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1. Abstract 

The here presented work comprises two projects with highly interdisciplinary topics 

in the chemical biology field. The development of novel small molecule ALAD inhibitors 

which might show their potential as novel antifilarial, antiplasmodial and antimicrobial 

agents, herbicides or chemical biology tools was the main task of the first project 

(Section A).[1]  

wALADin1 is a benzimidazole-based drug-like small molecule that was found by high 

throughput screening and was identified as a potent species-specific inhibitor for the 

endobacterial enzyme wALAD with effectiveness in in vitro and ex vivo studies.[1b] 

Several wALADin1 derivatives were synthesised in this work to further characterise the 

influence on the inhibitory activity of the 3-trifluoromethylbenzyl and 

2-[(2-thienylcarbonyl)amino]ethyl group present in the benzimidazole scaffold of 

wALADin1.[1b, 2] These studies revealed the importance of the unaltered 

3-trifluoromethylbenzyl-moiety (R2) for the inhibitory activity of the wALADin 

compounds and the necessity of the 2-[(2-thienylcarbonyl)amino]ethyl-moiety (R1) for 

species-specificity, although irrelevant for wALAD inhibition.[1b] Additionally, the 

obtained wALADin compounds were tested in cross species structure activity 

relationship studies and showed contrasting biological results with various ALAD 

orthologues from plants, bacteria, metazoa and protozoa.[1c] Moreover, an 

antiplasmodial effect on blood stage Plasmodium falciparum was investigated for 

wALADin1, wALADin2 and wALADin3 that demonstrably does not result from inhibitory 

activity on the PfALAD orthologue.[1d]  

The second project comprised the development of novel probes for aptamer-based 

affinity labelling (ABAL) of proteins, an approach for the rational, proteome-wide 

identification of proteins that bind to a particular aptamer (Section B).[3]  

This is achieved by labelling aptamers with photoreactive probes and cross-linking 

them to their target protein in a UV light-dependent and highly specific manner. 

Successful identification requires isolation of pure samples for mass spectrometry 

analysis, which was not obtained using the initial ABAL probe. To improve the ABAL 

procedure novel ABAL probes were developed. These probes carry biotin in 

combination with a chemically cleavable linker or desthiobiotin as purification tags to 

enable mild elution of the captured complex and besides phenyl azide (PA), 
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1,2,4,5-tetrafluorophenyl-3-azide (TPA) and 3-phenyl-3-(trifluoromethyl)-3H-diazirine 

(TPD) were used as potentially more potent photoreactive moieties.  

These novel ABAL probes might help to tap the full potential of the ABAL procedure 

and develop it into a standard procedure for identifying unknown target proteins. 
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2. Zusammenfassung 

Die hier vorgestellte Arbeit behandelt zwei höchst interdisziplinäre Projekte im 

Bereich der Chemischen Biologie. Das erste Projekt befasst sich hauptsächlich mit der 

Entwicklung von neuen Small-Molecule-ALAD-Inhibitoren, die als potentielle 

antifilarische, antiplasmodische und antimikrobische Mittel, Herbizide oder Werkzeuge 

der chemischen Biologie Verwendung finden könnten (Abschnitt A).[1] 

wALADin1 ist ein auf Benzimidazol basierendes Small-Molecule, das in einem 

Screeningverfahren mit hohem Durchsatz ermittelt und als potenter, speziesspezifischer 

Inhibitor gegen das endobakterische Enzym wALAD mit Wirkung in in-vitro- und ex-

vivo-Studien, identifiziert wurde.[1b, 2] In der hier vorgestellten Arbeit wurde eine 

Vielzahl von wALADin1-Derivaten synthetisiert um den Einfluss der am 

Benzimidazolring vorhandenen 3-Trifluormethylbenzyl- und 

2-[(2-thienylcarbonyl)amino]ethylgruppe auf die inhibierende Wirkung zu 

untersuchen.[1b, 2] Diese Untersuchungen belegen, dass die modifizierte 

3-Trifluormethylbenzylgruppe (R2) unverzichtbar für die inhibierende Wirkung der 

wALAD-Inhibitoren ist und dass die 2-[(2-thienylcarbonyl)amino]ethylgruppe (R1) 

wiederum eine entscheidende Rolle für die speziesspezifische Inhibition spielt, auch 

wenn sie keinerlei Einfluss auf die wALAD-Inhibition hat.[1b, 2] Ebenfalls wurden die 

erhaltenen wALADin-Verbindungen in artübergreifenden Struktur-Wirkung-

Beziehungsstudien getestet und zeigten gegensätzliche biologische Resultate bei 

verschiedenen ALAD-Orthologen von Pflanzen, Bakterien, Metazoen und Protozoen.[1c] 

Darüber hinaus wurde ein antiplasmodischer Effekt von wALADin1, wALADin2 und 

wALADin3 auf das Merozoitenstadium von Plasmodium falciparum festgestellt, der 

nachweislich nicht auf der Inhibition des PfALAD-Orthologs beruht.[1d]  

Das zweite Projekt befasst sich mit der Entwicklung von neuen Sonden zur 

aptamer-basierten Affinitätsmarkierung (ABAL) von Proteinen, einem Ansatz zur 

rationalen, proteomweiten Identifizierung von Proteinen die an ein bestimmtes 

Aptamer binden (Abschnitt B).[3] Dies wird durch das Markieren der Aptamere mit 

photoreaktiven Sonden erreicht, die durch UV-Licht-Bestrahlung hochspezifisch mit 

ihrem Zielprotein vernetzt werden. Die erfolgreiche Identifizierung erfordert, dass die 

aus der Vernetzung und anschließenden Isolierung erhaltenen Proben für die 

massenspektrometrische Analyse rein sind, was bisher nicht erreicht werden konnte. 

Um die Ergebnisse der ABAL-Strategie zu verbessern, wurden neue ABAL-Sonden 
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entwickelt. Diese Sonden enthalten zur Aufreinigung entweder Biotin in Verbindung mit 

einem chemisch spaltbaren Linker oder Desthiobiotin, um die milde Elution des 

eingefangenen Komplexes zu ermöglichen sowie Phenylazid (PA), 

1,2,4,5-tetrafluorophenyl-3-azid (TPA) und 3-phenyl-3-(trifluoromethyl)-3H-diazirin 

(TPD) als photoreaktive Gruppen. 

Diese neuen ABAL-Sonden werden möglicherweise helfen das volle Potential des 

ABAL-Verfahrens zu entfalten und es zu einer Standardanwendung zur Identifizierung 

von unbekannten Zielproteinen weiterzuentwickeln. 
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A Synthesis and characterisation of wALAD inhibitors 

1. Abstract 

Lymphatic filariasis and Onchocerciasis are vector-borne diseases which mainly 

occur in third world countries and are caused by human filarial nematodes.[4] These 

diseases manifest in destroyed and distorted tissue or blindness. To eliminate these 

massive public health problems, consecutive mass drug administration programs are 

carried out using single-dose combination therapies with classical anthelmintics.[5] 

These therapies merely focus on preventing transmission and have developed 

increasing suboptimal responses of patients and drug resistance of the filarial 

nematodes which points to a need for the development of novel antifilarial drugs or 

treatment options.[6] 

Antibiotic therapies have revealed the endosymbiotic α-proteobacteria Wolbachia, as 

a promising target for novel antifilarial treatments, but are not suitable for mass drug 

distribution.[7] Genome sequence analysis of Wolbachia[8] and its filarial hosts[9] 

identified the enzyme δ-aminolevulinic acid dehydratase (ALAD) within the heme 

biosynthetic pathway as a promising target in antifilarial drug development. wALADin1 

was identified as a potent species-specific inhibitor for the endobacterial enzyme 

wALAD with effectiveness in in vitro and ex vivo studies.[1b] 

In a previous study, chemical modification of wALADin1 revealed the general 

importance of the carboxylic acid-moiety (R3) and the necessity of its presence at the 

C5-carbon of the benzimidazole scaffold.[1a] Based on this study, several wALADin1 

derivatives were synthesised in the work presented here to further characterise the 

influence on the inhibitory activity of the other substituent groups present in the 

benzimidazole scaffold.[1b, 2] These studies revealed that the 3-trifluoromethylbenzyl-

moiety (R2) is also essential for the inhibitory activity of the wALADin compounds and 

any alteration on this group results in a decrease of inhibitory activity. The 

2-[(2-thienylcarbonyl)amino]ethyl-moiety (R1) has no influence on the inhibitory 

activity against wALAD, but plays an important role for species-specific inhibition.[1c]  

Additionally, the obtained wALADin compounds showed contrasting biological 

results varying between inhibition, no effect and stimulation in cross species structure 

activity relationship studies testing several ALAD-orthologues from plants, bacteria, 
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metazoa and protozoa.[1c] Remarkable, was the antiplasmodial effect of wALADin1, 

wALADin2 and wALADin3 on blood stage Plasmodium falciparum.[1d] These compounds 

were able to reduce parasitemia to almost 0 % and wALADin2 was identified as a potent 

inhibitor of Plasmodium motility and invasion. Additional experiments with the PfALAD 

orthologue further revealed that the antiplasmodial effect of the wALADin compounds 

does not result from inhibitory activity on this orthologue and that the antiplasmodial 

activity is a result of wALADin-interaction with an alternative target. 

These results lead to wALADin compounds as potential lead structures in the 

development of novel antifilarial, antiplasmodial and antimicrobial agents, herbicides or 

chemical biology tools.  
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2. Zusammenfassung 

Lymphatische Filariose und Onchozerkose sind vektorübertragene Krankheiten, die 

vermehrt in Ländern der Dritten Welt auftreten und durch Filarien ausgelöst werden. [4] 

Diese  Krankheiten führen zu schweren Gewebeschäden oder Blindheit. Um diese 

massiven Gesundheitsprobleme zu eliminieren, werden wiederholt Einzeldosis-

Kombinationstherapien klassischer Anthelmintika in großangelegten 

Massenbehandlungen verabreicht.[5] Diese Therapien bewirken hauptsächlich die 

Eindämmung der Übertragung und führen vermehrt zu Nebenwirkungen bei Patienten 

und Resistenz der Filarien gegen die Medikamente, was die Entwicklung neuer 

Medikamente oder Behandlungsoptionen nötig macht.[6]  

Durch antibiotische Therapien wurden die endosymbiotischen α-Proteobacteria 

Wolbachia als vielversprechendes Ziel für neue Behandlungsansätze entdeckt, jedoch 

sind sie nicht für großangelegte Massenbehandlungen geeignet.[7] Bei der 

Genomsequenzanalyse von Wolbachia[8] und den Wirtsfilarien[9] wurde das Enzym 

δ-Aminolävulinsäure-Dehydratase (ALAD), welches ein Teil des Häm-Biosynthesewegs 

darstellt, als vielversprechende Quelle für die Entdeckung neuer Medikamente gegen 

Filarien identifiziert. wALADin1 wurde als potenter, speziesspezifischer Inhibitor gegen 

das endobakterische Enzym wALAD identifiziert, das seine Wirkung in in-vitro- und ex-

vivo-Studien unter Beweis gestellt hat.[1b, 2]  

In einer vorherigen Studie wurde durch chemische Modifikation von wALADin1 die 

allgemeine Relevanz der Karbonsäuregruppe (R3) und die Wichtigkeit ihrer 

Positionierung am C5-Kohlenstoff des Benzimidazolrings aufgedeckt.[1a] Basierend auf 

dieser Studie wurde in der hier vorgestellten Arbeit eine Vielzahl von 

wALADin1-Derivaten synthetisiert um den Einfluss der verbleibenden 

Benzimidazolsubstituenten auf die inhibierende Wirkung zu untersuchen.[1b, 2] Diese 

Untersuchungen belegen, dass die 3-Trifluormethylbenzylgruppe (R2) ebenfalls 

unverzichtbar für die inhibierende Wirkung der wALAD-Inhibitoren ist und selbst 

kleinste Veränderungen an dieser Gruppe zur Verminderung dieser Wirkung führen. Die 

2-[(2-thienylcarbonyl)amino]ethylgruppe (R1) hingegen hat keinerlei Einfluss auf die 

inhibierende Wirkung der Moleküle gegen wALAD, allerdings spielt sie eine 

entscheidende Rolle für die speziesspezifische Inhibition.[1c]  

Darüber hinaus zeigten die erhaltenen wALADin-Verbindungen gegensätzliche 

biologische Resultate wie Inhibition, kein Effekt und Stimulation in artübergreifenden 
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Struktur-Wirkung-Beziehungsstudien, in denen mehrere ALAD-Orthologe von Pflanzen, 

Bakterien, Metazoen und Protozoen getestet wurden.[1c] Hervorstechend war der 

antiplasmodische Effekt von wALADin1, wALADin2 und wALADin3 auf das 

Merozoitenstadium von Plasmodium falciparum.[1d] Diese Verbindungen reduzierten die 

Parasitenbelastung auf annähernd 0 % und wALADin2 stellte sich als potenter Inhibitor 

der Plasmodien-Beweglichkeit und des Eindringens von Plasmodium-Sporozoite in 

Leberzellen des Wirtes heraus. Zusätzliche Experimente mit dem PfALAD-Ortholog 

zeigten jedoch, dass der antiplasmodische Effekt der wALADin-Verbindungen nicht auf 

der Inhibition dieses Orthologs beruht sondern auf der wALADin-Interaktion mit einem 

alternativen Zielmolekül beruhen muss. 

Diese Ergebnisse liefern die wALADin-Verbindungen als potenzielle Leitstruktur für 

die Entwicklung von neuen antifilarischen, antiplasmodischen und antimikrobischen 

Mitteln, Herbiziden oder Werkzeugen der chemischen Biologie. 
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3. Introduction 

3.1. Parasitic diseases 

Lymphatic filariasis and Onchocerciasis are parasitic diseases in humans caused by an 

infection with human filarial nematodes which are common in the tropical regions of 

America, Asia, and Africa.[4] The host’s immune response and inflammatory reactions to 

these infections lead to chronic diseases, manifesting in destroyed and distorted tissue 

or blindness. These diseases are rated as major public health problems in endemic 

regions by the World Health Organization (WHO). The WHO announced that more than 

120 million people suffer from lymphatic filariasis[5a] and approximately 18 million from 

Onchocerciasis[5b] with more than 1.4 billion inhabitants of endemic countries at risk of 

developing these disabling and stigmatising chronic diseases.  

The pathologies in lymphatic filariasis are hydrocele and lymphedema that can 

develop into elephantiasis.[10] Elephantiasis is an oedema with thickening of the skin and 

underlying tissue and affects mainly the lower extremities, and in less frequent cases, 

the ears and mucus membrane.  

In Onchocerciasis pathologies are depigmentation of the skin and dermatitis, while it 

can also manifest in ocular lesions leading to keratitis, severe visual impairment and 

blindness.[4, 11] 

In both diseases the endosymbiotic α-proteobacteria Wolbachia is a provocative 

driver of inflammation. Wolbachia lipoproteins promote chronic inflammation and are 

associated with side-effects in antifilarial chemotherapy. Common therapies that target 

filarial nematodes release huge amounts of bacteria upon death of the filarial host, 

which subsequently induces severe inflammatory reactions.[12]  

One third of the infected people show clinical disease while the remaining develop no 

overt symptoms, although infected with millions of vigorously motile worms. 

Presumably, a high rate of inflammatory responses of the human hosts to dead or dying 

adult worms brings forth the development of clinical disease.[4]  

Lymphatic filariasis and Onchocerciasis can be diagnosed by identifying microfilariae 

in the blood of the patient for the former and in skin snips for the latter.[13] Although 

these methods are widely used, they are time-consuming and cumbersome. For this 

reasons rapid and sensitive techniques have been developed for the diagnosis of these 

diseases.[14] 
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Immunochromatographic card tests (ICT) have simplified the diagnosis of bancroftian 

filariasis by detecting antigens. This technique is advantageous not only due to its 

simplicity but also since it can detect latent infections.[15] An equivalent method for 

Onchocerciasis has not been established yet due to a lack of suitable antigen detection 

assays, but rapid card tests based on antibody detection have been produced and 

assessed with promising results.[16]  

3.2. Human filarial nematodes 

Causative agents of lymphatic filariasis and Onchocerciasis are the filarial nematodes 

Wuchereria bancrofti, Brugia malayi, and Onchocerca volvulus. The former two are 

known to induce lymphatic filariasis, while the latter is associated with Onchocerciasis. 

The site of parasitism of the adult worms of Wuchereria bancrofti and Brugia malayi is in 

dilated nests within the lymphatic vessel which block the lymphatic system and cause 

the pathologies described above. Wuchereria bancrofti and Brugia malayi mainly affect 

the legs and arms. Cases of affected genitals are also known, but more commonly 

reported for infections with Wuchereria bancrofti.  

The adult worms of Onchocerca volvulus are found in nodules within the 

subcutaneous and deep tissues. Microfilariae migrate into the skin and eyes and cause 

severe inflammation that leads to the impairment of skin and eyes previously described.  

In their desired tissue-sites, adult worms survive for more than a decade reproducing 

and releasing millions of microfilariae (L1 larvae) (Figure 1). Microfilariae of 

Wuchereria bancrofti and Brugia malayi migrate to the blood and microfilariae of 

Onchocerca volvulus within the dermis where they are ingested during the next blood 

meal of their required arthropod vector. Mosquitos and the black fly serve as biological 

vectors and intermediate hosts. Within the arthropod, the microfilariae develop into 

infective larvae (L3 larvae) which migrate to the head of the arthropod, enter the 

proboscis, and infect the human host upon the arthropods’ next blood meal.  
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Figure 1: Life cycle of filarial nematodes. a) Wuchereria bancrofti and Brugia malayi. b) Onchocerca volvulus. The 

figure shows an adapted version of the figure found in reference[2]. 

3.3. Wolbachia endobacteria 

The bacteria found in filarial nematodes responsible for lymphatic filariasis and 

Onchocerciasis are a group of endosymbiotic α-proteobacteria termed Wolbachia. 

Currently, there is only one valid species within the genus Wolbachia called Wolbachia 

pipientis,[17] which comprises nine phylogenetic lineages that are still continuously 

updated. Only two of these lineages are found in filarial nematodes. These are 

exclusively present in the subfamilies of the filarial nematodes Onchocerca spp., 

Dirofilaria spp., Brugia spp. and Wuchereria bancrofti and are generally found in vacuoles 

in the cytoplasm of the nematodes’ cells.[18]  

The relationship between Wolbachia and these filarial nematodes is mutual and has 

been stable and species-specific for long evolutionary periods. The numbers of 

Wolbachia are generally lower in male than in female worms. Within female nematodes, 

Wolbachia are mainly found in the reproductive tract which enables the extranuclear 

transmission of the endobacteria from the female worm to its offspring. The numbers of 

Wolbachia in microfilariae are low but multiply during their development into adult 

worms. Knowledge of genome sequences of Wolbachia[8] as well as B. malayi[9] revealed 
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a division of functions between the nematode and the endosymbiont. Several 

biochemical pathways for the synthesis of essential molecules were found to be either 

present in Wolbachia or its filarial host. The endosymbiont, for example, lacks the genes 

for de novo synthesis of several essential amino acids, vitamins and cofactors and 

therefore, these have to be provided by its filarial host.  

On the other hand, filarial nematodes are incapable of de novo synthesis of heme, 

purine and flavins and depend on Wolbachia to deliver these essential molecules.  

Heme is an essential cofactor for many proteins such as cytochromes, haemoglobins, 

peroxidises, and catalases. These proteins are involved in critical biological processes, 

including oxidative metabolism and electron transport. Antibiotics were used to reduce 

numbers of Wolbachia, confirming the filarial nematode’s dependence on Wolbachia to 

maintain fertility and embryogenesis.[7] These experiments resulted in a sex-ratio shift 

and defects in molting[19] in the subsequent generation. These findings were not 

observed in experiments using Wolbachia-free filarial nematodes.[11] The involvement of 

a heme-dependent cytochrome in molting and reproductive processes of filarial 

nematodes[20] is a possible explanation for the defects in these processes after depletion 

of Wolbachia. 

Wolbachia play a crucial role in pathological processes of filarial diseases. Their 

lipoproteins are inflammatory ligands that induce innate inflammation by binding and 

activating toll-like receptors.[21] Additionally, components of Wolbachia promote 

recruitment and activation of neutrophils[22] in the cornea which is the causative agent 

of stromal haze that results in blindness.[23]  

3.4. Antifilarial drugs 

 Classical anthelmintics 

To eliminate Onchocerciasis and lymphatic filariasis as massive public health 

problems, mass drug administration programs (MDA) are carried out in endemic 

countries. Single-dose combination therapies with classical anthelmintics such as 

diethylcarbamazine or ivermectin each combined with albendazole are administered in 

these programs.  

Diethylcarbamazine (Figure 2) is a synthetic organic compound which is used as an 

anthelmintic drug for the treatment of lymphatic filariasis.[24] It is effective against all 

parasite-induced lymphatic filariasis by efficiently depleting microfilariae. Its effect on 
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adult worms is only weak.[25] The mode of action of diethylcarbamazine is not yet 

understood,[26] but its dependence on host components for its in vivo activity such as the 

arachidonic acid pathway, 5-lipooxygenase pathway, cyclooxygenase and inducible 

nitric oxide pathways has been confirmed in studies by McGarry et al.[27]  

 

Figure 2: Structure of diethylcarbamazine[1a].  

Diethylcarbamazine-induced rapid killing of high amounts of microfilariae in infected 

individuals is accompanied by the release of large amounts of Wolbachia. This causes 

adverse reactions and depending on the site of parasitemia manifest in systemic 

inflammation.[28] Administration of diethylcarbamazine to Onchocerciasis patients led to 

blindness since death of ocular residing microfilariae resulted in strong inflammation 

causing ocular lesions.[4, 29]As a response, diethylcarbamazine administration was 

abolished in areas where Onchocerciasis is co-endemic.[29]  

In Onchocerciasis patients and in co-endemic regions ivermectin is administered.[30] 

Ivermectin is a macrocyclic lactone derivative that belongs to the group of avermectins 

which are metabolism products of the actinobacteria Streptomyces avermitilis. 

Ivermectin is a mixture of two semisynthetic avermectins B1a and B1b in a 9:1 ratio 

(Figure 3).  

 

Figure 3: Structure of ivermectin.[30] 

The mode of action is the hyperpolarisation of glutamate-sensitive ion channels 

which results in immobilisation of microfilariae.[31] Ivermectin mainly eliminates 

microfilariae, leaving most adult worms unaffected.[31] These will resume production of 

microfilariae if not treated periodically for the entire adult worms’ lifespan.  



A3.4 Antifilarial drugs 

14 
 

In treatments using Ivermectin, severe inflammatory reactions are observed upon 

massive elimination of microfilariae. These reactions are due to the release of Wolbachia 

and are similar to those for diethylcarbamazine. Especially in patients infected with the 

loiasis causing eye worm Loa loa[32], severe encephalopathy was observed when treated 

with ivermectin.[33]  

Albendazole is given in combination with diethylcarbamazine or ivermectin as a 

lymphatic filariasis treatment to enhance the period of reduced microfilariae in the 

periphery. Albendazole (Figure 4) is a benzimidazole derivative that is effective in 

depleting microfilariae by destabilisation of microtubules in the nematode.[34] Recently 

it was reported that the in vivo metabolite of albendazole is capable of reducing 

Wolbachia and that the antifilarial effect of albendazole is most likely a combination of 

destabilisation of microtubules and the depletion of Wolbachia.[35] These effects are only 

observed when treatment is administered over a prolonged time period with high doses 

of albendazole.[36] The dose used in combination with diethylcarbamazine or ivermectin 

probably has no added effect on adult worms, but merely enhance the existing effects.[37]  

 

Figure 4: Structure of albendazole[1a]. 

 Antibiotics depleting Wolbachia 

As previously stated, human filarial nematodes that carry Wolbachia depend on their 

endobacteria to maintain essential functions. The depletion of Wolbachia as an attempt 

to develop novel antifilarial treatments is therefore an obvious consideration. Previous 

studies showed that antibiotic treatments using tetracycline are capable of depleting 

Wolbachia in filarial nematodes in vivo, resulting in long-term sterility of female filarial 

hosts and premature death of adult worms after 12 months.[11, 38] The observed effect 

was limited to tetracycline antibiotics, for example doxycycline, and could not be 

observed for several other antibiotics tested.[39] Doxycycline (Figure 5) was used as 

Wolbachia-depleting treatment in clinical trials. It was the first drug to show a 

prominent depletion of macrofilarial activity especially in onchocerciasis.[40] The mode 

of action of this antibiotic is the inhibition of protein translation by preventing the 

attachment of the aminoacyl-tRNAs to the ribosomal acceptor site. Additionally, 

doxycycline shows a bacteriostatic effect.[2, 41] Treated individuals showed substantial 

improvement in lymphatic pathological features and decreased severity of lymphedema 
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and hydrocele.[42] Similar to animal tests, doxycycline causes long-term sterility and 

death of adult worms. The slow drug action of doxycycline and the delayed death of 

filarial populations prevent Wolbachia-mediated inflammatory adverse reactions and 

severe and often fatal adverse events of common therapies. Furthermore, no adverse 

side-effects should be observed in loiasis co-infected patients since the filarial nematode 

Loa loa lacks Wolbachia. This should prevent severe side-effects as seen in ivermectin-

treated co-infected patients. 

 

Figure 5: Structure of doxycycline.[39] 

Therapies using doxycycline are good therapeutic options, yet they require long term 

treatment up to six weeks and show contraindications for children, pregnant and breast-

feeding women.[2] At this point, doxycycline therapies are especially valuable for 

individuals under close observation by medical personnel, rather than in mass drug 

distribution.[17, 43] Nevertheless, first trials with combination therapies using rifampicin, 

an antibiotic used for tuberculosis treatment, were successful to make treatment 

regimens more suitable for mass drug distribution.[44] These therapies are not yet fully 

developed, but represent a giant step toward novel therapies for mass drug distribution 

programs.  

3.5. A novel antifilarial drug target  

The effect of present antifilarial drugs used in mass drug distribution programs is 

indisputable. Nevertheless, the effect is limited to reduction of transmission by merely 

depleting microfilariae and temporarily paralyzing adult worms. This results in the need 

of consecutive treatment of infected individuals for the entire lifespan of the adult worm 

entailing treatment for more than a decade. Additionally, observations of drug 

resistance of filarial nematodes against diethylcarbamazine and ivermectin have been 

reported which leaves the future effectiveness of these drugs in mass drug distribution 

uncertain.[43, 45]  

With tetracycline antibiotics, like doxycycline, the first steps were taken towards 

strong macrofilariae-depleting treatments and biosynthetic pathways in Wolbachia 

were identified as suitable targets for antifilarial drug discovery. 
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Genome sequence analysis revealed several essential biosynthetic pathways which 

exclusively occur in Wolbachia and not in its filarial host. One of these pathways, the 

heme biosynthetic pathway, was selected as a potential target. This choice is 

advantageous, since the products of this pathway are also indispensable for the filarial 

host.[8-9] Heme is essential in many vital processes like oxygen transport 

(haemoglobin/myoglobin)[46] and oxidative phosphorylation in bacteria (cytochrome b 

and c oxidase),[47] to cite just two examples. 

Heme is a heterocyclic organic molecule consisting of four pyrrolic groups that are 

methine bridged at their α-positions. At its centre, heme complexes an iron ion, which 

can either be present as a ferrous (Fe2+) or a ferric (Fe3+) ion. 

In eukaryotic cells and α-proteobacteria the initial step of the heme biosynthetic 

pathway is the synthesis of 5-aminolevulinic acid by aminolevulinic acid 

synthase-catalysed reaction of glycine and succinyl-CoA (Scheme 1). In the next step the 

pyrrole porphobilinogen is formed by δ-aminolevulinic acid dehydratase-catalysed 

asymmetric condensation of two 5-aminolevulinic acid molecules. The linear 

hydroxymethylbilane is then produced by porphobilinogen deaminase mediated 

tetramerisation and subsequently cyclised to uroporphyrinogen III by 

uroporphyrinogen III synthase. In the next three steps, the different side chains are 

introduced by using uroporphyrinogen III decarboxylase to form coproporphyrinogen 

III, coproporphyrinogen III oxidase to form protoporphyrinogen IX and 

protoporphyrinogen IX oxidase to form protoporphyrin IX. The incorporation of the 

ferrous ion is the final step in the synthesis of the most common heme form, heme b.[48]  

Humans and Wolbachia share this type of heme biosynthesis, but show a deep 

evolutionary distance between homologues in this pathway. The comparison between 

Wolbachia and human aminolevulinic acid dehydratase (wALAD and hALAD) indicates 

significant structural und functional variations between these two enzymes.[1a, 49] hALAD 

contains a zinc ion(Zn2+)-binding cysteine rich sequence,[50] while wALAD requires 

magnesium ions (Mg2+) and is Zn2+-independent.[51] Binding of the respective metal ion 

is essential for enzymatic activity. The differences in metal binding sites and the 

structural and functional variations make wALAD an ideal species-specific inhibition 

target.  
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Scheme 1: Heme biosynthesis pathway. The figure shows an adapted version of the figure found in reference[51]. 

Porphobilinogen is obtained via the asymmetric condensation of two 5-

aminolaevulinic acid (ALA) molecules which is catalysed by aminolevulinic acid 

dehydratase.[1a, 49, 52] One ALA forms a Schiff base at the propanoic acid side (P-side ALA) 

with a conserved lysine residue of ALAD and binds to the second ALA which contributes 
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the acetic acid side (A-side ALA). The pyrrole ring of porphobilinogen is then formed via 

aldol condensation in a subsequent step (Scheme 2).  

 

Scheme 2: Synthesis of porphobilinogen.[52] 

The formation of porphobilinogen can be monitored by addition of modified Ehrlich 

reagent, containing p-dimethylaminobenzaldehyde (DMAB) in glacial acetic acid, 

perchloric acid, and trichloroacetic acid.[1b, 2] Added to the sample, DMAB forms a red 

coloured complex with the pyrroles of porphobilinogen. This colour shift can be 

spectrometrically detected at 555 nm.[53] 

3.6. Small molecule inhibitors 

With wALAD identified as a suitable species-specific target for new antifilarial drug 

approaches, molecules showing acceptable inhibitory activity were identified by high 

throughput screening. A chemical library of almost 18,000 drug-like small molecules[54] 

was screened for inhibitory activity on the wALAD orthologue. In this screening three 

benzimidazole-based hit structures were identified that specifically inhibited wALAD in 

a species-selective and dose-dependent manner and showed structural similarity. 

Besides the benzimidazole based core structure they contained a substituted benzyl 

group (R1, green), a substituted aryl or aromatic heterocycle attached to a 

carbonylaminoethyl chain (R2, red) and a carboxylic acid (R3, blue) (Figure 6). The most 

promising of these three inhibitory compounds was termed wALADin1, while the 

remaining two were discarded due to their low inhibitory activity. wALADin1 inhibited 

wALAD with a half maximum concentration (IC50) of approximately 11 µM, while 

experiments with the human ALAD orthologue revealed a marginally inhibitory activity 

with an IC50 of approximately 740 µM. This species-specificity was proven to be valid for 

the optimum pH of both orthologues, pH 7.5 for hALAD and pH 8 for wALAD.[1b]. 
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Figure 6: Benzimidazole hit structures from the high throughput screening of ~18,000 drug-like small 

molecules.[1a] 

Further investigation of 50 benzimidazole-based structures with overall similarity to 

the hit structures but without the carboxylic acid (R3, blue) and the examination of a 

wALADin1 derivative lacking the carboxylic acid as well revealed the contribution and 

the necessity of the carboxylic acid moiety to the inhibitory activity of the compounds.[2] 

Further determination of the relationship between the side chains and the inhibitory 

activity of wALADin1 were required and investigations were started during my diploma 

thesis[1a] and continued in this work. 

A structure activity relationship study (SAR) was initiated during my diploma thesis 

starting with investigating the influence of the carboxylic acid’s position on the 

inhibitory activity. Therefore, wALADin1 derivatives were synthesised, carrying the 

carboxylic acid at different positions of the benzimidazole core (Figure 7). 
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Figure 7: wALADin1 and its R3-repositioned derivatives.[1a] 

In collaboration with the Institute of Medical Microbiology, Immunology and 

Parasitology (IMMIP) the obtained compounds 3, 4 and 5 were tested for their 

inhibitory activity against wALAD mostly by Dr. Christian Lentz. wALADin3 and 

wALADin5 showed inhibitory activity, but were considerably weaker inhibitors than 

wALADin1(Section 5.3 Table 2). wALADin4 was inactive in the wALAD assay.  

To investigate how modifying the carboxylic acid affected the inhibitory activity, the 

methyl ester 59, which is a precursor in the synthesis of wALADin1,[1b] was tested for its 

inhibitory activity against wALAD and showed none at all. This led to the conclusion that 

the carboxylic acid has to be present and unaltered for inhibitory effects to occur and 

that the position of the carboxylic acid has a great impact on the inhibitory activity of the 

wALADin compounds. In comparison to the initial compound wALADin1, all the 

synthesised regioisomeric derivatives proved to be considerably less active or even 

inactive.  
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Figure 8: Methyl ester 59, a precursor in the synthesis of wALADin1.[1a, 1b] 

The specific binding of wALADin1 to wALAD was then further demonstrated by the 

IMMIP via thermal shift assays.[2] In these assays the stabilisation of the protein by 

ligand binding results in a rightward shift of the protein’s melting curve. This curve is 

displayed as an increase in fluorescence intensity of the environmentally sensitive 

fluorescent dye Sypro Orange.[55]  

At the beginning of this study, the mode of action of wALADin1 was not fully 

discovered but was assumed to be based on a competitive/non-competitive mechanism 

that involved functional competition of wALADin1 with Mg2+-binding or binding to a site 

that interferes with the allosteric activation process. In the meantime the inhibitory 

mechanism of wALADin1 has been identified. wALAD is known to exist in different 

oligomeric states which are either di-, hexa- or octameric. The former two are inactive 

assemblies since they lack subunit interactions required to stabilise a closed 

conformation of the active site lid, while the latter usually act as the active assemblies. 

wALADin1 disturbs the oligomeric equilibrium of wALAD and the interconversion 

between hexameric and octameric states by stabilising the low activity hexamers.[1c] 

wALADin1 showed antifilarial activity with a half maximal effective concentration (EC50) 

of approximately 100 µM in ex vivo experiments using the Wolbachia-containing rodent 

filarial nematode Litomosoides sigmodontis as a model system. Treated worms showed a 

significant reduction in motility and viability and the effect was proven to be Wolbachia-

dependant. Due to the inactivity of wALADin4 in the enzymatic assays, it was chosen as a 

potential negative control compound for in vitro testing on filarial worms with 

wALADin1. In these in vitro tests wALADin4 proved to be much more toxic than 

wALADin1 by killing the filarial nematodes without the reduction of Wolbachia and was 

discarded as a negative control.  
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Nevertheless, in vivo experiments with L. sigmodontis infected mice delivered no 

antifilarial effect. The lack of an in vivo effect of wALADin1 is most likely a result of 

pharmacokinetic deficiencies.[2]  
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4. Aim of project 

For the future treatment and eradication of filarial diseases, novel chemotherapeutic 

treatments need to be developed. In this case wALAD represents a promising target for 

novel antifilarial drug approaches. The identification of the species-specific and dose 

dependant wALAD inhibitor wALADin1 provides a good basis for the development of 

novel chemotherapeutics. However, desirable half maximal inhibitory concentrations of 

potential drug candidates lie in the nanomolar range, while the IC50 of wALADin1 is 

merely located in the low micromolar range. Additionally, the inhibitory activity of 

wALADin1 could not be confirmed in in vivo experiments, likely due to pharmacokinetic 

deficiencies. To be able to improve the inhibitory activity and modify functional groups 

for the improvement of pharmacokinetic properties or the use as chemical biology tools, 

the influence of all side chains (R1-R3) on the inhibitory activity has to be well 

understood. For this reason a variety of different wALADin1 derivatives with altered 

side chains were synthesised in this work and compared in a structure activity 

relationship study. 
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5. Results and discussion 

The previously mentioned SAR was continued in this work. Since the investigations of 

the influence of the R3-moiety revealed the importance of the presence of the carboxylic 

acid and its position on the benzimidazole core structure, the study was continued by 

determining the influence of the R1- and R2-moiety on the inhibitory activity. For this 

reason derivatives were synthesised either lacking a side chain or carrying moieties 

with altered positions or different electron demands. These derivatives were then tested 

for their inhibitory activity to gain full knowledge of the possibilities of modification and 

optimisation. The synthesis and inhibitory activity of R1- and R2- modified wALADin1 

derivatives are reported below. All enzymatic assay, except the once described in 

section 7.14, were carried out by Dr. Christian Lentz at the IMMIP.  

5.1. Investigation of the R²-moiety 

The influence of the R2-moiety to the inhibitory activity was determined by examining 

a wALADin1 derivative lacking the R2-moiety. The wALADin7 termed molecule was 

synthesised by cyclisation of the precursor 58[1b] without prior attachment of the 

carboxylic acid 57 (Scheme 3). This reaction succeeded in a single step solvent and 

catalyst free reaction by formulating compound 58 using formic acid, which resulted in 

subsequent cyclisation.[56] The resulting compound 25 was obtained in excellent yields 

and was hydrolysed using lithium hydroxide monohydrate in a final step to obtain the 

R2-free wALADin7 in excellent overall yields of 78 %. 

 

Scheme 3: Synthesis of wALADin7. 
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wALADin7 was tested for its inhibitory activity against wALAD and proved to be 

similarly potent to wALADin1 (~11 µM) with an IC50 of 13 µM. Based on this results 

further investigations on the R2-moiety were deferred.  

5.2. Investigation of the R¹-moiety  

 wALADin6 

The influence of the R1-moiety was investigated by synthesising a derivative lacking 

the R1-moiety (wALADin6) as well as several derivatives with a variety of modified 

benzyl groups. A suitable starting material for the synthesis of wALADin6 was the 

4-amino-3-nitrobenzoic acid. After esterification of the carboxylic acid the resulting 

methyl ester 21 was reduced to the dianiline 22 using hydrogen promoted by palladium 

on activated carbon (Scheme 4).  

 

Scheme 4: Esterification of the starting material and reduction of 21. 

The HBTU-mediated coupling reaction of the dianiline 22 and the carboxylic acid 57 

resulted exclusively in the formation of a single amide bond and furnished the aniline 23 

in good yields (Scheme 5). Acid promoted cyclisation was carried out in a similar 

fashion as previously described using acetic acid and resulted in the tautomeric 

compound 24. NMR measurements showed that compound 24 exists as constitutional 

isomer which readily interconverts between the two forms with the proton bound to 

either of the two benzimidazole nitrogens which results in a shift of the double bond. 

Hydrolysis of compound 24 using lithium hydroxide monohydrate furnished the final 

compound wALADin6 in overall yields of 32 %.  
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Scheme 5: Synthesis of wALADin6. 

 wALADin2 

wALADin2 is a wALADin1 derivative with the trifluoromethyl group of the R1-moiety 

in para position instead of ortho. The Synthesis of wALADin2 followed a similar 

synthetic pathway as for wALADin1. The methyl ester 56 enabled installation of 

4-trifluormethylbenzylamine via ipso-nucleophilic substitution of the fluoro-group 

(Scheme 6). Subsequently, the furnished nitro aniline 17 was reduced to its 

corresponding aniline 18 using hydrogen promoted by palladium on activated 

carbon.[57]  

 

Scheme 6: Nucleophilic aromatic displacement of 56 and reduction of 17. 
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Carboxylic acid 57 was coupled to aniline 18 in an HBTU mediated coupling reaction 

(Scheme 7). HBTU is a benzotriazole based coupling reagent that activates the 

carboxylic acid by forming an active ester to promote the amide bond formation. After 

recrystallisation of the crude product the cyclisation precursor 19 was obtained in a 

moderate yield. The following step furnished the benzimidazole core structure 20 of 

wALADin2 by acid promoted cyclisation of 19 using acetic acid.[58] In a final step 20 was 

hydrolysed using lithium hydroxide monohydrate to give 2 in excellent yields.[59] 

wALADin2 was furnished in overall yields of 44 %. 

 

Scheme 7: Synthesis of wALADin2 (2). 

 wALADin8-16 

Since the R2-moiety showed no significant influence on the inhibitory potency of 

wALADin7 the decision was made to proceed with compounds lacking the R2-moiety. 

Nine derivatives were synthesised all following a similar synthetic pathway. The methyl 

ester 56 was coupled to the respective benzylamine in an ipso-nucleophilic substitution 

reaction of the fluoro-group (Scheme 8). The resulting compounds 17, 27, 30, 33, 36, 

41, 47, 50, 53 were reduced to their corresponding anilines 18, 28, 31, 34, 37, 42, 48, 

51, 54 using hydrogen promoted by palladium on activated carbon. The following step 

furnished the benzimidazole core structures 26, 29, 32, 35, 38, 43, 49, 52, 55 by acid 

promoted cyclisation of the respective precursors using formic acid. In a final step the 

respective precursors were hydrolysed using lithium hydroxide monohydrate to give 8-

16 in excellent yields.  
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Scheme 8: Synthesis of wALADin8-16. 

Compound Overall yield [%] 

8 65 

9 69 

10 49 

11 43 

12 6 

13 41 

14 34 

15 43 

16 42 

Table 1: Overall yields of wALADin 8-16. 

All benzylamines used were commercially available except for 3-ethylbenzylamine 

(40) and 3-isopropylbenzylamine (46) used for the synthesis of wALADin13 and 

wALADin14. Benzylamine 40 was obtained in a 2-step synthesis starting by converting 

the 1-bromo-3-ethylbenzene into the corresponding benzonitrile 39 using zinc cyanide 
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promoted by tetrakis(triphenylphosphine)palladium (Scheme 9).[60] Compound 39 was 

then reduced to the corresponding benzylamine 40 using lithium aluminium hydride 

and furnished the desired compound in overall yields of 38 %. 

 

Scheme 9: Synthesis of 3-ethylbenzylamine (40). 

Benzylamine 46 was obtained in a 3-step synthesis using 3-acetylbenzonitril as 

starting material (Scheme 10). 3-Acetylbenzonitril was converted to the isopropenyl 44 

by Wittig reaction.[61] In this reaction the phosphorus ylide 

methylenetriphenylphosphorane was generated by deprotonation of the 

methyltriphenylphosphonium bromide with n-butyl lithium. The generated ylide then 

reacted with the carbonyl group of the 3-acetylbenzonitril to form an intermediate 

species that converts into a four membered heterocyclic structure termed 

oxaphosphatane. Cleavage of the oxaphosphatane results in triphenylphosphine oxide 

and the desired isopropenyl 44. Reduction of compound 44 using hydrogen promoted 

by palladium on activated carbon led to the isopropyl 45 which was reduced by lithium 

aluminium hydride to furnish the desired amine 46 in good overall yields of 81 %.  

 

Scheme 10: Synthesis of 3-isopropylbenzylamine (46). 

 Comparison of R1-modified wALADin1 derivatives 

Enzymatic assays using the synthesised R1-modified derivatives revealed the 

importance of this moiety. Replacement of the R1-moiety with hydrogen in wALADin6 

resulted in a total depletion of inhibitory activity. Modifying the R1-moiety generally 
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caused a decrease in inhibitory activity. Attachment of an unsubstituted benzyl moiety 

resulted in an 18-fold less active compound. Even minor changes like the repositioning 

of the trifluoromethyl group to either the 2-position as in wALADin9 or to the 4-position 

as in wALADin2 and wALADin8 resulted in a weakening of the inhibitory potency of 

these compounds. The 4-position was more tolerated, resulting in only 4-fold and 8-fold 

weaker inhibitors compared to 27-fold for wALADin9. Replacement of the 

electron-withdrawing CF3-group with a fluoro-group either in a 3-mono or 

2,5-disubtituted fashion as in wALADin15 and wALADin16 did not furnish an increase in 

inhibitory activity and resulted in 34- and 64-fold less active compounds. Attempts 

using benzyl moieties with electron-donating groups such as methyl-, ethyl-, isopropyl- 

or methoxy-moieties as in wALADin11, wALADin13, wALADin14 or wALADin12 did not 

furnish more potent inhibitors as well. This leads to the conclusion that the R1-moiety in 

general and the 3-trifluoromethyl benzyl-moiety in particular is optimal among the 

series of compounds investigated.  

5.3. Overall comparison of the wALADin1 and its derivatives 

The structure activity relationship study revealed the influence of the different 

moieties of the wALAD inhibitors. The importance of the carboxylic acid-moiety was 

underlined by the results of thermal shift assays carried out by Dr. Christian Lentz at the 

IMMIP. These assays revealed that the less potent compounds wALADin3 and 

wALADin5 also bind to and stabilise the structure of wALAD but with smaller shifts in 

the melting curve as seen with wALADin1. The inactivity of wALADin4 was also 

displayed in its failure to induce a shift of the melting curve, which indicates no binding 

to the protein. These results indicate a functional role of the carboxylic acid-moiety in 

inhibition most likely through direct interactions with the wALAD protein by, for 

example, salt bridge formation. 

The 3-trifluoromethyl substituent on the R1-benzyl-moiety is preferred over all other 

substituents investigated. The substitution of the CF3-group (wALADin7) with a CH3-

group as in wALADin11 results in a 10-fold lower inhibitory activity. This decrease in 

inhibitory activity is not only a result of reduced size of the benzyl-substituents since 

wALADin14, which carries an equally bulky isopropyl-substituent,[62] shows a 17-fold 

reduced inhibitory activity. The higher inhibitory activity of the CF3-substituted 

compounds is possibly a result of the combined effects induced by the fluorines. These 
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effects can be, for example, solvation sphere bridged direct interaction with the protein 

and increased lipophilicity of the compound. 

 

    wALAD hALAD 

Compound R1-moiety R2-moiety R3-Moiety IC50 [µM] R2 IC50 [µM] R2 

wALADin1 
3-CF3-

benzyl  
C5-CO2H 11.1 ± 1.0 0.9517 739 ± 103 0.8582 

wALADin2 
4-CF3-

benzyl  
C5-CO2H 38.6 ± 6.2 0.9670 618 ± 105 0.9186 

wALADin3 
3-CF3-

benzyl  
C6-CO2H 317 ± 53 0.9022 * - 

wALADin4 
3-CF3-

benzyl  
C4-CO2H * - * - 

wALADin5 
3-CF3-

benzyl  
C7-CO2H 164 ± 14 0.9551 * - 

wALADin6 -H 
 

C5-CO2H * - * - 

wALADin7 
3-CF3-

benzyl 
-H C5-CO2H 13.0 ± 1.2 0.9638 197 ± 20 0.9457 

wALADin8 
4-CF3-

benzyl 
-H C5-CO2H 87.7 ± 11 0.9487 173 ± 12 0.9730 

wALADin9 
2-CF3-

benzyl 
-H C5-CO2H 293 ± 67 0.8503 145 ± 7.2 0.9854 

wALADin10 benzyl -H C5-CO2H 197 ± 33 0.9042 213 ± 6.3 0.9934 

wALADin11 
3-Me-

benzyl 
-H C5-CO2H 134 ± 17 0.9394 222 ± 11 0.9864 

wALADin12 
3-OMe-

benzyl 
-H C5-CO2H 205 ± 12 0.9922 156 ± 7.8 0.9881 

wALADin13 3-Et-benzyl -H C5-CO2H 168 ± 24 0.8573 n/a n/a 

wALADin14 
3-iPr-

benzyl 
-H C5-CO2H 217 ± 29 0.8664 n/a n/a 

wALADin15 3-F-benzyl -H C5-CO2H 373 ± 61 0.8700 n/a n/a 

wALADin16 
2,5-F-

benzyl 
-H C5-CO2H 703 ± 192 0.8940 n/a n/a 

Compound59 
3-CF3-

benzyl  
C5-CO2Me * - * - 

*absence of inhibitory activity, n/a = not determined 

Table 2: Inhibitory activity of wALADin1 and its derivatives. 
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The R2-moiety has no influence on the inhibitory activity against wALAD, but 

investigating the inhibitory potency of all R2-H compounds on the human ALAD revealed 

a significantly higher inhibitory potential for the inhibition of the hALAD than the 

compounds containing the R2-moiety. IC50-values of the R2-H compounds against hALAD 

ranged between 145 µM and 222 µM, while the most potent R2-moiety containing 

compound, wALADin2, had an IC50-Value of approximately 618 µM.  This indicates a 

direct influence of the R2-moiety on the species-selectivity of the wALADin compounds 

which is possibly a result of steric hindrance of the bulky R2-moiety at the hALAD 

binding site. 

Summarising the results, the structure activity relationship studies revealed that the 

carboxylic acid moiety on the C5-carbon and the 3-trifluoromethyl benzyl-moiety are 

essential for the inhibitory activity of the wALADin compounds, while the 

2-[(2-thienylcarbonyl)amino]ethyl-moiety did not have any influence on the inhibitory 

activity against wALAD. Still it plays an important role for species-specific inhibition. 

This results in wALADin1 and wALADin7 as the most potent wALAD inhibitors in this 

study. 

5.4. Cross species structure activity relationship studies 

As previously described, wALADin1 and its derivatives specifically inhibit wALAD in a 

mixed competitive/non-competitive manner by disrupting the Mg2+-dependant 

activation of the enzyme while leaving the Mg2+-independent activation of the human 

orthologue mostly unaffected. This led to the question if this specificity also applies to 

other organisms for which the products of the heme biosynthetic pathway are equally 

essential. For this reason the wALADin compounds described in this work were tested in 

a cross species structure activity relationship study (SAR) on different ALAD 

orthologues by Dr. Christian Lentz and Silke Strassel at the IMMIP.[1c] 

ALAD orthologues of the bacteria Escherichia coli (Ec), Vibrio cholera (Vc), Yersinia 

enterocolitica (Ye), Pseudomonas aeruginosa (Pa), the parasite Toxoplasma gondii (Tg) 

and the chloroplast protein of Pisum sativum (Ps) were chosen to determine the effect of 

wALADin1 and its derivatives on different ALAD orthologues.  

Enzymatic activity of EcALAD is Zn2+-dependant[63] while the enzymatic activity of 

PsALAD[64] and TgALAD[65] requires catalytic Mg2+. VcALAD[50], YeALAD[50] and 

PaALAD[66] do not require divalent metal ions for catalytic activity, but all six 
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orthologues are allosterically activated by Mg2+. Additionally, the ALAD orthologue of 

the fruit fly Drosophila melanogaster was also investigated. Like hALAD, DmALAD is 

Zn2+-dependant and does not require allosteric activation by Mg2+ for enzymatic activity. 

The investigations revealed that the wALADin compounds are not merely inhibitors but 

also have the ability to stimulate the enzyme.[1c] 

PsALAD was inhibited in a competitive/non-competitive manner and all wALADin 

compounds showed comparable inhibitory activity as seen for wALAD. Repositioning 

the carboxylic acid to C4, C6 or C7 position and alterations of the benzyl-moiety resulted 

in a decrease in inhibitory activity while the removal of the R2-side chain had no 

significant effect on the inhibitory activity. Only minor differences were observed, for 

example, that wALADin5 was inactive on PsALAD while it showed weak inhibitory 

activity on wALAD and vice versa for wALADin6. 

EcALAD, YeALAD, TgALAD and VcALAD were stimulated by wALADin1 and some 

derivatives. Unlike the SAR for inhibition with wALADin compounds stimulation SAR 

showed different tendencies. In contrast to the decrease of inhibitory activity in 

inhibition assays, repositioning of the carboxylic acid group was well accepted, with 

wALADin3 being one of the two most potent compounds in stimulation assays. Removal 

of the R2-side chain or any modification on the benzyl moiety, except the repositioning of 

the CF3-moiety from 3- to 4-position, were not tolerated and led to abrogation of the 

stimulating effect. These findings resulted in a set of stimulators for the ALAD-

orthologues stated with wALADin2 and wALADin3 being the most potent compounds. 

The enzymatic assays carried out by Dr. Christian Lentz and Silke Strassel at the 

IMMIP indicated that the stimulating effect of the wALADin compounds is protein 

concentration dependant since high protein concentration abrogated stimulation.[1c] 

This led to the conclusion that the stimulating mode of action of the wALADin 

compounds is based on promoting and stabilising the enzymatically active assemblies 

by modifying the oligomeric equilibrium.  

PaALAD represents a special case: Under the respective conditions used for the 

inhibition and stimulation assays the PaALAD was either inhibited or stimulated by the 

wALADin compounds. This phenomenon was exclusively observed for PaALAD. 

In general, DmALAD was similarly insensitive to wALADin1 and all derivatives 

carrying the R2-moiety as seen for the human orthologue. One exception is seen in 

wALADin3 with the carboxylic acid in C6 position which shows a week inhibitory effect 
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on the fruit fly orthologue. In contrast, removal of the R2-moiety does not generally 

result in a rise of inhibitory activity as seen for hALAD. It appears that some 

modifications on the benzyl moiety have an abrogating effect on the inhibitory activity 

that exceeds the activating effect of the R2-moiety removal. This is displayed in the 

insensitivity of DmALAD towards wALADin8, wALADin9, wALADin10. 

All tested ALAD-orthologues could be assigned to one of the three categories 

inhibition, stimulation or insensitivity. For each category a different set of wALADin 

compounds with specific chemical features is most effective. This results in a specific 

SAR profile for each category which is shared exclusively by the members of the same 

category. PaALAD which was inhibited and stimulated under the respective conditions 

showed a SAR profile corresponding to that of the other members present in the 

according category and indicated that the decision between inhibition and stimulation is 

not only functional.[1c] Furthermore, hALAD and DmALAD, members of the insensitivity 

category, both lack an allosteric Mg2+-binding site. This leads to the assumption of a 

correlation between the presence of an allosteric Mg2+-binding site and 

inhibition/stimulation. Nevertheless, further predictions of wALADin responsiveness 

based on the investigations of the predicated oligomeric architectures and the 

dependence of catalytic metal ions made by the IMMIP could not be made due to the lack 

of unambiguous patterns in the response of the ALAD orthologues to the wALADin 

compounds.[1c] 

These experiments revealed the diversity of the wALADin compounds and added 

further properties to their effector spectrum. The insensitivity of the human orthologue 

towards some wALADin compounds and therefore the enabled species specific ALAD-

inhibition of human pathogens poses an up to now unique characteristic. Revealing the 

inhibitory effect on plant ALAD additionally shows a potential for herbicidal use of the 

wALADin compounds and even the stimulating properties of some wALADin compounds 

are not necessarily a disadvantage for the development of therapeutic applications. The 

stimulatory activity might proof effective against organisms in which overproduction of 

porphyrins and precursors lead to phototoxic effects in the targeted organism.[67] All in 

all the wALADin compounds and future derivatives might deliver new herbicidal and 

antibiotic therapies based on ALAD inhibition or stimulation.  
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5.5. Investigation of antiplasmodial activity. 

Another parasite for which the products of the heme biosynthetic pathway are 

essential and which is known to synthesise heme de novo is the malaria parasite 

Plasmodium falciparum.[68] The ALAD orthologue of Plasmodium falciparum (PfALAD) is 

also allosterically activated by Mg2+[69] and therefore poses a potential target for the 

wALADin compounds. The parasite has the ability to not only use the endogenously 

occurring ALAD but also the human orthologue which is imported from infected 

erythrocytes.[70] Although only 10 % of the ALAD-activity in the malaria parasite is 

attributed to PfALAD, it is presumed that PfALAD is essential during certain life stages or 

apicoplast homeostasis.[71] To determine the antiplasmodial activity, the wALADin 

compounds described in this work were investigated for their activity on different life 

cycle stages of Plasmodium.[1d] 

Activity assays for the blood stage type were carried out by incubating Plasmodium 

falciparum erythrocyte cultures[72] with wALADin compounds for 72 h by Dr. Christian 

Lentz and Martina Fendler.[1d] An antiplasmodial effect was observed for wALADin1, 

wALADin2 and wALADin3 which were able to reduce parasitemia to almost 0 %.  

The SAR profile of Plasmodium falciparum did not show the characteristics of the 

inhibition SAR profile of the ALAD orthologues previously described for the enzymatic 

assays but had more resemblance with the stimulation SAR profile. Repositioning of the 

carboxylic acid group from C5- to C6-position, as in wALADin3, was well accepted and 

resulted in a greater inhibitory activity of the compound. Removal of the R2-side chain or 

any modification on the benzyl moiety, except the repositioning of the CF3-moiety from 

3- to 4-position, were not tolerated and led to abrogation of the antiplasmodial effect.  

The activity of the wALADin compounds against sporozoites and liver stages was 

investigated by Dr. Julia Sattler at the Parasitology Unit of the University Hospital 

Heidelberg by using the rodent parasite Plasmodium berghei ANKA.[1d] The investigation 

of the gliding motility of infective sporozoites incubated with the effective wALADin 

compounds revealed that wALADin1 and wALADin3 prevented sporozoites’ adhesion to 

the glass slides at concentrations of 40 µM. wALADin2 on the other hand was much 

more potent and reduced the gliding motility by 75 % at a concentration of 200 nM. 

Since gliding motility is essential for infection, additional experiments were carried out 

by the Parasitology Unit of the University Hospital Heidelberg to investigate if reduction 

of the gliding motility of wALADin2 is sufficient enough to also prevent infection.[1d] 
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Immortalised human hepatoma cells were treated with wALADin2-preincubated 

sporozoites and revealed that invasion of sporozoites into hepatoma cells was blocked. 

Besides the greater motility and invasion inhibiting properties of wALAdin2 over 

wALADin1, wALADin2 also showed no cytotoxicity against human hepatoma cells while 

wALADin1 was determined to be moderately antiproliferative. 

Additional enzymatic assays using the PfALAD were carried out by Dr. Christian Lentz 

and Silke Strassel to determine if the antiplasmodial effect is a result of PfALAD 

inhibition.[1d] These assays revealed that the wALADin compounds have almost no effect 

on the enzyme itself. These findings lead to the conclusion that the antiplasmodial 

activity is a result of wALADin-interaction with an alternative target and explains the 

different SAR profile in culture experiments. 

These studies identified wALADin2 as a potent inhibitor of Plasmodium motility and 

invasion. Unlike wALADin1 it has no cytotoxic effects on human hepatoma cells and 

affects motility and invasion of Plasmodium with concentrations in a nanomolar range. 

Besides wALADin2’s potential as a candidate for novel antiplasmodial treatments, it 

might also deliver useful new possibilities as a tool for identifying the elements of the 

gliding machinery of Plasmodium parasites that are presently unknown.[73] Before these 

new advantageous properties of wALADin2 can be used in their full potential, 

identification of the actual target is necessary. 
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6. Outlook 

6.1. The future of wALADins as drug candidates  

ALAD poses a suitable target for species-specific inhibition of the heme biosynthetic 

pathway since the different orthologues seem to have evolved in a way that enables 

exclusive human pathogen ALAD targeting. The potential of the combined findings 

described in this work is indisputable but the compounds investigated so far still have 

disadvantages that prevent the development into novel therapies. The inhibitory 

activities of potential drug candidates are desired to lie at least in the nanomolar range 

to enable low-dose administration that will still lead to bioactive concentrations in the 

organism. The wALADin compounds’ inhibitory activities only lie in the low micromolar 

range and are not effective in in vivo studies which is partially contributed to the low 

effectivity of these compounds. The SAR studies carried out in this work did not result in 

more potent ALAD inhibitors but gave a greater insight into the influence of the different 

functional groups on the inhibitory activity of wALADin compounds. Additionally, this 

data can be used to perform virtual screening to identify wALADin-like compounds that 

show improved activity.[74]  

An alternative approach is to identify the binding site of the wALADin compounds 

and use the obtained structural information to specifically tailor a more potent 

wALADin-based inhibitor. Co-crystallisation is the most commonly used strategy for 

identifying the binding site of effectors to their target, but can be inconvenient when the 

desired crystals are difficult to obtain as for wALAD and PsALAD. For the other 

ALAD-orthologues used in the cross species SAR crystallisation has been described and 

co-crystallisation studies with the wALADin compounds are currently carried out.  

Another method for identifying the binding site of the wALADin compounds on the 

ALAD-orthologues could be an affinity-based proteomic profiling (ABPP) approach[75] 

where the wALADin compounds are chemically modified (see section 6.2) to be 

covalently bound to the target by UV irradiation. Digestion and purification of the 

complex then enables identification of the binding site via LC-MS analysis. The same 

modified compounds could also be used to investigate possible secondary targets of the 

wALADin compounds.  

Overcoming these obstacles will clear the way for the development of wALADin and 

wALADin-based compounds into novel herbicidal and antibiotic therapies.  
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6.2. Target identification of wALADin2 in Plasmodium falciparum 

As previously described the antiplasmodial effect of wALADin2 does not result from 

inhibitory activity on the Plasmodium falciparum ALAD-orthologue. To investigate the 

actual target of wALADin2, a cross-linkable wALADin2-based clickable probe is the 

preferable tool for these investigations. Modifications on wALADin2 need to be small to 

not affect the interaction with the target and maintain antiplasmodial activity of the 

modified wALADin2. A good approach might be a modified version of the published 

all-in-one 3-(1,1-difluoroprop-2-ynyl)-3H-diazirin-3-yl functional moiety,[76] which 

enables introduction of a cross-linkable and clickable moiety on just one modification 

site (Figure 9).  

 

Figure 9: All-in-one 3-(1,1-difluoroprop-2-ynyl)-3Hdiazirin-3-yl functional moiety.[76] 

Synthesis of the 3-(1,1-difluoroprop-2-ynyl)-3Hdiazirin-3-yl benzylamine can be 

carried out by coupling of a suitably protected 4-Iodobenzylamine with methyl 

2,2-difluoro-4-(triisopropylsilyl)-3-butynoate[77] and conversion of the carbonyl group 

to diazirine.[76] The resulting precursor, 3-(1,1-difluoroprop-2-ynyl)-3Hdiazirin-3-yl 

benzylamine, can then be used as reagent in the ipso-nucleophilic substitution reaction 

to prepare the clickable wALADin2 crosslinker (Scheme 11). 

 

Scheme 11: Synthesis of the cross-linkable wALADin2-based clickable probe. 

Implied that the functionalisation of wALADin2 has only a neglectable effect on target 

binding and antiplasmodial activity, target identification is then accomplished by 

incubating plasmodial lysate with the wALADin2-based probe and covalent crosslinking 

via UV irradiation. Coupling of the cross-linked complexes with desthiobiotin linkers via 
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click reaction enables purification and subsequent identification of the target molecule 

via LC-MS analysis.  
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7. Experimental section 

7.1. General methods 

 NMR-spectroscopy 

1H- and 13C-NMR-spectra were measured with a nuclear magnetic resonance 

spectrometer AM300 (1H = 300 MHz; 13C = 75.5 MHz), AM400 (1H = 400 MHz; 

13C = 100.6 MHz) und AM500 (1H = 500 MHz; 13C = 126.0 MHz) from BRUKER, Karlsruhe. 

D6-DMSO and CDCl3 were used as solvents. The chemical shifts were plotted as δ-values 

in ppm. The 1H-spectra were calibrated on the d6-DMSO residual content at δ = 2.50 ppm 

or on the CDCl3 residual content at δ = 7.26 ppm. The 13C-spectra were calibrated on the 

d6-DMSO residual content at δ = 39.5 ppm or on the CDCl3 residual content at δ = 77.0 

ppm. The analysis of the spectra was carried out with MestRec 4.7.0.0 from Mestrelab 

Research S.L. 

The following abbreviations were used for the multiplicities:  

s singlet  

d doublet 

dd doublet of doublets  

t Triplet 

app. q apparent quartet 

sept septet 

m multiplet 

The coupling constant J were quoted in Hertz and with the letters indicating the atom. 

The letters used are identical to the letters shown on the structures.  

 Mass spectrometry 

EI-Mass spectra were measured on a MAT-95XL from Finnigan, Bremen. ESI-Mass 

spectra were measured with a micrOTOF-Q flight time spectrometer from Bruker 

Daltonik, Bremen using an Agilent 1200 Series HPLC-facility. 

 Flash chromatography 

Flash chromatography was carried out using pre-packed silica gel columns on a 

PuriFlash 430 from Interchim, France.  
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 TLC 

Analytical TLC was performed on a 0.25 mm thickness plates pre-coated with Merck 

Kieselgel 60 F254 silica gel. TLC were visualised under UV (254) nm. 

 Compounds 

wALADin1, wALADin3, wALADin4, wALADin5 and the precursors methyl 4-fluoro-3-

nitrobenzoate (56), 3-(thiophene-2-carboxamido) propanoic acid (57), methyl 3-amino-

4-(3-(trifluoromethyl)benzylamino)benzoate (58) and methyl 2-(2-(thiophene-2-

carboxamido)ethyl)-1-(3-(trifluoromethyl)benzyl)-1H-benzo[d]imidazole-5-carboxylate 

(59) were prepared as described in my diploma thesis[1a] and in reference[1b]. 

7.2. wALADin2 

Methyl 3-nitro-4-(4-(trifluoromethyl)benzylamino)benzoate (17) 

 

4-trifluormethylbenzylamine (7.53 mmol, 1.08 mL) was added in one portion to a 

stirred solution of 56 (5.02 mmol, 1.00 g) and diisopropylethylamine (10.0 mmol, 

1.73 mL) in acetonitrile (51.0 mL) at room temperature. The reaction mixture was 

refluxed for one hour. 

The reaction mixture was concentrated under reduced pressure and partitioned 

between ethyl acetate (30.0 mL) and water (10.0 mL). The reaction mixture was washed 

with water (2x 10.0 mL) and saturated sodium chloride solution (1x 10.0 mL). The 

organic layer was dried (MgSO4) and concentrated under reduced pressure to give 17 as 

a yellow solid. Yield 1.77 g (99 %). 

 

1H NMR (400 MHz, d6-DMSO, 298 K) δ [ppm] = 9.16 (t, 1H, 3JNH,CH2 = 6.3 Hz, ArNH), 

8.62 (d, 1H, 4Ja,b = 2.1 Hz, Ha), 7.87 (dd, 1H, 4Jb,a = 2.0 Hz, 3Jb,c = 9.0 Hz, Hb), 7.70 (d, 2H, 

3Je,d = 8.1 Hz, He), 7.58 (d, 2H, 3Jd,e = 8.1 Hz, Hd), 6.93 (d, 1H, 3Jc,b = 9.1 Hz, Hc), 4.81 (d, 2H, 

3JCH2,NH = 6.3 Hz, ArCH2), 3.80 (s, 3H, OCH3). 
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13C-NMR (100 MHz, d6-DMSO, 298 K) δ [ppm] = 164.6 (CO2R), 147.0 (CArNH), 142.9 

(CArCH2), 135.5 (Cb), 131.0 (CArNO2), 128.2 (Ca), 127.9 (CArCF3), 127.5 (Cd), 125.3 (Ce), 

122.8 (CF3), 116.2 (CArCO2R), 114.9 (Cc), 51.9 (OCH3), 45.3 (ArCH2). 

HRMS calculated for C16H13F3N2O4 354.0827. Found 354.0831. 

 

Methyl 3-amino-4-(4-(trifluoromethyl)benzylamino)benzoate (18) 

 

Palladium on activated carbon (5 % Pd) (wt 10 %, 0.17 g) was added to a stirred 

suspension of 17 (5.70 mmol, 1.67 g) in ethanol (47.0 mL) at room temperature. The 

reaction mixture was purged with argon and then hydrogen was bubbled through the 

suspension for 5 hours using a balloon. The reaction mixture was filtered over Celite and 

concentrated under reduced pressure. The remaining solid was suspended in ether and 

filtered to give 18 as a white solid. Yield 1.28 g (84 %) 

 

1H NMR (400 MHz, d6-DMSO, 298 K) δ [ppm] = 7.69 (d, 2H, 3Je,d = 8.1 Hz, Hd), 7.56 (d, 

2H, 3Jd,e = 8.0 Hz, Hd), 7.23 (d, 1H, 4Ja,b = 2.0 Hz, Ha), 7.11 (dd, 1H, 4Jb,a = 2.0 Hz, 

3Jb,c = 8.3 Hz, Hb), 6.31 (d, 1H, 3Jc,b = 8.4 Hz, Hc), 6.06 (t, 1H, 3JNH,CH2 = 5.9 Hz, ArNH), 4.85 

(s, 2H, ArNH2), 4.50 (d, 2H, 3JCH2,NH = 5.8 Hz, ArCH2), 3.71 (s, 3H, OCH3). 

13C-NMR (100 MHz, d6-DMSO, 298 K) δ [ppm] = 166.6 (CO2R), 144.6 (CArCH2), 139.6 

(CArNH), 134.3 (CArNH2), 127.6 (Cd), 127.5 (CArCF3), 125.1 (Ce), 122.9 (CF3), 120.2 (Cb), 

117.2 (CArCO2R), 114.2 (Ca), 108.4 (Cc), 51.0 (OCH3), 45.6 (ArCH2). 

HRMS calculated for C16H15F3N2O2 324.1086. Found 324.1083. 
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Methyl 3-(3-(thiophene-2-carboxamido)propanamido)-4-((4-

(trifluoromethyl)benzyl) amino)benzoate (19) 

 

Diisopropylethylamine (10.1 mmol, 1.80 mL) was added to a stirred suspension of 

57 (6.06 mmol, 1.21 g) in THF (41.0 mL) followed by HBTU (6.06 mmol, 2.30 g) at room 

temperature. After 5 min 18 (4.04 mmol, 1.31 g) was added. The reaction mixture was 

stirred for 15 hours at room temperature. The reaction mixture was filtered and 

concentrated under reduced pressure. The resulting solid was dissolved in ethyl acetate 

(45.0 mL) and washed with hydrochloric acid (1M, 3 x 25.0 mL) and saturated sodium 

hydrogen carbonate (3 x 25.0 mL). The resulting precipitate was removed and the 

organic layer was washed with saturated sodium chloride (1 x 25.0 mL). The organic 

layer was dried (MgSO4) and concentrated under reduced pressure. The residue was 

recrystallized from chloroform to give 19 as a white solid. Yield 1.54 g (75 %). 

 

1H NMR (400 MHz, d6-DMSO, 298 K) δ [ppm] = 9.36 (s, 1H, CgNH), 8.70 (t, 1H, 

3JNH,CH2 = 5.5 Hz, CfNH), 7.76 (d, 1H, 3Jn,l = 3.6 Hz, Hn), 7.73 (s, 1H, Ha), 7.72 (d, 1H, 

3Jl,n = 4.7 Hz, Hl), 7.66 (d, 2H, 3Je,d = 8.2 Hz, He), 7.57 (d, 2H, 3Jd,e = 8.4 Hz, Hd), 7.55 – 7.53 

(m, 1H, Hb), 7.12 (dd, 1H, 3Jm,n = 3.9 Hz, 3Jm,l = 4.7 Hz, Hm), 6.59 (t, 1H, 3JNH,CH2 = 6.1 Hz, 

CkONH), 6.46 (d, 1H, 3Jc,b = 8.7 Hz, Hc), 4.54 (d, 2H, 3JCH2,NH = 5.8 Hz, ArCH2), 3.73 (s, 3H, 

OCH3), 3.60 (app. q, 2H, 3Jj,I = 6.5 Hz, Hj), 2.67 (t, 2H, 3Ji,j = 6.7 Hz, Hi). 

13C-NMR (100 MHz, d6-DMSO, 298 K) δ [ppm] = 170.1 (Ch), 165.9 (CO2R), 161.2 (Ck), 

146.6 (Cf), 144.3 (CArCH2), 139.8 (CChO), 130.5 (Ca), 128.5 (Cb), 127.9, 127.9 (Cl, Cn), 

127.7 (Cm), 127.4 (Cd), 125.6 (CArCF3), 125.0 (Ce), 122.8 (CF3), 122.4 (Cg), 115.9 

(CArCO2R), 109.7 (Cc), 51.2 (OCH3), 45.1 (ArCH2), 36.0 (Ci), 35.9 (Cj). 

HRMS calculated for C24H22F3N3O4S 528.1181. Found 528.1175. 
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Methyl 2-(2-(thiophene-2-carboxamido)ethyl)-1-(4-(trifluoromethyl)benzyl)-1H-

benzo [d]imidazole-5-carboxylate (20) 

 

A stirred suspension of 19 (2.93 mmol, 1.48 g) in acetic acid (15.0 mL) was refluxed 

for 48 hours at 100 °C. The reaction mixture was concentrated under reduced pressure 

and the residue was dissolved in dichloromethane (25.0 mL). The reaction mixture was 

washed with water (2x 20.0 mL) and saturated sodium chloride (1x 20.0 mL).  The 

organic layer was dried (MgSO4) and concentrated under reduced pressure. The residue 

was recrystallized from chloroform to give 20 as a white solid. Yield 1.13 g (79 %). 

1H NMR (400 MHz, d6-DMSO, 298 K) δ [ppm] = 8.71 (t, 1H, 3JNH,CH2 = 5.7 Hz, CkONH), 

8.25 (d, 1H, 4Ja,b = 1.5 Hz, Ha), 7.84 (dd, 1H, 4Jb,a = 1.6 Hz, 3Jb,c = 8.5 Hz, Hb), 7.73 (dd, 1H, 

4Jl,n = 1.1 Hz, 3Jl,m = 5.0 Hz, Hl), 7.70 (dd, 1H, 4Jn,l = 1.1 Hz, 3Jn,m = 3.7 Hz, Hn), 7.65 (d, 2H, 

3Je,d = 8.2 Hz, He), 7.57 (d, 1H, 3Jc,b = 8.6 Hz, Hc), 7.28 (d, 2H, 3Jd,e = 8.1 Hz, Hd), 7.12 (dd, 1H, 

3Jm,n = 3.7 Hz, 3Jm,l =5.0 Hz, Hm), 5.70 (s, 2H, ArCH2), 3.86 (s, 3H, OCH3), 3.75 (app. q, 2H, 

3Jj,I = 7.1 Hz, Hj), 3.15 (t, 2H, 3Ji,j = 7.3 Hz, Hi). 

13C-NMR (100 MHz, d6-DMSO, 298 K) δ [ppm] = 166.6 (CO2R), 161.2 (Ck), 155.3 (Ch), 

141.9 (CArCH2), 141.1 (Cg), 139.6 (Cf), 138.4 (CCkO), 130.6 (Cl), 127.9 (Cn), 127.7 (Cm), 

126.9 (Cd), 125.5 (Ce), 125.3 (CArCF3), 123.3 (Cb), 123.2 (CArCO2R), 122.6 (CF3), 120.2 

(Ca), 110.2 (Cc), 51.8 (OCH3), 45.7 (ArCH2), 37.1 (Cj), 26.9 (Ci). 

HRMS calculated for C24H20F3N3O3S + Na 510.1075. Found 510.1070. 
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2-(2-(Thiophene-2-carboxamido)ethyl)-1-(4-(trifluoromethyl)benzyl)-1H-benzo 

[d]imidazole-5-carboxylic acid (2) 

 

Lithium hydroxide (11.0 mmol, 0.46 g) was added to a suspension of 20 (2.19 mmol, 

1.07 g) in tetrahydrofuran and water (2:1, 24.0 mL) at room temperature. The reaction 

mixture was refluxed for 15 hours at 60 °C. The reaction mixture was concentrated 

under reduced pressure and the residue was dissolved in water (35.0 mL). The reaction 

mixture was washed with ethyl acetate (1x 15.0 mL). Hydrochloric acid (2M, 5.00 mL) 

was added to the aqueous phase and the resulting precipitate was filtered to give 2 as a 

white solid. Yield 0.94 g (91 %). 

 

1H NMR (400 MHz, d6-DMSO, 298 K) δ [ppm] = 12.72 (s, 1H, CO2H), 8.73 (t, 1H, 

3JNH,CH2 = 5.7 Hz, CkONH), 8.23 (d, 1H, 4Ja,b = 1.5 Hz, Ha), 7.83 (dd, 1H, 4Jb,a = 1.5 Hz, 

3Jb,c = 8.5 Hz, Hb), 7.73 (dd, 1H, 4Jl,n = 1.1 Hz, 3Jl,m = 5.0 Hz, Hl), 7.70 (dd, 1H, 4Jn,l = 1.1 Hz, 

3Jn,m = 3.8 Hz, Hn), 7.65 (d, 2H, 3Je,d = 8.2 Hz, He), 7.53 (d, 1H, 3Jc,b = 8.6 Hz, Hc), 7.28 (d, 2H, 

3Jd,e = 8.1 Hz, Hd), 7.12 (dd, 1H, 3Jm,n = 3.7 Hz, 3Jm,l = 5.0 Hz, Hm), 5.69 (s, 2H, ArCH2), 3.75 

(app. q, 2H, 3Jj,i = 7.1Hz, Hj), 3.14 (t, 2H, 3Ji,j = 7.3 Hz, Hi). 

13C-NMR (100 MHz, d6-DMSO, 298 K) δ [ppm] = 167.7 (CO2R), 161.2 (Ck), 155.0 (Ch), 

141.9 (CArCH2), 141.2 (Cg), 139.6 (CCkO), 138.2 (Cf), 130.6 (Cl), 127.9, 127.7  (Cm, Cn), 

127.0 (Cd), 125.5 (Ce), 125.3 (CArCF3), 124.6 (CArCO2R), 123.4 (Cb), 122.6 (CF3), 120.3 

(Ca), 109.9 (Cc), 45.7 (ArCH2), 37.2 (Cj), 26.9 (Ci). 

HRMS calculated for C23H18F3N3O3S + Na 496.0919. Found 496.0913. 
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7.3. wALADin6 

Methyl 4-amino-3-nitrobenzoate (21)  

 

Sulphuric acid (0.40 mL) was added to a stirred solution of 4-amino-3-nitrobenzoic 

acid (11.0 mmol, 2.00 g) in ethanol (110 mL) and refluxed for 15 hours. The reaction 

mixture was concentrated under reduced pressure and the residue was dissolved in 

ethyl acetate (40.0 mL). The mixture was washed with saturated sodium hydrogen 

carbonate (3x 20.0 mL), water (3x 20.0 mL) and saturated sodium chloride (1x 20.0 mL). 

The organic layer was dried (MgSO4) and concentrated under reduced pressure to give 

21 as a yellow solid. Yield 2.13 g (99 %). 

 

1H NMR (400 MHz, d6-DMSO, 298 K) δ [ppm] = 8.53 (d, 1H, 4Ja,b = 2.0 Hz, Ha), 7.97 (s, 

2H, ArNH2), 7.83 (dd, 1H, 4Jb,a = 2.1 Hz, 3Jb,c = 8.9 Hz, Hb), 7.05 (d, 1H, 3Jc,b = 9.0 Hz, Hc), 

3.80 (s, 3H, OCH3). 

13C-NMR (100 MHz, d6-DMSO, 298 K) δ [ppm] = 164.7 (CO2R), 148.7 (CArNH2), 134.6 

(Cb), 129.4 (CArNO2), 127.9 (Ca), 119.2 (Cc), 116.0 (CArCO2R), 51.8 (OCH3). 

HRMS calculated for C8H8N2O4 196.0484. Found 196.0488. 

 

Methyl 3,4-diaminobenzoate (22) 

 

Palladium on activated carbon (5 % Pd) (wt 10 %, 0.2g) was added to a stirred 

suspension of 21 (10.4 mmol, 2.04 g) in ethanol (104 mL) at room temperature. The 

reaction mixture was purged with argon and then hydrogen was bubbled through the 

suspension for 5 hours using a balloon. The reaction mixture was filtered over Celite and 

concentrated under reduced pressure. The remaining solid was suspended in ether and 

filtered to give 22 as a pale orange solid. Yield 1.55 g (99 %). 
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1H NMR (400 MHz, d6-DMSO, 298 K) δ [ppm] = 7.16 (d, 1H, 4Ja,b = 2.0 Hz, Ha), 7.09 (dd, 

1H, 4Jb,a = 2.0 Hz, 3Jb,c = 8.1 Hz, Hb), 6.51 (d, 1H, 3Jc,b = 8.1 Hz, Hc), 5.27 (s, 2H, Hd or He), 

4.65 (s, 2H, Hd or He), 3.71 (s, 3H, OCH3). 

13C-NMR (100 MHz, d6-DMSO, 298 K) δ [ppm] = 166.7 (CO2R), 140.4, 133.7 (Cd, Ce), 

120.0 (Cb), 117.0 (CArCO2R), 114.7 (Ca), 112.5 (Cc), 50.9 (OCH3). 

HRMS calculated for C8H10N2O2 166.0742. Found 166.0746. 

 

Methyl 4-amino-3-(3-(thiophene-2-carboxamido)propanamido)benzoate (23) 

 

Diisopropylethylamine (26.0 mmol, 4.50 mL) was added to a stirred suspension of 

57 (15.6 mmol, 3.11 g) in THF (104 mL) followed by HBTU (15.6 mmol, 5.92 g) at room 

temperature. After 5 min 22 (10,4 mmol, 1.73 g) was added. The reaction mixture was 

stirred for 15 hours at room temperature. The reaction mixture was filtered and 

concentrated under reduced pressure. The resulting solid was dissolved in ethyl acetate 

(60 mL) and washed with hydrochloric acid (1M, 2 x 15.0 mL) and saturated sodium 

hydrogen carbonate (2 x 15.0 mL). The resulting precipitate was removed and the 

organic layer was washed with saturated sodium chloride (1 x 15.0 mL). The organic 

layer was dried (MgSO4) and concentrated under reduced pressure. The residue was 

recrystallized from chloroform to give 23 as a pink solid. Yield 2.74 g (76 %). 

 

1H NMR (400 MHz, d6-DMSO, 298 K) δ [ppm] = 9.16 (s, 1H, CeNH), 8.64 (t, 1H, 

3JNH,CH2 = 5.6 Hz, CiONH), 7.84 (d, 1H, 4Ja,b = 2.0 Hz, Ha), 7.75 (dd, 1H, 4Jl,j = 1.1 Hz, 

3Jl,k = 3.7 Hz, Hl), 7.73 (dd, 1H, 4Jj,l = 1.1 Hz, 3Jj,k = 5.0 Hz, Hj), 7.52 (dd, 1H, 4Jb,a = 2.0 Hz, 

3Jb,c = 8.5 Hz, Hb), 7.14 (dd, 1H, 3Jk,l = 3.7 Hz, 3Jk,j = 5.0 Hz, Hk), 6.71 (d, 1H, 3Jc,b = 8.5 Hz, Hc), 

5.76 (s, 2H, CdNH2), 3.74 (s, 3H, OCH3), 3.54 (app. q, 2H, 3Jh,g = 6.7 Hz, Hh), 2.63 (t, 2H, 

3Jg,h = 6.9 Hz, Hg). 

13C-NMR (100 MHz, d6-DMSO, 298 K) δ [ppm] = 169.7 (Cf), 166.0 (CO2R), 161.1 (Ci), 

147.0 (Cd), 139.9 (CCiO), 130.5 (Cj), 127.9 (Ca), 127.7 (Cb), 127.7 (Ck), 127.4 (Cl), 121.7 

(Ce), 115.9 (CArCO2R), 114.1 (Cc), 51.2 (OCH3), 35.8 (Cg, Ch). 
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HRMS calculated for C16H17N3O4S + Na 370.0837. Found 370.0832. 

 

Methyl 2-(2-(thiophene-2-carboxamido)ethyl)-1H-benzo[d]imidazole-5-

carboxylate (24) 

 

A stirred suspension of 23 (7.17 mmol, 2.49 g) in acetic acid (72.0 mL) was refluxed 

for 5 hours at 100 °C. The reaction mixture was concentrated under reduced pressure 

and the residue was dissolved in dichloromethane (50 mL). The reaction mixture was 

washed with water (2x 30.0 mL) and saturated sodium chloride (1x 30.0 mL). The 

organic layer was dried (MgSO4) and concentrated under reduced pressure. The residue 

was recrystallized from chloroform to give 24 as a white solid. Yield 1.23 g (52 %). 

Exists as tautomer: 

1H NMR (400 MHz, d6-DMSO, 298 K) δ [ppm] = 12.68 (s, 2H, CArNH), 8.70 (t, 2H, 

3JNH,h = 5.3 Hz, CiONH), 8.16, 8.04 (s, 1H, Ha, Ha’), 7.81 (d, 1H, 3Jb,c = 8.7 Hz, Hb), 7.78 (d, 1H, 

3Jb’,c’ = 8.1 Hz, Hb’), 7.74 (dd, 2H, 4Jj,l = 1.1 Hz, 3Jj,k = 5.0 Hz, Hj), 7.71 (dd, 2H, 4Jl,j = 1.1 Hz, 

3Jl,k = 3.7 Hz, Hl), 7.63 (d, 1H, 3Jc,b = 8.3 Hz, Hc), 7.52 (d, 1H, 3J = 8.3 Hz, Hc’), 7.13 (dd, 2H, 

3Jk,l = 3.7 Hz, 3Jk,j = 5.0 Hz, Hk), 3.85 (s, 6H, OCH3), 3.71 (app. q, 4H, 3Jh,g = 7.1 Hz, Hh), 3.12 

(app. bs, 4H, Hg). 

13C-NMR (100 MHz, d6-DMSO, 298 K) δ [ppm] = 166.8 (CO2R), 166.6 (CO2R’), 161.1 

(Ci), 156.2 (Cf), 155.1 (Cf’), 146.8 (Cd), 142.8 (Cd’), 139.7 (CCiO), 137.8 (Ce), 133.8 (Ce’), 

130.5 (Ck), 127.9 (Cj), 127.7 (Cl), 122.8 (Cb), 122.6 (CArCO2R), 122.4 (CArCO2R’), 122.1 

(Cb’), 119.7 (Ca), 117.9 (Cc), 112.4 (Ca’), 110.8 (Cc’), 51.8 (OCH3), 37.6 (Ch), 28.9 (Cg). 

HRMS calculated for C16H15N3O3S + Na 352.0732. Found 352.0726. 
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2-(2-(Thiophene-2-carboxamido)ethyl)-1H-benzo[d]imidazole-5-carboxylic acid 

(6) 

 

Lithium hydroxide (9.11 mmol, 0.38 g) was added to a suspension of 24 (1.82 mmol, 

0.60 g) in tetrahydrofuran and water (2:1, 18.0 mL) at room temperature. The reaction 

mixture was refluxed for 4 hours at 60 °C. The reaction mixture was concentrated under 

reduced pressure and the residue was dissolved in water (10.0 mL). The reaction 

mixture was washed with ethyl acetate (2x 5.0 mL). Hydrochloric acid (2M, 10.0 mL) 

was added to the aqueous phase and the resulting precipitate was filtered to give 6 as a 

white solid. Yield 0.48 g (84 %). 

 

1H NMR (300 MHz, d6-DMSO, 298 K) δ [ppm] = 12.50 (s, 2H, CO2H, NH), 8.72 (t, 1H, 

3JNH,h = 5.6 Hz, CiONH), 8.09 (s, 1H, Ha), 7.78 (dd, 1H, 4Jb,a = 1.5 Hz, 3Jb,c = 8.4 Hz, Hb), 7.73 

(dd, 1H, 4Jj,l = 1.1 Hz, 3Jj,k = 5.0 Hz, Hj), 7.72 (dd, 1H, 4Jl,j = 1.1 Hz, 3Jl,k = 3.8  Hz, Hl), 7.54 (d, 

1H, 3Jc,b=8.4Hz, Hc), 7.12 (dd, 1H, 3Jk,l = 3.8 Hz, 3Jk,j = 4.9 Hz, Hk), 3.71 (app. q, 2H, 

3Jh,g = 7.1 Hz, Hh), 3.12 (t, 2H, 3Jg,h = 7.2 Hz, Hg). 

13C-NMR (75 MHz, d6-DMSO, 298 K) δ [ppm] = 167.9 (CO2R), 161.2 (Ci), 155.3 (Cf), 

141.9 (Cd), 139.8 (CCiO), 138.7 (Ce), 130.5 (Cl), 128.0 (Cj), 127.7 (Ck), 123.9 (CArCO2R), 

122.7 (Cb), 116.7 (Ca), 114.0 (Cc), 37.7 (Ch), 28.9 (Cg). 

HRMS calculated for C15H13N3O3S + Na 338.0576. Found 338.0570. 
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7.4. wALADin7 

Methyl 1-(3-(trifluoromethyl)benzyl)-1H-benzo[d]imidazole-5-carboxylate (25) 

 

A stirred suspension of 58 (8.05 mmol, 2.61 g) in formic acid (21.0 mL) was refluxed 

for 30 minutes at 110 °C. The reaction mixture was cooled to 0 °C and neutralised with 

sodium hydrogen carbonate (700 mL). The reaction mixture was extracted with ethyl 

acetate (3 x 100 mL) and the organic layer was washed with water (3 x 50.0 mL) and 

sodium chloride (1 x 50.0 mL). The organic layer was dried (MgSO4) and concentrated 

under reduced pressure to give 25 as an off-white solid. Yield 2.63 g (98 %). 

 

1H NMR (400 MHz, d6-DMSO, 298 K) δ [ppm] = 8.63 (s, 1H, Hj), 8.28 (dd, 1H, 

5Ja,c = 0.5 Hz, 4Ja,b = 1.5 Hz, Ha), 7.87 (dd, 1H, 4Jb,a
 = 1.6 Hz, 3Jb,c = 8.5 Hz, Hb,) 7.77 (s, 1H, 

Hd), 7.69 (dd, 1H, 5Jc,a = 0.6 Hz, 3Jc,b = 8.6 Hz, Hc), 7.65 – 7.68 (m, 1H, He), 7.55 – 7.60 (m, 

2H, Hf, Hg), 5.68 (s, 2H, ArCH2), 3.85 (s, 3H, OCH3). 

13C-NMR (100 MHz, d6-DMSO, 298 K) δ [ppm] = 166.5 (CO2R), 146.3 (Cj), 143.0, 137.9, 

136.8 (Ch, Ci, CArCH2), 131.4 (Cf or Cg), 129.8 (Cf or Cg), 125.2 (CArCF3), 124.5 (CArCO2R), 

124.0 (Ce), 123.5 (Cd), 123.4 (Cb), 122.5 (CF3), 121.2 (Ca), 110.6 (Cc), 51.9 (OCH3), 47.0 

(ArCH2). 

HRMS calculated for C17H13F3N2O2 334.0929. Found 334.0929. 

 

1-(3-(Trifluoromethyl)benzyl)-1H-benzo[d]imidazole-5-carboxylic acid (7) 

 

Lithium hydroxide (37.5 mmol, 1.58 g) was added to a suspension of 25 (7.51 mmol, 

2.51 g) in tetrahydrofuran and water (2:1, 75.0 mL) at room temperature. The reaction 
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mixture was refluxed for 15 hours at 60 °C. The reaction mixture was concentrated 

under reduced pressure and the residue was dissolved in water (50.0 mL). The reaction 

mixture was washed with ethyl acetate (2x 50.0 mL). Hydrochloric acid (2M, 50.0 mL) 

was added to the aqueous phase and the resulting precipitate was filtered to give 7 as a 

white solid. Yield 2.34 g (97 %). 

 

1H NMR (400 MHz, d6-DMSO, 298 K) δ [ppm] = 12.80 (s, 1H, CO2H), 8.66 (s, 1H, Hj), 

8.27 (d, 1H, 4Ja,b = 1.0 Hz, Ha), 7.87 (dd, 1H, 4Jb,a = 1.5 Hz, 3Jb,c = 8.5 Hz, Hb), 7.78 (s, 1H, Hd), 

7.65 – 7.68 (m, 2H, Hc,He), 7.57 – 7.58 (m, 2H, Hf, Hg), 5.68 (s, 2H, ArCH2). 

13C-NMR (100 MHz, d6-DMSO, 298 K) δ [ppm] = 167.6 (CO2R), 146.1 (Cj), 142.7, 137.9, 

136.5 (Ch, Ci, CArCH2), 131.4 (Cf or Cg), 129.8 (Cf or Cg), 125.2 (CArCF3), 124.7 (CArCO2R), 

124.5 (Ce), 124.0 (Cd), 123.9 (Cb), 122.5 (CF3), 121.2 (Ca), 110.5 (Cc), 47.1 (ArCH2). 

HRMS calculated for C16H11F3N2O2 320.0773. Found 320.0775. 

7.5. wALADin8 

Methyl 1-(4-(trifluoromethyl)benzyl)-1H-benzo[d]imidazole-5-carboxylate (26) 

 

A stirred suspension of 17 (4.63 mmol, 1.50 g) in formic acid (8.50 mL) was refluxed 

for 30 minutes at 110 °C. The reaction mixture was cooled to 0 °C and neutralised with 

sodium hydrogen carbonate (300 mL). The reaction mixture was extracted with ethyl 

acetate (3 x 100 mL) and the organic layer was washed with water (3 x 100 mL) and 

sodium chloride (1 x 100 mL). The organic layer was dried (MgSO4) and concentrated 

under reduced pressure to give 26 as a white solid. Yield 1.05 g (80 %). 

 

1H NMR (300 MHz, d6-DMSO, 298 K) δ [ppm] = 8.61 (s, 1H, Hh), 8.28 (d, 1H, 

4Ja,b = 1.0 Hz, Ha), 7.86 (dd, 1H, 4Jb,a = 1.6 Hz, 3Jb,c = 8.5 Hz, Hb), 7.72 (d, 2H, 3Je,d = 8.1 Hz, 

He), 7.64 (dd, 1H, 5Jc,a = 0.5 Hz, 3Jc,b = 8.5 Hz, Hc), 7.49 (d, 2H, 3Jd,e = 8.0 Hz, Hd), 5.69 (s, 2H, 

ArCH2) 3.86 (s, 1H, OCH3). 
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13C-NMR (75 MHz, d6-DMSO, 298 K) δ [ppm] = 166.5 (CO2R), 146.4 (Ch), 143.0 (Cf), 

141.2 (CArCH2), 141.2 (Cg), 136.8 (CArCF3), 128.5 (Cd), 125.6 (Ce), 123.5 (Cb), 123.4 

(CArCO2R), 122.1 (CF3), 121.2 (Ca), 110.7 (Cc), 51.9 (OCH3), 47.1 (ArCH2). 

HRMS calculated for C17H13F3N2O2 334.0929. Found 334.0931. 

 

1-(4-(Trifluoromethyl)benzyl)-1H-benzo[d]imidazole-5-carboxylic acid (8) 

 

Lithium hydroxide (12.6 mmol, 0.53 g) was added to a suspension of 26 (2.51 mmol, 

0.84 g) in tetrahydrofuran and water (2:1, 27.0 mL) at room temperature. The reaction 

mixture was refluxed for 6 hours at 60 °C. The reaction mixture was concentrated under 

reduced pressure and the residue was dissolved in water (20.0 mL). The reaction 

mixture was washed with ethyl acetate (1x 10.0 mL). Hydrochloric acid (2M, 5.00 mL) 

was added to the aqueous phase and the resulting precipitate was filtered to give 8 as a 

white solid. Yield 0.80 g (99 %). 

 

1H NMR (400 MHz, d6-DMSO, 298 K) δ [ppm] = 8.59 (s, 1H, Hh), 8.28 (d, 1H, 

4Ja,b = 1.0 Hz, Ha), 7.86 (dd, 1H, 4Jb,a = 1.5 Hz, 3Jb,c = 8.5 Hz, Hb), 7.71 (d, 2H, 3Je,d = 8.1 Hz, 

He), 7.59 (d, 1H, 3Jc,b = 8.5 Hz, Hc), 7.49 (d, 2H, 3Jd,e = 8.1 Hz, Hd), 5.68 (s, 2H, ArCH2). 

13C-NMR (100 MHz, d6-DMSO, 298 K) δ [ppm] = 167.7 (CO2R), 146.1 (Ch), 143.0 (Cg), 

141.3 (Cf), 136.5 (CArCH2), 128.5 (CArCF3), 127.9 (Cd), 125.5 (Ce), 125.0 (CArCO2R), 123.8 

(Cb), 122.6 (CF3), 121.3 (Ca), 110.3 (Cc), 47.1 (ArCH2). 

HRMS calculated for C16H11F3N2O2 320.0773. Found 320.0771. 
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7.6. wALADin9 

Methyl 3-nitro-4-(2-(trifluoromethyl)benzylamino)benzoate (27) 

 

2-trifluormethylbenzylamine (7.53 mmol, 1.10 mL) was added in one portion to a 

stirred solution of 56 (5.02 mmol, 1.00 g) and diisopropylethylamine (10.0 mmol, 

1.80 mL) in acetonitrile (50.0 mL) at room temperature. The reaction mixture was 

refluxed for one hour. 

The reaction mixture was concentrated under reduced pressure and partitioned 

between ethyl acetate (30.0 mL) and water (10.0 mL). The reaction mixture was washed 

with water (2x 10.0 mL) and saturated sodium chloride solution (1x 10.0 mL). The 

organic layer was dried (MgSO4) and concentrated under reduced pressure to give 27 as 

a yellow solid. Yield 1.74 g (98 %). 

 

1H NMR (300 MHz, d6-DMSO, 298 K) δ [ppm] = 9.07 (t, 1H, 3JNH,CH2 = 6.1 Hz, ArNH), 

8.64 (d, 1H, 4Ja,b = 2.1 Hz, Ha), 7.90 (dd, 1H, 4Jb,a = 2.0 Hz, 3Jb,c = 9.0 Hz, Hb), 7.78 (d, 1H, 

3Jg,f = 7.3 Hz, Hg), 7.62 (dd, 1H, 3Jf,g = 7.6 Hz, Hf), 7.50 (dd, 2H, 3Jd,e = 6.7 Hz, Hd,He), 6.76 (d, 

1H, 3Jc,b = 9.1 Hz, Hc), 4.86 (d, 2H, 3JCH2,NH = 6.0 Hz, ArCH2) 3.80 (s, 3H, OCH3). 

13C-NMR (75 MHz, d6-DMSO, 298 K) δ [ppm] = 164.5 (CO2R), 146.9 (CArNH), 135.7 

(Cb), 132.8 (Cf), 131.1 (CArCH2), 128.2 (Ca), 127.7 (Cd, Ce), 126.1 (Cg), 125.9 (CArNO2), 

125.5 (CArCF3), 122.5 (CF3), 116.4 (CArCO2R), 114.4 (Cc), 51.9 (OCH3), 42.7 (ArCH2). 

HRMS calculated for C16H13F3N2O4 + Na 377.0725. Found 377.0720. 
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Methyl 3-amino-4-(2-(trifluoromethyl)benzylamino)benzoate (28) 

 

Palladium on activated carbon (5 % Pd) (wt 10 %, 0.17 g) was added to a stirred 

suspension of 27 (4.69 mmol, 1.66 g) in ethanol (47.0 mL) at room temperature. The 

reaction mixture was purged with argon and then hydrogen was bubbled through the 

suspension for 5 hours using a balloon. The reaction mixture was filtered over Celite and 

concentrated under reduced pressure. The remaining solid was suspended in ether and 

filtered to give 28 as a white solid. Yield 1.18 g (78 %) 

 

1H NMR (400 MHz, d6-DMSO, 298 K) δ [ppm] = 7.75 (d, 1H, 3Jd,e = 7.7 Hz, Hd), 7.61 (dd, 

1H, 3Jf,e/g = 7.5 Hz, Hf), 7.52 (d, 1H, 3Jg,f = 7.7 Hz, Hg), 7.46 (dd, 1H, 3Je,d/f = 7.5 Hz, He), 7.26 

(d, 1H, 4Ja,b = 2.0 Hz, Ha), 7.11 (dd, 1H, 4Jb,a = 1.9 Hz, 3Jb,c = 8.3 Hz, Hb), 6.18 (d, 1H, 

3Jc,b = 8.3 Hz, Hc), 6.06 (t, 1H, 3JNH,CH2 = 5.7 Hz, ArNH), 4.89 (s, 2H, ArNH2), 4.56 (d, 2H, 

3JCH2,NH = 5.4 Hz, ArCH2), 3.71 (s, 3H, OCH3). 

13C-NMR (100 MHz, d6-DMSO, 298 K) δ [ppm] = 166.6 (CO2R), 139.5 (CArCH2), 137.7 

(CArNH), 134.4 (CArNH2), 132.5 (Cf), 128.1 (Cg), 127.2 (Ce), 126.1 (CArCF3), 125.7 (Cd), 

123.1 (CF3), 120.2 (Cb), 117.4 (CArCO2R), 114.4 (Ca), 108.0 (Cc), 51.0 (OCH3), 42.7 

(ArCH2). 

HRMS calculated for C16H15F3N2O2 + H 325.1164. Found 325.1158. 

 

Methyl 1-(2-(trifluoromethyl)benzyl)-1H-benzo[d]imidazole-5-carboxylate (29) 

 

A stirred suspension of 28 (3.52 mmol, 1.14 g) in formic acid (8.80 mL) was refluxed 

for 30 minutes at 110 °C. The reaction mixture was cooled to 0 °C and neutralised with 

sodium hydrogen carbonate (200 mL). The reaction mixture was extracted with ethyl 
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acetate (3 x 50 mL) and the organic layer was washed with water (3 x 40 mL) and 

sodium chloride (1 x 40 mL). The organic layer was dried (MgSO4) and concentrated 

under reduced pressure to give 29 as a white solid. Yield 1.13 g (96 %). 

 

1H NMR (300 MHz, d6-DMSO, 298 K) δ [ppm] = 8.49 (s, 1H, Hj), 8.32 (d, 1H, 

4Ja,b = 1.0 Hz, Ha), 7.81 – 7.87 (m, 2H, Hb, Hd), 7.52 – 7.59 (m, 2H, Hf, Hg), 7.42 (dd, 1H, 

5Jc,a = 0.4 Hz, 3Jc,b = 8.5 Hz, Hc), 6.80 (d, 1H, 3Je,d/f = 6.6 Hz, He), 5.77 (s, 2H, ArCH2), 3.86 (s, 

3H, OCH3). 

13C-NMR (75 MHz, d6-DMSO, 298 K) δ [ppm] = 166.4 (CO2R), 146.7 (Hj), 143.0 (Hh), 

137.0 (Hi), 134.4 (CArCH2), 133.1, 128.3 (Hf, Hg), 127.8 (He), 126.3 (Hd), 125.8 (CArCF3), 

123.7 (Hb), 123.5 (CArCO2R), 122.3 (CF3), 121.3 (Ha), 110.4 (Hc), 51.9 (OCH3), 44.6 

(ArCH2). 

HRMS calculated for C17H13F3N2O2 + Na 357.0827. Found 357.0821. 

 

1-(2-(Trifluoromethyl)benzyl)-1H-benzo[d]imidazole-5-carboxylic acid (9) 

 

Lithium hydroxide (16.5 mmol, 0.69 g) was added to a suspension of 29 (3.29 mmol, 

1.10 g) in tetrahydrofuran and water (2:1, 33.0 mL) at room temperature. The reaction 

mixture was refluxed for 5 hours at 60 °C. The reaction mixture was concentrated under 

reduced pressure and the residue was dissolved in water (30.0 mL). The reaction 

mixture was washed with ethyl acetate (1x 10.0 mL). Hydrochloric acid (2M, 10.0 mL) 

was added to the aqueous phase and the resulting precipitate was filtered to give 9 as a 

white solid. Yield 0.99 g (94 %). 

 

1H NMR (400 MHz, d6-DMSO, 298 K) δ [ppm] = 12.80 (s, 1H, CO2H), 8.47 (s, 1H, Hj), 

8.31 (d, 1H, 4Ja,b = 1.0 Hz, Ha), 7.84 (ddd, 2H, 4Jb,a = 1.5 Hz, 3Jb,c = 8.4 Hz, 3Jd,e = 8.1 Hz, Hb, 

Hd), 7.50 – 7.58 (m, 2H, Hf, Hg), 7.39 (d, 1H, 3Jc,b = 8.5 Hz, Hc), 6.80 (d, 1H, 3Je,f = 7.3 Hz, He), 

5.77 (s, 2H, ArCH2). 



A7 Experimental section 

59 
 

13C-NMR (100 MHz, d6-DMSO, 298 K) δ [ppm] = 167.6 (CO2R), 146.5 (Cj), 143.0 (Ch), 

136.7 (Ci), 134.5 (CArCH2), 133.1, 128.3 (Cf or Cg), 127.8 (Ce), 126.2 (Cd), 125.5 (CArCF3), 

124.7 (CArCO2R), 124.0 (Cb), 122.8 (CF3), 121.4 (Ca), 110.1 (Cc), 44.6 (ArCH2). 

HRMS calculated for C16H11F3N2O2 320.0773. Found 320.0771. 

7.7. wALADin10 

Methyl 4-(benzylamino)-3-nitrobenzoate (30) 

 

Benzylamine (22.6 mmol, 2.46 mL) was added in one portion to a stirred solution of 

56 (15.0 mmol, 3.00 g) and diisopropylethylamine (30.0 mmol, 5.21 mL) in acetonitrile 

(151.0 mL) at room temperature. The reaction mixture was refluxed for one hour. 

The reaction mixture was concentrated under reduced pressure and partitioned 

between ethyl acetate (90.0 mL) and water (30.0 mL). The reaction mixture was washed 

with water (2x 30.0 mL) and saturated sodium chloride solution (1x 30.0 mL). The 

organic layer was dried (MgSO4) and concentrated under reduced pressure to give 30 as 

a yellow solid. Yield 4.03 g (93 %). 

 

1H NMR (400 MHz, d6-DMSO, 298 K) δ [ppm] = 9.07 (t, 1H, 3JNH,CH2= 6.1 Hz, ArNH), 

8.62 (d, 1H, 4Ja,b = 2.1 Hz, Ha), 7.88 (dd, 1H, 4Jb,a = 1.7 Hz, 3Jb,c = 9.1 Hz, Hb), 7.32 – 7.39 (m, 

4H, Hd, He), 7.23 – 7.28 (m, 1H, Hf), 6.99 (d, 1H, 3Jc,b = 9.1 Hz, Hc), 4.69 (d, 2H, 

3JCH2,NH = 6.2 Hz, ArCH2), 3.80 (s, 3H, OCH3). 

13C-NMR (100 MHz, d6-DMSO, 298 K) δ [ppm] = 164.6 (CO2R), 147.1 (CArNH), 137.7 

(CArCH2), 135.3 (Cb), 130.7 (CArNO2), 128.5 (Cd or Ce), 128.2 (Ca), 127.0 (Cf), 126.8 (Cd or 

Ce), 115.9 (CArCO2R), 115.0 (Cc), 51.8 (OCH3), 45.7 (ArCH2). 

HRMS calculated for C15H14N2O4 + Na 309.0852. Found 309.0846. 
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Methyl 3-amino-4-(benzylamino)benzoate (31) 

 

Palladium on activated carbon (5 % Pd) (wt 10 %, 0.20 g) was added to a stirred 

suspension of 30 (6.99 mmol, 2.00 g) in ethanol (70.0 mL) at room temperature. The 

reaction mixture was purged with argon and then hydrogen was bubbled through the 

suspension for 5 hours using a balloon. The reaction mixture was filtered over Celite and 

concentrated under reduced pressure. The remaining solid was suspended in ether and 

filtered to give 31 as an off-white solid. Yield 1.10 g (61 %) 

 

1H NMR (400 MHz, d6-DMSO, 298 K) δ [ppm] = 7.30 -7.37 (m, 4H, Hd, He), 7.21 – 7.25 

(m, 1H, Hf), 7.21 (d, 1H, 4Ja,b = 2.0 Hz, Ha), 7.12 (dd, 1H, 4Jb,a = 2.0 Hz, 3Jb,c = 8.3 Hz, Hb), 

6.36 (d, 1H, 3Jc,b = 8.4 Hz, Hc), 5.91 (t, 1H, 3JNH,CH2 = 5.8 Hz, ArNH), 4.83 (s, 2H, ArNH2), 

4.39 (d, 2H, 3JCH2,NH = 5.8 Hz, ArCH2), 3.71 (s, 3H, OCH3). 

13C-NMR (100 MHz, d6-DMSO, 298 K) δ [ppm] = 166.6 (CO2R), 140.0 (CArCH2), 139.4 

(CArNH), 134.2 (CArNH2), 128.2 (Ce), 127.0 (Cd), 126.6 (Cf), 120.2 (Cb), 116.8 (CArCO2R), 

114.1 (Ca), 108.4 (Cc), 50.9 (OCH3), 46.1 (ArCH2). 

HRMS calculated for C15H16N2O2 256.1212. Found 256.1210. 

 

Methyl 1-benzyl-1H-benzo[d]imidazole-5-carboxylate (32) 

 

A stirred suspension of 31 (4.06 mmol, 1.04 g) in formic acid (10.1 mL) was refluxed 

for 30 minutes at 110 °C. The reaction mixture was cooled to 0 °C and neutralised with 

sodium hydrogen carbonate (330 mL). The reaction mixture was extracted with ethyl 

acetate (3 x 50 mL) and the organic layer was washed with water (3 x 50 mL) and 

sodium chloride (1 x 50 mL). The organic layer was dried (MgSO4) and concentrated 

under reduced pressure to give 32 as an off-white solid. Yield 1.06 g (98 %). 
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1H NMR (400 MHz, d6-DMSO, 298 K) δ [ppm] = 8.58 (s, 1H, Hi), 8.27 (dd, 1H, 

5Ja,c = 0.5 Hz, 4Ja,b = 1.5 Hz, Ha), 7.85 (dd, 1H, 4Jb,a = 1.6 Hz, 3Jb,c = 8.5 Hz, Hb), 7.65 (dd, 1H, 

5Jc,a = 0.6 Hz, 3Jc,b = 8.5 Hz, Hc), 7.26 - 7.36 (m, 5H, Hd, He, Hf), 5.55 (s, 2H, ArCH2), 3.85 (s, 

3H, OCH3). 

13C-NMR (100 MHz, d6-DMSO, 298 K) δ [ppm] = 166.5 (CO2R), 146.3 (Ci), 143.0 (Cg), 

136.9 (Ch), 136.4 (CArCH2), 128.6 (CArCO2R), 127.7 (Cd or Ce), 127.2 (Cf), 123.3 (Cd or Ce), 

123.2 (Cb), 121.1 (Ca), 110.7 (Cc), 51.8 (OCH3), 47.7 (ArCH2). 

HRMS calculated for C16H14N2O2 266.1055. Found 266.1055. 

 

1-Benzyl-1H-benzo[d]imidazole-5-carboxylic acid (10) 

 

Lithium hydroxide (19.2 mmol, 0.80 g) was added to a suspension of 32 (3.83 mmol, 

1.02 g) in tetrahydrofuran and water (2:1, 39.0 mL) at room temperature. The reaction 

mixture was refluxed for 3 hours at 60 °C. The reaction mixture was concentrated under 

reduced pressure and the residue was dissolved in water (30.0 mL). The reaction 

mixture was washed with ethyl acetate (1x 10.0 mL). Hydrochloric acid (2M, 10.0 mL) 

was added to the aqueous phase and the resulting precipitate was filtered to give 10 as 

an off-white solid. Yield 0.87 g (90 %). 

 

1H NMR (400 MHz, d6-DMSO, 298 K) δ [ppm] = 12.73 (s, 1H, CO2H), 8.57 (s, 1H, Hi), 

8.26 (d, 1H, 4Ja,b = 1.0 Hz, Ha), 7.85 (dd, 1H, 4Jb,a = 1.5 Hz, 3Jb,c = 8.5 Hz, Hb), 7.61 (d, 1H, 

3Jc,b = 8.5 Hz, Hc), 7.31 (m, 5H, Hd, He, Hf), 5.55 (s, 2H, ArCH2). 

13C-NMR (100 MHz, d6-DMSO, 298 K) δ [ppm] = 167.6 (CO2R), 146.1 (Ci), 143.0 (Cg), 

136.7 (Ch), 136.5 (CArCH2), 128.6 (Cd or Ce), 127.7 (Cf), 127.3 (Cd or Ce), 124.4 (CArCO2R), 

123.6 (Cb), 121.2 (Ca), 110.5 (Cc), 47.7 (ArCH2). 

HRMS calculated for C15H12N2O2 252.0899. Found 252.0902. 
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7.8. wALADin11 

Methyl 4-((3-methylbenzyl)amino)-3-nitrobenzoate (33) 

 

3-methylbenzylamine (7.53 mmol, 0.94 mL) was added in one portion to a stirred 

solution of 56 (5.02 mmol, 1.00 g) and diisopropylethylamine (10.0 mmol, 1.71 mL) in 

acetonitrile (50.0 mL) at room temperature. The reaction mixture was refluxed for one 

hour. 

The reaction mixture was concentrated under reduced pressure and partitioned 

between ethyl acetate (70.0 mL) and water (30.0 mL). The reaction mixture was washed 

with water (2x 30.0 mL) and saturated sodium chloride solution (1x 30.0 mL). The 

organic layer was dried (MgSO4) and concentrated under reduced pressure to give 33 as 

a yellow solid. Yield 1.47 g (98 %). 

 

1H NMR (400 MHz, d6-DMSO, 298 K) δ [ppm] = 9.03 (t, 1H, 3JNH,CH2 = 6.1 Hz, ArNH), 

8.61 (d, 1H, 4Ja,b = 2.1 Hz, Ha), 7.87 (dd, 1H, 4Jb,a = 1.9 Hz, 3Jb,c = 9.0 Hz, Hb), 7.22 (dd, 1H, 

3Jf,e/g = 7.5 Hz, Hf), 7.18 (s, 1H, Hd), 7.15 (d, 1H, 3Jg,f = 7.6 Hz, Hg), 7.07 (d, 1H, 3Je,f = 7.4 Hz, 

He), 6.98 (d, 1H, 3Jc,b = 9.1 Hz, Hc), 4.64 (d, 2H, 3JCH2,NH = 6.1 Hz, ArCH2), 3.80 (s, 3H, OCH3), 

2.27 (s, 3H, ArCH3). 

13C-NMR (100 MHz, d6-DMSO, 298 K) δ [ppm] = 164.6 (CO2R), 147.1 (CArNH), 137.6 

(CArCH2), 137.6 (CArCH3), 135.3 (Cb), 130.6 (CArNO2), 128.4 (Cf), 128.2 (Ca), 127.7 (Ce), 

127.3 (Cd), 123.8 (Cg), 115.9 (CArCO2R), 115.0 (Cc), 51.8 (OCH3), 45.7 (ArCH2), 20.9 

(ArCH3). 

HRMS calculated for C16H16N2O4 + Na 323.1008. Found 323.1002. 
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Methyl 3-amino-4-((3-methylbenzyl)amino)benzoate (34) 

 

Palladium on activated carbon (5 % Pd) (wt 10 %, 0.16 g) was added to a stirred 

suspension of 33 (5.19 mmol, 1.56 g) in ethanol (52.0 mL) at room temperature. The 

reaction mixture was purged with argon and then hydrogen was bubbled through the 

suspension for 5 hours using a balloon. The reaction mixture was filtered over Celite and 

concentrated under reduced pressure. The remaining solid was suspended in ether and 

filtered to give 34 as a white solid. Yield 1.11 g (79 %). 

 

1H NMR (400 MHz, d6-DMSO, 298 K) δ [ppm] = 7.23 - 7.11 (m, 5H, Ha, Hb, Hd, Hf, Hg), 

7.04 (d, 1H, 3Je,f = 7.2 Hz, He), 6.36 (d, 1H, 3Jc,b= 8.3 Hz, Hc), 5.88 (t, 1H, 3JNH,CH2 = 5.7 Hz, 

ArNH), 4.83 (s, 2H, ArNH2), 4.34 (d, 2H, 3JCH2,NH = 5.7 Hz, ArCH2), 3.71 (s, 3H, OCH3), 2.28 

(s, 3H, ArCH3). 

13C-NMR (100 MHz, d6-DMSO, 298 K) δ [ppm] = 166.6 (CO2R), 140.1 (CArCH2), 139.4 

(CArNH), 137.2 (CArCH3), 134.2 (CArNH2), 128.1 (Cd), 127.6 (Cf), 127.3 (Ce), 124.1 (Cg), 

120.2 (Cb), 116.8 (CArCO2R), 114.1 (Ca), 108.3 (Cc), 50.9 (OCH3), 46.2 (ArCH2), 20.9 

(ArCH3). 

HRMS calculated for C16H18N2O2 + H 271.1446. Found 271.1441. 

 

Methyl 1-(3-methylbenzyl)-1H-benzo[d]imidazole-5-carboxylate (35) 

 

A stirred suspension of 34 (4.11 mmol, 1.11 g) in formic acid (50.1 mL) was refluxed 

for 30 minutes at 110 °C. The reaction mixture was cooled to 0 °C and neutralised with 

sodium hydrogen carbonate (1400 mL). The reaction mixture was extracted with ethyl 

acetate (3 x 200 mL) and the organic layer was washed with water (3 x 100 mL) and 
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sodium chloride (1 x 100 mL). The organic layer was dried (MgSO4) and concentrated 

under reduced pressure to give 35 as an off-white solid. Yield 1.03 g (89 %). 

 

1H NMR (300 MHz, d6-DMSO, 298 K) δ [ppm] = 8.57 (s, 1H, Hj), 8.27 (d, 1H, 

5Ja,c = 0.5 Hz, 4Ja,b = 1.5 Hz, Ha), 7.86 (dd, 1H, 4Jb,a = 1.6 Hz, 3Jb,c = 8.5 Hz, Hb), 7.64 (dd, 1H, 

5Jc,a = 0.5 Hz, 3Jc,b = 8.5 Hz, Hc), 7.22 (dd, 1H, 3Jf,e/g = 7.5 Hz, Hf), 7.15 (s, 1H, Hd), 7.09 (m, 

2H, He, Hg), 5.50 (s, 2H, ArCH2), 3.85 (s, 3H, OCH3), 2.24 (s, 3H, ArCH3). 

13C-NMR (75 MHz, d6-DMSO, 298 K) δ [ppm] = 166.5 (CO2R), 146.3 (Cj), 143.0 (Ci), 

137.8 (Ch), 136.9 (CArCH3), 136.3 (CArCH2), 128.5 (Cf), 128.4 (Cg), 127.8 (Cd), 124.4 (Ce), 

123.3 (CArCO2R), 123.2 (Cb), 121.1 (Ca), 110.7 (Cc), 51.8 (OCH3), 47.6 (ArCH2), 20.8 

(ArCH3). 

HRMS calculated for C17H16N2O2 + Na 303.1110. Found 303.1104. 

 

1-(3-Methylbenzyl)-1H-benzo[d]imidazole-5-carboxylic acid (11) 

 

Lithium hydroxide (18.4 mmol, 0.76 g) was added to a suspension of 35 (3.67 mmol, 

1.03 g) in tetrahydrofuran and water (2:1, 37.0 mL) at room temperature. The reaction 

mixture was refluxed for 4 hours at 60 °C. The reaction mixture was concentrated under 

reduced pressure and the residue was dissolved in water (25.0 mL). The reaction 

mixture was washed with ethyl acetate (2x 10.0 mL). Hydrochloric acid (2M, 10.0 mL) 

was added to the aqueous phase and the resulting precipitate was filtered to give 11 as a 

white solid. Yield 0.62 g (63 %). 

 

1H NMR (300 MHz, d6-DMSO, 298 K) δ [ppm] = 12.74 (s, 1H, CO2H), 9.29 (s, 1H, Hj), 

8.33 (d, 1H, 5Ja,c = 0.5 Hz, 4Ja,b = 1.4 Hz, Ha), 7.97 (dd, 1H, 4Jb,a = 1.5 Hz, 3Jb,c = 8.6 Hz, Hb), 

7.79 (dd, 1H, 5Jc,a = 0.4 Hz, 3Jc,b = 8.6 Hz, Hc), 7.26 – 7.17 (m, 3H, Hd, He, Hf), 7.11 (d, 1H, 

3Jg,f = 7.7 Hz, Hg), 5.63 (s, 2H, ArCH2), 2.25 (s, 3H, ArCH3). 
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13C-NMR (75 MHz, d6-DMSO, 298 K) δ [ppm] = 166.9 (CO2R), 144.9 (Cj), 138.0 (Ch), 

137.2 (Ci), 135.2 (CArCH3), 135.1 (CArCH2), 128.7 (Cd), 128.6 (Cf), 128.1 (Ce), 126.5 

(CArCO2R), 125.0 (Cb), 124.7 (Cg), 118.9 (Ca), 112.0 (Cc), 48.6 (ArCH2), 20.8 (ArCH3). 

HRMS calculated for C16H14N2O2 + H 267.1133. Found 267.1128. 

7.9. wALADin12 

Methyl 4-((3-methoxybenzyl)amino)-3-nitrobenzoate (36) 

 

3-methoxybenzylamine (7.53 mmol, 0.97 mL) was added in one portion to a stirred 

solution of 56 (5.02 mmol, 1.00 g) and diisopropylethylamine (10.0 mmol, 1.71 mL) in 

acetonitrile (50.0 mL) at room temperature. The reaction mixture was refluxed for one 

hour. 

The reaction mixture was concentrated under reduced pressure and partitioned 

between ethyl acetate (70.0 mL) and water (30.0 mL). The reaction mixture was washed 

with water (2x 30.0 mL) and saturated sodium chloride solution (1x 30.0 mL). The 

organic layer was dried (MgSO4) and concentrated under reduced pressure to give 36 as 

a yellow solid. Yield 1.54 g (97 %). 

 

1H NMR (300 MHz, d6-DMSO, 298 K) δ [ppm] =9.05 (t, 1H, 3JNH,CH2 = 6.0 Hz, ArNH), 

8.62 (d, 1H, 4Ja,b = 2.1 Hz, Ha), 7.89 (dd, 1H, 4Jb,a = 2.0 Hz, 3Jb,c = 9.1 Hz, Hb), 7.25 (dd, 1H, 

3Jf,e/g = 7.9 Hz, Hf), 6.99 (d, 1H, 3Jc,b = 9.1 Hz, Hc), 6.94 (s, 1H, Hd), 6.93 (d, 1H, 3Je,f = 7.3 Hz, 

He), 6.83 (d, 1H, 3Jg,f = 7.1 Hz, Hg), 4.65 (d, 2H, 3JCH2,NH = 6.1 Hz, ArCH2), 3.80 (s, 1H, 

CO2CH3), 3.72 (s, 1H, OCH3). 

13C-NMR (75 MHz, d6-DMSO, 298 K) δ [ppm] = 164.6 (CO2R), 159.3 (CArOCH3), 147.1 

(CArNH), 139.3 (CArCH2), 135.3 (Cb), 130.7 (CArNO2), 129.6 (Cf), 128.2 (Ca), 118.8 (Ce), 

115.9 (CArCO2R), 115.0 (Cc), 112.6 (Cd), 112.3 (Cg), 54.8 (OCH3), 51.8 (CO2CH3), 45.6 

(ArCH2). 

HRMS calculated for C16H16N2O5 + Na 339.0957. Found 339.0951. 
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Methyl 3-amino-4-((3-methoxybenzyl)amino)benzoate (37) 

 

Palladium on activated carbon (5 % Pd) (wt 10 %, 0.15 g) was added to a stirred 

suspension of 36 (4.68 mmol, 1.48 g) in ethanol (49.0 mL) at room temperature. The 

reaction mixture was purged with argon and then hydrogen was bubbled through the 

suspension for 1 hour using a balloon. The reaction mixture was filtered over Celite and 

concentrated under reduced pressure. The remaining solid was suspended in ether and 

filtered to give 37 as an off-white solid. Yield 0.39 g (29 %). 

 

1H NMR (300 MHz, d6-DMSO, 298 K) δ [ppm] = 7.26 – 7.21 (m, 2H, Hd,Hf), 7.12 (dd, 

1H, 4Jb,a = 2.2 Hz, 3Jb,c = 8.2 Hz, Hb), 6.92 (d, 2H, 4Ja,b = 2.2 Hz, Ha, Hg), 6.80 (d, 1H, 

3Je,f = 7.9 Hz, He), 6.36 (d, 1H, 3Jc,b = 8.3 Hz, Hc), 5.91 (t, 1H, 3JNH,CH2 = 5.0Hz, ArNH), 4.83 (s, 

2H, ArNH2), 4.36 (d, 2H, 3JCH2,NH = 5.4 Hz, ArCH2), 3.72 (s, 3H, CO2CH3), 3.71 (s, 3H, OCH3). 

13C-NMR (75 MHz, d6-DMSO, 298 K) δ [ppm] = 166.6 (CO2R), 159.2 (CArOCH3), 141.2 

(CArCH2), 140.0 (CArNH), 134.2 (CArNH2), 129.2 (Cf), 120.2 (Cb), 119.1 (Cg), 116.9 

(CArCO2R), 114.1 (Cd), 112.7 (Ca), 111.8 (Ce), 108.4 (Cc), 54.8 (CO2CH3), 50.9 (OCH3), 46.1 

(ArCH2). 

HRMS calculated for C16H18N2O3 + H 287.1395. Found 287.1390. 

 

Methyl 1-(3-methoxybenzyl)-1H-benzo[d]imidazole-5-carboxylate (38) 

 

A stirred suspension of 37 (1.20 mmol, 0.34 g) in formic acid (3.30 mL) was refluxed 

for 30 minutes at 110 °C. The reaction mixture was cooled to 0 °C and neutralised with 

sodium hydrogen carbonate (90.0 mL). The reaction mixture was extracted with ethyl 

acetate (3 x 40.0 mL) and the organic layer was washed with water (3 x 20.0 mL) and 
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sodium chloride (1 x 30.0 mL). The organic layer was dried (MgSO4) and concentrated 

under reduced pressure to give 38 as a beige solid. Yield 0.30 g (84 %). 

 

1H NMR (300 MHz, d6-DMSO, 298 K) δ [ppm] = 8.58 (s, 1H, Hj), 8.27 (d, 1H, 

4Ja,b = 1.3 Hz, Ha), 7.86 (dd, 1H, 4Jb,a = 1.5 Hz, 3Jb,c = 8.5 Hz, Hb), 7.67 (d, 1H, 3Jc,b = 8.5 Hz, 

Hc), 7.24 (dd, 1H, 3Jf,e/g = 7.9 Hz, Hf), 6.93 (d, 1H, 4Jd,e/g = 1.8 Hz, Hd), 6.85 (dd, 2H, 

4Je/g,d = 2.4 Hz, 3Je/g,f = 8.5 Hz, He,Hg), 5.51 (s, 2H, ArCH2), 3.85 (s, 3H, CO2CH3), 3.71 (s, 3H, 

OCH3). 

13C-NMR (75 MHz, d6-DMSO, 298 K) δ [ppm] = 166.5 (CO2R), 159.3 (CArOCH3), 146.3 

(Cj), 143.0 (Ch), 137.9 (Ci), 136.9 (CArCH2), 129.8 (Cf), 123.3 (Cb), 123.2 (CArCO2R), 121.1 

(Ca), 119.3 (Cg), 113.2 (Cd), 112.9 (Ce), 110.8 (Cc), 54.9 (OCH3), 51.8 (CO2CH3), 47.6 

(ArCH2). 

HRMS calculated for C17H16N2O3 + H 297.1239. Found 297.1234. 

 

1-(3-Methoxybenzyl)-1H-benzo[d]imidazole-5-carboxylic acid (12) 

 

Lithium hydroxide (4.61 mmol, 0.19 g) was added to a suspension of 38 (0.92 mmol, 

0.27 g) in tetrahydrofuran and water (2:1, 9.80 mL) at room temperature. The reaction 

mixture was refluxed for 2.5 hours at 60 °C. The reaction mixture was concentrated 

under reduced pressure and the residue was dissolved in water (2.00 mL). The reaction 

mixture was washed with ethyl acetate (2x 2.00 mL). Hydrochloric acid (2M, 1.50 mL) 

was added to the aqueous phase and the resulting precipitate was filtered to give 12 as 

beige solid. Yield 0.06 g (25 %). 

 

1H NMR (300 MHz, d6-DMSO, 298 K) δ [ppm] = 12.77 (s, 1H, CO2H), 8.60 (s, 1H, Hj), 

8.26 (d, 1H, 4Ja,b = 1.0 Hz, Ha), 7.86 (dd, 1H, 4Jb,a = 1.4 Hz, 3Jb,c = 8.5 Hz, Hb), 7.64 (d, 1H, 

3Jc,b = 8.5 Hz, Hc), 7.25 (dd, 1H, 3Jf,e/g = 7.9 Hz, Hf), 6.93 (d, 1H, 4Jd,e/g = 1.6 Hz, Hd), 6.85 (dd, 

2H, 4Je/g,d = 2.0 Hz, 3Je/g,f = 8.1 Hz, He, Hg), 5.51 (s, 2H, ArCH2), 3.71 (s, 3H, OCH3). 
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13C-NMR (75 MHz, d6-DMSO, 298 K) δ [ppm] = 167.6 (CO2R), 159.3 (CArOCH3), 146.0 

(Cj), 142.7 (Ch), 137.9 (Ci), 136.6 (CArCH2), 129.8 (Cf), 124.5 (CArCO2R), 123.7 (Cb), 121.1 

(Ca), 119.3 (Cg), 113.3 (Cd), 112.9 (Ce), 110.6 (Cc), 54.9 (OCH3), 47.7 (ArCH2). 

HRMS calculated for C16H14N2O3 + H 283.1082. Found 283.1077. 

7.10. wALADin13 

3-Ethylbenzonitrile (39) 

 

A stirred suspension of 1-bromo-3-ethylbenzene (27.0 mmol, 5.00 g), zinc cyanide 

(14.9 mmol, 1.75 g) and tetrakis(triphenylphosphine)palladium (1.35 mmol, 1.56 g) in 

dimethylformamide (50.0 mL) was refluxed for 4 hours at 80 °C under an argon 

atmosphere. The reaction mixture was concentrated under reduced pressure and the 

residue was suspended in ethanol. The suspension was filtered and the filtrate was 

concentrated under reduced pressure. The crude product was distilled (4.10-5 bar; 40 

°C) to give 39 as colourless oil. Yield 1.70 g (45 %). 

 

1H-NMR (300 MHz, CDCl3, 298 K) [ppm] = 7.39-7.27 (m, 2H, Hc, Hf), 7.19-7.09 (m, 2H, 

Hd, He), 2.63 (q, 2H, 3J
b,a = 7.6 Hz, Hb), 1.24 (t, 3H, 3J

a,b = 7.6 Hz, Ha). 

13C-NMR (75 MHz, CDCl3, 298 K) [ppm] = 146.68 (CArCb), 131.09 (Cf), 130.00 (Cd), 

129.96 (Cc), 128.85 (Ce), 126.68 (CarCN), 122.52 (CN), 28.72 (Cb), 15.50 (Ca). 

 

3-Ethylbenzylamine (40) 

 

Lithium aluminium hydride (71.3 mmol, 2.71 g) was slowly added to a stirred 

solution of 39 (13.0 mmol, 1.70 g) in tetrahydrofuran (140 mL) at 0 °C and stirred at 

room temperature for 48 hours. The reaction mixture was cooled to 0 °C and diluted 

with ether (75.0 mL). The reaction mixture was quenched with saturated sodium 

sulphate (80.0 mL) and filtered. The filtrate was concentrated under reduced pressure 

to give 40 as yellow solid. Yield 1.49 g (85 %). 
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1H-NMR (300 MHz, d6-DMSO, 298 K) [ppm] = 7.31-7.25 (m, 1H, He), 7.19-7.10 (m, 3H, 

Hc, Hd, Hf), 3.87 (s, 2H, ArCH2), 2.67 (q, 2H, 3J
b,a = 7.6 Hz, Hb), 1.27 (t, 3H, 3J

a,b = 7.6 Hz, 3H, 

Ha). 

 

Methyl 4-((3-ethylbenzyl)amino)-3-nitrobenzoate (41) 

 

40 (7.55 mmol, 1.02 g) was added in one portion to a stirred solution of 56 

(5.03 mmol, 1.00 g) and diisopropylethylamine (10.1 mmol, 1.71 mL) in acetonitrile 

(50.0 mL) at room temperature. The reaction mixture was refluxed for two hours. 

The reaction mixture was concentrated under reduced pressure and partitioned 

between ethyl acetate (100 mL) and water (40.0 mL). The reaction mixture was washed 

with water (2x 40.0 mL) and saturated sodium chloride solution (1x 40.0 mL). The 

organic layer was dried (MgSO4) and concentrated under reduced pressure to give 41 as 

a yellow solid. Yield 1.39 g (88 %). 

 

1H-NMR (300 MHz, d6-DMSO, 298 K) [ppm] = 9.03 (t, 1H, 3J
NH,CH2 = 6.2 Hz, ArNH), 8.62 

(d, 1H, 4J
a,b = 2.1 Hz, Ha), 7.88 (dd, 1H 3J

b,c = 9.1, 4J
b,a = 2.1 Hz, Hb), 7.30-7.04 (m, 4H, Hf, Hh, 

Hg, Hi), 7.00 (d, 1H, 3J
c,b = 9.1 Hz, Hc), 4.65 (d, 1H 3J

CH2,NH = 6.1 Hz, ArCH2), 3.80 (s, 3H, 

OCH3), 2.57 (q, 2H, 3J
e,d = 7.6 Hz, He), 1.15 (t, 3H, 3J

d,e = 7.6 Hz, Hd). 

13C-NMR (75 MHz, d6-DMSO, 298 K) [ppm] = 164.8 (CO2R), 147.3 (CArNH), 144.1 

(CArCe), 137.7 (CArCH2), 135.5 (Cb), 130.8 (Ca), 128.6 (CArNO2), 128.3 (Ch), 126.6 (Cf), 

126.4 (Cg), 124.2 (Ci), 116.0 (CArCO2R), 115.2 (Cc), 52.0 (OCH3), 45.9 (ArCH2), 28.1 (Ce), 

15.5 (Cd). 

HRMS calculated for C17H18N2O4 314.1267. Found 314.1262. 
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Methyl 3-amino-4-((3-ethylbenzyl)amino)benzoate (42) 

 

Palladium on activated carbon (5 % Pd) (wt 10 %, 0.16 g) was added to a stirred 

suspension of 41 (5.06 mmol, 1.60 g) in ethanol (50.0 mL) at room temperature. The 

reaction mixture was purged with argon and then hydrogen was bubbled through the 

suspension for 3 hours using a balloon. The reaction mixture was filtered over Celite and 

concentrated under reduced pressure. The remaining solid was suspended in ether and 

filtered to give 42 as an off-white solid. Yield 1.14 g (79 %) 

 

1H-NMR (300 MHz, d6-DMSO, 298 K) [ppm] = 7.29-7.04 (m, 6H, Hh, Hf, Hg, Hi, Hb, Ha), 

6.38 (d, 1H, 3J
c,b = 8.3 Hz, Hc), 5.87 (t, 1H, 3J

NH,CH2 = 5.8 Hz, ArNH), 4.83 (s, 2H, ArNH2), 

3.71 (s, 3H, OCH3), 2.58 (q, 2H, 3J
e,d = 7.6 Hz, He), 1.16 (t, 6H, 3J

d,e = 7.6 Hz, Hd). 

13C-NMR (75 MHz, d6-DMSO, 298 K) [ppm] = 166.78 (CO2R), 143.73 (CArCe), 140.24 

(CArCH2), 139.51 (CArNH), 134.32 (CArNH2), 128.28 (Ch), 126.6, (Cf), 126.22 (Cg) 124.50 

(Ci), 120.37 (Cb), 116.94 (CArCO2R), 114.23 (Ca), 108.47 (Cc), 51.08 (OCH3), 46.42 

(ArCH2), 28.16 (Ce), 15.58 (Cd). 

HRMS calculated for C17H20N2O2 284.1525. Found 284.1518. 

 

Methyl 1-(3-ethylbenzyl)-1H-benzo[d]imidazole-5-carboxylate (43) 

 

A stirred suspension of 42 (3.97 mmol, 1.13 g) in formic acid (9,90 mL) was refluxed 

for 30 minutes at 110 °C. The reaction mixture was cooled to 0 °C and neutralised with 

sodium hydrogen carbonate (30.0 mL). The reaction mixture was extracted with ethyl 

acetate (3 x 50.0 mL) and the organic layer was washed with water (3 x 50.0 mL) and 
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sodium chloride (1 x 50.0 mL). The organic layer was dried (MgSO4) and concentrated 

under reduced pressure to give 43 as a light red solid. Yield 1.04 g (89 %). 

 

1H-NMR (300 MHz, d6-DMSO, 298 K) [ppm] = 8.57 (s, 1H, Hl), 8.26 (d, 1H, 4J
a,b = 1.5 Hz, 

Ha), 7.85 (dd, 3J
b,c = 8.6 Hz, 4J

b,a = 1.6 Hz, Hb), 7.65 (d, 1H, 3J
c,b = 8.5 Hz, Hc), 7.26-7.17 (m, 

2H, Hh, Hf), 7.16-7.04 (m, 2H, Hg, Hi), 5.51 (s, 2H, ArCH2), 3.84 (s, 3H, OCH3), 2.55 (q, 1H, 

3J
e,d = 7.6 Hz, He), 1.14 (t, 3H, 3J

d,e = 7.6 Hz, Hd). 

13C-NMR (75 MHz, d6-DMSO, 298 K) [ppm] = 166.66 (CO2R), 146.42 (CArCe), 144.30 

(Cl), 143.14 (Ck), 137.05 (Cj), 136.51 (CArCH2), 128.72 (Cf), 127.29 (Ch), 126.88 (Cb), 

124.72 (CArCO2R), 123.45 (Ci), 123.31 (Cg), 121.22 (Ca), 110.87 (Cc), 51.97 (OCH3), 47.85 

(ArCH2), 28.00 (Ce), 15.44 (Cd). 

HRMS calculated for C18H18N2O2 294.1368. Found 294.1361. 

 

1-(3-Ethylbenzyl)-1H-benzo[d]imidazole-5-carboxylic acid (13) 

 

Lithium hydroxide (16.9 mmol, 0.71 g) was added to a suspension of 43 (3.40 mmol, 

1.00 g) in tetrahydrofuran and water (2:1, 35.0 mL) at room temperature. The reaction 

mixture was refluxed for 3.5 hours at 60 °C. The reaction mixture was concentrated 

under reduced pressure and the residue was dissolved in water (25.0 mL). The reaction 

mixture was washed with ethyl acetate (1x 20.0 mL). Hydrochloric acid (2M, 15.0 mL) 

was added to the aqueous phase and the resulting precipitate was filtered to give 13 as 

an off-white solid. Yield 0.64 g (67 %). 

 

1H-NMR (300 MHz, d6-DMSO, 298 K) [ppm] = 12.88 (s, 1H, CO2H), 9.49-9.28 (m, 2H, 

Hl, Hb), 8.34 (s, 1H, Ha), 7.99 (d, 1H 3Jc,b = 8.5 Hz, Hc), 7.83 (d, 1H, 3Jh,i/g = 8.6 Hz, Hh), 

7.36-7.11 (m, 3H, Hg, Hi, Hf), 5.66 (s, 2H, ArCH2), 2.56 (q, 2H, 3Je,d = 7.6 Hz, He), 1.13 (t, 3H, 

3Jd,e = 7.6 Hz, Hd). 

13C-NMR (75 MHz, d6-DMSO, 298 K) [ppm] = 166.95 (CO2H), 144.88 (CArCe), 144.47 

(Cl), 136.62 (Cj), 135.24 (Ck), 135.02 (CArCH2), 128.84 (Cf), 127.71 (Ch), 127.29 (Cb), 
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126.92 (CArCO2H), 125.34 (Ci), 125.13 (Cg), 118.77 (Ca), 112.29 (Cc), 48.97 (ArCH2), 28.00 

(Ce), 15.46 (Cd). 

HRMS calculated for C17H16N2O2 280.1212. Found 280.1205. 

7.11. wALADin14 

3-(Prop-1-en-2-yl)benzonitrile (44) 

 

n-Butyl lithium (40.0 mmol, 25.0 mL) in tetrahydrofurane (40.0 mL) was added 

dropwise at 0 °C to a stirred solution of methyltriphenylphosphonium bromide 

(40.0 mmol, 14.g) in tetrahydrofurane (90.0 mL). After half an hour 3-Acetylbenzonitril 

(27.0 mmol, 4.00 g) in tetrahydrofurane (180 mL) was added and stirred for 3 hours. 

The reaction mixture was partitioned between ethyl acetate (150 mL) and saturated 

ammonium chloride solution (250 mL) and the organic phase was washed with water 

(2x 80.0 mL) and saturated sodium chloride solution (1x 100 mL). The organic layer was 

dried (MgSO4) and concentrated under reduced pressure. The residue was purified by 

column chromatography on silica gel using cyclohexane: ethyl acetate (19:1) as eluent to 

give 44 as colourless oil. Yield 3.49 g (90 %). 

 

1H-NMR (300 MHz, CDCl3, 298 K) [ppm] = 7.72-7.66 (m, 2H, Hb,Ha ), 7.54 (dt, 1H, 

3Jc,b = 7.7 Hz, 3Jc,d = 7.7 Hz, 5Jc,a = 1.4 Hz, Hc), 7.42 (td, 1H, 3Jd,c = 7.7 Hz, 4Jd,b = 0.7 Hz, 

4Jd.a = 0.7 Hz, Ha), 5.41 (p, 1H, 2Jf,f’ = 0.9 Hz, Hf/f’), 5.20 (p, 1H, 2Jf,f’ = 1.4 Hz, Hf/f’), 2.15 (d, 

3H, 4Jg,f = 1.4 Hz, Hg). 

13C-NMR (75 MHz, CDCl3, 298 K) [ppm] = 142.47 (Ce), 141.41 (CArCa), 130.85 (Cb), 

129.89 (Cd), 129.28 (Ca), 129.16 (Cc), 119.03 (CN), 114.79 (Cf), 112.54 (CArCN), 21.59 

(Cg). 

HRMS calculated for C10H9N 143.0735. Found 143.0759. 
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3-Isopropylbenzonitrile (45) 

 

Palladium on activated carbon (5 % Pd) (wt 10 %, 0.35 g) was added to a stirred 

solution of 44 (24.4 mmol, 3.49 g) in ethyl acetate (90.0 mL) at room temperature. The 

reaction mixture was purged with argon and then hydrogen was bubbled through the 

suspension for 16 hours using a balloon. The reaction mixture was filtered over Celite 

and concentrated under reduced pressure to give 45 as colourless oil. Yield 3.26 g 

(92 %). 

 

1H-NMR (300 MHz, CDCl3, 298 K) [ppm] = 7.48-7.32 (m, 2H, Hb, Ha ), 7.26-7.09 (m, 2H, 

Hc, Hd), 2.96-2.83 (m, 1H, He), 1.23 (d, 6H, 3Jf,a = 6.9 Hz, Hf). 

13C-NMR (75 MHz, CDCl3, 298 K) [ppm] = 149.16 (CArCe), 130.25 (Cd), 129.20 (Ca), 

128.48 (Cb), 125.81 (Cc), 119.30 (CN), 112.41 (CArCN), 34.01 (Ce), 23.77 (Cf). 

HRMS calculated for C10H9N 145.0891. Found 145.0891. 

 

3-Isopropylbenzylamine (46) 

 

Lithium aluminium hydride (123.5 mmol, 4.67 g) was slowly added to a stirred 

solution of 45 (22.5 mmol, 3.26 g) in tetrahydrofuran (250 mL) at 0 °C and stirred at 

room temperature for 48 hours. The reaction mixture was cooled to 0 °C and diluted 

with ether (125 mL). The reaction mixture was quenched with saturated sodium 

sulphate (130 mL) and filtered. The filtrate was concentrated under reduced pressure 

and the residue was purified by column chromatography on silica gel using cyclohexane: 

ethyl acetate (19:1) as eluent to give 46 as yellow solid. Yield 3.14 g (98 %). 

 

1H-NMR (300 MHz, d6-DMSO, 298 K) [ppm] = 7.24-7.16 (m, 2H, Ha, Hc), 7.12 (dt, 1H, 

3Jd,c = 7.8 Hz, 5Jd,a = 1.5 Hz, 5Jd,b = 1.5 Hz, Hd), 7.06 (dt, 1H, 3Jb,c = 7.5 Hz , 5Jb,a = 1.6 Hz, 
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5Jb,d = 1.6 Hz, Hb), 3.69 (d, 2H, 3JCH2,NH = 0.8 Hz, ArCH2), 2.85 (sept, 1H, 3Je,f = 6.9 Hz, He), 

1.20 (d, 6H, 3Jf,e = 6.9 Hz, Hf). 

13C-NMR (75 MHz, d6-DMSO, 298 K) [ppm] = 148.08 (CArCe), 144.19 (CArCH2), 127.96 

(Ca), 124.96 (Cc), 124.48 (Cb), 124.01 (Cd), 45.79 (ArCH2), 33.48 (Ce), 23.95 (Cf). 

HRMS calculated for C10H15N 149.1204. Found 149.1195. 

 

Methyl 4-((3-isopropylbenzyl)amino)-3-nitrobenzoate (47) 

 

46 (7.55 mmol, 1.12 mL) was added in one portion to a stirred solution of 56 

(5.03 mmol, 1.00 g) and diisopropylethylamine (10.0 mmol, 1.73 mL) in acetonitrile 

(51.0 mL) at room temperature. The reaction mixture was refluxed for 2 hours. 

The reaction mixture was concentrated under reduced pressure and partitioned 

between ethyl acetate (100 mL) and water (50.0 mL). The reaction mixture was washed 

with water (2x 50.0 mL) and saturated sodium chloride solution (1x 50.0 mL). The 

organic layer was dried (MgSO4) and concentrated under reduced pressure. The residue 

was purified by column chromatography on silica gel using cyclohexane: ethyl acetate 

(19:1) as eluent to give 47 as yellow solid. Yield 1.01 g (61 %). 

 

1H-NMR (300 MHz, d6-DMSO, 298 K) [ppm] = 9.02 (t, 1H, 3JNH,3 = 6.1 Hz, ArNH), 8.62 

(d, 1H, 4Ja,b = 2.1 Hz, Ha), 7.88 (dd, 1H 3Jb,a = 9.0, 4Jb,c = 2.1 Hz, Hb), 7.31-7.21 (m, 2H, Hd, 

Hf), 7.20-7.10 (m, 2H, Hg, He), 7.01 (d, 1H, 3Jb,c = 9.1 Hz, Hc), 4.66 (d, 3JCH2,NH = 6.1 Hz, 

ArCH2), 3.80 (s, 3H, OCH3), 2.85 (sept, 1H, 3Jh,i = 6.9 Hz, Hh), 1.17 (d, 6H, 3Ji,h = 6.9 Hz, Hi) 

13C-NMR (75 MHz, d6-DMSO, 298 K) [ppm] = 164.75 (CO2R), 148.75 (CArNH), 147.31 

(CArCh), 137.67 (CArCH2), 135.48 (Cb), 130.75 (Ca), 128.59 (CArNO2), 128.30 (Cf), 125.11 

(Cd), 124.31 (Ce, Cg), 116.02 (Cc), 115.15 (CArCO2R), 51.97 (OCH3), 45.99 (ArCH2), 33.35 

(Ch), 23.82 (Ci). 

HRMS calculated for C18H20N2O4 328.1423. Found 328.1418. 
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Methyl 3-amino-4-((3-isopropylbenzyl)amino)benzoate (48) 

 

Palladium on activated carbon (5 % Pd) (wt 10 %, 0.23 g) was added to a stirred 

suspension of 47 (7.00 mmol, 2.30 g) in ethanol (75.0 mL) at room temperature. The 

reaction mixture was purged with argon and then hydrogen was bubbled through the 

suspension for 3 hours using a balloon. The reaction mixture was filtered over Celite and 

concentrated under reduced pressure. The remaining solid was suspended in ether 

(80.0 mL) and filtered to give 48 as off-white solid. Yield 1.35 g (65 %) 

 

1H-NMR (300 MHz, d6-DMSO, 298 K) [ppm] = 7.24-7.26 (m, 2H, Hf, Hg), 7.21 (d, 1H, 

3Je,f = 7.21 Hz, He), 7.05-7.20 (m, 3H, Ha, Hb, Hd), 6.39 (d, 1H, 3Jc,b = 8.3 Hz, Hc), 5.87 (t, 1H, 

3JNH,CH2 = 5.8 Hz, ArNH), 4.35 (d, 2H, 3JCH2;NH = 5.6 Hz, ArCH2), 3.71 (s, 3H, OCH3), 2.85 

(sept, 1H, 3Jh,1 = 6.9 Hz, Hh), 1.18 (d, 6H, 3Ji,h = 6.9 Hz, Hi). 

13C-NMR (75 MHz, d6-DMSO, 298 K) [ppm] = 166.79 (CO2R), 148.39 (CArCh), 140.29 

(CArCH2), 139.46 (CArNH), 134.33 (CArNH2), 128.27 (Cf), 125.36 (Cd), 124.67 (Ce), 120.37 

(Cg), 116.94 (Cb), 114.23 (CArCO2R), 108.48 (Ca), 51.08 (OCH3), 46.53 (ArCH2), 33.41 

(Ch), 23.90 (Ci).  

HRMS calculated for C18H22N2O2 298.1681. Found 298.1674. 

 

Methyl 1-(3-isopropylbenzyl)-1H-benzo[d]imidazole-5-carboxylate (49) 

 

A stirred suspension of 48 (4.86 mmol, 1.31 g) in formic acid (11.0 mL) was refluxed 

for 30 minutes at 110 °C. The reaction mixture was cooled to 0 °C and neutralised with 

sodium hydrogen carbonate (45.0 mL). The reaction mixture was extracted with ethyl 

acetate (3 x 50.0 mL) and the organic layer was washed with water (3 x 50.0 mL) and 
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sodium chloride (1 x 50.0 mL). The organic layer was dried (MgSO4) and concentrated 

under reduced pressure to give 49 as light-red solid. Yield 1.41 g (94 %). 

 

1H-NMR (300 MHz, d6-DMSO, 298 K) [ppm] = 8.58 (s, 1H, Hl), 8.27 (dd, 1H, 

4Ja,b = 1.6 Hz, 5Ja,c = 0.7 Hz, Ha), 7.86 (dd, 3Jb,c = 8.5 Hz, 4Jb,a = 1.6 Hz, Hb), 7.68 (dd, 1H, 

3Jc,b = 8.5 Hz, 5Jc,a = 0.7 Hz, Hc), 7.19-7.30 (m, 2H, Hf, Hd), 7.15 (dt, 3Jg,f = 7.8 Hz, 

4Jg,d = 1.6 Hz, Hg), 7.07 (dt, 3Je,f = 7.5 Hz, 4Je,d = 1.5 Hz, He), 5.52 (d, 2H, 3JCH2,NH = 5.6 Hz, 

ArCH2), 3.85 (s, 3H, OCH3), 2.82 (sept, 1H, 3Jh,i = 6.9 Hz, Hh), 1.14 (d, 6H, 3Ji,h = 6.9 Hz, Hi). 

13C-NMR (75 MHz, d6-DMSO, 298 K) [ppm] = 166.65 (CO2R), 148.94 (CArCh), 146.40 

(Cl), 143.13 (Ck), 137.06 (Cj), 136.49 (CArCH2), 128.72 (Cf), 125.75 (Cd), 125.59 (Cb), 

124.81 (CArCO2R), 123.43 (Ce), 123.30 (Cg), 121.23 (Ca), 110.87 (Cc), 51.96 (OCH3), 47.91 

(ArCH2), 33.28 (Ch), 23.74 (Ci). 

HRMS calculated for C19H20N2O2 308.1525. Found 308.1518. 

 

1-(3-Isopropylbenzyl)-1H-benzo[d]imidazole-5-carboxylic acid (14) 

 

Lithium hydroxide (20.4 mmol, 0.85 g) was added to a suspension of 49 (4.09 mmol, 

1.26 g) in tetrahydrofuran and water (2:1, 40.0 mL) at room temperature. The reaction 

mixture was refluxed for 3.5 hours at 60 °C. The reaction mixture was concentrated 

under reduced pressure and the residue was dissolved in water (30.0 mL). The reaction 

mixture was washed with ethyl acetate (1x 40.0 mL). Hydrochloric acid (2M, 20.0 mL) 

was added to the aqueous phase and the resulting precipitate was filtered to give 14 as a 

white solid. Yield 1.13 g (94 %). 

 

1H-NMR (300 MHz, d6-DMSO, 298 K) [ppm] = 12.82 (s, 1H, CO2H), 8.71 (s, 1H, Ha), 

8.27 (s, 1H, Hl), 7.88 (dd, 1H 3Jb,a = 8.6 Hz, 4Jb,c = 1.6 Hz, Hb), 7.68 (d, 1H, 3Jc,b = 8.6 Hz, Hc), 

7.08-7.28 (m, 4H, Hd, Hg, Hf, He), 5.54 (s, 2H, ArCH2), 2.83 (sept, 1H, 3Jh,i = 6.9 Hz, Hh), 1.14 

(d, 6H, 3Ji,h = 6.9 Hz, Hi) 
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13C-NMR (75 MHz, d6-DMSO, 298 K) [ppm] = 166.65 (CO2H), 148.94 (CArCh), 146.40 

(Cl), 143.13 (Cj), 137.06 (Ck), 136.49 (CArCH2), 128.72 (Cf), 125.75 (Cd), 125.59 (Cb), 

124.81 (CArCO2R), 123.43 (Ce), 123.30 (Cg), 121.23 (Ca), 110.87 (Cc), 51.96 (OCH3), 47.91 

(ArCH2), 33.28 (Ch), 23.74 (C1). 

HRMS calculated for C19H20N2O2 294.1368. Found 294.1376. 

7.12. wALADin15 

Methyl 4-((3-fluorobenzyl)amino)-3-nitrobenzoate (50) 

 

3-Fluorobenzylamine (7.53 mmol, 0.86 mL) was added in one portion to a stirred 

solution of 56 (5.00 mmol, 1.00 g) and diisopropylethylamine (10.00 mmol, 1.74 mL) in 

acetonitrile (50.0 mL). The reaction mixture was refluxed for 2 hours; cooled down to 

room temperature and then concentrated under reduced pressure. The residue was 

partitioned between ethyl acetate (40 mL) and water (15 mL). The organic layer was 

washed with water (3x15 mL) and saturated sodium chloride solution (15 mL). The 

organic layer was dried (MgSO4) and concentrated under reduced pressure to give 50 as 

a yellow solid. Yield 1.57 g (97 %). 

 

1H-NMR (400 MHz, d6-DMSO, 298 K) δ [ppm] = 9.09 (t, 1H, 3JNH,CH2 = 6.2 Hz, ArNH), 

8.60 (d, 1H, 4Ja,b = 2.0 Hz, Ha), 7.86 (dd, 1H, 3Jb,c = 8.8 Hz, 4Jb,a = 1.6 Hz, Hb), 7.40 – 7.34 (m, 

1H, Hf), 7.22 – 7.18 (m, 2H, Hd, He), 7.09 – 7.04 (m, 1H, Hg), 6.94 (d, 1H, 3Jc,b = 9.1 Hz, Hc), 

4.70 (d, 2 H, 3JCH2,NH = 6.4 Hz, ArCH2), 3.79 (s, 3H, OCH3). 

13C-NMR (100 MHz, d6-DMSO, 298 K) δ [ppm] = 164.7 (CO2R), 162.3 (d, 1C, 1JCF = 242 

Hz, CArF), 147.1 (CArNH), 141.0 (d, 1C, 3JCF = 7.1 Hz, CArCH2), 135.5 (Cb), 130.9 (CArNO2), 

130.5 (d, 1C, 3JCF = 8.3 Hz, Cf), 128.3 (Ca), 122.8 (d, 1C, 4JCF = 2.6 Hz, Ce), 116.1 (CArCO2R), 

115.0 (Cc), 113.8 (d, 1C, 2JCF = 20.8 Hz, Cg), 113.6 (d, 1C, 2JCF = 21.7 Hz, Cd), 51.9 (OCH3), 

45.2 (d, 1C, 4JCF = 1.5 Hz, ArCH2). 

HRMS calculated for C15H13FN2O4 304.0859. Found 304.0854. 
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Methyl 3-amino-4-((3-fluorobenzyl)amino)benzoate (51) 

 

Palladium on activated carbon (5 % Pd) (wt 10 %, 0.16 g) was added to a stirred 

suspension of 50 (5.16 mmol, 1.57 g) in ethanol (50 mL) at room temperature. The 

reaction mixture was purged with argon and then hydrogen was bubbled through the 

suspension for 2.5 hours using a balloon. The reaction mixture was filtered over Celite 

and concentrated under reduced pressure. The solid residue was suspended in ether 

and filtered to give 51 as off-white solid. Yield 0.93 g (66 %). 

 

1H-NMR (400 MHz, d6-DMSO, 298 K) δ [ppm] = 7.39 – 7.33 (m, 1H, Hf) 7.22 (d, 1H, 

3Ja,b = 2.0 Hz, Ha), 7.21 – 7.14 (m, 2H, Hg, He), 7.12 (dd, 1H, 3Jb,c = 8.4 Hz, 4Jb,a = 2.0 Hz, Hb), 

7.07 – 7.02 (m, 1H, Hd), 6.34 (d, 1H, 3Jc,b = 8.4 Hz, Hc), 5.98 (t, 1H, 3JNH,CH2 = 6.0 Hz, ArNH), 

4.84 (s, 2H, ArNH2), 4.41 (d, 2H, 3JCH2,NH = 6.0 Hz, ArCH2), 3.71 (s, 3H, OCH3). 

13C-NMR (100 MHz, d6-DMSO, 298 K) δ [ppm] = 166.5 (CO2R), 162.3 (d, 1C, 

1JCF = 242 Hz, CArF), 142.9 (d, 1C, 3JCF = 6.7 Hz, CArCH2), 139.8 (CArNH), 134.4 (CArNH2), 

130.2 (d, 1C, 3JCF = 8.2 Hz, Cf), 123.0 (d, 1C, 4JCF = 2.7 Hz, Ce), 120.3 (Cb), 117.2 (CArCO2R), 

114.3 (Ca), 113.6 (d, 1C, 2JCF = 21.4 Hz, Cg), 113.4 (d, 1C, 2JCF = 20.8 Hz, Cd), 108.5 (Cc), 

51.0 (OCH3), 45.6 (d, 1C, 4JCF = 1.6 Hz, ArCH2). 

HRMS calculated for C15H15FN2O2 274.1117. Found 274.1112. 

 

Methyl 1-(3-fluorobenzyl)-1H-benzo[d]imidazole-5-carboxylate (52) 

 

A stirred suspension of 51 (3.10 mmol, 0.85 g) in formic acid (8.0 mL) was refluxed 

for 1.5 hours at 110°C. The reaction mixture was cooled to 0°C and neutralised with 

saturated sodium hydrogen carbonate solution (265 mL). The reaction mixture was 
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extracted with ethyl acetate (3x40 mL) and the organic layer was washed with water 

(3x40 mL) and saturated sodium chloride solution (40 mL). The organic layer was dried 

(MgSO4) and concentrated under reduced pressure to give 52 as off-white solid. Yield 

0.86 g (98 %). 

 

1H-NMR (300 MHz, d6-DMSO, 298 K) δ [ppm] = 8.60 (s, 1H, Hj), 8.27 (d, 1H, 

4Ja,b = 1.2 Hz, Ha), 7.86 (dd, 1H, 3Jb,c = 8.5 Hz, 4Jb,a = 1.5 Hz, Hb), 7.66 (d, 1H, 3Jc,b = 8.5 Hz, 

Hc), 7.42 – 7.34 (m, 1 H, Hf), 7.23 – 7.08 (m, 3 H, Hd, Hg, He), 5.58 (s, 2 H, ArCH2), 3.85 (s, 

3H, OCH3). 

13C-NMR (75 MHz, d6-DMSO, 298 K) δ [ppm] = 166.5 (CO2R), 162.1 (d, 1C, 

1JCF = 243 Hz, CArF), 146.1 (Cj), 143.1 (Ch), 139.3 (d, 1C, 3JCF = 7.3 Hz, CArCH2), 136.8 (Ci), 

130.8 (d, 1C, 3JCF = 8.3 Hz, Cf), 123.5 (Cb), 123.4 (d, 1C, 4JCF = 2.7 Hz, Ce), 123.4 (CArCO2R), 

121.2 (Ca), 114.7 (d, 1C, 2JCF = 20.8 Hz, Cg), 114.3 (d, 1C, 2JCF = 21.8 Hz, Cd), 110.7 (Cc), 

51.9 (OCH3), 47.1 (d, 1C, 4JCF = 1.8 Hz, ArCH2). 

HRMS calculated for C16H13FN2O2 284.0956. Found 284.0961. 

 

1-(3-Fluorobenzyl)-1H-benzo[d]imidazole-5-carboxylic acid (15) 

 

Lithium hydroxide (16.2 mmol, 0.68 g) was added to a stirred suspension of 52 

(3.24 mmol, 0.92 g) in tetrahydrofuran (22 mL) and water (11 mL) at room 

temperature. The reaction mixture was refluxed for 3 hours at 60°C. The reaction 

mixture was concentrated under reduced pressure and the residue was dissolved in 

water (14 mL). The reaction mixture was washed with ethyl acetate (10 mL). 

Hydrochloric acid (8.4 mL, 2M) was added to the aqueous phase and the resulting 

precipitate was filtered to give 15 as off-white solid. Yield 0.61 g (70 %). 

 

1H-NMR (300 MHz, d6-DMSO, 298 K) δ [ppm] = 12.8 (s, 1H, CO2H), 8.60 (s, 1H, Hj), 

8.27 (d, 1H, 4Ja,b = 1.2 Hz, Ha), 7.86 (dd, 1H, 3Jb,c = 8.4 Hz, 4Jb,a = 1.5 Hz, Hb), 7.64 (d, 1H, 
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3Jc,b = 8.4 Hz, Hc), 7.42 – 7.34 (m, 1 H, Hf), 7.23 – 7.08 (m, 3 H, Hd, Hg, He), 5.58 (s, 2 H, 

ArCH2). 

13C-NMR (75 MHz, d6-DMSO, 298 K) δ [ppm] = 167.6 (CO2H), 162.1 (d, 1C, 

1JCF = 243 Hz, CArF), 146.1 (Cj), 142.9 (Ch), 139.3 (d, 1C, 3JCF = 7.2 Hz, CArCH2), 136.6 (Ci), 

130.8 (d, 1C, 3JCF = 8.3 Hz, Cf), 124.6 (CArCO2H), 123.8 (Cb), 123.4 (d, 1C, 4JCF = 2.8 Hz, Ce), 

121.2 (Ca), 114.7 (d, 1C, 2JCF = 20.8 Hz, Cg), 114.3 (d, 1C, 2JCF = 21.8 Hz, Cd), 110.6 (Cc), 

47.2 (d, 1C, 4JCF = 1.8 Hz, ArCH2). 

HRMS calculated for C15H11FN2O2 270.0805. Found 270.0805. 

7.13. wALADin16 

Methyl 4-((2,5-difluorobenzyl)amino)-3-nitrobenzoate (53) 

 

2,5-Difluorobenzylamine (7.53 mmol, 0.88 ml) was added in one portion to a stirred 

solution of 56 (5.00 mmol, 1.00 g) and diisopropylethylamine (10.00 mmol, 1.74 ml) in 

acetonitrile (50.0 ml). The reaction mixture was refluxed for 2 hours; cooled down to 

room temperature and then concentrated under reduced pressure. The residue was 

partitioned between ethyl acetate (40 ml) and water (15 ml). The organic layer was 

washed with water (3 x 15 ml) and saturated sodium chloride solution (15 ml). The 

organic layer was dried over MgSO4 and concentrated under reduced pressure to give 

53 as yellow solid. Yield 1.66 g (97 %). 

 

1H-NMR (300 MHz, d6-DMSO, 298 K) δ [ppm] = 8.97 (t, 1H, 3JNH,CH2 = 6.3 Hz, ArNH), 

8.62 (d, 1H, 3Ja,b = 2.1 Hz, Ha), 7.91 (dd, 1H, 3Jb,c = 9.0 Hz, 4Jb,a = 1.8 Hz, Hb), 7.33 - 7.25 (m, 

1H, He,), 7.22 – 7.11 (m, 2 H, Hf, Hd), 6.96 (d, 1H, 3Jc,b = 9.0 Hz, Hc), 4.73 (d, 2 H, 

3JCH2,NH = 6.3 Hz, ArCH2), 3.81 (s, 3H, OCH3). 

13C-NMR (75 MHz, d6-DMSO, 298 K) δ [ppm] = 164.7 (CO2R), 158.2 (dd, 1C, 

1JCF = 238 Hz, 4JCF = 2.0 Hz, CArFg), 156.1 (dd, 1C, 1JCF = 239 Hz, 4JCF = 2.0 Hz, CArFh), 146.9 

(CArNH), 131.2 (CArNO2), 135.6 (Cb), 128.2 (Ca), 126.8 (dd, 1C, 2JCF = 17 Hz, 3JCF = 7.5 Hz, 
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CArCH2), 116.9 (dd, 1C, 2JCF = 24 Hz, 3JCF = 8.8 Hz, Ce), 116.4 (CArCO2R), 114.8 – 115.6 (m, 

2C, Cf, Cd), 114.5 (Cc), 51.9 (OCH3), 39.9 – 39.6 (m, 1C, ArCH2). 

HRMS calculated for C15H12F2N2O4 322.0765. Found 322.0759 

 

Methyl 3-amino-4-((2,5-difluorobenzyl)amino)benzoate (54) 

 

Palladium on activated carbon (5 % Pd) (wt 10 %, 0.17 g) was added to a stirred 

suspension of 53 (5.15 mmol, 1.66 g) in ethanol (50 ml) at room temperature. The 

reaction mixture was purged with argon and then hydrogen was bubbled through the 

suspension for 2.5 hours using a balloon. The reaction mixture was filtered over Celite 

and concentrated under reduced pressure. The solid residue was suspended in ether 

and filtered to give 54 as off-white solid. Yield 1.00 g (66 %) 

 

1H-NMR (300 MHz, d6-DMSO, 298 K) δ [ppm] = 7.30 – 7.22 (m, 1H, He), 7.23 (d, 1H, 

3Ja,b = 2.1 Hz, Ha), 7.17 – 7.10 (m, 2H, Hf, Hd), 7.15 (dd, 1H, 3Jb,c = 8.1 Hz, 4Jb,a = 2.1 Hz, Hb), 

6.37 (d, 1H, 3Jc,b = 8.1 Hz, Hc), 5.87 (t, 1H, 3JNH,CH2 = 6.0 Hz, ArNH), 4.86 (s, 2H, ArNH2), 

4.42 (d, 2H, 3JCH2,NH = 6.0 Hz, ArCH2), 3.72 (s, 3H, OCH3). 

13C-NMR (75 MHz, d6-DMSO, 298 K) δ [ppm] = 164.7 (CO2R), 158.2 (dd, 1C, 

1JCF = 238 Hz, 4JCF = 2.0 Hz, CArFg), 156.3 (dd, 1C, 1JCF = 238 Hz, 4JCF = 2.0 Hz, CArFh), 139.5 

(CArNH), 134.5 (CArNH2), 128.4 (dd, 1C, 2JCF = 17 Hz, 3JCF = 7.3 Hz, CArCH2), 120.3 (Cb), 

117.5 (CArCO2R), 116.6 (dd, 1C, 2JCF = 24 Hz, 3JCF = 8.7 Hz, Ce), 114.7 – 115.2 (m, 2C, Cf, Cd), 

114.4 (Ca), 108.3 (Cc), 51.1 (OCH3), 39.8 (ArCH2). 

HRMS calculated for C15H14F2N2O2 292.1023. Found 292.1018 
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Methyl 1-(2,5-difluorobenzyl)-1H-benzo[d]imidazole-5-carboxylate (55) 

 

A stirred suspension of 54 (2.98 mmol, 0.87 g) in formic acid (7.45 mL) was refluxed 

for 30 minutes at 110 °C. The reaction mixture was cooled to 0 °C and neutralized with 

sodium hydrogen carbonate (150 mL). The reaction mixture was extracted with ethyl 

acetate (3 x 50 mL) and the organic layer was washed with water (3 x 50 mL) and 

sodium chloride (1 x 50 mL). The organic layer was dried (magnesium sulfate) and 

concentrated under reduced pressure to give 55 as off-white solid. Yield 0.83 g (92 %). 

 

1H-NMR (400 MHz, DMSO-d6, 298 K) δ [ppm] = 8.51 (s, 1H, Hk); 8.26 (dd, 1H, 

5Ja,c = 0.5 Hz, 4Ja,b = 1.5 Hz, Ha); 7.87 (dd, 1H, 4Jb,a = 1.6 Hz, 3Jb,c = 8.5 Hz, Hb), 7.67 (d, 1H, 

3Jc,b = 8 Hz, Hc), 7.18 - 7.32 (m, 3H, Hd, Hf, He), 5.60 (s, 2H, ArCH2), 3.84 (s, 3H, OCH3). 

13C-NMR (100 MHz, DMSO-d6, 298 K) δ [ppm] = 166.6 (CO2R), 159.3 (1JC,F = 241 Hz, 

4JC,F = 3.5 Hz, CArFg), 157.6 (1JC,F = 243 Hz, 4JC,F = 2.9 Hz, CArFh), 146.5 (Ck), 143.0 (Ci), 136.8 

(Cj), 125.3 (CArCH2), 123.7 (Cb), 123.5 (CArCO2R), 121.3 (Ca), 117.5 (Cf), 117.2 (Ce), 116.9 

(Cd), 110.6 (Cc), 52.0 (OCH3), 42.3 (ArCH2). 

 

1-(2,5-Difluorobenzyl)-1H-benzo[d]imidazole-5-carboxylic acid (16) 

 

Lithium hydroxide (15.55 mmol, 0.65 g) was added to a suspension of 55 (2.75 mmol, 

0.83 g) in tetrahydrofuran and water (2:1, 39 mL) at room temperature. The reaction 

mixture was refluxed for 3 hours at 60 °C. The reaction mixture was concentrated under 

reduced pressure and the residue was dissolved in water (15 mL). The reaction mixture 

was washed with ethyl acetate (1 x 15 mL). Hydrochloric acid (2 M, 10 mL) was added to 
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the aqueous phase and the resulting precipitate was filtered to give 16 as off-white solid. 

Yield 0.65 g (72 %). 

 

1H-NMR (400 MHz, DMSO-d6, 298 K) δ [ppm] = 9.78 (s, 1H, Hk); 8.37 (s, Ha); 8.1 (dd, 

1H, 4Jb,a = 1.6 Hz, 3Jb,c = 8.4 Hz, Hb), 7.93 (d, 1H, 3Jc,b = 11.5 Hz, Hc), 7.22 - 7.55 (m, 3H, Hd, 

Hf, He), 5.84 (s, 2H, ArCH2). 

13C-NMR (100 MHz, DMSO-d6, 298 K) δ [ppm] = 166.5 (CO2H), 159.7 (1JC,F = 241.3 Hz, 

4JC,F = 2.2 Hz, CArFg), 156.5 (1JC,F = 242.9 Hz, 4JC,F = 3.3 Hz, CArFh), 144.6 (Ck), 134.1 (Ci), 

133.2 (CArCO2H),128.3 (Cj), 126.4 (Cb), 121.3 (CArCH2), 117.8 (Ca), 117.7 (Cf), 117.5 (Ce), 

117.1 (Cd), 112.8 (Cc), 47.7 (ArCH2). 

HRMS calculated for C15H10F2N2O2 - H 287.0632. Found 287.0638. 

7.14. Enzymatic Assays 

All enzymatic assays, except for the ones listed below, were carried out by Dr. 

Christian Lentz at the Institute of Medical Microbiology, Immunology and Parasitology 

(IMMIP).[2] 

Protein-buffer mix 

 
Final 

concentration 

Tris, pH 8 100 mM 

MgCl2 1 mM 

DTT 5 mM 

wALAD 500 µM 

 

Modified Ehrlich’s Reagent 

DMAB 0,4 g 
Acetic acid 17,1 mL 
Perchloric acid 4,9 mL 
Trichloroacetic acid (12 %) 3 mL 

 

wALAD inhibition assay 

2 µL compound dissolved in DMSO (final concentration row 0.26 µM – 533 µM) was 

pipetted to 23 µL protein-buffer mix and incubated for 30 minutes. 5 µL 

5-aminolevulinic acid (200 µM final concentration) dissolved in water was added and 

the assay plates were sealed, spun down and incubated at 37 °C for 20 minutes. The 
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reaction was stopped by addition of 200 µL modified Ehrlich’s Reagent and incubated 

for 10 minutes at room temperature. The absorption was read at 555 nm. 

 

Compound IC50 [µM] 

wALADin13 168 

wALADin14 217 

wALADin15 373 

wALADin16 703 
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B Synthesis and characterisation of novel ABAL probes 

1. Abstract 

Aptamers are single stranded oligonucleotides, which have gained increasing 

importance in biotechnological and therapeutic applications. They offer molecular 

recognition properties that rival those of the commonly used antibodies.[78] 

In aptamer-based affinity labelling (ABAL) aptamers are labelled with photoreactive 

probes and can then be cross-linked to their target protein in a UV light-dependent and 

highly specific manner.[3] This method enables the identification of unknown target 

proteins of aptamers which emerge from selection processes carried out against 

complex target structures. For the successful use of this method it is crucial that cross-

linking and isolation of the protein results in a pure sample for mass spectrometry 

analysis. The originally used ABAL probe, sulfo-SBED consists of a lysine core structure 

with biotin as a purification tag and phenyl azide (PA) as a moiety for UV induced 

crosslinking. The sulfo-SBED-modified aptamer failed to deliver a pure sample of the 

target protein from cell lysate.[3] Contaminations are most likely a result of co-eluted 

endogenously biotinylated proteins and unspecifically cross-linked proteins.  

To improve the ABAL procedure novel ABAL probes were developed. These probes 

either carry desthiobiotin or biotin in combination with a chemically cleavable linker as 

purification tags to enable mild elution of the captured complex. The resulting new 

elution conditions should significantly reduce the amount of co-eluted endogenously 

biotinylated proteins. 

Besides PA which is used as a reference, 1,2,4,5-tetrafluorophenyl-3-azide (TPA) and 

3-phenyl-3-(trifluoromethyl)-3H-diazirine (TPD) are used as photoreactive moieties in 

the novel ABAL probes. TPA and TPD are more stable than PA and have a lower 

tendency to undergo side reactions.[79] This reduces the possibility of unspecifically 

cross-linked protein. These improvements combined in the novel ABAL probes, have a 

high potential to eliminate contamination of the resulting samples.  

This part of the thesis describes the development and synthesis of the novel ABAL 

probes which might help to tap the full potential of the ABAL procedure and develop it 

into a standard procedure for identifying unknown target proteins. 
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2. Zusammenfassung 

Aptamere sind einzelsträngige Oligonukleotide, die vermehrt in biotechnologischen 

und therapeutischen Anwendungen Verwendung finden. Sie zeigen dabei molekulare 

Erkennungseigenschaften, die denen von Antikörpern in nichts nachstehen.[78]  

Bei der aptamer-basierten Affinitätsmarkierung werden Aptamere mit 

photoreaktiven Sonden markiert und dann gezielt durch UV-Bestrahlung mit ihren 

Zielproteinen vernetzt.[3] Diese Methode macht eine Identifizierung von unbekannten 

Zielproteinen von Aptameren, die gegen komplexe Zielstrukturen selektiert wurden, 

möglich. Für die erfolgreiche Anwendung dieser Methode ist es wichtig, dass die aus der 

Vernetzung und anschließenden Isolierung erhaltenen Proben rein sind, damit eine 

massenspektrometrische Analyse erfolgen kann. Die ursprünglich verwendete ABAL-

Sonde, sulfo-SBED, baut auf einer Lysin-Struktur auf, die Biotin zur Aufreinigung und 

Phenylazid (PA) zur Vernetzung enthält. Mit den sulfo-SBED-modifizierten Aptameren 

konnten bislang keine reinen Proben aus Zelllysaten erhalten werden, da 

Verunreinigungen, höchstwahrscheinlich verursacht durch endogen biotinylierte und 

unspezifisch vernetzte Proteine, vorliegen.[3]  

Um die Ergebnisse der ABAL-Strategie zu verbessern, wurden neue ABAL-Sonden 

entwickelt. Diese Sonden enthalten zur Aufreinigung entweder Desthiobiotin oder 

Biotin in Verbindung mit einem chemisch spaltbaren Linker, um die milde Elution des 

eingefangenen Komplexes zu ermöglichen. Die daraus resultierenden neuen 

Elutionsbedingungen sollten die Menge an co-eluierten endogen biotinylierten 

Proteinen deutlich verringern.  

Neben PA, das als Referenz verwendet wird, werden auch 1,2,4,5-tetrafluorophenyl-

3-azide (TPA) und 3-phenyl-3-(trifluoromethyl)-3H-diazirine (TPD)als photoreaktive 

Gruppen in den neuen ABAL-Sonden verwendet. TPA und TPD sind stabiler als PA und 

haben eine geringere Tendenz Nebenreaktionen einzugehen, was die 

Wahrscheinlichkeit von unspezifisch vernetzten Proteinen reduziert.[79] Die 

Kombination dieser Verbesserungen in den neuen ABAL-Sonden hat das Potenzial 

Verunreinigungen in den resultierenden Proben zu eliminieren. 

Dieser Teil der Arbeit beschreibt die Entwicklung und Synthese dieser neuen ABAL-

Sonden, die möglicherweise helfen können das volle Potenzial des ABAL-Verfahrens zu 

entfalten und es zu einer Standardanwendung zur Identifizierung von unbekannten 

Zielproteinen weiterzuentwickeln. 
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3. Introduction 

3.1. Aptamers 

Aptamers are single stranded oligonucleotides, which are known for their ability to 

fold into complex secondary structures. These structures form binding pockets for 

specific recognition and tight binding to a variety of targets. A resulting effect can be the 

blockage of single protein domains affecting protein functions. Aptamers have the ability 

to bind ligand molecules with high affinity and specificity, which is a result of non-

covalent interactions such as van der Waals forces, hydrogen bonds, aromatic ring 

stacking and electrostatic forces.[80] For this reason, dissociation constants of aptamer-

ligand complexes can reach the picomolar range.[81]  

Aptamers are obtained by systematic evolution of ligands by exponential enrichment 

(SELEX).[82] In this process aptamers are derived from combinatorial libraries of about 

1013 - 1015 different sequences according to their specific binding affinity. Sequences can 

be entirely random, depending on the complexity of the library, except for their constant 

flanking regions at the 3’- and 5’-end. These flanking regions serve as primers for 

subsequent amplification. DNA and RNA libraries can be chemically synthesised using 

standard oligonucleotide synthesisers. Commonly, RNA libraries are obtained by in vitro 

transcription of the corresponding DNA sequences. 

At the beginning of the SELEX procedure (Figure 10) the library is exposed to the 

desired target immobilised on a solid support usually in the form of activated agarose or 

coated magnetic beads. Unbound sequences are then removed by increasingly stringent 

washing steps. The bound sequences are isolated and amplified to prepare for the next 

round of selection. DNA sequences are amplified by polymerase chain reaction (PCR) 

and RNA sequences by reverse transcription PCR with subsequent in vitro transcription 

of the obtained complementary DNA. Multiple rounds of selection with increasing 

selection pressure and amplification lead to a decrease of library diversity and 

enrichment of the best binding ligands. The cycle of repeating rounds is stopped when 

no further change of affinity can be observed. This indicates the completion of the SELEX 

procedure. Subsequent to the last round the enriched library is cloned and sequenced to 

obtain the individual sequence of each member. These sequences are then analysed by 

grouping them into families according to homologies in their random region and finally, 
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testing the presumed aptamers for binding affinity and specificity.[83] Due to this 

procedure aptamers of high binding affinity to a variety of targets have been developed.  

 

Figure 10: Schematic diagram of systematic evolution of ligands by exponential enrichment (SELEX).[82] 

These targets are metal ions, small molecules, peptides, proteins, viruses, bacteria, and 

even whole cells,[84] tissue samples[85] and living organisms.[86] Automated platforms are 

new technologies like that enable simultaneous selection of aptamers to multiple 

proteins in a high throughput manner and therefore make aptamers easily obtained and 

valuable tools.[87] 

Aptamers were first described in literature in the in the early 1990s. Since then they 

have gained more and more importance as alternatives to long established antibody-

based diagnostics as well as biotechnological products for research, diagnostics, and 

therapy. This is amongst others a result of their comparable molecular recognition 

properties to those of antibodies. Moreover, antibodies have disadvantages compared to 

aptamers.[88] Antibodies are initially generated within animals, therefore generating 

antibodies against molecules, which negatively affect the living organism, is difficult. 

Subsequently, in cell culture, identifying and producing rare antibodies for a specific 

target requires screening of a large number of colonies, which can make the process 
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expensive and time consuming. When cell culture is applied common problems like 

accidental loss or death of cell lines is an issue. Antibodies have the tendency of varying 

performance from batch to batch, which makes optimisation of immunoassays 

necessary for each batch. The identification of antibodies is restricted by in vivo 

parameters and therefore recognition of targets can only be carried out under 

physiological conditions and identified antibodies cannot be modified on demand. 

Antibodies have a limited shelf-life and denature irreversibly due to their temperature 

sensitivity. 

Aptamers on the other hand are obtained by SELEX, which is an in vitro process. 

Therefore, SELEX conditions can be altered to obtain aptamers with fitting properties 

and under suitable conditions, for example, for in vitro diagnostics. The aptamer 

sequences are chemically synthesised and can be purified to a very high degree. That is 

why they hardly show any batch-to-batch variation. Additionally, aptamers can be 

chemically modified by attaching reporter molecules or functional groups at precise 

locations during the synthesis. Aptamers are suitable for long-term storage and are 

temperature stable. When denatured they can be readily regenerated.[89] 

Aptamers can be easily chemically modified by introduction of altered nucleotides 

(Figure 11). This can either be accomplished through enzymatic incorporation or 

chemical synthesis. Modifications on the ribose ring of RNA aptamers can drastically 

improve their properties. For example, the modifying of the 2’-position of the ribose ring 

with a fluoro, amino or methoxy group can enhance the serum stability from less than 

one second to more than 81 hours.[90]  

 

Figure 11: 2’-modification of the ribose ring.[90] 

Apart from stabilising modifications, aptamers can also be altered to covalently bind to 

functional molecules such as fluorescent dyes or biotin. Therefore aptamers are 

modified with aminohexyl or thiohexyl phosphoramidites at their 3’- or 5’-end during 

synthesis.[91] Molecules carrying the corresponding functionalities can then be attached 

post-synthetically (Scheme 12). 
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Scheme 12: Functionalisation of 5’-aminohexyl modified DNA.[91] 

Another method to modify RNA aptamers is the incorporation of guanosine-

monophosphorothioate (GMPS) at the 5’-end. GMPS is incorporated by T7-transcription 

of the complementary double stranded DNA. The obtained GMPS-primed RNA can then 

be functionalised with the desired molecule by disulphide-bond formation (Scheme 

13).[92] 

 

Scheme 13: Functionalisation of GMPS-primed RNA.[92]  

 

Besides the use for in vitro applications, aptamers can also be applied in extra- and 

intracellular applications. In extracellular applications, cell-surface proteins, which are 

the main route of communication between cells and their external environment, are 

targeted. Alterations in cell-surface proteins can be directly linked to a large number of 

human diseases and therefore these proteins deliver an excellent target for disease 

diagnoses, therapeutics and prognosis.[93] Aptamers selected for purified, soluble cell-

surface proteins often show little or no binding under physiological conditions. Reasons 

for this can be that the binding domain of the protein is masked or the protein might 

only be functional when co-presented with other cell-surface components. One way to 

overcome these problems is a SELEX procedure using cell membrane preparations 

containing the desired protein as a target.[94] This complex target SELEX often requires 

significantly more cycles to obtain enrichment of the best binding sequences, but is 

generally conducted similarly as for in vitro selection.  
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Another way is to use whole living cells as targets in SELEX.[95] Most commonly for 

this cell-SELEX procedure, the desired protein receptor is over-expressed on unrelated 

cells and these cells are then incubated with the RNA or DNA library. Unbound targets 

can be easily washed off and the surface-bound sequences are eluted by using heat, 

EDTA or, in the case of RNA, Triazol. With these sequences the SELEX procedure is 

continued as described for the in vitro SELEX. A major advantage of cell-SELEX is the 

capability to obtain aptamers against diseased or differentiated cells without prior 

knowledge of the responsible target protein. Aptamers obtained this way are valuable 

tools for specific recognition and sorting of diseased cells. 

However, when targeting a specific protein, co-selection of aptamers targeting other 

proteins present on the cell surface has to be prevented. Hence, SELEX procedures 

targeting membrane preparations or whole cells need to contain additional counter-

selection steps. During these steps the binding sequences are incubated with membrane 

preparations or cells that are similar to the initial ones, but do not contain the desired 

target.  Binding sequences are removed and the original SELEX procedure is continued. 

A problem of cell-SELEX is that dead cells, which occur during the selection 

procedure, non-specifically bind to nucleic acids. This leads to the enrichment of false-

positive aptamers. To overcome this problem a digital high-speed fluorescence-activated 

cell sorter (FACS) can be used to separate viable and dead cells, after incubation with the 

library, based on their differential light-scattering characteristics.[84] The obtained viable 

cells are then processed as described.  

In intracellular applications genes, proteins, metabolites and all the other molecules 

making up a cell are analysed to precisely understand how they interconnect and 

function in their diseased and normal states. This knowledge can help to develop new 

strategies in drug target discovery and novel therapeutic concepts.[96] Here too, 

aptamers have proved to be able to interrupt, modulate, or define the functions of a wide 

range of target proteins within cells. Although aptamers cannot readily cross cell 

membranes, it has been shown that they can be introduced either by intracellular 

expression,[97] lipofection,[98] microinjection[99] or by employing nanoparticles.[100] 

Within the cell these so called intramers maintain their ability to modulate the functions 

of their target protein and can be utilised for proteins in the cytoplasm as well as in the 

nucleus.[96] 
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Nevertheless, some applications afford molecules that can readily cross cell 

membranes, be applied in a spatio-temporally controlled fashion, act transiently and 

employ effects that are reversible. Chemical compounds or more precise drug-like small 

molecules often combine these properties and hence, have an advantage compared to 

aptamers.[54b] On the other hand, identification of small molecule inhibitors can be 

laborious since their screening requires methods that are specifically designed for the 

desired target and often screens deliver no positive result. Since aptamers can be 

obtained for a great variety of targets and conditions, aptamer-displacement assays 

were developed to identify small molecules with similar inhibitory properties as the 

corresponding aptamer. In these assays small molecule libraries are screened for 

compounds that are able to replace the bound aptamer and therefore identify small 

molecules that are effective and specific inhibitors.  

3.2. Aptamer-based affinity labelling (ABAL) 

As previously mentioned, Cell-SELEX can be used to obtain aptamers against diseased or 

differentiated cells without prior knowledge of the responsible target protein. In some 

cases this may be sufficient, for example, when identifying and sorting diseased cells, but 

if the selected aptamers are supposed to be developed into therapeutics, biomarkers or 

analytical devices, knowledge of the target protein is crucial. 

An attempt to provide a method to identify unknown protein targets of aptamers was 

the 2012 developed aptamer-based affinity labelling (ABAL) which is based on the 

concept of affinity-based proteomic profiling (ABPP). ABPP uses active site-directed 

chemical probes that carry photoreactive groups for covalent binding after UV 

irradiation, to identify their target proteins within the proteome by mass spectrometry 

techniques. Other than in classical proteomic approaches, this method does not merely 

measure protein abundance but delivers information of protein functional sites.[101]  

The principle of ABAL involves the covalent crosslinking of an aptamer, modified with a 

photoreactive probe, to a target protein by UV irradiation and subsequent purification 

and identification of the target protein. As depicted in Figure 12, the aptamer is 

modified with the ABAL probe containing an aryl azide group for covalent binding and 

biotin for purification. The modified aptamer is incubated with the target protein, either 

present in cell lysates, membrane preparations or on living cells and then cross-linked to 

the target protein by UV irradiation with a wavelength of 360 nm. Covalently bound 
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aptamer-protein complexes are then isolated by incubation with magnetic streptavidin 

coated beads, that bind to the biotin linker included in the photoreactive probe and 

subsequent elution of the purified complex.[3] Commonly, purified complexes are then 

digested with trypsin and analysed via LC-MS analysis.[102] 

 

 

Figure 12: Schematic diagram of the aptamer-based affinity labelling (ABAL). The figure shows an adapted 

version of the figure found in reference[3]. 

 

To enable a wide applicability of the ABAL-procedure the aptamer is modified at its 

5’-end with the photoreactive probe sulfo-N-hydroxysuccinimidyl-2-(6-[biotinamido]-2-

(p-azidobenzamido)-hexanoamido) ethyl-1,3'-dithioproprionate (sulfo-SBED). This 

makes it possible to modify the aptamers in a post-SELEX procedure. The sulfo-SBED-

moiety is a commercially available, heterobifunctional chemical cross-linker which was 

originally employed for label-transfer reactions to identify protein-protein 

interactions.[103] As shown in Figure 13 sulfo-SBED molecules carry an aryl azide group 

on the one end and a sulfo-NHS-ester group on the other. The former is capable to 

covalently crosslink under UV irradiation to nearly any protein functional group while 

the latter binds to primary amines. The included disulphide bond provides a cleaving-

site for bond-cleavage by reducing agents (chapter B3.4). Furthermore, sulfo-SBED also 

includes a biotin moiety, which has a remarkably high affinity to avidin and streptavidin 
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and therefore provides a good basis for enrichment of the aptamer-protein complexes 

with avidin or streptavidin matrices.[104] 

 

 

Figure 13: Structure of sulfo-N-hydroxysuccinimidyl-2-(6-[biotinamido]-2-(p-azido benzamido)-

hexanoamido) ethyl-1,3'-dithioproprionate (Sulfo-SBED). 

ABAL has been applied to different aptamer-protein complexes, consisting of 

aptamers with diverse secondary structures including hairpin and G-quadruplex 

structures, to reinforce the assumption of universal applicability. This combined with 

the applicability in highly complex biological samples such as cell lysates and 

membranes of living cells makes it also a potential method for identifying possible, 

additional targets (off-target effects) of aptamers selected to modulate protein functions 

within cells. These so called intramers modulate the biological function of the target 

protein and make it possible to assign biological answer to the modulated function of the 

addressed protein. The unambiguity of this assignment could then be verified by using 

ABAL to rule out off-target effects.  

3.3. Photocrosslinking 

In order to be able to identify the unknown binding proteins of aptamers, the 

aptamer-target complex needs to be isolated. Although the binding of the aptamer to the 

target protein is highly affine and tight, it is not covalent and consequently aptamer-

protein complexes often dissociate under denaturing conditions. 

Photoaffinity labelling (PAL) is a method to covalently crosslink proteins to their 

corresponding ligand for example small molecules, enzymes or other proteins[105] and 

forms the basis for both ABPP and ABAL. A key element for all these methods is the 
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photoreactive group which develops a reactive species upon irradiation at a certain 

wavelength that covalently binds the ligand to the target.  

A suitable photoreactive group has to meet certain criteria: [106] 

First of all the photoreactive group has to be stable in biological media and should not 

show light independent background reactivity. This prevents cross-reactivity or 

decomposition of the photoreactive group which would cause an increase in off-target 

labelling and a decrease in the desired complex concentration. Compared to the ligand it 

modifies, the photoreactive group should be less sterically demanding and the 

modification should have low to no influence on the biological activity of the ligand. 

Furthermore, the reactive species formed by irradiation with specific wavelengths has to 

be highly reactive and short-lived to be able to crosslink the target structure before 

dissociation of the complex. Otherwise this would as well result in off-target labelling.  

Based on these criteria three types of photoreactive groups have emerged that are 

commonly used in PAL and ABPP: Benzophenones, aryl azide and aryl diazirines. 

 Aryl azides[79] 

Irradiation of aryl azides with UV light below 300 nm results in elimination of molecular 

nitrogen and the formation of a highly energetic and reactive singlet aryl nitrene. Within 

10 - 100 ps the singlet aryl nitrene undergoes rearrangement to form the benzazirine 

which can then form a dehydroazepine via ring expansion. At low temperatures or in 

methanol as a solvent the singlet nitrene converts into triplet nitrene by intersystem 

crossing. All four species can subsequently react with suitable functions by different 

mechanisms. Singlet nitrene reacts like an electrophile and therefore readily inserts into 

C-H (Scheme 14), N-H and O-H bonds. Triplet nitrene reacts in a diradical manner by 

abstracting hydrogen from an adjacent C-H followed by crosslinking to the produced 

carbon radical. Benzazirine and dehydroazepine are long-lived electrophiles and can 

only react with adjacent nucleophiles.  

The major advantages of aryl azides are their comparatively small size and their easy 

preparation. Aryl azides are commonly prepared in a two-step synthesis starting from 

the corresponding aniline.  

A drawback of aryl azides are the side-reactions that can occur when used in 

biological buffers. Both reactions, the aerobic oxidation of the triplet nitrene to the 

corresponding nitro species and the reduction of the initial azide to the amine by 
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dithiothreitol (DTT), reduce the concentration of the available crosslinking reagent and 

therefore the crosslinking yields.  

 

Scheme 14: Chemistry of aryl azides after photolysis. The scheme shows an adapted version of the scheme found 

in reference[79]. 

Other disadvantages are the low absorption wavelengths, which can damage the 

biological system and the formed benzazirine and dehydroazepine, which cause off-

target labelling due to their slow reaction time. These disadvantages can be easily 

overcome by using perfluorinated aryl azides. Introduction of electron-withdrawing 

groups causes a shift to higher maximum absorption wavelengths ranging from 300 nm 

to 460 nm which reduces damaging effects on biological systems. Electron-withdrawing 

groups on the aryl moiety also cause singlet nitrene to rearrange much slower which 

prevents off-target effects.[107] 

 Benzophenones[79] 

Excitation with UV light ranging from 350 - 360 nm causes an electron of the oxygen to 

promote from its non-binding sp2-like n-orbital to an antibinding π*-orbital of the 

carbonyl carbon. Interaction of this so formed triplet diradical with weak C-H or O-H 

bonds is then possible due to the electrophilicity of the oxygen. This interaction results 

in the abstraction of the hydrogen and the subsequent crosslinking of the formed ketyl 

and alkyl radicals. The dimerisation of ketyl radicals to benzopinacol occurs only in 

small amounts due to the difference in reaction rates (Scheme 15). Hydrogen 

abstraction preferably takes place at benzylic positions, amino acid α-positions, tertiary 
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carbon centres, and heteroatom-stabilised positions due to stabilisation of the generated 

carbon radical.  

Advantages of benzophenones are their inertness to most of the commonly used 

organic solvents, which enables chemical modification of the chosen compound under 

standard conditions without prior inactivation of the photoreactive group. Moreover, 

they show a higher chemical stability compared to azides and diazirines, since 

benzophenones can undergo several cycles of excitation and relaxation in the absence of 

abstractable hydrogens.  The reactive triplet state can last up to 120 µs and after that 

readily relaxes into the ground state, maintaining its binding and photoactivatable 

properties. Therefore, reactions take place even in the presence of water and bulk 

nucleophiles. The excitation wavelength of benzophenones lies between 350 and 360 

nm, which is suitable for biological systems.  

Besides these advantages, that make benzophenones seem like ideal 

photocrosslinking reagents, they suffer from some disadvantages. Irradiation for up to 

30 min is necessary to obtain reasonable crosslinking efficiency and this prolonged 

irradiation time and lifetime can cause non-specific labelling.[108] Additionally, the 

introduction of the benzophenones increases the bulkiness and hydrophobicity of the 

modified molecule. This is a potential negative influence on the ligand-target interaction 

and makes benzophenones less suitable for complexes with low affinity binding.[109]  

 

Scheme 15: Chemistry of benzophenones after photolysis. The scheme shows an adapted version of the scheme 

found in reference[79]. 

 Aryl diazirines[79] 

Upon irradiation with UV light ranging from 350 - 380 nm aryl diazirines can undergo 

two different reactions. Competitively, either a singlet carbene or a diazoisomer is 
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formed. The diazoisomer of unsubstituted 3-alkyl-3H-diazirines is long-lived and can be 

converted into the singlet carbene in a relatively slow process by continued irradiation. 

Unfortunately this elevates the occurrence of aspecific binding and hydrolysis. 

Introduction of an electron-withdrawing group stabilises the diazoisomer and therefore 

prevents hydrolysis. The Singlet carbene is a highly reactive short-lived species which 

can convert into triplet carbene via intersystem crossing. Singlet carbene is readily 

inserted into C-H, O-H or N-H bonds without discrimination of the reaction site. Triplet 

carbene reacts in an analogous manner to triplet nitrene by hydrogen abstraction with 

subsequent coupling to the formed carbon radical (Scheme 16).  

Due to their enhanced stability compared to unsubstituted 3-alkyl-3H-diazirines, 3-

aryl-3-(trifluoromethyl)-3H-diazirine have come to be the commonly used diazirine 

photocrosslinkers. Nevertheless, they still show undesirable side reactions such as the 

oxidation of the triplet carbene by molecular oxygen to the corresponding ketone. 

Another disadvantage is the elimination of HF after insertion into N-H bonds. This 

results in an enamine-imine equilibrium that hydrolyses to the corresponding ketone 

upon loss of the cross-linked molecule in aqueous environments.[110] 

A major advantage of the aryl diazirines is their absorption wavelength ranging in 

areas that causes no significant damage to biological systems. Beyond that aryl 

diazirines are stable against an impressive variety of different conditions. Their stability 

against strongly acidic, strongly basic, oxidising and reducing conditions can be of 

interest for the synthesis of modified compounds as well as for the crosslinking 

application itself. The relatively small size of aryl diazirines similar to that of aryl azides 

minimises structural changes of the modified compound and potentially reduces a loss 

of activity.  
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Scheme 16: Chemistry of aryl diazirines after photolysis. The scheme shows an adapted version of the scheme 

found in reference[79].  

 Summary 

Perfluorinated aryl azide (TPA) and aryl diazirine (TPD) show superior photoreactive 

properties compared to the other available moieties. TPA and TPD are less bulky 

compared to benzophenones and therefore have potentially less negative influence on 

the ligand-target interactions. Both photoreactive groups are activated using 

wavelengths above 300 nm which reduces the damaging effects on biological systems 

and are able to insert into N-H, C-H and O-H bonds after irradiation. 

Despite the similar advantages, except for the bulkiness, and the higher stability of 

benzophenones in aqueous solutions they seem less suitable due to their prolonged 

irradiation time required to obtain reasonable crosslinking efficiency. This additionally 

causes rearrangement into a variety of different crosslinking products which is highly 

undesirable for the unambiguous identification of cross-linked targets. 

A final evaluation, if TPA or TPD is the ideal photoreactive group, requires the 

synthesis of the TPA- and TPD-ABAL probe and testing of each probe in an actual ABAL 

experiment. 

3.4. Cleavable linker 

An essential step in ABPP and ABAL is the identification of the target protein. This is 

usually accomplished by purification and subsequent mass-spectrometry-based 

identification. Affinity purification on streptavidin beads using biotin as affinity tags has 

become the preferred strategy. This method takes full advantage of the high affinity of 
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biotin for streptavidin. Nevertheless, it is limited by its harsh elution conditions which 

include either denaturation of streptavidin by heating the resin in a denaturing 

buffer,[111] trypsin digestion of resin-bound proteins,[112] or elution of proteins with 

excess free biotin.[113] These elution strategies lead to contamination of the sample by 

coeluting non-specifically bound and/or naturally biotinylated proteins as well as resin-

based peptides.[114]  

Introducing a molecule chain which contains a chemical bond that can be selectively 

broken allows the selective release of target proteins under mild conditions. This so 

called cleavable linker strategy[115] is a valuable addition for biotin-streptavidin-based 

affinity purification.  

There are a variety of cleavable moieties investigated to cleave at various conditions. 

Disulphide and azobenzene, for example, are the only cleavable moieties that cleave 

under reducing conditions (Scheme 17). Disulphide bonds are readily cleaved with mild 

reducing agents like dithiothreitol (DTT), β-mercaptoethanol or 

tris(2-carboxyethyl)phosphine (TCEP).[116] Because of that and its straightforward 

synthesis disulphide bonds are often used in chemical biology applications. Nonetheless, 

disulphide linkers have many disadvantages. Electrophilic and nucleophilic polar 

reagents cause a thiol exchange which can lead to non-specific cleavage under 

intracellular conditions. Even the mere cellular environment with its reducing 

properties can cleave the disulphide bond. 

Azobenzene on the other hand is stable under mild reducing conditions such as DTT 

or TCEP used in biological applications. It is cleaved into two aniline moieties by using 

sodium dithionite, a mild and bio-orthogonal reducing agent.[117] Azobenzene cleavage 

requires several washing steps with high concentration of the reducing agent which can 

result in denaturation of the protein.  

 

Scheme 17: Cleavage of disulphide (top) and azobenzene probes.[116-117]  

Alternatively, photosensitive groups can be used in cleavable linkers. They are stable 

under a variety of chemical conditions and can be triggered highly selective by 
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irradiation with UV light. The photocleavable moieties such as ortho-nitrobenzyl 

derivatives are applied in a variety of biological studies (Scheme 18).[115] However, 

since ABAL already requires UV irradiation for photo-crosslinking, photosensitive 

groups are not suitable for the use in ABAL approaches. 

 

 

Scheme 18: Cleavage of linkers with ortho-nitrobenzyl derivatives.[115] 

Another type of cleavable moieties can be cleaved under acidic conditions. To 

maintain biocompatibility acid cleavable moieties must respond to minor changes close 

to the physiological pH since strong acidic conditions can lead to denaturing of proteins 

and DNA. An acid cleavable linker based on a diphenyldialkoxysilane cleavable bond has 

been recently developed.[118] It is cleaved by incubation with 5 % formic acid at room 

temperature (Scheme 19). Although, these cleaving conditions are the mildest acidic 

reported so far, possible denaturation of proteins cannot be entirely ruled out. 

 

Scheme 19: Cleavage of linkers with diphenyldialkoxysilane.[118] 

Vicinal diols are one example of oxidation sensitive moieties and can be cleaved by 

sodium periodate to form two aldehydes (Scheme 20). Due to this ability sodium 

periodate is the most frequently used biocompatible oxidising agent. In general, proteins 

are stable under the mild, neutral cleaving conditions of sodium periodate.[119] Side 

reactions are of minor concern since they only occur by cleavage of linked 

carbohydrates or by oxidation of N-terminal serine and threonine residues which are 

rare protein N-termini.  

 

 

Scheme 20: Cleavage of vicinal diols.[119]  

The variety of cleavable linkers with different cleaving conditions makes it possible to 

find suitable cleavable linkers for nearly every application.[115] For the synthesis of 
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cleavable ABAL probes a moiety is necessary that is stable under biological conditions 

such as the extra- and intracellular environment. At the same time the cleaving 

conditions should not influence the aptamer-protein interaction, for example, by 

denaturing the protein, the DNA or both. Oxidation sensitive moieties or more precisely 

vicinal diols meet these requirements and therefore are a suitable moiety for a cleavable 

ABAL probe.  
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4. Aim of project 

The ABAL procedure was developed to identify unknown target proteins of aptamers 

which were selected from complex media such as cell lysates, membrane preparations 

or whole cells. Vinkenborg et al. showed that the ABAL procedure is applicable to 

different aptamer-protein complexes with diverse secondary structures and that these 

known proteins can be cross-linked to their targets in complex media, followed by 

subsequent purification and identification via western blotting.[3] They also reported 

that western blot analysis of the crosslinking of the aptamer-protein complex showed 

several additional bands to the band matching the molecular mass of the targeted 

protein. Vinkenborg et al. presumed that these bands are a result of endogenously 

biotinylated proteins which were also isolated during the streptavidin based 

purification and unspecifically cross-linked protein. For the identification of unknown 

proteins, the protein has to be isolated in high purity and separated from endogenously 

biotinylated counterparts to ensure the successful analysis by using mass spectrometry 

strategies. 

The aim of this project was to develop novel ABAL probes that have the potential to 

yield pure cross-linked products suitable for mass spectrometry analysis (Figure 14). So 

far Sulfo-SBED was used as ABAL probe and is a commercially available 

photocrosslinking reagent which was originally designed for identifying protein-protein 

interactions.[3] The main cause of endogenously biotinylated protein impurities present 

in the samples of the isolated protein is the harsh denaturing conditions necessary to 

elute the bound samples. Using the structurally related desthiobiotin instead of biotin as 

a moiety for enrichment has the potential to significantly reduce the amount of eluted 

impurities. The reason for that is the looser bond of the desthiobiotin-streptavidin 

system that makes it possible to easily displace the desthiobiotin-containing probes by 

using biotin-containing buffers under mild conditions.[120]  

Another method to reduce the elution of impurities is the introduction of a cleavable 

linker into the ABAL probe. The cleaving conditions of the linker as well as its position in 

the ABAL probe are crucial for the effectiveness of the cleavable linker strategy. The 

originally used sulfo-SBED includes a disulphide linker, but due to its position in the 

ABAL probe merely the initially modified aptamer is removed from the target protein. 

The protein itself remains attached to the biotin and therefore to the streptavidin coated 

carrier which makes elution under harsh denaturing conditions necessary. A crucial 
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disadvantage of the disulphide bond is that it is cleaved in reducing environments.[116] 

Protein stabilising additives such as DTT are often necessary to assure proper folding 

and retain activity of the protein. DTT is also a reducing agent and would accordingly 

cause the disulphide bond to cleave prematurely when both are present simultaneously. 

In an ABAL procedure this would result in early release of the aptamer and nonspecific 

labelling of the free probe after irradiation.  

 

 

Figure 14: Structures of novel ABAL probes. Each ABAL probe includes either a phenyl azide (PA) 1,2,4,5-

tetrafluorophenyl-3-azide (TPA) and 3-phenyl-3-(trifluoromethyl)-3H-diazirine (TPD) moiety. Top: 

Desthiobiotin ABAL probe. Bottom: Cleavable ABAL probe.  

A more suitable moiety for an effective cleavable linker strategy is a vicinal diol, 

which is cleaved by addition of sodium periodate.[119] These conditions do not naturally 

occur at any time of the ABAL procedure. Just as important as the cleaving conditions is 

the position of the cleavable linker in the ABAL probe. To prevent the necessity to elute 

the protein from the streptavidin carrier it is essential to position the cleavable linker in 

direct proximity of the crosslinking moiety. At this position cleavage of the linker elutes 

and isolates the protein from the streptavidin carrier and the rest of the probe.  

In sulfo-SBED phenyl azide (PA) is the photoreactive moiety. PA is known to show a 

significant amount of side reactions that can notably reduce the crosslinking efficiency 

and can lead to unspecific crosslinking which can be the cause of impurities in isolated 
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protein samples. Good alternatives are 1,2,4,5-tetrafluorophenyl-3- azide (TPA) and 3-

phenyl-3-(trifluoromethyl)-3H-diazirine (TPD), which are similar in size but much more 

stable towards unwanted side reactions.[79]  

Based on these considerations two sets of compounds containing desthiobiotin or a 

cleavable linker were designed. Each set of compounds included PA, TPA or TPD as 

photoreactive group. The synthesis of these compounds is shown in this work.  
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5. Results and discussion 

To develop a suitable synthesis route for the novel ABAL probes the structure of the 

probes was retrosynthetically analysed (Figure 15). Similar to sulfo-SBED the design of 

the novel ABAL probes is based on a lysine core structure (black) to which the different 

functional moieties are attached. These moieties are either biotin variants(red), one of 

the photoreactive groups PA, TPD or TPA (green), the cleavable linker (orange) and a 

linker for attachment of the aptamer (blue). These compounds are termed dependent on 

the elution strategy they enable as desthiobiotin (D) or cleavable (C) ABAL probes. 

Additionally, the abbreviation of the photoreactive group present is preceded.  

 

 

Figure 15: Retrosynthetically determined fragments for novel ABAL probe synthesis. 

5.1. Desthiobiotin ABAL probes 

To be able to attach the functional moieties to the lysine core structure, 

considerations were made concerning the order of moiety attachment. The only 

differences between each of the desthiobiotin compounds are the photoreactive groups. 

Introducing the photoreactive group as one of the last steps made it possible to follow a 

single synthesis route until this step. It was necessary to position differently-cleaved 

protecting groups on the two amines of the lysine molecule. This so called orthogonal 

protection strategy made it possible to address the reaction sites independently as 

needed. A fluorenylmethyloxycarbonyl (fmoc)[121]- and tert-butyloxycarbonyl (boc)[122]-

protected lysine was chosen since it meets the requirements and is commercially 

available. The fmoc-protection group can be removed under mild basic conditions using 

mainly amine bases while the boc-protection group on the other hand can be removed 

under acidic conditions. Both protection groups are stable under the deprotection 
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conditions of the other. The introduction of the linker for the attachment of the aptamer 

was the first step in the synthesis of desthiobiotin ABAL probes. The carboxylic acid of 

the lysine and the amine of the methyl 6-aminocaproate hydrochloride (1) were coupled 

to form an amide bond using HBTU as a coupling reagent (Scheme 21). HBTU is one of 

the most common coupling reagents and is used to activate the carboxylic acid by 

forming an active ester to accelerate the reaction.  

 

Scheme 21: Coupling of 6-aminocaproate hydrochloride to diprotected lysine. 

In compound 1 the amine is present as a hydrochloric salt which needs to be 

converted into the free amine in order to enable the reaction. Commonly, 

diisopropylethylamine (DIPEA) is added as a base in coupling reactions to obtain the 

free amine, but in this particular case the amine base DIPEA caused cleavage of the fmoc-

protection group. Pyridine did not deprotect the amine and was added instead to ensure 

the availability of free methyl 6-aminocaproate.[123] After completion of the reaction, 

excess pyridine was removed by washing with one molar hydrochloric acid. This mild 

acidic solution did not affect the boc-protection group and the pure coupling product 2 

was obtained after recrystallisation from methanol in excellent yields.  

The following coupling step afforded prior acidic deprotection of the boc-protected 

amine. Hydrochloric acid was generated in situ by reaction of acetyl chloride with 

methanol[122] to provide the acidic deprotection conditions (Scheme 22). Protonation of 

the boc group results in the loss of the tert-butyl cation and subsequent decarboxylation. 

In this case, precipitation of the reaction mixture in a less polar solvent proved to be an 

efficient purification method and resulted in the pure amine hydrochloride salt 3 in 

quantitative yields.  

Desthiobiotinolation of the obtained amine 3 by HBTU mediated coupling using 

pyridine as a base and purification by column chromatography furnished compound 4 in 

good yields.  
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Scheme 22: Deprotection of the boc-protected amine and desthiobiotinolation. 

The deprotection of the fmoc-protected amine of compound 4 was then carried out 

using 20 % piperidine in dichloromethane (Scheme 23).[121] The mild base piperidine 

abstracts the acidic proton of the fmoc group and rearrangement leads to 

decarboxylation and the formation of 9-methylene-9H-fluorene. The free amine 5 was 

furnished in good yields after purification via column chromatography.  

 

Scheme 23: Deprotection of the fmoc-protected amine. 

Compound 5 forms the basis for all three desthiobiotin ABAL probes. Either 

4-Azidobenzoic acid, 4-azido-2,3,5,6-tetrafluorobenzoic acid and 

4-(3-(trifluoromethyl)-3H-diazirin-3-yl)benzoic acid were then introduced into 

compound 5 in a HBTU mediated coupling reaction. Since the fmoc group was no longer 

present in compound 5 common coupling reaction conditions using DIPEA as a base 

could be applied (Scheme 24).[124] The presence of the photoreactive groups in all 

compounds from this point on afforded handling and storage in the absence of light. This 

was necessary to prevent premature activation of the photoreactive groups and 

therefore unspecific crosslinking. The methyl ester of each resulting compound 6, 8 and 

10 was treated with lithium hydroxide monohydrate to furnish the free carboxylic acids 

7, 9 and 11 in excellent yields.[59] 

These routes result in a convenient 6-step synthesis for each of the desthiobiotin 

ABAL probe with overall yields of 36 % for the TPAD, 42 % for the TPDD and 45 % for 

the PAD ABAL probe.  
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Scheme 24: Coupling of the photoreactive moieties and final hydrolysis. 

5.2. Cleavable ABAL probeǂ 

In preparation for the synthesis of the cleavable ABAL probe the linker containing the 

cleavable vicinal diol function had to be synthesised. To ensure accessibility of the diol 

function and the moieties attached to either side it was necessary to position the diol 

function in between two chains acting as spacers.[118] 2,2'-(Ethane-1,2-

diylbis(oxy))diethanamine and the previously used compound 1 were chosen as spacer 

and L-tartaric acid served as the vicinal diol function (Scheme 25).  

 

Scheme 25: Retrosynthetically determined fragments for the cleavable linker synthesis. 

For sufficient synthesis, an orthogonal protection strategy needed to be applied to 

L-tartaric acid, since the synthesis required independent addressing of the two 

carboxylic acid functions and protection of the vicinal diol function. The commercially 

                                                        
ǂ The synthesis of the phenyl azide cleavable ABAL probe was carried out with 

assistance of Christian Deutsch, who I supervised during his Bachelor thesis. The 

synthesis of this compound is also described in his Bachelor thesis.  
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available (−)-dimethyl 2,3-O-isopropylidene-L-tartrate proved to be a suitable starting 

material[119] even though this compound carries two identical protection groups on the 

carboxylic acids. It was possible to selectively deprotect only one of the carboxylic acids 

under basic conditions by using a methanolic solution with one equivalent of potassium 

hydroxide in respect to (−)-dimethyl 2,3-O-isopropylidene-L-tartrate (Scheme 26).  

 

 

Scheme 26: Single-sided carboxylic acid deprotection of (−)-dimethyl 2,3-O-isopropylidene-L-tartrate. 

2,2'-(Ethane-1,2-diylbis(oxy))diethanamine was boc-protected using excess 2,2'-

(ethane-1,2-diylbis(oxy))diethanamine to ensure monoprotection of one of the two 

amines (Scheme 27A).[125] The boc-protection group was chosen since it enabled 

simultaneous deprotection of the protected amine and the vicinal diol at a later stage of 

synthesis. This strategy proved to be a wrong approach particularly as the gained 

polarity of the resulting molecule 17 increased its solubility in water tremendously. This 

caused the resulting compound to be not-extractable from the aqueous reaction mixture 

of the last cleavable linker synthesis step. For this reason a carboxybenzyl (Z)-protection 

group was chosen to protect one amine of the 2,2'-(ethane-1,2-

diylbis(oxy))diethanamine (Scheme 27B). The ability to cleave the Z-protection group 

by promoted reduction with hydrogen[126] enables independent amine and vicinal diol 

deprotection.  

 

Scheme 27: Single-sided protection of 2,2'-(ethane-1,2-diylbis(oxy))diethanamine. A Boc-protection. B 

carboxybenzyl (Z)-protection. 

The carboxylic acid 12 and the Z-protected compound 19 were then coupled in a 

HBTU mediated reaction to furnish the coupling product 20 in good yields (Scheme 28). 
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To be able to introduce the second spacer the remaining methyl ester of compound 20 

was hydrolysed by using lithium hydroxide monohydrate. The carboxylic acid 21 was 

obtained in excellent yields and compound 1 was attached via HBTU mediated coupling 

to furnish the coupling product 22 in acceptable yields.  

 

Scheme 28: Synthesis of the cleavable linker precursor 22. 

The carboxybenzyl protected compound 22 was cleaved using hydrogen promoted by 

palladium on activated carbon (Scheme 29).[127] This deprotection strategy left the 

acetal-protection group intact and therefore enabled smooth handling of the resulting 

compound 23 which was obtained in excellent yields. Compound 23 builds the basis for 

all photoreactive cleavable linkers.  

The introduction of the three photoreactive groups again afforded handling and 

storage of the resulting compounds in absence of light. Each of the three photoreactive 

groups was attached to compound 23 using HBTU as a coupling reagent. As a final step 

carboxylic acid was obtained from the methyl ester via lithium hydroxide monohydrate 

mediated hydrolysis. This route yielded the three cleavable photoreactive building 

blocks in an 8-step synthesis. The cleavable PA and the TPD linker show similar overall 

yields of 13 % and the cleavable TPA linker an overall yield of 9 %. The generally low 

overall yields are mainly accorded to the low yields of the selective Z-protection and the 

selective carboxylic acid deprotection. Nevertheless, the synthesis is acceptable due to 

the inexpensive starting materials. 
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Scheme 29: Synthesis of the cleavable linkers. PAC linker 25, TPAC linker 27 and TPDC linker 29. 

 

With the photoreactive cleavable linkers in hand the synthesis of the cleavable ABAL 

probes followed a similar strategy as the synthesis of the desthiobiotin ABAL probe, 

sharing identical starting materials and initial synthesis steps. After the synthesis of 

compound 3 the synthesis route of the cleavable ABAL probes differed to the extent that 

compound 3 was coupled to biotin (Scheme 30). The coupling reaction was carried out 

under similar conditions as described for the desthiobiotin ABAL probe using HBTU as a 

coupling reagent and pyridine as base instead of diisopropylethylamine.[123] The 

biotinylated compound 30 showed reduced solubility in high extent intensifying 

handling. Hence, solvents for the aqueous work up were tested, proving a mixture of 

dichloromethane/methanol in a ratio 3:1 to be the best choice. Purification only 

succeeded using column chromatography. This required dry loading of the sample and 

addition of 1 % triethylamine to the solvent mixture of dichloromethane and methanol 

to deprotonate excess biotin and thereby to prevent its migration on the column. 
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Scheme 30: Synthesis of the cleavable ABAL probe precursor 32. 

The fmoc-protection group of the pure compound 30 was then removed by using 

20 % piperidine in dichloromethane.[121] Purification was carried out by column 

chromatography using similar conditions as before, whereas in this case the 

triethylamine was used to prevent protonation of the free amine 31 on the slightly acidic 

silica gel and thereby enhance migration on the column.  

To assure that the further synthesis conditions were also suitable for the introduction 

of the cleavable photoreactive linker the coupling reaction was carried out using only 

the PA cleavable linker 24. The linker 24 was coupled to the amine 31 using HBTU as 

coupling reagent and dimethylformamide (DMF) as solvent.[124] DMF is a polar organic 

solvent which is commonly used for reactions with polar reagents to ensure a 

homogenous reaction mixture. In this case even while using DMF precipitation occurred 

during the reaction and reoccurred after adding several portions of dimethylformamide. 

This situation resulted in the coupling product yields of only 12 % after 96 hours 

reaction time most likely due to the fact that the amine 31 was removed from the 

reaction mixture by precipitation before completion of the reaction. Alternating the 

reaction conditions and exchanging the coupling reagent by 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide[128] (EDC) to increase the amount of coupled 

product 32 did not deliver an increase in yield. 
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To be able to show the general validity of the synthetic pathway, synthesis was 

continued with the amounts of compound 32 obtained from the previous reaction. As a 

following step the acetal-protected diol was deprotected by using acetyl chloride and 

methanol (Scheme 31). With this reaction mixture for in situ hydrochloric acid 

generation the free diol 33 was successfully obtained in excellent yields. The rise of 

polarity due to the free diols increased the solubility of the compound to an extent that 

made it possible to carry out the hydrolysis of the methyl ester with lithium hydroxide 

monohydrate in aqueous tetrahydrofuran.[59] The work up of the hydrolysis reaction 

requires precipitation of the carboxylate ion from an aqueous solution by protonation 

with an aqueous hydrochloric acid solution and filtration of the formed compound 34. 

The final product 34 was obtained in rather poor yields of 33 %, most likely due to the 

loss of material during precipitation and filtration of the small amounts of sample. 

Nevertheless it was shown that the pathway generally succeeds.  

 

Scheme 31: Synthesis of the PA cleavable ABAL probe. 
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The coupling reaction of the cleavable linker 24 and the amine 31 is clearly the bottle 

neck of this synthetic pathway. The major problem of the coupling reaction seems to be 

the poor solubility of the biotinylated compound 31. For the large scale synthesis of the 

PAC ABAL probe and the synthesis of the TPAC and TPDC ABAL probes an alternative 

synthetic pathway, introducing biotin as one of the last steps should be taken into 

consideration (Chapter B6). 

5.3. Aptamer ABAL probe 

The PAD ABAL probe and the aptamer C10.35 were chosen to investigate the most 

suitable reaction conditions to generate the ABAL aptamer probes. C10.35 is a DNA-

aptamer which targets the Sec7 domain of the guanine nucleotide exchange factor 

cytohesin-2 (Figure 16) and was one of the aptamer-protein complexes used to prove 

the validity of the ABAL procedure for different aptamer-protein complexes. 

 

Figure 16: Predicted structure of the cytohesin-2 Sec 7 aptamer C10.35. The figure shows an adapted version of 

the figure found in reference[3]. 

The generation of the ABAL aptamer probe is an amide bond formation carried out in 

aqueous buffers. Suitable buffers must lack carboxylic acids and amines to prevent 

unwanted by-products. In this case the zwitterionic buffering agent 4-(2-hydroxyethyl)-

1-piperazineethanesulfonic acid (HEPES) was used to prepare a buffer at pH 8.3 which 

also included sodium chloride. This buffer was chosen due to its good coupling 

performance in the initial ABAL experiments.[3]  
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As previously described, coupling reagents are used to accelerate the amide bond 

formation by activating the carboxylic acid. EDC is a commonly used coupling reagent in 

aqueous buffers due to its good solubility in water. It activates the carboxylic acid by 

forming an O-acylisourea intermediate which is then displaced by nucleophilic attack of 

the amine.[129]  

Coupling between the 5’-hexylamino-modified aptamer C10.35 and the PAD ABAL 

probe was carried out with 100-fold excess of the PAD ABAL probe and EDC. The 

reaction mixture was incubated for 19 hours in a Thermomixer at 300 rpm and LC-MS 

analysis showed a yield of 45 % for the desired C10.35 PAD ABAL probe (Table 3). In an 

attempt to increase the coupling yield the reaction was repeated at 65 °C. The higher 

temperature increased the reaction yield only marginally to 49 %.  

Coupling reagent 
Reaction 

temperature [°C] 
Reaction time  

[h] 
Reaction yield  

[%] 

EDC RT 19 45 

EDC 65  17 49 

EDC + OxymaPure RT 19 4 

EDC + Sulfo-NHS 4 2 13 

EDC + Sulfo-NHS 4 3 17 

EDC + Sulfo-NHS 4 4 20 

EDC + Sulfo-NHS 4 19 42 

EDC + Sulfo-NHS RT 2 29 

EDC + Sulfo-NHS RT 3 0 

EDC + Sulfo-NHS RT 4 31 

EDC + Sulfo-NHS RT 19 64 
Table 3: Conditions and results of the coupling reaction. 

The formed O-acylisourea intermediate is prone to hydrolysis in aqueous buffers, 

which is most likely the reason for the moderate yields in this coupling reaction. 

Approaches to prevent hydrolysis of the active ester comprise either reduction of the 

reaction time or stabilisation of the active ester. Hence, the reaction was carried out 

using the additive ethyl 2-cyano-2-(hydroxyimino)acetate (OxymaPure) which is 

combined with carbodiimide coupling reagents to improve their performance.[130] 

OxymaPure is an alternative to the commonly used benzotriazol-based additives which 

were reported to show explosive properties. In a coupling reaction using both EDC and 

OxymaPure the O-acylisourea intermediate is primarily formed. OxymaPure then reacts 

with the intermediate to form the oxime active ester, which stabilises the approach of 
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the amine.[131] The reaction furnished the desired coupling product in very poor yields of 

only 4 % which proved this approach as unsuccessful.  

In a different approach the reaction was carried out using an analog of 

N-hydroxysuccinimide (NHS), N-hydroxysulfosuccinimide (sulfo-NHS). Both NHS and 

sulfo-NHS are water soluble, but sulfo-NHS has the advantage over NHS that the formed 

active ester remains water-soluble due to the charged sulfonate group. Similar to the 

coupling reaction with the additive OxymaPure primarily the O-acylisourea intermediate 

is formed which then reacts with sulfo-NHS to form the sulfo-NHS ester. The hydrophilic 

sulfo-NHS ester hydrolyses very slowly compared to its reaction rate with amino 

groups.[132] Nevertheless, the half-life of the sulfo-NHS ester decreases depending on the 

water-content, temperature and pH of the reaction mixture. For this reason the coupling 

reaction was carried out at room temperature and at 4 °C and reaction yields were 

analysed for different reaction times. For both temperatures yields increased over time, 

but the reactions at room temperature furnished better yields and the higher maximum 

yield of 64 % after 19 hours. The differing value at room temperature after 3 hours is 

most likely due to handling or measurement errors and can be ignored.  

These results show that the C10.35 PAD ABAL probe can be generated in good yields 

using EDC and sulfo-NHS as coupling reagents at room temperature.  
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6. Outlook 

6.1. Verification of the improved properties of the novel ABAL probes 

The work described in this part of the thesis displays the successful synthesis of novel 

ABAL probes which, in future, might have the potential to make ABAL a standard 

procedure for identifying unknown target proteins of aptamers selected from highly 

complex systems.  

To achieve this, the improved properties of the novel ABAL probes have to be verified 

by analysing aptamer-protein complexes with structurally diverse aptamers to 

underline universal applicability of the novel probes in the ABAL procedure. Therefore, 

these aptamers and suitable negative controls have to be modified with the novel ABAL 

probes using the method determined in this work. Reverse-phase HPLC could then be 

used to separate the modified aptamers from the unreacted novel ABAL probes and the 

unfunctionalised aptamers. A potential negative influence of the ABAL probe on the 

binding properties of the modified aptamer needs to be ruled out by competitive filter 

binding experiments. In these experiments the 5’-ABAL-modified aptamers compete 

with the corresponding unfunctionalised aptamers for the binding on the target 

proteins. Comparison of the obtained IC50 values of unfunctionalised aptamers, the 

ABAL-modified aptamers, and the negative-control aptamer will make it possible to 

draw conclusions about the influence of the novel ABAL probes on the binding 

properties of the ABAL-modified aptamer.  

The crosslinking efficiency of the ABAL-modified aptamers needs to be determined as 

well. For this the ABAL procedure has to be carried out for the ABAL-modified aptamers 

using purified protein as well as protein in cell lysate. Elution of the proteins from 

streptavidin-coated beads can then be carried out using either biotin-containing buffers 

in the case of the desthiobiotin probes or sodium periodate-containing buffers in the 

case of the cleavable variant. The western blot analysis of the experiments using the 

purified protein will provide information about the most efficient cross-linkers. In the 

case of the experiments using protein in cell lysate, the western blot analysis will at best 

show just a single band corresponding to the target protein. If so, this will prove the 

success of the novel ABAL probes.  

For the cleavable ABAL-modified aptamers, additional experiments need to be carried 

out to determine optimal cleaving conditions and efficiency. For this, streptavidin beads 
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loaded with the cross-linked aptamer-protein complex should be eluted using sodium 

periodate-containing buffer. The beads should then be treated with common elution 

strategies such as boiling in sodium dodecyl sulphate to elute all remaining proteins. 

Both fractions can then be analysed via western blotting to determine optimal cleavage 

conditions. 

6.2. Alternative synthetic pathway for cleavable ABAL probes 

The synthesis of the PAC ABAL probe only furnished poor yields most likely due to 

the low solubility of the biotinylated compound 31 and the resulting poor handleability. 

Introduction of biotin as one of the last steps might solve the problem and increase 

overall yields (Scheme 32). 



B6 Outlook 

123 
 

 

Scheme 32: Alternative synthetic pathway for the synthesis of cleavable ABAL probes. 

The only disadvantage of this strategy is that the synthetic pathway splits into three 

individual pathways at an early stage of the synthesis one for each cleavable linker. This 

makes the synthesis of the three cleavable ABAL probes in parallel more complex. 

Scheme 32 shows the alternative synthetic pathway in which at first compound 2 is 

fmoc-deprotected and the cleavable linker attached. After the deprotection of the amine 

and the vicinal diol in a single step, the biotinylation is carried out, leaving only the 

hydrolysis as a last synthesis step. This strategy should most likely result in a synthetic 

pathway with better overall yields. 
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7. Experimental section 

7.1. General methods 

 NMR-spectroscopy 

1H- and 13C-NMR-spectra were measured with a nuclear magnetic resonance 

spectrometer AM300 (1H = 300 MHz; 13C = 75.5 MHz), AM400 (1H = 400 MHz; 

13C = 100.6 MHz) und AM500 (1H = 500 MHz; 13C = 126.0 MHz) from BRUKER, Karlsruhe. 

D6-DMSO was used as solvent. The chemical shifts were ploted as δ-values in ppm. The 

1H-spectra were calibrated on the d6-DMSO residual content at δ = 2.50 ppm and the 13C-

spectra were calibrated on the d6-DMSO residual content at δ = 39.5 ppm. Increment 

calculations of the Program ChemBioDraw Ultra 12.0 from Cambridge Soft were used to 

assign some signals. The analysis of the spectra was carried out with MestReNova 8 from 

Mestrelab Research S.L. 

The following abbreviations were used for the multiplicities:  

s Singlet  

d Doublet 

dd Doublet of Doublets  

t Triplet 

q quartet 

m multiplet 

The coupling constant J were quoted in Hertz and with the letters indicating the atom. 

The letters used are identical to the letters shown on the structures.  

 Mass spectroscopy 

The mass spectra were measured in the chemical institute. EI-Mass spectra were 

measured on a MAT-95XL from Finnigan, Bremen. ESI-Mass spectra were measured 

with a micrOTOF-Q flight time spectrometer from Bruker Daltonik, Bremen using an 

Agilent 1200 Series HPLC-facility. 

 Flash chromatography 

Flash chromatography was carried out using pre-packed silica gel columns on a 

PuriFlash 430 from Interchim, France.  
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 TLC 

Analytical TLC was performed on a 0.25 mm tickness plates pre-coated with Merck 

Kieselgel 60 F254 silica gel. TLC were visualised  under UV (254) nm or by using 

Phosphorus molybdic acid and Ninhydrin dyes. 

7.2. Desthiobiotin ABAL probes 

Methyl 6-aminohexanoate hydrochloride (1) 

 

Acetyl chloride (228 mmol, 16.3 mL) was added to 6-Aminocaproic acid (76.2 mmol, 

10.0 g) in methanol (135 mL) at 0 °C and stirred for 18 hours at room temperature. The 

reaction mixture was concentrated under reduced pressure. The residue was dissolved 

in methanol (40.0 mL) and poured into diethyl ether (320 mL). The resulting precipitate 

was filtered to obtain 1 as white solid. Yield 12.7 g (92 %). 

 

1H NMR (400 MHz, DMSO-d6) δ [ppm] = 8.12 (s, 3H,H8), 3.58 (s, 3H, H1), 2.76 – 2.65 

(m, 2H, H7), 2.29 (t, 3J3,4 = 7.4 Hz, 2H, H3), 1.60 – 1.48 (m, 4H, H4, H6), 1.36 – 1.25 (m, 2H, 

H5). 

13C NMR (101 MHz, DMSO-d6) δ [ppm] = 173.2 (C2), 51.2 (C1), 38.5 (C7), 33.1(C3), 26.6 

(C4), 25.3 (C5), 23.9 (C6). 

HRMS calculated for C7H16NO2Cl + H 146.1181. Found 146.1176 
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Methyl 6-(2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-6-((tert-

butoxycarbonyl)amino)hexanamido)hexanoate (2) 

 

Pyridine (142 mL) was added to a stirred solution of Fmoc-Lys(Boc)-OH (28.4 mmol, 

13.2 g) in tetrahydrofuran (142 mL) followed by HBTU (31.2 mmol, 11.8 g) at room 

temperature. After 15 minutes 1 (31.2 mmol, 5.67 g) was added. The reaction mixture 

was stirred for 72 hours at room temperature. The reaction mixture was concentrated 

under reduced pressure. The resulting solid was dissolved in dichloromethane (150 mL) 

and washed with hydrochloric acid (1M, 3 x 100 mL), saturated sodium hydrogen 

carbonate solution (3 x 100 mL) and saturated sodium chloride solution (100 mL). The 

organic layer was dried (MgSO4) and concentrated under reduced pressure. The 

remaining residue was recrystallized from methanol to give 2 as a white solid. Yield 

15.7 g (93 %). 

 

1H NMR (300 MHz, DMSO-d6) δ [ppm] = 7.88 (d, 3J26,25 = 7.7 Hz, 2H, H26), 7.81 (t, 

3J8,7 = 5.2 Hz, 1H, H8), 7.76 – 7.68 (m, 2H, H23), 7.45 – 7.27 (m, 5H, H9, H24, H25), 6.74 (t, 

3J15,14 = 5.5 Hz, 1H, H15), 4.34 – 4.13 (m, 3H, H10,H20), 3.92 – 3.85 (m, 1H, H21), 3.55 (s, 3H, 

H1), 3.09 – 2.98 (m, 2H, H7), 2.91 - 2.84 (m, 2H, H14), 2.25 (t, 3J3,4 = 7.3 Hz, 2H, H3), 

1.59 - 1.44 (m, 4H, H4, H11), 1.40 - 1.33 (m, 13H, H6, H13, H18), 1.30 – 1.11 (m, 4H, H5, H12). 

13C NMR (75 MHz, DMSO-d6) δ [ppm] = 173.3 (C2), 171.7 (C9), 155.9 (C16), 155.6 (C19), 

143.9 (C22), 140.7 (C27), 127.6 (C25), 127.0 (C24), 125.3 (C23), 120.1 (C26), 77.3 (C17), 65.6 

(C10), 54.7 (C21), 51.2 (C1), 46.7 (C20), 39.7 (C14), 38.2 (C7), 33.2 (C3), 31.8 (C13), 29.2 (C6), 

28.7 (C11), 28.3 (C18), 25.8 (C5), 24.1 (C4), 22.9 (C12). 

HRMS calculated for C33H45N3O7 + Na 618.3156. Found 618.3150. 
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Methyl 6-(2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-6-aminohexanamido) 

hexanoate (3) 

 

Acetyl chloride (79.1 mmol, 5.60 mL) was added to 2 (26.4 mmol, 15.7 g) in methanol 

(264 mL) at 0 °C and refluxed for 1 hour. The reaction mixture was concentrated under 

reduced pressure. The residue was dissolved in methanol (80.0 mL) and poured into 

diethyl ether (640 mL). The resulting precipitate was filtered to obtain 3 as white solid. 

Yield 14.0 g (100 %). 

 

1H NMR (400 MHz, DMSO-d6) δ [ppm] = 8.01 (s, 3H, H15), 7.95 – 7.86 (m, 3H, H8, H24), 

7.75 – 7.72 (m, 2H, H21), 7.49 – 7.37 (m, 3H, H16, H23), 7.32 (ddd, 3J22,21/23 = 7.4 Hz, 

4J22,24 = 1.2 Hz, 2H, H22), 4.33 – 4.17 (m, 3H, H10, H18), 3.94 – 3.89 (m, 1H, H19), 3.56 (s, 3H, 

H1), 3.12 – 2.95 (m, 2H, H7), 2.78 – 2.71 (m, 2H, H14), 2.26 (t, 3J3,4 = 7.4 Hz, 2H, H3), 

1.65 - 1.45 (m, 6H, H11, H4, H13), 1.44 – 1.16 (m, 6H, H6, H5, H12). 

13C NMR (101 MHz, DMSO-d6) δ [ppm] = 173.2 (C2), 171.6 (C9), 155.9 (C17), 143.7 

(C20), 140.7 (C25), 127.6 (C23), 127.0 (C22), 125.3 (C21), 120.1 (C24), 65.5 (C10), 54.5 (C19), 

51.1 (C1), 46.6 (C18), 38.4 (C14), 38.2 (C7), 33.2 (C3), 31.3 (C13), 28.6 (C6), 26.5 (C11), 25.7 

(C5), 24.1 (C4), 22.4 (C12). 

HRMS calculated for C28H37N3O5 +Na 518.2631. Found 518.2625. 
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Methyl 6-(2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-6-(6-(5-methyl-2-

oxoimidazolidin-4-yl)hexanamido)hexanamido)hexanoate (4) 

 

Pyridine (24.0 mL) was added to a stirred solution of desthiobiotin (4.67 mmol, 

1.00 g) in tetrahydrofuran (24.0 mL) followed by HBTU (5.13 mmol, 1.95 g) at room 

temperature. After 15 minutes 3 (5.13 mmol, 2.73 g) was added. The reaction mixture 

was stirred for 72 hours at room temperature. The reaction mixture was concentrated 

under reduced pressure. The resulting solid was dissolved in dichloromethane (150 mL) 

and washed with hydrochloric acid (1M, 3 x 100 mL), saturated sodium hydrogen 

carbonate solution (3 x 100 mL) and saturated sodium chloride solution (100 mL). The 

organic layer was dried (MgSO4) and concentrated under reduced pressure. The residue 

was dissolved in methanol (80.0 mL) and poured into diethyl ether (640 mL). The 

resulting precipitate was filtered to obtain 4 as yellow solid. Yield 2.82 g (87 %). 

 

1H NMR (400 MHz, DMSO-d6) δ [ppm] = 7.89 (d, 3J36,35 = 7.5 Hz, 2H, H36), 7.86 - 7.79 

(m, 1H, H8), 7.74 – 7.70 (m, 3H, H15, H33), 7.46 – 7.37 (m, 3H, H28, H35), 7.32 (ddd, 

3J34,33/35 = 7.4 Hz, 4J33,36 = 1.2 Hz, 2H, H34), 6.28 (s, 1H, H23/25), 6.11 (s, 1H, H23/25), 

4.30 - 4.16 (m, 3H, H10, H30), 3.93 - 3.87 (m, 1H, H31), 3.64 – 3.53 (m, 4H, H1, H26), 

3.51 - 3.42 (m, 1H, H22), 3.10 – 2.93 (m, 4H, H7, H14), 2.26 (t, 3J3,4 = 7.4 Hz, 2H, H3), 2.02 (t, 

3J17,18 = 7.4 Hz, 2H, H17), 1.62 – 1.43 (m, 6H, H4, H11, H13), 1.42 – 1.11 (m, 14H, H5, H6, H12, 

H18, H19, H20, H21), 0.94 (d, 3J27,26 = 6.3 Hz, 3H). 

13C NMR (101 MHz, DMSO-d6) δ [ppm] = 173.2 (C2), 171.8 (C16), 171.6 (C9), 162.7 

(C24), 155.8 (C29), 143.8 (C32), 140.7 (C37), 127.6 (C35), 127.0 (C34), 125.3 (C33), 120.0 

(C36), 65.5 (C10), 54.9 (C22), 54.6 (C31), 51.1 (C1), 50.2 (C26), 46.6 (C30), 38.2 (C7, C14), 35.3 
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(C17), 33.2 (C3), 31.7 (C21), 29.5 (C6), 28.8 (C19), 28.7 (C5), 28.6 (C20), 25.7 (C18), 25.5 (C12), 

25.2 (C13), 24.1 (C11), 22.9 (C4), 15.4 (C27). 

HRMS calculated for C38H53N5O7 + Na 714.3843. Found 714.3837. 

 

Methyl 6-(2-amino-6-(6-(5-methyl-2-oxoimidazolidin-4-yl)hexanamido) 

hexanamido)hexanoate (5) 

 

Piperidine (8.00 mL) was added to 4 (4.08 mmol, 2.82 g) in dichloromethane 

(32.0 mL) at 0 °C and stirred for 1 hours at room temperature. Toluene (40.0 mL) was 

added and the reaction mixture was concentrated under reduced pressure. The 

remaining residue was purified by column chromatography on silica gel using 

dichloromethane, methanol and triethylamine (90:9:1) as eluent to give 5 as a pale 

yellow solid. Yield 1.68 g (88 %). 

 

1H NMR (300 MHz, DMSO-d6) δ [ppm] = 8.15 (t, 3J8,7 = 5.7 Hz, 1H, H8), 7.77 (t, 

3J15,14 = 5.6 Hz, 1H, H15), 6.30 (s, 1H, H23/25), 6.12 (s, 1H, H23/25), 3.65 - 3.56 (s, 4H, H1, 

H26), 3.50 - 3.42 (m, 1H, H22), 3.39 – 3.30 (m, 1H, H10), 3.16 – 2.92 (m, 4H, H7, H14), 2.28 

(t, 3J3,4 = 7.4 Hz, 2H, H3), 2.03 (t, 3J17,18 = 7.4 Hz, 2H, H18), 1.69 – 1.09 (m, 20H, H4, H5, H6, 

H11, H12, H13, H18, H19, H20, H21), 0.95 (d, 3J27,26 = 6.3 Hz, 3H, H27). 

13C NMR (75 MHz, DMSO-d6) δ [ppm] = 173.3 (C9), 171.8 (C2), 171.8 (C16), 162.8 (C24), 

55.0 (C22), 53.5 (C10), 51.2 (C1), 50.2 (C26), 38.2 (C7), 38.2 (C14), 35.3 (C17), 33.2 (C11), 32.9 

(C3), 29.5 (C21), 28.9 (C6), 28.7 (C13), 28.6 (C19), 25.8 (C5), 25.6 (C18), 25.2 (C20), 24.1 (C4), 

22.2 (C12), 15.5 (C27). 

HRMS calculated for C23H43N5O5 + Na 492.3162. Found 492.3156. 
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Methyl 6-(2-(4-azidobenzamido)-6-(6-(5-methyl-2-oxoimidazolidin-4-yl) 

hexanamido)hexanamido)hexanoate (6) 

 

Diisopropylethylamine (4.80 mmol, 0.83 mL) was added to a stirred solution of 

4-Azidobenzoic acid (1.74 mmol, 284 mg) in tetrahydrofuran (17.4 mL) followed by 

HBTU (1.92 mmol, 728 mg) at room temperature. After 15 minutes 5 (1.92 mmol, 

900 mg) was added. The reaction mixture was stirred for 18 hours at room temperature. 

The reaction mixture was concentrated under reduced pressure. The resulting solid was 

dissolved in dichloromethane (70.0 mL) and washed with hydrochloric acid (1M, 

3 x 40.0 mL), saturated sodium hydrogen carbonate (3 x 40.0 mL) and saturated sodium 

chloride (40.0 mL). The organic layer was dried (MgSO4) and concentrated under 

reduced pressure. The residue was dissolved in methanol (40.0 mL) and poured into 

diethyl ether (320 mL). The resulting precipitate was filtered to obtain 6 as yellow solid. 

Yield 695 mg (65 %). 

 

1H NMR (300 MHz, DMSO-d6) δ [ppm] =8.36 (d, 3J28,10 = 7.9 Hz, 1H. H28), 7.97 - 7.90 

(m, 3H, H8, H31), 7.72 (t, 3J15,14 = 5.5 Hz, 1H, H15), 7.19 (d, 3J32,31 = 8.6 Hz, 2H, H32), 6.29 (s, 

1H, H23/25), 6.12 (s, 1H, H23/25), 4.34 (q, 3J10,11/28 = 7.6 Hz, 1H, H10), 3.71 - 3.53 (m, 4H, H1, 

H26), 3.51 – 3.45 (m, 1H, H22), 3.12 – 2.97 (m, 4H, H7, H14), 2.27 (t, 3J3,4 = 7.3 Hz, 2H, H3), 

2.01 (t, 3J17,18 = 7.3 Hz, 2H, H17), 1.70 (q, 3J11,12 = 8.1 Hz, 3J11,10 = 7.6 Hz, 2H, H11), 

1.60 - 1.09 (m, 18H, H4, H5, H6, H12, H13, H18, H19, H20, H21), 0.95 (d, 3J27,26 = 6.2 Hz, 3H, 

H27). 

13C NMR (75 MHz, DMSO-d6) δ [ppm] =173.2 (C9), 171.9 (C2), 171.6 (C16), 165.3 (C29), 

162.8 (C24), 142.3 (C33), 130.7 (C30), 129.4 (C31), 118.7 (C32), 54.9 (C22), 53.5 (C10), 51.1 
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(C1), 50.2 (C26), 38.2 (C7), 38.1 (C14), 35.3 (C17), 33.2 (C3), 31.4 (C11), 29.5 (C21, C13), 28.9 

(C6), 28.7 (C19), 25.7 (C5), 25.5 (C20), 25.2 (C18), 24.1 (C4), 23.2 (C12), 15.5 (C27). 

HRMS calculated for C30H46N8O6 + Na 637.3438. Found 637.3433. 

 

6-(2-(4-azidobenzamido)-6-(6-(5-methyl-2-oxoimidazolidin-4-yl)hexanamido) 

hexanamido)hexanoic acid (7) 

 

A solution of lithium hydroxide (0.59 mmol, 25.0 mg) in water (1.00 mL) was added 

to a stirred solution of 6 (0.12 mmol, 72.0 mg) in tetrahydrofuran (2.00 mL) at room 

temperature. The reaction mixture was refluxed for 1 hour at 70 °C. The reaction 

mixture was concentrated under reduced pressure and the residue was dissolved in 

water (3.00 mL). The reaction mixture was washed with ethyl acetate (3.00 mL). 

Hydrochloric acid (2M, 3.00 mL) was added to the aqueous phase and the resulting 

precipitate was filtered to obtain 7 as a pale yellow solid. Yield 69.0 mg (98 %). 

 

1H NMR (300 MHz, DMSO-d6) δ [ppm] = 12.03 (bs, 1H, H1), 8.36 (d, 3J28,10 = 7.8 Hz, 1H, 

H28), 8.04 – 7.87 (m, 3H, H8, H31), 7.72 (t, 3J15,14 = 5.7 Hz, 1H, H15), 7.19 (d, 3J32,31 = 8.8 Hz, 

1H, H32), 6.49 – 5.92 (m, 2H, H23, H25), 4.34 (q, 3J10,11/28 = 7.5 Hz, 1H, H10), 3.59 (p, 

3J26,25/27 = 6.6 Hz, 1H, H26), 3.51 - 3.42 (m, 1H, H22), 3.10 – 2.97 (m, 4H, H7, H14), 2.17 (t, 

3J3,4 = 7.3 Hz, 2H, H3), 2.01 (t, 3J17,18 = 7.4 Hz, 2H, H17), 1.69 (q, 3J11,10/12 = 7.8 Hz, 2H, H11), 

1.56 – 1.02 (m, 18H, H4, H5, H6, H12, H13, H18, H19, H20, H21), 0.95 (d, 3J27,26 = 6.3 Hz, 3H, 

H27). 

13C NMR (75 MHz, DMSO-d6) δ [ppm] = 174.4 (C2), 171.9 (C9), 171.6 (C16), 165.3 (C29), 

162.8 (C24), 142.3 (C33), 130.8 (C30), 129.5 (C31), 118.7 (C32), 55.0 (C22), 53.5 (C10), 50.2 

(C26), 38.4 (C7), 38.2 (C14), 35.4 (C17), 33.6 (C3), 31.4 (C21), 29.5 (C11), 28.9 (C6, C13), 28.7 

(C19), 25.9 (C5), 25.6 (C18), 25.2 (C20), 24.2 (C4), 23.2 (C12), 15.5 (C27). 
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HRMS calculated for C29H44N8O6 +Na 623.3282. Found 623.3276. 

 

Methyl 6-(2-(4-azido-2,3,5,6-tetrafluorobenzamido)-6-(6-(5-methyl-2-

oxoimidazolidin-4-yl)hexanamido)hexanamido)hexanoate (8) 

 

Diisopropylethylamine (2.40 mmol, 0.41 mL) was added to a stirred solution of 

4-azido-2,3,5,6-tetrafluorobenzoic acid (0.96 mmol, 226 mg) in tetrahydrofuran 

(10.0 mL) followed by HBTU (1.06 mmol, 402 mg) at room temperature. After 

15 minutes 5 (1.06 mmol, 498 mg) was added. The reaction mixture was stirred for 18 

hours at room temperature. The reaction mixture was concentrated under reduced 

pressure. The resulting solid was dissolved in dichloromethane (50.0 mL) and washed 

with hydrochloric acid (1M, 3 x 30.0 mL), saturated sodium hydrogen carbonate solution 

(3 x 30.0 mL) and saturated sodium chloride solution (30.0 mL). The organic layer was 

dried (MgSO4) and concentrated under reduced pressure. The residue was dissolved in 

methanol (30.0 mL) and poured into diethyl ether (240 mL). The resulting precipitate 

was filtered to obtain 8 as yellow solid. Yield 406 mg (62 %). 

 

1H NMR (300 MHz, DMSO-d6) δ [ppm] = 9.04 (d, 3J28,10 = 8.1 Hz, 1H, H10), 8.05 (t, 

3J8,7 = 5.7 Hz, 1H, H8), 7.72 (t, 3J15,14 = 5.7 Hz, 1H, H15), 6.29 (s, 1H, H23/25), 6.12 (s, 1H, 

H23/25), 4.39 (td, 3J10,28 = 8.4 Hz, 3J10,11 = 5.3 Hz, 1H, H10), 3.62 - 3.56 (m, 4H, H1, H26), 3.50 

– 3.42 (m, 1H, H22), 3.18 – 2.91 (m, 4H, H7, H14), 2.28 (t, 3J3,4 = 7.4 Hz, 2H, H3), 2.02 (t, 

3J17,18 = 7.4 Hz, 2H, H17), 1.76 – 1.05 (m, 20H, H4, H5, H6, H11, H12, H13, H18, H19, H20, H21), 

0.95 (d, 3J27,26 = 6.2 Hz, 3H, H27). 

13C NMR (75 MHz, DMSO-d6) δ [ppm] = 173.3 (C9), 171.9(C2), 170.5 (C16), 162.8 (C29), 

156.7 (C24), 144.6 (C32), 141.4 (C31), 120.7 (C30), 112.3 (C33), 55.0 (C22), 53.2 (C10), 51.2 
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(C1), 50.2 (C26), 38.3 (C7), 38.2 (C14), 35.4 (C17), 33.3 (C3), 31.9 (C11), 29.5 (C21), 28.8 (C6, 

C13), 28.6 (C19), 25.7 (C5), 25.6 (C18), 25.2 (C20), 24.1 (C4), 22.7 (C12), 15.5 (C27). 

HRMS calculated for C30H42F4N8O6 + Na 709.3061. Found 709.3056. 

 

6-(2-(4-azido-2,3,5,6-tetrafluorobenzamido)-6-(6-(5-methyl-2-oxoimidazolidin-4-

yl)hexanamido)hexanamido)hexanoic acid (9) 

 

A solution of lithium hydroxide (2.70 mmol, 113 mg) in water (2.00 mL) was added to 

a stirred solution of 8 (0.54 mmol, 371 mg) in tetrahydrofuran (4.00 mL) at room 

temperature. The reaction mixture was refluxed for 1 hour at 70 °C. The reaction 

mixture was concentrated under reduced pressure and the residue was dissolved in 

water (8.00 mL). The reaction mixture was washed with ethyl acetate (4.00 mL). 

Hydrochloric acid (2M, 4.00 mL) was added to the aqueous phase and the resulting 

precipitate was filtered to obtain 9 as a pale yellow solid. Yield 299 mg (82 %). 

 

1H NMR (400 MHz, DMSO-d6) δ [ppm] = 12.00 (s, 1H, H1), 9.04 (d, 3J28,10 = 8.2 Hz, 1H, 

H28), 8.05 (t, 3J8,7 = 5.7 Hz, 1H, H8), 7.72 (t, 3J15,14 = 5.6 Hz, 1H, H15), 6.30 (s, 1H, H23/25), 

6.12 (s, 1H, H23/25), 4.39 (td, 3J10,28 = 8.4 Hz, 3J10,11 = 5.3 Hz, 1H, H10), 3.63 - 3.57 (m, 1H, 

H26), 3.52 – 3.40 (m, 1H, H22), 3.17 – 2.90 (m, 4H, H7, H14), 2.18 (t, 3J3,4 = 7.4 Hz, 2H, H3), 

2.02 (t, 3J17,18 = 7.4 Hz, 2H, H17), 1.72 – 1.09 (m, 20H, H4, H5, H6, H11, H12, H13, H18, H19, H20, 

H21), 0.95 (d, 3J27,26 = 6.4 Hz, 3H, H27). 

13C NMR (101 MHz, DMSO-d6) δ [ppm] = 174.4 (C2), 171.9(C9), 170.4 (C16), 162.8 

(C29), 156.7 (C24), 144.1 (C32), 141.7 (C31), 120.7 (C30), 112.3 (C33), 55.0 (C22), 53.2 (C10), 

50.2 (C26), 38.3 (C7), 38.2 (C14), 35.3 (C17), 33.6 (C3), 31.9 (C11), 29.5 (C21), 28.7 (C6, C13), 

28.7 (C19), 25.8 (C5), 25.6 (C18), 25.2 (C20), 24.2 (C4), 22.7 (C12), 15.5 (C27). 
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HRMS calculated for C29H40F4N8O6 - H 671.2929. Found 671.2934. 

 

Methyl 6-(6-(6-(5-methyl-2-oxoimidazolidin-4-yl)hexanamido)-2-(4-(3-

(trifluoromethyl)-3H-diazirin-3-yl)benzamido)hexanamido)hexanoate (10) 

 

Diisopropylethylamine (2.40 mmol, 0.41 mL) was added to a stirred solution of 

4-(3-(trifluoromethyl)-3H-diazirin-3-yl)benzoic acid (0.96 mmol, 221 mg) in 

tetrahydrofuran (10.0 mL) followed by HBTU (1.06 mmol, 402 mg) at room 

temperature. After 15 minutes 5 (1.06 mmol, 498 mg) was added. The reaction mixture 

was stirred for 18 hours at room temperature. The reaction mixture was concentrated 

under reduced pressure. The resulting solid was dissolved in dichloromethane 

(50.0 mL) and washed with hydrochloric acid (1M, 3 x 30.0 mL), saturated sodium 

hydrogen carbonate solution (3 x 30.0 mL) and saturated sodium chloride solution 

(30.0 mL). The organic layer was dried (MgSO4) and concentrated under reduced 

pressure. The residue was dissolved in methanol (30.0 mL) and poured into diethyl 

ether (240 mL). The resulting precipitate was filtered to obtain 10 as yellow solid. Yield 

435 mg (66 %). 

 

1H NMR (300 MHz, DMSO-d6) δ [ppm] = 8.53 (d, 3J28,10 = 7.9 Hz, 1H, H28), 8.01 (d, 

3J32.31 = 8.6 Hz, 2H, H32), 7.93 (t, 3J8,7 = 5.7 Hz, 1H, H8), 7.71 (t, 3J15,14 = 5.7 Hz, 1H, H15), 

7.37 (d, 3J31,32 = 8.1 Hz, 2H, H31), 6.30 (s, 1H, H23/25), 6.12 (s, 1H, H23/25), 4.35 (td, 

3J10,28 = 8.2 Hz, 3J10,11 = 5.9 Hz, 1H, H10), 3.64 - 3.55 (m, 4H, H1, H26), 3.53 – 3.38 (m, 1H, 

H22), 3.08 – 2.97 (m, 4H, H7, H14), 2.26 (t, 3J3,4 = 7.4 Hz, 2H, H3), 2.00 (t, 3J17,18 = 7.4 Hz, 2H, 

H17), 1.78 – 1.63 (m, 2H, H11), 1.58 – 1.06 (m, 18H, H4, H5, H6, H12, H13, H18, H19, H20, H21), 

0.94 (d, 3J27,26 = 6.3 Hz, 3H, H27). 
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13C NMR (75 MHz, DMSO-d6) δ [ppm] = 173.2 (C9), 171.9 (C2), 171.4 (C16), 165.2 (C29), 

162.8 (C24), 135.7 (C33), 130.2 (C30), 128.5 (C32), 126.2 (C31), 123.6 (C35), 119.9 (C34), 55.0 

(C22), 53.5 (C10), 51.1 (C1), 50.2 (C26), 38.3 (C7), 38.1 (C14), 35.3 (C17), 33.2 (C3), 31.3 (C11), 

29.5 (C21), 28.9 (C6), 28.7 (C13), 28.7 (C19), 25.7 (C5), 25.5 (C18), 25.2 (C20), 24.1(C4), 23.1 

(C12), 15.4 (C27). 

HRMS calculated for C32H46F3N7O6 + Na 704.3360. Found 704.3354. 

 
6-(6-(6-(5-methyl-2-oxoimidazolidin-4-yl)hexanamido)-2-(4-(3-

(trifluoromethyl)-3H-diazirin-3-yl)benzamido)hexanamido)hexanoic acid (11) 

 

A solution of lithium hydroxide (2.94 mmol, 123 mg) in water (2.00 mL) was added to 

a stirred solution of 10 (0.59 mmol, 401 mg) in tetrahydrofuran (4.00 mL) at room 

temperature. The reaction mixture was refluxed for 1 hour at 70 °C. The reaction 

mixture was concentrated under reduced pressure and the residue was dissolved in 

water (10.0 mL). The reaction mixture was washed with ethyl acetate (5.00 mL). 

Hydrochloric acid (2M, 5.00 mL) was added to the aqueous phase and the resulting 

precipitate was filtered to obtain 11 as off-white solid. Yield 351 mg (89 %). 

 

1H NMR (300 MHz, DMSO-d6) δ [ppm] = 11.98 (s, 1H, H1), 8.53 (d, 3J28,10 = 7.8 Hz, 1H, 

H28), 8.01 (d, 3J32,31 = 8.6 Hz, 2H, H32), 7.94 (t, 3J8,7 = 5.7 Hz, 1H, H8), 7.72 (t, 3J15,14 = 5.6 Hz, 

1H, H15), 7.37 (d, 3J31,32 = 8.1 Hz, 2H, H31), 6.30 (s, 1H, H23/25), 6.12 (s, 1H, H23/25), 4.35 (td, 

3J10,28 = 8.2 Hz, 3J10,11 = 5.7 Hz, 1H, H10), 3.64 – 3.55 (m, 1H, H26), 3.49 – 3.44 (m, 1H, H22), 

3.10 – 2.96 (m, 4H, H7, H14), 2.17 (t, 3J3,4 = 7.4 Hz, 2H, H17), 2.00 (t, 3J17,18 = 7.4 Hz, 2H, 

H17), 1.77 – 1.62 (m, 2H, H11), 1.54 – 1.08 (m, 18H, H4, H5, H6, H12, H13, H18, H19, H20, H21), 

0.95 (d, 3J27,26 = 6.3 Hz, 3H, H27). 
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13C NMR (75 MHz, DMSO-d6) δ [ppm] = 174.4 (C2), 171.9 (C9), 171.4 (C16), 165.2 (C29), 

162.8 (C24), 135.8 (C33), 130.2 (C30), 128.5 (C32), 126.2 (C31), 123.6 (C35), 119.9 (C34), 55.0 

(C22), 53.5 (C10), 50.2 (C26), 38.4 (C7), 38.1 (C14), 35.3 (C17), 33.6 (C3), 31.3 (C11), 29.5 

(C21), 28.9 (C6), 28.8 (C13), 28.7 (C19), 25.9 (C5), 25.5 (C18), 25.2 (C20), 24.2 (C4), 23.1 (C12), 

15.4 (C27). 

HRMS calculated for C31H44F3N7O6 - 2H + Na 688.3047. Found 688.3052. 

7.3. Cleavable linkers 

The synthesis of the phenyl azide cleavable ABAL probe described in section 7.3 and 

7.4 was carried out with assistance of Christian Deutsch, who I supervised during his 

Bachelor thesis. The synthesis of this compound is also described in his Bachelor 

thesis.[133] 

 

5-(methoxycarbonyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylic acid (12) 

 

To a solution of (−)-Dimethyl 2,3-O-isopropylidene-L-tartrate (54.2 mmol, 10.0 mL) 

in methanol (90.0 mL) potassium hydroxide (54.2 mmol, 3.58 g) in methanol (90.0 mL) 

was added drop wise during a time period of two hours. The reaction mixture was 

stirred for three hours and concentrated under reduced pressure. The residue was 

dissolved in diethyl ether (100 mL) and extracted with saturated sodium hydrogen 

carbonate solution (3 x 50.0 mL). The aqueous phase was acidified with hydrochloric 

acid (1M, pH 2) and extracted with diethyl ether (3 x 100 mL). The organic layer was 

washed with saturated sodium chloride solution (100 mL), dried (MgSO4) and 

concentrated under reduced pressure to give 12 as colourless oil. Yield 7.53 g (68 %). 

 

1H NMR (300 MHz, DMSO-d6) δ [ppm] = 13.26 (s, 1H, H8), 4.79 (d, 3J4,3 = 5.0 Hz, 1H, 

H4), 4.73 (d, 3J3,4 = 5.0 Hz, 1H, H3), 3.71 (s, 3H, H1), 1.38 (s, 6H, H6). 

13C NMR (75 MHz, DMSO-d6) δ [ppm] = 170.9 (C7), 170.1 (C2), 112.6 (C5), 76.6 (C3), 

76.5 (C4), 52.4 (C1), 26.4 (C6). 

HRMS calculated for C8H12O6 - H 203.0556. Found 203.0561. 
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Tert-butyl (2-(2-(2-aminoethoxy)ethoxy)ethyl)carbamate (13) 

 

To a solution of 2,2'-(ethylendioxy)bis(ethylamine) (376 mmol, 55.8 mL) in 

1,4-dioxan (400 mL) di-tert-butyl dicarbonate (53.6 mmol, 11.7 g) in 1,4-dioxan 

(240 mL) was added drop wise during a time period of two hours. The reaction mixture 

was stirred for 15 hours and concentrated under reduced pressure. The residue was 

dissolved in dichloromethane (300 mL) and washed with water (3 x 200 mL) and 

saturated sodium chloride solution (200 mL). The organic layer was dried (MgSO4) and 

concentrated under reduced pressure to give 13 as pale yellow oil. Yield 10.3 g (77 %). 

 

1H-NMR (300 MHz, DMSO-d6) δ [ppm] = 6.76 (t, 3J8,7 = 6.0 Hz , 1H, H8), 3.49 (s, 4H, H4, 

H5), 3.40 – 3.33 (m, 4H, H3, H6), 3.05 (q, 3J7,6/8 = 6.0 Hz, 2H, H7), 2.63 (t, 3J2,3 = 5.8 Hz, 2H, 

H2), 1.37 (s, 9H, H11). 

13C-NMR (75 MHz, DMSO-d6) δ [ppm] = 155.5 (C9), 77.5 (C10), 73.1 (C3), 69.5, 69.5 (C4, 

C5), 69.1 (C6), 41.3 (C2), 39.7 (C7), 28.2 (C11). 

HRMS calculated for C11H24N2O4 + H 249.1814. Found 249.1809. 

 

Methyl 5-((2,2-dimethyl-4-oxo-3,8,11-trioxa-5-azatridecan-13-yl)carbamoyl)-2,2-

dimethyl-1,3-dioxolane-4-carboxylate (14) 

 

Diisopropylethylamine (39.3 mmol, 6.80 mL) was added to a stirred solution of 1 

(15.7 mmol, 3.21 g) in tetrahydrofuran (157 mL) followed by HBTU (17.3 mmol, 6.56 g) 

at room temperature. After 15 minutes 13 (17.3 mmol, 4.30 g) was added. The reaction 

mixture was stirred for 48 hours at room temperature. The reaction mixture was 

concentrated under reduced pressure. The resulting solid was dissolved in ethyl acetate 

(150 mL) and washed with hydrochloric acid (1M, 3 x 100 mL), saturated sodium 
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hydrogen carbonate solution (3 x 100 mL) and saturated sodium chloride solution 

(100 mL). The organic layer was dried (MgSO4) and concentrated under reduced 

pressure. The remaining residue was purified by column chromatography on silica gel 

using cyclohexane and ethyl acetate (1:3) as eluent to give 14 as a colourless oil. Yield 

5.30 g (78 %). 

 

1H NMR (300 MHz, DMSO-d6) δ [ppm] = 8.05 (t, 3J8,9 = 5.7 Hz, 1H, H8), 6.73 (t, 

3J15,14 = 5.8 Hz, 1H, H15), 4.71 (d, 3J4,3 = 5.4 Hz, 1H, H4), 4.61 (d, 3J3,4 = 5.4 Hz, 1H, H3), 3.70 

(s, 3H, H1), 3.49 (s, 4H, H11, H12), 3.44 (t, 3J10,9 = 5.8 Hz, 2H, H10), 3.37 (t, 3J13,14 = 6.2 Hz, 

2H, H13), 3.33 – 3.17 (m, 2H, H9), 3.06 (q, 3J14,13/15 = 6.0 Hz, 2H, H14), 1.39 (s, 6H, H6), 1.37 

(s, 9H, H18). 

13C NMR (75 MHz, DMSO-d6) δ [ppm] = 170.3 (C7), 168.6 (C2), 155.6 (C16), 112.5 (C5), 

77.7, 77.6, 76.4 (C3, C4, C17), 69.5, 69.2, 68.6 (C10, C11, C12, C13), 52.3 (C7), 39.7 (C9), 38.7 

(C14), 28.2 (C18), 26.3 (C6). 

HRMS calculated for C19H34N2O9 + Na 457.2161. Found 457.2157. 

 

5-((2,2-dimethyl-4-oxo-3,8,11-trioxa-5-azatridecan-13-yl)carbamoyl)-2,2-

dimethyl-1,3-dioxolane-4-carboxylic acid (15) 

 

Lithium hydroxide (81.1 mmol, 3.40 g) in water (65.0 mL) was added to a solution of 

14 (16.2 mmol, 7.04 g) in tetrahydrofuran (110 mL) at room temperature. The reaction 

mixture was refluxed for 1 hour at 70 °C. The reaction mixture was concentrated under 

reduced pressure and the residue was dissolved in water (140 mL). The reaction 

mixture was washed with ethyl acetate (2x 70.0 mL). The aqueous phase was acidified 

with hydrochloric acid (1M, pH 2) and extracted with dichloromethane (3x 140 mL). The 

organic phase was washed with a saturated sodium chloride solution (140 mL), dried 

(MgSo4) and concentrated under reduced pressure to give 15 as pale orange oil. Yield 

4.83 g (71 %).  
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1H NMR (300 MHz, DMSO-d6) δ [ppm] = 13.02 (s, 1H, H1), 8.04 (t, 3J8,9 = 5.7 Hz, 1H, 

H8), 6.73 (t, 3J15,14 = 5.8 Hz, 1H, H15), 4.60 – 4.54 (m, 2H, H3, H4), 3.49 (s, 4H, H11, H12), 3.44 

(t, 3J10,9 = 5.9 Hz, 2H, H10), 3.37 (t, 3J13,14 = 6.1 Hz, 2H, H13), 3.33 – 3.16 (m, 2H, H9), 3.06 (q, 

3J14,13/15 = 6.0 Hz, 2H, H14), 1.40 – 1.36 (m, 15H, H6, H18). 

13C NMR (75 MHz, DMSO-d6) δ [ppm] = 171.3 (C7), 168.8 (C2), 155.5 (C16), 112.1 (C5), 

77.7, 77.6, 76.6 (C3, C4, C17), 69.4, 69.4, 69.1, 68.6 (C10, C11, C12, C13), 39.6 (C9), 38.4 (C14), 

28.2 (C18), 26.3, 26.3 (C6). 

HRMS calculated for C18H32N2O9 + Na 443.2005. Found 443.2000. 

 

Methyl 6-(5-((2,2-dimethyl-4-oxo-3,8,11-trioxa-5-azatridecan-13-yl)carbamoyl)-

2,2-dimethyl-1,3-dioxolane-4-carboxamido)hexanoate (16) 

 

Diisopropylethylamine (46.1 mmol, 7.98 mL) was added to a stirred solution of 15 

(46.1 mmol, 7.98 mL) in tetrahydrofuran (185 mL) followed by HBTU (20.3 mmol, 

7.69 g) at room temperature. After 15 minutes 1 (20.3 mmol, 3.68 g) was added. The 

reaction mixture was stirred for 96 hours at room temperature. The reaction mixture 

was concentrated under reduced pressure. The resulting solid was dissolved in ethyl 

acetate (220 mL) and washed with hydrochloric acid (1M, 3x 140 mL), saturated sodium 

hydrogen carbonate solution (3x 140 mL) and saturated sodium chloride solution 

(100 mL). The organic layer was dried (MgSO4) and concentrated under reduced 

pressure to give 16 as pale orange oil. Yield 8.59 g (85 %).  

 

1H NMR (300 MHz, DMSO-d6) δ [ppm] = 8.09 – 7.99 (m, 2H, H8, H15), 6.74 (t, 

3J22,21 = 5.7 Hz, 1H, H22), 4.50 (d, 3J11,10 = 6.0 Hz, 1H, H11), 4.46 (d, 3J10,11 = 6.0 Hz, 1H, H10), 

3.58 (s, 3H, H1), 3.49 (s, 4H, H18, H19), 3.44 (t, 3J17,16 = 5.9 Hz, 2H, H17), 3.37 (t, 

3J20,21 = 6.1 Hz, 2H, H20), 3.30 – 3.14 (m, 2H, H16), 3.14 – 2.95 (m, 4H, H7, H21), 2.28 (t, 

3J3,4 = 7.4 Hz, 2H, H3), 1.60 – 1.20 (m, 21H, H4, H5, H6, H13, H18). 
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13C NMR (75 MHz, DMSO-d6) δ [ppm] = 173.3 (C2), 169.1(C9), 168.7 (C14), 155.6 (C23), 

111.7 (C12), 77.7, 77.6, 77.5 (C10, C11, C24), 69.5, 69.5, 69.2, 68.7 (C17, C18, C19, C20), 51.2 

(C1), 39.7 (C16), 38.4, 38.3 (C7, C21), 33.2 (C3), 28.6 (C6), 28.2 (C25), 26.2, 26.2 (C13), 25.7 

(C5), 24.1 (C4). 

HRMS calculated for C25H45N3O10 + H 548.3183. Found 548.3178. 

 

Methyl 1-amino-11,12-dihydroxy-10,13-dioxo-3,6-dioxa-9,14-diazaicosan-20-oate 

hydrochloric salt (17) 

 

Acetyl chloride (40.4 mmol, 2.90 g) was added to 16 (13.5 mmol, 7.37 g) in methanol 

(135 mL) at 0 °C and stirred for 15 hours at room temperature. The reaction mixture 

was concentrated under reduced pressure to give 17 as pale orange oil. Yield 5.95 g 

(99 %). 

1H NMR (300 MHz, DMSO-d6) δ [ppm] = 8.05 (s, 2H, H22), 7.71 – 7.63 (m, 2H, H8, H15), 

5.26 (s, 2H, H12, H13), 4.24 – 4.19 (m, 2H, H11, H10), 3.66 – 3.60 (m, 2H, H16), 3.59 – 3.54 

(m, 7H, H1, H18, H19), 3.45 (t, 3J17,16 = 5.9 Hz, 2H, H17), 3.35 - 3.21 (m, 2H, H21), 3.08 (q, 

3J7,6/8 = 6.7 Hz, 2H, H7), 2.99 – 2.90 (m, 2H, H22), 2.28 (t, 3J3,4 = 7.4 Hz, 2H, H3), 1.56 – 1.18 

(m, 6H, H4, H5, H6). 

13C NMR (75 MHz, DMSO-d6) δ [ppm] = 173.3 (C2), 172.1 (C14), 171.7 (C9), 72.5, 72.5 

(C10, C11), 69.6, 69.4, 68.9, 66.6 (C17, C18, C19, C20), 51.2 (C1), 38.5, 38.3, 38.2 (C7, C16, C21), 

33.2 (C3), 28.8 (C6), 25.7 (C5), 24.2 (C4). 

HRMS calculated for C17H33N3O8 + H 408.2346. Found 408.2340. 
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Methyl 1-(4-azidophenyl)-13,14-dihydroxy-1,12,15-trioxo-5,8-dioxa-2,11,16-

triazadocosan-22-oate (18) 

 

Diisopropylethylamine (4.00 mmol, 0.70 mL) was added to a stirred solution of 

4-azidobenzoic acid (1.76 mmol, 0.78 g) in tetrahydrofuran (16.0 mL) followed by HBTU 

(1.76 mmol, 0.67 g) at room temperature. After 15 minutes 17 (1.60 mmol, 0.26 g) was 

added. The reaction mixture was stirred for 18 hours at room temperature. The reaction 

mixture was concentrated under reduced pressure. The resulting solid was dissolved in 

ethyl acetate (25.0 mL) and washed with hydrochloric acid (1M, 2 x 10.0 mL), saturated 

sodium hydrogen carbonate solution (3 x 10.0 mL) and saturated sodium chloride 

solution (10.0 mL). The organic layer was dried (MgSO4) and concentrated under 

reduced pressure. The remaining residue was purified by column chromatography on 

silica gel using dichloromethane and methanol (9:1) as eluent to give 18 as a yellow oil. 

Yield 397 mg (45 %). 

 

1H NMR (400 MHz, DMSO-d6) δ [ppm] = 8.52 (t, 3J22,21 = 5.5 Hz, 1H, H22), 7.92 - 7.88 

(m, 2H, H25), 7.63 (q, 3J8/15,7/16 = 6.0 Hz, 2H, H8, H15), 7.21 – 7.17 (m, 2H, H26), 5.58 (d, 

3J12/13,10/11 = 7.3 Hz, 1H, H12/13), 5.47 (d, 3J12/13,10/11 = 7.3 Hz, 1H, H12/13), 4.23 - 4.20 (m, 

2H, H10, H11), 3.58 (s, 3H, H1), 3.56 – 3.50 (m, 6H, H18, H19, H20), 3.45 – 3.38 (m, 4H, H17, 

H21), 3.31 – 3.16 (m, 2H, H16), 3.08 (q, 3J7,8/6 = 6.7 Hz, 2H, H7), 2.28 (t, 3J3,4 = 7.4 Hz, 2H, 

H3), 1.51 (p, 3J4,3/6 = 7.4 Hz, 2H, H4), 1.45 – 1.37 (m, 2H, H6), 1.29 – 1.20 (m, 2H, H5). 

13C NMR (101 MHz, DMSO-d6) δ [ppm] = 173.3 (C2), 172.1(C9), 171.7 (C14), 165.3 

(C23), 142.2 (C27), 130.9 (C24), 129.1 (C25), 118.9 (C26), 72.5, 72.5 (C10, C11), 69.5, 69.5, 

68.9, 68.9 (C17, C18, C19, C20), 51.1 (C1), 39.2, 38.2, 38.1 (C7, C16, C21), 33.2 (C3), 28.8 (C6), 

25.7 (C5), 24.1 (C4). 

HRMS calculated for C24H36N6O9 + Na 575.2442. Found 575.2436. 
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Benzyl (2-(2-(2-aminoethoxy)ethoxy)ethyl)carbamate (19) 

 

To a solution of 2,2'-(ethylendioxy)bis(ethylamine) (100 mmol, 14.6 mL) in 

dichloromethane (72.0 mL) benzyl chloroformate (10.0 mmol, 1.42 mL) in 

dichloromethane (50.0 mL) was added drop wise and  the reaction mixture was stirred 

for 21 hours at 0 °C. The reaction mixture was concentrated under reduced pressure. 

The residue was dissolved in dichloromethane (50.0 mL) and washed with water 

(3 x 25.0 mL) and saturated sodium chloride solution (25.0 mL). The organic layer was 

dried (MgSO4) and concentrated under reduced pressure. The remaining residue was 

purified by column chromatography on silica gel using ethyl acetate and methanol (9:1) 

as eluent to give 19 as yellow oil. Yield 1.74 g (62 %). 

 

1H NMR (400 MHz, DMSO-d6) δ [ppm] = 7.40 – 7.25 (m, 5H, H12, H13, H14), 5.01 (s, 2H, 

H10), 3.52 – 3,47 (m, 4H, H4, H5), 3.43 (t, 3J3,2 = 6.0 Hz, 2H, H3), 3.34 (t, 3J6,7 = 5.8 Hz, 2H, 

H6), 3.21 – 3.10 (m, 2H, H2), 2.63 (t, 3J7,6 = 5.8 Hz, 2H, H7). 

13C NMR (101 MHz, DMSO-d6) δ [ppm] = 156.1 (C9), 137.2 (C11), 128.3, 127.7 (C12, C13, 

C14), 73.0 (C6), 69.5 (C4, C5), 69.1 (C3), 65.2 (C10), 41.3 (C7), 40.2 (C2). 

HRMS calculated for C14H22N2O4 + H 283.1659. Found 283.1652. 

 

Methyl 2,2-dimethyl-5-((3-oxo-1-phenyl-2,7,10-trioxa-4-azadodecan-12-

yl)carbamoyl)-1,3-dioxolane-4-carboxylate (20) 

 

Diisopropylethylamine (35.5 mmol, 6.10 mL) was added to a stirred solution of 12 

(14.2 mmol, 2.90 g) in tetrahydrofuran (142 mL) followed by HBTU (15.6 mmol, 5.92 g) 
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at room temperature. After 15 minutes 19 (15.6 mmol, 4.41 g) was added. The reaction 

mixture was stirred for 96 hours at room temperature. The reaction mixture was 

concentrated under reduced pressure. The resulting solid was dissolved in ethyl acetate 

(150 mL) and washed with hydrochloric acid (1M, 2 x 100 mL), saturated sodium 

hydrogen carbonate solution (2 x 100 mL) and saturated sodium chloride solution 

(100 mL). The organic layer was dried (MgSO4) and concentrated under reduced 

pressure. The remaining residue was purified by column chromatography on silica gel 

using cyclohexane and ethyl acetate (1:3) as eluent to give 20 as a yellow oil. Yield 5.31 g 

(80 %). 

 

1H NMR (300 MHz, DMSO-d6) δ [ppm] = 8.05 (t, 3J8,9 = 5.7 Hz, 1H, H8), 7.41 – 7.20 (m, 

6H, H15, H19, H20, H21), 5.01 (s, 2H, H17), 4.71 (d, 3J4,3 = 5.4 Hz, 1H H4), 4.61 (d, 

3J3,4 = 5.4 Hz, 1H, H3), 3.69 (s, 3H, H1), 3.52 – 3.10 (m, 12H, H9, H10, H11, H12, H13, H14), 1.39 

(s, 6H, H6). 

13C NMR (75 MHz, DMSO-d6) δ [ppm] = 170.3 (C7), 168.6 (C2), 156.1 (C16), 137.2 (C18), 

128.3, 127.7 (C19, C20, C21), 112.5 (C5), 77.7 (C4), 76.4 (C3), 69.5, 69.1, 68.6 (C10, C11, C12, 

C13), 65.2 (C17), 52.3 (C1), 40.1 (C9), 38.4 (C14), 26.2 (C6). 

HRMS calculated for C22H32N2O9 + H 469.2186. Found 469.2181. 

 

2,2-dimethyl-5-((3-oxo-1-phenyl-2,7,10-trioxa-4-azadodecan-12-yl)carbamoyl)-

1,3-dioxolane-4-carboxylic acid (21) 

 

Lithium hydroxide (56.7 mmol, 2.38 g) in water (38.0 mL) was added to a solution of 

20 (11.3 mmol, 5.31 g) in tetrahydrofuran (76.0 mL) at room temperature. The reaction 

mixture was refluxed for 2 hours at 70 °C. The reaction mixture was concentrated under 

reduced pressure and the residue was dissolved in water (100 mL). The reaction 
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mixture was washed with ethyl acetate (50 mL). The aqueous phase was acidified with 

hydrochloric acid (1M, pH 2) and extracted with ethyl acetate (3 x 100 mL). The organic 

phase was washed with a saturated sodium chloride solution (100 mL), dried (MgSo4) 

and concentrated under reduced pressure to give 21 as yellow oil. Yield 4.92 g (96 %).  

 

1H NMR (300 MHz, DMSO-d6) δ [ppm] = 8.03 (t, 3J8,9 = 5.7 Hz, 1H, H8), 7.40 – 7.19 (m, 

6H, H15, H19, H20, H21), 5.00 (s, 2H, H17), 4.61 – 4.53 (m, 2H, H3, H4), 3.52 – 3.09 (m, 12H, 

H9, H10, H11, H12, H13, H14), 1.38 - 1.37 (m, 6H, H6). 

13C NMR (75 MHz, DMSO-d6) δ [ppm] = 171.3 (C2), 168.9 (C7), 156.2 (C16), 137.2 (C18), 

128.3, 127.7 (C19, C20, C21), 112.1 (C5), 77.7 (C4), 76.6 (C3), 69.5, 69.5, 69.1, 68.6 (C10, C11, 

C12, C13), 65.2 (C17), 40.2 (C9), 38.5 (C14), 26.3, 26.3 (C6). 

HRMS calculated for C21H30N2O9 - H 453.1873. Found 453.1879. 

 

Methyl 6-(2,2-dimethyl-5-((3-oxo-1-phenyl-2,7,10-trioxa-4-azadodecan-12-

yl)carbamoyl)-1,3-dioxolane-4-carboxamido)hexanoate (22) 

 

Diisopropylethylamine (5.28 mmol, 0.91 mL) was added to a stirred solution of 21 

(2.11 mmol, 0.96 mL) in tetrahydrofuran (22.0 mL) followed by HBTU (2.32 mmol, 

880 mg) at room temperature. After 15 minutes 1 (2.32 mmol, 340 mg) was added. The 

reaction mixture was stirred for 96 hours at room temperature. The reaction mixture 

was concentrated under reduced pressure. The resulting solid was dissolved in ethyl 

acetate (50.0 mL) and washed with hydrochloric acid (1M, 2 x 25.0 mL), saturated 

sodium hydrogen carbonate solution (2 x 25.0 mL) and saturated sodium chloride 

solution (25.0 mL). The organic layer was dried (MgSO4) and concentrated under 

reduced pressure. The remaining residue was purified by column chromatography on 
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silica gel using dichloromethane, ethyl acetate and methanol (9:1:0 → 9:0:1) as eluent to 

give 22 as a yellow oil. Yield 850 mg (69 %). 

 

1H NMR (400 MHz, DMSO-d6) δ [ppm] = 8.06 (t, 3J8,7 = 5.8 Hz, 1H, H8), 8.01 (t, 

3J15,16 = 5.8 Hz, 1H, H15), 7.39 – 7.27 (m, 5H, H26, H27, H28), 7.24 (t, 3J22,21 = 5.9 Hz, 1H, H22), 

5.00 (s, 2H, H24), 4.49 (d, 3J11,10 = 6.1 Hz, 1H, H11), 4.46 (d, 3J10,11 = 6.0 Hz, 1H, H10), 3.57 (s, 

3H, H1), 3.52 – 3.46 (m, 4H, H18, H19), 3.44 – 3.39 (m, 4H, H17, H20), 3.34 – 2.94 (m, 6H, H7, 

H16, H21), 2.27 (t, 3J3,4 = 7.4 Hz, 2H, H3), 1.57 – 1.19 (m, 12H, H4, H5, H6, H13). 

13C NMR (101 MHz, DMSO-d6) δ [ppm] = 173.3 (C2), 169.1 (C9), 168.7 (C14), 156.1 

(C23), 137.2 (C25), 128.3, 127.7 (C26, C27, C28), 111.7 (C12), 77.6, 77.5 (C10, C11), 69.5, 69.4, 

69.1, 68.6 (C17, C18, C19, C20), 65.2 (C24), 51.1 (C1), 40.1 (C16), 38.4 (C21), 38.3 (C7), 33.2 

(C3), 28.6 (C6), 26.1 (C5), 25.7 (C13), 24.1 (C4). 

HRMS calculated for C28H43N3O10 + H 582.3026. Found 582.3021. 

 

Methyl 6-(5-((2-(2-(2-aminoethoxy)ethoxy)ethyl)carbamoyl)-2,2-dimethyl-1,3-

dioxolane-4-carboxamido)hexanoate (23) 

 

Palladium on activated carbon (5 % Pd) (wt 10 %, 85.0 mg) was added to a solution 

of 22 (1.46 mmol, 850 mg) in ethanol (15.0 mL) at room temperature. The reaction 

mixture was purged with argon and then hydrogen was bubbled through the solution 

for 2 hours using a balloon. The reaction mixture was filtered over Celite and 

concentrated under reduced pressure to give 23 as a yellow oil. Yield 640 mg (98 %). 

 

1H NMR (400 MHz, DMSO-d6) δ [ppm] = 8.08 (t, 3J8,7 = 5.9 Hz, 1H, H8), 8.03 (t, 

3J15,16 = 5.9 Hz, 1H, H15), 4.50 (d, 3J11,10 = 6.1 Hz, 1H, H11), 4.46 (d, 3J10,11 = 6.0 Hz, 1H, H10), 

3.58 (s, 3H, H1), 3.54 – 3.47 (m, 4H, H18, H19), 3.44 (t, 3J17,16 = 5.9 Hz, 2H, H17), 3.41 – 2.94 

(m, 6H, H7, H16, H20), 2.66 (t, 3J21,20 = 5.8 Hz, 2H, H21), 2.28 (t, 3J3,4 = 7.4 Hz, 2H, H3), 

1.57 - 1.19 (m, 12H, H4, H5, H6, H13). 
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13C NMR (101 MHz, DMSO-d6) δ [ppm] = 173.2 (C2), 169.1(C9), 168.7 (C14), 111.7 

(C12), 77.6, 77.5 (C10, C11), 72.6 (C20), 69.5 (C18, C19), 68.6 (C17), 51.1 (C1), 41.1 (C21), 38.4 

(C16), 38.3 (C7), 33.2 (C3), 28.8 (C6), 26.2 (C5), 25.7 (C13), 24.1(C4). 

HRMS calculated for C20H37N3O8 + Na 470.2479. Found 470.2473. 

 

Methyl 6-(5-((2-(2-(2-(4-azidobenzamido)ethoxy)ethoxy)ethyl)carbamoyl)-2,2-

dimethyl-1,3-dioxolane-4-carboxamido)hexanoate (24) 

 

Diisopropylethylamine (3.25 mmol, 0.60 mL) was added to a stirred solution of 

4-Azidobenzoic acid (1.30 mmol, 212 mg) in tetrahydrofuran (13.0 mL) followed by 

HBTU (1.43 mmol, 542 mg) at room temperature. After 15 minutes 23 (1.43 mmol, 638 

mg) was added. The reaction mixture was stirred for 96 hours at room temperature. The 

reaction mixture was concentrated under reduced pressure. The resulting solid was 

dissolved in ethyl acetate (20.0 mL) and washed with hydrochloric acid (1M, 

2 x 10.0 mL), saturated sodium hydrogen carbonate solution (2 x 10.0 mL) and 

saturated sodium chloride solution (10.0 mL). The organic layer was dried (MgSO4) and 

concentrated under reduced pressure. The remaining residue was purified by column 

chromatography on silica gel using dichloromethane and methanol (98:2 → 9:1) as 

eluent to give 24 as a yellow oil. Yield 707 mg (92 %). 

 

1H NMR (400 MHz, DMSO-d6) δ = 8.51 (t, 3J22,21 = 5.6 Hz, 1H, H22), 8.06 (t, 3J8,7 = 5.9 Hz, 

1H, H8), 8.01 (t, 3J15,16 = 5.8 Hz, 1H, H15), 7.92 – 7.87 (m, 2H, H25), 7.21 – 7.17 (m, 2H, H26), 

4.50 (d, 3J11,10 = 6.0 Hz, 1H, H11), 4.46 (d, 3J10,11 = 6.0 Hz, 1H, H11), 3.57 (s, 3H, H1), 

3.55 - 3.49 (m, 6H, H18, H19, H20), 3.46 – 3.37 (m, 4H, H17, H21), 3.30 – 2.99 (m, 4H, H7, 

H16), 2.28 (t, 3J3,4 = 7.4 Hz, 2H, H3), 1.57 – 1.17 (m, 12H, H4, H5, H6, H13). 

13C NMR (101 MHz, DMSO-d6) δ = 173.2 (C2), 169.1(C9), 168.7(C14), 165.3 (C23), 142.2 

(C27), 130.9 (C24), 129.0 (C25), 118.8 (C26), 111.7 (C12), 77.6, 77.5 (C10, C11), 69.5, 69.5, 
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68.9, 68.6 (C17, C18, C19, C20), 51.1 (C1), 39.2 (C21), 38.4 (C16), 38.3 (C7), 33.2 (C3), 28.5 

(C6), 26.2 (C5), 25.7 (C13), 24.1 (C4). 

HRMS calculated for C27H40N6O9 + Na 615.2755. Found 615.2749. 

 

6-(5-((2-(2-(2-(4-azidobenzamido)ethoxy)ethoxy)ethyl)carbamoyl)-2,2-dimethyl-

1,3-dioxolane-4-carboxamido)hexanoic acid (25) 

 

Lithium hydroxide (5.50 mmol, 231 mg) in water (4.00 mL) was added to a solution 

of 24 (1.10 mmol, 652 mg) in tetrahydrofuran (8.00 mL) at room temperature. The 

reaction mixture was refluxed for 2 hours at 70 °C. The reaction mixture was 

concentrated under reduced pressure and the residue was dissolved in water (40.0 mL). 

The reaction mixture was washed with ethyl acetate (20.0 mL). The aqueous phase was 

acidified with hydrochloric acid (1M, pH 2) and extracted with ethyl acetate 

(3 x 20.0 mL). The organic phase was washed with a saturated sodium chloride solution 

(20.0 mL), dried (MgSo4) and concentrated under reduced pressure to give 25 as an 

orange oil. Yield 408 mg (64 %).  

 

1H NMR (300 MHz, DMSO-d6) δ [ppm] = 12.39 (s, 1H, H1), 8.51 (t, 3J22,21 = 5.5 Hz, 1H, 

H22), 8.12 – 8.00 (m, 2H, H8, H15), 7.92 – 7.87 (m, 2H, H25), 7.22 – 7.16 (m, 2H, H26), 

4.55 - 4.43 (m, 2H, H10, H11), 3.56 – 3.49 (m, 6H, H18, H19, H20), 3.46 – 2.98 (m, 8H, H7, H16, 

H17, H21), 2.18 (t, 3J3,4 = 7.3 Hz, 2H, H3), 1.53 – 1.20 (m, 12H, H4, H5, H6, H13). 

13C NMR (75 MHz, DMSO-d6) δ [ppm] = 174.4 (C2), 169.1 (C9), 168.7 (C14), 165.3 (C23), 

142.2 (C27), 130.9 (C24), 129.1 (C25), 118.8 (C26), 111.7 (C12), 77.6, 76.7 (C10, C11), 69.5, 

69.5, 68.9, 68.6 (C17, C18, C19, C20), 38.4 , 38.4, 38.3 (C7, C16, C21), 33.5 (C3), 28.6 (C6), 26.3 

(C5), 25.8 (C13), 24.1 (C4). 

HRMS calculated for C26H38N6O9 - H 577.2622. Found 577.2628. 
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Methyl 6-(5-((2-(2-(2-(4-azido-2,3,5,6-tetrafluorobenzamido)ethoxy)ethoxy) 

ethyl) carbamoyl)-2,2-dimethyl-1,3-dioxolane-4-carboxamido)hexanoate (26) 

 

Diisopropylethylamine (12.0 mmol, 2.10 mL) was added to a stirred solution of 

4-azido-2,3,5,6-tetrafluorobenzoic acid (4.81 mmol, 1.13 g) in tetrahydrofuran 

(53.0 mL) followed by HBTU (5.29 mmol, 2.01 g) at room temperature. After 15 minutes 

23 (5.29 mmol, 2.37 g) was added. The reaction mixture was stirred for 72 hours at 

room temperature. The reaction mixture was concentrated under reduced pressure. The 

resulting solid was dissolved in dichloromethane (100 mL) and washed with 

hydrochloric acid (1M, 3 x 50.0 mL), saturated sodium hydrogen carbonate solution 

(3 x 50.0 mL) and saturated sodium chloride solution (50.0 mL). The organic layer was 

dried (MgSO4) and concentrated under reduced pressure. The remaining residue was 

purified by column chromatography on silica gel using dichloromethane, ethyl acetate 

and methanol (9:1:0 → 95:0:5) as eluent to give 26 as an orange oil. Yield 1.59 g (50 %). 

 

1H NMR (300 MHz, DMSO-d6) δ [ppm] = 8.96 (t, 3J22,21 = 5.5 Hz, 1H, H22), 8.09 - 8.00 

(m, 2H, H8, H15), 4.49 (d, 3J11,10 = 6.0 Hz, 1H, H11), 4.45 (d, 3J10,11 = 6.0 Hz, 1H, H10), 3.58 (s, 

3H, H1), 3.56 – 3.50 (m, 6H, H18, H19, H20), 3.46 – 3.38 (m, 4H, H16, H17), 3.34 – 2.98 (m, 

4H, H7, H21), 2.28 (t, 3J3,4 = 7.4 Hz, 2H, H3), 1.56 – 1.21 (m, 12H, H4, H5, H6, H13). 

13C NMR (75 MHz, DMSO-d6) δ [ppm] = 173.3 (C2), 169.1 (C9), 168.7 (C14), 157.0 (C23), 

111.7 (C12), 77.6, 77.5 (C10, C11), 69.6, 69.5, 68.6, 68.6 (C17, C18, C19, C20), 51.1 (C1), 39.4 

(C16), 38.4, 38.3 (C7, C21), 33.2 (C3), 28.6 (C6), 26.2 (C5), 25.7 (C13), 24.1 (C4). 

HRMS calculated for C27H36F4N6O9 + Na 687.2378. Found 687.2381. 
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6-(5-((2-(2-(2-(4-azido-2,3,5,6-tetrafluorobenzamido)ethoxy)ethoxy)ethyl) 

carbamoyl)-2,2-dimethyl-1,3-dioxolane-4-carboxamido)hexanoic acid (27) 

 

Lithium hydroxide (12.0 mmol, 500 mg) in water (8.00 mL) was added to a solution 

of 26 (2.39 mmol, 1.59 g) in tetrahydrofuran (16.0 mL) at room temperature. The 

reaction mixture was refluxed for 2 hours at 70 °C. The reaction mixture was 

concentrated under reduced pressure and the residue was dissolved in water (15.0 mL). 

The reaction mixture was washed with ethyl acetate (10.0 mL). The aqueous phase was 

acidified with hydrochloric acid (1M, pH 2) and extracted with ethyl acetate 

(3 x 40.0 mL). The organic phase was washed with a saturated sodium chloride solution 

(40.0 mL), dried (MgSO4) and concentrated under reduced pressure to give 27 as an 

orange oil. Yield 1.21 g (78 %).  

HRMS calculated for C26H33F4N6O9 - H 649.2245. Found 649.2251. 

 

Methyl 6-(2,2-dimethyl-5-((2-(2-(2-(4-(3-(trifluoromethyl)-3H-diazirin-3-

yl)benzamido)ethoxy)ethoxy)ethyl)carbamoyl)-1,3-dioxolane-4-carboxamido) 

hexanoate (28) 

 

Diisopropylethylamine (12.7 mmol, 2.20 mL) was added to a stirred solution of 

4-(3-(trifluoromethyl)-3H-diazirin-3-yl)benzoic acid (4.62 mmol, 1.06 g) in 

tetrahydrofuran (47.0 mL) followed by HBTU (5.08 mmol, 1.93 g) at room temperature. 

After 30 minutes 23 (5.08 mmol, 2.27 g) was added. The reaction mixture was stirred 
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for 72 hours at room temperature. The reaction mixture was concentrated under 

reduced pressure. The resulting solid was dissolved in ethyl acetate (100 mL) and 

washed with hydrochloric acid (1M, 3 x 50.0 mL), saturated sodium hydrogen carbonate 

solution (3 x 50.0 mL) and saturated sodium chloride solution (50.0 mL). The organic 

layer was dried (MgSO4) and concentrated under reduced pressure. The remaining 

residue was purified by column chromatography on silica gel using dichloromethane, 

ethyl acetate and methanol (9:1:0 → 9:0:1) as eluent to give 28 as a red oil. Yield 2.12 g 

(70 %). 

 

1H NMR (300 MHz, DMSO-d6) δ [ppm] = 8.66 (t, 3J22,21 = 5.5 Hz, 1H, H22), 8.09 - 7.99 

(m, 2H, H8, H15), 7.98 – 7.93 (m, 2H, H25), 7.39 – 7.35 (m, 2H, H26), 4.50 (d, 3J11,10 = 6.0 Hz, 

1H, H11), 4.46 (d, 3J10,11 = 6.1 Hz, 1H, H10), 3.57 (d, 5J1,3 = 1.6 Hz, 3H, H1), 3.55 – 3.50 (m, 

6H, H18, H19, H20), 3.46 – 3.38 (m, 4H, H16, H17), 3.34 – 2.96 (m, 4H, H7, H21), 2.28 (td, 

3J3,4 = 7.4 Hz, 5J3,1 = 2.4 Hz, 2H, H3), 1.56 – 1.20 (m, 12H, H4, H5, H6, H13). 

13C NMR (75 MHz, DMSO-d6) δ [ppm] = 173.2 (C2), 169.1 (C9), 168.7 (C14), 165.2 (C23), 

135.9 (C27), 130.1 (C24), 128.1 (C25), 126.4 (C26), 123.5 (C29), 119.9 (C28), 111.7 (C12), 

77.6, 77.5 (C10, C11), 69.5, 69.5, 68.8, 68.6 (C17, C18, C19, C20), 51.1 (C1), 39.5 (C16), 38.4, 

38.3 (C7, C21), 33.2 (C3), 28.6 (C6), 26.2 (C5), 25.7 (C13), 24.1 (C4). 

HRMS calculated for C29H40F3N5O9 + Na 682.2676. Found 682.2670. 

 

6-(2,2-dimethyl-5-((2-(2-(2-(4-(3-(trifluoromethyl)-3H-diazirin-3-yl)benzamido) 

ethoxy)ethoxy)ethyl)carbamoyl)-1,3-dioxolane-4-carboxamido)hexanoic acid 

(29) 

 

Lithium hydroxide (12.7 mmol, 530 mg) in water (9.00 mL) was added to a solution 

of 29 (2.55 mmol, 1.68 g) in tetrahydrofuran (18.0 mL) at room temperature. The 

reaction mixture was refluxed for 2 hours at 70 °C. The reaction mixture was 

concentrated under reduced pressure and the residue was dissolved in water (15.0 mL). 
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The reaction mixture was washed with ethyl acetate (10.0 mL). The aqueous phase was 

acidified with hydrochloric acid (1M, pH 2) and extracted with ethyl acetate 

(3 x 40.0 mL). The organic phase was washed with a saturated sodium chloride solution 

(40.0 mL), dried (MgSO4) and concentrated under reduced pressure to give 29 as an red 

oil. Yield 1.41 g (86 %).  

 

1H NMR (300 MHz, DMSO-d6) δ [ppm] = 12.17 (s, 1H, H1), 8.66 (t, 3J22,21 = 5.5 Hz, 1H, 

H22), 8.09 – 7.99 (m, 2H, H8, H15), 7.97 – 7.93 (m, 2H, H25), 7.40 – 7.35 (m, 2H, H26), 4.50 

(d, 3J11,10 = 5.9 Hz, 1H, H11), 4.46 (d, 3J10,11 = 6.0 Hz, 1H, H10), 3.55 – 3.50 (m, 6H, H18, H19, 

H20), 3.45 – 2.96 (m, 8H, H7, H16, H17, H21), 2.18 (td, 3J3,4 = 7.2 Hz, 5J3,1 = 1.6 Hz, 2H, H3), 

1.56 – 1.21 (m, 12H, H4, H5, H6, H13). 

13C NMR (75 MHz, DMSO-d6) δ [ppm] = 174.4 (C2), 169.1 (C9), 168.7 (C14), 165.2 (C23), 

135.9 (C27), 130.2 (C24), 128.1 (C25), 126.4 (C26), 123.6 (C29), 119.9 (C28), 111.7 (C12), 

77.6, 77.5 (C10, C11), 69.5, 69.5, 68.8, 68.6 (C17, C18, C19, C20), 39.5 (C16), 38.4, 38.3 (C7, 

C21), 33.5 (C3), 28.6 (C6), 26.2 (C5), 25.8 (C13), 24.1 (C4). 

HRMS calculated for C28H38F3N5O9 + Na 668.2520. Found 668.2514. 

7.4. Cleavable ABAL probes 

Methyl 6-(2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-6-(5-(2-

oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamido)hexanamido) 

hexanoate (30) 

 

Pyridine (27.0 mL) was added to a stirred solution of biotin (5.13 mmol, 1.25 g) in 

dimethylformamide (27.0 mL) followed by HBTU (5.64 mmol, 2.14 g) at room 
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temperature. After 15 minutes 3 (5.64 mmol, 3.00 g) was added. The reaction mixture 

was stirred for 96 hours at room temperature. The reaction mixture was concentrated 

under reduced pressure. The resulting solid was dissolved in dichloromethane and 

methanol (3:1, 400 mL) and washed with hydrochloric acid (1M, 3 x 200 mL) and 

saturated sodium chloride solution (50.0 mL). The organic layer was filtered and the 

precipitate was purified by column chromatography on silica gel using dichloromethane, 

methanol and triethylamine (90:9:1) as eluent to give 30 as an off-white solid. Yield 

2.72 g (73 %). 

 

1H NMR (400 MHz, DMSO-d6) δ [ppm] = 7.89 (d, 3J36,35 = 7.5 Hz, 2H, H36), 7.82 (t, 

3J8,7 = 5.6 Hz, 1H, H8), 7.74 – 7.72 (m, 3H, H15, H33), 7.44 – 7.38 (m, 3H, H28, H35), 7.32 (dd, 

3J34,33/35 = 7.4 Hz, 2H, H34), 6.41 (s, 1H, H23/25), 6.35 (s, 1H, H23/25), 4.31 - 4.19 (m, 4H, H26, 

H30, H31), 4.13 – 4.08 (m, 1H, H22), 3.90 (td, 3J10,11 = 8.5 Hz, 3J10,28 = 5.3 Hz, 1H, H10), 3,56 

(s, 3H, H1), 3.10 – 2.96 (m, 5H, H7, H14, H21), 2.80 (dd, 2J27,27 = 12.4 Hz, 3J27,26 = 5.1 Hz, 1H, 

H27), 2.57 (d, 2J27,27 = 12.4 Hz, 1H, H27), 2.26 (t, 3J3,4 = 7.4 Hz, 2H, H3), 2.04 (t, 

3J17,18 = 7.4 Hz, 2H, H17), 1.65 – 1.20 (m, 18H, H4, H5, H6, H11, H12, H13, H18, H19, H20). 

13C NMR (101 MHz, DMSO-d6) δ [ppm] = 173.3 (C2), 171.8 (C16), 171.7 (C9), 162.7 

(C24), 155.9 (C29), 143.9 (C32), 140.7 (C37), 127.6 (C35), 127.1 (C34), 125.3 (C33), 

120.1(C36), 65.6 (C30), 61.1 (C22), 59.2 (C26), 55.4 (C21), 54.7 (C10), 51.2 (C1), 46.7 (C31), 

39.9 (C27), 38.3, 38.3 (C7, C14), 35.3 (C17), 33.2 (C3), 31.7 (C6), 28.9 (C13), 28.7 (C19), 28.2 

(C11), 28.1 (C5), 25.8 (C18), 25.3 (C4), 24.1 (C20), 23.0 (C12). 

HRMS calculated for C38H51N5O7S + Na 744.3407. Found 744.3401. 
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Methyl 6-(2-amino-6-(5-(2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-

yl)pentanamido) hexanamido)hexanoate (31) 

 

Piperidine (11.0 mL) was added to 30 (3.74 mmol, 2.70 g) in dichloromethane 

(44.0 mL) at 0 °C and stirred for 1 hour at room temperature. Toluene (44.0 mL) was 

added and the reaction mixture was concentrated under reduced pressure. The 

remaining residue was purified by column chromatography on silica gel using 

dichloromethane, methanol, triethylamine (90:9:1) as eluent to give 31 as a white solid. 

Yield 1.56 g (83 %). 

 

1H NMR (300 MHz, DMSO-d6) δ [ppm] = 7.79 (t, 3J8,7 = 5.8 Hz, 1H, H8), 7.72 (t, 

3J15,14 = 5.6 Hz, 1H, H15), 6.41 (s, 1H, H23/25), 6.35 (s, 1H, H23/25), 4.33 – 4.27 (m, 1H, H26), 

4.14 – 4.10 (m, 1H, H22), 3.57 (s, 3H, H1), 3.12 - 2.95 (m, 6H, H7, H10, H14, H21), 2.81 (dd, 

2J27,27 = 12.4, 3J27,26 = 5.1 Hz, 1H, H27), 2.57 (d, 2J27,27 = 12.4 Hz, 1H, H27), 2.28 (t, 

3J3,4 = 7.4 Hz, 2H, H3), 2.03 (t, 3J17,18 = 7.3 Hz, 2H, H17), 1.67 – 1.18 (m, 18H, H4, H5, H6, H11, 

H12, H13, H18, H19, H20). 

13C NMR (75 MHz, DMSO-d6) δ [ppm] = 174.8 (C2), 173.3 (C16), 171.8 (C9), 162.7 (C24), 

61.1 (C22), 59.2 (C26), 55.4 (C21), 54.6 (C10), 51.2 (C1), 39.8 (C27), 38.4, 38.1 (C7, C14), 35.2 

(C17), 34.9 (C6), 33.2 (C3), 29.2 (C13), 28.8 (C19), 28.2 (C11), 28.0 (C5), 25.8 (C18), 25.3 (C4), 

24.2 (C20), 22.8 (C12). 
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Methyl 6-(2-(6-(5-((2-(2-(2-(4-azidobenzamido)ethoxy)ethoxy)ethyl)carbamoyl)-

2,2-dimethyl-1,3-dioxolane-4-carboxamido)hexanamido)-6-(5-(2-oxohexahydro-

1H-thieno [3,4-d]imidazol-4-yl)pentanamido)hexanamido)hexanoate (32) 

 

Diisopropylethylamine (4.03 mmol, 0.70 mL) was added to a stirred solution of 25 

(1.61 mmol, 930 mg) in dimethylformamide (34.0 mL) followed by HBTU (1.77 mmol, 

670 mg) at room temperature. After 15 minutes 31 (1.77 mmol, 880 mg) was added. The 

reaction mixture was stirred for 96 hours at room temperature. The reaction mixture 

was concentrated under reduced pressure. The resulting solid was dissolved in 

dichloromethane and methanol (9:1, 45.0 mL) and washed with hydrochloric acid (1M, 3 

x 22.0 mL), saturated sodium hydrogen carbonate solution (3 x 22.0 mL) and saturated 

sodium chloride solution (22.0 mL). The organic layer was dried (MgSO4) and 

concentrated under reduced pressure. The remaining residue was purified by column 

chromatography on silica gel using dichloromethane and methanol (9:1) as eluent to 

give 32 as a yellow solid. Yield 204 mg (12 %). 

 

1H NMR (500 MHz, DMSO-d6) δ [ppm] = 8.52 (t, 3J49,48 = 5.6 Hz, 1H, H49), 8.06 (t, 

3J35,34 = 5.9 Hz, 1H, H35), 8.02 (t, 3J42,43 = 5.8 Hz, 1H, H42), 7.91 – 7.88 (m, 2H, H52), 

7.83 - 7.81 (m, 2H, H8, H28), 7.72 (t, 3J15,14 = 5.6 Hz, 1H, H15), 7.21 – 7.18 (m, 2H, H53), 6.41 

(s, 1H, H23/25), 6.35 (s, 1H, H23/25), 4.50 (d, 3J38,37 = 6.0 Hz, 1H, H38), 4.46 (d, 3J37,38 = 6.0 Hz, 

1H, H37), 4.31 - 4.29 (m, 1H, H26), 4.17 – 4.10 (m, 2H, H10, H22), 3.57 (d, 5J1,3 = 1.6 Hz, 3H, 

H1), 3.54 – 3.49 (m, 6H, H45, H46, H47), 3.44 – 3.39 (m, 4H, H44, H48), 3.31 – 3.16 (m, 2H, 

H43), 3.12 – 2.94 (m, 7H, H7, H14, H21, H34), 2.82 (dd, 2J27,27 = 12.5 Hz, 3J27,26 = 5.1 Hz, 1H, 
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H27), 2.57 (d, 2J27,27 = 12.4 Hz, 1H, H27), 2.27 (td, 3J3,4 = 7.3 Hz, 5J3,1 = 2.5 Hz, 2H, H3), 

2.12 - 2.07 (m, 2H, H30), 2.03 (t, 3J17,18 = 7.4 Hz, 2H, H17), 1.64 – 1.14 (m, 30H, H4, H5, H6, 

H11, H12, H13, H18, H19, H20, H31, H32, H33, H40). 

13C NMR (126 MHz, DMSO-d6) δ [ppm] = 173.3 (C29), 172.0 (C2), 171.8 (C16), 171.6 

(C9), 169.1 (C36), 168.7 (C41), 165.3 (C50), 162.7 (C24), 142.2 (C54), 130.9 (C51), 129.1 

(C52), 118.8 (C53), 111.7 (C39), 77.6, 77.5 (C37, C38), 69.5, 69.5, 68.9, 68.6 (C44, C45, C46, C47), 

61.0 (C22), 59.2 (C26), 55.4 (C21), 52.3 (C10), 51.2 (C1), 39.9, 39.8 (C27, C43), 38.4, 38.4, 38.2, 

38.2 (C7, C14, C34, C48), 35.2 (C17), 35.1 (C30), 33.2 (C3), 31.9 (C6), 28.9 (C13), 28.7 (C33), 

28.7 (C19), 28.2 (C11), 28.0 (C5), 26.2 (C40), 26.0 (C32), 25.7 (C18), 25.3 (C31), 25.0 (C4), 

24.1(C20), 22.8 (C12). 

HRMS calculated for C38H53N5O7 + Na 714.3843. Found 714.3837. 

 

Methyl 1-(4-azidophenyl)-13,14-dihydroxy-1,12,15,22,25-pentaoxo-24-(4-(5-(2-

oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamido)butyl)-5,8-dioxa-

2,11,16,23,26-pentaazadotriacontan-32-oate (33) 

 

Acetyl chloride (0.58 mmol, 0.05 mL) was added to 32 (0.19 mmol, 204 mg) in 

methanol (2.00 mL) at 0 °C and stirred for 48 hours at room temperature. The reaction 

mixture was concentrated under reduced pressure. The residue was dissolved in 

methanol (2.00 mL) and poured into diethyl ether (10.0 mL). The resulting precipitate 

was filtered to obtain 33 as pale yellow solid. Yield 175 mg (90 %). 
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1H NMR (400 MHz, DMSO-d6) δ 8.78 – 8.52 (m, 1H, H49), 8.24 – 8.03 (m, 1H, H35), 

7.96 – 7.81 (m, 5H, H8, H28, H42, H52), 7.64 (t, 3J15,14 = 5.6 Hz, 1H, H15), 7.20 – 7.16 (m, 2H, 

H53), 5.41 (s, 2H, H23/25), 4.33 – 4.28 (m, 1H, H26), 4.21 (d, 3J37/38,39/40 = 6.1 Hz, 2H, H37, 

H38), 4.16 – 4.10 (m, 2H, H10, H22), 3.57 (d, 5J1,3 = 1.7 Hz, 3H, H1), 3.55 – 3.48 (m, 6H, H45, 

H46, H47), 3.45 – 3.36 (m, 4H, H44, H48), 3.34 – 3.17 (m, 2H, H43), 3.13 – 2.88 (m, 9H, H7, 

H14, H21, H34, H39, H40), 2.82 (dd, 2J27,27 = 12.5 Hz, 3J27,26 = 5.0 Hz, 1H, H27), 2.58 (d, 

2J27,27 = 12.4 Hz, 1H, H27), 2.31 – 2.23 (m, 2H, H3), 2.14 – 2.00 (m, 4H, H17, H30), 1.73 – 1.12 

(m, 24H, H4, H5, H6, H11, H12, H13, H18, H19, H20, H31, H32, H33). 

 

1-(4-azidophenyl)-13,14-dihydroxy-1,12,15,22,25-pentaoxo-24-(4-(5-(2-

oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamido)butyl)-5,8-dioxa-

2,11,16,23,26-pentaazadotriacontan-32-oic acid (34) 

 

A solution of lithium hydroxide (0.72 mmol, 30.0 mg) in water (0.50 mL) was added 

to a stirred solution of 33 (0.14 mmol, 147 mg) in tetrahydrofuran (1.00 mL) at room 

temperature. The reaction mixture was refluxed for 3 hours at 70 °C. The reaction 

mixture was concentrated under reduced pressure and the residue was dissolved in 

water (6.00 mL). The reaction mixture was washed with ethyl acetate (3.00 mL). 

Hydrochloric acid (2M, 3.00 mL) was added to the aqueous phase and the resulting 

precipitate was filtered to obtain 34 as an off- white solid. Yield 49.0 mg (33 %). 

 

1H NMR (300 MHz, DMSO-d6) δ [ppm] = 8.56 (t, 3J49,48 = 5.6 Hz, 1H, H49), 7.93 - 7.77 

(m, 5H, H28, H35, H42, H52), 7.63 (t, 3J8/15,7/14 = 5.9 Hz, 2H, H8, H15), 7.21 – 7.16 (m, 2H, H53), 
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4.34 – 4.28 (m, 1H, H26), 4.23 – 4.20 (m, 2H, H37, H38), 4.18 – 4.11 (m, 2H, H10, H22), 

3.57 - 3.50 (m, 6H, H45, H46, H47), 3.45 – 3.37 (m, 4H, H44, H48), 3.34 - 3.15 (m, 2H, H43), 

3.14 – 2.92 (m, 7H, H7, H14, H21, H34), 2.82 (dd, 2J27,27 = 12.5 Hz, 3J27,26 =  5.0 Hz, 1H, H27), 

2.58 (d, 2J27,27 = 12.4 Hz, 1H, H27), 2.20 – 2.00 (m, 6H, H3, H17, H30), 1.65 – 1.14 (m, 24H, 

H4, H5, H6, H11, H12, H13, H18, H19, H20, H31, H32, H33). 

13C NMR (75 MHz, DMSO-d6) δ [ppm] = 174.4 (C29), 172.2 (C2), 172.1 (C16), 172.0 (C9), 

171.8(C36), 171.7 (C41), 165.4 (C50), 162.8 (C24), 142.2 (C54), 130.9 (C51), 129.1 (C52), 

118.9 (C53), 72.5 (C37, C38), 69.6, 68.9 (C44, C45, C46, C47), 61.1 (C22), 59.3 (C26), 55.4 (C21), 

52.5 (C10), 40.1(C27, C43), 38.3, 38.3 (C7, C14, C34, C48), 35.2 (C17), 35.2 (C30), 33.7 (C3), 31.9 

(C6), 29.0 (C33), 28.9 (C13), 28.8 (C19), 28.2 (C11), 28.0 (C5), 26.1 (C32), 25.9 (C18), 25.3 

(C31), 25.1 (C4), 24.2 (C20), 22.9 (C12). 

HRMS calculated for C45H71N11O13S + 2Na 525.7375. Found 525.7369. 

7.5. C10.35 PAD ABAL probe 

EDC mediated coupling 

PAD ABAL probe was freshly dissolved in dry DMSO to a concentration of 20 mM. 

Coupling of the ABAL probe to the 5’-hexylamino-modified aptamer C10.35 was 

performed with 4 mM PAD ABAL probe, in a buffer consisting of 25 mM Hepes, 100 mM 

NaCl, 20 % dry DMSO, 4mM EDC and 40 μM aptamer. The reaction mixture was 

incubated in a Thermomixer at 300 rpm and was then desalted using Amicon Ultra 3K 

centrifugal filters and analysed via LC-MS. 

 

Reaction Temperatur Reaction Time Reaction Yield [%] 

RT 19 h 45 

65 °C 17 h 49 

 

EDC + Oxyma Pure mediated coupling 

PAD ABAL probe was freshly dissolved in dry DMSO to a concentration of 20 mM. 

Coupling of the ABAL probe to the 5’-hexylamino-modified aptamer C10.35 was 

performed with 4 mM PAD ABAL probe, in a buffer consisting of 25 mM Hepes, 100 mM 

NaCl, 20 % dry DMSO, 4mM EDC and 4mM Oxyma Pure and 40 μM aptamer. The 

reaction mixture was incubated in a Thermomixer at 300 rpm and was then desalted 

using Amicon Ultra 3K centrifugal filters and analysed via LC-MS. 
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Reaction Temperatur Reaction Time Reaction Yield 

RT 19 h 4 

 

EDC + sulfo-NHS mediated coupling 

A mixture of 20 mM PAD ABAL probe, 20 mM EDC and 20 mM sulfo-NHS in dry DMSO 

was freshly prepared and incubated for 30 minutes in a Thermomixer at 600 rpm. 

Coupling of the ABAL probe to the 5’-hexylamino-modified aptamer C10.35 was 

performed with 4 mM ABAL mixture, in a buffer consisting of 25 mM Hepes, 100 mM 

NaCl, 20 % dry DMSO and 40 μM aptamer. The reaction mixture was incubated in a 

Thermomixer at 600 rpm and was then desalted using Amicon Ultra 3K centrifugal 

filters and analysed via LC-MS. 

 

Reaction Temperatur Reaction Time Reaction Yield 

RT 2 h 29 

RT 3 h 0 

RT 4 h 31 

RT 19 h 64 

4 °C 2 h 13 

4 °C 3 h 17 

4 °C 4 h 20 

4 °C 19 h 42 
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C Appendix 

 List of abbreviations 

ABAL Aptamer-based affinity labelling 

ABPP Affinity-based proteomic profiling 

ALA 5-Aminolevulinic acid 

ALAD  δ-Aminolevulinic acid dehydratase 

Boc tert-Butyloxycarbonyl 

DIPEA Diisopropylethylamine 

DMAB p-Dimethylaminobenzaldehyde 

DMF Dimethylformamide 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DTT  Dithiothreitol 

EC50 Half maximal effective concentration 

EDC 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide 

EDTA Ethylenediaminetetraacetic acid 

EI Electron ionization 

ESI Electrospray-ionisation 

FACS fluorescence-activated cell sorter 

Fmoc fluorenylmethyloxycarbonyl 

GMPS guanosine-monophosphorothioate 

HBTU O-(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HOBt  1-hydroxy-1H-benzotriazole 

HPLC High-performance liquid chromatography 

IC50  half maximum concentration 

ICT  Immunochromatographic card tests 

LC-MS Liquid chromatography–mass spectrometry 
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