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Summary

——>0 =0 0<

In this thesis, we discuss the development and use cases of the public software CheckMATE
which is designed to allow for easy tests of theories beyond the Standard Model against current
results from the Large Hadron Collider (LHC). We illustrate the general functionality of this
tool and provide hands-on examples to explain how it can be used to test results from the
ATLAS and CMS experiments. In addition, we explain how new analyses can be conveniently
added to the existing framework. This tool is then used to project a search for monojet final
states to a high luminosity LHC with a centre-of-mass energy of 14 TeV. Here, our prospective
analysis is used to determine the expected sensitivity to a Higgs Portal scenario which couples
the Standard Model to a hidden sector via an invisibly decaying second heavy scalar. We show
that complementary bounds to those derived from Higgs boson searches in 8 TeV LHC data
can be set, however only if a significant reduction of the current systematic uncertainties for
the background estimates of such a search can be achieved. Furthermore, we use CheckMATE
and its large set of implemented searches for natural Supersymmetry to show how an extension
of the Minimal Supersymmetric Standard Model by an additional chiral gauge singlet typically
reduces the LHC sensitivity. In the context of R-parity violating Supersymmetry, we go beyond
CheckMATE and the LHC and derive how the expected sensitivity of the proposed fixed-target
experiment SHiP to observe long-lived neutralinos produced via rare Standard Model meson
decays can significantly improve existing bounds from low energy observations.
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CHAPTER 1

Introduction

—>0 == 0<

A scientist, whether theorist or experimenter, puts forward statements or systems
of statements, and tests them step by step. In the field of the empirical sciences,
more particularly, he constructs hypotheses, or systems of theories, and tests them
against experience by observation and experiment.

— Karl R. Popper, The Logic of Scientific Discovery [1], p. 3

With these sentences, Popper starts his famous book on the logic of science in which he pro-
claims the concept of falsifiability to identify scientifically valid theories. It only values those
hypotheses with predictions which can be experimentally violated and prefers those theories
with the simultaneously largest predictability and smallest amount of conflicts with observation.
With this idea, he gives an answer to the long existing problem of induction raised by David
Hume in the 18" century which states the logical flaw of generalising a finite set of positive
observations to a universally valid law of Nature [2].

Popper advertises falsification not only as a philosophical but also as a highly practical
guidance principle for theoretical sciences as it has historically proven to have resulted in the
formulation of the two most groundbreaking and fundamental theories of Nature:

What compels the theorist to search for a better theory [...] is almost always the
experimental falsification of a theory, so far accepted and corroborated: it is, again,
the outcome of tests guided by theory. Famous examples are the Michelson-Morley
experiment which led to the theory of relativity, and the falsification, by Lummer and
Pringsheim, of the radiation formula of Rayleigh and Jeans, and of that of Wien,
which led to the quantum theory.

— Karl R. Popper, The Logic of Scientific Discovery [1], p. 90

It is by this scientific process of consequent experimental falsification and improved predictabil-
ity how we discovered e.g. the first constituents of the atom [3] and the proof that it is not as
“indivisible” as its original Greek name implied, that there exist elementary particles beyond
the constituents of ordinary matter [4], how the plethora of observed particles can be organ-
ised and new states predicted by the notion of internal symmetries [5], and how our combined
knowledge of particles and symmetries in the 1960s and 1970s could be formulated within a
concise Standard Model of particle physics [6-8]. This theory was able to provide quantitative
predictions for many experimental observables that were subsequently measured, for example
by relating the elementary charges of weak and electromagnetic interactions to the masses of
the associated force mediator particles [9, 10]. It also successfully predicted the existence of
new particles, most importantly the Higgs boson which was finally discovered in 2012 by the
two multipurpose experiments ATLAS [11] and CMS [12] at the Large Hadron Collider (LHC).
Interestingly, the principle of falsifiability was especially important for the discovery of this
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particle, as the construction of the LHC could be strongly motivated by the realisation that
the non-observation of a Higgs-boson with sub-TeV mass would yield a non-unitary Standard
Model [13], i.e. a theory with an ill-defined notion of interaction probability. Such a theoretical
inconsistency would have falsified the underlying explanation for the masses of the mediator
particles.

Unfortunately, it is also the same process which gives us certainty today that the Standard
Model is not the true theory of Nature. Not only is the fundamental gravitational interaction
manifestly not incorporated but there are also various experimental observations from sub-
atomic up to cosmological scales — we discuss some of them in more detail later in this thesis
— which experimentally violate the quantitiative predictions of this theory. In our quest for
the ultimate description of the Universe, we sooner or later necessarily require an extension
of the Standard Model. This new theory Beyond the Standard Model, or BSM, clearly should
be able to explain these experimental discrepancies while not violating the past correct predic-
tions of the Standard Model. It should do so at a comparable level of predictability though,
as it is trivial to extend a theory by sufficiently many theoretical degrees of freedom to fit all
experimental facts. Or alternatively, using Popper’s words:

Simple statements, if knowledge is our object, are to be prized more highly than less
simple ones because they tell us more; because their empirical content is greater; and
because they are better testable.

— Karl R. Popper, The Logic of Scientific Discovery [1], p. 142

By now, no BSM theory could be formulated which according to this measure could be consid-
ered as the successor of the Standard Model. We therefore still consider this theory as the most
correct description of Nature we currently have. Still, we are seeking for as many experimental
tests as possible to explore the Standard Model’s full region of validity but also to hopefully
find more hints for the physics which lies beyond.

Before the construction of the LHC, many theories beyond the Standard Model had been
invented in order to solve its known experimental and theoretical inconsistencies. These models
often predicted significant deviations from Standard Model expectations which were hoped to
be seen within the LHC’s first period of data taking. Unfortuntely, no such significant BSM
signal has been observed so far which puts tight constraints on the viable parameter regions of
these new physics models.

One famous example for the LHC falsification of a BSM theory is the so-called constrained
Minimal Supersymmetric Standard Model [14] which would have been a very good candidate
to solve various problems of the Standard Model, see e.g. Ref. [15], which predicted distinct
signals to be seen in early LHC data, see e.g. Ref. [16], but whose prefered parameter regions
could practically be excluded by the incompatibility of the null results from the /s = 8 TeV
run with observations from other experiments, see e.g. Refs. [17, 18].

In principle, each additional analysis performed by ATLAS and CMS which agrees with Stan-
dard Model predictions gives us more information where we should preferably move within the
space of proposed BSM theories. Practically, however, it becomes increasingly more laborious
for a new model to be tested against all existing results as the number of measurements we
need to compare against multiplies. This might tempt theorists and phenomenologists to only
analyse a small subset of existing collider limits and potentially miss important ones. Also, each
individual person spends a tremendous, redundant amount of workload into the technicalities
of translating a theory model into an LHC prediction even though — as we show in this work



— the process of translation is typically universal for a very large set of possible models. A
single calculation setup, if properly generalised, could be re-used by many people and could be
continuously extended to new LHC results.

In this thesis we focus on the computer tool CheckMATE (Check Models At Terascale Energies)
which is designed with the purpose to solve the above illustrated problem of wasted research
labour. This program provides a convenient framework to test a given BSM theory against
current LHC results via simple and straightforward input and output routines. It also allows
for the results of upcoming future LHC analyses to be added to the existing framework without
much effort and to perform projective studies for the high luminosity LHC. The two main as-
pects of this work are to describe the general features of the program as a public phenomenology
tool and to apply it to put constraints on specific BSM theories.

The content of this thesis is outlined as follows. In Chapter 2 we start with a brief summary
of the mathematical formulation of the Standard Model. We define its field and symmetry
content and the resulting terms and parameters of the Lagrangian. After pointing out some of
its experimental and theoretical problems we propose BSM extensions designed to solve these
issues and we discuss the models’ respective main features which are of interest for the studies
pursued in this thesis.

The connection between model building and collider analysis is illustrated in Chapter 3. Here,
we explain the general tools and methods to perform a prediction for LHC results in a particular
search channel given any possible BSM theory and how this prediction can be quantitatively
compared to the experimental observation. Along the way, we always put particular emphases
on the automation of this task by making use of publicly available software.

This general explanation greatly aids understanding the inner workings of CheckMATE which
we introduce in Chapter 4. After explaining the modules and functionalities of the tool in
general we provide two detailed example runs which illustrate how CheckMATE can be used
to test a given model against existing implemented LHC results and how new analyses from
ATLAS or CMS can easily be added to the framework in the future.

In Chapter 5, we use CheckMATE to estimate the future sensitivity of the LHC at a centre-
of-mass energy of 14 TeV to a Higgs Portal scenario. Here, the Standard Model is coupled to
an invisible sector via the two Higgs-like fields which is expected to produce new distinctive
final state signatures with a single hard jet and large amount of missing transverse energy. The
expected results are compared to current limits from Higgs measurements performed at 8 TeV
to show which regions of parameter space could be covered with large integrated luminosities.

Another physics case study is provided in Chapter 6 in which we use the full set of 8 TeV
analyses to test the distinct signatures of a natural NMSSM. This model is designed to solve
the hierarchy problem of the Standard Model without introducing fine-tuned parameter combi-
nations. It predicts various possible decay chains with respectively different final states which
however typically all involve third generation quarks. We illustrate how the large amount of
implemented ATLAS and CMS results in CheckMATE tests this large set of possible signatures
without much additional effort and show which regions of parameter space are covered.

Lastly — in accordance with the title of this thesis — we go beyond CheckMATE and the LHC
by discussing the sensitivity of the proposed fixed-target experiment SHiP (Search for Hidden
Particles) in Chapter 7. This experiment is designed to look for long-lived neutral particles,
for example the lightest neutralino in the R-parity violating supersymmetric Standard Model.
We determine the expected sensitivity of this experiment for some benchmark scenarios of
this model and show how they could largely improve existing constraints on R-parity violating
couplings derived from current precision experiments and the LHC.
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Notation and Conventions

Throughout this thesis we make use of natural units and set the constants A = ¢ = 1. Four-
vector products are defined as A*B, = g,, A*B" with g,, = diag(1,—1,—1,—1) and using
the Einstein summation convention for greek indices. Spinor objects v are always defined in
four-component notation and we make use of the following definitions:

Dirac matrices v#: Defined by v#v¥ 4+ vV~ = 2g*

Dirac adjoint spinor: 1) = {4

chiral gamma matrix: +° = iy0y1~%3

chiral projection operators: Pr/r = % (1 F 75)

chiral spinor components: ¢y = Py, vr = Pry

charge conjugation matrix C: Defined by C~'4*C = —(y*)T and CT = —C
charge conjugated spinor: ° = C@T

Rules to convert between the above four-component notation and the completely equivalent
two-component notation often used in chiral theories can be found in Ref. [19].



CHAPTER 2

Theories of Nature — The Standard Model
and Beyond

——>0 == 0<

The Standard Model of particle physics is one of the most successful theories of Nature. It is
able to explain countless experimental observations in the context of weak, strong and electro-
magnetic interactions in an appealing theoretical framework. However, there exists compelling
evidence from both theory and experiment which provides strong motivation that the Standard
Model is not the ultimate theory of Nature. Curiously, the very same evidence predicts signs
of new physics to appear at current experiments.

Within this thesis it is hence not the Standard Model but various possible extensions which
we study with respect to both existing and future experiments. In this chapter we motivate
and explain the main properties of each of these models which are analysed in the subsequent
chapters of this thesis.

In Section 2.1 we begin with a short summary of the Standard Model of particle physics.
We define its particle content, the corresponding Lagrangian and discuss the mechanism of
spontaneous electroweak symmetry breaking. We then focus on two important drawbacks which
motivate the Standard Model extensions discussed within this thesis. These two deficiencies
are the lack of a dark matter candidate and the so-called hierarchy problem.

The first extended model which we discuss in Section 2.2 is a Higgs Portal setup. In that
section we show how the Higgs sector is changed by the presence of an additonal scalar gauge
singlet. This singlet can be linked to a dark matter candidate in order to solve the first of the
two problems of the Standard Model.

The second problem is typically solved within Supersymmetry and we provide a small sum-
mary of general supersymmetric model building in Section 2.3. This will aid us to discuss the
general features of the minimal and next-to-minimal supersymmetric versions of the Standard
Model in Sections 2.4 and 2.5, respectively.

In general, we attempt to achieve a good balance between providing a self-contained document
on the one hand while trying to focus the discussion to the subjects relevant for this thesis on
the other hand. References pertaining to more detailed and/or complete studies are given at
the appropriate locations. Finally, we have endevoured to follow common naming conventions
found in the literature, however some deviations were necessary for consistency and unambiguity
within this thesis.

2.1 Introduction to the Standard Model

The Standard Model of particle physics is a relativistic quantum field theory which applies the
concept of a gauge symmetry to describe electroweak [6] and strong [8] interactions between
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Field Lorentz repr. SU(3)¢ repr. SU(2)r, repr. U(1)y charge
H scalar singlet doublet 1

Q; left-chiral triplet doublet 1/3

U; right-chiral triplet singlet 4/3

D; right-chiral triplet singlet —2/3

L; left-chiral singlet doublet -1

E; right-chiral singlet singlet -2

Gy vector octet singlet 0

Wf vector singlet triplet 0

B, vector singlet singlet 0

Table 2.1: Field content of the Standard Model, their representations under the Lorentz group and the
Standard Model gauge groups.

particles. Fields are categorised according to their transformation behaviour under the gauge
group SU(3)c ® SU(2)r, ® U(1)y where only gauge invariant combinations of these fields are
allowed. Fermions, i.e. particles with half-integer spin which follow Dirac-Fermi statictics,
are split into so-called left-chiral and right-chiral components. These transform differently
under the overall Lorentz-group of special relativity. A chiral theory of fermions arises as left-
and right-chiral components are in general allowed to transform differently under the gauge
symmetry groups. Such a theory manifestly breaks parity symmetry, i.e. the symmetry of
spatial inversions, which has been known to be violated by weak interactions [20, 21]. For each
chiral fermion field there exist three copies with identical quantum numbers typically referred to
as generations. The appearance of complete fermion generations is important in order to avoid
gauge anomalies which can spoil the underlying gauge symmetry [22]. Assuming the gauge
symmetry to be local requires spin 1 particles called vector bosons to be added in addition.
These fields mediate interactions between particles which are both charged underneath the same
gauge group. Lastly, one adds a scalar field to the theory which is charged under SU(2),®U(1)y
and whose vacuum state manifestly breaks this symmetry at low energies. The resulting full
set of fields including their transformation behaviour under the mentioned symmetry groups
are listed in Table 2.1.

2.1.1 Standard Model Lagrangian

The full Lorentz, gauge invariant and renormalisable! Lagrangian which can be constructed
using fields in Table 2.1 contains the following parts:

e Kinetic terms of the fermions do not only describe the propagation of the free fermion
fields but also contain their interactions with the gauge bosons through the gauge covariant

L To allow for a predictable theory which is valid at all physical scales, renormalisability forbids all interactions
with coupling constants of negative mass dimension.
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derivative D:

3
Efermions = Z Z Z'E’Y“D;ﬂﬂi, (21)
i=1 ¥,
. L0 5. 64 Y
J— . a . .
DM:8u+ng;GM2+sz;WM2+zgyB“2. (2.2)

Here, i € {1,2,3} iterates through all three generations while the sum over 1; runs
over the set {Q;,U;, D;, L;, E;}, which contains all Standard Model fermions of a given
generation. The prefactors gy, gr, and go in the covariant derivative correspond to the
gauge couplings of U(1)y, SU(2)r and SU(3)¢, respectively. The generators £ acting on
an SU(3) triplet field correspond to the eight Gell-Mann matrices and yield 0 otherwise.
Similarly, 64 are represented by the Pauli-matrices if acting on an SU (2) doublet and 0
otherwise. Finally, Y1) = Yy1p with Yy, being the U(1)y charge as listed in Table 2.1.

Gauge kinetic terms describe the vector bosons’ propagation and, in the case of a non-
Abelian group, also their self-interaction.

8 3
1 1 A a4 1
Egauge bosons = _Z Z GZVGMMG - 1 Z V[/:u,,V[/’w/7 - ZBMVBMV, (23)
a=1 A=1
3
A A A A
Wi, = W =, Wt —gr, Y APOWEWE, (2.4)
B,C=1
8
Gy, = 0,G8 — 0,G% —go > GG, (2.5)
b,c=1
B,uu = a,uBu - al/B,u- (26)
Here, eABC and f®¢ denote the structure constants of the non-Abelian gauge groups

SU(2) and SU(3) respectively. They are determined by commutators of the respective
generators, e.g. [t%, %] = 2i, fobeie,

The non-Abelian, non-chiral nature of SU(3) allows for an additional CP-violating term

2 8
g
Lcopy = —964—(;26#”%’0 > GG, (2.7)
a=1

Experimentally, it has been deduced to be very small due to the non-observation of an
electric dipole moment of the neutron, see e.g. Ref. [23]. As a result it plays no role in our
subsequent, collider focussed discussions and is only mentioned here for completeness.

The kinetic term of the SU(2)r ® U(1)y-charged Higgs field H also involves covariant
derivatives and hence couples the Higgs field to the gauge bosons. Furthermore, the Higgs
potential allows for a mass parameter and a Higgs self-interaction which are necessary so
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that the Higgs field acquires a non-trivial vacuum, see Section 2.1.2.

A
Chtiges = (D, H)'(DUH) — i HUH — Z2 (HUH)?. (28)

e Lastly, the assigned quantum numbers of the fermions and the Higgs field allow for the
following gauge invariant Yukawa couplings:

3
Cvuava == > (YI(LH)E; + Y (@QH)D; + Y (QH)U;) +he. . (29)
i,7=1

In this notation, we make use of the SU(2) conjugate field H¢ = ioo H*. Throughout
this thesis, when encountering products of SU(2) doublets A = (A1, A2), B = (B, B2)

they must be read as the gauge invariant combinations (ATB) = AIBl + A;Bg and
(A . B) = A]_B2 — B1A2.

2.1.2 Higgs Mechanism

The gauge symmetries and the associated quantum numbers have important consequences
regarding the masses of the Standard Model particles. First of all, a gauge symmetry generally
forbids mass terms %m%/VNV“ for the associated gauge bosons. Additionally, assigning different
quantum numbers to the chiral components fr, fr of a fermion f automatically forbids Dirac
mass terms of the form

m? fofr+he. . (2.10)

Furthermore, a gauge invariant Majorana mass term

my fofi +he or my frff+he (2.11)

would require at least one of the two chiral components to be a complete gauge singlet, a
condition which none of the fermions in Table 2.1 fulfills. Hence, no valid mass terms can be
written down for any of the Standard Model fermions and hence under unbroken Standard
Model symmetries are also predicted to be massless.

The masslessness of all fermions and vector bosons however is in clear disagreement with
experimental observations e.g. from the measured mass of the top quark [24] and the Z boson
[25]. For that reason, this symmetry must be broken at low energy scales. However, in order to
not spoil the advantageous theoretical features of a gauge symmetric theory, a situation where
the symmetry is restored in the ultraviolet limit would be highly appreciated.

In the Standard Model, this is achieved by adding the scalar field H to the theory [7]:
Assuming u%{ < 0,Ag > 0 for the parameters in Lyiges, a potential as depicted in Fig. 2.1
emerges. Here, the full potential is invariant under the considered gauge symmetry group,
however the state H = 0 does not correspond to a state of minimum energy. Thus, the Higgs
field chooses one of the degenerate vacuum states with (H) # 0. For low energies and small
fluctuations of the field around this vacuum state, the symmetry appears to be broken even
though the full theory is still gauge invariant. Such a spontaneosly broken gauge symmetry
allows for massive vector bosons while still keeping the theory renormalisable at all orders [26].
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Figure 2.1: Sketch of the Standard Model Higgs potential. Shown are two orthogonal directions of the
complex Higgs field, e.g. Re(H) and Im(H), and the resulting value of the potential in Eq. (2.8) for
p3 < 0, Ay > 0. The set of possible vacuum states, i.e. the states with the lowest energy, are depicted
as the black circle.

Let us discuss the consequences of this in more detail. First of all we define the vacuum
expecation value (vev) v = (H) of the Higgs field. For v to indeed be the minimum of the
potential, the following minimisation condition has to be fulfilled by the parameters in Eq. (2.8):

2u3; + Agv? = 0. (2.12)

We can use this condition to trade the parameter ,u%[ in the Standard Model Lagrangian for
the more physical parameter v.

The CP-even scalar Higgs particle h(z) can be written as the fluctuation of the Higgs field
around its vacuum expecation value?

0
H@) =, L (2.13)

with real-valued v. In this notation we have used the gauge degrees of freedom? in our theory
to specifically set the vacuum state to have the form depicted in Eq. (2.13).

By choosing this vacuum state we must not spoil the U(1)gy symmetry of electromagnetism.
Otherwise the photon as the associated vector boson of that group would gain mass in contra-
diction to experimental observations, see e.g. Ref. [29]. Hence, breaking the symmetry should
yield an unbroken U(1)gm generator Q such that the choice of the vacuum in Eq. (2.13) is

invariant under the transformation H — e_ieQH . It can be derived that

PR 4

Q=13+ 5 (2.14)

4

is the correct choice for this unbroken generator®. Here, T3 returns i% for the upper/lower

2 Here and in the following, we occasionally write fields like h(x) with explicit spacetime argument to distinguish
these from parameters like v. We typically do this during discussions of vacuum expectation values and mass
terms. It is however always assumed that fields are spacetime-dependent objects even if not explicitly written.

3 The gauge in which H takes the form of Eq. (2.13) is called unitary gauge [27]. Tt has the advantage that no
Goldstone bosons [28] have to be considered within calculations as these are fully absorbed in the definition
of the gauge bosons.

4 1In fact, the vacuum in Eq. (2.13) has been chosen on purpose in order for the generators Q,T3 and Y to
reproduce the Gell-Mann-Nishijima formula [30], known from early baryon spectroscopy, in Eq. (2.14).
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component of an SU(2)y, doublet and 0 for a singlet.
With this choice of the U(1)gy generator, the corresponding decomposition of the other
fermion multiplets after electroweak symmetry breaking results in

Qi = (uLZ> . L= (VL’Z) , Ui=ugi, D;=dgr;, LE;=c¢epr;. (2.15)

dr; er,

In the four-component notation we use throughout this thesis, the chiral components uy ;, ur;
are related to the full Dirac spinor u; via ur; = Pru; and ugr; = Pg.

2.1.3 Masses and Mixings

Due to the vev v, mass terms for gauge bosons, fermions and the Higgs particle itself emerge
through the respective Higgs couplings in Eq. (2.8) and Eq. (2.9). The relevant terms read

1 1 1 1 _
Lomass terms :Zg%/UQB#B“ + Zg%vzwjmﬁ’w - ingvaijB“ + §g%v2WjW p
3
1 y g o
— QAHUZfﬂ — Z (Ye”vEL’ieRJ + YJJUHLJURJ + Y;j’udL,idRJ + h.C.), (2.16)
ij=1

where we have defined Wﬁt = (W/} + zWi) /V/2 as eigenstates of the charge operator with
eigenvalues +1, respectively.

First of all we can immediately read off the Higgs boson mass as m}% = Agv? and the mass
of the charged W boson as m%/v = % g%vQ. The remaining two vector fields WS and B, however
mix due to the presence of a bilinear WgB” term. Diagonalising the resulting mass matrix
yields a massive eigenstate Z,, = cos QWWS — sin@w B, with mass m% = (g% + g#)v? and
a massless orthogonal photon A,. The associated Weinberg angle Oy is given by the relation
cos Oy = my /my.

In the Yukawa sector of Eq. (2.16) one finds that expanding H around its vev yields Dirac
mass terms for the fermions. We use bi-unitary transformations to redefine the left- and right-
chiral fermion fields in family space in order to diagonalise the Yukawa matrices Y , Y, , Y,
This yields nine eigenvalues v, = {ya,ys, o}, ¥i, = {Yu>Ye:ye} and Y& = {ye,yu,y-} and a
diagnoal fermion mass sector

3
Lfermion masses = — Z (?JZU”LTZUZ + yévjzdz + yé”@'%) (217)
=1

with fermion masses my = ysv for f € {e, u, 7,d,u,c, s,b,t}. Since the Standard Model contains
no vg,; field, neutrinos are predicted to be massless and thus my = 0 for f € {ve, vy, v}

The above bi-unitary rotations into mass eigenstates do not affect the family diagonality of the
neutral interactions in Eq. (2.1). Those contain terms of type Z, >, (AfLiV* fri + Bfriv" fr.
with family-independent prefactors A and B which only depend on the gauge quantum numbers
of f. Thus, the interaction stays diagonal under basis rotations of fr; and fr;. This GIM-
mechanism [31] is another appealing consequence of the family structure of the Standard Model
as it strongly suppresses flavour-changing neutral currents in accordance to experiment, see e.g.
Ref. [32].

However, this does not necessarily hold for the charged gauge interactions. These couple

10



2.1 Introduction to the Standard Model

to fermion currents ), Efy“ fr,; with different fermions fil and fr,; which typically undergo
different rotations in the Yukawa sector. For leptons it is still possible to simultaneously di-
agonalise both mass and gauge sector. This is thanks to the massless neutrino sector which
provides sufficient degrees of freedom to choose the neutrino basis vy, ; to diagonalise the charged
current. In the quark sector, however, a simultaneous redefinition of the up- and down-type
quark fields to diagonalise the mass sector fixes the basis and leads to a family-nondiagonality
in the charged gauge sector. Thus we find

3 3
['charged current :Wui ( Zng’Y'uVL,i + Z gLV(Zj]KMuL,i/Y'udL,j>- (218)
=1 i,j=1

The resulting Cabbibo-Kobayashi-Maskawa (CKM [33]) matriz VéJKM contains the last four
physically observable parameters of the Standard Model, namely three mixing angles and a
CP-violating phase.

After rotating all fields in Egs. (2.1), (2.8) and (2.9) into the above derived mass eigenstates
all possible couplings of these states can be determined. We do not provide a full list of all
these interactions here but refer to Ref. [34] where an exhaustive list of all Standard Model
Feynman rules can be found. For the upcoming discussion of possible extensions of the Higgs
sector in Section 2.2, let us however list the coupling of the Standard Model Higgs boson to all
other Standard Model particles here:

\@m%{/ _ m2Z myg o =
Lrismysm) = — AW F W™ + EhZuZ“ -3 Eh ff. (2.19)
f

2.1.4 Accidental Symmetries

The above described gauge symmetry is a fundamental symmetry of the theory which is re-
spected by quantum effects due to the absence of anomalies. We defined the Standard Model
field content and the corresponding quantum numbers in Table 2.1 in such a way that the
resulting interactions in the Lagrangian reproduce experimentally observed features like e.g.
fermion masses and parity violating weak interactions.

The allowed terms in the Standard Model Lagrangian however show additional Abelian sym-
metries which result from imposing renormalisability in conjunction with the field content and
their associated quantum numbers. These accidental symmetries are baryon number U(1)p
which associates 1/3 to Q;,U;, D; for i = 1,2,3 and 0 to the rest and lepton family number
U(1)r, which associates -1 to L;, E; and 0 to the rest. Note that the latter is conserved family
wise due to the massless neutrino and the resulting complete diagonalisability of the lepton sec-
tor. It is trivially related to the family-independent lepton number defined as L = L1+ Lo+ Ls.

A phenomenological consequence of baryon number conservation is the stability of the lightest
baryon, i.e. the proton. This is in agreement with experimental lower limits on the proton
lifetime, e.g. 7o+ x > 8X 1032 yrs [35]. Also, lepton flavour violating processes in the Standard
Model like @ — ey are both expected [36] and observed [37] to occur very rarely and thus favour
a family-wise conservation of lepton.

Due to anomalies, these global symmetries are however not protected from quantum effects
and are in fact violated by higher order effective operators [38]. As an example, the Weinberg

11
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operator
Cii ~—
L:Weinberg = %(LzHC)(HTLj) (220)

is a dimension 5 operator which violates U(1)p, /i by one unit each and could give a Majorana
mass term to neutrinos after electroweak symmetry breaking. Alternatively, the dimension 6
operator [39]
C;jklic e

£prot0n decay — FUZ UjDkEk (2.21)
would allow proton decay. However, these effective operators are suppressed by a heavy scale
A and thus if this scale is sufficiently high, at the Planck scale of 10'® GeV for instance, they
would not lead to any observable effects.

Since these accidental symmetries are a byproduct of the symmetries and field content of the
Standard Model, they can easily be violated as soon as one or both are changed. This typically
allows for tree level proton decay operators which then have to be suppressed by other means
in order to not be in conclict with experimental results. We encounter such a scenario later in
the discussion of R-parity violating supersymmetry in Section 2.4.3.

2.1.5 Hints for Physics Beyond

Even though the Standard Model is very successful in explaining various experimental obser-
vations, we have reason to believe that it is just an effective version of a more complete theory
of Nature. Those reasons originate from e.g. the mismatch of a predicted massless neutrino
sector and observed neutrino oscillations [40], discrepancies of predicted [41] and observed [42]
anomalous magnetic moment of the muon, the absence of sufficiently large CP violation in order
to explain our Universe’s observed baryon asymmetry [43] and conceptual problems of adding
gravity to the quantum field theoretical framework [44]. T'wo more of these issues which serve
as an important motivation for the models analysed within this thesis are discussed in slightly
more detail in the following.

Lack of Dark Matter Candidate

Various measurements of the total matter density in our Universe, from velocity distributions
of stars observed by J. Oort in the early 1930’s [45] to precice modern measurements of cosmic
microwave background fluctuations by the Planck sattelite [46], suggest that the total matter
density of our Universe is significantly larger than what can be explained by only baryonic
contributions from Standard Model particles. We write 2x as the ratio of the mass density of
X normalised to the critical density which would lead to a Universe with no global curvature.
The most recent fit of the Planck collaboration results in the following values for the total
matter density €2, and its contribution from baryonic matter {2:

Q,,, = 0.3089 =+ 0.0062, (2.22)
€, = 0.0486 == 0.0003. (2.23)

The surplus of matter responsible for the difference Q. = Q,, — €2 is usually associated to
cold dark matter. The typical explanation, see e.g. Ref. [47] for a short review, involves the
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postulation of one or more new massive particles which only interact weakly with the Standard
Model and which hence are often refered to as WIMPs (Weakly Interacting Massive Particles).
Since ), typically decreases for larger dark matter annhilation rates, see e.g. Ref. [48], a rather
weak interaction strength is required as otherwise the resulting reduction of €2, would be too
large to account for the observed value.

An astonoishing coincidence, commonly refered to as the WIMP miracle, is that the annihi-
lation cross section of the order of the Standard Model electroweak interaction is approximately
of the correct scale for a dark matter candidate to yield the correct value for €2.. In that specific
case, the dark matter candidate must not be lighter than 2 GeV as otherwise the contribution
from €. would lead to a total value of 2 which exceed the critical value and lead to an un-
observed closed Universe [49]. This Lee- Weinberg bound on the mass of a cold dark matter
candidate, i.e. a particle with typically at least GeV scale mass, is typically model-dependent.
The exact rates of WIMP-Standard Model interactions have to be calculated to determine the
proper bound for a given model, see e.g. Ref. [48]. Possible candidates for such a particle
are introduced in upcoming Sections 2.2 and 2.3 and in the second case we also discuss the
corresponding Lee-Weinberg-bound.

Note that we assume the dark matter candidate to be cold, i.e. it is non-relativistic by the time
the expansion rate of the Universe overcomes the interaction rate of WIMPs with the Standard
Model bath. Any new particle species which is very light and thus relativistic is called hot dark
matter. These additional relativistic particles would play an important role for the thermal
evolution of our Universe and experimental observation, e.g. from Big Bang nucleosynthesis
[50] and structure formation [51, 52], put strong upper Cowski-McClelland bounds [53] of the
mass of such particles at the eV level. Such a light dark matter candidate typically cannot
account for the full value of 2. and thus additional cold dark matter would be necessary to
solve the dark matter puzzle.

Hierarchy Problem

The Higgs boson is the first, and so far only, fundamental scalar particle which has been
experimentally observed. Its mass has been determined with relatively good precision to be close
to 125 GeV [54] and hence to be close to the electroweak symmetry breaking scale, represented
by the size of myy and mz.

However, on theoretical grounds such a value for the Higgs mass appears somewhat unex-
pected. This is due to the fact that we know that the Standard Model does not account for
gravitational effects and hence has to be replaced by a more complete theory of Nature at the
scale Mplanck = (’)(1018 GeV) at the latest. The expectation of a physics scale A much larger
than the electroweak symmetry breaking scale is in strong disaccord with a small Higgs mass
[55, 56]. To illustrate this, let us consider a toy model taken from Ref. [57] which contains the
Standard Model Higgs field plus a heavy scalar S with mass mg and/or heavy chiral fermion
Fp,/r with mass mp. Possible interactions with the Higgs field H then read

—Lheavy = Asu|SPIH + (AFH?LFRH v h.c.) (2.24)
1
V2

where we expanded the Higgs field around its vev in step 2 and assumed that all couplings are
real. The resulting 1-loop effects to the Higgs boson mass m% are illustrated in Fig. 2.2. The

1 _ _
= Asuv?|S|? + V2vAsu|S|*h + §ASH|S\2h2 + ArgvFF + —AppgFFh,  (2.25)
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correction 5m% to the Higgs mass is then approximately given by the corresponding amplitudes
;1 (q) in the limit of vanishing external momentum®

d*k 1 2m?2
115, (0) = —2)7 F 2.2
il (0) )‘HF/ (2m)2 <k2 —m2 T (k2 _m%)2> ’ (2.26)
d*k 1 1
e . 2
ill;, (0) = AsH/ o <k:2 —2 + 2\sgv = m%)2>. (2.27)

As it often occurs in quantum field theory, these amplitudes diverge if the full phase space
integral d*k is considered. In a proper renormalisation procedure, these divergencies are first
extracted by using a well-defined regulator and afterwards absorbed by unobservable counter
terms. In the commonly used dimensional regularisation approach [58], the above 4-dimensional
integrals are analytically continued into 4 — ¢ dimensions with € > 0. To keep the physical mass
dimension of the above integrals, d*k is replaced with d%k ¢, with g being a dimensionful,
auxiliary renormalisation scale. The above results can then conveniently be written as

: 2y

i1, (0) = —ZHE (Ao(m) + 2mi Bo(0, mi m#) ) (2.28)
. ix

i115,(0) = T2 (Ao(m?) + 2\ usv® Bo(0, m, m3) ). (2.29)

using the Passarino-Veltman functions [59]

2\ _ (2mp)° d 1
Ap(m?) = P /d ka o (2.30)
2 2 2\ _ (2mp) d 1 1
By(g°,m{,m3) = P /d k:kz R T g (2.31)

These functions contain terms which diverge in the ¢ — 0 limit but which are removed from
physical observables during the renormalisation procedure. The resulting finite terms depend
on the exact used renormalisation scheme. In the dimensional reduction (DR) scheme [60], for
instance, the renormalised result is given by [61]

2

m
Ao(m2)ﬁ ren. m2 (1 - IOg ?)7 (232)
2

m
By(0, m2, mQ)DfR ren, = — log F’ (2.33)

and thus the renormalised amplitudes become

. i\ m?
Zth (O)D7R ren. 8711_'15 (m%—' — 3log 75)7 (234)

5 The precise mass correction would have to be determined by finding the root of ¢> —m3 —Ixn(¢?). However, for
the discussion of arising divergencies we pursue here, the leading term ITpp,(¢%) = IIn,(0) + O(q?) is sufficient
to look at.
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Figure 2.2: Next-to-leading order corrections to the Higgs mass from the fermion F' in (a) and the heavy
scalar S in (b) and (c) for the toy model discussed in Section 2.1.5.

: 2
1S, (0) 5 o, = %’g (mg — (m% + 2\ y5v?) log ”Lg) (2.35)
m M
One finds that both the scalar and the fermion leads to quadratic corrections to the Higgs mass
of the order 5m,2l = (’)(m?g, m%) Since mg or mp are physical scales of particles associated to
some high scale physics, we would expect any kind of new physics appearing at scale A to drive
the Higgs mass to order A itself. Even though we do not know the actual high scale physics
yet, we would expect it at a scale Mgyt = O(10'°) GeV or even Mppana = O(1018) GeV. It
seems very unlikely that, despite the large corrections this would imply on m,%, the resulting
observed value for the Higgs boson mass would be O(102) GeV. This hierarchy problem can
only be solved if there exists a mechanism which ensures that these corrections are small. We
discuss such a mechanism in Section 2.3.

2.2 Higgs Portal Extension

As explained in Section 2.1.5, a reasonable extension of the Standard Model which is supposed
to explain WIMP dark matter should contain particles which only interact weakly with the
Standard Model. Since matter within the Standard Model mostly couples via gauge interactions
mediated by the W*, Z and ~ bosons, one easy way to ensure a naturally small interaction rate
is to only add particles to the field content which are uncharged under the Standard Model
gauge group. We call this set of particles, and possible additional mechanisms that come along
with them, the hidden sector.

This hidden sector might contain interesting physics beyond the Standard Model in order to
explain the value of .. One of the earliest discussions of such a model can be found in Ref. [62],
where the hidden sector only contained a scalar field .S being the dark matter candidate. Since
then, countless studies with various manifestations and implications of the dark sector have
been performed. Two summaries of hidden sector models can be found in Ref. [63] and we
provide more detailed references which are relevant to our work at the appropriate places in
Chapter 5. The results of the following discussion regarding the particle content and interaction
pattern of such a setup is rather universal and can hence be found in any of the references.

In our case, we consider a hidden sector which contains a scalar Standard Model singlet S
which is charged under a hidden gauge group U(1)x with a massive gauge boson Z}/L being the
dark matter candidate. This gauge boson gains its mass by spontaneously breaking the hidden
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Field Lorentz repr. SU@3)c repr.  SU(2)f, repr. U(1)y charge  U(1)x charge

H scalar singlet doublet 1 0
S scalar singlet singlet 0 1
Qi left-chiral triplet doublet 1/3 0
U; right-chiral triplet singlet 4/3 0
D; right-chiral triplet singlet —2/3 0
L; left-chiral singlet doublet -1 0
E; right-chiral singlet singlet -2 0
Gy, vector octet singlet 0 0
Wf vector singlet triplet 0 0
B, vector singlet singlet 0 0
Z, vector singlet singlet 0 0

Table 2.2: Field content of the Higgs Portal, their representations under the Lorentz group, the Standard
Model and the dark gauge group.

symmetry by assigning a vev to S. The Lagrangian of this theory is given by

A 1
Lhiaaen = (D,SN)(D¥S) — 5TS — Z2(878)* — L Fy, F*, (2.36)
D), = 9, +idqx Z,,, (2.37)
Fl, =08,2,— 0,7, (2.38)

where ¢x is the U(1)x charge of S. If S aquires the vev (S) = z the covariant derivative yields
a mass term mQZ, = 2§2q§(22 for ZL in close analogy to the W boson in the Standard Model.
Note that all observables we discuss in the following depend only on the product gqx, which is
why we can choose ¢x to be 1 without loss of generality. In Table 2.2 we list all fields of our
model and their respective quantum numbers.

As the Lagrangian in Eq. (2.36) is invariant under Z;L — —ZL, it can be understood that
no interactions with single Z’ fields exists. As such it is by construction stable and hence
renders a valid dark matter candidate. To explain the observed value of 2. there must exist
some interaction between the hidden sector and the Standard Model. By constrution, the gauge
singlet S does not interact with the Standard Model fields via gauge interactions. Moreover, the
quantum numbers of the Standard Model fermions are such that no renormalisable Yukawa-like
interaction terms with S is allowed by gauge and Lorentz symmetries. Therefore, such a setup
automatically renders the hidden sector decoupled from the Standard Model fermion sector.

However, there exists a gauge invariant combination H'H of the scalar Higgs field of the
Standard Model which allows for one renormalisable interaction term® with the hidden Higgs

% For completeness, it should be noted that in the above setup another interaction between the two decoupled
sectors would be allowed, namely gauge kinetic mixing €F, l“,B‘“’ between the gauge bosons of the dark U(1)x
and the Standard Model U(1)y [64]. In general, if this term is set to zero as a boundary condition at any chosen
scale, quantum corrections reintroduce it at any other scale. However, since none of our fields is charged under
both gauge groups, see Table 2.2, no 1-loop corrections are expected, see e.g. Ref. [65]. Even if fermions were
present in our dark sector, a correction to F},, B*” would not happen before three-loop order in perturbation
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field S:

Lomix = —AgsHTHSTS. (2.39)

From the Lagrangians in Egs. (2.8), (2.36) and (2.39), the combined scalar potential of S
and H can be determined to be

As

A
Vvscalar = M%IHTH + M%STS + TH(HTHF + Z(STS)Q + )‘HSHTHSTS7 (240)

where all products of fields are Hermitean which implies that all parameters are real by con-
struction. Choosing the vevs as (H) = v, (S) = z, it follows that if both 2Aggu% — Agu?; and
2Amspd — A H,u?g are positive the following two minimisation conditions for v, z # 0 emerge:

2/1%{ + )\Hv2 + 2>\HSZZ =0, (2.41)
2u? 4+ Agz® + 22 gsv® = 0. (2.42)

Again, these conditions can be used to replace ,u%{, u% by v, z in the following discussion.

After expanding” the two scalar fields

1
S(z)=z+ ﬁso(x), (2.43)

0
H(z) = (U ca ($)> , (2.44)

we find that Eq. (2.39) induces a non-diagonal bilinear mixing term 2\ ggzvs®(z)h"(z). Thus,
to obtain the mass eigenstates of our model we have to diagonalise the mass matrix

(2.45)

A v? 2)\[-[5112’)
2 )

M z),s0(z) —
ho(),s0() (2)\[{5’02’ Agz

which yields 2 CP-even mass eigenstates h(z), H(z). These are admixtures of the two scalar
fields h0(x), s%(z)
h(z) _ (:f)sa —sina'\ [h%(z) (2.46)
H(x) sin v cosa ) \ s¥(x)

1
Mg = 5 [(AHU"’ +As2) F \/ (As2? — Agv?)? + 16)%5221)2] (2.47)

with respective masses

theory. It would thus be sufficiently suppressed and still be negligible for our present study. For an analysis
of dark matter interaction via explicit kinetic mixing of a hidden vector boson with the Standard Model U(1)
we refer to Ref. [66].

7 We also assume unitary gauge in the U (1) x sector and fully absorb the Goldstone boson of S in the longitudinal
mode of the Z'.
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while the mixing angle « is given as

ANHgsVZ
tan(2a) = —————. 2.48
an( Oé) )\H,UQ _ )\52:2 ( )
In the decoupling limit Agg = 0 in this definition, h(z) corresponds to the Standard Model
Higgs field h%(z) where we retain the previous result m,zl = Agv? of Section 2.1. Thus if we
assume small mixing angles, the lighter of the two mass eigenstates behaves mostly Standard
Model like.

The parameter v ~ 174 GeV [67] is fixed e.g. by the observed gauge boson masses my, my,
whose predicted values are identical to the Standard Model. my, ~ 125 GeV [54] is the measured
mass of the Standard Model like Higgs boson. Since my = v/2§z fixes the hidden vev z for
a given gauge coupling and gauge boson mass, the four free parameters of this model can be
chosen to be mpy,sina, g and myz. The original fundamental parameters Agr, As, Ars, o, ts
and z of the model are then fixed by

1
Nt = 5o (1 iy + (i — ) cos(20) ), (2.49)
~2
rs =2 (mi +miy — (mip —mp) 008(204)), (2.50)
mz,
Gv/2
Ais = 47’2;; (m3; — mj) sin(2a) (2.51)

plus the above heavy gauge boson mass formula and the minimisation conditions in Egs. (2.41)
and (2.42).

One important consequence of this mixing in the scalar sector is the emergence of two particles
which are coupled both to the Standard Model and the hidden sector. As only the Higgs sector
mediates between these two otherwise decoupled regions, this feature motivates the commonly
used name Higgs Portal for this model. After rotating to the mass eigenbasis, the scalar
interactions of Eq. (2.19) in the Standard Model become

. \/§m2 _ m2 mye -
Lhya(sM)(SM) = (hcosa + Hsma) TWW:[W“ + fTZvZ#ZM — Z \[Tj;ff , (2.52)
f

whereas the couplings to the hidden gauge boson Z’ are given as
Lhigzz = (hsina—Hcosa)ﬁmZ/ZLZ’“. (2.53)

Another relevant operator for the upcoming discussion is the coupling which mediates decay of
the heavy scalar into two light scalars, i.e.

r 2’m,2I + m%{
Hhh — — _ =
2v/2v

We analyse the phenomenology of this model in Chapter 5.

sin(2a) <cosa + \/§§Usma> Hh?. (2.54)
my
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2.3 Introduction to General Supersymmetric Models

In Section 2.1.5 we derived the corrections to the Higgs mass m,zl via a heavy scalar with

mass mg and coupling kg(STS)(HTH) as well as a heavy Dirac fermion F with interaction
K F?LF rH + h.c.

. iN2 m2

iy, (0) = =255 (mfm — 3log 75) (2.55)
. INHS m2

illy, (0) = 1622 (m% — (m% + Apsv?) log M—QS) (2.56)

We argued how this is problematic as it requires a dangerous fine tuning between the observed
low scale value of mj, and the expected high scale correction via S or F.

However, the above example suggests that the dangerous quadratic corrections cancel exactly
in the special case mg = mp, )\%{ r = Ars and if there exist two mass degenerate complex scalar
fields S. Even though this might look like an artifically fine-tuned setup, it can fundamentally
related to a new symmetry called Supersymmetry [68, 69], or SUSY. The corresponding sym-
metry transformation rotates bosonic into fermionic states and vice versa such that the total
action stays invariant. This requires the number of bosonic and fermionic degrees in any su-
persymmetric theory to be equal and thus explains why, as required in the example above,
each massive Dirac fermion is associated with two complex scalars. Furthermore it requires all
associated masses and coupling constants for S and F' to be equal in order to create a super-
symmetric Lagrangian. From this it is easy to understand why mg = mp, )\%{F = Agg and
therefore the desired automatic cancelation of all quadratic Higgs mass corrections follows.

In the following, we provide a very brief summary of the most important steps to create a
supersymmetric Lagrangian. We follow the very good reviews in Refs. [57, 70], however will
consistently use four-component spinor notation as mentioned in Chapter 1.

2.3.1 Structure of General Supersymmetric Theories

Since bosonic and fermionic degrees of freedom cannot be distinguished in a fully supersym-
metric theory, they are only allowed to appear within full supermultiplets. One generally dis-
tinguishes between two main classes of supermultiplets:

e Chiral Supermultiplets ;I\D(:v) contain a complex scalar field ¢(z), a left-chiral Weyl-spinor
Y (z) and an auxiliary scalar field F'(z). They are typically used to describe chiral fermions
and/or complex scalar fields within a supersymmetric theory. The requirement of an
auxiliary field F' can be understood if one counts the number of bosonic (2 for a complex
scalar ¢) and fermonic (4 for a Weyl-fermion 1) off-shell degrees of freedom, which need
to be equal in a supersymmetric framework. The field F however has a trivial kinetic
term and thus can be easily integrated out from the Lagrangian. In the results we show
below, this integration step is already performed and thus we only show the resulting
interaction terms for the physical fields ¢, .

o Vector Supermultiplets ‘A/(x) contain a real vector field V,(x), a Majorana fermion A(x)
with A\ = X and another auxiliary scalar field D(z). As this multiplet contains real fields,
it is used to accomodate for gauge bosons which arise from real, adjoint representations
of gauge groups. The field D(x), just as F(x), can easily well be integrated out from the
spectrum which has also already been done in the following discussion.
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Supersymmetry Conserving Lagrangian

The Lagrangian of a supersymmetric theory can be constructed from the given set of super-
multiplets by following a particular set of rules. These can be derived from a more profound
mathematical description of supersymmetric fields and ensure gauge invariance, renormalis-
ablity and invariance under supersymmetric transformations.

A few words about notation: whenever we write ) 5 f(¢,¢), it is to be understood that

we sum over all chiral superfields din a given model and insert its constituents ¢ and ¢ into
f- Analogously, we understand ) o, gv f (V/f,)\“) as the sum over all vector superfields V¢
associated to the gauge groups of a model with coupling constants gy and generator index a,
respectively. Lastly, in Z‘A,a 5“1/1 the matrix * corresponds to the ath generator of the group

associated to V and corresponds to the representation of ¢ in that group.

e Kinetic terms including gauge covariant derivatives for all superfields are given as (see for
comparison Egs. (2.1), (2.3) and (2.8))

Lin =D (109" Dyts + (D) (D) ) + Z( VAV 2 Aaw#DHM), (2.57)

[ Va
Vi, =0,V = 0,V — gv Y fUVIVE, (2.58)
b,c

D, = (aﬂ +3 igVVj?“)¢, (2.59)
Va

Do = (aﬂ n igvv,ffa) &, (2.60)
Va

DA = 9N — gy Y NV (2.61)

b,c

Herea, f®¢ are the structure constants of the group which is associated to V.

e Supersymmetric gauge theories require more interaction terms than those hidden in the
covariant derivatives of the kinetic terms, namely

Lo = ZZ(—QQV)\G TZJ—f—hC)—fZgV(quT?agb)% (2.62)

e Renormalisable, gauge invariant interactions between scalars and fermions are formulated
by constructing a superpotential VV. This object contains all gauge-invariant products of
at most three chiral superfields, and can hence be generally written as

W= Zleﬁ)(I)CI)k—i—Z oy +ZL<I>Z, (2.63)
4,5,k

with y;;, and M;; being symmetric in all their respective indices.

20
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Given this superpotential, the Lagrangian can be constructed as follows:

ow|*

- 2.64
%, (2.64)

+h.c. | — ‘

= 5 ¢C¢J .
Here, i, j iterate over all chiral superfields and the derivative terms should be understood
as first taking the derivative of VW with respect to the superfield(s) @, /; and then, in the

result, replacing all superfields with the scalar component of the respective field.

Soft Supersymmetry Breaking Part

With the terms listed above, a fully supersymmetric Lagrangian can be constructed. From e.g.
investigating Eq. (2.64), one immediately finds that all particles in the same superfield have
identical masses. Unfortunately, this is in strong tension with experimental results as no scalar
particles with masses equal to those of the known quarks and leptons have been seen so far.
We therefore conclude that Supersymmetry, if realised in Nature, must be a broken symmetry.

There are various different ways to break Supersymmetry, see e.g. the review in Ref. [71].
The breaking mechanism should not spoil the features of Supersymmetry, most importantly its
solution to the hierarchy problem. As can be understood from our toy model in Section 2.1.5,
it is the appearance of operators with dimensionless couplings which leads to quadratically
divergent behaviour. Hence, we should only allow for so—called soft Supersymmetry breaking
terms i.e. additional terms to those in the previous section which explicitly distinguish between
components in a supermultiplet but which require dimensionful coupling constants. In general,

this would allow for the following additional terms in the Lagrangian®:

e The scalar components of all chiral superfields can have independent mass terms:

Lscalar mass = — Z mi@j ¢I¢] (2'65)

3,9,

Note that only combinations ®;, ®; with the same gauge quantum numbers are allowed
to have off-diagonal mil é; contributions as otherwise Eq. (2.65) would violate gauge
invariance.

e The fermionic components of each vector supermultiplet, typically referred to as gauginos,
can also have an independent, complex Majorana mass term

ﬁgaugino mass — Z <%m>\FPL)\a + hC) . (266)
Va

e Each allowed product of superfields in the superpotential yields an analogous product of

8 By pure dimensional arguments, additional allowed terms would be a mixed trilinear scalar term ¢} ¢; ¢, and —
in case of an Abelian symmetry — a gaugino-fermion bilinear term Aw;. However, even though they fulfill our
qualitative dimensionality argument, it can be shown that these typically do allow for quadratically divergent
corrections [72] and hence should not be included.
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the respective scalar field components with a dimensionful prefactor:

Lscalar interaction = Z AijrYijkdidjdr — Z BijM;jip; + Z CiLipi +hc. , (2.67)

i,5,k ,J i

where i, M;; and L; are the corresponding non-vanishing terms in Eq. (2.64) and thus
A;ji, and B;; are also required to be fully symmetric in all their indices.

Note that within a specific model for Supersymmetry breaking, e.g. via giving vevs to the
auxiliary F— [73] or D-terms [74], the above terms would be strongly correlated through the
respective underlying mechanism. However, if we are ignorant about the exact details of SUSY
breaking we should consider each possible of the above terms as a free parameter.

2.4 Minimal Supersymmetric Standard Model

To promote the Standard Model as defined in Section 2.1 to a supersymmetric theory, we have
to arrange the fields listed in Table 2.1 into full supermultiplets as described in the previous
section. This necessarily introduces one chiral supermultiplet for each Standard Model fermion
field. As an example, the SU(2); fermion doublet @ = (ur,dr) is now accompanied by a
scalar SU(2), doublet @L = (ﬂL,ch) and forms a chiral superfield @L- Since the rules in
Section 2.3.1 require chiral supermultiplets to contain left-chiral Weyl fermions only, Standard
Model fermion fields in Table 2.1 which were originially defined in the right-chiral representation
of the Lorentz group have to be conjugated before being promoted to a chiral supermultiplet.
As an example, the right-chiral SU(2);, singlet dp is translated into a superfield D¢ which
contains the charge conjugated fermion field D¢ = (d%,) and a corresponding conjugated scalar
field d%.

An important subtlety arises when trying to promote the scalar Standard Model Higgs field
H to a chiral supermultiplet: In Section 2.1, we shortly mentioned the anomaly freedom of
the Standard Model fermion sector. However, a chiral supermultiplet for H would introduce
a chiral fermion H to the field content which is charged under the gauge groups and which
would spoil the gauge anomaly cancellation. To avoid this, the contribution to the anomalous
amplitude has to be cancelled. This can be achieved by adding a second chiral Higgs superfield
with same SU(2)r representation but opposite hypercharge to the field content. These two
fields will be called ﬁu and I;Td from now on, for reasons which become apparent below.

The resulting supermultiplet content of this Minimal Supersymmetric Standard Model (MSSM)
is listed in Table 2.4. A valid superpotential which reproduces the Yukawa- and Higgs-sector
from the Standard Model is given as:

Waissm = M(ﬁu : ﬁd) + 23: [Téj (Ei ' ffd>f‘7§ + 1Y (@z : ffd>f7§- + 1Y (ﬁu : @z) ﬁf} (2.68)

Note the definition of SU(2)r products given in Section 2.1.1. With the prescription from
Section 2.3, it is straightforward to show that Whssm indeed reproduces the Yukawa terms of
the Standard Model in Eq. (2.9). The necessity of adding a second chiral Higgs superfield with
opposite hypercharge becomes also apparent here: without either H, or Hy, it would not be
possible to construct Yukawa terms for both up- and down-type quarks. This is a consequence
of the rules for supersymmetric Lagrangians which do not allow for the usage of H¢ = ioo H*
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Superfield Type SU3)¢ SU(2)L UQl)y
H u chiral singlet doublet 1
H d chiral singlet doublet -1
Qi chiral triplet doublet 1/3
U i chiral anti-triplet singlet —4/3
lA)f chiral anti-triplet singlet 2/3
fi chiral singlet doublet -1
Ef chiral singlet singlet 2
G\Z vector octet singlet 0
Wf vector singlet triplet 0
B, vector singlet singlet 0

Table 2.3: Superfield content of the Minimal Supersymmetric Standard Model and the respective trans-
formation properties under the Standard Model gauge groups.

as we did in the Standard Model. The MSSM hence shows the feature of a Two-Higgs Doublet
Model of type II [75].

Note that since the two scalar components of the Higgs fields generally acquire different vevs
v, and vy, we deliberately renamed the prefactors of the Yukawa couplings compared to the
Standard Model analogon in Eq. (2.9). The relation my = ysv shown in Eq. (2.17) has to be
replaced with my, = hy, v, and my, = hy,vqg with f, € {u,c,t}, fa € {d,s,b,e,u, 7} and hy,, hy,
being the corresponding eigenvalues of the above T matrices. Neutrinos, as in the Standard
Model, are massless.

In addition to all the terms which can be derived from the superpotential, the MSSM comes
along with a long list of SUSY conserving terms from the gauge covariant kinetic terms of all
fields in Table 2.4 and soft Supersymmetry breaking terms via Lgcalar masss Lgaugino mass and
Lscalar interaction- As we only require a handful of these in the later discussions we will not give
a full list here but mention those we need at the appropriate places. An exhaustive list of
all terms, before and after electroweak symmetry breaking, can be found in Ref. [76]. In the
following we concentrate on a few important aspects which will be of relevance in the remainder
of this work.

2.4.1 The MSSM Higgs Sector and its Problems

Similarly to the Higgs Portal scenario, the MSSM contains two scalar fields with a combined
scalar potential. However, the facts that both fields are charged under the gauge group and
that we have to consider a general softly broken supersymmetric model renders the calculation
slightly more complicated. For a very detailed discussion, see Ref. [77].

Following the rules of supersymmetric Lagrangians given in Section 2.3.1, this potential can
be found to contain the following terms

V(Hy, Hy) =|p*(|Hd)? + |Hgl?) from Lyy (2.69)

9 + 9%

TS

2 g2 2
(11 = 1HaP )+ 5|l

from Lgauge (2.70)
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+miy, |Hul* + m%{d | Hy)? from Lqcalar mass (2.71)

- (B,Uf(Hu : Hd) + hC) . from /:'scalar interaction (272)

Now both H, and H; acquire vacuum expectation values v, and vq, respectively. Similarly to
Eq. (2.13), we can expand both fields around their vevs. However, since we cannot use our
gauge degree of freedom to simultaneously set all Goldstone boson degrees of freedom to zero,
we do not fix a gauge yet and start with the more general form

[ vt () + i ) B i (2)
Halz) = ( i h; ()  Hul@) = Uy + %(hg(m) +1 ag(x)) - (273)

To simplify the discussion, we assume that all parameters are real and hence CP is conserved in
the scalar sector. Then, we can identify h. h; as electrically charged fields, hY, hg as C'P-even
and aY,al as CP-odd fields.

A similar calculation as done in section Section 2.1 shows that the gauge boson mass formulas
m% = %(g% + g2 )v? and my = %9%112 from the Standard Model are kept with the definition
v = v + 02 After inserting the expansions of H, and H, around their vevs into Eq. (2.72)
we can derive two minimisation conditions which have to be fulfilled to get a minimum with

Uy, Ud 7& 0:

2 2

9 +g

miy, + uf® + =7 (v — v) = Bucot B, (2.74)
2 2
9 +g

mi, + ul* + F 7 (0] — vy) = Butan B, (2.75)

where we define tanff = v, /vy as the ratio of the two vacuum expectation values. Using
these two minimisation conditions we can trade the parameters m%]d and m%]d for my — an

experimentally fixed quantity — and a free parameter tan 3.

Re-expressing the original Lagrangian in terms of these new parameters and the expanded
fields hg I hf/ 4 and ag Jd yields the following mass matrices for the CP-odd and the electrically
charged fields

9 B cotf 1
Ma%(@,a%(z) = Bpu ( 1 tan 3 ) ) (2.76)
1 cot 3 1
2 — Zm2 si .
Mhi(a:),hj(x) = (Bu+ 5w sm2ﬂ) ( | tang > . (2.77)

As both of these have vanishing determinant, they each contain one massless Goldstone eigen-
state G°, G* which serve as the longitudinal gauge boson modes. They can be obtained by
rotating the respective bases by a 5 dependent matrix, i.e.

Eg ) , (2.78)

Ex) ) : (2.79)

N———
|
)
=
—/
Q
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(2.80)

with R(f) = ( —sinf cosf )

cosf sinpf

This matrix will prove to be useful in the more complicated NMSSM case in Section 2.5. The
eigenstates A, H* orthogonal to the Goldstone modes correspond to new particles predicted by
the MSSM scalar sector and have tree-level masses

2Bu

2 _

— 2.81
A= T Gin2p’ (2:81)
mp+ = mA4 +miy. (2.82)

Both these additional particles decouple from the spectrum in the limit m4 > myz which we
henceforth call the decoupling limit [78].

With this definition of m 4, the mass matrix of the CP-even fields can be written in compact
form as follows:

M2 [ mLsin?B+micos? B —5(m% +m?)sin23 (2.83)
hi(@),hg(x) — —L(m%Z +m?)sin28  m?% cos® B+ m? sin? 3 .
2 Z A Z A
and its eigenvalues can easily be evaluated as
1
mi/H =3 (mi +m% F \/(m?4 +m%)? — 4m?%m? cos? 25) (2.84)

One can show, see e.g. Ref. [78], that the couplings of h to Standard Model particles approaches
the Standard Model result in the decoupling limit such that we can indeed identify h with hgy
in this limit. Then the masses in Eq. (2.84) simplify to

mi & m% cos® 23, (2.85)

m3 ~m? (2.86)

and we find the well-known peculiar upper tree level bound of m; < myz = 91GeV for the
lightest Higgs boson in the MSSM [79]. This bound did not exist in the non-Supersmmetric
Standard Model, see Section 2.1.3. The main cause for this is the appearance of a free quartic
coupling A|HTH|? in the Standard Model which can be used to scale the Higgs boson mass
mi = \v? arbitrarily within perturbative bounds. In the MSSM, however, this free parameter
is not permitted as neither a corresponding gauge invariant term can be formulated for the
superpotential W nor can it be put in Lecalar interaction @S it is not a dimensionful parameter.
Instead, the terms in Lgayge do introduce quartic couplings among the H, and H, fields with
however gauge-coupling dependent prefactors. As these are experimentally fixed, the above
limit arises.

At first sight, this upper bound seems to violate the observation of a Standard Model like
Higgs boson with mass 125 GeV at the LHC. However, so far we have only discussed the MSSM
Lagrangian at tree level. In a next-to-leading order calculation, the large Yukawa coupling h;,
see the discussion below Eq. (2.68), introduces sizable quantum effects to the above tree level
term due to top quarks and their scalar partners. In the limit where both ¢, fr have equal
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mass my > my, this correction reads’ [81]

3m4 my
2 t 14

With 3m/2x202 2 (70 GeV)? it follows that m;/m; should be approximately 5, or in other words,
we require scalar top partners with about TeV masses in order to reach the correct Higgs mass.

2.4.2 The Naturalness Problem of the MSSM

The requirement of sufficiently heavy scalar top partners to explain the experimentally observed
Higgs boson unfortunately leads to problems in the theoretical analysis of the Higgs potential.
To understand this, we have to go back to our minimisation conditions, Eqgs. (2.74) and (2.75).
Using the definition of m2Z we use these conditions to write

2

W(m%m - taHQ(ﬁ)m%u) = 2uf? (2.88)

my =
This condition requires the linear combination of three dimensionful parameters predicted by
Supersymmetry to yield myz, a dimensionful quantity which characterises the electroweak scale
Agw =~ 100 GeV. As the respective prefactors of the linear combination are all of order 1, we
would expect each individual term itself to be of order Agw. Otherwise, miraculous cancella-
tions of large numbers would have to take place in order to result in a small number, a situation
which is commonly refered to as unnatural for a theory and which we already disfavoured in
our discussion of the hierarchy problem in Section 2.1.5.

This condition play an important role for the discussion of heavy scalar tops if we embed
higher order corrections into our discussion. We do this again in a qualitative manner and
refer to Ref. [82] for more detailled results. Suppose Ag is the scale at which Supersymmetry
is broken and where the parameters are again chosen such that both ¢, have common mass
mj. Then, in the leading log approximation'? the corrections on mlzqu at the electroweak scale
Agw, which is the scale at which Eq. (2.88) should be evaluated, is given as

3m? Ag
2 ~ t 2
AmHu|?~ _47'('2'1)2 mt~ h’l(m) <293)

Furthermore, m; receives large corrections to O(a;) from heavy gluinos with mass mg. This

provides another important correction to the parameter m%{u which in the leading log approx-

9 This is a very qualitative result as e.g. typically the scalar top partners will not have the same mass due to
large off-diagonal elements in the mass matrix, see upcoming Section 2.5.4. For a review of more sophisticated
higher order Higgs mass calculations, see Ref. [80].

10 In the leading log approximation, the coupled system of renormalisation group equations

dX(Q)/d(In(Q)) = oY (Q), (2.89)
dY(Q)/d(In(Q)) = BX(Q) (2.90)
with known boundary values X (Qo),Y (Qo) is approximately solved via
X(Q1) = X(Qo) + aY(Qo) In(Q1/Qo), (2.91)
Y(Q1) = Y(Qo) + BX(Qo) In(Q1/Qo) (2.92)

instead of solving the exact coupled system of differential equations. The solutions are accurate for small «, 3.
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imation is given as

92 2
Am%{u}g ~ —Wasmg ln(—). (2.94)

Naturalness requires these corrections to be at most of order Agw themselves. This translates
into mass bounds on the relevant particles, typically of order m; < mg < O(1 TeV). In our
simplified discussion, when we compare Eq. (2.93) with Eq. (2.87), it seems almost impossible
to satisfy both conditions unless absurd values for Ag are chosen. A more careful analysis
including possible splitting in the stop sector, see e.g. Ref. [82], reveals that it is possible to
find natural values which yield the correct mass for my, which however yield a significantly
fine-tuned scenario often labelled as being subject to the little hierarchy problem [83].

Since mlzqd does not undergo equally large higher order corrections — the corresponding

Yukawa coupling Ay, is almost two orders of magnitude smaller than h; — there is typically no
naturalness problem associated to this parameter. As a SUSY conserving parameter, however,
|12 is neither related to Agw nor to Ag and thus a natural a priori value for this parameter is
even harder to explain.

In Section 2.5, we provide an elegant solution to these two naturalness problems by extending
the MSSM in such a way that the |u|-term is by construction of order electroweak scale and no
heavy SUSY partners for the top and gluon are required to get the correct value for my,.

2.4.3 Light Neutralinos, Dark Matter and RPV

Neutralinos and Charginos In the Standard Model the interaction mediators as spin 1
vector bosons, the matter fields as spin 1/2 fermions and the scalar Higgs field with spin 0 were
clearly distinct objects. In Supersymmetry, however, these individual fields with well-defined
spin have to be promoted into supermultiplets. This creates overlaps between the originally
separated groups of particles and can cause fields with the same quantum numbers to mix.

In the MSSM, the fermionic chiral supermultiplet partners hu, hd of the neutral higgs fields h,,
and hg mix with the fermionic vector supermultiplet partners W3 B of the neutral gauge bosons
I/V3 B,,. They form a set of four fermionic fields with spin 1/2, no colour and no electric charge.
After ertmg down all allowed mass terms in the MSSM, one finds the following nondiagonal
Majorana mass matrix in the basis B° = (B(z), W3( ), hu(2), ha(z)):

My 0 —my cos Bsinfy my sin S sin Oy
Migo = 0 ' M> my cos 3 cos By —my sin 3 cos Oy (2.95)
—my cos Bsin By my cos B cos Oy 0 — i
mysin Bsin By —my sin [ cos Oy — 0

Here, 8 and p are parameters of the Higgs sector as explained in Section 2.4.1. M; and Ms
are the soft SUSY breaking masses in Lgaugino mass of B and WA, respectively. Due to the
off-diagonal elements, the fields mix to four neutralinos 5(’(1) 12/3/4> where the indices 1 to 4 label
the lightest to heaviest mass eigenstates.

Similarly, the partners of the charged gauge bosons W and the charged higgs fields h, hy
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form conjugate Dirac fermion pairs (WJF, W‘), (%IJL; ) with a coupled Dirac mass matrix

B M, V2myy sin 8
M @) @) = ( Vmu cos 3 i : (2.96)

which upon diagonalisation yields two chargino mass eigenstates called %T/?

Depending on how the dimensionful parameters Mj, Ms and p as well as tan 5 are chosen,
various masses and mixing patterns can be created. If we for example check the determinant
of the neutralino mass matrix in Eq. (2.95)

det Mgo = p [mQZ sin 28 (M1 cos? Oy + My sin® GW) — MlMg,u] (2.97)

we find that as long as all parameters are real, this determinant and hence the mass of the
lightest eigenstate can be chosen arbitrarily small, down to ms = 0 [84]. Such an extremely

light neutralinos is very often required to be a mostly BY state. Otherwise, a light WO or KO
would often be accompanied by a light W+ or h*, as they depend on the same parameters p
and My, and thus would be excluded by lower chargino mass bounds of mg= 2 90 GeV [85].
Interestingly, it can be shown that in such a case there are no universal lower mass bounds on
the lightest neutralino [84, 86, 87].

It turns out that in most realistic MSSM scenarios the lightest neutralino is also the LSP
(lightest supersymmetric particle). To illustrate this, in Ref. [88] several million random param-
eter configurations in a 19-dimensional constrained MSSM setup were tested against various
theoretical and experimental limits from low-energy experiments and results from the LEP
electron-positron-collider. Only =~ 1% of the scanned models which passed all the considered
constraints contained a non-neutralino LSP. All SUSY-based models within this thesis will
hence always have a neutralino LSP.

Neutralino Dark Matter Since the neutralinos are admixtures of Higgs-like and gauge-
boson-like fermions, they typically couple to Standard Model particles with electroweak gauge
coupling strength. Furthermore, it can be shown — see also the discussion in the next paragraph
— that if the superpotential only contains the terms in Eq. (2.68) all interaction vertices
contain an even number of SUSY particles [89]. This automatically renders the LSP, which as
explained above is often the lightest neutralino, stable. In total, we hence find that | shows
all characteristic properties mentioned in Section 2.1.5 to be a potential candidate to solve the
dark matter puzzle. We refer to Ref. [90] for a detailed general review on Supersymmetric dark
matter and to Ref. [91] for updated statements on neutralino dark matter considering recent
results from the LHC.

As we already discussed in Section 2.1.5, in order to be in agreement with the observation of a
flat cosmological metric and results from structure formation, the MSSM parameter space must
be chosen such that the resulting mass spectrum and annihilation rates result are respectively
in agreement with the Cowskis-McClelland bound if the neutralino is light or the Lee-Weinberg
bound if the neutralino is heavy. It can be shown [84, 91-93] that this excludes the following
mass region for a light, stable neutralino dark matter candidate

0.7eV < mso < 24 GeV. (2.98)
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R-Parity Violation We constructed the MSSM superpotential in Eq. (2.68) in such a way
that it reproduces the known Standard Model Yukawa and Higgs interactions. As mentioned in
the previous paragraph, this automatically ensures that any SUSY interaction involves an even
number of SUSY particles which causes the LSP to be stable by construction. This statement
can be put in the context of a conserved discrete quantum number called R-Parity which can
be defined as [89, 94]

Rp = (—1)*PH+2, (2.99)

with L and B denoting lepton and baryon number (see Section 2.1.4) and s being the spin of
a given field.

If we followed the general rule of putting all gauge-invariant products of chiral superfields up
to order three into the superpotential, a careful investigation of Table 2.4 reveals the following
additional terms which would be allowed but which would violate Rp:

Wrpv = 23: Ki (ﬁu : Ez) + 23: Aijk (Ez : Ej)Eg

i=1 ij,k=1
3 R R R 3 A
+ 3 Na(Li-Qu) D5+ > Ny UsDiD; (2.100)
i,a,b=1 a,b,c=1

Note that due to gauge invariance, A;jr and A/, = are antisymmetric under ¢ <> j and b < ¢,
respectively. Also, since the two chiral superfields ﬁd and EZ have identical quantum numbers,
see Table 2.4, they can in fact not be distinguished in R-parity violating Supersymmetry and
thus the x; terms can be rotated away by a proper redefinition of those two fields [95]. We will
therefore not consider this bilinear operator in the remaining discussion. In text, we will refer
to the remaining operators as LLE, LQD and UDD.

A non-zero value for any of these parameters can severely change the phenomenology of the
MSSM. First and foremost, LLE and LQD violate lepton while U DD violates baryon number
conservation at tree level. As we discussed already for the Standard Model, see Section 2.1.4,
this might lead to inconsistencies with low-energy observables. A summary of bounds on indi-
vidual and products of the above couplings can be found in Ref. [96]. It turns out that these
limits are especially severe if more than one coupling is present at a time. As an example taken
from that reference, for a standardised sfermion mass value of 100 GeV'!, individual bounds on
A131, A132 are of order 10~! from measurements of I'(7 — ev¥)/I'(t — pvw) while the product
A131A132 is bound to be less than (’)(10*7) from measurements of the decay u — 3e.

One solution to easily avoid these constraints is to forbid all the above operators by adding
R-parity as an unbroken symmetry of the supersymmetric Standard Model. This is however
a very ad-hoc ansatz as there is no theoretical motivation why the laws of Nature should
obey R-parity [94]. Alternative solutions therefore only forbid a subset of the operators in
Eq. (2.100) and/or higher order effective operators, c.f. Section 2.1.4, e.g. via baryon triality
[97] or proton hexality [98], in order to avoid the strong constraints from proton decay but
keep the advantageous features of e.g. a lepton-flavour violating theory to allow for Majorana
neutrino masses [99].

1 This value is hardly viable in light of current LHC limits, but as both compared bounds scale equally with 7
our statement still holds for TeV sfermion masses.
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As soon as R-parity violation is present, the number of SUSY particles entering interaction
vertices is not necessarily even any more. An important consequence is that the LSP might not
be stable any more but can decay into a set of Standard Model particles. On the one hand, this
removes the solution to the dark matter problem and with that an important argument in favour
of the MSSM. On the other hand, however, it weakens bounds on long-lived heavy particles as
those on the neutralino in Eq. (2.98) and therefore re-opens potentially interesting regions in
parameter space. An important example which we investigate further in Chapter 7, is a lightest
neutralino which has mass of the same order as the Standard Model mesons, mg R 1—-5 GeV.
Then, interesting scenarios with long-lived neutralinos with subsequent mesonic decays can

occur which can be identified at long-baseline experiments.

2.5 A Natural Next-To-Minimal Supersymmetric Standard
Model

The Higgs sector of the MSSM yielded two apparent problems caused by naturalness arguments:

e A natural setup of the Higgs potential demands relatively light scalar top partners. How-
ever, these light particles typically do not raise the Higgs mass significantly enough beyond
the upper tree level bound of m% < mQZ via higher order correction, see Eq. (2.87), in
order to explain the observed mass of 125 GeV for the Standard Model like Higgs boson.

e From naturalness arguments one would furthermore expect the superpotential parameter
i to obey | ,u|2 = m2Z However, there is no theoretical reason why a Supersymmetry

conserving dimensionful parameter should be of electroweak scale order.

Both of these problems can be solved by extending the MSSM particle content by another chiral
superfield S. In analogy to the Higgs Portal!? | this superfield is assumed to be uncharged
under the Standard Model gauge groups and its scalar component is assumed to acquire a
vacuum expectation value z. Furthermore, all chiral superfields carry charge under an additional
discrete!® Zs symmetry which fordbids the appearance of any term in the superpotential with
less than three terms.

As will become apparent below, such a model is natural in the sense, see Section 2.4.2, that it
can accomodate for light higgsinos, third generation squarks and gluinos. Other sfermions and
gauginos, however, have no analogous expectation to be light which is why we consider a setup

12 Note that a large difference to the considered Higgs Portal model in Section 2.2 is the appearance of an operator
S3. Tt is needed in our following phenomenological discussion to get the right mass hierarchy and hence S
cannot carry an additional U(1)x charge as in the Higgs Portal case.

Care must be taken if a model obeys a discrete symmetry which is spontaneously broken by a particle which
is charged under the discrete group, see e.g. Ref. [100]. During the evolution of the Universe from high to
low temperatures, a phase transition should create separated regions in the Universe with different discrete
charges of the respective vacua. The resulting domain walls between these regions would drastically change the
cosmological evolution of the Universe and the observed fluctuations of the cosmic microwave background. For
the NMSSM, there exist various possible solutions, with however their own new problems in addition. To give
one example, the Zs symmetry could be broken at a high scale Anjgn close to the gravitational Planck scale
via 1/Amuign suppressed interactions which would be phenomenologically unobservable at low scales. These
would cause domain walls to be washed out very early by the inflationary Universe (for an introduction to
inflation, see Ref. [101]). However, it can be shown that such a scenario always introduces dimensionful tadpole
interactions for S of order Amign [102], which re-introduce naturalness and/or hierarchy problems if (S) is not
of order Anigh but of order Agw. For possible solutions, see Refs. [103, 104].

13

30



2.5 A Natural Next-To-Minimal Supersymmetric Standard Model

Superfield type SU(3)c SU(2)L Ul)y Zs

H, chiral singlet doublet 1 27/3
Hy chiral singlet doublet -1 27/3
S chiral singlet singlet 0 27/3
Qs chiral triplet doublet 1/3 21/3
Us chiral anti-triplet singlet —4/3 o /3
ﬁg chiral anti-triplet singlet 2/3 27/3
@ﬁ vector octet singlet 0 27 /3

Table 2.4: Superfield content of the natural Next-to-Minimal Supersymmetric Standard Model and the
respective transformation properties under the Standard Model gauge groups and the NMSSM Zs parity.

where these are decoupled from the experimentally accessible spectrum!*. We therefore restrict
the following discussion of the NMSSM only to the relevant light particles and the respective
parameters of interest. Most definitions and relations are taken from Ref. [103] and we refer
readers to this source and references therein for more information.

2.5.1 Natural Lagrangian

The above described natural NMSSM scenario can be described by the following reduced su-
perpotential

W = hy(Qs - Ha)US + hy(Qs - Hy) DS + M, - Hy)S + §§3, (2.101)

Here we alredy diagonalised the Yukawa matrices TiLj,Yg of Eq. (2.68) in family space and
only list the relevant eigenvalues hy, hy, for the top and bottom quarks, respectively. A and
are new, NMSSM specific parameters which describe the coupling of the singlet field to the two
Higgs doublets and the singlet self interaction.

Note that the assumed additional Zg symmetry prohibits the problematic MSSM term ,u(ﬁu
ﬁd). A vacuum expectation value of the scalar singlet (S) = z reintroduces this term after
expanding the scalar field S around its minimum:

—LD /\Z(Hu . Hd) = ,ueﬁ?(Hu . Hd). (2.102)

Since H,, Hy and S share a common scalar potential, see below, the vev z and therefore the
effective p term are naturally of electroweak scale order. Thus the py—problem of the MSSM as
discussed in Section 2.4.2 is solved by the spontaneous generation of pief.

In addition to the terms derived from this superpotential, the following dimensionful soft
SUSY breaking parameters have to be added to the Lagrangian of the theory:

~ ~ ~ 1 = ~
~Looe = miy, [ Hul® + miy, | Hal* + m3|S|* +mb |Qs[* +mf |US|* + miL | D[ + 5 MyGe G

14 This can easily be accomplished by setting the corresponding soft SUSY breaking mass terms to a scale of
several TeV.
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- (htAt(ég H)US + hyAy(Qs - Hy) DS + NAx(H, - Hy)S + gAHS?’ + h.c.) (2.103)

where we already assumed all couplings to be real-valued to simplify the discussion. Here, Ge
denotes the gluino field, i.e. the fermionic part of the vector superfield associated to the SU(3)
gauge group. All other fields denote the scalar component of the respective chiral superfield in
Table 2.4.

2.5.2 NMSSM Higgs Sector

The discussion of the MSSM Higgs sector in Section 2.4.1 has to be adapted to the appearance
of another scalar field S with vev z. In analogy to the Higgs Portal, the singlet nature of the
extra scalar field does not change the Standard Model gauge boson mass formulae and we end
up with m% = %(g% + g2 )i mi, = %g%vQ,v = v2 +v2 and tan 8 = v, /vy identically to the
MSSM. The combined scalar potential of H,, H; and S, however, now takes a slightly different
form

V(Hy,, Hy, S) = \(Hy - Hy) + £S?? + N2|S|2(|Hy|? + |Hgl|?) from Lyy

2 2 2
+ 2 2
+ % (\Hu|2 — |Hd]2) + %’HlHd’ from Lgauge
+m12‘Iu‘Hu|2 +m%1d|Hd’2 +m%’5’2 from 'Cscalar mass
1
— (MAN(H, - Hy)S — gnAﬂs?’ +h.c.). from Lgcalar interaction-  (2-104)

The minimisation conditions for the three vevs v,, v4 and z then read

2 2 200, WL+9Y) 2 o
myy, + Heg + AV + 1 (vy — v7) = (Ax — K2) pegr cot 3, (2.105)
2 2
_I_
qud + plg + A2 + W(vﬁ —v2) = (A) — K2) e tan B, (2.106)
mE + kz(2kz — Ag) + N2 (vfl +v2) = (A) — QKZ)AUdZUU. (2.107)

Comparing the first two of these to their MSSM analogues in Egs. (2.74) and (2.75) it seems
reasonable to define Beg = (Ay + k2z) similarly to the effective p term. Note that even though
both of these conditions contain additional contributions oc A? compared to the MSSM case,
they still can be combined to an almost identical version of Eq. (2.88)

— (qud — tan 8*m3; ) — 2u2g. (2.108)

The problematic |u|? contribution in the MSSM is replaced by the effective analogue in the
Zsz-symmetric NMSSM and thus, as z can be expected to be of same order as v,, vy, a more
natural scenario has been created.

As we did for the previous models, we can use the minimisation conditions to substitute
m%{u, mlzqd and m% with mQZ, tan 8, and peg. Furthermore, in the remainder of this chaper we
will substitute Ay = Bog + £z and z = peg/A as it simplifies the comparison with the MSSM,
more specifically with its parameters p and B.

We again start the discussion of mass eigenstates in the CP-odd sector. The combined mass
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2.5 A Natural Next-To-Minimal Supersymmetric Standard Model

matrix of all CP-odd components {a),aJ, al} reads

_/\/12 } 'Ud(Beﬁ')\ + 3/€,LLeff)
O |
Mooy @@y = | #Od@ Vu(Beid + 3kper) (2.109)
: %Uz Meﬂ( Beg — 3”#63) sin 25 + 34,5 3 Heff

with the 2 x 2 matrix in the upper left being the MSSM equivalent matrix of the two doublet-like
pseudoscalars

cot 3 1
Mig(z),ag(z) = Befipleft ( | tang ) : (2.110)

We find the same structure as in the MSSM analogue Eq. (2.76). Hence we can apply the
rotation in Eq. (2.80) to decouple the massless Goldstone boson mode. The leftover 2 x 2
submatrix of the MSSM-like pseudoscalar A and the singlet-like pseudoscalar a® reads

m124 v (%m%i sin20 + 3/€Meff>

N - (2.111)
Ak et + 5 12 stB 2mA s1n2ﬁ 3K floft

2 _
MiA(),a0(x) =

where we keep the MSSM definition'® m?4 = 2Begpter/ sin23. We therefore not only find
an additional mass eigenstate Ao compared to the MSSM but also a potentially large mixing
between the doublet- and singlet-like pseudoscalars determined by the size of the NMSSM
couplings A, k.

As the singlet field does not add new electrically charged particles, the charged Higgs sector
of the NMSSM has the same dimensionality as in the MSSM case. The mass matrix, however,
takes a slightly different form compared to Eq. (2.77)

1 1 cot 3 1
2 _ o2 VRV .
Mhi(x),hj(:p) = <Beffueff+ 5w sin 23 2()\1)) sin 2B> ( | tang ) (2.112)

and, in addition to the usual massless Goldstone mode, contains a charged scalar particle with
mass

mp+ =m?4 +miy — (Ow)? (2.113)

which is smaller than the corresponding case in the MSSM, see Eq. (2.82).
Lastly, expanding H,, H; and S around their minima, one gets the following symmetric mass
matrix for their CP—even components {hy, hg, hs} at tree level:

Lot (2AUy + KVg) — 2mA A —vy Sin 243
ueff(2/\vd + m)u) %miivd sin 26 (2.114)

5 Even though this quantity does not correspond to a physical mass any more, we continue to use ma to simplify
the following expressions. Note that in the original “decoupling limit” m4 > mz in fact only one eigenstate
of Eq. (2.111) decouples.
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with the upper h,, hgy submatrix

2 B m% sin? B +m? cos? B ()\21)2 — 5(m% + m,24)> sin 23 (2.115)
u(@),ha(z) ()\2 2 _ %(m% + mi)) sin 23 m% cos® B+ m? sin? B .

Compared to the MSSM case in Eq. (2.83), we find additional O(A\?) contributions which affect'¢
the lightest eigenvalue in the decoupling limit

my, ~ m% cos® 23 + (\v)?sin” 23 (2.116)

The peculiar upper tree level bound of the MSSM is therefore lifted due to the mixing in
the singlet sector. In the context of naturalness, this is a very fortunate effect as we do not
necessarily require large higher order corrections as in Eq. (2.87) and thus do not need heavy
third generation squarks. A full diagonalisation of Eq. (2.114) yields three CP-even mass
eigenstates which we refer to as h, H and Hs.

2.5.3 Natural NMSSM Electroweakinos

In the MSSM, we had four neutral and two charged fermionic partners of Higgs and gauge
bosons which mixed into neutralinos and charginos, see Section 2.4.3. In the NMSSM, the
fermionic partner S of the new singlet chiral superfields adds an additional neutral fermion to
the particle content which mixes with the MSSM neutralino sector due to the A operator. The
resulting 5 x 5 matrix can therefore result in an even more intertwined neutralino sector for the
general NMSSM.

However, as explained in the beginning of this chapter we are interested in a spectrum which
only contains particles which are necessarily light due to naturalness arguments. This constraint
does not affect the mass scale of the fermionic partners of the SU(2); ® U(1)y gauge bosons
such that we can easily decouple them by setting M;, M, the gaugino mass terms in Eq. (2.95),
to sufficiently high values.

The mass matrix of the remaining three neutral fermionic partners of the Higgs chiral super-
fields fields, ﬁg, i~L2 and 59, reads

0 — [Heff - A/Uu
Mig @) i o) = |~ 0 —Ava |- (2.117)
Ay —Avg 25 Het

As a natural peg value is of order myz, we expect the two higgsino-like neutralinos to have mass
close to the electroweak symmetry breaking scale. Furthermore, the stability of the vacuum with
non-vanishing vevs for H,, H; and S over the cosmological evolution of the Universe typically
requires k£ < A [106] and thus keeps the singlino-like neutralino mass also at scale peg. We thus
expect three neutralinos 5('(1),273 with masses of few O(100 GeV). As all off-diagonal elements are
proportional to the NMSSM coupling A, some sizable mixing can occur if this parameter is of
order 1. Alternatively, for small values of this parameter we end up with two mass-degenerate
higgsino-like neutralinos with mass ~ peg and one singlino-like neutralino with mass 2k /e

16 Clearly the formula in Eq. (2.116) is only to be understood qualitatively as we did not diagonalise the full
mass matrix Eq. (2.114) with its nonvanishing off-diagnal entries. However, the given statement regarding the
raise in my, holds also when taking the full matrix into account, see e.g. Ref. [105].
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2.5 A Natural Next-To-Minimal Supersymmetric Standard Model

With similar argumentation as above, the chargino matrix in the NMSSM is reduced due
to the possibility to decouple the fermionic W* gaugino. Hence, the remaining two charged
higgsino components combine to a single Dirac chargino ﬁc with mass term

1 o~
Lo = —§ueﬁ«hghd +h.c. (2.118)

and thus is expected at the same mass scale as the higgsino-like neutralinos.

To simplify the following discussion, we use the collective term “higgsino” (?L) for the two
higgsino-like neutralinos and the chargino. Furthermore, for the sake of simplicity, we use
“electroweakino” (x) collectively for all three neutralinos and the chargino, even though strictly
speaking s does not have any electroweak charge.

2.5.4 Strongly Interacting Particles of the Natural NMSSM

In the definition of our NMSSM superpotential Eq. (2.101) we alread put in the idea of only
considering the SUSY partners of gluon, top and bottom quark to be light as only those are
bound by naturalness arguments due to their large Yukawa coupling, see Egs. (2.93) and (2.94).
All other gauginos and sfermions are decoupled, e.g. by setting the corresponding soft breaking
mass terms in Eq. (2.65) high enough.

The tree level mass of the gluino, which we from now on refer to by its shorter name g, is
simply given by the soft SUSY breaking parameter M3 in Eq. (2.103). The relevant matrices
for the stop and sbottom tree level masses read

) m% +m? + %(3m2Z — 4m%/v) cos 2/ m( Ay — gt cot 3)
M2 = 3 ) s e . (2.119)
tr(z)tr(x) mi (A — pegr cot 3) mg, +mg — 3myy cos 23
3
) m%s + m% + %(Qm%/v - 3m2Z) cos 2/ my(Ap — e tan 3) (2.120)
br(z)br(z) my(Ap — per tan B) m%c + m% - %m%v cos2B |’ .
3

with eigenstates t; /2,51 2. Here, my = vy,hy,mp = vghy are the tree level top and bottom
quark masses just as in the MSSM. Due to the scaling of the off-diagonal elements with these
masses, the stop sector typically shows a larger mixing with a more apparent splitting between

the two mass eigenstates than the sbottom sector. Note that t;,b; originate from the same

SU(2) doublet and hence each scale with the same soft SUSY breaking parameter m% whereas

3
the corresponding right chiral components each come with individual m%c,m%c. In fact, from
3 3
naturalness arguments only, the sbottom mass parameter m%c is not bounded by Eq. (2.93).
~ 3
Often, the particle br is hence considered to be decoupled as well. However, in the analysis
pursued within this thesis, we will keep this parameter degenerate with the other soft third

generation squark masses m%_,m% , as we do not have any a priori reason why Supersymmetry

Us’ Qs
should introduce a big hierarchy between the two chiral bottom partners.

2.5.5 Final Remarks

Again, we only pursued a tree-level discussion of the masses and mixings in our simplified,
natural NMSSM setup. As we have already seen during the discussion of the naturalness

35



Chapter 2 Theories of Nature — The Standard Model and Beyond

problem in Section 2.4.2, the large values of the Yukawa coupling h; and the strong coupling
constant ag lead to sizable one-loop corrections to the tree-level values we listed before. For a
proper study, these should therefore be taken into account. As the singlet field .S only couples
to the Higgs fields the one-loop diagrams for electroweakino, squark and gluino masses are
identical in the NMSSM and the MSSM. An exhaustive discussion of the one-loop calculation
of the latter can be found in Ref. [107]. However, the scale dependence via the renormalisation
group equations does change due to the presence of the parameters A, k, Ay, Ax and can be
found for the NMSSM in e.g. Ref. [108].

For the Higgs sector, however, the MSSM result is significantly affected by the singlet con-
tributions already at tree level and therefore clearly have to be taken into account as well in
higher order calculations. Here, calculations require two-loop accuracy, see e.g. Ref. [109], in
order to reach a precision of O(few GeV). However, differences up to 8 GeV can arise simply
due to different approaches in the fixed order calculation, see Ref. [110]. As we discuss in Sec-
tion 3.1, there are various computer tools which can do the above calculations automatically.
We in particular make use of the programm NMSSMTools [111] whose features we discuss in
more detail in Section 6.3.1.

Note that also in a higher order calculation of the masses and mixings in our natural NMSSM
scenario, a given setup is fixed by specifying the parameters {\, s, Ay, A, e, tan 8, m%

) ) Qs’
mﬁg’ mﬁga Ata Aba MB}

2.6 Summary

In this chapter, we started with an introduction to the Standard Model of particle physics
and reasons why we believe it is not the full theory of Nature. We then briefly motivated and
discussed three interesting theories beyond the Standard Model:

1. The Higgs Portal model extends the Standard Model field content by a singlet scalar field
S which among all Standard Model particles only couples to the Standard Model Higgs
boson at the renormalisable level. The field S is connected to a dark sector which we
assume to contain the gauge boson Z’ associated to a dark gauge group which only S
is charged under. If S acquires a vacuum expectation value, the Z’ boson gains mass
and since it is stable could hence provide the dark matter candidate which is missing in
the Standard Model. In such a scenario, the singlet scalar would mix with the Standard
Model Higgs field and result in two scalar particles h, H which can both couple to the
dark sector and the Standard Model. This model is further discussed in Chapter 5.

2. The Natural NMSSM is an extension to the well-known MSSM, the minimal supersym-
metric extension of the Standard Model. The Standard Model like scalar boson which
results from diagonalising the two MSSM Higgs fields has an upper tree level mass bound
which seems inconsistent with the observation of a 125 GeV Standard Model boson at
the LHC. Higher order corrections due to heavy third generation squarks can raise the
mass to the observed value which however leads to an unnatural Higgs potential. The
NMSSM avoids this naturalness problem by adding another chiral superfield S, similarly
to the Higgs Portal, which can raise the Higgs boson mass already at the tree level due
to mixing effects. This can allow for naturally light third generation squarks and gluinos.
In addition, a natural effective p term leads to three relatively light neutralinos and one
chargino. We discuss the collider phenomenology of such a mass hierarchy in Chapter 6.
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2.6 Summary

3. During the supersymmetrisation of the Standard Model, R-Parity violating terms appear
which can easily violate experimental low-energy constraints as they violate baryon and/or
lepton number. However, various possible discrete symmetries can forbid one or more of
these terms in such a way that invidiual terms can be non-vanishing while not being in
conflict with existing bounds. An important difference to the MSSM is that the lightest
supersymmetric particle, typically the lightest neutralino, is not necessarily stable. This
allows for neutralino masses of the scale of Standard Model mesons which in the R-Parity
conserving MSSM would violate cosmological constraints. The observation of possible
phenomenological consequences of such a setup is discussed in Chapter 7.
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CHAPTER 3

Principles of Monte-Carlo Based
Proton-Proton Collider Phenomenology

>0 == 0

One insightful experimental method to test the models we have described in Chapter 2 is to
accelerate two elementary or composite particles to high energies and bringing them to collision.
This will result in either the same two particles simply moving in a different direction with
unchanged kinetic energy (elastic scattering) or — the typically more interesting case — in the
production of new final state particles (inelastic scattering).

According to the principles of quantum mechanics, given a state of fixed energy in the initial
state, there usually exists an infinite set of possible final states, each associated with a finite
and deterministic probability to be observed if the experiment is performed. By redoing the
experiment often enough, these predictable probabilities become measurable via the frequencies
with which certain final states are observed.

For a scattering experiment, these frequencies can be measured by counting the number N*P-
of experimentally observed final state configurations (events) which pass a well-defined set of
constraints (cuts). These cuts, as will be explained later within this chapter, typically select
events with a specific number of final state objects which pass well-chosen kinematic constraints,
usually designed to be sensitive to a particular class of models.

The analogous number N* can be derived from the theoretically predicted probabilities of a
final state to occur. Hence, comparing the two numbers tests the compatibility of the given the-
oretical model with experimental facts. This prediction N is always associated with an error
AN'™ which combines uncertainties arising from inaccuracies within the experimental setup
as well as potential approximations in the theoretical calculation. Therefore, the compatibility
test usually returns a continuous p-value which states the probability that the observation can
be explained within the uncertainties of the theoretical model. The acceptance range for this
probability can in principle be chosen at will, however a commonly used convention is to discard
a model if it returns a p-value of less than 5 %.

The calculation of the number of events N can be written in the following factorised form

Nt = §° (appﬁx x A(X) x e(X)) « L, (3.1)

final states X

with the cross section o for a given process X, the acceptance A, the final state efficiency e
and the integrated luminosity L. Except for L, which is a purely experimental quantity that is
fixed for a given dataset (for more information see Appendix A.1), the other numbers are highly
model-dependent and all need to be evaluated carefully to compare theory to experiment.
Within this chapter, we explain the meaning of these individual contributions and sketch
numerical methods based on Monte-Carlo simulations, i.e. simulations of representative finite
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event samples, to evaluate them. Since a significant portion of this thesis is related to the
creation of a computer tool which seeks to automise parts of this calculation, a particular focus
is put on the current status of other publicly available tools which help finding one or more
of the ingredients in Eq. (3.1). Afterwards, we illustrate the standard statistical method to
compare N to NexP-,

Parts of this chapter are based on excellent summaries of the topic in Refs. [112-115] and we
refer to these and references therein for further information.

3.1 Model Building and Interpretation

Finding Particles and Interactions In Chapter 2 we have seen examples for different par-
ticle physics models. Such a model is typically defined by a declaration of the symmetries of
the physical system, the set of fields the model is supposed to contain and how these fields
transform under the given symmetry groups. From that information, the most general, renor-
malisable Lagrangian can be constructed and all free parameters of the theory can be defined.
This sets up the mathematical framework of the theory and all its degrees of freedom.

However, in order to do phenomenological studies, the mathematical language of products of
fields within a Lagrangian must be translated into a set of particles with well defined masses and
a list of possible interactions with their respectice coupling constants. We already illustrated
the basic steps of this conversion within the examples of Chapter 2:

1. Given the field content construct the most general Lagrangian which is renormalisable’
and invariant under the assumed symmetries.

2. In case of spontaneously broken symmetries, minimise the potential and expand fields
around their vacuum expectation values.

3. Identify the mass eigenstates (particles) of the resulting theory by redefining fields such
that bilinear terms in the Lagrangian are diagonal.

4. Identify the interaction terms (Feynman rules) of these redefined particle fields.

LanHEP [117], FeynRules [118] and SARAH [119] are current state-of-the art tools which can
do the above calculations for in principle any quantum field theoretical model based on the
Lagrangian formulation. By providing a set of symmetries, fields and defining the corresponding
terms in the Lagrangian, these tools can determine the respective individual Feynman rules of
mass eigenstates in terms of the provided parameters. In the case of supersymmetric models,
SARAH can also work with the formulation of superfields and do the respective Lagrangian
decomposition. Results can be stored in the common universal file format (UFO [120]) which
consists of a set of files containing all necessary analytical information (particles, parameters
and vertices) to allow successive tools to calculate particle interactions given the parameters
provided. These files can be read by almost all the event generator programs described below,
thus enabling the user to choose the combination of tools which suits the given problem best.

! The renormalisability constraint can be relaxed in so-called effective theories. Here, higher dimensional op-
erators are allowed but by construction suppressed by a mass scale Acyinp at which new physics is sup-
posed to enter. Within the effective framework, sensible predictions can be made without knowing the
actual physics at Aczenvp. A very famous example is Fermi’s theory of beta decay [116] via operators of
type 42 & (Ay" Prp)(Dey* Pre). Those gave accurate predictions for energies below the new physics scale

extN P
Newtnp =~ Mw.
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# Input parameters
BLOCK MODSEL

3 1 # NMSSM particle content
10 # IMOD
10 0 # ISCAN
9 0 # Call micrOmegas
8 2 # Precision for Higgs masses
13 1 # Sparticle decays via NMSDECAY
14 0  # H-> VV,VVx, (VxVx)
BLOCK SMINPUTS
1 1.27920000E+02  # ALPHA_EM"-1(MZ)
2 1.16639000E-05  # GF
3 1.17200000E-01  # ALPHA_S(MZ)
4 9.11870000E+01  # MZ
5 4.21400000E+00  # MB(MB)
6 1.73100000E+02 # MTOP (POLE MASS)
7 1.77700000E+00 # MTAU
BLOCK MINPAR
3 2.00000000E+00 # TANBETA(MZ)

BLOCK EXTPAR

[...]
BLOCK MASS

# Mass spectrum
# PDG Code mass particle

25 1.21688763E+02  # lightest neutral scalar
35 1.97493947E+02  # second neutral scalar
45 5.44797841E+02  # third neutral scalar
36 1.10448059E+02 # lightest pseudoscalar
46 5.42139501E+02  # second pseudoscalar
37 5.35378526E+02  # charged Higgs

1000001 5.05113975E+03 # ~d_L

2000001 5.05097751E+03 # “d_R

1000006 4.97617385E+02 # “t_1

2000006 9.44627010E+02 # ~t_2

[...1

1000021 1.23549746E+03 # g

1000022 1.99078415E+02 # neutralino(1)

1000023 2.73162969E+02 # neutralino(2)

1000025 -2.73695857E+02 # neutralino(3)

[..

.1

1 9.00000000E+03  # M1 BLOCK LOWEN

2 9.00000000E+03 # M2 # Exp. 2 Sigma: 3.04E-4 < BR(b -> s gamma) < 4.06E-4:

3 1.00000000E+03  # M3 1 3.58336780E-04 # BR(b -> s gamma)

11 -7.30000000E+02  # ATOP 11 4.01784715E-04 # (BR(b -> s gamma)+Theor.Err.)

12 -7.30000000E+02  # ABOTTOM 12 2.95480186E-04 # (BR(b -> s gamma)-Theor.Err.)

13 -7.30000000E+02  # ATAU [...]

16 0.00000000E+00  # AMUON # 3*3 Higgs mixing
31 5.00000000E+03  # LEFT SELECTRON BLOCK NMHMIX
32 5.00000000E+03  # LEFT SMUON 11 4.59645551E-01 #s_(1,1)
33 5.00000000E+03  # LEFT STAU 1 2 8.87143833E-01 #5_(1,2)
34 5.00000000E+03  # RIGHT SELECTRON 1 3 4.12527148E-02  # S_(1,3)
35 5.00000000E+03  # RIGHT SMUON 2 1 1.16411265E-01 #5_(2,1)
36 5.00000000E+03 # RIGHT STAU 2 2 -1.06234307E-01 #5.(2,2)
41 5.00000000E+03 # LEFT 1ST GEN. SQUARKS 2 3 9.87503260E-01 # 5_(2,3)
42 5.00000000E+03 # LEFT 2ND GEN. SQUARKS 3 1 8.80439881E-01 # 5_(3,1)
43 1.00000000E+03 # LEFT 3RD GEN. SQUARKS 3 2 -4.49099200E-01 # 5_(3,2)
44 5.00000000E+03  # RIGHT U-SQUARKS 3 3 -1.52103663E-01 # 5_.(3,3)
45 5.00000000E+03  # RIGHT C-SQUARKS [...1
46 1.00000000E+03  # RIGHT T-SQUARKS # PDG Width
47 5.00000000E+03  # RIGHT D-SQUARKS DECAY 1000006 3.56161272E+00  # stopl
48 5.00000000E+03  # RIGHT S-SQUARKS # stopl 2-body decays
49 1.00000000E+03  # RIGHT B-SQUARKS # BR NDA D1 D2
61 6.50000000E-01  # LAMBDA 3.39136358E-01 2 1000022 6 # BR("t_1 -> “chi_10 t )
62 2.60264000E-01  # KAPPA 1.24883588E-01 2 1000023 6 # BR("t_1 -> “chi_20 t )
63 3.43434000E+02  # ALAMBDA 4.41259715E-01 2 1000025 6 # BR("t_1 -> "chi_30 t )
64 2.72727000E+01  # AKAPPA 9.47203398E-02 2 1000024 5 # BR("t_1 -> “chi_1+ b )
65 2.46000000E+02  # MUEFF -1

(a) Input (b) Output

Figure 3.1: Exemplary SLHA file for the NMSSM model as used by NMSSMTools. The input parameters
can be set by the user by simply editing a text file. Running NMSSMTools on this file produces another
file of similar layout which shows results for masses, mixing matrices, low energy observables, high- and
low-scale parameters and decay tables for all unstable particles.

In addition to the above mentioned set of UFQ files, which carry the analytical information of
the underlying model, a SUSY LesHouches Accord (SLHA [121]) file is commonly used to store
all numerical information; using these file, the user typically fixes the numerical values of the
free model input parameters and uses the above mentioned tools to calculate the corresponding
masses, mixing matrices, branching ratios etc. which are stored in the same file format. In
Fig. 3.1, we show an example input/output combination for the special case of an NMSSM
model calculated with NMSSMTools.

As a final note it should be mentioned that, despite their name, SLHA files are also used
nowadays to store information of non-supersymmetric models.

Consider Higher Order Effects Note that in the above prescription, free model parame-
ters can be defined at various stages. After the model is fully translated, they can be related
to physical observables. However, quantum effects and the resulting renormalisation proce-
dure can complicate these relations significantly. Besides, calculating observables beyond tree
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level usually introduces dependencies of the observables on the energy scale of the process. In
Grand Unified Theories, e.g. SU(5) [122] or minimal Supergravity [123], these scale dependen-
cies are used to define parameter constraints at very high scales. In those cases, additional
calculations are required in order to relate the model parameters defined at a high scale to the
phenomenologial parameters observable at a low scale by Renormalisation Group FEquations
(RGEs). There exist many tools which are designed to do this numerical calculation for partic-
ular models, most importantly Supersymmetry (e.g. SPheno [124], SOFTSUSY [125], NMSSMTools
[111], ISASUSY [126], Suspect [127]). SARAH is able to calculate one-loop corrections to tadpole
and self energy diagrams as well as the RGEs for any model the user provides up to second
order in its parameters. The tool then writes plugins which can be used with the above men-
tioned spectrum generator SPHENO to do the running between high and low scales numerically
for specific parameter values.

3.2 Production Cross Section o, ,x and Monte-Carlo Event
Generation

The cross section oy, x, in simple words, is a measure of the probability for the final state X
to be the outcome of a collision of two protons. Depending on the circumstances, X can specify
different things. For instance, pp — W™ could specify the exclusive production of a positively
charged W-boson, whereas pp — W + jets would inclusively allow for one or more hard jets
to be present in the final state?.

In case X contains particles which are unstable on collider scales, e.g. ¢r < O(mm), it is
implicitly assumed that X considers all possible decays of these particles with their respective
branching ratios, unless specifically mentioned. In the above example, final states described
by pp — W would contain two leptons in approximately a third of all scattering events and
hadronic final states for the rest. Alternatively, pp — W — eTv, would only contain the
lepton final states.

It is fair to say that in most cases it is opp—x which is the most important theoretical
contribution to Eq. (3.1). The integrated luminosity L is a fixed experimental quantity and the
acceptance and efficiency factors A x e are by construction smaller than 1. Hence it is the cross
section which defines the initial scale of the expected event rates and only if it exceeds about
3/L a reasonable sensitivity is at all feasible.

Since proton-proton collisions involve strongly interacting particles in the initial and often
also in the final state, it becomes practically impossible to evaluate the cross section analytically
and one has to rely on numerical methods, usually based on Monte-Carlo integration. Due to
the significantly different behaviour of the strong interaction above or below the confinement
scale Agcp ~ 200 MeV, perturbative methods for the hard interaction and non-perturbative
algorithms for soft radiation have to be combined in a systematic way. Therefore, the numerical
evaluation of o consists of various individual parts, graphically represented in the diagram in
Fig. 3.2 and outlined step-by-step in the following.

2 Already from charge conservation it is clear that pp — W7 does in fact not describe a final state with just a
W boson with nothing else but implicitly includes the hadronised remnants of the proton. With X, we merely
specify the interesting, high-energetic, model-depdenent part of the final state which is created by the hard
scattering of partons.
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Figure 3.2: Schematical overview about the individual steps of the simulation of a full proton-proton
collision. The individual contributions are explained within this chapter. For the sake of clarity, some
effects have been neglected or have been represented in a simplified manner. For example, colour
reconnection effects would lead to further hadronic activity between the various jet final states.

3.2.1 Parton Interactions and PDFs

Since the proton is a composite object consisting of quarks and gluons, collectively called
partons, the collision of two protons with centre of mass energy /s can be reformulated as the
collision of two partons p; and pa which carry a fraction z; /o = 2E; /5/+/s of the proton’s energy

[115]:

1 1
OpposrX = Z/o divl/o dza fo p(T1, 10F) g jp (T2, WF)Opypy— x (T1, T2, 11F). (3.2)
P1,p2

Here, we sum over all possible partons pi,ps € {g,u,,d,d,s,5,c,éb,b,t,t} and integrate
the partonic cross section 6y, p,—»x weighted with the parton distribution functions (PDFs)
Ipi/p(T, F), i.e. the probabilities to find a parton p; with energy z;F; inside a proton with
energy FE;. The separation of low-energy physics being parameterised by the PDF and high-
energy interactions described by the partonic cross section is specified by the factorisation scale
up. A meaningful result should not largely depend on this artificial scale which is typically
achieved by setting it to the energy scale of the scattering process, e.g. the partonic center-
of-mass energy § in an s-channel process or the momentum transfer Q? in a t-channel process

[113].
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Figure 3.3: Example distributions for the resonant production of charged sleptons in RPV at the LHC
with /s = 8 TeV at leading order. (a): Relevant momentum densities x f(z, u% = m% ) of the proton
fitted by the MSTW collaboration [128, 129]. (b) PDF product which contributes to resonant production,
see Eq. (3.4). Both (a) and (b) use a benchmark value of m;, = 500 GeV and dashed-dotted lines denote
the lower limit z > m%Q /s for resonant production to be possible. (c): Resulting total proton proton
cross section as a function of mass.

The PDF's of the proton are determined by low-energy quantum chromodynamics and are
therefore mostly model-independent®. They have been experimentally determined by fitting
the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP [131]) splitting equations of QCD to
various data from deep inelastic scattering (see e.g. [129] and references therein). This set of
differential equations describes the evolutions of partons in the low-energy limit via functions
P; ;i which represent the probability of the process ¢ — j+k, with ¢, j, k denoting quarks or glu-
ons. Different fits consider different datasets and different approximations of the functions P; jy.
Thus there exists a variety of available PDF implementations (e.g. CTEQ [132], MSTW/MRST
[129] or HeraPDF [133]) which can collectively be used via the LHAPDF framework [134]. A
selection of these functions are already implemented in the event generators described below
and thus the user does not need to take care of the proper folding. However, an analysis of
different PDF choices might be advisable to estimate the theory uncertainty caused by different
assumptions in the above factorisation ansatz.

To illustrate the process from partonic to hadronic cross section, we show example distri-
butions for the simple case of resonant production process pp — /% in an R-Parity violating
scenario with a nonvanishing A};; = 0.01 in Fig. 3.3, see also [135]. The tree-level parton cross
section for this process reads [136, 137]
mé N [*

12x1$28.

G udso+ (1, T2, u3) = Go(w1, 962)5<1 - ) with 6o(x1,22) = (3.3)

X128

Note that since this is a tree-level process, there is no dependence of & on the factorisation scale
|
and the integral in Eq. (3.2) becomes 1-dimensional due to the on-shell condition x;xas = m% -
i.e.
1 2

r T . r . ms.
Oppsit = 2/ dz; o fu/p (wl,mg+)fg/p<—,m[+)oo (.1:1, 7) with r = —£-. (3.4)
r 1 I xT

1 S

3 Models which predict very light, strongly interacting particles can have an impact on the parton density
functions. See e.g. Ref. [130] for an example study with very light gluinos in a supersymmetric scenario.
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3.2.2 Hard Matrix Element

The calculation of a general partonic cross section can be further factorised into the following
form:

2
&(pips — FS) = 2% / A®rs| M (pip2 > FS)| (3.5)
with the invariant mass § = x1x9s of the partonic system, the hard partonic matrix element M
and the phase space factor d®rg over all configurations of final state particle momenta which
agree with four-momentum conservation.

The hard matrix element M, typically averaged /summed over unobserved degrees of freedom
of incoming/outgoing particles, shows the strongest dependence on the considered model; from
the Feynman rules determined in the last step of Section 3.1, all Feynman diagrams for the
given process can be constructed and algebraically evaluated according to standard text book
formalisms.

Often it is advisable to restrict the phase space integration [ d® g to avoid sampling of points
which will surely not pass the acceptance and/or efficiency steps described below. The main
advantages are the avoidance of dangerous divergent regions of phase space which arise in fixed
order QCD calculations and a potential significant speed-up of the overall computational time.
However, care must be taken when choosing to cut on phase space since sometimes the effect
on the selection efficiency € might not be obvious. As an example, cuts on hadronic objects
affect the total hadronic activity of the event which can impact the reconstruction accuracy of
missing transverse energy [138] and therefore no strong cut on the final state partons should be
set if the lOW—E’znwliSS distribution is relevant in the selection.

In the RPV example of the last section we were able to give a completely analytical result for
6. However, since the phase space integration becomes quickly cumbersome for final state mul-
tiplicities beyond three, numerical Monte-Carlo integration techniques are used instead. The
general approach is to randomly generate on-shell energy-momentum configurations of all final
state particles which conserve both energy and momentum of the event. The quantity |M|? is
then calculated and used as a weight to accept or reject the given configuration. Even though
hypothetically easy to achieve, resonances and similarly near-divergent kinematic regions ren-
der an efficient practical implementation non-trivial. For more information on this subject,
a hands-on introduction to Monte-Carlo event generation can be found in Ref. [139] and the
documentation of the tools listed below yields details on the respectively used algorithms.

For the successive steps in the evaluation of oy, x x A(X) x €(X), it will turn out to be useful
not just to determine the numerical value of the partonic cross section but also to create a finite
sample of events which mimic the kinematic distributions of the assumed underlying model.
Such a sample can straightforwardly be created within the considered Monte-Carlo approach by
simply storing all accepted phase space configurations in the form of pseudo-data. A common
file format for these parton events is the Les Hoches FEvent File (LHE or .1lhe, [141]). It stores
global information (e.g. generator settings and total parton cross section) as well as event-wise
information (e.g. event weights and four-momenta of each particle) in a human-readable XML-
format. In Fig. 3.4, we show and explain the numbers of an example BSM event using this
event format.

Publicly available tools which can perform the partonic event generation for any model pro-
vided the UFO files (see Section 3.1) are MadGraph5_aMCONLO [142], WHIZARD [143] and CalcHep
[144]. Furthermore, Herwig [145] and Sherpa [146] are also able to read UFO files but are unable
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<event>
4 0 0.4765200E-01 0.9298159E+03 0.7816531E-02 0.9389059E-01
21 -1 0 0 502 501 0.00000000000E+00 0.00000000000E+00 0.72910386241E+03 0.72910386241E+03 0.00000000000E+00 0. -1.
21 -1 0 0 504 502 0.00000000000E+00 0.00000000000E+00 -0.16805033323E+04 0.16805033323E+04 0.00000000000E+00 0. -1.
1000021 1 1 2 503 501 -0.48289281304E+03 -0.51191421184E+03 0.17799846065E+03 0.94670006989E+03 0.60771370000E+03 0. -1.
1000021 1 1 2 504 503 0.48289281304E+03 0.51191421184E+03 -0.11293979306E+04 0.14629071248E+04 0.60771370000E+03 0. -1.
[...]
</event>
<event>
4 0 0.4765200E-01 0.7468419E+03 0.7816531E-02 0.9640318E-01
1 -1 0 0 503 0 0.00000000000E+00 0.00000000000E+00 0.34357082340E+03 0.34357082340E+03 0.00000000000E+00 0. 1.
-1 -1 0 0 0 501 0.00000000000E+00 0.00000000000E+00 -0.17383966309E+04 0.17383966309E+04 0.00000000000E+00 0. -1.
1000021 1 1 2 502 501 -0.29361372152E+02 -0.43312218784E+03 -0.96508443869E+03 0.12203117777E+04 0.60771370000E+03 0. -1.
1000021 1 1 2 503 502 0.29361372152E+02 0.43312218784E+03 -0.42974136877E+03 0.86165567657E+03 0.60771370000E+03 0. -1.
[...]

</event>

Figure 3.4: Two example LHE events for the production of a gluino pair in a supersymmetric theory. For
each <event> block, the first row lists general event information which can be relevant for subsequent
programs. These are, from left to right, the total number of particles in the event, the ID of the process
(relevant if a sample contains multiple processes), the event’s weight, the PDF factorisation scale in GeV
and the used scale-dependent values of aqrp and aqcep. The following indented lines show information of
each particle, namely the Monte-Carlo particle ID ([140]), a status code (in our case —1 for incoming and
1 for outgoing, can contain more if there are intermediate decay chains or radiation effects), the indices of
the first and the last mother (in the above case, both final state particles have the two intial state particles
1 and 2 as mothers, in general this is also used to trace decay chains), flow information of colour and
anticolour (colour octet particles are written as colour-anticolour-combinations), the kinematic variables
Py Dy, Dz, E and mass m of the particle in GeV, proper lifetime er in mm (important for particles
with long lifetimes and potentially detached vertices in the detector) and the helicity. Further detailed
information on the event can follow after but is ommited here.

to write explicit LHE files and instead do the subsequent parton showering and hadronisation
effects explained in the upcoming parts of this chapter. At this stage it is also worth mention-
ing the Pythia 8 [147] code, which unfortunately is incapable of reading UFO files but which
comes with a long list of hard matrix elements for many BSM models already implemented, see
Ref. [148].

3.2.3 Decays of Heavy BSM Particles

Many collider searches for new physics are based on the assumption that a new, unknown par-
ticle is produced during the hard scattering process. For example in Section 3.2.1 we discussed
the production of a new charged scalar particle /+. These new particles are often unstable and
have such small lifetimes that they decay before they hit the very first detector layer, in most
cases fast enough for the decay products to be inistinguishable from particles produced in the
hard collision. It is therefore only the decay products with sufficiently long lifetimes which are
experimentally accessible and thus it is sensible to already take this into account on the event
generation level.

Depending on the used tool(s), the calculations discussed in Section 3.1 might have already
calculated the branching ratios of all new particles to their various final states and printed those
to the used SLHA file. Alternatively, the decay width formulae can be provided in the UFO files
and can immediately be calculated analytically for a given parameter setup. In those cases, the
decay step in the event generation is very simple:

1. Loop over all unstable particles p,

2. randomly choose one possible decay mode using the branching ratio as a weight,
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3. replace p by its decay products and
4. repeat this step until all final state particles are stable.

Regarding step 3, it is often sufficient to assume the kinematics of the decay products to be
uniformly distributed in the mother particle’s rest frame. However depending on the used
program and how it is linked to the hard matrix element generation (e.g. when using Herwig++
for both), even the full spin information can be taken into account for the kinematics of the
decay.

If however neither the decay table nor the required analytical information to calculate it
are known, the partial widths can still be determined numerically by calculating all 1 — X
processes using the same methods as described for the hard matrix element calculation above.
Unfortunately, this method needs a considerable computational time, since all decay widths
have to be calculated one by one numerically before the more important branching ratios can
be determined. The numerical effort is especially high if 3- or even 4-body final states are
relevant. Another disadvantage is the accuracy of this calculation, which is usually limited to
tree level decays whereas analytical calculations of branching ratios often have at least next-
to-leading order (NLO) accuracy. Therefore, using the tools mentioned earlier for determining
the decay tables is highly encouraged, if possible.

3.2.4 Parton Showering

Let us for the moment switch to an electron-positron collider, the generalisation to hadron
colliders is explained later, and suppose the hard process evaluated the cross section Ge+e- 45
of the creation of a quark-antiquark pair?. Then the differential cross section for the radiation
of an additional gluon with energy zv/§ and angle # with respect to the final state quark is
given as [113]

dOeteqgg - CFaS(é) 2 1+ (1-2)?

27 sin? 0 z

dz deosf ¢t (3:6)

Here, Cr = 4/3 is a typical number that arises in quark-gluon interactions and which is caused
by the underlying group theory. Note that this scenario can be represented in terms of the
DGLAP splitting functions encountered above, i.e. Py 4q(2) = CFM.

The singularities at the poles of Eq. (3.6) for soft (¢ — 0) or collinear (§ — 0,7) gluons
correspond to unresolvable final state radiation and are cancelled by a proper consideration of
higher order terms in the perturbative calculation of & according to the KLN theorem [149].
They can be avoided by setting proper cuts on resolvable final states, i.e. restrictions on z, cos 6
which are needed to experimentally distinguish a two-particle from a one-particle final state.

However, the introduction of a lower resolution scale gy for the momentum transfer of this
extra radiation leads to large logarithmic corrections of order ag log(q3/3) after doing the phase
space integral in Eq. (3.6). A logarithm of similar structure arises for the angular integral. In
order to get sensible results, it seems necessary to extend the perturbative expansion in ag of
the hard matrix element calculation to take these sizable corrections of order ag log(g?/8)and
aglog?(q2/3) into account.

In the Monte-Carlo approach, these extra logarithmic terms can be resummed quite conve-
niently. The cross section 0,4 is interpreted as the inclusive probability for the production of

4 This example does equally well hold in BSM searches, e.g. in the MSSM ete™ — §§* — qgxx
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a quark-antiquark pair, including all possible final state radiation effects. The DGLAP splitting
functions are translated into Sudakov form factors [113-115]

Q? o 1—q3/k?
Ai(Q% ¢%) = exp Z/ de S )/ dz P k() (3.7)

a3 /k?

which denote the probability for a final state particle i produced at energy scale ¢ to not
produce radiation within the energy range [¢?, Q?]. With the functions P; ji., calculable from
QCD, and the resulting A; at hand, the branching can be recursively performed for a given
event returned by the hard matrix element calculation as follows [150]:

1. For each final state parton %, define® q? by the scale of the hard process which created i
(similarly to choosing u2 in Section 3.2.1).

a) Choose a uniform random number r between 0 and 1.

b) Solve A;(¢?, G2 anet) =7 for ¢2...,- Here, g7 serves as the maximum allowed branch-
ing for parton i.

c) If qgranch is smaller than the resolution cutoff qg, usually chosen close to AéoD,
parton ¢ is considered stable down to the hadronisation phase (see below).

d) Else, branch parton i into two partons j and k at scale q%ramh. Their kinematics are
determined randomly according to the splitting kernel P; ;i and qj2-, q,% are both set

2
to Qpranch*
2. Redo this chain for all new final state partons which were created through branching.

This procedure is an example of a parton showering algorithm which uses ¢? as the evolution
scale. Other choices (e.g. via pp or ) are possible and different approaches are used within
the various different event generators available, e.g. Herwig and Herwig++ [145], Pythia 6 and
Pythia 8 [147], Sherpa [146] or POWHEG BOX [151]. Ref. [113] shows examples for differences in
observable distribution which arise when changing these (and other) assumptions.

Let us now go back to the case of a hadron collider. Here, an analogous procedure can be
used for the initial state partons as well. Using a configuration from the hard matrix element
calculation, partons can be evolved backwards in time using similar® splitting equations, leading
to the description of Initial State Radiation (ISR).

It is important to note that the hard cross section &(p1p2 — ¢@) after all measures the
probability for the owverall process to happen. The above effects merely lead to a further
distinction of the events into those which come with extra radiation and those which do not.
Therefore, the cross section calculated in the earlier section is not affected by these algorithms
but the resulting content of the Monte-Carlo samples are.

5 In our above description, choosing ¢? as the hard scattering scale is a choice which leads to a so—called wimpy
shower. An alternative choice, g7 = s, is usually given the name power shower. The latter generally allows
for harder radiation and thus might better approximate the appearance of hard jets in an event, which for
a wimpy shower would require the full caclulation to next order in ag. The power shower however comes
along with a dangerous double counting issue of being able to generate the same final state configurations by
different paths, i.e. the identical configurations soft matrix element + hard radiation and hard matrix element
+ soft radiation contribute to the total cross section twice.

6 A change of momentum due to branching of an incoming parton p; leads to a potentially sizable change in
its PDF weight f,,/p(2i, nr). To keep the relative event weights uniform, the PDF can be considered by
generalising the branching probability to A;(Q?, ¢%, x) [152].
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Figure 3.5: Illustration for the considered orders in a%log™(¢3/5) in different event generation setups
for jet production in ete™ collision with a jet resolution scale qo. Filled dots correspond to correctly
considered orders, whereas semi-filled dots correspond to emissions which are only correct above the
merging scale. (a) qq at tree level plus parton shower. Here, the tree level process is via Z channel
exchange and thus at 0" order in ag. The parton shower adds additional orders of aglog(g3/3) and
aglog?(g3/3) to the tree level diagram. (b) gqg at tree level. This includes the full ag contribution
above the resolution scale gg. (c¢) gq at tree level plus parton shower matched to gqg at tree level. This
combines the previous two, however the n = 1, m = 0 contribution only considers real emissions above
the merging scale. (d) gg at NLO plus parton shower matched to ggg at NLO. Here the fulln =1,m =0
contribution is taken into account. Images and explanations are based on Figs. 5,6 in Ref. [113].

3.2.5 Matching/Merging

Note that the final state X + j created by the parton showering of X could also be counted as
an individual final state X’ in Eq. (3.1) and calculated independently using the hard matrix
element. The former approach is strictly valid only in the soft or collinear limit, whereas the
latter ansatz is particularly accurate for hard radiation with large emission angles. Therefore
it seems obvious that a consistent combination of the two might be necessary should both be
relevant for the final state selection. Careful matching/merging procedures (e.g. MLM matching
[153], CKKW/CKKW-L [154], Powheg [151]) combine Monte-Carlo samples for both X and X'
by properly separating the extra partons from the hard matrix element of X’ and soft radiation
below a certain merging scale from X. Going into the details of these algorithms is beyond the
scope of this summary and we refer to the given references for more information. Let us just
summarise some important key facts:

e The new sample contains events with one hard extra jet (plus eventual further soft jets)
taken from the X’ sample, and events with only soft (or no) extra jets taken the X sample.

e The cross section evaluated from the matching/merging algorithm should roughly corre-
spond to the cross section of the X sample, as that one should correspond to the inclusive
cross section.

e The resulting jet spectrum should be mostly independent of the details of the parton
showering algorithm, as differences in the showering of the X sample should only happen
in those phase space regions where the matching/merging algorithm prefers the X’ sample
anway.
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e Special care has to be taken to subtract diagrammatic contributions from the X’ final
state which correspond to decays of an unrelated Y final state. For instance, merging the
processes ¢g and ¢gj would double count, if considered, the process gg, g — Gq [155].

e All the aforementioned concepts, starting from the PDF folding down to the match-
ing/merging prescription, can be extended to higher-order calculations. Those are needed
to consider further corrections which are not accounted for in the matrix element plus
parton shower approach. This is illustrated schematically in Fig. 3.5. An important com-
plication of NLO calculations is the proper cancellation of singularities in a numerical
approach.

3.2.6 Soft QCD Effects and Hadronisation

With the above steps performed, the model dependent part of the event generation is done, but
the generated events still do not yet contain observable information. As an important detail,
the final states which we simulated so far mostly contain colour charged objects, whereas only
colour neutral objects are stable and observable. It therefore seems obvious that the event
generator has to take into account further steps than discussed above.

Fortunately, these additional steps are almost entirely based on low-scale QCD interactions of
quarks, gluons and hadrons, and only weakly depend on any possible BSM physics of massive,
high-energetic particles. We can therefore restrict this discussion to a short summary of the
most important missing steps of the event generation which are needed to obtain realistic events
that fully simulate those that could have been produced in an actual collider experiment.

e Besides the hard interaction process which we described above, additional elastic and/or
inelastic scattering can happen between the two proton remnants. This is collectively
called Underlying Event (UE) and can lead to additional hadronic activity in the final
state. Usually it is taken into account by phenomenological models based on fits as it
mainly occurs in the non-perturbatice soft-QCD limit [113].

e A hadronisation phase translates final state partons into physically observable meson and
hadron states. According to the theory of local parton-hadron duality [156], the kinematics
and quantum number distribution of the partonic final state are very close to those of the
resulting hadronic final state. However, different tools consider different phenomenological
models (e.g. string-based [157] or cluster-based [158]) for how the colour structure of the
partonic event determines the colour-neutral meson and baryon distributions.

e Hadrons produced in the previous step with lifetimes smaller than O <mm / c) decay before

the detector could observe them. These hadron (and also 7 lepton) decays are considered
similarly to those of BSM particles explained in Section 3.2.3. Finite lifetimes can be
translated into positions of respective displaced vertices which, if large enough, can have
an impact on the detector reconstruction efficiency.

These effects are taken into account already by the Monte-Carlo generator tools lised above,
however with different implementations. Normally the details of these steps do not matter for
high-energy BSM phenomenology but they should be kept in mind as a source of theoretical
uncertainties in the prediction of the hadronic structure of an event.
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3.2.7 Final Output

The tools mentioned in the previous sections usually store their Monte-Carlo events by using
the StdHEP/HepEvt [159] or HepMC [160] standards. The former is a binary format written
by Fortran, which provides a more compact way of storing data but which is not human-
readable. In contrast, .hepmc files are typically larger but are written in Ascii format and
hence can be read and written more comfortably. Both formats store the properties of each
individual particle, similarly to the above mentioned .1he file. In addition they usually’ also
store the entire history of the event, i.e. one can unambiguously trace back the radiation and
decay pattern of each final state object down the hard process. This particle history can be of
assistance to improve the accuracy of a fast detector simulation, as explained below.

3.2.8 Higher Order Cross Sections and K-Factors

The aforementioned techniques already require a large computational effort even if the matrix
elements are only determined at leading order. It is especially the parton showering and final
state hadronisation steps which take a long time to simulate and which typically dominate the
overall computing time in a fully automatised collider phenomenology study. Unfortunately,
as soon as the final state contains strongly coloured particles, for example the production of
scalar quarks in Supersymmetry [163], sizable corrections in next-to-leading-order QCD can be
expected.

There exists a strong effort to create a fully automated, model independent event generator
with NLO accuracy. The formulation of proper numerical factorisation, regularisation and
renormalisation techniques which work independently of any model specification is an extremely
challeging task. The MadGraph5_aMC@ONLO tool officially advertises to only being able to consider
NLO QCD corrections for Standard Model processes. In their most recent publication, see
Ref. [142], they however discuss how the NLO calculations for any BSM model can in principle
already be performed by the current version of the tool. They wish to perform further validation
before publishing this as a generally working feature. The FeynRules collaboration also lists a
handful of models with explicit NLO-compatible UFO files on their webpage, see Ref. [161], and
provides validation material for some. These can be used by MadGraph5_aMC@NLO to perform
NLO event generation. Therefore, the era of fully automated NLO calculations as a standard
can therefore be expected to start very soon.

Until then, a possible alternative approach is to calculate the total cross section for a given
partonic process analytically and independently from the Monte Carlo event generation. Then,
the cross section o in Eq. (3.1) is taken from this analytic calculation while the Monte-Carlo
events, simulated at tree level, are used to find A(X) x €(X) as described below in Section 3.3.

Alternatively we can define the K-factor K = oxpo/oro, with onpLo being the above cal-
culated higher order cross section and the orp denoting the tree-level cross section from the
same analytic calculation with only leading order accuracy. We then multiply the cross section
UIIYIOC determined during the Monte-Carlo event generation process with K in order to get an
estimate for the next-to-leading order cross section. Note that to avoid divergencies the full
higher order calculation usually has to be performed over the full final state phase space while
the Monte Carlo generation often cuts phenomenologically inaccessible phase space regions. By
using the K-factor, we get an estimate for the NLO cross section in this finite simulated phase
space region.

7 Sherpa, for instance, has an option to not store intermediate particles which can reduce the file size significantly.
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Strictly speaking, using a tree-level Monte-Carlo sample combined with an NLO cross sec-
tion is only valid if kinematic distributions do not change in a higher order calculation. This
is generally not the case, however the difference typically only mildly affects A(X) x e(X)
and thus the K-factor approximation is often accurate enough. Still, one should ensure that
there are no potentially dangerous phase space regions in the simulated sample where a sizable
difference between LO and NLO calculation could happen. In general, the more the Monte-
Carlo determination differs from the analytical calculation of o1, the greater amount of care
is required.

Unfortunately, no tool for model-independent automatised NLO cross sections calculations
exists either yet — if we ignore the yet unvalidated status of MadGraph5_aMC@NLO. In the special
case of Supersymmetry, however, the Prospino [162] tool can calculate cross sections for the
pair production of squarks, sleptons, neutralinos, charginos and gluinos at next-to-leading order
in the strong coupling constant. For the even more special case of only strongly interacting
particles in the final states, simple to use cross section grids have been established and can
be used via the NLLfast [163] tool. As this program only interpolates between pre-calculated
cross section values, it can determine the NLO cross section for a 2 body final state with only
strongly interacting SUSY particles practically instantaneously. This makes it an invaluable
tool for collider phenomenology of SUSY models involving squarks or gluinos.

3.3 Acceptance A(X) and Final State Efficiency e(X)

With the above prescription we can find a finite sample of Monte-Carlo events predicted by
theory which represent the total number of produced events of type X during the collision
process. Not all of these events will however make it into the final number N*". Some events
are involuntarily lost since the eye of the experiment, the detector, only has a finite accuracy and
will unfortunately fail in recording some. This determines the geometrical acceptance A(X).
In addition, some events are actively removed, as we aim to find discriminible features of the
new model compared to the Standard Model as the alternative hypothesis. For that purpose,
we will choose a number of constraints and remove events from our sample which fail those.
From that we can deduce the final state efficiency €(X) for a detected event to be counted as
signal.

Since detector effects can influence €(X) indirectly, it is not trivial to distinguish between the
two factors. As an example, noise in the calorimeter cells can impact reconstructed jet energies
and hence affect the result of an often appearing cut on the energy of the hardest jets. This is
why one often quotes the product A x €.

In the following we want to illustrate how this combined factor can be derived in the Monte-
Carlo approach as we have used before within this chapter.

3.3.1 Detector Effects and Detector Simulations

So far, our computed Monte-Carlo samples contain a representative set of events as they would
be produced in a collision of two protons. If these were produced in an actual experiment, real

8 It should be noted here that even though complicated, it is possible to apply unfolding procedures to carefully
factor our the effects from the event selection process and the inaccuracies of the detector. The resulting
acceptance factor A is then purely based on geometrical properties of the final states and defines the so—called
fiducial cross section ogq = o X A. Within this approach, which we will not further discuss within this thesis,
it is this value rather than N which is used to compare data and experiment.
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Figure 3.6: Comparison of distributions on generator level and on detector level. 50,000 events were
respectively simulated with Pythia 8 and subsequently passed through Delphes 3.3.2 with its standard
ATLAS setup. Coloured bands denote statistical uncertainties due to finite Monte Carlo samples. For
(a), note that not only is the invariant mass distribution significantly smeared but there are is also an
overall reduction of reconstructed events due to finite identification efficiencies for muons of order 90 %.

detectors like ATLAS or CMS would not record the same set of objects with exactly identical
properties as they are predicted during the collision process. As an example, some particles,
like the Standard Model neutrinos v; or the many electrically neutral particles in BSM theories,
simply leave the detector unseen and hence should be removed from the event. Furthermore,
the real detector only covers a finite region around the collision point and thus will not register
those events whose final state particles of interest miss the detector region. Finally, detector
noise leads to reconstruction errors of the observed properties of a final state.

As the observable kinematics of an event are those which determine the result of the final
event selection procedure, it seems to be an important intermediate step on our quest for Nt
to translate from theoretically generated events to physically observable events. This us usually
done by applying a Detector Simulation.

Given an event in the generated Monte-Carlo sample of the previous section, there are in
principle two approaches to consider the effects of a detector:

1. Simulate the propagation of each final state particle through the individual detector com-
ponents to obtain a set of detector signals similar to what one would obtain from an
actual running detector. The same object reconstruction algorithms which are used for
the real LHC detector can then be applied to the simulated signals in order to construct
the observable event. A standard tool for this full detector simulation approach is the
GEANT4 [164] framework, which is often used by experiments to get a reliable simulation
of their detector. An extremely big disadvantage is the enormous runtime (see below)
which makes this approach pracically impossible to use for a higher dimensional model
scan. However, it can be used to provide a basis for the second approach.

2. Apply phenomenological functions taken from measurements and/or full simulation stud-
ies to all final state particles in the generated event sample which
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e remove particles which are invisible to the detector,

e change the energy and position of a particle according to the resolution of the detector
components and

e change the way a particle is recorded according to the efficiencies of the algorithms
which reconstruct electrons, muons, photons etc. from the detector signals.

This fast detector simulation approach is obviously only an approximaton. It assumes
that all relevant detector effects can be parametrised within a universal set of functions.
Also, these functions must be independent of the underlying physics model and must be
applicable on individual objects regardless of the remaining activity of the event. These
statements are in fact not 100 % correct, however this approach still gives accurace enough
results to be applicable by phenomenologists. It also comes with a sizable speed boost, e.g.
O(ms) in Delphes compared to O(min) in the full GEANT4-based CMS detector simulation
for a full ¢t event in the CMS detector [165, 166].

The two main public tools used by the community are Delphes [165] and PGS [167]. In
contrast to Delphes, which is under ongoing improvement to implement new features
anticipated by the community, the PGS code has not been updated since 2012 and thus
can be considered ’outdated™. This is why we focus on Delphes in the remainder of
this thesis. As it is one of the components of the later discussed tool CheckMATE, we
postpone the discussion of its features to later. For now it is sufficient to say that it
mostly applies phenomenological functions as explained above. However, it also to some
extent considers the workflow of an actual detector, e.g. by simulating discrete detector
cells of hadronic and electromagnetic calorimeter into which each particle deposits its
energy and out of which in the end jet objects are reconstructed by applying the FastJet
clustering algorithm [168]. The effect of such a fast detector simulation on two example
distibutions are shown in Fig. 3.6.

Depending on the desired accuracy, it might not even be necessary to use these tools at
all. Simple geometrical and kinematical cuts can already be applied on the event generation
level and a Gaussian smearing of energies can easily be done by hand. However, as these tools
already take many effects into account and only take a fraction of the computational time of
the much more involved event generation, there is no real disadvantage in using them anyway.

Delphes stores its output events in so—called .root files which can easily be read and analysed
within the ROOT analysis framework [169].

3.3.2 Data Analysis and Final State Selection

After all the steps described above, we have finally reached the stage where our generated
Monte-Carlo sample, to a certain degree of accuracy, is on the same level as real data taken at
an actual experiment. If we simply compared the total number of events at this stage, we would
hardly be sensitive to any new physics; The total proton-proton cross section is of the order
(size of proton)? ~ 1073 m? = 1072 b, whereas the cross section for a typical SUSY process
is merely of the order pb and below. Using the total integrated luminosity of 20 fb~! during
the 8 TeV run, it would be impossible to distinguish the O(100) events of the latter from the
Poisson fluctuation of O(v/1013) of the former.

9 Tt is however still implemented in MadGraph5_aMC@NLO and thus often used for a “quick-and-dirty” approxima-
tion.
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We can drastically improve the situation by finding and applying a set of constraints on our
simulated or real data, which remove as many events as possible from Standard Model processes
while leaving a potential signal of new physics unspoilt. For that purpose, the features of a
potentially interesting new physics model should be analysed and the best set of variables
to discriminate against Standard Model events be found. Typically, this step has already
been performed by the collaborations before the data is analysed to not be biased by the
actual experimental outcome. The allegedly best discriminators are determined from exhaustive
simulations of Standard Model backgrounds and interesting new physics signals. Then, the
resulting optimal cut prescription is applied on the data and — after some internal cross checks
— the results published in combination with the Standard Model expectation.

There is no ultimate set of variables which yields perfect discrimination for all models. How-
ever, it is fair to say that most searches for new physics at the LHC rely on one or more of the
following features which often occur in BSM physics:

e New particles which decay into a set of visible Standard Model particles can be identified
by a characteristic peak in the invariant mass spectrum. A very recent example for such
an analysis is the invariant mass measurement of 2-photon final states which have been
performed by both ATLAS and CMS on 13 TeV data and which shows some interesting
excess over the expected Standard Model background [170].

e Decay chains of heavy into light new particles, which often appear in models with a highly
enlarged particle spectrum, yield characteristic peaks or edges in the invariant masses of
the visible decay products even if not all decay products are visible. Also, large mass
splittings produce harder particles as found in typical Standard Model processes.

e By looking at events with a large amount of missing transverse energy, one is sensitive
to physics with new invisible, stable particles. This is a standard method to look for R-
Parity conserving Supersymmetry due to its stable neutralino, c.f. Section 2.4.3, or other
models with dark matter candidates like our Higgs Portal setup in Section 2.2.

e Furthermore, the observation of single hard objects (so—called mono-X final states) can
be a hint for invisible particles which were produced in association with the single object.
This is one way to identify the production of new particles which decay invisibly into dark
sector particles.

e Models with new, heavy coloured particles often predict a larger amount of hadronic
activity, i.e. a larger number of high energy jets, compared to the pure Standard Model
case. This is the avenue to find Supersymmetry with light squarks and/or gluinos.

e Models with broken lepton number symmetry can be identified by lepton number violating
final states, typically pairs of leptons with same flavour and same charge. Note that it is
not easily possible for baryon number violating models due to the generally large hadronic
activity.

e Third generation Standard Model fermions (excluding the neutrino) lead to characteristic
jet structures in the final state, which can be tagged experimentally to a good precision.
New particles with large couplings to these particles can therefore be identified by looking
for a surplus o f these objects in the final state.
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Applied Cut Neut €cut Etot
Initial number of events (o x £) 897 100 % 100.0 %
3 isolated et ut 148 16 % 16.0 %
1 SFOS pair, msros € [60 GeV, 81.2 GeV] 78 53% 8.7%
No jet with b-tag 75 96 % 8.3%
ERiss € [50 GeV, 75 GeV] 20 65 % 2.2%
mr € [0GeV, 80 GeV] 13 27 % 1.4%
|mge — my| > 10 GeV 10 7% 1.1%

Table 3.1: Example cutflow taken from Ref. [171] applied on a simulated sample based on a supersym-
metric model. The target production mode is pp — Xlixg,xli — WEX XY — Zx) with the gauge
bosons decaying leptonically. Ncu; describes the physical number of events that are expected after all
cuts up to that point have been applied. €., is the efficiency of a single cut, i.e. the ratio of Ny values
after and before the cut was applied. €t is the total cut efficiency of applying all cuts up to that point,
i.e. the ratio of N¢ys to Neyt(Initial number of events). The last value of €0 corresponds to the overall
acceptance times efficiency factor A x € in Eq. (3.1). The Standard Model, in comparison, predicts 22
events after the same set of cuts is applied, mostly originating from direct W Z production.

e BSM particles with lifetimes of order cm/c can lead to decay vertices with a significant
spatial distance from the initial collision point. These can be identified by reconstructing
the tracks which originate from such a displaced vertex. We discuss a modified version of
this signature in our analysis of long-lived neutralinos in R-parity violating supersymmetry
in Chapter 7.

Typically, one first defines the final state(s) which are characteristic for one or more target
BSM models, finds all Standard Model processes which have similar final states, and identifies
the kinematical variables which allows for the distinction of the two. This procedure leads to
a set of cuts, and in the publications of the experimental collaborations, one usually finds an
explicit definition of all these cuts and the resulting number of events N from data and from
Standard Model predictions.

In Table 3.1 we show an example cutflow from a particular ATLAS-analysis [171], which is
designed to find events with three charged leptons and missing energy as they would appear in
a supersymmetric model via the production mode pp — Xlixg,xf — WEXL XS — Zx? with
the gauge bosons decaying leptonically. The cuts of this analysis are designed to identify the
leptons coming from the Z via the invariant mass of two leptons and the neutralinos via a large
missing momentum vector. The W boson is identified by making use of the transverse mass
mp. This is a kinematic variable generally defined using the transverse projection py and the
azimuthal angle ¢[p] of two vectors p(!) and p(? via

mrp = \/2p(Tl)p¥) (1 — cos(¢[pM] — qb[p(2)]))- (3.8)

p) s typically the missing transverse momentum vector and p@ corresponds to the recon-
structed momentum of one visible object. In our case, it corresponds the third lepton which does
not belong to the same-flavour opposite-sign (SFOS) pair and which is expected to originate
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from the leptonc W decay. Then, t¢ SM processes are vetoed by rejecting events which include
a jet which most likely originated from a decaying B-hadron. Lastly, by removing events with a
3-lepton invariant mass too close to the Z boson mass one rejects processes of Z — ¢£v origin,
where a photon from final state radiation could have converted to an electron-positron-pair in
the detector.

The by construction highly model dependent probability of events from a final state X to
pass these constraints is quantified by the final state efficiency e(X):

(X) = Number of recorded X events which pass all cuts (3.9)
‘ B Number of recorded X events )

If our generated Monte-Carlo sample covers the kinematic features of the underlying model
sufficiently well, we can estimate the efficiency straightforwardly from applying the constraints
on the sample. Practically, one sets up a computer analysis program which reads in the Delphes
output file, loops over all events and checks the given sets of cuts for each individual event.
The efficiency is then estimated via

(X) Number of MC X events after detector simulation which pass all cuts
€ ~

3.10
Number of MC X events after detector simulation ( )
In principle, analysis programs can be written in any programming language. However, the
ROOT format in which the Delphes output is written must be processed by using the ROOT
analysis framework which can be used as library extensions for C++ and Python. There also
exist backends which allow the construction of an analysis directly within Delphes.

Many event generators (e.g. Pythia and MadGraph5_aMCONLQ) allow for the analysis of the
simulated data on-the-fly. Furthermore, the Rivet [172] analysis framework offers a comfortable
environment to code typical final state selections. However, these approaches skip the detector
simulation step and hence are only useful for either first studies of the kinematics of a new
model or for comparing unfolded data, c.f. Footnote 8.

Compound recasting tools for LHC results combine an analysis framework with the detector
simulation and even with the event simulation parts of the phenomenology chain in order to
provide a convenient environment which does as many automatised things at once as possible.
The yet unpublished ATOM [173] tool extends the Rivet analysis framework by a set of identi-
fication efficiencies and smearing effects which take into account the most important detector
inaccuracies. An alternative approach is followed by the MadAnalysisb-collaboration [174]
which is strongly connected to the MadGraph5_aMC@NLO event generator and uses Delphes for
the detector parametrisation. These tools already have many published results from CMS and
ATLAS implemented and just require the user to provide the generated events for the models to
be tested in order to find the efficiency and acceptance factors. If in additon the cross section is
also known, they can determine the p-value of the given model by using Eq. (3.1) and applying
the methods described in the next section.

In Chapter 4, we present another tool, CheckMATE, which provides a very convenient frame-
work to embed analyses and automatically link these to an event generator, a detector simu-
lation and an automatic statistical evaluation. Its main strengths compared to above quoted
tools are its self-containement and its user-friendliness.
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3.3.3 Statistical Evaluation

With all the individual contributions known, we can finally evaluate N*" with the help of
Eq. (3.1). Let us call this number predicted by our signal model S from now on. In many cases,
the new physics model predicts events in addition to those N predicted from the Standard
Model, called B. In that case, S can simply be added to B and the the total prediction of the
BSM hypothesis is to observe S 4+ B events in a given search region'®. From analysing real
data, we know the corresponding experimental number N®P-  or short N. The all-embracing
question which we would like to answer is whether the two numbers N and S+ B are compatible
or if the theory prediction violates the observation.

The standard LHC hypothesis test is the CLg prescription paired with a likelihood ratio
discriminator [175]. We illustrate this method in a simplified scenario in this section, namely
a scenario where there are no uncertainties AB, AS associated to B and S. We explain the
advanced methodology including these uncertainties within Appendix A.2.

All LHC results discussed within this thesis show agreement of the data N with the Standard-
Model only hypothesis B. It is therefore reasonable to choose the Standard Model (B) as the
alternative hypothesis and the BSM model (S + B) as the null hypothesis which can be rejected
if its predicted S is too large.

The likelihood of observing N events if S + B are theoretically expected is given by the
Poisson distribution

(S +B)N

L(N|S) = Poiss(N|S + B) = o

e~ (5+B), (3.11)

To test the null hypothesis, we use the Maximum Likelihood Ratio as the test statistic
L(N|S
qgs(N) = —2log (W) : (3.12)

Here, S is the value of S’ in the range'! [0, S] which maximises £(N|S"). gs(N) becomes larger
for smaller likelihoods, that is for less compatibility of observation and null hypothesis. Accord-
ing to Wilk’s theorem [176], the maximum likelihood ratio test has the convenient property to
equal the x2-test in the limit of large event numbers'?, which can help in doing approximate
significance tests in scenarios where the likelihood function is very complicated.

In our simple toy case, we can evalute the test statistics analytically:

0 it N >SS+ B,
gs(N) = { —2Nlog (252 ) + 25 if N < B, (3.13)
—2Nlog (£ ) +2(S+ B - N) else.

10 This statement is correct as long as the BSM model and the Standard Model do not share a common final
state. If that is the case, interference effects have to be taken into account and thus S and B do not add
incoherently any more.

1 The lower limit S’ > 0 is caused by the physical assumption of having no negative signal events. The upper
limit S’ < S ensures a one-sided limit.

12 This can be seen easily for the given example: For large event numbers, the Poissonian distribution resembles a
Gaussian distribution £(N|S) o exp(—(5+B-N?/2(s1p)) and the test statistics becomes qs = (S+B-N)?/s1p,
in other words a x? test with one degree of freedom.
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In general, however, gg cannot be given in fully analytic form — see for example Appendix A.2.
From the test statistics we can derive the p-value of our null hypothesis S after the observation
of N by calculating

CLsip= Y Poiss(N'|S + B)- G(qg(N’) - qS(N)) (3.14)
N’'=0

here, ©(z) = 1 if x > 0 and 0 else. The motivation behind this formula is the following: If
we repeated the experiment infinitely many times and if the hypothesis S was true, we would
expect to observe different values N’ distributed according to the Poissonian distribution with
mean value S+ B. The relative amount of observations N’ which result in a test statistics g, (N')
at least as incompatible as the observed ¢, (V) is described by CLgip(N). If this number is
small, typically smaller than 0.05, we deduce that it would be very unlikely to observe N if
S 4+ B was expected and thus reject the S-hypothesis.

This approach however has a peculiar property: If N happens to be much smaller than B,
which statistically can happen in a small fraction of experiments even if B describes Nature
accurately, CLgyp will always turn out to be small, regardless of S. Therefore, the above
interpretation will always claim a tension with the signal hypothesis and could even conclude
that a model with S < 1 is excluded even though this event number is clearly to small for the
experiment to ever be sensitive to it.

A commonly used approach to avoid such false exclusion is to, in addition to CLg, g, de-
termine the p-value for the observation to be compatible with the background-only hypothesis,
ie.

1-CLp= Y Poiss(N'|B)- @(qS(N’) - qS(N)> (3.15)
N'=0

The confidence in the signal hypothesis is then calculated by the CLg value

CLs+B

CLg = T_CL,

(3.16)
and a model is excluded if it produces a too small CLg value. For experiments which are in
tension with the background-only hypothesis, 1 — CLp becomes smaller, CLg increases and
thus the limit weakens.

In Fig. 3.8 we show example values for CLgyp and CLg for N much larger, equal and
smaller than B and the resulting 0.05 limits on S. If N is equal to B, the CLg prescription
only multiplies the CLgsp value by 2, and therefore hardly affects the limit. However, for
N < B, as explained above, the CLg4 p value would yield a very strong limit on S which could
lead to a false exclusion. The CLg prescription weakens the limit significantly. In fact, it can
be shown that no matter how far N and B differ, a value of S smaller than ~ 3 will never be
excluded by CLg, which corresponds to the typical upper limit of a zero event observation. In
the other extreme, N > B, the upper limit on S is equal in both approaches. However, in this
scenario the CLg prescription cures a peculiar lower limit'3.

13 It should be noted that the lower limit is only peculiar in the context of the initial assumption that the
alternative hypothesis, B describes the observation accurately. Obviously this assumption is false if N is much
larger than B and in that case one should rather start rejecting the background-only hypothesis with S as the
alternative hypothesis.
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Figure 3.8: CLg,p and CLg values for increasing S in scenarios with N <, =,> B. An exclusion test
based on CLg4p or CLg would claim that all values for S with C'L value smaller than 0.05, shown
as a dashed-dotted line, are excluded. The zig-zag shape of the lines is caused by the discreteness of
the underlying Poisson statistics. A proper calculation including continuous nuisance parameters, see
Appendix A.2, would yield smooth lines.

These standard statistical calculations can easily be done in standalone codes. In advanced
situations with for example multiple bins and/or multiple systematic error sources, the statis-
tics framework RooStats [177] might be advisable. It is based on the above mentioned ROOT
framework and provides an environment to define various types of parameters and probability
density functions to calculate statistical quantities like gg, CLg and other.

3.4 Choosing X

So far we have explained how for a given final state X we can use various tools to find Nt
Eq. (3.1) simply states that the sum over all final states X has to be taken, or in other words:
All contributions for a given model have to be added for the final predicted number of signal
events.

However, this objective is impossible to pursue. In principle there exists an infinite number
of final states which cannot be evaluated in a finite amount of computational time. It will also
turn out that almost all final states will not yield a noteworthy contribution to N*" as one or
more factors in Eq. (3.1) turn out to be close to 0. Unfortunately there is no simple rule to filter
all relevant out of the many irrelevant final states for a general BSM model. However, there

are some easy to check properties which can help reducing the number of necessary-to-test final
states significantly:

Estimating the cross section: Due to Poissonian statistics, expected signal rates far below
1 event will hardly make a relevant contribution to whatever statistical hypothesis test we
are pursuing. Since the integrated luminosity L is a constant, given a particular data set,
and since A X € is by construction a number smaller than 1, we can safely neglect processes
which have cross sections far below L~!. Trivial examples are the production of particles
with masses beyond the proton-proton centre of mass energy, which always yield o = 0,
or interactions with heavy intermediate particles of mass M from which o = O(1/M?)
provides an estimate based on dimensional arguments. Also, the higher the final state
mupltiplicity the smaller the cross section due to an increasing phase space suppression.
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3.5 Summary

An alternative to the “educated guess” would be to only simulate the hard process and
to performe the PDF folding, i.e. to ignore the computationally intense parton showering
and hadronisation simulations. The resulting cross section estimates can be sufficient to
filter out irrelevant processes.

Constructing the final state: The selection process which yields the final state efficiency € is
designed to largely filter out contributions from processes which do not look like the class
of models the analysis was designed for. Therefore, one should focus on those final states
which share similarities to these base models. One important property is the number of
leptons and the number of jets produced in the hard process which should be compatible'*
with the cuts applied in the event selection. As another example, many LHC analyses are
designed to find R-Parity conserving Supersymmetry with an invisible, stable neutralino
taking momentum from each event. These analyses are only sensitive to other models if
these predict a similar invisible stable particle in the final state.

3.5 Summary

In this chapter, we discussed the necessary steps to test a given particle physics model against
observed data from ATLAS or CMS and which public tools are available to automatise indi-
vidual tasks. Let us bring these together for a short recipe of collider phenomenology:

1. Use a model building tool and/or a spectrum generator to translate model parameters
into physical masses and couplings,

2. run one (or more) event generator(s) to simulate the collison process and obtain a Monte-
Carlo sample which includes a finite sample of representative final state configurations,

3. apply a detector simulation to consider experimental uncertainties in the final state re-
construction,

4. quantify the content of the simulated data by a well-defined cut-prescription to find a
prediction S of signal events with certain properties,

5. combine this predicted number with the respective observed and Standard Model expected
numbers to calculate a statistical p-value and

6. discard a model if the p-value is too small.

Even though the possibility to delegate the tricky calculations to external tools simplifies the
effort tremendously, it is still not a trivial task. Along the way, we have seen that different
approximations have to be made and thus for each task there are many available tools which
each come with individual stengths, weaknesses and various tuning parameters. One of the most
challenging parts is therefore to understand these and carefully choose the tools and settings
which suits the given problem best. The respective tools’ documentations might help for this
choice and in case of doubts, the impact of different settings or even different tools on the results
should be analysed and compared to real data and/or results from sophisticated experimental
studies. Still, in the upcoming chapter we present a tool which combines all but the first step
in a fully automatised form.

14 Tt shouldn’t be ignored that extra jets can appear via initial or final state radiation and jets, as well as leptons,
might not all be reconstructed in the detector.
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CHAPTER 4

Automatised LHC Tests with Check MATE

——>0 =0 0<

In the previous chapter we discussed the general Monte Carlo approach to test a given particle
physics model against experimental results. We encountered various tools which had to be
connected in order to successively translate a theoretical model into a p-value which states its
compatibility with observation. This was done by simulating pseudo-collision events, passing
them through a detector simulation, analysing the simulated data in close analogy to real data
and apply a well-defined statistical measure to the final number.

With the many independent searches which have been performed by ATLAS and CMS on
LHC data taken at /s = 7,8 TeV, the above task quickly becomes very tedious to perform.
Depending on the model of interest, the respective potentially relevant analyses have to be
identified and translated into program code which fits in the above tool framework. Before the
actual model can be analysed, the implemented code first has to be validated against benchmark
models that are also tested within the experimental publications to check that these results can
be reproduced. Not only is this very time consuming but also a repetitive task, especially if many
people need to make use of the same analysis and each performs the above task independently
of one another. Moreover, the remaining links of the above tool chain hardly change and are to
certain degrees universally applicable to any model. It is therefore feasible and very valuable if
a public tool could be provided which not only combines the individual steps discussed in the
previous chapter but which also provides the framework to embed analyses in such a way that
— if implemented and validated once — they can be universally applied to any model.

CheckMATE (Check Models at Terascale Energies) is a tool which we developed with the above
motivation in mind and which we discuss in detail within this chapter. We start with a general
overview of the tool in Section 4.1 and discuss which input the user can provide and how this
input is then successively processed by different, independent modules. A practical example
is provided right after in Section 4.2 in which a sufficiently complex benchmark scenario is
analysed with CheckMATE and the accessible intermediate and final results are examined in all
detail. With the general structure of the program being understood, we continue with the
discussion of some more advanced details in the subsequent sections. In Section 4.3 we provide
some more information on the implemented detector tunings to improve the description of the
ATLAS and CMS detector. Then, in Section 4.4, we discuss how analyses are embedded into
the code framework, which particular LHC analyses can be found in the current version of the
tool and how users can add new analyses to the CheckMATE framework on their own. We also
illustrate how we check the consistency of the tool’s prediction with the experimental results.
For the exercise of adding a new analysis to CheckMATE, we provide another practical example
in Section 4.5. We conclude in Section 4.6 and give an outlook to the current development
status and the expected future of the tool.
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The CheckMATE version 2.0 described in this chapter is in its final stages of completion but
unfortunately is not public yet. It contains significant changes and improvements compared to
version 1.0 which has been published in Ref. [178] and which has been used for the studies
described in Chapter 5 and Chapter 6. Still, the fundamental concepts are very similar and
thus we draw from this reference in our description of the detector tunings in Section 4.3 and
the performance studies of those analyses in Section 4.4.2 which were already present in this
original version.

A separate manual which focusses on the possibility to conveniently add analyses to the
framework was published separately in Ref. [179]. The example which we discuss in Section 4.5
is already present in that reference but is updated to the 2.0 version of the code.

The current public CheckMATE version can be downloaded from the CheckMATE webpage
http://checkmate.hepforge.org/. The yet unpublished private version of the 2.0 code which
is described in this chapter and which has been used for the examples runs can be downloaded
from http://checkmate.hepforge.org/private/CheckMATE-Thesis.tar.gz. A detailled in-
stallation tutorial can be found in Appendix B.1.

4.1 General Program Flow

CheckMATE incorporates many individual modules which cover a large amount of the steps
necessary for model testing which we described in the previous chapter. A flowchart which
illustrates which types of input data is internally passed between these modules in order to get
the final result is given in Fig. 4.1. They are wrapped by a Python environment which takes
care of the user prompts, the file handling and the setup of the core modules which we describe
in more detail below.

4.1.1 FRITZ

FRITZ! (Flexible Rapid Interactive Tool Zipper) denotes the C++ core program of CheckMATE.
Depending on the provided data and the given settings, it has the possibility to connect and
run Pythia 8, Delphes, the AnalysisHandler — we explain below what these are — and
all the analyses loaded by the user in any desired start/end combination. Intermediate data,
i.e. the simulated Monte Carlo events generated by Pythia and/or the detector level objects
produced by Delphes, is passed on-the-fly between the individual modules. This is a great
improvement to the original CheckMATE version 1 in which the generated events as well as the
detector level objects were necessarily stored on hard disk. The reason is that a typical BSM
Monte Carlo event file including hadronised final states and a sufficiently high statistical sample
of O(few thousands) events easily reaches file sizes at the GiB scale and beyond. From hard
drive perspectives it is very inpractical to store such a big file including detailled information on
every individual event if in the end this information is read out event by event. Especially if a
complex model like the MSSM requires lots of processes to be analysed simultaneously, this can
lead to severe problems if disk space is limited. The virtual passing of eventwise information as
performed by FRITZ hence saves a large amount of hard disk space. Also, the total runtime is
halved for a single, independent run and the speed gain can be even better during a parallelised
run since multiple read/write processes typically slow down the CPU even more.

! The name Fritz is derived from a German chess program of the same name, see Ref. [180], and the very first
chess computer program the author got in contact with.
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Figure 4.1: Flow chart to demonstrate the chain of data processing within CheckMATE.
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4.1.2 Pythia

As we addressed in depth in Section 3.2, the core part of Monte-Carlo based collider phe-
nomenology is the simulation of final state configurations that would be produced in a collider
experiment if a particular particle model was true.

In the first version of the CheckMATE code described in Ref. [178], the event generation
part had to be done externally by the user before running CheckMATE. Monte-Carlo event
files and the corresponding cross sections, either from the same event generator or from an
external cross section calculator, c.f. Section 3.2.8, were a mandatory input parameter which
were then processed via Delphes within CheckMATE. Besides the practical inconvenience that
every CheckMATE user had to somehow link an external event generator to the CheckMATE
code, the forced split between event generation and detector simulation/analysis also yields
a computational disadvantage as already explained in Section 4.1.1. This is why the new
CheckMATE version provides an automatic link to the Pythia 8 event generation tool presuming
that this tool is installed on the user’s machine. If this is the case, CheckMATE provides different
types of input modes to run Pythia 8:

Generate events entirely using Pythia 8: Asmentioned in Sections 3.2.2 and 3.2.4, Pythia
8 is capable of generating hard matrix elements for various BSM models and also doing
the complete parton showering and hadronisation of the final state. This functionality
can be accessed by CheckMATE in two different ways.

One possibility is to provide the Pythia 8 setup via an .in file which uses a Pythia 8 in-
ternal syntax, see Refs. [147, 148], for setting the internal parameters properly. This mode
allows for the full flexibility of the Pythia 8 program as all parameters can be changed
via this input file method. Most importantly, the .in file is used to define the model and
the list of processes which should be generated. Also, the SLHA file which specifies the
to-be-simulated parameter point must be provided in this case, c.f. Section 3.1.

In the special case of SUSY pair production within the MSSM, the user can define the
to-be-simulated processes directly within CheckMATE, e.g. by setting Pythia8Process:
P P > go go to initiate gluino pair production. A full list available processes is given
in Appendix B.2.

In both scenarios, CheckMATE will use Pythia 8 to simulate the given event types and
directly processes these events with the subsequent detector simulation and analysis rou-
tines. As explained above the events are not manifestly stored on hard disk unless explic-
itly demanded by the user.

Furthermore, Pythia 8 also calculates the total cross section for the simulated process
and automatically passes this number to CheckMATE’s analysis routines, see below, to
properly normalise the events. The user is also free in his choice to instead provide this
cross section or a K-factor calculated via an external source, c.f. Section 3.2.8.

Shower externally provided .1lhe files: In Chapter 3 we discussed how Monte Carlo events
can be generated for in principle any model by means of the UFO format, which unfor-
tuntely is not incorporated into the Pythia 8 framework. Hence, if the user wishes to
analyse a model which is not hard-coded into Pythia 8, the use of a different tool is
required. In this case, event generation has to be performed externally by e.g. any of the
tools listed in Section 3.2.2. However, as explain in the previous chapter the hard matrix
element simulation and the parton showering and hadronisation steps can be performed
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rather independently and it is the latter which takes the most computational effort and
most hard disk space if events need to be stored. Fortunately, CheckMATE can also take
lightweight .1lhe files produced by an external tool and use Pythia 8 in the same on-the-
fly manner as above. A standard .in file is then used to define the hadronisation settings
but if necessary users can also provide their own file instead.

4.1.3 Delphes

The previous step produced hadronised and showered events in HepMC data format. These event
files can also be generated externally and provided by the user, as long as these files are either
in the same or in the .hep format as it is for example produced by the MadGraph5_aMC@NLO
tool. In all cases the events are further processed within CheckMATE by the fast detector
simulation Delphes, c.f. Section 3.3.1. In CheckMATE 2.0, contrarily to the original CheckMATE
version described in Ref. [178], Delphes mostly uses the respective standard detector settings
for ATLAS and CMS. The only exception is the kinematic smearing of electrons and muons
which for both experiments is replaced with new functions with a better large-energy behaviour,
see Section 4.3. Besides, the output event object is slightly extended and in addition to the
detector level objects includes those generator level particles which are required to perform an
external phenomenological b- and 7-tagging algorithm, see Section 4.1.4 below.

Similarly to the previous step, the results of this simulation are stored in ROOT objects, c.f.
Section 3.3.2, which are typically not stored on disk but instead immediately processed by the
analysis framework described below. By setting the respective flag, see Appendix B.2, a.root
ouput file can be created and this file can be used as an event file in a future CheckMATE run,
see also Fig. 4.1.

If the user decided to test only ATLAS or only CMS analyses, Delphes only needs to run
once per event. Otherwise, each input event is processed by two independent Delphes runs and
independent detector level objects for ATLAS and CMS analyses are respectively created.

4.1.4 AnalysisHandler

The detector level objects created in the previous step contain reconstructed electrons, muons,
photons, jets, tracks, clustered calorimeter cells and the missing momentum vector. These are
now further processed by so-called AnalysisHandlers before being passed to the actual data
analysis codes.

Depending on the list of analyses the user chose to be taken into account, final state objects
are tested against a list of isolation, identification and tagging conditions which set individual
tags on those candidates which pass the respective constraints. For that purpose, CheckMATE
first determines which constraints have to be at all considered in order to provide all analyses
with their respectively required information on the final state objects. As an example, let
us assume the user chose three analyses out of which two require jets to contain information
whether they pass b-tagging information with a particular working point efficiency x and the
third requires a different b-tagging efficiency of y. Then the AnalysisHandler will apply two
simplified b-tagging algorithms with the two chosen working point efficiencies on the given list
of jets per event. Each of the two tests then sets an independent, object-specific tag and the
AnalysisHandler bookkeeps which tag corresponds to which respective algorithm. In similar
manner, the AnalysisHandler takes care of T-tagging, lepton identification and object isolation
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conditions?.

CheckMATE uses a set of independent AnalysisHandlers with individual tagging efficien-
cies depending on the list of analyses chosen by the user. For now?®, there exist individual
AnalysisHandlers for analyses performed on 7, 8 and 13 TeV data and for projective studies
at 14 TeV centre-of-mass energy. For each of those there is an independent ATLAS and CMS
version. We discuss the implemented tunings in more detail in Section 4.3.

4.1.5 Analyses

After all detector level objects have been properly prepared by the AnalysisHandler(s), these
are event-wise processed by those of the supplied analyses the user selects when starting
CheckMATE. They are internally coded in a well-structured framework that allows for an easy
extension to new upcoming experimental results. It furthermore allows users to easily update
given analyses or implement their own. We discuss this in more detail in Section 4.4.

The input data is processed event by event by checking isolation criteria, removing overlap-
ping objects and implementing the cuts that define the signal regions, just as how we explained
it in Section 3.3.2. The analysis program determines how many events in total satisfy certain
signal region criteria and stores this information in human-readable output for each separate
input event file or alternatively each separate Pythia run. In addition, the true number of
Monte Carlo events, the efficiency times acceptance A x € and the properly normalised number
Nt cf. Eq. (3.1), are stored as well. The proper normalisation is done by using the corre-
sponding integrated luminosity L of the respective analysis, stored in CheckMATE, and the cross
section o provided either internally by Pythia 8 or externally by the user. In case of weighted
events, the event weights are properly taken into account.

4.1.6 Evaluation

The final step of the program consists of a statistical evaluation of the results. For each in-
dividual signal region of all chosen analyses, the total number of expected signal events S is
determined by summing up the results from each input event file as explained below in Sec-
tion 4.2.3. The total 1o uncertainty AS on this number is determined from both the statistical
uncertainty, given by the number of Monte Carlo events, and the systematic uncertainty, which
is estimated from the total uncertainty on the signal cross section given by the user as an op-
tional parameter. These numbers are compared to the results from the respective experimental
search which are implemented in CheckMATE. There are two possible ways of comparison:

1. Many experimental searches translate their results into model independent 95% upper
confidence limits S95 on the number of signal events coming from new physics. A quick—
and—easy way of comparison is given by computing the parameter,

S—1.96-AS

95
SExp.

\3
Il

(4.1)

2 In the original CheckMATE publication, all these steps have been performed within the Delphes framework by
always generating a run-specific Delphes detector card. That made it impossible to re-use Delphes output
files, either within CheckMATE to a posteriori test additional analyses or outside CheckMATE with a different
Delphes-based analysis framework like e.g. MadAnalysis5 [174]. These tools therefore mutually agreed to
switch to a final state postprocession ouside Delphes, see also Ref. [181].

3 In the beta version 2.0 linked in the introduction of this chapter, all these handlers use the same efficiencies
for all objects. It is however planned to soon update those for /s = 13,14 TeV to new published results.
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~ 95% lower limit on the number of signal events, determined by CheckMATE

4.2
Experimentally measured 95% confidence limit on signal events (4.2)

In that case, a model can be considered as excluded to the 95% confidence level, if r > 1.

2. The user can ask for the explicit confidence level for the given signal. Following common
use of experimental searches, CheckMATE uses a profile log—likelihood ratio test paired with
the CLgprescription, c.f. Section 3.3.3 and Appendix A.2, to determine the confidence
level that corresponds to the determined number of signal events and the expected and
observed number of events at the experiment. Both the uncertainty on the signal and on
the background are taken into account as log-normal probability density functions around
the nominal values.

Besides those two means of model testing, CheckMATE optionally allows for the calculation of the
likelihood of the final result. This allows for model parameter fits and corresponding confidence
limit evaluations.

4.1.7 Output

The aforementioned parameters are determined for all signal regions of all selected analyses. If
available from the experimental papers, not only the observed but also the expected limits are
used. The signal region with the strongest expected limit is determined and the corresponding
observed limit is used to state whether the input can be considered excluded or , see
also Section 4.2.3. This result is printed on screen together with the information which analysis
and which signal region were determined to be most sensitive.

4.2 Example: Running CheckMATE and Understanding the
Results

To illustrate how the individual steps explained in Section 4.1 work in practice, we discuss
an example CheckMATE run. It is designed in such a way that it covers the most common
scenarios to provide input data within the current CheckMATE version. It also attempts to
apply some optional settings to illustrate their meaning. After the example run is completed,
we take a closer look at the auxiliary files which are created along the way and which additional
information the user can find in these.

4.2.1 Benchmark Model

Within this section we test a simplified supersymmetric model where the only kinematically
accessible particles are the gluino with mass 1.5 TeV, the eight mass degenerate squarks of
the first two generations, also with mass 1.5 TeV and a 100 GeV stable neutralino LSP. Here
the gluino is expected to always decay democratically into a quark and the associated squark,
i.e. § — ¢q, and the charge conjugate final state with equal probability. Quarks and squarks
are from the first two fermion generations only. Each squark then decays to 100 % into the
associated quark and also the neutralino. Such a simplified squark-gluino-neutralino model
is an often used benchmark scenario in LHC searches for events with many jets and missing
transverse energy, see e.g. Ref. [182]. The important parts of the SLHA file for this model, c.f.
Section 3.1, looks as follows:
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point.slha
[...]
Block MASS # Scalar and gaugino mass spectrum
# PDG code mass particle
1000001 1500 # downL squark
2000001 1500 # downL squark
1000002 1500 # upL squark
2000002 1500 # upL squark
1000003 1500 # strangel squark
2000003 1500 # strangel squark
1000004 1500 # charml squark
2000004 1500 # charmlL squark
1000021 1500 # gluino
1000022 100 # neutralino
1000023 5000 # neutralino 2 (and similarly for all other particles)
[...1
# PDG Width
DECAY 1000021 7.93203581E-05 # gluino decays
0.25 3 1000022 -1 1 # gluino -> neutralino antidown down
0.25 3 1000022 -2 2 # gluino -> neutralino antiup up
0.25 3 1000022 -3 3 # gluino -> neutralino antistrange strange
0.25 3 1000022 -4 4 # gluino -> neutralino anticharm charm
DECAY 1000001 6.47400131E+01 # downL decays
1 2 1000022 1 # downL -> down neutralino
DECAY 1000002 6.47400131E+01 # upL  decays
1 2 1000022 2 # upL -> up neutralino
DECAY 1000003 6.47400131E+01 # strangel.  decays
1 2 1000022 3 # strangel. -> strange neutralino
DECAY 1000004 6.47400131E+01 # charml.  decays
1 2 1000022 4 # charml -> charm neutralino
DECAY 2000001 6.47400131E+01 # downR  decays
1 2 1000022 1 # downR -> down neutralino
DECAY 2000002 6.47400131E+01 # upR  decays
1 2 1000022 2 # upR -> up neutralino
DECAY 2000003 6.47400131E+01 # strangeR  decays
1 2 1000022 3 # strangeR -> strange neutralino
DECAY 2000004 6.47400131E+01 # charmR  decays
1 2 1000022 4 # charmR -> charm neutralino

Note that we decoupled all the irrelevant SUSY particles from the accessible spectrum by setting
their masses to 5TeV.

In proton-proton collisions, the most relevant production modes for such a model are the
2-body final states pp — §§, G4, GG and GG*. In our example run, we use different approaches?
to generate the events for these processes:

e For both processes ¢¢* and ¢q, we use Pythia 8 embedded in CheckMATE to gener-
ate events “on the fly”. For the first, we state the to-be-generated process directly in
CheckMATE while for the second, we provide our own .in Pythia 8 setup file.

e For events of type gg, we provide partonic .1lhe files generated with MadGraph5_aMC@NLO
beforehand and perform the parton showering and hadronisation with Pythia 8 directly
within CheckMATE.

e Associated gluino-squark production has been performed completely externally and we
provide two fully showered .hepmc files. The two files contain the same physics generated
with different random seeds such that they contain statistically independent samples.
Such a setup with multiple files per process can for example happen when event generation
is parallelised on a computing cluster.

4 The different input modes are only combined for illustrative purposes here. In practice, one would typically
use the same tool setup for all the different hadronic SUSY final states.
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4.2.2 Initialising and Starting CheckMATE

We assume that CheckMATE has already been properly installed in folder $CMDIR including
Pythia functionality, see also Appendix B.1. Also, the pre-generated .1lhe file for the §g and
the .hepmc file for the gq process are located in /scratch/files. To run CheckMATE, some
mandatory information has to be provided, either via a command line input or via a text-based
parameter card. As the former only works for runs with single processes, we have to choose the
second approach. A minimal working example for the above setup reads as follows:

— checkmate_parameters.in

[Parameters]
Name: ThesisExample
SLHAFile: /scratch/files/point.slha

[squ_asql
Pythia8Process: p p > sq sq~
MaxEvents: 1000

[squ_squl
Pythia8Card: /scratch/files/pythiasqusqu.in
KFactor: 1.2

[glu_glul
Events: /scratch/events/glu_glu.lhe
XSectErr: 20 7%

[glu_sql
Events: /scratch/events/glu_squ_1.hepmc, /scratch/events/glu_squ_2.hepmc
XSect: 0.75 £fb

The general structure of such a file consists of blocks separated by [] expressions which contain
one or more Key: Value pairs.

The first such block, [Parameters], is a special block type which lists general settings for the
CheckMATE run common to all processes. In our example, we first give our run a specific name
ThesisExample which specifies the name of the output directory. Then we provide the above
explained .slha spectrum file which informs Pythia 8 about the masses, mixing matrices and
decay tables of all SUSY particles. This file is common to all processes as obviously the same
physics scenario should be considered within one CheckMATE run. In our case, the SLHAFile is a
mandatory parameter as we ask CheckMATE to use Pythia to simulate the events. Not providing
this parameter would result in an immediate abort. If we however only provided .hepmc files,
this parameter would not be mandatory as no model-dependent information would be required
any more. Note that providing .1lhe also requires an SLHA file if the BSM final state particles
are not yet decayed. In this case, the SLHA must include the full decay table. Additional possible
settings which can be changed via the [Parameters] block are summarised in Appendix B.2.

Besides the special [Parameters] block, any other [X] block combines the information for
a particular production process X, where X is a freely chosen identifier. In our particular case,
we need four such blocks for all the different production modes we wish to take into account.
Within each such process block we have to provide the information in which form the Monte
Carlo events for that particular process are given.

e We start with the block [squ_asq] responsible for §G* production. Here we explicitly state
the 2-body final state, see also Appendix B.2, by making use of the Pythia8Process
keyword and set CheckMATE to use Pythia 8 for the event generation. As we do not
specified otherwise, CheckMATE generates 5,000 events. Since no cross section is provided,
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CheckMATE uses the result from Pythia 8 determined during the generation of the events.
We use the optional KFactor parameter to specify a K-factor, c.f. Section 3.2.8, which we
determined with NLLfast [163]. It multiplies the Pythia leading order cross section with
a fixed quantitiy to estimate the cross section at next-to-leading order plus next-to-leading
log accuracy in QCD.

For the simulation of ¢¢ pair production, we set up a second block called [squ_squ]. Here,
we also want the event generation to be done entirely internally via Pythia 8, however

this time we explicitly provide the .in setting file for Pythia.
— pythiasqusqu.in

PDF:pSet = 8 ! (CTEQ6L1)

Beams:idA = 2212 ! first beam, p = 2212, pbar = -2212
Beams:idB = 2212 ! second beam, p = 2212, pbar = -2212
Beams:eCM = 8000.

SLHA:file = /scratch/files/point.slha
SUSY:qg2squarksquark = on
SUSY:idVecA = 1000001,1000002,1000003,1000004,2000001,2000002,2000003,2000004

The meaning of the individual lines should be self explanatory. The last row specifies the
set of squarks which should be taken into account and which we set to all left- and right-
chiral squarks of the first two generations. In principle, any of Pythia 8’s parameters
listed in Ref. [148] can be changed via this file. Most importantly, if we wanted to
generate events for a non-supersymmetric model, we necessarily would have to use this
file as CheckMATE can for now only parse few standard setups via the Pythia8Process
command used above.

Note that for this block, we explicitly specify the number of generated events to be 1,000
via the optional parameter MaxEvents.

The third process block [glu_glu] sets up the gluino pair production process for which we
have pregenerated 1,000 events via MadGraph5_aMC@NLO. Here, we simply have to provide
a reference to this file via the Events keyword. There is no other mandatory parameter
in this case. Most importantly, CheckMATE uses standard Pythia settings for showering
and hadronisation, see below, and takes the cross section from the .lhe file itself. In
this example, we provide the optional parameter XSectErr to inform CheckMATE about
the systematic error it should consider for this process, which we assume to be 20% of
the signal cross section. If no such parameter is provided, as we do for the other three
processes, the systematic error is set to zero.

Lastly, we provide two fully hadronic .hepmc files for associated gluino squark production
in the [glu_squ] block. We can simply list all available files for a given process in
one Events command and in the end the results of all files are properly averaged as
explained below. Since the .hepmc file format can not store the cross section information
determined by the respective event generator we must provide it explicitly. Otherwise
CheckMATE aborts due to being incapable of properly normalising the final results. In our
case, the provided cross section is taken from Pythia 8 which we used to simulate the
events but we could have instead used NLLfast or Prospino.

With the above files ready, we can intuitively start CheckMATE via the following command?®:

5 Within this chapter, grayed text denotes input to be typed by the user.
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Terminal
$CMDIR/bin: ./CheckMATE checkmate_parameters.in

CheckMATE then responds with a summary of the used settings for the given run and asks
the user for confirmation

r—— Terminal
R B R I I BV N Y A TR
L1 1 N7 N L 7NN L O
RSN R I VAN N R A
N T N N T AN N T 2 2N N T o |

The following settings are used:

Analyses:
atlas_1308_1841 (0 lepton + large jets multi + missingET)
atlas_1308_2631 (0 leptons + 2 b-jets + Etmiss [Sbottom/stopl)

[...1

cms_sus_12_019 (2-leptons, jets and met (SF-OF))
E_CM: 8.0
Processes:

Name: squ_asq
Process: p p > sq sq~
Input KFactor: 1.96
Will run Pythia8

Name: squ_squ
Maximal number of generated/analysed events: 1000
Will run Pythia8
Using settings in /scratch/files/pythiasqusqu.in

Name: glu_glu

Input cross section error: 20.0 %

Input event file(s):
/scratch/events/glu_glu.lhe

Will run Pythia8

Name: glu_sq

Input Cross section: 0.75 fb

Input event file(s):
/scratch/events/glu_squ_1.hepmc
/scratch/events/glu_squ_2.hepmc

Output Directory:

$CMDIR/results/ThesisExample
Additional Settings:

- SLHA file /scratch/files/point.slha will be used for event generation
Is this correct? (y/mn)

If not specified otherwise, CheckMATE generates events at /s = 8 TeV centre of mass energy and
tests against all implemented ATLAS and CMS analyses for that particular energy as currently
only few 13 TeV analyses are implemented and therefore typically the 8 TeV analyses are most
constraining®.

As soon as we start CheckMATE with the anser y, it informs us that — since we did not specify
otherwise — Pythia is set up to generate 5,000 events for the squ_asq process.

6 As event files do not contain the information at which centre-of-mass energy the simulation has been performed,
CheckMATE has to rely on the user to provide events generated at the correct value of 1/s assumed in the tested
analyses.
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Terminal

squ_asq:genPy8card(): Setting number of to-be-generated MC events to 5000.
Use the ’maxEvents’ Parameter to change this default behaviour.

After about fifteen minutes during which CheckMATE informs us about the current status of the
analysis, it returns the following result”

— Terminal

Evaluating Results

Test: Calculation of r = signal/(95/CL limit on signal)
Result: Excluded

Result for r: 1.66561125658

Analysis: atlas_1405_7875

SR: SR02_3j

We find that after simulating all events, passing them through a detector simulation and per-
forming about 40 different analyses, CheckMATE concludes that the input parameter point is
excluded because in signal region SR02_3j of analysis atlas_1405_7875, see Ref. [183], the
number of predicted signal events S exceeds the 95 % upper limit S95 in the r-test of Eq. (4.2).
Fortunately, this agrees with the result of the experimental collaboration, see Ref. [184].

For the basic user, this information would be sufficient for checking the collider signature
for a given model. Typically, one could perform the same test with the exact same setup for
different values of mg and mj set in the SLHA file and by that scan for the interesting, still
allowed regions in parameter space.

4.2.3 Structure of the Results Folder

We now take a closer look at the additional information that is stored within many files in the
results folder. These file are of no interest for the ordinaty user who simply performs a test for a
given parameter point. However, knowing which information can be found in these files can be
very helpful if for instance a more detailled breakdown of intermediate results is required or if
CheckMATE behaves unexpectedly. Furthermore, analysing these files aids us in understanding
how CheckMATE internally works.

For our example case, the results folder would be located wunder $CMDIR/
results/ThesisExample. It contains the following files and directories:

Terminal

$CMDIR/results/ThesisExample: 1s
analysis delphes evaluation fritz internal pythia result.txt

The file result.txt stores the exact same information printed on screen at the end of the
CheckMATE run. The other folders store the respective individual information of the modules
explained in the introductory section and we discuss them in the same order.

Folder internal/

The internal folder stores all internally set CheckMATE parameters in a Python readable format
such that a posteriori one is capable of reproducing the exact Python instance of CheckMATE
and is most importantly needed if CheckMATE is run in add mode explained in Appendix B.2.
They are hardly of relevance for the user and therefore we do not further discuss them here.

7 Since we use random Monte Carlo samples without specifying a random seed, the shown result is not completely
deterministic.
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Folder fritz/
The fritz folder of our above example should contain the following files

Terminal

$CMDIR/results/ThesisExample/fritz: 1s
fritz_glu_glu.log glu_glu.ini
fritz_glu_sq_eventl.log glu_sq_eventl.ini
fritz_glu_sq_event2.log glu_sq_event2.ini
fritz_squ_asq.log squ_asq.ini
fritz_squ_squ.log squ_squ.ini

Here, .1og files contain the runtime output of FRITZ which was also printed on-screen while
CheckMATE was running. There exists one .log file for each of the individually tested event
files, i.e. five in our case as we have four processes with one which uses two separate .hepmc
event files. The .log files informs the user about the order in which individual modules were
initialised, combined and finalised in the end, for example:

fritz_squ_squ.log

Fritz: Initialising handlers from file $CMDIR/results/ThesisExample/fritz/squ_squ.ini
PythiaHandler ’pythia’: Initializing Pythia8 with $CMDIR/bin/thesisexample/pythiasqusqu.in
PythiaHandler ’pythia’: Output redirected to $CMDIR/results/ThesisExample/pythia/pythia_squ_squ.log
PythiaHandler ’pythia’: Pythia8 initialized successfully!

PythiaHandler ’pythia’: Pythia8 will generate 100000000 events

DelphesHandler ’atlas8tev’: Initialising Delphes via linking to PythiaHandler ’pythia’
DelphesHandler ’atlas8tev’: Initialising settings from $CMDIR/data/cards/delphes_skimmed_ATLAS.tcl
DelphesHandler ’atlas8tev’: Delphes successfully initialised!

DelphesHandler ’cms8tev’: Initialising Delphes via linking to PythiaHandler ’pythia’
DelphesHandler ’cms8tev’: Initialising settings from $CMDIR/data/cards/delphes_skimmed_CMS.tcl
DelphesHandler ’cms8tev’: Delphes successfully initialised!

AnalysisHandler ’atlas8tev’: Initialising AnalysisHandler

AnalysisHandler ’atlas8tev’: Loading Analysis atlas_1308_1841

AnalysisHandler ’atlas8tev’: Successfully loaded analysis atlas_1308_1841

[...]

AnalysisHandler ’atlas8tev’: Successfully loaded analysis atlas_conf_2015_004
AnalysisHandler ’atlas8tev’: Linking to DelphesHandler ’atlas8tev’ tree

AnalysisHandler ’atlas8tev’: AnalysisHandler successfully linked to DelphesHandler ’atlas8tev’
AnalysisHandler ’cms8tev’: Initialising AnalysisHandler

AnalysisHandler ’cms8tev’: Loading Analysis cms_1301_4698_WW

AnalysisHandler ’cms8tev’: Successfully loaded analysis cms_1301_4698_WW

[...]

AnalysisHandler ’cms8tev’: Successfully loaded analysis cms_sus_13_016

AnalysisHandler ’cms8tev’: Linking to DelphesHandler ’cms8tev’ tree

AnalysisHandler ’cms8tev’: AnalysisHandler successfully linked to DelphesHandler ’cms8tev’
Fritz: Fritz successfully loaded command line parameters!

Fritz: >> Successfully initialized and linked all handlers! <<

Fritz: Starting event loop!

Fritz: Progress: 10 %

[...1

Fritz: Progress: 100 %

Fritz: >> Finalising after 1000 events. <<

AnalysisHandler ’atlas8tev’: Asking DelphesHandler ’atlas8tev’ for cross section information
DelphesHandler ’atlas8tev’: Asking PythiaHandler ’pythia’ for cross section information
PythiaHandler ’pythia’: Pythia8 returned cross section of 2.43366 fb

PythiaHandler ’pythia’: Pythia8 returned cross section error of 0 fb

AnalysisHandler ’atlas8tev’: Analyses successfully finished!

AnalysisHandler ’cms8tev’: Asking DelphesHandler ’cms8tev’ for cross section information
DelphesHandler ’cms8tev’: Asking PythiaHandler ’pythia’ for cross section information
PythiaHandler ’pythia’: Pythia8 returned cross section of 2.43366 fb

PythiaHandler ’pythia’: Pythia8 returned cross section error of 0 fb

AnalysisHandler ’cms8tev’: Analyses successfully finished!

DelphesHandler ’atlas8tev’: Delphes successfully finished!

DelphesHandler ’cms8tev’: Delphes successfully finished!
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PythiaHandler ’pythia’: Pythia8 successfully finished!
Fritz: >> Done <<

This file enables us to trace exactly which modules have been loaded using which settings and
how they were respectively linked. In our particular example, for the squark pair production
process we need a PythiaHandler which takes care of the event generation within Pythia 85.
Then, since we test against all 8 TeV analyses, we require two separate Delphes instances, one
respectively for the ATLAS and the CMS detector description. Each of these DelphesHandlers
takes its event information from the same single PythiaHandler, i.e. the same generated events
are used for both ATLAS and CMS. The detector level objects are then respectively passed to
two individual AnalysisHandlers which each perform flavour tagging and final state isolation
checks according to the requirements of the respective analyses. These then pass their infor-
mation to all the loaded analyses which perform the signal region categorisation independently
of one another. In the end, the cross section information — which is needed by the individual
analyses to properly normalise their final results — in this particular case is taken from Pythia
8 itself.

The required set of handlers, their properties and how they are linked is determined by the
Python part of CheckMATE and passed via a .ini file” .

r— gluglu.ini

[...]
[Globall
nevents = 1000

[PythiaHandler: pythial
settings = $CMDIR/results/ThesisExample/pythia/gluinoscard.in
logfile = $CMDIR/results/ThesisExample/pythia/pythia_gluinos.log

[DelphesHandler: atlas8tev]

settings = $CMDIR/data/cards/delphes_skimmed_ATLAS.tcl

logfile = $CMDIR/results/ThesisExample/delphes/delphes_gluinos.log
pythiahandler = pythia

[DelphesHandler: cms8tev]

settings = $CMDIR/data/cards/delphes_skimmed_CMS.tcl

logfile = $CMDIR/results/ThesisExample/delphes/delphes_gluinos.log
pythiahandler = pythia

[AnalysisHandler: atlas8tev]

analysistype = atlas8tev

outputprefix = gluinos

outputdirectory = $CMDIR/results/ThesisExample/analysis

logfile = $CMDIR/results/ThesisExample/analysis/analysis_output.log
delpheshandler = atlas8tev

[AnalysisHandler: cms8tev]

analysistype = cms8tev

outputprefix = gluinos

outputdirectory = $CMDIR/results/ThesisExample/analysis

oo

Note that for practical purposes, each process runs a separate FRITZ run. This is why only one Pythia 8
instance appears in the above example logfile for the gluino run. Also note that the PythiaHandler quotes
that it simulates a billion events. This is because in our setup the number of events is set globally by FRITZ,
not locally by Pythia. This could be done by setting the number of generated events explicitly within the
Pythia .in file.). As can be seen at the bottom of the logfile, the event generation loop indeed stops at 1,000
events as epected.

The generalisation of the analysis .ini file including the automatised and generalised handler setup has been
implemented by Torsten Weber.
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logfile = $CMDIR/results/ThesisExample/analysis/analysis_output.log
delpheshandler = cms8tev

The two AnalysisHandlers responsible for respectively ATLAS and CMS analyses need to
apply flavour tagging and isolation conditions after the detector simulation step. As explained
in the introduction, CheckMATE first analyses the respective analysis implementation in order
to create a list of all required settings and which analysis uses which one(s). All this is stored

in the same .ini file:
r— gluglu.ini

[ANALYSIS: atlas_1308_1841]

analysishandler = atlas8tev

jet_btags = atlas8tev7 atlas8tev8 atlas8tev9d
electron_isolation = atlas8tevO atlas8tev3 atlas8tev4
muon_isolation = atlas8tev0 atlas8tevll atlas8tevi2
photon_isolation = atlas8tevO

[ANALYSIS: atlas_1308_2631]
analysishandler = atlas8tev

jet_btags = atlas8tevb

electron_isolation = atlas8tev0 atlas8tev7
muon_isolation = atlas8tev0 atlas8tev9
photon_isolation = atlas8tevO atlas8tev0

[...]

[ANALYSIS: atlas_1506_08616]
analysishandler = atlas8tev

jet_btags = atlas8tev2

electron_isolation = atlas8tevO atlas8tevb
muon_isolation = atlas8tev0 atlas8tevb
photon_isolation = atlas8tevO

[BTAG: atlas8tevO]
eff = 70.
analysishandler = atlas8tev

[BTAG: atlas8tev1]
eff = 80.
analysishandler = atlas8tev

[...]

[BTAG: atlas8tev13]
eff = 75.
analysishandler = atlas8tev

[TAUTAG: atlas8tevO]
analysishandler = atlas8tev

[ELECTRONISO: atlas8tev0]
source = c

analysishandler = atlas8tev
dr = 0.2

ptmin = 0.1

absorrel = r

maxval = 0.2

[ELECTRONISO: atlas8tevi]
source = t

analysishandler = atlas8tev
dr = 0.2

ptmin = 1.

absorrel = r
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maxval = 0.1

[ELECTRONISO: atlas8tev27]
source = ¢

analysishandler = atlas8tev
dr = 0.3

ptmin = 0.1

absorrel = r

maxval = 0.14

[MUONISO: atlas8tev0]
source = t

analysishandler = atlas8tev
dr = 0.05

ptmin = 0.5

absorrel = r
maxval = 0.2

[MUONISO: atlas8tevi]
source = t

analysishandler = atlas8tev
dr = 0.2

ptmin = 0.5

absorrel = a

maxval = 1.8

[MUONISO: atlas8tev24]
source = t

analysishandler = atlas8tev
dr = 0.2

ptmin = 0.4

absorrel = r

maxval = 0.10

[PHOTONISO: atlas8tev0]
source = ¢

analysishandler = atlas8tev
dr = 0.2

ptmin = 0.1

absorrel = r

maxval = 0.2

[PHOTONISO: atlas8tevl]
source = ¢

analysishandler = atlas8tev
dr = 0.4

ptmin = 0.1

absorrel = a

maxval = 4.0

[ANALYSIS: cms_1303_2985]
analysishandler = cms8tev

jet_btags = cms8tev3
electron_isolation = cms8tevO cms8tev3
muon_isolation = cms8tev0 cms8tev9
photon_isolation = cms8tev0 cms8tevl

[...]

[PHOTONISO: cms8tevi]
source = c
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analysishandler = cms8tev
dr = 0.3

ptmin = 0.1

absorrel

maxval =

[...]

=r
0.2

We find that e.g. the 30 ATLAS analyses of our general 8 TeV run require in total 27 dis-
tinct isolation tests for electrons, 24 different muon isolation tests and 13 different b-tagging
benchmark points'©.

The flexibility of FRITZ becomes apparent when checking the corresponding .1log file for the
gq process for which we provided fully hadronised .hepmc files:

fritz_glu_sq-eventl.log

Fritz: Initialising handlers from file $CMDIR/results/ThesisExample/fritz/glu_sq_eventl.ini
DelphesHandler ’atlas8tev’: Initialising Delphes via input event /scratch/events/glu_squ_1.hepmc
DelphesHandler ’atlas8tev’: Input File determined to be HepMC.

DelphesHandler ’atlas8tev’: Initialising settings from $CMDIR/data/cards/delphes_skimmed_ATLAS.tcl
DelphesHandler ’atlas8tev’: Delphes successfully initialised!

DelphesHandler ’atlas8tev’: Input file successfully opened!

[...]

Fritz: >> Finalising after 1000 events. <<

AnalysisHandler ’atlas8tev’: Asking DelphesHandler ’atlas8tev’ for cross section information
DelphesHandler ’atlas8tev’: Asking Eventfile ’glu_sq_eventl’ for cross section information

Eventfile ’glu_sq_eventl’: Returning cross section of 0.75 fb
Eventfile ’glu_sq_eventl’: Returning cross section error of 0 fb
AnalysisHandler ’atlas8tev’: Analyses successfully Finished!

[...]

Fritz: >> Done <<

One finds that no PythiaHandler is loaded in this case. The .hepmc files are directly loaded
into Delphes and the cross section is taken from the user which is passed to FRITZ and by that
to the analyses via the corresponding .ini file:

glu_sq_eventl.ini

[...]

[EventFile: glu_sq_eventl]

file = /scratch/events/glu_squ_1.hepmc
xsect = 0.75

xsecterr = 0.0

The analysis part, however, is the same for all processes.

Folder pythia/

The pythia folder contains all files that have been used to simulate the events with Pythia 8.
In our particular case, these are

Terminal

$CMDIR/results/ThesisExample/pythia: 1s
glu_glucard.in pythia_squ_squ.log
pythia_glu_glu.log squ_asqcard.in
pythia_squ_asq.log

10 As explained below in Section 4.3.2, 7 tagging always involves three universally defined standard benchmark
points, which is why only one TAUTAG item appears in the above list for each experiment.
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The .in files correspond to setup files for Pythia 8 which have been written by CheckMATE
and which contain the commands to simulate the respective final state with the correct centre
of mass energy using the SUSY parameter point given in the provided .slha file. We have one
such card for the [squ_asq] process, for which we used the Pythia8Process command to let
CheckMATE generate the .in file automatically.

— squ-asqcard.in

! Settings used in the main program.

Init:showChangedSettings = on ! list changed settings
Init:showChangedParticleData = on ! list changed particle data

Next :numberShowInfo = 1 ! print event information n times
Next :numberShowProcess = 1 ! print process record n times
Next :numberShowEvent = 2 ! print event record n times

! For comparison with Pythia 6
PDF:pSet = 8 ! (CTEQ6L1)

! Beam parameter settings. Values below agree with default ones.
Beams:idA = 2212 ! first beam, p = 2212, pbar = -2212
Beams:idB = 2212 ! second beam, p = 2212, pbar = -2212
Beams:eCM = 8000.

SLHA:file = /scratch/files/point.slha

SUSY:gg2squarkantisquark = on

SUSY:qqgbar2squarkantisquark = on

SUSY:idVecA = 1000001,1000002,1000003,1000004,2000001,2000002,2000003,2000004

For gg production, we also have a card which sets up Pythia 8 for hadronisation of .1he events:

 glu-glucard.in

[...]

Next :numberShowEvent = 0O ! print event record n times

Beams:frameType = 4
Beams:LHEF = /scratch/events/glu_glu.lhe

The .1log files contain the verbatim output produced by Pythia 8 before, during and after the
event generation. If the simulation finished successfully, this file ends with a summary of the
numerically evaluated cross sections, for example:

pythia_gluinos.log

[...]

ko PYTHIA Event and Cross Section Statistics *
I |
| Subprocess Code | Number of events | sigma +- delta |
| | Tried Selected  Accepted | (estimated) (mb) |
| [ | |
| |
| [ | |
| 9 q” ->"d.L "d_.L + c.c 1351 | 601 13 13 | 4.072e-14 4.625e-15

| 9 q -> "d_.L "s_.L + c.c 1352 | 27 2 2 | 3.343e-15 1.606e-15
[...]

|l 9 9 -> "t_2 "d_L + c.c. 1423 | 0 0 0 | 0.000e+00 0.000e+00

I q’ => "t_2 "s_L + c.c. 1424 | 0 0 (O 0.000e+00 0.000e+00

| | | |
| sum [ 27950 1000 1000 |  2.434e-12 3.819e-14 |
| |
,o—mmm End PYTHIA Event and Cross Section Statistics *
[...]

Note that, as expected, the final numbers coincide with the cross section values quoted within
the above fritz_squ_squ.log to have been used for the analysis normalisation.
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If for some reason the event generation had to be aborted, this file can be checked for more
information about the cause.

Folder delphes/

Analogously to the pythia folder, intermediate results of the detector simulation step are stored
in the delphes folder.

terminal

$CMDIR/results/ThesisExample/delphes: 1s
delphes_glu_glu.log delphes_squ_asq.log
delphes_glu_sq_eventl.log delphes_squ_squ.log
delphes_glu_sq_event2.log

For our example, this folder simply contains the log files produced by Delphes for each of the
five independent event files. These do not contain any interesting information if a run succeeded
but can be of assistance if the detector simulation encountered an unexpected problem.

Folder analysis/

A closer look into the analysis folder reveals a plethora of files.

— terminal

$CMDIR/results/ThesisExample/analysis: 1s

analysis_output.log glu_sq_event2_atlas_conf_2013_024_signal.dat
glu_glu_atlas_1308_1841_cutflow.dat glu_sq_event2_atlas_conf_2013_031_cutflow.dat
glu_glu_atlas_1308_1841_signal.dat glu_sq_event2_atlas_conf_2013_031_signal.dat
[...]

glu_sq_event2_atlas_conf_2012_104_signal.dat squ_squ_cms_smp_12_006_signal.dat
glu_sq_event2_atlas_conf_2012_147_cutflow.dat squ_squ_cms_sus_12_019_cutflow.dat
glu_sq_event2_atlas_conf_2012_147_signal.dat squ_squ_cms_sus_12_019_signal.dat
glu_sq_event2_atlas_conf_2013_021_signal.dat squ_squ_cms_sus_13_016_cutflow.dat
glu_sq_event2_atlas_conf_2013_024_cutflow.dat squ_squ_cms_sus_13_016_signal.dat

To be precise, each input event file results in two files per tested analysis, which in our case
sums up to a total of 397 different files.

Each analysis in CheckMATE produces two types of output: cutflow-files show the absolute
and relative amounts of events that pass the individual selection cuts of the corresponding
analysis step-by-step, c.f. Section 3.3.2, whereas signal-files give the final number of events
that respectively pass all signal region cuts defined within the analysis. As shown in the ex-
amples below, both files have a common structure. For the example we chose to the anal-
ysis atlas_1405.7875 which CheckMATE determined to be responsible for the signal exclu-

sion:
r— gluglu_atlas_1405_7875_cutflow.dat

# ATLAS

# ATLAS-1405-7875

# 0 lepton, 2-6 jets, etmiss
# sqrt(s) = 8 TeV

# int(L) = 20.3 fb~-1

Inputfile:

XSect: 0.0591437 fb
Error: 0.0118287 fb
MCEvents: 1000

SumOfWeights: 1000
SumOfWeights2: 1000
NormEvents: 1.19582
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Cut Sum_W Sum_W2 Acc N_Norm
a.2jl1_CRO1_all 1000 1000 1 1.19582
a.2j1_CRO2_missETjetsPT 939 939 0.939 1.12287
a.2j1_CRO7_dphiMin2J3J 765 765 0.765 0.914799
[...]

0.6jt+_CR12_Rmeff 156 156 0.156 0.186547
0.6jt+_CR13_meffIncl 149 149 0.149 0.178177

— gluglu.atlas_1405_7875_signal.dat

[...]
SR Sum_W Sum_W2 Acc N_Norm

SRO1_a.2jl1 622 622 0.622 0.743797
SRO1_b.2jm 326 326 0.326 0.389836
SRO1_c.2jt 315 315 0.315 0.376682
SRO1_d.2jw 21 21 0.021 0.0251121
SR02_3j 236 236 0.236 0.282212
SRO3_a.4jl- 426 426 0.426 0.509417
SRO3_b.4jl1 426 426 0.426 0.509417
SRO3_c.4jm 51 51 0.051 0.0609866
SR03_d.4jt 233 233 0.233 0.278625
SRO3_e.4jW 6 6 0.006 0.00717489
SR04_5j 264 264 0.264 0.315695
SRO5_a.6j1 119 119 0.119 0.142302
SRO5_b.6jm 119 119 0.119 0.142302
SRO5_c.6jt 80 80 0.08 0.0956653
SRO5_d.6jt+ 149 149 0.149 0.178177

These files start with some general information about the analysis and the analysed events in
total. Note how the cross section error corresponds to 20 % of the total cross section as specified
in the CheckMATE input file for the gg process.

After this, a list of all individual cutflow milestones/signal regions follows. For each of these,
CheckMATE lists the sum of weights and sum of squared weights of all events that passed the
corresponding cut(s) (Sum_W, Sum_W2), the relative efficiency times acceptance factor (Acc)
as well as the physically expected number of events after normalising to the given total cross
section of the data and the luminosity of the respective analysis (N_Norm). In case of unweighted
events, Sum_W and Sum_W2 corresponds to the number of Monte Carlo events in the respective
region. We see that in the above example files. If weighted events are used, they are properly
taken into account and both Sum W and Sum W2 are needed by CheckMATE’s evaluation routines
to properly calculate the statistical error in the upcoming evaluation step.

The cutflow information, similarly to all the files discussed in the previous paragraph, can be
used by the user for various purposes, e.g. validating analyses by comparing with the cutflows
produced by the collaborations as discussed in Section 4.4.2. It is however currently not further
processed by CheckMATE. The signal files, however, contain crucial information used for the
subsequent evaluation step explained below.

Any output or warnings/error messages generated during the analysis runs is stored in a
common analysis_output.log. However, after a successful CheckMATE run these files are
typically empty.

Folder evaluation/

The evaluation folder of our example run contains the following files:
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—— Terminal

$CMDIR/results/ThesisExample/evaluation: 1s

best_signal_regions.txt squ_asq_eventResults.txt
glu_glu_eventResults.txt squ_asq_processResults.txt
glu_glu_processResults.txt squ_squ_eventResults.txt

glu_sq_eventl_eventResults.txt squ_squ_processResults.txt
glu_sq_event2_eventResults.txt total_results.txt
glu_sq_processResults.txt

Files with name X_eventResults.txt simply collect the results returned by all signal re-
gions in all analyses for a given event X. By standard, the stored results are the normalised
number of predicted signal events (signal normevents) and the total error on this number
(signal err_tot).

glu_glu_ eventResults.txt
analysis sT signal_normevents signal_err_tot
atlas_1308_1841 SR01_8j50_a.0b 0.0251626 0.00744824763767
atlas_1308_1841 SR01_8j50_b.1b 0.0071893 0.00326829718337
[...]
atlas_1404_2500 SR3Llow 0.0 0
atlas_1404_2500 SR3b 0.0 0
atlas_1405_7875 SRO1_a.2jl 0.743797 0.151718993922
atlas_1405_7875 SRO1_b.2jm 0.389836 0.080901268657
[...]
cms_sus_13_016 SR1 0.0 0

The error is determined by the quadratic sum of statistical error, calculated internally from the
size of the Monte Carlo sample, and the systematic error provided by the user. These individual
error sources and other possible additional columns can be requested by the user by setting the
correct options in the [Parameters] block in the CheckMATE setup file, see Appendix B.2.

During the evaluation phase, results from all individual events of all independent processes
are subsequently combined. First, results from events that correspond to the same process will
be averaged by taking the corresponding weights properly into account. The statistical error
is then calculated from the combined sum of weights and combined sum of squared weights.
The statistical error for all signal regions with 0 Monte Carlo events at this stage is set to the
corresponding statistical error of 1 Monte-Carlo event!!. The results of this procedure is stored
in X_processResults.txt.

glu_sq_eventl_eventResults.txt

[...]
atlas_1405_7875 SR02_3j 4.54955 0.26266969982
[...]

glu_sq_event2_eventResults.txt

[...]
atlas_1405_7875 SR02_3j 4.51922 0.261792698017
[...]

— glu_sq_processResults.txt

[...]

1 This prescription for example ensures that insufficiently small provided Monte Carlo event samples always
contribute with large statistical uncertanties to the final number, even if no signal event passed the cut.
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atlas_1405_7875 SR02_3j 4.53438612736 0.185425764341
[...]

For processes with only one event file, the corresponding eventResults and processResults
files are trivially identical, except for the statistical error of signal regions with 0 events which
is only set process-wise, not event-wise.

For the next step, results from different processes are added to determine the total expected
number of signal events for each signal region. All errors are considered independent and hence
added in quadrature. This is done for each signal region in each selected analysis separately.
These results are then compared to the experimental limits via the chosen method, in our case
via the conservative r—limit as defined in Eq. (4.2) since we did not specify anything else. The
results for each analysis and each signal region are then stored in total_results.txt. Here,
standard columns are the number of experimentally observed o and expected Standard Model
events b & db quoted by the experiments, the CheckMATE determined predicted number of signal
events s and the corresponding error ds, the model independent 95 % observed and expected
limits s950bs and s95exp and the conservative r values as in Eq. (4.2).

[ total results.txt
analysis sT o b db s ds s9bobs s9bexp robscons rexpcons
atlas_1308_1841 SR01_8j50_a.0b 40.0 35.0 4.0 0.0900 0.0544 20.0 16.0 O 0
atlas_1308_1841 SR01_8j50_b.1b 44.0 40.0 10.0 0.0224 0.0540 23.0 23.0 O 0
atlas_1308_1841 SR01_8j50_c.GE2b 44.0 50.0 10.0 0.00879 0.0534 22.0 26.0 O 0
[...]
atlas_1405_7875 SRO1_d.2jW 0.0 2.3 1.4 2.15 0.279 4.8 4.0 0.334 0.401
atlas_1405_7875 SR02_3j 7.0 5.0 1.2 15.0 0.710 8.2 6.4 1.666 1.159
atlas_1405_7875 SRO3_a.4jl- 2169.0 2120.0 110.0 13.2 0.601 270.0 240.0 0.0447 0.050
[...]
cms_sus_13_016 SR1 1.0 1.2 1.045 0.0 0.0514 4.0 3.9 0 0

(Note that we rounded the numbers of the above table compared to the actual file content to
fit the page width.)

In the last step of the evaluation procedure, CheckMATE will search for the signal region with
the largest expected sensitivity; for the r-limits this corresponds to the signal region with the
largest rexpcons. The results of the most sensitive signal region of each analysis separately is
written in the file best_signal_regions.txt.

best_signal regions.txt

analysis sT o b db s ds s950bs s95exp robscons rexpconsg
atlas_1308_1841 SR06_GE8j50_420  37.0 45.0 14.0 0.15 0.058 20.0 23.0 0.002 0.002
atlas_1308_2631 SRA3 14.0 15.8 2.8 0.0 0.053 9.0 10.2 0 0
atlas_1402_7029 SROtaua20 0.0 0.29 0.18 0.0 0.053 2.9 2.9 0 0
atlas_1403_4853 L110 8.0 9.3 3.5 0.0 0.053 9.0 9.4 0 0
atlas_1403_5222 SR2B 1.0 2.4 0.9 0.0 0.053 3.4 4.5 0 0
atlas_1403_5294 WWa_DF 70.0 73.6 7.9 0.0 0.053 20.3 22.533 0 0
atlas_1404_2500 SR1b 10.0 4.7 2.1 0.0 0.0563 13.3 8.0 0 0
atlas_1405_7875 SR02_3j 7.0 5.0 1.2 15.0 0.710 8.2 6.4 1.666 2.135
atlas_1407_0583 bCd_highl 16.0 11.0 1.5 0.0 0.0563 13.2 8.5 0 0
atlas_1407_0600 SRO17jA 21.0 21.2 4.6 0.01 0.053 13.9 13.8 0 0
atlas_1407_0608 M3 1776.0 1770.0 81.0 25.5 1.060 195.0 190.0 0.120 0.123
atlas_1411_1559 SRTotal 521.0 557.0 45.0 0.22 0.091 70.0 91.0 0.001 0.002
atlas_1502_01518 SR9 126.0 97.0 14.0 23.8 0.995 58.0 36.0 0.377 0.625
atlas_1503_03290 SR-Z 29.0 10.6 3.2 0.0 0.053 29.6 12.0 © 0
atlas_1506_08616 SRinB 20.0 14.1 2.8 0.0 0.053 16.1 11.2 0 0
atlas_conf_2012_104 el 10.0 9.0 2.8 0.00 0.015 9.9 9.3 0 0
atlas_conf_2012_147 4 268.0 380.0 73.4 5.30 0.346 210.0 210.0 0.022 0.022
atlas_conf_2013_021 emumu 298.0 287.0 19.0 0.0 0.034 58.2 49.7 0 0
atlas_conf_2013_024 SR1 15.0 17.5 3.2 0.0 0.053 10.0 10.6 0 0
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atlas_conf_2013_031 Higgs 3615.0 3450.0 180.0 0.0 0.055 484.0 363.0 O 0
atlas_conf_2013_036 SR1Z 3.0 1.3 1.0 0.0 0.055 6.5 4.5 0 0
atlas_conf_2013_049 SR_mT2_110_elmu 5.0 4.4 2.0 0.0 0.053 7.105 6.699 O 0
atlas_conf_2013_061 SROL7JA 22.0 22.5 6.9 0.06 0.053 15.3 14.6 0 0
atlas_conf_2013_062 SoftLeplBHigh 6.0 4.0 1.1 0.01 0.053 7.9 6.3 0 0
atlas_conf_2013_089 SR10F 87.0 103.0 15.0 0.0 0.053 24.0 31.0 0 0
atlas_conf_2014_014 SRa 59.0 53.0 10.0 0.0 0.053 30.2 27.0 0 0
atlas_conf_2014_033 emu 5067.0 4376.0 281 0.0 0.053 1176.0 566.0 O 0
atlas_conf_2014_056 sig 60424.0 60000.0 3600.0 0.0 0.053 6902.0 6717.0 O 0
atlas_conf_2015_004 M1 539.0 578.0 48.4 0.0 0.053 73.0 96.0 0 0
cms_1301_4698_WW combined 1111.0 1000.0 60.0 0.0 0.009 240.4 135.7 O 0
cms_1303_2985 23j_0b_875 25.0 16.1 1.7 7.98 0.447 18.5 10.1 0.383 0.701
cms_1405_7570 Zjj_030 20991.0 21364.0 859.0 0.0 0.051 1379 1595 0 0
cms_1408_3583 550 519.0 509.0 66.0 10.7 0.694 129.0 123.0 0.073 0.077
cms_1502_06031 SRO1_GE2jets_c.highMET 7.0 12.8 4.3 0.0 0.051 7.6 7.6 0 0
cms_1504_03198 SR1 18.0 16.4 3.64 0.0 0.052 12.9 11.4 0 0
cms_smp_12_006 Oe 557.0 487.8 40.0 0.0 0.052 151.62 88.98 0 0
cms_sus_12_019 For_OF 155.0 155.0 16.4 0.0 0.051 31.8 31.8 0 0
cms_sus_13_016 SR1 1.0 1.2 1.05 0.0 0.051 4.0 3.9 0 0

This file is helpful in getting a good overview of which analyses yield a nonvanishing r value
and hence generally show sensitivity to the input model. For our example, one would expect
those analyses to be most sensitive which are designed to find events with large jet multiplicity
and missing transverse energy in the final state. Indeed one examines three such analyses with
sizable r-values: atlas_1405_7875 [183], a zero lepton multijet search, the ATLAS monojet!?
search atlas_ 150201518 [185] and the CMS search cms_1303_2985 [186] which uses the ar
variable to identify BSM events with large hadronic activity.

CheckMATE then again chooses the most sensitive region among these. The corresponding
observed result will be used to finally conclude whether the input can be considered excluded
or not, i.e. in the case of the r-limit if robscons is larger than 1. In the above example, this
best signal region would be SR02_3jit in analysis atlas_1405_7875 which with an robscons
value of about 1.7 yields excludes the input signal. This is exactly the result which was printed
on-screen at the end of our original CheckMATE run.

With that, we have illustrated how CheckMATE can be used to test various input formats for
BSM physics and which content can be found in all the produced output files. This knowledge
should be sufficient for standard users to test their models of interest without much effort.

After finishing this detailed explanation of the main part of CheckMATE the user typically
gets into contact with when running the program, we continue the discussion with some inter-
nal details which are required to make CheckMATE work and which are thus also worthwhile
mentioning. This dicussion also illustrates for which other purposes the program can be used.

4.3 Detector Tunings

We already discussed the general concept of a detector simulation in Section 3.3.1. Within
CheckMATE, each of the given event files will be processed with the fast multipurpose detector
simulation Delphes. This tool attempts to reproduce the experimental resolutions and efficien-
cies of the two LHC multipurpose detectors, ATLAS and CMS by parametrising a large list of
detector effects. Most importantly it

e simulates track reconstruction,

12 Despite the name, this analysis allows for events with up to three hard jets in the final state and hence is also
sensitive to our expected multijet signature.
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e determines hadronic and electromagnetic energy deposits of all particles,
e applies identification efficiencies for photons and leptons,

e clusters jets,

e performs energy/momentum smearings of all reconstructed objects,

e cvaluates total missing energy,

e checks isolation conditions for photons and leptons and

e applies b-/ 7-tagging on jets.

Due to the use of efficiency maps instead of proper simulation of individual particles in detec-
tor material, the time scale of a typical Delphes run is about an order of magnitude smaller
compared to the overall computational time required for the generation, showering and hadro-
nisation of the same events. For more details on Delphes in general, its implemented features
and performance tests we refer to Ref. [165].

CheckMATE requires extra functionalities which lie beyond those in the public version of
Delphes. Most importantly, as already explained in Section 4.1.4, the simultaneous testing
of various analyses at once requires many different sets of final state objects passing different
identification algorithms to be determined and stored in parallel. This forking of the same
reconstructed to different identified final state objects is not possible within Delphes, which
is why we have outsourced these parts of the detector simulation into the AnalysisHandlers
objects discussed before. At the same time, we re-parametrised many of the efficiencies which
are already present in Delphes’ standard implementations of the ATLAS and the CMS detector.
In the remainder of this section we describe these changes in detail. We show the implemented
efficiency distributions and the data points these were fitted to. The functional forms of these
distributions are listed in Appendix B.3.

4.3.1 Improved Description of Lepton Reconstruction

In order to properly estimate the measurement of leptons inside a detector, there are two main
effects which have to be taken into account:

1. Inaccuracies in tracker, calorimeters and muon spectrometer lead to an uncertainty in the
reconstruction of the kinematical properties of electron and muon candidates. These can
be accounted for in the simulation by applying a Gaussian smearing on every candidate
in dependence on its energy and position in the detector.

2. Algorithms to reconstruct electrons inside the calorimeter and to identify muons by as-
sociating tracks to hits in the muon chamber might fail. Hence a given generated lepton
should only appear in the list of reconstructed lepton objects with a probability given by
the reconstruction and identification efficiency €, < 1.

There exist sophisticated experimental studies which provide quantitative statements for these
effects, e.g. in the form of probability functions. In CheckMATE, the following parameterisations
are included:
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Figure 4.2: Lepton smearing and efficiency distributions used in CheckMATE.
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e A Gaussian smearing of the muon momenta and electron energies is applied by using
position- and energy/momentum-dependent widths taken from results in Refs. [187-191]
and for high-energetic muons fitted'® to match results in Ref. [192]. They are shown in
Figs. 4.2a and 4.2b. Note that to improve readability we show the results in the form of
a 2D histogram even though we use continuous functions internally.

e Detailed ppr- and 7n-dependent reconstruction and identification efficiency functions for
‘medium’ and ‘tight’ electrons'* are determined from results in Refs. [189, 193]. They are
shown in Figs. 4.2c and 4.2d. Again, we show histogrammed results to improve readability
even though continuous functions are used.

e Muon reconstruction efficiencies for 'combined’ and ’combined plus segment tagged’ muons
are implemented in dependence of the detector component that will measure the candi-
date. We use a ¢—n map of the muon spectrometer from Ref. [188] and show the resulting
dicrete two-dimensional efficiency maps in Figs. 4.2e and 4.2f.

4.3.2 Improved Description of Jet Tagging

Jets which originate from b-quarks or hadronically decaying 7-leptons can to a certain degree
be distinguished from other, non-flavoured jets by e.g. measuring vertex displacements or by
reconstructing distinctive track and calorimeter signatures. The experimental collaborations
have determined sophisticated algorithms which are applied on every reconstructed jet object
in order to identify whether they are likely to have originated from a b-quark or a 7-lepton. Since
under different circumstances it is sometimes a high signal rate and sometimes a low background
contamination which is targeted, these algorithms are defined with diferent discrete or even
continuous working point efficiencies. The resulting working point dependent probabilities of
correctly and incorrectly tagging jets which did or did not originate from a b/7 have been
published and are used in fast detector simulation frameworks like ours. For the background, a
typical quantity is the so called rejection which is simply the inverse of the background tagging
efficiency.

e We consider pp-dependent b-quark identification efficiencies and mis-tagging probabili-
ties according to Refs. [194-197]. Results for ROC-curves, i.e. relations between signal-
and background efficiencies, and the momentum dependence of these efficiencies are given
in Fig. 4.3. The typically higher mistagging rate of jets which originate from c-quarks
are considered separately. Various target working point efficiencies are used in different
analyses and CheckMATE uses the Receiver Operating Characteristic (ROC) curve to de-
termine the absolute background efficiency for a given working point and then uses the
momentum-dependent functions to re-scale this probability, see also Appendix B.3.4.

Note that the efficiencies in the above references have been determined to generally over-
estimate the number of Monte-Carlo b-jets which pass the tagging filter. Therefore the
efficiencies have been scaled down in such a way that the cutflow validation procedure
yielded globally better agreements between CheckMATE and the respective experimental
result.

13 This fit has been performed by Florian Jetter.
14 oose’ electrons are considered in a special manner, see Appendix B.3.
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Figure 4.3: Distributions used to perform phenomenologic b-tagging in CheckMATE.
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prong jets. didates.

Figure 4.4: Distributions used to perform phenomenologic T-tagging in CheckMATE
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e Similarly, we use pr dependent 7-tagging efficiencies for signal and background which
distinguish between candidates with 1 or more prongs, i.e. reconstructed and associated
tracks, see Ref. [199]. The distributions used are shown in Fig. 4.4. ATLAS typically
only uses three well-defined working points and thus we only need the distributions for
these three cases. Note that hadronically decaying 7 leptons with one charged final state
hadron need to pass a special pseudorapidity-dependent tagging algorithm in order to
filter electrons with similar detector signature. This is why the efficiencies for 1 prong
candidates shows an additional position dependence and we again show discretised ver-
sions of internally continuous two-dimensional efficiency functions.

Note that all these tunings are only based on ATLAS results. For now, CheckMATE uses the
exact same implementations also for the CMS detector as these two are expected to show similar
performance in the reconstruction quality of final state objects. Currently, the same efficiencies
are also used for 13 TeV and prospective 14 TeV analyses. However, an update especially for
the current 13 TeV run is planned in the near future.

4.4 Details on the CheckMATE Analysis Framework

CheckMATE provides a large variety of different analyses against which the users can test their
models. In this section we give an overview of what defines a particular analysis and which
particular analyses are currently embedded into the code.

4.4.1 Properties of a CheckMATE Analysis
Analysis Code

CheckMATE analysis codes are written in the C++ programming language and consist of a .h
header file and a .cc source file. The former is only needed to define additional functions or
global variables and it is typically only the latter the user interacts with. In the source file,
analyses are defined using a similar structure as the well-known Rivet [172] analysis framework.
An initialisation function takes care of general analysis definitions as the setup of all to-be-used
control-, cutflow- and signal regions. It is followed by a second function which runs on each
provided event and which performs the actual analysis of the input data: The final state objects
of interest are selected, conditions on the event in general and the final state objects in particular
are subsequently tested and events which pass all constraints for a particular signal region are
registered. Lastly, a finalisation function is available for routines which are supposed to run
after the analysis is finished. Typically, this function is empty but can be useful for debugging
purposes.

Technically, all analyses are defined as individual C++ classes which however are all derived
from a common AnalysisBase class. This class automatically defines the relevant final state
object containers and provides commonly used methods, e.g. kinematic filters, overlap removals
of close-by-objects, advanced kinematic variables and simple tests if candidates contain isolation
or flavour tags determined by the AnalysisHandler, c.f. Section 4.1.4. We encounter some in
our example analysis implementation below in Section 4.5 and we refer to Ref. [179] for more
code-related details.
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Reference Data

In addition to the actual analysis code, CheckMATE needs to know various additional pieces of
information, most importantly the following:

e The definitions of all isolation and tagging conditions which are required in the analysis
cut procedure have to be defined such that the corresponding AnalysisHandler can
account for them properly during runtime. Whilst tagging conditions are defined via
their working point efficiencies, isolation is typically tested with respect to a well-defined,
analysis-dependent set of final state objects, e.g. tracks or calorimeter cells in the vicinity
of a given candidate.

e To do the statistical evaluation, a list of all signal regions and the corresponding numbers
of observed and Standard Model expected events including the error are needed. To ensure
proper normalisation, the integrated luminosity to which these numbers correspond to is
required as well.

e The centre-of-mass energy to which the observed events numbers correspond is also re-
quired to such that Pythia 8 generates proton-proton collisions properly. This informa-
tion is also used as a security measure to prevent the user from accidentally applying
analyses corresponding to different centre-of-mass energies to the same input event file.

This reference data typically comes from the corresponding experimental analysis publication
and are stored in Python internal var.j files within the data/analysis_info subfolder of a
given CheckMATE installation. To conveniently create these files, CheckMATE comes along with
a helper-executable called AnalysisManager. It asks the user for the above information in an
easy input/output interface and afterwards creates the necessary files at the appropriate places
in the program environment. We show this in an explicit example in Section 4.5 below.

4.4.2 Validated and Unvalidated Analyses Implemented in CheckMATE

The analyses available in the public CheckMATE version already cover a wide range of possible
final state configurations, most importantly those which predict a sizable amount of missing
transverse momentum. In Table 4.1, we list and shortly describe all currently implemented and
validated analyses in the most recent publicly available CheckMATE version.

Validation is mostly performed by testing detailed cutflow information predicted by CheckMATE
against the corresponding published result for a given benchmark model. Such a test ensures
that all experimental cuts perform as expected and puts the efficiency functions of the im-
plemented detector tunes to the test. The majority of the cutflows we have evaluated with
CheckMATE have an acceptance that is within 10% of the published value for the signal regions.
If this accuracy is not achieved, the analysis has been checked thoroughly to ensure no bugs
remain and possible or confirmed reasons for the discrepancy are clearly stated. We show ex-
amples for such cutflow tests in Tables 4.2 and 4.3 and we refer to the CheckMATE webpage in
Ref. [210] for more detailed and updated information.

Due to the straightforward handling of the AnalysisManager to add a new analysis to the
existing framework, see next section, physicists outside the CheckMATE collaborations can easily
and independently add analyses to the framework. If the necessary validation steps have been
performed, they can share their effort to the entire community by sending the necessary files
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Name Search designed for Vs Nsr Ref.

atlas_1308_2631 third-generation squark pair production in final 8 6 [200]
states with J and two b-jets

atlas_1402_7029 production of charginos and neutralinos in events 8 24 [171]
with three leptons and Fp-

atlas_1403.4853 top-squark pair production in final states with 8 12 [201]
two leptons

atlas_1405_7875 squarks and gluinos in final states with jets and 8 15 [183]
Er

atlas_1407_0583 top squark pair production in final states with 8 27 [202]
one isolated lepton, jets, and Frp

atlas_1502_01518 new phenomena in final states with an energetic 8 9 [185]
jet and large Fp

atlas_conf_2012_.104 Supersymmetry in final states with jets, £ and 8 2 [203]
one isolated lepton

atlas_conf 2012 147 mnew phenomena in monojet plus £ final states 8 4 [204]

atlas_conf_2013.024 production of the top squark in the all-hadronic 8 3 [205]
tt and Jp final state

atlas_conf_2013.049 direct-slepton and direct-chargino production in 8 9 [206]
final states with two opposite-sign leptons, F
and no jets

atlas_conf _2013_061 strong production of supersymmetric particlesin 8 9 [207]

final states with J; and at least three b-jets

atlas_conf 2013.089 strongly produced supersymmetric particles in 8 12 [208]
decays with two leptons

cms_1303_2985 supersymmetry in hadronic final states with 8 59 [186]
missing transverse energy using the variables ap
and b-quark multiplicity

cms_sus_13_016 new physics in events with same-sign dileptons 8 1 [209]
and jets

Table 4.1: List of analyses which are available in the public alpha version of CheckMATE and which have
been validated against published experimental results. Apart from atlas_1402_7029, all analyses have
been implemented and validated by other members of the CheckMATE collaboration.
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Signal Region D Signal Region ET

Cut ATLAS Ch.M. ATLAS Ch.M.
Generated Monte Carlo events 20,000 50,000 20,000 50,000
In % 100% 100 % 100 % 100 %
Jet cleaning * 99.8% - 99.8% -
0 lepton * 63.7% - 63.5% -
Ep> 160 GeV 50.0 % - 55.6 % -
pr(j1) > 130 GeV 493% 47.7% 55.6 % 54.4%
pr(j2) > 130 GeV 49.2% 47.6% 55.6 % 54.4 %
pr(j3) > 60 GeV 48.6% 471 % 55.4 % 54.2 %
pr(ja) > 60 GeV 445% 43.8% 53.4% 52.8%
pr(js) > 60 GeV 344% 348% 46.3 % 46.6 %
pr(j5) > 60 GeV (only ET) 344% 348% 31.7% 33.0%
A¢(j12.3, Br) > 0.4 202%  29.5% 26.5 % 27.5%
A¢(jg, Er) > 0.2 Yk with pr(j) > 40 GeV 24.6% 24.7T% 21.3% 22.4%
Fr/meg(all jets) > 0.2(D), 0.25(ET) 21.6% 21.2% 120% 11.2%
meg(all jets) > 1.6 TeV(D), 1.5 TeV(ET) 20%  1.9% 7.9% 8.2%
Monte Carlo Error +0.1% +0.1% +02% +0.1%

Table 4.2: Example cutflow for analysis atlas_1405_7875. The considered model assumes pair produced
gluinos which decay into a chargino and a pair of quarks, with the chargino then subsequently decaying
into a W and a neutralino LSP. In the left / right column, the mass of gluino, chargino and neutralino are
respectively 1065 GeV, 785 GeV and 525 GeV / 1265 GeV, 865 GeV and 465 GeV. Cuts with a * symbol
can not be individually performed by CheckMATE and an overall cleaning factor is applied instead. meg
is defined in Section 4.5. This cutflow table has been created by Jamie Tattersall.

to the CheckMATE mailing list. We show an example cutflow validation performed by phenome-
nologists outside the CheckMATE collaboration in Table 4.4. This analysis validated from an
outside source was subsequently added to CheckMATE.

Besides cutflow tables, many of the experimental analyses give exclusion curves for some
popular, simplified models. Often these have been replicated by CheckMATE and in general the
results lie within the 1o theoretical uncertainty predicted by the model. Again, in the rare
occasions that the required accuracy has not been met, possible reasons for the discrepancy are
given. We show four example exclusion plots with different underlying benchmark models in
Fig. 4.5 .

Besides the list of fully validated analyses, there exists an even longer list of implemented but
unvalidated analyses. There are various reasons for the lack of validation material, ranging from
missing necessary experimental information to an insufficient amount of labour force inside the
CheckMATE collaboration. These analyses are listed in Table 4.5. Even though not validated,
these analyses are still available to the physics community: since the beta version is publily
available, users who need to consider these analyses can download this version of the code
and use the extended analysis list at their own risk or only after they performed their own
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Cut ATLAS CheckMATE
Generated Monte Carlo events 20,000 40,000
Normalised physial number of events (o - L) 2,430 2,390

3 leptons with flavour 77774, £ # 7 34 33.6
b-jet veto 33 29.2
Ep> 60GeV 14 12.3
> pp > 110GeV 10 7.56
mrr € [70,120] GeV 5 4.32
Monte Carlo Error +0.78 +0.51

Table 4.3: Example cutflow for analysis atlas_1402_7029. Shown are number of events passing each cut
normalised to a luminosity of 20.3 fb~!. The model considers associated electroweak production of Y{ X3
with a degenerate mass of 130 GeV. These then decay into W, Z and two massless neutralino LSPs.

Cut CMS CheckMATE
Generated Monte Carlo events 40,000 50,000
Normalised physial events (o - L) 37.7 37.7
> 2 leptons(ITIT), pr(£) > 20 GeV 11.9 11.8
mye € [81,101] GeV 10.7 10.4
CMS Ch.M. CMS Ch.M.
n; >2or3 10.7 10.4 10.4 10.2
Ep> 100 GeV 10.3 10.0 10.0 9.8
Er> 200 GeV 9.2 8.8 8.9 8.7
Er> 300 GeV 7.6 7.2 7.4 7.1
Monte Carlo Error +0.05  £0.03 +0.05 +0.03

Table 4.4: Example cutflow for analysis cms_1502_06031. Shown are physical number of events after each
cut, normalised to an integrated luminosity of 19.4 fb~!. The model considers pair produced gluinos with
a mass of 1100 GeV which promptly decay into a pair of quarks and a 800 GeV lightest neutralino. This
then subsequently decays into a Z boson and a massless gravitino LSP. This cutflow table has been

created by Junjie Cao, Liangliang Shang, Peiwen Wu, Jin Min Yang, Yang Zhang.
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(a) Example model exclusion of a sim-
plified dark matter model tested with
atlas_1502_01518. The model assumes an
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(c) Example model exclusion for a simplified
SUSY scenario with direct gluino pair produc-
tion decaying into bb and a neutralino LSP,
tested with cms_1303.2985. Between shaded
region and dot-dashed line, mass splittings are
too small such that no limit can be set by this
analysis.
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(b) Example exclusion of a model with
minimal universal extra dimensions
atlas_conf_2013_089. Here, R is the
compactification radius of the extra dimension
and A the cutoff scale.
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(d) Example model exclusion of the mSUGRA
model via analysis atlas_conf_2013_047. mg
and my /3 denote high scale unified soft SUSY
breaking masses for the scalar chiral and
fermionic vector partners, respectively. The
unified trilinear parameter Ay is fixed to —2my
and we have tan 8 = 30, 4 > 0.

Figure 4.5: Example model exclusions performed with CheckMATE for different classes of models. We
refer to the respective analysis references shown in Table 4.2 for more information on the respectively
tested models. The CheckMATE results shown in these plots have been determined by other members of
the CheckMATE collaboration.
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performance tests. They are present in the 2.0 beta version linked in the introduction.
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Name Search designed for Vs Nsr Ref.
atl-phys-pub-2014 Supersymmetry at the high luminosity LHC 14 6 [211]
-010-sbottom in final states with zero leptons, two b-jets and

Er

atlas-phys-pub-2013  Supersymmetry at the high luminosity LHC in 14 4 [212]

-011-stop final states with zero or one lepton

atlas_1210.2979 WW production 1 [213]

atlas_1308.1841 new phenomena in final states with large jet 19 [214]
multiplicities and F

atlas_1403_5222 top squark pair production in events with a Z 8 5 [215]
boson, b-jets and Fp

atlas_1403.5294 production of charginos, neutralinos and slep- 8 13 [216]
tons in final states with two leptons and Fp

atlas_1404_2500 Supersymmetry in final states with jets and 8 5 [217]
two same-sign leptons or three leptons

atlas_1407_0600 strong production of supersymmetric particles 8 9 [218]
in final states with JJ; and at least three b-jets

atlas_1407_0608 pair-produced third-generation squarks decay- 8 3 [219]
ing via charm quarks or in compressed super-
symmetric scenarios

atlas_1411_1559 new phenomena in events with a photon and 8 1 [220]
Er

atlas_1503_.03290 Supersymmetry in events containing a same- 8 1 [221]
flavour opposite-sign dilepton pair, jets, and
large Fp

atlas_1506_08616 pair production of third-generation squarks 8 11 [222]

atlas_1602_09058 Supersymmetry in final states with jets and 13 4 [223]
two same-sign leptons or three leptons

atlas 2014 010.h1 31  Supersymmetry at the high luminosity LHC 14 9 [211]
with 3 ¢ + B

atlas_conf_2013_021 W Z production 8 [224]

atlas_conf_2013_031 spin properties of the Higgs-like particle in the 8 2 [225]

h — WW® — evur channel

Table 4.5: List of analyses which are available in the beta version of the CheckMATE in addition to those
listed in Table 4.1. Analyses listed here are implemented and usable, however have no or only insufficient
validation material. Users are appealed to only make use of these after performing their own crosschecks.
All analyses in this table have been implemented by other members of the CheckMATE collaboration or
the combined effort of Junjie Cao, Liangliang Shang, Peiwen Wu, Jin Min Yang and Yang Zhang.
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Name Search designed for Vs Nsr Ref.

atlas_conf_2013_.036 Supersymmetry in events with four or more 8 5 [226]
leptons

atlas_conf_2013_062 squarks and gluinos in events with isolated 8 19 [227]
leptons, jets and Fp

atlas_conf_2014.014 pair production of top squarks decaying to 8 1 [228]
a b quark, a 7 lepton and weakly interacting
particles

atlas_conf_2014_033 WW production 8 3 [229]

atlas_conf_2014_056 spin correlation in top—antitop quark events 8 1 [230]
and search for top squark pair production

atlas_conf_2015_004 invisibly decaying Higgs boson produced via 8 1 [231]
vector boson fusion

atlas_conf_2015_062 squarks and gluinos in final states with jets 13 7 [232]
and P

atlas_conf_2015.067 pair-production of gluinos decaying via stop 13 8 [233]

and sbottom in events with b-jets and large
Er

atlas_conf_2015_076 gluinos in events with an isolated lepton, jets 13 6 [234]
and missing transverse momentum

atlas_phys_2014.010_300 Supersymmetry at the high luminosity LHC 14 10 [211]
with jets + B

atlas_phys 2014 Supersymmetry at the high luminosity LHC 14 10 [211]
_010_sq-hl with jets and P

cms_1301_4698_WW WW production 8 1 [235]

cms_1306_1126_WW WW 7 1 [186]

cms_1405_7570 electroweak production of charginos, neu- 8 57 [236]

tralinos and sleptons decaying to leptons
and W, Z, and Higgs bosons

cms_1408_3583 dark matter, extra dimensions, and unpar- 8 7 [237]
ticles in monojet events

cms_1502_06031 physics beyond the Standard Model in 8 6 [238]
events with two Leptons, jets, and Fp

cms_1504_03198 production of dark matter in association 8 1 [239]
with top-quark pairs in the single-lepton fi-
nal state

cms_smp_12_006 WZ production into 3¢ 8 4 [235]

cms_sus_12_019 physics beyond the standard model in events 8 4 [240]

with two opposite-sign same-flavor leptons,
jets, and missing transverse energy

Table 4.6: Continuation of Table 4.5.
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4.5 Example: Adding a New Analysis to CheckMATE

CheckMATE is not only meant to be simple to use and transparent. The philosophy of the
program is that it is also supposed to be easy to extend with new ideas for analyses or users
who need a particular analysis which has not been implemented yet. In this section we give a
brief introduction to the most important steps that are necessary to implement a new analysis.
Since it is not straightforward to see which files with which information have to be stored at
which parts of the program, CheckMATE includes an AnalysisManager. This is an additional
executable which can be used to add, edit and remove analyses and which in case of the first
asks the user for all the necessary details. In order to not confuse the normal user, this binary
is not created automatically with the ordinary compilation of the code. However, it can easily
be added by typing

Terminal
($CMDIR: make AnalysisManager

This should create a second binary AnalysisManager within the bin/ folder

In this part we add an analysis to the CheckMATE framework from the very first steps on.
The example is a predecessor of the analysis atlas 14057875 which we encountered in our
previous example run in Section 4.2. Again, we assume that CheckMATE is already installed
in the directory $CMDIR.

Running the Analysis Manager

Starting the AnalysisManager via ./AnalysisManager opens the introduction header and a
first prompt:

r— Terminal
U N N
(! [ /A VA I /22 1 V2 i R/ W O I D B
[ Iy Sy G 0 I Y e N A I (O S A 4
| WS O R U R VR I VO VO /2 W V) I DR l_____
e Y
/=N CHIN/D D) 1 T YO -
/ _/
What would you like to do?

-(1l)ist all analyses,

-(a)dd a new analysis to CheckMATE,

-(e)dit analysis information,

-(r)emove an analysis from CheckMATE

Apparently we want to add something new, so we press a:

This will collect all necessary information to create a full analysis and

Takes care for the creation and implementation of the source files into the code.
Please answer the following questions.

Attention: Your input is NOT saved before you answered all questions!

The first block of questions gathers some general information on the analysis. At the beginning
we are asked for the name of the analysis. This name should be short but clear'® and must

15 Note that we only added the letter X at the end of the analysis name to prevent the AnalysisManager from
overwriting the already implemented atlas_conf _2013_047 analysis data.
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not contain any spaces, since this string defines the names for all analysis-specific files. Then,
the user’s name and email address are requested. These are printed on the very first lines of
the analysis code to make sure that the right author can be contacted in case of unexpected

behaviour.
1. General Information to build analysis

Analysis Name:
atlas_conf_2013_047

Your Name (to declare the analysis author):
Guybrush Threepwood

Your Email:
threepwood@pirates.arr

The one-line description is the one used when someone types 1 in the AnalysisManager. It can
also be found in the file data/list_of_analyses.dat. The multiline description is printed on
the top of every output file the respective analysis code creates:

Description (short, one line):
ATLAS, O leptons + 2-6 jets + etmiss
Description (long, multiple lines, finish with empty line:
ATLAS
ATLAS-CONF-2013-047
0 leptons, 2-6 jets, etmiss
sqrt(s) = 8 TeV
int(L) = 20.3 fb~-1

The luminosity is important for the correct normalisation of the analysis results:

Luminosity (in fb~-1):
20.3

CheckMATE needs to know the centre-of-mass energy at which the original analysis has been per-
formed in case that users use Pythia 8 for the event generation and also to ensure that no input
event file is tested against a set of analyses corresponding to different values of /s:
center of Mass Energy (in TeV):
8

Starting with the new CheckMATE version, to help users identifying the relevant analyses for
their models the AnalysisManager allows for a list of tags which help categorising the analysis.
This is a very new feature and for now we simply state that we have an analysis with a large
amount of missing energy and many jets:

If wanted, you can add tags which classify the analysis (e.g. stops, etmiss, ...)
This makes it easier to later to find out if the analysis is useful for whatever
the users think is most sensitive to their input model
Tag (one per line, finish with empty line)

etmiss

multijet

At the end of this question block, the AnalysisManager asks whether control regions will be
provided for the given analysis. If we choose “yes”, it will produce a second analysis source file
which can be run separately from within CheckMATE. In our case, we are only interested in im-
plementing signal regions and cutflows for which we do not need a second analysis file.
Do you plan to implement control regions to that analysis? [(y)es, (n)o)
n

Now we go more into the details of the analysis. As the next step, we have to list all signal
regions the analysis provides. If we check out the actual analysis publication, see Ref. [241], we
find five main signal regions A—E which sometimes are split into subregions L(oose), M(edium)
or T(ight). We enter them one by one
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2. Information on Signal Regions
List all signal regions (one per line, finish with an empty line):
AL
AM
BM
BT
CM
CT
D
EL
EM
ET

In our case, we implement an experimental study for which the experimental observation and
Standard Model expectation are known.

Is the SM expectation B known? [(y)es, (n)ol?
y

Now things become a little more involved: for each of the above signal regions, we have to
provide a set of numbers to which CheckMATE can compare the model prediction. In its most
simple form, this includes the observed number of events obs and the Standard Model expecta-
tion bkg including error bkg_err. Sometimes, the background error is split up into a statistical
and systematical error and sometimes the systematical error is given in asymmetrical + form.
The different input options also allow for the data to be given in all these different formats. In
our example, Table 4 in Ref. [241] gives us the minimal set: obs, bkg and bkg_err.

Information: We are now going to ask you which numbers you want to provide for each signal region.
The following items are possible:

obs: Observed number of events

bkg: Expected number of background events

bkg_err: Expected total error on bkg

bkg_errp: Expected total upper error (in case of asymmetric errors)
bkg_errm: Expected total lower error (in case of asymmetric errors)
bkg_err_stat: Expected statistical error on bkg

bkg_err_sys: Expected systematical error on bkg (in case of symmetric errors)

bkg_errp_sys: Expected systematical upper error (in case of asymmetric errors)

bkg_errm_sys: Expected systematical lower error (in case of asymmetric errors)
Note that not all of these numbers have to be given (e.g. you don’t have to give the total error
if you give the individual stat and sys contributions) However, there are some requirements,
about which you will be warned if you don’t meet them (e.g. giving xyz_errp without xyz_errm)
The standard, minimum set of information consists of obs, bkg and bkg_err

List all categories you want to supply (one per line)

obs
bkg
bkg_err

The set of information you entered is valid.

The AnalysisManager would reject the input list if it was not complete: for example, if we
entered only the statistical error bkg_stat but no systematical error.

Next, we have to enter the actual numbers for all the above categories for each and every one
of the listed signal regions:

You now have to add the numbers for each of the given signal regions.

Note that while you enter more numbers, the corresponding model independent
957, confidence limits for the items you have already entered are calculated
in the background.

AL

obs:
5333
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bkg:
4700
bkg_err:
500
S950bs and S95exp values are calculated internally (progress: 0 / 2)
AM
obs:
135
bkg:
122
bkg_err:
18
S950bs and S95exp values are calculated internally (progress: 0 / 4)
[...]

obs:
5
bkg:
2.9
bkg_err:
1.8
S950bs and S95exp values are calculated internally (progress: 3 / 20)

To allow for a fast statistical evaluation of the result in CheckMATE, it is convenient to first
translate observation and expectation into a model independent upper limit on any new signal
prediction S%, c.f. Eq. (4.2). These numbers are calculated internally by the AnalysisManager.
As this calculation takes some time, it is queued and calculated in the background while the
user enters the detector related information.

The next set of questions are all about detector level objects:

3. Settings for Detector Simulation
3.1: Miscellaneous
To which experiment does the analysis correspond? [(A)TLAS, (C)MS]
A

As a next step we have to enter information regarding lepton isolation criteria. Normally,
these are defined within the experimental publications and are needed to distinguish signal
leptons from leptons within jets. In our example, however, there are no signal leptons and
therefore we do not require any particular isolation criteria for neither electrons, muons nor
photons.

3.2: Electron Isolation
Do you need any particular isolation criterion? [(y)es, (n)o]
n
3.3: Muon Isolation
Do you need any particular isolation criterion? [(y)es, (n)ol
n
3.4: Photon Isolation
Do you need any particular isolation criterion? [(y)es, (n)o]
n

Note that even though we entered no, internally there will always be a soft isolation condi-
tion that cannot be overwritten by the user and which is automatically applied on electrons,
muons and photons. This ensures that objects that would not have been reconstructed due to
overlapping detector activity are automatically removed internally.

The final questions relate to potential flavour tags we have to apply on jets. The given analysis
considers b-tags with a reconstruction efficiency of 70%. We therefore simply enter
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Do you want to use b-tagging? [(y)es, (n)o]
y
b-Tagging 1:
What is the signal efficiency to tag a b-jet? [in %]
70
Do you need more b tags? [(y)es, (n)o]
n
Do you want to use tau-tagging? [(y)es, (m)o]
n

Depending on how quickly we entered the above information, the AnalysisManger either fin-
ished the internally started S%° calculations or will wait until these are complete. When the
evaluation ends, the results are shown and should be briefly checked to make sure that all
numbers are sensible.

All necessary information has been entered. Before the AnalysisManager
can create all required files, the internal S95o0bs and S95exp
calculations have to finish. The calculation should take 10s up to a minute
per point.

. done!

Please check the below results for sanity. If anything looks

suspicious, please contact the CheckMATE authors.
obs bkg bkgerr S950bs S95exp
5333 4700 500 1400 985
135 122 18 50 40
29 33 7 14 17
1

4 2.4 .4 6.9 5.8
228 210 40 87 79
0 1.6 4 3.0 3.4

1.
18 15 5 15 13
166 113 21 90 54
41 30 8 28 21
5 2.9 1.8 8.2 6.6
(Press any key to continue)

Note that due to numerical effects, the above numbers are not fully deterministic. Comparing
the calculated numbers to the ones in Ref. [241] tells us that the numbers are acceptable. Usu-
ally, the experimental numbers slightly differ from the ones calculated by the AnalysisManager.
This is mainly caused by different parametrisations of the background uncertainties, taking in-
formation on individual error sources into account to which CheckMATE does not have access.
CheckMATE still prefers to calculate and use its own numbers as the exact same statistical rou-
tines for S95 are used for the proper CLg calculation in the CheckMATE evaluation routines such
that the results of the two approaches are more consistent with each other.
We therefore accept the numbers and finish the AnalysisManager section:

- Reference file created

- Variable values saved in $CMDIR/data/analysis_info/atlas_conf_2013_047x_var.j
Analysis atlas_conf_2013_047x has been added successfully!
Run ’make’ from the main CheckMATE folder to compile it!

Looking at the Skeleton Analysis Code

The AnalysisManager is mainly responsible to gather all the information for the detector
simulation and the statistical evaluation sections of CheckMATE. What is still left to do is to
define the analysis code that is used to analyse the events the user provides. In this section we
describe how to do this by continuing our example of atlas_conf_2013_047X. Note that the
code we develop here differs slightly from the actual code implemented in CheckMATE since we,
for the sake of understanding, change the order of some steps here and shorten the code where
possible. It still gives the exact same results for the signal region tests though.
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As the AnalysisManager has told us, source files for our analysis have already been created.
They can be found in $CMDIR/tools/analysis/include/atlas_conf 2013 _047x.h and
$CMDIR/tools/analysis/src/atlas_conf_2013_047x.cc and are already filled with skeleton
code that properly compiles and embeds the analysis into the existing framework. What should
concern us most is the source file which contains the actual analysis code. Every CheckMATE
analysis contains three main functions.'6

initialize(): This function is called once at the beginning of an analysis. It is therefore
used to setup overall information, initialise variables and open files that are used throughout
the analysis. By default, AnalysisManager data that is important for the analysis is already
embedded!:

 atlas_conf_2013_047x.cc

#include "atlas_conf_2013_047X.h"
// AUTHOR: Guybrush Threepwood
// EMAIL: threepwood@pirates.arr
void Atlas_conf_2013_047x::initialize() {
setAnalysisName("atlas_conf_2013_047X");
setInformation(""
"# ATLAS\n"
"# ATLAS-CONF-2013-047\n"
"# 0 leptons, 2-6 jets, etmiss\n"
"# sqrt(s) = 8 TeV\n"
"# int(L) = 20.3 fb~-1\n"
DN
setLuminosity(20.3%units: :INVFB);
bookSignalRegions ("AL;AM;BM;BT;CM;CT;D;EL;EM;ET;");
}

The setAnalysisName and setInformation functions define human readable headers and the
prefix of all analysis-related output files. They must not be changed to not spoil the CheckMATE
internal data flow. setLuminosity is used to properly normalise the input to a physical number
of events given the cross section the user provides in the CheckMATE input card. This number
can be used to rescale the overall output, e.g. to take a global event-cleaning efficiency into
account. Finally book functions are defined for SignalRegions and CutflowRegions. These
functions make sure that the respective _signal.dat and _cutflow.dat analysis output files
contains numbers for each of the booked signal/cutflow regions. No matter in which order the
signal regions are booked they will always be sorted alphabetically in the output.

analyze (): This function is the heart of any analysis: It is called once per event and contains
the physics that is used to quantify the given data. Except for some comments and tips, this
function does not contain any code yet and we will fill it in the next part of this tutorial.

finalize(): As the name suggests, this function is called once at the end of a given analysis.
Usually this function is empty, however it can be used to e.g. free pointers that have been defined
during initialize or to close some extra files that have been opened and filled before.

Now that we have understood the structure let us start to implement the analysis code.

Selection of Final State Objects

As the first step, we should define all the final state objects that we need and apply the
appropriate kinematical cuts. The given analysis requires the following objects:

6 The three-function structure is similar to the one used in the Rivet [172] framework.
17 Note that the actual source file includes many extra lines of explanatory comments which we have removed
for this tutorial.
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e missing transverse energy,
e clectrons with pr > 10 GeV and |n| < 2.47 that pass minimal selection criteria,

e muons with pr > 10 GeV and |n| < 2.4 reconstructed with combined data from tracker
and muon spectrometer,

e photons with py > 130 GeV and || < 2.47 excluding 1.37 < |n| < 1.52 and
e jets with pr > 20 GeV and || < 2.8.

In the code, all the above objects are already predefined and we just have to select the right
kinematic range using the filterPhaseSpace function of the analysis base class:
void Atlas_conf_2013_047::analyze() {
missingET->addMuons (muonsCombined) ;
electronsLoose = filterPhaseSpace(electronsLoose, 10., -2.47, 2.47);
muonsCombined = filterPhaseSpace(muonsCombined, 10., -2.4, 2.4);

jets = filterPhaseSpace(jets, 20., -2.8, 2.8);
photons = filterPhaseSpace(photons, 130., -2.47, 2.47, true);

The missing energy vector a priori does not contain muon contributions as different analyses
can have different definitions of the construction of the missing momentum vector. We therefore
add the contribution of all reconstructed muons by using the addMuons function. Furthermore,
the area 1.37 < |n| < 1.52 is often excluded for objects reconstructed in the electromagnetic
calorimeter. The filterPhaseSpace function therefore has an optional last parameter which
— if set to true — ignores objects in exactly that region.

These objects are then tested against different overlap conditions. In our case, these are
defined as follows:

1. First, any jet with AR(j,e) < 0.2 to a nearby electron is removed.
2. Then, any electron and any muon with AR(¢,j) < 0.4 is removed.

Functions that take care of these removals are fortunately already available in the AnalysisBase
class:

jets = overlapRemoval(jets, electronsLoose, 0.2);
electronsLoose = overlapRemoval(electronsLoose, jets, 0.4);
muonsCombined = overlapRemoval (muonsCombined, jets, 0.4);

Note that the order of these steps is crucial. Due to the setup of the detector simulation most
electrons will also be reconstructed as jets. An overlap removal with respect to these two objects
is therefore always necessary to avoid severe double counting issues.

Event Selection

Now that we have finished the object reconstruction step, we can start checking whether a given
event fulfils the criteria of the given analysis. In our example, we should ignore events with
leptons and hard photons. This is done very easily by using the return statement which ends
the current run of the analyze () function and hence effectively vetoes the currently processed
event:
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if (!photons.empty() || 'electronsLoose.empty() || !muonsCombined.empty())
return;

We now start to look at the signal region criteria which are summarised in Table 1 in Ref. [241].
Firstly all signal regions require fp> 160 GeV and at least two reconstructed jets. From
these the leading jet must have a pr of least 130 GeV and the sub-leading jet pr > 60 GeV.
All objects in CheckMATE analyses have a PT member that can be directly accessed for this

purpose:
if (missingET->PT < 160.0)
return;
if (jets.size() < 2 || jets[0]->PT < 130 || jets[1]->PT < 60)
return;

Note that all object vectors are automatically sorted with respect to pr such that leading and
sub-leading jet are simply the first and the second object in the jet vector.'® Furthermore
the angular separation of the missing momentum vector and the leading two jets must be at
least 0.4. We make use of the P4() function of each object which returns the corresponding
TLorentzVector object defined in ROOT. This class comes with a large list of procedures to
calculate 4-momentum parameters like the A¢ separation we need:

if (fabs(jets[0]->P4().DeltaPhi(missingET->P4())) < 0.4)
return;

if ( fabs(jets[1]1->P4() .DeltaPhi(missingET->P4())) < 0.4)
return;

There are more constraints on further ‘hard jets’ with pr > 40 GeV: If a third ‘hard jet’ exists,
it has to pass the above criterion too. For some signal regions, an additional constraint is
applied if extra jets appear in the event. Here the looser constraint that A¢ > 0.2 is applied
to the fourth jet onwards:

std::vector<Jet*> hardjets = filterPhaseSpace(jets, 40., -2.8, 2.8);
bool validJet3 = (hardjets.size() < 3 || fabs(hardjets[2]->P4() .DeltaPhi(missingET->P4())) > 0.4);
bool validMultiJet = validJet3;
for (int j = 3; j < hardjets.size(); j++) {
if (fabs(jets[jl1->P4().DeltaPhi(missingET->P4())) < 0.2)
validMultiJet = false;
}

For our selection we need the ratio of Fp to the total effective mass meg(Nj) as well as
to /Hr. Hrp is defined to be the scalar pr sum of of all jets with pr > 40 GeV whereas
meg(N7) is the scalar pr sum of the leading N jets plus . There is also a requirement
on meg(incl) = Hp+Ep. We have to calculate these explicitly for all allowed number of
jets!?.

double HT = O.;

for(int j = 0; j < hardjets.size(); j++)

HT += hardjets[j]->PT;
double mEffincl = HT + missingET->PT;

double mEff2
double rEff2

missingET->PT + jets[0]->PT + jets[1]->PT;
missingET->PT/mEff2;

double mEff3

0;

18 Standard C++ vectors do not catch out-of-bound indices. Users therefore have to ensure semantically that
jets[i] is only accessed if jets contains at least ¢ + 1 members.

19 We are aware that the conditions could be formulated more concisely by using the ternary ? operator, e.g.
double mEff4 = jets.size() >= 4 ? mEff3 + jets[3]->PT : 0; For this manual we however preferred to
use the easier to read version using if that most readers should be familiar with.
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if (jets.size() >= 3)

mEff3 = mEff2 + jets[2]->PT;
double rEff3 = 0;
if (jets.size() >= 3)

rEff3 = missingET->PT/mEff3;

double mEff4 = 0;
if (jets.size() >= 4)

mEff4 = mEff3 + jets[3]->PT;
double rEff4 = 0;
if (jets.size() >= 4)

rEff4 = missingET->PT/mEff4;
[...]

double rEffHT = missingET->PT/sqrt (HT);

The last requirement we have to check is that the momentum of the leading N jets in a given
signal region is larger than 60 GeV. For that we simply count the number of jets after cutting
to the signal phase space:

‘ int nSignalJets = filterPhaseSpace(jets, 60., -2.8, 2.8).size();

With all these numbers at hand we can go ahead and check the various signal regions. When-
ever an event passes the respective criteria, we just have to call the countSignalEvent func-
tion:

if (validJet3) {
if (nSignalJets >= 2 && rEff2 > 0.2 && mEffincl > 1000.)
countSignalEvent ("AL") ;
if (nSignalJets >= 2 && rEffHT > 15. && mEffincl > 1600.)
countSignalEvent ("AM") ;
if (nSignalJets >= 3 && rEff3 > 0.3 && mEffincl > 1800.)
countSignalEvent ("BM") ;
if (nSignalJets >= 3 && rEff3 > 0.4 &% mEffincl > 2200.)
countSignalEvent ("BT") ;
}
if (validMultiJet) {
if (nSignalJets >= 4 && rEff4 > 0.25 && mEffincl > 1200.)
countSignalEvent ("CM") ;
if (nSignalJets >= 4 && rEff4 > 0.25 && mEffincl > 2200.)
countSignalEvent ("CT");
if (nSignalJets >= 5 && rEff5 > 0.2 && mEffincl > 1600.)
countSignalEvent ("D");
if (nSignalJets >= 6 && rEff6 > 0.15 && mEffincl > 1000.)
countSignalEvent ("EL") ;
if (nSignalJets >= 6 && rEff6 > 0.2 && mEffincl > 1200.)
countSignalEvent ("EM") ;
if (nSignalJets >= 6 && rEff6 > 0.25 && mEffincl > 1500.)
countSignalEvent ("ET") ;

These lines finish the analysis code. The full code is listed in Fig. 4.6.

The CheckMATE installation files then need to be created with the following commands, see
also Appendix B.1: autoreconf; ./configure {parameters};. Then, make; make install;
within the CheckMATE main folder should compile the analysis and make it available in the same
manner as any other CheckMATE analysis.

More examples covering more complicated cut prescriptions and the adding of prospective
future analyses can be found in Ref. [179]. The latter feature is used in our Higgs Portal analysis
in Chapter 5 to estimate the sensitivity of the high luminosity LHC. This works similarly to
the above prescription, with the only difference that we have to anser n when asked Is the
SM expectation B known?. Then, CheckMATE skips asking for the respective numbers but
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 atlas_conf_2013_047x.cc

void Atlas_conf_2013_047x::analyze() {
missingET->addMuons (muonsCombined) ;
electronsLoose = filterPhaseSpace(electronsLoose, 10., -2.47, 2.47);
muonsCombined = filterPhaseSpace(muonsCombined, 10., -2.4, 2.4);
jets = filterPhaseSpace(jets, 20., -2.8, 2.8);
photons = filterPhaseSpace(photons, 130., -2.47, 2.47, true);

jets = overlapRemoval(jets, electronsLoose, 0.2);
electronsLoose = overlapRemoval(electronsLoose, jets, 0.4);
muonsCombined = overlapRemoval(muonsCombined, jets, 0.4);

if (!photons.empty() || !electronsLoose.empty() || !muonsCombined.empty())
return;
if (missingET->PT < 160.0)
return;
if (jets.size() < 2 || jets[0]->PT < 130 || jets[1]->PT < 60)
return;
if (fabs(jets[0]->P4() .DeltaPhi(missingET->P4())) < 0.4)
return;
if ( fabs(jets[1]1->P4() .DeltaPhi(missingET->P4())) < 0.4)
return;

std::vector<Jet*> hardjets = filterPhaseSpace(jets, 40., -2.8, 2.8);
bool validJet3 = (hardjets.size() < 3 || fabs(hardjets[2]->P4().DeltaPhi(missingET->P4())) > 0.4);
bool validMultiJet = validJet3;
for (int j = 3; j < hardjets.size(); j++) {
if (fabs(hardjets[j]1->P4() .DeltaPhi(missingET->P4())) < 0.2)
validMultiJet = false;
}

double HT = 0.;
for(int j = 0; j < hardjets.size(); j++)
HT += hardjets[j]1->PT;
double mEffincl = HT + missingET->PT;
double mEff2 = missingET->PT + jets[0]->PT + jets[1]->PT;
double rEff2 = missingET->PT/mEff2;

double mEff3 = 0;
if (jets.size() >= 3)

mEff3 = mEff2 + jets[2]->PT;
double rEff3 = 0;
if (jets.size() >= 3)

rEff3 = missingET->PT/mEff3;
double mEff4 = 0;
if (jets.size() >= 4)

mEff4 = mEff3 + jets[3]->PT;
double rEff4 = 0;
if (jets.size() >= 4)

rEff4 = missingET->PT/mEff4;
double mEff5 = 0;
if (jets.size() >= 5)

mEff5 = mEff4 + jets[4]->PT;
double rEff5 = 0;
if (jets.size() >= 5)

rEff5 = missingET->PT/mEff5;
double mEff6 = 0;
if (jets.size() >= 6)

mEff6 = mEff5 + jets[5]->PT;
double rEff6 = 0;
if (jets.size() >= 6)

rEff6 = missingET->PT/mEff6;
double rEffHT = missingET->PT/sqrt(HT);

int nSignalJets = filterPhaseSpace(jets, 60., -2.8, 2.8).size();
if (validJet3) {
if (nSignalJets >= 2 && rEff2 > 0.2 && mEffincl > 1000.)
countSignalEvent ("AL");
if (nSignalJets >= 2 && rEffHT > 15. && mEffincl > 1600.)
countSignalEvent ("AM") ;
if (nSignalJets >= 3 && rEff3 > 0.3 && mEffincl > 1800.)
countSignalEvent ("BM") ;
if (nSignalJets >= 3 && rEff3
countSignalEvent ("BT") ;

v
o

.4 && mEffincl > 2200.)

if (validMultiJet) {

if (nSignalJets >= 4 && rEff4
countSignalEvent ("CM") ;

if (nSignalJets >= 4 && rEff4
countSignalEvent ("CT") ;

if (nSignalJets >= 5 && rEff5
countSignalEvent ("D");

if (nSignalJets >= 6 && rEff6
countSignalEvent ("EL");

if (nSignalJets >= 6 && rEff6
countSignalEvent ("EM") ;

if (nSignalJets >= 6 && rEff6
countSignalEvent ("ET");

v
=}

.25 && mEffincl > 1200.)

v
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.25 && mEffincl > 2200.)
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.2 && mEffincl > 1600.)
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.15 && mEffincl > 1000.)
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.2 && mEffincl > 1200.)
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.25 && mEffincl > 1500.)

Figure 4.6: Full source code of the simplified reimplementation of atlas_conf _2013_047 into CheckMATE.
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adds the analysis such that it can be used like any other analysis. However, as long as the
Standard Model expectation is not provided, CheckMATE will skip the statistical evaluation if
such an incomplete analyis is run on input data. The standard way to proceed is to generate
Standard Model background samples, use CheckMATE to determine the number of background
events which pass all the cuts, and from that determine the numbers bkg and bkg_err. For
a prospective study, obs is typically set to bkg. These numbers can be added by choosing to
(e)dit analysis information during the start prompt of the AnalysisManager. When all
numbers are provided, the statistical evaluation is re-enabled for the new analysis.

4.6 Summary and Outlook

CheckMATE is an easy-to-use tool for phenomenologists to quickly test their BSM models of
interest against a large set of results from ATLAS and CMS. This is done by either provid-
ing simulated events from an external event generator or by making use of Pythia 8 within
CheckMATE. In both cases, events are automatically passed through the detector simulation
Delphes with standard settings for the ATLAS and CMS detector. Resulting detector level
objects are then post-processed via AnalysisHandlers which take care of the proper tagging of
final state objects depending on all the requirements of all analyses chosen by the user. The re-
spectively used tagging efficiencies have been determined from sophisticated fits to experimental
performance studies. The analyses then determine how many of the provided events pass the
given signal region cuts and determine the physical number of predicted signal events for each
such region. A statistically well-founded comparision to observed and expected results then
yields a statement whether the input can be excluded or not at the 95 % confidence level. This
statement is returned by CheckMATE and thus easily allows the users to quickly separate the
Allowed from the Excluded parameter region of their model of interest. If published analyses
other than those implemented in CheckMATE exist, an implemented AnalysisManager allows
users to easily add these to the existing framework.

In the time since the original CheckMATE version 1.0 was published in Ref. [178] it has become
an invaluable tool for the particle physics community. The approximately one hundred pub-
lications by phenomenologists all around the globe which use CheckMATE to test their models
of interest cover a wide range of possible applications to various theories beyond the Standard
Model. They are solid proof that the program indeed works out-of-the-box and model indepen-
dently. We make use of CheckMATE ourselves in the upcoming two chapters of this thesis: in
Chapter 5 we use the AnalysisManager to easily project an 8 TeV analysis to a high luminosity
LHC with /s = 14TeV and in Chapter 6 we make use of the wide coverage of analyses with
b-jets and large amount of Fp in order to test the LHC sensitivity to a natural NMSSM model.

The unvalidated analyses implemented in CheckMATE already include some of the first LHC
results from 13 TeV data and more are expected to be added in the near future. The tool is
ready to incorporate these results and to allow for a potential retuning of the detector efficiencies
for the upgraded LHC without affecting the implemented and validated 8 TeV results which
still put the most important constraints on various final state topologies.

With the soon-to-be-published version 2.0 described in this chapter, CheckMATE will start
removing the strict separation of event generation and collider testing. Though for now Pythia
8 is restricted to only being able to simulate those models which are explicitly implemented into
the code, it was recently extended with the functionality to link to the MadGraph5_aMC@NLO event
generator which then can perform the partonic event generation. As explained in Section 3.2.2,
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this tool can make use of the UFO file format to in principal simulate events for any possible BSM
model. A proper inclusion of this feature into the CheckMATE code would make it a completely
model-independent collider phenomenology tool without any necessity of the user to actively
simulate events.

At the same time, the automatised setup of Pythia 8 itself by CheckMATE also has to be
improved. For now, standard settings are used if the user provides a single .lhe file. As we
discussed in Section 3.2.5, matching and merging algorithms require more than one partonic
event sample which then have to be properly combined to avoid double counting. Both steps
are foreseen to be realised in the not so far future.
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CHAPTER 5

Probing the Higgs Portal at the LHC via
Monojets

— 00—

As explained in Section 2.2 the Standard Model cannot account for the right matter density
of our Universe and thus it seems necessary to extend the field content by further particles
which interact weakly with the Standard Model. We introduced a setup called the Higgs Portal
with a scalar singlet S which is charged under a dark gauge group U(1)x and a dark gauge
boson Z’ which gained mass by spontaneously breaking the dark gauge group through a vacuum
expectation value z of the singlet field. The only renormalisable term which couples the dark
sector to the Standard Model is the scalar mixing term AggHHSTS which yields two mixed
mass eigenstates if both fields acquire a vev. This results in two scalar fields h, H which both
couple to Standard Model particles, the hidden gauge bosons and each other. The relevant
terms in the Lagrangian read

V2m3 _
Lnmsmysm) = (hcosa —I—Hsma) 5 WW+W“ + \fTZvZ Z0 — Z \[ , (5.1)
‘ch/HZ’Z’ = (h sina — H cos a)ng/ZLZ”“, (52)
2mh + m?, _vsino 9
Lunn = WoR sin(2a) (cosa+ V2§ o >Hh . (5.3)

In this section, we discuss the sensitivity of the future high luminosity LHC running at its full
center-of-mass energy to this model by looking at monojet final states. After briefly summarising
the current most important existing limits from theory and experiment in Sections 5.1 and 5.2
we show the still unconstrained parameter space in Section 5.3 before discussing the proposed
analysis and our results in detail in Sections 5.4 and 5.5.

The main results of this chapter have already been published in Ref. [242]. However, a more
careful consideration of existing limits on our target parameter space is performed within this
thesis. Note also that for consistency reasons the nomenclature of particles and normalisation
of parameters is slightly different.

5.1 Theoretical Constraints
In Egs. (2.49) to (2.51), we re-expressed the theory parameters Agr, Ag, Ags via the phenomeno-

logical parameters my,, my and my/, which together with the dark gauge coupling g fully specify
our model. If we choose particular mass values for our collider study, we have to ensure that
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these are theoretically possible; most importantly if we translate them back into theory param-
eters those should be small enough to allow a perturbative phenomenological discussion and
the resulting scalar potential in Eq. (2.40) should allow for spontaneous symmetry breaking.
We illustrate the main ideas and constraints within this section, however Refs. [243-247] give
a more thorough analysis including considerations of higher order effects.

5.1.1 Stability of the Potential and Existence of a Nontrivial Minimum

e Lastly, for positive Agrg the necessary conditions to ensure v, z # 0 mentioned below Eq. (2.42)
are automatically fulfilled if A%, < AgAg. As this is the determinant of the mass matrix,
Eq. (2.45), choosing posive values for m,%, mfr{ automatically ensures that valid solutions for /ﬁq
and p% can be found such that solutions v, z # 0 exist.

As we see, we can trivially fulfill the required theoretical constraints on the vacuum structure
at the weak scale by simply choosing physical values for my, my and by keeping the mixing angle
positive. However, within a fully specified, ultraviolet complete model, the renormalisation
group equations (RGEs) should be used to check that the stability conditions hold even when
evolving the parameters up to higher scales, e.g. the Planck scale. As can be seen in the
above cited references in which such a more sophisticated study is performed, this restricts
the possible choices of the low scale parameters. In our scenario, however, we have many
additional degrees of freedom to change the result of such an analysis without affecting the
collider phenomenology discussed below. For example, additional particles in the hidden sector
will affect the RGE evolution if they are charged under the dark gauge group. However, they
can be ignored for a collider study as long as they do not interact with S or as long as their
mass is sufficiently high to not be produced at LHC energies. Also, specifying the high scale
model which avoids low scale kinetic mixing of U(1) x and U(1)y can affect the RGE evolution,
see e.g. Ref. [248].

For a phenomenological study as we perform within this thesis, it is therefore reasonable to
ignore these additional constraints here. They become especially important as soon as the dark
sector is designed to match cosmological observations, see e.g. Refs. [243, 246].

5.1.2 Perturbativity

If coupling constants become too large, non-perturbative effects like the formation of bound
states have to be considered. To avoid this, we require all three Ay parameters and § to be
smaller than v/47. From Egs. (2.49) to (2.51) we can translate this condition into constraints
on the physical parameters

4y/Tv? — (m,% + m%{)

cos(2a) < 5 5 , (5.4)
ms —my
2 2 _ 2ym 2
m; +ms;, — =5-m7,
cos(2a) > i QH g; z , (5.5)
My — My

4 V 2w vmy

sin(2a) < 7 mE —md)

(5.6)

These conditions put constraints on the valid physical parameter regions of our model and,
most importantly, limit the possible branching ratios into the final states of interest. We show
these bounds and discuss their impact later in Section 5.2.2.
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Again, it should be emphasised that a higher order calculation would change the tree level
relations of theoretical and observable parameters in Eqgs. (2.49) to (2.51) and can change the
above constraints drastically. Similarly, the na“ively chosen upper limit of v/47 can only be
verified if the actual numerical contribution from loop diagrams is compared to the tree level
result. We therefore should not interpret the perturbativity limits shown in the following results
as entirely forbidden parameter combinations but as regions with a low probability to not violate
theoretical conditions on the model. Again, they should be analysed in more detail within a
well defined model as e.g. done in the references listed in the introductory paragraph of this
section.

5.2 Experimental Constraints

The signature we analyse within this work focusses on invisible decays of the heavy singlet-like
scalar particle and the sensitivity of a high luminosity LHC at its full energy. However, during
the first run at /s = 7 and 8 TeV, both ATLAS and CMS have already searched for such par-
ticles and due to the absence of any deviations from the Standard Model expectation, bounds
have been put on possible production cross sections times branching ratios. Furthermore, due
to the mixing in the scalar sector the Standard Model like Higgs boson h has a cos a reduced
coupling to all other Standard Model particles. This should not be in conflict with the obser-
vation that so far all channels are in good agreement with the assumption of Standard Model
like coupling strengths. Therefore mixing should be small and cos a should not deviate largely
from 1. Many of the LHC constraints have been analysed in previous studies of various mani-
festations of the Higgs Portal model, e.g. Refs. [249-253] and we refer to these and references
therein for more detailled information.

Apart from direct collider searches, precise measurements of electroweak observables could be
sensitive to the presence of a second heavy scalar which interacts with both the W and Z and
thus put further constraints on our model. Also, we originally motivate the dark sector to solve
the dark matter problem and hence a properly specified model should check constraints from
these experiments. In this section, we summarise the most important of all these constraints
and how they effect our accessible parameter space.

5.2.1 Limits from Standard Model Higgs Boson Searches

With the respective interaction terms known from Eqgs. (5.1) to (5.3), we can easily relate the
relevant production cross sections and decay widths of our model to quantities well studied for
the Standard Model Higgs boson h,

Opp—sh = cos?(a) x ng_m, (5.7)
Thoysmy = cos”(a) x TR - (5.8)

Due to the mixing, the Standard Model production cross section and decay widths for the
observed 125 GeV boson are each reduced by cos?(a). Because of this constant factor, the
branching ratios of all final states are unaffected'. The Higgs portal scenario therefore predicts

! This statement is true as long as no new final states are present. As we explicitly avoid the possibility of
h — Z'Z’ decays, this is indeed the case.
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a reduced signal strength modifier

(U X BR)obs
(O‘ X BR)SM

1 = cos?(a). (5.9)
The most recent combination of all \/s = 8 TeV searches for the Standard Model Higgs boson
at ATLAS and CMS results in a best fit value of = 1.097015 [254] , from which a lower 95%
confidence limit on p > 0.89 and thus sin o < 0.33 can be derived. By the time this work was
completed, the combination of both experiments had not yet been published and only the signal
strength limits of the individual channels were available (most importantly Refs. [255-257]).
The strongest lower limit was set by the ATLAS h — 4¢ search with y = 1.44J_r8:§g and thus
sinaw < 0.45. This is why the results we show in the following include benchmark scenarios
with sin @ = 0.4 even though they are in strong tension with the updated experimental results.
In the discussion we focus on the still viable sin « = 0.3 case.

If the dark matter candidate Z’ was lighter than ~ 62 GeV, a new decay mode h — Z'Z’
would open. The corresponding decay width can be calculated to be

G* sin?(a)m3

4m?2, 4m2, 12m?%,
Ty = b 1= 2 (1= 22 =0, (5.10)
327rmZ, mj mj my

Such an additional final state would result in a reduced branching ratios into all visible final
states and thus an even smaller predicted value for p. The corresponding limit on sin o from
the above analysis would therefore become even tighter for increasing g and/or smaller m .

However, direct searches for invisible decay modes of the Standard Model like Higgs boson
yield even more important constraints. There exist various fits from ATLAS [258] and CMS
[255] using their combined set of Standard Model Higgs boson measurements. These fits allow
various subsets of Higgs couplings to deviate from their Standard Model values while keeping the
others fixed. Some of these consider BR(h — inv.) as an additional degree of freedom and the
resulting confidence limits on this parameter depend on the chosen subset of fitted couplings.
The most general and hence most conservative fit allows for all couplings to fermions and
gauge bosons to vary freely while only requring the coupling to vector bosons to not exceed
the Standard Model value. Here, ATLAS quotes the strongest limit with BR(h — inv.) < 25%
which can be used to constrain the angle v and the mass my by using

. Uhoziz
BR(h — inv.) = . (5.11)
Thziz + cos?(a) - F;?M
This can be reformulated as
Fh%Z’Z’ SM BR(h — inV.)maX
2 ="h 3 max (512)
cos?(a) 1 —BR(h — inv.)

To illustrate the severity of this constraint, we can check the implications for mz < my,. Here
the parameter dependence of Eq. (5.10) factorises conveniently and the invisible branching ratio
limit can be translated into a limit on the parameter product gtana/my::

P 2 I‘SM 1 _)max
gtana < \/3 [ BR(h — inv.) ~ 96 x 10_4L’ (5.13)

my m3 1 —BR(h — inv.)max GeV
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where we have used the Standard Model Higgs width F,SLM =4 MeV and my = 125 GeV. Since
my can be at most 65 GeV, this requires g and/or « to be extremely small. Such a strong limit
would constrain parameter space far more than could be achieved by the signature we propose
in the following. We therefore restrict our discussion to dark gauge boson masses my: > 65 GeV
which is clearly above the threshold for invisible h decays.

5.2.2 Limits from Heavy Higgs Boson Searches

The analogous expressions of Egs. (5.8) and (5.10) for the singlet like heavy scalar are given by

Opp—H = sin(a) x ngla\ih(mh:mH)» (5.14)
11H—>(SM) = Sin2(a) X FEI(\fnh:mH)%(SM)y (5.15)
=2 3 2 2 4
g m 4mz, dm7,  12m7,
Tr_szrz = cos®(a) x 35 s - —£ (1 - —£ — ) (5.16)
™y, mi miy my

In addition, if mg > 2my, an additional Higgs-to-Higgs decay channel opens. The corresponding
partial width is given as

1 2 2 2\2 : ) 4 2
Thshn = (2mj, + miy) sin2(2a)(cosa+fgvsma) " (5.17)
STmy 8v2 my my;

The Run 1 CMS search for heavy Higgs bosons via H — WW, ZZ decays [259] accounts for
a possible reduced production cross section and a potential invisible decay mode. Limits are
then put on the ratio 0¥ /gy, in our case predicted to be sin?(a)(1 — BR(H — inv.)). These
limits depend on the heavy Higgs mass my and vary according to statistical fluctuations in the
experimental channels. They range between ¢V /ogy < 0.15 for my ~ 145 GeV and < 0.075
for myg =~ 330GeV and can exclude parameter regions with a too small invisible branching
fraction even in case of a mild mixing of sina = 0.3. Analogous limits from ATLAS [258, 260]
are only given for individual WW and ZZ channels but still yield comparable limits. We show
and discuss the parameter regions excluded by these constraints in the upcoming section.

5.2.3 Limits from Higgs—to—Higgs Decays

Heavy scalars decaying via the rate given in Eq. (5.17) can be observed in channels with two
reconstructed Standard Model like Higgs bosons which form an invariant mass peak. Both AT-
LAS [261] and CMS [262] have performed searches for such resonances and due to their absence
have put limits on cross section times branching ratio. These could in principle constrain our
allowed parameter space for my > 2myj = 250 GeV.

Let us consider the limits in Ref. [261] which already combine the results of individual Higgs
boson decay channels. These bounds constrain o4y X Br(H — hh) of the order 0.5 — 1pb
and larger. Since the gluon fusion cross section for a Standard Model like Higgs of 250 GeV
by itself is already only 5 pb (see Ref. [263]), one easily finds that for our benchmark values of
interest (sina =~ 0.3, BR(H — inv.) 2 50 %) current limits from Higgs—to—Higgs decays do not
restrict the accessible parameter space.
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5.2.4 Limits from Electroweak Precision Data

The appearance of an additional scalar boson which interacts weakly with Standard Model
gauge bosons and fermions via the interaction terms in Eq. (5.1) can affect various observables
of the electroweak sector. Most importantly, higher order corrections to gauge boson masses
as well as absolute and relative decay widths could violate precision measurements from LEP
and the Tevatron. Such an analysis has been performed in e.g. Refs. [245, 264]. As an example,
Ref. [245] uses various observables from Ref. [265] and finds that it is only for my 2> 500 GeV
where these constraints dominate those drawn from heavy Higgs boson searches as explained
above. As becomes apparent from our results below, our analysis is not sensitive to such heavy
scalar particles and therefore we do not have to consider electroweak precision bounds on our
parameter space.

5.2.5 Limits from Dark Matter Experiments

We motivated the Higgs Portal scenario to explain dark matter. Constraints from direct detec-
tion and relic density measurements can put important constraints on the hidden sector. Limits
on the setup as we describe it here, i.e. a stable massive Z’ of a gauge group with coupling g
which couples respectively to two scalars h and H with §cosa and gsin «, are analysed in e.g.
Refs. [243, 246, 249, 252, 264, 266, 267]. Non-trivial limits on the combined § — my — my — «
parameter space can be set by requiring consistency with dark matter direct detection experi-
ments and the correct energy density pz expected for dark matter. These can put limitations
to those parameter regions we analyse within this work. As an example, for my = 200 GeV,
my = 70GeV and sina = 0.3, values for g larger than 0.2 violate direct detection limits from
XENON100 [246]. However, similarly to the discussion of the high scale behaviour of our theory,
these constraints will change significantly by extending the particle content of the dark sector
which would have no impact on the results of this study. For example, if not Z’ but a lighter
U(1) x-charged fermion would be the dark matter candidate, relic density limits would depend
on the mass and the quantum numbers of this hidden fermion. Also, direct detection limits
would be damped as only higher order loop interactions between these fermions and nucleons
would take place. We can therefore again ignore these constraints for our phenomenological
study.

5.3 Available Parameter Space and Invisible Branching Ratios

Our signature of interest requires the heavy singlet like scalar H to decay invisibly into a pair
of Z's. The corresponding invisible branching ratio can be calculated from the respective decay
widths in Egs. (5.15) to (5.17) as

Uyzz

BR(H — inv.) =
( ) =T Ho2'2+ T + 2 T (sm

(5.18)

In Fig. 5.1, we show the countour plots of branching ratios in the m g—m_z —plane for sina =
0.3,0.4 and four representative choices of g. The values for the total Standard Model width
at various Higgs masses, needed to evaluate Z(SM) L' i (sm), have been taken from Ref. [263].
In each plot, we also show the parameter region which either violates the kinematic condition
myz < mp/2, the perturbativity constraints in Eqgs. (5.4) to (5.6) or the experimental limits in
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Figure 5.1: Allowed parameter regions in the mg—my: plane and contour plots of the invisible branching
ratio BR(H — inv.) for different exemplary values of §. Each plot shows branching ratio contours for
sina = 0.3 (blue solid) and sina = 0.4 (green dashed). The darkened triangular region in the top
left corner corresponds to the kinematic region where mpy < myz//2 and thus no decay H — Z'Z’ is
possible. The dark grayed regions below violate LHC constraints from heavy Higgs searches as explained
in Section 5.2.2. The bottom hatched parameter region visible in (¢) and (d) violates either of the
perturbativity constraints in Egs. (5.4) to (5.6). In both cases, the interior solid line denotes the weaker
limit for sina = 0.3 and the outer dashed line the stronger for sin a = 0.4.
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(a) gluon fusion plus ISR jet (b) vector boson fusion

Figure 5.2: Example diagrams for different heavy Higgs production modes with monojet signatures.

Ref. [259] from visible heavy Higgs decays. As explained in the previous section, we concentrate
on regions with myz > 65 GeV to avoid the tight constraints from invisible h decays.

As the decay width I'j;_, 7z grows proportionally to §2, the size of this coupling crucially
defines the order of magnitude of the resulting invisible branching ratio. It ranges from less
than one percent in case of g < 0.05 to beyond 90 % for g > 0.5. For my larger than 250 GeV,
H — hh decays are kinematically allowed which leads to a sizable reduction of the decay rate
into Z' pairs beyond this threshold.

For certain ranges of my, most importantly my ~ 200,250,320 GeV, results from visible
heavy scalar searches require an invisible branching ratio of at least 15% for sina = 0.3 and
40 % for sin « = 0.4. This excludes large regions of parameter space for g below 0.5.

However, for larger couplings limits from perturbativity — most importantly Eq. (5.6) —
become relevant and restrict the theoretical parameter space with too light mz,. While this
largely reduces the viable mass regions for sin & = 0.4 it only plays a minor role for the sina =
0.3 scenario. Here, for e.g. g = 0.5 practically no restrictions on the kinematically allowed mass
combinations of my and my: are set. For larger g, however, only heavy my are allowed, as
the required hidden vev z = v/2mz would otherwise be too small to reach my = O(200 GeV)
with perturbative couplings in Eq. (2.47).

We therefore find that for our considered Higgs Portal model with a heavy Z’ and a sizable
mixing of sina = 0.3 a wide range of invisible branching ratios between 20-95 % is still allowed
and uncovered by existing experimental searches for visibly decaying heavy scalars. It therefore
seems plausible to analyse the LHC sensitivity to invisible decays of H to hopefully fill the
remaining gaps observed in Fig. 5.1.

5.4 Future Limits from LHC Monojet Searches

As outlined before, we are mostly interested in the parameter region with a large probability
of eventually produced heavy scalar particles to decay invisibly — a collider signature which
commonly appears in models with WIMP dark matter particles (see e.g. Ref.[268] and references
therein). Since a fully invisible final state would not be triggered by the detector, collider
searches typically require the existence of one high energetic jet, photon or gauge boson from
the initial state. This often results in a boost of the mediator particle, in our case the heavy
scalar, and hence yields a larger amount of missing energy in the event which improves the
distinguishability from Standard Model background. In the following, we focus on the case
with a single jet, often called monojet search. Another interesting channel would be the specific
signature of two jets with a large rapidity gap as it appears in the vector boson fusion process.
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Cut M1 M2 M3 M4 M5
lepton veto yes

Nj(pr > 30 GeV, || < 2.8) <3

Ad(Diet, PIS) > 0.4

pr(leading jet) in GeV >280 >320 >450 >500 > 550
Emiss in GeV >220 >320 >450 >500 > 550

Table 5.1: Selection cuts used for the /s = 14 TeV monojet analysis.

This signature has been analysed in more detail within Ref. [269] and comparable sensitivities
can be achieved.

5.4.1 8 TeV Results and 14 TeV Analysis Implementation

Existing limits on opp— g X BR(H — inv.) which can be derived from ATLAS [185, 270] and
CMS [237] monojet searches lie above the total production cross section O-SII;/I—)h(mh:mH) for
heavy scalars of a given mass (see e.g. Ref. [271]). As our model predicts a sin?(a) reduced
production rate and only a fractional invisible branching ratio, the existing searches are clearly
not sensitive. In this study, we examine to what extent the Higgs Portal can be probed by the
LHC if it runs at its full center of mass energy of 14 TeV which increases the probability to
produce high energetic jets in the final state. For that purpose, we use CheckMATE and translate
the existing 8 TeV study to 14 TeV to estimate the future sensitivity?.

As a template of the 14 TeV analysis we used the existing ATLAS monojet study in Ref. [270].
We implemented the relevant kinematic selection cuts of all the signal regions into CheckMATE
by making use of the AnalysisManager as explained in Section 4.5. These regions demand a
lepton veto and at most three high energy jets with pr > 30 GeV. It is important to note that
the latter constraint means that in addition to the hard signal monojet two further soft jets
are allowed in the event. This is why not only gluon fusion plus with initial state radiation
(see Fig. 5.2a) but also vector boson fusion signatures (see Fig. 5.2b) provide an important
contribution even though strictly speaking the second do not yield monojet final states.

An additional requirement is imposed on the azimuthal angle between the missing transverse
vector and the jets, Ag(Diet, ﬁ‘f?iss) > 0.4, in order to suppress QCD multijet background. The
events which pass these constraints are categorised according to three signal regions M1 to
M3 with increasing requirements on the transverse momentum of the leading jet and the total
missing transverse energy of the event. T'wo more signal regions, M4 and M5, with even tighter
constraints on these parameters were defined in addition to account for the possibility that
monojet searches at higher center of mass energy could have an impoved sensitivity for higher
energies than could be reached for 8 TeV. A combined list of all signal regions’ definitions is
given in Table 5.1.

2 The analysis implementation into CheckMATE and the generation of Monte Carlo samples for signal and tt
background has been performed by Jong Soo Kim

3 The more recent monojet study Ref. [185] was published after the main work for this project had been
completed.
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5.4.2 Background Expectation

The dominant Standard Model contribution to the monojet signature are the associated produc-
tion of gauge bosons bosons and an initial state jet. Most importantly, Z bosons decaying into
neutrinos or W bosons decaying into a neutrino and a hadronically decaying tau or unidentified
electrons and muons have to be considered as they lead to events with a large amount of missing
energy. An additional small but non-negligible contribution is the production of ¢f pairs. Single
top channels can also populate the given signal regions but can be neglected compared to the
other background sources (see e.g. the corresponding numbers at 8 TeV in Ref. [270]). For the
same reason, we have neglected decays of Z/~v* into charged leptons, diboson production as well
as QCD multijet backgrounds. All these backgrounds are sufficiently well reduced by applying
the cuts in Table 5.1.

We numerically estimate the dominant SM backgrounds as follows: The Wj and Zj back-
grounds are generated with Sherpa2.1.1 [146] including up to 3 partons with CTEQ10 PDF
[272]. The tt background has been simulated with POWHEG2 [273] and the parton level events
were passed to Pythia6.4.25 [147] with CTEQ6L1 parton distribution function [132]. The ¢t
cross section has been determined with Top++2.0 [274]. The respective numbers of events after
the event selection via CheckMATE are listed in Table 5.2. The same numbers for /s = 8 TeV
were determined and sufficient agreement with the results in Ref. [270] was found.

5.4.3 Signal Generation

The only model parameter relevant for the Monte-Carlo based part of our collider phenomeno-
logical study is the mass of the heavy scalar as it directly affects the kinematics of the event,
that is the jet momenta and the total amount of missing energy. Other parameters, like sin o
and ¢ only affect the overall production and decay rate and results can easily be rescaled by
making use of Egs. (5.14) and (5.17).

We have generated the parton level signal events for various H masses within the POWHEG2
framework [275-277] which then have been passed to Pythia6.4. As shown in Fig. 5.2, we
considered both production via the dominant gluon fusion channel gg — Hg [278] and the sub-
dominant but still sizable vector boson fuction process qq — qqH [279]. We assume an on-shell
production of the heavy singlet like scalar to avoid complications due to off-shell interference
effects. An interesting study which proposes a different signature to make use of these effects
can be found in Ref. [280].

We have omitted the associated vector boson production channel ¢q¢ — W/ZH as it has
negligible cross section compared to the others. The cross sections for the various signal pro-
duction modes have been taken from Ref. [263]. Final event numbers for /s = 8 TeV were
validated against the results on invisible Higgs decays from Ref. [185]. The final numbers for
our /s = 14 TeV study are listed in Table 5.2 for a specific benchmark scenario. We also calcu-
late the significance measure S/ v/ B which provides a naive indicator for a possible sensitivity
of a given analysis if its numerical value exceeds 1.

5.5 Results

5.5.1 Expected Signal and Background Event Numbers

In Table 5.2 we list our numbers for all background sources and one example signal benchmark
point. As expected, the background is dominated by Z+jets, followed by W-+jets and only
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SR Zj Wi tt total example signal S/v/B
M1 2,378,934 2,024,466 67,821 4,471,221 5597 2.6
M2 742,710 442,296 13,327 1,198,333 2065 1.9
M3 207,804 102,852 2,656 313,312 638 1.1
M4 80,730 30,036 1,118 111,884 398 1.2
M5 33,252 11,610 625 45,487 251 1.2

Table 5.2: Number of background and signal events for all signal regions M1 to M5 at the LHC with
V/s = 14 TeV and an integrated luminosity of 600 fb~!. The signal was calculated for the benchmark
case my = 200 GeV, sina = 0.3 and BR(H — inv.) = 0.75. In the last column, we have estimated the
statistical significance with S/+v/B.

minor contributions from ¢t due to the restriction on the number of high energetic jets. For
the given signal benchmark, signal region M1 appears to be the most dominant with S/v/B of
roughly 2.6. The discussed monojet search would therefore be very sensitive to that particular
benchmark scenario.

It must be noted that no systematic error on the background has been considered here and
in the upcoming results. This renders the sensitivity lines shown in the following as overly
optimistic approximations. Due to the large event rates, especially in region M1 with a rather
mild monojet cut, the statistical error is considerably small and as such even tiny systematic
uncertainties are expected to have an impact on the signal sensitivity. However, at the current
stage it is difficult to quantify the accuracy of ATLAS in the far future. We therefore show
limits without assuming systematic uncertainties for now and come back to the discussion of
their possible impact at the end of this chapter.

5.5.2 Dark Sector Independent Limits on sin « and BR(H — inv.)

We start the discussion of the expected sensitivity to the Higgs Portal independently of the
details of the dark sector. That means we only consider the limits on the invisible decay of a
heavy Higgs-like scalar, regardless of the actual decay mode and its parameter dependence. In
Fig. 5.3a, we present our determined 95% C.L exclusion limits for BR(H — inv.) as a function
of the mass mp of the heavy scalar for an integrated luminosity of 600 fb=!. The limits have
been determined by using the CLg test implemented in CheckMATE and we choose the strongest
limit from the given five signal regions.

We choose the same two benchmark values for sin «; as in the previous discussion, which will
affect the expected number of produced heavy scalars in our model. Conversely, in Fig. 5.3b,
we fix the invisible branching ratio to three benchmark values and show the respective limits
on sin a. In both plots, we again draw the existing limits from the search for heavy Higgses at
CMS discussed in Section 5.2.2. However, as we do not specify the details of the invisible decay
yet (i.e. g and my/), no general perturbativity limit can be infered and therefore no equivalent
lines are drawn at this stage.

We observe that for a general heavy Higgs scenario with a sin?(a) reduced production cross
section the discussed monojet search would be sensitive to invisible branching ratios down to
70% for sina = 0.3 and 40% for sin @ = 0.4 for rather light my ~ 180 GeV. Heavier H are less
often produced and therefore are less constrained. This leads to a maximum sensitivity limit
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Figure 5.3: Expected future 95% CL limits on invisible heavy Higgs decays via monojet events at /s = 14
TeV with an integrated luminosity of 600 fb~'. Coloured regions correspond to the excludable region
for a particular value of sin« (a) or BR(H — invisible) (b). Grayed regions correspond to existing CMS
limits from heavy Higgs searches. In (a), the dashed (solid) contoured grey region corresponds to the
CMS limit if sina = 0.3 (0.4) is assumed. In (b), the area bounded by a solid line corresponds to the
visible heavy Higgs limit for an invisible branching ratio of 50 %. The corresponding lines for 75 % and
90 % lie outside the visible range. Here, the red dot-dashed line denotes the sina < 0.33 limit from
Standard Model Higgs measurements.

for my determined by the point at which BR(H — inv.)™® > 1. As can be seen in Fig. 5.3a, a
value of 0.3 for sin & can be sensitive to heavy Higgs masses up to 270 GeV, whereas the entire
considered mpy range 180 — 320 GeV would be covered for sina = 0.4

For fixed invisible branching ratio of the heavy scalar, mixing angles down to sina ~ 0.27
can be tested for an almost entirely invisibly decaying heavy scalar. If we take into account the
above mentioned limit on sina < 0.33 from combined Standard Model Higgs measurements,
one finds that the invisible branching ratio must be of order 75% or beyond and the heavy
scalar lighter than 310 GeV in order to improve on the existing limit. This is why we chose not
to analyse heavier mass values.

5.5.3 Dark Sector Dependent Limits on g and my

As illustrated in Section 5.3, a fixed invisible branching ratio can ambiguously be constructed
from different combinations of the dark gauge coupling § and the dark gauge boson mass my:.
We therefore show limits on one parameter by fixing the other to well chosen benchmark values.
For translating limits on the branching ratio into bounds on the coupling constant g, we choose
the dark gauge boson mass according to the following three benchmark cases:

e my = 65GeV, which is the lightest possible value to evade h — Z’Z’ constraints,

e my = %mH corresponding to an intermediate mass* and

4 Strictly speaking, limits for this scenario are only meaningful for myz > 260GeV as for lighter my the
corresponding my: is below the 65 GeV threshold.
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e my = %mH — 5GeV, chosen to be very close to the kinematic threshold for H — Z'Z’.

Alternatively, when showing limits on the mass myz we fix § to the three benchmark values
0.25,0.5 and 0.75. Note that these are chosen differently to those in the earlier analogous plot
in Fig. 5.1. The explanation is given by the results of the previous paragraph which showed
that we require an invisible branching ratio of at least 40 % in order to be sensitive to our given
model. It is clear from the results shown in Fig. 5.1 that this cannot be achieved for too small
dark gauge couplings below 0.1.

Analogously to Fig. 5.1 we translate the existing limits from visibly decaying scalars into
the same parameter planes. Furthermore, with all parameters being known, we can show the
perturbativity limits in addition.

The resulting limits are shown in Fig. 5.4, again for the two benchmark cases for sin a. For
the still viable and therefore more interesting case of sina = 0.3 one finds that within the
perturbatively allowed areas the high luminosity monojet search can cover important regions
of parameter space down to § = 10~! and up to myz = 120 GeV. This would put important
complementary bounds combined with those from searches for visibly decaying Higgs boson.
Regarding the general sensitivity to the heavy scalar mass, an upper cutoff at 250 GeV can be
observed. For my beyond this threshold, H — hh decays reduce the invisible branching ratio,
see Fig. 5.1. The required change of parameters to make up for this loss of branching ratio
would push the theory into a dangerously unperturbative region and/or require a gauge boson
mass below the h — Z’'Z’ threshold.

If we compare the overlap of these expected invisible monojet bounds to the existing visible
Higgs decay limits, we find that at first sight a large region of parameter space would still be
covered by neither of the two. However, a high luminosity LHC will most likely significantly
push the lower limits on § from visible decays, if we assume that still no deviation from the
Standard Model will be found in the far future. Also, as 8 TeV results are not far away from
being sensitive to H — hh decays, with enough data being taken the high luminosity LHC
could cover regions beyond the my = 250 GeV threshold by looking for these final states. All
in all, we can expect a good coverage of the high luminosity LHC on the Higgs Portal model
by combining results from various channels.

5.5.4 Impact of Systematic Uncertainties

As mentioned before the shown limits only consider statistical uncertainties due to Poisson
statistics of the data and no contribution from systematic uncertainties. Therefore, the expected
sensitivities are overoptimistic and a proper consideration of the background uncertainties will
most likely lead to a reduced coverage to the Higgs Portal parameter space. To estimate the
required systematic accuracy for our given results to hold, let us use as an example the event
rates of background and benchmark signal model in Table 5.2. Here we saw that signal regions
M4 and M5 have a significance of roughly 1, with a value of 2 being a target value close to
the 95% confidence limit. The respective signal rates are of the order 0.5% of the expected
background. It follows that the systematic uncertainty of the background expectation should
be at the sub-percent level in order to not weaken the given confidence limits significantly.
From the updated monojet search performed on 8 TeV data in Ref. [185], the total systematic
uncertainty on the background estimate ranges from 2.7% to 6.2% for those signal regions
with similar selection cuts than in Table 5.1. Potential for improvement could be anticipated
for measurements of lepton reconstruction and tracking isolation efficiencies due to the larger
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5.6 Conclusion

amount of available data at a high-luminosity LHC and thus an improved accuracy of data-
driven background estimate techniques. By a similar argument, measurements of lepton energy
uncertainties and calibration of the F vector could also improve on long term. Lastly, QCD
uncertainties which strongly affect the estimate of the ¢t background might be reduced from
the theory side by improved higher order calculations included in the respectively used event
generators. Clearly, the required level of precision for our study would require a challenging
level of improvement with respect to these sources, still they do not seem impossible to achieve
for the long term LHC.

5.6 Conclusion

Within this chapter, we continued the phenomenological discussion of the Higgs Portal model
described in Section 2.2. Such a model would predict an additional scalar particle in the context
of a dark sector which does not interact with the Standard Model particle content and designed
to solve the dark matter problem by predicting a massive dark gauge boson. It is the scalar
field of that sector which can mix with the Standard Model Higgs field and thus yield two
scalar particles which can both interact with the Standard Model and the hidden gauge boson.
We focussed on the case where the lighter of the two is the Standard Model like Higgs particle
and summarised the most relevant constraints from theory and experiment, most importantly
from measurements of Standard Model Higgs decays and searches for visibly decaying heavy
Higgs-like particles. We then discussed the future sensitivity of a high luminosity LHC to this
model by searching for invisibly decaying heavy scalars produced in association with a hard jet
from the initial state.

We showed that for a sizable mixing of sina = 0.3, which is in agreement with current
combined limits on Standard Model Higgs observables from ATLAS and CMS during the first
LHC run, the described analysis could be sensitive to heavy scalars up to a mass of 250 GeV
with an invisible branching ratio as low as 70 %. For an almost entirely invisibly decaying heavy
scalar, mixing angles down to sina = 0.27 can be probed. If the invisible decay is caused by
the coupling to a heavy gauge boson of the dark sector which gained its mass via spontaneously
breaking a hidden U(1)x gauge group, these limits could would be sensitive to gauge couplings
of that dark gauge group of 0.1 or higher or alternatively dark gauge boson masses below
105 GeV. These bounds would be complementary to those from visible decay searches which
typically limit small invisible branching ratios, however would require a significant reduction of
the systematic error of the background estimate.
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CHAPTER 6

Natural NMSSM Decay Chains at the LHC

——>0 == 0<

In Section 2.5 we introduced the concept of a natural next-to-minimal supersymmetric Standard
Model, or NMSSM. This extension of the MSSM with an extra gauge singlet superfield S creates
an effective dimensionful parameter pog by giving a vev z to the scalar component S. This
naturally causes ues to be of the electroweak scale as it should be according to the conditions
on the Higgs potential, see Eq. (2.108), and therefore solves the u-problem of the MSSM. This
results in higgsino and singlino masses of a few hundred GeV, as shown in Section 2.5.3.

Furthermore, due to mixing with the extra singlet scalar the Standard Model like Higgs
boson mass can reach its experimentally observed value of 125 GeV, see Eq. (2.116), without
requiring large radiative corrections from heavy scalar top partners. This is appreciated since
stop masses beyond approximately 1 TeV create unnaturally large corrections to the parameters
of the Higgs potential, see Eq. (2.93), and are hence expected to be light in a natural theory.
Similar arguments could be formulated for the gluino and, since it is located in the same SU(2),
doublet as the stop, also for the sbottoms. Since none of the other SUSY partners are required
by naturalness principles to be light enough to be seen at the LHC, we simply decouple these
from our spectrum in this study.

Such a natural spectrum results in a very characteristic signature for a collider experiment.
In this chapter, we analyse how a combined analysis of various search channels from the 8 TeV
LHC run can put constraints on the natural NMSSM as we defined it above. We are particularly
interested if the differences we expect with respect to the MSSM, namely an additional particle
in the decay chain, improves the limit due to a higher final state multiplicity or worsens the
limit due to the associated objects having smaller momentum. In Section 6.1 we start with
a short summary of previous studies in the context of natural Supersymmetry. We explain
the benchmark scenarios of our study in Section 6.2 and our analysis procedure in Section 6.3
before discussing the results in Section 6.4.

The analysis and the corresponding results of this chapter have been published in Ref. [281]
and consequently we draw heavily from this source. This project had been published before
the LHC started taking new data at a higher centre-of-mass energy of 13 TeV and therefore
only focusses on 8 TeV results. We will briefly mention the impact of updated results in the
following summary of existing limits in Section 6.1.

6.1 Motivation

In the context of the MSSM, naturalness is now used as a guiding principle for many LHC
searches to find gluinos, stops and/or sbottoms. At 8 TeV, these studies already set various
combined bounds on the masses of these particles but with a strong dependence on the consid-
ered decay chains. A general summary of the Run 1 mass limits for a representative sample of
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Figure 6.1: Overview of limits on SUSY masses for (a) CMS and (b) ATLAS from LHC Run 1. Note
that CMS limits are given without consideration of the theoretical uncertainty while ATLAS quotes
the observed limits minus 1o theory cross section error. To reduce size, the tables have been cropped
to mainly show limits on gluino, stop and sbottom masses. Full versions and further links to the
corresponding publications can be found under the respective quoted references.
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benchmark decay scenarios can be found in Fig. 6.1. For the gluino, lower limits range between
700 GeV for a rather degenerate gluino-NLSP-LSP scenario up to almost 1.4 TeV in case of a
direct gluino decay into two quarks and a massless LSP neutralino. An exhaustive summary
of all ATLAS searches for strongly coloured SUSY particles can be found in Ref. [182] and
a summary of CMS limits on various simplified topologies in Ref. [282]. One finds that the
best-case limit also holds for decays with intermediate stop squarks which typically happens
in natural setups where these particles are light. The lower gluino mass limit can be as low
as 500 GeV for a sufficiently degenerate mass spectrum which can be identified with monojet
signatures [284].

The first results from the 13TeV run with an integrated luminosity of only about 3fb~!
already improve the best-case lower limits to above 1.5 TeV for decays into light quarks and
1.6 TeV for decays into top quark pairs plus a light neutralino LSP [232-234, 285, 286]. The
LHC is expected to be sensitive to gluinos as heavy as 3TeV in the long term [287, 288]
which would already be in very strong tension with naturalness arguments as we discussed in
Section 2.4.2.

The situation is similar for the squarks of the third generation, for which again a represen-
tative overview can be found in Fig. 6.1 and a more detailed Run 1 summary in Refs. [222,
282]. Best-case lower limits from the LHC 8 TeV run reach almost my, > 700 GeV for a dom-
inant decay mode t; — tx} and my 2 500 GeV if an intermediate chargino is present, i.e.
th — b%f, %f — WX, Again, if the spectrum is compressed, the bounds weaken significantly
and the limit drops to stop masses only slightly above the Standard Model top quark mass.
Furthermore there are sensitivity gaps in regions of parameter space where the stop is only
slightly heavier than the neutralino and the top it decays into. Then, due to the small available
energy in the event no limit can be set at all since the kinematics very closely resemble the SM ¢t
background but with a substaintially smaller production cross-section [222, 289-292]. Sbottom
limits are similar to those of stops, i.e. up to m; > 650 GeV for light X} and my > 250 GeV in
compressed regions, but are typically more robust and do not contain holes as we move across
the mass plane [222, 293-295].

At 13 TeV, limits have again slightly improved to up to 800 GeV for stops and sbottoms in
the optimal channels and sensitivities beyond 1 TeV are expected for the high luminosity LHC
[287, 288].

Whilst the Higgs mass plays an important role in determining the feasible masses of the third
generation squarks in the MSSM, these two sectors become more decoupled in the NMSSM
where the mixing with the extra singlet loosens the constraints on the stop mass. In addition,
the above limits can be expected to be different in the NMSSM due to the presence of the light
singlino in the spectrum. As the singlino does not couple directly to the squarks the singlino
is not expected to appear as an intermediate step in any SUSY decay chain as the branching
ratios of squarks and gluinos into MSSM-like neutralinos and charginos will by far dominate.
It is only when the singlino is the LSP when the MSSM-like NLSP will decay into it as it this
would be the only allowed decay mode, hence adding another step to the decay chain which
could change the final state efficiency.

An exhaustive overview of LHC signatures of the NMSSM can be found in Ref. [296]. Studies
of the NMSSM with light stops [297, 298], sbottoms [299], gluinos [300], electroweakinos [301,
302] or light extra scalar particles [303—308] have been performed within various benchmark
setups of the NMSSM. Efforts to establish methods to differenciate MSSM and NMSSM can
be found in Ref. [309)].
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Since natural Supersymmetry has been exhaustively tested by both ATLAS and CMS in the
context of the MSSM, the question arises how these limits behave if the model is promoted
to the NMSSM. This question has been first studied in Refs. [310, 311] and there it has been
shown that limits on MSSM models with high scale unification are always weakened if an extra
singlino LSP is added to the decay chain. The extra decay step reduces the momentum of the
visible particles as well as the missing energy of the event which reduces the distinguishability
from Standard Model background and thus decreases the sensitivity.

However, their constrained scenarios typically result in spectra with light squarks and bino/wino-
like neutralinos and thus the typical LHC signatures involve multijets, leptons and missing
energy. As we discuss in Section 6.2, a natural spectrum is typically associated with light third
generation squarks which produce a significant amount of b-jets in the final state. The presence
of b-jets might already be distinctive enough such that the additional leptons or jets produced
through the additional decay step might improve the limit even though the final state is softer
as in Refs. [310, 311]. Also, since our natural setup involves higgsino-neutralinos, NLSP-to-LSP
decays are expected to produce Higgs bosons if the mass splitting is high enough and as such
extra b-jets from h — bb could also lead to an improved sensitivity.

The guiding question of this study is therefore whether the statement of Refs. [310, 311], i.e.
that the presence of a singlino LSP weakens the limit due to a softer final state, also holds for
natural NMSSM setups or if here the additional final state particles in fact improve the MSSM
bounds.

6.2 Spectrum and Decays in the Natural NMSSM

We distinguish two main limits of the NMSSN, steered by the size of the dimensionless coupling
parameter A:

large A = A When the coupling X is large, Eq. (2.116) suggests that we can reach a large
enough Higgs mass if sin 25 is large. In our analysis we choose A = 0.7, tan 8 = 2, with the
value for A chosen at the typical maximum possible value which does not run into Landau
poles at higher scales (see e.g. Ref. [312]). In this setup, no large radiative corrections
are required and as such it is expected that one can keep both stops and sbottoms rather
light while still being able to reach the correct Higgs mass. As a consequence all third
generation scalars may be kinematically accessible at the LHC. The neutralinos largely
mix in this scenario and thus direct decays of coloured scalars into singlets and singlino
LSPs are possible [313].

small A = Ag In the case of a very small A\, the Higgs mass which can be derived from
Eq. (2.114) is very MSSM like as the singlet-components largely decouple!. To maximise
the tree level value one needs large tan § just as in the MSSM which is why we define this
point via A = 0.01,tan 5 = 15. Large radiative corrections as in Eq. (2.87) are needed
which asks for at least one heavy stop. The sparticles of the MSSM sector decouple from
the singlet states and experimentally, the only difference between the MSSM and the
NMSSM would be sparticle decays into the singlino LSP. Contrarily to the previous case,

! For very small X\ but fixed pq, the scalar vev z must be large which translates into a somewhat unnatural
hierarchy z > v,,vqs. However, as shown in Section 6.4 it is easier to compare the MSSM and NMSSM in this
scenario as they only differ by the presence of a new LSP. This is why we keep this benchmark scenario for
our analysis even though it does not quite fulfill the conditions of a natural setup.
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Figure 6.2: Schematical setups of the considered benchmark models A\g and Ap, their hierarchies and the
respective expected mass splittings and neutralino mixing patterns.

this scenario will come along with a rather split sector of third generation squarks, mostly
degenerate higgsinos and a mostly decoupled singlino and a singlet scalar sector.

The resulting hierarchies of both scenarios are schematically pictured in Fig. 6.2: to avoid
having an LSP-like chargino, we always require the singlino to be lighter than the higgsinos.
Furthermore, we always require the gluino to be heavier than the stops to avoid the considera-
tion of loop-induced 2-body or off-shell 3—-body decays. Whilst the relative hierarchy between
stops/sbottoms and the higgsinos is not fixed by our setup, we will nevertheless find that it is
often as depicted.

6.2.1 Signatures of Interest

The spectrum described in the previous section leads to interesting signatures for the LHC: due
to the light ¢ and b scalars we expect final states with many ¢ and b quarks. The hadronised
jets originating from b—quarks have a high probability of being correctly tagged as b-jets as
explained in Section 3.3.2 and many analyses from both ATLAS and CMS have been designed
to specifically tag final states with these objects as discussed below in Section 6.3.2. In the
following we only focus on final states with these objects and neglect other signatures:

In this work, we consider third generation squark and gluino hadro-production via the strong
interaction. In general, the gluon fusion diagrams will be the dominant production channel for
not too heavy gluino and third generation scalar masses and the cross section is only determined
by the respective mass of the respective final state sparticle,

Here, we have omitted the production of electroweakino pairs since the cross section is negligible
compared to the production of coloured sparticles unless the higgsino and the singlino are the
only kinematically accessible sparticles at the LHC [301, 302] — a scenario we are not going
to assume. In addition, we have not considered compressed spectra where a hard initial state
radiation jet has to be taken into account. As here the sensitivity is given by the ISR jet, we
expect the bounds to be very similar for MSSM and NMSSM.

Let us now turn to the discussion of the decay modes. The decay chains can be very com-
plicated in natural SUSY and typically depends on the details of the mass spectrum and the
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mixing angles. Since we define that the gluino is always the heaviest sparticle in our setup, the
following strong two body decay modes are the dominant gluino decay channels

qg— fiti, Ezbl 1€ {1, 2}. (6,2)

There is no tree level coupling between the squarks and the singlino in the NMSSM and thus
the decays to neutralino states with a significant singlino component are suppressed. As the
Ag scenario contains an almost pure singlino LSP, direct decays of the squarks to the LSP very
rarely occur. Even in the Ap scenario, which can contain an LSP that is a higgsino-singlino
mix, the large singlino component significantly suppresses the direct decay to this state. This
situation is different to the natural MSSM where stop decays into the LSP are common and
consequently we expect longer and more complicated decay chains in the natural NMSSM. A
by-product of such longer decay chains is that the individual particles produced are necessarily
softer and Ejnliss can be expected to be reduced.

However in common with the natural MSSM, the sparticles decay into final states with third
generation SM quarks which gives rise to a high b-jet multiplicity,

ti— X5t Xibs (6.3)
bi = X33b,  Xit- (6.4)

In addition, the large expected squark mass splittings in the Ag scenario can lead to the following
squark-to-squark decays with additional gauge bosons and Higgs scalars

52 — £1X0, i)z’X—’_, (6.5)
52 — BlXO, t~1X_, (6.6)

with X0 € {Z° h, H, H3, A1, Ao} and X* € {H* , W*}. As the production rate of the heavy
squarks in such a case is largely suppressed compared to t; /131, this decay is however not
expected to contribute significantly to the observed event rates.

The biggest difference between the natural MSSM and the natural NMSSM is that we can
now have a singlino LSP. This leads to additional decays of the now NLSP higgsinos X(Q) /3 such
as,

X33 = X1X° (6.7)
&= XOXE (6.8)

Generally, a light singlino is accompanied by relatively light singlet scalars. Depending on
the mass difference between the NLSP and the LSP and the mass of the decay products X,
differences between the MSSM and the NMSSM will arise, which may modify the decay patterns
of the higgsino in a MSSM scenario.

Of course, for each of the above listed decays there exists a mode with all involved particles
charge conjugated. Obviously the listed decay modes are only possible subject to kinematic
constraints and all decay modes mentioned above can have a related three (or four) body decay
mode if one (or more) of the final state particles are virtual.

We have not listed the tediously large list of possible decays for the neutral scalars {h, H, Hs,
A1, As}. These generally involve Standard Model like Higgs decays, decays of heavy into light
scalars and decays of heavy scalars into pairs of lighter squarks or electroweakinos. However, in

134



6.3 Model Test Methodology

most cases the Higgs mass constraint puts us into the decoupling limit (see Section 2.4.1) and
thus the heavy scalars Hs and Ay do not appear in the observed decay chains and thus their
decay modes are of little relevance in the following discussion. It is mostly the Standard Model
like Higgs and the singlet like scalars which are of importance and their decays are practically
Standard Model like after having applied the experimental constraints as explained in upcoming
Section 6.3.1.

6.3 Model Test Methodology

As described at the end of Section 2.5.5, our natural NMSSM setup can be described by 12 free
parameters:
)‘7 K, A)\v Am Heffs tan ﬁv m%ga mzﬁ:’?v m%ga At7 Aln M3- (69)

To simplify the discussion, we assume a degeneracy? of the soft parameters in the third gener-
ation, i.e.

Aq‘g = At = Ab, (610)
2 2 _ 2 _ 2

This assumption always fixes the mass of the bottom squarks for given stop masses in a way as
depicted in Fig. 6.2. In the following we explain how we fix the free parameters of our model

Ak Ay, A, peff, tan 3, Agz, Mgz, M3 (6.12)

with respect to the hierarchies of the models we want to consider. We follow with a discussion
on how we test the respective parameter combination.

6.3.1 Scan Setup and Definitions

Each of the scan points that we are going to analyse in Section 6.4 is defined by the following
phenomenological parameters:

1. The NMSSM scenario Ag or A,

2. the mass mg of the gluino,

3. the mass m;, of the lightest stop,

4. the higgsino mass parameter p.g and

5. the singlino mass parameter mg = 25 piefr
This fixes the following parameters in Eq. (6.12):

A= 0.7 for Ar, 0.01 for Ag, (6.13)

2 To be more precise, the degeneracy is assumed to hold at the scale Asysy = 5 TeV with the exact choice being
of minor relevance for the numerical results. Note that this is also the scale to which we put the decoupled
SUSY particles.
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tanB =2 for Ap, 5 for Ag, (6.14)
KR = )‘/2 : mS‘/ueff (615)

The remaining five parameters are found as follows: We require a natural, realistic particle
content, that is we aim for a spectrum with as light as possible stops while having a Higgs
boson at the correct mass. In addition we demand that the Higgs boson passes the most
relevant theoretical and phenomenological constraints. Such a spectrum is found by using the
public tool NMSSMTools4.3.0 [111]. This allows us to specify the above mentioned parameters
to get the corresponding physical particle masses, mixing matrices, branching ratios and test
against a variety of observational tests, see below.

In order to find a parameter combination with a viable, natural spectrum, we perform the
following chain of actions:

Loop over the heavy stop mass mg,: We are interested in stops that are as light as possi-
ble, i.e. we aim to find the lightest spectrum that passes the most important phenomeno-
logical constraints. For that purpose, with m; set above, we perform a loop over mg,:
Starting from m;, +25 GeV and using a stepsize of 5 GeV, we steadily increase the heavy
stop mass and try to find a valid parameter point according to the steps described next.
As soon as a valid point is found, that one is taken for the further collider study.

Fix the strong sector M3, Ag3, Mg3: The masses of the stops and the gluino are mostly
determined by these three parameters, see Section 2.5.4. Given the target values m; , mg
and the looped value for m;,, we use NMSSMTools? to scan over Ms, Ags and Mgs and find
the combination that reproduces the desired masses* best. For this scan, the values of Ay
and A, are barely of relevance as they have only a minor impact on the third generation
stop masses. Consequently they are therefore fixed to the central values of the “scalar
sector scan” described below. Note that at this stage we use NMSSMTools solely to find
the correct mapping of physical masses to parameters. No phenomenological constraints
are applied at this stage.

Explore the scalar sector Ay, A,: Having the strong sector fixed we start a new grid scan
over the scalar trilinear parameters Ay, A, in order to find a phenomenologically allowed
scalar sector. We test Ay in the range 0 to 2(ueg/sin28 —mg), which is chosen such
that the central value minimises the negative contribution from higgsino-singlino mixing
in Eq. (2.114) and hence maximises the SM-like Higgs boson mass [314]. A, is scanned
without any prefered scale in the range [—550 GeV, 450 GeV].

For each point, NMSSMTools tests®
e the absence of tachyonic masses,

e whether minima in the scalar potential with any v,,vq or z = 0 are deeper than the
desired one with v, vg,z # 0,

3 NMSSMTools has been modified to allow scanning over Azz and Mgz which the public version does not allow.
4 The mass calculation performed by NMSSMTools first uses 2-loop RGEs to run the parameters from Asusy
down to A; = Mjs and then evaluates the pole mass at A; using next-to-leading order corrections in O(as).

5 Unfortunately most of the phenomenological constraints are hard-coded by hand without giving proper refer-
ence to an original source. Therefore we cannot provide a concise list of all considered experimental bounds
and can only refer to the general documentation in Ref. [111] and the website of the code itself in Ref. [315]
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e the existence of a CP-even boson in the mass window 121 to 129 GeVS,

e consistency with all other implemented collider constraints, i.e. LEP, Tevatron and
LHC limits on the Higgs, neutralino and chargino sector and
e consistency with all other implemented low energy observables. (e.g. b — sy and
Bs — ptp).
To consider more recent collider results from LEP, Tevatron and the LHC that constrain
the scalar sector, we further use HiggsBounds 4.1.2 [316] and HiggsSignals 1.2.0
[317] to perform final tests on the scalar sector of the considered parameter points.
HiggsBounds is a tool which takes calculated signal strengths of all scalars in a given
model and checks whether any of those violates limits from negative Higgs boson searches
at LEP, Tevatron and the LHC. We use it with the LandH setup, which tests both con-
straints from lepton and hadron colliders. Any tested parameter combination is discarded
if HiggsBounds returns “excluded”. Complementarily, HiggsSignals tests if there is one
scalar particle which fulfills the properties of the 125 GeV Higgs boson observed at the
LHC. For that purpose we fix the mass uncertainty for all Higgs bosons to be 4 GeV in
accordance to the mass window we set above for the NMSSMTools scan. We choose the
both setting which performs both a mass centered and a peak centered method and test
against latestresults. Here, our parameter point is discarded if it produces a p-value
smaller than 0.05.

Exit m;, scan: If at the end of this stage no allowed Ay, A, combination is left, the m;, loop
starts with the next iteration. If however a parameter combination of M3, Agz, Mgz, Ay
and A, passes all the aforementioned constraints, this parameter point is used for the
collider phenomenology part described next.

Note that we use naturalness as the original motivation for setting up the spectrum as explained
before. The degree of naturalness can in principle be quantified by determining the dependence
of the terms in Eq. (2.88) on the fundamental parameters of the theory [318]. Such a fine-tuning
measure is however very dependent on the high-scale completion of a given theory and different
definitions can yield very different answers, see e.g. Ref. [319, 320]. Since we do not specify how
we e.g. re-introduce the decoupled sparticles at a higher scale, we cannot reliably determine the
fine-tuning of our model.

6.3.2 Collider Phenomenology

As explained in Section 6.2.1, we assume that pair production of the light §,#; and b; dominates
the expected signal. Production cross sections for these particles are calculated using NLLFast
2.1 [163] using CTEQ6.6NLO PDF [321], see also Section 3.2.8. Uncertainties due to scale
variations, parton density functions and oy are provided by this tool and we take the quadratic
sum of these to set the total theory error Ac. For each of the five production modes, 50,000

5 The window for my, is motivated by theory uncertainties and the fact that the decoupled sector, most impor-
tantly the electroweakinos, can influence the Higgs mass by higher order corrections if they are of order O(few
TeV), see e.g. [110]. The exact details of the heavy electroweakino sector would not affect our collider analysis
at all and thus are incorporated by a looser constraint on the light Higgs boson mass.

7 Even though implemented, we explicitly skip testing the magnetic moment of the muon as our model is
not designed to fix the already existing discrepancy of Standard Model calculation and observation, see also
Section 2.1.5
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Ref.  CheckMATE identifier =~ Sensitive to which decay scenario(s)

[322] atlas_conf_2013.024 ¢;/b; decay chains with a purely hadronic final states
[323] atlas_conf 2013061 gg — titt", bbbb* and/or decays involving h — bb.
[324] atlas_conf_2013.062 #;/b; decay chains with 1 isol. lepton from W/Z
[200] atlas_1308_2631 t — by, tX° with a purely hadronic final state

[201] atlas_1403_4853 t — by, txX° with an OS isol. lepton pair

[217] atlas_1404_2500 34 with decays into #;/b; and 2 isol. SS or 3 leptons
[202] atlas_1407_0583 #;/b; decay chains with 1 isol. lepton from W/Z

Table 6.1: Summary of the expected most sensitive analyses within CheckMATE to the considered natural
model, listed in alphabetical order. All analyses require a significant amount of missing transverse
momentum in the final state and have at least one signal region which requires b-tagged jets.

signal events are generated using Herwig++ 2.7.0 [145] with the NMSSM model setting. For
practical reasons, decay tables of all relevant particles are calculated within Herwig—++, which
contains all tree level 2— and 3-body decays and effective implementations of the loop-induced
decays h; — v, g9.

To test the model against a variety of LHC results, we use CheckMATE. The compatibility
of signal and observation is tested by comparing the predicted signal S + AS to the model
independent 95% CL limit S95, determined by using the CLg method [175], see Section 3.3.3
and Appendix A.2. Here, AS considers both the MC error on our statistics as well as the theory
error on the total cross sections. CheckMATE considers a large list of ATLAS and CMS analyses,
however due to the signatures described in Section 6.2.1 it is expected that only a subset of
these will be sensitive to the characteristics of our model. We list these analyses in Table 6.1.
They all require a significant amount of missing transverse momentum due to the expected
undetected LSP in the final state and have signal regions that check for b—jets. They mainly
differ by the final state jet multiplicities and the total amount and relative charge of final state
isolated leptons (i.e. electrons and muons). The analyses also differ in the kinematics of the
respective signal regions that are designed and tuned for particular final states. As we expect
different final state signatures in our model, it is highly favourable to check all these possibilities
in parallel and filter out the most sensitive one for each case. Fortunatetly, CheckMATE allows
for an easy comparison of that kind.

Let us make some notes here regarding the difference between the list of most sensitive
analyses quoted in Fig. 6.1 and the analyses we used in CheckMATE listed in Table 6.1:

e CMS analyses generally seem equally sensitive as the corresponding signatures tested by
ATLAS. As CheckMATE uses an ATLAS-focussed detector tuning, we focus on ATLAS
analyses in our study.

e Both ATLAS analyses listed to target gluino decays have unfortunately not been used
within our CheckMATE model test: analysis 1308.1841 [214] is a general multijet plus
missing energy search which is generally sensitive to hadronically decaying gluinos whereas
1407.0600 [218] is a naturalness motivated search which requires at least 3 b-tagged jets
as they typically appear from light gluino decays via on- or off-shell third generation
squarks. As can be seen from Fig. 6.1b, they can set lower limits on the gluino mass
between 1.1 and 1.3 TeV, depending on the considered final state quark flavours. This is
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close to the bounds we find in our study, see following Section 6.4.1, using the limited
selection in Table 6.1 which mainly uses earlier conference notes with similar signatures.
Thus we also expect that for an NMSSM study the sensitivities of these analyses do
not differ by much. Note that both analyses shown in Fig. 6.1b have been implemented
into the CheckMATE code since the main work of this project has been completed, see
Table 4.1.

e Regarding third generation squarks, four of the quoted analyses, i.e. atlas_1308_2631
[200], atlas_1404_2500 [217], atlas_1407_0608 [219] and atlas_1407_0583 [202], have
indeed been used in our study. Analysis 1506.08616 [222] has been published later and
was only added to CheckMATE after this project was finalised. It combines various older
signatures for third generation squark decays and adds some additional signal regions
to fill remaining sensitivity gaps. These additional signatures seem indeed to improve
bounds on the stop mass from other searches and might also slightly improve the bounds
we quote here. Lastly, Fig. 6.1b quotes analysis 1403.5222 [215] to be specifically sensitive
to stop - to - stop decay via on-shell Z-bosons and again was added to CheckMATE after
this project was finalised. However, due to the higgsino nature of our neutralinos and
charginos, we expect most of the heavier stops — if at all kinematically accessible — to
decay into higgsinos instead of the light stop such that this analysis is not expected to
change the results of our study.

6.4 Results

In the following we show exclusion lines in the parameter space of the model explained above.
Since we still have mg, myz, , Mgt and mso as continuous degrees of freedom, we choose to present
results for specific chosen benchmark scenarios.

As one of our considered decay chains in Section 6.2.1 starts with the production of gluinos
and ends with the decay into the singlino LSP, we first choose to show exclusion lines in the
plane spanned by the masses of these two particles in Section 6.4.1. We do so for various choices
of my,, M+ and always compare the results for Ay and Ag. As it will turn out, light gluinos
mostly lead to severly constrained models. Thus we will follow with a scenario in which the
gluino is decoupled from the spectrum as well in Section 6.4.2. We then show exclusion lines in
the my— mi&)fplane for different chargino masses, again putting the results for Ay and A\g side
by side. For the specific case of a light LSP, we also present results in the my - mﬁ—plane to
illustrate the dependence on the chargino mass for both A scenarios.

To keep the discussion compact, we only show figures which show the 95% exclusion lines
in different parameter planes within this section. An exhaustive list of auxiliary plots with
distributions of masses, cross sections and branching ratios can be found in Appendix C.1 and

we refer to a few of these in the following discussion.

6.4.1 Gluino—LSP—Plane

In Figs. 6.3 to 6.7 we show the 95% exclusion region in the gluino-LSP mass plane, using fixed
stop masses in the range mj = 400 to 800 GeV. For each case, the A, and Ag scenarios are
compared in the left and right panel, respectively. Within each panel we compare the exclusion
regions for different chargino mass values that obey My < Mg, Since the chargino must not

be lighter than the LSP, each exclusion line has an individual upper limit on the mso axis,
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drawn by dashed horizontal lines®. Chargino mass values that are listed in the legend but do
not appear in the plot should be interpreted as being entirely excluded across the whole mass
plane.

Generally, the exclusion lines split the parameter space into two regions of interest and we
discuss these regions separately:

Light Gluinos

For mg < 1100 GeV, Figs. 6.3 to 6.7 show that the limits are mostly independent of the chargino
mass and apparently primarily driven by the gluino decay products in the decays g — bb, ti.

As the bounds in that region do not seem to vary significantly as we change the mass of the
electroweakinos and only barely if we change the mass of the lightest stop, we conclude that
the details of the decay chain of the third generation scalars into the LSP is almost irrelevant
when setting limits on the model. The only exception is if very small mass splittings occur in
the decay chain, for example between the gluino and the stop or the stop and the higgsinos.
We can see the effect in the left parts of Fig. 6.7 and also can be observed for all scenarios with
Mg < mg, in Figs. 6.5 to 6.7.

When we compare the Ag and Ap limits we also see that the limits are stable between the
two scenarios once gluino production is dominant. Consequently, we again conclude that the
precise decay modes of the %/ b and the various X, )zli do not effect the LHC phenomenology in
this region of parameter space. Although our gluino mass limit lies very close to the maximum
sensitivity limit quoted in Fig. 6.1 it is slightly weaker as we do not have a pure decay scenario
but several dominant decay modes which reduce the individual branching ratios and thus the
event rate of each individual signal region.

This observed independence on the details of the NMSSM spectrum is interesting in the light
of the initially discussed expectation that intermediate extra particles soften the respective
decay products and the total missing energy and thus should weaken the limit. Fortunately,
the many different signatures covered by CheckMATE in this region of parameter space are able
to still exclude almost the entire light gluino region. To see which role the combination of
individual analyses plays, we focus on four benchmark cases in Fig. 6.8 and for each individual
parameter point we show the most sensitive analysis quoted by CheckMATE.

We see that the signal regions used to constrain the models are different between the two
scenarios. In particular the A\g scenario generically contains longer decays, as explained in more
detail in the upcoming section, and in fact is better constrained by signal regions that have
a larger final state particle multiplicity. More specifically, in the gluino dominated region it
is the ATLAS search atlas_conf_2013_061 [323] which require at least 3 b-jets which is very
sensitive for both A scearios. However, whilst the Ay scenario is often best constrained with
the 4-jet signal region SROL4JC, the 6-jet region SR1L7JB dominates for Ag almost everywhere.
In addition, this multi b-jet ATLAS search demands moderate missing transverse momentum
and hence the reduction of the total missing energy in the NMSSM as compared to the MSSM
does not significantly change the efficiency in the signal regions.

The demands of the signal region for exclusion therefore translates only into the necessity of
a sufficiently large gluino production cross section which is automatically given if the gluinos

8 For given Mot R floffs this theoretical upper limit should appear for Mot = Mo, However, since peg also sets
1
the scale of the neutral higgsinos in our setup, mixing in the neutralino sector never yields points which fulfill
this equality. Therefore the dashed horizontal lines appear slightly below the Mot = Mg0 line, namely at the
1

heaviest singlino-like X7 that can be achieved for given pes by diagonalising Eq. (2.117)
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Figure 6.8: Most sensitive signal region for each individual point in the gluino-LSP scan, using mz, = 500
GeV, mgz = 400 GeV (top) and 300 GeV (bottom). Left: Ar. Right: Ag.

are sufficiently light — see Fig. C.2 in the appendix — and if a sizable mass splitting of gluinos
and squarks/squarks and electroweakinos is present. It is thus expected that limits should not
depend significantly on the A scenario and only on mass differences close to threshold as can
be seen in our results.

Heavy Gluinos

For gluinos with mass above the production threshold of about 1.2 TeV, the exclusion sensitivity
will be dominantly driven by the production of the third generation sparticles ¢; /2,31 /2 if they
are sufficiently light. To illustrate this, we show the total production cross section for gluinos in
Fig. C.2 of the appendix and third generation squark production for fixed m; in Fig. C.3. For
mg > 1.2 TeV (mz < 800 GeV), the production cross section drops below (reaches above) 1fb
respectively, see also Ref. [325]). Thus, in this parameter region one expects far more #; than
gluinos to be produced. Moreover, in the A\ scenario large numbers of events with sbottoms
and heavier stops are expected in addition as these particles can be light. Therefore, beyond
the gluino threshold we observe a gluino-independent upper limit on the mass of the lightest
neutralino. However, contrarily to the gluino-dominated region, one now finds significant de-
pendencies of the limits on the chargino mass parameter and the A scenario in Figs. 6.3 to 6.7.
In general, we observe that for a fixed mass of the lightest stop, limits on the LSP mass be-
come weaker the lighter we chose the intermediate chargino. Also, throughout all cases we find
consistently better limits in the Ay, scenario than for Ag.

To understand these differences, we first have to shed light on the analyses and signal regions
which define our exclusion limits in this part of parameter space. In Fig. 6.8, we take the
specific example of a light stop mass of 500 GeV and show the most sensitive signal regions for
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chargino masses of 400 and 300 GeV, comparing Az, on the left to Ag on the right. One finds
two main classes of final states to be of importance here:

1. Signal regions from atlas_conf_2013_024 and ‘tN-type’ regions in atlas_1407_0583 focus
on final states that originate from direct ¢ — tx} decays. That is, they require missing
transverse momentum, b-jets and final state objects whose invariant mass lie close to the
top-quark mass.

2. ‘bC-type’ regions in atlas_1407_0583 have been designed to tag events of type t — b)?li
with subsequent ﬁc — Wii(l) by using kinematic variables that are sensitive to interme-
diate decay steps.

In the following, we will refer to these as tN-like and bC-like analyses and signal regions,
respectively.

In our model setup, the choice of the Higgs mass parameter pog which sets the masses Mg
and ms.,
most sensitive signal regions. Its value sets the kinematically open channels from the full list
in Section 6.2.1, fixes the branching ratios and determines the energy distribution among the

final state particles:

is crucial to determine how many events are expected to be counted for the above

Heavy Higgsinos For mg+> my , the branching ratio for t1— tx) is practically 100% —
regardless of A — and thus the upper LSP mass limits in both scenarios are determined by
results from tN-like signal regions. Note that as soon as the chargino is heavier than the
lightest stop, it plays almost no role in the expected sensitivity any more as the lightest stop
will always decay into the LSP. This is why we do not show results with mg+> my as they are

almost” identical to the shown mg+= mj, case.

If the ¢; was the only squark kinematically available, the limits of A7, and Ag would be
expected to coincide. Comparison of the corresponding mj = ms+ lines in Figs. 6.3 to 6.7
however shows that Az, yields stronger limits, with the difference being larger for lighter my, .
The reason here is that Ay, can allow for additional lighter 3rd generation squarks while still
being able to get the right SM Higgs mass, as in Eq. (2.87). These lighter squarks have a larger
production cross section and thus contribute more to the observable events, e.g. via decays
b1— tx* which can also pass the signal region cuts. If a light ¢; is present in a \g scenario
however, the additional 3rd generation squarks are required to be much heavier

Light Higgsinos For mg+ < m; , the decay t1— bxT opens kinematically and the two con-
sidered cases for A now start to show different behaviour: Within the Ag scenario we have
an almost pure singlino LSP which causes the branching ratio for tx! final states to become
almost immediately disfavoured below the chargino threshold. Thus in this scenario almost all
stops have to decay via intermediate higgsinos. Interestingly, tN-like analyses are still most
significant to set the limit if the charginos are not too light, see Fig. 6.8 top right. The reason
is that events with intermediate charginos can lead to bW XY final states misidentified as top
quarks within tN-like signal region selections if the neutralino is light enough because of its

9 Small differences can arise from t; — bx™ decays which however happen rarely as the heavy stop is either
heavy and therefore out of kinematic reach or close in mass to the lighter stop such that this decay is phase-
space suppressed. The differences were in any case barely visible in Figs. 6.3 to 6.7 which is why we decided
to remove them to keep the already large number of shown benchmark results at a minimum.
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wide reconstructed top mass window 130 < mj*® < 250 GeV. In addition one expects a signif-

icant contribution of sbottoms decaying into tY* final states which can also look tN-like. For
even lighter charginos, the limit is however only set by bC-like analyses (see again Fig. 6.8).
Decreasing the chargino mass further leads to softer decay products in the decay y*— W+ %)
which weakens the resulting upper limits on the X} mass. Finally, decays into t%g /3 can reduce
the branching ratio into the above mentioned decays once the chargino — and due to m%g/az
Mg+~ e also the neutral higgsinos — becomes light enough, see also Fig. C.4. This results
in a significant number of events displaying an asymmetric topology with two different decay
chains which is less constrained by experiment, see Ref. [222]. These are not present in the
analyses we considered and thus our sensitivity is poor.

Most of the explanations in the above discussion apply similarly to the A\j, scenario. However,
a distinctive feature is the strong mixing in the neutralino sector which allows for the LSP to
have a large higgsino component and thus tY! decays still having a large branching fraction
below the chargino threshold. For example one finds that for m; —mg+ S 150 GeV direct stop-
to-top decays still happen with more than 20% probability, see Fig. C.4. We therefore expect,
and observe, that also within Ay the tN signal regions set the limit for charginos within that
mass region, see Fig. 6.8 top left. For lighter charginos, the limits become weaker due to the
decreasing branching ratio of the ‘golden channel’ t; — x4 and eventually the bC signal regions
dominate and sets the limits thereafter, see Fig. 6.8 bottom left. The overall stronger exclusions
within the Aj scenario can therefore be attributed to two different reasons. Firstly, the other
3rd generation squarks will again be lighter in the A\; scenario due to the additional singlet
contributions to the Higgs mass. Secondly, the increased branching ratio of t; — x4 which the
LHC analyses are particularly sensitive to also helps.

Interestingly, in both A scenarios, charginos lighter than m; —m; open decay channels of
the type t;— t%g/g due to m%ng msy+. These could lead to NMSSM specific final states as

discussed in Section 6.2.1. However, we do not observe any improvement on the LSP limits
in these cases. Quite the contrary, the reduction of the branching ratio into byt final states
resulting from the new decay channel and asymmetric final states mentioned above weakens
the limits even more as can be observed when comparing the limits in Figs. 6.3 to 6.7 above or
below this threshold. We investigate the impact of this threshold more closely in the upcoming
section.

6.4.2 Stop-Electroweakino-Plane

As we saw in the previous set of results, below the gluino production threshold, the LHC limits
only have a small dependence on the details of the natural spectrum. However, as we decouple
the gluino, the masses and couplings of the electroweakino sector become more important. For
that reason we also show results in the mj - mi(lrplane for a decoupled gluino of mass 2 TeV
in Figs. 6.9 to 6.12. With one degree of freedom less, we are now able to show one exclusion
limit per plot for specific values of Mg, again comparing Az, on the left to Ag to the right.
The parameter space that we investigate does not include the region where m; becomes close
to mso. This is shown by the diagonal dashed line within each plot which shows the kinematic
range for which mz < mp+mw + mso and only 4-body final states or flavour changing neutral

current decays such as t; — cX} are possible. Given the small mass difference, initial state
radiation searches provide the most constraining limits in this region, see e.g. Refs. [326, 327].
These searches are relatively insensitive to the details of the decay chain in question and thus

144



6.4 Results

250 Most Sensitive AnaIyS|s + Tobs limit 250 Most Sensitive Analysis + r,  limit
o ! atlas_conf_2013_024 T '@Q00000®08000 atlas_conf_2013_024
A a4 9000000000
atlas_conf_2013_061 § ! : : : : atlas_conf_2013_061 §
200 tl f_2013_062 ﬂ 200 : tl: f_2013_062 ﬂ
atlas_conf_2013_ atlas_conf 2013,
3 & 3 g
0] atlas_1308_2631 a o atlas_1308_2631 a
c = c =
':, 150 atlas_1403_4853 [ & s 150 atlas_1403_4853 [ &
F > ¥ >
atlas_1404_2500 [l 2 atlas_1404_2500 [l 3
100 atlas_1407_0583 é 100 : atlas_1407_0583 ;ﬂ
other 5 : § ooooooooooo other
asea
200 300 400 500 600 700 800 900 1000 200 300 400 500 600 700 800 900 1000
m, in GeV my, in GeV
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Figure 6.10: Observed 95% C.L. exclusion limit and most sensitive analysis per point for Myt = 350
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we expect the results to be very similar to those of the MSSM.
Similarly to the gluino-LSP scan, the upper limit on the LSP mass is set by requiring mg <
Mg For the Ar case, mixing in the neutralino sector leads to a maximum achievable value

of mso which lies somewhat below M- Note that within the Ag scenario, realistic parameter

points which pass all the constraints listed in Section 6.3.1 are not possible with m;, < 400 GeV
if Mgk & flefi is small.

In all plots we again show, for each individual considered data point, the most sensitive
analysis that has been used to calculate the confidence level of that particular point. However,
we do not show the numerous individual signal regions as we did for Fig. 6.8 to keep the amount
of different values to a reasonable level.

We again observe that the choice of analysis responsible for the limit setting is strongly
correlated with the branching ratio of the lightest stop and from Fig. C.4 we expect four main
regions of interest. These are respectively, direct decays of the stop into the LSP and an a)
on- or b) off-shell top, c¢) intermediate decays via charginos or d) via neutral higgsinos. The
thresholds for these regions often coincide with a similar threshold for sbottom decays, as can
be seen in Fig. C.6. As an example the b;— tX= and the i;— tig/?) lie very close in the A,
scenario.

Using the branching ratio information, we can closely follow the explanations from the last
section to understand the limits in Figs. 6.9 to 6.12. For stops lighter than the given chargino,
only direct decays t;— t(*)fz(l) are kinematically allowed. tN-like analyses are therefore the most
sensitive and lead to similar limits for A\, and Ag, with the former being slightly stronger than
the latter due to the lighter sbottoms in this model. In Ag, a strip for mg - Mge< My cannot
be excluded as the final state with an off-shell top is not observed by tN-like analyses and hard
to distinguish from the SM background. Within Az, this region can still be explored since it is
possible that the spectrum also contains a light b;. This can be excluded via b — tX1 specific
selections in atlas_1404_2500, see e.g. Figs. 6.11 and 6.12.

For kinematically allowed chargino decays, a transition from tN into bC signal regions can
be observed for increasing mj , that is for larger stop-chargino splitting. As in the previous
setup, Az profits from the higgsino fraction of the LSP and the generally lighter 3rd generation
squarks. The highest sensitivities up to (mg(l))max ~ 325GeV are reached via tN final states in
atlas_conf 2013_024. In Ag, bC signal regions dominate the limit earlier, which require lighter
neutralinos to observe the intermediate chargino decay step. The experimental reach to the
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LSP mass is therefore smaller in these scenarios and of order 250 GeV.

As we further increase the stop masses, a maximum sensitivity bound for mjz can be observed.
This bound depends on the chosen chargino mass and the considered A scenario and is rather
independent of the LSP mass as long as it is light enough, that is for mﬁg 150 GeV.

To better understand the parameter dependence, we chose to show results in the m; - Mg
plane for a fixed, light LSP mass of 100 GeV in Fig. 6.13. We explicitly draw the previously
discussed threshold lines for ¢; — b)ﬁt and t; — t%g /3 and it can be seen that they can have an
important impact on the sensitivity of the experimental analyses to the stop mass: Within Ay,
the upper limit on my, is almost constant at ~ 700 GeV for charginos above the tf{g /3 threshold.

This corresponds to similar limits from simplified # — tx? topologies as in Refs. [202, 322].
The limit gets slightly weaker if the threshold is passed, dropping by at most 50 GeV as soon
as bC signal regions dominate the limit. In Figs. C.5, C.7 and C.9 we show the branching
ratio distributions in the same plane and the same LSP mass as the results in Fig. 6.13. One
observes that the mass values in our spectrum are such that the above behaviour coincides with
the threshold for b — tx*, which also explains why the bC-like signal regions become important
within this region of parameter space.

As long as the higgsinos do not appear in the squark decay chains, Ag returns similar limits
as the Ap, scenario, for the same reasons discussed in the previous section. However, within this
model one observes a sizable weakening of the limits as soon as the intermediate chargino and
NLSP higgsino decays open kinematically. Interestingly, the latter has a particularly negative
impact on the result, as the experimental analyses seem to be only weakly sensitive to parameter
regions in Ag where t; — txs /3 is kinematically allowed. As discussed in Section 6.2.1, it is
this decay chain which yields NMSSM-specific features in the final state topology: the decay
of the higgsino NLSPs into the singlino LSP should create a sizable excess of h/H/A; — bb
final states. It seems, however, that none of the many distinct final states within the numerous
analyses that CheckMATE contains is sufficiently sensitive to this topology. Thus, the existing
bC-like limits are weakened due to reduced branching ratios after passing the NLSP higgsino
threshold.

We therefore conclude that not only can many limits on natural NMSSM scenarios be derived
from very similar topologies in natural MSSM studies, but we also find that regions of param-
eter space which produce NMSSM-exclusive final state features are not sufficiently covered by
existing studies. Therefore, only weak limits on the NMSSM can be set within this region of
parameter space which suffer from branching-ratio penalties.

6.5 Conclusion

In this study we explored the natural NMSSM to determine how the additional singlino can
effect the LHC searches compared to the more studied MSSM case. To do this we explored a
number of different scenarios, mostly examining the difference between a small-A case where
the LSP is dominantly a singlino and the large-\ case where the LSP can contain a substantial
higgsino component. We also studied in detail the differences which occur when the gluino
is light enough such that it dominates the SUSY production cross-sections and what happens
when the gluino is pushed to a mass where LHC production rates are too small.

We found that, when constructing a realistic phenomenological model, the NMSSM-specific
decay chains via intermediate heavy neutralinos often create an MSSM-like topology, gz — g3X}
which can be preceded by § — §3qs if the gluino is light. If the branching ratio to these decay
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chains are large, the limits very closely follow those often studied as simplified models in the
MSSM. However, the branching ratio depends on the size of the NMSSM-coupling A. If it
is large, all neutralinos have a sizable higgsino fraction and direct decays into the lightest
neutralino are significant. However, in case of small A, the coupling of the squarks to the LSP
is made small since it has a large singlino content. Therefore decays via intermediate charged
and neutral higgsinos are prefered if kinematically allowed which lengthens the decay chains
seen. In addition, since different decay modes may be competing with similar branching ratios,
asymmetric decay chains can often occur.

These longer decay chains can lead to weaker LHC bounds for two particular reasons. First of
all, the ATLAS searches have more focussed of the MSSM specific signatures and consequently
not been designed with these final states in mind. Secondly, the longer decay chains lead to a
higher final state particle multiplicity but with each individual particle carrying smaller pp. In
addition the same effect reduces the final state E%iss as observed in other studies with more
complicated decay topologies e.g. Ref. [328]. On the other hand, additional final states, namely
jets and leptons, can improve the sensitivity even though the invisible transverse momentum is
reduced. Therefore an important conclusion of this study is that it is not obvious if the efficiency
is smaller or larger in a particular NMSSM scenario simply by looking at the spectrum and
decays. Instead it is crucial to test the model against a large number of searches covering
various final state topologies.

Within this study we do test a large variety of different analyses but still only use one signal
region to define the overall limit. In the models with extended and asymmetric decay chains
where we observe a weakening of the LHC limits), we expect the signal to populate a more varied
number of signal regions than if the model predicted a single dominating decay chain. Therefore
it may be expected that a combination of the sensitivities across all analyses can significantly
enhance the limits. This is in fact a future CheckMATE feature in current development which
promises to significantly improve results for models with various simultaneous decay scenarios
like the one we discussed within this chapter.

148



CHAPTER 7

R-Parity Violation and Light Neutralinos at
SHiP and the LHC

In Section 2.4.3 we discussed the role of R-parity violating (RPV) operators in the supersym-
metric extension of the Standard Model and how these can allow for the decay of the LSP, the
lightest supersymmetric particle. We furthermore discussed how this can open MeV neutralino
mass windows which due to cosmological bounds would not be allowed in supersymmetric sce-
narios where the neutralino LSP is stable. Lastly, we briefly mentioned the generally strong
constraints from proton decay and flavour violating observables and how these typically predict
the coupling constants of R-parity violating operators — if they at all exist — to be small.

Within this chapter, we focus on the LQD operator in Eq. (2.100), i.e.

Wrap = i )‘;ab(zi'@zz)ﬁg- (7.1)

i,a,b=1

We discuss the experimental sensitivity of a new proposed experiment called SHiP (Search
for Hidden Particles) to R-parity violating supersymmetry with a long lived light neutralino
which decays via this operator. We start with a summary of the individual experimental status
of light neutralino searches and R-parity bounds in Section 7.1 before we briefly discuss the
SHiP setup and the target signature in Section 7.2. This signature involves interactions of the
neutralino with Standard Model mesons and leptons and in Section 7.3 we derive the operators
which mediate these interations in general for all possible LQD couplings. Afterwards, in
Section 7.4, we specify requirements on the production and decay modes in order to expect SHiP
to be sensitive and explain our general numerical methods in Section 7.5. As these conditions
paired with the general solutions of LQD induced meson-neutralino-lepton interactions yield a
plethora of possible scenarios, we focus on some illustrative benchmark cases in Section 7.6 for
which we discuss individual results as well as their applicability to related scenarios we did not
analyse explicitly. To show how SHiP competes with existing experiments, we perform a crude
analogous sensitivity study of the LHC for two of the chosen benchmark cases in Section 7.7.

The results of this study have already been published for one benchmark case in the SHiP
physics case report in Ref. [329] and for a larger set of operators in a separate publication in
Ref. [330]. Compared to these references, this chapter provides a larger introductory overview
regarding existing experimental limits, however besides minor cosmetic changes the actual anal-
ysis is unchanged. Hence, Section 7.2 and beyond draw heavily from Ref. [330].
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7.1 Experimental Situation

7.1.1 Light Neutralinos in R-Parity Conserved Supersymmetry at Colliders

To understand the difficulty to find light neutralinos at colliders, let us start the discussion under
the assumption that R-parity is conserved. We already discussed some limits on supersymmetric
particle masses derived from LHC results in Chapter 6. If all supersymmetric particles had
comparable masses, strongly coloured particles, i.e. squarks and gluinos, would have the largest
cross section (see e.g. Ref. [162]) and thus out of all SUSY particles would be expected to be
produced at the highest abundance. These are then expected to produce SUSY decay chains
which in most phenomenological SUSY models end with the lightest neutralino as the stable LSP
in R-parity conserving supersymmetry (see our discussion in Section 2.4.3). Searches for these
decay chains, which typically expect a significant amount of missing transverse momentum,
then yield combined limits in the potentially high-dimensional mass plane spanned by the
produced coloured SUSY particle, the neutralino LSP and all intermediate particles in the
SUSY spectrum. Clearly, if the mass of the first is set high enough such that the production
cross section falls below the inverse of the integrated luminosity of the experiment, no BSM
events are expected in the first place and thus no limits on the neutralino LSP can be set. We
encountered this effect in the results of the natural NMSSM scenario in Section 6.4.2, where
a massless neutralino could not be constrained if the gluino had mass beyond 1.5 TeV and the
naturally light third generation squarks were heavier than about 700 GeV.

In such a scenario, even though the corresponding production cross sections are small, some
sensitivity can be expected through direct production of charginos and neutralinos [331]. How-

ever again the bounds on mso critically depend on the mass of the produced mother particle.

Only direct pair production of X} could be used to bound the neutralino mass independently
of the remaining SUSY spectrum by for example looking for monojet signatures in pp — x{x{j
[91]. However, to be truly independent from the remaining SUSY spectrum the production of
such a neutralino can only occur via Standard Model s-channel Z®*) and h(*)-boson exchange.
Since a very light neutralino should be mostly é, c.f. Section 2.4.3, it does not couple to Z or
h at tree level and thus generally the production cross section for these neutralinos is expected
to be very small. For the same reason, measurements of the Z-boson width [265] or the invisi-
ble Higgs branching ratio (see our discussion in Section 5.2.1) do not constrain Bino-like light
neutralinos either.

If the neutralino has sub-GeV mass — which in an R-parity conserving scenario automati-
cally means it must have sub-eV mass according to our discussion in Section 2.4.3 — another
production scenario could be thought of via new decays of Standard Model particles. For ex-
ample, see e.g. Ref. [332], pairs of X! can be produced via decays of e.g. 7, K or B mesons.
Unfortunately, the maximal possible branching ratios within R-parity conserving MSSM are
typically very small. Also, since mesons at colliders are typically produced in association with
large hadronic activity, it might be extremely hard to identify such a new partially invisible
meson decay.

Hence, from the collider perspective, nearly massless neutralinos in an R-parity conserving
setup do not render a problem with existing bounds as long as the remaining SUSY spectrum
is beyond the TeV scale and thus invisible. This generally holds for collider neutralino searches
and thus also applies to analogous limits from LEP [333] and the Tevatron [334].
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7.1.2 Motivation for Searches with Broken R-Parity

If R-parity is broken by any of the operators in Eq. (2.100) with a sufficiently large coupling
constant, the neutralino is not stable any more on collider scales and thus the above standard
signatures which include missing tranverse momentum often become invalid. Instead, searches
target events with high final-state multiplicity (for an extensive review, see Ref. [335]) or dis-
placed vertices for neutralinos with O(mm) lifetimes (see exemplary searches at CMS [336] and
ATLAS [337]). This can affect mass limits derived from stable neutralino searches. However,
if the production rate still depends on an abundantly created mother particle, these limits can
still easily be avoided if the remaining SUSY spectrum is set to sufficiently high values!.

In the special case of very light neutralinos, the consideration of rare meson decays as men-
tioned above in Section 7.1.1 turns out to be more promising in an R-parity violating scenario
thanks to the following reasons:

1. If the neutralino is unstable on cosmological scales, the corresponding mass bounds in
Eq. (2.98) are avoided and the neutralino can have mass of similar order of Standard
Model mesons, i.e. O(few hundred MeV).

2. Through R-parity violation, meson decays can produce single neutralinos whereas R-
parity conservation required them to be produced in pairs. This increases the phase
space and the kinematic range for decays to be possible.

3. The new R-parity violating coupling can contribute to the meson branching ratio into the
neutralino and hence increase the overall X{ production rate sizably.

4. Not only can mesons decay into neutralinos but also neutralino decays into mesons are
possible which opens new interesting experimental channels.

It is the combination of all these arguments which motivates the search for neutralinos at a
long-baseline experiment as we propose it here, as it is only the presence of R-parity violation
which allows for a long-lived neutralino with O(GeV) mass which can be abundantly produced
via Standard Model meson decays.

7.1.3 General Bounds on R-parity Violating Couplings

In Section 2.4.3 we briefly mentioned the constraints which can be put on R-parity violating
operators by low-energy experiments. We now follow with a more complete list of existing
bounds on various operators, most importantly those on the couplings X} , which we analyse
within this thesis. Exhaustive summaries of exiting bounds on individual and products of
couplings can be found in Refs. [96, 338, 339]. In the following summary we make use the
explanations and results in Ref. [96, 339] and refer to this source and references therein for
more details on calculations and used observables.

Numerical bounds on A couplings which we use in our study are summarised in Table 7.1. We
briefly explain the respective experimental observables which are responsible for these bounds:

L It should be mentioned at this point that strictly speaking the neutralino signatures via meson decay rates
discussed in this chapter are also not truly independent of the remaining SUSY spectrum either. We derive
effective operators by integrating out heavy sfermons from the spectrum which results in decay rates that
strongly depend on the sfermion mass m ;. However, it will turn out that our expected bounds are sensitive
to multi-TeV sfermion masses which are significantly beyond direct collider production reaches.
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CKM unitarity: Couplings \' which lead to an effective (@y*Prd) - (€y,PLv) operator? con-
tribute to the Standard Model Fermi interaction and thus change the predicted value of
the CKM matrix element V4, (c.f. Eq. (2.18)). The unitarity of Voxw paired with the
unchanged values for Vi, and Vé‘f{M can then be translated into bounds on ).

leptonic 7 decay rates: Any contribution of a coupling \" to the low-energy operator (uy* Prd)-
(v, Prv) changes the ratio R. of the pion branching ratios into electrons and muons.

T-to-m decay rates: Analogously to R, a change of the effective operator (dy* Pru)- (07, PrT)
affects the predicted ratio of Br(7— — 7~ v) and Br(n~ — p 7).

D decay rates: Again very similar to R;, a change of the effective operators (dy*Ppc) -
(vyuPre) or (5v*Prc) - (vy,Pre) affects the relative branching ratios of D and D, mesons
into kaons and muons or electrons, respectively.

Cs atomic charge: Due to the parity violating nature of weak interactions, the mediation
of Z bosons between electrons and nucleus in an atom leads to a small perturbation
and thus a misalignment of energy and parity eigenstates. This can be measured by e.g.
measuring the transition rate of equal-parity energy eigenstates (in the unperturbed basis)
by applying an external electric field for which such a transition would be forbidden if
parity was conserved. From this measurement one can induce the weak charge (Qy which
is directly related to vector-axial current interactions of type (ev*v°e)(qy.q) between
electrons and valence quarks. Any BSM operator contributing to the latter hence changes
the prediction of the former and since @y of the cesium atom is measured to a good
precision, tight bounds on these BSM operators can be derived.

v, deep inelastic scattering: BSM contributions to effective operators (v, v* Prd)-(dy* Prv)
affect the predicted rates for muon-neutrino induced deep inelastic scattering v, +p —
v, +X.

K — K mixing: Higher order box diagrams with sfermions and W* bosons can give sizable
contributions to K — K mixing via operatos of type (57°d)(dv°s).

K — mvi: The rate of this decay is strongly suppressed in the Standard Model due to the
absence of tree-level flavour changing neutral currents (c.f. Section 2.1.3). It can however
easily be enhanced in R-parity violating supersymmetry via sfermion mediation.

Note that all these constraints originate from low energy effective operators resulting from
integrating out heavy scalar fermions (see also below in Section 7.3.1) and thus depend on
the mass of the respectively heavy sfermion. Also, some combinations of operators are more
constrained than individual operators as the presence of two couplings might open new low
energy interactions. We quoted bounds on those combinations in Table 7.1 which surpass
bounds on the respective individual couplings.

2 Throughout this chapter, if we talk about neutrinos or antineutrinos whose flavour is irrelevant for the discus-
sion, we simply refer to them via v, v.
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Coupling  Upper Limit Constraint
N9 0.03 (msz,/100 GeV) CKM unitarity + leptonic 7 decay rates
Aypo 0.06 (msz,/100GeV) leptonic 7 decay rates
fo1 0.2 (mg, /100 GeV) D decay rates
Aooq 0.1 (mg, /100 GeV) D decay rates
{99 0.2 (ms,/100 GeV) D decay rates
Ayoo 0.1 (ms,/100 GeV) D decay rates
N3 0.03 (mz, /100 GeV) Cs atomic charge
ba1 0.18 (m;, /100 GeV) v, deep inelastic scattering
519 0.06 (mzy/100 GeV) T-to-m decay rates
513 0.06 (mn;, /100 GeV) 7-to-m decay rates

VNN 3+1075 (my, /100 GeV) K — K mixing
NNy 47-1073 (g, /100GeV) K — v
M3 Mqe  4.7-1072 (meg, /100 GeV) K — K mixing

Table 7.1: Summary of bounds on those X}, coupling which are used within this work. All bounds on
single operators are taken from Ref. [339], except for A3, which is taken from Ref. [96] as there is no
bound quoted in Ref. [339]. Bounds on operator products are also taken from Ref. [96].

7.2 Light Neutralinos at SHiP

7.2.1 The SHiP Setup

We present some details of the SHiP setup that are relevant to our analysis. According to the
SHiP proposal in Ref. [340], the plan is to employ the 400 GeV proton beam at CERN in the
fixed-target mode. This yields a center-of-mass energy of roughly 27 GeV, sufficient to produce
D and B mesons. Over the five year lifetime of the experiment a total of 2 - 10?° protons on
target are foreseen. Such a large event yield is expected to be achievable by e.g. a hybrid target
consisting of tungsten and titanium-zirconium doped molybdenum alloy.

A major motivation for the SHiP experiment is to observe new, weakly-interacting particles
with long lifetimes. The SHiP physics case report [329] lists various interesting physics scenar-
ios beyond the Standard Model including the Higgs Portal which we encountered in Chapter 5,
the NMSSM which we discussed in Section 2.5 or the R-parity violating MSSM we present here.
The respectively predicted long-lived particles could be produced via proton-target-collisions
and propagate for finite distances of the order tens of meters before decaying back into Stan-
dard Model pairs. For that purpose, a decay volume is located 68.8 m behind the target. It
has a cylindrical shape with a total length of 60 m, however with the first 5 m dedicated for
background suppression vetoes. Furthermore, the decay region has an elliptic face front with
semi-axes 5m and 2.5 m. We sketch this setup later in Fig. 7.2. A spectrometer and a calorime-
ter system positioned behind the decay volume can identify the visible final state particles that
are potentially produced when a hidden particle decays.

SHiP is not only designed to search for BSM physics. Due to the high expected number
of Dgt mesons, see our results in Table 7.4 below, O(10'°) tau neutrinos are expected to be
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Figure 7.1: Relevant Feynman diagrams for D* — X{ + ¢*. For the interpretation of diagrams with
broken fermion flow due to charge-conjugated fermions and Majorana neutralinos, see e.g. Ref. [343].

produced after five years of operation via decays D¥ — 7%v, and the subsequent prompt decay

of the tau lepton. A special tau neutrino detector is planned to be positioned before the above
mentioned decay chamber. Its target material is designed such that it maximises the neutrino
charged current cross section and approximately 10,000 interactions with an average energy
of 60 GeV are expected. With such a large expected event rate, SHiP is expected to be the
first experiment which can observe, study and distinguish the properties of tau neutrinos and
tau antineutrinos which previous physics programs, i.e. the DONUT [341] and the Opera [342]
experiments, were yet unable to do due to their limited statistics.

7.2.2 Production and Decay of Neutralinos via R-Parity Violation

A sensitivity study of a long baseline experiment to R-parity violating long lived neutralino
decays has already been performed for the NuTeV experiment in Ref. [344]. In agreement with
our argumentation above, it has been shown here that pair production of neutralinos has a too
small cross section. Instead, a much higher sensitivity is expected if Standard Model mesons
which are produced at very high rates can decay to the neutralino LSP and a neutral or charged
lepton [ via the LQD operator in Eq. (7.1), i.e.

pp —> M+ X,
M — X +1. (7.2)

At SHiP energies, with a 400 GeV proton beam we expect high production rates for charmed
mesons and somewhat lower rates for B-mesons. For example, as we discuss below, about
4.8x10'6 D*-mesons are expected to be produced over the lifetime of SHiP. For a nonvanishing
Xi15 these could then decay into the neutralino plus a lepton, i.e.

Dt =XV +¢h,i=1,2. (7.3)

via the Feynman diagrams given in Fig. 7.1. In this specific example the light neutralino can
decay via the same R-parity violating operator:

X1 — (VK v Kgyp). (7.4)

Both sets of decays are possible, as the neutralino is a Majorana fermion. For small values
of the coupling \,,, and given that the neutralino must be lighter than the D' meson, the
neutralino lifetime can be long enough to decay downstream in the SHiP detector.

As mentioned in the introduction, this particular scenario has already been used as a simple
benchmark scenario in Ref. [329] and subsequently was updated and extended in Ref. [330].
Shortly before our extended study was completed, Ref. [345] had appeared which discusses
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the SHiP sensitivity to a benchmark case with production via B mesons, as we discuss it
here as well, and another benchmark case with neutralinos decaying via a nonvanishing LLE
opererator3 .

7.3 Effective Lepton-Neutralino-Meson Interactions

In this section, we discuss the R-parity violating effective interactions between a meson, a
lepton, and a neutralino. These interactions are relevant for both the production and the
decay of the neutralino and are necessary to determine the possible signatures at SHiP, as in
Egs. (7.3) and (7.4). As discussed, we focus on the LQD operator in Eq. (7.1).

7.3.1 Derivation of Interaction Operators
Effective Couplings

From the single superpotential term in Eq. (7.1) we can derive the interaction Lagrangian Lyy
as in Eq. (2.64). Using projection operators to write everything in terms of four-component
Dirac spinors, see our discussion below Eq. (2.15), we find the following set of Yukawa-like
operators:

3
L> Z Niab [(VT{:PLda)d*R,b + (dpPpv')dr,0 + (ijLda);L,i}
i,a,b=1

_)‘;ab [(uigPLgi)CflVRb + (CTbPL'LLa)ZLJ‘ + (EbPLgi)ﬂL7a} +h.c. . (7.5)

The dominant contribution to the R-parity violating decay of a meson typically proceeds at
tree-level via operators associated with the Feynman diagrams as shown in Fig. 7.1. Thus
we also need the standard supersymmetric fermion-sfermion-neutralino vertices. We get these
by first diagonalising the neutralino mass matrix in Eq. (2.95) and then rotating the gaugino
interactions derived from Eq. (2.62) as well as the higgsino interactions derived from the super-
potential Yukawa terms and Eq. (2.64) into the mass eigenbasis. As we consider a dominantly
bino LSP neutralino, from Eq. (2.62) it follows that X9 only couples fermions and sfermions
of the same representation. We further assume that the mixing patterns are aligned in the
corresponding sfermion and fermion sectors [346]. The relevant interactions are then given as

3
£ Y 9a.(VPLua)i] o + 94, (WPrda)d], o + 95, (XN PLE)E
i,a,b=1
+90, (WPLv)VE; +95  (@pPX?)dRs + hec. (7.6)

with the following coupling constants gx which for pure bino interactions turn out to be family
independent [57]:

9L

gELyi :géL = +\@tan QW’ (77)

3 Unfortunately, the authors of Ref. [345] blindly copied our intermediate formulae and results from Ref. [329)
including all mathematical and conceptual mistakes. Of course, these errors were corrected for our extended
version in Ref. [330] and for this thesis.
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9or,s =9op, = +% tan Oy, (78)

Gy . =Ya, = —% tan Oy, (7.9)
59L

gdL a 7gdL == +ﬁ tan GW, (7.10)
291,

Yip, =9dn = WG tan Oy . (7.11)

Note that our results can straightforwardly be generalised to non-Bino neutralinos and/or
flavour-non-diagonal interactions by determining the respective mixing matrices and using the
results in e.g. Ref. [57] to update the above formulae.

We assume that the sfermion masses are significantly larger than the momentum exchange
of the process in which case they can be integrated out from the low energy theory. In general,
a Lagrangian of the form

L = 1T X + 01Dy X + hec. (7.12)

with a complex scalar X and fermions 1y /9, x1,2 coupled via arbitrary Dirac operators F,f,
yields (see e.g. Ref. [347])

1
Lo = —(|Fx|)? (7.13)
mx
with
oL - ~
Fx = 67 1[)1F17Z12 + )211—‘)(2, (714)

and mx being the mass of X. The resulting low-energy effective four-fermion Lagrangian which
describes both the production and decay of the neutralino then reads

Iine = on 93, — _
55> Amb[ (@ PLR)EPLda) = — 5 (Ao PR (0 PLs) + — 3 (R Prda) (4 PLvs)
Z a, b=1 dR b JR,b gL,G«
9ur, . <o —_ 95, =q —_ 97 i =a —_
_m2L7 (XYPrua)(dyPrl;) + mQL’ (XY Prvi)(dyPrd,) — mQL (XYPe;)(dpPrug) | +h.c. (7.15)

UL,q VL, lr

We have omitted the terms involving pairs of neutralinos, which are most likely not relevant at
SHiP, see Ref. [332]. Similarly, we have dropped interactions involving four SM fermions, see
Ref. [338].

Using chiral Fierz identities [348], one can rearrange the four-fermion interactions in Eq. (7.15)
such that each term factorizes in a neutralino-lepton current and a quark-bilinear. For general
four-component spinors 11 2, 11,2 we can write

(1Prn2) (i Prips) = — %(@1PL¢2)(771PL772) - %(1/110“ Vo) (M o)

. i
+ gﬁu P7 (10, 42) (M0 pe2), (7.16)
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(Y1 Prm2) (M Prip2) = — §(¢1PR¢2)(771PR772) - Z(?ﬂla“ “1ho) (M oywne2)
- %6“”0(lﬁl%u%)(ﬁl%am)’ (7-17)

with o#* = i/2 [y*,7"] and €”1?3 = 1. Making use of these identities and applying ¢P;, /R =
n°Pr, /rRY in combination with the Majorana identity x“ = x for the neutralino, Eq. (7.15) can
be written as the sum of the following four interactions:

(O Prv;)(dy Prdy) xAgab(mgL T T ) (7.18)
VL, JL,a CZR,b
=G,y
— — 1 ga 1 9; 9;
(ROPLE) @ Prta) X Ny (5232 + 5 — =), (7.19)
2mg 2m= m2
La dRr.b Lri
=G,
=0 -pv,,. drofd A gJL gJR if,u,upo 7.90
(X" ;) (dpo?dy) X iab 4m§ +4m?[ gupguo—T ) (7.20)
L,a R,b
=dl
_ _ _ g% ;
R0 £:) [F0"1a) Mo 725 + 72 ) (Guato — ~22), (7.21)
4mﬂLa 4deb 2
=gT*

iab

and their hermitean conjugates.

Quark-Meson Currents

For pseudoscalar mesons composed of anti-quarks ¢; and quarks ¢s, we can connect the quark
bilinear vector currents with external meson fields by defining pseudoscalar meson decay con-
stants fas

(0lq17"~°qo| M (p)) = ip" fu, (7.22)

where | M (p)) denotes a pseudoscalar meson M with momentum p and quark content giq2. By
dotting with the momentum operator p, from the left and using the low energy approximation
p' < p? = mass, we can easily relate Eq. (7.22) to the pseudoscalar current

2

G ~° a0 | M MM = 9 2
0l g2l M (par)) qu1+mq2fM I (7.23)

which can be applied to Egs. (7.18) and (7.19). Here, mys, mg, and mg, are the masses of the
meson M and the quarks g1, qo, respectively.
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The tensor structure in Egs. (7.20) and (7.21) can never lead to a purely leptonic processes
such as M — X° + ¢; or X° — M + ¢;. The reason is that a pseudoscalar meson only has its
momentum as a Lorentz-vector degree of freedom. Hence, no antisymmetric tensor combination
can be formulated and thus the matrix element is trivially zero. Hence, for pseudoscalar mesons
tensor currents can only contribute to higher multiplicity processes such as M — x° +1; + M’,
with a lighter meson M’. These however are phase space suppressed by two to three orders
of magnitude in the decay widths. Thus, the can be neglected compared to the accompanying
pseudoscalar current in Egs. (7.18) and (7.19).

Vector mesons, however, have two intrinsic Lorentz vectors, their momentum p* and spin
polarization €. The decay constant of a vector meson M* with mass mys+, can be defined as
(see e.g. Ref. [349])

(0117 2| M*(p, €)) = fp=mnse€t. (7.24)

Heavy-quark symmetry relates the respecive vector meson constant f]\‘Z* and pseudoscalar con-
stants fV for mesons M which contain a heavy quark, i.e. fi;. =~ fas [350]. We use this relation
for the B and D mesons. For lighter mesons, such as K* and ¢, the relation is not accurate and
instead we follow Ref. [351] where the vector decay constants are obtained from M* — ete™
decays.

Similarly we can define the tensor meson constant

(0|q1o" qo| M*(p, €)) = i f17+ (Phe” — Phre™). (7.25)

For mesons containing a heavy quark (c or b), heavy-quark symmetry again relates the vector
and tensor decay constants fﬂ* ~ f]\vﬁ ~ far [352]. Since the tensor decay constants are not
known in all cases, we also employ this relation for lighter mesons. The additional uncertainties
entering via these simplifying assumptions hardly affect the SHiP sensitivity curves on \'/ m?;.

These range over many orders of magnitude and thus an O(50%) correction in a decay constant
ff/[’%;’)v does not noticeably change the results presented in the figures in Section 7.6.

We list the values of the pseudoscalar and vector decay constants we use in Table 7.3 later in
Section 7.6. In general, we find that neutralinos can interact both with pseudoscalar and vector
mesons via different but related effective couplings. In the following analysis we therefore
consider both meson types and also show how the inclusion of the latter affects the overall
sensitivity.

As a side remark, we want to mention that potentially fine-tuned models with non-degenerate
sfermion masses could lead to a complete cancellation of the individual contributions in Egs. (7.18)
and (7.19). No sensitivity would be expected in such a scenario if only pseudoscalar mesons
were considered in the analysis. However, for a nonzero RPV coupling the effective operators
in Egs. (7.18) to (7.21) can not all vanish simultaneously. We hence safely use the simplifying
assumption of completely mass degenerate sfermions which is allowed due to our consideration
of vector mesons.

7.3.2 Possible Decay Modes

From Egs. (7.18) to (7.21), a single /\;ab(fi : @a)f)g operator leads to interactions with charged
pseudoscalar or charged vector mesons M;% of flavour content (uqdp) as well as neutral mesons
M(gb with quark composition d,dp, and their respective charge conjugated equivalents. If mso <
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mpar — my,, the operator opens a decay channel of the meson into the neutralino plus lepton
l;. For example, M* — X0¢* or MY — xv, M® — X97. Such processes serve as the initial
neutralino production mechanism here. In addition, for msge > ma + my, the neutralino can
decay via X0 — M=, M—¢* or X) — M%, M°0. Such decays are necessary to produce an
observable final state in the SHiP detector.

From the structure of the operators in Eqs. (7.18) to (7.21), the definition of the effective
couplings and the meson structure constants in Egs. (7.23) to (7.25), we obtain the following
unpolarized decay widths:

1
Ai(m?\/[ 7m2~07 m12 )
07y ab” X t S, 1208 N\2(,..2 2 2
F(Mab — Xllz) = 6471’7’)’73\4 ! |G’iab| (fMab) (mMab — m)z(l) — mli), (726)
1
)‘5 (m%\/[* 7m2~07 m12 )
* ~0 N\ ab X1 i T,f 2 T 2
L(Mgy, — X1li) = 37rm§,\/[:b \Giab (fM;b) X
[m%w;b(m?\/[;b + m%) + mi) - 2(m§? — mi)2 , (7.27)
0 )\%(mgio’m?‘/’b’m?) S, F12( ¢S \2(02 2 2
~ ) 1 a 7 S, 2 N
L(X] — Mapl;) 1287Tm%1, |Gl |"(Fi,,)" (M0 + mi; —mig,, ), (7.28)
1
A2 (m2y,m3,. ,m})
~ * X a i T7
TR = Mpli) = ——5 5" |G,j (fir,)*
X7
[2(m§9 —m)? —mp. (mdp., +my+md)]. (7.29)

Here, [; either denotes Zii or v;, depending on whether M, is charged or neutral. The phase

space function A3 (r,y,2) = \/x2 + 92 + 22 — 22y — 222 — 2yz is propotional to the momentum
of the daughter particles in the mother’s rest frame. The coefficients G are defined in Eqs. (7.18)
to (7.21). For each of the above decays there exists a charge-conjugated process with identical
decay width. In Table 7.2 we list the relevant mesons M, that participate in each interaction
for given quark family indices a, b

For light neutral pseudoscalar mesons, mass and flavour eigenstates do not coincide. For our
studies this is only relevant for the Rg g, 1, and 7' mesons as we take ¢ to be a pure (s3)
state. For the former, we neglect any CP-violation and define the mass eigenstates |Kp/g) =
(|Ko) + | Ko))/v/2, where |Kg) and |Ky) are flavor eigenstates (d5) and (sd), respectively. We
can then read off the decay constants from

(0]57#~°d| K7 (p)) = + {0ldy*+°s| K1 (p)) = ip\%K, (7.30)
O3y d|K3(0)) = — (0ldy"s| K3(p)) = LK (7.31)

\/i )

where fx is the decay constant of the charged kaon as defined in Eq. (7.22).
For 7 and 7 we consider mixing between the n° and n® flavor states. We are only interested
in the (8s) content of these mesons. We follow Refs. [332, 353] and define

(017" sl{n, 'Y () = i f55 1 » (7.32)
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Coupling  Which (gq) Relevant Mesons Coupling  Which (gq) Relevant Mesons
N1 (ud) ot - (c8) DF, Dt
(dd) w1, p,w (s5) N
12 (us) K+, K** - (cb) B}, B:f
(ds) K9 K% K*0 (sb) BY, BV
i3 (ub) Bf, B** a1 (bd) BO, B*0
(db) B, B0 e (sh) BY, B0
21 (cd) D*, D** 33 (bb) Mo, T
(sd) K}, Kg, K™

Table 7.2: Bilinear quark currents and resulting list of relevant mesons which can be derived from the
R-parity violating operator X, ,(L; - Qq)Dj by the procedure explained in Section 7.3.1. The lepton

2
index 7 is irrelevant for the meson-current discussion, however plays a role later in the discussion if

kinematically possible decay scenarios.

and give numerical values in Table 7.3. Note that we take all Standard Model meson and lepton
masses from Ref. [87].

7.4 Observable Signatures of R-Parity Violation

With the predicted decay widths at hand we investigate how and under which circumstances
R-parity violation can be observed at the SHiP experiment.

7.4.1 Neutralino Production

Each )\ coupling causes at least one type of meson to decay into a neutralino and another
charged or neutral lepton, provided it is kinematically allowed. This process serves as the
initial neutralino production mechanism at SHiP in our analysis. Given the number Nj; of
mesons M produced at SHiP and the lifetime 757, the expected number of initially produced
neutralinos is given by

NPod =" Noy - T(M — 30) - 7. (7.33)
M

As apparent from the previous section, for each operator there are both pseudoscalar and
vector mesons which can produce neutralinos. However, the lifetimes of a pseudoscalar and the
corresponding vector meson of the same quark composition differ by many orders of magnitude.
As an example, for the lightest charged charm meson, D*, and its vector resonance partner,
D**, one finds Tp-+/7px &~ 8 x 1077 [87]. Similar ratios appear for kaons and even though
the lifetime of vector B-mesons is yet unknown there is no reason to expect largely different
behaviour.

For the RPV decay widths, however, one finds that I'(D** — x0¢*)/T'(D* — x%¢*) depends
mainly on the ratio of masses and of the effective operator couplings Gp/Gg. Thus, it is
hardly larger than 2 orders of magnitude unless one chooses a very peculiar setup of fine-tuned
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Decay Constant Value Refs. Decay Constant Value Refs.

e —142MeV  [332, 353] Iy fh 205 MeV  [87]
I 38 MeV  [332, 353] fo.s fhe 259 MeV  [87]
1y 230 MeV  [351] IB 191 MeV  [87]
fKx 156 MeV  [87] fB. 228 MeV  [354]
f¥e 230 MeV  [351]

Table 7.3: Values of the pseudoscalar and vector decay constants that are used in the various benchmark
scenarios. Definitions of the constants are given in Egs. (7.22) to (7.24). Tensor decay constants are
chosen to be equal to the pseudoscalar decay constants.

parameters. As the expected number of initial mesons, Ny; and N+, will also be of roughly
the same order, we conclude that if both M — YV f and M* — XV f are kinematically allowed,
the contribution from vector meson decays is completely negligible.

In the small mass range mjy; < mge < M- it might only be the vector mesons that can
produce neutralinos in the first place, but by the above arguments and from the results below
we expect the neutralino event rates to be far too small to be observable in this very limited
mass window. We therefore ignore any neutralino production via vector meson decays in the
following study.

7.4.2 Neutralino Decay

For the neutralinos to be observable, a sufficiently high fraction must decay within the decay
chamber of the SHiP experiment. By summing the widths I'(x) — M f) of all allowed channels
for a given operator, we can derive the proper lifetime of a neutralino given the parameters of
the RPV supersymmetric model. Given the kinematical distributions of neutralinos produced
via meson decay and knowing the geometry of the decay chamber, we can find the average prob-
ability (P[x} in d.r.]) of a neutralino decaying inside the detectable region. This is explained
in more detail below.

A neutralino decaying inside the decay chamber is a necessary, but not a sufficient condition,
as the final state particles have to be observed and traced back to an invisibly decaying new
particle. For a charged final state, e.g. KTe™, one can measure the trajectory of both particles,
measure their momenta and presumably identify the neutralino decay vertex. For a neutral
final state, e.g. ng/, one loses information on both tracks and the momentum of the second
particle. We expect that these are hard to be linked to the decay of a neutralino. Thus we only
count neutralinos that decay into charged final state particles. The final number of observed
neutralinos is then

N%ll?s' = N;%Od' ~(P[xXY in d.r.]) - Br(X} — charged). (7.34)
We should note that if we compare Eq. (7.40) with our general collider event formula in Eq. (3.1),
one realises that we did not take into account the final state efficiency e, i.e. the probability
that a signal event would actually be counted by the detector according to the applied cuts.
Also, our estimate for the acceptance A only requires the neutralino to decay inside the decay
chamber but did not take into account the finite probability that the decay products actually
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hit the detector. These factors do affect the expected number of observed events, however as
signal and the very few expected background events e.g. from initially produced Kg should
be very well distinguishable, we hardly expect that the proper consideration of these factors
changes the event rates by more than a factor of 2. In fact, since the exact details of e.g. energy
thresholds in the detector are now known, a precise result could anyway not be calculated at
this stage. In any event, as becomes apparent in our resuls below, such a relatively small change
in event rates would barely be visible in our sensitivity curves which ranges over many orders
of magnitude in the expected number of events.

With the above considerations, we thus demand the following conditions for observable neu-
tralino decays via LQD operators at SHiP:

1. A pseudoscalar meson M with my; > Mg must have a non-vanishing decay rate into

neutralinos.

2. The neutralino must have a non-vanishing decay rate into another charged meson M'*
with myp+ < mﬁ) < mys.

With these conditions, it is practically impossible for SHiP to observe R-Parity violation if
only one X, coupling is nonzero: Table 7.2 shows which operator leads to which sets of mesons
that can decay into the neutralino or the neutralino can decay into. The only operator related
to both a pseudoscalar meson M and a charged meson M'* with mp; > myp+ is Ay9, which
might be observable via the chain

K)js—Xiv,  Xi— K0T, (7.35)

However, as |mg+ —m K9 S| ~ 4 MeV, the testable range of neutralino masses is extremely

limited and the expected energies of the final state particles are so small that the decays would
be very challenging to observe.

Thus we require two different operators X, ,, )\;- ed 7 0, with iab and jed such that the decays
fulfill the above requirements. This necessary extension leads to a plethora of possible combi-
nations. In Section 7.6 we restrict ourselves to an interesting subset of benchmark scenarios.

7.5 Simulation of RPV Scenarios

Egs. (7.33) and (7.34) tell us how to estimate the number of observable neutralino decays N)%'S’S
for any given operator combination and parameter values. The total widths and branchirig
ratios into charged final states can be calculated from the general width formulae, Eqgs. (7.26)
to (7.29). We next describe the numerical tools we use to estimate Ny; and (P[Y? in d.r.]).
To get a reliable estimate on the kinematics of the initially produced mesons at SHiP, as well
as the resulting neutralinos after their decay, we use Pythia 8.175 [147]|. In scenarios with
initial charm (bottom) mesons we use the HardQCD:hardccbar (HardQCD:hardbbbar) matrix
element calculator within Pythia, which includes the partonic processes ¢, gg — c¢ (bb) and
select the specific meson type for each benchmark scenario. According to the original* SHiP
proposal in Ref. [355], the number of c¢ events after 5 years of operation is expected to be

4 By the time this project was completed, the updated physics case report in Ref. [329] had not been published
yet.
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Variable Description Numerical Value Source

Nez Number of initially produced c¢ events 9 x 1016 Ref. [355]
oy;/0cc  Ratio of production cross sections 2.1 x 1074 Pythia 8 [147]
n. produced D* mesons per c¢ event 0.53 Pythia 8 [147]
ngsi produced DF mesons per c¢ event 0.074 Pythia 8 [147]
ng’i produced B* mesons per bb event 0.83 Pythia 8 [147]
ng’o produced B® mesons per bb event 0.80 Pythia 8 [147]
n%’g produced B? mesons per bb event 0.14 Pythia 8 [147]

Table 7.4: Numerical values used to estimate the number Nj; in Eq. (7.38). Except for Ng., which is
taken from [355], all numbers are evaluated by simulating 1M events of each HardQCD type in Pythia 8.

Ng = 9 x 10'°. By simulating 1M events of type c¢, we can use Pythia to find the average
number of produced charm mesons per c¢ event, i.e.

n% = Np/Nee, with D € {D* D,}. (7.36)

Note that Np considers both D mesons which originate from hadronisation of a ¢ quark as well
as those produced from the immediate decay of heavy resonances, e.g. (D*)* — D*7Y The
analogous simulation of bb events gives the respective number for bottom mesons:

nb? = Ng/N,;, with B e {B°, B* B"}. (7.37)

The total number of expected bb events is taken by scaling the known number for ¢é events by
the ratio of total cross sections determined by Pythia, i.e. Njj = Nz X 035/00c. We therefore
combine

7’1,?5[ for charm mesons

Ny = Nz - (7.38)

nt - oy /oe  for bottom mesons

and list the numerical values in Table 7.4. Note that the number of D* mesons per c¢¢ event
differs from the number of B* per bb event. This is mainly caused by the fact that cé and
bb hadronise with same probabilities to the pseudoscalar ground state D*, B* and the corre-
sponding vector resonances D**, B**. Whilst the D** decays at the rate of 1:2 into DT 7% and
D~nT, the B** has a nearly 100 % branching ratio into B*v as the mass splitting between
vector resonance and pseudoscalar ground state is smaller than the pion masses. This results
in n%. < n%’i as shown in Table 7.4.

For each benchmark scenario, we simulate 20,000 events of the correct HardQCD type and
— to increase statistics — set the branching ratio Br(M — X{f) to 100%. We then scale
the final numbers accordingly in our results. As the decaying mesons are scalar particles, the
momentum of the neutralino is chosen to be uniformly distributed in the rest frame of the
decaying meson. We then sum over all such produced neutralinos and determine the average
probability, i.e. for all possible neutralino momenta, that an arbitrary neutralino decays within
the SHiP detector. Given the four-vector of the ith simulated neutralino (YV); in spherical
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Target

Figure 7.2: Schematic overview of the SHiP detector geometry and definition of distances and angles
used in text.

coordinates as (E;,p7,60;, ¢;) and the distances and angles as defined in Fig. 7.2, the average
probability for NV neutralinos in a given sample generated by a Monte Carlo program is evaluated
as

N

(PR in d.r]) = %ZP[@?% in dr, (7.39)
i=1

P[(X); in d.r.] = e~ Fema/AT (1 _ e—Li/Af)_ (7.40)

Here, A7 denotes the mean decay length of the neutralino in the lab frame which is given by

A = B77i/Tion(XY), (7.41)
B; = pi/Ei, (7.42)
Vi = Ei/msp. (7.43)

37 is the z-component of the relativistic velocity of (XY);, 7 the corresponding Lorentz boost
factor. Tyt (YY) is the total decay width of the neutralino LSP, which only depends on the
model parameters and not on the kinematics of an individual candidate (X9);. L; denotes the
distance in z-direction a neutralino can travel inside the decay chamber before leaving it in
radial direction. It can be determined as, see also Fig. 7.2,

0 if p;cot@; < Li_q,
Li=4 Lq if pjcot0; > Li_q + Lg, (7.44)
picot@; — Ly .4 else,

where

pi = RaRp//(Rp cos ¢;)? + (Rasin ¢;)> (7.45)

164



7.6 Results for Various Benchmark Scenarios

is the radius of the ellipsis in the direction ¢;. 0; is the angle between the flight direction
of the neutralino and the central axis of the detector; the polar angle, ¢;, is the azimuthal
angle of the neutralino momentum 3-vector. R4 denotes the semi-minor axis, and Rp the
semi-major axis of the elliptical face of the detector. L;_,4 denotes the distance from the target
to the front of the detector. L; denotes the length of the detector along the central axis. As
explained in Section 7.2.1, we use the numerical values L; .4 = 68.8m, Ly = 55m, R4 = 2.5m
and Rp = 5m.

7.6 Results for Various Benchmark Scenarios

In Table 7.2 we have listed the twenty-seven operators A, , together with the corresponding
mesons they couple to. For a fixed lepton flavor there are 36 possible combinations for produc-
tion and decay of the neutralinos, if we assume distinct operators. The number of possibilities
exceeds 100 if one in addition tests all possible values for the lepton flavor indices. It is clear
that we can not investigate all of these cases in detail. In order to analyze the sensitivity
at SHiP, we have thus focussed on a subset which we propose as, hopefully representative,
benchmark scenarios.

In choosing the benchmark scenarios, we took the following points into consideration. For the
sensitivity, to first order, it does not matter if we consider electrons or muons. We thus restrict
ourselves to electrons’. We have one benchmark with final state taus, as their considerably
larger mass affects the accessible decay phase space and the respective total widths.

The meson production rates can differ substantially. Thus we consider various scenarios
where the neutralinos are produced via neutral or charged D- or B-mesons. To estimate the
production rates we use Pythia, as discussed above. We do not consider the production of
neutralinos via A,;;, Al;, as the production of the corresponding light mesons are not well
simulated in forward direction with Pythia. For kinematic reasons, we restrict the final state
mesons in the neutralino decays to K and D mesons. We also do not consider decays into pions
and the associated vector resonances, as we expect sizable deviations from our approximations.
However, from the results of the benchmark scenarios discussed below, an estimate for pion
final states can be derived easily, by letting the neutralino mass range down to the pion mass
of about 135 MeV, instead of the kaon mass. The pion and kaon decay constants are related
by SU(3) flavor symmetry. Of course, a neutralino decay into pions requires turning on the
coupling A,;; where ¢ = 1,2. Note that in this case it does matter if i = 2 as now m, ~ m.

To be precise we consider the following benchmark cases.

7.6.1 Benchmark Scenario 1

We begin with scenarios where the neutralino is produced via the RPV decay of a D meson
and subsequently decays into a kaon plus lepton. We turn on two RPV couplings \}5; and

‘12- Neutralino production then occurs via the decay DT — X + e* with a branching ratio
nearly proportional to (\},;)?. The same coupling also leads to neutralino decay via the process
XY — (K?, K2, K*°) + v which contains no charged particles in the final state and will therefore
be difficult to observe. However, these decays do impact the neutralino lifetime. The relevant
information is summarized in Table 7.5.

5 Although the existing bounds on /\’2jk are typically weaker than on lek and we can have tighter bounds on
coupling products with same lepton index i, see e.g. Table 7.1
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Property Value Comments
Ap 121
Ap 112
Mproduced Di
decayz:F K*eT, K*teT

Y. 0 70 7-%0
Mdecayma)\P K Ko, K

MRy Via Xy K7, Kg, K*0
applicable to  Np = Xgy, Xy = Xy ° i, j#3

e for ¢ = 2, upper kinematic bounds on
mso shift by m,, to the left

e for j = 2, lower kinematic bounds on
mso0 shift by m,, to the right

P = A1, Ap = Njgy ®i,j#3
e for ¢ = 2, upper kinematic bounds on
mso shift by m,, to the left
e only applicable if neutral final state

can be observed

Table 7.5: Features of benchmark scenario 1. A5, A, define the A, , coupling responsible for production
and decay of the neutralino, respectively. The meson produced during the fixed target collision My oduced
then decays into the neutralino via Ap, which then decays into the observable charged final states

dccayZ via A5. In addition, decays into neutrinos and neutral mesons M(?ecay are typically induced
in addition by )\ '> and A\, which decrease the neutralino lifetime and reduces the branching ratio into
observable final states. In the “applicable to” section we list A’ combinations which lead to very similar
results as those shown in Section 7.6.1, see also the in-text discussion.

Because we have turned on the coupling A}, the neutralino can furthermore decay via X9 —
(K*, K**) 4+ T, which is possible to detect at SHiP. This coupling also leads to the same
invisible decay to neutral kaons and neutrinos as Aj5,. The invisible decays are important to
include in the computation.

Taking the bounds listed in Table 7.1 into consideration, one finds that this setup with its
nonvanishing \j5;A\j15 can be very tighly constrained by Kaon mixing. However, the Kaon
mixing bound depends on the mass mj, of the left-chiral sneutrino, while our effective interac-
tions responsible for the more important visible charged final states in Eqgs. (7.18) to (7.21) are
independent of this mass. Hence, if sfermion masses are hierarchical, e.g. if sleptons turn out
to be much heavier than squarks, the Kaon bound would be avoided while our results would
be almost unchanged.

We now present our results The expected number of events depends on three independent
parameters: Ny, /m%, N o/m? 7 and the neutralino mass mg. We find it convenient to present
our results in two dlﬁerent ways. At first, we assume the RPV coupling constants to be equal,

lo1 = M3 = X. In Fig. 7.3a we show the number of expected visible neutralino decays in
the SHiP detector as event rate iso-curves which are functions of \'/m2 and mso. The bright
blue area bounded by a thick solid line shows the expected maximum sensitivity curve for the
SHiP experiment. This area in parameter space gives rise to > 3 neutralino decays within the
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Figure 7.3: SHiP sensitivity curves for benchmark scenario 1. In both figures, straight hatched lines
correspond to the existing limits on the RPV couplings as listed in Section 7.1.3, for three different
sfermion masses: 250 GeV, 1 TeV and 5TeV. We also show the respective product bound on A5 Njjo
with a dot-dashed line and a sfermion mass of 100 GeV. Note that the dependence on the sfermion mass
is identical for both types of bounds, such that it is sufficient to show the product operator bound for a
single choice of m 7

detector into charged final state particles for 2 - 10?° protons-on-target expected in 5 years of
operation. As no Standard Model background is expected for this search, this expected event
yield would be sufficient to — if not observed — exclude the respective parameter combination.

The corresponding expected meson production rates are listed in Section 7.5. To show how
the event rate increases with \’/m?2 and mso, we also show areas for > 3- 102 (blue) and > 3-10°
(dark blue) observable decays. T{le horizontal hashed lines depict existing bounds on single
operators and operator products for various values of the sfermion mass m ; P cf. Section 7.1.3.

We see that if the SUSY setup is such that the Kaon bound holds, it cannot be challenged by
SHiP for reasonable sfermion masses. However, if this bound does not apply, see our discussion
above, the SHiP experiment can improve the current bounds on single \’'/m? couplings by one
to three orders of magnitude depending on m ; 7 The kinematically acces&bI{e range for mgo is
dictated by the requirements that the neutralino must be lighter than the D-meson, y1eld1ng
an upper bound, while at the same time being heavier than the K-meson, thus giving a lower
bound. We find that the discovery region is mostly independent of mso, i.e. the lower solid
curve edge of the discovery range is fairly flat, as long as the mass lies within this kinematically

167



Chapter 7 R-Parity Violation and Light Neutralinos at SHiP and the LHC

Property Value Comments
Ap 122
Ap 112
Mproduced Dg‘:
+ + +
M joeayt™ K=et K**et
Mc(lJecay via )‘/P n, 77,7 ¢
MRy Via Xy K7, Kg, K*0
applicable to N = My, A = Ny ° i, j#3

e for ¢ = 2, upper kinematic bounds on
mso shift by m,, to the left

e for j = 2, lower kinematic bounds on
mso0 shift by m,, to the right

Np = Nigg: Ap € {)\;21, ;‘22} ° i,j#3
e for ¢ = 2, upper kinematic bounds on
mso shift by m,, to the left
e only applicable if neutral final state
can be observed

Table 7.6: Features of benchmark scenario 2.

allowed range between 500 and 1900 MeV.

The additional small lighter shaded region marked by the dashed line indicates the extended
sensitivity if the SHiP detector could detect neutral kaons in the final state, as well. In this
particular scenario, this barely affects the exclusion contours because the branching ratios to
visible and invisible final states are roughly the same. However, as we see below, in other
scenarios the difference can be more substantial.

If \'/m?2 becomes larger than 107° GeV~2, the neutralinos decay too fast, in fact mostly
before reaching the detector. We note that this parameter region is subject to large numerical
uncertainties in our Monte Carlo simulation approach, and as such the exclusion lines show
fluctuations with no underlying physical cause.

In Fig. 7.3b we remove the restriction that the couplings A}5, and A}, are equal. Instead, we
present the SHiP sensitivity depending on the separate couplings for three representative values
of mg. We choose a light mass close to the lower kinematic threshold (600 MeV, bright blue),
a heavy one close to the higher kinematic threshold (1800 MeV, dark blue) and one halfway
between the other two (1200 MeV, blue). In the same manner as before, existing limits on the
two couplings are plotted for three representative values of m 7 and also the product limit is
drawn. Again we see that the contours are fairly insensitive to the neutralino mass. In all
cases, SHiP probes a new region of parameter space even for 5 TeV sfermion masses if the
Kaon bound is avoided. The shape of the sensitivity regions are due to both couplings defining
the neutralino lifetime, but only A5, leads to the production and only A, to the observable
decay of the neutralinos. To avoid confusion, let us call the couplings \» and N, respectively
in the following discussion. If A}/ m?2 becomes too small, too few neutralinos are produced in
the first place. This leads to an overall minimum requirement on A/ m%
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Figure 7.4: Search sensitivity for benchmark scenario 2. The labelling is as in Fig. 7.3, except for the
couplings Ajj9, N]95. Also, as the product operator bound is not as severe as in benchmark case 1, we
now chose to show it for the case of m j=0oTeV.

For increasing \p/ m?Z, more neutralinos are produced and thus the allowed neutralino life-
time to observe three events at SHiP can be reached for increasingly larger ranges of A, /m?2.
As before, too small/large couplings lead to too many neutralinos decaying after/before the
detector. Furthermore, smaller A}, /A ratios lead to more invisibly decaying neutralinos. In
Fig. 7.3b this corresponds to the slanted edge running from the upper left-hand corner to the
lower right-hand corner.

Once \p /m?% becomes too large, the lifetime induced by this operator is already too small
and neutralinos decay mostly before reaching the detector, regardless of X,/ m%. This explains
the sensitivity limitations on the right edge of Fig. 7.3b.

This benchmark can easily be translated to arbitrary cases with \p = Ajy; and/or Ap = N}y,.
Note that for i = 2, neutralinos are produced via D — X{+ p* and the extra muon would shift
the upper kinematical limit of all regions in Fig. 7.3 by m,, ~ 100 MeV to the left. Analogously,
the case 7 = 2 would move the lower kinematical limit of all but the shaded regions by the
same amount to the right. Within this scenario, the cases ¢ = 3 and/or j = 3 would not be
observable as there would not be enough phase space to produce a 7 lepton. Note that the
corresponding single operator limits from low energy constraints are typically weaker for muons
(see e.g. Ref. [96]) and the Kaon bound does not apply if i # j.

If SHiP is sensitive also to neutral final states, the above results also apply to the cases with
Ap = )\;21, again with i,j # 3. The sensitivity curve in this case would be very similar to
the shaded region in Fig. 7.3a. The case j = 2 would not lead to a kinematic shift here as
the neutralino would decay into the nearly massless muon neutrino which does not reduce the
available phase space.

7.6.2 Benchmark Scenario 2

This is similar to the previous benchmark, except the production of the neutralinos is via D
mesons. The observable charged final states are the same. There are however further invisible
neutral final states, which are kinematically accessible: (1, 7, ¢) + (v, 7). The details of this
benchmark scenario are summarized in Table 7.6.

169
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Property Value Comments
/ /
Ap 131

!/ /
AD 112

0 R0

Mproduced B >B

+ E= + .7 x+ F
MdecayZ K et K*"e

0 : /
Mdecay via A none

MRy Via Xy K7, Kg, K*°
applicable to  A\p = Nj3;, \p = ANijy e for j = 2/3, lower kinematic bounds

on mgo shift by my, /m; to the right

Table 7.7: Features of benchmark scenario 3.

The results for the SHiP sensitivity are presented in Fig. 7.4. The reach is extended to
higher neutralino masses, as Mp, > Mp. The lower edge is still given by mso & Mpg. The
sensitivity in \'/m?2 is slightly weaker for two reasons. First, the production rate D, mesons is
lower than D* mesons, see Table 7.4. Second, the neutralino branching ratio to an observable
charged final state is smaller. Correspondingly the sensitivity is enhanced more in this scenario
if neutral mesons are observable at SHiP, shown by the dashed line in the bottom of Fig. 7.4b.

Note that for the sake of uniformity, we again show bounds on single as well as product of
operators, even though in this particular case they both depend scale with m;, and therefore
there is no case where the product bound could be evaded but the single operator bound would
still apply. Contrarilty to the previous case, SHiP can even compete with product operator
bounds for considerably heavy sfermion masses. With the same comments as for benchmark
scenario 1, the analysis described here applies to the cases with Ap = N;15, N1, N9y, with the
last two only being possible if neutral final states are observable.

7.6.3 Benchmark Scenario 3

In this scenario the neutralino production proceeds via neutral B mesons. The decay of the
neutralino via the coupling A}, leads to charged K-mesons and electrons, which are readily
visible. The coupling \|;, also leads to neutral neutralino decays to K mesons and neutrinos.
There are no additional kinematically accessible invisible neutralino decay modes through the
coupling A5;. This information is summarized in Table 7.7.

The results of the simulation in this scenario are presented in Fig. 7.5. The kinematically
accessible neutralino mass range is Mg+ < mge < Mpo. This is reflected in the shape of
the sensitivity region in Fig. 7.5a, which is cut off on the left at a neutralino mass of about
500 MeV and on the right just under 5.3 GeV. In the top-right corner, where \'/ m?; and mso
are large, the neutralino lifetime becomes very short. The neutralinos then overwhelmingly
decay before the detector. Since so few neutralinos reach the detector, we are here probing
the extreme tail of the exponential decay distribution. Consequently, the top-right part of
the curve is jagged, due to lack of statistics in this regime. The lower curve slopes downward
left to right, much more so than in Figs. 7.3a and 7.4a. This effect is due to the presence
of the final-state vector mesons K*°, which are more important for the heavier neutralinos,
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Figure 7.5: Search sensitivity for benchmark scenario 3. The labelling is as in Fig. 7.3, except for the
couplings Ajs, Mj51- Also in b) the neutralino masses are 1000 MeV (light blue), 3000 MeV (blue), and
5000 MeV (dark blue). Note that the x-axis range for figure a) has been changed compared to previous
cases, as the initial state B meson allows for a larger kinematical reach.

accessible in B-meson decays. This is discussed in more detail in Section 7.6.6, below. The
added sensitivity due to possible neutral final states is marginal, as the branching ratios are
comparable.  As can be seen from the numbers in Table 7.4, the B-meson production rate is
roughly four orders of magnitude smaller than the D-meson production rate. As the neutralino
production is proportional to (\'/ m%)Q, the curves in Fig. 7.5b are shifted by almost two orders
of magnitude to the right, compared to the corresponding results, e.g. Fig. 7.3b, of the previous
benchmark scenarios. The new sensitivity reach of SHiP is thus smaller here. However, since
A}3; does not induce any invisible decays of the neutralino, the sensitivity regions in Fig. 7.5b
are not bounded on the right, in contrast to analogous regions of previous scenarios. Increasing

hs1/ mfg then always leads to an increased number of expected neutralinos and hence always

improves the sensitivity to Aj;5/ mf; We note that Fig. 7.5b has the same characteristic shape as

6 in Ref. [344]. Interestingly, even though the B meson production rate is considerably smaller
than the D production rate of the previous two benchmark scenarios, SHiP is still expected to
significantly improve on the existing A\’ bounds listed in Table 7.1.

Analogously to the previous cases, the decay operator can be changed to )\;-12. The phase
space is suficient now to also allow for i, j = 3. Note that the lepton index i does not affect the
upper kinematic bound for mso in the decay B? — v;X{ whereas j shifts the lower bounds to
the right. The particular effect of 7 leptons in the decay chain is analysed in more detail within
benchmark scenario 5.

7.6.4 Benchmark Scenario 4

In this scenario the neutralinos are also produced via B-mesons and the coupling \}3,. However,
now the decay is into D mesons via the coupling Aj5;. There are kinematically accessible
invisible decays to neutral K mesons and neutrinos via \jy;. This is summarized in Table 7.8.
Note that there is no product limit on this operator combination such that existing limits come
only from independent bounds on \j5; and Njo;.
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Property Value Comments
/ /
Ap 131

!/ /
AD 121

0 R0

Mproduced B >B

+ E= +,.F x+ F
MdecayZ D= et, D** e

0 : /
Mdecay via A none

MRy Via Xy K7, Kg, K*0

e for j = 2, lower kinematic bounds on
mso shift by m,, to the right

Table 7.8: Features of benchmark scenario 4.

The results of the simulation for this scenario are displayed in Fig. 7.6. In the left panel,
we show the search sensitivity as a function of the neutralino mass and of a common coupling
Mis/ m?; = N1a/ m?; = ) /m%. The mass sensitivity range is again mainly fixed kinematically:
Mp < mze < Mg, which is narrower than in Fig. 7.5 due to the larger D-meson mass.

When allowing for neutral final states the sensitivity is dramatically increased to lower neu-
tralino masses, corresponding to the kinematic range Mg < mzo < Mp. This is shown in
Fig. 7.6a by the very light blue region bounded by the dashed line.

In Fig. 7.6b the sensitivity range is similar to Fig. 7.5b, as it is dominated by B-meson
production. The differences in the curves are mainly due to the different neutralino masses
that are considered: 2000 MeV (light blue), 3500 MeV (blue), and 5000 MeV (dark blue).

We can extend this analysis to cases with Ap = )\921, /\;-22, where in the latter the decay takes
place via Dy mesons which have little effect on the kinematically available phase space. Note
that j cannot be 3 here since the mass splitting of B and D mesons is below the tau lepton
mass threshold.

7.6.5 Benchmark Scenario 5

Here the production goes via B-mesons and the coupling \;5. We thus consider the third
generation lepton index. The features of this benchmark scenario are summarized in Fig. 7.7.
It comes with two possible production modes for neutralinos, i.e.

B* = 0. (7.46)
B = Y. (7.47)

Therefore the charged B meson can only contribute for the restricted neutralino mass range
msg < Mp — m,. The corresponding B%-meson decay has neutrinos in the final state and is
thus allowed for the larger range mzo < Mpg. In Fig. 7.7a this leads to a kink in the solid curves
surrounding the sensitivity regions at mgo = Mp — m,. The region corresponding to > 106
events is also cut off to higher neutralino masses compared to Fig. 7.6a.
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Figure 7.6: Search sensitivity for benchmark scenario 4. The labelling is as in Fig. 7.3 except for the
couplings A5;, Njo;. Also in (b) the neutralino masses are 2000 MeV (light blue), 3500 MeV (blue), and
5000 MeV (dark blue) and there are no bounds on coupling products.

The neutralino decay proceeds via the coupling A5;,.
X0 — K+ 477, (7.48)

Thus the visible final states involve charged K-mesons and tau leptons, which might be difficult

to detect but which we for now do not treat differently than other charged final state particles
before. This decay also requires mgo > My +m; ~ 2300 MeV which explains the cutoff on the
left of the blue regions in Fig. 7.7a.

There are possible additional neutral final states involving neutral K-mesons and neutrinos
and no tau lepton. When these are included the sensitivity reach is dramatically extended to
lower neutralino masses as can be seen in Fig. 7.7a, just as in Fig. 7.6a.

Fig. 7.7b shows the sensitivity region as a function of the two now independent couplings
Ngq3/ m?; and N/ m?; for the three neutralino masses 2750 MeV (light blue), 3750 MeV (blue),

and 5000 MeV (dark blue). These are slightly modified compared to Scenario 4, because of the
tau mass, leading to slightly different curves.

As denoted in the bottom part of Table 7.8, the results of this benchmark case paired with
the results from scenario 3 and 4 can be combined to cover various combinations, including
production via BY or B mesond and decays into K, D, Dg with and without 7 leptons. These
scenarios will mainly differ with respect to the kinematic ranges of accessible values for mso.
One can also easily extend to the cases with Ap being X4, or X.,4 by considering the production
via Bs mesons. As can be seen from Table 7.4, B, production is suppressed compared to B-

meson production by roughly a factor nl’é_’o / n%bo ~ 0.18. The sensitivity to the coupling \'/ m?;
is reduced by roughly a factor v/0.18 ~ 0.65.

7.6.6 Relevance of Vector Mesons

As discussed at the end of Section 7.3.1, the inclusion of vector mesons in the final state lead to
complementary dependence on SUSY paramaters. In addition, the final state vector mesons lead
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Property Value Comments
/ /
Ap 313
)\/ /
D 312
Mproduced BO: BO, (B:tT:F) L B:t only if m>~<(1> <mp+ —M,¥
=+ T + F gt F
Mdecayé K=+t K**r
M gecay via \»  none

0 Y. 0 70 77%0
Mdecayma)\D K;, Kg, K

applicable to P = Ai1g: Ap = Ni1g e Thresholds depend on choice of 7, j =
1,2,3
P = ANiags Ap € {Nig1, g} e Thresholds depend on choice of i =
1,2,3,j=1,2

e As in benchmark case 4, decays to D
mesons affect lower kinematic range

Np = Ngq, Ny as above e 1o contribution from B*
e Thresholds depend on choice of 7, 7 =
1,2,3 and if decays go via K or D

Ap € {Nisz; Aigg}s A]p as above e Production via B?, see ng’o in Ta-
ble 7.4 ’
e Thresholds depend on choice of 7, 7 =
1,2,3 and if decays go via K or D

Table 7.9: Features of benchmark scenario 5.
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Figure 7.7: Search sensitivity for benchmark scenario 5. The labelling is as in Fig. 7.3 except for the
couplings A5, Ah1o. Also in (b) the neutralino masses are 2750 MeV (light blue), 3750 MeV (blue), and
5000 MeV (dark blue).
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Figure 7.8: Sensitivity curve for enchmark Scenario 3 if decays into vector mesons are ignored. The green
region shows the sensitivity curve including vector mesons which corresponds to the “SHiP Sensitivity
Reach” of Fig. 7.5a

to an interesting kinematical enhancement of the neutralino decay width. This enhancement
can be understood from the decay width formulee in Egs. (7.28) and (7.29). When mgo > M,
where m s is the mass of the final state meson, the decay to scalar mesons is proportional to

(f3r)?mo = fRym3 m%,, (7.49)

whereas the decay to vector mesons is proportional to
TN\2, 4 2 4
The decay into vector mesons is thus enhanced by roughly a factor

2
Y — t Mo
P0G = vector) T g (7.51)
I'(x] — pseudoscalar ) — m3,

This is mainly relevant for cases such as our benchmark scenario 3, where neutralino production

occurs via B-meson decays. Then the neutralino can be significantly heavier than the final-
state meson, here the kaon. To illustrate the enhancement, in Fig. 7.8, we repeat the analysis
for benchmark scenario 3, but exclude final state vector mesons. The sensitivity contour of
the same analysis including vector mesons is shown by the green shaded area. This region
is identical to the sensitivity area shown in Fig. 7.6a. We show it again here to make the
difference between the two cases easier to see. The inclusion of vector mesons is barely visible
for neutralino masses smaller than 1 GeV, but the enhancement is clearly visible in the 2-5
GeV mass range.
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Figure 7.9: Schematic overview of the ATLAS detector geometry and definition of distances and angles
used in text.

7.7 LHC Estimate

As we have seen, the sensitivity at SHiP in the production coupling results from an interplay
between the length scales of the target- detector-distance L; 4, the length of the detector Lg,
the meson production rate Njs, the boost 7; of the neutralinos and their azimuthal angle 6;.
The LHC operates at much higher energies in the center-of-mass frame and the detectors are
built right at the collision points. Thus all the above parameters change and we would expect
a different sensitivity when comparing to SHiP% To estimate the net result of these effects, we
briefly discuss the sensitivity for our scenarios at the LHC here.

To allow for an easy comparison, we consider two example cases which correspond to our
earlier discussed benchmark scenarios 1 and 5. These involve the observable decay chains

D o X%et, XV = KT via Mgy, M, (7.52)

BE/BY = X075 /v, X0 = KT via M3, My (7.53)

To compare like with like, we estimate the neutralino event rates analogously to Section 7.5:
we simulate these scenarios using Pythia 8.175 and find a production cross section for cc at
14 TeV of 6-10'% fb and 0,3/0.z = 8.6 x 1073, We consider an integrated luminosity of 250 fb=1,
which roughly corresponds to the expected value for a high-energy LHC running for 5 years —
the same time period as we considered for SHiP. We determine the other parameters of interest
as in Section 7.5 and list them in Table 7.10.

As an example we consider the ATLAS detector setup as sketched in Fig. 7.9. Here we assume
the detectable region to approximately range from R; = 0.0505m, the beginning of the inner
detector, to Rp = 11 m, the end of the muon chambers. The detector has cylindrical shape
with a total length of 2Lp = 43 m. The probability for the neutralino to decay within this
range is then, similarly to Eq. (7.40),

P[(D); in dr.] = e LA (1 — e LA, (7.54)
L; = min(Lg, |R1/ tan 6;]), (7.55)
L, = min(Lg, |Ro/ tan 6;]) — L;, (7.56)

with angles and distances defined in Fig. 7.9 and A7 as defined in Eq. (7.41). In similar manner
as for SHiP, we use Pythia to simulate 20,000 events, force all mesons of the right type to

 We thank Jesse Thaler for drawing our attention to this point. See also Ref. [356] on a related discussion on
dark photons.
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7.7 LHC Estimate

Variable Description Numerical Value Source

Nz Number of initially produced c¢ events 1.5 x 101° Pythia 8 [147]
o,3/0cc  Ratio of production cross sections 8.6 x 1073 Pythia 8 [147]
n. produced D¥ mesons per c¢ event 0.59 Pythia 8 [147]
ng’i produced BT mesons per bb event 0.87 Pythia 8 [147]
nlj’;’o produced B® mesons per bb event 0.87 Pythia 8 [147]

Table 7.10: Numerical values used to estimate the number N, in (Eq. (7.38)) for the LHC with /s =
14 TeV and an integrated luminosity of 250 fb=1. All numbers are evaluated by simulating 1M events
of each HardQCD type in Pythia.

decay into neutralinos and average the results for P[(X}); in d.r.] over all these Monte-Carlo
neutralinos to find the overall probability that an LHC-produced neutralino decays inside the
detectable region of the ATLAS detector. The number of observable neutralino decays is then
determined by considering the RPV branching ratio of the initially produced mesons and the
branching ratio of neutralinos into charged final states, according to Egs. (7.33) and (7.34).

The expected sensitivity regions are shown in Fig. 7.10. For easy comparison we show the
same information as in their corresponding SHiPs analogues Figs. 7.6a and 7.7a and focus on
the 3 event threshold which would be required for a significant observation. We restrict the
discussion to the mg(l)f)\’ / mf;fplane as the limits in the A} 4 / mff)\:iec. / mf;fplane can be easily
deduced.

For both scenarios, the structure of the plots do not largely differ between ATLAS and SHiP.
The testable kinematic regions are obviously identical for the same scenario and it is only the
required value for \'/ m?; to observe enough neutralino decays which changes. At SHiP we

found that the expected sensitivity quickly drops if the neutralinos decay too promptly, that is
before they reach the decay chamber at roughly 70 m behind the target. This resulted in an
upper limit on the couplings SHiP would be sensitive to. However, as the detectable region at
ATLAS already starts at O(cm) distances from the primary vertex, this upper limit is pushed
to higher values.

Comparing the results for scenario 1, Figs. 7.6a and 7.10a, we find that LHC has a comparable
but still by a factor 2 weaker expected sensitivity on \'/m?2 than the expected value from SHiP.
From comparing the respective values for Nz in Tables 7.10 and 7.10, one expects SHiP to
produce almost 100 times more neutralinos than the LHC in a comparable time frame. This is
partially compensated by the effect that neutralinos which are produced at large angles 6 can
be observed at the almost spherical ATLAS detector but miss the decay chamber at SHiP.

Furthermore, the boost distribution of the two experiments largely differ. The fixed target
setup of SHiP causes most produced mesons to have a large boost which is inherited by the
daughter neutralinos they decay into. Contrarily, the center-of-mass collision for the LHC will
lead to most mesons to be produced at rest. We show the boost distribution of the neutralinos
we get with Pythia in Fig. 7.11. For SHiP, the distribution shows an expectation value of
() = 30 and a maximum probability for ymax &~ 7.5. This leads to an increased lifetime in the
lab frame which reduces the detection probability if c7, is larger than the size of the detector,
see e.g. Eq. (7.40).

The large center-of-mass energy of the LHC leads to an even larger average boost, () ~ 55,
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Figure 7.10: Expected LHC search sensitivities. The labelling is as in Figs. 7.3 and 7.7.

which however has a larger spread, resulting in many neutralinos with boost of O(1) and a few
with boost O(1000). As shown in Fig. 7.11, the peak of the boost distribution for the LHC is
located at v = 2.5 and the resulting large fraction of unboosted neutralinos improve the overall
probability to observe a decay within ATLAS.

Combining the above effects, we find that (P[xj in d.r.]) at ATLAS is greater by a factor
4 than at SHiP. Taking into account the much larger meson production yield of SHiP, it is
expected to observe approximately 25 times more events than ATLAS, leading to an improved
sensitivity on the coupling of v/25 ~ 2.2.

For scenario 5, we compare Figs. 7.7a and 7.10b and interestingly find very comparable
expected sensitivities. All the effects discussed for the previous scenario equally apply here and
lead to approximately similar results. Therefore one would still expect SHiP to observe roughly
25 times more decays. However, this scenario requires B-mesons to be initially produced. The
larger center-of-mass energy at LHC leads to an increased relative production yield o,5/0cz
of approximately 40 (see Tables 7.4 and 7.10). This results in a roughly 60 % larger overall
expected event rate at the LHC, which however is a negligible improvement when translated
into a limit on A /m2.

It is clear that the results we show can just serve as a very approximate comparison. As we
do not know the efficiency with which SHiP would be able to detect a neutralino decay and
distinguish it from Standard Model, we did not take it into account for our LHC discussion
either. However, it can be expected that the final state efficiencies for the two experiments differ
significantly, most likely with a significant penalty on the ATLAS side. SHiP will be specifically
designed to observe rare decays of new, long-lived particles. It can therefore be expected that
the neutralino decays will have a large probability to actually be measured by the detector.
The ATLAS detector, however, is not designed for this purpose. The combined efficiencies
to trigger on the event, to reconstruct the final state particles, to identify the significantly
displaced vertex and to distinguish it from Standard Model mesons decays will most likely lead
to a significant reduction of the final event yield, potentially by orders of magnitude. Still,
we find it an interesting observation that when just considering the geometry of the setup,
the meson production yield and the expected kinematics of the neutralinos, SHiP and ATLAS
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Figure 7.11: Boost distribution for neutralinos produced at a v/s = 14 TeV LHC and at SHiP, determined
with Pythia. We show the same results for two different choices of axis scaling. Fluctuations due to
limited Monte Carlo statistics are denoted by respectively colored 1o errorbands.

seem to have comparable sensitivity to the discussed decay scenario. Thus we conclude that
the final state reconstruction efficiency will play a crucial role in determining the importance
of the SHiP experiment with regards to the search for light neutralinos.

7.8 Summary

In this work we have studied the sensitivity of the proposed SHiP experiment to the R-parity
violating production and decay of neutralinos whose masses lie in the range of 0.5 — 5 GeV. As
discussed in Section 2.4.3, a neutralino in this mass range is only allowed if R-parity is violated.
We have focused on the semi-leptonic R-parity violating LQD operators but our work is easily
extended to the purely leptonic case LLE. The basic idea pursued in this work is that a small
fraction of the D and B mesons produced in the SHiP experiment, can potentially decay into
a neutralino plus lepton. Because the R-parity violating couplings are expected to be small,
the neutralino can have a sufficiently long lifetime to travel a distance of 63.8 m to the ShiP
detector where it can subsequently decay into a, presumably detectable, meson-lepton pair.
For neutralinos in the mass-range of 0.5 —5 GeV, the SHiP experiment is sensitive to several
combinations of R-parity violating couplings. In general, the number of neutralino decays in the
SHiP detector is proportional to (X, ;-Cd)z/m%, where 7, 7 denote the lepton generation indices
and a, b, ¢, d the quark generation indices. We have classified benchmark scenarios for different
combinations of the generation indices i, j, a, b, c,d. Although many different combinations of
couplings exist, we have argued that most of them can be captured in this relatively small set
of benchmark scenarios. We highlight here a number of conclusions and caveats of our findings.

e We find no feasible scenario where SHiP is sensitive to only a single X , coupling. The
main obstacle for such a scenario is that the final state decay products will consist of a
neutrino and a neutral meson from which it is difficult to reconstruct the neutralino decay.
An example of such a scenario would be a nonzero \,,; coupling, which would lead to the
production and decay channels D*¥ — X+ l;t and X9 — Ks 1 + v. In order to get an
observable final state we thus always require two distinct nonzero X couplings. We have
found, however, that including the invisible final states is mandatory as they influence
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the neutralino lifetime.

That being said, we have shown that the SHiP experiment has the potential to signifi-
cantly improve the constraints on various combinations of R-parity violating couplings.
This is clearly illustrated in the figures in Section 7.6. For instance, constraints on \;;,/m2
can be strengthened by one to three orders of magnitude (see Fig. 7.3), depending on the
sfermion mass. Similar improvements are found for third generation couplings such as

fa1 N 21/ m‘}. We have presented sensitivity curves for each of the benchmark scenarios:

N2ty Mzls Mags Mials [Ms1, Alials [MNis1s Marl, [Ns13, Agpo]- These curves can be used
to estimate the sensitivity of the SHiP experiment to various combinations of R-parity
violating interactions, as outlined in the text.

We have focused on neutralino production via the decay of B and D mesons. Very light
neutralinos could be produced in kaon decays and be detected by their subsequent decay
into pionic final states. We have not included this in this work as the production of light
mesons is not well simulated in the forward direction with Pythia. Such an extended
study would extend the sensitivity to the neutralino mass range 0.1 — 0.5 GeV. Similarly,
including neutralino production in the decays of bb mesons would give a sensitivity to A5
and to higher-mass neutralinos.

We have found that including vector mesons in the final state leads to an enhanced
sensitivity to neutralinos at the higher end of the allowed mass range. This enhancement
can be understood from the decay-width formula presented in Section 7.3.2 as discussed
in Section 7.6.6. In addition, the neutralino decay into vector mesons is proportional to
a different combination of SUSY parameters than the corresponding decay into scalar
mesons. The processes are therefore complementary.

Our analysis did not include possible uncertainties arising from hadronic matrix elements.
The decay constants used are not in all cases known to high precision. Nevertheless, the
SHiP sensitivity curves range over many orders of magnitude and we do not expect that
changes in the decay constants drastically change our conclusions.

We determined the expected sensitivity of the ATLAS detector at a 14 TeV LHC with
an integrated luminosity of 250fb~!. To do a fair comparison, we did not take into
account the final state reconstruction efficiency and only determined the expected number
of neutralino decays inside the detector region of ATLAS. We found that in scenarios
with initially produced D mesons, ATLAS expects roughly 4 % of the number of events
expected for SHiP, leading to an expected limit on ) /m?2 which is weaker by roughly a
factor of 2. This is caused by a combination of a larger meson flux expected for SHiP and
a higher detection probability for long-lived neutralinos at ATLAS. For initially produced
B mesons, the expected sensitivities are very similar, as the large LHC energies will
produce relatively more b-quarks. It is therefore the final state reconstruction efficiency
which will be the decisive factor.



CHAPTER 8

Conclusions and Outlook

>0 == 0

We know that the Standard Model of particle physics suffers from many experimental and
theoretical inconsistencies. As such it eventually has to be replaced by an improved theory
which is able to solve these issues. The more experiments we perform whose outcomes violate
the predictions of the Standard Model, the more information we gain about the nature of this
new theory. In order to ascend the throne, it needs to be able to reproduce all of the correct
predictions of the Standard Model while at the same time accounting for the observational
discrepancies.

Primarily, however, this procedure requires discrepancies from the Standard Model to be
observed. These were greatly awaited before the Large Hadron Collider was constructed, but
unfortunately after the first sets of data have been taken at /s = 7 and 8 TeV, no such clear
discrepancy was found and thus only constraints on new physics models can be made. Still,
the more such constraints are taken into account, the more information one gains about those
regions of parameter space which are sensible to consider further and which ones should be
discarded. Practically however, it unfortunately becomes increasingly more difficult to simul-
taneously consider all LHC bounds as more and more results become available.

In this thesis, we discussed the tool CheckMATE which aims to provide a tool for the phe-
nomenological community for the above purpose. By externally providing or internally gener-
ating simulated event files of a given BSM model, CheckMATE automatically applies a detector
simulation tuned to well reproduce the accuracy of the ATLAS and CMS detectors. The re-
constructed final state objects are then quantified by one or more analyses which determines
the predicted number of signal events after a given set of cuts has been applied. After com-
paring to the respective number of observed and Standard Model expected events quoted by
ATLAS or CMS in the corresponding publication, CheckMATE determines whether the predic-
tion violates the observation or not. The internal structure of the tool is set up very model
independently and thus CheckMATE can be used to test a large variety of BSM theories with or
without Supersymmetry.

We performed phenomenological studies of three BSM theories which attempt to solve indi-
vidual problems of the Standard Model. For two scenarios we used CheckMATE to do the collider
phenomenology, in one case using the numerous implemented analyses to cover a large set of
possible final state signatures, and in the other case to easily project an analysis performed at
/s = 8TeV to a high luminosity LHC running at its full centre-of-mass energy. The results
have been discussed in the extensive summary sections of the respective chapters. In both cases,
CheckMATE greatly eased the task of performing the collider tests. We merely had to use one of
the available event generator tools which was compatible with the respective model of interest,
state which analyses we wanted to test, and draw exclusion contours around those parameter
points for which CheckMATE returned excluded.
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Let us conclude with some further important aspects of CheckMATE which go beyond those
already outlined within this thesis:

CheckMATE as an increasingly time economical tool: CheckMATE has been successfully
used by many people outside the collaboration to test their respective models of interest without
much effort. Due to the modular nature and the user friendly input routines, the program can
easily be extended to new results from the LHC which await us in the near and far future.
Especially now that ATLAS and CMS have started publishing more and more studies evaluated
with /s = 13 TeV data, a tool like CheckMATE becomes increasingly more valuable. This is due
to the above quoted problem of taking all available collider limits simultaneously into account
which becomes even more complicated now that both results from 8 and 13 TeV are available.
Without CheckMATE, analyses from both datasets would have to be filtered by hand for new
studies which supersede analogous results from earlier analyses and vice versa old studies which
have not yet been updated with new data. As there is however practically no disadvantage in
simply considering all CheckMATE analyses at the same time, the above effort is easily avoided
by making use of this tool.

CheckMATE as an analysis preservation tool: The era of the LHC has just started and
already now, proper ways for a long-term conservation of LHC results even beyond its lifetime
are discussed within the particle physics community, most recently in Ref. [357]. Here, a joint
accord between phenomenologists and experimentalists is envisaged which ensures that no valu-
able information gets lost within the vast amount of individual publications which not always
contain all required information in an unambigous way. A recasting framework like CheckMATE
can be of great help in this regard as it necessarily needs to translate any implemented pub-
lication in a common, internal format already. As hopefully could be shown in this thesis,
CheckMATE stores the required analysis information in a human readable form. Also, since any
implemented analysis needs to pass a proper validation procedure before it can be made public,
CheckMATE puts the completeness and unambiguity of the respective analysis publications to
the test. The experimental collaborations therefore also profit from such a recasting tool as it
can — and indeed did — find errors in these documents.

CheckMATE as a signal discovery tool: Throughout this thesis, CheckMATE was mainly
advertised as a model exclusion tool. This might be in agreement with Popper’s philosophy
of science as outlined in the introductory chapter, however it states a rather pessimistic point
of view that LHC results can only be used to identify incorrect models. It should be kept in
mind though that as soon as a significant deviation from Standard Model predictions is found,
CheckMATE can be used to exclude those models, first and foremost the Standard Model itself,
which falsely predict the absence of a signal. This will hopefully only keep a small set of still
viable particle physics models and might bring us much closer to the ultimate goal of selecting
the one theory which replaces the Standard Model.

Still, as outlined in the introduction it is not only the predictability but also the falsifiability
which is relevant for the formulation of a proper scientific theory. As such, before any such
model can be claimed as the successor of the Standard Model, it must clearly still be tested
for their compatibility with all the results of earlier analysis channels which were accurately
predicted by the Standard Model'. With a tool like CheckMATE, this task can be performed

! In the wave of excitement about the recent ~ 2o global deviation of the measured diphoton invariant mass
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almost immediately, as the overall structure of the program stays exactly the same and it is
only the statistical evaluation methods which have to be adapted.

We should therefore continue updating CheckMATE with all the Standard Model compatible
results, not in spite that we eagerly await signs of new physics to be seen, but because of it!

spectrum from Standard Model predictions [170], this supposedly obvious detail of proper scientific research
seems to be easily overlooked.
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APPENDIX A

Additional Information for Chapter 3

——>0 == 0<

A.1 Integrated Luminosity L

The instantaneous luminosity £ is a purely experimental quantity which relates the event rate
‘R for a given scattering process to the total cross section o of that same process

RPIHX (75)

Opp—X

L(t) = (A1)
Through fluctuations in the experimental setup, the event rate and £ are functions of time. As
we are interested in the total amount of events N = [ dt R(t) after a certain time interval, it
is the integrated luminosity L = [ d¢ £(t) which is more interesting for our purposes; given L,
a theoretically determined cross section can be translated into physical number of final state
events.

For the frequent collision of proton bunches, as it is the case for the LHC, the luminosity can
be evaluated geometrically from the total amount of bunches n;, the amount of protons ny/;
per bunch, the revolution frequency f, and the spatial widths o, /, of the Gaussianly spread
proton beams as [360]

_ mpfrning
2mo 0y

L(t) (t). (A.2)
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Figure A.1: Cumulative luminosity versus day delivered to and recorded by the two multipurpose LHC
experiments during stable beams and for p-p collisions at 8 TeV centre-of-mass energy in 2012.
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With f,.,np,n1 and ny being known beam parameters, the luminosity £(t) for a given beam
setup can be determined by gradually changing the beam separation to determine its profile
and fit 0, /,, commonly known as van der Meer scan [361]. Then, with £(T¢a1) being known for
a given beam setup, the time independent total visible cross section o of the detector around
the collision area can be determined by measuring the event rate Ryis(Tra) inside the detectors
and using Eq. (A.1). With oyis as a time-independent calibration constant, the luminosity can
be re-evaluated at any time ¢t from measuring the respective event rate R(t). More information
about luminosity measurements at ATLAS and CMS can be found in e.g. [362, 363].

In most of the analyses performed within this work, the final datasets of the /s = 8 TeV run
from ATLAS and CMS are used. In Fig. A.1, we show the cumulative luminosities for both
experiments during this run. These final datasets correspond to an integrated luminosity of
roughly 20 fb~1.

A.2 Statistical Evaluation Revised

Within the main text, we gave the prescription to calculate C'Lg in a scenario with a mea-
surement of a counting experiment yielding N events, a fixed background expectation B and
a fixed signal expectation S. Realistically, these two numbers are never known exactly, but
rather within uncertainties S + AS and B + AB. The errors are caused by systematic uncer-
tainties from experimental error sources, approximations within the theoretical calculation and
propagated errors from using physical quantities which have uncertainties by themselves. In
addition, the finite sample size of the Monte-Carlo approach leads to a statistical uncertainty
of the result. In the following, we assume that all these error sources can be combined into
a single error AX. The algorithm, however, can be straightforwardly adapted to independent
error sources AX;.

Contrarily to the original calculation, we therefore now assume that we do not know the
background for certain but that repeated evaluations would result in different values By,
according to a probability density P(Bunc.|B,Ap). It is common practice to redefine Bypc. =
Bune.(0) in terms of a dimensionless nuisance parameter 6, which is distributed according to a
density function P(6|6) where 6 is the a priori most probable value.

In the following, we choose Bync.(6) = Bexp (IAB/B) and 6 to be Gaussianly distributed
according to P(66) o exp(—(# — )?/2). With this choice of parameters, the a priori value for
6 is 0. For small AB /By, this lognormal distribution will lead to a Gaussianly disributed Byye
around B with width AB. However, for very large uncertainties it prevents B(f) from turning
to unphysical negative values. Following the same approach for S() and assigning independent
uncertainties to both yields the following extended likelihood!.

LN, G5, 05|, 0, 05) = (% [\u.05.05)] Ne—meB,es)) . @%) . (67(9"5’295)2), (A.3)
CORMCS
A05,05) = pSe\ 5 7/ 4+ Be\ T 7). (A.4)

Note that we have introduced the signal strength modifier y, which will prove more convenient
in distinguishing signal and background hypotheses for varying Sunc(fs).

! Note that we can safely ignore normalisation factors for the Gaussian distributions as they will not contribute
to the likelihood ratio.
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A.2 Statistical Evaluation Revised

There are different approaches to incorporate the unknown nuisance parameters 6, 0g into
the test statistic. A standard approach is the usage of the Profile Likelihood Ratio defined as

(A.5)

55 L(N.Oc.0 o1 M
qM(N705793)5—210g< (N, 05,051, O, B)).

L(N,8s,05]|i1,0s,0p)

Here, 1 € [0, ], és, 65 is the combination of all three parameters which maximises £, whereas
ég, éfé are the values which maximise £(p) for fixed p. Again, g, (N, 0s,05) becomes larger for
less compatibility of observation and null hypothesis and the reason to take the ratio with the
global maximum is to use a test statistics which becomes y?-distributed for large event rates.
Note that even for our rather simple statistical setup, the denominator can but the numerator
cannot be evaluated analytically. As such, numerical routines are necessary for the evaluation
of the test statistic.

The motivation behind the evaluation of CLg,p,CLp and C'Lg is the same as before. How-
ever, the appearance of nuisance parameters renders the calculation slightly more complicated:
If the hypothesis ;1 = 1 was true, according to the likelihood the most compatible values for the
nuisance parameters fg, g with respect to the observed value N would be their best fit values
égzl, éf,_fl. If we thus a posteriori assume these were the true values, when hypothetically
redoing the experiment we expect the number of events N’ to be Poisson distributed according
to AMu =1, égzl, é%zl). Furthermore, a similarly hypothetically repeated evaluation of Bync
and Sy should yield different best-guess nuisance parameters g, , ~jB each time, which however
are expected to be Gaussian distributed around the allegedly true values Hg::l, 0%:1. Therefore
the chances in the infinite repetition limit of observing an at least as bad test statistic as the
observed one would be

CLon=Y [ dy [ b ©(as(V'.05.8) — as(N.0s.0m)
N'=0 V7> >
Poiss(N'|A\(i = 1,047,057 - Gauss(6%5]047") - Gauss(6510%5~").  (A.6)

Analogously we can argue the evaluation for the alternative p = 0 hypothesis

1-CLp= > [ adl [ b 0 (as(N'.05.8) - as(V.0s.0m)
N'=0 V™ >
Poiss(N'|A(1 = 0,047°,057") - Gauss(8%5]047°) - Gauss(6510%5°) (A7)

Finally, as before, C'Lg is the ratio of the two. The above integrals are most conveniently
evaluated numerically by generation random numbers N’, N'S and 993 according to their Poisso-
nian/Gaussian probability distributions and to count those configurations which yield a larger
or equal test statistic as the observed one. This number divided by the total number of gener-
ated configurations is then a numerical estimate for C'Lx.

The above prescription can easily be extended to arbitrary many independent nuisance para-
maters by simply extending the likelihood and the confidence level integrals by the probability
density of each nuisance parameter and still maximising over all parameters for the test statistic.
In a multi-bin analysis, each bin contributes with a Poissonian given N;, S;, AS;, B; and AB;
to the likelihood and gets an independent sum in the confidence level evaluation. However, for
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finding the global maximum of the likelihood for the test statistic, the signal strength modifier
1 is global for all bins! Therefore the calculation does not trivially factorise and the pratical
evaluation becomes complicated quickly.
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Additional Information for Chapter 4

——>0 == 0<

B.1 Installing CheckMATE

In this section we give a detailled step-by-step tutorial to install CheckMATE and all the required
dependencies to reproduce the examples shown in Chapter 4.
The entire package including source codes! for all requires tools can be downloaded from

http://checkmate.hepforge.org/private/CheckMATE-Thesis.tar.gz

This gzip compressed file can be extracted with the command

Terminal
(”: tar -xzf CheckMATE-Thesis.tar.gz

This should create a directory which we refer to as $CMMAIN in the following. It should contain
the following files

Terminal

“: 1s $CMMAIN
CheckMATE-2.0.0beta Delphes-3.2.0X HepMC-2.6.9 Pythia-8.2.19 R00T-5.34.36

We start with the installation®. of the HepMC library [160] which is required by Pythia 8 to
generate events in this event format. Here and in the following, we use [...] to denote the
verbatim output created by the respective commands which we enter. These strongly depend on
the system setup which is used. Typically, they should not contain any important information,
however should any of the steps fail for an unexpected reason, e.g. a missing library or a

— Terminal

~: cd $CMMAIN/HepMC-2.6.9
$CMMAIN/HepMC-2.6.9: ./configure --with-momentum=GEV --with-length=MM \
—-prefix=$CMMAIN/HepMC-2.6.9/build

[...]

$CMMAIN/HepMC-2.6.9: make -j4
[...]

$CMMAIN/HepMC-2.6.9: make install
[...]

! This tutorial has been tested on a Linux machine running under Ubuntu 16.04. The same source files can be
used for other operating systems, however some flags might change or some additional system libraries might
be required. We refer to the documentation pages of the respective tools if problems of that kind occur.

2 Note that the -j4 flag which we use here improves the compilation speed due to paralellisation into 4 in-
dependent processes. The number can be changed in accordance to the number of accessible cores on the
computer.
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L |
If the installation finished successfully the build directory should contain the required libraries
and header files which are needed by Pythia 8:

— Terminal

$CMMAIN/HepMC-2.6.9: 1s build
include 1lib share

We can continue with the compilation and installation of the Pythia 8 event generator:

Terminal

$CMMAIN/HepMC-2.6.9: cd $CMMAIN/Pythia-8.2.19
$CMMAIN/Pythia-8.2.19: ./configure --with-hepmc2=$CMMAIN/HepMC-2.6.9/build \
—-prefix=$CMMAIN/Pythia-8.2.19/build

[..]

$CMMAIN/Pythia-8.2.19: make -j4
[...]

$CMMAIN/Pythia-8.2.19: make install
[...]

Again, a successful installation prcedure should have filled the build directory with the neces-
sary library files

Terminal

$CMMAIN/Pythia-8.2.19: 1s build
bin include 1lib share

Next, we have to install the ROOT package

Terminal

$CMMAIN/Pythia-8.2.19: cd $CMMAIN/ROOT-5.34.36

$CMMAIN/ROOT-5.34.36: mkdir build

$CMMAIN/ROOT-5.34.36: mkdir build/etc

$CMMAIN/ROOT-5.34.36: ./configure --prefix=$CMMAIN/ROOT-5.34.36/build --disable-fftw3 \
--enable-minuit2 --etcdir=$CMMAIN/ROOT-5.34.36/build/etc

[...]

$CMMAIN/ROOT-5.34.36: make -j4

[...]

$CMMAIN/ROOT-5.34.36: make install

[...]

Let us check again if the build directory contains all relevant files
Terminal

$CMMAIN/ROOT-5.34.36: 1s build

bin etc misc rmkdepend version.cxx
CMakeLists.txt include Module.mk share version_number
dummy .d 1ib package unix win

In order to build the Delphes detector simulation framework, we have to load the above com-
piled ROOT libraries

Terminal

$CMMAIN/ROOT-5.34.36: cd $CMMAIN/Delphes-3.2.0X

$CMMAIN/Delphes-3.2.0X: source $CMMAIN/ROOT-5.34.36/build/bin/thisroot.sh
$CMMAIN/Delphes-3.2.0X: ./configure

$CMMAIN/Delphes-3.2.0X: make -j4

[...]

A promising sign of a succesful installation is the presence of the file 1ibDelphes.so within
the Delphes directory.
With all required libraries being ready, we can finally compile the CheckMATE framework
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— Terminal

$CMMAIN/Delphes-3.2.0X: cd $CMMAIN/Delphes-3.2.0X

$CMMAIN/CheckMATE-2.0.0beta: ./configure --with-hepmc=$CMMAIN/HepMC-2.6.9/build \
--with-pythia=$CMMAIN/Pythia-8.2.19/build --with-delphes=$CMMAIN/Delphes-3.2.0X \
--with-rootsys=$CMMAIN/ROOT-5.34.36/build

[...]

make -j4

[...]

make install

Let us finish this tutorial with a simple test run, using an example spectrum file which is
provided with the CheckMATE package. It corresponds to a CMSSM scenario with tan g =
10,mg = 100 GeV, my 5 = 250 GeV, Ag = —100 GeV and positive p. This results in a spectrum
with all SUSY particles having mass in the range 100-600 GeV.

— Terminal

$CMMAIN/CheckMATE-2.0.0beta/bin: ./CheckMATE -pyp ’p p > go go’ -maxev 100 \
-slha example_run_cards/auxiliary/testspectrum.slha

[...]

Is this correct? (y/n) vy

[...]

Evaluating Results

Test: Calculation of r = signal/(95%CL limit on signal)

Result: Excluded

Result for r: 1.15744708205

Analysis: atlas_1405_7875

SR: SRO3_a.4jl-

Such a SUSY scenario is so constrained by existing LHC searches that even a sample of only
100 Monte-Carlo events is sufficient to exclude it within seconds.

B.2 Full List of CheckMATE Parameters

There exist many optional parameters within CheckMATE which can change the standard be-
haviour of the code. We already covered some of these in our example in Section 4.2 and want
to provide the full list of currently implemented parameters here. One way to provide these is
via the input file format which we used in the example. Alternatively, CheckMATE can be set up
directly within the command line by adding arbitrary many -parameter value pairs after the
./CheckMATE command. The second alternative is unfortunately only possible for a setup with
only one process as only one -p command can be provided. If more than one process needs to
be analysed at once, one either has to use the input file format or make use of the add feature
described below.

The exhaustive list of currently implemtented analyses is given in Tables B.1 and B.2. We
provide additional information for some of these below:

Analyses: Many analyses are already embedded into the CheckMATE framework, see also Sec-
tion 4.4. The following possible specifications for X are allowed o specify which of these
CheckMATE should be taken into account.

e —a atlas 1404 2500 tests only analysis atlas_1404_2500

e -a 8TeV tests all implemented analyses which correspond to /s = 8 TeV. This is
the standard value if -a is not specified. Alternative values are 7TeV, 13TeV and
14TeV.

193



Appendix B Additional Information for Chapter 4

Parameter Card

Terminal

Description

General Options

Name: X

Analyses: X

SLHAFile: X

InvisiblePIDs: X

-n X

-a X

-slha X

-invpids X

Gives name X to the run which specifies output
directory.

States which analysis/es X should be applied on
the processed event files, see text.

Use SLHA file X. Mandatory if event generation
via Pythia 8 is set up.

BSM Monte Carlo Particle IDs [140] which are
invisible for the detector, see text.

QuietMode: B -q No terminal output is produced. Automatically
sets —sp.
SkipParamCheck: B -sp Skip startup parameter check.
SkipAnalysis: B -sa Skip analysis step. Requires -wp8 or -wd.
SkipPythia: B -spy Only if .1he are provided. These are not show-
ered by Pythia 8 but instead directly processed
via Delphes.
SkipEvaluation: B -se Skips evaluation step.
RandomSeed: X -rs X Chooses fixed seed X for random number genera-
tor to render output deterministic.
Options related to output
WritePythiaEvents: B  -wp8 Write .hepmc files produced by Pythia 8 on
disk.
WriteDelphesEvents: B -wd Write .root files produced by Delphes on disk.
EventResult- -erfc X Sets columns which are stored in event-wise re-
FileColumns: X sult files, see text
ProcessResult- -prfc X Sets columns which are stored in process-wise re-
FileColumns: X sult files, see text
TotalResult- -tefc X Sets columns in TotalResults.txt after evalu-
FileColumns: X ation, see text.
BestPerAnalysisResult- -bpaefc X  Sets columns in BestPerAnalysis.txt after
FileColumns: X evaluation, see text.
OutputDirectory: X -od X Specifies directory in which the results should be
stored.
OutputExists: X -oe X Speficy what to do if output directory already

exists. overwrite will delete existing output and
overwrite it with the new results. add will add
the current results to the old ones, see text.

Table B.1: Summary of all parameters which can be set within CheckMATE, either via the parameter card
introduced in Section 4.2 or as command line input ./CheckMATE -X -Y .... Occasional dash symbols
(=) in the first column only indicate that a command is split in two lines to reduce the column width

and are not part of the keyword.
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Parameter Card Terminal Description

Options related to statistical evaluation

FullCLs: B -cls Evaluate full observed and expected CLs for all sig-
nal regions and use it for exclusion test.

BestCLs: X -bcls X As above but only for the X signal regions with high-
est rexpcons value.

Likelihood: B -likeli Evaluate likelihood for all signal regions using the
MC-approach and sum all tested signal regions, see
text.

Likelihood- -likelirm Evaluate likelihood for each signal region using the

RootMethod: B As above using a faster method.
EffTab: B -eff_tab Creates efficiency tables for every signal region in

each analysis run.

Process wise options

[x] -p X Sets up a process with name X..

MaxEvents: X -maxev X  Defines the number of generated events if Pythia 8
is used for generation. If events are provided, simu-
lation stops when either the end of the event file or
MaxEvents is reached.

XSect: X -xs X Sets the cross section for the given process including
unit. Must be provided for .hepmc and .root input
and can be provided to overwrite Pythia 8 results
used otherwise.

XSectErr: X -xse X Sets the systematic cross section error for the given
process including unit which can be %.

KFactor: X -kf X Sets the K-factor to multiply the cross section with.

Events: X -ev X Sets the .hepmc, .hep, .lhe or .root event files

which are to be analysed for the given process.

Pythia8Process: X -pyp X Specifies the SUSY process to be generated by
Pythia 8, see text.

Pythia8Card: X -pyc X Specifies the .in input card used by Pythia 8

Table B.2: Continuation of Table B.1.
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e -a atlas&8TeV tests all implemented atlas analyses of the given center of mass
energy. Similarly for cms.

Any of the above specifiers can be combined via simple separation with commas, e.g.
-a cms&8TeV, atlas_1404_2500 tests all 8 TeV CMS analyses and the single ATLAS
analysis atlas_1404_2500. All analyses combined this way must correspond to the same
center-of-mass energy, otherwise CheckMATE aborts.

Invisible PIDs: Physics beyond the Standard Model, especially if it is linked to the dark

matter problem explained in Section 2.1.5, often predicts the existence of one or more
stable, light particles which hardly interact with ordinary matter. Typical examples are
the lightest neutralino in Supersymmetry, c.f. Section 2.4.3, or the hidden sector particles
in a portal model, c.f. Section 2.2. Whilst Delphes automatically identifies all neutral
MSSM SUSY particles, other BSM particles have to be explicitly declared as invisible
as they otherwise are considered as exotic hadrons which deposit their energy into the
hadronic calorimeter. As an example, a Higgs Portal model with a stable second scalar
would require the setting Invisible PIDs: 35.

Result file columns: As stated in the example section, the content of the result files is

adaptable such that more intermediate results are stored. By setting the corresponding
ResultFileColumns parameter to a,b,d, ... the corresponding file(s) are set to contain
respective information a, b, c. EventResultFileColumns and ProcessResultFileColumns
can be taken out of the following set:

’analysis’, ’sr’, ’totalmcevents’, ’totalnormevents’,

’totalsumofweights’, ’totalsumofweights2’, ’signalsumofweights’,
’signalsumofweights2’, ’signalnormevents’, ’signal_err_stat’,

’signal err_sys’, ’signal _err_tot’. The names are mostly self-explanatory;
total refers to the full input sample whereas signal corresponds to the events which
pass the respective signal region cuts. weights2 corresponds to squared weights which
are important to calculate the statistical uncertainty properly. normevents correspond
to the physical number of events after normalising to the provided cross section and the
analysis’ respective integrated luminosity.

TotalResultFileColumns and BestSignalRegionResultFileColumns can in addition
use the following columns

’obs’, ’bkg’, ’bkgerr’, ’eff’, ’eff_err_stat’, ’eff_err_sys’ ’eff_err_tot’,
’s9bobs’, ’s9b6exp’, ’robs’, ’robscons’, ’robsconssysonly’, ’rexp’,
’rexpcons’, ’rexpconssysonly’, ’clsobs’, ’clsobs_err’, ’clsexp’,
>clsexp_err’, ’likelihood’ which are all self-explanatory. Note that CLg and
likelihood related columns are set to —1 unless the calculation of the respective quantity
is enabled via the corresponding flag, see Table B.2.

add mode: After a CheckMATE run is completed, the user might realise that the events which
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were processed were insufficient. For example, the size of the tested Monte-Carlo samples
might be too small to find the number S with good enough statistical precision. Al-
ternatively, it might happen that a posteriori it becomes apparent that other processes
need to be taken into account which were expected to be negligible before CheckMATE was
run. For those cases, CheckMATE allows for new results to be added to old ones. To do
so, CheckMATE has to be set up with the same name and the same output directory as



B.3 CheckMATE Detector Tunings

the original run. During the initialisation step it then explicitly asks the user if the new
results are supposed to replace or to be added to the existing ones. If the second option
is chosen, the original CheckMATE settings are restored from the earlier run, all events in
the current setup file are processed and properly added to the ones of the first run. This
procedure can be repeated arbitrary many times.

Likelihood: Instead of exclusion tests, CheckMATE can also be used for model fits by calculating
the likelihood ratios for all signal regions which test the compatibility of a given model
with the observered results. A formulae for a simplified LHC profile likelihood ratios
without nuisance parameters is given in Eq. (3.12) in Section 3.3.3. CheckMATE uses the
full version including AB and AS as nuisance parameters in Eq. (A.5) of Appendix A.2.
In the final results, CheckMATE sums the likelihood ratios over all signal regions and returns
this value to the user. Analysing the behavious of this quantity under change of model
parameters can be used to find best fit points and the corresponding confidence intervals,
see e.g. Ref. [364].

Pythia8Process: The production of pairs of SUSY particles in the MSSM is a standard bench-
mark scenario used in many LHC analyses to test the sensitivity of a given model. This is
why CheckMATE provides the possibility to easily set up the generation of these processes
by making use of the Pythia8Process keyword. Possible values for this parameter are p
p > X, with X being any of the following:

go go or go go: Gluino pair production

go sq or go sq : Gluino-squark and Gluino-antisquark associated production
sq sq : Squark-antisquark production

t1 t1 : pair production of the lightest stop

3gen’: pair production of stops and sbottoms

sq sq: squark pair production

ewsusy: pair production of neutrainos, charginos and neutralino-chargino associated pro-
duction

allsusy: all of the above

Note that “squark” always corresponds to the squarks of the first two generations in the
above explanations. To simulate any other process or any combination of the above, an
explicit Pythia 8 .in file has to be provided.

B.3 CheckMATE Detector Tunings

In this section we provide some more quantitative details on the detector tunings qualitatively
discussed in Chapter 4.

B.3.1 Lepton Kinematic Smearing

The energy measurement of electrons in the calorimeter and the momentum measurement of
muons in the muon chambers typically leads to an uncertainty in the reconstructed kinematic
value. This can be approximated by a Gaussian smearing of the true Monte Carlo value with
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In| range  A(n) B(n) [n| range  A(n)  B(n) In| range  A(n) B(n)

0.0,0.1, 0.094 0.012 0.1,0.2]  0.096 0.012 0.2,0.3]  0.096 0.012
0.3,0.4] 0.100 0.012 0.4,0.5]  0.107 0.012 0.5,0.6] 0.115 0.012
0.6,0.7, 0.125 0.012 0.7,0.8] 0.136 0.012 0.8,0.9] 0.150 0.012
0.9,1.0) 0.161 0.012 1.0, 1.1] ] 0.180 0.012

[ ] [ [

[ ] [ [

[ ] [ [

[ ] [ 0172 0.012  [1.1,1.2
[1.2,1.3] 0194 0.012  [1.3,1.37] 0211 0.012  [1.37,1.6] 0.221 0.018
[ ] [ [

[ ] [ [

[ ] [

1.6,1.7) 0.192 0.018 1.7,1.8]  0.184 0.018 1.8,1.9] 0.166 0.018
1.9,2.00 0.162 0.018 2.0,2.1] 0.160 0.018 2.1,2.2] 0.168 0.018
2.2,2.3] 0.167 0.018 2.3,2.4]  0.167 0.018 else 0.167 0.018

Table B.3: Parameters for the position dependent energy resoltion function for electrons in Eq. (B.1).

an energy- and position-dependent width o. For electrons, the smearing function for o has
been determined from combining information in Refs. [189, 365]:

2
UEE electrons - \/</\1/<%)) i B2(77), (B‘l)

with A(n), B(n) given in Table B.3 and E in units of GeV.

For muons®, momentum resolution information in Ref. [191] was extended to higher scales
by a shape fit to results from ATLAS Z’ searches in Ref. [192]. This renders the result slightly
more complicated:

ope| [ e/ T+ Biln) + Cun) g+ (1 - 2+ Ba(n) + Caln) - pd i pr < 100
PT Imuon | A'(n) + B'(n) - pr else

(B.2)

with € = 0.776, pp in units of GeV and the remaining parameters as in Table B.4.

B.3.2 Electron Efficiencies

The efficiencies for electron objects to be reconstructed as such are combined from the individ-
ually measured reconstruction and identification efficiency, for which the latter distinguishes
between two kinds of electrons: ‘medium’ and ‘tight™*. The reconstruction efficiency does not
show any significant dependence on the candidate’s momentum but mostly on the pseudorapid-
ity, as can be seen in Fig. B.2a. Conversely, the identification efficiency for medium electrons
mostly depends on the transverse energy of the electron, as shown in Fig. B.2b, and insignifi-
cantly on its position. The total efficiency is given as the product of the two contributions and

3 The momentum resoluton formula for muons was determined and implemented by Florian Jetter.

4 The ’loose’ electron efficiency for identifying a truth-level electron is estimated by implementing a weak
calorimeter isolation that mimics the ATLAS reconstruction. We require that within a cone size dR < 0.2
around the electron, at least 80% of energy deposition is due to the electron.
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n| range Ai(n) Bi(n) Ci(n) Az (n) Bs(n) Ca(n)
[0, 1.05] 1.63 x 1072 3.98 x 107° 2.05 x 1078 1.39 x 107® 1.16 x 1075 1.04 x 10~
[1.05,2.0] 1.60 x 1076 1.04 x 107 8.44 x 1078 1.03 x 1073 3.50 x 10~* 1.92 x 10710
else 4.14 x 1075 4.71 x 107° 7.37 x 1079 1.29 x 10~* 2.90 x 107* 1.27 x 10712
0| range A'(n) B'(n)
[0, 1.05] —1.94 x 1072 3.23 x 1074
[1.05,2.0] —3.75 x 1073 3.18 x 1074
else —1.42 x 1072 2.66 x 10~*

Table B.4: Parameters for the position dependent momentum resolution function for muons in Eq. (B.2).

10 2.5F0s 12 38 78 130 50
20L09 28 66 120 190
8 %J 1.5F09 28 66 120 190 40%
(2 1.0b04 13 44 91 154 (2
6 = _ 0.5f04 13 44 o1 154 30'_1:
S = Obosa 13 44 91 154 5
4 E’ = —0.5F04 13 44 91 154 20 8’
§ —1.0F04 13 44 91 154 §
2 g —1.5}09 28 66 120 190 10 g
—2.0L09 28 66 120 190
0 —2.5F05 12 38 78 130 196 27l 0
50 100 150 200 250 300 350 50 100 150 200 250 300 350
E(e) in GeV pr(up) in GeV

(a) Discretised version of continuous 2D func-  (b) Discretised version of continuous 2D func-
tion used for smearing electron energies. tion used for smearing muon momenta.

can be seen in a representative two-dimensional grid in Fig. B.3a.

For ‘tight’ electrons, there exist measurements for both the pseudorapidity and the pr de-
pendence of the identification efficiency individually, for which the corresponding other variable
has been integrated over (see Fig. B.2c and Fig. B.2d). We normalise the pseudorapidity de-
pendent function to an average value of unity and use as the overall identification efficiency the
absolute efficiency with respect to pr, multiplied by the renormalised efficiency with respect to
pseudorapidity. Combining this with the reconstruction efficiency described before leads to the
total efficiency distribution shown in Fig. B.3b.

The following functional behaviour for the efficiencies is used (pr in GeV):

frec(n) = 0.987 + (1.28 X 1072)7]2 _ (1‘76 % 1072),’74

+(5.21 x 107375 — (4.49 x 107)n®, (B.3)
0.151 .
0.767 + - O B if pr < 80,
€id, medium(pT) = (B4)
0.946 if pr > 80,
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Figure B.2: Electron efficiency distributions used in CheckMATE. The functions that have been used to
fit the data are given in Egs. (B.3) to (B.6). For the tight identification efficiency, CheckMATE uses the
absolute value from the pr dependent efficiency shown in d), and multiplies it with the 1 dependent
efficiency in ¢) normalised to an average value of 1.
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Figure B.3: Total efficiency map with respect to pseudorapidity and energy. This discretised version is
only meant for illustrative purposes; CheckMATE uses the full functional behaviour as shown in Egs. (B.3)
to (B.6).
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0.279 .
0.565 + | o 00786 (rr —22.3) if pr < 80,
€id, tight (PT) = (B.5)
0.883 if pr > 80,
ormalised 0.675 + 0.160 - ¢~ (1/1.92)°
€d, tght (1) = 0777 (B.6)

B.3.3 Muon Efficiencies

For muons, the main effect which has to be taken into account is the efficiency to reconstruct an
object in the muon chambers and to associate it to a track in the inner detector region. There
exist two main quality criteria for this reconstruction, namely ‘combined’ which requires both
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(a) b-tag ROC curve. Rejection considers jets  (b) b-tag ROC curve. Rejection considers jets
from light quarks only. from ¢ quarks only.

Figure B.5: ROC curves for the dependence of the background rejection for jets with different quark
contents on the chosen signal efficiency working point of the b-tagger. Tagging information is taken from
Ref. [198]

a track in the inner detector and muon chambers and ‘segment tagged’ which only requires a
track in the muon chamber) The latter is usually used in combination with the first to maximise
the muon efficiency and is hence called ‘combined+segment tagged’, or ’combined plus’.

The muon chambers in ATLAS consist of different components, which each have a different
reconstruction probability, mainly caused by different types and quantities of material and the
geometry inside the full detector. In CheckMATE, we parametrised a detector-component map
in the n—¢ plane and associate a particular efficiency to each detector type. The resulting
two-dimensional grid® is shown in Fig. B.4.

B.3.4 b-Tagger

The quality of algorithms that try to filter jets containing b-quarks from others is determined
by two main quantities. The signal efficiency describes the probability to assign a tag to a jet
that actually contains a b-quark, whereas the background efficiency is a measure for the relative
amount of jets that are tagged even though they did not originate from a bottom quark. Since
the background efficiency is usually small, it is common to use the rejection instead, i.e. the
inverse of the background efficiency,. Also, one usually distinguishes between rejections against
jets with charm—content and other jets that only contain light quarks, as the first are harder
to distinguish from the signal.

Since the rejection gets weaker with increasing signal efficiency, one has to find a balance
between signal quantity and signal purity, which depends crucially on the details of the respec-
tive analysis. For this purpose, one uses the ROC (Receiver Operation Characteristic) curve
that describes the relation between these two quantities. We show the ROC curves for light-jet

5 We refrain from showing the functional description of the full map inside the main text, as the fine and irregular
segmentation leads to a hard-to-read 21 x 53 matrix. The matrix can be found within the CheckMATE exam-
ple code in CheckMATE-2.0.0beta/tools/fritz/src/analysishandler/AnalysisHandlerATLAS 8TeV.cc, line
931.
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rejection and c-jet rejection separately in Fig. B.5 and internally parametrise these as follows:

tog1o [Pign ()] = { 754 - (&5 — 1.07)°

logyg [Fe(€s)] = 29.3 - (€ — 4.572 - € + 8.496 - &5 — 7.253 - € + 2.33 - &3).

52.8 - (6g — 4.045 - & + 7.17-& — 6.14 - €4 4+ 2.01 - &) if &5 < 0.87,

(B.7)

(B.8)

if g > 0.87,

Given a particular working point on the ROC curve, i.e. a specific chosen signal efficiency €g
and the corresponding background rejections 7ijgp/c, the actual tagging probabilities depend
on the transverse momentum of the considered object. These have been measured individually

203



Appendix B Additional Information for Chapter 4

for signal-, light-quark— and D* meson® jets and we show the results in Fig. B.6.

For the signal efficiency, we use two different data sets as they have different sensitivities at
low and high energies (see Fig. B.6a). In order to agree with the cutflows of various analyses
that require b-tagging, a reduction in the overall normalisation by 15% has been applied. In
addition, the significant decrease of the signal efficiency at large energies has been manually
added in order to get better agreement with experimental results.

Furthermore, the light quark jet rejection has been measured for two different 7 regions, which
we adapt in our parametrisations. We also perform a reduction in the light-quark tagging rates
(20%) in order to better agree with experimental cutflows.

Since the pr dependent distributions are given for a particular working point ég = 0.7, we
linearly rescale the functions to the given chosen signal efficiency €g, or the corresponding
background efficiency given by the ROC curves (pr in GeV):

pT
& -0.85 0.210 0.7+ 0.05 - ¢ 308
es(pr) = T <0.552 iy e—o.123-<pT—47.6>) 07E
1 if pr < 100,
X (B.9)
1—-7x10"*- (pr —100)  if pr > 100,
_ Tlight (0.7) % 0.8
€light (PT; 77) - flight(ES)
1.06 x 1072 + (6.47 x 107%)p2. + (4.03 x 10~%)pd. if |n| < 1.3,
X (B.10)
6.61 x 1073 + (6.49 x 1075)p2, — (3.12 x 10~8)pd, if 1.3 < || < 2.5,
7(0.7) - 0.4 0.461
ce(pr) = Feles) 1+ o 00864 (pr—20.4)" (B.11)

B.3.5 Tau—Tagger

Analogously to the tagging of jets containing b-quarks, there exist algorithms to distinguish jets
that originated from a hadronically decaying 7 lepton from those that originated from quarks
or gluons. Due to charge conservation, the 7 lepton can only decay into an odd number of
charged objects — mostly into 1 or 3 — called prongs. Since the structures of the resulting jets
look rather different, identification algorithms usually differentiate between these two cases and
hence there are individual efficiencies for each. The efficiency determined for 3-prong objects are
applied to all jets with more than one reconstructed and associated track and called multiprong.
This accounts for the fact that there is a nonvanishing probability for one of the tracks in a
3-prong decay to not be reconstructed.

We show the efficiencies for signal and background with respect to the momentum of the jet
candidate in Fig. B.8. Again, three common efficiency working points — ‘loose, ‘medium’ and
‘tight” — are used in most analyses, and we show results for each of the three. The functional
descriptions of the data points are shown in Egs. (B.12) and (B.13), with the corresponding
numerical values listed in Tables B.5a and B.5b. For background and 3—prong jets, these are

 The tagging probability for jets containing D* mesons is roughly 2 times better than for ‘normal’ c-quarks.
Using the cutflows from various analyses we have tuned this parameter to 0.4 to be in agreement with the
ATLAS results.
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the final efficiency functions CheckMATE uses. Note that these efficiencies do not depend on 7,
but |n| < 2.5 is always implied to fall within the angular coverage of the tracking detectors.

In addition to QCD jets, there is a second type of background which has to be taken into
account: Electrons, which have been reconstructed as jets, can resemble 1-prong tau decays and
need a separate tagging algorithm, which has been specifically tuned to reject these electron
jets”. Efficiencies with respect to this algorithm depend on both transverse momentum and
pseudorapidity as shown in Figs. B.7e and B.7f. We follow the same approach as for the electron
efficiencies, i.e. we take the absolute value from the momentum dependent efficiency distribution
and multiply with the pseudorapidity distribution normalised to an average efficiency value of
1. The corresponding functions are shown in Eqgs. (B.14) and (B.15) and Tables B.5¢ and B.5d.
We show a final combination of these with the 1-prong signal efficiency from before in Figs. B.8a
to B.8c for each of the three working points (pr in GeV):

(pr — 80)%e~ 221 =80) i pp < 80 4 £,

5
es(pr) = €0 + ApGe NPT 4 Ay

;1562 if pr > 80 + 2,
sin(w(pr - 15) 4+ ¢) if pp < 105,
o br (B.12)
Sm(gl(())w if pr > 105,
A1e™MPT 4+ m - pp if pr <80,
. (B.13)
( 60+W or = 80,
€gh veto () — (1
—m-pr+n if pr > 80,

n

1 _ (nl-1.2)2 _ (nl-1.2)2 . _n2 _n?
eéP(HOrm)(Tl) =7 (60 —Are T 4 A B — A sm(n)e 5+ AgPe 71| . (B.15)

" We only consider the impact on the signal efficiencies of this algorithm. In particular, we did not implement a
specific mistagging efficiency for electrons. With the given Delphes code structure, any electron that fails the
identification efficiency cut will be counted as a jet. Then, it will be tagged according to the corresponding
background efficiency in Eq. (B.13)
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€0 Ay o A1 B Ag/107° Ao As w 1) ~y
11 0.0223 —2.55 1.16 0.427 0.846 2.14 0.670 100 0.0974 2.34 2.04
1om 0.0223 -2.69 1.23 0483 0.791 3.46 0.586 100 0.0997 2.23 1.91
1.t 0.0292 —2.78 1.17 0.377 0.799 6.17 0.388 100 0.101 2.16 1.79
m,l 0.0192 —-6.44 0.143 0.106 1.08 4.22 0.594 99.6 0.0958 2.09 1.92
m,m 0.0191 —-2.32 0.924 0.233 0.940 5.00 0.510 100 0.0950 2.18 1.86
m,t 0.0212 —-2.29 0.671 0.104 1.096 6.30 0.324 100 0.0971 2.09 1.78

(a) Parameters corresponding to Eq. (B.12) for both 1-prong (1) and multiprong (m) candidates and
different signal working points ’loose’ (1), ‘'medium’ (m), ’tight’ (t).

A A m Ay A2 Py

1,1 0.717 789 x 1072  1.82x1073 0.106 9.73x 1072 64.3

1,m 0.301 7201072 935 x107*  6.27 x 1072 1.44 x 1072 20.0

1t 0.117 742 %1072 359x107% 1.92x1072 247x107%2  46.8

m,] 0.265 827 x 1072  226x107%* 124x1072 228x1072  4.08

m,m 0.154 832x 1072  1.36x107%  9.06x 1073  1.19x 1072  20.0

m,t 579 x 1072 880 x 1072  4.08x107° 3.14x107%  1.73x1072 789

(b) Parameters corresponding to Eq. (B.13) for the same combinations as Table B.5a.

€0 A1 01 AQ ()] Ag g3 A4 04

1 094 0875 0.294 0.88 0.286 —2.68x 1072 1.16 419 %1073 10.9

m 091 028 0.303 0.309 0256 3.46x1072 0.113 —7.96x1072 1.25

t  0.84 0472 0.304 0503 0.258 594x1072  0.102 —851x1072 1.42
(¢) Parameters corresponding to Eq. (B.14) for different working points but 1-prong only.

(€) €0 k A Py m n

1 0.956 0.928 3.54 x 1072 0.0994 55.1 5.52 x 107° 0.966

m 0.878 0.833 6.13 x 1072 0.0922 57.8 1.90 x 1074 0.893

t 0.789 0.738 7.06 x 1072 0.140 61.4 2.59 x 1074 0.812

(d) Parameters corresponding to Eq. (B.15) for the same combinations as Table B.5c.
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Figure B.7: Signal efficiencies used for the tau-tagging discrimination against electrons [366]. These only
affect 1-prong candidates, but differ between the different considered working points. Explicit functions
for the CheckMATE parametrisations are shown in Eqgs. (B.14) and (B.15).
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Figure B.8: Total signal 1-prong efficiencies for 1-prong signal candidates, combining the contributions
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Additional Information for Chapter 6

—>0 =D 0

C.1 Distributions for the Natural NMSSM Scan

C.1.1 Mass Distributions
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Figure C.1: Mass of the heavier stop and the lighter sbottom (which is very degenerate with the heavier
sbottom) for a decoupled gluino and Mgt = 500 GeV. Left: A\p. Right: Ag
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C.1.2 Cross Section Distributions
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Figure C.2: Total production cross section for gluinos, using mz, = 500 GeV, Mgt = 400 GeV. Left: Ap.
Right: Ag.
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Figure C.3: Total production cross section for the third generation squarks for a decoupled gluino and
Mgt = 500 GeV. Left: Ar. Right: Ag
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C.1.3 t; Branching Ratio Distributions
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Figure C.4: Most significant branching ratios of the lightest stop into the the singlino LSP, the higgsino
NLSPs and the chargino for a decoupled gluino and Myt = 500 GeV. Left: Ar. Right: Ag
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C.14 51 ,2 Branching Ratio Distributions
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C.1 Distributions for the Natural NMSSM Scan

C.1.5 t, Branching Ratio Distributions
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C.1.6 )Zg/S Branching Ratio Distributions
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Figure C.10: Most significant branching ratios of the higgsino-like neutralinos for a decoupled gluino and
Mgt = 500 GeV. Left: A\r. Right: Ag.

217



Appendix C Additional Information for Chapter 6

BR(XSs =X} Z BR(X3s =X} Z,
1000 Q0! ( %L__ ) 100% 1000 O()(')(S?)%)SUU&&)UU)) 100%
000 g 000088888880 ool T3
8% 50% 38888850600 50%
800 oo 800 00000000000
83355005 aes

> 88! 20% 3 85555558 20 %

e ookt 0% 8 aniscc e o

c ) (] c o

£ = foteie]

e ! : : : s ooe

g 400-3e 5% £ 400 5%

o9e
oge
200 ‘80@' 00000V0VO0000Y |12 % ¢ 2%
ooooooooooooooooooo o _oo
" 1o O S 1o
200 300 400 500 600 700 800 9001000 200 300 400 500 600 700 800 9001000
m;, in GeV my, in GeV
BR(X3/; =X, h/H/A
1000 100% 1000 o(é‘@%o%m?&‘wéw/ L 100%
folelelolele elel6lele 0le]
50% 8258533050508 888: 50%
800 800 FOOOOO0CEOOO0!
Jojoiolelolele elelale] I

> 20 % > 853335508e 20 %

] i (] folejelolo]e]s] ¢ g o

e ; QO omreegees \

% 10% f_: 88:(: 10%

g 400 5% £ 00| e 5%

200 2% 8{00 00000606001 |{2%
ooooooooq-oooo
1% 1%
200 300 400 500 600 700 800 9001000 ° 200 300 400 500 600 700 800 9001000 ?
m;, in GeV m;, in GeV
BR(Xo3—X1 49) BR()N(g 3—=X1 49)
1000 5 5006000000 T0TD 100% 1000 — TSR ETTUTD 100%
Jolelslelolels elelole e elololele 00t teterelelelelejole)
Jelelolololele elelolele’elelolele ale} o 000000600 o
000000000 HOCQOVFVOQ 50% BBOOO000 50%
800 00@0@000080@0@@00085 foalslelalelelelote]
elsieletotetetsistoteielele elslele; 0880000000
feJelelelolels;s]sloleleic slolelelole] 0000000000G0000

> [ofe]slelolels slelolelc/elelel otole} 20 % > tSlelolslelelelelelc elolnlesele) 20 %

2 Relefelololelelelelolule elolc ole o 6] a: fote? 88898528558 g

O 600 [REE8E8ER08500wH0000T 0] OEOOOOOBOIODDON

c oo‘ooooogg 0000000 10% c g lele e]slalele s el0lele 0l6} 10%

= Jelejelelole]e elsl0lels elel0lelelele] = 000098000Z0000000

i 08858563688868060500 e 960090000

¢ 0 BpBsedicitissss How 3 Sl fow
o0 ooooooooo‘oogoo‘oo lojeselelolele’ele)
Jeleololols, e elelolele slelolele ele] OOODOGO0
cfoooeoooooooooooooo o tefe{slelotele ole! 29

200 6 2% - @00O0OVVN! 2%
ooooooooooooooooooo : oooooaooo
A 10/ . I I I I 0/
200 300 400 500 600 700 800 9001000 ° 200 300 400 500 600 700 800 9001000 ?
m;, in GeV my, in GeV
BR(X), —7; 7 BR(x)/3 1, 1
1000 (,3,% 1 2 oo 100% 1000 — saa e : 3)6805 100%
} 09900 T ; T
® 9 g T felolele’ale)
3 3 10888888 50% ? g -ogooooo 50%
800 OOOOOOOSﬁ 800 e 9 QOOGOOOQH
859308585 : 25005050000

> é) 880000000 20 % > Jejelelelc /elolele 0 010) 20 %

3! o OOHBOGOOFOCO0! (3 OOO@O00FOO00

O 600 QS ee8SCE0BOO0EHOEO0T @ 600 GOOOOVNTLOOOOY

c o0 0088 lole;s(slolelelele] 10% c 5lejejelsolele]s elelele ele! 10%

e 8 2058505833050300 T o888888§888888800

! ¥ ¥ felolatalelel: = |- 00RO QB000000GAA]

§ 400 B8R e 0e0000000d |15% E 400 - O R 6088006000 5%
SECSissieaad s Soddisode
FE00696006000060000 o QODOO! o

200 FEOGEHOO000000000000] |12 % 2%
ooooooooooooooooooo : oooeooooooooo
A 10/ I I I
200 300 400 500 600 700 800 9001000 ° 200 300 400 500 600 700 800 9001000
m;, in GeV my, in GeV

Figure C.11: Most significant branching ratios of the higgsino-like neutralinos for a decoupled gluino and
mso = 100 GeV. Left: Ap. Right: Ag
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