
Prompt Production of Hadronic Molecules and
Rescattering of Final States in Heavy Hadron

Decays

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

von
Zhi Yang

aus
Sichuan, China

Bonn, 2016



Dieser Forschungsbericht wurde als Dissertation von der Mathematisch-Naturwissenschaftlichen
Fakultät der Universität Bonn angenommen und ist auf dem Hochschulschriftenserver der ULB Bonn
http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert.

1. Gutachter: Prof. Dr. Ulf-G. Meißner
2. Gutachterin: Prof. Dr. Feng-Kun Guo

Tag der Promotion: 7.7.2016
Erscheinungsjahr: 2016

http://hss.ulb.uni-bonn.de/diss_online


Abstract

The B factories and high energy hadron colliders have accumulated unprecedented data samples in the
past decade, and a dramatic progress has been made in hadron spectroscopy. The discovery of many
new unexpected states in the open and hidden heavy flavor spectrum is extremely interesting as they can
not be simply explained by the conventional quark model, and it triggers a campaign of revealing their
internal structure.

It calls for more complex structures. Different explanations for the underlying structure have been
proposed, for instance tetraquark, hybrid, hadro-quarkonium and hadronic molecule. The hadrons can
form hadronic molecule, just like two nucleons form the deuteron. Especially for the exotic states very
close to the threshold of two conventional hadrons, they are very likely to be S -wave loosely bound states.
The X(3872) is one promising candidate of a hadronic molecule.

To clarify the intriguing properties and finally decipher the internal nature, more accurate data and
new processes involving the production and decays of the exotic states will be helpful. In this thesis, we
investigated the mechanism for the inclusive prompt production of the exotic state under the molecular
scenario. The mechanism is as follows: the constituent mesons would be produced by using the Monte
Carlo event generator first, and the formation of the bound state occurs afterward through the final
state interaction which can be described by the effective field theory. The well separated energy scales
associated in the process make the mechanism valid. And a factorization formula can be obtained by
using the Migdal-Watson theorem. We applied this mechanism to predict the production rate of the exotic
charm-strange hadrons DsJ , the X(3872) and and its bottom analogs and spin partner at hadron colliders.

We also investigated the kinematical effect in the triangle diagram. The effect can play a important role
in certain transitions, as it might cause an enhancement or a peak. We thus find the ideal energy range to
search for the spin partner of the X(3872) in electron–position collisions associated with one emitted
photon. In addition, we studied the hindered M1 transition between two bottomia as the kinematical
effect in the triangle diagram is expected to lead to partial widths much larger than the prediction of the
quark model. Moreover, we studied the motion of the anomalous threshold singularity of the triangle
diagram of process Λb → J/ψπK in the complex energy plane. And we found that the intermediate
states Λ(1890), χc1 and p can make the singularity appear at the χc1 p threshold, where the narrow
pentaquark-like structure Pc(4450) observed by LHCb is located.
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CHAPTER 1

Introduction

In particle physics, the standard model has enjoyed great successes in the last half century in exploring
the fundamental particles and the interactions between them, although it falls short of incorporating the
theory of gravitation. All the elementary particles including quarks, leptons, gauge bosons and the Higgs
boson in the standard model have been observed, which gives credit to the model.

Among the fundamental particles, the quarks make up the most part of our observable matter. The
strong interaction between the quarks and gluons can be described by Quantum Chromodynamics (QCD).
In the high energy region, the quarks and gluons can freely move which is known as asymptotic freedom.
In the low energy region, the interaction between the quarks and gluons becomes strong enough to bind
the quarks to hadrons and the theory cannot be solved perturbatively any more.

A scheme to classify the hadrons is the quark model which was proposed by Zweig and Gell-Mann in
1964 before the birth of QCD [1, 2]. The model successfully classifies the large number of hadrons in
terms of the small number of quarks. Mesons and baryons have baryon number 0 and 1, respectively. In
the quark model, mesons are made of valence quark-antiquark pairs qq̄ and baryons are made of three
valence quarks qqq. In the most general case, they may also have any number of quark-antiquark pairs.
The valence quarks give rise to the quantum numbers of the hadrons. In addition to flavour and spin
degrees of freedom, the quarks also carry color which is the quantum number introduced to explain the
existence of baryons with three identical quarks, for instance the ∆++ (uuu) and the Ω− (sss). However,
the hadrons are color-neutral and no colorful objects have been observed in experiments as asymptotic
states. This leads to the conjecture of color confinement.

Nevertheless, the color-neutral hadrons can have much more complicated structures than the quark
model allows. There may exist hadrons beyond the simple quark model. For example, the glueballs which
only contain valence gluons, the hybrids which contain valence quarks and gluons as well, especially the
exotic hadrons with multiquarks. At the beginning of this century, the famous X(3872) was observed by
the Belle Collaboration. Its properties are in conflict with quark model expectations for any normal cc̄
charmonium, and thus the X(3872) presents a prominent example of a hadron beyond the simple quark
model. So far, the X(3872) has received the most intensive attention. Its discovery opens a new era of
revealing the intriguing hadron structure with multiquarks.

For the multiquark states with more than three quarks, i.e. tetraquarks or pentaquarks, they can be
loosely bound states of two mesons or baryons which is the generalization of the classical light nuclei to
systems of other hadrons, or compact multiquark states. As we know, in the quantum field theory all
possible configurations can mix with each other in various ways as long as they have the same quantum
numbers. Thus strictly speaking, the wave function of a hadron is actually a superposition of all possible
configurations. Yet, if the hadron is very close the threshold of other two hadrons, one may construct an
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Chapter 1 Introduction

effective field theory to describe it with hadronic degrees of freedom. In fact, many of the newly observed
structures were suggested to be hadronic molecules, and may be described by such an approach.

In the open charm sector, the D∗s0(2317) was observed by Babar in Dsπ
0 final state [3] and Ds1(2460)

was observed by CLEO in the D∗sπ
0 channel [4]. They can not fit in the simple quark model scheme and

are possible candidates for DK and D∗K bound states, respectively. Their mass splitting is approximately
equal to the mass splitting between pseudoscalar and vector charmed mesons, which is the consequence
of heavy quark spin symmetry in the picture of hadronic molecule.

In the hidden charm and bottom sector, one also has the so-called XYZ state or quarkonium-like state,
which can decay to final states containing a heavy quark Q and a heavy antiquark Q̄, with Q the charm or
bottom quark, but cannot be easily accommodated as a conventional quarkonium. Unlike the light quarks,
charm and bottom quarks are so heavy that their pair production from the vacuum would be heavily
suppressed. Therefore the heavy quarks in the final states are likely to exist as initial constituents. Some
of them, if confirmed as real resonances rather than kinematical effects, are necessarily exotic hadrons,
especially for the charged charmonium-like states Zc(3900), Zc(4020), Z+(4051), Z+(4430) and so on.
They cannot be just charge-neutral QQ̄ configuration but contain at least four quarks. In the bottomium
sector, we can expect the existence of similar exotic states. Actually, the charged bottomium-like states
Zb(10610) and Zb(10650) were observed by Belle in the invariant mass spectra for the decays of Υ(5S )
into Υ(1S , 2S , 3S )ππ, hb(1P, 2P)ππ and B(∗)B̄(∗)π [5].

Let us take the X(3872) as an example. The production of the X(3872) can be achieved through the
weak decay of b hadrons and the prompt production through QCD mechanisms. Since the X(3872) is
very close to the D0D̄∗0 threshold, it is quite reasonable that it is an S -wave bound state of DD̄∗. After the
discovery of the X(3872), dozens of charmonium-like XYZ states have been observed, mainly through
B hadron decays. Fig. 1.1, which is taken from Ref. [6], lists five groups of observed charmonlum-like
states according to their production mechanisms. In addition to b hadron decays, the charmonium-like
XYZ state can be produced through the initial state radiation technique (ISR) in the e+e− annihilation,
the double charmonium production processes, the two photon fusion processes, and the the hadronic
decays of the Y(4260) as well. What is more interesting is that BESIII reported the X(3872) events in
the radiative decay of Y(4260), Y(4260) → X(3872)γ [7], which may be regarded as a support of the
dominantly molecular structure of the X(3872) [8].

Our understanding of hadron spectroscopy can be largely improved by studies of the exotic states.
Great progress has been made in the past decades, see Ref. [9, 10] and references therein. One of the
most important aspects is the discrimination of a compact multiquark configuration and a loosely bound
hadronic molecule. Different theoretical predictions based on different scenarios are necessary on the
masses, decays and productions of the exotic states. Comparing these predictions with experiments,
one can make progress towards understanding these new structures, and eventually getting hints of how
confinement occurs.

Under the hadronic molecular configuration, we can use the observed candidates as inputs to predict
their spin partners and charm or bottom analogs according to the heavy quark symmetry. At the leading
order, the scattering of a Goldstone boson off a matter field is universally dominated by the Weinberg-
Tomozawa term [11, 12], one can predict more bound states of a kaon and a heavy meson with D∗s0(2317).
On the other hand, some of the leading order interaction between two heavy mesons are identical, there
exist the spin partner of the X(3872) and their bottom analogs [13]. The discovery of these spin partners
and analogs can be not only important for the study of their properties, but also for identifying the the
molecular configuration of the X(3872).

The production mechanism for the prompt hadronic molecules by using Monte Carlo event generators
was first proposed in Ref. [14]. In this thesis, we will use the event generators together with the effective
field theory which is used for describing the final state interaction to establish the factorization formula
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of the cross sections, and estimate the production rates of the bound states in the open and hidden heavy
flavour sectors.

For the pentaquarks, a peak was reported by the LEPS experiment in the K+n invariant mass distribution
in the reaction γn → K+K−n in 2003 [15] and this structure was declared as a pentaquark called Θ+.
However, it turned out to be caused by an artificial prescription for the calculation of unmeasured neutron
momentum. And the peak disappeared in later experiments with high statistics by CLAS [16] and
J-PARC [17]. Thus this claimed observation of the pentaquark is spurious. In 2015, two charmonium-
pentaquark-like states were observed in the J/ψp channel in the Λ0

b → J/ψK−p decays [18]. One is
called Pc(4380), and the other one is Pc(4450).

However, the rescattering effect of the final state could cause an enhancement in the invariant mass
distribution. The near-threshold structure was discovered in the invariant mass spectrum of pp̄ by
BESII [19] and BESIII [20] in the J/ψ and ψ′ radiative decays to γpp̄, and in the decays B → xpp̄
with x being π+, K+, K0 and K∗+ by Belle [21, 22]. A number of theoretical proposal were pp̄ bound
state or baryonium [23] and glueball state [24, 25]. In addition to the speculation of genuine state, the
near-threshold enhancement can be reproduced by simply the final state interaction between the outgoing
proton and antiproton [26–30]. For the Pc(4450), it is located exactly at the χc1 p threshold and could
be caused by a kinematical singularity in the rescattering process. In this thesis, we will also study the
kinematical effect of the scattering of χc1 p→ J/ψp which can cause a peak located at the same position
as the Pc(4450).

This thesis is organised as follows:

• In Chapter 2, we will first give an short introduction to hadron physics. Then we will also briefly
introduce the effective field theories, such as chiral perturbation theory, heavy quark effective
theory, heavy hadron chiral perturbation theory and nonrelativistic field theory, which we are going
to use in later chapters. And we will discuss the dynamical generation of hadronic molecules.
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Figure 1.1: The five production mechanisms and the charmion-like states observed. This picture is taken from
Ref. [6]. The first, second, third, and fourth columns are the mechanisms via B hadron decays, initial state radiation
technique (ISR) in the e+e− annihilation, the double charmonium production processes, and two photon fusion
processes, respectively. And the last one shows the hadronic decays of the Y(4260).
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Chapter 1 Introduction

• In Chapter 3, we will investigate the charm-strange hadronic molecules and their prompt production
at the hadron colliders by using event generators and unitarized heavy hadron chiral perturbative
theory.

• In Chapter 4, we will investigate the general factorization formula for the inclusive production of
the hadronic molecules and calculate the cross sections for the production of the X(3872) and its
spin partner and bottom analogs.

• In Chapter 5, we will study the production of the spin partner of the X(3872) at electron-positron
collider through the charmonium decays. We will show the ideal energy region to produce this
state.

• In Chapter 6, we will study the hindered M1 transition between two bottomia with coupled channel
effects. The partial widths of these transitions could be much larger than the predictions from
quark model.

• In Chapter 7, we will investigate the kinematical effect in the narrow Pc(4450) structure. From
the motion of the anomalous threshold singularity, we can find the triangle diagram that would
contribute to the peak located at the same position as the Pc(4450).
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CHAPTER 2

Hadron structure and theories

In the realm of hadron physics, the fundamental field theory, i.e. the quantum chromodynamics (QCD)
for describing the strong interactions, encounters extreme difficulties because at long distances QCD
exhibits color confinement and is nonperturbative. Then alternative approaches have to be used instead,
for example lattice QCD and effective field theories.

This chapter is organized as follows. In Section 2.1, we will first give a brief review on hadron structure.
In Section 2.2, we will also show some relevant effective field theories which we will use in the latter
chapters. At last in Section 2.3, we will discuss the dynamical generation of hadronic molecules.

2.1 Hadron structure

The strongly interacting particles in the Standard Model are the colored quarks and gluons. In nature, the
quarks and gluons are bound to color-neutral hadrons as the strength of their color interactions increases
as the involved energy scale decreases.

2.1.1 Conventional hadrons

In the conventional quark model, a meson is composed of a pair of quark and antiquark and a baryon
is composed of three quarks. Additionally, they may also have any number of quark-antiquark pairs in
the most general case. We show an illustration for the conventional hadrons in Fig. 2.1. The valence
quarks give rise to the quantum numbers of hadrons. These quantum numbers are labels classifying
the hadrons. We can use the set coming from the Poincaré symmetry—JPC , where J, P and C stand
for the total angular momentum, P-symmetry, and C-symmetry, respectively. For a pair of quark and
anti-quark, P = (−1)L+1 and C = (−1)L+S (only for mesons with vanishing additive quantum numbers
such as electric charge and strangeness), where L and S are the orbital and spin angular momentum,
respectively. The quark model allows the meson qq̄ to have the quantum numbers

0++, 0−+, 1−−, 1+−, 1++, 2−−, 2−+, 2++, · · · (2.1)

while
0−−, even−+, odd−+ (2.2)

are called exotic quantum numbers which can not be formed by a pair of q and q̄.

5



Chapter 2 Hadron structure and theories

In contrast, the qqq baryon in the quark model can exhaust all the quantum number

1
2

±

,
3
2

±

,
5
2

±

, · · · . (2.3)

In the quark model with assumed and QCD-motivated quark-quark interaction, the mass spectrum
of the hadrons can be obtained by solving the Schrödinger equation. The Schrödinger equation is
nonrelativistic, and the relativistic corrections are necessary in more general cases, for instance the heavy-
light mesons. For the relativistic corrections, we refer to the literatures by Basdevant and Boukraa [31],
Godfrey and Isgur [32] and the Bonn Group for mesons [33, 34] and baryons [35]. The Godfrey-Isgur
(GI) relativized potential quark model was very successful in the description of the spectrum and static
properties of the mesons and baryons. Here we give a brief introduction to the GI model for mesons
based on Ref. [32]. In the GI model, the rest-frame Schrödinger-type equation is written as

H |ψ〉 = E |ψ〉 (2.4)

where the HamiltonianH = H0 + V describes the interaction between the quark and antiquark, and the
relativistic kinetic term

H0 =

√
p2 + m2

1 +

√
p2 + m2

2 (2.5)

with m1,2 the constituent quark masses and V = V(p, r) is the effective momentum-dependent potential
of the qq̄ system with p = p1 = p2 the center-of-mass momentum and r is the usual spatial coordinate in
the nonrelativistic limit. The above subscripts 1 and 2 denote the quark and antiquark, respectively.

As for the effective potential, it can be obtained from the on-shell qq̄ scattering amplitudes in the
center-of-mass frame. The two key ingredients are the short-distance one-gluon-exchange interaction
and the long-distance linear confining interaction. The latter one was at first employed by the Cornell
group and later confirmed by the lattice QCD simulations. More details of the relativistic GI model can
be found in the appendices of Ref. [32].

The relativistic effects are taken into account in the GI model for all mesons in a unified and physically
motivated way. However, the nonrelativistic approximation can well describe the heavy-quark systems.
In the nonrelativistic limit, Eq. (2.4) turns out to be the familiar Schrödinger equation with

H0 →

2∑
i=1

(
mi +

p2

2mi

)
(2.6)

Figure 2.1: An illustration of the normal hadrons in the quark model.
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2.2 Effective field theory

n 2s+1lJ JPC cc̄ cs̄; c̄s

1 1S 0 0−+ ηc(1S ) D±s
1 3S 1 1−− J/ψ(1S ) D∗±s
1 1P1 1+− hc(1P) Ds1(2536)±

1 3P0 0++ χc0(1P)
1 3P1 1++ χc1(1P)
1 3P2 2++ χc2(1P) D∗s2(2573)±

1 3D1 1−− ψ(3770) D∗s1(2700)±

2 1S 0 0−+ ηc(2S )
2 3S 1 1−− ψ(2S )
2 1P1 1+−

2 3P0,1,2 0++, 1++, 2++ χc2(2P)

Table 2.1: qq̄ quark model assignments for the observed charmonia and charm-strange mesons with established
JPC .

and

Vi j(p, r)→ Hconf
i j + Hhyp

i j + HSO
i j . (2.7)

The first term Hconf
i j includes the spin-independent linear confinement and Coulomb-type interaction,

the second term Hhyp
i j is the color-hyperfine interaction and third term HSO is the spin-orbit interaction

including the color-magnetic term and the Thomas-precession term. More details about the explicit
expressions can be found in Ref. [32].

In Tab. 2.1, we show the observed charmonia and charm-strange mesons with established JPC in quark
model. Together with the experimental results, the spectra of charm-strange mesons and charmonia
predicted in the GI model will be shown in Chapter 3 and Chapter 4, respectively.

2.1.2 Exotic hadrons

In addition to the naive quark model, QCD allows much richer hadron spectrum. Actually, Gell-Mann
and Zweig proposed not only the existence of meson and baryon but also the possible existence of
the multiquark states [2, 36]. To be a multiquark state, it can be the loosely bound state of two or
more hadrons or the compact tetraquark, pentaquark etc. On the other hand, the gluons interact among
themselves because they carry color charges. Therefore two or more gluons may form the color-singlet
glueball. And one or more gluons may bind with a pair of quark and antiquark to form a hybrid meson.
The multiquark state or glueball or hybrid can carry all the exotic quantum numbers mentioned in Eq. 2.2.
We show an illustration for these different types of exotic hadrons in Fig. 2.2.

2.2 Effective field theory

The fundamental field theory is one of the ultimate aims in particle physics, while the effective field
theory (EFT) has become a practical tool which can avoid unnecessarily complicated calculations in the
fundamental theory or provide insights even without knowing details of the fundamental theory. The very
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Chapter 2 Hadron structure and theories

basic ingredients of an EFT is scale separation, which allows for a power counting and thus a systematic
expansion, and symmetry constraints. An EFT can be constructed at low energy as a Taylor expansion of
the Lagrangian of an fundamental theory in powers of the external momentum of the light fields divided
by the scale of heavy physics p/Λ, the value of Λ depends on the theory under investigation. This is an
approximation, and the truncation of the series depends on the accuracy we desire. In addition, the larger
the separation between the energy scale of interest and the energy scale of the fundamental dynamics is,
the more accurate the EFT can be. To simplify the calculation, an EFT uses suitable degrees of freedom
in the low energy region and the degrees of freedom at higher energy scale are integrated out.

A well-known example of an EFT is the Fermi theory of beta decay for weak interactions. If we
are concerned with the interaction between hadrons, we also need the EFT of theory for the strong
interaction.

In the standard model, quantum chromodynamics (QCD) is the theory describing the strong interactions
between quarks and gluons. The dynamics of the quarks and gluons are controlled by the gauge invariant
QCD Lagrangian

LQCD = ψ̄i (i /D − mi )ψi −
1
4

Ga
µνG

µν
a , (2.8)

where ψi is the quark field labelled by i, Dµ = ∂µ + igAa
µλa/2 is the covariant derivative, with Aa

µ the
gluon fields and Ga

µν = ∂µAa
ν − ∂νA

a
µ + g f abcAb

µAc
ν is the gauge invariant gluon field strength tensor, where

the f abc are the structure constants of SU(3). The constants m and g are the quark mass and coupling
constant of the theory, respectively. It is well-known that QCD presents two peculiar properties due to the

Figure 2.2: An illustration of the exotic hadrons beyond the simpler states in the quark model.
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2.2 Effective field theory

coupling constant behave differently in the high energy and low energy regions related to the QCD scale,
ΛQCD ∼ 220 MeV. In the high energy region much larger than ΛQCD, the coupling constant becomes very
weak which makes the quarks and gluons move almost freely. This phenomenon is known as asymptotic
freedom and the physics can be dealt with in perturbation theory. However, in the low energy region
smaller than ΛQCD, the constant becomes so strong that the quarks and gluon are bound into hadrons,
which is known as confinement. The perturbative theory is no longer valid.

The EFTs can be constructed according to the fact that

mu,md,ms � ΛQCD � mc,mb. (2.9)

The top quark is even much heavier than ΛQCD, while it decays too quickly to form any bound state
and therefore not suitable to be included in the EFT at low energy region. From the above equation,
we know that mu,d,s/ΛQCD � 1 and get the Chiral Perturbation Theory (ChPT) for light sector, while
ΛQCD/mc,b � 1 and get the Heavy Quark Effective Theory (HQEFT) for heavy sector. Since the mass of
strange quark is not very small compared to ΛQCD, the high order contributions would be more important
when expanding the quantities of interest in ms.

2.2.1 Chiral perturbation theory for light pseudoscalar meson

Chiral perturbation theory (ChPT) is the EFT of the QCD in the low energy region. It describes the
interactions among the light pseudoscalar mesons in the manner of a low momentum expansion in
momenta and meson masses. It is based on the spontaneous breaking of the approximate chiral symmetry
of QCD and Weinberg’s theorem [37]. The next-to-leading order (NLO) was constructed by Gasser
and Leutwyler in the 1980s [38, 39]. Here we will give a brief introduction following the discussion in
Ref. [40–42].

Let us first consider the part with only three light quarks in the QCD Lagrangian in Eq. (2.8)

Llight = q̄
(
i /D − mq

)
q, (2.10)

where q = (u, d, s) are the light quark fields. With the right- and left-handed projectors PR/L = (1± γ5)/2,
we have the right- and left-handed fields qR = PRq, qL = PLq and the relation

q̄γµq = q̄Rγ
µqR + q̄Lγ

µqL, q̄mqq = q̄RmqqL + q̄LmqqR. (2.11)

With this, we can write the Lagrangian as

Llight = q̄Ri /DqR + q̄Li /DqL − q̄RM qL − q̄LM qR, (2.12)

whereM is the light quark mass matrix,M = diag(mu,md,ms). If we ignore the quark mass term above,
the right- and left-handed fields decouple and the Lagrangian is symmetric under the chiral transformation
S U(3)L × S U(3)R

qR → q′RRqR, qL → q′L = LqL (2.13)

wiht R ∈ S U(3)R and L ∈ S U(3)L. The quark mass term in the Lagrangian leads to an explicit
symmetry breaking. On the other hand, due to the nonvanishing scalar singlet quark condensate the chiral
symmetry S U(3)L × S U(3)R is spontaneously broken to its diagonal subgroup S U(3)V . As a result, the
massless Goldstone bosons appear as new degrees of freedom. The eight Goldstone bosons are the light
pseudoscalars (π, K and η).

9



Chapter 2 Hadron structure and theories

The eight Goldstone bosons can be parametrized in a unitary 3 × 3 matrix and it transforms under
S U(3)L × S U(3)R as

U → U′ = RUL†. (2.14)

A popular choice for U is

U = exp
(
iφaλa

F0

)
, (2.15)

where F0 is constant here, and it is referred to as the pion-decay constant in the chiral limit. Its value can
be obtained from the weak decay of the pion π+ → µ+νµ, and λa are the Gell-Mann matrices. We can use
a matrix φ to parametrize the physical octet Goldstone bosons in terms of the Cartesian components φa,
it reads

φ =

8∑
a=1

φaλa ≡
√

2


1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η

 . (2.16)

Then we are ready to construct to effective Lagrangian order by order in the momentum expansion with
the use of U. According to the counting scheme of chiral perturbation theory, the elements count as

U = O(q0), ∂µU = O(q). (2.17)

We know that the momentum is due to the derivative of the field. Only even numbers of derivatives are
possible as required by the Lorentz invariance. Thus the the Lagrangian is expanded as p0/Λ0

χ + p2Λ2
χ +

p4/Λ4
χ + . . . with Λχ = 4πF0 = O(1 GeV) the chiral symmetry breaking scale, that is

Le f f = L(0) +L(2) +L(4) + . . . . (2.18)

The first term L(0) is proportional to Tr[UU†] = 3. We should omit it because it is irrelevant for the
dynamics of the Goldstone bosons. Then the leading order effective Lagrangian reads

L(2) =
F2

0

4
Tr[∂µU(∂µU)†]. (2.19)

Due to the finite quark masses, we need to incorporate the explicit chiral symmetry breaking by adding
the quark mass term in the effective Lagrangian. If we use the trick to assume that the mass matrix of the
light quarks transform as

M→M′ = RML†. (2.20)

Then one can construct the terms which is invariant under Eqs. (2.14) and (2.20). At lowest order inM,
we have

LχS B =
F2

0 B0

2
Tr[MU† + UM†], (2.21)

10



2.2 Effective field theory

where B0 is related to the scalar singlet quark condensate. Expanding the Lagrangian, one gets

LχS B = −
B0

2
Tr[φ2M] + higher orders of φ

= −
B0

2

(
2(mu + md)π+π− + 2(mu + ms)K+K− + 2(md + ms)K0K̄0 + (mu + md)π0π0

+
2
√

3
(mu − md)π0η +

mu + md + 4ms

3
η2

)
. (2.22)

Then we can obtain the masses of the Goldstone bosons in terms of the quark masses

M2
π = B0(mu + md),

M2
K0 = B0(md + ms), (2.23)

M2
K± = B0(mu + ms).

The matrix for π0 − η mixing is

Mπ0η =

 B0(mu + md) B0
mu−md√

3

B0
mu−md√

3
B0

mu+md+4ms
3

 , (2.24)

where the off-diagonal terms describing the π0 − η mixing at LO vanishes in the isospin-symmetric limit
mu = md. In order to get the masses of π0 and η, one needs diagonalize the above matrix.

On the other hand, from Eq. (2.24) we know that the quark mass is counted as O(p2), and so is chiral
symmetry breaking Lagrangian LχS B. In total, the effective Lagrangian at the lowest order O(p2) reads

Le f f =
F2

0

4
Tr[∂µU(∂µU)†] +

F2
0 B0

2
Tr[MU† + UM†]. (2.25)

2.2.2 Chiral perturbation theory for heavy-light meson

As we already know, ChPT is constructed to describe the interaction involving light pseudoscalar mesons.
When the heavy mesons are also involved, in other words if we want to describe the low-energy interaction
between heavy mesons with the light pseudoscalar mesons, we need combine the heavy quark symmetry
together with the chiral S U(3)L × S U(3)R symmetry [43, 44]. The heavy meson chiral perturbation
theory (HMChPT) focuses on such a purpose.

2.2.2.1 Heavy quark effective theory

Let us first give a brief introduction to the heavy quark effective theory (HQET). For more details, we
refer to the review in Ref. [45] and the textbook by Manohar and Wise [46].

In the light quark limit mu,d,s → 0, the dynamics of the QCD respects the chiral symmetry. On the
other side, it exhibits the heavy quark flavor and spin symmetry in the heavy quark limit mc,b → ∞. The
top quark is not included as it decay too fast to form any bound state. The relevant part in the QCD
Lagrangian for the heavy quark reads

LQ = Q̄
(
i /D − mQ

)
Q, (2.26)

where Q is the field for the heavy quarks c and b.

11



Chapter 2 Hadron structure and theories

Due to the fact that the heavy quark in a heavy-light hadron moves almost with the same speed as the
hadron and is almost on shell, we can decompose its the momentum as

pµQ = mQv
µ + kµ, (2.27)

where v is the four-velocity of the heavy hadron normalized to v2 = 1 and k is the so-called residual
momentum. In a heavy hadron the light degree of freedom can have momenta kµ of the order O(ΛQCD),
that is to say kµ � mQ. The propagator of the heavy quark in QCD reads

i
/pQ − mQ

= i
1 + /v

2v · k
+ O

(
k

mQ

)
. (2.28)

We can use the projection operators P± = (1 ± /v)/2 to project out the large- and small-component
fields, hv and Hv. By defining hv(x) = eimQv·xP+Q(x) and Hv(x) = eimQv·xP−Q(x), we can decompose the
heavy quark field as

Q(x) = e−imQv·x[hv(x) + Hv(x)]. (2.29)

In the rest frame vµ = (1, 0, 0, 0), hv and Hv correspond to the annihilation of a heavy quark and creation
of a heavy antiquark, respectively. Then the heavy quark part of QCD Lagrangian in terms of the new
fields reads

LQ = h̄viv · D hv − H̄v(iv · D + 2mQ)Hv + h̄vi /D⊥Hv + H̄vi /D⊥hv, (2.30)

where Dµ
⊥ = Dµ − vµv · D is orthogonal to the heavy quark velocity. Using the equation of motion, we

have Hv = i /D⊥hv/(2mQ + iv · D). The Lagrangian can be written as

LQ = h̄viv · D hv +
1

2mQ

∞∑
n=0

h̄vi /D⊥

(
−

iv · D
2mQ

)n

i /D⊥hv

= h̄viv · D hv +
1

2mQ
h̄v(iD⊥)2hv +

gs

4mQ
h̄vσµνGµνhv + O

 1
m2

Q

 . (2.31)

In the heavy quark limit mQ → ∞, only the first term survives and we get the HQET Lagrangian

LHQET = h̄viv · D hv, (2.32)

which is spin and flavor independent. Thus we have heavy quark spin and flavor symmetry. From the
above Lagrangian we can get the Feynman rule for the heavy quark propagator which is consistent with
Eq. (2.28) if one notices that hv contains the projector P+.

One important consequence of the heavy quark symmetry is that the pseudoscalar D (B) mesons and
the vector D∗ (B∗) mesons form a S U(2)S spin multiplet, the symmetry breaking effect is at the order of
ΛQCD/mQ. And the interaction involving the charmed and bottom meson are the same, thus we also have
the S U(2)F flavor symmetry with the symmetry breaking effect at the order of 1/mc − 1/mb.

On the other hand, as Eq. (2.31) shows, the third term which corresponds to the chromomagnetic
coupling of the heavy quark spin to the gluon vanishes in the heavy quark limit. That means the spin
of the heavy quark sQ and the total angular momentum of light degrees of freedom s` are decoupled.
We know that their sum ~J = ~sQ + ~s` is conserved, and in the heavy quark limit they are also conserved
separately.
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2.2 Effective field theory

As a result of the heavy quark symmetry, the wave function of a heavy-light meson Qq̄ must be
independent of the flavor and spin of its heavy quark Q. Therefore the wave function can be characterized
by the total angular momentum of the light degrees of freedom sl. And we can use the value of sl to
classify the heavy-light meson and collect them in doublets with total spin J = s` ± 1

2 . For example,
when the orbital angular momentum of the light degrees of freedom l = 0, the state sP

` = 1
2
− with parity

P = (−1)l+1 corresponds to the spin symmetry doublet of pseudoscalar meson P and the vector meson P∗.
The spin doublet (P, P∗) with negative parity can be represented by a 4 × 4 matrix H, which denotes the
effective field for heavy-light mesons

H =
1 + /v

2
[P∗µγ

µ − γ5P], (2.33)

and its hermitian conjugate multiplet is

H̄ = γ0H†γ0

= [P∗†µ γ
µ + γ5P†]

1 + /v

2
, (2.34)

where the factors
√

MP and
√

MP∗ have been absorbed into the definition of the heavy fields P(v) and
P∗(v, ε) as will be shown later. The field H satisfy the constraints /vH = −H/v = H.

2.2.2.2 Heavy meson chiral perturbation theory

Here we follow the discussions in Refs. [47, 48] to introduce the effective Lagrangian describing the
interaction between heavy mesons and light pseudoscalar mesons which we will use later. As a heavy-
light meson contains a heavy quark Q and a light antiquark q̄, we can construct the fields for the mesons
according to their quantum numbers

P(v) = q̄γ5hv
√

Mp, (2.35)

P∗(v, ε) = q̄/εhv
√

M∗p, (2.36)

where Mp and M∗p are the masses of the pseudoscalar 0− and vector 1−, meson, respectively. ε is the
polarization of the vector meson and v is the four-velocity. Here the small-component fields Hv in
Eq. (2.29) is ignored.

In order to describe the coupling of Goldstone bosons to the heavy hadrons, it is convenient to introduce
a new matrix, the coset field ξ. It is the key ingredient in the theory of non-linear realization of chiral
symmetry [49, 50]. In this theory, the field ξ is simply related to the Goldstone bosons as

ξ = U1/2, (2.37)

where U is the exponential represented unitary matrix in terms of the physical octet Goldstone bosons
defined in Eq. (2.29). ξ transforms under chiral S U(3)L × S U(3)R transformations as

ξ → Lξh† = hξR†, (2.38)

where h is the unitary matrix belongs to the S U(3)V unbroken subgroup, and depends on L and R. With
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ξ, one can construct a vector field Vµ and an axial vector field Aµ

Vµ =
1
2

(ξ†∂µξ + ξ∂µξ
†), (2.39)

Aµ =
i
2

(ξ†∂µξ − ξ∂µξ†).

In the chiral transformation, the vector field acts like a gauge field, while the axial vector field is just an
S U(3) octet. They transform as

Vµ → hVµh† + h∂µh†, Aµ → hAµh†. (2.40)

For the heavy-light mesons, they have the transformation rule

P→ Ph†, P∗ → P∗h†. (2.41)

Then the guage-covariant derivative can be constructed in terms of the vector field Vµ as

DµP† = (∂µ + Vµ) P†, (2.42)

DµP = ∂µ P + P V∗µ .

The Lagrangian for the strong interaction between the heavy mesons with the Goldstone bosons has to
satisfy Lorentz invariance as well as the C, P, T invariance. Furthermore, we require the chiral invariance.
The leading order Lagrangian with only one single derivative can be constructed as

L = DµPDµP† − M2
PPP† + fQ(PAµP∗†µ + P∗µAµP†) −

1
2

P∗µνP∗†µν + M2
P∗P

∗µP∗†µ

+
1
2
gQεµνλκ(P∗µνAλP∗κ† + P∗κAλP∗µν†), (2.43)

where

P∗†µν = DµP∗†ν − DνP∗†µ ,

P∗µν = P∗†ν (
←−
∂ µ + V∗µ) − P∗†µ (

←−
∂ ν + V∗ν ). (2.44)

There are two coupling constants fQ and gQ in the Lagrangian. In addition to the chiral invariance, we
also require the heavy quark symmetry at the leading order in the 1/MP,P∗ expansion. Once we apply the
heavy quark spin symmetry, the two constants are related as

gQ =
fQ

2
√

MPMP∗
. (2.45)

And the heavy quark flavor symmetry will relate them to the masses of heavy mesons.

2.2.3 Nonrelativistic effective field theory

For the purpose of studying the charmed meson loops in the decays ψ′ → J/ψπ0(η), a nonrelativistic
effective field theory (NREFT) is constructed in Ref. [51]. The interaction between quarkonia with
heavy-light mesons can be treated nonrelativistically due to the fact that the quarkonia are close to the
thresholds of corresponding mesons.
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2.2.3.1 Framework

In the nonrelativistic limit, it is convenient use the effective fields to study the phenomenology of the
heavy mesons and quarkonia belonging to doublets or multiplets, and the effective fields will be shown
below. For heavy mesons as well as quarkonia, we choose to use the two-component notation introduced
in Ref. [52]. The notation employs 2 × 2 matrix fields, and can be simplified by using the nonrelativistic
approximation. Here we will give a brief discussion on the effective fields for the heavy-light meson and
quarkonium separately.

Heavy-light meson

As discussed in Section 2.2.2, the heavy-light Qq̄ mesons can be classified according to the total
angular momentum of the light degree of freedom s` which is half-integral and collected in doublets
with total spin J = s` ± 1

2 and parity P = (−1)l+1, where again l is the orbital angular momentum of
the light degree of freedom . The total angular momentum of the light degrees of freedom satisfies
~s` = ~l + ~sq, where sq is the light antiquark spin.

For l = 0, we have only sP
` = 1

2
−, which corresponds to the doublet containing the lowest lying

heavy mesons (P, P∗) with quantum number (0−, 1−), and denote it as H. For l = 1, we have either
sP
` = 1

2
+ or sP

` = 3
2

+, corresponding to two doublet containing the heavy mesons (P∗0, P
′
1) with

quantum number (0+, 1+) and (P1, P2) with quantum number (1+, 2+) ,respectively, and denote
them as S and T , respectively. For l = 2, we have either sP

` = 3
2
− or sP

` = 5
2
−

, corresponding to two
doublet containing the heavy mesons (P∗1, P

∗
2) with quantum number (1−, 2−) and (P∗′2 , P3) with

quantum number (2−, 3−), respectively, and denote them as X and X′, respectively.

Here we will give the explicit expressions for the effective fields H, S , T and X. The general form
for the effective fields has been derived in Refs. [53, 54], it is a traceless and symmetric Lorentz
tensor

Hµ1···µk
a , k = s` −

1
2
. (2.46)

The tensor satisfies vµ1 Hµ1···µk
a = γµ1 Hµ1···µk

a = 0 and a = u, d, s is the flavor label for the light
quarks. It transforms under the Lorentz transformations as

Hµ1···µk
a → D(Λ)Λµ1

ν1 · · ·Λ
µk
νk Hµ1···µk

a D†(Λ), (2.47)

where D(Λ) is an element of the 4× 4 matrix representation of the Lorentz group. For light degrees
of freedom with parity (−1)s`−1/2, we have the doublet of states P∗s`+1/2 and Ps`−1/2,

Hµ1···µk
a =

1 + /v

2

{
(P∗sl+1/2)µ1...µk+1

a γµk+1 −

√
2k + 1
k + 1

γ5(Psl−1/2)ν1...νk
a[

g
µ1
ν1 . . . g

µk
νk −

1
2k + 1

γν1(γµ1 − vµ1)gµ2
ν2 . . . g

µk
νk − · · ·

−
1

2k + 1
g
µ1
ν1 . . . g

µk−1
νk−1γνk (γ

µk − vµk )
]}
, (2.48)
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while for parity (−1)s`+1/2, we have Ps`+1/2 and P∗s`−1/2,

Hµ1···µk
a =

1 + /v

2

{
(Psl+1/2)µ1...µk+1

a γ5γµk+1 −

√
2k + 1
k + 1

(P∗sl−1/2)ν1...νk
a[

g
µ1
ν1 . . . g

µk
νk −

1
2k + 1

γν1(γµ1 + vµ1)gµ2
ν2 . . . g

µk
νk − · · ·

−
1

2k + 1
g
µ1
ν1 . . . g

µk−1
νk−1γνk (γ

µk + vµk )
]}
, (2.49)

where the phase difference between the P and P∗ terms is arbitrary.

The quark and antiquark have opposite parity, so do the light degree of freedom and meson.
Therefore sP

` = 1
2
− and sP

` = 3
2

+ doublets correspond to the case in Eq. (2.48), while sP
` = 1

2
+ and

sP
` = 3

2
− doublets correspond to the case in Eq. (2.49). Then

Ha =
1 + /v

2
[P∗aµγ

µ − Paγ5]

S a =
1 + /v

2
[P′µ1aγ

µγ5 − P∗0a],

T µ
a =

1 + /v

2

[
Pµν2aγν −

√
3
2

Pν1aγ5
(
g
µ
ν −

1
3
γν

(
γµ − vµ

))]
,

Xµ
a =

1 + /v

2

[
P∗µν2a γ5γν −

√
3
2

P′∗ν1a

(
g
µ
ν −

1
3
γν

(
γµ + vµ

))]
. (2.50)

With the Dirac representation of the gamma matrices

γ0 =

 1 0
0 −1

 , γi =

 0 σi

−σi 0

 , γ5 =

 0 1

1 0

 , (2.51)

where the σi are the Pauli matrices. In the rest-frame of the heavy-light meson, the velocity is
given by v = (1, 0, 0, 0), and then the effective fields can be simplified. Let us take Ha and T µ

a as
examples. For the sP

` = 1
2
− doublet, one easily get

Ha =

 P∗0a −~σ · ~P∗a − Pa

0 0

 ≈  0 −~σ · ~P∗a − Pa

0 0

 , (2.52)

where the time-like component of the heavy meson field can be neglected because it is suppressed
by a factor of ~p/m which tends to zero in the nonrelativistic limit. ~p and m are the momentum and
mass of the heavy meson, respectively. For sP

` = 3
2

+ doublet, we have

T µ
a ≈

 0 −Pµ j
2aσ

j −

√
3
2 Pµ1a +

√
1
6
~P1a · ~σσ

jδµ j

0 0


≈

 0 −Pi j
2aσ

j −

√
2
3 Pi

1a − i
√

1
6 εi jkP j

1aσ
k

0 0

 . (2.53)
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Parity Charge conjugation

Ha → −Ha Ha → σ2H̄T
a σ2

H̄a → −H̄a H̄a → σ2HT
a σ2

T i
a → T i

a T i
a → σ2T̄ iT

a σ2

T̄ i
a → T̄ i

a T̄ i
a → σ2T iT

a σ2

Table 2.2: Properties of the superfields under parity and charge conjugation transformations.

Therefore, we can define the fields for the heavy meson states in two component representation.
They are

Ha = ~P∗a · ~σ + Pa (2.54)

T i
a = Pi j

2aσ
j +

√
2
3

Pi
1a + i

√
1
6
εi jkP j

1aσ
k, (2.55)

for sP
` = 1

2
− (S -wave) where sP

` = 3
2

+ (P-wave) heavy-light mesons, respectively. In the above
equations, Pa and P∗a annihilate the pseudoscalar and vector heavy mesons, respectively, and P1a

and P2a annihilate the excited axial-vector and tensor heavy mesons, respectively.

As we know only the flavor neutral mesons are eigenstates of the charge parity, and the heavy-light
mesons do not have definite charge parity. Therefore we have to clarify the phase convention
of such mesons under charge conjugation. Here we use the same phase convention for charge
conjugation specified in Ref. [8], they are

CPC−1 = P̄, CP∗C−1 = P̄∗, CP1C
−1 = P̄1, CP2C

−1 = P̄2. (2.56)

Under these conventions, the fields for annihilating the sP
l = 1

2
+ heavy mesons containing a heavy

antiquark is [55]

H̄a = σ2

(
~̄P∗a · ~σ

T + P̄a

)
σ2 = − ~̄P∗a · ~σ + P̄a. (2.57)

For the sP
l = 3

2
+ heavy mesons, the corresponding field has the form

T̄ i
a = −P̄i j

2aσ
j +

√
2
3

P̄i
1a − i

√
1
6
εi jkP̄ j

1aσ
k. (2.58)

The transformation properties of the relevant doublets are shown in Tab. 2.2.

Heavy quarkonium

In the case of a heavy quarkonium, the flavour symmetry can not be applied so that the each
multiplet describes states with a defined heavy flavour [56]. For a quarkonium (QQ̄ pair) with
relative orbital angular momentum L = 0, the multiplet reads [48]

J =
1 + /v

2

[
Hµ

1γµ − H0γ5
] 1 − /v

2
. (2.59)
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Here, H denotes the quarkonium field. For L , 0, the multiplet has the generic expression

Jµ1...µL =
1 + /v

2

(
Hµ1...µLα

L+1 γα +
1

√
L(L + 1)

L∑
i=1

εµiαβγvαγβHµ1...µi−1µi+1...µL
Lγ

+
1
L

√
2L − 1
2L + 1

L∑
i=1

(γµi − vµi)Hµ1...µi−1µi+1...µL
L−1 (2.60)

−
2

L
√

(2L − 1)(2L + 1)

∑
i< j

(gµiµ j − vµivµ j)γαHαµ1...µi−1µi+1...µ j−1µ j+1...µL

L−1 + Kµ1...µL
L γ5

)
1 − /v

2
,

where HA, KA are the effective fields of the multiplets with total spin J = A, and KA is the spin
singlet, HA represent the spin triplet. From above formula, we can obtain

• L = 1 multiplet:

Jµ =
1 + /v

2

{
Hµα

2 γα +
1
√

2
εµαβγvαγβH1γ +

1
√

3
(γµ − vµ)H0 + Kµ

1γ5

}
1 − /v

2
; (2.61)

• L = 2 multiplet:

Jµν =
1 + /v

2

{
Hµνα

3 γα +
1
√

6

(
εµαβγvαγβHν

2γ + εναβγvαγβHµ
2γ

)
+

1
2

√
3
5

[
(γµ − vµ)Hν

1

+(γν − vν)Hµ
1

]
−

1
√

15
(gµν − vµvν)γαHα

1 + Kµν
2 γ5

}
1 − /v

2
. (2.62)

It is convenient to write the corresponding multiplets through the above formulae in the nonrelativ-
istic limit in the two-component notation. The S , P and D wave states are

J = ~H1 · ~σ − H0 , (2.63)

Ji = Hi j
2 σ j −

1
√

2
εi jkσ jH1k +

1
√

3
H0σ

i + Ki
1 , (2.64)

and

Ji j = Hi jk
3 σk −

1
√

6

(
εilmσlH

j
2m + ε jlmσlHi

2m

)
+

1
2

√
3
5

[
H j

1σ
i + Hi

1σ
j
]

−
1
√

15
δi j ~H1 · ~σ + Ki j

2 , (2.65)

respectively.

The interaction of heavy mesons and quarkonia with other fields can be described by an effective
Lagrangian in terms of above doublets and multiplets.

2.2.3.2 Power counting

In effective theories, an infinite number of terms in the Lagrangian and diagrams arise. The purpose of
the power counting is to classify the importance of each one. In the NREFT, the intermediate heavy
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mesons are nonrelativistic with velocity v � 1. The power counting scheme of NREFT is performed in
terms of the velocity. The velocity is estimated as√

|ma + mb − M|
m̄ab

(2.66)

where ma and mb are the masses of heavy mesons, with m̄ab = (ma + mb)/2, and M is the mass of
quarkonium. We have the following scaling rules:

• The three-momentum scales as v,

• The kinetic energy scales as v2,

• The Feynman propagator, as in the nonrelativistic expansion, has the form

1
l2 − m + iε

≈
1

2m(l0 − ~l2
2m + iε)

, (2.67)

and thus it scales as v−2,

• The S -wave momentum independent coupling scales as v0,

• The P-wave coupling scales as v.

If all the three vertices are S -wave, the amplitude scales as

v5

(v2)3 =
1
v
, (2.68)

which is greatly enhanced if the velocity is small.

2.3 Dynamical generation of hadronic molecules

For a effective field theory containing the constituents of hadronic molecules as the degrees of freedom,
the hadronic molecules appear as poles of the scattering amplitudes, which are so-called dynamically
generated. The dynamical generation of a hadronic molecule from the effective field theory is a non-
perturbative phenomenon. The hadronic molecule does not appear phenomenologically in the Lagrangian
as a degree of freedom, but it can be obtained by using the interaction of the constituent particles.

The Lippmann-Schwinger equation reads

T =
V

1 −G · V
, (2.69)

where V is the tree-level interaction of the consistent particles and G is the two-point loop integral. It is
the infinite sum of the scattering amplitude and allows the dynamical generation of poles, namely

1 −G · V = 0. (2.70)

There are three kinds of poles on the complex energy plane of scattering amplitude. They are bound
state, virtual state and resonance. All the three poles are called hadronic molecule. Let us take a simple
case as example, in which only one channel is considered:
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Chapter 2 Hadron structure and theories

• A bound states is associated with a pole below the threshold of two hadrons in the real axis on the
first Riemann sheet of the complex energy plane. The three-momentum of the scattered hadron in
the center of mass frame of the two hadrons satisfies

Im pcm > 0, Re pcm = 0. (2.71)

• A virtual state is to be identified with a pole below the threshold of two hadrons in the real axis on
the second Riemann sheet. The three-momentum satisfies

Im pcm < 0, Re pcm = 0. (2.72)

• A resonance happens at a pole above the threshold of two hadrons below the real axis on the second
Riemann sheet, namely

Im pcm < 0. (2.73)

In the case of coupled channel, the situation is somewhat more complicated. For more detailed
relations, we refer to Ref. [57].
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Part I

Inclusive prompt production of S-wave
loosely bound states
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CHAPTER 3

Production of charm-strange hadronic
molecules at the LHC

In this chapter, we will provide a theoretical exploration on the hadroproduction of the D∗s0(2317),
Ds1(2460) and DsJ(2860) at the large hadron collider (LHC). Besides, the predicted spin partner of the
DsJ(2860), called Ds2(2910) hereafter, is also investigated. Most of the calculations and discussions
presented here are taken from our published paper in Ref. [58]. For the production of the exotic states,
there have been some literatures devoted to such investigation at the hadron colliders, especailly under
the hadronic molecule picture [14, 59–62].

The assumption used in our calculation is that the four charm-strange states are all S -wave hadron
molecules which are the composite particles of a kaon and a nonstrange charmed meson. Based on this
assumption, the charmed meson–kaon pairs will be produced first. And for the production of the pairs, we
will make use of two Monte Carlo (MC) event generators, Herwig and Pythia, to do the simulation. After
the production of the constituents, these DsJ states will be formed through the final state interactions
between them. The approach we used is similar to that used in Ref. [59, 60] for the study of the production
of the X(3872) and Ref [62] for other heavy quarkonium-like states. The difference is that the universal
elastic scattering amplitude is used there to cope with the final state interaction, while we use the effective
field theory (EFT) to get the scattering amplitude for the kaon and charmed meson. One may note that
the effect of the rescattering of constituents is ignored in Ref. [14], and we will discuss this in more
detail in Chapter 4. Finally, we are able to derive an estimate of the production rates for these particles
at an order-of-magnitude accuracy. It presents a promising prospect to observe these states at the LHC
based on the accumulated data according to the results we will show in the following. This calls for an
experimental analysis.

This chapter is organised as follows. In Section 3.1, we first give an introduction about the four
charm-strange states. Then an overview of the effective field theory description of the kaonic bound
states will be presented in Section 3.2. Based on the MC event generators, we will derive the production
rates of the molecular states in Section 3.3, while the numerical results are presented subsequently in
Section 3.4. At last, we will summarize this chapter in Section 3.5.

3.1 Introduction

In the past years, many of the charm-strange mesons have been observed at varieties of experimental
facilities. This kind of heavy-light mesons is particular and can provide a unique platform to study the
heavy quark dynamics and non-perturbative QCD in the presence of a heavy quark. The discoveries
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Figure 3.1: Spectroscopy of the charm-strange mesons, where the solid and dashed lines are for the values from the
relativized Godfrey-Isgur (GI) model [32] and the Ref. [64], respectively. The circles are the observed particles and
the squre is the Ds2(2910) predicted in Ref. [65].

have not only enriched the particle zoo of the conventional cs̄ family, but also have found unexpected
candidates for exotic states beyond the conventional quark model for mesons. Among them, the D∗s0(2317)
is the first one discovered by the Babar Collaboration in the inclusive Dsπ

0 mass distribution in 2003
from e+e− annihilation data at energies near 10.6 GeV [3]. At the same year, the Ds1(2460) was observed
by the CLEO Collaboration in the D∗sπ

0 final state [4], followed by the discovery of the D∗sJ(2860) by the
BABAR Collaboration in the DK channel [63].

We plot the spectrum of the charm-strange mesons in Fig. 3.1, where the lines are the results by
the QCD motivated quark model: the solid and dashed ones are for the values from the relativized
Godfrey-Isgur (GI) model [32] and the model uses the relativistic Dirac Hamiltonian and includes the
1/mc order corrections [64], respectively. The circles are the observed particles and the square is the
speculated Ds2(2910). It is likely that the D∗s0(2317) and Ds1(2460) are spin partners, because the mass
difference between them is not large. A more important feature of the above mentioned two charm-strange
mesons is that their masses are quite far below the potential model predictions for the lowest states with
the same quantum numbers as we can see from the data. As the GI model is a typical quenched quark
model, Ref.[66] takes the screening effect into account to modify it. However the masses of Ds1(2460)
and D∗s0(2317) are still far below the modified model. There exists various explanations for their nature.
For instance, D∗sJ(2860) is regarded as the conventional 13D3(cs̄) in Ref. [67], where the authors propose
that the measurement of its spin can be used to verify the explanation. We refer to the reviews in Ref. [9,
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D∗s0(2317) Ds1(2460) D∗sJ(2860)

constituents DK D∗K D1K
mass 2317.8 ± 0.6 2459.6 ± 0.6 2863.2+4.0

−2.6

relative energy (E0) −45.1 ± 0.4 −44.7 ± 0.4 −54.8+2.5
−1.1

Table 3.1: Masses of the D∗s0(2317), Ds1(2460) and DsJ(2860) taken from the Particle Data Group [77], and the
relative energy E0 of the exotic states to the corresponding meson-meson thresholds (in units of MeV).

10] for more details.
One particular interesting assumption for the underlying structure is that the D∗s0(2317) and Ds1(2460)

are hadronic molecules, i.e. the DK and D∗K bound states, respectively [68–72]. As the Tab. 3.1 shows,
the mass splittings MDs1(2460) − MD∗s0(2317) ' 142 MeV and MD∗ − MD ' 143 MeV are approximately
equal. It is a natural consequence of heavy quark spin symmetry in the picture of hadronic molecules [73].
We can also resort to the parity doublet assumption [74–76] to explain the equality. The D∗s0(2317) and
Ds1(2460) are below the DK and D∗K thresholds, respectively. Moreover both have narrow widths, less
than 3.8 MeV and 3.5 MeV, respectively [77]. The small widths of the two arise from the radiative decays
and isospin-violating hadronic decay modes. Under different interpretations of the internal structure,
these decay modes have been intensively explored. The isospin-violating decay can occur through the
η− π0 mixing [78]. While in the hadronic molecule picture, an additional mechanism for the decay exists
due to D∗K meson loops and the direct coupling of the D(∗) and K(∗) mesons to π0. The mass differences
between the neutral and charged charmed meson and kaons would give rise to isospin-violating decay
even dominate over the contribution from the η − π0 mixing [79–82]. Therefore the isospin breaking
decays can be used to distinguish the hadronic molecule picture from the others. It is necessary to
measure the width of the order of 100 keV predicted in the hadronic molecule picture. At present, the
experimental resolution is not high enough. Only the planned PANDA experiment is expected to have
the ability to perform such a measurement [83]. Nevertheless, the hadronic molecule picture is supported
by some lattice QCD calculations of the charmed meson–light meson scattering lengths [84, 85].

The kaons can be regarded as pseudo-Goldstone bosons of the spontaneous breaking of chiral symmetry
S U(3)L×S U(3)R → S U(3)V . As a consequence of chiral symmetry, the leading order interaction between
an narrow excited heavy meson and the kaon should be the same as that for the ground state charmed
mesons when Born terms are neglected, which is a very good approximation for S -wave scattering [86].
The excited state must be narrow enough so that its width is small compared to the inverse of the range of
forces between the heavy meson and the kaon. If not, a new large energy scale would be introduced, and
we can not make the analogy to the ground state mesons any more. We can expect more kaonic bound
states analogous to the D∗s0(2317) and Ds1(2460) as the DK and D∗K bound states. Especially, the ratio
of branching fractions B(D∗sJ(2860) → DK)/B(D∗sJ(2860) → D∗K) is difficult to be accounted for in
other models. But the interpretation as D1(2420)K bound state can explain the experimental data for the
D∗sJ(2860) very well. Besides, a spin partner of the D∗sJ(2860), the Ds2(2910) as a D2(2460)K bound
state, was predicted to have a mass and a width around 2910 MeV and 10 MeV, respectively. This state is
expected to have quantum numbers JP = 2− and decays into the D∗K and D∗sη.

Until now, most of the available studies of the exotic candidates from both experimental and theoretical
sides in the charm-strange sector have been mainly focused on the spectrum and decays or the production
through B meson decays in the e+e− collisions. The underlying structure of the DsJ states is a longstanding
problem that needs to be solved. For the purpose of revealing their nature, more data and processes
involving these states would be equally important and urgent. For example, the processes include
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heavy-ion collisions [87, 88] and the hadroproduction due to the large number of charm quarks that
could be produced. At low energy regions, the forthcoming PANDA experiment is a promising facility to
reach such a purpose. First it has a particular focus on the hadroproduction of D∗s0(2317) state [89], and
secondly it is supposed to have the ability to measure the decay width of the D∗s0(2317) at the 100 keV
level which is important as we discussed above. We note that in high collision energy regions at hadron
colliders like the LHC, the charm quark will be abundantly produced via the QCD processes, which
makes it an ideal platform for the study of these new exotic hadrons and in particular for searching for
the predicted Ds2(2910). Moreover, the LHCb Collaboration has already reported some measurements
about the states in charm-strange sector, such as the decays of the D∗s1(2710), which is the first radially
excited state of the D∗s with JP = 1−, and the decay of DsJ(2860) into the D+K0

S and D0K+ final states
with small statistical uncertainties [90].

3.2 Dynamical generation of the kaonic bound states

For DsJ states which can be dynamically generated from the interaction between charmed mesons and
kaons in the isoscalar channel, the assumed molecular structures can be explicitly decomposed as

|DsJ〉 = −
1
√

2

(∣∣∣C+K0
〉

+
∣∣∣C0K+

〉)
,

where C denotes the D, D∗, D1 and D2 charmed mesons. We use the isospin phase conventions∣∣∣C+〉 = − |1/2, 1/2〉 ,
∣∣∣C0

〉
= |1/2,−1/2〉 ,∣∣∣K+〉 = |1/2, 1/2〉 ,

∣∣∣K0
〉

= |1/2,−1/2〉 ,

which corresponds to the convention for the d quark
∣∣∣d̄〉 = − |1/2, 1/2〉. The two numbers in |· · · , · · · 〉

are the isospin I and its third component I3. The scattering amplitude may differ in sign under different
phase conventions, however, the final physical observables remain the same.

3.2.1 Scattering of the Goldstone bosons off the charmed mesons

As we can see that all the considered bound states contain the light pseudoscalar kaon, and it can be
considered as a Goldstone boson of the spontaneous chiral symmetry breaking from SU(3)L×SU(3)R to
SU(3)V . As shown in Section 2.2.2, the interaction between the Goldstone bosons and the heavy mesons
can be described by the heavy meson chiral perturbation theory (HMChPT) [43, 44, 47], which combines
the chiral and heavy quark symmetries in the light and heavy quark sectors, respectively. More details
about the HMChPT can be found there. It is shown that the contribution from exchanging heavy mesons
is negligible [86], therefore we can only consider the leading order contact terms interaction between the
Goldstone boson and heavy meson, which comes from the kinetic term of the Lagrangian in Eq. (2.43)

Lkin = DµHDµH†, (3.1)

where H denotes the heavy charmed meson field with the composition (cū, cd̄, cs̄), i.e. (D0,D+,Ds) and
the chiral gauge derivative is given by

Dµ = ∂µ +
1
2

(
u†∂µu + u ∂µu†

)
, (3.2)
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3.2 Dynamical generation of the kaonic bound states

Figure 3.2: Sketch of the resummation of the amplitudes. Here, T denotes the total scattering amplitude, V is the
leading order amplitude and G is the loop integral. The heavy meson H and kaon are represented by solid and
dashed lines, respectively.

with U = exp
(
i
√

2Φ/F
)

and u =
√

U. Here, Φ is the 3 × 3 matrix parametrizing the octet Goldstone
bosons shown in Eq. (2.16), and F is the pion decay constant in the chiral limit. Since we will only
consider the leading order interaction, F = 92.2 MeV will be used. The kinetic term in Eq. (2.43) can be
written more explicitly as

Lkin =
1

4F2 ((∂µH[Φ, ∂µΦ]H† − H[Φ, ∂µΦ]∂µH†). (3.3)

It is shown in Ref. [71] that the kaon–charmed meson scattering with the isospin I = 0 is the most
attractive one among all the channels for the light meson–heavy meson S -wave scattering. Hence we
only consider the I = 0 case here. We can express the

∣∣∣D0K+
〉

in terms of the isospin eigenstate as

∣∣∣D0K+
〉

=
1
√

2
|DK〉I=1 −

1
√

2
|DK〉I=0 , (3.4)

Thus the leading order scattering amplitude has the relation〈
D0K+

∣∣∣ V̂ ∣∣∣D0K+
〉

=
1
2

I=1 〈DK| V̂ |DK〉I=1 +
1
2

I=0 〈DK| V̂ |DK〉I=0 , (3.5)

that is

VD0K+→D0K+ =
1
2

V I=1(s, t, u) +
1
2

V I=0(s, t, u), (3.6)

where s, t and u are the Mandelstam variables with the constraint s + t + u = 2(m2
H + m2

K) for the particles
when they are on-shell, with mH and mK the mass of the charmed meson and kaon, respectively. One
finds that D+K+ → D+K+ is a purely I = 1 one,

V I=1(s, t, u) = VD+K+→D+K+(s, t, u). (3.7)

Eventually we have the relation from Eq. (3.6) and Eq. (3.7)

V I=0(s, t, u) = 2VD0K+→D0K+(s, t, u) − VD+K+→D+K+(s, t, u). (3.8)

From the Lagrangian, one can derive the leading order scattering amplitude. The tree level scattering
amplitude of the process HK → HK in I = 0 reads

V(s, t, u) = −
s − u
2F2 , (3.9)

The Mandelstam variable u can be expressed in terms of the scattering angle θ between the incoming and
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outgoing particles in the center-of-mass frame

−u(s, cos θ) = s − 2m2
K −

1
2s

(s + m2
H − m2

K)2 +
1
2s
λ(s,m2

H ,m
2
K) cos θ. (3.10)

where λ(x, y, z) = x2 + y2 + z2 − 2xy− 2yz− 2xz is the Källén function. More details about the kinematics
of the two-body scattering are shown in the Appendix A. The scattering amplitude V(s, t, u) can be
decomposed by using the Legendre polynomials PL(cos θ) in terms of partical waves

V(s, t, u) =

∞∑
L=0

(2L + 1)PL(cos θ)VL(s) (3.11)

where VL(s) are the partial wave amplitudes, and they can be projected out by using the orthogonality
relation of the Legendre polynomials

VL(s) =
1

2(
√

2)N

∫ 1

−1
PL(cos θ)V(s, t(s, cos θ), u(s, cos θ))d cos θ

where (
√

2)N is a factor due to the Bose symmetry. The parameter N depends on the number of times
that identical particles appear in the partial wave amplitude. For instance, we have N = 2 if both the
initial and final states are identical, like ππ → ππ; N = 1 if the initial or final states are identical, like
ηη → KK̄; N = 0 if both the initial and final states are not identical, like our case DK → DK. The
S -wave amplitude, i.e. L = 0, can be projected out for on-shell particles

V0(s) =
1
2

∫ 1

−1
V(s, t(s, cos θ), u(s, cos θ))d cos θ

= −
2

F2 mHEK

1 + O

 k2

m2
H

 , (3.12)

where EK = (s − m2
H + m2

K)/(2
√

s) is the energy of the kaon, while k is the momentum in the center-of-
mass frame. In the above equation, we have used the fact that the heavy meson is highly nonrelativistic
in the energy region of interest.

We need to sum the scattering amplitudes up to infinite orders due to the strong interaction, and most
importantly a perturbative expansion up to any finite order cannot account for the subthreshold states
which appears as poles of the amplitude, for instance the D∗s0(2317). The summation shown in the Fig. 3.2
can be done by using the Bethe-Salpeter equation (BSE)

T (k′, k; s) = V(k′, k; s) + i
∫

d4q
(2π)4

V(k′, q; s) T (q, k; s)
(q2 − m2

K + iε)[(p − q)2 − m2
H + iε]

, (3.13)

where p2 = s. Here the dependence of the amplitudes on the center-of-mass momenta both in the initial
and final states are explicitly kept in the expression. The equation is an integral one and can be solved
numerically. Here instead of solving the equation numerically, we will follow the approach developed
by Ref. [91] and take the on-shell approximation, i.e. using the S -wave amplitude V0(s) as the kernel.
The justification of this approximation can be found in Refs. [92, 93] by using dispersion relations or in
Ref. [94] by taking the off-shell contribution into account. A critical discussion on the use of the on-shell
approximation is given in Ref. [95]. Eventually, the integral equation can be simplified to an algebric
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3.2 Dynamical generation of the kaonic bound states

equation. The resummed S -wave scattering amplitude reads

T0(s) = V0(s) [1 −G(s)V0(s)]−1 . (3.14)

Notice that both here and in Eq. (3.9) we have neglected the polarizations of the charmed mesons with
spin 1 or 2, which can be factorized out to be a overall factor of the resummed scattering amplitude. The
justification is due to the fact that these charmed mesons are highly nonrelativistic in the energy region of
interest. For more details we refer to Appendix B.

3.2.2 Loop function

In Eq. (3.14), G(s) is the two-meson scalar loop function

G(s) = i
∫

d4q
(2π)4

1
q2 − m2

K + iε
1

(p − q)2 − m2
H + iε

. (3.15)

This integral is obviously divergent.

3.2.2.1 Relativistic formulation

The divergent integral can be regularized by adopting a three-momentum cutoff parameter [91]. Unfortu-
nately, it give rise to an artificial singularity of the loop function which would have an impact when the
momentum in the center-of-mass frame approaches the cutoff [96]. A feasible way is to use the once
subtracted dispersion relation [92]

G(s) = G(s0) +
s − s0

π

∫ ∞

sth

ds′
Im G(s′)

(s′ − s)(s′ − s0)

=
1

16π2

{
a(µ) + log

m2
1

µ2 +
∆ − s

2s
log

m2
1

m2
2

+
σ

2s
[
log (s − ∆ + σ)

+ log (s + ∆ + σ) − log (−s + ∆ + σ) − log (−s − ∆ + σ)
]}
, (3.16)

where Im G(s) = −ρ(s)θ(s − sth) is the imaginary part of the loop function, with ρ(s) the phase space
factor, a(µ) is the subtraction constant related to G(s0), with µ the regularization scale which is related to
subtraction point s0 and sth = (m1 + m2)2 is the threshold square, and

σ = [−(s − (m1 + m2)2)(s − (m1 − m2)2)]1/2, ∆ = m2
1 − m2

2.

In Eq. (3.16), the regularization scale µ can have any arbitrary value since its change can always be
absorbed into a(µ). The function G(s) is symmetric under the exchange of the internal lines, i.e. m1 ↔ m2.
Moreover the regularized loop function is only valid above the threshold, however, the value beyond the
region can be obtained through analytical continuation.
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JP State Constituents Thresholds Predicted masses Experimental data

0+ D∗s0(2317) DK 2362.8 2317.8 (input) 2317.8 ± 0.6
1+ Ds1(2460) D∗K 2499.8 2455.4 2459.6 ± 0.6
1− D∗sJ(2860) D1K 2917.9 2875.0 2863.2+4.0

−2.6

2− Ds2(2910) D2K 2959.1 2916.3 ?

Table 3.2: The predictions of the pole position of the kaonic bound states (in units of MeV).

3.2.2.2 Non-Relativistic formulation

According to the heavy quark effective theory, we can do the replacement to the heavy-light meson
propagator in the heavy quark limit

1
l2 − m2

H + iε
→

1
2mH(v · k − ∆ + iε)

, (3.17)

where v is the velocity of the heavy meson, k the residue momentum with the relation kµ = lµ − mHv
µ

and ∆ is the mass difference between pseudoscalar and vector heavy mesons which can be dropped
here. Treating the heavy meson nonrelativistically, we get an analytic expression for the regularized loop
function [86]

GNR(s) = i
∫

d4q
(2π)42mH

1
(q2 − m2

K + iε)(
√

s − q · v − mH + iε)

=
1

16π2mH

{
EK

a(µ)+ log
m2

K

µ2

 + 2pcm cosh−1
(

EK

mK

)
− i 2πpcm

}
, (3.18)

where again µ is the regularization scale, a(µ) is the subtraction constant which is scale-dependent
rendering the loop function scale-independent, and pcm = λ(s,m2

H ,m
2
K)/(2

√
s) is the center of mass

momentum.

3.2.3 Results

In the calculation, we will choose the nonrelativistic loop function for the case with a nonrelativistic
heavy meson and a relativistic light meson in the loop, because the relativistic loop function violates
spin symmetry [86]. A bound state of the charmed meson and kaon is associated with a pole of the
resummed scattering amplitude below threshold on the real axis in the first Riemann sheet of the complex
energy plane. We fix the value of subtraction constant a(µ) to reproduce the mass of the D∗s0(2317) at
2317.8 MeV, and get a(µ = 1 GeV) = −4.0 which is a little different from the one in Ref. [65] where the
authors consider two coupled channels DK and Dsη. And we assume that the same subtraction constant
can be used in all other channels. Because of renormalization group invariance, a change of the scale µ
can be balanced by a corresponding change of the subtraction constant a(µ). For example, if the scale
change from µ to µ′, the subtraction constant will change as

a(µ′) = a(µ) + log
(
µ′

µ2

)
. (3.19)
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3.3 Hadroproduction of the kaonic molecules

Figure 3.3: The mechanism considered here for the inclusive production of the DsJ as a HK bound state in
proton–proton collisions. Here, X denotes all the produced particles other than the H and K in the collision.

We present the results in Tab. 3.2 with the experimental data for comparison, where the central values for
the masses of the constituents are used.

For a given scale µ, different values of the subtraction constant correspond to different pole positions
in a given channel. This fact allows us to vary the constant to get different binding energies so as to
investigate how the cross sections depend on the binding energy later on.

3.3 Hadroproduction of the kaonic molecules

We assume that the production of the DsJ will happen through two steps. The charmed meson kaon
pairs will be generated first, and the pairs form the DsJ states afterward. The mechanism is shown
in Fig. 4.2. This mechanism is valid only when the binding energy of the bound state is small so
that the constituents H and K are only slightly off-shell. However, in principle, the DsJ states can
also couple to other components such as the conventional cs̄ or a [cq][s̄q̄] tetraquark if they have the
required quantum numbers even the dominant component of their wave function is a kaon–charmed
meson bound state. All the components contribute to the production of the DsJ states. In general, it is a
process-dependent question to conclude which one is more important. Here we assume the bound state
component dominants.

3.3.1 Factorization of the near-shreshold production

Before going to the HK case, we will discuss the factorization for the production rate of X(3872) first. In
Ref. [59], a factorization formula of the D∗D̄ production in the near-threshold region was used. It applys
the universal elastic scattering amplitude f to account for the final state interaction (FSI) of D∗0D̄0 pair,
and reads

dσ[D∗0D̄0(k)] =
1

flux

∑
X

∫
dφD∗D̄+X

∣∣∣∣∣∣T [D∗0D̄0(k) + X]
f (k)

∣∣∣∣∣∣2 | f (k)|2
d3k

(2π)32µ

=
1

flux

∑
X

∫
dφD∗D̄+X

∣∣∣∣∣∣T [D∗0D̄0(0) + X]
f (0)

∣∣∣∣∣∣2 | f (k)|2
d3k

(2π)32µ
, (3.20)

where k is the center-of-mass momentum of the constituents, µ is the reduced mass, T [D∗0D̄0(k) + X] is
the amplitude for the D∗0D̄0 inclusive production, and X means all the other particles in the inclusive
process. The phase space integration runs over all the rest particles and the one for the total momentum
of the D∗0D̄0 pair. The second equality in in Eq. (3.20) holds because of the Migdal-Watson theorem [97,
98]. The dramatic dependence of the amplitude T on the relative momentum k is mainly given by the
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Chapter 3 Production of charm-strange hadronic molecules at the LHC

Figure 3.4: Inclusive production of the HK pair in proton–proton collisions. Here Γ denotes the vertex for direct
production, T is the resummed HK scattering amplitude, and X denotes all the produced particles other than the
HK pair.

universal scattering amplitude f in the near-threshold region. Thus T / f is insensitive to k and we can
take the limit k→ 0 in that factor.

In this FSI method, the cross-channel rescattering with other particles comoving with the components
is neglected. However, it is argued that the presence of such particles could make the use of the Migdal-
Watson theorem invalid and largely affect the so-calculated cross section [61, 99]. In fact, the effect of the
comoving hadrons can be treated as perturbations. We will discuss this in more details in Section 4.2.1.

However, in general, it is not clear how the factor T / f depends on the relative momentum at all.
Especially, when the produced particles contain one or more of the lowest-lying pseudoscalar mesons
(pions, kaons and the η-meson) which are the pseudo-Goldstone bosons of the spontaneous breaking
of chiral symmetry of QCD, the near-threshold production amplitude without the FSI should have a
momentum dependence required by chiral symmetry. At first sight, it is not clear whether the universal
elastic scattering amplitude is valid to describe the FSI and there exists a factorization formula analogous
to Eq. (3.20) or not. As a consequence of chiral symmetry, we will argue that such a factorization formula
indeed exists by using the resummed S -wave scattering amplitude in Eq. (3.14) instead of the universal
one.

For the inclusive HK production, the general differential cross section formula reads

dσ[HK(k)] =
1

flux

∑
X

∫
dφHK+X |M[HK(k) + X]|2

d3k
(2π)32µ

, (3.21)

where k is the three-momentum in the center-of-mass frame of the HK pair, µ is the reduced mass, and
M[HK(k) + X] is the production amplitude including the FSI. As depicted in Fig. 3.4, we separate the
inclusive production amplitude of the HK pair into two parts: one is that for the direct production denoted
by Γ, and the other one includes the FSI described by the scattering amplitude T . Thus, we have an
integral equation

M(k; s) = Γ(k; s) + i
∫

d4q
(2π)4

Γ(q; s) T (q, k; s)
(q2 − m2

K + iε)[(p − q)2 − m2
H + iε]

. (3.22)

If we rewrite this equation in terms of operators, we get

M̂ = Γ̂(1 + Ĝ T̂ ), (3.23)

where Ĝ is the operator for the Green’s function of the HK system. Similarly, the BSE given in Eq. (3.13)
can be written as

T̂ = V̂(1 + Ĝ T̂ ). (3.24)
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3.3 Hadroproduction of the kaonic molecules

Inserting Eq. (3.24) into Eq. (3.23), we obtain

M̂ = Γ̂ V̂−1 T̂ . (3.25)

The production amplitude should be dominated by the S -wave if we are only considering the production
of the HK pair in the near-threshold region. Taking the same on-shell approximation as the resummed
scattering amplitude given in Eq. (3.14), in the near-threshold region we have

M(k) ' Γ0(k) V0(k)−1 T0(k), (3.26)

where we have explicitly presented the dependence of all the functions on the center-of-mass momentum.
From Eq. (3.12) we know that the S -wave amplitude is proportional to the energy of kaon, i.e. V0(k) ∝

EK =

√
m2

K + k2.

But how does the direct production amplitude Γ0(k) depend on the momentum? To answer this
question, we need to do a chiral symmetry analysis which is applicable in the near-threshold region.
Since we are only interested in the HK pair in the process and do not care about the details of the
other particles, we may parameterize all the other particles involved in the inclusive production process
by an external source field S which has the same quantum numbers as the HK pair. This means that
we neglect the cross-channel rescattering of the charmed meson and kaon with other particles in the
final state, as it is much smaller than the one between the charmed meson and kaon. Actually, the
spirit of this kind of treatment has already been used to investigate the ππ(KK̄) system in the decays
J/ψ→ φππ(KK̄) [100]. In order to ensure that the interaction strength vanishes at threshold as required
by the Goldstone theorem, the coupling of the Goldstone bosons (pions, kaons and the eta) to any other
fields has to be in a derivative form in the chiral limit when the masses of the up, down and strange quarks
are zero. Thus, the Lagrangian for the near-threshold HK production at leading order in the momentum
expansion can be written as

Lprod = c S ∂µH ∂µK, (3.27)

where all the short-distance physics has been parameterized into the coefficient c and the source field
S . As a matter of fact, there can be a term of the form ∂µS H ∂µK. However, this term can be recast
into the one in Eq. (3.27) modulo a higher order term by using integration by parts. In the Lagrangian,
we have made an implicit approximation that in the final states of the inclusive production, there is no
other soft chiral particles other than the kaon in the HK pair so that we can neglect the interaction of the
kaon with them. Although there are two derivatives in the Lagrangian, it is of order O(k), with k being a
momentum much smaller than the typical hadron scale Λχ ∼ 1 GeV. The reason is that the dominant
part of the heavy meson four-momentum is the mass of the heavy meson, and thus ∂µH is dominated
by its temporal component. An insertion of the light quark masses will give higher order corrections.
Therefore, at leading order in the chiral expansion, the direct production amplitude is proportional to
the energy of kaon too, i.e. Γ0(k) ∝ EK . It is same energy dependence as in V0(k) given in Eq. (3.12).
Together with Eq. (3.25), this means that the production amplitude can be factorized into the product of a
constant C and the resummed scattering amplitude of HK in the near-threshold region

M(k) = C T0(k). (3.28)

Indeed, a factorization formula for the production of the HK pair does exist in the near-threshold region

dσ[HK(k)] =
1

flux

∑
X

∫
dφHK+X |C|2 |T0(k)|2

d3k
(2π)32µ

, (3.29)
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❉s❏

Figure 3.5: The scattering of the charmed meson and kaon through the resonance. The charmed meson and kaon
are represented by solid and dashed lines, respectively.

where the constant C may take a value ofM[HK(k) + X]/T0(k) for any k provided that k � Λχ. It is
related to the coefficient c in Eq. (3.27) through

|C| =
∣∣∣∣∣ Γ(k)
V0(k)

∣∣∣∣∣ =
|c|F2

2
. (3.30)

Eq. (3.29) is the analogue of the factorization used in studying the DD̄∗ production in Ref. [59], and
is applicable to the near-threshold production of a pair of a heavy meson and a pseudo-Goldstone
boson. This formula allows for the separation of the long-distance and short-distance contributions in
the amplitudes for the production of the molecules. The short-distance one is the same for the processes
pp → HK and pp → DsJ , while the long-distance factor resides in a multiplicative factor of the
scattering amplitude given in Eq. (3.14).

3.3.2 Production of the charm-strange hadronic molecules

The cross section for the production of DsJ is

σ[DsJ] =
1

flux

∑
X

∫
dφDsJ+X |M[DsJ + X]|2 . (3.31)

Since the integrated phase space dφHK+X in Eq. (4.24) contains the part of the total momentum of the HK
pair, the phase space integration in the above equation dφDsJ+X is the same as dφHK+X . Since these DsJ

states are the bound state poles of T0(s), the resummed scattering amplitude T0(k) contains information
about the generated hadronic molecules. Therefore, it is straightforward to extend the factorization
formula Eq. (3.29) to the case of the inclusive DsJ production provided that these states are produced
through intermediate HK pairs. The recipe is to replace the HK → HK scattering amplitude T0(s) in
Eq. (3.29) by the amplitude for the process HK → DsJ , which is given by the effective coupling constant
for the DsJHK vertex in the vicinity of the DsJ pole. Thue, we have

σ[DsJ] =
1

flux

∑
X

∫
dφDsJ+X |C geff|

2

=

∣∣∣∣∣∣F2

2
geff

∣∣∣∣∣∣2 1
flux

∑
X

∫
dφDsJ+X |c|2 , (3.32)

where C is the same constant as that in Eq. (3.29).
The scattering of the heavy charmed meson and kaon with a pole can be depicted as Fig. 3.5, and
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3.3 Hadroproduction of the kaonic molecules

around the pole the amplitude can be approximated by

T0(s) = geff

1
s − spole

geff (3.33)

where spole = M2
DsJ

and the effective coupling constant geff is given by the residue of the transition matrix
element at the pole

g2
eff = lim

s→spole
(s − spole) T0(s)

=
1

d[V0(s)−1 −G(s)]/ds

∣∣∣∣∣
s=spole

. (3.34)

We have checked that the same equation will be obtained if we use the approach adopted in Ref. [59]
which uses the Migdal-Watson theorem [97, 98] and the unitary relation for the scattering amplitude.

If we vary the subtraction constant in the expression of loop function G, we can get different binding
energies. Therefore the cross section for the hadronic molecule in Eq. (3.32) is dependent on the
subtraction constant, and indeed on the binding energy. With a smaller binding energy, we found that
the production rate of the molecules gets smaller. This conclusion is in agreement with Ref [59]. As we
know the scattering length relate to the binding energy EB as a = (2µEB)−1/2, it means that the bound
state with a larger scattering length is more difficult to be produced. Yet, this conclusion relies on the
assumption that the subtraction constant a(µ) in the first DK loop attached to the production vertex takes
the same value as that in generating the pole.

3.3.3 Estimate the cross section using Monte Carlo event generators

MC event generators have been used in many other processes as a phenomenological and successful tool.
They are able to simulate the hadronization of partons produced in QCD processes, and therefore provide
an estimate of the pp→ HK inclusive cross sections. Here we will use two commonly adopted programs,
Pythia [101] and Herwig [102]. However, the above two event generators do not incorporate the FSI
effect which governs the momentum dependence close to threshold as depicted in the scattering amplitude
T0(s) in Eq. (3.14). Therefore, the MC cross section corresponds to the case without near-threshold
FSI, and can be approximately expressed in terms of the vertex given in the leading order Lagrangian in
Eq. (3.27), (dσ[HK(k)]

dk

)
MC

= KHK
1

flux

∑
X

∫
dφHK+X |c mH EK |

2 k2

4π2µ
, (3.35)

where the factor KHK ∼ O(1) is introduced because of the overall difference between MC simulation and
the experimental data, while for an order-of-magnitude estimate we can roughly take KHK ' 1.

Therefore, the coupling constant c can be determined using Eq. (3.35).

1
flux

∑
X

∫
dφHK+X |c|2 =

(dσ[HK(k)]
dk

)
MC

4π2µ

k2E2
Km2

H

, (3.36)

Substituting the result into the Eq. (3.32), we obtain the cross section for the DsJ:

σ[DsJ] =

∣∣∣∣∣∣F2

2
geff

∣∣∣∣∣∣2 (dσ[HK(k)]
dk

)
MC

4π2µ

k2E2
Km2

H

. (3.37)
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Although the expression contains explicitly a factor of 1/(E2
Kk2), this factor is completely cancelled by

(dσ[HK(k)]/dk)MC and thus a momentum-independent value is obtained.

3.4 Results

In order to form a molecular state, it is necessary that the constituents move nearly collinearly as a
multi-quark system and thus have a small relative momentum. Such configurations can be realized in an
inclusive 2→ 2 QCD process first, and later the multiquark final states can be produced by soft parton
shower radiations. The dominant partonic process for the production of the DsJ states is gg→ cc̄ because
the gluon density at the LHC energy is much larger than those for quarks. Besides that, the process
qq̄→ cc̄ will also be included in this analysis.

We have used Pythia and Herwig to generate 108 events which contain a pair of the charm and
anti-charm quarks. These events are then analyzed by the Rivet library [103] in order to pick out the
charmed-meson kaon pair with a small invariant mass. Since the kaons in these events are mostly
produced from the soft gluon emission by the heavy charm quarks, they tend to move together with the
charmed hadrons. This portion of the events will contribute significantly to the formation of the molecules.
To match the capability of the detectors, we have also implemented the cuts on the transverse momentum
of the meson pair pT > 5 GeV, and the rapidity |y| < 2.5 and 2.0 < y < 4.5 for the ATLAS/CMS (denoted
as LHC for simplicity) and LHCb detectors, respectively. In Fig. 3.6, we show the differential cross
sections (histograms in this figure) versus the center-of-mass momentum of the constituent mesons up
to 0.35 GeV for the inclusive processes pp→ DK, D∗K, D1K, and D2K at the LHC with

√
s = 8 TeV.

Since the production of charmed mesons D1 and D2 is not included in Pythia, we only show the results
from Herwig.

As analyzed in Section 3.3.1 and shown in Eq. (3.35), one should be able to approximately describe
the production mechanism in the MC calculation using the leading order effective Lagrangian given in
Eq. (3.27), and the resulting differential cross section is proportional to k2E2

K . To validate this feature,
we fit to these distributions with Eq. (3.35) up to 350 MeV for the center-of-mass momentum. The
fitted results are shown as curves in Fig. 3.6. Note that the shape of the cross section in Eq. (3.35) is
completely fixed, and the fitting procedure only results in a normalization constant, which is proportional
to square of the coupling constant |c|2. From this figure, one sees that the MC results can be well
described, except the D∗K from Herwig where there exists a clear peak at the bin between 150 MeV
and 200 MeV. This peak can be attributed to the resonance Ds1(2536) because it decays into D∗+K0 and
D∗0K+ with a center-of-mass momentum of 149 and 167 MeV, respectively. Note that this resonance
was included in Herwig but not in Pythia. In principle, this resonating contribution can be built in the
scattering amplitudes using a coupled-channel formalism, which will improve the consistency with the
MC simulations. However, since we are only interested in an order-of-magnitude estimate, we refrain
from doing such an analysis.

With Eq. (4.27) and the differential distributions in Fig. 3.6, we can obtain the production rates of
the hadronic DsJ molecules. These results for the cross sections for the inclusive processes pp →
D∗s0(2317), Ds1(2460), DsJ(2860) and Ds2(2910) (in units of µb) at the LHC with

√
s = (7, 8, 14) TeV

are shown in Table 3.3. Results outside (inside) brackets are obtained using Herwig (Pythia if applicable).
Here the rapidity range |y| < 2.5 has been assumed for the LHC detectors (ATLAS and CMS), while the
rapidity range 2.0 < y < 4.5 is used for the LHCb. The differences between the values from Pythia and
Herwig are caused by the different hadronization mechanisms to form the charmed and kaon mesons.
From this table, one sees that the cross sections for the pp → DsJ(2860) and the pp → Ds2(2910) at
the LHC are at the 10−1 µb level, while the ones for the pp→ D∗s0(2317) and the pp→ Ds1(2460) are
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Figure 3.6: Differential cross sections dσ/dk (in units of µb/GeV) for the inclusive processes pp → DK, D∗K,
D1K and D2K at the LHC with

√
s = 8 TeV. The histograms are obtained from the MC simulation (Herwig and

Pythia) while the curves are fitted according to the momentum dependence k2E2
K . In the MC calculation, the

kinematic cuts used are |y| < 2.5 and pT > 5 GeV, which lie in the phase-space regions of the ATLAS and CMS
detectors. Here, we have averaged the events in different charged channels, e.g. D0K+ and D+K0 for the DK case.
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D∗s0(2317) Ds1(2460) DsJ(2860) Ds2(2910)

LHC 7 2.5(0.83) 2.1(0.91) 0.21(-) 0.27(-)
LHCb 7 0.61(0.15) 0.5(0.17) 0.05(-) 0.06(-)
LHC 8 2.9(0.94) 2.4(1.0) 0.24(-) 0.32(-)

LHCb 8 0.74(0.18) 0.61(0.2) 0.06(-) 0.08(-)
LHC 14 5.5(1.6) 4.7(1.7) 0.5(-) 0.65(-)
LHCb 14 1.6(0.35) 1.3(0.38) 0.13(-) 0.17(-)

Table 3.3: Integrated normalized cross sections (in units of µb) for the inclusive processes pp →

D∗s0(2317), Ds1(2460), DsJ(2860) and Ds2(2910) at LHC. The results outside (inside) brackets are obtained
using Herwig (Pythia). Here the rapidity range |y| < 2.5 has been assumed for the LHC experiments (ATLAS and
CMS), while the rapidity range 2.0 < y < 4.5 is used for the LHCb.

larger by roughly one order of magnitude. Such large production rates suggest a promising perspective
for searching for these four exotic states at the LHC.

The Ds1(2460) has a large decay branching fraction into Dsγ and thus can be reconstructed from the
K+K−π+γ final states. With the available decay branching fractions [77], we find that the cross section
for the process pp→ Ds1(2460)→ D+

s γ → K+K−π+γ reaches O(107 fb), and this would yield O(108)
events when considering the integrated luminosity of 22 fb−1 from ATLAS and CMS in 2012 [104,
105]. The DsJ(2860) mainly decays into DK and D∗K, while the Ds2(2910) has a large partial width
into D∗K. These two hadrons can be reconstructed in hadronic final states. In particular, based on the
1 fb−1 data accumulated in 2011, the LHCb Collaboration has used the DK final state to reconstruct the
DsJ(2860) [90], where about 3 × 104 D0K+ events from the DsJ(2860) were observed. Using the cross
section shown in Table 3.3 and assuming that the DsJ(2860) → D0K+ is of O(10−1) supported by the
Babar data [106], we predict about O(106) D0K+ events to be generated, which is about two orders of
magnitude larger. However, since the detection efficiency of the experiment was not published, a direct
comparison is not possible. Currently, we may only conclude that our prediction is not in conflict with
the measurement. A more quantitative comparison is expected when the efficiency corrected data is
available in the future.

The search for the DsJ states at hadron colliders depends on the non-resonant background contributions.
To investigate this issue, we take the Ds0(2317) to be constructed in the Dsγ final state as an example. To
be conservative, we use the cross section σ(pp→ D±s + anything) as an upper bound for the background.
The ATLAS collaboration has provided a measurement of this cross section at

√
s = 7 TeV [107]:

σ(D±s ) = (168 ± 34+27
−25 ± 18 ± 10) µb. (3.38)

where the pT (D±s ) > 3.5 GeV and the pseudo-rapitidity η < 2.1. Our results in Table 3.3 show that the
cross section of the pp→ Ds0(2317) at

√
s = 7 TeV is about 2 µb. Using the integrated luminosity in

2012, 22 fb−1 [104, 105], we have an estimate for the signal/background ratio

S
√

B
∼

2 × 22 × 109 × 5%
√

170 × 22 × 109
∼ 1 × 103, (3.39)

where 5% is the current upper bound for the branching fraction of the Ds0(2317) → Dsγ [77]. It is
worthwhile to point out that our theoretical results have to be modified somewhat due to the mismatch
in kinematics, however, we believe that the above estimate indicates a great potential for observing the
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discussed molecular states at the LHC.

3.5 Discussions

We have explored the hadroproduction of D∗s0(2317), Ds1(2460), DsJ(2860) and the predicted Ds2(2910)
states at the LHC under the assumption that these hadrons are S -wave hadron molecules. We have made
use of two MC event generators, Herwig and Pythia, to simulate the production of the charmed-meson
kaon pairs. Together with effective field theory to handle the final state interaction among the meson
pairs and neglect their interactions with other particles, we have derived an estimate of the production
rates for these particles at the order-of-magnitude accuracy. Our results show that the cross sections for
the pp→ DsJ(2860) and the pp→ Ds2(2910) at the LHC are at the 10−1µb level, while the ones for the
pp → D∗s0(2317) and the pp → Ds1(2460) are larger by roughly one order of magnitude. Thus, these
states can be copiously produced at the LHC, and measurements in the future would be able to test the
molecular description of the above states and also the production mechanism. Such measurements are
very important to gain deeper insights into the hadron interactions, in particular the interactions between
heavy and light mesons.
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CHAPTER 4

Production of the X(3872) and its bottom
analogs and spin partner at hadron colliders

We derived the formula to estimate the cross section of the inclusive production of an S -wave loosely
bound states by using the amplitude from heavy hadron chiral perturbation theory (HHChPT) for the
heavy-light mesons in Chapter 3. In this chapter, we will study the production of the exotic hadrons
with hidden heavy flavor at hadron colliders under the assumption that these particles are S -wave meson-
meson molecules. Most of the calculations and discussions presented here are taken from the publication
in Ref. [108]. We primarily focus on the production of the Xb which is bottom analogue of the X(3872)
with BB̄∗ components and its spin partner, a B∗B̄∗ molecule with JPC = 2++ and denoted as Xb2, at the
LHC and the Tevatron. Besides, the results on the production of the spin partner of the X(3872), denoted
as Xc2 with JPC = 2++, will also be given. According to the heavy quark spin symmetry, the binding
energies of the Xb2 and Xc2 are similar to those of the Xb and X(3872), respectively. Since the X(3872)
has been studied experimentally and theoretically, we will also revisit the production of the X(3872), and
compare the obtained results with the experimental data and other theoretical results.

This chapter is organized as follows. We begin in Section 4.1 by revisiting the dynamical generation of
all the mentioned candidates of hadronic molecules above, denoted as X in the following. In Section 4.2,
we will derive the factorization formula for the production amplitude. In Section 4.3, we will present the
production cross section by using the event generators. Finally, the results and discussions will be shown
in Section 4.4 and Section 4.5, respectively.

4.1 Charmonium-like XYZ states

Over the last decade or so, many charmonium-like states have been observed but they can not fit into
the conventional charmonium spectroscopy predicted by the quark model, in particular these close to or
above the open-charm thresholds. One can see this cleary from Fig. 4.1 where we show the spectroscopy
of the charmonia which is taken from Ref. [109]. Among them the X(3872) is one of the most interesting
states. We will discuss this state as well as its partner in the following.

4.1.1 The X(3872) and its bottom analogs and spin partner

The Belle Collaboration first discovered the X(3872) in B exclusive decay B→ KππJ/ψ in the ππJ/ψ
invariant mass distribution at the e+e− collider in 2003 [111], and later the BaBar Collaboration confirmed
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Figure 4.1: Spectroscopy of the charmonia taken from Ref. [109]. The solid lines denote the predictions by quark
model [32] while the shaded lines represent the observed conventional charmonium states [110]. The horizontal
dashed lines are various D(∗)

s D̄(∗)
s thresholds, while the red dots are the newly observed charmonium-like states.

The states in the last column do not fit the listed spin assignment.

its existence in the same channel [112]. The possible quantum numbers JPC of the X(3872) are 1++, as
the analyses of its decays to J/ψπ+π− [113] and D0D̄0π0 [114] favor 1+ rather than 2− and the decay to
J/ψγ [115] suggests it is even under charge conjugation. The quantum number was finally determined by
the LHCb Collaboration 10 years after the discovery [116]. On the other hand, the isovector hypothesis is
excluded by using a likelihood ratio test [117], and also by the fact that it is observed only in the neutral
charge state. Until now, its internal structure is under debate. The X(3872) is peculiar in some aspects,
for example its total width is so tiny and only the upper bound is known: Γ < 1.2 MeV and its mass lies
extremely close to the D0D̄∗0 [77],

MX(3872) − MD0 − MD∗0 = (−0.12 ± 0.24) MeV. (4.1)

Because of the proximity to the threshold, the X(3872) is regarded as one especially promising candidate
for a hadronic molecule—either a DD̄∗ loosely bound state [118] or a virtual state [119].

The unexpected large ratio of the branching fraction of the two processes X(3872)→ J/ψπ+π− and
X(3872)→ J/ψπ+π−π0 was reported by the Belle Collaboration for the first time [120]. As the X(3872)
is an isosinglet I = 0, the process X(3872)→ J/ψπ+π−, via a virtual ρ0, violates the isospin symmetry
and should be suppressed. However, the isospin violation is remarkably large, as shown by [77]

Γ(X(3872)→ J/ψω)
Γ(X(3872)→ J/ψπ+π−)

= 0.8 ± 0.3. (4.2)

42



4.1 Charmonium-like XYZ states

One explanation is that the larger phase space for decay of the X(3872) to J/ψρ than J/ψω can contribute
to the large ratio [121]. Furthermore, the evidence for different rates of charged and neutral B decays into
X(3872) was also found in Ref. [122].

These puzzling facts have stimulated great interest in revealing the underlying structure of the X(3872).
One of the important aspects is to discriminate the compact multiquark configuration and the loosely
bound hadronic molecule configurations. Although recent calculations of the hadroproduction rates at the
LHC based on nonrelativistic QCD indicate that the X(3872) could hardly be an ordinary charmonium
χc1(2P) [123], the disagreements in theoretical predictions in the molecule picture is also sizable [14,
59–61, 124].

On one hand, it is important to study the X(3872) itself. However, a possible analogue of the X(3872)
in the bottom sector may exist due to the heavy flavor symmetry. In Ref. [125], it was referred to Xb,
and we follow the notation here. Actually, such a state was predicted to exist in both the tetraquark
model [126] and hadronic molecular calculations [13, 127, 128]. But the mass of the BB̄∗ molecule based
on the mass of the X(3872) is a few tens of MeV higher than the one predicted in the tetraquark model.
For example, the mass of the lowest-lying 1++ b̄q̄bq tetraquark was predicted to be 10504 MeV [126],
while in Ref. [13] the mass was predicted to be (10580+9

−8) MeV based on the molecule assumption.
Therefore, it is also expedient to search for the Xb on the other hand. The measurements of its properties
would help us to understand the underlying interaction in the formation of the X(3872) in addition to the
Xb.

It is unlikely to discover Xb at the current electron-positron colliders, as its mass is larger than 10 GeV
and its quantum numbers JPC are 1++. But at the Super-KEKB, large data sets are expected in future, of
order 50 ab−1 [129]. This makes the prospect for the observation of the Xb bright through the Υ(5S , 6S )
radiative decays.

4.1.2 Dynamical generation

The heavy quark spin symmetry (HQSS) has been widely adopted to predict new hadronic molecules [73,
130–134], as well as the heavy flavor symmetry (HFS) [13, 135]. By exploring the consequences of
heavy quark symmetries on the X(3872) within the framework of effective field theory, Ref. [13] made
predictions on the bottom analogues and the spin partner of X(3872). In this section, we will explore the
consequences of the heavy quark symmetries for the hadronic molecules mentioned above and discuss
the dynamical generation of them.

The Lippmann-Schwinger equation (LSE) in terms of the operators reads

T̂ = V̂ + V̂ĜT̂ . (4.3)

In the momentum space, the LSE is an integral equation. One can solve the integral equation numerically.
However, as discussed in Section 3.2, the integral equation turns out to be an algebric equation after
taking the on-shell approximation. We can iterate the on-shell S -wave V0(E) infinite times and get the
resummed S -wave amplitude as

T0(E) = V0(E) [1 −G(E)V0(E)]−1 , (4.4)

where G(E) is the two-point loop integral

G(E) = i
∫

d4q
(2π)4

1
(q2 − m2

H + iε)[(P − q)2 − m2
H′ + iε]

, (4.5)
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where E =
√

P2, and mH and mH′ are the masses of two charmed mesons. The loop integral is obviously
divergent, but can be regularized by various methods, for example using a sharp cut-off parameter or
form factors are shown in the Appendix D. Here we will choose the same Gaussian form factor used in
Ref. [13] to regularize the loop function, as we study the production of the hadronic molecules predicted
there. Then the regularized loop function reads

G(E,Λ) = −
µ

π2

√2π
Λ

4
+
π

2
k e2 k2/Λ2

erfi
 √2 k

Λ

 − 1
 , (4.6)

where Λ is the cutoff, µ is the reduced mass of the heavy mesons and erfi(z) = (2/
√
π)

∫ z
0 et2dt. The

regularized loop integral is dependent on the cutoff Λ. We will use the range of [0.5, 1.0] GeV for the
cutoff Λ following Ref. [13]. This range is a reasonable choice as the following considerations. On
one hand the cutoff of the effective theory Λ should be larger than the typical momentum scale we are
concerning, i.e. the wave number of the bound states. On the other hand, it should be as small as possible
in order to make the heavy quark symmetry valid.

The Lagrangian describing the strong interactions of heavy mesons and antimesons which contain one
heavy quark (Q) or antiquark (Q̄) includes two contributions at the leading order (LO) in the effective
field theory (EFT) expansion, and can be written as

L(0) = L
(0)
4H +L

(0)
πHH , (4.7)

where L(0)
4H is the 4-meson interaction vertex while L(0)

πHH is for the interaction vertex with one pion
exchanged. The contact range Lagrangian for the 4-meson interaction, which is consistent with the HQSS
and chiral symmetry, can be written as [133, 136]

L
(0)
4H = D0a Tr

[
H̄(Q)aH(Q)

a γµ
]

Tr
[
H(Q̄)bH̄(Q̄)

b γµ
]

+ D0b Tr
[
H̄(Q)aH(Q)

a γµγ5
]

Tr
[
H(Q̄)bH̄(Q̄)

b γµγ5

]
+ E0a Tr

[
H̄(Q)a ~τ b

a H(Q)
b γµ

]
Tr

[
H(Q̄)r ~τ s

r H̄(Q̄)
s γµ

]
+ E0b Tr

[
H̄(Q)a ~τ b

a H(Q)
b γµγ5

]
Tr

[
H(Q̄)r ~τ s

r H̄(Q̄)
s γµγ5

]
,

(4.8)

and the Lagrangian for the one pion exchange is [137]

L
(0)
πHH = −

g
√

2Fπ

{
Tr

[
H̄(Q)bH(Q)

a γµγ5
]

+ Tr
[
H(Q̄)bH̄(Q̄)

a γµγ5

] }
(~τ · ∂µ~π) a

b + O(π2), (4.9)

where τab are the Pauli matrices, a, b, r, s are the isospin indices, and ~π are the pion fields. Fπ is the pion
decay constant, while g is a coupling constant which can be determined from the charmed meson decay
D∗ → Dπ.

With the leading order Lagrangian, the potential is quite simple because the pion exchanges and
coupled-channel effects can be considered subleading [133, 138]. It only contains the energy-independent
contact range interactions between the considered heavy meson pair. Therefore, at very low energies, the
interaction between heavy mesons and antimesons (D(∗)D̄(∗) or B(∗)B̄(∗)) can be described solely in terms
of the contact-range potential.

We use the matrix field H(Q) (H(Q̄)) to denote the doublets of pseudoscalar and vector heavy-meson
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4.1 Charmonium-like XYZ states

(antimeson)

H(Q)
a =

1 + /v

2
[P∗(Q)

aµ γµ − P(Q)
a γ5], (4.10)

H(Q̄)a = [P∗(Q̄)a
µ γµ − P(Q̄)γ5]

1 − /v
2

, (4.11)

where the pseudoscalar meson (antimeson) fields are represented by P(Q)
a (P(Q̄)

a ) and their vector HQSS
partners are P∗(Q)

a (P∗(Q̄)
a ). Thus we have the relation

CDD̄∗
0 (1++) = CD∗D̄∗

0 (2++), (4.12)

which is the consequence of HQSS. On the other hand, assuming HFS for the contact term1, we have

CDD̄∗
0 (1++) = CBB̄∗

0 (1++), (4.13)

CD∗D̄∗
0 (2++) = CB∗ B̄∗

0 (2++). (4.14)

Thus, the four leading order low energy constants are equivalent and we denote them as C0. The value of
the constant C0 is unknown, but it satisfies the equation

1 −C0 G[E,Λ] = 0, (4.15)

at the pole of the bound state E = Epole. This equation can be used to determine the constant C0. However,
as shown above the loop function G is dependent on the cutoff Λ, C0 should depend on Λ as well. This
is required by the renormalization group invariance, and at the end the physical observables are cutoff

independent. We first take the observed X(3872) mass as input to determine the constant C0, and then use
the value to predict the partners of the X(3872). To take the heavy quark symmetry breaking into account,
we can expect the counter term C0 to deviate from the heavy quark limit by the order of ΛQCD/mQ, that
is [133]

CmQ
0 = CmQ→∞

0

(
1 + O

(
ΛQCD

mQ

))
, (4.16)

where we take ΛQCD = 300 MeV, and mQ = 1.5 GeV for the charm quark and mQ = 4.5 GeV for the
bottom quark. Thus a relative uncertainty of 20% in charm sector and 7% in bottom sector will be
introduced. In the calculation, we use the central values for the masses of the constituents. The values of
the predicted masses together with uncertainties are listed in Tab. 4.1.

One may notice that there is one big difference between the predicted Xb and the X(3872), that is we
expect that the isospin breaking effects would be much smaller for the Xb than that for the X(3872). For
the X(3872), the distance of its mass to the D0D̄∗0 threshold is much smaller than the distance to the
D+D∗− threshold, which leaves its imprint in the wave function at short distances through the charmed
meson loops so that a sizable isospin breaking effect is expected. But the mass difference between the
charged and neutral B mesons is only (0.32 ± 0.06) MeV [77], moreover the binding energy of the BB̄∗

system may be larger than that in the charmed sector due to a larger reduced mass. Besides, although the
isospin breaking observed in the X(3872) decays into J/ψ and two/three pions can be largely explained
by the phase space difference between the X(3872)→ J/ψρ and the X(3872)→ J/ψω [121], the phase
space difference between the Υρ and Υω systems is negligible since the mass splitting between the Xb

1 This assumption is reasonable: considering resonance saturation for the contact terms, they will not depend on MQ. However,
there is another point of view, see Ref. [136]
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JPC state Thresholds Λ = 0.5 GeV Λ = 1 GeV Experiment

1++ 1√
2
(DD̄∗ − D∗D̄) 3875.84 3871.69 (input) 3871.69 (input) 3871.69 ± 0.17 [77]

2++ D∗D̄∗ 4017.2 4012+1
−2 4012+3

−4 ?
1++ 1√

2
(BB̄∗ − B∗B̄) 10604.6 10581+8

−9 10539+25
−27 ?

2++ B∗B̄∗ 10650.4 10626+8
−9 10584+25

−27 ?

Table 4.1: The predictions of the pole position of the bound states in units of MeV. The uncertainties are caused by
the heavy quark symmetry breaking.

and the Υ(1S ) is definitely larger than 1 GeV. Therefore, to a very good approximation, the Xb should be
an isosinglet state, which is in line with the predictions in Refs. [13, 127, 128].

4.2 Factorization formula

To derive the factorized formula for the prompt production cross section, we start with the scattering
amplitude. The inclusive amplitude can be written in terms of its wave function in the momentum
representation ψ̃X(k) as

M[X] =

∫
d3k

(2π)3
√

2µ
M[HH′(k) + all] ψ̃X(k), (4.17)

where the X stands for X(3872), Xb, Xb2 or Xc2, µ is the reduced mass of the heavy mesons H and H′ and
M[HH′ + all] is the amplitude for the inclusive production of heavy mesons H and H′.

4.2.1 The rescattering effect

The squared amplitude is written as

|M[X]|2 =

∣∣∣∣∣∣∣
∫

d3k

(2π)3
√

2µ
M[HH′(k) + all] ψ̃X(k)

∣∣∣∣∣∣∣
2

≤

∫
d3k

(2π)32µ

∣∣∣M[HH′(k) + all]
∣∣∣2 ∫

d3k
(2π)3

∣∣∣ψ̃X(k)
∣∣∣2 , (4.18)

where the Schwartz inequality has been applied and the last factor is the normalization integral for the
wave function. In order to estimate the upper bound for the production cross section of X(3872), Ref. [14]
used a sharp cutoff kmax for the integral over k, where kmax is the momentum scale set by the binding
momentum

√
2µEX , with EX the energy of X(3872) relative to the threshold, i.e. the binding energy.

After applying the uncertinty principle relation, the authors of Ref. [14] got kmax = 35 MeV. While after
inserting the phase integral, the amplitude squared |M[HH′(k) + all]|2 for the prompt charmed meson
pairs was simulated by the Monte Carlo event generators like Pythia and Herwig. However, in the event
generators, the amplitude squared is independent of the relative momentum k, and we will discuss this
later in more detail. They obtained 0.11 nb and 0.071 nb for the Fermilab Tevatron by using Pythia
and Herwig, respectively. The results are smaller by orders of magnitude than the lower bound on the
experimental one, (3.1 ± 0.7) nb, which is extracted from the CDF data. Therefore, they concluded that
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4.2 Factorization formula

the expectation of the X(3872) being a charmed meson molecule is unlikely.
However, in Ref. [59], the authors argued that the upper limit of the integral kmax should not be set by

the binding momentum, but set by the typical momentum scale associated with the range of interaction
between the charmed mesons. The final state interaction between the charmed mesons can play an
important role in the region of small relative momentum. The effect can make the charmed mesons which
are created with a large relative momentum to rescatter into the small region. Therefore the integral
region in Eq. (4.18) should be extended. As a result, the upper bound on the cross section estimated in
Ref. [14] will increase significantly, and the large discrepancy with the lower bound on experimental
result will be resolved.

In order to take the rescattering effect into account, Ref. [59] used the universal elastic scattering
amplitude to account for the dramatic energy dependence of the matrix element according to the Migdal-
Watson theorem [97, 98], then derived the factorized formula of the production rate.

However, one may doubt the use of the Migdal-Watson approach, because of a huge numbers of
hadrons comoving with the molecular components. The hadrons near the constituent mesons with a small
relative momentum can be investigated by using the event generators. In Ref. [99], it was shown that
effect of the hadrons is significant and do necessarily interfere the charmed mesons to rescatter into the
bound state in an unknown way. Thus the hadrons could significantly change the prompt production
cross section estimated in Ref. [59]. While the authors of Ref. [60] argued that the interaction strength
between a hadron with a constituent of the would-be loosely bound S -wave molecule is much smaller
than the one between the two constituents. Hence the effect of the comoving hadrons can be treated as
perturbations, and the use of Migdal-Watson theorem is valid.

4.2.2 Factorization of the amplitude

By using the Schrödinger equation for the bound state

〈k| Ĥ |ψ〉 = −EB 〈k|ψ〉 (4.19)

where Ĥ = k̂2
/2µ + V is the Hamiltonian for the system, with V the potential for the two-body scattering

and EB is the binding energy. The wave function can be expressed as

ψ̃X(k) = −
2µ

k2 + 2µEB
TX(k), (4.20)

where TX(k) = 〈k|V |ψ〉 is amplitude for the coupling of the bound state to the two-body channel, i.e.
HH′ → X. In the case that the hadronic molecule is a loosely bound state, TX can be approximated by the

Figure 4.2: The mechanism considered here for the inclusive production of the X as a HH′ bound state in
proton–proton collisions. Here, all denotes all the produced particles other than the H and H′ in the collision.
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nonrelativistic coupling constant gNR of the X to its constituents and independent of the momentum. The
nonrelativistic coupling constant has the relation to the relativistic one as g = gNR

√
2mH

√
2mH′

√
2mX .

As mX is the mass of X and extremely close the threshold, thus mX ≈ mH + mH′ . Then the wave function
is

ψ̃X(k) = 4mHmH′
g

√
2mH

√
2mH′

√
2mX

∫
dk0

2π
G(k)

= g
√

2µ
∫

dk0

2π
G(k), (4.21)

where G(k) is the Green function of the heavy meson pair. After inserting the wave function into
Eq. (4.17), we can obtain

M[X] = g

∫
d4k

(2π)4M[HH′(k) + all] G(k). (4.22)

Or alternatively, when the binding energy of a bound state is small, we can assume that the formation
of the hadronic molecule, which is a long-distance process, would occur after the production of its
constituents, which is of short-distance nature. The mechanism is shown in Fig. 4.2. In general, the
scattering amplitude is an integral equation over the momentum of the intermediate mesons, and we can
get the same formula as above.

As argued in Ref. [59], one should be able to approximate the production amplitudeM[HH′ + all],
which does not take into account the FSI carrying a strong momentum dependence near threshold, by a
constant. According to the Migdal-Watson theorem [97, 98], which is valid when coupled channels and
cross-channel FSI are neglected, the FSI in the production is described by the elastic scattering amplitude.
Thus, bothM[HH′ + all] and g can be taken outside the momentum integral, while the integral of the
Green function G(k) turns out to be the divergent two-point scalar loop function. Therefore, the amplitude
for the production of the hadronic molecule can be written as [58]

M[X] =M[HH′ + all] G g, (4.23)

where G is the two-point loop integral.

4.3 The cross section using event generators

To derive the cross section for the production of the hadronic molecules, the starting point is the general
differential Monte Carlo (MC) cross section formula for the inclusive production of the constituents

dσ[HH′(k)]MC = KHH′
1

flux

∑
all

∫
dφHH′+all|M[HH′(k) + all]|2

d3k
(2π)32µ

. (4.24)

where k is the three-momentum in the center-of-mass frame of the HH′ pair, µ is the reduced mass of
the HH′ pair. As we know the event generators have been tuned in many high energy experiments to
reproduce the distributions of one charmed meson, but to our knowledge no distribution of charmed
meson pairs has been reproduced to be tuned in the event generators. Thus the factor KHH′ is introduced
for the overall difference between MC simulation and the experimental data. Generally this factor is of
O(1), for example Ref. [14] tuned the MC tools on the D0D∗− pair production cross section distributions
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on the CDF data [139] and the factors were 0.74 and 1.8 for Pythia and Herwig, respectively. Therefore,
we can roughly take KHH′ ' 1 for an order-of-magnitude estimate.

The event generators like Pythia and Herwig do not include the information of the final state interaction
between the mesons, and the matrix elementM[HH′(k) + all] is independent of the relative momentum
approximately in the low relative momentum region. Thus in the region where the relative momentum is
small, we have the relation

dσ[HH′(k)]MC

dk
≈ k2. (4.25)

On the other side, the cross section for the production of the hadronic molecule is written as

σ[X] =
1

flux

∑
all

∫
dφX+all |M[X + all]|2 , (4.26)

where the phase space integration is the same as the one in Eq. (4.24). Finally we can deduce the cross
section of X based on the Eqs. (4.23) and (4.24) as

σ[X] =
1

4mHmH′
g2

eff|G|
2
(dσ[HH′(k)]

dk

)
MC

4π2µ

k2 . (4.27)

The divergent loop integral G is regularized and expressed in Eq. (D.5). As for the coupling constant geff,
the same as Eq. (3.34), it is related to the residue of the bound state pole by

g2
eff = lim

s→spole
(s − M2

X)
C0(Λ)

1 −C0(Λ) G(
√

s,Λ)

=
C0(Λ)

d[1 −C0(Λ) G(
√

s,Λ)]/ds

∣∣∣∣∣
s=M2

X

, (4.28)

where s is the center-of-mass energy squared and the parameter Λ comes from the Gaussian form factor
used to regularize the loop integral G. Thus the loop integral and the coupling constant will be dependent
on Λ. In principle, the Λ-dependence should be absorbed by a counterterm parameterizing short distance
physics. However, without any knowledge of the counterterm, we allow Λ to choose a value in the range
of [0.5, 1] GeV [13] and the resulting different cross section values indicate the intrinsic uncertainty.

4.4 Results

As illustrated in Fig. 4.2, the mesonic constituents must be produced at first, and in order to form the
molecule the constituents have to collinearly move with a small relative momentum. This configurations
can be generated from the inclusive QCD process containing a heavy quark pair QQ̄ with a similar
relative momentum in the final state. However, there must be a third parton produced in the recoil
direction. Thus the process is a 2→ 3 one.

In the explicit realization of the 2 → 3 parton process, we generate it initially through the hard
scattering, and more quarks will be produced via soft radiations. Madgraph [140] is used to generate the
2 → 3 partonic events which contain a pair of heavy quark and antiquark (b̄b or c̄c) in the final states,
and later on are passed to the MC event generators for the hadronization. In the hadronization stage, we
use Herwig [102] and Pythia [101]. Finally, the outputs from the event generator are analyzed by using
the Rivet library [103].
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In order to improve the efficiency of the simulation, we apply the partonic cuts for the transverse
momentum pT > 2 GeV for heavy quarks and light jets, mcc̄ < 4.5 GeV (kDD̄∗ = 1.14 GeV and
kD∗D̄∗ = 1.02 GeV), mbb̄ < 10.7 GeV (kBB̄∗ = 715 MeV and kB∗ B̄∗ = 517 MeV at the hadron level), and
∆R(c, c̄) < 1(∆R(b, b̄) < 1) where ∆R =

√
∆η2 + ∆φ2 (∆φ is the azimuthal angle difference and ∆η is the

pseudo-rapidity difference of the bb̄).

As one can see from Eq. (4.27), we need to calculate the differential cross section of the charmed
meson pair from the event generators. As the X(3872) and its spin partner and bottom analogs, Xc, Xb,
Xb2, are the bound state of DD̄∗, D∗D̄∗, BB̄∗, B∗B̄∗, respectively. Thus we will simulate the 4 distributions
correspondingly based on 107 partonic events generated by Madgraph. Here we show the differential
cross sections dσ/dk (in units of nb/GeV) for the process pp→ B0B̄∗0 in Fig. 4.3, and the ones for the
reaction pp → B∗0B̄∗0 in Fig. 4.4 at the LHC with the center-of-mass energy

√
s = 8 TeV and at the

Tevatron with
√

s = 1.96 TeV for example. The kinematic cuts are |y| < 2.5 and pT > 5 GeV, where y
and pT are the rapidity and the transverse momentum of the bottom mesons, respectively. The cuts lie in
the phase space regions of the ATLAS and CMS detectors. While for the Tevatron experiments (CDF and
D0) at 1.96 TeV, we use |y| < 0.6; the rapidity range 2.0 < y < 4.5 is used for the LHCb detector. The
solid and dashed lines in the plots are from Herwig and Pythia generators, respectively. Before we extract
the factor 1/k2dσ/dk from the differential distributions, we have checked that dσ/dk is approximately
proportional to k2, cf. Eq. (4.25).

4.4.1 The X(3872)

Before we move to predict the producion rate for the bottom analogs and the spin partner of the
X(3872), it is important to compare our results with the experimental ones of the X(3872). To do such
a comparison, we need to estimate the range for the branching ratio B(X(3872) → J/ψπ+π−). First,
we shall revisit the production of the X(3872) from the experimental data. On one hand, by making
use of the Babar upper limit for B(B+ → X(3872)K+) [141] and the most recent Belle measurement of
B(B+ → X(3872)K+) × B(X(3872)→ J/ψπ+π−) [142],

B(B+ → X(3872)K+) < 3.2 × 10−4,

B(B+ → X(3872)K+) × B(X(3872)→ J/ψπ+π−) = (8.63 ± 0.82 ± 0.52) × 10−6, (4.29)

we can derive the lower bound:

B(X(3872)→ J/ψπ+π−) > 0.027. (4.30)

On the other hand, in addition to the J/ψπ+π− channel [142], if we sum over the branching fractions of
all measured channels of the X(3872), for example D0D̄∗0 + c.c. [143], J/ψω [144], ψ′γ and J/ψγ [145,
146], we can derive the upper bound for the branching fraction of the X(3872)→ J/ψπ+π−:

B(X(3872)→ J/ψπ+π−) < 0.083 (4.31)

Together with the experimental measurements about the production cross section of the X(3872) with
subsequently decaying to J/ψπ+π− final states, like the measurements by the CDF Collaboration [147]

σ(pp̄→ X) × B(X(3872)→ J/ψπ+π−) = (3.1 ± 0.7) nb, (4.32)
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σ(pp/pp̄→ X(3872)) Ref. [14] Ref. [59] Λ = 0.5 GeV Λ = 1 GeV Experiment

Tevatron < 0.085 1.5–23 10(7) 47(33) 37–115 [147]
LHC7 – 45–100 16(7) 72(32) 13–39 [148]

Table 4.2: Integrated cross sections (in units of nb) for pp/p̄ → X(3872) compared with previous theoretical
estimates [14, 59] in which the LHC7 result is estimated based on non-relativistic QCD, and experimental
measurements by CDF [147] and CMS [148]. Results outside (inside) brackets are obtained using Herwig (Pythia).
Kinematical cuts used are: pT > 5 GeV and |y| < 0.6 at Tevatron and 10 GeV < pT < 50GeV and |y| < 1.2
at LHC with

√
s = 7 TeV. We have converted the experimental data σ(pp̄ → X) × B(X(3872) → J/ψπ+π−) =

(3.1 ± 0.7)nb [147] and σ(pp→ X) × B(X(3872)→ J/ψπ+π−) = (1.06 ± 0.11 ± 0.15)nb [148] into cross sections
using B(X(3872)→ J/ψπ+π−) ∈ [0.027, 0.083] as discussed in the text.

and by the CMS Collaboration [148]

σ(pp→ X) × B(X(3872)→ J/ψπ+π−) = (1.06 ± 0.11 ± 0.15) nb, (4.33)

we can obtain a range of values of σ(pp̄/pp→ X(3872)).
We show the integrated cross sections (in units of nb) for the pp/p̄ → X(3872) in Tab. 4.2, and

compare with previous theoretical estimates [14, 59] and the experimental results. Results outside (inside)
brackets are obtained using Herwig (Pythia). In this table, we have converted the experimental data of
the CDF and CMS Collaborations to σ(pp̄/pp→ X(3872)). And we use the same kinematical cuts on
the transverse momentum and rapidity as those in the experimental analyses: pT > 5 GeV and |y| < 1.2
at the Tevatron and 10GeV < pT < 50GeV and |y| < 0.6 at the LHC with

√
s = 7 TeV.

As we can see from the table, the upper bound derived for σ(pp̄/pp→ X) at Tevatron by Ref. [14] is
quite small, while the values predicted by Ref. [59] increased significantly after taking into account the
final state interaction by using the universal scattering amplitude but still can not fit the experiments. Our
results agree with the experimental measurements quite well, which validates our estimate based on an
effective field theory treatment of the rescattering effect.

In summary, our estimates for the cross section at the Tevatron are given as

σ(pp̄→ X(3872)) =

 (10, 47) nb for Herwig
(7, 33) nb for Pythia

, (4.34)

and at the LHC with
√

s = 7 TeV

σ(pp→ X(3872)) =

 (16, 72) nb for Herwig
(7, 32) nb for Pythia

. (4.35)

4.4.2 The bottom analogs and the spin partner of the X(3872)

As for the partners of the X(3872), we collect the integrated cross sections (in units of nb) for the
pp→ Xb, and pp→ Xb2,c2 in Tab. 4.3, in which the results outside (inside) brackets are obtained using
Herwig (Pythia). From the table, one sees that the cross sections for the Xb2 is similar to those for the Xb,
and the ones for the Xc2 are of the same order as those for the X(3872) given in Table 4.2 but are two
orders of magnitude larger than those for their bottom analogues.

The CMS Collaboration recently presented some results of the first search for new bottomonium states
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Xb EXb = 24 MeV(Λ = 0.5 GeV) EXb = 66 MeV(Λ = 1 GeV)

Tevatron 0.08(0.18) 0.61(1.4)
LHC 7 1.5(3.1) 12(23)
LHCb 7 0.25(0.49) 1.9(3.7)
LHC 8 1.8(3.6) 14(27)
LHCb 8 0.3(0.62) 2.2(4.7)
LHC 14 3.2(6.8) 24(51)
LHCb 14 0.65(1.3) 4.9(9.7)

Xb2 EXb2 = 24 MeV(Λ = 0.5 GeV) EXb2 = 66 MeV(Λ = 1 GeV)

Tevatron 0.05(0.13) 0.36(1.)
LHC 7 0.92(2.3) 6.9(17)
LHCb 7 0.14(0.36) 1.1(2.7)
LHC 8 1.1(2.7) 8.1(20)
LHCb 8 0.19(0.46) 1.4(3.5)
LHC 14 1.9(5.) 15(37)
LHCb 14 0.38(0.96) 2.9(7.2)

Xc2 EXc2 = 4.8 MeV(Λ = 0.5 GeV) EXc2 = 5.6 MeV(Λ = 1 GeV)

Tevatron 4.4(3.) 22(15)
LHC 7 66(44) 327(216)
LHCb 7 14(8.5) 71(42)
LHC 8 74(52) 369(256)
LHCb 8 17(10) 83(50)
LHC 14 135(90) 672(446)
LHCb 14 35(19) 174(92)

Table 4.3: Integrated cross sections (in units of nb) for the pp/p̄→ Xb, and pp/ p̄→ Xb2 at the LHC and Tevatron.
Results out of (in) brackets are obtained using Herwig(Pythia). The rapidity range |y| < 2.5 has been assumed for
the LHC experiments (ATLAS and CMS) at 7, 8 and 14 TeV; for the Tevatron experiments (CDF and D0) at 1.96
TeV, we use |y| < 0.6; the rapidity range 2.0 < y < 4.5 is used for the LHCb.

based on a data sample corresponding to an integrated luminosity of 20.7 fb−1 at
√

s = 8 TeV [149]. The
search mainly focused on the Xb decaying to Υ(1S )π+π−. Unfortunately, no evidence for the Xb was
found. Nevertheless, the upper limit at a confidence level of 95% on the product of the production cross
section of the Xb and the decay branching fraction of Xb → Υ(1S )π+π− has been set to be

σ(pp→ Xb → Υ(1S )π+π−)
σ(pp→ Υ(2S )→ Υ(1S )π+π−)

< (0.009, 0.054) , (4.36)

where the range corresponds to the variation of the Xb mass from 10 to 11 GeV.
Using the current experimental data on the σ(pp→ Υ(2S )), it is easy to convert the above ratio into

the cross section which can be directly used to compare with our results. Since the masses of the Υ(2S )
and Xb are not very different, it may be a good approximation to assume that the ratio given in Eq. (4.36)
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is insensitive to kinematic cuts. Using the CMS measurement in Ref. [150]:

σ(pp→ Υ(2S ))B(Υ(2S )→ µ+µ−) = (2.21 ± 0.03+0.16
−0.14 ± 0.09) nb, (4.37)

with the cuts pT <50 GeV and |y| < 2.4 for the Υ(2S ), and the branch ratios B(Υ(2S ) → µ+µ−) =

(1.93 ± 0.17)% and B(Υ(2S )→ Υ(1S )π+π−) = (17.85 ± 0.26)% [77], we get

σ(pp→ Xb)B(Xb → Υ(1S )π+π−) < (0.18, 1.11) nb. (4.38)

Taking into account theoretical uncertainty caused by Λ, our estimate for the cross section σ(pp→ Xb) is

σ(pp→ Xb) ∼

 (1.8, 14) nb for Herwig
(3.6, 27) nb for Pythia

. (4.39)

However, after considering the branching ratio B(Xb → Υ(1S )π+π−) which is expected to be tiny because
of isospin breaking (we will discuss this later), our result given in Eq. (4.39) is consistent with the CMS
upper bound in Eq. (4.38).

4.5 Discussions

Our numerical results may only be regarded as an order-of-magnitude estimate. This is because the
short-distance physics of the production was only estimated by varying Λ in the range of [0.5, 1] GeV, as
well as other effects such as the cross-channel FSI were completely neglected and so on.

As we have discussed above, the Xb and Xb2 are isosinglets and their isospin breaking decays will
be heavily suppressed in sharp contrast to the X(3872). As a consequence, we can not simply draw
an analogy to the decay X(3872) → J/ψπ+π− and attempt to search for its partner Xb in the similar
Υ(1S , 2S , 3S )π+π− channels, because the isospin of the Υ(1S , 2S , 3S )π+π− systems is one when the
quantum numbers are JPC = 1++. This explains why the CMS Collaboration got the negative search
result [151]. The possible channels that can be used to search for the Xb and Xb2 include the Υ(nS )γ (n =

1, 2, 3), Υ(1S )π+π−π0 and χbJπ
+π−. In addition, the Xb2 can also decay into BB̄ in a D-wave, and the

decays of the Xc2 are similar to those of the Xb2 with the bottom being replaced by its charm analogue.
Since the mass of the Xc2 is about 140 MeV larger than that of the X(3872), therefore the phase space
difference between the J/ψρ and J/ψω becomes negligible. As a result, the isospin breaking decay
Xc2 → J/ψπ+π− through an intermediate ρ meson should be largely suppressed compared with the decay
of the X(3872) into the same particles.

The Υ(nS )γ (n = 1, 2, 3) final states are advantageous compared with the pionic decays, because no
pion needs to be disentangled from the combinatorial background. However, the disadvantage is also
obvious, that is the low efficiency in reconstructing a photon at hadron colliders. The X(3872) meson has
a sizable partial decay width into the J/ψγ channel [77]

B(X(3872)→ γJ/ψ) > 6 × 10−3, (4.40)

which is expected to be comparable with the branching ratio for the Xb → γΥ, see Ref. [152] for an
estimate. If the estimate is reasonable, the cross section for the pp → Xb → γΥ(1S ) → γµ+µ− is of
O(10 fb) or even larger when summing up the Υ(1S , 2S , 3S ). Consequently, we can expect at least a few
hundred events according to the fact that the CMS and ATLAS Collaborations have accumulated more
than 20 fb−1 data [104, 105]. At the LHCb detector, less events will be collected, about O(3 fb−1) [153],

53



Chapter 4 Production of the X(3872) and its bottom analogs and spin partner at hadron colliders

due to the smaller integrated luminosity. However, a data sample of about 3000 fb−1 will be collected,
for instance by ATLAS after the upgrade [154], and the future prospect is bright for the production.

As we know a signal could be buried by a huge background. Thus the background contributions
from nonresonant can also play an important role in the search for these molecular states apart from
the production rates at hadron colliders. In order to investigate this issue, let us take the Xb as an
example. The Xb will be reconstructed in the Υ + γ final states. In this process, the inclusive cross section
σ(pp → Υ) can serve as an upper bound for the background. From the ATLAS Collaboration, it has
been measured at

√
s = 7 TeV as [155]

σ(pp→ Υ(1S )(→ µ+µ−)) = (8.01 ± 0.02 ± 0.36 ± 0.31) nb, (4.41)

with the kinematic cuts pT < 70 GeV and |y| < 2.25. Our results in Tab. 4.3 show that the corresponding
cross section for the pp → Xb is about 1 nb at

√
s = 7 TeV. And it is noteworthy to point out that

our kinematic cuts in pT are more stringent compared to the ones set by the ATLAS Collaboration.
If we use the integrated luminosity in 2012, 22 fb−1 [104], we can estimate the lower bound for the
signal/background ratio

S
√

B
&

1 × 22 × 106 × 2.48% × 10−2
√

8 × 22 × 106
' 0.4, (4.42)

where 2.48% is the branching fraction of the Υ(1S )→ µ+µ− [77], and 10−2 is a rough estimate for the
branching fraction of the Xb → Υ(1S )γ. The value of the signal/background ratio can be significantly
enhanced in the data analysis by employing suitable kinematic cuts which can greatly suppress the
background, and accumulating many more events based on the upcoming 3000 fb−1 data [154].
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Figure 4.3: Differential cross sections dσ/dk (in units of nb/GeV) for the process pp→ B0B̄∗0 at the LHC with
√

s = 8 TeV (the first and second panels) and at the Tevatron with
√

s = 1.96 TeV (the third panel). The kinematic
cuts for the first panel are used as |y| < 2.5 and pT > 5 GeV, which lie in the phase-space regions of the ATLAS
and CMS detectors, for the Tevatron experiments (CDF and D0) at 1.96 TeV (the third panel), we use |y| < 0.6; the
rapidity range 2.0 < y < 4.5 is used for LHCb (the second panel). The solid and dashed lines are from Herwig and
Pythia generators, respectively.
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Figure 4.4: Differential cross sections dσ/dk (in units of nb/GeV) for the process pp→ B∗0B̄∗0 at the LHC with
√

s = 8 TeV (the first and second panels) and at the Tevatron with
√

s = 1.96 TeV (the third panel). The kinematic
cuts for the first panel are used as |y| < 2.5 and pT > 5 GeV, which lie in the phase-space regions of the ATLAS
and CMS detectors, for the Tevatron experiments (CDF and D0) at 1.96 TeV (the third panel), we use |y| < 0.6; the
rapidity range 2.0 < y < 4.5 is used for LHCb (the second panel). The solid and dashed lines are from Herwig and
Pythia generators, respectively.
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Part II

Rescattering of final states in heavy
hadron decays
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CHAPTER 5

Production of the spin partner of X(3872)
through charmonium decay

Although the X(3872) has been observed by many other experiments after its discovery [112, 116,
148, 156–158], no evidence for the existence of its spin partner has been reported. In Chapter 4, we
investigated the prompt production of the X(3872) and its spin partner denoted as Xc2 there, based on the
hadronic molecular assumption. It was shown that there is a significant potential for the discovery of
these states.

On the other hand, Ref. [8] reported the study on the production of the X(3872) as a DD̄∗ molecule
in charmonia radiative transitions. In that paper, it was shown that the favorite energy regions for the
X(3872)γ production are around the Y(4260) mass and 4.45 GeV. Later on, the BESIII Collaboration
observed events for the process Y(4260) → X(3872)γ [7], which may be regarded as a support of the
dominantly molecular nature of the X(3872). The existence of the D∗D̄∗ bound state is the consequence
of the heavy quark spin symmetry of the molecular nature of the X(3872), its mass can be derived later
by heavy quark spin symmetry as around 4012 MeV. Thus we denote the spin partner as X2(4012) in this
chapter. In this chapter, we will investigate the production of the X2(4012) associated with the photon
radiation in electron–positron collisions as an extension of Ref. [8]. The production of the X2(4012) in
e+e− collisions in the energy range of the BESIII experiment [159] thus provides an opportunity to search
for new charmonium-like states on the one hand and can offer useful information towards understanding
the X(3872) on the other hand. The main calculations and discussions of this part are taken from our
published paper in Refs. [160].

We will organize this chapter as follows. We first give a brief Introduction in Section 5.1. Then, we
will illustrate the production mechanism and give the effective Lagrangians in Section 5.2. After that,
we will give the results with a simple treatment of the width of the intermediate meson in Section 5.3,
followed by the momentum-dependent width in Section 5.4. The last section serves as a summary.

5.1 Introduction

In the heavy quarkonium mass region, the so called XYZ states have been observed, and many of these
quarkonium-like states defy a conventional quark model interpretation. They are therefore suggested to
be exotic. The X(3872), discovered by the Belle Collaboration [111], is the one of the most interesting
exotic states. As the mass of the X(3872) is extremely close to the D0D̄∗0 threshold, it is regarded as one
especially promising candidate for a hadronic molecule.
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Chapter 5 Production of the spin partner of X(3872) through charmonium decay

Effective field theory (EFT) can cope with the interaction between heavy mesons in bound state systems
at low energies. For such a kind of systems, heavy quark symmetry is relevant due to the presence of the
heavy quark/antiquark in the meson/antimeson. This fact leads to predictions of new states as partners
of the observed XYZ states in the hadron spectrum. For example, with an EFT description of the heavy
mesonic molecules, the heavy quark symmetry can be used to predict the existence of the spin and bottom
partners of the X(3872) [13, 133].

The spin partner of the X(3872), called X2(4012) hereafter, is predicted to exist as the S -wave bound
state of D∗D̄∗ with quantum numbers 2++ [133]. Such a state was also expected to exist in other models,
see Refs. [127, 161–164]. It is different from the X(3872) in several aspects: first, being an isoscalar state
it should decay into the J/ψπππ with a branching fraction much larger than that for the J/ψππ because
the J/ψρ and J/ψω thresholds are far below the mass of the X2(4012) (very different to the case of the
X(3872)); second, it is expected to decay dominantly into open charm mesons, DD̄ , DD̄∗ and D∗D̄, in a
D-wave with a width of the order of a few MeV [165]; third, its mass as set by the D∗D̄∗ threshold is
higher than the quark model prediction for the first radially excited χc2 [32].

The significance of the X2(4012) state is that its mass should be approximately given by the

MX2(4012) ≈ MX(3872) + MD∗ − MD ≈ 4012 MeV (5.1)

as dictated by heavy quark spin symmetry for heavy-flavor hadronic molecules [13, 73]. One also can
derive its mass with explicit calculation as shown in Section. 4.1, and get the same value predicted in
Tab. 4.1. Notice that a state with the same quantum numbers 2++ was also predicted in the tetraquark
model [166]. However, the fine splitting between the 2++ and 1++ tetraquarks, which was predicted to
be 70 MeV in Ref. [166], is not locked to that between the D∗ and D. Similarly, the splitting between
the 2P cc̄ states in the Godfrey–Isgur quark model is 30 MeV [32], also much smaller than MD∗ − MD.
Therefore, if a 2++ state will be observed in experiments with a mass around 4012 MeV, the mass by
itself would already be a strong support for the hadronic molecular nature of both the X(3872) and the
tensor state. As a result, searching for a 2++ state with a mass around 4012 MeV is very important even
for understanding the nature of the X(3872).

5.2 Production mechanism

The production of the X(3872) through the radiative decay of the ψ(4160) charmonium is considered in
Ref. [167] using heavy hadron chiral perturbation theory along with the X-EFT [168]. Then, Ref. [8]
studied the X(3872) production by considering the contribution from intermediate charmed meson loops,
and it was argued that the dominant mechanism is as follows: the initial charmonium is coupled to a pair
of charmed mesons with one being S -wave with sP

` = 1
2
−, where s` is the total angular momentum of

the light-flavor cloud in the charmed meson, and the other being P-wave with sP
` = 3

2
+, and the P-wave

charmed meson radiatively transits to a D(D∗) which coalesces with the other S -wave charmed meson,
D̄∗(D̄), into the X(3872). The spin partner of X(3872), the X2(4012), can be produced by a similar
mechanism as shown in Fig. 5.1.

In the triangle loop, all the heavy-light mesons can be considered as nonrelativistic. Thus the three-point
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Figure 5.1: Relevant triangle diagrams for the production of the X2(4012) in vector charmonia radiative decays.
The charge-conjugated diagrams are not shown here.

loop function can be evaluated simply

I(m1,m2,m3) = i
∫

ddl
(2π)d

1
(l2 − m2

1 + im1Γ1)[(P − l)2 − m2
2 + iε][(l − q)2 − m2

3 + iε]

=
µ12µ23

16πm1m2m3

1
√

a

[
tan−1

 c23 − c12 + iµ12Γ1

2
√

a(c12 − iµ12Γ1)


+ tan−1

(
2a + c12 − iµ12Γ1 − c23

2
√

a(c23 − a)

) ]
, (5.2)

where m1, m2 and m3 are the masses of the intermediate heavy mesons. Γ1 is the width of first meson,
here we take it as a constant. Generally, the width is momentum-dependent and we will discuss later.
And a =

(
µ23
m3

)2
~q 2, b12 = m1 + m2 − M, b23 = b12 + m3 − M + q0, c12 = 2µ12b12, c23 = 2µ23(b23 +

~q2

2m3
)

and µi j = mim j/(mi + m j) are the reduced mass. More details can be found in the Appendix D.2.

Notice that the X2(4012) couples to D∗D̄∗ instead of DD̄∗ + c.c., as it is in the case of the X(3872).
We will only consider the neutral charmed mesons in the loops because the photonic coupling between
the P-wave and S -wave charmed mesons for the neutral ones is much larger than that for the charged
ones. This is due to cancellation of contributions from the charm and down quarks in the charged mesons,
see, e.g. [169]. In the loops, the X2(4012) couples to the D∗0D̄∗0 pair in an S -wave. With the quantum
numbers being 1−−, the initial charmonium can couple to one P-wave and one S -wave charmed meson
in either S - or D-wave. Since both the initial charmonium and the X2(4012) in the final state are close
to the corresponding thresholds of the charmed-meson pairs, we are able to use a power counting in
velocity of the intermediate mesons. Following the power counting rules as detailed in Ref. [170] and
presented in the case of interest in Refs. [8, 171], the dominant contribution comes from the case when
the coupling of the initial charmonium to the charmed mesons is in an S -wave. In this case, the initial
charmonium should be a D-wave state in the heavy quark limit mc → ∞ as a consequence of heavy quark
spin symmetry [172].

As a result of the approximate heavy quark spin symmetry, one can classify the heavy-light charmed
mesons according to the total angular momentum of the light degrees of freedom s` and collect them in
doublet sP

` with total spin J = s` ± 1
2 where the parity P = (−1)l+1 and orbital angular momentum l. In
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the nonrelativistic limit, the superfields for the 1
2
− and 3

2
+ multiplets using 2 × 2 matrices are written as

Ha = ~P∗a · ~σ + Pa (5.3)

T i
a = Pi j

2aσ
j +

√
2
3

Pi
1a + i

√
1
6
εi jkP j

1aσ
k, (5.4)

where ~σ are the Pauli matrices, Pa, P∗a, P1a and P2a annihilate the pseudoscalar, vector, axial vector and
2+ tensor charmed mesons, respectively. More details are shown in Section 2.2.3. Besides, the field for
the D-wave 1−− charmonium state can be written as

Ji j =
1
2

√
3
5

(
ψiσ j + ψ jσi

)
−

1
√

15
δi j ~ψ · ~σ, (5.5)

where ψ annihilates the D-wave vector charmonium. The general nonrelativistic formula for the orbital
angular momentum L = 2 multiplet is shown in Eq. (2.65). Here the spin-2 and spin-3 states are irrelevant
for our study and they are not shown above. In order to calculate the triangle diagrams in Fig. 5.1, we
need the Lagrangian for coupling the D-wave charmonia to the 1

2
−- 3

2
+ charmed-meson pair as well as

that for the E1 radiative transitions between the charmed mesons [8]

L =
g4

2
Tr

[(
T̄ j †

a σiH†a − H̄†a σ
iT j †

a

)
Ji j

]
+

∑
a

ca

2
Tr

[
T i

aH†a
]

Ei + H.c., (5.6)

where Ei is the electronic field, ca is the coefficients dependent on the light flavor and in the first term
the Einstein summation convention is used while for the latter we distinguish the coupling constants for
different light flavors because there is no isospin symmetry in the electromagnetic interaction. Moreover,
we parametrize the coupling of the X2(4012) to the pair of vector charm and anticharm mesons as

LX2 =
x2
√

2
Xi j †

2

(
D∗0 iD̄∗0 j + D∗+ iD∗− j

)
+ H.c.. (5.7)

In order to quantify the relative production rate of the γX2(4012) with respect to the γX(3872), we
require the Y(4260) to couple to the 1

2
−- 3

2
+ meson pair as follows

LY =
y
√

2
Y i †

(
Di

1aD̄a − DaD̄i
1a

)
+ i

y′
√

2
εi jkY i †

(
D j

1aD̄∗ k
a − D∗ k

a D̄ j
1a

)
+
y′′
√

2
Y i †

(
Di j

2aD̄∗ j
a − D∗ j

a D̄i j
2a

)
+ H.c., (5.8)

where we have assumed isospin symmetry in the couplings and the flavor index a runs over up and
down quarks. Notice that if the Y(4260) is a pure D1D̄ (here and in the following the charge conjugated
channels are dropped for simplicity) molecule [173, 174], it would not couple to the D1D̄∗ and D2D̄∗ as
given by the y′ and y′′ terms, and thus cannot decay into the γX2(4012). These two terms are included
to allow the decay to occur. Actually, the Y(4260) may have D1D̄∗ and D2D̄∗ components, and the
possibility was discussed in Ref. [175]. Because the X2(4012) is the spin partner of the X(3872), for a
rough estimate, we can assume that x2 takes the same value as the coupling constant of the X(3872) to the
DD̄∗. We also assume that the values of y′ and y′′ are related to y by a spin symmetry relation for D-wave
charmoinia. Their relation to y can be obtained by comparing the coupling of D-wave charmoinium to
the corresponding charmed mesons in Eq. (5.6) with Eq. (5.8), and we get y′ = −y/2 and y′′ =

√
6y/10.

62



5.3 Results

5.3 Results

As we mentioned we take the assumption that the X2(4012) and Y(4260) are pure hadronic molecules.
Since the X2(4012) and Y(4260) are slightly below the corresponding S -wave threshold, the effective
coupling to the constituents can be written as [176]

g2
NR =

16π
µ

√
2ε
µ

[
1 + O

( √
2µε r

)]
(5.9)

under the nonrelativistic normalization. In this equation, µ = m1m2/(m1 + m2) is the reduced mass, the
binding energy ε = m1 + m2 − M and r is the range of forces. Thus the coupling constants y and x2 in
Eq. (5.7) and Eq. (5.8) can be given by the above equation [177].

By taking the PDG [77] data for the corresponding masses, we get that the threshold of D0 and
D∗0 is (3871.80 ± 0.12) MeV and the mass of the X(3872) is (3871.69 ± 0.17) MeV [77]. With
MY = (4251 ± 9) MeV, and the isospin averaged masses of the D and D1 mesons, we derive the mass
differences between the X(3872) and Y(4260) and their corresponding thresholds, respectively,

MD0 + MD∗0 − MX = (0.11 ± 0.21) MeV, MD + MD1(2420) − MY = (38.38 ± 9.09) MeV. (5.10)

Since the X2(4012) has a similar binding energy to that of the X(3872) due to the heavy quark spin
symmetry [133], we take the binding energy of X2(4012) to be 0.11 MeV. Then, we obtain

|x2| = 0.86 GeV−1/2, |y| = 3.59+0.20
−0.23 ± 1.87 GeV−1/2 , (5.11)

where the first errors above are due to the uncertainties of the binding energies of Y(4260), and the second
ones are from the approximate nature of Eq. (5.9). The range of forces is estimated by r−1 ∼

√
2 µ∆th

where ∆th is the difference between the threshold of the components and the next close one, which is
MD1 + MD∗ − MD1 − MD for the Y(4260).

With the Lagrangians and the loop function shown in last section, we can now proceed to calculate
quantitatively the production of the γX2(4012) in electron–positron collisions. The amplitude for the
Feynman diagrams in Fig. 5.1 is written as

M = −
icug4

2
√

15
Eγx2ε

i(ψ)ε j(γ)εi j(X2)
(
5I[D0

1, D̄
∗0,D∗0] − I[D0

2, D̄
∗0,D∗0]

)
, (5.12)

where Eγ is the energy of the photon and ε(ψ), ε(γ) and ε(X2) are the corresponding polarization vectors.
Although in the heavy quark limit the production of the D-wave vector heavy quarkonium or the

pair of 1
2
− and 3

2
+ heavy mesons are suppressed due to the heavy quark spin symmetry [172], we can

expect a large spin symmetry breaking in the charmonium mass region above 4 GeV. This may be seen
from similar values of electronic widths of the excited vector charmonia. Thus, we will assume that the
production of the γX2(4012) occurs through the D-wave charmonia or the D-wave components of excited
vector charmonia.

We have made a quantitative estimation for coupling constant |x2|, while g4 is still unknown. Without
any detailed information about the values of the coupling constants, we can predict the energy regions
with the maximal production cross sections. In Fig. 5.2, we show the dependence of the decay width of a
D-wave charmonium into the γX2(4012), divided by (g4x2)2, on the mass of the D-wave charmonium
or the center-of-mass energy of the e+e− collisions. The value of the photonic coupling cu does not
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Figure 5.2: Dependence of the partial decay width of a D-wave charmonium into γX2(4012) on the mass of the
charmonium. The dashed and dotted curves are obtained with and without taking into account the widths of the
D1(2420) and D2(2460), respectively. The left and right solid lines are the D1D̄∗ and D2D̄∗ thresholds, respectively.
Here, cu = 0.4 is used.

affect the shape of the dependence either. Nevertheless, we took cu = 0.4 which is a typical value
evaluated from various quark model predictions for the decay widths Γ(D0

1 → γD(∗)0) [178–180]. In
the figure, the dashed curve is obtained neglecting the widths of the D1 and D2 states, and the dashed
curve is the result of evaluating the triangle loop integrals with constant widths for the D1 and D2. The
left and right solid lines corresponds to the D1D̄∗ and D2D̄∗ thresholds, respectively. The maximum
around 4.447 GeV and the local minimum around 4.492 GeV of the dotted curve are due to the presence
of Landau singularities [181] of triangle diagrams in the complex plane at (4.447 ± i 0.003) GeV (for
the D1 loop) and (4.492 ± i 0.003) GeV (for the D2 loop), respectively (for a discussion of the Landau
singularities in the triangle diagrams of heavy quarkonium transitions, we refer to Ref. [171]). The two
cusps on both sides of the shoulders of the peak show up at the thresholds of the D1D̄∗ and D2D̄∗.

From the figure, it is clear that the ideal energy regions for producing the γX2(4012) in e+e− collisions
are around the D1D̄∗ and D2D̄∗ thresholds, i.e. between 4.4 GeV and 4.5 GeV. It is also clear that the
mass region of the Y(4260) is not good for the production of the γX2(4012), contrary to the case of the
γX(3872). The ratio of the partial decay widths of the Y(4260) to the γX2(4012) and the γX(3872) can
be estimated parameter-free, and is

Γ(Y(4260)→ γX2(4012))
Γ(Y(4260)→ γX(3872))

≈ 10−2 . (5.13)

In the above ratio, whether or not one takes into account the finite widths of the P-wave charmed mesons
only results in a minor change of 2%. It is clear that unless the Y(4260) couples to the D1D̄∗ and/or
D2D̄∗ with a coupling much larger than that for the D1D̄, which is less possible, the branching fraction of
the Y(4260)→ γX2(4012) is much smaller than that of the Y(4260)→ γX(3872). Given that the number
of events for the latter process as observed at BESIII is the order of 10 [7], it is unlikely to make an
observation of the γX2(4012) at an energy 4.26 GeV at BESIII.
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5.4 Momentum-dependent width

In last section, we have obtained the results when the width of the first intermediate meson is taken to be
a constant. Here only one meson in the triangle diagram is allowed to have finite width, otherwise there
would be not apparent threshold effect. Generally, in momentum space, the propagator of intermediate
meson with infinitesimal width can be written as

B(s) =
1

s − m2 + iε
,

where m is the mass of the intermediate meson and s is the square of the momentum. This is for the case
of scalar and pseudoscalar mesons, while for the vector and axial vector mesons we can get the same
formula if we take the nonrelativistic approximation. If the width can not be neglected, we can make the
replacement ε → m Γ. The naive way of dealing the width Γ is to set it as a constant, that is what we do
in last section. However, the width should be dependent on the momentum square s. This effect may be
included using the spectral function of the intermediate resonance. For instance, whenever it appears in
an amplitude, such as B(s)A(s), we replace the expression by

B(s)A(s)→
1
W

∫ ∞

sthr

ds′
ρ(s′)A(s′)
s′ − s − iε

, (5.14)

where ρ(s) is the spectral function,W is the normalization factor

W =

∫ ∞

sthr

ρ(s′)ds′. (5.15)

and sthr is the square of threshold of the decay channel. Therefore we can replace the loop function in
Eq. (5.2) neglecting the constant width of the intermediate meson with a new one.

• For the D1 in the first diagram of Fig. 5.1, its dominant decay channel is D∗π in a D-wave coupling.
One can easily find that ΓD1(s) = g2 p5

cm/(8π fπMD1

√
s), where pcm = λ(s,m2

D,m
2
π)/(2

√
s) is the

center of mass momentum with λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2xz. Thus we can make the
replacement

I(mD1 ,mD∗ ,mD∗)→
1
W1

∫ ∞

sthr

ds′ρ(s′)I(
√

s′,m2,m3) (5.16)

with the spectral function

ρ(s) = −
1
π

Im

 1
s − m2

D1
+ imD1ΓD1

 =
1
π

mD1ΓD1

(s − m2
D1

)2 + m2
D1

Γ2
D1

(5.17)

and the normalization factor

W1 =

∫ ∞

sthr

ρ(s)ds. (5.18)

where sthr = (mD∗ + mπ)2.

• For the D2 in the second diagram of Fig. 5.1, it has D-wave coupling to Dπ and D∗π channels.
Thus ΓDπ(s) = g2 p5

cm/(8π fπMD2

√
s) and ΓD∗π(s) = 3g2 p5

cm/(4π fπMD2

√
s). Thus we can make the
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replacement

I(mD2 ,mD∗ ,mD∗)→
1
W2

[∫ ∞

sthr1

ds′ρ1(s′)I(
√

s′,m2,m3) +

∫ ∞

sthr2

ds′ρ2(s′)I(
√

s′,m2,m3)
]

(5.19)

with the spectral functions

ρ1(s) =
1
π

mD1ΓDπ

(s − m2
D2

)2 + m2
D2

(ΓDπ + ΓD∗π)2
, (5.20)

ρ2(s) =
1
π

mD2ΓD∗π

(s − m2
D2

)2 + m2
D1

(ΓDπ + ΓD∗π)2
(5.21)

and the normalization factor

W2 =

∫ ∞

sthr1

ρ1(s)ds +

∫ ∞

sthr2

ρ2(s)ds, (5.22)

where sthr1 = (mD + mπ)2, sthr2 = (mD∗ + mπ)2.

In the above formulae, the coupling constant g can be estimated by using the value ΓD1(MD1) = 27.1 MeV.
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Figure 5.3: The partial decay width as Fig. 5.2, but with the width of intermediate meson considered. The dashed
line is the result of a constant width, while the solid line is from the momentum-dependent width.

The partial decay width with momentum-dependent width is shown in Fig. 5.3 as the solid line, where
the results without width and with a constant width are shown as dotted and dashed lines, respectively.
One finds that the enhancement due to the triangle diagram with either a constant or momentum-dependent
width is much smaller than the one without any width. The enhancement is related to the kinematical
triangle singularity to be discussed in Chapter 7. However, our conclusion made above that the ideal
energy regions for producing the γX2(4012) in e+e− collisions are between the D1D̄∗ and D2D̄∗ thresholds
remains the same.
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5.5 Summary

To summarize, it is generally expected that the X(3872) as a hadronic molecule has a spin partner close
to the D∗D̄∗ threshold. In this chapter, we have investigated the production of the γX2(4012) in e+e−

collisions. According to our calculation, we strongly suggest to search for the X2(4012) associated with a
photon in the energy region between 4.4 GeV and 4.5 GeV in e+e− collisions. Besides, the width ratio of
the Y(4260) decaying to γX2(4012) and γX(3872) is quite small, at the order of 10−2. Thus observing the
γX2(4012) at an energy around 4.26 GeV would be unlikely in the BESIII experiment according to the
current result for Y(4260)→ γX(3872).
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CHAPTER 6

Hindered M1 transition between two bottomia

We have seen in the previous chapters that meson loops are the driving force for producing hadronic
molecules. In fact, they may also play a significant role in certain heavy quarkonium processes, for
instance the ones to be discussed in this chapter.

The effects of intermediate mesons can enhance the transitions compared to the corresponding tree-
level contributions. For example, the charmed meson loops can play an important role in the transitions
between two charmonia with one emitted light pseudoscalar meson [170]. In the hindered magnetic dipole
transitions of heavy quarkonia, the coupled-channel effects originate from the coupling of quarkonia
to a pair of heavy and anti-heavy mesons. In this chapter, we will study the hindered magnetic dipole
transitions between two P-wave bottomonia, χb(nP) and hb(n′P), with n , n′. In these processes
the coupled-channel effects are expected to lead to partial widths much larger than the quark model
predictions. The main calculations and discussions of this chapter are taken from our paper in Ref. [182].

We will organize this chapter as follows. We first give a short introduction in Section 6.1. And then we
will analyze the power counting of the transition amplitudes of tree-level diagrams in the quark model, as
well as one-loop and two-loop diagrams in the nonrelativistic effective field theory in Section 6.2. In
Section 6.3, we will give the relevant effective Lagrangians we need for calculating the triangle diagram.
Then the results are given in Section 6.4. The last section serves as a summary.

6.1 Introduction

In recent years, several new bottomonia were discovered. One of the most interesting discoveries is the
hb(1P) found in the puzzling π0 transition Υ(3S ) → π0hb(1P) with a subsequent electric dipole (E1)
transition to the ηb(1S ) by the Babar collaboration [183]. This finding is consistent with the prediction
that such a transition is a promising way to produce the hb [184, 185]. The isospin violating decay channel
has the same final states, γγhb, as the one in the electromagnetic cascades Υ(3S )→ γχbJ(2P) (J = 0, 1, 2)
and χbJ(2P)→ γhb. The branching fractions for the E1 transitions Υ(3S )→ γχbJ(2P) are well measured
to be of the order of 10%, but no experimental result for the hindered magnetic dipole (M1) transition
χbJ(2P)→ γhb is available. Thus, it is important to investigate the decay channel χbJ(2P)→ γhb. The
hb(1P) later on was also observed in the isospin conserving decay process Υ(4S ) → ηhb [186] with a
branching fraction (2.18 ± 0.21) × 10−3, consistent with the estimate of the order 10−3 in Ref. [187],
where this channel was suggested to be used to search for the hb.

The quark model has been used to study the spectrum and decay properties of the excited bottomonia
without the coupled-channel effects from intermediate open-bottom mesons [188]. The spectrum was
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Chapter 6 Hindered M1 transition between two bottomia

also calculated with the inclusion of coupled-channel effects [189]. More generally, we remark that
coupled-channel effects due virtual hadronic loops are of recent interest in heavy quarkonium physics. In
the quenched quark model, the mixture between the bare hadron states and the two-meson continuum is
not taken into account. When the coupled-channel effects are considered, the quarkonium spectrum gets
shifted (the values of these mass shifts depend on the specific models, see, e.g., Refs. [189–198]). In
addition to the impact on the mass spectrum, the coupled-channel effects are expected to be important
in some transitions between heavy quarkonia [51, 170, 199–207]. In particular, they are expected to
dominate the hindered M1 transitions between the P-wave quarkonia because of two reasons: first, the
hindered M1 transitions break heavy quark spin symmetry and their widths in the quark model come
from relativistic corrections; second, the coupled-channel contribution has an enhancement due to the
S -wave couplings of the two vertices involving heavy quarkonia [208]. For instance, the partial width
of χc2(2P) → γhc(1P) from the coupled-channel effects is two orders of magnitude larger than the
prediction from the quark model as shown in Ref. [208]. Hindered M1 transitions between bottomonia
may be measured at Belle-II [209]. However, so far, only few predictions on the hindered M1 transitions
in the bottomonium sector have been given, and all of them are based on quark model calculations [188].
Since in bottomonium systems the relativistic corrections are small, the quark model predictions on
these partial widths are tiny, in the range from sub-eV to eV. Yet, similar to the charmonia case, the
coupled-channel effects due to virtual bottom mesons could enhance the decay widths to values that
make an observation possible. This motivates us to study here the hindered M1 transitions between
P-wave bottomonia by considering the coupled-channel effects through the coupling to virtual bottom
and anti-bottom mesons. An additional important motivation for us to study these processes is the fact
that experimentalists plan to study them at the coming Belle-II experiment [209].

6.2 Power counting analysis

We first consider the decay amplitude for an M1 transition between two heavy quarkonia in quark models.
It is proportional to the overlap of the wave functions of the two quarkonia [188]

Γ1 ∝ |〈ψ f |ψi〉|
2E3

γ , (6.1)

where ψi and ψ f are the wave functions of the initial and final heavy quarkonia, respectively, and Eγ is
the energy of photon in the rest frame of the initial quarkonium. As discussed in Ref. [208], the transition
amplitude starts from Eγvb/mb for the process of 2P to 1P, where vb and mb are the bottom quark velocity
and mass, respectively, and the factor 1/mb is due to the spin-flip of the heavy quark in M1 transitions.
Therefore in quark models the transition rates are very small, and only come from relativistic correction.

On the other hand, due to the fact that the bottomonia are close to the open bottom thresholds so that
the intermediate bottom mesons in the triangle diagram are nonrelativistic, we can use the nonrelativistic
effective field theory (NREFT) suitable for investigating such coupled-channel effects in heavy quarkonia
transitions [51, 170, 210]. A P-wave bottomonium couples to a pair of ground state bottom and anti-
bottom mesons in an S -wave. At leading order, the coupling is described by a constant which does not
contribute any power to the velocity counting. Thus, according to the velocity counting in Section 2.2.3
the triangle diagram in Fig. 6.1 scales as [208]

Atriangle ∝
v5

(v2)3

Eγ

mb
=

Eγ

vmb
, (6.2)

where the factor Eγ accounts for the P-wave coupling of the photon to the bottom mesons. One thus
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m1

m2

m3

Figure 6.1: Triangle diagram where the double, solid and wavy lines represent the bottomonium, bottomed meson
and the photon, respectively.

Figure 6.2: Two typical two-loop diagrams where the double, solid and wavy lines are the same as in Fig. 6.1 and
the dashed lines represent the exchanged pions.

sees that the closer the bottomnia to the bottom-meson thresholds, the larger the coupled-channel effects.
One remark is in order: v in the power counting is in fact the average of two velocities. This can be
estimated as v = (vi + v f )/2 with vi =

√
|m1 + m2 − Mi|/m̄12 and v f =

√
|m2 + m3 − M f |/m̄23, where

m1,2,3 are masses of intermediate mesons as labelled in Fig. 6.1, Mi( f ) is the mass for the initial (final)
bottomonium, and m̄ jk is the averaged value of m j and mk.

However, unlike the case of charmonium hindered M1 transitions, the two-loop diagrams with a pion
exchanged between two intermediate bottom mesons are not highly suppressed for the bottomonium
transitions. From the power counting analysis in Ref. [208], the photon vertex in the left diagram of
Fig. 6.2 does not contribute to the velocity counting, but contribute a factor g/Fπ with Fπ the pion decay
constant and g ' 0.5 the axial coupling constant for bottom mesons [211–213], which comes from the
axial coupling between the bottom-meson with pion, and the vertex scales as Eγg/Fπ. As a result, the
two-loop diagram in the left of Fig. 6.2 scales as

A2-loop ∝
(v5)2

(v2)5

g2

(4π)2Fπ

Eγ

mb
M2

B

=
Eγ

mb

(
gMB

Λχ

)2

, (6.3)

where the factor 1/(4π)2 is taken into account as there is one more loop than in the one-loop case,
Λχ = 4πFπ is the chiral symmetry breaking scale, MB is the bottom meson mass and the factor M2

B is
introduced in order to make the scaling have the same dimension asAtriangle. One can easily see that the
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Chapter 6 Hindered M1 transition between two bottomia

right diagram in Fig. 6.2 has the same scaling as the left one as the one more propagator in the left one is
balanced by two more P-wave vertices. Hence the relative importance of the two-loop diagrams shown
in Fig. 6.2 in comparison with the triangle diagram given in Fig. 6.1 can be described by a factor

A2-loop

Atriangle
∼ v

g2M2
B

Λ2
χ

. (6.4)

Taking the masses of the 1P, 2P and 3P bottomonia from Refs. [77, 214], the velocity in the power
counting may be estimated to be 0.31, 0.23 and 0.18 for the 2P → 1P, 3P → 1P and 3P → 2P
radiative transitions, respectively. One then finds that the relative factor given in Eq. (6.4) is of order one,
which means that the contribution of two-loop diagrams like the ones shown in Fig. 6.2 should be of
similar size as the one-loop triangle diagram in Fig. 6.1. This is different from the charmonium case
studied in Ref. [208] where M2

B is replaced by the much smaller M2
D and thus leads to a suppression.

Nevertheless, we will only calculate the triangle diagram, and keep in mind that given the power counting
of the two-loop diagrams such a calculation can only be regarded as an estimate, rather than a precise
calculation, with a quantitative uncertainty analysis out of reach.

6.3 Effective Lagrangians

As shown in Section 2.2.3, the heavy meson fields are collected in doublets due to the heavy quark
spin symmetry, and can be written in a two-component notation as it is convenient for nonrelativistic
calculation. The explicit forms of the doublet Ha and H̄a read

Ha = ~P∗a · ~σ + Pa, (6.5)

H̄a = − ~̄P∗a · ~σ + P̄a, (6.6)

where ~σ are the Pauli matrices, Pa and P∗a annihilate the pseudoscalar and vector bottom mesons,
respectively. On the other hand, the P-wave spin singlet hb and triplet χbJ bottomonia can be collected in
a multiplet as

χi = σ j
(
χ

i j
b2 −

1
√

2
εi jkχk

b1 +
1
√

3
δi jχb0

)
+ hi

b , (6.7)

which is taken from the general nonrelativistic formula for the orbital angular momentum L = 1 multiplet
shown in Eq. (2.64).

As mentioned above, the leading order coupling of the P-wave bottomonium to the bottom and
anti-bottom mesons is in an S -wave, and thus the effective Lagrangian is given by [210, 215]

Lχ = i
g1

2
Tr[χ†iHaσ

iH̄a] + h.c., (6.8)

where g1 is the coupling constant and Tr denotes the trace in the spinor space.
We also need the magnetic coupling of the photon to the S -wave heavy mesons in the two-component

notation [52, 206, 216]

Lγ =
e β
2

Tr
[
H†a Hb ~σ ·

~B Qab

]
+

e Q′

2mQ
Tr

[
H†a ~σ · ~B Ha

]
, (6.9)

where Bk = εi jk∂iA j is the magnetic field, Qab = diag(2/3,−1/3,−1/3) is the light quark electric charge
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χb0 → hbγ [B∗, B̄∗, B], [B∗, B̄∗, B∗], [B, B̄, B∗]

χb1 → hbγ [B∗, B̄, B∗], [B, B̄∗, B∗]

χb2 → hbγ [B∗, B̄∗, B], [B∗, B̄∗, B∗]

hb → χb0γ [B∗, B̄, B], [B, B̄∗, B∗], [B∗, B̄∗, B∗]

hb → χb1γ [B∗, B̄, B∗], [B∗, B̄∗, B]

hb → χb2γ [B, B̄∗, B∗], [B∗, B̄∗, B∗]

Table 6.1: Triangle loops contributing to each transition, where the mesons are listed as [m1,m2,m3] corresponding
to the notations in Fig. 6.1. For simplicity, the charge conjugation modes and the light flavor labels are not shown
here.

matrix, Q′ is the heavy quark electric charge (for a bottom quark, Q′ = −1/3 ) and mQ is the mass of the
heavy quark. β is a unknown parameter introduced in Ref. [216]. If we compare the tree level predictions
for the electromagnetic decay widths of the vector heavy mesons, i.e. Γ(P∗a → Paγ), with these in the
quark model, we can get β = 1/mq, where mq is the light constituent quark mass. One can also fit the
parameter β to the experimental results of the electromagnetic decay widths to obtain its value. The first
term in the above Lagrangian is the magnetic moment coupling of the light degrees of freedom, which
preserves heavy quark spin symmetry. The second term is the magnetic moment coupling of the heavy
quark and suppressed by 1/mQ.

6.4 Results and discussion

We specify the intermediate mesons in the list [m1,m2,m3], as denoted in Fig. 6.1. All the possible
loops with the intermediate pseudoscalar and vector bottomed mesons are listed in Table 6.1 for the
corresponding transitions. With the effective Lagrangians given in last section and the loop integral in
Eq. (5.2), we can proceed to calculate quantitatively the transition rates. The pertinent amplitudes for the
hindered magnetic dipole transitions from χb(nP) to hb(n′P) are of the form expressed in terms of the
triangle loop function

Mχb0→γhb = −
2iegg′
√

3
qiε j(γ)εi jkε

k(hb)
∑

a=u,d,s

{
2
(
βQa +

1
3mb

)
I(B∗a, B̄

∗
a, B

∗
a)

+

(
βQa −

1
3mb

) [
I(B∗a, B̄

∗
a, Ba) − 3I(Ba, B̄a, B∗a)

] }
, (6.10)

Mχb1→γhb = 2i
√

2egg′
[
~q · ~ε(χb1)~ε(γ) · ~ε(hb) − ~q · ~ε(hb)~ε(γ) · ~ε(χb1)

]
×

∑
a=u,d,s

[(
βQa +

1
3mb

)
I(B∗a, B̄a, B∗a) −

(
βQa −

1
3mb

)
I(Ba, B̄∗a, B

∗
a)
]
, (6.11)

Mχb2→γhb = 4iegg′εi jkε
kl(χb2)

∑
a=u,d,s

{
− qiε j(γ)εl(hb)

(
βQa −

1
3mb

)
I(B∗a, B̄

∗
a, Ba)

+εi(hb)
[
qlε j(γ) − q jεl(γ)

] (
βQa +

1
3mb

)
I(B∗a, B̄

∗
a, B

∗
a)
}
. (6.12)
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The transition amplitudes for the hindered magnetic dipole transitions from hb(nP) to χb(n′P) are of the
form

Mhb→γχb0 = −
2iegg′
√

3
qiε j(γ)εk(hb)εi jk

∑
a=u,d,s

{
2
(
βQa +

1
3mb

)
I(B∗a, B̄

∗
a, B

∗
a)

+

(
βQa −

1
3mb

) [
I(Ba, B̄∗a, B

∗
a) − 3I(B∗a, B̄a, Ba)

] }
, (6.13)

Mhb→γχb1 = 2i
√

2egg′
[
~q · ~ε(χb1)~ε(γ) · ~ε(hb) − ~q · ~ε(hb)~ε(γ) · ~ε(χb1)

]
×

∑
a=u,d,s

[(
βQa +

1
3mb

)
I(B∗a, B̄a, B∗a) −

(
βQa −

1
3mb

)
I(B∗a, B̄

∗
a, Ba)

]
, (6.14)

Mhb→γχb2 = 4iegg′εi jkε
kl(χb2)

∑
a=u,d,s

{
− qiε j(γ)εl(hb)

(
βQa −

1
3mb

)
I(Ba, B̄∗a, B

∗
a)

+εi(hb)
[
qlε j(γ) − q jεl(γ)

] (
βQa +

1
3mb

)
I(B∗a, B̄

∗
a, B

∗
a)
}
, (6.15)

where the initial bottomonium should be understood to be of higher excitation then the final one, εi(γ),
εi(hb) and εi(χb1) are the polarization vectors for the photon, hb and χb1, respectively, and εi j(χb2) is
the symmetric polarization tensor for the χb2. One also needs to notice that a factor

√
MiM f , with Mi, f

denoting the masses of the initial and final bottomonia, should be multiplied to each of the amplitudes
to account for the nonrelativistic normalizations of the heavy quarkonium fields (similar factors for the
intermediate heavy mesons have been absorbed in the definition of the loop function).

From these amplitudes, one clearly sees two sources of spin symmetry breaking: the terms from
the bottom quark magnetic moment are explicitly proportional to 1/mb, and the sum of β-terms in
each amplitude vanishes if the vector and pseudoscalar bottom mesons are taken to be degenerate. For
Eqs. ((6.10), (6.11), (6.13), (6.14)) given above, this point is apparent, for Eqs. ((6.12), (6.15)), one can
see this after taking the absolute value squared of the amplitude and summing up the polarizations.

The loops involved here are convergent, which means that the coupled-channel effects for the processes
of interest are dominated by long-distance physics described in our NREFT. We do not need to introduce
a counterterm here. The situation is different for the case of E1 transitions. The loop integrals involved
there are divergent, and thus the contact term considered in Ref. [206] also serves as the counterterm and
is necessary for renormalization.

Using the masses of the mesons given by the Particle Data Group [77], it is easy to get numerical
results for the partial decay widths. As for the masses of the 3P bottomonia, we choose the quark
model values from Ref. [188], which were obtained based on the measured χbJ(3P) mass by the
LHCb Collaboration [214] with the predicted multiplet mass splittings, i.e. Mhb(3P) = 10.519 GeV,
Mχb0(3P) = 10.500 GeV, Mχb1(3P) = 10.518 GeV and Mχb2(3P) = 10.528 GeV. These masses are very close
to the ones in Ref. [189], where the coupled-channel effects are taken into account in a nonrelativistic
quark model. We also take β = 1/276 MeV−1 [52], and mb = 4.9 GeV.

The decay amplitudes are proportional to the product squared of the coupling constants of the bottom
and anti-bottom mesons to the 1P, 2P and 3P bottomonia, denoted as g1, g′1 and g′′1 , respectively. As the
mass of the χbJ(1P, 2P, 3P) and hb(1P, 2P, 3P) are below the bottom and anti-bottom meson threshold,
the coupling constants cannot be measured directly. Here, we show the decay width of the hindered
M1 transitions between two P-wave bottomonia in units of the coupling constants in the Table 6.2. The
unknown parameters will get cancelled if we calculate ratios of the decay widths which are proportional
to the same product squared of coupling constants. Furthermore, we also expect that these ratios are
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J = 0 J = 1 J = 2 units

χbJ(3P)→ hb(2P)γ 0.3 1.8 1.4 (g′1g
′′
1 )2 keV

hb(3P)→ χbJ(2P)γ 0.3 2.2 1.6 (g′1g
′′
1 )2 keV

χbJ(3P)→ hb(1P)γ 4.9 13.4 11.9 (g1g
′′
1 )2 keV

hb(3P)→ χbJ(1P)γ 3.3 15.8 15.4 (g1g
′′
1 )2 keV

χbJ(2P)→ hb(1P)γ 1.2 1.8 1.8 (g1g
′
1)2 keV

hb(2P)→ χbJ(1P)γ 0.7 2.0 2.5 (g1g
′
1)2 keV

Table 6.2: Decay widths for the hindered M1 transitions between χbJ(nP) and hb(n′P), where the coupling constants
take values in units of GeV−1/2.

J = 0 J = 1 J = 2

ours RQM ours RQM ours RQM
Γhb(2P)→χbJ(1P)γ

ΓχbJ(2P)→hb(1P)γ
0.59 0.03 1.1 0.5 1.4 9.2

Table 6.3: Comparison of the ratios of the decay widths for the 2P to 1P bottomonia with the ones from the
RQM [188].

less sensitive to the two-loop diagrams in Fig. 6.2 as the numerator and denominator in the ratio, being
related to each other via spin symmetry, would get a similar correction. The ratios in our calculation
can be easily obtained from Table 6.2. In order to show that the coupled-channel effects lead to very
different values for some of these ratios, we show a comparison of ratios for selected decay widths of the
hindered M1 transitions between the 2P to 1P bottomonia with those obtained in the quenched quark
model of Ref. [188] in Table 6.3. These predictions can be tested in the future from experiments or
lattice QCD calculations. In fact, radiative transitions of S -wave bottomonia, including the hindered M1
ones, have been studied by using lattice QCD [217–219]. As suggested in Ref. [208], one can check the
coupled-channel effects directly in lattice QCD by comparing results in full and quenched calculations —
the former includes the coupled-channel effects intrinsically while the latter does not.

As mentioned in Ref. [188], the numerical results of these hindered transitions in the quark model are
very sensitive to relativistic corrections (these transitions do not vanish only when relativistic corrections
are accounted for in the quenched quark model). Nevertheless, they are tiny because the M1 transitions
break heavy quark spin symmetry as well, and are in the ballpark of sub-eV to eV in Ref. [188]. If the
partial widths really take such small values, an experimental observation of the bottomonium hindered M1
transitions would be impossible in the foreseeable future. In turn, this means that once such transitions
are observed, the mechanism would be different from that in the quenched quark model, and would
be caused by coupled-channel effects. Then, the measured partial widths can be used to estimate the
involved coupling constants.

Unfortunately, the values of the coupling constants g1, g
′
1 and g′′1 cannot be estimated reliably. If one

takes the model estimate made in Ref. [215],1 g1 = −2
√

mχb0/3/ fχb0 and uses the value fχb0 ≈ 175 MeV

1 Here we have replaced the charmonium quantities by the corresponding bottomonium ones, and there is a factor of 2
difference for g1 in the definition of the Lagrangian in (6.9) and that in Ref. [215].
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from a QCD sum rule calculation [220], then one gets g1 ∼ −20 GeV−1/2. This value is so large that if
the χb0 is located only 1 MeV above the B0B̄0 threshold it would have a huge width of 21 GeV. However,
the quark model predictions for the open-bottom partial decay widths of the 4P bottomonia leads to
|g1(4P)| ∼ 0.2 GeV−1/2 (the one for the 5P states is slightly smaller), which, although it is for the 4P
states, is two orders of magnitude smaller than that from the former estimate. In Ref. [208], the product
of the coupling constants (g1g

′
1)2 is estimated to be of order O(10 GeV−2) in the charm sector, where the

difference between the model estimate for g1 [215] and the extracted value from quark model predictions
of the 2P charmonium decay widths is much smaller. If we naively take the same estimate here, despite
that there is no simple flavor symmetry between charmonia and bottomonia, then the partial decay widths
of O

(
1 ∼ 102

)
keV could be large enough for a possible measurement in the future.

In principle, we can also calculate the decay widths for the isospin breaking transitions between the
χbJ(nP) states with the emission of one pion. They would be proportional to the same combination
of unknown coupling constants. The charmonium analogues from the coupled-channel effects have
been analyzed in details in Ref. [170]. However, we refrain from such a calculation because the isospin
breaking between the charged and neutral bottom mesons is one order of magnitude smaller than that in
the charmed sector because of the destructive interference between the contributions from the up and
down quark mass difference and the electromagnetic effect [221].

6.5 Summary

In summary, we studied the hindered M1 transitions between two P-wave bottomonia, χb(nP) and hb(n′P)
(n , n′) assuming the mechanism is dominated by coupled-channel effects. Because of the suppression
from heavy quark spin breaking and small relativistic corrections, such transitions have tiny partial
widths from sub-eV to eV in the quark model. In the mechanism underlying coupled-channel effects, the
breaking of heavy quark spin symmetry can come from the different masses of bottom mesons within
the same spin multiplet, and the problem of tiny matrix elements for transitions between bottomonia of
different principal quantum numbers in the quark model does not exist as well. Therefore, it is natural
to expect that the coupled-channel effects lead to much larger widths for such transitions than those
predicted in the quark model. A future observation of such transitions at, e.g., Belle-II [209] may be
regarded as a clear signal of the coupled-channel effects, and the measured widths could then be used
to extract a rough value of the product of the so-far unknown coupling constants, e.g. g1g

′
1. Such

information would be useful for other transitions where intermediate bottom mesons play an important
role, such as the decays of the Zb(10610) and Zb(10650) into hbπ and hb(2P)π.

At last, we want to emphasize again that the coupled-channel effects in heavy quarkonium transitions
can be checked directly in lattice QCD by comparing results from quenched and fully dynamical
simulations as we already suggested in Ref. [208]. A better understanding of coupled-channel effects
would lead to new insights into the dynamics of heavy quarkonia.
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CHAPTER 7

Kinematical effect in the narrow Pc structure

In 2015, the LHCb Collaboration announced that two pentaquark-like structures were observed in the
J/ψ p invariant mass distribution in the Λ0

b → J/ψK− p decays. In this chapter, we will show that the
current information on the narrow structure at 4.45 GeV is compatible with kinematical effects of the
rescattering from χc1 p to J/ψ p. The main results and discussions presented here are taken from our
published paper in Ref. [222]. In that paper, we observe the following:

• First, it is located exactly at the χc1 p threshold.

• Second, the mass of the four-star well-established Λ(1890) is such that a leading Landau singularity
from a triangle diagram can coincidentally appear at the χc1 p threshold.

• Third, there is a narrow structure at the χc1 p threshold but not at the χc0 p and χc2 p thresholds.

In order to check whether that structure corresponds to a real exotic resonance, one can measure
the process Λ0

b → K−χc1 p. If the Pc(4450) structure exists in the χc1 p invariant mass distribution as
well, then the structure cannot be just a kinematical effect but is a real resonance, otherwise, one cannot
conclude that the Pc(4450) is another exotic hadron. In addition, it is also worthwhile to the J/ψ invariant
mass distribution of processes with a completely different kinematics, such as the photoproduction
processes [223–226] or pion induced reactions [227, 228].

This chapter is organized as follows. We will first give a brief introduction to the background in
Section 7.1. Then we will discuss the two-point loop diagram for the χc1 p rescattering in Section 7.2.
After that we will briefly introduce the Landau equation and discuss the three-point loop diagram and the
motion of the singularity in Section 7.3. The last section is devoted as a summary.

7.1 Introduction

The observation of many different hadrons half a century ago stimulated the proposal of the quark
model as a classification scheme [2], and helped to establish quantum chromodynamics (QCD) as the
fundamental theory of the strong interactions. Since then, hundreds of more hadrons were discovered.
A renaissance of hadron spectroscopy studies started in 2003, and since then a central topic is the
identification of the so-called exotic hadrons. These are states beyond the naive quark model scheme, in
which mesons and baryons are composed of a quark–antiquark pair qq̄ and three quarks qqq, respectively.
Most of the new interesting structures were observed in the mass region of heavy quarkonium, and are
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Chapter 7 Kinematical effect in the narrow Pc structure

called XYZ states (for a list of these particles and a review up to 2014, see Ref. [77]). In particular, the
X(3872) [111] extremely close to the D0D̄∗0 threshold is widely regarded as an exotic meson, and the
charged structures with a hidden pair of heavy quark and heavy antiquark such as the Zc(4430) [229,
230], Z±c (3900) [231, 232], Z±c (4020) [233], and Z±b (10610, 10650) [5] would be explicitly exotic were
they really resonances, i.e. poles of the S -matrix.

Candidates for explicitly exotic hadrons were extended to the pentaquark sector by the new LHCb
observations of two structures, denoted as Pc, in the J/ψ p invariant mass distribution [18]:

• Pc(4380): m = (4380 ± 8 ± 29) MeV, Γ = (205 ± 18 ± 86) MeV,

• Pc(4450): m = (4449.8 ± 1.7 ± 2.5) MeV, Γ = (39 ± 5 ± 19) MeV.

In the experimental fit, an amplitude analysis of three-body final state J/ψpK reproduces the two-body
mass distributions of mK p and mJ/ψp. Many known Λ∗ baryons are introduced because they decay to K p,
and they serve as a background in the J/ψp invariant mass distribution. In order to obtain a satisfactory fit
in this distribution, two additional Breit–Wigner amplitudes were introduced, these are the two structures
Pc(4380) and Pc(4450). Moreover, the best fit solution for the quantum numbers are spin-parity JP values
of (3/2−, 5/2+), while almost equally acceptable solutions could be either (3/2+, 5/2−) or (5/2+, 3/2−).

For the nature of this two structures, there have been some explanations. For example, they were
suggested to be hadronic molecules composed of an anticharm meson and a charmed baryon [234–236]
the existence of which were already predicted in Refs. [237–240]. They were also discussed as a
pentaquark doublet in Ref. [241]. Besides, the pentaquark states of diquark-diquark-antiquark as the
internal structure was proposed in Refs. [242, 243].

Normally, when people observe a peak in an invariant mass distribution of certain final states, they
fit the peak by using the Breit–Wigner parameterization to extract the masses and widths, and claim
that a new resonance is discovered. This is exactly the same procedure for the observation of the two
pentaquark-like structures as we stated above. However, such a procedure is problematic. On the one
hand, many of these structures are very close to certain thresholds to which they couple strongly. In this
case, the use of Breit–Wigner is questionable and one needs to account for the thresholds. This can be
achieved using the Flatté parameterization [244] (a method in this spirit for near-threshold states with
coupled channels and unitarity was recently proposed in Ref. [245]). On the other hand, not every peak
should be attributed to the existence of a resonance. In particular, kinematical effects may also show
up as peaks. Such kinematical effects correspond to singularities of the S -matrix as well, but they are
not poles. In general, they are the so-called Landau singularities including branch points at thresholds
and more complicated ones such as the triangle singularity, also called anomalous threshold (detailed
discussions of these singularities can be found in the textbooks [246, 247]). The observability of the
triangle singularity was extensively discussed in 1960s (see Refs. [248–250] and references therein), and
recently was used to explain some structures including the η(1405), a1(1420) and φ(2170) [251–256]. In
fact, there were suggestions that some of the Zc and Zb states were threshold effects [257–261] and the
threshold effects might be enhanced by triangle singularities [262]. For a general discussion of S -wave
threshold effects, see also Ref. [263]. Therefore, in order to establish a structure as a resonance, one has
to discriminate it from such kinematical effects. Indeed, this is possible. As discussed in Ref. [264], a
resonance can be distinguished from threshold kinematical effects only in the elastic channel which is the
channel with that threshold. The purpose of this chapter is to discuss the possible kinematical effects
for the narrower structure at 4.45 GeV in the LHCb observations and suggest measurements to check
whether it is a real exotic resonance or not.

We first notice that the Pc(4450) structure is exactly located at the threshold of a pair of χc1 and proton,
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Figure 7.1: The fit projections for the invariant mass distributions (a) mK p and (b) mJ/ψp for many Λ∗ with two P+
c

states. This two figures are taken from Ref. [18]. In the fit, the amplitude analysis of three-body final state J/ψpπ
is used to reproduce the two-body mass distributions of mK p and mJ/ψp.

(4448.93 ± 0.07) MeV, and

MPc(4450) − Mχc1 − Mp = (0.9 ± 3.1) MeV. (7.1)

If the angular momentum between the χc1 and proton is a P-wave, then the two-body system can have
quantum numbers JP = (1/2, 3/2, 5/2)−, compatible with the favored possibilities 5/2+, 5/2− and
3/2− [18]. The χc1 p can rescatter into the observed J/ψ p by exchanging soft gluons. Two possible
diagrams for such a mechanism will be shown later, and we will discuss them subsequently.

It is worthwhile to notice that the χc1 can be produced in the weak decays of the Λb with a similar
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magnitude as that for the J/ψ. In the bottom quark decays, the charm quark is produced via the mediation
of a W-boson. After integrating out the off-shell mediators, one arrives at two effective operators for the
b→ cc̄s transition:

O1 = [c̄αγµ(1 − γ5)cα][s̄βγµ(1 − γ5)bβ], (7.2)

O2 = [c̄αγµ(1 − γ5)cβ][s̄βγµ(1 − γ5)bα] , (7.3)

where one-loop QCD corrections have been taken into account to form O1. Here, α, β are color indices,
and they should be set to be the same in O2 in order to form a color-singlet charmonium state. The quark
fields, [c̄γµ(1 − γ5)c], will directly generate the charmonium state. A charmonium with JPC = 1−− like
the J/ψ is produced by the vector current, while the axial-vector current tends to produce the χc1 with
JPC = 1++ and the ηc state with JPC = 0+−. Since the vector and axial-vector currents have the same
strength in the weak operators, one would expect the production rates for the J/ψ and χc1 are of the same
order in b quark decays. Corrections to this expectation come from higher-order QCD contributions but
are sub-leading [265]. In fact, such an expectation is supported by the B meson decay data [77]:

B(B+ → J/ψK+) = (10.27 ± 0.31) × 10−4, (7.4)

B(B+ → χc1K+) = (4.79 ± 0.23) × 10−4. (7.5)

7.2 The χc1 p inelastic rescattering in two-point loop

Having made the above general observations, we now return to the discussion of the Λ0
b decays measured

by LHCb. As we already discussed above, the χc1 p can rescatter into the observed J/ψ p. And there
are two possible diagrams for such a mechanism, one is the two-point loop diagram shown in Fig. 7.2
with a prompt three-body production Λ0

b → K−χc1 p followed by the inelastic rescattering process
χc1 p→ J/ψ p.

Λ0
b

K−

χc1

p

p

J/ψ

Figure 7.2: The two-point loop diagram illustrating the mechanism of the χc1 p→ J/ψ p inelastic rescattering in
the decay Λ0

b → K−J/ψ p .

We will first focus on the two-point loop diagram whose singularity is a branch point at the χc1 p
threshold on the real axis of the complex s plane, where and in the following

√
s denotes the invariant

mass of the J/ψ p or χc1 p system. It manifests itself as a cusp at the threshold if the χc1 p is in an
S -wave. For higher partial waves, the threshold behavior of the amplitude is more smooth and a cusp
becomes evident in derivatives of the amplitude with respect to s. Since we are only interested in the
near-threshold region, both of the χc1 and the proton are nonrelativistic. Thus, the amplitude for Fig. 7.2
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is proportional to the nonrelativistic two-point loop integral

GΛ(E) =

∫
d3q

(2π)3

~q 2 fΛ(~q 2)
E − m1 − m2 − ~q 2/(2µ)

, (7.6)

where m1,2 denote the masses of the intermediate states in the loop, µ is the reduced mass, E is the
total energy and Λ is the cut-off paramter. Here, we consider the case for the P-wave χc1 p which has
quantum numbers compatible with the possibilities of the Pc(4450) reported by the LHCb Collaboration,
though one should be conservative to take these determinations for granted as none of the singularities
discussed here was taken into account in the LHCb amplitude analysis. If we take a Gaussian form factor,
fΛ(~q 2) = exp

(
−2~q 2/Λ2

)
, to regularize the loop integral, the analytic expression for the loop integral is

then given by

GΛ(E) = −
µΛ

(2π)3/2

(
k2 +

Λ2

4

)
+
µ k3

2π
e−2k2/Λ2

erfi
 √2k

Λ

 − i
 , (7.7)

with k =
√

2µ(E − m1 − m2 + iε), and the imaginary error function erfi(z) = (2/
√
π)

∫ z
0 et2dt. A better

regularization method should be applied in the future, but for our present study such an approach is fine.
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Figure 7.3: Fit to the real and imaginary parts of the Pc(4450) amplitude shown in Fig. 9 in Ref. [18] with Eq. (7.8).
The blue curve represents the best fit. It is counterclockwise with increasing the Jψ p invariant mass from 4.41 GeV
to 4.49 GeV, the same range as for the LHCb diagram.

Using an amplitude with the loop function given in Eq. (D.5), one can get a peak around the χc1 p
threshold. In order to have a more quantitative description of the effect of Fig. 7.2, we fit to the Argand
plot for the Pc(4450) amplitude depicted in Fig. 9 (a) in Ref. [18] with an amplitude

A = N [b + GΛ(E)] , (7.8)
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Figure 7.4: Absolute values of the amplitude in Eq. (7.8) which includes the two-point loop integral and is used to
fit to the Argand plot in arbitrary units.

where b is a constant background term which may originate from a direct production of the K−J/ψ p,
and N is an overall normalization. We fit to both the real and imaginary parts of the Pc(4450) amplitude
by minimizing the sum of the chi-squared values for both the real and imaginary parts. The best fit with
a real background term has χ2/d.o.f. = 1.75 and is given by N = 3144, b = −2.9 × 10−4 GeV4 and
Λ = 0.16 GeV. With a real background term, the amplitude in Eq. (7.8) can only be complex when the
energy is larger than the χc1 p threshold, as is evident in Fig. 7.3. The background is in general complex
as a result of the fact that the K, J/ψ and p can go on shell and many Λ resonances can contribute to
the K p state. One sees from the figure that the counterclockwise feature of the LHCb amplitude is
reproduced, and the overall agreement is good. The absolute value of the amplitude in Eq. (7.8) with
these determined parameters has a narrow peak around the χc1 p threshold as shown in Fig. 7.4.

We have checked that using a different form factor Λ4/
(
~q 2 + Λ2

)2
gives a similar result. In both cases,

the peak is asymmetric unlike the Breit–Wigner form.

7.3 The χc1 p inelastic rescattering in three-point loop

The second diagram for the χc1 p rescattering into the observed J/ψ p final state is a three-point loop
diagram shown in Fig. 7.5 with the K−p pair produced from an intermediate Λ∗ state and the proton
rescattering with the χc1 into the J/ψ p.

7.3.1 Landau equation

Before we continue, we will first give a brief introduction to the Landau rules for kinematical singularit-
ies [181]. The Landau rule is a useful tool to study analytic properties of the singularities in the Feynman
integral. The main contents presented here are following the textbook [266].

First, let us consider the Feynman integral for the triangle diagram shown in Fig. 7.6, where the external
particles have momenta p1, p2 and p3 and corresponding masses µ1, µ2 and µ3, i.e. p2

i = µ2
i (i = 1, 2, 3).
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Λ0
b

Λ∗

χc1

p
p

K−

J/ψ

Figure 7.5: The three-point loop diagram illustrating the mechanism of the χc1 p→ J/ψ p inelastic rescattering in
the decay Λ0

b → K−J/ψ p.

p2

q3 q1

q2p1 p3

Figure 7.6: The triangle diagram for illustration of the Landau rules.

Momentum conservation requires p1 + p2 + p3 = 0. For the internal particles, their momenta are denoted
as q1, q2 and q3 with masses m1,m2 and m3, respectively, and generally they are not on shell, i.e. q2

i , m2
i .

Since the numerator of a tensor integral would not change the singularity, we can consider only the
scalar integral for simplicity. The scalar Feynman integral for Fig. 7.6 is of the form

I =

∫
d4q1

(2π)4

i
(q2

1 − m2
1 + iε)(q2

2 − m2
2 + iε)(q2

3 − m2
3 + iε)

. (7.9)

From the diagram we have the relations q2 = q1 − p3 and q3 = q1 + p2, thus there are six poles for the
integrand in the complex q10 plane

q10 = ±

√
~q2

1 + m2
1 ∓ iε, (7.10)

q20 = ±

√
~q2

2 + m2
2 ∓ iε, i.e. q10 = p30 ±

√
(~q1 − ~p3)2 + m2

2 ∓ iε, (7.11)

q30 = ±

√
~q2

3 + m2
3 ∓ iε, i.e. q10 = −p20 ±

√
(~q1 + ~p2)2 + m2

3 ∓ iε. (7.12)

The integral can have a singularity only when the poles in the complex q10 plane pinch the integral
contour. In other words, the condition that the integral has a singularity will be fulfilled when two of the
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three denominators in the integral are zero at the same time

q2
i = m2

i (i = 1, 2 or i = 1, 3, or i = 2, 3), (7.13)

or all of the three are zero at the same time

q2
i = m2

i (i = 1, 2, 3). (7.14)

If only two denominators are simultaneously zero, it is essentially the condition to find the singularities
of a simpler two-point loop diagram as one of the internal line can be shrunk to a point. In this case,
the singularity is called the lower-order singularity of the diagram. We can deal with this as in the last
section. Here we consider the case that three denominators are zero simultaneously. The singularity in
this case is called the leading order singularity.

Just from Eq. (7.14), we can not get an equation that fulfils the condition of a singularity, and is in
terms of the external momentum at the same time. We need the relation of all qi first. Here we have two
strategies:

1. Let us introduce three positive numbers α1, α2 and α3, which are essentially the Feynman paramet-
ers as can be seen later and a four-dimensional vector

α1q1 + α2q2 + α3q3.

The spatial components of the vector can be zero by choosing appropriate coordinates. On the
other hand, we know that one of the quantities qi0 can have a sign opposite to that of the other
two. Then we can always find α1, α2 and α3 to make the temporal component of the vector satisfy
α1q10 + α2q20 + α3q30 = 0. In total, the four-dimensional vector fulfils

3∑
i=1

αiqi = 0. (7.15)

2. We can also introduce integrals over Feynman parameters to combine the denominators of propag-
ators as

I =

∫
d4q1

(2π)4

 3∏
i=1

dβi

 δ
 3∑

i=1

βi − 1

 i
D
, (7.16)

with D defined by

D =

3∑
i=1

βi(q2
i − m2

i ), (7.17)

where βi are the Feynman parameters. The condition for the poles pinching the integral contour,
i.e. a singularity, is equivalent to [246]

D = 0 =
∂D
∂q1

. (7.18)

Hence with the partial derivative we can get the similar equation as Eq. (7.15) with α replaced by
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β as the qi depend linearly on the loop momentum q1, that is

3∑
i=1

βiqi = 0. (7.19)

It is obvious that αi are essentially the Feynman parameters.

If we multiply the Eq. (7.15) by q1, q2 and q3, we can obtain
α1q2

1 + α2(q1q2) + α3(q1q3) = 0
α1(q1q2) + α2q2

2 + α3(q2q3) = 0
α1(q1q3) + α2(q2q3) + α3q2

3 = 0

. (7.20)

With Eq. (7.20), we know that there is a non-trivial solution for the αi if and only if the determinant of
the 3 × 3 matrix satisfies ∣∣∣∣∣∣∣∣∣∣

q2
1 (q1q2) (q1q3)

(q1q2) q2
2 (q2q3)

(q1q3) (q2q3) q2
3

∣∣∣∣∣∣∣∣∣∣ = 0

As a result of Eq. (7.14), we can define the parameters yi j = (m2
i + m2

j −q2
i j)/(2 mi m j), where qi j = qi + q j

being the four momentum of the i j pair. Eventually, the above determinant can be rewritten as the Landau
equation

1 + 2 y12 y23 y13 = y2
12 + y2

23 + y2
13, (7.21)

which will be used in the following.

7.3.2 Motion of the singularity

The above discussed leading Landau singularities of the diagram, Fig. 7.5, can cause further enhancement
around the χc1 p threshold as we will discuss now.

The leading Landau singularities for a triangle diagram are solutions of the Landau equation in
Eq. (7.21). To be specific, we let m1,m2 and m3 correspond to the masses of the Λ∗, χc1 and proton,
respectively. Then, q2

12 = M2
Λb

, q2
13 = M2

K− and q2
23 = s is the invariant mass squared of the J/ψ p pair.

It is easy to solve this equation for any given variable. We solve it as an equation of s, and it has two
solutions of the form

s± = (m2 + m3)2 +
1

2m2
1

[
(m2

1 + m2
2 − q2

12)(q2
13 − m2

1 − m2
3) − 4m2

1m2m3

±λ1/2(q2
13,m

2
1,m

2
3)λ1/2(q2

12,m
2
1,m

2
2)
]
, (7.22)

where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2xz is the Källén function. The αi or βi are Feynman
parameters, thus they must be positive. It can be shown that only one solution s− leads to positive αi or
βi.

For an easy visualization, we plot in Fig. 7.7 the motion of the solutions in the complex
√

s plane.
The solid line corresponds to the solution s−, while the dashed line corresponds to the other one s+.
Meanwhile in order to give an easy visualization of the kinematical region between A and B, we also
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Figure 7.7: Motion of the two triangle singularities in the complex plane of
√

s = Mχc1 p = MJ/ψ p with respect to
changing the mass of the exchanged Λ∗ baryon (several values are labeled in the plot in units of GeV). The solid
line corresponds to the solution s− in Eq. (7.22), while the dashed line corresponds to the other one s+. In order to
distinguish the trajectories from the real axis, we put a small imaginary part, −5 MeV corresponding to a width
of 10 MeV, to MΛ∗ . Only the part between the two filled triangles, labelled as A and B, has a large impact on the
physical amplitude. The thick solid straight line represents the unitary cut starting from the χc1 p threshold.

show the corresponding Dalitz plot in Fig. 7.8. As discussed in 1960s, see e.g. Ref. [248], only one of
the singularities can have an impact on the amplitude in the physical region defined on the upper edge of
the real axis on the first Riemann sheet of the complex s-plane, and it is effective only in a limited region
of one of these variables. Here we want to investigate in which values the Λ∗ mass can take so that there
can be an evident singularity effect in the J/ψ p invariant mass,

√
s. According to the Coleman–Norton

theorem [267], the singularity is in the physical region only when the process can happen classically,
which means that all the intermediate states are on shell, and the proton emitted from the decay of the Λ∗

moves along the same direction as the χc1 and can catch up with it to rescatter. Let us start from a very
large mass for the Λ∗ so that it cannot go on shell in Fig. 7.5. Decreasing this mass, when it has a value

m1,high =

√
q2

12 − m2 , (7.23)

it can go on shell. At this point, the χc1 is at rest in the rest frame of the decaying particle Λb, and the
proton emitted from the decay Λ∗ → K−p can definitely rescatter with the χc1 classically. This is the
point shown as a filled triangle with MΛ∗ = 2.11 GeV, labelled as A, on the solid curves in Fig. 7.7. One
can also see the kinematics clearly from the point A in Fig. 7.8. If we decrease m1 further, the χc1 will
speed up and the proton will slow down. Thus, the lower bound of m1 for the rescattering process that
happens classically is given by the case when the χc1 and the proton are at a relative rest as shown by the
point B in Fig. 7.8, i.e. when the χc1 p invariant mass is equal to their threshold. Thus, at this point the
triangle singularity coincides with the normal threshold, and

s− = (m2 + m3)2. (7.24)
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A

B

Figure 7.8: The corresponding Dalitz plot which shows the region between A and B in Fig. 7.7.

With Eq. (7.22), one gets

m1,low =

√
q2

12m3 + q2
13m2

m2 + m3
− m2m3 . (7.25)

If m1 is smaller than m1,low, the proton would not be able to catch up with the χc1 and the triangle diagram
can only be a quantum process. For the case of Fig. 7.5, m1,low is given by MΛ∗ = 1.89 GeV, labelled as
B and also shown as a filled triangle in Fig. 7.5. In Fig. 7.7, in order to move the singularity trajectories
away from the real axis, we give a 10 MeV width to the Λ∗. For a vanishing width, the solid and dashed
trajectories would pinch the real axis at m1 = m1,high. We can now know on which Riemann sheet of the
complex s-plane the singularities are located. Since only when m1 is between m1,low and m1,high (the part
between the two filled triangles in the figure), the process can happen classically and the singularity can
be on the physical boundary (if the Λ∗ width vanishes), we conclude that the singularity shown as the
solid curve is always on the second Riemann sheet. On the contrary, the singularity whose trajectory is
shown as the dashed curve in Fig. 7.7 is on the second Riemann sheet when it is above the real axis, and
it moves into the lower half plane of the first Riemann sheet otherwise. Thus, it is always far away from
the physical boundary, and does not have any visible impact on the physical amplitude.

An intriguing observation for the case of interest is that within the range between 1.89 GeV and
2.11 GeV, there is a four-star baryon Λ(1890) with 3/2+. Taking MΛ∗ = 1.89 GeV, the triangle singularity
is just at the χc1 p threshold which can provide a further threshold enhancement. The mechanism
of enhanced threshold effect due to the triangle singularity was recently discussed for the case of Zc

and Zb states [262]. Giving a finite width to the Λ(1890), the singularity moves away from the real
axis into the lower half plane of the second Riemann sheet (it is located at (4447 − i 0.2) MeV for
MΛ∗ = (1.89 − i 0.03) GeV), and the enhancement is reduced. The Λ(1890) has a relatively small width
(60 to 100 MeV [77]) so that there can still be an important enhancement. In Fig. 7.9, we show the
absolute value of the triangle loop integral with the χc1 p in a P-wave for three different widths (for a
discussion of the triangle singularities in nonrelativistic triangle loop integral, see Ref. [171]). There is
clearly an enhancement nearby 4.45 GeV even when the width is taken to be 100 MeV.
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Chapter 7 Kinematical effect in the narrow Pc structure
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Figure 7.9: Absolute values of amplitudes for the triangle loop integral with the χc1 p vertex in a P-wave in arbitrary
units. We assume the Λ(1890) with a mass of 1.89 GeV is exchanged in the triangle diagram. The solid, dashed
and dotted lines correspond to a width of the Λ(1890) of 10, 60 and 100 MeV, in order.

In the above, we have shown that kinematical effects can result in a narrow structure around the χc1 p
threshold in the J/ψ p invariant mass of the Λ0

b → K−J/ψ p decay. Consequently, a natural question is
whether such an effect happens at other thresholds, in particular those related to the χc1 p through heavy
quark spin symmetry (HQSS). As a result of the HQSS, the operator for annihilating a χc1 and creating a
J/ψ is contained in

1
2

〈
J†χi

〉
= −ψ j †χ

i j
c2 −

1
√

2
εi jkψ j †χk

c1 +
1
√

3
ψi †χc0 + η†chi

c , (7.26)

where the fields J = ~ψ · ~σ + ηc and ~χ = σ j
(
−χ

i j
c2 −

1√
2
εi jkχk

c1 + 1√
3
δi jχc0

)
+ hi

c [55, 170] annihilate
the S -wave and P-wave charmonium states, respectively, and 〈· · · 〉 denotes the trace in spinor space.
This means that the rescattering interaction strength for χc2 p → J/ψ p or χc0 p → J/ψ p is of similar
size as that for the χc1 p→ J/ψ p. One might naively expect enhancements at both the χc2 p and χc0 p
thresholds in the J/ψ p invariant mass as well. However, this is not the case. As we have shown in
Eq. (7.3), at leading order in αs, the charmoium is produced by the [c̄γµ(1 − γ5)c] current. This current
has no projection onto the χc0 or χc2. The production of the χc0,c2 in the b decays can come only from
higher-order QCD corrections which are suppressed. Indeed, there is no enhancement at the χc2 p and
χc0 p thresholds in Λb decays, which is consistent with our expectation.

7.4 Discussions

In conclusion, what we have shown here is that the present information on the narrow structure around
4.45 GeV observed by the LHCb Collaboration is compatible with kinematical effects around the χc1 p
threshold: First, it is located exactly at the χc1 p threshold. Second, the mass of the four-star well-
established Λ(1890) coincidentally makes the triangle singularity on the physical boundary located at the
χc1 p threshold, despite a small shift into the complex plane due to the finite width of the Λ(1890), and
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7.4 Discussions

third, the χc1, instead of the χc0 or χc2, can be easily produced in the weak decays of the Λb by the V − A
current so that there can be an evident effect at the χc1 p, but not the χc0 p or χc2 p, threshold.

Therefore, the most important question regarding the structure around 4.45 GeV is whether it is just a
kinematical effect or a real resonance. As discussed in Ref. [264], kinematical singularities, including
both the normal threshold and the triangle singularity, cannot produce a narrow near-threshold peak in
the elastic channel, which is the χc1 p in this case. The reason is the interaction strength in the elastic
channel controls the threshold behavior, and there can be a narrow near-threshold peak only when the
interaction in the elastic channel is strong enough to produce a pole in the S -matrix which corresponds to
a real resonance. On the contrary, one cannot simply determine the interaction strength for the inelastic
channel (χc1 p→ J/ψ p in our case) because it can always interfere with a direct production of the final
state. Thus, the question can be answered by analyzing the process Λ0

b → K−χc1 p: if there is a narrow
structure just above threshold in the χc1 p invariant mass distribution, then the structure cannot be just a
kinematical effect and calls for the existence of a real pentaquark-like exotic resonance, otherwise, one
cannot conclude the Pc(4450) to be another exotic hadron.
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CHAPTER 8

Summary

The underlying structure of the newly observed exotic states which can not be accommodated within
the traditional quark model is extremely interesting. To distinguish theoretical models of the underlying
structures of the exotica is the current urgent task. In this thesis, we mainly focused on two parts. One is
the investigation of inclusive prompt production of the S -wave loosely bound state at hadron colliders,
the other one is the study of the rescattering of final states in heavy hadron decays.

The prompt production of the hadronic molecules is a subject still under development. The study on
the production can serve as a reference for further experimental investigation for the properties of these
states.

Inclusive prompt production of S-wave loosely bound states

In Chapter 3, we derived the formula to estimate the cross sections of the inclusive productions
of charm-strange states at the LHC by using the amplitudes from unitarized heavy hadron chiral
perturbation theory for the heavy-light mesons. We assume that the charm-strange states D∗s0(2317),
Ds1(2460), DsJ(2860) and Ds2(2910) are S -wave loosely bound states of a kaon and a nonstrange
charmed meson. Based on this assumption, the charmed meson–kaon pairs will be produced
first by using two Monte Carlo event generators, Herwig and Pythia. After the production of the
constituents, these DsJ states will be formed through the final state interactions between them
which can be described by effective field theory. Our results show that these charm-strange bound
state can be copiously produced at the LHC. The measurements can not only be able to test the
molecular description and production mechanism, but will also allow to gain deeper insights into
the interaction between heavy and light mesons.

In addition, we also studied the production of the exotic hadrons with hidden heavy flavor,
namely the XYZ quarkonium-like states at hadron colliders in Chapter 4 under the same molecular
assumption. We primarily focus on the production of the Xb which is bottom analogue of the
X(3872) with BB̄∗ components and its spin partner Xb2 at the LHC and the Tevatron. Since the
X(3872) has been studied experimentally and theoretically, we also revisited the production of
the X(3872), and compared the obtained results with the experimental data and other theoretical
results. Our results for the X(3872) agree with the experiments. And according to our results, the
future prospect for the production of its spin partner and bottom analogs is promising at LHC
based on the accumulated data. This calls for an urgent experimental analysis.

In order to take the effect of the rescattering of the constituent mesons into account, we make use
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Chapter 8 Summary

of the Migdal-Waton theorem to derive the factorized formula for the production rate. However,
one may doubt the use of the Migdal-Watson approach, because of a huge numbers of hadrons
comoving with the molecular components. The hadrons near the constituent mesons with a small
relative momentum can be investigated by using the event generators. Nevertheless the interaction
strength between a hadron with a constituent of the would-be loosely bound S -wave molecule
is much smaller than the one between the two constituents. Ultimately, we are able to derive an
estimate of the production rates for these particles at the order-of-magnitude accuracy.

In order to clarify the intriguing properties and finally decipher the underlying structure of the exotic
states, more accurate data and new processes involving their production will be helpful.

The rescattering effect of the final states can enhance the transitions when the Landau singularities
appear in a specific kinematical region. This region is associated with the solution of the Landau equation.
In particular, the threshold and anomalous threshold singularities arise in the triangle diagram. From the
triangle diagrams, we can not only find the kinematics region where the transitions get enhanced, but
also find the available intermediate mesons contribute to a peak or enhancement in the transitions.

Rescattering of final states in heavy hadron decays

In Chapter 5, we discussed the triangle diagrams for the production of the spin partner of X(3872)
through charmonium decay with the associated emission of a photon in electron–positron collisions
by using an effective Lagrangian approach. The spin partner X2(4012) was predicted by the heavy
quark spin symmetry is a D∗D̄∗ bound state with quantum numbers JPC = 2++. The results show
that the ideal energy region to observe the X2(4012) in e+e− annihilations is from 4.4 GeV to
4.5 GeV, due to the presence of the S -wave D̄∗D1(2420) and D̄∗D2(2460) thresholds, respectively.
We also point out that it will be difficult to observe the γX2(4012) at the e+e− center-of-mass
energy around 4.26 GeV.

We studied the hindered magnetic dipole transitions between two P-wave bottomonia, χb(nP)
and hb(n′P) with n , n′, by exploring the effect of the intermediate meson in Chapter 6. In the
transitions, the coupled-channel effects originating from the coupling of quarkonia to a pair of
heavy and anti-heavy mesons can play a dominant role and are expected to lead to partial widths
much larger than the quark model predictions. We estimated these partial widths which, however,
are very sensitive to unknown coupling constants related to the vertices χb0(nP)BB̄. But the ratios
of the decay widths for the 2P to 1P bottomonia lead to very different values from the quenched
quark model. These differences can be tested in future experiments. A measurement of the hindered
M1 transitions can shed light on the coupled-channel dynamics in these transitions and hence
on the size of the coupling constants. We also suggest to check the coupled-channel effects by
comparing results from quenched and fully dynamical lattice QCD calculations.

Some of the exotic hadron candidates may be just originated from kinematical effects, as not every
peak should be attributed to the existence of a resonance. In Chapter 7, we investigated the newly
observed narrow pentaquark-like structure at 4.45 GeV by the LHCb Collaboration in the J/ψ p
invariant mass distribution in the Λ0

b → J/ψK− p decay. We found that it is compatible with
kinematical effects of the rescattering from χc1 p to J/ψ p. On the one hand, the peak is located
exactly at the χc1 p threshold and the mass of the four-star well-established Λ(1890) can make
the anomalous threshold singularity from a triangle diagram coincidentally at the χc1 p threshold.
On the other hand, there is a narrow structure at the χc1 p threshold but not at the χc0 p and χc2 p
thresholds. Therefore, we need more evidences to conclude whether that structure corresponds to a
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real exotic resonance. We proposed to measure the process Λ0
b → K−χc1 p. If the same structure at

4.45 GeV exists in the χc1 p invariant mass distribution as well, then it cannot be just a kinematical
effect but is a real resonance, otherwise, one cannot conclude that the Pc(4450) is another exotic
hadron.

There must exists triangle singularity in the Λ0
b → J/ψK− p decay. Therefore, the full amplitude

analysis should also include the triangle singularity in addition to possible Breit-Wigner amplitudes.
How much the triangle singularity could contribute to the peak is not clear so far. This analysis
should be done in the future. If the final state rescattering is enough to describe the experimental
data, there is no need for the new states. Nevertheless, the inclusion of the triangle singularity
would change the fit results.

93





APPENDIX A

Kinematics

A.1 Kinematics of two-body scattering

For the two-body scattering

A(p1,m1) + B(p2,m2)→ C(p3,m3) + D(p4,m4), (A.1)

the Mandelstam variables are defined as

s = (p1 + p2)2 = (p3 + p4)2,

t = (p1 − p3)2 = (p2 − p4)2,

= m2
1 + m2

3 − 2E1E3 + 2|~p1||~p3| cos θ, (A.2)

u = (p1 − p4)2 = (p2 − p3)2.

They are not independent and satisfy the constraint for the on-shell particles

s + t + u = m2
1 + m2

2 + m2
3 + m2

4. (A.3)

The Mandelstam variables are invariant in all frames, we can deal with them in the simple center-of-mass
frame, in which the quantities will be denoted by an asterisk. In this frame, we have

√
s = E∗1 + E∗2,

|~p∗1| = |~p∗2|,

It is easy to get the energies and momenta in terms of the invariants

E∗1 =
s + m2

1 − m2
2

2
√

s
,

E∗2 =
s + m2

2 − m2
1

2
√

s
,

E∗3 =
s + m2

3 − m2
4

2
√

s
,
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E∗4 =
s + m2

4 − m2
3

2
√

s
,

|~p∗1| = |~p∗2| =

√
λ(s,m2

1,m
2
2)

2
√

s
,

|~p∗3| = |~p∗4| =

√
λ(s,m2

3,m
2
4)

2
√

s
,

where λ(s,m2
i ,m

2
j ) = [s− (mi + m j)2][s− (mi −m j)2]. Inserting the above equations to Eq. (A.3), we have

t(s, cos θ) = m2
1 + m2

3 −
1
2s

(s + m2
1 − m2

2)(s + m2
3 − m2

4)

+
1
2s

√
λ(s,m2

1,m
2
2)λ(s,m2

3,m
2
4) cos θ, (A.4)

and

u(s, cos θ) = m2
1 + m2

2 + m2
3 + m2

4 − s − t

= −(s − m2
2 − m2

4) +
1
2s

(s + m2
1 − m2

2)(s + m2
3 − m2

4)

−
1
2s

√
λ(s,m2

1,m
2
2)λ(s,m2

3,m
2
4) cos θ. (A.5)

A.2 Kinematics of two-body decays

In Chapter 5 and Chapter 6, we deal with two-body decays. Here we will show some general properties
of these processes. For the decay of a particle with mass M into two particles with mass m1 and m2

A(P,M)→ B(p1,m1) + C(p2,m2), (A.6)

where P2 = M2, p2
1 = m2

2 and p2
2 = m2

2. In the rest frame of the decaying particle, P = (M, ~0). The energy
conservation gives M = E1 + E2, where E1 and E2 are the energy of particle B and C, respectively. The
momentum conservation gives ~p1 + ~p2 = 0. Thus, we have

E1 =
M2 + m2

1 − m2
2

2M
, E2 =

M2 + m2
2 − m2

1

2M
, (A.7)

and

|~p1| = |~p2| =

[(
M2 − (m1 + m2)2

) (
M2 − (m1 − m2)2

)]1/2

2M
. (A.8)

The decay width reads

dΓ =
1

32π2

|~p1|

M2 |M|
2 dΩ, (A.9)

where dΩ = dφ1d(cosθ1) is the solid angle of particle B.
The processes in Chapter 5 and Chapter 6 include (axial-)vector and tensor particles. Since we are not

interested in their polarizations, we can average over the spin states of initial particle and sum over the
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A.3 Kinematics of three-body decays

spin states of final particles, then integrate over the solid angle. The sum over polarization for vector is
written as

Πµν(q,m) = −gµν +
qµqν

m2 . (A.10)

For a vector meson, if we extract the polarization vector ε∗µ(q, λ) from the amplitudeM and define
Mµ(q) to be the rest of the amplitude, the decay width will be proportional to∑

λ

∣∣∣ε∗µ(q, λ)Mµ(q)
∣∣∣2 =

∑
λ

ε∗µ(q, λ)Mµ(q)εν(q, λ)Mν∗(q)

= Πµν(q,m)Mµ(q)Mν∗(q). (A.11)

For a tensor meson, if we again extract the polarization tensor ε∗µα(q, λ) from the amplitudeM and
defineMµα(q) to be the rest of the amplitude, we have∑

λ

∣∣∣ε∗µα(q, λ)Mµα(q)
∣∣∣2 =

∑
λ

ε∗µα(q, λ)Mµα(q)ενβ(q, λ)Mνβ∗(q)

=

[
1
2

(
ΠµαΠνβ + ΠµβΠαν

)
−

1
3

ΠµνΠαβ

]
Mµα(q)Mνβ∗(q). (A.12)

For a photon, if we extract the polarization vector ε∗µ(q, λ) from the amplitudeM and defineMµ(q) to
be the rest of the amplitude, we have∑

λ

∣∣∣ε∗µ(q, λ)Mµ(q)
∣∣∣2 =

∑
λ

ε∗µ(q, λ)Mµ(q)εν(q, λ)Mν∗(q)

=
(
−gµν

)
Mµ(q)Mν∗(q). (A.13)

The squared amplitude averaged over the polarizations is independent of the solid angle, we can obtain
decay width

Γ =
1

(2J + 1)8π

∑
λ

∣∣∣ε∗(q, λ) · M(q)
∣∣∣2 |~p1|

M2 , (A.14)

where J denotes the spin of the decaying particle.

A.3 Kinematics of three-body decays

For the three-body scattering

A(P,M)→ B(p1,m1) + C(p2,m2) + D(p3,m3), (A.15)

if we average over the spin states of decaying particle, the standard form for the Dalitz plot is

dΓ =
1

(2π)3

1
32M3 |M|

2dm2
12dm2

23, (A.16)
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where m2
i j = p2

i j = (pi + p j)2, then m2
12 + m2

23 + m2
13 = M2 + m2

1 + m2
2 + m2

3. For a given value of m2
12, m2

23
reaches maximum and minimum values when ~p2 is antiparallel and parallel to ~p3, respectively. That is

(
m2

23

)
max

=
(
E∗2 + E∗3

)2
−

(√
E∗22 − m2

2 −

√
E∗23 − m2

3

)2
, (A.17)(

m2
23

)
mim

=
(
E∗2 + E∗3

)2
−

(√
E∗22 − m2

2 +

√
E∗23 − m2

3

)2
, (A.18)

where E∗2 = (m2
12 − m2

1 + m2
2)/(2m12) and E∗3 = (M2 − m2

12 − m2
3)/(2m12) are the energies of particles C

and D in the m12 rest frame. Dalitz plot is the scatter plot in m2
12 and m2

23. In Chapter 7, we plot the

Dalitz plot of the process Λ0
b → K−J/ψ p without taking into account the amplitude squared |M|2. When

the amplitude squared is taken into account, the allowed region of the plot will be populated with events.
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APPENDIX B

Polarization vectors/tensors in the charmed
meson–kaon scattering amplitudes

In fact, the scattering amplitude in Eq. (3.9) has a factor of the product of polarization vectors (if the
scattered heavy meson is the D∗ or D1) or tensors (for the D2), and the tree-level amplitude should be of
the form

V(s, t, u)~ε∗ (λ1) · ~ε (λ2), (B.1)

where ~ε∗ ·~ε means ε∗µεµ if the scattered heavy meson is the D∗ or D1 and ε∗µνενµ for the D2, and λ1,2 denote
the polarizations of the initial and final heavy mesons.

If we define
Πµν = −gµν +

pµpν

m2 , (B.2)

the sum over polarization for vector and tensor states are given by∑
λ

ε (λ)
µ ε∗ (λ)

ν = Πµν,

∑
λ

ε (λ)
µν ε

∗ (λ)
αβ =

1
2

(
ΠµαΠνβ + ΠµβΠαν

)
−

1
3

ΠµνΠαβ. (B.3)

Because the heavy mesons are highly nonrelativistic when we are interested in the near threshold region,
we have

Π00 = −g00 +
p0 p0

m2 = −1 + 1 = 0,

Πi j = −gi j +
pi p j

m2 = δi j. (B.4)

Thus the temporal component of the polarization vector can be neglected, and the nonrelativistic polariza-
tion summation formulae are given by∑

λ

ε (λ)
i ε∗ (λ)

j = δi j,∑
λ

ε (λ)
i j ε

∗ (λ)
kl =

1
2

(
δikδ jl + δilδ jk

)
−

1
3
δi jδkl, (B.5)
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where εi j is symmetric and traceless. At the one-loop level of the resummed S -wave amplitude, one has∑
λ

V(s)~ε∗ (λ1) · ~ε (λ)G(s)V(s)~ε∗ (λ) · ~ε (λ2) = ~ε (λ1) · ~ε (λ2)V(s)G(s)V(s), (B.6)

As a result of Eq. (B.6), the inner product of the polarization vectors/tensors can be factorized out and
becomes an overall factor of the resummed amplitude

~ε∗ (λ1) · ~ε (λ2) V(s)
1 −G(s)V(s)

. (B.7)

It looks different from the analogous equation in Refs. [70, 268], where the denominator of the resummed
amplitude reads 1 − G(s)V(s)

[
1 + q2

cm/(3MV )
]

for the pseudoscalar meson–vector meson scattering,
where qcm is the size of the momentum of the vector meson in the center-of-mass frame, and MV is the
vector meson mass. In the nonrelativistic limit, the additional factor 1 + q2

cm/(3MV ) is reduced to 1, and
one gets the same equation as Eq. (B.7).
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APPENDIX C

Unitarization

The S -matrix
S f i = 〈 f |S | i〉 (C.1)

represents the amplitude for the scattering from initial state |i〉 to final state | f 〉. A momentum eigenstate
can not contain any information about the positions of the particle in space. Hence they are likely to be
widely separated in space and no interact at all. Therefore the S -matrix can be separated into two parts
by writing

S = 1 + i T. (C.2)

Unitarity of the S -matrix, S S † = S † S = 1 is derived from probability conservation, i.e. the total
probability for any system to end up in some final state must be one. Thus,

T − T † = i T T †. (C.3)

Then

〈 f |T | i〉 −
〈

f
∣∣∣T †∣∣∣ i〉 = i

∑
a

∫  na∏
i=1

d3 pi

2p0
i (2π)3

 〈 f
∣∣∣T †∣∣∣ a〉 〈a |T | i〉 × (2π)4δ4(P f − Pi)

= i
∑

a

∫
dΦa

〈
f
∣∣∣T †∣∣∣ a〉 〈a |T | i〉 , (C.4)

where the phase space of the intermediate state is

dΦa = (2π)4δ4(P f − Pi)
na∏
i=1

d3 pi

2p0
i (2π)3

. (C.5)

We also have
2i Im T f i = i

∑
a

∫
dΦaT ∗a f Tai. (C.6)
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The phase space integral with two-body final states is given by∫
dΦ2 = (2π)4

∫
d3 p

(2π)32p0

d3k
(2π)32k0 δ

4(P − p − k)

=

∫
dΩ

qcm

16π2 √s
θ(s − sth)

= 2ρ(s)θ(s − sth), (C.7)

where sth = (m1 + m2)2 is the threshold and the phase space factor is defined as ρ(s) =
qcm

8π
√

s , with qcm the

three-momentum in the center-of-mass frame of two-body system qcm =
√

(s − sth)(s − (m1 − m2)2)/(2
√

s).
Therefore we have the relation

Im T−1(s) = ρ(s). (C.8)

The infinite sum T (s) of all scattering amplitude given by Lippman-Schwinger equation reads

T (s) =
1

V−1(s) −G(s)

=
1

V−1(s) − Re G(s) − i Im G(s)
, (C.9)

where V(s) is the tree-level S -wave amplitude and G(s) is the two-particle loop. Applying the Cutkosky’s
rule to the loop function, its imaginary part is related to the phase space factor

Im G(s) = −ρ(s). (C.10)

If we combine Eq. (C.8) and Eq. (C.9), it is obvious that V(s) must be real as unitarity requires.

102



APPENDIX D

Loop integrals

D.1 Two-point loop integral

The relativistic scalar two-point loop integral is written as

i
∫

d4q
(2π)4

1
(q2 − m2

1 + iε)[(P − q)2 − m2
2 + iε]

. (D.1)

In the center-of-mass frame (Pµ = {E, ~0}) and using the nonrelativistic approximation, we have

G(E) =
i

4m1m2

∫
d4q

(2π)4

1

(q0 −
~q2

2m1
− m1 + iε)(E − q0 −

~q2

2m2
− m2 + iε)

=
1

4m1m2

∫
d3q

(2π)3

1

E − ~q2

2µ − m1 − m2

, (D.2)

where µ = m1m2/(m1 + m2) is the reduced mass. The nonrelativistic form of the integral is related to the
relativistic one as GNR(E) = 4m1m2 G(E).

D.1.1 Regulation of the loop integral

Obviously, the loop integral is divergent. But we can regularize the loop integral by taking a sharp cutoff

qmax as the upper limit of the integral, then we get

GNR(E, qmax) =

∫ qmax

0

d3q
(2π)3

1

E − ~q2

2µ − m1 − m2

= −
µ

π2

(
qmax − k tan−1

(qmax

k

))
, (D.3)
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where k =
√

2µ(m1 + m2 − E − iε) is the binding momentum. Besides, we can also use a regulator
function fΛ(~q) with the cutoff Λ in the integral. Then the nonrelativistic integral is written as

GNR(E,Λ) =

∫
d3q

(2π)3

fΛ(~q)

E − ~q2

2µ − m1 − m2

, (D.4)

There are various choices for the regulator function, for example the dipole and the Gaussian form factors.
Here we take the Gaussian form factor, fΛ(~q 2) = exp

(
−2~q 2/Λ2

)
, to regularize the loop integral, the

analytic expression for the integral is given by

GNR(E,Λ) = −
µ

π2

√2π
Λ

4
+
π

2
k e2 k2/Λ2

erfi
 √2 k

Λ

 − 1
 , (D.5)

the imaginary error function erfi(z) = (2/
√
π)

∫ z
0 et2dt.

D.1.2 Riemann sheets in the loop integral

One might have noticed that the momentum k is a multivalued function of E and its branch point is at the
threshold, which makes the loop function a multivalued function, too. Therefore, the loop function has
two Riemann sheets corresponding to the two possible signs of the binding momentum.

The first sheet is in the range where 0 ≤ Arg(E − m1 − m2) < 2π, while the second one is in the rang
where −2π ≤ Arg(E − m1 − m2) < 0. If we move from the first Riemann sheet to the second one, we can
simply change k by −k in the loop function.

D.2 Three-point loop integrals in NREFT

In this section, we will show the calculation of three-point loop integrals in the NREFT. The calculation
is based on the appendix of Ref. [170]. The relativistic scalar one-loop integral is written as

i
∫

ddl
(2π)d

1
(l2 − m2

1 + im1Γ1)[(P − l)2 − m2
2 + iε][(l − q)2 − m2

3 + iε]
, (D.6)

in which we assign the meson with a mass m1 a constant width Γ1. Here at most one meson in the triangle
diagram is allowed to have finite width, otherwise there would be not apparent threshold effect. In the
rest frame of the initial particle (Pµ = {M, ~0}) and using the nonrelativistic approximation, we have

I(m1,m2,m3) =

∫
ddl

(2π)d

i/(8m1m2m3)

(l0 − ~l2
2m1
− m1 + iΓ1

2 )(M − l0 − ~l2
2m2
− m2 + iε)[l0 − q0 −

(~l−~q)2

2m3
− m3 + iε]

=
−i

8m1m2m3

∫
ddl

(2π)d

1

(l0 − ~l2
2m1

+ iΓ1
2 )(l0 + b12 +

~l2
2m2
− iε)[l0 − b23 + b12 −

(~l−~q)2

2m3
+ iε]

=
µ12µ23

2m1m2m3

∫
dd−1l

(2π)d−1

1

(~l2 + c12 − iµ12Γ1)(~l2 − 2µ23
m3
~l · ~q + c23 − iε)

,
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where b12 = m1 + m2 − M, b23 = b12 + m3 − M + q0, c12 = 2µ12b12, c23 = 2µ23(b23 +
~q2

2m3
) and

µi j = mim j/(mi + m j) are the reduced mass. In the above equation, we have shifted the integral variable
and performed the contour integration over l0. Next we can use Feynman parameters to combine the two
denominators and then dimensional regularization to integrate the loop momentum,

I(m1,m2,m3) =
µ12µ23

2m1m2m3

∫ 1

0
dx

∫
dd−1l

(2π)d−1

1

[~l2 − ax2 + (c23 − c12 + iµ12Γ1)x + c12 − iµ12Γ1]2

=
µ12µ23

16πm1m2m3

1
√

a

tan−1

 c23 − c12 + iµ12Γ1

2
√

a(c12 − iµ12Γ1)

 + tan−1
(
2a + c12 − iµ12Γ1 − c23

2
√

a(c23 − a)

) ,
(D.7)

where a =
(
µ23
m3

)2
~q 2.
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