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1 Introduction 

1.1 Mechanisms of mitochondrial homeostasis 
In eukaryotic cells, mitochondria fulfill a multitude of essential functions, ranging from 

energy production to mediating apoptotic cell death. Thus, cells employ a sophisticated 

system of organelle-specific molecular chaperones and proteases to maintain 

mitochondrial biogenesis and protein quality control (PQC) under normal and stress 

conditions. These processes collectively contribute to mitochondrial protein homeostasis. 

On the one side, mitochondrial chaperones of the Hsp60 and Hsp70 type assist import and 

folding of nuclear-encoded proteins, which constitute the fast majority of the 

mitochondrial proteome. On the other side, these chaperones work together with 

specialized soluble and membrane-associated proteases to prevent the accumulation of 

damaged or superfluous proteins through refolding or degradation (Voos, 2013). In 

particular under intrinsic or externally imposed stress conditions, the biochemical 

mechanisms of mitochondrial PQC may be exhausted. The resulting accumulation of 

denatured or even aggregated polypeptides constitutes a severe danger for mitochondrial 

and cellular health. Apart from the loss of important metabolic functions, damaged 

mitochondrial may exert a negative influence on cellular survival by releasing large 

amounts of reactive oxygen species (ROS) or apoptotic proteins including cytochrome c 

(Andersen & Kornbluth, 2013, Halliwell, 2006). Thus, cells possess an additional 

mechanism of organellar quality control. This process, which utilizes the reactions of 

cellular autophagy to remove irrevocably damaged mitochondria as a whole, is termed 

mitophagy. At the beginning of a putative signaling pathway, arguably deciding about 

“life or death” of defective mitochondria, stands the mitochondrial kinase Pink1 (Ashrafi 

& Schwarz, 2013). The question, how Pink1 signals mitochondrial damage and which 

events lead to its activation has been addressed in the present work. 
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1.2 Mitochondrial dysfuction in Parkinsons’s disease 
Over the last years, mitochondrial dysfunction has emerged as a common feature of aging-

related neurodegenerative diseases like Parkinson’s disease, Alzheimer’s disease, 

Huntington’s disease or amyotrophic lateral sclerosis (ALS) (Lin & Beal, 2006). With a 

prevalence estimated at 0.3 % of the entire population and 1 % in people over the age of 

60, Parkinson’s disease (PD) is the second most common neurodegenerative disorder (de 

Lau & Breteler, 2006). PD is clinically characterized by four key symptoms: rigidity, 

postural instability, tremor and a typical slowness in executing movements termed 

bradykinesia. These neurological symptoms are collectively caused by the progressive loss 

of dopaminergic neurons in the substantia nigra pars compacta (Lang & Lozano, 1998a, 

Lang & Lozano, 1998b). 

 

First evidence for a link between Parkinson’s disease and mitochondria dates back to the 

late 1970s, when accidental exposure to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MPTP), a synthesis byproduct of the illegal drug 1-methyl-4-phenyl-4-propionoxy-

piperidine (MPPP) was shown to cause PD-like symptoms and degeneration of 

dopaminergic neurons (Langston, Ballard et al., 1983). MPTP was later demonstrated to 

be oxidized to MPP+, which is selectively taken up by dopaminergic neurons via the 

dopamine transporter (Javitch & Snyder, 1984), and inhibits complex I of the 

mitochondrial respiratory chain (Nicklas, Vyas et al., 1985). Accordingly, a similar effect 

results from exposure to complex I inhibitors like rotenone or paraquat, developed as 

pesticide and herbicide, respectively. Both chemicals cause Parkinsonism in animal 

models (Berry, La Vecchia et al., 2010, Betarbet, Sherer et al., 2000). A second line of 

evidence for the exceptional role of mitochondria in the etiology of PD comes from 

mutations in the mitochondrial genome (mtDNA). The 16,500 base pairs comprising 

circular mtDNA encodes 13 genes for subunits of respiratory chain complexes I, III, IV 

and V along with 22 mitochondrial tRNAs and two rRNAs, respectively (Anderson, 

Bankier et al., 1981). High levels of large-scale somatic mtDNA deletions, causing 

mitochondrial dysfunction, were found in substantia nigra neurons from post-mortem 

brains of PD patients (Bender, Krishnan et al., 2006). Moreover, patients with mutations in 

the mitochondrial polymerase γ accumulate excessive levels of mtDNA mutations as a 

result of defective mitochondrial replication and this defect coincides with an increased 

risk for developing PD (Luoma, Melberg et al., 2004).  
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Table 1: Overview of PARK-designated Parkinson’s disease-related loci, mode of inheritance, gene 
names and names of encoded proteins. Bold: Loci linked to monogenic PD. AD: autosomal dominant, 
AR: autosomal recessive. Asterisk: erroneous locus (identical to PARK1). Modified after (Klein & 
Westenberger, 2012). 

Symbol Inheritance Gene name Protein name 
(short name) 

UniProt 
entry 
number 

PARK1 AD SNCA Alpha-synuclein P37840 
PARK2 AR PARKN E3 ubiquitin-protein ligase 

parkin 
(Parkin) 

O60260 

PARK3 AD unknown unknown - 
PARK4* AD SNCA Alpha-synuclein P37840 
PARK5 AD UCHL1 Ubiquitin carboxyl-terminal 

hydrolase isozyme L1 
(UCH-L1) 

P09936 

PARK6 AR PINK1 Serine/threonine-protein 
kinase Pink1, mitochondrial 
(Pink1) 

Q9BXM7 

PARK7 AR DJ-1 Protein-deglycase DJ-1 
(DJ-1) 

Q99497 

PARK8 AD LRRK2 Leucine-rich repeat 
serine/threonine- protein 
kinase 2  
(LRRK2) 

Q5S007 

PARK9 AR ATP13A2 Probable cation-transporting 
ATPase 13A2 

Q9NQ1 

PARK10 risk factor unknown - - 
PARK11 AD unknown - - 
PARK12 risk factor unknown - - 
PARK13 AD or risk 

factor 
HTRA2 
OMI 

Serine protease HtrA2, 
mitochondrial 
(HtrA2/Omi) 

O43464 

PARK14 AR PLA2G6 85/88 kDa calcium-
independent phospholipase 
A2 
(CaI-PlA2) 

O60733 

PARK15 AR FBX07 F-box only protein 7 Q9Y3I1 
PARK16 risk factor unknown - - 
PARK17 AD VPS35 Vacuolar protein sorting-

associated protein 35 
 (hVPS35) 

Q96QK1 

PARK18 AD EIF4G1 Eukaryotic translation 
initiation factor 4 gamma1 
(eIF-4G1) 

Q04637 
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While about 90 % of PD cases are sporadic, studying the rare hereditary cases has led to 

the identification of several genes contributing to onset and progress of Parkinson‘s 

disease. The 18 loci demonstrated or suspected to relate to the disease shown in Table 1, 

were termed PARK and numbered chronologically in order of their identification (Klein & 

Westenberger, 2012).  

 

In brief, six genes are linked to monogenic PD, meaning a form of the disease for which a 

mutation in a single gene is sufficient to cause the phenotype. Among them is SNCA 

(PARK1), encoding α-synuclein. Point mutations in the α-synuclein-encoding gene SNCA 

as well as gene duplications or triplications, respectively, have been shown to cause PD 

(Klein & Westenberger, 2012). The 140 aa α-synuclein protein is the major component of 

the so-called Lewy bodies. These intraneuronal proteinaceous inclusions are the 

morphological characteristic of PD and related diseases, summarized as 

α-synucleinopathies (Goedert, 2001). In Lewy bodies, which represent insoluble deposits 

of the protein, α-synuclein is present in fibrils with a β-sheet like structure (Der-

Sarkissian, Jao et al., 2003). It is thought that the pathogenicity of the aggregation-prone 

α-synuclein involves the formation of small neurotoxic oligomers, which eventually 

mature to larger aggregates (Haass & Selkoe, 2007). In addition to its predominantly 

cytosolic localization, α-synuclein has been proposed to localize at or in mitochondria 

(Devi, Raghavendran et al., 2008, Li, Yang et al., 2007). Functional links between the 

protein and mitochondria stem from the observation, that mutant α-synuclein sensitizes 

neurons to mitochondrial toxins like MPP+. Moreover, effects of α-synuclein on 

mitochondrial dynamics, meaning the fusion and fission of mitochondria, have been 

reported (Nakamura, 2013). Another gene accountable for monogenic PD is DJ-1 

(PARK7). The DJ-1 protein is sensitive to oxidative stress and may act as a redox-

responsive chaperone, which can prevent protein misfolding (Shendelman, Jonason et al., 

2004). Notably, DJ-1 was found to reloaclize to mitochondria in the presence of reactive 

oxygen species (Canet-Aviles, Wilson et al., 2004) and mitochondrial defects were 

observed in DJ-1-deficient Drosophila and mouse models (Hao, Giasson et al., 2010). 

Mutations in PARK8, encoding the serine/threonine kinase LRRK2, are the most common 

cause of autosomal dominant PD (Klein & Westenberger, 2012). LRRK2 interacts with 

regulators of mitochondrial fusion and fission. Accordingly, PD-related mutations of the 

protein alter mitochondrial dynamics (Ryan, Hoek et al., 2015). Intriguingly, LRRK2 
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inhibits the removal of proteins by chaperone-mediated autophagy (CMA), leading to 

accumulation of CMA substrates, including α-synuclein (Orenstein, Kuo et al., 2013). 

Through this mechanism, LRRK2 may contribute to α-synuclein aggregation and 

α-synuclein-dependent mitochondrial damage (Ryan et al., 2015) HTRA2 (PARK13) 

encodes the stress-inducible mitochondrial serine protease HtrA2 (Omi), which resides in 

the intramembrane space. Proteins of the HtrA family have the remarkable property to 

switch between protease and chaperone activity. It is speculated that the mitochondrial 

HtrA2 functions in protein quality reactions, comparable to the bacterial HtrA homologs, 

including DegP. However, clear evidence for a role of HtrA2 in PQC is lacking so far 

(Voos, 2013). Moreover, upon apoptotic stimuli, HtrA2 is released into the cytosol to 

promote apoptosis (Vande Walle, Lamkanfi et al., 2008). Loss-of-function mutations, 

affecting the regulation of the proteolytic activity of HtrA2 were identified in the HTRA2 

gene from heterozygous PD patients (Strauss, Martins et al., 2005). Finally, mutations in 

two genes, encoding the mitochondrial serine/threonine-protein kinase Pink1 (PARK6) 

and the cytosolic E3 ubiquitin-protein ligase Parkin (PARK2), respectively, cause 

autosomal recessive PD (Kitada, Asakawa et al., 1998, Valente, Abou-Sleiman et al., 

2004). Pink1, which collaborates with Parkin to mediate the removal of damaged 

mitochondria by mitophagy, has been in the focus of this work.  

 

In summary, out of the six gene products associated with monogenic PD, five are linked to 

mitochondrial function and at least one additional mitochondrial protein may contribute to 

the etiology of the disease. Thus, functional insight from PD-related proteins strongly 

supports prior evidence for a role of mitochondrial dysfunction in Parkinson’s disease. 

 

1.3 Identification of Pink1 
Pink1 was initially identified in a screen for proteins transcriptionally regulated by the 

tumor suppressor PTEN (phosphatase and tensin homolog) and predicted to contain a 

highly conserved serine/threonine-protein kinase domain. Accordingly, the protein was 

termed PTEN-induced putative kinase 1 (Pink1) (Unoki & Nakamura, 2001). Further 

analysis revealed that Pink1 consists of 581 amino acids, with a predicted molecular mass 

of 62.8 kDa and is ubiquitously expressed, with highest expression in heart, skeletal 

muscle and testis (Unoki & Nakamura, 2001). Pink1 is conserved among eukaryotes 

ranging from C. elegans and D. melanogaster to humans but absent from the model 
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organism yeast. While a role in PTEN-signaling was excluded by Unoki et al., the protein 

gained major attention ever since mutations in the PINK1 (PARK6) gene affecting the 

Pink1 kinase domain, were shown to be responsible for hereditary early onset Parkinson’s 

disease (Valente et al., 2004). In the same study, and in agreement with a predicted 

mitochondrial targeting signal, Pink1 was demonstrated to localize to mitochondria. 

 

1.4 Import, processing and submitochondrial localization of 

Pink1 
Initial reports on the mitochondrial localization of Pink1 motivated further investigations 

regarding import and suborganellar localization of the protein. Like most mitochondrial 

proteins, Pink1 is encoded in the nuclear genome and synthesized at cytosolic ribosomes. 

In the classical presequence import pathway, a matrix-destined mitochondrial preprotein is 

directed to the cytosol-exposed receptors of the outer mitochondrial membrane by an N-

terminal mitochondrial targeting signal (MTS). Translocation across the outer- and inner 

membrane (OMM and IMM) then occurs via the TOM and TIM23 translocase complexes, 

respectively. Insertion of the preprotein into the TIM23 channel implicitly requires the 

presence of a mitochondrial membrane potential (Δψ), as the electrochemical gradient 

drives translocation of the positively charged targeting signal. Moreover, complete 

translocation of the polypeptide into the matrix is dependent on ATP hydrolysis by the 

import motor complex at the inner face of the inner membrane translocase complex. Upon 

crossing of the preprotein through the IMM, the targeting sequence is usually cleaved off 

by the matrix processing peptidase (MPP). This processing reaction gives rise to the 

mature protein, which is released into the matrix compartment. Apart from transport into 

the matrix, multiple other import pathways direct proteins to their specific mitochondrial 

subcompartment (Becker, Böttinger et al., 2012b).  

 

The very N-terminal segment of the Pink1 sequence resembles a mitochondrial targeting 

signal (Figure 1) (Valente et al., 2004), which was reported to be sufficient for 

mitochondrial localization of the protein (Silvestri, Caputo et al., 2005). Moreover, an 

N-terminal Pink1 processing product of apparently 55 kDa was identified in addition to 

the 64 kDa full-length Pink1 (Beilina, Van Der Brug et al., 2005). Although both 

observations theoretically agree with import of Pink1 into the mitochondrial matrix, a 
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more complex and partially controversial picture of Pink1 import and processing emerged 

from subsequent studies.  

 

 
Figure 1: Schematic representation of domain structure and cleavage sites within the Pink1 sequence. 

The N-terminal mitochondrial targeting signal is followed by a hydrophobic transmembrane domain, which 

comprises residues 85 to 110 and acts as an inner membrane stop-transfer signal. Residues 156 to 509 

constitute the Ser/Thr kinase domain, followed by a C-terminal domain, which may act as an OMM 

retention signal. Protease cleavage sites for MPP and PARL and the resulting Pink1 fragments are indicated. 

Note that the MPP cleavage site was estimated from the molecular mass of the MPP processing product.  

 

First, different submitochondrial localizations of Pink1 were reported, making it difficult 

to define an import pathway for the protein. While both full-length and processed Pink1 

are predominantly located at the outer face of the OMM with the kinase domain facing the 

cytoplasm (Becker, Richter et al., 2012a, Zhou, Huang et al., 2008), the protein was 

alternatively found in the intermembrane space (IMS) (Meissner, Lorenz et al., 2011) and 

in the IMM (Silvestri et al., 2005). In addition, a fraction of the processed Pink1 fragment 

was shown to localize to the cytosol (Lin & Kang, 2008). Secondly, a role of the 

mitochondrial membrane potential in import, localization and arguably stability of Pink1 

was proposed. While under basal conditions, endogenous Pink1 is barely, if at all 

detectable by Western blot or immunofluorescence (Becker et al., 2012a, Zhou et al., 

2008), the protein accumulates on mitochondria upon dissipation of Δψ (Jin, Lazarou et 

al., 2010, Narendra, Jin et al., 2010b). Thirdly, different proteases were demonstrated to 

sequentially process Pink1, possibly influencing its submitochondrial localization and 

suggesting a complex interplay of import and processing reactions (Deas, Plun-Favreau et 

al., 2010a, Greene, Grenier et al., 2012).  
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Using an in vitro assay, Becker et al. elucidated the mitochondrial import pathway of 

Pink1 in detail (Becker et al., 2012a). The results of the latter and other studies suggest 

that in the presence of an inner membrane potential, the Pink1 polypeptide is partially 

inserted into the IMM through the TOM and TIM23 complexes (Figure 2). An N-terminal 

hydrophobic segment adjacent to the presequence-like signal, acts as a stop-transfer 

signal, preventing full translocation of Pink1 over the IMM (Zhou et al., 2008). When the 

N-terminal portion reaches the matrix, it is cleaved by MPP, resulting in the formation of a 

60 kDa cleavage product (Pink1f60) (Greene et al., 2012). The IMM resident protease 

PARL (Presenilin-associated rhomboid-like protein) then catalyzes a second cleavage 

between positions 103 and 104 within the Pink1 sequence, generating a 53 kDa fragment 

(Pink1f53) (Deas et al., 2010a). Upon cleavage by PARL, the processed fragment is 

released from the import machinery. Pink1f53 then associates with the OMM via its very C-

terminal hydrophobic portion (Becker et al., 2012a). Pink1f53 was further demonstrated to 

be degraded by the proteasome, a process that would require its full translocation to the 

cytosol (Matsuda, Sato et al., 2010, Yamano & Youle, 2013). By contrast, in depolarized 

mitochondria, the 64 kDa full-length Pink1 (Pink1p64) associates with the OMM, possibly 

through binding of the presequence-like N-terminal segment of Pink1 to cytosol-exposed 

TOM receptors. As further translocation of Pink1 is arguably prevented in the absence of 

Dy, full-length Pink1 accumulates on the OMM and recruits cytosolic Parkin. In turn, 

Parkin initiates the downstream mitophagy process (Jin et al., 2010). 

 

In summary, Pink1 is directed to the outer mitochondrial membrane by a non-canonical 

import pathway. Partial insertion into the inner mitochondrial membrane and processing of 

the protein are at least to some extent dependent on the mitochondrial membrane potential.  
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Figure 2: Model of Pink1 import in the presence and absence of Δψ , respectively. In the presence of Δψ 

(left side), the presequence-like N-terminal segment of the Pink1 precursor (Pink1p64) drives the 

translocation of Pink1 across the OMM via the TOM complex and its insertion into the IMM via the TIM23 

complex (1a). The inner membrane stop-transfer signal prevents complete translocation of Pink1 over the 

IMM. The N-terminus of Pink1 reaches the matrix, allowing cleavage of the mitochondrial targeting signal 

by the matrix processing peptidase (MPP) (2). The IMM protease PARL cleaves Pink1p64 at position 104, 

generating the processed form Pink1f53, which is released from the import machinery (3). A fraction of 

Pink1f53 associates with the OMM as a peripheral membrane protein, possibly assisted by the very C-

terminal fraction of the polypeptide. Alternatively, Pink1f53 is degraded by the proteasome. In depolarized 

mitochondria (right side), the Pink1 precursor (Pink1p64) associates with the OMM, possibly via TOM 

components. Accumulating Pink1 recruits Parkin, which in turn induces mitophagy (1b). OMM, outer 

mitochondrial membrane; IMS, intramembrane space; IMM, inner mitochondrial membrane. Modified after 

(Becker et al., 2012a).  

 

1.5 Degradation of Pink1  
The electrochemical potential over the inner mitochondrial membrane is not only a 

requirement for import of mitochondrial preproteins into the matrix compartment but also 

indicative of active oxidative phosphorylation and mitochondrial integrity. Therefore, the 

loss of Δψ has traditionally been used as a measure for the degree of mitochondrial 

dysfunction. Vice versa, chemical uncoupling of Δψ e.g. by the ionophore valinomycin or 

the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) is routinely 

utilized to simulate mitochondrial damage in cell culture models. While both full-length 

and processed Pink1 are virtually undetectable under normal conditions, the full-length 
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form accumulates upon depletion of Δψ by exposure of cells to CCCP (Jin et al., 2010, 

Narendra et al., 2010b, Zhou et al., 2008). Moreover, a relatively fast decrease in Pink1 

levels upon recovery of Δψ was reported. These observations led to the initial hypothesis 

that the low steady-state levels of Pink1 in healthy mitochondria result from constitutive 

and rapid degradation of the imported and processed form of Pink1 (Matsuda et al., 2010). 

By this mechanism, Pink1 was postulated to accumulate specifically on depolarized 

mitochondria to signal mitochondrial damage (Narendra et al., 2010b). Concerning the 

protease responsible for Pink1 degradation, several publications proposed an involvement 

of the proteasome, as proteasomal inhibitors stabilize the processed form of Pink (Lin & 

Kang, 2008, Takatori, Ito et al., 2008). Degradation of Pink1 was further demonstrated to 

follow the N-end rule, meaning that susceptibility of a protein to degradation via the 

ubiquitin-proteasome system is determined by its N-terminal amino acid (Yamano & 

Youle, 2013). By contrast, another study postulated degradation of Pink1 inside the matrix 

compartment, catalyzed by the mitochondrial protease Lon (Thomas, Andrews et al., 

2014). Notably, the latter observation is largely inconsistent with a localization of Pink1 at 

the outer mitochondrial membrane described above. 

 

Taken together, according to the current model, mitochondrial Pink1 amounts are 

regulated through Δψ−dependent import and degradation of the protein. By this 

mechanism, Pink1 is postulated to accumulate on depolarized mitochondria to act as a 

sensor of mitochondrial damage. Notably, this hypothesis is based on the inner membrane 

potential as the sole measure for mitochondrial damage. However, it is not clear how the 

complete depolarization of virtually all mitochondria within a cell, experimentally caused 

by CCCP translates to physiological and pathophysiological conditions. Thus, the 

authentic cause for the fast increase in Pink1 levels in response to mitochondrial 

perturbations is not yet clear. In addition, the proposed import/turnover model raises the 

question if the 53 kDa major cleavage product of Pink1 represents merely a degradation 

intermediate or if it fulfills any specific function. 

 

1.6 Pink1/Parkin-mediated mitophagy 
After Pink1 accumulates on depolarized mitochondria, it recruits the usually cytosolic 

E3 ubiquitin-protein ligase Parkin. In turn, Parkin initiates a downstream pathway that 

eventually leads to mitophagy, a mitochondria-specific type of macroautophagy. In brief, 



1 Introduction 

 

11 

autophagy describes the sequestration of a portion of the cytoplasm, protein aggregates or 

whole organelles in a double membrane structure, termed autophagosome. The 

autophagosome then fuses with a lysosome, delivering its content to degradation by 

lysosomal enzymes (Figure 3). While non-specific autophagy of intracellular components 

occurs in response to nutrient starvation, autophagy can be highly selective for specific 

organelles, including mitochondria (Wang & Klionsky, 2011). Mitophagy mediates the 

removal of mitochondria during erythrocyte development (i), eliminates paternal 

mitochondria in fertilized oocytes (ii) and is responsible for the clearance of irrevocably 

damaged mitochondria (iii). While all three mitophagy pathways are thought to utilize 

core components of the autophagic machinery, the preceding events that lead to the 

initiation of mitophagy are likely distinct. In response to mitochondrial damage, Pink1 and 

Parkin function together to mediate mitophagy (Ashrafi & Schwarz, 2013). 

 

Using Drosophila knockout models, loss of Pink1 or Parkin, respectively, was 

demonstrated to result in similar mitochondrial defects, namely muscle degeneration, cell 

death and mitochondrial abnormalities. Complementation analysis further revealed that 

Pink1 functions upstream of Parkin in a common pathway (Clark, Dodson et al., 2006, 

Park, Lee et al., 2006). In human cells exposed to CCCP, Parkin was subsequently shown 

to translocate from the cytosol to mitochondria upon loss of Δψ. Moreover, Parkin was 

proposed to mediate the autophagic removal of damaged mitochondria (Narendra, Tanaka 

et al., 2008). Providing an explanation for their genetic interaction, Pink1 was finally 

demonstrated to be responsible for Parkin translocation to depolarized mitochondria 

(Geisler, Holmstrom et al., 2010b, Matsuda et al., 2010, Narendra et al., 2010b, Vives-

Bauza, Zhou et al., 2010, Ziviani, Tao et al., 2010). In addition, the usually repressed 

ubiquitin ligase function of Parkin was activated upon its Pink1-mediated translocation to 

mitochondria (Narendra et al., 2010b). 

 

Pink1-dependent recruitment of Parkin to mitochondria and subsequent induction of 

mitophagy require the kinase function of Pink1 (Geisler et al., 2010b, Matsuda et al., 

2010, Narendra et al., 2010b). This notion raised questions concerning Pink1 

phosphorylation targets and a putative mechanism of Pink1-mediated mitochondrial 

translocation and activation of Parkin. As an E3 ubiquitin ligase, Parkin catalyzes the 

transfer of the of the 76 aa protein ubiquitin (Ub) from an E2 ubiquitin-conjugating 
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enzyme to the ε- amino group of a substrate protein’s lysine residue. The acceptor protein 

can be another ubiquitin, in which case polyubiquitin chains are formed (Ciechanover, 

2005). Depending on the length and linkage type of Ub modifications, substrate proteins 

are tagged for signaling processes or degradation, by the proteasome, the lysosome or 

autophagy (Clague & Urbe, 2010). Parkin is capable of catalyzing monoubiquitination, as 

well as the addition of different types of polyubiquitin chains, including Lys48- and 

Lys63-linked chains to its substrate proteins (Hampe, Ardila-Osorio et al., 2006, Seirafi, 

Kozlov et al., 2015). Parkin consists of an N-terminal ubiquitin-like (Ubl) domain, linked 

to four zink-finger domains, three of which form a RING1-In-Between-RING2 (RBR) 

motif (Figure 37, appendix). Accordingly, it is classified as an RBR-type E3 enzyme 

(Trempe & Fon, 2013). Using in vitro and in vivo techniques, Pink1 was demonstrated to 

directly phosphorylate Parkin at Ser65 within the UBL domain (Kondapalli, Kazlauskaite 

et al., 2012). This phosphorylation was initially proposed to relieve an autoinhibitory 

mechanism of Parkin, thereby promoting its enzymatic activity (Kondapalli et al., 2012, 

Shiba-Fukushima, Imai et al., 2012). Intriguingly, Parkin carrying a Ser65Ala mutation to 

abolish its phosphorylation, as well as a Parkin mutant lacking the Ubl domain, still 

translocate to mitochondria in a Pink1-kinase dependent manner (Kane, Lazarou et al., 

2014). An explanation for this observation lies within a recently discovered novel 

mechanism, in which Pink phosphorylates ubiquitin at Ser65 (homologous to Ser65 in the 

Parkin Ubl domain) and in turn, phospho-ubiquitin activates the Parkin E3 ligase activity 

(Kane et al., 2014, Kazlauskaite, Kondapalli et al., 2014, Koyano, Okatsu et al., 2014). 

According to a recently proposed feed-forward model, Pink1-mediated phosphorylation 

activates Parkin, which in turn, ubiquitinates proteins on the mitochondrial surface. Pink1 

then phosphorylates these newly formed polyubiquitin chains, generating phospho-

ubiquitin, which further promotes Parkin activity (Ordureau, Sarraf et al., 2014). 

 

Once activated, Parkin ubiquitinates proteins at the outer face of the outer mitochondrial 

membrane (Geisler, Holmstrom et al., 2010a, Narendra, Kane et al., 2010a, Sarraf, Raman 

et al., 2013). Notably, the broad spectrum of Parkin OMM substrates identified in a 

proteomics approach by Sarraf et al. suggests that the overall ubiquitination pattern, rather 

than a specific substrate is crucial for the subsequent signaling process (Sarraf et al., 

2013). The current model of Pink1/Parkin-mediated mitophagy is illustrated in Figure 3. 

Although the events downstream of Parkin activity still have to be worked out in detail, it 

is proposed that cellular autophagic components recognize the ubiquitin chains attached to 
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OMM proteins and eventually mediate the mitophagy process (Ashrafi & Schwarz, 2013, 

de Vries & Przedborski, 2012, Geisler et al., 2010a, Pickrell & Youle, 2015). In general, 

mitophagy utilizes the core autophagy machinery, comprising numerous so-called 

autophagy-related (Atg) proteins, which were initially identified in yeast. Among them is 

LC3, one of several human Atg8 homologs, which is conjugated to 

phosphatidylethanolamine residues of the forming autophagic membrane. Adaptor 

proteins that interact with both mitochondrial and autophagic proteins, including LC3, 

mediate organelle specificity of the mitophagy process (Wang & Klionsky, 2011). In case 

of Pink1/Parkin-dependent mitophagy, the autophagy adaptor p62 may be recruited to 

ubiquitinated mitochondria albeit its requirement for the mitophagy process as such 

remains controversial (de Vries & Przedborski, 2012, Geisler et al., 2010a, Narendra et al., 

2010a). Other candidate adaptor proteins are the Bcl-2 family member Nix, NBR1, 

Tax1BP1, NDP52, and optineurin (de Vries & Przedborski, 2012, Pickrell & Youle, 

2015). In case of NDP52 and optineurin, a recent study elucidated their direct recruitment 

by Pink1 to phospho-ubiquitin. Remarkably, Parkin was dispensable for this process, 

which emphasizes a more direct function of Pink1 in the mitophagy process (Lazarou, 

Sliter et al., 2015). Notably, most of the work characterizing the Pink1/Parkin system has 

been carried out in immortalized cell lines and frequently utilizing overexpression of at 

least on of the two proteins. Hence the question to what extent endogenous Pink1 and 

Parkin contribute to mitophagy in neurons remains to be answered (Grenier, McLelland et 

al., 2013). 

 

It should be noted that recruitment of Parkin and the autophagic machinery is likely only 

one of several functions of Pink1 in a broader context of mitochondrial quality control. 

Within the cell, mitochondria do not exist as isolated organelles but constitute a dynamic 

network, which is constantly recomposed by fusion and fission (Youle & van der Bliek, 

2012). Fusion of the outer membrane is mediated by the GTPases Mitofusin 1 and 

Mitofusin 2 (Mfn1 and Mfn2). Both proteins are ubiquitinated in a Pink1/Parkin-

dependent manner to be degraded by the proteasome (Gegg, Cooper et al., 2010, Tanaka, 

Cleland et al., 2010) and at least Mfn2 is also a direct Pink1 substrate (Chen & Dorn, 

2013). Abolishing fusion through degradation of Mfn1/Mfn2 prevents severely damaged 

mitochondria from refusing with and poisoning the mitochondrial network (Youle & van 

der Bliek, 2012). Moreover, the resulting smaller mitochondria are thought to be better 

accessible targets for the mitophagy process (de Vries & Przedborski, 2012). Transport of 
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mitochondria along microtubules confers mitochondrial motility, as exemplified by axonal 

transport. The mitochondrial Rho GTPase Miro1 acts as an adaptor between mitochondria 

and kinesin motor proteins. Upon loss of Δψ, Pink1, together with Parkin, activates the 

proteasomal degradation of Miro1, which results in a halt of mitochondrial motility. The 

resulting spatial isolation may facilitate removal of the damaged organelle by mitophagy 

(Wang, Winter et al., 2011).  

 

Finally, the mitochondrial Hsp90 chaperone TRAP1 and the IMM protease HtrA2 (see 

1.2) were demonstrated to be phosphorylated by Pink1 (Plun-Favreau, Klupsch et al., 

2007, Pridgeon, Olzmann et al., 2007). A spatial interaction of the cytosol-exposed Pink1 

kinase domain with the matrix resident TRAP1 is unlikely. However, TRAP1 

overexpression completely rescues the Pink1-deficient phenotype in flies, pointing 

towards a certain functional redundancy of Pink1 and TRAP1 (Costa, Loh et al., 2013). 

Similarly, regulation of HtrA2, a candidate constituent of PQC may implicate a function 

of Pink1 in mitochondrial homeostasis beyond mitophagy.  
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Figure 3: Current model of Pink1/Parkin-mediated mitophagy. Under normal conditions, Pink1 levels 

are very low. Mitochondrial stress conditions may lead to mitochondrial damage, accompanied by a decrease 

or loss of the mitochondrial membrane potential (Δψ) (1). In the absence of Δψ, Pink1 accumulates at the 

outer mitochondrial membrane (OMM) (2). Pink1 recruits and activates the usually cytosolic E3 ubiquitin 

ligase Parkin in a process involving Pink1-mediated phosphorylation of Parkin at Ser65 (3). Parkin 

conjugates ubiquitin (Ub) to various OMM proteins (4). Pink1 phosphorylates Ub attached to OMM 

proteins, and the resulting phospho-Ub further activates Parkin (5). Adaptor proteins (candidate proteins are 

indicated) that bind to both ubiquitin and the autophagic protein LC3 mediate sequestration of the organelle 

in an autphagosomal membrane (6). The autophagosome then fuses with a lysosome, delivering its complete 

content to degradation by lysosomal hydrolases (7). 
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2 Objectives of this work 
The mechanisms, whereby the PD-related mitochondrial kinase Pink1 initiates the 

autophagic removal of defective mitochondria via the recruitment and activation of Parkin, 

have been extensively studied. By contrast, the preceding events, leading to a significant 

increase in the amount of Pink1 polypeptides at the outer mitochondrial membrane of 

impaired mitochondria are by far less understood. The current model states that Pink1 

amounts are regulated via membrane potential-dependent import and concomitant fast 

turnover of the protein. The considerations leading up to this thesis were 1) that the 

proposed model presumes complete depolarization of virtually all mitochondria for the 

activation of the Pink1/Parkin system, a condition that seems unlikely to occur under 

physiological conditions and 2) that the constitutive synthesis and degradation of Pink1 

would consume an enormous amount of cellular energy. Thus, in my thesis I aimed at 

identifying conditions that elicit an increase in Pink1 protein levels. The main 

experimental strategy was to treat cultured human cells with diverse chemicals that 

modulate mitochondrial or cellular functions and monitor Pink1 protein levels under the 

respective conditions. Analyzing the functional state of mitochondria upon perturbations 

that elicit Pink1 accumulation would then possibly allow identifying a common trigger for 

Pink1 accumulation and concomitant mitophagy. In a second approach, the biochemical 

mechanism underlying the regulation of Pink1 protein amounts should be revisited. To 

this end, cellular and mitochondrial degradation assays were employed to directly assess 

the turnover of Pink1 both under normal conditions and mitochondrial perturbations that 

lead to elevated Pink1 levels. A third approach aimed at establishing a model for 

mitochondrial perturbations with a direct relevance for PD. The PD-related cytosolic 

protein α-synuclein, which has been proposed to exert harmful effects on mitochondria, 

represents a prominent candidate for such a model. As a prerequisite for future 

experiments, the putative interaction of α-synuclein with mitochondria should be analyzed 

by means of a radioactive in vitro import assay.  
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3 Materials  

3.1 Laboratory devices 
Device Name Manufacturer 

CCD camera LAS-400 mini Fujifilm 

Cell counter Scepter Milipore 

Flow cytometer CyFlow space CY-S3001 Partec 

Fluorescence microscope EVOS fl PeqLab 

Homogenizer Minilys PeqLab 

Microplate reader Infinite M200 pro TECAN 

Phosphorimager FLA-5100 Fujifilm 

Ultracentrifuge Optima Max-XP Beckman Coulter 

 

3.2 Chemicals  
Compound Supplier 

1-Methyl-4-phenylpyridinium iodide 

(MPP+) 

Sigma-Aldrich 

Actinomycin D Sigma-Aldrich 

Antimycin A Sigma-Aldrich 

Apyrase Sigma-Aldrich 

Atractyloside Calbiochem 

Carbonyl cyanide 3-

chlorophenylhydrazone (CCP) 

Sigma-Aldrich 

Creatine Roche 

Creatine Kinase Roche 

Cycloheximide Sigma-Aldrich 

Digitonin Calbiochem 

Dodecyl- β -D-maltosid Carl Roth 

Menadione Sigma-Aldrich 

1-Methyl-4-phenylpyridinium iodide 

(MPP+ iodide) 

Sigma-Aldrich 

MG132 (Z-leu-leu-leu-al) Sigma-Aldrich 
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Oligomycin Sigma Aldrich 

Phenylmethylsulfonyl fluoride (PMSF) Carl Roth 

Proteinase K Sigma-Aldrich 

Protease inhibitor cocktail plus Carl Roth 

Rotenone Sigma-Aldrich 

Tetramethylrhodamine ethyl ester (TMRE) Life technologies 

 

3.3 Reagents 
Name Supplier 

ATP determination kit Life technologies 

EXPRESS [35S] protein labeling mix Perkin Elmer 

iScript Select cDNA synthesis kit BioRad 

Lipofectamine Life technologies 

MitoSOX mitochondrial superoxide 

detector 

Life technologies 

MitotrackerRed Life technologies 

mMESSAGE mMACHINE SP6 

Transcription kit 

Life technologies 

Molecular Weight Marker, low range Sigma Aldrich 

NativeMark protein standard Life technologies 

NucBlue® Live ReadyProbes™ Reagent Life technologies 

Plasmid DNA isolation kit Life technologies 

Rabbit Reticulocyte Lysate System Promega 

RNeasy Mini Kit Qiagen 

RotiQuant universal Carl Roth 

ServaLight EoSUltra CL HRP WB 

Substrate Kit 

Serva 

TNT-coupled reticulocyte lysate Promega 

TRIzol Life technologies 

TurboFect transfection reagent Theromo Scientific 
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3.4 Cell culture media and reagents 
Name Supplier 

Dulbeco’s modified Eagel’s medium 

(DMEM), high glucose 

Life technologies 

RPMI medium Life technologies 

Fetal calf serum (FCS) Life technologies 

Penicillin/Streptomycin Life technologies 

L-glutamine  Life technologies 

0.005 % Trypsin-EDTA Life technologies 

10 x PBS Life technologies 

 

3.5 Primary antibodies 
Immunogen Type Specification Source 

BiP/GRP78 mouse 610978 BD Biosciences  

COX1 mouse 459600 Invitrogen  

COX4 mouse 3E11 Cell Signaling  

COX5a mouse A21363 Molecular Probes  

DJ1 mouse - gift from S. Przedborski 

GAPDH mouse E1C603-1 EnoGene  

GRP75/Mortalin mouse SPS-825 Stressgen   

Hsp60 rabbit sc-13966 Santa Cruz Biotechnology  

Lon rabbit  Gramsch 

Mfn2 mouse  Abcam 

Parkin rabbit 2132 Cell Signaling  

Pink1 rabbit BC100-494 Novus Biologicals  

PMPCA (MPP) rabbit HPA021648 Sigma-Aldrich  

SDHA mouse 459200 Invitrogen  

Smac rabbit sc-22766 Santa Cruz Biotechnology  

Tim23 mouse 611222 BD Biosciences  

Tom40 rabbit sc-11414 Santa Cruz Biotechnology  

TRAP1 rabbit GR2387 Gramsch 
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α -Tubulin mouse T5168 Sigma-Aldrich  

FLAG-tag mouse FLAG M2 

affinity gel 

A2220 

Sigma 

 

3.6 Peroxidase-coupled secondary antibodies for Western blot  
Immunogen Type Specification Source 

Rabbit IgG goat A6154 Sigma-Aldrich 

Mouse IgG goat A4416 Sigma-Aldrich 

 

3.7 Mammalian cell lines 
Name  Description  Source 

SH-SY5Y human neuroblastoma German Collection of 

Microorganisms and Cell Cultures 

(DSMZ), ACC-209  

HeLa human cervix carcinoma DSMZ, ACC-57 

MEF PARL -/- mouse embryonic fibroblast Serge Przedborski 

 

3.8 Plasmids 
Name Description Source 

pHSPINK1 vector: pCMV-SPORT6, insert: human 

Pink1, CMV promoter for mammalian 

expression 

Imagenes 

pHSMDH2 vector: pOTB7, insert: human Mdh2; T7 

promoter for in vitro transcription 

Invitrogen 

pPINK1-FLAG vector: pIRES-hrGFP-1, insert: human Pink1 

with C-terminal FLAG-tag, CMV promoter 

for mammalian expression 

Serge 

Przedborski 

pPINK1DN103 vector: pCMV, insert: human Pink1 with Serge 
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deletion of 103 N-terminal amino acids, CMV 

promoter for mammalian expression 

Przedborski 

pSNCA-A30P vector: pCMV, insert: human α-synuclein 
with A30P mutation and C-terminal HA-tag, 

CMV promoter for mammalian expression 

Serge 

Przedborski 

pSNCA-A53T pCMV vector, insert: human α-synuclein with 

A53T mutation and C-terminal HA-tag, CMV 

promoter for mammalian expression 

Serge 

Przedborski 

pSNCA-HA-WT vector: pCMV, insert: human α- synuclein 

with C-terminal HA tag, CMV promoter for 

mammalian expression 

Serge 

Przedborski 

pSU9-GFP vector: pcDNA3.1, insert: GFP fused to first 

70 amino acids of N.crassa ATPase subunit 9 

(Su9(70)),CMV promoter for mammalian 

expression 

Ursula Gerken 

pSU9-GFP-DHFR vector: pcDNA3.1, insert: mouse full length 

DHFR with N.crassa Su9(70) and GFP fused 

to N-terminus, CMV promoter for 

mammalian expression 

Nadja 

Schröder 

pSU9-GFP-DHFRds vector: pcDNA3.1, insert: destabilized mouse 

full length DHFR with N.crassa Su9(70) and 

GFP fused to N-terminus, CMV promoter for 

mammalian expression 

Nadja 

Schröder 
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Primers for qRT-PCR 
Name Sequence 

PINK1 fwd 5’-AACATCCTTGTGGAGCTGGACCCAGACG-3’ 

PINK1 rev 5’-CATCAGCCTTGCTGTAGTCAATCACTG-3’ 

GAPDH fwd 5’- TCAGACACCATGGGGAAGGTGAA-3’ 

GAPDH rev 5’- GAATCATATTGGAACATGTAAACCATG-3’ 

 

3.9 Primers for PCR  
Name Sequence 

SP6-Koz-SNCA- fw 5’- GAATTCATTTAGGTGACACTATAGAATACGC

CGCCACCATGGATGTATTCATGAAAGGAC-3’ 

SNCA-stop-rev 5’-TCATCATCATTAGGCTTCAGGTTCGTAGT-3’ 

 

3.10 siRNA 
Transcript specification Source 

Mortalin (HspA9) SR30004 amsbio 

control  amsbio 
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4 Methods 

4.1 Protein biochemical methods 

4.1.1 Glycine SDS-PAGE 
Discontinuous glycine sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) was routinely utilized to separate proteins according to their molecular weight and 

under denaturing conditions.  

 

Large Gel Resolving gel (12.5 %) Stacking Gel 

Acrylamide / 

bisacrylamide (37.5:1) 

mix  

6.9 ml 0.83 ml 

1.875 M Tris pH 8.8 3.5 ml - 

0.8 M Tris pH 6.8 - 0.5 ml 

10 % [w/v] SDS 0.17 ml 50 µl 

ddH2O 6.3 ml 3.55 ml 

10 % [w/v] APS 100 µl 50 µl 

TEMED 10 µl 10 µl 

Total volume 17 ml 5 ml 

 

Samples were resolved in 1 x SDS-PAGE sample buffer (8 % SDS, 40 % glycerol, 

240 mM Tris-HCl, pH 6, 0.08 % Bromphenol blue, 20 % β-mercaptoethanol) and heated 

to 95 °C for 5 min. Electrophoresis was conducted in 1 x SDS-buffer (25 mM Tris, 

0.191 mM glycine) at 25 mA for 3 -4 h.  

 

4.1.2 Tricine SDS-PAGE 
Tricine SDS-PAGE was used for the separation of small proteins, specifically α-synuclein. 

A 16.5 % acrylamide separation gel was overlaid with a 10 % acrylamide spacer gel and a 

stacking gel. Samples were prepared as described for glycine SDS-PAGE and 

electrophoresis was conducted in a two buffer system consisting of anode buffer 
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(0.2 M Tris-HCl, pH 8.9) and cathode buffer (0.1 M Tris, pH 8.25, 0.1 M tricine and 

0.1 % SDS) at 25 mA for 12-14 h. 

 

Acrylamide stock (32:1)  200 ml final concentration  

acrylamide 96 g 49.5 % 

bis-acrylamide 3 g 3 % 

ddH2O to 200 ml  

 

3 x gel buffer 500 ml final concentration 

Tris-HCl, pH8.5 181.71 3 M 

SDS 1.5 g 0.3 % 

ddH2O to 500 ml  

 

 

Gel 16.5 % 10 % stacking (4ml) 

acrylamide 

(32:1) 

5 ml 1 ml 0.417 ml 

3 x gel buffer 5 ml 1.67 ml 1.25 ml 

glycerol 2 ml - - 

ddH2O 3 ml 2.33 ml 3.33 ml 

10  % APS 75 µl 17 µl 42 µl 

TEMED 7.5 µl 1.7 µl 4.2 µl 

total volume 15 ml 5 ml 5 ml 

 

4.1.3 Blue native PAGE of mitochondrial proteins and protein complexes 
Mitochondrial proteins and protein complexes were analyzed by Blue native 

polyacrylamide gel electrophoresis (BN-PAGE). A 5-16.5 % polyacrylamide gradient 

resolving gel was prepared as following, by help of a gradient mixer, and overlaid with a 

stacking gel.  
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3 x gel buffer 500 ml final concentration 

ε -amino n-caproic acid 13.12 g 200 mM 

Bis-Tris/HCl pH 7.0 15.7 g 150 mM 

ddH2O to 500 ml  

 

Gel 5 %  16.5 % stacking gel 

3 x gel buffer 3 ml 3 ml 2.5 ml 

acrylamide 

(32:1) 

0.91 ml 3.05 ml 0.6 ml 

glycerol - 1.8 ml - 

ddH2O 5.048 ml 1.117 ml 4.367 ml 

10  % APS 38 µl 30 µl 30 µl 

TEMED 3.8 µl 3 µl 3 µl 

total volume 9 ml 9 ml 7 ml 

 

50 µg mitochondria per sample were solubilized in lysis buffer (1 % digitonin, 

10 mM HEPES, pH 7.4, 2 mM EDTA, pH 8.0, 50 mM NaCl, 10 % glycerol, 1 mM 

PMSF). After a clarifying spin to remove non-solubilized material, 10 x loading dye 

(5 % Coomassie blue G-250, 500 mM ε-amino n-caproic acid, 100 mM Bis-Tris-HCl, 

pH 7.0) was added and samples applied to the gel. The chamber was filled with pre-chilled 

anode buffer (50 mM Bis-Tris, pH 7.0) and samples overlaid with cathode buffer with 

Coomassie (50 mM Tricine, pH 7.0, 15 mM Bis-Tris/HCl, pH 7.0, 0.2 % Coomassie blue 

G-250), which was replaced by cathode buffer w/o Coomassie after the running front had 

reached the separation gel. The gel temperature was maintained at 4 °C using a cold water 

pump and electrophoresis conducted at 70 V for 16 to 20 h. The gel was finally soaked in 

1 x SDS buffer for 5 min and subjected to Western blotting as described below. 

 

4.1.4 Western blot and immunodetection of specific proteins 
Proteins separated by acrylamide gel electrophoresis were transferred to a polyvinylidene 

fluoride (PVDF) membrane using semi-dry Western blot technique. PVDF membranes 

were activated in methanol and pre-soaked in transfer buffer (20 mM Tris, 150 mM 

glycin, 0.1 % SDS, 20 % methanol), placed on three layers of filter paper soaked in 

transfer buffer, followed by the gel and three more layers of filter paper. Transfer was 
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conducted 220 mA for 2 h. After staining in Coomassie solution (0.25 % Coomassie 

Brilliant Blue R250, 40 % methanol, 10 % acetic acid) and destaining in destaining 

solution (40 % methanol, 10 % acetic acid) for visualization of total proteins, the 

membrane was incubated in blocking solution (5 % milk, 0.5 % Tween 20 in TBS) for 1 h. 

After incubation with a specific primary antiserum diluted in TBS containing 0.5 % 

Tween 20 at 4 °C o/N, membranes were washed three times in TBS, followed by 

incubation with anti-mouse- or anti-rabbit IgG antibody coupled to horseradish peroxidase 

diluted 1:5000 for 1 h at RT, and washing three times in TBS. Western blot membranes 

were developed using enhanced chemiluminescence (ECL) substrates and a charge 

coupled device (CCD) camera. 

 

4.1.5 Quantification of Western blot signals 
Where indicated, Western blot signals were quantified by means of MultiGauge software 

(Fujufilm). 

 

4.1.6 TCA precipitation of proteins 
TCA precipitation was used to concentrate proteins from dilute samples. 1/5 of final 

volume of 72 % trichloroacetic acid (TCA) was added to samples and mixed. After 30-40 

min incubation on ice, samples were centrifuged at 20,000 g for 40 min at 4 °C. Pellets 

were washed with ice-cold acetone and centrifuged at 20,000 x g for 12 min. Pellets were 

air-dried for 2 min and finally resuspended in 1 x SDS-PAGE sample buffer. 

 

4.1.7 Determination of protein concentration by modified BCA assay 
Protein concentration was routinely determined by means of modified BCA (bicinchoninic 

assay) assay (RotiQuant universal, Carl Roth). 5 µl of each sample or of a BSA serial 

dilution were pipetted in a 96 well plate. A RotiQuant working solution containing 

15 parts of reagent 1 and 1 part of reagent 2 was prepared and 200 µl of the working 

solution added to each well. After 30 min incubation at 37 °C, the absorbance at 492 nm 

was read in a microplate reader.  
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4.1.8 Alkaline extraction of proteins  
For alkaline extraction of mitochondrial proteins, 50 µg of isolated mitochondria (see 

2.4.2) were resuspended in 500 µl of 0.1 M sodium carbonate (Na2CO3) / sodium 

bicarbonate (NaHCO3) solution at pH 7.3, 10, 11.5 or 12, respectively and briefly mixed 

by vortexing. After 30 min incubation on ice, samples were subjected to 

ultra-centrifugation at 100,000 x g for 1 h at 4 °C. Supernatants were TCA-precipitated 

and all samples analyzed by SDS-PAGE and Western blot. 

 

4.1.9 In vitro transcription and translation  
Radiolabeled precursor proteins for in vitro import were synthesized in cell-free 

transcription and translation systems. For uncoupled transcription and translation, mRNA 

was produced from linearized plasmid DNA using the SP6-transcription kit (Promega). 

The obtained mRNA was used as a template for in vitro translation in the presence of 

[35S]-methionine/cysteine by means of reticulocyte lysate system (Promega). For 

transcription of SNCA constructs, transcription template DNA was amplified from the 

HA-tagged plasmids by standard PCR reaction, introducing SP6 promoter and Kozak 

sequence via the 5’-primer followed by uncoupled transcription and translation reactions 

as described. Coupled transcription/translation was conducted using the TNT-coupled 

reticulocyte lysate system (Promega) and linearized plasmid DNA as a template.  
 

4.2 Cell culture methods  

4.2.1 Cell culture conditions 
Cell line Culture medium 

SH-SY5Y DMEM, 10 % FCS, 1 mM L-glutamine, 100 units/ml penicillin, 

100 µg/ml streptomycin 

HeLa RPMI, 10 % FCS, 2 mM L-glutamine, 100 units/ml penicillin, 

100 µg/ml streptomycin 

MEF DMEM, 10 % FCS, 2 mM L-glutamine, 100 units/ml penicillin, 

100 µg/ml streptomycin 
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All cell lines were maintained in 10 cm or 15 cm diameter tissue culture dishes at 37 °C in 

a saturated humidity atmosphere containing 5 % CO2. Cells were passaged by 

trypsinization at ratios of 1:3 to 1:6 every 48 to 72 h and routinely tested for Mycoplasma 

contamination by PCR. 

 

4.2.2 Chemical treatment of cells 
SH-SY5Y cells were grown to 70-80 % confluency and then incubated in complete 

DMEM medium supplemented with the respective compound or corresponding amounts 

of EtOH/DMSO for control samples. Concentrations and incubation times were as 

specified in the figure legends. 

 

4.2.3 Transient transfection of cultured cells 
For transfection with plasmid DNA, cells were grown to a confluency of 70 to 90 % and 

transfected by means of TurboFect™ transfection reagent (Thermo Scientific) according 

to the manufacturer’s instructions and used for experiments 24 to 72 h post-transfection. 

 

4.2.4 Knock-down of protein expression by siRNA 
For knock-down of protein expression, cells were grown in 6-well plates to a confluency 

of 50 to 70 % in growth medium w/o antibiotics and transfected with siRNA by means of 

Lipofectamine™ reagent according to the manufacturer’s instructions using 100-pmol of 

siRNA and 5 µl transfection reagent per well. Cells were used for experiments 24 to 72 h 

post-transfection. 

 

4.3 Cell biology methods 

4.3.1 Lysis of cultured cells 
Cells were harvested using a cell scraper, washed twice in PBS and resuspended in lysis 

buffer (0.5 % Triton X-100, 20 mM Tris-HCl, pH 7.4, 2 mM EDTA, 50 mM NaCl, 

0.5 mM PMSF, 1 x protease inhibitors). Incubation at 4 °C with shaking at 1400 x rpm 

was followed by a clarifying spin at 1200 x g for 5 min to remove unlysed cells. The 
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protein concentration of the cleared lysate was determined (see 4.1.7) and 20 mg protein 

per lane were loaded for SDS-PAGE. 

 

4.3.2 Subcellular fractionation of cultured cells 
After harvesting, cells were washed twice in ice-cold PBS and resuspended in HMS-A 

buffer (220 mM mannitol, 70 mM sucrose, 20 mM HEPES, pH 7.6, 1 mM EDTA, 

0.2 % BSA, 1 mM PMSF). Cells were homogenized using a glass/Teflon homogenizer 

and cell lysates subjected to a clarifying spin at 1500 x g for 5 min. The supernatant was 

separated into mitochondrial and cytosolic fraction at 12,000 x g. The resulting 

mitochondrial pellet was washed once in HMS-B buffer (220 mM mannitol, 70 mM 

sucrose, 20 mM HEPES, pH 7.6, 1 mM EDTA, 1 mM PMSF) and finally resuspended in 

HMS-B. When analyzed in the respective experiment, cytosolic fraction were TCA-

precipitated.  

 

4.3.3 Preparation of mitochondrial fractions from muscle biopsies 
To obtain mitochondria-enriched fractions from human muscle biopsies, 25-100 mg of 

muscle tissue was homogenized in 20 µl ice-cold HMS-B buffer per mg tissue by means 

of a Minilys® homogenizer using 1.4 mm ceramic beads. After pelleting of cell debris at 

600 x g for 80 s, the supernatant was re-centrifuged at 17,000 x g for 5 min. The resulting 

mitochondrial pellet was washed twice in HMS-B. For subsequent analysis by Blue native 

PAGE, mitochondrial fractions were resuspended in DDM lysis buffer (0.02 M Tris-HCl, 

pH 7.4, 2 mM EDTA, 0.05 M NaCl, 10 % glycerol, 1 mM PMSF, 2.5 mg/ml n-dodecyl b-

D-maltoside) to a final concentration of 1 µg protein / µl. Experiments with patient 

samples were carried out under supervision of Prof. Dr. W. Kunz (Department of 

Epileptology and Life and Brain Center, University of Bonn) and according to the 

guidelines of the Ethical committee of the University of Bonn Medical Center.  

 

4.3.4 In vitro import of [35S]-labeled precursor proteins into isolated 

mitochondria 

For in vitro import of [35S]-Met/Cys-labeled precursor proteins, 50 µg of freshly isolated 

mitochondria were resuspended in 100 µl import buffer (20 mM HEPES, pH 7.6, 0.25 M 
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sucrose, 5 mM magnesium acetate, 80 mM potassium acetate), supplemented with 5 mM 

glutamate, 5 mM malate, 1 mM DTT, 5 mM KPi, pH 7.4 and 2 mM ATP. Where 

indicated, the mitochondrial membrane potential (Δψ) was dissipated by the addition of 

8 µM antimycin A, 0.5 µM valinomycin, and 20 µM oligomycin prior to import. 

Following the addition of radiolabeled precursor proteins, reactions were incubated at 

37 °C for the indicated times. Mock samples contained radiolabeled pre-proteins diluted in 

import buffer but no mitochondria. Mtochondria were re-isolated at 12,000 x g, washed 

once in import buffer and samples analyzed by SDS-PAGE and digital autoradiography. 

Where indicated, mitochondria were incubated in the presence of 100 µg/ml trypsin for 

30 min on ice after import to digest protease-accessible proteins (post-treatment). In order 

to access dependency of the import reaction on protease-accessible components of the 

TOM translocation complex, mitochondria were treated with trypsin or proteinase K at 

concentrations indicated in the respective figures for 25 min on ice prior to import (pre-

treatment).  

 

4.3.5 Mitochondrial re-translocation assay 

For the mitochondrial re-translocation assay, import of [35S]-labeled precursor proteins 

was performed as described for 30 min at 30 °C. After completion of the import reaction, 

mitochondria were re-isolated at 12,000 x g for 10 min and resuspended in 30 µl import 

buffer supplemented with 5 mM malate, 5 mM glutamate and 2 mM ATP. Where 

indicated Δψ  was dissipated by addition of a mixture of 8 µM antimycin A, 

0.5 µM valinomycin and 20 µM oligomycin and mitochondria resuspended in import 

buffer w/o supplements. Samples were incubated at 30 °C for the indicated times and then 

separated into mitochondrial pellet and soluble fraction at 12,000 x g for 10 min. The 

soluble fraction was TCA- precipitated and all samples finally resuspended in SDS-PAGE 

sample buffer. After separation by SDS-PAGE, samples were analyzed by digital 

autoradiograohy. 

 

4.3.6 Mitochondrial degradation assay 
To follow the degradation of newly imported radiolabeled proteins by mitochondrial 

proteases, in vitro import was conducted as described for 40 min. After completion of the 

import reaction, mitochondria were re-isolated, washed once in import buffer to remove 
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unbound preproteins and resuspended in 30 µl fresh import buffer, supplemented with 

1 mM creatine phosphate, 75 µg/ml creatine kinase and 7.5 µg/ml BSA. Where indicated, 

mitochondria were depleted of Δψ by addition of 8 µM antimycin A, 0.5 µM valinomycin 

and 20 µM oligomycin. For degradation in the absence of ATP, mitochondria were pre-

incubated with 0.01 U/µl apyrase and 20 µM oligomycin for 10 min at 30 °C and then 

incubated in import buffer w/o glutamate, malate and ATP-regenerating system but 

supplemented with 10 mM EDTA. Degradation reactions were incubated at 30 °C and 

after different time points, samples were withdrawn and mixed directly with SDS-PAGE 

sample buffer. All samples were analyzed by SDS-PAGE and digital autoradiography. 

 

4.3.7 Cellular degradation assay 
To monitor cellular degradation of Pink1 under different conditions, SH-SY5Y cells 

transiently expressing Pink1-FLAG, were subjected to radioactive cellular pulse/chase 

labeling, followed by immunoprecipitation specifically of Pink1-FLAG using an anti-

FLAG antibody.  

 

4.3.7.1 Cellular pulse/chase labeling 

24 h post-transfection with pPINK1-FLAG, cells were incubated for 1 h in depletion 

medium (Met/Cys free DMEM supplemented with 10 % FCS dialyzed against PBS and 

1 mM L-glutamine) under normal culture conditions to deplete intracellular methionine 

and cysteine. For pulse labeling, cells were incubated in depletion medium containing 

[35S]-Met/Cys-labeling mix with a specific activity of 22 mCi/ml in the medium for 

30 min. After washing once with complete DMEM, cells were further incubated in 

depletion medium supplemented with 30 mg/L cold methionine and 25 mg/L cold 

cysteine. After different chase incubation times, cells were scarped off from culture dished 

in PBS and whole cell suspensions subjected to TCA precipitation before proceeding with 

immunoprecipitation. 

 

4.3.7.2 Immunoprecipitation of Pink1-FLAG 

For immunoprecipitation, TCA precipitated proteins were lysed by boiling samples in 

denaturing lysis buffer (1 % SDS, 50 mM Tris-HCl, pH 7.4, 5 mM EDTA, 8 M urea). 

Lysates were diluted 1:10 in IP buffer (1 % Triton X-100, 50 mM Tris-HCl, pH 7.4, 
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150 mM NaCl, 50 mM EDTA, 1 mM PMSF, 1 x protease inhibitors) and subjected to a 

clarifying spin at 14,000 x g for 10 min. After determination of the protein concentration 

by BCA assay, equal amounts of protein were mixed with 25 µl of anti-FLAG antibody 

coupled to agarose beads (Anti-FLAG M2 affinity gel, Sigma A220) equibrilated in 

IP-buffer and incubated on a tube rotator at 4 °C o/N. Samples were washed three times in 

wash buffer (0.1 % Triton X-100, 50 mM Tris-HCl, pH 7.4, 300 mM NaCl, 5 mM EDTA, 

1 mM PMSF) before adding 40 µl SDS-PAGE sample buffer, shaking for 10 min, and 

boiling the samples at 95 °C for 5 min to elute bound proteins. Samples were analyzed by 

SDS-PAGE and digital autoradiography.  

 

4.3.8 Measurement of mitochondrial membrane potential (Δψ) in 

cultured cells by TMRE staining and flow cytometry  
The potential-sensitive fluorescent dye tetramethylrhodamine ethyl ester (TMRE) was 

used to assess Dy in intact SH-SY5Y cells. Following incubation in complete growth 

medium containing 0.5 µM TMRE for 20 min, cells were harvested by trypsinization and 

washed twice in PBS containing 0.2 % BSA. The red fluorescence of 20,000 cells per 

sample was analyzed by flow cytometry. Untreated cells and cells treated with the 

mitochondrial uncoupler carbonyl cyanide m-chlorophenyl hydrazone (CCCP) were 

analyzed as controls. 

 

4.3.9 Measurement of Δψ  in isolated mitochondria by TMRE staining 

and fluorescence intensity measurement 
For determination of Dy in isolated mitochondria, mitochondria were resuspended in 

potential buffer (0.6 M sorbitol, 0.1 % BSA, 10 mM MgCl2, 20 mM KPi, pH 7.2, 

5 mM malate, 10 mM glutamate) and incubated with 1 µM TMRE for 30 min at 30 °C and 

protected from light. Samples were washed once to remove excess TMRE and the TMRE 

fluorescence (excitation: 540 nm, emission: 585 nm) was measured in a microplate reader 

(Tecan Infinite M200 PRO, Tecan).  
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4.3.10 Measurement of oxygen radicals in cultured cells by MitoSOX 

staining and flow cytometry 
The superoxide indicator MitoSOX™ Red was utilized to detect superoxide radicals in 

living SH-SY5Y cells. Cells were treated with 10 µM menadione for 16 h and then 

incubated with Hank’s buffered salt solution (HBSS) containing 1 µM MitoSOX™ for 

10 min at 37 °C. After harvesting by trypsinization, cells were washed twice in HBSS 

containing 0.2 % BSA. The red fluorescence of 20,000 cells per sample was analyzed by 

flow cytometry. Untreated cells were analyzed as a control. 

 

4.3.11 Determination of cellular and mitochondrial ATP content 
The cellular and mitochondrial ATP content was measured by means of a luciferase based 

ATP assay. Cells were detached from culture plates by trypsinization, diluted to a final 

concentration of 1 x 106 cells/ml in PBS and permeabilized by incubation with 0.005 % 

digitonin for 5 min at 25 °C. Mitochondrial fractions were obtained by centrifugation of 

permeabilized cells at 12,000 x g for 5 min and washing once in PBS to remove cytosolic 

components. 0.5 x 104 cells or mitochondrial fractions of 1 x 106 cells per reaction were 

used for the ATP assay according to the manufacturer’s instructions and luminescence was 

measured in a microplate reader. An ATP standard curve was generated from reactions 

containing 0 to 160 picomoles ATP to confirm that the obtained values were in the linear 

range.  

 

4.3.12 Analysis of life cells by fluorescence microscopy 
For fluorescence microscopic analysis of living SH-SY5Y cells, transiently expressing 

SU9-GFP, SU9-GFP-DHFR or SU9-GFP-dsDHFR, 4 x 104 cells per well were seeded in 

24-well plates and transfected as described in 4.2.3. 48 h post-transfection, cells were 

incubated for 10 min in serum-free medium containing the mitochondria-specific dye 

MitoTracker Red at 250 nM and one drop per ml NucBlue Hoechst 33342 reagent for 

DNA specific staining of nuclei. After replacing the medium by PBS, cells were analyzed 

by fluorescence microscopy. 
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4.3.13 RT-PCR 
Cells were scraped off from culture dishes using a cell scraper and total RNA was isolated 

with the RNeasy Mini Kit (Qiagen) according to the manufacturer's instructions, including 

an optional DNA digestion step. Random primed cDNA was produced by trancription of 

1 µg RNA of each sample using the iScript Select cDNA synthesis kit (Bio-Rad). mRNA 

expression of PINK1 was determined by quantitative Real-time PCR. PCR reactions were 

performed on an iQ5 qPCR system (Bio-Rad) using iQ SYBR Green Supermix (Bio-Rad) 

under the following conditions: 95 °C for 5 min, and 45 cycles of 95 °C for 15 s and 

62.5 °C for 1 min. CT values were defined at the inflection points of fitted sigmoid curves 

(4-parameter Chapman curves) and were compared with those of the reference gene 

GAPDH (∆Ct-method). 

  



5 Results 

 

35 

5 Results 

5.1 Pink1 protein levels under mitochondrial stress conditions 
It is well established, that Pink1 accumulates at mitochondria upon uncoupling of the 

mitochondrial membrane potential (Δψ) upon exposure of cells to CCCP (Matsuda et al., 

2010). However, it was not clear if a complete dissipation of Δψ occurs under 

physiological conditions or during the etiology of PD. Thus, the question, if other 

mitochondria-specific stress conditions also lead to an accumulation of Pink1, was 

addressed in the following experiments.  

 

Note that all figures marked with an asterisk were prepared in collaboration with Nadja 

Schröder as part of an unpublished manuscript (Rüb, C., Schröder, N., Hallmann, K., 

Kunz, W. and Voos, W.: “Damage-related mitochondrial accumulation of Pink1 is based 

on a transcriptional induction reaction independent of the membrane potential”). 
 

5.1.1 Pink1 levels in response to inhibitors of oxidative phosphorylation 
The generation of ATP through oxidative phosphorylation is a key metabolic function of 

mitochondria. Accordingly, perturbation of this process should represent a state of severe 

mitochondrial dysfunction. Thus, SHSY-5Y cells were incubated with different inhibitors 

of respiratory chain complexes and the F1/F0-ATPase or CCCP as a control. Pink1 protein 

levels were then analyzed in total cell lysates by SDS-PAGE and Western blot (Figure 4). 

In accordance with previously reported results (Matsuda et al., 2010), the full-length form 

of Pink1 (Pink1-FL), with an apparent molecular weight of 64 kDa, was detected in 

CCCP-treated cells already after 8 h and further accumulated during 8 to 24 h of 

treatment. When cells were exposed to oligomycin, an inhibitor of the F1/Fo-ATPase, 

Pink1 also accumulated over time, although at a lower level compared to CCCP treatment. 

By comparison, Pink1 accumulation in cells treated with the complex III inhibitor 

antimycin A was similar to the CCCP control. Furthermore, high levels of Pink1 after 16 h 

of CCCP treatment and 24 h of oligomycin treatment, respectively, correlated with 

decreasing levels of the mitochondrial markers MPP and Tim23, while the amount of 

GAPDH as a cytosolic loading control remained unchanged under all conditions (Figure 4, 

lanes 3, 4 and 10). This decline in specifically mitochondrial proteins is consistent with 
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removal of mitochondria by Pink1-induced mitophagy. Notably, an accumulation of the 

53 kDa processed form of Pink1 (Pink1-PF) was not observed at any time point tested.  

 

 
Figure 4*: Effect of inhibitors of oxidative phosphorylation on cellular Pink1 protein levels. SH-SY5Y 

cells were incubated with DMSO/EtOH (control), 10 µM CCCP, 50 µM oligomycin (Oligo) or 200 M 

antimycin A (AA) for 8 to 24 h, respectively. Total cell lysates were analyzed by SDS-PAGE and Western 

blot using antibodies against Pink1, the mitochondrial processing peptidase (MPP), the TIM subunit Tim23 

and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as cytosolic control.  

 

To assess the effect of the OXPHOS inhibitors on mitochondria, measurements of the 

mitochondrial membrane potential (Δψ) and mitochondrial ATP levels were performed. 

First, to monitor Δψ, live cells were stained with the potential-sensitive fluorescent dye 

tetramethylrhodamine ethyl ester (TMRE) and analyzed by flow-cytometry (Figure 5). 

TMRE binds to the outer mitochondrial membrane (OMM) only in the presence of Δψ. In 

cells exposed to antimycin A, TMRE fluorescence was strongly reduced, indicating a 

dissipation of Δψ, almost identical to the CCCP control (Figure 5A). By contrast, the 

membrane potential of mitochondria in oligomycin-treated cells were even higher 

compared to untreated control cells (Figure 5B).  
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Figure 5*: Mitochondrial membrane potential measurements. After treatment with oligomycin or 

antimycin A for 16 h, mitochondrial membrane potential was determined in intact SH-SY5Y cells by TMRE 

staining and flow-cytometry. White: untreated, light grey: CCCP, dark grey: antimycin A (A) or oligomycin 

(B). Results are representative for at least three independent experiments per treatment. Note that for better 

visualization control plots for untreated and CCCP-treated cells are shown in both panels.  

 

Secondly, as a direct measure for oxidative phosphorylation, mitochondrial ATP content 

in cells exposed to the OXPHOS inhibitors was analyzed (Figure 6). To this end, 

mitochondrial fractions were obtained from digitonized cells and ATP levels determined 

by means of a luciferase-based ATP assay. As shown in Figure 6A, mitochondrial ATP 

levels in cells exposed to CCCP, oligomycin or antimycin A were strongly reduced to 

about 10 to 30 % of the untreated control. By contrast, cellular ATP levels were largely 

unchanged under the same conditions, confirming a mitochondria-specific effect of the 

cell treatment (Figure 6B). 

 

In order to determine, if the accumulation of Pink1 observed in Figure 3 occurred at 

mitochondria, cell homogenates from SH-SY5Y cells treated as above for 16 h, were 

separated into cytosolic and mitochondrial fractions (Figure 7). When Pink1 accumulated 

in response to CCCP, oligomycin and antimycin A, the protein completely co-fractionated 

with the mitochondrial markers MPP and Tom40 and was undetectable in the cytosolic 

fraction. As judged by GAPDH signals, a small amount of cytosolic proteins was present 

in the mitochondrial fraction. Accordingly, a minor fraction of the Pink1 signal in 

mitochondrial fractions may represent cytosolic Pink1, while the vast majority of Pink1 

was associated with mitochondria. 
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Figure 6*: Determination of mitochondrial (A) and cellular (B) ATP levels. After incubation with 

DMSO/EtOH, CCCP, oligomycin or antimycin A as described above for 16 h, a luciferase based ATP assay 

was performed. ATP amounts are given in percentage relative to untreated cells and represent the mean of 

three independent experiments for each condition tested. Error bars indicate the standard error of the mean 

(SEM).  

 

 

 
Figure 7: Subcellular localization of Pink1. After treatment of SH-SY5Y cells as described for Figure 3 

for 16 h, SH-SY5Y cell homogenates were separated into cytosolic (C) and mitochondrial (M) fraction by 

differential centrifugation and analyzed by SDS-PAGE and Western blot. Signals indicated with an asterisk 

most likely represent nonspecific signals from the Pink1 antibody. 

 

In Figure 4 Pink1 was already detectable at the earliest time point tested. Thus, the 

kinetics of Pink1 accumulation in response to CCCP and oligomycin was monitored more 

closely from 0.5 to 16 h of treatment (Figure 8). Pink1 started to become detectable after 

1 h of CCCP treatment or 4 h of exposure to oligomycin, respectively, and Pink1 protein 

levels strongly increased over the 16 h period tested. Interestingly, the decrease in MPP 

and Tim23 levels already observed in Figure 4 became evident only after 12 h of treatment 
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with CCCP or oligomycin. These results suggest, that either Pink1 levels need to reach a 

certain threshold to induce detectable mitophagy or that removal of mitochondria by 

mitophagy becomes detectable only after several hours upon induction.  

 

 

 
Figure 8: Time course of Pink1 accumulation after CCCP and oligomycin treatment. SH-SY5Y cells 

were incubated with CCCP or oligomycin as above for 0.5 to 16 h and Pink1 protein levels in total cell 

lysates analyzed by SDS-PAGE and Western blot. 

 

In summary, mitochondrial accumulation of Pink1 was observed under conditions that 

inhibit oxidative phosphorylation. This accumulation showed a rather slow kinetics and 

did not strictly correlate with the loss of Δψ. Mitochondrial localization of Pink1, together 

with a decline in mitochondrial proteins, which was dependent on high levels of Pink, 

corresponds to Pink1-mediated induction of mitophagy. 

 

5.1.2 Mfn2 ubiquitination 
Mitofusin2 (Mfn2) was previously reported to be ubiquitinated in a Pink1/Parkin- 

dependent manner upon CCCP-induced mitophagy and is also a direct phosphorylation 

substrate of Pink1 (Gegg et al., 2010). Hence, ubiquitinated Mfn2 may indicate Pink1 and 

Parkin activity. To analyze Mfn2 ubiquitination, Western blot analysis with 

immunodetection of Mfn2 was performed with total lysates of cells, exposed to the 

OXPHOS inhibitors as above (Figure 9). Under control conditions, the Mfn2-specific 

antibody recognized a single protein band. An additional band, at a slightly higher 
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apparent molecular weight, was detected in cell lysates of cells exposed to CCCP or 

antimycin A for 16 h. According to the molecular weight of a single ubiquitin molecule, 

monoubiquitination of Mfn2 would result in a size shift of 8.5 kDa. Thus, the additional 

band may correspond to monoubiquitinated Mfn 2. The additional Mfn2 signal was not 

detected in lysates from oligomycin-treated cells. Hence, the presence of the putatively 

ubiquitinated Mfn2 correlated with high levels of Pink1 as well as a decrease in 

mitochondrial proteins consistent with mitophagy. In conclusion, putative ubiquitination 

of Mfn2 may reflect the Pink1-dependent enzymatic activity of Parkin under conditions 

where Pink1 accumulates. 

 

 

5.1.3 Pink1 levels in response to inhibition of respiratory chain complex I 
When considering the respiratory chain in the context of Pink1 and Parkinson’s disease, 

complex I plays an exceptional role, as exposure to complex I inhibitiors has been shown 

to cause PD-like symptoms in humans and animal models Pickrell & Youle, 2015). Thus, 

the effect of complex I inhibition on Pink1 levels was investigated next. When SH-SY5Y 

cells were exposed to the complex I inhibitor rotenone at different concentrations for 

2 to 16 h, Pink1 did not accumulate at any time point tested (Figure 10A). As a control, 

mitochondrial and cellular ATP levels were determined as above. A reduction of 

mitochondrial ATP content by about 50 % relative to untreated cells (Figure 10B) and 

unchanged total ATP levels (Figure 10C) confirmed a mitochondria-specific effect of 

rotenone, under the experimental conditions tested here.  

Figure 9: Effect of Pink1 

accumulation on Mitofusin 2. 

SH-SY5Y cells were exposed to 

DMSO/EtOH (control), CCCP, 

oligomycin or antimycin A at 

concentrations as above for 8 h and 

total cell lystaes analyzed by 

SDS-PAGE and Western blot using an 

antibody against Mitofusin 2 (Mfn2). 

Signals indicated with an asterisk 

represent putatively 

mo-noubiquitinated Mfn2. 
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Figure 10: Effect of rotenone on cellular protein levels of Pink1, and ATP levels. Effect of rotenone on 

Pink1 levels. SH-SY5Y cells were treated with DMSO (control), CCCP or 0.5 or 1 µM rotenone (Rtn) for 

2 to 16 h. Pink1 levels in total cell lysates were analyzed by SDS-PAGE and Western blot. (B, C) 

Measurement of mitochondrial (B) or cellular (C) ATP levels. Cells were incubated in the presence 0.5 µM 

rotenone and ATP levels determined by luciferase assay as in Figure 6. 

 

Since the observation of unaltered Pink1 levels clearly distinguishes rotenone from the 

other inhibitors of OXPHOS (see Figure 4), cells were treated with an alternative 

complex I inhibitor. The drug 1-methyl-4-phenylpyridinium (MPP+) is the metabolite of 

the PD-related neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MTPT) (Singer, 

Ramsay et al., 1988).  
 

As seen in Figure 11A, Pink1 did not accumulate in response to MPP+ even after 24 h, 

while TMRE staining of cells treated with MPP+ for 24 h, indicated a strong reduction of 

the Dy  (Figure 11B). Hence, inhibition of complex I by MPP+ reflects a condition, where 
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a diminished Δψ does not result in the accumulation of Pink1. The failure of rotenone and 

MPP+ treatment to promote an accumulation of Pink1 raised the question, if inhibition of 

complex I interfered with the accumulation of Pink1 observed upon exposure of cells to 

the other OXPHOS inhibitors. Thus, SH-SY5Y cells were treated with CCCP or 

oligomycin as in Figure 4 but in the presence or absence of 0.5 µM rotenone for 8 and 

16 h, respectively. As shown in Figure 12, accumulation of Pink1 in response to CCCP, 

oligomycin and antimycin A was not affected by rotenone.  

 

 

 
Figure 11: Effect of MPP+ on Pink1 levels and Δψ . (A) Cells were treated with 2.5 mM 1-Methyl-4-

phenylpyridinium iodode (MPP+) for 8 to 24 h and Pink1 levels in whole cell lysates analyzed as above. (B) 

Mitochondrial membrane potential (Δψ) was determined in intact cells treated with DMSO (control), 10 µM 

CCCP or MPP+ for 24 h determined by TMRE staining and flow cytometry as in Figure 5. White: control, 

light grey: CCCP, dark grey: MPP+. 

 

Taken together, inhibition of complex I neither resulted in elevated protein levels of Pink1 

nor prevented accumulation of the protein in response to other stress conditions. 
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Figure 12: Effect of rotenone on Pink1 accumulation in response to CCCP and oligomycin. SH-SY5Y 

cells were treated with DMSO/EtOH (control), CCCP or oligomycin as above for 8 or 16 h in the presence 

or absence of 0.5 µM rotenone in serum-free medium. Total cell lysates were analyzed by SDS-PAGE and 

Western blot as above. 

 

5.1.4 Δψ-dependent protein complexes of Pink1 

Under native conditions, Pink1 has previously been found in two distinct membrane 

potential dependent protein complexes (Becker et al., 2012a). Presumably, these 

complexes comprise Pink1 and interacting proteins and may therefore harbor important 

information about functional consequences of Pink1 accumulation. A protein that is part 

of a complex with Pink1 should co-migrate with the respective Pink1 signal in Blue 

Native polyacrylamide gel electrophoresis (BN-PAGE). To revisit Pink1 complex 

formation, SH-SY5Y cells were incubated in the presence or absence of CCCP for 16 h. 

Mitochondria isolated from these cells were solubilized in digitonin buffer and analyzed 

by BN-PAGE and Western blot (Figure 13).  
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Figure 13: Δψ-dependent protein complexes of Pink1. SH-SY5Y cells were incubated with DMSO 

(control) or 10 µM CCCP for 16 h to dissipate Δψ, followed by isolation of mitochondria. Mitochondrial 

proteins and protein complexes were separated by BN-PAGE or standard SDS-PAGE as a control and 

analyzed by Western blot. 

 

In accordance with previously published results (Becker et al., 2012a), two complexes of 

about 700 and 900 kDa in mitochondria from CCCP-treated but not untreated control cells 

were detectable by a Pink1-specific antiserum (Figure 13, lanes 1 and 2). 

Immunodetection of Tom40 and Tim23, the core components of the TOM and TIM23 

translocase complexes, resulted in signals at about 450 and 240 kDa, corresponding to the 

fully assembled TOM and TIM complexes. However, no co-migration of the Tom40 or 

Tim23 signal with either Pink1 complex was observed. The anti-Tim23 antibody 

recognized an additional band, approximately in the range of the 900 kDa Pink1 complex 

but as opposed to the Pink1 signal, this band was strongly reduced in depolarized 

mitochondria. Thus, Pink1 did not form a complex with Tom40 or Tim23 under the tested 

experimental conditions. As Parkin is a phosphorylation substrate of Pink1 (Kondapalli et 

al., 2012, Shiba-Fukushima et al., 2012), it is a candidate for complex formation with 

Pink1. In mitochondrial fractions from control cells and CCCP-exposed cells, the 

anti-Parkin antibody recognized a complex at around 600 kDa, which did not co-migrate 

with either Pink1 complex (Figure 13, lanes 5 and 6). The proposed Pink1 substrate Mfn2 

(Chen & Dorn, 2013) was detected in two complexes of about 240 and 400 kDa, 
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respectively, in mitochondria from untreated control cells (Figure 13, lanes 7 and 8). No 

co-migration with either of the two Pink1 complexes was observed. Interestingly, in 

depolarized mitochondria, the amount of the 240 kDa complex was strongly reduced, 

similarly as observed for the TIM23 complex. The 400 kDa Mfn2 containing complex was 

undetectable in depolarized mitochondria. Since SDS-PAGE analysis revealed similar 

Mfn2 protein levels in both polarized and depolarized mitochondria, this decrease was not 

due to reduced protein amounts of Mfn2 but rather reflected a Δψ-dependent characteristic 

of the Mfn2 containing complexes.  

 

In summary Pink1 was found in two Δψ-dependent protein complexes of 700 and 900 kDa 

when it accumulated under mitochondrial stress conditions. These two Pink1 containing 

complexes did neither co-migrate with the fully-assembled TOM or TIM23 complex nor 

with the Pink1 substrates Parkin and Mfn2. 
 

5.2 Effect of protein stress conditions on Pink1 levels 

5.2.1 Overexpression of destabilized DHFR 
Challenging the protein quality control system reflects a mitochondrial stress condition 

that may elicit Pink1 accumulation and the downstream mitophagy process. Therefore, the 

effect of mitochondrial protein stress on Pink1 levels was investigated. In a first approach 

a mitochondrially targeted, destabilized form of the usually cytosolic protein dihydrofolate 

reductase (DHFR) was transiently expressed in HeLa or SH-SY5Y cells. The mutant 

protein comprises the full DHFR amino acid sequence with three point mutations that 

prevent folding of the protein (DHFRds), fused to GFP and an N-terminal mitochondrial 

translocation signal (SU9-GFP-DHFRds). The corresponding fusion construct of normal 

DHFR (SU9-GFP-DHFR) and mitochondrially targeted GFP (SU9-GFP) alone were used 

as controls. All three constructs are schematically shown in the appendix (Figure 36). 

 

In order to confirm mitochondrial localization of the fusion proteins and aggregation of 

the destabilized DHFR, HeLa cells were transiently transfected with the DHFRds construct 

or control constructs, respectively. Fluorescence microscopic analysis of live cells, stained 

with the fluorescent dyes Mitotracker Red and Hoechst for visualization of nuclei and 

mitochondria, 48 h post-transfection, is shown in Figure 14. In SU9-GFP-transfected cells, 
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GFP fluorescence showed perinuclear, filamentous structures, which co-localized with 

Mitotracker staining, indicating mitochondrial localization of the control protein. A very 

similar picture was obtained for cells expressing the SU9-GFP-DHFR protein. By 

contrast, in cells expressing SU9-GFP-DHFRds, GFP fluorescence was restricted to more 

condensed, dot like structures in proximity to the nucleus that predominantly co-localized 

with mitochondrial staining. This observation is consistent with aggregation of the 

destabilized DHFR protein inside mitochondria. 

 

 
Figure 14: Fluorescence microscopic analysis of cells expressing mitochondria-targeted destabilized 

DHFR or control constructs. HeLa cells were transiently transfected with the indicated construct. 48 h 

post-transfection, living cells were stained with MitoTracker Red and the DNA-specific dye Hoechst and 

analyzed by fluorescence microscopy. Scale bars indicate 100 µM. 
 

To test, if aggregation of the destabilized DHFR protein had an effect on Pink1 protein 

levels, SH-SH5Y cells were transfected with the different constructs for 24 to 48 h and 

total cell lysates were analyzed by SDS-PAGE and Western blot (Figure 15). Expression 

of all three fusion proteins was confirmed by immunodetection of GFP. The major signals 

at 30 kDa for SU9-GFP and 52 kDa for SU9-GFP-DHFR and SU9-GFP-DHFRds, 

respectively, correspond to the processed proteins, after cleavage of the mitochondrial 

targeting signal by the matrix processing peptidase (MPP). This observation indicates, that 

a major fraction of all proteins was translocated to the mitochondrial matrix. Additional 

bands, representing the full-length forms, were detected for SU9-GFP and 
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SU9-GFP-DHFR, respectively. The presence of the unprocessed fragments correlated with 

high expression levels, which likely exceeded the capacity of the import machinery. 

Compared to the DHFR construct, the DHFRds fusion protein was expressed at lower 

levels and its expression further declined over time, which was confirmed by 

immunodetection using a DHFR-specific antiserum. Since no apparent degradation 

fragments were detected with either the anti-GFP or the anti-DHFR antibody, 

comparatively low levels of the destabilized DHFR protein, were due to less efficient 

expression of the protein, rather than proteolytic degradation. Pink1 was not detectable, 

upon expression of DHFRds or the control constructs at any time point tested, as compared 

to Pink1 accumulation in SH-SY5Y cells treated with CCCP for 16 h  

 

In conclusion mitochondrially targeted destabilized DHFR as well as the two control 

proteins did localize to mitochondria. The SU9-GFP-DHFRds protein but not SU9-GFP-

DHFR or SU9-GFP aggregated inside mitochondria. Thus, SU9-GFP-DHFRds is a suitable 

model protein for mitochondrial protein aggregation in human cells. However, aggregation 

of destabilized DHFR did not elicit an accumulation of Pink1.  
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Figure 15: Pink1 levels in 

cells overexpressing 

mitochondria-targeted 

destabilized DHFR or 

control constructs. 

SH-SY5Y cells were 

transiently transfected with 

the indicated construct. Cells 

were lysed 24 to 72 h 

post-transfection and 

analyzed by SDS-PAGE and 

Western blot. Controls: Mock 

transfection containing no 

plasmid DNA and cells 

treated with 10 mM CCCP 

for 16 h.  
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5.2.2 Knock-down of Mortalin 
In a second approach, knock-down of the mitochondrial Hsp70 chaperone Mortalin 

(Grp75) was utilized to induce mitochondrial protein stress. Mortalin locates to the 

mitochondrial matrix, and is indispensible for protein import, folding of newly imported 

proteins and stress protection (Voos, 2013). Thus, SH-SY5Y cells were transiently 

transfected with Mortalin specific siRNA for 24 to 48 h or control siRNA and total cell 

lysates analyzed as above (Figure 16).  

 

 
Successful knock-down was evident by strongly reduced protein levels of Mortalin 

already after 24 h and a further decrease to about 15 % after 48 h, as compared to cells 

transfected with unspecific control siRNA (mock). Notably, cells analyzed 72 h 

post-transfection with control siRNA showed increased Mortalin levels as compared to 

cells exposed to DMSO or CCCP for 16 h. (Figure 16, lane 4). This effect may reflect a 

stress situation due to prolonged incubation of the cells. Protein levels of other members 

of the mitochondrial protein quality system were analyzed as a control. A correlation 

between diminished Mortalin levels and amounts of the mitochondrial chaperones Hsp60 

and TRAP1, the mitochondrial Hsp90 homologue, was not evident. By comparison, the 

level of the matrix protease Lon was slightly increased after 72 h of Mortalin knock-down, 

Figure 16: Effect of Mortalin 

knock-down on Pink1 levels. 

SH-SY5Y cells were transiently 

transfected with siRNA specific for 

the mitochondrial Hsp70 chaperone 

Mortalin (Grp75). 24 to 72 h 

post-transfection, total cell lysates 

were analyzed by SDS-PAGE and 

Western blot using antibodies against 

Pink1, Mortalin, the mitochondrial 

chaperones Hsp60 and TRAP1 

(mtHsp90) and the Lon protease. 
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compared to shorter time points. As compared to cells treated with CCCP for 16 h, Pink1 

did not accumulate in response to reduced levels of Mortalin. 

 

In conclusion, mitochondrial proteotoxic stress induced either by the ectopic expression of 

a destabilized mitochondria-targeted protein or knock-down of Mortalin did not result in 

an accumulation of Pink1. 

 

5.3 Effect of cellular stress conditions on Pink1 levels 

5.3.1 Oxidative stress 
Having observed an accumulation of Pink1 under specific mitochondrial stress conditions, 

the effect of general, cellular stress conditions on Pink1 levels was assessed next. 

Oxidative stress has previously been related to mitochondrial dysfunction and Parkinson’s 

disease (Lin & Beal, 2006). Thus, SH-SY5Y cells were treated with the 

superoxide-generating compound menadione for 16 h, and Pink1 protein levels in total 

cell extracts were analyzed as above. As seen in Figure 17A, menadione did not cause 

elevated levels of Pink1 at any concentration tested. To monitor the presence of 

superoxide radicals, cells exposed to 10 µM menadione for 16 h, were stained with the 

mitochondria-specific superoxide-sensitive fluorescent dye MitoSOX and analyzed by 

flow-cytometry (Figure 17B). A significantly higher MitoSOX fluorescence of 

menadione-treated cells compared to control cells clearly indicated an increase in 

superoxide radicals. 
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Figure 17*: Protein levels of Pink1 and superoxide radicals in menadione-treated cells.  

(A) SH-SY5Y cells were incubated with EtOH/DMSO or 10 µM CCCP (controls) or 2.5-5 µM menadione 

(Mnd) for 16 h and total cell lysates analyzed by SDS-PAGE and Western blot as above. (B) After treatment 

with EtOH (control) or 10 µM menadione for 16 h, superoxide radicals were detected in living SH-SY5Y 

cells by staining with the mitochondria-specific superoxide-reactive dye MitoSOX™ and flow cytometry. 

Grey: menadione, white: control. 

 

5.3.2 ER protein stress 
Within the cell, mitochondria and the endoplasmatic reticulum (ER) are functionally 

connected through processes like calcium homeostasis and lipid metabolism. Moreover, 

mitochondria and ER have been reported to share common structures, the so-called 

mitochondria-associated ER membranes (MAM) (Paillusson, Stoica et al., 2016). 

Accordingly, ER stress conditions might be propagated to mitochondria and cause an 

accumulation of Pink1. To test this hypothesis, SH-SY5Y cells were exposed to 

tunicamycin, a compound that causes unfolded protein stress in the ER by blocking 

N-linked glycosylation, which is required for the proper folding of specific proteins. As 

seen in Figure 18A, cellular Pink1 amounts were not increased after 16 h of incubation 

with tunicamycin at different concentrations. Under the same conditions, levels of the ER 

chaperone BiP (immunoglobulin heavy chain binding protein) were elevated even at 

1 µg/ml tunicamycin, indicating an ER-specific effect of the tunicamycin treatment 

(Figure 18B) Upregulation of BiP is part of the unfolded protein response (UPR) in the ER 

(Behnke, Feige et al., 2015). 
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5.3.3 Inhibition of mitochondrial ATP transport 
Accumulation of Pink1 in response to OXPHOS inhibitors in Figure 4 was concurrent 

with decreased mitochondrial ATP levels and largely unchanged cellular ATP amounts. It 

was reasoned that an altered ATP transport rate might also affect the overall energy state 

of the cell, influencing quality control reactions. Therefore, cells were treated with 

atractyloside, an inhibitor of the ADP/ATP carrier in the inner mitochondrial membrane 

(Figure 19). First, atractyloside treatment alone did not result in elevated cellular Pink1 

levels. Secondly, atractyloside did not interfere with Pink1 accumulation when cells were 

simultaneously exposed to atractyloside and the OXPHOS inhibitors. Thus, the observed 

increase in Pink1 levels indeed represented a mitochondria-specific event. 

 

Taken together, an increase in the cellular levels of Pink1 was only observed under 

mitochondrial but not cellular stress conditions. 

Figure 18*: Effect of 

tunicamycin on cellular levels 

of Pink1 and BiP. 

(A) Cells were incubated with 

tunicamycin (Tm) at the 

indicated concentrations for 

16 h and total cell lysates 

analyzed by SDS-PAGE and 

Western blot as above.  

(B) Cells were treated with 

tunicamycin at the 

concentrations indicated for 

16 or 24 h and total cell lysates 

analyzed as above, using an 

antibody against the ER 

chaperone BiP/Grp78.  
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5.4 Pink1 levels in muscle tissue of a COX8A patient 
In all experiments described so far, Pink1 protein levels were monitored in the time frame 

of hours upon induction of an acute stress condition. By contrast, there are pathological 

conditions, in which mitochondrial function is permanently impaired due to a genetic 

defect. In a specific case, a homozygous splice-site mutation in the COX8A gene, encoding 

the smallest nuclear-encoded complex IV subunit was shown to cause a severe 

neurological disorder termed Leigh-like syndrome and epilepsy (Hallmann, Kudin et al., 

2016). While functional consequences of the COX8A mutation, including reduced levels 

of complex IV were characterized in detail by Hallmann et al., native PAGE analysis is 

shown here to illustrate the effect of the mutation. 

 

To assess the effect of the COX8A mutation on total levels of complex IV mitochondrial 

fractions isolated from muscle biopsies of the COX8A patient and a healthy control, were 

analyzed by native PAGE and Western blot (Figure 20A). Antibodies specific for the 

complex IV subunits COX1, COX4 and COX5a all recognized a complex with an 

apparent relative molecular mass of 250 kDa, suggesting that this signal corresponded to 

the fully assembled complex IV. Compared to the control, the signal intensity was 

strongly reduced in the patient sample. This observation illustrates, that the COX8A 

mutation results in a severely decreased level of the entire complex IV. By comparison, 

levels of the succinate dehydrogenase complex (complex II), detected by an antibody 

Figure 19*: Effect of 

atractyloside on Pink1 

accumulation. Cells were 

treated for 16 h as above 

but in the presence or 

absence of the ADP/ATP 

translocase inhibitor 

atractyloside at 200 µM. 

Total cell lysates were 

analyzed as above. 
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against the complex II subunit A (SDHA), were similar in patient and control sample. This 

observation confirmed a complex IV-specific effect of the mutation.  

 

 
Figure 20: BN-PAGE analysis of mitochondrial fractions from skeletal muscle of a COX8A patient and 

healthy control. (A) Mitochondrial fractions from muscle biopsies were analyzed by BN-PAGE or standard 

SDS-PAGE and Western blot. Antibodies against the complex IV subunits COX1, COX4 and COX5A and 

the complex II subunit SDHA as a control were used. C: control, P: patient. (B) Complex IV levels in patient 

and control mitochondria. The major BN-PAGE signals for COX1, representative for complex IV, and 

SDHA in (A) were quantified. The signal intensities for COX1, normalized to SDHA are shown relative to 

the control. Results represent the mean of three experiments and the error bar indicates the standard error of 

the mean (SEM). This figure was published in (Hallmann et al., 2016). 

 

Quantification of the native PAGE signals for COX1, normalized to SDHA signals, 

revealed a residual complex IV level of 18 % in mitochondrial fractions isolated from the 

patient tissue, compared to the control (Figure 20B). Notably, antibodies against COX1 

and COX4 recognized two additional complexes of around 480 and 720 kDa, respectively, 

in control mitochondria. These signals putatively represent high molecular weight 

complexes, comprising complex IV and other respiratory chain complexes. Strongly 
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reduced levels of complex IV due to the COX8A mutation were shown to result in a severe 

isolated complex IV deficiency (Hallmann et al., 2016). In order to assess if this defect 

had an effect on Pink1 levels, total homogenates from patient and control skeletal muscle 

tissue were analyzed by SDS-PAGE and Western blot (Figure 21). As compared to total 

cell extracts from SH-SY5Y cells, exposed to CCCP for 16 h, the 64 kDa full-length form 

of Pink1 was not detectable in patient or control sample. Interestingly, a faint band 

corresponding to the 53 kDa processed Pink1 species, was detected in muscle 

homogenates of patient and control, respectively. 

 

In conclusion, a genetic complex IV deficiency did not result in elevated levels of Pink1. 

 

 

5.5 Import and processing of Pink1 
The existence of two forms of Pink1, the 64 kDa full-length (FL) and the 

53 kDa processed form (PF), is a striking characteristic of Pink1. Thus, the import and 

processing events converting Pink1-FL into Pink1-PF and the differential behavior of both 

forms were addressed in the following.  

 

5.5.1 Import of Pink1 into PARL-deficient mitochondria 
Processing of Pink1 by different mitochondrial proteases, including the presenilin-

associated rhomboid-like protease (PARL) has previously been reported (Deas, Wood et 

al., 2010b, Greene et al., 2012). To revisit PARL-mediated processing of Pink1, in vitro 

Figure 21: Pink1 levels in muscle tissue 

of a COX8A patient and a healthy 

control. Total homogenates from muscle 

biopsies were analyzed by SDS-PAGE and 

Western blot. SH-SY5Y cells exposed to 

10 µM CCCP for 16 h were analyzed as a 

control. 
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import of [35S]-methionine/cysteine-labeled full-length Pink1 into mitochondria isolated 

from homozygous PARL-deficient (PARL -/-) mouse embryonic fibroblasts (MEF) and 

corresponding wild-type cells was conducted (Figure 22).  

 

 
Figure 22: In vitro import of Pink1 into mitochondria from PARL-deficient cells or control cells. 

[35S]-methionie/cysteine-labeled Pink1 was incubated with energized mitochondria isolated from PARL -/- 

mouse embryonic fibroblasts or corresponding wild-type cells, for the times indicated. Where indicated, Dy 

was dissipated prior to the import reaction. Re-isolated mitochondria were analyzed by SDS-PAGE and 

digital autoradiography. 

 

When the Pink1-FL protein was incubated with energized wild-type mitochondria in the 

presence of Δψ, it associated with mitochondria and two protein bands, one of about 

53 kDa and another of about 44 kDa, accumulated over time (Figure 22, lanes 1-4). While 

the 44 kDa fragment was also detectable in the reticulocyte lysate (Figure 22, lane 17) and 

therefore likely represents an abnormal translation product, the 53 kDa band corresponds 

to the major processing product Pink1-PF. The 64 kDa Pink1 precursor likewise 

associated with wild-type mitochondria depleted of Δψ. The formation of the 53 kDa 

Pink1-PF was reduced in depolarized mitochondria, as compared to energized 

mitochondria, but not completely abolished (Figure 22, lanes 5-8). When the 64 kDa 

Pink1 precursor was incubated with polarized PARL-deficient mitochondria, another 

major Pink1 fragment of about 60 kDa, putatively representing the MPP cleavage product 

and PARL substrate, accumulated over time. Notably, a faint signal corresponding to the 

53 kDa Pink1-PF was also detected, albeit at a lower intensity compared to polarized 

wild-type mitochondria (Figure 22, lanes 9-12). In PARL-deficient mitochondria depleted 

of Dy, the 60 kDa fragment was not detectable, indicating that generation of this fragment 

requires the presence of an inner membrane potential. Importantly, a Pink1 species 
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indistinguishable from the 53 kDa Pink1-PF was generated in these mitochondria, at levels 

very similar to depolarized wild-type mitochondria.  

 

Taken together, generation of Pink1-PF was not strictly dependent on the presence of a 

Dy. Moreover, a fragment that was indistinguishable from Pink1-PF was generated in 

mitochondria isolated from PARL -/- cells, which were reported to have no detectable 

PARL mRNA (Cipolat, Rudka et al., 2006). Thirdly, the effect of the PARL deficiency on 

Pink1 processing was restricted to polarized mitochondria, as in depolarized mitochondria 

from both wild-type and PARL -/- cells, similar levels of the apparent Pink1-PF fragment 

were detected. 

 

5.5.2  Membrane association of full-length and processed forms of Pink1  
As a consequence of its proteolytic cleavage within the hydrophobic transmembrane 

domain (see Figure 1A), the 53 kDa processed Pink1 fragment may be less firmly 

associated with or integrated into the OMM than its 64 kDa full-length precursor. To 

address the membrane interaction properties of both Pink1 species, alkaline extraction was 

performed after in vitro import of radiolabeled full-length Pink1 into isolated HeLa 

mitochondria (Figure 23). During alkaline extraction, proteins that stably interact with 

membranes remain in the pellet fraction, while peripheral membrane proteins are found in 

the supernatant. Even under harsh conditions, at pH 12,about 93 % of Pink1-FL remained 

in the particulate, membrane-associated fraction (Figure 22, lane 4). By contrast, the 

amount of processed Pink1 in the pellet declined at pH 11.5 and Pink1-PF started to be 

detectable in the supernatant. At pH 12, only about 46 % of Pink1-PF remained in the 

pellet. As a control, immunodetection of the mitochondrial proteins MPP, VDAC 

(voltage-dependent anion channel) and Smac was performed. MPP and Smac, as soluble 

proteins of the matrix and intermembrane space compartment, respectively, were already 

detectable in the supernatant at pH 7.3. By contrast, the integral outer membrane protein 

VDAC resisted the extraction procedure almost entirely. In conclusion, Pink1-PF was less 

strongly membrane associated, compared to Pink1-FL in this assay.  
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Figure 23: Sensitivity of newly imported [35S]-Pink1 to alkaline extraction. Following in vitro import of 

radiolabeled Pink1 into isolated HeLa mitochondria for 40 min, mitochondria were subjected to alkaline 

extraction in 0.1 M Na2CO3 at the indicated pH. Samples were separated into pellet (P) and supernatant (SN) 

at 100,000 x g and analyzed by SDS-PAGE and digital autoradiography. As a control, immunodecoration of 

the endogenous mitochondrial proteins MPP, VDAC and Smac was performed. This figure was published in 

(Fedorowicz, de Vries-Schneider et al., 2014). 

 

5.5.3 Re-translocation of processed Pink1 to the cytosolic fraction 
A variation of the radioactive in vitro import assay was utilized, to follow the fate of 

newly generated Pink1-PF. To this end, after completion of the import reaction in 

polarized mitochondria, re-isolated, intact mitochondria were further incubated in the 

presence or absence of Δψ and then separated into mitochondrial and cytosolic fractions 

(Figure 23). In the presence of Δψ a fraction of about 6 % of Pink1-PF was detected in the 

soluble fraction after four minutes, and the intensity of this signal slightly increased over 

time (Figure 24 lanes 5-8). By contrast, when mitochondria were depleted of Δψ, 

Pink1-PF was only detected in mitochondrial fractions at all time points tested. Although 

in the presence of Δψ, a faint signal for Pink1-FL was also visible in the supernatants, the 

relative amount, judged by Pink1-FL signals in the pellet fractions, was lower compared to 

Pink1-PF. The integrity of mitochondrial membranes over the time period of the 

translocation assay was assessed by immunodetection of the soluble mitochondrial 

proteins MPP and Smac. Both proteins were exclusively present in the mitochondrial 

fractions, indicating that the Pink1-PF signal in the soluble fraction did indeed reflect 

re-translocation of the protein and was not due to disruption of the mitochondrial 

membranes. Transferred to the cellular situation, this observation is consistent with re-

translocation of a fraction of Pink1-PF from mitochondria to the cytosol. 
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Figure 24: Release of newly imported Pink1 from mitochondria. Following in vitro import of 

radiolabeled Pink1 into energized isolated HeLa mitochondria for 40 min, mitochondria were re-isolated and 

further incubated for the times indicated. Where indicated, Δψ was dissipated after completion of the import 

reaction. At the time points indicated, samples were separated into mitochondrial pellets and soluble 

fractions at 12,000 x g. Proteins were separated by SDS-PAGE and detected by digital autoradiography, 

followed by control immunodetection of the mitochondrial proteins MPP and Smac.  

 

5.5.4 Effect of OXPHOS inhibitors on Pink1 import 
According to the current model, import of Pink1 into mitochondria and therefore 

indirectly processing of Pink1 by mitochondrial-resident proteases is dependent on Dy. By 

this mechanism, Pink1-FL is thought to accumulate at depolarized mitochondria. Thus, it 

was investigated next, if the accumulation of Pink1 in response to OXPHOS inhibitors 

observed in Figure 4 was the result of diminished Pink1 import and processing. 

Mitochondria isolated from SH-SY5Y cells were treated with the respective OXPHOS 

inhibitors prior to import of [35S]-methionine/cysteine-labeled Pink1 as above 

(Figure 25A). Under control conditions, the 53 kDa Pink1-PF accumulated from 5 to 40 

minutes of incubation. By contrast, the formation of Pink1-PF was completely abolished 

in mitochondria pre-treated with CCCP or antimycin A (Figure 25A, lanes 3-6). 

Furthermore, pre-treatment with either oligomycin or rotenone alone resulted in a slightly 

reduced formation of Pink1-PF, as compared to control conditions, but as opposed to 

mitochondria treated with CCCP or antimycin A, the processed fragment was clearly 

generated (Figure 25A, lanes 7-10). By contrast, when mitochondria were incubated with 

a combination of oligomycin and rotenone prior to import, Pink1-PF was not detectable 

even after 40 minutes of import (Figure 25A, lane 12). Notably, in mitochondria treated 

with CCCP or the respective OXPHOS inhibitors, a diminished accumulation of the 

53 kDa Pink1-PF correlated with an increased formation of yet another Pink1 fragment of 
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about 56 kDa. In these mitochondria, the formation of this putative processing 

intermediate showed a different kinetics, since compared to the 53 kDa form of Pink1, it 

was already detected after five min. To a smaller extent, the 56 kDa Pink1-fragment was 

also detectable after 40 min of import under control conditions. 

 

To monitor the effect of the pre-treatment on Δψ, mitochondria incubated under the same 

conditions were subjected to TMRE staining and measurement of TMRE fluorescence 

(Figure 25B). Similar to the results obtained in intact cells in 4.1.1, Δψ was strongly 

diminished under all conditions tested with the exception of oligomycin treatment, which 

resulted in an increased Δψ, compared to mitochondria incubated under control 

conditions.  

 

Taken together, two observations from the import experiment strongly argue against a 

strict correlation between an intact Δψ and Pink1 import and processing: First, a 

considerable amount of Pink1-PF was still formed when Δψ was strongly diminished by 

the complex I inhibitor rotenone. Secondly, while Δψ was either increased or strongly 

reduced in mitochondria pre-treated with oligomycin or rotenone, respectively, the 

efficiency of Pink1 processing was similar under both conditions. Transferred to the 

cellular level, impaired import and processing of Pink1 were likely not the only reason for 

an increase in protein levels of Pink1-FL.  
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Figure 25: In vitro import of Pink1 and Δψ  measurements in mitochondria treated with inhibitors of 

oxidative phosphorylation. (A) In vitro import of Pink1. Mitochondria isolated from SH-SY5Y cells were 

incubated with EtOH (control), 1 µM CCCP, 8 µM antimycin A, 20 µM oligomycin, 0.5 µM rotenone or a 

combination of 20 µM oligomycin and 0.5 µM rotenone for 5 min, followed by import of radiolabeled Pink1 

for 5 or 40 min, respectively. After re-isolation of mitochondria, proteins were separated by SDS-PAGE and 

detected by digital autoradiography. (B) Measurement of Δψ in isolated mitochondria. Mitochondria treated 

as in (A) were incubated with 1 µM TMRE for 30 min and TMRE fluorescence was measured in a 

microplate reader. TMRE fluorescence intensities are shown relative to EtOH-treated control cells. Results 

represent the mean of three independent experiments and two technical replicates per experiment. Error bars 

indicate the standard error of the mean (SEM). 
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5.6 Degradation of Pink1 under normal and stress conditions 
In general, the energetic state of mitochondria affects both import and degradation of 

mitochondrial proteins (Voos, 2013). Since the import experiments shown so far, revealed 

only a partial effect of the mitochondrial membrane potential on import and processing of 

Pink1, degradation of the protein was monitored. 

 

5.6.1 Cellular turnover of Pink1 
To assess Pink1 turnover on the cellular level, radioactive pulse/chase-labeling and 

subsequent immunoprecipitation was conducted, using Pink1-FLAG transiently expressed 

in SH-SHSY cells (Figure 26). Under these experimental conditions, both the 64 kDa 

Pink1-FL and the 53 kDa Pink1-PF were detectable by autoradiography (Figure 26A). At 

the starting point of the chase period (t=0) the 53 kDa Pink1-PF accounted for about 45 % 

of the total cellular amount of Pink1.  
 

Over the course of 5 h incubation under control conditions, both Pink1-FL and Pink1-PF 

were gradually degraded to about 26 % and 36 %, respectively, relative to the starting 

value. Quantitative analysis of the degradation experiment resulted in half-life values of 

approximately 125 min for full-length Pink1 and 175 min for the processed form of Pink1 

(Figure 26B). To monitor the effect of mitochondrial perturbation on Pink1 stability, cells 

were exposed to CCCP during the chase period. The resulting turnover rates for both 

full-length and processed forms were very similar to those in untreated cells. Small 

differences in the relative ratios between full-length and processed forms under control 

and CCCP conditions, respectively, are consistent with a reduced processing of Pink1 in 

the absence of Δψ as observed in Pink1 import experiments described above (see 

Figures 22 and 25). In conclusion, changes in Δψ did not affect the overall cellular 

degradation rates of Pink1. By comparison, treatment of cells with the proteasome 

inhibitor MG132 during the chase period resulted in a significantly increased stability of 

the processed form of Pink1. However, turnover of PINK1-FL was only marginally 

affected, extending its half-life from 125 to 180 min. This indicates, that at least the 

processed form of Pink1 is degraded by the proteasome. 
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Figure 26: Cellular degradation of overexpressed [35S]-labeled Pink1-FLAG. SH-SY5Y cells transiently 

expressing Pink1-FLAG were subjected to [35S]-Met/Cys pulse labeling for 30 min and chase incubation 

with excess cold Met/Cys for the times indicated. Following immunoprecipitation of Pink1-FLAG, proteins 

were separated by SDS-PAGE and detected by digital autoradiography. (A) Representative autoradiograms 

of pulse/chase experiments, with chase under normal conditions and in the presence of 10 µM CCCP or 

10 µM MG132. FL and PF indicate the 64 kDa full-length Pink1 and the 53 kDa processed form, 

respectively. (B) Quantification of cellular Pink1 degradation. Amounts of Pink1-FL and Pink1-PF are given 

as percentage of the respective initial Pink1 amount at t=0. Results represent the mean of three independent 

experiments per condition tested. Error bars indicate the standard error of the mean (SEM). 

 

5.6.2 Mitochondrial turnover of Pink1 
Reasoning that Pink1 at least partially enters mitochondria, it may be degraded by 

mitochondrial proteases as was previously postulated (Greene et al., 2012). To address this 

possibility, radiolabeled Pink1 was imported into isolated SH-SY5Y mitochondria for 

40 min. After re-isolation of mitochondria the fate of the different Pink1 fragments was 

followed over a period of 4 h (Figure 27). At the start of the degradation time (t=0) both, 

the Pink1-FL and the Pink1-PF species were detected while Pink1-FL was the more 

abundant form, similar to the cellular degradation assay. As evident by the respective 

signal intensities, 20 % of the total mitochondria-associated Pink1 had been processed to 
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Pink1-PF during the import time (Figure 27A, lane 1). In energized mitochondria, the total 

amount of Pink1 declined by about 40 % over the 4 h course of the degradation 

experiment (Figure 27C). The relatively constant apparent amounts of Pink1-PF detected 

during this time are consistent with a continuing conversion of mitochondria-bound or 

already imported Pink1-FL to Pink1-PF. A very similar degradation rate was obtained, 

when Δψ was dissipated by the addition of CCCP after completion of the import reaction 

(Figure 27D). Hence, the presence of Δψ had no detectable effect on mitochondrial 

degradation of Pink1. Notably, total degradation reactions were analyzed in this 

experiment, to account also for the fraction of Pink1 that was shown to be released from 

mitochondria in the translocation assay (see Figure 24). The processed form Pink1-PF was 

previously postulated to be the main target of mitochondrial proteases (Greene et al., 

2012). To assess the degradation of the processed Pink1 fragment alone, by circumventing 

the continuing conversion of Pink1-FL to Pink1-PF, the mutant Pink1Δ103 was used as a 

substrate in the degradation assay as above (Figure 26E). Pink1Δ103 mimics the proposed 

PARL-cleavage product (Deas et al., 2010a) and associates with mitochondria similar to 

the wild-type protein in vitro (Becker et al., 2012a). However, the degradation rate of 

about 40 % over 4 h of incubation was almost identical to the value obtained for combined 

Pink1-FL and Pink1-PF signals in the degradation assay with wild-type Pink1. In 

conclusion, the processed form of Pink1 did not show a higher sensitivity to degradation 

by mitochondrial proteases compared to full-length Pink1.  

 

In a next approach, the degradation assay was repeated under ATP depletion conditions, to 

assess the involvement of ATP-dependent processes in the observed reduction of the 

Pink1 signal over time (Figure 27F). The resulting degradation rate of about 40 % over 4 h 

was virtually indistinguishable from the value obtained in energized mitochondria, arguing 

against a role of one of the ATP-dependent proteases of the mitochondrial matrix or inner 

membrane compartment in the degradation of Pink1. 
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Figure 27: Mitochondrial degradation of newly imported [35S]-Pink1. After in vitro import of [35S]-

Pink1 into energized isolated SH-SY5Y mitochondria, a degradation assay was performed as described in 

2.4.6. Total samples were analyzed by SDS-PAGE and digital autoradiography. For quantification, the 

combined initial amount of full length (FL) and processed (PF) [35S]-Pink1 was set to 100 % and results for 

each time point calculated as percentage of the initial amount. Percentages of FL and PF for each time point 

are indicated by different grey scale. Results represent the mean of three independent experiments per 

condition tested. Error bars indicate the standard error of the mean (SEM). (A, B) Representative 

autoradiograms for mitochondrial degradation of Pink1 under normal conditions (A) or after depletion of 

Δψ (B). (C) Degradation under normal conditions. (D) Degradation after depletion of Δψ after completion of 

the import reaction. (E) Degradation of [35S]-Pink1Δ103 (F). Degradation of [35S]-Pink1 in mitochondria 

depleted of ATP by apyrase treatment and the addition of oligomycin after completion of the import 

reaction.  
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Taken together, the results of the degradation assays imply, that the vast accumulation of 

Pink1, observed upon depletion of Δψ, is not due to a diminished cellular or mitochondrial 

turnover of the protein. Moreover, the processing state of Pink1 did not determine its 

sensitivity towards degradation.  

 

5.7 Regulation of Pink1 gene expression 
If the accumulation of Pink1 under mitochondrial stress conditions is not the result of a 

decrease in processing and turnover of the protein, cellular amounts of Pink1 must be 

regulated on another level. Thus, the requirement of protein biosynthesis for Pink1 

accumulation was assessed. 

 

5.7.1 Effect of transcription and translation inhibitors on Pink1 protein 

levels 
In a first approach, SH-SY5Y cells were exposed to the inhibitors of oxidative 

phosphorylation as before, but in the presence or absence of the translation inhibitor 

cycloheximide (Figure 28).  

 

 
Figure 28: Effect of cycloheximide and actinomycin D on Pink1 protein expression.  

(A) Effect of translation inhibition on Pink1 expression. SH-SY5Y cells were treated with DMSO/EtOH 

(control), CCCP, oligomycin or antimycin A at concentrations described for Figure 4 for 16 h but in the 

presence or absence of 50 µg/ml cycloheximide. (B) Effect of transcription inhibition on Pink1 expression. 

Cells were incubated with DMSO/EtOH or CCCP for 16 h as above but in the presence or absence of 

5 µg/ml actinomycin D.  
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As shown in Figure 28A, accumulation of Pink1 in response to CCCP, oligomycin or 

antimycin A was almost completely blocked by cycloheximide. This observation implies, 

that the de novo synthesis of Pink1 molecules is indispensible for an increase in cellular 

Pink1 levels. To further elucidate, which step of protein biosynthesis is crucial for Pink1 

accumulation, actinomycin D was used to inhibit transcription during exposure of cells to 

CCCP. As evident from Figure 28B, Pink1 accumulation was almost completely abolished 

in the presence of actinomycin D. This observation indicates the regulation of Pink1 

protein amounts on the transcriptional level. 

 

5.7.2 Pink1 mRNA levels in response to OXPHOS inhibitors 
In order to verify the observations from actinomycin D experiments, quantitative real-time 

PCR (qRT-PCR) was performed. In detail, Pink1 mRNA amounts, relative to mRNA 

levels of GAPDH as a control were analyzed. After exposure of cells to CCCP, 

antimycin A or oligomycin for 8 h, an approximately two-fold increase in Pink1 mRNA 

expression, relative to samples treated with the respective compound for 0.5 h was 

observed (Figure 29 A-C). Relative amounts of Pink1mRNA further increased in cells 

treated with CCCP or antimycin A, reaching approximately four-fold of the starting value 

(0.5 h). A slight increase in Pink1 mRNA expression was also observed between 8 and 

16 h of oligomycin treatment, respectively. After 24 h of exposure to all three inhibitors, 

Pink1 mRNA levels started to decline. Compared to the other inhibitors, Pink1 mRNA 

amounts measured in cells treated with the complex 1 inhibitor MPP+ were lower, 

reaching a maximum of approximately 1.5-fold after 16 h (Figure 29D). 

 

In conclusion, the sensitivity of Pink1 accumulation to an inhibition of protein 

biosynthesis together with elevated Pink1 mRNA levels in response to mitochondrial 

perturbations imply, that cellular amounts of Pink1 are determined by transcriptional 

regulation of PINK1 gene expression.  
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Figure 29: Analysis of Pink1 mRNA levels by qRT-PCR. After treatment of cells with 10 µM CCCP, 

50 µM oligomycin, 200 µM antimycin A or 2.5 mM MPP+, Pink1 mRNA levels were determined by 

quantitative RT-PCR and normalized to mRNA levels of GAPDH for each sample. Results are shown 

relative to mRNA levels in cells exposed to the respective compound for 0.5 h and represent the mean of two 

technical replicates. mRNA measurements were performed by Kerstin Hallmann (Life and Brain Center, 

University of Bonn). 
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5.7.3 Candidate regulators of Pink1 transcription  
Several factors have previously been discussed in the context of Pink1 gene expression. 

One candidate, the transcription factor c-Fos (Gomez-Sanchez, Gegg et al., 2014), is 

responsive to elevated intracellular calcium levels. To revisit calcium-dependent 

regulation of Pink1 expression, SH-SY5Y cells were treated with thapsigargin at different 

concentrations. By inhibiting the sarcoplasmic/endoplasmic Ca2+ ATPase (SERCA), 

thapsigargin prevents calcium uptake into intracellular storage compartments, which 

results in an increase in cytosolic Ca2+-levels (Lytton, Westlin et al., 1991, Thastrup, 

Cullen et al., 1990). However, no increase in Pink1 protein levels was detected after 

exposure of cells to thapsigargin even at high concentrations (Figure 30). This observation 

implies, that intracellular Ca2+-levels do not affect Pink1 expression under the conditions 

tested here.  

 

 
 

 

Another previous study, examining the Pink1 promoter, proposed the transcription factor 

NF-kB (nuclear factor kappa-light-chain-enhancer of activated B-cells) as an activator of 

Pink1 gene expression (Duan, Tong et al., 2014). Thus, the effect of three different 

inhibitors of NF-kB signaling, NG25, BI605906 and MLN4924 on Pink1 induction in 

response to CCCP was tested. BI605906 prevents activation of NF-kB signaling by 

inhibiting the I-kB kinase (IKK) complex, which usually phosphorylates the inhibitor I-kB 

under inductive conditions, marking it for ubiquitination and proteasomal degradation. 

MLN4924 inhibits both the canonical and non-canonical activation of NF-kB by affecting 

the proteasomal degradation of the I-kB inhibitor. NG25 is an inhibitor of the TAK1 

Figure 30*: Effect of 

thapsigargin on Pink1 

expression. SH-SY5Y cells were 

treated with the inhibitor of the 

sarco/endoplasmatic reticulum 

Ca2+-ATPase (SERCA) 

thapsigargin, at 0.25 to 5 µM or 

with DMSO or 10 µM CCCP as 

controls for 16 h. Total cell 

lysates were analyzed by SDS-

PAGE and Western blot. 
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kinase, which is involved in the intracellular propagation of NF-kB-related signaling 

events. As shown in Figure 31, MLN4924 and, to a smaller extent, BI605906 led to a 

decrease in Pink1 levels after CCCP-treatment (by about 30 % for MLN4929) but did not 

completely abolish Pink1 induction. By comparison, Pink1 induction in response to CCCP 

was slightly increased in the presence of NG25.  

 

In summary, both inhibitors with an effect on I-kB reduced Pink1 expression levels, 

indicating at least a partial dependence of Pink1 induction on regulation via the NF-kB 

signaling pathway.  

 

 
 

Through mediating degradation of the endogenous NF-kB inhibitor Ik-B, the ubiquitin- 

proteasome system is directly involved in NF-kB signaling. Accordingly, the proteasome 

inhibitior MG132 blocks NF-kB activation (Lee & Goldberg, 1998). Therefore, MG132 

was used as an alternative way to study involvement of NF-kB in transcriptional 

regulation of Pink1 (Figure 32). Pink1 induction in response to CCCP, oligomycin or 

antimycin A was almost completely abolished in the presence of the proteasome inhibitor. 

The accumulation of the 53-kDa Pink1-PF observed after MG132 treatment is in 

consistence with the notion, that the processed Pink1 fragment is a target of the 26S 

proteasome, as was observed in the cellular degradation assay (see Figure 26) and has 

been described previously (Lin & Kang, 2008).  

 

Figure 31*: NF-kB 

dependence of Pink1 

expression. Cells were 

pre-treated with 

inhibitors of NF-kB 

signaling MLN4924, 

BI605906 or NG25 for 

2 h followed by 16 h 

incubation in the 

presence of the 

respective inhibitor 

and 10 µM CCCP.  
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Taken together, the effect of specific NF-kB inhibitors as well as the strong inhibitory 

effect of MG132 on the induction of Pink1 are consistent with an involvement of NF-kB 

signaling in Pink1 gene expression under mitochondrial stress conditions. 

 

 
 

5.8 Association of wild-type and mutant α-synuclein with 

mitochondria 
Albeit its predominantly cytosolic localization, several studies have demonstrated 

α-synuclein to be localized in or at mitochondria (Devi et al., 2008, Li et al., 2007). An 

intra-mitochondrial localization of the nuclear-encoded α-synuclein would require its 

insertion into or translocation over the mitochondrial membranes. To directly address this 

hypothesis, an in vitro import assay of [35S]-Met/Cys-labeled wild-type and mutant (A30P 

and A53T) α-synuclein was performed (Figure 33). The two pathogenic point mutations in 

α-synuclein, A30P and A53T, respectively, are associated with autosomal-dominant PD 

(Klein & Westenberger, 2012). Mitochondrial malate dehydrogenase 2 (Mdh2), which is 

imported into the mitochondrial matrix via the TOM and TIM23 translocase complexes, 

was used as a control (Figure 33). 

 

Figure 32: Effect of MG132 on Pink1 

expression. Cells were treated with 

CCCP, oligomycin or antimycin A as 

described for Figure 4, but in the 

presence or absence of the proteasome 

inhibitor MG132 at 10 µM for 8 h. Total 

cell lysates were analyzed by 

SDS-PAGE and Western blot. Pink1-PF 

is indicated with an asterisk. 
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Figure 33: In vitro import assay with [35S]-labeled α -synuclein. In vitro import of [35S]-Met/Cys-labeled 

Mdh2 and either wild-type a-synuclein, α -synucleinA30P or a-synucleinA53T into energized isolated HeLa 

mitochondria for 2 or 15 minutes was performed under standard conditions. Where indicated, Δψ was 

dissipated prior to the import reaction. Protease-accessible proteins were digested by incubation with 

100 µg/ml trypsin after the import (lower panel). Mock samples contained no mitochondria. Following re-

isolation of mitochondria, proteins were separated by Tricine-SDS-PAGE and detected by digital 

autoradiography. This figure was published in (Guardia-Laguarta, Area-Gomez et al., 2014). 

 

When the Mdh2 precursor protein was incubated with energized isolated HeLa cell 

mitochondria, it associated with mitochondria. The appearance of a second band, 

representing the mature form after cleavage of the presequence by the matrix processing 

peptidase (MPP), was observed after 15 min of import (Figure 33 lanes 4-6). In 

consistence with import into the mitochondrial matrix, processing of Mdh2 was dependent 

on the mitochondrial membrane potential (Δψ) (Figure 33, lanes 7-9) and the processed 

Mdh2 but not the full-length form was resistant to trypsin treatment of mitochondria 

re-isolated after import (Figure 33, lanes 1-6, lower panel). As compared to the Mdh2 

control, wild-type α-synuclein also associated with mitochondria and this association was 

reduced in the absence of Δψ. However, neither an increase in mitochondria-bound 

α-synuclein over time, nor the appearance of a cleaved fragment was observed 

(Figure 33, lanes 1 and 4). While a fraction of the mitochondria-associated α-synuclein 

was apparently resistant to protease treatment a similar amount of trypsin-resistant 

a-synuclein was detected in the absence of mitochondria in “mock” samples (Figure 33, 

lane 10). This observation may be explained by aggregation of a fraction of α-synuclein, 
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which would reduce the accessibility of the protein to trypsin. The α-synuclein aggregates 

would then sediment during re-isolation of mitochondria by centrifugation.  
 

As compared to the wild-type protein, less α-synucleinA30P associated with mitochondria, 

while the binding efficiency of α-synucleinA35T was slightly increased over the WT 

protein. Moreover, binding of both mutant proteins was partially dependent on Δψ and a 

fraction of a-synucleinA30P and a-synucleinA53T, respectively, was resistant to trypsin even 

in the absence of mitochondria, similar to the wild-type protein (Figure 33, lanes 7-12). 

 

Most mitochondrial proteins require the TOM complex for insertion into or crossing of the 

outer mitochondrial membrane (OMM) (Becker et al., 2012b). Thus, in a second 

approach, isolated mitochondria were incubated with proteinase K (PK) to digest the 

cytosol-exposed peripheral receptors Tom20 and Tom70 prior to in vitro import as above 

(Figure 34). Import of Mdh2, as evident by the appearance of the processed form, was 

strongly reduced even at 5 µg /ml PK. By contrast, the binding of both α-synuclein and the 

Mdh2 precursor to mitochondria was unaffected by PK pre-treatment (Figure 34, lanes 1-

8). This observation implies, that a-synuclein association with mitochondria does not 

occur through the TOM receptors. In case of the Mdh2 control, import but not binding of 

the Mdh2 precursor was dependent on TOM receptors at the outer face of the OMM. The 

effect of the PK pre-treatment was confirmed by Western blot analysis of Tom70 and 

Tom40 (Figure 34, lower panel). According to their respective positions, the partially 

peripheral Tom70 receptor was readily cleaved by PK, while the pore-forming integral 

membrane protein Tom40 was digested only by a combination of pre- and post-treatment 

(Figure 34, lanes 5-8).  

 

In summary, WT and mutant α-synuclein associated with mitochondria in a Δψ-dependent 

manner. Since this binding was independent of TOM receptors and did not confer 

protease-resistance, α-synuclein is likely not imported into the mitochondrial membranes 

or matrix compartment.  
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Figure 34: Dependence of α-synuclein association with mitochondria on mitochondrial outer 

membrane receptors. Isolated mitochondria were incubated with proteinase K at the indicated 

concentrations (pre-treatment), prior to in vitro import of radiolabeled Mdh2 and α-synuclein for 15 min in 

the presence or absence of Δψ. Protease-accessible proteins were digested by treatment with 

100 µg/ml trypsin (post-tratment). After re-isolation of mitochondria, proteins were separated by 

Tricine-SDS-PAGE. Digital autoradiography and control immunodetection of the TOM subunits Tom40 and 

Tom70 is shown. 
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6 Discussion 

6.1 Pink1 accumulates upon specific mitochondrial 

perturbations  
The kinase Pink1 accumulates on the surface of defective mitochondria. This event 

represents a pivotal step in an organellar quality control pathway that mediates the 

removal of damaged mitochondria by mitophagy. The strong increase in cellular levels of 

Pink1 is an outstanding characteristic of this protein, seeking its equal among other 

mitochondrial components. According to current models, Pink1 is constitutively expressed 

at high levels, while steady-state amounts at healthy mitochondria are kept low by a rapid 

proteolytic turnover of the protein (Eiyama & Okamoto, 2015, Pickrell & Youle, 2015). 

Import of Pink1 into mitochondria and processing by mitochondrial proteases is proposed 

to be a prerequisite for its subsequent degradation. Thus, a reduction of the inner 

membrane potential (Δψ) and the concurrent inhibition of mitochondrial import would 

result in an accumulation of full-length Pink1 at the mitochondrial surface, which in turn 

would initiate the downstream mitophagy process. This rather elaborate mechanism is 

proposed to allow a rapid accumulation of Pink1 upon loss of Δψ, a major hallmark of 

mitochondrial damage (Eiyama & Okamoto, 2015, Pickrell & Youle, 2015). However, the 

proposed import/turnover model has its shortcomings. First, both full-length Pink1 (Pink1-

FL) and its major processing product (Pink1-PF) localize exclusively to the outer face of 

the OMM (Becker et al., 2012a) and secondly, it is still not clear which protease is 

responsible for the degradation of Pink1. I therefore aimed at elucidating the connection 

between mitochondrial dysfunction and the accumulation of Pink1 in my thesis. 

 

In my experiments, the increase in Pink1 protein levels was not strictly correlated with a 

reduction of Δψ, as was previously postulated (Matsuda et al., 2010, Narendra et al., 

2010b). By contrast, a significant up-regulation of Pink1 amounts concurrent with an 

increased Δψ was observed after exposure of cells to the mitochondrial F1/FO-ATPase 

inhibitor oligomycin. Conversely, treatment of cells with the complex I inhibitor MPP+ 

resulted in a decreased Δψ but failed to provoke an accumulation of Pink1. 

 

The inhibition of Δψ-dependent import, as a prerequisite for Pink1 degradation, has been 

postulated to account for the accumulation of Pink1-FL selectively at the surface of 
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depolarized mitochondria. However, the results from my in vitro import assay 

(Figure 25A) argue against this hypothesis. First, Pink1 import was not strictly dependent 

on Δψ and secondly, inhibition of Pink1 import in vitro did not necessarily correlate with 

elevated cellular amounts of Pink1. Although treatment of mitochondria with rotenone 

resulted in a strongly reduced Δψ, a considerable amount of Pink1 was still imported and 

processed. This observation is in line with the previously published finding, that Pink1 

import and generation of Pink1-PF in vitro is only partially abolished in depolarized 

mitochondria (Becker et al., 2012a). Moreover, while rotenone and oligomycin inhibited 

in vitro import of Pink1 to a similar degree, oligomycin but not rotenone caused elevated 

cellular Pink1 levels. When relating the results from the import experiment to cellular 

Pink1 levels, the different experimental conditions should be taken into account. While 

protein levels of Pink1 were determined in intact cells exposed to the OXPHOS inhibitors 

for several hours, isolated mitochondria were incubated with the respective compounds for 

five minutes prior to the import assay. Still, similar effects of CCCP, antimycin A and 

oligomycin on Δψ were measured under the respective conditions in intact cells and in 

vitro, arguing for comparable conditions in both assays. It should be noted that rotenone 

treatment is not compatible with assessing Δψ by TMRE staining of intact cells. Provided 

that the in vitro assay sufficiently reflects the cellular situation, the combined results from 

both experiments allow two conclusions on the accumulation of Pink1: 1) a reduced 

membrane potential is likely not the sole trigger for Pink1 accumulation and 2) Δψ-

dependent import is not the single mechanism responsible for the regulation of Pink1-FL 

amounts at the mitochondrial surface. Pink1 was furthermore proposed to form a complex 

with components of the TOM translocase at the surface of depolarized mitochondria. This 

association would allow a rapid re-import of the protein to rescue mitochondria from 

mitophagy (Lazarou, Jin et al., 2012). In the native PAGE experiments shown here, I 

found Pink1 present in two high molecular weight complexes of about 700 and 900 kDa, 

respectively, when it accumulated in response to CCCP (Figure 13). However, Pink1 did 

not co-migrate with the TOM component Tom40, arguing against complex formation 

between Pink1 and the outer membrane translocase. While this observation questions the 

model suggested by Lazarou et al. it is in line with another previous study examining 

Pink1 complexes by native PAGE (Becker et al., 2012a). As two of the known direct 

Pink1 substrates, Parkin and Mfn2, did also not co-migrate with Pink1, identifying the 
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actual complex constituents in future experiments may lead to the identification of novel 

Pink1 interaction partners. 

 

In my experiments, general cellular perturbations, exemplified by tunicamycin-induced 

ER protein stress and oxidative stress, collectively failed to elicit elevated levels of Pink1. 

The absence of an effect of atractyloside, an inhibitor of the mitochondrial nucleotide 

transporter further indicates that the overall cellular energy state is likely not involved in 

damage-related accumulation of Pink1. 

 

In the experiments shown here, enhanced amounts of Pink1 in response to OXPHOS 

inhibitors correlated well with reduced levels of mitochondrial proteins. Moreover, a 

potentially ubiquitinated species of Mfn2 concurrent with high levels of Pink1, may reflect 

Parkin-dependent ubiquitination of Mfn2 (Gegg et al., 2010). While both observations are 

consistent with Pink1/Parkin-mediated mitophagy, a direct confirmation for the initiation 

of mitophagy is missing. It should be noted that a reliable assay to detect mitophagy has 

not been described so far. Most methods assess the loss of mitochondrial proteins, as also 

observed here. However, removal of mitochondrial components may occur by several 

distinct processes. First, addition of specific ubiquitin chains by Parkin was shown to 

result in the proteasomal degradation of OMM proteins, including Mfn2, which in turn 

was crucial for mitophagy (Chan, Salazar et al., 2011). Secondly, so-called mitochondria-

derived vesicles (MDVs) were proposed to sequester components of the mitochondrial 

matrix and IMM for delivery to lysosomal degradation (Soubannier, McLelland et al., 

2012), and this process possibly involves Pink1 and Parkin (McLelland, Soubannier et al., 

2014). Thus, it remains to be clarified, if Pink1 accumulation under the conditions tested 

here did indeed result in autophagic elimination of mitochondria by mitophagy.  

 

6.2 Pink1 does not accumulate in response to mitochondrial 

protein stress 
Although being restricted to mitochondrial perturbations, Pink1 accumulation appears to 

occur only in response to a subset of mitochondrial insults. In my hands, potential 

mitochondrial protein stress generated either through ectopic expression of a destabilized 

model protein or by reducing the endogenous amount of the mitochondrial Hsp70 
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chaperone Mortalin, did not result in enhanced Pink1 levels. The first observation 

contradicts the previously published finding that the expression of a mitochondria-targeted 

aggregation-prone mutant OTC (ornithine carbamoyltransferase) causes the accumulation 

of Pink1 and mitophagy (Jin & Youle, 2013). This discrepancy may be due to different 

aggregation propensities or expression levels of the two model proteins. There are 

different explanations for the increased Pink1 levels upon expression of mutant OTC 

observed by Jin et al. First, accumulation of Pink1 could be a direct response to intra-

mitochondrial protein aggregates, as it is described for the protein-stress induced 

mitochondrial unfolded protein response in C.elegans (mtUPR, see below). Alternatively, 

the overexpression of an artificial aggregation-prone protein may indirectly cause 

mitochondrial damage, which in turn would lead to elevated Pink1 levels. In the latter 

case, Pink1 accumulation might occur through the same mechanism as the upregulation of 

Pink1 I observed upon inhibition of OXPHOS. Thus, determining if Pink1 accumulation is 

a direct or indirect effect of intra-mitochondrial protein aggregates will be an important 

cue for resolving a putative signaling mechanism responsible for the regulation of Pink1 

levels. Importantly, Jin et al. note that Pink1 accumulation occurred in the presence of an 

intact Δψ, supporting my present findings discussed above. Another study showed that the 

Mortalin knockdown phenotype in cells, namely increased susceptibility to intra-

mitochondrial proteolytic stress, mitochondrial fragmentation and reduced mitochondrial 

mass, could be rescued by overexpression of Pink1 and Parkin (Burbulla, Fitzgerald et al., 

2014). However, the authors did not examine levels of endogenous Pink1 in this context. 

Thus, although Pink1/Parkin-mediated mitophagy may in general counteract 

mitochondrial damage resulting from loss of Mortalin, it remains elusive if protein stress 

is a direct trigger for Pink1 accumulation and subsequent mitophagy. 

6.3 Inhibition of complex I or a genetic complex IV deficiency 

do not result in elevated Pink1 levels 
I have shown in my thesis, that inhibition of complex I (NADH-ubichinon-

oxidoreductase) with either rotenone or MPP+, a metabolic product of the PD-related 

neurotoxin MTPT (Singer et al., 1988), reduces both Δψ and mitochondrial ATP levels 

without promoting an accumulation of Pink1. This observation does not only challenge the 

current model of Δψ-dependent accumulation of Pink1 but prompts an intriguing 

hypothesis. The failure to elicit an accumulation of Pink1 by complex I inhibitors like 
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MTPT would also preclude a subsequent activation of the Pink1/Parkin-related quality 

control pathway, thereby contributing to the development of Parkinson’s disease, similar 

as defects or loss of Pink1 function contribute to hereditary PD (Valente et al., 2004). 

 

Apart from the short-term mitochondrial stress conditions caused by chemical treatment of 

cells described above, I also examined Pink1 levels under a condition of permanent 

mitochondrial dysfunction due to a genetic defect. In detail, I analyzed Pink1 levels in 

muscle tissue samples of a patient carrying a mutation in the gene encoding subunit 8A of 

respiratory chain complex IV (cytochrome c oxidase). Pink1 was not detectable under-

steady state conditions in this tissue. Notably, protein levels of complex IV as well as 

complex IV-dependent respiratory activity, measured in cultured fibroblasts of the same 

patient, were dramatically reduced (Hallmann et al., 2016). Thus, the COX8A mutation 

represents yet another condition, where severe mitochondrial dysfunction and Pink1 

accumulation are not correlated. However, it remains to be elucidated if COX8A-deficient 

cells do accumulate Pink1 upon treatment with OXPHOS inhibitors, or if Pink1 induction 

is altogether abolished in these cells. The lack of Pink1 accumulation observed under 

steady-state conditions also raises the question, if distinct stress-responses exist. Under 

short-term stress conditions accumulation of Pink1 at defective mitochondria and 

mitophagy may be beneficial. By contrast, permanent dysfunctions, exemplified by 

mutations in nuclear-encoded genes for respiratory chain components, affect the whole 

mitochondrial network. In the latter case, the removal of virtually the entire mitochondrial 

population would be deleterious. Intriguingly, a direct connection between a genetic 

respiratory chain defect and Parkinsonism was proposed only for a mutation in the 

nuclear-encoded cytochrome c (De Coo, Renier et al., 1999). A possible explanation is, 

that at least severe hereditary OXPHOS defects typically cause premature death and these 

patients simply do not reach the age of even early-onset PD (Schon & Przedborski, 2011). 

Although a connection between large-scale somatic mtDNA mutations and PD was 

reported (Bender et al., 2006), it remains to be elucidated if a lack of Pink1 accumulation 

contributes to the etiology of the disease in these cases, similarly as hypothesized above 

for complex I inhibition.  
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6.4 A fraction of processed Pink1 translocates to the cytosol 
Sequential proteolytic cleavage of the 64 kDa full-length Pink1 by MPP and PARL was 

previously proposed to generate the 53 kDa processed Pink1 fragment (Deas et al., 2010a, 

Greene et al., 2012). By analyzing in vitro import of Pink1 into PARL-deficient 

mitochondria, I confirmed here, that Pink1-PF is indeed generated by PARL. However, 

low levels of an apparently identical processed Pink1 species accumulating even in the 

absence of PARL, suggested an alternative, PARL-independent cleavage. In contrast to 

PARL-dependent processing, generation of this PARL-independent fragment was virtually 

unaltered in the absence of Δψ. However, regarding the low abundance of this fragment, 

the physiological relevance of a proposed alternative processing reaction is debatable. 

 

In all experiments analyzing Pink1 accumulation in cultured cells discussed so far, only 

the 64 kDa Pink1-FL was detectable by Western blot analysis, which is consistent with 

rapid proteasomal degradation of the 53 kDa Pink1-PF species (Lin & Kang, 2008). The 

previously described increase in endogenous Pink1-PF upon exposure of cells to the 

proteasome inhibitor MG132 was reproducible in my experiments. The highly sensitive 

radioactive in vitro import assay allowed following the fate of newly processed Pink1 

under steady-state conditions. First, the processed Pink1 fragment displayed a weaker 

membrane association compared to the full-length species, which may result from PARL-

mediated cleavage within the hydrophobic N-terminal domain (Deas et al., 2010a). 

Secondly, I was able to show that a fraction of Pink1-PF is released from mitochondria in 

the presence of Δψ. Re-translocation of the processed Pink1 to the cytosol is a prerequisite 

for a postulated model, in which Pink1-PF associates with Parkin to prevent its 

translocation to mitochondria and induction of mitophagy under steady-state conditions 

(Fedorowicz et al., 2014). In proposing a distinct function for Pink1-PF, this model 

contradicts the previous notion, that Pink1-FL is the single functional Pink1 species and 

that cleavage represents degradation rather than processing (Greene et al., 2012, Jin et al., 

2010, Matsuda et al., 2010, Narendra et al., 2010b).  
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6.5 Pink1 turnover rates are independent of the mitochondrial 

membrane potential 
Although protein turnover reactions were proposed to maintain low levels of Pink1 under 

steady-state conditions (Pickrell & Youle, 2015), the subcellular degradation site and the 

responsible proteases have not been conclusively identified so far. While the proteasome 

was shown to degrade the processed Pink1 (Lin & Kang, 2008, Yamano & Youle, 2013), 

a conflicting study suggested the matrix-resident mitochondrial protease Lon to mediate 

Pink1 turnover (Thomas et al., 2014). Moreover, a diverse set of endogenous 

mitochondrial proteases, namely MPP, PARL, ClpXP and the mitochondrial AAA 

protease have been shown to affect Pink1 stability. The proposed fast degradation was 

correlated with a Δψ-dependent import of Pink1 (Jin et al., 2010). As discussed above, 

Pink1 import was not unambiguously dependent on the presence of a Δψ in my 

experiments. Moreover, by directly assessing Pink1 degradation, I observed only moderate 

turnover rates under normal conditions, both on cellular and on mitochondrial levels. 

Remarkably, the degradation rates of Pink1 were not affected by the presence or absence 

of a Δψ. Using a similar experimental approach to measure cellular turnover of Pink, Lin 

et al. observed a stabilizing effect of Δψ-depletion on Pink1-FL (Lin & Kang, 2008). 

However, reasoning that not Pink1-FL but Pink1-PF is the major target of degradation 

(Yamano & Youle, 2013), their finding reflects a decreased processing efficiency under 

Δψ-depletion conditions, rather than an effect on degradation as such. As to my 

mitochondrial degradation assay, the failure of ATP-depletion to affect mitochondrial 

degradation of Pink virtually precludes an involvement of the collectively ATP-dependent 

mitochondrial proteases (Voos, 2013). This observation is in line with published results 

showing that both full-length and processed Pink1 accumulate at the outer face of the 

OMM independent of the Δψ (Becker et al., 2012a, Zhou et al., 2008) as this localization 

precludes degradation by mitochondrial proteases.  

 

6.6 Pink1 levels are regulated by a transcriptional mechanism 
In the experiments shown here, I observed a rather slow increase in Pink1 protein levels in 

response to mitochondrial perturbations, as Pink1 became detectable only after 4 h of 

CCCP treatment in cultured cells. This delayed accumulation was likely not due to the 

pharmacokinetics of CCCP, as an almost complete dissipation of Δψ occurs already after 
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15 min of exposing cells to the protonophore (data not shown). The observed time course 

of Pink1 accumulation is consistent with published results obtained under comparable 

experimental conditions and analyzing total cellular levels of endogenous Pink1 (Gomez-

Sanchez et al., 2014). An accumulation of Pink1 already after 0.5 h was reported 

elsewhere, but based either on immunofluorescence analysis of ectopically expressed 

Pink1 or immunodetection of endogenous Pink1 in carbonate extracts of isolated 

mitochondria (Narendra et al., 2010b). An accumulation of Pink1 in the course of hours is 

consistent with a transcriptional induction mechanism. In my thesis, I directly confirmed a 

transcriptional regulation of Pink1 levels. First, inhibitors of transcription or translation 

completely blocked damage-related mitochondrial accumulation of the protein and 

secondly Pink1 mRNA levels were elevated after induction of mitochondrial stress 

conditions. The increase in Pink1 biosynthesis together with its intrinsic targeting 

properties to the OMM is sufficient to explain the observed accumulation at damaged 

mitochondria. A complete block of Pink1 accumulation by translational inhibitors after 

depletion of Δψ was already observed in previous experiments (Narendra et al., 2010b) 

but not considered important for the downstream mitophagy pathway, due to the apparent 

absence of an increase in Pink1 mRNA levels. Several other groups reported an 

involvement of transcriptional induction in the context of a protective function of Pink1 

(Duan et al., 2014, Gomez-Sanchez et al., 2014, Priyadarshini, Orosco et al., 2013). An 

increase in Pink1 expression after cellular insults that were not specific to mitochondria 

but lead to general autophagy processes, in particular starvation and growth factor 

deprivation by serum removal (Klinkenberg, Gispert et al., 2012, Mei, Zhang et al., 2009, 

Uittenbogaard, Baxter et al., 2010) or ischemia/perfusion injury (Sakurai, Kawamura et 

al., 2009, Sengupta, Molkentin et al., 2011) was also described. Similarly, expression of 

Parkin as the immediate downstream partner of Pink1 was proposed to be under 

transcriptional control (Klinkenberg et al., 2012). These observations indicate that Pink1, 

together with Parkin, may also be involved in integrating mitophagy and cellular 

autophagy.  

 

In my experiments shown here, treatment of cells with chemicals that induce oxidative 

stress did not result in elevated protein levels of Pink1. This observation apparently 

contradicts the reported finding that diverse oxidative stress inducing compounds lead to 

elevated Pink1 mRNA levels (Murata, Takamatsu et al., 2015). However the increase in 
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Pink1 transcription described by Murata et al. occurred over the course of days, as 

opposed to the relatively fast induction of Pink1 in response to OXPHOS inhibitors I 

observed here. A long-term damage of mitochondria by oxidative stress may provoke cell-

protective autophagy reactions that may involve also Pink1 (Wang, Nartiss et al., 2012) 

but are putatively distinct from the short-term transcriptional response observed here. 

 

Previous reports also indicated a connection between ER stress and mitophagy reactions 

(Fouillet, Levet et al., 2012, Zhang, Yuan et al., 2014) by a mechanism potentially 

involving Parkin. In my hands, induction of unfolded protein stress in the ER by 

tunicamycin did not lead to an induction of Pink1 expression. This observation indicates, 

that induction of Pink1 expression represents a very specific reaction to mitochondrial 

damage. 

 

The observed transcriptional up-regulation of Pink1 expression in response to 

mitochondrial damage raises questions regarding a putative mito-nuclear signaling 

pathway and a candidate transcription factor. A study published in the course of this work, 

indicated an effect of calcium ions on Pink1 transcription (Gomez-Sanchez et al., 2014). 

However, exposure of cells to thapsigargin, which reportedly increases intracellular Ca2+-

levels (Thastrup et al., 1990), did not have any effect on Pink1 protein levels in my hands. 

Supposing that cytosolic calcium levels were indeed increased under the experimental 

conditions, this observation argues against the involvement of a calcium-responsive factor. 

Further experiments shown in the present thesis point towards an involvement of the 

NF-kB signaling pathway in Pink1 transcriptional regulation, which is in line with a recent 

report showing that the Pink1 promoter is under control of the transcription factor NF-kB 

(Duan et al., 2014). Intriguingly, calcium may come back in the focus here, as the Ca2+- 

and calmodulin-dependent phosphatase calcineurin was proposed to promote NF-kB-

signaling through dephosphorylation and inactivation of the endogenous NF-kB inhibitor 

I-kBβ (Biswas, Anandatheerthavarada et al., 2003). Notably, the diminished Pink1 

induction I observed in the presence of NF-kB inhibitors may also represent an indirect 

effect. As was previously reported, the inhibitor of another IkB isoform, I-kBa, directly 

affects the integrity of the OMM to counteract the induction of apoptosis (Pazarentzos, 

Mahul-Mellier et al., 2014). Inhibitors that affect IkB activity, as used here, could 

potentially stabilize mitochondria and may therefore indirectly reduce Pink1 induction. A 
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recent publication proposed a novel pathway whereby NF-kB positively regulates 

transcription of the autophagy adaptor p62 to mediate Parkin-dependent mitophagy in 

macrophages as part of an inflammatory response (Zhong, Umemura et al., 2016). 

Although the events upstream of Parkin in this pathway may be distinct from damage-

related mitophagy, it points towards a connection between NF-kB activity and mitophagy 

in a broader context. 

 

6.7 Revised model of Pink1/Parkin-mediated mitophagy 
The damage-induced transcriptional up-regulation of Pink, which I have demonstrated 

here calls for a revised model of Pink1/Parkin-mediated mitophagy (Figure 35). In this 

model, mitochondrial perturbations are signaled to the nuclear transcription machinery, 

where the expression of the PINK1 gene is activated. This proposed mito-nuclear 

signaling pathway putatively involves NF-kB. Upon translation at cytosolic ribosomes, the 

newly synthesized Pink1 protein associates with the outer mitochondrial membrane 

through its N-terminal mitochondrial targeting signal. Accumulation of Pink1 results in 

the recruitment and activation of Parkin, which in turn, initiates the downstream 

mitophagy pathway. The processes leading from the initial pathologic insult to 

accumulation of Pink1 may require several hours. As opposed to its previously postulated 

function in sensing mitochondrial damage by assessing Δψ, Pink1 represents a 

downstream mediator in the removal of generally damaged mitochondria by mitophagy.  
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Figure 35: Proposed model for transcriptional regulation of Pink1 protein levels.  

Different mitochondrial stress conditions generate as yet unknown mitochondria to nucleus signal, which 

induces transcription of Pink1. After translation at cytosolic ribosomes, the newly synthesized Pink1 

proteins translocate to the outer mitochondrial membrane where they initiate the downstream mitophagy 

pathway. 

 

Several signaling pathways have been identified that involve a communication between 

mitochondria and the gene expression machinery in the nucleus. In general, these 

signaling mechanisms allow adjusting the mitochondrial protein content and accordingly, 

organellar activity to different internal or external stress situations. In this context, 

mitochondria and nucleus communicate through a complex network of anterograde 

(nucleus to mitochondria) and retrograde (mitochondria to nucleus) signaling mechanisms 

(Quiros, Mottis et al., 2016). The proposed Pink1/Parkin signaling might represent a 

mammalian variant of a mitochondria-specific stress-signaling pathway. The best-studied 

example so far is the mitochondrial unfolded protein response (mtUPR) in C. elegans. 

This protective transcriptional response is triggered by mitochondrial proteotoxic stress 

and promotes the expression of mitochondrial PQC genes (Haynes, Fiorese et al., 2013). 

The transcriptional mechanism underlying the mtUPR is coordinated by the transcription 

factor ATFS-1 (activating transcription factor associated with stress 1), which is imported 

into mitochondria under normal conditions but translocates to the nucleus upon 

mitochondrial protein stress (Haynes et al., 2013). Similarly, severe mitochondrial damage 

would be signaled to the nucleus, by a yet unidentified factor and promote Pink1 

expression. 
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6.8 Association of wild-type and mutant α-synuclein with 

mitochondria 
To date, a decline in mitochondrial function is widely recognized as a feature of 

Parkinson’s disease. A pivotal question remains, if mitochondrial damage causes PD or 

rather occurs as a consequence of other pathological processes. Mutations in the genes 

encoding Pink1 and Parkin, respectively that cause hereditary PD clearly support a 

“mitochondrial hypothesis”. Considering that the initiation of mitophagy is the foremost 

function of these two proteins, a genetic defect in the Pink1/Parkin system would result in 

the accumulation of dysfunctional mitochondria as an early event in the etiology of the 

disease. By contrast, other PD-related factors may exert mitochondrial damage as part of a 

broader cellular toxicity and among them is α -synuclein. The aggregation-prone cytosolic 

protein is thought to form toxic oligomers (Haass & Selkoe, 2007). In its aggregated form, 

α -synuclein is the major constituent of intra-neuronal Lewy-body inclusions, which are 

the pathological hallmark of PD (Goedert, 2001). Mutations affecting the α-synuclein 

amino acid sequence as well as gene multiplications have been implicated in PD 

(Benskey, Perez et al., 2016). Several groups have reported the presence of α -synuclein at 

or in mitochondria (Cole, Dieuliis et al., 2008, Devi et al., 2008, Li et al., 2007, Parihar, 

Parihar et al., 2008, Shavali, Brown-Borg et al., 2008). However, these reports were 

largely controversial regarding the suborganellar localization of α-synuclein. A proposed 

interaction of α-synuclein with mitochondria is consistent with data showing 

mitochondrial abnormalities upon overexpression of wild-type or mutant α -synuclein both 

in vivo and in vitro. The reported defects include inhibition of respiratory chain complexes 

(Subramaniam, Vergnes et al., 2014) and mitochondrial fragmentation (Plotegher, Gratton 

et al., 2014). 

 

In my thesis, I directly assessed a putative interaction of α -synuclein with mitochondria 

using an in vitro import assay with isolated intact mitochondria. In this experiment, 

α-synuclein did not behave like a canonical mitochondrial imported protein. First, both 

wild-type α-synuclein as well as the two PD-related mutants A30P and A53T readily 

associated with mitochondria but the amount of mitochondria-bound α-synuclein did not 

increase over time. Secondly, α-synuclein remained largely accessible to protease 

treatment in the presence of mitochondria. Thirdly, the association of α-synuclein with 
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mitochondria occurred independent of cytosol-exposed TOM receptors but was dependent 

on the presence of an inner membrane potential. 

 

The kinetics of α-synuclein binding to mitochondria together with the observation that the 

protein did not acquire protease resistance indicate, that it was likely not imported into the 

mitochondrial matrix compartment or inserted into the IMM but rather peripherally bound 

to the outer mitochondrial membrane. Unlike the initial association of most mitochondrial 

preproteins with the OMM, this binding was independent of cytosol-exposed TOM 

receptors, which further argues against canonical import of α-synuclein. The observed 

association of α-synuclein with the OMM may reflect the general property of the protein 

to bind lipid membranes (Kim, Laurine et al., 2006). In this regard, I observed a more 

efficient binding of α-synucleinA53T, whereas less a-synucleinA30P associated with 

mitochondria compared to the wild-type protein. Both observations correlate well with 

previously reported characteristics of the two mutant forms of α-synuclein. While the 

A53T mutation has been demonstrated to enhance the membrane interacting properties of 

α -synuclein, the A30P mutation was shown to result in reduced affinity for phospholipids 

(Auluck, Caraveo et al., 2010). A general tendency of α-synuclein to bind lipids raises 

questions concerning the specificity of its association with mitochondria. In experiments 

using artificial membrane vesicles, α-synuclein was previously demonstrated to bind 

acidic lipids, including the mitochondria-specific lipid cardiolipin with a high affinity 

(Nakamura, Nemani et al., 2008). Although cardiolipin is enriched in the IMM, it is also 

found in the OMM (Hovius, Thijssen et al., 1993). Thus, the observed binding of 

α-synuclein to the OMM possibly represents an interaction with cardiolipin.  

 

In my import assay I found that the association of α -synuclein with mitochondria was 

diminished in the absence of Δψ. While this observation is in line with a previously 

reported result (Devi et al., 2008), another study came to the contradictive conclusion that 

α-synuclein binding to mitochondria does not depend on the energetic state of the 

organelle (Nakamura et al., 2008). Notably, the initial association of authentic 

mitochondrial preproteins with import receptors of the OMM and the insertion into the 

TOM channel occurs independent of the membrane potential. The only Δψ-dependent step 

in the canonical presequence import pathway is the translocation of the preprotein over- or 

its insertion into the IMM, respectively (Becker et al., 2012b). However, the α-synuclein 
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sequence lacks a mitochondrial targeting signal (Guardia-Laguarta et al., 2014) and my 

results strongly suggest that the protein was not imported into any internal mitochondrial 

subcompartment. Thus, dependency on Δψ was not indicative of import into the matrix 

compartment or IMM here, but rather reflected a characteristic of the interaction between 

α-synuclein and the OMM. One plausible explanation for an effect of Δψ would be an 

altered lipid composition of the OMM upon mitochondrial depolarization. Similarly, 

exposure of cardiolipin in response to cytosolic acidification has been proposed to 

facilitate α-synuclein binding to the OMM (Cole et al., 2008). 

 

Further elucidating the observation that α -synuclein did not behave like a canonical 

mitochondrial-targeted protein in my import assay, Guardia-Laguarta et al. proposed an 

alternative model for α -synuclein interaction with mitochondria (Guardia-Laguarta et al., 

2014). In fractionation assays with total cellular extracts, wild-type and mutant forms of 

the protein were shown to localize not to mitochondria but rather to so-called 

mitochondria-associated ER membranes (MAM). These structurally and functionally 

distinct ER subdomains were previously proposed to facilitate the cooperation between 

ER and mitochondria in various joint processes, including Ca2+ homeostasis, phospholipid 

biosynthesis and intracellular trafficking (Paillusson et al., 2016). Guardia-Laguarta et al. 

further showed that the pathogenic mutations A30T and A53P reduced α-synuclein 

localization to MAM. Diminished amounts of α-synuclein in MAM coincided with an 

increased spatial distance between ER and mitochondria and mitochondrial fragmentation 

(Guardia-Laguarta et al., 2014). While the details still need to be worked out, the proposed 

interaction of α-synuclein with MAM may provide a mechanism whereby α-synuclein 

affects mitochondrial function in PD. The described interaction of α-synuclein with MAM 

would explain the apparent association with mitochondria I observed in the in vitro import 

assay, provided that the crude mitochondrial fractions used for this experiment contained 

mitochondria-associated ER membranes. It will further be interesting, to revisit the effect 

of Δψ on α-synuclein binding observed in my import assay in the light of the proposed 

association of the protein with MAM. One possibility is that mitochondrial depolarization 

destabilizes the mitochondria-ER contacts, which would result in reduced binding sites for 

α-synuclein.  
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In light of the Pink1 experiments shown here, α-synuclein is of particular interest as it 

represents a potential mediator of mitochondrial damage with a direct relevance for PD. 

Considering the implication of both α-synuclein and the Pink1/Parkin system in PD, a 

possible connection between them is scarcely described so far. In Drosophila models, 

Pink1 and Parkin can rescue the mitochondrial fragmentation phenotype induced by 

overexpression of α-synuclein (Kamp 2010). It remains to be clarified, if vise versa, 

elevated levels of α-synuclein elicit Pink1 accumulation and mitophagy.  

 

In conclusion, genetic and biochemical findings on the Pink1/Parkin system, α-synuclein 

and other genetic risk factors have impressively advanced PD research over the last years. 

Yet, a lot of work remains to be done. My own results may exemplify this complexity on 

the small scale. While the proposed transcriptional regulation of Pink1 may help 

reconsidering the events leading to the initiation of mitophagy, the underlying signaling 

mechanism still awaits identification. It should be kept in mind that our present knowledge 

on the pathology of PD stems from studying the small percentage of hereditary cases. 

Thus, a major leap in PD research will require translating the gathered information to 

sporadic forms of the disease. In parts, this transition has already started as illustrated by a 

recent paper examining the mechanism whereby a single nucleotide polymorphism (SNP) 

within the α-synuclein-encoding gene SNCA increases the risk of developing sporadic PD 

(Soldner, Stelzer et al., 2016). The authors propose that a certain sequence variant reduces 

the binding of inhibitory transcription factors, which results in elevated SNCA expression. 

Intriguingly the described gene variant has a much higher prevalence compared to rare 

point mutations in SNCA. From the mitochondrial point of view, a major question remains 

how, α-synuclein-mediated toxicity, age-related mitochondrial dysfunction and organellar 

quality control collectively contribute to the pathology of PD. 
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7 Abstract 
Mitochondrial dysfunction is a common feature of many neurodegenerative diseases, in 

particular Parkinson’s disease (PD). Mutations in the genes encoding the mitochondrial 

kinase Pink1 and the cytosolic E3 ubiquitin ligase Parkin have been associated with 

familial cases of PD. In healthy cells, the Pink1/Parkin system functions as sensor of 

mitochondrial damage in an organellar quality control system. High levels of Pink1 

accumulate at the surface of damaged mitochondria to recruit and activate Parkin. In turn, 

Parkin initiates a signaling reaction eventually resulting in the autophagic removal of the 

organelle, a process termed mitophagy. 

 

In my thesis, I analyzed mitochondrial and cellular stress conditions, resulting in an 

increase in Pink1 protein levels. I was able to demonstrate that the accumulation of Pink1 

was not strictly correlated with a depolarization of the mitochondrial inner membrane 

potential (Δψ) or with changes in mitochondrial ATP levels. Both cellular and 

mitochondrial protein turnover rates were also not affected by changes in the 

mitochondrial membrane potential. In contrast, inhibition of cellular transcription or 

translation reactions completely blocked Pink1 accumulation. Characterization of mRNA 

levels indicated that the increase of Pink1 amounts after acute mitochondrial perturbations 

was based on a transcriptional induction reaction. My results demonstrate that the 

mitochondrial quality control process mediated by the Pink1-Parkin system is based on a 

transcriptional response triggered independently of reductions in Dy. This yet unknown 

signaling pathway may involve the transcriptional regulator NFκB. Another factor 

prominently involved in PD is the aggregation-prone cytosolic protein α-synuclein, which 

is the major constituent of Lewy body inclusions. Although α-synuclein has previously 

been proposed to exert mitochondrial damage and localize to mitochondria, its 

submitochondrial localization remained controversial. In my thesis, I was able to 

demonstrate that α-synuclein is not imported into mitochondria but apparently associates 

with the outer mitochondrial membrane in a Δψ-dependent manner.  
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8 Abbreviations 
 
35S Sulfur isotope with mass number 35 

AA Antimycin A 

AD Autosomal dominant 

AR Autosomal recessive 

ATP Adenosine triphosphate 

BN Blue native  

BSA Bovine serum albumin 

C-terminus Carboxy-terminus 

CCCP Carbonyl cyanide m-chlorophenyl hydrazone 

Chx Cycloheximide 

CMV Cytomegalovirus 

COX Cytochrome c oxidase 

DHFR Dihydrofolate reductase 

DMSO Dimethyl sulfoxide 

DNA Deoxy-ribonucleid acid 

EDTA Ethylenediaminetetraacetic acid 

ER Endoplasmatic reticulum 

EtOH Ethanol 

FCS Fetal calf serum 

FL Full-length 

FLAG Octapeptide protein tag  

g Gravity 

GAPDH Glyceraldehyde-3-phosphate dehydrogenase 

GFP Green fluorescent protein 

Hsp Heat shock protein 

IgG Immunoglobulin G 

IKK IkB kinase 

IMM Inner mitochondrial membrane 

IMS Intramembrane space 

IkB Inhibitor of NF-kB 

kd Knock-down 



8 Abbreviations 

 

92 

kDa Kilodalton 

Lys Lysine 

MAM Mitochondria-associated ER membranes 

Mdh2 Malate dehydrogenase 

MEF Mouse embryonic fibroblasts 

Mfn Mitofusin 

min Minute 

mM Millimolar 

MPP Matrix processing peptidase 

Mr Relative molecular mass 

mRNA Messenger RNA 

N-terminus Amino-terminus 

NF-kB Nuclear factor kappa-light-chain-enhancer of activated B-cells 

nm Nanometer 

nM Nanomolar 

Oligo Oligomycin 

OMM Outer mitochondrial membrane 

OXPHOS Oxidative phosphorylation 

PAGE Polyacrylamide gel electrophoresis 

PD Parkinson’s disease 

PF Processed form 

Pink1 PTEN-induced putative kinase 1 

PK Proteinase K 

PQC Protein quality control 

PTEN Phosphatase and tensin homolog 

qRT-PCR Quantitative real-time polymerase chain reaction 

RING Really interesting new gene domain 

RNA Ribonucleic acid 

SDH Succinate dehydrogenase 

SDS Sodium dodecyl sulfate 

SEM Standard error of the mean 

siRNA small interfering RNA 

SU9 Subunit 9 of mitochondrial ATPase 
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TCA Trichloroacetic acid 

TIM Translocase of the inner (mitochondrial) membrane 

TMRE Tetramethylrhodamine ethyl ester 

TOM Translocase of the outer (mitochondrial) membrane 

Ub Ubiquitin 

WT Wild-type 

α-Tom40 Antibody directed against Tom40 

Δψ Mitochondrial membrane potential 

µM Micromolar 
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Figure 36: Schematic illustration of DHFR fusion proteins and the SU9-GFP control construct. The 

first 70 aa of N.crassa ATPase subunit 9 (SU9(70)) are fused to green fluorescent protein (GFP) alone or 

GFP followed by the full mouse dihydrofolate reductase (DHFR). Asterisks indicate the three point 

mutations in the destabilized DHFR (DHFRds) C7S, S42C, N49C, respectively. The cleavage site for the 

mitochondrial processing peptidase (MPP) within the SU9 sequence is indicated.  

 

 
Figure 37: Schematic illustration of the Parkin domain structure. The N-terminal ubiquitin-like (Ubl) 

domain is followed by RING0 and a RING1 In-between RING2 (RBR) motif. IBR: In between RING. 

RING: Really interesting new gene domain. 
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