
 

 

 

 

Aptamers for targeted activation of 

T cell-mediated immunity 
 

 

 

 

 

Dissertation 

 

zur 

Erlangung des Doktorgrades (Dr. rer. nat.) 

der 

Mathematisch-Naturwissenschaftlichen Fakultät 

der 

Rheinischen Friedrich-Wilhelms-Universität Bonn 

 

 

 

vorgelegt von 

 

Silvana Katharina Haßel, geb. Albers 

 

aus 

 

Bielefeld 

 

 

 

 

Bonn 2016 

 

  



Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der 

Rheinischen Friedrich-Wilhelms-Universität Bonn 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Gutachter: Prof. Dr. Günter Mayer 

2. Gutachter: Prof. Dr. Sven Burgdorf 

Tag der Promotion: 16.08.2016 

Erscheinungsjahr: 2016 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y≤Ü WÉÅ|Ç|Öâx? |Ç _|xux âÇw WtÇ~utÜ~x|à 

 





 

Index 

1 ABSTRACT ............................................................................................................ 9 

2 ZUSAMMENFASSUNG ........................................................................................ 10 

3 INTRODUCTION ................................................................................................... 12 

3.1 The immune system .................................................................................................. 12 

3.2 T cell-mediated immunity ......................................................................................... 13 

3.2.1 T cell priming ........................................................................................................... 14 

3.3 Dendritic cells ............................................................................................................ 16 

3.3.1 Antigen presentation ............................................................................................... 17 

3.3.1.1 MHC I-mediated antigen presentation to CD8 T cells ........................................... 18 

3.3.1.2 MHC II-mediated antigen presentation to CD4 T cells .......................................... 19 

3.3.2 Internalization mechanisms ..................................................................................... 21 

3.4 DCs as targets for immunotherapy ......................................................................... 22 

3.5 Aptamers .................................................................................................................... 25 

3.5.1 Identification of aptamers ........................................................................................ 26 

3.5.2 Cell-binding aptamers ............................................................................................. 27 

3.5.3 Aptamers for immunotherapeutic applications ........................................................ 30 

3.6 Aims of the thesis ..................................................................................................... 31 

4 RESULTS ............................................................................................................. 33 

4.1 Identification of BM-DC targeting aptamers ........................................................... 33 

4.1.1 Enrichment of DNA libraries targeting Fc-CTL and Fc-FN ..................................... 34 

4.1.1.1 Selectivity of Fc-CTL and Fc-FN binding DNA libraries ........................................ 36 

4.1.1.2 Identification of aptamer sequences obtained from protein-SELEX ...................... 37 

4.1.1.3 Binding of Fc-CTL selected DNA sequences ........................................................ 38 

4.1.2 Enrichment of DNA libraries in cell-SELEX ............................................................. 39 

4.1.2.1 Identification of aptamer sequences obtained from cell-SELEX ........................... 41 

4.1.2.2 Binding of selected DNA sequences to BM-DCs .................................................. 42 

4.1.2.3 Analysis of cell-SELEX by NGS ............................................................................ 42 

4.2 Characterization of BM-DC targeting aptamers ..................................................... 45 

4.2.1 Binding and specificity of BM-DC-binding aptamers ............................................... 45 

4.2.1.1 Binding of aptamers to BM-DCs ............................................................................ 45 

4.2.1.2 Specificity of aptamers to BM-DCs ........................................................................ 46 

4.2.2 CTL#5 specificity towards MR ................................................................................. 47 

4.2.3 Internalization and cellular localization of BM-DC-binding aptamers ...................... 50 

4.2.3.1 Internalization of aptamers by BM-DCs ................................................................. 50 

4.2.3.2 Cellular localization of aptamers ........................................................................... 52 

4.2.4 Immunogenicity of BM-DC-binding aptamers ......................................................... 54 

4.3 Aptamer-targeted activation of T cell-mediated immunity ................................... 56 

4.3.1 Synthesis and binding ability of aptamer-peptide conjugates ................................. 58 

4.3.1.1 Coupling of aptamers and OVA peptides .............................................................. 58 



4.3.1.2 Binding capability of aptamer-peptide conjugates ................................................. 59 

4.3.2 Activation of T cell-mediated immunity .................................................................... 61 

4.3.2.1 Aptamer-targeted activation of CD4 T cells ........................................................... 61 

4.3.2.2 Cytotoxic capacity of activated CD4 T cells ........................................................... 63 

4.3.2.3 Aptamer-targeted activation of CD8 T cells ........................................................... 64 

4.3.2.4 Cytotoxic capacity of activated CD8 T cells ........................................................... 66 

5 DISCUSSION ........................................................................................................ 68 

5.1 Selection of DC-targeting aptamers ........................................................................ 68 

5.1.1 Protein-SELEX ......................................................................................................... 68 

5.1.2 Cell-SELEX .............................................................................................................. 71 

5.2 Properties of DC-aptamers ....................................................................................... 71 

5.2.1 Immunogenicity of aptamers .................................................................................... 72 

5.2.2 CTL#5 specificity towards MR ................................................................................. 74 

5.3 Aptamer-targeted activation of T cell-mediated immunity .................................... 74 

5.3.1 Aptamer-targeted activation of CD4 T cells ............................................................. 74 

5.3.2 Aptamer-targeted activation of CD8 T cells ............................................................. 76 

5.4 Perspective for future research ............................................................................... 77 

5.5 Concluding remarks .................................................................................................. 79 

6 MATERIALS .......................................................................................................... 80 

6.1 Equipment .................................................................................................................. 80 

6.2 Consumables ............................................................................................................. 80 

6.3 Chemicals and reagents ........................................................................................... 81 

6.4 Commercially available kits ...................................................................................... 82 

6.5 Buffers and solutions ................................................................................................ 83 

6.5.1 Gel electrophoresis .................................................................................................. 83 

6.5.2 Bacteria culture ........................................................................................................ 84 

6.5.3 Flow cytometry ......................................................................................................... 84 

6.5.4 SELEX ..................................................................................................................... 84 

6.5.5 Cell culture ............................................................................................................... 84 

6.6 Oligonucleotides ........................................................................................................ 84 

6.7 Mouse strains ............................................................................................................. 86 

6.8 Proteins ....................................................................................................................... 86 

6.9 Antibodies .................................................................................................................. 87 

7 METHODS ............................................................................................................. 88 

7.1 Handling of nucleic acids ......................................................................................... 88 

7.1.1 General handling and storage ................................................................................. 88 

7.1.2 Agarose gel electrophoresis .................................................................................... 88 

7.1.3 Polyacrylamide gel electrophoresis (PAGE) ............................................................ 88 

7.1.4 Polymerase chain reaction (PCR) ........................................................................... 89 

7.1.5 Reverse transcription-PCR (RT-PCR) ..................................................................... 90 

7.1.6 Single strand displacement by lambda exonuclease digestion ............................... 90 



7.1.7 In vitro transcription ................................................................................................. 91 

7.1.8 Phenol/Chloroform extraction and ethanol precipitation ......................................... 92 

7.1.9 Quantification .......................................................................................................... 92 

7.1.10 32P-labeling of nucleic acids ................................................................................ 92 

7.1.11 Cloning and sequencing ...................................................................................... 93 

7.1.12 Next-generation sequencing (NGS) .................................................................... 94 

7.2 Working with proteins and peptides ....................................................................... 96 

7.2.1 General handling and storage ................................................................................. 96 

7.2.2 SDS polyacrylamide gel electrophoresis (SDS PAGE)........................................... 96 

7.2.3 Production of fusionproteins Fc-CTL and Fc-FN .................................................... 98 

7.3 Handling of mice and cells ....................................................................................... 99 

7.3.1 Mice ......................................................................................................................... 99 

7.3.2 Cell culture .............................................................................................................. 99 

7.3.3 Isolation and cultivation of bone marrow-derived dendritic cells (BM-DC) and 
macrophages (BM-macrophages) ...................................................................................... 99 

7.3.4 Isolation and cultivation of splenocytes ................................................................... 99 

7.3.5 Human peripheral blood mononuclear cells (PBMCs) ............................................ 99 

7.4 SELEX ....................................................................................................................... 100 

7.4.1 Coupling of Fc-fusionproteins to Protein G magnetic beads ................................ 100 

7.4.2 Protein SELEX ...................................................................................................... 100 

7.4.3 Cell-SELEX ........................................................................................................... 100 

7.5 Characterization assays ......................................................................................... 101 

7.5.1 Flow cytometry binding assay ............................................................................... 101 

7.5.2 Radioactive binding assay .................................................................................... 102 

7.5.2.1 Filter retention assay ........................................................................................... 102 

7.5.2.2 Cell binding assay using Cherenkov protocol ..................................................... 102 

7.5.3 Confocal microscopy ............................................................................................. 102 

7.5.4 TNF-α HTRF assay ............................................................................................... 103 

7.6 Generation of aptamer-peptide conjugates .......................................................... 103 

7.6.1 Thiol-maleimide coupling ...................................................................................... 103 

7.7 Functional assays ................................................................................................... 104 

7.7.1 In vitro proliferation assay ..................................................................................... 104 

7.7.2 In vitro cytotoxicity assay ...................................................................................... 104 

7.8 Experimental analysis ............................................................................................ 105 

7.8.1 Statistics ................................................................................................................ 105 

8 REFERENCES .................................................................................................... 106 

9 SUPPLEMENTARY DATA ................................................................................. 118 

9.1 DNA sequences obtained from Fc-FN SELEX ...................................................... 118 

9.2 DNA sequences derived from Fc-CTL SELEX ...................................................... 118 

9.3 NGS analysis of DNA sequences obtained by cell-SELEX ................................. 119 

9.4 Aptamer-targeted activation of CD4 T cells ......................................................... 122 

9.5 Aptamer-targeted activation of CD8 T cells ......................................................... 125 



9.6 Binding of CTL#5 to BM-macrophages ................................................................. 128 

9.7 Binding of NGS patterns to BM-DCs ..................................................................... 129 

9.8 Binding of BM-DC aptamers to human blood cells .............................................. 130 

10 ABBREVIATIONS ............................................................................................... 131 

11 DANKSAGUNG ................................................................................................... 133 



Abstract 

9 
 

1 Abstract 

An attractive way of preventing or curing infections and diseases is to mobilize patient’s 

own defense mechanisms, the immune system. Treatments following this approach are 

commonly known as immunotherapies. The development of protective long-term 

immunity requires activation of the effectors of the adaptive immune system, in 

particular T cells, by cells involved in innate immunity.  

 

Dendritic cells (DCs) represent the interface between the non-specific innate immunity 

and the highly specific adaptive immunity. Upon recognition of antigenic structures, 

DCs deliver all signals necessary for adequate T cell priming. Hence, immunization 

with DC-based vaccines became of utmost importance in immunotherapy. One 

remarkable approach is to conjugate antigens to carrier molecules that specifically 

target DCs. 

 

In the study at hand, it was investigated if aptamers represent a promising novel class 

of DC-targeting carriers for immunotherapeutic applications. Aptamers are nucleic 

acids ligands with a defined shape that bind with high affinity and specificity to their 

particular targets. 

Herein, DC-binding aptamers were selected by two different strategies. First, aptamer 

CTL#5 was identified by addressing recombinant proteins originated from the murine 

mannose receptor (MR) in a protein-SELEX approach. The MR is an endocytic 

receptor crucial in recognizing, uptake and processing of antigens by DCs. Second, 

aptamers D#5 and D#7 were selected by directly using murine bone marrow-derived 

DCs as complex targets in a cell-SELEX process.  

It was demonstrated that the selected aptamers exhibit all properties to function as 

suitable carriers. They bind specifically to DCs, are internalized and localized within 

adequate antigen processing compartments and are low immunogenic. 

Most importantly, the present study revealed that the selected aptamers are potent 

mediators of targeted activation of specific T cells. By using an ovalbumin (OVA) model 

system it was demonstrated that aptamer-based delivery of antigenic OVA peptides to 

DCs resulted in a strong activation of OVA-specific CD4 or CD8 T cells.  

 

In summary, the present thesis demonstrates the potential applicability of aptamers as 

DC-targeting carriers and paves the way for the development of aptamer-based DC 

vaccines for in vivo applications. 
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2 Zusammenfassung 

Das körpereigene Immunsystem von Patienten kann therapeutisch angeregt werden 

zur Prävention und Heilung von Erkrankungen und Infektionen. Anwendungen dieser 

Art sind allgemein bekannt als Immunotherapien. Ziel ist hierbei die Ausbildung einer 

schützenden Langzeit-Immunität, die durch spezialisierte Effektorzellen des 

erworbenen Immunsystems vermittelt wird. Diese sogenannten T-Zellen müssen 

hierfür durch Zellen des angeborenen Immunsystems aktiviert werden.  

 

Dendritische Zellen (DZ) repräsentieren die Interphase zwischen dem relativ 

unspezifischen angeborenen Immunsystems und dem hoch-spezifischen erworbenen 

Immunsystems. Diese Zellen erkennen antigene Strukturen und unterlaufen dabei 

einen Reifungsprozess. Reife DZ generieren alle nötigen Signale, um T-Zellen optimal 

zu aktivieren. Es besteht daher ein großes Interesse an DZ-basierten 

Immunotherapien. Hervorzuheben ist hierbei die Vakzinierung mit Antigenen, die durch 

Trägermoleküle spezifisch zu DZ transportiert werden.  

 

Im Rahmen dieser Arbeit wurde untersucht, ob Aptamere eine neue Klasse an DZ-

spezifischen Trägermolekülen darstellen. Aptamere sind Nukleinsäure-Liganden, die 

aufgrund ihrer Konformation affin und spezifisch an ihre Zielstruktur binden.  

Zwei unterschiedliche Strategien wurden verfolgt, um die hier beschriebenen DZ-

bindenden Aptamere zu selektieren. Einerseits wurde Aptamer CTL#5 mit einer 

Protein-SELEX Methode identifiziert. Rekombinante Proteine, die vom Mannose 

Rezeptor (MR) stammen, wurden hierbei als Zielstruktur verwendet. Der MR ist ein 

endozytischer Rezeptor und ist entscheidend für die Erkennung, Aufnahme und 

Prozessierung von Antigenen durch DZ. Die Aptamere D#5 und D#7 wurden 

andererseits durch die sogenannte Zell-SELEX Methode identifiziert, hierfür wurden DZ 

isoliert aus dem Knochenmark von Mäusen als komplexe Zielstrukturen eingesetzt.  

Es konnte gezeigt werden, dass die Aptamere alle notwendigen Eigenschaften als 

Trägermoleküle besitzen. Sie binden spezifisch an DZ, werden internalisiert und 

gelangen in adäquate Zellkompartimente, die wichtig für die Prozessierung von 

Antigenen sind. Zudem sind die Aptamere nur schwach immunogen.  

Abschließend wurde in dieser Arbeit demonstriert, dass die Aptamere zur 

zielgerichteten Aktivierung von T-Zellen verwendet werden können. Durch Verwendung 

eines Ovalbumin (OVA) Modellsystems konnte gezeigt werden, dass der Aptamer-

vermittelte Transport von antigenen OVA-Peptiden eine starke Aktivierung von OVA-

spezifischen CD4 oder CD8 T-Zellen auslöst.  
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Die Ergebnisse der vorliegenden Arbeit zeigen deutlich die Verwendbarkeit von 

Aptameren als DZ-spezifische Trägermoleküle und ebnen den Weg für die Entwicklung 

einer Aptamer-basierten Vakzinierung von DZ in vivo. 
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3 Introduction 

A patient’s own immune system can be used to clear the body from infections, 

diseases or cancer. Treatments following this approach are commonly known as 

immunotherapies. 

 

Already in the late 18th century the surgeon William B. Coley observed that cancer 

disappeared in patients suffering severe bacterial infections. Therefore, he injected a 

mix of attenuated Streptococcus pyogenes and Serratia marcescens into tumors of 

patients and it is described that some patients experienced tumor reduction1.  

Since then, much work has been carried out to identify the mechanisms of the immune 

system and how these are applicable for therapeutic treatments.  

 

3.1 The immune system 

The mammalian immune system is a complex network of organs, cells and proteins. It 

protects the host from invading pathogens like microorganisms and pollutants.  

 

In general, the mammalian immune system is divided into innate and adaptive 

immunity2. Initial defense mechanisms are mediated by the innate immunity. Various 

components like physical barriers, innate immune cells, antimicrobial proteins, 

complement and cytokines are involved in the rapid and relatively non-specific 

response towards broad classes of pathogenic structures. 

A key feature of the innate immunity is the discrimination between self and non-self 

molecules. Monocytes, granulocytes, macrophages, dendritic cells (DCs) and natural 

killer cells, for example, recognize highly conserved pathogen-associated molecular 

patterns (PAMPs) by a range of pattern recognition receptors (PRRs)3. As a 

consequence, these cells degrade ingested pathogens and secrete cytokines and 

chemokines to promote inflammation. In turn, inflammation triggers the recruitment of 

more immune cells and anti-microbial molecules such as complement to the site of 

infection4. Innate immune responses occur within the first 96 hours of infections and 

lead to the elimination of pathogens. The establishment of infection is thereby 

hampered or retarded. 

 

If the innate immunity is evaded or overwhelmed, an adaptive immune response is 

required2. Adaptive immune responses take days rather than hours to develop and 
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result in protective immunological memory formation. Consequently, upon exposure to 

the same antigen, an amplified immune response is induced.  

Specialized lymphocytes, namely B and T cells, are the effector cells of adaptive 

immunity. They are activated by cells involved in innate immunity and realize highly 

antigen-specific immunity. One discriminates between humoral and T cell-mediated 

immunity. Activated B cells differentiate into antibody-producing plasma cells and 

execute humoral immunity, whereby T cell-mediated immunity is initiated by activated T 

cells. Activation of T cells is the critical event of most adaptive immune responses2. 

 

3.2 T cell-mediated immunity 

The transition between innate and adaptive immune responses is mediated by 

specialized immune cells. These cells, including dendritic cells, macrophages and B 

cells, are termed professional antigen-presenting cells (APCs). The interaction of APCs 

with T cells in peripheral lymphoid tissues, i.e. lymph nodes, spleen and mucosal-

associated lymphoid tissues, initiates T cell-mediated immunity2.  

 

During cell development, every T cell is equipped with a specific T cell receptor (TCR) 

that recognizes a single antigenic structure bound to major histocompatibility complex 

(MHC) molecules present on the surface of an activated APC. Remarkably, every 

mammalian organism expresses millions of different TCR gene variants. On the 

plasma membrane TCR pairs with CD4 or CD8 co-receptors2.  

 

Naïve T cells continuously circulate through peripheral lymphoid tissues to encounter 

their appropriate peptide-MHC complex presented on an activated APC. Consequently, 

T cells undergo clonal expansion and differentiation into highly antigen-specific CD4 or 

CD8 effector T cells. Activated CD8 T cells acquire cytotoxic capability, whereas CD4 T 

cells polarize into either activator or suppressor cells5 (Figure 3.2.1AB).  

Cytotoxic CD8 T cells mediate apoptosis of target cells expressing the respective 

antigen-MHC complex; in doing so, they either interact with death receptors such as 

Fas or directly release cytotoxic granules like perforin and granzymes.  

Activating CD4 T helper 1 (Th1) or Th2 cells promote the differentiation of B cells into 

antibody-producing plasma cells or enhance the development of cytotoxic CD8 T cells, 

while suppressing regulatory CD4 T cells negatively regulate the activation of T cells5.  
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Figure 3.2.1: Schematic representation of the differentiation of T cells 
Upon recognition of the respective peptide-MHC complex on an activated APC, naïve CD8 (A) 
or CD4 (B) T cells undergo differentiation. CD8 T cells acquire cytotoxic capacity and induce 
apoptosis of target cells, whereas CD4 T cells differentiate into either activating T helper 1 (Th1) 
or Th2 or suppressing regulatory T cells (Treg).
 

3.2.1 T cell priming 

Three signals are necessary for adequate T cell priming. First, the convenient peptide-

MHC complex is recognized by TCR/CD4 or TCR/CD8 molecules. Second, interaction 

of co-stimulatory molecules, e.g. CD28:CD80/CD86 or 4-1BB:4-1BBL, initiate signaling 

cascades which trigger activation, differentiation and survival of T cells6,7. Third, 

inflammatory cytokines like IL-12 and IFN-α/β polarize the differentiation of T cells into 

effector cells8. Furthermore, activated T cells upregulate the expression of IL-2 

receptors (IL-2R) and IL-2, which in turn promote their proliferation and differentiation. 

Long-term effector function of T cells requires prolonged signaling of all three activation 

signals9. 

 

Incomplete activated T cells become tolerant. Consequently, T cells undergo clonal 

anergy or deletion10. T cell anergy describes the induced unresponsive state of T cells; 
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in other words, these cells fail to develop effector functions and additionally become 

refractory to activation by the respective antigen even if adequate activation signals are 

present. Apart from that, some incomplete activated T cells undergo clonal deletion 

through activation-induced cell death initiated by e.g. Fas/Fas ligand-mediated 

apoptosis11. After a brief period of activation and cell division, these T cells experience 

apoptosis. Both mechanisms, anergy and deletion, are thought to maintain the 

peripheral self-tolerance of mammals10. 

 

After an infection is effectively repelled, some effector T cells undergo apoptosis and 

are rapidly cleared by cells of the innate immunity. However, a small population of 

effector cells persists as so-called memory T cells. These cells mediate long-lasting 

immunological protection for a certain antigen. Upon re-infection, memory T cells 

induce immediate and amplified immune responses12. 

 

As previously stated, T cell-mediated immunity is initiated by the interaction of APCs 

with T cells. The underlying reason is that the three signals necessary for adequate T 

cell priming are only provided by activated APCs2 (Figure 3.2.2). APCs are distributed 

all over the body and are thereby able to recognize pathogens invading through 

different routes. Antigens are captured, processed into T cell epitopes and 

subsequently loaded on MHC molecules to facilitate antigen presentation to T cells. 

The cells migrate to peripheral lymphoid tissues to enable the recognition of the 

peptide-MHC complex by rare T cell clones expressing the TCR specific for that 

particular peptide (signal 1). High levels of co-stimulatory molecules such as 

CD80/CD86 are only expressed on the surface of activated APCs and interact with a 

binding molecule, e.g. CD28, on the T cell side (signal 2)6,13. Signal 3 is delivered 

through secretion of inflammatory cytokines, e.g. IL-12, by the APC8. After the T cell 

received all three signals, it migrates to the side of infection and executes its effector 

function.  
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Figure 3.2.2: Schematic representation of the priming of T cells 
Efficient T cell priming requires three signals delivered by an APC. First, the respective antigen 
bound to MHC molecules is presented by the APC and recognized by the TCR and, in this 
example, a CD8 co-receptor. Second, co-stimulatory molecules like CD80/CD86 and CD28 are 
expressed and interact. Third, the APC secretes inflammatory cytokines such as IL-12. The 
priming of T cells results in proliferation and clonal expansion, differentiation into effector cells 
and expression of IL-2 and IL-2R. 
 

3.3 Dendritic cells 

It is generally accepted that dendritic cells (DCs) are the most potent T cell activators 

among the APCs14,15. DCs link the unspecific innate immunity to the antigen-specific 

adaptive immunity by priming T cells.  

 

DCs originate from both myeloid and lymphoid progenitors within the bone marrow. 

Under non-inflammatory steady-state conditions immature DCs reside in most tissues 

and continuously sample a wide array of pathogens13. Consequent to inflammatory 

stimuli, DCs mature into professional APCs and thus acquire capability to initiate T cell-

mediated immunity.  

 

Maturation of DCs is induced by activation of PRRs such as Toll-like receptors (TLRs) 

or tumor necrosis factor (TNF) receptors like CD4016. For instance, microbial agents 

like lipopolysaccharides (LPS) are recognized by TLR4, which in turn triggers 

downstream signaling for DC maturation17. As a result, DCs undergo radical functional 

and morphological changes; they up-regulate adhesion and co-stimulatory molecules 

and increase their antigen-presenting capacity16. Mature DCs migrate subsequently to 
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peripheral lymphoid tissues to present peptide-MHC complexes to T cells (Figure 

3.3.1A).  

In the absence of inflammatory stimuli, DCs become tolerogenic upon pathogen 

recognition. Tolerogenic DCs are deficient in adequate signaling for T cell activation or 

they only deliver co-inhibitory signals18. Consequently, T cells become tolerant or 

polarize into regulatory T cells (Figure 3.3.1B).  

 

Figure 3.3.1: Schematic representation of the maturation of DCs 
Immature DCs recognize a wide array of pathogens. Dependent on the presence (A) or 
absence (B) of inflammatory stimuli such as lipopolysaccharides (LPS), DCs polarize into 
activating or tolerogenic DCs. The TLR4 ligand LPS triggers the expression of adhesion and co-
stimulatory molecules and enhance the antigen-presenting capacity. Activating DCs activate T 
cells, whereas tolerogenic DCs induce T cell tolerance or the differentiation of T cells into 
regulatory T cells (Treg). 
 

3.3.1 Antigen presentation 

Depending on the entry route of pathogens into DCs, they are degraded into antigenic 

peptides in distinct cellular compartments and are loaded on either MHC class I (MHC 

I) or class II (MHC II) molecules19,20. MHC molecules are glycoproteins encoded by 

genes known to be the most polymorphic in higher mammals21. Every individual 

possesses multiple MHC molecules with highly variable peptide binding properties. 

Basically, MHC molecules consist of two different polypeptide chains2. An MHC I 

molecule is composed of a membrane-spanning α chain which is non-covalently 

associated with a polypeptide termed β2-microglobulin (Figure 3.3.2A). The α chain is 
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further subdivided into the α1, α2 and α3 domains and two of them, α1 and α2, form the 

peptide binding groove, whereas α3 is connected to the cell membrane2,22. 

MHC II molecules consist of two non-covalently associated transmembrane 

polypeptides, namely α and β chains (Figure 3.3.2B). Each chain has two domains 

and one domain of every chain, α1 and β1, are part of the peptide binding groove2,23. 

The α2 and β2 domains span the membrane. The α chains of the MHC molecules are 

different polypeptides. 

 

 

Figure 3.3.2: Schematic representation of the MHC molecules 
MHC class I (A) or class II (B) molecules are composed of two non-covalently associated 
polypeptide chains. The MHC I molecule consists of an α chain and a β2-microglobulin and its 
peptide binding groove is formed by the α1 and α2 domains of the α chain. The α3 domain spans 
the membrane. The MHC II molecule is composed of an α and a β chain. The α1 and β1 
domains fold into the peptide binding groove, whereas α2 and β2 are connected to the cell 
membrane. 
 

Peptide-MHC complexes are presented on the surface of maturated DCs to activate 

either CD8 or CD4 T cells13.  

 

3.3.1.1 MHC I-mediated antigen presentation to CD8 T cells 

In classical MHC I-mediated antigen presentation, intracellular antigens are 

immobilized on MHC I molecules and recognized by CD8 T cells. MHC I molecules are 

expressed on all nucleated cells2. 

 

Processing of intracellular antigens originating from viruses or parasites, for example, 

starts within the cytosol. Here, a multicatalytic protease complex, the 

immunoproteasome, degrades antigens in an ubiquitin-dependent manner24. The 

peptides are subsequently shuttled into the endoplasmic reticulum (ER) and finally 

trimmed by endoplasmic reticulum aminopeptidase associated with antigen processing 

(ERAAP). The folding and complete assembly of the two chains of MHC I molecules 

and the antigenic peptides occurs within the ER. MHC I molecules preferentially bind 

peptides being 8-9 amino acids in length and having hydrophobic or basic residues at 
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the C-terminus2,25. Finally, the peptide-MHC I complex is transported to the cell 

membrane (Figure 3.3.3). 

 

In addition to the classical MHC I pathway, DCs are able to load exogenous antigens 

on MHC I molecules by a mechanism termed cross-presentation16. During cross-

presentation, extracellular antigens are recognized by endocytic receptors like the 

mannose receptor (MR) and internalized via clathrin-mediated endocytosis. The 

antigens are entrapped in slowly maturing early endosomes and are subsequently 

translocated into the cytosol for degradation by the immunoproteasome19,24,26 (Figure 

3.3.3). 

 

Figure 3.3.3: Schematic representation of the MHC I pathway 
In the classical MHC I pathway a cytosolic antigen (1) is degraded by the immunoproteasome 
(2) and loaded on MHC I molecules in the endoplasmic reticulum (ER) (3). Peptide-MHC I 
complexes are transported to the cell membrane (4) for the presentation to a CD8 T cell 
expressing the appropriate TCR (5).The alternative MHC I pathway is cross-presentation. An 
exogenous antigen (1a) is endocytosed (1b) and translocated out of the early endosome (1c) to 
encounter the immunoproteasome.
 

3.3.1.2 MHC II-mediated antigen presentation to CD4 T cells 

The classical MHC II pathway facilitates the presentation of exogenous antigens to 

CD4 T cells. MHC class II expression is restricted to professional APCs2.  
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MHC II-restricted antigens are endocytosed by macropinocytosis, phagocytic or 

endocytic receptors, and are degraded in late endosomes or lysosomes27. These late 

endolysosomal antigen-processing compartments are enriched in acid proteases like 

cathepsin S and L, and disulphide reductases2,27. The two chains of MHC II molecules 

are assembled in the ER, the peptide binding groove is thereby blocked by a protein 

so-called the invariant chain, and the whole complex is enclosed and released within 

multivesicular bodies (MVBs)2. Subsequently, MVBs fuse with peptide-containing 

vesicles, the invariant chain is degraded and supplemented by the antigenic peptide. 

MHC II molecules bind peptides being at least 18 amino acids in length28. In the end, 

the peptide-MHC II complex is inserted into the plasma membrane2,27 (Figure 3.3.4).  

 

The classical MHC II pathway can be bypassed by a process named autophagy. 

Cytosolic macromolecules and organelles that are entrapped within autophagosomes 

are delivered to late endolysosomal antigen-processing compartments for 

degradation27,29 (Figure 3.3.4).  
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Figure 3.3.4: Schematic representation of the MHC II pathway 
In the classical MHC II pathway an exogenous antigen (1) is internalized (2) and processed into 
peptides inside late endosomes or lysosomes (3). MHC II molecules are formed in the 
endoplasmic reticulum (ER) and released within multivesicular bodies (MVBs) (4). MVBs 
subsequently fuse with the peptide-containing vesicle, where the peptide is loaded on the MHC 
II molecule (5). The peptide-MHC complex is translocated to the membrane (6) and presented 
to CD4 T cells (7). The alternative MHC II pathway is autophagy. A cytosolic antigen (1a) is 
entrapped by an autophagosome (1b) which fuses with late endosomes or lysosomes (1c). In 
accordance with the classical pathway, the antigen is degraded (1d) and the peptide-containing 
vesicle fuse with MVBs. 
 

3.3.2 Internalization mechanisms 

DCs feature various mechanisms to internalize pathogens; they practice phagocytosis, 

macropinocytosis and receptor-mediated clathrin-dependent endocytosis13,27.  

Macropinoctytosis or phagocytosis mediate the non-specific uptake of large quantities 

of extracellular fluids or macromolecules; solutes or large particles are thereby 

engulfed by plasma membrane protrusions and subsequently transported into 

endolysosomal compartments27,30. However, phagocytosis can also be mediated by 

phagocytic receptors such as Fc receptors or scavenger receptor A16,27.  

Moreover, DCs express a variety of endocytic receptors to facilitate specific clathrin-

dependent endocytosis of pathogens13. Prominent examples are receptors of the C-

type lectin family like the mannose receptor (MR) or dendritic and epithelial cells 205 

kDa (DEC-205)31,32 (Figure 3.3.5AB). C-type lectin receptors are non-canonical PRR 

that capture specific ligand structures, but fail to induce adequate signaling for DC 
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maturation33. Basically, C-type lectins were identified to bind carbohydrates in a Ca2+-

dependent manner using highly conserved C-type lectin like domains (CTLDs)34. For 

example, the MR is described to recognize glycan residues of various microorganisms 

such as Candida albicans and Mycobacterium tuberculosis35. However, other C-type 

lectin receptors such as DEC-205 were reported to express non-classical CTLDs 

lacking the ability to bind carbohydrates31. The natural ligand for DEC-205 has not 

been defined yet36.  

Interestingly, the recognition and uptake of pathogens by C-type lectin receptors 

determine the subsequent processing and antigen presentation19,37. For example, 

ligands internalized by the MR are entrapped in slowly maturing early endosomes for 

cross-presentation on MHC I molecules19,38, whereas ligands taken up by DEC-205 are 

transported towards late endolysosomal antigen-processing compartments for 

presentation on MHC II molecules37,39.  

 

 

Figure 3.3.5: Schematic representation of C-type lectin receptors expressed on DCs and 
the MR-mediated clathrin-dependent endocytosis of pathogens 
Several receptors composed of at least one C-type lectin-like domain are expressed on DCs (A) 
(modified from Figdor et al.31). Upon ligand (black bar) binding to endocytic receptors, in this 
example the C-type lectin receptor mannose receptor (MR), the receptor-ligand complex is 
internalized by clathrin-dependent endocytosis into DCs (B). A clathrin-coated vesicle is formed 
and fuse subsequently with early endosomes for enabling cross-presentation on MHC I 
molecules. MR=mannose receptor; DEC-205=dendritic and epithelial cells, 205 kDa; DC-
SIGN=DC specific ICAM-3 grabbing non-integrin; DLEC=DC lectin; DCIR=DC immunoreceptor; 
CLEC-1=C-type lectin receptor-1; Dectin=DC-associated C-type lectins 
 

3.4 DCs as targets for immunotherapy 

The superior capacity of DCs in modifying downstream T cell responses has made 

them suitable targets in the development of vaccines for immunotherapeutic 
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applications. DC-based vaccines are currently under investigation for the prevention 

and treatment of infections, cancer, allograft rejections or autoimmune diseases40-44. To 

this end, DCs are either stimulated to become activating or tolerogenic (Figure 

3.3.1AB). Immunologists follow different strategies to generate these 

immunocompetent DCs. DCs are either pulsed ex vivo with antigens or targeted in situ 

by different carriers coupled to antigens.  

 

Autologous DCs are loaded ex vivo with antigens and reinfused into the patient. 

Depending on the kind of co-delivered stimuli, DCs develop an activating or tolerogenic 

phenotype.  

To date, one DC-based vaccine, which is based on pulsed DCs, has been approved by 

the Food and Drug Administration (FDA). Sipuleucel-T, sold under the trade name 

Provenge®, is used in prostate cancer therapy45. For this purpose, autologous APCs 

are isolated and activated ex vivo with the recombinant protein PA2024 consisting of 

prostatic acid phosphatase (PAP) fused to granulocyte macrophage colony-stimulating 

factor (GM-CSF). GM-CSF is a hematopoietic growth factor that initiates activation and 

maturation of DCs13. Consequently, DCs up-regulate adhesion and co-stimulatory 

molecules and increase their antigen-presenting capacity. PAP is a prostate-derived 

enzyme which is often up-regulated in prostate cancers46. Although the precise 

mechanism of action of sipuleucel-T is not defined yet, it was demonstrated that the 

PA2024 fusion protein is internalized, processed and presented by DCs47,48. Upon re-

infusion, a T cell-mediated anti-tumor immune response is initiated48. Because of the 

high treatment costs of $ 104,534 (around € 93,000) for the three prescribed 

infusions49, the marketing authorization of sipuleucel-T in the European Union was 

withdrawn by the European Commission in 201550.  

Ex vivo generation of tolerant DCs has also been tested for the treatment of several 

autoimmune diseases. For example, DCs isolated from patients suffering multiple 

sclerosis were incubated with a tolerogenicity-inducing vitamin D3 metabolite in addition 

to myelin peptides as specific self-antigen51. As a result, DCs developed a tolerogenic 

phenotype and mediated anergy of myelin-reactive T cells.  

Much work on the potential of ex vivo pulsed DCs has been carried out40,42,43,52, 

however there are still some critical issues. For example, it is proven to be difficult to 

sufficiently recapitulate DC maturation ex vivo52 and ex vivo induced tolerogenicity of 

DCs was observed to be rapidly inverted into an activating phenotype after reinfusion 

into the patient53. Moreover, treatments with ex vivo pulsed DCs can result in the 

development of severe autoimmune diseases54-56. 

 



Introduction 

24 
 

Therefore, enabling DC-based vaccination in their natural environment in vivo is a 

major goal in the field of DC-based immunotherapy. For this purpose, carrier molecules 

were applied to deliver antigens specifically to DCs. Often, monoclonal antibodies 

targeting DC surface molecules such as C-type lectin receptors, are used and two are 

currently investigated in clinical trials44,57 (Table 3-1). For example, vaccination with the 

mannose receptor antibody CDX-1307 is currently tested in phase II clinical trial for the 

treatment of muscle-invasive bladder cancer58. CDX-1307 consists of a human anti-MR 

monoclonal antibody fused to the human chorionic gonadotropin beta-chain, a tumor 

antigen frequently expressed by epithelial tumors59. When co-administered with the 

hematopoietic growth factor GM-CSF and TLR agonists, CDX-1307 induces activation 

of APCs and subsequent activation of a T cell-mediated anti-tumor immune 

response58,60.  

 

Table 3-1 DC-targeting with C-type lectin receptor-binding antibodies 

 

Phase Targeting strategy Indication Reference 

I/II MR Ab CDX-1307 fused with 
recombinant human chorionic 
gonadotropin beta-chain tumor antigen 
with/without GM-CSF and TLR 3 or 7/8 
agonists 

Advanced epithelial 
malignancies/Muscle-
invasive bladder cancer

Morse et al. 201160, 
Morse et al. 201158 

I/II DEC-205 Ab CDX-1401 fused with NY-
ESO-1 tumor antigen with TLR3 or 7/8 
agonists 

Advanced 
malignancies/Ovarian, 
Fallopian Tube, Primary 
peritoneal cancer 

Riedmann 201261, 
Dhodapkar et al. 
201462 

    

    

Examples of antibodies used in pre-clinical studies:  

  

- DEC-205 Ab fused with HIV gap 24 HIV Cheong et al. 
201063, 
Idoyaga et al. 
201164, 
Flynn et al. 201165 

- DEC-205 Ab fused with mycobacterial 
ESX antigen 

Tuberculosis Dong et al. 201366 

- DC-SIGN Ab fused to gp100/pmel17 
tumor antigen 

Melanoma Tacken et al. 200867 

- MR Ab fused with gp100/pmel17 tumor 
antigen 

Melanoma Ramakrishna et al. 
200468 

- Dectin-1 Ab fused to MART-1 tumor 
antigen 

Melanoma Ni et al. 201069 

Ab=antibody 

 

Other molecules used for antigen delivery are nanoparticles70, synthetic long 

peptides71,72, receptor ligands73, viruses65, toxins74 and liposomes75.  
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Even though more than 100 DC-targeting studies were published so far44, efficient and 

specific delivery of antigens remains a challenge. The reasons are multifarious. 

Carriers like antibodies, viruses or toxins, for example, exhibit intrinsic 

immunostimulatory potential and, thus, increase the risk of adverse side effects41,76. 

Furthermore, the design and development of some carrier molecules are pricey, time-

consuming and associated with technical challenges41,77,78. For example, the 

generation and screening of monoclonal antibodies is time-consuming and 

expensive77,78 and liposomal vesicles have critical stability issues41. Moreover, the 

shelf-life of antibodies or proteins is limited and cell-based products like antibodies are 

difficult to process into clinical grade reagents with invariable quality41. Last, liposomes 

and nanoparticles lack specificity for DCs and they are internalized by highly 

phagocytically active macrophages rather than by DCs79. 

 

Obviously, there is a need for eligible carriers and a promising alternative are nucleic 

acids ligands, known as aptamers. 

 

3.5 Aptamers 

In general, aptamers are nucleic acids, which bind target molecules with high specificity 

and affinity80. They adopt unique conformations like stems, loops, hairpins or 

quadruplexes that enable the specific interaction with their targets81,82. Aptamer-target 

interactions are mediated through pi-stacking of aromatic rings, electrostatic and van 

der Waals forces, or by hydrogen bond formation81 (Figure 3.5.1AB). 
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Figure 3.5.1: Interactions between aptamers and their targets 
Aptamers bind to their target molecules via different intermolecular interactions. In this example, 
the structure of an aptamer (green) bound to the Fc fragment of human IgG1 (hIgG1 Fc; colored 
according to the electrostatic surface potential) is shown (A). The interactions between the 
nucleotides of the aptamer and the amino acids of hIgG1 Fc are ion pairing (red), hydrogen 
bond formation (green), van der Waals forces (brown) and pi-stacking (blue) (B) (modified from 
Nomura et al.83). 
 

3.5.1 Identification of aptamers 

In 2015, the first identified aptamers celebrated their 25th anniversary. Tuerk & Gold 

and Ellington & Szostak both published the identification of the first nucleic acids-based 

ligands by a novel technique termed systematic evolution of ligands by exponential 

enrichment (SELEX)83,84. Briefly, target-binding nucleic acid sequences are enriched in 

an oligonucleotide library by iterative cycles of incubation, separation and amplification 

(Figure 3.5.2). The starting point of a SELEX process is the incubation of the target of 

interest with the naïve oligonucleotide library. This oligonucleotide library is composed 

of a random region embedded between fixed primer binding sites. Next, background or 

target non-binding sequences are removed and the binders eluted from the target. To 

achieve that, the respective target is either immobilized on a matrix or the non-binders 

are removed by centrifugation, electrophoresis or flow cytometry85-88. Elution is carried 

out either by denaturing conditions or, for instance, by using competitive molecules89,90. 

The eluted sequences are amplified by polymerase chain reaction (PCR) and 

subsequently single-stranded nucleic acids are generated. Single chained RNA is 

easily obtained by in vitro transcription methods, whereas multiple methods are 

employed to separate double-stranded DNA. For example, biotin or phosphate 

moieties are introduced during PCR and used to separate the strands by biotin-

A) B)
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streptavidin interaction or enzymatic cleavage, respectively91,92. Finally, the resulting 

library of nucleic acid sequences is used in the next selection cycle.  

 

Figure 3.5.2: Schematic representation of the SELEX process 
Systematic evolution of ligands by exponential enrichment (SELEX) is carried out to identify 
high affinity aptamers. The SELEX process is initiated by incubating the target of interest with 
the naïve oligonucleotide library (1). The bound sequences are separated from the unbound (2), 
eluted from the target (3), amplified (4) and implemented as single-stranded oligonucleotides (5) 
in the next selection cycle (6). 
 

To identify individual aptamers, the enriched nucleic acid libraries are inserted into 

bacterial vectors, transformed into bacteria and sequenced or they are analyzed by 

next-generation sequencing82,93. For further analysis, selected aptamers are obtained 

by solid phase synthesis. 

 

3.5.2 Cell-binding aptamers 

Aptamers can be developed for a plethora of target structures, ranging from small 

molecules to complex organisms91,94-100. Nowadays, aptamers represent essential tools 

for fundamental research and bioanalytical diagnostics101-103, and a growing number of 

aptamers are extensively investigated in pre-clinical studies77,104. Moreover, a few 
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aptamers are currently in clinical trials104,105 (Figure 3.5.3). In 2004 the first, and up to 

now only, aptamer-based drug was approved by the FDA. Aptamer NX1838, sold 

under the trade name Macugen®, is used for the therapy of age-related macular 

degeneration106.  

 

 

Figure 3.5.3: Overview on aptamers that are currently tested in clinical trials 
Aptamers successfully tested in pre-clinical trials are now investigated in clinical trials for the 
treatments of different cancer types or diseases (adapted from Sun et al.104) 
 

In recent years, there has been considerable interest in using aptamers recognizing 

mammalian cells96,100,107. Cell-specific aptamers are identified by using purified cell 

surface proteins in a protein-SELEX approach or living cells in a cell-SELEX 

process100. Mammalian cells express several accessible target structures on their 

surface. In cell-SELEX, membrane proteins maintain their native conformation and the 

consistent accessibility of the epitopes is warranted. Target molecules which are 

difficult to isolate from the cell surface can be addressed by this selection strategy100. In 

addition, aptamers can be identified by a sole in vivo selection process108,109. For 

example, aptamers targeting colon cancer cells were identified by injecting a modified 

RNA library into tumor-bearing mice for several selection cycles108.  

 

Cell-specific aptamers have several advantageous properties. Because of their nucleic 

acid composition, they can be easily modified to increase their chemical diversity and 

biological properties. Some modifications like unnatural base pairs or modified 

nucleobases are applied during aptamer selection110,111, whereas others like disulfide 

or amino groups can be incorporated post-selectively80.  

A second property is that they represent promising delivery vehicles. They are often 

internalized by the respective cell96,99,112,113 and a variety of cargo molecules can be 

attached covalently or by hybridization96,114,115. Indeed, several cargo molecules such 

 

Aptamer Molecular target Sponsor Medical indications Current status

ARC1779 Activated von Willebrand Fac -
tor (vWF)

Archemix Corporation Purpura; Thrombotic Thrombocytope -
nic; Von Willebrand Disease Type-2b

Phase 2 completed

ARC1905 Complement factor C5 Ophthotech Corporation Age-Related Macular Degeneration Phase 1 completed

ARC19499 Tissue Factor Pathway Inhibi -
tor (TFPI)

Baxter Healthcare Cor -
poration

Hemophilia Phase 1 terminated

AS1411 Nucleolin Antisoma Research Leukemia, Myeloid Phase 2 completed

Metastatic Renal Cell Carcinoma Phase 2 status is 
unknown

E10030 Platelet-derived growth factor 
(PDGF)

Ophthotech Corporation Age-Related Macular Degeneration Phase 3 recruiting 
participants

NOX-E36 Monocyte Chemoattractant 
Protein-1 (MCP-1)

NOXXON Pharma AG Type 2 Diabetes Mellitus; Albuminuria Phase 2 completed

NOX-A12 Stromal Cell-Derived Factor-1 NOXXON Pharma AG Multiple Myeloma; Chronic Lympho -
cytic Leukemia

Phase 2 recruiting 
participants

NOX-H94 Hepcidin NOXXON Pharma AG Anemia of Chronic Disease Phase 2 completed

NU172 Thrombin (Factor IIa) ARCA Biopharma Heart Disease Phase 2 status is 
unknown

REG1 Coagulation factor IX Regado Biosciences Coronary Artery Disease Phase 3 recruiting 
participants
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as proteins or small molecules conjugated to cell-specific aptamers were effectively 

delivered and endocytosed112,116-118 (Figure 3.5.4). The ribosomal toxin gelonin, for 

example, was selectively delivered to pancreas carcinoma cells upon conjugation to an 

aptamer112. 

 

Figure 3.5.4: Overview on cargo molecules delivered by cell-specific aptamers 
Cell-specific aptamers can be conjugated to multiple cargo molecules for selective delivery 
approaches (modified from Mayer et al.96). 
 

Moreover, studies in mammals elucidated low to no immunogenicity and toxicity of 

aptamers in vivo78,119. The main reason for this is that the identified aptamers are 

obtained by cell-free solid phase synthesis, therefore they are free of contaminations 

derived from other species77,78. The chemical synthesis warrant reproducibility, thus, 

leading to a reduced batch to batch variability82. 

However, chemical modifications are often required to increase the stability of 

aptamers for in vivo applications. Because of their small size and composition, 

aptamers are prone to be degraded by nucleases or rapidly removed by renal 

clearance96. Addition of high-molecular weight compounds, for example, could slow 

down the clearance of aptamers. For instance, attached polyethylene glycol moieties 

increased the in vivo circulation half-life of a breast cancer targeting aptamer from 16 to 

22 hours120.  

 

Considering the characteristics and possible applications, cell-specific aptamers are a 

promising alternative class of cell-targeting molecules that might overcome the 

limitations of other molecules used for immunotherapy so far.  
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3.5.3 Aptamers for immunotherapeutic applications 

In recent years there has been a considerable interest in identifying aptamer-based 

immunomodulatory ligands. Aptamers have been proven to function as inhibitors, 

agonists, opsonizing agents or antigen delivery tools for vaccination strategies77,115.  

 

One strategy of immunomodulation is to block immunosuppressive pathways and 

thereby circumvent tumor evasion mechanisms. Programmed cell death (PD-1) and 

cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) are examples of receptors which 

negatively regulate T cell effector functions121. Remarkably, both receptors were 

successfully addressed and blocked by aptamers122,123. Moreover, these aptamers 

potentiated anti-cancer immunity in murine tumor models.  

 

Another strategy of immunotherapy is to enhance T cell activation by applying receptor 

agonists. Besides recognition of antigen-MHC complex by TCR and triggering of cell 

differentiation by inflammatory cytokines, co-stimulatory signals are necessary for 

adequate priming of naïve T cells. 4-1BB is the major co-stimulatory receptor 

expressed on activated CD8 T cells7. In 2008, McNamara et al.124 selected aptamers 

which function as natural ligands of 4-1BB and thereby boost T cell activation and 

survival.  

 

A further attempt of immunomodulation is to opsonize cancer cells, in other words, to 

recruit T cells directly to the tumor site. On that account, 4-1BB aptamers were 

conjugated with prostate cancer-binding prostate-specific membrane antigen (PSMA) 

aptamers and thereby T cell co-stimulation straight at the tumor site was facilitated125.  

 

Although cell-specific aptamers are proven to be suitable carriers (Section 3.5.2 and 

Figure 3.5.4), only few researchers addressed their ability to bind or to deliver antigens 

to DCs for vaccination strategies. When the study at hand was initiated, only the 

investigations conducted by Berezovski et al.126 and Hui et al.127 were published. 

Berezovski and co-workers enriched DNA libraries targeting either immature or mature 

murine bone marrow-derived DCs (BM-DCs) for the identification of cell state-specific 

biomarkers126. However, binding or functionality of individual aptamers was not 

examined. In the study of Hui et al.127, they identified BM-DC-binding aptamers by 

using a recombinant protein of the C-type lectin receptor DC-SIGN in a SELEX 

approach. Nevertheless, the inhibitory function of the aptamers on the adhesion of DCs 

to endothelial cells was investigated rather than their capability as delivery tools.  
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In 2014 the first, and to date sole, aptamer-based antigen delivery was reported by 

Wengerter et al.115. Here, DC-targeting aptamers were selected against the C-type 

lectin receptor DEC-205 using a combinatorial approach of protein- and cell-SELEX. 

These aptamers were subsequently conjugated with ovalbumin (OVA) and reported to 

facilitate cross-presentation by DCs following CD8 T cell activation. In addition, 

multivalent aptamer-OVA conjugates were observed to induce CD8 cytotoxicity against 

OVA-expressing melanoma cells in vivo. Still, open questions remain. First and 

foremost, no investigations concerning CD4 T cell activation were done, although the 

used antigen OVA exhibits both MHC I- and MHC II-restricted epitopes128,129. Second, 

there is no general agreement on DEC-205 mediated MHC I-restricted CD8 T cell 

activation. In other studies, it was demonstrated that targeting of DEC-205 boost MHC 

II-restricted CD4 T cell activation rather than CD8 T cell stimulation37,39. Third, OVA 

was demonstrated to be internalized, processed and cross-presented by DCs in its 

natural unconjugated form19,38. It is then questionable if the aptamers improve the effect 

of OVA on DCs and T cells. 

Obviously, it is worth to further investigate the potential of aptamer-based DC vaccines.  

 

3.6 Aims of the thesis 

One approach of DC-based immunotherapy is to deliver antigens specifically to DCs 

for efficient T cell activation. Even though several molecules like antibodies, viruses or 

nanoparticles are currently under investigations, antigen delivery to DCs remains a 

challenge41,44.  

The aim of this thesis was to investigate the potential applicability of aptamers as a 

novel class of DC-targeting carriers for immunotherapeutic applications. In particular, 

we were interested in answering the following questions. 

 

What is the best SELEX strategy to identify DC-binding aptamers? Two strategies can 

be followed to identify DC-binding aptamers. On the one hand, purified membrane 

proteins can be implemented in a protein-SELEX approach, and on the other hand, 

DCs can be directly used in a cell-SELEX process. 

 

Does the choice of SELEX strategy influence the properties of the aptamers? In 

protein-SELEX, specific membrane proteins can be chosen, because of their ability to 

facilitate presentation on MHC I or MHC II molecules. For example, the C-type lectin 

receptor MR is described to direct its ligands towards cross-presentation19,38. Thus, 

aptamers specific for MR may be internalized into cellular compartments adequate for 

presentation on MHC I molecules. In cell-SELEX, the specific target structure is 
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unknown. Nevertheless, aptamers could be identified for targets that enable 

presentation to T cells and that are not easy to isolate from the membrane. 

 

Are the aptamers exhibiting all properties of suitable carrier molecules? Potential DC-

based antigen delivery tools have to meet several criteria. They need to bind 

specifically to DCs, internalize within adequate antigen processing compartments and 

be non-immunogenic. 

 

Can the aptamers be conjugated to antigenic peptides without loss of binding ability? 

Selective delivery of antigens to DCs is only warranted if the aptamers keep their 

binding ability upon conjugation.  

 

Do the aptamers deliver antigens to DCs and does this delivery result in specific T cell 

activation? Effective targeting of antigens to DCs results in activation of T cell-mediated 

immunity. To investigate whether the selected aptamers are functional in antigen 

delivery, an OVA model system was chosen. Both targeted CD4 and CD8 T cell 

activation were analyzed.  
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4 Results 

This chapter describes the investigations on the potential applicability of aptamers as 

DC-targeting carriers for targeted activation of T cell-mediated immunity.  

The first part of the chapter outlines the identification of aptamers recognizing dendritic 

cells (DCs) (Section 4.1). In the second part, the properties of aptamers in terms of cell 

binding, specificity, internalization and immunogenicity are investigated (Section 4.2). 

The chapter concludes with the analysis on the potential of aptamers to deliver 

antigens for specific T cell activation (Section 4.3).  

 

4.1 Identification of BM-DC targeting aptamers 

DC-binding aptamers can be identified by using purified cell surface proteins or living 

cells as target structures in SELEX approaches100. DCs express a variety of endocytic 

receptors and prominent examples among them are the C-type lectin receptors31,32. 

The C-type lectin receptor MR is described to direct antigens towards cross-

presentation for CD8 T cell activation19,38. Thus, the MR was chosen as an attractive 

target to identify aptamers that are internalized and localized in DCs in a similar way as 

MR ligands. To identify aptamers recognizing the MR, the recombinant proteins Fc-

CTL and Fc-FN were deployed in a protein-SELEX approach (Section 4.1.1). These 

proteins were designed and described by Linehan et al.130 and Martinez-Pomares et 

al.131 and were used to analyze the ligand binding specificity of the MR protein 

domains. Fc-CTL consists of the C-type lectin-like domains 4-7 (CTLD 4-7) of the MR 

fused to the human IgG1 Fc portion, whereas Fc-FN is composed of the MR domains 

cysteine-rich domain, fibronectin type II domain and CTLD 1-3, fused to the Fc part 

(Figure 4.1.1A). 

Murine bone marrow-derived dendritic cells (BM-DCs) are a widely used cellular 

model132. In general, DCs develop from bone marrow-derived progenitors and are 

distributed as a rare cell population in most of mammalian tissues13. By treating murine 

bone marrow-derived progenitors with the hematopoietic growth factor GM-CSF for 7 

days, a high yield (up to 1-3 x 108) of BM-DCs can be generated133. BM-DCs were 

often used to investigate the capacity of DCs to modify downstream T cell 

responses19,71,134 and are therefore a suitable target in cell-SELEX for the identification 

of DC-binding aptamers (Figure 4.1.1B and Section 4.1.2). 
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Figure 4.1.1: Schematic representation of the targets used in SELEX approaches to 
identify BM-DC-binding aptamers 
Recombinant mannose receptor (MR) proteins or murine bone marrow-derived DCs (BM-DCs) 
were used to identify aptamers. The recombinant proteins Fc-CTL (2) or Fc-FN (3) consist of the 
human IgG1 Fc portion and protein domains of the murine MR (1) (A). The murine MR (1) 
consists of a cysteine-rich (CR), a fibronectin type II (FNII), eight C-type lectin-like domains 
(CTLD 1-8) and a transmembrane domain (modified after Martinez-Pomares et al.131). BM-DCs 
were isolated from the C57/BL6J mouse strain and cell progenitors derived from bone marrow 
of hind limbs were differentiated for 7 d with GM-CSF (B). CR=cystein-rich, FNII=fibronectin 
type II, CTLD=C-type lectin-like domain; MR=mannose receptor, GM-CSF=granulocyte 
macrophage colony-stimulating factor 
 

4.1.1 Enrichment of DNA libraries targeting Fc-CTL and Fc-FN 

The recombinant Fc-CTL and Fc-FN proteins were kindly provided by Prof. Sven 

Burgdorf from the LIMES Institute, University of Bonn. Briefly, the proteins were 

expressed in HEK293 cells and purified by immobilization on protein G columns. 

Previously to the SELEX process, the proteins were immobilized on protein G-coated 

magnetic beads. The SELEX processes were initiated by incubation of the immobilized 

Fc-CTL or Fc-FN with a naïve DNA library in selection buffer (PBS, 1 mM MgCl2, 1 mM 

CaCl2, 0.01 mg/ml BSA) for 30 minutes at 37 °C. From the second selection cycle, 

counter selection steps were introduced, i.e. DNA was pre-incubated with Fc-FN in 

SELEX targeting Fc-CTL and vice versa. After 11 selection cycles, the DNA libraries 

were analyzed by radioactive filter retention assay. To this end, the obtained DNA was 

labeled with 32P at the 5’-end, incubated with increasing concentrations of the proteins 
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in selection buffer, the mixture was then passed through a nitrocellulose membrane, 

washed and the retained 32P-DNA on the proteins was quantified by autoradiography.  

 

The percentage of 32P-labeled DNA bound to Fc-CTL strongly increased from the 1st to 

the 6th and 11th selection cycle (Figure 4.1.2A). Additionally, the quantity of bound DNA 

increased in a concentration-dependent manner.  

In contrast, the increase of the percentage of Fc-FN-bound 32P-DNA was observed to 

be much weaker (Figure 4.1.2B). The amount of bound DNA of the 6th and 11th 

selection cycle increased only around 2-2.5-fold in comparison to the first selection 

cycle. 

 

Figure 4.1.2: Aptamer selection targeting Fc-CTL or Fc-FN results in enrichment of DNA 
1 pmol of 32P-DNA was incubated with increasing concentrations of Fc-CTL (A+B) or Fc-FN 
proteins (C+D) and the mixtures were passed through a nitrocellulose membrane. The amount 
of 32P-DNA retained on Fc-CTL or Fc-FN was determined by autoradiography (n=2, mean ±. 
SD). Representative dot blots are shown in (B) and (D). Radioactivity appears as black spots. 
On the left, 32P-DNA retained on the proteins is shown and on the right, 0.8 µl of 32P-DNA is 
spotted to allow the quantification of the percentage of bound DNA. 
 

Even though SELEX is a notionally simple method, it does not always result in the 

enrichment of aptamers with desired properties. There is a risk of an accumulation of 
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non-selective background binders82. Therefore, the enriched libraries of the sixth 

selection cycle were taken for the analysis of target selectivity. 

 

4.1.1.1 Selectivity of Fc-CTL and Fc-FN binding DNA libraries 

The selectivity of the enriched DNA libraries for recombinant Fc-CTL or Fc-FN protein 

was tested by radioactive filter retention assay. To this end, the obtained DNA libraries 

of the 1st and 6th cycle of both selections were 5’-labeled with 32P and incubated with 

Fc-CTL, Fc-FN, hIgG1 Fc, protein G, activated protein C (aPC), thrombin, extracellular 

signal-regulated kinase 2 (Erk2) or the Sec7 domain of cytohesin-1 (Cyt1 Sec7) in 

selection buffer for 30 minutes at 37 °C.  

During SELEX, Fc-CTL and Fc-FN were immobilized on protein G magnetic beads 

through their hIgG1 Fc tag. To exclude the binding of the enriched libraries to the 

protein tag or the immobilization matrix, hIgG1 Fc and protein G were included in the 

radioactive filter retention assays. In addition, the binding to the proteins thrombin, 

aPC, Erk2 and Cyt1 Sec7 which differ in their protein structures and were successfully 

addressed in previous aptamer selections91,94,98,135,136, were also examined. 

 

The DNA libraries derived from the 6th selection cycle targeting Fc-CTL (Figure 4.1.3A) 

or Fc-FN (Figure 4.1.3B) bound to both Fc-CTL and Fc-FN proteins. This result was 

not expected, because Fc-FN was used in the counter selection step in Fc-CTL-SELEX 

and vice versa. However, binding to both proteins is partly mediated by addressing the 

hIgG1 Fc tag (Figure 4.1.3AB). Plus, Fc-CTL as well as Fc-FN contains C-type lectin-

like domains (Figure 4.1.1A). Although the eight CTLDs of MR differ in their function 

and ligand specificity, they share conserved amino acid residues to form the typical 

CTLD fold35,137-140. 

Apart from that, no or a low amount of 32P-DNA retained on aPC, thrombin, Erk2 or 

Cyt1 Sec7 was observed. Plus, no binding to the immobilization matrix protein G was 

detected. It can be concluded that the enriched DNA specifically bound to the protein 

domains used in SELEX.  
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Figure 4.1.3: DNA libraries targeting Fc-CTL or Fc-FN discriminate between recombinant 
proteins 
DNA libraries of the 1st and 6th selection cycle of Fc-CTL (A) and Fc-FN (B) targeting SELEX 
were incubated with 1000 nM of proteins and analyzed by radioactive filter retention assay. The 
protein-32P-DNA mixture was therefore passed through a nitrocellulose membrane and the 
retained DNA was measured by autoradiography (n=2, mean ± SD).  
 

To investigate whether the enriched DNA libraries consisted of specific aptamers, 

further experiments based on single sequence level were done.  

 

4.1.1.2 Identification of aptamer sequences obtained from protein-SELEX 

To identify individual aptamer sequences, DNA libraries from the 6th selection cycle 

were amplified by PCR, ligated into pCR2.1-TOPO vectors, transformed in the 

chemically competent TOP10 E. coli strain and subsequently sequenced. For Fc-CTL, 
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19 DNA sequences were obtained (Figure 4.1.4 and Table S 9-2) and 14 DNA 

sequences were found within the Fc-FN selected DNA library (Table S 9-1).  

 

At this point, the selection against Fc-FN was not further investigated. First of all, the 

libraries of the 6th and 11th selection cycles bound weakly to Fc-FN (Figure 4.1.2B). 

Second, on the single sequence level no similarities within the DNA sequences were 

found (Table S 9-1). Taking all this into account, no enrichment of high-affinity and 

specific DNA aptamers against Fc-FN was achieved.  

 

On contrary, Fc-CTL-targeting DNA libraries bound strongly to Fc-CTL (Figure 4.1.2A 

and Figure 4.1.3A). Furthermore, two families sharing DNA motifs were identified 

among the 19 found DNA sequences. DNA sequences named CTL#5, 7, 9, 10 and 13 

formed family 1, whereas CTL#6, 16 and 21 were grouped as family 2 (Figure 4.1.4). 

The remaining DNA sequences were unique (Table S 9-2). 

 

 

Figure 4.1.4: DNA sequences share motifs 
DNA sequences obtained by cloning and sequencing of DNA library targeting Fc-CTL were 
grouped according to their sequence similarities.  
 

Next, the binding properties of individual sequences were investigated by radioactive 

filter retention assay. 

 

4.1.1.3 Binding of Fc-CTL selected DNA sequences 

Representative DNA sequences of each motif family (Figure 4.1.4), namely CTL#5, 

CTL#9, CTL#6 and CTL#16, and unique sequences CTL#1, #2, #3, #14 and #18 

(Table S 9-2) were chosen for further analysis. Therefore, their binding ability to Fc-

CTL, Fc-FN and the IgG1 Fc protein tag was monitored by radioactive filter retention 

assay (Figure 4.1.5). DNA was end labeled with 32P and mixed with the corresponding 

proteins at a concentration of 500 nM. The mixtures were incubated in selection buffer 

Family 1

CTL#5  TTGCAAAATCTAGCTGACAAAATGGGGGGGGGGGGGGAAAAGAAAATGTGGGGGGTGGGGGGTG
CTL#7   CGCAAAATCTAGCTGACAAAATGGGGGGGGGGGGGGAAAAGAAAATGTGGGGGGTGGGGGGTG
CTL#9  ------------ ------------CGAGATGGGGGGGGGGGGGGAAAAGGGGATGTGGGGGGTGGGGGGTGATCTTTTCGTTTTGGGGGGT
CTL#10 ------------ ------------CGTTTTGTGGGGGGGGGGGGGGAAAAGGGGATGTGGGGGGTGGGGGGTCTGTTTTTTCAGGGGAGCA
CTL#13 ---------------CGTGGGGGGGGGGGGGGTTTTGATGAGCATTTTGGGGGGTGGGGGGAGTTTTCAGGGGGGTTTTTTGGGG

Family 2

CTL#6  --------- ---------CCCCGTGGGGGGTGGGGGGTGGGGGGAAAATTTTGGGGGGAGGGGATGCGGGGAAAATTTTAAAACTCAGGGG
CTL#16 CGTACTGATGCGTGGGGGGTGGGGGGTGGGGGGTACTTTTTTCTTTTGATTTTTTGGGGGGA
CTL#21 ---------CTGTGGGGGGTGGGGGGGGGGGGGGATTTTTTGGGGGGAGGGGATGCAGGGGGGTAGGGGTTTTGTCCCC
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for 30 minutes at 37 °C and applied on a nitrocellulose membrane. Finally, the amount 

of bound DNA was detected by autoradiography. 

Equally to the 6th selection cycle library (Figure 4.1.3A), some sequences targeted 

both proteins, Fc-CTL and Fc-FN (Figure 4.1.5). Exceptions were CTL#5 and CTL#9 

which showed more than two-fold higher binding to Fc-CTL in comparison to Fc-FN, 

and a low binding to the protein tag.  

 

Figure 4.1.5: Binding behavior of DNA sequences to Fc-CTL, Fc-FN and hIgG1 Fc 

 

1 pmol of 32P-DNA was incubated with 500 nM of proteins, the mixture was passed 
through a nitrocellulose membrane and the retained 32P-DNA was measured by 
autoradiography (n=2, mean ± SD). 

 

 

CTL#5 and CTL#9 belong to sequence family 1 whereby the shared motif is located 

differently within these sequences (Figure 4.1.4). As CTL#5 showed a higher degree of 

discrimination between Fc-CTL and Fc-FN, it is most likely that its sequence 

composition favors tertiary structure formation critical for specific Fc-CTL binding. For 

that reason, CTL#5 was picked for further analysis. 

 

4.1.2 Enrichment of DNA libraries in cell-SELEX 

The second approach to identify DC-binding aptamers was the use of living murine 

BM-DCs as targets in a cell-SELEX process (Figure 4.1.1B). BM-DCs express a 

variety of molecules on their surface that are involved in modulating downstream T cell 

responses13. These molecules represent accessible targets for aptamer selection.  

Previously to every selection cycle, murine bone marrow-derived progenitor cells were 

isolated from the hind limbs and differentiated for 7 days into BM-DCs with the 

hematopoietic factor GM-CSF. The cell-SELEX process was initiated by incubating 

living BM-DCs with a naïve DNA or 2’F-RNA library in cell-SELEX selection buffer 

(DPBS, 1 mM MgCl2, 0.01 mg/ml BSA) at 37 °C for 30 minutes. To increase the 
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selection pressure during SELEX, the incubation time was decreased to 10 minutes in 

the 9th selection cycle. After 10 and 12 selection cycles, 32P-labeled DNA or 2’F-RNA 

libraries were examined by radioactive binding assay. For this purpose, 32P-DNA or 
32P-2’F-RNA was incubated with BM-DCs in cell-SELEX selection buffer and the 

amount of bound 32P-labeled nucleic acids was measured by liquid scintillation (Figure 

4.1.6). A 2’-deoxy-2’-fluoro-ribonucleic acid (2’F-RNA)-based library was used because 

2’F-RNA is described to be less immunogenic in comparison to unmodified RNA142. In 

addition, by substituting the 2’-hydroxyl group by a fluoro group, the stability of RNA to 

chemical or enzymatic hydrolysis is enhanced141. 

 

 

Figure 4.1.6: Schematic representation of the radioactive binding assay 
0.5 x 105 BM-DCs were incubated with 1 pmol of 32P-DNA or 32P-2’F-RNA for 10 minutes at 37 
°C. Afterwards, the cell supernatant was collected as fraction I. The cells were washed twice 
and both wash fractions were transferred into new tubes (fraction II + III). The cells were 
detached and collected as fraction IV. Finally, the radioactivity of the fractions was measured by 
liquid scintillation and the percentage of bound DNA calculated by using the depicted formula. 
 

As a result, around 4-fold higher binding of the DNA library of the 10th selection cycle in 

comparison to the 1st cycle was determined (Figure 4.1.7A), indicating enrichment of 

DNA binders targeting BM-DCs. In contrast, no enrichment of 2’F-RNA was observed 

(Figure 4.1.7B). Therefore, the obtained 2’F-RNA library was not further investigated. 
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Figure 4.1.7: SELEX targeting BM-DCs results only in enrichment of DNA 
32P-DNA (A) or 32P-2’F-RNA (B) were incubated with 0.5 x 105 BM-DCs and the retained 
radioactivity on the cells was determined by liquid scintillation (n=6 (A)/n=2 (B), mean ± SD). 
 

To find high-affine and specific DNA aptamers, further experiments were done on 

single sequence base.  

 

4.1.2.1 Identification of aptamer sequences obtained from cell-SELEX 

Cloning and sequencing of the 10th selection cycle of cell-SELEX resulted in 31 DNA 

sequences. Eight sequences were grouped into two motif-sharing sequence families 

(Figure 4.1.8). The remaining sequences were unique (Table S9-3).  

 

 

Figure 4.1.8: DNA sequences share sequence similarities 
According to their composition, some DNA sequences obtained from cell-SELEX were grouped 
into sequence family 1 and 2. 
 

Next, the cloned sequences were analyzed by radioactive binding assay. 
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Family 1

D#4   - -GTGGGCGGGTTTATATTCGGTGGTGGTGGGGGTGGTTTTCTGTT
D#7   CGTGGGTGGGTTTATATTCGGTGGTGGTGGGGGTGGTACTGTT 
D#23  CGTGGGCGGGTTTATATTTTTGGTGGTGGTGGGGGTGGTACTGTT    
D#28  CGTGGGTGGGTTTATATTCGGTGGTGGTGGGGGTGGTACTGTT    

Family 2

D#2   GCATGTTTTTTGGGGGGTGGGGGGATATTTTGGGGCGTGTTTTTTGGGGGGTTTTGGGGGGACTGCT
D#3    GCATGTTTTTTGGGGGGTGGGGGGATATTTTGGGGCGTGTTTTTTGGGGGGTTTTGGGGGGACTGCT
D#5  -  -CGCATTTTTTGGGGGGTGGGGGGATTTTGTTTTATTTTTTGGGGGGTCGGGGGGATTTTGGGGCAGTTTT
D#8  -  -CGCATTTTTTGGGGGGTGGGGGGATTTTGTTTTATTTTTTGGGGGGTCGGGGGGATTTTGGGGCAGTTTT
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4.1.2.2 Binding of selected DNA sequences to BM-DCs 

The binding ability of the individual sequences was analyzed by radioactive binding 

assay (Figure 4.1.6). For that purpose, 32P-DNA was incubated with BM-DCs in cell-

SELEX selection buffer for 10 minutes at 37 °C. The amount of 32P-DNA retained on 

BM-DCs was determined and the ratio of binding calculated as the amount of bound 

DNA of the sample divided by the 1st selection cycle. A ratio of binding higher than 1 

indicates binding to BM-DCs.  

As a result, the binding ability of DNA sequences D#2, #5, #7, #11, #16, #22, #23 and 

#27 was comparable to the 10th selection cycle library, thus, they were categorized as 

BM-DC binding sequences (Figure 4.1.9). Notably, sequences from both motif-sharing 

sequence families (Figure 4.1.8) are classified as BM-DC binders.  

 

 

Figure 4.1.9: DNA sequences derived from cell-SELEX show different binding capabilities 
0.5 x 105 BM-DCs were incubated with 1 pmol of 32P-labeled DNA. Subsequently, the amount of 
cell-bound DNA was determined by liquid scintillation. The percentages of bound 32P-DNA of 
samples were divided by the 1st selection cycle to give the ratio of binding. The experiments 
were performed at least twice (mean ± SD).  
 

The outcome of cell-SELEX was additionally verified by next-generation sequencing 

(NGS). 

 

4.1.2.3 Analysis of cell-SELEX by NGS 

To further investigate the enrichment of BM-DC-binders, the naïve DNA library and the 

libraries of the 1st, 2nd, 3rd, 4th, 7th and 10th selection cycles of cell-SELEX were 

introduced in NGS analysis143. This high-throughput sequencing technology enables 

the identification of millions of DNA sequences93. The raw data was analyzed by 

algorithms developed by AptaIT GmbH (München)144.  

Around 100 % of sequences in selection cycle 1 were unique. Starting from the 3rd 

round, the number of unique sequences decreased to around 50 % in the 10th selection 
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cycle (Figure 4.1.10A). Certain DNA sequences become more frequent, indicating that 

the complexity of the libraries decreased with increasing selection cycle.  

Moreover, a change of nucleotide distribution in the random region was observed. The 

naïve SELEX starting DNA library contained equal amounts of nucleotides, around 25 

% each of adenine, cytosine, guanine and thymine (Figure 4.1.10B). In contrast, the 

composition of the library of the 10th selection cycle was changed; adenine strongly 

decreased whereby the amount of thymine at certain sequence positions increased 

(Figure 4.1.10C). These results suggest that certain sequence arrangements were 

favorably accumulated within cell-SELEX. 

Correlated to the nucleic acid sequences composition, the sequence reads were 

grouped in patterns (Figure 4.1.10D and Table S 9-4). These patterns were numbered 

according to their read frequencies, where pattern 1 had the highest frequency of 

around 4 % in the 10th selection cycle.  
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Figure 4.1.10: NGS analysis verified enrichment of DNA sequences in cell-SELEX 
DNA of the naïve starting library and different selection cycles obtained from SELEX targeting 
BM-DCs were introduced in high throughput NGS analysis. The alterations of unique sequence 
numbers (A) and nucleotide distributions (B+C) were investigated by algorithms developed by 
AptaIT GmbH (München). Plus, dependent on the degree of similarities, DNA sequences were 
grouped into patterns (D). The patterns were numbered according to their frequencies. Here, 
the 15 most abundant patterns are shown (refer to Table S 9-4).  
 

Next, DNA sequences obtained by classical cloning and sequencing procedure were 

traced within the NGS reads (Table S9-3). Remarkably, sequences grouped to motif-

sharing families (Figure 4.1.8) were present in pattern 1 and 2. Taking that into 

account in addition to the results of the radioactive binding assay (Figure 4.1.9), D#5 

(family 1) and D#7 (family 2) were chosen for further investigations. 
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4.2 Characterization of BM-DC targeting aptamers 

Aptamer-based antigen delivery tools have to meet the following requirements: target 

binding and specificity, cell internalization and non-immunogenicity. In the previous 

Section 4.1 the selection of BM-DC targeting DNA sequences were described, 

resulting in the identification of aptamers CTL#5, D#5 and D#7. To test whether these 

aptamers fulfill the above mentioned requirements, flow cytometry binding assay, 

confocal microscopy analysis and TNF-α HTRF assay were used to evaluate their 

performance.  

 

4.2.1 Binding and specificity of BM-DC-binding aptamers 

4.2.1.1 Binding of aptamers to BM-DCs 

The binding of aptamers was analyzed by flow cytometry binding assay. Increasing 

concentrations of 5’-ATTO 647N-labeled aptamers CTL#5, D#5 and D#7 were 

incubated with 4 x 105 BM-DCs, the amount of bound DNA was detected by flow 

cytometry and the mean fluorescence intensities (MFI) were determined (Figure 

4.2.1BC). A scrambled sequence based on CTL#5 was used as non-specific control 

sequence (ctrl). Here, the binding capacities of the aptamers were analyzed in DC cell 

medium for 10 minutes at 37 °C. 

All aptamers showed an increased binding capacity to murine BM-DCs compared to 

the control sequence, which is also concentration-dependent (Figure 4.2.1). Mean 

fluorescence intensities (MFI) increased with increasing concentrations of aptamers. 

Remarkably, CTL#5 derived from Fc-CTL protein-SELEX (Section 4.1.1) was also able 

to bind BM-DCs. 

D#7, obtained from cell-SELEX, was shown to have the highest MFI, followed by D#5 

and CTL#5. Surprisingly, the MFI of the labeled control sequence also rose with 

increasing concentrations, albeit to a lesser extend (Figure 4.2.1A). This fact is 

probably caused by the ability of BM-DCs to continuously internalize surrounding fluids 

by macropinocytosis30.  

As observed in Figure 4.2.1, binding curves fail to access saturation even at high 

concentrations. One reason could be the continuous endocytosis of aptamers.  
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Figure 4.2.1: Aptamers bind in a concentration-dependent manner to BM-DCs 
4 x 105 BM-DCs were incubated with increasing concentrations of ATTO 647N-labeled 
aptamers and analyzed by flow cytometry (A). The mean fluorescence intensities (MFI) of 
ATTO 647N were determined (n=2, mean ± SD). Representative flow cytometry histograms of 
50 and 500 nM CTL#5 and ctrl and the corresponding MFI are depicted in (B) and (C). 
ctrl=control sequence 
 

Next, the specificity of the aptamers binding to BM-DCs was analyzed. 

 

4.2.1.2 Specificity of aptamers to BM-DCs 

As the aptamers were intended to be used to mediate the activation of adaptive 

immunity, binding of effector cells, B and T cells, had to be excluded.  

For that purpose, murine splenocytes were isolated and stained for T and B cell 

surface marker CD8, CD4 and B220, respectively. CD8 is mainly expressed by MHC I-

restricted T cells, CD4 is primarily expressed by MHC II-restricted T cell subsets and 

log c [nM]

M
FI

 [A
TT

O
 6

47
N

]

1 10 100 1000 10000
0

250

500

750

1000

ctrl

D#5
D#7

CTL#5

B) C)

100 101 102 103 104

ATTO 647N

0

20

40

60

80

100

%
 o

f M
ax

Sample MFI

unstained cells 1.48
unstained cells_2 1.47
CTL#5 50 nM 31.9
CTL#5 50 nM_2 30.8
CTL#5 500 nM 162
CTL#5 500 nM_2 181

100 101 102 103 104

ATTO 647N

0

20

40

60

80

100
%

 o
f M

ax

Sample MFI

unstained cells 1.48
unstained cells_2 1.47
ctrl 50 nM 21.9
ctrl 50 nM_2 22.6
ctrl 500 nM 111
ctrl 500 nM_2 96.7

A)



Results 

47 
 

B220 can be found in general on cells of the B cell lineage2. 2 x 105 BM-DCs or 

splenocytes were incubated with 500 nM of 5’-ATTO 647N-labeled aptamers for 30 

minutes at 37 °C, the amount of cell-bound ATTO 647N-labeled aptamers was 

measured by flow cytometry and normalized to the control sequence.  

Results are given in Figure 4.2.2. Aptamers bound specifically to BM-DCs whereas no 

binding to T cells was observed and less than 10 % of B cells were recognized by 

aptamers.  

 

 

Figure 4.2.2: Aptamers bind specifically to BM-DCs 
500 nM ATTO 647N-labeled aptamers were incubated with 2 x 105 BM-DCs or splenocytes 
and analyzed by flow cytometry. Cells bound by DNA were normalized to the control DNA (ctrl), 
the experiments were performed at least twice (mean ± SD). Splenocytes were co-stained with 
CD4, CD8 or B220 (CD45RA) antibodies. 
 

B cells are grouped together with DCs and macrophages as professional APCs 

according to their ability to activate T cell responses. Additionally, professional APCs 

share some common cell surface structures for antigen recognition, e.g. Fc receptors 

for IgG27. This may mean that the aptamer target structures are expressed by B cells 

as well. However, the results suggest that the target expression is less prominent on B 

cells in contrast to BM-DCs. 

 

4.2.2 CTL#5 specificity towards MR 

The recombinant protein Fc-CTL was used to select CTL#5. As shown in Figure 

4.1.1A, Fc-CTL is composed of CTLD 4-7 derived from murine MR and human IgG1 Fc 

region. In 2002, Figdor et al.31 reviewed several receptors of the C-type lectin family 

expressed on DCs (Figure 4.2.3). Even though the receptors differ in their ligand 

specificity, their C-type lectin-like domains share conserved residues responsible for 

the typical formation of a hydrophobic fold35,137. To evaluate if only the CTLDs of MR 
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were bound by CTL#5, confocal microscopy and flow cytometry binding assay were 

used. 

 

 

Figure 4.2.3: Schematic representation of CTLD-containing receptors expressed on DCs 
Several receptors composed of at least one C-type lectin-like domain are expressed on DCs 
(modified from Figdor et al.31). MR=mannose receptor; DEC-205=dendritic and epithelial cells, 
205 kDa; DC-SIGN=DC specific ICAM-3 grabbing non-integrin; DLEC=DC lectin; DCIR=DC 
immunoreceptor; CLEC-1=C-type lectin receptor-1; Dectin=DC-associated C-type lectins 
 

First, co-localization of CTL#5 with MR was investigated. In 2006, Burgdorf et al.38 

elucidated that the uptake of OVA by BM-DCs is dependent on MR expression. Hence, 

co-localization studies of CTL#5 with MR were carried out in comparison with the co-

localization of OVA with MR. 

2 x 105 BM-DCs were double stained with MR antibody-Alexa Fluor 488 conjugate and 

250 ng/ml OVA-Alexa Fluor 647 or 250 nM CTL#5-ATTO 647N in DC cell medium for 

30 minutes at 37 °C. The co-localization was analyzed by confocal microscopy and 

quantified with Pearson’s correlation coefficient (PCC). PCC correlates fluorescence 

intensities; 1 means perfect relation, while 0 means no relation of the fluorescence 

intensities. High values of PCC indicate that the stained molecules are in close 

proximity. According to Zinchuk et al.145 PCC values were translated in weak to strong 

correlation.  

In line with Burgdorf et al.99 and Rauen et al.34, co-localization of OVA and MR was 

observed. In accordance to Zinchuk et al.145, the correlation of both CTL#5 and OVA 
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with MR is classified as strong (Figure 4.2.4AB). These results support the idea that 

similar to OVA, CTL#5 targets MR. 

 

To attest that CTL#5 only binds to MR, binding to wildtype and MR knockout (MR-/-) 

BM-DCs was compared in flow cytometry (Figure 4.2.4C). To this end, 4 x 105 BM-

DCs were incubated with increasing concentrations of CTL#5 or the control sequence 

(ctrl) for 30 minutes at 37 °C in DC cell medium. Surprisingly, binding behavior of 

CTL#5 was similar for both cell types, as the knockout of MR did not change the 

amount of cells bound by the aptamer. It can thus be conceivably assumed that CTL#5 

targeting is not MR-specific. 

 

Figure 4.2.4: CTL#5 binding is not only mediated by the MR 
Targeting of the MR by CTL#5 was analyzed in confocal microscopy and flow cytometry. For co-
localization study, 2 x 105 BM-DCs were co-stained with OVA-Alexa Fluor 647 or CTL#5-ATTO 
647N and MR antibody-Alexa Fluor 488 conjugates. Representative pictures out of at least 
twice performed experiments are shown (A). Fluorescence intensities were quantified as 
Pearson’s correlation coefficient (PCC) (mean ± SD) (B). 4 x 105 wildtype or MR-/- BM-DCs were 
incubated with increasing concentrations of ATTO 647N-labeled CTL#5 and the amount of cells 
bound by CTL#5 was measured by flow cytometry and normalized to the control (ctrl) sequence 
(n=2, mean ± SD) (C).  
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4.2.3 Internalization and cellular localization of BM-DC-binding 

aptamers 

4.2.3.1 Internalization of aptamers by BM-DCs 

Cell-specific aptamers were often reported to be internalized into cells96,99,112,113. To 

investigate if aptamers CTL#5, D#5 and D#7 were taken up by BM-DCs, confocal 

microscopy was used. 2 x 105 BM-DCs were incubated with 250 nM ATTO 647N-

conjugated aptamers in DC cell medium at 37 °C for 30 minutes (CTL#5) or 10 minutes 

(D#5 and D#7), then, the cells were fixed in paraformaldehyde and co-stained with the 

membrane marker wheat germ agglutinin (WGA)-Alexa Fluor 488 and the nuclear stain 

DAPI. In confocal microscopy, pictures of cells at various depths within the Z-axis were 

taken (Z-stacks). The incubation times were chosen in accordance to the incubation 

times used in the SELEX approaches. 

All aptamers were localized within almost every BM-DC whereby only ~2 % of cells 

contained the control sequence (Figure 4.2.5).  
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Figure 4.2.5: Aptamers internalize into BM-DCs 
2 x 105 BM-DCs were incubated with 250 nM aptamers-ATTO 647N conjugates, fixed and co-
stained with membrane marker wheat germ agglutinin-Alexa Fluor 488 and nuclear marker 
DAPI. In confocal microscopy, pictures along the Z-axis were taken (Z numbers are given in 
µm). CTL#5 (A), D#5 and D#7 (B) were present as punctuate structures in the cytoplasm of 
BM-DCs. Representative pictures out of at least twice performed experiments are shown. 
ctrl=control sequence 
 

In previous studies, it was reported that the mechanism of uptake and cellular 

trafficking influences antigen processing and presentation by BM-DCs19,37,39. For 

example, ligands internalized by the MR were entrapped in slowly maturing early 

endosomes for cross-presentation on MHC I molecules19,38, whereas ligands taken up 

by DEC-205 are transported towards late endosomes or lysosomes for presentation on 

MHC II molecules37,39. Thus, the cellular localization of CTL#5, D#5 and D#7 can 
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influence the processing and presentation of a conjugated antigen. To investigate the 

cellular localization of the aptamers, confocal microscopy was applied.  

 

4.2.3.2 Cellular localization of aptamers 

Ingested antigens route through endolysosomal compartments within DCs and are 

finally loaded on MHC I or MHC II molecules for presentation16 (Section 3.3.1). To 

assess the cellular localization of CTL#5, D#5 and D#7, co-localization studies in 

confocal microscopy were done. 2 x 105 BM-DCs were treated with 250 nM ATTO 

647N-labeled aptamers in DC cell medium at 37 °C for 30 minutes (CTL#5) or 10 

minutes (D#5 and D#7) and co-stained with either early endosome antigen 1 (EEA1) or 

lysosome-associated membrane glycoprotein-1 (LAMP-1) antibody-Alexa Fluor 488 

conjugates. Co-localization was quantified by using the PCC. The incubation times 

were chosen in accordance to the incubation times used in the SELEX approaches. 

 

First, co-localization studies of CTL#5 were done in comparison with the model antigen 

OVA. Co-localization, as indicated by shades of yellow, was observed in some 

punctate structures. OVA as well as CTL#5 co-localized strongly with EEA1 (Figure 

4.2.6AC). This finding is consistent with previous studies about co-localization of OVA 

and EEA1 done by Burgdorf et al.27 and Rauen et al.19,71. Additionally, weak correlation 

between OVA or CTL#5 and LAMP-1 was observed (Figure 4.2.6BC).  
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Figure 4.2.6: CTL#5 and OVA co-localize with EEA1 and LAMP-1 
The cellular localization of CTL#5 and OVA was analyzed by co-localization studies in confocal 
microscopy. 2 x 105 BM-DCs were incubated with 250 nM aptamer-ATTO 647N or 250 ng/ml 
OVA-Alexa Fluor 647 conjugates, fixed and co-stained with early endosome marker EEA1 (A) 
or lysosome marker LAMP-1 (B), both labeled with Alexa Fluor 488. Representative pictures out 
of at least twice performed experiments are shown. The fluorescence signals were quantified as 
Pearson’s correlation coefficient (PCC) (mean ± SD) (C). 
 

In a similar way, cellular localization of D#5 and D#7 was analyzed. It was shown that 

neither D#5 nor D#7 were located in organelles containing LAMP-1 (Figure 4.2.7). 

D#5-ATTO 647N correlated weak with EEA1-Alexa Fluor 488 (Figure 4.2.7AB) while 

D#7 co-localized strongly with EEA1 (Figure 4.2.7CD).  
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Figure 4.2.7: D#5 and D#7 co-localize with EEA1 
The cellular localization of aptamers was analyzed by co-localization studies in confocal 
microscopy. 2 x 105 BM-DCs were incubated with 250 nM D#5- (A+B) or D#7-ATTO 647N 
(C+D) conjugates, fixed and co-stained with early endosome marker EEA1 or lysosome marker 
LAMP-1, both labeled with Alexa Fluor 488. Representative pictures out of at least twice 
performed experiments are shown. The fluorescence signals were quantified as Pearson’s 
correlation coefficient (PCC) (mean ± SD) (B+D). 
 

The results of the co-localization studies indicated internalization of aptamers into BM-

DCs and localization within endolysosomal compartments. These results underline the 

potency of the selected aptamers to deliver antigens into cellular compartments 

important for adequate processing and presentation. 

 

4.2.4 Immunogenicity of BM-DC-binding aptamers 

Cells involved in innate immunity evolved several sensors for foreign nucleic acids, 

termed pattern recognition receptors (PRRs). Most prominent among them are the Toll-

like receptors (TLRs) 3, 7/8, 9 and 13, which are localized within endosomes. Upon 

recognition of nucleic acid ligands, signaling cascades are activated resulting in 

secretion of proinflammatory cytokines like tumor necrosis factor-α (TNF-α) or type I 

interferons (IFNs)146,147 (Figure 4.2.8).  
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Figure 4.2.8: Schematic representation of TLR signaling 
TLR 3, 7/8, 9 and 13 are localized in endosomal compartments. Upon recognition of their 
nucleic acid ligands, transcription factors such as nuclear factor-κB (NF-κB) and interferon-
regulatory factors (IRFs) get activated. Consequence of TLR signaling is the induction of 
proinflammatory cytokines, e.g. tumor necrosis factor-α (TNF- α) and type I interferons (IFNs). 
ds=double-stranded, ss=single-stranded, r=ribosomal 
 

To investigate if BM-DC targeting aptamers were sensed by TLRs, secretion of TNF-α 

was measured by homogeneous time-resolved fluorescence (HTRF) assay. It was 

performed in close collaboration with Prof. Eicke Latz. HTRF is based on fluorescence 

resonance energy transfer (FRET). Here, FRET donor and acceptor molecules were 

attached to anti-TNF-α antibodies and in close proximity to the molecules the 

fluorescence emission spectrum changes. This change is proportional to the TNF-α 

concentration in the sample.  

Immortalized murine embryonic stem cell-derived macrophages were used to 

investigate TLR activation. CpG ODN 1826 is described to activate TLR9148 and was 

used as positive control. In general, CpG ODNs are composed of unmethylated CpG 

motif (cytosine - phosphodiester or phosphorothioate - guanosine) flanked by 5’ purines 

and 3’ pyrimidines149. Here, to increase stability, CpG ODN 1826 has a 

phosphorothioate backbone. As expected, CpG ODN 1826 activated TNF-α secretion 

at concentrations in the nanomolar range (Figure 4.2.9A). The DNA library used for 

aptamer selection induced TNF-α production at concentrations higher than 0.5 µM 

(Figure 4.2.9AB). In comparison, all aptamers demonstrated low TLR activation only at 

the highest concentration of 3 µM. D#5 mediated secretion of around 220 pg/ml TNF-α 
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whereas CTL#5 and D#7 treatment induced less than 50 pg/ml TNF-α (Figure 4.2.9C). 

The control sequence caused secretion of approx. 100 pg/ml TNF-α. Thus, in 

comparison to the DNA library which induced secretion of around 2100 pg/ml TNF-α, 

the aptamers are 10-40 times less potent in activation of TNF-α response.  

 

 

Figure 4.2.9: Aptamers induce low TNF-α secretion 
Immortalized murine embryonic stem cell-derived macrophages were incubated with increasing 
concentrations of CpG ODN 1826 type B, naïve DNA library or aptamers (A) for 24 h and the 
concentration of TNF-α in the supernatant was determined by HTRF assay (n=4, mean ± SD). 
For a better comparison, the results without CpG ODN are depicted in (B). The amount of TNF-
α after treatment with 3 µM of DNA is shown in (C). The assays were performed as blinded 
analyses by James Stunden, member of Prof. Latz group, University Hospitals Bonn. 
ctrl=control sequence. 
 

4.3 Aptamer-targeted activation of T cell-mediated immunity 

In the previous parts of this chapter, it was demonstrated that the selected aptamers 

exhibit all requirements to function as suitable delivery tools in an immunological 

context. They were shown to bind specifically to BM-DCs, get internalized, be 

B)

0.01 0.1 1 10
0

1000

2000

3000

log c [μM]

m
TN

F-
a 

[p
g/

m
l]

DNA library

D#7
D#5

ctrl
CTL#5

A)

0.001 0.01 0.1 1 10
0

2000

4000

6000

8000

log c [μM]

m
TN

F-
a 

[p
g/

m
l]

DNA library
CpG

D#7
D#5

ctrl
CTL#5

1 10
0

100

200

300

1500
2000
2500
3000

log c [μM]

m
TN

F-
a 

[p
g/

m
l]

DNA library

D#7
D#5

ctrl
CTL#5

C)



Results 

57 
 

transported into appropriate antigen processing compartments and be non-

immunogenic.  

To investigate if BM-DC aptamers indeed deliver antigens to mediate targeted 

activation of T cells, an OVA model system was applied. This system was chosen 

because it is one of the most feasible ways to investigate T cell-mediated immunity. It 

is common knowledge that OVA possess MHC I and MHC II binding sites OVA257-264 

(MHC I peptide) and OVA323-339 (MHC II peptide), respectively128,129. Accordingly, 

Hogquist et al.150 and Barnden and co-workers155 established transgenic mouse models 

producing OVA-specific CD8 or CD4 T cells. These mice develop either CD8 T cells 

recognizing MHC I bound OVA257-264 or CD4 T cells specific for MHC II bound OVA323-

339 recognition. 

Isolated MHC I or MHC II peptides can directly bind to MHC molecules expressed on 

the cell surface. Therefore, prolonged OVA peptides, namely OT-I (OVA249-272) and OT-

II (OVA317-345), expanding either MHC I or MHC II recognition sequences were attached 

to the aptamers. In theory, upon binding and internalization of aptamer-OT-I or -OT-II 

conjugates by BM-DCs, activation of either CD8 or CD4 T cells is expected (Figure 

4.3.1).  
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Figure 4.3.1: Schematic representation of aptamer-targeted delivery of OVA peptides to 
induce specific T cell-mediated immune responses 
In theory, the OT-I (green star) or OT-II (yellow star) peptides that are coupled to BM-DC 
binding aptamers will be taken up by the BM-DCs and then digested into smaller MHC I (cutted 
green star) or MHC II (cutted yellow star) peptides, respectively. Finally, MHC I or MHC II 
peptides will be loaded on MHC I or MHC II molecules and presented to CD8 or CD4 T cells for 
activation of T cell-mediated immunity. MHC I peptide=OVA257-264, MHC II peptide=OVA323-339, 
OT-I peptide=OVA249-272, OT-II peptide=OVA317-345 
 

Thiol-maleimide chemistry was used to conjugate aptamers with OT-I or OT-II 

peptides. Targeted activation of T cell immunity was finally tested by in vitro 

proliferation and cytotoxicity assays. 

 

4.3.1 Synthesis and binding ability of aptamer-peptide conjugates 

4.3.1.1 Coupling of aptamers and OVA peptides 

MHC I-restricted OT-I or MHC II-binding OT-II OVA peptides were crosslinked via thiol-

maleimide chemistry to aptamers CTL#5, D#5 or D#7, or the control sequence (ctrl) 

(Figure 4.3.2). To this end, 5’-disulfide modified aptamers were reduced to 

corresponding thiol derivatives and added to N-terminal maleimide functionalized OVA 

peptides. Maleimide reacts specifically with sulfhydryl groups, resulting in a stable 

thioether linkage.  
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Figure 4.3.2: OVA peptides and thiol-maleimide chemistry were used to synthesize 
aptamer-peptide conjugates 
OVA peptides expanding MHC I- or MHC II recognition sequences were used for coupling to 
BM-DC targeting aptamers (A). MHC I peptide OVA257-264 and MHC II peptide OVA323-339 are 
highlighted in boxes. Coupling was performed by thiol-maleimide chemistry (B). 5’ thiol-modified 
DNA was conjugated to N-terminal maleimide functionalized peptides (yellow star).  
 

After purification by reversed-phase high-performance liquid chromatography (RP-

HPLC), the mass of the conjugates was determined by liquid chromatography-mass 

spectrometry (LC-MS). The quantities of thiol-modified DNA used for coupling, the 

yields and the calculated and measured monoisotopic masses are given in Table 4-1.  

Table 4-1: Obtained yields and masses of aptamer-peptide conjugates 

 

DNA-peptide chimera used SH-ODN  yield  yield monoisotopic mass 

  [pmol] [pmol] [%] theoretical  experimental  

ctrl-OT-I 8000 3320 42 27639,3 27643,4 

ctrl-OT-II 8000 3720 47 27847,5 27850,3 

CTL#5-OT-I 4000 2240 56 27639,3 27645,2 

CTL#5-OT-II 4000 2000 50 27847,5 27853,2 

D#5-OT-I 4000 2080 52 27544,2 27552,4 

D#5-OT-II 4000 1920 48 27752,4 27756,5 

D#7-OT-I 4000 1640 41 27945,3 27951,3 

D#7-OT-II 4000 1360 34 28153,5 28162,3 
 

All chimeras were shown to have the expected monoisotopic mass and were further 

characterized with regard to binding capability to BM-DCs. 

 

4.3.1.2 Binding capability of aptamer-peptide conjugates 

After the synthesis of aptamer-peptide conjugates, it was investigated if the binding 

ability of aptamers to BM-DCs was maintained. This was done by using a competition 

assay. 2 x 105 of 7 days differentiated BM-DCs were simultaneously incubated with 250 

nM ATTO 647N-labeled aptamers and a two-fold molar excess of unlabeled 
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competitors in DC cell medium for 10 minutes at 37 °C. Fluorescence intensities were 

measured by flow cytometry and normalized to the control sequence (ctrl).  

The amount of cells bound by CTL#5 (Figure 4.3.3A), D#5 (Figure 4.3.3B) or D#7 

(Figure 4.3.3C) was strongly decreased when adding the particular aptamer or 

aptamer-peptide conjugates as competitors. No or low competition was induced by the 

control sequence, unconjugated OT-I and OT-II peptides or control-peptide conjugates.  

 

 

Figure 4.3.3: Binding capability of aptamers coupled to peptides is maintained 
2 x 105 BM-DCs were incubated with 250 nM ATTO 647N-labeled CTL#5 (A), D#5 (B) and D#7 
(C) without (grey bars) or in presence of 500 nM competitors (black bars) and analyzed by flow 
cytometry (n=2, mean ± SD). 
 

To conclude, all aptamers were shown to preserve their binding capability to BM-DCs 

within crosslinked molecules. Finally, the functionality of conjugates was investigated.  

 

ctrl D#7  ctrl
 D#7
 OT-I 
 OT-II

 D#7-OT-I
 D#7-OT-II

0

10

20

30

40

50

ce
lls

 b
ou

nd
 b

y 
D

N
A

 [%
]

+
+

+
+

-
-

- - - - -
- - - -

- - - - -
- - - - -

- -- - -
- - - - -
-

ctrl-OT-I
ctrl-OT-II

+
+- - - - -

- - - - -

+
+

- -
- -
- -
- -
- -
- -

-
-

0

10

20

30

40

50

ce
lls

 b
ou

nd
 b

y 
D

N
A

 [%
]

ctrl D#5  ctrl
 D#5
 OT-I
 OT-II 

 D#5-OT-I
 D#5-OT-II

+
+

+
+

-
-

- - - - -
- - - -

- - - - -
- - - - -

- -- - -
- - - - -
-

ctrl-OT-I
ctrl-OT-II

+
+- - - - -

- - - - -

+
+

- -
- -
- -
- -
- -
- -

-
-

B)

C)

A)

0

10

20

30

40

50

ce
lls

 b
ou

nd
 b

y 
D

N
A

 [%
]

ctrl CTL#5  ctrl
 CTL#5
 OT-I 
 OT-II

 CTL#5-OT-I
 CTL#5-OT-II

+
+

+
+

-
-

- - - - -
- - - -

- - - - -
- - - - -

- -- - -
- - - - -
-

ctrl-OT-I
ctrl-OT-II

+
+- - - - -

- - - - -

+
+

- -
- -
- -
- -
- -
- -

-
-



Results 

61 
 

4.3.2 Activation of T cell-mediated immunity 

4.3.2.1 Aptamer-targeted activation of CD4 T cells 

OVA-specific CD4 T cells derived from transgenic mice150 are activated by MHC II 

peptide presented on MHC II molecules by BM-DCs. To investigate if OT-II peptides 

delivered by aptamers mediate CD4 T cell activation, an in vitro proliferation assay was 

used. 5 x 104 of murine BM-DCs were either treated with MHC II or OT-II peptides, 

non-conjugated aptamers or aptamer-OT-II conjugates in DC cell medium for 10 

minutes at 37 °C. 1 x 105 OVA-specific CD4 T cells were isolated from the spleen, 

CFSE-labeled and subsequently incubated for 72 h with the BM-DCs.  

Carboxyfluorescein succinimidyl ester (CFSE) is a staining dye used to track cell 

division frequencies. The non-fluorescent form of CFSE enters the cell and is 

hydrolyzed by cellular esterases into the fluorescent form. Finally, the dye is retained 

within the cell through interactions of the succinimidyl mioety with primary amines and 

is equally distributed among daughter cells upon divisions151. CFSE proliferation profile 

of T cells was measured by flow cytometry and quantified as division index.  

The results are shown in Figure 4.3.4 and Figure S 9.4.1-Figure S 9.4.3. The non-

proliferative population (grey peak) was obtained by adding T cells to non-treated BM-

DCs. MHC II peptide compromised of only the OVA MHC II recognition amino acid 

sequence (Figure 4.3.2A), is bound directly by MHC II molecules on the surface of 

BM-DCs. As anticipated, 400 nM MHC II peptide strongly activated CD4 T cells (Figure 

4.3.4A). In comparison, OT-II peptides need to be taken up by BM-DCs, processed and 

degraded into MHC II peptides. Without carrier, OT-II peptide was not observed to 

induce CD4 T cell proliferation (Figure 4.3.4A). In addition, no CD4 T cell activation 

occurred after treatment with aptamers alone (Figure 4.3.4B).  

Crucially, all aptamer-OT-II conjugates mediated CD4 T cell activation in a 

concentration-dependent manner (Figure 4.3.4C). D#7-OT-II was the most potent 

activator, followed by D#5-OT-II and CTL#5-OT-II. In contrast, less T cell divisions 

were detectable after treatment with 25-100 nM of ctrl-OT-II, where no activation of 

CD4 T cells was observed at 1 nM concentration.  
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Figure 4.3.4: Aptamer-targeted delivery of OT-II peptide induces CD4 T cell activation 
5 x 104 BM-DCs were either treated with 400 nM MHC II peptide, 100 nM OT-II peptide (A), 100 
nM DNA (B) or increasing concentrations of aptamer-peptide conjugates (C). 1 x 105 OVA-
specific CD4 T cells were labeled with CFSE and added for 72 h. The CFSE profiles were 
measured by flow cytometry. One FACS histogram profile of one representative experiment out 
of n=4 is shown, where non-proliferative population is given in grey. Numbers show division 
index of triplicates (mean ± SD). For more information see supplementary Figure S 9.4.1-Figure 
S 9.4.3. The assays were done with blinded samples. 
 

Over the past three decades, many human and mouse studies revealed that CD4 T 

cells were able to acquire cytotoxic function similar to CD8 T cells152-154. Thus, 
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activation of OVA-specific CD4 T cells was further analyzed by an in vitro cytotoxicity 

assay. 

 

4.3.2.2 Cytotoxic capacity of activated CD4 T cells 

In theory, cytotoxic CD4 T cells recognize their respective antigens on MHC II 

molecules and induce apoptosis of the carrier cell.  

To investigate if the most potent CD4 T cell activator D#7-OT-II (Figure 4.3.4C) 

induces CD4-mediated cytotoxicity, an in vitro cytotoxicity assay was applied. On that 

account, 2 x 105 BM-DCs were incubated with MHC II peptide, D#7-OT-II or ctrl-OT-II 

in DC cell medium for 10 minutes at 37 °C. 4 x 105 CD4 T cells were primed for 72 h by 

the differently treated BM-DCs, isolated and added to a mixture of differently CFSE-

labeled target cells loaded with MHC II peptide and non-loaded control cells. On day 5, 

the target and control cells were stained with the viability marker Hoechst and analyzed 

by flow cytometry. 

As a result, no cytotoxic capacity of CD4 T cells was detectable upon priming with 

MHC II peptide, ctrl-OT-II or D#7-OT-II treated BM-DCs (Figure 4.3.5).  

 

 

Figure 4.3.5: CD4 cytotoxicity is not induced by aptamer-peptide conjugates 
2 x 105 BM-DCs were treated with 400 nM MHC II peptide, 100 nM D#7-OT-II or ctrl-OT-II 
conjugates. Next, 4 x 105 OVA-specific CD4 T cells were added. After 72 h, T cells were 
isolated by density gradient separation and incubated for another 24 h with CFSE-labeled 
target and control cells. Alive and dead target and control cells were distinguished by flow 
cytometry according to CFSE and Hoechst 33258 signals. The percentages of T cell 
cytotoxicity were determined (n=3, mean ± SD). 
 

In summary, the results of the in vitro proliferation assay (Figure 4.3.4) validate the 

usefulness of aptamers CTL#5, D#5 and D#7 as potent mediators of specific CD4 T 

cell activation. However, activation of T cells by D#7-OT-II was not resulting in cytotoxic 

capability.  
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Next, it was investigated if aptamer based delivery of MHC I-restricted OVA peptides 

induce CD8 T cell activation. 

 

4.3.2.3 Aptamer-targeted activation of CD8 T cells 

Murine OVA-specific CD8 T cells155 were genetically modified to recognize OVA257-264 

(MHC I peptide; Figure 4.3.2A) immobilized onto MHC I molecules on the surface of 

BM-DCs. To evaluate if aptamer-OT-I conjugates mediate targeted activation of OVA-

specific CD8 T cell, an in vitro proliferation assay was utilized. Similarly as for CD4 T 

cells, 5 x 104 murine BM-DCs were either treated with MHC I or OT-I peptides, non-

conjugated aptamers or aptamer-OT-I conjugates in DC cell medium for 10 minutes at 

37 °C. 1 x 105 OVA-specific CD8 T cells were isolated from spleen of transgenic mice, 

labeled with CFSE and subsequently added for 72 h to the treated BM-DCs. CFSE 

proliferation profile of T cells was monitored by flow cytometry and quantified as 

division index.  

Results are given in Figure 4.3.6 and Figure S 9.5.1-Figure S 9.5.3. Profiles of non-

proliferative T cells population (grey peaks) were acquired by measuring T cells 

incubated with non-treated BM-DCs. MHC I peptide is directly bound by MHC I 

molecules on the surface of BM-DCs. As expected, this peptide mediated strong CD8 

proliferation at 1 nM concentration (Figure 4.3.6A).  

In contrast, the prolonged OVA peptide, OT-I peptide, was not anticipated to have 

intrinsic capacity to activate CD8 T cells (Figure 4.3.6A), nevertheless, it was observed 

that at concentrations of 25-100 nM OT-I peptide induced CD8 proliferation.  

As observed above for CD4 T cell activation (Figure 4.3.4B), CD8 T cells were not 

activated by BM-DCs treated with non-conjugated aptamers (Figure 4.3.6B).  

Remarkably, all aptamer-OT-I chimeras activated CD8 T cells at different 

concentrations (Figure 4.3.6C). In comparison to ctrl-OT-I, proliferation profiles of 25-

50 nM aptamer-OT-I revealed that almost all cells of starting population (grey peak) 

shifted to the left, in other words, underwent cell divisions. No CD8 T cell proliferation 

was detectable at 10 nM.  

In conclusion, all aptamers mediated CD8 T cell proliferation upon delivery of OT-I 

peptide.  
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Figure 4.3.6: Aptamer-targeted delivery of OT-I peptide activates CD8 T cells 
1 x 105 OVA-specific CD8 T cells were stained with CFSE and added to 5 x 104 BM-DCs treated 
with 1 nM MHC I peptide, different concentrations of OT-I peptide (A), 100 nM DNA (B) or 
increasing concentrations of aptamer-OT-I conjugates (C). CFSE profiles were measured by 
flow cytometry. Non-proliferated population is shown in grey. Mean division index of triplicates is 
given in numbers (mean ± SD). Representative results out of n=4 are shown (refer to 
supplementary Figure S 9.5.1-Figure S 9.5.3). The assays were done with blinded samples. 
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4.3.2.4 Cytotoxic capacity of activated CD8 T cells 

Activation of CD8 T cells results not only in proliferation, but also in gain of cytotoxic 

function (Section 3.2). To verify that aptamer-mediated OT-I delivery results in CD8 T 

cell activation, an in vitro cytotoxicity assay was done. To this end, 4 x 105 OVA-

specific CD8 T cells were incubated with 2 x 105 of differently treated BM-DCs and 

subsequently added to a mixture of differently CFSE-labeled target cells loaded with 

MHC I peptide and non-loaded control cells. Finally, the amount of alive and dead 

target and control cells was measured in flow cytometry by using Hoechst as viability 

marker and quantified as percentage of cytotoxicity.  

As forecasted, 50 nM MHC I peptide induced rising CD8 T cell cytotoxicity with 

increasing T cell to target cell ratio (Figure 4.3.7). In addition, aptamer-OT-I conjugates 

functionalized CD8 T cells become cytotoxic effector cells. In comparison to ctrl-OT-I, 

cytotoxicity of aptamer-OT-I was elevated to an extent similar to MHC I peptide.  

 

 

Figure 4.3.7: Aptamer-peptide conjugates induce CD8 cytotoxicity 
2 x 105 BM-DCs were treated with 50 nM MHC I peptide or 100 nM CTL#5-OT-I (A), D#5-OT-I 
(B) or D#7-OT-I (C) conjugates. 4 x 105 OVA-specific CD8 T cells were added. After 72 h, T 
cells were isolated and incubated with CFSE-labeled target and control cells for another 24 
hours. On day 5, cells were stained with Hoechst 33258 and analyzed by flow cytometry. The 
percentages of T cell cytotoxicity were determined (n=2, mean ± SD). The assays were 
performed with blinded samples. 
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These data highlight that aptamer-targeted delivery of OT-I peptide indeed activates 

CD8 T cells.  
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5 Discussion 

Protective immunity requires strong activation of T cells. DCs mediate the transition 

between innate immunity and adaptive T cell-mediated immunity allowing for such 

activation to occur. Hence, DC-based vaccination is an emerging field in 

immunotherapy. One approach for developing a DC vaccine is to conjugate antigens to 

carrier molecules that specifically target DCs. 

Carrier molecules used thus far exhibit several limitations such as cost-intensive 

manufacturing, chemical stability, variations in production charges or intrinsic 

immunostimulatory potential. A novel promising class of carriers that might overcome 

these limitations are aptamers. 

In the study at hand, it was investigated if aptamers are capable to mediate T cell 

activation through targeted delivery of antigens to DCs. Therefore, aptamers targeting 

DCs were selected by two different strategies. First, aptamer CTL#5 was identified by 

addressing recombinant proteins originated from the cell surface receptor MR in a 

SELEX approach. Second, aptamers D#5 and D#7 were selected without knowledge of 

the respective target structure by directly using BM-DCs in a cell-SELEX process.  

Next, the properties of the selected aptamers were elucidated. All identified candidate 

aptamers were found to bind BM-DCs, were internalized and localized within 

appropriate antigen processing compartments and had low immunogenicity.  

Finally, functionality of aptamers as DC-targeting carrier molecules was analyzed in an 

OVA model system. Remarkably, aptamers conjugated to antigenic OVA peptides are 

potent mediators of targeted activation of OVA-specific T cells.  

 

5.1 Selection of DC-targeting aptamers 

5.1.1 Protein-SELEX 

DCs express a variety of endocytic receptors that are crucial for recognizing and 

processing antigenic structures for efficient T cell activation. Prominent examples are 

C-type lectin receptors, e.g. the MR31,138 (Section 3.3.2). It is described that the 

recognition and uptake of pathogens by C-type lectin receptors determine the 

subsequent processing and antigen presentation19,37. The C-type lectin receptor MR is 

known to direct antigens towards cross-presentation for CD8 T cell activation19,38. Thus, 

the MR was chosen as an attractive target to identify aptamers that are internalized 

and localized in DCs in a similar way as MR ligands. In this work, the recombinant 

proteins Fc-CTL and Fc-FN, composed of domains of murine MR, were used in a 
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protein-SELEX approach to select BM-DC-specific aptamers. As a result, a repertoire 

of aptamers that bind to both Fc-CTL and Fc-FN was selected (Section 4.1.1).  

Even though SELEX is a notionally simple method, it does not always result in 

aptamers with desired properties. Several factors influence the outcome of SELEX, 

including structural characteristics of targets, size and complexity of the starting library, 

choice of partitioning and elution methods and concentrations of targets and 

competitors82,156.  

It is plausible that the SELEX conditions chosen in this thesis influenced the results 

obtained. First, although a counter selection step was carried out from the 2nd to the 

11th selection cycle, cross-reactive sequences binding both Fc-CTL and Fc-FN were 

generated (Figure 4.1.3 and Figure 4.1.5). A possible explanation may be that not 

enough protein targets were offered during the counter selection step to catch 

unspecific and cross-reactive DNA binders. Consequently, after pre-incubation with the 

non-desirable target, non-specific binders were still present and added to the target of 

interest.  

Second, the limited complexity of the used DNA starting library may have hampered 

the identification of strong Fc-FN binding sequences. Natural nucleotides exhibit 

constricted chemical diversity, hence the formation of complex structures necessary for 

target binding is limited80. The use of modified nucleic acid libraries containing non-

canonical base pairs can be an alternative for the selection of difficult targets111,157.  

 

Despite the above mentioned limitations of the method, the binding to both proteins 

might be mediated by structural similarities. Fc-CTL as well as Fc-FN contain C-type 

lectin-like domains (Figure 4.1.1A). Although the eight CTLDs of MR differ in their 

function and ligand specificity, they share conserved amino acid residues to form the 

typical CTLD fold35,137-140 (Figure 5.1.1). Presumably, cross-reactive DNA sequences 

may address these conserved sites. 
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Figure 5.1.1: Structure and sequence similarities of the CTLDs of murine MR and rat 
mannose-binding protein-A 
The ribbon diagrams of the CTLD 4 of murine MR (A) and the CTLD of rat mannose-binding 
protein-A (MBP-A) (B) illustrate the typical CTLD fold consisting of two α helices, two 
antiparallel β sheets (β strands 1-5) and four loops (L1-4). The CTLD of MBP-A is composed of 
two Ca2+ ions binding sites, whereas the CTLD 4 of MR has only one binding site. Highly 
conserved disulfide bonds are shown in purple and the regions connecting the external loop of 
CTLD 4 to the core is depicted in yellow (modified from Feinberg et al.139). The alignment of the 
eight CTLDs (CRD 1-8) and the CTLD of MBP-A reveals conserved amino acids (C), shaded 
amino acids are conserved in five or more CTLDs. The predicted secondary structures, α helix, 
β strand or loop (L), are given in the boxes below the sequences. Highly conserved cysteine 
residues are highlighted in purple boxes (modified from Harris et al.140). CRD=carbohydrate-
recognition domain 
 

Nevertheless, SELEX targeting Fc-CTL resulted in the identification of aptamer CTL#5. 

Particularly, CTL#5 showed more than two-fold higher binding to Fc-CTL in comparison 

to Fc-FN (Figure 4.1.5) and was additionally proven to bind BM-DCs (Figure 4.2.1). In 

literature, several cell-binding aptamers were selected by protein-SELEX 

approaches122,158,159. For example, RNA aptamers recognizing prostate-specific 

membrane antigen (PSMA) on prostate cancer cells were identified by using the 

extracellular domain of PSMA in a protein-SELEX approach158. Remarkably, these 
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aptamers were functional in vitro and in vivo as selective carriers for several cargo 

molecules such as siRNAs or toxins112,118,160. 

 

5.1.2 Cell-SELEX 

As outlined in the introduction, in-depth knowledge of the respective target is not 

necessary for cell-aptamer selection (Section 3.5.2). BM-DCs express a variety of 

molecules on their surface that are involved in modulating downstream T cell 

responses13. These molecules represent accessible targets for aptamer selection. In 

the present work, aptamers D#5 and D#7 that are functional in targeted activation of T 

cells through antigen delivery to DCs, were identified without knowledge of the 

respective target structures on BM-DCs (Section 4.1.2). This result extends previous 

findings in the literature. Since 1998, a growing number of aptamers recognizing 

mammalian cell types were identified by cell-SELEX96,161-163. In several studies, cancer 

cell lines are the target of interest162. For example, Tang and co-workers reported the 

generation of a series of aptamers as molecular probes for Burkitt lymphoma cells164. 

Moreover, one aptamer, namely TD05, was observed to be functional in targeting of 

lymphoma cells in vivo165.  

The use of somatic cells in cell-SELEX has been also reported126,166. Interestingly, 

Berezovski and co-workers enriched DNA libraries targeting either immature or mature 

murine BM-DCs for identification of cell state-specific biomarkers126. In fact, biomarkers 

such as protein CXorf17 homologue and serine β-lactamase-like protein were until then 

unknown. However, binding or functionality of individual DNA sequences was not 

investigated.  

 

5.2 Properties of DC-aptamers 

Aptamers CTL#5, D#5 and D#7 were found to clearly discriminate between BM-DCs 

and splenic T and B cells (Figure 4.2.2). This highlights the specificity of the selected 

aptamers for targets mainly expressed by BM-DCs.  

However, a small amount of B cells were bound by the aptamers. Since B cells and 

DCs are classified as professional APCs with common functions and shared 

expression of surface receptors2,27, this finding is hardly surprising. Moreover, 

preliminary data revealed binding of CTL#5 to murine bone marrow-derived 

macrophages that represent the third type of professional APC (Figure S 9.6.1).  

This result is comparable with previous studies, which utilize the mannose receptor 

targeting vaccine CDX-1307, and indicate binding to DCs as well as macrophages58. 

Interestingly, binding to both cell types does not negatively influence the therapeutic 
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efficacy; CDX-1307 is currently tested in phase II clinical trials for treatment of muscle-

invasive bladder cancer (Table 3-1). 

Whether the binding of aptamers to other APCs might influence the outcome of 

downstream T cell responses, will be further investigated. This is in particular of great 

interest for in vivo applications in which the aptamers encounter all types of APCs 

simultaneously. However, if the binding to B cells or macrophages negatively influence 

aptamer-based vaccination, DCs could be alternatively treated ex vivo and re-

implanted in patients. 

 

5.2.1 Immunogenicity of aptamers 

Repeated administration of immunogenic molecules can cause severe adverse 

immunological reactions ranging from dizziness, flushing and headache, to inducing 

the secretion of autoantibodies77,167.  

In comparison to other carrier molecules like antibodies or viruses, aptamers are 

described to be low or non-immunogenic78,119. This was confirmed for the selected 

aptamers in this work by the obtained results. 

Here, the immunogenicity of the selected aptamers was investigated by measuring the 

TNF-α concentration in the supernatant of treated cells. Basically, upon recognition of 

nucleic acids ligands by TLR3, 7/8, 9 or 13, signaling cascades are activated which 

triggers the secretion of the proinflammatory cytokine TNF-α (Figure 4.2.8). As a 

result, only the naïve DNA library induced strong cytokine secretion (Figure 4.2.9). In 

theory, the library is composed of up to 1015-1017 unique DNA sequences. Thus, it is 

very likely that some sequences resemble TLR ligands such as CpG rich motifs 

(Figure 5.2.1).  

Similar results were obtained in previous studies done by Avci-Adali et al.168. They 

observed upregulation of TLR pathway-related transcripts after treating human blood 

cells with a DNA starting library. 
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Figure 5.2.1: Sequence and structural characteristics of CpG-rich oligonucleotides 
In general, CpG motifs are composed of a central unmethylated CG dinucleotide flanked by 5’ 
purines and 3’ pyrimidines. Four classes of CpG-rich oligonucleotides (ODN) are described so 
far and are used as TLR 9 ligands in pre-clinical and clinical studies (modified after Bode et 
al.169). The phosphorothioate backbone increases the stability of the ODN. 
 

Nevertheless, the conformation of aptamers might influence the immunogenicity. Other 

aptamers that were identified in our group to target breast cancer cells elicit elevated 

secretion of TNF-α (unpublished data). Consequently, immunogenicity of aptamers has 

to be tested for every individual sequence. 

 

Differentiation of murine bone marrow progenitors with GM-CSF results in a mixture of 

immature and mature DCs133. Consequently, BM-DCs express moderate levels of co-

stimulatory molecules like CD80, CD86 and CD40 which function as secondary signal 

for adequate T cell priming71,170 (Section 3.2.1).  

However, the situation in vivo is different. Under non-inflammatory steady-state 

conditions DCs reside as immature cells in different tissues, i.e. they lack co-

stimulatory molecules. Only after receiving inflammatory stimuli, DCs mature into 

professional APCs and acquire the capability to activate T cells (Section 3.3). In turn, 

delivery of antigens to immature DCs in absence of inflammatory stimuli results in 

tolerogenicity. For instance, Bonifaz et al.134 observed that T cell proliferation and 

subsequent deletion occurred upon antibody-mediated OVA delivery to DEC-205 on 

DCs in absence of inflammatory stimuli. 

Consequently, the use of the described aptamers for aptamer-based antigen delivery 

treatments in vivo may offer several therapeutic possibilities (see Section 5.4). 

 

ODN type Representative sequence Structural characteristics

D- also referred
to as A-class

GGTGCATCGATGCAGGGGGG Mixed phosphodiester/phosphorothioate
backbone
Single CpG motif
CpG flanking region forms a palindrome
Poly G tail at 3′ end

K- also referred
to as B-class

TCCATGGACGTTCCTGAGCGTT Phosphorothioate backbone
Multiple CpG motifs
5′ motif most stimulatory

C TCGTCGTTCGAACGACGTTGAT Phosphorothioate backbone
Multiple CpG motifs
TCG dimer at 5′ end
CpG motif imbedded in a central
palindrome

P TCGTCGACGATCGGCGCGCGCCG Phosphorothioate backbone
Two palindromes
Multiple CpG motifs
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5.2.2 CTL#5 specificity towards MR 

C-type lectin receptors are non-canonical PRRs that enable the discrimination of self 

from non-self substances by cells involved in innate immunity35 (Section 3.3.2). The C-

type lectin receptor MR is mainly expressed by DCs and macrophages and described 

to direct antigens towards cross-presentation for CD8 T cell activation19,138. Thus, the 

MR is an attractive target for DC-based vaccine strategies to recruit cytotoxic CD8 T 

cells. 

In the study at hand, recombinant Fc-CTL, composed of CTLD 4-7 from the MR 

(Figure 4.1.1), was used to identify aptamer CTL#5. Although CTL#5 was observed to 

co-localize strongly with MR (Figure 4.2.4AB), MR-/- DCs were bound to the same 

extent as wildtype DCs (Figure 4.2.4C). Thus, it can be assumed that DC-targeting by 

CTL#5 is not only mediated by MR.  

A reasonable explanation might be that other C-type lectin receptors expressed on BM-

DCs like DEC-205 or dectin-1 are recognized by CTL#5 (Figure 4.2.3). A common 

structure of these receptors are CTLDs31. Although CTLDs exhibit different ligand 

specificity among the receptors, they share conserved residues responsible for the 

typical formation of a hydrophobic fold35,137 (Figure 5.1.1AB).  

Previous studies demonstrated that antigens endocytosed by the MR are entrapped 

within slowly maturating early endosomes for cross-presentation19,24,26. Thus, co-

localization of MR ligands with EEA1 is anticipated rather than lysosomal marker 

LAMP-1. Within this study, both OVA and CTL#5 were observed to co-localize weakly 

with LAMP-1 besides the co-localization with EEA1 (Figure 4.2.6). This implies that 

upon endocytosis, both OVA and CTL#5 are shuttled into slowly as well as rapid 

maturing early endosome populations. Plus, OVA and CTL#5 may be internalized by 

other endocytic receptors apart from the MR or by distinct mechanisms like 

phagocytosis. For example, targeting of other receptors of the C-type lectin family like 

DEC-205 are described to potentiate internalization into early endosomes that rapidly 

mature into late endosomes and lysosomes37,39. Subsequently, cargoes are 

immobilized onto MHC II molecules and presented to CD4 T cells.  

Hence, antigens coupled to CTL#5 can be directed towards cellular compartments 

adequate for both MHC I and MHC II-epitope generation.  

 

5.3 Aptamer-targeted activation of T cell-mediated immunity 

5.3.1 Aptamer-targeted activation of CD4 T cells 

The study at hand is the first that demonstrates aptamer-mediated CD4 T cell 

activation through targeting of DCs with a MHC II-restricted antigen. 
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CD4 T cells recognize antigenic peptides immobilized on MHC II. Basically, exogenous 

antigens are degraded within late endosomes or lysosomes and subsequently loaded 

onto MHC II in multivesicular bodies (MVBs) (Section 3.3.1.2). In the present study, all 

aptamers conjugated to the MHC II-restricted OT-II peptide mediated CD4 T cell 

activation in a concentration-dependent manner, as measured by in vitro proliferation 

assays (Figure 4.3.4C).  

However, only CTL#5 was observed to co-localize with the lysosomal marker LAMP-1 

(Figure 4.2.6BC). A possible explanation may be that recycling of MHC II from the cell 

surface might enable the loading or exchange of antigens within early 

endosomes171,172. MHC II molecules are thought to be continuously recycled from the 

plasma membrane to early endosomes and back to the membrane27. Some antigenic 

MHC II-epitopes were demonstrated to simply require unfolding and mild proteolysis 

that is enabled by proteases present in early endosomes172. These epitopes can bind 

to recycled MHC II and are transported to the plasma membrane for presentation.  

Another possible explanation is that aptamer-OT-II conjugates are internalized by 

phagocytic receptors. Antigens taken up by these receptors are entrapped within 

phagosomes. Phagosomes are composed of elements derived from early endosomes 

and the ER173,174, thus they are detectable by staining of EEA1.  

A third possible explanation may be that the attached OT-II peptide influenced the 

trafficking and processing within DCs. In this thesis, co-localization studies were carried 

out with non-conjugated aptamers. Further work will concentrate on the cellular 

localization of aptamer-peptide conjugates.  

Apart from that, ctrl-OT-II conjugates were observed to induce CD4 T cell division 

(Figure 4.3.4C). This result was not anticipated, because neither the control sequence 

nor unconjugated OT-II peptide elicited T cell proliferation in their singular, 

unconjugated form (Figure 4.3.4AB). Furthermore, the control sequence was not 

internalized by BM-DCs (Figure 4.2.5). However, one reason might be that the 

coupling of both molecules affects the internalization and processing by BM-DCs. 

Similar findings were obtained by the work of Wengerter et al.115. They observed 

minimal CD8 T cell division after treatment of splenic DCs with control sequence- as 

well as antibody isotype-OVA conjugates.  

 

In general, activated CD4 T cells polarize into activator or suppressor cells that 

regulate other effectors of the adaptive immunity5. However, a growing body of 

literature has analyzed the ability of CD4 T cells to acquire cytotoxic activity upon 

activation152-154. In the present work, no CD4 T cell cytotoxicity was detectable in in vitro 

cytotoxicity assays (Figure 4.3.5). This was not unexpected; in fact, there is no general 
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agreement on the nature and role of cytotoxic CD4 T cells. Some studies revealed the 

development of cytotoxic CD4 T cells upon chronic viral infections152, whereas others 

proposed their occurrence in anti-cancer immunity153. Moreover, there are 

discrepancies if cytotoxic CD4 T cells represent a specialized subset of T cells or if 

they are associated with the Th1 phenotype175,176. 

Therefore, future work will focus on the ability of aptamers to cause CD4 T cell 

polarization towards activating helper cells or suppressing regulatory T cells. First of all, 

it is projected to monitor the cytokine profile of the activated T cells. Secretion of 

different cytokines is characteristic for each effector subset, for example, Th2 cells 

produce high levels of IL-42. 

 

In addition, the functionality of aptamer-OT-II in vivo will be assessed by different 

strategies. One strategy takes advantage of the effector function of activated CD4 T 

helper cells to induce differentiation of B cells into antibody-producing plasma cells5. 

Therefore, aptamer-OT-II mediated CD4 T cell activation will be assessed by 

determining the titer of OT-II peptide-specific antibodies in serum of mice.  

Another strategy is to stain isolated CD4 T cells from spleen or serum with fluorophore 

labeled tetramers of MHC-peptide complexes177,178. In principle, activation and clonal 

expansion of CD4 T cells can be determined by the increasing number of cells bound 

to the tetramers.  

 

5.3.2 Aptamer-targeted activation of CD8 T cells 

CD8 T cells recognize antigens immobilized on MHC I molecules expressed by DCs. In 

the classical MHC I pathway, endogenous antigens are loaded onto MHC I molecules. 

However, this pathway can be bypassed by a process named cross-presentation. 

Exogenous antigens are thereby endocytosed by DCs and actively translocated out of 

slowly maturing early endosomes into the cytosol for generation of MHC I epitopes16 

(Section 3.3.1.1).  

In the present study, aptamer-targeted delivery of OT-I peptide elicited strong CD8 T 

cell activation. This indicates that in accordance with the observed co-localization of all 

aptamers with early endosomes marker EEA1 (Figure 4.2.6AC and Figure 4.2.7), 

aptamer-based delivery of OT-I peptide mediated cross-presentation on MHC I 

molecules for efficient CD8 T cell activation (Figure 4.3.6C).  

These results are in agreement with Wengerter et al.115, where they targeted full-length 

OVA attached to DEC-205 specific aptamers to splenic DCs and observed proliferation 

of CD8 T cells. However, in other studies, OVA was demonstrated to be internalized, 
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processed and cross-presented by DCs in its natural unconjugated form19,38. It is 

questionable if the DEC-205 aptamers improved the effect of OVA on DCs and T cells. 

 

Furthermore, activation of CD8 T cells was verified with in vitro cytotoxicity assays. In 

comparison to ctrl-OT-I conjugates, CD8 T cell cytotoxicity induced by aptamer-OT-I 

was elevated to an extent similar to MHC I peptide (Figure 4.3.7). This highlights the 

potential of aptamers to mediate efficient cytotoxic activity of CD8 T cells.  

 

Surprisingly, in contrast to the OT-II peptide (Figure 4.3.4A), the OT-I peptide was 

observed to have an intrinsic capacity to activate CD8 T cell divisions (Figure 4.3.6A). 

Moreover, although ctrl-OT-I mediated low cytotoxic activity (Figure 4.3.7), it was 

observed to induce cell division (Figure 4.3.6C). Similar results were obtained with ctrl-

OT-II conjugates (Figure 4.3.4C and Section 5.3.1). Despite the fact that the 

conjugation of the control sequence and the peptides might affect internalization and 

processing, incomplete activation of T cells can also be considered. Complete 

activation of CD8 T cells requires the continuous stimulation of all three signals, i.e. 

antigen, co-stimulation and inflammatory cytokines, for more than 40 hours9. Cell 

division alone is initiated by the recognition of the respective antigen loaded on MHC I 

and co-stimulatory stimuli, whereas cell survival and effector function depend on 

prolonged signaling of all three signals. Incomplete activation of T cells results in T cell 

anergy or clonal deletion10 (Section 3.2.1). Analysis such as apoptosis or anergy 

assays will shed light on the effect of OT-I peptide or control-peptide conjugates on T 

cells.  

Apart from that, it cannot be excluded that other yet unknown mechanisms lead to the 

observed effect. 

 

To further investigate aptamer targeted CD8 T cell activation in vivo, a cytotoxicity 

assay in mice will be performed. On that account, mice will be immunized with 

aptamer-OT-I conjugates and after several days, CFSE-labeled and MHC I peptide 

loaded target cells and non-loaded control cells will be co-administrated. Finally, target 

and control cells will be isolated from the spleen and analyzed by flow cytometry.  

In addition, CD8 T cell activation will be determined by staining of isolated T cells with 

fluorophore-labeled tetramers of MHC-peptide complexes177,178.  

 

5.4 Perspective for future research 

The present work clearly demonstrates the functionality of aptamers for DC-based 

vaccination. Still, for their in vivo use, open questions remain.  
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What are the pharmacokinetic properties of the described aptamers and aptamer-

peptide conjugates? Are the aptamers stable in whole blood or do they need 

modifications to increase their nuclease-stability or elimination half-life? How are the 

aptamers distributed in vivo? Depending on the administration, the nucleic acid 

composition, modifications and conjugates, aptamers are described to exhibit 

widespread half-lifes ranging from 10 minutes to more than 75 hours in mammals179. 

Future work will explore if the selected aptamers need to be modified to increase their 

stability in vivo (Section 3.5.2). 

 

What is the optimal route of administration? In previous work, the impact of 

administration on the immune response was demonstrated178. Vaccination with 

mannosylated peptides in mice, for example, was more effective in CD8 activation 

upon intradermal injection in comparison to subcutaneous administration71. This result 

might be due to the fact that the layers of the skin are inhabited by DCs with different 

presenting capacities or that intradermal injected vaccines are longer available for 

efficient T cell priming180. Therefore, the optimal route of administration has to be 

determined in mouse models. 

 

What are the optimal conditioning and activation stimuli? Concerning the very low 

immunogenic potential of the selected aptamers, aptamer-based targeting of DCs may 

offer several therapeutic possibilities. Depending on how the non-immunogenic 

aptamers are administrated, DCs become activating or tolerogenic (Figure 3.3.1).  

On the one hand, aptamer-based delivery of cargo molecules in presence of 

inflammatory stimuli could induce T cell-mediated immunity for prevention or treatment 

of infection or cancer. This is done in particular by the co-delivery of adjuvants like pIC 

(polyinosinic:polycytidylic acid)115,181. However, the type of adjuvant has to be chosen 

carefully, because PRR ligands themselves influence the outcome of adaptive immune 

responses182. 

In addition, DC-aptamers can be conjugated to aptamers antagonizing receptors that 

negatively regulate T cell effector functions such as CTLA-4 aptamers122.  

On the other hand, aptamer-based DC vaccines administrated without inflammatory 

stimuli might be useful for the prevention or treatment of allograft rejections or 

autoimmune diseases. Lack of such stimuli facilitates the development of tolerogenic 

DCs. Tolerogenic DCs are deficient in adequate signaling for T cell activation or they 

only deliver co-inhibitory signals18. As a consequence, auto-reactive or allo-reactive T 

cells interacting with tolerogenic DCs become anergic or are deleted.  
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Moreover, aptamer-based delivery of siRNAs, miRNAs or antagomiRs could change 

cellular phenotypes. Cancer or chronic inflammation facilitates the occurrence of 

tolerogenic DCs and macrophages183,184. Inhibition of miR-22 and miR-503, for 

example, was reported to restore the activating capacity of DCs within tumor 

microenvironments185. We are in the process of investigating aptamer-based silencing 

of miR-125a in human macrophages associated with granulomatous diseases184. 

 

What is the optimal dose and frequency of aptamer-based DC vaccination? Even 

though repeated administration of vaccines increases the frequencies of memory T 

cells, overstimulation is reported to cause T cell deletion186. Similar observations were 

done after treatment with high doses of peptide vaccines187. Therefore, the optimal 

dose and vaccination schedule have to be determined in mouse models. 

 

Which antigen should be conjugated? A wide range of cancer antigens and auto-

antigens associated with autoimmune diseases have been identified in the last 

decades188-190. The choice of aptamer cargo molecule is dependent on the desired 

therapeutic effect. Within this study, it was clearly demonstrated that all aptamers 

delivered MHC I epitopes as well as MHC II epitopes (Section 5.3.1 and 5.3.2). This 

feature could be beneficial for future treatments. For example, Tsuji et al.191 recently 

reported that the cancer testis antigen NY-ESO-1 which contains both MHC I and MHC 

II epitopes, enhances T cell responses. This is hardly surprising. In fact, most CD8 T 

cell responses require activation of CD4 T helper cells by the same APC2 (Section 

3.2).  

Future work will elucidate if aptamer-based delivery of such antigens boosts CD4 and 

CD8 T cell responses.  

 

5.5 Concluding remarks 

The present work demonstrates the potential of aptamers to function as delivery tools 

in an immunological context. The investigated DC-aptamers were selected with and 

without knowledge of the target structures. Noteworthy, both selections yielded 

aptamers that are potent DC-based vaccines in vitro. All aptamers direct antigens into 

eligible processing compartments for efficient antigen presentation and T cell 

activation. 

These results widen the knowledge about the potential applicability of aptamers as DC-

targeting carriers and pave the way for the development of aptamer-based DC 

vaccines for in vivo applications. 
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6 Materials 

6.1 Equipment 

Table 6-1 Equipment 

 

Equipment Manufacturer 

FACS Canto II BD 

FACS LSR II BD 

FluoView FV1000 confocal laser scanning microscope Olympus 

Genoplex UV transilluminator  VWR 

HPLC 1260 series, C18 Eclipse column Agilent 

LC-MS: HPLC 1100 series/Easy-nLC esquire HCT Agilent/Bruker 

Liquid scintillation counter WinSpectral 1414 Perkin Elmer 

LSM 710 confocal laser scanning microscope Zeiss 

Nanodrop 2000c Spectrophotometer Thermo Scientific 

NanoQuant Infinite M200 Spectrophotometer Tecan 

PCR Mastercycler personal Eppendorf 

Phosphorimager FLA-3000 Fujifilm 

Pipets Eppendorf 

SpeedVac Thermo Scientific 

Water purification system TKA/Thermo Scientific 

 

6.2 Consumables 

Table 6-2 Consumables 

 

Consumable Supplier 

Amicon Ultra-0.5 Centrifugal Filter Devices 10 K Millipore 

Cell culture plates Sarstedt; TPP; Greiner Bio One 

FACS tubes, 5 ml, 12 mm Sarstedt 

Falcon cell strainer 40 µm Sarstedt 

G25 columns GE Healthcare 

Nitrocellulose membrane (Protran 0.45 µm) Schleicher and Schuell 

Pipet tips Sarstedt 

Reaction tubes Sarstedt; Eppendorf 
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6.3 Chemicals and reagents 

Table 6-3 Chemicals and reagents 

 

Reagent Supplier 

1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) Sigma Aldrich 

1,4-Dithiothreitol (DTT) Roth 

4’,6-diamidino-2-phenylindole (DAPI) Sigma Aldrich 

Acetic acid Merck 

Acetonitril Fluka 

Agar Sigma Aldrich 

Agarose Merck; Genaxxon 

Ammoniumacetate Gruessing 

Ammoniumperoxodisulfate (APS) Roth 

Ampicillin sodium salt AppliChem 

Bis-Acrylamid, Rotiphorese Roth 

Bovine serum albumin (BSA, nuclease and protease free) Calbiochem 

Bromophenol blue Merck 

β-mercaptoethanol Roth 

Carboxyfluorescein succinimidyl ester (CFSE) BD 

Cell culture media PAA 

Chloroform AppliChem 

Calf intestinal alkaline phosphatase (CIAP) Promega 

Coomassie Brilliant Blue G250 Biorad 

Di-sodiumhydrogenphosphate-dihydrate Merck 

DNA ladders Fermentas; Thermo Scientific 

dNTPs/NTPs Larova 

DPBS Gibco 

Dynabeads Protein G Invitrogen 

Ethanol abs. Sigma Aldrich 

Ethdiumbromide Roth 

Ethylendiamintetraacetic acid (EDTA) AppliChem 

FCS Clone PAA 

Ficoll-Paque Premium 1.084 GE Healthcare 

Fluorogel mounting medium EMS 

Formaldehyde Fluka 

ɣ-32P-ATP Perkin Elmer 

Glycine Roth 

Hoechst 33258 Invitrogen 

Inorganic pyrophosphatase (IPP) Roche 

Isopropanol Merck 
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Lambda Exonuclease Fermentas 

Low fat dry milk powder Roth 

Magnesiumchloride-hexahydrate AppliChem 

Mouse serum PAA 

N,N,N’,N’-tetramethylethylendiamide (TEMED) Roth 

Ovalbumin (OVA)-Alexa Fluor 647 Life Technologies 

Penicillin [10000 U/ml]/Streptomycin [10 mg/ml] PAA 

Phenol Roth 

Potassium chloride (KCl) Gruessing 

RNasin ribonuclease inhibitor Promega 

Rotiphorese sequencing gel concentrate Roth 

Prolong diamond antifade mountant Life technologies 

Protein ladders Sigma Aldrich; Fermentas 

Pwo polymerase Genaxxon 

Sodium chloride (NaCl) AppliChem 

Sodium dodecylsulfate (SDS) Roth 

Sodiumacetate Gruessing 

Superscript II reverse transcriptase Thermo Scientific 

T4 polynucleotide kinase (PNK) NEB 

T7 Y639F RNA-polymerase Inhouse production 

Taq polymerase In house production; Promega 

Tricine Roth 

Triethylamine (TEA) Sigma Aldrich 

Triethylammonium acetat (TEAA) Sigma Aldrich 

Tris Roth 

Triton-X 100 Merck 

Trypsin [0.05%]/EDTA [0.5M] Thermo Scientific 

Urea AppliChem 

Wheat germ agglutinin-Alexa Fluor 488 Invitrogen 

 

6.4 Commercially available kits 

Table 6-4 Kits 

 

Kit Supplier 

NucleoSpin Extract II Gel and PCR Clean-up Macherey and Nagel 

NucleoSpin plasmid Macherey and Nagel 

TOPO TA Cloning Invitrogen 

TruSeq DNA PCR-Free LT Illumina 
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6.5 Buffers and solutions 

1 x Phosphate buffered saline (PBS) 

137 mM NaCl, 2.7 mM KCl, 6.5 mM Na2HPO4, 1.47 mM NaH2OP4, pH 7.4 

 

6.5.1 Gel electrophoresis 

1 x TBE 

90 mM Tris pH 8.0, 90 mM Borat, 2 mM EDTA 

 

1 x DNA loading buffer 

25 mM Tris pH 8.0, 25 % glycerol, 25 mM EDTA, bromophenol blue 

 

1 x RNA loading buffer 

50 % formamide, 0.013 % SDS, 0.25 mM EDTA, bromophenol blue 

 

10 x PAA loading buffer 

60 % formamide, 5 % SDS, 0.25 mM EDTA, bromphenol blue 

 

3 x Tricine SDS gel buffer 

3 M Tris, 0.3 % SDS, pH 8.45 

 

1 x Tricine SDS cathode buffer 

0.1 M Tris, 0.1 M tricine, 0.1 % SDS, pH 8.25 

 

1 x Tricine SDS anode buffer 

0.2 M Tris, dissolved in ddH2O, pH 8.9 

 

4 x non-reducing sample buffer 

150 mM Tris pH 6.8, 30 % glycerol, 12 % SDS, bromophenol blue 

 

4 x Laemmli buffer 

150 mM Tris pH 6.8, 30 % glycerol, 12 % SDS, 15 % β-mercaptoethanol, bromophenol blue 

 

10 x SDS running buffer 

250 mM Tris, 2 M glycine, 1 % SDS 

 

Coomassie staining solution 

10 % acetic acid, Coomassie Brilliant Blue G250 

 

Coomassie destaining solution 

10 % acetic acid 
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6.5.2 Bacteria culture 

Agarose plates w/ ampicillin 

3.8 g agarose, 5 g LB broth, 250 ml ddH2O, 250 µl 100 mg/ml ampicillin 

 

LB medium w/ ampicillin 

10 g LB broth, 500 ml ddH2O, 500 µl 100 mg/ml ampicillin 

 

6.5.3 Flow cytometry 

FACS buffer 

0.1 % BSA, 0.005 % NaN3 in PBS 

 

6.5.4 SELEX 

Selection buffer protein-SELEX 

PBS, 1 mM MgCl2, 1 mM CaCl2, 0.01 mg/ml BSA 

 

Selection buffer cell-SELEX 

DPBS (Gibco pH 7.0-7.2), 1 mM MgCl2, 0.01 mg/ml BSA 

 

Wash buffer 

Selection buffer w/o BSA 

 

6.5.5 Cell culture 

DC culture medium (DC-medium) 

IMDM, 10 % heat inactivated FCS, 50 µM β-mercaptoethanol, 100 U/ml penicillin, 0.1 mg/ml 

streptomycin, 2.5 % R1/J558 supernatant w/ GM-CSF 

 

Macrophage culture medium (macrophage-medium) 

IMDM, 10 % heat inactivated FCS, 50 µM β-mercaptoethanol, 100 U/ml penicillin, 0.1 mg/ml 

streptomycin, 2.5 % R1/J558 supernatant w/ M-CSF 

 

T cell medium 

RPMI 1640, 10 % heat inactivated FCS, 50 µM β-mercaptoethanol, 100 U/ml penicillin, 0.1 

mg/ml streptomycin, 2 mM L-glutamine 

 

6.6 Oligonucleotides 

All oligonucleotides, including 5’-thiol-C6 and 5’-ATTO 647N modified aptamers and 

control sequences (ctrl), were purchased from Ella Biotech GmbH (Martinsried). The 

DNA was supplied HPLC-purified and lyophilized.  
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Table 6-5 Oligonucleotides 

 

Name Sequence 5‘-3‘ 

D3 DNA library GCTGTGTGACTCCTGCAA-N43-GCAGCTGTATCTTGTCTCC 

D3 fwd Primer GCTGTGTGACTCCTGCAA 

D3 rev Primer, 5’-phosphorylated GGAGACAAGATACAGCTGC 

CTL#5 GCTGTGTGACTCCTGCAATGCAATCTAGCTGACAATGGGG
GGGAAGAATGTGGGTGGGTGGCAGCTGTATCTTGTCTCC 
 

D#5 GCTGTGTGACTCCTGCAACGCATTTGGGTGGGATTGTTATT
TGGGTCGGGATTGGCAGTTGCAGCTGTATCTTGTCTCC 
 

D#7 GCTGTGTGACTCCTGCAACGTGGGTGGGTTTATATTCGGT
GGTGGTGGGGGTGGTACTGTTGCAGCTGTATCTTGTCTCC 
 

ctrl (CTL#5sc)  GCTGTGTGACTCCTGCAAGTGGTGTTAAGAGGTGAGGTAT
AACGCGGAATGGTGCGAGGCGCAGCTGTATCTTGTCTCC 

 

D3 NGS primer 

F1 

R1 

F2 

R2 

F3 

R3 

F4 

R4 

F5 

R5 

F6 

R6 

F7 

R7 

F8 

R8 

F9 

R9 

F10 

R10 

F11 

R11 

F12 

R12 

 

 

ATCACGGCTGTGTGACTCCTGCAA 

ATCACGGGAGACAAGATACAGCTGC 

CGATGTGCTGTGTGACTCCTGCAA 

CGATGTGGAGACAAGATACAGCTGC 

TTAGGCGCTGTGTGACTCCTGCAA 

TTAGGCGGAGACAAGATACAGCTGC 

TGACCAGCTGTGTGACTCCTGCAA 

TGACCAGGAGACAAGATACAGCTGC 

ACAGTGGCTGTGTGACTCCTGCAA 

ACAGTGGGAGACAAGATACAGCTGC 

GCCAATGCTGTGTGACTCCTGCAA 

GCCAATGGAGACAAGATACAGCTGC 

CAGATCGCTGTGTGACTCCTGCAA 

CAGATCGGAGACAAGATACAGCTGC 

ACTTGAGCTGTGTGACTCCTGCAA 

ACTTGAGGAGACAAGATACAGCTGC 

GATCAGGCTGTGTGACTCCTGCAA 

GATCAGGGAGACAAGATACAGCTGC 

TAGCTTGCTGTGTGACTCCTGCAA 

TAGCTTGGAGACAAGATACAGCTGC 

GGCTACGCTGTGTGACTCCTGCAA 

GGCTACGGAGACAAGATACAGCTGC 

CTTGTAGCTGTGTGACTCCTGCAA 

CTTGTAGGAGACAAGATACAGCTGC 

  

A50 library (DNA/RNA) ATAGCTAATACGACTCACTATAGGGAGAGGAGGGAAGTCT

ACATCTT-N50-TTTCTGGAGTTGACGAAGCTT/ 

GGGAGAGGAGGGAAGUCUACAUCUU-N50-
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UUUCUGGAGUUGACGAAGCUU 

A50 fwd Primer ATAGCTAATACGACTCACTATAGGGAGAGGAGGGAAGTCT

ACATCTT 

A50 rev Primer AAGCTTCGTCAACTCCAGAAA 

 

6.7 Mouse strains 

Table 6-6 Mouse strains 

 

Mouse strain Description 

C57/BL6J Wildtype strain, Haplotype H-2Kb 

 

MR-/- C57/BL6 background, stop codon inserted at the 

MR start codon of Exon 1, preventing its 

expression192 

 

OTI Rag2-/- C57/BL6 background, CD8 T cells express TCR 

specific for OVA257-264 on MHC I, no endogenous 

TCR expression because of recombinant 

activating gene 2 (Rag2) deficiency155 

 

OTII C57/BL6 background, CD4 T cells express TCR 

specific for OVA323-339 on MHC II150 

 

6.8 Proteins 

Table 6-7 Ovalbumin (OVA) peptides 

 

Protein Sequence (N-C) Supplier 

MHC I peptide (OVA257-264) SIINFEKL Tebu-Bio 

MHC II peptide (OVA323-339) ISQAVHAAHAEINEAGR Tebu-Bio 

OT-I peptide VSGLEQLESIINFEKLTEWTSSNV Panatecs 

OT-II peptide SAESLKISQAVHAAHAEINEAGREVVGSA Panatecs 

 

N-terminal functionalized maleimide OT-I and OT-II peptides were also purchased from 

Panatecs. OT-I and OT-II peptides were supplied HPLC-purified and lyophilized. 
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Table 6-8 Proteins 

 

Protein Supplier 

Activated Protein C (aPC), Xigris Lilly 

Humanes Alpha Thrombin Cellsystems 

Humanes Cytohesin 1 Sec 7 (Cyt1 Sec7) In house production 

Humanes Erk2 In house production 

Protein G Invitrogen 

 

6.9 Antibodies 

Table 6-9 Antibodies 

 

Antibody Supplier 

B220 (CD45RA)-eFluor450, Clone RA3-6B2 eBioscience 

B220 (CD45RA)-FITC, Clone T6D11 Miltenyi 

CD4-PerCP-Cy5.5, Clone Gk 1.5 Biolegend 

CD8α-eFluor450, Clone 53-6.7 eBioscience 

CD8α-PE, Clone 53-6.7 eBioscience 

EEA1, Clone H-300 Santa Cruz 

LAMP-1, Clone 1D4B BD 

MR-Alexa Fluor 488, Clone MR5D3 AbD Serotec 

Rabbit-Alexa Fluor 488 Life Technologies 

Rat-Alexa Fluor 488 Life Technologies 
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7 Methods 

If not noted otherwise, all experimental steps were done at room temperature. 

 

7.1 Handling of nucleic acids 

7.1.1 General handling and storage 

Purchased lyophilized nucleic acids were dissolved in ddH20 according to the 

manufacturer manuals. The concentration was determined by UV spectrometry at 260 

and 280 nm and the quality checked by agarose gel electrophoresis. For long-term 

storage, nucleic acids were kept at -20 °C. 

To determine the labeling efficiency, ATTO 647 N-labeled DNA was separated by gel 

electrophoresis and the fluorescence was monitored by Phosphorimager FLA-3000 

(Fujifilm). 

 

7.1.2 Agarose gel electrophoresis 

4 % agarose gels were used to monitor purchased nucleic acids, PCR products, 

generated single-stranded DNA or transcribed 2’F-RNA. To this end, 4 g agarose was 

dissolved in 100 ml TBE buffer and boiled for several minutes in the microwave. 40 ml 

was poured into the gel cast and stained with ethidiumbromide at a 1:10000 dilution.  

Samples were diluted in DNA or RNA loading buffer, where RNA loading buffer was 

used for single-stranded DNA or 2’F-RNA to enable optimal separation. Gels were run 

in TBE buffer at 130 V for 25 minutes and bands were visualized by UV transilluminator 

(VWR) and evaluated by comparison with the standard DNA ladder.  

 

7.1.3 Polyacrylamide gel electrophoresis (PAGE) 

Polyacrylamide gel electrophoresis was used to separate nucleic acids for monitoring 

labeling efficiency of 32P-labeling. A 10 % gel was prepared as described below (Table 

7-1) and poured into the gel cast. After polymerization for at least 1 hour, the gel was 

placed into a running chamber filled with 1 x TBE buffer. The gel was pre-run for 30 

minutes at 370 V and 15 W. Before loading the samples, the pockets were cleared with 

1 x TBE. Samples were diluted in PAA loading buffer and boiled for 3 minutes at 95 °C. 

The gel was run for 45 minutes at 370 V and 15 W. 
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Table 7-1 Pipetting scheme for one 10 % polyacrylamide gel 

 

Solution Volume 

Rotiphorese sequencing gel concentrate 28 ml 

8.3 M Urea 35 ml 

8.3 M Urea in 10 x TBE 7 ml 

10 % APS 560 µl 

TEMED 28 µl 

 

Radioactivity was monitored by Phosphorimager FLA-3000 (Fujifilm). 

 

7.1.4 Polymerase chain reaction (PCR) 

The following pipetting scheme and PCR program were used to amplify DNA. 

 

Table 7-2 Pipetting scheme for one PCR reaction 

 

Reagent Stock concentration Volume [µl] Final concentration 

Taq reaction buffer 10 x 10 1 x 

MgCl2 100 mM 2 2 mM 

dNTPs 25 mM each 0.8 0.2 mM 

D3 fwd primer 100 µM 1 1 µM 

D3 rev primer 100 µM 1 1 µM 

Taq polymerase 2.5 U/µl 2 5 U 

DNA template   1-10 nM 

ddH20  ad 100 µl  

 

5’-phosphorylated reverse primers were used to enable single strand displacement by 

lambda exonuclease digestion. 

 

Table 7-3 PCR program 

 

Step Time [min] Temperature [°C] 

Activation of Taq (first cycle) 5 95 

Denaturation 1 95 

Annealing 1 64 

Elongation 1.5 72 

Final elongation (last cycle) 3 72 

Storage ∞ 4 
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PCR products were purified with the commercially available NucleoSpin clean-up kit 

from Machery and Nagel. In brief, 3 PCR reactions were pooled for 1 silica column and 

eluted with 2 x 25 µl ddH20. 

 

7.1.5 Reverse transcription-PCR (RT-PCR) 

The following pipetting scheme and PCR program were used to reverse transcribe 2’F-

RNA and amplify the obtained DNA. 

 

Table 7-4 Pipetting scheme for one RT-PCR reaction 

 

Reagent Stock concentration Volume [µl] Final concentration 

Taq reaction buffer 10 x 10 1 x 

First strand buffer 5 x 4 0.2 x 

MgCl2 100 mM 1.5 1.5 mM 

DTT 100 mM 2 2 mM 

dNTPs 25 mM each 1.2 0.3 mM 

A50 fwd primer 100 µM 1 1 µM 

A50 rev primer 100 µM 1 1 µM 

Taq polymerase 2.5 U/µl 2 5 U 

Reverse Transcriptase 200 U/µl 1 2 U 

DNA template   1-10 nM 

ddH20  ad 100 µl  

 

Table 7-5 RT-PCR program 

 

Step Time [min] Temperature [°C] 

Reverse transcription 10 54 

Denaturation 1 95 

Annealing 1 60 

Elongation 1.5 72 

Final elongation (last cycle) 3 72 

Storage ∞ 4 

 

7.1.6 Single strand displacement by lambda exonuclease digestion 

Lambda exonuclease selectively digests the 5’-phosphorylated strand of double-

stranded DNA and thereby generates single-stranded DNA. The following reaction 

mixture (Table 7-6) was incubated for 45 minutes at 37 °C and the reaction was 

stopped by heating the samples for 15 minutes at 80 °C.  
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Table 7-6 Pipetting scheme for one digestion reaction 

 

Reagent Stock 

concentration 

Volume [µl] Final 

concentration 

Lambda exonuclease reaction buffer 10 x 5 1 x 

Purified PCR product  45  

Lambda exonuclease 10 U/µl 1 10 U 

 

Single-stranded DNA was purified with the commercially available NucleoSpin clean-up 

kit from Machery and Nagel. In brief, 2 digestion reactions were pooled for 1 silica 

column and eluted with 2 x 20 µl ddH20. The concentration was determined by UV-

spectrometry at 260 and 280 nm. 

 

7.1.7 In vitro transcription 

The following pipetting scheme was used to transcribe DNA into 2’F-RNA. The T7 

RNA-polymerase mutant Y639F was used to enable the introduction of 2’F-pyrimidines. 

The reaction mixture was incubated for 4 hours at 37 °C and purified by 

phenol/chloroform extraction and ethanol precipitation. 

 

Table 7-7 Pipetting scheme for one in vitro transcription reaction 

 

Reagent Stock concentration Volume [µl] Final concentration 

Tris pH 7.9 200 mM 20 40 mM 

MgCl2 100 mM 15 15 mM 

DTT 100 mM 5 5 mM 

ATP 100 mM 0.5 0.5 mM 

GTP 100 mM 0.5 0.5 mM 

2’F-dUTP 100 mM 2 2 mM 

2’F-dCTP 100 mM 2 2 mM 

RNasin 40 U/µl 1 40 U 

T7 Y639F RNA-

polymerase 

10 U/µl 5 50 U 

IPP 2 U/µl 0.2 0.4 U 

DNA template   1-10 nM 

ddH20  ad 100 µl  
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7.1.8 Phenol/Chloroform extraction and ethanol precipitation 

Phenol/Chloroform extraction and ethanol precipitation was used to isolate DNA or 2’F-

RNA sequences from BM-DCs during cell-SELEX. 

One volume of phenol was mixed with one volume of nucleic acid solution by extensive 

vortexing. After spinning the samples at maximum speed for 3 minutes, the upper 

phase was transferred into a new tube. Two volumes of chloroform were added and the 

samples mixed and centrifuged. Again, the upper phase was transferred into a new 

tube for ethanol precipitation. DNA was precipitated with 1/10 volume 3 M NaOAc pH 

5.4 and 3 volumes of cold ethanol absolute for at least 10 minutes at -80 °C. 

Afterwards the samples were centrifuged at maximum speed for 20 minutes and the 

pellets washed with 70 % cold ethanol. After spinning at maximum speed for 5 minutes, 

the pellets were air-dried and resuspended in 50 µl ddH20.  

 

7.1.9 Quantification 

Concentrations of nucleic acids were determined by using the NanoQuant infinite 200 

(Tecan) or Nanodrop 2000c (Thermo Scientific) devices. In principle, absorption of 

nucleic acids at 260 nm was measured and correlated to the respective concentration 

by using the Lambert-Beer law. Ratio of absorbance at 260 nm and 280 nm determined 

the purity of nucleic acid solutions.  

 

7.1.10 32P-labeling of nucleic acids 

For radioactive filter retention assay or binding assay, single-stranded DNA or 

dephosphorylated 2’F-RNA (Table 7-8) was labeled with 32P at the 5’-end by using the 

T4 polynucleotide kinase (PNK). The following reaction mixture (Table 7-9) was 

incubated for 1 hour at 37 °C and subsequently desalted by passing through a G25 

column.  
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Table 7-8 Pipetting scheme of one dephosphorylation reaction 

 

Reagent Stock concentration Volume [µl] Final concentration 

CIAP reaction buffer 10 x 5 1 x 

BSA 10 mg/ml 5 1 mg/ml 

2’F-RNA   1.5 µM 

RNasin 40 U/µl 0.5 20 U 

CIAP 20 U/µl 0.85 17 U 

ddH20  ad 50 µl  

Incubate for 15 minutes at 37 °C 

CIAP 20 U/µl 0.425 8.5 U 

Incubate for 15 minutes at 55 °C 

EDTA 0.5 M 0.5 µl 5 mM 

Incubate for 10 minutes at 75 °C 

ddH20  ad 100 µl  

 

Table 7-9 Pipetting scheme for one 32P-labeling reaction 

 

Reagent Stock concentration Volume [µl] Final concentration 

T4 PNK reaction buffer 10 x 2 1 x 

ɣ-32P-ATP 10 µCi/µl 1 10 µCi 

DNA or 2’F-RNA 1 µM 10 10 pmol 

T4 PNK 10 U/µl 2 20 U 

ddH20  5  

 

Labeling efficiency was monitored by polyacrylamide gel electrophoresis. 

 

7.1.11 Cloning and sequencing 

Cloning reaction was done in accordance with the manufacturer’s protocol (TOPO-TA 

cloning kit, Invitrogen). In brief, freshly prepared PCR product was ligated into pCR2.1-

TOPO vectors and cloned into OneShot Mach1-T1 chemical competent E. coli. 

Bacteria were plated on 10 cm agarose plates supplemented with 100 µg/ml ampicillin. 

After overnight incubation at 37 °C, single bacteria colonies were picked and cultivated 

in 5 ml LB-medium supplemented with 100 µg/ml ampicillin overnight under vigorous 

shaking (150 rpm). 

Plasmids were prepared by using the commercially available Nucleospin plasmid kit 

from Machery and Nagel. In brief, 5 ml overnight culture solution was centrifuged and 

the plasmids isolated from the pellet by alkaline lysis reaction. Finally, the plasmids 

were purified by using a silica column. 
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For sequencing, 30 ng of single sequences in a final volume of 20 µl was sent to GATC 

biotech AG (Köln). The appropriate M13-RP primer for sequencing was provided by 

GATC. 

 

7.1.12 Next-generation sequencing (NGS) 

PCR amplified DNA libraries obtained by SELEX were used for preparation of NGS 

samples. In four steps DNA is generated which contains index and adaptor sequences. 

Differently indexed DNA can be sequenced in one run and be assigned in later data 

analysis. Added adaptors enable the immobilization and processing of the sample by 

the Sequencing instrument. 

 

Table 7-10 NGS Indices 

 

Index Sequence 5‘-3‘ 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

ATCACG 

CGATGT 

TTAGGC 

TGACCA 

ACAGTG 

GCCAAT 

CAGATC 

ACTTGA 

GATCAG 

TAGCTT 

GGCTAC 

CTTGTA 

 

First, NGS indices were introduced by utilizing index-containing D3 primers (Table 

6-5). The following pipetting scheme was used for one PCR reaction (Table 7-11; PCR 

program see Table 7-3). 
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Table 7-11 Pipetting scheme for one PCR reaction for NGS preparation 

 

Reagent Stock concentration Volume [µl] Final concentration 

Pwo reaction buffer 10 x 10 1 x 

dNTPs 25 mM each 0.8 0.2 mM 

fwd primer D3 F 100 µM 1 1 µM 

rev primer D3 R 100 µM 1 1 µM 

Pwo polymerase 2.5 U/µl 1 µl 2.5 U 

DNA template   1-10 nM 

ddH20  ad 100 µl  

 

Second, the PCR products were mixed and phosphorylated at the 5’-end using the T4 

polynucleotide kinase (PNK). The following mixture (Table 7-12) was incubated for 1 

hour at 37 °C and vigorous shaking at 650 rpm. 

 

Table 7-12 Pipetting scheme for 5’-phosphorylating of NGS samples 

 

Reagent Stock concentration Volume [µl] Final concentration 

T4 PNK reaction buffer 10 x 6 1 x 

ATP 100 mM 0.6 1 mM 

Mixed DNA   1-1.2 µg 

T4 PNK 10 U/µl 0.5 5 U 

ddH20  ad 60 µl  

 

The samples were purified with the commercially available NucleoSpin clean-up kit 

from Machery and Nagel and concentrated in SpeedVac (Thermo Scientific). 

Third, adapters were ligated by using the TruSeq DNA PCR-Free LT kit, commercially 

available from Illumina. The following steps according to the manufacture’s protocol 

were applied: End Repair, Adenylation and (enzymatic) Adaptor Ligation. Here, adaptor 

no. 12 was used. 

Fourth, the desired DNA which contained indices and adapters on both ends, was 

isolated by using preparative agarose gel electrophoresis and the commercially 

available NucleoSpin clean-up kit from Machery and Nagel. Briefly, the samples were 

diluted in DNA loading buffer, loaded on 2-2.5 % agarose gels and run for 1 hour at 

100 V. The desired band was cut and purified by a silica column.  

 

The quantification of the samples and the final NGS run on the Illumina HiSeq 1500 

instrument was performed by members of Prof. Schultze’s group, LIMES institute 

Bonn. NGS data was analyzed by AptaIT GmbH (München). 
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7.2 Working with proteins and peptides 

7.2.1 General handling and storage 

All proteins and peptides were dissolved in DPBS (Gibco) or PBS and kept on ice or at 

4 °C in use. Proteins were stored at -20 °C for long-term storage. 

OT-I and OT-II peptides were dissolved in degased DPBS at a final concentration of 1 

mM and analyzed on Tricine-SDS gels. 

Proteins and peptides were quantified by UV spectrometry at 280 and 205 nm using 

NanoDrop 2000c, Thermo Scientific. 

 

7.2.2 SDS polyacrylamide gel electrophoresis (SDS PAGE) 

Classical Glycine-SDS PAGE was used to analyze the coupling efficiency of Fc-CTL 

and Fc-FN to Protein G magnetic beads. 1-5 µg of proteins were eluted from the beads 

by adding 0.1 M glycine pH 2.5 for 2 minutes. Protein solution was neutralized with 1.5 

M Tris pH 8.8 and diluted in Laemmli buffer. The samples were heated at 95 °C for 5 

minutes and loaded on 12.5 % Glycine-SDS-gel (Table 7-13). After running the gel for 

45 minutes at 175 V, 300 mA and 25 W in SDS running buffer, the proteins were 

stained with Coomassie staining solution for 10 seconds at maximum power in the 

microwave. The gel was destained with Coomassie destaining solution for 30 seconds 

at maximum power in the microwave. This step was repeated until the protein bands 

became clearly visible. The gel was visualized by UV transilluminator (VWR). The 

bands were compared with the standard protein ladder.  
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Table 7-13 Pipetting scheme for one 12.5 % Glycine-SDS gel 

 

Reagent Stock concentration Volume [µl] Final concentration 

12.5 % Glycine-SDS gel    

Tris pH 8.8 1.5 M 1500 375 mM 

ddH20  1940  

Bis-Acrylamide 30 % 2500 12.5 % 

SDS 10 % 60 0.1 % 

TEMED  6  

APS 10 % 60 0.1 % 

    

4 % stacking gel    

Tris pH 6.8 1 M 500 250 mM 

ddH20  1220  

Bis-Acrylamide 30 % 270 4 % 

SDS 10 % 10 0.05 % 

TEMED  2.5  

APS 10 % 10 0.05 % 

 

The purity of the purchased OT-I and OT-II peptides as well as the coupling to the 

aptamers were analyzed by Tricine-SDS PAGE193. 1-5 µg of peptides were diluted in 

nonreducing sample buffer and heated for 5 minutes at 95 °C. The samples were 

loaded on 16 % Tricine-SDS gel (Table 7-14) and run for 1 hour 45 minutes at 175 V, 

300 mA and 25 W in Tricine SDS Anode and Cathode buffer. Here, in the vertical 

electrophoresis apparatus (Biorad) the anode buffer was the lower electrode buffer and 

the cathode buffer was the upper one. The gel was stained with Coomassie blue as 

described before. DNA was visualized by staining the gel with 1:10000 

ethidiumbromide in TBE buffer for 10 minutes. 
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Table 7-14 Pipetting scheme for one 16 % Tricine-SDS gel 

 

Reagent Stock concentration Volume [µl] Final concentration 

16 % Tricine-SDS gel    

Tricine SDS gel buffer 3 x 2000 1 

ddH20  200  

Bis-Acrylamide 30 % 3200 16 % 

Glycerole 100 % 600 10 % 

TEMED  6  

APS 10 % 60 0.1 % 

    

10 % spacer gel    

Tricine SDS gel buffer 3 x 800 1 x 

ddH20  800  

Bis-Acrylamide 30 % 800 10 % 

TEMED  2.4  

APS 10 % 24 0.1 % 

    

4 % stacking gel    

Tricine SDS gel buffer 3 x 800 1 x 

ddH20  1280  

Bis-Acrylamide 30 % 320 4 % 

TEMED  2.4  

APS 10 % 24 0.1 % 

 

7.2.3 Production of fusionproteins Fc-CTL and Fc-FN  

Fusionproteins Fc-CTL and Fc-FN, and IgG1 Fc protein were kindly provided by Prof. 

Sven Burgdorf, LIMES institute Bonn. Protein production and functionality testing was 

conducted by the members of Prof. Burgdorf’s group.  

Basically, HEK293T cells were transfected with the previously described130,131 plasmids 

pIgplus-CTLD4-7 or pIgplus-CR-FNII-CTLD1-3, or pFuse-hIgG1-Fc2 purchased from 

Invitrogen. After 5 days of cultivation the supernatant was collected and Fc-CTL, Fc-FN 

or IgG1 Fc proteins were purified by immobilization on a protein G column. The proteins 

were stored in PBS at 4 or -20 °C for long-term storage.  

 

Functionality of the proteins was analyzed as previously described131. In brief, 

ovalbumin and collagen R were coated onto wells of 96-well plates and incubated with 

either Fc-CTL or Fc-FN. Binding was assessed by adding anti-hIgG1 antibody 
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horseradish conjugate and peroxidase substrate. Absorbance was measured at 450 

and 620 nm.  

 

7.3 Handling of mice and cells 

 

7.3.1 Mice 

C57BL/6J, MR-/-, OTI RAG2-/- and OTII mice were bred in the central animal facility of 

the LIMES institute under specific pathogen-free conditions. Mice between 8-16 weeks 

were used in accordance with local animal experimental guidelines.  

 

7.3.2 Cell culture 

Cells were cultured under standard conditions (37 °C, 5 % CO2, 95 % humidity). Cells 

were handled under sterile conditions according to S1 lab regulations. BM-DCs were 

centrifuged for 5 min at 200 x g, splenocytes for 10 min at 300 x g. 

 

7.3.3 Isolation and cultivation of bone marrow-derived dendritic 

cells (BM-DC) and macrophages (BM-macrophages) 

Wildtype or MR-/- mice were sacrificed and the femur and tibia extracted. The bone 

marrow was flushed out with PBS and filtered through a 40 µm nylon membrane. The 

cells of the bone marrow were cultivated in DC-medium or macrophage-medium for 7 

days. After 3-4 days the medium was changed. 

 

7.3.4 Isolation and cultivation of splenocytes 

The mouse (C57/BL6J, OTI RAG2-/- or OTII) was sacrificed and the spleen extracted. 

The spleen was mashed with a syringe plunger into cold PBS and filtered through a 40 

µm nylon membrane. The cells were centrifuged and resuspended in T-cell medium. 

 

7.3.5 Human peripheral blood mononuclear cells (PBMCs) 

Human PBMCs were kindly provided by Prof. Joachim Schultze, LIMES institute Bonn. 

Cells were isolated and cultured as previously described184,194 by the members of Prof. 

Schultze’s group. In brief, human blood PBMCs were obtained from healthy donor at 

the Institute for Experimental Hematology and Transfusion Medicine of the University 

Hospitals Bonn (local ethics votes no. 288/13). CD14+ blood monocytes were either 

differentiated with GM-CSF alone or GM-CSF supplemented with IL-4, IFN-ɣ or TPP 
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stimuli (TNF-α/PGE2/P3C) to generate baseline macrophages, M1 or M2 

macrophages, DCs or TPP macrophages (see Figure S 9.8.1). 

 

7.4 SELEX 

 

7.4.1 Coupling of Fc-fusionproteins to Protein G magnetic beads 

Fc-CTL and Fc-FN were coupled to magnetic beads Protein G conjugates. 10 mg 

beads were washed thrice with 50 mM NaOAc pH 5. 200 µg proteins were added for 

30 minutes and vigorous shaking at 400 rpm. The mixture was thereby resuspended 

every 5 minutes. The samples were finally washed thrice with PBS and stored in 2 ml 

PBS supplemented with 0.01 mg/ml BSA at 4 °C until use. 

Coupling efficiency was analyzed by SDS polyacrylamide gel electrophoresis. 

 

7.4.2 Protein SELEX 

The SELEX procedure was started by incubation of 1 nmol D3 DNA library with 400 µg 

Fc-CTL- or Fc-FN-beads in a total volume of 100 µl selection buffer for 30 min at 37 °C. 

The beads were resuspended every 5 minutes. After washing with wash buffer the 

bound DNA was eluted in 65 µl ddH2O 3 min at 80 °C and amplified. After lambda 

exonuclease digestion the DNA was purified by silica column and eluted in a total 

volume of 30 µl ddH2O. 18 µl eluate was introduced in the subsequent rounds of 

SELEX. From the second round counter selection was carried out, i.e. enriched DNA 

was pre-incubated with 400 µg of the other Fc-fusionprotein-beads. To gradually 

enhance the stringency of the selection process, the two washing cycles from round 1 

were increased by two per selection round, ending with 24 at round 11.  

 

7.4.3 Cell-SELEX 

Before every selection experiment the cultivated BM-DCs were detached by using 

PBS, containing 2 mM EDTA, and seeded in 6 cm petri dishes. After reattachment the 

cells were washed twice with wash buffer. The naïve D3 DNA or A50 2’F-RNA library 

and enriched libraries were denaturated by heating 5 min at 95 °C and immediately 

added to the selection buffer. The naïve D3 DNA library was supplemented with the 

mixture of enriched libraries of the 3rd round of protein-SELEX targeting Fc-CTL and 

Fc-FN. The SELEX procedure was started by incubation of 1 nmol naïve library with 5 

x 106 BM-DCs in a total volume of 2 ml selection buffer for 30 min at 37 °C. The cells 

were rotated gently every 5 minutes. After washing the cells with wash buffer, they 

were scraped and the bound oligonucleotides eluted in ddH2O 5 min at 95 °C. The 
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nucleic acids were isolated by phenol/chloroform extraction and ethanol precipitation 

and amplified. The DNA was digested by lambda exonuclease and purified by silica 

column. The 2’F-RNA was transcribed by using 2’F-pyrimidines and purified by 

phenol/chloroform extraction and ethanol precipitation. To gradually increase the 

selection pressure, the amount of cells were decreased, starting from 1 x 106 (round 4-

5) to 7.5 x 105 (round 6-10). Additionally, the concentration of oligonucleotides and the 

incubation time were reduced from 500 pmol (round 2) to 250 pmol (round 3-10) and 

20 min (round 7) to 10 min (round 9-10), respectively. 

 

7.5 Characterization assays 

 

7.5.1 Flow cytometry binding assay 

4 x 105 BM-DCs were seeded in 24-well plates and cultivated under standard 

conditions for at least one hour. The cells were washed once with wash buffer (DPBS, 

1 mM MgCl2) and subsequently incubated for 10 minutes at 37 °C with ATTO 647N-

labeled aptamers diluted in 200 µl DC-medium in total. The cells were scraped and 

transferred into FACS tubes containing 2 ml wash buffer. The samples were 

centrifuged for 5 minutes at 200 x g and the supernatant discarded. The cell pellets 

were washed again with 1 ml wash buffer. Mean fluorescence intensities (MFI) were 

acquired by BD FACS Canto II or LSR II and analyzed by FlowJo software (BD).  

Binding analysis of BM-macrophages was done as mentioned above. 

 

The binding specificity of the aptamers was determined as follows. 2 x 105 BM-DCs 

were seeded in 24-well plates and incubated with 500 nM ATTO 647N-labeled 

aptamers for 30 minutes at 37 °C. Splenocytes were isolated from wildtype mice and  

2 x 105 cells were transferred into FACS tubes for incubation with 500 nM ATTO 647N-

labeled aptamers. BM-DCs were washed as mentioned above. Splenocytes were 

washed once with 1 ml wash buffer and subsequently stained with 1:200 antibodies-

mixes (anti-CD8α/CD4/B220 (CD45RA)) in FACS buffer for 20 minutes at 4 °C. In 

parallel, BM-DCs were kept at 4 °C. Finally, splenocytes were washed with 1 ml FACS 

buffer. 

 

The competition of aptamers by aptamer-peptide conjugates was determined as 

follows. 2 x 105 BM-DCs were transferred into FACS tubes and incubated with 250 nM 

ATTO 647N-labeled aptamers in absence or presence of 500 nM competitors for 10 

minutes at 37 °C. BM-DCs were washed as mentioned above. 
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7.5.2 Radioactive binding assay 

7.5.2.1 Filter retention assay 

The interaction of DNA with proteins was monitored by radioactive filter retention 

assay. 32P-DNA was incubated with increasing concentrations of proteins in 25 µl 

protein-SELEX selection buffer for 30 minutes at 37 °C. In the meantime, the 

nitrocellulose membrane was soaked in 0.4 M KOH for 15-20 minutes and 

subsequently rinsed with PBS. The dot blot unit and the vacuum manifold were 

assembled. The membrane was equilibrated with 200 µl wash buffer (PBS, 1 mM 

MgCl2, 1 mM CaCl2) and 20 µl sample was loaded. Afterwards, the membrane was 

washed 4 times with 200 µl wash buffer. 0.8 µl 32P-DNA was spotted on a dry 

membrane to allow the quantification of the percentage of DNA bound to the proteins. 

Radioactivity was acquired on the Phosphorimager FLA-3000 (Fujifilm) and quantified 

by using AIDA image software (raytest). 

 

7.5.2.2 Cell binding assay using Cherenkov protocol 

0.5 x 105 BM-DCs were seeded in 24-well plates and cultivated under standard 

conditions for at least one hour. The cells were washed once with wash buffer (DPBS, 

1 mM MgCl2) and subsequently incubated for 10 minutes at 37 °C with 1 pmol 32P-DNA 

or 32P-2’F-RNA diluted in 500 µl cell-SELEX selection buffer in total. The incubation 

buffer was collected in 1.5 ml reaction tubes as fraction I. The cells were washed twice 

with 500 µl wash buffer and both fractions were collected (fraction II and III). The cells 

were detached by adding 500 µl Trypsin/EDTA for several minutes at 37 °C and 

collected as fraction IV. Radioactivity was measured on the Liquid scintillation counter 

WinSpectral (Perkin Elmer) using the Cherenkov protocol. The percentage of bound 
32P-DNA or 32P-2’F-RNA was calculated with the following formula: 

 

%	 	
	

	 	 	 	
∗ 100 

 

7.5.3 Confocal microscopy 

2 x 105 BM-DCs were seeded onto cover slips in 12-well plates and cultivated under 

standard conditions for at least one hour. The cells were washed once with wash buffer 

(DPBS, 1 mM MgCl2) and subsequently incubated for 30 minutes at 37 °C with 250 nM 

ATTO 647N-labeled CTL#5 or for 10 minutes at 37 °C with 250 nM ATTO 647N-

labeled D#5 or D#7 diluted in 300 µl DC-medium in total. The cells were washed thrice 

with wash buffer and once with 1 ml DPBS. After fixation in 4 % paraformaldehyde 
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diluted in DPBS for 20 minutes, cells were washed thrice with DPBS and permeabilized 

in 0.1 % Triton X-100 in DPBS for 5 minutes. The cells were washed thrice with DPBS 

and blocked in 10 % milk in DPBS for 1 hour. Primary antibodies were diluted in DPBS 

at a dilution of 1:100. The cells were stained for 45 minutes and subsequently washed 

thrice with DPBS. Secondary antibodies were diluted 1:400 in DPBS. The cells were 

stained for 45 minutes and subsequently washed thrice with DPBS. The nuclei were 

stained with 1:1000 1 mg/ml DAPI in DPBS for 5 minutes and washed once with DPBS 

and twice with 2 ml ddH2O. Finally, cover slips were mounted onto slides with Fluorogel 

or Prolong Diamond mouting medium.  

The co-localization studies of CTL#5 was done in comparison with OVA. Here, the cells 

were stained for 30 minutes at 37 °C with 250 ng/ml OVA-Alexa Fluor 647. 

 

In internalization studies the membranes were stained after fixation with WGA-Alexa 

Fluor 488 (1.5 µl 1 mg/ml WGA-AF488 in 500 µl DPBS) for 10 minutes. 

 

Confocal microscopy data for CTL#5 were acquired by FluoView FV1000 confocal 

laser scanning microscope (Olympus), and for D#5 and D#7 by LSM 710 confocal laser 

scanning microscope (Zeiss). Co-localization was quantified by Olympus FluoView or 

Zeiss Zen software. 

 

7.5.4 TNF-α HTRF assay 

In accordance with the manufacturer guidelines (Cisbio) TNF-α homogeneous time-

resolved fluorescence (HTRF) assay was performed by James Stunden, member of 

Prof. Latz group, University Hospitals Bonn. In brief, immortalized murine embryonic 

stem cell-derived macrophages were treated with increasing concentrations of 

oligonucleotides for 24 hours. Subsequently, cell supernatants were stained with two 

different anti-TNF-α antibodies attached to either fluorescence energy transfer (FRET) 

donor or acceptor molecules. In close proximity of these molecules the fluorescence 

emission spectrum changes and this change is proportional to the TNF-α concentration 

in the sample.  

 

7.6 Generation of aptamer-peptide conjugates 

 

7.6.1 Thiol-maleimide coupling 

5'-thiol-C6 oligonucleotides were purchased from Ella Biotech, dissolved in degased 

ddH2O at a final concentration of 100 µM and stored at -20 °C. The oligonucleotides 
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were reduced with a 2000-fold molar excess of freshly prepared DTT in 1 M TEAA pH 

8.3-8.5, heated up for 3 min at 70 °C following 1 h incubation at room temperature. The 

reduced oligonucleotides were desalted using an Amicon 10 K column into degased 

ddH2O and subsequently incubated with a 55-fold molar excess of N-maleimide-

peptides. The reaction mixture was incubated overnight at 4 °C and purified by reverse-

phase HPLC on a C18 column using a linear gradient of 100 mM HFIP and 10 mM 

TEA. The collected fractions were analyzed by LC-MS and the concentration quantified 

with UV spectrometry. 

 

7.7 Functional assays 

 

7.7.1 In vitro proliferation assay 

5 x 104 BM-DCs were seeded in 96-well plates and cultivated under standard 

conditions for at least one hour. OTI or OTII T cells (OVA-specific CD8 or CD4 T cells) 

were isolated from spleen and stained with 1 µM CFSE in PBS for 15 min at 37 °C. The 

T cells were washed three times with 4 °C cold PBS and centrifuged. Meanwhile, MHC 

I or MHC II peptides, aptamers, aptamer-peptide conjugates and OT-I or OT-II peptides 

were diluted in DC-medium and added to the BM-DCs for 10 min at 37 °C. 

Subsequently, the supernatants from BM-DCs were removed and 1 x 105 OTI or OTII T 

cells in 100 µl T cell medium were added. After 24 hours, 200 µl T cell medium was 

given per well and the cells were incubated for another 48 hours. Finally, the T cells 

were stained with anti-CD4 or anti-CD8alpha antibodies-fluorophore conjugates and 

analyzed by flow cytometry. The antibodies were diluted 1:400 in FACS buffer 

supplemented with mouse serum at a 1:100 dilution. 

 

7.7.2 In vitro cytotoxicity assay 

2 x 105 BM-DCs were seeded in 24-well plates and cultivated under standard 

conditions for at least one hour. OTI or OTII T cells (OVA-specific CD8 or CD4 T cells) 

were isolated from spleen and centrifuged at 300 x g for 10 min. Meanwhile, MHC I or 

MHC II peptides, aptamers, aptamer-peptide conjugates and OT-I or OT-II peptides 

were diluted in DC-medium and added to the BM-DCs for 10 min at 37 °C. 

Subsequently, the supernatants from BM-DCs were removed and 4 x 105 OTI or OTII T 

cells in 400 µl T cell medium were added. After 24 hours, 2 ml T cell medium was given 

per well and the cells were incubated for another 48 hours. On day 4, T cells were 

isolated using Ficoll density gradient centrifugation. Splenocytes derived from wildtype 

mice were stained with different concentrations of CFSE and used as target or control 
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cells. Target cells stained with 0.1 µM CFSE and loaded with 2 µM MHC I or MHC II 

peptides, and control cells stained with 1 µM CFSE were mixed equally and added in 

different T cells:mixed cells ratios. After 24 hours, cells were labeled with Hoechst 

33258 and analyzed by flow cytometry. The cytotoxic activity was calculated with the 

following formula: 

 

%	 100 100 ∗ 	 / 	 / 	 / 	 , 

 

where p and n indicates if target and control cells were incubated for 24 hours without 

T cells (no (n) T cells) or with primed (p) T cells. 

 

7.8 Experimental analysis 

 

7.8.1 Statistics 

If not otherwise noted, data for statistical quantification were acquired from individual 

experiments repeated at least two times. Samples of individual experiments were 

prepared at least in duplicates. Mean and standard deviation values were calculated 

with Microsoft Office Excel 2007. 
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9 Supplementary data 

9.1 DNA sequences obtained from Fc-FN SELEX 

Table S 9-1: FN sequences 
 

sequence 

FN# DNA-sequence 

1 CGCGCGGCTTAGGTGGTTGGTTCTTTTGGTGGTTCTTGTGGTG 

2 CCCCGGAAATTGCGTACTTGTATCGGTCCTTTATCTTGTTGTG 

4 CCACGAGTATTTGCTGGGTCCTGGTGGCGTGGGTTTTTGTGATGCA 

8 CGGCGCGGGGATATGGGGTACGTGTTCTGGTCCTCTTACATTG 

9 CGGGTTTGCTCTTGGTTAGTGCTTGTGGTGGTGTGCGACTTGG 

12 GGGGATTCTGTTTTTTTTTTGTAACTCGGGGTTGGGTATCGTTG 

14 CCTGTTCTGTGTTTATGTATTGTTGTTATAGTTGTGTTTCCTG 

15 CGTGGGCTGGGATTTATTGGGGTTTGTGCTTGTTTGTTAGGCT 

17 CTGGTGTATGTTCTTTGTGTGGTTTATTGATTTATTTTTCCGG 

18 CCCCATGCGCTTCTTGCTCCGCTCGGTCTCCTTGTCCGCCTTG 

19 GGCGGGAAGGTTTGTGTATTGCGTGGTGAAGGCTCCGTGATGT 

20 CGGTGGCCGTGGTTTCTTCGTGTGGTTGTGTTTTTCGTCCTTG 

23 GCGGGGGCAGTGTTAAGTCGTTTAGGTGGTGGTCGTGTGGTGG 

25 CCCGCTGTGTTTCCTTCTGTGATGTTTCGTTCGTTTGTTTGCC 

 

9.2 DNA sequences derived from Fc-CTL SELEX 

Table S 9-2: CTL unique sequences 
 

sequence 

CTL# DNA-sequence 

1 GCCAGTATTTTGATTTCTTTGGGCGGGGGGGAATTTATGTGG 

2 CAGTCCACGAGGGGAGGTGGGAATTTTTTTGGGTGGTTTTGTC 

3 GCCGGGTGGGAGTGCTCTCTGTTGCATGTGGGTGGGTAGCGTG 

4 GGCGCCACGCTTGTTGTGGGCGGGAGTGGTGGGAAACTACGTG 

11 CGGTACTGTGGGGGGGTGGGTCGGGAAGAACGGCGCCAGGCGT 

14 CCGTGCGTGGGAGGGTGTGATTTTCCTGGGGTGGGAGCATGGG 

17 CGAGCGTGGGGGGGTGGGTTTCGGGAGCTCCGGGAGCACTTTG 

18 CACTGGATTCGTTGGGGTTCTTTTGGGGGATATTCCGGGGTGG 

19 GCACCGTGGGCGGGCTATACTTCTTTTCATTTGGGTGGGAGGTGCA 

20 GGTCCAATCGTTGGGGTTTGGGGCGTTCACTTCATCGGGGCGG 

22 CAGGGGAGGTGGGTTTTTTGGGTAGTTTTGGATCAATGGCCCG 
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9.3 NGS analysis of DNA sequences obtained by cell-SELEX 

Table S9-3: Sequences obtained by cell-SELEX and their NGS frequencies 
 

Classical cloning and sequencing NGS 

frequency [%] 

sequence random region pattern selection cycle  

D# # 1 2 3 4 7 10 

sequence family 1 2 GCATGTTTGGGTGGGATATTGGCGTGTTTGGGTTGGGACTGCT 1 8,33E-05 8,10E-04 6,65E-03 0,05 0,68 3,81 

3 GCATGTTTGGGTGGGATATTGGCGTGTTTGGGTTGGGACTGCT 1 8,33E-05 8,10E-04 6,65E-03 0,05 0,68 3,81 

5 CGCATTTGGGTGGGATTGTTATTTGGGTCGGGATTGGCAGTT 1 0,00 0,00 2,83E-03 0,01 0,14 0,99 

8 CGCATTTGGGTGGGATTGTTATTTGGGTCGGGATTGGCAGTT 1 0,00 0,00 2,83E-03 0,01 0,14 0,99 

sequence family 2 4 GTGGGCGGGTTTATATTCGGTGGTGGTGGGGGTGGTTCTGTT 2 0,00 0,00 0,00 6,17E-04 0,06 0,13 

7 CGTGGGTGGGTTTATATTCGGTGGTGGTGGGGGTGGTACTGTT 2 0,00 0,00 7,64E-05 1,55E-03 0,21 1,32 

23 CGTGGGCGGGTTTATATTTGGTGGTGGTGGGGGTGGTACTGTT 2 0,00 0,00 7,64E-05 1,04E-03 0,16 0,69 

28 CGTGGGTGGGTTTATATTCGGTGGTGGTGGGGGTGGTACTGTT 2 0,00 0,00 7,64E-05 1,55E-03 0,21 1,32 

unique 1 CCCCACCAACTCGACCAAGTCGCTGCTCCTCTTCCTTGTGTTG - 0,00 0,00 0,00 0,00 0,00 0,00 

6 CAACGGACCCTGGGATGTATTCGTCTCTCTCGCCGCCCACCCC - 0,00 0,00 0,00 0,00 0,00 0,00 

9 CCGTCCCCCCCGTTGTGTTCCTACTCTCGCCCTACACGAACCG - 0,00 0,00 0,00 0,00 0,00 0,00 

10 CCGTTCTCGTCGTCCTGTATGCGCCTGTTCGTCTCCTGTTCCT - 0,00 0,00 0,00 0,00 0,00 0,00 

11 GACGGGGCGGTTGTTTTTTCTGGTTTTCGGTATGTTGTGTGTG - 0,00 0,00 0,00 0,00 0,00 0,00 

13 CCTCCTCATTGCTTGTTCTCGCCTTGATCGTCCCTGGCCCGTT - 0,00 0,00 0,00 3,94E-05 3,79E-05 0,00 

14 CCCTCACTGTAGTCCTGACTTGTCGTATTCCCGGTTTTCTTGT - 0,00 0,00 0,00 0,00 0,00 0,00 

15 CCCTGGCCCCCTCACTCCCCGTCATTTGTTCTATGCCCGCGCC - 0,00 0,00 0,00 2,63E-05 1,89E-04 4,57E-05 

16 CCCGGCTCTCCCCATTGGTCTGTGCTCTTTCCTCCGTTCGCCC - 0,00 0,00 0,00 1,71E-04 5,87E-04 9,60E-04 

17 CCCCCGCCTCTCGAGCATTTACCACCCGGGCGCTTCACGTTTG - 0,00 0,00 0,00 0,00 0,00 0,00 

18 CCCGTTTGGTATATCGCGCATTTTGGTCCCGTTCCTTGTTTGT - 1,39E-05 0,00 0,00 0,00 0,00 0,00 
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19 CAGGGGAGGTGGGTTTCTTTGGGTTGTTTGTGAAGTGGGGTGT 57 2,78E-05 8,10E-04 2,06E-03 7,31E-03 0,05 0,07 

20 CCCGACCCCATCCGGTATTTTGTGTAATCTAGTCTCTTTGTGT 554 0,00 0,00 0,00 1,18E-04 4,16E-04 4,16E-03 

21 CCCGACCGACGCTGTATTTTCGCCACCACGCTCGACCACCCCT 171 0,00 0,00 0,00 1,31E-05 5,68E-05 0,00 

22 CCCGACCCGCCGCTTTTTCCCTCTTCCGTCACCTCCTTTCGAT - 0,00 0,00 0,00 0,00 3,79E-05 6,40E-04 

24 GCGTCGGATTGGTGTTGTGGTCTTTGGGTTTTGGTTTGTGTGT - 0,00 0,00 0,00 0,00 1,89E-05 0,00 

26 CCAGGGGAGGATGGGCGGGCTTTTCGTTGTCTTCTGTGTCGCT 18 8,33E-05 8,10E-04 3,74E-03 9,07E-03 0,09 0,36 

27 GCGGTTCTGTGTGTGGGTGGGTGGGTGGTAATATTGTCTCGCT 3 6,95E-05 2,03E-03 7,95E-03 0,05 0,68 2,07 

29 TCCCTCTTTGCATCTCCCGTATACCCCGCCCTTTAACCGTGTG - 0,00 0,00 0,00 0,00 0,00 0,00 

30 TGGGGGTTGGGTGGGTTGGGTGTCGATTGCGTCTCTCTTCTTG - 0,00 0,00 0,00 0,00 0,00 0,00 

31 CAGGGGAGGAGGGTGGGCAGAGGTGTTTAGTGTGTCCGGGTTT 61 0,00 0,00 0,00 1,31E-05 1,06E-03 4,11E-03 

32 CCACCGCGCTGATCTTGCTCCCTTCCGTCCGTCCGTTCCTCCC 306 1,39E-05 0,00 1,53E-04 4,46E-04 2,73E-03 8,45E-03 

33 CCCTCGACAGCCTTCTCGTCCTCTGTATTGGGCCATCCTCCC - 0,00 0,00 0,00 0,00 1,89E-05 0,00 

34 CCTAGTACATTTCATCCGCCTCGTTGTCGCCCCTTCCCGCCGT - 0,00 0,00 0,00 0,00 0,00 0,00 

35 CGGTTTGGTGTGTGGTTCGCGAGTACGTTTCCTTCTCGACTTG - 0,00 0,00 0,00 0,00 0,00 0,00 

36 CGGGTGCTTTGTTGTATGTTGTGTGTGGGCTTTTTTGGTGTGG - 0,00 0,00 0,00 0,00 0,00 0,00 
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Table S 9-4 Consensus sequences and number of sequences of the 15 most abundant 
NGS patterns 

 

NGS 
pattern 
No. 

consensus sequence 
number of 
sequences 

1 GCATGTTTGGGTGGGATATTGGCGTGTTTGGGTTGGGACTGCT 101544 

2 CGTGGGCGGGTTTATATTCGGTGGTGGTGGGGGTGGTACTGTT 97341 

3 GCGGTTCTGTGTGTGGGTGGGTGGGTGGTAATATTGTCTCGCT 60744 

4 GGGGAGGTGGGTGGGTTGGCCTTCACGTTATCTTTTGGTGGTT 29284 

5 CGCATTTGGGTGGGATTGTTATTTGGGTCGGGATTGGCAGTT 28834 

6 CCAGGGGAGGATGGGAGGGTTTTTTTCGGATTCTTGTCGTGCT 26437 

7 CGTGGTATGTGGTGGGTGGTGGGGTGGTAGTTGGGTGGACGGT 20588 

8 CAGGGGAGGTGGGTGATTGGGTTGTTTTTCGCGGACGTGAGGT 17022 

9 GCGTGTTGGGTGGGGGTGGGAGGTGGTTTCTTCTACTTGGTGG 15788 

10 CGAGTTTCTGAGGGTGGGTGGGTGGTTATTAGTCGAGGTTGCA 14867 

11 TGGGGTGGGTGGTCGGGGTTGTGGTTGGTTTCTCTTTAAGGGT 14472 

12 CCAGGGTGGGATGGGTATTTTGAGGTGGAGGTGGGGGTTGGTT 13792 

13 GGGTGTTGTGGGGTGGGGCGGTGGGTGTGAGTGTCGGCAGCTG 13764 

14 TGTGGTTCGGTAGGTCGGGGAGGGTGGTGGGTTATGCGGCGGG 13593 

15 CACAGGGGAGGTCGGGCGGGTTGTCTGCTTTCTTGGGTCGGTT 13429 
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9.4 Aptamer-targeted activation of CD4 T cells 

 

 

Figure S 9.4.1: Activation of CD4 T cells 
BM-DCs were treated with different concentrations of MHC II peptide or 100 nM OT-II peptide 
(A), 100 nM of oligonucleotides (B) or increasing concentrations of aptamer-peptide conjugates 
(C). Subsequently, BM-DCs were co-cultured for 72 h with CFSE-labeled OVA-dependent CD4 
T cells and the proliferation profile indicated by changes of CFSE signals was measured by 
flow cytometry. FACS histograms with one representative profile out of triplicate measurement 
are depicted. Numbers gives the division index (mean ± SD). The non-proliferated population is 
shown in grey. 
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Figure S 9.4.2: Activation of CD4 T cells 
BM-DCs were treated with different concentrations of MHC II peptide or 100 nM OT-II peptide 
(A), 100 nM of oligonucleotides (B) or increasing concentrations of aptamer-peptide conjugates 
(C). Afterwards, BM-DCs were co-cultured for 72 h with CFSE-labeled OVA-dependent CD4 T 
cells and the CFSE profile was measured by flow cytometry. FACS histograms with one 
representative profile out of triplicate measurement are depicted. Division index (mean ± SD) is 
depicted within the FACS histograms. The non-proliferated population is shown in grey. 
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Figure S 9.4.3: Activation of CD4 T cells 
BM-DCs were treated with different concentrations of MHC II peptide or 100 nM OT-II peptide 
(A), 100 nM of oligonucleotides (B) or increasing concentrations of aptamer-peptide conjugates 
(C). Next, BM-DCs were co-cultured for 72 h with CFSE-labeled OVA-dependent CD4 T cells 
and the proliferation profile was measured by flow cytometry. FACS histograms with one 
representative profile out of triplicate measurement are depicted. Numbers gives the division 
index (mean ± SD). The non-proliferated population is shown in grey. 
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9.5 Aptamer-targeted activation of CD8 T cells 

 

 

Figure S 9.5.1: Activation of CD8 T cells 
BM-DCs were treated with different concentrations of MHC I or OT-I peptide (A), 100 nM of 
oligonucleotides (B) or increasing concentrations of aptamer-peptide conjugates (C). 
Afterwards, BM-DCs were co-cultured for 72 h with CFSE-labeled OVA-dependent CD8 T cells 
and the proliferation profile indicated by changes of CFSE signals was measured by flow 
cytometry. FACS histograms with one representative profile out of triplicate measurement are 
depicted. Numbers gives the division index (mean ± SD). The non-proliferated population is 
shown in grey. 
  

C)

MHC I peptide
1 nM 0.1 nM 

0.18 
± 0.01

2.02 
± 0.09

A)

B)
ctrl CTL#5 D#5 D#7

0
20
40
60
80

100

%
 o

f M
ax

0
20
40
60
80

100

%
 o

f M
ax

0
20
40
60
80

100

%
 o

f M
ax

0
20
40
60
80

100

%
 o

f M
ax

0
20
40
60
80

100

%
 o

f M
ax

0.08 
± 0.02

0.08 
± 0.01

0.07 
± 0.01

0.06 
± 0.02

CFSE

CFSE CFSE CFSE CFSE

ctrl-OT-I

D#7-OT-I

D#5-OT-I

CTL#5-OT-I

100 nM 10 nM 50 nM 

CFSE

0
20
40
60
80

100

%
 o

f M
ax

0
20
40
60
80

100

%
 o

f M
ax

0
20
40
60
80

100

%
 o

f M
ax

0
20
40
60
80

100

%
 o

f M
ax

0.06 
± 0.00

0.14 
± 0.09

0.11 
± 0.02

0.07 
± 0.00

0.26 
± 0.15

0.19 
± 0.02

0.08 
± 0.00

0.15 
± 0.05

0.76 
± 0.23

0.07 
± 0.01

0.15 
± 0.04

0.65 
± 0.12

OT-I peptide
100 nM 10 nM 50 nM 

0
20
40
60
80

100

%
 o

f M
ax

0.08 
± 0.00

0.10 
± 0.00

0.19 
± 0.02

CFSE



Supplementary data 

126 
 

 

Figure S 9.5.2: Activation of CD8 T cells 
BM-DCs were treated with 1 nM MHC I peptide or different concentrations of OT-I peptide (A), 
100 nM of oligonucleotides (B) or increasing concentrations of aptamer-peptide conjugates (C). 
Subsequently, BM-DCs were co-cultured for 72 h with CFSE-labeled OVA-dependent CD8 T 
cells and the CFSE profile was measured by flow cytometry. FACS histograms with one 
representative profile out of triplicate measurement are depicted. Division index (mean ± SD) is 
depicted within the FACS histograms. The non-proliferated population is shown in grey. 
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Figure S 9.5.3: Activation of CD8 T cells 
BM-DCs were treated with 1 nM MHC I peptide, different concentrations of OT-I peptide (A) or 
increasing concentrations of aptamer-peptide conjugates (B). Next, BM-DCs were co-cultured 
for 72 h with CFSE-labeled OVA-dependent CD8 T cells and the proliferation profile was 
measured by flow cytometry. FACS histograms with one representative profile out of triplicate 
measurement are depicted. Numbers gives the division index (mean ± SD). The non-
proliferated population is shown in grey. 
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9.6 Binding of CTL#5 to BM-macrophages 
 

 

Figure S 9.6.1: CTL#5 binds to wildtype and MR knockout murine bone marrow-derived 
macrophages 
Murine bone marrow-derived macrophages were treated with 400 nM ATTO 647N-labeled 
CTL#5 and the amount of cells bound by CTL#5 was measured by flow cytometry and 
normalized to the control (ctrl) sequence. The experiment was done once in duplicates (mean ± 
SD). 
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9.7 Binding of NGS patterns to BM-DCs 

 

Figure S 9.7.1: Binding analysis of NGS patterns to DCs 
NGS analysis of cell-SELEX revealed sequence patterns with increasing sequence frequencies 
from selection cycle 1 to 10. The consensus sequences of pattern 9-12 were chosen for flow 
cytometry binding analysis. BM-DCs were treated with 50 and 500 nM of ATTO 647N-labeled 
control sequence (ctrl), aptamers (A) or NGS pattern sequences (B) and analyzed by flow 
cytometry. Data were given as ratio of binding in comparison to the ctrl sequence (n=2, mean ± 
SD). 
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9.8 Binding of BM-DC aptamers to human blood cells 

 

 

Figure S 9.8.1: Binding analysis of human cells 
The binding ability of BM-DC-targeting aptamers to human peripheral blood cells was analyzed 
by flow cytometry (mean ± SD). CD14+ blood monocytes of at least two different blood donors 
(exception E: n=1) were either used directly in FACS binding assay or further differentiated 
according to Xue et al.184 and Nĩno-Castro et al.194. Cells were incubated with ATTO 647N-
labeled aptamers and co-stained with cell surface marker CD14 (A+B), CD86 (C), CD23 (D), 
CD25 (E), CD209 (F+G). 
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10 Abbreviations 

APS Ammoniumperoxodisulfate 
BM-DC Bone marrow-derived dendritic cell 
BSA Bovine serum albumin 
CFSE Carboxyfluoresceine succinimidyl ester 
CLEC-1 C-type lectin receptor-1 
CpG Cytosine-phosphodiester-guanosine 
CR Cystein-rich 
CTLA-4 Cytotoxic T-lymphocyte-associated protein 4 
CTLD C-type lectin-like domain 
ctrl Control DNA sequence 
Cyt1 Sec7 Sec7 domain of Cytohesin 1 
DAPI 4’,6-diamidino-2-phenylindole  
DC Dendritic cell 
DCIR DC immunoreceptor 
DC-SIGN DC-specific ICAM-3 grabbing non-integrin 
DEC-205 Dendritic and epithelial cells, 205 kDa 
Dectin DC-associated C-type lectin 
DLEC DC lectin 
DNA Deoxyribonucleic acid 
DTT 1,4-Dithiothreitol  
EDTA Ethylendiamintetraacetic acid  
EEA1 Early endosome antigen 1 
ELISA Enzyme-linked immunosorbent assay 
ER Endoplasmatic recticulum 
ERAAP Endoplasmatic recticulum aminopeptidase associated with antigen 

processing 
Erk2 Extracellular signal-regulated kinase 2 
FDA Food and drug administration (USA) 
FNII Fibronectin type II 
FRET Fluorescence resonance energy transfer 
GM-CSF Granulocyte macrophage colony-stimulating factor 
h Human 
HFIP 1,1,1,3,3,3-hexafluoro-2-propanol 
HPLC High-performance liquid chromatography 
HTRF Homogenous time-resolved fluorescence 
IFN Type I interferons 
IL Interleukin 
LAMP-1 Lysosome-associated membrane glycoprotein 1 
LC-MS Liquid chromatography-mass spectrometry 
LPS Lipopolysaccharide 
M-CSF Macrophage colony-stimulating factor 
MFI Mean fluorescence intensity 
MHC Major histocompatibility complex 
MR Mannose receptor 
MVB multivesicular body 
NGS Next generation sequencing 
ODN Oligonucleotide 
OVA Ovalbumin 
PAGE Polyacrylamide gel electrophoresis 
PAMP Pathogen-associated molecular pattern 
PBMC Peripheral blood mononuclear cell 
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PCC Pearson's correlation coefficient 
PCR Polymerase chain reaction 
PD-1 Programmed cell death 1 
PEG Polyethylene glycol 
pIC Polyinosinic:polycytidylic acid 
PNK Polynucleotide kinase 
PRR Pattern recognition receptor 
PSMA Prostate-specific membrane antigen 
Rag2 Recombinant activating gene 2 
RNA Ribonucleic acid 
SD Standard deviation 
SDS Sodium dodecylsulfate  
SELEX Systematic evolution of ligands by exponential enrichment 
TCR T cell receptor 
TEA Triethylamine 
TEAA Triethylammonium acetat  
TEMED N,N,N’,N’-tetramethylethylendiamide  
Th T helper cell 
TLR Toll-like receptor 
TNF-α Tumor necrosis factor α 
WGA Wheat germ agglutinin 
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