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1 Introduction and main results

1.1 Motivation and summary

Gabriel’s Theorem and tilting theory The central problem in the representation theory of
finite-dimensional algebras is to describe their category of finite-dimensional modules as com-
pletely as possible. Various approaches in trying to solve this problem and partial solutions are
variations and applications of tilting theory. The first step in this direction in modern represen-
tation theory was Gabriel’s Theorem in 1972: A finite-dimensional path algebra A = KQ, where
Q is a finite connected acyclic quiver, is representation-finite if and only if Q is of Dynkin type
An, Dn, E6, E7, E8. Moreover, in this case there is a bijection between the isomorphism classes
of indecomposable A-modules and the positive roots of the corresponding simple complex Lie
algebra. Gabriel thus also established a close connection to Lie Theory.
Shortly after Gabriel’s breakthrough Bernstein, Gelfand and Ponomarev proved that all in-

decomposable modules over a representation-finite path algebra A = KQ, can be constructed
recursively from the simple modules by using reflection functors. This can be considered as the
starting point of tilting theory. It became apparent that the module category does not change too
much when changing the orientation of the quiver. This procedure was generalized by Auslander,
Platzek and Reiten who showed that the reflection functors are equivalent to functors of the form
HomA(T,�), where T is nowadays known as an (APR)-tilting module. Ever since then, tilting
theory has appeared in numerous areas of mathematics as a method for constructing functors
between categories. In this thesis we focus on two particular theories, whose origins can be traced
back to tilting theory.

⌧ -tilting theory On the one hand there is the rather new concept called ⌧ -tilting theory intro-
duced by Adachi, Iyama and Reiten in 2012. It follows from results by Riedtmann and Schofield
and Unger in the early 1990’s that any almost complete (support) tilting module over a finite-
dimensional algebra can be completed in at least one and at most two ways to a complete (support)
tilting module. This was the first approach to a combinatorial study of the set of isomorphism
classes of multiplicity-free tilting modules. The (support) ⌧ -tilting modules are a generalization
of the classical tilting modules. In this wider class of modules it is possible to model the process
of mutation inspired by cluster tilting theory. In other words any basic almost complete support
⌧ -tilting pair over a finite-dimensional algebra is a direct summand of exactly two basic support
⌧ -tilting pairs.
Cluster algebras were introduced by Fomin and Zelevinsky in 2002. Since then cluster (tilting)

theory has had a huge impact on the research of representation theory of finite-dimensional al-
gebras. The algebras appearing in connection with cluster theory are Jacobian algebras defined
via quivers with potential. These are not finite-dimensional in general. This suggests the need for
developing ⌧ -tilting theory for infinite dimensional algebras.

Completed string algebras String algebras are a subclass of the special biserial algebras. The
module category of a finite-dimensional string algebra can be described completely in combinato-
rial terms. Therefore, they are often used to test conjectures. Furthermore, they appear in cluster
theory as Jacobian algebras of surfaces. Hence one should consider string algebras as an impor-
tant class of examples. In this thesis we study the module category of what we call completed
string algebras, a generalization of the finite-dimensional string algebras which include infinite
dimensional algebras. We extend the combinatorial description of the module category of a finite-
dimensional string algebra to the category of finitely generated modules over a completed string
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1 Introduction and main results

algebra. In particular we describe the Auslander-Reiten sequences ending in a finitely generated
indecomposable module. This allows us to develop ⌧ -tilting theory for completed string algebras
and prove that mutation is possible within the class of finitely generated support ⌧ -tilting pairs.

Perpendicular categories On the other hand we consider the theory of perpendicular cate-
gories which goes back to an article by Geigle and Lenzing in 1989 and an article by Schofield in
1991 which focuses on the study of perpendicular categories for path algebras. One of the main
results here is the following: Let A be a finite-dimensional algebra and M an indecomposable
partial tilting module such that EndA(M) is a skew-field. Then there exists a finite-dimensional
A-module T such that M � T is a basic tilting module and the (right) perpendicular category
M? is equivalent to mod(A0), where A0 = EndA(T )op. It follows that the algebra A0 has one
simple module less than the original algebra A and gl. dim(A0)  gl. dim(A). Thus if A is hered-
itary, then so is A0 and moreover, in this case it is known that any exceptional module M is an
indecomposable partial tilting module such that EndA(M) is a skew-field.
This result opened the possibility for proving statements by induction. This has been used by

Crawley-Boevey to prove the existence of a transitive action of the braid group on exceptional
sequences for path algebras. Ringel generalized this result to hereditary algebras and in addition
developed an inductive procedure for obtaining all exceptional modules from the simple modules.

Algebras associated with symmetrizable Cartan matrices The theory of modulated graphs or
species was developed by Dlab and Ringel in a series of papers in the 1970’s. It was a first attempt
in generalizing path algebras associated to symmetric Cartan matrices to hereditary algebras
which can be associated to symmetrizable Cartan matrices. They extended Gabriel’s Theorem to
include the non-simply laced root systems Bn, Cn, F4 and G2. More precisely, they proved that a
finite-dimensional hereditary algebra is representation-finite if and only if its corresponding valued
graph is of Dynkin type. To ensure the existence of these hereditary algebras one has to make
quite strong assumptions on the ground field, and cannot assume it to be algebraically closed in
general.
Recently Geiß, Leclerc and Schröer suggested another approach by introducing a new class

of algebras which are defined via quivers with relations associated with symmetrizable Cartan
matrices. They thus obtain new representation theoretic realizations of all finite root systems
without any assumptions on the ground field. These newly defined algebras are in general no
longer hereditary but 1-Iwanaga-Gorenstein. An algebra is 1-Iwanaga-Gorenstein if and only if
the injective dimension of its regular representation is at most 1. Thus all self-injective and all
hereditary algebras are particular examples of 1-Iwanaga-Gorenstein algebras.

Perpendicular categories for 1-Iwanaga-Gorenstein algebras In this thesis we study per-
pendicular categories for finite-dimensional 1-Iwanaga-Gorenstein algebras. We find that if A
is 1-Iwanaga-Gorenstein and M 2 mod(A) an indecomposable partial tilting module such that
EndA(M) is a skew-field, then M? is equivalent to mod(A0), where A0 is again 1-Iwanaga-
Gorenstein. We then concentrate on the particular class of 1-Iwanaga-Gorenstein algebras defined
via quivers with relations associated with symmetrizable Cartan matrices. If H is such an algebra
associated with a symmetrizable Cartan matrix C and M 2 mod(H) an indecomposable partial
tilting module, the ring EndH(M) is not a skew-field in general. However, if M is preinjective
we still find that M? is a equivalent to mod(H 0), where H 0 is a 1-Iwanaga-Gorenstein algebra
associated with a symmetrizable Cartan matrix C 0, which is of size one smaller than C.
In the following sections we explain our results, which are stated in the Theorems A to E, in

more detail.

1.2 Completed string algebras and ⌧ -tilting theory

Finite-dimensional string algebras The representation theory of finite-dimensional string al-
gebras can be considered as being well-understood. The indecomposable modules over a string
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1.2 Completed string algebras and ⌧ -tilting theory

algebra can be described in completely combinatorial terms usually referred to as strings and
bands or more generally words. This classification goes back to Gelfand and Ponomarev [GP]
for the algebra K[x, y]/(xy) and Ringel [R1] who adapted their methods to the non-commutative
algebra Khx, yi/(x2, y2). Also the almost split sequences containing string and band modules can
be described using the combinatorics of words. Their classification was achieved by Butler and
Ringel [BR]. Thus it is possible and usually not di�cult to compute the Auslander-Reiten quiver
of any finite-dimensional string algebra, which in a sense captures all of the information about
the objects and also morphisms in the category of finite-dimensional modules. It is therefore not
surprising that string algebras are an important class of examples when testing and presenting
new theories.

Infinite dimensional string algebras Recently Crawley-Boevey [CB4] achieved the classifica-
tion of the finitely generated modules over a possibly infinite dimensional string algebra. Again
the indecomposable modules are associated to certain words, where now one also has to consider
infinite words. The main tool in his work is the functorial filtration method. This was first used in
the original works of Gelfand and Ponomarev and Ringel. It is possible to modify the method to
the infinite dimensional case, since the string algebra is a Noetherian algebra over the polynomial
ring in one variable.
Unfortunately, this does not help when trying to describe almost split sequences containing

finitely generated string modules. It is one of the properties of almost split sequences, that the
first and last term in the sequence have local endomorphism ring. However, if A is an infinite
dimensional string algebra, there are indecomposable finitely generated A-modules whose endo-
morphism ring is not local. The easiest example for this is the polynomial ring itself. This shows
that, if A is infinite dimensional, there are finitely generated indecomposable modules which do
not appear as the first or last term of an almost split sequence in Mod(A). This problem vanishes
when considering completed string algebras.

Completed string algebras A completed string algebra is an algebra ⇤ = dKQ/I, where I = (⇢)
is the closure of the ideal generated by zero-relations ⇢, such that

• At any vertex of Q there are at most two arrows coming in and at most two arrows going
out.

• For any arrow y of Q there is at most one arrow x such that xy /2 ⇢ and at most one arrow
z such that yz /2 ⇢.

Let A be a possibly infinite dimensional string algebra and let n be the ideal in A generated by z,
where we consider A as a Noetherian algebra over K[z]. Then the completed string algebra ⇤ can
also be defined as the completion of A with respect to the ideal n. It follows that ⇤ is a Noetherian
algebra over the complete local ring K[[z]], the ring of formal power series in one variable.

Classification of finitely generated modules The classification of the finitely generated ⇤-
modules is achieved in almost the same way as in the non-completed case and in this work is
completely analogous to the article by Crawley-Boevey. However, one has to make slight modi-
fications in the definition of the string and band modules. If M is a finitely generated A-string
module, then we consider its completion with respect to the n-adic topology. This turns out to
be an indecomposable finitely generated ⇤-module. In case M is nilpotent with respect to n, it
follows that M is isomorphic to its completion. If M is finitely generated as an A-module but
infinite dimensional, it is not complete, that is it is not isomorphic to its completion. The general
slogan here is that one has to replace direct sums in the definition of the string module by direct
products. Again, the easiest example is the polynomial ring and its completion, the ring of formal
power series.
For the completed string algebra, there do not exist any finite-dimensional modules, that are

not nilpotent with respect to the n-adic topology. Hence it follows that there are no band modules
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1 Introduction and main results

corresponding to non-trivial cycles, or as Crawley-Boevey calls them, primitive simples. This
actually makes the classification slightly easier in the completed setting. The following result is
Theorem 3.3.15 and is the analogue of [CB4, Theorem 1.2].

Theorem A. Let ⇤ be a completed string algebra. Then any finitely generated ⇤-module is
isomorphic to a direct sum of copies of string modules and finite-dimensional band modules.

Noetherian algebra over complete local ring Since ⇤ is a Noetherian algebra over a complete
local ring, we can directly deduce various extremely useful properties of the category Noeth(⇤) =
mod(⇤) of finitely generated ⇤-modules. First of all there exists a duality between Noeth(⇤) and
Art(⇤), the category of Artinian ⇤-modules and thus the appropriate duals of all of the following
statements also hold for Art(⇤). The algebra ⇤ is a semiperfect ring and thus every finitely
generated module has a minimal projective presentation. If M is a finitely generated ⇤-module,
M is indecomposable if and only if End⇤(M) is local. Furthermore, the category mod(⇤) has
the Krull-Remak-Schmidt property. It was by proven by Auslander [A1, A2] in the more general
setting for Noetherian algebras over complete local rings that, if M is an indecomposable finitely
generated non-projective module, there exists an almost split sequence in Mod(⇤) that ends in
M . Furthermore, one can define the Auslander-Reiten translation ⌧⇤ as for Artin algebras and
the almost split sequence ending in M is of the form

0! ⌧⇤(M)! E !M ! 0,

where ⌧⇤(M) is an indecomposable Artin ⇤-module. This is in fact the main reason why we are
considering completed string algebras. Here one can actually define what it means for a finitely
generated module to be ⌧⇤-rigid.

⌧ -tilting theory As for finite-dimensional algebras in [AIR] we say that M 2 mod(⇤) is ⌧⇤-
rigid if Hom⇤(M, ⌧⇤(M)) = 0. If in addition we have |M | = |⇤|, where |X| denotes the number
of pairwise non-isomorphic indecomposable summands of any ⇤-module X, we say that M is a
⌧⇤-tilting module. We prove that any finitely generated ⌧⇤-rigid module is a direct summand of
some finitely generated ⌧⇤-tilting module.
A pair (M,P ) where M 2 mod(⇤) and P is a projective ⇤-module is called ⌧⇤-rigid if M is ⌧⇤-

rigid and Hom⇤(P,M) = 0. If in addition we have |M |+|P | = |⇤| (respectively |M |+|P | = |⇤|�1),
we say that (M,P ) is a support ⌧⇤-tilting (respectively almost complete support ⌧⇤-tilting) pair.
The following analogue theorem of [AIR, Theorem 2.18] is our main result (see Theorem 3.5.9)
concerning ⌧⇤-tilting theory.

Theorem B. Let ⇤ be a completed string algebra. Then any basic almost complete support ⌧⇤-
tilting pair for ⇤ is a direct summand of exactly two basic support ⌧⇤-tilting pairs.

Auslander-Reiten sequences ending in finitely generated string modules For the proof of
this result we need the description of almost split sequences containing finitely generated string
and band modules in Mod(⇤). As it turns out, the combinatorial description is very similar to
the description for finite-dimensional string algebras. Unfortunately, we were not able to simply
adopt the proof from Butler and Ringel since one cannot restrict to considering finitely generated
modules. It is not quite obvious what happens when one applies the functorial filtration method
to arbitrary, not necessarily finitely generated or Artinian ⇤-modules. In our proof we use that
any finitely generated ⇤-string module M is isomorphic to an inverse limit

M ⇠= lim �Mp,

where for p large enough Mp is a finitely generated string module over the p-truncation Ap of the
string algebra A. The p-truncation Ap is a finite-dimensional string algebra and hence in mod(Ap)
we have the description of almost split sequence as in [BR]. We describe appropriate analogues of
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1.3 Perpendicular categories

canonical exact sequences for finite-dimensional string algebras and prove the following result in
Theorem 3.4.2.

Theorem C. The canonical exact sequences are the almost split sequences ending in finitely
generated string modules.

An example arising from cluster algebra theory An interesting example of a completed string
algebra, given by the well-studied Markov quiver and relations, arises as the Jacobian algebra
of the once-punctured torus and a non-degenerate potential. In this case it is true that any
basic finite-dimensional almost complete ⌧⇤-tilting module is a direct summand of exactly two
basic finite-dimensional ⌧⇤-tilting modules. This is implied by results by Derksen, Weyman and
Zelevinsky on quivers with potentials and their representations. In fact the support ⌧⇤-tilting
quiver, as defined in [AIR], in this example consists of two isomorphic components, one containing
all the finite-dimensional ⌧⇤-tilting modules, and the other containing all finitely generated but
infinite dimensional support ⌧⇤-tilting pairs. This follows from results in [Ri]. One can deduce (at
least for gentle algebras) combinatorial requirements for the quiver and the relations defining a
completed string algebra which ensure the same results as in this particular example. However, it
is obviously not true in general that mutation of (support) ⌧⇤-tilting pairs is possible within the
class of finite-dimensional modules.

1.3 Perpendicular categories

Definition of the perpendicular category Perpendicular categories in the context of represen-
tation theory of finite-dimensional algebras were first studied by Geigle-Lenzing [GL] and Schofield
[Scho]. Let A be an abelian category and S be a system of objects in A. Then the (right) per-
pendicular category S? is defined as the full subcategory of all objects M 2 A which satisfy
both

HomA(S,M) = 0

Ext1A(S,M) = 0

for all S 2 S. It is easily seen, that if all objects in S have projective dimension at most 1, the
category S? is abelian again.

Perpendicular categories for path algebras Suppose that A = KQ is the path algebra of
a finite acyclic quiver Q. Thus A is a finite-dimensional hereditary algebra, or equivalently an
algebra of global dimension at most 1. It follows that any rigid module is a partial tilting module.
It was proven by Schofield using Bongartz’s exact sequence for partial tilting modules that for an
indecomposable rigid A-module M we have an equivalence of categories

M? ' mod(KQ0),

where Q0 is a quiver having one vertex less than Q. In case M is a projective module this process
is also referred to as the deletion of a vertex. The proof also uses that K is algebraically closed
and the fact that any hereditary algebra over an algebraically closed field is isomorphic to the
path algebra of some quiver.

Perpendicular categories for finite-dimensional algebras Geigle and Lenzing considered per-
pendicular categories in the more general context of abelian categories. If M is in object in
an abelian category A, such that M is rigid, of projective dimension at most 1 and such that
HomA(M,A) and Ext1A(M,A) are of finite length over EndA(M), then there exists a functor
L : A!M? which is left adjoint to the inclusion functor M? ! A. The proof of this uses again
a slight generalization of Bongartz’s exact sequence. They apply this to the case where A is the
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1 Introduction and main results

module category of a ring or in particular of a finite-dimensional algebra to prove the existence of a
homological ring epimorphism induced by the functor L. The more precise result is the following:
Let A be a finite-dimensional algebra and M 2 mod(A) an indecomposable partial tilting module
such that EndA(M) is a skew-field and HomA(M,A) = 0. Then there exists a finite-dimensional
algebra A0 and a homological epimorphism ' : A! A0 which is also injective, such that

• M? ' mod(EndA(LA)op) ' mod(A0);

• T = M � '⇤(A0) is a tilting module in mod(A);

• gl. dim(A0)  gl. dim(A);

• |A0A0| = |AA|� 1.

Iwanaga-Gorenstein algebras Our aim in this work was to generalize Schofield’s result to
a class of 1-Iwanaga-Gorenstein algebras defined via quivers with relations associated with sym-
metrizable Cartan matrices. These algebras were recently introduced by Geiß, Leclerc and Schröer
in [GLS1] as a generalization of path algebras of quivers associated with symmetric Cartan ma-
trices. Recall that a finite-dimensional algebra A is 1-Iwanaga-Gorenstein, if

inj. dim(A)  1 and proj. dim(DA)  1

where D denotes the standard K-duality. This implies that in fact inj. dim(A) = proj. dim(DA)
and for any M 2 mod(A) the following are equivalent:

• proj. dim(M)  1;

• inj. dim(M)  1;

• proj. dim(M) <1;

• inj. dim(M) <1.

Particular examples of 1-Iwanaga-Gorenstein algebras are hereditary and selfinjective algebras.
In general a 1-Iwanaga-Gorenstein algebra A can be of infinite global dimension. Thus the result

of Geigle and Lenzing does not tell us much about the new algebra A0. Still the following theorem
as in Corollary 4.3.7 is basically a direct consequence of the proofs and results in [GL].

Theorem D. Let A be a finite-dimensional 1-Iwanaga-Gorenstein algebra and M 2 mod(A) an
indecomposable partial tilting H-module such that EndA(M) is a skew-field and HomA(M,A) = 0.
Then there is an equivalence of categories

M? ' mod(A0),

where A0 is a 1-Iwanaga-Gorenstein algebra having one simple module less than A.

Algebras associated with symmetrizable Cartan matrices Let C be a symmetrizable general-
ized Cartan matrix, ⌦ an acyclic orientation of it and D a diagonal matrix which is a symmetrizer
of C. We denote by H = H(C,D,⌦) the finite dimensional K-algebra, where K is an arbitrary
field, as defined in [GLS1]. This algebra is defined via a quiver with relations, where the quiver
may have loops but no cycles passing through more than one vertex. In case C is symmetric and
D is the identity, then H is the classical path algebra associated with C. In general H is not
hereditary but it is 1-Iwanaga-Gorenstein.
For this new class of algebras H = H(C,D,⌦) Geiß, Leclerc and Schröer prove several gener-

alizations of classical results for hereditary algebras. Let A = A(C,D,⌦) be the corresponding
hereditary algebra defined via species. There appears to be a strong connection between the in-
decomposable partial H-tilting modules and the indecomposable partial A-tilting modules. The
partial H-tilting modules are part of the class of modules, which are called ⌧ -locally free modules
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1.3 Perpendicular categories

in [GLS1]. The following analogue of Gabriel’s Theorem is one of the main results in [GLS1]:
there are only finitely many isomorphism classes of ⌧ -locally free H-modules if and only if C is
of Dynkin type. In this case there is a bijection between the isomorphism classes of ⌧ -locally free
H-modules and the set of positive roots of the semisimple complex Lie algebra associated with C.
Furthermore, if C is of Dynkin type, it is known that the class of indecomposable partial H-tilting
modules coincides with the class of indecomposable ⌧ -locally free modules. This leads us to the
following conjecture.

Conjecture. Let M be an indecomposable partial H-tilting module. Then there is an equivalence
of categories

M? ' mod(H 0),

where H 0 = H(C 0, D0,⌦0) is a 1-Iwanaga-Gorenstein algebra associated with a symmetrizable
Cartan matrix C 0, whose size is one smaller than the size of C. Equivalently, the quiver defining
H 0 has one vertex less than the quiver defining H.

If H = H(C,D,⌦) and A = A(C,D,⌦), as before there is a well behaved bijective map between
the indecomposable preprojective H-modules and the indecomposable preprojective A-modules.
Here a module M 2 mod(H) is indecomposable preprojective if M ⇠= ⌧�k

H (P ) for some indecom-
posable projective H-module P and some non-negative integer k. Indecomposable preinjective
H-modules are defined dually. It is easily seen that in this case M is also an indecomposable
partial tilting H-module. We try to use this bijection to obtain better results for this special class
of 1-Iwanaga-Gorenstein algebras. From now on assume that K is algebraically closed and let
H = H(C,D,⌦) = KQ/I. The following theorem is a collection of the results in Theorem 4.4.23
and Theorem 4.4.36.

Theorem E. Let M 2 mod(H) be an indecomposable partial tilting module. Then the following
hold:

• If M is preprojective, then
M? ' mod(H 0),

where H 0 ⇠= KQ0/I 0 is a 1-Iwanaga-Gorenstein algebra, Q0 has one vertex less than Q and
in Q0 there are no cycles passing through more than one vertex.

• If M ⇠= ⌧kH(Ii) 2 mod(H) is a preinjective module, then

M? ' mod(H 0),

where H 0 is obtained from H by possibly applying a series of reflections to H and deleting
the vertex i from it.

The proof of the part of the theorem concerning the preinjective modules is analogue to the proof
in [St] for the hereditary case. The proof uses the description of a projective generator of (⌧HM)?

in terms of a projective generator of M?, where neither M nor ⌧HM are projective H-modules.
It follows from this description that if M? is equivalent to mod(H 0), where H 0 = H(C 0, D0,⌦0),
then ⌧HM? is equivalent to mod(H 00), where H 00 is obtained from H 0 by applying a series of
reflections to it. The result for the preinjective modules follows then by induction. Unfortunately,
we were not able to alter this line of proof to the preprojective modules. However, we strongly
conjecture that the corresponding result is true for preprojective modules. If the Cartan matrix
C is of Dynkin type, the conjecture follow trivially, since in that case the preprojective modules
coincide with the preinjective modules.

Corollary. If C is of Dynkin type and M 2 mod(H) an indecomposable partial tilting module,
then there is an equivalence of categories

M? ' mod(H 0),

where H 0 is obtained from H by changing its orientation and deleting a vertex from it.
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1 Introduction and main results

Finally, we prove the conjecture for preprojective H-modules for H = H(C,D,⌦), where C
is of extended Dynkin type C̃n and D is a minimal symmetrizer. We study the algebras of this
type more closely for two reasons. Firstly, the Cartan matrix C is not of Dynkin type, and thus
there are rigid module, which are not preprojective or preinjective. Secondly, the algebra H is a
finite-dimensional string algebra. This allows us to explicitly describe its Auslander-Reiten quiver
and to classify the indecomposable rigid modules. We prove that for any indecomposable rigid
H-module M , the category M? is equivalent to mod(H 0), where H 0 is a 1-Iwanaga-Gorenstein
algebra, such that |H 0| = |H|� 1.

1.4 Structure of this thesis

The thesis is organized as follows: In Chapter 2 we recall some basic definitions and fix notation
which will be used throughout the whole thesis.
The results concerning ⌧ -tilting theory for completed string algebras are proven in Chapter

3. In Section 3.1 we recall the classification of finitely generated modules over a possibly infinite
dimensional algebra due to Crawley-Boevey and the description of the Auslander-Reiten sequences
for finite-dimensional string algebras due to Butler and Ringel. In Section 3.2 we give the definition
of a completed string algebra and prove that it is a Noetherian algebra over a complete local
ring. Theorem A, that is the classification of finitely generated modules over a completed string
algebra is given in Section 3.3, which is organized as the article of Crawley-Boevey. Section 3.4
is devoted to the proof of Theorem C the description of the Auslander-Reiten sequences ending
in indecomposable finitely generated modules over a completed string algebra. The main result,
Theorem B, i.e. the mutation theorem is proven in Section 3.5.
In chapter 4 we study the theory of perpendicular categories. We begin by recalling the results

of Geigle and Lenzing for finite-dimensional algebras in Section 4.1. In Section 4.2 we collect
properties of hereditary algebras. This will be needed to deduce properties of the algebras de-
fined via quivers with relations for symmetrizable matrices. Furthermore, we consider the results
on perpendicular categories for hereditary algebras. We briefly introduce 1-Iwanaga-Gorenstein
algebras and prove Theorem D in Section 4.3. Then, in Section 4.4 we study in more detail the
special class of 1-Iwanaga-Gorenstein algebras for symmetrizable Cartan matrices as defined by
Geiß, Leclerc, and Schröer and prove Theorem E. Finally, Section 4.5 contains a detailed study of
the category mod(H), where H is a 1-Iwanaga-Gorenstein algebra of extended Dynkin type C̃n.

Acknowledgements I want to thank my advisor Jan Schröer for introducing me to the topic of
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2 Basic definitions and notation

Notation In this thesis K always denotes a field. In Sections 4.4 and 4.5 we will assume that
K is algebraically closed. By an algebra we mean an associative K-algebra with 1. For an algebra
A we denote by Mod(A) the category of all left A-modules and by mod(A) the full subcategory
of finitely generated A-modules. Furthermore, let proj(A) and inj(A) be the full subcategory of
Mod(A) with objects the projective and injective A-modules, respectively.
From now on suppose that A is a finite-dimensional K-algebra. We denote by D = HomK(�,K)

the standard K-duality and by ⌧ = ⌧A the Auslander-Reiten translation of A. For a module
M 2 mod(A) we denote by add(M) the subcategory of modules which are isomorphic to finite
direct sums of direct summands of M , and by Fac(M) the subcategory of modules which are
generated by M , where a module X is generated by M if there is an epimorphism Mn ! X for
some natural number n. We denote by |M | the number of nonisomorphic indecomposable direct
summands of M 2 mod(A). The projective dimension (respectively injective dimension) of M will
be denoted by proj. dim(M) (respectively inj. dim(M)).

Quivers A quiver Q = (Q0, Q1) = (Q0, Q1, h, t) is a finite directed graph, where Q0 denotes
the finite set of vertices and Q1 the finite set of arrows. The maps h, t : Q1 ! Q0 assign a head and
a tail to each arrow. By definition a path of length k in Q is a sequence of arrows p = ↵1↵2 . . .↵k

such that h(↵i+1) = t(↵i) for all 1  i  k � 1. The head of p is h(↵1) and the tail of p is t(↵k).
Note that multiple arrows between two vertices and also loops, where a loop is an arrow ↵ with
h(↵) = t(↵), are allowed.
Additionally, there is a path ev of length 0 for every vertex v 2 Q0, and the head and tail of ev

is the vertex v by definition. A cycle in Q is a path of positive length with the same head and
tail. Thus loops are particular examples of cycles.

Path algebras For every m 2 N we denote by Qm the set of paths of length m and we define
KQm to be the K-vector space with basis the elements in Qm. We do not make any distinction
between a path of length m and the corresponding basis vector in KQm.
As a vector space we define the path algebra of Q by

KQ =
1M

m=0

KQm.

The product (↵1 . . .↵m)(↵m+1 . . .↵m+k) of two paths is 0 unless t(↵m) = h(↵m+1), in which case
it is given by concatenation of the paths (↵1 . . .↵m↵m+1 . . .↵m+k). The product of arbitrary
elements in KQ is given by linear extension of the product on paths. It is well-known that the
path algebra is finite-dimensional if and only if there are no cycles in Q.

Representations of quivers A representation of a quiver Q = (Q0, Q1, h, t) is a tuple M =
(Mv,M↵)v2Q

0

,↵2Q
1

, whereMv is aK-vector space for each vertex v 2 Q0 andM↵ : Mt(↵) !Mh(↵)

is a linear map for every arrow ↵ 2 Q1. We denote by Rep(Q) = RepK(Q) the abelian K-category
of all representations of Q. Here morphisms between two representations are defined in the obvious
way. A representation M is called finite-dimensional if Mv is finite-dimensional for all v 2 Q0.
The full subcategory of finite-dimensional representations is denoted by rep(Q) = repK(Q).
Denote by Mod(KQ) the category of left KQ-modules. Then it is well-known that RepK(Q)

and Mod(KQ) are equivalent categories, and we will make no distinction between modules and
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2 Basic definitions and notation

representations. If KQ is finite-dimensional the category of finitely generated KQ-modules, de-
noted by mod(KQ), coincides with the category of finite-dimensional modules and is equivalent
to repK(Q).
If M = (Mv,M↵)v,↵ is a finite-dimensional representation of Q we call

dim(M) = (dimMv)v2Q
0

2 NQ
0

its dimension vector.
For every vertex v 2 Q there is a simple representation

(Sv)u =

(
K if v = u,

0 otherwise.

Note, that if there are cycles in Q, there are many more simple representations than just the Sv.

Quivers with relations A relation in Q is an element in KQ of the form

r =
kX

i=1

�ipi,

where �i 2 K⇤ for all i and the pi are paths of length at least 2 in Q such that h(pi) = h(pj) and
t(pi) = t(pj) for all i, j. If k = 1 we call r a zero-relation and if k = 2 we call it a commutativity
relation.
If M = (Mv,M↵)v,↵ is a representation of Q, and p = ↵1↵2 . . .↵k a path we set

Mp = M↵
1

�M↵
2

� · · · �M↵k .

For a relation r =
Pk

i=1 �ipi we extend this definition linearly by setting

Mr =
kX

i=1

�iMpi

and say that M satisfies the relation r if Mr = 0.
Let ⇢ = {ri | i 2 I} be a set of relations in Q. We denote by Rep(Q, ⇢) (respectively rep(Q, ⇢))

the category of all representations (respectively finite-dimensional representations) that satisfy
all the relations in ⇢. Let (⇢) be the ideal generated by the relations in ⇢. Then the category
Mod(KQ/(⇢)) is equivalent to the category Rep(Q, ⇢). For more details on path algebras, repre-
sentations of quivers and quivers with relations we refer to [ARS], [ASS] and [CB2].

Tilting modules Let A be a finite-dimensional K-algebra. We call a module M 2 mod(A)
rigid if Ext1A(M,M) = 0. If in addition M is indecomposable, we call it an exceptional module.
We call a module M 2 mod(A) a partial tilting module if proj. dim(M)  1 and if it is rigid. A

partial tilting module M is called a tilting module if there exists a short exact sequence

0! A! T 0 ! T 00 ! 0

with T 0, T 00 2 add(M). It is a result of Bongartz [B] that any partial tilting module can be
completed to a tilting module, that is if M 2 mod(A) is a partial tilting module, there exists a
module T 2 mod(A) such that M � T is a tilting module.
Denote by |M | the number of nonisomorphic indecomposable summands of M . Then it follows

from Bongartz’s result, that a partial tilting module M is a tilting module if and only if |M | = |A|.
We say that a partial tilting module M is an almost complete tilting module if |M | = |A|� 1. Any
almost complete tilting module can be completed in 1 or 2 ways to a tilting module. This follows
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from work by Rietdmann and Schofield [RS] and Unger [U], where tilting modules were considered
as combinatorial objects for the first time.
A pair (M,P ) with M 2 mod(A) and P 2 proj(A) is called a support tilting pair (respectively

almost support tilting pair) if M is a partial tilting module, HomA(P,M) = 0 and |M |+ |P | = |A|
(respectively |M |+ |P | = |A|� 1). If A is a finite-dimensional path algebra, any almost complete
support tilting pair can be completed in exactly two ways to a support tilting pair. However,
even in the more general class of support tilting pairs, this result is not true for finite-dimensional
algebras. For this see the example at the end of this chapter. A collection of articles on tilting
theory and a lot of references concerning this topic can be found in [AHK].

Auslander-Reiten translation Let A be a finite-dimensional algebra and let

D = HomK(�,K) : mod(A)! mod(Aop) and (�)⇤ = HomA(�, A) : proj(A)! proj(Aop)

be the well-known dualities, where Aop denotes opposite algebra of A. Further let

P1
p
1�! P0

p
0�!M ! 0

be a minimal projective presentation ofM 2 mod(A), that is an exact sequence such that p0 : P0 !
M and p1 : P1 ! Ker(p0) are projective covers. Applying the functor (�)⇤, yields an exact
sequence

0!M⇤ p⇤
0�! P ⇤

0

p⇤
1�! P ⇤

1 ! Cok(p⇤1)! 0

of right A-modules. We define Tr(M) = Cok(p⇤1) and call it the transpose. We have that Tr(M) = 0
if and only if M is projective.
Denote by mod(A) the projectively stable category and by mod(A) the injectively stable category.

Then the transpose induces a duality

Tr: mod(A)! mod(Aop)

called the Auslander Reiten transpose. Furthermore, the functors

⌧A = DTr: mod(A)! mod(A) and ⌧�1
A = TrD : mod(A)! mod(A)

are mutually inverses of categories called the Auslander Reiten translation and its inverse.
Recall the Auslander-Reiten formula

Ext1A(M,N) ⇠= DHomA(N, ⌧A(M)) ⇠= DHomA(⌧
�1
A (N),M)

where HomA(M,N) respectively HomA(M,N) denotes the stable Homomorphism space, that is
the Homomosphism space modulo morphisms factoring through projectives respectively injectives.
The Auslander-Reiten formula simplifies to

Ext1A(M,N) ⇠= DHomA(N, ⌧A(M))

if proj. dim(M)  1 and
Ext1A(M,N) ⇠= DHom(⌧�1

A (N),M)

if inj. dim(N)  1.

Auslander-Reiten sequences Let R be an arbitrary ring and Mod(R) the category of left
R-modules.
A morphism v : E ! V is called right almost split if v is not a split epimorphism, and if

h : M ! V is not a split epimorphism, there is a morphism h0 : M ! E such that h = vh0.
Dually a morphism u : U ! E is called left almost split if u is not a split monomorphism, and

if g : U ! N is not a split monomorphism, there is a morphism g0 : E ! N such that g = g0u.
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2 Basic definitions and notation

An exact sequence
0! U

u�! E
v�! V ! 0

is called an almost split sequence or Auslander-Reiten sequence if it satisfies the following condi-
tions:

• it is not a split sequence;

• the morphism v : E ! V is right almost split;

• the morphism u : U ! E is left almost split;

The following properties of an almost split sequence 0 ! U
u�! E

v�! V ! 0 in Mod(R) are
well-known:

• The rings EndR(U) and EndR(V ) are local, and hence U and V are indecomposable.

• Suppose that 0! U 0 u0
�! E0 v0

�! V 0 ! 0 is also an almost split sequence. Then the following
are equivalent:

– The sequences 0! U
u�! E

v�! V ! 0 and 0! U 0 u0
�! E0 v0

�! V 0 ! 0 are isomorphic;

– U ⇠= U 0;

– V ⇠= V 0.

Let A be a finite-dimensional K-algebra (or more general an Artin algebra). Then we have
the following existence theorems for almost split sequences:

– If M is an indecomposable nonprojective module in mod(A), there exists an almost
split sequence 0! ⌧A(M)! E !M ! 0.

– If N is an indecomposable noninjective module in mod(A), there exists an almost split
sequence 0! N ! E ! ⌧�1

A (N)! 0.

Auslander-Reiten quiver Let A be a finite-dimensional K-algebra. A homomorphism f : M !
N in mod(A) is called irreducible if f is neither a split monomorphism nor a split epimorphism
and if f = f1f2, either f1 is a split epimorphism or f2 is a split monomorphism.
Let M,N 2 mod(A) be indecomposable and such that there is an irreducible homomorphism

M ! N . Further let g : E ! N be a right almost split map, and f : M ! E0 a left almost split
map. Then there are positive integers a, b and modules X,Y such that E ⇠= Ma �X, where M is
not a direct summand of X and such that E0 ⇠= N b � Y , where N is not a direct summand of Y .
The Auslander-Reiten quiver �A is defined as follows. The vertices of �A are given by the

isomorphism classes [M ] of finite-dimensional indecomposable A-modules. There is an arrow
[M ] ! [N ] if and only if there is an irreducible morphism M ! N . The arrow has a label (a, b)
if there is a minimal right almost split morphism Ma �X ! N , where M is not a summand of
X, and a minimal left almost split morphism M ! N b � Y , where N is not a summand of Y . In
addition if M is an indecomposable nonprojective A-module we draw an arrow

[M ] [⌧(M)]//

to indicate the Auslander-Reiten translation. Usually the vertices corresponding to projective
vertices are drawn on the left and the vertices corresponding to injective vertices are drawn on
the right hand side.
For more details on Auslander-Reiten theory we refer to [ARS], [ASS] and [A1].

⌧ -tilting modules Let A be a finite-dimensional algebra, M 2 mod(A) and P a projective
A-module. Then

• M is ⌧ -rigid if HomA(M, ⌧AM) = 0,
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• M is a ⌧ -tilting module if M is ⌧ -rigid and |M | = |A|, and

• (M,P ) is a support ⌧ -tilting pair (respectively almost complete support ⌧ -tilting pair) if M
is ⌧ -rigid, HomA(P,M) = 0 and |M |+ |P | = |A| (respectively |M |+ |P | = |A|� 1).

Hence any rigid module of projective dimension at most 1 is also ⌧ -rigid. Note that any tilting
module is a ⌧ -tilting module. Furthermore, it also follows from the Auslander-Reiten formulas
that any ⌧ -rigid module is also rigid. For more details on ⌧ -tilting theory we refer to [AIR], where
the authors also prove the following theorem.

Mutation Theorem. Any basic almost complete support ⌧ -tilting pair is a direct summand of
exactly two basic support ⌧ -tilting pairs.

Example Let A = KQ/I be the finite-dimensional algebra defined by the quiver

1

2

3

↵
1

??
↵

2

��
↵

3

oo

and the ideal I generated by the relations ↵2↵1 = ↵3↵2 = ↵1↵3 = 0. Then its Auslander-Reiten
quiver, containing representatives of all indecomposable modules indicated by composition factors
is given by

2

1
2

1

3
1

3

2
3

2

??

��

??

��

??

��
⌧

oo
⌧

oo
⌧

oo

where one has to identify the simple module at 2 on the left with the one on the right hand side.
Then

T = 1
2 � 2

3 � 3
1

is a (support) tilting module, as its 3 nonisomorphic indecomposable summands are the projective
indecomposable modules. However, we cannot replace any of its summands to obtain a new
(support) tilting module, as the remaining indecomposable modules all have infinite projective
dimension. This example shows, that tilting modules are in general not enough objects to model
the process of mutation inspired by cluster tilting theory.
It is easy to see that all the simple modules are ⌧ -rigid and starting with the tilting module T

we obtain a new ⌧ -tilting module T 0, by exchanging the summand 1
2 with the simple module at

vertex 3.
T = 1

2 � 2
3 � 3

1  ! T 0 = 3� 2
3 � 3

1

Similarly, one can replace any other summand of T to obtain another (support) ⌧ -tilting module.
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3 ⌧ -tilting theory for completed string
algebras

3.1 String algebras

Finite-dimensional string algebras are a well-studied class of algebras. The module category and
in fact the Auslander-Reiten theory of a finite-dimensional string algebra can be described in
completely combinatorial terms. The so called string and band modules form a complete list
of representatives of isomorphism classes of indecomposable modules. Recently Crawley-Boevey
[CB4] achieved the classification of finitely generated (and artinian) modules over a possible infinite
dimensional string algebra KQ/I, using the functorial filtration method. In this section we will
recall his notation and results. Note that in contrast to Crawley-Boevey, we only consider finite
quivers. Thus, his notion of finitely controlled (respectively pointwise artinian) modules (see [CB4,
Introduction]), coincides with finitely generated (respectively artinian) modules and will therefore
be omitted. We would like to mention Ringel’s work on algebraically compact modules [R5], where
infinite strings were also considered.
A string algebra is an algebra A = KQ/I, where I = (⇢) is an ideal generated by a set of

zero-relations ⇢, i.e. a set of paths of length � 2 in Q such that

• at any vertex of Q there are at most two arrows coming in and at most two arrows going
out,

• for any arrow y of Q there is at most one arrow x such that xy /2 ⇢, and at most one arrow
z such that yz /2 ⇢.

Example 3.1.1. Let Q be the 1-loop quiver, i.e. the quiver with one vertex and one loop x as
below

•x ::

Then KQ ⇠= K[x] is a string algebra.
Let Q be the the quiver with one vertex and two loops, i.e.

•x :: ydd

and let ⇢ = {xy, yx}. Then A = KQ/(⇢) is a string algebra, and furthermore A is isomorphic to
K[x, y]/(xy) the polynomial ring in two commuting variables modulo the ideal generated by (xy).
For the same quiver we can also choose the relations ⇢ = {x2, y2}, and then A = KQ/(⇢) ⇠=

Khx, yi/(x2, y2) is a string algebra, where Khx, yi is the polynomial ring in two non-commuting
variables.

3.1.1 Words

For the combinatorial description of the indecomposable modules over a string algebra we will use
words in the direct and inverse letters, satisfying certain conditions. Roughly speaking, a word is
a possibly infinite path in the underlying graph of Q, which avoids the zero-relations in ⇢. These
words are also used in the finite-dimensional case, where they are usually referred to as strings
and bands. But in contrast to the finite-dimensional setting we will also have to consider infinite
words.
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3 ⌧ -tilting theory for completed string algebras

Let A = KQ/(⇢) be a string algebra. For any arrow x 2 Q1 we define a formal inverse x�1 with
h(x�1) = t(x) and t(x�1) = h(x), and we set (x�1)�1 = x. We say, x is a direct letter, and x�1 is
an inverse letter.
Let I be one of the sets {0, 1, . . . , n} for n � 1 or N or �N = {0,�1,�2 . . .} or Z. Then an

I-word or word C is a sequence of letters

C =

8
>>><

>>>:

C1C2 . . . Cn if I = {0, 1, . . . , n},
C1C2C3 . . . if I = N,
. . . C�2C�1C0 if I = �N,
. . . C�2C�1C0 | C1C2 . . . if I = Z,

satisfying:

• if Ci and Ci+1 are consecutive letters, then the tail of Ci is the head of Ci+1 and C�1
i 6= Ci+1

and

• no zero relation in ⇢ nor its inverse appears as a sequence of consecutive letters in C.

In addition for any vertex v in Q we define the trivial I-words 1v," for the set I = {0} and
for " = ±1. Let C be an I-word. The inverse of C is the word denoted by C�1 and is given by
inverting the letters of C and reversing their order. The inverse of the trivial words is defined by
(1v,")�1 = 1v,�". If C is an N-word, then C�1 is an (�N)-word and vice versa. A word C is called
direct or inverse if every letter of C is direct or inverse respectively.
If C is a Z-word we define the shift of C by n for n 2 Z, as the word C[n] = . . . Cn | Cn+1 . . ..

The shift can be extended to any I-word, with I 6= Z, by setting C[n] = C. We define an
equivalence relation ⇠ on the set of all words, where two words C and D are equivalent if and
only if D = C[n] or D = C�1[n] for some n 2 Z. A Z-word C is called periodic if C = C[n] for
some n > 0, and in that case n is called the period of C.

3.1.2 Classification of finitely generated modules

String modules For any I-word C we define an A-module M(C) as follows: we choose symbols
bi (i 2 I) and as a K-vector space we set

M(C) =
M

i2I

Kbi,

hence any element in M(C) is a finite linear combination in the basis symbols bi (i 2 I). Now, we
define the action of the trivial paths and arrows on M(C). For any vertex v we define evbi = bi if
the tail of Ci is v, and evbi = 0 otherwise. For any arrow x 2 Q1 we define

xbi =

8
><

>:

bi�1 (if i� 1 2 I and Ci = x)

bi+1 (if i+ 1 2 I and Ci+1 = x�1)

0 (otherwise).

Now it is obvious from the definition of words, that M(C) is a representation of Q, satisfying
all relations in ⇢, and thus all relations in the ideal (⇢) in KQ. In other words, with the above
definition we have a well-defined action of A on the module M(C). If C is a non-periodic word,
we call M(C) a string module.
The module M(C) can be pictured, using what we call the quiver of C. This quiver has the set

bi (i 2 I) as vertices. There is an arrow from bi to bi�1 if and only if Ci is a direct letter x and
then we label this arrow with x. There is an arrow from bi to bi+1 if and only if Ci+1 is an inverse
letter x�1 and then we label this arrow with x. Thus the quiver of an I-word is a quiver of type
An+1 if I = {0, 1, . . . , n} of type A1 if I = N and of type 1A1 if I = Z. It is convenient to draw
the quiver in zickzack shape, such that sources are above sinks.
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3.1 String algebras

Example 3.1.2. Let A = K[x, y]/(xy) and consider the Z-word

C = . . . xxxy�1y�1xy�1xxy�1y�1y�1 . . . .

Then its quiver is given by the quiver of type 1A1

•

•

•

•

•

•

•

•

•

•

•

•

•

⇥⇥

x

⇥⇥

x

⇥⇥

x

⇥⇥ y ⌧⌧

y ⌧⌧
x

⇥⇥ y ⌧⌧
x

⇥⇥

x

⇥⇥ y ⌧⌧

y ⌧⌧

y ⌧⌧

⌧⌧

where in place of the basis vectors bi we used bullets for the vertices.

Lemma 3.1.3. If C,D are two words such that C ⇠ D, then the modules M(C) and M(D) are
isomorphic.

Proof. For any I-word C there is an isomorphism iC : M(C) ! M(C�) given by reversing the
basis, and for any n 2 Z there is an isomorphism tC,n : M(C) ! M(C[n]) given by the identity
for I 6= Z, and for a Z-word by tC,n(bi) = bi�n. Now if C and D are any equivalent words, a
composition of these isomorphisms yields an isomorphism of M(C) and M(D).

Since we are mainly interested in the isomorphism classes of modules we sometimes make no
distinction between equivalent words. However, there are situations where we have to be more
careful and work with the labelling of the letters of a given words.

Band modules If C is a periodic Z-word with period n, the isomorphism tC,n induces an
action of K[T, T�1] via

bi · T := tC,n(bi) = bi�n

which is compatible with the action of A, since if Ci = x for an arrow x we have

(xbi)T = tC,n(bi�1) = bi�1�n

and since C is n-periodic we have Ci�n = Ci = x and thus

x(biT ) = x(bi�n) = bi�1�n

and similarly for Ci = x�1. ThusM(C) becomes an A-K[T, T�1]-bimodule and for anyK[T, T�1]-
module V we can define a new A-module by

M(C, V ) = M(C)⌦K[T,T�1] V.

Note that, since M(C) is free over K[T, T�1] of rank n, M(C, V ) is finite-dimensional if and only
if V is finite-dimensional.
If C is periodic and V is an indecomposable K[T, T�1]-module, we call M(C, V ) a band module.

In the following we want to recall the main results from [CB4].

Theorem 3.1.4. String modules and finite-dimensional band modules are indecomposable. The
only isomorphisms between such modules are those arising from equivalence relation of words.
To be more precise, there are no isomorphisms between string modules and modules of the form
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3 ⌧ -tilting theory for completed string algebras

M(C, V ); two string modules M(C) and M(D) are isomorphic if and only if C and D are equiva-
lent words; two modules of the form M(C, V ) and M(D,W ) are isomorphic if and only if D = C[m]
and W ⇠= V or D = (C�1)[m] and W ⇠= res◆V for some m, where ◆ is the automorphism of
K[T, T�1] exchanging T and T�1 and res◆ denotes the restriction map via ◆.

The following is [CB4, Theorem 1.2.] and one of the main results in this article.

Theorem 3.1.5. Every finitely generated A-module is isomorphic to a direct sum of string and
finitely dimensional band modules.

Example 3.1.6. Let A = K[x, y]/(xy) and consider the Z-word

C = . . . y�1y�1y�1xxx . . . .

Then its quiver is given by the quiver of type 1A1

•

•

•

•

•

•

•
⌧⌧

y ⌧⌧

y ⌧⌧

y ⌧⌧
x

⇥⇥

x

⇥⇥

x

⇥⇥

⇥⇥

where in place of the basis vectors bi we used bullets for the vertices. Obviously, this represents a
string module which is not finitely generated.

Finitely generated string modules We say that an I-word is eventually inverse (respectively
direct) if there are only finitely many i > 0 in I such that Ci is a direct letter (respectively inverse).
For example, if C is finite or an �N-word, it is eventually inverse and eventually direct. The Z-
word in Example 3.1.3. is eventually inverse. The next result is [CB4, Proposition 12.1.] and
together with Theorem 3.1.5 yields the classification of finitely generated modules over a string
algebra.

Theorem 3.1.7. A string module M(C) is finitely generated if and only if C and C� are even-
tually inverse. A direct sum of string and finite-dimensional band modules is finitely generated if
and only if the sum is finite, and the string modules are finitely generated.

Dually a string module M(C) is Artinian if and only if C and C�1 are eventually direct.

Example 3.1.8. Let A be the string algebra K[x] and let M = K[x] = M(C) be the string
module of the N-word xxx . . .. Then obviously EndA(M) ⇠= K[x] is not a local ring. One can
see more generally, that if C is an infinite word, such that C or C� is eventually inverse, then
EndA(M(C)) is not local.

3.1.3 Standard homomorphisms and Auslander-Reiten sequences

In this section we consider a finite-dimensional string algebra A. Hence, all finitely generated
modules are also finite-dimensional. So the finitely generated string modules are given by finite
words and therefore, in this section we always consider finite words.
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3.1 String algebras

Homomorphisms between string modules In the following we will describe a basis of the
homomorphism space between two string modules. This combinatorial description of the basis is
due to Crawley-Boevey [CB1] and a reformulation of his construction can be found in [Schr]. Let
C and C 0 be two words. We call a pair of triples of words

(a, a0) = ((C(1), C(2), C(3)), (C 0(1), C 0(2), C 0(3)))

such that C = C(1)C(2)C(3) and C 0 = C 0(1)C 0(2)C 0(3) admissible if C(2) ⇠ C 0(2) and the quivers of
C and C 0 are given by

C(3)C(2)C(1)

C 0(3)C 0(2)C 0(1)

�� ��

�� ��

Here it is possible that C(i) and C 0(i) are words of length zero. We also say that C(2) is a
predecessor closed subword of C, and C 0(2) is a successor closed subword of C 0. We denote the set
of all admissible pairs for C and C 0 by A (C,C 0). The following theorem was proven in a more
general setup by Crawley-Boevey.

Theorem 3.1.9 ([CB1]). For any admissible pair (a, a0) 2 A (C,C 0) of words C,C 0 there is a
canonical homomorphism ✓(a,a0) : M(C)!M(C 0). Moreover the set

{✓(a,a0) | (a, a0) 2 A (C,C 0)}

is a basis of HomA(M(C),M(C 0)).

We call the homomorphisms of the form ✓(a,a0) : M(C)!M(C 0) for an admissible pair (a, a0) 2
A (C,C 0) standard homomorphisms. This description of homomorphisms can be transferred to
band modules and one should keep the same picture in mind.

Remark 3.1.10. Let M = M(C) and N = M(C 0) be two string modules. Then the following is
not hard to see:
(i) If bMi 2 M and bNj 2 N are basis vectors, there is at most one standard homomorphism

✓ : M ! N with ✓(bMi ) = ✓(bNj ).
(ii) The composition of two standard homomorphisms is either 0 or again a standard homomor-

phism.

Auslander-Reiten sequences containing string modules We would like to give a description
of Auslander-Reiten sequences containing string and band modules. These descriptions are due
to Butler and Ringel [BR]. In order to phrase their results we need some more definitions.
For any arrow x we define U(x) = M(B) 2 mod(A) where B is the longest inverse word such

that Bx is a word. Similarly we define V (x) = M(C) 2 mod(A) where C is the longest inverse
word such that xC is a word. Finally we define N(x) = M(D), where D = BxC. We call the
short exact sequence

o! U(x)
◆�! N(x)

⇡�! V (x)! 0

where ◆ is the canonical inclusion and ⇡ the canonical projection a canonical exact sequence.
Let C be a word. We say that
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3 ⌧ -tilting theory for completed string algebras

• C starts on a peak if there is no arrow x such that x�1C is a word;

• C ends on a peak if there is no arrow x such that Cx is a word;

• C starts in a deep if there is no arrow y such that yC is a word;

• C ends in a deep if there is no arrow y such that Cy�1 is a word.

If C is a word not starting on a peak, there is an arrow x such that x�1C is a word and a unique
direct word D such that hC := Dx�1C is a word starting in a deep. We call Dx�1 a hook.
If C is a word not ending on a peak, there is an arrow x such that Cx is a word and a unique

direct word D such that Ch := CxD�1 is a word ending in a deep. We call xD�1 a hook.
If C is a word not starting in a deep, there is an arrow y such that yC is a word and a unique

direct word D such that cC := D�1yC is a word starting on a peak. We call D�1y a cohook.
If C is a word not ending in a deep, there is an arrow y such that Cy�1 is a word and a unique

direct word D such that Cc := Cy�1D is a word ending on a peak. We call y�1D a cohook.
From now on, assume that C is a word such that M(C) is neither isomorphic to an injective

module nor to one of the form U(x). Then if C is a word neither starting nor ending on a peak,
the words hC, Ch and hCh are defined and we call

0 // M(C)
(◆,◆) // M(hC)�M(Ch)

(◆,�◆) // M(hCh) // 0

where ◆ is the canonical inclusion (and ⇡ will be the canonical projection), a canonical exact
sequence. If C is a word starting but not ending on a peak the word Ch is defined, C equals cD
for some word D not starting on a peak and

0 // M(C)
(◆,⇡) // M(Ch)�M(D)

(⇡,�◆) // M(Dh) // 0

is called a canonical exact sequence. If C is a word not starting but ending on a peak, the word

hC is defined, C equals Dc for some word D not ending on a peak and

0 // M(C)
(◆,⇡) // M(hC)�M(D)

(⇡,�◆) // M(hD) // 0

is a canonical exact sequence. If C is a word neither starting nor ending on a peak, C equals cDc

for some word D neither starting nor ending on a peak and

0 // M(C)
(⇡,⇡) // M(cD)�M(Dc)

(⇡,�⇡)// M(D) // 0

is a canonical exact sequence.
The next proposition is [BR, Prop. on p.172].

Proposition 3.1.11. The Auslander-Reiten sequences in mod(A) containing string modules are
the canonical exact sequences.

Example 3.1.12. Consider the finite-dimensional string algebra A = K[x, y]/(xy, x5, y5) and the
word

C = y�1y�1y�1y�1xxy�1

starting but not ending on a peak. We have C = cD, where D = xy�1 is a finite word. Attaching
a hook at the end of C yields the word

Ch = y�1y�1y�1y�1xxy�1xy�1y�1y�1y�1

starting on a peak and ending in a deep. Hence the canonical exact sequence

0 // M(C)
(◆,⇡) // M(Ch)�M(D)

(⇡,�◆) // M(Dh) // 0
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3.2 Completed string algebras

can be pictured as follows
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where we drew dots corresponding to the basis vectors.

Auslander-Reiten sequences containing band modules Let V 2 mod(K[T, T�1]) be an in-
decomposable finite-dimensional module. Then there exists an Auslander-Reiten sequence in
mod(K[T, T�1]) which is of the form

0! V !W ! V ! 0

for some W 2 mod(K[T, T�1]). Furthermore W consists of at most two indecomposable direct
summands. Let C be a periodic word for A. Then the above sequence gives rise to a short exact
sequence in mod(A)

0!M(C, V )!M(C,W )!M(C, V )! 0

which we refer to as a canonical exact sequence of band modules. Note that if W = W1 �W2 for
Wi indecomposable, then M(C,W ) = M(C,W1) �M(C,W2) and M(C,Wi) are band modules
for i = 1, 2. The next proposition is also due to Butler and Ringel [BR].

Proposition 3.1.13. The Auslander-Reiten sequences in mod(A) containing band modules are
the canonical exact sequences of band modules.

We see that the components in the Auslander-Reiten quiver of A containing band modules are
all homogeneous tubes. Furthermore, we see that band modules cannot be ⌧ -rigid.

3.2 Completed string algebras

Completed Path algebras Let Q be a finite quiver. Then the completed path algebra is defined
by

dKQ := lim �KQ/mn

i.e. it is the completion of the path algebra with respect to the maximal ideal m in KQ spanned
by all arrows, also called arrow ideal. More precisely, let KQn be the K-span of all paths of length
n in Q. One can identify dKQ canonically with

Y

n�0

KQn

where the multiplication is induced by the multiplication on KQ. We write elements in dKQ as
infinite sums

P
n�0 an with an 2 KQn and then the product of two elements is given by

(
X

i�0

ai)(
X

j�0

bj) =
X

k�0

X

i+j=k

aibj .
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3 ⌧ -tilting theory for completed string algebras

Thus, the completed path algebra is a topological K-algebra via the m-adic topology. For a
subset X of dKQ we denote by X the closure of X. For a 2 dKQ the sets a+mn form a fundamental
system of open neighbourhoods. Since the intersection over all n 2 N of mn is {0}, it follows that
dKQ is a regular Hausdor↵ space. In particular, for any subset X of dKQ we have

X =
\

n2N
X +mn.

Note, that in general the ideal (⇢) in dKQ generated by relations ⇢ is not the same as its closure

(⇢). An example for this and a more detailed study of dKQ as a topological K-algebra can be
found in the master thesis [Ge].
Completed path algebras have appeared more often in the representation theory of finite-

dimensional algebra, since the introduction of Jacobian algebras by Derksen, Weyman and Zelevin-
sky in 2008. In [DWZ], they call a finite-dimensional dKQ-module M nilpotent, if it is annihilated
by some power of the arrow ideal, say msM for s � 0. Furthermore, using an argument of
Crawley-Boevey they prove that any finite-dimensional dKQ-module is nilpotent. We say that a
KQ-module M is locally nilpotent, if for any x 2M there exists some s� 0 such that msx = 0.

Proposition 3.2.1. Let M be a KQ-module which is locally nilpotent. Then the action of KQ
extends naturally to an action of dKQ. Furthermore, if N is any dKQ module, then any KQ-module
homomorphism from M to N is also a dKQ-module homomorphism.

Proof. Let a =
P

n�0 an 2 dKQ, where an 2 KQn and let m 2M . Then

am =
X

n�0

(anm)

is a finite sum since asm = 0 for all s� 0, and is hence a well defined action on M .
Let N be any dKQ-module and f : M ! N an KQ-module homomorphism. Then for any

a =
P

n�0 an 2 dKQ and m 2M we have

f(am) = f(
X

n�0

(anm)) =
X

n�0

(anf(m)) = af(m)

where we used the finiteness of the sum and the KQ-linearity of f . Hence f is a dKQ-module
homomorphism.

Completed string algebras A completed string algebra is an algebra

⇤ = dKQ/(⇢),

where (⇢) is the closure of the ideal generated by zero-relations in ⇢, such that

• at any vertex of Q there are at most two arrows coming in and at most two arrows going
out and

• for any arrow y of Q there is at most one arrow x such that xy /2 ⇢ and at most one arrow
z such that yz /2 ⇢.

Let A = KQ/(⇢) be a string algebra and ⇤ = dKQ/(⇢) the completed string algebra, defined by
the same quiver and relations. Further for any n � 2 denote by

An = KQ/((⇢) +mn) = dKQ/((⇢) +mn)

the n-truncation of A respectively of ⇤. Then there is an inverse system

· · ·! An ! · · ·! A3 ! A2
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3.2 Completed string algebras

of algebras and we have
⇤ = lim �(An).

Later on we will prefer to consider ⇤ as an inverse system of factor algebras of A. Note that by
the third isomorphism theorem for rings we have

Ap =
KQ

(⇢) +mn
⇠=

KQ/(⇢)

((⇢) +mn)/(⇢)
=

A

((⇢) +mn)/(⇢)

and these isomorphisms are compatible with the transition maps. Thus, if we set

mn = ((⇢) +mn)/(⇢) ✓ A

this defines an descending filtration of ideals of A such that

⇤ = lim �A/mn.

Example 3.2.2. Let A = K[x, y]/(xy) be the string algebra as in Example 3.1.1. Then the
corresponding completed string algebra is given by ⇤ = Khhx, yii/(xy, yx) and from the above
description it is not hard to see that this is isomorphic to K[[x, y]]/(xy). In this case it is easy to
see that the closure of the ideal (xy) in K[[x, y]] is the ideal itself, since the algebra is commutative.
Thus the two-sided ideal generated by xy, is the same as the left-ideal and it follows from [Ge,
Lemma 2.5.5.] that this is a closed subspace.

Let A = Khx, yi/(x2, y2) be the string algebra from Example 3.1.1 and ⇤ = Khhx, yii/(x2, y2)
the corresponding completed string algebra. Then it follows for example from [Ge, Lemma 2.5.5.]
that the element X

n2N
(xy)nx2(yx)n

is in (x2, y2), but with some work one can see, that it is not an element of the ideal (x2, y2) in
Khhx, yii.

3.2.1 More on words

The sign for letters For each letter ` we choose a sign "(`) = ±1, such that for two letters
`, `0 with the same head and same sign we have {`, `0} = {x�1, y} where xy 2 ⇢.

Note that if Ci and Ci+1 are consecutive letters in a word, the head of C�1
i is equal to the head

of Ci+1, but neither CiCi+1 nor C�1
i+1C

�1
i is a relation in ⇢. Hence, C�1

i and Ci+1 must have
di↵erent signs.

Example 3.2.3. Let A = KQ/(⇢) be the string algebra given by the quiver

•

•

•

•

•

y
1 ��

y
2

??
x
1

??

x
2

��

and relations ⇢ = {x1y1, x2y2}. Then, if we choose the sign "(y1) = 1, it follows that "(y2) =
"(x�1

2 ) = �1 since these letters have the same head as y1, but neither they nor their inverses form
a relation. Further we can choose "(x�1

1 ) = 1, since x�1
1 has the same head as y1 and x1y1 2 I.

For the remaining letters we can choose the sign arbitrarily since they all have di↵erent heads.

Let A = K[x, y]/(xy) as in Example 3.1.1. Then, if we choose the sign "(x) = 1, it follows that
"(x�1) = �1, "(y�1) = 1, "(y) = �1 and these are all letters.
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3 ⌧ -tilting theory for completed string algebras

Composition of words The head of a finite word or N-word C is the head of C1 or v for
C = 1v,". The sign of a finite word or N-word C is the sign of C1 or " for C = 1v,". The tail of a
finite word of length n is the tail of Cn or v for C = 1v,". If C is a �N-word its tail is the tail of
C0.
Let C and D be two words. If the tail of C is equal to the head of D, then we define the

composition CD as the concatenation of the sequences of letters, provided that the result is a
word. This implies, that C� and D have opposite signs. If C = C1C2 . . . Cn is a non-trivial word
such that all of its powers Cm are words, we write C1 and 1C1 for the N-word and Z-word

C1 . . . CnC1 . . . CnC1 . . . and . . . C1 . . . Cn|C1 . . . CnC1 . . . .

If C is an N-word of the form D1 it is called repeating.
A primitive cycle in A is a finite direct word P , such that 1P1 is a periodic word, but P itself

is not the power of a smaller word. Hence P is given by a cyclic path in Q, such that all its powers
are pairwise di↵erent non-zero elements in A.
Let C and B be words. We say that B is a subword of C, if there exist words C 0 and C 00 such

that C = C 0BC 00. If C is an I-word and i 2 I, we can define new words

C>i = Ci+1Ci+2 . . . and Ci = . . . Ci�1Ci

and these are subwords of C.
An I-word C is called eventually repeating if C>i is repeating for some i 2 I. Note that if C is

an eventually inverse or an eventually direct N- or Z-word, then it is also eventually repeating: say
C is eventually direct, e.g. C>i is direct. Then there is a unique choice for any Cj for j � i + 2.
Since if x is an arrow in Q with tail i there is a unique arrow y with head i and such that xy is
not a relation. Since we assume that Q is a finite quiver we must have that C>i = D1 for some
primitive cycle D.

3.2.2 Noetherian algebras over complete local rings

In [A1] and [A2] Auslander studied Noetherian algebras over a complete local ring in the context
of almost split sequences or more general morphisms determined by objects. He discovered that
these algebras have nice enough properties such that similar existence theorems - as for Artinian
algebras - on almost split sequences still hold. In the following we will show that a completed
string algebra is a Noetherian algebra over a complete local ring and hence Auslander’s results are
applicable.
Let S be a commutative ring. Then an algebra ⇤ is an S-algebra if there exists a ring morphism

f : S ! ⇤, such that f(S) is contained in the center of ⇤. If in addition S is a Noetherian ring
and ⇤ is finitely generated as an S-module, we say that ⇤ is a Noetherian S-algebra. Since f(S)
is contained in the center of ⇤, it follows that ⇤ is a Noetherian S-algebra if and only if ⇤op is
a Noetherian S-algebra. Hence, in this case ⇤ is a right- and left-Noetherian ring. We call ⇤ a
Noetherian algebra over complete local ring if it is a Noetherian S-algebra and S is a complete
local ring.

A string algebra is a Noetherian K[z]-algebra Let A = KQ/(⇢) be a string algebra. We
define for any vertex v 2 Q the element zv 2 evAev as the sum of all primitive cycles with head
v. Note that by the definition of a string algebra, there are at most two such cycles. Moreover if
P and R are two such distinct primitive cycles with head v we have

PR = RP = 0

in A which implies for example

(P +R)n = Pn +Rn and (P +R)nP = Pn+1.
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3.2 Completed string algebras

The following is a consequence of [CB4, Lemma 3.1.].

Lemma 3.2.4. The element
P

v2Q
0

zv is in the center of A.

Proposition 3.2.5. Any string algebra A = KQ/(⇢) is a Noetherian K[z]-algebra, where K[z]
denotes the polynomial ring in one variable.

Proof. By the above lemma
P

v2Q
0

zv commutes with every other element in A. Thus, by the
universal property of the polynomial ring there exists a unique ring homomorphism

f : K[z]! A, z 7!
X

v2Q
0

zv.

Now it follows from [CB4, Lemma 3.2.] that A is finitely generated as a K[z]-module. Note, that
for this we need that Q consists of only finitely many vertices.

Another descending filtration of ideals of A From now on we will identify z in K[z] with the
element

P
v2Q

0

zv in A. Let
n = (z)A

be the ideal in A generated by z. Note that since z is in the center of A the notions of left-, right
and two-sided ideal coincide in this case. The ideal n induces an descending filtration

A � n1 � n2 � n3 � . . .

where ni = ni for all i � 1. Let
Â := lim �A/ni

be the n-adic completion of A.

Example 3.2.6. The string algebra A is finite-dimensional if and only if there are no primitive
cycles. In that case the element z and thus n is 0. Hence we simply have Â = A. Note that in
that case we also have that mi = 0 for some i � 0. Hence mi ✓ n and we have ⇤ = Â. In the
following lemma we will show, that this example can be generalised.

Proposition 3.2.7. The descending filtrations

A � m1 � m2 � m3 � . . .

and
A � n1 � n2 � n3 � . . .

induce the same topologies and therefore there is a natural isomorphism of K-algebras

⇤ = lim �A/mi
⇠= lim �A/ni = Â.

Proof. We have to show, that for each nj there is some mi such that mi ⇢ nj and vice versa that
for each mj there is some ni such that ni ⇢ mj .
The elements in mi correspond to non-trivial paths in A of length at least i. Let u and v be

two vertices in Q and consider all non-trivial paths from u to v which are non-zero in A. By the
string algebra condition, all such paths are of the form

D,PD,P 2D, . . .

where P and D are non-trivial paths (compare the proof of [CB4, Lemma 3.2.]). If there are
infinitely many of such non-trivial paths, then P is a primitive cycle and P jD = zjvD in A. If
there are only finitely many such paths, their length is bounded and they are not elements in mi

for i � 0. Hence there is some i � 0 such that all elements in mi are either zero or of the form
zja for some a 2 A. Hence we have mi ⇢ nj .
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3 ⌧ -tilting theory for completed string algebras

On the other hand, since n is generated by sums of classes of paths we have that n ⇢ m1 and
therefore ni = ni ⇢ mi for all i. It is well-known that this is enough to ensure the existence of the
natural isomorphism of the two completions. See for example [E, Lemma 7.14.] for a proof in the
commutative setting. However, the same proof works for noncommutative rings.

Note that the natural map A! Â = ⇤ is injective. Indeed the kernel is given by

\

i�0

(z)iA

and this intersection is zero. Also note that A is finite-dimensional if and only if ⇤ is and in that
case they are isomorphic.

A completed string algebra is a Noetherian K[[z]]-algebra From now on we identify the
algebras Â and ⇤ and refer to both as the completed string algebra.

Theorem 3.2.8. The completed string algebra ⇤ = Â is a Noetherian algebra over the complete
local ring K[[z]].

Proof. The unique ring homomorphism f : K[z] ! A sending z to
P

v2Q
0

zv induces unique
morphisms

K[z]! A/ni

sending z to the class of
P

v2Q
0

zv which factor through

K[[z]]/(z)i = K[z]/(z)i ! A/ni.

Therefore, we have unique maps
K[[z]]! A/ni

sending z to the class of
P

v2Q
0

zv, which induce a unique map

K[[z]]! Â

since Â is the inverse limit of the A/ni. Since A is finitely generated as an K[z]-module, Â is
finitely generated as an K[[z]]-module.

The following can be found in [L, Proposition 21.34] in a more general setting.

Corollary 3.2.9. The algebra Â is n̂ := (z)Â -adically complete.

On the existence of Auslander-Reiten sequences for completed string algebras Denote by
Noeth(⇤) the full subcategory of Mod(⇤) whose objects are noetherian modules and by NoethP (⇤)
the full subcategory of Noeth(⇤) consisting of those modules with no non-zero projective direct
summands. Since ⇤ is noetherian, we have that Noeth(⇤) = mod(⇤) the full subcategory of finitely
generated modules. Further, denote by Art(⇤) the full subcategory of Mod(⇤) whose objects are
artinian ⇤-modules and by ArtI(⇤) the full subcategory consisting of those modules with no non-
zero injective direct summands. The projectively stable category is denoted by NoethP (⇤). It has
the same objects as those in Noeth(⇤) and Hom⇤(M,N) in NoethP (⇤) is defined to be

Hom⇤(M,N) = Hom⇤(M,N)/P (M,N)

where P (M,N) is the K[[z]]-submodule of Hom⇤(M,N) consisting of all homomorphisms that
factor through a projective ⇤-module. Similarly we define the injectively stable category ArtI(⇤),
which has the same objects as ArtI(⇤) and morphisms

Hom⇤(M,N) = Hom⇤(M,N)/I(M,N)
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3.2 Completed string algebras

where I(M,N) is the K[[z]]-submodule of Hom⇤(M,N) consisting of all homomorphisms that
factor through an injective ⇤-module.
Denote by

E = E(K[[z]]/(z))

the injective envelope of the simple module K[[z]]/(z) and define the functors

D̃ : Mod(⇤)! Mod(⇤op) and D̃ : Mod(⇤op)! Mod(⇤)

by D̃(�) := HomK[[z]](�, E).
We are now able to give a list of some direct very nice consequences of the fact that a completed

string algebra ⇤ is a Noetherian algebra over a complete local ring. Most of these can be found
in this more general setting in [A1] and [A2].

• By Matlis duality [M, Paragraph 4] we know, that M is in Noeth(⇤) if and only if D̃(M) is
in Art(⇤op). Thus the functors D̃ induce functors

D̃ : Noeth(⇤)! Art(⇤op) and D̃ : Art(⇤op)! Noeth(⇤).

which are inverse dualities.

• Every Noetherian algebra � over a complete local ring is semiperfect, i.e. every finitely
generated �-module has a projective cover. Hence the algebra ⇤ is semiperfect and so is
End⇤(M) for every M 2 Noeth(⇤) and by duality for M 2 Art(⇤).

• A finitely generated ⇤-module M is indecomposable if and only if End⇤(M) is local. The
same holds if M is an artinian ⇤-module.

• Every finitely generated ⇤-module M has a Krull-Remak-Schmidt decomposition, i.e. M =
M1� · · ·�Mr where each Mi is an indecomposable ⇤-module. Moreover, this decomposition
is unique in the sense that for any other such decomposition M = N1 � · · · � Nk, we have
k = r, and there is a bijection between the summands such that corresponding summands
are isomorphic. By duality the same holds for every M 2 Art(⇤).

• Using minimal projective presentations we can define the well-known Auslander-Reiten trans-
pose

Tr: NoethP (⇤)! NoethP (⇤
op)

which is a duality such that M 2 NoethP (⇤) is indecomposable if and only if Tr(M) is
indecomposable.

• It is not hard to see that the Auslander-Reiten translation for ⇤ defined as

⌧⇤ = D̃Tr: NoethP (⇤)! ArtI(⇤)

is an equivalence of categories with inverse

⌧�1
⇤ = Tr D̃ : ArtI(⇤)! NoethP (⇤).

This equivalence induces a bijection between the isomorphism classes of indecomposable
modules in NoethP (⇤) and isomorphism classes of indecomposable modules in ArtI(⇤).

The following is [A1, Theorem 2.3. and 2.4.]

Proposition 3.2.10. Let M 2 NoethP (⇤) be an indecomposable module. Then there exists an
Auslander-Reiten sequence

0! ⌧⇤(M)! U !M ! 0
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3 ⌧ -tilting theory for completed string algebras

in Mod(⇤). If N is in ArtI(⇤) and indecomposable there exists an Auslander-Reiten sequence

0! N ! U ! ⌧�1
⇤ (N)! 0

in Mod(⇤).

The existence of Auslander-Reiten sequences ending in indecomposable finitely generated non-
projective modules, is the main reason that we are considering completed string algebras. As we
have seen before, if A is an infinite dimensional string algebra there exist indecomposable finitely
generated modules, which do not have local endomorphism rings. Hence, there cannot exist an
Auslander-Reiten sequence in Mod(A) ending in such a module.

3.2.3 On the completion of modules

Let A be a string algebra and as before let n = (z)A be the ideal in A generated by (z). For any
A-module M its n-adic completion is defined as

M̂ := lim �M/niM.

As a limit of A-modules M̂ is again an A-module and also an Â-module. In fact the n-adic
completion is a functor

Mod(A)! Mod(Â), M 7! M̂

that restricts to finitely generated modules

mod(A)! mod(Â), M 7! M̂,

i.e. if M is finitely generated as an A-module then M̂ is finitely generated as an Â-module.
One might hope that the completion functor is essentially surjective. This is not the case in

general, not even when A is a local commutative noetherian ring. A counterexample for this can
be found in [FSW]. Here the authors consider the ring

A = C[X,Y ](X,Y )/(Y
2 �X3 �X2)

and its completion Â ⇠= C[[U, V ]]/(UV ), and argue that the finitely generated Â-module Â/(U)
is not an extended A-module, that is it is not isomorphic to M̂ for a finitely generated A-module
M .
However, when A = K[z] is the polynomial ring and Â = K[[z]] the ring of formal power series

the (z)-adic completion functor mod(A)! mod(Â) is essentially surjective. This follows from the
structure theorem of finitely generated modules over principal ideal domains, which implies that
any finitely generated K[[z]]-module is isomorphic to the finite direct sum of free modules and
truncated polynomial rings K[z]/(z)ki for some ki > 0. Because of the tight relation ship between
a (completed) string algebra and K[z] (respectively K[[z]]) one might yet hope again that n-adic
completion is essentially surjective on finitely generated modules. Unfortunately, we were not able
to prove this directly. However, it will follow from our results a posteriori.

Lemma 3.2.11. Let M be a finitely generated Â-module. Then M is n̂-adically complete in the
sense that the natural map

iM : M ! lim �M/n̂iM

is an isomorphism.

Proof. This Lemma is proved in [L, Lemma 21.33] in the commutative setting. We only have to
check, that everything that is used, still works in this noncommutative setting.
The kernel of the map im is N =

T1
i=1 n̂

iM . By Krull’s Intersection Theorem, see [Sch, Theorem
3] for a noncommutative version that can be applied to our setting, we have n̂N = N . Since M
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3.3 Classification of finitely generated modules

is finitely generated and Â is Noetherian, the module N is finitely generated. Thus we can apply
Nakayama’s Lemma, see [L, 4.22], to obtain that N = 0. Hence im is injective.
For the proof of the surjectivity of iM we refer to [L, Lemma 21.33]. This part does not use

the commutativity of the ring, but just that M is finitely generated and that Â is n̂-adically
complete.

Corollary 3.2.12. Let M be a finitely generated Â = ⇤-module. We can consider M as an (not
necessarily finitely generated) A-module and we have that

M ⇠= lim �M/niM

hence also considered as an A-module M is complete with respect to the n-adic topology.

Proof. This follows from Lemma 3.2.11 and the fact, that nM = n̂M .

Remark 3.2.13. If M is a finitely generated A-module which is nilpotent with respect to n, then
the natural map M ! M̂ is an isomorphism. Note that since the filtrations ni and mi induce the
same topologies, we have for M 2 mod(A) that

M̂ ⇠= lim �M/miM.

Hence, if M is a finitely generated nilpotent A-module, then

M̂ = lim �M/miM ⇠= M

is complete with respect to the mi-adic topology, and is hence a finitely generated indecomposable
⇤-module.

3.3 Classification of finitely generated modules

The results and proofs in this chapter are based on Crawley-Boevey’s work and are thus very similar
to his. In fact Crawley-Boevey mentions in the introduction of his article, that the functorial
filtration method should adapt to completed string algebras. We would also like to mention that
Burban and Drozd in [BD] study certain algebras given by completions, which they refer to as
nodal algebras, using matrix reductions. This includes the example Khhx, yii/(x2, y2).
From now on A will be a string algebra and ⇤ its completion. Recall that in case one of these

algebras is finite-dimensional we have A ⇠= ⇤.

3.3.1 String and band modules

Crawley-Boevey’s definition of string and band modules for infinite dimensional string algebras
does not work for completed string algebras: as an example one can consider the ring of polyno-
mials. This is a finitely generated module over itself, but we cannot consider it as a module over
its completion, the ring of power series. The slogan here is, that we have to replace direct sums
by direct products. Furthermore, band modules for direct bands do not exist. These would be
finite-dimensional dKQ-modules which are not nilpotent.
For any non-periodic I-word C we are going to denote the ⇤-string module by M(C) or M⇤(C)

if we want to distinguish it from the A-string module MA(C) explicitly.

String modules

We call a Z-word C mixed if either C is eventually inverse but C�1 is not ,or C�1 is eventually
inverse but C is not. Note that C is mixed if and only if C�1 is mixed.
Any I-word C satisfies one of the following properties:

• C and C�1 are eventually inverse (this includes all finite words);
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3 ⌧ -tilting theory for completed string algebras

• neither C nor C�1 are eventually inverse (this does not contain finite words, but infinite
words which are eventually direct);

• C is a mixed word.

In the following we will define ⇤-modules for words C according to these three cases.

The words C and C�1 are eventually inverse Let C be an I-word such that both C and C�1

are eventually inverse. Then we define a vector space

M(C) =
Y

i2I

Kbi,

and hence any element in M(C) is an infinite linear combination in the symbols bi (i 2 I). Ob-
viously, we have that MA(C) ✓ M(C) as vector spaces with equality if and only if C is a finite
word.
We define an action of dKQ on M(C) as follows: the action of the trivial paths and arrows on

M(C) is as in the non-completed case. We have "vbi = bi if the tail of Ci is v, and "vbi = 0
otherwise and we set

xbi =

8
><

>:

bi�1 (if i� 1 2 I and Ci = x)

bi+1 (if i+ 1 2 I and Ci+1 = x�1)

0 (otherwise)

for any arrow x 2 Q. Let an 2 KQn be a finite linear combination of paths of length n in Q.
Then for every i 2 I

anbi =
X

j2I

µ
(n,i)
j bj

is given by extending the above defined action to finite linear combinations of finite paths. Note
that since C and C�1 are eventually inverse, for any j 2 I there are only finitely many non-trivial

paths p in Q such that pbi = bj for some i 2 I. It follows that µ(n,i)
j = 0 for almost all (n, i) 2 N⇥I.

Therefore, for a =
P

n�0 an 2 dKQ and m =
P

i2I �ibi 2M(C) with

an�ibi =
X

j2I

µ
(n,i)
j bj

we can define
am =

X

n�0

an
X

i2I

�ibi =
X

j2I

X

(n,i)2N⇥I

µ
(n,i)
j bj

where µ
(n,i)
j is non-zero for only finitely many (n, i) 2 N⇥ I.

It is still obvious with that definition that M(C) satisfies the defining relations in ⇢. However,

we are no longer considering just the ideal (⇢) generated by ⇢ in dKQ, but the closure of this ideal
(⇢) with respect to the m-adic topology. The following lemma will imply that M(C) is annihilated
by any element in (⇢), and thus is indeed a ⇤-module.

Lemma 3.3.1. Let
a =

X

n�0

an 2 (⇢)

where an 2 KQn. Then we have that an 2 (⇢) for all n � 0.

Proof. Let s � 0 be minimal with as 6= 0. We will show that as 2 (⇢), then the lemma follows by
induction. We can write a = a1 + a2 where a1 2 (⇢) and a2 2 ms+1. Write a1 =

P
n�0 a

1
n where

we have a1n 2 KQn for all n � 0. Since (⇢) is a homogeneous ideal with respect to the length
grading, it follows that a1n 2 (⇢) for all n � 0. Furthermore, we must have as = a1s for degree
reasons and thus we see that as 2 (⇢).
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Corollary 3.3.2. Let C be and I-word such that both C and C�1 are eventually inverse. Then
with the above definition

M⇤(C) = M(C)

is a ⇤-module and from now on will be referred to as a string module.

Truncation of words and modules Let C be an I-word such that both C and C�1 are even-
tually inverse. Thus we can write C = BC̃D, where C̃ is some finite word, B is a word of length
zero or an direct �N-word and D is a word of length zero or an inverse N-word. Furthermore, if
B is not of length zero, we assume that the first letter of C̃D is inverse and if D is not of length
zero, we assume that the last letter of BC̃ is direct. Then for any n 2 N�2 greater than the length
of C̃ we define the n-truncation of C to be the finite word

⇡n(C) = B>�(n+2)C̃Dn�1.

If C is finite we will just have ⇡n(C) = C̃ = C. Note that if B is a �N-word, then B>�(n+2) is a
finite word of length n� 1, and if D is a N-word then Dn�1 is also a finite word of length n� 1.

Example 3.3.3. If ⇤ is the completed string algebra K[[x, y]]/(xy) and

C = ...xxxy�1y�1y�1xy�1y�1y�1...

then B = ...xxx, C̃ = y�1y�1y�1x and D = y�1y�1y�1.... Then the 5-truncation of C is given by

⇡5(C) = xxxxy�1y�1y�1xy�1y�1y�1y�1.

Proposition 3.3.4. Let C be an I-word such that both C and C�1 are eventually inverse and let
M = MA(C) be the finitely generated A-string module. Then there is a natural isomorphism

M̂ = lim �M/mnM ⇠= M⇤(C)

of ⇤-modules.

Proof. We are going to show, that M⇤(C) satisfies the universal property of the inverse limit. For
the finite-dimensional nilpotent string module Mn = M(⇡n(C)) we have

M/mnM ⇠= Mn
⇠= M⇤(C)/cmnM⇤(C)

where cmn is the ideal in ⇤ generated by mn. Therefore, the natural projections ⇡n : M⇤(C)!Mn

are well-defined ⇤-module homomorphisms which are compatible with the transition morphisms
of the inverse system.

Now let T be any ⇤-module with morphisms fn : T ! Mn, which are compatible with the
transition morphisms. Then the map f : T !M⇤(C) sending

t 7! f1(t) + (f2(t)� f1(t)) + (f3(t)� f2(t)) + . . .

is a well-defined ⇤-module homomorphism: each fn(t) is a finite linear combination in the bi such
that

fn(t) = fq(t) + (linear combination in bi with bi 2 msM, s > min(n, q)).

Therefore, fn+1(t) � fn(t) is a linear combination in elements bi with bi 2 mn+1M for all i. It is
not hard to see, that f is the unique morphism such that fn = ⇡n � f for all n > 0.

Example 3.3.5. Let ⇤ = K[[x, y]]/(xy). If C is the Z-word ...xxxy�1y�1y�1... then ⇡n(C) =
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3 ⌧ -tilting theory for completed string algebras

x(n�1)(y�1)(n�1) for all n � 0. The modules in the inverse system can be pictured as follows

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

x
⇤⇤

x
⇤⇤

x
⇤⇤

y

��
y

��
y

��

x
⇤⇤

x
⇤⇤

y

��
y

��

x
⇤⇤

y

��

⇡ //⇡ //⇡ //⇡ //

where by ⇡ we denote the natural projections. Note that in fact M⇤(C) ⇠= lim �Mn is the regular
representation of ⇤.

The words C and C�1 are not eventually inverse

Proposition 3.3.6. Let C be an I-word such that neither C nor C� are eventually inverse.
Then the action defined by A on the string module MA(C) extends naturally to an action of ⇤
on MA(C). We will denote this ⇤-module by M(C) or M⇤(C) if we want to distinguish it from
MA(C) explicitly.

Proof. We will first show, that M = MA(C) is a module over dKQ. Since neither C nor C� are
eventually inverse for any i 2 I, there exists some s� 0 such that for all paths p of length s in Q
we have pbi = 0. Thus, since any m 2M is a finite linear combination in the bi, the KQ-module
M is locally nilpotent and thus by Proposition 3.2.1 a dKQ-module.
We need to show that M is annihilated by elements in (⇢). As M is annihilated by elements in

(⇢) ✓ KQ, it is also annihilated by elements in (⇢) ✓ dKQ. Let a 2 (⇢) and m =
Pk

j=1 �ij bij 2M

with ij 2 I. Let s� 0, such that wm = 0 for any path of length greater equal s. Since a is in (⇢)
there exist a1 2 (⇢) and a2 2 ms such that a = a1 + a2 and hence we have

am = (a1 + a2)m = a1m+ a2m = 0 + 0 = 0

and this completes the proof.

The word C is mixed Finally, let C be mixed and assume that C is eventually inverse and
C�1 is not. Choose k 2 I such that Ci is inverse for all k < i. As a vector space we define M⇤(C)
to be the subspace of Y

i2Z
Cbi

consisting of elements
P

i2Z �ibi with �i = 0 for almost all i < k. Then it is not hard to see, that
by extending the action of A on M(C<k) to ⇤ and combining with the action of ⇤ on M⇤(C�k)
yields an action of ⇤ on M⇤(C). If C is a mixed word such that C�1 is eventually inverse we
define M⇤(C) = M⇤(C�1).

Example 3.3.7. Let Q be the quiver with one vertex and one loop x. Then the completed string
algebra ⇤ = dKQ is isomorphic to the ring of formal power series K[[x]]. The Z-word C = 1x1

is a mixed word and the mixed module M⇤(C) is isomorphic to the ring of formal Laurent series
K((x)) as a module over K[[x]].

Proposition 3.3.8. Let C by a mixed word, such that neither C nor C�1 are eventually direct
and let M = MA(C) be the A-string module. Then there is a natural isomorphism

M̂ = lim �M/mpM ⇠= M⇤(C)

of ⇤-modules.
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Proof. This is proved similarly to Proposition 3.3.4.

Let C be a non-periodic I-word. Then we call the ⇤-module M⇤(C) a string module. Note
that in general the string module M⇤(C) need not be isomorphic to the completion M̂ where
M = MA(C) with respect to the n-adic or equivalently to the mi-adic topology. But in any case
M⇤(C) is a module over the completed string algebra ⇤.

Example 3.3.9. Let A = K[x, y]/(xy) and ⇤ = K[[x, y]]/(xy). Further consider the Z-word

C = . . . y�1y�1y�1xxx . . .

and let M = MA(C). Since miM = M for all i 2 N we see that

M̂ = lim �M/miM = 0.

Hence M is not complete with respect to the mi-adic topology and since M⇤(C) = MA(C) as a
vector space, M⇤(C) is not isomorphic to M̂ = 0.

The following Proposition - as in the non-completed case - is obvious.

Proposition 3.3.10. Let C be a non-periodic I-word. Then

• M⇤(C) is in Noeth(⇤) if and only if C and C�1 are eventually inverse and

• M⇤(C) is in Art(⇤) if and only if C and C�1 are eventually direct.

Remark 3.3.11. We would like to mention that Ringel studied similar modules corresponding to
possibly infinite words in [R5]. Since he considered finite-dimensional algebras in his case infinite
words cannot be eventually inverse or eventually direct. However, he makes the distinction between
expanding, contracting and mixed words and defines an infinite dimensional module using infinite
direct products or infinite direct sums correspondingly and proves that the module is algebraically
compact. If the word is infinite and expanding or mixed, his definition di↵ers from ours and one
might prefer his definition in certain contexts. But as our main interest lies with the finitely
generated modules, it does not make a di↵erence in our case. We have already seen that there
is a duality between the Noetherian and Artinian ⇤-modules and therefore these modules are all
algebraically compact anyway.

String modules are indecomposable In the following we want to show that string modules
over a completed string algebras ⇤ are indecomposable. First, recall that if A = KQ/(⇢) is a
finite-dimensional string algebra, the functor

D = HomK(�,K) : mod(A)! mod(Aop)

is a duality called the standard K-duality. Let C = (Ci) be a finite word over A, and denote by
C⇤ = (C�1

i ) the dual word over Aop. Then it is well-known that D(M(C)) ⇠= M(C⇤) in mod(Aop).
We want to show, that a similar statement holds for finitely generated string modules over a

completed string algebra ⇤ and the duality

D̃ : Noeth(⇤)! Art(⇤op).

Let C = (Ci) be any I-word over ⇤. Define the the dual word by C⇤ = (C�1
i ) an I-word over ⇤op.

If C is an I-word, such that C and C�1 are eventually inverse, then C⇤ is an I-word, such that
C⇤ and (C⇤)�1 are eventually direct.

Proposition 3.3.12. Let C be an I-word such that C and C�1 is eventually inverse, i.e. we have
M⇤(C) 2 Noeth(⇤). Then the ⇤op-module D̃M⇤(C) 2 Art(⇤op) is isomorphic to M⇤op(C⇤).
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3 ⌧ -tilting theory for completed string algebras

Proof. We are first going to show the following: if ⇤ is finite-dimensional, then D, D̃ : mod(⇤)!
mod(⇤) are isomorphic functors. By [A2, Prop 4.4.], which we apply to ⇤ as an Noetherian
K[[z]]-algebra and as an K-algebra we have

D̃(�) = HomK[[z]](�, E) ⇠= Hom⇤(�,HomK[[z]](⇤
op, E)) = Hom⇤(�, D̃(⇤op)),

D(�) = HomK(�,K) ⇠= Hom⇤(�,HomK(⇤op,K)) = Hom⇤(�, D(⇤op))

and thus we need to show, that D(⇤op) ⇠= D̃(⇤op). But this follows, since they are both injective,
of the same dimension and both contain all the simple ⇤-modules (it is known that D(⇤op) is the
injective envelope of the sum of all simples).
Now let ⇤ be any completed string algebra, and M = M(C) a finite-dimensional ⇤-module.

Choose n > dim(M). Hence, M can be considered as a module over the finite-dimensional string
algebra An. Then we have

D̃⇤(M) = D̃An(M) ⇠= DAn(M) = MAop

n
(C⇤)

as Aop
n -modules, but then also as ⇤op-modules. Thus for M(C) finite-dimensional we have

D̃⇤(M(C)) ⇠= M⇤op(C⇤).

Finally let M = M⇤(C) 2 Noeth(⇤) be any finitely generated string module. Then M ⇠=
lim �M/mnM and for n � 0 we know that M/mnM ⇠= M(Cn) for finite words Cn = ⇡n(C). We
have

D̃(M) = D̃(lim �M(Cn)) ⇠= lim�! D̃(M(Cn)) = lim�!M((Cn)
⇤) ⇠= M(C⇤)

which proves the proposition.

Lemma 3.3.13. Let A be a string algebra and ⇤ its completion. Let C be a non-periodic I-word,
such that as vector spaces we have M⇤(C) = MA(C). This is for example the case if M⇤(C) is in
Art(⇤). Then M⇤(C) is indecomposable.

Proof. By [CB4, Theorem 1.1.], we know thatMA(C) is indecomposable as anA-module. But since
any ⇤-module is also an A-module, it follows that M⇤(C) is indecomposable as an ⇤-module.

Theorem 3.3.14. Let C be an I-word such that M(C) 2 Noeth(⇤)[Art(⇤). Then End⇤(M(C))
is a local ring.

Proof. Since ⇤ is a Noetherian algebra over a complete local ring, and M(C) is by assumption
finitely generated or Artinian the ring End⇤(M(C)) is local if and only if M(C) is indecomposable.
If M(C) is Artinian it is indecomposable by the above lemma. If M(C) 2 Noeth(⇤) then M(C) ⇠=
D̃(M(C⇤)) where M(C⇤) 2 Art(⇤op) is indecomposable again by the above lemma. Therefore,
M(C) is also indecomposable.

Band modules

Let C be a periodic word which is not direct or inverse. Then for any finite-dimensional K[T, T�1]-
module V the module M = MA(C, V ) is a finite-dimensional nilpotent A-module. It follows that
M is complete with respect to the mi-adic topology and hence

M ⇠= M̂ = M⇤(C, V )

is also ⇤-module. If V is an indecomposable K[T, T�1]-module we call M⇤(C, V ) a band module.
If P is a primitive cycle and V an indecomposable K[T, T�1]-module, the finite-dimensional

band module M = M(1P1, V ) cannot be a ⇤-module. Also note, that in this case the n-adic
completion functor applied to M yields M̂ = 0, since we have nM = M . So if C is a periodic word
which is direct or inverse we define M(C, V ) = 0 for any finite-dimensional K[T, T�1]-module V .
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3.3 Classification of finitely generated modules

The rest of this section is dedicated to altering Crawley-Boevey’s methods to prove the following
theorem.

Theorem 3.3.15. Let ⇤ be a completed string algebra. Then any finitely generated ⇤-module is
isomorphic to a direct sum of copies of string modules and finite-dimensional band modules.

3.3.2 Linear relations

Since the corresponding section in [CB4, Section 4] on linear relations deals with vector spaces
and not with particular modules, we will only recall the necessary definitions and results without
giving proofs.
From now on let V and W be possibly infinite dimensional K-vector spaces. A relation from V

to W is a subspace C of V ⇥W . For instance if f : V !W is a linear map, the graph

Cf = {(v, w) 2 V ⇥W | f(v) = w}

is a linear relation.
Let C be a linear relation. Then for v 2 V and H ✓ V we define

Cv = {w 2W | (v, w) 2 C} and CH =
[

v2H

Cv

and
C�1 = {(w, v) 2W ⇥ V | (v, w) 2 C}.

If D is a relation from U to V we can compose the two relations to obtain a new relation from U
to W given by

CD = {(u,w) | 9v 2 V such that w 2 Cv and v 2 Du}

and hence we can define Cn for any n 2 Z.

Example 3.3.16. If ⇤ is a completed string algebra and M a ⇤-module, any arrow x with head
v and tail u defines a linear map x : euM ! evM given by multiplication with x. Hence the graph
Cx is a linear relation from euM to evM . Thus for any finite word C with head v and tail u we
can inductively define a relation from euM to evM , which will also be denoted by C. We write
CM for CevM , when we consider C as a linear relation from M to itself.

If C is a linear relation on a vector space V , i.e. C is a linear relation from V to itself, we define
subspaces C 0 ✓ C 00 ✓ V by

C 00 = {v 2 V | 9v0, v1, v2 . . . with v = v0 and vn 2 Cvn+1 for all n},

C 0 =
[

n�0

Cn0.

Furthermore, we define subspaces C[ ✓ C] ✓ V by

C] = C 00 \ (C�1)00 and C[ = C 00 \ (C�1)0 + C 0 \ (C�1)00.

The following are [CB4, Lemma 4.2., Lemma 4.4. and Lemma 4.5.].

Lemma 3.3.17. Let C be a linear relation on V . Then we have

• C 00 ✓
T

n�0 C
nV and if V is finite-dimensional we have C 00 =

T
n�0 C

nV ,

• C] ✓ CC],

• C[ = C] \ CC[,

• C] ✓ C�1C] and
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3 ⌧ -tilting theory for completed string algebras

• C[ = C]C�1C[.

Furthermore, C induces an automorphism ✓ of C]/C[ with ✓(C[ + v) = C[ + w if and only if
w 2 C] \ (C[ + Cv).

Let C be a relation on a vector space V . We say that C is split if there exists a subspace
U of V such that C] = C[ � U and C induces an automorphism on U . The following is what
Crawley-Boevey calls the Splitting Lemma [CB4, Lemma 4.6.].

Lemma 3.3.18. If C]/C[ is finite-dimensional the relation C is split.

3.3.3 Torsion submodules

In the classification of finitely generated modules for string algebras, one often recurring means is
to consider the torsion submodule instead of the whole module.
Let S be the ring of polynomials K[z] or the ring of formal power series K[[z]], and M an

S-module. Then since S is an integral domain the set of all torsion elements

T (M) = {m 2M | f(z)m = 0 for some f 2 S}

is a submodule, which we call torsion submodule. It decomposes as a direct sum

T (M) = T 0(M)� T 1(M)

where

T 0(M) = {m 2M | znm = 0 for some n � 0}, and

T 1(M) = {m 2M | f(z)m = 0 for some f 2 S with f(0) = 1}

are the nilpotent torsion and primitive torsion submodules of M .

Lemma 3.3.19. Let M be an S-module.

• If S = K[[z]] the primitive torsion submodule T 1(M) of M is zero.

• If M is finitely generated over S, then T 0(M) and T 1(M) are finite-dimensional.

Proof. The first part follows from the fact, that any f(z) 2 K[[z]] with f(0) = 1 is a unit in K[[z]].
More precisely Let v 2 M be a torsion element and f(z) 2 K[[z]] such that f(z)v = 0. Then we
can write f(z) = zif̃(z) with i � 0 and f̃(0) 2 K \ {0}. Then f̃(z) is a unit in K[[z]] and hence
we find ziv = 0 and thus v 2 T 0(M).
The second part follows from the structure theorem for finitely generated modules over principal

ideal domains.

Any ⇤-module (respectively A-module) can also be considered as a K[[z]]-module (respectively
K[z]-module) and hence we can consider its nilpotent and primitive torsion submodules.

Lemma 3.3.20. Let M be a ⇤-module or an A-module. Then T 0(M) and T 1(M) are ⇤-
submodules (respectively A-submodules) of M and we have

T (M) =
M

v

T (evM) and T i(M) =
M

v

T i(evM).

Proof. This follows immediately, since the actions of ⇤ (respectively A) and K[[z]] (repectively
K[z]) on M commute.

If P is a primitive cycle with head v we can also consider evM as a K[[P ]]-module (respectively
K[P ]-module), and hence consider

TP (evM) = T 0
P (evM)� T 1

P (evM)
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3.3 Classification of finitely generated modules

as above, with z replaced by P , and call these the P -torsion, P -nilpotent torsion and P -primitive
torsion subspaces of evM . They are K[[z]]-submodules (respectively K[z]-submodules) of evM .

Lemma 3.3.21. Let M be a ⇤-module. We have

T 0(evM) =
\

P

T 0
P (evM)

where the intersection runs over the (up to two) primitive cycles with head v.

Proof. It is enough to consider the case where there are exactly two primitive cycles P and R with
head v. Let m 2 T 0(evM), that is we have znm = (P +R)nm = 0 for some n � 0. Then we also
see

0 = P (P +R)nm = P (Pn +Rn)m = Pn+1m.

Hence it follows that m 2 T 0
P (M) and similarly one shows that m 2 T 0

R(M).
On the other hand if m 2 T 0

P (evM) \ T 0
R(evM), there exist k, l � 0, such that P km = 0 and

Rlm = 0. Then it also follows that

zmax{k,l}m = (Pmax{k,l} +Rmax{k,l})m = 0.

Lemma 3.3.22. Let P be a primitive cycle with head v and M a ⇤-module. Then P defines a
linear relation on evM and we have

• P 0 = 0

• (P�1)0 = T 0
P (evM)

• (P�1)00 = evM , and

• if M is finitely generated, then P 00 =
T

n�0 P
nM = T 1

P (evM) = 0.

Proof. The first three parts follow directly from the definitions.
By Lemma 3.3.19 and Lemma 3.3.17 we have

0 = T 1
P (evM) ✓ P 00 ✓

\

n�0

PnM.

Let J be the ideal generated by P in K[[P ]] or K[[P,R]]/(PR), if R is another primitive cycle
with head v. Define N =

T
n�0 J

nM . Then since M is finitely generated as a ⇤-module, it is also
finitely generated as a K[[z]]-module. Therefore, we can apply Krull’s Intersection Theorem to N
and the Notherian ring K[[P ]] or K[[P,R]]/(PR), to obtain JN = N . But then by Nakayama’s
Lemma it follows that N = 0.

3.3.4 Functorial filtration given by words

The functorial filtration method is based on two ideas: the first idea is to simplify the structure
of a given ⇤-module by considering it as vector space via the forgetful functor. The second idea
is to look at filtrations of the underlying vector space. Graphically speaking we will use words
to define di↵erent subfunctors of the forgetful functors, cutting the underlying vector spaces into
more applicable slices.
Let ⇤ be a completed string algebra and denote by Forget : Mod(⇤) ! Mod(K) the forgetful

functor from ⇤-modules to K-vector spaces. Then for any vertex v 2 Q we define a functor

ev : Mod(⇤) // Mod(K)

M // evM
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3 ⌧ -tilting theory for completed string algebras

which is a subfunctor of Forget, i.e. evM ✓ Forget(M) for all M 2 Mod(⇤) and for any homo-
morphism f : M ! N of ⇤-modules the linear map evf is the restriction of Forget(f) to evM .
For a fixed vertex v 2 Q and a sign " = ±1 denote by Wv," the set of finite words and N-words

with head v and sign ". In the following we will define for any word C 2Wv," two subfunctors of
Forget which will be denoted by C� and C+. In fact we will show, that C� is a subfunctor of C+

which in turn is a subfunctor of ev, such that we have the following chain of inclusions

C�(M) ✓ C+(M) ✓ evM

for any ⇤-module M .

Finite words First consider the case, where C is a finite word. Then we define

C+(M) =

(
Cx�10 if there is an arrow x such that Cx�1 is a word,

CM otherwise,

and similarly we define

C�(M) =

(
CyM if there is an arrow y such that Cy is a word,

C0 otherwise.

In this case it is easily seen, that C�(M) ✓ C+(M). Suppose there exist arrows x, y, such that
Cx�1 and Cy are words. Then it follows that x�1 and y have the same head (namely the tail of
C) and the same sign (namely the opposite sign of C�1). But then it follows from the conditions
on choosing the sign " that xy 2 ⇢. Therefore, if we consider x and y as linear maps on M , we
have Im(y) ✓ Ker(x) and hence

C�(M) = Cy(M) = C(Im(y)) ✓ C(Ker(x)) = Cx�1(0) = C+(M).

The other cases follow similarly.

Example 3.3.23. Let ⇤ = K[[x, y]]/(xy) and let M = M(D) be string module, where D =
xy�1y�1xx, i.e. we can picture M as

b0

b1

b2

b3

b4

b5
x

�� y ��

y ��
x

��

x

��

For C = D the vector space C+M = Cy�1(0) = xy�1y�1xxy�10 is spanned by b0, b3, b4 and
C�M = CxM = xy�1y�1xxxM is spanned by b3, b4. Assuming that x has sign ", the vector
space 1+v,�"(M) = x�1(0) is spanned by b0, b2, b3 and 1�v,�"(M) = y(M) is spanned by b2, b3.
For C = y�1y�1xx the vector space C+M = Cy�1(0) = y�1y�1xxy�10 is spanned by all bi

for i = 1, . . . , 5 and C�M = CxM = y�1y�1xxxM is spanned by b0, b2, b3, b4, b5. For B = x�1

the vector space B+(M) = x�1x�1(0) is spanned by b0, b1, b2, b3, b4 and B�(M) = x�1y(M) is
spanned by b0, b2, b3, b4.

Infinite words Now suppose that C is an N-word. Then we define

C+(M) = {m 2M | 9 a sequence mn (n � 0),m0 = m,mn�1 2 Cnmn for all n � 0}

and
C�(M) = {m 2 C+(M) | 9s� 0, mn = 0 for all n � s}.
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3.3 Classification of finitely generated modules

Note that
C+(M) ✓

\

n�0

CnM and C�(M) =
[

n�0

Cn0

and that if C = D1 is repeating, then

C+(M) = D00 and C�(M) = D0.

Since ✓(C±(M)) ✓ C±(N) for any homomorphism ✓ : M ! N of ⇤-modules, the functors C±

are subfunctors of the forgetful functor from ⇤-modules to vector spaces or K[[z]]-modules. Also
the proof of the following lemma is straightforward.

Lemma 3.3.24. The functors C± commute with arbitrary direct sums.

Total order on Wv," We have seen, that for any ⇤-module M and any C 2 Wv,", we have
C�(M) ✓ C+(M). Now, we also want a means to compare C±(M) and C 0±(M) for two words
C,C 0 2 Wv,". To do so, we define a total order on Wv," as follows: for C,C 0 2 Wv," we say that
C < C 0 if - roughly speaking C has an direct letter where C 0 does not, or C is shorter than C 0 -
and more explicitly if

• C = ByD and C 0 = Bx�1D0 for a finite word B and arrows x, y and D,D0 are words, or

• C 0 is a finite word and C = C 0yD for an arrow y and a word D, or

• C is a finite word and C 0 = Cx�1D0 for an arrow x and a word D0.

Lemma 3.3.25. For C,C 0 2Wv," with C < C 0 we have C+(M) ✓ C 0�(M).

Proof. First note that if C is a finite word, then C+(M) ✓ C(M). Since if there exists an arrow
x, such that Cx�1 is a word, then we have C+(M) = Cx�10 ✓ CM .

• First assume C = ByD and C 0 = Bx�1D0 for a finite word B, arrows x, y and wordsD,D0. If
C is finite, then C+(M) = ByDe�1(0) if some letter e exists, otherwise C+(M) = ByD(M).
If C is infinite C+(M) ✓ CnM for all n � 0. In any case C+(M) ✓ By(M) and

By(M) = B�(M) ✓ B+(M) = Bx�1(0) ✓ (Bx�1D0)�(M) = C 0�(M),

where the last inclusion follows since in case C 0 is finite we have

(Bx�1D0)�(M) = Bx�1D0z(M)

if such an arrow z exists or (Bx�1D0)�(M) = Bx�1D00 otherwise and in case C 0 is infinite
we have C 0

n0 ✓ C 0�(M) for all n � 0.

• Now assume that C 0 is a finite word and C = C 0yD for an arrow y and a word D. Then we
have

C+(M) ✓ C 0y(M) = C 0�M.

• If we assume C is a finite word and C 0 = Cx�1D0 for an arrow x and a word D0, then we
have

C+(M) = Cx�10 ✓ C 0�(M).

3.3.5 Refined functors

In this section we introduce the refined functors given by words from ⇤-modules to vector spaces.
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3 ⌧ -tilting theory for completed string algebras

Let B 2 Wv," and D 2 Wv,�" be two words and M a ⇤-module. Note that B�1D is a word
unless it involves a zero-relation or the inverse of a zero-relation. We define the functors

F+
B,D(M) = B+(M) \D+(M),

F�
B,D(M) = (B+(M) \D�(M)) + (B�(M) \D+(M)), and

FB,D(M) = F+
B,D(M)/F�

B,D(M).

If B�1D is a non-periodic word we have thus defined functors Mod(⇤) �! Mod(K), which do not
depend on the order of B and D.
If C = B�1D is a periodic word, say C = 1E1 for a finite word E of length n and head v,

then E induces a linear relation on evM for any ⇤-module M . Then we have F+
B,D(M) = E] and

F�
B,D(M) = E[, and hence by Lemma 3.3.17 the linear relation E induces an automorphism on

FB,D(M). We can thus consider FB,D as a functor from ⇤-modules to K[T, T�1]-modules, with
the action of T given by the induced automorphism.

Example 3.3.26. Let ⇤ = K[[x, y]]/(xy) and M = M(C) the string module, where C =
xy�1y�1xx. In a previous example we have already computed for B = 1v,�" and D = C

B+(M) = hb0, b2, b3iK B�(M) = hb2, b3iK
D+(M) = hb0, b3, b4iK D�(M) = hb3, b4iK

assuming that x has sign " and thus we have

F+
B,D(M) = hb0, b3iK , F�

B,D(M) = hb3iK , FB,D(M) = hb0iK .

For B = x�1 and D = y�1y�1xx we have

B+(M) = hb0, b1, b2, b3, b4iK B�(M) = hb0, b2, b3, b4iK
D+(M) = hb0, b1, b2, b3, b4, b5iK D�(M) = hb0, b2, b3, b4, b5iK

and hence

F+
B,D(M) = hb0, b1, b2, b3, b4iK , F�

B,D(M) = hb0, b2, b3, b4iK , FB,D(M) = hb1iK .

Lemma 3.3.27. (i) FB,D commutes with direct sums.
(ii) If B�1D is not a word, then FB,D = 0.
(iii) If B�1D is a periodic word, then FB,D

⇠= res◆FD,B.
(iv) For a word C the functors FB,D with B�1D = C[n] are isomorphic for any n.

Proof. (i) This follows from the fact, that the functors C± for any word C commute with direct
sums.

(ii) If B�1D is not a word it contains a zero-relation or the inverse of one. In the latter case,
we can exchange B and D, since FB,D does not depend on their order and may thus assume
without loss of generality, that B�1D involves a zero-relation. Hence we can write B =
x�1
n . . . x�1

1 C and D = y1 . . . ykE for words C,E and such that x1 . . . xny1 . . . yk 2 ⇢. Let
m 2 F+

B,D(M). Then m = y1 . . . ykm
0 for m0 2 E+(M) and as

x1 . . . xnm = x1 . . . xny1 . . . ykm
0 = 0

we have m 2 x�1
n . . . x�1

1 (0) ✓ B�(M). Therefore, we also have m 2 F�
B,D(M) proving that

the image of m in FB,D(M) is zero.
(iii) This is obvious.
(iv) This is done in the same way, as the lemma on page 25 in [R1].
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Lemma 3.3.28. Let (B,D) 2Wv,"⇥Wv,�" be non-trivial words, such that the first letter of both
is direct. Then B+(M) \D+(M) is finite-dimensional for any finitely generated ⇤-module M .

Proof. Since B and D have opposite signs, their first letters must be two di↵erent arrows x and
y with head v. But then for any primitive cycle with tail v we have Px = 0 or Py = 0 in ⇤.
Hence B+(M) \ D+(M) is contained in T 0(evM) which is finite-dimensional since M is finitely
generated (see Lemma 3.3.8.).

Lemma 3.3.29. Let C = B�1D be a periodic word, say C = 1E1 for some word E of length n
and head v. If M is a finitely generated ⇤-module, the vector space FB,D(M) is finite-dimensional.
In particular, the relation E on evM is split.

Proof. If C = B�1D is not direct or inverse, then by Lemma 3.3.27, we can apply a shift to C
and hence we may suppose that we are in the case of Lemma 3.3.28. Otherwise we can assume
without loss of generality that C is direct and periodic. Hence C = 1P1 for some primitive cycle
P with head v. Then since M is finitely generated FB,D(M) = P 00 = T 1

P (evM) = 0 by Lemma
3.3.22. In either case since FB,D(M) = E]/E[ is finite-dimensional, the relation E on evM is split
by Lemma 3.3.18.

3.3.6 Evaluation on string and band modules

In this section we want to investigate what happens, when we apply the refined functors to string
and band modules. The proofs and results are mainly based on [CB4, Section 8], where the author
in turn gives credit to [R1].

Evaluation on string modules Recall that for any I-word C and for any i 2 I we have defined

C>i = Ci+1Ci+2 . . . and Ci = . . . Ci�1Ci.

Then C>i has as first letter Ci+1 and hence has head vi(C) and the word C�1
i has as first letter

C�1
i , which has as head the tail of Ci, hence also vi(C). Since CiC>i is a word, (Ci)�1 and

C>i must have opposite signs. From now on let

C(i, ") =

(
C>i if the sign of C>i is ",

(Ci)�1 otherwise,

and further let

di(C, ") =

(
1 if C(i, ") = C>i,

�1 if C(i, ") = (Ci)�1.

The result and proof of the next lemma is basically [CB4, Lemma 8.1.]. The only di↵erence is
that for string modules over the completed string algebra the set {bi | i 2 I} is not necessarily
a basis. But when looking at the details of the proof, it becomes clear that we only need the
uniqueness of the coe�cients of possibly infinite linear combinations of the bi. We do not need
any finiteness assumptions on these linear combinations.

Lemma 3.3.30. Let C be a non-periodic I-word and let M = M⇤(C). If D 2Wv," we have
(i) D+(M) \ {bi | i 2 I} = {bi | vi(C) = v, C(i, ")  D} and
(ii) D�(M) \ {bi | i 2 I} = {bi | vi(C) = v, C(i, ") < D}.

Proof. We are going to prove the following two statements:
(a) We have bi 2 C(i, ")+(M).
(b) If m =

P
j2I �jbj belongs to C(i, ")�(M), then �i = 0.
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3 ⌧ -tilting theory for completed string algebras

Let us first point out, how this proves the lemma. Let i 2 I such that vi(C) = v and C(i, ")  D.
We want to show, that bi 2 D+(M). If D = C(i, "), then this follows immediately from (a). If
C(i, ") < D by Lemma 3.3.25 we have

C(i, ")+(M) ✓ D�(M) ✓ D+(M)

and hence bi 2 D+(M) again by (a).

Now let m 2 D+(M) and write m =
P

j2I �jbj a possibly infinite linear combination. Let i 2 I
such that vi(C) = v and C(i, ") > D. Then using again the total order on words we have

m 2 D+(M) ✓ C(i, ")�(M)

and hence by assumption (b) the coe�cient �i = 0. In particular if C(i, ") > D we have bi /2
D+(M) and this proves part (i) of the lemma.

For part (ii) we have already shown that

{bi | vi(C) = v, C(i, ") < D} ✓ D�(M) \ {bi | i 2 I}.

Now let m 2 D�(M) and write again m =
P

j2I �jbj . Let i 2 I such that vi(C) = v and
C(i, ") � D. If C(i, ") = D, then �i = 0 by part (b). If C(i, ") > D, then again by the total order
of words we have

m 2 D�(M) ✓ D+(M) ✓ C(j, ")�(M)

and again �i = 0 by part (b), which proves part (ii).

Let us now prove statement (a). Set d = di(C, "). First note, that for n � 1, and not greater
than the length of C(i, "), we have

bi+d(n�1) 2 C(i, ")nbi+dn.

Indeed suppose that d = 1, the case d = �1 can be treated similarly. Then C(i, ") = C>i

and (C>i)n = Ci+n. If Ci+n = x for an arrow x, we have bi+n�1 = xbi+n and if Ci+n = x�1

for an arrow x we have xbi+n�1 = bi+n and thus bi+n�1 2 x�1bi+n. In any case we see that
bi+n�1 2 (C>i)nbi+n as claimed. Thus we see, if C(i, ") is an N-word, we have bi 2 C(i, ")+(M).
Now suppose that C(i, ") is a finite word of length n and let 1u,⌘ be the trivial word such that
C(i, ")1u,⌘ is defined. Then bi+dn 2 1+u,⌘(M) and hence also in the finite case it follows that
bi 2 C(i, ")+(M) proving statement (a).

To prove statement (b) we first show the following statement by induction on n, where n is not
greater than the length of C(i, "): If m 2 C(i, ")nm

0 for some m0 2 M , and the coe�cient of bi
in m is �, then the coe�cient of bi+dn in m0 is also �.

We prove this again only for the case d = 1. Let n = 1 and m 2 (C>i)1m0 = Ci+1m
0. We can

write m =
P

j2I �jbj and m0 =
P

j2I µjbj . If Ci+1 = x for some arrow x we have

X

j2I

�jbj = m = xm0 =
X

j2I

µjxbj

and xbi+1 = bi and xbj 6= bi for any j 6= i+1. Hence by the uniqueness of the coe�cients we have
µi+1 = �i = �. The argument is similar if Ci+1 = x�1 for an arrow x.

Now assume the statement has been proven for n � 1 and let m 2 C(i, ")n+1m
0. Then there

exists some m00 2 M such that m 2 C(i, ")n and m00 2 C(i, ")i+n+1m
0. Then by induction the

coe�cient of bi+n in m00 is � and similarly as in the case n = 1 one shows that hence the coe�cient
of bi+n+1 in m0 is also �.

Thus if C(i, ") is an N-word and m 2 C(i, ")�(M), then the coe�cient � of bi in m must be
zero. Otherwise this non-zero coe�cient appears as a coe�cient in any of the members of any
sequence mn with m0 = m and mn�1 2 C(i, ")nmn, which contradicts m 2 C(i, ")�(M).

If C(i, ") is a finite word of length n, then no element of 1�u,⌘(M) has bi+dn occurring with
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non-zero coe�cient and this concludes the proof of statement (b).

Corollary 3.3.31. Let C be a non-periodic I-word and let M = M⇤(C). Then for any i 2 I we
have

F+
C(i,1),C(i,�1)(M) = F�

C(i,1),C(i,�1)(M)�Kbi

and hence for any words B,D with B�1D = C we have FB,D(M) ⇠= K.

Proof. By Lemma 3.3.30 we know that

F+
C(i,1),C(i,�1)(M) = F�

C(i,1),C(i,�1)(M)� U

where any element in U can be written as a possibly infinite linear combination of the bj with
C(j, 1) = C(i, 1) and C(j,�1) = C(i, 1). But since C is not periodic and no word can be equal to
a shift of its inverse, this condition only holds for j = i. For words B,D with B�1D = C there
exists some i 2 I such that {B,D} = {C(i, 1), C(i,�1)}.

Total order on Wv," ⇥Wv,�" For a pair of words (B,D) 2Wv," ⇥Wv,�" and a ⇤-module M ,
we define

G±
B,D(M) = B�(M) +D±(M) \B+(M) ✓ evM.

Note that, since B�(M) ✓ B+(M) we have

[B�(M) +D±(M)] \B+(M) = B�(M) + [D±(M) \B+(M)].

Furthermore, we define a total order on Wv," ⇥Wv,�" lexicographically, thus

(B,D) < (B0, D0)() B < B0 or (B = B0 and D < D0).

Lemma 3.3.32. For (B,D) 2Wv," ⇥Wv,�" and a ⇤-module M , we have

• G�
B,D(M) ✓ G+

B,D(M) and GB,D(M) = G+
B,D(M)/G�

B,D(M) ⇠= FB,D(M),

• if (B,D) < (B0, D0) we have G+
B,D(M) ✓ G�

B0,D0(M).

Proof. • The part (B,D) 2Wv,"⇥Wv,�" follows immediately from D�(M) ✓ D+(M). Using
some well-known isomorphisms and the fact that D�(M)\B+(M) ✓ D+(M)\B+(M), we
easily compute

G+
B,D(M)

G�
B,D(M)

=
[B� + (D+ \B+)](M)

[B� + (D� \B+)](M)
⇠=

[D+ \B+](M)

[(D� \B+) + (B� \D+ \B+)](M)

which proves the first part.

• If B < B0 we have

[B� +D+ \B+](M) ✓ B+(M) ✓ (B0)�(M) ✓ [(B0)� + (D0)� \ (B0)+](M)

where the second inclusion follows from Lemma 3.3.25. If B = B0 and D < D0 the claim
follows directly since D+(M) ✓ (D0)�(M) again by Lemma 3.3.25.

Corollary 3.3.33. Let C be a non-periodic word and let M = M⇤(C). For any two words B,D
such that B�1D is not equivalent to C we have FB,D(M) = 0.

Proof. We can assume without loss of generality that (B,D) 2 Wv," ⇥Wv,�" for some vertex
v. If GB,D(M) = FB,D(M) 6= 0 then by Lemma 3.3.30 there is some i 2 I such that bi 2

49



3 ⌧ -tilting theory for completed string algebras

G+
B,D(M) \G�

B,D(M) and we know that

bi 2 G+
C(i,1),C(i,�1)(M) \G�

C(i,1),C(i,�1)(M).

But then by the total ordering on Wv,"⇥Wv,�" we must have (B,D) = (C(i, 1), C(i,�1)). Indeed,
if we assume to the contrary that (B,D) < (C(i, 1), C(i,�1)) we have

bi 2 G+
B,D(M) ✓ G�

C(i,1),C(i,�1)(M)

which is a contradiction and similarly we get a contradiction if (B,D) > (C(i, 1), C(i,�1)). Thus
we have (B,D) = (C(i, 1), C(i,�1)) and so B�1D is equivalent to C.

Covering property for string modules The following lemma is what we call the covering
property for string modules. Later on for any finitely generated ⇤-module M we will construct
a homomorphism f : N ! M , where N is a direct sum of string and band modules, such that
FB,D(f) is an isomorphism for all refined functors FB,D. We will need the covering property for
string modules to show that in this situation f : N ! M is injective. In [CB4] this is done in
Lemma 9.4. The proof in our case is essentially the same. However, it is a bit more involved, since
we have to show, that even when considering infinitely many pairs of words (B,D) 2Wv,"⇥Wv,�"

such that B�1D is equivalent to a fixed word C, we can choose a pair which is maximal with respect
to the total order on Wv," ⇥Wv,�".

Lemma 3.3.34 (Covering property for string modules). Let C be a non-periodic I-word and let
M = M⇤(C). Let v be a vertex and 0 6= m 2 evM . Then there exists a pair (B,D) 2Wv,"⇥Wv,�"

such that m 2 G+
B,D(M), but m /2 G�

B,D(M).

Proof. First assume that as a vector space we have MA(C) = M⇤(C). Then the element m can
be written as a finite linear combination in the basis elements bi 2 evM . By Corollary 3.3.31 for
any bi there exist (Bi, Di) 2 Wv," ⇥Wv,�" with F+

Bi,Di
(M) = F�

Bi,Di
(M) �Kbi. Then it follows

that G+
Bi,Di

(M) = G�
Bi,Di

(M) � Kbi. Since there are only finitely many i 2 I for which the
coe�cient in the linear combination of m is non-zero, we can choose (B,D) maximal among the
corresponding pairs (Bi, Di). Then it follows that m is in G+

B,D(M) but not in G�
B,D(M).

Now suppose that as vector spaces we have MA(C) ( M⇤(C). Thus we are in the situation
that C is an infinite word such that C or C�1 are eventually inverse. The proof is basically the
same as in the first case with the di↵erence that m is a possibly infinite linear combination in the
elements bi 2 evM , and hence it is a priori not clear, that we can choose a maximal pair (B,D)
among the relevant pairs (Bi, Di). We will consider the case where C is a Z-word such that C and
C�1 are eventually inverse. The other cases are similar. Note that if C is a mixed word it might
have a part with infinitely many partitions into pairs of words which do not have a maximum.
But for that part we only consider finite linear combinations in the corresponding bi, and hence
it is possible to choose a maximum for the finitely many involved pairs of words.

Now since C and C�1 are eventually inverse we have

C = . . . RRRC̃P�1P�1P�1 . . .

for primitive cycles R = R1 . . . Rk and P = P1 . . . Ps and a finite word C̃. We assume without loss
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of generality that C̃ = C1 . . . Cn. Then we have

(C�1)
�1 = (R�1)1

(C�2)
�1 = R�1

k�1R
�1
k�2 . . . R

�1
1 (R�1)1

(C�3)
�1 = R�1

k�2 . . . R
�1
1 (R�1)1

...

(C�k�1)
�1 = (R�1)1

(C�k�2)
�1 = R�1

k�1R
�1
k�2 . . . R

�1
1 (R�1)1

and hence we see, that C�1
�j = C�1

�tk�j for 1  j < k and any t � 0. Furthermore, we have

C>�1 = C̃(P�1)1

C>�2 = RkC̃(P�1)1

C>�3 = Rk�1RkC̃(P�1)1

...

C>�k�1 = RC̃(P�1)1

C>�k�2 = RkRC̃(P�1)1

...

and thus we have C>�j > C>�tk�j for 1  j < k and for any t > 0: indeed note, that if C1 is
direct we must have C1 = R1 and so on. Thus if Cs = x�1 is the first inverse letter to appear in
C̃(P�1), we have C>�tk�j = ByD and C>�j = Bx�1D0 for some finite (in fact direct) word B,
arrows x, y and some words D and D0. Therefore for 1  j < k and any t > 0 we have

((C�j)
�1, C>�j) > ((C�tk�j)

�1, C>�tk�j)

and hence the maximal pair of ((C�j)�1, C>�j) for 1  j < k, will be maximal for all pairs
((C�i)�1, C>�i) with i > 0. Now let us consider ”the other side”: We have

(Cn)
�1 = (C̃)�1(R�1)1

(Cn+1)
�1 = Ps(C̃)�1(R�1)1

(Cn+2)
�1 = Ps�1Ps(C̃)�1(R�1)1

...

(Cn+s)
�1 = P (C̃)�1(R�1)1

(C n+ 1 + s)�1 = PsP (C̃)�1(R�1)1

...

and similarly as before we thus see that (Cn+j)�1 > (Cn+j+ts)�1 for 0  j < s and for any
t > 0.
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Furthermore, we have

C>n = (P�1)1

C>n+1 = P�1
s�1P

�1
s�2 . . . P

�1
1 (P�1)1

C>n+2 = P�1
s�2 . . . P

�1
1 (P�1)1

...

C>n+s = (P�1)1

C>n+1+s = P�1
s�1P

�1
s�2 . . . P

�1
1 (P�1)1

...

and thus we have C>n+j = C>n+j+ts for 0  j < s and for any t � 0. Therefore, for 0  j < s
and for any t > 0 we have

((Cn+j)
�1, C>n+j) > ((Cn+j+ts)

�1, C>n+j+ts)

and hence the maximal pair of ((Cn+j)�1, C>n+j) for 0  j < s, will be maximal for all pairs
((Ci)�1, C>i) with i � n.
Since there are only finitely many other partitions C>i and (Ci)�1 of C with 1  i  n, we

see that we can always choose (B,D) maximal.

Evaluation on band modules Concerning band modules, our definition does not alter from
Crawley-Boevey’s, except for when C is direct or inverse repeating. But in that case for M a
finitely generated ⇤-module we have FB,D(M) = 0 anyway. Therefore, we will simply recall the
concerning Lemmatas from [CB4] without giving the proofs. For this assume that C is a periodic
word which is not direct or inverse and V a finite-dimensional K[T, T�1]-module. Then we have

M(C, V ) = V0 � V1 � · · ·� Vn�1

as K[T, T�1]-modules where each Vi = bi ⌦ V is identified with a copy of V .

Lemma 3.3.35. Let M = M(C, V ). Then we have
(i) F+

C(i,1),C(i,�1)(M) = F�
C(i,1),C(i,�1)(M)� Vi for 0  i < n,

(ii) FB,D(M) ⇠= V for words B,D with B�1D = C,
(iii) FB,D(M) = 0 for words B,D such that B�1D is not equivalent to C.

Lemma 3.3.36. Let M = M(C, V ), v a vertex and 0 6= m 2 evM . Then there exists a pair
(B,D) 2Wv," ⇥Wv,�" such that m 2 G+

B,D(M), but m /2 G�
B,D(M).

Evaluation on direct sums of copies of string and band modules

Corollary 3.3.37. Let M be a direct sum of copies of string modules and modules of the form
M(C, V ).
(i) If B�1D is a non-periodic word, then dimFB,D(M) is equal to the number of string module

summands of strings C with C ⇠ B�1D.
(ii) If B�1D is a periodic word, then FB,D(M) is isomorphic to the direct sum of all the

K[T, T�1]-modules V such that M(C, V ) is a direct summand of M and C ⇠ B�1D.

Proof. This is a direct consequence of Corollary 3.3.31 and Corollary 3.3.33 and Lemma 3.3.35.

3.3.7 On the existence of homomorphisms from string and band modules

We would like to recall an important fact about the refined functors for string algebras. Since this
is in a sense a key property of the refined functors used in the proof of [CB4, Lemma 8.3.], we
would like to formulate this as a lemma.
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Lemma 3.3.38. Let A be a string algebra and C a non-periodic I-word. Let M be any A-module
and let B = C(i, 1) and D = C(i,�1) for some i 2 I. Then for any m 2 F+

B,D(M) such that the
class of m in FB,D(M) is not zero, there is an A-module homomorphism

✓m : MA(C)!M

sending bi to m.

Corollary 3.3.39. Let C be a non-periodic I-word and let B = C(i, 1) and D = C(i,�1) for
some i 2 I.
(i) If M⇤(C) = MA(C) as vector spaces, then for any ⇤-module M there exists a homomorphism

of ⇤-modules
✓B,D,M : M⇤(C)⌦K FB,D(M)!M

such that FB,D,M (✓B,D,M ) is an isomorphism.
(ii) If M is a finitely generated ⇤-module, there exists a homomorphism of ⇤-modules

✓B,D,M : M⇤(C)⌦K FB,D(M)!M

such that FB,D,M (✓B,D,M ) is an isomorphism.

Proof. Let M by any ⇤-module and let (m0
↵) be a basis of FB,D(M). Pick (m↵) in F+

B,D(M) such
that the class of m↵ in FB,D(M) is m0

↵. Since any ⇤-module is also an A-module by Lemma 3.3.38
there are A-module homomorphisms

✓↵ : MA(C)!M

sending bi to m↵ for all ↵.
Now first suppose that MA(C) = M⇤(C) as vector spaces and hence M⇤(C) is locally nilpotent.

Therefore, ✓↵ is also a ⇤-module homomorphism by Proposition 3.2.1. Combining all of them
yields a ⇤-module homomorphism ✓B,D,M : M⇤(C)⌦K FB,D(M)!M and by Corollary 3.3.31 it
follows that FB,D,M (✓B,D,M ) is an isomorphism.
Now assume that MA(C) ( M⇤(C) and that M is finitely generated as a ⇤-module. If C is a Z-

word or an N-word which is eventually direct or a Z-word or �N-word such that C�1 is eventually
direct we have FB,D(M) = 0: assume without loss of generality that C is a Z-word or an N-word
which is eventually direct. Since the functors FB,D are isomorphic for all shifts of C, we can assume
that D = P1, where P is a primitive cycle with head v. But then D+(M) = P 00 = T 1

P (evM) = 0,
where we consider P as a linear relation on evM . Hence, in this case the zero-morphism will do
the job.
Otherwise we know that M⇤(C) is isomorphic to the completion of MA(C) with respect to the

n-adic topology and since M is finitely generated as a ⇤-module, M is complete with respect to
the n-adic topology. Hence the n-adic completions of the maps ✓↵ yield ⇤-module homomorphisms

c✓↵ : \MA(C) ⇠= M⇤(C)!M ⇠= M̂

sending bi to m↵ for all ↵. Again combining all of them, yields a ⇤-module homomorphism
✓B,D,M : M⇤(C)⌦K FB,D(M)!M and by Corollary 3.3.31 it follows that FB,D,M (✓B,D,M ) is an
isomorphism.

Let C be a periodic word and V a finite-dimensionalK[T, T�1]-module. Note that sinceM(C, V )
is a nilpotent module, any A-module homomorphism ✓ : M(C, V ) ! M , where M is a ⇤-module
and hence an A-module, is also a ⇤-module homomorphism. Therefore, the following lemma is
[CB4, Lemma 8.6.], where we have replaced the assumption that M is a C-split module, by the
assumption that M is a finitely generated ⇤-module. But this implies that M is C-split by Lemma
3.3.29.
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Lemma 3.3.40. Let C be a periodic word, M a finitely generated ⇤-module and V = FB,D(M)
for words B,D with C = B�1D. Then there is a homomorphism ✓B,D,M : M(C, V ) ! M such
that FB,D(✓B,D,M ) is an isomorphism.

Theorem 3.3.41. Let M be a finitely generated ⇤-module. There is a homomorphism ✓ : N !M ,
where N is a direct sum of string and finite-dimensional band modules such that FB,D(✓) is an
isomorphism for all refined functors FB,D. Furthermore, ✓ is injective.

Proof. For a non-periodic word C = B�1D there exists a map ✓B,D,M from a direct sum of copies
of M(C) to M by Corollary 3.3.39. If C = B�1D is a periodic word, then by Lemma 3.3.40 there
exists a homomorphism ✓B,D,M from a finite-dimensional module of the formM(C, V ) toM , where
V = FB,D(M). We can decompose V = V1 � · · ·� Vn into indecomposable K[T, T�1]-modules to
obtain a decomposition

M(C, V ) = M(C, V1)� · · ·�M(C, Vn)

of finite-dimensional band modules. We define N to be the direct sum of all these string and band
modules, where (B,D) runs through pairs of words in such a way that C = B�1D runs through
the equivalence classes of words, once each. Then taking ✓ : N ! M as the direct sum of all the
maps ✓B,D,M yields a map such that FB,D(✓) is an isomorphism for all refined functors FB,D.
Suppose that ✓ is not injective and let n be a non-zero element of evN such that ✓(n) = 0. We

can write n as a sum n = n1 + . . .+ nk, where each component ni is a non-zero element of evNi,
where Ni is a string module or a finite-dimensional band module. By the covering property for
string modules we know, that for each 1  i  k there is (Bi, Di) 2 Wv," ⇥Wv,�" with ni is in
G+

Bi,Di
(Ni) but not in G�

Bi,Di
(Ni). Among those finitely many pairs (Bi, Di) we can choose the

maximal pair (B,D). Then n is in G+
B,D(N) but not in G�

B,D(N) and thus induces a non-zero
element in FB,D(N). This implies that ✓(n) induces a non-zero element in FB,D(M), which is a
contradiction.

3.3.8 Covering property

In a very simplified way, the covering property for refined functors says the following: if M is
a finitely generated ⇤-module and 0 6= m 2 M is an element satisfying certain conditions, then
there exist some words B,D such that m induces a non-zero element in FB,D(M). We need this
property to prove the surjectivity of the homomorphism that was constructed in Theorem 3.3.41.
The section is based on [CB4, Section 10] and the results and proofs here are essentially the same,
where we have to replace K[z] by K[[z]].

Lemma 3.3.42. Let C be an N-word, which is not (direct and repeating) and let M be a finitely
generated ⇤-module. Then the descending chain

C1M ◆ C2M ◆ C3M ◆ . . . (?)

stabilizes.

Proof. Since we are only considering finite quivers, any direct N-word is also repeating. Thus we
can assume that C is an N-word which is not direct.
First assume that C is eventually inverse, say C>n is an inverse N-word for some n � 0. Since

f�1(M) = M for any map from M to M it follows, that the chain (?) stabilizes at CnM .
Now we can assume that C is not direct and not eventually inverse. Thus, C = Dx�1yB for

some words D,B and distinct arrows x, y. So (?) becomes the chain

Dx�1yB1M ◆ Dx�1yB2M ◆ Dx�1yB3M ◆ . . . (3.1)

and we want to prove that it stabilizes. We have Dx�1yBnM = Dx�1(xM \ yBnM) and by
Lemma 3.3.28 the vector space xM \ yBnM is finite-dimensional. Thus we see, that all terms
in the above chain are finite-dimensional and hence it stabilizes.

54



3.3 Classification of finitely generated modules

Lemma 3.3.43 (Realization lemma). Let M be a finitely generated ⇤-module and C an N-word.
Then we have

C+(M) =
\

n�0

CnM.

Proof. We always have the inclusion C+(M) ✓
T

n�0 CnM . To prove the other inclusion first
assume, that C is direct and repeating, thus C = P1 for some primitive cycle P of length r. Then

\

n�0

CnM ✓
\

n�0

Cn·rM =
\

n�0

PnM = P 00 = C+(M)

where the second last equality follows from Lemma 3.3.22 asM is finitely generated by assumption.
Now, it is enough to prove the following: if C = `D for some letter ` and an N-word D, and if

m 2
T

n�0 CnM , there exists some m0 2
T

n�0 DnM such that m 2 `m0.

If ` = x�1 for some arrow x, then we can take m0 = xm. Now suppose that ` = x is a direct
letter. We can assume that D is not (direct and repeating). Then by the previous lemma, the
chain

D1M ◆ D2M ◆ D3M ◆ . . .

stabilizes and hence
T

n�0 DnM = DkM for some k � 0. Then we have m = xm0 for some
m0 2 DkM and this proves the lemma.

In the following lemma we will state the generalized version of what Ringel calls the covering
property of the intervals defined by words.

Lemma 3.3.44 (Weak covering property for words). Let M be a ⇤-module, v a vertex, " = ±1
and S ✓ evM a non-empty set with 0 /2 S. Then there exists a word C 2Wv," such that either
(1) C is a finite word and C+(M) \ S 6= ; but C�(M) \ S = ;, or
(2) C is an infinite word and Cn(M) \ S 6= ; for all n � 0 but C�(M) \ S = ;.

Proof. Suppose that a finite word C 2Wv," satisfying condition (1) does not exist. We inductively
construct an infinite word C 2Wv," satisfying condition (2), starting with 1v,":
Assume that D = Cn is constructed such that Cn(M) \ S 6= ; but Cn(0) \ S = ;. If there

exists an arrow y with Dy a word and such that Dy(M) \ S 6= ;, then we set Cn+1 = y. Note,
that in this case Cn+10 = Dy0 = D0 and hence Cn+1(0) \ S = ; also holds. If such an arrow
y does not exist, we have D�(M) \ S = ;.
If there exists an arrow x with Dx�1 a word and such that Dx�1(0)\S = ;, then we set Cn+1 =

x�1. Note, that in this case Cn+1(M) = Dx�1(M) = D(M) and hence Cn+1(M) \ S 6= ; also
holds. If such an arrow x does not exist, we have D+(M) \ S 6= ;.
By our initial assumption, such an arrow y as above or such an arrow x as above must exist.

Otherwise the finite word D satisfies condition (1).

Corollary 3.3.45 (Covering property for words). Let M be a finitely generated ⇤-module, v a
vertex and " = ±1. Let U be a K[[z]]-submodule of evM such that zevM ✓ U . If H is a subset
of evM and m 2 H \ U , there exists a word C 2Wv,", such that H \ (U +m) meets C+(M), but
not C�(M).

Proof. Since �m is not in U the set S = H \ (U +m) contains m but not 0. Hence by the weak
covering property for words, there exists a word C, such that S does not meet C�(M). If C is
finite, then S meets C+(M) and we are done.
If C is an N-word which is not direct and repeating, then since S meets Cn(M) for all n � 0,

and this chain stabilizes by Lemma 3.3.42, we see that S also meets

C+(M) =
\

n�0

CnM

by the Realization lemma.
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If C is direct and repeating we have C = P1 for some primitive cycle P . Then since S meets
Cn for all n � 0 it follows that U +m meets P 2M . But since P 2M = zPM and this is contained
in U by hypothesis, it follows that m 2 U , which is a contradiction.

Lemma 3.3.46 (Covering property for refined functors). Let M be a finitely generated ⇤-module
and v a vertex. Let U be a K[[z]]-submodule of evM such that zevM ✓ U . For m 2 evM \ U ,
there exists a pair (B,D), such that U +m meets G+

B,D(M), but not G�
B,D(M).

Proof. By the covering property for words with H = evM there exists a word B 2Wv," such that
U +m meets B+(M) but not B�(M). Then for m0 2 B+(M)\ (U +m) we have U +m = U +m0.
Consider the K[[z]]-submodule U 0 = U +B�(M) of evM . Suppose m0 2 U 0. Then there exists

some u 2 U and b 2 B�(M) such that m0 = u+ b. But then b = m0 � u is in B�(M) \ (U +m)
which is a contradiction. Hence m0 /2 U 0 and we can apply the covering property for words to
H = B+(M) and m0 2 B+(M) \ U 0 to obtain a word D 2 Wv,�" such that B+(M) \ (U 0 +m0)
meets D+(M) but not D�(M).
Now let x 2 (U 0 + m0) \ B+(M) \ D+(M). Then since U 0 = U + B�(M) we can write

x = u+ b+m0 with u 2 U and b 2 B�(M). It follows that

x� b = u+m0 2 (U +m0) \ (B�(M) +D+(M) \B+(M))

and hence this intersection is non-empty.
On the other hand suppose there exists some

x 2 (U +m0) \ (B�(M) +D�(M) \B+(M)).

Then we can write
x = u+m0 = b+ d

with u 2 U , b 2 B�(M) and d 2 D�(M). But then the element

u� b+m0 = x� b = d

is in
(U 0 +m0) \B+(M) \D�(M)

which is a contradiction. It follows that U +m = U +m0 meets G+
B,D(M) but not G�

B,D(M).

Lemma 3.3.47. Let ✓ : N ! M be a homomorphism such that FB,D(✓) is an isomorphism for
all refined functors FB,D. If M is finitely generated, then ✓ is surjective.

Proof. We are going to show, that the cokernel of ✓ is primitive torsion, as in [CB4, Lemma 10.6.].
Since any finitely generated primitive torsion K[[z]]-module is zero, this implies the Lemma.
Suppose the cokernel is not primitive torsion. Then we can choose a vertex v such that

evM/ev Im(✓) is not primitive torsion. Since this is a finitely generated K[[z]]-module it has a 1-
dimensional quotient, say V , such that zV = 0. This implies that there exists a K[[z]]-submodule
U of evM of codimension 1 with ev Im(✓) ✓ U and zevM ✓ U .
Then by the covering property for refined functors, for m 2 evM \U , there exists a pair (B,D)

such that U + m \ G+
B,D(M) 6= ; but U + m \ G�

B,D(M) = ;. Therefore, we can choose u 2 U

and b 2 B�(M) and d 2 B+(M) \D+(M) such that

u+m = b+ d.

Now since GB,D(M) ⇠= FB,D(M) and since FB,D(✓) is an isomorphism, there exists an element
n 2 evN such that d = ✓(n) + c + c0 for some c 2 D�(M) \ B+(M) and c0 2 D+(M) \ B�(M).
Since ✓(n) 2 ev Im(✓) ✓ U it follows that

u� ✓(n) +m = b+ c+ c0
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is contained in U +m. But since b+ c0 + c is also contained in B�(M) +D�(M) \ B+(M) this
contradicts that U +m does not meet G�

B,D(M). This finishes the proof.

Theorem 3.3.48. The string modules M⇤(C), where C is a non-periodic I-word such that C
and C�1 are eventually inverse and the band modules M⇤(C, V ), where C is a periodic word
which is not direct or inverse and V an indecomposable K[T, T�1]-module, form a complete list of
indecomposable finitely generated ⇤-modules.

Proof. LetM be a finitely generated ⇤-module and ✓ : N !M the injective morphism constructed
in Theorem 3.3.41. Then ✓ is also surjective by Lemma 3.3.47. It follows from Proposition 3.3.10
that if M⇤(C) appears as a direct summand of N , the words C and C�1 must be eventually
inverse. By Theorem 3.3.14 these are indecomposable ⇤-modules.

3.4 Auslander-Reiten sequences

Let A be a string algebra and ⇤ the corresponding completed string algebra. In this section we
want to describe the Auslander-Reiten sequences in Mod(⇤), ending in a finitely generated string
module M = M(C). For this we will use that M ⇠= lim �Mp, where Mp = M/mpM is for p � 0
isomorphic to a finitely generated string module. Furthermore, Mp can be considered as an Ap-
module, where Ap is the p-truncation of A. Since Ap is a finite-dimensional string algebra, the
Auslander-Reiten sequences in mod(Ap) containing string or band modules are well-known (see
[BR]).
We will consider short exact sequences

0! U !W ! V ! 0

where V 2 NoethP (⇤) is a finitely generated non-projective string module and U ⇠= lim�! ⌧Ap(Vp) is
a module in ArtI(⇤). In order to check if sequences of this form are in fact almost split sequences,
the following result as stated in [A1, Prop 3.4.] is very helpful. For a detailed proof of this
statement in the language of morphisms determined by objects we refer to [A2, Theorem 10.6.].
For this let ⇤ be a noetherian algebra over a complete local ring.

Proposition 3.4.1. Let 0 ! U
i�! W

f�! V ! 0 be an exact sequence which is not split and
suppose that U 2 ArtI(⇤) and V 2 NoethP (⇤) are both indecomposable. Then the following are
equivalent:

• The sequence 0! U
i�!W

f�! V ! 0 is an almost split sequence.

• If H 2 Noeth(⇤), then for any morphism h : H ! V , which is not a split epimorphism,
there exists a morphism g : H !W such that fg = h.

• If H 2 Art(⇤), then for any morphism h : U ! H, which is not a split monomorphism, there
exists a morphism g : W ! H such that gi = h.

3.4.1 Canonical exact sequences

Canonical exact sequences for arrows For any arrow x we define U(x) = M(B) 2 ArtI(⇤)
where B is the longest inverse word such that Bx is a word. Then B is a finite or an �N-word.
Similarly we define V (x) = M(C) 2 NoethP (⇤), where C is the longest inverse word such that
xC is a word. Note that C is a finite or an N-word. Finally we define N(x) = M(D), where
D = BxC. We call the short exact sequence

0! U(x)
◆�! N(x)

⇡�! V (x)! 0

where ◆ is the canonical inclusion and ⇡ the canonical projection a canonical exact sequence.
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3 ⌧ -tilting theory for completed string algebras

Hooks and cohooks Let C be an I-word. Similarly as for finite words we say, that

• C starts on a peak if either C is a finite or N-word and there is no arrow x such that x�1C
is a string or C is a �N-word or Z-word, such that C�1 is eventually direct;

• C ends on a peak if either C is a finite or �N-word and there is no arrow x such that Cx is
a string or C is a N-word or Z-word which is eventually direct;

• C starts in a deep if either C is a finite or N-word and there is no arrow y such that yC is
a string or C is a �N-word or Z-word, such that C�1 is eventually inverse;

• C ends in a deep if either C is a finite or �N-word and there is no arrow y such that Cy�1

is a string or C is a N-word or Z-word which is eventually inverse.

For any finite or N-word C not starting on a peak, there is an arrow x and a direct word D such
that hC := Dx�1C is a word starting in a deep. We call Dx�1 a hook.
For any finite or �N-word C not ending on a peak, there is an arrow x and a direct word D

such that Ch := CxD�1 is a word ending in a deep. We call xD�1 a hook.
For any finite or N-word C not starting in a deep, there is an arrow y and a direct word D such

that cC := D�1yC is a word starting on a peak. We call D�1y a cohook.
For any finite or �N-word C not ending in a deep, there is an arrow y and a direct word D such

that Cc := Cy�1D is a word ending on a peak. We call y�1D a cohook.

Canonical exact sequences for finitely generated string modules Consider an I-word C such
that M(C) is finitely generated, not isomorphic to a projective module and not isomorphic to V (x)
for some arrow x. Hence C and C�1 are eventually inverse.
First assume that C starts and ends in a deep. Since M(C) is not projective, C is not of the

form C = C1C2 with C1 direct and C2 inverse. Hence C = Ex�1DyB�1, where x and y are
arrows and E and B are direct words and D is a finite word. Thus C = hDh and the short exact
sequence

0 // M(D)
(◆,◆) // M(hD)�M(Dh)

(◆,�◆) // M(C) // 0

where ◆ is the natural inclusion (and ⇡ will be the canonical projection), is again called a canonical
exact sequence.
Now assume that C does not start but ends in a deep. Since C�1 is eventually inverse, but C

does not start in a deep, C is a finite or an N-word and thus cC is well-defined. Furthermore,
since C is not isomorphic to V (x), C is not an inverse word. Hence we can write C = DyB�1,
where D is a finite word, y is an arrow and B a direct word. Thus we have C = Dh and the short
exact sequence

0 // M(cD)
(◆,⇡) // M(cC)�M(D)

(⇡,�◆) // M(C) // 0

is again called a canonical exact sequence.
If C starts in a deep but does not end in a deep, we find that Cc is well-defined and C = hD

for some finite word D and we call the short exact sequence

0 // M(Dc)
(⇡,◆) // M(D)�M(Cc)

(◆,�⇡) // M(C) // 0

again a canonical exact sequence.
For the last case, if C neither starts nor ends in a deep, C must be a finite word and both cC

and Cc and thus also cCc are well-defined. Then the short exact sequence

0 // M(cCc)
(⇡,⇡) // M(cC)�M(Cc)

(⇡,�⇡)// M(C) // 0
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3.4 Auslander-Reiten sequences

is also called a canonical exact sequence.

Theorem 3.4.2. The canonical exact sequences are the Auslander-Reiten sequences ending in
finitely generated string modules.

Example 3.4.3. Consider the completed string algebra ⇤ = K[[x, y]]/(xy) and the eventually
inverse N-word

C = xy�1x(y�1)1.

Then C does not start but ends in a deep. We have C = Dh, where D = xy�1 is a finite word.
Attaching a cohook at the start of C yields the mixed Z-word

cC = (y�1)1xxy�1x(y�1)1.

Hence the canonical exact sequence

0 // M(cD)
(◆,⇡) // M(cC)�M(D)

(⇡,�◆) // M(C) // 0

can be pictured as follows

·
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·
·

·
·

·
·

·
·

·
·

·
·

·
·

·
·

·
·

·

�
·

·
· ·

·
·

·
·

·
·

·

⇢⇢

⇢⇢

⇢⇢

⇢⇢

⇢⇢ ⌅⌅

⌅⌅ ⇢⇢
� � // // //

⇢⇢

⇢⇢

⇢⇢

⇢⇢

⇢⇢ ⌅⌅

⌅⌅ ⇢⇢ ⌅⌅ ⇢⇢

⇢⇢

⇢⇢

⇢⇢

⇢⇢

⌅⌅ ⇢⇢ ⌅⌅ ⇢⇢ ⌅⌅ ⇢⇢

⇢⇢

⇢⇢

⇢⇢

⇢⇢

where the dotted arrows should indicate, that there are infinitely many more arrows coming from,
respectively going in, the pointed direction.

Outline of proof As our proof that these sequences are in fact almost split sequence is rather
technical, we would like to explain the general idea first. Let

0! U
i�!W

f�! V ! 0

be a canonical exact sequence. Then by Proposition 3.3.10 we have that U 2 ArtI(⇤) and V 2
NoethP (⇤) and by Theorem 3.3.14 they are indecomposable. Hence by Proposition 3.4.1 it is
enough to show, that if h : H ! V in Noeth(⇤) is not a split epimorphism, there exists a morphism
g : H !W , such that h = fg.
For any finitely generated ⇤-moduleM and p > 0 we will denote byMp the Ap-moduleM/mpM .

Recall, that if M is finitely generated as a ⇤-module we have M = lim �Mp. We will show, that for
any p� 0 there exist a morphism hp : Hp ! Vp of inverse systems, such that h = lim �hp, and hp

is not a split epimorphism. Further for every p� 0 we will consider short exact sequences

0! Up
ip�!Wp

fp�! Vp ! 0

which are almost split sequences in mod(Ap) and such that V = lim �Vp. Note that since the
modules U and W might not be finitely generated, we have not yet defined Up and Wp and in
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3 ⌧ -tilting theory for completed string algebras

particular we cannot assume that U = lim �Up or W = lim �Wp. Anyway, it follows that for all
p� 0 there exist morphisms sp : Hp !Wp such that hp = fpsp.
We will argue, that since H is finitely generated we can assume that there exists some q � 0

such that for all p � q the image of sp is contained in some finitely generated submodule

W̃ = lim � W̃p

of W . Furthermore, there exists f̃ = lim � f̃p : W̃ ! V , such that f̃ = f ◆, where ◆ : W̃ ! W is the

embedding. We will then prove that there actually exists a morphism s̃p : Hp ! W̃p of inverse
systems with hp = f̃ps̃p. Hence for s̃ = lim � s̃p : H ! W̃ we have h = f̃ s̃. Then it follows that for
g = ◆s̃ : H !W we have h = fg.

Example 3.4.4. Let ⇤ and the canonical exact sequence

0! U
i�!W

f�! V ! 0

be given as in Example 3.4.3. Then for p = 5 the short exact sequence

0! Up
ip�!Wp

fp�! Vp ! 0

can be pictured as in
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⌅⌅ ⇢⇢
� � // // //

⇢⇢

⇢⇢

⇢⇢

⇢⇢ ⌅⌅

⌅⌅ ⇢⇢ ⌅⌅ ⇢⇢
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⇢⇢

⇢⇢

⌅⌅ ⇢⇢ ⌅⌅ ⇢⇢ ⌅⌅ ⇢⇢

⇢⇢

⇢⇢

⇢⇢

Remark 3.4.5. Note that we cannot apply the same methods as in [BR] to show that the maps
involved in the canonical sequences are irreducible. The problem is, that even if the map in
question is a morphism between string modules, we need to consider factorisations of this map
where arbitrary modules in Mod(⇤) can appear. We do not have any knowledge about the ⇤-
modules that are not artinian or finitely generated. In particular we do not know, whether the
refined functors reflect isomorphisms in this setting.

3.4.2 Restricting to finite-dimensional string modules

Homomorphisms between finitely generated modules Let M = M(C), N = M(D) be finite-
dimensional string modules. Recall that we had given a basis of Hom⇤(M,N) by certain standard
homomorphisms, corresponding to predecessor closed substrings of C, which occur as successor
closed substrings of D. Furthermore, if bMi is a basis element of M and bNj a basis element of N

there is at most one standard homomorphism ✓ : M ! N with ✓(bMi ) = bNj .
Let M = M(C) be a finitely generated string module. Recall that for any p� 0 we had defined

the p-truncation as finite words ⇡p(C) such that Mp = M/mpM ⇠= M(⇡p(C)).

Lemma 3.4.6. Let M = M(C) and N = M(D) be finitely generated string modules and let
p� 0 such that Mp and Np are given by the p-truncations of the respective words. Furthermore, let
b0, b1, . . . bn be the basis symbols of Np and assume that ✓p : Mp ! Np is a standard homomorphism
such that bo, bn /2 Im(✓p). Then for all q � p there exists a standard homomorphism ✓q : Mq ! Nq
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making the diagram

Mq

✓q //

⇡

✏✏

Nq

⇡

✏✏
Mp

✓p // Np

commutative.

Proof. This is obvious: any predecessor closed substring of ⇡p(C) is also a predecessor closed
substring of ⇡q(C) for q � p. Any successor closed substring of ⇡p(D) not containing b0 or bn is
also a successor closed substring of ⇡q(D) for q � p.

Recall, that for any finitely generated ⇤-module M we have M = lim �Mp, where Mp = M/mpM
is the p-truncation of M and can be considered as an Ap-module.

Lemma 3.4.7. Let M,N be finitely generated ⇤-modules and let f : M ! N be a homomorphism.
Then there exists a morphism of inverse system fp : Mp ! Np, such that f = lim � fp. In particular
for all q � p the diagram

Mq

fq //

⇡

✏✏

Nq

⇡

✏✏
Mp

fp // Np

is commutative.

Proof. Consider the diagram

M
f //

⇡M
p

✏✏

N

⇡N
p

✏✏
Mp

// Np

where ⇡M
p are the natural projections. Since mpM ✓ ker(⇡N

p �f) there exists a morphism fp : Mp !
Np making the diagram commutative. Now consider the diagram

M
⇡M
q

!!

⇡M
p

⇠⇠

f // N

⇡N
p

⌥⌥

⇡N
q

~~
Mq

⇡M
pq

✏✏

fq // Nq

⇡N
pq

✏✏
Mp

fp // Np

and we want to show that the small square in the middle is commutative. But this follows, since
any other square and triangle in this diagram is commutative by definition.

From now on, if f : M ! N is a morphism between finitely generated ⇤-modules, we will denote
by fp : Mp ! Np the morphisms such that f = lim � fp.

Constructing morphisms of inverse systems In the following assume that C = DxB is an
N-word, where D is any finite word, x is an arrow and B an inverse N-word. Set M = M(C),
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N = M(B) and let f : M ! N be the natural projection. Hence we can picture f : M ! N as

·
·

·
·

·
·

·

·
·

·
·

·
·

x
⌅⌅ ⇢⇢

⇢⇢

⇢⇢

⇢⇢

⇢⇢

⇢⇢

⇢⇢

⇢⇢

⇢⇢

⇢⇢

⇢⇢

⇢⇢

f //

where we only indicated the finite word D with the zick-zack-shaped line.
Furthermore, let H be a finitely generated string module and h : H ! N a homomorphism. We

can choose and fix p� 0 such that Mp, Np and Hp are all string modules given by the p-truncation
of the respective word. Finally, assume that for all q � p there exist morphisms sq : Hq !Mq such
that hq = fqsq. Then the following lemma says, that we can assume without loss of generality,
that sq : Hq !Mq is a morphism of inverse systems.

Lemma 3.4.8. Let f : M ! N be the natural projection and h : H ! N be a homomorphism as
above. Assume that for all q � p there exist morphisms sq : Hq ! Mq such that hq = fqsq. Then
there exists a morphism of inverse systems gq : Hq ! Mq such that gp = sp and for all q � p we
have hq = fqgq. Thus, for g = lim � gq : H !M , we have fg = h.

Proof. We will construct gq : Hq !Mq as described in the Lemma inductively. The reader should
keep the following diagram in mind

Hp+1

hp+1

##
sp+1

✏✏

⇡ // Hp

hp

~~
sp=gp

✏✏

Np+1
⇡ // Np

Mp+1

fp+1

;;

⇡ // Mp

fp

``

where ⇡ always denotes the canonical projection, and we know that all triangles and squares are
commutative, except for possibly the outer one.
First we set gp = sp and construct g̃p+1 : Hp+1 ! Mp+1 with ⇡g̃p+1 = gp⇡. For this we can

assume without loss of generality that gp is a standard homomorphism. Now if fpgp = 0 it
follows as in Lemma 3.4.6, that there exists a standard homomorphism g̃p+1 : Hp+1 !Mp+1 with
⇡g̃p+1 = gp⇡.
So now assume that fpgp 6= 0. Hence there are basis elements bHi 2 Hp, bMj 2Mp and bNk 2 Np

such that fpgp(bHi ) = fp(bMj ) = bNk and gp is uniquely determined by gp(bHi ) = bMj . By abuse of

notation denote the basis element b 2 Hp+1 such that ⇡(b) = bHi also by bHi . Then we have

bNk = fpgp(b
H
i ) = hp(b

H
i ) = hp⇡(b

H
i ) = ⇡hp+1(b

H
i ) = ⇡fp+1sp+1(b

H
i ) = fp⇡sp+1(b

H
i ).

Then it follows that sp+1(bHi ) = bMj + r, where r is in the kernel of the composition fp⇡ : Mp+1 !
Np. Here again by abuse of notation we denoted the basis element b 2Mp+1 such that ⇡(b) = bMj
also by bMj . This implies that there exists a standard homomorphism g̃p+1 : Hp+1 ! Mp+1 with

g̃p+1(bHi ) = bMj .
Now we know that there exists g̃p : Hp+1 !Mp+1 with ⇡g̃p+1 = gp⇡ and furthermore, we have

⇡fp+1g̃p+1 = fp⇡g̃p+1 = fpgp⇡ = hp⇡ = ⇡hp+1.
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·
bH0

·
bH1
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bH2

·
bH3
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bH4

·
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·
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·
bH�3

·
bM�3

·
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·
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·
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·
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⇢⇢

Figure 3.1: The p-truncation of the modules in Example 3.4.9 for p = 5 and p = 6.

Thus, if bNp+1 2 Np+1 denotes the basis symbol such that ⇡(bNp+1) = 0, we have for any basis
symbol bHs 2 Hp+1 that

hp+1(b
H
s ) = fp+1sp+1(b

H
s ) = fp+1g̃p+1(b

H
s ) + µbNp+1

for some µ 2 K. If µ 6= 0 there exists a standard homomorphism ✓p+1 : Hp+1 ! Mp+1 with
✓p+1(bHs ) = bMp+1 where fp+1(bMp+1) = bNp+1 and such that Im(✓p+1) = KbMp+1. Then we add µ✓p+1

to g̃p+1. Since we only have finitely many basis vectors of Hp+1 to consider in this way, we
eventually obtain gp+1 : Hp+1 !Mp+1 with

fp+1gp+1 = hp+1 and ⇡gp+1 = gp⇡

and the lemma follows by induction.

Example 3.4.9. Let A = K[x, y](xy) and ⇤ = K[[x, y]]/(xy). We consider the strings

C = xy�1x(y�1)1, B = (y�1)1 and D = xxx(y�1)1

and the ⇤-modules M = M⇤(C), N = M⇤(B) and H = M⇤(D). Denote by

bM�3, b
M
�2, b

M
�1, b

M
0 , bM1 , . . . , bN0 , bN1 , bN2 , . . . and bH�3, b

H
�2, b

H
�1, b

H
0 , bH1 , . . .

the basis symbols of the A-modules MA(C), MA(B) and MA(D) respectively. Let h : H ! N be
the homomorphism which sends

bH0 7!
X

i�0

bNi .

In this example we can choose p = 5 and we assume that s5 : H5 !M5 is defined by

bh0 7! bM�2 +
4X

i=0

bMi
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3 ⌧ -tilting theory for completed string algebras

and s6 : H6 !M6 is defined by

bh0 7!
5X

i=0

bMi .

Then we have h5 = f5s5 and h6 = f6s6 but, s5⇡ 6= ⇡s6. We set g5 = s5 and then the procedure
described in the proof of Lemma 3.4.8 yields g6 : H6 !M6 defined by

bh0 7! bM�2 +
5X

i=0

bMi .

It follows that h5 = f5g5 and h6 = f6g6 and g5⇡ = ⇡g6. Figure 3.1 shows the truncated modules
in this example.

Restricting to finitely generated submodules of the middle term In the following we want
to prove a Lemma which allows us to consider a finitely generated submodule of the possibly
infinitely generated middle term of a canonical exact sequence. For this let D = BxC be a word,
where B is an inverse �N-word, x an arrow and C an eventually inverse finite or N-word. Let
N = M(D), M = M(C) and let ⇡ : N ! M be the canonical projection. Then we can assume
that for all p� 0 we have Mp = M(⇡p(C)) and that ⇡p(xC) = x⇡p(C). For any q > 1 we define
the finite dimensional module

qNp = M(B>�(q�1)x⇡p(C))

such that pNp can be considered as a module over Ap. Note that for any 1 < q  p we have
natural inclusions qNp ,! pNp and natural projections

⇡̃p : qNp !Mp and ⇡p : pNp !Mp.

Example 3.4.10. Consider the completed string algebra ⇤ = K[[x, y]]/(xy) and the Z-word

D = . . . y�1y�1y�1xxy�1x(y�1)1

and thus B = . . . y�1y�1y�1 is an inverse �N-word and C = xy�1x(y�1)1 an eventually inverse
N-word. Then for N = M(D) we have

2N5 = M(B>�1x⇡5(C)) = M(y�1xxy�1xy�1y�1y�1y�1),

5N5 = M(B>�4x⇡5(C)) = M(y�1y�1y�1y�1xxy�1xy�1y�1y�1y�1)

and 2N5 ,! 5N5 ⇣ M5, where M = M(C) can be pictured as

·
·

·
·

·
·

·
·

·
·

·
·

·
·

·
·

·
·

·
·

·
·

·

·
·

·
·

·
·

·
·

⇢⇢ ⌅⌅

⌅⌅ ⇢⇢ ⌅⌅ ⇢⇢

⇢⇢

⇢⇢

⇢⇢

� � // // //

⇢⇢

⇢⇢

⇢⇢

⇢⇢ ⌅⌅

⌅⌅ ⇢⇢ ⌅⌅ ⇢⇢

⇢⇢

⇢⇢

⇢⇢

⌅⌅ ⇢⇢ ⌅⌅ ⇢⇢

⇢⇢

⇢⇢

⇢⇢

Lemma 3.4.11. Let H 2 Noeth(⇤) be indecomposable and suppose that for all p � 0 there
exist morphisms sp : Hp ! pNp. Then there exists some n > 0 such that there exist morphisms
s̃p : Hp ! nNp for all p � n with ⇡̃p � s̃p = ⇡p � sp.
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Proof. Suppose that
B>�(p�1) = y�1

1 y�1
2 . . . y�1

p�1

where yi are arrows for 1  i  p� 1. Let b be the basis vector of pNp, corresponding to the head
of B>�(p�1)x⇡p(C). If m 2 pNp is an element such such that b appears with non-zero coe�cient
in the linear combination of m, then the elements

m, y1m, y2y1m, . . . , yp�1 . . . y2y1m

are p linearly independent elements in pNp. Hence, if U is a submodule of pNp of dimension q  p
it can also be considered as a submodule in qNp.
Now first suppose that H is finite-dimensional and let n > dim(H). Then since for p � n

any submodule of pNp of dimension smaller than n is also a submodule of nNp we can define
s̃p = sp : Hp = H ! Im(sp) ✓ nNp.
Now suppose that H is a possibly infinite dimensional but finitely generated string module. Let

n� 0 such that for all p � n the module Hp is a string module given by the p-truncation of the
word defining H. If ✓ : Hp ! pNp is a standard homomorphism which does not have image in nNp

it must correspond to a successor closed substring of B>�(p�1) of length greater than n. But for
those we have ⇡p � ✓ = 0. Hence we can define s̃p as the sum of standard homomorphisms defining
sp, where we just leave out those ✓ with ⇡p � ✓ = 0.

Proof of Theorem 3.4.2

Remark 3.4.12. Let f : M ! N be a morphism in Noeth(⇤), which is not a split epimorphism.
Then since M is a finite sum of string and band modules, i.e. M = �n

i=1Mi, we have f =
(fi)i : �n

i=1 Mi ! N and none of the fi is a split epimorphism. Let f : M ! N be a morphism
between finitely generated string modules or band modules, and let fp : Mp ! Np such that
f = lim � fp. If f is not a split epimorphism, there exists some n � 0, such that fp : Mp ! Np

is also not a split epimorphism for all p � n. Otherwise, since Mp is indecomposable, fp would
be an isomorphism. But if fp was an isomorphism for infinitely many p, then f would also be an
isomorphism.

Proposition 3.4.13. The short exact sequence

o! U(x)
◆�! N(x)

⇡�! V (x)! 0

is an Auslander-Reiten sequence.

Proof. We know that U = U(x) 2 ArtI(⇤), V = V (x) 2 NoethP (⇤) are indecomposable. Hence,
by Proposition 3.4.1 it is enough to show that for any morphism h : H ! V = V (x) in NoethP (⇤)
which is not a splittable epimorphism, there is a morphism g : H ! N such that ⇡g = h. By
Remark 3.4.12 we can assume that H is indecomposable and therefore either a finitely generated
string module or finite-dimensional band module. Again by Remark 3.4.12 we can assume, that
h = lim �hp : H ! V , where hp : Hp ! Vp is not a split epimorphism for all p� 0.
Let B and C be the words such that U = M(B), V = M(C) and N = M(BxC). Now we

consider all p� 0 such that Hp and Vp are given by the p-truncation of the corresponding words
and as for Lemma 3.4.11 for any q > 1 we consider the modules

qNp = M(B>�(q�1)x⇡p(C)) and qU = M(B>�(q�1))

where in case that B is a finite word of length n we chose to label it as B = B�(n�1) . . . B�1B0.
Then it follows that

0! pU ! pNp
⇡p�! Vp ! 0

is an Auslander-Reiten sequence in mod(Ap). Hence for the morphisms hp : Hp ! Vp there exist
morphisms sp : Hp ! pNp, such that ⇡psp = hp.
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By Lemma 3.4.11 we know that there exists some n > 0 such that there exist morphisms
s̃p : Hp ! nNp for all p � n with ⇡̃ps̃p = ⇡psp = hp, where ⇡̃p : nNp ! Vp and ⇡ : pNp ! Vp are
the corresponding projections.

If V is finite-dimensional, then there exists some p� 0 such that C = ⇡p(C) and hence V = Vp.
Then we can choose g : H ! N as the composition

H ⇣ Hp
s̃p�! nNp ,! N

where the maps which are not labelled are canonical projections or inclusions.

If V (x) is infinite-dimensional we are precisely in the situation of Lemma 3.4.8 and there exists
a morphism g̃q : Hq ! nNq of inverse systems such that hq = ⇡̃q g̃q. Then we define

g̃ = lim � g̃q : H !M(B>�(q�1)xC) = nN1

and g : H ! N as the composition

H
g̃�! nN1 ,! N

and this satisfies h = ⇡g.

Proposition 3.4.14. Let C be a word that starts and ends in a deep, such that C = hDh where
D is a finite word. Then

0 // M(D)
(◆,◆) // M(hD)�M(Dh)

(◆,�◆) // M(C) // 0

where ◆ is the natural inclusion, is an almost split sequence.

Proof. We know that M(D) 2 ArtI(⇤), M(C) 2 NoethP (⇤) are indecomposable. Hence, it
is enough show that for any morphism h : H ! M(C) in NoethP (⇤) which is not a splittable
epimorphism, there is a morphism g : H !M(hD)�M(Dh) such that fg = h where f = (◆,�◆).
From now on set, M1 = M(hD), M2 = M(Dh) and N = M(C).

Now we consider all p� 0 such that Hp, Np, M1
p , M

2
p and M(D)p are given by the p-truncations

of the corresponding words. Since D is a finite word we have M(D) = M(D)p. Again we can
assume that H 2 Noeth(⇤) is a finitely generated string or band module and by Lemma 3.4.7
that h = lim �hp where hp : Hp ! Np is not a split epimorphism. Furthermore, we know that the
sequence

0 // M(D) // M1
p �M2

p

fp // Np
// 0

where fp = (◆p,�◆p), is an almost split sequence in mod(Ap) for all p� 0. Therefore, there exist
morphisms sp : Hp !M1

p �M2
p such that fpsp = hp.

Assume first thatH is finite-dimensional. If in additionN and thus also E are finite-dimensional,
then we have H = Hp, N = Np, M1 = M1

p and M2 = M1
p for some p� 0. Hence we have h = hp

and f = fp and thus we can choose g = sp. If N is infinite dimensional, then one or both of its
hooks are infinite. Assume for simplicity that both hooks are infinite. If we consider M(D) as a
submodule ofN , then it follows that any finite-dimensional submodule ofM(C) is also a submodule
of M(D). Since H is finite-dimensional the image of h is a finite-dimensional submodule of N .
This implies, that the image of sp can be considered as a submodule in M(D) �M(D). We can
choose g = ◆sp, where ◆ : Im(sp)!M1 �M2 is the canonical inclusion.

From now on we can assume that H is a possibly infinite dimensional but finitely generated
string module. We can write sp = (s1p, s

2
p) with sip : Hp !M i

p for i = 1, 2.

IfM1 is finite-dimensional, we haveM1 = M1
p
1

for some p1 � 0. In that case define g1 : H !M1

as the composition

H ! Hp
1

sp
1��!M1.
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Now assume that M1 is not finite-dimensional. Thus

M1 = M(hD) ⇠= M((hD)�1) = M(D�1xB),

where x is an arrow and B an inverse N-word. Let Ñ = M(B) and ⇡ : N ! Ñ the natural
projection. Then ⇡ can be considered as the projection onto the hook of M1. Let f̃ = ⇡◆ and
h̃ = ⇡h. Then for all p� 0 we have

h̃p = ⇡php = ⇡pfps
1
p = f̃ps

1
p.

By Lemma 3.4.8 for some fixed p1 � 0 there exist morphisms g1q : Hq ! M1
q for all q � p1, such

that g1p
1

= s1p
1

and

⇡qhq = h̃q = f̃qg
1
q = ⇡qfqg

1
q

for all q � p1 and such that (g1q ) is a morphism of inverse systems. Then for g1 = lim � gq : H !M1

we have h̃ = f̃ g1.
Similarly we can define g2 : H ! M2. Then for g = (g1, g2) : H ! M1 �M2 there is some

p � 0 such that gp = sp. Hence for this p we have fpgp = hp. We claim that fqgq = hq for
all q � p. Let bHi be a basis symbol in Hq. Then we can write hq(bHi ) = n1 + x + n2, where ni

is a linear combination of the basis symbols in the hook corresponding to M i and x is a linear
combination of the remaining basis symbols that do not occur in the hooks. Similarly we write
fqgq(bHi ) = ñ1 + x̃ + ñ2. Further denote by ⇡i

q the natural projections to the hooks for i = 1, 2.
Then by the choice of g we have

ni = ⇡i
q(n1 + r + n2) = ⇡i

qhq(b
H
i ) = ⇡i

qfqgq(b
H
i ) = ⇡i

q(ñ1 + r̃ + ñ2) = ñi.

Now let ⇡qp : Nq ! Np be the projection. Then we have ⇡pq(n1 + x + n2) = x + r and
⇡pq(n1 + x̃ + n2) = x̃ + r, where r is a linear combination in the basis symbols on the hooks of
Np. Then we have

x+ r = ⇡pqhq(b
H
i ) = hp⇡pq(b

H
i ) = fpgp⇡pq(b

H
i ) = fp⇡pqgq(b

H
i ) = ⇡pqfqgq(b

H
i ) = x̃+ r

and thus in total fqgq(bHi ) = hq(bHi ). Since this holds for arbitrary basis vectors of Hq we have
fqgq = hq for all q � p, and hence fg = h.

Proposition 3.4.15. If C does not start but ends in a deep, then C = Dh where D is a finite
word, cD and cC are defined and

0 // M(cD)
(◆,⇡) // M(cC)�M(D)

(⇡,�◆) // M(C) // 0

is an almost split sequence.

Proof. The proof is similar to the proof of the last proposition. We have C = Dh = DxB, where
x is an arrow and B is a finite or N-word which is inverse and cC = EyDxB, where E is a finite or
�N-word which is inverse and y is an arrow. W set U = M(cD), M1 = M(cC), an M2 = M(D)
and N = M(C). Again let h : H ! M(C) be a morphism in Noeth(⇤) which is not a split
epimorphism. We can assume, that H is a finitely generated string module or band module. We
can assume that for all p� 0 the modules Hp, Np and M2

p = M2 are given by the p-truncations
of the respective words. Further for each q > 1 let qM

1
p and qUp be as in Lemma 3.4.11. Then we

know that

0 //
pUp

(◆p,⇡p)//
pM

1
p �M2

(⇡p,�◆p)// Np
// 0

is an Auslander-Reiten sequence in mod(Ap) for all p� 0. Hence there exist morphisms sp : Hp !
pM

1
p �M2 such that hp = (⇡p,�◆p)sp.

67



3 ⌧ -tilting theory for completed string algebras

Now if E is in fact a finite word, the poof is exactly the same as in the last proposition. If E is
an �N-word, then by Lemma 3.4.11 we can assume that there exists some n � 0, such that for
all p � n we have

Im(sp) ✓ nM
1
p �M2

where we consider nM
1
p as a submodule of pM

1
p . In this way, we can again restrict to the case,

where E is a finite word.

The proof that the remaining canonical exact sequences are Auslander-Reiten sequences is sim-
ilar.

Corollary 3.4.16. Let M 2 mod(⇤) be a finitely generated string module. Then we can write
M = lim �Mq where Mq is a finite-dimensional string module in mod(Aq) for all q � 0. The
modules ⌧Aq (Mq) form a direct system of finite-dimensional string modules and we have

⌧⇤(M) ⇠= lim�! ⌧Aq (Mq).

3.4.3 Auslander-Reiten sequences containing band modules

Let M = M(C, V ) 2 mod(⇤) be a band module of dimension n. Then M can be considered as a
module in mod(Ap) for all p > n. Then there exists some N ⇠= M(C,W ) 2 mod(An+1) such that

0!M ! N
f�!M ! 0

is an Auslander-Reiten sequence. Here we have W 2 mod(K[T, T�1]) such that

0! V !W ! V ! 0

is an Auslander-Reiten sequence in mod(K[T, T�1]).

Proposition 3.4.17. The short exact sequence

0!M ! N
f�!M ! 0

is an Auslander-Reiten sequence in mod(⇤).

Proof. Again we use Proposition 3.4.1. So let H 2 mod(⇤) be an indecomposable module and
h : H !M a homomorphism which is not a split epimorphism. If H is finite-dimensional, we can
consider H as a module in mod(Ap) for some p� 0. Then, since

0!M ! N
f�!M ! 0

is an Auslander-Reiten sequence in mod(Ap), there exists a morphsim g : H ! N of Ap-modules
such that fg = h. Since g is also a morphism of ⇤-module we are done in that case. If H is
infinite-dimensional, then since M is finite-dimensional there exists some p � 0 such that there
exists a morphism hp : Hp !M and such that h is equal to the composition

H
⇡�! Hp

hp�! Hp !M.

Then there exists some morphism sp : Hp ! N , such that fsp = hp. Then for g = sp⇡ : H ! N
we have fg = h.

3.5 On ⌧ -tilting theory

In this section we will prove the Mutation Theorem for finitely generated modules over completed
string algebras. The crucial observation needed in the proof is the following: if M(C) is a ⌧ -rigid
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finitely generated string module, the word C cannot have very long direct or inverse subwords,
except for possibly in the hooks.
Let

⇤ = dKQ/(⇢)

be a completed string algebra and let n = |Q0| the number of vertices in Q. Then Q has at most
2n arrows and thus if there exists a primitive cycle it is of length at most 2n. If B is a finite direct
word with head v and tail u of length at least 2n+ 1 it is of the form

B = P kB̃ = B̃Rk

for some non-trivial words B̃, P and R and k > 0 and we assume that B̃ is chosen minimal with
respect to the length. Here P has head and tail v and R has head and tail u and B̃ has head v and
tail u. Then we see that there is a standard homomorphism ✓B̃ : M(B) ! M(B) corresponding
to the first occurrence of B̃ as a predecessor closed substring in B and to the last occurrence of B̃
as a successor closed substring.
If B is a direct N-word, we have B = P1 where P is a primitive cycle. In both cases, we see

that there are non-trivial homomorphisms from M(B) to M(B) which are not the identity.
Let C be an I-word such that M(C) is a finitely generated non-projective ⇤-module. We denote

by ⌧⇤(C) the word such that ⌧⇤(M(C)) = M(⌧⇤(C)). Furthermore, we define

C \ ⌧⇤(C)

the intersection of C and ⌧⇤(C) to be the finite word D, such that

C =

8
>>><

>>>:

hDh if C starts and ends in a deep

Dh if C does not start but ends in a deep

hD if C starts but does not end in a deep

D if C neither starts nor ends in a deep.

We say that a finite word B is a subword of an I-word D, if D = DiBD>j for some i  j 2 I.

Lemma 3.5.1. Let M(C) 2 mod(⇤) be a ⌧⇤-rigid string module. Then the finite word D =
C \ ⌧⇤(C) does not contain a direct or inverse subword of length greater than 2n.

Proof. Suppose otherwise, that D = DiBD>j where B is a direct word of length greater than 2n
and that the letters adjacent to B (if there are any) are inverse. Note that if D = DiB it might
happen that C = CiByC>j+1, where then C>j+1 is an inverse word. In that case we consider
the direct subword By of C. In any case since D is the intersection of C and ⌧⇤(C) we have a
non-trivial standard homomorphism ✓B̃ : M(C)!M(⌧⇤(C)) similarly as described above. Hence
M is not ⌧⇤-rigid. Dual arguments or considering C�1 shows that D does not contain an inverse
subword of length greater than 2n.

Proposition 3.5.2. Let M(C) 2 mod(⇤) be a finitely generated ⌧⇤-rigid string module. Then
Mp = M(⇡p(C)) is a ⌧Ap-rigid string module in mod(Ap) for any p � 2n+ 1.

Proof. It follows from Lemma 3.5.1 that Mp is isomorphic to the string module M(⇡p(C)). In
particular we have

⇡p(C) \ ⌧Ap(⇡p(C)) = C \ ⌧⇤C

and that means that C only di↵ers from ⇡p(C) by possibly having longer hooks and ⌧⇤C di↵ers
from ⌧Ap(⇡p(C)) by possibly having longer cohooks. If f : M(⇡p(C)) ! M(⌧Ap(⇡p(C))) is a
non-trivial homomorphism then the composition

M(C) ⇣ M(⇡p(C))
f�!M(⌧Ap(⇡p(C))) ,!M(⌧⇤C)

is a non-trivial homomorphism from M(C) to ⌧⇤M(C), contradicting that M(C) is ⌧⇤-rigid.
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Proposition 3.5.3. Let p � 2n + 1 and let M 2 mod(Ap) be a finitely generated string module
which is ⌧Ap-rigid. Then there exists a finitely generated string module M(C) 2 mod(⇤) which is
⌧⇤-rigid, such that M = M(⇡p(C)).

Proof. We will inductively construct a word C as in the Lemma such that M(⇡q(C)) is ⌧Aq -rigid
for all q � p. Let B be the word for Ap such that M = M(B) and set ⇡p(C) = B.
If there exists an arrow x such that xB is a word for Ap+1 but not for Ap (in other words B

starts in a deep considered as a word for Ap), we set B0 = xB. Otherwise set B0 = B. Similarly
if there exists an arrow y such that B0y�1 is a word for Ap+1 but not for Ap, we set B00 = B0y�1.
Otherwise set B00 = B0. Note that by Lemma 3.5.1 applied to Ap we know that the finite word
B \ ⌧ApB does not contain a direct or inverse subword of length greater than 2n and it follows
that

B \ ⌧ApB = B00 \ ⌧Ap+1

(B00).

We define ⇡p+1(C) = B00 and we claim that N = M(⇡p+1(C)) is ⌧Ap+1

-rigid. There is natural
projection and a natural inclusion

N
⇡�!M and ⌧Ap(M)

◆�! ⌧Ap+1

(N)

which might be identities. Obviously any homomorphism from N ! ⌧Ap(M) factors through

N
⇡�! M . Hence if f : N ! ⌧Ap+1

(N) is a non-zero homomorphism with image in ⌧Ap(M), there
exists a non-zero homomorphism M ! ⌧Ap(M). This is a contradiction to M being ⌧Ap -rigid.
If ✓ : N ! ⌧Ap+1

(N) is a standard homomorphism, which does not have image in ⌧Ap(M), it
follows that ⌧Ap+1

(B00) has a cohook of length p � 2n+ 1, and that the basis vector b at the top
of this cohook is in the image of ✓. Then ✓ can only correspond to direct or inverse equivalent
subwords of B00 and ⌧Ap+1

(B00) of length p � 2n+ 1. Then similarly as before, we see that there
also exists a standard homomorphism ✓B̃ : N ! ⌧Ap+1

(N) which does not hit the basis vector b
and thus has image in ⌧Ap(M). We have already seen that this is a contradiction. Hence N is
⌧Ap+1

-rigid.

Corollary 3.5.4. Let p � 2n + 1. Then there is a bijection between indecomposable ⌧⇤-rigid
modules in mod(⇤) and indecomposable ⌧Ap-rigid modules in mod(Ap).

Proof. This is a direct consequence of Proposition 3.5.2 and Proposition 3.5.3.

Corollary 3.5.5. Let M = M(C) 2 mod(⇤) be a finitely generated string module. Then M is
⌧⇤-rigid if and only if M(⇡p(C)) is ⌧Ap-rigid for every p � 2n+ 1.

Proposition 3.5.6. Let M(C),M(D) 2 mod(⇤) be ⌧⇤-rigid string modules. Then for any p �
2n+ 1 we have

dimHom⇤(M(C), ⌧⇤M(D)) = 0

if and only if
dimHomAp(M(⇡p(C)), ⌧ApM(⇡p(D)) = 0.

Proof. The proof is very similar to the proofs of Proposition 3.5.2 and Proposition 3.5.3.

Corollary 3.5.7. Let p � 2n + 1. Then there is a bijection between basic ⌧⇤-tilting modules in
mod(⇤) and basic ⌧Ap-tilting modules in mod(Ap).

Proof. This follows from Corollary 3.5.4 and Proposition 3.5.6.

Corollary 3.5.8. Any ⌧⇤-rigid module in mod(⇤) is a direct summand of some ⌧⇤-tilting ⇤-
module.

Let u be a vertex in Q and denote by Pu the indecomposable projective module isomorphic to
Aeu. Then Pu is an indecomposable finitely generated ⇤-module and hence isomorphic to a string
module. In fact it is not hard to see, that Pu = M(CD) where C is a direct word with tail u and
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D is an inverse word with head u, such that CD both starts and ends in a deep. Note that for
M 2 mod(⇤) with dim(Mu) finite we have

dimHom⇤(Pu,M) = dim(Mu)

and if Mu is infinite dimensional so is Hom⇤(Pu,M).
As for finite-dimensional algebras we say that a pair (M,P ) with M 2 mod(⇤) and P a finitely

generated projective ⇤-module is ⌧⇤-rigid if M is ⌧⇤-rigid and Hom⇤(P,M) = 0. If in addition
we have that |M | + |P | = |⇤| (respectively |M | + |P | = |⇤| � 1) we say that (M,P ) is a support
⌧⇤-tilting (respectively almost support ⌧⇤-tilting) pair.

Theorem 3.5.9. Let ⇤ be a completed string algebra. Then any basic almost complete support
⌧ -tilting pair for ⇤ is a direct summand of exactly two basic support ⌧ -tilting pairs.

Proof. Let (U,Q) be an almost complete support ⌧⇤-tilting pair for ⇤. Then for p � 2n+ 1 there
are (Up, Qp) 2 mod(Ap) almost complete support ⌧Ap -tilting pairs for Ap. By [AIR, Theorem
2.18] we know that (Up, Qp) 2 mod(Ap) is a direct summand of exactly two basic support ⌧Ap -
tilting pairs (Tp, Pp) and (T 0

p, P
0
p) for Ap. If the added summand Mp is not projective, then we

know by Proposition 3.5.3 that there exists a corresponding ⌧⇤-rigid summand M 2 mod(⇤). By
Proposition 3.5.6 we know that then U �M is also ⌧⇤-rigid. Furthermore, it is not hard to see,
that HomAp(Qp,Mp) = 0 implies that Hom⇤(Q,M) = 0. If the added summand is projective, we
can add the corresponding indecomposable projective ⇤-module. In this way, we see that there
are at least two ways to complete (U,Q) to a basic support ⌧⇤-tilting module.
Suppose there exists a third basic support ⌧⇤-tilting pair, which has (U,Q) as a direct summand.

Then there would also exist a third basic support ⌧Ap -tilting pair, which had (Up, Qp) as a direct
summand. This contradicts [AIR, Theorem 2.18].
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4 On perpendicular categories

In this chapter we are going to recall results from [GL] on perpendicular categories and see how
they can be applied or adapted to module categories of 1-Iwanaga-Gorenstein algebras. Here we
pay particular attention to a new class of algebras, recently introduced by Geiß, Leclerc and Schröer
in [GLS1]. These algebras are defined via quivers with relations associated with symmetrizable
Cartan matrices. Let H = H(C) be such an algebra associated with an n ⇥ n symmetrizable
Cartan matrix C. We find that for an indecomposable partial tilting module M 2 rep(H), such
that EndH(M) is a skew-field, the orthogonal category M? is equivalent to the module category
of a 1-Iwanaga-Gorenstein-algebra. In case that M is preinjective we see even more, namely that
M? is equivalent to rep(H 0), where H 0 = H(C 0) and C 0 is a symmetrizable Cartan matrix of size
n� 1.

4.1 Perpendicular categories for finite-dimensional algebras
after Geigle and Lenzing

In this section we will recall results from [GL] and specialise them to the case of finite-dimensional
algebras. Most of the proofs will be omitted, except where we need to go into more details in
order to see how the proofs can be adapted to 1-Iwanaga-Gorenstein algebras. Note that our
notation may change from the literature, since we are considering left-modules, whereas in the
above reference the authors consider right-modules.

4.1.1 Definition and existence of left adjoints

Abelian categories and Morita theory Recall that an abelian category is an additive category
A such that each morphism f : M ! N admits a kernel Ker(f) and a cokernel Cok(f), and such
that the induced morphism f 0 from the coimage Coim(f) to the image Im(f) is an isomorphism.
It is well-known that for any ring R the category Mod(R) of all left R-modules is abelian. If R
is left-Noetherian, as in the case of finite-dimensional algebras, then the category mod(R) of all
finitely generated left R-modules is also abelian.
Let A be an abelian category. We say that A is cocomplete if for each set-indexed family (Mi)i2I

of objects in A there exists the direct sum or coproduct �i2IMi in A. An object P 2 A is called
a generator if for each M 2 A, there is an epimorphism �IP !M for some set I. If in addition
the functor HomA(P,�) : A ! Mod(Z) is exact, the generator P is called projective and if the
functor commutes with arbitrary set-indexed coproducts it is called compact. In this case we also
refer to P as a progenerator or projective generator.
By definition two rings R and S are Morita equivalent if there is an equivalence Mod(R) !

Mod(S). This notion of equivalence was first introduced by Morita [Mo]. The following result and
its consequences for module categories are the corner stone of Morita theory.

Theorem 4.1.1 ([Fr], [Ga]). Let P be an object in an abelian category A and let R = EndA(P )op.
Then HomA(P,�) : A ! Mod(R) is an equivalence of categories with inverse functor P ⌦R � if
and only if A is cocomplete and P is a compact projective generator in A.

Characterization of perpendicular categories which are abelian categories From now on let
A be a finite-dimensional algebra and M 2 mod(A). The right perpendicular category M? is the
full subcategory of mod(A) whose objects are all X 2 mod(A) such that

HomA(M,X) = 0 and Ext1A(M,X) = 0
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4 On perpendicular categories

and the left perpendicular category ?M is the full subcategory of mod(A) whose objects are all
X 2 mod(A) such that

HomA(X,M) = 0 and Ext1A(X,M) = 0.

We will concentrate on right perpendicular categories, but the dual statements hold for left per-
pendicular categories. The next lemma is [GL, Proposition 1.1.].

Lemma 4.1.2. Let M 2 mod(A) with proj. dim(M)  1. Then M? is an abelian category and
the inclusion M? ! mod(A) is exact.

It is a result by Mitchell [Mi], often referred to as full embedding theorem, that any abelian
category can be embedded into a module category over a suitable ring. However, we want to
know, when the perpendicular category M?, where M is a finite-dimensional module over a finite-
dimensional algebra, is again equivalent to mod(A0), where A0 is a finite-dimensional algebra. In
the case of finite-dimensional algebras we have the following consequence of Theorem 4.1.1. For
more details on Morita theory for finite-dimensional algebras we refer to the book [SY].

Corollary 4.1.3. Let A be a finite-dimensional algebra and A an abelian subcategory of mod(A).
If T 2 mod(A) is a projective generator of A, there is an equivalence of categories

HomA(T,�) : A! mod(EndA(T )
op)

with inverse functor T ⌦A �.

Example 4.1.4. We would like to give an example that the condition proj. dim(M)  1 is
necessary for M? to be abelian. Let A = KQ/(⇢) be the algebra given by the quiver

1
b // 2

a // 3

and relation ⇢ = ab. Then the simple module at vertex 1, denoted by S1 has projective resolution

0! 3! 2
3 ! 1

2 ! 1! 0

and thus proj. dim(S1) = 2. The modules P1 = I2 = 1
2 and P2 = I3 = 2

3 are in S?
1 , as there are

no non-zero homomorphisms from S1 to either of them, and they are both injective. Furthermore,
we have Ext1A(S1,S2) 6= 0, since there is the non-splitting short exact sequence

0! 2! 1
2 ! 1! 0.

Another way to see that dimExt1A(S1,S2) = 1 is that there is one arrow from 1 to 2 in Q and the
number of arrows between two vertices i and j in the quiver of a bounded path algebra equals the
dimension of Ext1A(Si,Sj). However, there is a homomorphism

f : 2
3 ! 1

2

in S?
1 with Im(f) = S2 /2 S?

1 .

Remark 4.1.5. At this point we would like to reference an article of Jasso [J], where he defines
and studies an analogue of the perpendicular category. If U is a ⌧A-rigid A-module then the
⌧ -perpendicular category associated to U denoted by U is the full subcategory of mod(A) whose
objects are all X 2 mod(A) such that

HomA(U,X) = 0 and HomA(X, ⌧AU) = 0.

In case U is a partial tilting module, that is if in addition proj. dim(U)  1, then we have

U = U?.
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4.1 Perpendicular categories for finite-dimensional algebras after Geigle and Lenzing

Let TU be the Bongartz completion (see [J, Proposition 2.13.]) of U , and set C = EndA(TU )op/heU i,
where eU is the idempotent corresponding to the EndA(TU )op-projective module HomA(TU , U).
Then Jasso’s main result is that there is an equivalence of categories

U ' mod(C).

Note that in the above example, the simple module S1 is ⌧A-rigid and thus it follows that
its ⌧ -perpendicular category is abelian and even equivalent to the module category of a finite-
dimensional algebra.

Adjoint functors In the following we will establish conditions for an A-module, which ensure
that M? is not only an abelian category, but even equivalent to a module category over a finite-
dimensional algebra. In order to do so, we will construct a left adjoint functor of the embedding
M? ! mod(A). Therefore, we would like to recall the following definition. Let

A
F // B
G
oo

be a pair of additive covariant functors between abelian categories A and B. Then we say, that
F is left adjoint to G and G is right adjoint to F if for all X 2 A and all Y 2 B there exists an
isomorphism

HomB(F (X), Y ) ⇠= HomA(X,G(Y ))

which is functorial in X and Y . Note that F is left adjoint to G if and only if G is right adjoint
to F .
The following theorem (see for example [M, IV Satz 2]) gives a very useful equivalent definition

for a given functor to be a right adjoint of an adjoint pair of functors.

Theorem 4.1.6. A functor G : B ! A is a right adjoint functor if for each object X 2 A there
exists an (initial) object F0(X) 2 B and a universal morphism ⌘X : X ! GF0(X) from X to G.
Then the left adjoint functor F is given by F0 on objects, and on morphisms f : X ! X 0 it is
defined by the equation

GF (f) � ⌘X = ⌘X0 � f.

Generalisation of Bongartz’s short exact sequence Let M 2 mod(A) be a rigid module of
projective dimension at most 1, or in other words let M be a partial tilting module. Recall that
in [B] Bongartz proved that a partial tilting module can always be completed to a tilting module
by constructing a short exact sequence

0! A! B !Mk ! 0

where k = dimExt1A(M,A). This sequence is referred to as Bongartz’s short exact sequence. It is
not di�cult to see that proj. dim(B)  1, the number of pairwise non-isomorphic direct summands
of M �B equals the number of simple A-modules and Ext1A(M �B,M �B) = 0. Hence, M �B
is a tilting module, called the Bongartz’s completion, and B is called the Bongartz’s complement
of M . The following proposition compare [GL, Lemma 3.1.] can be considered as a generalisation
of Bongartz’s exact sequence.

Proposition 4.1.7. Let M 2 mod(A) be a rigid module. Then for all N 2 mod(A) there exists
some k 2 N and an exact sequence

0! N ! N 0 !Mk ! 0

such that Ext1A(M,N 0) = 0. If in addition EndA(M) is a skew-field, then

HomA(M,N) = HomA(M,N 0).

75



4 On perpendicular categories

Construction of a left adjoint functor of M? ! mod(A) Let M 2 mod(A) be a partial tilting
module. In the following we will recall the construction of a functor LM : mod(A)!M? which is
left adjoint to the embedding functor iM : M? ! mod(A) as was given in [GL, Proposition 3.2.].
Let N 2 mod(A) be arbitrary. By Proposition 4.1.7 there is a short exact sequence

0! N ! N 0 !Mk ! 0

such that Ext1A(M,N 0) = 0. Since HomA(M,N 0) is finite-dimensional, it is in particular finitely
generated over EndA(M). Hence we can choose a finite generating set {f1, . . . , fm} of HomA(M,N 0)
as an EndA(M)-module. Define U as the image of the map (f1, . . . , fm) : Mm ! N 0. First of all
notice, that Ext1A(M,U) = 0. Indeed, there is a short exact sequence

0! Ker(f1, . . . , fm)!Mm ! U ! 0

induced by (f1, . . . , fm) : Mm ! N 0. Applying the left-exact covariant functor HomA(M,�) yields
the exact sequence

0! HomA(M,Ker(f1, . . . , fm))! HomA(M,Mm)! HomA(M,U)

! Ext1A(M,Ker(f1, . . . , fm))! Ext1A(M,Mm)! Ext1A(M,U)! 0.

Since M is rigid, it follows that Ext1A(M,U) = 0.
We claim that the quotient L0(N) = N 0/U is in M?. We consider the short exact sequence

0! U ! N 0 ! L0(N)! 0

and apply again the functor HomA(M,�) to obtain the long exact sequence

0! HomA(M,U)
'�! HomA(M,N 0)! HomA(M,L0(N))

! Ext1A(M,U)! Ext1A(M,N 0)! Ext1A(M,L0(N))! 0.

By the choice of U , the morphism ' is an epimorphism and thus HomA(M,L0(N)) = 0. Fur-
thermore, since Ext1A(M,N 0) = 0, it follows that also Ext1A(M,L0(N)) = 0. We now define
LM (N) = L0(N) 2 M? on objects and the composition N ! N 0 ! L0(N) is the universal
morphism ⌘N : N ! L0(N).

Proposition 4.1.8. Let M 2 mod(A) be a partial tilting module. Then M? is an abelian sub-
category of mod(A) and there exists a functor LM : mod(A) ! M? which is left adjoint to the
inclusion functor iM : M? ! mod(A).

Remark 4.1.9. Note the following: If in the above construction HomA(M,N 0) = 0, we have
LM (N) = N 0 and hence there is a short exact sequence

0! N ! LM (N)!Mk ! 0.

Thus if in addition N is of projective dimension at most 1, then LMN is of projective dimension
at most 1. We are particularly interested in the object that is obtained when applying the functor
LM to the regular representation of A. In that case, the short exact sequence

0! A! A0 !Mk ! 0

is exactly Bongartz’s short exact sequence. If HomA(M,A0) = 0, then we know that LMA =
A0 2 M? is of projective dimension at most 1. This holds for example if HomA(M,A) = 0 and
EndA(M) is a skew-field.

Characterization of perpendicular categories which are module categories The next theorem
is a specialization of [GL, Proposition 3.8. and Corollary 3.9.]. Note that since A is a finite-
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4.1 Perpendicular categories for finite-dimensional algebras after Geigle and Lenzing

dimensional algebra, it is in particular a Noetherian ring, and therefore we are in the situation of
[GL, Corollary 3.9.] which considers finitely generated modules.
Recall that a morphism of rings f : R ! S is an epimorphism of rings if given any morphisms

g1, g2 : S ! Q such that g1f = g2f , we have g1 = g2. Note, that epimorphisms of rings need not
be surjective in general. For example the inclusion Z! Q is an epimorphism of rings.

Theorem 4.1.10. Let M 2 mod(A) be a partial tilting module, further let i : M? ! mod(A) be
the inclusion and L = LM : mod(A)!M? its left adjoint functor. Then we have the following:

• The module LA is a progenerator of M?, and hence we have an equivalence of categories

M?
HomA(LA,�) // mod(A0)

LA⌦A0�
oo

where A0 = EndA(LA)op is a finite-dimensional algebra.

• There exists an epimorphism of rings ' : A! A0 such that the natural functor '⇤ : mod(A0)!
mod(A) and its left adjoint '⇤ = �⌦A A0 make the diagrams

mod(A)

M?

i

OO

mod(A0)
LA⌦A0�
oo

'⇤

ee
mod(A)

L

✏✏

'⇤

%%
M?

HomA(LA,�)
// mod(A0)

commutative up to isomorphism. In particular there is an isomorphism

LA ⇠= A0

of left A-modules.

We would like to recall some parts of the proof of the theorem. We will first show that LA is
a projective generator of M?. Since the functor L is the left adjoint of the additive functor i, it
is right exact and also additive (see for example [M, IV.1. Satz 3] and [ASS, A.2. Lemma 4.]).
Also, since i is full and faithful, we have LN ⇠= N for all N 2M? (see for example [M, IV.3. Satz
1]). Then, since N is finitely generated as an A-module, there exists n 2 N and an epimorphism
An ! N . Applying the functor L yields an epimorphism (LA)n ! N . Thus LA is a generator of
M?.
Furthermore, by adjunction we have HomA(LA,N) ⇠= HomA(A, i(N)) = HomA(A,N) for all

objects N 2M? and therefore it follows that the functor HomA(LA,�) : M? ! Mod(Z) is exact,
which is equivalent to LA being projective in M?. Since LA is finitely generated, it is compact
and to conclude a progenerator.
We will now recall the construction of the morphism ' : A ! A0. There is an isomorphism of

rings
A! HomA(AA,AA)op

given by
h 7! fa, fa(b) = ba.

Now we define ' : A! A0 to be the map

A ⇠= HomA(AA,AA)op ! HomA(ALA,ALA)
op = A0, f 7! L(f)

induced by L. Since L is a functor, this is in fact a morphism of rings.
Next, we want to show that

'⇤(A
0) ⇠= i(LA⌦A0 A0A0) = ALA
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as left A-modules. We have isomorphisms of left A-modules

LA ⇠= HomA(A,LA) ⇠= HomA(LA,LA) = A0 = '⇤(A
0)

where the second isomorphism follows from adjunction, and the last equalities only hold, since we
consider the objects as left A-modules, not as rings.
Further we have isomorphisms

HomA(LA,LA)op ⇠= A0 ⇠= A⌦A A0 = '⇤(A)

as left A-modules.
We still need to show that ' is an epimorphism of rings. Since i is a full embedding, so is '⇤.

This implies that '⇤(N) ⇠= N for all N 2 mod(A0) as before by [M, IV.3. Satz 1]. In particular
we have

A0 ⇠= '⇤(A0) ⇠= A0 ⌦A A0

implying that ' : A0 ! A is an epimorphism of rings by [S, Proposition 1.1.]. This completes the
proof.

4.1.2 Homological epimorphisms

Let A and A0 be finite-dimensional algebras and ' : A ! A0 a homomorphism. Denote by
'⇤ : mod(A) ! mod(A0) the functor induced by '. For M,N 2 mod(A0), the natural map
HomA0(M,N) ! HomA(M,N) induces natural homomorphisms ExtiA0(M,N) ! ExtiA(M,N) of
groups for all i 2 N. The following is a consequence of [GL, Theorem 4.4. and Proposition 4.9.].

Proposition 4.1.11. Let ' : A ! A0 be a homomorphism of finite-dimensional algebras, such
that A0 is of finite projective dimension as a left A-module. Then the following conditions are
equivalent:

• The natural homomorphism HomA(AA0,AA
0)! A0 is an isomorphism and ExtiA(AA

0,AA
0) =

0 for all i � 1.

• For all left A0-modules M the natural homomorphism HomA(AA0,AM) ! AM is an iso-
morphism and ExtiA(AA

0,AM) = 0 for all i � 1.

• For all right A0-modules M the natural homomorphism HomA(A0
A,MA) ! MA is an iso-

morphism and ExtiA(A
0
A,MA) = 0 for all i � 1.

• For all left A0-modules M and N the natural homomorphism

ExtiA0(A0M,A0N)! ExtiA(AM,AN)

is an isomorphism for all i � 0.

• For all right A0-modules M and N the natural homomorphism

ExtiA0(MA0 , NA0)! ExtiA(MA,MA)

is an isomorphism for all i � 0.

• The induced functor Db('⇤) : Db(mod(A0))! Db(mod(A)) is a full embedding.

If ' satisfies these equivalent conditions we call it a homological epimorphism .

The next corollary is [GL, Corollary 4.8. and 4.10.] and is easily verified using Theorem 4.1.10
and the second condition in the above proposition.
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Corollary 4.1.12. Let A be a finite-dimensional algebra and M 2 mod(A) a partial tilting module.
Let i : M? ! mod(A) be the inclusion functor and L = LM : mod(A)!M? its left adjoint.
If proj. dim(LA)  1, then the morphism ' : A ! A0 = EndA(LA)op induced by L is a homo-

logical epimorphism.

The next is just a special case of [GL, Theorem 4.16.].

Proposition 4.1.13. Let A be a finite-dimensional algebra, and M 2 mod(A) be an indecompos-
able partial tilting module, such that EndA(M) is a skew-field and HomA(M,A) = 0. Then there
exists a finite-dimensional algebra A0 and a homological epimorphism ' : A ! A0 which is also
injective, such that

1. M? ' mod(A0);

2. T = M � '⇤(A0) is a tilting module in mod(A);

3. gl. dim(A0)  gl. dim(A);

4. |A0| = |A|� 1.

4.1.3 Perpendicular categories of projective modules

In the following we recall a process called deletion of vertices from [R3]. Let A = KQ/I be a path
algebra modulo some ideal I, where I is given by relations ⇢. Let i be any vertex in Q and denote
by Q0 the quiver obtained from Q after deleting the vertex i and any arrow incident to i. Further
let I 0 be the ideal generated ⇢0, where the relation ⇢0 is obtained from the relation ⇢, after deleting
any summands which are multiples of paths through the vertex i. Then A0 = KQ0/I 0 is again a
path algebra and any A0-module is an A-module with dim(M)i = 0. Hence we have a full exact
embedding

mod(A0)! mod(A)

where we can consider mod(A0) as an extension closed full subcategory of mod(A). The following
is a direct consequence of [GL, Proposition 5.1.]

Proposition 4.1.14. Let A = KQ/I be a finite-dimensional basic algebra, Pi the indecomposable
projective module with top(Pi) = Si. Further let A0 be the algebra obtained from A by deleting the
vertex i. Then

P?
i ' mod(A0) ' mod(A/Tr(Pi))

where Tr(Pi) denotes the trace ideal of Pi in A. If moreover, Tr(Pi) is a projective A-module, the
morphism

A! A/Tr(Pi)

is a homological epimorphism of algebras.

4.2 Hereditary algebras

4.2.1 Cartan matrices and Coxeter transformations

Symmetrizable Cartan matrices In representation theory Cartan matrices first appeared in
Lie Theory. Using the combinatorics of the corresponding root system, they were used to classify
simple and a�ne complex Lie algebras. It was discovered later that Cartan matrices can also be
used in the classification of the representation type of finite-dimensional hereditary algebras. More
precisely, a finite-dimensional hereditary algebra is of finite representation type, if and only if it is
associated with a Cartan matrix of Dynkin type. In this case there is a one-to-one correspondence
between the positive roots of the Cartan matrix and the dimension vectors of the indecomposable
modules of the algebra. This was first proven by Gabriel for path algebras and then generalised
to the setup of modulated graphs by Dlab and Ringel.
We call a matrix C 2Mn(Z) a generalized Cartan matrix if we have
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• cii = 2 for all 1  i  n,

• cij  0 for all i 6= j,

• cij 6= 0 if and only if cji 6= 0.

If in addition there exists a diagonal matrix D = diag(d1, . . . , dn) 2 Mn(Z) with di � 1 for all i,
such that DC is symmetric, then C is called a symmetrizable generalized Cartan matrix or from
now on for short Cartan matrix. The matrix D is the referred to as a symmetrizer of C. Note
that D is not unique. In fact, if D is a symmetrizer of C, then so is aD for any positive integer
a � 1. We call D a minimal symmetrizer if d1 + · · ·+ dn is minimal.

Graphs associated with Cartan matrices Let C 2 Mn(Z) be a Cartan matrix. We define a
connected valued graph of C, denoted �(C) as follows: the set of vertices is denoted by {1, . . . , n}
and there is a labelled edge

i
(|cji|,|cij |)

j

if and only if cij 6= 0. If cij = cji = 1 we will neglect to write a label on the edge. We say that C
is a connected Cartan matrix if �(C) is connected.

Example 4.2.1. Figure 4.1 shows a list of valued graphs, called Dynkin graphs, corresponding to
Cartan matrices of Dynkin type.

In order to define a quiver corresponding to a Cartan matrix, we need to define an orientation.
An orientation of a Cartan matrix C is a set ⌦ ✓ {1, 2, . . . , n} ⇥ {1, 2, . . . , n} such that the
following hold:

• {(i, j), (j, i)} \ ⌦ 6= ; if and only if cij 6= 0 and

• ⌦ is acyclic, i.e. for each sequence ((i1, i2), (i2, i3), . . . (it, it+1)) with t � 1 and (is, is+1) 2 ⌦
for all 1  s  t we have i1 6= it.

Given a Cartan matrix C 2 Mn(Z) with orientation ⌦, we associate an oriented valued graph
�(C,⌦) with underlying valued graph �(C) and if (i, j) 2 ⌦ we replace the edge between i and j
with an arrow

i
(|cji|,|cij |) // j

Reflections and admissible sequences LetQ be any finite quiver with verticesQ0 = {1, . . . , n}.
We define the reflection at vertex i of Q by reversing the direction of all arrows starting or ending
in i and denote the new quiver by si(Q). We say that a sequence (i1, . . . , in) is an (+)-admissible
sequence for Q, if

• {i1, . . . , in} = {1, . . . , n},

• the vertex i1 is a sink in Q and

• ik is a sink in sik�1

, . . . si
1

(Q) for 2  k  n.

A (�)-admissible sequence for Q is defined similarly, where we replace sinks by sources. If
(i1, . . . , in) is an (+)-admissible sequence, then (in, . . . , i1) is an (�)-admissible sequence. It is an
easy inductive argument, that a (+)-admissible sequence exists if and only if Q has no oriented
cycles.
We also want to define the reflection of the orientation ⌦ of a Cartan matrix C. For 1  i  n

we define the reflection of ⌦ as the new orientation

si(⌦) := {(r, s) 2 ⌦ | i /2 {r, s}} [ {(s, r) 2 ⌦? | i 2 {r, s}}

80



4.2 Hereditary algebras

An · · · · · · · n � 1

Bn · · · · · ·
(2,1)

· n � 2

Cn · · · · · ·
(1,2)

· n � 3

·

Dn · · · · · · · n � 4

·

E6 · · · · ·

·

E7 · · · · · ·

·

E8 · · · · · · ·

F4 · ·
(1,2)

· ·

G2 ·
(1,3)

·

Figure 4.1: Dynkin graphs.

where ⌦? := {(j, i) | (i, j) 2 ⌦} is the opposite orientation of ⌦. Then we have si(�(C,⌦)) =
�(C, si(⌦)).
Let C 2 Mn(Z) be a Cartan matrix with orientation ⌦. We say that a sequence (i1, . . . , in) is

an (+)-admissible sequence for (C,⌦), if it is a (+)-admissible sequence for �(C,⌦). Since ⌦ and
thus �(C,⌦) are acyclic by definition, there always exists a (+)-admissible sequence for (C,⌦).

Coxeter transformations Denote by ↵1, . . . ,↵n the standard basis vectors of Zn. Then for all
1  i, j  n we define

si(↵j) = ↵j � cij↵i

and obtain thus simple reflections si : Zn ! Zn for 1  i  n. Let (i1, . . . , in) be a (+)-admissible
sequence of (C,⌦). Then define

�k :=

(
↵i

1

if k = 1,

si
1

si
2

. . . sik�1

(↵ik) if 2  k  n,

where si are the simple reflections. Similarly we define the vectors

�k :=

(
↵in if k = n,

sinsin�1

. . . sik+1

(↵ik) if 1  k  n� 1.
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4 On perpendicular categories

For an (+)-admissible sequence (i1, . . . , in) of (C,⌦) we define the Coxeter transformations as
the linear transformations

c+ := sinsin�1

· · · si
1

: Zn ! Zn and c� := si
1

si
2

· · · sin : Zn ! Zn.

The Coxeter transformations do not depend on the chosen admissible order, since si and sj
commute for any pair of neighbours i, j which are not neighbours in �(C,⌦).

4.2.2 Hereditary algebras and modulations of graphs

Definition of hereditary algebra In this section we recall definitions and classical results con-
cerning hereditary algebras. Since these results are well-described in the literature we will not give
proofs in this section, but refer to the sources accordingly.
The (left) global dimension of an algebra A is defined as

gl. dim(A) = max{proj. dim(M) | M 2 mod(A)}.

An algebra A is called (left) hereditary if its (left) global dimension is at most 1. As we are dealing
with finite-dimensional algebras, the left- and right- global dimension and thus the notions of left-
and right-hereditary coincide. Furthermore, we have

gl. dim(A) = max{inj. dim(N) | N 2 mod(A)}.

For a proof of the following di↵erent characterizations of hereditary algebras see for example [ASS,
Theorem VII.1.4.]

Theorem 4.2.2. Let A be an algebra. The following are equivalent:

• A is hereditary.

• Any left ideal of A is projective as an A-module.

• Every submodule of a projective A-module is projective.

Example 4.2.3. Let Q be a finite quiver without oriented cycles and K be a field. Then the
path algebra A = KQ is an hereditary algebra. In fact, any basic, connected, finite-dimensional,
hereditary algebra A over an algebraically closed field K is of the form A ⇠= KQ, that is, a path
algebra of a finite, connected and acyclic quiver.

Hereditary algebras and Cartan matrices Let A be a finite-dimensional connected hereditary
algebra, with n simple modules S1, . . . ,Sn. To any such algebra A one can attach a Cartan matrix
C = CA as follows: For two simple modules Si,Sj we have Ext1A(Si,Sj) = 0 or Ext1A(Sj ,Si) = 0.
Assume that i 6= j and Ext1A(Sj ,Si) = 0. Set cii = 2 and define

cij = � dimEndA(Sj) Ext
1
A(Si,Sj)

cji = � dimEndA(Si)op Ext
1
A(Si,Sj)

and then for di = dimK(EndA(Si)), we have dicij = djcji, showing that C is a symmetrizable
Cartan matrix with symmetrizer D = diag(d1, . . . , dn). Define the orientation ⌦A of CA by
(j, i) 2 ⌦A if Ext1A(Si,Sj) 6= 0.
Conversely, using modulations of an oriented valued graph �(C,⌦) one can define an artin

hereditary ring A(C,D,⌦) to any Cartan matric C with symmetrizer D and orientation ⌦: let F
be field and for 1  i  n let Fi be F -skew-fields with dimF (Fi) = di. Further for (i, j) 2 ⌦ let

iFj be an Fi-Fj-bimodule such that F acts centrally on iFj , and we have iFj
⇠= F

|cij |
i as left-Fi-

modules and iFj
⇠= F

|cji|
j as right Fj-modules. Then (Fi, iFj) is called a modulation or realization

of (C,D,⌦). Such a modulation always exists for certain fields F . For example we can choose F
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4.2 Hereditary algebras

as the field with p elements for some prime number p. Then we can choose Fi as the field with
pdi elements and iFj the field with p|cij |dj elements. However, we can not in general assume, that
there exists a modulation over an algebraically closed field.
Let

A(0) :=
Y

1in

Fi and A(1) :=
M

(i,j)2⌦

iFj

and hence A(1) is an A(0)-A(0)-bimodule. Then the tensor algebra A := A(C,D,⌦) := TA(0)

(A(1))
is a finite-dimensional hereditary F -algebra. Furthermore, the category of representations of the
modulation (Fi, iFj) is equivalent to the category mod(A) of finite-dimensional A-modules. The
theory of modulations was developed by Dlab and Ringel ([DR1, DR2, R2]). Note that they used
the dual notions.

4.2.3 Auslander-Reiten theory for hereditary algebras

Dimension vectors and Coxeter functors In the following let A = A(C,D,⌦) be the hered-
itary algebra of some modulation associated with (C,D,⌦). For any vertex i of �(C,⌦) denote
by

S±
i : mod(A)! mod(A(C,D, si⌦))

the generalized reflection functors as defined in [DR2]. For a (+)-admissible sequence (i1, . . . , in)
of (C,⌦) let

C+ = S+
in
� . . . � S+

i
1

be the Coxeter functor. Dually one defines C� = S�
jn
� . . . � S�

j
1

for a (�)-admissible sequence
(j1, . . . , jn) of (C,⌦).
Let (i1, . . . , in) be a (+)-admissible sequence of (C,⌦) and assume without loss of generality

that ik = k for 1  k  n. Recall that we defined vectors �k and �k for 1  k  n. It is well-known
that these vectors are positive roots of the Cartan matrix C. Furthermore, we have the following
lemma.

Proposition 4.2.4. We have

dim(PA
k ) = �k and dim(IAk ) = �k

where PA
k and IAk are the indecomposable projective and injective A-modules.

Proof. By [DR2, Proposition 2.4.] the indecomposable projective module PA
k is isomorphic to

S�
1 S�

2 . . . S�
k�1Sk

where Sk is the simple representation at vertex k of A(C, sksk+1 . . . sn⌦). Thus, by [DR2, Propo-
sition 2.1.(ii)] we have

dim(PA
k ) =

(
↵k if k = 1,

s1s2 . . . sk�1(↵k) if 2  k  n

and the claim follows for the indecomposable projective modules. The claim for the indecompos-
able injective modules follows dually.

Proposition 4.2.5. Let M be a non-projective and N a non-injective indecomposable A-module.
Then we have

dim(⌧AM) = c+(dim(M)) and dim(⌧�1
A N) = c�(dim(N)).

Proof. Let M be a non-projective indecomposable A-module. Then by [DR2, Proposition 2.5.] we
know, that

dimC+X = c+(dim(X))
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4 On perpendicular categories

where C+ = S+
in
. . . S+

i
1

is the Coxeter functor for an (+)-admissible ordering (i1, . . . , in). It was

proven by Brenner and Butler [BB] that C+ and C� coincide with ⌧A and ⌧�1
A respectively.

Preprojective and preinjective modules Let A be a finite-dimensional hereditary algebra. An
indecomposable module M 2 mod(A) is called preprojective (respectively preinjective) if there
exists some indecomposable projective module P (resp. indecomposable injective module I) and
some positive integer k 2 Z such that

P ⇠= ⌧kA(M) (resp. ⌧kA(I) ⇠= M).

We call the corresponding vertex [M ] in the Auslander-Reiten quiver of A also preprojective
(respectively preinjective). An arbitrary, not necessarily indecomposable, A-module, is prepro-
jective (respectively preinjective) if it is isomorphic to a sum of indecomposable preprojective
(respectively preinjective) modules. Note, that M is preprojective or preinjective if and only if
there exists some k 2 Z such that

⌧kA(M) = 0.

An indecomposable A-module is called regular if it is neither preprojective nor preinjective.
The following is a direct consequence of [ARS, Lemma VIII.1.8, Corollary VIII.1.10].

Proposition 4.2.6. Let A be a hereditary algebra and � a connected component of its Auslander-
Reiten quiver. If � contains some projective vertices, than all its vertices are preprojective. In this
case � is called a preprojective component.
If � contains some injective vertices, than all its vertices are preinjective. In this case � is called

a preinjective component.
Furthermore, we have the following: the algebra A is indecomposable as an algebra if and only

if the Auslander-Reiten quiver of A has only one preprojective component.

We call a tuple (M1, . . . ,Mn) of indecomposable A-modules a path in mod(A) if there exists a
chain of non-zero non-isomorphisms M1 !M2 ! · · ·!Mn. We say that a path (M1, . . . ,Mn) is
a cycle if M1

⇠= Mn. The next proposition follows for example from [ASS, Corollary VIII.2.6].

Proposition 4.2.7. Let A be a hereditary algebra and � a preprojective component of its Auslander-
Reiten quiver. Let M,N be two non-isomorphic indecomposable modules in �. Then M lies on no
cycle in �, and if HomA(M,N) 6= 0, then there exists a path from M to N in �.

Lemma 4.2.8. Let A be a finite-dimensional hereditary algebra and

0! X
f�! Y

g�! Z ! 0

a short exact sequence of A-modules. Then if X and Z are preprojective, so is Y .

Proof. Suppose there is an indecomposable direct summand Y 0 of Y which is not preprojective
(hence it is preinjective or regular). Then since Z is preprojective, there cannot be any non-zero
homomorphisms from Y 0 to Z . This follows for example from [ARS, Corollary VIII.1.4.]. Thus
we have Y 0 ✓ Ker(g) = Im(f) ⇠= X. But this implies that Y 0 is isomorphic to a direct summand
of X and is thus preprojective, which is a contradiction. Hence the claim follows.

4.2.4 Perpendicular categories for hereditary algebras

The next result was proven independently by Schofield [Scho] for path algebras and by Geigle and
Lenzing [GL] for arbitrary hereditary algebras.

Corollary 4.2.9. Let A be an artin hereditary algebra with n simple modules. Let M 2 mod(A)
be an indecomposable rigid module. Then there is an equivalence of categories

M? ' mod(A0),
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4.3 Iwanaga-Gorenstein algebras

where A0 is a hereditary algebra with n� 1 simple modules.

The following is [St, Proposition 5.3.].

Proposition 4.2.10. Let A be an artin hereditary algebra. If M ⇠= ⌧�k
A Pi or M ⇠= ⌧kAIi for some

k � 0, then
M? ' mod(A0),

where the valued graph of A0 is obtained by removing the vertex i from A.

Let A be a hereditary artin algebra. Recall that an A-module M is called exceptional if it is
indecomposable and Ext1A(M,M) = 0. Thus, M is an indecomposable partial tilting module and
EndA(M) is a skew-field. A pair (M,N) of exceptional A-modules is called an exceptional pair, if
HomA(N,M) = 0 and Ext1A(N,M) = 0. A sequence (M1, . . . ,Mn) of A-modules is called complete
exceptional sequence if n is the number of simple A-modules and if (Mi,Mj) is an exceptional pair
for any i < j.
The next proposition was first proven by Crawley-Boevey [CB3] for hereditary algebras over al-

gebraically closed fields and then generalized by Ringel [R4]. It is one particularly nice application
of the theory of perpendicular categories.

Proposition 4.2.11. Let A be an artin hereditary algebra with n simple modules. Then the braid
group on n�1 generators acts naturally on the set of complete exceptional sequences of A-modules.
Furthermore, this action is transitive.

4.3 Iwanaga-Gorenstein algebras

4.3.1 Definition and basic properties

Definition of m-Iwanaga-Gorenstein algebras Let A be a finite-dimensional algebra. Then A
is called m-Iwanaga-Gorenstein if

inj. dim(AA)  m and inj. dim(AA)  m.

Note that
inj. dim(AA)  m, proj. dim(D(AA))  m

and
inj. dim(AA)  m, proj. dim(D(AA))  m.

In this case we have the following generalization of ”projectivity=injectivity” for modules over a
selfinjective algbra, due to Iwanaga [I].

Proposition 4.3.1. Let A be an m-Iwanaga-Gorenstein algebra. Then we have

inj. dim(AA) = inj. dim(AA)

and the following are equivalent for an A-module M :

• proj. dim(M) <1,

• proj. dim(M)  m,

• inj. dim(M) <1,

• inj. dim(M)  m.

Example 4.3.2. Recall that a finite-dimensional algebra A is selfinjective if it is injective as well
as projective as an A-module. An equivalent definition is that an A-module is projective if and
only if it is injective. Also, an algebra is self-injective if and only if it is 0-Iwanaga-Gorenstein.
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4 On perpendicular categories

Hereditary and selfinjective algebras are special examples of 1-Iwanaga-Gorenstein algebras. As
can be seen from the example of selfinjective algebras, a given algebra can be m-Iwanga-Gorenstein
for di↵erent values of m.

Remark 4.3.3. The property of being m-Iwanaga-Gorenstein is Morita invariant.

1-Iwanaga-Gorenstein algebras In the special case of 1-Iwanaga-Gorenstein algebras we have
the following, which was observed by Happel [H] and also Auslander and Reiten [AR, Page 121].

Proposition 4.3.4. For a finite-dimensional algebra A the following are equivalent:

• inj. dim(AA)  1,

• inj. dim(AA)  1.

Proof. Assume that inj. dim(AA)  1. Then since proj. dim(D(AA))  1 and

Ext1A(D(AA), D(AA)) = 0,

it follows that D(AA) is a right A-tilting module. Therefore, it follows form Bongartz [B, Tilting
Theorem d)] that D(AA) is a left B-tilting module, where B = EndA(D(AA)). In particular,
D(AA) is a left B-module of projective dimension  1. Now, we have the following chain of
ismorphisms of rings

B = EndA(D(AA)) ⇠= EndA(AA)op ⇠= A

and therefore it follows, that D(AA) is a left A-module of projective dimension  1, which is
equivalent to inj. dim(AA)  1. The other direction follows dually.

The following conjecture has been considered by several authors, see for example [AR, Chapter
6].

Conjecture 4.3.5. Let A be a finite-dimensional algebra. Then inj. dim(AA)  m if and only if
inj. dim(AA)  m for any m 2 N.

4.3.2 Perpendicular categories for Iwanaga-Gorenstein algebras

Let A be a finite-dimensional 1-Iwanaga-Gorenstein algebra. Then it does not necessarily have
finite global dimension and therefore Proposition 4.1.13 (3) is not particularly helpful. However,
we can replace it by the following:

Theorem 4.3.6. Let M 2 mod(A) be an indecomposable partial tilting module, and let

L : mod(A)!M?

be the left adjoint to the inclusion functor. If proj. dim(LA)  1 as a left A-module, then the
finite-dimensional algebra A0 = EndA(LA)op is a 1-Iwanaga-Gorenstein algebra.

Proof. We want to show that inj. dim(A0A0)  1. Then by Proposition 4.3.4 A0 is 1-Iwanaga-
Gorenstein.
Since the epimorphism ' : A ! A0 induced by L is a homological epimorphsim, we know that

for all left A0-modules N the natural map

ExtiA0(A0N,A0A0)! ExtiA(AN,AA
0)

is an isomorphism for all i � 0. Here the right hand side is zero for all i � 2: By assumption,
A is 1-Iwananga-Gorenstein and hence proj. dim(LA)  1 is equivalent to inj. dim(LA)  1. By
Theorem 4.1.10 there is an isomorphism

AA
0 ⇠= LA
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4.4 On quivers with relations for symmetrizable Cartan matrices

of left A-modules. This completes the proof.

Corollary 4.3.7. Let M 2 mod(A) be an indecomposable partial tilting module such that EndA(M)
a skew-field and HomA(M,A) = 0. Then there is an equivalence of categories

M? ' mod(A0),

where A0 is again a finite-dimensional 1-Iwanaga-Gorenstein algebra.

Proof. This is a direct consequence of Theorem 4.1.10 and Theorem 4.3.6.

Proposition 4.3.8. If Conjecture 4.3.5 is true, the above theorem and corollary hold more general
for m-Iwanaga-Gorenstein algebras.

4.4 On quivers with relations for symmetrizable Cartan matrices

4.4.1 Definition of the algebra H(C,D,⌦) and basic properties

Definition of the algebra In the following we recall the definition of the 1-Iwanaga-Gorenstein
algebras associated with symmetrizable Cartan matrices as given in [GLS1]. This generalizes the
notion of a path algebra associated with a symmetric Cartan matrix. This kind of generalization
was attempted and achieved before in the setup of modulated graphs by Gabriel and Dlab and
Ringel. However, results in this setup depend on quite strong assumptions on the ground field.
Let C be a Cartan matrix of size n⇥ n with symmetrizer D and orientation ⌦. For all cij < 0

we define numbers
gij := | gcd(cij , cji)| and fij := |cij |/gij .

Furthermore, we define a quiver Q := Q(C,⌦) = (Q0, Q1) as follows: the set of vertices is
Q0 = {1, 2, . . . , n} and the set of arrows is

Q1 := {↵g
ij : j ! i | (i, j) 2 ⌦, 1  g  gij} [ {"i : i! i | 1  i  n}.

Finally, we define the algebra associated to a Cartan matrix C with symmetrizer D and orien-
tation ⌦ as

H := H(C,D,⌦) = KQ/I

where K is a field, KQ the path algebra of Q = Q(C,⌦) and I the ideal generated by the relations

"di
i = 0

for all 1  i  n and
"
fji
i ↵

(g)
ij = ↵

(g)
ij "

fij
i

for each (i, j) 2 ⌦ and 1  g  gij .

Remark 4.4.1. Let Q� be the quiver obtained from Q = Q(C,⌦) by deleting all loops. Then
Q� is acyclic, because the orientation ⌦ is acyclic. Thus, it is easy to see, that the algebras
H = H(C,D,⌦) are finite-dimensional. Also note, that the definition of H does depend on the
chosen symmetrizer D. If C is symmetric and D is minimal, then H is isomorphic to the path
algebra KQ�, showing that it can be understood as a generalization of the classical path algebras
indeed.

Locally free modules Denote by e1, e2, . . . , en the idempotents in H corresponding to the
vertices. Then Hi := eiHei is isomorphic to the truncated polynomial ring K["i]/("

di
i ). For any

H-module M let Mi := eiM . Then Mi has an Hi-module structure and we call M locally free if
Mi is free as an Hi-module for 1  i  n. We denote by repl.f.(H) the full subcategory of locally
free modules of rep(H). One of the main results of [GLS1] is the following
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Theorem 4.4.2. The algebra H is 1-Iwanaga-Gorenstein. Furthermore, for M 2 rep(H) the
following are equivalent

• proj. dim(M)  1;

• inj. dim(M)  1;

• proj. dim(M) <1;

• inj. dim(M) <1;

• M 2 repl.f.(H).

⌧ -locally free modules Denote by ⌧H the Auslander-Reiten translate of the algebra H. Let
M 2 rep(H) be indecomposable. Then M is called ⌧ -locally free if ⌧kH(M) is locally free for all
k 2 Z. It follows from [GLS1, Proposition 11.4.] that any indecomposable partial tilting H-module
M is ⌧ -locally free and that ⌧kH(M) is again a partial tilting module for all k 2 Z.
An indecomposable ⌧ -locally free H-module M is called

• preprojective if there exists some k � 0 such that M ⇠= ⌧�k
H (P ) for some indecomposable

projective H-module P ;

• preinjective if there exists some k � 0 such that M ⇠= ⌧kH(I) for some indecomposable
injective H-module I;

• regular if ⌧kH(M) 6= 0 or equivalently if it is neither preprojective nor preinjective.

An arbitrary, not necessarily indecomposable, ⌧ -locally free H-module M , is preprojective (re-
spectively preinjective) if it is isomorphic to a sum of indecomposable preprojective (respectively
preinjective) modules. Note, that M is preprojective or preinjective if and only if there exists
some k 2 Z such that

⌧kH(M) = 0.

Furthermore, ifM is indecomposable and preprojective or preinjective, it follows from the Auslander-
Reiten formulas (see also [GLS1, Proposition 11.6.]) that Ext1H(M,M) = 0. Hence, we see that
in this case M is a partial tilting module.
For M 2 repl.f.(H) we define the rank -vector as follows: for each i 2 Q0 let ri be the rank of

Mi as a free Hi-module. Then we have dimK(Mi) = rici and we put

rank(M) = (r1, . . . , rn).

The following analogue result of Gabriel’s Theorem indicates a close connection between the
module categories of hereditary algebras and the ⌧ -locally free H-modules. This is again one of
the main results of [GLS1].

Theorem 4.4.3. There are only finitely many isomorphism classes of ⌧ -locally free H-modules if
and only if C is of Dynkin type. Furthermore, in this case we have the following:

• There is a bijection between the set of isomorphism classes of ⌧ -locally free H-modules and
the set �+(C) of positive roots of the semisimple complex Lie algebra associated with C given
by the map M 7! rank(M).

• If M is an indecomposable H-module, the following are equivalent:

– M is preprojective;

– M is preinjective;

– M is ⌧ -locally free;

– M is locally free and rigid.
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Example 4.4.4. We would like to refer to [GLS1] for a list of examples of algebras H(C,D,⌦)
and their Auslander-Reiten quiver and also to Section 4.5 of this thesis. However, we would like
to include at least one example at this point.
Let

C =

0

@
2 �1 0
�1 2 �2
0 �1 2

1

A

be of Dynkin type C3 with minimal symmetrizer D = diag(1, 1, 2) and ⌦ = {(1, 2), (3, 2)}. In
[GLS1] the reader can find the same example with orientation ⌦ = {(1, 2), (2, 3)}. The graph
�(C) looks as follows:

1 2
(1,2)

3

We have f12 = f21 = 1, f23 = 2 and f32 = 1. Then H = H(C,D,⌦) is given by the quiver

1

"
1

⌃⌃
2

"
2

⌃⌃
↵

12

oo
↵

23

// 3"

"
3

⌃⌃

with relations "1 = "2 = 0 and "23 = 0. The Auslander-Reiten quiver of H is shown in Figure 4.2.
The numbers in the figure correspond to composition factors and basis vectors. Furthermore, we
use the same notation as in [GLS1] that is as follows: the ⌧ -locally free H-modules are marked
with a double frame, the locally free H-modules, which are not ⌧ -locally free, are marked with a
single solid frame. (In the last three rows the three modules on the left have to be identified with
the corresponding three modules on the right.)

1

$$

2
3
3

&&

oo 2
1

oo

!!2
1 3

3

88

&&

2
3 2
3 1

99

%%

oo 2oo

3
3

$$

::

2
1 3 2

3 1
oo

&&

88

2
3 2
3

oo

!!

==

3

==

""

3 2
3 1

&&

88

oo 2
1 3 2

3

99

%%

oo 2
3

oo

2
3 1

&&

99

3 2
3

oo

((

77

2
3 1

<<

oo

2
3

77

3

88

oo

Figure 4.2: The Auslander-Reiten quiver of H(C,D,⌦) of type C3 with D minimal.

4.4.2 Reflection functors

Generalized simple H-modules Let (C,D,⌦) and H = H(C,D,⌦) as defined above. We de-
note by E1, . . . , En the indecomposable locally free modules with rank(Ei) = ↵i, where ↵1, . . . ,↵n

is the standard basis of Zn. Thus Ei corresponds to the regular representation of Hi and we refer
to it as generalized simple H-module. Note, that if i is a sink in Q�(C,⌦), then Ei = Pi is the
indecomposable projective at vertex i.
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Reflection functors Recall that for an orientation ⌦ of C and some 1  i  n the change of
orientation at the vertex i was defined as

si(⌦) := {(r, s) 2 ⌦ | i /2 {r, s}} [ {(s, r) 2 ⌦⇤ | i 2 {r, s}}

and we also define
si(H) := si(H(C,D,⌦) := H(C,D, si(⌦)).

We also say that a sequence (i1, . . . , in) is a (+)-admissible sequence for H, if it is a (+)-admissible
sequence for (C,⌦).
Associated to a sink k in Q�(C,⌦) there is a reflection functor

F+
k : rep(H)! rep(sk(H))

and dually if k is a source, there is a reflection functor

F�
k : rep(H)! rep(sk(H)).

For details on the definition we refer to [GLS1].
For any vertex k we consider the full subcategories

Tk = {M 2 rep(H) | topk(M) = 0}

and
Sk = {M 2 rep(H) | sock(M) = 0}.

Then the following is [GLS1, Corollary 9.2. and Corollary 9.3.]:

Lemma 4.4.5. Let k be a sink in Q�(C,⌦). Then the reflection functor

F+
k : rep(H)! rep(sk(H))

induces an equivalence of the subcategories of rep(H) defined by F+
k : Tk ! Sk with quasi-inverse

F�
k : Sk ! Tk. Furthermore, if M,N 2 Tk then F+

k induces an isomorphism

Ext1H(M,N) ⇠= Ext1skH(F+
k (M), F+

k (M)),

and similarly for M,N 2 Sk ✓ rep(sk(H)) the functor F�
k induces an isomorphism

Ext1skH(M,N) ⇠= Ext1H(F�
k (M), F�

k (M)).

Coxeter functors Similarly as for hereditary algebras one defines the Coxeter functors. For a
(+)-admissible sequence (i1, . . . , in) of (C,⌦), let

C+ = F+
in
� . . . � F+

i
1

be the Coxeter functor. Dually one defines C� = F�
jn
� . . . � F�

j
1

for a (�)-admissible sequence
(j1, . . . , jn) of (C,⌦). Note that the Coxeter functors do not depend on the choice of the admissible
sequence. Furthermore, we denote by

R(H) := {M 2 rep(H) | M is regular}

the full subcategory of regular modules.

Proposition 4.4.6. Let k be a sink in Q�(C,⌦). Then the reflection functor

F+
k : rep(H)! rep(sk(H))
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4.4 On quivers with relations for symmetrizable Cartan matrices

induces an equivalence of the subcategories

F+
k : R(H)! R(si(H))

with quasi-inverse F�
k : R(si(H))! R(H).

Proof. First note, that if k is a sink in Q�(C,⌦), then R(H) ✓ Tk: the module Ek is projective
and we have topk(M) = 0 for any other indecomposable locally free module. Now, by [GLS1,
Proposition 11.8.] if M is ⌧ -locally free, then so is F+

k (M). Now what is left to show is, that if M
is regular, then so is F+

k (M). This follows from the fact that

⌧m(F+
k (M)) ⇠= F+

k (⌧m(M))

for all m 2 Z: since k is a sink there exists a (+)-admissible sequence (i1, . . . , in) of (Q,⌦) with
i1 = k. Then (i2, . . . , in, k) is a (+)-admissible sequence of sk(H). By [?][Theorem 1.3.]GLS we
have ⌧(M) ⇠= TC(M) for any M 2 repl.f.(H), where T is the twist functor and

C ⇠= F+
in
· · ·F+

i
2

F+
i
1

⇠= F+
in
· · ·F+

i
2

F+
k

is the Coxeter functor. This implies

F+
k (⌧(M)) ⇠= F+

k (TF+
in
· · ·F+

i
1

)(M) ⇠= T (F+
k F+

in
· · ·F+

i
2

)F+
k (M) ⇠= ⌧(F+

k (M)).

Now it follows by induction that ⌧m(F+
k (M)) ⇠= F+

k (⌧m(M)) for all m � 0. For m < 0 a similar
argument with a (�)-admissible sequence proves the claim. For more details see also the proof of
[GLS1, Proposition 11.8.].

Reflection functors and APR-tilting Let i be a sink in Q�(C,⌦) and assume that Q(C,⌦)
is connected. It follows that i cannot be a source in Q�(C,⌦) and thus the generalized simple
projective module Ei cannot be injective. By [GLS1, Theorem 9.7] we know that the H-module

T = HH/Ei � ⌧�H (Ei) = T1 � · · ·� Tn

where

Tj =

(
Pj if j 6= i

⌧�H (Ei) if j = i

is a tilting H-module. Furthermore, for B = EndH(T )op there is an equivalence of categories

S : rep(si(H))! rep(B)

such that we have an isomorphism of functors S � F+
i
⇠= HomH(T,�). From this it follows that

F+
i (Tj) ⇠= si(H)ej for all 1  j  n and there is an isomorphism of algebras si(H) ⇠= B (see

[GLS1] remark after Lemma 9.14). By choosing a (+)-admissible sequence for H and applying
the above inductively, we get the following result.

Corollary 4.4.7. Assume without loss of generality that (1, 2, . . . , n) is a (+)-admissible sequence
in H. Then there is an isomorphism of algebras

EndH(⌧�H (P1 � · · ·� Pi)� Pi+1 � · · ·� Pn)
op ⇠= sisi�1 . . . s1H

for every 1  i  n.

4.4.3 On the connection with hereditary algebras

Rank vectors and the Coxeter transformation From now on, let C be a generalized sym-
metrizable Cartan matrix and let H = H(C,D,⌦) be the associated 1-Iwanaga-Gorenstein algebra
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4 On perpendicular categories

and denote by A = A(C,D,⌦) the corresponding hereditary artin algebra. In the following we
will line out an analogy between ⌧ -locally free H-modules and A-modules.

Lemma 4.4.8. Let M 2 rep(H) be ⌧ -locally free and non-projective. Then we have

rank(⌧H(M)) = c+(rank(M))

where c+ denotes the Coxeter transformation corresponding to a (+)-admissible sequence of (C,⌦).

Proof. By [GLS1, Proposition 11.5.] we have

dim(⌧H(M)) = �H(dim(M))

where �H denotes the Coxeter matrix. Now, if we express �H in the basis given by the vectors
dim(Ek), we can identify it with the Coxeter transformation c+.

Lemma 4.4.9. For i = 1, . . . , n we have

dim(PA
i ) = rank(PH

i ) and

dim(IAi ) = rank(IHi ).

Proof. Assume without loss of generality that (1, . . . , n) is a (+)-admissible sequence of ⌦. Then
by [GLS1, Lemma 3.2.] we have

rank(PH
k ) = �k =

(
↵k if k = 1,

s1s2 . . . sk�1(↵k) if 2  k  n.

and hence by Proposition 4.2.4 we have

rank(PH
k ) = �k = dim(PA

k ).

Correspondence of preprojective H-modules and preprojective A-modules In the following
we establish a close connection between preprojective H-modules and preprojective A-modules.
This can also be found in [GLS2, Section 5].

Proposition 4.4.10. Let ↵ 2 Nn. Then there exists an indecomposable preprojective (or prein-
jective) H-module M with rank(M) = ↵ if and only if there exists an indecomposable preprojective
(or preinjective) A-module N with dim(N) = ↵. In this case M and N are uniquely determined
by ↵ up to isomorphism.

Proof. Let M 2 rep(H) be a preprojective module with rank(M) = ↵. Then M ⇠= ⌧�k
H (PH

i ) for
some vertex i and k � 0. Then for N = ⌧�k

A (PA
i ) we have

dim(N) = dim(⌧�k
A (PA

i )) = c�kdim(PA
i ) = c�krank(PH

i ) = rank(⌧�k
H (PH

i )) = ↵

where we used the previous Lemmas and their corresponding versions for hereditary algebras. The
dual statements hold for preinjective modules. By [GLS1, Proposition 11.6.] preprojective and
preinjective H-modules are uniquely determined up to isomorphism by their dimension-vectors.

Proposition 4.4.11. Let M(↵),M(�) 2 mod(H) and N(↵), N(�) 2 mod(A) be indecomposable
preprojective or preinjective modules with rank- and dimension-vectors ↵ and � respectively such
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4.4 On quivers with relations for symmetrizable Cartan matrices

that ↵ 6= �. Then we have

dimHomH(M(↵),M(�)) = dimHomA(N(↵), N(�)),

dimExt1H(M(↵),M(�)) = dimExt1A(N(↵), N(�)).

Proof. First assume that M(↵) ⇠= ⌧�s
H (Pi). If M(�) ⇠= ⌧�k

H (Pj) such that s  k or if M(�) is
preinjective (but not preprojective) by the Auslander-Reiten-formula for modules of projective
and injective dimension at most 1 we have

dimHomH(M(↵),M(�)) = dimHomH(Pi, ⌧
s
HM(�))

= dim(⌧ sHM(�))i

= di(rank(⌧
s
HM(�))i

= dic
s(�)i

where c is the Coxeter transformation and di the entry of the symmetrizer D of C. We also have

dimHomA(N(↵), N(�)) = dimHomH A(PA
i , ⌧sAN(�))

= dimEndA(S
A
i )[⌧

s
AN(�) : SA

i ]

= didim(⌧ sAN(�))i

= dic
s(�)i

where again c is the Coxeter transformation and di = dimEndA(SA
i ).

If M(�) ⇠= ⌧�k
H (Pj) such that s > k we have

dimHomH(M(↵),M(�)) = dimHomH(⌧kH(M(↵)), PH
j ) = 0

since ⌧kH(M(↵)) is non-projective and by [GLS1, Corollary 11.3.]. We also have

dimHomA(N(↵), N(�)) = dimHomA(⌧
k
A(N(↵)), PA

j ) = 0

since again ⌧kA(N(↵)) is not projective.
The case, where both M(↵) and M(�) are preinjective is treated with dual arguments. If M(↵)

is preinjective (but not preprojective, hence if C is not of Dynkin type) and M(�) is preprojective,
then we have

dimHomH(M(↵),M(�)) = 0

by [GLS1, Lemma 11.7.] and
dimHomA(N(↵), N(�)) = 0

by the corresponding statement for hereditary algebras. For this see for example [ASS, Corollary
VIII.2.13.].
The formula for Ext1 now follows by applying the Auslander-Reiten formula appropriately to

the di↵erent cases and then using the result for the dimension of the Hom-spaces. One proves this
case, using the homological bilinear forms of H and A and using [GLS1, Corollary 4.3.].

Homological properties of preprojective and preinjective H-modules The last proposition
establishes a nice bridge between preprojective or preinjective H- and A-modules and has several
useful consequences.

Corollary 4.4.12. There is no cycle in mod(H) consisting of preprojective or preinjective inde-
composable modules.

Proof. This is a direct consequence of Proposition 4.4.11 and the equivalent argument for heredi-
tary algebras as in Proposition 4.2.7.
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4 On perpendicular categories

As for hereditary algebras we say that a module M 2 repl.f.(H) is called exceptional if it is
indecomposable and Ext1H(M,M) = 0. Thus, M is an indecomposable partial tilting module.
However, in general EndH(M) is not a skew-field. A pair (M,N) of exceptional H-modules is
called an exceptional pair, if HomH(N,M) = 0 and Ext1H(N,M) = 0. A sequence (M1, . . . ,Mn)
of H-modules is called complete exceptional sequence if n is the number of vertices of Q(C,⌦) and
if (Mi,Mj) is an exceptional pair for any i < j.

Corollary 4.4.13. Let ↵,� 2 Nn. Then the following are equivalent:

• There exist preprojective/preinjective modules M(↵),M(�) 2 rep(H) such that (M(�),M(↵))
is an exceptional pair.

• There exist preprojective/preinjective modules N(↵), N(�) 2 rep(A) such that (N(�), N(↵))
is an exceptional pair.

Corollary 4.4.14. If C is a Cartan matrix of Dynkin type, then there is a bijection between the
exceptional sequences in rep(A) and the exceptional sequences in repl.f.(H). In particular the braid
group acts transitively on the exceptional sequences in repl.f.(H).

Lemma 4.4.15. Let H = H(C,D,⌦) and let i, j be two vertices in Q, such that there is an arrow
from i to j, but no commutativity relation between i and j. Then there is an irreducible morphism
from Pj to Pi.

Proof. It follows from the description of the indecomposable projective modules in [GLS1] that in
this case Pj is a direct summand of rad(Pi). Thus the claim follows.

Corollary 4.4.16. Let H = H(C,D,⌦), such that C is not of Dynkin type, and such that kij = 1
for all 1  i < j  n. Further let � = (Q�(C,D,⌦))op, be the opposite quiver. Then the
preprojective vertices form a connected subquiver (not component) of the Auslander-Reiten quiver
of H of the form N�.

Proof. By the last lemma we can identify the isoclasses of the projective modules {P1, . . . , Pn},
hence the projective vertices with the vertices of �. Then the properties of the Auslander-Reiten
sequences yield, that we can identify the isoclass of ⌧�k

H (Pi) with the vertex (k, i) for k � 0 and
i 2 �0.

4.4.4 Perpendicular categories for H(C,D,⌦)

From now on assume that the ground field K is algebraically closed.

Generalization of Bongartz’s short exact sequence for preprojective H-modules From now
on let C be a generalized Cartan matrix, D a minimal symmetrizer, ⌦ an orientation of C and
H = H(C,D,⌦) and A = A(C,D,⌦). The following result and its proof can be found in [GLS2,
Section 5.4.]

Proposition 4.4.17. Let M,N 2 repl.f.(H) be rigid modules with Ext1H(M,N) = 0. Further let
E 2 repl.f.(H) be a rigid module with

rank(E) = rank(M) + rank(N).

Then there exists a short exact sequence

0!M ! E ! N ! 0.

Lemma 4.4.18. Let M,N 2 mod(H) be preprojective modules with Ext1H(N,M) = 0 and M be
indecomposable. There exists a short exact sequence

0! N ! N 0 !Mk ! 0
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4.4 On quivers with relations for symmetrizable Cartan matrices

with k 2 N and such that Ext1H(M,N 0) = 0 and HomH(M,N) = HomH(M,N 0). Hence if
HomH(M,N) = 0, it follows that L(N) = N 0 where L : mod(H) ! M? is the left adjoint of the
inclusion functor.

Proof. Let X,Y be the preprojective A-modules with dim(X) = rank(M) and dim(Y ) = rank(N).
Then by Lemma 4.4.11 the indecomposable module X is rigid. Thus it follows, for example from
[HR, Lemma 4.1.], that the algebra EndA(X) is a skew field. Therefore, by Proposition 4.1.7 there
exists a short exact sequence of A-modules

0! Y ! Y 0 ! Xk ! 0

with Ext1A(X,Y 0) = 0 and HomA(X,Y ) = HomA(X,Y 0). By Lemma 4.2.8 the module Y 0 is also
preprojective. Hence, there exists a preprojective H-module N 0 with

rank(N 0) = dim(Y 0) = rank(N) + rank(Mk).

Then by Proposition 4.4.17 there is a short exact sequence

0! N ! N 0 !Mk ! 0

of H-modules and by Lemma 4.4.11 we have

dimHomH(M,N) = dimHomA(X,Y ) = dimHomA(X,Y 0) = dimHomH(M,N 0).

Thus, we see that in the exact sequence

0! HomH(M,N)
g�! HomH(M,N 0)! HomH(M,Mk)

! Ext1H(M,N)! Ext1H(M,N 0)! 0

the monomorphism g is in fact an isomorphism.

The left-adjoint functor L : mod(H)!M? for preprojective and preinjective H-modules

Proposition 4.4.19. Let M 2 mod(H) be indecomposable and preprojective or preinjective, and
non-projective. Let i : M? ! mod(H) be the inclusion functor and L : mod(H) ! M? its left
adjoint. Then there is some k 2 N and a short exact sequence

0! H ! LH !Mk ! 0

such that M � LH is a tilting module, and in particular proj. dim(LH)  1.

Proof. Let M 2 mod(H) be an indecomposable partial tilting module, which is not projective.
Let

0! H
g�! H 0 f�!Mk ! 0

be the short exact sequence which is used in the construction of the left-adjoint functor

L : mod(H)!M?,

in this case also known as Bongartz’s short exact sequence. In particular, M � H 0 is a tilting
H-module. It follows that all indecomposable summands of M �H 0 are ⌧ -locally free and rigid.
We will prove that HomH(M,H 0) = 0 and then it follows from Remark 4.1.9 that LH = H 0 2M?

is of projective dimension at most 1.
Let T be an indecomposable summand of H 0. If HomH(T,M) = 0, it follows in particular that

T ✓ Ker(f) ⇠= Im(g) ⇠= H
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4 On perpendicular categories

and thus T is isomorphic to a direct summand of H and therefore projective. Since M is assumed
to be not projective in this case we have

HomH(M,T ) = 0

and hence T 2M?.
From now on assume that HomH(T,M) 6= 0 and that T is not isomorphic to M . Note that since

M and T are ⌧ -locally free and indecomposable, they are preprojective, preinjective or regular.
First assume that M is preprojective. Then since HomH(T,M) 6= 0, it follows from [GLS1,

Lemma 11.7.] that T is also preprojective. Hence, again since HomH(T,M) 6= 0 by Corollary
4.4.12 we have HomH(M,T ) = 0 and thus T 2M?.
Secondly assume that M is preinjective. Now, if T is preprojective or regular it follows again

from [GLS1, Lemma 11.7.] that we have HomH(M,T ) = 0 and thus T 2M?. If T is preinjective
it follows from the dual version of Corollary 4.4.12 and HomH(T,M) 6= 0 that HomH(M,T ) = 0
and thus T 2M?.

Remark 4.4.20. Assume that in the above situation M is regular. Again by [GLS1, Lemma
11.7.] and HomH(T,M) 6= 0 it follows that T is preprojective or regular. If T is preprojective
then again by [GLS1, Lemma 11.7.] we have HomH(M,T ) = 0.
Unfortunately, the case where both M and T are regular remains open.

We also have another useful consequence from the last proof.

Corollary 4.4.21. Let M 2 mod(H) be a preprojective module. Then the indecomposable sum-
mands of its Bongartz complement LH are also preprojective.

Lemma 4.4.22. Let M 2 mod(H) be an indecomposable preprojective or preinjective module. If
T 2 mod(H) such that M�T is a tilting module, T 2M? and if Ext1H(T,X) = 0 for all X 2M?

which are ⌧ -locally free, then T is a projective generator of M?.

Proof. Since T �M is a tilting module, we have

Fac(T �M) = {X 2 mod(H) | Ext1H(T �M,X) = 0}.

As M is preprojective or preinjective, we know that there is a projective generator P of M?

which is ⌧ -locally free. Since Ext1H(T �M,P ) = 0 it follows that P 2 Fac(T �M) and since
HomH(M,P ) = 0 we have in fact P 2 Fac(T ). But this implies that

M? ✓ Fac(P ) ✓ Fac(T ) ✓ {X 2 mod(H) | Ext1H(T,X) = 0}

where for the last inclusion we used that T is a partial tiling module. Thus, the lemma follows.

Theorem 4.4.23. Let M 2 mod(H) be an indecomposable partial tilting module.

• If EndH(M) is a skew-field and HomA(M,A) = 0, then there is an equivalence of categories

M? ' mod(H 0)

where H 0 ⇠= KQ0/I 0 is a 1-Iwanaga-Gorenstein algebra and |Q0
0| = |Q0|� 1.

• If M is preprojective or preinjective, then there is an equivalence of categories

M? ' mod(H 0)

where H 0 ⇠= KQ0/I 0 is a 1-Iwanaga-Gorenstein algebra and |Q0
0| = |Q0| � 1. In the case

where M is preprojective in Q0 there are no cycles passing through more than one vertex.
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4.4 On quivers with relations for symmetrizable Cartan matrices

Proof. • By Corollary 4.3.7 we have M? ' rep(H 0), where H 0 is 1-Iwanaga-Gorenstein. Since
being Iwanaga-Gorenstein is a Morita-invariant, we can assume that H 0 is a basic algebra.
Now, since K is algebraically closed, we know that H 0 ⇠= KQ0/I for some quiver Q0 and
admissible ideal I 0. It follows from Proposition 4.1.13 that Q0

0 = Q0 � 1.

• By Proposition 4.4.19, we have that LH 2 M? is the Bongartz complement of M and has
projective dimension at most 1 as an H-module. Therefore, by Theorem 4.3.6 we have an
equivalence of categories M? ' rep(H 0), where H 0 is 1-Iwanaga-Gorenstein. By the same
arguments as in the first part, we can assume that H 0 ⇠= KQ0/I 0 for some quiver Q0 with
Q0

0 = Q0 � 1 and admissible ideal I 0.

Suppose that M is preprojective and let T1, . . . , Tn�1 be the pairwise non-isomorphic inde-
composable summands of LH, where we suppose that n = |Q0|. Then by Corollary 4.4.21 the
summands Ti are also preprojective. Then the quiver of EndH(T )op for T = T1� · · ·�Tn�1

does not contain a cycle by Corollary 4.4.12.

Example 4.4.24. We know that the perpendicular category M? for M 2 mod(H) an indecom-
posable locally free module is abelian. In the above theorem we always assume, that M is also
rigid. The following simple example shows, that this condition is necessary if we want the number
of simple modules to reduce by exactly one.
The example is taken from [GLS1, Section 13]. Let C be a Cartan matrix of Dynkin type B2,

more precisely let

C =

✓
2 �1
�2 2

◆

and choose the minimal symmetrizer D = diag(2, 1) and orientation ⌦ = {(1, 2)}. We have f12 = 1
and f21 = 2. Then H = H(C,D,⌦) is given by the quiver

1

"
1

⌃⌃
2

↵
12

oo

"
2

⌃⌃

with relations "21 = 0 and "2 = 0. The Auslander-Reiten quiver of H is shown in Figure 4.3.
The numbers in the figure correspond to composition factors and basis vectors. (In the last two
rows the two modules on the left have to be identified with the corresponding two modules on the
right.)

2
1
1

##

2oo

1
1

""

==

2
1 2
1

oo

""

==

1

>>

!!

1 2
1

%%

::

oo 2
1

oo

2
1

::

1oo

::

Figure 4.3: The Auslander-Reiten quiver of H(C,D,⌦) of type B2 with D minimal.

Let M 2 mod(H) be the indecomposable locally free module corresponding to the vertex

1 2
1
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in the Auslander-Reiten quiver of H. Then, since we have HomH(M,X) 6= 0 for all X 2 mod(H),
it follows that M? consists only of the zero object. In particular it does not contain a non-trivial
simple object.

4.4.5 The perpendicular category of the Auslander-Reiten translate

The results in this section are based on [St, section 4], where the author considers hereditary
algebras and proves that the perpendicular category does not change too much after applying the
Auslander-Reiten translate.

Lemma 4.4.25. Let M 2 mod(H) be an indecomposable, non-projective module, such that both
M and ⌧H(M) are locally free. Then there is a bijection between the isomorphism classes of
indecomposable ⌧ -locally free modules in M? and the isomorphism classes of indecomposable ⌧ -
locally free modules in (⌧HM)? given by

N 7!
(
⌧HN if N is non-projective,

Ii if N = Pi is projective.

Proof. If N is non-projective, we have

HomH(M,N) ⇠= HomH(⌧HM, ⌧HM)

since proj. dim(⌧HM)  1 and inj. dim(N)  1, and

Ext1H(M,N) ⇠= DHomH(N, ⌧HM) ⇠= Ext1H(⌧HM, ⌧HN)

since proj. dim(⌧HM)  1 and inj. dim(⌧HN)  1.
If N = Pi is projective, we know HomH(M,Pi) = 0, since M is non-projective. We always have

Ext1H(⌧H(M), Ii) = 0. Further we have

dimExt1H(M,Pi) = dimHomH(Pi, ⌧HM) = dim(⌧HM)i = dimHomH(⌧HM, Ii)

which proves the Lemma.

Recall that M is sincere if HomH(Pi,M) 6= 0 for all indecomposable projective modules Pi.

Corollary 4.4.26. Let M 2 mod(H) be an indecomposable, non-injective preprojective module.
If M is sincere, there is an equivalence of categories

M? ' (⌧�HM)?.

Proof. Let Ii be the indecomposable injective module at vertex i. Then Ii 2 M? if and only if
HomH(M, Ii) = 0 if and only if dim(M)i = 0. Hence, since by assumption M is sincere it follows
that there is no injective module in M?. Thus the dual version of Lemma 4.4.25 implies that if
T 2 M? is a projective generator, then ⌧�H (T ) is a projective generator of (⌧�HM)? and we have
EndH(T ) ⇠= EndH(⌧�H (T )).

Remark 4.4.27. Let H = H(C,D,⌦) and suppose there exists an indecomposable projective-
injective H-module. Thus by [GLS1, Lemma 11.7.] the Cartan matrix C must be of Dynkin
type. Let A = A(C,D,⌦) be the corresponding representation-finite hereditary algebra. Using
the correspondence between the preprojective H-modules and the preprojective A-modules we see,
that there exists an indecomposable projective-injective A-module. It follows that A is a Nakayama
algebra, hence A is of Dynkin type An with linear orientation, and the indecomposable projective-
injective A-module is uniquely determined. Thus, we see that there exists an indecomposable
projective-injective H-module if and only if A is a Nakayama algebra, and if and only if C is of
Dynkin type An with linear orientation ⌦.
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Proposition 4.4.28. Let M 2 mod(H) be an indecomposable preprojective or preinjective module
such that neither M nor ⌧H(M) is projective. Further let

L : mod(H)!M? ' mod(H 0(M))

L0 : mod(H)! (⌧HM)? ' mod(H 0(⌧HM))

be the left adjoints of the respective inclusion functors. Here H 0(M) (respectively H 0(⌧HM))
denotes the 1-Iwanaga-Gorenstein algebra as described in Theorem 4.4.23.

• If P �T is a projective generator of M?, where P is H-projective and T has no H-projective
direct summands, then L0(P ) � ⌧H(T ) is a projective generator of (⌧HM)?. Moreover, L0

preserves indecomposability of direct summands of P .

• If H is not (of Dynkin type An and linearly oriented), then H 0(⌧HM) is Morita-equivalent
to EndH0(⌧�H0P � T ), where H 0 = H 0(M).

• If H is of Dynkin type An and linearly oriented, then H 0(⌧HM) is Morita-equivalent to
H 0 = H 0(M).

Proof. • Let P 0 be an indecomposable summand of P . Since ⌧HM is ⌧ -locally free, not pro-
jective, we have HomH(⌧HM,P 0) = 0 and thus by Proposition 4.4.19 there is a short exact
sequence

0! P 0 ! L0P 0 ! (⌧HM)k ! 0

for some k 2 N. We have HomH(P 0, ⌧HM) ⇠= DExt1(M,P 0) = 0 and therefore the short
exact sequence

0! HomH(P 0, P 0)! HomH(P 0, L0P 0)! HomH(P 0, (⌧HM)k)! 0

shows that
HomH(P 0, P 0) ⇠= HomH(P 0, L0P 0) ⇠= HomH(L0P 0, L0P 0)

where the last isomorphism follows since L0 is the left adjoint of the inclusion functor. Hence,
EndH(L0P 0, L0P 0) is a local ring and L0P 0 is indecomposable. Similarly, we see that for
another indecomposable summand P 00 of P we have HomH(P 0, P 00) ⇠= HomH(L0P 0, L0P 00).

It is easily seen from Lemma 4.4.25 that ⌧HT is Ext-projective for all ⌧ -locally free modules
in (⌧HM)?. By applying the contravariant functor HomH(�, ⌧HT ) to the above short exact
sequence for P 0 2 add(P ), we obtain

0! HomH(⌧HMk, ⌧HT )! HomH(L0P 0, ⌧HT )! HomH(P 0, ⌧HT )

! Ext1H(⌧HMk, ⌧HT )! Ext1H(L0P 0, ⌧HT )! 0.

which shows that HomH(L0P 0, ⌧HT ) ⇠= HomH(P 0, ⌧HT ) since ⌧HT 2 (⌧HM)?. Therefore,
we have that HomH(L0P, ⌧HT ) ⇠= HomH(P, ⌧HT ) ⇠= DExt1H(T, P ) = 0 and hence L0P and
⌧HT have no isomorphic direct summands. It follows that L0P � ⌧HT 2 (⌧HM)? is a partial
tilting module consisting of n�1 indecomposable pairwise non-isomorphic direct summands.
Thus (⌧HM)? ✓ Fac(L0(P )� ⌧H(T )) by Lemma 4.4.22 and the claim follows.

• Since C is not of Dynkin type An linearly oriented, there is no indecomposable projective-
injective module. We want to prove that EndH(L0P � ⌧HT ) ⇠= EndH0(⌧�H0P � T ). We
consider the short exact sequence

0! P ! L0P ! (⌧HM)k ! 0

for some k 2 N. Now let X be any H-module. Then applying the functor HomH(X,�) to
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the short exact sequence yields an exact sequence

0! HomH(X,P )! HomH(X,L0P )! HomH(X, (⌧HM)k)

! Ext1H(X,P )! Ext1H(X,L0P )! Ext1H(X, (⌧HM)k)! 0.

Hence we see, that if L0P is injective so is ⌧HM , which is impossible. Thus L0P is non-
injective and we see that ⌧�H (L0P ) 2M?.

Since LH 2M? it follows that HomH(LH, ⌧HM) ⇠= DExt1H(M,LH) = 0, and thus we see,
by setting X = LH in the above exact sequence that

HomH(LH,L0P ) ⇠= HomH(LH,P ) ⇠= H0P

where the last isomorphism follows since H 0 is Morita-equivalent to EndH(LH) and P 2
add(LH). Therefore, we see that

⌧H0(⌧�HL0P ) ⇠= HomH0(H 0, ⌧H0(⌧�HL0P )) ⇠= HomH0(LH, ⌧H0(⌧�HL0P ))

⇠= DExt1H0(⌧�HL0P,LH) ⇠= DExt1H(⌧�HL0P,LH) ⇠= HomH(LH,L0P ) ⇠= H0P,

where we used that there is a homological epimorphism H ! H 0 and proj. dimH0(⌧�HL0P ) 
1. This shows that ⌧�HL0P ⇠= ⌧�H0P as H 0-modules and thus

EndH0(⌧�H0P � T ) ⇠= EndH(⌧�HL0P � T ) ⇠= EndH(L0P � ⌧HT ).

• Let H = H(C,D,⌦) be such that A = A(C,D,⌦) is a Nakayama algebra. Hence C is of
Dynkin type An and ⌦ is of linear orientation. Using the correspondence between prepro-
jective H-modules and preprojective A-modules and the proof of [St, Proposition 4.2.(c)] we
have the following:

– the module L0(P ) is projective;

– the module ⌧H(T ) has no projective direct summand;

– HomH(P, T ) = 0.

This directly implies

EndH(P � T ) ⇠= EndH(P )⇥ EndH(T ) ⇠= EndH(L0P )⇥ EndH(⌧HT ) ⇠= EndH(L0P � ⌧HT ),

which finishes the proof of the Proposition.

Corollary 4.4.29. Let M 2 mod(H) be an indecomposable preprojective or preinjective module,
such that neither M nor ⌧H(M) are projective. Assume there is an equivalence of categories
M? ' mod(H 0), where H 0 = H(C 0, D0,⌦0) for a Cartan matrix C 0. Then there is an equivalence
of categories

(⌧HM)? ' mod(H 00)

where H 00 is obtained from H 0 by possibly applying some reflections.

Proof. Let P � T 2M? ' rep(H 0) be the projective generator as in Proposition 4.4.28. Then we
know that H 00 ⇠= EndH0(⌧�H0(P )� T ). It follows from

HomH0(T, P ) ⇠= HomH(T, P ) = 0

that there are no arrows in H 0 from the vertices corresponding to the H 0-projective modules in
add(P ) to the vertices corresponding to the H 0-projective modules in add(T ). Thus it follows
from Corollary 4.4.7 that

EndH0(⌧�H0(P )� T ) ⇠= sij . . . si1(H
0),

100



4.4 On quivers with relations for symmetrizable Cartan matrices

where (i1, i2, . . . in�1) is a (+)-admissible sequence for H 0 and j is the number of indecomposable
summands of P .

4.4.6 Perpendicular categories of preprojective and preinjective modules

Corollary 4.4.30. Let Pi 2 rep(H) be the indecomposable projective module at vertex i. Then

P?
i ' mod(H 0)

where H 0 is obtained by deleting the vertex i from H 0.

Lemma 4.4.31. Let i 2 Q0 be any vertex such that Pi is not injective and set Ti = ⌧�H (Pi). The
module

Tk =

(
Pk if there is no path from i to k in Q,

⌧�H (Pk) there is a path from i to k in Q.

is Ext-projective in T?
i for all k 6= i

Proof. We first show that for k 6= i we have Tk 2 T?
i . In case there is no path from i to k we have

Tk = Pk and it follows that HomH(Pk, Pi) = 0. Hence we see that

Ext1H(⌧�H (Pi), Pk) ⇠= DHomH(Pk, Pi) = 0.

Further we have HomH(⌧�H (Pi), Pk) = 0 by [GLS1, Corollary 11.2.].
First note, that in case there is a path from i to k, the projective module Pk cannot be injective

and thus Tk = ⌧�H (Pk) is not zero. It also follows that there is no path from k to i, and therefore
we have HomH(Pi, Pk) = 0. Hence we see

HomH(⌧�H (Pi), ⌧
�
H (Pk)) ⇠= HomH(Pi, Pk) = 0

and
Ext1H(⌧�H (Pi), ⌧

�
H (Pk)) ⇠= DHomH(⌧�H (Pk), Pi) = 0

and thus in both cases we see that Tk 2 T?
i .

It remains to show that Tk 2 T?
i is Ext-projective. This obviously holds if Tk is projective. So

assume that Tk = ⌧�H (Pk) and hence there is a path from i to k and a monomorphism Pk ,! Pi.
For X 2 T?

i we have
Ext1H(Tk, X) ⇠= DHomH(X,Pk)

by the Auslander-Reiten formula. If there exists a non-zero morphism f : X ! Pk, the composition
X ! Pk ,! Pi is a non-zero homomorphism from X to Pi showing that

Ext1H(Ti, X) ⇠= DHomH(X,Pi)

is not zero, which is a contradiction. Here we used the Auslander-Reiten-formula and that
proj. dim(Ti)  1. This finishes the proof of the Lemma.

Corollary 4.4.32. Let Ti = ⌧�H (Pi) as in the above lemma. Then there is an equivalence of
categories

T?
i ' mod(H 0)

where H 0 is obtained from H by possibly applying reflections and deleting the vertex i from it.

Proof. Let Tk 2 T?
i as in the last lemma and set T = �k 6=iTk. Then T � Ti is a tilting H-module

and T 2 T?
i is Ext-projective. Thus it follows by Lemma 4.4.22 that T is a projective generator

in T?
i . Therefore, we have

T?
i ' mod(EndH(T )op).
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We can choose a (+)-admissible sequence (1, 2, . . . , i, . . . , n) of H such that k  i if and only if
there is a path from i to k. Then it follows that

EndH(T � Ti)
op = EndH(⌧�H (P1 � · · ·� Pi)� Pi+1 � · · ·� Pn) ⇠= sisi�1 . . . s1H

by Corollary 4.4.7 and therefore EndH(T )op ⇠= sisi�1 . . . s1H
0, where sisi�1 . . . s1H

0 is obtained
from sisi�1 . . . s1H by deleting the vertex i from it.

Lemma 4.4.33. Let M 2 mod(H) be a partial indecomposable tilting module. Further let P 2
M? be a projective generator, H 0 = EndH(P )op and Q 2 M? an injective cogenerator and
H 00 = EndH(Q)op. Then there are equivalences of categories

mod(H 0) 'M? ' mod(H 00).

In particular, EndH(P )op and EndH(Q)op are Morita-equivalent.

Proof. We already know that there is an equivalence of categories mod(H 0) ' M?. Now HQ 2
mod(H 0) is an injective cogenerator if and only if D(HQ) 2 mod(H 0 op) is a projective generator.
Hence there is an equivalence of categories

mod(H 0 op) ' mod(EndH0 op(D(HQ))op)

which is equivalent to the existence of an equivalence of categories

mod(H 0) ' mod(EndH0 op(D(HQ))).

Now the duality D induces an isomorphism of algebras EndH0(Q) ⇠= EndH0 op(D(HQ))op or equiv-
alently an isomorphism of algebras EndH0(Q)op ⇠= EndH0 op(D(HQ)), which proves the lemma.

Lemma 4.4.34. The module

Tk =

(
Ik if there is no path from k to i,

⌧H(Ik) if there is a path from k to i,

is Ext-injective in I?i for all k 6= i.

Proof. We first show, that Tk 2 I?i for all k 6= i. For the injective module Ik we have

Ik 2 I?i , HomH(Ii, Ik) = 0

, dim(Ii)k = 0

, there is no path from k to i.

Note that if there is a path from k to i the injective module Ik cannot be projective and hence
⌧H(Ik) is a non-zero ⌧ -locally free module and thus HomH(Ii, ⌧H(Ik)) = 0 by [GLS1, Corollary
11.2.]. Therefore, in this case we have

⌧H(Ik) 2 I?i , Ext1H(Ii, ⌧HIk) = 0

, DHomH(Ik, Ii) = 0

, there is no path from i to k.

Since we are in the case that there is a path from k to i and Q� is acyclic, the claim follows.
Now if Tk = Ik this is obviously Ext-injective in I?i . So assume that Tk = ⌧HIk and that there is

a path from k to i. Then there is an epimorphism Ii ! Ik. For X 2 I?i we have HomH(Ii, X) = 0
and thus we must also have

Ext1H(X, ⌧HIk) ⇠= DHomH(Ik, X) = 0
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which finishes the proof of the lemma.

Corollary 4.4.35. For every vertex i there is an equivalence of categories

I?i ' mod(H 0)

where H 0 is obtained from H after possibly applying reflections and deleting the vertex i from it.

Proof. Let Tk 2 I?i as in the last lemma and T = �k 6=iTk. Then Ii� T is a tilting H-module and
thus it follows that T is an injective cogenerator in I?i . We can choose an (�)-admissible sequence
(1, 2, . . . , i, . . . , n) of H such that k  i if and only if there exists a path from k to i. Then it
follows that

I?i ' mod(EndH(⌧H(I1 � · · ·� Ii�1)� Ii+1 � · · ·� In)
op)

and we have

EndH(⌧H(I1 � · · ·� Ii�1)� Ii � Ii+1 � · · ·� In)

=EndH(D⌧�H (e1H � · · ·� ei�1H)� eiH � ei+1H � · · ·� enH)

⇠=EndHop(⌧�H (e1H � · · ·� ei�1H)� eiH � ei+1H � · · ·� enH)op

⇠=si�1si�2 . . . s1H
op

where for the last isomorphism we used that (1, 2, . . . , i, . . . , n) is a (+)-admissible sequence in
Hop and that ejH is the projective indecomposable Hop-module at vertex j. Thus we see that

I?i ' mod(si�1si�2 . . . s1H
0)

where si�1si�2 . . . s1H
0 is obtained from si�1si�2 . . . s1H by deleting the vertex i.

Theorem 4.4.36. Let M ⇠= ⌧kH(Ii) 2 rep(H) be an indecomposable preinjective module. Then
there is an equivalence of categories

M? ' rep(H 0),

where H 0 is obtained from H by possibly applying a series of reflections to H and deleting the
vertex i from it.

Proof. The theorem is true for M = Ii by Corollary 4.4.35. The conclusion follows for M ⇠= ⌧kH(Ii)
by inductively applying Corollary 4.4.29.

Corollary 4.4.37. If C is of Dynkin type and M 2 mod(H) an indecomposable preprojective
module then there is an equivalence of categories

M? ' mod(H 0)

where H 0 is obtained from H by changing its orientation and deleting a vertex from it.

Corollary 4.4.38. Let M ⇠= ⌧�k
H (Pi) 2 mod(H) be an indecomposable preprojective module. Then

there is an equivalence of categories
?M ' mod(H 0)

where H 0 is obtained from H by possibly applying a series of reflections to H and deleting the
vertex i from it.

The above corollary follows directly from the theorem for the corresponding preinjective mod-
ule and duality. Note that this only yields the result for the left-perpendicular category of a
preprojective module M . However, we strongly conjecture that the same holds true for the right-
perpendicular category of M . In fact we will prove this for the symmetrizable Cartan matrix of
type C̃n in the next chapter.
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4 On perpendicular categories

4.5 The example ˜Cn

4.5.1 The algebra H(C,D,⌦) for C of type ˜Cn

In this section we study the perpendicular categories of indecomposable partial tilting modules
over the algebra H = H(C,D,⌦), where C is a Cartan matrix of extended Dynkin type C̃n for
n � 3 and D a minimal symmetrizer. We study the algebras of this type more closely for two
reasons. Firstly, the Cartan matrix C is not of Dynkin type, and thus there are rigid modules,
which are not preprojective or preinjective. Secondly, if we choose the minimal symmetrizer, the
algebra H is a finite-dimensional string algebra.
We show, that in this case the perpendicular category of a preprojective indecomposable module

is equivalent to mod(H 0), where H 0 is obtained from H by applying a series of reflections and
deleting one vertex from it. Furthermore, we classify all indecomposable rigid modules and show
that they are ⌧ -locally free. It follows from this classification that for any indecomposable rigid
H-module M , the category M? is equivalent to mod(H 0), where H 0 is a 1-Iwanaga-Gorenstein
algebra with n� 1 simple modules.
Recall that the extended Cartan matrix of type C̃n for n � 3 is given by the n⇥ n-matrix

0

BBBBBBBBB@

2 �1 0 0 · · · 0
�2 2 �1 0 · · · 0

0 �1 2 �1
. . . 0

0 0 �1 2
. . . 0

...
...

. . .
. . .

. . . �2
0 0 0 0 �1 2

1

CCCCCCCCCA

and its minimal symmetrizer D is given by diag(2, 1, . . . , 1, 2). The corresponding graph is given
by

C̃n ·
(2,1)

· · · · ·
(1,2)

·

and if we choose the linear orientation ⌦ = {(1, 2), (2, 3), . . . , (n� 1, n)}, then H = H(C,D,⌦) is
given by the quiver

1

"
1

⌃⌃
2

"
2

⌃⌃
oo · · ·oo noo

"n

⌅⌅

with relations "2 = · · · = "n�1 = 0 and "21 = "2n = 0.
From now on let H = H(C,D,⌦) be of type C̃n, with minimal symmetrizer and fixed but

arbitrary orientation. Choosing the symmetrizer minimal, ensures that H is in fact a string
algebra, and thus all indecomposable modules are string or band modules.

4.5.2 The component containing the preprojective and preinjective modules

Recall that for any arrow ↵ from i to j there is an Auslander-Reiten sequence

0! U(↵)! N(↵)! V (↵)! 0

where U(↵) is given by the unique maximal path w↵ starting at vertex i but not with the arrow
↵ and V (↵) is given by the unique maximal path ending in the vertex j but not with the arrow ↵.

Lemma 4.5.1. The preprojective and the prepinjective vertices lie in the same connected compo-
nent of the Auslander-Reiten quiver of H. More precisely, let

0! U("i)! N("i)! V ("i)! 0
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be the Auslander-Reiten sequence with indecomposable middleterm, corresponding to the arrow "i
for i = 1 or i = n respectively. Then there are irreducible monomorphisms Ci ! Pi and irreducible
epimorphisms Ii ! Ai for i = 1 or i = n, respectively.

Proof. We will just consider the case i = 1, the case i = n is similar. The module U("1) is the
string module of the longest directed string ending in the vertex 1 and not with "1, and the module
V ("1) is the string module of the longest directed string starting in the vertex 1 and not with "1.
Note that one of them is the simple module S1 depending on the orientation of the edge {1, 2}.
Now consider the Auslander-Reiten sequence ending in U("1). One of its two indecomposable
middleterms is obtained by attaching a cohook to the socle 1, starting with "1. But this yields
exactly the indecomposable injective module with socle S1. Dually the Auslander-Reiten sequence
starting in V ("1) has one middleterm which is obtained from V ("1) by attaching a hook which
starts with "1. This yields a string module with simple top S1 and the longest directed paths
starting in 1, thus exactly the indecomposable projective module P1.

Example 4.5.2. Let H = H(C,D,⌦) be of type C̃3 with minimal symmterizer D and orientation
⌦ = {(2, 1), (3, 2)}. In Figure 4.4 we have depicted part of the Auslander-Reiten quiver of H
containing the indecomposable projective and injective modules and also the Auslander-Reiten
sequences with indecomposable middleterm corresponding to the arrow "i for i = 1, 2. Note that
this is merely a part of the component. In the following we will describe the whole component
more precisely.

1
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Figure 4.4: Part of the Auslander-Reiten quiver of H(C,D,⌦) of type C̃3 with D minimal.

Lemma 4.5.3. All irreducible morphisms starting in preprojective modules are monomorphisms.
All irreducible morphisms ending in preinjective modules are epimorphisms.
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Proof. It is always possible to attach hooks (respectively cohooks): if a longest directed string
ends at a vertex 1 < i < n, then the next arrow adjacent to i points in the other direction and
thus can be the beginning of the new hook. If a longest directed string of a preprojective module
ends in the vertex 1, it ends with the arrow "1. Then the arrow from 2 to 1 is the start of the new
hook. A similar argument holds for the vertex n.

Let M be a rigid indecomposable module and denote the corresponding vertex in the Auslander-
Reiten quiver also by M . Since H is a string algebra we know by [BR] that there are at most two
arrows coming in and at most two arrows going out of M . We call the longest linear paths starting
or ending in M rays starting or ending in M . Furthermore, we call the vertices corresponding to
the modules P1, ⌧

�1
H (P1), ⌧

�2
H (P2), . . . and Pn, ⌧

�1
H (Pn), ⌧

�2
H (Pn), . . . the preprojective border of the

component containing the preprojective modules. Note, that these modules do not necessarily lie
on the border of the component: they have neighbours, that are not ⌧ -locally free.
Let Q� be the quiver Q(C,D,⌦) without loops and (Q�)op be its opposite quiver. We denote

by ZA1
1� (Q�)op the infinite quiver obtained from ZA1

1 after deleting one copy of (Q�)op and all
its adjacent arrows in it.

Proposition 4.5.4. The component C containing the preprojective and preinjective vertices of the
Auslander-Reiten quiver of H is of the form ZA1

1 � (Q�)op.

Proof. We already know, that the preinjective and preprojective modules sit in the same compo-
nent and that they are pairwise non-isomorphic. We also know, that all modules, except of the
ones connecting the preprojective and preinjective component, have Auslander-Reiten sequences
with exactly two middle terms. Thus, what is left to show is, that this component does not form
a tube. Hence we have to show, that modules sitting above the preprojectives/preinjectives are
not isomorphic to modules sitting below them.
Assume that 1 is a sink in Q� such that P1 = E1. We consider the strings C(i) of the modules Mi

in the ray, that starts in M0 := P1 and goes upwards. The string C(i+1) is obtained by attaching
a hook to the right side of C(i), which is always possible. Also note that ⌧H(M1) ⇠= S1. We also
consider the strings D(i) of the modules Ni in the ray, that starts in N1 := S1 and goes upwards.
Thus we see, that the module Mi always has the simple module S1 in the top and Ni

⇠= ⌧H(Mi)
always has the simple module S1 in the socle. Thus Mi cannot be ⌧ -rigid for any i � 1. Now
assume that Mi was isomorphic to one of the modules sitting below the preprojective modules.
Then the ray starting in P1 and going upwards, at some point goes through the preprojective
zone. This is a contradiction, since none of the Mi are ⌧ -rigid. Note, that it could not sit below
the preinjective zone, because there the irreducible morphisms are epimorphisms.
If 1 is not a sink a similar argument can be used. Then it is the longest directed string starting

with the arrow from 1 to 2, which shows that the modules Mi are not ⌧ -rigid.

4.5.3 Perpendicular categories of preprojective modules

Lemma 4.5.5. Let T1, T2 2 mod(H) be indecomposable preprojective modules. If

dimHomH(T1, T2) 6= 0,

then there exists a monomorphism from T1 to T2.

Proof. Let A be the corresponding hereditary algebra and N1, N2 2 mod(A) the preprojective
A-modules with

dim(Ni) = rank(Ti).

Then since dimHomA(N1, N2) 6= 0, there is a path from N1 to N2 in the Auslander-Reiten quiver
of A. Since we can embed the unvalued quiver corresponding to the preprojective component
of A into the preprojective component of H, we see that there is a path from T1 to T2 only
passing through preprojective modules. It follows from Lemma 4.5.3, that the composition of the
irreducible morphisms corresponding to the arrows along the path, yields a monomorphism from
T1 to T2.
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Lemma 4.5.6. Let Ti be an indecomposable preprojective module in the ⌧�H -orbit of Pi, but not
Pi itself. Further suppose that there exist indecomposable modules Tk in the ⌧�H -orbit of Pk, such
that Tk 2 T?

i is Ext-projective for k 6= i and T = �Tk is a tilting module. Also assume that if
HomH(Tk, Ti) = 0, then Tk = Pk. Then we have that

T 0
k =

(
Tk if HomH(Tk, Ti) = 0

⌧�H (Tk) if HomH(Tk, Ti) 6= 0

is Ext-projective in ⌧�H (Ti)? for k 6= i and T 0 = �kT
0
k is a tilting module. Furthermore, if

HomH(T 0
k, T

0
i ) = 0 then T 0

k = Pk.

Proof. We first show that T 0
k 2 (T 0

i )
?. This follows from the dual of Lemma 4.4.25 if T 0

k = ⌧�H (Tk).
If HomH(Tk, Ti) = 0 and thus T 0

k = Tk = Pk is projective, then we have HomH(⌧�H (Ti), Pk) = 0
and

Ext1H(⌧�H (Ti), Tk) ⇠= DHomH(Tk, Ti) = 0

by assumption.
Assume that T 0

k = ⌧�H (Tk). We have to show that Ext1H(⌧�H (Tk), X) = 0 for all X 2 ⌧�H (Ti)?

which are ⌧ -locally free. IfX is non-projective this follows from the dual of Lemma 4.4.25. Suppose
that X = Pj is projective. Then we have

DHomH(Pj , Ti) ⇠= ExtH(⌧�H (Ti), Pj) = 0

which is equivalent to dim(Ti)j = 0. Since all irreducible morphisms starting in preprojective
modules are monomorphisms this implies that dim(⌧�H (Ti))j = 0 and it follows that Pj 2 T?

i .
Since by assumption there is a monomorphism Tk ! Ti and since HomH(Pj , Ti) = 0, it follows
that

Ext1H(⌧�HTk, Pj) ⇠= DHomH(Pj , Tk) = 0.

Proposition 4.5.7. Let Ti
⇠= ⌧�s(Pi) 2 mod(H) be an indecomposable preprojective module.

Then there is an equivalence of categories

T?
i ' mod(H 0)

where H 0 is obtained from H by applying a series of reflections and deleting the vertex i from it.

Proof. We know that this is true for Ti = Pi and Ti = ⌧�H (Pi) and in the latter case by Lemma
4.4.31 there exist modules Tk 2 T?

i as in Lemma 4.5.6. Now we can proceed by induction, using
Lemma 4.5.6 and Corollary 4.4.7.

Corollary 4.5.8. Let M be a preprojective module, say M ⇠= ⌧�s(Pi), for some 1  i  n and
s 2 N. Then there is an equivalence of categories

M? ' rep(Hi�1)⇥ rep(Hn�i)

where H0 = ; and Hj = H(C,D,⌦) is of Dynkin type Cj with minimal symmetrizer. If the rays
ending in M intersect the preprojective border, then Hj is of linear orientation.

Proof. It only remains to be proven, that if the rays ending inM intersect the preprojective border,
then Hj is of linear orientation. We claim that the preprojective modules Tk, corresponding to
the vertices lying on the rays ending in M , are a progenerator of M?.
We first show that in fact Tk 2M? for all k. There is a path from Tk to M in the Auslander-

Reiten quiver of H and thus in particular HomH(Tk,M) 6= 0 for all k, implying that

HomH(M,Tk) = 0.
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4 On perpendicular categories

Note, that there are no paths from Tk to ⌧(M) in the Auslander-Reiten quiver of H. Therefore,
we have Ext1(M,Tk) ⇠= DHom(Tk, ⌧(M)) = 0 for all k. Hence we have Tk 2M? for all k.
We will now prove that Tk is Ext-projective in M? for all k. The monomorphism Tk ! M

yields a short exact sequence
0! Tk !M ! Kk ! 0

for all k, where Kk is a locally free module. Applying the functor Hom(�, N) for any N 2 M?

yields the exact sequence

0! HomH(Kk, N)! HomH(M,N)! HomH(Tk, N)

��! Ext1H(Kk, N)! Ext1H(M,N)! Ext1H(Tk, N)! 0

where we use, that Kk,M, Tk are all of projective dimension at most 1. Since by assumption
Ext1H(M,N) = 0, it follows that Ext1H(Tk, N) = 0 for all k.
In order to see, that

L
k Tk generates M?, it is now enough to note that

T = M �
M

k

Tk

is a tilting module. All summands have projective dimension at most 1 and also Ext1(T, T ) = 0
can be easily seen.

Example 4.5.9. Let H = H(C,D,⌦) be of type C̃7, given by the quiver

1

"
1

⌃⌃
// 2 // 3 // 4 5oo // 6 // 7

"
7

⌃⌃

with relations "21 = "27 = 0. Figure 4.5 shows part of the component of the Auslander-Reiten quiver
containing the projective and injective modules. The black vertices correspond to preprojective
and preinjective modules. The white vertices correspond to modules which are not locally free.
Furthermore, we have indicated the preprojective modules that are in M? for M = ⌧�3

H (P5). We
have also indicated the vertices lying on the rays ending in M , whose corresponding preprojective
modules form a projective generator of M?. Note, that there are regular modules in M?, that
cannot be seen in this picture.

4.5.4 The regular modules

Lemma 4.5.10. There is a unique non-homogeneous tube of rank n� 1 of regular modules. The
modules at the mouth of this tube are given by the endterms of the Auslander-Reiten-sequences
with indecomposable middleterm, corresponding to the n� 1 arrows which are not loops.

Proof. We number the n�1 arrows in Q which are not loops in the following way: first we number
the arrows going from left to right increasingly starting on the left side, and then we order the
arrows going from right to left increasingly, starting on the right side. It is then easy to see that
the modules U(↵i) are pairwise non-isomorphic and

U(↵i) ⇠= V (↵i+1)

for i = 1, . . . , n� 2 and
U(↵n�1) ⇠= V (↵1)

showing that ⌧n�1(V (↵i)) ⇠= V (↵i) for all i = 1, . . . , n� 1.
Now the modules at the mouth of this tube are obviously locally free, since we just take longest

direct paths in the quiver. Thus, if we reach one of the ends, we also walk the loop. Since the
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Figure 4.5: Here we see part of the component containing the projective and injective vertices.

locally free modules are extension closed, it then follows inductively, that all the modules in the
tube are locally free.
The uniqueness of the tube follows from the description of the Auslander-Reiten quiver of string

algebras in [BR].

Example 4.5.11. Let H be of type C̃4 and linearly ordered, say ⌦ = {(1, 2), (2, 3), (3, 4)}. In the
picture below we have depicted the first two rows of the tube of rank 3.

4
4 3

3
2

1
1

oo

##

4
4

3
2

2 1
1

oo

  

3
2

oo

��

oo

3

>>

4
4

3
2

1
1

oo

;;

2oo

CC

3oo

Corollary 4.5.12. The full subcategory consisting of the tube of rank n � 1 does not depend on
the orientation ⌦.

Proof. This follows directly from Proposition 4.4.6 and the uniqueness of the tube of rank n�1.

Lemma 4.5.13. Let M be an indecomposable H-module corresponding to one of the vertices in
the first n� 2 rows of the tube of rank n� 1. Then M is an indecomposable partial tilting module
such that EndH(M) is a skew-field.

Proof. By the last Corollary it is enough to consider the linear orientation. Since the modules are
locally free, it is enough to consider one module from each ⌧ -orbit. Choosing the orientation ⌦
linearly, it is easy to compute, that we have a ray of modules in the tube with rank vectors

(0, 1, 0, . . . , 0), (0, 1, 1, 0, . . . , 0), . . . , (0, 1, 1, . . . , 1, 0)
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4 On perpendicular categories

and obviously the corresponding modules cannot have non-trivial endomorphisms. Furthermore
it is not hard to see, that all of these rank vectors r satisfy

qH(r) = 1 = dimEndH(M(r)),

where qH denotes the quadratic form as defined in [GLS1]. Therefore, all these modules are
rigid.

Conjecture 4.5.14. Let M be a regular module in the ith row of the tube of rank n� 1 for some
1  i  n� 2. Then

M? ' rep(Hi�1)⇥ rep(H̃n�i)

where H0 = H̃0 = ; and Hj = H(C,D,⌦) is of type Dynkin type Aj and H̃j = H(C,D,⌦) is of
type extended Dynkin type C̃j, with minimal symmetrizer and some orientation ⌦.

Assume that j > 1 and consider a maximal chain of irreducible monomorphisms

T1 ! T2 ! · · ·! Ti = M,

where Tj is in the jth row of the tube. It is rather easy to see, that Tj 2M? for 1  j < i and is
Ext-projective in M?. We believe that there exist n� i preprojective modules Ti+1, . . . , Tn, such
that

T =
i�1M

j=1

Tj �M �
nM

j=i+1

Tj

is a tilting module and
i�1M

j=1

Tj �
nM

j=i+1

Tj

is a projective generator in M?. The endomorphism algebra of
Li�1

j=1 Tj is of type An with linear
orientation. We know, that there are no homomorphisms from regular to preprojective modules.
Furthermore, there can be no homomorphisms from any preprojective module N 2 M? to any
Tj for 1  j < i. This follows inductively: The module T1 is the endterm of an Auslander-
Reiten sequence with indecomposable middleterm, which can be embedded into ⌧(M). Thus, if
Hom(N,T1) 6= 0, it follows that

Ext1(M,N) ⇠= DHom(N, ⌧(M)) 6= 0

contradicting the assumption that N 2M?.

Example 4.5.15. Let H = H(C,D,⌦) be of type C̃7, given by the quiver

1

"
1

⌃⌃
// 2 // 3 // 4 5oo // 6 // 7

"
7

⌃⌃

with relations "21 = "27 = 0. Let M = ⌧�3
H (P5). Figure 4.6 shows the unique tube in the Auslander-

Reiten quiver of H. The vertices indicated by black cycles correspond to rigid regular modules.
The locally free modules in M? are in the gray shaded area.

4.5.5 Classification of rigid modules

Lemma 4.5.16. Let M be an indecomposable rigid H-module. Then M is locally free and thus
⌧ -locally free.

Proof. First note, that band modules cannot be rigid: Band modules are contained in homogeneous
tubes, that is a band module is isomorphic to its Auslander-Reiten translate. Therefore, we can
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Figure 4.6: The tube where the locally free modules in M? are in the gray shaded area.

assume that M is a string module. If M is not locally free, by symmetry we can assume without
loss of generality that M1 is not a free H1-module. This implies that the string starts or ends with
the vertex one, which is not followed or preceded by the letters "1 or "�1

1 . Now first assume that
the Auslander-Reiten sequence starting in M has two middle terms. Thus in the construction of
the string corresponding to ⌧�1

H M one adds a hook to the string having the vertex 1 in the top as
depicted in the following picture:

i

· · ·

1

1

· · ·

j

{⇤

{⇤
"
1

�#

��

�� ��

here the double arrows picture the added hook and i � j. Now it is easy to see, that there is a
morphism from ⌧�1

H M to M . It is left to check, that this does not factor through an injective
module. The only possible candidate would be Ii, and obviously this is impossible.

If the Aulander-Reiten sequence starting in M has only one middle term, it can be pictured as
follows:

· · ·

⌃⌃

1

⌃⌃

"
1

⌫⌫

· · ·

⌃⌃

1

⌃⌃

0 // // // // 0

1 · · · 1 · · ·

and we see that the vertex 1 appears in the top of ⌧�1
H (M) and the socle of M , giving rise to a

homomorphism from ⌧�1
H (M) to M which cannot factor through an injective module. Note that
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4 On perpendicular categories

in the places of the dots, in the picture there does not appear the vertex one, but if one of the
strings continues, it will be with the vertex 2.
After working out the easy combinatorics in this case, we noticed, that it could be treated with

the more general work in [Z]. With the notation of that paper, it is easy to see that the string
corresponding to M has self-extensions. More precisely, we are in the case of [Z, Corollary 2.6]
part 1 and 2, where the arrow in our case is "1.

A combinatorial model to picture string modules In order to help visualize the strings, we
would like to introduce the following combinatorial model: we consider infinite copies of Q�(C,⌦)
glued together with alternating direction, thus yielding an A1

1 quiver. We draw an edge, not an
arrow, where we glue the quivers at its start- or endpoints. This should indicate that once we reach
the vertex 1 or the vertex n, it can be followed by the corresponding loop or its inverse. Thus, an
interval that is a finite connected subquiver in this A1

1 quiver, can correspond to di↵erent strings
and string modules, but they all have the same dimension or rank vector. Also note, that in a
string corresponding to a locally free module, once the vertices 1 or n are reached, it is followed
by the corresponding loop, or its inverse.

Example 4.5.17. Let us consider the example where Q�(C,⌦) is the quiver

1 // 2 3oo 4oo

which in the model is glued to

1 // 2 3oo 4oo 4 // 3 // 2 1oo 1 // 2 3oo 4oo 4

and we can consider for example the following intervals: The interval

1
⇥
// 2 3oo 4oo 4 // 3 // 2 1oo 1 // 2 3

⇤
oo 4oo 4

corresponds to four di↵erent string modules all with dimension vector (2, 3, 2, 2) and rank vector
(1, 3, 2, 1) if the modules are locally free. The interval

1 // 2 3oo 4oo 4
⇥

// 3 // 2 1oo 1 // 2 3
⇤
oo 4oo 4

corresponds to two di↵erent string modules, which cannot be locally free, thus in particular in this
case are not rigid and have dimension vector (2, 2, 1, 1). The interval

1
⇥
// 2 3oo 4

⇤
oo 4 // 3 // 2 1oo 1 // 2 3oo 4oo 4

corresponds to one string module, which is locally free and has the same dimension as rank vector
(0, 1, 1, 0).

Proposition 4.5.18. The preprojective, preinjective and the regular modules in the first n � 2
rows of the rank n� 1 tube are a complete list of indecomposable rigid modules.

Proof. It follows from the geometry of extension varieties that if there exists a rigid indecomposable
module with a given rank vector, it is unique up to isomorphism. Thus, it is enough to check that
for any rank vector, for which there might exist a rigid string module, there is a module in our
list, with given rank vector. Since we have already shown that any rigid module is locally free, it
is enough to consider intervals whose bordering arrows, are in fact arrows and not edges.
We distinguish between the following three types of intervals:

⇥
// · · ·

⇤
oo

· · ·
⇥

oo
⇤
//

⇥
// · · ·

⇤
// · · ·

⇥
oo

⇤
oo
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4.5 The example C̃n

and claim, that for the first type, there exists a preprojective module with corresponding rank
vector, for the second there exists a preinjective and for the third a regular module in the tube of
rank n� 1.
Let us consider an interval of the first type. If it is possible to move both borders of the interval

towards each other, without them crossing, such that we obtain a shorter interval of the same type
within

⇥
// · ·oo oo · ·oo

⇥
// · · · ·

⇤
oo // · // · //

⇤
oo

then this process, corresponds to applying the Auslander-Reiten translate to a string module by
removing hooks. Thus, by induction the shorter interval corresponds to a preprojective module.
Note that in this picture an arrow might correspond to a loop or its inverse, chosen such that it
”fits” into the hook. However, the arrows lying on the border are always arrows connecting two
di↵erent vertices.
If it is not possible to move borders as described above, then the only possibilities for this are

intervals as ⇥
// ·

⇤
oo

⇥
// · // · // · // · // ·

⇤
oo

⇥
// · ·oo ·oo oo · ·oo

⇤
oo

⇥
// · ·oo oo · ·oo // · // · // ·

⇤
oo

each of which corresponds to projective modules.
A dual argument proves that for intervals of the second type, there exists a preinjective module

with corresponding rank vector.
Let us consider an interval of the third type. For symmetry reasons it is enough to consider an

interval such as ⇥
// · · ·

⇤
//

and show that if there exists a rigid module with the corresponding rank vector, it is a regular
module in the tube of rank n � 1. We already know that if this rigid module exists, it must be
regular, since the preprojective and preinjective modules correspond to the intervals of first and
second type. Computing ⌧�1 of a string module corresponding to that interval, means attaching
a hook on the left side and deleting a cohook on the right side. Thus, we reach the corresponding
interval by pushing the borders of the original one to the left, until we reach the next interval of
this third type. Note again, that arrows lying on the borders always have to be arrows connecting
two di↵erent vertices. After repeating this process n� 1 times, we reach an equivalent interval in
di↵erent copies of our quiver, showing that

dim(⌧n�1(M)) = dim(M)

for any string module M corresponding to that interval. Now, if M is rigid, then it is unique with
that dimension vector and we have

⌧n�1(M) ⇠= M.

Obviously the modules M, ⌧(M), . . . , ⌧n�2(M) are pairwise non-isomorphic, showing that M lies
in the unique tube of rank n� 1.
Note that only the regular modules in the first n � 2 rows of the tube are regular. For the

modules above the first n � 2 rows it is easy to see, that there is a homomorphism from M to
⌧(M): it is enough to see, that the arrows going downwards in the tube correspond to surjective
morphisms, and the ones going upwards to injective morphisms.
Also note, that the ”shortest” (in the sense, that we cannot move one border closer to the other

to obtain an interval of the same type) intervals of third type are of the form

⇥
// · // · // · // · // ·

⇤
//
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or of the form ⇥
// · ·oo ·oo oo · ·oo

⇤
//

and the corresponding modules appear as starting or endterm in the Auslander-Reiten sequences
with indecomposable middle term, corresponding to the arrows on the border of the intervals.

Corollary 4.5.19. Let M be a rigid indecomposable H-module. Then there is an equivalence of
categories

M? ' rep(H 0)

where H 0 ⇠= KQ0/I 0 is a 1-Iwanaga-Gorenstein algebra and |Q0
0| = n� 1.

Proof. By Proposition 4.5.18 the module M is preprojective, preinjective or a regular module in
the first n � 2 rows of the unique tube of rank n � 1. If it is regular, then by Lemma 4.5.13 we
have EndH(M) is a skew-field and thus in any case the claim follows from Theorem 4.4.23.
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[GLS2] C. Geiß, B. Leclerc, J. Schröer, Quivers with relations for symmetrizable Cartan matrices
III: Convolution algebras. Preprint (2016), 37pp, arXiv:1511.06216v2.

[GP] I. M. Gel’fand, V. A. Ponomarev, Indecomposable representations of the Lorentz group.
(Russian) Uspehi Mat. Nauk 23 1968 no. 2 (140), 3–60.

[H] D. Happel, On Gorenstein algebras. Representation theory of finite groups and finite-
dimensional algebras (Bielefeld, 1991), 389–404, Progr. Math., 95, Birkhäuser, Basel, 1991.
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Summary

The central problem in the representation theory of finite-dimensional algebras is to describe their
category of finite-dimensional modules as completely as possible. Various approaches in trying to
solve this problem and partial solutions are variations and applications of tilting theory. The first
step in this direction in modern representation theory was Gabriel’s Theorem in 1972: A finite-
dimensional path algebra A = KQ, where Q is a finite connected acyclic quiver, is representation-
finite if and only if Q is of Dynkin type An, Dn, E6

, E
7

, E
8

. Moreover, in this case there is a
bijection between the isomorphism classes of indecomposable A-modules and the positive roots of
the corresponding simple complex Lie algebra. Gabriel thus also established a close connection to
Lie Theory.
Shortly after Gabriel’s breakthrough Bernstein, Gelfand and Ponomarev proved that all in-

decomposable modules over a representation-finite path algebra A = KQ, can be constructed
recursively from the simple modules by using reflection functors. This can be considered as the
starting point of tilting theory. It became apparent that the module category does not change too
much when changing the orientation of the quiver. This procedure was generalized by Auslander,
Platzek and Reiten who showed that the reflection functors are equivalent to functors of the form
HomA(T,�), where T is nowadays known as an (APR)-tilting module. Ever since then, tilting
theory has appeared in numerous areas of mathematics as a method for constructing functors
between categories. In this thesis we focus on two particular theories, whose origins can be traced
back to tilting theory.
On the one hand there is the rather new concept called ⌧ -tilting theory introduced by Adachi,

Iyama and Reiten in 2012. It follows from results by Riedtmann and Schofield and Unger in the
early 1990’s that any almost complete (support) tilting module over a finite-dimensional algebra
can be completed in at least one and at most two ways to a complete (support) tilting module. This
was the first approach to a combinatorial study of the set of isomorphism classes of multiplicity-
free tilting modules. The (support) ⌧ -tilting modules are a generalization of the classical tilting
modules. In this wider class of modules it is possible to model the process of mutation inspired
by cluster tilting theory. In other words any basic almost complete support ⌧ -tilting pair over a
finite-dimensional algebra is a direct summand of exactly two basic support ⌧ -tilting pairs.
Cluster algebras were introduced by Fomin and Zelevinsky in 2002. Since then cluster (tilting)

theory has had a huge impact on the research of representation theory of finite-dimensional al-
gebras. The algebras appearing in connection with cluster theory are Jacobian algebras defined
via quivers with potential. These are not finite-dimensional in general. This suggests the need for
developing ⌧ -tilting theory for infinite dimensional algebras.
String algebras are a subclass of the special biserial algebras. The module category of a finite-

dimensional string algebra can be described completely in combinatorial terms. Therefore, they
are often used to test conjectures. Furthermore, they appear in cluster theory as Jacobian algebras
of surfaces. Hence one should consider string algebras as an important class of examples. In this
thesis we study the module category of what we call completed string algebras, a generalization
of the finite-dimensional string algebras which include infinite dimensional algebras. We extend
the combinatorial description of the module category of a finite-dimensional string algebra to the
category of finitely generated modules over a completed string algebra. In particular we describe
the Auslander-Reiten sequences ending in a finitely generated indecomposable module. This allows
us to develop ⌧ -tilting theory for completed string algebras and prove that mutation is possible
within the class of finitely generated support ⌧ -tilting pairs.
On the other hand we consider the theory of perpendicular categories which goes back to an

article by Geigle and Lenzing in 1989 and an article by Schofield in 1991 which focuses on the
study of perpendicular categories for path algebras. One of the main results here is the following:
Let A be a finite-dimensional algebra and M an indecomposable partial tilting module such that
EndA(M) is a skew-field. Then there exists a finite-dimensional A-module T such that M �T is a
basic tilting module and the (right) perpendicular category M? is equivalent to mod(A0), where
A0 = EndA(T )op. It follows that the algebra A0 has one simple module less than the original
algebra A and gl. dim(A0)  gl. dim(A). Thus if A is hereditary, then so is A0 and moreover, in



this case it is known that any exceptional module M is an indecomposable partial tilting module
such that EndA(M) is a skew-field.
This result opened the possibility for proving statements by induction. This has been used by

Crawley-Boevey to prove the existence of a transitive action of the braid group on exceptional
sequences for path algebras. Ringel generalized this result to hereditary algebras and in addition
developed an inductive procedure for obtaining all exceptional modules from the simple modules.
The theory of modulated graphs or species was developed by Dlab and Ringel in a series of

papers in the 1970’s. It was a first attempt in generalizing path algebras associated to symmetric
Cartan matrices to hereditary algebras which can be associated to symmetrizable Cartan matrices.
They extended Gabriel’s Theorem to include the non-simply laced root systems Bn, Cn, F4

and G
2

.
More precisely, they proved that a finite-dimensional hereditary algebra is representation-finite if
and only if its corresponding valued graph is of Dynkin type. To ensure the existence of these
hereditary algebras one has to make quite strong assumptions on the ground field, and cannot
assume it to be algebraically closed in general.
Recently Geiß, Leclerc and Schröer suggested another approach by introducing a new class

of algebras which are defined via quivers with relations associated with symmetrizable Cartan
matrices. They thus obtain new representation theoretic realizations of all finite root systems
without any assumptions on the ground field. These newly defined algebras are in general no
longer hereditary but 1-Iwanaga-Gorenstein. An algebra is 1-Iwanaga-Gorenstein if and only if
the injective dimension of its regular representation is at most 1. Thus all self-injective and all
hereditary algebras are particular examples of 1-Iwanaga-Gorenstein algebras.
In this thesis we study perpendicular categories for finite-dimensional 1-Iwanaga-Gorenstein

algebras. We find that if A is 1-Iwanaga-Gorenstein and M 2 mod(A) an indecomposable partial
tilting module such that EndA(M) is a skew-field, then M? is equivalent to mod(A0), where A0 is
again 1-Iwanaga-Gorenstein. We then concentrate on the particular class of 1-Iwanaga-Gorenstein
algebras defined via quivers with relations associated with symmetrizable Cartan matrices. If
H is such an algebra associated with a symmetrizable Cartan matrix C and M 2 mod(H) an
indecomposable partial tilting module, the ring EndH(M) is not a skew-field in general. However,
if M is preinjective we still find that M? is a equivalent to mod(H 0), where H 0 is a 1-Iwanaga-
Gorenstein algebra associated with a symmetrizable Cartan matrix C 0, which is of size one smaller
than C.


