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Abstract

It has been noticed that many real world signals are sparse or compressible (approximately

sparse) in a certain basis or frame. This observation has led to the theory of compressive sensing

which enables the recovery of sparse vectors from a number of measurements smaller than the

vector length via efficient algorithms. Since solving the affine sparse minimization problem

min
x
‖x‖0 = #{i : x(i) 6= 0} ≤ s s.t. y = Ax,

is in general NP-hard, tractable alternatives have been suggested and analyzed. Recovery al-

gorithms include optimization methods such as `1-minimization (also known as basis pursuit)

and quadratically constrained `1-minimization (also called basis pursuit denoising), greedy meth-

ods such as orthogonal matching pursuit (OMP) and compressive sampling matching pursuit

(CoSaMP), and thresholding-based methods which include iterative hard thresholding algorithm

(IHT) and fast iterative shrinkage-thresholding algorithm (FISTA). The concept of compressive

sensing extends to recovery of two-dimensional signals where the aim is to reconstruct a low-rank

matrix from an underdetermined linear system. This extension is not just theoretically interest-

ing, but has also been applied to various engineering problems where the signal is of low-rank.

For example, this problem arises in quantum state tomography, computer vision, collaborative

filtering, and matrix completion (where a task is to recover a low-rank matrix from few known en-

tries). Since the affine rank minimization problem is NP-hard to solve, the idea of `1-minimization

for sparse vector recovery has been extended to nuclear norm minimization for low-rank matrix

recovery (where the nuclear norm of a matrix is the sum of its singular values). Several other algo-

rithms have been adapted to the matrix scenario including iterative hard thresholding algorithm

(IHT), iteratively reweighted least squares minimization (IRLS), and Atomic Decomposition for

Minimium Rank Approximation (ADMiRA) which extends CoSaMP for sparse vector recovery.

Additionally, other approaches and algorithms have been suggested including the alternating pro-

jections algorithm and approaches developed particularly for matrix completion involving the left

and right singular vectors along the Grassman manifold.

Both sparse vector and low-rank matrix recovery have been extensively investigated. Several

efficient algorithms – we emphasize that the above lists are highly incomplete – have been provided

together with theoretical guarantees on the convergence of the algorithms and the (often optimal,

or optimal up to log factors) bounds on the number of measurements required for successful signal

recovery.

However, in many applications such as machine learning, video compression, and seismology,

the signals of interest are tensors. In particular, in seismology a signal is a five dimensional object

with two spatial coordinates, two receiver coordinates, and a time coordinate, see for example [38].

In this thesis, we consider a further extension of compressive sensing to low-rank tensor recovery.
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ABSTRACT

The aim is to reconstruct a dth order low-rank tensor from a number of linear measurements much

smaller than the ambient dimension of the tensor. Several approaches to low-rank tensor recovery

have been suggested to this end. However, presently there is no completely satisfactory theory

available for these methods. That is, the method is either not tractable, or the recovery results

quantifying the minimal number of measurements are non-optimal or even non-existent. This is

due to the several difficulties that arise when passing from matrices to higher order tensors. We

describe these difficulties in detail below.

We first discuss several tensor decompositions and corresponding notions of tensor rank

that have been introduced in the literature. The decomposition which arises naturally when

passing from two-dimensional to d-dimensional objects is the canonical decomposition (or CP-

decomposition). One defines the CP-rank of an order-d tensor X ∈ Rn1×n2×···×nd – similarly to

the matrix scenario – as the minimal number of rank one tensors (which are outer products of d

vectors of appropriate dimensions) that sum up to the original tensor X. Additionally, one can

define a tensor nuclear norm as the analog of the matrix nuclear norm, i.e., for X ∈ Rn1×n2×···×nd

‖X‖∗ = min

{
r∑

k=1

|ck| : X =

r∑
k=1

ck u1
k ⊗ u2

k ⊗ · · · ⊗ udk, r ∈ N,∥∥uik∥∥2
= 1, for all i ∈ {1, 2, . . . , d}, k ∈ {1, 2, . . . , r}

}
.

Unfortunately, the set or rank-r tensors is not closed (for r > 1) and thus computing the tensor

rank, the canonical decomposition, and the nuclear norm of a tensor is in general NP-hard. In

particular, in contrast to the matrix case, the affine tensor nuclear norm minimization is NP-hard

to solve and therefore one needs to develop different approaches to low-rank tensor recovery.

The Tucker decomposition, the tensor train (TT) decomposition, and the hierarchical Tucker

(HT) decomposition are tensor decompositions which, in contrast to the CP decomposition, can

be computed efficiently via sequential singular value decompositions.

The Tucker decomposition and its normalized version, called the higher-order singular value

decomposition (HOSVD), have been applied for example in chemical analysis, psychometrics, signal

processing, and computer vision. Here a d-th order tensor X ∈ Rn1×n2×···×nd is represented as

X(i1, i2, . . . , id) =

r1∑
k1=1

r2∑
k2=1

. . .

rd∑
kd=1

C(k1, k2, . . . , kd)U1(i1, k1)U2(i2, k2) · · ·Ud(id, kd),

where C ∈ Rr1×r2×···×rd is a d-th order tensor and Ui ∈ Rni×ri , with ri < ni for all i ∈ {1, 2, . . . , d}
are matrices. Recall that the rank of a matrix equals the number of its independent columns (or

rows). For a dth order tensor, we call a vector obtained by fixing all the entries of the tensor

except the k-th one, the mode-k fiber. (For d = 2, the mode-1 fibers are columns and the mode-2

fibers are rows of the matrix.) However, in the tensor scenario, the number of independent mode-k

fibers, denoted by rk, is in general different for different k ∈ {1, 2, . . . , d}. Thus, the Tucker-rank

(or HOSVD rank) of an order-d tensor is a d-dimensional vector r = (r1, r2, . . . , rd). A downside

of this decomposition is its storage complexity O
(
ndr + rd

)
where n = max {ni : i ∈ {1, 2, . . . , d}}

and r = max {ri : i ∈ {1, 2, . . . , d}}, i.e., it suffers from the curse of dimensionality (the exponential

dependence in d). Thus, without further sparsity of the core tensor, the Tucker format is only

useful for low order tensors (i.e., for tensors of order three).
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ABSTRACT

A recently introduced decomposition that can be considered as a compromise between the

canonical and the Tucker format is the Hierarchical Tucker decomposition (HT-decomposition).

An HT-decomposition is induced by a binary dimension tree TI , which can be described as follows.

The root of a TI is a set tD = {1, 2, . . . , d} and every non-leaf node t has exactly two sons – the

left son t1 and the right son t2 – satisfying t = t1 ∪̇ t2. Additionally, for all s1 ∈ t1, s2 ∈ t2

it holds that s1 < s2. A special case of the HT-decomposition, where every non-leaf node of

the binary dimension tree has a left son which is a leaf, is the Tensor train decomposition (TT-

decomposition). Both TT and HT-decompositions are computable and do not suffer from the curse

of dimensionality. In particular, the TT-decomposition of an order-d tensor X ∈ Rn1×n2×···×nd

consists of d − 1 order-3 tensors Gi ∈ Rri−1×ni×ri with i ∈ {1, 2, . . . , d − 1} and r0 = rd := 1, or

element-wise

X(i1, i2, . . . , id) =

r1∑
k1=1

r2∑
k2=1

. . .

rd−1∑
kd−1=1

G1(i1, k1)G2(k1, i2, k2) · · ·Gd(kd−1, id).

In quantum physics the TT-decomposition is known under the name matrix product states (MPS).

The TT-rank of an order-d tensor X ∈ Rn1×n2×···×nd is a (d − 1)-dimensional vector r =

(r1, r2, . . . , rd−1), where ri is a rank of the specific tensor matricization. To be precise, ri =

rank
(
X{1,2,...,i}

)
, where the first i indexes enumerate the rows and the last d−i indexes enumerate

the columns of the matrix X{1,2,...,i}. The general HT-decomposition is slightly more complicated

and considers different tensor matricizations. However, often it is assumed that the corresponding

dimension binary tree is a balanced tree. That is, each non-leaf mode t has two sons t1 and t2 of

almost the same size. In particular, without loss of generality, one assumes that |t1| = d |t|2 e and

|t2| = b |t|2 c. The corresponding HT-rank is the set of 2d− 2 ranks ri of the corresponding matri-

cizations. Let r be the largest rank in this set (i.e., r = max {ri : i ∈ {1, 2, . . . , 2d− 2}}) and let

n := max {ni : i ∈ {1, 2, . . . , d}}. For an order-d tensor X ∈ Rn1×n2×···×nd , the overall complexity

for storing the required data is O
(
ndr + dr3

)
for an HT-decomposition with a balanced tree, as

opposed to O
(
dnr2

)
for the TT-decomposition.

Recall that the canonical tensor decomposition would be a natural generalization of the matrix

singular value decomposition. However, it is in general NP-hard to compute, and therefore other

tensor decompositions have been developed. Although Tucker, TT, and HT-decompositions can be

computed efficiently (via sequential singular value decompositions) and the corresponding tensor

ranks are well-defined quantities, they suffer from several disadvantages that cause problems in

analyses of the algorithms for low-rank tensor recovery. For example, it is unknown how to obtain

the best rank-r approximation of a given tensor X ∈ Rn1×n2×···×nd . However, it is possible to

compute a quasi-best rank-r approximation Hr (X) satisfying

‖X−Hr (X)‖F ≤ O(
√
d) inf {‖X−Y‖F : rank (Y) ≤ r} . (0.1)

This approximation is obtained via truncation procedures.

In the analysis of the algorithms for sparse vector recovery and low-rank matrix recovery, it

is often used (directly or implicitly) that we know how to obtain the best s-sparse approximation

and the best rank-r approximation of a given vector or a matrix, respectively. Additionally, it

is often used that a 2s-sparse vector and a 2r-rank matrix can be represented as a sum of two

mutually orthogonal s-sparse vectors and two mutually orthogonal rank-r matrices, respectively.
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ABSTRACT

So far, the best known result for tensors states that an HOSVD-rank 2r tensor can be represented

as a sum of 2d pairwise orthogonal rank-r tensors. For TT and HT decompositions – to the best

of our knowledge – an analogous result is unavailable. Recall that a computable complete analog

of the matrix singular value decomposition for tensors does not exist and we can only obtain a

quasi-best rank-r approximation of a given tensor. These tensor peculiarities cause problems in

the analysis of algorithms for low-rank tensor recovery. They also give an insight into why there

are no completely satisfactory results available for low-rank tensor recovery to this end and why

there is a need for new methods when passing from matrix to tensor scenario.

Two new approaches to low-rank tensor recovery are presented in this thesis. The first ap-

proach is a convex optimization approach that could be considered as a tractable higher-order

generalization of `1-minimization for sparse vector recovery and nuclear norm minimization for

low-rank matrix recovery. It is based on theta bodies, a recent tool developed in real algebraic

geometry. It requires computing the reduced Gröbner basis with respect to the graded reverse lex-

icographic (grevlex) ordering of the polynomial ideal Jd in R [x11...1, x11...2, . . . , xn1n2...nd ] whose

real algebraic variety (the set of points where the ideal vanishes) νR (Jd) consists of all rank-one

Frobenius-norm-one tensors in Rn1×n2×···×nd . Here, each variable represents a tensor entry. We

consider the canonical tensor format and the corresponding tensor nuclear norm which are in

general NP-hard to compute, as already mentioned. Notice that the convex hull of νR (Jd) cor-

responds to the unit-tensor-nuclear-norm ball. Theta bodies provide sum-of-squares hierarchical

relaxations of this convex set. The θk-norms are defined via their unit balls and they are nested,

i.e., they satisfy ‖X‖∗ ≥ · · · ≥ ‖X‖θk ≥ ‖X‖θk−1
≥ · · · ≥ ‖X‖θ1 , for all X ∈ Rn1×n2×···×nd .

These norms can be computed via semidefinite programming. First we compute the reduced

Gröbner basis with respect to the grevlex ordering of the ideal Jd – and in particular of J3. Then

the semidefinite program for computing the tensor θ1-norm of an order-3 tensor as well as the

semidefinite program for a low-rank third order tensor recovery via θ1-norm minimization are pro-

vided explicitly. We perform numerical experiments for third-order tensor recovery with Gaussian

measurement ensembles via θ1-norm minimization. In our experiments, rank-one and rank-two

tensors could always be recovered from a number of measurements significantly smaller than the

ambient dimension of the corresponding tensor. Thus, our new theta-body approach seems to be

very promising. In future, we would like to provide the theoretical guarantees for low-rank tensor

recovery via θk-norm minimization.

The theta body method can also be applied to the vector and the matrix scenario. That is,

the corresponding unit θk-norm balls form a hierarchical set of relaxations of the unit `1-norm

ball (in the vector scenario) and of the unit matrix nuclear norm ball (in the matrix scenario).

However, in these cases, the method does not lead to new vector and matrix norms, respectively.

In particular, we show that for a vector x ∈ Rn and the corresponding θk-norms denoted by ‖·‖θk,v
it holds that ‖x‖1 = ‖x‖θk,v, for all k. Similarly, for a matrix X ∈ Rn1×n2 and the corresponding

θk-norms denoted by ‖·‖θk,m it holds that ‖X‖∗ = ‖X‖θk,m, for all k.

In the above approach we focused on the polynomial ideals Jd whose real algebraic variety

νR(Jd) consists of all order-d rank-one Frobenius-norm-one tensors. Omitting the last condition

(i.e., the tensor normalization), leads to ideals I2,d that – to the best of our knowledge – have not

been considered before. These ideals can be seen as the natural generalization of the determinantal

ideal I2 to tensors. A determinantal ideal It is a polynomial ideal generated by all order-t minors
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of the matrix of indeterminates (matrix of unknowns). Equivalently, the real algebraic variety of

determinantal ideal It contains all rank-(t−1) matrices. Determinantal ideals and objects related

to them have been widely studied in real algebraic geometry and commutative algebra for the last

three decades. Recall that we have computed the reduced Gröbner basis Gd of the polynomial

ideal Jd with respect to the grevlex ordering. Directly from this result, we obtain the reduced

Gröbner basis of the polynomial ideal I2,d. To be precise, the leading term of the polynomial

gd = x2
11...1 +x2

11...2 + · · ·+x2
n1n2···nd − 1 ∈ Gd which promotes the Frobenius-norm-one constraint

is relatively prime with the leading term of every other polynomial in Gd\{gd}. Consequently,

the set Gd\{gd} is the reduced Gröbner basis with respect to the grevlex ordering of the higher-

order determinantal ideal I2,d. In other words, our computation of the reduced Gröbner basis of

polynomial ideal Jd could be considered as the first result on higher-order determinantal ideals

It,d (whose real algebraic variety contains all rank-(t− 1) order-d tensors), where d ≥ 3.

Our second approach to low-rank tensor recovery is a generalization of the iterative hard

thresholding algorithm (IHT) for sparse vectors and low-rank matrices to the tensor setting. We

consider recovery of tensors which are of low-rank in the HOSVD, the TT, and more generally the

HT format. The analyses of these algorithms are based on an appropriate notion of the restricted

isometry property for tensors (tensor RIP or TRIP). We show that subgaussian measurement

ensembles satisfy TRIP with high probability under an (almost) optimal condition on the number

of measurements. This includes Gaussian and Bernoulli measurement ensembles. Additionally,

we show that partial Fourier maps combined with random sign flips of the tensor entries also

satisfy TRIP with high probability. The crucial step in IHT algorithms consists in computing

the projection of the current iterate onto the manifold of low-rank matrices/tensors or space of

sparse vectors. In contrast to the vector/matrix case, it is NP-hard to compute the projection

(best approximation) exactly – regardless of the choice of tensor format. Thus, we compute

its quasi-best approximation Hr(X) introduced in (0.1) by a truncation procedure. Due to the

tensor peculiarities discussed above, we obtain a partial convergence result with an additional

assumption on the tensor truncation operator. To illustrate our theoretical results, we perform

numerical experiments for recovery of randomly generated low HOSVD-rank third order tensors via

the classical tensor IHT algorithm and the normalized tensor IHT algorithm. In our experiments,

we consider Gaussian maps, tensor completion, and partial Fourier maps combined with random

sign flips of the tensor entries. Our numerical results indicate that the tensor IHT algorithm in

practice performs better than our theory can currently guarantee.
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CHAPTER 1

Introduction to compressive sensing

and low-rank matrix recovery

In this chapter we introduce compressive sensing (sparse vector recovery) and its generalization

to matrices, i.e., low-rank matrix recovery. We introduce three criteria that ensure successful

recovery in compressive sensing including its versions adapted to matrix scenario – namely, the

restricted isometry property, the null space property, and the coherence. In the compressive

sensing scenario we concentrate on two algorithms: `1-minimization which is a convex optimization

approach and iterative hard thresholding algorithm which is an iterative thresholding based method.

In Section 1.2 we introduce the generalizations of these algorithms to matrices – namely, nuclear

norm minimization and matrix iterative hard thresholding algorithm. Later on, in Chapter 4 and

Chapter 5 we extend these algorithms to the tensor scenario. However, either the generalization

of the algorithm is not straightforward (in the convex optimization case) or the proof of complete

convergence of the algorithm is not straightforward (in the iterative hard thresholding case).

In fact, for the iterative hard thresholding algorithm we have a convergence guarantee with an

additional assumption on thresholding operator. Even more, so far there is no complete theory

available for low-rank tensor recovery. Either the methods are not tractable, or the recovery results

quantifying the minimal number of measurements are non-optimal or even non-existent. That is

why, throughout this chapter, we are going to put an emphasis on certain vector and matrix

properties which play a crucial role in the proofs of convergence of above mentioned algorithms.

Additionally, we stress why the proofs can not be easily extended to tensor scenario due to the

properties of tensors and why there is consequently a need for new approaches in low-rank tensor

recovery.

1.1. Recovery of s-sparse vectors

Compressive sensing (also known as compressed sensing or compressive sampling) is a recently

introduced technique for efficiently acquiring and reconstructing signals from linear measurements.

In the most basic setting, the observed data y ∈ Cm is connected to the signal x ∈ CN via

y = Ax.

For example, in signal and image processing application, x is a signal that one would like to

reconstruct from measured data. Traditional reconstruction techniques suggest that the number

of measurements m should be at least as large as the signal length N . If m < N , then it is known

from classical linear algebra that the above linear system is underdetermined and that there are

infinitely many solutions. This is also connected to the Shannon sampling theorem, which states

that the sampling rate of a continuous-time signal must be twice its highest frequency in order to

ensure reconstruction, see [140].

1



1.1. RECOVERY OF S-SPARSE VECTORS CHAPTER 1.

However, many real-world signals are sparse (most of its components are zero) or compressible

(approximately sparse) in a certain basis or frame. Compression techniques such as JPEG, MPEG,

and MP3 are based on this observation. In essence, these techniques store a compressed version

of the measured signal by only retaining the locations and the magnitude of the components that

are not zero (or above some threshold). The theory of compressive sensing uses the knowledge of

sparsity (or compressibility) of the signal and reconstructs the signal (or its compressed version)

via significantly fewer measurements than the ambient dimension of the signal (i.e., m � N).

Thus, the main difficulty lies in locating the nonzero entries of the signal (or signal entries above

some threshold), since they are not known in advance.

Two main questions arise in compressive sensing theory:

• Which measurement matrices A ∈ Cm×N are suitable for compressive sensing?

• How can we efficiently reconstruct sparse or approximately sparse signals x ∈ CN from

y = Ax?

Throughout, let K denote either R or C. A vector x ∈ KN is an s-sparse vector if at most s

of its entries are different from zero, i.e., if ‖x‖0 := |{i : x (i) 6= 0}| ≤ s. The goal of compressive

sensing is to reconstruct a sparse vector x ∈ KN from the measurement vector y ∈ Km given

by y = Ax and a measurement matrix A ∈ Km×N with m � N . Unfortunately, the natural

approach for reconstructing the signal x by solving the optimization problem

min
z∈KN

‖z‖0 s.t. Az = y (1.1)

is a combinatorial problem known to be NP-hard in general.

In the last decades, several algorithms have been introduced to solve the above problem in

special cases. In particular, as we will see later, the recovery guarantees depend on both the choice

of the reconstruction algorithm, as well as the choice of the measurement ensemble. Presently, the

best known recovery guarantees are always achieved for random measurement ensembles.

Let us first focus on a convex optimization approach serving as proxy for (1.1). It has been

shown that the convex optimization problem (also called basis pursuit)

min
z∈KN

‖z‖1 s.t. Az = y, (1.2)

where ‖z‖1 =
∑N
i=1 |zi| denotes the `1-norm of the vector z, reconstructs x exactly under suitable

conditions on A. In fact, this approach has been popularized in signal processing by Donoho et

al. [33], even though similar ideas existed earlier in other areas of research, see for example [138].

For an intuitive understanding why `1-norm promotes sparsity (instead of the `2-norm and the

`∞-norm) see Figure 1.1. In mathematical terms, the figure presents a solution of the problem

arg min
z∈KN

‖z‖p s.t. Az = y,

where p = 1 in Figure 1.1a, p = 2 in Figure 1.1b, and p = ∞ in Figure 1.1c. That is, the

reconstructed vector x̂ is among all the vectors in the set HA,y := {x : Ax = y} the one with the

smallest `p-norm. As it can be seen from the figures, the vector x̂ is a sparse vector only in the

`1-norm case. In particular, in R2 a sparse vector is a solution of `2-minimization only in the case

when HA,y is parallel to the coordinate axis. In the `∞ scenario, either a sparse vector is not a

solution or it is not a unique solution of `∞-minimization (when HA,y is parallel to the coordinate

2
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A

b
x

b x̂

p = 1

1

(a) p = 1

A
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x

bx̂
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(b) p = 2
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(c) p = ∞

Figure 1.1. Best approximation of a point x ∈ R2×2 by one dimensional sub-
space using the `p-norm.

axis). Thus, the figures suggest that the `1-norm promotes sparsity, whereas the `2-norm as well

as the `∞-norm do not.

Notice that the constraint in (1.2) will be satisfied for every vector z = x+v, where v ∈ ker (A)

since

Az = Ax + Av = y + 0 = y.

Thus, to ensure that x is the unique solution of (1.2), we need to pose certain restrictions on

the null space (kernel) of A. Let S ⊆ [N ] = {1, . . . , N} be a set of cardinality |S| = s ≤ N .

With vS ∈ KN we denote a vector which coincides with v ∈ KN on the entries in the set S and

is extended to zero outside S. In addition, AS ∈ Km×s denotes the submatrix containing the

columns of A ∈ Km×N indexed by S.

Definition 1.1 ([25, 60]). A matrix A ∈ Km×N is said to satisfy the null space property (NSP)

relative to a set S ⊂ [N ] if

‖vS‖1 < ‖vSc‖1 , for all v ∈ ker (A) \{0},

where Sc denotes the complement of the set S. A matrix A satisfies the null space property of

order s if it satisfies the null space property relative to any set S ⊂ [N ] with |S| ≤ s.

The following theorem states that the null space property is a necessary and sufficient condition

for exact recovery of all sparse vectors via basis pursuit.

Theorem 1.2 ([60]). Given a matrix A ∈ Km×N , every s-sparse vector x ∈ KN is the unique

solution of (1.2) with y = Ax if and only if A satisfies the null space property of order s.

This condition or a version of this condition is often used to establish uniform recovery results,

see for example [35, 71, 89, 146]. However, in practice, it is difficult to check whether a given matrix

A satisfies the null space property. In the following, we present another criterion – introduced for

the first time in [26] – which guarantees signal recovery.

Definition 1.3 (RIP, [26]). Let A ∈ Km×N be a measurement matrix. The restricted isometry

constant (RIC) δs of a matrix A is the smallest 0 < δ ≤ 1 such that

(1− δ) ‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ) ‖x‖22 , for all s-sparse vectors x. (1.3)

We say that A satisfies the RIP (restricted isometry property) at sparsity level s if δs is bounded

by a sufficiently small constant.
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By definition, the sequence of restricted isometry constants is nondecreasing, that is

δ1 ≤ δ2 ≤ . . . ≤ δs ≤ δs+1 ≤ . . . ≤ δN .

Equivalently, the RIC is given by

δs = max
S⊂[N ],|S|≤s

‖A∗SAS − I‖2→2 , (1.4)

where ‖·‖2→2 denotes the operator norm. This notion of the RIP is often used in deriving recovery

guarantees for compressive sensing algorithms.

To show the equivalence of (1.3) and (1.4), we start with the following observation

(1− δ) ‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ) ‖x‖22 for all s-sparse vectors

⇔
∣∣∣‖Ax‖22 − ‖x‖

2
2

∣∣∣ ≤ δ ‖x‖22 for all s-sparse vectors

⇔
∣∣∣‖ASx‖22 − ‖x‖

2
2

∣∣∣ ≤ δ ‖x‖22 for all S ⊂ [N ] , |S| ≤ s, and for all x ∈ Ks.

Fix any S ⊂ [N ] with |S| = s. Expanding the left hand side in the above inequality gives for all

x ∈ Ks

‖ASx‖22 − ‖x‖
2
2 = 〈ASx,ASx〉 − 〈x,x〉 = 〈(A∗SAS − I) x,x〉 .

Since the operator A∗SAS − I is Hermitian,

‖A∗SAS − I‖2→2 = max
x∈Ks\{0}

〈(A∗SAS − I) x,x〉
‖x‖22

≤ δ.

The equality holds, as δs is the smallest such δ.

Next, we present a result showing the importance of the RIP in sparse vector recovery.

Theorem 1.4 ([26]). Suppose that the 2s-th restricted isometry constant of a matrix A ∈ Km×N

satisfies δ2s < 1. Let x0 be any s-sparse vector and let y := Ax0. Then x0 is the only s-sparse

vector satisfying Ax = y.

Proof. We prove the theorem by contradiction. Assume that there exists an s-sparse vector x

different from x0 and satisfying Ax = y. Then z := x−x0 ∈ ker (A) \{0} and z is 2s-sparse. But

then

0 = ‖Az‖22 ≥ (1− δ2s) ‖z‖22 > 0

which is a contradiction. �

The following theorem on sparse vector recovery via basis pursuit under the RIP assumption

is stated without proof.

Theorem 1.5 ([18, 170]). Suppose that the 2s-th restricted isometry constant of the matrix

A ∈ Km×N satisfies

δ2s <
1√
2
.

Then every s-sparse vector x ∈ KN is the unique solution of

min
z∈KN

‖z‖1 such that Az = Ax.

So far, we have seen that matrices A ∈ Km×N satisfying the RIP condition are suitable

measurement matrices for compressive sensing. In the following we argue that such matrices exist.
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In particular, random subgaussian matrices satisfy the RIP condition on sparsity level s with high

probability when m ≥ s ln(eN/s). On the other hand, all known deterministic constructions of

matrices satisfying the RIP require that m & s2 (see for example [47, 84]) or at least m & s2−ε

for some small constant ε > 0, see [13, 14].

Definition 1.6 ([60]). Let A ∈ Rm×N be a random matrix, i.e., a matrix having random variables

as its entries.

(1) If the entries of A are independent Rademacher variables (taking values ±1 with equal

probability), then A is called a Bernoulli random matrix.

(2) If the entries of A are independent standard Gaussian random variables, then A is called

a Gaussian random matrix.

(3) If the entries of A are independent mean-zero subgaussian random variables with variance

1 and the same subgaussian parameters β, κ, i.e.,

P (|A (j, k)| ≥ t) ≤ βe−κt2 , for all t > 0, j ∈ [m] , k ∈ [N ] ,

then A is called a subgaussian random matrix. Equivalently, A is a subgaussian random

matrix if for some constant c independent of j, k and N it holds that

E
[
eθA(j,k)

]
≤ ecθ2 , for all θ ∈ K, j ∈ [m] , k ∈ [N ] .

Clearly, Gaussian and Bernoulli random matrices are subgaussian random matrices. The

following theorem states that Gaussian and Bernoulli random matrices A ∈ Cm×N satisfy the

RIP condition with high probability if the number of rows m is large enough.

Theorem 1.7 ([60]). Let A be an m×N Gaussian or Bernoulli random matrix. Then there exists

a universal constant C > 0 such that the restricted isometry constant of 1√
m

A satisfies δs ≤ δ

with probability at least 1− ε provided

m ≥ Cδ−2
(
s ln (eN/s) + ln

(
2ε−1

))
. (1.5)

If the locations of non-zero entries in an s-sparse vector x are known, one needs only s

independent measurements to recover x. Thus, the factor s is necessary in the above bound.

However, in general, these locations are not known. Even more, the bound (1.5) on the number of

measurements for sparse vector recovery is in fact optimal. That is, the logarithmic factor ln(N/s)

cannot be improved, see [59, 63].

For practical purposes, one would like to obtain matrices A with structure satisfying RIP with

high probability (with optimal or almost optimal bounds) which are also efficient in the sense that

only O(N logN) operations are required to compute Ax. In particular, it is known that random

partial Fourier matrices Cm×N (obtained by randomly choosing m rows of the N × N discrete

Fourier matrix) satisfy the RIP with high probability if m & s log2(s) log(N), see [12, 77]. In [95]

it has been shown that a random partial circulant matrix generated by a Rademacher vector ε

satisfies the RIP with high probability provided that m & s log2(s) log2(N). For the definition of

partial Fourier and partial circulant matrices see Subsection A.1. In [2] the authors construct RIP-

optimal efficient matrices for the regime m ≤ N1/2−µ (for an arbitrarily small µ). In particular,

their construction of an RIP matrix is of the form

A = BHD1HD2 · · ·HDr,

5
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where H is a Hadamard or a Fourier transform, Di is a diagonal matrix with random {+1,−1}
on the diagonal for all i, and B is any m×N matrix with orthonormal rows.

So far we have introduced the null space property (NSP), which is a necessary and suffi-

cient condition for sparse vector recovery, and the restricted isometry property (RIP), which is

a sufficient condition for sparse vector recovery. Verifying whether a given matrix A ∈ Cm×N

satisfies the RIP or NSP property is in general NP-hard, see [155]. However, we have shown how

to generate a random matrix which will satisfy the RIP condition with high probability. We now

introduce the coherence which is another criterion that leads to recovery guarantees. It is a very

simple measure of suitability of the measurement matrix. The coherence of a given matrix is easily

computable which is an advantage in comparison to other two conditions. In general, the smaller

the coherence, the better the recovery algorithm performs.

Definition 1.8 ([60]). Let A ∈ Km×N be a matrix with `2-normalized columns a·1,a·2, . . . ,a·N ,

i.e., ‖a·i‖2 = 1 for all i ∈ [N ]. The coherence µ = µ (A) of the matrix A is defined as

µ := max
1≤i6=j≤N

|〈a·i,a·j〉| .

The coherence µ of the matrix A ∈ Km×N with `2-normalized columns satisfies√
N −m

m (N − 1)
≤ µ ≤ 1.

The upper bound follows since |〈a·i,a·j〉| ≤ ‖a·i‖2 ‖a·j‖2 and the columns are unit normed. For

the bound below, we refer the interested reader to [60] and we note that the bound is tight. In

particular, it is achieved if and only if the columns of the matrix form an equiangular tight frame.

However, for most pairs (m,N), constructing such a frame is an open problem [148, 165].

Next, we introduce the more general concept of `1-coherence function which includes the usual

coherence for the parameter s = 1.

Definition 1.9 ([60]). Let A ∈ Cm×N be a matrix with `2-normalized columns a·1,a·2, . . . ,a·N ,

i.e., ‖a·i‖2 = 1 for all i ∈ [N ]. The `1-coherence function µ1 of the matrix A is defined for

s ∈ [N − 1] by

µ1 (s) := max
i∈[N ]

max

∑
j∈S
|〈a·i,a·j〉| : S ⊂ [N ] , |S| = s, i /∈ S

 .

Notice that for s ∈ [N − 1]

µ ≤ µ1 (s) ≤ sµ,
and more generally that for s, t ∈ [N − 1] with s+ t ≤ N − 1,

max {µ1 (s) , µ1 (t)} ≤ µ1 (s+ t) ≤ µ1 (s) + µ1 (t) .

The following theorem gives a recovery guarantee under the assumption that the `1-coherence

function of the measurement matrix is small enough.

Theorem 1.10 ([60]). Let A ∈ Km×N be a matrix with `2-normalized columns. If

µ1 (s) + µ1 (s− 1) < 1

6
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then every s-sparse vector x ∈ KN is exactly recovered from the measurement vector y = Ax via

basis pursuit.

Since µ1(s) ≤ sµ, the above theorem is true also if coherence µ of the measurement matrix A

with `2-normalized columns satisfies µ(2s − 1) < 1. The next lemma connects the RIP and the

coherence property.

Lemma 1.11 ([42]). If A ∈ Cm×N has unit-norm columns and coherence µ, then A satisfies the

RIP of order s with δs = (s− 1)µ, for all s < 1/µ+ 1.

In particular, if A ∈ Cm×N has unit norm columns and coherence µ < 1, then A satisfies the

RIP of order two with δ2 = µ. A consequence of the above lemma and Theorem 1.5 is that the

coherence is also a sufficient condition for sparse vector recovery.

In more realistic scenarios, the signals we aim to recover are not sparse, but approximately

sparse. In such cases, we would like to recover a signal with an error controlled by its distance to

s-sparse vectors. In the literature, this property is usually called stability of reconstruction scheme

with respect to sparsity defect. In particular, it is known that the basis pursuit is stable under a

slightly strengthened version of the null space property.

Definition 1.12. A matrix A ∈ Cm×N is said to satisfy the stable null space property with

constant 0 < ρ < 1 relative to a set S ⊂ [N ] if

‖vS‖1 ≤ ρ ‖vSc‖1 for all v ∈ ker(A).

A matrix A satisfies the stable null space property of order s with constant 0 < ρ < 1 if it satisfies

the stable null space property with constant 0 < ρ < 1 relative to any set S ⊂ [N ] with |S| ≤ s.

The following theorem is a well-known stability result for basis pursuit.

Theorem 1.13 ([60]). Suppose that A ∈ Cm×N satisfies the stable null space property of order s

with constant 0 < ρ < 1. Then, for any x ∈ CN , a solution x# of

min
z
‖z‖1 s.t. Az = Ax

approximates the vector x with `1-error∥∥x− x#
∥∥

1
≤ 2(1 + ρ)

(1− ρ)
σs(x)1,

where σs(x)1 = inf{‖w − x‖1 : w ∈ CN , ‖w‖0 ≤ s}.

Additionally, in real applications, measured data will be corrupted by noise since sensing

devices do not have infinite precision. As a consequence, the measurement vector y ∈ Cm is only

an approximation to Ax ∈ Cm, with

‖Ax− y‖ ≤ η,

for some η ≥ 0 and some norm ‖·‖ on Cm – typically the `1-norm or the `2-norm. In such situations,

we would like the reconstruction algorithm to recover a signal whose distance to output vector

x# is controlled by measurement error η ≥ 0. It is well-known that robustness of the convex

optimization problem

min
z∈CN

‖z‖1 s.t. ‖Az− y‖ ≤ η,

7
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is guaranteed under the following additional strengthening of the null space property.

Definition 1.14. A matrix A ∈ Cm×N is said to satisfy the robust null space property (with

respect to ‖·‖) with constants 0 < ρ < 1 and τ > 0 relative to a set S ⊂ [N ] if

‖vS‖1 ≤ ρ ‖vSc‖1 + τ ‖Av‖ for all v ∈ CN .

A matrix A satisfies the robust null space property of order s with constants 0 < ρ < 1 and τ > 0

if it satisfies the robust null space property with constants ρ, τ relative to any set S ⊂ [N ] with

|S| ≤ s.

The following theorem includes Theorem 1.13 as the special noiseless case, i.e., when η = 0.

Theorem 1.15 ([60]). Suppose that matrix A ∈ Cm×N satisfies the robust null space property

of order s with constants 0 < ρ < 1 and τ > 0. Then, for any x ∈ CN , a solution x# of

min
z∈CN

‖z‖1 s.t. ‖Az− y‖ ≤ η,

where y = Ax + e, and ‖e‖ ≤ η approximates the vector x with `1-error∥∥x− x#
∥∥

1
≤ 2(1 + ρ)

(1− ρ)
σs(x)1 +

4τ

1− ρη.

Finally, we present a compressible vector recovery result with noisy measurements under the

assumption that the measurement matrix A satisfies the RIP. Thus, the `1-minimization is robust

to noise also under the RIP assumption.

Theorem 1.16 ([60]). Suppose that the 2sth restricted isometry constant of the matrix A ∈
Cm×N satisfies

δ2s <
4√
41
≈ 0.6246.

Then, for any x ∈ CN and y ∈ Cm with ‖Ax− y‖2 ≤ η, a solution x∗ of

min
z∈CN

‖z‖1 s.t. ‖Az− y‖2 ≤ η

approximates the vector x with error

‖x− x∗‖1 ≤ Cσs(x)1 +D
√
sη,

where constants C,D > 0 depend only on δ2s.

So far we have focused on the `1-minimization approach to sparse vector recovery. However,

many algorithms have been developed to solve the sparse vector recovery problem. In fact, recovery

algorithms for compressed sensing problem can be roughly divided in three categories: convex

optimization methods, greedy methods, and thresholding based methods.

Optimization algorithms include `1-minimization (also called basis pursuit) [33] and quadrat-

ically constrained `1-minimization (also called basis pursuit denoising) [154]. These minimization

problems can be solved by standard methods from convex optimization, such as interior-point

methods, see [15, 121]. Additionally, specialized numerical methods have been developed for solv-

ing `1-minimization problems such as Homotopy method or modified LARS [50, 55, 122, 123],

Chambolle and Pock’s Primal-Dual Algorithm [31], and iteratively reweighted least squares algo-

rithm [41].

8
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Orthogonal matching pursuit (OMP) [157] is a greedy method which builds the support of the

reconstructed s-sparse vector iteratively by adding one index to the current support set at each

iteration. Needell and Tropp in [118] introduced another greedy method called Compressive sam-

pling matching pursuit algorithm (CoSaMP). Greedy methods include also regularized orthogonal

matching pursuit [119, 120], subspace pursuit algorithm [39], and others.

Finally, thresholding based methods include iterative hard thresholding algorithm [10], iterative

soft thresholding algorithm – also called iterative shrinkage-thresholding algorithm (ISTA) [40, 56,

57], fast iterative shrinkage thresholding algorithm (FISTA) [6], and others. In the next subsection

we analyze in detail iterative hard thresholding algorithm and its normalized version introduced

by the same authors in [11]. In Chapter 5 we focus on versions of this algorithm adapted to the

tensor scenario.

Before passing to the iterative hard thresholding algorithm we remark that there are two types

of results available in compressive sensing for random measurement matrices. Uniform recovery

results state that with high probability on the choice of the random matrix, all sparse signals can

be recovered using the same matrix. On the other hand, nonuniform recovery results state that a

fixed sparse signal can be recovered with high probability using a random draw of the measurement

matrix. In this chapter and throughout this thesis, the theory of compressed sensing is presented

in more detail with the focus on uniform recovery. For nonuniform recovery results, we refer the

interested reader to [3, 24, 32].

1.1.1. Iterative hard thresholding algorithm. The iterative hard thresholding (IHT)

algorithm is an iterative method for solving the system Az = y knowing that the solution is

s-sparse, see Algorithm 1.1. Instead of solving Az = y, the algorithm is solving the quadratic

system A∗Az = A∗y which can be interpreted as the fixed point equation

z = z−A∗Az + A∗y = z + A∗ (y −Az) .

Since we search for an s-sparse solution, in the jth iteration of the algorithm we compute the best

s-sparse approximation of the vector uj := xj + A∗
(
y −Axj

)
– denoted by Hs

(
uj
)
. The best

s-sparse approximation Hs (x) of a vector x is obtained by keeping the s largest in magnitude

(absolute values) entries of x. Therefore, in the jth iteration of the algorithm we obtain the vector

xj+1 = Hs
(
uj
)
.

Algorithm 1.1. Iterative hard thresholding (IHT) algorithm

1: Input: Measurement matrix A ∈ Km×N , measurement vector y ∈ Km,

2: sparsity level s.

3: Initialization: sparse vector x0, typically x0 = 0, j = 0.

4: Iteration: repeat until the stopping criterion is met at j = j

5: xj+1 = Hs
(
xj + A∗

(
y −Axj

))
6: j = j + 1

7: Output: s-sparse vector x# = xj

A typical stopping criterion for both the IHT (see Algorithm 1.1) and the normalized IHT

(NIHT) algorithm (see Algorithm 1.2) is ‖y −Axj‖2 ≤ ε, for a chosen tolerance ε > 0.

9
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The following result gives a criterion for the convergence of the IHT algorithm under the

assumption that the measurement matrix satisfies the RIP condition.

Theorem 1.17 ([60]). For a ∈ (0, 1), let A ∈ Km×N satisfy the restricted isometry property with

δ3s <
a

2
(1.6)

and let x ∈ KN be s-sparse. Given noisy measurements y = Ax + e, the vector xj+1 obtained in

the j-th iteration of the IHT algorithm satisfies∥∥xj+1 − x
∥∥

2
≤ aj+1

∥∥x0 − x
∥∥

2
+

b(a)

1− a ‖e‖2 ,

where b(a) = 2
√

1 + a
2 . Consequently, if e 6= 0 then after at most j∗ = dlog1/a(

∥∥x0 − x
∥∥

2
/ ‖e‖2)e

iterations, xj+1 estimates x with accuracy∥∥xj+1 − x
∥∥
F
≤ 1 + a+ b(a)

1− a ‖e‖2 . (1.7)

Proof. It is enough to show that xj+1 obtained in iteration j satisfies∥∥xj+1 − x
∥∥

2
≤ a

∥∥xj − x
∥∥

2
+ b ‖e‖2 , j ≥ 0.

Since xj+1 is the best s-sparse approximation to the vector uj = xj + A∗
(
y −Axj

)
= xj +

A∗A
(
x− xj

)
+ A∗e, ∥∥uj − xj+1

∥∥2

2
≤
∥∥uj − x

∥∥2

2
. (1.8)

Expanding the left hand side we obtain∥∥uj − xj+1
∥∥2

2
=
∥∥(uj − x

)
−
(
xj+1 − x

)∥∥2

2

=
∥∥uj − x

∥∥2

2
+
∥∥xj+1 − x

∥∥2

2
− 2 Re

〈
uj − x,xj+1 − x

〉
. (1.9)

Let T denote the union of the support sets of the vectors xj − x and xj+1 − x, i.e.,

T := supp
(
xj − x

)
∪ supp

(
xj+1 − x

)
and |T | ≤ 3s.

In the following vT ∈ C|T | denotes the restriction of a vector v ∈ CN to indices in T . From (1.8)

and (1.9) it follows that∥∥xj+1 − x
∥∥2

2
≤ 2 Re

〈
uj − x,xj+1 − x

〉
= 2 Re

〈
(I−A∗A)

(
xj − x

)
+ A∗e,xj+1 − x

〉
≤ 2

∣∣〈(I−A∗A)
(
xj − x

)
,xj+1 − x

〉∣∣+ 2
∣∣〈A∗e,xj+1 − x

〉∣∣
= 2

∣∣〈xj − x,xj+1 − x
〉
−
〈
A
(
xj − x

)
,A
(
xj+1 − x

)〉∣∣+ 2
∣∣〈e,A(xj+1 − x)

〉∣∣
= 2

∣∣〈(xj − x
)
T ,
(
xj+1 − x

)
T
〉
−
〈
AT

(
xj − x

)
T ,AT

(
xj+1 − x

)
T
〉∣∣

+ 2
∣∣〈e,AT (xj+1 − x)

〉∣∣
= 2

∣∣〈(xj − x
)
T , (I−A∗T AT )

(
xj+1 − x

)
T
〉∣∣+ 2

∣∣〈e,AT (xj+1 − x)
〉∣∣

≤ 2
∥∥(xj − x

)
T
∥∥

2
‖I−A∗T AT ‖2→2

∥∥(xj+1 − x
)
T
∥∥

2
+ 2 ‖e‖2

∥∥AT (xj+1 − x)
∥∥

2

≤ 2δ3s
∥∥xj − x

∥∥
2

∥∥xj+1 − x
∥∥

2
+ 2
√

1 + δ3s ‖e‖2
∥∥xj+1 − x

∥∥
2
,

where the last inequality follows from |T | ≤ 3s and (1.4). If
∥∥xj+1 − x

∥∥
2
> 0, then dividing the

above inequality by
∥∥xj+1 − x

∥∥
2
, we obtain∥∥xj+1 − x
∥∥

2
≤ 2δ3s

∥∥xj − x
∥∥

2
+ 2
√

1 + δ3s ‖e‖2 .
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This concludes the proof (since 2δ3s < a by assumption (1.6)). �

Remark 1.18. This theorem also applies in a case where the vector x is compressible (i.e.,

approximately s-sparse). By splitting x = xs + xc into the best s-sparse approximation xs and a

remainder term xc, we obtain

y = Ax + e = Axs + Axc + e = Axs + ẽ,

where ẽ = Axc + e. Then the theorem is applied to ẽ instead of e and (1.7) results in the error

estimate ∥∥xj+1 − xs
∥∥
F
≤ 1 + a+ b(a)

1− a ‖Axc + e‖2 . (1.10)

We can further estimate the right hand side of (1.10). To obtain a better estimate, we have to

consider 2s-sparse vectors. This leads us to the following theorem.

Theorem 1.19 ([60]). For a ∈ (0, 1), let A ∈ Km×N satisfy the restricted isometry property with

δ6s <
a

2
.

Then for all x ∈ CN , e ∈ CN , the sequence (xj)j defined by the IHT algorithm with y = Ax + e,

x0 = 0, and Hs replaced by H2s satisfies∥∥x− xj+1
∥∥

2
≤ C√

s
σs(x)1 +D ‖e‖2 + 2ρj+1 ‖x‖2 , (1.11)

where constants C,D > 0, and ρ ∈ (0, 1) depend only on a.

The following lemma is used in the above proof.

Lemma 1.20 ([60]). Suppose A ∈ Cm×N has restricted isometry constant δs < 1. Given τ > 0,

ξ ≥ 0, and e ∈ Cm, assume that two vectors x,x′ ∈ CN satisfy

‖x′‖0 ≤ 2s and ‖xT − x′‖2 ≤ τ ‖AxT c + e‖2 + ξ,

where T denotes an index set of 2s largest in magnitude entries of x. Then

‖x− x′‖2 ≤
C√
s
σs(x)1 + τ ‖e‖2 + ξ,

where C = 1 +
√

2τ .

Proof.

‖x− x′‖2 = ‖xT c + xT − x′‖2 ≤ ‖xT c‖2 + ‖xT − x′‖2 ≤ ‖xT c‖2 + τ ‖AxT c + e‖2 + ξ

≤ ‖xT c‖2 + τ ‖AxT c‖2 + τ ‖e‖2 + ξ. (1.12)

Let S ⊂ T denote the index set of s largest absolute entries of x. Then

‖xT c‖2 = σs(xSc)2 ≤
1√
s
‖xSc‖1 =

1√
s
σs(x)1, (1.13)

where the above inequality follows from the following observation. Let x∗ denote the nonincreasing

rearrangement of the vector x. That is, x∗1 ≥ x∗2 ≥ · · · ≥ x∗N ≥ 0 and there exists a permutation

π : [N ]→ [N ] with x∗j =
∣∣xπ(j)

∣∣, for all j ∈ [N ]. Then it holds

σs(xSc)2
2 =

N∑
j=2s+1

(x∗j )
2 ≤ x∗2s

N∑
j=2s+1

x∗j ≤ x∗2s ‖xSc‖1 ≤
1

s

2s∑
j=s+1

x∗j ‖xSc‖1 ≤
1

s
‖xSc‖21 .

11



1.1. RECOVERY OF S-SPARSE VECTORS CHAPTER 1.

Set S1 := T \S. Let us partition the complement of T as T c = S2 ∪ S3 ∪ . . . as

S2 := index set of s largest absolute entries of x in T c

S3 := index set of s largest absolute entries of x in (T ∪ S2)c, etc.

Applying the RIP assumption, we obtain the estimate

‖AxT c‖2 ≤
∑
k≥2

‖AxSk‖2 ≤
√

1 + δs
∑
k≥2

‖xSk‖2 . (1.14)

Since

1√
s
‖xSk‖2 =

[
1

s

∑
`∈Sk

x2
`

]1/2

≤ max
`∈Sk

|x`| ≤ min
p∈Sk−1

|xp| ≤
1

s

∑
p∈Sk−1

|xp| =
1

s

∥∥xSk−1

∥∥
1

(1.15)

we have ∑
k≥2

‖xSk‖2 ≤
∑
`≥1

1√
s
‖xS`‖1 =

1√
s
‖xSc‖1 =

1√
s
σs(x)1. (1.16)

Plugging (1.16) in (1.14) leads to the estimate

‖AxT c‖2 ≤
√

1 + δs√
s

σs(x)1 ≤
√

2√
s
σs(x)1. (1.17)

Substituting (1.13) and (1.17) in (1.12) we obtain the estimate

‖x− x′‖2 ≤
1√
s
σs(x)1 + τ

√
2√
s
σs(x)1 + τ ‖e‖2 + ξ =

1√
s

(
1 +
√

2τ
)
σs(x)1 + τ ‖e‖2 + ξ.

�

Proof of Theorem 1.19. Theorem 1.17 implies that there exists 0 < ρ < 1 and τ > 0 depend-

ing only on a such that, for any j ≥ 0,∥∥xT − xj+1
∥∥

2
≤ τ ‖AxT c + e‖2 + ρj+1 ‖xT ‖2 ,

where T denotes an index set of 2s largest in magnitude entries of x. Then Lemma 1.20 with

x′ = xj+1 and ξ = ρj+1 ‖xT ‖2 ≤ ρj+1 ‖x‖2, implies that∥∥x− xj+1
∥∥

2
≤ C√

s
σs(x)1 +D ‖e‖2 + 2ρj+1 ‖x‖2 , (1.18)

where C,D > 0 depend only on τ , hence only on δ6s. �

The crucial point in the proof of Theorem 1.17 is step (1.8). That is, the fact that we know

how to obtain the best s-sparse approximation of a given vector x ∈ KN . As it will be seen later,

in the tensor case it is not known how to efficiently obtain the best rank-r approximation of a given

tensor – regardless of the choice of tensor rank. We present another recovery result for the IHT

algorithm without a proof. Essentially, small coherence of the measurement matrix guarantees

the success of the IHT algorithm.

Theorem 1.21 ([60]). Let A ∈ Km×N be a matrix with `2-normalized columns and y = Ax. If

µ1 (2s) < 1/2 – in particular if µ <
1

4s

then for every s-sparse vector x ∈ KN , the sequence (xj)j generated by the IHT algorithm

convergences linearly to x.

12
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The normalized iterative hard thresholding (NIHT) algorithm (see Algorithm 1.2) is a version

of the IHT algorithm with a different stepsize. In particular, the vector update in the jth iteration

is of the form

xj+1 = Hs(xj + µjA
∗(y −Axj)),

for a precisely defined stepsize µj . To motivate the stepsize in the NIHT algorithm, we recall the

original sparse approximation problem we want to solve. Assume we are given a measurement

matrix A ∈ Cm×N and a measurement vector y = Ax knowing that the signal x we want to

recover is at most s-sparse (or is well approximated by an s-sparse vector). This leads to the

following s-sparse constrained optimization problem which is NP-hard in general

min
x

1

2
‖y −Ax‖22 s.t. ‖x‖0 ≤ s.

Gradient descent methods can be used to solve f(x) = 1
2 ‖y −Ax‖22. Starting with an initial guess

x̄0, the gradient ∇f(x) = A∗(Ax− y), and adding a stepsize µj leads to the sequence (x̄j)j

x̄j+1 = x̄j + µjA
∗(y −Axj).

Thus, iterative hard thresholding algorithm could be considered as a gradient descent method.

Since the signal x we seek to recover is s-sparse and a current iterate is not necessary s-sparse, we

additionally apply the thresholding operator Hs on the iterates. This leads to the sequence (xj)j

of the more generalized IHT algorithm with

xj+1 = Hs(xj + µjA
∗(y −Axj)).

As already mentioned, if µj = 1 for all iterations j we get the IHT algorithm presented as Algorithm

1.1. However, one can try to improve the performance of the algorithm by choosing carefully the

parameter µj in each step of the algorithm.

Let us assume that in iteration j we have identified the correct support U j . That is, U j is

the support of the best s-term approximation to x. Since the support in this case is fixed, we can

calculate the optimal stepsize (i.e., the stepsize that maximally reduces the error 1
2

∥∥y −Axj
∥∥2

2

in each iteration) [66] and obtain

µj =

∥∥∥A∗Uj (y −Axj)
∥∥∥2

2∥∥∥AUjA
∗
Uj (y −Axj)

∥∥∥2

2

.

This stepsize is then used for the NIHT algorithm, see Algorithm 1.2. The NIHT algorithm was

introduced in [11] by the same authors who introduced the IHT algorithm.

Similar convergence guarantees are available also for the NIHT algorithm. We present here a

recovery result under the assumption that the measurement matrix satisfies the RIP.

Theorem 1.22. For a ∈ (0, 1), let A ∈ Km×N satisfy the restricted isometry property with

δ3s <
a

a+ 4

and let x ∈ KN be s-sparse vector. Given noisy measurements y = Ax + e, the vector xj+1

obtained in the j-th iteration of the NIHT algorithm satisfies∥∥xj+1 − x
∥∥

2
≤ aj+1

∥∥x0 − x
∥∥

2
+

b(a)

1− a ‖e‖2 ,

13
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where b(a) = 2
√

1+δ3s
1−δs . Consequently, if e 6= 0 then after at most j∗ = dlog1/a(

∥∥x0 − x
∥∥

2
/ ‖e‖2)e

iterations, xj+1 estimates x with accuracy∥∥xj+1 − x
∥∥
F
≤ 1 + a+ b(a)

1− a ‖e‖2 .

Proof. The proof of the theorem is analogous to the proof of Theorem 1.17. In particular, we

get the estimate∥∥xj+1 − x
∥∥

2
≤ 2 ‖I− µjA∗T AT ‖2→2

∥∥xj − x
∥∥

2
+ 2µj

√
1 + δ3s ‖e‖2 .

It remains to bound terms ‖I− µjA∗T AT ‖2→2 and µj . This is done analogously as in the proof

of Theorem 1.41. �

Algorithm 1.2. Normalized iterative hard thresholding (NIHT) algorithm

1: Input: Measurement matrix A ∈ Km×N , measurement vector y ∈ Km,

2: sparsity level s.

3: Initialization: sparse vector x0, typically x0 = 0, U0 = supp (Hs (A∗ (y))), j = 0.

4: Iteration: repeat until the stopping criterion is met at j = j

5: µj =

∥∥∥A∗Uj (y−Axj)
∥∥∥2
2∥∥∥AUjA

∗
Uj

(y−Axj)
∥∥∥2
2

.

6: xj+1 = Hs
(
xj + µjA

∗(y −Axj)
)

7: U j+1 = supp
(
xj+1

)
8: j = j + 1

9: Output: s-sparse vector x# = xj

Remark 1.23. In [112] extensive numerical experiments have been conducted regarding the it-

erative hard thresholding algorithm. In particular, the authors considered versions of the IHT

algorithm with iterates defined via

xj+1 = Hs(xj + µA∗(y −Axj))

with a fixed stepsize µ. The authors suggest setting the parameter µ = 0.65 since they obtained

the best performance of IHT for this stepsize.

An undesirable property of the IHT algorithm is that it is sensitive to scaling of the matrix A.

This has also been supported by extensive numerical experiments in [11]. However, the NIHT algo-

rithm is invariant under arbitrary scaling of the matrix A. Even more, the numerical experiments

conducted in [11] suggest that the NIHT algorithm also has better average performance.

1.2. Low-rank matrix recovery

Low-rank matrix recovery builds on ideas from the theory of compressive sensing. The goal of

low-rank matrix recovery is to reconstruct a matrix X ∈ Rn1×n2 of rank at most r ≤ min {n1, n2}
from the measurement vector y = A(X), where A : Rn1×n2 → Rm is a known linear operator

with m � n1n2. This problem appears in many applications, namely recommender systems

[135, 144] (which includes also the famous Netflix Prize [7]), quantum state tomography [74],

phase retrieval [21, 73, 100] etc. We remark that by the Riesz representation theorem, for any

14
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linear operator A : Kn1×n2 → Km, there exist a unique set of matrices {Ai ∈ Kn1×n2}mi=1 such

that (A (X))i = tr(XA∗i ), for all i ∈ [m] and for all X ∈ Rn1×n2 . We refer to the matrices {Ai}mi=1

as sensing matrices of the linear operator A.

Similarly to the sparse vector recovery, the natural approach of finding the solution of the

optimization problem

min
Z∈Rn1×n2

rank (Z) s.t. A (Z) = y,

is NP-hard in general. Let σ denote the vector of singular values of a matrix Z. Notice that

‖σ‖0 = rank (Z). The theory of compressive sensing suggests that the `1-norm minimization

is a good proxy for the `0-minimization problem. This results in ‖σ‖1 = ‖Z‖∗, where ‖Z‖∗ =

tr
(√

Z∗Z
)

denotes the nuclear norm (also known as the trace norm or the Schatten 1-norm) of a

matrix Z. Even more, it has been shown that solving the convex optimization problem

min
Z∈Rn1×n2

‖Z‖∗ s.t. A (Z) = y, (1.19)

reconstructs X exactly under suitable conditions on A. The required number of measurements

scales as m ≥ Crmax{n1, n2} for Gaussian measurement ensembles [22, 133]. Much more gen-

erally, this bound holds also for ensembles with four finite moments, i.e., it is enough to re-

quire that the sensing matrices {Ak}mk=1 are independent copies of a random matrix A satisfying

E [A (i, j)] = 0, E
[
A2 (i, j)

]
= 1, and E

[
A4 (i, j)

]
≤ C4 for all i, j and some constant C4, see

[88]. Additionally, this bound is optimal since n1r + n2r − r2 ∼ Crmax{n1, n2} is the number of

degrees of freedom to describe a rank-r matrix of dimensions n1 × n2.

The existence of the singular value decomposition (SVD) of matrices plays a crucial role in

the proofs of convergence of the algorithms designed for low-rank matrix recovery. In particular,

unlike in the general tensor case, due to the existence of the SVD the best rank-r approximation

of a given matrix can be computed efficiently and a 2r-rank matrix can be decomposed into a sum

of two mutually orthogonal rank-r matrices.

Recall that for compressive sensing we introduced three different concepts which guarantee

recovery via efficient algorithms: the restricted isometry property (RIP), the null space property

(NSP), and the coherence. In the following we introduce analogous conditions for low-rank matrix

recovery, followed by the corresponding recovery guarantees for nuclear norm minimization.

Definition 1.24 (Matrix-RIP, [133]). Let A : Rn1×n2 → Rm be a linear measurement map. For

every integer r with 1 ≤ r ≤ min {n1, n2} the r-th matrix restricted isometry constant δr of A is

the smallest 0 < δr such that

(1− δr) ‖X‖2F ≤ ‖A (X)‖22 ≤ (1 + δr) ‖X‖2F
holds for all matrices X ∈ Rn1×n2 of rank at most r. We say that A satisfies the matrix-RIP at

rank r and level δr if δr is sufficiently small.

The following two recovery theorems present the power of the matrix-RIP. The first theorem

is an analogue of Theorem 1.4 for sparse vector recovery.

Theorem 1.25 ([133]). Let A : Rn1×n2 → Rm be a linear map satisfying δ2r < 1 and let

y := A (X0). Then X0 is the only rank-r matrix satisfying A (X) = y.

15
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Proof. We prove the theorem by contradiction. Thus, assume that there exists a rank-r matrix

X different from X0 satisfying A (X) = y. Then Z := X0 −X ∈ ker (A) \{0} and rank (Z) ≤ 2r.

But then

0 = ‖A (Z)‖22 ≥ (1− δ2r) ‖Z‖2F > 0

which is a contradiction. �

The proof of the following theorem is presented in details. We will emphasize the importance

of the existence of the singular value decomposition in obtaining the desired result. As it will be

seen later in Chapter 2, such a decomposition does not exist for tensors, at least not one that can

be computed efficiently. This causes significant difficulties in extending the theory to low-rank

tensor recovery.

Theorem 1.26 ([133]). Let A : Rn1×n2 → Rm be a linear map with δ5r <
1
5 and let y := A (X0).

Then X0 is the unique solution of

arg min
Z∈Rn1×n2

‖Z‖∗ s.t. A (Z) = y. (1.20)

Remark 1.27. We remark that the bound δ5r <
1
5 in Theorem 1.26 is not optimal. In fact, it

is known that the optimal bound which guarantees that the nuclear norm minimization stably

recovers a low-rank matrix is δ2r < 1/
√

2, see [18].

To prove the theorem we use the following technical lemma.

Lemma 1.28 ([133]). Let A and B be matrices of dimensions m×n with rank (A) < min{m,n}.
Then there exist matrices B1 and B2 such that

P.1: B = B1 + B2

P.2: rank (B1) ≤ 2 rank (A)

P.3: ABT
2 = 0 and ATB2 = 0

P.4: 〈B1,B2〉 = 0

P.5: ‖A + B2‖∗ = ‖A‖∗ + ‖B2‖∗.

Proof. Let

A = U

(
Σ 0

0 0

)
VT

be the singular value decomposition of the matrix A and define

B̂ := UTBV =

(
B̂11 B̂12

B̂21 B̂22

)
,

where B̂11 is of the same size as Σ. It can be easily verified that matrices

B1 := U

(
B̂11 B̂12

B̂21 0

)
VT and B2 := U

(
0 0

0 B̂22

)
VT

satisfy the conditions P.1:-P.4:.

Let A = U1ΣVT
1 with rank (A) = r1 and B2 = WΓZT with rank (B2) = r2 be the reduced

singular value decomposition of the matrices A and B2, respectively.

16
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Let u·i,v·i,w·i, z·i denote the columns of matrices U, V, W, and Z, respectively. By P.3:,

0 = ABT
2 =

r1∑
i=1

r2∑
j=1

σiγj
(
vT·iz·j

)
u·iw

T
·j .

Since the matrices
{
u·iw

T
·j : i ∈ [r1] , j ∈ [r2]

}
are pairwise orthonormal, it follows that vT·iz·j = 0,

for all i ∈ [r1], j ∈ [r2]. Similarly, from ATB2 = 0 we obtain that uT·iw·j = 0, for all i ∈ [r1],

j ∈ [r2]. Thus

A + B2 =
(
U1 W

)(Σ 0

0 Γ

)(
V1 Z

)T
forms the singular value decomposition of the matrix A+B2 and ‖A + B2‖∗ = ‖A‖∗+‖B2‖∗. �

Notice that the proof of the above lemma relies heavily on the existence of the singular value

decomposition (SVD). Already in the first step of the proof we assume that such a decomposition

exists.

Proof of Theorem 1.26. Let X∗ be any solution of (1.20). Then by optimality of X∗, we have

‖X0‖∗ ≥ ‖X∗‖∗. Let R := X∗ −X0 ∈ ker (A). Applying Lemma 1.28 to the matrices X0 and R,

it follows that there exist two matrices R0 and Rc such that

S.1: R = R0 + Rc

S.2: rank (R0) ≤ 2 rank (X0) = 2r

S.3: X0R
T
c = 0, XT

0 Rc = 0

S.4: 〈R0,Rc〉 = 0

S.5: ‖X0 + Rc‖∗ = ‖X0‖∗ + ‖Rc‖∗.

Then

‖X0‖∗ ≥ ‖X∗‖∗ = ‖X0 + R‖∗ ≥ ‖X0 + Rc‖∗ − ‖R0‖∗ = ‖X0‖∗ + ‖Rc‖∗ − ‖R0‖∗ ,

where in the last equality we applied S.5:. Subtracting ‖X0‖∗ in the above inequality leads to

‖R0‖∗ ≥ ‖Rc‖∗ . (1.21)

Next we partition Rc into a sum of matrices R1,R2, . . . each of rank at most 3r. Let Rc =

U diag (σ) VT be the singular value decomposition of the matrix Rc, where σ is a vector of the

corresponding singular values in descending order. For each i ≥ 1 define the index set Ii =

{3r(i− 1) + 1, . . . , 3ri} and let Ri := UIi diag (σIi) VT
Ii (notice that additionally, 〈Ri,Rj〉 = 0,

whenever i 6= j). By construction, we have

σk ≤
1

3r

∑
j∈Ii

σIi (j) , for all k ∈ Ii+1

which implies ‖Ri+1‖2F ≤ 1
3r ‖Ri‖2∗. We can then compute bound∑

j≥2

‖Rj‖F ≤
1√
3r

∑
j≥1

‖Rj‖∗ =
1√
3r
‖Rc‖∗ ≤

1√
3r
‖R0‖∗ ≤

√
2r√
3r
‖R0‖F ,

where the last inequality follows from S.2:.
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Noticing that rank (R0 + R1) ≤ 5r and putting our estimates together, we obtain the inequal-

ity

0 = ‖A (R)‖2 ≥ ‖A (R0 + R1)‖2 −
∑
j≥2

‖A (Rj)‖2

≥
√

1− δ5r ‖R0 + R1‖F −
√

1 + δ3r
∑
j≥2

‖Rj‖F

≥
(√

1− δ5r −
√

2

3

√
1 + δ3r

)
‖R0‖F .

Therefore, if the factor on the right hand side is positive, then ‖R0‖F = 0, that is R0 = 0, which

by (1.21) further implies that Rc = 0. Thus X∗ = X0. The right hand side is positive when

3δ3r + 2δ5r < 1.

Since δ3r ≤ δ5r and by assumption δ5r <
1
5 , the statement follows. �

The construction of the Ri’s above is again based on the existence of the singular value

decomposition. In the following we show that linear operators satisfying the matrix-RIP exist. In

particular, we can construct linear operators A : Rn1×n2 → Rm that, with high probability, satisfy

the RIP with optimal bounds on m. Together with Theorem 1.26, this implies that the low-rank

matrix recovery is possible via nuclear norm minimization, i.e., via (1.19).

Definition 1.29. A linear map A : Rn1×n2 → Rm with a corresponding matrix representation

A ∈ Rm×n1n2 is a Gaussian measurement ensemble if each row ai· of A contains independent

identically distributed N (0, 1/m) entries (and the ai·’s are independent from each other).

Theorem 1.30 ([22]). Fix 0 ≤ δ < 1 and let A be a random measurement ensemble obeying the

following condition: for any given X ∈ Rn1×n2 and any fixed 0 < t < 1,

P
(∣∣∣‖A (X)‖22 − ‖X‖

2
F

∣∣∣ > t ‖X‖2F
)
≤ Ce−ct2m (1.22)

for fixed constants C, c > 0. Then there exist constants D, d > 0 (which may depend on t) so that,

if m ≥ Dmax {n1, n2} r, the measurement ensemble A satisfies δr ≤ δ with probability exceeding

1− Ce−dδ2m.

The concentration bound (1.22) is valid for various random measurement ensembles. For

example, if A is Gaussian measurement ensemble, we have (see [22] for details)

P
(∣∣∣‖A (X)‖22 − ‖X‖

2
F

∣∣∣ > t ‖X‖2F
)
≤ 2e−

m
2 (t2/2−t3/2). (1.23)

As a consequence, a Gaussian measurement ensemble satisfies the matrix-RIP with constant δr ≤
δ ∈ (0, 1) with high probability provided

m ≥ Cδ max{n1, n2}r, with Cδ ∼ Cδ−2,

where Cδ denotes a constant depending on δ. Together, with Theorem 1.26, we obtain an exact

low-rank matrix recovery result via nuclear norm minimization. Additionally, a linear map A
satisfies the inequality (1.23) in the case where each row ai· has i.i.d. entries that take values

± 1√
m

with equal probability, or if A is a random projection [1, 133]. Further, A satisfies (1.22)
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if the rows ai· contain subgaussian entries (properly normalized) [162], although in this case the

constants involved depend on the parameters of the subgaussian entries.

The proof of Theorem 1.30 uses a covering argument and, in particular, ε-nets.

Definition 1.31 ([163]). A set NX
ε ⊂ X , where X is a subset of a normed space, is called an

ε-net of X with respect to the norm ‖·‖ if for each v ∈ X , there exists v0 ∈ NX
ε with ‖v0 − v‖ ≤ ε.

The minimal cardinality of an ε-net of X with respect to the norm ‖·‖ is denoted by N (X , ‖·‖ , ε)
and is called the covering number of X (at scale ε).

In the proof of Theorem 1.30 the following result on ε-nets is used.

Lemma 1.32 ([163]). Let ε ∈ (0, 1). For any set X there always exists an ε-net NX
ε with respect

to a norm ‖·‖ satisfying NX
ε ⊂ X and∣∣NX

ε

∣∣ ≤ Vol
(X + ε

2B
)

Vol
(
ε
2B
) ,

where ε
2B is an ε/2 ball with respect to the norm ‖·‖ and X + ε

2B =
{
x+ y : x ∈ NX

ε , y ∈ ε
2B
}

.

Specifically, if X is a subset of the unit ball in d dimensions then X + ε
2B is contained in the(

1 + ε
2

)
-ball and thus ∣∣NX

ε

∣∣ ≤ (1 + ε/2)
d

(ε/2)
d

=

(
1 +

2

ε

)d
< (3/ε)

d
,

where the last inequality follows since ε < 1. We always require that NX
ε ⊂ X .

The first step in the proof of Theorem 1.30 is to compute a covering number of rank-r matrices,

for a fixed rank r.

Lemma 1.33 (Covering number for low-rank matrices, [22]). Let

Sr =
{
X ∈ Rn1×n2 : rank (X) ≤ r, ‖X‖F = 1

}
.

Then there exists an ε-net NSr
ε for the Frobenius norm obeying

N (Sr, ‖·‖F , ε) ≤ (9/ε)
(n1+n2+1)r

.

Proof. For a matrix X ∈ Sr, let X = UΣV∗ denote the reduced singular value decomposition.

Since ‖X‖F = 1, it follows that also ‖Σ‖F = 1. Our argument constructs an ε-net for Sr by

covering the set of permissible U, V, and Σ. We work in the simpler case where n1 = n2 = n

since the general case is a straightforward modification.

Let D = {D ∈ Rr×r : D diagonal, ‖D‖F = 1,D (i, i) ≥ 0 for all i ∈ [n]} . We take ND
ε/3 to be

an ε/3-net for D with N (D, ‖·‖F , ε/3) ≤ (9/ε)
r
. Next, let On,r = {U ∈ Rn×r : U∗U = I} . To

cover On,r, it is beneficial to use the norm ‖·‖1,2 defined as

‖X‖1,2 = max
i
‖x·i‖2 ,

where x·i denotes the ith column of X. Let Qn,r =
{

X ∈ Rn×r : ‖X‖1,2 ≤ 1
}

. It is easy to see

that On,r ⊂Qn,r since the columns of an orthogonal matrix are unit normed. We have seen that

there is an ε/3-net NOn,r

ε/3 for On,r obeying N
(
On,r, ‖·‖1,2 , ε/3

)
≤ (9/ε)

nr
.

We now let Sr =
{

U Σ V
∗

: U,V ∈ NOn,r

ε/3 ,Σ ∈ ND
ε/3

}
and remark that

∣∣Sr∣∣ ≤ [N (On,r, ‖·‖1,2 , ε/3
)]2
N (D, ‖·‖F , ε/3) ≤ (9/ε)

(2n+1)r
.
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If we show that for all X ∈ Sr there exists X ∈ Sr with
∥∥X−X

∥∥
F
≤ ε then Sr is an ε-net set

for Sr and thus, N (Sr, ‖·‖F , ε) ≤
∣∣Sr∣∣ ≤ (9/ε)

(2n+1)r
.

Fix X ∈ Sr and let X = UΣV∗ be its singular value decomposition. Then there exists

X = U Σ V
∗ ∈ Sr with U,V ∈ NOn,r

ε/3 , Σ ∈ ND
ε/3 obeying

∥∥U−U
∥∥

1,2
≤ ε/3,

∥∥V −V
∥∥

1,2
≤ ε/3,

and
∥∥Σ−Σ

∥∥
F
≤ ε/3. This gives∥∥X−X
∥∥
F

=
∥∥∥UΣV∗ −U Σ V

∗
∥∥∥
F

=
∥∥∥UΣV∗ −UΣV∗ + UΣV∗ −U ΣV∗ + U ΣV∗ −U Σ V

∗
∥∥∥
F

≤
∥∥(U−U

)
ΣV∗

∥∥
F

+
∥∥U (Σ−Σ

)
V∗
∥∥
F

+
∥∥∥U Σ

(
V −V

)∗∥∥∥
F
.

For the first term, note that since V is an orthogonal matrix,
∥∥(U−U

)
ΣV∗

∥∥
F

=
∥∥(U−U

)
Σ
∥∥
F

and ∥∥(U−U
)
Σ
∥∥2

F
=
∑

1≤i≤r

Σ (i, i)
2 ‖u·i − u·i‖22 ≤ ‖Σ‖

2
F

∥∥U−U
∥∥2

1,2
≤ (ε/3)

2
.

Hence,
∥∥(U−U

)
ΣV∗

∥∥
F
≤ ε/3. The same argument gives

∥∥∥U Σ
(
V −V

)∗∥∥∥
F
≤ ε/3. To bound

the middle term, observe that
∥∥U (Σ−Σ

)
V∗
∥∥
F

=
∥∥Σ−Σ

∥∥
F
≤ ε/3. This completes the proof.

�

We are now ready to present the proof of Theorem 1.30.

Proof of Theorem 1.30. The proof is essentially the same as the proof of Lemma 4.3 in [133].

We begin by showing that with high probability A is an approximate isometry on a net for Sr.
Lemma 1.33 with ε = δ/

(
4
√

2
)

gives

N
(
Sr, ‖·‖F , (δ/4

√
2)
)
≤
(

36
√

2/δ
)(n1+n2+1)r

.

Then it follows from (1.22) together with the union bound that

P

 max
X∈NSr

δ/4
√

2

∣∣∣∥∥A (X)∥∥2

2
−
∥∥X∥∥2

F

∣∣∣ > δ/2

 ≤ ∣∣Sr∣∣Ce−cδ2m
≤
(

36
√

2/δ
)(n1+n2+1)r

Ce−cδ
2m

= Ce(n1+n2+1)r log(36
√

2/δ)−cδ2m

≤ Ce−dm,

where d = c − log(36
√

2/δ)
D̄

> 0 if we choose D̄ > log
(
36
√

2/δ
)
/c and m ≥ Dδ−2 max{n1, n2}r ≥

D̄δ−2 (n1 + n2 + 1) r (if we choose for example D = 3D̄ for constant).

Now suppose that

max
X∈NSr

δ/4
√

2

∣∣∣∥∥A (X)∥∥2

2
−
∥∥X∥∥2

F

∣∣∣ ≤ δ/2 (1.24)

(which occurs with probability at least 1− Ce−dm). We begin by showing that the upper bound

in the RIP condition holds. Set

κr = sup
X∈Sr

‖A (X)‖2 .
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For any X ∈ Sr, there exists X ∈ NSr
δ/4
√

2
with

∥∥X−X
∥∥
F
≤ δ/

(
4
√

2
)

and, therefore, by (1.24)

‖A (X)‖2 ≤
∥∥A (X−X

)∥∥
2

+
∥∥A (X)∥∥

2
≤
∥∥A (X−X

)∥∥
2

+ 1 + δ/2. (1.25)

Put ∆X = X−X and note that rank (∆X) ≤ 2r. Write ∆X = ∆X1+∆X2, where 〈∆X1,∆X2〉 =

0 and rank (∆Xi) ≤ r for i = 1, 2 (for example by splitting the SVD). Note that ∆X1/ ‖∆X1‖F ,

∆X2/ ‖∆X2‖F ∈ Sr. Thus

‖A (∆X)‖2 ≤ ‖A (∆X1)‖2 + ‖A (∆X2)‖2 ≤ κr (‖∆X1‖F + ‖∆X2‖F ) . (1.26)

Now ‖∆X1‖F + ‖∆X2‖F ≤
√

2 ‖∆X‖F which follows from ‖∆X1‖2F + ‖∆X2‖2F = ‖∆X‖2F . Also,

‖∆X‖F ≤ δ/
(
4
√

2
)

leading to ‖A (∆X)‖2 ≤ κrδ/4. Plugging this into (1.25) leads to

‖A (X)‖2 ≤ κrδ/4 + 1 + δ/2.

Since this holds for all X ∈ Sr, we have κr ≤ κrδ/4 + 1 + δ/2. Thus, κr ≤ (1 + δ/2) / (1− δ/4) ≤
1 + δ, where in the last inequality we used that δ ∈ (0, 1), which essentially completes the upper

bound. Now that this is established, the lower bound follows from

‖A (X)‖2 ≥
∥∥A (X)∥∥

2
− ‖A (∆X)‖2 ≥ 1− δ/2− (1 + δ) δ/4 ≥ 1− δ.

Thus, we have shown that for all X ∈ Sr holds

(1− δ) ‖X‖F ≤ ‖A (X)‖2 ≤ (1 + δ) ‖X‖F
which can easily be translated into the desired version of the RIP bound by taking squares and

renaming δ. �

Notice that, right after the inequality (1.25) the following property of the matrices is used.

For any 2r-rank matrix X there exist two matrices X1 and X2 such that

(1) X = X1 + X2

(2) rank (X1) = rank (X2) = r

(3) 〈X1,X2〉 = 0.

Additionally, if X =
∑2r
i=1 σiu·iv

∗
·i is the singular value decomposition of a matrix X, then the

matrices

X1 =

r∑
i=1

σiu·iv
∗
·i and X2 =

2r∑
i=r+1

σiu·iv
∗
·i

satisfy the conditions (1)-(3). This again shows the power of the singular value decomposition.

Remark 1.34. We remark that the proofs of the RIP for random linear maps A : Rn1×n2 → Rm

and random matrices A ∈ Rm×N via generic chaining do not use the above properties of matrices

and the analogue properties of vectors, respectively. For more details, see for example [48, 95, 127].

Even more, in Chapter 5 to show that certain measurement maps A : Rn1×n2×···×nd → Rm satisfy

the notion of RIP for tensors we use the results obtained in [48, 95, 127].

We continue with a matrix analogue of the null space property introduced in Definition 1.1

which guarantees efficient recovery of low-rank matrices via nuclear norm minimization.
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Definition 1.35 ([60]). A linear map A : Kn1×n2 → Km is said to satisfy the stable rank null

space property of order r with constant 0 < ρ < 1 if

r∑
j=1

σj (M) < ρ

min{n1,n2}∑
j=r+1

σj (M) , for all M ∈ ker (A) \{0},

where σ1 (M) ≥ . . . ≥ σmin{n1,n2} (M) ≥ 0 denote the singular values of a matrix M.

If ρ = 1, we say that A satisfies the rank null space property of order r.

We remark that the rank null space property of order r is defined through the singular value

decomposition of matrices in the kernel of A. The following recovery theorems display the power of

the rank null space property for low-rank matrix recovery. We present the results without proofs.

Theorem 1.36 ([60]). Given a linear map A : Kn1×n2 → Km every matrix X ∈ Kn1×n2 of rank

at most r is the unique solution of

min
Z∈Kn1×n2

‖Z‖∗ such that A (Z) = A (X) (1.27)

if and only if A satisfies the rank null space property of order r.

The following theorem gives a recovery guarantee for the nuclear norm minimization problem

under the assumption that the linear operator satisfies the stable rank null space property of order

r.

Theorem 1.37 ([60]). Let A : Kn1×n2 → Km be a linear measurement map satisfying the stable

rank null space property of order r with constant 0 < ρ < 1. Let X# be a solution of the nuclear

norm minimization problem (1.27). Then

∥∥X−X#
∥∥
∗ ≤

2 (1 + ρ)

1− ρ

min{n1,n2}∑
`=r+1

σ` (X) .

Recovery algorithms with the assumption that the corresponding linear operator satisfies the

(stable) rank null space property or a version of it have been studied in several papers. For

example, in the papers [58] and [114] different versions of the iterative reweighted least squares

algorithm have been analyzed. In the paper [27] the matrix completion problem has been treated.

This problem is a special case of the nuclear norm minimization problem, namely

min
Z∈Rn1×n2

‖Z‖∗ such that PM (Z) = PM (X) ,

where PM : Rn1×n2 → Rn1×n2 denotes the orthogonal projection onto the subspace of matrices

which vanish outside of M. That is, Y = PM (X) is defined as

Y (i, j) =

X (i, j) , if (i, j) ∈M
0, otherwise.

Similarly to the vector case, a version of the coherence for low-rank matrix recovery has been

introduced.

Definition 1.38 ([23]). Let U be a subspace of Kn of dimension r and PU be the orthogonal

projection onto U. Then the coherence of U (relative to the standard basis (ei)) is defined to be

µ (U) :=
n

r
max

1≤i≤n
‖PUei‖22 .
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To state the main result of the paper [23], we introduce two assumptions about an n1 × n2

matrix X whose SVD is given by X = UΣV∗ =
∑r
i=1 σiu·iv

∗
·i.

N1 The coherences obey max (µ (U) , µ (V)) ≤ µ0, for some positive µ0.

N2 The n1 × n2 matrix
∑r
i=1 u·iv

∗
·i has a maximum entry bounded by µ1

√
r/ (n1n2) in

absolute value for some positive µ1.

The parameters µ0 and µ1 may depend on r, n1, and n2. Moreover, note that N2 always holds

with µ1 = µ0
√
r (to see this, apply the Cauchy-Schwarz inequality to the entries of

∑r
i=1 u·iv

∗
·i).

The following recovery result is stated under the coherence assumption without a proof.

Theorem 1.39 ([23]). Let X be an n1 × n2 matrix of rank r obeying N1 and N2 and let

n = max{n1, n2}. Suppose that we observe m entries of X whose locations are sampled uniformly

at random. Then there exist constants C, c such that if

m ≥ C max{µ2
1, µ

1/2
0 µ1, µ0n

1/4}nr (β log n)

for some β > 2, then the minimizer of the problem

min
Z
‖Z‖∗ subject to Z (i, j) = X (i, j) , (i, j) ∈M

is unique and equal to X with probability at least 1 − cn−β . For r ≤ µ−1
0 n1/5 this estimate can

be improved to

m ≥ Cµ0n
6/5r (β log n)

with the same probability of success.

Several subsequent papers analyzing matrix completion appeared under the assumption that

the coherence (or a version of the coherence) of the low-rank matrix we want to recover is small

enough. For example, the approach in paper [27] is based on a slightly different assumption on

the matrix X called the strong incoherence property. In addition, papers [34, 72] present provable

matrix completion results for incoherent matrices under a uniform sampling model via nuclear

norm minimization.

Other algorithms applied to low-rank matrix recovery have followed, including the local de-

scent method [91], the alternating projections algorithm [86], and the Atomic Decomposition for

Minimum Rank Approximation (ADMiRA) [103].

Algorithm 1.3. Iterative hard thresholding algorithm for matrices

1: Input: Measurement map A : Kn1×n2 → Km, measurement vector y ∈ Km,

2: rank r.

3: Initialization: low-rank matrix X0, typically X0 = HMr (A∗ (y)), j = 0.

4: Repeat until the stopping criterion is met at j = j

5: Xj+1 = HMr
(
Xj +A∗

(
y −A

(
Xj
)))

6: j = j + 1

7: Output: rank-r matrix X# = Xj

1.2.1. Matrix iterative hard thresholding algorithm. In this subsection we introduce

several versions of the IHT algorithm adapted matrix scenario. The thresholding operator HMr
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Algorithm 1.4. Normalized iterative hard thresholding algorithm for matrices

1: Input: Measurement map A : Kn1×n2 → Km, measurement vector y ∈ Km,

2: rank r.

3: Initialization: low-rank matrix X0, typically X0 = HMr (A∗ (y)), j = 0.

4: Repeat until the stopping criterion is met at j = j

5: Set the projection operator Pj
U := UjU

∗
j

6: Compute the stepsize µU
j :=

‖PjUA∗(y−A(Xj))‖2
F

‖A(PjUA∗(y−A(Xj)))‖2
2

7: Xj+1 = HMr
(
Xj + µU

j A∗
(
y −A

(
Xj
)))

8: Let Uj+1 be the top r left singular vectors of Xj+1

9: j = j + 1

10: Output: rank-r matrix X# = Xj

returns the best rank-r approximation of a given matrix. If X =
∑min{n1,n2}
i=1 σiu·iv

T
·i is the singu-

lar value decomposition of a matrix X, with singular values {σi}min{n1,n2}
i=1 arranged in decreasing

order, then by the Eckart-Young theorem [54, 87] the best rank-r approximation of the matrix X

is HMr (X) =
∑r
i=1 σiu·iv

T
·i . The matrix IHT algorithm is presented in Algorithm 1.3.

Matrix NIHT algorithm is motivated similarly to the NIHT algorithm for compressive sensing.

When the matrix IHT algorithm is converging to a minimum rank solution X#, each of the singular

values and singular vectors of the current estimate must also be converging to the singular values

and singular vectors of X#. If the singular vectors of the iterate Xj have been correctly identified,

then the update is being used to improve the singular values. Let Xj = UjΣjV
∗
j be the singular

value decomposition of the rank-r iterate Xj and let Pj
U := UjU

∗
j and Pj

V := VjV
∗
j denote

the projection onto the left and right singular vector spaces, respectively. A search direction can

be projected onto the span of singular vectors by applying Pj
U from the left and by applying

Pj
V from the right. For instance, the projective negative gradient descent direction is given by

WUV
j := Pj

UA∗
(
y −A

(
Xj
))

Pj
V. Alternatively, a search direction can be projected to the span

of just left or right singular vectors leading to the search directions WU
j := Pj

UA∗
(
y −A

(
Xj
))

and WV
j := A∗

(
y −A

(
Xj
))

Pj
V, respectively. This projected directions should not be used

as the update direction since they would not allow the iterates to converge to the lowest rank

solution unless the projected directions are already correctly identified. However, as in the case

of NIHT for compressive sensing, we use them for selecting the stepsize. Thus, this leads to three

choices for the stepsize – namely, µU
j :=

‖PjUA∗(y−A(Xj))‖2
F

‖A(PjUA∗(y−A(Xj)))‖2
2

, µV
j :=

‖A∗(y−A(Xj))PjV‖2F
‖A(A∗(y−A(Xj))PjV)‖2

2

, and

µUV
j :=

‖PjUA∗(y−A(Xj))PjV‖2F
‖A(PjUA∗(y−A(Xj))PjV)‖2

2

.

Remark 1.40. In paper [152] numerical experiments on matrix completion have been performed

comparing the three versions of the NIHT algorithm. Their numerical results suggest that in

general, the version of NIHT with stepsize µU
j outperforms the other two variants. In particular,

the version of NIHT with this stepsize was able to recover matrices of the same or larger rank

than the other two variants. Thus, in the following we focus on NIHT with stepsize µU
j presented

in Algorithm 1.4 which in the following we just refer to as NIHT algorithm. However, we remark

that the convergence guarantees of the other variants can be obtained analogously.
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The following theorem gives a convergence criterion for the normalized IHT algorithm, pre-

sented in Algorithm 1.4, under the matrix-RIP assumption.

Theorem 1.41 ([152]). For a ∈ (0, 1), let A : Kn1×n2 → Km satisfy the matrix RIP with

δ3r <
a

a+ 4

and let X ∈ Kn1×n2 be a matrix of rank at most r. Given measurements y = A(X), matrix Xj+1

obtained in the j-th iteration of matrix NIHT algorithm satisfies∥∥Xj+1 −X
∥∥
F
≤ aj

∥∥X0 −X
∥∥
F
.

In other words, the sequence (Xj)j produced by matrix NIHT algortihm converges linearly to X.

Proof. Let X0 be the original rank r matrix, i.e. y = A (X0). With Wj := Xj+µU
j A∗

(
y −A

(
Xj
))

we denote the intermediate update to Xj in NIHT.

By Eckart-Young theorem, ∥∥Wj −Xj+1
∥∥2

F
≤
∥∥Wj −X0

∥∥2

F

Expanding the left hand side we obtain∥∥Wj −X0

∥∥2

F
≥
∥∥Wj −Xj+1

∥∥2

F
=
∥∥Wj −X0 + X0 −Xj+1

∥∥2

F

=
∥∥Wj −X0

∥∥2

F
+
∥∥X0 −Xj+1

∥∥2

F
+ 2

〈
Wj −X0,X0 −Xj+1

〉
.

Canceling the term
∥∥Wj −X0

∥∥
F

in the above inequality leads to∥∥X0 −Xj+1
∥∥2

F
≤ 2

〈
Wj −X0,X

j+1 −X0

〉
= 2

〈
Xj + µU

j A∗
(
y −A

(
Xj
))
−X0,X

j+1 −X0

〉
= 2

〈
Xj −X0,X

j+1 −X0

〉
− 2µU

j

〈
A∗
(
A
(
Xj
)
− y

)
,Xj+1 −X0

〉
= 2

〈
Xj −X0,X

j+1 −X0

〉
− 2µU

j

〈
A∗A

(
Xj −X0

)
,Xj+1 −X0

〉
= 2

〈
Xj −X0,X

j+1 −X0

〉
− 2µU

j

〈
A
(
Xj −X0

)
,A
(
Xj+1 −X0

)〉
. (1.28)

Let Qj ∈ Km×3r be a matrix whose columns form orthonormal basis of the space spanned by

the columns spaces of X0,X
j ,Xj+1 and let Pj

Q := QjQ
∗
j be a projection operator onto a column

space of Qj . Thus, Pj
QX0 = X0, Pj

QXj = Xj , and Pj
QXj+1 = Xj+1.

Next, we define a linear operator AjQ (Z) = A
(
Pj

QZ
)

which is obtained by replacing the

sensing matrices {A`}m`=1 of A with the sensing matrices
{

Pj
QA`

}m
`=1

and the corresponding

adjoint

Aj∗Q (y) =

m∑
`=1

y (`)
(
Pj

QA`

)
.

We continue the estimation (1.28)∥∥Xj+1 −X0

∥∥2

F
≤ 2

〈
Xj −X0,X

j+1 −X0

〉
− 2µU

j

〈
A
(
Xj −X0

)
,A
(
Xj+1 −X0

)〉
= 2

〈
Xj −X0,X

j+1 −X0

〉
− 2µU

j

〈
AjQ

(
Xj −X0

)
,AjQ

(
Xj+1 −X0

)〉
= 2

〈
Xj −X0,

(
Xj+1 −X0

)
− µU

j Aj∗QA
j
Q

(
Xj+1 −X0

)〉
= 2

〈
Xj −X0,

(
I− µU

j Aj∗QA
j
Q

) (
Xj+1 −X0

)〉
25



1.2. LOW-RANK MATRIX RECOVERY CHAPTER 1.

≤ 2
∥∥∥I− µU

j Aj∗QA
j
Q

∥∥∥
2→2

∥∥Xj −X0

∥∥
F

∥∥Xj+1 −X0

∥∥
F
.

Canceling the term
∥∥Xj+1 −X0

∥∥
F

in the above inequality leads to∥∥Xj+1 −X0

∥∥
F
≤ 2

∥∥∥I− µU
j Aj∗QA

j
Q

∥∥∥
2→2

∥∥Xj −X0

∥∥
F
. (1.29)

It remains to bound the term
∥∥∥I− µU

j Aj∗QA
j
Q

∥∥∥
2→2

by a constant smaller than a/2. Since Pj
Q maps

onto rank-3r matrices, the matrix RIP implies that every eigenvalue of the self-adjoint operator

Aj∗QA
j
Q is contained in the interval [1− δ3r, 1 + δ3r].

Additionally, we can bound the stepsize µU
j

1

1 + δr
≤ µU

j =

∥∥∥Pj
UA∗

(
y −A

(
Xj
))∥∥∥2

F∥∥∥A(Pj
UA∗ (y −A (Xj))

)∥∥∥2

2

≤ 1

1− δr
.

Therefore, every eigenvalue of operator I − µU
j Aj∗QA

j
Q is contained in

[
1− 1+δ3r

1−δr , 1−
1−δ3r
1+δr

]
.

Since the magnitude of the lower bound is greater than the upper bound and since δ3r <
a
a+4 it

follows that ∥∥∥I− µU
j Aj∗QA

j
Q

∥∥∥
2→2
≤ 1 + δ3r

1− δr
− 1 <

a

2

which concludes the proof. �

Remark 1.42. Let a ∈ (0, 1). The proof that matrix IHT algorithm (Algorithm 1.3) recovers any

rank-r matrix under the assumption that the isometry constant of A satisfies δ3r < a/2 can be

done in an analogous way. To be more precise, the proof is the same as the proof of Theorem 1.41

up to (1.29). As before, one has to bound the term
∥∥∥I− µU

j Aj∗QA
j
Q

∥∥∥
2→2

by a constant smaller

than a
2 , where µU

j = 1. However, notice that∥∥∥I−Aj∗QAjQ∥∥∥
2→2

= sup
‖X‖F=1

∣∣∣〈(I−Aj∗QA
j
Q)X,X

〉∣∣∣ = sup
‖X‖F=1

∣∣∣‖X‖2F − ‖AjQ(X)‖22
∣∣∣

≤ sup
‖X‖F=1,rank(X)≤3r

∣∣∣‖X‖2F − ‖A(X)‖22
∣∣∣ = δ3r.

Applying the assumption δ3r <
a
2 concludes the proof.

Theorem 1.41 can also be extended to the more general setting, with noisy measurements.

Theorem 1.43. For a ∈ (0, 1), let A : Kn1×n2 → Km satisfy the matrix RIP with

δ3r <
a

a+ 4

and let X ∈ Kn1×n2 be a matrix of rank at most r. Given the noisy measurements y = A(X) + e

for some e ∈ Km, the matrix Xj+1 produced by matrix NIHT algortihm in jth iteration satisfies∥∥Xj+1 −X
∥∥
F
≤ aj

∥∥X0 −X
∥∥
F

+
b(a)

1− a ‖e‖2 ,

where b(a) := 2

√
1+a/2

1−a/2 . Consequently, if e 6= 0 then after at most j∗ = dlog1/a(
∥∥X0 −X

∥∥
F
/ ‖e‖2)

iterations, Xj+1 estimates X with accuracy∥∥∥Xj∗+1 −X
∥∥∥
F
≤ 1 + a+ b(a)

1− a ‖e‖2 .
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The proof of this theorem is analogous to the proof of Theorem 1.41. In estimate (1.28) we

get an additional term 2µU
j

〈
A∗e,Xj+1 −X0

〉
. Estimating this term leads to〈

A∗e,Xj+1 −X0

〉
=
〈
e,A(Xj+1 −X0)

〉
≤
∥∥A(Xj+1 −X0)

∥∥
F
‖e‖2

≤
√

1 + δ3r
∥∥Xj+1 −X

∥∥
F
‖e‖2 .

Finally, the estimate (1.29) translates into∥∥Xj+1 −X0

∥∥
F
≤ 2

∥∥∥I− µU
j Aj∗QA

j
Q

∥∥∥
2→2

∥∥Xj −X0

∥∥
F

+ 2µU
j

√
1 + δ3r ‖e‖2 .

Plugging into all the assumptions leads to the stated result.

Similarly to the vector scenario, we can state a result also if the tensor X is not necessarily

rank-r.

Theorem 1.44. Fix a ∈ (0, 1). Let A : Kn1×n2 → Km satisfy the matrix RIP with

δ6s <
a

a+ 4

and let X ∈ Kn1×n2 . Then for all X ∈ Kn1×n2 , e ∈ Cm, the sequence (Xj)j defined by NIHT

algorithm, with y = A(X) + e, X0 = 0, and HMr replaced by HM2r satisfies∥∥X−Xj+1
∥∥
F
≤ C√

s
‖X−Xr‖∗ +D ‖e‖2 + 2ρj+1 ‖X‖F ,

where constants C,D > 0 and ρ ∈ (0, 1) depend only on a.

The theorem is a consequence of Theorem 1.43 and the following lemma.

Lemma 1.45. Suppose A : Kn1×n2 → KN has restricted isometry constants δs < 1. Given τ > 0,

ξ ≥ 0, and e ∈ Km assume that two matrices X,X′ ∈ Kn1×n2 satisfy

rank(X′) ≤ 2r and ‖X2r −X′‖F ≤ τ ‖A(Xc,2r) + e‖2 + ξ,

where X2r denotes the best rank-2r approximation to X and Xc,2r = X−X2r. Then

‖X−X′‖F ≤
C√
r
‖X−Xr‖∗ + τ ‖e‖2 + ξ, (1.30)

where Xr denotes the best rank-r approximation to X and constant C = 1 +
√

2τ .

Proof. The proof is analogous to the proof of Lemma 1.20. �

In paper [85] a slightly more generalized version of the matrix IHT algorithm is presented

under the name Singular Value Projection (SVP). In the SVP algorithm a stepsize µj is given in

advance and often is a fixed constant µ. Thus, the matrix IHT algorithm is a special case of the

SVP algorithm with µj = 1, for all iterations j. The stopping criterion is met in iteration j if∥∥A(Xj+1)− y
∥∥2

2
≤ ε,

where a fixed tolerance ε > 0 is chosen beforehand. The main result of the paper is presented

next.

Theorem 1.46 ([85]). Fix tolerance ε ≥ 0. Suppose that isometry constant of A satisfies δ2r <
1
3

and let y = A(X) + e for a rank-r matrix X and error vector e ∈ Rm. Then SVP with stepsize
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µj = 1
1+δ2r

outputs a matrix X∗ of rank at most r satisfying

‖A(X∗)− y‖22 ≤ C ‖e‖
2

+ ε and ‖X−X∗‖2F ≤
C ‖e‖2 + ε

1− δ2r
in at most d 1

log(1/D) log ‖y‖2

2(C‖e‖2+ε)
e iterations for universal constants C,D.

Remark 1.47. Notice that theoretical guarantees are better for the SVP algorithm (including

the IHT algorithm) than for the matrix NIHT algorithm. Additionally, every iteration of the

NIHT algorithm requires computing an additional singular value decomposition to obtain the

parameter µj , which consequently makes each iteration of the algorithm slower compared to the

alternative versions of the matrix IHT. However, in paper [152] several numerical experiments

concerning matrix completion have been performed comparing these algorithms. Recall that

extensive numerical experiments for the IHT algorithm for compressive sensing suggest to fix

the stepsize µj = 0.65, see [112]. This choice of the stepsize has been shown to be effective also in

matrix completion, see [152]. Thus, the authors compare the SVP algorithm with µj = 0.65 and

the matrix NIHT algorithm. They observed that the matrix NIHT algorithm is typically able to

recover the same or larger rank than SVP with µj = 0.65 for the same stopping criteria, and that

NIHT converges faster than SVP (except for ranks when SVP is not able to recover the matrix

and NIHT successfully recovers it). In other words, numerical experiments suggest that matrix

NIHT algorithm typically performs better than the SVP. However, to recover matrices of large

rank (larger than it is possible for SVP), comes with the cost of very slow convergence and thus,

there is a need for accelerated variants of NIHT.

1.3. Low-rank tensor recovery

So far we have seen several results for sparse vector recovery and low-rank matrix recov-

ery. In both scenarios we have presented some known results. In particularly, we have put an

emphasis on convex optimization approach – `1-minimization and nuclear norm minimization,

respectively – and on iterative approach – (normalized) iterative hard thresholding algorithm and

its matrix variant. However, there is a significant interest in going one step further and extending

the theory to low-rank tensor recovery. Applications include image and video inpainting [108],

reflectance data recovery [108], and machine learning [136]. The goal of low-rank tensor recovery

is to reconstruct a low-rank dth order tensor X ∈ Rn1×n2×···×nd from the linear measurement

map A : Rn1×n2×···×nd → Rm and the measurement vector y = A (X), with m� n1n2 · · ·nd. In

particular, we want to solve the optimization problem

min
Z∈Rn1×n2×···×nd

rank (Z) s.t. A (Z) = y. (1.31)

Unlike in the matrix case, there are different notions of tensor rank which are induced by different

tensor decompositions, see Chapter 2. One possibility is to define a rank of a dth order tensor

analogously to the matrix case – as the minimal number of rank-one order-d tensors that sum up

to the original tensor. A tensor Y ∈ Rn1×n2×···×nd is a rank-one tensor if there exist d vectors

ui ∈ Rni such that Y (i1, i2, . . . , id) = u1 (i1) u2 (i2) · · ·ud (id), for all ik ∈ [nk] and k ∈ [d]. This

notion of tensor rank is called the CP-rank or canonical rank. In addition, one can also define the

corresponding notion of the tensor nuclear norm, denoted by ‖·‖∗. Inspired by the matrix case,
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one would expect that solving the minimization problem

min
Z∈Rn1×n2×···×nd

‖Z‖∗ s.t. A (Z) = y (1.32)

would be a good proxy for (1.31) under certain assumptions on linear operator A. However,

computing the CP-rank of a tensor is already NP-hard in general, see [61, 82]. In particular, the

set of rank-r tensors is not closed for r ≥ 2, [81, 101]. Thus, not only solving the optimization

problem (1.31), but also solving (1.32) is NP-hard in general. Therefore, although one could

analyze the tensor nuclear norm minimization problem (which has been done in [169]), this is not

particularly interesting from the computational point of view. Additionally, one could define the

null space property in an analogous way as in the matrix scenario, however this leads to the same

problem since the CP-decomposition is in general NP-hard to compute. Several generalizations

of the coherence/incoherence condition have been introduced in [4, 83, 169] to provide recovery

results for tensor completion. A variety of approaches to low-rank tensor recovery already well

known in the community are discussed in Chapter 3.

In Chapter 4 we develop a new convex optimization approach to low-rank tensor recovery. We

present – to the best of our knowledge – new tensor norms called theta norms. These norms are

based on a recent tool in the real algebraic geometry – theta bodies – which in general provide a

sum-of-square nested closed convex relaxations of a given convex set. In our scenario, this convex

set is a unit-tensor-nuclear-norm ball. Thus, this method will lead to a set (Bθk)k satisfying

Bθ1 ⊇ Bθ2 ⊇ · · · ⊇ Bθk ⊇ Bθk+1
⊇ · · · ⊇

{
X ∈ Rn1×n2×···×nd : ‖X‖∗ ≤ 1

}
.

We define the θk-norms via its unit-norm balls. More precisely, the set Bθk is a unit-tensor-θk-norm

ball, i.e., {
X ∈ Rn1×n2×···×nd : ‖X‖θk ≤ 1

}
= Bθk for all k.

By the theory already developed for theta bodies, it is known that for a given order-d tensor

its θk-norm can be computed via semidefinite programming. However for simplicity, we only

derive a semidefinite programming for computing a θ1-norm for a d-th order tensor. We also give

a semidefinite program for low-rank tensor recovery via θ1-norm minimization. Our numerical

experiments show that θ1-norm minimization successfully recovers a low-rank tensor from few

linear measurements and therefore, seems to be a promising approach. However, presently we do

not have any theoretical guarantees. That is, the minimal number of measurements that ensures

the recovery of a low-rank tensor via θk-norm minimization, still remains an open question.

In Chapter 5 we analyze several versions of the iterative hard thresholding algorithm for tensors

(TIHT algorithms). As will be seen later in Chapter 2, to compute the best rank-r approximation

of a given tensor is in general NP-hard – independently of the notion of tensor rank. (Here, we

do not treat the CP-decomposition since it is already in general NP-hard to compute it). This

causes significant difficulties in the analyses of the algorithms. Recall that in compressive sensing

and low-rank matrix recovery the operators Hs and HMr give the best s-sparse approximation and

the best rank-r approximation of a given vector and matrix, respectively. This is exploited in the

convergence proofs of the corresponding IHT algorithms. In the tensor scenario, however, we can

only compute a rank-r approximation Hr (X) of a tensor X satisfying

‖X−Hr (X)‖F ≤ C(d) ‖X−XBEST‖F with C(d) = O(
√
d),
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where ‖·‖F denotes the Frobenius norm and XBEST denotes the best rank-r approximation of a

tensor X. In addition, in the proof of Theorem 1.30, in step (1.26) Lemma 1.28 was applied. For

the HOSVD-format, we provide a similar result, see Lemma A.5. However, the number of tensors

needed to decompose an HOSVD-2r rank tensor into a sum of rank-r tensors scales exponentially

in the dimension. This leads to significantly worse convergence bounds than in the matrix scenario.

For other tensor decompositions (TT-format and HT-format) – to the best of our knowledge – it is

unknown how to obtain an analogous result. Thus, we use another tool developed in [95] and later

improved in [49] to provide a partial convergence result for TIHT and normalized TIHT algorithm

(and for HOSVD, TT, and HT-decomposition). That is, assuming that in every iteration j of the

TIHT algorithm we have ∥∥Yj −Hr

(
Yj
)∥∥
F
≤ (1 + ε)

∥∥X−Yj
∥∥
F
,

where X denotes the original tensor satisfying A (X) = y and ε ∈ [0, 1) is small enough, we prove

a linear convergence of the algorithm. The analysis is based on an appropriate notion of the tensor

restricted isometry property (TRIP) – similarly to the matrix scenario. Additionally, we show that

subgaussian measurement ensembles and partial Fourier ensembles combined with random sign

flips of the tensor entries satisfy TRIP with high probability. Lastly, we present numerical results

for low HOSVD-rank order-3 tensor recovery via Partial Fourier map combined with random sign

flips of the tensor entries, Gaussian map, and tensor completion.
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CHAPTER 2

Tensors

In this chapter several tensor decompositions are introduced – namely, the canonical (CP or

CANDECOMP/PARAFAC) decomposition, the Tucker decomposition, the tensor train decompo-

sition (TT-decomposition), and more generally the hierarchical Tucker (HT) decomposition. As

already mentioned in the previous chapter, several difficulties arise when one considers tensors of

order d ≥ 3. For example, a tractable decomposition – which would be analogous to the singular

value decomposition for matrices – does not exist for tensors. This causes significant difficulties

in analyzing the algorithms for the low-rank tensor recovery and providing theoretical guarantees

for the convergence of the algorithms.

In this section, we will often use the MATLAB notion for better readability. That is, for a

matrix U ∈ Rn1×n2 , its ith row and jth column are denoted by U(i, :) and U(:, j), respectively.

In addition, the set {1, 2 . . . , n} will be denoted by [n].

Here, a slightly more extensive introduction to tensors is provided than in our book chapter

[130].

2.1. Tensor product spaces

We start with some preliminaries. In the sequel, we consider mainly the real field K = R,

although most parts are easy to extend to the complex case. We confine ourselves to finite

dimensional linear spaces Vi = Rni from which the tensor product space

Hd =

d⊗
i=1

Vi :=

d⊗
i=1

Rni ,

is built [75]. If it is not stated explicitly, the Vi = Rni are supplied with the canonical basis

{ei1, . . . , eini} of the vector space Rni . Then any X ∈ Hd can be represented as

X =

n1∑
µ1=1

n2∑
µ2=1

. . .

nd∑
µd=1

X (µ1, µ2, . . . , µd) e1
µ1
⊗ e2

µ2
⊗ · · · ⊗ edµd .

The tensor X is called dth order tensor or order-d tensor. Using this basis, with a slight abuse

of notation, we can identify X ∈ Hd with its representation by a d-variate function, often called

hyper matrix,

µ = (µ1, µ2, . . . , µd) 7→ X (µ1, µ2, . . . , µd) ∈ R, µi ∈ [ni] , i ∈ [d] ,

depending on discrete variables, usually called indices µi, and µ is called a multi-index. The actual

representation of X ∈ Hd clearly depends on the chosen bases of V1, . . . , Vd. The number of possibly

nonzero entries in the representation of X is n1n2 · · ·nd = O(nd), with n = max{ni : i ∈ [d]}. That

is, it grows exponentially in the dimension d. This is often referred to as the curse of dimensions.

We equip the linear space Hd with the `2-norm (also called Frobenius norm) ‖X‖F =
√
〈X,X〉
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induced by the inner product

〈X,Y〉 :=

n1∑
µ1=1

n2∑
µ2=1

· · ·
nd∑
µd=1

X (µ1, µ2, . . . , µd) Y (µ1, µ2, . . . , µd) .

Throughout this chapter, all tensor contractions or various tensor–tensor products are either de-

fined explicitly, by summation over the corresponding indices, or by introducing the corresponding

tensor matricizations and performing matrix–matrix products.

The vectorization of a tensor X ∈ Rn1×n2×···×nd is a linear transformation that converts a

tensor into a column vector. Its result is denoted by vec (X) ∈ Rn1n2···nd×1. The ordering of an

elements in vec (X) is not important as long as it is consistent.

The matricization (also called flattening) is an operation that transforms a tensor into a ma-

trix. For a dth order tensor X ∈ Rn1×n2×···×nd and an ordered subset S ⊆ [d], an S-matricization

XS ∈ R
∏
k∈S nk×

∏
`∈Sc n` is defined element-wise as

XS ((ik)k∈S ; (i`)`∈Sc) = X (i1, i2, . . . , id) .

That is, the indexes in the set S define the rows of a matrix and the indexes in the set Sc = [d] \S
define the columns.

For a singleton S = {i} (for i ∈ [d]), the {i}-matricization is called the i-th unfolding.

Fibers are a higher order analogue of matrix rows and columns. For k ∈ [d], the mode-k fiber

xi1...ik−1ik+1...id ∈ Rnk of a dth order tensor is defined element-wise as

xi1...ik−1ik+1...id(ik) = X (i1, i2, . . . , id) , for all k ∈ [nk] .

Next, we introduce the k-th mode product which is a product between a tensor and a matrix

of appropriate dimensions.

Definition 2.1 (k-mode product). For a tensor X ∈ Rn1×n2×···×nd , a matrix A ∈ RJ×nk , and

k ∈ [d], the k-mode product of X and A

X×k A ∈ Rn1×n2×···×nk−1×J×nk+1×···×nd

is defined element-wise as

(X×k A) (i1, . . . , ik−1, j, ik+1, . . . , id) =

nk∑
ik=1

X (i1, i2, . . . , id) A (j, ik) .

For a tensor X ∈ Rn1×n2×···×nd and matrices A ∈ RJ×nj , B ∈ RK×nk , C ∈ RL×K it holds

X×j A×k B = X×k B×j A, whenever j 6= k

X×k B×k C = X×k CB.

Notice that the singular value decomposition (SVD decomposition) of a matrix X ∈ Rn1×n2 can

be written using the above notation as X = UΣVT = Σ×1 U×2 V.

2.1.1. Subspace approximation. The essence of the classical Tucker format is that, given

a tensor X and a rank-tuple r = (r1, r2, . . . , rd), one is searching for optimal subspaces Ui ⊂ Rni

such that

‖X−Y‖F , where Y ∈ U1 ⊗ · · · ⊗ Ud,
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is minimized over U1, . . . , Ud with dimUi = ri, for all i ∈ [d]. Equivalently, we are looking for the

corresponding basis
{
uiki
}
ki

of Ui, which can be written in the form

uiki :=

ni∑
µi=1

Ui(µi, ki)e
i
µi , ki ∈ [ri] , ri < ni, (2.1)

where Ui(µi, ki) ∈ R, for each coordinate direction i ∈ [d]. The matrix Ui is the matrix represen-

tation of the subspace Ui. With a slight abuse of notation we often identify the basis vector with

its representation

uiki '
(
µi 7→ Ui(µi, ki)

)
, µi ∈ [ni] , ki ∈ [ri] ,

i.e., a discrete function or an ni-tuple. This concept of subspace approximation can be used for an

approximation of a single tensor X in tensor product spaces. Given the bases
{
uiki
}
ki

, the tensor

X can be represented by

X =

r1∑
k1=1

. . .

rd∑
kd=1

C(k1, . . . , kd) u1
k1 ⊗ · · · ⊗ udkd ∈

d⊗
i=1

Ui ⊂ Hd =

d⊗
i=1

Rni . (2.2)

This representation can be written using the k-mode product (see Definition 2.1) as

X = C×1 U1 ×2 U2 × · · · ×d Ud,

where Uk is the matrix representation of the subspace Uk.

In case where
{
uiki
}
ki

’s form orthonormal bases, the core tensor C ∈⊗d
i=1 Rri is given entry-

wise by

C(k1, . . . , kd) = 〈X,u1
k1 ⊗ · · · ⊗ udkd〉.

We call a representation of the form (2.2) with some uiki , and tensor C the Tucker representation,

and the Tucker representations the Tucker format. In this formal parametrization, the upper limit

of the sums may be larger than the ranks and
{
uiki
}
ki

may not be linearly independent. Noticing

that the Tucker representation of a tensor is not uniquely defined, we are interested in some normal

form, see Subsection 2.1.5.

2.1.2. Hierarchical tensor representation. The hierarchical Tucker format (HT) in the

form introduced by Hackbusch and Kühn in [76], extends the idea of subspace approximation to

a hierarchical or multi-level framework. Let us proceed in a hierarchical way. We first consider

V1 ⊗ V2 = Rn1 ⊗ Rn2 or preferably the subspaces U1 ⊗ U2 introduced in the previous section.

For the approximation of X ∈ Hd we only need a subspace U{1,2} ⊂ U1 ⊗ U2 with dimension

r{1,2} < r1r2. Indeed, V{1,2} is defined through a new basis

V{1,2} = span {u{1,2}k{1,2}
: k{1,2} ∈

[
r{1,2}

]
},

with basis vectors given by

u
{1,2}
k{1,2}

=

r1∑
k1=1

r2∑
k2=1

u{1,2}(k{1,2}, k1, k2) u1
k1 ⊗ u2

k2 , k{1,2} ∈
[
r{1,2}

]
.

One may continue in several ways, e.g., by building a subspace U{1,2,3} ⊂ U{1,2}⊗U3 ⊂ U1⊗U2⊗
U3 ⊂ V1 ⊗ V2 ⊗ V3, or U{1,2,3,4} ⊂ U{1,2} ⊗ U{3,4}, where U{3,4} is defined analogously to U{1,2}

and so on.
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For a systematic treatment, this approach can be cast into the framework of a partition

tree, with leaves {1}, . . . , {d} (simply abbreviated here by 1, . . . , d), root D := {1, 2, . . . , d} (often

denoted also as troot), and vertices t ⊂ D := {1, . . . , d}, corresponding to the partition t = t1 ∪ t2,

t1 ∩ t2 = ∅. Without loss of generality, we can assume that i < j, for all i ∈ t1, j ∈ t2. We call

t1, t2 the sons of the father t and D is called the root of the tree. In the example above we have

t = {1, 2, 3} = t1 ∪ t2 = {1, 2} ∪ {3}, where t1 = {1, 2} and t2 = {3}.
Restricting the partition tree to a binary tree so that every interior node t (i.e. t 6= {i})

contains two sons is often the common choice, which leads to TT, and more generally HT format.

Let t1, t2 ⊂ D be the two sons of t ⊂ D. Then Ut ⊂ Ut1 ⊗ Ut2 is defined via the basis

ut` =

rt1∑
i=1

rt2∑
j=1

Bα(`, i, j) ut1i ⊗ ut2j . (2.3)

For non-leaf nodes t, the subspaces Ut can be also considered as matrices Ut ∈ Rnt×rt with

Ut (:, `) = ut` and nt =
∏
`∈t n`. Without loss of generality, all the basis vectors, e.g., {ut` : ` =

1, . . . , rt}, can be constructed to be orthonormal, as long as t is not the root (t 6= D). The tensors

(`, i, j) 7→ Bt(i, j, `) are called transfer or component tensors. For a leaf {i} ' i, the matrix

(µi, ki) 7→ Ui(µi, ki) in (2.1) is called an i-frame. The component tensor BD = B{1,...,d} at the

root is called the root tensor.

Since the matrices Ut are too large, we avoid computing them. We store only the α-frames

Uα for all leaves α ∈ [d], and the transfer or component tensors which, for fixed ` = 1, . . . , rt, can

also be casted into transfer matrices (i, j) 7→ [Bt(`)] (i, j) ∈ Rrt1×rt2 .

With I (TI) we denote the set of all interior (non-leaf) nodes and with L (TI) we denote the

set of all leaves of the corresponding partition tree TI .

Proposition 2.2 ([75]). A tensor X ∈ Hd is completely parametrized by the transfer tensors Bt,

t ∈ I (TI) and α-frames Uα, α ∈ L (TI), i.e., by a multi-linear function τ

({Bt : t ∈ I (TI)} , {Uα : α ∈ L (TI)}) 7→ X = τ
(
{Bt : t ∈ I (TI)}, {Uα : α ∈ L (TI)}

)
.

A tensor whose partition tree is presented in Figure 2.1 is completely parametrized by({
B{1,2},B{1,2,3},B{4,5},B{1,2,3,4,5}

}
, {U1,U2,U3,U4,U5}

)
.

An HT-decomposition ({Bt : t ∈ I (TI)} , {Uα : α ∈ L (TI)}) satisfying

UT
αUα = I, for all leaves α ∈ [d]

B
{1,2}
t

T
B
{1,2}
t = I, for all t ∈ I(TI)\troot

is called an orthogonal HT-decomposition.

Indeed τ is defined by applying (2.3) recursively. Since Bt depends bi-linearly on Bt1 and

Bt2 , the composite function τ is multi-linear in its arguments Bt and Uα.

Remark 2.3. In the literature, tensors are often considered as vectors over product index sets.

For this purpose, the d-fold product index set is introduced

I = I1 × I2 × · · · × Id, where Iµ := {1, 2, . . . , nµ}, for µ ∈ [d]
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B{1,2,3,4,5}

B{1,2,3}

B{1,2}

U1 U2

U3

B{4,5}

U4 U5

U{1,2,3}

U{1,2}

1

Figure 2.1. Hierarchical tensor representation of an order 5 tensor

and we write X ∈ RI . The subscript of the dimensional tree TI refers to the above defined index

set. By further defining the index sets

I(µ) := I1 × · · · × Iµ−1 × Iµ+1 × · · · × Id,

the corresponding tensor unfolding Xµ is in RIµ×I(µ) .

The HT-rank r = (rt)t∈TI of a tensor X ∈ Rn1×n2×···×nd can be obtained via corresponding

matricizations of a tensor X. That is,

rt = rank
(
Xt
)
, for all t ∈ TI .

The set of tensors X ∈ Hd of given HT-rank r will be denoted by Mr. The set of all tensors

of rank s at most r (i.e., sα ≤ rα for all α ∈ TI) will be denoted by M≤r.
Unlike the matrix case, it is possible that Mr = ∅ for some tuples r, see [30]. However, since

the TIHT algorithm presented in Chapter 5 works on a closed nonempty setM≤r, this issue does

not concern us.

In contrast to the canonical format (presented later in (2.5)), also known as CP and CAN-

DECOMP/PARAFAC, see [46, 94] and the border rank problem [101], in the present setting the

rank is a well defined quantity. This fact makes the present concept highly attractive for tensor

recovery. Additionally, if X is a rank r tensor then there exists a component tensor Bα of the

form (2.3) where ` = 1, . . . , rα.

It is well known that the set of all matrices A ∈ Rn1×n2 of rank at most r is a set of common

zeros of multi-variate polynomials, i.e., an algebraic variety (see e.g. Chapter 4.) The set M≤r is

the set of all tensors X ∈ Hd, where the matrices Ut have a rank at most rt. Therefore, it is again

a set of common zeros of multivariate polynomials.

Data complexity Let n := max{ni : i = 1, . . . , d}, r := max{rα : α ∈ TI}. Then the number

of data required for the representation is O(ndr+dr3), in particular it does not scale exponentially

with respect to the order d.
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2.1.3. Tensor trains and matrix product representation. We now highlight a special

case of hierarchical tensor representations – the tensor trains (TT tensors) – defined by taking

U{1,...,p+1} ⊂ U{1,...,p} ⊗ V{p+1}. The TT tensors, developed by Oseledets and Tyrtyshnikov in

[125, 126], are also known in quantum physics as matrix product states (MPS) [164]. Therein, we

abbreviate i ' {i, . . . , d} and consider the unbalanced tree (see Figure 2.2)

TI = {{1, 2, 3, . . . , d}, {1}, {2, 3, . . . , d}, {2}, {3, . . . , d}, {3}, . . . , {d− 1, d}, {d}}.

The α-frame Uα for a leaf α ∈ {{1}, {2}, . . . , {d − 1}} is usually defined as the identity matrix

of appropriate size and therefore the tensor X ∈ Hd is completely parametrized by the transfer

tensors (Bt)t∈I(TI) and the d-frame U{d}. Applying a recursive construction, the tensor X can

be written as

(µ1, . . . , µd) 7→ X(µ1, . . . , µd)

=

r1∑
k1=1

r2∑
k2=1

. . .

rd−1∑
kd−1=1

B1(µ1, k1)B2(k1, µ2, k2) · · ·Bd(kd−1, µd),

where Bd := U{d} and we used the abbreviation i ' {i, i + 1, . . . , d} for all interior nodes {i, i +

1, . . . , d} (i.e., the transfer tensor Bi = B{i,i+1,...,d}). Introducing the matrices Gi(µi) ∈ Rri−1×ri ,

[Gi(µi)] (ki−1, ki) = Bi(ki−1, µi, ki), 2 ≤ i ≤ d− 1,

and with the convention r0 = rd = 1

[G1(µ1)] (k1) = B1(µ1, k1) and [Gd(µd)] (kd−1) = Bd(kd−1, µd),

the formula (2.4) can be rewritten entry-wise by matrix–matrix products

X(µ1, . . . , µd) = G1(µ1) · · ·Gi(µi) · · ·Gd(µd) = τ(B1, . . . ,Bd). (2.4)

This representation is by no means unique. For example, if {Mi}d−1
i=1 is a set of invertible matrices

of appropriate dimension, then

X (µ1, µ2, . . . , µd) = G1(µ1) · · ·Gi(µi) · · ·Gd(µd)

= G1(µ1)M1M
−1
1 · · ·Mi−1M

−1
i−1Gi(µi)MiM

−1
i · · ·Md−1M

−1
d−1Gd(µd)

= G1(µ1) · · ·Gi(µi) · · ·Gd(µd),

where

G1(µ1) := G1(µ1)M1, Gd(µd) := M−1
d−1Gd(µd)

Gi(µi) := M−1
i−1Gi(µi)Mi, for all i = 2, . . . , d− 1.

Let X ∈ Rn1×n2×···×nd be a TT-rank r = (r1, r2, . . . , rd−1) tensor. Then the entries of a rank

vector r = (r1, r2, . . . , rd−1) can be obtained via the ranks of the appropriate matricizations. That

is,

rk = rank
(
X{1,...,k}

)
, for all k ∈ [d− 1] .

Data complexity: Let n := max{ni : i = 1, . . . , d}, r := max{rj : j ∈ [d− 1]}. Then

the number of data required for the presentation is O(dnr2). Notice, however, that representing

a tensor whose tree is a TT-tree in an HT-format requires O(dnr + (d − 1)r3) number of data.

Thus, in Chapter 5, to compute the covering number related to the TT-tensors, we use the latter
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Pictures
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Figure 2.2. TT representation of an order 5 tensor with abbreviation i '
{i, . . . , d} for the interior nodes.

representation (since it will lead to better covering bounds). Additionally, computing a single

entry of a tensor in the TT-format requires the matrix multiplication of d matrices of size at most

r × r. This can be performed in O(ndr3) operations.

Since the parametrization τ can be written in the simple matrix product form (2.4), we will

consider the TT format often as a prototype model, and use it frequently for our explanations.

We remark that most of the properties can easily be extended to the general hierarchical case with

straightforward modifications, see [75].

Canonical format (CP-format): The CP decomposition factorizes a tensor into a sum of

component rank-one tensors. A dth order tensor X ∈ Rn1×n2×···×nd is a rank-one tensor if there

exist vectors u1 ∈ Rn1 ,u2 ∈ Rn2 , . . . ,ud ∈ Rnd such that X = u1 ⊗ u2 ⊗ · · · ⊗ ud or element-wise

X (i1, i2, . . . , id) = u1 (i1) u2 (i2) · · ·ud (id) .

For example, given a dth order tensor X ∈ Rn1×n2×···×nd , we wish to write it as

X =

R∑
k=1

u1
k ⊗ u2

k ⊗ · · · ⊗ udk, (2.5)

where R is a positive integer and u`k ∈ Rn` , for all k ∈ [R] and ` ∈ [d]. Element-wise, (2.5) is

written as

X (i1, i2, . . . , id) =

R∑
k=1

u1
k(i1) u2

k(i2) · · · udk(id).

A CP-rank (or canonical rank) of a tensor X ∈ Rn1×n2×···×nd , similarly to the matrix case, is

the smallest number of rank-one tensors that sum up to X. Then the analog of the matrix nuclear

norm for tensors is

‖X‖∗ = min

{
r∑

k=1

|ck| : X =

r∑
k=1

ck u1
k ⊗ u2

k ⊗ · · · ⊗ udk, r ∈ N,∥∥uik∥∥2
= 1, for all i ∈ [d] , k ∈ [r]

}
.

Unfortunately, computing the canonical rank of a tensor, as well as computing the nuclear norm

of a tensor is in general NP-hard, see [61, 82].
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Pictures
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1

Figure 2.3. Tucker representation of an order-d tensor

2.1.4. Higher order singular value decomposition. Let us provide more details about

the rather classical higher order singular value decomposition of an order-d tensor. Above we have

considered only binary dimension trees TI , but we can extend the considerations also to N -ary

trees with N ≥ 3. The d-ary tree TI = {{1, . . . , d}, {1}, {2}, . . . , {d}} (the tree with a root with d

sons i ' {i}, see also Figure 2.3) induces the Tucker decomposition and the corresponding higher

order singular value decomposition (HOSVD). The Tucker decomposition was first introduced

by Tucker in 1963 [158] and has been refined later on in many works, see, e.g., [104, 158, 159].

Additionally, it has been applied in chemical analysis [79], psychometrics [92], signal processing

[44, 116], computer vision [161], etc.

Definition 2.4 (Tucker decomposition). Given a tensor X ∈ Rn1×n2×···×nd , the decomposition

X = S×1 U1 ×2 U2 × · · · ×d Ud,

or element-wise

X (µ1, µ2, . . . , µd) =

r1∑
k1=1

r2∑
k2=1

. . .

rd∑
kd=1

C (k1, k2, . . . , kd) u1
k1 (µ1) u2

k2 (µ2) · · ·udkd (µd) ,

ri ≤ ni, i ∈ [d], is called a Tucker decomposition. The tensor C ∈ Rr1×r2×···×rd is called a core

tensor and the uiki ∈ Rni for ki ∈ [ri], form a basis of the subspace Ui ⊂ Rni . They can also be

considered as i-frames Ui ∈ Rni×ri .

Notice that the Tucker decomposition is highly non-unique. For an i ∈ [d] and an invertible

matrix Qi ∈ Rri×ri , one can define a matrix Ui = UiQi and a tensor Ci

Ci (k1, k2, . . . , kd) =

ri∑
ki=1

C
(
k1, k2, . . . , ki, . . . kd

)
Q−1
i

(
ki, ki

)
such that the tensor X can also be written as

X (µ1, µ2, . . . , µd) =

r1∑
k1=1

r2∑
k2=1

. . .

rd∑
kd=1

Ci (k1, k2, . . . , kd) u1
k1 (µ1) u2

k2 (µ2) · · ·uiki (µi) · · ·udkd (µd) .

Similarly to the matrix case and the singular value decomposition, one can impose orthogonality

conditions on the matrices Ui, for all i ∈ [d], i.e., we assume that {uiki : ki ∈ [ri]} are orthonormal

bases. However, unlike in the matrix scenario, in this case one does not obtain a super-diagonal

core tensor C.

Definition 2.5 (HOSVD decomposition). The HOSVD decomposition of a given tensor X ∈ Hd
is a special case of the Tucker decomposition where

• the bases {uiki ∈ Rni : ki ∈ [ri]} are orthogonal and normalized, for all i ∈ [d],
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• the tensor C ∈ Hd is all orthogonal, i.e., 〈Cki=p,Cki=q〉 = 0, for all i ∈ [d] and whenever

p 6= q,

• the subtensors of the core tensor C are ordered according to their Frobenius norm, i.e.,

‖Cki=1‖F ≥ ‖Cki=2‖F ≥ · · · ≥ ‖Cki=ni‖F ≥ 0, for all i ∈ [d].

Here, the subtensor Cki=p ∈ Rn1×···×ni−1×ni+1×···×nd is a tensor of order d − 1 obtained by

fixing the ki-th mode in the tensor C to p. That is, it is defined element-wise as

Cki=p (µ1, . . . , µi−1, µi+1, . . . , µd) = C (µ1, . . . , µi−1, p, µi+1, . . . , µd) .

The Tucker rank r = (r1, r2, . . . , rd) of a tensor X ∈ Rn1×n2×···×nd can be obtained via the

unfoldings. That is,

rk = rank
(
X{k}

)
, for all k ∈ [d] .

Since the core tensor contains r1 · · · rd ∼ rd, r := max{ri : i ∈ [d]}, possibly nonzero entries,

this concept does not prevent the number of free parameters from scaling exponentially with the

dimensions O(rd). Setting n := max{ni : i ∈ [d]}, the overall complexity for storing the required

data (including the basis vectors) is bounded by O(ndr + rd). Since ni is replaced by ri, one

obtains a compression r1
n1
· · · rdnd ∼

(
r
n

)d
. Without further sparsity of the core tensor the Tucker

format is appropriate for low order tensors d < 4.

Algorithm 2.1. Tucker’s method for computing a rank-(r1, r2, . . . , rd) Tucker
decomposition, also known as HOSVD.

1: Input: X ∈ Hd or Tucker rank r = (r1, r2, . . . , rd).

2: for i = 1, . . . , d do

3: Compute a singular value decomposition of X{i} := UiΣiV
T

i .

4: Set Ui := Ui (:, [ri]).

5: end for

6: Set S := X×1 UT
1 ×2 UT

2 × · · · ×d UT
d .

7: Output: HOSVD decomposition X = S×1 U1 ×2 U2 × · · · ×d Ud.

The HOSVD decomposition can be computed via SVDs of appropriate unfoldings U{i}, see

e.g. [94] and Algorithm 2.1. The more general hierarchical Tucker (HT) decomposition can be

computed vis successive SVDs, see the following subsection. For more information on these de-

compositions, we refer the interested reader to [43, 75].

2.1.5. Tensor SVD algorithm and truncation. The singular value decomposition of the

matricization Xt, t ∈ TI , factorizes the tensor X into two parts. Thereby, we separate the tree into

two subtrees. Each part can be treated independently in an analogous way as before by applying

the singular value decomposition. This procedure can be continued in a way such that one ends

up with an explicit description of the component tensors. There are several sequential orders one

can proceed, including top-down and bottom-up strategies. We will call these procedures tensor

SVD algorithms. As long as no approximation (i.e., no truncation) has been applied during the

corresponding SVDs, at the end one obtains an exact recovery of the original tensor. The situation

changes if we apply truncations (via thresholding). Then the result may depend on the way and

on the order we proceed as well as on the variant of the thresholding procedure.
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In order to become more explicit let us present a procedure for obtaining the HT-decomposition

via the tensor SVD algorithm for the model example of a TT-tensor [124], already introduced in

[164] for the matrix product representation. Without truncations the Algorithm 2.2 provides an ex-

act reconstruction with a TT representation provided that the multi-linear rank s = (s1, . . . , sd−1)

is chosen large enough. In general, the si’s can be chosen to be larger than the dimensions ni.

Via inspecting the ranks of the relevant matricizations, the multilinear rank s may be determined

a priori.

Algorithm 2.2. TT-SVD algorithm

1: Input: X ∈ Hd of multi-linear rank s = (s1, . . . , sd−1), s0 := 1, sd := 1.

2: Initialization: Set M1 = X{1,2}.

3: for i = 1, . . . , d− 1 do

4: Compute the SVD of Mi:

5: Mi = G
{1,2}
i ΣiD

{1}
i or element-wise

6: Mi ((ki−1, µi); (µi+1, . . . , µd)) =
∑si
ki=1 σ

i
ki

Gi(ki−1, µi, ki)Di(ki, µi+1, . . . , µd),

7: where
(
σiki
)
ki

is the monotonically decreasing sequence of singular values of Mi.

8: Set V
{1}
i+1 := ΣiD

{1}
i and Mi+1 := V

{1,2}
i+1 .

9: end for

10: Set [Gd(µd)] (kd−1) := Md(kd−1, µd) and [Gi(µi)] (ki−1, ki) = Gi(ki−1, µi, ki) for i ∈ [d].

11: Output: Decomposition X(µ1, µ2, . . . , µd) = G1(µ1)G2(µ2) · · ·Gd(µd).

Let us notice that the present algorithm is not the only way to use multiple singular value

decompositions in order to obtain a hierarchical representation of X for the given tree, here a TT

representation. For example, one may start at the right end separating Bd first and so on. The

procedure above provides some normal form of the tensor.

Let us now explain hard thresholding on the example of a TT tensor. This procedure remains

essentially the same to the TT-SVD algorithm – presented in Algorithm 2.2 – (and more generally

HT-SVD algorithm) with the only difference that we apply a thresholding to a target rank r =

(ri)
d−1
i=1 with ri ≤ si at each step of the for loop by setting σiki = 0 for all ki > ri, i ∈ [d− 1]

(where
(
σiki
)
ki

is the monotonically decreasing sequence of singular values of Mi). This results

in a matrix Mi,ε satisfying ‖Mi −Mi,εi‖F = εi =
√∑

ki>ri
(σiki)

2. By the hard thresholding

procedure presented above, one obtains a unique approximate tensor

Xε := Hr(X)

of multi-linear rank r within a guaranteed error bound

‖Xε −X‖F ≤
d−1∑
i=1

εi .

In contrast to the matrix case, this approximation Xε, however, may not be the best rank r

approximation of X, which is in fact NP-hard to compute [61, 82]. A more evolved analysis shows

the following quasi-optimal error bound.

The procedure introduced above can be modified to apply for general hierarchical tensor

representations. In Appendix A we introduce three procedures due to Grasedyck [70], namely
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the root-to-leaves truncation (Algorithm A.1), the leaves-to-root truncation (Algorithm A.2), and

truncation via projections (Theorem A.6).

Let X ∈ Rn1×n2×···×nd and let Xα = UαΣαVT
α be the singular value decomposition of the

tensor unfolding Xα with α ∈ [d] and Uα ∈ Rnα×nα . Then the truncation of X to Tucker rank

r = (r1, r2, . . . , rd) is defined by

Hr (X) := X×1 Ũ1Ũ
T
1 ×2 Ũ2Ũ

T
2 × · · · ×d ŨdŨ

T
d ,

where Ũk is the matrix of first rk columns of Uk. This definition was introduced in [43].

Next, we present a result on truncation error.

Theorem 2.6. Let Xε = Hr(X). Then there exists C(d) = O(
√
d), such that Xε satisfies the

quasi-optimal error bound

inf{‖X−Y‖F : Y ∈M≤r} ≤ ‖X−Hr(X)‖F ≤ C(d) inf{‖X−Y‖F : Y ∈M≤r} .

The constant satisfies C(d) =
√
d for the Tucker format [70], C(d) =

√
d− 1 for the TT format

[125], and C(d) =
√

2d− 3 for a balanced tree (and truncation via projections) in the HT-format

[70].

When we consider the HT format in the sequel, we have in mind that we have fixed our tensor

SVD method choosing one of the several variants.
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Other approaches to low-rank tensor recovery

The problem of low-rank tensor recovery is an interesting subject from both the theoretical

and the application point of view. On one side, it is a natural generalization of the sparse vector

and low-rank matrix recovery problem. On the other side, estimating a low-rank tensor has

applications in many different areas such as machine learning [137], video compression [108], and

seismic data interpolation [38].

The aim of low-rank tensor recovery is to reconstruct a low-rank tensor X ∈ Rn1×n2×···×nd

from linear measurements y = A (X), where A : Rn1×n2×···×nd → Rm with m � n1n2 · · ·nd. In

Chapter 2, different notions of tensor rank corresponding to different tensor decompositions have

been introduced. Thus, to analyze low-rank tensor recovery it is necessary to first fix the tensor

decomposition and a corresponding notion of rank. Similarly to the matrix case, the natural

approach of finding the solution of the optimization problem

min
Z∈Rn1×n2×···×nd

rank (Z) s.t. A (Z) = y (3.1)

is NP-hard to compute in general – regardless of the choice of the tensor decomposition, see

[81]. Based on the experience on the low-rank matrix recovery, one would expect that the convex

optimization problem

min
Z∈Rn1×n2×···×nd

‖Z‖ s.t. A (Z) = y, (3.2)

where ‖·‖ denotes a suitable norm, would be a promising approach. However, for the CP-

decomposition and the corresponding notion of the tensor nuclear norm, also (3.2) is in general

NP-hard to compute, see [61, 82]. A recent paper [169] on tensor completion for third order ten-

sors provides the bounds for low-rank tensor recovery via tensor nuclear norm minimization. The

analysis is based on a tensor version of coherence. That is, the first step is to compute coherences

of linear subspaces spanned by columns of the unfoldings. The tensor coherence then corresponds

to the maximum of these three subspace coherences. Theoretical results are significantly better

than the ones provided by other approaches – the sample size requirement for robust third order

tensor completion in Rn×n×n is O(r1/2(n log n)3/2). Still, the computation remains NP-hard.

In Chapter 4 we introduce another approach related to the same decomposition. We provide

convex relaxations of the unit-tensor-nuclear-norm ball which lead to the “new” tensor norms

called theta norms. In this case, the optimization problem in (3.2) (with ‖·‖ corresponding to

any of the theta norms) can be solved via semidefinite programming. A similar approach based

on sum-of-squares relaxations and resulting also in the “new” tensor norms was suggested in [4].

This approach is based on the Lassere’s relaxations (see Remark B.2 for the difference between

theta bodies and Lassere’s relaxations). In particular, at the sixth level of Lassere’s hierarchy

m = Õ(rn3/2) number of measurements is required to recover a tensor in Rn×n×n and rank

at most r via tensor completion. However, the method is highly non-scalable, i.e., it runs in
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exponential time (since it requires solving optimization problems at the sixth level of Lassere’s

hierarchy).

A recent paper [90] develops parallel algorithms for tensor completion in the CP-format and

provides local convergence results. The authors generalize the well known parallel approaches for

matrix completion based on ALS (alternating least-squares) [153, 171], CCD (cyclic coordinate

descent) [128, 167, 168] and SGD (stochastic gradient descent) [64, 134, 153] to tensor completion.

For other approaches to low-rank tensor recovery and tensor completion considering the CP-

decomposition, see e.g. [107, 115].

Recall that the Tucker rank of a dth order tensor X is a vector r = (r1, r2, . . . , rd), with the

k-th entry corresponding to the rank of the kth unfolding. That is, rk = rank
(
X{k}

)
for all

k ∈ [d]. Then the minimization problem (3.1) can be transferred into

min
Z∈Rn1×n2×···×nd

d∑
i=1

rank
(
Z{i}

)
s.t. A (Z) = y. (3.3)

This suggests a natural, tractable convex approach to the recovery of low-rank tensors

min
Z∈Rn1×n2×···×nd

d∑
i=1

λi

∥∥∥Z{i}∥∥∥
∗

s.t. A (Z) = y, (3.4)

with some positive weights λi (usually λi = 1 or 1/d, for all i ∈ [d]) and where
∥∥Z{i}∥∥∗ =

∑
j σi(j)

denotes the sum of the singular values of the i-th unfolding of the tensor Z. This approach has

been originally proposed in [108] as the first approach suggested for the low-rank recovery, it

has been widely studied in [62, 83, 141, 142, 156], and applied to various datasets in imaging in

[98, 105, 106, 139]. For notational purposes we introduce the set

T d,n,r =
{

X ∈ Rn1×n2×···×nd : n = ni and rank
(
X{i}

)
= r, for all i ∈ [d]

}
.

In paper [156], the authors show that a tensor X ∈ T d,n,r can be recovered from Gaussian

measurements provided that the number of observations scales like m ≥ Crnd−1. Additionally, it

has been shown that this number of measurements is necessary, see [115]. However, to describe a

generic tensor from T d,n,r, we need at most rd+drn parameters. Thus, there is a substantial gap

between the intrinsic degrees of freedom of a generic tensor in T d,n,r and the necessary number

of measurements to ensure recovery. We present the main result from paper [115].

Theorem 3.1 ([115]). Let X0 ∈ Rn×n×···×n be an order-d tensor. Consider an optimization

problem for fixed j =
⌈
d
2

⌉
min
X

∥∥∥X{1...j}∥∥∥
∗

subject to A (X) = A (X0) , (3.5)

where X{1...j} denotes the {1 . . . j}-th matricization of a tensor X. Then if

• X0 has a CP-rank rcp, a sufficient number of measurements to recover X0 with high

probability via (3.5) is m ≥ Crcpnj .
• X0 has a Tucker rank r = (r, r, . . . , r) (i.e., X0 ∈ T d,n,r), a sufficient number of mea-

surements to recover X0 with high probability via (3.5) is m ≥ Crjnj .
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The above result follows from the low-rank matrix recovery results in [32] and noting that

rank
(
X{1...j}

)
≤ rcp and rank

(
X{1...j}

)
≤ min


j∏
i=1

ri,

d∏
i=j+1

ri

 ,

where r = (r1, r2, . . . , rd) denotes the Tucker rank. Interestingly and possibly surprisingly, the

above theorem states that, at least theoretically, the necessary number of measurements scales

equally for (3.4) and (3.5). That is, to recover a low-rank dth order tensor it is enough to consider

only {1, . . . , j}-th matricization with j =
⌈
d
2

⌉
. Clearly, in this approach the structure of a tensor is

completely lost (since we are basically recovering a low-rank matrix instead of a low-rank tensor).

Notice that for the TT-decomposition and, more generally, the HT-decomposition, it is pos-

sible to define the minimization problems analogously to (3.3) and (3.4) – by considering the

corresponding matricizations related to the TT and HT rank, respectively. However, the paper

[115] shows that the corresponding convex minimization programs will not, in general, improve

the recovery result given in Theorem 3.1.

In papers [51, 52] Baraniuk and Duarte have introduced a new convex optimization approach

for tensor completion based on the Kronecker product (see Definition A.2) and Tucker decompo-

sition. In several applications (see [20] for details), for example compressive sensing MRI with

multiscale scanning and Hyper-spectral compressive imaging [52], the measurements can be taken

in a multilinear way (which explains the use of the Tucker decomposition). That is, by using linear

operators in each mode separately as follows

Y = X×1 D1 ×2 D2 ×3 D3,

which can be written in terms of vectorized tensors (and Kronecker product ⊗K) as

y = (D3 ⊗K D2 ⊗K D1) x,

where x = vec (X) and y = vec (Y). Thus, in this scenario the following convex optimization

program is considered

min
z
‖z‖0 s.t. y = (D3 ⊗K D2 ⊗K D1) z,

where the original tensor X satisfies y = (D3 ⊗K D2 ⊗K D1) x and, as before, y is known, as well

as the matrices Di. The authors also provide the recovery guarantees. However, the analysis is

still based on the matrix completion results. Recently, Caiafa and Cichocki have presented three

versions of the OMP algorithm adapted to the Kronecker setting, see [19, 20]. The best result

is obtained for the N-BOMP (N-way Block OMP) algorithm – see Algorithm 3.1 – under the

assumption of the “block-tensor sparsity”. In Algorithm 3.1 the in-th column of the matrix Dn is

denoted by Dn (:, in) and XI1×I2×···×Id denotes a subtensor of X obtained by keeping in k-mode

only the indexes in Ik for all k ∈ [d].

Definition 3.2 ([19]). A multidimensional signal Y ∈ RI1×I2×···×Id is (S1, S2, . . . , Sd)-block

sparse with respect to the factors Dn ∈ RIn×Mn (n = 1, 2, . . . , d) if it admits a Tucker repre-

sentation based only on few Sn selected columns of each factor (Sn ≤Mn). That is, if In =[
i1n, i

2
n, . . . , i

Sn
n

]
denotes a subset of indices for the mode n (n = 1, 2, . . . , d), then

Y = X×1 D1 ×2 D2 × · · · ×d Dd,

with X (i1, i2, . . . , id) = 0, for all (i1, i2, . . . , id) /∈ I1 × I2 × · · · × Id.
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Algorithm 3.1. N-BOMP Algorithm

1: Input: mode-n dictionaries {D1,D2, . . . ,Dd} with Dn ∈ RIn×Mn ,

2: signal Y ∈ RI1×I2×···×Id ,
3: maximum number of nonzero entries Kmax, tolerance ε

4: Initialization: In = ∅, for n ∈ [d], R = Y, X = 0, j = 1.

5: while |I1| |I2| · · · |Id| ≤ Kmax and ‖R‖F > ε do

6: (ij1, i
j
2, . . . , i

j
d) = arg max(i1,i2,...,id)

∣∣R×1 DT
1 (:, i1)×2 DT

2 (:, i2)× · · · ×d DT
d (:, id)

∣∣.
7: In = In ∪ {ijn} (n ∈ [d]), Bn = Dn (:,In).

8: a = arg minu ‖(Bd ⊗Bd−1 ⊗ · · · ⊗B1) u− y‖22 .
9: R = Y −A×1 B1 ×2 B2 × · · · ×d Bd, with a = vec(A).

10: j = j + 1.

11: end while

12: Output: Sparse representation Y ≈ X×1 D1 ×2 D2 × · · · ×d Dd with

13: X (i1, i2, . . . , id) = 0, for all (i1, i2, . . . , id) /∈ I1 × I2 × · · · × Id
14: (with nonzero entries given by XI1×I2×···×Id = A.)

The analysis of the N-BOMP algorithm is based on the coherences of the dictionaries D1, D2,

. . . ,Dd.

Theorem 3.3 (N-BOMP Performance Guarantee, [19]). Given the decomposition Y = X ×1

D1 ×2 D2 × · · · ×d Dd, with a fixed tensor Y ∈ RI×I×···×I and known dictionaries Dn ∈ RI×M

having coherences µn (n = 1, 2, . . . , d), if an (S, S, . . . , S)-block sparse solution exists satisfying

(Sµ)
d
< 2− (1 + (S − 1)µ)

d
, (3.6)

with µ = max {µ1, µ2, . . . , µd}, then the N-BOMP algorithm (Algorithm 3.1) is guaranteed to find

this sparse representation in K iterations with S ≤ K ≤ dS.

The condition (3.6) is quite strong and it demands that the coherence for each dictionary Dn

is quite small, i.e., close to zero. In addition, the total cost of the algorithm applied to the case

as in the above theorem when S � I < M is IdS(M)d, see [20].

We remark that this approach has been applied also to the sparse vector recovery, where the

signal x ∈ CN is rewritten as a matrix X ∈ Cn1×n2 with N = n1n2, see [160].

Several approaches from compressive sensing and low-rank matrix recovery have been gener-

alized and analyzed for low-rank tensor recovery and tensor completion. For example, in [99, 145]

Riemannian optimization for tensor completion is suggested and in [109] generalized higher-order

iteration algorithm (gHOI) for tensor completion which is a generalization of ADMM (alternating

direction method of multipliers) is developed.

In Chapter 5, we present the iterative hard thresholding algorithm and the normalized iterative

hard thresholding algorithm adapted to the tensor scenario. Unfortunately, due to the properties

of dth order tensors presented in detail in previous chapter, only partial convergence results are

provided. That is, showing either local convergence (see [130]) or global convergence with an

additional assumption on the truncation operator Hr.
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Low-rank tensor recovery via tensor theta norms

The tensor nuclear norm minimization, which could be considered as the natural convex

optimization approach to the low-rank tensor recovery, is NP-hard in general – see the beginning

of Chapter 3. Recent convex optimization approaches suggest minimizing sums of nuclear norms

of specific matricizations. In this way, the theory developed for low-rank matrix recovery can

be applied to the tensor scenario. However, as already mentioned earlier, in this scenario the

minimal number of measurements needed for low-rank tensor recovery scales exponentially in the

dimension and thus, does not provide completely satisfying results. In this chapter we present an

alternative convex optimization approach. We introduce hierarchical relaxations (supersets) Bk
of the unit-tensor-nuclear-norm ball which provide us with – to the best of our knowledge – new

tensor norms called θk-norms. More precisely, the sets Bk satisfy

{X ∈ Rn1×n2×···×nd : ‖X‖∗ ≤ 1} ⊆ · · · ⊆ Bk ⊆ Bk−1 ⊆ · · · ⊆ B1

and {X ∈ Rn1×n2×···×nd : ‖X‖θk ≤ 1} = Bk, for all k. Thus, θk-norms satisfy ‖X‖∗ ≥ · · · ≥
‖X‖θk ≥ ‖X‖θk−1

≥ · · · ≥ ‖X‖θ1 , for all X ∈ Rn1×n2×···×nd .

This approach was first suggested in [32] and it is based on theta bodies of an appropriately

defined polynomial ideal Jd in R [x] = R [x11...1, x11...2, . . . , xn1n2...nd ]. Theta bodies are recently

introduced tool from real algebraic geometry with a special case introduced first by Lovász in [110]

and in full generality in [9, 68]. We treat each entry of a tensor as a polynomial variable. The

idea is to define a polynomial ideal Jd which vanishes on the set νR (Jd) of all rank-one Frobenius-

norm-one dth-order tensors. This is achieved by taking all order-two minors of all matricizations

(to satisfy the rank-one condition) and a polynomial
∑
i1,i2,...,id

x2
i1i2...id

− 1 (to satisfy the unit

norm condition) as its basis. In this scenario the convex hull of the set νR (Jd) forms the unit-

tensor-nuclear-norm ball. For k ∈ N, we define the tensor θk-norm via its unit-norm ball as

already explained above. That is, the set Bk is the kth theta body of the polynomial ideal Jd. By

the theory already developed for theta bodies, all theta norms can be computed via semidefinite

programing. However, to build this semidefinite program it is required to compute the reduced

Gröbner basis (with respect to a particular monomial ordering – in this case the graded reverse

lexicographic ordering) of the polynomial ideal Jd. In fact, in this chapter we provide the reduced

Gröbner basis with respect to the graded reverse lexicographic ordering of the polynomial ideal

Jd, with d ≥ 3. Interestingly, in the matrix scenario, the theta body approach does not lead to

the new matrix norms. That is, we prove that all matrix θk-norms are equal and coincide with

the matrix nuclear norm.

The theta body method has lead us to the polynomial ideals Jt,d in R [x] generated by all

order-t minors of all matricizations of tensor X of indeterminates. These ideals could be considered

as a natural higher-order generalization of the determinantal ideals It in R [x11, x12, . . . , xn1n2
]

47



4.1. INTRODUCTION TO THETA BODIES CHAPTER 4.

generated by all order-t minors of matrix X of indeterminates. Determinantal ideals have already

been studied in real algebraic geometry and commutative algebra. However, the ideals Jt,d – up

to the best of our knowledge – have not been considered before. In this chapter, we additionally

compute the reduced Gröbner basis of the polynomial ideals J2,d.

Finally, we provide a semidefinite program for computing tensor θ1-norm and for low-rank

third-order tensor recovery via θ1-norm minimization. Our numerical experiments presented in

Section 4.5 indicate that the low-rank tensor recovery via θ1-norm minimization is a promising

approach.

Since we treat each entry of a tensor as a polynomial variable, for better readability, the

(α1, α2, . . . , αd)-th entry of a tensor X ∈ Rn1×n2×···×nd will be denoted in this chapter as Xα1α2...αd

instead of X (α1, α2, . . . , αd). For simplicity, the subscripts α1α2 · · ·αd and β1β2 · · ·βd will often

be denoted by α and β, respectively. In particular, instead of writing xα1α2...αdxβ1β2...βd , we often

just write xαxβ. Below, we will use the grevlex ordering of monomials indexed by subscripts α,

which in particular requires to define an ordering for such subscripts. We make the agreement

that x11...11 > x11...12 > . . . > x11...1nd > x11...21 > . . . > x1n2...nd > . . . > xn1n2...nd .

The following results are contained in our paper [132]. However, in this chapter we use a

more standard notation from commutative algebra and real algebraic geometry – especially, when

referring to determinantal ideals.

4.1. Introduction to theta bodies

The computation of the theta bodies and the corresponding θk-norms requires several defi-

nitions and tools from real algebraic geometry which are collected in Appendix B. In particular,

in Subsection B.2 we introduce Gröbner bases of polynomial ideals and several monomial order-

ings including the graded reverse lexicographic (or grevlex ) ordering which is used throughout this

chapter. For an intuition behind the theta bodies and in general sum-of-squares certificates, see

Subsection B.1.

For a nonzero polynomial f =
∑

α aαxα =
∑
α1,α2,...,αn

aα1,α2,...,αnx
α1
1 xα2

2 · · ·xαnn in R [x] =

R [x1, x2, . . . , xn] and a monomial order >, we denote

a) the multidegree of f with multideg (f) = arg max
(
xα : aα 6= 0,α ∈ Zn≥0

)
,

(the maximum is taken with respect to the fixed monomial ordering)

b) the leading coefficient of f with LC (f) = amultideg(f) ∈ R,

c) the leading monomial of f with LM (f) = xmultideg(f),

d) the leading term of f with LT (f) = LC (f) · LM (f) .

Let f(x1, x2) = −x3
1x2 + 3x2

2 − 2x1x2 + 4x1 + 1 be a polynomial in R [x1, x2]. Then the

multidegree, the leading coefficient, the leading monomial, and the leading term of f with respect

to the grevlex ordering induced by variable ordering x1 > x2, see Definition B.3, are multideg (f) =

(3, 1), LC (f) = −1, LM (f) = x3
1x2, and LT (f) = −x3

1x2, respectively.

Let J ⊂ R [x] = R [x1, x2, . . . , xn] be a polynomial ideal. Its real algebraic variety is the set

of points x ∈ Rn at which all polynomials of the ideal J vanish, i.e.,

νR (J ) = {x ∈ Rn : f(x) = 0, for all f ∈ J }.
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By Hilbert’s basis theorem [37] every polynomial ideal in R [x] has a finite generating set. Thus,

we may assume that J is generated by a set F = {f1, f2, . . . , fk} of polynomials in R [x] and write

J = 〈f1, f2, . . . , fk〉 =
〈
{fi}i∈[k]

〉
or simply J = 〈F〉 .

Its real algebraic variety is the set

νR (J ) = {x ∈ Rn : fi(x) = 0 for all i ∈ [k]}.

Throughout the chapter, R [x]k denotes the set of polynomials of degree at most k and a degree-

one polynomial will be called a linear polynomial. A very useful certificate for the positivity of

polynomials is contained in the following definition.

Definition 4.1 ([68]). Let J be an ideal in R [x]. A polynomial f ∈ R [x] is k-sos mod J if

there exists a finite set of polynomials h1, h2, . . . , ht ∈ R [x]k such that f ≡∑t
j=1 h

2
j mod J , i.e,

if f −∑t
j=1 h

2
j ∈ J .

A special case of theta bodies was first introduced by Lovász in [110] and in full generality

they appeared in [68]. Later, they have been analyzed in [67, 69]. The definitions and theorems

in the remainder of the section are taken from [68].

Definition 4.2 (Theta body). Let J ⊆ R [x] be an ideal. For a positive integer k, the k-th theta

body of J is defined as

THk (J ) := {x ∈ Rn : f (x) ≥ 0 for every linear f that is k-sos mod J } .

We say that an ideal J ⊆ R [x] is THk-exact if THk (J ) equals conv (νR (J )), i.e., the closure of

the convex hull of νR (J ).

Theta bodies are closed convex sets, while conv (νR (J )) may not necessarily be closed and by

definition,

TH1 (J ) ⊇ TH2 (J ) ⊇ · · · ⊇ THk−1 (J ) ⊇ THk (J ) ⊇ · · · ⊇ conv (νR (J )) . (4.1)

The theta-body sequence of an ideal J can converge (finitely or asymptotically), if at all, only to

conv (νR (J )). More results regarding such guarantees can be found in [68, 69]. However, to the

best of our knowledge, none of the existing guarantees apply to the cases discussed below.

Given any polynomial, it is possible to check whether it is k-sos mod J using a Gröbner

basis of J and semidefinite programming. However, using this definition in practice requires the

knowledge of all linear polynomials (possibly infinitely many) that are k-sos mod J . To overcome

this difficulty, we need an alternative description of THk (J ) discussed next.

As in [9], we assume that there are no linear polynomials in the ideal J . Otherwise, some

variable xi would be congruent to a linear combination of other variables modulo J and we could

work in a smaller polynomial ring R [x1, x2, . . . , xi−1, xi+1, . . . , xn]. Therefore, R [x]1 /J ∼= R [x]1
and {1 + J , x1 + J , . . . , xn + J } can be completed to a basis B of R [x] /J . Recall that the degree

of an equivalence class f + J , denoted by deg (f + J ), is the smallest degree of an element in its

class. We assume that each element in the basis B = {fi + J } of R [x] /J is represented by the

polynomial whose degree equals the degree of its equivalence class, i.e., deg (fi + J ) = deg (fi).

In addition, we assume that B = {fi + J } is ordered so that deg (fi+1) > deg (fi), where > is a
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fixed monomial ordering. Further, we define the set Bk
Bk := {f + J ∈ B : deg(f + J ) ≤ k}.

Definition 4.3 (Theta basis). Let J ⊆ R [x] be an ideal. A basis B = {f0 + J , f1 + J , . . .} of

R [x] /J is a θ-basis if it has the following properties

1) B1 = {1 + J , x1 + J , . . . , xn + J },
2) if deg (fi + J ) ,deg (fj + J ) ≤ k then fifj + J is in the R-span of B2k.

As in [9, 68] we consider only monomial bases B of R [x] /J , i.e., bases B such that fi is a

monomial, for all fi + J ∈ B.

To determine a θ-basis, we first need to compute the reduced Gröbner basis G of the ideal J ,

see Definition B.5 and Definition B.6. The set B will satisfy the second property in the definition of

the theta basis if the reduced Gröbner basis G is with respect to an ordering which first compares

the total degree. Therefore, throughout the paper we use the graded reverse monomial (grevlex)

ordering (see Definition B.3), although also the graded lexicographic ordering (see Definition B.3)

would be appropriate.

A technique to compute a θ-basis B of R [x] /J consists in taking B to be the set of equivalence

classes of the standard monomials of the corresponding initial ideal

Jinitial =
〈
{LT(f)}f∈J

〉
=
〈
{LT(gi)}i∈[s]

〉
,

where G = {g1, g2, . . . , gs} is the reduced Gröbner basis of the ideal J . In other words, a set

B = {f0 + J , f1 + J , . . .} will be a θ-basis of R [x] /J if it contains all fi + J such that

1) fi is a monomial

2) fi is not divisible by any of the monomials in the set {LT(gi) : i ∈ [s]}.
The next important tool we need is the combinatorial moment matrix of J . To this end, we

fix a θ-basis B = {fi + J } of R [x] /J and define [x]Bk to be the column vector formed by all

elements of Bk in order. Then [x]Bk [x]
T
Bk is a square matrix indexed by Bk and its (i, j)-entry

is equal to fifj + J . By definition of a theta basis, the entries of [x]Bk [x]
T
Bk lie in the R-span of

B2k. Let {λli,j} be the unique set of real numbers such that fifj + J =
∑
fl+J∈B2k

λli,j (fl + J ).

The theta bodies THk (J ) can be characterized via the combinatorial moment matrix as stated

in the next result from [68]. Thus, these matrices will be the basis for computing the new tensor

norms and recovering low-rank tensors via the new tensor norm minimization introduced below

via the semidefinite programming.

Definition 4.4. Let J ,B and {λli,j} be as above. Let y be a real vector indexed by B2k

with its first entry y0 = 1 indexed by the basis element 1 + J . The k-th combinatorial mo-

ment matrix MBk (y) of J is the real matrix indexed by Bk whose (i, j)-entry is [MBk (y)]i,j =∑
fl+J∈B2k

λli,jyl.

Theorem 4.5. The k-th theta body of J , THk (J ), is the closure of

QBk (J ) = πRn
{
y ∈ RB2k : MBk (y) � 0, y0 = 1

}
,

where πRn denotes the projection onto the variables y1 = yx1+J , . . . , yn = yxn+J .

Algorithm 4.1 shows a step-by-step procedure for computing THk(J ).
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Algorithm 4.1. Algorithm for computing THk(J )

1: Input: An ideal J ∈ R [x] = R [x1, x2, . . . , xn].

2: Compute the reduced Gröbner basis of the ideal J .

3: Compute a θ-basis B = B1 ∪B2 ∪ . . . = {f0 + J , f1 + J , . . .} of R [x] /J
4: (see Definition 4.3)

5: Compute the combinatorial moment matrix MBk (y):

6: [x]Bk = {all elements of Bk in order}
7: (XBk)i,j =

(
[x]Bk [x]

T
Bk

)
i,j

= fifj + J =
∑
fl+J∈B2k

λli,j (fl + J )

8: [MBk (y)]i,j =
∑
fl+J∈B2k

λli,jyl (linearize using y = (1, y1, y2, . . . , y|B2k|−1))

9: Output: THk (J ) is the closure of

10: QBk (J ) = πRn
{
y ∈ RB2k : MBk (y) � 0, y0 = 1

}
.

4.2. Matrix case

First, we consider the unit-matrix-nuclear-norm ball and provide its hierarchical relaxations

via theta bodies. The k-th relaxation defines a matrix unit θk-norm ball with the property

‖X‖θk ≤ ‖X‖θk+1
, for all X ∈ Rm×n and all k ∈ N.

However, we will show that all these θk-norms coincide with the matrix nuclear norm.

The first step in computing hierarchical relaxations of the unit-matrix-nuclear-norm ball con-

sists in finding a polynomial ideal J such that its real algebraic variety (the set of points at which

all polynomials of the ideal vanish) coincides with the set of all rank-one, Frobenius-norm-one

matrices

νR(J ) =
{
X ∈ Rm×n : ‖X‖F = 1, rank (X) = 1

}
. (4.2)

Recall that the convex hull of this set is the nuclear norm ball. The following lemma states the

elementary fact that a nonzero matrix is a rank-one matrix if and only if all its order-two minors

are zero. (The determinant of an r-by-r submatrix of A is called an order-r minor of A or a

minor of an order r of A.)

For notational purposes, we define the following polynomials in R [x] = R [x11, x12, . . . , xmn]

g(x) =

m∑
i=1

n∑
j=1

x2
ij − 1 and fijkl(x) = xilxkj − xijxkl for 1 ≤ i < k ≤ m, 1 ≤ j < l ≤ n. (4.3)

Lemma 4.6. Let X ∈ Rm×n\ {0}. Then X is a rank-one, Frobenius-norm-one matrix if and only

if

X ∈R := {X : g(X) = 0 and fijkl(X) = 0 for all i < k, j < l}. (4.4)

Proof. If X ∈ Rm×n is a rank-one matrix with ‖X‖F = 1, then by definition there exist two

vectors u ∈ Rm and v ∈ Rn such that Xij = uivj for all i ∈ [m], j ∈ [n] and ‖u‖2 = ‖v‖2 = 1.

Thus

XijXkl −XilXkj = uivjukvl − uivlukvj = 0 and

m∑
i=1

n∑
j=1

X2
ij =

m∑
i=1

u2
i

n∑
j=1

v2
j = 1.

51



4.2. MATRIX CASE CHAPTER 4.

For the converse, let x·i represent the i-th column of a matrix X ∈R. Then, for all j, l ∈ [n] with

j < l, it holds

Xml · x·j −Xmj · x·l = Xml ·


X1j

X2j

...

Xmj

−Xmj ·


X1l

X2l

...

Xml

 =


X1jXml −X1lXmj

X2jXml −X2lXmj

...

XmjXml −XmjXml

 = 0,

since XijXml = XilXmj for all i ∈ [m− 1] by the definition of R. Thus, the columns of the matrix

X span a one-dimensional space, i.e., the matrix X is a rank-one matrix. From
∑m
i=1

∑n
j=1X

2
ij −

1 = 0 it follows that the matrix X is normalized, i.e., ‖X‖F = 1. �

Remark 4.7. The set of polynomials {fijkl : 1 ≤ i < k ≤ m, 1 ≤ j < l ≤ n} defined in (4.3) is

equivalent to the set {f (α,β) : (α,β) ∈ S2}, where

f (α,β) (x) = xαxβ − xα∨βxα∧β and S2 = {(α,β) : 1 ≤ α1 < β1 ≤ m, 1 ≤ β2 < α2 ≤ n} ,

with [α ∨ β]i = max{αi, βi} and [α ∧ β]i = min{αi, βi} for i ∈ {1, 2}. These polynomials were

introduced for the first time in [80] and are known in real algebraic geometry and commutative

algebra as Hibi relations.

As a consequence of Lemma 4.6, the set of rank-one, Frobenius-norm-one matrices coincides

with the real algebraic variety νR (JMmn
) for the ideal JMmn

generated by the polynomials g and

fijkl. That is,

JMmn
= 〈GMmn

〉 with GMmn
= {g(x)} ∪ {fijkl(x) : 1 ≤ i < k ≤ m, 1 ≤ j < l ≤ n}. (4.5)

Recall that the convex hull of the set R in (4.4) forms the unit-nuclear-norm ball and by the

definition of the theta bodies,

conv (νR (JMmn
)) ⊆ · · · ⊆ THk+1 (JMmn

) ⊆ THk (JMmn
) ⊆ · · · ⊆ TH1 (JMmn

) .

Therefore, the theta bodies form closed, convex hierarchical relaxations of the unit-matrix-nuclear-

norm ball. In addition, the theta body THk (JMmn
) is symmetric, THk (JMmn

) = −THk (JMmn
).

Thus, it defines a unit ball of a norm that we call the θk-norm.

The next result shows that the generating set of the ideal JMmn
introduced above is a Gröbner

basis for JMmn .

Theorem 4.8. The set GMmn
forms the reduced Gröbner basis of the ideal JMmn

with respect

to the grevlex order.

Proof. The set GMmn
is clearly a basis for the ideal JMmn

. By Proposition B.12, we only

need to check whether the S-polynomial (see Definition B.7) satisfies S (p, q) →GMmn 0 for all

p, q ∈ GMmn
whenever the leading monomials LM (p) and LM (q) are not relatively prime. Here,

S (p, q)→GMmn 0 means that S (p, q) reduces to 0 modulo GMmn
, see Definition B.9.

Notice that LM (g) = x2
11 and LM (fijkl) = xilxkj are relatively prime, for all 1 ≤ i < k ≤ m

and 1 ≤ j < l ≤ n. Therefore, we only need to show that S(fijkl, fîĵk̂l̂) →GMmn 0 whenever the

leading monomials LM(fijkl) and LM(fîĵk̂l̂) are not relatively prime. First we consider

fijkl(x) = xilxkj − xijxkl and fiĵk̂l(x) = xilxk̂ĵ − xiĵxk̂l
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for 1 ≤ i < k < k̂ ≤ m, 1 ≤ j < ĵ < l ≤ n. The S-polynomial is then of the form

S(fijkl, fiĵk̂l) = xk̂ĵfijkl(x)− xkjfiĵk̂l(x) = −xijxklxk̂ĵ + xiĵxk̂lxkj

= xk̂lfijkĵ(x)− xijfkĵk̂l(x) ∈ JMmn

so that S(fijkl, fiĵk̂l)→GMmn 0. The remaining cases are treated with similar arguments.

In order to show that GMmn
is the reduced Gröbner basis (see Definition B.6) for the ideal

JMmn
, we first notice that LC(f) = 1 for all f ∈ GMmn

. In addition, the leading monomial of

f ∈ GMmn
is always of degree two and there are no two different polynomials fi, fj ∈ GMmn

such

that LM(fi) = LM(fj). Therefore, GMmn
is the reduced Gröbner basis of the ideal JMmn

with

respect to the grevlex order. �

The Gröbner basis GMmn
of JMmn

= 〈GMmn
〉 yields the θ-basis of R[x]/JMmn

. For the sake

of simplicity, we only provide its elements up to degree two,

B1 = {1 + JMmn
, x11 + JMmn

, x12 + JMmn
, . . . , xmn + JMmn

}
B2 = B1 ∪ {xijxkl + JMmn

: (i, j, k, l) ∈ SB2
} ,

where SB2
= {(i, j, k, l) : 1 ≤ i ≤ k ≤ m, 1 ≤ j ≤ l ≤ n} \ (1, 1, 1, 1). Given the θ-basis, the theta

body THk(JMmn
) is well-defined. We formally introduce the associated norm next.

Definition 4.9. The matrix θk-norm, denoted by ‖·‖θk , is the norm induced by the k-theta body

THk (JMmn
), i.e.,

‖X‖θk = inf {r : X ∈ rTHk (JMmn
)} .

The θk-norm can be computed with the help of Theorem 4.5, i.e., as

‖X‖θk = min
t
t subject to X ∈ tQBk(JMmn).

Given the moment matrix MBk(y) associated with JMmn , this minimization program is equivalent

to the semidefinite program

min
t∈R,y∈RB2k

t subject to MBk(y) < 0, y0 = t,yB1 = X. (4.6)

The last constraint might require some explanation. The vector yB1
denotes the restriction of

y to the indices in B1, where the latter can be identified with the set [m] × [n] indexing the

matrix entries. Therefore, yB1 = X means componentwise yx11+JMmn = X11, yx12+JMmn =

X12, . . . , yxmn+JMmn = Xmn. For the purpose of illustration, we focus on the θ1-norm in R2×2

in Subsection 4.2.1 below, and provide a step-by-step procedure for building the corresponding

semidefinite program in (4.6).

Notice that the number of elements in B1 is mn + 1, and in B2\B1 is m·(m+1)
2 · n·(n+1)

2 −
1 ∼ (mn)2

2 . That is, the number of elements of the θ-basis restricted to the degree two scales

polynomially in the total number of matrix entries mn. Therefore, the computational complexity

of the SDP in (4.6) is polynomial in mn.

We show next that the theta body TH1(JMmn
) and hence, all THk(JMmn

) for k ∈ N, coincide

with the matrix-unit-nuclear-norm ball. To this end, the following lemma provides expressions for

the boundary of the matrix-unit-nuclear-norm ball.
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Lemma 4.10. Let Oc (Or) denote the set of all matrices M ∈ Rn×m with orthonormal columns

(rows), i.e., Oc =
{
M ∈ Rn×m : MTM = Im

}
and Or =

{
M ∈ Rn×m : MMT = In

}
. Then{

X ∈ Rm×n : ‖X‖∗ ≤ 1
}

=
{
X ∈ Rm×n : tr (MX) ≤ 1, for all M ∈ Oc ∪Or

}
.

Remark 4.11. Notice that Oc = ∅ for m > n and Or = ∅ for m < n.

Proof. It suffices to treat the case m ≤ n because ‖X‖∗ =
∥∥XT

∥∥
∗ for all matrices X, and

M ∈ Or if and only if MT ∈ Oc. Let X ∈ Rm×n such that ‖X‖∗ ≤ 1 and let X = UΣVT

be its singular value decomposition. For M ∈ Oc, the spectral norm satisfies ‖M‖2→2 ≤ 1 and

therefore, using the fact that the nuclear norm is the dual of the spectral norm, see e.g. [8, p. 96]

and Example C.4,

tr (MX) ≤ ‖M‖2→2 · ‖X‖∗ ≤ ‖X‖∗ ≤ 1.

For the converse, let X ∈ Rm×n be such that tr (MX) ≤ 1, for all M ∈ Oc. Let X = UΣ V
T

denote its reduced singular value decomposition, i.e., U,Σ ∈ Rm×m and V ∈ Rn×m with UTU =

UUT = V
T
V = Im. Since M := VUT ∈ Oc, it follows that

1 ≥ tr(MX) = tr(VUTUΣV
T

) = tr(Σ) = ‖X‖∗ .

This completes the proof. �

Next, using Lemma 4.10, we show that the theta body TH1(JMmn) equals the matrix-unit-

nuclear-norm ball.

Theorem 4.12. The polynomial ideal JMmn
defined in (4.5) satisfies

TH1 (JMmn
) = conv ({x : g(x) = 0, fijkl(x) = 0 for all i < k, j < l}).

In other words, {
X ∈ Rm×n : X ∈ TH1 (JMmn)

}
=
{
X ∈ Rm×n : ‖X‖∗ ≤ 1

}
.

Proof. By the definition of TH1(JMmn
), it is enough to show that the boundary of the unit-

nuclear-norm ball can be written as 1-sos mod JMmn
. By Lemma 4.10 this means that the

polynomial 1 −∑m
i=1

∑n
j=1 xijMji is 1-sos mod JMmn

, for all M ∈ Oc ∪Or. We start by fixing

M =

(
Im

0

)
in case m ≤ n and M =

(
In 0

)
in case m > n, where Ik ∈ Rk×k is the identity

matrix. For this choice of M, we need to show that 1 −∑`
i=1 xii is 1-sos mod JMmn , where

` = min {m,n}. Note that

1−
∑̀
i=1

xii =
1

2

(1−
∑̀
i=1

xii

)2

+

1−
m∑
i=1

n∑
j=1

x2
ij

+
∑
i<j≤`

(xij − xji)2

−2
∑
i<j≤`

(xiixjj − xijxji) +

m∑
i=1

n∑
j=m+1

x2
ij +

m∑
i=n+1

n∑
j=1

x2
ij

 ,
since (

1−
∑̀
i=1

xii

)2

=1− 2
∑̀
i=1

xii +
∑̀
i=1

∑̀
j=1

xiixjj = 1− 2
∑̀
i=1

xii + 2
∑
i<j≤`

xiixjj +
∑̀
i=1

x2
ii,
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1−
m∑
i=1

n∑
j=1

x2
ij +

m∑
i=1

n∑
j=m+1

x2
ij +

m∑
i=n+1

n∑
j=1

x2
ij = 1−

∑̀
i=1

∑̀
j=1

x2
ij = 1−

∑
i<j≤`

(
x2
ij + x2

ji

)
−
∑̀
i=1

x2
ii,

and∑
i<j≤`

(xij − xji)2 − 2
∑
i<j≤`

(xiixjj − xijxji) =
∑
i<j≤`

(
x2
ij + x2

ji − 2xijxji − 2xiixjj + 2xijxji
)

=
∑
i<j≤`

(
x2
ij + x2

ji

)
− 2

∑
i<j≤`

xiixjj .

Therefore, 1−∑`
i=1 xii is 1-sos mod JMmn , since the polynomials 1−∑`

i=1 xii, xij −xji, xij ,
and xji are linear and the polynomials 1−∑m

i=1

∑n
j=1 x

2
ij and 2 (xiixjj − xijxji) are contained in

the ideal, for all i < j ≤ `.
Next, we define the transformed variables

x′ij =


∑m
k=1Mikxkj if m ≤ n,∑n
k=1 xikMkj if m > n.

Since x′ij is a linear combination of {xkj}mk=1∪{xik}nk=1 for every i ∈ [m] and j ∈ [n], the linearity

of the polynomials 1−∑`
i=1 x

′
ii, x

′
ij−x′ji, x′ij , and x′ji is preserved for all i < j. It remains to show

that the ideal is invariant under this transformation. For the polynomial 1−∑m
i=1

∑n
j=1 x

′
ij

2
this

is clear since M ∈ Rn×m has unitary columns if m ≤ n and unitary rows if m ≥ n. Moreover, if

m ≤ n the polynomial x′iix
′
jj − x′ijx′ji is contained in the ideal J since

x′iix
′
jj − x′ijx′ji =

m∑
k=1

m∑
l=1

MikMjl (xkixlj − xkjxli)

and the polynomials xkixlj − xkjxli are contained in JMmn
for all i < j ≤ m. Similarly, if m ≥ n

the polynomial x′iix
′
jj − x′ijx′ji is in the ideal since

x′iix
′
jj − x′ijx′ji =

n∑
k=1

n∑
l=1

MkiMlj (xikxjl − xilxjk)

and polynomials xikxjl − xilxjk are in the ideal, for all i < j ≤ n. �

The following corollary is a direct consequence of Theorem 4.12 and the nestedness property

(4.1) of the theta bodies.

Corollary 4.13. The matrix θ1-norm coincides with the matrix nuclear norm, i.e.,

‖X‖∗ = ‖X‖θ1 , for all X ∈ Rm×n.

In other words, ideal JMmn is TH1-exact, i.e.,

TH1 (JMmn) = TH2 (JMmn) = · · · = conv (νR (JMmn
)).

Remark 4.14. The ideal (4.5) is not the only choice that satisfies (4.2). For example, in [32] the

following polynomial ideal was suggested

J =

〈
{xij − uivj}i∈[m],j∈[n] ,

m∑
i=1

u2
i − 1,

n∑
j=1

v2
j − 1

〉
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in R [x,u,v] = R [x11, . . . , xmn, u1, . . . , um, v1, . . . , vn]. Some tedious computations reveal the

reduced Gröbner basis G of the ideal J with respect to the grevlex (and grlex) ordering,

G =
{
gi,j1 = xij − uivj : i ∈ [m] , j ∈ [n]

}⋃g2 =

m∑
i=1

u2
i − 1, g3 =

n∑
j=1

v2
j − 1


⋃{

gi,j,k4 = xijuk − xkjui : 1 ≤ i < k ≤ m, j ∈ [n]
}⋃{

gj5 =

m∑
i=1

xijui − vj : j ∈ [n]

}
⋃{

gi,j,k6 = xijvk − xikvj : i ∈ [m] , 1 ≤ j < k ≤ n
}⋃gi7 =

n∑
j=1

xijvj − ui : i ∈ [m]


⋃{

gi,j8 =

n∑
k=1

xikxjk − uiuj : 1 ≤ i < j ≤ m
}⋃{

gi,j9 =

m∑
k=1

xkixkj − vivj : 1 ≤ i < j ≤ n
}

⋃gi10 =

n∑
j=1

x2
ij − u2

i : 2 ≤ i ≤ m

⋃
{
gj11 =

m∑
i=1

x2
ij − v2

j : 2 ≤ j ≤ n
}

⋃{
gi,j,k,l12 = xijxkl − xilxkj : 1 ≤ i < k ≤ m, 1 ≤ j < l ≤ n

}
⋃g13 = x2

11 −
m∑
i=2

n∑
j=2

x2
ij +

m∑
i=2

u2
i +

n∑
j=2

v2
j − 1

 .

Obviously, this Gröbner basis is much more complicated than the one of the ideal JMmn introduced

above. Therefore, computations (both theoretical and numerical) with this alternative ideal seem

to be more demanding. In any case, the variables {ui}mi=1 and {vj}nj=1 are only auxiliary, so

one would like to eliminate these from the above Gröbner basis (see for example [37] for the

elimination procedure). By doing so, one obtains the Gröbner basis GMmn
defined in (4.5). Notice

that
∑m
i=1

∑n
j=1 x

2
ij−1 = g13 +

∑m
i=2 g

i
10 +

∑n
j=2 g

j
11 together with {gi,j,k,l12 } form the basis GMmn

.

Remark 4.15. The polynomial ideal JMmn
= 〈{fijkl : i < k, j < l}〉 is a special case of determi-

nantal ideals already studied in real algebraic geometry and commutative algebra, see [16, 147].

Let K be a field and X be a matrix of indeterminates over K. For t ∈ N, t ≤ min {m,n}, the

determinantal ideal It is generated by all t-minors (minors of order t or t-th order minors) of the

matrix X. Consequently, the real algebraic variety of It, called determinantal variety, is the set

of all rank-(t− 1) matrices. In particular, the ideal JMmn
coincides with the ideal I2. Sturmfels

in [147] proved that the set of all t-minors of X is the reduced Gröbner basis of It with respect

to the lexicographic order induced from the variable order x1n2 > x1,n2−1 > . . . > x11 > x2n2 >

x2,n2−1 > . . . > x21 > . . . > xn1n2 > . . . xn11. The author used the Knuth-Robinson-Schensted

correspondence KRS – the technique introduced in [93] – to avoid applying Buchberger’s algo-

rithm. Afterwards, several authors independently proved that t-minors of X form a Gröbner basis

of It regardless of the choice of the monomial order, see [29, 111, 117]. Still, to the best of our

knowledge – the presented results regarding the ideal JMmn are new.

4.2.1. The θ1-norm in R2×2. For the sake of illustration, we consider the specific example of

2× 2 matrices and provide the corresponding semidefinite program for the computation of the θ1-

norm explicitly. Let us denote the corresponding polynomial ideal in R [x] = R [x11, x12, x21, x22]
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1 x11 x12 x21 x22 x11x12 x11x21 x11x22 x2
12 x12x22 x2

21 x21x22 x2
22

y0 x11 x12 x21 x22 y1 y2 y3 y4 y5 y6 y7 y8

Table 4.1. Linearization of the elements of B2 for matrix 2 × 2 case. The
polynomial f in the first row refers to the element f + J ∈ B2.

simply by

J = JM22 =
〈
x12x21 − x11x22, x

2
11 + x2

12 + x2
21 + x2

22 − 1
〉
.

The associated real algebraic variety is of the form

νR (J ) =
{
x : x12x21 = x11x22, x

2
11 + x2

12 + x2
21 + x2

22 = 1
}

and corresponds to the set of rank-one Frobenius-norm-one matrices in R2×2. Its convex hull

consists of matrices X ∈ R2×2 with ‖X‖∗ ≤ 1. According to Theorem 4.8, the reduced Gröbner

basis G of J with respect to the grevlex order is

G =
{
g1 = x12x21 − x11x22, g2 = x2

11 + x2
12 + x2

21 + x2
22 − 1

}
with the corresponding θ-basis B of R [x] /J restricted to the degree two given as

B1 = {1 + J , x11 + J , x12 + J , x21 + J , x22 + J }
B2 = B1 ∪

{
x11x12 + J , x11x21 + J , x11x22 + J , x2

12 + J , x12x22 + J ,
x2

21 + J , x21x22 + J , x2
22 + J

}
.

The set B2 consists of all monomials of degree at most two which are not divisible by a leading

term of any of the polynomials inside the Gröbner basis G. For example, x11x12 +J is an element

of the theta basis B, but x2
11 + J is not since x2

11 is divisible by LT(g2).

Linearizing the elements of B2 results in Table 4.1, where the monomials f in the first row

stand for an element f+J ∈ B2. Therefore, [x]B1
= (1 + J , x11 + J , x12 + J , x21 + J , x22 + J )

T

and the following combinatorial moment matrix MB1
(x,y), see Definition 4.4, is given as

MB1
(x,y) =


y0 x11 x12 x21 x22

x11 −y4 − y6 − y8 + y0 y1 y2 y3

x12 y1 y4 y3 y5

x21 y2 y3 y6 y7

x22 y3 y5 y7 y8

 .

For instance, the entry (2, 2) of [x]B1
[x]

T
B1

is of the form x2
11 +J = −x2

12−x2
21−x2

22 +1+J , where

we exploit the second property in Definition 4.3 and the fact that g2 ∈ J . Replacing x2
12 + J by

y4, etc. as in Table 4.1, yields the stated expression for [MB1
(x,y)]2,2.

By Theorem 4.5, the first theta body TH1 (J ) is the closure of

QB1
(J ) = πx

{
(x,y) ∈ RB2 : MB1

(x,y) � 0, y0 = 1
}
,

where πx represents the projection onto the variables x, i.e., the projection onto x11, x12, x21, x22.

Furthermore, the θ1-norm of a matrix X ∈ R2×2 induced by the TH1 (J ) and denoted by ‖·‖θ1
can be computed as

‖X‖θ1 = inf
t
t s.t. X ∈ tQB1

(J )

57



4.3. THE TENSOR θK-NORM CHAPTER 4.

which is equivalent to

inf
t∈R,y∈R8

t s.t. M =


t X11 X12 X21 X22

X11 −y4 − y6 − y8 + t y1 y2 y3

X12 y1 y4 y3 y5

X21 y2 y3 y6 y7

X22 y3 y5 y7 y8

 � 0. (4.7)

Notice that tr(M) = 2t. By Theorem 4.12, the above program is equivalent to the standard

semidefinite program for computing the nuclear norm of a given matrix X ∈ Rm×n

min
W,Z

1

2
(tr (W) + tr (Z)) s.t.


W11 W12 X11 X12

W12 W22 X21 X22

X11 X21 Z11 Z12

X22 X22 Z12 Z22

 � 0.

Notice that the matrix M in (4.7) can be written as the following sum

M = t ·M0 +

2∑
i=1

2∑
j=1

Xij ·Mij +

8∑
k=1

yk ·Mk,

where

M0 =


1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 , M1 =


0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

 , M2 =


0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

 , M3 =


0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

 ,

M4 =


0 0 0 0 0

0 −1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

 , M5 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 1 0 0

 , M6 =


0 0 0 0 0

0 −1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

 , M7 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

 ,

M8 =


0 0 0 0 0

0 −1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

 , M11 =


0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 ,M12 =


0 0 1 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 , M21 =


0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

 ,

M22 =


0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

 .

4.3. The tensor θk-norm

We now turn to the tensor case and study the hierarchical closed convex relaxations of the

unit-tensor-nuclear-norm ball defined via theta bodies. Since in the matrix case all θk-norms are

equal to the matrix nuclear norm, their generalizations to the tensor case may all be viewed as

natural generalizations of the tensor-nuclear norm. The focus is mostly on the θ1-norm whose unit

norm ball is the largest in this hierarchical sequence of relaxations. Unlike in the matrix case, the

θ1-norm defines a new tensor norm, that – to the best of our knowledge – has not been studied

before.
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In the matrix scenario, all the theta norms are equal to the unit matrix nuclear norm ball. In

other words, the set of theta bodies converges to the unit matrix nuclear norm ball. By definition

of the theta bodies, we have the following relation for unit θk norms in Rn1×n2×···×nd

{X : ‖X‖θ1 ≤ 1} ⊇ · · · ⊇ {X : ‖X‖θk ≤ 1}
⊇ {X : ‖X‖θk+1

≤ 1} ⊇ · · · ⊇ {X : ‖X‖∗ ≤ 1}.

The analysis of convergence of the theta bodies in the tensor scenario is left for future research.

However, we do not expect the finite convergence to the unit tensor nuclear norm ball (otherwise

computing the tensor nuclear norm would not be NP-hard).

The polynomial ideal will be generated by the order-two minors of tensor matricizations, where

each variable corresponds to one tensor entry. As we will see, a tensor is rank-one if and only if all

order-two minors of the unfoldings (matricizations) vanish. In the order three case one considers

all three unfoldings. However, there are several possibilities for the order d case when d ≥ 4. In

fact, a dth-order tensor is rank-one if all order-two minors of all unfoldings vanish so that it may be

enough to consider only the unfoldings. However, one may as well consider the ideal generated by

all order-two minors of all matricizations or one may consider a subset of matricizations including

all unfoldings. Indeed, any tensor format – and thereby any notion of tensor rank – corresponds

to a set of matricizations and in this way, one may associate a θk-norm to a certain tensor format.

In particular, for Tucker format one considers all order-two minors of all the unfoldings and for

the TT-format all order-two minors of all the matricizations X{1,2,...,k} with k ∈ [d− 1]. (See

Chapter 2 for some background on various tensor formats.) However, as we will show later, the

corresponding reduced Gröbner basis with respect to the grevlex order does not depend on the

choice of the tensor format.

Below, we consider first the special case of third-order tensors. In Subsection 4.3.2 we treat

the general dth order case.

4.3.1. Third-order tensors. As described above, we will consider the order-two minors of

all the unfoldings of a third-order tensor. Our notation requires the following sets of subscripts

S1 = {(α,β) : 1 ≤ α1 < β1 ≤ n1, 1 ≤ β2 < α2 ≤ n2, 1 ≤ β3 ≤ α3 ≤ n3} ,
S2 = {(α,β) : 1 ≤ α1 ≤ β1 ≤ n1, 1 ≤ β2 < α2 ≤ n2, 1 ≤ α3 < β3 ≤ n3} ,
S3 = {(α,β) : 1 ≤ α1 < β1 ≤ n1, 1 ≤ α2 ≤ β2 ≤ n2, 1 ≤ β3 < α3 ≤ n3} ,
Si = {(α,β) : (α,β) ∈ Si and αj 6= βj , for all j ∈ [3]} , for all i ∈ [3] .

The following polynomials f (α,β) in R [x] = R [x111, x112, . . . , xn1n2n3
] correspond to a subset of

all order-two minors of all tensor unfoldings,

f (α,β)(x) = xαxβ − xα∨βxα∧β, (α,β) ∈ S := S1 ∪ S2 ∪ S3

g3(x) =

n1∑
i=1

n2∑
j=1

n3∑
k=1

x2
ijk − 1,

where [α ∨ β]i = max {αi, βi} and [α ∧ β]i = min {αi, βi}. In particular, the following order-two

minor of X{1} is not contained in
{
f (α,β) : (α,β) ∈ S}

f = xαxβ − xα̂xβ̂, where α̂ = (α1, β2, β3) , β̂ = (β1, α2, α3) and (α,β) ∈ S3.
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We remark that in real algebraic geometry and commutative algebra, polynomials f (α,β) are

known as Hibi relations, see [80].

Lemma 4.16. A tensor X ∈ Rn1×n2×n3 is a rank-one, Frobenius-norm-one tensor if and only if

g3(X) = 0 and f (α,β)(X) = 0 for all (α,β) ∈ S. (4.8)

Proof. Sufficiency of (4.8) follows directly from the definition of the rank-one Frobenius-norm-

one tensors. For necessity, the first step is to show that mode-1 fibers (columns) span one-

dimensional space in Rn1 . To this end, we note that for β2 ≤ α2 and β3 ≤ α3, the fibers x·α2α3

and x·β2β3 satisfy

−Xn1α2α3


X1β2β3

X2β2β3

...

Xn1β2β3

+Xn1β2β3


X1α2α3

X2α2α3

...

Xn1α2α3

 =


−X1β2β3

Xn1α2α3
+X1β2β3

Xn1α2α3

−X2β2β3
Xn1α2α3

+X2β2β3
Xn1α2α3

...

−Xn1β2β3
Xn1α2α3

+Xn1β2β3
Xn1α2α3

 = 0,

where we used that f (α,β)(X) = 0 for all (α,β) ∈ S. From g3 (X) = 0 it follows that the tensor

X is normalized.

Using similar arguments, one argues that mode-2 fibers (rows) and mode-3 fibers span one

dimensional spaces in Rn2 and Rn3 , respectively. This completes the proof. �

A third-order tensor X ∈ Rn1×n2×n3 is rank-one if and only if all three unfoldings X{1} ∈
Rn1×n2n3 , X{2} ∈ Rn2×n1n3 , and X{3} ∈ Rn3×n1n2 are rank-one matrices. Notice that f (α,β)(X) =

0 for all (α,β) ∈ S` is equivalent to the statement that the `-th unfolding X{`} is a rank-

one matrix, i.e., that all its order-two minors vanish, for all ` ∈ [3]. In order to define re-

laxations of the unit-tensor-nuclear-norm ball we introduce the polynomial ideal J3 ⊂ R [x] =

R [x111, x112, . . . , xn1n2n3
] as the one generated by

G3 =
{
f (α,β) (x) : (α,β) ∈ S

}
∪ {g3 (x)} , (4.9)

i.e., J3 = 〈G3〉. Its real algebraic variety equals the set of rank-one third-order tensors with unit

Frobenius norm and its convex hull coincides with the unit-tensor-nuclear-norm ball. The next

result provides the Gröbner basis of J3.

Theorem 4.17. The basis G3 defined in (4.9) forms the reduced Gröbner basis of the ideal

J3 = 〈G3〉 with respect to the grevlex order.

Proof. Similarly to the proof of Theorem 4.8 we need to show that S (p, q)→G3
0 for all polyno-

mials p, q ∈ G3 whose leading terms are not relatively prime. The leading monomials with respect

to the grevlex ordering are given by

LM(g3) = x2
111

and LM(f (α,β)) = xαxβ, (α,β) ∈ S.

The leading terms of g3 and f (α,β) are always relatively prime. First we consider two distinct

polynomials f, g ∈ {f (α,β) : (α,β) ∈ S3}. Let f = f (α,β) and g = f(α,β) for (α,β) ∈ S3, where

β = (β1, α2, β3). That is,

f(x) = xαxβ − xα∨βxα∧β, g(x) = xαxβ − xα∨βxα∧β.
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X ∈ R2×2×2 ‖X{1}‖∗ ‖X{2}‖∗ ‖X{3}‖∗ ‖X‖θ1

1

[
1 0
0 0

∣∣∣∣ 0 0
0 1

]
2 2 2 2

2

[
1 0
0 1

∣∣∣∣ 0 0
0 0

]
2 2

√
2 2

3

[
1 0
0 0

∣∣∣∣ 0 0
1 0

]
2

√
2 2 2

4

[
1 0
0 0

∣∣∣∣ 0 1
0 0

] √
2 2 2 2

5

[
1 0
0 1

∣∣∣∣ 0 1
0 0

] √
2 + 1

√
2 + 1

√
2 + 1 3

Table 4.2. Matrix nuclear norms of unfoldings and θ1-norm of tensors X ∈
R2×2×2, which are represented in the second column as X = [X (:, :, 1) |X (:, :, 2)].
The third, the fourth, and the fifth column represent the nuclear norms of the
first, the second, and the third unfolding of a tensor X, respectively. The last
column contains the numerically computed θ1-norm.

Since α ∧ β = α ∧ β and f(β,α∨β) ∈ {f (α,β) : (α,β) ∈ S2}, then

S (f, g) = xα∧β

(
−xβxα∨β + xβxα∨β

)
= xα∧βf

(β,α∨β) →G3
0.

Next we show that S (f, g) ∈ J3, for f ∈
{
f (α,β) : (α,β) ∈ S2

}
and g ∈

{
f (α,β) : (α,β) ∈ S1

}
.

Let f = f(α,β̂) with β̂ = (α1, β2, β3) and g = f(α,β̃) with β̃ = (β1, β2, α3), where (α,β) ∈ S2.

Since xα∧β̂ = xα∧β̃, f(β̂,α∨β̃) ∈
{
f (α,β) : (α,β) ∈ S3

}
, and f(α∨β̂,β̃) ∈

{
f (α,β) : (α,β) ∈ S1

}
S (f, g) = xα∧β̂

(
−xβ̃xα∨β̂ + xβ̂xα∨β̃

)
= xα∧β̂

(
f(β̂,α∨β̃) − f(α∨β̂,β̃)

)
→G3

0.

For the remaining cases one proceeds similarly. In order to show that G3 is the reduced Gröbner

basis, one uses the same arguments as in the proof of Theorem 4.8. �

Remark 4.18. The above Gröbner basis G3 is obtained by taking a particular subset of all order-

two minors of all three unfoldings of the tensor X ∈ Rn1×n2×n3 (not considering the same minor

twice). One might think that the θ1-norm obtained in this way corresponds to a (weighted) sum

of the nuclear norms of the unfoldings, which has been used in [62, 83] for tensor recovery. The

examples of cubic tensors X ∈ R2×2×2 presented in Table 4.2 show that this is not the case.

Assuming that θ1-norm is a linear combination of the nuclear norm of the unfoldings, there exist

α, β, γ ∈ R such that α‖X{1}‖∗ + β‖X{2}‖∗ + γ‖X{3}‖∗ = ‖X‖θ1 . From the first and the second

tensor in Table 4.2 we obtain γ = 0. Similarly, the first and the third tensor, and the first and

the fourth tensor give β = 0 and α = 0, respectively. Thus, the θ1-norm does not coincide with a

weighted sum of the nuclear norms of the unfoldings. In addition, the last tensor shows that the

θ1-norm does not equal the maximum of the nuclear norms of the unfoldings.

Theorem 4.17 states that G3 is the reduced Gröbner basis of the ideal J3 generated by all

order-two minors of all matricizations of an order-three tensor. That is, J3 is generated by the

following polynomials

f
{1}
(α,β)(x) = −xα1α2α3

xβ1β2β3
+ xα1β2β3

xβ1α2α3
, for (α,β) ∈ T {1}
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f
{2}
(α,β)(x) = −xα1α2α3

xβ1β2β3
+ xβ1α2β3

xα1β2α3
, for (α,β) ∈ T {2}

f
{3}
(α,β)(x) = −xα1α2α3

xβ1β2β3
+ xβ1β2α3

xα1α2β3
, for (α,β) ∈ T {3},

where
{
f
{k}
(α,β)(x) : (α,β) ∈ T {k}

}
is the set of all order-two minors of the kth unfolding and

T {k} =
{

(α,β) : αk 6= βk, α 6= β,where αk = βk = 0, α` = α`, β` = β`
}
.

For (α,β), with xα{k}xβ{k} we denote the monomial where α
{k}
k = αk, β

{k}
k = βk, and α

{k}
` =

β`, β
{k}
` = α`, for all ` ∈ [d] \{k}. Notice that f

{k}
(α,β)(x) = f

{k}
(β,α)(x) = −f{k}

(α{k},β{k})
(x) =

−f{k}
(β{k},α{k})

(x), for all (α,β) ∈ T {k}, and all k ∈ [3]. This redundancy simplifies the proof of

the next theorem. Let us now consider a TT-format and a corresponding notion of tensor rank.

Recall that a TT-rank of an order three tensor is a vector r = (r1, r2) where r1 = rank(X{1}) and

r2 = rank(X{1,2}). Consequently, we consider an ideal J3,TT generated by all order-two minors

of matricizations X{1} and X{1,2} of the order-3 tensor. That is, ideal J3,TT is generated by the

following polynomials

f
{1}
(α,β)(x) = −xα1α2α3

xβ1β2β3
+ xα1β2β3

xβ1α2α3
, for (α,β) ∈ T {1}

f
{1,2}
(α,β)(x) = −xα1α2α3

xβ1β2β3
+ xα1α2β3

xβ1β2α3
, for (α,β) ∈ T {1,2},

where T {1,2} = {(α,β) : (α1, α2, 0) > (β1, β2, 0) , α3 < β3}.

Theorem 4.19. The polynomial ideals J3 and J3,TT are equal.

Remark 4.20. As a consequence, G3 is also the reduced Gröbner basis for the ideal J3,TT with

respect to the grevlex ordering.

Proof. Notice that
(
X{3}

)T
= X{1,2} and therefore{

f
{3}
(α,β)(x) : (α,β) ∈ T {3}

}
=
{
f
{1,2}
(α,β)(x) : (α,β) ∈ T {1,2}

}
.

Therefore, it is enough to show that f
{2}
(α,β) ∈ J3,TT, for all (α,β) ∈ T {2}. By definition of T {2},

we have that α2 6= β2 and (α1, 0, α3) 6= (β1, 0, β3). We can assume that α3 6= β3, since otherwise

f
{2}
(α,β) = f

{1}
(α,β). Analogously, α1 6= β1 since otherwise f

{2}
(α,β) = f

{1,2}
(α,β). Consider the following

polynomials

f(x) = −xα1α2α3xβ1β2β3 + xβ1α2β3xα1β2α3 , (α,β) ∈ T {2}

g(x) = −xβ1β2α3
xα1α2β3

+ xβ1α2β3
xα1β2α3

, (β1, β2, α3, α1, α2, β3) ∈ T {1}

h(x) = −xα1α2α3xβ1β2β3 + xα1α2β3xβ1β2α3 , (α,β) ∈ T {1,2}

Thus, we have that f(x) = g(x) + h(x) ∈ J3,TT. �

4.3.2. The theta norm for general dth-order tensors. Let us now consider dth-order

tensors in Rn1×n2×···×nd for general d ≥ 4. Our approach relies again on the fact that a tensor

X ∈ Rn1×n2×···×nd is rank-one if and only if all its matricizations are rank-one matrices, or

equivalently, if all order-two minors of each matricization vanish.

The description of the polynomial ideal generated by the second order minors of all the matri-

cizations of a tensor X ∈ Rn1×n2×···×nd unfortunately requires some technical notation. Again, we
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do not need all such minors in the generating set that we introduce next. In fact, this generating

set will turn out to be the reduced Gröbner basis of the ideal.

Similarly to before, the entry (α1, α2, . . . , αd) of a tensor X ∈ Rn1×n2×···×nd corresponds to

the variable xα1α2···αd or simply xα. We aim at introducing a set of polynomials of the form

f
(α,β)
d (x) := −xα∧βxα∨β + xαxβ (4.10)

which will generate the desired polynomial ideal. These polynomials correspond to a subset of all

order-two minors of all the possible dth-order tensor matricizations. The set S denotes the indices

where α and β differ. Since for an order-two minor of a matricization XM the sets α and β need

to differ in at least two indices, S is contained in

S [d] := {S ⊂ [d] : 2 ≤ |S| ≤ d}.

Given the set S of different indices, we require all non-empty subsets M ⊆ S of possible indices

which are “switched” between α and β for forming the minors in (4.10). This implies that, without

loss of generality,

αj > βj , for all j ∈M
αk < βk, for all k ∈ S\M.

That is, the same minor is obtained if we require that αj < βj for all j ∈M and αk > βk for

all k ∈ S\M since the set of all two-minors of XM coincides with the set of all two-minors of

XS\M.

For S ∈ S [d], we define eS := min{p : p ∈ S}. The set M corresponds to an associated

matricization XM. The set of possible subsets M is given as

PS =


{
M ⊂ S : |M| ≤ b |S|2 c

}
\{∅}, if |S| is odd,{

M ⊂ S : |M| ≤ b |S|−1
2 c

}
∪
{
M ⊂ S : |M| = |S|

2 , eS ∈M
}
\{∅}, if |S| is even.

Notice that PS ∪PSc ∪ {∅} ∪S with PSc := {M : S\M ∈ PS} forms the power set of S. The

constraint on the size of M in the definition of PS is motivated by the fact that the role of α

and β can be switched and lead to the same polynomial f
(α,β)
d .

Thus, for S ∈ S [d] and M ∈ PS , we define a set

T S,M
d := {(α,β) :αi = βi, for all i /∈ S

αj > βj , for all j ∈M
αk < βk, for all k ∈ S\M}.

For notational purposes, we define

{fSd } = ∪M∈PS{f (α,β)
d : (α,β) ∈ T S,M

d } for S ∈ S [d].

Since we are interested in Frobenius-norm-one tensors, we also introduce the polynomial

gd (x) =

n1∑
α1=1

n2∑
α2=1

. . .

nd∑
αd=1

x2
α1α2...αd

− 1.
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Our polynomial ideal is then generated by the polynomials in

Gd =
⋃

S∈S[d]

{fSd } ∪ {gd} ⊂ R [x] = R [x11...1, x11...2, . . . , xn1n2...nd ] , i.e., Jd = 〈Gd〉.

As in the special case of the third-order tensors, not all order-two minors corresponding to all the

matricizations are contained in the generating set Gd due to the non-leading term of f
(α,β)
d (since

[α ∧ β] (i) ≤ [α ∨ β] (i), for all i ∈ [d]). Nevertheless all the order-two minors are contained in

the ideal Jd as it will also be revealed by the proof of Theorem 4.21 below. For instance, h(x) =

−x1234x2343 + x1243x2334 – corresponding to a minor of the matricization XM for M = {1, 2} –

does not belong to G4, but it does belong to the ideal J4. Moreover, it is straightforward to verify

that all polynomials in Gd differ from each other.

The algebraic variety of Jd consists of all rank-one Frobenius-norm-one order-d tensors as

desired, and its convex hull yields the tensor nuclear norm ball.

Theorem 4.21. The set Gd forms the reduced Gröbner basis of the ideal Jd with respect to the

grevlex order.

Proof of Theorem 4.21. Again, we use Buchberger’s criterion stated in Theorem B.11. First

notice that the polynomials gd and f
(α,β)
d are always relatively prime, since LM(gd) = x2

11...1 and

LM(f
(α,β)
d ) = xαxβ for (α,β) ∈ T M,S

d , where S ∈ S [d] and M ∈ PS . Therefore, we need to

show that S(f1, f2) →Gd 0, for all f1, f2 ∈ Gd\{gd} with f1 6= f2. To this end, we analyze the

division algorithm on 〈Gd〉.
Let f1, f2 ∈ Gd with f1 6= f2. Then it holds LM(f1) 6= LM(f2). If these leading monomials

are not relatively prime, the S-polynomial is of the form

S(f1, f2) = xα1xα2xα3 − xᾱ1xᾱ2xᾱ3

with
{
α1
k, α

2
k, α

3
k

}
=
{
ᾱ1
k, ᾱ

2
k, ᾱ

3
k

}
for all k ∈ [d].

The step-by-step procedure of the division algorithm for our scenario is presented in Algo-

rithm 4.2. We will show that the algorithm eventually stops and that step 2) is feasible, i.e., that

there always exist k and ` such that line 7 of Algorithm 4.2 holds – provided that Si 6= 0. (In fact,

the purpose of the algorithm is to achieve the condition that in the ith iteration of the algorithm

α̂1,i
k ≤ α̂

2,i
k ≤ α̂

3,i
k , for all k ∈ [d].) This will show then that S(f1, f2)→Gd 0.

Before passing to the general proof, we illustrate the division algorithm on an example for

d = 4. The experienced reader may skip this example.

Let f1(x) := f
(1212,2123)
4 (x) = −x1112x2223 + x1212x2123 ∈ G4 (with the corresponding sets

S = {1, 2, 3, 4}, M = {2}) and f2(x) := f
(3311,2123)
4 (x) = −x2111x3323 + x3311x2123 ∈ G4

(with the corresponding sets S = {1, 2, 3, 4}, M = {1, 2}). We will show that S(f1, f2) =

−x1112x2223x3311 + x1212x2111x3323 →G4
0 by going through the division algorithm.

In iteration i = 0 we set S0 = S(f1, f2) = −x1112x2223x3311 + x1212x2111x3323. The leading

monomial is LM(S0) = x1112x2223x3311, the leading coefficient is LC(S0) = −1, and the non-

leading monomial is NLM(S0) = x1212x2111x3323. Among the two options for choosing a pair of

indexes (α1,0,α2,0) in step 2), we decide to take α1,0 = 1112 and α2,0 = 3311 which leads to

the set M0 = {4}. The polynomial xα1,0xα2,0 − xα1,0∧α2,0xα1,0∨α2,0 then equals the polynomial
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Algorithm 4.2. The division algorithm on the ideal 〈Gd〉.

1: Input: polynomials f1, f2 ∈ Gd
2: Set S0 = S(f1, f2) = xα1xα2xα3 − xᾱ1xᾱ2xᾱ3 , i = 0

3: while Si 6= 0 do

4: 1) Let LM(Si) = xα̂1,ixα̂2,ixα̂3,i and NLM(Si) =
∣∣Si − LT(Si)

∣∣
5: 2) Find indices α1,i,α2,i ∈ {α̂1,i, α̂2,i, α̂3,i} such that there exist

6: at least one k and at least one ` for which

7: α1,i
k < α2,i

k and α1,i
` > α2,i

` s.t. Mi :=
{
` ∈ [d] : α1,i

` > α2,i
`

}
∈ PS ,

8: where S :=
{
k ∈ [d] : α1,i

k 6= α2,i
k

}
9: and let α3,i be the remaining index in {α̂1,i, α̂2,i, α̂3,i}\{α1,i,α2,i}.
10: 3) Divide Si by f

(α1,i,α2,i)
d = xα1,ixα2,i − xα1,i∧α2,ixα1,i∨α2,i to obtain

11: Si = LC(Si)
[
xα3,i(−xα1,i∧α2,ixα1,i∨α2,i + xα1,ixα2,i)

12: +xα1,i∧α2,ixα1,i∨α2,ixα3,i −NLM(Si)
]
.

13: 4) Define

14: Si+1 := xα1,i∧α2,ixα1,i∨α2,ixα3,i −NLM(Si).

15: 5) i = i+ 1

16: end while

f
(1112,3311)
4 (x) = −x1111x3312 + x1112x3311 ∈ G4 and we can write

S0 = −1 ·
(
x2223 (−x1111x3312 + x1112x3311) + x1111x2223x3312 − x1212x2111x3323︸ ︷︷ ︸

= S1

)
.

The leading and non-leading monomials of S1 are LM(S1) = x1111x2223x3312 and NLM(S1) =

x1212x2111x3323, respectively, while LC(S1) = 1. The only option for a pair of indices as in line

7 of Algorithm 4.2 is α1,1 = 3312,α2,1 = 2223, so that the set M1 = {1, 2}. The divisor

xα1,1xα2,1 −xα1,1∧α2,1xα1,1∨α2,1 in the step 4) equals f
(3312,2223)
4 (x) = −x2212x3323 +x3312x2223 ∈

G4 and we obtain

S1 = 1 ·
(
x1111 (−x2212x3323 + x2223x3312) + x1111x2212x3323 − x1212x2111x3323︸ ︷︷ ︸

= S2

)
.

The index sets of the monomial xα1xα2xα3 = x1111x2212x3323 in S2 satisfy

α1
k ≤ α2

k ≤ α3
k for all k ∈ [4]

and therefore it is the non-leading monomial of S2, i.e., NLM(S2) = x1111x2212x3323. Thus,

LM(S2) = x1212x2111x3323 and LC(S2(f1, f2)) = −1. Now the only option for a pair of indices as

in step 2) is α1,2 = 2111, α2,2 = 1212 with M2 = {1}. This yields

S2 = −1 ·
(
x3323 (−x1111x2212 + x2111x1212) + x1111x2212x3323 − x1111x2212x3323︸ ︷︷ ︸

= S3 = 0

)
.

Thus, the division algorithm stops and we obtained after three steps

S(f1, f2) = S0 = LC(S0)x2223f
(1112,3311)
4 (x) + LC(S0) LC(S1)x1111f

(3312,2223)
4 (x)

+ LC(S0) LC(S1) LC(S2)x3323f
(2111,1212)
4 (x).
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Thus, S(f1, f2)→G4
0.

Let us now return to the general proof. We first show that there always exist indices α1,i,α2,i

satisfying line 7 of Algorithm 4.2 unless Si = 0. We start by setting xαi = xα̂1,ixα̂2,ixα̂3,i with

xα̂1,i ≥ xα̂2,i ≥ xα̂3,i to be the leading monomial and xβi to be the non-leading monomial of Si.

The existence of a polynomial h ∈ Gd such that LM(h) divides LM(Si) = xα̂1,ixα̂2,ixα̂3,i = xαi

is equivalent to the existence of α1,i,α2,i ∈
{
α̂1,i, α̂2,i, α̂3,i

}
such that there exists at least one k

and at least one ` for which α1,i
k < α2,i

k and α1,i
` > α2,i

` . If such pair does not exist in iteration i,

we have

α̂1,i
k ≤ α̂

2,i
k ≤ α̂

3,i
k for all k ∈ [d] . (4.11)

We claim that this cannot happen if Si 6= 0. In fact, (4.11) would imply that the monomial

xαi = xα̂1,ixα̂2,ixα̂3,i is the smallest monomial xβxγxη (with respect to the grevlex order) which

satisfies

{βk, γk, ηk} = {α̂1,i
k , α̂2,i

k , α̂3,i
k } for all k ∈ [d] .

However, then xαi would not be the leading monomial by definition of the grevlex order, which

leads to a contradiction. Hence, we can always find indices α1,i,α2,i satisfying line 7 in step 2) of

Algorithm 4.2 unless Si = 0.

Next we show that the division algorithm always stops in a finite number of steps. We

start with iteration i = 0 and assume that S0 6= 0. We choose α1,0,α2,0,α3,0 as in step 2) of

Algorithm 4.2. Then we divide the polynomial S0 by a polynomial h ∈ Gd such that LM(h) =

xα1,0xα2,0 . The polynomial h ∈ Gd is defined as in step 3) of the algorithm, i.e.,

h(x) = f
(α1,0,α2,0)
d = xα1,0xα2,0 − xα1,0∧α2,0xα1,0∨α2,0 ∈ Gd.

The division of S0 by h results in

S0 = LC(S0)
(
xα3,0 · f(α1,0,α2,0)

d + xα1,0∧α2,0xα1,0∨α2,0xα3,0 −NLM(S0)︸ ︷︷ ︸
= S1

)
.

Note that by construction[
α1,0 ∧α2,0

]
k
≤
[
α1,0 ∨α2,0

]
k

for all k ∈ [d] . (4.12)

If S1 6= 0, then in the following iteration i = 1 we can assume LM(S1) = xα1,0∧α2,0xα1,0∧α2,0xα3,0 .

Due to (4.12), a pair α1,1,α2,1 as in line 7 of Algorithm 4.2 can be either α1,0 ∧ α2,0,α3,0 or

α1,0 ∨α2,0,α3,0. Let us assume the former. Then this iteration results in

S1 = LC(S1)
(
xα3,1 · f(α1,1,α2,1)

d + xα1,1∧α2,1xα1,1∨α2,1xα3,1 −NLM(S0)︸ ︷︷ ︸
= S2

)
with [

α1,1 ∧α2,1
]
k
≤
[
α3,1

]
k
,
[
α1,1 ∨α2,1

]
k

for all k ∈ [d] , and xα3,1 = xα1,0∨α2,0 .

Next, if S2 6= 0 and LM(S2) = xα1,1∧α2,1xα1,1∨α2,1xα3,1 then a pair of indices satisfying line 7 of

Algorithm 4.2 must be α1,1 ∨α2,1,α3,1 so that the iteration ends up with

S2 = LC(S2)
(
xα3,2 · f(α1,2,α2,2)

d + xα1,2∧α2,2xα1,2∨α2,2xα3,2 −NLM(S0)︸ ︷︷ ︸
= S3

)
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such that[
α3,2

]
k
≤
[
α1,2 ∧α2,2

]
k
≤
[
α1,2 ∨α2,2

]
k

for all k ∈ [d] , and xα3,2 = xα1,1∧α2,1 .

Thus, in iteration i = 3 the leading monomial LM(S3) must be NLM(S0) (unless S3 = 0).

A similar analysis can be performed on the monomial NLM(S0) and therefore the algorithm

stops after at most 6 iterations. The division algorithm results in

S(f1, f2) =

p∑
i=0

 i∏
j=0

LC(Sj)

xα3,i · f(α1,i,α2,i)
d ,

where f
(α1,i,α2,i)
d = −xα1,i∧α2,ixα1,i∨α2,i + xα1,ixα2,i ∈ Gd and p ≤ 5. All the cases that we left

out above are treated in a similar way. This shows that Gd is a Gröbner basis of Jd.
In order to show that Gd is the reduced Gröbner basis of Jd, first notice that LC(g) = 1 for all

g ∈ Gd. Furthermore, the leading term of any polynomial in Gd is of degree two. Thus, it is enough

to show that for every pair of different polynomials f
(α1,β1)
d , f

(α2,β2)
d ∈ Gd (related to S1,M1

and S2,M2, respectively) it holds that LM(f
(α1,β1)
d ) 6= LM(f

(α2,β2)
d ) with (αk,βk) ∈ T Sk,Mk

d

for k = 1, 2. But this follows from the fact that all elements of Gd are different as remarked before

the statement of the theorem. �

We define the tensor θk-norm analogously to the matrix scenario.

Definition 4.22. The tensor θk-norm, denoted by ‖·‖θk , is the norm induced by the k-theta body

THk (Jd), i.e.,

‖X‖θk = inf {r : X ∈ rTHk (Jd)} .

The θk-norm can be computed with the help of Theorem 4.5, i.e., as

‖X‖θk = min t subject to X ∈ tQBk(JMmn).

Given the moment matrix MBk [y] associated with J , this minimization program is equivalent to

the semidefinite program

min
t∈R,y∈RBk

t subject to MBk [y] < 0, y0 = t,yB1 = X. (4.13)

We have focused on the polynomial ideal generated by all second order minors of all matriciza-

tions of the tensor. One may also consider a subset of all possible matricizations corresponding to

various tensor decompositions and notions of tensor rank. For example, the Tucker(HOSVD)-rank

(corresponding to the Tucker or HOSVD decomposition) of a dth-order tensor X is a d-dimensional

vector rHOSVD = (r1, r2, . . . , rd) such that ri = rank
(
X{i}

)
for all i ∈ [d], see Subsection 2.1.4.

Thus, we can define an ideal Jd,HOSVD generated by all second order minors of unfoldings X{k},

for k ∈ [d].

The tensor train (TT) decomposition is another popular approach for tensor computations

[125]. The corresponding TT-rank of a dth-order tensor X is a (d− 1)-dimensional vector rTT =

(r1, r2, . . . , rd−1) such that ri = rank
(
X{1,...,i}

)
, i ∈ [d− 1]. By taking into account only minors

of order two of the matricizations τ ∈ {{1}, {1, 2}, . . . , {1, 2, . . . , d− 1}}, one may introduce a

corresponding polynomial ideal Jd,TT.

Theorem 4.23. The polynomial ideals Jd, Jd,HOSVD, and Jd,TT are equal, for all d ≥ 3.
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Proof. Let τ ⊂ [d] represents a matricization and let ∆ := {(α,β) : αi, βi ∈ [ni] , for all i ∈ [d]}.
Similarly to the case of order-three tensors, for (α,β), with xατxβτ we denote the monomial where

ατ
k = αk, βτ

k = βk for all k ∈ τ and ατ
` = β`, β

τ
` = α` for all ` ∈ τ c = [d] \τ . Additionally, for

(α,β) ∈ ∆, with xατ,0xβτ,0 we denote the monomial where ατ ,0
k = αk, βτ ,0

k = βk for all k ∈ τ
and ατ ,0

` = βτ ,0
` = 0 for all ` ∈ τ c = [d] \τ . The corresponding order-two minors are defined as

fτ(α,β)(x) = −xαxβ + xατxβτ , (α,β) ∈ T τ .

We define the set T τ as

T τ =
{

(α,β) ∈∆ : ατ ,0 6= βτ ,0, ατc,0 6= βτc,0
}
.

Similarly to the case of order-three tensors, notice that fτ(α,β)(x) = fτ(β,α)(x) = −fτ(ατ ,βτ )(x) =

−fτ(βτ ,ατ )(x), for all (α,β) ∈ T τ . First, we show that Jd = Jd,HOSVD by showing that fτ(α,β)(x) ∈
Jd,HOSVD, for all (α,β) ∈ T τ and all |τ | ≥ 2. Without loss of generality, we can assume that αi 6=
βi, for all i ∈ τ since otherwise we can consider the matricization τ\ {i : αi = βi}. Additionally,

by definition of T τ , there exists at least one ` ∈ τ c such that α` 6= β`. Let τ = {t1, t2, . . . , tk}
with ti < ti+1, for all i ∈ [k − 1] and k ≥ 2. Next, fix (α,β) ∈ T τ and define α0 = α and β0 = β.

Algorithm 4.3 results in polynomials gk ∈ J3,TT such that fτ(α,β)(x) =
∑k
i=1 gi(x). This is clear,

since
k∑
i=1

gi =

k∑
i=1

(
−xαi−1xβi−1 + xαixβi

)
= −xα0xβ0 + xαkxβk = fτ(α,β)(x).

By the definition of polynomials gk it is obvious that gi ∈
{
f
{i}
(α,β)(x) : (α,β) ∈ T {i}

}
, for all

i ∈ [k]. Next, we show that Jd = Jd,TT. Since Jd = Jd,HOSVD, it is enough to show that

Algorithm 4.3. Algorithm for proving that Jd = Jd,TT

1: Input: An ideal Jd,TT ∈ R [x], polynomial fτ(α,β)(x)

2: with α0 = α, β0 = β, τ = {t1, t2, . . . , tk}, where k ≥ 2

3: for i = 1 : k

4: Define αi and βi as

5: αij :=

{
βi−1
j if j = ti,

αi−1
j otherwise

and βij :=

{
αi−1
j if j = ti,

βi−1
j otherwise.

6: Define polynomial gi(x) := −xαi−1xβi−1 + xαixβi .

7: end for

8: Output: Polynomials g1, g2, . . . , gk.

f
{k}
(α,β) ∈ Jd,TT, for all (α,β) ∈ T {k} and all k ∈ [d]. By definition of Jd,TT this is true for

k = 1. Fix k ∈ {2, 3, . . . , d}, (α,β) ∈ T {k} and consider a polynomial f(x) = f
{k}
(α,β)(x) corre-

sponding to the second order minor of the matricization X{k}. By definition of T {k}, αk 6= βk

and there exists an index i ∈ [d] \{k} such that αi 6= βi. Assume that i > k. Define the poly-

nomials g(x) ∈ R{1,2,...,k} :=
{
f
{1,2,...,k}
(α,β) (x) : (α,β) ∈ T {1,2,...,k}

}
and h(x) ∈ R{1,2,...,k−1} :={

f
{1,2,...,k−1}
(α,β) (x) : (α,β) ∈ T {1,2,...,k−1}

}
as

g(x) = −xαxβ + xα{1,2,...,k}xβ{1,2,...,k}

h(x) = −xα{1,2,...,k}xβ{1,2,...,k} + x
α{1,2,...,k}{1,2,...,k−1}x

β{1,2,...,k}
{1,2,...,k−1}
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Since x
α{1,2,...,k}{1,2,...,k−1}x

β{1,2,...,k}
{1,2,...,k−1} = xα{k}xβ{k} , we obtained that f(x) = g(x) + h(x)

and thus f ∈ Jd,TT. For the other case, i.e., when i < k notice that f(x) = g1(x) + h1(x), where

g1(x) = −xαxβ + xα{1,2,...,k−1}xβ{1,2,...,k−1} ∈R{1,2,...,k−1}

h1(x) = −xα{1,2,...,k−1}xβ{1,2,...,k−1} + x
α{1,2,...,k−1}{1,2,...,k}xβ{1,2,...,k−1}{1,2,...,k}

= −xα{1,2,...,k}xβ{1,2,...,k} + xα{k}xβ{k} ∈R{1,2,...,k}.

�

Remark 4.24. Fix a decomposition tree TI which generates a particular HT-decomposition and

consider the ideal Jd,HT,TI generated by all second order minors corresponding to the matricizations

induced by the tree TI . In a similar way as above, one can obtain that Jd,HT,TI equals to Jd.

4.4. Computational complexity

The computational complexity of the semidefinite programs for computing the tensor θ1-norm

or for minimizing the θ1-norm subject to a linear constraint depends polynomially on the number

of variables, i.e., on the size of B2, and on the dimension of the corresponding moment matrix M.

We claim that the overall complexity scales polynomially in nd, where for simplicity we consider

dth-order tensors in Rn×n×···×n. Therefore, in contrast to the tensor nuclear norm minimization

which is NP-hard in general for d ≥ 3, the tensor recovery via θ1-norm minimization is tractable.

Indeed, the dimension of the moment matrix M is (1 + nd) × (1 + nd) (see also (4.7) for

matrices in R2×2) and if a = nd denotes the total number of entries of a tensor X ∈ Rn×n×···×n,

then the number of the variables is at most a·(a+1)
2 ∼ O(a2) which is polynomial in a. (A more

precise counting does not give a substantially better estimate.)

Symmetric tensors. We may reduce the complexity of our semidefinite program by reducing

to tensors possessing symmetries. Of course, in practice this requires additional information

about the tensors to be recovered. For example, let us consider the case of dth-order symmetric-

tensors, i.e., tensors X ∈ Rn×n×···×n such that Xα1α2...αd = Xσ(α1)σ(α2)···σ(αd) for all the possible

permutations σ : {α1, α2, . . . , αd} → {α1, α2, . . . , αd}. In this scenario, the size of the semidefinite

program for computing the θ1-norm is (a+ 1)× (a+ 1), where

a =

(
n+ d− 1

d

)
≤
(
e
n+ d− 1

d

)d
= ed

(
1 +

n− 1

d

)d
.

The above inequality uses the general estimate
(
p
q

)
≤ (ep/q)q, see Lemma A.1. The number of

variables in the corresponding semidefinite program for computing the θ1-norm equals the number

of monomials xαxα̂ such that α1 ≤ α2 ≤ . . . ≤ αd ≤ α̂1 ≤ . . . ≤ α̂d, excluding the monomial

x2
11...1 = LM(gd), which is (

n+ 2d− 1

2d

)
− 1 ≤ e2d

(
1 +

n− 1

2d

)2d

.

We leave the study of low-rank symmetric tensor recovery via θk-minimization to the future

investigation.
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4.5. Numerical experiments

Let us now empirically study the performance of low-rank tensor recovery via θ1-norm min-

imization via numerical experiments, where we concentrate on third-order tensors. Given the

measurements b = A(X) of a low-rank tensor X ∈ Rn1×n2×n3 , where A : Rn1×n2×n3 → Rm is a

linear measurement map, we aim at reconstructing X as the solution of the minimization program

min ‖Z‖θ1 subject to A(Z) = b. (4.14)

As outlined in Section 4.1, the θ1-norm of a tensor Z can be computed as the minimizer of the

semidefinite program

min
t,y

t subject to M(t,y,Z) < 0,

where M(t,y,X) = MB1(t,X,y) is the moment matrix of order 1 associated to the ideal J3, see

Theorem 4.17. This moment matrix for J3 is explicitly given by

M (t,y,X) = tM0 +

n1∑
i=1

n2∑
j=1

n3∑
k=1

XijkMijk +

9∑
p=2

|Mp|∑
q=1

y`M
p
hp(q),

where ` =
∑p−1
r=2 |Mr| + q, Mp = {Mp

Ĩ
}, and the matrices M0,Mijk and Mp

Ĩ
are provided

in Table 4.3. For p ∈ {2, 3, . . . , 9}, the function hp denotes an arbitrary but fixed bijection

{1, 2, . . . , |Mp|} 7→ {(i, î, j, ĵ, k, k̂)}, where Ĩ = (i, î, j, ĵ, k, k̂) is in the range of the last column of

Table 4.3. As discussed in Section 4.1 for the general case, the θ1-norm minimization problem

(4.14) is then equivalent to the semidefinite program

min
t,y,Z

t subject to M (t,y,Z) � 0 and A(Z) = b. (4.15)

For our experiments, the linear mapping is defined as (A (X))k = 〈X,Ak〉, k ∈ [m], with in-

dependent Gaussian random tensors Ak ∈ Rn1×n2×n3 . That is, all entries of Ak are independent

N
(
0, 1

m

)
random variables. We choose the rank-one tensors X ∈ Rn1×n2×n3 as X = u ⊗ v ⊗w,

where each entry of the vectors u, v and w is taken independently from the normal distribution

N (0, 1). The rank-two tensors X ∈ Rn1×n2×n3 are generated as the sum of two random rank-one

tensors. With A and X given, we compute b = A(X), run the semidefinite program (4.15) and

compare its minimizer with the original low-rank tensor X. For a given set of parameters (namely,

dimensions n1, n2, n3, number of measurements m, and rank r), we repeat this experiment 200

times and record the empirical success rate of recovering the original tensor, where we say that

recovery is successful if the element-wise reconstruction error is at most 10−6. We use MAT-

LAB (R2008b) for these numerical experiments, including SeDuMi 1.3 for solving the semidefinite

programs.

Table 4.4 summarizes the results of our numerical tests for cubic and non-cubic rank-one

and rank-two tensors and several choices of the dimensions. Here, the number mmax denotes the

maximal number of measurements for which not even one out of 200 generated tensors is recovered

and mmin denotes the minimal number of measurements for which all 200 tensors are recovered.

The fifth column in Table 4.4 represents the number of independent measurements which are

always sufficient for the recovery of a tensor of an arbitrary rank. For illustration, we present the

average cpu time (in seconds) for solving the semidefinite programs via SeDuMi 1.3 in the last
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θ-basis position (p, q) in the matrix Mpq Range of Ĩ = (i, î, j, ĵ, k, k̂)

M0 1 (1, 1) , (2, 2) 1
Mijk xijk (1, f(i, j, k)) 1 i ∈ [n1] , j ∈ [n2] , k ∈ [n3]
M2

Ĩ
x2
ijk (2, 2) −1

(f(i, j, k), f(i, j, k)) 1 {i ∈ [n1] , j ∈ [n2] , k ∈ [n3]}
\ {i = j = k = 1}

M3
Ĩ

xiĵkxijk̂ (f(i, j, k), f(i, ĵ, k̂)), (f(i, j, k̂), f(i, ĵ, k)) 1 i ∈ [n1] , j < ĵ, k < k̂

M4
Ĩ

xijkxîĵk̂ (f(i, j, k), f (̂i, ĵ, k̂)), (f(i, ĵ, k), f (̂i, j, k̂)) 1

(f(i, ĵ, k̂), f (̂i, j, k)), (f(i, j, k̂), f (̂i, ĵ, k)) 1 i < î, j < ĵ, k < k̂

M5
Ĩ

xijkxîjk̂ (f(i, j, k), f (̂i, j, k̂)), (f(i, j, k̂), f (̂i, j, k)) 1 i < î, j ∈ [n2] , k < k̂

M6
Ĩ

xijkxîĵk (f(i, j, k), f (̂i, ĵ, k)), (f(i, ĵ, k), f (̂i, j, k)) 1 i < î, j < ĵ, k ∈ [n3]

M7
Ĩ

xîjkxijk (f(i, j, k), f (̂i, j, k)) 1 i < î, j ∈ [n2] , k ∈ [n3]

M8
Ĩ

xiĵkxijk (f(i, j, k), f(i, ĵ, k)) 1 i ∈ [n1] , j < ĵ, k ∈ [n3]

M9
Ĩ

xijk̂xijk (f(i, j, k), f(i, j, k̂)) 1 i ∈ [n1] , j ∈ [n2] , k < k̂

Table 4.3. The matrices involved in the definition of the moment matrix
M (t,y,X). Due to the symmetry only the upper triangle part of the ma-
trices is specified. The other non-specified entries of the matrices M ∈
R(n1n2n3+1)×(n1n2n3+1) from the first column are equal to zero. The matrix M
corresponds to the element g + J3 of the θ-basis specified in the second column.

The index Ĩ = (i, î, j, ĵ, k, k̂) is in the range of the last column. The function
f : N3 → N is defined as f (i, j, k) = (i− 1)n2n3 + (j − 1)n3 + k + 1.

column. We remark that no attempt of accelerating the optimization algorithm has been made.

This task is left for future research.

n1 × n2 × n3 rank mmax mmin n1n2n3 cpu(sec)

2× 2× 3 1 4 12 12 0.1976
3× 3× 3 1 6 19 27 0.3705
3× 4× 5 1 11 30 60 6.6600
4× 4× 4 1 11 32 64 7.2818
4× 5× 6 1 18 42 120 129.4804
5× 5× 5 1 18 43 125 138.9040

3× 4× 5 2 27 56 60 7.5494
4× 4× 4 2 26 56 64 8.6525
4× 5× 6 2 41 85 120 192.5787

Table 4.4. Numerical results for low-rank tensor recovery in Rn1×n2×n3 .

Except for very small tensor dimensions, we can always recover rank-one (or rank-two) tensors

from a number of measurements which is significantly smaller than the dimension of the corre-

sponding tensor space. Therefore, low-rank tensor recovery via θ1-minimization seems to be a

promising approach. Of course, it remains to investigate the recovery performance theoretically.

We remark that we have used standard MATLAB packages for convex optimization to obtain

the numerical experiments. To obtain better performance, new optimization methods should be

developed specifically to solve our optimization problem, or more generally, to solve the sum-

of-squares polynomial problems. We expect this to be possible and the resulting algorithms to

give much better performance results since we have shown that in the matrix scenario all theta
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norms correspond to the matrix nuclear norm. The state-of-the-art algorithms developed for the

matrix scenario can compute the matrix nuclear norm and can solve the matrix nuclear norm

minimization problem for matrices of large dimensions. The theory developed in this chapter

together with the first numerical results should encourage the development into this direction.
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CHAPTER 5

Tensor Iterative Hard Thresholding Algorithm

In this chapter we introduce an iterative approach to low-rank tensor recovery from a small

number of linear measurements. In particular, we introduce and analyze several versions of the

iterative hard thresholding algorithm (IHT) adapted to tensor formats – namely, to higher order

singular value decomposition (HOSVD), tensor train (TT) decomposition, and hierarchical Tucker

(HT) decomposition. We provide a partial convergence result for these algorithms based on the

assumption that the measurement map satisfies a variant of the restricted isometry property

(tensor RIP or TRIP) – similarly to compressive sensing and low-rank matrix recovery. That is,

we show that if the measurement map satisfies the TRIP and if the thresholding operator satisfies

an additional condition which can not be guaranteed in advance, the TIHT algorithm converges

linearly. Since different tensor decompositions induce different notions of tensor rank, the notion of

TRIP has to be adapted to the tensor decomposition at hand. Next, we show that partial Fourier

maps combined with random sign flips of tensor entries and subgaussian measurement ensembles

satisfy TRIP with high probability. Furthermore, for subgaussian measurement ensembles this is

true under almost optimal bounds on the number of measurements (optimal up to the log factors)

depending on the tensor format. Lastly, we present numerical experiments for low-HOSVD-rank

third order tensor recovery with partial Fourier measurements combined with random sign flips of

tensor entries, Gaussian measurement ensembles, and tensor completion via tensor IHT algorithms.

The tensor IHT (TIHT) algorithm – similarly to the IHT for compressive sensing and IHT for

low-rank matrix recovery – consists of the following two steps. Given measurements y = A (X),

one starts with an initial tensor X0 (usually X0 = 0), and iteratively computes (for j = 1, 2, . . .)

Yj = Xj + µjA∗
(
y −A

(
Xj
))
,

Xj+1 = Hr

(
Yj
)
.

The parameter µj is a suitable stepsize parameter and Hr (Z) returns a rank-r approximation of

a tensor Z within the given tensor format obtained via successive SVDs (see Subsection 2.1.5).

Recall that in every step of the iterative hard thresholding algorithm for compressive sensing and

low-rank matrix recovery, one computes the best s-sparse and the best rank-r approximation of a

given vector and a given matrix, respectively. This fact is exploited to prove the convergence of

the IHT algorithms. Unfortunately, obtaining the best rank-r approximation of a given tensor is

in general NP-hard – regardless of the choice of tensor decomposition, see [81, 82]. Nevertheless,

Hr computes a quasi-best approximation in the sense that

‖Z−Hr(Z)‖F ≤ C(d) ‖Z− ZBEST‖F with C(d) = O(
√
d), (5.1)

and ZBEST denotes the best rank-r approximation of Z, see Theorem 2.6 for the exact bound for

each of the tensor decompositions.
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As already mentioned, our analyses of the TIHT algorithms build on the assumption that

the linear operator A satisfies a variant of the restricted isometry property adapted to the tensor

decomposition at hand (HOSVD, TT, or HT decomposition). Our analyses require additionally

that at each iteration it holds∥∥Yj −Xj+1
∥∥
F
≤ (1 + ε)

∥∥Yj −Xr

∥∥
F
, (5.2)

where ε is a small non-negative number close to 0 and Xr is the best rank-r approximation to X

– the tensor to be recovered (satisfying y = A(X)), see Theorem 5.4 for details. In particular, if

X is exactly of rank r, then Xr = X. Unfortunately, (5.1) only guarantees that∥∥Yj −Xj+1
∥∥
F
≤ C(d)

∥∥∥Yj −Yj
BEST

∥∥∥
F
≤ C(d)

∥∥Yj −Xr

∥∥
F
.

Since C(d) = O(
√
d) regardless of the tensor format we consider here, the condition (5.2) cannot be

guaranteed a priori. However, our numerical experiments indicate that usually a much better low-

rank approximation to Yj is computed than the one guaranteed in (5.1). Removing the assumption

(5.2) as well as computing efficiently a better rank-r approximation than Hr

(
Yj
)

seems to be

a very difficult, if not impossible, task. As discussed in Chapter 3, there are no completely

rigorous results for tensor recovery via efficient algorithms that work for a near optimal number

of measurements. However, TIHT algorithm is easy to implement and fast, and additionally, our

TRIP bounds give some hints on what the optimal number of measurements – depending on the

tensor format – should be.

Another contribution consists in an analysis of TRIP related to the tensor formats HOSVD,

TT, and HT for random measurement maps – namely, partial Fourier maps combined with the

random sign flips of tensor entries and subgaussian maps. In particular, we show that subgaussian

linear mapsA : Rn1×n2×···×nd → Rm satisfy TRIP at rank r and level δr with probability exceeding

1− ε provided that

m ≥ C1δ
−2
r max

{(
rd + dnr

)
log (d) , log

(
ε−1
)}
, for HOSVD,

m ≥ C2δ
−2
r max

{(
(d− 1)r3 + dnr

)
log (dr) , log

(
ε−1
)}
, for TT and HT,

where C1, C2 > 0 are universal constants, n = max {ni : i ∈ [d]}, r = max {rt : t ∈ TI}, and TI

is the corresponding dimensional tree. Up to the logarithmic factors, these bounds match the

number of degrees of freedom of a rank-r tensor in the particular format, and therefore are almost

optimal. For linear maps A : Cn1×n2×···×nd → Cm that are constructed by composing random sign

flips of the tensor entries with a d-dimensional Fourier transform followed by random subsampling

we provide a similar result, see Theorem 5.11 for details.

The following results can be found in our paper [131].

5.1. Analysis of iterative hard thresholding

We now pass to our iterative hard thresholding algorithms. For each tensor format (HOSVD,

TT, and HT format), we let Hr be a corresponding low-rank projection operator as described

previously. Given measurements y = A(X) of a low-rank tensor X, or y = A(X) + e if the

measurements are noisy, the iterative thresholding algorithm starts with an initial guess X0 (often

74



CHAPTER 5. 5.1. ANALYSIS OF ITERATIVE HARD THRESHOLDING

X0 = 0) and performs the iterations

Yj = Xj + µjA∗
(
y −A

(
Xj
))
,

Xj+1 = Hr(Y
j).

We analyze two variants of the algorithm which only differ by the choice of the step lengths µj .

• Classical TIHT (CTIHT) uses simply µj = 1, see [10] and Subsection 1.1.1 for the

sparse recovery variant and [85] and Subsection 1.2.1 for low-rank matrix recovery variant.

• Normalized TIHT (NTIHT) uses

µj =

∥∥Mj
(
A∗
(
y −A

(
Xj
)))∥∥2

F

‖A (Mj (A∗ (y −A (Xj))))‖22
, (5.3)

see [11] and Subsection 1.1.1 for the sparse vector and [152] and Subsection 1.2.1 for the matrix

variant.

Here, the operator Mj : Rn1×n2×···×nd → Rn1×n2×···×nd depends on the choice of the tensor

format and is computed via projections onto spaced spanned by left singular vectors of several

matricizations of the current iterate Xj . This choice of µj is motivated by the fact that in the

sparse vector recovery scenario, the corresponding choice of the step length maximally decreases

the residual if the support set does not change in this iteration, see discussion after Theorem 1.21

and [11].

Let us describe the operator Mj : Rn1×n2×···×nd → Rn1×n2×···×nd appearing in (5.3). For

the sake of illustration we first specify it for the matrix case, i.e. when d = 2. Let Pj
U1

and Pj
U2

be the projectors onto the top r left and right singular vector spaces of Xj , respectively. Then

Mj(Z) = Pj
U1

ZPj
U2

for a matrix Z so that (5.3) yields

µj =

∥∥∥Pj
U1
A∗
(
y −A

(
Xj
))

Pj
U2

∥∥∥2

F∥∥∥A(Pj
U1
A∗ (y −A (Xj)) Pj

U2

)∥∥∥2

2

.

For the general tensor case, let Ui,j be the left singular vectors of the matricizations Xj{i},

Xj{1,...,i}, XjTI(i)
in case of HOSVD, TT, HT decomposition with the corresponding ordered

tree TI , respectively. The corresponding projection operators are given as Pj
Ui

:= Ûi,jÛ
∗
i,j , where

Ûi,j = Ui,j (:, [ri]), with ri = rTI(i) in the HT case. Then in the case of the HOSVD decomposition

we define

Mj (Z) = Z×1 Pj
U1
×2 Pj

U2
× · · · ×d Pj

Ud
. (5.4)

In order to define the operatorMj for the TT decomposition we use the k-mode product introduced

in Definition 2.1. The TT decomposition of a d-th order tensor Z can be written as

Z (i1, i2, . . . , id) = Z1(i1)Z2(i2) · · ·Zd(id)

= Zd ×1

(
Zd−1 ×1

(
· · · (Z2 ×1 Z1)

{1,2} · · ·
){1,2}){1,2}

((i1, i2, . . . , id−1), id) .

Then the operator Mj : Rn1×n2×···×nd → Rn1×n2×···×nd is defined as Mj (Z) = Tvec(Ẑ), where

Ẑ :=

Zd ×1 Pj
Ud−1

(
Zd−1 ×1 Pj

Ud−2

(
· · ·Pj

U2

(
Z2 ×1 Pj

U1
Z1

){1,2}
· · ·
){1,2}){1,2}{1,2}

75



5.1. ANALYSIS OF ITERATIVE HARD THRESHOLDING CHAPTER 5.

and Tvec (x) ∈ Rn1×n2×···×nd represents the tensorized version of a vector x. More precisely, the

operator Tvec transforms a vector x ∈ Rn1n2···nd into a dth order tensor X ∈ Rn1×n2×···×nd , i.e.,

Tvec(vec(X)) = X.

Using the general k-mode product, one can define the operator Mj for the general HT-

decomposition by applying the above procedure in an analogous way. In the normalized version

of the tensor iterative hard thresholding algorithm (NTIHT algorithm), one computes the pro-

jection operators Pj
Ui

in each iteration j. To accomplish this, the tensor decomposition has to

be computed one extra time in each iteration which makes one iteration of the NTIHT algorithm

substantially slower in comparison to the CTIHT algorithm. However, we are able to provide

better convergence results for the NTIHT than for the CTIHT algorithm.

Remark 5.1. For the normalized matrix iterative hard thresholding algorithm three different step-

sizes have been introduced – namely, µU
j :=

‖PjUA∗(y−A(Xj))‖2
F

‖A(PjUA∗(y−A(Xj)))‖2
2

, µV
j :=

‖A∗(y−A(Xj))PjV‖2F
‖A(A∗(y−A(Xj))PjV)‖2

2

,

and µUV
j :=

‖PjUA∗(y−A(Xj))PjV‖2F
‖A(PjUA∗(y−A(Xj))PjV)‖2

2

, where Pj
U and Pj

V denote the projection onto the left

and right singular spaces of Xj , respectively (see Subsection 1.2.1 for more details). They

were motivated by the following three search directions WU
j := Pj

UA∗
(
y −A

(
Xj
))

, WV
j :=

A∗
(
y −A

(
Xj
))

Pj
V, and WUV

j := Pj
UA∗

(
y −A

(
Xj
))

Pj
V. Notice that each of these three di-

rections result in a rank r matrix. However, to obtain the rank r tensor, we need to consider all

projections Pj
Uk

in (5.4). As it will be seen later, the fact that Mj returns a rank r tensor is

also used in the proof of partial convergence for the NTIHT algorithm to provide bounds for µj .

Consequently, we consider only the stepsize µj defined in (5.3).

The available analysis of the IHT algorithm for recovery of sparse vectors [10] and low-rank

matrices [85] is based on the restricted isometry property (RIP). Therefore, we start by introducing

an analog for tensors, which we call the tensor restricted isometry property (TRIP). Since different

tensor decomposition induce different notions of tensor rank, they also induce different notions of

the TRIP.

Definition 5.2 (TRIP). Let A : Rn1×n2×···×nd → Rm be a measurement map. Then for a fixed

tensor decomposition and a corresponding rank tuple r, the tensor restricted isometry constant δr

of A is the smallest quantity such that

(1− δr) ‖X‖2F ≤ ‖A (X)‖22 ≤ (1 + δr) ‖X‖2F
holds for all tensors X ∈ Rn1×n2×···×nd of rank at most r.

We say that A satisfies the TRIP at rank r if δr is bounded by a sufficiently small constant

between 0 and 1. When referring to a particular tensor decomposition we use the notions HOSVD-

TRIP, TT-TRIP, and HT-TRIP.

The following theorem shows that TRIP is a sufficient condition for low-rank tensor recovery.

It is an analogue of Theorem 1.4 for compressive sensing and Theorem 1.25 for low-rank matrix

recovery.

Theorem 5.3. Let A : Rn1×n2×···×nd → Rm be a linear map that satisfies TRIP at rank 2r and

level δ2r < 1. Let X0 ∈ Rn1×n2×···×nd be a rank-r tensor and let y := A (X0). Then X0 is the

only rank-r tensor satisfying A (X) = y.
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Proof. We prove the theorem by contradiction. Thus, assume that there exists a rank r tensor

X, X 6= X0 satisfying A (X) = y. Then Z := X0−X ∈ ker (A) \{0} and rank (Z) ≤ 2r. But then

0 = ‖A (Z)‖22 ≥ (1− δ2r) ‖Z‖2F > 0

which is a contradiction. �

Under the TRIP of the measurement operator A, we prove partial convergence results for the

two versions of the TIHT algorithm. Depending on some number a ∈ (0, 1), the operator norm

and the restricted isometry constants of A, and on the version of TIHT, we define

δ(a) =

{
a
4 for CTIHT,
a
a+8 for NTIHT,

ε(a) =


a2

17(1+
√

1+δ3r‖A‖2→2)
2 for CTIHT,

a2(1−δ3r)2

17(1−δ3r+
√

1+δ3r‖A‖2→2)
2 for NTIHT,

(5.5)

b(a) =

{
2
√

1 + δ3r +
√

4ε(a) + 2ε(a)2 ‖A‖2→2 for CTIHT,

2
√

1+δ3r
1−δ3r +

√
4ε(a) + 2ε(a)2 1

1−δ3r ‖A‖2→2 for NTIHT.
(5.6)

Theorem 5.4. For a ∈ (0, 1), let A : Rn1×n2×···×nd → Rm satisfy TRIP (for a fixed tensor

format) with

δ3r < δ(a)

and let X ∈ Rn1×n2×···×nd be a tensor of rank at most r. Given measurements y = A (X), the

sequence (Xj)j produced by CTIHT or NTIHT converges to X if∥∥Yj −Xj+1
∥∥
F
≤ (1 + ε(a))

∥∥Yj −X
∥∥
F

for all j = 1, 2, . . . . (5.7)

If the measurements are noisy, y = A (X) + e for some e ∈ Rm, and if (5.7) holds, then∥∥Xj+1 −X
∥∥
F
≤ aj

∥∥X0 −X
∥∥
F

+
b(a)

1− a ‖e‖2 for all j = 1, 2, . . . . (5.8)

Consequently, if e 6= 0 then after at most j∗ := dlog1/a

(∥∥X0 −X
∥∥
F
/ ‖e‖2

)
e iterations, Xj∗+1

estimates X with accuracy ∥∥∥Xj∗+1 −X
∥∥∥
F
≤ 1− a+ b(a)

1− a ‖e‖2 . (5.9)

Remark 5.5. (a) The unpleasant part of the theorem is that condition (5.7) cannot be

checked. It is implied by the stronger condition∥∥Yj −Xj+1
∥∥
F
≤ (1 + ε(a))

∥∥∥Yj −Yj
BEST

∥∥∥
F
,

where Yj
BEST is the best rank-r approximation of Yj , since the best approximation

Yj
BEST is by definition a better rank-r approximation to Yj than X. Due to Theorem

2.6 we can only guarantee that this condition holds with (1+ε(a)) replaced by C(d) �
√
d,

but the proof of the theorem only works for (1+ε(a)). In fact, ε(a) is close to 0 as ‖A‖2→2

scales like
√
n1 · n2 · · ·nd/m for reasonable measurement maps with δ3r < 1, see below.

However, the approximation guarantees for Hr are only worst case estimates and one

may expect that usually much better approximations are computed that satisfy (5.7),

which only requires a comparison of the computed approximation error of the Frobenius
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distance of Yj to X rather than to Yj
BEST. In fact, during the initial iterations one

is usually still far from the original tensor X so that (5.7) will hold. In any case, the

algorithms work in practice so that the theorem may explain why this is the case.

(b) The corresponding theorem [152] (see also Theorem 1.43) for the matrix recovery case

applies also to approximately low-rank matrices – not only to exactly low rank matrices

– and provides approximation guarantees also for this case. This is in principle also con-

tained in our theorem by splitting X = XBEST + Xc into the best rank-r approximation

and a remainder term Xc, and writing

y = A(X) + e = A(XBEST) +A(Xc) + e = A(XBEST) + ẽ,

where ẽ = A(Xc)+e. Then the theorem may be applied to ẽ instead of e and (5.9) gives

the error estimate∥∥∥Xj∗+1 −XBEST

∥∥∥
F
≤ 1− a+ b(a)

1− a ‖A(Xc) + e‖2.

In the matrix case, the right hand side can be further estimated by a sum of three terms

(exploiting the restricted isometry property), one of them being the nuclear norm of Xc,

i.e., the error of best rank-r approximation in the nuclear norm, see Theorem 1.44. In the

tensor case, a similar estimate is problematic, in particular, the analogue of the nuclear

norm approximation error is unclear.

(c) In [130] local convergence of a class of algorithms including iterative hard thresholding

has been shown. That is, once an iterate Xj is close enough to the original X then

convergence is guaranteed. (The theorem in [130] requires Hr to be a retraction on the

manifold of rank-r tensors which is in fact true [99, 145].) Unfortunately, the distance to

X which ensures local convergence depends on the curvature at X of the manifold of rank-

r tensors and is therefore unknown a-priori. Nevertheless, together with Theorem 5.4, we

conclude that the initial iterations decrease the distance to the original X (if the initial

distance is large enough), and if the iterates become sufficiently close to X, then we

are guaranteed convergence. The theoretical question remains about the “intermediate

phase”, i.e., whether the iterates always do come close enough to X at some point.

(d) In [78], Hedge, Indyk, and Schmidt find a way to deal with approximate projections

onto model sets satisfying a relation like ‖Z−Hr(Z)‖F ≤ Cd ‖Z− ZBEST‖F within

iterative hard thresholding algorithms by working with a second approximate projection

H̃r satisfying a head approximation guarantee of the form ‖H̃r(X)‖F ≥ c‖X‖F for some

constant c > 0. Unfortunately, we were only able to find such head approximations

for the tensor formats at hand with constants c that scale unfavorably with r and the

dimensions n1, . . . , nd, so that in the end one arrives only at trivial estimates for the

minimal number of required measurements.

Proof of Theorem 5.4. We proceed similar to the corresponding proofs for the sparse vector

and matrix recovery case, see Theorem 1.17 and Theorem 1.41, respectively. The fact that (5.7)

only holds with an additional ε = ε(a) requires extra care.

It follows from assumption (5.7) that

(1 + ε)
2 ∥∥Yj −X

∥∥2

F
≥
∥∥Yj −Xj+1

∥∥2

F
=
∥∥Yj −X + X−Xj+1

∥∥2

F
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=
∥∥Yj −X

∥∥2

F
+
∥∥X−Xj+1

∥∥2

F
+ 2

〈
Yj −X,X−Xj+1

〉
.

Subtracting
∥∥Yj −X

∥∥2

F
and using Yj = Xj − µjA∗

(
A
(
Xj
)
− y

)
= Xj − µjA∗A

(
Xj −X

)
+

µjA∗e gives∥∥Xj+1 −X
∥∥2

F
≤ 2

〈
Yj −X,Xj+1 −X

〉
+
(
2ε+ ε2

) ∥∥Yj −X
∥∥2

F

= 2
〈
Xj −X,Xj+1 −X

〉
− 2µj

〈
A∗A

(
Xj −X

)
,Xj+1 −X

〉
+ 2µj

〈
A∗e,Xj+1 −X

〉
+
(
2ε+ ε2

) ∥∥Yj −X
∥∥2

F

= 2
〈
Xj −X,Xj+1 −X

〉
− 2µj

〈
A
(
Xj −X

)
,A
(
Xj+1 −X

)〉
+ 2µj

〈
e,A

(
Xj+1 −X

)〉
+
(
2ε+ ε2

) ∥∥Yj −X
∥∥2

F

≤ 2
〈
Xj −X,Xj+1 −X

〉
− 2µj

〈
A
(
Xj −X

)
,A
(
Xj+1 −X

)〉
+ 2µj

√
1 + δ3r

∥∥Xj+1 −X
∥∥
F
‖e‖2 +

(
2ε+ ε2

) ∥∥Yj −X
∥∥2

F
, (5.10)

where the last inequality is valid since rank
(
Xj+1 −X

)
≤ 2r ≤ 3r so that〈

e,A
(
Xj+1 −X

)〉
≤
∥∥A (Xj+1 −X

)∥∥
2
‖e‖2 ≤

√
1 + δ3r

∥∥Xj+1 −X
∥∥
F
‖e‖2 .

Now let U j be the subspace of Rn1×n2×···×nd spanned by the tensors X, Xj , and Xj+1

and denote by Qj : Rn1×n2×···×nd → U j the orthogonal projection onto U j . Then Qj (X) =

X, Qj
(
Xj
)

= Xj , and Qj
(
Xj+1

)
= Xj+1. Clearly, the rank of Qj (Y) is at most 3r for all

Y ∈ Rn1×n2×···×nd . Further, we define the operator AjQ : Rn1×n2×···×nd → Rn1×n2×···×nd by

AjQ (Z) = A
(
Qj (Z)

)
for Z ∈ Rn1×n2×···×nd .

With these notions the estimate (5.10) is continued as∥∥Xj+1 −X
∥∥2

F
≤ 2

〈
Xj −X,Xj+1 −X

〉
− 2µj

〈
AjQ

(
Xj −X

)
,AjQ

(
Xj+1 −X

)〉
+ 2µj

√
1 + δ3r

∥∥Xj+1 −X
∥∥
F
‖e‖2 +

(
2ε+ ε2

) ∥∥Yj −X
∥∥2

F

= 2
〈
Xj −X,

(
Xj+1 −X

)
− µjAj∗QA

j
Q

(
Xj+1 −X

)〉
+ 2µj

√
1 + δ3r

∥∥Xj+1 −X
∥∥
F
‖e‖2 +

(
2ε+ ε2

) ∥∥Yj −X
∥∥2

F

= 2
〈
Xj −X,

(
I− µjAj∗QA

j
Q

) (
Xj+1 −X

)〉
+ 2µj

√
1 + δ3r

∥∥Xj+1 −X
∥∥
F
‖e‖2 +

(
2ε+ ε2

) ∥∥Yj −X
∥∥2

F

≤ 2
∥∥∥I− µjAj∗QAjQ∥∥∥

2→2

∥∥Xj −X
∥∥
F

∥∥Xj+1 −X
∥∥
F

+ 2µj
√

1 + δ3r
∥∥Xj+1 −X

∥∥
F
‖e‖2 +

(
2ε+ ε2

) ∥∥Yj −X
∥∥2

F
. (5.11)

The last term can be bounded by∥∥Yj −X
∥∥
F

=
∥∥Xj − µjA∗A

(
Xj −X

)
+ µjA∗e−X

∥∥
F

=
∥∥(Xj −X

)
− µjA∗A

(
Xj −X

)
+ µjA∗e

∥∥
F

=
∥∥(I− µjA∗A)

(
Xj −X

)
+ µjA∗e

∥∥
F

=
∥∥∥(I− µjA∗AjQ

) (
Xj −X

)
+ µjA∗e

∥∥∥
F

≤
∥∥∥I− µjA∗AjQ∥∥∥

2→2

∥∥Xj −X
∥∥
F

+ µj ‖A∗e‖F

≤
(

1 + µj ‖A‖2→2

∥∥∥AjQ∥∥∥
2→2

)∥∥Xj −X
∥∥
F

+ µj ‖A‖2→2 ‖e‖2
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≤
(

1 + µj
√

1 + δ3r ‖A‖2→2

)∥∥Xj −X
∥∥
F

+ µj ‖A‖2→2 ‖e‖2 . (5.12)

Using that (u+ v)
2 ≤ 2

(
u2 + v2

)
for all u, v ∈ R, we obtain the estimate∥∥Yj −X

∥∥2

F
≤ 2

(
1 + µj

√
1 + δ3r ‖A‖2→2

)2 ∥∥Xj −X
∥∥2

F
+ 2µ2

j ‖A‖22→2 ‖e‖
2
2 . (5.13)

Combining inequalities (5.11) and (5.13) yields∥∥Xj+1 −X
∥∥2

F
≤ 2

∥∥∥I− µjAj∗QAjQ∥∥∥
2→2

∥∥Xj −X
∥∥
F

∥∥Xj+1 −X
∥∥
F

+ 2µj
√

1 + δ3r
∥∥Xj+1 −X

∥∥
F
‖e‖2 + 2

(
2ε+ ε2

) (
1 + µj

√
1 + δ3r ‖A‖2→2

)2 ∥∥Xj −X
∥∥2

F

+ 2
(
2ε+ ε2

)
µ2
j ‖A‖22→2 ‖e‖

2
2 .

This implies that there exist α, β, γ ∈ [0, 1] such that α+ β + γ ≤ 1 and

(1− α− β − γ)
∥∥Xj+1 −X

∥∥2

F
≤ 2

∥∥∥I− µjAj∗QAjQ∥∥∥
2→2

∥∥Xj −X
∥∥
F

∥∥Xj+1 −X
∥∥
F

(5.14)

α
∥∥Xj+1 −X

∥∥2

F
≤ 2µj

√
1 + δ3r

∥∥Xj+1 −X
∥∥
F
‖e‖2 (5.15)

β
∥∥Xj+1 −X

∥∥2

F
≤ 2

(
2ε+ ε2

) (
1 + µj

√
1 + δ3r ‖A‖2→2

)2 ∥∥Xj −X
∥∥2

F
, (5.16)

γ
∥∥Xj+1 −X

∥∥2

F
≤ 2

(
2ε+ ε2

)
µ2
j ‖A‖22→2 ‖e‖

2
2 . (5.17)

Canceling one power of
∥∥Xj+1 −X

∥∥
F

in inequalities (5.14) and (5.15), taking the square root of

the inequalities (5.16) and (5.17), and summation of all resulting inequalities yields∥∥Xj+1 −X
∥∥
F

≤ f (β, γ)
(

2
∥∥∥I− µjAj∗QAjQ∥∥∥

2→2
+
√

4ε+ 2ε2
(

1 + µj
√

1 + δ3r ‖A‖2→2

))∥∥Xj −X
∥∥
F

+ f (β, γ)
(

2µj
√

1 + δ3r +
√

4ε+ 2ε2µj ‖A‖2→2

)
‖e‖2 (5.18)

with f (β, γ) = (1 − β +
√
β − γ +

√
γ)−1. Notice that f is positive and strictly less than 1 on

[0, 1]× [0, 1] and will therefore be omitted in the following.

Let us now specialize to CTIHT where µj = 1. Since AjQ is the restriction of A to the space

U j which contains only tensors of rank at most 3r, we have (with I denoting the identity operator

on U j)

‖I− µjAj∗QA
j
Q‖2→2 = ‖I− Aj∗QA

j
Q‖2→2 = sup

X∈Uj :‖X‖F=1

|‖X‖2F − ‖A(X)‖22|

≤ sup
X:rank(X)≤3r,‖X‖F=1

|‖X‖2F − ‖A(X)‖22| = δ3r.

Plugging µj = 1 and above estimate into (5.18) yields∥∥Xj+1 −X
∥∥
F
≤
(

2
∥∥∥I−Aj∗QAjQ∥∥∥

2→2
+
√

4ε+ 2ε2
(

1 +
√

1 + δ3r ‖A‖2→2

))∥∥Xj −X
∥∥
F

+
(

2
√

1 + δ3r +
√

4ε+ 2ε2 ‖A‖2→2

)
‖e‖2

≤
(

2δ3r +
√

4ε+ 2ε2
(

1 +
√

1 + δ3r ‖A‖2→2

))∥∥Xj −X
∥∥
F

+
(

2
√

1 + δ3r +
√

4ε+ 2ε2 ‖A‖2→2

)
‖e‖2 .
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Setting κ := 1 +
√

1 + δ3r‖A‖2→2 > 1, the bound δ3r ≤ a/4 with a < 1 and the definition of

ε = ε(a) in (5.5) yield

2δ3r +
√

4ε+ 2ε2
(

1 +
√

1 + δ3r ‖A‖2→2

)
≤ a

2
+

√
4a2

17κ2
+

2a4

172κ4
κ ≤ a

(
1

2
+

√
4

17
+

2

172

)
< a.

Thus, with the definition (5.6) of b = b(a) for CTIHT we obtain∥∥Xj+1 −X
∥∥
F
≤ a

∥∥Xj −X
∥∥
F

+ b ‖e‖2 .

Iterating this inequality leads to (5.8), which implies a recovery accuracy of
∥∥Xj+1 −X

∥∥
F
≤

1−a+b
1−a ‖e‖2 if aj

∥∥X0 −X
∥∥
F
≤ ‖e‖2. Hence, if e 6= 0 then after j∗ := dlog1/a

(∥∥X0 −X
∥∥
F
/ ‖e‖2

)
e

iterations, (5.9) holds.

Let us now consider the variant NTIHT. Since the image of the operator Mj is contained in

the set of rank-r tensors, the tensor restricted isometry property yields

1

1 + δr
≤ µj =

∥∥Mj
(
A∗
(
y −A

(
Xj
)))∥∥2

F

‖A (Mj (A∗ (y −A (Xj))))‖22
≤ 1

1− δr
. (5.19)

Since Qj maps onto rank-3r tensors, the TRIP implies that every eigenvalue of Aj∗QA
j
Q is contained

in the interval [1 − δ3r, 1 + δ3r]. Therefore, every eigenvalue of I − µjAj∗QA
j
Q is contained in

[1− 1+δ3r
1−δr , 1−

1−δ3r
1+δr

]. The magnitude of the lower end point is greater than that of the upper end

point, giving the operator norm bound∥∥∥I− µjAj∗QAjQ∥∥∥
2→2
≤ 1 + δ3r

1− δr
− 1 ≤ 1 + δ3r

1− δ3r
− 1.

Hence, plugging the upper bound on µj in (5.19) and the above inequality into (5.18) leads to∥∥Xj+1 −X
∥∥
F
≤
(

2
∥∥∥I− µjAj∗QAjQ∥∥∥

2→2
+
√

4ε+ 2ε2
(

1 + µj
√

1 + δ3r ‖A‖2→2

))∥∥Xj −X
∥∥
F

+
(

2µj
√

1 + δ3r +
√

4ε+ 2ε2µj ‖A‖2→2

)
‖e‖2

≤
(

2

(
1 + δ3r
1− δ3r

− 1

)
+
√

4ε+ 2ε2

(
1 +

√
1 + δ3r

1− δ3r
‖A‖2→2

))∥∥Xj −X
∥∥
F

+

(
2

√
1 + δ3r

1− δ3r
+

√
4ε+ 2ε2

1− δ3r
‖A‖2→2

)
‖e‖2 .

Setting ν := 1 +
√

1+δ3r
1−δ3r ‖A‖2→2 ≥ 1, using δ3r ≤ a/(a+ 8) and the definition (5.5) of ε = ε(a) =

a2/(17ν2), gives

2

(
1 + δ3r
1− δ3r

− 1

)
+
√

4ε+ 2ε2

(
1 +

√
1 + δ3r

1− δ3r
‖A‖2→2

)
≤ a

2
+ ν

√
4a2

17ν2
+

2a2

172ν4
< a

so that with the definition of b(a) in (5.6) we arrive at∥∥Xj+1 −X
∥∥
F
≤ a

∥∥Xj −X
∥∥
F

+ b(a) ‖e‖2 .

The proof is concluded in the same way as for CTIHT. �

Remark 5.6. For the noiseless scenario where ‖e‖2 = 0, one may work with a slightly improved

definition of ε(a). In fact, (5.12) implies then∥∥Yj −X
∥∥
F
≤
(

1 + µj
√

1 + δ3r ‖A‖2→2

)∥∥Xj −X
∥∥
F
.
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Following the proof in the same way as above, one finds that the constant 17 in the definition

(5.5) of ε(a) can be improved to 9.

5.2. Tensor RIP

Now that we have shown a (partial) convergence result for the TIHT algorithm based on

TRIP, the question arises which measurement maps satisfy TRIP under suitable conditions on the

number of measurements in terms of the rank r, the order d and the dimensions n1, . . . , nd. As

common in compressive sensing and low-rank matrix recovery, we study this question for random

measurement maps. We concentrate first on subgaussian measurement maps and consider maps

based on partial random Fourier transform afterwards.

A random variable X is called L-subgaussian if there exists a constant L > 0 such that

E [exp (tX)] ≤ exp
(
L2t2/2

)
holds for all t ∈ R. We call A : Rn1×n2×···×nd → Rm an L-subgaussian measurement ensemble

if all elements of A, interpreted as a tensor in Rn1×n2×···×nd×m, are independent mean-zero,

variance one, L-subgaussian variables. Gaussian and Bernoulli random measurement ensembles

where the entries are standard normal distributed random variables and Rademacher ±1 variables

(i.e., taking the values +1 and −1 with equal probability), respectively, are special cases of 1-

subgaussian measurement ensembles.

Theorem 5.7. Fix one of the tensor formats HOSVD, TT, HT (with decomposition tree TI). For

δ, ε ∈ (0, 1), a random draw of an L-subgaussian measurement ensemble A : Rn1×n2×···×nd → Rm

satisfies δr ≤ δ with probability at least 1− ε provided that

HOSVD: m ≥ C1δ
−2 max

{(
rd + dnr

)
log (d) , log

(
ε−1
)}
,

TT & HT: m ≥ C2δ
−2 max

{(
(d− 1)r3 + dnr

)
log (dr) , log

(
ε−1
)}
,

where n = max {ni : i ∈ [d]}, r = max {rt : t ∈ TI}. The constants C1, C2, C3 > 0 only depend on

the subgaussian parameter L.

One may generalize the above theorem to situations where it is no longer required that all

entries of the tensor A are independent, but only that the sensing tensors Ai ∈ Rn1×n2×···×nd ,

i = 1, . . . ,m, are independent. We refer to [48] for details, in particular to Corollary 5.4 and

Example 5.8. Furthermore, we note that the term dnr in all bounds for m may be refined to∑d
i=1 niri.

The proof of Theorem 5.7 uses ε-nets and covering numbers, see Subsection A.3 and [163] for

more background on this topic. To recall the notation, an ε-net of the set X with respect to the

norm ‖·‖ is denoted by NX
ε . The covering number of X (at scale ε) is denoted by N (X , ‖·‖ , ε).

It is crucial for the proof of Theorem 5.7 to estimate the covering numbers of the set of unit

Frobenius norm rank-r tensors with respect to the different tensor formats. We start with the

HOSVD.

Lemma 5.8 (Covering numbers related to HOSVD). The covering numbers of

Sr =
{
X ∈ Rn1×n2×···×nd : rankHOSVD (X) ≤ r, ‖X‖F = 1

}
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with respect to the Frobenius norm satisfy

N (Sr, ‖·‖F , ε) ≤ (3 (d+ 1) /ε)
r1r2···rd+

∑d
i=1 niri . (5.20)

Proof. The proof follows a similar strategy as the one of [22, Lemma 3.1]. The HOSVD decom-

position X = S×1 U1×2 U2×· · ·×dUd of any X ∈ Sr obeys ‖S‖F = 1. Our argument constructs

an ε-net for Sr by covering the sets of matrices U1,U2, . . . ,Ud with orthonormal columns and

the set of unit Frobenius norm tensors S. For simplicity we assume that n1 = n2 = . . . = nd = n

and r1 = r2 = . . . = rd = r since the general case requires only a straightforward modification.

The set D of all-orthogonal d-th order tensors X ∈ Rr×r×···×r with unit Frobenius norm is

contained in F = {X ∈ Rr×r×···×r : ‖X‖F = 1}. Lemma A.8 therefore provides an ε/ (d+ 1)-net

NF
ε/(d+1) with respect to the Frobenius norm of cardinality

∣∣∣NF
ε/(d+1)

∣∣∣ ≤ (3 (d+ 1) /ε)
rd

. For

covering On,r = {U ∈ Rn×r : U∗U = I}, it is beneficial to use the norm ‖·‖1,2 defined as

‖V‖1,2 = max
i
‖V (:, i)‖2 ,

where V (:, i) denotes the i-th column of V. Since the elements of On,r have normed columns, it

holds On,r ⊂Qn,r =
{

V ∈ Rn×r : ‖V‖1,2 ≤ 1
}

. Lemma A.8 gives N
(
On,r, ‖·‖1,2 , ε/ (d+ 1)

)
≤

(3 (d+ 1) /ε)
nr

, i.e., there exists an ε/ (d+ 1)-net NOn,r

ε/(d+1) of this cardinality.

Then the set

NSr
ε :=

{
S×1 U1 ×2 U2 × · · · ×d Ud : S ∈ ND

ε/(d+1) and Ui ∈ NOn,r

ε/(d+1) for all i ∈ [d]
}
,

obeys∣∣NSr
ε

∣∣ ≤ N (D, ‖·‖F , ε/ (d+ 1))
[
N
(
On,r, ‖·‖1,2 , ε/ (d+ 1)

)]d
≤ (3 (d+ 1) /ε)

rd+dnr
.

It remains to show that NSr
ε is an ε-net for Sr, i.e., that for all X ∈ Sr there exists X ∈ NSr

ε with∥∥X−X
∥∥
F
≤ ε. To this end, we fix X ∈ Sr and decompose X as X = S×1 U1×2 U2×· · ·×dUd.

Then there exists X = S×1 U1 ×2 U2 × · · · ×d Ud ∈ NSr
ε with Ui ∈ NOn,r

ε/(d+1), for all i ∈ [d] and

S ∈ ND
ε/(d+1) obeying

∥∥Ui −Ui

∥∥
1,2
≤ ε/ (d+ 1), for all i ∈ [d] and

∥∥S− S
∥∥
F
≤ ε/ (d+ 1). This

gives ∥∥X−X
∥∥
F

=
∥∥S×1 U1 × · · · ×d Ud − S×1 U1 × · · · ×d Ud

∥∥
F

=
∥∥S×1 U1 ×2 U2 × · · · ×d Ud ± S×1 U1 ×U2 × · · · ×d−1 Ud−1 ×d Ud

± S×1 U1 ×2 U2 × · · · ×d−2 Ud−2 ×d−1 Ud−1 ×d Ud

± · · · ± S×1 U1 × · · · ×d Ud − S×1 U1 × · · · ×d Ud

∥∥
F

≤
∥∥S×1 U1 ×2 U2 × · · · ×d

(
Ud −Ud

)∥∥
F

+
∥∥S×1 U1 ×2 U2 × · · · ×d−1

(
Ud−1 −Ud−1

)
×d Ud

∥∥
F

+ · · · +
∥∥S×1

(
U1 −U1

)
×2 U2 × · · · ×d Ud

∥∥
F

+
∥∥(S− S

)
×1 U1 ×2 U2 × · · · ×d Ud

∥∥
F
. (5.21)

For the first d terms in the above estimation note that by unitarity
∑
ij

Uj (ij , kj) Uj (ij , lj) = δkj lj

and
∑
ij

Uj (ij , kj) Uj (ij , lj) = δkj lj , for all j ∈ [d], and
〈
Sij=kj ,Sij=lj

〉
= 0 for all j ∈ [d]

whenever kj 6= lj . Therefore, we obtain∥∥S×1 U1 ×2 U2 × · · · ×j−1 Uj−1 ×j
(
Uj −Uj

)
×j+1 Uj+1 × · · · ×d Ud

∥∥2

F
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=
∑

i1,...,id

[(
S×1 U1 ×2 U2 × · · · ×j−1 Uj−1 ×j

(
Uj −Uj

)
×j+1 Uj+1 × · · · ×d Ud

)
(i1, . . . , id)

]2
=

∑
i1,...,id

∑
k1,...,kd

∑
l1,...,ld

S (k1, . . . , kd) S (l1, . . . , ld) U1 (i1, k1) U1 (i1, l1) U2 (i2, k2) U2 (i2, l2)

· . . . ·
(
Uj −Uj

)
(ij , kj)

(
Uj −Uj

)
(ij , lj) · . . . ·Ud (id, kd) Ud (id, ld)

=
∑
ij

∑
k1,...,kd

∑
lj

S (k1, . . . , kj , . . . , kd) S (k1, . . . , lj , . . . , kd)
(
Uj −Uj

)
(ij , kj)

(
Uj −Uj

)
(ij , lj)

=
∑
ij

∑
k1,k2,...,kd

S (k1, k2, . . . , kd)
2 ((

Uj −Uj

)
(ij , kj)

)2 ≤ ∥∥Uj −Uj

∥∥2

1,2
‖S‖2F =

∥∥Uj −Uj

∥∥2

1,2

≤ (ε/ (d+ 1))
2
.

In order to bound the last term in (5.21), observe that the unitarity of the matrices Ui gives∥∥(S− S
)
×1 U1 × · · · ×d Ud

∥∥
F

=
∥∥S− S

∥∥
F
≤ ε/ (d+ 1) .

This completes the proof. �

B{1,2,3,4}

B{1,2}

U1 U2

B{3,4}

U3 U4

1

Figure 5.1. Tree for the HT-decomposition with d = 4

Next, we bound the covering numbers related to the HT decomposition, which includes the

TT decomposition as a special case.

Lemma 5.9 (Covering numbers related to HT-decomposition). For a given HT-tree TI , the

covering numbers of the set of unit norm, rank-r tensors

SHT
r =

{
X ∈ Rn1×n2×···×nd : rankHT (X) ≤ rHT, ‖X‖F = 1

}
satisfy

N
(
SHT

r , ‖·‖F , ε
)
≤
(
3(2d− 1)

√
r/ε
)∑

t∈I(TI) rtrt1rt2+
∑d
i=1 rini for 0 ≤ ε ≤ 1, (5.22)

where r = max {rt : t ∈ TI}, and t1, t2 are the left and the right son of a node t, respectively.

The proof requires a non-standard orthogonalization of the HT-decomposition. (The standard

orthogonalization leads to worse bounds, in both TT and HT case.) We say that a tensor Bt ∈
Crt×rt1×rt2 is right-orthogonal if

(
B
{2,3}
t

)T
B
{2,3}
t = Irt . We call an HT-decomposition right-

orthogonal if all transfer tensors Bt, for t ∈ I(TI)\{troot}, i.e. except for the root, are right

orthogonal and all frames Ui have orthogonal columns. For the sake of simple notation, we write

the right-orthogonal HT-decomposition of a tensor X ∈ Rn1×n2×n3×n4 with the corresponding
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HT-tree as in Figure 5.1 as

X = B{1,2,3,4} 5
(
B{1,2} 5U1 5U2

)
5
(
B{3,4} 5U3 5U4

)
. (5.23)

In fact, the above decomposition can be written as

X = B{1,2,3,4} 5
(
B{1,2} ×2 U1 ×3 U2

)
5
(
B{3,4} ×2 U3 ×3 U4

)
.

since Ui is a matrix for all i ∈ [4]. However, for simplicity, we are going to use the notation as

in (5.23). A right-orthogonal HT-decomposition can be obtained as follows from the standard

orthogonal HT-decomposition (see [70]), where in particular, all frames Ui have orthonormal

columns.

We first compute the QR-decomposition of the flattened transfer tensors B
{2,3}
t = Q

{2,3}
t Rt

for all nodes t at the highest possible level ` = p− 1. The level ` of the tree is defined as the set

of all nodes having the distance of exactly ` to the root. We denote the level ` of the tree TI as

T `I = {t ∈ TI : level(t) = `}. (For example, for tree TI as in Figure 5.1, T 0
I = {{1, 2, 3, 4}}, T 1

I =

{{1, 2}, {3, 4}}, T 2
I = {{1}, {2}, {3}, {4}}.) The Qt’s are then right-orthogonal by construction.

In order to obtain a representation of the same tensor, we have to replace the tensors Bt′ with

nodes at lower level p− 2 by B̄t′ = Bt′ ×2 Rtleft ×3 Rtright , where tleft corresponds to the left son

of t′ and tright to the right son. We continue by computing the QR-decompositions of B̄
{2,3}
t′ with

t′ at level p − 2 and so on until we finally updated the root B{1,2,...,d} (which may remain the

only non right-orthogonal transfer tensor). We illustrate this right-orthogonalization process for

an HT-decomposition of the form (5.23) related to the HT-tree of Figure 5.1:

X = B{1,2,3,4} 5
(
B{1,2} 5U1 5U2

)
5
(
B{3,4} 5U3 5U4

)
= B{1,2,3,4} 5

([
Q{1,2} ×1 R{1,2}

]
5U1 5U2

)
5
([

Q{3,4} ×1 R{3,4}
]
5U3 5U4

)
=
[
B{1,2,3,4} ×2 R{1,2} ×3 R{3,4}

]
5
(
Q{1,2} 5U1 5U2

)
5
(
Q{3,4} 5U3 5U4

)
.

The second identity is easily verified by writing out the expressions with index notation. The

last expression is a right-orthogonal HT decomposition with root tensor B{1,2,3,4} = B{1,2,3,4} ×2

R{1,2} ×3 R{3,4}.

Proof of Lemma 5.9. For the sake of better readability, we will show the result for the special

case of the order-4 HT-decomposition as in Figure 5.1 as well as for the special case of the TT

decomposition for arbitrary d. The general case is then done analogously.

For the HT-tree TI as in Figure 5.1 we have TI = {{1, 2, 3, 4}, {1, 2}, {1}, {2}, {3, 4}, {3}, {4}}
and the number of nodes is |TI | = 2d− 1 = 7. We have to show that for TI as in Figure 5.1, the

covering numbers of

SHT
r =

{
X ∈ Rn1×n2×···×nd : rankHT (X) ≤ rHT, ‖X‖F = 1

}
,

satisfy

N
(
SHT

r , ‖·‖F , ε
)
≤
(
21
√
r/ε
)r{1,2,3,4}r{1,2}r{3,4}+r{1,2}r1r2+r{3,4}r3r4+

∑4
i=1 rini for 0 ≤ ε ≤ 1.
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For simplicity, we treat the case that rt = r for all t ∈ TI and ni = n for i ∈ [4]. We will use the

right-orthogonal HT-decomposition introduced above and we cover the admissible components Ui

and Bt in (5.23) separately, for all t ∈ TI and i ∈ [4].

We introduce the set of right-orthogonal tensors Oright
r,r,r =

{
U ∈ Rr×r×r : U{2,3}

T
U{2,3} = Ir

}
which we will cover with respect to the norm

‖U‖F,1 := max
i
‖U (i, :, :)‖F .

The set Qright
r,r,r :=

{
X ∈ Rr×r×r : ‖X‖F,1 ≤ 1

}
contains Oright

r,r,r . Thus, by Lemma A.8 there is an

ε/ (7
√
r)-set NOright

r,r,r

ε/(7
√
r)

for Oright
r,r,r obeying∣∣∣∣NOright

r,r,r

ε/(7
√
r)

∣∣∣∣ ≤ (3 · 7√r/ε)r3 =
(
21
√
r/ε
)r3

.

For the frames Ui ∈ Rn×r with i ∈ [4], we define the set On,r =
{
U ∈ Rn×r : UTU = Ir

}
which

we cover with respect to

‖U‖1,2 := max
i
‖U (:, i)‖2 .

Clearly, On,r ⊆ Qn,r :=
{

X ∈ Rn×r : ‖X‖1,2 ≤ 1
}

since the elements of an orthonormal set are

unit normed. Again by Lemma A.8, there is an ε/ (7
√
r)-set NOn,r

ε/(7
√
r)

for On,r obeying∣∣∣∣NOn,r

ε/(7
√
r)

∣∣∣∣ ≤ (21
√
r/ε
)nr

.

Finally, to cover B{1,2,3,4}, we define the set Fr,r =
{
X ∈ R1×r×r : ‖X‖F = 1

}
which has an

ε/ (7
√
r)-net NFr,r

ε/(7
√
r)

of cardinality at most (21
√
r/ε)

r2
. We now define

NSHT
r

ε :=
{
B{1,2,3,4} 5

(
B{1,2} 5U1 5U2

)
5
(
B{3,4} 5U3 5U4

)
:

B{1,2},B{3,4} ∈ N
Oright
r,r,r

ε/(7
√
r)
,B{1,2,3,4} ∈ NFr,r

ε/(7
√
r)
,Ui ∈ NOn,r

ε/(7
√
r)

for all i ∈ [4]

}
and remark that

N
(
SHT

r , ‖·‖F , ε
)
≤
∣∣∣∣NOright

r,r,r

ε/(7
√
r)

∣∣∣∣2 ∣∣∣∣NOn,r

ε/(7
√
r)

∣∣∣∣4 ∣∣∣∣NFr,r

ε/(7
√
r)

∣∣∣∣ ≤ (21
√
r/ε
)3r3+4nr

.

It remains to show that for any X ∈ SHT
r there exists X ∈ NSHT

r
ε such that

∥∥X−X
∥∥
F
≤ 1.

For X = B{1,2,3,4} 5
(
B{1,2} 5U1 5U2

)
5
(
B{3,4} 5U3 5U4

)
, we choose X = B{1,2,3,4} 5(

B{1,2} 5U1 5U2

)
5
(
B{3,4} 5U3 5U4

)
∈ NSHT

r
ε such that B{1,2,3,4} ∈ Fr,r, B{1,2},B{3,4} ∈

Oright
r,r,r , Ui ∈ On,r for all i ∈ [4] and∥∥Ui −Ui

∥∥
1,2
≤ ε

7
√
r

for all i ∈ [4] ,∥∥B{1,2,3,4} −B{1,2,3,4}
∥∥
F
≤ ε

7
√
r
,∥∥B{1,2} −B{1,2}

∥∥
F,1
≤ ε

7
√
r
, and

∥∥B{3,4} −B{3,4}
∥∥
F,1
≤ ε

7
√
r
.

Applying the triangle inequality results in∥∥X−X
∥∥
F
≤
∥∥B{1,2,3,4} 5 (B{1,2} 5U1 5U2

)
5
(
B{3,4} 5U3 5

(
U4 −U4

))∥∥
F

(5.24)
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+
∥∥B{1,2,3,4} 5 (B{1,2} 5U1 5U2

)
5
(
B{3,4} 5

(
U3 −U3

)
5U4

)∥∥
F

+
∥∥B{1,2,3,4} 5 (B{1,2} 5U1 5U2

)
5
((

B{3,4} −B{3,4}
)
5U3 5U4

)∥∥
F

(5.25)

+ · · ·+
∥∥(B{1,2,3,4} −B{1,2,3,4}

)
5
(
B{1,2} 5U1 5U2

)
5
(
B{3,4} 5U3 5U4

)∥∥
F
.

(5.26)

To estimate (5.24), we use orthogonality of Ui, i ∈ [4], and the right-orthogonality of B{1,2},

B{3,4} to obtain∥∥B{1,2,3,4} 5 (B{1,2} 5U1 5U2

)
5
(
B{3,4} 5U3 5

(
U4 −U4

))∥∥2

F

=
∑

i1,...,i4

∑
j1,...,j4
k1,...,k4

∑
j12,
k12

∑
j34,
k34

B{1,2,3,4} (1, j12, j34) B{1,2,3,4} (1, k12, k34) B{1,2} (j12, j1, j2)

·B{1,2} (k12, k1, k2) U1 (i1, j1) U1 (i1, k1) U2 (i2, j2) U2 (i2, k2) B{3,4} (j34, j3, j4)

·B{3,4} (k34, k3, k4) U3 (i3, j3) U3 (i3, k3)
(
U4 −U4

)
(i4, j4)

(
U4 −U4

)
(i4, k4)

=
∑
i4

∑
j3,j4
k4

∑
j12

∑
j34,
k34

B{1,2,3,4} (1, j12, j34) B{1,2,3,4} (1, j12, k34) B{3,4} (j34, j3, j4) B{3,4} (k34, j3, k4)

·
(
U4 −U4

)
(i4, j4)

(
U4 −U4

)
(i4, k4) =

〈
∆U4,�B{3,4}

〉
≤ ‖∆U4‖2→2

∥∥�B{3,4}
∥∥
∗

where

∆U4 (j4, k4) =
∑
i4

(
U4 −U4

)
(i4, j4)

(
U4 −U4

)
(i4, k4) =

[
(U4 −U4)T (U4 −U4)

]
(j4, k4),

�B{3,4} (j4, k4) =
∑
j3

∑
j12

∑
j34,k34

B{1,2,3,4} (1, j12, j34) B{1,2,3,4} (1, j12, k34)

·B{3,4} (j34, j3, j4) B{3,4} (k34, j3, k4) .

Since the Frobenius norm dominates the spectral norm, we have

‖∆U4‖2→2 =
∥∥U4 −U4

∥∥2

2→2
≤
∥∥U4 −U4

∥∥2

F
≤ r

∥∥U4 −U4

∥∥2

1,2
.

Since �B{3,4} is symmetric and positive semidefinite, it holds

1 =
∥∥X∥∥2

F
=
〈
I,�B{3,4}

〉
= tr

(
�B{3,4}

)
=
∥∥�B{3,4}

∥∥
∗ .

Hence,∥∥B{1,2,3,4} 5 (B{1,2} 5U1 5U2

)
5
(
B{3,4} 5U3 5

(
U4 −U4

))∥∥
F
≤ √r

∥∥U4 −U4

∥∥
1,2
≤ ε

7
.

A similar procedure leads to the estimates∥∥B{1,2,3,4} 5 (B{1,2} 5 (U1 −U1

)
5U2

)
5
(
B{3,4} 5U3 5U4

)∥∥
F
≤ √r

∥∥U1 −U1

∥∥
1,2
≤ ε

7
,∥∥B{1,2,3,4} 5 (B{1,2} 5U1 5

(
U2 −U2

))
5
(
B{3,4} 5U3 5U4

)∥∥
F
≤ √r

∥∥U2 −U2

∥∥
1,2
≤ ε

7
,∥∥B{1,2,3,4} 5 (B{1,2} 5U1 5U2

)
5
(
B{3,4} 5

(
U3 −U3

)
5U4

)∥∥
F
≤ √r

∥∥U3 −U3

∥∥
1,2
≤ ε

7
.

Since Ui is orthogonal for all i ∈ [4] and B{1,2},B{3,4} are right-orthogonal, we similarly estimate

(5.25),∥∥B{1,2,3,4} 5 (B{1,2} 5U1 5U2

)
5
((

B{3,4} −B{3,4}
)
5U3 5U4

)∥∥2

F
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=
∑

i1,...,i4

∑
j1,...,j4
k1,...,k4

∑
j12,k12

∑
j34,k34

B{1,2,3,4} (1, j12, j34) B{1,2,3,4} (1, k12, k34) B{1,2} (j12, j1, j2)

·B{1,2} (k12, k1, k2) U1 (i1, j1) U1 (i1, k1) U2 (i2, j2) U2 (i2, k2)
(
B{3,4} −B{3,4}

)
(j34, j3, j4)

·
(
B{3,4} −B{3,4}

)
(k34, k3, k4) U3 (i3, j3) U3 (i3, k3) U4 (i4, j4) U4 (i4, k4)

=
∑
j3,j4

∑
j12

∑
j34,k34

B{1,2,3,4} (1, j12, j34) B{1,2,3,4} (1, j12, k34)
(
B{3,4} −B{3,4}

)
(j34, j3, j4)

·
(
B{3,4} −B{3,4}

)
(k34, j3, j4) =

〈
∆B{3,4},�B{1,2,3,4}

〉
≤
∥∥∆B{3,4}

∥∥
2→2

∥∥�B{1,2,3,4}
∥∥
∗

where

∆B{3,4} (j34, k34) =
∑
j3,j4

(
B{3,4} −B{3,4}

)
(j34, j3, j4)

(
B{3,4} −B{3,4}

)
(k34, j3, j4)

=

[(
B
{2,3}
{3,4} −B

{2,3}
{3,4}

)T (
B
{2,3}
{3,4} −B

{2,3}
{3,4}

)]
(j34, k34)

�B{1,2,3,4} (j34, k34) =
∑
j12

B{1,2,3,4} (1, j12, j34) B{1,2,3,4} (1, j12, k34) .

The spectral norm of ∆B{3,4} can be estimated as∥∥∆B{3,4}
∥∥

2→2
=
∥∥∥B{2,3}{3,4} −B

{2,3}
{3,4}

∥∥∥2

2→2
≤
∥∥B{3,4} −B{3,4}

∥∥2

F
≤ r

∥∥B{3,4} −B{3,4}
∥∥2

F,1
.

Since �B{1,2,3,4} is symmetric and positive semidefinite

1 =
∥∥X∥∥2

F
=
〈
I,�B{1,2,3,4}

〉
= tr

(
�B{1,2,3,4}

)
=
∥∥�B{1,2,3,4}

∥∥
∗ .

Hence, ∥∥B{1,2,3,4} 5 (B{1,2} 5U1 5U2

)
5
((

B{3,4} −B{3,4}
)
5U3 5U4

)∥∥
F

≤ √r
∥∥B{3,4} −B{3,4}

∥∥
F,1
≤ ε

7
.

A similar procedure leads to the following estimates∥∥(B{1,2,3,4} −B{1,2,3,4}
)
5
(
B{1,2} 5U1 5U2

)
5
(
B{3,4} 5U3 5U4

)∥∥
F

≤
∥∥B{1,2,3,4} −B{1,2,3,4}

∥∥
F
≤ ε

7
,∥∥B{1,2,3,4} 5 ((B{1,2} −B{1,2}

)
5U1 5U2

)
5
(
B{3,4} 5U3 5U4

)∥∥
F

≤ √r
∥∥B{1,2} −B{1,2}

∥∥
F,1
≤ ε

7
.

Plugging the bounds into (5.26) completes the proof for the HT-tree of Figure 5.1.

Let us now consider the TT-decomposition for tensors of order d ≥ 3 as illustrated in Fig-

ure 5.2. We start with a right-orthogonal decomposition (see also the discussion after Lemma 5.9)

of the form

X (i1, i2, . . . , id) =
∑

j1,j23...d

∑
j2,j3...d

· · ·
∑

jd−1,d,jd

B{1,2,...,d} (1, j1, j23...d) U1 (i1, j1)

·B{2,3,...,d} (j23...d, j2, j3...d) U2 (i2, j2) · · ·B{d−1,d} (jd−1,d, jd−1, jd)

·Ud−1 (id−1, jd−1) Ud (id, jd) .
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As for the general HT-decomposition, we write this as

X = B{1,2,3,...,d}OU1O
(
B{2,3,...,d}OU2O

(
· · ·O

(
B{d−1,d}OUd−1OUd

)
· · ·
))
. (5.27)

As above, we cover each set of admissible components Ui, Bt separately, and then combine these

Pictures

July 24, 2015

B{1,2,...,d}

U1 B{2,...,d}

U2 B{3,...,d}

U3 B{d−1,d}

Ud−1 Ud

1

Figure 5.2. TT decomposition

components in order to obtain a covering of

STT
r =

{
X ∈ Rn1×n2×···×nd : rankTT (X) ≤ rTT, ‖X‖F = 1

}
with respect to the Frobenius norm, that is, we form

NSTT
r

ε :=
{
B{1,2,3,...,d}OU1O

(
B{2,3,...,d}OU2O

(
· · ·O

(
B{d−1,d}OUd−1OUd

)
· · ·
))

:

Ui ∈ NOn,r

ε/((2d−1)
√
r)
,B{1,...,d} ∈ NFr,r

ε/((2d−1)
√
r)
,B{j,j+1,...,d} ∈ N

Oright
r,r,r

ε/((2d−1)
√
r)
,

i ∈ [d− 1], j = 2, . . . , d− 1} .

In order to show that NSTT
r

ε forms an ε-net of STT
r we choose an arbitrary X ∈ STT

r with right-

orthogonal decomposition of the form (5.27) and for each Ui and B{j,...,d} the closest corresponding

points Ui ∈ NOn,r

ε/((2d−1)
√
r)

, B{1,...,d} ∈ NFr,r

ε/((2d−1)
√
r)

, B{j,j+1,...,d} ∈ N
Oright
r,r,r

ε/((2d−1)
√
r)

, j = 2, . . . , d−1

resulting in X ∈ NSTT
r

ε . The triangle inequality yields∥∥X−X
∥∥
F
≤
∥∥B{1,2,...,d}OU1O

(
B{2,...,d}O · · ·

(
B{d−1,d}OUd−1O

(
Ud −Ud

))
· · ·
)∥∥
F

+
∥∥B{1,2,...,d}OU1O

(
B{2,...,d}O · · ·O

(
B{d−1,d}O

(
Ud−1 −Ud−1

)
OUd

)
· · ·
)∥∥
F

+ · · ·
+
∥∥(B{1,2,...,d} −B{1,2,...,d}

)
OU1O

(
B{2,...,d}O · · ·O

(
B{d−1,d}OUd−1OUd

)
· · ·
)∥∥
F
.

(5.28)

We need to bound terms of the form (for q ∈ [d] and p ∈ [d− 1])∥∥B{1,2,...,d}OU1O · · ·O
(
B{q,q+1,...,d}O

(
Uq −Uq

)
O
(
B{q+1,...,d}O · · ·OUd

)
· · ·
)∥∥
F
, (5.29)

and
∥∥B{1,2,...,d}OU1O · · ·OUp−1O

((
B{p,p+1,...,d} −B{p,p+1,...,d}

)
OUpO

(
· · ·OUd

)
· · ·
)∥∥
F
.

(5.30)

To estimate (5.29), we use orthogonality of Uq, Uq, q ∈ [d], and right-orthogonality of B{p,p+1...,d},

B{p,p+1,...,d}, p = 2, 3, . . . , d− 1, to obtain∥∥B{1,2,...,d}OU1O · · ·O
(
B{q,q+1,...,d}O

(
Uq −Uq

)
O
(
B{q+1,...,d}O · · ·OUd

)
· · ·
)∥∥2

F
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=
∑

i1,...,id

∑
j1,...,jd
k1,...,kd

∑
j23...d,
j3...d,
...,

jd−1,d

∑
k23...d,
k3...d,
...,

kd−1,d

B{1,2,...,d} (1, j1, j23...d) B{1,2,...,d} (1, k1, k23...d) U1 (i1, j1) U1 (i1, k1)

· · ·B{q,q+1,...,d} (jq,q+1...d, jq, jq+1...d) B{q,q+1,...,d} (kq,q+1...d, kq, kq+1...d)

·
(
Uq −Uq

)
(iq, jq)

(
Uq −Uq

)
(iq, kq) B{q+1,...,d} (jq+1...d, jq+1, jq+2...d)

·B{q+1,...,d} (kq+1...d, kq+1, kq+2...d) · · ·Ud (id, jd) Ud (id, kd)

=
∑
iq

∑
j1,...,jq
kq

∑
j23...d,
j3...d,...,
jq+1...d

∑
k23...d,
k3...d,...,
kq...d

B{1,2,...,d} (1, j1, j23...d) B{1,2,...,d} (1, j1, k23...d)

· · ·B{q,q+1,...,d} (jq,q+1...d, jq, jq+1...d) B{q,q+1,...,d} (kq,q+1...d, kq, jq+1...d)

·
(
Uq −Uq

)
(iq, jq)

(
Uq −Uq

)
(iq, kq)

=
〈
∆Uq,�B{q,q+1,...,d}

〉
≤ ‖∆Uq‖2→2

∥∥�B{q,q+1,...,d}
∥∥
∗ ,

where

∆Uq (jq, kq) =
∑
iq

(
Uq −Uq

)
(iq, jq)

(
Uq −Uq

)
(iq, kq) ,

�B{q,q+1,...,d} (jq, kq) =
∑

j1,...,jq−1

∑
j23...d,
j3...d,

...,jq+1,...,d

∑
k23...d,
k3...d,

...,kq,...,d

B{1,2,...,d} (1, j1, j23...d) B{1,2,...,d} (1, j1, k23...d)

· · ·B{q−1,q,...,d} (jq−1,q...d, jq−1, jq...d) B{q−1,q,...,d} (kq−1,q...d, jq−1, kq...d)

·B{q,q+1,...,d} (jq,q+1...d, jq, jq+1...d) B{q,q+1,...,d} (kq,q+1...d, kq, jq+1...d) .

We have

‖∆Uq‖2→2 = ‖Uq −Uq‖22→2 ≤
∥∥Uq −Uq

∥∥2

F
≤ r

∥∥Uq −Uq

∥∥2

1,2
.

Since �B{q,q+1,...,d} is symmetric and positive semidefinite

1 =
∥∥X∥∥2

F
=
〈
I,�B{q,q+1,...,d}

〉
= tr

(
�B{q,q+1,...,d}

)
=
∥∥�B{q,q+1,...,d}

∥∥
∗ .

Hence,∥∥B{1,2,...,d}OU1O · · ·O
(
B{q,q+1,...,d}O

(
Uq −Uq

)
O
(
B{q+1,...,d}O · · ·OUd

)
· · ·
)∥∥
F

≤ √r
∥∥Uq −Uq

∥∥
1,2
≤ ε

2d− 1
.

In a similar way, distinguishing the cases p = 1 and p = 2, . . . , d − 1, we estimate terms of the

form (5.30) as∥∥B{1,2,...,d}OU1O · · ·OUp−1O
((

B{p,p+1,...,d} −B{p,p+1,...,d}
)
OUpO

(
· · ·OUd

)
· · ·
)∥∥
F
≤ ε

2d− 1
.

Plugging the bounds into (5.28) completes the proof for the TT decomposition. �

The proof of Theorem 5.7 also requires a recent deviation bound [49, 95] for random variables

of the form X = supB∈B
∣∣∣‖Bξ‖22 − E ‖Bξ‖22

∣∣∣ in terms of a complexity parameter of the set of

matrices B involving covering numbers. In order to state it, we introduce the radii of a set of
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matrices B in the Frobenius norm, the operator norm, and the Schatten-4 norm as

dF (B) := sup
B∈B
‖B‖F , d2→2 (B) := sup

B∈B
‖B‖2→2 , d4 (B) := sup

B∈B
‖B‖S4

= sup
B∈B

(
tr
(
BTB

)2)1/4

.

The complexity parameter is Talagrand’s γ2-functional γ2 (B, ‖·‖2→2). We do not give the precise

definition here, but refer to [151] for details. For us, it is only important that it can be bounded

in terms of covering numbers via a Dudley type integral [53, 151] as

γ2 (B, ‖·‖2→2) ≤ C
∫ d2→2(B)

0

√
logN (B, ‖·‖2→2 , u)du. (5.31)

We will use the following result from [49, Theorem 6.5] which is a slightly refined version of the

main result of [95].

Theorem 5.10. Let B be a set of matrices, and let ξ be a random vector whose entries ξj are

independent, mean-zero, variance 1 and L-subgaussian random variables. Set

E = γ2 (B, ‖·‖2→2) (γ2 (B, ‖·‖2→2) + dF (B)) + dF (B) d2→2 (B)

V = d2
4 (B) , and U = d2

2→2 (B) .

Then, for t > 0,

P
(

sup
B∈B

∣∣∣‖Bξ‖22 − E ‖Bξ‖22
∣∣∣ ≥ c1E + t

)
≤ 2 exp

(
−c2 min

{
t2

V 2
,
t

U

})
.

The constants c1, c2 only depend on L.

Proof of Theorem 5.7. We write

A (X) = VXξ,

where ξ is an L-subgaussian random vector of length n1n2 · · ·ndm and VX is the m×n1n2 · · ·ndm
block-diagonal matrix

VX =
1√
m


xT 0 · · · 0

0 xT · · · 0
...

...
. . .

...

0 0 · · · xT

 ,
with x being the vectorized version of the tensor X. With this notation the restricted isometry

constant is given by

δr = sup
X∈T

∣∣‖VXξ‖22 − E‖VXξ‖22
∣∣ ,

where in the HOSVD case T = Sr = {X ∈ Rn1×n2×···×nd : rankHOSVD (X) ≤ r, ‖X‖F = 1}, and

T = SHT
r = {X ∈ Rn1×n2×···×nd : rankHT (X) ≤ r, ‖X‖F = 1} in the HT-case (including the TT

case). Theorem 5.10 provides a general probabilistic bound for expressions in the form of the

right hand side above in terms of the diameters dF (B), d2→2(B), and d4(B) of the set B :=

{VX : X ∈ T }, as well as in terms of Talagrand’s functional γ2(B, ‖·‖2→2). It is straightforward
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to see that dF (B) = 1, since ‖X‖F = 1, for all X ∈ T . Furthermore, for all X ∈ T ,

mVXVT
X =


xTx 0 · · · 0

0 xTx · · · 0
...

...
. . .

...

0 0 · · · xTx

 =


‖x‖22 0 · · · 0

0 ‖x‖22 · · · 0
...

...
. . .

...

0 0 · · · ‖x‖22

 = Im, (5.32)

so that ‖VX‖2→2 = 1√
m

and d2→2(B) = 1√
m

. (Since the operator norm of a block-diagonal matrix

is the maximum of the operator norm of its diagonal blocks we obtain

‖VX‖2→2 =
1√
m
‖x‖2 =

1√
m
‖X‖F .) (5.33)

From the cyclicity of the trace and (5.32) it follows that

‖VX‖4S4
= tr

[(
VT

XVX

)2]
= tr

[(
VXVT

X

)2]
= tr

[(
1

m
Im

)2
]

= tr

(
1

m2
Im

)
=

1

m
,

for all VX ∈ B. Thus, d2
4 (B) = supVX∈B ‖VX‖2S4

= 1√
m

. Using observation (5.33), the bound of

the γ2-functional via the Dudley type integral (5.31) yields

γ2 (B, ‖·‖2→2) ≤ C 1√
m

∫ 1

0

√
log (N (Sr, ‖·‖F , u)) du, (5.34)

where Sr is replaced by SHT
r in the HT case.

Let us first continue with the HOSVD case. Using the bound (5.20) for N (Sr, ‖·‖F , u) and

the triangle inequality we reach

γ2 (B, ‖·‖2→2) ≤ C 1√
m

∫ 1

0

√√√√(r1r2 · · · rd +

d∑
i=1

niri

)
log (3 (d+ 1) /u) du

= C

√
r1r2 · · · rd +

∑d
i=1 niri

m

∫ 1

0

√
log (d+ 1) + log (3/u) du

≤ C

√
r1r2 · · · rd +

∑d
i=1 niri

m

(√
log (d+ 1) +

∫ 1

0

√
log (3/u) du

)

≤ C̃

√√√√(r1r2 · · · rd +
∑d
i=1 niri

)
log (d)

m
≤ C̃

√
(rd + dnr) log(d)

m
, (5.35)

where r := max {ri : i ∈ [d]} and n := max {ni : i ∈ [d]}.
Let us now consider the HT case (including the TT case). Using the bound (5.34) of the γ2-

functional via Dudley type integral and the covering number bound (5.22) for N
(
SHT

r , ‖·‖F , u
)

,

we obtain

γ2 (B, ‖·‖2→2) ≤ C 1√
m

∫ 1

0

√
log
(
N
(
SHT

r , ‖·‖F , u
))

du

≤ C 1√
m

√√√√ ∑
t∈I(TI)

rtrt1rt2 +

d∑
i=1

rini ·
∫ 1

0

√
log
(
3(2d− 1)

√
r/u
)
du.

≤ C̃1

√√√√(∑t∈I(TI) rtrt1rt2 +
∑d
i=1 rini

)
log ((2d− 1)

√
r)

m
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≤ C̃1

√
((d− 1)r3 + dnr) log ((2d− 1)

√
r)

m
. (5.36)

In order to apply Theorem 5.10 we note that

E = γ2 (B, ‖·‖2→2) (γ2 (B, ‖·‖2→2) + dF (B)) + dF (B) d2→2 (B)

= γ2
2 (B, ‖·‖2→2) + γ2 (B, ‖·‖2→2) +

1√
m
,

V = d2
4 (B) =

1√
m
, U = d2

2→2 (B) =
1

m
.

The bound on m of Theorem 5.7 ensures that c1E ≤ δ/2 and that 2 exp
(
−c2 min

{
t2

V 2 ,
t
U

})
≤ ε

with t = δ/2 (provided constants are chosen appropriately). Therefore, the claim follows from

Theorem 5.10. �

5.3. Random Fourier measurements

While subgaussian measurements often provide benchmark guarantees in compressive sensing

and low-rank recovery in terms of the minimal number of required measurements, they lack of any

structure and therefore are of limited use in practice. In particular, no fast multiplication routines

are available for them. In order to overcome such limitations, structured random measurement

matrices have been studied in compressive sensing [28, 60, 96, 129] and low-rank matrix recovery

[23, 27, 58, 96] and almost optimal recovery guarantees have been shown.

In this section, we extend one particular construction of a randomized Fourier transform from

the matrix case [58, Section 1] to the tensor case. The measurement map

A : Cn1×n2×···×nd → Cm, A =
1√
m
RΩFdD

is the composition of a random sign flip map D : Cn1×n2×···×nd → Cn1×n2×···×nd defined com-

ponentwise as D(X) (j1, . . . , jd) = εj1,...,jdX (j1, . . . , jd) with the εj1,...,jd being independent ±1

Rademacher variables, a d-dimensional Fourier transform

Fd : Cn1×n2×···×nd → Cn1×n2×···×nd ,

Fd(X) (j1, . . . , jd) =

n1∑
k1=1

· · ·
nd∑
kd=1

X (k1, . . . , kd) e
−2πi

∑d
`=1

k`j`
n` ,

and a random subsampling operator RΩ : Cn1×n2×···×nd → CΩ = Cm, RΩ(X)j = X (j) for j ∈
Ω ⊂ [n1]×· · ·× [nd], where Ω is selected uniformly at random among all subsets of [n1]×· · ·× [nd]

of cardinality m. Instead of the d-dimensional Fourier transform, we can also use the 1-dimensional

Fourier transform applied to the vectorized version of a tensor X without changes in the results

below. Since the Fourier transform can be applied quickly in O(nd log nd), n = max {n` : ` ∈ [d]},
operations using the FFT, the map A runs with this computational complexity – as opposed to

the trivial running time of O(n2d) for unstructured measurement maps. By vectorizing tensors in

Cn1×n2×···×nd , the map A can be written as a partial random Fourier matrices with randomized

column signs.

The randomized Fourier map A satisfies the TRIP for an almost optimal number of measure-

ments as shown by the next result.
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Theorem 5.11. Let A : Cn1×n2×···×nd → Cm be the randomized Fourier map described above.

Then A satisfies TRIP with tensor restricted isometry constant δr with probability exceeding

1− 2e−η as long as

m ≥ Cδ−1
r (1 + η) log2(nd) max

{
δ−1
r (1 + η) log2(nd), f(n, d, r)

}
, (5.37)

where

f(n, d, r) =
(
rd + dnr

)
log (d) for the HOSVD case ,

f(n, d, r) =
(
dr3 + dnr

)
log (dr) for the TT and HT case,

n = max {ni : i ∈ [d]} and r = max {rt : t ∈ TI}.

To prove Theorem 5.11 we use a special case of Theorem 3.3 in [127] (included in Appendix A

as Theorem A.4) for the partial Fourier matrix with randomized column signs, which generalizes

the main result of [97]. Using that the Gaussian width of a set T is equivalent to γ2(T , ‖ · ‖2) by

Talagrand’s majorizing theorem [149, 150], this result reads in our notation as follows.

Theorem 5.12. Let T ⊂ Cn1×n2×···×nd and let A : Cn1×n2×···×nd → Cm be the randomized

Fourier map as described above. Then for 0 < δ < 1

sup
X∈T

∣∣∣‖A(X)‖22 − ‖X‖
2
2

∣∣∣ ≤ δ · (dF (T ))
2
,

holds with probability at least 1− 2e−η as long as

m ≥ Cδ−2 (1 + η)
2

(log(n1 · · ·nd))4
max

{
1,
γ2

2 (T , ‖·‖F )

(dF (T ))
2

}
. (5.38)

Proof of Theorem 5.11. We use T = Sr and T = SHT
r and recall that dF (T ) = 1. Moreover,

γ2(T , ‖ · ‖F ) has been estimated in (5.35) and (5.36). By distinguishing cases, one then verifies

that (5.38) implies (5.37) so that Theorem 5.12 implies Theorem 5.11. �

Using recent improved estimates for the standard RIP for random partial Fourier matrices

[12, 77] in connection with techniques from [127] it may be possible to improve Theorem 5.12 and

thereby (5.37) in terms of logarithmic factors.

5.4. Numerical results

We present numerical results for recovery of third order tensors X ∈ Rn1×n2×n3 and the

HOSVD format which illustrate that tensor iterative hard thresholding works very well despite

the fact that we only have a partial recovery result. We ran experiments for both versions (CTIHT

and NTIHT) of the algorithm and for Gaussian random measurement maps, randomized Fourier

measurement maps (where X ∈ Cn1×n2×n3), and tensor completion, i.e., recovery from randomly

chosen entries of the tensor. (No theoretical investigations are yet available for the latter scenario).

For other related numerical results, we refer to papers [45, 65], where they have considered

a slightly different versions of the tensor iterative hard thresholding algorithm and compared it

with NTIHT.

We consider recovery of a cubic tensor, i.e., n1 = n2 = n3 = 10, with equal and unequal

ranks of its unfoldings, respectively, (first and second experiment) and of a non-cubic tensor

X ∈ R6×10×15 with equal ranks of the unfoldings, i.e., r1 = r2 = r3 = r (third experiment). For
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type tensor dimensions rank CTIHT-n CPU time in sec
Fourier 100× 100× 100 (1, 1, 1) 10 16.2709

100× 100× 100 (1, 1, 1) 20 14.9761
100× 100× 100 (5, 5, 5) 10 31.8866
100× 100× 100 (5, 5, 5) 20 26.3486
100× 100× 100 (7, 7, 7) 20 27.2222
100× 100× 100 (10, 10, 10) 20 36.3950

Fourier 200× 200× 200 (1, 1, 1) 10 142.2105

Table 5.1. The numerical experiments are run on a personal computer with
processor Intel(R) Core(TM) i7-2600 CPU @ 3.40 GHz on Windows 7 Professional
Platform (with 64-bit operating system) and 8 GB RAM; n denotes the percentage
of measurements – the number of measurements equals to m = dn1n2n3

n
100e;

fixed tensor dimensions n1 × n2 × n3, fixed HOSVD-rank r = (r1, r2, r3) and a fixed number of

measurements m we performed 200 simulations. We say that an algorithm successfully recovers

the original tensor X0 if the reconstruction X# satisfies
∥∥X0 −X#

∥∥
F
< 10−3 for Gaussian mea-

surement maps and Fourier measurement ensembles, and X# such that
∥∥X0 −X#

∥∥
F
< 2.5 · 10−3

for tensor completion. The algorithm stops in iteration j if
∥∥Xj+1 −Xj

∥∥
F
< 10−4 in which case

we say that the algorithm converged, or it stops if it reached 5000 iterations.

A Gaussian linear mapping A : Rn1×n2×n3 → Rm is defined by tensors Ak ∈ Rn1×n2×n3 via

[A (X)] (k) = 〈X,Ak〉, for all k ∈ [m], where the entries of the tensors Ak are i.i.d. Gaussian

N
(
0, 1

m

)
. The tensor X0 ∈ Rn1×n2×n3 of rank r = (r1, r2, r3) is generated via its Tucker decom-

position X0 = S×1 U1×2 U2×3 U3: Each of the elements of the tensor S is taken independently

from the normal distribution N (0, 1), and the components Uk ∈ Rnk×rk are the first rk left sin-

gular vectors of a matrix Mk ∈ Rnk×nk whose elements are also drawn independently from the

normal distribution N (0, 1).

We have used the toolbox TensorLab [143] for computing the HOSVD decomposition of a

given tensor and the truncation operator Hr. By exploiting the Fast Fourier Transform (FFT),

the measurement operator A from Section 5.3 related to the Fourier transform and its adjoint

A∗ can be applied efficiently which leads to reasonable run-times for comparably large tensor

dimensions, see Table 5.1.

The numerical results for low-rank tensor recovery obtained via the NTIHT algorithm and

Gaussian measurement maps are presented in Figures 5.3, 5.4, and 5.5. In Figure 5.3 and 5.4

we present the recovery results for low-rank tensors of size 10 × 10 × 10. The horizontal axis

represents the number of measurements taken with respect to the number of degrees of freedom of

an arbitrary tensor of this size. To be more precise, for a tensor of size n1 × n2 × n3, the number

n̄ on the horizontal axis represents m =
⌈
n1n2n2

n̄
100

⌉
measurements. The vertical axis represents

the percentage of successful recovery.

Finally, in Table 5.2 we present numerical results for third order tensor recovery via the CTIHT

and the NTIHT algorithm. We consider Gaussian measurement maps, Fourier measurement en-

sembles, and tensor completion. With m0 we denote the minimal number of measurements that

are necessary to get full recovery and with m1 we denote the maximal number of measurements

for which we do not manage to recover any out of 200 tensors.
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Figure 5.3. Recovery of low HOSVD-rank 10 x 10 x 10 tensors of rank r =
(r, r, r) via NTIHT
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Figure 5.4. Recovery of low HOSVD-rank 10 × 10 × 10 tensors of different
unfolding ranks via NTIHT
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Figure 5.5. Recovery of low HOSVD-rank 6×10×15 tensors of rank r = (r, r, r)
via NTIHT

97



type tensor dimensions rank NTIHT-n0 NTIHT-n1 CTIHT-n0 CTIHT-n1

Gaussian 10× 10× 10 (1, 1, 1) 8 3 24 6
10× 10× 10 (2, 2, 2) 20 6 39 21
10× 10× 10 (3, 3, 3) 21 11 60 40
10× 10× 10 (5, 5, 5) 33 23 − −
10× 10× 10 (7, 7, 7) 53 47 − −

Gaussian 10× 10× 10 (1, 2, 2) 10 5 34 16
10× 10× 10 (1, 5, 5) 12 9 57 37
10× 10× 10 (2, 5, 7) 20 15 83 64
10× 10× 10 (3, 4, 5) 23 15 83 62

Gaussian 6× 10× 15 (1, 1, 1) 9 3 25 8
6× 10× 15 (2, 2, 2) 20 7 44 27
6× 10× 15 (5, 5, 5) 34 26 − −

Fourier 10× 10× 10 (1, 1, 1) 16 3 15 8
10× 10× 10 (2, 2, 2) 11 6 25 16
10× 10× 10 (3, 3, 3) 16 14 31 26
10× 10× 10 (5, 5, 5) 29 26 43 40
10× 10× 10 (7, 7, 7) 51 48 50 49

Fourier 10× 10× 10 (1, 2, 2) 10 5 21 14
10× 10× 10 (1, 5, 5) 16 12 31 25
10× 10× 10 (2, 5, 7) 21 18 37 33
10× 10× 10 (3, 4, 5) 21 18 37 33

Fourier 6× 10× 15 (1, 1, 1) 12 3 16 9
6× 10× 15 (2, 2, 2) 13 8 25 20
6× 10× 15 (5, 5, 5) 32 29 45 42

completion 10× 10× 10 (1, 1, 1) 17 2 27 2
10× 10× 10 (2, 2, 2) 43 8 45 13
10× 10× 10 (3, 3, 3) 37 12 32 16
10× 10× 10 (5, 5, 5) 44 24 50 30
10× 10× 10 (7, 7, 7) 71 46 84 54

completion 10× 10× 10 (1, 2, 2) 33 6 38 10
10× 10× 10 (1, 5, 5) 57 15 58 21
10× 10× 10 (2, 5, 7) 35 17 47 24
10× 10× 10 (3, 4, 5) 36 17 41 22

completion 6× 10× 15 (1, 1, 1) 20 3 33 8
6× 10× 15 (2, 2, 2) 47 10 51 14
6× 10× 15 (5, 5, 5) 46 27 51 33

Table 5.2. Recovery results for low-rank matrix recovery via Gaussian measure-
ment maps, Fourier measurement ensembles and tensor completion for NTIHT
and CTIHT algorithm. An algorithm successfully recovers the sensed tensor X0 if
it returns a tensor X# such that

∥∥X0 −X#
∥∥
F
< 10−3 for Gaussian measurement

maps and Fourier ensembles, and X# such that
∥∥X0 −X#

∥∥
F
< 2.5 ·10−3 for ten-

sor completion. n0: minimal percentage of measurements needed to get hundred
percent recovery; n1: maximal percentage of measurements for which recover is
not successful for all out of 200 tensors. That is, the number of measurements is
mi = dn1n2n3

ni
100e, for i = 0, 1. − means that we did not manage to recover all

200 tensors with percentage of measurements less than n = 100;
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CHAPTER 6

Conclusion and future work

In Chapter 1 we have introduced compressive sensing and low-rank matrix recovery. We have

focused mostly on convex optimization approaches and on iterative hard thresholding algorithm

since in Chapter 4 and Chapter 5 we have extended these approaches to low-rank tensor recovery.

In Chapter 2 we have introduced different tensor formats. Several tensor properties have been

discussed which cause significant difficulties in the analyses of algorithms for low-rank tensor re-

covery. In particular, the CP-decomposition (canonical decomposition), which could be considered

as a natural generalization of the matrix singular value decomposition, is in general NP-hard to

compute. Consequently, the CP-rank and the corresponding tensor nuclear norm are also NP-

hard to compute. This has led to the development of other tensor formats – Tucker (HOSVD)

format, TT-format, and HT-format. For these decompositions, the tensor rank is a vector and a

well defined quantity. That is, the entries of the ranks equal to the ranks of the corresponding

tensor matricizations. Unfortunately, computing the best rank-r approximation of a given tensor

remains NP-hard – regardless of the choice of tensor format.

In Chapter 3 several previous approaches to low-rank tensor recovery have been introduced

with the corresponding theoretical results. Unfortunately, none of the approaches are complete

from both applicational and theoretical point of view. More precisely, either the methods are not

tractable, or the recovery results quantifying the minimal number of measurements are non-optimal

or even non-existent.

A new convex optimization approach to low-rank tensor recovery has been introduced in

Chapter 4. This approach is based on theta bodies of the appropriately defined polynomial ideal

which induce new tensor norms called theta norms. The θk-norm of a given tensor can be computed

via semidefinite programming. Additionally, a unit-θk-norm ball is a superset of the unit-tensor-

nuclear-norm ball for all k and the theta norms satisfy ‖X‖θ1 ≤ ‖X‖θ2 ≤ · · · ≤ ‖X‖θk−1
≤

‖X‖θk ≤ · · · ≤ ‖X‖∗, for all X ∈ Rn1×n2×···×nd . We have shown that in the matrix case, all

θk-norms coincide with the matrix nuclear norm. We have provided a semidefinite program for

computing the θ1-norm of a given order-three tensor as well as the semidefinite program for low-

rank order-three tensor recovery via θ1-norm minimization. The numerical results presented in

Section 4.5 indicate that the low-rank tensor recovery via θ1-norm is a promising approach. In

the future we would like to describe the boundary of the unit-θk-norm balls, to develop faster

algorithms for computing θk-norm of a given tensor and for recovery of low-rank tensors via the

same norm, and to quantify the number of measurements needed for low-rank tensor recovery via

θk-norm minimization.

The theta-body approach requires computing the reduced Gröbner basis with respect to the

grevlex ordering of the polynomial ideal Jd whose real algebraic variety is the set of all order-d

rank-one Frobenius-norm-one tensors. In the matrix scenario, the polynomial ideal J2 is related
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to the determinantal ideal often denoted in literature by I2. Recall that the real algebraic variety

of the determinantal ideal It with t ≥ 2 is the set of all rank-(t-1) matrices. Thus, in the tensor

scenario, the ideal I2,d generated by all order-two minors of all tensor matricizations (i.e., the

real algebraic variety of I2,d is the set of all rank-one tensors) could be considered as a natural

generalization of determinantal ideal I2. The polynomial ideals I2,d to the best of our knowledge

have not been considered before. (One can also generalize in an analogous way determinantal ideals

It with t ≥ 3.) We have also computed the reduced Gröbner basis with respect to the grevlex

ordering of the polynomial ideal I2,d. Determinatal ideals have been the central topic throughout

the last three decades in both algebraic geometry and commutative algebra. In future, we would

like to extend the results of determinatal ideals It to the higher-order determinantal ideals It,d
that naturally arose in our research.

In Chapter 5 we have introduced and analyzed several versions of the iterative hard thresh-

olding (IHT) algorithm – namely, classical tensor iterative hard thresholding algorithm (CTIHT)

and its normalized version (NTIHT) – adapted to the tensor decomposition at hand. Here, the

Tucker, TT, and HT decompositions have been considered. The TIHT algorithms are iterative

thresholding based methods to low-rank tensor recovery. The analysis of these algorithms is based

on the corresponding notion of the tensor restricted isometry property (TRIP). We have proved

that partial Fourier maps combined with random sign flips of the tensor entries and subgaussian

measurement ensembles satisfy TRIP with high probability. Under the assumption that the mea-

surement map satisfies TRIP, we have provided a partial convergence of the TIHT algorithms.

More precisely, we proved that the algorithms converge linearly if the thresholding operator sat-

isfies a specific condition which can not be guaranteed a priori. This condition is required since

the best rank-r approximation of a given tensor is in general NP-hard to compute and the thresh-

olding operator computes only its quasi-best rank-r approximation. In spite of this additional

assumption on the thresholding operator needed for the theoretical guarantees, our numerical ex-

periments for third-order low-HOSVD-rank tensor recovery suggest that TIHT algorithms perform

well in practice. Providing theoretical guarantees for tensor completion as well as for the complete

convergence of the TIHT algorithms is left for future research.
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CHAPTER 7

Summary

In this thesis we have considered a further extension of compressive sensing and low-rank

matrix recovery to low-rank tensor recovery. The aim is to reconstruct an order-d low-rank tensor

from a number of linear measurements much smaller than its ambient dimension. As expected,

the natural approach of finding the solution of the optimization problem

min
Z∈Rn1×n2×···×nd

rank(Z) s.t. A(Z) = y,

where A : Rn1×n2×···×nd → Rm is a known linear operator and y ∈ Rm is a measurement vector

with m � n1n2 · · ·nd, is in general NP-hard. Although several approaches to low-rank tensor

recovery have already been suggested, due to the certain tensor properties there is no completely

satisfactory theory available for these methods. Either the method is not tractable, or the recovery

results quantifying the minimal number of measurements are non-optimal or even non-existent.

We have presented two new approaches to low-rank tensor recovery. The first approach

was a convex optimization approach and could be considered as a tractable extension of `1-

minimization for sparse vector recovery and nuclear norm minimization for matrix recovery to

tensor scenario. It is based on theta bodies – a recently introduced tool from real algebraic geom-

etry. This approach required computing the reduced Gröbner basis of the polynomial ideal Jd in

R[x11...1, x11...2, . . . , xn1n2...nd ] with respect to the graded reverse lexicographic (grevlex) ordering.

The corresponding real algebraic variety νR(Jd) = {x : f(x) = 0, for all f ∈ Jd} is the set of all

rank-one Frobenius-norm-one tensors in Rn1×n2×···×nd . We have treated each variable as a tensor

entry. We have considered the canonical format and the corresponding tensor nuclear norm which

are in general NP-hard to compute. Theta bodies THk(Jd) are closed convex sets containing the

closure of the convex hull of νR(Jd) denoted by conv(νR(Jd)) and they satisfy

TH1(Jd) ⊇ TH2(Jd) ⊇ · · · ⊇ THk−1(Jd) ⊇ THk(Jd) ⊇ · · · ⊇ conv(νR(Jd)).

Since conv(νR(Jd)) is the unit-tensor-nuclear-norm-ball, every theta body provides its convex

closed relaxation. This has allowed us to define new tensor norms – θk-norms – via their unit

norm balls. That is, {
X : ‖X‖θk ≤ 1

}
= THk(Jd), for all k ∈ N.

All θk-norms can be computed via semidefinite programming. However, for simplicity, we have

provided only a semidefinite program for computing the θ1-norm of a given order-3 tensor. We

have shown that in the matrix scenario (i.e., when d = 2) all θk-norms are equal and coincide with

the matrix nuclear norm. In the tensor scenario, however, we have obtained – to the best of our

knowledge – new tensor norms. We have also provided a semidefinite program for low-rank tensor
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recovery via θ1-norm minimization, i.e., a semidefinite program for

min
Z∈Rn1×n2×n3

‖Z‖θ1 s.t. A(Z) = y.

In our numerical experiments we have always recovered rank-one and rank-two tensors of order-

3 via Gaussian measurement ensembles from a number of measurements significantly smaller

than the ambient dimension of the corresponding tensor. Therefore, low-rank tensor recovery

via θ1-norm minimization seems to be a promising approach. Additionally, we have also briefly

considered the ideal Id whose real algebraic variety contains all rank-one order-d tensors (not

necessarily of Frobenius-norm-one). These ideals that – to the best of our knowledge – have

not been considered before could be considered as a natural higher-order generalization of the

determinantal ideal I2. We have gone one step further and defined generalized determinantal

ideals It,d whose real algebraic variety contains all rank-(t − 1) order-d tensors. We call these

ideals higher-order determinantal ideals. We have also computed the reduced Gröbner basis G2,d

of the polynomial ideal I2,d with respect to the grevlex ordering. To be more precise, we have

shown that G2,d = G2\{gd =
∑
i1,i2,...,id

x2
i1i2...id

− 1}, where Gd is the reduced Gröbner basis of

the ideal Jd with respect to the grevlex ordering. This is – to the best of our knowledge – the first

result available for the higher-order determinantal ideals It,d with d ≥ 3.

The second approach was a generalization of the iterative hard thresholding algorithm (IHT

algorithm) for sparse vector and low-rank matrix recovery to the tensor scenario (tensor IHT or

TIHT algorithm). We have considered the Tucker format, the tensor train (TT) decomposition,

and the hierarchical Tucker (HT) decomposition. The crucial step of the IHT algorithms consists

in taking a projection onto the set of sparse vectors or the manifold of low-rank matrices/tensors.

Unlike in the vector and the matrix scenario, it is NP-hard to compute the best rank-r approxi-

mation of a given tensor – regardless of the choice of tensor format. Even more, sometimes the

best rank-r approximation does not even exist. Therefore, in this step of the algorithm we have

computed a quasi-best rank-r approximation Hr(X) of a given tensor X which can be done effi-

ciently. The analysis of the algorithm was based, similarly to the vector and the matrix scenario,

on the version of the restricted isometry property (tensor RIP or TRIP) adapted to the tensor

decomposition at hand. We have showed that subgaussian measurement ensembles satisfy TRIP

with high probability under an almost optimal condition on the number of measurements. We

have also proved that partial Fourier maps combined with random sign flips of the tensor entries

satisfy TRIP with high probability. Under the assumption that the linear operator satisfies TRIP

and under an additional assumption on the thresholding operator we have provided a linear con-

vergence result for the TIHT algorithm. In spite of the additional condition on the thresholding

operator (which can not be guaranteed a priori) required for theoretical guarantees, our numerical

results indicated that the algorithm performs well in practice. That is, we have always recovered

a low-HOSVD-rank third-order tensor via Partial Fourier maps combined with random sign flips

of tensor entries, tensor completion, and Gaussian measurement ensembles from a much smaller

number of measurements than its ambient dimension.
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APPENDIX A

In this appendix we collect several basic definitions and results related to matrices (Subsection

A.1), tensors (Subsection A.2), and covering numbers (Subsection A.3).

Before passing to (random) matrices, we present a general estimate used in Subsection 4.4.

Lemma A.1 ([60]). Integers n ≥ k > 0 satisfy(
n

k

)
≤
(en
k

)k
.

Proof. First notice that for k ∈ N it holds that

ek =

∞∑
`=0

k`

`!
≥ kk

k!
.

The estimate then follows from(
n

k

)
=
n(n− 1) · · · (n− k + 1)

k!
≤ nk

k!
=
kk

k!

nk

kk
≤
(en
k

)k
.

�

A.1. (Random) matrices

Definition A.2 (Kronecker product). Let A ∈ Cm×n and B ∈ Cp×q. The Kronecker product of

two matrices A and B is the matrix A⊗K B ∈ Cmp×nq defined by

A⊗K B =


A (1, 1) B A (1, 2) B · · · A (1, n) B

A (2, 1) B A (2, 2) B · · · A (2, n) B
...

...
. . .

...

A (m, 1) B A (m, 2) B · · · A (m,n) B

 .

The Fourier matrix Fn ∈ Cn×n is the most important complex matrix in applied mathematics

since it is used to define the Fourier transform. The fast Fourier transform (FFT) reduces the

multiplication by Fn from n2 to roughly n (log2 n) multiplications.

The Fourier matrix Fn ∈ Cn×n is defined element-wise as Fn (j, k) = 1√
n
ω(j−1)(k−1), where

ω = e−
2πi
n , or equivalently

Fn =
1√
n



1 1 1 · · · 1

1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

1 ω3 ω6 · · · ω3(n−1)

...
...

...
. . .

...

1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)


.
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The vector x̂ = Fnx is called the discrete Fourier transform of x. Matrix A ∈ Cm×n obtained by

choosing m rows independently and uniformly at random from Fn is called random partial Fourier

matrix.

In compressive sensing, instead of the Fourier matrix, often the nonequispaced Fourier matrix

is used. That is, a matrix F̂n :=
√
nFn.

Partial circulant matrices are another class of structured random matrices. In such set-up for

a vector c = (c0, c1, . . . , cn−1)T ∈ Cn, the n× n circulant matrix A = A (c) is of the form

A =



c0 cn−1 · · · c2 c1

c1 c0 · · · c3 c2
...

...
. . .

...
...

cn−2 cn−3 · · · c0 cn−1

cn−1 cn−2 · · · c1 c0


.

Partial circulant matrix AΩ = AΩ(c) ∈ Cm×N is a submatrix of A consisting of the rows indexed

by Ω. Additionally, if c is a Rademacher vector ε (a vector of independent random variables

taking +1 and −1 with equal probability), then AΩ(ε) is called random partial circulant matrix.

We remark that circulant matrices can be diagonalized using the discrete Fourier transform.

Thus, there exists an algorithm – using FFT – such that the (circulant) matrix-vector multiplica-

tion is of complexity O(n log n).

In the following we focus on a more general type of structured matrices called SORS (Sub-

sampled Orthogonal with Randomized Signs) matrices that have been studied in [127]. We also

present their main theorem that we apply in Chapter 5.

Definition A.3 ([127]). Let F ∈ RN×N denote a matrix obeying

F∗F = I and max
i,j
|F (i, j)| ≤ ∆√

N
. (A.1)

Define the random subsampled matrix H ∈ Rm×N with i.i.d. (independently identically dis-

tributed) rows chosen uniformly at random from the rows of F. Now we define the Subsampled

Orthogonal with Random Signs (SORS) measurement ensemble as A = HD, where D ∈ RN×N

is a random diagonal matrix with the diagonal entries i.i.d. ±1 with equal probability.

For example, an N×N nonequispaced Fourier matrix and (normalized) Fourier matrix satisfy

the conditions (A.1) in the above definition with ∆ =
√
N and ∆ = 1, respectively. To present

the theorem, we need to introduce some notation. With d2 (T ) we denote the diameter of a

given set T , i.e., d2 (T ) = supv∈T ‖v‖2. The Gaussian width ω (T ) of a set T is defined as

ω (T ) = E
[
supv∈T gTv

]
, where g ∈ RN is a standard Gaussian random vector.

Theorem A.4 ([127]). Let T ⊂ RN and suppose Ã =
√

N
mA, where A ∈ Rm×N is selected from

the SORS distribution of Definition A.3. Then,

sup
x∈T

∣∣∣∣∥∥∥Ãx
∥∥∥2

2
− ‖x‖22

∣∣∣∣ ≤ max
{
δ, δ2

}
· (d2 (T ))

2
,

holds with probability at least 1− 2e−η as long as

m ≥ Cδ−2∆2 (1 + η)
2

(logN)
4

max

{
1,

ω2 (T )

(d2 (T ))
2

}
.
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A.2. Tensors

The following lemma shows a way of decomposing the HOSVD-rank 2r dth-order tensor in a

sum of pairwise orthogonal (entry-wise) at most HOSVD-rank r tensors.

Lemma A.5. Any tensor X ∈ Rn1×n2×···×nd of HOSVD-rank 2r = (2r1, 2r2, . . . , 2rd) can be

decomposed into a set of 2d tensors {Xi}2
d

i=1 s.t.

X = X1 + X2 + · · ·+ X2d ,

rankHOSVD (Xp) ≤ r, for all p ∈
[
2d
]

〈Xp,Xq〉 = 0, whenever p 6= q.

Proof. The HOSVD decomposition of a tensor X is of the form

X = S×1 U1 ×2 U2 × · · · ×d Ud,

where S ∈ R2r1×2r2×···×2rd and Ui ∈ Rni×2ri , for all i ∈ [d].

Let

U0
i (:, [ri]) = Ui (:, [ri]) , U0

i (:, [2ri] \ [ri]) = 0

U1
i (:, [ri]) = 0, U1

i (:, [2ri] \ [ri]) = Ui (:, [2ri] \ [ri]) , for all i ∈ [d] .

In other words, let U0
i be a matrix identical to Ui on the first ri columns and zero otherwise and

let U1
i be a matrix identical to Ui on the last ri columns and zero otherwise.

Notice that, since Ui = U0
i + U1

i for all i ∈ [d],

X = S×1

(
U0

1 + U1
1

)
×2

(
U0

2 + U1
2

)
× · · · ×d

(
U0
d + U1

d

)
.

Next, define

Xp := Xp1·2d−1+···+pd−1·2+pd+1 = S×1 Up1
1 ×2 Up2

2 × · · · ×d Upd
d , for all p1, p2, . . . , pd ∈ {0, 1} .

Then rank (Xp) ≤ r, for all p, and

〈Xp,Xq〉 =

n1∑
i1=1

n2∑
i2=1

. . .

nd∑
id=1

Xp (i1, i2, . . . , id) Xq (i1, i2, . . . , id) = 0, whenever p 6= q.

We only show that X1 has rank at most r since the proofs for all other Xp with p ∈
[
2d
]

are

analogous. Recall that

X1 = S×1 U0
1 ×2 U0

2 × · · · ×d U0
d,

or elementwise

X1 (i1, i2, . . . , id) =

2r1∑
j1=1

2r2∑
j2=1

. . .

2rd∑
jd=1

S (j1, j2, . . . , jd) U0
1 (i1, j1) U0

2 (i2, j2) · · ·U0
d (id, jd)

=

r1∑
j1=1

r2∑
j2=1

. . .

rd∑
jd=1

S (j1, j2, . . . jd) U1 (i1, j1) U2 (i2, j2) · · ·Ud (id, jd) .

First, notice that the above decomposition is not necessarily its HOSVD (for example, the

tensor S ([r1] , [r2] , . . . , [rd]) does not have to be all-orthogonal). The first unfolding of X1 is of
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the form

X
{1}
1 (i1; (i2, i3, . . . , id)) = X1 (i1, i2, i3, . . . , id)

=

r1∑
j1=1

U1 (i1, j1)

r2∑
j2=1

r3∑
j3=1

. . .

rd∑
jd=1

S (j1, j2, j3, . . . , jd) U2 (i2, j2) U3 (i3, j3) · · ·Ud (id, jd) .

Define the matrix M1 ∈ Rr1×n2n3···nd element-wise as

M1 (j1; (i2, i3, . . . , id)) :=

r2∑
j2=1

r3∑
j3=1

. . .

rd∑
jd=1

S (j1, j2, j3, . . . , jd) U0
2 (i2, j2) U0

3 (i3, j3) · · ·U0
d (id, jd)

and matrix U1 ∈ Rn1×r1 as a submatrix of U1 containing the first r1 columns. Then we can write

X
{1}
1 = U1M1.

Since rank
(
U1

)
≤ r1, we deduce that rank

(
X
{1}
1

)
≤ r1. Similarly, we can show that

rank
(
X
{k}
1

)
≤ rk, for all the other k ∈ [d], which proves the first statement.

For the second statement of the theorem notice that

〈Xp,Xq〉 =

n1∑
i1=1

n2∑
i2=1

. . .

nd∑
id=1

Xp (i1, i2, . . . , id) Xq (i1, i2, . . . , id)

=
∑

j1,j2,...,jd

∑
k1,k2,...,kd

S (j1, j2, . . . , jd) S (k1, k2, . . . , kd)
∑
i1

Up1
1 (i1, j1) Uq1

1 (i1, k1)

·
∑
i2

Up2
2 (i2, j2) Uq2

2 (i2, k2) · · ·
∑
id

Upd
d (id, jd) Uqd

d (id, kd) .

Since p 6= q, for at least one i, pi 6= qi. Without loss of generality, we can assume that i = 1

and p1 = 0, q1 = 1. From the definition of U0
1 and U1

1 it is clear that
∑
i1

U0
1 (i1, j1) U1

1 (i1, k1) = 0,

for all j1, k1 ∈ [2r1] which proves the claim. �

In the following, three algorithms for HT-truncation suggested in [70] are presented. In the

following, as in paper [70], we consider tensors as vectors over product index sets. For this purpose

we introduce

I := I1 × I2 × · · · × Id, Iµ := {1, 2, . . . , nµ} (with µ ∈ [d])

and we write that tensor X ∈ RI . The I defined above corresponds to the subscript of the

corresponding dimensional tree TI .

Theorem A.6 ([70]). Let TI be a dimension tree and X ∈ RI . Let XBEST denote the best HT-

rank r = {rt}t∈TI approximation of X and let πt be the orthogonal frame projection for the t-frame

Ut that consists of the left singular vectors of Xt corresponding to the rt largest singular values

σt,i of Xt (i.e., (πtX)
t

:= UtU
T
t Xt and π{1,...,d}X = X). Then for any order of the projections

πt, t ∈ TI , the following holds∥∥∥∥∥X− ∏
t∈TI

πtX

∥∥∥∥∥
F

≤
√∑
t∈TI

∑
i>rt

σ2
t,i ≤

√
2d− 2 ‖X−XBEST‖F .

Additionally, for the root node t = {1, . . . , d} with sons t1 and t2, combining the projections πt1

and πt2 into a single projection via the SVD, leads to the improved bound
√

2d− 3 (instead of√
2d− 2).
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We call the above algorithm truncation via projections.

We explain the notation in Algorithm A.1 and Algorithm A.2. The i-th column of a matrix

U is denoted with U(:, i). Also, recall that L (TI) and I (TI) denote the set of all leaf nodes and

all interior nodes of the tree TI , respectively.

Algorithm A.1. root-to-leaves truncation of arbitrary tensors to HT-format

1: Input: tensor X ∈ RI , dimension tree TI (depth p > 0),

2: target representation rank (rt)t∈TI ;

3: for each singleton α ∈ L (TI) do

4: Compute an SVD of Xα and store the dominant rα left singular vectors in the

5: columns of the α-frame Uα.

6: end for

7: for ` = p− 1, . . . , 0 do

8: for each mode cluster t ∈ I(TI) on level ` do

9: Compute an SVD of Xt and store the dominant rt left singular vectors in the

10: columns of the t-frame Ut.

11: Let Ut1 and Ut2 denote the frames for the successors of t on level `+ 1.

12: Compute the entries of the transfer tensor:

13: Bt (i, j, ν) := 〈Ut(:, i),Ut1(:, j)⊗Ut2(:, ν)〉
14: end for

15: end for

16: Compute the entries of the root (with sons t1, t2) transfer tensors

17: B{1,...,d}(1, j, ν) :=
〈
X{1,2,...,d},Ut1(:, j)⊗Ut2(:, ν)

〉
18: return HT-rank-r = {rt}t∈TI approximation XHT :

(
{Ut}t∈L(TI) , {Bt}t∈I(TI)

)
.

A.3. Covering numbers

The proofs of several theorems in Chapter 5 use ε-nets and covering numbers.

Definition A.7 ([163]). A set NX
ε ⊂ X , where X is a subset of a normed space, is called an ε-net

of X with respect to the norm ‖·‖ if for each v ∈ X , there exists v0 ∈ NX
ε with ‖v0 − v‖ ≤ ε. The

minimal cardinality of an ε-net of X with respect to the norm ‖·‖ is denoted by N (X , ‖·‖ , ε) and

is called the covering number of X (at scale ε).

In Chapter 5 the following result is used frequently.

Lemma A.8 ([163]). Let ε ∈ (0, 1). For any set X there always exists an ε-net NX
ε with respect

to a norm ‖·‖ satisfying NX
ε ⊂ X and∣∣NX

ε

∣∣ ≤ Vol
(X + ε

2B
)

Vol
(
ε
2B
) ,

where ε
2B is an ε/2 ball with respect to the norm ‖·‖ and X + ε

2B =
{
x+ y : x ∈ NX

ε , y ∈ ε
2B
}

.

Specifically, if X is a subset of the unit ball in d dimensions then X + ε
2B is contained in the(

1 + ε
2

)
-ball and thus ∣∣NX

ε

∣∣ ≤ (1 + ε/2)
d

(ε/2)
d

=

(
1 +

2

ε

)d
< (3/ε)

d
,
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Algorithm A.2. leaves-to-root truncation of arbitrary tensors to HT-format

1: Input: tensor X ∈ RI , dimension tree TI (depth p > 0),

2: target representation rank (rt)t∈TI ;

3: for each singleton α ∈ L (TI) do

4: Compute an SVD of Xα and store the dominant rα left singular vectors in the

5: columns of the α-frame Uα.

6: end for

7: Compute the core tensor Cp := X×1 UT
{1} × · · · ×d UT

{d} .

8: for ` = p− 1, . . . , 0 do

9: Initialize C` := C`+1.

10: for each mode cluster t ∈ I(TI) on level ` do

11: Compute an SVD of (C`+1)
t

and store the dominant rt left singular vectors in the

12: columns of the t-frame Ut ∈ Rrt1rt2×rt . Let Ut1 and Ut2 denote

13: the corresponding frames for the successors t1, t2 of t on level `+ 1.

14: Compute the entries of the transfer tensor

15: Bt (i, j, ν) := 〈Ut(:, i),Ut1(:, j)⊗Ut2(:, ν)〉
16: Update the core tensor C` := C` ×t UT

t

17: end for

18: end for

19: return HT-rank r = {rt}t∈TI approximation XHT :
(
{Uα}α∈L(TI) , {Bt}t∈I(TI)

)
.

where the last inequality follows since ε < 1. We always require that NX
ε ⊂ X .

Next we prove a special case of above lemma for X being the unit Euclidean sphere in d-

dimensions denoted by Sd−1. The proof for Lemma A.8 follows by similar arguments. With

Bd(x, ε) we denote the Euclidean ball in d dimensions, centered at x of radius ε.

Lemma A.9 (Covering number of the sphere, [163]). The unit Euclidean sphere Sd−1 equipped

with the Euclidean metric satisfies∣∣∣NSd−1

ε

∣∣∣ ≤ (1 +
2

ε

)d
for every ε > 0.

Proof. Let us fix ε > 0 and choose NSd−1

ε to be a maximal ε-separated subset of Sd−1. (In

other words, ‖x− y‖2 ≥ ε, for all x,y ∈ NSd−1

ε , x 6= y, and no other subset of Sd−1 containing

NSd−1

ε has this property.)

The maximality property implies that NSd−1

ε is an ε-net of Sd−1. Otherwise, there would

exist x ∈ Sd−1\NSd−1

ε such that ‖x− y‖2 > ε, for all y ∈ NSd−1

ε . But then NSd−1

ε ∪ {x} would

be an ε-separated set (which is in contradiction with NSd−1

ε being the maximal ε-separated subset

of Sd−1).

The separation property implies that the balls centered at the points in NSd−1

ε of radius ε/2

are disjoint. Additionally, they lie in the ball centered at origin of radius (1 + ε/2). That is,

∪x∈NSd−1
ε

Bd
(
x,
ε

2

)
⊆ Bd(0, 1 +

ε

2
).
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Comparing the volume and applying that Vol (Bd(0, r)) = rd Vol (Bd(0, 1)) = rd gives∣∣∣NSd−1

ε

∣∣∣ · (ε
2

)d
≤
(

1 +
ε

2

)d
,

which implies that ∣∣∣NSd−1

ε

∣∣∣ ≤ (1 + ε
2

ε
2

)d
=

(
1 +

2

ε

)d
.

�
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APPENDIX B

In the following, we provide an intuition behind the sum-of-squares certificates. In particular,

we focus on the theta bodies in Subsection B.1 and in Subsection B.2 we introduce some basic

definitions and results related to Gröbner bases.

B.1. Intuition behind the sum-of-squares certificates

A central problem in optimization is to find the maximum value of a linear function over a

set S ∈ Rn. That is, solving

max
x
〈c,x〉 s.t. x ∈ S

which is equivalent to solving

max
x
〈c,x〉 s.t. x ∈ conv (S),

where conv (S) denotes the closure of the convex hull of the set S. For example, in linear program-

ming the set S is a polyhedron S = {x ∈ Rn : Ax ≤ b}. We are interested in the case where S is

a real algebraic set, i.e., a set of all real solutions to a finite set of polynomials. In particular, for a

given polynomial ideal J generated by a finite basis {f1, f2, . . . , fm}, the set S we are interested

in is the real algebraic variety of the ideal J denoted by νR(J ). That is, the set S is of the form

S := νR (J ) = {x ∈ Rn : f(x) = 0,∀ f ∈ J } = {x ∈ Rn : fi(x) = 0,∀ i ∈ [m]} .

Recall that every closed convex set C ⊂ Rn is the intersection of closed half-spaces that contain

it. That is,

C = ∩{H : H closed half-space, C ⊆H} (B.1)

= {x : x ∈H for every closed half-space H satisfying C ⊆H}. (B.2)

By definition, every closed half-space H ⊂ Rn is identified with the affine function `H which

specifies the corresponding hyperplane {x : `H(x) = 0}. (There exists a one-to-one correspondence

between the affine functions and closed half-spaces.) That is, for every closed half-space H there

exist aH0 , a
H
1 , a

H
2 , . . . , a

H
n ∈ R (not all zero) such that

{x ∈H} =
{
x : `H (x) ≥ 0, `H (x) = aH0 + aH1 x1 + aH2 x2 + · · ·+ aHn xn

}
.

Thus, set C defined in (B.2) can be expressed as

C = {x : `H (x) ≥ 0 for all affine `H s.t. `H|C ≥ 0} . (B.3)

Additionally, it is enough to consider only the affine functions `H satisfying `H|C ≥ 0 which define

the supporting hyperplanes `H(x) = 0 of the set C – see Figure B.1. Recall that a closed half-space

H = {x : `H(x) ≥ 0} containing C where `H(x) = 0 is the supporting hyperplane of the set C
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1

(a) set C

1

(b) conv (C)

ℓH H

1

(c) hyperplanes {x : `H(x) = 0}

Figure B.1. Representation of conv (C) as the intersection of possibly infinitely
many half-spaces H defined via affine functions `H. The supporting hyperplanes
{x : `H(x) = 0} are denoted in red in the third figure.

satisfies C ⊆H and C∩H 6= ∅. However, for a general set C, it can be a difficult task to determine

all its supporting hyperplanes.

Let us now return to our set of interest S = νR(J ), where J is a polynomial ideal. By setting

C to be the smallest closed convex superset of S = νR(J ), i.e. C = conv (S) = conv (νR (J )),

(B.3) gives

conv (νR (J )) =
{

x ∈ Rn : `(x) ≥ 0 for all ` affine s.t. `|
conv(νR(J ))

≥ 0
}
. (B.4)

Notice that if ` (x) ≥ 0 for all x ∈ νR (J ), then ` (x) ≥ 0 for all x ∈ conv (νR (J )). Thus, in (B.4)

it is enough to consider only affine polynomials ` satisfying `|νR(J ) ≥ 0. However, already checking

for a single polynomial ` ∈ R[x] whether it is nonnegative on a set νR (J ) can be a difficult task.

The idea is to relax the condition `|νR(J ) ≥ 0 into something which is easier to verify at the risk of

losing some of the affine `’s in (B.4) and obtaining a superset of conv(νR(J )). One possibility to

obtain the hierarchy of the convex relaxations is restricting only to the affine polynomials which

are k-sos mod J , i.e., to the polynomials that can be written as

`(x) = σ(x) + p(x), where σ ∈ Σ2k, p ∈ J , (B.5)

with Σ2k denoting the sum of squares (sos) polynomials of degree at most 2k in R[x]. That is,

σ ∈ Σ2k if ∃h1, h2, . . . , ht with deg(h1), . . . ,deg(ht) ≤ k s.t. σ(x) =

t∑
i=1

h2
i (x).

Nonnegativity in (B.5) is guaranteed since σ (x) ≥ 0 and p (x) = 0, for all x ∈ νR (J ). These

relaxations defined for all k ∈ N are called theta bodies [9, 68]. More precisely, for k ∈ N, the k-th

theta body is the set

THk (J ) = {x ∈ Rn : `(x) ≥ 0, for all ` affine that are k-sos mod J } .

Notice that, by definition, theta bodies satisfy

conv (νR (J )) ⊆ · · · ⊆ THk (J ) ⊆ THk−1 (J ) ⊆ · · · ⊆ TH1 (J ) . (B.6)

In the following example we compute the theta body relaxations of the unit `1-ball in R2. In

particular, we show that the first theta body coincides with the unit `1-ball which together with

(B.6) further implies that all theta bodies are equal in this scenario and coincide with the unit

`1-ball.
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x

y

ℓ1(x1, x2) = 0
ℓ2(x1, x2) = 0

ℓ3(x1, x2) = 0
ℓ4(x1, x2) = 0

(1, 0)

(0, 1)

(−1, 0)

(0, −1)

b

b

b

b

1

Figure B.2. Representation of the unit `1-ball together with its four supporting
hyperplanes {(x1, x2) : `i(x1, x2) = 0} for all i ∈ [4], with `i defined in (B.7). The
corresponding half-spaces are Hi = {(x1, x2) : `i(x1, x2) ≥ 0}, for all i ∈ [4].

Example B.1 (Relaxations of the unit `1-ball in R2). First, notice that the unit `1-ball can be

written as a convex hull of its extreme points S := {(1, 0), (−1, 0), (0,−1), (0, 1)}, see Figure B.2..

Thus, following the discussion above, we define a polynomial ideal J1 such that its real algebraic

variety νR(J1) coincides with the set S. Clearly, for every x ∈ S it holds that x1, x2 ∈ {0, 1,−1}
which is ensured by the constraint fi(x) = 0, where fi(x) = xi(xi − 1)(xi + 1), for i = 1, 2.

Additionally, every x ∈ S satisfies |x1|+ |x2| = 1 which is guaranteed by the constraint f3(x) = 0,

where f3(x) = x2
1 + x2

2 − 1.

Thus, one option to define the polynomial ideal J1 ∈ R [x] = R [x1, x2] such that νR(J1) = S
is

J1 = 〈f1, f2, f3〉 =
〈
x1(x1 − 1)(x1 + 1), x2(x2 − 1)(x2 + 1), x2

1 + x2
2 − 1

〉
.

From Figure B.2 it is clear that there are only four supporting hyperplanes `i(x) = 0 of the unit

`1-ball corresponding to the following four affine functions

`1(x1, x2) = −x1 − x2 + 1

`2(x1, x2) = x1 − x2 + 1

`3(x1, x2) = x1 + x2 + 1

`4(x1, x2) = −x1 + x2 + 1. (B.7)

In other words,

conv(νR(J1)) = {x ∈ R2 : `i(x) ≥ 0, for all i ∈ [4]}.
In addition, notice that

`i(x1, x2) = σi(x1, x2) + pi(x1, x2) =
1

2
`2i (x1, x2) + (−1)ix1x2 −

1

2
(x2

1 + x2
2 − 1), for all i ∈ [4] ,

where σi(x1, x2) = 1
2`

2
i (x1, x2) ∈ Σ2 and pi(x1, x2) = (−1)ix1x2 − 1

2 (x2
1 + x2

2 − 1) ∈ J1, for all

i ∈ [4] (since x1x2 = x1x2 · f3 − x2 · f1 − x1 · f2 ∈ J1). That is, the polynomial `i is 1-sos mod J1,

for all i ∈ [4]. Thus, in this scenario, all the theta body relaxations coincide with the unit `1-ball.

At the end of Subsection B.2, we generalize the above result to the unit-`1-norm balls in Rn,

with n ∈ N.

Remark B.2. Lasserre’s method is another sum-of-squares method for obtaining the hierarchy of

convex relaxations of the set conv (νR (J )), see [102]. Let J be a polynomial ideal generated by the
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basis {f1, f2, . . . , fm}. In this scenario, instead of considering all affine polynomials nonnegative

on νR(J ), one considers affine polynomials ` of the form

` (x) = σ (x) +

m∑
i=1

gi (x) fi (x) , (B.8)

where σ ∈ Σ2k and gifi ∈ R [x]2k, for a fixed positive integer k. In this case, polynomial ` is called

k-sos mod {f1, f2, . . . , fm}. Notice that the the polynomial ` in (B.8) is nonnegative on νR(J ),

since σ(x) ≥ 0 and fi(x) = 0, for all x ∈ νR(x) and all i ∈ [m].

Although theta bodies and Lasserre’s method are closely related, in general they result in

different sets of hierarchical relaxations. Lasserre’s relaxations depend on the choice of the basis of

the ideal. Therefore, different bases will in general provide different sets of hierarchical relaxations.

On the other side, the theta bodies do not depend on the choice of the basis of the ideal and thus

are more natural if one is interested in the geometry of νR (J ) and conv (νR (J )). However, one

has to compute a Gröbner basis of J which can be a challenging task – Buchberger’s algorithm

for computing a Gröbner basis of a given polynomial ideal has a double exponential worst case

complexity, see [5].

In addition, notice that even if {f1, f2, . . . , fm} is a Gröbner basis of the ideal, Lasserre’s relax-

ations in general differ from theta bodies since for a fixed positive integer k, Lasserre’s relaxation

has additional degree restriction on the polynomial p (x) =
∑m
i=1 gi (x) fi (x) ∈ J .

We remark that tensor completion via Lassere’s relaxations has been analyzed in [4].

B.2. Gröbner bases

In this section we present the monomial orderings and the Gröbner bases. All the results are

stated without proofs which can be found together with the definitions in [36, 37].

To compute a Gröbner basis of a polynomial ideal in R [x] = R [x1, x2, . . . , xn] we need to fix

a monomial ordering. In the following we introduce the lexicographic (lex), graded lexicographic

(grlex), and graded reverse lexicographic (grevlex) ordering. For further details on monomial or-

derings, we refer the interested reader to [36, 37].

Definition B.3. Let α = (α1, α2, . . . , αn), β = (β1, β2, . . . , βn) ∈ Zn≥0 and the vector difference

α− β ∈ Zn. With xα we denote the monomial xα1
1 xα2

2 · · ·xαnn . Then we write

1) xα >lex xβ if in α− β the leftmost nonzero entry is positive.

2) xα >grlex xβ if |α| = ∑n
i=1 αi > |β| =

∑n
i=1 βi or |α| = |β| and α >lex β.

3) xα >grevlex xβ if |α| > |β| or |α| = |β| and the rightmost nonzero entry of α − β is

negative.

Notice that all three monomial orderings induce the variable order x1 > x2 > · · · > xn.

Example B.4. We order the terms of polynomial f(x, y, z) = 5x3−7xz2 +2xy2−3y2z+yz−z4 ∈
R [x, y, z] in decreasing order with respect to different monomial orderings

(1) lex: 5x3 + 2xy2 − 7xz2 − 3y2z + yz − z4

(2) grlex: −z4 + 5x3 + 2xy2 − 7xz2 − 3y2z + yz

(3) grevlex: −z4 + 5x3 + 2xy2 − 3y2z − 7xz2 + yz.
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A Gröbner basis is a particular kind of generating set of a polynomial ideal. It was first intro-

duced in 1965 in the Phd thesis of Buchberger [17] together with the algorithm for transforming

a given generator set of a polynomial ideal into a Gröbner basis, see Algorithm B.1.

Definition B.5 (Gröbner basis). Fix a monomial order. A basis G = {g1, g2, . . . , gs} of a polyno-

mial ideal J ⊂ R [x] is a Gröbner basis (or standard basis) if for all f ∈ R [x] there exist unique

r ∈ R [x] and g ∈ J s.t.

f = g + r (B.9)

and no monomial of r is divisible by any of the leading monomials in G, i.e., by any of the

LM (g1) ,LM (g2) , . . . ,LM (gs).

Notice that since the remainder r in the above definition is unique, a Gröbner basis can be used

to determine whether a certain polynomial belongs to an ideal. That is, a polynomial f ∈ R [x]

as in (B.9) is in the ideal J if and only if r = 0. A Gröbner basis is also one of the main

computational tools in solving systems of polynomial equations [37] and in the elimination theory

[37]. A Gröbner basis is not unique, but the reduced version (defined below) is.

Definition B.6. The reduced Gröbner basis for a polynomial ideal J ∈ R [x] is a Gröbner basis

G = {g1, g2, . . . , gs} for J such that

1) LC(gi) = 1, for all i ∈ [s].

2) no monomial of gi lies in 〈LT(G\{gi})〉, for all i ∈ [s].

In other words, a Gröbner basis G = {g1, g2, . . . , gs} of J is the reduced Gröbner basis of J if

for all i ∈ [s] the polynomial gi ∈ G is monic (i.e., LC(gi) = 1) and its leading monomial LM(gi)

does not divide LM(gj), for any j 6= i.

With f
F

we denote the remainder on division of f by the ordered k-tuple F = (f1, f2, . . . , fk).

If F is a Gröbner basis for an ideal 〈f1, f2, . . . , fk〉, then we can regard F as a set without any

particular order by Definition B.5. Therefore, f
G

= r in Definition B.5.

Next we define the S-polynomial of given polynomials f and g. The S-polynomial plays an

important role in the Buchberger’s algorithm for computing a Gröbner basis of a given polynomial

ideal.

Definition B.7. Let f, g ∈ R [x] be a nonzero polynomials.

(1) If multideg (f) = α and multideg (g) = β, then let γ = (γ1, γ2, . . . , γn), where γi =

max {αi, βi}, for every i. We call xγ the least common multiple of LM (f) and LM (g)

written xγ = LCM (LM (f) ,LM (g)).

(2) The S-polynomial of f and g is the combination

S (f, g) =
xγ

LT (f)
f − xγ

LT (g)
g.

The following result follows directly from Definition B.5 and Division algorithm [37].

Corollary B.8. Fix a monomial ordering and let G = {g1, g2, . . . , gs} ⊂ R [x] be a Gröbner basis

of a polynomial ideal J . A polynomial f ∈ R [x] is in the ideal J if it can be written in the form

f = a1g1 + a2g2 + . . .+ asgs, where ai ∈ R [x], for all i ∈ [s], such that whenever

aigi 6= 0,
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we have

multideg (f) ≥ multideg (aigi) .

The following definition is important in computing a Gröbner basis of a polynomial ideal.

Definition B.9. Fix a monomial order and let G = {g1, g2, . . . , gs} ⊂ R [x]. Given f ∈ R [x], we

say that f reduces to zero modulo G and write

f →G 0

if f can be written in the form f = a1g1 + a2g2 + . . . + asgs, where ai ∈ R [x] for all i ∈ [s], s.t.

whenever

aigi 6= 0,

we have

multideg (f) ≥ multideg (aigi) .

Assume that G in the above definition is a Gröbner basis of a given ideal J . Then a polynomial

f is in the ideal J if and only if f reduces to zero modulo G. In other words, for a Gröbner basis

G,

f →G 0 if and only if f
G

= 0.

Theorem B.10 (Buchberger’s algorithm). Let J = 〈f1, f2, . . . , fk〉 6= {0} be a polynomial ideal.

Then a Gröbner basis of J can be constructed in a finite number of steps via Buchberger’s

algorithm (presented in Algorithm B.1).

By the Hilbert Basis Theorem every polynomial ideal J ⊂ R [x] = R [x1, x2, . . . , xn] has a

finite basis. By the above theorem, a Gröbner basis of a polynomial ideal always exists and can

be computed from a basis of a corresponding polynomial ideal in a finite number of steps via

Buchberger’s algorithm, see Algorithm B.1 and [17, 36, 37]. Therefore, a Gröbner basis is also

finite.

Algorithm B.1. Buchberger’s algorithm

1: Input: Basis F = (f1, f2, . . . , fk) for an ideal J .

2: G := F .

3: repeat

4: G′ := G.

5: for each pair {p, q}, p 6= q in G′

6: S := S (p, q)
G′

7: if S 6= 0

8: G := G ∪ {S}.
9: end if

10: end for

11: until G = G′.
12: Output: Gröbner basis G = {g1, g2, . . . , gs} for J with F ⊂ G.

The following theorem gives a criterion for checking whether a given basis of a polynomial

ideal is a Gröbner basis.
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Theorem B.11 (Buchberger’s criterion). A basis G = {g1, g2, . . . , gs} for a polynomial ideal

J ⊂ R [x] is a Gröbner basis if and only if S (gi, gj)→G 0, for all i 6= j.

Computing whether S (gi, gj) →G 0 for all the possible pairs of polynomials in the basis G
can be a tedious task. The following proposition tells us for which pairs of polynomials this is not

needed.

Proposition B.12. Given a finite set G ⊂ R [x], suppose that we have f, g ∈ G s.t. the leading

monomials of f and g are relatively prime, i.e.,

LCM (LM (f) ,LM (g)) = LM (f) LM (g) .

Then S (f, g)→G 0.

Therefore, to prove that the set G ⊂ R [x] is a Gröbner basis, it is enough to show that

S (gi, gj)→G 0 for those i < j where LM (gi) and LM (gj) are not relatively prime.

Example B.13 (Ideal JM22
from Chapter 4). Let J ⊂ R [x] = R [x11, x12, x21, x22] be an ideal

defined as J = 〈f, g〉, where

f (x) = x12x21 − x11x22

g (x) = x2
11 + x2

12 + x2
21 + x2

22 − 1.

The variable order is x11 > x12 > x21 > x22 regardless of the choice of monomial ordering. In the

following we compute a Gröbner basis G of J (with variable order x11 > x12 > x21 > x22) with

respect to the

(1) graded reverse lexicographic order: Since the leading monomials of polynomials f and g

(LM(f) = x12x21 and LM(g) = x2
11) are relatively prime, then by Proposition B.12 the

Gröbner basis Ggrevlex with respect to the grevlex order is Ggrevlex = {f, g}.
(2) lexicographic order: We start by defining G = {f, g} and computing the S-polynomial

S(f, g)

h1 (x) = S(f, g) =
x2

11x22

−x11x22
(−x11x22 + x12x21)− x2

11x22

x2
11

(x2
11 + x2

12 + x2
21 + x2

22 − 1)

= −x11x12x21 − x2
12x22 − x2

21x22 − x3
22 + x22.

Since LM(h1) = x11x12x21 is not divisible by any of the leading monomials of f and g,

we include the polynomial h1 in the basis G. Next, we compute the S-polynomial of f

and h1

h2 (x) = S(f, h1) = −x2
12x

2
21 − x2

12x
2
22 − x2

21x
2
22 − x4

22 + x2
22.

Similarly to before, since LM(h2) = x2
12x

2
21 is not divisible by any of the leading mono-

mials of f , g, and h1, we add the polynomial h2 in the basis G which is now of the form

G = {f, g, h1, h2}. By above, S(f, g) →G 0 and S(f, h1) →G 0. By Proposition B.12,

we have that S(f, h2) →G 0 and S(g, h2) →G 0. It remains to compute S(g, h1)
G

and

S(h1, h2)
G

S(g, h1) = f ·
(
x2

12 + x2
21 + x2

22 − 1
)
→G 0

S(h1, h2) = x22 · f ·
(
x2

12 + x2
21 + x2

22 − 1
)
→G 0.
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B.2. GRÖBNER BASES APPENDIX B.

Therefore, Glex := {f, g, h1, h2} is the Gröbner basis of the ideal J with respect to the

lexicographic order.

One can show that Glex = {f, g, h1, h2} as in (2) is also the Gröbner basis of the ideal J with

respect to the grlex order. However, Glex is not the reduced Gröbner basis of J , since LC(f) =

LC(h1) = LC(h2) = −1. However, G′lex = {−f, g,−h1,−h2} is the reduced Gröbner basis of the

ideal J with respect to the lexicographic and grlex ordering. On the other hand, Ggrevlex = {f, g}
is already the reduced Gröbner basis of J with respect to the grevlex ordering.

Example B.14 (Continuing the Example B.1). Recall that we are considering an ideal J1 and

the corresponding basis B1

J1 = 〈B1〉 =
〈
x1(x1 − 1)(x1 + 1), x2(x2 − 1)(x2 + 1), x2

1 + x2
2 − 1

〉
.

The basis B1 is not a Gröbner basis of the ideal J2 with respect to the grevlex ordering since

S(x2
1 + x2

2 − 1, x3
1 − x1)

B1

= x1x
2
2. However, recall that we have showed that x1x2 ∈ J2 and thus

B2 := B1 ∪ {x1x2} defines a new basis of J2. Additionally, S(x2
1 + x2

2 − 1, x3
1 − x1) →B2

0. One

can verify that B2 is a Gröbner basis but it is not the reduced Gröbner basis of the ideal J2 since

the leading monomial LM(x2
1 + x2

2 + 1) = x2
1 divides the leading monomial LM(x3

1 − x1) = x3
1.

Moreover, x3
1 − x1 = x1 · (x2

1 + x2
2 − 1)− x2 · (x1x2).

However, eliminating the polynomial x3
1 − x1 from the basis B2 leads to the basis

G1 =
{
x2(x2 − 1)(x2 + 1), x2

1 + x2
2 − 1, x1x2

}
which is the reduced Gröbner basis of the ideal J1.

In Example B.1 we have shown that the theta body relaxations of the unit-`1-norm ball in

R2 coincide with the unit-`1-norm ball. Consequently, the theta body relaxations do not provide

new vector norms. In the following we show that this is true also for the unit-`1-norm ball in Rn,

with n ∈ N.

Example B.15 (the unit-`1-norm ball in Rn). It is easy to see that x ∈ Rn is an extreme point

of the unit-`1-norm ball if and only if

x2
1 + x2

2 + · · ·+ x2
n = 1

xi ∈ {0,−1, 1}, for all i ∈ [n]

xj · xk = 0, for all 1 ≤ j < k ≤ n.

Following the example above, we define an ideal Jn = 〈Gn〉 through its basis

Gn ={g(x) = x2
1 + x2

2 + · · ·+ x2
n − 1,

fi(x) = xi(xi − 1)(xi + 1), i ∈ {2, 3, . . . , n},
hjk(x) = xjxk, 1 ≤ j < k ≤ n}.

Similarly to the previous example, we omitted f1(x) = x3
1−x1 from Gn since x3

1−x1 = x1 ·g(x)−∑n
k=2 h1k(x) ·xk. Clearly, the real algebraic variety νR(Jn) of the ideal Jn is the set of all extreme

points of the unit-`1-norm ball in Rn. We claim that Gn is also the reduced Gröbner basis of the

ideal Jn with respect to the grevlex ordering. Notice that the leading terms of g and fi, as well

as the leading terms of g and hjk with j ≥ 2 are relatively prime. In the following we compute
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the remaining S-polynomials.

S(g, h1k) = x2
2xk + · · ·+ x2

nxk − xk = fk +

k−1∑
i=2

xihik +

n∑
i=k+1

xihki →Gn 0, for k ∈ {2, . . . , n}

S(fj , hjk) = S(fk, hjk) = −xjxk = −hjk →Gn 0, for 1 ≤ j < k ≤ n.

Additionally, all the polynomials in the set Gn are monic. Also, no monomial of p ∈ Gn lies in

〈LT(G\{p})〉, for all p ∈ Gn. Thus, set Gn is the reduced Gröbner basis of the polynomial Jn with

respect to the grevlex ordering.

Next, we compute the theta bodies THk(Jn), for k ∈ N. Recall that a vector x is in the

unit-`1-norm ball in Rn if and only if

x2
1 + x2

2 + · · ·+ x2
n ≤ 1.

Thus, the supporting hyperplanes of the unit-`1-norm ball in Rn are of the form `i(x) = 0, where

`i(x) = (−1)i1x1 + (−1)i2x2 + · · ·+ (−1)inxn + 1 for all i ∈ {0, 1, 2, . . . , 2n − 1},

and i1i2 · · · in is the binary representation of the number i. The unit-`1-norm ball Bn in Rn is

then of the form

Bn = conv(νR(Jn)) = {x : `i(x) ≥ 0, for all i ∈ {0, 1, 2, . . . , 2n − 1}}

and the theta bodies THk(Jn) are defined as

THk(Jn) = {x : `i(x) ≥ 0, for all i ∈ {0, 1, 2, . . . , 2n − 1} s.t. `i is k-sos mod Jn}.

For every i ∈ {0, 1, 2, . . . , 2n − 1} it holds that

`i =
1

2
`2i −

1

2
g +

∑
j<k

(−1)ij+ikhjk


where 1

2`
2
i ∈ Σ2 and p = −

(
1
2g +

∑
j<k(−1)ij+ikhjk

)
∈ Jn. Thus, the polynomial `i is 1-

sos mod Jn for every i and the unit-`1-norm ball coincides with the first theta body TH1(Jn).

Consequently, in this scenario, all theta bodies are equal to the unit-`1-norm ball.
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C.1. Semidefinite programming

Semidefinite programming is a part of convex programming where one minimizes (or maxi-

mizes) a linear objective function over a spectahedron (intersection of the cone of positive semi-

definite matrices with an affine space).

Semidefinite programming is a relatively new field which recently gained a lot of interest

since many practical problems in combinatorial optimization can be modeled or approximated by

semidefinite programs (SDPs). In addition, since SDPs are a special case of cone programming,

they can be solved efficiently via interior point methods, see [166].

A general SDP (also called a primal problem) is of the form

min
X∈Sn

〈C,X〉Sn subject to 〈Ai,X〉Sn = b (i) , i ∈ [m]

X � 0, (P1)

where Sn =
{
X ∈ Rn×n : X = XT

}
and 〈A,B〉Sn = tr

(
BTA

)
=
∑n
i=1

∑n
j=1 A (i, j) B (i, j).

The corresponding dual problem is

max
y∈Rm

〈b,y〉Rm subject to

m∑
i=1

y (i) Ai � C, (D1)

where 〈·, ·〉Rm denotes the standard `2-inner product. It is possible to start with a different primal

problem (maximizing instead of minimizing a linear functional), i.e.

max
X∈Sn

〈C,X〉Sn subject to 〈Ai,X〉Sn = b (i) , i ∈ [m]

X � 0. (P2)

Noticing that maxX∈Sn 〈C,X〉Sn = −minX∈Sn 〈−C,X〉Sn leads to an equivalent primal problem

− min
X∈Sn

〈−C,X〉Sn such that 〈Ai,X〉Sn = b (i) , i ∈ [m]

X � 0.

Then the corresponding dual problem is

− max
y∈Rm

〈b,y〉Rm s.t.

m∑
i=1

y (i) Ai � −C ⇔ min
y∈Rm

〈b,−y〉Rm s.t.

m∑
i=1

(−y(i)) Ai � C.

Applying the substitution w := −y leads to an equivalent SDP

min
w
〈b,w〉Rm s.t.

m∑
i=1

w(i)Ai � C. (D2)
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Definition C.1 ([113]). Let X =

[
A B

BT C

]
be a symmetric matrix in Rn×n, where A is invertible.

Then the matrix

S = C−BTA−1B

is the Schur complement of the block A in X.

The Schur complement of A in X is closely connected to the positive definiteness of the block

matrix X.

Proposition C.2 ([15]). Let X =

[
A B

BT C

]
be a symmetric matrix in Rn×n. If A � 0, then

X � 0 if and only if S � 0, (C.1)

where S is the Schur complement of A in X.

Example C.3 (Matrix operator norm minimization, see [15, 133]). We want to compute the

operator norm of a matrix Z ∈ Rm×n\{0}. In the following, λmax(Z) denotes the largest eigenvalue

of matrix Z and In ∈ Rn×n denotes the identity matrix. We obtain the following equivalent

statements

‖Z‖2→2 ≤ t⇔ λmax

(
ZTZ

)
≤ t2 ⇔ max

‖v‖2=1
vTZTZv ≤ t2 ⇔ max

‖v‖2=1

(
vTZTZv − t2vTv

)
≤ 0

⇔− max
‖v‖2=1

(
vTZTZv − t2vTv

)
≥ 0⇔ min

‖v‖2=1

(
−vTZTZv + t2vTv

)
≥ 0

⇔ min
‖v‖2=1

vT
(
t2In − ZTZ

)
v ≥ 0⇔ t2In − ZTZ � 0.

Applying (C.1) leads to the following SDP for computing the operator norm of a matrix Z

min
t≥0

t such that

[
tIm Z

ZT tIn

]
� 0.

In the following example we show that the matrix nuclear norm is a dual norm of the matrix

operator norm. Recall that in an inner product space, the dual norm ‖·‖d of a given norm ‖·‖
always exists and is defined as

‖X‖d := max
Y
{〈X,Y〉 : ‖Y‖ ≤ 1} . (C.2)

In addition, the dual norm of the norm ‖·‖d is the original norm ‖·‖. The matrix space Rm×n is

equipped with the inner product 〈X,Y〉 = tr
(
YTX

)
.

Example C.4 (Dual norm of the matrix operator norm is the nuclear norm, see [133]). From

Example C.3, a semidefinite characterization of the operator norm is

‖Z‖2→2 = min
t≥0

t such that

[
tIm Z

ZT tIn

]
� 0. (C.3)

Let X = UΣVT be the reduced singular value decomposition of the matrix X ∈ Rm×n, with

U ∈ Rm×r, diagonal Σ ∈ Rr×r, and V ∈ Rn×r, where r denotes the rank of the matrix X. For

a matrix Y := UVT it holds that ‖Y‖2→2 = 1 and 〈X,Y〉 = tr
(
YTX

)
= tr

(
VUTUΣV

)
=

tr (Σ) =
∑r
i=1 σi (X) = ‖X‖∗, where {σi (X)}ri=1 is the set of the singular values of the matrix X.

Therefore, by (C.2) it holds that ‖X‖d ≥ ‖X‖∗, for all X ∈ Rm×n.
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For the upper bound on the dual norm we use the SDP duality theory. Notice that by (C.3)

max
Y
{〈X,Y〉 : ‖Y‖2→2 ≤ 1} ⇔ max

Y
tr
(
YTX

)
s.t.

[
Im Y

YT In

]
� 0. (C.4)

Define matrices Z :=

[
Im Y

YT In

]
, C := 1

2

[
0 X

XT 0

]
, A1 :=

[
1
mIm 0

0 0

]
, and A2 :=

[
0 0

0 1
nIn

]
.

Noticing that 〈Z,A1〉 = 〈Z,A2〉 = 1 leads to a semidefinite program

max
Z
〈C,Z〉 such that 〈A1,Z〉 = 1, 〈A2,Z〉 = 1, Z � 0. (C.5)

Notice that every feasible matrix Y for (C.4) induces a feasible Z for (C.5). The dual problem

corresponding to (C.5) is

min
y

(y (1) + y (2)) such that y (1) A1 + y (2) A2 � C (C.6)

which is equivalent to

min
y

(y (1) + y (2)) such that

[
2y(1)
m Im −X

−XT 2y(2)
n In

]
� 0.

For matrices A ∈ Cm×m, X ∈ Cm×n, and C ∈ Cn×n it holds that

[
A X

XT C

]
� 0 if and only if[

A −X

−XT C

]
� 0 since

[
yT1 yT2

] [ A X

XT C

][
y1

y2

]
=
[
yT1 −yT2

] [ A −X

−XT C

][
y1

−y2

]
, for y =

[
y1

y2

]
.

Thus, the dual problem (C.6) is equivalent to

min
y

(y (1) + y (2)) such that

[
2y(1)
m Im X

XT 2y(2)
n In

]
� 0.

By defining the matrices W1 := 2y(1)
m Im and W2 := 2y(2)

n In we obtain the following semidefinite

program

min
W1,W2

1

2
(tr (W1) + tr (W2)) such that

[
W1 X

XT W2

]
� 0. (C.7)

Recall that X = UΣVT and set W1 := UΣUT and W2 := VΣVT . Then the tuple

(W1,W2,Z) is feasible for (C.7) since[
W1 X

XT W2

]
=

[
U

V

]
Σ
[
UT VT

]
� 0,

and Σ is a diagonal matrix with non-negative entries. Furthermore, the objective function satisfies
1
2 tr(W1 + W2) = ‖X‖∗. Since any feasible solution of (C.7) provides an upper bound for (C.4),

we have that the dual norm is less or equal to the nuclear norm which concludes the proof.

Let σ ∈ Rr denote the vector of singular vales of a given matrix X. By duality theory in

vector space Rr it holds that `1-norm and `∞-norm are dual to each other (see [15]). Then, it
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follows that

‖σ‖1 =

r∑
i=1

σi = ‖X‖∗ is a dual norm to ‖σ‖∞ = max
1≤i≤r

σ (i) = ‖X‖2→2 .

Therefore, the above example is consistent with the duality theory in Rr, see also [15].
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