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Abstract 
The recent success of companion diagnostics along with the increasing regulatory pressure 

for better identification of the target population has created an unprecedented incentive for 

the drug discovery companies to invest into novel strategies for stratified biomarker 

discovery. Catching with this trend, trials with stratified biomarker in drug development have 

quadrupled in the last decade but represent a small part of all Interventional trials reflecting 

multiple co-developmental challenges of therapeutic compounds and companion diagnostics. 

To overcome the challenge, varied knowledge management and system biology approaches 

are adopted in the clinics to analyze/interpret an ever increasing collection of OMICS data. 

By semi-automatic screening of more than 150,000 trials, we filtered trials with stratified 

biomarker to analyse their therapeutic focus, major drivers and elucidated the impact of 

stratified biomarker programs on trial duration and completion. The analysis clearly shows 

that cancer is the major focus for trials with stratified biomarker. But targeted therapies in 

cancer require more accurate stratification of patient population. This can be augmented by a 

fresh approach of selecting a new class of biomolecules i.e. miRNA as candidate 

stratification biomarker. miRNA plays an important role in tumorgenesis in regulating 

expression of oncogenes and tumor suppressors; thus affecting cell proliferation, 

differentiation, apoptosis, invasion, angiogenesis. miRNAs are potential biomarkers in 

different cancer. However, the relationship between response of cancer patients towards 

targeted therapy and resulting modifications of the miRNA transcriptome in pathway 

regulation is poorly understood. With ever-increasing pathways and miRNA-mRNA 

interaction databases, freely available mRNA and miRNA expression data in multiple cancer 

therapy have created an unprecedented opportunity to decipher the role of miRNAs in early 

prediction of therapeutic efficacy in diseases. We present a novel SMARTmiR algorithm to 

predict the role of miRNA as therapeutic biomarker for an anti-EGFR monoclonal antibody 

i.e. cetuximab treatment in colorectal cancer. The application of an optimised and fully 

automated version of the algorithm has the potential to be used as clinical decision support 

tool. Moreover this research will also provide a comprehensive and valuable knowledge map 

demonstrating functional bimolecular interactions in colorectal cancer to scientific 

community. This research also detected seven miRNA i.e. hsa-miR-145, has-miR-27a, has-
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miR-155, hsa-miR-182, hsa-miR-15a, hsa-miR-96 and hsa-miR-106a as top stratified 

biomarker candidate for cetuximab therapy in CRC which were not reported previously.  

Finally a prospective plan on future scenario of biomarker research in cancer drug 

development has been drawn focusing to reduce the risk of most expensive phase III drug 

failures.  
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Introduction 

1. Cancer 
Cancer is not a single disease but a combination of many diseases. Cumulatively, we call 

them cancer as they share a fundamental commonality: abnormal, uncontrolled growth of 

cells spreading throughout the body. Different forms of cancer are highly heterogeneous in 

terms of histology and clinical outcome as well as at the molecular level (Majewski & 

Bernards 2011).  

1.1. Modern theories of cancer 
During the last century tremendous amount of research was undertaken in the field of cancer. 

These researches demonstrated that cancer is the outcome of several genetic alterations 

occurring and accumulating inside the cell. These alterations disrupt the balance between cell 

proliferation and programmed cell death. Multiple factors are associated with the oncogenic 

processes i.e. carcinogenic exposure, infectious agents, genomic alterations and pathway 

modification impacting normal cellular processes.  

1.1.1. Genomics 
In 1962, the discovery of DNA double helix by Watson and Crick spurred a series of 

discoveries on gene function and the malfunction leading to mutations. This new 

understanding showed the disease cause dynamic changes in the genome (Hanahan & Robert 

A Weinberg 2011). Two types of mutations play a crucial role in initiating cancer; one that 

induces oncogenes from proto-oncogene with dominant gain of function while the other in 

tumor suppressor genes resulting in recessive loss of function.  

1.1.1.1. Proto-oncogene 

 Proto-oncogene is a normal cellular gene that encodes a protein belonging to functional 

categories of growth factor, growth factor receptor, intracellular transducers, intracellular 

receptors and transcription factors. It can be mutated into a cancer promoting oncogene, 

either by changing the protein coding segment or by altering its expression (Harvey Lodish et 

al, 2000). Transformation of proto-oncogene to oncogene is summarized in Figure 1. 
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Figure 1: Transformation of proto-oncogene to oncogene and cellular fate (Harvey 
Lodish et al, 2000) 

Normal cell can lead to be cancerous cell due to the activation of oncogenes in the presence of a carcinogen. 

There are three genomic events that can trigger such a change  

 Point mutation in proto-oncogene. 

 Localized amplification of a chromosomal part that incorporates a proto-oncogene 

resulting in over expression. 

 Chromosomal translocation that drives the integration of another promoter with 

proto-oncogene resulting in over expression.      

1.1.1.2. Tumor suppressor genes 

Tumor suppressor genes, also called anti-oncogene, generally encode a protein which inhibits 

cell proliferation.  The categories of tumor suppressor genes also include cell cycle control 

proteins, DNA repair proteins and anti-apoptotic proteins. Losses of function mutations in 

these genes inhibit the cell to pause the uncontrolled growth. As only one copy of tumor 

suppressor genes have got the ability to control cell proliferation, both alleles of tumor 

suppressor genes must be lost or inactivated to promote tumor (Harvey Lodish, Arnold Berk, 

S Lawrence Zipursky, Paul Matsudaira, David Baltimore 2000). 

1.1.2. Pathway centric understanding of cancer 

Successive research in the last two decades discovered that the formation of cancer in human 

is a multistep process involving multiple proteins for sustainable proliferative signalling, 

evading growth suppressors, resisting cell death, enabling replicative immortality, inducing 

angiogenesis and activating invasion or metastasis (Figure 2). These hallmarks of cancer 

were proposed by Hanahan and Weinberg in 2000. Later it was again updated in 2011 by the 

same group. In the next section, an overview of the six hallmark of cancer is presented and 

discussed in the lights of recent discoveries.  



18 

 

 

Figure 2: Hallmark of cancer (Hanahan & Robert A. Weinberg 2011) 

The diagram shows six major mechanisms for the induction of cancer from normal cells, its uncontrolled growth and spread 

to other organs. 

1.1.2.1. Sustaining proliferative signalling  

The regulatory process of producing and releasing growth promoting signals are highly 

regulated in normal tissues. Due to this, normal tissue can maintain normal architecture and 

function by homeostasis of cells. Cancer cells deregulate these signals by the following 

means;  

a. Over expression of growth factors, that binds cell surface receptors with intracellular 

tyrosine kinase domains.     

b. By increasing surface receptors displayed at the cancer cell surface, the cell becomes 

hyper-responsive to the limited amount of available ligands.     

c. Point mutation in the receptors results in structural alteration facilitating ligand 

independent firing. 

d. Somatic mutations activating alternative downstream pathways lead to cell 

proliferation in normal cells triggered by activated growth factor receptors. The 

mutation in the catalytic domain of PIP3 results in hyperactive PIP3 kinase signalling 

including activation of Akt/PKB signal transducer (the hallmark of cancers, next 

generation).   

e. Somatic mutations to enhance cellular proliferation by disrupting a negative feedback 

loop e.g. oncogenic mutations in Ras protein inhibit its GTPase activity inhibiting 

negative feedback loop for cellular proliferation (Hanahan & Robert A Weinberg 

2011; Evan & Vousden 2001)    
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1.1.2.2. Evading growth suppressors 

In addition to maintaining growth stimulation signal, cancer cell must also nullify the 

powerful negative regulation of cell proliferation by the action of tumor suppressor genes. 

Among a large network of molecules, two most prominent tumor suppressors are 

retinoblastoma-associated (RB) and TP53 proteins. They govern the decisions of cells to 

proliferate or activate apoptosis.   

a. RB proteins integrate signals both from intracellular and extracellular sources and 

dictate whether a cell should proceed through its growth and division cycle. The 

defects in the RB pathway promote persistent cell proliferation in cancer cells. Loss of 

RB function is akin to the removal of a gatekeeper of cell cycle progression, hence 

triggering uncontrolled cellular proliferation.  

b. TP53 acts within the intracellular environment to assess the degree of genome 

damage, the levels of nucleotide pools, growth promoting signals, level of oxygen and 

glucose. It permits the cell cycle to progress only if those parameters are at normal 

level. On the contrary, if there is irreparable damage to those subcellular components, 

TP53 can trigger apoptosis. A loss of function mutation in TP53 can trigger 

uncontrolled growth as well (Hanahan & Robert A Weinberg 2011)   

1.1.2.3. Resisting cell death  

Programmed cell death by apoptosis is a natural cellular mechanism to destroy the cancerous 

growth.  Several upstream regulators and downstream effectors are the building blocks of 

apoptotic mechanisms. Some of the most important mechanisms of apoptosis and its blocking 

are listed below.   

a. The regulators are divided into two network modules leading to the activation of 

effector proteases (caspase 8 and caspase 9). One network module processes 

extracellular death inducing signals i.e. Fas ligand/Fas receptors signalling. Tumor 

necrosis factor/TNF receptor signalling. The other one sense and integrate 

intracellular signals. Next the resulting activated caspases execute disassembly of cell 

followed by phagocytosis. 

b. The Bcl-2 family of proteins has got both pro or anti apoptotic function. Bcl-2 inhibits 

apoptosis by inhibiting Bax and Bak. This inhibition blocks mitochondrial membrane 

disruption and release of cytochrome c in the cellular environment thus the cascade of 

proteolytic caspase is inhibited.    
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c. DNA damage sensors which act through TP53 tumor suppressors are the most notable 

one. Sensing the genomic damage, TP53 induces the apoptosis by up regulating 

expression of Noxa and Puma.  

d. Hyperactive signalling by MYC also triggers apoptosis.  

e. Insufficient IL3 signalling for the survival of lymphocytes also starts apoptosis.   

f. Different cancer cell evolved mechanisms to resists apoptosis by loss of function 

mutation of TP53, over expression of Bcl-2 (anti-apoptotic regulator), IL-3 (survival 

factor) and under expression of Bax, Bak (pro-apoptotic regulators) (Hanahan & 

Robert A Weinberg 2011; Evan & Vousden 2001).   

1.1.2.4. Enabling replicative immortality 

The scientific perception was that the cancer cells must have unlimited replicative potential to 

generate microscopic tumors. Successive research deciphers that the length of telomere of a 

chromosome determines the number of cell division. Normal cell can pass through a limited 

number of cycles for cell division and growth. As telomeres progressively shorten with each 

cycle of cell division/growth resulting end to end chromosomal fusion which triggers 

apoptosis. However cancer cell enable replicative immortality by continuously regenerating 

the telomeric region of chromosome with over expression of telomerase (Hanahan & Robert 

A Weinberg 2011; Harley 2008) 

1.1.2.5. Inducing angiogenesis 

Tumor grows rapidly due to uncontrolled cell division and proliferation of cancer cell. The 

growth of tumors has to be supported with continuous flow of nutrients, oxygen and the 

resulting metabolic waste has to be excreted out. Angiogenesis synthesizes neo-vascular 

structure in and around the tumor to meet that needs.  The cellular process of angiogenesis is 

controlled by the fine counter balance between inducing and inhibiting factors of 

angiogenesis. Some of the well-known angiogenesis inducers and inhibitors are vascular 

endothelial growth factor-A (VEGF-A) and thrombospondin-1(TSP-1).  

a. The binding of VEGF-A to three receptor tyrosine kinase (VEGFR 1-3) trigger VEGF 

signalling which orchestrates the formation of new blood vessels. 

b. Chronic up regulation of FGF (Fibroblast Growth Factor) enables cells to sustain 

angiogenesis.    

c. TSP-1 binds to the trans-membrane receptors of endothelial cells and inhibits the 

angiogenesis.  
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d. Angiostatin and endostatin endogenously inhibit angiogenesis.  

Tumors continuously induce angiogenesis by sustaining VEGF-VEGFR signalling by up 

regulation of VEGF in response to hypoxia or RAS and Myc signalling. Increased expression 

of pro-angiogenic molecules i.e. FGF also induce angiogenesis. Macrophages, neutrophils 

and mast cells can also activate angiogenesis by infiltrating pre-malignant/malignant lesions 

(Hanahan & Robert A Weinberg 2011; Carmeliet & Jain 2011). 

1.1.2.6. Activating invasion or metastasis 

Metastasis or invasion means the spread of cancer from one part of body to another. During 

tumor development the shape of its cells, the adhesion to other cells and to extracellular 

matrix degrades. The resulting tumor cells reach other parts of the body through the blood 

stream or lymph system. Cancer cells develop those properties by following mechanisms:  

a. E-cadherin is a cell adhesive protein, helping to maintain epithelial cell sheets and 

quiescence of the cells to it. Down regulation or loss of function mutation in E-

cadherin is a mechanism frequently used for the tumor tissues to metastasize to other 

body parts.  

b. N-cadherin is adhesive protein helping in cell migration. The up-regulation of N-

cadherin also drives the tumor cells to invade other body parts. 

c. Epithelial to mesenchymal transition (EMT) is one prominent mechanism to 

transform the epithelial cells to invade and to resist apoptosis. A set of transcription 

factors namely Snail, Slug, Twist and Zeb1/2 are the key driver of EMT pathway. 

Some of these transcription factors down regulate E-cadherin expression to help in 

metastasis.  

d. The interactions between cancer cells and nearby stromal cells play a crucial role for 

invasive growth and metastasis. Mesenchymal stem cells receive the signal from the 

cancer cells and in response produce CCL5. CCL5 stimulates cancer cells to invade 

other organs.  

e. In order to facilitate invasion the tumor matrix has to be degraded. Cancer cells secret 

IL4 which activate macrophages. Activated macrophages disrupt the tumor matrix to 

support invasion (Hanahan & Robert A Weinberg 2011; Tracey A. Martin, Lin Ye, 

Andrew J. Sanders, Jane Lane 2013). 
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Other than these 6 hallmarks of cancer there are other emerging hallmarks of the disease i.e. 

deregulating cellular energetics and avoiding immune destruction. The hallmarks of cancer 

and their interconnectivities are illustrated in Figure 3.     

 

Figure 3: Intracellular signaling networks regulate the operations of cancer cells 
(Hanahan & Robert A. Weinberg 2011). 

The figure demonstrates an elaborate integrated circuit operates within normal cells and is reprogrammed to regulate 

hallmark capabilities within cancer cells. Separate sub-circuits, depicted here in differently colored fields, are specialized to 

orchestrate the various capabilities. There is considerable crosstalk between such sub-circuits and major molecular players of 

each sub circuits are also visible. Each cancer cell is exposed to a complex mixture of signals from its microenvironment; 

each of these sub-circuits is connected with signals originating from other cells in the tumor microenvironment.  

 

Unlike other diseases, cancer has represented one of the unvanquishable challenges to human 

ingenuity, resilience and perseverance. However, thanks to enormous amount of research in 

oncology, today millions of cancer patients extend their life span with early identification of 

the disease followed by treatment. Nevertheless complete cure of cancers remain elusive. In 

the next section, an evaluation of the most advanced cancer treatment i.e. targeted therapies is 

presented. 

1.2. Targeted cancer treatment 

Over the last three decades the scientific community has witnessed a remarkable shift in 

understanding the mechanisms of cancer pathogenesis. Our current understanding on that 
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matter has paved the way for mechanism based targeted therapy in cancer. The growing 

number of current targeted therapies in cancer can be categorized by their effects on one or 

more hallmarks of cancer as illustrated in Figure 4. The observed efficacy of each of these 

drugs represents a validation, whether a particular hallmark is important for tumor biology. A 

minute observation on the mode of action of current targeted therapy in cancer demonstrates 

that most of them are directed towards specific molecular targets. These targets directly or 

indirectly enable particular capabilities. This type of mode of action is rewarding as it 

represents inhibitory activity against a target while having less nonspecific toxicity (Hanahan 

& Robert A. Weinberg 2011).  

 

Figure 4: Recent targeted therapies of cancer and their mode of action (Hanahan & 
Robert A. Weinberg 2011). 

Emerging or existing cancer treatments those shows promise to control with each of the acquired capabilities necessary for 

tumor growth and progression have been developed and are in clinical trials or in some cases approved for clinical use in 

treating certain forms of human cancer. Additionally, the investigational drugs are being developed to target each of the 

enabling characteristics and emerging hallmarks which also hold promise as cancer therapeutics.  
 

However, in the last decade all drug companies were affected by the crisis fuelled by 

increased expenditure, augmented pipeline attrition rate and patent expiry of major 

blockbusters. The success rate of late stage clinical trials fell by 10% for phase II studies in 

recent years. Additionally, the number of phase III terminations doubled in the last five years 

(Arrowsmith 2011a; Elias 2006). Most of the phase III failed drugs target cancer. Many of 

these failures were supposed to be related to the clinical explorations of life extension 
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strategies, particularly in cancer where compounds are successful in one tumor type produces 

a poor outcome in another tumor type (Arrowsmith 2011b; Khanna 2012).  Heterogeneity of 

cancer is one of the root causes of cancer drug failures.  To eliminate less promising 

candidate drugs early in the clinical trials, selection of biomarker indicating any “off target” 

effects in preclinical screens will be crucial. In addressing most alarming cause of drug 

failures i.e. efficacy, clinical study design should consider patient stratification strategies, 

biomarkers, scoring systems and computational models (Khanna 2012).    

So the drug discovery and development processes are in search for new models that would 

reduce the time taken by a drug to reach the market and increase the clinical success rate, thus 

satisfying regulatory authorities and patients’ needs. 

1.3. Recent trend in drug discovery 
One of the major causes of expensive drug failure is the marginal disease improvement 

compared to the current standard of care when analysed in a large population of late stage 

trials (Frank & Hargreaves 2003a). This has propelled one of the paradigm shifts of 

pharmaceutical drug discovery from blockbusters to niche busters i.e. therapies targeted 

towards specific target molecules of specific patient populations termed as targeted therapy. 

The success of targeted therapy depends on identifying stratified biomarker i.e. molecular 

signature that will stratify the patients prior to treatment (Trusheim et al. 2007a). Companion 

diagnostics (CDx) (diagnosis for identifying patients benefit from a therapy based on 

stratified biomarker) holds great promise to improve the predictability of therapeutics 

interventions (Jørgensen 2013).  

Currently about 10% of drug labels approved by the FDA contain pharmacogenomic 

information reflecting a clear trend towards targeted therapy (Frueh et al. 2008). Biomarker 

driven approach is being actively pursued by pharmaceutical companies as one of the next 

major reinventions in the field. The impact is evident through the FDA release of 

“Pharmacogenomic Biomarkers in Drug Labels” summarizing 136 approved drugs with 155 

associated biomarkers as of 01.03.2014 (Ptolemy & Rifai 2010) (US Food and Drug 

Administration n.d.).  

1.4. Biomarker 
Biomarker is a characteristic measured and evaluated as an indicator of normal biological 

processes or pharmacologic responses to a therapeutic intervention (Frank & Hargreaves 
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2003a). The biomarker is either produced by the diseased organ (tumor) or by the body in 

response to a disease or therapeutic intervention. It can be applied along the whole spectrum 

of disease management. It can be used for risk assessment of the disease as well. During early 

diagnosis, biomarker can be applied for staging, grading and selection of initial therapy while 

in the late stages, they can be used for therapeutic dosage, monitoring, selection of additional 

therapy and diseases recurrence (Biomarkers Definitions Working Group, 2001). FDA in its 

critical path initiative emphasized on applying biomarkers as an essential tool to combat the 

current situation of pharmaceutical industries suffering from late stage failures and lack of 

successful pipeline portfolios. Recent publications suggested that a more efficient model of 

pharmaceutical pipeline can be designed by applying biomarkers in all stages of drug 

discovery and development i.e. emphasizing biomarker usage from target identification to 

drug marketing (Bakhtiar n.d.; Colburn 2003; Deyati et al. 2013). Figure 5 summarizes a 

model pipeline for the drug discovery and development applying biomarker in all stages. 

Based on the application in drug discovery and development, there can be five types of 

biomarker. The definitions of each of them are listed below:  

 

1.7.1. Disease biomarker: a biomarker that depicts prodromal signs to enable 

earlier diagnosis or allow for the outcome of interest to be determined at a more initial stage 

of a disease.  

 

1.7.2. Efficacy biomarker: a biomarker used to assess whether a drug will have 

clinically significant positive outcome before the treatment. 

 

1.7.3. Safety biomarker: a biomarker which can determine dose response for 

toxicity.  

 

1.7.4. Pharmacodynamic biomarker: a biomarker that indicates selection 

of an optimal dose of a drug for a patient. 

 

1.7.5. Patient Stratification biomarker: a biomarker that can predict the 

probable drug response on a selected subpopulation of patients.  
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Figure 5: Model pipeline of biomarker driven drug discovery and development. 

The emerging trend of applying biomarker in all five major stages of drug discovery (i.e. identifying the targets, discovery of 

lead molecule) and development (i.e. preclinical testing to filing the drug candidate to regulatory authorities). Each stage of 

drug discovery and development with its prospective biomarker are colour coded.    

 

However, till now the use of patient stratification biomarker in late stage clinical trials stands 

out among other biomarker applications to cope with the most alarming issue of expensive 

late stage failures. 

1.5. Biomarker in current clinical practice: 

focus on oncology (Deyati et al. 2013) 
Cancer being a highly heterogeneous disease is among the first indications in moving towards 

targeted therapies.  Different tyrosine kinase inhibitors (gefitinib, erlotinib, lapatinib, 

crizotinib, dasatinib, vemurafenib) and monoclonal antibodies (cetuximab, panitumumab, 

trastuzumab, pertuzumab, tositumumab) have been at the forefront of targeted therapies in 

cancer (Deyati et al. 2013; Majewski & Bernards 2011). 

The success stories of targeted therapy in cancer started with commercialization of 

trastuzumab, cetuximab, imatinib, gefitinib. The trend has been on the rising with recent 

examples of Zelboraf (Vemurafenib) approved with the companion genetic test for BRAF 

mutation for late stage melanoma and Xalkori (Crizotinib) approved in combination with the 

companion genetic test for the ALK gene for late stage lung cancer (Dean & Lorigan 2012; 

Sai-Hong Ignatius Ou et al. 2012; Ruzzo et al. 2010a; Trusheim et al. 2007a). EGFR, 

Her2/neu, ALK, BRAF, Bcr-Abl, PIK3CA, JAK2, MEK, Kit, and PML-RARα are targets of 

recently approved targeted therapies in cancer. These target molecules and their downstream 

effectors are often subject to various changes on genomic, transcriptomic, proteomics and 

epigenetic levels. Therefore, status of those molecules (biomarker) underlies diversified 

patient-specific clinical responses to targeted therapies (Majewski & Bernards 2011).  
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As cancer is one of the prime areas of targeted therapies, we present here Table 1 

summarizing stratification biomarkers currently in clinical practice in oncology along with 

their approved treatment. As shown in the Table 1, with few exceptions such as KRAS, most 

of the biomarkers are direct drug targets of the respective therapies. The majority of 

stratification biomarkers have been approved after the therapy went to the market (i.e. 

derived from the retrospective analysis of late-stage clinical trials or post-marketing surveys). 

It is obvious that the biology of the target and its changes under pathological conditions was 

not apparent during clinical development. Even in the stratified patient population, 

therapeutic response do not meet with equal success (Sawyers 2004; Paez et al. 2004; 

Kreitman 2006) suggesting that clear understanding of downstream pathways and molecular 

interaction networks are necessary for biomarker-driven stratified medicine. Efforts to 

elucidate such global downstream changes lead to host of technologies for biomarker 

identification reviewed in the next section. 

 

Functional Class Biomarker Therapy 

Kinase EGFR Cetuximab, Erlotinib, 

Gefitinib, 

Panitumumab   

Kinase Her2/neu Lapatinib, 

Trastuzumab, 

Pertuzumab  

Kinase PDGFR Imatinib 

Kinase Estrogen receptor  Fulvestrant,  

Exemestane  

Kinase ALK  Crizotinib 

Kinase KRAS  Cetuximab, 

Panitumumab  

Kinase BRAF  Vemurafenib 
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Immune cell surface 

receptor 

CD20 Tositumumab 

Immune cell surface 

receptor 

CD25 Denileukin difitox 

Immune cell surface 

receptor 

CD30  Brentuximab vedotin 

Immune cell surface 

receptor 

C-Kit Imatinib 

CNV PML-RARα Arsenic trioxide 

CNV BCR-ABL Dasatinib 

Table 1: FDA-approved Stratification Biomarkers for targeted therapy in oncology 

1.6. Biomarker discovery using high 

throughput technology  
The rapid evolution of high throughput technologies designed for screening of biomedical 

samples by whole genome sequencing and microRNA (miRNA) profiling gave birth to 

several biological disciplines devoted to the generation and study of those multiple OMICS 

data. Figure 6 summarizes the latest technologies and diversification of the biomarker types 

based on bio molecular properties and underlying data types depending on changes detected 

by the respective technology.  

1.6.1. Genetic biomarkers 

Genetic biomarkers are biomarkers derived from technologies assessing genomic changes 

such as exome and whole genome sequencing, polymerase chain reaction (PCR) and 

Fluorescence in situ hybridization (FISH). They can accurately identify single nucleotide 

polymorphisms (SNPs), copy number variations (CNVs) and structural variations in the 

genome and delineate their functional significance in the pathophysiology of a defined 

phenotype. These technologies have helped to find stratification biomarkers in oncology and 

some of them are already in clinical practice. For example, KRAS sequencing and PCR were 

used to discover predictive and prognostic role of KRAS mutation in colorectal cancer and 
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lung cancer for anti EGFR-therapy resistance (Mauro Moroni et al. 2005; Lièvre et al. 2006; 

Eberhard et al. 2005; Amado et al. 2008). PCR/FISH analyses were used to show that 

translocation of BCR-ABL and PML-RARα may serve as predictive biomarkers conferring 

sensitivity to Imatinib mesylate and resistance to arsenic oxide in leukemia (Druker et al. 

2001; Niu et al. 1999). The same technologies were used to identify mutation/amplification 

and translocation of ALK gene as biomarkers predicting the efficacy of Crizotinib treatment 

in late stage lung cancer (Kwak et al., 2010).  

1.6.2. Expression biomarkers 

Differing from the traditional single biochemical and histopathological measurements, 

expression biomarkers (transcriptomics biomarker) represent a fingerprint containing 

multiple biomarkers, which collectively indicate particular pathophysiology (Bhattacharya & 

Mariani 2009). Well established high throughput technologies like microarray expression 

profiling can identify differential expression of an entire genome at any specific sample at a 

given time point. There are several reports on using these technologies to identify biomarkers 

in specific cancer subtypes. Two expression biomarker tests are clinically approved for 

patient stratification in breast cancer. MammaPrint, a unique 70 gene expression profile, is a 

prognostic biomarker for distant recurrence of the disease following surgery in breast cancer 

patients (van ’t Veer et al., 2002). Oncotype DX is another gene expression signature-based 

biomarker test containing 16 cancer-related genes and 5 reference genes that predict the 

recurrence of breast cancer in Tamoxifen-treated patients with node negative, estrogen 

positive tumors (Paik et al., 2004).  

1.6.3. Protein biomarkers 

Human plasma holds the largest source of the proteome hence technologies that can measure 

changes in the protein profile are invaluable to identify protein biomarkers in blood. For 

example, mass spectrometry can capture minor changes of the protein levels and 

immunohistochemistry can accurately identify a specific protein in the living system. 

Application of proteomics in discovery of oncology biomarkers can be exhibited by 

immunohistochemistry-derived Her2 which is prognostic, predictive biomarkers for the 

sensitivity to Trastuzumab therapy in breast cancer (Lewis Phillips et al. 2008). EGFR is 

another pharmacodynamic biomarker discovered by immunohistochemical assay in colorectal 

and lung cancer samples conferring sensitivity to Cetuximab, Panitumumab and Gefitinib 

treatment (Saltz et al. 2004; Vanhoefer et al. 2004; Lynch et al. 2004; Freeman et al. 2009a). 
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Clinical acceptance of novel proteomics biomarkers suffers an anemic rate due to the lack of 

PCR-like amplification techniques for the vast number of analytes present in extremely small 

quantities in dynamic plasma (Ptolemy & Rifai 2010). As a potential solution, a novel 

method of immune PCR using conjugations of specific antibodies and nucleic acids is 

suggested  which leads to 100-10000 fold signal amplification thus increasing sensitivity of 

protein biomarker detection (McDermed et al., 2012; Niemeyer et al., 2005). 

1.6.4. Metabolic biomarkers 

Ever since Otto Warburg hypothesized that altered metabolism (converting glucose carbon to 

lactate in oxygen rich condition) is specific to cancer cells due to mitochondrial defects, 

metabolic biomarkers have drawn the attention of researchers to be an effective biomarker for 

early cancer diagnosis and prognosis (Ward & Thompson 2012). Since then, numerous 

efforts have been dedicated to identify metabolic biomarkers in oncology. NMR 

spectroscopy, HPLC, radioimmunoassay, LC-MS, GC-MS, and enzyme immunoassay help to 

analyze the metabolite levels in response to pathophysiological change or treatment. Until 

now, only two metabolic biomarkers have made it to clinical practice. Metanephrine and 

Normetaephrine are two metabolites that are used to predict disease state associated to 

pheochromocytoma (see: http://www.accessdata.fda.gov/cdrh_docs/reviews/K032199.pdf). 

Despite rapid technological advancement in metabolomics, it is still impossible to 

differentiate metabolites derived from different sub-cellular compartments. Current 

fractionation methods often lead to metabolite leakage between different layers making it 

even more difficult for metabolite identification (Ward & Thompson 2012). 

1.6.5. microRNA biomarkers 

The involvement of microRNAs (miRNAs) in key cellular processes such as proliferation, 

cell death and negative regulation of numerous oncoproteins makes them a prime candidate 

as cancer biomarkers. It has been reported that cancer-specific miRNAs are detected in the 

blood from the earlier stages of tumor development and concentration increases as the tumor 

progresses over time, making them an indicator of tumor growth (Krutovskikh & Herceg 

2010). Unlike other types of biomarkers, miRNAs are remarkably stable in the circulation 

and formalin-fixed paraffin embedded tissue, making them potentially robust oncology 

biomarkers. Functional miRNA species have mostly been validated in vitro using luciferase 

reporter activity (Krutovskikh & Herceg 2010). Microarray profiling is a powerful, high 

throughput technology capable of monitoring the expression of thousands of small non-
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coding RNAs at a specific context. Mirage (SAGE), Stem-loop qRT-PCR for mature 

miRNAs, qRT-PCR for precursor miRNAs and bead-based technologies are also frequently 

used for microRNA profiling (Liu et al. 2008). However, no such biomarker exists in cancer 

clinical practice yet. It is noteworthy that genetic biomarkers witnessed a remarkable rise in 

clinical acceptance after the human genome project characterizing all the genes. Similar 

effort is needed to discover and characterize all the miRNAs in human cells to transform the 

potential of miRNAs as cancer biomarker into clinical success. Further understanding on how 

miRNAs compete with proteins to bind and control the expression of mRNA, as well as the 

functional interaction networks through which miRNAs act are needed for future clinical 

translation (Krutovskikh & Herceg 2010).  

 

Figure 6: Data types and technologies for biomarker discovery  

The figure illustrates current technologies and data types used for biomarker discovery in preclinical and clinical research. 

Abbreviations: CNV, copy number variations; FISH, fluorescence in situ hybridization; GCMS, gas chromatography mass 

spectrometry; HPLC, high-performance liquid chromatography; LCMS, liquid chromatography–mass spectrometry; NMR, 

nuclear magnetic resonance; PCR, polymerase chain reaction; SNPs, single nucleotide polymorphisms; SVs, structural 

variations. 

 

Noting this enormous amplification of data points obtained from biomedical samples, the 

question arises whether these technological advances along with ever-increasing availability 

of the screening platforms can lead to clinical breakthroughs? To get a better understanding 

of the technologies contributing to the identification of currently approved stratification 

biomarkers in oncology; we present an OMICS wise overview on data generation platforms 

and types of data resulting from these platforms in Table 2. 
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OMICS Technology Biomarker Associated no 

of drugs 

References 

GenOMICS Fluorescence in situ 

hybridization or 

Polymerase chain 

reaction 

ALK 1 (Janoueix-

Lerosey et al. 

2008) 

GenOMICS Fluorescence in situ 

hybridization 

Her2/neu  1 (Bekaii-Saab 

et al. 2009) 

GenOMICS Polymerase chain 

reaction 

BRAF  1 (Chapman et 

al. 2011) 

GenOMICS Polymerase chain 

reaction 

CD20 1 (Kaminski et 

al. 2005) 

GenOMICS Polymerase chain 

reaction 

PML-RARα  1 (Niu et al. 

1999) 

GenOMICS Polymerase chain 

reaction 

KRAS  1 (Heinrich et 

al. 2003) 

GenOMICS Sequencing EGFR  1 (M. Moroni et 

al. 2005) 

GenOMICS Sequencing KRAS  1 (Lynch et al. 

2004; 

Freeman et al. 

2009b) 

GenOMICS Sequencing C-Kit  1 (Heinrich et 

al. 2003) 

GenOMICS Sequencing BCR-ABL 1 (Takei et al. 

2008) 

GenOMICS Sequencing PDGFR 1 (Takei et al. 
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2008) 

ProteOMICS Immunohistochemistry EGFR  3 (Lewis 

Phillips et al. 

2008; Tsao et 

al. 2005; Addo 

et al. 2002; 

Hochhaus et 

al. 2008) 

ProteOMICS Immunohistochemistry CD25 1 (Dang et al. 

2007) 

ProteOMICS Immunohistochemistry Her2/neu 1 (Slamon et al. 

2001) 

Table 2: OMICS technologies for stratification biomarker discovery in oncology 

 

As evident from Table 2, few stratification biomarkers derived from each technology are 

currently approved and are in clinical use for cancer. This reflects the hard and long process 

of developing sensitive, specific and highly predictive biomarkers for clinical decision 

making from high throughput data. Nevertheless, OMICS technologies have tremendous 

potential to discover future biomarkers and the expectations have been augmented in last 20 

years supporting the huge investments in the development of these technologies (Deyati et al. 

2013).  

To understand the future potential of these high throughput technologies, we compared the 

number of published candidate biomarkers, i.e. those reported in the scientific literature, 

clinical trials registries or scientific conferences with the number of approved biomarkers for 

each technology described above. For this purpose, we retrieved all cancer-related candidate 

biomarkers (including disease, stratification, prognostic and diagnostic biomarkers) from 

GVK Bio Online Biomarker Database (GOBIOM). GOBIOM is independent manually 

curated biomarker related knowledge base that uses the information derived from clinical 

reports, annual meetings and journal articles (Jagarlapudi & Kishan 2009). During the time of 

writing, GOBIOM contained information on 15,732 biomarkers covering 16 therapeutic areas 

supported by 36,681 unique references.  
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Figure 7: Comparative performance of different OMICS technologies in oncology 
biomarker discovery collected through the Gobiom database.  

Red: Total number of candidate biomarkers reported in the public domain. Blue: Number of FDA approved biomarkers. 

Current contribution of OMICs technologies in oncology biomarker discovery extracted from the Gobiom database. In red: 

the total number of candidate biomarkers reported in the public domain. In blue: the number of FDA approved biomarkers in 

current clinical practice for oncology. 

 

As evident in Figure 7, although transcriptomics technology is one of the oldest and widely 

used high throughput technologies, most of the candidate biomarkers are reported to be 

coming from genomic research followed by proteomics. Stability of the signal coming from 

genomic analysis as well as higher stability of the protein versus mRNA might be the reason 

for those biomarkers overweighting the transcriptomics derived biomarkers (Deyati et al. 

2013). Never the less transcription and its regulation is one of the most important 

mechanisms to implement and manifest the genetic information stored in DNA. 

Transcriptomics technologies are also economically less expensive than proteomics 

technologies. State of the art analysis of transcriptomics data as well as accurate functional 

interpretation can potentially improve the situation (Khatri et al. 2012). In the next chapter 

the applied transcriptomic technologies in this thesis i.e. microarray technology along with 

state of the art statistical methods for data analysis are described in detail.  
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2. Computational Methods to 

Analyse Microarray Data for Cancer 

Biomarker Discovery 
Over the years substantial research has been undertaken to identify differentially expressed 

disease biomarker by analyzing microarray data from patient samples. These biomarkers 

serve as diagnostic or prognostic indicators that dictate preferred therapeutics. This chapter is 

focusing on microarray technology and its data analysis in cancer. The focus will be also on 

quality assessment, data combination, feature selection and prediction.  

Microarray technology for measuring expression profiles of genes is an invaluable tool to 

infer the physiological condition of the cell, tissue or an organism. Compared to measuring 

the expression level of proteins, measuring mRNA expression profile is easier and less 

expensive. Thus scientific community often applies gene expression level and its post 

transcription control as a reasonable substitute. A set of probes are attached to the solid 

surface of microarray or chip. The key principle behind the microarray technology is a 

process called hybridization in which a nucleotide strand binds to its unique complementary 

strand. Fluorescence tagged nucleotide sequences are allowed to complementary bind with its 

probes and based on the intensity of the fluorescence, the relative abundance of the 

nucleotide sequence (gene) is determined. The microarray can be categorized into two major 

categories i.e. single channel and two-channel. In two-channel microarray two labeled 

samples are hybridized on the same surface of the chip to determine the relative expression of 

the genes between the two samples. As the name indicates in one-color microarray gene 

expression profile of only one sample can be measured (Lockhart et al. 1996; DeRisi et al. 

1997). 

Over the years, the biomedical community has witnessed an exponential growth in 

publication analyzing gene expression profiles from clinical samples which are largely 

deposited to the Gene Expression Omnibus (GEO) (Edgar et al. 2002). Clinical gene 

expression data that has been analysed in this dissertation are extracted from biopsies of 

tumor samples and healthy tissues taken from GEO and The Cancer Genome Atlas (TCGA). 

In order to control bias, the gene expression profiles are typically measured on the same 

platforms across samples of interest. The data analysis was also followed by common pre-

processing steps including background correction, imputation, and normalization.  
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2.1. Analysis of microarray data 
The data analysis of a microarray experiment is a multi-step process. It starts with sample 

preparation and hybridization in microarray, which produce image files containing probe 

signal intensities. This probe signal intensities require image analysis, signal adjustment and 

data normalization to eliminate all the non-biological variability (or noise) inherent to the 

system. These procedures are often referred to as “data normalization”. Due to the multiple 

microarray platforms with different target preparation and hybridization methods, numerous 

normalization methods have been developed. After pre-processing, the normalized gene 

expression data can be analysed using statistical tools and exploratory methods to extract 

genes or patterns with biological significance. The analysis of one-color and two color 

microarray data is more or less similar, the main difference between these methods lies in the 

normalization of the data. 

2.1.1. Image Analysis 

Microarray image analysis starts with placing a computer-aligned grid over the hybridized 

surface area. Next, software is used to measure the intensity of each spot representing each 

probe on the hybridized array. Each spot on the chip surface is investigated for any 

hybridization biases or poorly hybridized probe to evaluate the hybridization quality. The 

software eliminates these “bad spots” and other spot intensities are stored in a file. The signal 

adjustment is a crucial step to correct the background noise and processing effect, to adjust 

for cross hybridization caused by the binding of non-specific target (DNA or RNA) and 

finally to adjust for expression estimates so that proper scale dimensionality is ensured. The 

intensities of the pixels surrounding the spot are measured to compute the background 

adjustment for spotted arrays. Due to the highly dense nature of Affymetrix GeneChips®, 

only the probe intensities must be used to determine any adjustment. A specialized statistical 

algorithm called Ideal Mismatch procedure is used to calculate the adjusted signal from 

Affymetrix GeneChips® (Freeman et al. 2009a).  

 

2.1.2. Data Normalization 

Data normalization is a method that strives to eliminate experimental variation due to 

differential amount of extracted RNA, dye effects, scanner difference etc. The scientific 

rationale for data normalization is to achieve uniform level of gene expression for most genes 

and make sure the gene expression is following a normal distribution when comparing two or 
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more samples on a genome-wide level. Hence the expected mean intensity ratio between two 

channels (two-color data) or chips (one color data) should be one, otherwise the data is 

numerically processed to adjust this ratio to one. Normalizations include the following steps: 

data transformation to stabilize intensity variance across the datasets and removal of non-

biological variation within a single array or between different arrays. In some normalization 

processes expression of house-keeping genes or spike-in controls (external control sequences 

from other organism) are applied. Replicates from biological and technical point of view are 

also very useful to minimize the effect of outliers and in enhancing data quality 

(Quackenbush 2001). Mean or median probe intensity values of multiple probes (one-color 

arrays) or replicate spots (two-color arrays) are often applied to increase the robustness of the 

data. The choice of normalization method is often based upon prior knowledge of the dataset. 

To maintain normal distribution of log intensity ratios for each slide of two-color 

microarrays, log centering and scaling are applied. However, LOWESS (locally weighted 

linear regression) or dye-swap smoothing are often preferred normalization methods where 

dye biases can depend on spot overall intensity or co-ordinate within the array (Ekstrøm et al. 

2004; Bandyopadhyaya et al. 2002). There are several preferred normalization methods for 

Affymetrix GeneChip®, to name just a few Microarray Suite (MAS) 5.0 statistical algorithm 

from Affymetrix (Gold et al. 2005), robust multichip average (RMA) (Wang et al. 2004), 

model-based expression index (MBEI) (Wu et al. 2005). These normalization methods 

considerably differ from one other leading to different results in data analysis. Popular MAS 

5.0 normalization applies a linear regression algorithm. Adjusted PM values are log 

transformed and a robust mean is calculated on the resulting values. Then the data is scaled 

using a trimmed mean after obtaining a signal for each probe set as the antilog of the 

resulting value (Gold et al. 2005). MBEI normalization is done with median intensity selected 

as a baseline array for normalization. The algorithm uses an invariant set method where 

numerous probes are selected ad-hoc as references for comparison of two samples and a non-

parametric curve (running median) is fitted through the data points (Wu et al. 2005). RMA 

and GCRMA are a modification of MBEI normalization method.  They use quantile 

normalization instead of median method used in MBEI. Nevertheless, apply same empirical 

distribution of probe intensities for each array of an experiment and the maximum 

background corrected; log-transformed PM intensity on each chip is evaluated. Next the 

original intensity values are replaced with average values and the process repeated for all 

intensities in descending order. After that, expression value for each probe on each GeneChip 

is measured by fitting an additive linear model to the normalized data. In addition to RMA 
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method described above, GCRMA takes into account of sequence information to address 

nonspecific background variation (Quackenbush 2001). Quality and comparability of the data 

analysis of microarray experiments has become a major challenge due to the wide range of 

methods for data production and normalization. As a solution Microarray Gene Expression 

Data Society (MGED) created a guideline called Minimum Information about Microarray 

Experiments (MIAME) for microarray data reporting standards. Nowadays many journals 

regarded the MIAME standards to publish microarray data  (Brazma et al. 2001; Verducci et 

al. 2006). 

 

2.1.3. Statistical analysis of microarray data 

The main idea behind statistical analysis of high dimensional microarray data is to 

characterize the structure of the data, reduce the dimensionality and extract statistically 

significant pattern in it. Fold change was among the first methods used to evaluate whether 

genes were differentially expressed. However, nowadays it is considered an inadequate test 

statistic as it does not account for the variance and offers no associated level of confidence. 

Parametric tests are more predominantly used for the analysis of microarray data due to its 

normalized nature. Typical parametric tests used in microarray analysis are student’s t-test or 

analysis of variance (ANOVA). These methods assume the data is normally distributed and 

try to estimate whether the variance in the data comes from the normal distribution. Often 

microarray experiments have a large number of observations but fewer samples which lead to 

test multiple hypotheses.  In a biological experiment, the observed differences are expected to 

happen by chance and as well as due to biological variability. The required correction of the 

statistical tests are often achieved by the Bonferroni method and the false discovery rate 

(FDR) suggested by Benjamin and Hochberg (Benjamini Yoav 1995). There are ample 

commercial and non-commercial statistical analytical tools available for advanced data 

analysis and visualization. Treeview (Eisen et al. 1998), GeneCluster (Tamayo et al. 1999), 

SAM (Tusher et al. 2001a), dCHIP (Li & Wong 2001), Gene data expressionist, GeneSpring 

(Agilent Technologies) and numerous other R and Bioconductor packages provides great 

resources to analyse microarray data. The main purpose of these packages vary from 

normalization, removal of insignificant genes, statistical analysis to identify differentially 

expressed genes or classify genes based on different phenotypes. 
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One of the big challenges of analyzing microarray data with traditional classical statistics is 

the presence of large number of unchanged genes adding high level of noise and uncertainty. 

The power and reliability of the statistical test can be improved by eliminating those genes; 

here arises the application of gene filtering to reduce the dimensionality of the data and 

differentiation approach to screen significant differentially expressed genes. In the next 

section, some of the popular data mining methods to identify differentially expressed genes 

are summarized.  

2.1.3.1. Data mining Algorithms to screen differentially 

expressed genes and feature selection  

 

Significance analysis of Microarray (SAM): SAM identifies a set of statistically significant 

genes in expression analysis by assimilating a set of gene specific t tests.  Each gene is 

assigned a score on the basis of its change in gene expression relative to the standard 

deviation of repeated measurements for that gene. Genes with scores greater than a threshold 

are deemed potentially significant. The algorithm applies permutation of repeated 

measurements to estimate the percentage of genes estimated by chance i.e. the false discovery 

rate. The threshold can be adjusted smaller or larger set of genes. The algorithm incorporates 

the gene specific fluctuation of expression with a statistics based on the ratio of change in 

gene expression to standard deviation in that data for that gene. The “relative distance” d(i) in 

gene expression is calculated as follows.  

d(i) = 
𝑥𝐼(𝑖)−𝑥𝑈(𝑖)

𝑠(𝑖)+𝑠0
  

xI(i) and xU(i) are defined as the average levels of expression for gene (i) within states I and 

U. The “gene-specific scatter” s(i) is the standard deviation of repeated expression 

measurements:  

s(i) = √𝑎{∑ [𝑥𝑚(𝑖) − 𝑥𝐼(𝑖)]2 + ∑ [𝑥𝑛(𝑖) −  𝑥𝑈(𝑖)]2
𝑛𝑚 }   

a = (1/n1 + 1/n2)/(n1 + n2 -2). n1 and n2 are the number of measurements in states I and U. The 

statistical distribution d(i) should be independent of the level of gene expression so that d(i) 

across all genes are comparable.  When gene expression level is low the variance in d(i) can 

be high because of small values of s(i). To ensure that the variance of d(i) is independent of 
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gene expression by a small positive constant S0 added to the denominator to calculate d(i)  

(Tusher et al. 2001a).    

 

Limma: Limma is a package to identify differentially expressed genes in a microarray 

experiment by applying a linear model to the expression data for each gene. To stabilize the 

experimental analysis with a smaller number of array, shrinkage method like empirical bayes 

is used for an expression overview across all the genes in the array. The linear model with 

Limma requires two matrices. The first one is the designed matrix which provides a 

representation of the hybridized RNA targets in the array. The second one is the contrast 

matrix which allows the coefficients defined by the design matrix to be combined into 

contrasts of interest. Limma operates on a matrix of expression values in which each row 

represents a gene or some other relevant genomic feature and each column represent a RNA 

sample. The algorithm fits a linear model to each row of data and it facilitates to handle 

complex experimental design and to test extremely flexible hypothesis. Genomic data is 

highly parallel in nature. So when the sample number is low the model can borrow 

information between gene-wise models allowing different levels of variability between genes 

and between samples thus the statistical inferences get robust. All the features of the 

statistical models can be accessed not just for gene wise expression analysis but also for gene 

expression signature. Mathematically a linear model E[yj] = Xαj is assumed where yj 

symbolizes the expression data the gene j, X is the designed matrix and αj is the vector of 

coefficient. The contrasts of interest are given by βj = C
T
 αj where C is the contrasts matrix 

(Ritchie et al. 2015).  

 

Correlation based feature selection (CFS): CFS algorithm uses a correlation based heuristic 

to evaluate the importance of features. The heuristic takes into account the usefulness of 

individual features for predicting the class label along with the level of correlation among 

them. The underlying hypothesis of CFS is “Good feature subsets contain features highly 

correlated with the class, yet uncorrelated with each other”. The formalism of heuristics is as 

follows: 

Merits = 
𝑘𝑟𝑐𝑓

√𝑘+𝑘(𝑘−1)𝑟𝑓𝑓

 

Where Merits is the heuristic “merit” of a feature subset S containing k features, rcf the 

average feature class correlation and rff the average feature-feature intercorrelation. Equation 
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n can also be viewed as Pearson’s correlation where all the variables have been standardized. 

The numerator indicates how predictive a group of features are whereas the denominator 

implicate how much redundancy there is among them (Hall 2000).  

 

Mann-Whitney-U test: Mann Whitney U test is an unpaired, univariate and non-parametric 

test i.e. two independent random samples A and B can be compared with Mann-Whitney-U 

test. The Mann-Whitney-U statistics is defined as follows:  

U= n1n2 + n2 (n2 + 1)/2 - ∑ Ri
𝑛2
𝑖=𝑛1+1  

When A and B are randomly collected from population, the samples are independent from 

each other and the measurement scale is ordinal. Sample A of size n1 and B of size n2 was 

pooled and Ri is the rank.  

The aim of the test is to find out if the centrality of a test variable when it differs significantly 

between two groups of interest. The p-value serves as the evaluation measure of 

discrimination. Mann Whitney u test is especially appropriate for two class biological 

problems (Lehmann, E.L, Romano 2006)  

2.1.3.2. Clustering Algorithm 

Clustering is an unsupervised learning algorithm to separate a group of data points into a 

number of clusters. Clustering can be defined as the process of organizing objects into groups 

whose members are similar in some way. Unsupervised clustering can further be split to 

hierarchical clustering method and non-hierarchical clustering methods such as self-

organizing maps (SOM) or K-means clustering. One of the major goals of clustering is to 

determine the intrinsic grouping within an unlabelled data. Clustering is one of the most 

popular methods as the first step in gene expression data analysis. In order to reduce the high 

dimensional gene expression data, clustering algorithm like PCA is applied. Strategically 

microarray data analysis can be applied either at the gene level to find out similarities or 

dissimilarities between different genes across the samples to find out the correlation between 

two genes or comparing the samples to find out differentially expressed genes in different 

experimental conditions (Korol, A.B., 2003).  

Principal component analysis: Principal component analysis (PCA) is an unsupervised 

projection approach which reduces the dimensionality of biological data by identifying 

directions called principal component along which the variance of the data is maximum. So 
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PCA ignores those dimensions in which the data can be much variabe. Given a high 

dimensional data, PCA calculates a new system of coordinates. The directions of this new 

coordinate system calculated by PCA are the eigenvectors of the covariance matrix. In 

mathematical terms, the Eigen vector with the highest Eigen value computed from the 

covariance matrix is the first principal component. So intuitively covariance matrix reflects 

the shape of data points. With the help of Eigen vectors PCA captures the main axes of the 

shape formed by the data in n-dimensional space. Given a large dataset like microarray with 

multiple variables, by applying PCA we can identify variables with the highest correlation 

with the dependent variable (Ringnér 2008).  

Singular Value decomposition: SVD is a dimensionality reduction algorithm. 

Mathematically SVD is matrix decomposition technique which is also the mathematical 

framework of PCA. Microarray data can be represented as real valued m-by-n matrix (say X). 

The same matrix can also be represented as the product of three matrices (Liu & Zhao 2006).  

A = QDR
T  

Q: Eigenvectors of AA
T 

which will
 
be m-by-m matrix 

D: Eigenvectors of A
T
A which will be n-by-n matrix 

R: Diagonal matrix with square root of the Eigen values of AA
T 

and
 
A

T
A (Korol, A.B., 2003) 

 

Unsupervised Clustering: Clustering without prior knowledge about the data is termed as 

unsupervised clustering. Algorithms in this category treat all inputs of a set of n numbers or 

an n-dimensional vector. Unsupervised clustering can be done on genes, samples, time points 

in a time series experiment. Unsupervised clustering is based on the measure of similarity. 

The similarity measure between objects is also referred as a distance matrix. There are 

several mathematical algorithms to calculate similarities which are described below (Korol, 

A.B., 2003).   

Suppose we are having two n-dimensional vectors X = (x1, x2, …., xn) and Y = (y1, y2, …, yn)  
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a. Euclidean distance 

dE = √(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 + ⋯ + (𝑥𝑛  − 𝑥𝑛+1) 

The Euclidean distance counts both direction and magnitude of the vector (Korol, A.B., 2003).  

b. Manhattan distance is calculated as follows: 

dm(x, y) = |x1-y1| + |x2-y2| + …. + |xn-xn+1| 

Manhattan distance represents the absolute value of the difference between xi and yi. 

However, cluster using distance calculated by applying Euclidean matrix is much more 

compact than applying Manhattan distance (Korol, A.B., 2003).   

c. Chebychev distance is calculated as follows:  

dmax (x, y) = max |xi - yi| 

As the formula indicates the Chebychev distance will simply pick the largest distance 

between two corresponding entities. The distance matrix is very robust in avoiding the noises 

as long as the values do not exceed the maximum distance (Korol, A.B., 2003).   

d. Correlation distance is calculated as follows:  

dr(x, y) = 1- rxy 

rxy is the Pearson correlation coefficient calculated as rxy =  
∑ (𝑥𝑖−𝑥𝑚)(𝑦𝑖 −𝑦𝑚)𝑛

𝑖=1

√∑ (𝑥𝑖−𝑥𝑚)2𝑛
𝑖=1  √∑ (𝑦1−𝑦𝑚)2𝑛

𝑖=1

 

xm and ym are the mean values of x and y variable. The correlation distance can vary between 

0 and 2 as the correlation coefficient rxy takes values between -1 and 1. This distance matrix 

does not incorporate the magnitude of the coordinates (Korol, A.B., 2003).  

e. Mahalanobis distance is calculated as follows: dml (x, y) = √(𝑥 − 𝑦)𝑇𝑆−1(𝑥 − 𝑦)  

S is any n*n positive definite matrix and (x-y)
T 

is the transposition of (x-y). The role of the 

matrix S is to distort the space as desired. If S is an identity matrix then Mahalanobis distance 

reduces to the classical Euclidean distance (Korol, A.B., 2003).   
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Clustering algorithms have been extensively used in phylogenetic analysis. The algorithm has 

also been adopted by the gene expression community for its accuracy and usefulness. Some 

of the extensively used clustering algorithms are discussed in detail in the next section.  

Non-hierarchical clustering 

K-Means: At first the algorithm estimates a number of clusters then calculates the centroid of 

each cluster and finally find out the closest cluster for each data point by minimizing the 

objective function (J).  

J = ∑ ∑ |𝑥𝑖
𝑗

− 𝑐𝑗|
2

𝑛
𝑖=1

𝑘
𝑗=1  

Where |xi
J
 - cj|

2
 is the calculated distance between a data point xi 

j
 and cluster centre cj. The 

distance is calculated for n data point over k cluster.  After all the objects have been assigned 

into cluster the k centroids are recalculated followed by calculating the objective function. 

This process continues until the centroid no longer moves. K means clustering is one of the 

fastest and simplest clustering algorithms (Ma et al. 2005).  

SOM: Self-organizing maps or SOM is an application of self-organizing neural network to 

cluster multi-dimensional data to recognise and classify features. The algorithm has a set of 

nodes with simple topology (two dimensional grid) and a distance function d(N1, N2) on the 

nodes. Nodes are iteratively mapped into k-dimensional “gene expression” space. The 

position of node N at iteration i is denoted fi(N). The initial mapping f0 is random. After 

subsequent iterations, a data point P is selected and the node NP that maps nearest to P is 

identified. The mapping of node then adjusted by moving points toward P by the following 

formula:  

fi+1 (N) = fi (N) + γ(d(N, NP), i) (P – fi(N)) 

The learning rate γ decreases with distance of N from NP with iteration number i. The point P 

used at each iteration is determined by random ordering of the n data points generated once 

and recycled as needed.  The function γ is defined by γ(x, i) = 0.02T/(T + 100 i) for x = α(i) 

and γ(x, i) = 0. Otherwise where the radius α(i) decreases linearly i(γ(0) = 3) and eventually 

become zero and T is the maximum number of iterations (Korol, A.B., 2003, Tamayo et al. 

1999).  
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Figure 8: Principle of SOMs (Tamayo et al. 1999). 

 Initial geometry of nodes in 3*2 rectangular grids is indicated by solid lines connecting the nodes. Hypothetical trajectories 

of nodes as they migrate to fit data during successive iterations of SOM algorithm are shown. Data points are represented by 

black dots, six nodes of SOM by large circles, and trajectories by arrows. 

Hierarchical clustering: As the name indicates hierarchical clustering uses a progressive 

combination of elements that are most similar and clustered them into higher order as 

dendrograms. Different experimental conditions can be clustered based on genes expression 

and different genes also can be clustered based on their expression values in different 

experimental conditions. Then different cluster can also be clustered by an inter-cluster 

distance to make a higher level cluster. So unlike k-means clustering, one can deduce the 

relationship between different clusters based on their distance from the root, i.e. closer the 

clusters are from the roots more similar they are. The hierarchical clustering are built based 

on two approaches top-down and bottom-up. In bottom-up method first the distance between 

all data points are calculated based on the different distance calculation algorithms described 

before to cluster the data points into the initial cluster. Next the distances between different 

clusters are calculated and the processes continue to group most similar clusters into higher 

level clusters. The formalism of top-down algorithm is quite reverse that bottom-up method. 

First all the data points are considered to be a part of a super cluster in the top-down 

approach. Next cluster is divided into two clusters by applying k-means clustering (k=2). 

This process is repeated until reaching cluster contains only one data point (Obulkasim & van 

de Wiel 2015) 
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Figure 9: Hierarchical clustering based on gene expression of microarray data 
(Ducray et al. 2008). 

Figure 9 demonstrates A typical example of application of hierarchical clustering using microarray data in cancer research. 

The analysis was completed on 4 oligodendrogliomas with 1p19q codeletion and 9 gliomas with EGFR amplification. 

Unsupervised hierarchical clustering was performed using the 1366 probe sets whose expression varied the most across the 

13 samples (probe sets with a robust coefficient of variation superior to the 97.5th percentile). 1p19q = 1p19q 

codeletion, EGFR = EGFRamplification. The gliomas were classified into 2 groups according to their genomic profile. 

Gliomas with EGFR amplification were classified into one cluster irrespective of their histology (red = glioblastoma, green = 

grade III oligodendroglioma, blue = grade III oligoastrocytoma). Gene cluster A was enriched in genes involved in 

proliferation, extracellular matrix, immune response, embryonic development and angiogenesis. Gene cluster B was enriched 

in genes involved in synaptic transmission. Gene cluster C was enriched in genes involved in neurogenesis and synaptic 

transmission. 

 

2.1.3.3. Classification algorithms 

The supervised clustering or classification algorithms are developed to assign objects to 

predetermined classes. Supervised methods generally involve the use of a training data set 

and an independent validation data set. The aim is to obtain a function or rule that uses 

expression data to predict its class. In cases where the dataset is too small to be effectively 

split, a cross-validation method such as leave-one-out or class permutation procedure is often 

used. Classification algorithms are also widely applied to analyse gene expression data with 

the aim either to discover new categories within the dataset or to assign classes to a given 

category. Genes or samples are classified into specific groups based on the values of a set of 

computed variables by unsupervised clustering. Typically genes are grouped into classes 

based on the expression profiles in different biological conditions. In the next section state of 

art classification algorithms which are predominantly used for the analysis of microarray 

experiment are described in detail.  
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Linear discriminant analysis (LDA): Classical LDA projects the data onto a lower-

dimensional vector space such that the ratio between classes distances is maximized, thus 

achieving maximum discrimination between classes. The objective is to classify unknown 

samples into one of the k classes nk training samples per class, k = 1, 2, 3, …, K with m genes 

in each microarray. For each training sample, we observe class membership Y. and 

expression profile X. For simplicity, the classes has been represented by the numbers 1, 2,..., 

K. Note that each expression profile is a vector of length m. We assume that expression 

profiles from class k are distributed as N (µk, ∑), the multivariate normal distribution with 

mean vector µk and covariance matrix ∑. Call L(µk, ∑) the corresponding probability density 

function. Finally, we agree upon prior probabilities πk that an unknown sample comes from 

class k, k = 1, 2,..., K (Dabney 2005).  

Bayes’ theorem states that the probability of a sample comes from class k, given that 

sample’s expression profile, is proportional to the product of the class density and prior 

probability (Dabney 2005):  

Pr (Y = k|X=x) ∞ L (x; µk, ∑) * πk 

We call Equation (n) the posterior probability that array x comes from sample k. LDA assigns 

the sample to the class with the largest posterior probability (Dabney 2005):   

Ŷ = arg maxk {L(x; µk, ∑)* πk}  

 

Prediction analysis of Microarray (PAM): PAM is an application of LDA based classifier for 

microarray analysis. PAM applies nearest shrunken centroids for class prediction. Let aij be 

the expression of genes i = 1, 2,…, K and let Ck be indices of the nk samples in class k. The i
th

 

component of the centroid for class K is āik = ∑ 𝑎𝑖𝑗/𝑛𝑘𝑗∈𝐶𝑘
. Then the i

th
 component of the 

overall centroid is āi = ∑ 𝑎𝑖𝑗/𝑛𝑛 
𝑗=1    Hence the class centroids shrink towards the overall 

centroids after standardizing by the within-class standard deviation for each gene. This 

standardization has the effect of giving higher weight to genes whose expression is stable 

within samples of the same class (Tibshirani et al. 2002) .  

dik = 
āik−𝑎𝑖

𝑚𝑘(𝑠𝑖+𝑠0)
 

Where si is the pooled within-class standard deviation for gene i: 
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si
2
 = 

1

𝑛−𝐾
∑ ∑ (𝑎𝑖𝑗 − āik)

2
𝑗∈𝐶𝑘𝑘  

and mk = √
1

𝑛𝑘
+

1

𝑛
 makes the mk.si equal to the estimated standard error of the numerator in 

dik. In the denominator, the value s0 is a positive constant (with the same value for all genes), 

included to guard against the possibility of large dik values arising by chance from genes with 

low expression levels. s0 is set to equal the median value of the si over the set of genes. Thus 

dik is a t statistic for gene i, comparing class k to the overall centroid.  

āik =  ā + mk(𝑠𝑖 + 𝑠0)𝑑𝑖𝑘 

The PAM method shrinks each dik toward zero, giving d
'
ik and yielding shrunken centroids or 

prototypes.  

āik′ = āi + 𝑚𝑘(si + s0) 𝑑𝑖𝑘′ 

 

 Support vector machine (SVM): SVM is supervised machine learning analysis as the 

method uses prior knowledge to assign the class of a test set. The key idea behind the SVM is 

the concept of decision plane which defines decision boundaries to separate a set of objects 

into a different class. In doing that the algorithm often constructs hyperplanes in multi-

dimensional space in separating multiple classes. Often mathematical functions or kernels are 

applied to transform a non-linear decision tree into a linear one. The mathematical features of 

SVM i.e. flexibility in choosing a similarity function, sparseness of solution when dealing 

with large data sets, the ability to handle large feature space have made extremely popular 

method for analysing microarray data (Rojas et al. 2009). 

  

Decision Tree: Decision tree is essentially a classifier that classifies the data by posing a 

series of question about the features associated with the data. Each question is designated to a 

node and every internal node points to a child node for each possible answer to its question. 

The questions represented as hierarchy and encoded as a tree and that is why the classifier is 

called “decision tree”. An item is sorted into a class by following the path from the topmost 

node i.e. the root to a node without children called a leaf. The item is assigned the class of the 

leaf it reaches. In certain variations, each leaf contains a probability distribution over the 

classes that estimate the conditional probability that an item reaching the leaf belongs to a 

given class. Decision trees are grown by adding question nodes incrementally by using 

labelled training examples to guide the choice of questions. A good question will split a 
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collection of items with heterogeneous labels, stratifying the data in a way that there is little 

variance in each stratum. The most common measures to evaluate the impurity within a 

decision tree are entropy and Gini index. Let assume that we are building a classifier based 

on the decision tree using a set of E training items into m classes. Suppose pi (i=1, …., m) be 

the fraction of items of E that belong to class i. The entropy of the probability distribution 

(pi)
m

i=m gives a reasonable measure of the impurity of set E. The entropy, -∑ pi𝑚
𝑖=1 𝑙𝑜𝑔𝑝𝑖 is 

the lowest when a single pi equals 1 and all others are 0. But it is maximized when all pi are 

equal. The Gini index is computed as 1- ∑ 𝑝𝑖2𝑚

𝑖=1
. The Gini index will be 0 when the set E 

contains items from only one class. Given a measure of impurity I, we choose a question that 

minimizes the weighted average of the impurity of the resulting children nodes. That is, if a 

question with k possible answers divides E into subsets E1, …, Ek; we choose a question to 

minimize ∑ (|𝐸𝑗|/|𝐸|)𝐼(𝐸𝑗)𝑘
𝑗=1  (Kingsford & Salzberg 2008).  

Random Forest: Random forest method is an application of the Decision Tree model based 

on the generation and comparison of an ensemble of trees. RF works as a large collection of 

uncorrelated decision trees. It applies bagging to construct a collection of decision trees 

aiming at identifying a complete set of significant features. After many decision trees are 

generated the class assignment goes with the most predominant assigned class by those trees.  

Given an ensemble of classifiers h1(x), h2(x), . . . , hK(x), and with the training set drawn at 

random from the distribution of the random vector Y, X, define the margin function as: 

mg(X,Y) = ask I(hk(X) = Y) - max avk I(hk(X) = j) 

Where I(·) is the indicator function. The margin measures the extent to which the average 

number of votes at X, Y for the right class exceeds the average vote for any other class. The 

larger the margin, the greater is the confidence in the classification. The generalization error 

is given by: PE∗ = P X,Y (mg(X,Y) < 0)  

Where the subscripts X, Y indicates that the probability is over the X, Y space. (Breiman 

2001, Enot et al. 2006)  

2.1.4. Challenges of biomarker discovery 

The described data mining algorithms have been instrumental in identifying biomarkers in 

different forms of cancer. However, comparing the number of approved biomarkers to those 

mentioned in the public domain reveals that majority of candidate biomarkers either failed or 
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did not reach the clinic yet. Even in the case of strong signal derived from analysis of high 

throughput data by data mining algorithms, its conversion to clinical practice meets with 

challenges of accurate functional interpretation. The interpretation of the high throughput 

data in the context of molecular pathophysiology of an underlying disease and specific 

treatment is the current rate-limiting step in the biomarker identification and validation. If 

properly identified, extracted and interpreted; OMICS datasets can provide valuable 

biological insights. Functional analysis of OMICS data requires knowledge of the molecular 

interactions and pathways underlying pathophysiology of diseases as well as the treatment’s 

mode of action. Accumulated biological knowledge across different system’s levels therefore 

needs to be collected, annotated, transformed into computer-readable form and stored in a 

semantically enhanced knowledge base. Such knowledge bases can then be used for 

knowledge-based analysis of OMICS datasets through integrative approaches that aim at 

finding key biological processes, pathways, interaction modules or causative network 

signatures that could be used as candidate biomarkers (Deyati et al. 2013). In the next section, 

the development and analytic view of existing knowledge bases have been presented. The 

focus will be on the interpretation of functional role of promising candidate biomarkers after 

statistical analysis of gene expression data. The emphasis will also be on biomarker 

identification in the scientific literature and the state-of-art knowledge representation 

techniques for modelling and mining approaches.     
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3. Knowledge Management for 

Biomarker Discovery 
The mission of knowledge bases is to collect and systematize biomedical information through 

manual information extraction from primary publications in so-called curation process. The 

curation process organises knowledge via mapping of extracted information to an underlying 

ontology. Such knowledge bases provide a number of features for analysis of expression data 

by overlying the data onto the known pathways. Identification of the key affected pathways 

within the expression data followed by network analysis can potentially identify key 

regulatory molecules behind the respective gene signatures. The functional interpretation of 

microarray starts with the identification of genes with characteristic biological function. 

National Centre for Biotechnology Information (NCBI) developed and maintained Entrez 

Gene database which provides unique identifiers for gene and associated biological function. 

The database also provides links to external databases dedicated for the biological function 

and pathway association of the gene i.e. Gene Ontology (GO), KEGG, Reactome.  

3.1. Gene ontology  
In 2000, The Gene Ontology Consortium (http://geneontology.org/) was established with the 

mission to provide a controlled vocabulary for annotating homologous genes and proteins 

across organisms. Genes and its products are classified into three hierarchical structures to 

describe associated biological processes, cellular components and molecular functions 

(Ashburner et al. 2000)]. Quite a few bioinformatics analytical tools i.e. MAPPFinder 

(Doniger et al. 2003), GoMiner (Zeeberg et al. 2003)], Onto-Express (Draghici et al. 2003)] 

have been developed to functionally interpret high throughput data with the knowledge from 

Gene Ontology (GO).  

However the complex biological relationship of genes, proteins and their interactions can be 

oversimplified by annotating them into categories of GO. Protein-protein interaction 

databases and Pathway databases are more potent representation of the biological systems in 

its entirety. So interpreting microarray data in terms of over or under expressed biological 

pathways leading to certain phenotypes, can better reflect systems behaviour in different 

experimental conditions. Nevertheless, GO contains a systematic hierarchical nomenclature 

of genes and proteins which has played a vital role for batch processing and future design of 

pathway databases (Tsui et al. 2007).    
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3.2. Proteins-protein interaction (PPI) 

databases 
Ever increasing number of publications in biology provides a great source to screen 

molecular interactions in human and in other model organisms. However, the actual 

challenge lies in retrieving those interactions from the literature and deciphering the 

dynamics of the interaction network. In recent years, great amount of effort has been 

undertaken to construct the several proteins-protein interaction (PPI) database described in 

Table 3.  

Database Properties 

Intact 

(Orchard et 

al. 2014) 

 Manually curated or user submitted PPIs. 

 Knowledge of experimental details, such as the 

experimental technology used, cellular context, protein 

modifications, expression systems, and a confidence value 

is added to each interaction.  

 Interactions can be downloaded in MI-Tab, MI-XML, 

BioPAX, XGMML, RDF format for visualization in 

different software.  

 MINT database has been merged with Intact.  

 Currently contains 87,006 interactors having 529,495 

interactions.  

HPRD 

(Keshava 

Prasad et al. 

2009) 

 Manually curated PPI database based on experimental 

evidence.  

 Knowledge on post translational modification, tissue 

expression, subcellular location, domain architecture, 

disease association is added to each interaction.  

 Interactions can be downloaded as XML or tab delimited 

format.  

 Currently contains 30, 047 proteins having 41,327 

interactions. 

DIP 

(Xenarios et 

al. 2000) 

 Manually curated as well as automatically extracted 

experimentally validated PPIs.  

 Knowledge on protein-protein relationship, properties of 

interacting networks, evaluation of PPIs have been added.  

 The interactions can be downloaded as native XML based 

XIN format, tab delimited format and Molecular Interaction 

Format (MIF) 
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 Currently the database contains 27,701 proteins having 

79,339 interactions.  

BioGrid 

(Stark et al. 

2006) 

 A manually curated protein and genetic interaction 

database. 

 Knowledge on organism specificity, proteins function and 

interaction detection technology has been added.  

 Data can be downloaded in tab delimited and PSI-MI XML 

format.  

 Currently the database holds 557,106 unique interactions 

from 56,907 proteins.    

MINT  

(Licata et al. 

2012) 

 A manually curated and experimentally validated molecular 

interaction database.  

 MINT was one of the first interaction databases to score 

each interaction reflecting its reliability.  

 Interaction data can be downloaded as PSI-MI XML format.  

 As of 2011, 235,000 binary interactions were stored in the 

database.      

STRING  

(Szklarczyk 

et al. 2014) 

 Curated as wells as predicted PPI database.  

 The database contains both physical and functional 

interactions from four sources i.e. genomic context, high-

throughput experiments, co-expression and manual curation 

of published articles.  

 Each interaction has been scored and organism specific 

interactions can be screened. The proteins have been 

annotated with its structure and function.  

 Currently STRING database covers 9,643,763 proteins from 

2,031 organisms.  
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BIND  

(Bader et al. 

2003)  

 Biomolecular interaction database Network or BIND 

archives PPIs screened through yeast two hybrid, mass 

spectrometry, genetic interactions and phage display.  

 The BIND data now has been incorporated within 

Biomolecular Object Network Databank (BOND).  

 The PPIs and interaction network with BOND can be 

visualized within Cytoscape.  

Table 3: Protein-Protein interaction data bases 

3.3. Pathway databases  
In the past decades of research has led to the understanding of the protein-protein interactions 

(PPIs) within cells in different physiological conditions. But individual PPI cannot elucidate 

how cell collectively responds to cues in their internal or external environment. In addition, 

the discovery of the connections between each of these components promoted the 

reconstruction of the chain of reactions, which subsequently give rise to a signaling pathway. 

Ultimately, our ability to interpret the function and regulation of cell signaling pathways is 

crucial for understanding the ways in which cells respond to external cues and how they 

communicate with each other (Bauer-Mehren et al. 2009)]. So building pathways and its 

databases is an important milestone in the quest of functional interpretation of expression 

data. In the next section (Table 4) the most crucial open source pathway databases are 

discussed.   

Pathway 

Databases 

Description 

KEGG  Established in 1995 Kyoto Encyclopedia of Genes and Genomes 

(KEGG) contains manually assembled pathway maps based on the 

duration of published literature.  

 KEGG pathways can be grouped together into five categories 

namely metabolic pathways, Cellular processes, Genetic 

information processing pathways, Environmental processing 

pathways and pathway for human diseases.  

 Most of the cancer associated pathways fall into the category of 

environmental information processing group. This section is 

further grouped together into membrane transport, signal 
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transduction and signaling pathways.  

 Other than human pathways, KEGG also contain pathways for 

other model organisms like rat, mouse, chimpanzee, cow and pig.  

 The granularity, hierarchy and graphical representation as well as 

annotation of the nodes of all the KEGG pathways are stored in 

KEGGML (KEGG Markup Language) format.   

(Kanehisa & Goto 2000)  

Reactome   Reactome is a manually curated peer reviewed pathway database 

based on published literature. It was established in 2003 in 

collaboration with European bioinformatics institute, Ontario 

Institute of Cancer Research and New York University of Medical 

Center. 

 Human pathways are hierarchically structured into following 

categories: cell cycle, cell-cell communication, cellular responses 

to stress, chromatin organization, circadian clock, developmental 

biology, disease, DNA repair, DNA replication, extracellular 

matrix organization, Hemostasis, Immune System, metabolism, 

metabolism of proteins, muscle contraction, expression, neuronal 

system, organelle biogenesis and maintenance, programmed cell 

death, reproduction, signal transduction, trans membrane transport 

of small molecules, vesicle-mediated transport.   

 Other than human pathways, Reactome contain pathways from 18 

different organisms.  

 Reactome is open-source, open-data and have continuously 

supported the major open-data standards in the domain; including 

BioPAX levels 2 and 3, PSI MITAB, SBML-ML (25) and SBGN 

export format (Croft et al. 2014). 

BIOCARTA 

Pathways 

 Biocarta pathway is an open source, community fed pathway 

database maintained within Biocarta. Human and mouse Pathways 

are manually curated from the scientific literature.  

 Pathways are clustered into developmental biology, expression, 

hematopoiesis, immunology, metabolism and neuroscience.  

(Diez et al. 2010) 



56 

 

Pathway 

Interaction 

Database 

 Pathway interaction database is a collection of human signaling 

and regulatory pathways curated from peer-reviewed literature 

with a focus on cancer pathways. Since its inception in 2006, the 

database has been created in collaboration between US national 

cancer institute and Nature Publishing group.  

 The database was designed to deal with two issues affecting the 

pathway representation i.e. the arbitrariness of pathway boundaries 

and the need to capture knowledge at different levels of details.   

 The database is open-source, open-data and has continuously 

supported BioPAX levels 2 and XML format (Schaefer et al. 

2009).  

Table 4: Open source pathway data bases 

As the protein-protein interaction and pathway databases started to grow, a surge for software 

systems providing statistical analysis of the gene expression data followed by functional 

interpretation was imminent. Capturing the trend several public and commercial knowledge 

bases have been introduced that offer an integrated environment consisting of an annotated 

knowledge base and analytical tools to analyse gene expression data. The aim is to perform a 

full-fledged statistical analysis with GUI following functional interpretation. Overviews of 

knowledge bases summarizing their main features as well as published examples of their 

application in biomarker discovery are discussed in next section. 

 

3.4. Integrated software systems for analysis 

and interpretation of expression data  
3.4.1. Metacore 

Metacore is an integrated commercial knowledge base from Thomson Reuters (previously 

GeneGo) which can support functional analysis (pathways, networks and maps) of OMICS 

data including microarray, sequence based gene expression, SNPs and CGH arrays, 

proteomics and metabolomics. It can rank the affected pathways and networks from the 

experimental date based on proprietary algorithms. The tool has also got filters based on 

disease, tissue, sub cellular localization and functional processes to capture specific network. 

The toxicology application of Metacore is specifically designed to discover safety, efficacy 

and toxicity biomarker to a chemical compound. (see: 
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http://www.genego.com/metacore.php). Brentnall et al. in collaboration with Institute of 

Systems Biology completed a quantitative proteomic analysis to investigate differentially 

expressed proteins associated with ulcerative colitis (UC) neoplastic progression. Functional 

analyses of differentially expressed proteins with Metacore software identified Sp1 and c-

MYC as biomarkers of early and late stage of UC tumorigenesis.  The same collaborative 

group made an ICAT-based quantitative proteomics research to analyze protein expression in 

chronic pancreatitis in comparison with a normal pancreas. Metacore assisted pathway 

analysis revealed that c-MYC as a prominent regulator in the networks of differentially 

expressed proteins common in pancreatic cancer and chronic pancreatitis. Another 

collaborative group with Bayer Schering Pharma discovered the functional link between the 

KRAS mutation and Erlotinib resistance in non-small cell lung carcinoma (NSCLC). The 

functional analysis of RNA expression data with Metacore indicated a possible correlation 

between differential expressions of cell adhesion proteins to NSCLC (Brentnall et al. 2009, 

Chen et al. 2007, Fichtner et al. 2008). 

3.4.2. IPA 

IPA is a manually curated commercial knowledge base from Ingenuity systems (now a part of 

Qiagen).  Its biomarker filter is specialized to prioritize the molecular biomarker based on 

species specific connection to diseases, detection in body fluid, expression in specific cell 

type, cell line, clinical samples and also in stratification biomarker discovery based on 

disease state or drug response. The tool also can produce functional annotation of the 

biomarker including pathway association (see: 

http://www.ingenuity.com/science/knowledge_base.html). Using Ingenuity pathway analysis 

Merck & Co predicted and then experimentally validated that phospho-PRAS40 (Thr246) 

positively correlates with PI3K pathway activation and AKT inhibitor sensitivity in PTEN 

deficient mouse prostate tumor model and triple-negative breast tumor tissues. Bristol-Myers 

Squibb has analyzed gene expression signature of responders and non-responders to 

neoadjuvant ixabepilone therapy in breast cancer. Functional analysis of the data with IPA 

has indicated that significant deregulation of certain proliferation and cell cycle control genes 

can potentially predict treatment sensitivity. Cleveland clinic reported a functional analysis 

with IPA of the genes carrying non synonymous SNPs that may be associated with the 

severity of sunitinib-induced toxicity in metastatic clear cell renal cell carcinoma. As per the 

functional analysis those genes clustered around biological processes like interferon gamma, 
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TNF alpha, TGF beta 1 and amino acid metabolism molecular pathways (Andersen et al., 

2010; H. Chang, C. E. Horak, P. Mukhopadhyay, C. Lowery, 2011; P. W. Faber et al 2008).   

 

3.4.3. Pathway Studio 

Pathway Studio is commercial software from Ariadne Genomics (now Elsevier) for pathway 

analysis as well as analysis of high throughput OMICS data. It is based on proprietary 

databases from Ariadne like ResNet, DiseaseFx, ChemEffect, Mamalian and Plant database 

to build relationships between biomolecules and design pathways. The databases are built 

based on proprietary NLP based relationship extraction from scientific literature. The 

software suite also provide state of the art network algorithm to indicate important nodes 

from the network perspective.  The researcher can also put weightage on each relationship in 

the pathways based on the number of literature evidence (see: 

http://www.pathwaystudio.com/). A group from Harvard Medical School published 

functional connection of 117 highly differentially expressed genes to endometrial cancer. 

Pathway Studio assisted analysis of the data predicted that many of these genes are correlated 

to angiogenesis, cell proliferation and chromosomal instability. Furthermore, they also 

reported 10 key differentially regulated genes to be associated with tumor progression. Xiao 

et al. published functional analysis of EGFR regulated phosphorproteome in nasopharyngeal 

carcinoma (NPC) to shed light on EGFR downstream signaling. They first identified 33 

unique phospho proteins by 2D-DIGE and mass spectrometry. Based on the proteomic data 

the group built EGFR signaling in NPC by using Pathway Studio and also validated GSTP1 

as one of the key EGFR-regulated proteins which is involved in chemo-resistance in NPC 

cells (Wong et al. 2007; Ruan et al. 2011). 

3.4.4. Oncomine 

Oncomine was originally developed under Compendia bioscience (now a part of Thermo 

Fisher Scientific). At the moment, the service is limited to breast and colon cancer (see: 

http://www.compendiabio.com/). Using Oncomine a group from the University of Michigan 

predicted that decreased protein expression of Raf kinase inhibitor protein (RKIP) is a 

prognostic biomarker in prostate cancer. Another group from the same University predicted 

that high expression of EZH2 and ECAD was statistically significantly associated with 

prostate cancer recurrence after radical prostatectomy (Fu et al. 2006; Rhodes et al. 2003).  
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3.4.5. NextBio 

NextBio (now a part of Illumina) has got two major components namely NextBio clinical and 

NextBio research described as follows. NextBio Clinical involves semantic based integration 

of the proprietary OMICS data with public knowledge to get better insight further leading to 

discovery of drug targets and biomarkers. NextBio Research can specially identify crucial 

pathways leading to a disease phenotype supported by cross studies and multiple data points.  

The tool also elucidates the identification of disease biomarker and analysis of 

pharmacokinetic profiles or toxicity indications. NextBio uses proprietary algorithms to rank 

the search outcomes based on the statistical significance of the correlation supported by 

biological data points (see: http://www.nextbio.com/b/nextbioCorp.nb).  Using the NextBio 

platform Walia et al. reported that loss of breast epithelial marker hCLCA2 (chloride channel 

accessory protein) promotes higher risk of metastasis (Walia et al. 2012).     

3.4.6. BEL and Reverse Causal Reasoning  

Selventa introduced a proprietary technology called Reverse Causal Reasoning (RCR), a 

proprietary technology introduced by Selventa. It is a computational methodology for the 

interpretation of large-scale biological datasets (microarray, RNA-Seq, 

proteomic/phosphoproteomic and metabolomic) designed to compare different biological 

states (e.g., treated versus control, diseased versus normal or time course and dose analyses). 

RCR is an automated reasoning technique to generate novel hypothesis by processing 

networks of causal relationships. The generated hypotheses are also evaluated by the tool 

against the available data sets of differential measurements. Next, each hypothesis links a 

biological entity to measurable quantities that it can influence. RCR analysis attempts to 

answer the question “What signaling differences could lead to the observed differences in 

measured quantities?” As a reference for reasoning, RCR uses a network data structure called 

a Knowledge Assembly Model (KAM). KAM is a directed network of experimentally 

validated causal interactions between biological entities (e.g., mRNAs, protein activities, 

chemicals, processes). The causal relationships within a KAM are encoded as BEL 

(Biological Expression Language) statements. BEL was developed with the aim to support 

biological knowledge curation by providing qualitative causal inference using large data sets. 

Within a KAM causal edge from A to B represents prior scientific knowledge, asserting that a 

change in A was demonstrated to cause a change in B in one or more controlled experiments 

supported by a specific citation (Selventa 2011). The platform has enabled the discovery of 
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predictive response biomarkers by reverse engineering disease mechanisms a priori from 

molecular patient data (OMICS data). It identifies disease- and tissue-specific biomarker 

content that can match targeted therapies to sub-population of patients. Reverse Causal 

Reasoning (RCR) algorithm is used for identification of master regulators. Very recently, 

Selventa has introduced its open BEL framework for biomarker discovery based on 

mechanistic causal reasoning and demonstrated its application in stratifying responders to 

ulcerative colitis drug, infliximab, from non-responders based on identification of IL6 as the 

biomarker for alternative disease mechanisms in non-responders (Mal et al. 2012).    

3.4.7. transMART 

A knowledge management platform enabling integration of the OMICS data with published 

literature, clinical trial outcome and established knowledge from Metacore, Ingenuity IPA 

and NLM resources. The applications of this platform include making novel hypothesis, 

validating them, disease association of certain pathways, genes, SNPs and biomarker 

discovery. Analysis of transcriptomic data from melanoma patients using k-means clustering 

facility in tranSMART showed that the expression levels of cyclin D1 increase from benign 

to malignant whereas in metastatic melanomas the expression level decreases, clearly 

delineating multiple subgroups of samples in the presumably homogenous metastatic 

melanoma cohort (Szalma et al. 2010). 

3.4.8. KeggArray 

A microarray gene expression and metabolomics data analysis tool from KEGG. It is able to 

map OMICS data to KEGG Pathways, Brite and genome maps (see: 

http://www.kegg.jp/kegg/download/kegtools.html). KeggArray was used to investigate 

metabolic pathways associated with the marker metabolites that were detected by two-

dimensional gas chromatography mass spectrometry in tissues from 31 patients with 

colorectal cancer. The results led to the identification of chemically diverse marker 

metabolites and metabolic pathway mapping suggested deregulation of various biochemical 

processes (Mal et al. 2012). 

 

Although all these databases contain manually curated knowledge, their differences in the 

coverage and granularity of the information reflects underlying differences in methodology of 

information retrieval, variability of the resources used for knowledge extraction as well as the 

difference in interpretation of the experimental results by the annotators. Shmelkov et al. 
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have recently carried out a comparative analysis on quality and completeness of human 

regulatory pathways among ten public and commercial pathway knowledge bases and found 

that surprisingly there is little overlap in the knowledge content of these databases (Shmelkov 

et al. 2011a). The authors reported that the only exception was the MetaCore pathway 

database whose content was validated in 84% of the cases with experimental results, 

compared to the low overlap of 24% obtained from KEGG database.  

Beside the issue of coverage and quality, the lack of consistent standard scheme for 

biomarker classification and biomarker knowledge representation hampered literature 

searches about biomarkers. The fact that qualification of translational biomarkers requires a 

wide range of information on the level of sensitivity, specificity, the mechanisms of action, 

toxicity, and clinical performance, emphasizes the need for standardization of biomarker 

vocabularies and classification. Recently, a prototypical process has been suggested to ensure 

qualification of biomarkers based on seven types of scientific evidence (Altar et al. 2008). 

Similarly, the Pistoia Alliance, established by information experts from several 

pharmaceutical companies, has launched a project focused  on developing ontological and 

data standards for integrating biomarker assay data and handling different endpoints [see: 

http://www.pistoiaalliance.org/]. Although in their nascent stages, such developments can 

form the basis for future biomarker standardization efforts. Therefore, next-generation 

knowledge bases should address above challenges by introducing efficient information 

retrieval/extraction tools as well as biomarker data standards (Deyati et al. 2013). Taken all 

together, there are both advantages and disadvantages associated with existing knowledge 

bases, which are summarized as in Table 5. 
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Advantages Disadvantages 

Evidence-supported data content Poor annotation of metadata  

Structured data representation Lack of standard representation model  

Enhanced retrieval and retention of 

information 

Lack of flexible filtering criteria 

Focused semantic context  Divergent in content and subject focus 

Table 5: Summary of cons and pros of biomarker-related knowledge bases (Deyati 
et al. 2013). 

 The resolution and quality of knowledge bases are largely dependent on the granularity of 

the underlying ontology, quality of data retrieval and experience of annotators. Creation and 

maintenance of manually curated knowledge bases is becoming a tremendous task in times of 

ever accelerating speed of publication growth different from the slow steady process of 

manual curation. For example, a recent report shows that assembling a compendium of 

potential biomarkers for pancreatic cancer, which was carried out by systematic manual 

curation of the literature, took over 7,000 person hours (Harsha et al. 2009). In the absence of 

automated methods for retrieval of biomarker information, the slow pace of manual curation 

cannot guarantee that the current content of knowledge bases is comprehensive and sufficient 

for functional interpretation of OMICS data. Novel high throughput text-mining approaches 

are essential for automated biomarker knowledge processing. In the next section we describe 

automated biomarker information retrieval methods that can be used in support of systematic 

update of knowledge bases and acceleration of the biomarker-related information extraction 

from the unstructured text (Deyati et al. 2013). 

3.5. Text-mining for identifying biomarker 

related information 
To accelerate the speed of curation process, emerging state-of-the-art information retrieval 

and extraction technologies are under active development. Such tools are being powered by 

text-mining algorithms that automatically recognize potential biomarkers such as genes and 

proteins in text by a process called ‘named entity recognition’ or NER (Pennings et al. 2009). 

However, existing NER approaches are not sufficiently selective for the retrieval of 

biomarker-related content information (such as its association with drug or disease) from the 
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literature. Consequently, studies on biomarker relation extraction from text are considered on 

the basis of semantic relations between named entities such as the relation between diseases 

and genes or proteins (Bundschus et al. 2008). Some efforts have been recently dedicated to 

mining and extraction of such relationships using semantically enhanced methods (Jessen et 

al. 2012). One limitation of these approaches is that they do not consider additional properties 

of candiadate biomarker, such as measurement evidence and technique besides disease and 

gene names. In an attempt to overcome this limitation, Ongenaert and Dehaspe (2010) have 

employed different keyword lists containing terms that specify methylation biomarkers in 

cancer and used them in conjunction with gene names from GeneCards to generate the 

methylation database in cancer, PubMeth (Ongenaert et al. 2008; Deyati et al. 2013).  

As a step in this direction, we have recently developed a dedicated biomarker terminology 

organized in six proposed classes and used it for information retrieval and extraction of 

biomarker knowledge embedded in the literature (Younesi et al. 2012). It was demonstrated 

that the application of this dedicated biomarker terminology could enhance the retrieval 

performance significantly through combined search for cancer-related genes and selected 

classes of the biomarker retrieval terminology. Further evaluation of this terminology in an 

independent disease area, namely Alzheimer’s disease, showed that not only well-known 

biomarkers were retrieved successfully but also new biomarker candidates could be 

identified. Integration of such terminologies into search tools supporting semantic and 

ontological search can reduce the high number of unspecific search results and improve the 

retrieval rate of informative documents (Deyati et al. 2013). 

Ultimately, context-sensitive biomarker information extracted from literature can be used for 

automated enrichment of knowledge bases and/or combined with OMICS data may generate 

a basis for integrated models of disease or and drugs mode of action with the aim of 

prospective prediction of candidate biomarkers (Butcher et al., 2004). 

3.6. Knowledge representation 
Currently, research within biology rapidly generates new knowledge on how genes, proteins 

and other substances interact. A complete description of the protein interaction network 

underlying cell physiology is seen as one of the major goals for proteomics by the Human 

Proteome Organization. The US National Human Genome Research Institute recognizes the 

understanding of genetic networks and protein pathways as crucial parts for two out of three 

important areas outlined for future genomics research. In particular, the understanding of how 
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pathways contribute to the function of the cells and organisms, and the development of 

therapeutic approaches to diseases based on this knowledge are stated as two of the grand 

challenges for future research. They also recognize the development for reusable software 

modules, new ontologies and improved technologies for database and knowledge 

management as means for finding solutions to these challenges in the future. To fulfill this 

vision a format for representation of molecular pathways that allow for exchange, integration 

and easy creation of software tools are needed. Evaluations have shown that XML is an 

interesting and easy-to-use format for information representation and recent XML-based 

exchange formats for pathway information, e.g. SBML, PSI MI and BioPAX (BioPAX 

working group, 2004, http://www.biopax.org), have been proposed (Strömbäck & Lambrix 

2005). 

3.6.1. BioPAX 

Biopax or Biological Pathways Exchange is a standard language with the aim to integrate, 

exchange, visualize and analyze biological pathway data at the cellular or molecular level. 

BioPAX is an open collaborative effort that supports data exchange between pathway data 

groups and thus reduces the complexity of interchange of pathways by standardizing pathway 

data format. BioPAX is defined in OWL DL and represented in RDF/XML format. The 

progress of BioPAX is defined as levels and currently three levels are available. Level 1 

focus on standardizing the metabolic network, level 2 adds molecular interaction network and 

the most recent level 3 deals with genetic interaction and signal transduction. Prote'ge' is 

widely used for viewing and editing of BioPAX ontology. In BioPAX all objects are 

described in a class hierarchy with Entity as the most general class. Figure 10 shows the 

BioPAX hierarchy when loaded in Prote'ge'. Entity has three subclasses PhysEntity, 

representing the interacting objects; Interaction, representing the interactions and Pathway, 

representing a set of interactions that together form a pathway model. PhysEntity has five 

subclasses, complex, protein, DNA, RNA and small molecule, describing different kinds of 

objects that may interact. There is a large number of subclass for interaction. To unify 

concepts and entities between data sources containing the same or similar information about a 

biological phenomenon, it is possible to provide cross reference in BioPAX format (Demir et 

al. 2010). 
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Figure 10: The hierarchical structure of BioPAX data format (Strömbäck & Lambrix 
2005). 

Demonstrating the , BioPAX hierarchy of “physical entities”, their “interaction” within a living biological systems.  

3.6.2. PSI MI 

Proteomic Standard Initiative (PSI) was developed in 2002 at the HUPO meeting aiming two 

key areas of proteomics field i.e. mass spectrometry and protein-protein interaction data. The 

scope of PSI MI (Proteomic Standard Initiative for Molecular Interactions) is to exchange 

protein-protein interaction data. The root element of any PSI MI XML is an entry set. One or 

more protein-protein interactions are grouped together as an entry set based on a common 

reason. Each entry is a self-contained unit with six descriptions namely source, availability 

list, experiment list, interactor list, interaction list and attribute list.  There are two forms for a 

PSI MI format i.e. a compact and expanded form. In the compact form, all interactors 

(proteins), experiments and availability statements are described once in the respective list 

elements, and then only referred to by references from the individual interactions in the 

interaction list. The expanded form contains all proteins, experiments and availability 

statements which are described directly in the interaction elements. In PSI MI the source of 

the data can be either a database or a publication. Each interaction can be specified with a 

type of interaction i.e. aggregation, binding, phosphorylation etc. It is also possible to set a 

confidence level for detecting this protein in the experiment, the role of the protein and 

whether the protein was tagged or over-expressed in the experiment (Strömbäck & Lambrix 

2005). An example of PSI MI format is provided in Figure 11. 
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Figure 11: Example of PSI MI data format (Strömbäck & Lambrix 2005). 

 

The BioPAX and PSI MI are designed for data exchange to and from databases, pathways 

and network data integration. Dynamic and quantitative aspects of biological processes, 

including temporal aspects of the feedback loops are not supported with those two data 

formats. Data format like SBML, CellML are created to support kinetic behaviour of 

biological systems and SBGN represents pathway diagrams.   

3.6.3. SBML 

Systems Biology Markup Language or SBML is an open interchange format for computer 

models of biological processes such as metabolism, cell signalling, gene regulatory network 

and infectious diseases. Currently there are three levels of SBML; level 1 was dedicated to 

model the metabolic network, level 2 was developed to model/simulate biomolecular 

network. Level 3 added a number of features like model composition, description of molecule 

complexes, display and layout information and spatial characteristics of models. Every 

SBML model contains a number of compartments where the reaction occurs. The entities 

involved in the reaction are called species. A range of biological objects ranges from proton, 

atom, complex molecule like glucose, RNA or proteins can be defined as species within a 

SBML model. Species can also be defined with its spatial size and charge. The interactions 

between molecules are represented as reactions and there can be several types of reactions i.e. 

transformation, transport, binding etc. Reactants, products and modifiers for reactions are 

specified by giving references to the relevant species. The initial concentration or change in 
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concentration of any reactant over time can be saved inside SBML format. The reaction 

kinetics, mathematical and kinetic laws of the reaction can be encoded with SBML format. In 

addition to reactions, SBML also contains events, defined as discrete changes in the model. It 

is also possible to specify what triggers the event, its time constraints and the result of the 

event (Strömbäck & Lambrix 2005). In systems biology community SBML largely serve the 

purpose to encode the semantic. As a result, it is particularly well suited to encoding models 

of processes such as biological reactions. The mathematics may then be derived from these 

process descriptions as a series of ordinary differential equations (ODEs) by simulation 

software when desired (Smith et al. 2014). An example of an SBML representation is 

provided in Figure 12. 

 

Figure 12: Example of SBML data format (Strömbäck & Lambrix 2005). 

 

3.6.4. CellML  

CellML is an extensible markup language by the international Union of Physiological 

Sciences, Physiome and European Virtual Physiological Human (VPH) projects. It aims to 

encode mathematical models of biological processes based on systems of ordinary 

differential equations (ODEs) and differential algebraic equations (DAEs). The scope of 

CellML is to support sharing of biological models by having a unified model structure (the 

inter-relatedness of each part of the model); mathematical equations describing biological 

processes; other important metadata of the model.  CellML is built on Mathematical Markup 

Language (MathML) for encoding the mathematical part of the model and Dublin Core for 



68 

 

bibliographic information. A format of CellML is presented in Figure 13. Current version of 

CellML is complementary to SBML (Beard et al. 2009).  

 

Figure 13: Entities in a CellML model (Beard et al. 2009).  

The CellML model file on the left part depicting the base model with its imports, units, components, connections and groups 

described in XML format. The corresponding metadata is shown in RDF format. The annotation of CellML variables with 

biological and biophysical meaning is handled via cmeta:id links to terms stored in RDF format in a separate OWL file.  

Traditionally, biochemical and cellular pathways have been graphically represented in the 

text books. The trend also followed in the first databases for pathways and metabolic 

reactions i.e. within EMP, EcoCyc and KEGG. More notations have been defined by virtue of 

their implementation in specialized pathway visualization software tools such as NetBuilder, 

Patika, JDesigner, CellDesigner. But the graphical notations used by these software tools 

were not standardized and their understanding relied mainly upon relating examples with 

one’s pre-existing knowledge of biochemical processes. This ambiguity in presenting a graph 

was first addressed by Kurt Kohn in his Molecular Interaction Map (MIM). Nevertheless, 

none of these notations could become the community standard. The SBML group tried to 

bridge the gap with the development of SBGN (Systems Biology Graphical Notation).  

3.6.5. SBGN 

SBGN was formulated with the aim to specify the connectivity of the graphs and the types of 

the nodes and edges, but not the precise layout of the graphs. Semantics of the SBGN 

diagrams do not depend on the relative position of the symbols, colours, patterns, shades, 

shapes and thickness of the edges. There are three types of languages within SBGN.  

a. SBGN process diagram: It represents biochemical reactions that change location and 

state of physical entities. To enable such representations different states of the 
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physical entities are represented separately. Process diagram cannot properly 

represent reaction with combinatorial explosions of states and processes. The process 

diagram is particularly useful to represent metabolic pathways with unambiguous 

transcription into biochemical events and mechanistic description of the processes.  

b. SBGN entity relationship diagram: It represents the interaction between entities and 

rules all the controlling factors of the interaction. Unlike process diagram, physical 

entities are represented only once. Mechanistically it describes the relationships of the 

entities. The reactions with creation, destruction and translocations are not easily 

represented by an entity relationship diagram. Entity relationship diagram is most 

suitable to represent signaling pathways involving multi-state entities.  

c. SBGN active flow diagram: Active flow diagram is uniquely suited to represent the 

influence of biological activities on each other. As it represents different activities of 

physical entities differently. Active flow diagram is not suitable to represent reactions 

with association, dissociation and multi state entities. SBGN active flow diagram is 

most suitable to represent functional genomics reactions and signaling pathways with 

simple activities (Le Novère et al. 2009). The components of SBGN diagram are 

represented in Figure 14.  

 

 

Figure 14: A SBGN representation of protein phosphorylation reaction catalyzed 
by an enzyme and modulated by an inhibitor (Le Novère et al. 2009).  

(a) SBGN Process Diagram: Four states of ERK i.e. phosphorylated and non-phosphorylated on the tyrosine and threonine 

residues as well as the processes of phosphorylation by MEK and the inhibition of MEK by complexation with u0126. Note 

that the relationship between MEK and u0126 is not represented here. (b) Entity relationship diagram: It also shows ERK 

phosphorylation. At the same time relationship between MEK and u0126 is also clear. The phosphorylation sites are 

represented by variables, which in this example are labeled simply as ‘Y’ and ‘T’. Unlike process diagram ERK is 

represented only once without the description of its different states, in entity relationship diagram. (c) Activity flow diagram: 

representing the activation of ERK by MEK and the inhibition of MEK by u0126. This is a simplistic representation of the 

activities of u0126, MEK and ERK with the abstract representations of the influences of activities on each other. But the 

biochemical details are missing (Le Novère et al. 2009).    
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BioPAX and SBGN communities have collaborated to ensure that SBGN can be used to 

visualize pathways in BioPAX format. The relationship among popular standard format for 

pathway related data is provided in Figure 15. The purpose of BioPAX and PSI-MI is to 

exchange the data to and from databases, pathways and biomolecular networks. SBML and 

CellML are designed to support mathematical simulations of biological systems. The SBGN 

represents a uniform notation for pathway diagrams. For example controlled vocabularies 

developed by PSI-MI and BioPAX can be used to annotate SBML and CellML models.    

 

Figure 15: Inter-relationship of popular pathway data format and standard 
Knowledge Management Tools to represent/analyse pathway data and its 

downstream phenotype (Demir et al. 2010). 

MIASE: Minimum Information About a Simulation Experiment (MIASE) describes the minimum set of information that 

must be provided to make the description of a simulation experiment available for others to use. It includes the list of models 

to use with their modifications, all the simulation procedures to apply according to order, the processing of the raw 

numerical results, and finally the description of the final output to ensure the reproducibility of simulation experiment 

[(Waltemath et al. 2011)].   

MIMIx: Minimum Information required for reporting a Molecular Interaction Experiment (MIMIx) represents the depth of 

information required to describe all relevant aspects of an interaction experiment. The purpose is to ensure that the bench 

scientist has a checklist of the information to be supplied when describing experimental molecular interaction data in a 

journal article (Orchard et al. 2007). 

MI: Molecular Interaction (MI) is an outcome of HUPO ProteOMICS Standards Initiative. The aim is to improve the 

annotation and representation of published molecular interaction data (Deutsch et al. 2015).   

SO: Sequence Ontology (SO) is an ontology project for the definition of sequence features used in biological sequence 

annotation. SO was initially developed by the Gene Ontology Consortium (Ashburner et al. 2000).   
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GO: In 2000, The Gene Ontology Consortium (GO) was established with the mission to provide a controlled vocabulary for 

annotating homologous genes and proteins across organisms. Genes and its products are classified into three hierarchical 

structures to describe associated biological processes, cellular components and molecular functions (Ashburner et al. 2000). 

PATO: Phenotypic Attribute Trait Ontology (PATO) designated for defining composite phenotypes and phenotype 

annotation (Knowlton et al. 2008). 

 

3.7. Knowledge Visualization 
Computational models of biological networks are a cornerstone of systems biology research. 

Over the years, quite a few modelling software tools have been developed to simulate 

biochemical reactions, gene transcription kinetics, cellular physiology and metabolic 

network. Such models promise to transform biological research by providing a podium for 

the following research objectives:  

1. To systematically interrogate and experimentally verify knowledge of a pathway, 

2. Efficiently manage the immense complexity of hundreds or potentially thousands of 

cellular components and interactions.  

3. Reveal emergent properties and unanticipated consequences of different pathway 

configuration.  

 The major objectives of building systems biology models are to understand cellular 

processes, disease mechanism or drug mode of action. The snap shot of these models are built 

based on literature knowledge. But the dynamic properties or emergent behavior of these 

models are achieved with differential and/or stochastic equations based on the available 

contextual OMICS data.  The scientific communities are looking for software tools to 

process, analyse and visualize these OMICS data. Several tools i.e. Pajek, Graphlet, daVinci 

has been published to view molecular interaction network in two dimensional space.   

Software like Osprey and PIMrider has got the added feature to import PPI from BIND and 

DIP databases.  In the same way several software platforms i.e. GeneCluster, TreeView and 

GeneSpring have been developed for gene expression profiles.  There was a need to merge 

molecular interaction and pathways with OMICS data in a common framework and bridging 

them with several other model building parameters.  This need has been addressed with the 

development of popular platforms like Cytoscape, Celldesigner (Shannon, Markiel, Ozier, 

Nitin S. Baliga, et al. 2003).  
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3.7.1. Cytoscape 

Cytoscape is a general purpose modelling environment for integrating bimolecular interaction 

network and states. The bimolecular interactions are represented as a network graph with 

nodes representing the biomolecules and edges representing the relationships between two 

biomolecules. Its core software component provides basic functionality for integrating 

arbitrary data on the graph, a visual representation of the graph, selection/filtering tools and 

an interface to external analytics implemented by plug-ins. The main feature of Cytoscape is 

described below.   

Data Integration: Each data point is integrated within the network graph using Attributes. 

Attributes are the (name, value) pairs that map node or edge to a specific data value.  The 

name of the node can be gene id, gene symbol, Uniprot accession no or any other ids/names. 

The attribute values may assume any type (e.g. text string, discrete or continuous numbers, 

URLs, lists).  

Transfer of Annotations: The annotation feature within Cytoscape enable assigning 

hierarchical classification i.e. ontology of progressively more specific description of groups 

of nodes or edges. Annotation typically corresponds to an existing repository of knowledge 

that is large, complex and relatively statics such as gene ontology.   

Graph Layout: This feature enable Cytoscape to visualize complex network of nodes and 

edges into two dimensional space. A variety of automated network layouts algorithms i.e. 

spring-embedded layout, hierarchical layout and circular layout are supported within 

Cytoscape. The spring embedded is the most widely used method for arranging general two-

dimensional graphs.  

Attribute-to-Visual Mapping: Attribute-to-Visual mapping is one of the most powerful 

visualization capabilities of Cytoscape. It controls the appearance of their associated nodes 

and edges based on the data attribute. Cytoscape supports a wide variety of visual properties, 

such as node color, shape, size, thickness as well as edge colour, thickness, shape. The data 

attributes are mapped to a visual property using either a lookup table or interpolation, 

depending on the continuous or discrete nature of the attribute.  

Graph Selection and Filtering: This feature allows Cytoscape to selectively display subsets 

of nodes and edges according to a wide variety of criteria including by name, list of names or 

on the basis of attributes. More complex network selection queries are supported by a 
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filtering toolbox that includes a Minimum Neighbours filter, which selects nodes having a 

minimum number of neighbours within a specified distance in the network; a Local Distance 

filter, which selects nodes within a specified distance of a group of preselected nodes; a 

Differential Expression filter, which selects nodes according to their associated expression 

data; and a Combination filter, which selects nodes by arbitrary and/or combinations of other 

filters. The typical components of Cytoscape are represented in Figure 16.   

 

Figure 16: The components of Cytoscape (Shannon et al. 2003). 

The figure shows the schematic overview of the Cytoscape core architecture. The Cytoscape window is the primary visual 

and programmatic interface to the software which contains the network graph and attributes data structures. Core methods 

that operate on these structures are graph editing, graph layout, attribute-to-visual mapping, and graph filtering. Annotations 

are available through a separate server. 
  

3.7.2. CellDesigner  

CellDesigner is another very popular stand-alone application for modelling and simulating 

biochemical networks. CellDesigner is unique software which supports the following:  

a. Diverse biological objects and interactions are well defined and can be uniquely 

represented.  

b. It is semantically and visually unambiguous. 

c. It able to incorporate varied notation.  

d. It can convert a graphically represented model into mathematical formulas for 

analysis and simulation.  

e. It ensures community can freely use a notation schema.  

CellDesigner supports two classes of vertexes and edges.  One class of vertex, called ‘state 

node’ (SN), represents biomolecules within a biological process such as proteins, small 
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molecules, ions, genes and RNA. The other class is ‘transition node’ (TN), represents 

modulations imposed on the reaction, such as catalysis, inhibition, association and 

dissociation. In a process diagram, different states of one molecular species are represented 

by different SNs. SNs that represent complexes are called complex SNs (CSNs), and there are 

two or more SNs as components of the node. There are two types of edges: edges from a state 

node to a transition node (ST-Edge) and edges from a transition node to a state node (TS-

Edge). There are two types of TS-edges; one that represents state changes in the molecular 

species (represented by a closed arrow), and one that represents translocation of the molecule 

(represented by an open arrow). A reaction is represented as two or more state nodes 

connected by edges that are connected through a transition node. Each SN may have a 

hierarchical internal structure defined as N-tree to represent members of a complex that are 

also SNs. Connectivity of internal nodes is defined by the connectivity matrix, which defines 

bindings among proteins that constitute a complex, as well as domains that constitute a 

protein. Each SN may have features that represent the modification state of residues as well 

as allosteric configurations (Kitano et al. 2005). Graphical notation of process diagrams are 

represented in Figure 17.  

 

Figure 17: CellDesigner process diagrams (Kitano et al. 2005). 
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The figure demonstrates a set of symbols for representing biological networks with process diagrams within CellDesigner. 

Symbols in the process diagrams consist of visual icons for state nodes and arcs. Each arc consists of a transit node and 

edges. Currently, there are four reduced notations that display simplified diagrammatic symbols. The category-I reduced 

notation can be used during editing of the network. The category-II reduced notation is limited to viewer software, and is not 

permitted during the editing process because of potential confusion that could arise from the implicit nature of state 

transition description. 

  

Currently pathway analytics and knowledge bases represent a useful tool for the 

interpretation of OMICS data, identification of upstream mechanistic drivers as well as 

visualisation of OMICS data assisting scientific understanding of the underlying biological 

processes. Though certain limitations of conventional pathway analytics hinder the use of 

knowledge bases as predictive tools for biomarker discovery and were recently reviewed by 

A. Butte (Khatri et al. 2012).  Most pathways accumulated in the knowledge bases represent a 

mixture of findings described in different healthy and pathological conditions in various 

biological systems and tissues. Creation of the tissue, treatment or condition specific 

pathways is a challenge and is currently in focus of many commercial knowledge bases 

providers. Since today’s knowledge bases transform multiple transcripts and SNPs to Entrez 

Gene id in pathway representation, granularity of the pathways should be further improved 

for the analysis of RNA and DNA-sequencing-derived OMICS data. Finally, existing 

knowledge bases contain only static information that represents “snapshots” of the system 

behaviour for particular condition under which the data has been obtained. Pathway 

interdependencies reflecting the sequence of events in pathological processes is not captured 

thereby limiting their use for modelling and prediction (Deyati et al. 2013).  

Despite these success stories of companion diagnostics, a significant gap exists between the 

R&D expenditure, number of biomarker related research grants and available clinically 

validated biomarkers (Ptolemy & Rifai 2010). The technological advancements in the fields 

of genomics, transcriptomics, proteomics, metabolomics lead to a deluge of publicly 

available biomedical data. On the other hand, there is a vast amount of biomedical knowledge 

accumulated in the textual body of scientific literature and patents that could be of 

tremendous value for translational efforts. The lack of standardized translational algorithms 

allowing the use of OMICS data along with knowledge derived from scientific literature, is 

one major reason behind the scarcity of biomarkers currently used in the clinic. To fill the 

gap of OMICS data interpretation, a number of system biology approaches are suggested by 

the scientific community, however there is no proof of concept methodology, which can lead 

to the successful biomarker prediction, and it is not clear how the success of OMICS 
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technologies can be translated from research discovery to clinical biomarker (Deyati et al. 

2013). 
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4. Summary of the thesis 
 

Currently major effort in drug discovery is focused on heterogeneous disorders like cancer. 

The success of targeted drug development in cancer depends on how efficiently the patient 

will be stratified before treatment. The first scope of this thesis is to understand which 

OMICS technologies are currently being used for the identification of oncology biomarkers 

in the clinical trials and the existing methodologies for recovering biomarker-related 

information from the text. It also aims to draw a perspective in the integration of data and 

knowledge for the identification of biomarker in oncology.  

Secondly the thesis strives to decipher the impact of stratified biomarker on clinical 

development, a retrospective analysis of clinical trials with stratified biomarker registered in 

ClinicalTrials.gov was achieved. The following questions were analysed: 

a. What is the current frequency of stratified molecular biomarkers in clinical development? 

b. What are the key technologies for biomarker identification in clinical trials? 

c. What are the major funding organizations in the clinical biomarker field? 

d. Which are the major disease indications targeted by stratified biomarker program? 

e. At which phase stratified molecular biomarkers are mainly explored in clinical 

development?  

f. What is the impact of biomarker program on clinical trial duration and chance of 

completion? 

Next aim was to research the need and prospect of a novel class of biomarker i.e. miRNA to 

stratify the cancer patients to benefit from targeted therapy. But lack of translational 

algorithm which can integrate OMICS data and knowledge to predict the causal relationship 

between candidate miRNA and clinical outcome of a treatment in a disease condition 

potentially hamper the discovery of miRNA as stratified biomarker. In this direction a novel 

integrative algorithm i.e. SMARTmiR has been developed by combining literature 

knowledge and available OMICS data to identify specific miRNA as therapeutic biomarker. 

Finally the thesis aims to design a prospective plan on future scenario of biomarker research 

during cancer drug development to reduce the risk of most expensive phase III drug failures.  
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5. Clinical Trials and Previous Text 

Mining Efforts on Trials Data 
Clinical trials are studies performed on number of volunteers with the aim to evaluate safety 

and efficacy profile of a new treatment. The concept of randomized clinical trials was first 

implemented in 1931 by Amberson et al. to study a pulmonary tuberculosis therapy. The 

randomizations implemented the concept of distributing patients randomly in the case control 

groups with sole purpose of avoiding the bias. The concept of blinded trial was also first 

implemented in this trial. So the patients in this trial were not aware whether they took the 

treatment or placebo. The volunteers need to also go through a set of stringent selection 

criteria termed as “Eligibility Criteria”. A clinical trial is conducted through three to four 

phases measuring dosage, safety, and efficacy profile of the treatment (Friedman, Lawrence 

M., Furberg, Curt D., DeMets 2010).  

5.2. ClinicalTrials.gov database   
As of 1

st
 August, 2015; ClinicalTrials.gov lists 195,624 trials covering 190 countries 

worldwide. All the trials are downloadable from the database as XML files. The clinical 

information like <<drugs>>, <<diseases>> are structured MeSH (Medical Subject Headings) 

terms. But the XML entries have got unstructured data as well, like trial description, 

eligibility criteria and other descriptions. Over the years there has been extensive focus on 

text mining of MEDLINE articles and abstracts but lesser text mining has been achieved has 

been done on clinical trials entries of ClinicalTrials.gov database. So resources of 

ClinicalTrials.gov can be used for potential new discoveries by text mining. Additionally trial 

results are often accessible much before the trials are officially completed and published 

making them an attractive biomedical resource to decipher trends in clinical trial domain 

[see: Clinicaltrials.gov].  

There has been previous text mining efforts on ClinicalTrials.gov entries by using Part of 

Speech tagging and dictionary based approaches to simply tag an entry of interest in the trial 

description. The focus of this initiatives ranges from identification of gene-drug-disease 

relationships or development of tools for better management of clinical trials. In the next 

section these initiatives are reviewed in details. 
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5.3. Previous text mining on ClinicalTrials.gov 
In 2008, Cao et al. completed a text mining analysis of 645 clinical trials from 

ClinicalTrials.gov on cancer vaccine and presented number of clinical vaccine trials per 

cancer type, over time, by phase, by lead sponsors, as well as trial activity relative to cancer 

type and survival data. The group also found out the neglected cancer areas such as bladder, 

liver, pancreatic, stomach, esophageal cancer in those trials. The text mining system consists 

of a back-end XML database, a front-end visualization interface, and the analysis component 

(Cao et al. 2008) 

  

In October, 2011 Korkontzelos et al. presented ASCOT (Assisting Search and Creation Of 

Clinical Trials), an efficient search application customized for clinical trials. ASCOT uses 

text mining and data mining methods to enrich clinical trials with metadata to narrow down 

search. In addition, ASCOT integrates a feature for clinical trial practitioners in 

recommending eligibility criteria to volunteers based on a set of selected protocols. ASCOT 

employs state-of-the-art text mining technologies, clustering and term extraction algorithms 

applied on large clinical trial collections (Korkontzelos et al. 2012). 

 

In 2012, Tasneem et al. developed a database called AACT (Aggregate Analysis of 

ClinicalTrials.gov) that contains data from 96,346 trials as of 27
th

 September, 2010. The 

group has formulated the project with two major purposes: A) to extend the usability of 

ClinicalTrials.gov for research purposes. B) to develop and validate a methodology for 

annotating studies by clinical specialty with the help of a custom taxonomy by applying an 

NLM algorithm which uses Medical Subject Heading (MeSH) terms. Key design features of 

AACT include 1) the capacity to extend the dataset by parsing existing data; 2) linking to 

additional data resources, such as the Medical Subject Headings (MeSH) thesaurus; and 3) 

integrated metadata (Tasneem et al. 2012) . 

  

In 2012, Li et al. developed a systematic approach to automatically identify 

pharmacogenomics (PGx) relationships between genes, drugs and diseases from trial records 

in ClinicalTrials.gov database.  The group found out that the extracted relationships overlap 

significantly with the curated factual knowledge through the literature in a PGx database i.e. 

PharmGKB. The most relationships also appear on average 5 years earlier in clinical trials 

than in their corresponding publications. This suggest that clinical trials may be valuable for 
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both validating known and capturing new PGx related information in a more timely manner. 

The group collected 93,661 clinical trials as of August 2010. The group first processed these 

records and identified sections of interest. Second, a dictionary-based method was applied to 

identify PGx concepts (i.e., diseases, drugs and genes) from the pre-processed trial records. 

The reported gene–drug–disease relationship extraction is based on their co-occurrence in 

one trial record (Li & Lu 2012).  

 

In November 2014, He et al. designed and built COMPACT (Commonalities in Target 

Populations of Clinical Trials) database to store structured eligibility criteria and trial 

metadata in a computable format indexed by disease topics. The COMPACT database is 

highly useful for clinical trial practitioner to identify common eligibility features for clinical 

research participant selection for a given disease indication. The group has collected 159,891 

trials from ClinicalTrials.gov as of 27
th

 January 2014 and parsed, indexed eligibility criteria 

text, extracted common eligibility features and developed an example analytic module called 

CONECT, which enables a user to mine contextual common eligibility features for trials on a 

certain disease from COMPACT (He et al. 2014).  

 

In 2014, Bell et al. published a comprehensive characterization of clinical trials on rare 

diseases compared to trials on non-rare diseases registered in ClinicalTrials.gov. The group 

downloaded 133,128 trials as of 27
th

 September, 2012 and by annotating medical subject 

heading (MeSH) descriptors to condition terms they could identify rare and non-rare disease 

trials. A total of 24,088 Interventional trials registered after January 1, 2006, conducted in the 

United States, Canada and/or the European Union were categorized as rare or non-rare.  Then 

the group made a comparison of trials on rare and non-rare disease indication based on 

number of participants, number of single arm trials, number of non-randomized trials, open 

label, number of terminated trials, actively pursuing or waiting to commence or enrolling 

trials (Bell & Tudur Smith 2014)].  

 

But none of these analyses of ClinicalTrials.gov focuses on trials with biomarker across 

different disease indication areas and to figure out the impact on biomarker program on 

clinical trials. The increasing literature evidence shows the future treatment on heterogeneous 

disease indication will be based on biomarker. So an analysis of trials with biomarker will 

provide us future landscape of stratified medicine as trials appear on an average 5 years 

earlier in ClinicalTrials.gov than in their corresponding publications (Friedman, Lawrence 
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M., Furberg, Curt D., DeMets 2010). This really motivates us to analyze Clinicaltrials.gov 

focusing on trials with biomarker. In the next section the analysis is described in details. 
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6. Impact of biomarker on drug 

discovery and development (Deyati, 

A; 2014) 
 

Despite the advantages of the stratified medicine approach for patients and payers, such as 

prevention of overtreatment and an early decision for an alternative therapy (Frank & 

Hargreaves 2003b), the business incentive for pharmaceutical companies to invest into the 

co-development of the stratified molecular biomarker early on is less clear (Davis et al. 

2009). Also financially it can be seen as a burden for the pharmaceutical companies as they 

have to bear the added cost of companion diagnostic development and yet have to cope with 

the reduced market size due to patient stratification (Davis et al. 2009). However, recent 

observations show that stratified biomarker-aided drug discovery is commercially more 

viable for pharmaceutical companies than post-approval research for diagnostic testing. For 

example clinical development of trastuzumab and imatinib with stratified biomarker have 

enhanced clinical, commercial success but post approval application of KRAS mutation test 

for cetuximab and panitumumab might not be commercially very rewarding (Loupakis et al. 

2008). In order to understand the degree to which biomarker programs are implemented as 

well as the current trends and risks of inclusion of stratified biomarkers in clinical trials, we 

decided to analyse more than 150,000 clinical trials entries accumulated in ClinicalTrials.gov 

database.   

Since the inception of ClinicalTrials.gov database in 2000 (in response to US congress law 

obliging NIH to publish private and federally-sponsored trials) it has rapidly become the most 

favoured publicly available search engine in clinical trials registry covering trials from all the 

geographical locations in the world. Although the database was launched in the year 2000, 

clinical trials with start date as early as 1970 (NCT00005125) has been incorporated in it, 

thus representing 43 years of clinical research. Despite the known issues with the updates, 

consistency and completeness of the data (Wadman 2006; Innocenzi et al. 1984), it is the 

oldest and largest clinical trial registry containing the information on more than 150,000 trials 

(August, 2013). Choosing between the clinical trials registries, we reckoned that the analysis 

of the largest database will give us a representative picture of the historic and current trends 

on the use of stratified molecular biomarkers in clinical trials.  
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The major question we have investigated here are as follows: 

Q1. Frequency of stratified molecular biomarkers in clinical development 

Q2. Key technologies for biomarker identification in clinical trials  

      Q3. Major funding organizations in the clinical biomarker field 

      Q4. Major disease indications targeted by stratified biomarker program 

      Q5. Phase wise distribution of stratified molecular biomarker trials 

Q6. Impact of biomarker program on clinical trial duration and chance of completion 

Semi-automated curation of ClinicalTrials.gov 

We downloaded the entire database as XML files on 02 August, 2013 for the analysis. On 

that date the total number of clinical trials registered in the database was 150,504. The bigger 

half of the studies (121,922) was interventional i.e. analysing clinical outcome after 

intervention. The remaining 27,886 studies were observational. The analysis started by 

selecting three groups. 

Interventional trials (Group 1): Focusing on 121,922 interventional trials we further filtered 

trials by excluding those with unknown “Overall status” to remove uncertainty regarding 

updates of the database. To avoid time confounders, interventional trials with “start date” 

between 1991 to 2013 were programmatically filtered as first trial with stratified biomarker 

was registered in 1991 (NCT00001271). In many trials “intervention name” and targeted 

disease (“condition”) field can be empty, so we programmatically checked “intervention 

name” and “condition” field of each trial to select only those 60,629 interventional trials with 

a drug/biologics term as “intervention name” and a disease term as “condition”.  

Interventional trials with Biomarker as outcome measure (Group 2): In selecting Group 2 

the “outcome measures” field of interventional trials was checked and only those with 

“biomarker” in it, were selected. Next, similar to Group 1 “start date”, “intervention name” 

and “condition” fields were programmatically checked. Finally we filtered 4745 trials with 

biomarker as outcome measure.  To check the quality of the screening method for the 

selection of Group 2 trials, we randomly checked 10% of it and could not find out any false 

positive.  

Interventional trials with stratified molecular biomarker (Group 3): The prime focus of 

our analysis was trials with stratified molecular biomarker hence we developed a set of 

keywords derived from the manual annotation of 80 studies (when searched 
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ClinicalTrials.gov with “Cetuximab AND KRAS”). The aim of this manual annotation was to 

look for intuitive words which can filter a trial with stratified biomarker and a search 

keyword was developed (please look at Figure 18).  22,273 trials were filtered by searching 

the ClinicalTrials.gov with the developed keyword. Focusing on the trials that are using 

molecular biomarkers, we further filtered the resulting list by excluding trials without any 

gene or protein names by automated tagging and attained the list of 5,420 interventional 

studies. All the 22,273 trials with outcome of the above mentioned tagging and presence of 

“intervention name” are presented in Supplementary Table 1 (See: 

https://drive.google.com/file/d/0Bw_MQVhSKAMXSmR6TzhDcEE4eDQ/view). Automated 

tagging was done by running an internally developed script containing a list of all gene and 

its synonyms obtained from NCBI database (http://www.ncbi.nlm.nih.gov/gene/).  Using the 

script, we screened the important XML fields of each clinical trial i.e. “title”, “purpose”, 

“official title”, “primary outcome measures”, “secondary outcome measures”, “detailed 

description” and “keywords” to filter out the trials with gene names.  Further focusing on the 

trials that use molecular biomarkers for patient stratification prior to treatment; we manually 

curated those 5,420 trials. Finally 1,701 trials with stratified molecular biomarkers were 

filtered, and these trials were further analysed and became the basis of this paper. In ensuring 

the authenticity of this screening, we randomly checked 10% of the trials which did not 

appear in the result set (i.e. 5420-1701) for the presence of any gene names. We found out 

that none of the trials were false positive either.  The examples of the trials filtered out by 

manual curation as trials with stratified molecular biomarker, please refer to Supplementary 

Table 2 (See: https://drive.google.com/file/d/0Bw_MQVhSKAMXZ24yLWxiak5qcjQ/view). 

Trials in Group 1, Group 2 and Group 3 are not overlapping.  

Identification of disease terms and segmentation into therapeutic categories: One of the major 

aims of this analysis was to elucidate therapeutic focus of Group 3 trials. To achieve it, at 

first “condition” i.e. targeted disease of 1701 trials belonging to Group 3 was collected. Next, 

all those targeted diseases were manually curated and segmented into 15 major therapeutic 

areas based on MeSH disease tree. Next important focus of the analysis was to investigate the 

impact of stratified biomarker on trial duration of “completed” trials and trial’s status across 

different therapeutic categories curated in the earlier step. In order to have a balanced 

comparison of trial duration between target group (Group 3) and control group (Group 2), the 

duration period were calculated in months. The assessment of trials status was determined as 

follows: a trial was considered successful when “Overall status” was “completed” whereas, a 

trial was considered unsuccessful if “Overall status” was “terminated” (definition of 
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terminology: http://clinicaltrials.gov/ct2/about-studies/glossary). The comparison has been 

done between Group 3 and Group 1 i.e. all other interventional trials excluding Group 3 

(Figure 18). For the quantitative analysis, formatting has been completed with Perl 

programming language based on the Document Type Definition (DTD) 

(http://clinicaltrials.gov/ct2/html/images/info/public.dtd) of ClinicalTrials.gov. To map 

diseases related synonyms to a unique identifier, MeSH disease dictionary was applied. 

Figure 18 shows a flow chart describing the logic and steps of our meta-analysis. All the 

manually curated individual disease indications belonging into 15 major therapeutic 

categories are listed in Supplementary Table 3 (See: 

https://drive.google.com/file/d/0Bw_MQVhSKAMXWHAwaFJ0b2hrUWM/view).  
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Figure 18: Workflow for the selection of trials with, without stratified molecular 
biomarker and meta-analysis of the ClinicalTrials.gov  

Q1, Q2, Q3, Q4, Q5, Q6, Q7: major investigated questions as mentioned in page 73. The detailed description of the meta 

analysis consists of three steps described below.  

 

Step1: The step1 can be separated in selection of two groups: 

Group1 (Interventional trials): We used “Advanced Search” option of ClinicalTrials.gov 

database with two following criteria.  

Criteria1: In the “Study Type” field selected “interventional studies”.  
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Criteria2: In order to remove uncertainty regarding updates of the database, so to remove all 

interventional trials with unknown “overall status” from our analysis by marking “Exclude 

Unknown Status” in “Advanced Search”.  

Then we downloaded all the trials as XML file. 

In avoiding time confounders interventional trials with “start date” between 1991 to 2013 

were programmatically (PERL) filtered as first trial with stratified biomarker was registered 

in 1991 (NCT00001271). We also checked “intervention name” and “condition” field of each 

trial with PERL program to select only those interventional trials with a drug/biologics term 

as “intervention” and a disease term as “condition”. As in many trials those fields can be 

empty. This filtering resulted in 60,629 intervention trials (Group 1).  

Group2 (Interventional trials with Biomarker as outcome measure): We used “Advanced 

Search” option of ClinicalTrials.gov database and applied Criteria1 and Criteria2 (see step1). 

Further as third criteria in the “Outcome Measures” field typed “biomarker”. Next, similar to 

Group1 programmatically checked “start date”, “intervention name” and “condition” fields. 

Finally we filtered 4745 trials with biomarker as outcome measure.   

Step2: The prime focus of our analysis was to find trials with stratified biomarker. In 

achieving this we first downloaded a set of 80 trials by searching ClinicalTrials.gov with 

keyword “Cetuximab AND KRAS”. Then manually curated those 80 trials for intuitive 

words which can possibly filter a trial with stratified biomarker and came up with following 

search  

Keyword: “(biomarker OR resistance OR marker OR positive OR mutation OR miRNA OR 

sensitivity OR Sensitive OR genomic OR microarray OR proteomic OR metabolomic OR 

polymorphism OR SNP OR Negative) NOT (respirat OR airway)”  

Finally applied the above search keyword in “Advanced Search” option of ClinicalTrials.gov 

database followed by applied Criteria1 and Criteria2 (see step1). The above criteria could 

filter 22,273 trials. Next to find out genes and proteins, automatic tagging has been applied on 

22,273 trials as we wanted to screen trials with stratified molecular biomarker 

(genes/proteins). We filtered out 5420 trials with tagging criteria. Finally to confirm the 

molecular stratification program of each of those 5420 trials, we manually curated all of them 

and it turn out 1701 (Group3) trials having molecular stratified biomarker program before the 

treatment.   These 1,701 trials were further analysed and became a basis of this paper.  
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Step3: There are seven major questions we are investigating in this paper. In answering those 

questions we collected certain fields of each xml files of each clinical trial downloaded from 

ClinicalTrials.gov database. Below in Table 6 we listed the XML fields which were 

programmatically extracted for further analysis. 

 

Question 

no. in 

Introduction 

XML field 

Q1 “start_date” 

Q2 “intervention_name” when “intervention_type” is “Genetic” 

Q3 “lead_sponsor” 

Q4 “condition” 

Q5 “clinical_phase” 

Q6  “overall_status”, filtered when value is “Completed”. Duration 

of trials filtered through first criteria was calculated based on 

(“trial_start _date” – “trial_completion_date”) 

Q7 “overall_status” 

Table 6: The analysed XML fields to answer questions rose in the introduction 

Any overlap between Group 1 and Group 2 has been removed from Group 1. Similarly any 

overlap between Group 1 and Group 3 has been removed from Group 1. Overlap between 

Group 2 and Group 3 has been removed from Group 2. 

6.2. Frequency of stratified molecular 

biomarkers in clinical development  
Our primary goal was to understand whether the stratified medicine trend as a consequence of 

the genetic revolution, widely discussed in biomedical scientific forums; is actually 

translating in the use of molecular biomarkers in clinical trials. At very first step, we 

collected “start date” of each trial and calculated the percentage of clinical trials that are 

using molecular biomarkers for patients’ stratification. Comparing them to the total number 

of clinical trials registered in the database we found 1.39% of all interventional clinical trials 
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(i.e. 1,701 trials out of total 121,922 interventional trials) belong to this category. In order to 

figure out what is the trend in implementation of biomarkers in clinical research, we analyzed 

the historical record of trials with stratified molecular biomarker (TSMB). The first trial using 

stratified molecular biomarker was registered in 1991 when CD22(+) B cell lymphoma 

patients were selected for treatment with IgG-RFB4-SMPT-dgA antibodies (NCT00001271). 

Since then, the number of such clinical trials is steadily growing and attending the peak in 

2011 with 214 trials registered that year (Figure 19 a). We further calculated year wise 

proportion of trials with stratified molecular biomarker compare to total number of 

interventional trials with 95% confidence interval (CI) starting from 2000 to August, 2013. In 

Figure 19b, we have plotted year wise lower and upper limits of the proportion with 95% CI. 

Based on Figure 19b with 95% CI we can see that less than 5% of all interventional trials are 

using molecular biomarker for patient stratification. All the trials with stratified molecular 

biomarker and its start year can be found in Supplementary Table 4 (See: 

https://drive.google.com/open?id=0Bw_MQVhSKAMXWE1mNmFSUDRQX0U).    

 

 

Figure 19 A: Growth of trials with stratified biomarker from 1991 to 2013. B: Year 
wise proportion of trials with stratified molecular biomarker compared to trials 

from 2000 to 2013  

In figure 19 A, the steady growth rate of trials with stratified biomarker is evident. Year wise proportion of trials from 2000 

to August, 2013 with stratified molecular biomarker compare to total number of interventional trials with 95% confidence 

interval (CI) was calculated. In Figure 19b, we have plotted year wise lower and upper limits of the proportion with 95% CI.     
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6.3. Key technologies for biomarker 

identification in clinical trials 
In order to understand the technologies being applied in clinic for the detection of stratified 

biomarkers and their frequency of application, the “intervention name” from each TSMB was 

selected when “intervention type” is “Genetic”. Unfortunately less than 10% of trials specify 

this information in the registry. TSMB trials with specified technologies are listed in 

Supplementary Table 5 (See: 

https://drive.google.com/open?id=0Bw_MQVhSKAMXeHlYN3NoVjVrQVE). After 

programmatically retrieving the technologies, they were manually curated and then 

segmented into three different OMICS technologies i.e. genomics, transcriptomics and 

proteomics. Genomic technologies including detection of mutations and polymorphisms by 

PCR, gene sequencing and cytogenetic analyses were used in 50% of trials. Supplementary 

Figure1 (See: 

https://drive.google.com/file/d/0Bw_MQVhSKAMXaHJIeUZ2bnhaNUU/view). Genomic 

technologies were followed by transcriptomics analysis combining various gene expression 

arrays and used in about 40% of trials reporting biomarker detection techniques. Different to 

the traditional single biochemical and histopathological measurements, expression profiles 

represent a fingerprint containing multiple biomarkers, which collectively indicate a 

particular pathophysiology (Bhattacharya & Mariani 2009). The rest 10% of the trials were 

using proteomics technologies for detection of stratified biomarker, starting from Western 

Blotting in early studies and ending with mass spectrometry based proteomic profiling (e.g. 

NCT01658566, NCT00601913).  The leading role of genomic technologies in biomarker 

detection clearly represents the current trend in clinical biomarker discovery reflecting both 

stability of the genomic signal and commoditization of the genomic technologies. 

6.4. Major funding organizations in the clinical 

biomarker field 
Focusing on the 1,701 trials, we extracted the “lead sponsor” of the trials; to investigate the 

major players in the field investing heavily into the stratified biomarker programs. Three 

pharmaceutical companies such GSK, Roche and Novartis appear to be the main industrial 

sponsors with 3.7%, 3.1% and 2.7% (Figure 20) of all trials with stratified molecular 

biomarker. Therefore it is not surprising that those companies are behind most recent 

breakthroughs in the field of stratified medicine. GSK compound Dabrafenib with the 
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companion diagnostics for detection of BRAF mutation has received FDA approval for the 

treatment of melanoma (Ouellet D, Grossmann KF, Limentani G, Nebot N, Lan K, Knowles 

L, Gordon MS, Sharma S, Infante JR, Lorusso PM, Pande G, Krachey EC, Blackman SC 

2013). Another GSK’s MEK inhibitor trametinib has been approved with BRAF mutation as 

stratified biomarker (Gilmartin et al. 2011). Roche antibody-drug conjugate trastuzumab 

emtansine has been approved for the treatment of Her2-positive advanced breast cancer 

patient (Verma et al. 2012). Another Roche compound vemurafenib has been approved for 

the treatment of BRAF-mutated metastatic melanoma (Bollag et al. 2012). Imatinib of 

Novartis has got the approval for the treatment of leukemia patients with specific PDGFR and 

C-Kit mutations (Dupart et al. 2011). Pfizer compounds Crizotinib with the companion 

diagnostic (ALK5 mutation) (Sahu et al. 2013) and Maraviroc with the companion diagnostic 

TM test for the viral tropism have also been approved (Obermeier et al. 2012). Vast 

experience of these companies in conducting trials with stratified biomarker allowed for these 

targeted approaches and in case of Crizotinib unprecedentedly shortened the development of 

the drug leading to millions of savings for the company (S.-H. I. Ou et al. 2012). National 

Cancer Institute (12.35%) and NIAID (4.41%) seem to have the major academic drivers of 

trials with stratified molecular biomarker. As European agencies are not obliged to fill into 

the database, there was no mention of European academic player in the top 15 clinical 

research organizations. Other proprietary databases such TrialTrove or PharmaProjects would 

be better for the analysis of the European situation in the field of clinical biomarker research. 

Trials with stratified molecular biomarker and its lead sponsor can be found in 

Supplementary Table 6 (See: 

https://drive.google.com/open?id=0Bw_MQVhSKAMXRk1kTUxSSUVvU2M).  
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Figure 20: Major funding organizations sponsoring trials with stratified 
molecular biomarker. 

The figure demonstrates what percentage of trials with stratified biomarker is funded by top 15 organisations driving such 

trials.  

6.5. Major disease indications targeted by 

stratified biomarker program  
According to our analysis (Figure 21), oncology represents more than 75% of all the trials 

with stratified biomarker program. Infectious disorders are next major focus of trials with 

stratified biomarker representing about 10% of all the analysed studies (Figure 21a). Other 

therapeutic areas combined, represent the rest 15% of the trials with molecular stratified 

biomarker and metabolic diseases leading this group (Figure 21b).  Closer look at the 

individual indications of oncology therapeutic area reveals that most of the registered 

stratified molecular biomarker studies are in the field of breast cancer comprising 478 studies 

and constituting 28% of all trials (Figure 21c). This extensive clinical effort is translated into 

the marketed companion diagnostics and breast cancer patients are benefiting from it.  In this 
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indication hormone-dependency tests, genetic susceptibility tests (such as BRCA1/2 

mutations) and gene expressions analysis (such as Mammaprint and OncotypeDX) became a 

part of a standard clinical care (Tessari et al. 2013; Deyati et al. 2013). Lung cancer is the 

second most frequently targeted (20.8%) by trials with stratified molecular biomarker with 

353 studies registered in ClinicalTrials.gov. Years of clinical research are translated in a 

number of approved biomarkers in this therapeutic area, such as Crizotinib approved in 

combination with the companion genetic test for the ALK5 gene for late stage lung cancer 

(S.-H. I. Ou et al. 2012). Leukemia and Lymphoma are the next largest oncological 

indications benefiting from the early discovery of stratified molecular biomarkers such as 

Philadelphia chromosome or other genetic translocations such as RAR-PML fusions that 

brought to the early discovery of the target-specific treatments, celebrating the first wins of 

molecular biology in clinics. Trials with stratified molecular biomarker and its targeted 

disease indications can be found in Supplementary Table 7 (See: 

https://drive.google.com/file/d/0Bw_MQVhSKAMXbHFRQTNPQ0NrZTg/view).  

 

Figure 21: Major targeted therapeutic areas by trials with stratified molecular 
biomarker. 

(A) Major indication areas targeted by trials with stratified biomarker; (B) Other targeted indication areas; (C) Major types 

of targeted cancer. 
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6.6. Phase wise distribution of stratified 

molecular biomarker trials  
Further analysing at which stage of the clinical development the stratification biomarkers are 

explored, we extracted the information on the “phase” from all 1,701 TSMB (Figure 22). 

Around 93% of trials with stratified molecular biomarker contain the information on clinical 

phase. According to our analysis most of the trials, around 60%, are in phase II. This category 

includes the trials indicated to be in the phase I-II as well. Fifteen percent trials with stratified 

molecular biomarker are in phase I and III.  It was interesting to see that almost 6% of all 

stratified molecular biomarker-associated trials are conducted at phase IV. It clearly reflects 

that search for stratified biomarkers are continued in the post-marketing phase as well. Trials 

with stratified molecular biomarker and its clinical phase can be found in Supplementary 

Table 8 (See: https://drive.google.com/open?id=0Bw_MQVhSKAMXQkptRTluNnRFY2s).      

 

Figure 22: Phase wise distribution of trials with molecular stratified biomarker. 

The figure demonstrates what percentage of trials with stratified biomarker lies in what phase.  

6.7. Impact of biomarker program on clinical 

trial duration and chance of completion  

Our next question was to analyze whether the inclusion of stratified molecular biomarker has 

any impact on trial duration. To answer that clinical trial duration was calculated in months as 

(“start date” - “completion date”). Statistical distribution of clinical trials duration, targeting 

disease indications of Group 2 (interventional trials with biomarker as outcome measure) and 

Group 3 (interventional trials with stratified biomarker) and falling into six therapeutic areas 

were compared in Figure 23a. The three letter abbreviations used along the x axis of Figure 
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23a, represents each category. The first letter of the abbreviation represents targeted therapy 

(e.g. O: oncology, I: infectious diseases, M: metabolic disorders, R: respiratory disorders, C: 

cardiovascular diseases and N: neurologic disorders) followed by two other letters 

representing groups (WB: Group 2, SB: Group 3). As can be seen in Figure 23a,  addition of 

molecular stratified biomarker into clinical trials targeted to oncology, infectious diseases and 

neurologic disorders extend the trial duration, evident from the difference in the central 

tendency of data (i.e. median). We also calculated therapeutic area specific mean trial 

duration and difference of means with 95% confidence interval (CI) between Group2 and 

Group 3 trials by Welch two sample t-test and represented in Table 7. With 95% confidence 

interval stratification step increases trial duration by 13.3 to 2.7 months in oncology, by 27 to 

7.5 months in infectious diseases and by 32.4 to 8 months in neurologic disorders. In 

metabolic and cardiovascular diseases the application of stratified biomarker seems to be less 

significant in affecting clinical trial duration. On the other hand in respiratory disorders 

stratified biomarkers on mean scale shorten the trial duration by 19.7 to 8 months. All the 

completed trials belonging to Group 2 (WB) and Group 3 (SB) and falling into above 

mentioned six therapeutic categories are presented in Supplementary Table 9 (See: 

https://drive.google.com/file/d/0Bw_MQVhSKAMXb3NocGFXRXE1TlU/view) along with 

its “start date”, “completion date”, trial duration in months.  

Therapeutic area Group 2 

abbreviation, Mean 

trial duration in 

months 

Group 3 

abbreviation, 

Mean trial 

duration in months 

Difference of means 

between Group 2 to 

Group 3 with 95% 

CI 

Oncology  OWB, 42.2 OSB, 50.2 -13.3  to -2.7 

Infectious diseases  IWB, 32 ISB, 49.3 -27 to -7.5 

Metabolic disorders  MWB, 26.6 MSB, 27.5 -8 to 6.2 

Respiratory 

disorders 

RWB, 25 RSB, 11.2 8 to 19.7 

Cardiovascular 

disorders 

CWB, 27.8 CSB, 30.2 -18 to  13.3 
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Neurologic 

disorders 

NWB, 21 NCB, 41.2 -32.4  to -8  

Table 7: Therapeutic area specific mean trial duration and difference of means 
with 95% CI between Group2 and Group 3 trials 

 

 

 
Figure 23: Impact of stratified biomarker program on trial duration and 

completion  

(A) Comparative statistical distribution of clinical trials duration between Group 2 and Group 3. (B) Comparative 

proportion of completed trials between Group 1 and Group 3. (C) Comparative proportion of terminated trials 

between Group 1 and Group 3. Impact of stratified biomarker program on trial duration and completion.  

The three-letter abbreviations used along the x axis in (A) represents each category. The first letter of the abbreviation 

represents targeted therapy (O: Oncology; I: Infectious diseases; M: Metabolic disorders; R: Respiratory disorders; C: 

Cardiovascular diseases; N: Neurologic disorders) followed by two other letters representing groups (WB: Group 2; SB: 

Group 3) 

As we see, the duration of trials could be affected by the inclusion of stratified molecular 

biomarker; however question arises if completion itself is affected by inclusion of stratified 

molecular biomarkers? In addressing this question we compared the proportion of 
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“Completed” trials across six most targeted therapeutic areas between Group 1 (all 

interventional trials) and Group 3 (interventional trials with stratified biomarker) as a 

measure of success. To measure the rate unsuccessful trials proportion, “Terminated” trials 

across same six targeted therapeutic areas between Group 1 and Group 3 was compared. 

Proportion of “Completed” trials across six therapeutic categories of each group was 

calculated based on number of “Completed” trials in given therapeutic category of a group 

divided by total number of trials targeting the same therapeutic category of the same group. 

The proportion of “Terminated” trials was calculated using the same formula. Patient 

stratification by molecular biomarkers significantly affect the fate of the trial whether it will 

be successful or unsuccessful (Figure 23b, 23c). In metabolic, cardiovascular and neurologic 

disorder, trial termination rate is significantly higher in Group 1 (trials without a biomarker). 

However, fewer trials targeting respiratory and cancer disorders, are completed in Group 3 

compared to the Group1 trials. If in other therapeutic areas the average percentage of 

terminated studies is about 8%, addition of stratified biomarkers to trials targeting respiratory 

disorders, doubles the chance of the trials to be terminated prematurely. In the case of 

oncology every third molecular biomarker trial is completed compared to every second in the 

non-biomarker group. According to our analysis, more than one third of Group 3 trials started 

after 2009 and cancer being most frequently targeted (Figure 19; 21a). Knowing that the 

median trial duration is ~45 months (Figure 23a), most of them were still ongoing and ~31% 

(411 out of 1317) of oncology trials with stratified biomarker are still in the recruiting phase. 

At the same time slightly higher termination of stratified biomarker trials targeting cancer, 

reflects the hard road of clinical development (well standardized tests, trained personnel and 

dedicated resources) targeting highly heterogeneous diseases like cancer (Ludwig 2012). 

Among all studied therapeutic areas, respiratory disorders are more challenging for 

stratification due to heterogeneity of the population and the fact that biomarker studies in 

respiratory disorders are still in their infancy (Taylor 2011; Penaloza et al. 2012; Lee et al. 

2012). The result is evident in our study, which shows that more clinical trials are terminated 

and less completed when stratified compared to the non-stratified group. Group 3 and Group 

1 trials with its “overall status” can be found in Supplementary Table 10 (See: 

https://drive.google.com/file/d/0Bw_MQVhSKAMXWmpid3QzUmUxT0E/view) and 

Supplementary Table 11 (See: 

https://drive.google.com/file/d/0Bw_MQVhSKAMXYjFaTWZUSG9lX0E/view).  
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It is evident from this analysis that percentage of the trials including patients’ stratification 

based on molecular differentiation is still very low (less than 5%) reflecting all the challenges 

of biomarker development. All though a variety of OMICS technologies have been developed 

in recent years with the aim to identify biomarker in oncology by detailed understanding of 

disease pathophysiology and drug mode of action. But the search for potent biomarker is far 

from being over. A new class of stratified biomarker i.e. miRNA is rapidly emerging in 

cancer treatment with the promise of stratifying the patient population with greater 

confidence. But lack of translational algorithm which can integrate data and knowledge to 

predict the causal relationship between candidate miRNA biomarker and clinical outcome of 

a treatment in a disease indication potentially hamper the endeavor. In this direction a novel 

translational algorithm i.e. SMARTmiR, has been developed to predict the pharmacogenomic 

role of miRNA when treating the colorectal cancer patients with cetuximab therapy.  

 

Next three chapters (i.e. 7, 8, 9) have been dedicated to describe each of those three concepts 

i.e. miRNA, colorectal cancer and cetuximab. Finally in chapter 10
th

 the published 

methodology of SMARTmiR has been discussed in detail.  
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7. microRNA 

7.1. History of miRNA discovery:  
The team of Victor Ambros, Rosalind Lee and Rhonda Feinbaum discovered the existence of 

microRNA and its regulation.  They reported lin-4 gene controls the timing of C.elegans 

larval development stages. But to their surprise this gene did not code any protein instead 

only translated into two small RNAs 22 and 61 nucleotide long. The Ambros and Ruvkun 

labs also discovered that lin-4 miRNA has several anti-sense complementarities to the 

3΄untranslated region (UTR) region of lin14 gene. Ruvkun lab further demonstrated that after 

complementary binding of lin-4 RNA to lin-14, the concentration of lin-14 protein was 

substantially reduced without negligible changes in lin-14 mRNA. These discoveries initiated 

a series of other discoveries producing ample evidences of the existence and post 

transcriptional regulation of small RNAs, known as microRNA or miRNA (Bartel 2004). 

miRNA are the main regulators at post-transcriptional level. However let-7 is the first 

identified miRNA in human (Bartel 2004).               

7.2. miRNA gene  
In 2001 Lau et al reported that most miRNA genes transcribed from a distant part of the 

genome from previously annotated protein coding genomic region. This fact implies that 

there is independent transcriptional machinery for miRNA (Lau et al. 2001). In 2003, a group 

of scientists published that a minor proportion of miRNA was located in the introns of pre-

miRNA. These miRNA are not transcribed from their own promoter but instead processed 

from the introns (Aravin et al. 2001; Aravin et al. 2003). However, in late 2004 Rodriguez et 

al proved 117 miRNAs out of 232 mammalian miRNA (~51%) are in the intronic region 

(Rodriguez et al. 2004). Many miRNA genes are also clustered in a certain portion of the 

genome. The expression of these types of miRNA falls into the category of multi-cistronic 

transcription (Lagos-Quintana et al. 2001).  Although based on the scientific discoveries until 

now, majority of human miRNA genes are not clustered but isolated (Lim et al. 2003). 

However, these perceptions are subject to change as miRNA is comparatively new research 

area and new miRNA genes are constantly being reported. In 2010, a group at the Whitehead 

Institute sequenced 60 million small RNAs in mouse and identified 108 novel miRNA loci. 

The discovery opened the question how many more miRNA remain to be discovered (Chiang 
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et al. 2010). There are several mechanisms through which a novel miRNA can be formed 

which are discussed in the next section. 

7.2.1. Formation of novel miRNA gene  

a. As described in Figure 24 novel miRNA gene can be formed by the duplication of 

local or non-local miRNA gene. In case of local duplication the newly formed 

miRNA gene is located in the close proximity of the original and both the gene share 

the same transcription mechanism. miRNA gene evolved from non-local duplication 

are located in far apart from its original partner and has got independent transcription 

mechanisms (Berezikov 2011).  

b. Unstructured transcripts from intron often rearrange itself into hair pin like structure 

which successively evolved into novel intronic miRNA (Berezikov 2011) .  

c. De-novo emergences of miRNA often evolved into a transcriptional unit and produce 

unstructured transcripts. Later the unstructured transcripts go through the process of 

forming a hair-pin like structure which successively evolved into a novel miRNA 

(Berezikov 2011). 

d. Often transposable elements can lead to the formation of novel miRNA by the 

formation novel miRNA like hair pin stage (Berezikov 2011).  

e. tRNA, small nucleolar RNA (snoRNA) often forms miRNA through hair-pin stage.  

f. Existing miRNA loci sometime undergoes antisense transcription leading to the 

formation of miRNA hairpins with novel mature miRNA and mRNA* (Berezikov 

2011).  

g. Theoretically after two rounds of genome duplication, a locus can retain a gene and 

miRNA in its intron or either one is lost or the entire locus can be lost (Berezikov 

2011).                 
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Figure 24: Genomic Sources of novel miRNA genes (Berezikov 2011).  

Each biological processes (a to g) is described in detail in previous page.   

7.3. miRNA biogenesis 
The formation of mature miRNA is a series of processes which start with the transcription of 

miRNA gene followed by the nuclear and cytoplasmic processing by two RNases. The 

process is described in the following section.   

7.3.1. Transcription of miRNA 

In eukaryotes, miRNAs are transcribed by RNA polymerase II and activity of the enzyme is 

controlled by RNA polymerase II-associated transcription factor and epigenetic regulators. 

Transcription factors like p53, MYC, ZEB1, ZEB2 and MYOD1 can be positively or 
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negatively regulate miRNA expression. Different epigenetic events such as DNA methylation 

and histone modifications can also regulate the miRNA gene expression (Ha & Kim 2014). A 

schematic presentation of miRNA biogenesis and its control is presented in Figure 25 a and 

25 b.   

 

Figure 25: Nuclear event in miRNA biogenesis pathway (Ha & Kim 2014).  

Schematic model of microRNA (miRNA) transcription by RNA polymerase II (Pol II), nuclear processing by the 

Microprocessor complex (comprising Drosha and DGCR8) and export by exportin 5 (EXP5) in complex with RAN GTP.  

7.3.2. miRNA processing 

After transcription miRNA goes through a series of processes to form mature miRNA. Pri-

miRNA is 1 kilobases long with local stem loop structure. A typical pri-miRNA consists of 

33-35 base pairs long stem, a terminal loop and single stranded RNA segments at both 3' and 

5' ends. The maturation process initiates within the nucleus by Drosha, an RNase III enzyme. 

Drosha crop the stem loop to release small hairpin shaped RNA of ~65 nucleotide long. 

Unlike plants, Drosha forms a microprocessor complex with its cofactor DGCR8 for the 
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RNase activity in most of the animal. Before the processing of pri-miRNA, the precise 

recognition of pri-miRNA by the microprocessor complex is of paramount importance. The 

two double stranded RNA binding domain of DGCR8 precisely recognize a pri-miRNA. 

Drosha cleaves the hairpin structure at approximately 11 base pairs away from the basal 

junction between single stranded RNA and dsRNA and approximately 22 base pairs away 

from the apical junction linked to the terminal loop (see Figure 25). It is still quite unclear 

how Drosha and DGCR2 cumulatively interact with junction and the stem before cropping. 

The UG and CNNC motif at the basal junction and UGUG motif at the apical junction (see 

Figure 26) may also play a crucial role in binding other determinants for the processing of 

pri-miRNA. These three motifs are quite conserved and 79% of human miRNAs has got at 

least one of these three motifs.  

 

Figure 26: Recognition sites of Drosha and microprocessor complex (Ha & Kim 
2014). 

The Microprocessor complex (comprising Drosha and DGCR8) recognizes the single-stranded RNA tails, the stem of ~35 

bp in length and a terminal loop of the primary microRNA (pri-miRNA). Microprocessor measures ~11 bp from the basal 

junction. ~22bp from the apical junction, and Drosha cleaves the pri-miRNA at this position | Dicer recognizes pre-miRNA. 

The termini of pre-miRNA are recognized by the PAZ (PIWI –Argonaute (AGO)–ZWILLE) domain of human Dicer, which 

contains two basic pockets: one that interacts with the 5ʹ-phosphorylated end of the pre-miRNA and one that interacts with 

the 3ʹ end105,106. The stem of the pre-mRNA is aligned along the axis of the protein in a way that Dicer can measure a set 

distance from both termini (like a ‘molecular ruler’), because the catalytic domains of RNase III domain a (RIIIDa) and 

RIIIDb are placed ~22 nucleotides (nt) away from the termini. P, phosphate.  
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7.3.3. Nuclear export 

After the first processing of pri-miRNA by Drosha, resulting pre-miRNA is exported into the 

cytoplasm. In cytoplasm, the maturation process can be completed. The EXP5 protein forms 

a transport complex with GTP-binding nuclear protein RAN and pre-miRNA. This complex 

passes through the nuclear pore complex. Next GTP is hydrolysed, thus complex is 

disassembled and pre-miRNA is released into the cytosol.         

 

Figure 27: Cytoplasmic processing of miRNA processing (Ha & Kim 2014). 

Schematic model of Dicer-mediated processing and Argonaute (AGO) loading. Dicer interacts with a double-stranded RNA-

binding domain (dsRBD) protein (TAR RNA-binding protein (TRBP) in humans. 

7.3.4. Cytoplasmic processing pre-miRNA  

The released pre-miRNA in the cytoplasm is cleaved near its terminal loop by the Dicer 

complex.  The Dicer interacts with double stranded RNA–binding domain (dsRBD) protein 

i.e. TRBP in human. The cleaving of pre-miRNA by Dicer forms a RNA duplex (see Figure 

27). This RNA duplex is released and subsequently loaded onto human AGO1-4 to form 

RNA induced silencing complex (RISC). RISC further binds to a complex made of Heat 
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shock cognate 70 (HSC70) and heat shock protein 90 (HSP90). Successively the passenger 

strand (Blue region of the duplex in Figure 26) is discarded and remaining mature part (red 

part in Figure 27) remains attached to AGO1-4. Through consecutive steps mature miRNA 

formation and targeting of mRNA is achieved through RICS assembly. Dicer processing is 

also tightly regulated by post translational modification of TRBP and AGO proteins.        

7.4. miRNA nomenclature 
The nomenclature of miRNA is not completely consistent. The early discovered miRNA 

were named after their phenotypes i.e. lin-4, let-7 and lys-6. Recently discovered miRNAs 

are published with a sequential numbering after “mir”, such that mir-2 has been discovered 

after miR-1. The organism specificity of a miRNA is designated by a three letter code, for 

example miR-1 in human will be designated as has-miR-1. If a miRNA gene encodes two 

sisters miRNA then they are designated as miR-125-a and miR-125-b. If identical mature 

sequences are expressed by distinct precursor sequences, genomic loci then numeric suffix 

are added at the end of the name e.g. miR-125-b-1 and miR-125-b-2.  Each miRNA gene 

locus code two mature miRNA one from the 5' end the other from 3' end, the stand specificity 

is denoted as follows: miR-125-a-5p and miR-125-a-3p. However, only one of them is 

biologically more active and abundant called “guide” and the other “passenger” one often 

represented as miRNA* (Ambros et al. 2003).   

7.5. miRNA expression 
The miRNA has got very interesting yet very intriguing expression pattern. Several miRNA 

in C.elegans i.e. lin-4 and let-7 have developmental stage specific expression pattern. Many 

mammalian miRNAs express in specific tissue and organ, to name just a few; miR-1 

primarily found in mammalian heart, miR-122 in liver, miR-223 in macrophages. Even the 

degree of expression of a miRNA which is only expressed in specific organ may have 

differential expression correlated to different development stages (Minami et al. 2014; 

Vacchi-Suzzi et al. 2013).    

7.6. miRNA function 
Intensive research over the years has discovered the role of miRNA in key cellular processes, 

i.e. development, differentiation, proliferation, cell death and metabolism. Some examples 

showing the relation of miRNA to those cellular processes are summarised below. The first 

discovered miRNA lin-4 and let-7 known to regulate the developmental stages of C.elegans 
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and without the expression of lin-4, C.elegans is unable to make the transition from first to 

second larval phase. The coordination of miR-48 and miR-84 is essential to end the larval 

monitoring cycle (Abbott et al. 2005). The over expression of miR-181 is the prerequisite for 

the terminal differentiation of the myoblasts. Expression of miR-309 cluster is responsible for 

the zygotic onset of Drosophila (Bushati & Cohen 2007). The expression of miR-214 plays 

an important role throughout embryogenesis of Zebrafish (Flynt et al. 2007).  miR-15, miR-

16, miR-17 cluster and miR-21 regulate cell death or apoptosis (Jovanovic & Hengartner 

2006). miR-196, miR-302, miR-27a, miR-224, miR-16, miR-223 are well known regulators 

of cell proliferation and differentiation (Tsai et al. 2010; Popovic et al. 2009; Lin et al. 2008; 

Mertens-Talcott et al. 2007; Venugopal et al. 2010; Guo et al. 2009; Fazi et al. 2007; Felli et 

al. 2009). miR-122 is the first miRNA linked to metabolic control. Expressing primarily in 

liver miR-122, regulate hepatic cholesterol and lipid metabolism. miR-195 regulate glucose 

uptake by directly regulating GLUT3. miR-32 regulate a glucose transporter SLC45A3. 

Hexokinase catalyses the first step of glycolysis and miR-143, miR-138 regulate hexokinase. 

miR-375 known to regulate the lactate metabolism. miR-375, miR-124a and miR-9 known to 

regulate insulin metabolism (Hatziapostolou et al. 2013).  

Different miRNAs are also showing the promise to be a powerful cancer biomarker (Chen et 

al. 2008; Bushati & Cohen 2007). These miRNAs are often referred as OncomiRs. A detailed 

discussion of different types of OncomiRs, their mechanism of action and involvement in 

different types of cancer are presented later.    

7.7. Bioinformatics approaches to study miRNA 

regulation 
The discovery of abundant miRNAs in diverse multi cellular eukaryotes raised many 

intriguing questions including the function of the miRNA within the cell. The key to finding 

out the answer lies in the way miRNA recognise its target mRNA and their cellular function. 

In RISC, processed mature miRNA pair with mRNA and repress the expression of target 

mRNA post transcription. At the beginning of the last decade, it was proposed that miRNA 

will specifically target a mRNA if it has sufficient complementarity to the target mRNA. 

Otherwise the miRNA will repress productive translation if target mRNA does not have 

sufficient complementarity but does have suitable constellation of miRNA complementary 

sites (Bartel 2009). The complementarity is mainly achieved by recognizing and binding to 

the 3' untranslated region of the target mRNA (Yue et al. 2009). A number of other predictive 
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features for miRNA target predictions have been discovered in recent times, such as 

dinucleotide composition of flanking sequence, strong base pairing between 3' UTR of 

mRNAs and miRNA seed region, thermodynamic stability of the binding site, evolutionary 

conservation of binding sites (particularly the seed region), secondary structure accessibility 

and host gene expression profile (Zheng et al. 2013).   Over the years many miRNA target 

prediction algorithms have been proposed and in the next section an overview of the current 

algorithms and their features have been summarized.  

7.7.1. miRNA target prediction algorithms 

A list of the most popular target prediction algorithms is provided in Table 8. In the Table 8 

seed matching is defined as sequence alignment between 1
st
 to 8

th
 nucleotide of the miRNA 5' 

end and target mRNA sequence, Conservation is defined as seed matching which is 

conserved across different species, Free energy refers to the minimum free energy which 

shows how strong the binding of miRNA with its target is (Yue et al. 2009). 

Algorithm Approach Features Availability 

TargetScan 

(S) 

Rule 

Based 

1.  The algorithm uses seed 

matching, free energy and 

conservation.   

2. Supported Organisms: 

mammals, worms, files. 

http://www.targetscan.org/ 

miRanda Rule 

Based 

1. Optimizes sequence 

complementarity based on 

position-specific rules and 

interspecies conservation.  

2. The algorithm also uses free 

energy and conservation.  

3. Supported Organisms: 

human, mouse, rats.  

http://www.microrna.org/micr

orna/home.do 

Pita Rule 

Based 

1. Investigate the role of target 

site accessibility, as determined 

by base-pairing interactions 

within the miRNA.  

2. Also uses seed match and 

http://genie.weizmann.ac.il/pu

bs/mir07/mir07_data.html 
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free energy.  

3. Supported Organisms: 

Human, mice, flies and worms 

DIANA-

microT 

Rule 

Based 

1.  Combines conserved and 

non-conserved miRNA 

recognition elements into a 

final prediction score. 

2. It uses a dynamic 

programming algorithm to 

have the highest scoring 

alignment between nine 

nucleotide long windows of the 

3' UTR with the miRNA driver 

sequence. It also applies to 

energy.  

3. Supported Organisms: 

Human 

http://diana.cslab.ece.ntua.gr/

microT 

Pictar Data 

Driven: 

Hidden 

Markov 

Model 

1. It checks the seed matching, 

conservation of seed alignment 

across multiple species. It also 

considers the miRNA-target 

binding free energy.  

2. Supported Organisms: 

vertebrates, flies and 

nematodes.  

http://pictar.mdc-berlin.de/ 

RNA-hybrid Rule based 1. It determines the most 

favourable hybridization 

between two sequences.  

2. The algorithm uses seed 

match and free energy as a 

feature.  

3. Supported Organism: any. 

http://bibiserv2.cebitec.uni-

bielefeld.de/rnahybrid 

MicroInspect Rule based 1. The software scans and http://bioinfo.uni-
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or detects miRNA binding sites 

and sort the possible target 

sites based on free energy.  

2. The algorithm uses four 

features seed match, free 

energy, binding structure and 

self-complementarity,  

4. Supported Organism: any. 

plovdiv.bg/microinspector/ 

Table 8: miRNA prediction algorithms (Yue et al. 2009; Zheng et al. 2013). 

Current miRNA target prediction algorithm suffers from a high false positive rate (FPR). FPR 

is higher than 0.3 which reflect that specificity is often lower than 70%. Using conservation 

and functional similarities have reduced the number of false positives for miRNA target 

prediction but it still needs improvement. It is noteworthy that different algorithm’s target 

prediction can vary and researchers often crosscheck or intersect predictions from different 

algorithms to get additional confidence on true positive (Yue et al. 2009).  

7.7.2. Computational Methods to detect miRNA-mRNA 

regulatory relationship  

Gene expression technology has emerged as important and promising evidence based 

resource for exploring miRNA-mRNA regulatory relationships with biological relevance.  

Figure 28 shows a common framework used by the state of the art computational methods to 

detect the regulatory relationship between mRNA-miRNA. A set of features is first selected 

followed by building a statistical model to predict the regulatory relationship between 

miRNA and its target miRNA (Figure 28). Statistical methods such as correlation, regression 

and Bayesian parameter learning have achieved significant results in inferring miRNA-

mRNA regulatory relationships (Le et al. 2014).  
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Figure 28: General workflow of existing computational methods to investigate 
miRNA-mRNA regulatory relationship (Le et al. 2014).  

 

The principal hypothesis of this type of analysis assumes if a mRNA is regulated by miRNA, 

correlation profile at the expression level should reveal the relationship. Some of these 

methods also consider availability of miRNA-mRNA sequence based targeting to reduce the 

false discovery rate.   

In 2009, Li et al. integrated miRNA expression data and mRNA target information to predict 

miRNA-mRNA interactions. The team has detected miRNA-mRNA interactions for different 

physiological conditions using Bayesian network structure learning with splitting-averaging 

strategy. The method has applied to heterogeneous data including miRNA targeting 

information, expression profiles of miRNAs and mRNAs, and sample categories. Variational 

Bayesian-Gaussian Mixture Model has been applied to integrate the score for over expression 

data and from sequence based prediction methods (Liu et al. 2009).  

 

In 2011, Liang et al. launched mirAct web service to explore miRNA activities based on gene 

expression data. Given the user-uploaded gene expression data, mirAct first transforms values 

to ranks or Z-scores. Then, mirAct infers the regulatory effect of a miRNA via a two-step 

procedure. First, a sample score measuring the activity of a miRNA in a sample is obtained 

by comparing the expression levels of its non-targets with those of targets. In the case of rank 

transformation, the difference of the average ranks between a miRNA’s non-targets and 
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targets is used. In the case of Z-score representation, the two-sample t-statistic is applied. 

Then, miRNA activity change across different classes of samples are investigated by 

examining the sample scores via Kruskal–Wallis test, (null hypothesis is that all classes have 

identical miRNA activity and supports the analysis of multiple-class data). In addition, 

Jonckheere–Terpstra trend test is implemented to examine any trend present in the miRNA 

activity, which might be useful for analyzing data at multiple stages (e.g. disease 

progression). Multiple comparisons are corrected using the Benjamini and Hochberg FDR 

method. It is the integration of information within a single sample and across different classes 

of samples that makes mirAct distinct from other tools. Furthermore, based on 

computationally determined miRNA sample scores, mirAct enables clustering analysis for 

samples and miRNAs, which facilitates the visualization and identification of miRNAs of 

interest (Liang et al. 2011). 

 

In 2013, Chen et al. integrated different gene expression data sets from TCGA (The Cancer 

Genome Atlas) into a model to infer miRNA-mRNA interactions in different forms of cancer.  

The group developed a novel statistical method to jointly analyze expression profiles from 

multiple cancers to identify miRNA–gene interactions that are both common across cancers 

and specific to certain cancers. At first, probabilities of miRNA–mRNA interactions are 

calculated with the Pearson correlation and the statistical significance level is calculated by 

Fisher transformation. Next, an empirical Bayes method was jointly applied to infer the 

posterior probability of interactions across cancers. The method is suitable for analyzing 

multiple expression data sets (miRNA and target mRNA) of the same physiological condition 

i.e. cancer in this example (Chen et al. 2013).  

 

rdjk   =  
∑ (𝑌𝑑𝑖𝑗  −  𝑌𝑑𝑗

𝑚)(𝑋𝑑𝑖𝑘  −  𝑋𝑑𝑘
𝑚 )

𝑁𝑑
𝑖=1

√∑ (𝑌𝑑𝑖𝑗  −  𝑌𝑑𝑗
𝑚)

2𝑁𝑑
𝑖=1

 (√∑ (𝑋𝑑𝑖𝑘  −  𝑋𝑑𝑘
𝑚 )

2𝑁𝑑
𝑖=1

)

 

zdjk = 
1

2
 ln (

1+𝑟𝑑𝑗𝑘

1−𝑟𝑑𝑗𝑘
) ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (0,

1

𝑁𝑑−3
) 

where rdjk is the Pearson correlation coefficient between mRNA j and miRNA k in disease d; Ydij is the expression of gene j 

in individual i of disease d; Xdik is the expression of miRNA k in individual i of disease d; Nd is the number of individuals in 

disease d; zdjk is the z-score of each pair gained from the Fisher transformation of the Pearson correlation coefficient.  

In the same year, Jacobsen et al. also applied regression analysis to understand the regulatory 

relationship of miRNA and its target mRNA across different cancer using TCGA data. The 

team developed a computational method and statistical score i.e. the association recurrence 
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(REC) score by using miRNA and mRNA expression profiles across many cancer types. In 

individual cancer types, pairwise miRNA-mRNA relationships are evaluated using a 

multivariate linear model (Figure 29), which also factors in variation (noise) in mRNA 

expression induced by changes in DNA copy number and promoter methylation at the mRNA 

gene locus. Associations are rank transformed in individual cancer types, and the method 

subsequently evaluates the null hypothesis that no association exists between the miRNA-

mRNA pair in all cancer types to determine specificity (Jacobsen et al. 2013).  

 

Figure 29: Overview of the statistical approach. Statistical method i.e. the linear 
model has been applied to evaluate recurrence of miRNA-mRNA expression 

association across cancer types (Jacobsen et al. 2013). 

GBM: Glioblastoma multi forme, OVA: Ovarian serous cystadenocarcinoma, CRC: Colon and rectum adenocarcinoma, 

KIRC: Kidney renal clear-cell carcinoma, LUSC: Lung squamous-cell carcinoma, BRCA: Breast invasive carcinoma, 

UCEC: Uterine corpus endometrioid carcinoma, BLCA: Bladder urothelial carcinoma, HNSC: Head and neck squamous-cell 

carcinoma, LUAD: Lung adenocarcinoma 

 

In 2014, Goldenberg et al. developed a probabilistic scoring method called TargetScore. 

TargetScore predicts miRNA targets as the transformed fold-change weighed by the Bayesian 

posteriors given target features. The team integrated 84 datasets from Gene Expression 

Omnibus corresponding to 77 human tissue or cells and 113 distinct transfected miRNAs. 

TargetScore is a novel probabilistic method for miRNA target prediction problem by 

integrating miRNA-overexpression data and sequence-based scores from other prediction 

methods. Briefly, each feature is considered an independent observed variable as input to a 

variable Bayesian–Gaussian mixture model (VB-GMM).   Bayesian method was applied over 

a maximum likelihood approach to avoid over fitting. Specifically, given expression fold-

change (due to miRNA transfection), a three-component VB-GMM was used to infer down 

regulated targets accounting for genes with little or positive fold-change (Liu et al. 2009).  

In 2013, Le et al. designed a causality discovery-based method to uncover the causal 

regulatory relationship between miRNAs and mRNAs, using expression profiles of miRNAs 

and mRNAs. The algorithm does not incorporate any prior target information. The algorithm 
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basically learns the regulatory network from the expression data. Finally it simulates the 

intervention procedure to estimate the causal effect of miRNA on its target mRNA (Le et al. 

2013).  

7.8. OncomiR 
In 2002 miRNA dysregulation in cancer was first discovered in chronic lymphocytic 

leukemia (CLL). 13q14.3 a frequently deleted region in CLL holds two miRNA cluster loci 

in it i.e. miR-15, miR-16 (Calin et al. 2002). Recent evidences indicated that miRNA post 

transcriptionally regulates many oncogenes and tumor suppressor genes. In this process, they 

can control all the hallmarks of cancers i.e. tumor growth, apoptosis, invasion, angiogenesis 

and immune evasion (Stahlhut & Slack 2013). Multiple scientific studies also suggest that 

miRNAs are generally down regulated in cancer and mature miRNA present at a reduced 

level in tumors. This phenomenon can be due to genetic loss (like in CLL), epigenetic 

silencing, defects in their biogenesis pathway or wide spread repression in transcription 

(Jansson & Lund 2012). Corroborating to this, numerous studies find out that normal miRNA 

biogenesis often disrupts in cancer as reduced DICER expression presenting human tumors 

(Karube et al. 2005; Melo et al. 2009; Pampalakis et al. 2010; Zhu et al. 2012). The 

oncogenic transcription factor Myc control the expression of multiple miRNA which are well 

known for their anti-proliferative, anti-apoptotic, anti-tumor suppressor effects e.g. let-7, 

miR-15a/16-1, miR-26a and miR-34a (Bui & Mendell 2010). An abridged presentation on 

miRNA action in cancer is provided in the next section.  

7.8.1. Mechanism of action of OncomiRs 

The action of OncomiRs is mostly controlled through the following mechanisms:  

A. One to One miRNA-mRNA interaction: Some of the most important miRNA in 

cancer fall into this category i.e. they repress expression of a single target and 

regulation manifest as certain phenotype (Hayes et al. 2014).  

B. One to many miRNA-mRNAs interactions: In some cases the expression of several 

miRNAs are controlled by a single miRNA resulting a sum effect determining a 

common phenotype (Hayes et al. 2014).  

C. The functional approach: This special type of regulation where miRNA not only 

regulate expression of transcripts and decide the cellular fate but the targets are 

functionally related in a way they control expression of each other (Hayes et al. 2014).  
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D. The pathway approach: In pathway approach one or multiple miRNAs from same 

cluster i.e. regulated by the same transcription factor target several proteins’ 

transcripts within a specific pathway.  In this scenario, the pathway has several 

regulations at several nodal points (Hayes et al. 2014).  

A schematic representation of all the four possible mechanisms is presented in Figure 30. 

 

Figure 30: Mechanisms of action of OncomiRs (Hayes et al. 2014). 

Approaches to studying microRNA networks. (A) The ‘basic’ approach: single microRNA–mRNA interaction. (B) The 

‘broad’ approach: one microRNA to many mRNAs. (C) The ‘functional’ approach. (D) The pathway-based approach.  

 

7.8.2. OncomiRs in Clinical Development 

Several ongoing clinical trials aim to decipher miRNA role where specific miRNAs are being 

monitored for safety, pharmacokinetics, pharmacodynamics profile and for patient 

stratification purpose.  Such clinical trials are presented in Table 9 (Hayes et al. 2014).  

MicroRNA Trial reference Disease 

miR-34a NCT01829971 Liver cancer and liver metastases 

Numerous NCT01964508 Thyroid cancer 

Circulating NCT01722851 Breast cancer 

Numerous NCT01220427 High-risk prostate cancer 

miR-10b NCT01849952 Glioma 

miR-29b NCT02009852 Oral squamous cell carcinoma 

Numerous NCT02127073 Breast cancer 

Circulating NCT01595139 Low-grade glioma 

Numerous NCT01828918 Colorectal carcinoma 

Numerous NCT01119573 Endometrial cancer 

Circulating NCT01595126 Central nervous system cancer 
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miR-29 family NCT01927354 Head and neck squamous cell 

carcinoma 

Numerous NCT01453465 Rhabdoid tumors 

Circulating NCT01391351 Ovarian cancer 

Circulating NCT01505699 B-cell acute lymphocytic leukemia 

Numerous NCT01957332 Breast cancer 

Circulating NCT01556178 Pediatric brain cancer 

Numerous NCT01050296 Pediatric solid tumors 

Numerous NCT00864266 Non-small-cell lung cancer 

Table 9: miRNA in Clinical Trials (Hayes et al. 2014). 

 

 

One of the major focuses of the thesis is to investigate the prospective role of miRNA for the 

stratification of colorectal cancer patient who can benefit from anti-EGFR therapy. To 

familiarize the reader to each of those concepts next chapter have been dedicated to describe 

colorectal cancer in detail.  
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8. Colorectal Cancer 

8.2. Colorectal cancer: Definition 
The colon and rectum together constitutes the terminal part of the human digesting tract, 

commencing at the ileocecal valve and ending at the anus. Colorectal cancer (CRC) arises in 

the epithelial cells lining the lumen of the colon; resulting from a multistep process. Initially 

neoplastic tubular adenomas originate as polypoid structures growing into the colon lumen 

which gradually acquire disordered villous histology (Markowitz et al. 2002). Cancerous 

growth is recognized when the invasive cells rupture the underlying epithelial basement 

membrane of the colon. 

8.3. Epidemiology 
Colorectal cancer is the third most common form of cancer accounting for 10% of all cancer 

incidence worldwide and the fourth most common cancer cause of death globally (Ferlay et 

al., 2012). Almost 55% of the cases occur in more developed regions of Europe, North 

America, Australia and New Zealand, whereas incidence is lowest in some countries of south 

and central Asia, parts of Africa and South America (Center et al. 2009). There is wide 

geographical variation in incidence across the world with incidence rates varying ten-fold in 

both sexes worldwide. In 2012, estimated age-standardised incidence by region for men and 

women ranged from 4.5 and 3.8 per 100,000 in Western Africa to 44.8 and 32.2 per 100,000 

in Australia/New Zealand respectively (Ferlay et al., 2012; Jemal et al., 2011). However, in 

the USA and several other high income countries, incidence has stabilised or started to 

decrease, probably because of increased use of sigmoidoscopy and colonoscopy with 

polypectomy (Stock et al. 2012). 

 

Mortality in CRC is lower (694,000 deaths, 8.5% of the total) with more deaths (52%) 

occurring in the less developed regions of the world. There is less variability in mortality 

rates worldwide (six-fold in men, four-fold in women), with the mortality rates for men and 

women ranging from 3.5 and 3.0 per 100,000 in Western Africa to 20.3 and 11.7 per 10,000 

in Central and Eastern Europe (Center et al., 2009; Ferlay et al., 2012). Mortality has been 

decreasing since the 1980s in several high-income countries and countries of east Asia and 

eastern Europe, most probably because of improved early detection and treatment. However, 

the rise in mortality rates have continued in countries with poor healthcare resources 
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including countries in Central and South America and rural areas in China (Guo et al. 2012; 

Bosetti et al. 2011) 

 
Figure 31: Colorectal cancer epidemiology 

The figure shows the estimated age-standardised incidence by region for men and women in the world.  

8.4. Risk factors 
Several risk factors are associated with the occurrence of CRC (Brenner et al. 2014; Haggar 

& Boushey 2009). The factors ranging from the demographic to lifestyle and dietary factors 

are briefly described as following; 

8.4.1. Age & Sex 

The overall risk of developing CRC is equal among both gender, however, women have a 

higher risk for colon cancer, while men are more likely to develop rectal cancer  (DeCosse et 

al. 1993). The chances of developing CRC increases after the age of 40, sharply inclining 

after the age of 50 and more than 50% CRC cases are diagnosed in individuals aged above 

50. The incidence rate is more than 50 times higher in persons aged 60 to 79 years than in 

those younger than 40 years (Ries et al., 2008; World Cancer Research Fund, 2007)  

8.4.2. Heredity 

The hereditary factors contribute to substantial number of CRC cases. Studies show that 20% 

patients have a family history of CRC while 5-10% of the cases are a consequence of 

recognized hereditary conditions (Jackson-Thompson et al., 2006; Skibber et al., 2001)]. The 

most common inherited conditions are familial adenomatous polyposis (FAP) and hereditary 
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nonpolyposis colorectal cancer (HNPCC), also called Lynch syndrome (discussed in section 

3.5.5.) 

8.4.3. Inflammatory Bowel Disease (IBD) 

Inflammatory bowel disease (IBD) is a term used to describe two diseases, ulcerative colitis 

and Crohn disease. The presence of IBD considerably increases the risk of CRC and the 

relative risk has been estimated to be between 4 - 20 fold (Janout, 2001). 

8.4.4. Dietary habits 

Dietary intake strongly influences the development of CRC with studies demonstrating that 

change in food habits might reduce the cancer burden up to 70% (Willett 2005). High red 

meat and processed meat consumption (Larsson & Wolk 2006; Santarelli et al. 2008) along 

with high fat intake (Janout, 2001) are implicated in the development of CRC, both 

characteristics of typical Western diet. In addition, it is considered that consuming diet low in 

fruits and vegetables may have a higher risk of CRC (National Institutes of Health 2006) 

8.4.5. Lifestyle factors 

Cigarette smoking has been found to be critical for CRC development with 12% deaths 

attributed to smoking (Zisman et al. 2006). The carcinogens found in tobacco expedites 

cancerous growth in colon and rectum with studies revealing that smoking habits could lead 

to an average earlier age of disease onset in men and women (Tsong et al. 2007). Alcohol 

consumptions is associated with early onset of CRC (Zisman et al. 2006; Tsong et al. 2007) 

as well as disproportionate increase in tumor in distal colon (Bazensky et al. 2007). 

8.5. Stages of colorectal cancer 
Staging in CRC defines the process of finding out how far the cancer has spread. The stage of 

a cancer is one of the most important factors in determining prognosis and treatment options. 

The common method for CRC classification is the TNM system adopted by American Joint 

Committee on Cancer (AJCC) (Edge, 2010; Greene et al., 2002). As described in Figure 32, 

the TNM system describes 3 key pieces of information local invasion depth (T stage), lymph 

node involvement (N stage) and presence of distant metastases (M stage). The stage is based 

on the results of the physical exam, biopsy, along with imaging tests and called clinical stage.  
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Figure 32: Stages of Colorectal Cancer 

The figure demonstrates the anatomy of stage 0 to stage IV colorectal cancer.  [see: 

https://www.bowelcanceraustralia.org/images/About_Bowel_Cancer-Bowel-Cancer-Staging_770.jpg] 

 

Another classification system is adopted from the Union Internationale Contre le Cancer 

(UICC) which determines the pathologic stage after surgical removal (Sobin LH, Wittekind C 

2002). The stages in combination with the clinical stages are described in Table 10. 

 

UICC 

Stages 

TNM Description 

Stage 0 Tis N0 M0 This stage is known as carcinoma in situ when the tumor is 

in the earliest stage has not grown beyond the inner layer of 

the colon or rectum 

Stage I T1-T2 N0 M0 Tumor grows through the submucosa (T1) or it may also 

have grown into the muscularis propria (T2). 

Stage IIA T3 N0 M0 Tumor invades the subserosa (the layer between the 

muscularis propria and the serosa) or the surrounding tissue 

of the colon or rectum. 

Stage IIB T4a N0 M0 Tumor perforates the wall of the colon or rectum through 

the visceral peritoneum. 

Stage IIC T4b N0 M0 The tumor invades into other nearby tissues or organs 

through the wall of the colon or rectum by way of the 

serosa. 

Stage IIIA T1-T2 N1 M0 Tumor grows through the mucosa into the submucosa (T1) 

and also into the muscularis propria (T2) It has spread to as 

many as 3 regional lymph nodes. 

T1, N2a, M0 The tumor has grown through the mucosa into the 

submucosa (T1). It has spread to 4 to 6 nearby lymph nodes 

(N2a). 

Stage IIIB T3-T4a N1 M0 Tumor has grown into the outermost layers of the colon or 



120 

 

rectum (T3) or through the visceral peritoneum (T4a) and 

has spread to as many as 3 regional lymph nodes. 

T2-T3, N2a, M0 The tumor has grown into the muscularis propria (T2) or 

into the outermost layers of the colon or rectum (T3). It has 

spread to 4 to 6 nearby lymph nodes (N2a). 

T1-T2, N2b, M0 The tumor remains within submucosa (T1) or it may also 

have grown into the muscularis propria (T2). It has spread 

to 7 or more nearby lymph nodes (N2b). 

Stage IIIC T4a, N2a, M0 The tumor breaches through the wall of the colon or rectum 

(including the visceral peritoneum) but has not reached 

nearby organs (T4a). It has spread to 4 to 6 nearby lymph 

nodes (N2a). 

T3-T4a, N2b, M0 The cancer has grown into the outermost layers of the colon 

or rectum (T3) or through the visceral peritoneum (T4a) but 

has not reached nearby organs. It has spread to 7 or more 

nearby lymph nodes (N2b). 

T4b, N1-N2, M0 The tumor directly invades other organs or structures, 

including invasion of other segments of the colon or rectum 

by way of the serosa (T4b). It has spread to at least one 

nearby lymph node (N1 or N2). 

Stage IVA Any T, Any N, 

M1a 

The tumor may or may not have grown through the wall of 

the colon or rectum, may or may not have spread to nearby 

lymph nodes. It has spread to 1 distant organ (such as the 

liver or lung) or set of lymph nodes (M1a). 

Stage IVB Any T, Any N, 

M1b 

Tumor may or may not have spread through the wall of the 

colon or rectum and may or may not have spread to nearby 

lymph nodes. Cancer has spread to more than 1 organ or to 

the peritoneum that lines the inner wall of the abdominal 

cavity. 

Table 10: Colorectal Cancer stages based on Union Internationale Contre le 
Cancer (UICC) 

8.6. Molecular genetics 
CRC development is a gradual process often requiring 10 or more years with the dysplastic 

adenomas forming the common precursor lesion (Jass 2004). Sporadic CRC has been 

described as a multistep model of carcinogenesis in which multiple mutations are 

accumulated which results in uninhibited cell proliferation and tumor development (Fearon & 

Vogelstein 1990; Kinzler & Vogelstein 1996).  

8.6.1. Adenoma carcinoma sequence 

The main conclusions drawn regarding sporadic CRC are as follows; 
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 CRC is a result of mutational activation of oncogenes and the inactivation of tumor 

suppressor genes 

 The accumulation of multiple genetic mutations, rather than the order in which they 

occur, determines the biologic behavior of  the tumor 

 Somatic mutations in at least 4-5 genes are required for malignant transformation. 

Recent genome-wide sequence studies have enumerated about 80 mutated genes per 

colorectal cancer, however less than 15 mutations were considered to drive the tumor 

development (Wood et al. 2007) 

The distinct pathways which have been associated with CRC are as follows (Bogaert & 

Prenen 2014b); 

8.6.2. Chromosomal instability (CIN):  

This is the most common pathway (70%), incorporating numerical (aneuploidy) or structural 

chromosomal abnormalities resulting cell-to cell variability (Lengauer et al. 1997), 

characterized by frequent loss-of-heterozygosity (LOH) at tumor suppressor gene loci and 

chromosomal gene arrangements. CIN is an efficient mechanism for causing the physical loss 

of wild-type copy in specific oncogenes and tumor suppressor genes. 

8.6.3. Mutational inactivation of tumor-suppressor 

genes 

APC: Mutations in adenomatous polyposis coli (APC) gene are important in early cell 

transformation, with approximately 70–80% of sporadic colorectal adenomas and carcinomas 

have somatic mutations that inactivate APC (Kinzler & Vogelstein 1998; Segditsas & 

Tomlinson 2006). In fact, APC mutations are suggested to be the rate-limiting event in most 

adenoma development. The reason can be found in presence of somatic APC mutations even 

in earliest lesions within microscopic adenomas (Kinzler & Vogelstein 1996) as well the 

APC mutation frequency being same for minute adenomas and advanced carcinomas (Aoki & 

Taketo 2007; Polakis 2007). APC gene function is to modulate the levels of β-catenin protein 

by proteolysis as a component of the β-catenin degradation complex. Mutations in APC gene 

product leads to loss of function of oncoprotein β-catenin, which binds to its nuclear partner 

activating transcription factor which regulates cellular activation (Segditsas & Tomlinson 

2006; Markowitz & Bertagnolli 2009). This entire cascade of events causes the constitutive 

activation of Wnt signalling, regarded as the initial event in CRC. Somatic mutations and 
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deletions that inactivate both copies of APC are present in most sporadic colorectal adenoma 

and cancers. In a small subgroup of tumors with wild-type APC, mutations of β-catenin that 

render the protein resistant to the β-catenin degradation complex activate Wnt signalling 

(Vogelstein B 2002; Korinek et al. 1997).  

p53: Mutation of TP53 leads to inactivation of the p53, a key genetic step in CRC. 

Inactivated p53 is exhibited in sporadic CRC patients, in up to 75% cases. In most tumors, 

the two TP53 alleles are inactivated by a missense mutation that inactivates the 

transcriptional activity of p53 and a 17p chromosomal deletion that eliminates the second 

TP53 allele (Baker et al., 1990; DeVita et al., 2008). Wild-type p53 mediates G1 cell cycle 

arrest to facilitate DNA repair during replication or to induce apoptosis (Vazquez et al. 2008). 

Studies show that the inactivation of TP53 often coincides with the transition of large 

adenomas into invasive carcinomas (Baker, Preisinger, et al. 1990). Identification of p53 

mutations in colorectal cancer has prognostic significance. Persons with tumor that have a 

p53 mutation have worse outcome and shorter survival than persons whose tumor do not have 

a p53 mutation (Kressner et al. 1999). 

 

TGF-β: The mutational inactivation of TGF-β signalling pathway is a critical step in CRC. 

The frameshift mutation within the TGFBR2 coding sequence leads to mismatch-repair 

defects within about one third of CRC cases (Grady et al. 1999; Derynck et al. 2001). TGF-β 

signalling is abrogated in about half of CRC cases with wild type mismatch repair by 

missense mutations in TGFBR2 kinase domain, or by somatic mutations in the downstream 

components SMAD4, SMAD2 or SMAD3  (Sjöblom et al. 2006; Wood et al. 2007). Somatic 

mutations inactivating TGF-β signalling pathway mostly occur with the transition from 

adenoma to high-grade dysplasia or carcinoma (Grady et al. 1998). 

8.6.4. Activation of oncogenic pathways 

RAS & BRAF: Somatic mutations of RAS and BRAF activates the mitogen-activated protein 

kinase (MAPK) signalling pathway which develops in 37% and 13% of CRC cases 

respectively (Nosho et al. 2008; Davies et al. 2002). Mutations in RAS is considered to 

activate the GTPase activity that signals directly to RAF while mutations in BRAF signal 

BRAF serine–threonine kinase activity which in turn augments the MAPK signalling cascade 

(Tannapfel et al. 2003). BRAF mutations are detected even in small polyps are more common 

in hyperplastic polyps, serrated adenomas, and proximal colon cancers (Nosho et al. 2008). 
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8.7. Microsatellite instability pathway 
The microsatellite instability (MSI) pathway causes the inactivation of the DNA mismatch 

repair (MMR) genes characterised by the accumulation of many insertion or deletion 

mutations at microsatellites spread along the genome (Boland & Goel 2010). Microsatellites 

are nucleotide repeat sequences of 1-6 base pairs in length and insertion/deletions within the 

microsatellites located in DNA coding region leads to frameshift mutations. The silencing of 

the MMR genes inactivates the DNA repair activity and leads to accumulation of mutations  

(Bogaert & Prenen 2014b). MSI accounts for 15% of the sporadic CRC caused by 

hypermethylation of the gene promotor for the MMR enzyme (usually MLH1) leading to 

gene silencing (Weisenberger et al. 2006). MSI is frequently reported in HNPCC patients, 

which is caused by a germline mutation of one of the MMR genes (Boland & Goel 2010). 

The heightened forms of MSI cancers are characterised by the localisation at proximal colon, 

mucinous cell type, presence of tumor infiltrating lymphocytes and synchronous occurrence 

with additional tumors (Bogaert & Prenen 2014b; Jung et al. 2012).  

 

8.7.1. Inherited forms  

Hereditary forms contribute to 3-10% of all colorectal cancer cases. Inherited colon cancer is 

consequence of a germline mutation with the phenotypic features depending on the specific 

gene that is mutated (Calvert & Frucht 2002). 

 

8.7.1.1. Familial Adenomatous Polyposis (FAP) 

FAP is an autosomal dominant syndrome inherited by a germline mutation in the APC gene. 

FAP affects approximately 1 in 12,000 individuals and accounts for ∼0.5% of all CRCs 

(Fearon 2011). More than 1000 different mutations of the APC gene are described as a cause 

of FAP, resulting in a truncated APC protein (Zeichner et al. 2012). FAP is characterized by 

hundreds to thousands of adenomatous colorectal polyps that are developed by the third or 

fourth decade of life (Lynch & de la Chapelle 2003; Rustgi 2007). If left untreated at an early 

stage, there is a 100% risk of developing CRC by the age of 40, mean age being 36. Most 

patients have a family history of the disease, however approximately 25% emerge as ‘de 

novo’ gene mutations in the APC gene (Galiatsatos & Foulkes 2006). 
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8.7.1.2. Hereditary non-polyposis colorectal cancer 

(HNPCC) 

HNPCC or Lynch syndrome is the most common inherited form of CRC, caused by an 

autosomal germline mutation in one of several mismatch repair (MMR) genes (Jasperson et 

al. 2010). About 2-5% of all CRC cases are attributed to HNPCC. Germ-line MSH2 and 

MLH1 mutations account for approximately 70% of known mutations in HNPCC patients 

along with PMS1, PMS2, MSH3, and MSH6 contributing to other reported cases  (Abdel-

Rahman & Peltomäki 2008). The combination of a germline mutation in an MMR gene with 

inactivation of the remaining normal allele, results in loss of MMR function and 

accumulation of mutations in microsatellites (Bogaert & Prenen 2014b). Individuals with 

HNPCC have fewer polyps than FAP, however the polyps are highly likely to progress to 

cancer. In fact, the rapid progression of the polyps in HNPCC is termed as accelerated 

tumorigenesis requiring only 3–5 years instead of the 20–40 years estimated for most 

sporadic CRCs (Dove-Edwin et al. 2006).  

 

Indeed, a rich history of investigation has discovered several genes and pathways crucial for 

colorectal cancer initiation and progression; these include WNT, RAS-MAPK, PI3K, TGF-β, 

P53 and DNA mismatch repair pathways. Despite the background, we still did not have a 

fully integrated view of the genetic changes and system level understanding on CRC and their 

significance for colorectal tumorigenesis. A more integrated and comprehensive 

understanding of colorectal cancer achieved with worldwide collaborations on cancer 

research i.e. The Cancer Genome Atlas Network (TCGA).  As any other form of cancer CRC 

is a genetic disorder and manifest itself through a system of interlinked pathways. The 

knowledge on mutation rate and altered pathways conceded from TCGA research on CRC 

has been presented in the next section.  

 

8.8. Colorectal cancer through integrated 

OMICS data and computational models 
High throughput technological advancement has enabled scientists to comprehensively 

characterize colorectal cancer tumor in genomic, epigenomic, transcriptomic, proteomic and 

metabolOMICS level. In 2012, TCGA published multi-dimensional analysis of human 

colorectal cancer. A genome scale analysis of 276 samples analysing exome sequence, DNA 
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copy number, promoter methylation, mRNA and miRNA expression was conducted within 

TCGA consortium. The consortium has published that 16% of colorectal carcinomas were 

found to be hypermutated: three-quarters of these had the expected high microsatellite 

instability, usually with hypermethylation and MLH1 silencing and one-quarter had somatic 

mismatch-repair gene and polymerase ε (POLE) mutations. Significant mutations were 

observed in 24 genes i.e. ARID1A, SOX9 and FAM123B in addition to the expected APC, 

TP53, SMAD4, PIK3CA and KRAS mutations. Recurrent copy number alterations have been 

found in ERBB2, IGF2. Frequent chromosomal translocation includes fusion of NAV2 and 

TCF7L1 has been reported.   

8.8.1. Mutations 

TCGA consortium published 32 genes with recurrent somatic mutations in hypermutated and 

non-hypermutated colorectal cancers. Among non-hypermutated tumors eight most 

frequently mutated genes were APC, TP53, KRAS, PIK3CA, FBXW7, SMAD4, TCF7L2 

and NRAS as indicated in Figure 33. The mutations in KRAS and NRAS were mainly 

located in codon 12/13 and codon 61. Other frequently mutated genes are CTNNB1, 

SMAD2, FAM123B and SOX9. Disproportionate mutations also have been found out in 

tumor suppressor genes i.e. in ATM and ARID1A. Mutations in ACVR2A, APC, TGFBR2, 

MSH3, MSH6, SLC9A9 and TCF7L2 have been observed in hyper mutated tumors along 

with BRAF (V600E). However, two genes that were frequently mutated in the non-

hypermutated cancers were significantly less frequently mutated in hypermutated tumors: 

TP53 (60 versus 20%, P < 0.0001) and APC (81% versus 51%, P = 0.0023; both Fisher’s 

exact test) (Muzny et al. 2012). 
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Figure 33: Mutation Frequencies in Human Colorectal cancer (Muzny et al. 2012). 

a. Frequency of mutations in 224 studied colon and rectum cancer samples. Notably there is a clear separation 

between hypermutated and non-hypermutated samples. Red: MSI (Microsatelite Instability) high, CIMP (CpG 

island methylator phenotype) high. Light Blue: MSI low, CIMP low. Black: rectum, White: Colon. Grey: no data. 

b. Significantly mutated genes in hypermutated and non-hypermutated tumors. Blue bars represent genes identified 

by the MutSig algorithm and black bars represent genes identified by manual examination of sequence data.  

8.8.2. Altered Pathways in CRC  

Recurrent alteration in WNT, MAPK, PI3K, TGF-β and p53 pathways has been reported 

based on mutation, copy number and mRNA expression changes in 195 analysed tumors 

(Figure 34). WNT signaling pathways were altered in 93% of all tumors. Biallelic 

inactivations of APC or activating mutations of CTNNB1 were detected in 80% of cases. 

There were also mutations in SOX9 and mutations and deletions in TCF7L2 as well as the 

DKK family members and AXIN2, FBXW7, ARID1Aand FAM123B. A few mutations in 

FAM123B have previously been described in CRC and were also detected (Muzny et al. 

2012).  Genetic alterations in the PI3K and RAS–MAPK pathways are common in CRC. In 

addition to IGF2 and IRS2 overexpression, it was found that mutually exclusive mutations in 

PIK3R1 and PIK3CA as well as deletions in PTEN in 2%, 15% and 4% of non-hypermutated 

tumors, respectively. We found that 55% of non-hypermutated tumors have alterations in 

KRAS, NRAS or BRAF, with a significant pattern of mutual exclusivity. It has been 

observed co-occurrence of alterations involving the RAS and PI3K pathways in one-third of 
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tumors (P=0.039, Fisher’s exact test). The TGF-β signalling pathway is known to be 

deregulated in CRC. It has been reported that genomic alterations in TGFBR1, TGFBR2, 

ACVR2A, ACVR1B, SMAD2, SMAD3 and SMAD4 in 27% of the non-hypermutated and 

87% of the hypermutated tumors. It was also evaluated the alterations in TP53 in 59% of 

non-hypermutated cases and alterations in ATM, a kinase that phosphorylates and activates 

P53 after DNA damage, in 7% cases. Alterations in these two genes showed a trend towards 

mutual exclusivity (P = 0.016) (Muzny et al. 2012).  

 

Figure 34: Diversity and frequency of genetic changes leading to dysregulation of 
signalling pathways in colorectal cancer (Muzny et al. 2012).  

Non-hypermutated (nHM; n=165) and hypermutated (HM; n=30) samples with complete data were analysed separately. 

Alterations are defined by somatic mutations, homozygous deletions, high-level focal amplifications, and, in some cases, by 

significant up- or downregulation of gene expression (IGF2, FZD10, SMAD4). Alteration frequencies are expressed as a 

percentage of all cases. Red denotes activated genes and blue denotes inactivated genes. Bottom panel shows for each 

sample if at least one gene in each of the five pathways described in this figure is altered. 

 

8.8.3. Computational model in colorectal cancer 

research:  

Spurred by rapid advances in computational technology, modelling techniques, ever 

increasing collection of OMICS data and availability of well-defined pathways in CRC; 

mathematical modelling began to play a role in colorectal cancer research. In 2006, the 

dynamics of normal intestinal crypts has been already described with mathematical modelling 

by Van Leeuwen et al (Van Leeuwen et al. 2006)]. In 2011, Community Research and 

Development Information Service (CORDIS) under European commission has launched 
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SYSCOL (Systems biology of colorectal cancer) project. SYSCOL aims to systematically 

map out the changes and variations in the genetic code that increase individuals' risks of 

developing colorectal cancer, using the tools of systems biology. The knowledge on the 

variants will be used to identify the mechanisms of colorectal cancer growth and 

subsequently to develop a colorectal cancer model. The model will describe cellular 

pathways that contribute to tumor formation and explain in detail how the genetic disposition 

of an individual can activate the expression of genes that cause uncontrolled cell growth and 

lead to colorectal cancer. The dynamics of colorectal cancer is expected to be clear as the 

SYCOL project will conclude [See: http://cordis.europa.eu/result/rcn/53128_en.html].  In 2013 

Nyga et al. reported a novel three-dimensional in-vitro biomimetic colorectal cancer model 

using HT29 cells and connective tissues around the cells (Nyga et al. 2013)]. In the same 

year, Roznovăţ et al. built a network based model for genetic and epigenetic events observed 

at different stages of colon cancer with a focus on the gene relationships and tumor pathways 

(Roznovǎţ & Ruskin 2013)]. In March 2015, Sottoriva et al. reported a validated ‘Big Bang’ 

model to provide a quantitative framework to interpret tumor growth dynamics and the 

origins of intratumoral heterogeneity with important clinical implications (Sottoriva et al. 

2015).    

 

One of the major focuses of the thesis is to investigate the prospective role of miRNA for the 

stratification of colorectal cancer patient who can benefit from anti-EGFR therapy. In the 

previous two chapters the miRNA and colorectal cancer have been described in detail. The 

next chapter dedicated to describe the different treatments in colorectal cancer with major 

focus on cetuximab treatment thus explaining one of the key concepts of the thesis.  
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9. Treatment of Colorectal Cancer 
The choice of treatment in colorectal cancer depends on the stage of the cancer. The 

treatment options are as follows: surgery, radiation therapy, chemotherapy or targeted 

therapy.  

9.2. Stage specific treatment of colorectal 

cancer 

9.2.1. Stage 0 

In stage 0 the cancers have developed beyond the inner lining of the colon, the removal of the 

tumor by surgery is the most practiced treatment. The surgery can be done either by removal 

of the polyps also called polypectomy. In some cases colectocomy i.e. colon resection may 

also be required in case of bigger tumor (Society n.d.; NIH n.d.; ASCO n.d.).    

9.2.2. Stage 1 

In case of cancers that are a part of the polyp formation, the complete removal of the polyp 

without any cancer cells at the margin is the first line of treatment.  If there are cancer cells at 

the edges of the polyps additional surgery is often recommended. Additional surgery may be 

needed in case the polyps cannot be removed completely or has been removed in many 

differential pieces. If the cancer is not in polyps then colectomy i.e. removal of the colon that 

carry the cancer and nearby lymph node, are generally performed (Society n.d.; NIH n.d.; 

ASCO n.d.).  

9.2.3. Stage II  

In stage II cancers may have spread into nearby tissue but not spread to the lymph nodes, the 

first line of treatment is the removal of the part of the colon carrying the tumor along with 

nearby lymph nodes. But additional chemotherapy with 5-FU and leucovorin or capecitabine 

are often recommended for the following condition of the tumor (Society n.d.; NIH n.d.): 

i. Microscopy reveals that cancer is at high grade. 

ii. Cancer has been grown into nearby organs.  

iii. Less than 12 lymph nodes has been operated and removed.  

iv. Cancer cells have been found at the edge of removed specimen hence 

some cancer cells may have been left out.  
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v. The colon has been obstructed by the growth of cancer.  

vi. Cancer perforated the colon.  

 

9.2.4. Stage III 

In this stage cancer has been spread to the nearby lymph nodes but yet to spread other parts of 

the body. Partial colectomy (removal of the part of colon having the cancer along with nearby 

lymph nodes) along with adjuvant chemo i.e. either FOLFOX (5-FU, leucovorin and 

oxaliplatin) or CapeOx (Capecitabine and Oxaliplatin) are the most preferred treatment. If 

some cancer cells might have been left out additionally radiotherapy is performed (Society 

n.d.; NIH n.d.).  

9.2.5. Stage IV 

 The choice of surgery in Stage IV CRC depends on extent of metastasis. If there are small 

areas of lung or liver metastasis which can be completely removed along with cancerous part 

of the colon then surgical removal of those parts along with nearby lymph nodes is 

performed. In some cases hepatic artery infusion may be used if the cancer has spread to the 

liver. On the contrary if metastases in liver/lung are too larger to be removed then 

chemotherapy is applied before and after the surgery. In some cases cancer can be too 

widespread then chemotherapy is the main treatment option. But in most cases patient with 

stage IV CRC receives chemo along with targeted therapies to control the growth of cancer 

tumor. The most commonly used medicines are as follows (Society n.d.; NIH n.d.): 

i. Folfox: leucovorin, 5-FU, oxaliplatin 

ii. Folfiri: leucovorin, 5-FU, irinotecan 

iii. CapeOX: capecitabine and oxaliplatin 

iv. Any other combination from the above including bevacizumab or 

cetuximab 

v. 5-FU and leucovorin with or without bevacizumab 

vi. Capecitabine with or without bevacizumab 

vii. FOLFOXIRI: leucovorin, 5-FU, oxaliplatin, and irinotecan 

viii. Irinotecan, with or without cetuximab 

ix. Cetuximab alone   

x. Panitumumab alone 
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xi. Regorafenib alone  

 Based on the focus of this thesis cetuximab treatment has been discussed in next section.   

9.3. Cetuximab 

9.3.1. Background of inventing cetuximab 

In 1975 the team of Graham Carpenter identified a 170 KDa trans-membrane receptor which 

upon its ligand (EGF) binding increases 
32

p incorporation in A431 epidermoid carcinoma 

cells. To describe the receptor they coined the term EGFR i.e. epidermal growth factor 

receptor. During 1984 Eckhart et al demonstrated that the phosphorylation of the tyrosine 

residue of EGFR might be a crucial step for tumorigenesis. Two decade long researches  has 

identified EGFR as a receptor tyrosine kinase and further elucidate the process for EGFR 

activation, regulation of downstream pathways by activated EGFR as critical component for 

cell proliferation and survival (Toni M. Brand et al. 2011). In the year 1983 Sato et al 

identified four immunoglobulin G (IgG) and demonstrated that three of those antibodies 

namely M225 IgG, M528 IgG and M579 IgG blocked 95% of the EGF binding to EGFR in 

human A431 cells. The same group also shown that each antibody effectively blocked EGF 

induced phosphorylation of EGFR resulting reduced proliferative potential in the cell line 

model. M225 reported to have more affective anti-EFGR property (Toni M. Brand et al. 

2011; Gill et al. 1984; Kawamoto et al. 1983; Sato et al. 1983; Masui et al. 1984). These 

series of discoveries draws the attention of pharmaceutical industry sensing a potential 

targeted therapy in cancer.  

The phase trial of M225 was successful but all the patients produced human-anti-mouse 

antibodies. To nullify this immunologic reaction M225 was converted into human-murine 

chimera. The part of the variable region of mouse M225 which bind to EGFR was integrated 

IgG1 Fc isotype from human for its potential to enhance the immune contribution of C225. 

The structure of C225 is provided in detail in Figure 35 (Toni M. Brand et al. 2011).     
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Figure 35: The Structure of C225 (Toni M. Brand et al. 2011). 

 The design of cetuximab. Three murine antibodies designated M225 igG, M528 igG and M579 igG with activity against the 

eGFR were developed. Further testing identified M225 as being the most efficacious for anti-eGFR activity and was moved 

into Phase i clinical trials. Although successful, patients developed human-anti-mouse antibodies (HAMA) and therefore 

M225 was converted to a human:murine chimera, C225, with an igG1 FC isotype. 

Subsequently, the anti-EGFR antibody C225 IgG1 entered the clinical trial. The mode of 

action of this biologics is controlled by binding to the extracellular domain III of EGFR i.e. 

by blocking EGF binding to EGFR. Later this chimeric antibody was marketed as Cetuximab 

(ICM-225, Erbitux
TM

). To present a detail idea of the consequence of blocking EGF from 

binding on EGFR hence blocking all the downstream pathways are presented in the next 

section.   

9.3.2. EGFR biology and downstream pathway 

EGFR is a member of EGF receptor tyrosine kinase family with four other members 

ErbB1/HER1, Her2/neu (ErbB2), HER3 (ErbB3) and HER4 (ErbB4). Structurally these 

receptors are similar, each having an extracellular ligand binding domain, single membrane 

spanning region, a juxtamembrane nuclear localization signal (NLS), a cytoplasmic tyrosine 

kinase domain and C-terminal tail housing several tyrosine residues for propagating 

downstream signalling.  Upon binding the extracellular ligand the receptor dimerizes, 

allowing cytoplasmic EGFR-TK to activate in a tail to head fashion as indicated in Figure 36.  

 

Figure 36: Modelling the effect of ligand binding to the EGFR receptors (Kumar et 
al. 2008). 
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A schematic diagram of EGFR family activation based on crystal structures. On extracellular ligand binding the receptor 

dimerizes allowing the cytoplasmic EGFR-TK to activate in a tail-to-head fashion. 

Upon ligand binding EGFR activate three downstream pathways RAS/RAF/MEK/ERK, 

PI3K/AKT/mTOR and PLCγ/PKC. Other two important downstream pathways are SRC 

tyrosine kinases and STAT activation.  

9.3.2.1. RAS/RAF/MEK/ERK pathway:  

This pathway leads to cell proliferation and play a central role in many human cancers. 

Ligand binding to EGFR triggers its activation and subsequent phosphorylation. Activated 

phospho-tyrosine residues in its C-terminal, act as a binding site for Grb2, a SH2-containing 

protein. In the next stage Grb2 recruits the guanine nucleotide exchange factor SOS through 

its SH3 domain. This promotes binding of GTP to RAS and subsequently activated RAS 

triggers the Map kinase (MAPK) cascade. Next Ras-GTP complex binds and activates RAF 

kinase (MAPKKK). Activated RAF binds to and phosphorylate MEK (MAPKK). Activated 

MAPKK then phosphorylate ERK1/2 (MAPK). Activated ERK kinases can activate several 

other kinases including MNK1, MNK2, MSK1, MSK2, RSK, MAPK. In turn these kinases 

phosphorylate several transcription factors including Elk-1, PPARγ, STAT1, STAT3, C-myc 

and AP-1. These activated transcription factors increased expression of several genes 

involved in cellular proliferation, most notably cyclin D1 (Sebolt-Leopold & Herrera 2004).  

9.3.2.2. PI3K/AKT/mTOR pathway 

Activated EGFR also recruit PI3K to the cell membrane. PI3K phosphorylation of 

phosphatidylinositol-4,5-biphosphate yields the second messenger phosphatidylinositol-3,4,5-

triphosphate (PIP3). PIP3 serves as a membrane bound docking site for AKT. Once PIP3 and 

AKT together stationed on the plasma membrane, AKT is phosphorylated by two kinases i.e. 

PDK1 and mTORC2. One of the crucial effector of AKT activation is mTORC1. AKT 

activate mTORC1 via TSC2. Phosphorylation of TSC2 by AKT cancels inhibition of the 

small G-protein RHEB. This initiates activation of mTOR. Activated mTOR phosphorylate 

p70-S6 kinase 1 initiate protein synthesis via S6 ribosomal subunit. Over all activation of 

protein synthesis is a crucial step in cancer cell growth and survival. Activated AKT also 

influence cell proliferation by activating ample cellular factors (Hanahan & Robert A. 

Weinberg 2011; Bogaert & Prenen 2014a).  
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9.3.2.3. PLCγ/PKC pathway:  

This pathway plays a crucial role in mediating the effects of activated EGFR. Phospholipase 

C (PLC) interacts with phosphor-tyrosine residues of EGFR via its SH2 domain. The 

interaction activates PLC mediated by PIP3. Activated PLC interacts with plasma membrane 

and it cleaves PIP2 to inositol triphosphate (IP3) and diacylglycerol (DAG). Subsequently 

IP3 bind its receptors at the endoplasmic reticulum to induce the calcium influx into the cell. 

DAG activates PKC at the plasma membrane. Activated PKC is a potent serine/threonine 

kinase second messenger capable of phosphorylating a plethora of substrates leading to cell 

proliferation, apoptosis, cell survival and cell migration (Hanahan & Robert A. Weinberg 

2011; Bogaert & Prenen 2014a).    

All these above mentioned pathways their downstream transcription factors and phenotypes 

i.e. cell survival, proliferation, invasion, metastasis and angiogenesis, are described in Figure 

37.       

 

Figure 37: Downstream signaling of activated EGFR (Li Gong n.d.) 

The figure shows the downstream signaling pathways which activate upon binding of EGF to EGFR leading to cell 

proliferation, invasion, metastasis and angiogenesis.   
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9.3.3. Mode of action and efficacy of cetuximab  

Cetuximab effectively blocks the binding of EGF to EGFR i.e. blocks EGFR 

phosphorylation. It also promotes EGFR internalization and reduces cell proliferation in 

metastasis colorectal cancer. Detailed mechanisms of actions of cetuximab treatment are 

summarized in Figure 38.    

a. Cetuximab has got more affinity for EGFR than two of its ligand namely TGFα, EGF 

i.e. cetuximab effectively block ligand induced EGFR phosphorylation. So all the 

three EGFR downstream pathways discussed in the previous section are blocked (Gill 

et al. 1984; Kawamoto et al. 1983; Sato et al. 1983; Masui et al. 1984).  

b. Other reports suggested that cetuximab sterically hinder the binding of EGFR to other 

HER family members (Li et al. 2005).  

c. Cetuximab also promotes the internalization or degradation of EGFR i.e. nullifying 

the chance of downstream signaling (Sunada et al. 1986).  

d. Cetuximab treatment in different cancer models or human tumor xenografts has 

shown an increased expression of cell cycle inhibitor p27
kip1

 which drives the 

formation of p27
kip1

-Cdk2 complexes. This complex arrests the cell cycle at G1 phase 

(Huang et al. 1999; Wu et al. 1996).  

e. Treatment with cetuximab dramatically decrease the pro-angiogenic factors i.e. inhibit 

angiogenesis. Cetuximab therapy may also lead to decreased invasion or metastasis 

spread of the tumor cells (Tortora et al. 1999; Liu et al. 2000).  

f. Cetuximab treatment increases expression of apoptosis promoting Bax and decreases 

cell survival promoting Bcl2. By modulating the expression of those two proteins the 

monoclonal antibody drives the shrinkage of tumor (Wu et al. 1995).  

g. Cetuximab also mediate antibody dependent cytotoxicity of the tumor cells (Kimura 

et al. 2007).   
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Figure 38: Mode of action of Cetuximab therapy (Toni M. Brand et al. 2011). 

The mechanism of action of cetuximab. All the biological processes (A to G) are described above.  

However, multiple lines of evidences suggest that only 10-20% patients with mCRC benefit 

from cetuximab treatment (Chung, Shia, Nancy E. Kemeny, et al. 2005; Cunningham et al. 

2004a). Over the years intense research has been undertaken to discover biomarker that can 

stratify metastasis colorectal cancer patients which are likely to respond prior to the 

treatment.  Some stratified biomarker has been identified and also approved by the regulatory 

bodies, described in the next section.  

9.3.4. Stratified biomarker of cetuximab therapy 

9.3.4.1. KRAS mutation 

KRAS mutation is one most important indicator whether a CRC patient will be sensitive or 

resistant to cetuximab therapy. KRAS is a GTPase which connect EGFR to RAF/MEK/ERK 

pathway. After binding to GTP, KRAS activate RAF i.e. triggers the pathway leading to 

cellular proliferation. Mutations in codon 12 or 13 impair the intrinsic GTPase activity and 

show resistance to GAPs. This causes the accumulation of active mutant RAS in the cancer 

cells. This accumulated active form of RAS still capable to trigger RAF/MEK/ERK pathway 

in EGFR independent manner (Trahey & McCormick 1987; Toni M. Brand et al. 2011). 
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Lièvre et al has shown that the KRAS mutation is significantly associated with the cetuximab 

resistance activity in CRC (Lièvre et al. 2006).     

9.3.4.2. BRAF mutation 

In 2008 Nicolantonio et al shown that efficacy of anti-EGFR monoclonal antibody in CRC 

hindered by BRAF V600E mutation (Di Nicolantonio et al. 2008). BRAF is kinase belong to 

RAF family. GTP bound KRAS activate BRAF which triggers RAS/RAF/MEK/ERK 

pathway (Niault & Baccarini 2010). But mutant BRAF can still activate 

RAS/RAF/MEK/ERK pathway in EGFR independent manner (Lito et al. 2013).  

9.3.4.3. EGFR gene copy number 

Increased gene copy number is associated with the response of cetuximab therapy in CRC 

(Mauro Moroni et al. 2005). Subsequent large clinical trials of CRC patients treated with 

cetuximab confirmed the relationship as well (Personeni et al. 2008). But the exact 

mechanism for this phenomena is unknown (Toni M. Brand et al. 2011). 

9.3.4.4. Over expression of EGFR ligand 

In 2007 Khambata-Ford et al has shown the correlation between expression of two EGFR 

ligands i.e. EREG and AREG to cetuximab treated CRC patients. CRC patients with high 

expression of Epiregulin (EREG) and Apiregulin (AREG) are more like to have disease 

control when treated with cetuximab treatment (Khambata-Ford, Christopher R. Garrett, et al. 

2007). 

 Discovery of these biomarkers has enabled clinicians to somewhat predict the response of 

cetuximab therapy in CRC patients prior to the therapy. However selection of right cohort of 

patients is still far from complete as cetuximab resistance mechanism remains poorly 

understood. To address the issue scientific community is looking for addition biomarkers 

predicting the efficacy of the treatment. In this regard miRNA has recently drawn the 

attention of scientific community for its capacity to regulate expression of multiple onco 

genes, tumor suppressor genes and pathways central to cancer formation.  Identifying the 

potential of miRNA as stratified biomarker, a novel SMARTmiR algorithm has been 

developed to predict the role of miRNA as therapeutic biomarker for cetuximab treatment in 

colorectal cancer. The SMARTmiR methodology is presented in the next chapter.  
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10. The Prospect of miRNA as 

Therapeutic Biomarker in Colorectal 

Cancer (Deyati et al., 2015) 
Colorectal cancer (CRC) is one of the most prevalent cancers, with 1.2 million new cases 

every year. It is the second most commonly diagnosed cancer in females and the third most 

common in males; the highest incidence occurs in developed countries. By the age of seventy 

years, one out of every two citizens in the Western world develop benign adenomas that 

evolve into malignant carcinomas at an estimated yearly rate of 0.1 to 0.25% (Jass 2004). In 

United States alone, the annual cost of CRC treatment is forecasted to reach $17.7 billion by 

2020. However, using simultaneous strategies that reduce risk factors, increasing screening 

and treatment could avoid 101,353 deaths resulting in $33.9 billion in savings in reduced 

productivity loss (Bradley et al. 2011). 

EGFR, a transmembrane receptor tyrosine kinase has been identified as one of the most 

promising targets for treating metastatic colorectal cancer (mCRC).  Among the 20 molecules 

listed by the National Cancer Institute for the treatment of mCRC (Anon n.d.), cetuximab is 

one of the most successful monoclonal antibodies  (Saltz et al. 2004; Chung, Shia, Nancy E 

Kemeny, et al. 2005).  However, multiple lines of evidence suggest that only 10-20% patients 

with mCRC benefit from cetuximab treatment (Chung, Shia, Nancy E Kemeny, et al. 2005; 

Cunningham et al. 2004b). The selective efficacy, side effects and high treatment costs of 

cetuximab result in the need for focused research to decipher the resistance mechanisms to 

cetuximab. The response of the scientific community to this need is evident through the 

increased number of publications suggesting that the mutational status of KRAS, BRAF and 

PIK3CA, differential expression of PTEN, EGFR ligand (AREG, EREG) and EGFR gene 

copy number variation could serve as therapeutic biomarkers for anti-EGFR monoclonal 

antibody treatment in CRC (Frattini et al. 2007; Sartore-Bianchi, Martini, et al. 2009; Perrone 

et al. 2009; Mauro Moroni et al. 2005; Prenen et al. 2009; Sartore-Bianchi, Di Nicolantonio, 

et al. 2009).  However, none of these singular molecular changes could accurately predict the 

response of CRC patients to cetuximab therapy. Because CRC is a system-level disorder that 

involves multiple molecular mechanisms to support proliferative signalling, resist cell death, 

induce angiogenesis and metastasis; molecules such as miRNAs that regulate signalling 

pathways by affecting the expression of multiple proteins might serve as more potent 
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therapeutic biomarkers (Hanahan & Robert A Weinberg 2011; Rukov et al. 2013). However, 

little is known regarding the role of miRNAs as a therapeutic biomarker for cetuximab 

treatment in CRC.  

miRNA expression is typically dysregulated in cancer cells and this dysregulation has a high 

degree of tissue specificity, miRNAs could be used as diagnostic and therapy-related 

biomarkers. Additionally, miRNAs have an unusually high stability in formalin-fixed tissues, 

from which they could be extracted with minimal degradation (Tang et al. 2006). Moreover, 

the techniques of miRNA analysis from a single cell are established, allowing for the analysis 

of small amounts of miRNAs with increasing sensitivity for potential biomarker assays (Lim 

et al. 2005). The roles of miRNAs in CRC, EGFR signalling regulation and cetuximab 

treatment outcome are also evident. Multiple reports regarding the miRNA dysregulation in 

metastatic colorectal cancer have been published. Some groups reported that major colorectal 

cancer biomarkers such as EGFR and RAS are regulated by mir-7 and let-7 respectively, thus 

profoundly affecting downstream signalling (Webster et al. 2009; Lee et al. 2011; Xu et al. 

2012; Liu et al. 2011; Li et al. 2012). Recently, Bissonnette et al. demonstrated the 

correlation between EGFR signalling and miR-143, mir-145 in murine colon cancer models 

(Zhu et al. 2011). Another group discovered that cetuximab-mediated EGFR inhibition 

abrogates the age-related increase of miR21, which is related to age-dependent colorectal 

cancer (Nautiyal et al. 2012).  

These findings cumulatively suggest a potentially significant role of miRNAs in EGFR 

signalling in CRC. Therefore, these evidences compelled us to create a workflow to identify 

the most critical miRNAs important for cetuximab resistance in CRC that could be further 

used for potential biomarker assay development. In this study, we propose ranked miRNA 

candidates that might contribute to cetuximab resistance in CRC patients. The inference is 

based on the integration of multiple published and predicted miRNA findings into cellular 

pathways that lead to oncogenesis and metastasis. We prioritised the biomarker candidates 

based on a novel algorithm, i.e., SMARTmiR (Scoring-based MARking of Therapeutic 

MIcroRna), that combines the network parameters and literature-derived evidence. Finally, 

the significance of our prediction was strongly supported by recently published experimental 

data that are derived from cetuximab resistant CRC patients. This study provides an 

actionable insight into the novel mechanism of cetuximab resistance mediated by miRNAs 

that might lead to identification of miRNAs as biomarkers, thereby predicting optimum 

responses to the drug.    
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10.2. SMARTmiR workflow 
Herein, we propose a predictive algorithm, i.e., SMARTmiR, that combines knowledge and 

data-driven approaches to identify miRNAs contributing to the therapeutic effects of 

cetuximab in CRC patients. The algorithm consists of the following four steps (Figure 39): 

Step 1: Construction of pathway maps leading to oncogenesis and metastasis in CRC. 

Step 2: Identification of miRNA candidate biomarkers via miRNAome screening. 

Step 3: Ranking of miRNAs based on accumulated evidence and the effects on the cellular 

process of CRC patients treated with cetuximab.  

Step 4: Validation of the prediction based on experimental data. 

 

 

Figure 39: SMARTmiR workflow for the selection of miRNAs as candidate 
biomarkers conferring cetuximab resistance in colorectal cancer  
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10.2.1. Construction of molecular pathway maps leading 

to CRC oncogenesis and metastasis 

Following the first step in the workflow as illustrated in Figure 39, we created a 

comprehensive bio molecular space for the mechanisms of action of cetuximab therapy in 

colorectal cancer. In doing so we assembled four pathway maps linked to four fundamental 

cellular processes in oncogenesis and metastasis; namely apoptosis, proliferation and 

differentiation, angiogenesis, and metastasis. These pathway maps integrate known pathways 

from Metacore (Thomson Reuters, New York, USA) that lead to the four cellular processes 

and protein-protein interactions from IntAct, BioGRID and HPRD (Human Protein Reference 

Database) Databases (Ekins et al. 2007, Shannon, Markiel, Ozier, Nitin S Baliga, et al. 2003). 

The pathways that were integrated to build the four pathway maps leading to the cellular 

processes are listed in Table 11. All of the molecules in the maps (nodes) are annotated with 

the Entrez gene ID, HGNC gene symbols and corresponding UniProt IDs. The distinct 

features of the pathways are as follows: (A) Node shapes and colours correspond to their 

functional category (e.g., receptor, ligand, transcription factor, kinase); (B) All of the edges 

have directionality; (C) The edges are differentiated by shapes and colour corresponding to 

the type of interaction (such as binding, catalysis, phosphorylation, transcription regulation, 

transformation etc.); (D) Reactions (edges) are tagged to PubMed IDs as evidence. Four 

pathway maps corresponding to proliferation and differentiation, apoptosis, angiogenesis, and 

metastasis are available in standardised SBML (Systems Biology Markup Language) (Hucka 

et al. 2003) for file exchange between different tools. The four pathways are provided as four 

Supplementary Pathway maps (i.e., Apoptosis.xml, Proliferation_Diffrentiation.xml, 

Angiogenesis.xml and Metastasis.xml) (See: 

http://www.nature.com/srep/2015/150126/srep08013/extref/srep08013-s16.zip). The Pubmed 

IDs supporting an edge can be found by selecting respective edge in the pathway map 

specific xml files after opening those in Cytoscape.  

TCGA RNA Seq data in colon and rectal adenocarcinoma (2012) has been analysed to 

demonstrate the CRC specificity of the constructed maps (Anon 2012). 
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Cellular 

processes 

Pathways assembled 

Proliferation 

and 

Differentiation 

EGFR signalling pathway, EGFR signalling via small GTPases, EGFR 

signalling via PIP3, EPO-induced MAPK pathway, ERK5 in cell 

proliferation, PDGF signalling via MAPK cascades, PDGF signalling via 

STATs and NF-kB 

Apoptosis Apoptosis and survival Anti-apoptotic TNFs/NF-kB/Bcl-2 pathway, 

Apoptosis and survival_Anti-apoptotic TNFs/NF-kB/IAP pathway, 

Apoptosis and survival p53-dependent apoptosis, EPO-induced Jak-STAT 

pathway, EPO-induced PI3K, AKT pathway and Ca(2+) influx, Signal 

transduction of AKT signalling, Signal transduction of PTEN pathway 

Angiogenesis VEGF-family signalling and activation, Angiopoietin - Tie2 signalling, 

VEGF signalling via VEGFR2 - generic cascades, S1P1 signalling pathway 

Development Role of IL-8 in angiogenesis, Thrombospondin-1 signalling 

Metastasis TGF-beta receptor signalling, TGF-beta-dependent induction of EMT via 

MAPK, Regulation of epithelial-to-mesenchymal transition (EMT), Immune 

response of Oncostatin M signalling via JAK-Stat in human cells FGF2-

dependent induction of EMT, TGF-beta-induction of EMT via ROS, 

NOTCH-induced EMT, HGF-dependent inhibition of TGF-beta-induced 

EMT, TGF-beta-dependent induction of EMT via RhoA, PI3K and ILK, 

Immune response of Oncostatin M signalling via MAPK in human cells, 

HGF signalling pathway 

Table 11: Detailed listing of the pathways used for assembling the proliferation 
and differentiation, apoptosis, angiogenesis, and metastasis processes. 

 

10.2.2. Identification of miRNAs candidate biomarkers 

via miRNAome screening 

In the second step, we identified miRNA-target interactions (MTIs) for all of the nodes in the 

four constructed pathway maps. The exhaustive search for these miRNAs included both 

experimentally validated miRNAs and predicted miRNAs.  
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10.2.2.1. Experimentally validated and literature reported 

miRNAs 

Through screening public and commercial sources for experimentally validated MTIs, we 

identified two major resources that are widely used because of their extensive coverage and 

the quality of scientific evidence, i.e., TarBase and Pathway Studio (Elsevier, Amsterdam, 

Netherlands) (Nikitin et al. 2003). TarBase hosts manually curated MTIs that are 

experimentally validated (Vergoulis et al. 2012). It also incorporates entries from other well-

known databases, such as miRecords (Xiao et al. 2009), miRTarBase (Hsu et al. 2011) and 

miR2Disease (Jiang et al. 2009). All of the literature-derived MTIs that were extracted for 

our study from the two sources described above are included in Supplementary Table 12 

(See: http://www.nature.com/srep/2015/150126/srep08013/extref/srep08013-s11.xls).  

10.2.2.2. Predicted miRNAs 

Several computer-aided algorithms are available for the identification of MTIs. We used 

Diana-Micro T 3.0, Pictar and TargetScanS to identify predicted MTIs for the four developed 

pathways, focusing in particular on their overlapping predictions. These identified miRNAs 

have not been encoded into the pathway maps and are used to further filter and rank potential 

candidate miRNAs (described below). 

10.2.2.3. Ranking of miRNAs based on accumulated 

evidence and their effect on the system 

A novel raking formula was developed to rank the miRNAs for their potential to serve as 

therapeutic biomarkers for cetuximab treatment in CRC patients (Equation 1). To enhance the 

accuracy of the ranking function, the four assembled processes were integrated in one 

Integrated map, representing a comprehensive knowledge space of functional molecular 

networks that lead to the cellular process those are mostly dysregulated in colorectal cancer. 

Each miRNA is ranked based on its topological properties, network properties of its targets 

and based on literature-derived evidence of miRNA regulating signalling pathways that are 

important for colorectal carcinogenesis, miRNA target’s (i.e., nodes in the Integrated map) 

relations to cetuximab. All of the literature-derived evidence for the candidate miRNA’s 

relationships to cellular processes, CRC and the target’s relations to cetuximab are provided 

in Supplementary Table 13 (See: 

http://www.nature.com/srep/2015/150126/srep08013/extref/srep08013-s12.xls), 

Supplementary Table 14 (See: 
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http://www.nature.com/srep/2015/150126/srep08013/extref/srep08013-s13.xls) and 

Supplementary Table 15 

(http://www.nature.com/srep/2015/150126/srep08013/extref/srep08013-s14.xls); 

respectively. The network parameters (Betweenness centrality, Node degree) were calculated 

using the CentiScaPe plugin (Scardoni et al. 2009). 

𝑺𝒋
𝒎𝒊𝒓 = 𝐝𝐞𝐠(𝒎𝒊𝒓𝒋) +  

∑ 𝑹𝒊 ∗𝒏
𝒊=𝟏 𝑻𝒊

∑ 𝑻𝒊
𝒏
𝒊=𝟏

+  𝑬𝒋
𝑷𝒂𝒕𝒉𝒘𝒂𝒚 + 𝑬𝒋

𝑪𝑹𝑪  +  ∑ 𝑬𝒊
𝑪𝒆𝒕𝒖𝒙𝒊𝒎𝒂𝒃

𝒏
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Sj
mir

 is the score of j
th

 miRNA. Each feature is given equal weightage due its natural 

importance and is normalised between 0 and 1 such that the calculated score could have a 

maximum value of 5. The overall scoring function was implemented in the Perl programming 

language.  

The first feature of miRNA ranking is the node degree of the j
th 

miRNA, i.e., the no. of 

targets of the j
th 

miRNA in the Integrated map, as defined as the deg(mirj). The node degree 

corresponds to the no. of nodes adjacent to a given node v. The degree allows for an 

immediate evaluation of the regulatory relevance of the node. For example, in signalling 

networks, proteins with a very high degree are interacting with several other signalling 

proteins and are likely to be regulatory hubs.  The second parameter was calculated based on 

the weighted node degree of all of the targets of j
th

 miRNA, depicted as ∑ 𝑅𝑖 ∗𝑛
𝑖=1 𝑇𝑖/ ∑ 𝑇𝑖

𝑛
𝑖=1 , 

where Ti is the node degree, and Ri is rank of i
th 

target based on node degree, targeted by j
th

 

miRNA.  Additionally, betweenness is calculated considering couples of nodes (v1, v2) and 

by counting the no. of shortest paths linking v1 and v2 and passing through a node n. The 

betweenness of a node in a biological network, such as a protein-signalling network, could 

indicate the relevance of a protein as functionally capable of holding together communicating 

proteins. Betweeness centrality was applied to identify the importance of a node in each of 

the four pathways (see the Results section). The additional features of SMARTmiR are 

literature-derived evidence reflecting the direct effect of each miRNA candidate in cancer 

aetiology, progression, spread and miRNA specific relationship to colorectal cancer. This 

third feature calculates the total amount of literature evidence (PubMed IDs) linking the j
th

 

miRNA to the four cellular processes relevant to tumor progression (proliferation and 

diffrentiation, apoptosis, metastasis, and angiogenesis), depicted as 𝐸𝑗
𝑃𝑎𝑡ℎ𝑤𝑎𝑦. Similarly, the 

fourth feature calculates the total amount of literature evidence (PubMed IDs) that reflects the 

association of the j
th

 miRNA to colorectal cancer, depicted as 𝐸𝑗
𝐶𝑅𝐶.  
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The ultimate goal of SMARTmiR is to prioritise the role of a candidate miRNA as a 

therapeutic biomarker for cetuximab treatment in CRC. Therefore, the last feature, 

∑ 𝐸𝑖
𝐶𝑒𝑡𝑢𝑥𝑖𝑚𝑎𝑏𝑛

𝑖=1 , calculates the total amount of literature evidence (PubMed IDs) of the j
th 

miRNA target’s (i
th

) related to cetuximab.  

Separately we have also calculated the miRNA scoring with betweeness centrality of the 

nodes as second feature; maintaining first, third, fourth and fifth features of SMARTmiR 

identical. The resulting scoring is provided in Supplementary Table 16 (See: 

http://www.nature.com/srep/2015/150126/srep08013/extref/srep08013-s15.xls).  

10.2.3. Validation of predicted miRNA biomarkers 

We used a list of differentially expressed miRNAs in cetuximab sensitive and resistant CRC 

patients (KRAS and VRAF wild type) (Mosakhani et al. 2012) to validate the miRNAs 

predicted and ranked by our workflow as significant therapeutic biomarker candidates for 

cetuximab treatment. To further substantiate the expression of targeted mRNAs by the most 

significant miRNA biomarkers, we also analysed the mRNA expression data (Khambata-

Ford, Christopher R Garrett, et al. 2007). The mRNA expression data analysis was performed 

using the appropriate R software packages. In particular, we used the MAS5 normalisation 

method (Irizarry et al. 2003) and applied the SAM (Significance Analysis of Microarray) 

package to identify differentially expressed mRNAs (Tusher et al. 2001b).  All differentially 

expressed mRNA with its corresponding p-value can be observed in the fourth column of 

Table 13.  

10.3. Evalution of SMARTmiR workflow 

10.3.1. Construction of molecular pathway maps crucial 

for cetuximab mode of action in CRC 

The efficacy of cetuximab treatment in responsive colorectal cancer is mostly depend on the 

state of four cellular processes namely apoptosis, proliferation and differentiation, 

angiogenesis, epithelial-to-mesenchymal transition/metastasis (Toni M Brand et al. 2011a). 

First a comprehensive framework for the analysis and a structured overview of the bio 

molecular space for the mechanisms of action of cetuximab therapy in colorectal cancer was 

created by assembling four pathway maps which are representative of those cellular processes 

in CRC.  
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The landscapes of the calculated network parameters for each of the four constructed 

pathways are presented in Figure 40. The top three nodes of each pathway (Jak2, Akt, p53 in 

apoptosis; SMAD, TGF-β, Shc in metastasis; VEGFR, VEGF, Src in Angiogenesis; EGFR, 

c-Fos, c-Raf in proliferation and differentiation) are well-known players in the corresponding 

processes (Hanahan & Robert A Weinberg 2011; Toni M Brand et al. 2011a; Sakurai & Kudo 

2011; Wittekind & Neid 2005). The high no. of the nodes representing receptors and kinases 

in all four pathway maps emphasise the crucial role of these molecules in oncogenesis and 

metastasis. Our maps also demonstrate that the roles of some molecules, such as transcription 

factors, in metastasis are better understood and more well-known compared with the other 

three processes.   

To understand the degree of the cross-talk and the overlap between the four pathway maps, 

we integrated all four pathway maps into a resulting integrated map. Table 12 presents a 

statistical overview of the pathway maps and the percentage of literature validation of the 

nodes related to the corresponding cellular processes.  

 

Figure 40: Landscape of the four cellular processes in terms of the node degree, 

betweenness centrality, functional category of nodes and edges. 
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Node degree: no of edges connected a node; Betweenness centrality: the no. of shortest paths from all of the vertices to all of 

the others that pass through that node. 

A list of common nodes in all four pathways is provided in  

Supplementary Table 17 (See: 

http://www.nature.com/srep/2015/150126/srep08013/extref/srep08013-s2.xls). 

Cellular Processes No. of 

Nodes 

No. of 

Edges 

Percentage of published 

relationships of nodes to the 

cellular processes 

Apoptosis 179 305 55.3% (99/179) 

Proliferation and 

Differentiation 

151 261 45% (68/151) 

Angiogenesis 201 289 36.8% (74/201) 

Metastasis 245 471 46% (113/245) 

Table 12: Statistical overview of the assembled pathway maps representing four 
cellular processes  

The high percentage of literature validations (4
th

 column of Table 12) confirms that the 

constructed pathways represent a good reflection of the current knowledge accumulated in 

the scientific literature. The metastasis pathway map is the largest in terms of the no. of nodes 

and edges, followed by angiogenesis, apoptosis, proliferation and differentiation. The 

integrated map consists of 465 nodes and 792 directed edges, demonstrating a large overlap 

among the molecules involved in the four processes. The literature validations of the node’s 

relationships to the cellular processes are provided in Supplementary Table 18 (See: 

http://www.nature.com/srep/2015/150126/srep08013/extref/srep08013-s3.xls).  

To analyse the CRC specificity of the assembled pathway maps, we first explored the 

published TCGA (The Cancer Genome Atlas) data regarding the differential expression of 

the nodes’ mRNAs in colon and rectum adenocarcinoma (Anon 2012). This analysis 

demonstrated that 96% of the nodes’ mRNAs are differentially expressed (more than two 

standard deviations from the mean) in at least one of the 244 studied tumor samples. In 

addition, we examined the association of the pathway maps’ nodes to colorectal cancer in the 

published scientific domain and determined that 45.3% of them (211/465) have been reported 

in the literature to have a relationship with CRC. All of those relationships are included in 

Supplementary Table 19 (See: 

http://www.nature.com/srep/2015/150126/srep08013/extref/srep08013-s4.xls). The 
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differential expression of each mRNA in the TCGA tumor samples is provided in 

Supplementary Table 20 (See: 

http://www.nature.com/srep/2015/150126/srep08013/extref/srep08013-s5.xls). 

10.3.2. miRNAome screening for putative candidate 

biomarker  

Upon construction of comprehensive pathway maps and verification of their association with 

the four cellular processes and in CRC, we screened the published miRNAome for miRNAs 

targeting at least one node of the four pathway maps, which could serve as potential 

biomarkers for further analysis. In our screening, we considered experimentally validated 

miRNA target interactions (MTIs) and computationally predicted MTIs. To increase the 

chance of the predicted MTIs being biologically relevant, overlapping MTIs between three 

different miRNA-target prediction algorithms (Krutovskikh & Herceg 2010; Witkos et al. 

2011) were used. One method that can be used to compare the quality of MTI prediction is to 

calculate the percentage of the prediction that has already been experimentally validated. In 

that direction, the percentage of experimentally validated MTIs is calculated for predictions 

from three individual algorithms, i.e., Pictar, miRanda, DianaMicroT, and from the 

intersection of their predictions. Experimentally validated MTIs are obtained from TarBase 

and Pathway Studio. As demonstrated in Figure 41, the percentage obtained from intersection 

of the three prediction algorithms is higher than that obtained using any of the three 

prediction algorithms used individually (Figure 41). Using the intersection of three prediction 

algorithms, we are able to capture 17.5% of the experimentally validated MTIs (average for 

four processes). However, the results for each of the prediction algorithms are less 

impressive: Pictar (3.9%), miRanda (3.4%), DianaMicroT (1.7%). Therefore, the assumption 

of using the intersection of the three prediction algorithms proved to be a better approach and 

was used for further analysis. Total number of experimentally validated MTIs for all 

prediction software and their intersect for all four pathway maps are provided in 

Supplementary Table 21 (See: 

http://www.nature.com/srep/2015/150126/srep08013/extref/srep08013-s6.xls). 
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Figure 41: Comparative performance of Pictar, miRanda, DianaMicroT and the 
intersection of the three algorithms in capturing validated miRNA-target 

interactions.  

 

The miRNAome screening revealed 335 miRNAs that target at least one node of the four 

assembled pathway maps. We further analysed the 335 miRNAs based on their ability to 

participate in all four processes, thus having a higher probability to be therapeutic biomarkers 

for cetuximab treatment in CRC patients. This analysis resulted in the selection of 188 

miRNAs that interact with targets in all four of the pathway maps, and these selected 

miRNAs were used for the ranking and validation (Figure 42). 

 

Figure 42: Quantities of miRNA species targeting each pathway and cross-
sections.  
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To evaluate the relationship of those 188 miRNAs to the four cellular processes and to the 

neoplasm, we performed a random sampling approach. We randomly selected 20 non-

overlapping sets containing 5 miRNAs each (S1, S2,.., S20 in Figure 43). Next the 

association between each miRNA (from each of those 20 samples) to four cellular processes 

(apoptosis, proliferation and differentiation, metastasis, angiogenesis) and to neoplasms were 

searched in the scientific literature. The number of miRNAs from each sample that are 

published to regulate at least one of those four cellular process and neoplasms are 

summarised in Figure 43. It is evident from Figure 43 that 74% of the miRNA candidates are 

known to regulate at least one of the four cellular processes and 51% of those miRNA are 

linked to different forms of neoplasms. 

 

Figure 43: The relationships of miRNAs from twenty randomly collected non-
overlapping samples (five miRNAs each) to cell processes (angiogenesis, 
apoptosis, proliferation and differentiation, metastasis) and neoplasms.  

The column S1, S2, S3, ……, S20; denote the 20 non overlapping samples having 5 miRNA in each of them. Each sample 

collected randomly from total 188 miRNA. The corresponding values in the shell for each sample with row starts with “Cell 

process” denote total no. of miRNA from that sample is linked to any of the four cellular processes and the relation is 

published. Similarly, the corresponding values in the shell for each sample with row starts with “Neoplasm” denote total no. 

of miRNA from that sample is linked to Neoplasms and the relation is published.        

 

All 20 of the samples and the relationship between the miRNAs from each sample to cellular 

process and the neoplasm are provided in Supplementary Table 22 (See: 

http://www.nature.com/srep/2015/150126/srep08013/extref/srep08013-s7.xls), 

Supplementary Table 23 (See: 

http://www.nature.com/srep/2015/150126/srep08013/extref/srep08013-s8.xls) and 

Supplementary Table 24 (See: 
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http://www.nature.com/srep/2015/150126/srep08013/extref/srep08013-s9.xls).  Based on the 

node degree, the top 5 miRNAs from each of the four pathway maps are provided in 

Supplementary Figure 2 (See: 

http://www.nature.com/srep/2015/150126/srep08013/extref/srep08013-s1.pdf). 

10.3.3. Prioritization of the selected miRNAs  

Despite the potentially strong impact of the selected miRNAs on the fundamental molecular 

mechanisms underlying CRC, their relation to cetuximab treatment was not used in previous 

filtering of the 188 miRNAs, and the resulting candidate list remains too long for 

experimental validation. To further prioritise miRNA candidates that have the highest 

likelihood of acting as therapeutic biomarkers for cetuximab treatment, we ranked the 

miRNA candidates by applying a newly designed SMARTmiR algorithm, as described in the 

Materials and Methods section. The details of the 10 top-ranked miRNAs, including their 

scores and evidence of their interaction with cetuximab, and the role of the targets are 

summarised in Table 13. According to our predictions, those ten miRNAs might serve as the 

best candidates for therapeutic biomarkers for cetuximab treatment in CRC patients. All 188 

miRNA with its SMARTmiR score and Higo gene id of the targets are provided in 

Supplementary Figure 3 (See the second figure: 

http://www.nature.com/srep/2015/150126/srep08013/extref/srep08013-s1.pdf). 

miRNA Score No of 

Targets  

Hugo Gene Id of differentially 

expressed miRNA Targets in 

Cetuximab sensitive to resistant 

CRC patients 

No of 

TF, 

KNS 

miRNA 

Fold 

Change 

hsa-

miR-21 

3.57 33 NOTCH1 (0.004868), CD47 

(0.031247), BRCA1 (0.013018), 

APAF1 (0.012285) 

4, 3 8.1 

hsa-

miR-34a 

2.21 28 YY1 (0.029778), NOTCH1 

(0.004868), CD47 (0.031247), 

BRCA1 (0.013018), MYC 

(0.002497) 

4, 2 4.6 

hsa- 2.15 33 MKL2 (0.004586), CD47 7, 2 N/A 
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miR-145 (0.031247), MYC (0.002497)  

hsa-

miR-27a 

2.01 48 MAPK14 (0.009214), APAF1 

(0.012285) 

4, 9 5.8 

hsa-

miR-17 

1.85 35 MAPK14 (0.009214), BRCA1 

(0.013018), E2F1 (0.002186), 

EREG (3.41e-06) 

3, 8 9.7 

hsa-

miR-155 

1.73 29 CD47 (0.031247), FOXO3 

(0.012217) 

6, 4 N/A 

hsa-

miR-182 

1.65 39 MKL2 (0.004586), CD47 

(0.031247), FOXO3 (0.012217) 

5, 2 N/A 

hsa-

miR-15a 

1.59 25 BRCA1 (0.013018), PRKAR2A 

(0.021049) 

1, 4 6.2 

hsa-

miR-96 

1.53 38 PLCB4 (0.015726), FOXO3 

(0.012217) 

4, 5 N/A 

hsa-

miR-

106a 

1.48 26 NOTCH1 (0.004868), BRCA1 

(0.013018), E2F1 (0.002186) 

2, 6 N/A 

Table 13: Top 10 miRNAs along with their scores, expression values, MTI, 
expression of MTI and miRNA in cetuximab sensitive to resistant CRC patients  

1
st
 column: top 10 miRNA candidates; 2

nd
 column: calculated score based on developed 

scoring function; 3
rd

 column: total no of miRNA targets in the “Integrated map”; 4
th

 column: 

Hugo gene ID of miRNA targets those  were differentially expressed in cetuximab sensitive 

compared with resistant CRC patients with significant p values; 5
th

 column: no of 

transcription factors (TFs) and kinases (KNSs) among the targets; 6
th

 column: expression 

value of the miRNA in cetuximab sensitive compared with resistant CRC patients (KRAS, 

BRAF wild type) published by Mosakhani et al (Mosakhani et al. 2012).  
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10.3.4. Validation of the prediction based on published 

experimental results 

The optimal method of validating any systems biology prediction is through experimental 

results. In our case, the analysis of differentially expressed miRNAs in cetuximab-resistant 

CRC tumor samples would provide such validation. Recently, a group at the University of 

Helsinki studied differential miRNA expression patterns of 33 cetuximab-treated patients 

with metastatic colorectal cancer (Mosakhani et al. 2012).  That group tested the association 

of each miRNA with the overall survival (OS) by applying a Cox proportional hazards 

regression model, and published a list of the 60 most differentially expressed miRNAs in 

patients with an extremely poor prognosis (resistant patients). According to our analysis, 85% 

(51 of 60 miRNAs) of the resistant patient-derived differentially expressed miRNAs are 

present in our list of the selected 188 miRNAs. Moreover, five of the ten top-ranked 

predicted miRNAs were found to be highly differentially expressed in resistant patients, 

exhibiting 4.6 to 9.7 fold changes (Table 13). More studies with greater no. of patients are 

needed to further validate our prediction; however, we consider this initial evidence to be 

very encouraging and to prove the applicability of our methodology. 
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11. Discussion 
FDA in its critical path initiative emphasized on applying biomarkers as an essential tool to 

combat current situation of late stage drug failures. Number of recent publications suggested 

that more efficient drug discovery model can be designed by applying biomarkers in all 

stages of drug discovery and development i.e. emphasizing biomarker usage from target 

identification to drug marketing (Colburn 2003; Bakhtiar n.d.).  However until now the usage 

of patient stratification biomarker in late stage clinical trials stands out among other 

biomarker applications to cope with the most alarming issue of expensive late stage failures. 

According to the simulation-based analysis performed by FDA and MIT consortium, early 

biomarker program is predicted to be an invaluable model for drug development (Trusheim et 

al. 2011). Corroborating this prediction, Parker et al have shown that the application of Her2 

in the development of anti-breast cancer treatment  reduced the clinical trial risk by 50% 

(Parker et al. 2012). On a global scale, it has been quantitatively demonstrated that 

probability of phase to phase transition is 15 to 19 percent higher for anti-cancer treatments if 

their trials include biomarker programs compared to those without (Hayashi et al. 2013).  All 

these findings indicate that early application of stratified molecular biomarker may 

significantly improve the success of clinical development. As representative picture of 

worldwide clinical trials with stratified biomarker, our analysis on ClinicalTrial.gov shows 

that 21% of the stratified trials are done in the later stages (phase III and IV, Figure 22) with 

significant efforts in post-marketing research. A more comprehensive picture of worldwide 

clinical trials can be drawn by inclusion of proprietary clinical trial registries such as 

Trialtrove and PharmaProjects into our analysis; however the proprietary laws do not allow 

us to publish these results. ClinicalTrials.gov itself has reported issues with the updates, 

consistency and completeness of the data particularly in those trial files collected before the 

database launch (Wadman 2006; Innocenzi et al. 1984). Surely a complete manual curation of 

all 150.000 trial registry files may enhance the accuracy of our analysis however such an 

effort is immensely time consuming involving multiple scientific annotators which is beyond 

the scope of this research. Hence our semi-automatic approach in identifying trials with 

stratified biomarker from the oldest and largest clinical trial registry and successive analysis 

is a representative study of worldwide trend in clinical trials. 

 

According to our analysis (Figure 21), oncology represents more than 75% of all the trials 

with stratified biomarker. So cancer being at the forefront of stratified medicine will dictate 
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the success rate of future clinical trials with stratified biomarker. The analysis also shows 

with 95% confidence interval that less than 5% of all interventional trials are using molecular 

biomarker for patient stratification. Some reasons for slow adoption of biomarker approaches 

in the clinics are summarized as follows: first of all stratification biomarker discovery 

requires an in depth understanding of disease mechanism and drug mode of action. 

Demonstration of clear relationship of biomarker changes and disease progression or 

treatment success requires substantial effort and resources spent early in pre-clinical research. 

In this direction, a number of system biology approaches based on quantitative modelling has 

been suggested to be of use for biomarker prediction reviewed by Kreeger at al (Kreeger & 

Lauffenburger 2009). However, labour-intensive collection of quantitative data as well as 

limitation of current computational power to model complex biological systems containing 

over hundred molecules hinders current use of quantitative modelling for biomarker 

prediction. Qualitative modelling approaches can provide an alternative for prospective 

biomarker prediction. Quite a few qualitative modelling are based on boolean networks and 

able to simulate the dynamics of signalling pathways. It has been employed for the discovery 

of novel oncological biomarkers as well as used to develop robust clinical treatment decisions  

(Sahoo 2012). An example of another type of modelling is integrative model (Figure 44) i.e. 

literature-derived knowledge and OMICS data together, reflecting ‘cause and effect’ 

relationships into an integrated biomarker discovery platform (Martin et al. 2012).  

 

Figure 44: Integrative model driven approach to identifying candidate 
biomarkers (Younesi et al, 2013). 

The figure proposed a model driven approach for the identification of biomarker by integrating omics data and textual 

knowledge.     

A variety of OMICS technologies have been developed in recent years with the aim to 

contribute detailed understanding of disease pathophysiology and drug mode of action. 
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However neither OMICS data nor the knowledge accumulated in the text can be 

automatically translated into clinical advances.  Knowledge capturing technologies combined 

with pathway analytics provide a great framework for OMICS data interpretation. The lack of 

standardized translational algorithms allowing the use of OMICS data along with the 

knowledge derived from the scientific literature hampers biomarker prediction. Hence any 

improvement is concurrent with improvement of knowledge representation standards to 

present dynamic interconnectivity of the molecular pathways aided by strong signal 

integration from experimental data.  

The clinical developmental success of stratified therapy in cancer can also be augmented by a 

fresh approach of selecting new class of biomolecules as candidate biomarker. miRNAs can 

potentially be one such new class of candidate. miRNA plays an important role in 

tumorgenesis by regulating expression of oncogenes and tumor suppressors thus affecting 

cell proliferation, differentiation, apoptosis, invasion and angiogenesis. miRNAs are potential 

biomarkers for diagnosis, prognosis and therapies of different forms of cancer. We have 

developed a novel translational algorithm i.e. SMARTmiR to identify crucial miRNA for the 

efficacy of a targeted therapy. As a use case we have also shown the clinical utility of 

SMARTmiR to identify and rank miRNAs which can predict the efficacy of cetuximab 

therapy in one of the most prevalent cancer in western world i.e. colorectal cancer.    

 

In colorectal cancer, the effects of cetuximab are mediated through various molecular 

pathways, including the Ras-Raf-MAPK, PI3K-AKT, protein kinase C, STAT and SRC 

pathways (Toni M Brand et al. 2011a; Maragkakis et al. 2009). The efficacy of cetuximab in 

responsive CRC patients is mainly manifested through reduction of cell proliferation and 

differentiation, inhibition of angiogenesis, prevention of epithelial to mesenchymal transition 

(metastasis) and induction of apoptosis (Toni M Brand et al. 2011b).  However, cetuximab 

resistance mechanisms by alternative molecular pathways was recently reviewed (Toni M 

Brand et al. 2011b) which demonstrated that the reactivation of pro-angiogenic factors 

(pMAPK, VEGF) leading to increased angiogenesis in CRC is one such resistant mechanism 

(Ciardiello et al. 2004). In agreement with those results, our top-ranked miRNA, i.e., miR-21, 

is a well-known angiogenesis regulator in both in vitro and in vivo models (Sabatel et al. 

2011). Moreover, cetuximab treatment affects the expression of miR-21 in vitro (du Rieu et 

al. 2010). Another group suggested that the cetuximab resistance mechanism is a 

phenomenon caused by an increased rate of EGFR degradation and internalisation; switching 



157 

 

towards alternate pathways for growth and survival of CRC resistant tumor cells (Lu et al. 

2007). In resistant cells, EGFR is localised in the sub-cellular compartments i.e., endosome, 

mitochondria and nucleus. The overexpression of nuclear EGFR is linked to SFKs (SRC-

family kinase) expression, modulating the up regulation of the PI3K/AKT pathway in 

cetuximab resistance (Wheeler et al. 2009). Mutations of KRAS are also connected to the 

increased activation of SFKs, affecting the MAPK, beta-catenin, STAT and PI3K/AKT 

pathways in CRC resistant tumors (Dunn et al. 2011). However, the mechanisms of 

cetuximab resistance in CRC remain poorly understood.  

To address the issue, we attempted to create a comprehensive CRC specific molecular 

network snapshot leading to the four cellular processes of apoptosis, proliferation and 

differentiation, metastasis and angiogenesis, which are crucial for mode of action of 

Cetuximab therapy in CRC. Pathways from Metacore were integrated. The Metacore 

pathway knowledge base was selected because of the high experimental validation of 

molecular interactions in its pathways (Shmelkov et al. 2011b). Of the assembled Integrated 

map, 96% are differentially expressed in published CRC specific RNASeq data (Anon 2012). 

Based on the well-accepted node removal algorithm (Bossi & Lehner 2009; Waldman et al. 

2010; Lopes et al. 2011), that high percentage makes the Integrated map CRC specific. 

miRNA-target interactions have been screened from prediction algorithms (miRanda, Pictar 

and DianaMicroT) and literature based knowledgebase (Tarbase, Pathway Studio). 

TargetScanS, Pictar and miRanda used individually, or in combination, provide a good 

balance between precision and recall (Witkos et al. 2011). However, Maragkakis et al. 

demonstrated that Pictar predictions overlap more than 75% of the predictions obtained from 

TargetsScanS (Maragkakis et al. 2009). Therefore, Pictar, miRanda and DianaMicroT were 

used. Next, a candidate miRNA was ranked based on its relationship to the four cellular 

processes and to CRC. The other ranking parameters were miRNA target’s relation to 

cetuximab; the node degree of the target; and the number of targets for each candidate 

miRNA. A high number of targets of miRNA in a pathway suggests the multi-level 

regulation of that pathway (Uhlmann et al. 2012; Malumbres 2012). miRNAs also 

preferentially regulate network hubs that participate in complex dynamic processes, and their 

expression profile is highly dynamic, thereby requiring tighter regulatory control (Cui, Yu, 

Pan, et al. 2007; Cui, Yu, Purisima, et al. 2007).  

Literature search confirmed that three of our top 10 miRNA in Table 13 i.e. miR-21 (1
st
), 

miR-34a (2
nd

), miR-17 (5th) are published biomarker for cetuximab therapy (du Rieu et al. 
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2010; Schou et al. 2014; Ragusa et al. 2012). Although no relation between miRNA to 

cetuximab was incorporated into the SMARTmiR scoring function. Our methodology has 

successfully predicted possible relationships between a miRNA and cetuximab. In the case of 

three top ranked miRNA i.e. miR-21, miR-34a and miR-17; the relationship has already been 

experimentally validated. This result again demonstrates the novelty and applicability of our 

methodology.   

Genome-wide miRNA and mRNA expression profiles of cetuximab-sensitive and cetuximab-

resistant mCRC patients and PLS regression/Pearson’s correlation of significant differentially 

expressed miRNAs and target mRNAs followed by pathway-centric interpretation could be 

another approach to discover the role of miRNAs in cetuximab resistance mechanisms in 

mCRC. However, due to a lack of such experimental data, the SMARTmiR algorithm utilised 

existing resources to predict crucial miRNAs as therapeutic biomarkers for cetuximab 

treatment in CRC patients.  

The accurate prediction of miRNAs that might serve as potential therapeutic biomarkers 

would be of great importance for patients. Herein, we developed a novel algorithm that 

facilitates the prediction of potential miRNA biomarkers based on the knowledge 

accumulated in the public domain. To our knowledge, there is only one published alternative 

methodology that uses literature-based evidence for drug-associated miRNA predictions. 

Recently, Rukov et al. launched PharmacomiR, a miRNA Pharmacogenomics database that 

uses the triplet sets consisting of a miRNA, a target gene and a drug associated with the gene 

to predict miRNAs that could serve as potential therapeutic biomarkers (Rukov et al. 2013). 

We compared the performance of PharmacomiR to that of our methodology in predicting the 

pharmacogenomics role of miRNAs in cetuximab treatment. PharmacomiR predicted 1102 

unique miRNAs (6975 redundant miRNAs as the initial output). Next, we calculated the 

overlap between the number of predicted miRNAs with the published differentially 

upregulated miRNAs by Mosakhani et al. (Mosakhani et al. 2012) in cetuximab-sensitive and 

cetuximab-resistant CRC patients.  Clearly, our methodology has higher prediction accuracy, 

with 27.1% (51 of 188) compared with 4.44% (49 of 1102) for PharmacomiR, in identifying 

experimentally validated potential miRNAs as therapeutic biomarkers for cetuximab therapy 

in CRC patients. Unlike PharmacomiR, SMARTmiR could also rank each candidate miRNA 

based on a novel disease specific score, making our methodology more advanced in 

prioritising candidate miRNAs for further experimental validation. A methodological 

comparison SMARTmiR and PharmacomiR has been provided in Table 14. 
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Methodology SMARTmiR Pharmaco-miR 

Relation to 

Disease 

Relation to Disease is achieved No relations to disease  

Relation to 

Drug 

Pathway centric relation to Drug Gene Centric relation to Drug 

miRNA 

Prioritization 

Pharmacogenomic role of a 

miRNA to a drug's action in a 

specific disease can be evaluated 

and ranked  

Pharmacogenomic role of a miRNA to 

a drug's action in a specific disease 

cannot be evaluated and ranked  

miRNA 

prediction 

Algorithms 

Pictar, miRanda, DianaMicroT Verse, TargetSCan, miRTarBase, 

miRecords, miRanda,Pita 

Table 14: Methodological comparison between SMARTmiR and Pharmaco-miR 

However, SMARTmiR algorithm has limitations. The inherent issue of pathway map 

building is that its completeness is limited to valid and available data. Therefore, the 

sensitivity and specificity of the translational methodology is a function of completeness of 

the presented interactome. Additionally, the developed pathway maps could not integrate the 

dynamic nature of miRNA regulations. Annotations and encoding of the transcripts of the 

genes in the pathway maps are absent. However, these are outstanding challenges in 

representing dynamic biological systems, and the scientific community must act to solve 

these issues.  

 

Biological data and knowledge is growing exponentially. Efficient management of those 

resources can be invaluable to measure the plausibility of a hypothesis as a prospective 

biomarker before designing the experiment to validate the hypothesis. In that direction, the 

thesis has demonstrated the power of efficiently managing existing data and knowledge in 

oncology to predict the therapeutic biomarker. Finally a prospective plan on future scenario 

of biomarker research during drug development has been drawn in the next section focusing 

to reduce the risk of most expensive phase III drug failures.  

Building a Disease Mechanism: A concrete understanding of the tissue specific targeted 

cancer mechanism is of prime importance. A knowledge map representing the disease 

mechanism has the conceptual benefit to cover the biomolecular space within a tissue where a 

drug treating the cancer has to work. Omics data sets on targeted cancer without any 

therapeutic intervention from GEO and data from ICGC/TCGA projects can be analysed, 

interpreted and further merged with existing knowledge on the targeted cancer from 
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biomedical literature to deliver a knowledge map representing the targeted cancer 

mechanisms.  

Building Drug Mode of Action (MoA): Next deciphering the drug mode of action holds 

the key to understand the consistency of the treatment outcome. The data from preclinical, 

phase I can be analysed, interpreted and represented through a knowledge map. The 

comparison of drug mode of action map with reference to the disease mechanism map can 

detect the potential pitfalls of a drug. If the targeted drug is a small molecule then analysis of 

cancer cell line profiling data (http://www.broadinstitute.org/ctrp/) from Broad Institute can 

potentially provide vital clues on the drug mode of action and molecules that can potentially 

detect therapeutic efficacy. Currently targeted cancer drug falls into one of ten categories that 

have been described in Figure 4 of the thesis. If the drug being investigated falls in one of 

those ten groups then biomedical literature and ongoing clinical trials on same category of 

drugs can provide crucial knowledge on trial designing and applied biomarker.         

Selection of biomarker: Conventional gene centric biomarker is unlikely to ascertain the 

therapeutic efficacy of a treatment as complex as cancer. Cancer is a system disorder 

disrupting the hallmarks of healthy cells (see Figure 3) i.e. severely damaging the normal 

expression of multiple molecular pathways. Hence transcriptomics profiles of a panel of 

biomarkers instead of a single one holds the promise for better stratification benefitting from 

targeted therapy. Especially, a panel of microRNAs which can regulate the expression of 

several genes and are essential for the drug’s mode of action, can be a more potent cancer 

therapeutic biomarker.  

Streamline the biomarker panel: The analysis followed by interpretation of preclinical, 

phase I data along with the literature mining (described in previous steps) can potentially 

generate novel hypothesis on a panel of therapeutic biomarkers. The panel of biomarkers 

from these analyses can be further tested in phase II trials. Supervised modeling can be 

applied first to train and then to test the stratification power of the panel of biomarkers in 

phase II trials. A knowledge based score similar to that produced by SMARTmiR algorithm 

for each of biomarker can be calculated and then applied in the supervised model along with 

expression profiles of the biomarker. This will ensure that statistically significance of 

expression along with parameters important for the drug MoA i.e. biological point views 

have been incorporated in building the model. Ideally this should improve the stratification 

power of the model compared to a model which is only built on the expression signature of 
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the biomarker. If the panel of biomarker shows considerable promise to stratify the patient 

population to predict the therapeutic efficacy of the drug, this panel of biomarker can be 

applied in designing the phase III trials.  
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12. Conclusion 
Our meta-analysis of stratified molecular biomarker trials registered in ClinicalTrials.gov 

database clearly shows that the molecular biomarker trend is rapidly being adopted in clinical 

research with oncology being at the forefront of the personalized medicine. However 

percentage of the trials including patients’ stratification based on molecular differentiation is 

still very low (less than 5%) reflecting all the challenges of biomarker discovery and 

development. A variety of OMICS technologies have been developed in recent years with the 

aim to identify biomarker by detailed understanding of disease pathophysiology and drug 

mode of action. However neither OMICS data nor the knowledge accumulated in the 

scientific literature can be automatically translated into clinical advances for biomarker 

discovery. The lack of standardized translational algorithms allowing the use of OMICS data 

along with the knowledge derived from the scientific literature hampers endeavours to predict 

biomarkers with greater confidence. Thus, any improvement of the current situation depends 

on the improvements in knowledge representation standards enabling to present 

interconnectivity of the molecular pathways supported by integration of strong signal from 

experimental data and enriched granular knowledge. The overall trend indicates that there is a 

drive away from correlative biomarkers towards causative biomarkers. Therefore, the aim of 

next-generation integrative models is to capture causal relationships between the candidate 

biomarker and clinical outcome.  

A new class of stratified biomarker i.e. miRNA is also rapidly emerging in cancer treatment 

with the promise of stratifying the patient population with greater confidence and ease of 

detection. But lack of translational algorithm which can integrate OMICS data and 

knowledge to predict the causal relationship between candidate miRNA and clinical outcome 

of a treatment in a disease condition potentially hamper the discovery of miRNA as stratified 

biomarker. In this direction a novel integrative algorithm i.e. SMARTmiR has been invented 

by combining granular knowledge and available OMICS data. The algorithm is a pathway-

centric methodology that facilitates the prediction of pharmacogenomics role of miRNA. The 

method is generic and can be applied to model the role of miRNA as a therapeutic biomarker 

for targeted therapy in any diseases. We are optimistic that the application of an optimised 

and fully automated version of the algorithm has the potential to be used as clinical decision 

support tool. Moreover this research will also provide a comprehensive and valuable 

knowledge map demonstrating functional bimolecular interactions in colorectal cancer to 

scientific community for future experimental studies in CRC. We have also detected seven 
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miRNA i.e. hsa-miR-145, has-miR-27a, has-miR-155, hsa-miR-182, hsa-miR-15a, hsa-miR-

96 and hsa-miR-106a as top stratified biomarker candidate for cetuximab therapy in CRC 

which were not reported previously. Hence this research had drawn the attention of scientific 

community to investigate the pharmacogenomics role of those seven top ranked miRNA 

when treating CRC patients with cetuximab. In addition the research has identified 188 

miRNA in total thus demonstrating an overall miRNA regulatory mechanism in CRC.  
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