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Abstract

In this thesis hp-finite element methods are applied to linear quadratic optimal control prob-
lems subject to partial differential equations.
In particular two kind of model problems are considered: a boundary control problem and
a distributed optimal control problem. Both problems are discretized with variational dis-
cretization due to Hinze, that means only the state and the adjoint are discretized, whereas
the control is discretized implicitly via the projection formula.
Due to the projection formula, which separates the domain in active and inactive parts, a
rough knowledge on the regularity of the solution is given. Since the parts with low regularity
are at the interfaces between active and inactive set and corners of the domain, there h-
refinement has to be applied. In all other parts of the domain, p-refinement can be applied.
In the case of boundary control all interfaces between active and inactive sets are at the
boundary. Suitable hp-refinements – as boundary concentrated refinement or vertex con-
centrated refinement – are already known. Here, a third suitable refinement, a Neumann
boundary concentrated refinement with additional h-refinement in corners is proposed.
In case of distributed optimal control the interfaces between active and inactive sets have
to be determined. Then, a h-refinement on the interface between these sets combined with
either using a-priori information only or in combination with error estimators is suggested.
Both model problems are solved with a semismooth Newton method. For the optimal bound-
ary control problem several numerical experiments in three dimensions are presented. For the
distributed optimal control problem several two-dimensional examples are considered. For
both problems the results are compared with uniform h-refinement. The numerical experi-
ments show in both cases a decrease of the number of degrees of freedom compared to the
L2-error. Furthermore, these examples demonstrate, that the proposed refinement strategies
for the distributed optimal control problem work very well.
The final part of this thesis considers the efficient solution of the discretized optimization
problems. Here the semismooth Newton method, where in each iteration step a linear system
of algebraic equations has to be solved, is used. The algebraic equation system can be
written as symmetric but indefinite problem and has a saddle point structure. Here three
different iterative solvers with preconditioners which belong to Krylov subspace methods are
investigated.
The main results are the h, p and α independent condition number in case of using the
Schöberl-Zulehner PCG in combination with suitable preconditioners. For the MINRES at
least h and p independent iteration numbers are possible. Furthermore a preconditioner
for the GMRES is proposed. At the end, for all three Krylov subspace methods numerical
examples are presented in order to confirm the theoretical results.
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Zusammenfassung

In dieser Arbeit werden hp-Finite Elemente Methoden auf linear-quadratische Optimalsteu-
erungsprobleme mit Nebenbedingungen aus elliptischen partiellen Differentialgleichungen be-
handelt.
Es werden zwei Modellprobleme, ein Randsteuerungsproblem und ein verteilte Steuerungsprob-
lem betrachtet und mit variationeller Diskretisierung nach Hinze diskretisiert. Das heißt, nur
der Zustand und die Adjungierte, nicht aber die Steuerung, werden als Finite Elemente Funk-
tion dargestellt. Die Steuerung wird über die Projektionsformel berechnet und ist daher im
Allgemeinen keine Finite Elemente Funktion.
Die Projektionsformel teilt das Gebiet in aktive und inaktive Mengen. An den Schnittstellen
dieser Mengen ist aufgrund der Projektionsformel die Regularität geringer. Darüberhinaus
ist die Regularität in Ecken des Gebietes geringer. Darauf aufbauend können geeignete hp-
Verfeinerungsstrategien, das heißt h-Verfeinerung in allen Elementen mit geringerer Regular-
ität und p-Verfeinerung sonst, entwickelt werden.
Beim Randsteuerungsproblem wird auf bekannten hp-Verfeinerungsverfahren für diese Prob-
lemklasse aufgebaut und ein modifiziertes Verfeinerungskonzept, einer Randkonzentrierten
Verfeinerung nur am Neumannrand mit zusätzlicher Eckenverfeinerung, vorgeschlagen.
Beim verteilten Steuerungsproblem werden zwei hp-Verfeinerungen vorgeschlagen. In bei-
den Fällen wird die niedrigere Regularität durch die Projektionsformel beachtet, in einer
vorgeschlagenen Verfeinerung wird zusätzlich Regularitätsinformation aus Fehlerschätzern
verwendet.
Beide Probleme werden mit der halbglatten Newtonmethode gelöst. Weiters werden nu-
merische Beispiele präsentiert, um die vorgeschlagenen Verfeinerungen zu testen und mit
uniformer h-Verfeinerung zu vergleichen. Besonders hervorgehoben werden sollen dabei die
Beispiele im Dreidimensionalen, wo für verschiedene Beispiele eine Randkonzentrierte Ver-
feinerung auf Randsteuerungsbeispiele angewandt wird.
Im letzten Teil der Arbeit wird die effiziente Lösung von diskretisierten Optimalsteuerungsprob-
lemen betrachtet. Bei der halbglatten Newtonmethode muss in jedem Iterationsschritt ein
lineares System von algebraischen Gleichungen gelöst werden. Dieses System kann als sym-
metrisches aber indefinites Problem geschrieben werden und hat eine Sattelpunktstruktur. In
dieser Arbeit werden drei verschiedene Krylov-Unterrraumverfahren mit Vorkonditionieren
untersucht. Die Hauptresultate dabei sind die Anwendung des Schöberl-Zulehner PCG, der
auf eine h, p und α unabhängige Konditionszahl führt und die Anwendung von Blockdiag-
onalvorkonditionierern beim MINRES die zumindest h und p unabhängige Iterationszahlen
ermöglicht. Weiters wird ein geeigneter Vorkonditionierer für den GMRES vorgestellt. Ab-
schließend werden für alle drei Krylov-Unterraumverfahren numerische Ergebnisse präsentiert
um die theoretischen Resultate zu belegen.
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List of symbols and abbreviations

General notation
a.e. almost everywhere
d dimension of the space
A∗ hermitian version of matrix A
‖ · ‖2 euclidean norm
dist(x, y) distance between the points x and y
κ condition number
Li(x) i-th Legendre polynomial
L̂i(x) i-th integrated (scaled) Legendre polynomial
L̃i(x) i-th integrated (unscaled) Legendre polynomial
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meas(Z) the measure of the set Z
Z closure of the set Z
Πk space of polynomials with maximal polynomial degree k
V ∗ dual space of space V
A? adjoint operator of A
Ω domain
ΓD Dirichlet boundary
ΓN Neumann boundary
Lp(Ω) the Banach space of p-times Lebesgue-integrable functions
L∞(Ω) the Banach space of essentially bounded functions
W k
p (Ω) Sobolev space of functions whose weak derivatives up to order k are in Lp(Ω)

Hk(Ω) the Hilbert space W k
2 (Ω)

B̃2
β(Ω) countably normed spaces

δij Kronecker delta
Id the identity mapping
# number of

Finite elements
MN mass matrix
KN stiffness matrix
N number of degrees of freedom
K̂ reference element
K a finite element
FK Jacobian matrix
JK determinant of the Jacobian matrix
hK mesh size of element K
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h mesh size
p polynomial degree
u∗, u∗N continuous and discrete solution to an equation system

Optimal control
α regularization parameter
yd desired state
y, u, q state, control and adjoint (state)
A, I active and inactive set
Uad admissible set of Uad := {u ∈ L2(U) : ua ≤ u ≤ ub a.e. in U }
PUad projection onto the feasible set Uad

Saddle point problem
CM preconditioner for mass matrix
CY preconditioner for YN
Pcg preconditioner for Schöberl-Zulehner PCG
Pminres (diagonal) preconditioner for MINRES
Pgmres preconditioner for GMRES

Abbreviations
fem finite element method
CG, PCG conjugate gradient method, preconditioned conjugate gradient method
MINRES minimal residual method
GMRES generalized minimal residual method
ASM additive Schwarz methods
pde partial differential equation
bc-refinement boundary concentrated refinement
neubdry-refinement bc-refinement on Neumann edges and additional h-refinement in corners
nic-refinement neighbour interface concentrated refinement
errest-refinement nic-refinement combined with error estimators
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Introduction

This thesis considers the application of hp-finite element methods to optimal control problems
subject to partial differential equations. Such kind of problems appear in many cases, since the
modeling of technical processes often leads to a description by partial differential equations,
whose parameters have to be optimized. In many cases additional inequality constraints
on certain parameters come into play. This is due to the fact that modulation of technical
limitations, e.g. maximal temperatures, have to be considered. Possible applications are for
example in fluid mechanics, heart medicine, vascular surgery or crystal growing.
The investigation of optimal control problems started in the 1970’s, see e.g. [90, 105, 108, 158]
and gained interest over the last decade due to the increase in computational power, which
enables to calculate the numerical solution to more and more real life problems.

0.1 Model problem

For the convenience of the reader a simple optimal control problem is given in order to explain
the main parts of this thesis.
Considered is a linear-quadratic distributed optimal control problem

min
y,u

J(y, u) = min
y,u

(1
2‖y − yd‖

2
L2(Ω) + α

2 ‖u‖
2
L2(Ω)

)
subject to the elliptic partial differential equation

−∆y(x) + y(x) = u(x) for x ∈ Ω,
y(x) = 0 for x ∈ Γ = ∂Ω,

in the domain Ω and its boundary Γ. Moreover, there hold box constraints ua, ub ∈ L2(Ω) on
the control u, that means

ua ≤ u(x) ≤ ub almost everywhere (a.e.) in Ω.

yd denotes the desired state, y the state and α is called regularization parameter. The last is a
parameter for modeling the costs that means if the costs shall be low, α is set to a very high
value. Then, the term

α

2 ‖u‖
2
L2(Ω)

dominates the functional J(y, u), which ensures that ‖u‖L2(Ω) stays small. For no bounds on
the cost, the regularization parameter is set to zero, which catches an explosion of ‖u‖L2(Ω)
in the minimizing functional J(y, u).
In order to solve such problems usually a so-called adjoint state (short: adjoint) is introduced,
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2 Contents

see e.g. [158]. Therewith, it is possible to rewrite the problem as an equation system and
seek the solution (y∗, u∗, q∗) to the primal equation

−∆y(x) + y(x) = u(x) for x ∈ Ω,
y(x) = 0 for x ∈ Γ = ∂Ω,

(0.1)

the adjoint equation

−∆q(x) + q(x) = y(x)− yd(x) for x ∈ Ω,
q(x) = 0 for x ∈ Γ = ∂Ω,

(0.2)

and the projection formula

u(x) = max
{
ua(x),min

{
− 1
α
q(x), ub(x)

}}
for x ∈ Ω, (0.3)

see e.g. [158] for more information. These infinite dimensional optimization problems cannot
be solved by hand in general but with the power of computers. Thereby two main points have
to be taken into account: choosing a suitable efficient discretization scheme for the partial
differential equations and an appropriate optimization process.

0.2 Discretization - finite element methods
First, the choice of proper discretization schemes is considered.
In order to solve the problem numerically, the infinite dimensional problem is substituted by
a finite dimensional approximation. Therewith the approximation properties of the finite di-
mensional space is crucial. Suitable discretizations schemes are for example finite differences,
finite volumes or finite element methods. In this thesis the last one is considered.
Finite element methods (fem) go back to Courant [52]. The method introduced therein is
based on papers by Ritz [128] and Galerkin [68], see also [69]. Since the finite element method
only uses the variational formulation of the differential equation, it can be applied to general
problems. Possible applications are in different engineering disciplines as for example in elec-
trical, mechanical and civil engineering, see [9, 46, 87, 93, 99, 121, 123, 153].
In finite element methods there are two basic types of refinement: h-refinement and p-
refinement. In h-fem an element is subdivided in order to get a better approximation, in
p-fem the polynomial degree on an element is increased. Moreover, a combination of these
two refinements, the so-called hp-fem, is possible. This is especially useful if parts with high
and low regularity appear, since h-fem is superior for low and p-fem for high regularity. In
particular hp-fem applied to elliptic boundary value problems leads to an exponential conver-
gence rate for a sufficient refinement for a wider class of problems than p-refinement, whereas
h-fem only results in an algebraic convergence rate. For more information see e.g. [36, 43] for
h-refinement, [17, 18] for hp-refinement and e.g. [140] for p- and hp-refinement. For special
hp-refinements as geometric refinement see [19, 140], for boundary concentrated refinement
see [98].

0.3 Optimization
Second, an overview on appropriate optimization processes is given. Suitable methods to
solve the problem are (projected) gradient methods, active set strategies [85], interior point
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methods, (semismooth) Newton methods [92, 160] or rewriting the problems as saddle point
problem ([139, 143]) and apply sufficient solution methods for them.
A further point which matters – and influences especially the mathematical tools to obtain
the discretization error – is at which stage the discretization is done. That means, if First
discretize, then optimize or First optimize, then discretize is taken. In this thesis the focus is
on the first one. However (see [91] for a comparison) here the focus is not on the conventional
approach, where the state y, the adjoint q and the control u are discretized a-priori, but
variational discretization due to Hinze [88] is used. There, only the state y and the adjoint
q are discretized, whereas the control u is discretized implicitly via the projection formula
(0.3). The advantage when using variational discretization is, that the error for the control
can be estimated by the discretization error of the adjoint. Nevertheless, the drawback is,
that it gets necessary to integrate over parts of the element, since the control u is no finite
element function in general.
Further approaches – beside variational discretization – and methods to obtain error estimates
for optimal control problems can be found in [7, 6, 118, 129].

0.3.1 Semismooth Newton method

In this thesis the focus is on semismooth Newton methods (see e.g. [160] for an introduction)
based on the projection formula. In case of distributed optimal control, the semismooth
Newton method leads to the (inner) equation system(

MI + 1
α
MIK

−1
N MΩK

−1
N MI

)
~u = 1

α
MIK

−1
N MΩ

(
~yd −K−1

N ~uA
)
. (0.4)

There, MI denotes the mass matrix on the inactive set I, that is the set where ua ≤ u ≤ ub
holds. The set, where the constraints ua and ub come into play, is called active set and
denoted by A. MΩ denotes the mass matrix and KN the stiffness matrix.
Such kind of problems were already considered for h-fem, see [92] and in case of boundary
control problems, see [32, 165]. Since the inner equation system has to be solved in each
(outer) Newton step, it is crucial to apply the mass matrix and the inverse of the stiffness
matrix fast.
However, in case of applying hp-fem instead of h-fem, the mass matrix is no longer well-
conditioned. A further drawback is, that the results for the stiffness matrix, which can be
inverted in quasi-optimal time for dimension d = 2 by using special refinements and suitable
direct methods, cannot be extended to three dimensions. Moreover, due to the increase in
dimension, the number of degrees of freedom increases. Therewith, an (application of) the
inverse inside the (inner) equation system shall be avoided in three dimensions in order to
get at least quasi-optimal costs for the overall computations.

0.3.2 Saddle point formulation

A possible way to avoid troubles occurring when applying semismooth Newton method to
optimal control problems discretized with hp-fem, is to rewrite it in a saddle point formulation.
In order to simplify the problem, in this thesis the box constraints are set to ua = −∞ and
ub =∞ in the case of using the saddle point formulation.
For the theory of saddle point formulations see e.g. [44] and [27, 170] and references therein
for solving them efficiently. For solving optimal control problems in a saddle point formulation
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see e.g. [103, 138, 139, 143]. There, several preconditioners are applied in order to solve the
saddle point formulation fast. However, these papers only use piecewise linear elements for
discretization.
In case of hp-discretizations, suitable hp-preconditioners have to be chosen. There, it has
to be considered, that not only good preconditioners for the stiffness matrix as in case of h-
refinement, but also for the mass matrix are necessary, since the condition number of the mass
matrix depends on the polynomial degree. Good preconditioners for hp-fem are a combination
of preconditioners for h-fem (see e.g. [40, 41, 42, 74, 167, 169]) and preconditioners for p-
fem (see e.g. [15, 125]). hp-fem preconditioners are for example presented in [29, 35, 63,
100, 101, 136]. A quite important class of preconditioners are based on additive Schwarz
methods, introduced by Schwarz in 1870 [141] for two overlapping subdomains (see also
[45, 79, 80, 127, 147, 148, 149, 155]). This class of preconditioners is chosen in this thesis.
It has to be mentioned, that there are already contributions using active constraints in a
saddle point formulation, see e.g. [83]. However, there only the conventional approach in the
discretization has been used. That means, all three variables, the state y, the adjoint q and
the control u are fully discretized.

0.3.3 hp-fem for optimal control

Even if optimal control problems subject to elliptic partial differential equations are a well
investigated topic, usually (adaptive) h-fem is applied, see [5, 7, 26, 49, 48, 53, 54, 55, 110,
117, 118] and there is few literature on the application of hp-fem to these kind of problems.
hp-fem discretizations in combination with semismooth Newton methods are used in [31, 32,
163, 165] for different kinds of optimal boundary control problems. Except in [163] a special
hp-discretization, the boundary concentrated fem is applied. There, in each refinement step
the mesh is h-refinement in all boundary elements but p-refined at all elements in the interior
of the domain. This refinement strategy presented in [98], has about the same number of
degrees of freedom as the boundary finite elements (see e.g. [151]), that means about h1−d

instead of h−d for the mesh size h on the boundary. Furthermore this refinement captures
especially in the case of boundary control the parts with less-smoothness quite well.
A refinement merely based on the geometry of the domain and the projection formula is the
so-called vertex-concentrated fem introduced in [163], which leads to exponential order of
convergence.
In [164] a distributed optimal control problem is considered. However, the problem there
is solved with the interior point method. Therewith, it has to be stated that there are
very few contributions, where distributed optimal control problems are solved with hp-fem
and to the knowledge of the author there are especially no contributions on the solution of
distributed optimal control problems solved with semismooth Newton methods or as saddle
point formulation in case of an hp-discretization.
The problem in applying the semismooth Newton method is, that in contrast to [165] it is not
clear where the interface between the active and inactive set is, which makes the choice of a
suitable hp-discretization more challenging. Furthermore, it is necessary to calculate MI, i.e.
to evaluate the integral over parts of an element.
When rewriting the problem as saddle point formulation, it is crucial to choose suitable pre-
conditioners to solve the problem fast. That approach is especially advantageous in three
dimensions, since there it is not possible to gain at least quasi-optimal complexity with the
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semismooth Newton method. However, especially in the case of three dimensions the com-
plexity is a quite crucial point due to the increase of degrees of freedom.

0.4 Outline of the thesis
This thesis considers the application of hp-finite element methods to optimal control problems
subject to elliptic boundary value problems with constraints on the control. In most cases
distributed optimal control problems are considered. The structure of this thesis is as follows:

• In chapter 1 some notation and general issues, especially a short summary of well-known
theorems to (preconditioned) Krylov subspace methods, are given.

• In chapter 2 basics to optimal control problems, especially the existence and uniqueness
of a solution are recalled. Furthermore, two model problems, an optimal boundary
control problem and a distributed optimal control problem, are presented.

• Since hp-fem is applied to optimal control problems, in chapter 3, an introduction in
finite element methods, especially the hp-fem, is given. Since developing an hp-finite
element code was one of the main parts of this thesis, some basics for implementing hp
element methods are pointed out. The focus is especially on the used basis functions
and the handling of hanging nodes which appear in adaptive refinement in case of using
square elements. As the application of fem usually leads to a large equation system,
which shall be solved iteratively, suitable hp-preconditioners to decrease the number
of iterations are recalled. Furthermore, numerical results in order to understand the
behaviour of the given preconditioners are presented.

• In chapter 4, the optimal boundary control problems are discretized by variational
discretization. Moreover, the existence and uniqueness of the discrete solution is inves-
tigated. For both model problems, suitable refinement strategies and if known – error
estimates – are given. Both model problems are then solved with the semismooth New-
ton method. For the optimal boundary control problem, results in two dimensions are
given in order to test the proposed refinement strategy. Furthermore, results in three
dimensions with a bc-refinement, also applied in [31] for two-dimensional problems, are
presented. For the distributed optimal control problem, two refinement strategies – one
which only uses a-priori information and a further one which combines a-priori informa-
tion with error estimators – are applied and several numerical examples are presented
in subsection 4.4.4

• Chapter 5 concentrates on solving distributed optimal control problems in a saddle
point formulation. There, for simplicity inactive constraints are assumed. In order
to solve the saddle point formulation efficiently, especially in the case of hp-fem it is
crucial to use suitable preconditioners. Moreover, the chosen Krylov subspace method
plays an important role. Therewith, for different Krylov subspace methods suitable
preconditioners are applied. There, the focus is on a modified preconditioned conjugate
gradient method by Schöberl and Zulehner, see [139]. Also a preconditioned MINRES
method and a preconditioned GMRES method is considered. Numerical results to
confirm theoretical results are investigated in section 5.5 for all three Krylov subspace
methods.



6 Contents

The obtained results show a significant reduction of the degrees of freedom in case of applying
suitable hp-finite element methods instead of uniform h-fem. That is especially important,
since a suitable discretizing strategy which keeps the number of degrees of freedom low, allows
to solve larger problems, as storage and time in computers are a limited resource. Another
highlight of this thesis are the obtained numerical results for an optimal boundary control
problem solved in three dimensions with a hp-finite element discretization.
Further important results are the extension of the preconditioned conjugate gradient method
by [139] to hp-finite elements. The results calculated with that method are especially inde-
pendent of the discretization parameters h, p and the regularization parameter α in case of
applying suitable hp-preconditioners. For bc-refinement an application of these precondition-
ers (in case of no hanging nodes) can even be performed in optimal complexity.
In case of applying the proposed preconditioned MINRES, it is shown that the results are
independent of the discretization parameters h and p. Moreover, in case of bc-refinement
(without hanging nodes) the application of the preconditioner can be performed in optimal
complexity.
Although only two-dimensional results are given for the saddle point formulation, the the-
oretical estimates are not limited to three dimensions and especially not to quadrilateral
elements. Therewith, these results provide an excellent background for further research and
applications.



1 Preliminaries
First, some basic results are given and the corresponding notation is introduced. The starting
point is a clarification of matrix notation issues and a short summary of Krylov subspace
methods. Moreover, the so-called integrated Legendre polynomials, which will be used in
subsection 3.2.1 to define the basis functions, are introduced. Then, some important issues
on functional analysis and Sobolev spaces are recalled.

1.1 Matrices
Here, only some well-known basics on matrices are pointed out to clarify the notation. For
more information see e.g. [72, 141].
Let N,M ∈ N and A, Ã ∈ RN×N be two symmetric matrices. The relation A < Ã (Ã > A)
denotes that Ã − A is positive definite and A ≤ Ã (Ã ≥ A) denotes that Ã − A is positive
semidefinite. If there are constants c1, c2 > 0, such that c1Ã − A > 0 and c2Ã − A < 0, the
matrices Ã and A are called spectrally equivalent.
Let B ∈ RM×N , C ∈ RN×M , D ∈ RM×M be matrices and let A and the Schur complement
S = D − CA−1B be nonsingular. Then, the matrix A given by

A =
(
A B
C D

)
is invertible and its inverse is (see e.g. [72, 141])

A−1 =
(
A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

)
. (1.1)

Let ~v, ~w ∈ RN be two vectors and let vi, wi be the i-th component of ~v, ~w, respectively. The
Euclidean inner product of ~v, ~w is denoted by

〈~v, ~w〉 =
N∑
i=1

viwi

and its induced norm is

‖~v‖2 =
√
〈~v,~v〉.

The scalar product induced by a symmetric positive definite matrix A is written as

〈A·, ·〉 = 〈·, ·〉A
and its corresponding norm is denoted by ‖ · ‖A =

√
〈A·, ·〉A. The Rayleigh coefficient for a

quadratic real and symmetric matrix E is

λmin(E)~x>~x ≤ ~x>E~x ≤ λmax(E)~x>~x, (1.2)

where λmin and λmax denote the minimal and maximal eigenvalue of E, see e.g. [82]. Moreover,
the definition for the Kronecker product is given.

7
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Definition 1.1. Let A ∈ RNA×NC , B ∈ RNB×ND . The product

A⊗B :=

 a11B · · · a1NCB
... . . . ...

aNA1B · · · aNANCB

 ∈ RNANB×NCND

is called Kronecker product.

1.2 Krylov subspace methods
Krylov subspace methods are iterative methods based on a general projection process and are
a famous tool to solve (large) equation systems, i.e. to solve

A~z = ~g (1.3)

for ~z ∈ RN , where A ∈ RN×N and ~g ∈ RN are given. Let ~z∗ denote the exact solution to
(1.3). For an introduction into Krylov subspace methods, see e.g. [72, 73, 95, 112, 131]. In
here, three methods which yield (in infinite arithmetic) the exact solution after N steps, are
considered.
The first one, is the conjugate gradient method (CG-method) developed in 1952 by Hestens
and Stiefel, see [84]. The CG method is applicable to equation systems with symmetric and
positive definite system matrix A with respect to the scalar product used in CG. Usually, the
standard scalar product 〈·, ·〉 is taken.
The second one, is the MINRES, developed in 1975 by Paige and Saunders, see [124]. It can
be applied to symmetric, but indefinite matrices A and is – as the CG – based on the Lanczos
method, see [104], a method to construct a basis for the Krylov subspace with a three-term
recurrence.
As last method, the GMRES, developed by Saad and Schultz [132] in 1986, is recalled. Al-
though the GMRES only needs a regular system matrix, it is usually not the first choice,
since it needs a full term recurrence, the Arnoldi method (see e.g. [95]) for constructing the
Krylov subspace basis. For a comparison of the cost of the three considered Krylov subspace
methods, see table 1.1.
Usually a preconditioned system is solved, since a suitable preconditioner can decrease the
number of iterations substantially, which is especially important when solving large equation
systems. Due to the assumptions on the system matrix for different methods, in the case of

method work storage
CG O(k(N)) O(N)

MINRES O(kN) O(N)
GMRES k2N

2 O(kN) O(N)

Table 1.1: Costs for different subspace methods for the k-th iterate ~zk (see [82, 95]).

the CG or the MINRES a symmetric and positive definite preconditioner has to be chosen.
Then, the symmetric and positive definite preconditioner, denoted by P, can be decomposed
in its Cholesky decomposition P = CC> and instead of the preconditioned system

P−1A~z = P−1~g. (1.4)
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the equivalent system

C−1AC−>(C>~z) = C−1~g, (1.5)

is considered. For more information on different choices of preconditioners see e.g. [28, 71,
72, 73, 130, 131]. General known results on convergence, a pseudo-code of the algorithm and
termination conditions are given in the corresponding subsections for each method.

1.2.1 PCG

The preconditioned conjugate gradient method is summarized in algorithm 1. Its convergence

Algorithm 1: preconditioned conjugate gradient method (PCG), see e.g. [95]
input : A,P−1,~g, ε
output: solution ~uk
choose a suitable start vector ~u0
~r0 = A~u0 − ~g
~w0 = P−1~r0
~q0 = ~w0
ρ0 = 〈~w0, ~r0〉
for k = 0, . . . , N do

αk = − 〈~wk,~rk〉〈A~qk,~qk〉
~uk+1 = ~uk + αk~qk
~rk+1 = ~rk − αkA~qk
~wk+1 = P−1~rk+1
βk = 〈~wk+1,~rk+1〉

〈~wk,~rk〉
~qk+1 = ~wk+1 + βk~qk
ρk = 〈~wk, ~rk〉
if ρk < ε2ρ0 then

stop

can be estimated by using the condition number

κ(A) := λmax(A)
λmin(A)

with the following theorem:

Theorem 1.2. (see e.g. [95, 151]) Let A ∈ RN×N be a symmetric and positive definite
matrix, P ∈ RN×N a suitable symmetric and positive definite preconditioner for A and let
~z∗ denote the exact solution of (1.3). Then, the preconditioned conjugate gradient method
converges for an arbitrary start value ~z0 to the exact solution ~z∗ and it holds

‖~zk − ~z∗‖A ≤
2ρk

1 + ρ2k ‖~z0 − ~z∗‖A with ρ =
√
κ(P−1A)− 1√
κ(P−1A) + 1

.

A special variant of the PCG (see [139]) with different scalar product is considered in chapter
5.
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1.2.2 MINRES

As in the PCG, for the MINRES (see algorithm 2) a full convergence theory is known.

Algorithm 2: preconditioned MINRES, see e.g. [73, 95]
input : A,P−1

minres, ~x0, ~g, ε
output: ~x
~vold = 0, ~v = ~g −A~x, ~z = P−1

minres~v, ~wold = 0, ~w = 0
βold = 1, β =

√
〈v, z〉, cold = 1, c = 1, sold = 0, s = 0, η = β, η0 = η

for k = 1, 2, . . . do
~vnormed = 1

β~z
~q = A~vnormed
α = 〈~q,~vnormed〉
~vnew = ~q − β

βold
~vold − α

β~v
~vold = ~v,~v = ~vnew
~z = P−1

minres~v
βnew =

√
〈~v, ~z〉

ρ̃(1) = cα− scoldβ
ρ(1) =

√
(ρ̃(1))2 + β2

new

ρ(2) = sα+ ccoldβ
ρ(3) = soldβ

cnew = ρ̃(1)

ρ(1) , cold = c, c = cnew

snew = βnew
ρ(1) , sold = s, s = snew

wnew = 1
ρ(1) (~vnormed − ρ(3) ~wold − ρ(2) ~w)

~x = ~x+ cnewηw
new

~wold = ~w, ~w = ~wnew, βold = β, β = βnew
η = −snewη
if
∣∣∣ ηη0

∣∣∣ ≤ ε then
stop

The residuum for the preconditioned MINRES can be estimated by

‖~rk‖P−1

‖~r0‖P−1
≤ min

pk∈Πk,pk(0)=1
max
λ
|pk(λ)|, (1.6)

where λ is an eigenvalue of P−1A (see e.g. [64]) and Πk denotes the space of polynomials
with maximal polynomial degree k. If the eigenvalues of P−1A are known and its negative
eigenvalues lie in [−a,−b] and its positive eigenvalues in [c, d] for a, b, c, d > 0, then the
following theorem holds:

Theorem 1.3. (see e.g. [64]) After 2k steps of the minimum residual method, the iteration
residual ~r2k = ~g − ~A~z0 satisfies the bound

‖~r2k‖P−1 ≤
(

2
√
ad−

√
bc√

ad+
√
bc

)k
‖~r0‖P−1 .
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Remark 1.4. It has to be mentioned, that “stair-casing”, i.e.
‖~r2k+1‖P−1 = ‖~r2k‖P−1

cannot be avoided in case of theorem 1.3.

1.2.3 GMRES

Although for the application of the GMRES the matrix needs only to be regular (see algorithm
3), compared with the PCG and the MINRES, there are several disadvantages (see also table
1.1).

Algorithm 3: preconditioned GMRES with nonsingular preconditioner P−1
gmres, see e.g.

[95]
input : A,P−1

gmres, ~z0, ~g, ε
output: ~zk
~q0 = P−1

gmres(~g −A~z0)
β = ‖~q0‖, ~v1 = ~q0/β, t1 = β
for k = 1, 2, . . . do

~wk = P−1
gmresA~vk

for i = 1, . . . , k do
hik = ~v>i ~wk
~wk = ~wk − hik~vi

hk+1,k = ‖~wk‖
~vk+1 = ~wk/hk+1,k
for i = 1, . . . , k − 1 do(

hik
hi+1,k

)
:=
(
ci si
−si ci

)(
hik
hi+1,k

)
τ = |hkk|+ |hk+1,k|
ν = τ ·

√
(hkk/τ)2 + (hk+1,k/τ)2

ck = hkk/ν, sk = hk+1,k/ν
hkk = ν, hk+1,k = 0, tk+1 = −sktk, tk = cktk
if |zk+1|/β ≤ ε then

stop
~yk = tk/hkk
for i = k − 1, . . . , 1 do

yi = (ti −
∑k
j=i+1 hijyj)/hii

~zk = ~z0 +
∑k
i=1 yi~vi

The most important one is, that there is no convergence analysis based solely on the matrix
A if it is non normal, that is A∗A 6= AA∗.
Theorem 1.5. (see e.g. [131, Proposition 6.32]) Assume that A is diagonalizable and let
A = XDX−1 where D = (λ1, λ2, . . . , λN ) is the diagonal matrix of eigenvalues. Then, the
relative residual achieved in the k-th step can be estimated by

‖~rk‖2
‖~r0‖2

≤ min
pk∈Πk,pk(0)=1

max
i=1,...,k

|pk(λi)|‖X‖2‖X−1‖2.
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Remark 1.6. If A is a non normal matrix, the norms ‖X‖2‖X−1‖2 can get arbitrarily large
(see e.g. [27] and references therein for further information).

Remark 1.7. In the case of a normal matrix A it holds ‖X‖2‖X−1‖2 = 1.

For results on estimating the min max problem if A is a non symmetric and indefinite matrix
see [65, 106, 107, 115, 131, 154]. If the matrix A is normal, symmetric and positive definite,
a solution to the min max problem is known, see e.g. [112].

Remark 1.8. To decrease the costs in storage – which can be a difficult problem when using
large equation systems – there are modifications of the GMRES which need less storage, for
example by restarting the method. However, then the property of finding the exact solution in
N steps gets lost, see e.g. [73, 95, 131, 144].

In GMRES both choices, applying the preconditioner to the right or the left side, are possible.
Here, preconditioning on the left side is used, i.e.

P−1
gmresA~z = P−1

gmres~g. (1.7)

For differences in left and right preconditioning see e.g. [95, 131].

1.3 Perturbations in equation systems
In many cases the matrix A and the right-hand side ~g are perturbed by an error. Then, in
fact the equations system

A~z = ~g (1.8)

instead of (1.3) is solved. Therefore it is important to handle the perturbations in order to
make sure that perturbed solution ~z∗ is close to the exact solution ~z∗.
The following theorem gives an estimate on that topic.

Theorem 1.9. ([134]) Let there be a vector norm and a corresponding multiplicative matrix
norm, which fulfill the following:

(a) If A ∈ RN×N is invertible and the perturbation ∆A ∈ RN×N fulfills

‖∆A‖ < 1
‖A−1‖

.

Then, also A = A+ ∆A is invertible.

(b) Let additionally ~g ∈ RN , ~g 6= 0, ∆g ∈ RN and ~g = ~g + ∆~g hold and ~z∗ ∈ RN is the
solution to (1.3). Let ~z∗ be the solution to the perturbed equation system (1.8). Then it
holds

εx ≤
κ(A)

1− κ(A)εA
(εA + εg)

with εA = ‖∆A‖
‖A‖ and εg = ‖∆~g‖

‖~g‖ .
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1.4 Integrated Legendre polynomials
The integrated Legendre polynomials are defined via the Legendre polynomials, see e.g. [34,
101, 156] and references therein. The i-th Legendre polynomial is given by

Li(x) = 1
2ii!

di

dxi (x
2 − 1)i for i ≥ 2.

The first two integrated Legendre polynomials are set to

L̂0(x) = 1− x
2 and L̂1(x) = 1 + x

2 .

With

γi :=

√
(2i− 3)(2i− 1)(2i+ 1)

4

the i-th integrated Legendre polynomial is defined by

L̂i(x) = γi

∫ x

−1
Li−1(s) ds for i ≥ 2.

Remark 1.10. The scaling factor γi ensures, that the norm of the integrated Legendre poly-
nomials L̂i is one.

Remark 1.11. In subsection 3.2.5 the unscaled integrated Legendre polynomials, denoted by
L̃i(x) and given by

L̃0(x) = L̂0(x),
L̃1(x) = L̂1(x),

L̃i(x) = 1
γi
L̂i(x),

are applied. Since most of the time scaled integrated Legendre polynomials are used, the
notation of integrated Legendre polynomials refers always to the scaled ones.

The following lemma recaps some properties of the Legendre and integrated Legendre poly-
nomials.

Lemma 1.12. (see e.g. [156]) For the Legendre polynomials hold the recurrence relation

(i+ 1)Li+1(x) = (2i+ 1)xLi(x)− iLi−1(x) for i ≥ 1, (1.9)

and the orthogonality relation∫ 1

−1
Li(x)Lj(x) dx = δij

2
2i+ 1 for i ≥ 0.

Furthermore, it is

(2i+ 1)Li(x) = d
dx (Li+1(x)− Li−1(x)) .
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Between the Legendre polynomials and the integrated Legendre polynomials hold the relations

d
dxL̂i(x) = γiLi−1(x) for i ≥ 2, (1.10)

L̂i(x) =
√

(2i+ 1)(2i− 3)
4(2i− 1) (Li(x)− Li−2(x)) for i ≥ 2. (1.11)

Moreover, the integrated Legendre polynomials fulfill

L̂i(1) = 0 for i ≥ 2, (1.12)
L̂i(−1) = 0 for i ≥ 2. (1.13)

Especially the relations (1.9), (1.10) and (1.11) are useful for a fast point evaluation of the
integrated Legendre polynomials.

1.5 Functional analysis
This section recalls some well-known parts of functional analysis. For more information on
this topic, see e.g. [4, 151, 158] and the references therein.
A space V is called Banach space with the norm ‖ · ‖V if every Cauchy sequence converges in
V with respect to the norm ‖ · ‖V . Here, mainly Hilbert spaces, i.e. a Banach space whose
norm is induced by a scalar product ‖ · ‖V = 〈·, ·〉V , are used.
Let V,W denote Banach spaces. An operator A : V →W is then called bounded if

∃ cA ≥ 0 : ‖Av‖W ≤ cA‖v‖V .

Definition 1.13. Let A : V →W is a linear and bounded operator. Then

‖A‖ := sup
‖v‖V =1

‖Av‖W

is finite and called norm of A. Possible notations are ‖A‖ or ‖A‖L(V,W ) if it is necessary to
clarify the spaces V,W .

The set of all linear and bounded operators is denoted by L(V,W ) and is a Banach space if
W is complete. The dual space of V is defined by

V ∗ = L(V,R).

Due to the completeness of R, the dual space V ∗ is a Banach space. Moreover, it is reflexive,
if and only if it holds (V ∗)∗ = V .
An important theorem which shall also be given is:

Theorem 1.14 (Riesz mapping theorem, see e.g. [158]). Let {V, 〈·, ·〉V } be a Hilbert space.
Then, for an arbitrary bounded and continuous functional F ∈ V ∗, the element f ∈ V with
‖F‖V ∗ = ‖f‖V , which can be denotes as

F (v) = 〈f, v〉V

is uniquely defined.
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Let V,W be Hilbert spaces and the operator A : V → W be linear and bounded. Its adjoint
operator A∗ is given by

A? : W ∗ → V ∗

and it holds

〈Av,w〉W = 〈v,A?w〉V .

At the end of this section, a quite important theorem to investigate the unique solvability of
boundary value problems is given.

Theorem 1.15. (Lemma of Lax-Milgram, see e.g. [4]) Let V denote a Hilbert space. Fur-
thermore, let the linear operator A : V → V ∗ be bounded and V -elliptic, i.e.

∃ cA > 0 : 〈Av, v〉 ≥ cA‖v‖2V for all v ∈ V.

Then, the operator equation

Av = f,

possesses for each f ∈ V ∗ a unique solution, and it holds

‖v‖V ≤
1
cA
‖f‖V ∗ .

1.6 Lp spaces

In this section some basic definitions of the well-known Lp spaces are recalled. Further
information can e.g. be found in [1, 151, 158].
First, the notation domain is clarified. A domain Ω, is an open, bounded and connected
subset of Rd, where d denotes the dimension of the space. Furthermore, Ω is assumed to be
a Lipschitz domain. Its boundary is denoted by Γ = ∂Ω.
Next, the Banach spaces Lp(Ω) are introduced (see e.g. [1]). The space Lp(Ω) for p ∈ N with
1 ≤ p <∞ denotes the space of measurable functions with finite norm

‖v‖Lp(Ω) :=
(∫

Ω
|v(x)|p dx

)1/p
.

In fact Lp(Ω) denotes the space of equivalence classes of all defined measurable functions in Ω
whose p power is integrable. For p =∞, it holds that L∞(Ω) is the space of all (equivalence
classes of) almost everywhere uniformly bounded and measurable functions v associated with
the norm

‖v‖L∞(Ω) = ess sup
x∈Ω
|v(x)| := inf

|L|=0

(
sup
x∈Ω\L

|v(x)|
)
,

where ess sup is the essential or real maximum or supremum of a function.
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Remark 1.16. The space L2(Ω) equipped with the scalar product in L2(Ω)

〈v, w〉L2(Ω) :=
∫

Ω
v(x)w(x) dx

and the induced norm

〈v, v〉L2(Ω) = ‖v‖2L2(Ω) ∀ v ∈ L2(Ω),

is a Hilbert space.

For 1 ≤ p <∞ and q with

1
p

+ 1
q

= 1,

the space Lq(Ω) is the dual space to Lp(Ω) with the norm

‖v‖Lq(Ω) := sup
06=u∈Lp(Ω)

|〈w, v〉Ω|
‖w‖Lp(Ω)

for 1 ≤ p <∞

and the duality pairing

〈w, v〉Ω =
∫

Ω
w(x)v(x) dx.

Furthermore, the space Lp(Γ) for the boundary Γ = ∂Ω is given. It is the space of all functions
in R with finite norm

‖v‖Lp(Γ) :=
(∫

Γ
|v(x)|p dsx

)1/p
.

The corresponding scalar product for L2(Γ) is denoted by 〈·, ·〉L2(Γ). The set

supp v := {x ∈ Ω : v(x) 6= 0}

is called support of v. It is the smallest closed set, on which outside v vanish identically.

1.7 Sobolev spaces

Before introducing Sobolev spaces, the definition of the partial derivation of a function
v(x1, . . . , xd) for d ∈ N is given.

Definition 1.17. A vector % = (%1, %2, . . . , %d), %i ∈ N0 with the absolute value |%| = %1 +%2 +
. . .+ %d is called multiindex. For a suitably differentiable real function v(x), the weak partial
derivative of order % is denoted by

D%v(x) :=
(
∂

∂x1

)%1 ( ∂

∂x2

)%2

· · ·
(
∂

∂xd

)%d
v(x1, x2, . . . , xd).

Here, some basics of Sobolev spaces are recalled, for details see e.g. [1].
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Definition 1.18. Let 1 ≤ p < ∞, p, k ∈ N. The space W k
p (Ω) is defined as linear space of

all v ∈ Lp(Ω), whose weak derivate D%v with |%| ≤ k exists and is contained in Lp(Ω) with
the finite norm

‖v‖Wk
p (Ω) =

∑
|%|≤k

∫
Ω
|D%v(x)|p dx

1/p

.

The definition of W k
∞(Ω) for p =∞ is introduced analogously with the norm

‖v‖Wk
∞(Ω) = max

|%|≤k
‖D%v‖L∞(Ω).

The spaces W k
p (Ω) are Banach spaces and are called Sobolev spaces. A special case is k = 2,

where
Hk(Ω) := W k

2 (Ω).
The space H1(Ω) is very important in here, therefore its norm definition is recalled

‖v‖H1(Ω) =
(∫

Ω
(v2 + |∇v|2) dx

)
.

By introducing the scalar product

〈w, v〉H1(Ω) =
∫

Ω
wv dx+

∫
Ω
∇w · ∇v dx,

the spaceH1(Ω) becomes a Hilbert space. Furthermore, a specification of this space is pointed
out, assumed that Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅ for the Dirichlet boundary ΓD and the
Neumann boundary ΓN . Then, the space H1

ΓD(Ω) is defined by

H1
ΓD(Ω) := {v ∈ H1(Ω) | v = 0 on ΓD}.

The Sobolev-Slobodeckij space W s
p (Ω) with real values s = k + ε > 0, for k ∈ N, ε ∈ (0, 1) is

the linear space v ∈ Lp(Ω) of functions with finite norm

‖v‖pW s
p (Ω) := ‖v‖p

Wk
p (Ω) +

∫
Ω

∫
Ω

∑
|%|=k

|D%v(x)−D%v(y)|p

|x− y|2+εp dx dy.

Furthermore, the space Hs(Γ), s ∈ (0, 1) with the norm

‖v‖Hs(Γ) :=
(
‖v‖2L2(Γ) +

∫
Γ

∫
Γ

(v(x)− v(y)2

|x− y|d−1+2s dsx dsy

)1/2

is given.
Finally, the countably normed spaces B̃2

β, see [98], akin to [17, 18], are recalled. For β ∈ [0, 1)
they are based on the space H2

β, which is the completion of C∞(Ω) with finite norm

‖v‖2H2
β

(Ω) := ‖v‖2H1(Ω) + ‖rβ∇2v‖2L2(Ω)

where r(x) := dist(x, ∂Ω) denotes the distance to the boundary. For cB, γ > 0, β ∈ [0, 1) the
space B̃2

β is then defined by

B̃2
β(cB, γ) = {v ∈ H2

β(Ω) | ‖v‖H2
β

(Ω) ≤ cB, ‖rβ+p∇p+2v‖L2(Ω) ≤ cBγpp! ∀ p ∈ N}.

Countably normed spaces allow the controlling of derivatives near the boundary of the domain.
According to [18, Lemma 2.4], functions in these spaces are analytic away from the zeros of
the weight function.





2 Optimal control problems for pdes

In this chapter linear quadratic optimal control problems subject to an elliptic partial differ-
ential equation are considered, i.e. problems of the type

min
y,u

J(y, u) := min
y,u

(1
2‖y − yd‖

2
L2(Ω) + α

2 ‖u‖
2
L2(U)

)
subject to

Ay = Bu+ f on Ω
u ∈ Uad := {u ∈ L2(U) |ua ≤ u ≤ ub a.e. in U}

(2.1)

where the set U ⊂ Ω ⊂ Rd with d = 1, 2, 3. Uad denotes the set of admissible controls and is a
non empty, convex and closed subset of L2(U). Each u ∈ Uad is called an admissible control.

Ay = Bu+ f (2.2)

is a constraint for the state y. If the assumptions of lemma 1.15 are fulfilled, for each admissible
control u ∈ Uad, there exists a unique weak solution y to (2.2). The state y can therefore be
written as y = y(u). yd denotes the desired state, α the regularization parameter. In this
thesis two cases, Neumann boundary control, i.e. U = ΓN and distributed control U = Ω are
considered.
At this point only the most important theoretical results for these kind of optimal control
problems are recalled. For further information and an overall introduction see [90, 158] and
the references therein.
First, some general issues and notation are clarified, second the existence and uniqueness
of solutions is investigated. Therewith, usually a so-called adjoint state, denoted by q is
introduced. It can be calculated by using the Lagrange formulation (see e.g. [158]), and
enables the rewriting of the problem as an inequality system. By using the adjoint, the
control u can be described, whose regularity is considered afterwards.
First, general assumptions are stated.

Assumption 2.1. The domain Ω is assumed to be open and bounded with polygonal boundary
∂Ω = Γ. Let Y,Z denote Banach spaces over Ω. The differential operator A ∈ L(Y, Z) is
assumed to be elliptic and bounded and the operator B ∈ L(L2(U), Z). For the desired state
yd holds yd ∈ L2(Ω), the regularization parameter fulfills α > 0 and f ∈ L2(Ω). Furthermore,
it has to hold that ua, ub ∈ L2(U) and ua ≤ ub almost everywhere.

Second, a general statement to classify an optimal control, is given.

Definition 2.2. A control u∗ ∈ Uad and its corresponding state y∗ = y(u∗) is called optimal
control and state respectively, if it holds

J(y∗, u∗) ≤ J(y(u), u) ∀u ∈ Uad.

19
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Next, conditions for the existence of a unique solution are given.

Theorem 2.3. (see e.g. [158]) Under assumption 2.1, there exists a solution to the optimal
control problem (2.1). If A−1B is injective, there exists a unique solution.

By introducing the adjoint q, the unique solution can be yielded under the following condi-
tions:

Theorem 2.4. (see e.g. [158]) Let assumption 2.1 holds. Then, the optimal control problem
(2.1) has a unique solution (y∗, u∗, q∗) if and only if

Ay∗ = Bu∗ + f, (2.3)
A?q∗ = y∗ − yd, (2.4)

〈B?q + αu∗, u− u∗〉U ≥ 0 for all u ∈ Uad. (2.5)

Next, the variational inequality (2.5) is reformulated.

Theorem 2.5. (see e.g. [90, 158]) Let PUad : L2(U)→ Uad be the pointwise projection

u(x) = max{ua(x),min{u(x), ub(x)}} for x ∈ U

with the obvious modifications if less than two bounds are present. If α > 0, then the varia-
tional inequality (2.5) is equivalent to the projection formula

u∗ = PUad

(
− 1
α
B?q∗

)
. (2.6)

With the help of the projection formula, the domain Ω is separated in different sets.

Definition 2.6. The set

A := {x ∈ U : u∗(x) = ua(x) ∨ u∗(x) = ub(x)}

is called active set. The complement AC = U\A is called inactive set and denoted by I.
Accordingly, the points of A and I are called active or inactive points, respectively.

Remark 2.7. The active set A is the union of the two sets

Aa := {x ∈ U : u∗(x) = ua(x)},
Ab := {x ∈ U : u∗(x) = ub(x)}.

Furthermore, a statement on the regularity induced by the projection is given.

Theorem 2.8. (see e.g. [6, 102]) Assume that v ∈ W ε
p(U) along with ua, ub ∈ W ε

p(U) and
ε ∈ [0, 1]. Then it holds u := PUad(v) ∈W ε

p(U) for U = Ω,ΓN .

The theorem above gives a clue of how the regularity of the control is influenced by the
regularity of the adjoint.
Next, the two considered optimal control problems are given. First, a model problem for
Neumann boundary control, i.e. U = ΓN is considered. In this case it holds

Bu(·) =
∫

ΓN
uγ0(·) dx : L2(∂Ω)→

(
H1

ΓD(Ω)
)∗

where γ0 denotes the trace operator.
Second, a distributed optimal control problem, i.e. U = Ω is given. There, the operator B is

B = Id : L2(Ω)→
(
H1

ΓD(Ω)
)∗
.
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2.1 Boundary control problem

In the case of Neumann boundary control the following model problem is considered:

min
y,u

J(y, u) = min
y,u

(1
2

∫
Ω

(y(x)− yd(x))2 dx+ α

2

∫
ΓN

u(x)2dx

)
subject to the elliptic boundary value problem

−∇ · (D(x)∇y(x)) + c(x)y(x) = f(x) in Ω,
y(x) = 0 on ΓD,

D(x)∂y
∂n

(x) = u(x) on ΓN ,
(2.7)

with box constraints on the control

ua(x) ≤ u(x) ≤ ub(x) a.e. in ΓN 6= ∅.

The set of admissible controls u is denoted by

Uad := {u ∈ L2(ΓN ) : ua ≤ u ≤ ub a.e. on ΓN }.

To ensure unique solvability, the following assumptions are made (see [31]):

Assumption 2.9. Let D(x) be symmetric and positive definite in Ω, i.e. there exists a D0 > 0
such that for all x ∈ Ω it holds ξ>D(x)ξ > D0|ξ|2 for arbitrary ξ ∈ R2. Let c(x) ≥ 0 for all
x ∈ Ω̄ and c(x) ≥ c0 > 0 if meas(ΓD) = 0. In addition, it holds α > 0, ua, ub ∈ H1/2(ΓN )
with ua ≤ ub a.e. on ΓN , and f, yd ∈ L2(Ω).

To yield the desired regularity, additional assumptions on D and c and assumptions on the
primal equation are made.

Assumption 2.10. Let the functions D, c be analytic in Ω̄ and satisfy

‖∇pD‖L∞(Ω) + ‖∇pc‖L∞(Ω) ≤ cdγ
p
dp! ∀ p ∈ N0

for cd, γd > 0.
There exists a constant c1 > 0 such that for f ∈ L2(Ω) and u ∈ L2(ΓN ) the solution to (2.7)
is in H3/2(Ω) and satisfies

‖y‖H3/2(Ω) ≤ c1
(
‖f‖L2(Ω) + ‖u‖L2(ΓN )

)
.

Additionally, there is a δ ∈ [1/2, 1] such that for f ∈ L2(Ω) and u ∈ H1/2(ΓN ) the solution y
to (2.7) is in H1+δ(Ω) and satisfies

‖y‖H1+δ(Ω) ≤ c1
(
‖f‖L2(Ω) + ‖u‖H1/2(ΓN )

)
.

Under the assumption 2.9 and assumption 2.10, for a right hand side f ∈ L2(Ω), and a
desired state yd ∈ L2(Ω), the application of theorem 2.4 gives a unique solution (y∗, u∗, q∗) ∈



22 2 Optimal control problems for pdes

H1+δ(Ω) × H1/2(ΓN ) × H1+δ(Ω) (see [31]) for δ ∈ (0, 1]. Then, by introducing the bilinear
form a(·, ·) and a functional 〈·, ·〉Ω, i.e.

a(y, v) =
∫

Ω
D(x)∇y(x) · ∇v(x) dx+

∫
Ω
c(x)y(x)v(x) dx, (2.8)

〈f, v〉Ω =
∫

Ω
f(x)v(x) dx (2.9)

and by using the equivalence of the variational inequality of (2.5) to

u∗(x) = PUad

(
− 1
α
q∗|ΓN

(x)
)

a.e. on ΓN , (2.10)

where PUad denotes the L2-projection onto the convex set Uad, it follows:

Theorem 2.11. (see e.g. [158]) Let assumption 2.9 and assumption 2.10 hold. There exists
a unique solution (y∗, u∗, q∗) ∈ H1+δ(Ω)×H1/2(ΓN )×H1+δ(Ω) for δ ∈ (0, 1] to

a(y∗, v) = 〈f, v〉Ω + 〈u, v〉ΓN ∀ v ∈ H1
ΓD(Ω),

a(v, q∗) = 〈y − yd, v〉Ω ∀ v ∈ H1
ΓD(Ω),

u∗ = PUad

(
− 1
α
q∗|ΓN (x)

)
.

2.2 Distributed control problem

The distributed optimal control model problem, considered in this thesis, is given by

min
y,u

J(y, u) = min
y,u

(1
2

∫
Ω

(y(x)− yd(x))2 dx+ α

2

∫
Ω
u(x)2dx

)
(2.11)

subject to the elliptic boundary value problem

−∇ · (D(x)∇y(x)) + c(x)y(x) = u(x) + f(x) in Ω,
y(x) = 0 on ΓD, (2.12)

D(x)∂y
∂n

(x) = 0 on ΓN .

Additionally, the inequality constraints

ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω

hold. To ensure unique solvability and smoothness of the boundary value problem (2.12) the
following assumptions are made.

Assumption 2.12. For the coefficients of the differential equation, there holds D(x) ≥ D0 >
0, c(x) > 0 and if meas(ΓD) = 0 it holds c(x) ≥ c0 > 0. Furthermore, it is assumed that
α > 0, yd, f ∈ L2(Ω), ua, ub ∈ L2(Ω) with ua ≤ ub a.e. in Ω.

Analogue to the assumptions in section 2.1, the following assumptions on the regularity are
made.
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Assumption 2.13. It is assumed that the coefficients of the differential equation D, c : Ω→ R
are bounded and analytic.

Again, by using the assumption 2.12, it can be shown, that there exists a unique solution
(y∗, u∗, q∗). If the domain and the coefficients D, c are smooth enough, the regularity u∗ ∈
L2(Ω), y∗, q∗ ∈ H2(Ω) is possible. For more information on regularity of boundary value
problems see [75].
Next, a theorem on the unique solvability is given.

Theorem 2.14. It is assumed that assumption 2.12 holds. There exists a unique solution
(y∗, u∗, q∗) ∈ H1+δ(Ω)× L2(Ω)×H1+δ(Ω) to

a(y∗, v) = 〈u, v〉Ω + 〈f, v〉Ω ∀ v ∈ H1
ΓD(Ω),

a(v, q∗) = 〈y − yd, v〉Ω ∀ v ∈ H1
ΓD(Ω),

u∗ = PUad

(
− 1
α
q∗|Ω(x)

)
.

Here, the regularity shall not be investigated any further. Nevertheless, it is assumed that
assumption 2.13 holds, due to the expectations to get a higher regularity in the interior of
the domain. The projection formula (2.6) implies

u∗|Ωj (x) = − 1
α
q∗|Ωj (x) ∀x ∈ Ωj

where Ωj ⊂ I. Therewith, the regularity of u∗ is partially higher. This is due to the fact that
the regularity moves from the adjoint to the state, in the interior of Ωj . Nevertheless, the
boundary ∂Ωj has to be considered too. However, the shape of the boundary Ωj is unknown.
For determining the regularity, the first step would be to get to know the shape of Ωj , which
is left as an open problem to further research.





3 The finite element method

In this chapter the most important basics of the finite element method (fem) are recalled.
For simplicity, the model problem

−∇ · (D(x)∇u(x)) + c(x)u(x) = f(x) in Ω
u(x) = 0 on ΓD

D(x) · ∂u
∂n

(x) = 0 on ΓN

(3.1)

for an open and bounded Lipschitz domain Ω with boundary Γ = ΓD ∪ΓN , ΓN ∩ΓD 6= ∅ and
meas(ΓD) 6= 0 if c(x) = 0, is considered. The weak form of problem (3.1) is denoted by∫

Ω
D(x)∇u(x) · ∇v(x) dx+

∫
Ω
c(x)u(x)v(x) dx =

∫
Ω
f(x)v(x) dx (3.2)

for an arbitrary test function v(x). In order to fulfill the boundary conditions a suitable
function space for u(x) is the space H1

ΓD(Ω), see e.g. [51, 151]. To solve the variational
formulation of (3.2) approximately, some general remarks and important theorems to solve
such kind of problems are recalled. Furthermore, different well-known refinement strategies
that can later be applied to the two optimal control model problems are given.
In fem usually large equation systems are yielded. These equation systems shall be solved
with iterative methods. Therefore, different preconditioners to lower the number of iterations
are presented – and if necessary – adapted (see section 3.3). Moreover, some numerical results
to understand the behavior of these preconditioners are given.

3.1 Basics of finite element method
First, following [36, 43, 44, 51, 152], a short overview on the most important basics of the
finite element method are given. By using the bilinear form

a(u, v) =
∫

Ω
D(x)∇u(x) · ∇v(x) dx+

∫
Ω
c(x)u(x)v(x) dx

and the linear form F (v) = 〈f, v〉Ω, the model problem (3.1) can be written as abstract
variational problem

find u ∈ V : a(u, v) = F (v) ∀ v ∈ V. (3.3)

For a unique solution to (3.3), the following assumptions are made:

Assumption 3.1.

1. V is a Hilbert space with scalar-product 〈·, ·〉V . The corresponding norm is denoted by
‖ · ‖V .

25
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2. The bilinear form a : V × V → R is
a) bounded on V :

∃ a ≥ 0 : |a(u, v)| ≤ a‖u‖V ‖v‖V ∀u, v ∈ V,

b) V -elliptic (coerzive):

∃ b > 0 : b‖u‖2V ≤ a(u, u) ∀u ∈ V.

3. The linear functional F : V → R is bounded, i.e.

∃ cF ≥ 0 : |F (v)| ≤ cF ‖v‖V ∀ v ∈ V,

e.g. F ∈ V ∗.

The uniqueness and existence of solutions to problem (3.3) are yielded by applying the lemma
of Lax-Milgram 1.15.

Theorem 3.2. (see e.g. [51]) The variational problem (3.3) possesses a unique solution
under assumption 3.1. The solution u ∈ V depends continuously on the data

‖u‖V ≤
1
b
‖F‖V ∗ .

It has to be mentioned, that the space V equipped with the scalar product a(·, ·) is again
a Hilbert space. The induced norm is called energy norm and denoted by ‖ · ‖A. Usually,
variational problems as problem (3.3) cannot be solved analytically. Therefore numerical
approximations as the finite element method are used. In this thesis only conforming finite
element methods are considered. For non-conforming fem see e.g. [11, 66], for non-conforming
methods as discontinuous Galerkin methods see e.g. [12, 13, 56, 59]. In conforming finite
element methods the infinite-dimensional space V is approximated by a N dimensional space
V (N) ⊂ V . Then, instead of solving the variational problem (3.3), the Galerkin approximation

find uN ∈ V (N) : a(uN , vN ) = F (vN ) ∀ vN ∈ V (N) (3.4)

is solved. The existence and uniqueness can again be shown by applying the lemma of Lax-
Milgram 1.15.

Corollary 3.3. (see e.g. [151]) Let V (N) be closed and a subset of V. Furthermore, the
assumptions 3.1 hold for the discrete problem (3.4). Then (3.4) admits a unique solution u∗N .

Remark 3.4. There holds the Galerkin orthogonality

a(u∗ − u∗N , vN ) = 0 ∀ vN ∈ V (N).

However, beside the existence and uniqueness of the discrete solution, the approximation to
the solution is of interest. Therefore, Cea’s lemma is used:

Theorem 3.5 (Cea’s lemma). (see e.g. [36]) Let u be the solution to (3.3) and u∗N the
discrete solution to (3.4). Then it holds

‖u∗ − u∗N‖V ≤
a

b
inf

vN∈V (N)
‖u∗ − vN‖V .
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Remark 3.6. The discretization error is quasi-optimal, i.e.

inf
vN∈V (N)

‖u∗ − vN‖V ≤ ‖u∗ − u∗N‖V ≤
a

b
inf

vN∈V (N)
‖u∗ − vN‖V .

As approximation space, a family of conforming subspaces V (N) ⊂ V (N+1) and V (N) ⊂ V of
V with

∞⋃
N=1

V (N) = V

is used. Equipping the finite dimensional space V (N) with a basis {ϕi(x)}1≤i≤N , the approx-
imation of the infinite dimensional space V by the finite dimensional spaces V (N) leads to a
linear equation system:

~u ∈ RN : A~u = ~f, (3.5)

where functions in V (N) can be written as

uN (x) =
N∑
i=1

uiϕi(x)

and ~u = (u1, . . . , uN ). The entries of the matrix A ∈ RN×N and the right hand side ~f ∈ RN
are given by

Aij = a(ϕj , ϕi),
fi = F (ϕi).

By choosing a suitable basis, the matrix A is sparse. Preferably the matrix only has O(N)
entries, see [36, 51, 93, 96]. The basis functions ϕi used in this thesis are introduced in section
3.2.1.

Remark 3.7. There are two properties which are passed from the continuous problem to the
discrete problem. The positive definiteness of the system matrix A follows by the ellipticity of
the bilinear form a(·, ·). Furthermore, a symmetric bilinear form a(·, ·) leads to a symmetric
matrix A.

In the following section some important general results on finite element spaces and conver-
gence are given. Moreover, the triangulation, which is used in the following subsections, is
specified.

3.1.1 Finite element and triangulation

The focus in this thesis is on quadrilateral elements. More information on finite element
definitions – also for triangular elements – can be found in [36, 43, 57, 58, 93, 151].
Before specifying the discretization, some notation is clarified, see e.g. [3, 23, 51, 150].

• An element K is an open quadrilateral set with K ⊂ Ω ⊂ R2.

• Each open side of the quadrilateral is called edge.
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• The endpoints of the edge are called vertices or nodes.

Definition 3.8. A vertex of an element is called regular node if and only if it is a vertex to
each neighbouring element. Vertices which are not regular are called irregular or hanging
node.

Remark 3.9. In three dimensions not only hanging nodes but also hanging edges occur.

Remark 3.10. For an efficient triangular local refinement, it is not necessary to allow hang-
ing nodes. Instead, red-green refinement see e.g. [140] can be used.

Definition 3.11. A k-irregular triangulation τh of the domain Ω ⊂ R2 is a collection of
open, convex and nonempty elements K, such that

• Ω =
⋃
K∈τh K

• Ki ∩Kj is either empty, a vertex or an edge (in three dimensions even a face),

• each edge contains at most k irregular nodes.

In this thesis, the word triangulation is interchangeably used with mesh. Furthermore, only
1-irregular triangulations are used.
Each element in the mesh is associated with a size h and a polynomial degree p. In order to
get a better approximation, the mesh is refined either by h, p or hp refinement (see Figure
3.1). This leads to three kinds of fem: h-fem, p-fem and hp-fem. h-refinement means, that
elements are divided in order to get a better approximation to the solution. Whereas in
uniform h-fem all elements are h-refined, in adaptive h-fem elements can be refined based on
a-posteriori information by using error estimators (see e.g. [2, 162]). p-refinement increases
the polynomial degree on the elements whilst hp-refinement is a combination of both strategies
(see e.g. [140, 152]). While h-refinement is superior to p-refinement on elements where the
solution or the domain is not smooth, p-refinement leads to better results on smooth parts,
see e.g. [17, 18, 19, 20, 140].

p = 1
p = 1

p = 1

p = 1

p = 1
p = 2

Figure 3.1: element, h-refinement, p-refinement

3.2 hp-finite element method
The advantage of using hp-fem is – assuming that the solution is smooth enough – that it
is possible to obtain an exponential order of convergence. Although this is also possible in
p-fem, the requirements on the smoothness are usually too high for non-academic examples,
see e.g. [19, 140]. For h-fem the convergence rate is only algebraic. Moreover, hp-fem is
also advantageous if it is applied to problems with only algebraic rate of convergence, since
a suitable hp-refinement can substantially reduce the number of degrees of freedom (see e.g.
[98]).
In this thesis the implementation of a hp-finite element code was one of the main parts.
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Therewith, the main aspects of the implementation, some remarks and difficulties when im-
plementing hp-finite element code will be given. An overall introduction in implementing
hp-fem is given in [57, 58]. First, the reference element K̂, one of the main ingredients of fem,
is given.

3.2.1 Reference element and basis functions

Again, the focus is on the two-dimensional case. The extension to three dimensions is straight-
forward, see [33]. In three dimensions, the already implemented basis functions of the 3D
Fortran code 1 were used.
As reference element, the open square K̂ = (−1, 1)2 is chosen. The numbering of the nodes
(vertices), the edges and the orientation of the edges is given in figure 3.2.

ν1

ν4 ν3

ν2e1

e2e4

e3

K̂

Figure 3.2: reference element K̂

When selecting suitable basis functions for finite elements, several points have to be con-
sidered. The basis functions have to enable a fast computation, the yielded system matrix
has to be sparse and has to have a suitable condition number. Therefore, hierarchical basis
functions based on a family of orthogonal polynomials are preferred on quadrilateral elements.
The advantage of such a choice is the sparsity and hence the fast implementation, since not the
whole basis has to be recomputed if the polynomial degree is increased. For more information
see e.g. [25, 34, 36, 96]. For a hierarchical basis usually three kinds of basis functions are
distinguished, vertex (node or hat) basis functions, edge bubbles and element bubbles, see
figure 3.3. In this thesis integrated Legendre polynomials, see section 1.4, are used to construct
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Figure 3.3: on one element: vertexbasisfunction, edge- and element bubble, respectively.

the basis, see e.g. [16, 35, 101, 109, 120, 125]. Advantageously the Legendre polynomials can
be efficiently computed by using orthogonality relations and recurrence formulas, see lemma
1.12. For square elements (or cubes) it is even possible to exploit the tensor product structure

1see [33]
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to compute the element matrices. The basis functions for the reference element 3.2 are given
in the following. The nodal or hat basis functions are given by

ϕV1 (x̂1, x̂2) = 1
4(1− x̂1)(1− x̂2), ϕV2 (x̂1, x̂2) = 1

4(1 + x̂1)(1− x̂2),

ϕV3 (x̂1, x̂2) = 1
4(1 + x̂1)(1 + x̂2), ϕV4 (x̂1, x̂2) = 1

4(1− x̂1)(1 + x̂2).

The edge bubbles are given by

ϕe1i (x̂1, x̂2) = L̂i(x̂1)1− x̂2
2 i ≥ 2, ϕe2i (x̂1, x̂2) = 1 + x̂1

2 L̂i(x̂2) i ≥ 2,

ϕe3i (x̂1, x̂2) = L̂i(x̂1)1 + x̂2
2 i ≥ 2, ϕe4i (x̂1, x̂2) = 1− x̂1

2 L̂i(x̂2) i ≥ 2,

with 1− pek edge bubbles on each edge where pek denotes the polynomial degree on edge ek
for k = 1, . . . , 4. Furthermore, let denote pC , the polynomial degree on the element. There
are (pC − 1)2 element bubbles on each element given by the relation

ϕCij(x̂1, x̂2) = L̂i(x̂1)L̂j(x̂2) i, j ≥ 2.

Remark 3.12. In three dimensions the basis is constructed analogously. There are not only
node basis functions, edge bubbles, element bubbles but also face bubbles occur.

The given basis functions (see figure 3.3 for examples) are defined on the reference element
K̂ and are suitably extended outside the element. There, an extension by zero is used if
possible. The nodal functions are the usual hat functions. The support for an edge bubble
are the two elements which share this edge. On all other elements they can be extended by
zero due to (1.12) and (1.13). The element bubbles can continuously be extended by zero to
the neighbour elements due to (1.12) and (1.13).

Remark 3.13. It has to be stated that the orientation of the edges is given by the edge bubbles.

3.2.2 Mapping

A key issue in the design, the analysis and the numerical realization of fem is the mapping
of the reference element (see e.g. [57, 152]). The trick is that each physical (or global)
element K is defined as a transformation of the reference element K̂. This construction has
several advantages, especially the numerical integration and differentiation only need to be
performed on the reference element. The transformation from the reference element K̂ to the
global element K is denoted by

φK : K̂ → K.

Suitable mappings are continuously differentiable, one-to-one and onto mappings. That
means, if x̂ denotes a coordinate system on K̂, x = φK(x̂) is the corresponding coordi-
nate system on K. In this thesis isoparametric mappings are used, see e.g. [152]. Since only
non-curved elements are allowed, a bilinear mapping is sufficient. It is given by

x1 =
4∑
i=1

ϕVi (x̂1, x̂2)Xi,

x2 =
4∑
i=1

ϕVi (x̂1, x̂2)Yi.
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where (Xi, Yi) for i = 1, . . . , 4 are the coordinates of the global element. Therewith, the
Jacobian matrix FK is denoted by

FK =
(
∂x1
∂x̂1

∂x2
∂x̂1

∂x1
∂x̂2

∂x2
∂x̂2

)
and the determinant is given by JK = det(FK). In the case of affine-linear elements, the
determinant of the transformation is constant and especially independent of x.

Remark 3.14. It has to be mentioned that the orientation of the edges comes into play in
the mapping from the reference element K̂ to the global element K for quadrilateral elements,
since in general it is not possible to find mappings with correct orientation a-priori.

Remark 3.15. For triangular elements the orientation of a global element K coincide with
the orientation of the reference element K̂ if barycentric coordinates are used to define the
basis functions, or if the mapping is suitably chosen.

In the following, further standard definitions on mappings are given.

Definition 3.16. Let τh be a triangulation of Ω and hK the diameter of the element K ∈ τh.
The triangulation τh is called γ-shape regular, if there is a constant γ, such that

h−1
K ‖FK‖L∞(K) + hK‖(FK)−1‖L∞(K) ≤ γ ∀K ∈ τh.

Due to the structure of the considered boundary value problems, it makes sense to use H1-
conforming spaces. For other problem classes this may be different, see e.g. [168]. Therefore,
the polynomial space on an interval and a square are defined by

Ip := {xi}i=0,...,p,

Qp :={xi1x
j
2}0≤i,j≤p.

Then, the space for the finite elements for a given triangulation τh, where all edges of a given
element K are collected in the set EK , is defined by

Vhp := {v ∈ H1
ΓD(Ω) : v|K ◦ FK ∈ QpK v|eK ◦ FK ∈ IpK for all K ∈ τh and all eK ∈ EK}.

3.2.3 Element matrices

The introduced basis functions and the mapping enable to set up of the element matrices and
the corresponding right-hand side on the element level. The ordering of the basis functions isϕVV ϕVE ϕVC

ϕEV ϕEE ϕEC
ϕCV ϕCE ϕCC

 and

ϕVϕE
ϕC


where V denotes vertex based parts, E edge based parts and C the element based part of
the matrix and vectors. For affine-linear elements there are two possibilities to set up these
element matrices. Either one-dimensional matrices or suitable quadrature rules as the Gauss-
integration are used. In both cases the tensor product structure is used. In the first case, the
Kronecker product is applied to the one-dimensional matrices. In the second one, a Gauss
quadrature, i.e. Gauss-Legendre quadrature rule, is used to calculate the integrals. Then, in
order to make integration efficiently, the runtime of the integration is decreased by using the
tensor-product structure see e.g. [34, 61, 113, 122] .
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Remark 3.17. If the orientation of the reference element K̂ does not coincide with the
orientation of the element K, the corresponding entries have to be multiplied with −1 in the
element matrix for odd polynomial degrees. Due to efficiency reasons, the usual approach is
not to multiply the corresponding matrix entries, but the corresponding entries of the vector
multiplied with the matrix. This procedure is especially practicable, if the multiplication is
done on the element level with an assembling of the corresponding element vectors as it is
used in the implemented code for this thesis.

Remark 3.18. In three dimensions the orientation of edges and faces has to be adjusted.

3.2.4 Assembling

The assembling of the matrices is – as the choice of the basis functions – also more difficult
in hp-fem than in h-fem. For assembling the global matrices and vectors from the element
matrices and element vectors, each local degree of freedom on the element level is associated
with a global degree of freedom in the global mesh. For an overall introduction see e.g.
[57, 58]. Fast assembling techniques are given in [61, 113].
A further important – and quite nasty – task in the used triangulation, is the handling of
irregular nodes. Since a conforming solution is calculated, hanging nodes as the corresponding
edges, are in fact no real degrees of freedom. In order to get a conforming discretization,
the value on the hanging nodes and the corresponding edges has to be fixed by the bigger
neighbouring edges/nodes. To illustrate the problem, the simple case of p = 1 is considered
in detail.

u1

u2

u3

Figure 3.4: regular nodes (blue) and hanging node (red)

Figure 3.4 shows a mesh with a hanging node (red). In order to get a conforming solution on
the mesh for polynomial degree p = 1, the value u3 in the solution vector has to be adjusted
by

u3 = 1
2 (u1 + u2)

since the hanging node is exactly in the middle of u1 and u2. For higher order basis functions
this approach has to be extended. This will be done in the following subsection.

3.2.5 Hanging nodes and projector

The idea to get a conforming solution although hanging nodes appear is to use a projector,
see e.g. [3, 116, 150, 161] for literature on this topic.
These papers show, that the most promising ansatz when dealing with hanging nodes is the
use of local applicable projectors Ploc. This ansatz saves time, storage and avoids a global
matrix-matrix multiplication, see [161]. In this section a locally applicable projector is derived.
For deriving the structure and the numbers with respect to the used basis functions [126] was
used. There, the given results are derived for a similar basis.
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Before deriving the used (global) projector, a suitable algorithm to apply the projector locally
is given in algorithm 4.

coarse edgeν1 ν2

son1 son2ν1 ν3 ν2

Figure 3.5: notation for refinement of edges

Figure 3.5 shows a coarse edge with its two sons. The basis functions (for polynomial degree
p = 1) on the coarse edge are drawn in blue, the basis functions on the refined edges in green.

Algorithm 4: global application of projector
input : vector ~u
output: vector ~w
for k = 1, . . . , #edges do

if edge k has hanging node then
determine the two sons of edge k (called son1 and son2)
determine all nodes and edges connected to edge k and to its two sons
apply local projector Ploc to them, i.e. ~w|ek = Ploc~u|ek

Remark 3.19. The order of son1 and son2 is fixed by the orientation of the edge. To
avoid problems with the orientation (in the implementation), it is recommended to use the
orientation of the coarse edge also for its sons.

Next, the structure of the local projector Ploc is given. As an example, the projector for
polynomial degree p = 4 is given.

P>loc =



1 0 1/2 0 0 0 0 0 0 0 0 0
0 1 1/2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 B

(12)
2,1 B

(1)
2,2 0 0 B

(2)
2,2 0 0 1 0 0

0 0 B
(12)
3,1 B

(1)
3,2 B

(1)
3,3 0 B

(2)
3,2 B

(2)
3,3 0 0 1 0

0 0 B
(12)
4,1 B

(1)
4,2 B

(1)
4,3 B

(1)
4,4 B

(2)
4,2 B

(2)
4,3 B

(2)
4,4 0 0 1





ν1
ν2
ν3

eson1,2
eson1,3
eson1,4
eson2,2
eson2,3
eson2,4
ecoarse,2
ecoarse,3
ecoarse,4
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The small matrix B (for arbitrary p) which is given through
B

(12)
2,1 B

(1)
2,2 0 . . . 0 B

(2)
2,2 0 . . . 0

B
(12)
3,1 B

(1)
3,2 B

(1)
3,3 . . . 0 B

(2)
3,2 B

(2)
3,3 . . . 0

...
...

... . . . ...
...

... . . . ...
B

(12)
p,1 B

(1)
p,2 B

(1)
p,3 . . . B

(1)
p,p B

(2)
p,2 B

(2)
p,3 . . . B

(2)
p,p


can be calculated with a linear system of equations which depend on the basis functions.
In here, the basis is given by the integrated Legendre polynomials, introduced in subsection
3.2.1. Since the coefficients B̃i,j are known for the unscaled integrated Legendre polynomials
L̃i(x), these results, computed with the aid of computer algebra systems in [126], are used.
Then, knowing the matrix B̃ which has the same structure as the matrix B, the coefficients
of B are determined by the coefficients of B̃. For the determination of the coefficients of B̃
the integrated Legendre polynomials are not only represented on the coarse edge (−1, 1) but
also on its two sons (−1, 0) and (0, 1). The first two integrated Legendre polynomials, the
hat functions, are given by definition through

L̂0(x) = L̃0(x) = 1− x
2 − 1 ≤ x ≤ 1,

L̂1(x) = L̃1(x) = 1 + x

2 − 1 ≤ x ≤ 1.

On the two sons, the subintervals I(1) = [−1, 0] and I(2) = [0, 1] it holds

L̂
(1)
1 (x) = L̃

(1)
1 (x) = L̃1(2x+ 1) −1 ≤ x ≤ 0,

1
γi
L̂

(1)
i (x) = L̃

(1)
i (x) = L̃i(2x+ 1) −1 ≤ x ≤ 0 i ≥ 2,

L̂
(2)
1 (x) = L̃

(2)
1 (x) = L̃1(2x− 1) 0 ≤ x ≤ 1,

1
γi
L̂

(2)
i (x) = L̃

(2)
i (x) = L̃i(2x− 1) 0 ≤ x ≤ 1 i ≥ 2,

and furthermore it is

L̃
(1)
0 (x) = L̂

(1)
0 (x) = L̂0(2x+ 1),

L̃
(2)
0 (x) = L̂

(2)
0 (x) = L̂0(2x− 1).

Therewith, one can define

L̃0(x) = L̂0(x) := L̂
(1)
0 (x) + 1

2
(
L̂

(1)
1 (x) + L̂

(2)
1 (x)

)
,

L̃1(x) = L̂1(x) := L̂
(2)
0 (x) + 1

2
(
L̂

(1)
1 (x) + L̂

(2)
1 (x)

)
.

The matrix B̃ is, as the matrix B, a (p−1)×2p matrix and the coefficients can be calculated
by the following linear system of equations:

L̃i(x) = B̃
(1)
i,1 L̃

(1)
1 (x) +

i∑
j=2

B̃
(1)
i,j L̃

(1)
j (x) + B̃

(2)
i,1 L̃

(2)
1 (x) +

i∑
j=2

B̃
(2)
i,j L̃

(2)
j (x) i ≥ 2.
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Remark 3.20. There it is always B̃
(1)
i,1 = B̃

(2)
i,1 . Therefore, it is set

B̃
(12)
i,1 = B̃

(1)
i,1 = B̃

(2)
i,1

and the corresponding basis function L̃(12)
1 = L̂

(12)
1 is given by

L̃
(12)
1 (x) =

L̃
(1)
1 (x) −1 ≤ x < 0,

L̃
(2)
1 (x) 0 ≤ x ≤ 1.

So in fact one solves the linear system of equations:

L̃i(x) = B̃
(12)
i,1 L̃

(12)
1 (x) +

i∑
j=2

B̃
(1)
i,j L̃

(1)
j (x) +

i∑
j=2

B̃
(2)
i,j L̃

(2)
j (x) i ≥ 2. (3.6)

The coefficients are calculated by equation of coefficients over both subintervals with the aid
of computer algebra, whereas one has to consider that

L̃
(2)
j (x) = 0 for all j − 1 ≤ x ≤ 0

L̃
(1)
j (x) = 0 for all j 0 ≤ x ≤ 1

i.e. the two linear equation systems

L̃i(2x+ 1) = B̃
(12)
i,1 L̃

(12)
i (2x+ 1) +

i∑
j=2

B̃
(1)
i,j L̃

(1)
j (2x+ 1) − 1 ≤ x ≤ 0

L̃i(2x− 1) = B̃
(12)
i,1 L̃

(12)
i (2x− 1) +

i∑
j=2

B̃
(2)
i,j L̃

(2)
j (2x− 1) 0 ≤ x ≤ 1,

have to be solved. The coefficients and their calculation can be found in algorithm 5. There

(a)n := a(a+ 1) · . . . · (a+ n− 1)

is used. Since (3.6) is equivalent to

γiL̃i(x) = B̃
(12)
i,1 γiL̃

(12)
1 (x) +

i∑
j=2

B̃
(1)
i,j

γi
γj
γjL̃

(1)
j (x) +

i∑
j=2

B̃
(2)
i,j

γi
γj
γjL̃

(2)
j (x) i ≥ 2,

L̂i(x) = B̃
(12)
i,1 γiL̂

(12)
1 (x) +

i∑
j=2

B̃
(1)
i,j

γi
γj
L̂

(1)
j (x) +

i∑
j=2

B̃
(2)
i,j

γi
γj
L̂

(2)
j (x) i ≥ 2,
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Algorithm 5: calculation of B
input : polynomial degree p
output: B̃
set B̃ = 0
for i = 1, . . . , xp2y do

B̃
(12)
2i,1 = (−1)i+1 (− 1

2 )i
i!

for i = 1, . . . , p do
B̃

(1)
i,i = B̃

(2)
i,i = 2−i

for i = 2, . . . , xp2y do
B̃

(1)
2i,2 = 3

2B
(12)
2i,1

B̃
(2)
2i,2 = B̃

(1)
2i,2

B̃
(1)
2i+1,2 = (−1)i (

− 3
2)
i+1

(i+1)!

B̃
(2)
2i+1,2 = −B̃(1)

2i+1,2

for j = 2, . . . , p− 1 do
for i = 1, . . . , j + 1 do

B̃
(1)
i+2,j+1 = −B̃(1)

i,j+1 + 1
2B̃

(1)
i+1,j − B̃

(1)
i+1,j+1 + 1

2B̃
(1)
i+1,j+2

for i = 1, . . . , xp2y do
for j = 2, . . . , xp2y do

B̃
(2)
2i,j = (−1)j+1B̃

(1)
2i,j

B̃
(2)
2i+1,j = (−1)jB̃(1)

2i+1,j
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the coefficients of B are then given by

B
(12)
2i,1 = B̃

(12)
2i,1 i ≥ 1,

B
(12)
2i+1,1 = 0 i ≥ 1,

B
(1)
i,i = B

(2)
i,i = B̃

(2)
i,i i ≥ 2,

B
(1)
2i,2 = γ2i

γ2
B̃

(1)
2i,2 i > 1,

B
(1)
2i+1,2 = γ2i+1

γ2
B̃

(1)
2i+1,2 i ≥ 1,

B
(2)
2i+1,2 = γ2i+1

γ2
B̃

(2)
2i+1,2 i ≥ 1,

B
(2)
2i,j = γ2i

γj
B̃

(2)
2i,j i ≥ 1, j ≥ 2,

B
(2)
2i+1,j = γ2i+1

γj
B̃

(2)
2i+1,j i ≥ 1, j ≥ 2,

and B
(1)
i+2,j+1 = γi+2

γj+1
B̃

(1)
i+2,j+1, B

(2)
i+2,j+1 = γi+2

γj+1
B̃

(2)
i+2,j+1 and B

(k)
i,j = 0 for k = 1, 2 and j > i.

The developed projector can now be used to solve linear systems of equations. Next, details
on using the projector in the preconditioned conjugate gradient method (PCG) are given.

3.2.5.1 Projected PCG

For solving a linear equation system

A~u = ~f

with A ∈ RN×N , ~u, ~f ∈ RN with a symmetric and positive definite matrix A and a positive
definite and symmetric preconditioner C, a modification of algorithm 1 is used. The projected
PCG is proposed in [116] and substitutes each preconditioning step

~w = C−1A~r

by

~w = PC−1P>A~r

in algorithm 1. For general remarks on the PCG see also subsection 1.2.1.

Remark 3.21. The global application of the projector, i.e. the application of P is in fact a
call of algorithm 4.

Remark 3.22. For a local application of the projector only the matrix B for the highest
polynomial degree in the whole mesh needs to be stored.

3.2.5.2 Dirichlet conditions

In the case of boundary value problems with Dirichlet conditions, the so called OXER tech-
nique is used for iterative methods, see [93, 99]. There, the diagonal of the assembled matrix
is multiplied with a huge number, e.g. 1040 for each degree of freedom on a Dirichlet edge.
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The corresponding entries on the right-hand side are multiplied with the same huge number.
To enforce Dirichlet conditions although for meshes with hanging nodes, the projector has to
be adjusted. For a diagonal preconditioning matrix D = diag(A), the matrix D̃ given by

D̃ii =
{

0 if Dirichlet conditions holds on edge or node
1 otherwise

can be used by replacing the projected preconditioning step in algorithm 1 by

D̃PD−1P>D̃~r.

3.2.5.3 Mapping from coarse to fine mesh

The derived projector is also used to project a calculated solution on a coarser mesh to a finer
one. This procedure is especially important in order to start with a suitable solution in the
semismooth Newton method. For simplicity it is assumed, that in each refinement step only
h-, p-refinement or no refinement is performed. Then, for a general mapping Mfine

K,coarse two
cases are distinguished: h-refinement and p-refinement. In h-refinement each coarse element
leads to four refined elements. The transformation of the values (since the polynomial degree
can already be higher than one) of the coarse basis functions to the refined ones is done by the
Kronecker product of the projector. In the case of p-refinement the situation is easier, since
only the new entries of the basis functions have to be filled with zero. Algorithm 6 shows the
implementation. With this algorithm it is even possible to map from the coarse mesh to the

Algorithm 6: mapping from coarse to fine mesh
input : vector on coarse mesh ~ucoarse, refined mesh τh
output: vector on fine mesh ~ufine

for k = 1, . . . , #elements (coarse mesh) do
if element k was h-refined then

~ufineel = (P ⊗ P )Mfine
K,coarse~u

coarse
el

else if element k was p-refined then
~ufineel = Mfine

K,coarse~u
coarse
el

else
~ufineel = ~ucoarseel

finest one, if it is applied after each refinement. ~uel denotes the element-vector on the fine or
coarse mesh respectively.

3.2.6 Refinement strategies

In this subsection the basic strategies for refining the mesh used in this thesis are given. For
more information see e.g. [57, 140]. A very important condition in hp-fem, is the so called
minimum degree condition given in the following definition.

Definition 3.23. Let τh be a shape-regular, 1-irregular triangulation. The collection of poly-
nomial degrees pK on an element K ∈ τh is called polynomial degree vector p := (pK)K∈τh.
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For each edge eK with eK ∈ K, the minimum degree condition
peK := min{pK′ : eK ∩K ′ 6= ∅, K ′ ∈ τh}

has to hold.
This condition ensures, that a unique and not too high polynomial degree on each edge is
chosen.
Remark 3.24. In order to enforce the minimum degree condition in an implementation, each
element and all of its edges are set to the chosen polynomial degree. In a second step, the
polynomial degrees on the edges are adjusted. Therefore for each edge the polynomial degree
of its neighbouring elements is compared, the minimum of these gives the polynomial degree
on the edge.
For deciding if h- or p-refinement in a given element is superior, knowledge on the smoothness
is necessary, see e.g [17, 18, 77, 78]. The smoothness is influenced by the domain and the
solution. In case of the domain it depends on the boundary, especially on angles of the corners
of the boundary. Therewith, due to geometry, a suitable a-priori refinement is h-refinement in
all corners of the domain, or even to do h-refinement on the whole boundary. The smoothness
of the solution is harder to guess a-priori. It might follow from the structure of the problem,
as it is in the case of the considered optimal control problems. However, also error estimates,
which decide if h- or p-refinement has to be performed, can be used in order to generate a
mesh automatically. In the numerical examples different kinds of hp-refinement are used. In
this section two strategies, the boundary concentrated fem and an error estimated refinement
are pointed out.

3.2.6.1 Boundary concentrated fem

The boundary concentrated fem (bc-fem) goes back to [98]. To clarify the refinement, two
definitions are necessary. The first one explains the h-refinement.
Definition 3.25. Let τh be a shape-regular and 1-irregular triangulation and denote h :=
minK∩∂Ω6=∅{hK} < 1 a measure for the mesh size on the boundary. If there exist constants
c1, c2 > 0 such that K ∈ τh:

1. if K ∩ ∂Ω 6= ∅, then h ≤ hk ≤ c2h

2. if K ∩ ∂Ω = ∅, then c1 infx∈K dist(x, ∂Ω) ≤ hK ≤ c2 supx∈K dist(x∂Ω).
the mesh is called geometric mesh.
The second one clarifies the choice of the polynomial degree:
Definition 3.26. Let τh be a geometric mesh with mesh size h. Furthermore, the polynomial
degree vector p = (pK)K∈τh is said to be linear with slope ζ > 0, if there exist constants
c1, c2 > 0 such that

1 + ζc1 log
(
hK
h

)
≤ pK ≤ 1 + ζc2 log

(
hK
h

)
.

A geometric mesh with linear polynomial degree vector is called boundary concentrated mesh.
The corresponding space is denoted by Vbc(Ω). The application of the boundary concentrated
fem is especially recommended if there is high smoothness in the interior and low on the
boundary. An application of this method to suitable problems leads to a strong reduction of
degrees of freedom. For further information see subsection 3.2.7.
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3.2.6.2 Error estimators

Another possibility to suitably refine the mesh is the use of error estimators. There the idea
is to find elements with large errors and refine them. More information can be found e.g. in
[2, 36, 162].
One of the most difficult parts when applying error estimators in hp-fem, is the decision if h-
or p-refinement has to be done. In pure h-fem only the question if refinement is necessary or
not has to be answered. However, when using hp-fem, for each element with too big error,
it has to be decided if h- or p-refinement has to be chosen. For an overview on different hp
error estimators see [60]. In this thesis only the error estimator by Melenk and Wohlmuth
[114], see algorithm 7 is used.
There, the error of each element K in the error estimator is estimated by ηK . If the error is
low enough, the element remains unrefined. To estimate if an error is low enough, the mean
value

η := 1
#τh

∑
K∈τh

η2
K .

is used, where #τh denotes the number of elements. If η is not below a given tolerance,
a decision whether using h-or p-refinement has to be made. Therefore, the estimated error
ηK is compared with the predicted error η(prec)

K . For the predicted error η(prec)
K analyticity

is assumed. A comparison between these two errors therefore yields an indirect statement
on the local regularity of the solution. σ, γh, γp and γn are given parameters. As in the

Algorithm 7: hp-adaptive algorithm for refinement based on error estimators, see [114]
input : mesh τh
output: refined mesh τh
if η2

K > ση2 then
mark element for refinement
if η2

K >
(
η

(prec)
K

)2
then

perform h-refinement
set

(
η

(prec)
K

)2
:= 1

4γh
(

1
2

)2pK
η2
K on each son element of K

else
perform p-refinement
pK := pK + 1
set

(
η

(pred)
K

)2
:= γpη

2
K

else
no refinement
set

(
η

(prec)
K

)2
:= γn

(
η

(prec)
K

)2

numerical experiments in [114] these parameters are chosen to be

σ = 0.75, γh = 4, γp = 0.4, γn = 1,

in numerical experiments in this thesis. Furthermore, in the initial triangulation η(pred)
K := 0

is set to get an h-refinement in the first step. To enforce p-refinement η(pred)
K :=∞ has to be
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chosen.
Next, the question how fast the error decreases by applying the introduced refinement strate-
gies, is answered.

3.2.7 Error estimates

In this subsection error estimates for uniform h-refinement, uniform p-refinement and bc-
refinement are presented. For more literature on error estimates see e.g. [21, 140]. Error
estimates can be yielded by investigating the approximation properties of the chosen discrete
space. An application of Cea’s Lemma, see theorem 3.5, then yields the error estimates. First,
general estimates for h- and p-refinement are given.

Theorem 3.27. (see e.g. [21]) Let τh be shape-regular with mesh size h, let the polynomial
degree p on the whole mesh be constant and let k ≥ 1. Furthermore, let the solution u∗ be in
Hk(Ω). Then it holds

‖u∗ − u∗N‖H1(Ω) ≤ c̃hµ−1p−(k−1)‖u∗‖Hk(Ω),

where µ = min(k, p+ 1) and the constant c̃ > 0 does not depend on h or p.

Moreover, there is an estimate in the L2(Ω)-norm which can usually be yielded by duality
arguments.

Theorem 3.28. (see e.g. [21]) Let τh be shape-regular with mesh size h, the polynomial
degree p is constant on the whole mesh and let k ≥ 2. Furthermore, the solution u∗ is in
Hk(Ω). Then it holds

‖u∗ − u∗N‖L2(Ω) ≤ c̃hµp−k‖u∗‖Hk(Ω),

where µ = min(k, p+ 1) and the constant c̃ > 0 does not depend on h or p.

Remark 3.29. In the case of δ ∈ (0, 1) and a solution u∗ ∈ H1+δ(Ω) the estimates

‖u∗ − u∗N‖H1(Ω) ≤ c̃hδ‖u‖H1+δ(Ω)

‖u∗ − u∗N‖L2(Ω) ≤ c̃h2δ‖u‖H1+δ(Ω)

can be yielded by using interpolation theory between Sobolev spaces, see [37, 157].

Therewith for uniform h-refinement with constant polynomial degree p = 1, under the as-
sumption that u∗ ∈ H2(Ω), there holds

‖u∗ − u∗N‖H1(Ω) ≤ c̃h‖u‖H2(Ω), (3.7)
‖u∗ − u∗N‖L2(Ω) ≤ c̃h2‖u‖H2(Ω). (3.8)

However, for uniform p-refinement – assuming that k > p+ 1 and u∗ ∈ Hk(Ω) – the error can
be estimated by

‖u∗ − u∗N‖Hk(Ω) ≤ c̃p−(k−1)‖u∗‖Hk(Ω), (3.9)
‖u∗ − u∗N‖L2(Ω) ≤ c̃p−k‖u∗‖Hk(Ω). (3.10)
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Remark 3.30. The given estimates also hold element wise. By using a sufficient hp-refinement
and due to the fact that in general the solution u∗ ∈ Hk(Ω) holds only for k ≤ 2, better error
estimates than (3.7) can be yielded, see e.g. [140].

Next, error estimates for bc-fem are given. Therewith, some important results for estimating
the number of degrees of freedom are recalled.

Theorem 3.31. (see [98, Proposition 2.7]) Let τh be a geometric mesh with boundary mesh
size h, and let p denote the linear degree vector with slope ζ > 0. Then, there exists a c̃ > 0
depending on Ω, the shape-regularity constant γ and the constants in definition 3.25 and
definition 3.26 such that ∑

K∈τh

1 ≤ c̃h−1,

dim(Vbc(Ω)) ∼
∑
K∈τh

p2
K ≤ c̃h−1,

max
K∈τh

pK ≤ c̃| log h|.

Theorem 3.32. (see [98]) Let τh be a geometric mesh with boundary mesh size h and p a
linear degree vector on τh with slope ζ > 0. Furthermore, let u∗ ∈ H1+δ(Ω), δ ∈ (0, 1), be
the solution to (3.3), where the right-hand-side f is analytic in Ω. Then the finite element
solution u∗N given by (3.4) satisfies

‖u∗ − u∗N‖H1(Ω) ≤ c̃hδ,

if the slope ζ is chosen sufficiently large.

These results show, that the number of degrees of freedom corresponds to a discretization
with the boundary element method (see e.g. [133, 135]). That means h ∼ N−1 (see [98]).
However, the bc-fem is applicable on a broader field, since the boundary element method can
only be applied if the fundamental solution is known.
Now, having everything at hand to get an equation system, the question is, how to solve it.
In this thesis, most equation systems are solved with iterative methods. Therewith suitable
preconditioners are given in the next section.

3.3 Fast solvers
The system of algebraic equations (3.5) is solved iteratively. For a fast convergence of the
iterative method, the condition number of the system matrix A is crucial (see chapter 1).
Therefore the system is preconditioned, since choosing suitable preconditioners keep the iter-
ation numbers low. Furthermore, this behaviour saves time to solve the equation system, see
e.g. [112, 131, 171] for a general introduction.
In hp-fem a preconditioner is necessary, since the condition number of the mass matrix is
p-dependent, whereas the condition number of the stiffness matrix is h and p dependent (see
table 3.1 and [109]).
The preconditioners in this thesis are based on additive Schwarz methods (ASM). First, a
general introduction on the Schwarz methods is given. Second, for two different Schwarz
methods, the BPX, see [42] and for a special domain decomposition method, see [125], more
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refinement mass matrix stiffness matrix
h-fem O(1) O(h−2)
p-fem O(p2d) O(p2(d−1))

Table 3.1: condition number for basis functions in subsection 3.2.1 for dimension d, see [109]
for p-fem and e.g. [76] for h-fem

details are presented. A general introduction to domain decomposition methods can e.g. be
found in [45, 79, 80, 127, 147, 148, 149, 155]. The Schwarz method considers the problem:

find uN ∈ V (N) : a(uN , vN ) = f(vN ) ∀ vN ∈ V (N), (3.11)

where u∗ denotes the exact solution of (3.11). In this thesis, only the case of a bounded and
elliptic bilinear form a(·, ·) is considered. In the Schwarz methods a decomposition in n + 1
subspaces such that

V (N) = V0 + V1 + . . . Vn with N := dimV Ni := dimVi (3.12)

is defined. Moreover, a mapping Ti : V (N) → Vi is defined by

a(Tiu, v) = a(u, v) ∀ v ∈ Vi, u ∈ V (N) (3.13)

and

T = T0 + T1 + . . .Tn.

Then, the application of the additive Schwarz projector T on the error ek = uk − u∗ leads to

wk = Tek
= T(uk − u∗)
= TA−1A(uk − u∗)
= TA−1rk,

where A denotes the corresponding operator to the matrix A. The next task is to get a matrix
representation of the preconditioner C−1 = TA−1. Let [ϕj ]Nj=1 be a basis for V and [ϕij ]

Ni
j=1 a

basis for Vi. For a matrix representation of C−1 the operators Ti have to be represented in
the standard basis. Since there exist matrices Wi ∈ RN×Ni such that

ui = Tiu = [ϕj ]Nj=1Wi~ui (3.14)

and

vi = [ϕj ]Nj=1Wi~vi

u = [ϕj ]Nj=1~u

with (3.13) one yields

a([ϕj ]Nj=1Wi~ui, [ϕj ]Nj=1Wi~v) = a([ϕj ]Nj=1~u, [ϕj ]Nj=1Wi~v) ∀~v ∈ RNi .
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By writing the bilinear form as an application of a matrix and by equivalence relations, it
follows

~u>i W
>
i AWi~v = ~u>AWi~v ∀~v ∈ RNi

W>i AWi~ui = W>i A~u

~ui =
(
W>i AWi

)−1
W>i A~u ∀~v ∈ RNi .

With (3.14), the matrix representation of Ti in the standard basis is given by

[Ti] = Wi

(
W>i AWi

)−1
W>i A. (3.15)

Then, a matrix representation of the preconditioner C−1 can be derived by

C−1 = TA−1

C−1 =
n∑
i=0

TiA−1

C−1 =
n∑
i=0

Wi

(
W>i AWi

)−1
W>i AA

−1

and it follows

C−1 =
n∑
i=0

Wi

(
W>i AWi

)−1
W>i . (3.16)

The preconditioners used later on can be derived with this ansatz (see [42, 79, 80, 125]).

BPX. As first choice, a multilevel preconditioner by Bramble, Pasciak and Xu, see [42, 74,
169], called BPX, is given. Since the BPX is a preconditioner for h-fem, the concentration is
on this case. In the BPX not only the information of the actual mesh, but also the meshes
of coarser triangulations are used. For simplicity it is assumed to have a uniform mesh
refinement with p = 1 everywhere. The coarsest mesh is denoted by τ (0)

h . The refinement
leads to a sequence of meshes τ (l)

h for l = 0, . . . , L. The space V (N) is then given by

V (N) = V (L) = span {ϕ(L)
i }

NL
i=1

where V (l) denotes the space on level l and V (l)
i = span {ϕ(l)

i } the basis functions on level l
for l = 0, . . . L. This leads to the ASM-splitting

V (L) =
L∑
l=0

Nl∑
i=0

V
(l)
i . (3.17)

A matrix representation of the BPX is given by

C−1
BPX =

L∑
l=0

ILl D
−1
l I lL. (3.18)
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There, D−1
l = diag(A(l)), I l+1

l ∈ RNl+1×Nl is the finite element interpolation matrix. I ll+1 =
(I l+1
l )> is the finite element restriction matrix and

I lj := I ll−1I
l−1
l−2 · . . . · I

j+1
j j < l. (3.19)

The appearance of the interpolation matrix depends on the elements. The situation is demon-
strated for the case of a refined edge.

ϕ
(0)
1 ϕ

(0)
2

1 2

1 23

ϕ
(1)
1 ϕ

(1)
2ϕ

(1)
3

Figure 3.6: basis functions in level 0 and level 1

Figure 3.6, indicates, that it has to hold

ϕ
(0)
1 = ϕ

(1)
1 + 1

2ϕ
(1)
3

ϕ
(0)
2 = ϕ

(1)
2 + 1

2ϕ
(1)
3 .

Therewith, the finite element interpolation matrix is given by

I1
0 =

 1 0
0 1

1/2 1/2

 .
Next, the case for a square element, see Figure 3.7 for the numbering, is considered.

1 2

34

1 2

34

5

6

7

8 9

Figure 3.7: Numbering of nodes

Since the nodes 5, . . . , 8 are sons of edges, the construction of its interpolation is analogue to
the case above. However, the situation for node 9 is different, since node 9 has four fathers,
the nodes 1, 2, 3, 4. This has to be considered when setting up the interpolation matrix, which
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is in this case given by

I1
0 =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1/2 1/2 0 0
0 1/2 1/2 0
0 0 1/2 1/2

1/2 0 0 1/2
1/4 1/4 1/4 1/4


.

Therewith, the preconditioner matrix (3.18) can be calculated.

Remark 3.33. For an efficient evaluation the multiplications of ILl ~w and I lL ~w are imple-
mented by using (3.19).

Finally, a result on the condition number is given.

Theorem 3.34. [169] Let the ASM splitting (3.17) and continuous, piecewise linear elements
for the triangulations τ (l)

h be used. Then, the condition number of the preconditioned system
can be estimated by

κ(T) ≤ c̃,

with a constant c̃ > 0 independent of the mesh size h (and the number of levels L).

Remark 3.35. Beside additive Schwarz methods also multigrid methods, see e.g. [22, 81,
94, 111] can be used for preconditioning the h-part.

Pavarino preconditioner. Next, a preconditioner for the p-version of fem is given. It
was introduced by Pavarino in [125] for tensor product meshes, see also [136, 137] for the
triangular and tetrahedral case. This paragraph recalls the most important aspects of this
preconditioner. Let Qp be the set of polynomials of degree less or equal then p in each variable,
i.e.

Qp := {xi1x
j
2 : 1 ≤ i, j ≤ p}.

The elliptic boundary value problem (3.11) (it is assumed to have homogeneous Dirichlet
boundary conditions) is discretized with continuous, piecewise finite polynomial elements of
degree p. Therewith, the space V p is given by

V p = {v ∈ H1
0 (Ω) : v|K ◦ FK ∈ QpK , i = 1, . . . , N}.

The discrete boundary value problem takes the form

find u ∈ V p
D : a(u, v) = F (v) ∀ v ∈ V p

D

with V p
D := {v ∈ V p : v = 0 on ΓD}. Furthermore, let N be the number of interior nodes.

According to (3.12), the additive Schwarz method splitting

V p
D = V p

0 + V p
ν1 + · · ·+ V p

νn (3.20)
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is used. There, the first space V p
0 serves as coarse space. In fact the space V p

0 is chosen to be
the space of continuous and piecewise linear functions of the mesh, i.e. V p

0 = V 1
D. The spaces

V p
νi are defined by

V p
νi = V p ∩H1

0 (Ωvi),

where Ωνi denotes the vertex patch of the i-th node, i.e.

Ωνi = {∪K ∈ τh : νi ∈ K}.

A vertex patch is specified in Figure 3.8. Furthermore, the index set of Ωi given by

J(νi) = [jνi1 , . . . , j
νi
nνi

]

containing all basis functions which live on supp(ϕj) ⊂ Ωνi , i.e. all basis functions living
completely on Ωνi . That means in fact that there are (homogeneous) Dirichlet boundary
conditions for each patch where νi is not a node on the boundary.

νi νi

Figure 3.8: Patch Ωνi (green) for a node νi and the domain where the basis functions J(νi)
lives (green), respectively.

Since the preconditioner by Pavarino is later applied to problems with homogeneous Neumann
boundary conditions, it has to be extended. According to [125] for Neumann boundary con-
ditions the corresponding subspaces have to be included in order to keep a constant condition
number.
Then, the summation in (3.20) runs over all non Dirichlet nodes, see figure 3.9.

νi
νi νi

Figure 3.9: domain which is spanned by the basis function J(νi) for a Neumann node in an
L-shape (left), a Neumann node (middle) and a Dirichlet node (right), where all
corresponding domains are marked green

Theorem 3.36. [125, Theorem 1] The operator T of the additive splitting (3.20) defined by
the spaces V p

νi satisfies the estimate
κ(T) ≤ c̃,

where c̃ > 0 is independent of the polynomial degree p, the number of subspaces n and the
minimal mesh size h.
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To enable the rewriting of the preconditioner by Pavarino in matrix notation later on, some
additional notation is introduced. For a given mesh τh it holds

V := {νi is a node of τh}
VN := {νi ∈ V and without Dirichlet boundary conditions on νi}
VC := V\VN .

Moreover, the fe restriction matrix Pνi ∈ Rn×nνi is defined by

(Pνi)lj =
{

1 if l = j = jνk , 1 ≤ k ≤ nνi
0 else

i.e. with the help of this map one can extend a mapping from Ωνi to Ω or restrict it from Ω
to Ωνi with P>νi .

3.3.1 hp-preconditioners

All given preconditioners are based on the preconditioner by Pavarino and a suitable choice of
the space V p

0 , where the first two choices for the space V p
0 were already proposed by Pavarino

in [125].
First, a hp-preconditioner based on the additive Schwarz splitting (3.20), where V p

0 is the
space of continuous and (bi-)linear basis functions is considered. This gives

C−1
P = P>0 (Ap=1)−1 P0 +

∑
νi∈VC

P>νiA
−1
νi Pνi , (3.21)

where Aνi denotes the stiffness matrix on the patch to node νi and P0 the fe restriction matrix
onto the mesh with polynomial degree p = 1 everywhere. Ap=1 denotes the assembled stiffness
matrix for polynomial degree p = 1 on the whole mesh.

Remark 3.37. Usually, the inverse matrix of Ap=1 is not calculated directly, only the action
of A−1

p=1~r is available. A suitable method therefore is, for example, sparse LU decomposition.

Theorem 3.38. (see e.g. [125]) The preconditioner C−1
P given in (3.21) satisfies

κ(C−1
P A) ≤ c̃.

The constant c̃ > 0 is independent of h and p, i.e. the condition number is bounded by a
constant for uniform refinement. The costs for applying ~w = C−1

P ~r are O(N2) for d = 2 and
O(N7/3) for d = 3.

Remark 3.39. The high costs are caused by the fact, that in each application of C−1
P ~r the

equation system
Ap=1~u = ~r

has to be solved. In some cases, the costs can be reduced by nested dissection, see e.g. [70].

Remark 3.40. In the case of a bc-refinement, the costs for applying the preconditioner can
be reduced to O(N log8N), see [97] for d = 2. However, in d = 3 it becomes too expensive.
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In the sense of additive Schwarz methods with inexact subproblem solvers [79] the application
of A−1

p=1~r can be replaced by a multilevel preconditioner, e.g. multigrid or BPX. Here, the
second choice is used, which leads to the preconditioner

C−1
BPXP = P>0 C

−1
p=1,BPXP0 +

∑
νi∈VC

P>νiA
−1
νi Pνi , (3.22)

where C−1
p=1,BPX denotes an application of the BPX on the stiffness matrix A for constant

polynomial degree p = 1 on the whole mesh. Next, two cases, the case of moderate polynomial
degrees and very high ones are considered in the next two theorems.
Theorem 3.41. (see [63]) Let C−1

BPXP be defined by (3.22). Then,
κ(C−1

BPXPA) ≤ c̃,
where the constant c̃ > 0 is independent of the mesh size h and the polynomial degree p. In
the case of bc-fem, the costs for applying ~w = C−1

BPXP~r are O(N).
In the case of high polynomial degrees, i.e. polynomial degrees above ten, the application of
A−1
νi ~r by sparse LU is too expensive (see e.g. [29]). Therefore, A−1

νi is replaced by a suitable
preconditioner. Then, a suitable hp-preconditioner is given by

C−1
BPXP2 = P>0 C

−1
p=1,BPXP0 +

∑
νi∈VC

P>νiC
−1
νi Pνi , (3.23)

where C−1
νi is a suitable preconditioner for the matrix on the node patch νi.

Theorem 3.42. (see [29]) Let C−1
νi be the preconditioner using wavelet methods of [29]. Then,

for the condition number it holds
κ(C−1

BPXP2A) ≤ c̃(log(p) logχ(log(p)))3

for any χ > 1 with a constant c̃ > 0. The action ~w = C−1
BPXP2~r requires then O(N) operations.

Remark 3.43. In the case of bc-refinement a similar preconditioner but based on the structure
of the mesh, see [63], can be applied for the stiffness matrix.
A similar construction as (3.22) can be done for the mass matrix, see [35]. Since the mass
matrix for h-fem can efficiently be preconditioned by its diagonal, a suitable preconditioner
is given by

C−1
M = P>0 (diag(M)p=1)−1 P0 +

∑
νi∈VC

P TνiM
−1
νi Pνi . (3.24)

It has to be stated that this choice is only a good preconditioner for the mass matrix but not
for the stiffness matrix, since the mass matrix is well conditioned for fixed polynomial degree
p. There holds:
Theorem 3.44. ([35]) Let M be the mass matrix and C−1

M defined by (3.24), then the con-
dition number

κ(C−1
M M) ≤ c̃,

is constant with c̃ > 0 independent of h and p. The work for applying ~w = C−1
M ~r is O(N).

Remark 3.45. The matrices M and CM are even spectrally equivalent, i.e. it holds
M ∼ CM .

As already stated, in this thesis quadrilateral elements with hanging nodes are used. For
general results on handling hanging nodes, see e.g. [3, 116, 150, 161].
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3.3.2 Extension to hanging nodes

In all the cases considered in this section, the projector P introduced in section 3.2.5 is applied
in order to get a conform solution. To simplify the considerations, the preconditioners are
separated in its different parts.
In the case of the diagonal as preconditioner or the inversion for p = 1 with sparse LU, the
projector is applied according to [3]. There, the global projectors P and P> introduced in
subsection 3.2.5 are used. This leads to

C−1
diag,p=1 = P>P>0 (diag(A))−1 P0P

C−1
p=1 = P>P>0 (Ap=1)−1 P0P.

In the case of BPX it is assumed to have only linear, piecewise finite elements, i.e. polynomial
degree p = 1 on the whole mesh. Following [116] in order to preserve the multilevel structure,
the best strategy is to consider all nodes, including all hanging ones, as (real) degrees of
freedom. In order to get a conforming solution at the end, the preconditioner is chosen as

C−1
BPX = P>

(
L∑
l=0

ILl D
−1
l I lL

)
P. (3.25)

In the case of the preconditioner of Pavarino, the situation is a bit more complicated. The
part for p = 1 is already considered in (3.25). Applying the projector for the patches in
the same way as in the BPX, i.e. treating each entry of hanging nodes and edges, lead to
problems when inverting the patch matrix. The reason therefore is, that in this case not all
edges which are necessary to enforce the conformity conditions appear in the vertex patch.
Therewith, the preconditioner of Pavarino is applied to the conform mesh, i.e. only patches
of regular nodes occur. Figure 3.10 shows the construction of patches in order to get patch
matrices which enable the enforcing of conformity conditions. Furthermore, this construction
preserves the partition of unity that is necessary in the proof of the upper eigenvalue [125,
Theorem 1].

νi

νi

Figure 3.10: patches for nodes in green and hanging nodes are plotted in red

Since in each patch, only some additional hanging nodes appear (see Figure 3.10) which are
removed by enforcing the conformity on the patch, the partition of unity is kept. Furthermore,
since for each coarse edge their son edges are also contained in the plot, it is possible to enforce
the conformity on the patch. For notation issues, the set

VH := {νi ∈ VC : νi no hanging node }
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is introduced. Therewith, the preconditioner is given

C−1
PP = P>

 ∑
νi∈VH

P>νiA
−1
νi Pνi

P,
where Pνi and P>νi enable the mapping on the conform patch space and A−1

νi is the conform
patch matrix, inverted by sparse LU.
A combination of the different parts of the preconditioners gives the three mainly considered
preconditioners in this thesis.

3.4 Numerical experiments
In this section the behaviour of the preconditioners is investigated since the introduced pre-
conditioners are later on applied to more complex problems, see subsection 4.4.4 and section
5.5. The goal now is to show the h- and p-independent behaviour of the introduced precon-
ditioners. Therewith the condition number, given by

κ(C−1A) = λmax(C−1A)
λmin(C−1A)

has to be constant. The approximation of the minimal and maximal eigenvalues is done by
the inverse vectoriteration and the vectoriteration, respectively (see e.g. [72]).
For the numerical experiments, the model problem

−∆u(x) + u(x) = f(x) in Ω
∂u

∂n
(x) = 0 on ∂Ω

(3.26)

in the unit square Ω = (−1, 1)2 is considered. The right-hand-side is chosen, such that the
solution is

u(x) = ex
3
1/3−x1ex

3
2/3−x2 .

The mass matrix MN is given by the entries

(MN )ji =
∫

Ω
ϕi(x)ϕj(x) dx i, j = 1, . . . , N

and the stiffness matrix by

(KN )ji =
∫

Ω
∇ϕi(x) · ∇ϕj(x) dx+

∫
Ω
ϕi(x)ϕj(x) dx i, j = 1 . . . , N.

The entries of the right-hand-side ~f are given by

fi =
∫

Ω
f(x)ϕi(x) dx.

In order to obtain the iteration numbers for the stiffness matrix, the model problem (3.26) is
solved. That means the solution to the (preconditioned) equation system

C−1KN~u = C−1 ~f, (3.27)
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for several refinements and suitable preconditioners C−1 is calculated with the preconditioned
CG method. In fact the BPX preconditioner and the hp-preconditioners (3.22) and (3.21) –
all introduced in section 3.3 – are applied.
To get iteration numbers in case of applying the preconditioner C−1

M given in (3.24), the
equation system

C−1
M MN~y = C−1

M
~f, (3.28)

is solved.
First, the BPX preconditioner C−1

BPX is considered. Its minimal and maximal eigenvalue for
uniform h-refinement and bc-refinement with constant polynomial degree p = 1 are given in
table 3.11.

p=1

p=1

uniform h-fem bc-fem with p = 1
N λmin λmax N λmin λmax

4 0.7 1.2 73 1.0 1.65
9 0.89 2.06 185 1.0 3.27
25 0.97 2.53 425 1.0 4.98
81 0.8 2.88 921 1.0 6.75
289 0.77 3.16 1929 1.0 8.57
1089 0.75 3.41
4225 0.75 3.63

p=1

p=1

Figure 3.11: eigenvalues for C−1
BPXKN
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Figure 3.12: iteration numbers versus degrees of freedom for C−1
BPXKN and C−1

M MN

The iteration numbers for solving the model problem for both refinements are given in figure
3.12. There, a relative stopping criterion with accuracy 10−8 is used. The results show, that
the condition number for the BPX is constant in the case of uniform h-refinement. However,
this is not true if hanging nodes appear. This can especially be observed in the increasing
iteration numbers for bc-refinement with constant polynomial degree p = 1 in figure 3.12 and
the increasing maximal eigenvalue in table 3.11.
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C−1
M MN C−1

P KN C−1
BPXPKN

nrDofs λmin λmax λmin λmax λmin λmax

25 0.50 4.5 1.1. 2.47 0.18 2.94
81 0.47 5.84 0.95 4.01 0.18 4.0
169 0.58 5.94 1.1 4.0 0.18 4.0
289 0.65 6.09 0.99 4.0 0.18 4.0
441 0.70 6.12 1.0 4.0 0.18 4.0
625 0.74 6.17 1.0 4.0 0.18 4.0
841 0.77 6.18 1.0 4.0 0.18 4.0

p=1

p=1
p=2
p=3
p=4
p=5

Figure 3.13: eigenvalues for uniform p-refinement

Next, the minimal and maximal eigenvalue for different hp-preconditioners are approximated,
see table 3.13 for uniform p-fem. To investigate the influence of hanging nodes, in table 3.14
as starting mesh a bc-mesh with constant polynomial degree p = 1 is used and uniform p-
fem applied. Both tables show the expected results, i.e. constant eigenvalues (or at least
eigenvalues which can be bounded by a constant).

C−1
M MN C−1

P KN C−1
BPXPKN

N λmin λmax λmin λmax λmin λmax

73 1.0 4.72 1.0. 2.57 1.0 3.2
257 1.0 6.06 1.0 4.0 1.0 4.0
545 1.0 6.19 1.0 4.0 1.0 4.0
937 1.0 6.34 1.0 4.0 1.0 4.0
1433 1.0 6.37 1.0 4.0 1.0 4.0

p=1

p=1
p=2
p=3
p=4
p=5

Figure 3.14: eigenvalues for uniform p-refinement with bc-fem starting mesh

The iteration numbers for applying the preconditioners C−1
P and C−1

BPXP to the equation
system (3.27) are given in figure 3.15. In case of the mass matrix, the iteration numbers for
solving the equation system (3.28) can be found in figure 3.12. In all cases the preconditioned
CG with relative termination condition and accuracy of 10−10 is used. It has to be stated,
that the numerical experiments confirm the theoretical results.
Moreover, in figure 3.15 the iteration numbers with respect to the number of degrees of
freedom for different preconditioners and bc-refinement (with increasing polynomial degree)
are given (see figure 3.16). These results show that the iteration numbers (obtained with
an relative termination condition of 10−10) for the mass matrix preconditioner C−1

M and the
stiffness matrix preconditioner C−1

P lead both to constant iteration numbers. In the case
of C−1

BPXP the situation is different, since both, the extremal eigenvalues and the iteration
numbers seems to grow logarithmically. The reason for this behaviour is, that the eigenvalues
and therefore the iteration numbers for bc-refinement with constant polynomial degree are
not constant due to the hanging nodes, see table 3.11 and figure 3.12.

Remark 3.46. By using suitable hp-triangulations without hanging nodes, i.e. triangular ele-
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ments with red-green refinement, a constant condition number and therefore constant iteration
numbers are yielded.
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Figure 3.16: starting mesh and mesh after five refinements for bc-fem



4 Optimal control problems with
semismooth Newton

In this chapter the optimal control problems of section 2 are discretized by using the varia-
tional discretization concept by Hinze [88] and hp-fem. For solving the equation system, a
semismooth Newton method (see e.g. [160]) has been chosen.
First, a boundary control problem is discretized with bc-fem as in [31]. Second, a suitable
hp-refinement for a distributed optimal control problem is presented and furthermore, solved
with a semismooth Newton method. To the best knowledge of the author this is new, since in
general, such problems are solved with h-fem, see e.g. [6, 88, 89, 91]. There are even exten-
sions to solve such problems with higher but fixed polynomial degree, see [10, 50, 142]. Only
in [164] hp-fem is used to solve a distributed optimal control problem. However, in that case
interior point methods are applied to solve the problem, which is different from the approach
presented in here. In this thesis, the focus is on choosing suitable hp-refinement strategies and
setting up the matrices on inactive and active sets of the domain for applying the semismooth
Newton method. This is investigated in section 4.4. First, a general introduction in solving
optimal control problems and a summary of known results is given.

4.1 Discretization

When solving optimal control problems, there are two different approaches ([158]), the First
optimize, then discretize ansatz and the First discretize, then optimize ansatz. In this thesis,
the second one is used. The conventional ansatz in First discretize, then optimize, is to
discretize all three variables, the state, the adjoint and the control by finite elements. However,
in the discretization by variational discretization due to Hinze [88], only the state and the
adjoint are discretized by finite elements, whereas the control is discretized implicitly via the
projection formula. This has the advantage, that the error of the control can be estimated
by the error of the adjoint, which is not possible in the case of the conventional ansatz. For
a comparison between the conventional ansatz and variational discretization see [91]. Before
investigating the advantages and problems appearing in the case of variational discretization,
the existence and uniqueness of the discrete system is considered.

Theorem 4.1. (see e.g. [158]) Let assumption 2.1 be satisfied and let (y∗, u∗, q∗) be the exact
solution of (2.1). The discrete system of (2.1) is given by

Ay∗N = Bu∗N + f

A?q∗N = y∗N − yd

u∗N = PUad

(
− 1
α
B?q∗N

) (4.1)

55
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possesses the discrete unique solution (y∗N , u∗N , q∗N ) with the discrete projection

u∗N = max
{
ua(x),min

{
− 1
α
B?q∗N , ub(x)

}}
.

Remark 4.2. The projection formula in (4.1) is equivalent to the variational formulation

〈B?qN + αu∗N , u− u∗N 〉U ≥ 0 ∀u ∈ Uad,

see chapter 2.

Remark 4.3. In variational discretization only the state and the adjoint are discretized.
Therefore y∗N and q∗N are finite element functions. The control u∗N is discretized implicitly via
the projection formulation and is in general not a finite element function. Therewith u∗N may
have kinks that are not along the mesh elements.

Next, a general error estimate is given. Let yN and qN be the finite element solutions to the
primal and dual equation, that is

a(yN , vN ) = 〈f, vN 〉Ω + 〈Bu∗, vN 〉U (4.2)
a(vN , qN ) = 〈y∗ − yd, vN 〉Ω. (4.3)

The equation system (4.1) implies

a(y∗N , vN ) = 〈f, vN 〉Ω + 〈Bu∗N , vN 〉U . (4.4)
a(vN , q∗N ) = 〈y∗N − yd, vN 〉Ω. (4.5)

The continuous and discrete variational inequality is given by

〈B?q∗ + αu∗, u− u∗〉U ≥ 0 ∀u ∈ Uad (4.6)
〈B?q∗N + αu∗N , u− u∗N 〉U ≥ 0 ∀u ∈ Uad, (4.7)

respectively. With simple arguments, an error estimate of the variational discretization is
given.

Theorem 4.4. ([89]) For the solutions (y∗, u∗, q∗) to (2.1) and its discretized version (4.1)
with the solution (y∗N , u∗N , q∗N ), there holds

α‖u∗N − u∗‖2L2(U) + ‖y∗ − y∗N‖2L2(Ω) ≤
1
α
‖q∗ − qN‖2L2(U) + ‖y∗ − y∗N‖2L2(Ω).

Proof. The proof is given in [89] and is repeated here. By using u = u∗N and u = u∗ in (4.6)
and (4.7), respectively, adding both terms yields

〈B?(q∗N − q∗) + α(u∗N − u∗), u∗ − u∗N 〉U ≥ 0.

This is equivalent to

α‖u∗ − u∗N‖2L2(Ω) ≤ 〈B(u∗ − u∗N ), q∗N − qN 〉U + 〈B(u∗ − u∗N ), qN − q∗〉U . (4.8)
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The first term in (4.8) can be rewritten with (4.2) and (4.4), the second one can be estimated
by using Cauchy Schwarz, which gives

α‖u∗ − u∗N‖2L2(Ω) ≤ a(yN − y∗N , q∗N − qN ) + 〈u∗ − u∗N , B?(qN − q∗)〉U
≤ a(yN − y∗N , q∗N − qN ) + ‖u∗ − u∗N‖L2(U)‖B?(qN − q∗)‖L2(U). (4.9)

Then, both terms are estimated separately. For the first term in (4.9) it holds

a(yN − y∗N , q∗N − qN ) (4.3),(4.5)= 〈y∗N − y∗, yN − y∗N 〉Ω

=
∫

Ω
(y∗ − y∗N )(y∗N − yN ) dx

≤ −1
2‖y

∗ − y∗N‖2L2(Ω) + ‖y∗ − yN‖2L2(Ω), (4.10)

where in the last step the inequality

2(a− b)(b− c) ≤ −(a− b)2 + (a− c)2

is applied. For the second term in (4.9) Young’s inequality

ab ≤ 1
2εa

2 + ε

2b
2

is used, which yields

‖u∗ − u∗N‖L2(U)‖qN − q∗‖L2(U) ≤
α

2 ‖u
∗ − u∗N‖2L2(U) + 1

2α‖q
N − q∗‖2L2(U) (4.11)

since B? is either the trace operator or identity. By inserting (4.10) and (4.11) in (4.9) and
a multiplication by two, the desired estimate

α‖u∗ − u∗N‖2L2(U) + ‖y∗ − y∗N‖2L2(Ω) ≤
1
α
‖q∗ − qN‖2L2(U) + ‖y∗ − yN‖2L2(Ω)

is yielded.

Remark 4.5. For uniform h-fem and by using the error estimates in subsection 3.2.7 a
comparison (see [91]) of a piecewise constant control u∗N , a continuous and piecewise linear
control u∗N and variational discretization with piecewise linear adjoint q∗N yields

α‖u∗ − u∗N‖U + ‖y∗ − y∗N‖L2(Ω) ≤


ch for piecewise constant u∗N
ch3/2 for continuous and piecewise linear u∗N
ch2 for variational discretization

.

This comparison shows the main advantage of variational discretization, i.e. a higher conver-
gence rate for the control u∗, which follows by theorem 4.4. However, it has to be mentioned,
that for piecewise constant control u∗N suitable postprocessing [117, 129] yields the same results
as variational control.

Better error estimates are possible for special discretizations, see section 4.3 and section
4.4 for more detailed results. Next, a method to solve the problem, is presented. A short
overview and further references on solving optimal control problems in general are given in
[158]. Possible choices are gradient-based methods, the primal-dual active set method or
Newton like methods.
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4.2 Semismooth Newton method
In this chapter, the optimal control problems are solved with the semismooth Newton method.
An introduction into it can be found in [160]. The semismooth Newton method is locally
super-linear convergent (see [160]) and under slightly stronger assumptions, the convergence
rate is ρ > 1. Although the solution to an inequality constrained problem has to be calculated,
only one linear equation has to be solved per iteration. Therefore, the costs per iteration are
comparable to the Newton method for smooth operators. The semismooth Newton method
can furthermore be interpreted as primal-dual active set method, see [85]. For a step-to-step
application of the semismooth Newton method see e.g. [92, 160], further information is given
in [32, 86, 89, 159]. In here only the most important basics are pointed out.
For solving the discrete optimal control problem (4.1) eliminating y∗N from the first equation,
eliminating q∗N from the second one and inserting it in the last one yields

u = PUad

(
− 1
α
B?
(
(A?)−1(A−1Bu+ f − yd

))
.

Therewith, the semismooth Newton algorithm is applied to the equation

G(u) := u− PUad
(
− 1
α
B?qN (u)

)
= 0 in U

for given u ∈ U . The discrete state yN (u) and the adjoint state qN have to fulfill the primal
(4.4) and dual problem (4.5). Due to the projection formula

u∗N = PUad

(
− 1
α
B?q∗N

)
(4.12)

this setting admits the unique solution u∗N ∈ Uad. According to [89, 160] the mapping G :
L2(U)→ L2(U) is semismooth in the sense, that

sup
M∈∂G(u+s)

‖G(u+ s)−G(u)−Ms‖L2(U)‖ = O(‖s‖L2(U)) as ‖s‖L2(U) → 0.

The generalized differential is there given by

∂G(u) :=
{
I +D(u)

( 1
α
B?q′N (u)

)}
with

D(u)(x) =


0 if − 1

αB
?qN (u)(x) ≥ ub

1 if − 1
αB

?qN (u)(x) ∈ (ua, ub)
0 if − 1

αB
?qN (u)(x) ≤ ua

.

Let g ≡ g(u) denote the indicator function of the inactive set

I(u) := {x ∈ U : − 1
α
B?qN (u)(x) ∈ (ua, ub)}

and with
q′N (u) = (A?)−1A−1B
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it is set

G′(u) := I + 1
α
g(u)B?(A?)−1A−1B ∈ ∂G(u).

Due to [86]G′(u) is bounded invertible. Furthermore, it can be shown that mesh independence
holds under appropriate conditions, see [92]. Mesh independence in here means that some kind
of convergence also holds for the behaviour of the discrete algorithm towards the behaviour
of the algorithm in the infinite-dimensional space.
The semismooth Newton method is given by algorithm 8.

Algorithm 8: Semismooth Newton algorithm, see [89]
input : starting value u ∈ U
output: iterate unew ∈ U
while G(u) 6= 0 do

solve G′(u)unew = G′(u)u−G(u) for unew
set u = unew.

Remark 4.6. Algorithm 8 is given in the infinite-dimensional space U . Nevertheless, it can
be shown that it is numerically implementable, see [88].

Remark 4.7. In general not the given but a modified termination condition is used in algo-
rithm 8, see e.g. [160].

Further remarks and drawbacks when implementing the algorithm are given in section 4.3
and section 4.4.
Next, the two model problems are considered separately. First, a suitable hp-discretization
concept is presented for each method. Second, the semismooth Newton method is applied.
Finally, numerical examples are presented.

4.3 Optimal boundary control problem

The focus in this section is to present numerical results for boundary control with a partial
differential equation in R3. Moreover, the results of [31], also presented in [166] are recalled
and a further refinement strategy for these problems is presented.
The optimal boundary control problem stated in section 2.1 leads to the discrete equation
system

a(y∗N , vN ) = 〈f, vN 〉Ω + 〈u∗N , vN 〉ΓN ∀ vN ∈ Vhp (4.13)
a(vN , q∗N ) = 〈y∗N − yd, vN 〉Ω ∀ vN ∈ Vhp (4.14)

u∗N = P[ua,ub]

(
− 1
α
q∗N |ΓN

)
(4.15)

i.e. U = L2(ΓN ).
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4.3.1 Two-dimensional case

Theoretical results for R2 are given in [31, 163, 166]. Here, the most important theoretical
statements on applying bc-fem are recalled. Furthermore, some advantages and disadvantages
when using the vertex concentrated fem (vc-fem) in [163] are given and a combination of the
bc-fem and vc-fem is presented in the numerical examples.
First the concentration is on the bc-fem. The first task is to give an estimate for the state
and the control under the assumptions given in section 2.1.

Theorem 4.8. [31] Let assumption 2.9 and assumption 2.10 hold and f, yd ∈ B0
1−δ(cf , γf )

with cf , γf > 0. Let τ be a geometric mesh on Ω with mesh size h, p a linear degree vector
with sufficiently large slope ζ. Let (u∗, y∗, q∗) and (u∗N , y∗N , q∗N ) be the solutions to the optimal
boundary control problem and its discretized version with the corresponding states and adjoint
states. The solution to the boundary value problem (4.13) shall be H1+δ-regular with δ ∈ (0, 1),
that means y∗, q∗ ∈ H1+δ(Ω). Then there exists a constant c̃ > 0 independent of h and it
holds

‖u∗ − u∗N‖L2(ΓN ) + ‖y∗ − y∗N‖L2(Ω) ≤ c̃hδ.

Although the proof is not recalled here, the most important basics of the proof are cited to
point out the discrepancy between the theoretical and numerical results. The results above
can be yielded by applying the theorem of 4.4 and estimate ‖q∗−qN‖2L2(ΓN ) and ‖y

∗−yN‖2L2(Ω).
According to [31, Lemma 3.6, Lemma 3.11] (see also [166]) it holds

‖q∗ − qN‖L2(ΓN ) ≤ c̃hδ+1/2,

‖y∗ − yN‖L2(Ω) ≤ c̃hδ.

Furthermore, it holds

‖q∗ − qN‖H1(ΓN ) ≤ c̃hδ and ‖y∗ − yN‖H1(Ω) ≤ c̃hδ.

The considerations above already indicate that the yield estimate might not be sharp. Nu-
merical experiments confirm that since they show an error reduction of h2δ (see [31, 166]).
However, better estimates are not available yet and furthermore possibly hard to obtain,
since the Aubine-Nitsche trick does not work for bc-fem because no error estimate of the
type ‖y − yN‖H1(Ω) ≤ c̃hδ‖f‖L2(Ω) is available for solutions of the elliptic partial differential
equation (4.13) with right-hand side f and u = 0. The best currently available L2-estimate
was proven by Eibner and Melenk in [62]. They show that for every compact Ω′ ⊂⊂ Ω there
exists δ′ ∈ [0, δ] such that for all elements K ⊂⊂ Ω′ the error estimate ‖y−yN‖L2(K) ≤ c̃hδ+δ

′

holds. However, δ′ depends on Ω′, and it is unclear under which conditions δ = δ′ can be
proven.

Remark 4.9. Due to theorem 3.31, i.e. h ∼ N−1, for bc-refinement, theorem 4.8 yields
√
α‖u∗ − u∗h‖L2(ΓN ) + ‖y∗ − y∗h‖L2(Ω) ≤ c̃N−δ

if the problem is H1+δ-regular. In the case of uniform h-refinement, the approximation space
grows as N ∼ h−2, which would lead to (combined with an estimate of [48])

√
α‖u∗ − u∗h‖L2(ΓN ) + ‖y∗ − y∗h‖L2(Ω) ≤ c̃N−

3
4 δ
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for an H1+δ-regular problem (see [31]). For an H2-regular problem, therewith it follows
O(N−1) for bc-fem and O(N−3/4) for uniform h-fem. That means for a N being large enough
the discretization by bc-fem gives a smaller error than for uniform h-fem. However, it has to
be mentioned that using grading meshes, similar results for h-fem can be yielded, see [6].

In [166] also another refinement strategy, the so called vertex concentrated finite element
method (vc-fem) is used to solve the optimal boundary control problem. In the case of vc-
refinement, all nodes in corners and all elements where the active and the inactive set meet,
are h-refined, all other elements are p-refined. This refinement strategy is again based on
the projection formulation, but avoids h-refinement on elements with enough smoothness, i.e.
elements on which the control uN is active or inactive on the whole element.
The advantage when using the vertex concentrated fem is that one yields an exponential order
of convergence compared to the algebraic one for bc-fem, see [163, 166]. The drawback is that
it is assumed to know all switching nodes at the very beginning for obtaining numerical results.
Of course in practice these switching points are unknown. However, a suitable starting mesh
and further h-refinement of all neighbour elements of the expected switching points lead to
good results and show that the proved exponential convergence rate can be yielded ([166,
Figure 5.7, Figure 5.8]). Nevertheless, in the case of an oscillating control uN with active
constraints ua and ub, problems to find a not too fine suitable mesh are expected.
In the case of a not vanishing Dirichlet boundary, i.e. meas(ΓD) 6= ∅, a modified bc-fem, the
Neumann bc-fem is proposed. In Neumann bc-fem only elements in corners and elements
on the Neumann boundary are h-refined, all other elements are p-refined. This reduces
the number of degrees of freedom compared to bc-fem and furthermore, avoids problems to
estimate the switching points. However, it has to be stated, that for Neumann bc-fem the
same convergence rate as for bc-fem is expected. This is due to the fact that an exponential
order of convergence can only be yielded if h-refinement is done in a limited number of points,
see [140].

Remark 4.10. In the case of pure Neumann boundary, the Neumann bc-fem corresponds to
bc-fem.

After choosing a suitable refinement strategy, the boundary control problem is solved with
the semismooth Newton method. This leads to the equation system(

MΓN ,I + 1
α
M>ΓN ,IK

−1MΓNK
−1MΓN ,I

)
~u = − 1

α
M>ΓN ,IK

−1MΓNK
−1(~f − ~yd), (4.16)

which has to be solved in each Newton step, where

fj =
∫

Ω
f(x)ϕj(x) dx+

∫
Aa(uN )

uaϕj(x) dx+
∫
Ab(uN )

ubϕj(x) dx.

MΓN denotes the mass matrix on the boundary and MΓN ,I the mass matrix on the boundary
over the inactive set.

4.3.1.1 Numerical experiments

Next a simple example – named example 4.3.1.1 is considered. For further results to bc- and
vc-fem see [31, 163].
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Here a problem with oscillating adjoint is considered. It can be described by the boundary
value problem for the state

−∆y(x) = f(x) in Ω
∂y

∂n
(x) = u(x) + ey(x) on ΓN

y(x) = 0 on ΓD

the boundary value problem for the adjoint

−∆q(x) = y(x)− yd(x) in Ω
∂q

∂n
(x) = eq(x) in ΓN

q(x) = 0 in ΓN

and the projection formula

u(x) = P[−0.5,0.5] (−q(x)|ΓN ) .

The domain is given by Ω = (0, 1)2, the Neumann boundary is ΓN = {x1 = 1} ∪ {x2 = 1},
the Dirichlet boundary is ΓD = {x1 = 0} ∪ {x2 = 0}. The exact solution to this optimal
boundary control problem is

y(x) = x1x2e
x1+x2 ,

q(x) = −x1x
2
2 sin(15πx1) cos(15πx2),

the data is chosen accordingly.

Remark 4.11. The inhomogenities ey(x), eq(x) are introduced to construct a test example
with known analytical solution. The theoretical estimates are not affected by these inhomo-
geneities (see [31]).

101 102 103 104 10510−5

10−4

10−3

10−2

10−1

100

N

||q
-q

N
|| L

2(
Ω
)

adjoint q

bc
neubdry
rate h2

101 102 103 104 10510−7

10−6

10−5

10−4

10−3

10−2

10−1

N

||y
-y

N
|| L

2(
Ω
)

state y

bc
neubdry
rate h2

Figure 4.1: comparison of bc-fem and neubdry-fem for example 4.3.1.1

First, the difference between bc-fem and bc-fem only on the Neumann boundary (and ad-
ditional h refinement on corners) – called neubdry-fem – is considered. The L2 error in
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dependence of the degrees of freedom for both refinements is given in figure 4.1, the corre-
sponding meshes are given in figure 4.2. The expected order of convergence for uniform h-fem
is two. The black line in figure 4.1 shows that rate. Furthermore, it can be observed that
both convergence rates – the one for bc-refinement and the one for neubdry-refinement – are
greater than two. Although neubdry-refinement leads to a decrease in the number of degrees
of freedom, the convergence rate stays the same.
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Figure 4.2: left: bc-refinement, right: neubdry-refinement, after five and eight refinements
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Figure 4.3: comparison of neubdry-fem and vc-fem for example 4.3.1.1

Furthermore, vc-fem and neubdry-fem are compared in figure 4.3. Due to the highly oscillating
adjoint q and the need to start with a suitable mesh in vc-fem, the starting mesh (obtained
with uniform h-refinement) for vc-fem is quite fine (see figure 4.5). This explains why neubdry-
refinement is favourable in this case although with neubdry-refinement only an algebraic
convergence rate is yielded, whereas in vc-fem an exponential one is possible.
One possibility to decrease the number of degrees of freedom for vc-fem is, to use neubdry-
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Figure 4.4: influence of different start meshes for vc-fem
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Figure 4.5: left: start mesh uniform h-refinement, then vc-fem, right: start mesh neubdry
refinement, then vc-fem
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refinement instead of uniform h-refinement to find a suitable starting mesh. This choice
decreases the number of degrees of freedom significantly, see figure 4.4 for the L2 error and
figure 4.5 for the corresponding meshes.

4.3.2 Three-dimensional case

Since theoretical results are not available now, this subsection concentrates on numerical
results.

Remark 4.12. For the semismooth Newton method (4.16) a suitable starting vector ~u0 is
used. In the given results this starting vector is chosen – except for the first mesh – by a
projection of the solution to the former mesh to the considered one.

Furthermore, in all examples a preconditioner to solve (4.16) is used. Since the mass matrix
MΓN dominates this equation, a suitable preconditioner for the mass matrix is taken. In the
case of inactive constraints, as preconditioner diag(MΓN ) is used because there are only low
order basis functions on the boundary, due to the application of bc-fem. Therewith MΓN
is well-conditioned and the diagonal as preconditioner is sufficient. In the case of inactive
constraints, the preconditioner is modified, and

diag(MΓN ,I)

is chosen. This is done in order to bring the element size for partly active and inactive
elements into play.

4.3.2.1 Example: Cube

The first numerical example is a cube with known analytical solution. The domain of the
cube is given by Ω = (−1, 1)× (−1, 1)× (−1, 1). The Neumann boundary is on the faces

(−1, 1)× (−1, 1) and x3 = −1,
(−1, 1)× (−1, 1) and x3 = 1.

On the other faces homogeneous Dirichlet boundary hold. The optimal control problem is
given by

min J(y, u) := 1
2‖y − yd‖

2
L2(Ω) + 1

2‖u‖
2
L2(ΓN ) +

∫
ΓN

eqy dsx

subject to the constraints

−∆y(x) = f(x) in Ω
y(x) = 0 on ΓD

∂y

∂n
(x) = u(x) + ey(x) on ΓN

(4.17)

and the box constraints on the control

ua ≤ u(x) ≤ ub a.e. on ΓN .
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There, the desired state yd, the inhomogenities ey, eq, the right-hand-side f and the box
constraints ua, ub are given, the state y and the control u have to be calculated.
According to theorem 2.4 and by using the equivalence in theorem 2.5, this is equivalent to
calculate the solution to the primal equation (4.17), the dual equation

−∆q(x) = y(x)− yd(x) in Ω
q(x) = 0 on ΓD

∂q

∂n
(x) = eq(x) on ΓN

and the projection formula

u(x) = P[−2.3,−0.5] (−q(x)|ΓN ) .

Remark 4.13. The inhomogenities eq(x), ey(x) ∈ H1/2(ΓN ) are introduced to construct a
test example (see [158]) with known solution.

The state and the adjoint are

y(x) =
(
π

2 − 1
)

cos
(
x1
π

2

)
cos

(
x2
π

2

)
ex3 ,

q(x) = cos
(
x1
π

2

)
cos

(
x2
π

2

)
ex3 .

First, a comparison between uniform h- and bc-refinement is made, see figure 4.6. Since the
coarse mesh consists of only one cube, the first three refinements are identical. That is caused
by the fact that several uniform refinements are necessary to get higher polynomial degrees
in bc-fem, because in here, in each step only h- or p-refinement is performed. Figure 4.6
shows, that bc-fem is superior to uniform h-fem with respect to the number of degrees of
freedom. Furthermore, it can be observed that the uniform h-fem has the expected quadratic
convergence rate.
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Figure 4.6: L2 versus number of degrees of freedom for h- and bc-refinement for example
4.3.2.1

Remark 4.14. For a further decrease of the number of degrees of freedoms, analogue re-
finement strategies as in two dimension, i.e. vc-refinement or neubdry-refinement could be
applied.
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Moreover, the adjoint q and the state y are plotted for different meshes. In figure 4.7 the
adjoint is plotted for 25 031 degrees of freedom, i.e. the mesh after 5 refinement steps. In
figure 4.9 again the adjoint but with a further bc-refinement step, is plotted. The results for
the corresponding state y for these two meshes is plotted in figure 4.8 and figure 4.10. The
plots show, that on most faces (expect two faces of the coarse cube), there is homogeneous
Dirichlet boundary, which explains, why there is zero on nearly all boundary faces.

Figure 4.7: adjoint (on whole and truncated domain) for 25 031 degrees of freedom for example
4.3.2.1

Figure 4.8: state (on whole and truncated domain) for 25 031 degrees of freedom for example
4.3.2.1

The polynomial distribution of the elements can be found in figure 4.11. It shows the usual
bc-refinement, i.e. in each refinement step all elements on the boundary are h-refined whereas
all non-boundary elements are p-refined.

Figure 4.12 shows, that there are active parts for the set Aa and Ab. Due to the constraints
ua = −2.3 and ub = −0.5, the projection formula cuts the adjoint q at 2.3 for the upper
bound and 0.5 for the lower bound. All these parts are active sets, therefore for the control
these values are adjusted (and set to ua or ub, depending on the kind of active set) by the
projection formula.
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Figure 4.9: adjoint (on whole and truncated domain) for 124 921 degrees of freedom for ex-
ample 4.3.2.1

Figure 4.10: state (on whole and truncated domain) for 124 921 degrees of freedom for example
4.3.2.1

Figure 4.11: polynomial degree distribution (intersection in the middle of the cube) for 25 031
and 124 921 degrees of freedom for example 4.3.2.1, respectively
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Figure 4.12: adjoint q and control u on face with constraints

4.3.2.2 Example: Steam

As first example with unknown solution a steam is considered. There the domain is given by
(0, 2)× (0, 1)× (0, 4). The differential equation for the state y is

−∆y(x) = f(x) in Ω
y(x) = 0 on ΓD

∂y

∂n
(x) = u(x) on ΓN

the dual one

−∆q(x) = y(x)− yd(x) in Ω
q(x) = 0 on ΓD

∂q

∂n
(x) = 0 on ΓN .

The projection formula is given by

u(x) = P[0.1,1.0] (−q(x)|ΓN ) .

The data is chosen by

f(x) = 0,
yd(x) = 2ex1+x2 + 3ex2+x3 .

Again, the state y and the adjoint q are plotted for two meshes. The adjoint is plotted in
figure 4.13 for 28 327 and in figure 4.15 for 143 911 degrees of freedom. The results for the
state are given in figure 4.14 and figure 4.16. The plots show that the adjoint is between
[−3.07, 0], whereas the state is between [0, 0.34]. As in the example before, there are again
two faces of the steam on which a Neumann control holds. For the Dirichlet boundary, there
hold homogeneous boundary conditions, therewith the values are zero there. In figure 4.14
and figure 4.16 it can be observed that the state y(x) is quite small on most parts of the
domain. For the adjoint q(x) the situation is different, see figure 4.13 and figure 4.15.
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Figure 4.13: adjoint (on whole and trunated domain) for 28 327 degrees of freedom for example
4.3.2.2

Figure 4.14: state (on whole and truncated domain) for 28 327 degrees of freedom for example
4.3.2.2

Figure 4.15: adjoint (on whole and truncated domain) for 143 911 degrees of freedom for
example 4.3.2.2
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Figure 4.16: state (on whole and truncated domain) for 143 911 degrees of freedom for example
4.3.2.2

The polynomial distribution for these two meshes is plotted in figure 4.17. As in example
4.3.2.1. bc-refinement is used for the refinement and figure 4.17 shows the polynomial degree
distribution of the elements. The polynomial degree of the corresponding edges and faces
is determined by the minimum degree condition (see definition 3.23). For example, a face
between two elements – one with polynomial degree 2 and the other one with polynomial
degree 3 – has polynomial degree 2.

Figure 4.17: polynomial degree distribution (truncated domain) for 28 327 and 143 911 degrees
of freedom for example 4.3.2.2, respectively

In figure 4.18 by using the projection formula, and ua = 0.1, ub = 1.0, a comparison between
the adjoint q and the control u shows, that there are both, active parts Aa and active parts
Ab. In the plot of the adjoint, all elements with values between (−1.0,−0.1) are inactive, all
other elements are fully active or contain at least active parts.

4.3.2.3 Example: Three feet

The next example fulfills the same equations, then the steam-example, but with a different
desired state and a different domain. As domain four cubes put together in order to get a
three feet shape, are used (see figure 4.19). Except on the L-face on the boundary (bottom on
the left plot in figure 4.3.2.3) on the faces hold homogeneous Dirichlet boundary. On the L-
face, there is the Neumann boundary where the control comes into play. The right-hand-side
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Figure 4.18: adjoint q and control u for face with interface elements, example 4.3.2.2

Figure 4.19: domain (plotted is the adjoint) for example 4.3.2.3

of the state equation and the desired state are given by

f(x) = 0
yd(x) = 2ex1+x2 + 3ex2+x3

and the constraints for the control are set to ua = 0.1 and ub = 1.2.
In figure 4.20 the adjoint for 2 610 degrees of freedom, which consists of 1 607 elements, is
plotted. The corresponding state is given in figure 4.22. On the most faces at the outside
there hold homogeneous Dirichlet boundary conditions, therewith the values are zero. The
Neumann boundary on which the control acts, has the shape of an L. Moreover, figure 4.20
shows, that there are elements with active sets, since only values between [−1.2,−0.1] lead
to inactive elements due to the projection formula and the constraints ua = 0.1 and ub = 1.2
for the used regularization parameter α = 1.0.
A closer look on the polynomial degree distribution for the mesh with 1 607 elements is given
in figure 4.21. Since the polynomial degree is one on the whole boundary due to the boundary
concentrated refinement, the parts of interest are in the interior of the domain. Therewith,
the domain in figure 4.21 shows two different truncations of the domain in order to get a
better knowledge of the polynomial distribution in the interior. It shows, that the highest
polynomial degree for these results is two.
The results for 15 857 degrees of freedom can be found in figure 4.23, figure 4.24 and figure
4.25. The corresponding mesh has 8 299 elements. In figure 4.23 it can be observed, that
both constraints are active, since the adjoint is smaller than −1.2 and bigger than 0.1.
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Figure 4.20: adjoint (on whole and truncated domain) for example 4.3.2.3 for 2 610 degrees
of freedom

Figure 4.21: polynomial degree distribution for example 4.3.2.3 for 2 610 degrees of freedom

Figure 4.22: state (on whole and truncated domain) for example 4.3.2.3 for 2 610 degrees of
freedom
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Figure 4.23: adjoint (on whole and truncated domain) for example 4.3.2.3 for 15 857 degrees
of freedom

Figure 4.24: state (on whole and truncated domain) for example 4.3.2.3 for 15 875 degrees of
freedom

Figure 4.25: polynomial degree for example 4.3.2.3 for 15 875 degrees of freedom
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Remark 4.15. In figure 4.23 the discontinuities occur only in the plot, since only the values
in the nodes are plotted, which can lead to discontinuities in the plot if hanging nodes appear.
In fact the adjoint is continuous.

To give a better understanding of the polynomial degree distribution two blocks are cut out
of the domain, see figure 4.25. There it can be seen, that on the boundary the polynomial
degree is 1, but in the interior the polynomial degree gets higher. The highest polynomial
degree on this mesh is 3.

Remark 4.16. For the considered numerical examples face-based refinement has been chosen,
i.e. all elements which have a face on the boundary are h-refined, all other elements are p-
refined. That is the reason why the element in the L-corner is p- but not h-refined. An
edge-based refinement would lead to different results.

4.3.2.4 Example: Cube with holes

The last example fulfills again the same equations but again the desired state, the right-hand-
side and the domain are different. The domain is plotted in figure 4.26.
The right-hand-side for the state and the desired state are given by

f(x) = 0
yd(x) = 10 sin(πx1) + 5 cos(πx2x3)

the constraints for the control are ua = −0.7 and ub = 0.9.

Figure 4.26: domain (plotted is the adjoint) for example 4.3.2.4

In figure 4.27, the adjoint q is plotted. It shows that only the faces on top of the domain have
Neumann boundary with controls. All other faces have homogeneous Dirichlet boundary.
Since the constraints are ua = −0.7 and ub = 0.9, it follows that the adjoint is active for
values bigger than 0.7 and smaller than −0.9. Therewith, figure 4.27 shows that only the
upper constraint is active, the constraint ua is inactive.
Furthermore, in figure 4.27 some values of the adjoint in the interior are given, since in the
figure on the left hand side a slice of the top of the adjoint is cut. Therewith, it is possible to
get a glance at some values in the interior. Moreover, the size of the elements – which gets
bigger in the interior due to higher polynomial degrees – can be observed.
The state is given in figure 4.28. As in the plot for the adjoint, in the left part of figure 4.28
a slice is cut from the state in order to see the mesh-size and the values of the state there.
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Figure 4.27: adjoint (on whole and truncated domain) for example 4.3.2.4

Figure 4.28: state y (on whole domain) for example 4.3.2.4

The polynomial degree distribution of the elements is given in figure 4.29. For a better
understanding the domain is cut in order to plot the polynomial degree inside the domain.
On the boundary, the polynomial degree of all elements with a boundary face have polynomial
degree 1. Elements in the interior have polynomial degree 2, which is the highest polynomial
degree of the considered mesh.

Remark 4.17. Due to the bc-fem, the number of elements with low polynomial degree is quite
high. In order to decrease the number of degrees of freedom, Neumann boundary concentrated
refinement, as in subsection 4.3.1 could be used. A further possibility is to extend the idea of
vertex concentrated refinement considered in subsection 4.3.1 to three dimensions. Then, each
element with edges that have active and inactive parts is h-refined, all others are p-refined.

Remark 4.18. In order to check if an element is active or inactive for boundary control in
three dimensions and polynomial degree p = 1, the values of the nodes have to be checked.

Remark 4.19. In case of using tetrahedral elements hanging nodes can be avoided by using
red-green refinement.

Next, distributed optimal control problems are considered.
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Figure 4.29: polynomial degree distribution (both are truncated versions of the domain) for
example 4.3.2.4

4.4 Distributed optimal control problem
In this section the distributed optimal control problem introduced in section 2.2, is considered.
Its discretized version is given by

a(y∗N , vN ) = 〈u∗N , vN 〉Ω ∀ vN ∈ Vhp
a(vN , q∗N ) = 〈y∗N − yd, vN 〉Ω ∀ vN ∈ Vhp

u∗N = PUad

(
− 1
α
q∗h|Ω(x)

)
(4.18)

where (u∗N , y∗N , q∗N ) is the discrete solution to the distributed optimal control problem. The
problem is – as in the case of boundary control – again discretized by variational discretization
by Hinze [88]. Therewith, only the discrete state y∗N and the discrete adjoint q∗N are finite
element functions. The discrete control u∗N is only given by the projection formula (4.18).
For h-fem such kind of problems are considered in [6, 92], further results on this topic can
for example be found in [8, 47, 117]. An application of hp-fem to the considered problem is
already given in [164]. However, there interior points methods are used in order to solve the
problem. In this thesis the problem is solved with the semismooth Newton method, where
the hp-discretization of the problem is based on its structure, see subsection 4.4.1. Due to
the application of variational discretization and the use of semismooth Newton methods, an
integration only over parts of the reference element is necessary. This topic is investigated in
subsection 4.4.2. Numerical experiments are given in two dimensions in subsection 4.4.4. An
extension to three dimensions is possible.
First, some remarks on regularity are made. The main difficulty here is, that in distributed
optimal control problems the interface between the active and inactive sets, which comes into
play by the projection formula (4.18) is unknown. Moreover, to the best knowledge of the
author, there are no results on the structure of the active and inactive sets and the regularity
of the control u which can be used for hp-fem. Therewith, only known theoretical results for
h-fem are given, since here less regularity is needed in order to prove them.

Remark 4.20. In the case of interfaces which separate the domain in Lipschitz domains, an
extension of [165] is possible.

In the case of uniform h-fem with piecewise linear elements, the following result is known (see
remark 4.5):
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Corollary 4.21. (see e.g. [91]) Let assumption 2.12 hold, then, the error of the distributed
optimal control problem introduced in section 2.2 can be estimated by

α‖u∗N − u∗‖L2(Ω) + ‖y∗ − y∗N‖L2(Ω) ≤ c̃
( 1
α

+ 1
)
h2,

in the case of a uniform h-fem discretization for a constant c̃ > 0

4.4.1 Refinement strategies

In this subsection two hp-refinement strategies are presented, suitably for refining the consid-
ered optimal control problem.
It is known a-priori that parts with less smoothness are corner regions and the interface
between the active and inactive sets due to the projection formula (4.18). For corners the
regularity of the solution depends on the angle of the corner, see e.g. [140]. In this thesis, the
concentration is on the lack of smoothness due to the interface between active and inactive
sets. As already stated, h-refinement is favourable if there is less smoothness. Therewith, the
interface between active and inactive sets is h-refined.
A possible fully a-priori hp-refinement is given in figure 4.30. A similar refinement – named
ic-fem – is given in [30]. Moreover, the given a-priori strategy is in fact an extension of the
vc-fem and inspired by bc-fem. In [165] ic-fem is already used to solve an optimal control
problem with non-moving and a-priori known interface. However, in the case of distributed
optimal control, the interface can move, since it is given by the projection formula.

p = 1 p = 2 p = 3

Figure 4.30: possible refinement due to projection formula (4.18)

In fact, this leads to the same problem as in vc-refinement for the optimal boundary control
problem (compare subsection 4.3.1): how to refine the mesh that the interface does not jump
out of elements with low polynomial degree? Therewith, an extended strategy, i.e. the h-
refinement of all interface-neighbour elements is proposed, in order to ensure, that the whole
interface is contained in h-refined elements. Next, an a-priori hp-refinement, based on the
considered facts is given in algorithm 9. Since it is an extension of ic-fem, it is named nic-fem,
meaning neighbour ic-fem. Three different kinds of elements are distinguished.

1. active elements : elements with uN |K = ua or uN |K = ub.

2. inactive elements : elements with uN |K = − 1
αqN |K .
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3. interface elements : elements which have both, active and inactive parts.

Remark 4.22. Algorithm 9 concentrates only on the necessary h-refinement due to the pro-
jection formula (4.18). In numeric examples of course the structure of the domain and its
boundary conditions are taken into account. In all such elements, where a-priori less smooth-
ness is known, additional h-refinement is made.

Algorithm 9: a-priori refinement strategy, called nic-fem
input : suitable mesh τ0
output: refined mesh τ
for k = 0, . . . , #elements of τ0 do

find all interface elements and collect them in ∪KX

find all neighbour elements and collect them in ∪KN

find all corner elements and collect them in ∪KC

if element Kj ∈ (∪KX) ∪ (∪KN ) ∪ (∪KC) then
do h refinement

else
do p refinement

Furthermore, a second, similar strategy but based on error estimators, as introduced in sub-
section 3.2.6.2 is proposed. The proposed strategy is a modification of algorithm 7. In this
new refinement strategy, named errest-refinement, on each interface element (and again its
neighbour elements) the predicted error is set to be zero. This enforces h-refinement in all
interface elements and its neighbours. The proposed strategy is given in algorithm 10.

Algorithm 10: error estimator based nic-refinement, called errest-refinement
input : suitable mesh τ0
output: refined mesh τ
for k = 0, . . . , #elements of τ0 do

find all interface elements and collect them in ∪KX

find all neighbour elements and collect them in ∪KN

for element Kj ∈ (∪KX) ∪ (∪KN ) do
set η(prec)

Kj
= 0

set η̃2
Kj

= ση2 + 1
call algorithm 7 and use η̃2

K if available instead of η2
K , but do not change the calculation

of η

Remark 4.23. For the calculation of the error estimates either the primal problem for the
state y or the dual problem for the adjoint q can be used. The choice for one of it may depend
on the expected smoothness of these unknowns. A further possibility would be the application
of the error estimator of both of it and combine them suitably.

Next, the discretized optimal problem is solved with the semismooth Newton method. Since
a main part of this thesis was the implementation of a code therefore, the most important
points are pointed out.
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4.4.2 Integration on interface elements

In order to solve the optimal control problem the semismooth Newton method, algorithm 8
is used. There, in each Newton step the equation system(

MI + 1
α
MIK

−1
N MΩK

−1
N MI

)
~u = 1

α
MIK

−1
N MΩ~yd −

1
α
MIK

−1
N MΩK

−1 ~f (4.19)

has to be solved. KN denotes the stiffness matrix and M the mass matrix. Furthermore, it is

fj =
∫

Ω
f(x)ϕj(x) dx+

∫
Aa
uaϕj(x) dx+

∫
Ab

ubϕj(x) dx,

(MI)ji =
∫
I
ϕi(x)ϕj(x) dx, (4.20)

where ϕj denotes a basis function, j = 1, . . . , N . One important point in order to solve
the equation system (4.19) is to integrate only the active or the inactive set of the interface
elements, i.e. to calculate ∫

K∩Aa
ϕi(x)ϕj(x) dx for K ∈ τh,∫

K∩Ab
ϕi(x)ϕj(x) dx for K ∈ τh,∫

K∩I
ϕi(x)ϕj(x) dx for K ∈ τh.

Assumption 4.24. For simplicity it is assumed that on each interface element there is either
an intersection with Aa or with Ab but not with both.

Remark 4.25. Assumption 4.24, can be encountered without the loss of generality by starting
with a suitable mesh, since bang-bang control is not considered in this chapter.

First, the shape of the interface between active and inactive set for polynomial degree p = 1
in case of a discretization with quadrilateral elements is investigated. For simplicity it is
assumed to have affine-linear mappings, i.e. elements with constant determinant. Then it is
sufficient to consider only the integration on the reference element K̂. Moreover it is assumed
to have constant bounds ua, ub.

Lemma 4.26. Let u∗N be the control of the discretized optimal control problem introduced in
section 4.4 and let the polynomial degree be p = 1 on each interface element. Furthermore,
let the constrains ua and ub be constant. Then the shape of the interface between the active
or the inactive set is either a line, a hyperbola or non-existent.

Proof. Since it is assumed to only have affine-linear mappings, it is sufficient to consider only
the reference element. Each interface element has polynomial degree p = 1, therefore on the
reference element it holds

uN |K̂(x̂) =
4∑
i=1

ϕVi (x̂1, x̂2)ui

= 1
4((u1 + u2 + u3 + u4) + (−u1 + u2 + u3 − u4)x̂1

+ (−u1 − u2 + u3 + u4)x̂2 + (u1 − u2 + u3 − u4)x̂1x̂2)
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where ui are the values in the nodes of K̂. To find the shape of the interface, it has to be
checked if

ua ≤ uN |K̂(x̂) ≤ ub.

for all values of x̂. This is analogue to check

a(x̂) = uN |K̂(x̂)− ua ≥ 0,
b(x̂) = ub − uN |K̂(x̂) ≥ 0,

for the given bounds ua, ub. Without loss of generality in here only a(x̂) is considered, the
bound b(x̂) is analogue. Since the bounds ua and ub are constant, a(x̂) has the same form as
uN |K̂(x̂), in fact it is given by

a(x̂) = 1
4(a1 + a2 + a3 + a4) + (−a1 + a2 + a3 − a4)x̂1

+ (−a1 − a2 + a3 + a4)x̂2 + (a1 − a2 + a3 − a4)x̂1x̂2,

where the coefficients ai are given by ai = ui− ua. To determine the curve a(x̂) = 0 quadrics
and the principal axis theorem are used. The goal now is to rewrite a(x̂) for determining its
form. First, a(x̂) shall be written in the from

x̂>Ax̂+ v>x̂ = c,

where A is a symmetric matrix and x̂ = (x̂1, x̂2)T . By equating of coefficients, for the
coefficients of the matrix

A =
(
a11 a12
a21 a22

)

and v = (v1, v2)T , it follows

a11 = 0, a22 = 0, a12 = a21 = 1
8 (a1 − a2 + a3 − a4) ,

and furthermore

v1 = 1
4 (−a1 + a2 + a3 − a4) , v2 = 1

4 (−a1 − a2 + a3 + a4) , c = 1
4 (a1 + a2 + a3 + a4) .

This matrix shall now be transformed in the form

y>B>ABy + v>By = c (4.21)

to enable the determination of the curve type. For the transformation B is constructed to be
orthogonal, i.e. B>B = I. In fact the matrix B will consist of the eigenvectors of A and the
diagonal matrix D = BTAB, which enables the determination of the curve, consists of the
eigenvalues of A. Next the eigenvalues and eigenvectors of B are determined. The eigenvalues
of A are

λ1,2 = ±1
2a12,
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and v̂1 = (1, 1) and v̂2 = (−1, 1) are eigenvectors. Therefore it is set

B = 1√
2

(
1 −1
1 1

)
, D = 1

8

(
a12 0
0 −a12

)
.

Inserting in (4.21) leads to
1
8a12y

2
1 −

1
8a12y

2
2 + 1

4
√

2
(a1 + a2)y1 + 1

4
√

2
(−a1 + a2)y2 = c.

Afterwards, the curve is put into the origin, which leads to(
1
8
√
a12y1 + 1

4√a12
(a1 + a2)

)2

−
(

1
8
√
a12y2 −

1
4√a12

(−a1 + a2)
)2

= c− a1a2
a12

= c̃ (4.22)

if a12 > 0. The case a12 < 0 is analogue, for a12 = 0 the curve reduces to

(a1 + a2)y1 + (−a1 + a2)y2 = 4
√

2c,

i.e. in this case the curve which separated the active and inactive set is a line. The translation

z1 = 1√
8
√
a12y1 + 1

4√a12
(a1 + a2),

z2 = 1√
8
√
a12y2 −

1
4√a12

(−a1 + a2),

leads to

z2
1 − z2

2 = c̃,

i.e. the curve is now transformed to the first main diagonal form and therewith it follows that
for a(x̂) = 0 one gets a hyperbola if a12 6= 0. In the case of a12 = 0 it is a line. By mapping
the reference element to an arbitrary one, the results hold for all elements with affine-linear
mapping to the reference square K̂.

Due to the assumptions of theorem 4.26 on each element only active bounds ua or active
bounds ub can occur, see figure 4.31 for examples of different shapes of the interface.

Remark 4.27. The results can be extended to two different active bounds on one element.

Figure 4.31: different shapes of active and inactive set in interface elements

The next question is how to integrate on these hyperbola parts. Theoretically it is possible
to consider different cases and to find a closed form for each of it. However, since 73 cases
occur [126], this method is not practical. Therefore the integration is done numerically.



4.4 Distributed optimal control problem 83

Remark 4.28. For the practical realization it is important to have a low polynomial degree,
i.e. p = 1, 2 on interface elements, since there an integration only over the active and inactive
parts of the element has to be performed. Furthermore, it has to be ensured, that the interface
does not move into elements with higher polynomial degree, because then it is more costly to
check if it is an interface element or not.

Remark 4.29. For avoiding problems with the integration over parts of an element, triangular
elements can be used. There the integral for p = 1 can be calculated exactly, since the triangle
is separated in another triangle and a quadrangle due to the linear basis functions. In [142]
there are even formulas to evaluate the integral for p = 2 exactly.

The drawback in numeric integration is that an additional error occurs. Then, in fact instead
the (inner) equation system (4.19), in each Newton step the system(

M̃I + 1
α
M̃IK

−1
N MΩK

−1
N M̃I

)
~u = 1

α
M̃IK

−1
N MΩ

(
~yd −K−1

N
~f
)

(4.23)

is solved. For simplicity it is set

M =
(
MI + 1

α
MIK

−1
N MΩK

−1
N MI

)
,

M̃ =
(
M̃I + 1

α
M̃IK

−1
N MΩK

−1
N M̃I

)
and the right-hand sides are set to

~g = 1
α
MIK

−1
N MΩ(~yd −K−1

N
~f),

~g = 1
α
M̃IK

−1
N MΩ(~yd −K−1

N
~f).

In order to keep the overall convergence rate, the error between the exact solution ~u and the
perturbed solution ~u has to be small. A suitable theorem therefore, is theorem 1.9, which is
applied in the following.

Theorem 4.30. Let ~u∗ be the solution to (4.19) and ~u∗ the solution to the perturbed system
(4.23). Moreover, let assumption

‖MI − M̃I‖2 ≤ ε‖MI‖2 with 0 < ε < 1 (4.24)

be fulfilled. Then, for the error εu := ‖~u∗−~u∗‖2
‖~u∗‖2 it holds

εu ≤
κ(M)

1− κ(M)εM
(εM + εg) (4.25)

with

εg = ε · κ(MI)

εM = ε
(
1 + κ(MI) + (1 + ε) (κ(MI))2

)
.
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Proof. With assumption (4.24) an upper and lower bound for the norm ‖M̃I‖2 can be yielded.
The upper one is derived by

‖M̃I‖2 = ‖M̃I +MI −MI‖2 ≤ ‖M̃I −MI‖2 + ‖MI‖2
≤ ε‖MI‖2 + ‖MI‖2,

which yields

‖M̃I‖2 ≤ (1 + ε)‖MI‖2. (4.26)

The lower can be shown by

‖MI‖2 = ‖MI + M̃I − M̃I‖2 ≤ ‖MI − M̃I‖2 + ‖M̃I‖2
≤ ε‖MI‖2 + ‖M̃I‖2,

which leads to

‖M̃I‖2 ≥ (1− ε)‖MI‖2. (4.27)

Then, the right hand side estimate in order to obtain εg is

εg =
‖ 1
α(MI − M̃I)(K−1

N MΩ(~yd −K−1
N
~f))‖2

‖ 1
αMI(K−1

N MΩ(~yd −K−1
N
~f))‖2

≤
‖MI − M̃I‖2‖M−1

I MI(K−1
N MΩ(~yd −K−1

N
~f))‖2

‖MI(K−1
N MΩ(~yd −K−1

N
~f))‖2

≤
‖MI − M̃I‖2‖M−1

I ‖2‖MI(K−1
N MΩ(~yd −K−1

N
~f))‖2

‖MI(K−1
N MΩ(~yd −K−1

N
~f))‖2

(4.24)
≤ ε‖MI‖‖M−1

I ‖ = ε · κ(MI).

In order to estimate M− M̃, it is rewritten by

M− M̃ = (MI − M̃I) + 1
α
MIK

−1
N MΩK

−1
N MI −

1
α
M̃IK

−1
N MΩK

−1
N M̃I

= (MI − M̃I) + 1
α
MIK

−1
N MΩK

−1
N MI −

1
α
M̃IK

−1
N MΩK

−1
N M̃I

+ 1
α
M̃IK

−1
N MΩK

−1
N MI −

1
α
M̃IK

−1
N MΩK

−1
N MI

= (MI − M̃I) + 1
α

(MI − M̃I)K−1
N MΩK

−1
N MI + 1

α
M̃IK

−1
N MΩK

−1
N (MI − M̃I)

With two further inequalities, i.e.

‖MI‖2 ≤ ‖MI + 1
α
MIK

−1
N MΩK

−1
N MI‖2 (4.28)

‖ 1
α
MIK

−1
N MΩK

−1
N MI‖2 ≤ ‖MI + 1

α
MIK

−1
N MΩK

−1
N MI‖2 (4.29)
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the overall bound for εM can then be yielded by using the triangule inequality

εM =
‖(MI − M̃I) + 1

α(MI − M̃I)K−1
N MΩK

−1
N MI + 1

αM̃IK
−1
N MΩK

−1
N (MI − M̃I)‖2

‖MI + 1
αMIK

−1
N MΩK

−1
N MI‖2

≤
‖MI − M̃I‖2 + ‖ 1

α(MI − M̃I)K−1
N MΩK

−1
N MI‖2 + ‖ 1

αM̃IK
−1
N MΩK

−1
N (MI − M̃I)‖2

‖MI + 1
αMIK

−1
N MΩK

−1
N MI‖2

By using the estimates (4.28) and (4.29) to estimate the denominator, it follows

εM ≤
‖MI − M̃I‖2
‖MI‖2

+ ‖MI − M̃I‖2‖K−1
N MΩK

−1
N MI‖2

‖MIK
−1
N MΩK

−1
N MI‖2

+ ‖M̃I‖2‖K−1
N MΩK

−1
N ‖2‖MI − M̃I‖2

‖MIK
−1
N MΩK

−1
N MI‖2

≤ ε‖MI‖2
‖MI‖2

+ ε · κ(MI)‖MIK
−1
N MΩK

−1
N MI‖2

‖MIK
−1
N MΩK

−1
N MI‖2

+ ε · κ(MI)‖M̃I‖2‖M−1
I ‖2‖MIK

−1
N MΩK

−1
N MI‖2

‖MIK
−1
N MΩK

−1
N MI‖2

≤ ε+ ε · κ(MI) + ε · κ(MI)‖M̃I‖2‖M−1
I ‖2

≤ ε (1 + κ(MI) + (1 + ε) (κ(MI))) .

Theorem 4.30 states that the error of the disturbed inner equation system in the semis-
mooth Newton method depends on the parameter ε and the condition number κ(MI) =
‖MI‖2‖M−1

I ‖2. Therewith, the minimal and maximal eigenvalue of MI are necessary to esti-
mate the error. That is expected to cause problems in case of very small parts of the inactive
set I in elements, since then, the minimal eigenvalue tends to zero.
Nevertheless, not only the error of the (inner) equation system (4.19) has to be considered
but also its effect to the (outer) semismooth Newton method. Possible choices are to consider
the semismooth Newton method as inexact semismooth Newton method (see e.g. [160]).
However, first a numeric integration scheme is chosen. In this thesis the generalized mid point
rule (see e.g. [82]) is used. By rewritting the integral over the inactive set on the reference
element K̂, ∫

I∩K̂
g(x̂1, x̂2) dx̂ =

∫ 1

−1

∫ 1

−1
g(x̂1, x̂2)χI(x̂1, x̂2) dx̂

with the characteristic set

χI(x̂1, x̂2) =
{

1 (x̂1, x̂2) ∈ I

0 else

the numeric integration can be performed by computing∫ 1

−1

∫ 1

−1
g(x̂1, x̂2)χI(x̂1, x̂2) dx̂ ≈ h2

n

n∑
i,j=1

g(xi, xj)χI(xi, xj).

There, hn = 2
n denotes the mesh-with of the numeric integration and xi = −1 +hn

(
i− 1

2

)
for

i = 1, . . . , n are the integration points. n is a parameter in order to make the uniform grid
for the numeric integration finer or coarser. The mesh-width hn of the numeric integration is
especially independent of the mesh size of the element in the mesh.
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In order to get general error estimates, first the error of that numeric integration has to be
estimated. However, due to the non-continuity of the integrand, the usual error estimates of
numeric integration with the generalized mid point rule are not applicable. Estimates which
use the supremum of g(x̂1, x̂2)χI(x̂1, x̂2) in combination with the mesh-width hn, seems to be
too coarse, especially since g(x̂1, x̂2)χI(x̂1, x̂2) is unknown and might get very large.

Remark 4.31. Further possibilities to estimate the overall error are using general approaches
to estimate the integration error by using Strang’s Lemma (see e.g. [51, 76]). There, usually
the Bramble-Hilbert lemma is used. In order to apply that lemma, the numeric integration has
to be exact for a given polynomial degree p. However, in case of curves as in figure 4.31, this
is not possible for the generalized mid point rule. A possible integration rule which is exact
for constant functions (p = 0) is

∫
I
g(x̂1, x̂2) dx ≈

n∑
i=1

ωig(x̂1i, x̂2i) (4.30)

with the weights ωi = area(I)
n and suitable integrations points (x̂1i, x̂2i) ∈ I for i = 1, . . . , n.

Again n is a parameter in order to make the integration routine better. Nevertheless, in case
of applying the integration rule (4.30) the best expected convergence rate is h, which is less
then the yielded one for the unperturbed system with convergence rate two.

Remark 4.32. If the perturbations are small enough, it might even be possible to apply
[85, theorem 3.4]. Nevertheless, also in this case the error which occurs due to the numeric
integration has to be estimated.

Remark 4.33. Even if an error estimate is missing – in the yield numerical examples the
generalized mid point rule is used. The given results show, that it works quite well and
especially does not decrease the overall convergence rate.

4.4.3 Suitable starting mesh

Another important part when using the Newton algorithm is to choose a suitable starting
mesh. This is especially important since it is assumed to have only the interface between the
active set Aa and the interface I or the active set Ab and the interface I on one element.
Therewith, before starting the Newton algorithm such a mesh has to be found, see Algorithm
11. After having a suitable starting mesh, the semismooth Newton algorithm (algorithm 8)

Algorithm 11: calculate starting mesh
input : starting value u0 ∈ U
output: adjoint q
compute adjoint q for u0 (for calculating active and inactive sets)
while ∃K : uK1 = ua and uK2 = ub for K1,K2 ⊂ K do

find all elements K with uK1 = ua and uK2 = ub where K1,K2 ⊂ K
do h-refinement for these elements
map q with algorithm 6 to new mesh and set constraints → unew
compute adjoint q for unew
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is used to solve the distributed optimal control problem. For constant constraints ua and ub,
as starting vector ~u0 in the first step the i- component of the vector

(u0)i = ua + ub
2

and in all further refinement steps, the solution of the former mesh is used. This is realized
by projecting the adjoint after solving the system and refining the mesh to the new mesh by
algorithm 6.

Remark 4.34. The given procedure with the starting mesh only makes sense if the adjoint
is not oscillating. In such a case the mesh is already quite fine, therewith uniform h-fem or
possibly adaptive h-fem is proposed.

4.4.4 Numerical examples

In this section several distributed optimal control problems are solved to show that the pro-
posed hp-refinement strategies are working, but also to confirm the expectation that hp-
refinement reduces the number of degrees of freedom.
Although, there are no theoretical estimates on this topic to the best knowledge of the author,
a reduction of degrees of freedom will simplify and accelerate the simulation of distributed
optimal control problems significantly.

Remark 4.35. In the plots of the solution only the values at the nodes are used for plotting.
However, for the calculation of the solution, hp-refinement is used as it is for the calculation
of the L2-error.

4.4.4.1 Example Square

The first example is taken from [158], see also [166] where the interior point method instead
of the semismooth Newton method is used to solve the problem. It is given by

min J(y, u) := 1
2‖y − yd‖

2
L2(Ω) + α

2 ‖u‖
2
L2(Ω) +

∫
Γ
eqy dsx

subject to

−∆y(x) + y(x) = u(x) + f(x) in Ω
∂y

∂n
(x) = 0 on Γ = ∂Ω

(4.31)

and the box constraints on the control

ua ≤ u(x) ≤ ub a.e. in Ω.

The desired state yd, the inhomogenities ey, eq, the right-hand-side f , the box constraints
ua, ub and the regularization parameter α are given. In the following examples the regular-
ization parameter α is set to 1.
By introducing the adjoint state q given by

−∆q(x) + q(x) = y(x)− yd(x) in Ω
∂q

∂n
(x) = eq(x) on Γ,

(4.32)



88 4 Optimal control problems with semismooth Newton

p=1 p=1
p=2
p=3
p=4
p=5
p=6
p=7

Figure 4.32: initial mesh and nic-refined mesh for example 4.4.4.1

in order to calculate the solution to the problem, the equation system of the primal equation
(4.31), the dual equation (4.32) and the projection formula

u(x) = −P[0.0,1.0](q(x))

has to be solved (according to theorem 2.4 and theorem 2.5).
As solution to the problem

r(x) = (x1 − 0.5)2 + (x2 − 0.5)2,

q(x) = −12r(x) + 1
3 ,

y(x) = 1.0,

is used with the domain (0, 1)2. The data is therewith implicitly given. Since the polynomial
degree is only two, this example is mainly considered in order to give a first glance on the sug-
gested refinement and enable furthermore a direct comparison with the results in [158, 166].
The initial mesh obtained with algorithm 11 from a mesh with nine nodes is given in figure
4.32. There, the polynomial distribution after some nic-refinement steps is given. A com-
parison with the results in [166, figure 6.1] where interior point methods are used for the
refinement, shows similar results.
In figure 4.33 the L2 error with respect to the mesh size h and the number of degrees of
freedom N is given. The expected convergence rate given by the theory is two for a uniform
h-refinement. The right plot in figure 4.33 shows that for both refinements a convergence rate
of two is yielded, i.e. the convergence rate from theory is yielded. However, a comparison
of the L2 error with respect to the number of degrees of freedom (right plot in figure 4.33)
shows, that the suggested application of a suitable hp-refinement, the nic-refinement, leads
to better results, i.e. in the case of an L2 error about 4.0e − 5, uniform h-refinement needs
about 300 000 degrees of freedom, whereas nic-refinement only needs about 40 000 degrees of
freedom.
In figure 4.34 the state and the adjoint are plotted for nic-refinement, in figure 4.35 the control
u is given. These plots show, that the state y is constant, i.e. y(x) = 1.0. A comparison
between the adjoint in figure 4.34 and in figure 4.35 for the control u shows, on the one side,
that there are both active and inactive parts for the control u. Moreover, it can be seen, that
the control is in fact the truncated adjoint q if the values of the adjoint are not in between the
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Figure 4.33: comparison of uniform h- and nic-refinement for example (4.4.4.1)

Figure 4.34: adjoint q and state y for example 4.4.4.1

Figure 4.35: control u for example 4.4.4.1
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box constraints. A glance at the refinement, i.e. the distribution between elements with low
polynomial degree (and small mesh size), and high polynomial degree (and big mesh size),
shows, that the interface elements, i.e. the elements that have active and inactive parts, are
exactly at the set of the cuts. This shows that the refinement works as expected.

4.4.4.2 Example Sinus

As second example, an example with known analytical solution but higher polynomial degree
in the solution, is considered. Again, the domain is a square, however now it is chosen to be
(−1, 1)2. It is assumed to have homogeneous Dirichlet boundary on the whole boundary.
The problem is given by

min J(y, u) := 1
2‖y − yd‖

2
L2(Ω) + 1

2‖u‖
2
L2(Ω)

subject to the primal equation

−∆y(x) + y(x) = u(x) + f(x) in Ω
y(x) = 0 on Γ = ∂Ω

(4.33)

Additionally for the control there hold the box constraints

−0.7 ≤ u ≤ 0.75 a.e. in Ω

According to theorem 2.4 and theorem 2.5, the problem can even be described by the primal
equation (4.33), the adjoint equation

−∆q(x) + q(x) = y(x)− yd(x) in Ω
q(x) = 0 on Γ

and the projection formula

u(x) = P[−0.7,0.75](−q(x)).

The solution is given by

y(x) = (x2
1 − 1)(x2

2 − 1) sin(πx1) cos(πx2),
q(x) = (x2

1 − 1)(x2
2 − 1) sin(πx1).

First, the obtained convergence rate is considered. In figure 4.36 it can be observed, that
both – uniform h- and nic-refinement – yield the same rate of convergence, i.e. a convergence
rate of two. Therewith the theoretical results for uniform h-fem are confirmed.
However, a comparison of the L2 error versus the number of degrees of freedom for uniform
h-refinement and nic-refinement is given in figure 4.37 and shows the advantage of the nic-
refinement. Even though the convergence rate is two in both cases, the choice of the nic-
refinement leads to a substantially decrease of the number of degrees of freedom and faster
convergence.
Second, a comparison between the two proposed refinements, the nic-refinement and the
refinement with additional use of error estimators, called errest-refinement (see algorithm
10), is used. The results are given in figure 4.38, where the expected convergence rate for
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Figure 4.36: comparison of h- and nic-refinement for example 4.4.4.2
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Figure 4.37: comparison of h- and nic-refinement for example 4.4.4.2
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Figure 4.38: comparison of nic- and errest- refinement for 4.4.4.2
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Figure 4.39: meshes yielded with nic-refinement (left), meshes yielded with errest-refinement
(right) for example 4.4.4.2

Figure 4.40: state y and adjoint q with nic-refinement for example 4.4.4.2

Figure 4.41: control u with nic-refinement for example 4.4.4.2



4.4 Distributed optimal control problem 93

uniform h-refinement is plotted in black. It has to be stated that both refinements lead to
better results than a uniform h-refinement would yield. Furthermore, it can be observed that
both refinements yield similar results, but the L2 error with respect to N decreases faster for
the state y. This effect occurs, since the primal equation, i.e. the state y, is used in algorithm
10.

Remark 4.36. The choice of using error estimators for the state y instead of the adjoint q
in here, is motivated by expecting to get broader information on the regularity of the whole
problem, since the adjoint is already used in the projection formula. Different choices and
especially the combination of using error estimators for the state and the adjoint are possible.

The polynomial distribution of the meshes for nic- and errest-refinement are given in figure
4.39. These polynomial distributions (in fact the polynomial distribution of the elements,
since the polynomial distribution of the edges is determined by the minimal degree condi-
tion) show that for both refinements, the elements’ size near the interface decreases, whereas
the polynomial degree increases if the distance to the interface gets bigger. The differences
between the two refinements is mainly, that in case of nic-refinement all corner elements are
h-refined, which is not the case for errest-refinement. The reason therefore is, that there occur
no singularities in the corners.

Remark 4.37. In the examples in here a difference of two for the polynomial degrees in the
errest-refinement is allowed.

The solution – calculated with nic-refinement – can be found in figure 4.40, the corresponding
control u is given in figure 4.41. There, it can be observed that again both constraints are
active. The set Aa is located at the bigger curve – similar to an ellipse – which is plotted
in blue in figure 4.41. The smaller ellipse – plotted in red in figure 4.41 shows the set Ab.
Outside of these curves, the box constraints are inactive, i.e. are contained in the set I.

4.4.4.3 Example Hole

Next, an example with more complex geometry and unknown solution is given (see figure
4.42). The domain is a subset of the square (0, 3)2, i.e. that set without the set {(x1, x2) |1 ≤
xi ≤ 2, i = 1, 2}. The primal and the dual problem are given by

−∆y(x) + y(x) = u(x) in Ω
y(x) = 0 on Γ = ∂Ω

−∆q(x) + q(x) = y(x)− yd(x) in Ω
q(x) = 0 on Γ.

The control is given by the projection formula

u(x) = P[−0.3,0.95] (−q(x))

and the desired state is given by

yd(x) = 10 sin(πx1) + 5 cos(πx2
2).

The corresponding meshes are given in figure 4.42 for nic- and errest-refinement. As in the
example before, these meshes, which show the polynomial distribution of the elements, are
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Figure 4.42: meshes for nic- and errest- refinement for example 4.4.4.3

Figure 4.43: adjoint q (left) and control u (right) for nic-refinement for example 4.4.4.3

Figure 4.44: state y for nic-refinement (left) and errest-refinement (right) for example 4.4.4.3
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Figure 4.45: adjoint q (left) and control u (right) for errest-refinement for example 4.4.4.3

quite similar. It can be observed, that the interfaces between the active and inactive set are
in the same places. In the case of nic-refinement in all corners h-refinement is performed,
whereas in errest-refinement only L-shape corners are h-refined.
For both refinements the solution is calculated. Figure 4.43 shows the adjoint q and the
control u for the nic-refinement, in figure 4.44 the corresponding state y is plotted. The state
for errest-refinement is plotted there too, the adjoint and the control for errest-refinement can
be found in figure 4.45.
For a description of the results, the concentration is on the nic-refinement (interpretation
of errest-refinement leads to analog considerations). As expected the control u is between
−0.3 and 0.95. The round curves and the 8-shapes show the interface between the active
and inactive sets. The active sets Aa are in blue (for the control u), the active sets Ab are
the truncated red hills in figure 4.43. Again the mesh size (and the polynomial degree) near
the interface is small, whereas it gets bigger if the distance to it increases. Moreover, the
polynomial degree increases for elements who are far from the interface (i.e. on active or
inactive elements) and for elements which do not live near corners of the domain.

4.4.4.4 Example Double L

Last, a further example with unknown solution is considered. Its geometry is given in figure
4.46. The primal and the dual problem are given by

−∆y(x) + y(x) = u(x) in Ω
y(x) = 0 on Γ = ∂Ω

−∆q(x) + q(x) = y(x)− yd(x) in Ω
q(x) = 0 on Γ.

The control is given by the projection formula

u(x) = P[0.5,7.7] (−q(x))

and the desired state is given by

yd(x) = x2
1 + (x2 + 1)3(x1 + 1) + 1

3e
x1+x2 .

Again, the example is discretized and calculated with nic- and errest-refinement. The cor-
responding meshes are given in figure 4.46. These refinements show that again for both
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refinements the very small elements with low polynomial degree lie at the interface (compare
with figure 4.47). As in the plots before, in case of nic-refinement all corners are h-refined,
whereas this is not the case for errest-refinement.

p=1
p=2
p=3
p=4
p=5

p=1
p=2
p=3
p=4

Figure 4.46: mesh with nic- and errest- refinement for example 4.4.4.4

Figure 4.47: adjoint q (left) and control u (right) for nic-refinement for example 4.4.4.4

The adjoint and the control for nic-refinement can be found in figure 4.47, the corresponding
state is plotted in figure 4.48. Here, the state for errest-refinement is also given. The control
and the adjoint for errest-refinement are denoted in figure 4.49.
These plots show that the adjoint q is between [−8.15, 0.544] and the state y is in between
[−0.00497, 0.854]. Moreover, the plot for the control shows that there are both active parts
Aa and active parts Ab. The set Aa is mainly on the boundary (in the plot it is blue) whereas
the active set Ab is plotted in red.

Remark 4.38. The numerical results show that the proposed refinement strategies work quite
well and lead indeed to a faster convergence than uniform h-refinement. For the presented
results no huge difference between nic-refinement and errest-refinement can be observed. It is
expected that nic-refinement leads to better results in case of very smooth adjoint and state,
whereas errest-refinement might be better otherwise.
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Figure 4.48: state y for nic-refinement (left) and errest-refinement (right) for example 4.4.4.4

Figure 4.49: adjoint q (left) and control u (right) for errest-refinement for example 4.4.4.4





5 Saddle point problem
The discretization of the distributed optimal control problem (or the optimal boundary control
problem) yields a system of (nonlinear) algebraic equations. Using semismooth Newton, a
system of linear algebraic equations of the form (4.16) or (4.19) has to be solved in each
Newton step. This is performed by a conjugate gradient method or an alternative iterative
method. Note that each iteration requires a matrix-vector-multiplication with the matrix in
(4.16) or (4.19). This involves multiplications with the mass matrix and the inverse of the
stiffness matrix. In two dimensions the fast inversion of the stiffness matrix can be performed
by direct methods in almost optimal arithmetical complexity, see [97], where such a solver was
developed for boundary concentrated fem. However, these direct solvers are too expensive in
three dimensions. Therewith, the focus is now on an alternative solution method, which is
based on a rewriting of the problem in a saddle point formulation.
This chapter is structured as follows: First, the general saddle point formulation considered
later on is given. Since three preconditioned Krylov subspace methods are used to solve the
problem, a short introduction and especially suitable preconditioners for the saddle point
formulation are given. Afterwards, these general considerations are applied to a simplified
optimal control problem for all three methods. Furthermore, estimates on the condition
number and the dependence on problem dependent parameters and discretization parameters
– if possible – are investigated. Finally, numerical examples are presented in order to confirm
theoretical results.
The linear equation system in saddle point formulation(

A B>

B 0

)(
~x
~q

)
=
(
~f
~s

)
(5.1)

is considered under the following assumptions:
Assumption 5.1. Let A ∈ RNA×NA be a symmetric and positive semidefinite matrix, B ∈
RNB×NA has full rank NB ≤ NA. Moreover, it is set N = NA +NB and it holds

〈A~x, ~x〉 > 0 for all ~x ∈ kerB with ~x 6= ~0.

Such systems also result from the discretization of mixed variational problems for systems
of partial differential equations (see e.g. [44]). In particular such problems arise from the
discretization of optimization problems with partial differential equation constraints.
The equation system (5.1) under the assumptions 5.1 can be interpreted as Karush-Kuhn-
Tucker (KKT) conditions of the optimization problem

min
~x

1
2〈A~x, ~x〉 − 〈

~f, ~x〉 subject to the constraints B~x = ~s

with associated Lagrangian parameter ~q (see e.g. [67]).
For simplicity, it is set

A =
(
A B>

B 0

)
,

99
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i.e. the equation system (5.1) can be rewritten as

A~z = ~g. (5.2)

There, A ∈ RN×N and ~z∗ denotes the exact solution.
Next, suitable preconditioners for the Krylov subspace methods introduced in section 1.2 are
investigated. For a general overview of the solution to saddle point problems, see [27] and the
references therein.

5.1 Schöberl-Zulehner PCG
First, a PCG method is applied to the considered saddle point problem (5.1). It has to be
stated that usually – if possible – the PCG method is preferred. There are several methods
to apply a modified CG when dealing with non-symmetric or non-positive definite matrices,
see e.g. [38, 39, 95]. In this thesis, the modified PCG method by Schöberl and Zulehner [139]
is used, since a direct application of the CG is impossible due to the indefiniteness of A. The
Schöberl-Zulehner PCG method is based on choosing a suitable preconditioner in order to
apply the CG method with respect to a non-standard scalar product. As an introduction, the
most important facts of the PCG method by Schöberl and Zulehner, see [139], are recalled.
In this section the preconditioner for A in (5.2), denoted by Pcg, is chosen as

Pcg =
(
Â B>

B BÂ−1B> − Ŝ

)
,

where Â and Ŝ are symmetric and positive definite matrices with respect to the standard
scalar product. Pcg is a well-known class of preconditioners, see e.g. [24]. Moreover, the
following theorem holds:

Theorem 5.2. [139, Theorem 2.1] Let assumption 5.1 and the relations Â > 0 and Ŝ > 0
hold.

1. If

Â ≥ A and Ŝ ≤ BÂ−1B>, (5.3)

then all eigenvalues of P−1
cg A are real and positive.

2. If

Â > A and Ŝ < BÂ−1B>, (5.4)

then P−1
cg A is symmetric and positive definite with respect to the scalar product〈(

~x
~p

)
,

(
~w
~q

)〉
D

= 〈(Â−A)~x, ~w〉+ 〈(BÂ−1B> − Ŝ)~p, ~q〉. (5.5)

The next task is to investigate the condition number, i.e. the quality of the preconditioner.
The preconditioner Pcg consists of two preconditioners Â and Ŝ. Â has to be an approxi-
mation of A, whereas Ŝ approximates the so-called Schur complement BÂ−1B>. Suitable
assumptions on how to choose these approximations are given in the next theorem. It gives
an estimate of the minimal and maximal eigenvalue of the preconditioned system. Therewith,
the condition number κ can be estimated later on.
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Theorem 5.3. [139, Theorem 2.2] Let assumption 5.1 be fulfilled. Furthermore, it is assumed
that the relations Â > 0 and Ŝ > 0 with

〈A~w, ~w〉 ≥ ν1〈Â~w, ~w〉 for all ~w ∈ kerB and Â ≥ A,

and

Ŝ ≤ BÂ−1B> ≤ ν2Ŝ,

with constants ν1, ν2 and 0 < ν1 ≤ 1 and ν2 ≥ 1 hold. Then for the maximal and minimal
eigenvalue it holds

λmax(P−1
cg A) ≤ ν2

(
1 +

√
1− 1

ν2

)

and

λmin(P−1
cg A) ≥ ν1

 2√
1− 1

ν2
+
√

5− 1
ν2

2

> 0.

Due to theorem 1.2 the error of the k-th iteration can be estimated by

‖~ek‖P−1
cg A

‖~e0‖P−1
cg A

≤ 2ρk

1 + ρ2k (5.6)

with ~ek = ~zk − ~z∗ and

ρ =

√
κ(P−1

cg A)− 1√
κ(P−1

cg A) + 1
.

There κ(P−1
cg A) denotes the condition number

κ(P−1
cg A) =

λmax(P−1
cg A)

λmin(P−1
cg A)

.

Due to (5.6) an application of theorem 5.3 yields an upper bound for the condition number
(see [139])

κ(P−1
cg A) ≤ ν2

ν1

(
1 +

√
1− 1

ν2

)
√

1− 1
ν2

+
√

5− 1
ν2

2

2

= κ(ν1, ν2). (5.7)

That indicates a condition number depending on the constants ν1 and ν2 only.

Remark 5.4. The closer the constants ν1 and ν2 are to one, the better the preconditioner
Pcg is expected to be.
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The next task is to investigate the conditions for the choice of suitable preconditioners. The
combination of theorem 5.3 and theorem 5.2 allow the application of the CG to the precon-
ditioned system

P−1
cg A

(
~x
~q

)
= P−1

cg

(
~f
~s

)
,

assuming

〈A~x, ~x〉 ≥ ν1〈Â~x, ~x〉 for all ~x ∈ kerB and Â > A (5.8)

and

Ŝ < BÂ−1B> ≤ ν2Ŝ, (5.9)

since the scalar product (5.5) is well defined under these assumptions. To ensure that the
preconditioners Â and Ŝ fulfill the conditions for applying the CG method, the construction
of Â and Ŝ is separated in two parts. First, two preliminary candidates Â0 and Ŝ0 are chosen,
which approximate A and BÂ−1

0 B> respectively. Second, the chosen candidates are scaled
properly, i.e.

Â = 1
σ
Â0

and

Ŝ = σ

τ
Ŝ0,

where the positive constants σ and τ have to be chosen such that (5.4) holds, i.e.

1
σ
Â0 > A and 1

τ
Ŝ0 < BÂ−1

0 B>. (5.10)

This shows, that a suitable choice of the parameters σ and τ requires at least some knowledge
of the eigenvalues. To derive these estimates, the Rayleigh-coefficient (1.2) is used. For the
choice of σ one has by Â > A the relation

1
σ
Â0 > A

which is equivalent to

1
σ
~x>~x > ~x>Â−1

0 A~x.

By using the Rayleigh-coefficient, one can deduce

~x>Â−1
0 A~x ≤ λmax(Â−1

0 A)~x>~x

and choose
1
σ

= λmax(Â−1
0 A) + ε̃ (5.11)
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Algorithm 12: PCG method for saddle point problem, see [139]
input : A,P−1

cg , ~g, ~z0
output: ~zk+1

for k = 0, 1, 2, . . . do
if k = 0 then

~pk = ~r0
else

βk−1 = − 〈P−1
cg A~rk,~pk−1〉D

〈P−1
cg A~pk−1,~pk−1〉D

~pk = ~rk + βk−1~pk−1

αk = 〈P−1
cg (~g−A ~zk),~pk〉D
〈P−1

cg A~pk,~pk〉D
~zk+1 = ~zk + αk~pk
~rk+1 = ~rk − αkP−1

cg A~pk

with ε̃ > 0. For the choice of τ one has

1
τ

= λmin(Ŝ−1
0 BÂ−1

0 B>)− ε̃ (5.12)

by the same arguments. The values ν1 and ν2 are only necessary for analysis but not for the
construction of the preconditioners.
It has to be mentioned, that the Schöberl-Zulehner PCG method requires the evaluation of
the non-standard scalar product〈(

~x
~p

)
,

(
~w
~q

)〉
D

= 〈(Â−A)~x, ~w〉+ 〈(BÂ−1B> − Ŝ)~p, ~q〉.

Therewith, a straightforward implementation of the Schöberl-Zulehner PCG method would
lead to

D
(
~w
~q

)
with D =

(
Â−A 0

0 BÂ−1B> − Ŝ

)
= Pcg −A,

i.e. matrix-vector multiplications with Â, Â−1 and Ŝ have to be available. This would be
very cost-intensive. A closer look onto the Schöberl-Zulehner PCG method shows that the
multiplication with D is only required for vectors of the form(

~w
~q

)
= P−1

cg

(
~v
~t

)
.

Since it holds

D
(
~w
~q

)
= DP−1

cg

(
~v
~t

)
= (Pcg −A)P−1

cg

(
~v
~t

)
=
(
~v
~t

)
−A

(
~w
~q

)
,

the evaluation of the scalar product involves only multiplications with A. Furthermore, an
application of P−1

cg requires only matrix-vector multiplications with Â−1 and Ŝ−1, due to
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(1.1). Using (5.6), the quality of the approximation is measured by the energy norm, i.e.

‖~ek‖DP−1
cg A

‖~e0‖DP−1
cg A

≤ ε, (5.13)

with a given tolerance ε. Nevertheless, since ~ek = ~zk − ~z∗ the calculation of (5.13) is difficult
in practice since the exact solution ~z∗ is usually unknown. However, it can be used for testing
the algorithm with a known solution. In these cases the solution ~z∗ is usually constructed
such that ~z∗ = ~0 holds. A more practicable termination condition is the use of the residuum
~rk and the calculation of

‖~rk‖2
‖~r0‖2

≤ ε. (5.14)

Numerical experiments in [139] indicate a similar behavior of the residual in the Euclidean
norm (5.13) although this is not predicted by theory.

5.2 MINRES
The second Krylov subspace method which is applied to the saddle point problem (5.1) is the
MINRES, see subsection 1.2.2. Since the system matrix A is symmetric but indefinite, the
requirements for applying the MINRES are fulfilled.
The goal now is to find a suitable preconditioner to keep the iteration numbers of the precon-
ditioned saddle point problem to a minimum. A possible choice of a suitable preconditioner
P for A is given in the next theorem.

Theorem 5.5. ([119, Proposition 1, Remark 1]) If

A =
(
A B>

B 0

)

is preconditioned by

P =
(
A 0
0 BA−1B>

)
, (5.15)

then the preconditioned system matrix T = P−1A, has the eigenvalues

λ1 = 1
2
(
1−
√

5
)
,

λ2 = 1,

λ3 = 1
2
(
1 +
√

5
)
.

Remark 5.6. ([119]) Theorem 5.5 even holds if A is preconditioned by AP−1 or by P−1
1 AP

−1
2

where P = P1P2.

Remark 5.7. Due to theorem 5.5 there exist only three eigenvalues and the preconditioned
MINRES terminates after three iterations because then (1.6) is zero.

In general there are two possibilities to use these theoretical results.
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5.2.1 Exact inverse as preconditioners

The first possibility is, to use the preconditioner (5.15) directly, i.e.

P−1
minres,e =

(
A−1 0

0 (BA−1B>)−1

)
. (5.16)

There, system solves of A and BA−1B> are necessary in order to apply P−1
minres,e (see algorithm

13). These system solves can be performed by an inner iterative method, for example by
suitable preconditioned Krylov subspace methods. In this case, the eigenvalues of the system
are known, see theorem 5.5 and the outer iteration takes three iterations (see remark 5.7).

5.2.2 Block diagonal preconditioner

To avoid the system solves of A and especially BA−1B>, these matrices can be substituted
by suitable preconditioners. In this case the block diagonal preconditioner

Pminres,d =
(
Â 0
0 Ŝ

)
, (5.17)

is used. There, it remains to find symmetric and positive definite preconditioners Â and Ŝ.
However, since remark 5.7 only holds for the exact inverse matrices as preconditioners, in the
considered case the convergence theory does not hold any longer. Nevertheless, according to
[14], the following holds

Theorem 5.8. ([14, Corollary 2]) Let Â and Ŝ be symmetric and positive definite precon-
ditioners to A and S, respectively. Then, the eigenvalues P−1

minres,dA are contained in the
intervals−λmax(Ŝ−1S), −λmin(Ŝ−1S)

1 + 1
λmin(Â−1A)

 ∪ [λmin(Â−1A), λmax(Â−1A) + λmax(Ŝ−1S)
]
.

The theorem above states, that the eigenvalues of the preconditioned system only depend on
the choice of the preconditioners Â and Ŝ. By applying theorem 1.3 and by using suitable
preconditioners, discretization parameter independent results can be yielded.
In the case of using the diagonal block preconditioner Pminres,d, algorithm 2 can be applied
directly with Pminres = Pminres,d. If the exact inverse matrices are taken as preconditioners,
i.e. Pminres,e, algorithm 13 is used.

Algorithm 13: application of P−1
minres,e

input : ~x = (~w, ~z)
output: ~xnew = (~wnew, ~znew)
in each call of Pminres,e of algorithm 2 do

solve Â−1A~wnew = ~w with suitable iterative method
solve Ŝ−1(BA−1B>)~znew = ~z with suitable iterative method
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5.3 GMRES
The third method applied to the saddle point problem (5.1) is the GMRES. Although the
matrix only needs to be regular for an application of the GMRES, the drawback is that there
is no convergence theory if the matrix A is only regular (see subsection 1.2.3).
Nevertheless, a preconditioner is chosen for the GMRES. Inspired by the preconditioner for
the PCG method,

Pgmres =
(
Â B>

B BÂ−1B> − Ŝ

)
(5.18)

is used. There, Â is a suitable preconditioner for A and Ŝ a suitable preconditioner for the
Schur complement BÂ−1B>. Due to (1.1), the inverse of Pgmres is then given by

P−1
gmres =

(
Â−1 − Â−1B>ŜBÂ−1 Â−1B>Ŝ

Ŝ−1BÂ−1 −Ŝ−1

)
,

since the Schur complement of Pgmres is

BÂ−1B> −BÂ−1B> − Ŝ = −Ŝ.

Therewith, the application of Pgmres only needs the inversion of Ŝ and Â. Here, for the
GMRES left preconditioning is used, i.e.

P−1
gmresA~z = P−1

gmres~g. (5.19)

Remark 5.9. Although the matrix P−1
gmres and A are symmetric, the product P−1

gmresA is not
symmetric. Therewith, the matrix P−1

gmresA is non-normal.

If the preconditioner P−1
cg instead of P−1

gmres is used, an estimate on the convergence rate can
be given by [112, Corollary 4.79], since then a positive definite system matrix is yielded (due
to theorem 5.2 the eigenvalues are real and positive in this case). Since the calculation of σ
and τ shall be avoided, this choice is not used for the GMRES.
In the next subsections, the Krylov subspace methods are applied to optimal control problems.
First, a suitable problem is given and the assumption for existence and uniqueness in the
saddle point formulation are checked. For similar results and further literature, see e.g.
[83, 130, 139, 145, 146].

5.4 Application to an optimal control problem
Considered is the optimal control problem

min
y,u

J(y, u) = min
y,u

(1
2

∫
Ω

(y(x)− yd(x))2 dx+ α

2

∫
Ω
u2(x) dx

)
subject to

−∇ ·D(x) (∇y(x)) + c(x)y(x) = u(x) + f(x) in Ω,
y(x) = 0 on ΓD,

D(x)∂y
∂n

(x) = 0 on ΓN ,
(5.20)

where the following assumptions hold:
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Assumption 5.10. The domain Ω ⊂ Rd is open, bounded and has a polygonal boundary
∂Ω := Γ = ΓD∪ΓN and ΓN ∩ΓD = ∅. For the coefficients D and c it holds that D, c ∈ L∞(Ω),
D > 0, c ≥ 0, and if meas(ΓD) = ∅ it holds c > 0. Moreover D and c are chosen such that the
differential operator is uniformly elliptic. For the regularization parameter α it holds α > 0,
the desired state yd ∈ L2(Ω) and f ∈ L2(Ω).

To solve the optimal control problem the adjoint state q is introduced. The adjoint state q is
the weak solution to

−∇ ·D(x) (∇q(x)) + c(x)q(x) = yd(x)− y(x) in Ω,
q(x) = 0 on ΓD,

D(x) ∂q
∂n

(x) = 0 on ΓN .
(5.21)

Since there are no bounds on the control, the projection formulation is given by

u(x) = 1
α
q(x) in Ω, (5.22)

see e.g. [158]. The goal is to write the problem in a saddle point formulation. This section
follows the ansatz in [139]. There a α independent preconditioned CG-version is developed
for the considered optimal control problem with D = c = 1. It is solved with a uniform
h-fem discretization and polynomial degree p = 1. An extension to coefficients D, c under the
assumption 5.10 is straightforward and is given here. The main result is the extension of the
solver [139] for hp-fem.

Remark 5.11. For the convenience of the reader in further Γ = ΓN is assumed. The case
of homogeneous Dirichlet boundary or mixed boundary conditions can be proven by the same
arguments.

For rewriting the problem, let X,Q denote real Hilbert spaces, where the space X = Y × U
with Y = H1(Ω), U = L2(Ω) and Q = H1(Ω). For z = (y, u), z̃ = (ỹ, ũ) the optimal control
problem can be formulated as

a(z, z̃) + b(z̃, q) = 〈F, z̃〉Ω for all z̃ ∈ X
b(z, q̃) = 〈G, q̃〉Ω for all q̃ ∈ Q

(5.23)

with the bilinear forms

a(z, z̃) =
∫

Ω
yỹ dx+ α

∫
Ω
uũdx (5.24)

b(z, q̃) =
∫

Ω
D∇y · ∇q̃ dx+

∫
Ω
cyq̃ dx−

∫
Ω
uq̃ dx (5.25)

and the linear forms

〈F, z̃〉Ω =
∫

Ω
ydỹ dx,

〈G, q̃〉Ω =
∫

Ω
f q̃ dx.

There, the second equation in (5.23) represents the variational formulation of (5.20), where
the first equation in (5.23) represents the sum of (5.21) and (5.22). For the existence and
uniqueness of solutions to (5.23) Brezzis theorem can be applied.
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Theorem 5.12. (Brezzis theorem, see e.g. [44]) Let X,Q denote real Hilbert spaces,
a : X ×X → R, b : X × Q → R are bilinear forms, F : Q → R is a continuous linear
functional. Furthermore, it is assumed that:

1. The bilinear form a(·, ·) is bounded:

a(z, w) ≤ a0‖z‖X‖z̃‖X ∀ z, z̃ ∈ X.

2. The bilinear form a(·, ·) is coercive on kerB = {z̃ ∈ X : b(z̃, q̃) = 0 ∀ q̃ ∈ Q}, i.e.
there exists a constant a1 > 0 such that

a(z̃, z̃) ≥ a1‖z̃‖2X ∀ z̃ ∈ kerB.

3. The bilinear form b(·, ·) is bounded:

∃ b0 > 0 : sup
06=z∈X

b(z, q)
‖z‖X

≤ b0‖q‖Q ∀ q ∈ Q.

4. The bilinear form b(·, ·) satisfies the inf-sup condition: There exists a constant b1 > 0
such that

sup
06=w∈X

b(w, q)
‖w‖X

≥ b1‖q‖Q ∀ q ∈ Q.

Then, for (z, q) ∈ X ×Q such that

a(z, z̃) + b(z̃, q) = 〈F, z̃〉 ∀ z̃ ∈ X
b(z, q̃) = 〈G, q̃〉 ∀ q̃ ∈ Q

exists a unique solution and the a-priori estimates

‖z‖X ≤
1
a1
‖F‖X∗ + 1

b1

(
1 + a0

a1

)
‖G‖Q∗

‖q‖Q ≤
1
b1

(
1 + a0

a1

)
‖F‖X∗ + a0

b21

(
1 + a0

a1

)
‖G‖Q∗

hold.

With Brezzis theorem 5.12 the unique solvability of the saddle point problem (5.23) is shown.
As in [139] non-standard scalar products are introduced to obtain α-independent constants
a0, a1, b0 and b1. Therefore let

〈u, ũ〉U = α〈u, ũ〉Ω
〈y, ỹ〉Y = 〈y, ỹ〉Ω +

√
α〈D∇y,∇ỹ〉Ω +

√
α〈cy, ỹ〉Ω

〈q, q̃〉Q = 1
α
〈q, q̃〉Ω + 1√

α
〈D∇q,∇q̃〉Ω + 1√

α
〈cq, q̃〉Ω

denote scalar products in U, Y and Q. The scalar product in the space X is given by

〈z, z̃〉X = 〈u, ũ〉U + 〈y, ỹ〉Y for z = (y, u), z̃ = (ỹ, ũ) ∈ X.

Then, the energy norms are defined as

‖z‖2X = 〈z, z〉X ,
‖q‖2Q = 〈q, q〉Q.
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Remark 5.13. For fixed α > 0 the introduced norms are equivalent to the usual H1(Ω) norm.

Next, the assumptions of Brezzis theorem 5.12 are checked.

Lemma 5.14. Let the bilinear forms

a(z, z̃) =
∫

Ω
yỹ dx+ α

∫
Ω
uũdx

b(z, q̃) =
∫

Ω
D∇y · ∇q̃ dx+

∫
Ω
cyq̃ dx−

∫
Ω
uq̃ dx

be given. Then it holds:

1. The bilinear form a(·, ·) is bounded, i.e.

a(z, z̃) ≤ ‖z‖X‖z̃‖X ∀ z, z̃ ∈ X.

2. The bilinear form a(·, ·) is coercive on kerB, i.e.

a(z, z̃) ≥ 2
3‖z̃‖

2
X ∀ z̃ ∈ ker B.

3. The bilinear form b(·, ·) is bounded , i.e.

sup
06=z̃∈X

b(z̃, q)
‖z̃‖X

≤ ‖q‖Q ∀ q ∈ Q.

4. The bilinear form b(·, ·) fulfills the inf-sup-condition

sup
06=z̃∈X

b(z̃, q)
‖z̃‖X

≥
√

3
4‖q‖Q ∀ q ∈ Q.

Proof. The proof is separated in four parts and follows the proof [139, Lemma 4.1]. There
the case D = c = 1 is proven. Furthermore the proof uses ideas of [83, Lemma 3.1].
Boundedness of a(·, ·). There Cauchy-Schwarz in R2, i.e.

ab+ αcd ≤ (a2 + αc2)1/2(b2 + αd2)1/2, (5.26)

is used. For proving the first inequality, one starts with the bilinear form, apply the triangle
inequality and Cauchy-Schwarz inequality and yields

|a(z, z̃)| =
∣∣∣∣∫

Ω
yỹ dx+

∫
Ω
αuũdx

∣∣∣∣
≤
∣∣∣∣∫

Ω
yỹ dx

∣∣∣∣+ α

∣∣∣∣∫
Ω
uũdx

∣∣∣∣
≤ ‖y‖L2(Ω)‖ỹ‖L2(Ω) + α‖u‖L2(Ω)‖ũ‖L2(Ω).

Application of (5.26) leads to

|a(z, z̃)| ≤

‖y‖2L2(Ω)︸ ︷︷ ︸
≤‖y‖2Y

+α‖u‖2L2(Ω)︸ ︷︷ ︸
≤‖u‖2U


1/2‖ỹ‖2L2(Ω)︸ ︷︷ ︸

≤‖ỹ‖2Y

+α‖ũ‖2L2(Ω)︸ ︷︷ ︸
≤‖ũ‖2U


1/2

≤ ‖z‖X‖z̃‖X ,
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i.e. the desired estimate.
For proving the coercivity on kerB of the bilinear form a(·, ·) one considers b(z̃, q̃) = 0,
with z̃ = (ỹ, ũ) i.e. ∫

Ω
D∇ỹ · ∇q̃ dx+

∫
Ω
cỹq̃ dx =

∫
Ω
ũq̃ dx

≤ ‖ũ‖L2(Ω)‖q̃‖L2(Ω) (5.27)

and applies the estimate above on the rewritten norm

‖z̃‖2X = ‖ỹ‖2Y + ‖ũ‖2U
= ‖ỹ‖2L2(Ω) +

√
α (〈D∇ỹ,∇ỹ〉Ω + 〈cỹ, ỹ〉Ω) + α‖ũ‖2L2(Ω)

(5.27) with q̃=ỹ
≤ ‖ỹ‖2L2(Ω) +

√
α‖ũ‖L2(Ω)‖ỹ‖L2(Ω) + α‖ũ‖2L2(Ω).

To fulfill the desired estimate, a suitable constant a1 to fulfill

a(z̃, z̃) ≥ a1‖z̃‖2X ∀ z̃ ∈ X

is needed. To obtain the desired estimate, equivalent transformations are performed. Since
it is

a(z̃, z̃) = ‖ỹ‖2L2(Ω) + α‖ũ‖2L2(Ω),

setting

χ =
√
α‖ũ‖L2(Ω)

ζ = ‖ỹ‖L2(Ω),

yields that

χ2 + ζ2 ≥ 2
3
(
χ2 + χζ + ζ2

)
has to be proved. This is fulfilled, since it is equivalent to

1
3(χ− ζ)2 ≥ 0.

Therewith it holds

a(z̃, z̃) ≥ 2
3‖z̃‖

2
X ∀ z̃ ∈ X,

i.e. the kerB coercivity of a(·, ·) holds.
For the boundedness of the bilinear form b(·, ·) an application of Cauchy-Schwarz leads
to

b(z, q) =
∫

Ω
D∇y · ∇q dx+

∫
Ω
cyq dx−

∫
Ω
uq dx

≤
(∫

Ω
D∇y · ∇y dx

)1/2 (∫
Ω
D∇q · ∇q dx

)1/2
+
(∫

Ω
cyy dx

)1/2 (∫
Ω
cqq dx

)1/2

+ ‖u‖L2(Ω)‖q‖L2(Ω).
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Using Cauchy-Schwarz in R3, i.e.

ab+ cd+ ef ≤
(
αe2 +

√
αa2 +

√
αc2

)1/2
( 1
α
f2 + 1√

α
b2 + 1√

α
d2
)1/2

,

this yields

b(z, q) ≤
(
α‖u‖2L2(Ω) +

√
α〈D∇y,∇y〉Ω +

√
α〈cy, y〉Ω

)1/2

( 1
α
‖q‖2L2(Ω) + 1√

α
〈D∇q,∇q〉Ω + 1√

α
〈cq, q〉Ω

)1/2

≤ ‖z‖X‖q‖Q.

Since it holds for all z ∈ X, q ∈ Q it follows

sup
06=z∈X

b(z, q)
‖z‖X

≤ ‖q‖Q.

The inf-sup condition is based on

(a− b)2

c2 + d2 ≤
a2

c2 + b2

d2 with equality for ac2 = −bd2.

Considering the supremum, it is

sup
06=z̃∈X

b(z̃, q)
‖z̃‖2X

= sup
06=(ỹ,ũ)∈Y×U

(〈D∇ỹ,∇q〉Ω + 〈cỹ, q〉Ω − 〈ũ, q〉Ω)2

‖ỹ‖2Y + ‖ũ‖2U

= sup
06=ỹ∈Y

(〈D∇ỹ,∇q〉Ω + 〈cỹ, q〉Ω)2

‖ỹ‖2Y
+ sup

06=ũ∈U

〈ũ, q〉2Ω
‖ũ‖2U

,

where ỹ, ũ are chosen such that

(〈D∇ỹ,∇q〉Ω + 〈cỹ, q〉Ω)‖ỹ‖2Y = −〈ũ, q〉Ω‖ũ‖2U .

The second term can be reformulated by using Cauchy Schwarz and a special choice of ũ = q,
i.e.

sup
06=ũ∈U

〈ũ, q〉2Ω
‖ũ‖2U

≥ 〈q, q〉2Ω
α‖q‖2L2(Ω)

≥ 1
α
‖q‖2L2(Ω).

Considering again the whole term and using the choice of ỹ = q, it follows

sup
06=z̃∈X

b(z̃, q)
‖z̃‖2X

≥ (〈D∇q,∇q〉Ω + 〈cq, q〉Ω)2

‖q‖2Y
+ 1
α
‖q‖2L2(Ω).

To derive the inf-sup condition

sup
06=z̃∈X

b(z̃, q)
‖z̃‖X

≥ b1‖q‖Q,
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equivalent formulations are used to find a suitable value b1. Using the results from above and
setting d2 = 〈D∇q,∇q〉Ω + 〈cq, q〉Ω for simplicity, one considers

d4

‖q‖2Y
+ 1
α
‖q‖2L2(Ω) ≥ b

2
1‖q‖2Q,

⇔ d4 + 1
α
‖q‖2L2(Ω)‖q‖

2
Y ≥ b21‖q‖2Q‖q‖2Y ,

⇔ d4 + 1
α

(
‖q‖L2(Ω) +

√
αd2

)
≥ b21

( 1
α
‖q‖2L2(Ω) + 1√

α
d2
)(
‖q‖2L2(Ω) +

√
αd2

)
.

Therewith, it holds the equivalent equation

(1− b21)d4 + 1
α

(1− b21)‖q‖4L2(Ω) + 1√
α

(1− 2b21)‖q‖2L2(Ω)d
2 ≥ 0.

Choosing b21 = 3
4 it follows

1
4 + 1

4α‖q‖
4
L2(Ω) + 1

2
√
α
‖q‖2L2(Ω)d

2 = 1
4

(
d2 − 1√

α
‖q‖2L2(Ω)

)2
≥ 0,

i.e. the desired estimate with b1 =
√

3
4 .

Since the assumptions of Brezzis theorem are fulfilled, the existence and uniqueness of the
solution follows.

Theorem 5.15. The saddle point problem (5.23) with the non-standard norms ‖z‖X , ‖q‖Q
has a unique solution.

Proof. As proven in lemma 5.14, the assumptions for Brezzis theorem 5.12 hold with the
α-independent constants a0 = 1, a1 = 2

3 , b0 = 1 and b1 =
√

3
4 .

The next step is to discretize the saddle point problem (5.23). For the discretization, hp finite
elements are used.

5.4.1 Discrete saddle point problem

The discrete formulation of the saddle point problem is given by

a(zN , z̃N ) + b(z̃N , qN ) = 〈F, z̃N 〉Ω ∀ z̃N ∈ XN

b(zN , q̃N ) = 〈G, q̃N 〉Ω ∀ q̃N ∈ Qh
(5.28)

with the finite dimensional spaces XN ⊂ X, QN ⊂ Q. The discrete bilinear forms are

a(zN , z̃N ) =
∫

Ω
yN ỹN dx+ α

∫
Ω
uN ũN dx

b(zN , q̃N ) =
∫

Ω
D∇yN · ∇q̃N dx+

∫
Ω
cyN q̃N dx−

∫
Ω
uN q̃N dx

and the linear forms

〈F, z̃N 〉Ω =
∫

Ω
ydỹN dx,

〈G, q̃N 〉Ω =
∫

Ω
f q̃N dx.
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In matrix notation the discrete saddle point problem is given by

AN~zN +B>N~qN = ~fN

BN~zN = ~sN
(5.29)

with

AN =
(
MN 0

0 αMN

)
and BN =

(
KN −MN

)
where MN denotes the mass matrix representing the L2(Ω) inner product and KN denotes
the stiffness matrix of the state equation, i.e.

KN = 〈D∇yN ,∇yN 〉Ω + 〈cyN , yN 〉Ω

For existence and uniqueness of the solution Brezzis theorem shall be applied. Since XN =
YN × UN and by choosing YN = QN ⊂ UN , a closer look on the proof of the assumptions of
Brezzis theorem shows that the four assumptions are also fulfilled in the discrete case.

Theorem 5.16. Assume that XN ⊂ X, QN ⊂ Q and XN = YN × UN with YN = QN ⊂ UN .
Then the discrete saddle point problem (5.28) possesses a unique solution.

Furthermore, the constants in Brezzis theorem are independent of mesh parameters and the
regularization parameter α. Therewith, if possible, the preconditioners are chosen such that
the iteration numbers, needed to solve the saddle point problem (5.29), are independent of
these parameters.

Remark 5.17. The convergence rates which include BPX preconditioners in further, are all
given for triangulations without hanging nodes, i.e. by using locally refined triangular elements
or uniform refined meshes. In case of using the BPX with hanging nodes, a logarithmic
dependence comes into play.

5.4.2 Application of preconditioned CG to the discrete problem

The main task in this section is to find suitable preconditioners for getting α, h and p inde-
pendent iteration numbers when applying the preconditioned CG method from Schöberl and
Zulehner, see [139]. As stated in section 5.1 the preconditioner

Pcg =
(
ÂN B>N
BN BN Â

−1
N B>N − ŜN

)

is used. To get h and p independence, the preconditioners ÂN and ŜN have to support h, and
p independence. The α independence can be yielded by using non-standard scalar products
as introduced in section 5.4, i.e.

〈z, z̃〉X = 〈y, ỹ〉Y + 〈u, ũ〉U and 〈q, q̃〉Q.

In the discrete space, the scalar products 〈z, z̃〉X and 〈q, q̃〉Q are bilinear forms on XN ⊂ X
and QN ⊂ Q. The associated matrices representing these scalar products are denoted by XN

and QN , i.e.

〈zN , wN 〉X = 〈XN~zN , ~wN 〉, 〈qN , pN 〉Q = 〈QN~qN , ~pN 〉
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with

XN =
(
MN +

√
αKN 0

0 αMN

)
and QN =

(
1
αMN + 1√

α
KN

)
.

As in [139] the preconditioners ÂN and ŜN are chosen to be

ÂN = 1
σ
X̂N , ŜN = σ

τ
Q̂N (5.30)

for some real parameters σ > 0, τ > 0, which have to be determined. Furthermore, it is
assumed that the quality of the preconditioners can be described by the spectral estimates

(1− qX)X̂N ≤ XN ≤ X̂N and (1− qQ)Q̂N ≤ QN ≤ Q̂N (5.31)

with constants qX , qQ ∈ [0, 1). With this choice, the following lemma holds.

Lemma 5.18. [139, Lemma 3.1] Assume that the assumptions for Brezzis theorem are fulfilled
for (5.28). Furthermore, it holds (5.30) and (5.31). Then, the conditions (5.8) and (5.9) are
satisfied with

ν1 = σ(1− qX)a0 and ν2 = τb20,

if the parameters σ and τ are chosen such that

σ <
1
a0

and τ >
1

(1− qX)(1− qQ)b21
.

Lemma 5.18 indicates, that by choosing suitable preconditioners ÂN and ŜN , convergence
rates independent of the discretization parameters and the regularization parameter α are
yielded. The concrete choice of the preconditioners follows the two-step construction described
in section 5.1. To get α independent iterations numbers, it is necessary to incorporate the
regularization parameter α into the preconditioners. Therefore, one introduces

ÂN0 =
(
ŶN 0
0 αM̂N

)
and ŜN0 = 1

α
ŶN ,

where ŶN is a suitable preconditioner for YN =
√
αKN+MN and M̂N a suitable preconditioner

for MN . This leads to

ÂN = 1
σ
ÂN0 = 1

σ

(
ŶN 0
0 αM̂N

)
and ŜN = σ

τ

1
α
ŶN

with suitably chosen real parameters σ > 0, τ > 0. For the well-possessedness of the CG
method it is sufficient to assume

(1− qX)ŶN ≤ YN ≤ ŶN and (1− qX)M̂N ≤MN ≤ M̂N (5.32)

for qX ∈ [0, 1), where the constant one on the upper bound is important. The factor qX
describes the quality of the preconditioners ŶN and M̂N . Lemma 5.18 indicates, that the CG
method applied to the discrete problem is well defined, when choosing

ν1 = σ(1− qX)2
3 and ν2 = τ. (5.33)
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Then, the parameters σ and τ satisfy

σ < 1 and τ > 4
3(1− qX)2 .

Remark 5.19. This indicates that by choosing h and p independent preconditioners, one
yields h, p and α independent results if qX is constant and independent of h and p. Neverthe-
less, one has to consider, that the calculated values a0, a1, b0, b1 are calculated for the discrete
problem with exact inverse as preconditioners. By using approximations the constants can
change, nevertheless the approximations ÂN , ŜN can be chosen to be h and p independent.

In order to reduce the number of iterations, a well balanced choice of σ and τ is quite
important. Therefore, both parameters are chosen according to (5.11) and (5.12).

Remark 5.20. In the paper of Schöberl and Zulehner [139] h-fem is used for discretization.
As the mass matrix MN is well conditioned for polynomial degree p = 1, a simple precon-
ditioner, e.g. a few steps of a symmetric Gauss-Seidel iterations, are a good preconditioner
M̂N . As preconditioner for ŶN they chose a standard multigrid preconditioner for the elliptic
differential operator represented by the bilinear form

√
α〈D∇y,∇q〉Ω + (

√
α+ 1)〈y, q〉Ω.

Another possible choice for the preconditioner ŶN would be the BPX-preconditioner.

For an hp finite element discretization the situation is different. Since neither the mass matrix
nor the stiffness matrix is well conditioned (see section 3.3), one of the major tasks is to use
preconditioners suited for this problem. In here the preconditioners introduced in section
3.3 are used. For the mass matrix the preconditioner C−1

M given by (3.24) is used. For
preconditioning matrix YN either (3.21) or (3.22), both by using the system matrix YN , are
taken. The first one is denoted by C−1

Y BPXP , the second one C−1
Y PE . In further C−1

Y states
that any of these two preconditioners is chosen.
Since the choice ŶN = C−1

Y and M̂N = C−1
M would violate condition (5.32), suitable scaling

factors have to be found. First, a scaling factor for the preconditioner for the mass matrix is
calculated. To calculate them, the spectral equivalence in remark 3.45 is used. It induces the
inequality

cMCM ≤MN ≤ cMCM .

The goal now is to determine the constants cM and cM . The lower bound is equivalent to

cM = min
~z∈Rn

〈MN~z, ~z〉
〈CM~z, ~z〉

~y=C−1/2
M ~z
= min

~y∈Rn
〈MNC

−1/2
M ~y, C

−1/2
M ~y〉

〈CMC−1/2
M ~y, C

−1/2
M ~y〉

= min
~y∈Rn

〈C−1/2
M MNC

−1/2
M ~y, ~y〉

〈~y, ~y〉
= λmin(C−1

M MN ),
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where in the last step the Rayleigh-coefficient can be used, since the matrices C−1/2
M MNC

−1/2
M

and C−1
M MN have the same eigenvalues. The upper bound follows analogously. Therefore it

holds

cM = λmax(C−1
M MN ).

Since the constant condition number in theorem 3.38 and theorem 3.41 induces spectral
equivalence, i.e. CY PE ∼ Y and CY BPXP ∼ Y , the estimates for CY can be obtained
analogously. Therewith, the preconditioners are chosen by

ŶN = λmax(C−1
Y YN )CY (5.34)

M̂N = λmax(C−1
M MN )CM (5.35)

in order to get the constant one at the upper bound of (5.32).

Remark 5.21. In general, the determination of the constants λmax(C−1
Y YN ) and λmax(C−1

M MN )
is of course avoided on each mesh. In fact only a rough estimate of the maximal eigenvalue
is necessary in order to satisfy the condition (5.31).

Suitable constants σ and τ can be determined by calculating the maximal and minimal
eigenvalue of the eigenvalue problems

Â−1
N0
A~z = λ1~z

Ŝ−1
N0
BÂ−1

N0
B>~z = λ2~z

respectively. Summarizing, for moderate polynomial degree p and meshes without hanging
nodes the main result of this section is:

Theorem 5.22. The application of the Schöberl-Zulehner PCG [139] with preconditioners

ŶN = c1CY BPXP

M̂N = c2CM

to the optimal control problem (5.29) discretized with hp-finite elements, leads then to the
condition number κ(σ, τ, qX) given in (5.36) if suitable constants c1, c2 > 0 are used. The
condition number is especially independent of h, p and α.

Proof. The proof is analogue to the proof for h-fem in [139], i.e. the estimates (5.7) and (5.33)
are used to get the condition number

κ = κ(σ, τ, qX) = −3(
√
−1 + τ +

√
τ)(
√
−1 + τ +

√
−1 + 5τ)2)

8(−1 + qX)σ
√
τ

. (5.36)

Remark 5.23. The given estimate for the condition number implies that the quality of the
preconditioners qX and a suitable choice of the parameters σ and τ are very important in
order to get low iteration numbers.

Next, the costs for an application of P−1
cg A are estimated. Therewith, it is assumed to have

bc-refinement and a moderate polynomial degree p.
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Theorem 5.24. Let the assumptions of theorem 5.22 be satisfied and let bc-refinement be
performed. Then, each action of P−1

cg A~r in the preconditioned CG costs O(N).

Proof. Due to (1.1), P−1
cg is given by

P−1
cg =

(
Â−1
N − Â

−1
N B>NS

−1
N BN Â

−1
N Â−1

N B>N Ŝ
−1
N

Ŝ−1
N BN Â

−1
N −Ŝ−1

N

)
(5.37)

and the matrices

Â−1
N = σ

(
Ŷ −1
N 0
0 1

αM̂
−1
N

)
and Ŝ−1

N = τ

σ
α
(
Ŷ −1
N

)
.

There are N degrees of freedom for the state, the adjoint and the control. Since the applica-
tion of C−1

Y costs O(N) due to theorem 3.41 and the application of C−1
M too (due to theorem

3.44), the costs for the application of Â−1
N and Ŝ−1

N are O(N). Due to the structure of BN , it
is sparse too and a matrix-vectormultiplication can be performed in O(N).
An overall application of P−1

cg costs four matrix-vector multiplications with Ŝ−1
N , two matrix-

vector multiplications with BN , two with B>N and five matrix-vector multiplications with Â−1
N ,

due to (5.37). Since each matrix-vector multiplication can be performed in O(N), and the
matrix A is sparse, an overall estimate of the costs give O(N).
Due to algorithm 12, the solution to the optimal control problem by applying the precondi-
tioned CG can be yielded in κ(σ, τ, qX)O(N) effort.

Remark 5.25. For bc-fem, an application of CY PE instead of CY BPXP yields again a
constant condition number. However, the effort for the application of P−1

cg ~r in d = 2 is
O(N log8N) whereas for d = 3 quasi-optimal complexity is not possible any longer if CY PE
is used .

Remark 5.26. For a bc-refinement and by using the preconditioners proposed in [63], even
in three dimensions the cost O(N) can be yielded.

Next, the case of a very high polynomial degree p is considered. Then, a preconditioner as
(3.23) can be used. Due to the non-constant condition number of the preconditioner (3.23),
a log(p) dependence in qX , σ and τ comes into play by analogue considerations as above.

Remark 5.27. By considering the estimates in [29], suitable choices for cM , cY , σ and τ
can be found. An application of the preconditioner then can be performed in quasi-optimal
time. However, the drawback then is, that after each p-refinement, the values cM , cY , σ and
τ have to be adjusted, since they depend on log(p).

The preconditioned CG method is quite promising, however, the drawbacks are the necessary
estimation of the maximal eigenvalues of C−1

Y YN and C−1
M MN and the correct choice of σ and

τ . If these constants are not chosen suitably, the preconditioned CG method fails, due to the
loss of positive definiteness. To keep the costs low, the estimation of the four constants is
done on the coarsest grid. Furthermore, for the calculation of σ and τ , a safeguard strategy
– following Herzog and Sachs [83] – can be used. They multiplied σ by 1√

2 and τ by
√

2 if
the positive definiteness gets lost.
These considerations indicate that the determination of the four necessary constants for ap-
plying the preconditioned CG is nasty. Furthermore it can yield an unfavourable scaling of
the preconditioners for ŶN and M̂N , which can increase the number of iterations. Therewith,
other Krylov subspace methods are considered.
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5.4.3 Application of preconditioned MINRES to the discrete system

Another way to solve the saddle point problem (5.29) is to apply the MINRES, which is
possible due to the symmetry of the system. In this subsection two cases are considered.

5.4.3.1 Exact inverses as preconditioners

In the first case, the exact inverses are taken as preconditioners, i.e.

Pminres,e =
(
AN 0
0 BNA

−1
N B>N

)
.

Therewith, the theoretical estimates given in subsection 5.2, and especially remark 5.7 hold,
i.e. only three iterations with the preconditioned MINRES are necessary in order to solve
the system. However, the drawback is that inner solves of AN and BNA−1

N B>N are necessary.
This can be realized by an inner iterative method, see e.g. algorithm 13. Since the matrices
AN and BNA−1

N B>N are symmetric and positive definite, a preconditioned CG method with
preconditioners as introduced in section 3.3 can be used. As preconditioners C−1

M and C−1
Y BPXP

shall be used.
Then, low and high polynomial degrees can again be distinguished. First, low polynomial
degree and bc-refinement is considered.
Theorem 5.28. Let the optimal control problem given by (5.29) be discretized with bc-fem
and solved with a preconditioned MINRES. Furthermore, let Pminres,e be the preconditioner
and let algorithm 13 be used in order to perform a multiplication with Pminres,e. Then, the
condition number κPminres,e is constant and an application of Pminres,e costs O(N).
Proof. Since the exact inverse is used as preconditioner, by applying theorem 5.5 and using
the remark 5.7, the condition number is constant if algorithm 13 is performed with a suitable
precision. Due to the estimates in section 3.3 and with the choice of

ÂN0 =
(
Ŷ −1
N 0
0 1

αM̂
−1
N

)
and Ŝ−1

N0
=
(
Ŷ −1
N

)
the equation systems

ÂN0A~wnew = ~w

Ŝ−1
N0

(BNA−1
N B>N )~znew = ~z,

can be solved in O(N). Since only matrix-vector-multiplication is used and the overall precon-
ditioned MINRES has three eigenvalues (see theorem 5.5), the costs for solving the equation
system are O(N).

Remark 5.29. In case of an arbitrary hp-mesh, the equation system can be solved in quasi-
optimal complexity.
Remark 5.30. The drawback in that case is that the inner iterations can increase the overall
iterations greatly, since they are necessary in each application of the preconditioner Pminres,e.
For higher polynomial degrees the preconditioners have to be of course modified. Therewith
the work for applying the preconditioner increases.
Remark 5.31. In the case of using CY = CY BPXP2, i.e. the preconditioner (3.23) or the
choice CY = CY PE, the costs for an application of preconditioner Pminres,e are quasi-optimal.



5.4 Application to an optimal control problem 119

5.4.3.2 Diagonal preconditioner

Next, not the exact inverse, but an approximation of it, is used, i.e.

Pminres,d =
(
ÂN 0
0 ŜN

)
.

ÂN and ŜN are similar to the choices in the PCG method, i.e.

ÂN =
(
ŶN 0
0 αM̂N

)
and ŜN = 1

α
ŶN . (5.38)

According to subsection 5.2 in this case theorem 5.8 can be applied, which yields:

Theorem 5.32. The eigenvalues of the preconditioned system P−1
minres,dA for ŶN = CY and

M̂N = CM are contained in the intervals

[−Υ1,−Υ2] ∪ [Υ3,Υ4]

with Υi ≥ 0 for i = 1, . . . , 4 and Υi independent of h and p.

Proof. According to theorem 5.8 the parameters Υi depend only on the minimal and maximal
eigenvalues of

Â−1
N AN =

(
C−1
Y PE 0
0 1

αC
−1
M

)(
YN 0
0 αMN

)

and the eigenvalues of Ŝ−1
N SN = αC−1

Y PEYN , which are constant due to section 3.3. For
simplicity it is set

λmax(Ŝ−1
N SN ) = cS λmin(Ŝ−1

N SN ) = cS

λmax(Â−1
N AN ) = cA λmin(Â−1

N AN ) = cA,

which yields

Υ1 = cS

Υ2 =
cS

1 + 1
cA

Υ3 = cA

Υ4 = cA + cS .

Since these values are especially independent of the mesh size h and the polynomial degree
p, Υi are independent of h and p, they are therefore independent of the mesh.

Remark 5.33. Theorem 5.32 indicates h and p independent iterations numbers due to theo-
rem 1.3. In case of using the choice CY = CY BPXP with hanging nodes or CY = CY BPXP2,
the Υi have a logarithmic dependence on h or an almost logarithmic dependence on p (see [29]
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for the eigenvalues of CY BPXP2). By applying theorem 1.3 an estimate on the necessary iter-
ation numbers k to reach a given tolerance ε can be calculated. For the choice CY = CY BPXP
one yields

k = log
(2
ε

)
O (log(h)) . (5.39)

That means the iteration numbers increase logarithmically in the mesh size h. For the choice
CY = CY BPXP2 it follows

k = log
(2
ε

)
O
(
(log p logχ log p)7/2

)
for a given tolerance ε and χ > 1. That indicates an almost logarithmically increase of the
iteration numbers k.

Remark 5.34. The difference to the application of the Schöberl-Zulehner PCG is that in that
case an α independence cannot be expected.

In the case of low polynomial degree and bc-refinement, the following theorem holds:

Theorem 5.35. Let the optimal control problem (5.29) be solved in a saddle point formulation
and discretized with bc-fem. Then, an application of P−1

minres,d~r costs O(N).

Proof. The preconditioner is given by

P−1
minres,d =

C
−1
Y 0 0
0 1

αC
−1
M 0

0 0 C−1
Y

 .
Due to theorem 3.41 , the costs for applying C−1

Y are O(N), due to theorem 3.44 the costs
for applying C−1

M are O(N) too. Since in each application of the preconditioner, C−1
Y has to

be applied twice, whereas C−1
M is applied once, the overall costs for one multiplication are

O(N).

Remark 5.36. By combining theorem 5.32 and assuming bc-refinement (without hanging
nodes), the overall costs for an application of P−1

minres,dA~r are O(N) if CY = CY BPXP . In
case of using CY PE for two dimensions the costs are O(N log8N).

Remark 5.37. In case of using CY = CY BPXP2 an almost log(p) dependence comes into
play for each action P−1

minres,dA~r due to theorem 3.42.

Remark 5.38. If a general hp-refinement is used for the discretization, the application of
C−1
Y BPXA~r is quasi-optimal. Therewith, the application of P−1

minres,dA~r is quasi-optimal too.

An ansatz to yield α independent convergence rates with the MINRES, is presented in [172].
There, the saddle system (5.29) for D = c = 1 is considered. Since there are no bounds on
the control u, the system can be written in the form(

MN KN

KN − 1
αMN

)(
~y
~q

)
=
(
~yd
~0

)
.
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Then, block-diagonal preconditioners by the operator interpolation technique by Zulehner
[172] are constructed. This leads to a preconditioner

PZ =
(
MN + α

1
2KN 0

0 α−1MN + α−
1
2KN

)

which yields α independent iteration numbers. In practice the block diagonal entries, both of
the form

mMN +KN ,

are usually replaced by efficient preconditioners, for example by multigrid or multilevel pre-
conditioners. Even though in this case the MINRES can be applied, the theory developed in
former sections does not hold in this case, since the system is different. For further results
see [172].

5.4.4 Application of GMRES to discrete system

As stated in section 5.3 a preconditioner for the GMRES only needs to be regular, therewith

Pgmres =
(
ÂN B>N
BN BN Â

−1
N B>N − ŜN

)

is used, where

ÂN =
(
ŶN 0
0 α̂MN

)
and ŜN = 1

α
ŶN

with the choice ŶN = CY and M̂N = CM as defined in (3.22) and (3.24). Again, as in
the MINRES, no constants σ and τ and no constants for scaling the preconditioner are
necessary. However, there is a big drawback in theory, since no estimate on the condition
number can be given due to missing theoretical estimates. Therewith, no statements on
parameter independence can be given.
However, at least in the case of the exact inverse matrices ŶN = YN and M̂N = MN , the
numerical experiments indicate α independence, see subsection 5.5.1.

5.5 Numerical experiments
To confirm the theoretical results, several numerical experiments are given in this section.

5.5.1 Square

As first example, a simple example on the square (−1, 1)2 with known solution, is considered.
The primal equation is given by

−∆y(x) + y(x) = u(x) + f(x) in Ω
∂y

∂n
(x) = 0 on Γ
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and the adjoint equation by

−∆q(x) + q(x) = yd(x)− y(x) in Ω
∂q

∂n
(x) = 0 on Γ.

Since no active constraints are used, the projection formula is

u(x) = 1
α
q(x) in Ω.

The solution to this optimal control problem is given by

y(x) = e
1
3x

3
1−x1e

1
3x

3
2−x2

q(x) = −y(x).

For the convenience of the reader, the preconditioners introduced in section 3.3 are recalled.
The preconditioner for the mass matrix MN , introduced by (3.24) is denoted by

C−1
M = P>0 (diag(M)p=1)−1 P0 +

∑
νi∈VC

P TνiM
−1
νi Pνi . (5.40)

CY denotes a preconditioner for

YN =
√
αKN +

(√
α+ 1

)
MN .

Here, two choices are used. The first one is (3.21) used for YN and denoted by

C−1
Y PE = P>0 (Yp=1)−1 P0 +

∑
νi∈VC

P>νiY
−1
νi Pνi . (5.41)

The second one uses a BPX preconditioner for the h-part (see (3.22)) and is given by

C−1
Y BPXP = P>0 C

−1
p=1,BPXP0 +

∑
νi∈VC

P>νiY
−1
νi Pνi , (5.42)

where Cp=1,BPX denotes the BPX preconditioner for the p = 1 part of YN .

Remark 5.39. The following examples are calculated with relative tolerance criterion de-
pending on the refinement. For uniform h-refinement the tolerance is 10−6, for uniform
p-refinement it is 10−12 and for uniform hp-refinement it is chosen to be 10−10.

5.5.1.1 Schöberl-Zulehner PCG

First, numerical results for the Schöberl-Zulehner PCG are presented. To confirm the constant
condition number given in (5.36), the parameters σ, τ and the values c1Y = λmax(C−1

Y YN )
and c1M = λmax(C−1

M MN ) are estimated by solving eigenvalue problems for different values
of α and different discretization parameters h and p.
The estimation of the parameters is performed for the two choices: ŶN = CY PE , see (5.41),
and ŶN = CY BPXP , (5.42). A look on the numerical results in chapter 3 expected the choice
ŶN = CY PE to be better in case of iterations numbers but worse if the costs are considered,
see section 3.3.1.
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The estimation of the parameters for uniform h-refinement can be found in figure 5.1 and figure
5.3. It has to be considered, that only in figure 5.1 the conditions (5.34) and (5.35) are taken
into account, due to the slow convergence of the BPX, which influences the determination of
c1Y = λmax(C−1

Y YN ) and therefore possibly perturbs the estimates of σ and τ . However, this
does not change the overall behaviour of the parameters σ and τ , since the conditions (5.34)
and (5.35) are only scaling conditions in order to ensure the positive definiteness of the scalar
product 〈·, ·〉D.
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Figure 5.1: estimated parameters for different α and uniform h-refinement for ŶN = CY PE
and M̂N = CM

A comparison of the estimation of the maximal eigenvalues, i.e. c1M and c1Y in figure 5.1
and in figure 5.3 shows, that – as expected – the value c1M is the same for both choices of
ŶN . The value c1Y however is different, in case of ŶN = CY PE it is between [2.2, 3.25], in
case of ŶN = CY BPXP it is – for the given meshes – in the interval [1.2, 11.25]. Due to the
semilogarithmic scale in these plots it is clear that even c1Y is constant if the mesh is chosen
sufficiently fine.
Furthermore, it is observed that c1M and c1Y change if uniform p-refinement is used. Whereas
for uniform h-refinement the values c1M are exactly 4.5, for uniform p-refinement it increases
up to 6.2 for the highest polynomial degree. For c1Y the situation is similar, but here c1Y is
in a smaller range ([1.45, 5.93]) as for uniform h-refinement.
For uniform p-refinement some kind of oscillating can be observed for the parameter τ (see
figure 5.2 and figure 5.4). This behaviour occurs especially in case of the preconditioner choice
ŶN = CPE , for the choice ŶN = CY BPXP it can only be seen for α = 10−2. The oscillating in
estimating the bound for τ is due to the differences between odd and even polynomial degrees
and a typical behaviour, which can also be observed in figure 3.15 in section 3.4).
Next, the best possible iteration numbers for uniform h-fem and different values of the reg-
ularization parameter α given in figure 5.5. There, the choice ŶN = YN and M̂N = MN are
realized, i.e. the best possible preconditioner is used. Of course this choice is too expensive
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Figure 5.2: estimated parameters for different α and uniform p-refinement for ŶN = CY PE
and M̂N = CM
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Figure 5.3: unscaled estimated parameters for different α and uniform h-refinement for ŶN =
CY BPXP and M̂N = CM
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Figure 5.4: unscaled estimated parameters for different α and uniform p-refinement for ŶN =
CY BPXP and M̂N = CM
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Figure 5.5: iterations number with exact inverses as preconditioners
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in practice. However, it yields a good clue in order to evaluate the used preconditioners.
The obtained results confirm the theory, i.e. the α-independence of the considered method.
As termination condition the residual (see (5.14)) is used, i.e. a different one as indicated by
theory (which would be (5.13)). The reason therefore is, that it is not possible to evaluate
‖~ek‖DP−1

cg A = ‖~zk − ~z∗‖DP−1
cg A if the calculated solution is unknown. Nevertheless, results

in [139] show similar results for the residual based termination condition even this is not
confirmed by theory.
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Figure 5.6: comparison of different preconditioner for uniform h-refinement

In figure 5.6 a comparison of different preconditioners is given for uniform h-fem and the
regularization parameter α = 1. As preconditioners the choices M̂N = MN , ŶN = YN , i.e. the
best possible preconditioner and the choices M̂N = CM with ŶN = CY PE and ŶN = CY BPXP
are considered. The best possible iteration numbers are 9, in case of using CY PE the iteration
numbers increase up to 39, whereas if CY BPXP is taken, the iteration numbers are about 77
for the finest mesh. The parameters σ are constants for all different preconditioners, although
they do not have the same values for each choice of the preconditioner.
In figure 5.7 a comparison of different preconditioner for uniform p-fem with the regularization
parameter α = 1 is presented. It can be observed, that the parameters σ and τ are constant,
whereas the condition numbers for different choices of preconditioners seem to oscillate a
bit. This is caused by the differences in the behavior of the preconditioner for even and odd
polynomial degrees.
In contrast to figure 5.6, the iteration numbers in figure 5.7 get much higher if the precondi-
tioners CY P or CY BPXP are used. The reason therefore is, that the matrices for p-refinement
are worse conditioned than the one for h-fem and that the parameters σ and τ are further
away from 1 then in figure 5.6. Moreover, the difference can already be observed in case of
the best possible iteration numbers, which are 9 for uniform h-refinement but already 19 for
p-refinement. Nevertheless, a better choice of σ and τ is expected to decrease the number of
iterations.
Remark 5.40. Although a rough value of the parameters σ and τ can be obtained by using
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Figure 5.7: comparison of different preconditioners for uniform p-refinement

(5.11) and (5.12), it is quite hard to choose ε̃ sufficiently in order to avoid non positive
definiteness for the scalar product. Since the algorithm by Herzog and Sachs [83] to adjust
σ and τ in case the positive definiteness fails, does not lead to good results in the examples
presented in here, a fixed value for σ and τ is used a-priori sometimes.

It has to be stated that the numerical results for the Schöberl-Zulehner PCG confirm the
theory, i.e. a condition number independent of the discretization parameters h, p and the
regularization parameter α and only depending on the parameters σ and τ . However, the
estimation of the parameters σ and τ is quite nasty and especially in the case of uniform
p-fem other preconditioners should be tried in order to decrease the number of iterations.

Remark 5.41. In order to decrease the iteration numbers for example multigrid methods can
be used. They lead to a faster convergence in general which has two advantages: Firstly, that
c1M and c1Y can be estimated more easily, since a very coarse mesh can be used to get a very
good estimate. Second, the iteration numbers are usually lower in case of using multigrid
methods. Therewith an overall reduction of the iterations numbers is expected.

Remark 5.42. The results are also valid for hp-discretizations. However, an extension to
hanging nodes is not straightforward, due to scalar product 〈·, ·〉D, where a projector has to
come into play in order to get a conform solution. This problem can be avoided by using
triangular elements.

5.5.1.2 MINRES

Next, results for the preconditioned MINRES are given. Here, as preconditioner P−1
minres,d

is used. For the preconditioners ÂN and ŜN different choices are tried. In figure 5.8 the
results for uniform h- and uniform p-refinement and the regularization parameter α = 1 are
given. The results for the choices MN and YN show the best possible results, in case of
uniform h-fem (color: middle blue) that means about 16 iterations, in case of uniform p-fem
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that leads to about 29 iterations. If M̂N is taken as preconditioner and ŶN is substituted by
CY PE , the iteration numbers increase, but are bounded by 24. If ŶN is chosen to be CY BPXP
the iterations numbers are much higher. The reason therefore is, that the convergence (to a
constant condition number) in case of the BPX preconditioner is quite slow. Nevertheless,
since a semilog plot is used and the iteration number decreases, the constant condition number
can also be confirmed in that case. In case of p-refinement the iteration numbers seems to
oscillate. This is due to the behaviour of the preconditioners for even and odd polynomial
degrees.

100 101 102 103 104 105 106
0

10

20

30

40

50

60

N

nu
m
be

r
of

ite
ra
tio

ns

different preconditioners for h-fem

MN , YN
MN , CY PE

MN , CY BPXP
CM , YN
CM , CY PE

CM , CY BPXP

101 102 103 104
20

40

60

80

100

120

140

N

nu
m
be

r
of

ite
ra
tio

ns

different preconditioners for p-fem

MN , YN
MN , CY PE

MN , CY BPXP
CM , YN
CM , CY PE

CM , CY BPXP

Figure 5.8: results for preconditioned MINRES for uniform h- and uniform p-refinement

In general – comparing both refinements – it can be said, that the preconditioner for ŶN , i.e.
CY BPXP or CY PE have to be improved in order to get better results when only preconditioners
and no exact inversion is used, since the choice M̂N = CM and ŶN lead to better results than
M̂N = MN with either CY BPXP or CY PE Furthermore it can be seen, that the choice CY PE
leads to better results than CY BPXP . This behaviour is expected, since in CPE the basis
functions for p = 1 are inverted directly.
In figure 5.9 results for bc-refinement are presented. As in case of uniform h- or uniform
p-refinement, the preconditioner CY PE is better than the preconditioner CY BPXP . However,
due to the hanging nodes in case of applying CY BPXP the constant condition number gets
lost and a log(h) term comes into play (compare (5.39) for theory). This behaviour does
not appear unexpectedly, since it is also observed in chapter 3 in figure 3.11, figure 3.12
and figure 3.16. As in case of uniform h- and uniform p-refinement, in order to improve the
iterations numbers better preconditioners for ŶN have to be used, since the preconditioner
CM is much better than the preconditioner CY PE (about 60 iterations number versus 130
iteration numbers). The best possible iteration numbers which can be obtained are about 25
iteration numbers.

Remark 5.43. In all applications of the MINRES, a big difference by the results which can
be obtained in the best possible case (M̂N = MN , ŶN = YN ) and the results yielded by using
preconditioners can be observed. Therewith, it is supposed to use – as in the case of the
Schöberl-Zulehner PCG – multigrid methods in order to lower the number of iterations.
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Figure 5.9: results for preconditioned MINRES for bc-refinement

5.5.1.3 GMRES

Results for the preconditioned GMRES are given next. In figure 5.10 different preconditioners
are tried. Again, the choice MN and YN show the best possible results.
The best possible iteration numbers in case of GMRES are about 12 steps in case of uniform
h-refinement and about 16 iterations in case of uniform p-refinement. Moreover, figure 5.10
shows constant iteration numbers for both refinement. As in case of MINRES, the choice
M̂N = CM and ŶN = YN leads to better results then the choice M̂N = MN and ŶN = CY PE .
Moreover, the preconditioner CY PE leads to much better results than the preconditioner
CY BPXP . Furthermore, as in the MINRES an oscillating behavior in case of p-refinement is
observed.
These results show discretization parameter independent behavior, even this is not confirmed
by theory.

Remark 5.44. The results for the GMRES were obtained with the left preconditioned GM-
RES. In case of using the right preconditioned GMRES the results change a bit. A further
problem is the loss of the orthogonality in the basis vectors calculated in the GMRES algorithm
due to machine precision. This seems to depend on the values of α as of the choice of left
or right preconditioning. In order to avoid that problem, it is suggested to use the truncated
GMRES method, even there, the convergence at least after N iterations gets lost.

Remark 5.45. An overall comparison between the three applied Krylov subspace methods
with suitable preconditioners shows that the best possible results are obtained with the pre-
conditioned CG method. The preconditioned MINRES leads to the highest iteration numbers
in case of comparing the best possible results. Nevertheless, the difference is not that big



130 5 Saddle point problem

101 102 103 104 105
5

10

15

20

25

30

35

40

45

50

N

nu
m
be

r
of

ite
ra
tio

ns

different preconditioners for h-fem

MN , YN
MN , CY PE

MN , CY BPXP
CM , YN
CM , CY PE

CM , CY BPXP

101 102 103 104
10

20

30

40

50

60

70

80

90

100

110

N

nu
m
be

r
of

ite
ra
tio

ns

different preconditioners for p-fem

MN , YN
MN , CY PE

MN , CY BPXP
CM , YN
CM , CY PE

CM , CY BPXP

Figure 5.10: results for preconditioned GMRES for different refinements

and the preconditioned MINRES seems to be the easiest iterative method in practice. That is
caused by the fact, that in the preconditioned CG some parameters have to be chosen correctly
(which is quite nasty), and in the preconditioned GMRES there are no theoretical results and
furthermore an application of the untruncated GMRES does not seem to be useful.

5.5.2 Hole

As second example a different domain Ω is considered and solved with the preconditioned
MINRES. As in example 5.4.4.3, a square with a hole in the middle is given as domain. The
differential equations stays the same as in the example before, i.e. the following equations are
considered: the state equation is given by

−∆y(x) + y(x) = u(x) + f(x) in Ω
∂y

∂n
(x) = 0 on Γ

and the adjoint equation by

−∆q(x) + q(x) = yd(x)− y(x) in Ω
∂q

∂n
(x) = 0 on Γ.

Since no active constraints are used, the projection formula is

u(x) = 1
α
q(x) in Ω.

In this example the desired state is given by

yd(x) = 10 sin(πx1) + 5 cos(πx2
2),

whereas the solution is unknown.
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The reason why the preconditioned MINRES is chosen for this example is the quite nasty
estimation of the parameters in the Schöberl-Zulehner PCG. The preconditioned MINRES is
favourable to the GMRES, since in that case at least a discretization parameter independence
can be proven, although the α-independence which holds for the Schöberl-Zulehner PCG gets
lost. A further drawback which can occur in the GMRES, is the non-orthogonality of the
calculated basis vectors in the algorithm due to machine precision. In order to avoid that
problem, truncated GMRES can be used. Nevertheless, the property to reach the solution at
least after N iterations gets lost.

Remark 5.46. Especially in the case of quadrilateral elements with hanging nodes the pre-
conditioned MINRES has the advantage that the projector in order to get a conform solution
can be easily incorporated .
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Figure 5.11: iteration numbers for the hole-example

In figure 5.11 the iteration numbers with respect to the number of unknowns for uniform h-,
and uniform p-fem are given. The results show discretization parameter independence, which
follows by theorem 5.32. As in the example before, different preconditioners – including the
exact inverses – are used in order to compare them.
A comparison between uniform h- and uniform p-refinement shows that the precondition-
ers are discretization parameter independent. In both cases the choice M̂N = CM with
ŶN = CY BPXP leads to the worst results. Moreover, the results show that it is necessary to
investigate in the preconditioner for ŶN in order to get lower iteration numbers. The precon-
ditioner CM (with exact inversion of YN ) is pretty good. Therefore it is recommended to use
multigrid methods as least for ŶN in order to decrease the iteration numbers.
Results for bc-refinement are presented in figure 5.12. There, the iteration numbers are h
and p independent except in the case of using the BPX in the preconditioner. The reason
therefore is the appearance of hanging nodes, which leads to a log(h) dependence (see also
chapter 3 and figure 3.11).
The best possible iteration numbers yielded with the exact inverses as preconditioners are
about 31, the results for the choice M̂N = CM and ŶN = CY PE are 162 for the finest bc-
mesh, whereas the choice M̂N = CM with ŶN = CY BPXP yields 297 iteration numbers.
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Figure 5.12: iteration numbers for the hole-example

Figure 5.13: control u and state y
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In figure 5.13 and in figure 5.14 the control u, the state y, the polynomial degree distribution
of the elements for bc-refinement and the adjoint q are plotted. These figures show that the
adjoint and the control have the same values, which is due to the fact that the regularization
parameter has the value 1 for the given results. The state is between 0 and 2.39, whereas
the control and the adjoint are between −0.46 and 3.53. The polynomial distribution of the
elements show that all elements on the boundary – especially all L-corners in the interior –
are h-refined. In case of using an edge-orientated refinement – that means h-refinement if
an element has an edge on the boundary – the elements in the L-corners have to be added
manually since they do not have an edge on the boundary.

Figure 5.14: polynomial degree p and adjoint q

In order to improve the iteration numbers, different preconditioners – especially multigrid
methods – are expected to lead to better results. Furthermore, it is recommended to use
triangular elements or elements whose hp-refinement can easily be done without hanging
nodes. In that case a projector to ensure getting a conform solution can be avoided, which
makes the Schöberl-Zulehner PCG easier applicable for hp-discretizations. Furthermore, it is
expected to cause less difficulties with the orthogonality of the basis vectors calculated in the
GMRES.





Conclusion and Outlook

In this thesis hp-fem is applied to linear quadratic optimal control problems subject to elliptic
differential equations. There, two kind of optimal control problems, optimal boundary con-
trol and distributed optimal control are considered in detail. For both problems variational
discretization by Hinze [88] is used. This especially has the advantage that the error of the
control u can be estimated by the discretization error of the adjoint q.

Optimal boundary control

For the boundary control problems mainly numerical examples are presented.
In the two-dimensional case, instead of the usual bc-refinement proposed in [98] and applied
to such kind of problems already in [31], is compared with a Neumann boundary refinement.
Moreover, it is suggested to choose a suitable starting mesh with Neumann boundary refine-
ment instead of the usual uniform h-refinement if the vertex-concentrated refinement proposed
in [163] is used. This is especially useful in case of oscillating solutions, since a suitable mesh
has to be quite fine in order to find all jumps between active and inactive sets.
Furthermore, results in three dimensions are presented. There, first a cube with known
analytical solution is discretized with bc-refinement and its solution is calculated with the
semismooth Newton method. Moreover, the results are compared with uniform h-fem. The
comparison shows that the L2-error decreases faster than in uniform h-fem with respect to
the number of degrees of freedom. Moreover, the solution to an optimal boundary control
problem for different geometries is calculated.
These results show that the proposed bc-refinement works quite well applied to the suggested
kind of problems. However, in order to calculate results for more degrees of freedom, it
is highly recommended to implement suitable preconditioners, since the condition number
of the (inner) equation system becomes quite bad. Nevertheless, since it is not possible to
get optimal complexity in case of applying the semismooth Newton method, a rewriting of
the problem in a saddle point formulation in combination with suitable preconditioners, is
suggested.
Furthermore, in order to reduce the number of degrees of freedom in three dimensions, an
extension of the vertex-concentrated refinement applied in [163] for two dimensions would be
helpful. In three dimensions it is expected, that an edge-based h-refinement should lead to
good results.

Distributed optimal control

In most parts of this thesis a distributed optimal control problem is considered. There, two
hp-refinement strategies for such kind of problems are proposed. Both refinement strategies
are based on the projection formula, since on all elements where active and inactive parts of
u appear, the regularity is lower. Therewith, on all these elements h-refinement is suggested.

135
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The refinement of all other elements can either be performed by using a-priori information on
the regularity of the domain, or by using error estimators, for example the error estimators
by Melenk and Wohlmuth [114].
In order to solve the problem two different approaches, the semismooth Newton method and
the rewriting as saddle point problem are considered.

Semismooth Newton

The semismooth Newton method is applied to two-dimensional problems with active con-
straints. There, it is important to calculate the integral over the mass matrix on the inactive
part of the domain. The drawback herein is, that this leads to an integral over only parts
of an element in case of using quadrilateral elements. However, even if an exact calculation
of these integrals is theoretically possible, too many cases appear which makes the realiza-
tion impractical. In order to avoid such difficulties it is suggested to implement triangular
elements for hp-fem. On triangular elements the shape of the inactive set of elements with
active and inactive parts is no part of an hyperbola as it can be in the quadrilateral case,
but a triangle or a quadrangle. Therewith, it is easy to calculate these integrals exactly.
Furthermore, by using [142], the exact evaluation of MI on interface elements for triangular
elements and polynomial degree p = 2 is possible.
Due to the numerical calculation of the matrix MI an error occurs. That error can be
estimated in further works. It is important to first calculate the error of the inner iteration
and then consider the impact of that error to the outer iteration. In order not to increase the
overall error, the error has to be below ch2.
A further possibility to avoid an error when integrating over the inactive set is to use the
conventional discretization approach and discretize the control u with constant elements. For
increasing the convergence rate, an extension of [129] with suitable a-posteriori techniques
might be possible.
In order to apply the semismooth Newton method in each inner solve, K−1

N has to be applied.
In two dimensions this can be done fastly by using direct solvers. However, this is not possible
in three dimensions any longer. Therewith, a different approach, the rewriting of the problem
as saddle point formulation is considered.

Saddle point formulation

In case of the saddle point formulation a simplified problem, i.e. the box constraints ua = −∞
and ub =∞ is considered.
As in [139] the equation system can be written as saddle point problem. In order to solve the
problem, different Krylov subspace methods are used.
Due to [139], where an uniform h-fem discretization is taken, by using the non-standard scalar
product 〈·, ·〉D and a suitable preconditioner the equation system gets symmetric and positive
definite with respect to that scalar product, which enables the application of the PCG. The
advantage of that approach is, that the obtained iteration numbers are independent of the
mesh size and the regularization parameter α. In this thesis the work in [139] is extended
to hp-fem discretization, which keep the independence of the discretization parameters h and
p as well as to the regularization parameter α in case of applying suitable preconditioners.
Furthermore, estimates on the work for applying the Schöberl-Zulehner PCG for bc-fem for
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certain preconditioners are given. Since optimal complexity (in case of no hanging nodes) is
yielded, this is a promising approach.
When applying the Schöberl-Zulehner PCG two parameters, σ and τ have to be estimated in
order to get low iteration numbers and keep the positive definiteness of the system matrix.
In further work methods to find suitable values of these parameters with low effort can be
considered. Moreover, multigrid methods can be used in order to decrease the iteration
numbers, since the applied preconditioners still leads to very high iteration numbers.
As second method a preconditioned MINRES is applied. There, as preconditioner a block
diagonal preconditioner is used. In case of using the exact inverses in the block diagonal
preconditioner, the results of h, p and α independence can be kept. For using proper precon-
ditioners in the blocks, the independence of the discretization parameters h and p is shown.
Furthermore, estimates on the cost for applying these methods in case of bc-refinement are
given.
Possible extensions to this ansatz are the implementation of the exact inverses as precondi-
tioners and compare those results with the results from the block diagonal preconditioner.
Moreover, other classes of preconditioners as multigrid methods should be considered in or-
der to decrease the number of degrees of freedom. In order to avoid the log(h) dependence
for bc-refinement with the BPX preconditioner triangular elements shall be used in further
works.
As third and last Krylov subspace method a preconditioned GMRES is applied. Although
the results are quite promising especially for the exact inverses as preconditioners, in case
of usual preconditioners it is suggested to use truncated GMRES methods in further works.
The reason therefore is that in some cases the orthogonality of the basis in the GMRES gets
lost due to machine precision.
In general, in further works triangular elements shall be used for numerical examples. Then,
suitable routines for handling the hanging nodes can be avoided, which would at least avoid
an application of a kind of projector in the Schöberl-Zulehner PCG. That is especially tricky,
since the evaluation of the scalar product with arbitrary entries shall be avoided in order to
not have to evaluate Ŝ.
Further possible extensions are taking account of active box constraints in case of applying
the saddle point method. Therewith, it might be possible to use similar approaches as in [83],
even there the conventional ansatz is used for discretization. However, in that case the h, p
and α independence in the Schöberl-Zulehner PCG might get lost.
Moreover, in further work the preconditioners for saddle point problems, whose theoretical
results also hold in three dimensions, could be applied in three dimensions. It is expected
that this leads – in combination with suitable hp-refinement (analogue to the one presented
in here) – to a significant reduction of degrees of freedom and in combination with suitable
preconditioners therewith to a faster solution of equation systems.
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