
ANALYSIS OF MARTENSITIC

MICROSTRUCTURES IN

SHAPE-MEMORY-ALLOYS:
A LOW VOLUME-FRACTION LIMIT

DISSERTATION

zur
Erlangung des Doktorgrades (Dr. rer. nat.)

der
Mathematisch-Naturwissenschaftlichen Fakultät

der
Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von
Johannes Diermeier

aus
Bergisch Gladbach

Bonn 2016



Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen
Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Sergio Conti
2. Gutachter: Prof. Dr. Stefan Müller
Tag der Promotion: 27.09.2016
Erscheinungsjahr: 2016



Contents

1 Introduction 1

1.1 The shape memory effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Continuum model for elastic deformations . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Reduction of the model to a geometrically linearized energy for low-volume fraction 5

1.4 Scaling laws and rescaling of the energy . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Notation and mathematical background . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Results and outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 The scalar-valued problem in one dimension 12

2.1 The lim inf-inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 The recovery sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 A compactness result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Compactness and lim inf -inequality for the scalar-valued problem 21

3.1 Locality and the choice of convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 The lim inf-inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 The recovery sequence for the scalar-valued problem 27

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Local constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Construction on type-I squares . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.2 Construction on type-II squares . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.3 Construction on type-III squares . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Two density results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 A covering theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.2 Density of functions with compact jump set . . . . . . . . . . . . . . . . . . . 44

4.3.3 Density of functions whose jump set is a finite union of segments . . . . . . . 48

4.3.4 Density with higher regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 The recovery sequence for functions whose jump set is a finite union of segments . . 56

4.5 The main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Compactness and lim inf -inequality for the vector-valued problem 59

5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Compactness and lim inf-inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



6 The recovery sequence for the vector-valued problem 65

6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 The recovery sequence for functions whose jump set is a single crossing of segments

for p < 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3 The recovery sequence for functions whose jump set is a single crossing of segments

for p ≥ 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4 The recovery sequence for functions whose jump set is a finite union of segments . . 75

6.5 The density result: An open problem and its difficulties . . . . . . . . . . . . . . . . . 76
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1 Introduction

Mathematical problems are often motivated by the rigorous modeling and analysis of phenomena
arising in physics or material science. One among many of such phenomena is the formation of
microstructures at austenite-martensite interfaces in shape-memory alloys, such as Nickel Titanium.
In this thesis, we will use variational methods to study these structures in the specific case of a low-
volume fraction.

We consider an energy consisting of a bulk term and a surface term, in which the bulk term is
geometrically linearized. Two martensitic phases, one of them with a much smaller volume fraction,
form microstructures at an austenite-martensite interface. For a transition regime, we derive two
energies, one for scalar-valued functions and one for vector-valued functions, given by

Iθ(u) =

ˆ
Ω

|∂xu|2 + min{|∂yu+ 1|2, |∂yu−
1

θ
|2} dL2 + σθ|D2u|(Ω) and

Eθ,p(u) =

ˆ
Ω

min{|(Du+ e1 ⊗ e2)sym|pp, |(Du−
1

θ
e1 ⊗ e2)sym|pp} dL2 + σθ|D2u|(Ω).

Our goal is to compute the Γ-limit of these functionals, letting the volume fraction θ go to zero,
to gain further insight into the original problem. During this process, new subspaces of SBV and
SBD together with mathematical tools for these subspaces are developed.

In the following introduction, we shortly explain the physical background of the problem, derive
the two energy functionals and introduce the main mathematical tools and concepts that are used
in this thesis.

Chapter 2 treats a one-dimensional, scalar-valued toy-model. Many basic concepts and arguments
for the later chapters are introduced here and the candidate for the limiting energy for Iθ is moti-
vated. In Chapter 3, the lim inf-inequality and a compactness result for Iθ are proven. The space
SBV 2

e2 is introduced, in which the limiting energy is finite. Chapter 4 treats the recovery sequence
for Iθ. A main result of this chapter and the entire work is a density result for SBV 2

e2 : Each function
in SBV 2

e2 can be approximated with respect to the energy Iθ and weak-∗ BV convergence with a
sequence of functions whose jump sets are a finite union of segments.

For the energy Eθ,p, we have only been able to prove partial results. In Chapter 5, we present a
possible candidate for the limiting energy, the limiting function space SBDp

e2�e1 and prove both a
lim inf-inequality and a compactness result. In Chapter 6, recovery sequences for functions whose
jump sets are a finite union of segments are constructed. Whether or not a density result with such
functions holds is still an open problem, Chapter 6 also contains a brief overview of the arising
difficulties.

Chapter 7 is dedicated to the proof of a Korn-Poincaré-type inequality for the space SBDp
e2�e1 .

Although the result is not sufficient to provide a proof of the density result, it is an important step
in that direction and an interesting mathematical statement on its own.

The results of Chapters 3 and 4 have been announced in [27]. Moreover, a shortened version of these
chapters has been submitted and a preprint has been published on arXiv by the author together with
Conti and Zwicknagl [16].
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1. Introduction

1.1 The shape memory effect

The mathematical analysis we will perform in this work is motivated by the study of microstruc-
tures in so-called shape memory alloys. Shape memory alloys have the interesting and useful prop-
erty that, after they have been subjected to an elastic deformation at a low temperature, they recover
their original shape under heating, see [35]. This effect was first published by Chang and Read in
1951 [14].

The reason for this effect lies in a particular behavior of the atomic lattice, namely a solid-solid phase
transition at some specific temperature. If the material is at a high temperature (called austenite
phase), it prefers a cubic lattice structure, whereas at a low temperature (in the so-called martensite
phase), there are different preferred lattices with fewer symmetries [43].
The first one to observe these different states in a material was the physicist Arne Ölander in 1932
in an Au Cd alloy [41]. However, not before Buehler and coworkers witnessed the same effect in
a Nickel Titanium (Ni Ti) alloy in 1963 [11], it became interesting and applicable for first military
purposes (see [45], [51]). This was only a starting point and applications in biomedicine and engi-
neering followed soon (see [8], [35], [43] and the references therein).

We want to give a short, and in some parts naı̈ve, explanation of the physical effects that cause the
shape memory effect. For a deeper understanding we refer to the textbooks by Bhattacharya [7]
or by Otsuka and Waymann [43]. Let us imagine a material whose atoms prefer a cubic lattice at
high temperatures and different tetragonal lattices if they are below some critical temperature (see
Figure 1).

Figure 1: A cubic austenite lattice and three tetragonal martensitic lattice structures.

The material is given in a stable macroscopic shape at a high temperature. When it is cooled down
under the critical temperature, the atoms start locally adopting to one of the different tetragonal
lattices. In different areas of the material, different lattices are chosen such that the macroscopic
shape is essentially preserved, see the third picture of Figure 2. We can also see interfaces between
different martensitic states in this sketch, denoted by dotted lines. Since the tetragonal lattice is
disturbed along these interfaces, they should bear some interfacial energy.

If the material is macroscopically deformed, it tries to realize this deformation on an atomic level
by changing between the different lattices. The second picture in Figure 2 can be imagined as the
reaction to a load in vertical direction. The atoms do not change their neighbors during this process.
Hence, if the material is heated again above the critical temperature, the atoms are forced back into
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1.2 Continuum model for elastic deformations

Figure 2: A two-dimensional sketch of 17× 14 atoms in a cubic austenite lattice and two different versions of a martensitic,
tetragonal lattice. The blue lines have the same length in all three pictures and indicate the change of macroscopic
lengths, the dotted lines indicate a concentration of surface energy.

the cubic lattice and it is energetically preferable that the atoms do not change their neighbors. It
is, on an atomic level, in the same state as before the cooling process and has therefore the same
macroscopic shape.
This is, of course, only an idealized description of the processes. The original material in austenite
state might not have a perfect cubic lattice, but bear some defects in the lattice structure, and even
more defects may occur on interfaces between different martensitic phases. A repeated cycle of
cooling, deforming and heating might lead to an accumulation of these effects and hence to a fatigue
in the material (see [35], [38]). There are also other phenomena influencing the fatigue effect, like
large loads [37] or specific crystallographic orientations [32].
An important detail is that there is not one critical temperature at which the austenite-martensite
phase transition takes place, but a temperature at which martensite starts transforming to austen-
ite under heating and a second, lower temperature at which the martensite starts transforming to
austenite under cooling. The difference of these temperatures is called hysteresis, see [7], [44] for
more details. Controlling the width of hysteresis is important in many applications. One can easily
imagine purposes in which materials of either small or large hysteresis are preferable. In particular,
a small hysteresis is also connected to a weak fatigue effect [32], [39]. Notice that during the process
of heating (or cooling) both states, martensite and austenite, will be present in the material and
hence also interfaces between these phases. These intermediate temperatures for materials with
low hysteresis are the situations we want to focus on.
It is important to mention that not only the mathematical analysis is based on and influenced by
the work of material scientists. A detailed mathematical description of the problems can conversely
help developing materials with specific properties, see the work of Cui et al. [19] and the recent
results of Song et al. [47].

1.2 Continuum model for elastic deformations

In this work, we follow a continuous theory of martensitic phases, going back to Bowles and
MacKenzie [9] and Wechsler, Lieberman and Read [52]. We are following [6] and [7] in the sub-
sequent introduction.
We identify a crystalline body in its stress-free austenite phase with an open domain U ⊆ R3. At
a fixed temperature, the body is described by a continuous deformation ϕ : U → R3, where the

3



1. Introduction

gradient encodes the lattice structure. If the material is (locally) in its austenite phase we have
Dϕ = Id, and there are matrices Fi ∈ R3×3 that represent the different martensitic phases. Due to
frame indifference, we do not distinguish between rotated variants of the same martensitic phase,
that is, for every rotation R ∈ SO(3) we say that RFi and Fi belong to the same martensitic phase.

An important field of the analysis is the compatibility of different martensitic phases to each other
and to the austenite phase. If the material is divided by a C1-surface Γ into two different areas U1

and U2 and the continuous deformation ϕ has a constant gradient Fi on these sets Ui, then it is a
straightforward computation that F1 6= F2 if and only if the so-called Hadamard jump condition
holds. That is: The matrices F1 and F2 are rank-one connected i.e., F1 − F2 = a ⊗ n for a, n ∈ R3

and Γ is a hypersurface with normal n.

Let F be the matrix of a single martensitic phase and let λ1 ≤ λ2 ≤ λ3 be the eigenvalues of F . An
interface between the austenite phase and this single martensitic phase is possible if and only if the
middle eigenvalue λ2 = 1 [6]. We will focus our analysis on the case where λ2 6= 1.

A variant of martensite that has an interface to an other variant of martensite along some hypersur-
face will then not be compatible to an austenite phase along any other hypersurface. In this case, a
fine mixture of the two different martensitic phases occurs at an austenite-martensite interface, see
for example the work of Sun et al. for experimental data [49] and Figure 3 for a sketch.

m

Austenite S

n

θ

1− θ

Figure 3: A sketch of an austenite-martensite interface where two different variants of martensite enter with different
volume fractions and are compatible to each other in direction n.

The two different martensitic phases will be mixed with different volume fractions θ and 1 − θ.
These volume fractions are chosen in such a way that there is a rank-one connection between the
infinitesimally fine mixture and a rotated version of the identity, representing the austenite. To be
formal: There are b,m ∈ R3 and S ∈ SO(3) such that S − (θF1 + (1 − θ)F2) = b ⊗ m, see again
Figure 3 for a sketch. A necessary and sufficient condition for the solvability of this equation has
been developed in the work of Ball and James [6].

It has been conjectured and supported by experimental data by Zhang, James and Müller [53] that
there is a connection between the distance of the middle eigenvalue to 1 and the size of the hystere-
sis, see Figure 4. Moreover, they compute the volume fraction θ of the different martensitic phases
and deduce that |λ2 − 1| ∼ 0 implies θ ∼ 0.

The continuous theory assumes that the deformation u minimizes an energy functional I . A possi-
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1.3 Reduction of the model to a geometrically linearized energy for low-volume fraction

ble choice for such a functional is the following sum of a bulk energy and a surface energy:

I(ϕ) =

ˆ
U

WT (Dϕ) dL3 + κ|D2ϕ|(U).

The functionWT has energy wells, or local minima, at the different martensitic states i.e., at SO(3)Fi

and at the austenite state i.e., at SO(3) Id and depends on the temperature T . The surface-term pe-
nalizes jumps between the different wells and prevents infinitely fine mixtures of different states. It
also ensures the existence of minimizers and is given as a total variation norm of the second deriva-
tives. The parameter κ > 0 might be identified with the measured interfacial energy, this does,
however, lead to length scales that are not realistic [7]. We therefore understand it as a mathemati-
cally necessary parameter.

Figure 4: Width of hysteresis vs. middle eigenvalue λ21.

We want to analyze the behavior of energetic minimizers of austenite-martensite interfaces with a
mixture of two phases as the volume fraction θ tends to zero. As a first step, we will need to simplify
the model we have motivated previously.

1.3 Reduction of the model to a geometrically linearized energy for
low-volume fraction

For the sake of simplicity, we only consider the static problem and hence fix the temperature T such
that the austenite phase and martensitic phases are present. We fix two rank-one connected matrices
F1 and F2 that represent different martensitic states. The most common choice for the potential WT

is WT (M) = dist2{M,SO(3)F1 ∪ SO(3)F2} close to the energy wells [53].

Notice first that in similarity to [53], we can identify a direction in the domain and one in the
codomain that is left invariant by the martensitic phases F1 and F2. We may therefore assume
that U ⊆ R2 and ϕ : U → R2. Secondly, we want to replace the bulk term of the energy with its
geometrically linearized version. For this purpose we rewrite the deformation ϕ as ϕ(x) = x+δu(x)

where u is the displacement.

We notice that the Hessian of the squared distance to a submanifold in Rn is given by the projection

1Reprinted from Z. Zhang, R.D. James, S. Müller [53], with permission from Elsevier.
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1. Introduction

on the normal space and hence dist2{M,SO(3)F1∪SO(3)F2} ∼ mini=1,2 ‖(M−Fi)sym‖2 close to the
energy wells [4]. After rescaling and for small δ, the energy for the displacement is approximately
given by

Iε(u) =

ˆ
U

min{‖(Du− F1 − Id)sym‖2, ‖(Du− F2 − Id)sym‖2} dL3 + ε|D2u|(U). (1)

For our further considerations, we explicitly choose two rank-one connected matrices with volume
fractions θ and 1− θ, namely

F1 = Id−θe1 ⊗ e2 =

(
1 −θ
0 1

)
and F2 = Id +(1− θ)e1 ⊗ e2 =

(
1 1− θ
0 1

)
.

Notice that we expect that our result strongly depends on this choice of the rank-one connection.
For other rank-one connections even the energy-scaling might be different, see for example the
work of Chan and Conti [13].

Since the symmetrized distance makes the problem quite complicated, we restrict ourselves for the
first half of this thesis to a scalar-valued problem as proposed by Kohn and Müller [33], [34]. The
energy in (1) then simplifies to

Îε,θ(u) =

ˆ
U

|∂xu|2 + min{|∂yu+ θ|2, |∂yu− 1 + θ|2} dL2 + ε|D2u|(U)

whilst the energy in the vector-valued case is given by

Êε,θ(u) =

ˆ
U

min{‖(Du+ θe1 ⊗ e2)sym‖2, ‖(Du− (1− θ)e1 ⊗ e2)sym‖2} dL2 + ε|D2u|(U).

Both of these energies do only prefer the two different martensitic states and do not include the
austenite phase. The austenite-martensite interface is modeled by boundary data for u at parts of
∂U . For simplicity, we choose the domain to be the unit square throughout the whole thesis and
define Ω = (0, 1)2.

The displacement in the austenite phase is given by u ≡ 0. We fix zero-boundary data at the left
edge {0} × (0, 1) for Îε,θ and on the left and lower edges {0} × (0, 1) ∪ (0, 1) × {0} for Êε,θ. We
need to give stronger boundary values for the vector-valued model to avoid trivial minimizers of
the energy, see [26].

1.4 Scaling laws and rescaling of the energy

It has been widely discussed that even though it seems difficult to find actual minimizers of ener-
gies of type Îε,θ, one can gain insight by proving scaling laws, including explicit constructions for
functions of low energy [26], [34], [54]. In the case of Îε,θ, scaling laws for similar energies have
been proven in the author’s Bachelor’s thesis [25] and by Zwicknagl [54]. The following result has
been formulated and proven in the appendix of the author’s joint work with Conti and Zwicknagl
[16].
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1.4 Scaling laws and rescaling of the energy

There exists c > 0 such that for all θ ∈ (0, 1
2 ] and for all ε > 0 it holds:

1

c
θ2 min{1, ε2/3θ−4/3} ≤ min Îε,θ ≤ cθ2 min{1, ε2/3θ−4/3}.

Figure 5: Construction of a deformation: Austenite, laminates or twinning.

The regime where Îεθ ∼ θ2 is realized by a single phase of austenite whilst the regime where
Îε,θ ∼ ε2/3θ2/3 is achieved by a Kohn-Müller-type twinning construction, see Figure 5. A simple
lamination of the domain is not possible due to the hard boundary conditions, a lamination with
linear interpolation to the boundary bears more energy then the Kohn-Müller twinning construc-
tion.
The aim of this work is to analyze the energy in the transition regime between twinning and a single
phase, that is for fixed ratio ε

θ2 ∼ σ for some σ ∈ R+.
The scaling of the energy in this transition regime is θ2, hence we rescale it. We also rescale the
functions itself since a sequence of functions that has slope θ on a volume fraction of 1 − θ would
converge against zero. We therefore define the energy

Iθ(u) :=
(1 + θ)2

θ2
Îε(σ,θ),θ

(
θ

1 + θ
u− θ2

1 + θ
y

)
=

ˆ
Ω

|∂xu|2 + min{|∂yu+ 1|2, |∂yu−
1

θ
|2} dL2 + σθ|D2u|(Ω)

where we have chosen ε = σ θ2

1−θ . The zero-boundary values of u are transformed to u(0, y) = θ2

1+θy.
Notice that this rescaling is not unique. In [16], we use a slightly different rescaling that simplifies
notation whilst the choice of rescaling in this thesis yields a more descriptive energy.
The energy scaling for the vector-valued energy has been proven in the author’s Master’s thesis [26]
for the case θ = 1

2 . A joint work with Conti, Melching and Zwicknagl is in preparation, in which
we will provide scaling laws for a more general energy [15]. As a special case it will follow that
min Êε,θ ∼ min{θ2, θ2/3ε2/3}. As before we are interested in the transition regime.
A rescaling with ũ(x, y) =

(
θ

1+θu1(x, y)− θ2

1+θy,
θ

1+θu2(x, y)
)

yields the energy

Eθ(u) =

ˆ
Ω

min{‖(Du+ e1 ⊗ e2)sym‖2, ‖(Du−
1

θ
e1 ⊗ e2)sym‖2} dL2 + σθ|D2u|(Ω).

We will derive all results for the more general functional

Eθ,p(u) =

ˆ
Ω

min{|(Du+ e1 ⊗ e2)sym|pp, |(Du−
1

θ
e1 ⊗ e2)sym|pp} dL2 + σθ|D2u|(Ω)

where |.|p denotes the standard p-norm in Rn. This second functional is not derived as an energy-
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1. Introduction

functional for austenite-martensite interface. However, the functional Eθ = Eθ,2 is included as
a special case and the former might occur in some different context and its mathematical analy-
sis is interesting by itself. In similarity to this generalization, one can also derive all results for a
generalized version Iθ,p of Iθ, see [16] for details.

1.5 Notation and mathematical background

We already used the notation a ⊗ b for a, b ∈ Rn to denote the rank-one, n × n matrix with entries
(a⊗b)i,j = aibj . Every rank-one matrix can be written in this way. We also denote a�b = (a⊗b)sym,
that is, (a� b)i,j = 1

2 (aibj + ajbi).

We will usually denote the coordinates in R2 by x and y, the unit square in R2 will always be
denoted by Ω = (0, 1)2.

The derivatives of the functions we consider as arguments of Iθ and Eθ,p will be functions of
bounded variation. These functions are defined as follows: For U ⊆ Rn open a function f : U → R
is called a function of bounded variation if it is integrable and if its distributional derivatives ∂xif
are finite, signed Radon measures on U for all i ∈ {1, . . . , n}. For details on functions of bounded
variation, see the textbooks of Evans and Gariepy [28] or of Ambrosio, Fusco and Pallara [3]. The
surface term in the energies should always be interpreted as a total variation measure with respect
to the |.|2 norm of these derivatives.

The derivative Df of a function of bounded variation in Rn can always be divided into three ad-
ditive parts: An absolute continuous part, denoted by ∇f , which has a density with respect to the
n-dimensional Lebesgue measure, a jump part, denoted by DJf , that is concentrated on a set of
finite Hn−1-measure and a Cantor part, denoted by DC , that contains the rest of the measure. The
limiting energy of the Iθ’s will only be finite for so-called special functions of bounded variation.
These functions, also called SBV -functions, were introduced by Ambrosio and De Giorgi [2] and
are defined as the functions of bounded variation that have vanishing Cantor part.

A generalization ofBV -functions are the so-called functions of bounded deformation, orBD-functions,
as introduced by Suquet [50] and Matthies, Strang and Christiansen [36]. We say that a function
f ∈ L1(Ω,Rn) is of bounded deformation ifDfsym = 1

2 (DfT +Df), the symmetrized, distributional
gradient, is a vector-valued, finite, signed Radon measure. Again, Dfsym can be divided into an
absolute continuous part, a jump part and a Cantor part, see the work of Ambrosio, Coscia and Dal
Maso and the references therein [1]. The subspace of the functions of bounded deformations that
have vanishing Cantor part is consequently called SBD, and both spaces,BD and SBD, are objects
of ongoing research, see e.g. [17], [23], [30]. In our analysis, a subspace of SBD will be the domain
of the limiting energy in the vector-valued case and we will be able to prove a new Poincaré-type
inequality for this subspace.

In the previous section we announced that we want to analyze the limit of the energies as θ → 0.
The notion we want to use to interpret this limiting process will be the Γ-limit, as introduced by Dal
Maso and Modica [21], which is well-established in variational limits and relaxation problems. For
a detailed discussion, see for example the textbook of Dal Maso [20]. We repeat the definition here:

Fix a sequence of functionals Ik and a limiting functional I on a function space X together with a
notion of convergence→X for functions in X . We say that Ik Γ-converges to I with respect to→X

8



1.6 Results and outline

if the following two assertions hold:

• For each v ∈ X , the lim inf-inequality holds, that is: For every sequence vk →X v we have that
I(v) ≤ lim infk∈N I

k(vk).

• For each v ∈ X , there exists a recovery sequence, that is: There is a sequence vk →X v such that
Ik(vk)→ I(v).

The functionals are usually bounded from below but are allowed to take the value +∞. If the
functionals I or Ik are only defined on some subspace of X , they can be extended by +∞ on the
remaining parts of X .
Not only the functionals and the space X are important, the notion of convergence →X is also
crucial. If the notion is weak i.e., many sequences converge, then it is easier to construct a recovery
sequence but more difficult to prove the lim inf-inequality and vice versa.
A Γ-converging sequence often comes together with a compactness result, that is:

• For each sequence vk ∈ X with Ik(vk) ≤ C, there exists a subsequence kl and a function v

such that vkl →X v.

Assume that a sequence of functionals Ik Γ-converges to some functional I and fulfills a compact-
ness result. Then it is a direct consequence that a sequence of minimizers of Ik converges to a min-
imizer of I . Depending on the problem, one might be able to gain information about the structure
of these minimizers from each other.

1.6 Results and outline

The limiting functional for the scalar-valued problem will be given by

I(u) =

ˆ
Ω

|∂xu|2 + |∂yu+ 1|2 dL2 + 2σH1(Ju)

defined on the space

SBV 2
e2,0 = {u ∈ SBVloc(Ω) |DJu · e1 = 0, DJu · e2 ≥ 0, ∇u ∈ L2(Ω,R2), u = 0 on {0} × (0, 1),

and |Du|((0, 1)× (δ, 1− δ)) <∞ for all δ > 0}.

It will be a consequence of the results of Chapter 3 and of Chapter 4 that the following theorem of
Γ-convergence holds:

Theorem (Compactness and Γ-limit in the scalar-valued case). Let I and Iθ be defined as above.

i) Let θk ↘ 0 and let {uk | k ∈ N} such that Iθk(uk) ≤ C. Then there is a subsequence
{kl | l ∈ N} and a function u ∈ SBV 2

e2,0 such that ukl
∗
⇀ u inBV ((0, 1)×(δ, 1−δ)) for all δ > 0 and

I(u) ≤ lim infk∈N I
θk(uk).

ii) Let u ∈ SBV 2
e2,0 and let θk ↘ 0. Then there is {uk | k ∈ N} such that Iθk(uk) → I(u) and uk

∗
⇀ u

in BV ((0, 1)× (δ, 1− δ)) for all δ > 0.

9



1. Introduction

A main result that is used in the proof of the second assertion is the following density result:

Theorem (Density for SBV 2
e2,0-functions). Let u ∈ SBV 2

e2,0 and δ > 0.
Then there is v ∈ SBV 2

e2,0 ∩ C
∞(Ω \ Jv) such that Jv is a finite union of segments and such that

‖u− v‖L1(Ω) ≤ Cδ, |Dv|(Ω) ≤ C(1 + I(u) + I(u)1/2), I(v) ≤ (1 + Cδ)I(u) and ‖v‖C2(Ω\Jv) <∞.

In the vector-valued problem, the candidate for the limiting energy is given by

Ep(u) =

ˆ
Ω

|(Du+ e1 ⊗ e2)sym|pp dL2 + 2σH1(Ju)

on the function space

SBDp
e2�e1,0 = {u ∈ SBDloc(Ω,R2) | e(u) ∈ Lp(Ω;R2×2), H1(Ju) <∞, u1(0, ·) = 0, u2(·, 0) = 0,

[u1]νJu ∈ [0,∞)e2, [u2]νJu ∈ [0,∞)e1H1-a.e.}.

We present the following lim inf-inequality in Chapter 5:

Theorem (Compactness and lim inf inequality in the vector-valued case). Let p ∈ (1,∞), θk ↘ 0

and let {uk | k ∈ N} ⊆ W 1,p(Ω) such that ∂xiuk ∈ BV (Ω), uk1(0, y) = θ2

1+θy, uk2(·, 0) = 0 and such that
Eθk,p(uk) ≤M .
Then there is a subsequence {kl | l ∈ N} ⊆ N and a function u ∈ SBDp

e2�e1,0 such that ukl ∗
⇀ u in

BDloc(Ω,R2) and ukl → u in L1(Ω,R2).
Moreover: Ep(u) ≤ lim inf Eθk,p(uk).

We have not been able to provide a density result as in the scalar-valued case. Therefore we are
only able to construct a recovery sequence for a subspace of SBDp

e2�e1,0 in which the functions and
their jump sets have higher regularity. The details are given in Chapter 6.

Theorem (Recovery sequence for regular functions in the vector-valued case). Let p ∈ (1,∞) and let
u ∈ SBDp

e2�e1,0 such that Ju1 =
⋃I
i=0(ai, bi)× {yi}, Ju2 =

⋃J
j=0{xj} × (dj , ej), ui ∈W 2,∞(Ω \ Jui)

and such that [ui] ∈ C2(Jui). Let θk ↘ 0. Then there is a sequence of functions vk ∈ W 1,p(Ω) such that
∂xiv

k ∈ BV (Ω), vk1 (0, y) = θ2

1+θy, v
k
2 (·, 0) = 0,

Iθk(vk)→ I(u) and vk
∗
⇀ u in BD.

The main gap in the proof of the density result is a missing local approximation for SBDp
e2�e1,0 at

points at which the jump accumulates that has a small-enough error in energy. As a step in that
direction, we have been able to prove a Korn-Poincaré-type estimate. Although this estimate does
not suffice to complete the proof of the density result, we present it in Chapter 7 since it deepens our
understanding of the space SBDp

e2�e1 and might be useful to understand Poincaré-type inequalities
on other subspaces of BD. The result is:

Theorem (Korn-Poincaré-type inequality). Let p ∈ (1,∞). There is a constant C > 0 such that for every
function u ∈ SBDp

e2�e1((−r, r)2) there exists two finite partitions, x1 < · · · < xI and y1 < · · · < yJ ,
values ai < ai+1, bj < bj+1 and a skew-symmetric matrix R̃ such that I ≤ C

r H
1(Ju2), J ≤ C

r H
1(Ju1)

10



1.6 Results and outline

and for R(x, y) = R̃ · (x, y)T it holds

∥∥∥u−R− I,J∑
i,j=0

(
ai

bj

)
χ(xi,xi+1)×(yj ,yj+1)

∥∥∥p
Lp(Qr)

≤ Crp‖e(u)‖pLp(Qr)

(
1 +

(H1(Ju))p

rp

)
.

We also provide an example that this estimate is optimal in some sense.

There are different approaches on which one could focus next. The most natural step is proving the
SBDp

e2�e1 density result. This would complete the proof of the Γ-limit in the vector-valued case
which has been a direct goal of the considerations in this work and would probably lead to further
insight on SBD functions in general.
A second aim would be the analysis of a different rank-one connection. It has been shown by Chan
and Conti that if two matrices connected by e2 ⊗ e2 are considered, a different energy scaling is
achieved [13]. In a low-volume fraction case, one could also analyze this model with the technique
of Γ-limit.
Finally, one could consider a detailed discussion of the limiting functionals E2 or I . Can one an-
alytically derive information about minimizers that are not an immediate consequence of known
properties of minimizers of E2,θ or Iθ respectively?
Since we have not only reduced the nonconvex double-well problem to a convex problem, but have
in particular obtained a functional of Mumford-Shah-type, different methods and results are appli-
cable that might lead to new results. In particular, there are well-established numerical approaches
to Mumford-Shah-type functionals that might be implemented and would lead to a better under-
standing of the behavior of minimizers and hence of the formation of microstructures.
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2. The scalar-valued problem in one dimension

2 The scalar-valued problem in one dimension

As a first step, and for a better understanding of the problem, we will consider a one-dimensional,
scalar-valued variant of the problem. The most relevant behavior comes from the different preferred
values for the y-derivative of the functions. We therefore consider only a vertical slice in the domain
and consider the functionals and functions reduced on that slice. The functional Iθ reduces to

Iθe2(v) :=


ˆ

(0,1)

min{|v′ + 1|2, |v′ − 1

θ
|2} dL1 + σθ|D2v|((0, 1)) v ∈ B1

∞ v /∈ B1

where the space Bλ is defined by

Bλ = {v ∈W 1,2((0, λ)) | v′ ∈ BV ((0, λ))}.

Notice that we will denote derivatives by Dv or D2v instead of v′ or v′′ whenever they are only
measures to avoid confusion.

Consider a sequence {vk | k ∈ N} of functions that has uniformly bounded energy Iθke2 and is addi-
tionally bounded in L1. Then v′k is bounded on the area where v′k ∼ −1. The part of the domain
where v′k ∼ 1

θk
concentrates due to the L1-boundedness and creates jumps of the limiting function.

An easy example for such a sequence is a sequence of sawtooth functions where each function has
the same number of teeth, see Figure 6 for a sketch.

y y

Figure 6: A sequence of sawtooth functions with a constant number of sawteeth and increasing slope has bounded energy.
Jumps of the derivatives converge to jumps of positive height of the limiting function.

In the limit, each sawtooth converges to an affine function with slope −1, separated by jumps. The
limiting function is no longer continuous but a SBV -function.

At each sawtooth the derivative changes from −1 to 1
θk

and back to −1. That is: The second deriva-
tive has a jump of height approximately 1

θ hence the term θ|D2vk|((0, 1)) counts twice the number
of jumps in the limit. Notice, that the so-created jumps are always of positive height since they are
created by large positive derivatives.

We hence define the space

SBV+,λ = {v ∈ SBV ((0, λ)) | v+(x) > v−(x) for x ∈ Jv, H0(Jv) <∞ and Dvac ∈ L2((0, λ))}

and the candidate for the limiting energy

Ie2(v) :=


ˆ

(0,1)

|Dvac + 1|2 dL1 + 2σH0(Jv) u ∈ SBV+,1

∞ u /∈ SBV+,1.
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2.1 The lim inf-inequality

We will prove the following statement:

Theorem 2.1 (One-dimensional Γ-limit). Let Ie2 , Iθe2 be defined on BV ((0, 1)). Then:

Iθe2
Γ−−−→

θ↘0
Ie2 with respect to weak-∗ BVloc-convergence.

The proof will be divided into two parts. The lim inf-inequality, stated in Lemma 2.2 and the recov-
ery sequence, constructed in Lemma 2.3.

Remark. We prove Γ-convergence with respect to local weak-∗ convergence in BV although we
could also prove it with respect to weak-∗ convergence. In the proof of the two-dimensional result,
this theorem will be applied during a slicing argument whilst the recovery sequence is constructed
differently. We therefore present the more general lim inf-inequality here.

2.1 The lim inf -inequality

Lemma 2.2 (One-dimensional lim inf-inequality). Let I = (0, λ) and θk ↘ 0.

Then for all {uk | k ∈ N} ⊆ BVloc(I), u ∈ BVloc(I) such that uk
∗
⇀ u in BVloc(I) it holds

Ie2(u) ≤ lim inf
k∈N

Iθke2 (uk).

Moreover it holds that 2σH0(Ju) ≤ lim infk∈N σθk|D2uk|(I) and u′kχ{u′k≤ 1
θk
− 1

2}
⇀ Duac in L2(I).

Proof. Assume without loss of generality that lim infk∈N I
θk
e2 (uk) < ∞. Hence uk ∈ Bλ eventually.

We choose a subsequence such that lim infk∈N I
θk
e2 (uk) = limk→∞ Iθke2 (uk). Choosing further subse-

quences is hence no loss of generality.

A first task is to identify the jump points of u. We expect that these points are approximated by
intervals of length∼ θk where ∂yu ∼ 1

θk
. Having much larger intervals would imply an unbounded

L1-norm of the functions whilst shorter intervals can not create jump in the limit. In order to define
these approximating intervals we choose η ∈ (0, 1

4 ), fix z0 = 0 and define

xkn = inf{x ≥ zkn−1|u′k(x) ≥ 1− η
θk
} and

zkn = inf{x ≥ xkn|u′k(x) ≤ η

θk
} recursively.

Define moreover ykn = sup{x ≤ xkn|u′k(x) ≤ η

θk
},

see Figure 7 for a sketch of this partition. The idea is that in the intervals (yki , z
k
i ) the derivative u′k

is not small, where xki ∈ (yki , z
k
i ) ensures that it also gets large enough to possibly create a jump in

the limit.

By definition we have that ykn ≤ xkn ≤ zkn ≤ ykn+1. Assume first that we have ykn < xkn < zkn. The
derivate changes from∼ 0 to∼ 1

θk
and back to∼ 0 in the interval (yki , z

k
i ). This is taken into account

13



2. The scalar-valued problem in one dimension

η
θk

1−η
θk

1
2θk
− 1

2

yk1 = xk1 zk1 yk2x
k
2 z

k
2

Figure 7: The intervals (ykn, z
k
n) will converge to the jump points of the limiting function u. The plotted function is a

possible choice for a derivative u′k .

by the second derivative:

σθk|D2uk|(ykn, zkn) ≥ σθk(|u′k(xkn)− u′k(ykn)|+ |u′k(zkn)− u′k(ykn)|

≥ σθk
(

1− 2η

θk
+

1− 2η

θk

)
(2)

= 2σ(1− 2η).

Hence we derive that for η small enough there are at most N := b C2σ c many of these intervals,
independent of the choice of k. Assume there wereN+1 many. We get a contradiction by computing

C ≥ Iθke2 (uk) ≥
N+1∑
n=1

σθk|D2uk|(ykn, zkn)

≥ σ
N+1∑
n=1

2(1− 2η)

≥ 2σ(N + 1)(1− 2η).

If we only have ykn ≤ xkn ≤ zkn we can choose by definition ỹkn < x̃kn < z̃kn < ỹkn+1 such that
u′(ỹkn), u′(z̃kn) ≤ η

θk
+ ε and u′(ỹkn) ≥ 1−η

θk
− ε and the same argument holds.

We can therefore without loss of generality assume (going over to at most N many subsequences)
that xkn → xn ∈ [0, 1] as k → ∞. We expect the union of these points to be the jump set of u, but
obviously they do not have to be located in the interior of the domain or to be disjoint. This is no
real concern since we are interested in an upper bound and a jump that ’flows out of the domain’
or two jumps that ’merge to one’ will only create additional energy that is not seen in the limit.

If xn ∈ (0, 1) then there is δ > 0 such that Bδ(xn) ⊂⊂ I . Then xkn ∈ Bδ/2(xn) eventually. Due to the
weak-∗ BVloc convergence there is Cxn such that ‖uk‖W 1,1(Bδ(xn)) ≤ Cxn .
Then L1({u′k >

η
θk
} ∩ Bδ(xn)) ≤ Cxn

θk
η . If this is the case than we know that ykn and zkn must lie in

Bδ(xn) eventually and hence in particular L1((ykn, z
k
n)) ≤ Cxn θkη .

We expect that jumps at the boundary disappear in the limit. I.e., if xn = 0 then we expect that
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2.1 The lim inf-inequality

zkn → 0. Assume this is not the case. Then there is δ > 0 such that without loss of generality zkn ≥ δ.
It follows that u′k ≥

η
θk

on ( δ2 , δ) and ‖u′k‖L1((δ/2,δ)) ≥ δ
2
η
θk

leads to a contradiction if we let k → ∞.
The same is true if xn = λ

We now define

Ak0 :=

N⋃
n=1

(ykn, z
k
n), Ak1 :=

{
u′k ≤

1

θk
− 1

2

}
\Ak0 , Ak2 := I \ (Ak0 ∪Ak1)

and
fk = u′kχAk1 , gk = u′kχAk2 , νk = u′kχAk0 dL1.

That is: The functions fk are the part of the derivative that lives on the ’good’ set and will create the
absolute continuous part of the derivative of u. The jump part of the derivative of u is created by
the intervals (ykn, z

k
n) on which u′k ∼ 1

θk
, that is by the functions νk. There may remain a part where

u′k is large, but not large enough to create jumps. This will only happen on a small set and therefore
this part of the derivative, called gk, will converge strongly to zero in L1. We will now make this
rigorous. We can estimate

‖fk‖2L2(I) =

ˆ
Ak1

|u′k|2 dL1 ≤
ˆ
Ak1

min{|u′k + 1|2, |u′k −
1

θk
|2} dL1 +

ˆ
Ak1

1 dL1.

≤ C + λ.

It follows, after choosing a subsequence, that there is f ∈ L2(I) such that fk ⇀ f in L2(I) and L1(I).
As a next step we want to analyze the limiting behavior of gk. Notice, that for all x ∈ Ak2 it holds
that:

|u′k(x)− 1

θk
| ≤ |u′k(x) + 1| and hence |u′k(x)− 1

θk
| ≥ 1

4θk
.

Then

C ≥ Iθke2 (uk) ≥
ˆ
Ak2

min{|u′k + 1|2, |u′k −
1

θk
|2} dL1

≥ L1(Ak2)
1

θ2
k

(3)

and we can therefore estimate

‖gk‖L1(I) ≤
ˆ
Ak2

|u′k −
1

θk
| dL1 +

1

θ k
L1(Ak2)

≤ CL1(Ak2)1/2 +
1

θ k
L1(Ak2)

≤ Cθk + Cθk.

We therefore know that gk → 0 in L1(I). Notice that moreover:

‖gk‖2L2(I) ≤ C +
1

θ2
k

L1(Ak2) ≤ C. (4)
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2. The scalar-valued problem in one dimension

Putting this together and using the fact that Duac is a radon measure we see that on every compact
set

νk = u′kdL1 − fkdL1 − gkdL1 ∗⇀ Du− f =: ν,

where ν is a radon measure on every compact set. Now choose K ⊆ I \
⋃N
n=1{xn} compact and

arbitrary. Then there is ε > 0 such that

dist

(
Bε(K),

N⋃
n=1

{xn} ∪ {0, 1}

)
≥ ε.

Since we have that (ykn, z
k
n) ⊆ Bε(

⋃N
n=1{xn}) eventually we may conclude

|ν|(K) ≤ |ν|(Bε(K)) ≤ lim inf
k∈N

|νk|(Bε(K)) = 0.

We hence know that ν =
∑N
n=1 cnδxn and in particular that ν ⊥ L1. Since Du = f + ν it follows that

u ∈ SBV (I) and Duac = f . The fact that fk ⇀ f in L2 yields

‖Duac − 1‖2L2(I) ≤ lim inf
k∈N

‖fk − 1‖2L2(I) ≤ lim inf
k∈N

‖min{|u′k + 1|, |u′k −
1

θk
|}‖2L2(I). (5)

We want to prove that f is even approximated by the sequence u′kχ{u′k≤ 1
θk
− 1

2}
weakly in L2. Define

Dk = {u′k ∈ [ ηθk ,
1
θk
− 1

2 ]}. We have that |fk − u′kχ{u′k≤ 1
θk
− 1

2}
|(x) ≤ u′k(x)χDk(x). In similarity to (3)

we estimate L1(Dk) ≤ θ2
k. It follows:

‖fk − u′kχ{u′k≤ 1
θk
− 1

2}
‖L1(I) → 0 and ‖fk − u′kχ{u′k≤ 1

θk
− 1

2}
‖2L2(I) ≤ C.

We have hence proven that u′kχ{u′k≤ 1
θk
− 1

2}
⇀ f = Duac in L2(I).

As a next step we want to show that jumps of the limiting function are of positive height i.e.,
u+(xn) > u−(xn).

Fix x̄ ∈ Ju for this purpose. We have seen that a point is in the jump set if it has been approximated
by at least one of the intervals in A1

k i.e., x̄ = xn for some n ∈ {1, . . . , N} and ykn, zkn → x̄ as k →∞.
Let r > 0 such that Br(x̄) ⊆ I and Ju ∩Br(x̄) = {x̄} and let additionally ykn, zkn ∈ Br/2(x̄).

Assume for the moment that there are no other intervals (ykl , x
k
l ) converging to x̄. Notice that due

to the usual argument and (4) we know that

‖u′k‖2L2(Br(x̄)\(ykn,zkn)) ≤ C.

Therefore for all y < ykn it holds

|uk(y)− uk(ykn)| ≤
ˆ ykn

y

|u′k| dL1

≤ |y − ykn|1/2‖u′k‖L2(Br(x̄)\(ykn,zkn)) (6)

≤ C|y − ykn|1/2
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2.2 The recovery sequence

and by the same argument for all x > xkn

|uk(x)− uk(xkn)| ≤ C|x− xkn|1/2.

Let {ai|i ∈ N} ⊆ (0, x̄), {bi|i ∈ N} ⊆ (x̄, 1) sequences such that ai, bi → x̄, u(ai) → u(x̄−) and
u(bi) → u(x̄+). Then there is a subsequence such that ykin ≥ ai, zkin ≤ bi. Then u(ykin ) → u(x̄−) and
u(zkin )→ u(x̄+). Since u(ykin ) < u(zkin ) we can conclude that u(x̄−) ≤ u(x̄+).

If there is more then one interval converging against x̄ then we may use equation (6) again to deduce
that the space between these intervals does not produce any negative derivative in the limit.

We have hence proven that the limiting function u is indeed an element of SBV+,λ.

Recalling estimate (2) and the fact that Ju =
⋃N
n=1{xn}we conclude

2σ(1− 2η)H0(Ju) ≤ σ
N∑
n=1

2(1− 2η) ≤ σ lim inf
k∈N

N∑
n=1

θk|D2uk|(ykn, zkn) ≤ lim inf
k∈N

σθk|D2uk|(I).

Letting η → 0 yields the lim inf-inequality for this term, the inequality in the absolute continuous
part has already been proven in (5).

2.2 The recovery sequence

The next step is to construct a recovery sequence. We will first mollify the function away from the
jump set and afterwards fill the jumps with affine functions with slope 1

θ , see Figure 8 for a sketch
of the construction.

y y y

Figure 8: The recovery sequence in one dimension: We first mollify the function, keeping the jump set as it was, and replace
the jumps afterwards with a linear interpolation with slope 1

θ
on intervals of length θ[u].

Lemma 2.3 (Existence of a recovery sequence). Let I = (0, λ) and θk ↘ 0. Let u ∈ SBV+,λ such that

Ie2(u) =

ˆ
I

|Duac + 1|2 dL1 + 2σH0(Ju) <∞.

Then there is a sequence {uk | k ∈ N} ⊆ Bλ such that

uk
∗
⇀ u in BV and Iθke2 (uk)→ Ie2(u).

Proof. There is N ∈ N and points x1 < x2 < · · · < xN−1 < xN such that Ju = {x1, . . . xN}.
We choose for the sake of simplicity N = 1. The case with arbitrary N is a straightforward general-
ization. Let ur = u+(x1), ul = u−(x1) and h = ur − ul > 0.

Step 1: Smooth approximation.
We will show that for every ε > 0 there is a function v ∈ SBV (I) with v+(x1) > v−(x1) and
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2. The scalar-valued problem in one dimension

v ∈ W 2,1(I \ {x1}) ∩ C∞(I \ {x1}) such that ‖v − u‖L1(I) ≤ ε, |D2v|(I) ≤ C(u), ‖Dvac‖C0 ≤ C(u)

and I(v) ≤ I(u) + Cε.

Let ϕρk a standard-mollifier. We mirror the function at the boundary and at the jump, that is we
define

ul(x) =


2u(0)− u(−x) x ≤ 0

u(x) 0 ≤ x ≤ x1

2ul − u(2x1 − x) x ≥ x1

and ur(x) =


2ur − u(2x1 − x) x ≤ x1

u(x) x1 ≤ x ≤ λ

2u(1)− u(1− x) x ≥ λ.

We define the mollification of these functions by vkl := ul ∗ ϕρk and vkr := ur ∗ ϕρk and the approxi-
mating function by vk = vkl χ(0,x1) + vkrχ(x1,λ).

Then vk → u in W 1,2(I \ {x1}), Jvk ⊆ {x1} and vk ∈W 2,1(I \ {x1}) ∩ C∞(I \ {x1}).

The only thing that remains to show is that vk−(x1) < vk
+

(x1). Due to fundamental theorem of
integration theory it holds that

vkl (x1) =

ˆ x1+ρk

x1−ρk
ul(z)ϕk(x1 − z) dz

=

ˆ x1+ρk

x1

(ˆ z

x1

u′l(z̃) dz̃ + u−(x1)

)
ϕk(x1 − z) dz

+

ˆ x1

x1−ρk

(
−
ˆ x1

z

u′l(z̃) dz̃ + u−(x1)

)
ϕk(x1 − z) dz

=u−(x1)−
ˆ x1+ρk

x1

ˆ z

x1

u′(2x1 − z̃) dz̃ϕk(x1 − z) dz −
ˆ x1

x1−ρk

ˆ x1

z

u′(z̃) dz̃ϕk(x1 − z) dz

Using the same arguments for vkr we see that

vkr (x1)− vkl (x1) ≥ h− 2‖u′‖L1((x1−ρk,x1+ρk)).

It follows that the jump remains of positive height for k large enough.

Step 2: The recovery sequence.
Due to the considerations of Step 1 we may assume without loss of generality that u ∈W 2,1(I\{x1})
and ‖Duac‖C0 is finite. Define ψ(x) = λ−x1

λ−x1−hθk x −
hθk

λ−x1−hθk the linear interpolation between x1

and λ on [x1 + θkh, λ] and let

uk(x) =


u(x) 0 ≤ x ≤ x1

ul + (x− x1) 1
θk

x1 ≤ x ≤ x1 + θkh

u(ψ(x)) x1 + θkh ≤ x ≤ λ.

The function uθk is continuous,

u′k(x) =


Duac(x) 0 ≤ x ≤ x1

1
θk

x1 ≤ x ≤ x1 + θkh

Duac(ψ(x))ψ′(x) x1 + θkh ≤ x ≤ λ

18



2.3 A compactness result

and

D2uk =D2uacχ[0,x1] +
(
(D2uac ◦ ψ) · ψ′2 + (Duac ◦ ψ) · ψ′′

)
χ[x1+hθk,λ]

+

(
1

θk
−Duac+(x1)

)
δx1 +

(
Duac−(x1)ψ′(x1 + θkh)− 1

θk

)
δx1+hθk .

We in particular know that uk ∈ Bλ. Notice first that since |ψ′| ≤ 2 and ψ′′ = 0 we have

|D2uk|(I) ≤ C‖D2uac‖L1(I) + 2(|Duac−(x1)|+ |Duac+(x1)|) +
2

θ k
.

Since additionally ‖Duac‖C0 is finite we conclude

lim
k→∞

θkσ|D2uk|(I) ≤ 2σ = 2σH0(Ju).

Moreover we have that
ˆ
I

min{|u′k + 1|2, |u′k −
1

θ
|2} dL1

≤
ˆ

(0,x1)

|Duac + 1|2 dL1 +

ˆ
(x1+hθk,λ)

|Duac(ψk(x))ψ′k(x) + 1|2 dL1. (7)

Since Duac ∈ L∞((0, 1)) we can follow, using the dominated convergence theorem, that the right-
hand side of (7) converges to

´
I
|Duac + 1|2 dL1. Hence we know that

lim
k→∞

Iθke2 (uk) ≤ Ie2(u).

Due to the triangle inequality we see that ‖u′k‖L1(I\(x1,x1+hθk)) is uniformly bounded. Additionally
we know that ‖u′k‖L1((x1,x1+hθk)) = h and hence uk is bounded in W 1,1(I) and converges to u

pointwise everywhere. Due to the standard BV compactness we know that there is a subsequence
such that uk

∗
⇀ u in BV (I).

2.3 A compactness result

It is easy to see that this one-dimensional problem can not provide a compactness result since it is
stated without any boundary values. Suppose uk is a sequence of functions of bounded energy that
does already converge in L1 and weakly-∗ inBVloc and {ck | k ∈ N} a monotone diverging sequence
of constants. Then uk + ck has no converging subsequence in L1 but is of bounded energy.
We will, however, provide a compactness result under the additional assumption of an uniform L1

bound. This result does not only complete the discussion of the one-dimensional problem but will
later be used for the two-dimensional problem. It is stated in a Lp-setting to make it also applicable
for the vector-valued problem.

Lemma 2.4. Let p ∈ (1,∞), θk ↘ 0, uk ∈W 1,p((0, λ)) and δ ∈ (0, λ/4).
Then there is C > 0 such that

‖u′k‖L1((δ,λ−δ)) ≤ C
(
λ+ λ(p−1)/p‖min{|u′k + 1|p, |u′k −

1

θ k
|p}‖Lp((0,λ)) +

‖uk‖L1((0,λ))

δ

)
.
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2. The scalar-valued problem in one dimension

Moreover:

L1
({∣∣∣u′k − 1

θ k

∣∣∣ < |u′k + 1|
}
∩ (δ, λ− δ)

)
≤Cθk

(
λ+ λ(p−1)/p‖min{|u′k + 1|p, |u′k −

1

θ k
|p}‖Lp((0,λ)) +

‖uk‖L1((0,λ))

δ

)

If additionally uk is such that
´ λ

0
min{|u′k + 1|p, |u′k − 1

θ k
|p} ≤ M and ‖uk‖L1((0,λ)) ≤ L it follows that

‖uk‖BV (δ,λ−δ) ≤ C(λ + λ(p−1)/pM1/2 + L
δ ) and hence there is u ∈ BVloc((0, λ)) such that uk

∗
⇀ u in

BVloc((0, λ)).

Proof. LetMk =
´ λ

0
min{|u′k+1|p, |u′k− 1

θ k
|p}. We distinguish between phases in which the different

terms contribute to the elastic energy and define the sets Ak = χ{|u′k+1|≤|u′k−
1
θk
|}, Bk = (0, λ) \ Ak,

Akδ = Ak ∩ (δ, λ− δ) and Bkδ = Bk ∩ (δ, λ− δ). It holds:

‖u′k‖L1((δ,λ−δ)) ≤ ‖u′k + 1‖L1(Akδ ) + ‖1‖L1(Akδ ) +
∥∥∥u′k − 1

θk

∥∥∥
L1(Bkδ )

+
∥∥∥ 1

θk

∥∥∥
L1(Bkδ )

≤ λ+ λ(p−1)/pM
1/p
k +

1

θk
L1(Bkδ ) (8)

We only need to control the last term to conclude the proof.
The idea is that if the set Bkδ is large, the function uk gets large at λ − δ (or negative with large
absolute value at δ) and is therefore large in L1((0, λ) \ (δ, λ − δ)) and hence in L1((0, λ)). Let
without loss of generality u(λ2 ) ≥ 0. Then it holds that

u(λ− δ) ≥
ˆ λ−δ

λ/2

u′k dL1 ≥
ˆ
Bkδ

u′k dL1 −
ˆ
Akδ

|u′k| dL1 ≥ 1

4θk
L1(Bkδ )− λ(p−1)/pM

1/p
k − λ.

For x ≥ λ− δ we compute, using the fact that
´ x
λ−δ u

′
k dL1 ≥ −λ(p−1)/pM

1/p
k − δ,

uk(x) = uk(λ− δ) +

ˆ x

λ−δ
u′k dL1 ≥ 1

4θk
L1(Bkδ )− λ(p−1)/pM

1/p
k − λ− λ(p−1)/pM

1/p
k − δ.

This yields, after integrating in x from λ− δ to λ and dividing by δ,

1

θk
L1(Bkδ ) ≤ 4

δ
‖uk‖L1(I) + 8λ(p−1)/pM

1/p
k + 8λ

which, together with (8) finishes the proof.
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3 Compactness and lim inf -inequality for the scalar-valued

problem

After we understood the behavior of the functional reduced on one-dimensional slices we can now
turn to the analysis of the two-dimensional, scalar-valued problem.
We denote the two-dimensional unit square by Ω = (0, 1)2. We remind ourselves that we want to
analyze the functional

Iθ(u) =


´

Ω
|∂xu|2 dL2 +

´
Ω

min{|∂yu+ 1|2, |∂yu− 1
θ |

2} dL2 + σθ|D2u|(Ω) u ∈ A

∞ u /∈ A

defined on the space

A =
{
u ∈W 1,2(Ω) | ∂xu, ∂yu ∈ BV (Ω), u(0, y) =

θ2

1 + θ
y
}
.

Parts of Iθ are given as an integrated version of Iθe2 . We will see in the proof of the lim inf-inequality
how the functionals are connected via the method of slicing. It is reasonable to expect the limiting
functional and function space also to be given as integrated version of Ie2 and SBV+ respectively.
We therefore consider

I(u) =


´

Ω
|∂xu|2 dL2 +

´
Ω
|∂yu+ 1|2 dL2 + 2σH1(Ju) u ∈ SBV 2

e2,0

∞ u /∈ SBV 2
e2,0

where the function space SBV 2
e2,0 is given by

SBV 2
e2,0 = {u ∈ SBVloc(Ω) |DJu · e1 = 0, DJu · e2 ≥ 0, u = 0 on {0} × (0, 1), ∇u ∈ L2(Ω,R2)

H1(Ju) <∞ and |Du|((0, 1)× (δ, 1− δ)) <∞ for all δ > 0}.

The uppercase 2 denotes that the absolute continuous part of the gradient is in L2(Ω), the lowercase
e2 denotes that jumps are only pointing in e2 direction, the 0 denotes the zero-boundary values
at the left edge. Functions in SBV 2

e2,0 have jumps of positive height concentrated on horizontal
lines, the jump part of the gradient only has to be a finite measure on compact sets of the form
(0, 1)× (δ, 1− δ). For the convergence we will use weak-∗-convergence in BV ((0, 1)× (δ, 1− δ)) for
all δ > 0 together with L1(Ω)-convergence.
The fact that the jump set does concentrate in horizontal lines comes from the regularization in
x-direction provided from the ‖∂xu‖L2 -term in Iθk which has no θk-dependence.

3.1 Locality and the choice of convergence

We first want to comment on the choice of convergence for the problem and on the locality in the
limiting function space, since they might seem unnecessarily complicated. We will provide two
examples in the following that explain that these choices are reasonable. Notice that this choices of
locality in the function space and the convergence are made such that the compactness statement
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3. Compactness and lim inf-inequality for the scalar-valued problem

holds. The Γ-limit without a compactness statement could also be proven for functions in SBV

with respect to weak-∗ BV -convergence on the entire square.

1− θ2/3
k

1

u ∼ y
θk

u = 0

R1

R2

1−N1

1−N2

Figure 9: A sequence of bounded energy that does not converge in BV (Ω) (left) and a function in SBV 2
e2,0
\ SBV (Ω)

(right). At the left edge, the boundary values are approximated on a small scale.

The following constructions are always performed with zero boundary values at the left edge. Ob-
viously a linear interpolation on a small scale to the boundary values u(0, y) = θ2

1+θy is still of
uniformly bounded energy.

Remark. The problem has no compactness with respect to weak-∗ BV -convergence. A counterex-
ample is a needle of thickness xθ2/3

k on which the function equals ∼ y 1
θk

, see the left part of Figure
9 for a sketch. Define the needle Tk = {(x, y) ∈ (0, 1)2 | y ≥ 1− xθ2/3

k } and the function

uk(x, y) =


y
θk
− 1

θk
+ x

θ
1/3
k

(x, y) ∈ Tk

0 (x, y) /∈ Tk

where the x-dependence in Tk ensures the continuity of the function. We easily compute that

L2(Tk) ∼ θ2/3
k , |D2uk|(Ω) = H1(∂Tk)

(
θ−1
k

θ
−1/3
k

)
· νTk ≤ 2 1

θk
,

‖∂xuk‖2L2(Ω =

ˆ
Tk

θ
−2/3
k dL2 ≤ 1

and ˆ
Ω

min{|∂yuk + 1|2, |∂yuk −
1

θk
|2} dL2 = 0.

Hence Iθk(uk) ≤ 3. But it also holds that

‖∂yuk‖L1(Ω) =

ˆ
Tk

1

θk
dL2 =

1

2
θ
−1/3
k .

That is: Every subsequence is unbounded in BV (Ω) hence there can be no subsequence that con-
verges weakly-∗ in BV (Ω).
But of course uk

∗
⇀ 0 in BV ((0, 1) × (δ, 1 − δ)) for all δ > 0, so this is no contradiction to the

compactness result in Theorem 3.1.
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3.1 Locality and the choice of convergence

Remark. We have previously seen that it is reasonable to work with weak-∗-convergence restricted
on (0, 1) × (δ, 1 − δ). But since the limit in the foregoing construction was u ≡ 0 this does not yet
explain the choice of the constraint u ∈ SBV ((0, 1) × (δ, 1 − δ)) for the functions in SBV 2

e2,0. One
might imagine that it suffices to require u ∈ SBV (Ω), together with the constraints on the direction
of the jump set an the integrability of the absolute continuous part of the gradient.

We want to point out that this is not the case and construct a function u ∈ SBV 2
e2,0 such that

u /∈ SBV (Ω) but I(u) < ∞. Since we will prove in Chapter 4 that it is possible to construct a
recovery sequence for each u ∈ SBV 2

e2,0, we have that the energy of this recovery sequence would
be uniformly bounded and each converging subsequence would converge against u. Hence our
choice of the space SBV 2

e2,0 is reasonable.

Let L,M,N > 1 and let Rk = (0, 1)× (1−M−k, 1−M−k−1). We define the function u by

u|Rk(x, y) =

k∑
i=1

Li(x− (1−N−i))χ{x>1−N−i}(x, y)

and notice that the absolute continuous part of the y-derivative satisfies ∂yu = 0. If L2 ≥ N we may
estimate

‖∂xu‖2L2(Ω) ≤
∑
k∈N

k∑
i=1

(L2)iN−iM−k ≤
∑
k∈N

k

(
L2

NM

)k
and H1(Ju) =

∑
k∈NN

−k. Hence the energy of u is finite if N > 1 and M is sufficient large in
dependence of L, for example M = L3. On the other hand we can estimate

|Du|(Ω) ≥ |DJu|(Ω) ≥
∑
k∈N

ˆ 1

1−N−k
Lk(x− (1−N−k)) dL2(x) =

∑
k∈N

Lk
ˆ N−k

0

x dL2(x)

=
1

2

∑
k∈N

(
L

N2

)k
.

So u /∈ SBV (Ω) if L ≥ N2 but u ∈ SBV ((0, 1)× (δ, 1− δ)) for all δ > 0.

Remark. The behavior that the functions grows strongly at the horizontal edges of the domain
might be unexpected for this problem. There are different possibilities to get rid of this behavior: A
uniform L∞ bound for the functions in A, or periodic boundary conditions would both provide a
compactness result in BV (Ω).

Remark. In general no trace theorem holds for BV (Ω) equipped with weak-∗ convergence, since
jumps can converge to the boundary and disappear in the limit. Take for example uδ = χ(δ,1)×(0,1)

which weakly-∗ converges to u = 1. However, as we will see in the proof of the compactness
result, this is of no concern for our analysis since the jump set lies perpendicular to the part of the
boundary on which the boundary values are located. The boundedness of the x-derivatives in L2

yields a trace theorem for the left edge.
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3. Compactness and lim inf-inequality for the scalar-valued problem

3.2 Compactness

We first prove the compactness result using slicing results and integration on slices. The main
difficulty is to prove that the limiting function is indeed element of the function space SBV 2

e2,0. The
lim inf-inequality will afterwards be an easy consequence.

Theorem 3.1 (Compactness). Let {uk | k ∈ N} ⊆ A, {θk | k ∈ N} ⊆ R+ such that θk ↘ 0, Iθk(uk) ≤M .
Then there is a subsequence {kl | l ∈ N} ⊆ N and a function u ∈ BVloc(Ω) such that

ukl
∗
⇀ u in BV ((0, 1)× (δ, 1− δ)) for all δ < 0.

Moreover: u ∈ SBV 2
e2,0 and for each δ > 0 it holds that ‖uk‖W 1,1((0,1)×(δ,1−δ)) ≤ C(1 +M + 1+M1/2

δ ) .

Proof. Step 1: Convergence
Let Mk := Iθk(uk) and define the reduction of the energies on the horizontal slice {x} × (0, 1) by
Mx
k = Iθke2 (u(x, ·)). Notice that for all k ∈ N and for almost every x ∈ (0, 1) we have thatMx

k is finite.
We fix δ > 0.

Due to fundamental theorem of integration theory and the boundary values we have

‖uk(x, ·)‖L1((0,1)) ≤ C +

ˆ 1

0

ˆ x

0

|∂xuk(z, y)| dz dy ≤ C +M
1/2
k .

Applying the one-dimensional compactness result (see Lemma 2.4) we can conclude

‖∂yuk(x, ·)‖L1((δ,1−δ)) ≤ C

(
1 + (Mx

k )1/2 +
1 +M

1/2
k

δ

)
. (9)

Notice, that either Mx
k ≤ 1 or (Mx

k )1/2 ≤Mx
k and therefore

´ 1

0
(Mx

k )1/2 dx ≤ 1 +Mk. Integrating (9)
in x-direction yields

‖uk‖W 1,1((0,1)×(δ,1−δ)) ≤ C

(
1 +Mk +

1 +M
1/2
k

δ

)
≤ C

(
1 +M +

1 +M1/2

δ

)
.

So due to BV -compactness there exists a subsequence {kl | l ∈ N} ⊆ N, selected with a diagonal
argument, and a function u ∈ BVloc(Ω) such that ukl

∗
⇀ u in BV ((0, 1)× (δ, 1− δ)) for all δ > 0.

Step 2: u ∈ SBV 2
e2,0

Since ∂xuk is bounded in L2 we get that, up to a subsequence, ∂xuk ⇀ v for some v ∈ L2(Ω) and
v = Du · e1. Hence DJu · e1 = DCu · e1 = 0. We do also know that ∂yuk

∗
⇀ Du · e2 locally as

measures. We divide ∂yuk into two additive terms. Let

fk = χ{|∂yuk+1|≤|∂yuk− 1
θ k
|}∂yuk and gk = ∂yuk − fk

Then ‖fk‖L2(Ω) ≤ C and, after choosing a subsequence, fk ⇀ f in L2(Ω) for some f ∈ L2(Ω).
Moreover gk ≥ 0 and gk

∗
⇀ Dsu · e2 + ∂yu − f locally as measures. We see that the locally finite,

signed measure Dsu · e2 + ∂yu− f is actually positive and conclude, since Dsu · e2 ⊥ ∂yu− f , that
Dsu · e2 ≥ 0.
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3.3 The lim inf-inequality

We now want to prove that the Cantor part vanishes. We have
´

(0,1)
Mx
k dL1(x) ≤ Iθk(uk) ≤ M .

Using Fatou’s lemma we see that

ˆ
(0,1)

lim inf
k∈N

Mx
k dL1(x) ≤M

and hence that for almost every x ∈ (0, 1) we get that lim inf Mx
k is finite. For almost every of these

x we find a subsequence such that Mx
kl

is uniformly bounded and use Lemma 2.4 to conclude that
ukl(x, ·)

∗
⇀ u(x, ·) in BV ((δ, 1− δ)) for all δ > 0. The one dimensional lim inf-inequality tells us that

u(x, ·) ∈ SBV ((δ, 1− δ)). This is independent of the subsequence so due to a slicing argument (see
[3], Chapter 3.11) we know that this implies Dcu · e2|((0,1)×(δ,1−δ)) = 0 for all δ > 0.
As a last step we need make sure that u satisfies the zero boundary values. Define the extension
ûk : (−1, 1)× (0, 1)→ 0 by

ûk(x, y) =

uk(x, y) x ≥ 0

θ2

1+θy x < 0.

Since uk is bounded in BV ((0, 1) × (δ, 1 − δ)) for every δ > 0 we immediately follow that ûk is
bounded in BV ((−1 + δ, 1 − δ) × (δ, 1 − δ)) for every δ > 0. We therefore have that there exists a
subsequence and a function û ∈ BVloc((−1, 1) × (0, 1)) such that ûk

∗
⇀ û in BVloc((−1, 1 × (0, 1)).

Moreover we have that ûk → u in BV ((−1, 0)× (0, 1)).
Hence û(x, y) = 0 almost every where on (−1, 0)× (0, 1) x < 0 and û = u for x > 0, Dûk · e1 = ∂xûk

and ∂xûk ⇀ ∂xû in L2. We therefore know that û(·, y) is continuous for almost every y ∈ (0, 1) and
it follows that u(0, y) = û(0, y) = 0 forH1-almost every y ∈ (0, 1).
Hence all properties are proven and we know that u ∈ SBV 2

e2,0.

3.3 The lim inf-inequality

The lim inf-inequality is now an straightforward application of the one-dimensional result together
with the slicing method and the previous compactness result.

Theorem 3.2 (The lim inf-inequality). Let {uk|k ∈ N} ⊆ BV (Ω), u ∈ BV (Ω) such that

uk
∗
⇀ u in BVloc((0, 1)× (δ, 1− δ)) for all δ > 0

Let θk ↘ 0. Then
I(u) ≤ lim inf

k∈N
Iθk(uk).

Proof. Let us without loss of generality assume that lim infk∈N I
θk(uk) < ∞ and choose a subse-

quence that realizes the lim inf .
The compactness result tells us immediately that u ∈ SBV 2

e2,0 and we know that ∂xuk ⇀ ∂xu

in L2. As in the compactness result it is a consequence of Fatou’s lemma that for almost every
x ∈ (0, 1) it holds that lim infk∈N I

θk
e2 (uk(x, ·)) and lim infk∈N ‖uk(x, ·)‖L1((0,1)) are finite. Fix one of

these x ∈ (0, 1). We go to a subsequence that realizes the lim inf for this choice of x, fix δ > 0 and
use the one-dimensional compactness result (see Lemma 2.4) to see that for a further subsequence
{kl | l ∈ N} it holds that ukl(x, ·)

∗
⇀ u(x, ·) in BV ((δ, 1− δ)).
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3. Compactness and lim inf-inequality for the scalar-valued problem

Application of the one-dimensional lim inf-inequality on the interval (δ, 1− δ) tells us

ˆ
(δ,1−δ)

|∂yu(x, ·)− 1|2 dL1 + |∂y∂yu(x, ·)|((δ, 1− δ)) ≤ lim inf
k∈N

Iθke2 (uk(x, ·)).

This is independent of the chosen subsequence and holds for all δ > 0 hence for almost every
x ∈ (0, 1) it holds

ˆ
(0,1)

|∂yu(x, ·)− 1|2 dL1 + |∂y∂yu(x, ·)|((0, 1)) ≤ lim inf
k∈N

Iθke2 (uk(x, ·)).

Putting this together with Fatou’s lemma we can conclude

lim inf
k∈N

Iθk(uk)

≥ lim inf
k∈N

(ˆ
Ω

|∂xuk|2 dL2 +

ˆ
Ω

min{|∂yuk + 1|2, |∂yuk −
1

θ
|2} dL2 + σθk|∂y∂yuk|(Ω)

)
≥ lim inf

k∈N

ˆ
Ω

|∂xuk|2 dL2 + lim inf
k∈N

ˆ
(0,1)

Iθke2 (uk(x, ·)) dL1(x)

≥
ˆ

Ω

|∂xu|2 dL2 +

ˆ
(0,1)

lim inf
k∈N

Iθke2 (uk(x, ·)) dL1(x)

≥
ˆ

Ω

|∂xu|2 dL2 +

ˆ
(0,1)

Ie2(u(x, ·) dL1(x)

=

ˆ
Ω

|∂xu|2 dL2 +

ˆ
Ω

|∂yu+ 1|2 dL2 + σ

ˆ
(0,1)

H0(J(u(x, ·)) dL1(x).

We use a standard result about slicing (see [3], Chapter 3.11) to prove that

ˆ
(0,1)

H0(J(u(x, ·)) dL1(x) =

ˆ
Ju

|vJu(z) · e2| dH1(z) = H1(Ju),

which concludes the proof of the proof of the lim inf-inequality.
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4 The recovery sequence for the scalar-valued problem

The following chapter is one of the most central to this work. The aim is to provide a recovery
sequence for an arbitrary function u ∈ SBV 2

y,0. As often in related problems we will do this in two
steps: First provide a density result that tells us that only functions with some additional structure
and regularity properties need to be recovered. Afterwards construct a recovery sequence for any
function in this smaller space.

Notice that the limiting functional I differs from the well-known Mumford-Shah functional (see
[40]) used in image segmentation only by an affine translation and the underlying function space.
A detailed analysis of this well-understood functional can be found in the literature (beginning with
[5] and [22]), and also density results are provided (see [18] and [24]). However, these results can not
be used explicitly in our case since the function space in this setting does not include the constraints
DJu ·e1 = 0 andDJu ·e2 ≥ 0. We need to provide different constructions such that these constraints
are satisfied. This includes modified covering arguments and involved local constructions.

We first want to provide the idea for the construction of a recovery sequence for a regular function
u with a single segment as jump set. It originates from the one-dimensional construction and will
be made rigorous at the end of this chapter. We want to include an affine function with slope 1

θk

in y-direction on a set of vertical height θ[u]|Ju (see Figure 10). Along the boundary of this set the
y-derivative jumps from 1

θ to something small and hence the term θ|D2u| counts approximately the
diameter of this set, which converges uniformly to 2H1(Ju) as θ → 0 if [u] ∈ C1.

ȳ

x̄ x̄

ȳ

ȳ + θ[u](x̄)/2

ȳ − θ[u](x̄)/2

Figure 10: A sketch of the idea for the recovery sequence. The vertical height of the area in which we insert an affine
function with slope 1

θ
in y-direction is given by θ[u].

However, this is not the general situation in which we want to construct a recovery sequence since
the jump set of a SBV -function in two dimensions can be quite irregular. Imagine as a jump set the
union of horizontal segments of length 2−n centered at {qn |n ∈ N} = (Q×Q)∩Ω. This is not only a
dense set of finiteH1-measure but also jump set of a function of finite energy I and hence we must
be able to provide a recovery sequence for this function. Obviously, a direct application of the idea
indicated in Figure 10 seems difficult, since the different areas in which we want to insert the affine
function would overlap.

We will prove two different density results for the space SBV 2
e2,0 and the energy I such that finally

we will only have to recover functions with a jump set that is finite union of horizontal segments.
Proving these density results will be a lengthy and sometimes technical task which will fill large
parts of the following chapter. The first density result will approximate arbitrary functions with
functions whose jump set is a compact set, whilst in the second result functions with compact jump
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4. The recovery sequence for the scalar-valued problem

set will be approximated by functions whose jump set is a finite union of segments. The general
strategy of this chapter follows the approach of other density results as in the work of Braides and
Chiadò Piat (see [10]), we will comment on the similarities and differences at a later point.

4.1 Preliminaries

We again denote the unit square in two dimension by Ω = (0, 1)2.
We explained in Chapter 3 that the compactness result implies that there are SBVloc \ SBV func-
tions of finite energy. We will see in the following lemma that it is sufficient to construct recovery
sequences for functions in SBV 2

e2,0∩SBV . We are moreover able to construct the recovery sequence
with respect to the stronger BV (Ω)-convergence.

Lemma 4.1. Let θk ↘ 0. Assume for every function v ∈ SBV (Ω) with DJv · e2 ≥ 0, DJv · e1 = 0 and
v(0, ·) = 0 there exits a recovery sequence vk ∈ A such that vk

∗
⇀ v in BV (Ω) and Iθk(vk)→ I(v).

Then, for every function u ∈ SBV 2
e2,0 there exits a recovery sequence uk ∈ A such that uk

∗
⇀ u in

BV ((0, 1)× (δ, 1− δ)) for all δ > 0 and Iθk(uk)→ I(u).

Proof. The essence of the proof is a simple diagonal argument. Let ηk ↘ 0 such that ηk ≤ 1
2 .

Define vk(x, y) = u(x, (1 − 2δ)y + δ). Then vk ∈ SBV (Ω), lim supk∈N I(vk) ≤ I(vk) and for each
δ > 2ηk we know that |Dvk|((0, 1) × ( δ2 , 1 −

δ
2 )) ≤ (1 + 2ηk)|Du|((0, 1) × (δ, 1 − δ)) and vk → v in

L1((0, 1)× (δ, 1− δ)).
Due to the assumption there is a recovery sequence vlk for each of these vk’s and so a diagonal
sequence of the vlk’s provides the recovery sequence for u.

There is also a notational modification we want to introduce for this chapter. We will work with the
Mumford-Shah functional J instead of the functional I . Define

J(u) =

ˆ
Ω

‖∇u‖2 dL2 + σH1(Ju)

which will now operate on the function space

SBV 2
e2,a = {u ∈ SBV (Ω) | ∇u ∈ L2(Ω,R2), DJu · e1 = 0, DJu · e2 ≥ 0, H1(Ju) <∞, u(0, y) = y}.

This function space does not only have different boundary values, we also dropped the assumption
that u is only in locally in SBV .
Let us also introduce a localized version of SBV 2

e2 : For a open set A ⊂⊂ Ω define

SBV 2
e2(A) = {u ∈ SBV (A) | ∇u ∈ L2(A,R2), DJu · e1 = 0, DJu · e2 ≥ 0, H1(Ju) <∞}.

Notice that in our publication [16] the rescaling of the original problem is done differently such that
also compactness and lim inf inequality are proven for the space SBV 2

e2,a. In that work the notation
differs. The space SBV 2

e2,a is there denoted by SBV
2

y .

Remark 4.2. Adding the affine transformation g(x, y) = y to a function u ∈ SBV 2
e2,0 yields a func-

tion v ∈ SBV 2
e2,a, up to the fact that functions are only in SBVloc and it holds I(u) = J(v). A
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recovery sequence for v then transforms to a recovery sequence for u under the subtraction of g and
the application of Lemma 4.1.
It therefore suffices to prove the density results for the Mumford-Shah functional J on the space
SBV 2

e2,a.

Remark. The structure theorem for BV -functions tells us that Ju is a rectifiable set i.e., there are
sets K0,K1, . . . ⊆ Ω such that Ju =

⋃
i∈NKi, H1(K0) = 0 and for i ≥ 1: Ki ⊆ Si for some C1-curve

Si. The normal to a curve coincides with the normal to the jump set for H1-almost every point in
Ki, which is e2 H1-almost everywhere. We can therefore choose the Sk’s without loss of generality
to be C1-graphs. It will in general not be true, that Ju lies in countably many vertical slices of the
domain.
However, it is a consequence of Sard’s theorem, used on each of the countably many C1-curves Sk,
that L1({y ∈ (0, 1) | (0, 1)× {y} ∩ Ju 6= ∅}) = 0.

4.2 Local constructions

As noted above, the function u that we want to recover might have a jump set that is not regular.
We will approximate u with a sequence of functions for which we can guarantee a higher regularity
of the jump set.
We therefore first introduce different local constructions on small squares. These constructions will
differ, in dependence on the amount and regularity of the jump set of u on these squares. We will
distinguish between three different types of squares:

• Type-I squares, on which the amount of jump set of u is small. On these squares, all jump will
be erased.

• Type-II squares on which the amount of jump set of u might be large and has no regularity. In
this case, many additional jumps will be introduced and the error in energy will be relatively
large. Hence this construction should not be applied too often.

• Type-III squares on which the amount of jump set of u is close to the sidelength of the square
and on which the jump set does not expand much in vertical direction. On these squares
we will construct a function whose jump set is the union of two segments each of length
approximately half of the sidelength of the square.

We denote by QR(x) = ((x1−R, x1 +R)× (x2−R, x2 +R)) the square of sidelength 2R and center
x. The square of sidelength 2R centered at zero is denoted by QR = (−R,R)2.

4.2.1 Construction on type-I squares

At first we want to construct the approximation on the so-called type-I squares, in which there is not
much jump set i.e., H1(Ju ∩QR(x)) ≤ ηR for some fixed η. The idea is to approximate the squares
via a convolution with a standard mollifier. A main tool will be two Poincaré-type estimates that
use the fact that the amount of jump in the squares is small and concentrated in horizontal slices.
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4. The recovery sequence for the scalar-valued problem

Depending on the context we shall denote the components of the absolute continuous part of the
derivative during this chapter by ∂xu or ∂1u.

Lemma 4.3 (Poincaré-type estimate). Let r > 0, η ∈ (0, 1
8 ) and ρ ∈ (2ηr, 1

2r). Let u ∈ SBV 2
e2(Qr) such

thatH1(Ju) ≤ ηr. Then the following holds:

i) There is C > 0 such that for all x̄ ∈ Qr−ρ there is ũ ∈ R such that for all y ∈ Qρ(x̄) it holds

‖u− ũ‖2L2(Iy) ≤ Cρ‖∇u‖
2
L2(Qρ(x̄)).

The set Iy denotes the vertical segment through y in Qρ(x̄) i.e., Iy = y + ({0} × R) ∩Qρ(x̄).

ii) There isC > 0 such that for each rectangleR = [−w,w]× [−h, h] that is chosen such that the enlarged
rectangle Qρ(R) = [−w − ρ, w + ρ]× [−h− ρ, h+ ρ] is still contained in Qr it holds

‖u− u ∗ ϕρ‖2L2(R) ≤ Cρmin{ρ, w}‖∇u‖2L2(Qρ(R)).

The function ϕρ is a standard mollifier.

Notice that ρ is chosen in both cases such that it is still larger then the overall length of Ju. At first it
seems surprising that the scaling of the convolution estimate on the rectangle should only depend
on the width but not on the height of the rectangle. However, since the jumps are concentrated
in horizontal direction the two directions are completely different. In applications we will use the
second result on rectangles that have sidelengths at least ρ

ω

x̄

z

Iz

y

Iy

Jy1,t

(y1, t)

x̄

z

Iz

y − w Jx̄−w

Jx̄

x̄

Figure 11: Type-I squares: Avoiding the jumps to prove two different Poincaré-type inequalities.

Proof. For both of the estimates we will need to find pointwise estimates for the integrand.

We fix x̄ ∈ Qr and define for each y ∈ Qρ(x̄) the horizontal and vertical segment through y in Qρ(x)

by Iy = y+ ({0}×R)∩Qρ(x̄) and Jy = y+ (R×{0})∩Qρ(x̄). Let ω = {y ∈ Qρ(x̄) | Iy ∩ Ju = ∅} be
the set of points y ∈ Qρ(x̄) for which Iy does not intersect the jump set Ju, see Figure 11.

Since ρ ≥ 2ηr ≥ 2H1(Ju) there is at least one point z ∈ Qρ(x̄) depending only on x̄ such that z ∈ ω
and such that

ˆ
Iz

|∂2u|2 dH1 ≤ 2

ρ

ˆ
Qρ(x̄)

|∂2u|2 dL2

30



4.2 Local constructions

Proof of i):
The one-dimensional Poincaré estimate on Iz tells us that there is ũ ∈ R, depending only on z and
x̄ such that ˆ

Iz

|u− ũ|2 ≤ 1

9
ρ2

ˆ
Iz

|∂2u|2 dH1 ≤ ρ
ˆ
Qρ(x̄)

|∂2u|2 dL2.

If we want to get an estimate of u(y) for an arbitrary y ∈ Qρ(x̄) we will compare it with the value of
u at the point that lies in vertical direction on Iz , see the second picture in Figure 11. Applying the
triangle inequality yields that for almost every y ∈ Qρ(x̄) and for almost every t ∈ (x̄2 − ρ, x̄2 + ρ)

it holds
|u(y1, t)− ũ| ≤ |u(z1, t)− ũ|+

ˆ
J(y1,t)

|∂1u| dL1.

Integration in t Hölder’s inequality tells us that for almost every y ∈ Qρ(x̄) we may estimate

‖u− ũ‖L2(Iy) ≤ ‖u− ũ‖L2(Iz) +

ˆ
Iy

(
1

ρ

ˆ
J(y1,t)

ρ|∂1u| dL1

)2

dL1

1/2

≤ ρ1/2‖∂2u‖L2(Qρ(x̄)) + ρ1/2‖∂1u‖L2(Qρ(x̄))

≤ 2ρ1/2‖∇u‖L2(Qρ(x̄)).

Proof of ii):
We easily see

|u(x̄)− u ∗ ϕρ(x̄)| =

∣∣∣∣∣
ˆ
Qρ(0)

(u(x̄)− u(x̄− w))ϕρ(y) dL2(w)

∣∣∣∣∣ (10)

≤ Cρ−1‖u(x̄)− u(x̄− ·)‖L2(Qρ(0))

and achieve a pointwise estimate for the integrand of this expression by the same approach as
before, see the third picture in Figure 11. For almost every w ∈ Qρ(0) it holds

|u(x̄)− u(x̄− w)|

≤
ˆ
Jx̄

|∂1u| dH1 +

ˆ
Iz

|∂2u| dH1 +

ˆ
Jx̄−w

|∂1u| dH1

≤2ρ1/2‖∂1u‖L2(Jx̄) + 2ρ1/2‖∂2u‖L2(Iz) + 2ρ1/2‖∂1u‖L2(Jx̄−w)

≤2ρ1/2‖∂1u‖L2(Jx̄) + C‖∂yu‖L2(Qρ(x̄)) + 2ρ1/2‖∂1u‖L2(Jx̄−w).

Hence we get via integration that for almost every x̄ ∈ R it holds that

‖u(x̄)− u(x̄− ·)‖L2(Qρ(0))

≤Cρ3/2‖∂1u‖L2(Jx̄) + Cρ‖∂2u‖L2(Qρ(x̄)) + Cρ

 ˆ

(−ρ,ρ)

ˆ

(−ρ,ρ)

|∂1u(z − x̄1, w2 − x̄2)|2 dz dw2


1/2

≤Cρ3/2‖∂1u‖L2(Jx̄) + Cρ‖∂2u‖L2(Qρ(x̄)) + Cρ‖∂1u‖L2(Qρ(x̄)).
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4. The recovery sequence for the scalar-valued problem

Before concluding, notice that

ˆ
R

χQρ(x)(y) dL2(x) ≤ min{ρ, w} ·min{ρ, h}χQρ(R)(x) and
ˆ w

−w
χJx(s, x2) dx1 =

ˆ w

−w
χ(s−ρ,s+ρ)(x1) dx1 ≤ min{ρ, w}χ(−w−ρ,w+ρ)(s).

Now we can complete the proof starting with (10), applying the last two inequalities and Fubini’s
theorem:

‖u− u ∗ ϕρ‖2L2(R)

≤ Cρ−2

ˆ
R

‖u(x)− u(x− .)‖2L2(Qρ(0)) dL2(x)

≤ Cρ
ˆ
R

‖∂1u‖2L2(Jx) dL2(x) + C

ˆ
R

‖∇u‖2L2(Qρ(x)) dL2(x)

≤ Cρ
ˆ
R

ˆ
R
χJx(s, x2)|∂1u(s, x2)|2 dL1(s) dL2(x) + C

ˆ
R

ˆ
R2

χQρ(x)(w)|∇u(w)|2 dL2(w) dL2(x)

≤ Cρmin{ρ, w}
ˆ w+ρ

−w−ρ

ˆ h

−h
|∂1u(s, x2)|2 dL1(x2) dL1(s) + Cρmin{ρ, w}

ˆ
Qρ(R)

|∇u(x)|2 dL2(x)

≤ Cρmin{ρ, w}‖∇u‖2L2(Qρ(R)).

We will now use the first of these estimates to prove the energy of the convolution of u with a
standard mollifier ϕρ.

Lemma 4.4 (Energy of the convolution with a standard mollifier). Let r > 0, η ∈ (0, 1
8 ) and

ρ ∈ (2ηr, 1
4r). Let u ∈ SBV 2

e2(Qr) such thatH1(Ju) ≤ ηr and define uρ = u ∗ ϕρ.

Then uρ ∈ C∞(Qr−ρ) ∩ SBV 2
e2(Qr−ρ) and

ˆ
Qr−ρ

|∇uρ|2 dL2 ≤
(

1 + C
ηr

ρ

)2 ˆ
Qr

|∇u|2 dL2.

Proof. It is obvious that the function is in C∞(Qr−ρ), we only need to prove the estimate for the
derivatives.

It is a standard argument for convolutions that we can put the partial derivative onto the u i.e.,
∂1uρ = ϕρ ∗ ∂1u almost everywhere, which leads to the estimate for ∂1uρ. This is not possible for
∂2uρ due to the jumps of u that are located in vertical direction. An argument of this type will,
however, be possible on large parts of the domain since the jump set is small inH1.

Notice first that due to integration by parts for every constant c ∈ R, every x ∈ Qr−ρ
ˆ
Qρ(x)

∂2ϕρ(x− y)c dL2(y) = 0,
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hence for every c ∈ R, x ∈ Qr−ρ we can add this term to the derivative i.e.,

∂2uρ(x) =

ˆ
Qρ(x)

∂2ϕρ(x− y)(u(y)− c) dL2(y).

We fix x̄ ∈ Qr−ρ and want to estimate ∂2uρ(x̄) pointwise.

Let us again denote by ω = {y ∈ Qρ(x̄) | Iy ∩ Ju = ∅} the set of points in Qρ(x̄) for which there is
no jump on the horizontal line through the point.
For almost every y ∈ ω we can use integration by parts to move the derivative from ϕ to u i.e.,

ˆ
ω

∂2ϕρ(x̄− y)(u(y)− c) dL2(y) =

ˆ
ω

ϕρ(x̄− y)∂2u(y) dL2(y). (11)

If y /∈ ω we will use the first assertion of Lemma 4.3. For almost every y ∈ Qρ(x̄) \ ω it holds that∣∣∣∣∣
ˆ
Iy

∂2ϕρ(x− ·)(u− ũ) dH1

∣∣∣∣∣ ≤ ‖∂2ϕρ(x− ·)‖L2(Iy)‖u− ũ‖L2(Iy)

≤ C(ρ−6ρ)1/2ρ1/2‖∇u‖L2(Qρ(x̄))

≤ Cρ−2‖∇u‖L2(Qρ(x̄)).

The number of the slices that do not lie in ω is bounded by the H1-size of the jump set i.e.,
L1({y1 | (y1, x̄2) /∈ ω ∩Qρ(x̄)}) ≤ ηr. We conclude that∣∣∣∣∣

ˆ
Qρ(x̄)\ω

∂2ϕρ(x̄− y)(u(y)− ũ) dL2(y)

∣∣∣∣∣ ≤ C ηrρ2
‖∇u‖L2(Qρ(x̄)).

Together with (11) for c = ũ we get for almost every x ∈ Qr−ρ the pointwise estimate

|∂2uρ|(x) ≤
∣∣∣∣ˆ
ω

ϕρ(x− y)∂2u(y) dL2(y)

∣∣∣∣+

∣∣∣∣∣
ˆ
Qρ(x)\ω

∂2ϕρ(x− y)(u(y)− ũ) dL2(y)

∣∣∣∣∣
≤ ϕρ ∗ |∂2u|(x) + C

ηr

ρ2
‖∇u‖L2(Qρ(x)).

Due to the fact that
´
Qr−ρ

´
Qρ(x)

f(y) dL2(y) dL2(x) ∼ ρ2
´
Qr
f(y) dL2(y), Fubini’s theorem and the

estimate for convolutions we can finish the proof by estimating

‖∂2uρ‖2L2(Qr−ρ) ≤ ‖∂2u‖2L2(Qr−ρ) + C

(
ηr

ρ2

)2

ρ2‖∇u‖2L2(Qr).

This estimate of the convolution can only be achieved in a smaller square then the original one,
since the mollifier needs values from a larger set and has different boundary values then the original
function. We additionally need an interpolation such that we can combine this construction with
the function on the rest of the domain.
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4. The recovery sequence for the scalar-valued problem

Proposition 4.5 (Construction for type-I squares). Let r > 0, η ∈ (0, 1
96 ), u ∈ SBV 2

e2(Qr) such that
H1(Ju) ≤ ηr.

Then there is v ∈ SBV 2
e2(Qr) such that v ∈W 1,2(Q 6

7 r
), v = u on Qr \Q 13

14 r
, Jv ⊆ Ju,

‖∇v‖2L2(Qr) ≤
(

1 + Cη1/2
)
‖∇u‖2L2(Qr), |Dv|(Qr) ≤ Cr‖∇u‖L2(Qr) + |DJu|(Qr)

and ‖v − u‖L1(Qr) ≤ Cr2η1/2‖∇u‖L2(Qr).

j = K
j = J

j = 1

v = uρ ∈ W 1,2

u = v

Figure 12: Type-I squares: Finding a good area for the interpolation between construction and data.

Proof. We will define the function v as the convolution with a standard mollifier of length scale ρ
i.e., v = uρ = u ∗ ϕρ, in the inner square Q 6

7 r
and perform the interpolation between u and uρ on a

layer of thickness 3ρ.

We need to choose this layer in a way such that there is not to much concentration of the gradient
in it. Let K = b 1

14
r
3ρc and define Qj = Q 13

14 r−j3ρ
for each j ∈ {0, . . . ,K}. It holds that the disjoint

union
⋃
j=0,...,K−1Qj \Qj+1 = Q 13

14 r
\QK ∼ Q 13

14 r
\Q 6

7 r
and that L2(Qj \Qj−1) ∼ Crρ. Therefore

there exists at least one J ∈ {0, . . . ,K − 1} such that

‖∇u‖L2(QJ\QJ+1) ≤ CK−1/2‖∇u‖L2(Q 13
14
r
\QK) ≤ CK−1/2‖∇u‖L2(Qr).

Notice that since K ≥ 13
14

r
3ρ − 1 it holds that 1

K ≤ C ρ
r . The interpolation will now be performed in

the middle third of the so-chosen layer, such that the gradient of the convolution on this layer of
width ρ is controlled by the gradient on the layer QJ \QJ+1.

That is: We choose a standard interpolator ψ ∈ C1
c (Qr) such that

ψ(x) =


1 x ∈ Qr−J3ρ−2ρ =: Qi

∈ [0, 1] x ∈ Qr−J3ρ−ρ \Qr−J3ρ−2ρ =: L

0 x ∈ Qr \Qr−J3ρ−ρ =: Qo

and ‖ψ′‖L∞(Qr) ≤ Cρ−1. We define the function v by

v = ψuρ + (1− ψ)u.
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Now v satisfies most of the stated properties. The main point we need to show is the estimate for
the L2-norm of the gradient. Using Lemma 4.4 on the square Qr̃ with r̃ = r − J3ρ− ρ we compute

‖∇v‖2L2(Qr)

= ‖∇ψ(uρ − u) + ψ∇uρ + (1− ψ)∇u‖2L2(Qr)

= ‖∇uρ‖2L2(Qi) + ‖∇ψ(uρ − u) + ψ∇uρ + (1− ψ)∇u‖2L2(L) + ‖∇u‖2L2(Qo)

≤
(

1 + C
ηr

ρ

)2

‖∇u‖2L2(Qi∪L) + ‖∇ψ(uρ − u) + ψ∇uρ + (1− ψ)∇u‖2L2(L) + ‖∇u‖2L2(Qo).

We still need to estimate the term in the interpolation layer L. It is easy to see that, in similarity to
Lemma 4.4, the following estimate holds on L:

‖ψ∇uρ‖2L2(L) ≤ ‖∇uρ‖
2
L2(L) ≤ 2‖∇u‖2L2(QJ\QJ+1).

Applying Lemma 4.3 ii) gives us

‖∇ψ(uρ − u)‖2L2(L) ≤ Cρ
−2‖uρ − u‖2L2(L) ≤ C‖∇u‖

2
L2(QJ\QJ+1).

Putting this together with the choice of J in the beginning of the proof yields

‖∇v‖2L2(Qr) ≤
(

1 + C
ηr

ρ

)2

‖∇u‖2L2(Qr) + ‖∇u‖2L2(QJ\QJ+1)

≤
(

1 + C
ηr

ρ

)2

‖∇u‖2L2(Qr) +
1

K
‖∇u‖2L2(Qr)

≤ ‖∇u‖2L2(Qr) + C

(
ηr

ρ
+
ρ

r

)
‖∇u‖2L2(Qr).

We hence set ρ = η1/2r to achieve the stated estimate for the L2-norm of the gradient of v.

We moreover estimate

|Dv|(Qr) ≤ ‖∇v‖L1(Qr) +

ˆ
Jv

|v+ − v−| dH1 ≤ Cr‖∇u‖L2(Qr) +

ˆ
Ju

(u+ − u−) dH1.

Using again Lemma 4.3 and Hölders inequality implies

‖u− v‖L1(Qr) ≤ r‖u− v‖L2(Qr) ≤ r‖u− uρ‖L2(Qr−ρ) ≤ Crρ‖∇u‖L2(Qr)

= Cr2η1/2‖∇u‖L2(Qr),

which finishes the proof.

4.2.2 Construction on type-II squares

We will now perform a construction on a square on which the size of the jump set is arbitrary. The
error in energy in this construction will be relatively large but will be controlled in total, since we
will not use many of these squares.
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4. The recovery sequence for the scalar-valued problem

We will replace u by a function that is constant on rectangles of the form (−R,R)× (yi, yi+1). It is a
variant of the Poincaré inequality that the L2-distance of these two functions is small. In Chapter 7
we will present a more complex variant of such a Poincaré-type inequality in a SBD-setting.

Proposition 4.6 (Construction on type-II squares). Let R ∈ (0, 1) and u ∈ SBV 2
e2(QR).

Then there is v ∈ SBV 2
e2(QR) and finitely many values y1, . . . , yK ∈ (−R,R) such that

Jv ∩Q 12
14R

=

K⋃
i=0

(−12

14
R,

12

14
R)× {yi}, v = u on QR \Q 13

14R
,

‖∇v‖L2(QR) ≤ C‖∇u‖L2(QR), ‖u− v‖L1(QR) ≤ CR2‖∇u‖L2(QR)

H1(Jv) ≤ CH1(Ju) + CR and |Dv|(QR) ≤ CR‖∇u‖L2(QR) + C|DJu|(QR).

It moreover holds that there are a ∈ (− 13
14R,−

12
14R), b ∈ ( 12

14R,
13
14R) such that

Jv ∩Q 13
14R
\Q 12

14R
= Ju ∩Q 13

14R
\Q 12

14R
∪

K⋃
i=1

((
a,−12

14
R
]
× {yi} ∪

[12

14
R, b

)
× {yi}

)
.

The idea of the proof is to choose a vertical segment on which the gradient is small and such that
the segment intersect with the right number of jumps. We will interpolate to a piecewise constant
function in the interior and create jump of length∼ 2R for each jump point on these lines, see Figure
13.

v = u

v = v2v = v2

v = v3

v = v4

Figure 13: Type-II squares: Finitely many jumps (C ·M = 3) are inserted, indicated by the blue lines. We let the function v
be constant between these jumps and interpolate to the original function u in the yellow area.

Proof. Let M ∈ N be minimal such that MR ≥ H1(Ju). We will construct a function that has
C ·M ∼ CR−1H1(Ju) many jumps of length 2R. Let J = (− 13

14R,−
12
14R) be the interval in which

we want to find a good vertical slice and define

A =

{
x ∈ J

∣∣∣ ˆ R

−R
|∂yu|2(x, ·) dL1(y) ≤ 42R−1‖∂yu‖2L2(Q)

}
.
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4.2 Local constructions

It easily seen that L1(J \A) ≤ R
42 and therefore L1(A) = 1

14R− L
1(J \A) ≥ 2

3 ·
1
14R. Let

B =
{
x ∈ J

∣∣∣H0(Ju ∩ {x} × (−R,R)) ≤ 42M
}

and

D =

{
x ∈ J

∣∣∣ ˆ
Ju∩({x}×(−R,R))

[u] dH0(y) ≤ 42R−1

ˆ
Ju

[u] dH1

}
.

With the same arguments as before it follows that L1(J \B) ≤ R
42 and L1(J \D) ≤ R

42 and therefore
L1(B) ≥ 2

3 ·
1
14 and L1(D) ≥ 2

3 ·
1
14 . Hence the intersection of these three sets is nonempty and we

can choose x− ∈ A ∩B ∩D ∩ J .

Let y1 < y2 < · · · < yI be the y-values of the finitely many points at which the jump set of u
intersects the axis {x−} × (−R,R) i.e., Ju ∩ ({x−} × (−R,R)) =

⋃I
i=1{x−, yi}. The point x− has

been chosen such that I ≤ CM ≤ CR−1H1(Ju).

Let ψ ∈ C1(QR) be a interpolation function such that ‖ψ‖L∞(QR) ≤ 1, ψ = 0 on Q 12
14R

, ψ = 1 on
QR \Q 13

14R
and ‖∇ψ‖L∞(QR) ≤ C

R .

We define the piecewise constant function w =
∑I
i=0 uiχRi where ui = max{ui−1, u

+(x−, yi)} and
Ri = (−R,R) × (yi, yi+1). I.e., w takes the value of u on the lower left edge of each rectangle Ri
for this rectangle if this creates a positive jump and retains the formerly chosen value if the created
jump would be negative. It holds w ∈ SBV 2

e2(QR). Define

v = ψu+ (1− ψ)w = ψ(u− w) + w

and notice that also v ∈ SBV 2
e2(QR). The absolutely continuous part of the gradient of v is estimated

‖∇v‖2L2(QR) ≤ 2‖∇u‖2L2(QR)‖ψ‖
2
L∞(QR) + 2‖u− w‖2L2(QR)‖∇ψ‖

2
L∞(QR)

≤ 2‖∇u‖2L2(QR) +
C

R2

I∑
i=0

‖u− ui‖2L2(Ri)
(12)

≤ 2‖∇u‖2L2(QR) +
C

R2

I∑
i=0

‖u− u+(x−, yi)‖2L2(Ri)
+

C

R2

I∑
i=0

‖u+(x−, yi)− ui‖2L2(Ri)
.

The third term occurs by the triangle inequality if the value at the lower edge of Ri is smaller then
the value at the edge of Ri−1.

We can estimate the second term by the following Poincaré-type inequality. Define hi = yi+1 − yi,
then we can estimate, using fundamental theorem of integration theory, that

‖u− u+(x−, yi)‖2L2(Ri)
≤ 2Rh2

i ‖∂yu(x−, ·)‖2L2((yi,yi+1)) + 2R2‖∂xu‖2L2(Ri)
.

The second term of (12) is hence estimated, using that hi ≤ 1, by

C

R2

I∑
i=0

‖u− u+(x−, yi)‖2L2(Ri)
≤ C

R2

I∑
i=0

(Rh2
i ‖∂yu(x−, ·)‖2L2((yi,yi+1)) +R2‖∂xu‖2L2(Ri)

)

≤ CR‖∂yu(x−, ·)‖2L2((−R,R)) + C‖∂xu‖2L2(QR).
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4. The recovery sequence for the scalar-valued problem

For the third term we notice the following: If ui 6= u+(x−, yi) then there is a maximal j < i such
that uj = u+(x−, yj) = ui and it holds that u+(x−, yj) > u+(x−, yi).

Then, since u+(x−, yk)− u−(x−, yk) > 0 we have

|u+(x−, yi)− ui| = u+(x−, yj)− u+(x−, yi) ≤ u+(x−, yj)− u−(x−, yi)

≤
i−1∑
k=j

(u+(x−, yk)− u−(x−, yk+1))

=

ˆ yi

yj

|∂yu|(x−, ·) dH1.

If we insert this in the third term of (12) we get

C

R2

I∑
i=0

‖u+(x−, yi)− ui‖2L2(Ri)
≤ C

R2

I∑
i=0

hiR|u+(x−, yi)− ui|2

≤ C
I∑
i=0

2hi‖∂yu(x−, ·)‖2L2((−R,R))

≤ CR‖∂yu(x−, ·)‖2L2((−R,R)),

since
∑I
j=0 hj = R.

The vertical segment {x−} × (−R,R) was chosen such that ‖∂yu(x−, ·)‖2L2(yk,yk+1) ≤
C
R‖∂yu‖

2
L2(QR)

and so altogether we see that (12) yields

‖∇v‖2L2(QR) ≤ C‖∇u‖
2
L2(QR).

Notice that the interpolation between two functions with jumps of positive height has the union
of the jump sets of the two functions as a jump set, up to a H1-null set. Since the jump of w is
regular the jump set is even equal to that union pointwise everywhere. If we choose the interpolator
ψ to be the product of two one-dimensional interpolators i.e., ψ(x, y) = ψ̃(x)ψ̃(y) we have for
supp(ψ̃) = (a, b)

Jv = Ju \Q 12
14R
∪
⋃
i∈Ĩ

(a, b)× {yi}.

We have chosen Ĩ ⊆ {1, . . . , I} so that w has a jump between Ri−1 and Ri for i ∈ Ĩ . In particular

H1(Jv) ≤ H1(Ju) + IR ≤ H1(Ju) + CMR ≤ H1(Ju) + CH1(Ju) + CR ≤ CH1(Ju) + CR.

The functions u and v coincide on {− 13
14R} × (−R,R) and hence the Poincaré inequality yields

‖u− v‖L1(QR) ≤ CR‖∂xu− ∂xv‖L1(QR) ≤ CR2(‖∂xu‖L2(QR) + ‖∂xv‖L2(QR)) ≤ CR2‖∂xu‖L2(QR).

To estimate |Dv| it remains to estimate the height of the jumps of v in L1. Fix some i ∈ Ĩ and let
m < i maximal such that m ∈ Ĩ . In particular we have um = u+(x, ym). It follows with the same
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4.2 Local constructions

calculations as before that

0 ≤ ui − ui−1 =

i∑
j=m+1

(u+(x−, yj)− u−(x−, yj)) +

ˆ yi

ym

∂yu(x−, ·) dH1.

This equality together with the choice of the set D yields the estimate

|Dv|(QR) ≤ |Du|(QR) + |Dw|(QR) +
1

R
‖u− v‖L1(QR)

≤ ‖∇u‖L1(QR) + |DJu|(QR) +R
∑
i∈Ĩ

(ui − ui−1) + CR‖∇u‖L2(QR)

≤ CR‖∇u‖L2(QR) + |DJu|(QR) +R

I∑
i=1

[u](x, yi) +R‖∂yu(x, ·)‖L1((−R,R))

≤ CR‖∇u‖L2(QR) + C|DJu|(QR),

which finishes the proof.

4.2.3 Construction on type-III squares

Type-III squares are the squares in which u has a jump that has length approximately 2R and is
nearly straight. The existence of such squares is far less obvious then the existence of type-I and
type-II squares. It is a consequence of regularity results for rectifiable sets which are proven with
blow-up techniques. We will discuss this in detail in Lemma 4.12.

To be more precise: A type-III square QR has a smaller square Qr in it, such that r is close to R and
such that the intersection of jump set and ∂Qr are exactly two points, each on a different vertical
edge of Qr, whose vertical distance is small. Moreover, the gradient of u on ∂Qr is comparable to
the gradient of u on QR.

Lemma 4.7 (Construction for type-III squares). Let ε ∈ (0, 1
2 ), η ∈ (2ε, 1

8 ), R > 0.
Let r ∈ (R − 2ηR,R − ηR) and define the squares Q = QR(0) and q = Qr(0). Let u ∈ SBV 2

e2(Q) such
that

‖∇u‖2L2(∂q) ≤ Cη
−1R−1‖∇u‖2L2(Q)

and Ju ∩ ∂q = {z+, z−} where |z±2 | ≤ εr and z±1 = ±r.

Then there exists v ∈ SBV 2
e2(Q) such that

i) ‖∇v‖2L2(Q) ≤ Cη
−1ε−1/2‖∇u‖2L2(Q),

ii) ‖u− v‖L1(Q) ≤ C r3/2

η1/2ε1/4 ‖∇u‖L2(Q),

iii) u = v on Q \ q,

iv) Jv ∩ q is union of two segments,H1(Jv ∩ q) ≤ 2R+ Cε1/2R and

v) |Dv|(q) ≤ CR([u](z+) + [u](z−)) + C r1/2

η1/2ε1/4 ‖∇u‖L2(Q).
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4. The recovery sequence for the scalar-valued problem

Proof. Define y± = z±2 be the y-values of the points where the jump set meets the boundary of the
square q. Let without loss of generality y− < y+. Notice that the case y+ = y− needs a different,
but much easier construction.

Let γ = y+ − y− and fix δ > 0 which will be chosen later. Divide the square q in an upper and
a lower domain Rt and Rb and a parallelogram Rm in the middle, see Figure 14. The upper and
lower set are defined as Rt = {(x, y) ∈ q | gt(x) ≤ y} and Rb = {(x, y) ∈ q | gb(x) ≥ y}where

gt(x) =


y− x ≤ 0

y− + γ
δ x x ∈ (0, δ)

y+ x ≥ δ

and gb(x) =


y− x ≤ 2δ

y− + γ
δ x x ∈ (2δ, 3δ)

y+ x ≥ 3δ.

y−
y+

Rt

Rb

0 δ 2δ 3δ

∆v = 0

∆v = 0

Rm

Figure 14: Type-III squares: The jump (red), mostly covered by a C1 curve (dotted line), is replaced by two large jumps in
horizontal direction. We solve Laplace’s equation on the upper and lower half of the domain.

The sets Rt and Rb are only slight deformations of the rectangle (−r, r) × (0, r). Since there is a
bijective function ϕ ∈W 1,∞(R,Rt) with ‖Dϕ− Id ‖L∞ ≤ γ

δ we can easily deduce that for a solution
w of Laplace’s equation on Rt it holds ‖∇w‖2L2(Rt) ≤ (1 + C γ

δ )r‖∇w · ν‖2L2(∂Rt).

Let the four values at the jump points z± be given by u±l = u±(−r, y−) and u±r = u±(r, y+). We
want to solve Laplace’s equation on both domains and need to define the the boundary values on
the lower edge of Rt and the upper edge of Rb. It seems reasonable to chose the linear interpolation
in x-direction between u+

l and u+
r for Rt and between u−l and u−r for Rb.

The linear interpolation is a good choice since the gradient on this edge is then estimated by the
gradient on the other three edges, which is by assumption estimated by the gradient of u on Qr.
Moreover, it is ensured that the jump at ∂Rt ∩ ∂Rb is of positive height, since it is the linear interpo-
lation in x between the two positive jumps at the boundary of q.

However, we will modify this interpolation slightly to simplify the construction on the middle part
Rm. We are performing a linear interpolation on (−r, 0), then stop the interpolation for x ∈ (0, 3δ)

and then continue the interpolation on (3δ, r) slightly faster. Since δ � r this does not change the
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4.2 Local constructions

scaling of the gradient. Define

vt(x, y) =


u+
l + x+r

2r (u+
l − u+

r ) x ∈ (−r, 0), y = gt(x)

1
2 (u+

l + u+
r ) x ∈ (0, 3δ), y = gt(x)

1
2 (u+

l + u+
r ) + x−3δ

2r−6δ (u+
l − u+

r ) x ∈ (3δ, r), y = gt(x)

and

vb(x, y) =


u−l + x+r

2r (u−l − u−r ) x ∈ (−r, 0), y = gt(x)

1
2 (u−l + u−r ) x ∈ (0, 3δ), y = gt(x)

1
2 (u−l + u−r ) + x−3δ

2r−6δ (u−l − u−r ) x ∈ (3δ, r), y = gt(x).

As argued above we see that a solution vt of Laplace’s equation on Rt with this boundary values
satisfies

‖∇vt‖L2(Rt) ≤ (1 + C
γ

δ
)r
(
‖∇u‖L2(gt((−r,r))) + ‖∇u‖L2(∂Rt\gt((−r,r)))

)
≤ C(1 +

γ

δ
)
1

η
‖∇u‖2L2(Q)

and the similarly constructed solution vb on Rb satisfies ‖∇vb‖L2(Rb) ≤ C(1 + γ
δ ) 1
η‖∇u‖

2
L2(Q).

0 δ 2δ 3δ

um =

l + x−δ
δ

(r − l)
um = r

um = l

ur+
ur−ȳ

ỹ−

Figure 15: Type-III squares: Interpolation on Rm (left). The height of the jumps at the boundary can be estimated by the
gradient since it is possible to avoid the jump set (right).

We may complete the construction with the definition of an interpolating function v on the paral-
lelogram Rm = {(x, y) |x ∈ (−ε1/2, ε1/2), y ∈ (gb(x), gt(x))}. The function should fit continuously
to the previous constructions on the vertical edges and is allowed to have jumps on the horizontal
edges. We therefore use again a linear interpolation in x-direction. Notice that the functions ut and
ub are constant along the edges of Rm. Since a dependence of the interpolation on the y-variable
would enter the energy with a factor of γ−1 we want to fill the triangles in the parallelogram with
constant values and interpolate between this values in x on the small square, see Figure 15 for a
sketch. We define

um(x, y) =


1
2 (u+

r + u+
l ) x ∈ (0, δ)

1
2 ((u+

r + u+
l ) + x−δ

δ (u−r + u−l − u+
r − u+

l )) x ∈ (δ, 2δ)

1
2 (u−r + u−l ) x ∈ (2δ, 3δ).

We easily see that the jumps are of positive height at the horizontal edges of Rm whilst the function
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4. The recovery sequence for the scalar-valued problem

is continuous in x-direction. The gradient is estimated by

‖∇um‖2L2(Rm) ≤
γ

2δ
|u−r + u−l − u

+
r − u+

l |
2 ≤ γ

δ

(
|u−r − u+

r |2 + |u−l − u
+
l |

2
)
.

So it remains to estimate the height of the two jumps in dependence of the gradient. This can be
done by avoiding the jump, similarly to the proof for the Poincaré inequalities for type-I squares,
see Figure 15 for a sketch.

Choose ȳ ∈ (y−, y+) such that u(·, ȳ) ∈W 1,2((−r, r)) and

ˆ r

−r
|∂xu(·, ȳ)|2 ≤ 2γ−1‖∇u‖2L2(Q).

There are also ỹ− ∈ (y− − r
2 , y
−) and ỹ+ ∈ (y+, y+ + r

2 ) that satisfy

ˆ r

−r
|∂xu(·, ỹ±)|2 ≤ 4r−1‖∇u‖2L2(Q).

We have η < 1 and γ < r and can therefore estimate

|u+
l − u

−
l |

2 ≤2γ‖∂yu(−r, ·)‖2L2((−r,r)) + 2r‖∂xu(·, ȳ)‖2L2((−r,r))

+ 2γ‖∂yu(r, ·)‖2L2((−r,r)) + 2r‖∂xu(·, ỹ−)‖2L2((−r,r))

≤C
(
γ

rη
+
r

γ
+ 1

)
‖∇u‖2L2(Q)

≤C r

ηγ
‖∇u‖2L2(Q).

With a similar argument we have |u+
r − u−r |2 ≤ C r

ηγ ‖∇u‖
2
L2(Q).

Hence, defining v as um, ut and ub on Rm, Rt and Rb and as u on Q \ q we conclude, choosing
δ = rε1/2

‖∇v‖2L2(Q) ≤ C(1 +
r

ηδ
+

γ

ηδ
)‖∇u‖2L2(Q) ≤ C

1

ηε1/2
‖∇u‖2L2(Q).

The choice of δ and the fact that that the jump set is Jv ∩ q = (−r, 2δ)× {y−} ∪ (δ, r)× {y+} yields
H1(Jv ∩ q) = 2r + 2rε1/2. Since u = v on ∂q we get due to the Poincaré inequality that

‖u− v‖L1(q) ≤ r3/2‖∂x(u− v)‖L2(Qr) ≤ C
r3/2

η1/2ε1/4
‖∇u‖L2(Q).

The height of the two jumps can also be estimated pointwise by the height of the original jumps at
z±. It therefore holds that |Dv|(q) ≤ CR([u](z+) + [u](z−)) + C r1/2

η1/2ε1/4
‖∇u‖L2(Q).

4.3 Two density results

We have now the local constructions ready to prove the approximation results.

We will first approximate an arbitrary function u ∈ SBV 2
e2,a with functions uk ∈ SBV 2

e2,a such
that the jump set of each uk is compact. An similar approximation has already been done for the
space SBV (Ω)∩L∞(Ω) and an even more general energy by Braides and Chiadò Piat (see [10]) but
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4.3 Two density results

since our function space is much more restrictive we need a different approach in our proof. The
L∞ constraint is not crucial but could be easily inserted by a standard cut-off argument. We do,
however, perform our constructions without applying such a cut-off since we have in mind that
we later would like to generalize to a density result in a SBD-setting where L∞-bounds can not be
achieved that easy.
The main difference is that in their setting one can replace the function on squares on which the
jump accumulates by a constant function. This decreases the elastic energy, whilst the length of the
jump is only increased by the perimeter of the squares and hence the overall energy is increased by
at most the sum over the sidelengths of such squares. They choose a compact set in the jump set
that covers most of the jump set. Then the remaining part of the domain is covered with squares,
and it follows, that the sum over the sidelengths of these squares that contain much jump set, is
small and so is the overall error in the energy.
However, this technique is not applicable in our setting since the main step, replacing the function
by a constant on some small domains, creates jump that is in vertical direction. We will instead use
the construction for type-II squares, introduced in the previous subsection. Since the jump of these
constructions is only regular in an inner square we need to cover the set Ω with the inner squares
such that the overlap of the large squares is not to large. A similar covering has for example been
done by Friesecke, James and Müller in [31].

4.3.1 A covering theorem

We recall a formulation of Whitney’s covering theorem (see [48], Chapter VI 1, Theorem 1) which is
obtained by a straightforward construction with dyadic cubes.

Proposition 4.8 (Whitney’s covering theorem). For every U ⊆ Rn open there exists a collection of closed
cubes F = {Qn |n ∈ N} such that:

i)
⋃
n∈NQn = U .

ii) Q̊n ∩ Q̊m = ∅.

iii) diam(Qn) ≤ dist(Qn, ∂U) ≤ 4 diam(Qn).

In our construction we will not be able to use Whitney’s covering theorem directly, but will apply
the following variant which is achieved with an additional application of the Besicovitch covering
theorem.
For a cube Q = Qr(x) we write shortly bQ for the rescaled cube Qbr(x).

Proposition 4.9 (Whitney-Besicovitch-type covering theorem). There is a constant N = N(n) such
that for every U ⊆ Rn open there is a collection of closed cubes F = {Qn |n ∈ N} such that:

i)
⋃
n∈N

6
7 Q̊n = U =

⋃
n∈NQn.

ii) There are subcollections Fi ⊆ F such that F =
⋃
i=1,...,N Fi and if Q1, Q2 ∈ Fi then Q1 ∩Q2 = ∅.

iii) For each point x ∈ Ω there is an open set A ⊆ Ω such that x ∈ A and A intersects at most N cubes in
F .
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4. The recovery sequence for the scalar-valued problem

iv) If two cubes Q̂, Q̃ are K-neighbors, then the sidelengths r̂, r̃ of these cubes satisfy r̂ ≤ bK r̃ and the
number of the K-neighbors of Q̂ is estimated by aK .
We call two squares K-neighbors if there are K − 1 many squares Qi such that for Q0 = Q̂ and
QK = Q̃ it holds: Qi ∩Qi+1 6= ∅.

Proof. Fix the open set U ⊆ Rn. We use Whitney’s covering theorem in the formulation of Proposi-
tion 4.8 to obtain a collection of closed cubes G = {Qi(xi)} that covers U . Define the family of cubes
enlarged by a factor of 71

60 by F := { 71
60Qi}.

Let E =
⋃
i∈N{xi} be the set of centers of the cubes in G. The family of larger open cubes defined

by F̊ = { 72
60 Q̊i} is a Besicovitch-cover for E. Due to the Besicovitch covering theorem (see Theorem

2.17 in [3]) there are N many subcollections F̊i of F̊ such that every collection is disjoint and the
union of all chosen cubes still covers E.
Each x ∈ E is only contained in one Q ∈ G. Property iii) together with an easy geometric argument
tells us that for each ε < 1

5 it holds that the center of a cube xi /∈ (1 + ε)Qj for j 6= i. Hence we know
that each cube Q̃ ∈ G has a corresponding cube in some F̊i.
The corresponding subcollectionsFi of closed cubes are still disjoint since the cubes inF are smaller
then the open cubes in F̊ and it is an application of the third property of Whitney’s covering theorem
that the cubes in F are still contained in U . The cubes in G cover U and 6

7
71
60

˚̃Q ⊇ Q̃ for each Q̃ ∈ G
so therefore i) and ii) are satisfied.
Fix x̄ ∈ U . Then there are at most N many cubes Q1, . . . , QN ∈ G such that x̄ ∈ 72

60 Q̊i. Let Q̃
be the smallest of these cubes and denote its radius by r̃. Define the open set A = B 1

300 r̃
(x̄) and

notice that A ⊆ 72
60 Q̊i for all of the cubes that contain x̄. If there is a cube Q̂ = Qr̂(z) ∈ G such that

71
60 Q̂ ∩ A 6= ∅ then in particular 72

60 Q̃ ∩
72
60 Q̂ 6= ∅. We can again use the third property of Whitney’s

covering theorem to show that r̄ ≥ 1
5 r̃. Then A ⊆ 72

60 Q̂ hence x̄ ∈ Q̂ and hence Q̂ = Qi for some
i ∈ {1, . . . N}. This is property iii).
Fix a cube Q ∈ F with radius r. A neighbor Q̂ of Q with radius r̂ satisfies: 1

5r ≤ r̂ ≤ 5r. In
particular: All neighbors Qi of Q are contained in the cube 5Q. That is: The cubes 6

7Qi are disjoint,
contained in 5Q, and have radius estimated from bellow by 1

5r. Hence their number is uniformly
bounded, independent of r. The estimate for K-neighbors follows by induction over K.

With this proposition at hand we can start the proof of the density statements.

4.3.2 Density of functions with compact jump set

At first we want to approximate and arbitrary function in SBV 2
e2,a with functions that have a com-

pact jump set. We divide the proof of this density result in two steps: First we present a construction
that does not involve the boundary values. The complete statement is proven in Proposition 4.11.
At this point we will only need the construction of type-I and type-II squares.

Proposition 4.10 (Approximation with compact jump set for Mumford-Shah energy). For each
u ∈ SBV 2

e2,a, for each δ > 0 exists v ∈ L1(Ω) such that for all γ > 0 it holds: v ∈ SBV 2
e2((γ, 1 − γ)2),

H1((Jv \ Jv) ∩ (γ, 1− γ)2) = 0,

‖v − u‖L1(Ω) ≤ δ, |Dv|(Ω) ≤ C(1 + ‖∇u‖L2(Ω) + |Du|(Ω)) and J(v) ≤ (1 + δ)J(u).
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4.3 Two density results

The functional J denotes the Mumford-Shah functional.

Proof. Fix u ∈ SBV 2
e2,a, δ > 0 and choose ε, η > 0 arbitrary. There exists a compact set K ⊆ Ju such

that H1(Ju \ K) ≤ ε (see [3], Proposition 2.66) and we can choose K such that it is contained in
finitely many C1-curves {Sl | l = 1, . . . , L}.
We use the Whitney-Besicovitch-type covering of Proposition 4.9 for U = Ω \ K to define N col-
lections of squares {Fi | i = 1, . . . , N}. They are in particular chosen such that the squares in each
family Fi are disjoint, are contained in Ω \K and are such that Ω \K =

⋃N
i=1

⋃
Q∈Fi

6
7Q.

In the sense of H1-measure, most parts of the jump set is already given as a compact set and we
only need to regularize the remaining part. For this purpose we subdivide each collection Fi in two
subcollections F1

i and F2
i where F1

i = {Qr(x) ∈ Fi |H1(Ju ∩ Qr(x)) ≤ ηr} and F2
i = Fi \ F1

i . On
F1 we will perform the type-I construction such that there will be no jump left whilst we will add
additional jump with the type-II construction on F2.

Notice that since the squares in F2
i are disjoint we get for each i that the sum over the radii of these

squares is small i.e.,

ε ≥ H1(Ju \K) ≥ H1

Ju ∩ ⋃
Q∈F2

i

Q

 ≥ ∑
Qrj (xj)∈F2

i

η rj .

The choice of the squares does depend on ε even though this is not indicated by the notation.
Define the domains covered by the different families of squares by Gε,η,i =

⋃
Qrj (xj)∈F1

i
Qrj (xj)

and Eε,η,i =
⋃
Qrj (xj)∈F2

i
Qrj (xj) and let additionally ENε,η,i be the union of those squares that are

N -neighbors to squares in Eε,η,i. We can now compute the size of this set since we know that the
number of neighbors and their radius is estimated by the original collection. We estimate

L2
(
ENε,η,i

)
≤

N∑
k=1

∑
Qrj (xj)∈F2

i

ak(bkrj)
2 ≤ N

∑
Qrj (xj)∈F2

i

aNb2Nrj

≤ NaNb2N
∑

Qrj (xj)∈F2
i

H1(Ju ∩Qrj (xj))
η

≤ C ε
η
.

We will need this domain to be small hence we choose η = ε1/2. We use the dominated convergence
theorem to choose ε so small that

‖∇u‖L2(
⋃
i=1,...,N ENε,η,i)

≤ δ.

At the very end of the proof we will have additional constrains that let us choose ε even smaller.

After this preliminary choices we start using the construction for type-I squares (see Proposition 4.5)
recursively on the collection of squares F1

i . In each F1
i the squares are disjoint and the construction

does only depend on the values in the interior of each square. For fixed i the construction can
therefore be performed simultaneously in Gε,η,i. It will depend recursively on the construction for
k < i since the different families Fj do overlap. But since this happens only finitely many times we
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4. The recovery sequence for the scalar-valued problem

are still able to control the error in the energy.

Let v1 be the function that is created if Proposition 4.5 is applied on each of the disjoint squares of
F1

1 .

Then

Jv1 ⊆ Ju, ‖∇v1‖2L2(Ω) ≤ ‖∇u‖
2
L2(Ω) + Cη1/2‖∇u‖2L2(Gε,η,1)

‖u− v1‖L1(Ω) ≤ η1/2‖∇u‖L2(Ω), |Dv1|(Ω) ≤ C(‖∇u‖L2(Gε,η,1) + |Du|(Ω))

and Jv1 ∩ 6
7Q = ∅ for each Q ∈ F1

1 .

Assume now we have already constructed a function vk on the squares of F1
k . Since the jump set

gets only smaller in the construction, the squares in F1
k+1 still satisfy that H1(Jvi ∩ Qr(x)) ≤ rη.

Use Proposition 4.5 to create a function vk+1 by changing vk on the disjoint squares of F1
k+1. Then

Jvk+1 ⊆ Jvk, Jvk+1 ∩ 6
7Q = ∅ for each Q ∈

⋃k+1
i=1 F i1 and the estimates for the L1-difference and the

gradients can be computed inductively:

‖∇vk+1‖2L2(Ω) ≤ (1 + Cη1/2)‖∇vk‖2L2(Ω) ≤ (1 + Cη1/2)k+1‖∇u‖2L2(Ω) ≤ (1 + C̃η1/2)‖∇u‖2L2(Ω),

‖u− vk+1‖L1(Ω) ≤ ‖vk − vk+1‖L1(Ω) + ‖vk − v‖L1(Ω)

≤ η1/2‖∇vk‖L2(Ω) + η1/2C̃η1/2‖∇vk‖L2(Ω)

≤ C̃η1/2‖∇u‖L2(Ω)

and |Dvk+1|(Ω) ≤ C̃(‖∇u‖L2(Ω) + |Du|(Ω)). This process terminates with a finite constant since
there are only finitely many disjoint families of squares.

As a next step we want to perform the type-II construction on F2. At first we want to change vN on
the squares ofF2

1 . Even though the property thatH1(JvN∩Qr(x)) ≤ rη might not longer be fulfilled
we will still apply the type-II constructions. After the first step of recursion, using Proposition 4.6
on each square, we find a function w1 such that Jw1 ∩ 6

7Q is finite union of segments for all Q ∈ F2
1 ,

‖∇w1‖2L2(Ω) ≤ ‖∇vN‖
2
L2(Ω) + C‖∇vN‖2L2(Eε,η,1)

≤ ‖∇vN‖2L2(Ω) + C‖∇v‖2L2(ENε,η,1) ≤ ‖∇vN‖
2
L2(Ω) + Cδ,

‖vN − w1‖L1(Ω) ≤
∑

Qrj (xj)∈F2
1

Cr
3/2
i ‖∇vN‖L2(Ω) ≤ Cε1/2‖∇vN‖L2(Ω),

|Dw1|(Ω) ≤ C(‖∇wN‖L2(Ω) + |DvN |(Ω))

and

H1(Jw1) ≤ H1(JvN ) +
∑

Qrj (xj)∈F2
1

(
CH1(JvN ∩Qrj (xj)) + Crj

)
≤ H1(JvN ) + C(ε+ ε1/2).

We repeat this argument recursively on the different families of squares Fk and reach finally a
function wN that satisfies

JwN ⊆ K ∪
⋃
k∈N

(ak, bk)× {yk}
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4.3 Two density results

for some values ak, bk, yk ∈ (0, 1). Due to property iii) of the Whitney-Besicovitch-type covering for
each x ∈ Ω\K there is an open set U such that x ∈ U and U intersects with only finitely many of the
squares. Hence the only possible accumulation points of the jump set lie in K and ∂Ω. In particular
it holds that for each γ > 0 the set JwN ∩Q1−γ is contained in the union of the compact set K and
countably many open segments that do not have accumulation points outside of the compact set.
However, we still need to show that the points in K are still jump points of wN . Since K is chosen
as a subset of finitely many C1 functions {Sl | l = 1, . . . , L} we can for almost every x̄ ∈ K find a
small radius r such that for some l it holds: K \ Sl ∩ Qr(x̄) = ∅ and Sl = γ((−r, r)) for some C1

function γ. Then in particular Qb = {(x, y) ∈ Qr(x̄) | y ≤ γ(x)} is a Lipschitz domain, hence we can
apply the trace theorem and u−(x̄) = Tr(u)(x̄).
We can also understand wi+1 and vi+1 as the limit of a sequence wmi and vmi respectively where the
mth element of the sequence differs from them−1th by applying the construction on themth square
of F i1 and F i2 respectively. The forgoing estimates for the energy imply vmi

∗
⇀ vi+1 and wmi

∗
⇀ wi+1

in BV (Ω \K).
We can moreover estimate |Dwm+1

i − Dwmi |(Ω \ K) ≤ C|Dwi−1|(Qm+1), where Qm denotes the
mth square of F2

i , and can hence see that wmi is a Cauchy-sequence in BV (Ω \ K). It follows that
the sequence converges strongly in BV (Ω \ K) and in particular in BV (Qbr(x)). Since each wmi
equals to wi−1 in a neighborhood of x̄ we can conclude, using the trace theorem on Qbr(x̄) that
w−i (x̄) = TrQbr(x̄)(wi)(x̄) = limm→∞TrQbr(x̄)(w

m
i )(x̄) = TrQbr(x̄)(wi−1)(x̄) = w−i−1(x̄). The same

argument holds for the vi’s.
Moreover the recursive estimates for the derivatives yieldH1(JwN ) ≤ H1(Ju) +NC(ε+ ε1/2),

‖∇wN‖2L2(Ω) ≤ ‖∇u‖
2
L2(Ω) + Cε1/4‖∇u‖2L2(Ω) + C(1 + Cε1/4)‖∇u‖2L2(

⋃
i=1,...,N Eε,η,i)

≤ ‖∇u‖2L2(Ω) + Cε1/4‖∇u‖2L2(Ω) + C(1 + Cε1/4)δ,

‖u− wN‖L1(Ω) ≤ ‖u− vN‖L1(Ω) + ‖vN − wN‖L1(Ω)

≤ Cε1/4‖∇u‖L2(Ω) + Cε1/2(1 + ε1/4)‖∇u‖L2(Ω),

and
|DwN |(Ω) ≤ Ĉ(‖∇u‖2L2(Ω) + |Du|(Ω)).

Now we can choose ε so small that the stated inequalities hold for v = wN .

The foregoing proposition is not the first density result in its full generality. There are two things
that still need correction: The approximating functions might have a concentration of jumps at the
boundary of Ω and the boundary conditions may not be satisfied. We therefore want to prove

Proposition 4.11 (Approximation with compact jump set and conserved boundary values for Mum-
ford-Shah energy). For each u ∈ SBV 2

e2,a, for each δ > 0 exists v ∈ SBV 2
e2,a such thatH1(Jv \ Jv) = 0,

and

‖v − u‖L1(Ω) ≤ δ, |Dv|(Ω) ≤ C(1 + ‖∇u‖L2(Ω) + |Du|(Ω)) and J(v) ≤ (1 + δ)J(u).

Proof. The proof will be an application of Proposition 4.10 in a combination of some shifts of the
function in vertical and horizontal direction. Let us at first construct a function that has the correct
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4. The recovery sequence for the scalar-valued problem

boundary values. Define u1 : (−γ, 1)× (0, 1)→ R by

u1(x, y) =

u(x, y) x ≥ 0

y x ≤ 0.

Then let ũ(x, y) : (0, 1)2 → R be defined as ũ(x, y) = u1(x+γ
1+γ , y). Notice that due to the fundamental

theorem of integration theory and some easy computations we conclude

‖ũ− u‖L1(Ω) ≤ γ1/2I(u), I(ũ) ≤ (1 + Cγ)I(u) and |Dũ|(Ω) ≤ C|Du|(Ω).

Now we apply the foregoing proposition on ũ. Since the radius of the squares gets smaller as
they get closer to the boundary we can follow that all squares in (0, γ4 ) × (0, 1) are type-I and that
ũ is already an affine function there. The constructed function ṽ in particular coincides with the
affine function on (0, γ/4) × (0, 1) since convoluting an affine function with a standard-mollifier
does not change that function. This in particular implies that there are no accumulation points
of Jṽ close to left edge of the boundary and that the boundary values are satisfied. If we define
v1(x, y) = ṽ( x

1−γ , y) then all accumulation points of ṽ at {1} × (0, 1) are transported out of the unit
square and by fundamental theorem all estimates still hold.

It remains to get rid of the accumulation points of jump at the horizontal edges of the square. Let us
without loss of generality only consider the upper edge (0, 1) × {1}. Similar as at the right vertical
edge we want to push the jump that might accumulate at the boundary out of the domain, but due
to the jumps we do not have the fundamental theorem available.

We therefore use the following construction: Fix η ∈ (0, 1), α� η and define v̂ : Ω→ R as

v̂(x, y) =

v1
(
x,
(

1− α
η

)
y + α−αη

η

)
y ≥ 1− η

v1(x, y) y ≤ 1− η.

The function v̂ satisfies the boundary values v̂(x, 1) = v1(x, 1 − α), v̂(x, 1 − η) = v1(x, 1 − η) and
H1(Jv̂) = H1(Jv1 ∩ (0, 1)× (0, 1− α)). It holds that:

‖v̂ − v1‖L1(Ω) ≤ ‖v1‖L1((0,1)×(1−η,1)) + ‖v̂‖L1((0,1)×(1−η,1))

≤ ‖v1‖L1((0,1)×(1−η,1)) +
1

1− α
η

‖v1‖L1((0,1)×(1−η,1−α))

which is small if η is small. The estimates for the derivative hold by the usual application of the
chain-rule.

4.3.3 Density of functions whose jump set is a finite union of segments

Our goal is to apply the construction of the recovery sequence on jumps that are isolated from all
other components of the jump set. This is in general still not true for a compact jump set, since seg-
ments of jump may have an accumulation point that is a jump point located in a different segment.
We will now prove a stronger density result in which the jump of the approximating functions is
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4.3 Two density results

only a finite union of segments.

The difference to the foregoing result is that we will now also use the construction for type-III
squares. They are needed in situations where the jump is already nearly a segment but might
nevertheless be not isolated. In the first compactness result these parts of the jump were mostly
contained in the compact set K and hence we did not perform an explicit construction there.

The following technical lemma provides a covering of the domain with squares of different types.
It is inspired by Lemma 4.2 in the work of Cortesani and Toader [18] but bears many differences in
the details. The proof again uses the Whitney-Besicovitch-type covering theorem stated before and
the usual regularity results for jump sets of BV -functions.

An important point is that the squares for the type-III construction need to be truly disjoint and not
only up to finite subfamilies. Also it is necessary to use only finitely many of the different types of
squares to cover the jump set.

Lemma 4.12. Let u ∈ SBV 2
e2,a such that H1(Ju \ Ju) = 0, let ε ∈ (0, 1

16 ), η ∈ (2ε, 1
8 ). Let N be the

constant from the Whitney-Besicovitch-type covering theorem. Then there exists:

a) A finite family of outer squares {Qρi(xi) | i ∈ {1, . . . ,M}}, a finite family of inner squares
Qri(xi) ⊆ Qρi(xi) such that

i) the outer squares are disjoint and contained in Ω,

ii) the inner squares have radii approximately ρi i.e., ri ∈ (ρi − 2ηρi, ρi − ηρi),

iii) the inner squares have gradients on the edges that are comparable with the gradient on the corre-
sponding outer square i.e., ‖∇u‖2L2(∂Qri (xi))

≤ Cη−1ρ−1
i ‖∇u‖2L2(Qρi (xi))

,

iv) the edges of the inner square intersect the jump set only as often as necessary and the height of the
jump at the intersection is not to large i.e., Ju∩∂Qri(xi) = {z+,i, z−,i}where |zi,±2 −xi2| ≤ εri
and [u](z±,i) ≤ C(ε+ ρ−1

i

´
Ju∩Qρi (xi)

[u] dH1),

v) the gradient of u on the outer squares goes sublinearly in η · ε i.e., 1
η‖∇u‖

2
L2(

⋃M
i=1 Qρi (xi))

≤ ε2

and

vi) the inner squares cover most parts of the jump set whilst the outer squares are only as large as
needed i.e.,H1(Ju \

⋃M
i=1Qri(x

i)) ≤ CηH1(Ju) and
∑M
i=1 2ρi ≤ (1 + 2ε)H1(Ju).

b) A family of closed squares F = {Pk | k ∈ N} such that

i) the union of the scaled interior of the squares Pk covers all parts of the jump set that is not already
covered by the inner squares Qri(xi) of the first family and the family is locally finite i.e., for all
γ > 0 exists F̂γ ⊆ F finite such that

⋃
Pk∈F̂γ

6
7 P̊k ⊇ Ju ∩Q1−γ \

⋃M
i=1Qri(xi),

ii) the squares do not overlap to often i.e., there are subcollections {Fi | i ∈ {1, . . . , N}} ⊆ P(F)

such that F =
⋃
i=1,...,N Fi and if Q1, Q2 ∈ Fi then Q1 ∩Q2 = ∅,

iii) for each point x ∈ Ω there is U ⊆ Ω open such that x ∈ U and U intersects at most N squares in
F and

iv) the gradient of u is small on the union of those squares in F that carry much jump set i.e., on
F̃ = {Pk = Qr̃k(x̃k) ⊆ F |H1(Ju ∩ Pk) ≥ r̃kη1/2} it holds: ‖∇u‖2

L2(
⋃
F̃)
≤ ε.
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4. The recovery sequence for the scalar-valued problem

Proof. Fix ε̃ < ε, η̃ ∈ (2ε̃, η). We will use the fact that we can choose these values small in the very
end of the proof to show the smallness of the gradients of u on the different families of squares.

There are countably many functions Sk ∈ C1(R,R2) such that, up to a set of H1-measure zero,
Ju ⊆

⋃
k∈N Sk(R). It holds:

- For H1-almost every x ∈ Ju exists a k such that lim supρ→0
H1(Ju∩Qρ(x)\Sk)

2ρ = 0 and we have
that νSk(x) = e2(see Theorem 3.5 in [46]) .

- ForH1-almost every x ∈ Ju it holds: lim supρ→0
H1(Ju∩Qr(x))

2ρ = 1 (see Theorem 3.2.19 in [29]).

- For H1-almost every x ∈ Ju it holds: lim supρ→0

‖[u]‖L1(Qρ(x)∩Ju,H1)

H1(Qρ(x)∩Ju) = [u](x) (since
u ∈ L1(Ju,H1) and 1.62 in [28]).

Hence there is a set J̃ ⊆ Ju such thatH1(Ju \ J̃) = 0 and such that the set

G ε̃ =
{
Qρ(x) |x ∈ J̃ , ρ ≤ ε̃, ρ s.t. H1(Ju ∩Qρ(x) \ Sk) ≤ 2ε̃ρ, |∇Sk − e1| ≤ ε̃ on Qρ(x)

and for all ρ̃ ≤ ρ it holds

|H1(Ju ∩Qρ̃(x))− 2ρ̃| ≤ ε

2
ρ̃ and |‖[u]‖L1(Bρ̃(x)∩Ju,H1) − 2ρ̃[u](x)| ≤ ερ̃

}
is a fine Besicovitch cover for J̃ . Due to a corollary of the Besicovitch covering theorem we get
finitely many disjoint squares Ĝ ε̃ = {Qρi(xi) | i ∈ {1, . . .M}} ⊆ G ε̃ such that

H1(Ju \
M⋃
i=1

Qρi(xi)) = H1(J̃ \
M⋃
i=1

Qρi(xi)) ≤ ε̃. (13)

These squares are disjoint and will be, for a specific choice of ε̃, the family of the larger squares in
i). For each of this finitely many squares Qρi(xi) ∈ Ĝ ε̃ exists ri ∈ (ρi − 2η̃ρi, ρi − η̃ρi) such that

‖∇u‖2L2(∂Qri (xi))
≤ Cη̃−1ρ−1

i ‖∇u‖
2
L2(Qρi (xi))

and such that Ju ∩ ∂Qri(xi) contains exactly two points, z−,i, z+,i ∈ Sk, that satisfy z±,i1 = xi1 ± ri
and z±,i2 ∈ (xi2− ε̃ρi, xi2 + ε̃ρi). This uses the fact that η̃ ≥ 2ε̃ and the constraints for the jump set in
Qρi(xi). We additionally choose the points such that [u](z±,i) ≤ Cρ−1

i η̃−1
´
Ju∩Qρi (xi)\Qri (xi)

[u] dH1.

By the choices in G ε̃ we have

ˆ
Ju∩Qρi (xi)\Qri (xi)

[u] dH1 ≤ 2ρi[u](xi) + ερi − 2ri[u](xi)− εri

≤ 2εη̃ρi + 2η̃(‖u‖L1(Bρi (xi)∩Ju,H1) + ερi)

and hence
[u](z±,i) ≤ C(ε+ ρ−1‖u‖L1(Bρi (xi)∩Ju,H1)).

We see that a)i)-a)iv) is satisfied, independent of the choice of ε̃.

Define K =
⋃M
i=1Q(1−ε̃)ri(x

i). The set K is compact and contains most of the small squares Qri(xi)
and hence most of the jump set.
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As a next step we choose a countable family of squares F = {Pk | k ∈ N} to cover the remaining
parts of the domain. We apply the Whitney-Besicovitch-type covering theorem as formulated in
Proposition 4.9 for the open set Ω \K.
The so-defined family satisfies b)ii), b)iii) and

⋃
k∈N

6

7
P̊k = Ω \K =

⋃
k∈N

Pk.

Hence { 6
7 P̊k} it is also a covering of the smaller set Ω \

⋃
iQ(1− ε̃2 )ri

(xi) and thus for all γ > 0 an
open covering of the compact set Q1−γ ∩ Ju \

⋃
iQ(1− ε̃2 )ri

(xi). We therefore know that there exists
a finite subcovering { 6

7 P̊k | k ∈ {1, . . . , L}} of these squares.
This finite family is in particular a covering of the even smaller set Q1−γ ∩ Ju \

⋃
iQri(xi), hence

b)i) is satisfied if we define F̂ ε̃,γ = {Pk | k ∈ {1, . . . , L}} as the family of the larger squares.
It remains to estimate the gradients on the different families. Notice that we can without loss of
generality assume that Sk is a C1 graph with |S′k(t)| ≤ ε̃ for all t ∈ (xi1−ρi, xi1 +ρi). It in particular
follows that the length of Sk on an interval I is estimated by L1(I)(1 + ε̃). One of the constraints in
the definition of G ε̃ yields

∑M
i=1 ρi ≤

∑M
i=1H1(Ju ∩Qρi(xi)) ≤ H1(Ju).

We will use this estimate twice. First to prove the first estimate in a)vi) assuming η̃ is small enough.
We estimate

H1(Ju \
M⋃
i=1

Qri ≤H1(Ju ∩
M⋃
i=1

(Qρi(xi) \Qri(xi))) + η̃

≤
M∑
i=1

(
H1(Sk ∩ (Qρi(x

i) \Qri(xi))) +H1(((Ju \ Sk) ∩Qρi(xi))
)

+ η̃

≤
M∑
i=1

((1 + ε)η̃ρi + 2ε̃ρi) + η̃

≤Cη̃H1(Ju) + η̃.

We use it afterwards to prove that the Pk’s do not have to cover much jump. It holds:

H1(Ju ∩
∞⋃
k=1

Pk) = H1(Ju \K) = H1(Ju \
M⋃
i=1

Qρi(xi)) +

M∑
i=1

H1(Ju ∩ (Qρi(xi) \Q(1−ε̃)ri(xi)))

≤ ε̃+

M∑
i=1

((ε̃ρi + η̃ρi)(1 + ε̃) + 2ε̃ρi)

≤ ε̃+ 2η̃H1(Ju).

In b)iv) we need to estimate the gradient of u on those squares Pk on which there is much jump,
that is on F̃ ε̃ = {Pk = Qr̃k(x̃k) ⊆ F ε̃ |H1(Ju ∩ Pk) ≥ r̃kη

1/2}. Since rk ≤ 1 we estimate the volume
of the union of these squares by

L2

 ⋃
Pk∈F̃ ε̃

Pk

 ≤ ∑
Qr̃k (x̃k)∈F̃ ε̃

4r̃k ≤ 4N
1

η1/2
H1(Ju ∩

∞⋃
k=1

Pk) ≤ Cη̃1/2H1(Ju) + Cε̃η−1/2.
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4. The recovery sequence for the scalar-valued problem

All squares Qρi(xi) of the first family satisfy ρi ≤ ε̃. We hence estimate, using again the fact that∑M
i=1 ρi ≤ H1(Ju),

L2
(⋃
Ĝ ε̃
)

= L2

(
M⋃
i=1

Qρi(xi)

)
= 4

M∑
i=1

r2
i ≤ 4ε̃H1(Ju).

Applying the dominant convergence theorem we can choose the parameters ε̃ and η̃ so small that
‖∇u‖2

L2(
⋃
Ĝε̃) ≤ ηε

2 and ‖∇u‖2
L2(

⋃
F̃ ε̃) ≤ ε and hence a)v) and b)iv) are satisfied.

Similarly it is easy to see that

H1(Ju ∩Qρi(xi)) ≥ (1− ε̃)2ρi and hence
M∑
i=1

2ρi ≤ H1(Ju) + 2ε̃H1(Ju).

We see that a)vi) is satisfied and the proof is finished.

Proposition 4.13 (Approximation with finite segments for the Mumford-Shah energy). For each
u ∈ SBV 2

e2,a with H1(Ju \ Ju) = 0, for each δ > 0 exists v ∈ SBV 2
e2,a such that Jv is finite union of

segments (ai, bi)× {yi} and

‖v − u‖L1(Ω) ≤ Cδ, |Dv|(Ω) ≤ C(1 + |Du|(Ω) + ‖∇u‖L2(Ω)) and J(v) ≤ (1 + Cδ)J(u).

Moreover it holds that the segments are isolated and that the jumps satisfy a growth condition around zero
i.e., if yi = yj then ai 6= bj and for all λ > 0 there exists β > 0 such that the height of the jumps satisfies: if
[u](x) ≤ β then dist({x}, {(ai, yi)} ∪ {(bi, yi)}) ≤ λ.

Proof. Let ε > 0, η ∈ (2ε, 1
8 ).

We use the covering from Lemma 4.12 and apply the construction for type-III squares (see Proposi-
tion 4.7) on each of the inner squares Qri(xi). We can use the same idea as in the foregoing density
result to avoid problems at the boundary so assume without loss of generality γ = 0.
Since a)i)-a)iii) hold we know that the type-III construction can be applied. We obtain a function
v̄ ∈ SBV 2

e2,a such that all jumps inQri(xi) are the result of a type-III construction and it holds, using
av), avi) and the estimates of the construction that

‖∇v̄‖2L2(Ω) ≤ (1 + Cε3/2)‖∇u‖2L2(Ω), ‖u− v̄‖L1(Ω) ≤ Cε3/4

H1(Jv̄) ≤ (1 + Cε1/2)H1(Ju) and |Dv̄|(Ω) ≤ C|Du|(Ω).

Now, since we have chosen γ = 0, there are finitely many squares { 6
7Pk | k = 1, . . . , L} that cover the

remaining parts of the jump. With the same method as in the proof of Proposition 4.10 we divide
them in type-I and type-II squares and apply the constructions with the same recursive pattern,
using the function v̄ as initial data of the construction. This time, assumption b)iv) ensures that
there are not too many type-II squares hence the function results in a function v ∈ SBV 2

e2,a who,
after choosing η > 0 and ε ≤ η small enough, satisfies all the stated inequalities.
As a next step we want to show that if we denote the finitely many segments as (ai, bi) × {yi} that
then yi = yj implies ai 6= bj . Each endpoint of a jump (ai, yi) is either the result of a type-I square
mollifying an endpoint of a jump created by a type-III square or a type-II square interpolating a

52



4.3 Two density results

jump with something that was there before. If the former is the case then it is clear that this jump is
isolated. If the later is the case then the last type-II square operating at this point interpolates either
with an open set where there is no jump (and hence the jump point would clearly be isolated) or
with some other jump, hence it would not be an endpoint.

Denote the height of a jump on a segment (ai, bi)×{yi} by h = (u+− u−)|(ai,bi)×{yi}. It is clear that
there is some constant K > 0 which is smaller then the minimal value of all the jumps created in
the interior of the different squares, such that for all x ∈ Ju it holds: If h(x) < K then it follows
h(x) = ηi(x − ai)(Ai(x − ai) + di) where ηi is a positive standard interpolator, or the same with bi
instead of ai.

Then for all λ > 0 for all β < K it holds: h(x) ≤ β then h(x) = ηi(x − ai)(Ai(x − ai) + di). The
function h is positive and strictly monotone in this neighborhood, hence if one chooses β small
enough in dependence of λ it follows that h(x) < β implies x− ai ≤ λ.

4.3.4 Density with higher regularity

As a last step we want to gain some additional regularity for the function we want to approximate.
This will be accomplished by a uniform mollification away from the jump.

Lemma 4.14. Let δ > 0. Let u ∈ SBV 2
e2,a such that Ju =

⋃k
i=1(ai, bi) × {yi} is a finite union of

segments such that the segments are isolated and satisfy a growth condition at zero i.e., if yi = yj then
ai 6= bj and for all λ > 0 there exists β > 0 such that the height of the jumps satisfies: if [u](x) ≤ β then
dist({x}, {(ai, yi)} ∪ {(bi, yi)}) ≤ λ.

Then there exists v ∈ SBV 2
e2,a ∩ C

∞(Ω \ Jv) such that Jv is finite union of segments,

‖v − u‖L1(Ω) ≤ Cδ, |Dv|(Ω) ≤ C|Du|(Ω), J(v) ≤ (1 + Cδ)J(u)

and such that ‖v‖L∞ + ‖Dv‖L∞ + ‖D2v‖L∞ is finite.

Proof. Let us without loss of generality assume that the jump set contains just a single segment i.e.,
Ju = (a, b)× {ȳ}.
If the slice would divide the square into two halfs i.e., if (a, b) = (0, 1), the statement could be
achieved by a convolution with a standard mollifier using an extension theorem for (0, 1) × (ȳ, 1)

and (0, 1)× (0, ȳ). If this is not the case, the construction will differ in a neighborhood of the edges
(a, ȳ), (b, ȳ). For the sake of simplicity we will only prove the statement for a = 0 and b ∈ (0, 1). The
affine boundary values at the left edge can be threated with a linear interpolation together with the
same scaling techniques as presented in the proof of Proposition 4.11.

Fix η > 0. We want to convolute u with a standard mollifier of constant lengthscale ρ � η. At the
boundary of the domain we can extend the function but we need to perform a more complicated
construction along the jump set.

We will mirror the function along the jump symmetrically and interpolate on scale η between the
mirrored function and the original one, see Figure 16 for a sketch. Let therefore ϕ ∈ C∞([0, 1],R+)

such that ϕ(x) = 1 for x ≤ b, ϕ(x) = 0 for x ≥ b+ η and such that |ϕ′| ≤ 2
η . Define ut for the upper
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4. The recovery sequence for the scalar-valued problem

ȳ
ȳ + ρ

b b+ η

b+ η + ρ

ut = ub = u

ut = u

ub = u

Figure 16: Mirroring a function at the jump set and the boundary before mollifying.

part of the domain and ub for the lower part of the domain via

ut(x, y) =

u(x, y) y ≥ ȳ

ϕ(x)u(x, 2ȳ − y) + (1− ϕ(x))u(x, y) y ≤ ȳ

and

ub(x, y) =

ϕ(x)u(x, 2ȳ − y) + (1− ϕ(x))u(x, y) y ≤ ȳ

u(x, y) y ≥ ȳ.

The functions ut and ub are continuous, coincide with u if x ≥ b+η and can be extended to a square
of radius 1 + ρ without having large error terms as long as ρ ≤ min{ȳ, 1 − ȳ}. We can then easily
define

v(x, y) =

(ut ∗ ϕρ)(x, y) y ≥ ȳ

(ub ∗ ϕρ)(x, y) y ≤ ȳ
.

Obviously v ∈ C∞(Ω\(0, b+η+ρ)×{ȳ}) and each derivative is bounded in L∞(Ω). In particular we
see thatH1(Jv) ≤ H1(Ju) +η+ρ. It is a standard argument that ut ∗ϕρ → ut in W 1,2((0, 1)× (ȳ, 1))

as ρ→ 0 and since

‖∇u−∇ut‖2L2((0,1)×(ȳ,1)) ≤ C
1

η2
‖∇u‖2L2((0,1)×(ȳ,ȳ+ρ))

we can choose ρ� η and η < 1
2δ such that

J(v) ≤ (1 + Cδ)J(u), ‖v − u‖L1(Ω) ≤ Cδ, and |Dv| ≤ C|Du|.

However, the proof is not finished yet, since the height of the jump may have lost its positivity
during the process. This might happen if the gradient on one side of the jump is very large and
points in the wrong direction. We will provide a small modification of the function v that will solve
this issue.

Fix λ > 0. Let β > 0 such that [u](x, ȳ) ≤ β implies x ≥ b − λ. It follows that for ρ and η small
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4.3 Two density results

enough the jump of v is positive on (0, b−λ). In fact: Using fundamental theorem of integration for
ut and ub we see that for x ≤ b− λ it follows

v+(x, ȳ)− v−(x, ȳ)

=

ˆ
Bρ((x,ȳ))

ϕρ((x, ȳ)− z)(ut(z)− ub(z)) dL2(z)

=

ˆ
Bρ((x,ȳ))

ϕρ((x, ȳ)− z)
(

[u](z1, ȳ) +

ˆ z2

ȳ

∂yu(z1, w) dL1(w)−
ˆ ȳ

z2

∂yu(z1, w) dL1(w)

)
≥β − Cρ−2

ˆ
Bρ((x,ȳ))

‖∂yu(z1, ·)‖L2(ȳ−ρ,ȳ+ρ) dL2(z)

≥β − C‖∂yu‖L2((−ρ,b−λ+ρ)×(ȳ−ρ,ȳ+ρ)) dL2(z)

which is positive if ρ is small enough.

We can similarly prove that for x ∈ (b− λ, b+ η + ρ)

v+(x, ȳ)− v−(x, ȳ) ≥ −C‖∂yu‖L2((b−λ−ρ,b+η+2ρ)×(ȳ−ρ,ȳ+ρ)) dL2(z)

≥ −C‖∂yu‖L2((0,1)×(ȳ−ρ,ȳ+ρ)) dL2(z)

=: L(ρ).

Now chose ψ ∈ C∞c ((−1, 1)) such that ψ(x) ∈ [0, 1] and ψ ≥ 1
2 on (− 1

2 ,
1
2 ) and define, since we

choose η + ρ ≤ β,

K(x, y) =

2L(ρ)
(

1−y
1−ȳ

)
ψ
(
x−b
2β

)
y ≥ ȳ

0 y ≤ ȳ.

ThenK ∈ SBV 2
e2,0 and it holds thatK(x, ȳ) = 2L(ρ)ψ

(
x−b
2β

)
and thusK ≥M(ρ) on (b−β, b+η+ρ).

The gradient of K satisfies

‖∇K‖∞ ≤
C

β
l(ρ)

and since L(ρ) → 0 as ρ → 0 we can choose ρ so small such that v + K satisfies all the desired
properties.

The following theorem is the direct application of the foregoing results.

Theorem 4.15 (Main density result). Let u ∈ SBV 2
e2,a and δ > 0.

Then there exists v ∈ SBV 2
e2,a ∩ C

∞(Ω \ Jv) such that Jv is finite union of segments,

‖v − u‖L1(Ω) ≤ Cδ, |Dv|(Ω) ≤ C(1 + |Du|(Ω) + ‖∇u‖L2(Ω)) and J(v) ≤ (1 + Cδ)J(u)

and such that ‖v‖L∞ + ‖Dv‖L∞ + ‖D2v‖L∞ is finite.
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4. The recovery sequence for the scalar-valued problem

4.4 The recovery sequence for functions whose jump set is a finite union of
segments

Having the density result at hand we can now rigorously construct the recovery sequence for func-
tions whose jump set is a finite union of segments.

Proposition 4.16. Let δ > 0 and let u ∈ SBV 2
e2,0 ∩ C

∞(Ω \ Ju) such that Ju is finite union of isolated
segments and ‖u‖∞ + ‖Du‖∞ + ‖D2u‖∞ is finite.
Then there exists θ0 > 0 such that for all θ ∈ (0, θ0) there exists a function v ∈ A such that

Iθ(v) ≤ (1 + δ)I(u) ‖u− v‖L1(Ω) ≤ δ and |Dv|(Ω) ≤ C(1 + |Du|(Ω) + ‖∇u‖L2(Ω)).

A sketch of the construction is indicated in Figure 17.

ȳ

x̄ x̄

ȳ

ȳ + θh(x̄)/2

ȳ − θh(x̄)/2

ȳ + γ

ȳ

ȳ + θh(x̄)/2

Ctγ

Btθ,γ Atθ

Figure 17: The construction of the recovery sequence if the jump set is a single segment.

Proof. Let us without loss of generality assume that the jump set is given as a single segment i.e.,
Ju = (a, b) × {ȳ}. Define h(x) = [u](x, ȳ). Obviously the area in which we interpolate should
still be a subset of Ω, we therefore choose θ0 ≤ 1

4‖h‖∞min{ȳ, 1 − ȳ} and θ ≤ θ0. Let moreover
γ ∈ (‖h‖∞θ,min{ȳ, 1− ȳ}) and construct v in a way such that v = u on Ω \ (0, 1)× (ȳ − γ, ȳ + γ).
We define the function v as

v(x, y) =



u(x, y) y ∈ (ȳ + γ, 1)

u(x, f(x, y)) y ∈ (ȳ + θ
2h(x), ȳ + γ)

1
θ

(
y − ȳ + θ

2h(x)
)

+ u−(x, ȳ) y ∈ (ȳ − θ
2h(x), ȳ + θ

2h(x))

u(x, f̃(x, y) y ∈ (ȳ − γ, ȳ − θ
2h(x))

u(x, y) y ∈ (0, ȳ − γ).

At every x ∈ (a, b) we are trying to fill the gap between u+(x, ȳ) and u−(x, ȳ) by introducing a
linear function with slope 1

θ on a length θh(x). Since u(x, ȳ + θh(x)/2) and u+(x, ȳ) do in general
not coincide we need to stretch u in y-direction, using a linear interpolation f .
We will do all computations in the following for y ≥ ȳ since the other case follows from symmetry.
Let us divide the set Ωt = (0, 1)× (ȳ, 1) into

Atθ = {(x, y) | y ∈ (ȳ, ȳ +
θ

2
h(x))}, Btγ,θ = {(x, y) | y ∈ (ȳ +

θ

2
h(x), ȳ + γ)}

and Ctγ = {(x, y) | y ∈ (ȳ + γ, 1)}.
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4.4 The recovery sequence for functions whose jump set is a finite union of segments

We are using the linear function f that satisfies f(x, γ + ȳ) = γ + ȳ and f(x, ȳ + θ
2h(x)) = ȳ for the

interpolation. This function is given by

f(x, y) =
1

γ − θ
2h(x)

(
γy − (γ + ȳ)

θ

2
h(x)

)
.

It is some straightforward computation using that γ ≥ 2θ‖h‖∞ that

‖f‖∞ ≤ C, |f(x, y)− y| ≤ C‖h‖∞θ,

‖1− ∂yf‖∞ ≤ C‖h‖∞θγ−1, ‖∂xf‖∞ ≤ C‖h′‖∞θγ−1 (14)

and ‖D2f‖∞ ≤ C(‖h′‖∞θγ−1 + ‖h′‖2∞θ2γ−2 + ‖h′′‖∞θγ−1).

We hence set γ = θ1/2, provided that θ0 ≤ 1
4‖u‖∞ . We compute

‖∂xv‖2L2(Ωt)

≤‖∂xu‖2L2(Ctγ) + ‖(∇u)(x, f(x, y)) · (1, ∂xf(x, y))‖2L2(Btγ,θ) + ‖1

2
h′(x) + ∂xu

−(x, ȳ)‖2L2(Atθ)

≤‖∂xu‖2L2(Ωt) + C‖Du‖∞θ1/2 + C‖Du‖∞θ‖u‖∞.

Similarly

‖min{∂yv − 1, ∂yv +
1

θ
}‖2L2(Ωt)

≤‖∂yu− 1‖2L2(Ctγ) + ‖(∇u)(x, f(x, y)) · (1, ∂yf(x, y))− 1‖2L2(Bt
θ1/2,θ

)

≤‖|∂yu− 1|‖2L2(Ωt) + C(‖Du‖∞ + 1)θ1/2.

The most important part is to estimate the second derivatives of v multiplied with θ. We define
Γ = ∂Atγ ∩ (0, 1)× (ȳ, 1) and Λ = (∂Btγ\Γ) ∩ (0, 1)× (ȳ, 1) and write

D2v =

ˆ
Γ

(∇v+ −∇v−) · ν dH1 +

ˆ
Λ

(∇v+ −∇v−) · ν dH1 +∇2v.

Due to chain rule and transformation formula we know that

|∇2v|(Ωt) ≤ ‖∇f‖2∞‖∂yf‖∞‖D2u‖L1(Ωt) + ‖D2f‖∞‖∂yf‖∞‖∇u‖L1(Ωt) + ‖∂xxu− + h′′‖∞‖h‖∞θ

≤ C‖D2u‖∞ + C

and ∣∣∣ˆ
Λ

(∇v+ −∇v−) · ν dH1
∣∣∣ =

∣∣∣ˆ
Λ

∂yu(1− ∂yf) dH1
∣∣∣ ≤ ‖Du‖∞‖u‖∞θ1/2.
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4. The recovery sequence for the scalar-valued problem

Moreover we see that
ˆ

Γ

(∇v+ −∇v−) · ν dH1

≤
ˆ

Γ

(
0

− 1
θ

)
· ν dH1 +

ˆ
Γ

(
(∂xu) ◦ f + (dyu) ◦ f∂xf − 1

2∂xu
+(·, ȳ) + 1

2∂xu
−(·, ȳ)

(∂yu) ◦ f∂yf

)
· ν dH1.

Hence altogether

θ|D2v|(Ω) ≤ θ
∣∣∣ˆ

Γ

(
0
1
θ

)
· 1√

1 + (h′)2

(
θ
2h
′

1

)
dH1

∣∣∣+ Cθ = (b− a) + Cθ = H1(Ju) + Cθ.

The estimates for the derivatives show in particular that

|Dv|(Ωt) ≤ 1

θ
L2(Atθ) + ‖∂yv‖L2(Btθ,γ∪C

t
θ) + ‖∂xv‖L2(Ωt) ≤ C(1 + ‖h‖L1(Ju) + ‖∇u‖L2(Ω))

and we can conclude that

‖u− v‖L1(Ωt) ≤ 2‖u‖∞L2(Btθ,γ ∪Atθ) ≤ 2‖u‖∞θ1/2.

If we chose θ0 in dependence of u and δ small enough the statement holds.

4.5 The main result

We only need to put all the foregoing results together to prove the recovery sequence.

Theorem 4.17 (Recovery sequence). Let u ∈ SBV 2
e2,0 and θk ↘ 0. Then there exits vk ∈ A such that

lim sup
k∈N

Iθk(vk) ≤ I(u) and vk
∗
⇀ u in BV ((0, 1)× (δ, 1− δ)) for all δ > 0.

Proof. Notice that due to Lemma 4.1 we can assume u ∈ SBV 2
e2,0 ∩ SBV (Ω). We will use Remark

4.2 to apply the density result of Theorem 4.15 on functions in SBV 2
e2,0. Notice that the θ0 chosen in

Proposition 4.16 depends on u and δ we therefore use a diagonal argument in the following way:
By Theorem 4.15 there exists a sequence um ∈ SBV 2

e2,0 such that ‖um − u‖ ≤ 1
m , I(um) ≤ I(u) + 1

m

and such that u satisfies the assumptions of Proposition 4.16.
Let θ1

0 be such that the proposition can be applied to u1 for δ = 1 and choose vk = 0 for θk > θ1
0 .

Let θ2
0 ≤ 1

2 be such that the proposition can be applied to u2 for δ = 1
2 and let for all k such that

θk ∈ (θ2
0, θ

1
0) the function vk be the result of the construction for u2, θk and δ = 1

2 .
Let θm0 ≤ 1

m be such that the proposition can be applied to um for δ = 1
m and let for all k such that

θk ∈ (θm0 , θ
m−1
0 ) the function vk be the result of the construction for um, θk and δ = 1

m .
Then Iθk(vk) ≤ I(u) + 1

m and ‖vk − u‖L1(Ω) ≤ 1
m and m→∞ as k →∞.

It is a result of the compactness statement proven in Theorem 3.1 that for all δ > 0 we can estimate
‖vk‖W 1,1((0,1)×(δ,1−δ)) ≤ C(u)(1 + 1

δ ) and hence vk
∗
⇀ u in BV ((0, 1)× (δ, 1− δ)).

This finishes the discussion of the scalar-valued problem. The Γ-limit is proven as a corollary of this
theorem and the results of the foregoing chapter.
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5 Compactness and lim inf -inequality for the vector-valued

problem

The scalar-valued energy is a simplified version of the original problem. In general, we are inter-
ested in deformations mapping subsets of R3 to R3. As we already pointed out in the introduction,
one of the coordinates in both, domain and codomain, is negligible in the setting of two rank-
one connected energy wells. We set Ω = (0, 1)2 and consider the following energy for functions
u : Ω→ R2:

Eθ,p(u) =


´

Ω
min{|e(u+ ye1)|pp, |e(u−

y
θ e1)|pp} dL2 + σθ|D2u|(Ω) u ∈ W

∞ otherwise

where the spaceW is given by

W = {u ∈W 1,p(Ω,R2) | ∂xu, ∂yu ∈ BV (Ω,R2), u1(0, y) =
θ2

1 + θ
y, u2(·, 0) = 0}.

For some function v ∈ BD(Ω) we denote by e(v) the absolute continuous part of the symmetric
part of the gradient. The expression min{|e(u + ye1)|pp, |e(u −

y
θ e1)|pp} is thereby an abbreviation of

|∂xu1|p + |∂yu2|p + min{|∂yu1 + ∂xu2 + 1|p, |∂yu1 + ∂xu2 − 1
θ |
p}.

In the nonlinear energy we considered rotated versions of Id +θe1 ⊗ e2 and Id +(1 − θ)e1 ⊗ e2 as
energy wells. The first term in the energy Eθ,2 was derived as the rescaled, linearized version
of the bulk term close to the unrotated matrices Id +θe1 ⊗ e2 and Id +(1 − θ)e1 ⊗ e2. The terms
e1 � e2 and 1

θ e1 � e2 represent infinitesimal pertubations of these matrices with rotations. We will
see that in the limiting energy the phase where (Du)sym ∼ 1

θ (e1 � e2) will decouple to subsets
of one-dimensional hypersurfaces where either DJu = |[u]|e1 or DJu = |[u]|e2. This is were the
martensite-martensite interfaces are now located. The direction e2 represents the normal coming
from the rank-one connection between Id +θe1 ⊗ e2 and Id +(1 − θ)e1 ⊗ e2. The second normal e1

is present since a linearization at the two matrices Id +θe2 ⊗ e1 and Id +(1− θ)e2 ⊗ e1 leads also to
the energy Eθ,2.

In this geometrically linearized setting the original energy wells of the elastic energy e1 ⊗ e2 and
1
θ (e1⊗e2) are transformed to e1�e2 and 1

θ (e1�e2). We will see that in the limiting energy the phase
where (Du)sym ∼ 1

θ (e1 � e2) will decouple to phases where either DJu = |[u]|e1 or DJu = |[u]|e2.
That is: The only possible normals at a martensite-martensite interface are e2 and e1.

We define the candidate for the limiting energy by

Ep(u) =


´

Ω
|e(u+ ye1)|pp dL2 + 2σH1(Ju) u ∈ SBDp

e2�e1,0

∞ otherwise

where the space SBDp
e2�e1,0 is given by

SBDp
e2�e1,0 = {u ∈ SBDloc(Ω,R2) | e(u) ∈ Lp(Ω;R2×2), u ∈ Lp(Ω,R2), H1(Ju) <∞, u1(0, ·) = 0,

u2(·, 0) = 0, [u1]νJu ∈ [0,∞)e2, [u2]νJu ∈ [0,∞)e1H1-a.e.}.
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5. Compactness and lim inf-inequality for the vector-valued problem

We need to make sure that the boundary values in this definition are well-defined since this is not
the case for general functions in SBDloc. However, we can easily see that the first component of
such a function is an element of W 1,1((0, 1);Lp(0, 1)) in the sense that x 7→ u1(x, ·) and so is the
second component via y 7→ u2(·, y). A trace theorem does hold for W 1,1((0, 1);Lp(0, 1)) and hence
the definition above makes sense.
For the sake of generality we consider Lp-norms in the gradient instead of the simpler L2-norms.

5.1 Preliminaries

Before actually starting to prove the results let us first comment on the structure of the jump set of
functions in SBDp

e2�e1,a. The differences between Ju and Ju1 ∪ Ju2 are in general more subtle for
functions of bounded deformation then for the usual vector-valued functions of bounded variation.
However, the regularity of ∂xu1 and ∂yu2 gives us additional informations.
Let v ∈ Lp(Ω). Remember that x ∈ Ω is an element of Jv iff there exists a normal ν ∈ S1 and values

v+ and v− such that for v0(w) =

v+ 〈w, ν〉 > 0

v− 〈w, ν〉 < 0
and vρ(w) = v(x + ρw) it holds: vρ → vo in

L1(B1(0)).
Imagine the function v in the following lemma to be the first component of a function in SBDp

e2�e1,0.

Lemma 5.1. Let p ∈ (1,∞), v ∈ Lp(Ω) such that Dv · e1 ∈ Lp(Ω) and such that Jv isH1-rectifiable.
Then forH1-almost every z ∈ Jv it holds: νJv(z) = e2.
If p ≥ 2 we even have that νJv(z) = e2 for every z ∈ Jv.

Proof. Fix z ∈ Jv and define vρ(w) = v(z + ρw) and v0(w) =

v+(z) 〈w, νJv(z)〉 > 0

v−(z) 〈w, νJv(z)〉 < 0.

Then by the definition of Jv it holds that vρ → v0 in L1(B1(0)). It moreover holds

‖∂xvρ‖L1(B1(0)) = ρ−1‖∂xv‖L1(Bρ(x)) ≤ ρ
−1+ 2

p′ ‖∂xv‖Lp(Bρ(x)) =

(
ρp−2

ˆ
Bρ(x)

|∂xv|p dL2

)1/p

.

If p ≥ 2 this converges to zero for every z ∈ Jv. Since Jv is rectifiable one can also show that this
converges to zero forH1-almost every z ∈ Jv as long as 2− p < 1 which is true for every p > 1. We
can conclude that Dv0 · e1 = 0 and since v+(z) 6= v−(z) this implies νJv(z) = e2.

Remark. The jump set of a BD function is rectifiable. The foregoing lemma therefore implies: If
u ∈ SBDp

e2⊗e1,0 then Ju = Ju1 ∪ Ju2 up to a set ofH1-measure zero.

5.2 Compactness and lim inf -inequality

We show that from the point of the lim inf-inequality our candidate for the limiting energy Ep is
correct. Moreover we present a fitting compactness result.
Following the considerations in the scalar-valued setting we will choose strong L1-convergence
together with weak-∗ BDloc-convergence as notions of convergence for the problem.
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5.2 Compactness and lim inf-inequality

Theorem 5.2 (Compactness and lim inf-inequality). Let p ∈ (1,∞), {uk | k ∈ N} ⊆ W and let θk ↘ 0

such that Eθk,p(uk) ≤ M . Then there is a subsequence {kl | l ∈ N} ⊆ N and a function u ∈ SBDp
e2�e1,0

such that ukl ∗⇀ u in BDloc(Ω,R2) and ukl → u in L1(Ω,R2).

Moreover: Ep(u) ≤ lim inf Eθk,p(uk).

Proof. We initially fix a subsequence that realizes the lim inf such that further subsequences can be
chosen without loss of generality. We never relabel subsequences.

Step 1: Convergence
Obviously ‖∂xuk1‖L1(Ω) + ‖∂yuk2‖L1(Ω) ≤ M1/p and using the boundary values we immediately get
‖uk‖L1(Ω) ≤M1/p. Our first goal is an estimate for ‖e(uk)‖L1((γ,1−γ)2) where γ > 0.

For the estimate of the third term in e(u) we want to investigate the functional on diagonal slices.
We define ∆ = {(s, 1−s) | s ∈ (0, 1)} and for each z ∈ ∆ the one-dimensional, scalar-valued function
uk,z(1,1)(t) = uk1 (z + t(1, 1)) +uk2 (z + t(1, 1)). Notice that z+ t(1, 1) ∈ Ω iff |t| ≤ z1 ∧ z2 := min{z1, z2}.
By transformation formula, chain rule and Fubini’s theorem we estimate

ˆ
∆

ˆ z1∧z2

−(z1∧z2)

min{|∂tuk,z(1,1) + 1|p, |∂tuz(1,1) −
1

θk
|p} dL1 dH1(z)

=
√

2

ˆ
Ω

min{|∂xuk1 + ∂yu
k
1 + ∂xu

k
2 + ∂yu

k
2 + 1|p, |∂xuk1 + ∂yu

k
1 + ∂xu

k
2 + ∂yu

k
2 −

1

θk
|p} dL2 (15)

≤C
ˆ

Ω

min{|e(uk + ye1)|pp, |e(uk −
y

θk
e1)|pp} dL2.

Fix γ > 0. We can estimate, using the same arguments as in the foregoing equality and the triangle
inequality,

‖∂yuk1 + ∂xu
k
2‖L1((γ,1−γ)2) ≤C

ˆ
∆∩(γ,1−γ)2

‖∂tuk,z(1,1)‖L1((−(z1∧z2)+γ/2,z1∧z2−γ/2)) dH1(z)

+ ‖∂xuk1‖L1(Ω) + ‖∂yuk2‖L1((Ω).

Notice that for each z ∈ ∆∩ (γ, 1−γ) the length of the segment (−(z1∧ z2) +γ/2, z1∧ z2−γ/2) is at
least γ and that a slightly larger domain than (γ, 1− γ)2 is covered by the union of these segments.
The length of the whole segment in (0, 1)2 is given by 2(z1 ∧ z2) and has length at least 2γ.

We use the one-dimensional compactness result in Lemma 2.4 with λ = 2(z1 ∧ z2) and δ = γ/2 to
get that forH1-almost every z ∈ ∆ ∩ (γ, 1− γ)2

‖∂tuk,z(1,1)‖L1((−z1∧z2+γ/2,z1∧z2−γ/2))

≤C
(

1 + γ(p−1)/p‖min{|∂tuk,z(1,1) + 1|, |∂tuz(1,1) −
1

θk
|}‖Lp((−(z1∧z2),z1∧z2))

+
‖uk‖L1((−(z1∧z2),z1∧z2))

γ

)
.
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5. Compactness and lim inf-inequality for the vector-valued problem

Putting things together yields

‖∂yuk1 + ∂xu
k
2‖L1((γ,1−γ)2)

≤C + C(1 + γ(p−1)/p + γ−1)

(ˆ
Ω

min{|e(uk + ye1)|pp, |e(uk −
y

θk
e1)|pp} dL2

)1/p

and hence there is u ∈ BDloc(Ω) such that uk ∗
⇀ u in BDloc(Ω). The boundary values and the

boundedness of ∂xu1 and ∂yu2 in Lp(Ω) yield that moreover uk → u in Lp(Ω) and hence also in
L1(Ω).

Step 2: u ∈ SBDp
e2�e1,0

Since ∂xuk1 and ∂yu
k
2 have subsequences in Lp that are converging against ∂xu1 and ∂yu2 weakly-∗

in measure, we gain that Du1 · e1 = ∂xu1 ∈ Lp(Ω) and Du2 · e2 = ∂yu2 ∈ Lp(Ω).

We also mentioned above that the trace theorem holds for W 1,1((0, 1);Lp(0, 1)). Since uk1(0, ·) → 0

in C0 and uk2(·, y) = 0 it immediately follows that u1(0, ·) = 0 and u2(·, 0) = 0.

We notice that, due to Fubini’s theorem, transformation formula and Fatou’s lemma we have that
forH1-almost every z ∈ ∆

lim inf
k∈N

(ˆ z1∧z2

−(z1∧z2)

min{|∂tuk,z(1,1) + 1|p, |∂tuz(1,1) −
1

θk
|p}+ |uk,z(1,1)| dL

1

+ |∂t∂tuk,z(1,1)|(−(z1 ∧ z2), z1 ∧ z2)
)

is finite and for all γ > 0 andH1-almost every z ∈ ∆ ∩ (γ, 1− γ)2 (16)

lim inf
k∈N

( ˆ z1∧z2−γ/2

−(z1∧z2)+γ/2

|∂tuk,z(1,1)| dL
2(1)

)
<∞.

We know that uk → u in L1(Ω). It is a consequence of Fubini’s theorem that for H1-almost every
z ∈ ∆ ∩ (γ, 1 − γ)2 it holds uk,z(1,1) → uz(1,1) in L1(−(z1 ∧ z2), z1 ∧ z2) and moreover uk,z(1,1)

∗
⇀ uz(1,1)

weakly-∗ inBVloc(−(z1∧z2), z1∧z2). The one-dimensional lim inf-inequality (see Lemma 2.2) yields
among others: uz(1,1) ∈ SBV (−(z1 ∧ z2), z1 ∧ z2).

It is a result of the slicing technique for BD-functions, introduced by Ambrosio, Coscia and Dal
Maso (see [1]), together with the already proven regularity results for Du1 · e1 and Du2 · e2, that
u ∈ SBDloc(Ω).

It is an easy computation, performed in Lemma 5.1 above, that νJu1
= e2 and νJu2

= e1 H1-almost
everywhere. Hence

((Du)sym)J =

ˆ
Ju

[u]� ν dH1 =

ˆ
Ju1

[u]� e2 dH1 +

ˆ
Ju2

[u]� e1 dH1

=

ˆ
Ju1

(
0 1

2 [u1]
1
2 [u1] [u2]

)
dH1 +

ˆ
Ju2

(
[u1] 1

2 [u2]
1
2 [u2] 0

)
dH1

=

ˆ
Ju1

(
0 1

2 [u1]
1
2 [u1] 0

)
dH1 +

ˆ
Ju2

(
0 1

2 [u2]
1
2 [u2] 0

)
dH1,

where we used that [u1] = 0H1-almost everywhere on Ju2 and vice versa.
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5.2 Compactness and lim inf-inequality

We define

Ak = {|∂yuk1 + ∂xu
k
2 + 1| ≤ |∂yuk1 + ∂xu

k
2 −

1

θk
|}, fk = χAk(∂yu

k
1 + ∂xu

k
2) and

gk = ∂yu
k
1 + ∂xu

k
2 − fk.

Then ‖fk‖pLp(Ω) ≤ M and hence after taking a subsequence fk ⇀ f in Lp(Ω). We also know that

∂yu
k
1 + ∂xu

k
2
∗
⇀ Du1 · e2 +Du2 · e1 locally as measures and hence

0 ≤ gk
∗
⇀ Du1 · e2 +Du2 · e1 − f = (Du1 · e2 +Du2 · e1)ac + (Du1 · e2 +Du2 · e1)J − f.

Since (Du1 · e2 + Du2 · e1)ac − f ⊥ (Du1 · e2 + Du2 · e1)J , we conclude that the locally finite
measure DJu1 · e2 +DJu2 · e1 is nonnegative on every measurable set and hence [u1]νJu ∈ [0,∞)e2

and [u2]νJu ∈ [0,∞)e1 H1-almost everywhere. The finiteness of H1(Ju) and ‖e(u)‖Lp(Ω) will be a
consequence of the lim inf-inequality.

Step 3: lim inf-inequality:
Recall that from (16) we deduced that forH1-almost every z ∈ ∆∩ (γ, 1−γ)2 it holds uk,z(1,1) → uz(1,1)

in L1(−(z1 ∧ z2), z1 ∧ z2) and moreover uk,z(1,1)

∗
⇀ uz(1,1) weakly-∗ in BVloc(−(z1 ∧ z2), z1 ∧ z2).

The one-dimensional lim inf-inequality (see Lemma 2.2) tells us that for all z ∈ ∆ ∩ (γ, 1 − γ)2 it
holds

2σH0(Juz(1,1)) ≤ σ lim inf
k∈N

θk|∂t∂tuk,z(1,1)|(−(z1 ∧ z2), z1 ∧ z2)).

Since γ > 0 is chosen arbitrary, we have that this inequality holds for all z ∈ ∆ and hence, using Fa-
tou’s lemma, slicing results and the orientation of the normals we can conclude that
2σH1(Ju) ≤ lim infk∈N σθk|D2uk|(Ω).

Notice that due to (15) we know that

ˆ
Ω

|∂xuk1 + ∂yu
k
1 + ∂xu

k
2 + ∂yu

k
2 + 1|pχ{∂xuk1+∂yuk1+∂xuk2+∂yuk2≤

1
θk
− 1

2}
dL2

is uniformly bounded. Again Lemma 2.2 and the fact that γ > 0 is arbitrary tells us that for H1-
almost every z ∈ ∆

(∂tu
k,z
(1,1) + 1)χ{∂tuk,z(1,1)

≤ 1
θk
− 1

2}
⇀ (∂tu

z
(1,1) + 1) in Lp((−(z1 ∧ z2), z1 ∧ z2)) and hence

(∂xu
k
1 + ∂yu

k
1 + ∂xu

k
2 + ∂yu

k
2 + 1)χ{∂xuk1+∂yuk1+∂xuk2+∂yuk2≤

1
θk
− 1

2}

⇀ ∂xu1 + ∂yu1 + ∂xu2 + ∂yu2 + 1 in Lp(Ω). (17)

The one-dimensional compactness result from Lemma 2.4 tells us that

L2
({
∂xu

k
1 + ∂yu

k
1 + ∂xu

k
2 + ∂yu

k
2 ≤

1

θk
− 1

2

}
∩ (γ, 1− γ)2

)
≤θk(C + Cγ(p−1)/p‖min{|e(uk + ye1)|p, |e(uk −

y

θk
e1)|p‖Lp(Ω) + Cγ−1‖uk‖L1(Ω)). (18)
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5. Compactness and lim inf-inequality for the vector-valued problem

We already know that ∂xuk1 ⇀ ∂xu1 and ∂yuk2 ⇀ ∂yu2 in Lp(Ω). From (18) we may follow that also

(∂xu
k
1 + ∂yu

k
2)χ{∂xuk1+∂yuk1+∂xuk2+∂yuk2≤

1
θk
− 1

2}
⇀ ∂xu1 + ∂yu

k
2 in Lp(Ω).

Then (17) yields

(∂yu
k
1 + ∂xu

k
2 + 1)χ{∂xuk1+∂yuk1+∂xuk2+∂yuk2≤

1
θk
− 1

2}
⇀ ∂yu1 + ∂xu2 + 1 in Lp(Ω)

and by the lower semicontinuity of weak Lp convergence we conclude

‖∂yu1 + ∂xu2 + 1‖pLp(Ω) ≤ lim inf
k∈N

‖∂yuk1 + ∂xu
k
2 + 1‖p

Lp({∂xuk1+∂yuk1+∂xuk2+∂yuk2≤
1
θk
− 1

2})

≤ lim inf
k∈N

‖∂yuk1 + ∂xu
k
2 + 1‖pLp(Ω).

This finishes the proof.
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6 The recovery sequence for the vector-valued problem

In the previous chapter we have identified a possible limiting energy and function space and
achieved the lim inf-inequality. As a next step one would like to prove a matching recovery se-
quence. Although we are not able to recover arbitrary functions we are able to construct a recovery
sequence for regular functions whose jump set is a finite union of segments. This strongly suggests
that our choice of the limiting function Ep is correct.

The missing part is a density result for SBDp
e2�e1,0 with respect to the energy Ep. We discuss the

problems arising in the proof of such a density result at the end of this chapter.

6.1 Preliminaries

As in the scalar valued case we perform our considerations on a transformed energy on a function
space with different boundary values. In the same spirit we define a local version of the space for a
set A ⊂⊂ Ω by

SBDp
e2�e1(A) = {u ∈ SBD(A,R2) | e(u) ∈ Lp(A;R2×2),H1(Ju) <∞,

[u1]νJu ∈ [0,∞)e2, [u2]νJu ∈ [0,∞)e1H1-a.e.}

and a version with affine boundary values by

SBDp
e2�e1,a = {u ∈ SBD(Ω,R2) | e(u) ∈ Lp(Ω;R2×2),H1(Ju) <∞,

[u1]νJu ∈ [0,∞)e2, [u2]νJu ∈ [0,∞)e1H1-a.e.

u1(0, y) = y and u2(x, 0) = 0H1-a.e.}.

We introduce the transformed energy for the limiting space

Ẽp(u) =

ˆ
Ω

|e(u)|pp dL2 + 2σH1(Ju)

and
Ẽp,θ(u) =

ˆ
Ω

min{|e(u)|pp, |e(u+ (1− 1

θ
)ye1|pp} dL2 + σθ|D2u|(Ω)

as the transformed energy for the approximating functions.

Remark 6.1. Let g(x, y) = ye1. Then for each function u ∈ SBDp
e2�e1,a it holds: u− g ∈ SBDp

e2�e1,0

and Ẽp(u) = Ep(u− g). For a sequence of functions vk ∈ W 1,2(Ω) with Dvk ∈ BV (Ω), vk(x, 0) = 0

and vk(0, y) = y it holds: vk − g ∈ W and Eθk,p(vk − g) = Ẽθk,p(vk). The opposite direction is
also true, up to the local finiteness of |(Du)Jsym|(Ω). This issue can be solved in a similar way as
presented in Lemma 4.1

The recovery sequences in the two different settings can therefore be transformed into each other.

We want to divide the construction of the recovery sequence in small building blocks. Obviously, if
the jump set of the function is just a single segment of one of the jump sets, say Ju1, the construction
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6. The recovery sequence for the vector-valued problem

presented in Theorem 4.16 is still applicable without relevant changes. The main difficulty lies in
the treatment of crossings.

6.2 The recovery sequence for functions whose jump set is a single crossing of
segments for p < 2

ȳ

x̄

Ju1

Ju2

ȳ

ȳ + θ[u1](x̄)

x̄

∼θ2

Figure 18: The naı̈ve idea for a recovery sequence in BD for a crossing of jump sets. In the red area, the pointwise error in
the energy is 1

θp
. The energy is hence only recovered for p < 2.

In the case for p < 2, crossings can be recovered easily. The main idea as indicated in Figure 18 is
to insert the scalar valued construction for u1 and u2 independently. Then ∂yu1 ∼ 1

θ and ∂xu2 ∼ 1
θ

on the intersection of the two sets A1 and A2. The pointwise error in the energy on this intersection
is given by 1

θ whilst the area of the intersection is given by θ2[u1][u2]. Obviously, this construction
does not bear any energy if p < 2, adds a finite term to the energy if p = 2 and bears infinite energy
if p > 2. We will provide a more involved construction that will be used in recovery sequences if
p ≥ 2.

Let us first compute the energy of this construction for p < 2 rigorously.

Proposition 6.2. Let p ∈ (1, 2) and let u ∈ SBDp
e2�e1,a with Ju1 = (a1, a2)×{ȳ}, Ju2 = {x̄}× (b1, b2),

[ui] ∈ C2(Jui) and u ∈W 2,1(Ω \ Ju).
Then for all θk ↘ 0 there exists a sequence uk ∈W 2,1(Ω) with uk1(0, y) = y+

θ2
k

1−θk y and uk2(x, 0) = 0 such
that Ẽθk,p(uk)→ Ẽ(u).

In this vector-valued context we want to avoid changing u on parts of the domain that are far away
from the jump, since interactions of the different components might cause trouble. We hence do not
follow the construction for the scalar-valued case of Chapter 4, but the one presented in the author’s
joint work with Conti and Zwicknagl, see [16].

Proof. Define the two positive functions h1(x) = [u1](x, ȳ) and h2(y) = [u2](x̄, y) and let without
loss of generality be θk(‖h1‖∞ + ‖h2‖∞) ≤ min{ȳ, x̄, 1− ȳ, 1− x̄}.
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6.2 The recovery sequence for functions whose jump set is a single crossing of segments for p < 2

We define the approximating function via

uk1(x, y) =

u1(x, y) +
(
y−ȳ
θk
− h1(x)

)
y ∈ (ȳ, ȳ + θkh

1(x))

u1(x, y) otherwise

and

uk2(x, y) =

u1(x, y) +
(
x−x̄
θk
− h2(y)

)
x ∈ (x̄, x̄+ θkh

2(y))

u1(x, y) otherwise .

Obviously uk1(0, y) = u1(0, y) = y and uk2(x, 0) = u2(x, 0) = 0. The addition of a small, linear term
on a small scale yields the correct boundary values for uk1(0, ·). In fact: Let us define the sequence
wk(x, y) =

θ2
k

1+θk
y θk−xθk

χ{x≤θk}. We easily compute that ‖∇wk‖∞ ≤ θk and |D2wk|(Ω) ≤ Cθk . The
sequence uk + (wk, 0) satisfies the boundary conditions and has the same limit in BD and in energy
as uk.

We define Ak1 = {(x, y) | y ∈ (ȳ, ȳ + θkh
1(x))} and Ak2 = {(x, y) |x ∈ (x̄, x̄+ θkh

2(y))}. The function
u coincides with uk outside of these two sets hence

‖uk − u‖L1(Ω) ≤ ‖h1‖L∞L1(Ak1) + ‖h2‖L∞L1(Ak2) ≤ (‖h1‖2L∞ + ‖h2‖2L∞)θk → 0.

Notice that it holds

Duk1(x, y) =


Du1(x, y) +

−∂xh1(x)

1
θk

 y ∈ (ȳ, ȳ + θkh
1(x))

Du1(x, y) otherwise

and since the symmetric result is true for Duk2 we have

e(uk) =



e(u) +

−∂xh1(x) 1
θk

1
θk

−∂yh2(y)

 in Ak1 ∩Ak2

e(u) +

−∂xh1(x) 1
2θk

1
2θk

0

 in Ak1 \Ak2

e(u) +

 0 1
2θk

1
2θk

−∂yh2(y)

 in Ak2 \Ak1

e(u) otherwise.

It follows, using the triangle inequality, that

‖min{|e(uk)|pp, |e(uk + (1− 1

θk
)ye1)}|pp‖L1(Ω)

≤‖|e(u)|pp‖L1(Ω) + (|∂xh1|pL∞ + 1)L1(Ak1 \Ak2) + (|∂yh2|pL∞ + 1)L1(Ak2 \Ak1)

+

(
|∂yh2|pL∞ + |∂xh1|pL∞ +

(
1 +

1

θk

)p)
L1(Ak1 ∩Ak2).
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6. The recovery sequence for the vector-valued problem

Notice that L1(Ak1 ∩Ak2) ≤ |∂yh2|L∞ |∂xh1|L∞θ2
k. Hence for p < 2 it follows

lim
k→∞

‖min{|e(uk)|pp, |e(uk + (1− 1

θk
)ye1)}|pp‖L1(Ω) = ‖|e(u)|pp‖L1(Ω).

Moreover it holds that

θk|D2uk|(Ω) ≤θk

(
‖D2u‖L1(Ω) + ‖∂x∂xh1‖∞L2(Ak1) + ‖∂y∂yh2‖∞L2(Ak2)

+

ˆ
∂Ak1

∣∣∣∣∣
(
−∂xh1(x)

1
θk

)
· ν

∣∣∣∣∣ dH1(x, y) +

ˆ
∂Ak2

∣∣∣∣∣
(

1
θk

−∂yh2(y)

)
· ν

∣∣∣∣∣ dH1(x, y)

)
≤θkC +H1(A1

k) +H1(A2
k)

→ 2H1(Ju).

So we know that
lim sup
k∈N

Ẽp,θk(uk) ≤ Ẽ(u) and uk → u in L1(Ω).

The compactness result yields the BDloc-convergence of a subsequence.

6.3 The recovery sequence for functions whose jump set is a single crossing of
segments for p ≥ 2

It is easy to see that the naı̈ve construction presented in Theorem 6.2 will bear energy if applied for
p ≥ 2. We now construct a sequence of function that is able to recover crossings for arbitrary p.

θM1

θM2

L

H

L

H

Figure 19: Crossing of jumps for p ≥ 2: Away from the crossing we recover the jumps(red lines) by the usual
tunnels(orange). We enlarge the tunnel for the first component on the blue rectangle(left).
To realize this, we perform a Kohn-Müller twinning construction(right).

For simplicity, assume that we want to recover a function that only has two jumps of constant
heights and no absolute continuous part of the gradient, that is u1(x, y) = M1χ{y> 1

2}
and

u2(x, y) = M2χ{x> 1
2}

. Away from the crossing, each of the jumps will be replaced by a tunnel
of height θMi, in which an affine function with slope 1

θ is inserted. Close to the crossing, the vertical
tunnel widens, via a twinning construction, to a height of H > θM1until it starts passing the other
tunnel, and interpolates to an affine function with slope M1

H . The error in energy is then Mp
1

Hp ·θM2 ·H
which will be small for Hp−1 � θM2M

p
1 . A sketch of this idea is given in Figure 19.
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6.3 The recovery sequence for functions whose jump set is a single crossing of segments for p ≥ 2

As one might notice, the structure of the twinning construction indicated in the second picture
of Figure 19 is the well-known construction introduced by Kohn and Müller [34]. We will need
to compute the energy of the construction adapted to our boundary values to make sure that the
length scales can be chosen in a way, that the overall energy in the twinning gets small. We therefore
compute the energy of a ’building block’ of the energy, see Figure 20.

We will only construct the first component of v, which will be a SBV pe2 function.

Proposition 6.3 (Energy of a building block). Let p ∈ (1,∞), h, l > 0 and Rl,h = (0, l)× (0, h). There
is C > 0 and a function v ∈ SBV pe2(Rl,h) such that the following boundary values hold: v(x, 0) = 0,
v(x, h) = M̃h,

v(0, y) =


y
θ y ∈ (0, θM̃h)

M̃h y ∈ (θM̃h, h)
and v(l, y) =



y
θ y ∈ (0, θM̃ h

2 )

M̃ h
2 y ∈ (θM̃h, h2 )

M̃ h
2 +

y−h2
θ y ∈ (h2 ,

h
2 (1 + θM̃))

M̃h y ∈ (h2 (1 + θM̃), h).

The following estimates hold for the derivatives of v:

min{|∂yv −
1

θ
|, |∂yv|} = 0, ‖∂xv‖pLp(Rl,h) ≤

M̃php+1

lp−1
,

σθ|∂y∂yv|(Rl,h) ≤ Cσl, σθ|∂x∂yv|(Rl,h) ≤ Cσh

and σθ|D∂xv|(Rl,h) ≤ Cσθ(l + h)
M̃h

l
.

h/2

M̃θh
M̃θh/2

l0

h

M̃h

y/θ

Figure 20: A building block for the twinning construction.

Proof. We chose the function, as indicated in Figure 20, to be

v(x, y) =



y
θ y ∈ (0, θM̃h− x

l θM̃
h
2 ))

M̃h− x
l M̃

h
2 y ∈ (θM̃h− x

l θM̃
h
2 , h/2 + θM̃ h

2 −
x
l θM̃

h
2 )

y
θ −

h
2θ + M̃ h

2 y ∈ (h/2 + θM̃ h
2 −

x
l θM̃

h
2 ,

h
2 + θM̃ h

2 )

M̃h y ∈ (h2 + θM̃ h
2 , h).

We easily see that elastic energy is only stored in the x-derivative, on the second part of the area,
that is on a domain of volume ∼ hl. We therefore estimate ‖∂xv‖pLp(Rl,h) ≤ lh

(
M̃h
2l

)p
≤ C M̃php+1

lp−1 .
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6. The recovery sequence for the vector-valued problem

The jump of the derivatives is constant, hence the surface energy is given by

|∂y∂yv|(Rl,h) ≤ Cl1
θ
, |∂x∂yv|(Rl,h) ≤ Ch1

θ
and |D∂xv|(Rl,h) ≤ C(l + h)

M̃h

l
.

We now combine these building blocks to a twinning construction, as indicated in Figure 19. Since
we are working with the full second gradient and not only with ∂y∂yu as part of the energy, we will
need to stop the twinning at some point and continue with linear interpolation.

Proposition 6.4. Let p ∈ (1,∞), M1 > 0 and θ ∈ (0,M1). Let 1 > H,L > 0 such that H ≥ M1θ and
L � H and let RL,H = (0, L) × (0, H). There is a function w ∈ SBV pe2(RL,H) such that the following
boundary values hold: w(x, 0) = 0, w(x,H) = M1,

w(0, y) =


y
θ y ∈ (0, θM1)

M1 y ∈ (θM1, H)
and w(L, y) =

y

H
M1.

The following estimate holds for the energy of w:

‖min{|∂yw −
1

θ
|, |∂yw|}‖pLp(RL,H) + ‖∂xw‖pLp(RL,H) + σθ|D2w|(RL,H)

≤ C(Mp
1HL

−p+1 + σL+ σθH2M−1
1 ).

Moreover we have ‖Dv‖L1(RL,H) ≤ CM1.

The proof is a standard variant of the original construction in [34], similar to the ones given in [13],
[26] or [54].

Proof. We want to perform a self-similar twinning construction with the functions from Proposi-
tion 6.3 as building blocks. We therefore construct vertical rows, starting at left edge, in which 2k

building blocks with identical sidelengths are used. We have a vertical length of hk = 2−kH in the
kth row and choose the horizontal length to be lk = L(1 − γ)γk ∼ Lγk for some γ ∈ (0, 1). We set
M̃ = M1

H .

If we move horizontally through the row we add the constant M̃hk = M1

2k
in each step, in order

to produce a continuous function, without changing the derivatives. In vertical direction, this con-
struction is only performed up to the Kth step, for some K ∈ N that is chosen later.

The y-derivative is either 0 or 1
θ in this construction, for the x-derivative we compute

‖∂xw‖pLp((0,L(1−γK))×(0,H))
≤ C

K∑
k=0

2kM̃p (2−kH)p+1

(Lγk)p−1

≤ CMp
1HL

−p+1
K∑
k=0

(
1

2pγp−1

)k
. (19)
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6.3 The recovery sequence for functions whose jump set is a single crossing of segments for p ≥ 2

The sum over the second derivatives in y direction is estimated by

σθ|∂y∂yw|((0, L(1− γK)× (0, H)) ≤ Cσ
K∑
k=0

2kLγk = CσL

K∑
k=0

(2γ)k.

We fix γ such that γ < 1
2 and γ > 1

2p/(p−1) . Then both sums converge even for K =∞ and are hence
finite for arbitrary K. This implies

‖∂xw‖pLp((0,L(1−γK))×(0,H))
+ σθ|∂y∂yw|((0, L(1− γK))× (0, H)) ≤ CMp

1HL
−p+1 + CσL.

It is a direct consequence that we need L� H . There are additional terms in the Hessian that force
us to stop the construction at some step K. One of the terms is estimated by

σθ|∂x∂yw|((0, L(1− γK))× (0, H)) ≤ Cσ
K∑
k=0

2kH2−k = CσKH.

We will therefore choose K ≤ L
H . We also estimate the remaining part of the Hessian by

σθ|D∂xw|((0, L(1− γK))× (0, H)) ≤Cσθ
K∑
k=0

2k(lk + hk)M̃
hk
lk

≤Cσθ
K∑
k=0

2k(Lγk + 2−kH)
M1

L2kγk

≤Cσθ
K∑
k=0

(
M1 +

HM1

(2γ)k

)
≤Cσθ

(
KM1 +HM1

1− (2γ)−K−1

1− (2γ)−1

)
≤Cσθ(KM1 +HM1(2γ)−K).

The last estimate holds since (2γ)−K � 1.

For the sake of simplicity we want all surface terms to scale identically and will hence choose
θHM1(2γ)−K ≤ L and K ≤ L

M1θ
, in addition to the previous property K ≤ L

H . The first prop-

erty can be written as K ≤ ln
(

L
HM1θ

)
ln((2γ−1))−1. Since H ≥ M1θ, L� H and ln((2γ−1))−1 > 0,

we have C ln
(
L
H

1
M1θ

)
≤ L

H ≤
L
M1θ

.

We want K to be as large as possible with this property, that is K ∼ ln
(
L
H

1
M1θ

)
ln((2γ−1))−1, or in

other terms, (2γ)K ∼ CθHM1L
−1. The following estimate for the energy of the twinning until step

K holds:

‖∂xw‖pLp((0,L(1−γK))×(0,H))
+ σθ|D2w|((0, L(1− γK))× (0, H)) ≤ CMp

1HL
−p+1 + CσL.

To finish the construction we will perform a linear interpolation in x-direction between the values
of the construction at x = L(1 − γK) and the boundary values at x = L. This interpolation takes
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6. The recovery sequence for the vector-valued problem

place on 2K+1 many building blocks of the form (L(1− γK), L)× (0, 2−K−1H). We define

w(x, y) =

(
−x
LγK

+
1

γK

)
w((1− γK)L, y) +

(
1 +

x

LγK
− 1

γK

)
y
H

M1
.

The y derivative of w is the linear interpolation in x between the y derivative of w((1−γK)L, y) and
H
M1

. Since 1
M1
≤ 1

θ we have the very rough estimate

‖min{|∂yw −
1

θ
|, |∂yw|}‖pLp((L(1−γK),L)×(0,2−K−1H))

≤ Hp

θp
γKL2−K−1H.

For the x derivative we need to compute the L∞-distance of the two functions we want to interpo-
late between. It is maximal at y = θM12−K and given by 2−KM1(1−M1θH

−1).

We therefore estimate, using M1θ
H ∈ (0, 1),

‖∂xw‖pLp((L(1−γK),L)×(0,2−K−1H))
≤
(

1

γKL
2−KM1(1−M1θH

−1)

)p
γKL2−K−1H

≤ CMp
1 γ

K(1−p)2−K(1+p)L1−pH. (20)

We put the different building blocks together and derive, using (2γ)−K ∼ L
HθM1

and H < 1, that

‖∂xw‖pLp((L(1−γK),L)×(0,H))
+ ‖min{|∂yw −

1

θ
|, |∂yw|}‖pLp((L(1−γK),L)×(0,H))

≤C(Mp
1 γ

K((2γ)−K)pL1−pH +
1

θp
γKLHp+1)

≤Cθ−pγKLH(H−p +Hp) (21)

≤Cθ−pγKLH1−p.

We know that K is large and γ ≤ 1
2 , hence γK is small. We need to quantify this smallness and

hence use the usual rules for the logarithm to compute

γK = γln(H−1M−1
1 θ−1L)(ln((2γ)−1))−1

= (H−1M−1
1 θ−1L)ln(γ) ln((2γ)−1))−1

.

We remember that γ > 2−p/(p−1) and hence

ln(γ) ln(((2γ)−1))−1 ≥ ln(2−p/(p−1))(ln((21−p/(p−1))−1))−1 = ln(2−p/(p−1))(ln(21/(p−1)))−1 = −p.

The estimate in (21) then reduces to

‖∂xw‖pLp((L(1−γK),L)×(0,H))
+ ‖min{|∂yw −

1

θ
|, |∂yw|}‖pLp((L(1−γK),L)×(0,2H))

≤C(HM1θL
−1)pθ−pLH1−p

≤CMp
1L

1−pH

which is the same energy as the elastic energy of the twinning construction.

In the linear interpolation, the only jumps of the derivatives are the jumps in y direction. We have
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6.3 The recovery sequence for functions whose jump set is a single crossing of segments for p ≥ 2

the jump term estimated by

|(∂y∂y)Jw|((L(1− γK), L)× (0, 2−K−1H)) ≤ CLγK 1

θ
.

However, there is also a mixed term of the absolute continuous part of the gradient present, which
is estimated by

‖(∂x∂y)acw‖L1((L(1−γK),L)×(0,2−K−1H)) ≤ θ−1L−1γ−KLγKθM12−K +HM−1
1 L−1γ−KLγKH2−K

≤M12−K +H2M−1
1 2−K .

Putting together the different building blocks we have the following estimate for the surface energy,
using that θM1 ≤ H ≤ L:

σθ|D2w|((L(1− γK)), L× (0, H)) ≤ Cσ(LγK2K + θH2M−1
1 + θM1)

≤ Cσ(L+ θH2M−1
1 ).

Altogether, the different terms add up to the following estimate for the energy

‖min{|∂yw −
1

θ
|, |∂yw|}‖pLp(RL,H) + ‖∂xw‖pLp(RL,H) + σθ|D2w|(RL,H)

≤C(Mp
1HL

−p+1 + σL+ σθH2M−1
1 ).

For each x ≤ 2K we have that ∂yw(x, ·) = 1
θ on a length of θM1. In the interpolation region we have

∂yw(x, ·) ≤ M1

H up to a set of length θM1 on which we have ∂yw(x, ·) ≤ 1
θ . It immediately follows

that
‖∂yw‖L1((0,L)×(0,H)) ≤M1 +HLγK

M1

H
≤ CM1.

For the x-derivative we get, considering the arguments leading to 19 and 20,

‖∂xw‖L1((0,L)×(0,H)) ≤ CM1H

Hence the function w fulfills all stated properties.

We have hence computed how the energies of the different building blocks add up if they are com-
bined as indicated in Figure 6.4. We will use this twinning construction to achieve a recovery se-
quence for a single crossing. Notice that for the sake of simplicity we only recover a crossing of
jumps of constant height on a small square. For more general crossings we will provide a blow-up
technique at a later part of this chapter.

Proposition 6.5. Let p ∈ (1,∞), r > 0 , θ ∈ (0, θ0) and let u ∈ SBDp
e2�e1(Qr) be the function

u(x, y) = (M1χ{y>0},M2χ{x>0}).
Then there is v ∈W 1,2(Qr) such that Dv ∈ BV (Ω,R4) and such that the following estimates hold:

Ẽp,θ(v) ≤ 8σr + C(M1,M2, σ, p)θ
1/(p2−p+1), ‖v − u‖L1(Qr) ≤ C(M1,M2)(θ + θ(1+p)/(p2−p+1))

and |Dv|(Qr) ≤ C(M1,M2).
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6. The recovery sequence for the vector-valued problem

Moreover, the following boundary values are satisfied:

v1(x,−r) = 0, v1(x, r) = M1, v1(−r, y) = v1(r, y) =


0 y ≤ 0

y
θ y ∈ (0, θM1)

M1 y ≥M1θ,

v2(−r,−y) = 0, v2(r, y) = M2, v2(x,−r) = v2(x, r) =


0 x ≤ 0

x
θ x ∈ (0, θM2)

M2 x ≥M2θ.

Proof. We perform the construction, sketched in Figure 19 and explained in the beginning of this
section. That is for H > θM1, L� H we define:

v2(x, y) =


0 x ≤ 0

x
θ x ∈ (0, θM2)

M2 x ≥M2θ

and v1(x, y) =


0 y ≤ 0, x /∈ (−L, θM2 + L)

y
θ y ∈ (0, θM1), x /∈ (−L, θM2 + L)

M1 y ≥M1θ, x /∈ (−L, θM2 + L).

We also set v1(x, y) = M1 for y ≥ H and v1(x, y) = 0 for y ≤ 0. We define v to be the construction
of Proposition 6.4 on (−L, 0) × (0, H) and the mirrored construction on (θM2, θM2 + L) × (0, H).
Finally we set v(x, y) = yM1

H for x ∈ (0,M2θ), y ∈ (0, H).

The energy is then estimated via

Ẽp,θ(v) ≤ 8σr + C(Mp
1HL

−p+1 + σL+ σθH2M−1
1 ) +Mp

1 θM2H
1−p.

Notice, that for the sake of simplicity we inserted a slope of 1
θ in the intermediate region, although

the energy Ẽp,θ prefers a slope of 1
θ+1. This does only creates an error of θrM1, which is neglectable.

We choose H = θp/(p
2−p+1) and L = θ1/(p2−p+1) such that the relevant terms scale similar and

estimate the energy by
Ẽp,θ(v) ≤ 8σr + C(M1,M2, σ, p)θ

1/(p2−p+1).

For the gradient of u we get, using the estimates given in Proposition 6.4 an the fact that the x
derivative is only present in that construction,

|Dv|(Qr) ≤ (M1 +M2)θ
1

θ
+ CM1 + θM2H

1

H
M1 = C(M1,M2).

We have that u and v are bounded in L∞ and only different on the tunnels and the crossing. Hence

‖u− v‖L1(Qr) ≤ (M1 +M2)2θ + 2(M1 +M2)HL ≤ C(M1,M2)(θ + θ(1+p)/(p2−p+1)).
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6.4 The recovery sequence for functions whose jump set is a finite union of segments

6.4 The recovery sequence for functions whose jump set is a finite union of
segments

We can now put the things together and construct a recovery sequence for a regular function whose
jump set is a finite union of segments.

The main difficulty of the following construction - performing a recovery for crossings - has been
solved in the previous section. We can now prove:

Theorem 6.6 (Recovery sequence for isolated segments). Let p ∈ (1,∞) and u ∈ SBDp
e2�e1,a such

that it fulfills ui ∈W 2,∞(Ω \ Jui), Ju1 =
⋃I
i=0(ai, bi)× {yi}, Ju2 =

⋃J
j=0{xj} × (dj , ej) and such that

[ui] ∈ C2(Jui). Let θk ↘ 0.

Then there is a sequence vk ∈W 1,2(Ω) such that Dvk ∈ BV (Ω,R4), vk(0, y) = θ2

1+θy, vk(·, 0) = 0 and

Ẽp,θk(vk)→ Ẽp(u) and vk
∗
⇀ u in BD.

Proof. The families of horizontal jump sets and of vertical jump sets are both finite. Hence there is a
γ > 0 such that dist((ai, bi)× {yi}, (ak, bk)× {yk}) ≥ γ and dist({xj} × (dj , ej), {xl} × (dl, el)) ≥ γ.
We can without loss of generality choose θk ≤ (max{[ui](x) |x ∈ Jui})−1γ.

Away from the crossings we want to insert tunnels in which the slope of the function is approx-
imately 1

θk
. These tunnels do not interact and the energy of this construction converges, see the

computations in the proof of Proposition 6.2 for the details. At the crossings we want to imple-
ment the construction developed in Proposition 6.5. This construction does, however, start with a
function that is constant on both sides of the jump. We show in the following lemma that one can
perform a local blow-up of the function at the crossing with small energy. A combination of these
results finishes the proof.

Lemma 6.7. Let u ∈ SBDp
e2�e1(QR) such that Ju1 = (−R,R) × {0}, Ju2 = {0} × (−R,R),

ui ∈W 2,∞(QR \ Jui) and such that [ui] ∈ C2(Jui).

Then for r ∈ (0, R4 ), there is v ∈ SBDp
e2�e1(QR) such that

v = u on ∂QR, v1χQR = u+
1 (0)χQR∩{y>0} + u−1 (0)χQR∩{y<0}

and v2χQR = u+
2 (0)χQR∩{x>0} + u−2 (0)χQR∩{x<0}.

It moreover holds

‖v − u‖L1(QR) ≤ 4R2‖u‖L∞ , I(v) ≤ I(u) + CR2‖Du‖pL∞
and |Dv|(QR) ≤ C(R2‖Du‖∞ +R‖u‖∞).

Proof. We only perform the construction for u1 in the upper half ofQR, the rest follow similarly and
by the triangle inequality. We will use a blow up in radial direction. This is surprisingly simple
since the jump is only concentrated in the two fixed segments and we allow a large error in the
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6. The recovery sequence for the vector-valued problem

gradient. We set

v1(z) =


u+

1 (0) |z| ≤ 2r

u1

(
|z|−2r
R−2r z

)
2r ≤ |z| ≤ R

u1(z) |z| ≥ R.

and apply the rotated construction for v2.
It immediately follows that v ∈ SBDp

e2�e1(QR), ‖v − u‖L1(QR) ≤ ‖u‖L∞4r2, H1(Ju) = H1(Jv).
Since

|∇v1(z)| ≤


0 |z| ≤ 2r

2‖∇u1‖∞ R
R−2r 2r ≤ |z| ≤ R

|∇u1(z)| |z| ≥ R.

we can easily estimate

‖∇v‖L1(QR) ≤ CR2‖Du‖L∞
(

1 +
R

R− 2r

)
and ‖Dv‖pLp(QR) ≤ CR

2‖Du‖L∞
(

1 +
R

R− 2r

)p
.

Using the fact that 4r ≤ R yields ‖e(v)‖pLp(QR) ≤ CR
2‖Du‖pL∞ and all other estimates do also hold.

6.5 The density result: An open problem and its difficulties

We have yet not been able to prove an appropriate density result for SBDp
e2�e1 . Recalling the

construction in Chapter 4 we expect the difficulty not to lie in the regularity of the function, but in
the geometry of the jump set. The desired result would be the following:

Conjecture 6.8. Let p ∈ (1,∞), u ∈ SBDp
e2�e1,a and let δ > 0. There is v ∈ SBDp

e2�e1,a such that Jv1

is a finite union of horizontal segments, Jv2 is a finite union of vertical segments, vi ∈W 2,∞(Ω \ Jui),

‖v − u‖L1(Ω) ≤ Cδ, |(Dv)sym|(Ω) ≤ C(1 + E(u) + E1/p(u)) and E(v) ≤ (1 + Cδ)E(u).

At first, it seems straightforward to adapt the proof done in Chapter 4 carefully. We will now discuss
up to what point this is possible and where the difficulties lie.
We would like to cover the domain with a collection of small squares and perform different local
constructions in dependence of the amount of jump and its regularity in the different squares. All
constructions we have in mind need an interpolation layer in a neighborhood of the squares in
which the function is also changed. We therefore strongly expect the covering of the domain to be a
Whitney-type covering, such that one can ensure that the overlap of these neighborhoods is finite.
A Whitney-type covering has the disadvantage that one can not choose the radii of the squares in
dependence of the local properties of the jump, they are somehow fixed a priori.
In Chapter 4 we divided the family of squares in different types, the ones with a small amount
of jump, the ones with high regularity and the rest. This would also be possible in the SBDp

e2�e1
setting. For the type-I squares with small amount of jump, again convoluting with a standard-
mollifier would give a similar scaling as in the SBV -setting. For this purpose one could use a
variant of Proposition 3 in a recent work of Chambolle, Conti and Francfort [12]. We show in the
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6.5 The density result: An open problem and its difficulties

following chapter how one can adapt their techniques to our setting and achieve such a result. For
the type-III squares, in which the jump is close to a C1 curve and there is no crossing of jumps,
a linear interpolation in one of the two directions as performed in Chapter 4 would lead to an
appropriate estimate for the energy.
The main problem are the type-II squares in which the length of the jump is larger then ηri, where
ri is the sidelength of the ith square, for some universal constant η > 0. We only need to cover jump
of total length ε with these squares, hence we know that

∑
ri ≤ εη−1. In analogy to the work for

SBV -functions we want to replace the function by a piecewise constant function.
For this function the number of jumps between the constants should be bounded by the number
of jumps present in the original function. A Poincaré-type inequality would ensure the closeness
of this two functions in Lp. We have been able to prove a Poincaré-type inequality in exactly this
setting, the next chapter is dedicated to the proof.
The result is that given a function u there is a piecewise constant function v such that
‖u − v‖pLp(Qri )

≤ Crp‖e(u)‖pLp(Qr)

(
1 + (H1(Ju))p

rp

)
. We also provide an example that suggests that

this estimate is optimal. If we use a standard-interpolator on scale δi we would get, that for a
disjoint family of type-II squares the following estimate holds:

‖e(v)‖pLp(
⋃
iQri )

≤ 1

δpi
‖u− v‖pLp(

⋃
iQri )

+ h.o.t. (22)

≤
∑
i

1

δpi
rpi ‖e(u)‖pLp(Qri )

(H1(Ju ∩Qri))p

rpi
+ h.o.t. .

We see, that for this term it is optimal to have δi ∼ ri and that since L2(
⋃
iQri) ≤

∑
ri ≤ εη−1, we

can let
∑
i ‖e(u)‖pLp(Qri )

be small for small enough ε.

We do not expect an estimate for
∑
i

‖e(u)‖p
Lp(Qri

)

rαi
to hold since for any α even one single term in this

sum might get arbitrary large, if the square is chosen badly.
However, it seems also difficult to control the term (H1(Ju∩Qri ))

p

rpi
in this setting, since this would

need an adaption of the Whitney-type covering to the local density of the jump set. Only if one had
thatH1(Ju ∩Qri) ≤Mri one could choose the parameters in a way that (22) gets small.
A first idea would therefore be to introduce a different construction for the squares in which
H1(Ju) ≥ Mri for some M � 1. It is yet not obvious how the additional information that large
amounts of jump are present would help to avoid the need of applying a Poincaré-type estimate.
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7 Korn-Poincaré-type inequalities for SBDp
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There are functions of bounded deformation that are not of bounded variation. An example of
Ornstein presents a function with integrable symmetric gradient whose gradient is not integrable,
see [42]. In particular this shows that Korn’s inequality does not hold for p = 1.
However, for all u ∈ BD(Ω) there is a global, linear, skew-symmetric map R and a constant c
such that a Poincaré-type inequality of the form ‖u − R − c‖L1(Ω) ≤ C|(Du)sym|(Ω) holds, see [1].
There is ongoing research on finding a stronger estimate for functions that are not only in BD but
in SBDp. In particular: Can one neglect the jump part on the right-hand side of the estimate and
use only the absolute continuous part? Can one additionally gain a Lp-estimate for the function
using a Lp-norm on the absolute continuous part of the derivative? There are positive results, for
example from Conti, Chambolle and Francfort or Friedrich, see [12] and [30], but they only answer
the question partially. We will adapt the results of the former to get a stronger result for our smaller
space SBDp

e2�e1 .
Our Proposition 7.1 is an improvement of Proposition 2 in the work of Chambolle, Conti and Franc-
fort [12]. For SBDp functions with small jump set they prove an estimate for the Lp distance of the
function to an affine, skew-symmetric function, but only up to an exceptional set of small measure.
We are able to use the special geometry of the jump set of SBDp

e2�e1 -functions to get an estimate
for the complete domain.
In Theorem 7 we can also get rid of the assumption of a small jump set. The main idea is to chose an
affine line of such a small slope, that it does not intersect the jump set of the first component. Apply-
ing slicing techniques and the one-dimensional Poincaré estimate on this line gives us a piecewise
Poincaré-type estimate for the second component alone. This values can be transported on the
complete domain using the ∂yu2 term. The estimate for u1 follows with a symmetric argument.
We indicate in Remark 7.4 that our result is optimal, in the sense that the H1(Ju) term needs to
enter with the given scaling.

Proposition 7.1 (Korn-Poincaré-type inequality for functions with small jump set). Let p ∈ (1,∞).
There are constants C > 0, co > 0 such that for every u ∈ SBDp

e2�e1(Qr) with H1(Ju) ≤ c0r it holds:
There is an skew-symmetric matrix R̃ and a constant c ∈ R2 such that for R(x, y) = R̃ · (x, y)T it holds:

‖u−R− c‖pLp(Qr) ≤ Cr
p‖e(u)‖pLp(Qr).

Here and in the following we let R̃ be a matrix in Rn×n and R the linear function that has∇R = R̃.
We will first prove an easy lemma, that shows how the constraint on the geometry of the jump set
in SBDp

e2�e1 can be used if the exceptional set has some special structure. Afterwards we prove a
variant of Proposition 7.1, in which only an exceptional set with that special structure is removed.
The proof of Proposition 7.1 follows as an immediate corollary of these two results.

Lemma 7.2. Let p ∈ (1,∞), u ∈ SBDp
e2�e1(Qr), R̃ ∈ R2×2 skew-symmetric, c ∈ R2, C > 0 and an

exceptional set ω ⊆ Qr such that L2(ω) ≤ CrH1(Ju), ‖u − R − c‖pLp(Qr\ω) ≤ Crp‖e(u)‖pLp(Qr) and for
almost every x ∈ (−r, r), y ∈ (−r, r) it holds:

H1(ω ∩ {x} × (−r, r)) ≤ 3

2
r and H1(ω ∩ (−r, r)× {y}) ≤ 3

2
r. (23)

78



Then
‖u−R− c‖pLp(Qr) ≤ C̃r

p‖e(u)‖pLp(Qr),

where C̃ only depends on the given constant C and p.

Proof. Let without loss of generality r = 1 and define v = u − R − c. This simplifies notation since
e(u) = e(v).
Fix ȳ ∈ (−1, 1). We can choose x̃ ∈ (−1, 1) such that

(x̃, ȳ) /∈ ω and |v(x̃, ȳ)|p ≤ C̃‖v‖pLp((−1,1)×{ȳ}\ω). (24)

We have used (23) to get the inequality in (24) with the removed set ω in the Lp-norm. The triangle
inequality yields that for almost every x ∈ (−1, 1) it holds:

|v1(x, ȳ)|p ≤ C̃|v1(x̃, ȳ)|p + C̃‖∂xv1‖pLp((−1,1)×{ȳ}).

Since ȳ was arbitrary we can integrate this inequality and conclude

ˆ 1

−1

ˆ 1

−1

|v1(x, ȳ)|p dL1(x) dL1(ȳ) ≤ C̃
ˆ 1

−1

|v1(x̃, ȳ)|p dL1(ȳ) + C̃‖∂xv1‖pLp(Q1)

≤ C̃‖v1‖pLp(ωC)
+ C̃‖∂xv1‖pLp(Q1)

≤ C̃‖e(v)‖pLp(Q1).

The estimate for v2 holds due to the symmetry of the problem.

We will apply this lemma after having proven the following statement:

Proposition 7.3 (Variant of Conti-Chambolle-Francfort). Let p ∈ (1,∞). There is a constant co > 0

such that for every u ∈ SBDp(Qr) withH1(Ju) ≤ c0r it holds :
There is a constant c ∈ R2, a skew-symmetric matrix R̃ and an exceptional set ω ⊆ Qr such that
L2(ω) ≤ CrH1(Ju), ‖u − R − c‖pLp(Qr\ω) ≤ Crp‖e(u)‖pLp(Qr) and such that almost every slice in the
upper right quadrant intersects the exceptional set only on a fraction of its length, that is for x ∈ (0, r),
y ∈ (0, r) it holds:

H1(ω ∩ {x} × (0, r)) ≤ 3

4
r and H1(ω ∩ (0, r)× {y}) ≤ 3

4
r.

Remark. Notice, that the foregoing result is not only proven for functions in SBDp
e2�e1(Qr) but

even in the larger space SBDp(Qr). However, it is not possible to use this structure to gain a better
Korn-Poincaré-type estimate in the general SBDp-setting, but only for SBDp

e2�e1 .
Moreover it is possible to get the additional structure not only in the upper right quadrant but
for every slice, see the proof of Proposition 7.1 below. We omit this in this formulation of the
proposition to keep the structure and notation simple.

The following proof closely follows the proof given in [12], but is adapted in some parts to gain the
additional structure of the exceptional set.

79
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Proof. Let without loss of generality be r = 1.

Define the characteristic function T : R2×S1×R for the slices on which fundamental theorem does
not hold by

T (z, ξ, t) =

1 z ∈ Q1, z + tξ ∈ Q1 and ξ · (u(z + tξ)− u(z)) 6= t
´ 1

0
ξ · e(u)(z + tsξ) · ξ dL1(s)

0 otherwise.

We notice that for almost every (z, ξ, t) it holds: ξ · (u(z+ tξ)−u(z)) 6= t
´ 1

0
ξ · e(u)(z+ tsξ) · ξ dL1(s)

if and only if there is s ∈ (0, t) such that z + sξ ∈ Ju. In [12] three points z0, z1, z2 are chosen
such that along the edges of the so-created triangle, fundamental theorem is applicable and such
that the ’shadow’ of the jump set from these points - which will be the exceptional set - is small
enough. Moreover, the points are chosen in a way such that there is an affine function a such that
a(zi) = u(zi),

ˆ
S1

ˆ
R
T (zi, ξ, t) dL1(t) dH1(ξ) ≤ CH1(Ju) ≤ Cc0 (25)

and |Da+DaT | ≤ C‖e(u)‖L1(Q1).

Having this at hand, an estimate for ‖u−a‖Lp(Q1\ω) is established, see the publication for the details.
The exceptional set ω is defined by the union of the ’shadows’ of the jump set, starting from the three
points zi, that is

ωi = {z ∈ Q1 | z = zi + tξ, T (z, ξ, t) = 1} and ω = ω1 ∪ ω2 ∪ ω3,

see also the green area indicated in Figure 21 for an idea of this set.

We only need to modify these arguments slightly.

We choose the points zi such that additionally zi ∈ (− 3
4 ,−

1
2 )2. This only increases the constants in

(25) but the estimates still hold. Let di = dist(zi, ∂Q) and deduce that 1
4 ≤ di ≤ 1

2 . We have for
almost every ξ and almost every t ∈ (di2 , d): If T (zi, ξ, t) = 1 then T (zi, ξ,

di
2 ) = 1. It follows, using

(25), that ˆ
S1

T

(
zi, ξ,

di
2

)
dH1(ξ) ≤ Cc0.

Our claim is, assuming c0 small enough, that for almost every y ≥ 0 it holds

H1(ωi ∩ (−1, 1)× {y}) ≤ 1

4
.

We therefore fix y ∈ (0, 1). There are essentially two possibilities how ωi ∩ (−1, 1) × {y} might get
large. Either large parts of jump lie between Bdi/2(zi) and (−1, 1) × {y} or a small jump set in the
ball Bdi/2(zi) is projected on a large subset of ωi ∩ (−1, 1) × {y}, see Figure 21 for a sketch of both
variants. We have, however, chosen the points zi in a way such that in both cases the projection of
the jump set is not to large.
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We divide ωi ∩ (−1, 1)× {y} into two subsets, up to a null set. Let

ω1
i ={(x, y) | there is z ∈ Ju ∩Bdi/2(zi), ξ ∈ S1 such that (x, y) ∈ zi + Rξ, z ∈ zi + Rξ} and

ω2
i ={(x, y) | there is z ∈ Ju \Bdi/2(zi), z2 ≤ y, ξ ∈ S1 such that (x, y) ∈ zi + Rξ, z ∈ zi + Rξ}.

Indeed, for almost every z ∈ Bdi/2(zi) ∩ Ju we have that for ξ̃ = z−zi
|z−zi| and z̃ = zi + di

2 ξ̃ it holds:
z̃ ∈ ∂Bdi/2(zi) ∩ ωi. Hence for almost every x ∈ (−1, 1) with (x, y) ∈ ω1

i we have a corresponding
z̃ ∈ ∂Bdi/2(zi) ∩ ωi. The projection of the circle ∂Bdi/2(zi) onto the line (−1, 1) × {y} along the
directions ξ is a Lipschitz-map and hence we have

H1(ω1
i ) ≤ L

ˆ
S1

T

(
zi, ξ,

di
2

)
dH1(ξ) ≤ LCc0.

y

0

1

−1

Figure 21: Since the sphere ∂Bdi/2(zi) is contained in (−1,− 1
4

)2 we have that the maximal angles of the projection on the
line (−1, 1)× {y} are bounded (blue lines). Parts of the jump set with a distance to zi that is larger then di/2
create only shadow on (−1, 1)× {y}, that is comparable to the original size of the jump set.

Since the circle ∂Bdi/2(zi) is contained in the square (−1,− 1
4 )2, the radius di is bounded from below

by a constant and since we are considering only strictly positive values y we have that the Lipschitz
constant L is bounded from above, independent of the choice of y and zi, see Figure 21.

On the other hand it is a consequence of the intercept theorem that the part of the jump set, that has
distance larger then di to zi, is not projected on a large subset of (−1, 1)× {y}. In fact:

H1(ω2
i ) ≤ 1

di
H1(Ju) ≤ Cc0.

We hence see that for c0 small enough we have H1(ω ∩ (−1, 1) × {y}) ≤ 3
4 and since all arguments

were symmetric we also haveH1(ω ∩ {x} × (−1, 1)) ≤ 3
4 .

We are now able to put things together and finish the proof of Proposition 7.1.

Proof. (of Proposition 7.1) Obviously it is possible to get the foregoing result with the structure for
the jump set in each of the four quadrants of Qr = (−r, r)2. If we apply Lemma 7.2 on each of these
quadrants we get four linear functions Ri and constants ci such that

‖u−Ri − ci‖Lp(Qi) ≤ Crp‖e(u)‖pLp(Qr),
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where Q1 = (0, r)2, Q2 = (−r, 0)× (0, r), Q3 = (−r, r)2 and Q4 = (0, r)× (−r, 0).

It moreover holds that there are exceptional sets ωi for each affine function Ri + ci that satisfy
L2(ωi) ≤ CrH1(Ju) and such that for the other quadrants we have

‖u−Ri − ci‖pLp(Qj\ωi) ≤ Cr
p‖e(u)‖pLp(Qr).

Applying the triangle inequality yields

|Ri + ci −Rk − ck|pp ≤
C

r2 − L2(ωi)

(
‖u−Ri − ci‖pLp(Qj\ωi) + ‖u−Rk − ck‖pLp(Qj\ωi)

)
≤ Crp−2‖e(u)‖pLp(Qr).

On each square Qi the Poincaré inequality with Ri + ci holds without exceptional set. We can
exchange the different Ri + ci’s on the different Qi’s with small error and hence the proposition
follows.

In our main result we also want to neglect the assumption of the smallness of the jump set.

After considering the function u(x, y) = (Mχ{y>0}, 0) on Q1 it is clear that a Poincaré-type in-
equality with one global constant can not hold. A reasonable inequality will include different local
constants for the Lp-distance on different parts of the domain. We will not only be able to control
the number of these constants by the size of the jump set, but also the geometry of the sets on which
each constant is present. Moreover, only one rotation will be chosen for the whole square.

The motivation for this result comes from the analog statement for SBV functions as used in Chap-
ter 6. A similar result for SBDp or any subspace of SBDp that is larger then W 1,p is not known to
the author.

Theorem (Korn-Poincaré-type inequality). Let p ∈ (1,∞) and u ∈ SBDp
e2�e1(Qr). There is a constant

C, a partition x1 < · · · < xI , a partition y1 < · · · < yJ , values ai < ai+1, bj < bj+1 and a skew-symmetric
matrix R̃ such that I ≤ C

r H
1(Ju2), J ≤ C

r H
1(Ju1) and for R(x, y) = R̃ · (x, y)T it holds

∥∥∥u−R− I,J∑
i,j=0

(
ai

bj

)
χ(xi,xi+1)×(yj ,yj+1)

∥∥∥p
Lp(Qr)

≤ Crp‖e(u)‖pLp(Qr)

(
1 +

(H1(Ju))p

rp

)
,

where x0 = y0 = −r and xI+1 = yJ+1 = r.

Notice that the function v := R +
∑I,J
i,j=0

(
ai

bj

)
χ(xi,xi+1)×(yj ,yj+1) is an element of SBDp

e2�e1(Qr)

with Ẽp(v) = r(I + J).

Remark 7.4. We want to point out that this inequality is optimal, in the sense thatH1(Ju) needs to
enter as a multiplicative factor with an exponent p. Consider the following construction for r = 1

and notice that the usual slicing results finish the argument:

Let N ∈ N arbitrary and let RiN = (0, 1) × ( iN ,
i+1
N ) a partition of the domain in N equisized

rectangles. Let v : R0
N → R2 be a function that realizes a large constant in Korn’s inequality on thin

rectangles, for example v(x, y) = (−2xy, x2).
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We can easily compute ‖v‖p
Lp(R0

N )
∼ Np‖e(v)‖p

Lp(R0
N )

and the scaling does not change by subtracting
any affine, skew-symmetric function. For y ∈ ( iN ,

i+1
N ) we define u(x, y) = v(x, y − i

N ) + ci, where
ci = i‖v‖∞. It follows:

‖v − ciχRiN ‖
p
Lp(Q1) ∼ N

(
Np‖e(v)‖p

Lp(R0
N )

)
∼ Np‖e(u)‖pLp(Q1) ∼ (H1(Ju))p‖e(u)‖pLp(Q1).

Proof. (of Theorem 7) Due to the usual scaling techniques we can assume r = 1 and denote
Q = Q1 = (−1, 1)2. We can moreover without loss of generality assume that H1(Ju) ≥ c0 since
we can otherwise apply Proposition 7.1 and set I = J = 0.

Let λ ∈ (0, 1
4 ) to be chosen later. By a standard combinatorial argument there is a constant C � 1

such that we can choose vertical and horizontal stripes Sv = (x̄, x̄+λ)×(0, 1), Sh = (0, 1)×(ȳ, ȳ+λ)

of width λ in such a way, such that for q = Sv ∩ Sh we have

‖e(u)‖p
Lp(Sh,v)

≤ Cλ‖e(u)‖pLp(Q), ‖e(u)‖pLp(q) ≤ Cλ
2‖e(u)‖pLp(Q),

H1(Jui ∩ Sh,v) ≤ CλH1(Ju) and H1(Ju ∩ q) ≤ Cλ2H1(Ju). (26)

Hence, if we choose λ = c0
CH1(Ju) and use Proposition 7.1 on the small square q, we may conclude

that there is a skew-symmetric matrix R̃ and a constant c ∈ R2 such that

‖u−R− c‖pLp(q) ≤ Cλ
p‖e(u)‖pLp(q). (27)

We will subtract this rotation, coming from the Korn-Poincaré-type inequality on the small square
q, from u on the whole square Q. By redefining u we choose R and c to be equal to zero to simplify
notation in the sequel.

The Lp-estimate for u1 on the small square q can be transported on the horizontal stripe Sh via the
symmetrized gradient: Choose x̃ ∈ (x̄, x̄ + λ) such that ‖u1(x̃, ·)‖pLp((ȳ,ȳ+λ)) ≤ λ−1‖u1‖pLp(q). Then
by fundamental theorem, (27) and (26) we find

‖u1‖pLp(Sh)
≤ C‖u1(x̃, ·)‖pLp(ȳ,ȳ+λ) + C‖∂xu1‖pLp(Sh)

≤ Cλ‖e(u)‖pLp(Q). (28)

The central task is to find an estimate for ‖u2‖Lp on this horizontal stripe. The idea is to choose
an affine line in Sh with small slope α that does not intersect Ju1. We will then apply the one-
dimensional Poincaré inequality on this line.

Fix ξ = (
√

1− α2, α), Πξ = Rξ⊥ and define for y ∈ Πξ the affine line in direction ξ through y as
T yξ = y + Rξ ∩Q.

Let Th = {T yξ | y ∈ Πξ, T
y
ξ ⊆ Sh} and define T h = {z ∈ T yξ |T

y
ξ ∈ Th}, see Figure 22 for a sketch. If

α ≤ λ/2 then at least half of the volume of Sh is covered by T h. We show below, using the usual
slicing techniques as introduced by Ambrosio, Coscia and Dal Maso (see [1]), that we can choose
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T ∈ Th such that

‖u′ξ‖
p
Lp(T ) ≤ Cλ

−1‖e(u)‖pLp(Sh) ‖u1‖pLp(T ) ≤ Cλ
−1‖u1‖pLp(Sh)

H0(Ju2 ∩ T ) ≤ Cλ−1H1(Ju2 ∩ Sh) and H0(Ju1 ∩ T ) = 0. (29)

The function uξ ∈ BV (T ) is defined by uξ(t) = u(ỹ + tξ) · ξ where ỹ ∈ T ∩ Πξ. We will denote the
absolute continuous part of the derivative of uξ by u′ξ. We will understand uξ as both a function
of an interval and of the one-dimensional slice T and exchange these meanings. Details about the
application of the slicing techniques in our setting have already been given in Chapter 5.

Πξ

T ξy

Sv

q

x1 x2

Figure 22: The square q is chosen such that there is not much jump inside. The line T yξ is chosen such that the Poincaré
inequality holds on it, up to the I = 2 many jumps of u2. The horizontal jumps of u1 are completely avoided.

We want to use the generalized coarea formula to achieve the last equation in (29) (see for example
Theorem 3.2.22 in [29]). The set Ju1 ∩ T h is rectifiable and that the normal and the tangent satisfy
ν = e2 and τ = e1 H1-almost everywhere. It follows:

ˆ
Πξ

H0(Ju1 ∩ T h ∩ T yξ ) dH1(y) =

ˆ
Ju1∩T h

|(Id−ξ ⊗ ξ) · τ | dH1 =

ˆ
Ju1∩T h

|ξ · ν| dH1

= αH1(Ju1 ∩ T h).

We have H1(Ju ∩ T h) ≤ H1(Ju ∩ Sh) ≤ αc0. So if we choose α = λ
4c0

we know that at least half of
the lines T yξ can not intersect Ju1. We can therefore indeed choose a line such that (29) holds.

We define {wi | i ∈ {1, . . . , I}} = Ju2 ∩ T and notice that I ≤ CH1(J(u2)). We denote the first
components of the vectors wi ∈ R2 by xi = wi1. This points will form the partition of the x-axis we
are aiming at.

For a, b ∈ R2 we denote by ab the segment with endpoints a and b. We see that uξ ∈ W 1,p(wiwi+1)

and that u+
ξ (wi) < u−ξ (wi). We want to find I + 1 constants b̃i such that b̃i < b̃i+1 and

‖uξ − b̃i‖pLp(wiwi+1) ≤ (xi+1 − xi)p‖u′ξ‖
p
Lp(wiwi+1) ≤ ‖u

′
ξ‖
p
Lp(wiwi+1). (30)

By the Poincaré inequality, (30) holds for b̃i = 〈uξ〉wiwi+1 . However, in general we might have
〈uξ〉wiwi+1

≥ 〈uξ〉wi+1wi+2
and hence some modifications must be done: Define w as the function uξ
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with removed jumps i.e., w(t) =
´ t

0
u′ξ(s) dL1(s). Then w ∈W 1,p(T ) and uξ−w =

∑I
i=1[uξ](wi)δwi .

Again by the Poincaré inequality we have a constant c̃ such that

‖w − c̃‖pLp(T ) ≤ C‖w
′‖pLp(T ) = C‖u′ξ‖

p
Lp(T ).

We define b̃i := c̃+
∑i
j=1[uξ](wj). It then holds that

‖uξ − b̃i‖pLp(wi,wi+1) = ‖w − c̃‖pLp(wi,wi+1) (31)

and b̃i < b̃i+1.
At this point of the proof we are interested in an estimate for the second component of u2 alone. We
therefore define bi = b̃i/α and derive

‖u2 − bi‖pLp(wiwi+1) ≤ C
1

αp
‖ξ1u1 + αu2 − b̃i‖pLp(wiwi+1) + C

(
ξ1
α

)p
‖u1‖pLp(wiwi+1)

≤ C 1

αp

(
‖uξ − b̃i‖pLp(wiwi+1) + ‖u1‖pLp(wiwi+1)

)
. (32)

Using fundamental theorem in y-direction, (32) and (31) we get that

‖u2 −
I∑
i=0

biχ(xi,xi+1)×(0,1)‖pLp((0,1)2) ≤ C
I∑
i=0

(
‖u2 − bi‖pLp(wiwi+1) + ‖∂yu2‖pLp((xi,xi+1)×(0,1))

)
≤ C 1

αp

(
‖w − c̃‖pLp(T ) + ‖u1‖pLp(T )

)
+ C‖e(u)‖Lp(Q).

Putting things together and using (31), (29), (26) and (28) we get

‖u2 −
I∑
i=0

biχ(xi,xi+1)×(0,1)‖pLp(Q)

≤ C

αp

(
‖u′ξ‖

p
Lp(T ) + ‖u1‖pLp(T )

)
+ C‖e(u)‖Lp(Q)

≤ C

αp

(
λ−1‖e(u)‖pLp(Sh) + λ−1‖u1‖pLp(Sh)

)
+ C‖e(u)‖Lp(Q)

≤ C‖e(u)‖Lp(Q)

(
1 +

1

αp

)
,

which is the stated inequality for the second component.
The problem is symmetric and hence we can easily conclude a similar result for u1.

This finishes the discussion of the Korn-Poincaré-type inequalities for SBDp
e2�e1 . We have already

discussed in 7.4 that a stronger result is not expected.
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Glossary

Ẽp(u) Translated version of the limiting energy for a vector-valued function
u ∈ SBDp

e1⊗e2,a. 65
Ẽp,θ(u) Translated version of the energy for a vector-valued function u. 65
Ep(u) Limiting energy for a vector-valued function u ∈ SBDp

e1⊗e2,0 . 59
Eθ,p(u) Energy for a vector-valued function u ∈ W . 7
I(u) Limiting energy for a scalar-valued function u ∈ SBV 2

e1,0. 21
Iθ(u) Energy for a scalar-valued function u ∈ A. 7
Iθe2(v) One-dimensional slicing of the energy for a one-dimensional scalar-valued

functionv ∈ B1. 12
Ie2(v) Limiting energy of the slicing for a one-dimensional, scalar-valued func-

tion v ∈ SBV+,1. 12
J(u) The Mumford-Shah functional for a function u ∈ SBV 2

e1,a. 28
QR(x) The two-dimensional square with sidelength 2R centered at x. 29
SBV 2

e2,0 SBV 2
loc((0, 1)2)-functions whose jump is positive and lies in horizontal

slices with zero boundary values on the left edge. 21
SBV 2

e2,a SBV 2((0, 1)2)-functions whose jump is positive and lies in horizontal
slices with affine boundary values on the left edge. 28

SBV 2
e2(A) SBV 2(A)-functions whose jump is positive and lies in horizontal slices

without boundary values. 28
SBV+,λ One-dimensional SBV ((0, λ))-functions whose jumps are of positive

height. 12
Ω The unit square (0, 1)2 in two dimensions. 6
A Two-dimensional W 1,2((0, 1)2)-functions whose derivatives are of

bounded variation with some boundary values. 21
Bλ One-dimensionalW 1,2((0, 1))-functions whose derivatives are of bounded

variation. 12
W Two-dimensional, vector-valuedW 1,2((0, 1)2,R2)-functions whose deriva-

tives are of bounded variation with some boundary values. 59
SBDp

e2�e1,0 SBDp
loc((0, 1)2)-functions whose jump has some orientation with zero

boundary values on the lower and left edge. 59
SBDp

e2�e1,a SBDp((0, 1)2)-functions whose jump has some orientation with affine
boundary values on the lower and left edge. 65

SBDp
e2�e1(A) SBDp(A)-functions whose jump has some orientation without boundary

values. 65

86



Glossary

87



References

References

[1] L. Ambrosio, A. Coscia, and G. Dal Maso. Fine properties of functions with bounded defor-
mation. Arch. Rational Mech. Anal., 139:201–238, 1997.

[2] L. Ambrosio and E. De Giorgi. Un nuovo tipo di funzionale del calcolo delle variazioni. Atti.
Accad. Naz. Lin., 82:199–210, 1988.

[3] L. Ambrosio, N. Fusco, and D. Pallara. Functions of Bounded Variation and Free Discontinuity
Problems. Oxford University Press, Oxford, 2000.

[4] L. Ambrosio and C. Mantegazza. Curvature and distance function from a manifold. J. Geom.
Anal., 8:723–748, 1998.

[5] L. Ambrosio and V. M. Tortorelli. Approximation of functionals depending on jumps by elliptic
functionals via Γ-convergence. Comm. Pure Appl. Math., 43:999–1036, 1990.

[6] J. M. Ball and R. D. James. Fine phase mixtures as minimizers of energy. Arch. Rational Mech.
Anal., 100:13–52, 1987.

[7] K. Bhattacharya. Microstructure of Martensite. Oxford University Press, Oxford, 2003.

[8] V. Birman. Review of mechanics of shape memory alloy structures. Appl. Mech. Rev., 50:629–
645, 1997.

[9] J. S. Bowles and J. K. MacKenzie. The crystallography of martensitic transformations I and II.
Acta Met., 2:129–137, 138–147, 1954.
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[21] G. Dal Maso and L. Modica. A general theory of variational functionals. In Topics in functional
analysis, 1980-81, pages 149–221. Quaderni Scuola Norm. Sup. Pisa, Pisa, 1981.

[22] E. De Giorgi, M. Carriero, and A. Leaci. Existence theorem for a minimum problem with free
discontinuity set. Arch. Rational Mech. Anal., 108:195–218, 1987.

[23] G. De Phillippis and F. Rindler. On the structure of A-free measures and applications.
http://arxiv.org/abs/1601.06543, 2016.
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