decomposition has already been performed in Section 4.3.1 and we
therefore obtain

M−++(s, t, u0) = pn+1(s, t, u0) +
tn+1

π

∫ ∞

tth

Im f0(t
′)

t′n+1(t′ − t)
dt′

+
(
t(s− u0)−∆

)tn−1

π

∫ ∞

tth

Im f1(t
′)

κt(t′)t′n−1(t′ − t)
dt′

[

3
(
t(s− u0)−∆

)2 − κ2t (t)

]
tn−2

π

∫ ∞

tth

Im f2(t
′)

κ2t (t
′)t′n−2(t′ − t)

dt′ + (t↔ s) ,

(C.10)

Similarly the fixed-t dispersion relations reads

M−++(s, t0, u) = pn+1(s, t0, u) +
un

π

∫ ∞

uth

Imh0(u
′)

u′n(u′ − u)
du′

+
sn+2

π

∫ ∞

sth

Im f0(s
′)

s′n+2(s′ − s)
ds′

+
(
s(t0 − u)−∆

)sn−1

π

∫ ∞

sth

Im f1(s
′)

κs(s′)s′n−1(s′ − s)
dt′

+

[

3
(
s(t0 − u)−∆

)2 − κ2s(s)

]
sn−2

π

∫ ∞

sth

Im f2(s
′)

κ2s(s
′)s′n−2(s′ − s)

ds′ . (C.11)
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Fixed-s and fixed-t dispersion relation are symmetric since M−++(s, t, u) = M−++(t, s, u).
Symmetrization of fixed-u, -t and -s dispersion relations yields

M−++(s, t, u) = pn+1(s, t, u) +
un

π

∫ ∞

uth

Imh0(u
′)

u′n+2(u′ − u)
du′

+

{
sn+1

π

∫ ∞

sth

Im f0(s
′)

s′n+1(s′ − s)
ds′

+
(
s(t− u)−∆

)sn−1

π

∫ ∞

sth

Im f1(s
′)

κs(s′)s′n−1(s′ − s)
ds′

+

[

3
(
s(t− u)−∆

)2 − κ2s(s)

]
sn−2

π

∫ ∞

sth

Im f2(s
′)

κ2s(s
′)s′n−2(s′ − s)

ds′ + (t↔ s)

}

,

(C.12)

and with the isospin decomposition given in Eq. (4.16) and the phase convention given in
Appendix C.1

M−++(s, t, u) = pn+1(s, t, u) +
un

π

∫ ∞

uth

Imh20(u
′)

u′n+2(u′ − u)
du′

+

{
1√
3

sn+1

π

∫ ∞

sth

Im f
1/2
0 (s′)

s′n+1(s′ − s)
ds′ −

√

2

15

sn+1

π

∫ ∞

sth

Im f
3/2
0 (s′)

s′n+1(s′ − s)
ds′

+
1√
3

(
s(t− u)−∆

)sn−1

π

∫ ∞

sth

Im f
1/2
1 (s′)

κs(s′)s′n−1(s′ − s)
ds′

−
√

2

15

(
s(t− u)−∆

)sn−1

π

∫ ∞

sth

Im f
3/2
1 (s′)

κs(s′)s′n−1(s′ − s)
ds′

−
√

2

15

[

3
(
s(t− u)−∆

)2 − κ2s(s)

]
sn−2

π

∫ ∞

sth

Im f
3/2
2 (s′)

κ2s(s
′)s′n−2(s′ − s)

ds′

+
1√
3

[

3
(
s(t− u)−∆

)2 − κ2s(s)

]
sn−2

π

∫ ∞

sth

Im f
1/2
2 (s′)

κ2s(s
′)s′n−2(s′ − s)

ds′

+ (t↔ s)

}

. (C.13)

Generally, in the s- and t-channel the order of subtraction for the next higher angular
momentum single-variable amplitudes reduces by 1 while the order of subtraction for the
u-channel single-variable amplitudes stays the same. This originates from the cosines of the
scattering angles given in Eq. (4.2). In our particular case the πK S-waves is oversubtracted
and therefore an exception of the above rule.
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To obtain a non-zero D-wave the number of subtractions has to be at least n = 2, see
Eq. (C.13). The most general order 3 polynomial with explicit s↔ t symmetry reads

p3(s, t, u) =a0 + a1(s+ t) + a2(s
2 + t2) + a3(s

3 + t3) + b1
(
s(t− u) + t(s− u)

)

+ b2
(
s2(t− u) + t2(s− u)

)
. (C.14)

The ai can be interpreted as πK S-wave subtraction constants if we subtract the S-wave one
time further. Similarly b1 and b2 can be seen as parts of the P -wave subtraction constants
(tuned by ai) of order zero and one respectively. But again we have to subtract one time
further. Finally we obtain

M−++(s, t, u) = F2
0 (u) +

{
1√
3
F1/2

0 (s)−
√

2

15
F3/2

0 (s)

+
[
s(t− u)−∆

]
(

1√
3
F1/2

1 (s)−
√

2

15
F3/2

1 (s)

)

+
1

2

[
3
(
s(t− u)−∆

)2 − κ2s(s)
]
(

1√
3
F1/2

2 (s)−
√

2

15
F3/2

2 (s)

)

+ (s↔ t)

}

,

(C.15)

with the single-variable amplitudes given by

F0
0 (u) ≡

u2

π

∫ ∞

uth

Imh00(u
′)

u′2(u′ − u)
du′ ,

F1/2
0 (s) ≡ d0 + d1s+ d2s

2 + d3s
3 +

s4

π

∫ ∞

sth

Im 1/2f0(s
′)

s′4(s′ − s)
ds′ ,

F3/2
0 (s) ≡ s4

π

∫ ∞

sth

Im f
3/2
0 (s′)

s′4(s′ − s)
ds′ ,

F1/2
1 (s) ≡ d4 + d5s+

s2

π

∫ ∞

sth

Im f
1/2
1 (s′)

κs(s′)s′2(s′ − s)
ds′ ,

F3/2
1 (s) ≡ s2

π

∫ ∞

sth

Im f
3/2
1 (s′)

κs(s′)s′2(s′ − s)
ds′ ,

F1/2
2 (s) ≡ 1

π

∫ ∞

sth

Im f
1/2
2 (s′)

κ2s(s
′)(s′ − s)

ds′ ,

F3/2
2 (s) ≡ 1

π

∫ ∞

sth

Im f
3/2
2 (s′)

κ2s(s
′)(s′ − s)

ds′ . (C.16)

As it turns out, there is a big issue with this decomposition concerning the convergence
of the integrals. Due to the characteristic D-wave prefactors of the F I

2 amplitudes the D-
waves violate the assumed high-energy behavior, motivated by the Froissart bound. This
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has a serious impact on the whole coupled integral system. Since the D-wave contributes
also to the imaginary parts of all other single-variable amplitudes via crossed-channel ef-
fects the dispersion integrals of these can become divergent. Thus we need to introduce
further subtractions to ensure the convergence of the dispersive integrals. However these
single-variable amplitudes equally violate the assumed high-energy behavior and we obtain
additional unknown subtraction constants, which have to fitted to experimental data or
determined from theoretical considerations.

C.2.2 D+ → K̄0π0π+ reconstruction theorem

We start out with the fixed-u dispersion relation

M0̄0+(s, t, u0) =pn−1(s, t, u0) +
tn

π

∫ ∞

tth

ImM0̄0+(s
′(t′), t′, u0)

t′n(t′ − t)
dt′

+
sn

π

∫ ∞

sth

ImM0̄0+(s
′, t′(s′), u0)

s′n(s′ − s)
ds′ , (C.17)

where pn−1(s, t, u) denotes a polynomial of order n − 1 in s, t and u0. The following
partial-wave decomposition of the s- and t-channel amplitudes read

M0̄0+(s(t), t, u0) =
∑

L

fL(t)PL(zt), M0̄0+(s, t(s), u0) =
∑

L

gL(s)PL(zs) . (C.18)

Inserting the partial-wave decomposition Eq. (C.18) into Eq. (C.17) we find

M0̄0+(s, t, u0) = pn−1(s, t, u0) +
tn

π

∫ ∞

tth

Im f0(t
′)

t′n(t′ − t)
dt′ +

sn

π

∫ ∞

sth

Im g0(s
′)

s′n(s′ − s)
ds′

+
tn

π

∫ ∞

tth

(
t′(s′(t′)− u0)−∆

)
Im f1(t

′)

κt(t′)t′n(t′ − t)
dt′

+
sn

π

∫ ∞

sth

(
s′(t′(s′)− u0)−∆

)
Im g1(t

′)

κs(s′)s′n(s′ − s)
ds′ . (C.19)

Analogously to what has been done in Section 4.3.1 we obtain

M0̄0+(s, t, u0) = pn(s, t, u0) +
tn+1

π

∫ ∞

tth

Im f0(t
′)

t′n+1(t′ − t)
dt′ +

sn+1

π

∫ ∞

sth

Im g0(s
′)

s′n+1(s′ − s)
ds′

+
(
t(s− u0)−∆

)tn−1

π

∫ ∞

tth

Im f1(t
′)

κt(t′)t′n−1(t′ − t)
dt′

+
(
s(t− u0)−∆

)sn−1

π

∫ ∞

sth

Im g1(s
′)

κs(s′)s′n−1(s′ − s)
ds′ (C.20)
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Similarly for fixed-t dispersion relations we obtain

M0̄0+(s, t, u0) =pn−1(s, t0, u) +
un

π

∫ ∞

uth

ImM−++(s
′(u′), t0, u

′)

u′n(u′ − u)
dt′

+
sn

π

∫ ∞

sth

ImM−++(s
′, t0, u

′(s′))

s′n(s′ − s)
ds′ . (C.21)

With the partial-wave decompositions

M0̄0+(s(u), t0, u) =
∑

L

hL(u)PL(zu), M0̄0+(s, t0, u(s)) =
∑

L

gL(s)PL(zs) , (C.22)

we find with t0 − s′(t′) = t0 − s+ u− u′

M0̄0+(s, t0, u) = pn(s, t0, u) +
un

π

∫ ∞

uth

Imh0(u
′)

u′n(u′ − u)
du′ + (t0 − s)

un

π

∫ ∞

uth

Imh1(u
′)

u′n(u′ − u)
du′

+
sn+1

π

∫ ∞

sth

Im g0(s
′)

s′n+1(s′ − s)
ds′

+
(
s(t0 − u)−∆

)sn−1

π

∫ ∞

sth

Im g1(s
′)

κs(s′)s′n−1(s′ − s)
ds′ . (C.23)

The fixed-s dispersion relation is given by

M0̄0+(s0, t, u) = pn(s0, t, u) +
un

π

∫ ∞

uth

Imh0(u
′)

u′n(u′ − u)
du′ + (t− s0)

un

π

∫ ∞

uth

Imh1(u
′)

u′n(u′ − u)
du′

+
tn+1

π

∫ ∞

tth

Im g0(t
′)

t′n+1(t′ − t)
dt′

+
(
t(s0 − u)−∆

)tn−1

π

∫ ∞

tth

Im g1(t
′)

κt(t′)t′n−1(t′ − t)
dt′ . (C.24)

Symmetrization of fixed u, t and s dispersion relations yields

M0̄0+(s, t, u) = pn(s, t, u) +
un

π

∫ ∞

uth

Imh20(u
′)

u′n(u′ − u)
du′ + (t− s)

un

π

∫ ∞

uth

Imh11(u
′)

u′n(u′ − u)
du′

+
sn+1

π

∫ ∞

sth

Im g0(s
′)

s′n+1(s′ − s)
ds′ +

tn+1

π

∫ ∞

tth

Im f0(t
′)

t′n+1(t′ − t)
dt′

+
(
s(t− u)−∆

)sn−1

π

∫ ∞

sth

Im f1(s
′)

κs(s′)s′n−1(s′ − s)
ds′

+
(
t(s− u)−∆

)tn

π

∫ ∞

tth

Im f1(t
′)

κt(t′)t′n(t′ − t)
dt′ . (C.25)
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With the isospin decomposition of Eq. (4.16) and the phase conventions given in Ap-
pendix C.1 we finally obtain

M0̄0+(s, t, u) = pn(s, t, u)−
1

2
√
2

un

π

∫ ∞

uth

Imh20(u
′)

u′n(u′ − u)
du′

+

√
3

2
√
2
(t− s)

un

π

∫ ∞

uth

Imh11(u
′)

u′n(u′ − u)
du′ +

√

3

5

sn+1

π

∫ ∞

sth

Im f
3/2
0 (s′)

s′n+1(s′ − s)
ds′

+

√

3

5

(
s(t− u)−∆

)sn−1

π

∫ ∞

sth

Im f
3/2
1 (s′)

κs(s′)s′n−1(s′ − s)
ds′

1√
6
+
tn+1

π

∫ ∞

tth

Im f
1/2
0 (t′)

t′n+1(t′ − t)
dt′ +

2√
15

tn+1

π

∫ ∞

tth

Im f
3/2
0 (t′)

t′n+1(t′ − t)
dt′

+
1√
6

(
t(s− u)−∆

)tn

π

∫ ∞

tth

Im f
1/2
1 (t′)

κt(t′)t′n(t′ − t)
dt′

+
2√
15

(
t(s− u)−∆

)tn

π

∫ ∞

tth

Im f
3/2
1 (t′)

κt(t′)t′n(t′ − t)
dt′ , (C.26)

where the s- and t-channel partial-wave amplitudes have been re-expressed by

gL(s) ≡
√

3

5
f
3/2
L (s) , fL(t) ≡

1√
6
f
1/2
L (t) +

2√
15
f
3/2
L (t) . (C.27)

Considering n = 2 in accordance with the assumed asymptotic behavior, based on the
Froissart bound, one general, but not the only general, order two polynomial with the
condition 3s0 = s+ t+ u reads

pn(s, t, u) = a0 + a1t + a2t
2 + b1(t− s) + b2u(t− s) + c2s(t− u) . (C.28)

We can interpret the constants ai as isospin 1/2 πK S-wave subtraction constants, b1
and b2 as subtraction constants of the isospin 1 ππ P -wave and c2 as πK isospin 1/2 S-
wave subtraction constant tuned by a0, thus giving the same single-variable amplitudes
as in Eq. (4.20). Note that assigning the subtraction constants to certain single-variable
amplitudes is not unique and different choices are equivalent. The inclusion of πK D-wave
amplitudes works analogously to the discussion above in Appendix C.2.1.

C.3 Inhomogeneities

In this appendix we determine the inhomogeneities from Eq. (4.31). To demonstrate the

procedure we will perform the calculation explicitly in the case of f
I=1/2
L (s),

f
1/2
L (s) =

√
3M1/2,L

−++ (s) = κLs (s)
(
F1/2
L (s) + F̂1/2

L (s)
)
. (C.29)
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We start with the projection of the decay amplitude M−++, Eq. (4.22), onto isospin eigen-
states in the s-channel. We introduce the following crossing matrices:

M I
s ≡

∑

I′

XII′

st M
I′

t , M I
t ≡

∑

I′

XII′

tu M
I′

u (C.30)

and so on, where M I
x is the isospin I eigenstate in the x-channel and XII′

xy the crossing
matrix for the transition from channel y to x, where I and I ′ are the matrix component
indices. We obtain the following explicit forms:

Xst =
1

3

(
2 −

√
10

−
√

5
2

−2

)

= Xts , Xus =
1

3

(
1

√
10

√
3 −

√
6
5

)

. (C.31)

The t-channel and u-channel single-variable amplitudes can be split, with the aid of the
crossing matrices, into Is = 1/2 and Is = 3/2 contributions,

F1/2
L (t)√
3

−
√

2

15
F3/2
L (t) =

2

3
√
3

(

F1/2
L (t)−

√

5

2
F3/2
L (t)

)

︸ ︷︷ ︸

Is=1/2

+
1

3
√
30

(√
10F1/2

L (t) + 4F3/2
L (t)

)

︸ ︷︷ ︸

Is=3/2

,

F2
0 (u) =

1

6

(√
3(t− s)F1

1 (u) + 5F2
0 (u)

)

︸ ︷︷ ︸

Is=1/2

−1

6

(√
3(t− s)F1

1 (u)− F2
0 (u)

)

︸ ︷︷ ︸

Is=3/2

,

(C.32)

with L ∈ {0, 1}. Retaining the I = 1/2 pieces only, we have

MIs=1/2
−++ (s, t, u) =

1√
3
F1/2

0 (s) +
2

3
√
3

(

F1/2
0 (t)−

√

5

2
F3/2

0 (t)
)

+
1√
3

[
s(t− u)−∆

]
F1/2

1 (s)

+
2

3
√
3

[
t(s− u)−∆

](

F1/2
1 (t)−

√

5

2
F3/2

1 (t)
)

+
1

6

(√
3(t− s)F1

1 (u) + 5F2
0 (u)

)
. (C.33)

Since there is no isospin 1 component in the u-channel amplitudes ofM−++, the projections
onto this specific component yield zero and therefore provide an additional cross-check.
Similarly no Is = 1/2 component should appear in M0̄0+. We are left with the angular
momentum projection defined generally by, see Eq. (4.32),

〈znM〉xy(y) ≡
1

2

∫ 1

−1

dzy z
n
yM(x(y, zy)) . (C.34)
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We immediately obtain

〈znf〉us = 〈znf〉ut , 〈znf〉ts = 〈znf〉st , and 〈znf〉tu = (−1)n 〈znf〉su . (C.35)

The angular average integration is straightforwardly performed in the scattering region.
The continuation to the decay region, where the naive integration would cross the right-
hand cut, has been discussed extensively before [34, 40]. We now perform the partial-wave
projection

MIs=1/2,L
−++ (s, t, u) ≡ 2L+ 1

2

∫ 1

−1

dzsPL(zs)MIs=1/2
−++

(
s, t(s, zs), u(s, zs)

)
, (C.36)

with the Legendre polynomials PL(zs) and angular momentum L. For the S-wave we obtain

√
3M1/2,0

−++(s) =
5
√
3

6

〈
F2

0

〉

us
+

1

2

〈(
Asz +Ds

)
F1

1

〉

us
+ F1/2

0 (s) +
1

3

[〈

2F1/2
0 −

√
10F3/2

0

〉

ts

+
〈(
A2
sz

2 +Bsz + Cs
)(
2F1/2

1 −
√
10F3/2

1

)〉

ts

]

, (C.37)

where

Ax =
κx(x)

2x
, Bx =

κx(x)(x
2 +∆)

2x2
,

Cx =
(x2 −∆)2 − x2(Σ0 − 2x)2

4x2
, Dx = −3x2 −∆− xΣ0

2x
, (C.38)

with Σ0 = M2
D +M2

K + 2M2
π , x ∈ {s, t}. Thus from Eq. (C.37), the inhomogeneity can be

immediately read off from the relation
√
3M1/2,0

−++(s) = F1/2
0 (s) + F̂1/2

0 (s). The full set of
inhomogeneities is given in terms of the angular averages

F̂2
0 (u) =

2√
3

[〈

F1/2
0 −

√

2

5
F3/2

0

〉

su

−
〈(
Auz

2 −Buz − Cu
)
z2
(

F1/2
1 −

√

2

5
F3/2

1

)〉

su

]

,

F̂1
1 (u) =

2

κu(u)

[ 〈

z
(
F1/2

0 +
√
10F3/2

0

)〉

su

−
〈(
Auz

3 −Buz
2 − Cuz

)(
F1/2

1 +
√
10F3/2

1

)〉

su

]

,

F̂1/2
0 (s) =

5
√
3

6

〈
F2

0

〉

us
+

1

2

〈(
Asz +Ds

)
F1

1

〉

us
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+
1

3

[〈

2F1/2
0 −

√
10F3/2

0

〉

ts
+
〈(
A2
sz

2 +Bsz + Cs
)(
2F1/2

1 −
√
10F3/2

1

)〉

ts

]

,

F̂1/2
1 (s) =

1

κs(s)

[
5
√
3

2

〈
zF2

0

〉

us
+

3

2

〈(
Asz

2 +Dsz
)
F1

1

〉

us

+
〈

2zF1/2
0 −

√
10zF3/2

0

〉

ts
+
〈(
A2
sz

3 +Bsz
2 + C2z

)(
2F1/2

1 −
√
10F3/2

1

)〉

ts

]

,

F̂3/2
0 (s) =−

√
5

2
√
6

〈
F2

0

〉

us
+

√
5

2
√
2

〈(
Asz +Ds

)
F1

1

〉

us

− 1

6

[ 〈√
10F1/2

0 + 4F3/2
0

〉

ts
+
〈(
A2
sz

2 +Bsz + Cs
)(√

10F1/2
1 + 4F3/2

1

)〉

ts

]

.

F̂1/2
2 (s) =

1

κ2s(s)

[
25

2
√
3

〈
(3z2 − 1)F2

0

〉

us
+

5

2

〈(
Asz +Ds

)(
3z2 − 1

)
F1

1

〉

us

+
10

3

〈

(3z2 − 1)F1/2
0

〉

ts
− 15

√
10

3

〈

(3z2 − 1)F3/2
0

〉

ts

+
10

3

〈(
A2
sz

2 +Bsz + Cs
)
(3z2 − 1)F1/2

1

〉

ts

]

, (C.39)

where in addition to Eq. (C.38) we have used

Au =
1

4
κu(u)

2 , Bu =
1

2
uκu(u) , Cu =

(Σ0 − 2u)2 − u2

4
−∆ . (C.40)

C.4 Invariance group matching

In this appendix, we study the polynomial ambiguities in the decomposition of the total
decay amplitudes Eq. (4.22) into single-variable functions, dubbed “invariance group”. We
wish to determine the polynomial at most linear in the Mandelstam variables that can
be added to the different single-variable amplitudes, leaving the total decay amplitudes
Eq. (4.22) invariant. For this purpose, we make use of the relation s + t + u = 3s0 =
M2

D + M2
K + 2M2

π . It is easy to check that adding the following terms to the various
S-waves as well as the ππ P -wave:

F2
0
inv
(u) = a0 + b0u , F1

1
inv
(u) = − 5√

3
b0 + 2d0 ,

F1/2
0

inv
(s) = c0 + d0s , F3/2

0

inv
(s) =

√
5

2
√
2

(√
3
[
a0 + b0(3s0 − 2s)

]
+ 2(c0 + d0s)

)

, (C.41)

leaves both M−++(s, t, u) and M0̄0+(s, t, u) unchanged. The most general full decay am-
plitudes are therefore obtained by

F I
L

new
(s) = F I

L(s) + F I
L

inv
(s) , (C.42)
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which, according to Eq. (C.41), has a four-parameter gauge freedom built in.

Following Ref. [116], we rewrite the polynomial representations of F I
L
inv
(s) Eq. (C.41)

into the Omnès representation F I
L
inv

Ω (s) in order to match to Eq. (4.30):

F I
L

inv

Ω (s) ≡ ΩIL(s)

{

πIL(s) +
sn

π

∫ ∞

sth

dx

xn
sin δIL(x)F̂ I inv

L

|ΩIL(x)|(x− s)

}

, (C.43)

with the subtraction polynomials πIL(s). As the invariance polynomials F I
L
inv
(s) do not have

discontinuities, it immediately follows that F̂ I inv

L (s) = −F I
L
inv
(s), which is also confirmed

by a straightforward calculation. We determine the subtraction polynomials by equating
the polynomial and Omnès representations of the invariance group. We obtain

πIL(s) =
F I
L
inv
(s)

ΩIL
+
sn

π

∫ ∞

sth

dx

xn
sin δIL(x)F I

L
inv

|ΩIL(x)|(x− s)
. (C.44)

The next step is to rewrite the inverse Omnès function into a dispersion relation. Its
discontinuity is given by

disc
1

ΩIL(s)
= −2i

sin δIL(x)

|ΩIL(x)|
, (C.45)

which thus yields
1

ΩIL(s)
= P I

LΩ(s)−
sn

π

∫ ∞

sth

dx

xn
sin δIL(x)

|ΩIL(x)|(x− s)
, (C.46)

with the subtraction polynomial P I
LΩ(s) = 1 +

∑n−1
i=1 (ω

I
L)is

i. The subtraction constants
(ωIL)i are given by the following sum rules, provided that the dispersion integrals converge:

(ωIL)i = −1

π

∫ ∞

sth

dx

xi+1

sin δIL(x)

|ΩIL(x)|
. (C.47)

Therefore Eq. (C.44) yields

πIL(s) = P I
LΩ(s)F I

L

inv
(s) +

sn

π

∫ ∞

sth

dx

xn
sin δIL(x)

(
F I inv

L (x)−F I
L
inv(s)

)

|ΩIL(x)|(x− s)
. (C.48)

As an example we will study the single-variable amplitude F2
0 with F2inv

0 (s) = a0+ b0s. We
obtain

π2
0(s) = a0 +

[

b0 + a0(ω
2
0)1

]

s+

(

(ω2
0)1 −

1

π

∫ ∞

sth

dx

x2
sin δIL(x)

|ΩIL(x)|

)

b0s
2 . (C.49)

Using the sum rule value for (ω2
0)1 we find

π2
0(s) = a0 +

[

b0 + a0(ω
2
0)1

]

s . (C.50)
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Fit FF2
0 2× FF

1/2
0 2× FF

1/2
1 2× FF

3/2
0 2× FF

1/2
2

Full 1 (28± 8)% (240± 120)% (22± 4)% (80± 50)% —

Full 2 (7± 4)% (69± 13)% (10± 2)% (11± 5)% (0.1± 0.05)%

Omnès 1 (70± 40)% (260± 80)% (7± 1)% (490± 190)% —

Omnès 2 (60± 30)% (220± 120)% (9± 1)% (360± 140)% (0.3± 0.1)%

Table C.1: Fit fractions of the combined CLEO/FOCUS fits: The resulting fit fractions of

Eq. (5.4) are given for the different fit scenarios; the errors on the parameters are evaluated

by varying the basis functions within their error bands.

The other subtraction polynomials are obtained in an analogous way and read

π2
0(s) = a0 + (b0 + a0(ω

2
0)1)s , π1

1(s) = − 5√
3
b0 + 2d0 ,

π
1/2
0 (s) = c0 +

[

d0 + (ω
1/2
0 )1

]

s+
[

d0(ω
1/2
0 )1 + c0(ω

1/2
0 )2

]

s2 +
[

d0(ω
1/2
0 )2 + c0(ω

1/2
0 )3

]

s3

π
3/2
0 (s) =

√
5

2
√
2

{√
3(a0 + 3b0s0) + 2c0

+
[

(ω
3/2
0 )1

(√
3(a0 + 3b0s0) + 2c0

)

− 2
(√

3b0 − d0
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, (C.51)

with no contributions to the πK P - and D-waves. Polynomial terms with higher order
than the subtraction polynomials of the corresponding amplitudes (see Section 4.3.5) have
been omitted.

As we have argued above that a choice of the constants a0, . . . , d0 corresponds to a
mere “gauge” choice and is unobservable, we can decide to fix them by requiring the (linear)
subtraction polynomials in the non-resonant S-waves (I = 2 ππ and I = 3/2 πK) to vanish.
Equation (C.51) proves that this is feasible: we can eliminate all subtraction constants in

F2
0 by the appropriate choice of a0 and b0, and all constants in F3/2

0 by adjusting c0 and
d0. The result is the system Eq. (4.44) in the main text, which is thus free of ambiguities.

C.5 Combined CLEO/FOCUS fits

In Tables C.1 and C.2 we show the fit results from the combined fits to CLEO and FOCUS
data performed in Section 5.1.3.
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Full 1 Full 2 Omnès 1 Omnès 2

|c0| ×GeV2 2.4± 1.0 0.8± 0.2 |c′0| 0.6± 0.3 0.5± 0.2

|c1| ×GeV4 3.4± 0.8 1.6± 0.3 |c′1| 2.8± 1.5 2.9± 0.4

c2 1 (fixed) 1 (fixed) c′2 1 (fixed) 1 (fixed)

|c3| ×GeV2 2.7± 0.4 2.1± 0.1 |c′3| ×GeV2 1.8± 0.2 2.0± 0.1

|c4| ×GeV4 2.0± 0.5 1.25± 0.15 |c′4| ×GeV4 0.9± 0.1 1.1± 0.1

|c5| ×GeV6 0.45± 0.06 0.30± 0.05 |c′5| ×GeV6 0.14± 0.03 0.19± 0.02

|c6| × 102GeV4 7.0± 0.3 1.5± 0.5 |c′6| × 102GeV4 8± 3 6± 1

|c′7| × 103GeV8 — 3.0± 1.5

arg c0 0.2± 0.3 1.1± 0.4 arg c′0 −0.7± 0.5 0.6± 0.3

arg c1 0.4± 0.3 1.3± 0.4 arg c′1 −0.8± 0.3 −0.4± 0.2

arg c3 −0.2± 0.2 −0.1± 0.1 arg c′3 0.3± 0.2 0.1± 0.1

arg c4 −0.3± 0.2 −0.1± 0.2 arg c′4 0.5± 0.2 0.3± 0.1

arg c5 0.0± 0.3 0.0± 0.1 arg c′5 0.4± 0.4 0.1± 0.3

arg c6 −1.4± 1.1 −0.7± 0.5 arg c′6 −0.3± 0.2 −0.2± 0.1

arg c′7 — 2.6± 0.2

χ2
CLEO/d.o.f. 1.19± 0.02 1.15± 0.02 1.27± 0.04 1.12± 0.02

χ2
FOCUS/d.o.f. 1.31± 0.02 1.30± 0.02 1.33± 0.03 1.26± 0.01

χ2
combined/d.o.f. 1.23± 0.02 1.21± 0.02 1.3± 0.02 1.17± 0.02

Table C.2: Combined fit to the CLEO and FOCUS Dalitz plots: Numerical fit results for the

subtraction constants ci and the corresponding χ2/d.o.f.. Two fit scenarios are considered:

the full dispersive fit, without D-wave (full 1) and with D-wave (full 2). The errors on the

parameters are evaluated by varying the basis functions within their error bands.





Bibliography

[1] H. Fritzsch, M. Gell-Mann and H. Leutwyler, Phys. Lett. B 47, 365 (1973).

[2] S. L. Glashow, Nucl. Phys. 22, 579 (1961).

[3] S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967).

[4] A. Salam, Conf. Proc. C 680519, 367 (1968).

[5] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012), [arXiv:1207.7214].

[6] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716, 30 (2012),
[arXiv:1207.7235].

[7] C. Hanhart, [arXiv:1512.02190].

[8] S. Bethke, G. Dissertori and G. Salam, Quantum Chromodynamics in: K. A. Olive
et al. [Particle Data Group Collaboration], Chin. Phys. C 38, 090001 (2014).

[9] H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).

[10] D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973).

[11] S. Weinberg, Physica A 96, 327 (1979).

[12] B. Kubis, [hep-ph/0703274].

[13] S. Scherer, Adv. Nucl. Phys. 27, 277 (2003), [hep-ph/0210398].

[14] R. J. Eden, P. V Landshoff, D. I. Olive and J. C. Polkinghorne,
The Analytic S-Matrix, Cambridge University Press, (2002).

[15] H. Lehmann, K. Symanzik, and W. Zimmerman, Nuovo Cimento 1, 205 (1955)

[16] D. Olive, Nuovo Cim. 26 73 (1962).



140 BIBLIOGRAPHY

[17] M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida, Phys. Rev. Lett. 54,
1215 (1985).

[18] M. Bando, T. Kugo and K. Yamawaki, Phys. Rept. 164, 217 (1988).

[19] M. Benayoun, H. B. O’Connell and A. G. Williams, Phys. Rev. D 59, 074020 (1999),
[hep-ph/9807537].

[20] M. Benayoun, P. David, L. DelBuono and F. Jegerlehner, Eur. Phys. J. C 72, 1848
(2012), [arXiv:1106.1315].

[21] M. F. M. Lutz and S. Leupold, Nucl. Phys. A 813, 96 (2008), [arXiv:0801.3821].

[22] N. I. Muskhelishvili, Singular integral equations, P. Noordhoff, (1953).

[23] R. Omnes, Nuovo Cim. 8, 316 (1958).

[24] J. Gasser and U.-G. Meißner, Nucl. Phys. B 357, 90 (1991).

[25] F. K. Guo, C. Hanhart, F. J. Llanes-Estrada and U.-G. Meißner, Phys. Lett. B 678
90 (2009), [arXiv:0812.3270].

[26] J. F. De Troconiz and F. J. Yndurain, Phys. Rev. D 65, 093001 (2002),
[hep-ph/0106025].

[27] C. Hanhart, Phys. Lett. B 715, 170 (2012), [arXiv:1203.6839].

[28] K. M. Watson, Phys. Rev. 95 228 (1954).

[29] B. Ananthanarayan, G. Colangelo, J. Gasser and H. Leutwyler, Phys. Rept. 353 207
(2001), [hep-ph/0005297].

[30] I. Caprini, G. Colangelo and H. Leutwyler, Eur. Phys. J. C 72 1860 (2012),
[arXiv:1111.7160].

[31] I. Caprini, G. Colangelo and H. Leutwyler, in preparation.
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