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Abstract

In this thesis we study the Selberg zeta functions and the analytic torsion of hyperbolic

odd-dimensional orbifolds Γ\H2n+1. In the first part of the thesis we restrict ourselves to

compact orbifolds and establish a version of the Selberg trace formula for non-unitary rep-

resentations of Γ. We study Selberg zeta functions on Γ\H2n+1, prove that these functions

admit a meromorphic continuation to C and describe their singularities. In the second part

we define the analytic torsion of a compact orbifold Γ\H2n+1 associated to the restriction

of a certain representation of G to Γ. Further we investigate the asymptotic behavior of

this torsion with respect to special sequences of representations of G. In the third part

we extend the results of the second part to hyperbolic odd-dimensional orbifolds of finite

volume under the assumption that the orbifold is 3-dimensional.

Our work generalizes the results of Müller to compact orbifolds, results of Bunke and

Olbrich to compact orbifolds and non-unitary representations of Γ, and results of Müller

and Pfaff to compact and finite-volume 3-dimensional orbifolds.
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Chapter 1

Introduction

This thesis deals with two aspects of the geometry and spectral theory on hyperbolic odd-

dimensional orbifolds Γ\H2n+1. First, it is the Selberg zeta function associated to a possibly

non-unitary representation of Γ and a unitary representation of SO(2n). The second aspect

is the analytic torsion of Γ\H2n+1 with respect to certain representations of Γ.

Throughout this thesis we letO be a hyperbolic odd-dimensional orbifoldO = Γ\H2n+1;

in Chapters 3-5 we assume it is compact, and in Chapter 6 we allow it to be of finite volume,

but restrict ourselves to the 3-dimensional case.

1.1 Twisted Selberg trace formula and twisted Sel-

berg zeta function for odd-dimensional compact

orbifolds

Our first main topic is the twisted Selberg trace formula and twisted Selberg zeta functions.

The Selberg zeta function was introduced by Selberg as an analogue of the Riemann zeta

function where the prime numbers are replaced by the lengths of primitive closed geodesics

l(γ) on a hyperbolic surface:

Z(s) :=
∑
γ

∞∑
k=0

(1− e−(s+k)l(γ)), Re(s) > 1.

The Selberg trace formula allows to prove the meromorphic extension of Z(s) to C, a

functional equation, formulas for the poles and zeros and an analogue of the Riemann

hypothesis [Sel56].
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Given an odd-dimensional hyperbolic orbifold O = Γ\H2n+1, we define a more general

Selberg zeta function Z(s, σ, χ) twisted by finite-dimensional representations χ of Γ and σ

of SO(2n).

The Selberg zeta function Z(s, σ, χ) is defined by an infinite product which only con-

verges in some half plane, and a crucial step in its investigation is to show that it admits

a meromorphic continuation to the entire complex plane.

Theorem 1.1.1. Suppose O = Γ\H2n+1 is a compact odd-dimensional hyperbolic orbifold,

χ is a (possibly non-unitary) finite-dimensional representation of Γ, and σ is a unitary

finite-dimensional representation of SO(2n). Then the Selberg zeta function Z(s, σ, χ)

admits a meromorphic continuation to C.

The logarithmic derivative Z ′(s, σ, χ)/Z(s, σ, χ) is only defined in some half plane and

the key result is that the logarithmic derivative admits a meromorphic extension to C with

integer residues. This implies that the zeta function itself admits a meromorphic extension

to C; the idea of the proof goes back to Selberg [Sel56]. If O is a compact hyperbolic

manifold and σ is unitary, this was proven in [BO95]. Later on their result was extended

to non-compact finite volume hyperbolic manifolds with cusps in the case when χ is unitary

[GP10] and when χ is a restriction of a representation of SO0(1, 2n + 1) [Pfa12]. Using

a slightly different approach, the theorem was proved in [Tsu97] for compact orbifolds

when χ and σ are trivial representations. Notably, the theorem does not necessarily hold

for non-compact finite volume hyperbolic orbifolds: an example is the Bianchi orbifold

of discriminant −3 with χ and σ trivial [Fri05], however, it holds for a certain power

of the Selberg zeta function. The approach of [BO95, Pfa12, GP10] is due to Selberg

and invokes applying the Selberg trace formula to a certain test function which makes

Z ′(s, σ, χ)/Z(s, σ, χ) appear as one of the terms in the geometric side of the formula. In

order to adopt their approach we need to prove a more general version of the Selberg trace

formula.

The Selberg trace formula has a rich history starting from the classical work [Sel56],

but has mostly been constrained to unitary representations χ of Γ. The non-unitary case

was first studied in [Mül11] under the assumption that Γ contains no non-trivial elements

of finite order, also called elliptic elements, which means O is a compact manifold. We

drop this restriction on Γ and prove:

Theorem 1.1.2. Let G be a connected real semisimple Lie group of non-compact type with

finite center, K a maximal compact subgroup of G, and Γ ⊂ G a discrete subgroup such that
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O := Γ\G/K is a compact orbifold. Let χ be a (possibly non-unitary) finite-dimensional

representation of Γ, and ν be a unitary finite-dimensional representation of K. For the

non-selfadjoint Laplacian ∆#
χ,ν defined in Subsection 3.3.2 and ϕ belonging to the space of

Payley-Wiener functions PW (C) defined in Section 3.2,∑
λ∈spec(∆#

χ,ν)

m(λ)ϕ(λ1/2) =
∑
{γ}⊂Γ

vol(Γγ\Gγ)Eγ(hϕ).

Above m(λ) is the multiplicity of λ; {γ} denotes the conjugacy class of γ ∈ Γ; Gγ and Γγ

are the centralizers of γ in G and Γ, respectively. Finally, Eγ(hϕ) are the orbital integrals,

defined by

Eγ(hϕ) :=

∫
Gγ\G

trhϕ(gγg−1)dġ,

where hϕ is the integral kernel of the operator ϕ(∆̃
1/2
ν ) defined in (3.30).

To complete the proof of Theorem 1.1.1 we apply Theorem 1.1.2 to the case G/K ∼=
H2n+1. The major remaining problem is to calculate the orbital integrals Eγ(hϕ) for the

elliptic elements γ ∈ Γ.

Lemma 1.1.3. In the above setup G/K ∼= H2n+1, the orbital integral Eγ(hϕ) for elliptic

γ ∈ Γ equals

Eγ(hϕ) =
∑

σ′∈ ̂SO(2n)

∫
R

Θσ′,λ(ϕ)P γ
σ′(iλ)dλ,

where ŜO(2n) is the unitary dual of SO(2n), Θσ′,λ(ϕ) is the character of the unitarily

induced representation πσ′,λ of G, and P γ
σ′(λ) is a certain even polynomial in λ.

Orbital integrals have so far been computed for G/K ∼= H2, H3 and H2n in [GGPS68],

[Kna01] and [SW73] respectively. The computation of orbital integrals is not only useful

for the proof of Theorem 1.1.1, but also for other applications of the Selberg trace formula.

As a by-product of the proof of Theorem 1.1.2 we obtain the following theorem about

the heat trace asymptotics:

Theorem 1.1.4. Let E → O be an orbibundle over a good Riemannian orbifold O =

GU\Ũ , where Ũ is a compact manifold and GU is a finite group of orientation-preserving

isometries of Ũ . Let K(t, x, y) be the heat kernel from Definition 4.1.1. Then the following

holds: as t→ 0, ∫
O

trK(t, x, x) dvolO(x) ∼ Ie(t) +
∑

γ∈GU ,γ 6=e

Iγ(t),
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where

Ie(t) ∼ t− dim(O)/2

∞∑
k=0

akt
k, t→ 0,

Iγ(t) ∼ t− dim(Nγ)/2

∞∑
k=0

aγkt
k, t→ 0.

Above ak, a
γ
k are some coefficients in C, and Nγ is the fixed point set of γ in Ũ .

1.2 Analytic torsion for compact orbifolds

Our second main result is the following theorem.

Theorem 1.2.1. Define a pseudopolynomial of degree p to be a sum of the following form:

p∑
j=0

K∑
k=0

Cj,km
jeimφj,k .

Let O = Γ\H2n+1 be a compact hyperbolic orbifold. For m ∈ N, let τ(m) be the finite-

dimensional irreducible representation of SO0(1, 2n + 1) from Definition 2.6.2 and τ ′(m)

be the restriction of τ(m) to Γ. Let Eτ(m)′ → O be the associated flat vector orbibundle,

and denote by TO(τ(m)) its analytic torsion. Then there exists C > 0 such that

log TO(τ(m)) = PI(m) + PE(m) +O(e−Cm), m→∞.

Above, PI(m) is a polynomial in m of degree n2+n+2
2

and PE(m) is a pseudo-polynomial

in m of degree ≤ d2+d+2
2

with 2d+ 1 being the maximal dimension of the fixed point set of

Γ in H2n+1.

A similar result was proved for a finite volume hyperbolic manifold [MP11].

Remark 1.2.2. Our result differs from [MP11] by a term PE(m) that does not appear

when O is a manifold.

As a by-product of the proof we obtain the following theorem:

Theorem 1.2.3. Let O = GU\Ũ be a good compact Riemannian orbifold, not necessarily

hyperbolic, E → O an associated flat orbibundle. Pick a Hermitian fiber metric h in E.

Let g(u), u ∈ [0, 1] be a smooth family of metrics on O with g = g(0) as in Definition 5.2.1

and let ∆k(u) be the family of Hodge-Laplacians acting on E-valued k-form. Assume that

ker ∆k(u) = ∅; moreover, assume that both O and all the fixed point sets of GU in Ũ are

odd-dimensional. Then the analytic torsion TO(h, g(u)) does not depend on u.
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Theorem 1.2.3 automatically holds for manifolds by Cheeger-Mueller theorem and of

orbifolds is of interest on its own: it is an important problem to understand the relation

between the analytic and the Reidemeister torsions for orbifolds. If they were equal, The-

orem 1.2.1 would imply the exponential growth of torsion in the cohomology of cocompact

arithmetic groups [MP14, MM11]. In turn, any reasonable relation between the analytic

and the Reidemeister torsions can be expected to imply that the former does not depend

on the variation of the metric; this is shown in Theorem 1.2.3 under certain restrictions.

The proof of Theorem 1.2.1 is based on [MP11] but requires an additional component,

namely Theorem 1.2.3. Let τ(m) and Eτ(m) → O be as above; the vector orbibundle

Eτ ′(m) → O can be equipped with a canonical Hermitian fibre metric [MM63, Proposition

3.1]. Let ∆p(τ(m)) be the Laplace operator on Eτ ′(m)-valued p-forms with respect to the

metric on Eτ ′(m) and the hyperbolic metric on O; its kernel vanishes for sufficiently large

m. Denote

K(t, τ(m)) :=
2n+1∑
p=0

(−1)ppTr
(
e−t∆p(τ(m))

)
, (1.1)

then the analytic torsion is given by

log TO(τ(m)) =
1

2

d

ds

(
1

Γ(s)

∫ ∞
0

ts−1K(t, τ(m))dt

)∣∣∣∣
s=0

. (1.2)

We will now describe a rough plan of the proof of Theorem 1.2.1. As a simple corollary of

Theorem 1.2.3, we can scale the metric g on O and hence replace ∆p(τ(m)) by 1
m

∆p(τ(m))

in (1.1) and (1.2). Splitting the integral in (1.2) over [0,∞) into the integrals over [0, 1)

and [1,∞), we obtain

log TO(τ(m)) =
1

2

d

ds

(
1

Γ(s)

∫ 1

0

ts−1K

(
t

m
, τ(m)

)
dt

)∣∣∣∣
s=0

+
1

2

∫ ∞
1

ts−1K(t, τ(m))dt.

It follows from [MP11] that the second term is O(e−m/8) as m→∞; to estimate the first

term we use the Selberg trace formula. For this we construct a smooth K-finite function

k
τ(m)
t on SO0(1, 2n+ 1) such that

K(t, τ(m)) =

∫
Γ\SO0(1,2n+1)

∑
γ∈Γ

k
τ(m)
t (g−1γg)dġ.

By the Selberg trace formula for compact orbifolds,

K(t/m, τ(m)) = I(t/m, τ(m)) +H(t/m, τ(m)) + E(t/m, τ(m)),
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where I(t/m, τ(m)), H(t/m, τ(m)) and E(t/m, τ(m)) are the contributions from the iden-

tity, hyperbolic and elliptic elements of Γ, respectively. Note E(t, τ(m)) vanishes if O is a

smooth manifold. Analogously to [MP11], there exist m0, C, c1 > 0 such that

|H(t/m, τ(m))| ≤ Ce−c1m

for all m ≥ m0 and 0 < t ≤ 1. Recall that I(t, τ(m)) = vol(O)k
τ(m)
t (1). We can switch back

from t/m to the variable t, then the contribution from the identity element to log TO(τ(m))

is given by
vol(O)

2

d

ds

(
1

Γ(s)

∫ ∞
0

ts−1k
τ(m)
t (1)dt

)∣∣∣∣
s=0

,

As in [MP11] we apply the Plancherel formula to k
τ(m)
t (1) and use the properties of

Plancherel polynomials. We are left with the contribution from the elliptic elements. An

important ingredient is now to apply the result of Lemma 1.1.3. Using the properties of

P γ
σ (iν), we obtain Theorem 1.2.1.

We would like to apply this result to study the Reidemeister torsion, but this shall

require further work, because there is no Cheeger-Müller theorem for orbifolds. However,

there are partial results avaliable [ARS14, Ver14].

1.3 Analytic torsion for finite volume orbifolds

Many important arithmetic groups are not cocompact, for example SL(2,Z ⊕ iZ), so our

third goal is to generalize Theorem 1.2.1 to hyperbolic odd-dimensional 3-orbifolds of finite

volume:

Theorem 1.3.1. Let O = Γ \ H3 be a hyperbolic orbifold of finite volume with Γ ⊂ SO0(1, 3).

For m ∈ N, let τ(m) be a finite-dimensional irreducible representation of SO0(1, 3) from

Definition 2.6.2 and τ ′(m) be the restriction of τ(m) to Γ. Let Eτ(m)′ → O be the asso-

ciated flat vector orbibundle, and denote by TO(τ(m)) its analytic torsion as in Definition

6.4.2. Then

log TO(τ(m)) = − 1

2π
· vol(O) ·m · dim(τ(m)) +O(m · log(m)) (1.3)

as m→∞.

Let us now describe the proof of Theorem 1.3.1. The first problem is to define the

analytic torsion. Let ∆p(τ(m)) be the Hodge-Laplacian on the space of Eτ(m)′-valued p-

forms as in Section 6.4. Since the heat operator e−t∆p(τ(m)) is not of trace class, we cannot
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define the analytic torsion via the usual zeta function regularization. However we can

define a regularized trace Trrege
−t∆p(τ(m)) as in [Par09] or [MP12] in the spirit of b-calculus

of Melrose. It equals the spectral side of the Selberg trace formula applied to the heat

operator e−t∆p(τ(m)). This provides the asymptotic expansions of Trrege
−t∆p(τ(m)) of certain

type as t → +0 and as t → ∞. The existence of these expansions allows us to define

the spectral zeta function ζp(s; τ(m)) as in the case of compact manifolds via the Mellin

transform of the regularized trace. Moreover, as in the compact case the zeta function

ζp(s; τ(m)) is regular at s = 0, and we can define the analytic torsion TO(τ(m)) ∈ C with

respect to Eτ by

TO(τ(m)) := exp

 1

2

3∑
p=0

(−1)pp
d

ds
ζp(s; τ(m))

∣∣∣∣∣
s=0

. (1.4)

Note that for sufficiently large m the operator ∆p(τ(m)) > 0. Let

K(t, τ(m)) :=
3∑
p=0

(−1)p pTrreg(e
−t∆p(τ(m))).

As the spectral zeta function ζp(s; τ(m)) is expressed via the Mellin transform of the heat

kernel K(t, τ(m)), we need to compute the Mellin transform of K(t, τ(m)) at 0 to study

the analytic torsion. For this we use the invariant Selberg trace formula [Hof99] to express

K(t, τ(m)) as:

K(t, τ(m)) = I(t; τ(m)) +H(t; τ(m)) + T (t; τ(m))+

I(t; τ(m)) + J(t; τ(m)) + E(t; τ(m)) + Ecusp(t; τ(m)) + J cusp(t; τ(m)),
(1.5)

where I(t; τ(m)), H(t; τ(m)), and E(t; τ(m)) are the contributions of identity, hyperbolic

and elliptic conjugacy classes of Γ, respectively; T (t; τ(m)), I(t; τ(m)) and J(t; τ(m)) are

tempered distributions which are constructed out of the parabolic conjugacy classes of Γ;

Ecusp(t; τ(m)) and J cusp(t; τ(m)) are tempered distributions appearing due to the presence

of non-unipotent stabilizers of the cusps of O. Now we evaluate the Mellin transform of

each term separately. It turns out that the leading term of the asymptotic expansion (6.23)

comes from MI(τ(m)), which is a Mellin transform of I(t; τ(m)) evaluated at zero. It was

proved in [MP12] that the contribution of H(t; τ(m))+T (t; τ(m))+I(t; τ(m))+J(t; τ(m))

to the analytic torsion TO(τ(m)) is of order O(m log(m)). The contribution of elliptic

elements to TO(τ(m)) was studied in Theorem 5.4.17 and does not affect the leading term

of (6.23) as well. We are left with studying J cusp(t; τ(m)) and Ecusp(t; τ(m)). The former
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distribution can be treated in a similar way as J cusp(t; τ(m)). The latter distribution is

invariant and its Fourier transform was computed explicitly by Hoffmann [Hof97], which

allows us to study its Mellin transform.

1.4 Structure of the thesis

This thesis is organized as follows. In Chapter 2, we fix notations and collect some facts

about orbifolds, representation theory and Selberg theory. In Chapter 3, we prove the non-

unitary Selberg trace formula, calculate the orbital integrals associated to elliptic elements,

introduce Selberg zeta functions, establish their convergence in some half plane and prove

that they admit meromorphic continuations to the whole complex plane. In Chapter 4,

we calculate the heat trace asymptotics on a good orbifold. In Chapter 5, we show the

invariance of the analytic torsion on a compact orbifold under variations on the metric and

prove the result about the asymptotic behavior of the former. In Chapter 6, we introduce

the relative analytic torsion, study the Fourier transform of distributions appearing in the

relevant trace formula and prove the result about the asymptotic behavior of the relative

analytic torsion.
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Chapter 2

Preliminaries

This chapter contains the preliminary information for the subsequent proofs. The list of

dependencies is as follows:

1. to prove Theorem 1.1.1, we need Sections 2.1, 2.2, 2.3.1, 2.4, 2.5, 2.6;

2. to prove Theorem 1.2.1, we additionally need Sections 2.7, 2.11 and 2.12;

3. finally, to prove Theorem 1.3.1, we additionally need Sections 2.3.2, 2.8, 2.9 and 2.10.

2.1 Orbifolds and orbibundles

Definition 2.1.1. Let Ũ be a Riemannian manifold and GU be a discrete group of isome-

tries acting effectively on Ũ . Let GU act properly discontinuous, that is for any x, y ∈ Ũ
there exist Ux ⊃ x and Uy ⊃ y such that

{g ∈ GU : (g · Ux) ∩ Uy 6= ∅}

is finite. Then GU\Ũ is a good Riemannian orbifold.

Throughout the thesis we assume that the orbifolds we are dealing with are good.

Definition 2.1.2. Let Q be a topological space. An orbifold chart on Q is a triple (Ũ , GU , φU),

where Ũ is a connected open subset in Rn, GU is a finite group, φU : Ũ → Q is a map with

an open image φU(Ũ) which induces a homeomorphism from GU\Ũ to φU(Ũ). Further we

put U := φU(Ũ). In this case, (Ũ , GU , φU) is said to uniformize U .
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Definition 2.1.3. Define λ to be a smooth embedding between two orbifold charts (Ũ1, G1, ϕ1)

and (Ũ2, G2, ϕ2), if λ is a smooth embedding between Ũ1 and Ũ2 such that ϕ2 ◦λ = ϕ1. Two

orbifolds charts (Ũi, Gi, ϕi) uniformizing Ui, i = 1, 2 are called compatible if for any point

x ∈ U1 ∩U2 there exists an open neighborhood V of x and an orbifold chart (Ṽ , H, φ) of V

such that there are two smooth embeddings λi : (Ṽ , H, φ)→ (Ũi, Gi, ϕi), i = 1, 2.

Definition 2.1.4. An orbifold atlas on an orbifold O is a collection of pairwise compatible

orbifold charts (Ũi, Gi, ϕi) uniformizing Ui with i ∈ I such that O = ∪i∈IUi.

Definition 2.1.5. Two orbifolds atlaces are equivalent if their union is an orbifold atlas.

An orbifold structure on O is an equivalent class of orbifold atlaces on O.

Definition 2.1.6. Let O = GW\W̃ be an orbifold. The vector orbibundle E → O, associ-

ated to a representation ρ : GW → End(Vρ) is defined as

E := GU\(W̃ × Vρ)→ GU\W̃ ,

where GW acts on (w, v) ∈ W̃ × Vρ as follows:

g : (w, v) 7→ (gw, ρ(g)v), g ∈ GW .

Definition 2.1.7. We define smooth sections of the orbibundle E as

C∞(O, E) = {f ∈ C∞(W̃ , Vρ), f(γx) = ρ(γ)f(x), x ∈ W̃ , γ ∈ GW}.

Definition 2.1.8. Let F be a fundamental domain for the action of GU on W̃ . Then

C∞c (O, E) = {f ∈ C∞(O, E), supp(f |F ) is compact}.

Remark 2.1.9. Note that the definition above does not depend on the choice of a funda-

mental domain F .

For more details we refer to [Sch13].

2.2 Lie groups

Let G = SO0(1, 2n+ 1), K = SO(2n+ 1). Let G = NAK be an Iwasawa decomposition of

G with respect to K. For each g ∈ G there are uniquely determined elements n(g) ∈ N ,

a(g) ∈ A, κ(g) ∈ K such that

g = n(g)a(g)κ(g).
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Let M be the centralizer of A in K, thus

M = SO(2n).

Denote the Lie algebras of G, K, A, M and N by g, k, a, m and n, respectively. Define

the Cartan involution θ : g→ g by

θ(Y ) = −Y t, Y ∈ g,

and let

g = k⊕ p

be the Cartan decomposition of g with respect to θ. Let H : G→ a be defined by

H(g) := log a(g). (2.1)

There is a G-invariant metric on G/K which is unique up to scaling. Suitably normalized,

it is the hyperbolic metric, and G/K is isometric to H2n+1.

Denote by Ei,j the matrix in g whose (i, j)’th entry is 1 and the other entries are 0. Let

H1 := E1,2 + E2,1,

Hj :=
√
−1 · (E2j−1,2j − E2j,2j−1), j = 2, . . . , n+ 1.

Then a = RH1, where a is from Subsection 2.2.

Definition 2.2.1. Define

A+ = {exp(tH1), t > 0}.

Let b =
√
−1 · RH2 + . . . +

√
−1 · RHn+1 be the standard Cartan subalgebra of m.

Moreover, h = a⊕b is a Cartan subalgebra of g. Denote by hC, gC,mC, bC, kC the complex-

ification of h, g,m, b, k, respectively. Define ei ∈ h∗C with i = 1, . . . , n+ 1, by

ei(Hj) = δi,j, 1 ≤ i, j ≤ n+ 1. (2.2)

The sets of roots of (gC, hC) and (mC, bC) are given by

∆(gC, hC) = {±ei ± ej, 1 ≤ i < j ≤ n+ 1},

∆(mC, bC) = {±ei ± ej, 2 ≤ i < j ≤ n+ 1}.
(2.3)

We fix a positive systems of roots by

∆+(gC, hC) = {ei ± ej, 1 ≤ i < j ≤ n+ 1},

∆+(mC, bC) = {ei ± ej, 2 ≤ i < j ≤ n+ 1}.
(2.4)
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The half-sum of the positive roots ∆+(mC, bC) equals

ρM =
n+1∑
j=2

ρjej, ρj = n+ 1− j. (2.5)

Let M ′ be the normalizer of A in K, and let

W (A) = M ′/M (2.6)

be the restricted Weyl group. It has order 2 and acts on finite-dimensional representations

of M [Pfa12, p. 18]. Denote by w0 the non-identity element of W (A).

2.3 Hyperbolic orbifolds

Consider a discrete subgroup Γ ⊂ G, G = SO0(1, 2n+ 1) such that Γ\G has finite volume.

2.3.1 Compact hyperbolic orbifolds

In Chapters 3 and 5, we consider compact hyperbolic orbifolds Γ\H2n+1. Compactness

implies that all non-identity elements of Γ are either hyperbolic or elliptic.

Definition 2.3.1. An element γ ∈ Γ is called hyperbolic if

l(γ) := inf
x∈H2n+1

d(x, γx) > 0,

where d(x, y) denotes the hyperbolic distance between x and y.

Remark 2.3.2. Some authors use the term ”loxodromic” instead of ”hyperbolic”.

Lemma 2.3.3. [Wal93, Lemma 6.6] For hyperbolic γ there exists g ∈ G, mγ ∈ SO(2n),

aγ ∈ A+, where A+ is from Definition 2.2.1, such that

gγg−1 = mγaγ.

Here aγ is unique, and mγ is determined up to conjugacy in SO(2n).

Definition 2.3.4. A non-identity element γ ∈ Γ is called elliptic if it is of finite order.
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An alternative definition is the following: an element γ is elliptic if and only if it is

conjugate to a non-identity element in K, so without loss of generality we may assume γ

is of the form:

γ = diag (

k︷ ︸︸ ︷
( 1 0

0 1 ) , . . . , ( 1 0
0 1 ),

n−k+1︷ ︸︸ ︷
Rφk+1

, . . . , Rφn+1), (2.7)

where n − k + 1 6= 0 and Rφ =
(

cosφ sinφ
− sinφ cosφ

)
, φ ∈ (0, 2π). There is an even number of

eigenvalue 1 in (2.7), because an element γ should belong to SO0(1, 2n+ 1).

Proposition 2.3.5. The fixed point set of an elliptic element, acting on H2n+1, is odd-

dimensional.

Proof. It follows from (2.7) that the fixed point set of γ in R2n+2 is even-dimensional;

since H2n+1 is of co-dimension one in R2n+2, the fixed point set of γ in H2n+1 is odd-

dimensional.

Definition 2.3.6. An elliptic element γ is regular if the centralizer Gγ of γ in G is iso-

morphic to SO0(1, 1)× SO(2)n−1.

Remark 2.3.7. The calculation of the ordinary and weighted orbital integrals correspond-

ing to elliptic elements appearing in the right hand side of the Selberg trace formula depends

on whether an elliptic element is regular or not; see Subsection 3.3.5 and Section 6.2.

2.3.2 Finite volume hyperbolic orbifolds

In Chapter 6, we consider finite volume hyperbolic 3-dimensional orbifolds that are not

necessarily compact. This requires additional preliminary information about the group Γ.

Let P be a fixed set of representatives of Γ-conjugacy classes of cuspidal parabolic sub-

groups of G. If Γ\H3 is of finite volume, then the number of cusps κ := #P is finite.

Without loss of generality we can assume that P0 := MAN ∈ P. For every P ∈ P, there

exists kP ∈ K such that

P = NPAPMP (2.8)

with NP = kPNk
−1
P , AP = kPAk

−1
P , and MP = kPMk−1

P .

Definition 2.3.8. Let ZΓ be the center of Γ. The group Γ is neat if

Γ ∩ P = ZΓ · Γ ∩NP

for every P ∈ P.
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Note that the structure of a cusp corresponding to a cuspidal parabolic subgroup P ∈ P

depends on Γ ∩ P . If Γ is neat, then the cross-section of a cusp P is a torus. The known

results about the analytic torsion of Γ\H3 require that Γ is neat [MP11, Par09]. As this

excludes various important arithmetic groups, we would like to drop this condition and

allow Γ to be not neat. For example, we allow Γ to have elements of the following type:

Definition 2.3.9. Let γ ∈ Γ be an elliptic element. If there exists P ∈ P such that

γ ∈ Γ ∩ P , then γ is called a cuspidal elliptic element.

Example 2.3.10. Let G = SL2(C), then the group Γ = PSL2(Z⊕ (−1 + i
√

3)Z/2) is not

neat, as
(

(−1+i
√

3)/2 0

0 (1+i
√

3)/2

)
is a cuspidal elliptic element. The cross-section of the only

cusp is an orbifold with 3 singular points of order 3.

Recall that a Levi component L of P0 is a centralizer of A in G, thus L = MA. In order

to formulate the Selberg trace formula for the case of finite volume orbifolds, we need to

introduce the following set of elements of Γ:

Definition 2.3.11. Denote by ΓM(P0) the set of projections to L of Γ ∩ P0.

Remark 2.3.12. By [War79, p. 5], Γ∩P0 ⊂MN , hence ΓM(P0) ⊂M . This implies that

the set ΓM(P0) is finite and each of its elements is of finite order.

We recall the following lemma [Sel56]:

Lemma 2.3.13. A finitely generated group Γ of matrices over a field of characteristic zero

has a normal torsion-free subgroup Γ0 of finite index.

2.4 Normalization of measures

We normalize the Haar-measure on K such that K has volume 1. For t ∈ R, we let

a(t) := exp (tH1). (2.9)

Note that for any a ∈ A there exists a unique t ∈ R such that (2.9) holds. We define the

Haar measure on N as follows: first, we note that the Lie algebra n of N is isometric to

R2n with respect to the inner product

〈X, Y 〉θ := − 1

2(d− 1)
B(X, θ(Y )). (2.10)
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Second, we identify n and N by the exponential map; the definition of the measure dn on

N follows from the previous two identifications. We normalize the Haar measure on G by

setting ∫
G

f(g)dg =

∫
N

∫
R

∫
K

e−2ntf(na(t)k)dkdtdn. (2.11)

Remark 2.4.1. The letter n in e−2nt corresponds to the dimension of H2n+1, whereas the

same letter in f(na(t)k) denotes the element of N .

2.5 Locally homogeneous vector bundles

Let ν : K → GL(Vν) be a finite-dimensional unitary representation of K on (Vν , 〈·, ·〉ν).

Definition 2.5.1. [Mia80, p.4] Denote by

Ẽν := (G× Vν)/K → G/K

the associated homogeneous vector bundle, where K acts on G× Vν by

(g, v)k = (gk, ν(k−1)v), g ∈ G, k ∈ K, v ∈ Vν .

Denote by C∞(G/K, Ẽν) the space of smooth sections of Ẽν. Let C∞0 (G/K, Ẽν) be the

sections of Ẽν with compact support.

Note that 〈·, ·〉ν induces a G-invariant metric on Ẽν . Denote by L2(G/K, Ẽν) the space

of L2-sections of Ẽν . Let

C∞(G; ν) := {f : G→ Vν | f ∈ C∞, f(gk) = ν(k−1)f(g), g ∈ G, k ∈ K};

C∞(Γ\G; ν) := {f ∈ C∞(G; ν), f(γg) = f(g) g ∈ G, γ ∈ Γ}.
(2.12)

Similarly, we denote by C∞c (G; ν) the subspace of compactly supported functions in C∞(G; ν)

and by L2(G; ν) the completion of C∞c (G; ν) with respect to the inner product

〈f1, f2〉 =

∫
G/K

〈f1(g), f2(g)〉dġ.

Proposition 2.5.2. [Mia80, p. 4] There is a canonical isomorphism

C∞(G/K, Ẽν) ∼= C∞(G; ν). (2.13)

Similarly, there are isomorphisms C∞c (G/K, Ẽν) ∼= C∞c (G; ν) and L2(G/K, Ẽν) ∼= L2(G; ν).
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Definition 2.5.3. Let ∇ν be the canonical G-invariant connection on Ẽν defined by

∇ν
g∗Y f(gK) :=

d

dt

∣∣∣
t=0

(g exp(tY ))−1f(g exp(tY )K),

where f ∈ C∞(G; ν) and Y ∈ p.

Definition 2.5.4. Denote by ∆̃ν = (∇̃ν)∗∇̃ν the associated Bochner-Laplace operator.

Then ∆̃ν is essentially selfadjoint; denote its selfadjoint extension by the same sym-

bol. Note that ∆̃ν is G-invariant, that is ∆̃ν commutes with the right action of G on

C∞(G/K, Ẽν). Let Ω ∈ Z(gC) and ΩK ∈ Z(kC) be the Casimir elements of G and K,

respectively. Assume that ν is irreducible. Let R denote the right regular representation

of G on C∞(G; ν).

Proposition 2.5.5. [Mia80, Proposition 1.1] With respect to (2.13), we have

∆̃ν = −R(Ω) + λνId, (2.14)

where λν = ν(ΩK) ≥ 0 is the Casimir eigenvalue of ν.

Definition 2.5.6. Let Eν := Γ\Ẽν be the locally homogeneous vector orbibundle over

Γ\G/K induced by Ẽν.

Definition 2.5.7. Let Ãν be the differential operator that acts on C∞(G, ν) by −R(Ω).

Let Aν be its push-forward to C∞(Γ\G, ν).

Proposition 2.5.8. The operator Aν admits a self-adjoint extension in L2(Γ\G, ν).

Proof. Follows from that Γ\G is a complete manifold.

From now on denote this self-adjoint extension of Aν by the same letter. Let e−tAν ,

t > 0 be the semigroup of Aν on L2(Γ\G, ν). Let Hν
t (g) be its convolution kernel, and

hνt (g) := trHν
t (g), g ∈ G, (2.15)

where tr denotes the trace in End(Vν).
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2.6 Representations

Let σ : M 7→ End(Vσ) be a finite-dimensional irreducible representation of M .

Definition 2.6.1. We define Hσ to be the space of measurable functions f : K 7→ Vσ such

that

1. f(mk) = σ(m)f(k) for all k ∈ K and m ∈M ;

2.
∫
K
||f(k)||2dk <∞.

Recall H : G→ a, κ : G→ K as in Subsection 2.2, and e1 ∈ h∗C is as in Subsection 2.2.

For λ ∈ R, define the representation πσ,λ of G on Hσ by the following formula:

πσ,λ(g)f(k) := e(iλ+n)(H(kg))f(κ(kg)), (2.16)

where f ∈ Hσ, g ∈ G. Fix τ1, . . . , τn+1 ∈ N, such that τ1 ≥ τ2 ≥ . . . ≥ τn+1. Recall that

n = dim(Γ\G/K)−1
2

.

Definition 2.6.2. For m ∈ N denote by τ(m) the finite-dimensional representation of G

with highest weight

(m+ τ1)e1 + . . .+ . . . (m+ τn+1)en+1,

where ei, i = 1, . . . n+ 1 are defined as in (2.2).

Definition 2.6.3. Let τ be the finite-dimensional irreducible representation of G with

highest weight τ1e1 + . . . + τn+1en+1. Then denote by στ,k be the representation of M with

highest weight

Λστ,k := (τ2 + 1)e2 + . . .+ (τk + 1)ek+1 + τk+2ek+2 + . . .+ τn+1en+1. (2.17)

2.7 Admissible metric and Fourier transform

Let (ρ, Vρ) be a finite-dimensional representation of Γ and let Eρ → O be the associated

flat orbibundle.

Let us specify to the case where ρ = τ |Γ is the restriction to Γ of a finite-dimensional

irreducible representation τ of G.

In this case Eρ can be equipped with a distinguished metric which is unique up to

scaling. Namely, Eρ is canonically isomorphic to the locally homogeneous orbibundle Eτ

associated to τ |K (by analogy with [MM63, Proposition 3.1]). Moreover, there exists a

unique up to scaling inner product 〈·, ·〉 on Vρ such that
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1. 〈τ(Y )u, v〉 = −〈u, τ(Y )v〉, Y ∈ k,

2. 〈τ(Y )u, v〉 = 〈u, τ(Y )v〉, Y ∈ p,

for all u, v ∈ Vρ. Note that τ |K is unitary with respect to this inner product, hence it

induces a unique up to scaling metric h on Eτ .

Definition 2.7.1. Such a metric on Eτ is called admissible.

From now on fix an admissible metric h. Let ∆p(τ) be the Hodge-Laplacian acting on

p-forms with values in Eτ with respect to h.

Lemma 2.7.2. [MM63, (6.9)] One has

∆p(τ) = −R(Ω) + τ(Ω)Id

for

τ(Ω) =
n+1∑
j=1

(kj(τ) + ρj)
2 −

n+1∑
j=1

ρ2
j ,

where k1(τ)e1 + . . .+ kn+1(τ)en+1 is the highest weight of τ and ρj is from (2.5).

Definition 2.7.3. Let Ẽνp(τ) := G×τp(τ) Λpp∗ ⊗ Vτ , where

νp(τ) := ΛpAd∗ ⊗ τ : K 7→ GL(Λpp∗ ⊗ Vτ )

and let ∆̃p(τ) be the lift of ∆p(τ) to C∞(H2n+1, Ẽνp(τ)).

Definition 2.7.4. Denote by

Hτ,p
t : G 7→ End(Λpp∗ ⊗ Vτ )

the convolution kernel of e−t∆̃p(τ) as in [MP14, p. 16].

Let

hτ,pt (g) := trHτ,p
t (g), (2.18)

where tr denotes the trace in End(Λpp∗ ⊗ Vτ ). Put

kτt (g) := e−tτ(Ω)

2n+1∑
p=1

(−1)p p hτ,pt (g). (2.19)

We express kτt (g) in a more convenient way:
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Proposition 2.7.5. [MP12, Proposition 8.2, (8.13)] For k = 0, . . . , n let

λτ,k = kk+1(τ) + n− k, (2.20)

where k1(τ)e1 + . . . + kn+1(τ)en+1 is the highest weight of τ . Let στρ,k be as in Definition

2.6.3, and h
στ,k
t be as in [MP12, (8.8)]. Then

kτt =
n∑
k=0

(−1)k+1e−tλ
2
τ,kh

στ,k
t . (2.21)

For a principal series representation πσ′,λ, λ ∈ R, the Fourier transform is:

Θσ′,λ(h
σ
t ) = e−tλ

2

for σ′ ∈ {σ,w0σ}; Θσ′,λ(h
σ
t ) = 0, otherwise. (2.22)

2.8 Truncation

The goal of this subsection is to introduce the height function on every cusp. To do so, for

each P ∈ P define

ιP : R+ → AP

by ιP (t) := aP (log(t)). For Y > 0, let

A0
P [Y ] := (ιP (Y ), ι(∞)).

There exists a Y0 > 0 such that for every Y ≥ Y0 there exists a compact connected subset

C(Y ) of G such that in the sense of a disjoint union one has

G = Γ · C(Y ) t
⊔
P∈P

Γ ·NPA
0
P [Y ]K, (2.23)

and such that

γ ·NPA
0
P [Y ]K ∩NPA

0
P [Y ]K 6= ∅ ⇔ γ ∈ ΓN . (2.24)

Definition 2.8.1. For P ∈ P, let χP,Y be the characteristic function of NPA
0
P [Y ]K ⊂ G.
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2.9 Eisenstein series

In this section we recall the definition and main properties of Eisenstein series [War79].

Let Γ be a lattice in SO0(1, 3). Let σP ∈ M̂P , ν ∈ K̂ such that [ν : σP ] 6= 0.

Definition 2.9.1. Let EP (σP , ν) be the space of continuous functions

Φ : (Γ ∩ P )APNP\G→ C

such that

1. m ∈ MP 7→ Φ(xm) belongs to σP -isotypical component of the right regular represen-

tation of M ,

2. k ∈ K 7→ Φ(kx) belongs to ν-isotypical subspace of right regular representation of K.

Definition 2.9.2. We define an inner product 〈·, ·〉 : EP (σP , ν)× EP (σP , ν)→ C by

〈Φ,Ψ〉 :=

∫
K

∫
M/ΓM

Φ(km)Ψ̄(km) dk dm, (2.25)

where ΓM = Γ ∩M ·N/Γ ∩N .

Definition 2.9.3. For Φ ∈ EP (σP , ν), λ ∈ C, define:

ΦP,λ(g) := e(λ+n)HP (x),

and for x ∈ Γ, x ∈ Γg, define

E(ΦP : x : λ) :=
∑

γ∈Γ∩P\Γ

ΦP,λ(γg).

On Γ\G× {λ ∈ C : Re(λ) > n} the series converge absolutely and locally uniformly.

Definition 2.9.4. For Φ = (ΦP )P∈P, ΦP ∈ EP (σP , ν) and x ∈ Γ\G, let

E(Φ : x : λ) :=
∑
P∈B

E(ΦP : x : λ).

Define the constant term of E(ΦP : − : λ) along P ′ as follows:

EP ′(ΦP : g : λ) :=
1

vol(Γ ∩ P ′\NP ′)

∫
Γ∩P ′\NP ′

E(ΦP : yg : λ) dy.
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Proposition 2.9.5. Let wP ′ be the non-trivial element of W (AP ′). Then there exists a

meromorphic function

CP |P ′(ν : σP : λ) : E(σP , ν)→ E(wP ′σP ′ , ν)

such that for P 6= P ′, one has

EP ′(ΦP : g : λ) =
(
CP |P ′(ν : σP : λ)ΦP

)
−λ (g)

and such that

EP (ΦP : g : λ) = ΦP,λ(g) +
(
CP |P ′(ν : σP : λ)ΦP

)
−λ (g).

Definition 2.9.6. Define

CP |P ′(σP , λ) :=
⊕
ν

CP |P ′(ν : σP : λ).

Definition 2.9.7. Let C(ν : σ : λ) and C(σ : λ) be the maps built from CP ′|P ′′(σP ′ , ν, λ)

and CP ′|P ′′(σP ′ , λ), respectively, where σP ′ ∈ σ.

Definition 2.9.8. For λ ∈ C and Φ ∈ EP (σP , ν), define the representation πΓ,σ,λ of G on

E(σP , ν) as follows:

πΓ,σP ,λ(g)Φ(nPaPk) := e(λ+n)HP (kg)Φ(kg). (2.26)

Above nP ∈ NP , aP ∈ AP , k ∈ K and H(x) is from (2.1). Note that πΓ,σP ,λ is unitary for

λ ∈ iR.

Definition 2.9.9. For σ ∈ M̂ define

E(σ) :=
⊕
σP ′∈σ

⊕
ν∈K̂,

[ν:σP ′ ]6=0

E(σP ′ , ν).

Definition 2.9.10. Define the representation πΓ,σ,λ of G on E(σ) as follows:

πΓ,σ,λ :=
⊕
σP ′∈σ

πΓ,σP ,λ. (2.27)

Lemma 2.9.11 (Maass-Selberg relations). Let Φ,Ψ ∈ E0 and λ ∈ a∗. The lemma below

follows from the proof of [Pfa12, Lemma 4.3] with minor changes. Note that the inner

product 〈·, ·〉 in this lemma should be understood as in Definition 2.25.∫
Γ\G

EY (Φ, iλ, x)EY (Ψ, iλ, x) dx = −
〈

C(σ : −iλ)
d

dz
C(σ : iλ)Φ,Ψ

〉
+

2 〈Φ,Ψ〉 log Y +
Y 2iλ

2iλ
〈Φ,C(σ : iλ)Ψ〉 − Y −2iλ

2iλ
〈C(σ : iλ)Φ,Ψ〉 .
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2.10 Knapp-Stein intertwining operators

Let P̄0 := N̄0A0M0 be the parabolic subgroup opposite to P0.

Definition 2.10.1. For Φ ∈ Hσ from Definition 2.6.1, define

Φλ(nak) := e(iλ+n)H(a)Φ(k),

where H(a) is from (2.1).

Definition 2.10.2. For Im(λ) < 0 and Φ ∈ (Hσ)K define the intertwining operator

JP̄0|P0
(σ, λ)(Φ)(k) :=

∫
N̄

Φ(n̄k)dn̄.

Proposition 2.10.3. [KS80] The operator JP̄0|P0
(σ, λ) extends to an operator between

JP̄0|P0
(σ, λ) : Hσ → Hσ

and has a meromorphic continuation to C in λ. It is regular and invertible on R − {0};
moreover, if σ 6= w0σ, then JP̄0|P0

(σ, λ) is regular and invertible on R.

2.11 Selberg trace formula for compact orbifolds and

3-orbifolds of finite volume

Let πΓ be the right-regular representation of G on L2(Γ\G). Then there exists an orthog-

onal decomposition

L2(Γ\G) = L2
d(Γ\G)⊕ L2

c(Γ\G) (2.28)

into closed πΓ-invariant subspaces. The restriction of πΓ to L2
c(Γ\G) is isomorphic to the

direct integral over all unitary principle series representations of Γ. The restriction of πΓ to

L2
d(Γ\G) decomposes into the orthogonal direct sum of irreducible unitary representations

of Γ.

Definition 2.11.1. Let α ∈ C∞(G) be a K-finite Schwartz function. Denote by πΓ(α) the

following operator on L2(Γ\G):

πΓ(α)f(x) :=

∫
G

α(g)f(xg)dg. (2.29)
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Note that relative to (2.28) one has a splitting:

πΓ(α) = πΓ,d(α)⊕ πΓ,c(α).

Lemma 2.11.2. The operator πΓ,d is of trace class.

Proof. The estimation of the cuspidal spectrum follows from [Don76, Theorem 9.1]. The

residual spectrum is spanned by residues of Eisenstein series for poles in the half plane

Re(s) > (dim(O) − 1)2/4. These poles belong all to a finite interval on the real axis and

are simple. Moreover, there are only finitely many Eisenstein series, hence the residual

spectrum is finite.

First, recall the Selberg trace formula for cocompact lattices:

Theorem 2.11.3 (Selberg trace formula for compact orbifolds). Let Γ\H2n+1 be compact.

Then

L2
c(Γ\G) = {0}, πΓ,d(α) = πΓ(α),

and for a K-finite Schwartz function α ∈ C∞(G) we have

Tr (πΓ(α)) = I(α) +H(α) + E(α), (2.30)

where
I(α) := vol(O)α(e),

H(α) :=
∑

{γ} hyperbolic

vol(Γγ\Gγ) ·
∫
Gγ\G

α(g−1γg)dġ,
(2.31)

E(α) :=
∑

{γ} elliptic

vol(Γγ\Gγ)Eγ(α), Eγ(α) :=

∫
Gγ\G

α(g−1γg)dġ, (2.32)

where Gγ and Γγ denote the centralizers of γ in G and Γ, respectively.

Moreover, there exists an even polynomial Pσ(iλ) such that [Kna01, Theorem 13.2]

I(α) = vol(O)
∑
σ∈M̂

∫
R
Pσ(iλ)Θσ,λ(α)dλ, (2.33)

where Θσ,λ is the character of the representation πσ,λ as in (2.16). There also exist even

polynomials P γ
σ (iν) such that

E(α) =
∑

{γ} elliptic

vol(Γγ\Gγ)
∑
σ∈M̂

∫
R
P γ
σ (iλ)Θσ,λ(α)dλ, (2.34)

by Theorem 3.3.25.
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Remark 2.11.4. Although Theorem 3.3.25 was formulated for a specific test function α,

the proof does not depend on how the test function looks like.

Remark 2.11.5. The polynomials P γ
σ (iν) and Pσ(iν) are invariant under the action of

wo ∈ W (A):

Pσ(iν) = Pw0σ(iν), P γ
σ (iν) = P γ

w0σ
(iν).

Now let Γ\G/K be a finite volume orbifold of dimension 3. First we introduce the

summands that will appear in the Selberg trace formula in Theorem 2.11.18.

Remark 2.11.6. The main reason why we want to study the Selberg trace formula for

orbifolds of finite volume is to obtain the asymptotic expansion from Theorem 1.3.1. During

the proof we will apply the trace formula to the following setting: the group Γ is fixed,

whereas the vector orbibundle over Γ\H3 is changing. Moreover, during the proof we will

figure out that the main term in the asymptotic expansion in Theorem 1.3.1 comes from the

contribution from the identity I(α) with α = k
τ(m)
t defined in (2.19); hence for the reason

of convenience we will ignore all coefficients at the summands in the trace formula that

depend only on the structure of the group Γ, for example, C(γ) from Definition 2.11.10

and C ′(γ) from Remark 2.11.12.

Definition 2.11.7. Let γ ∈ ΓM(P ), where ΓM(P ) is from Definition 2.3.11, and let α ∈
C∞(G) be a K-finite Schwarz function. We define the weighted orbital integral JL(γ, α) by

JL(γ, α) := |DG(γ)|1/2
∫
G/Gγ

α(xγx−1)v(x)dx.

Above DG(γ) is as in [Hof97, p. 55]; v(x) is a weight function defined in [Hof97, p. 55].

Proposition 2.11.8. [Hof97, p. 58] The weighted integral in Definition 2.11.7 is not an

invariant distribution, but the distribution IL(γ, α) below is invariant:

IL(γ, α) := JL(γ, α)−
1

2πi

∑
σ∈M̂

∫
Dε

Θσ̆−λ(γ) · Tr

(
JP̄0|P0

(σ, z)−1 d

dz
JP̄0|P0

(σ, z)πσ,z(α)

)
dz.

(2.35)

Above JP̄0|P0
are the intertwining operators from Definition 2.10.2; Dε is the path which is

the union of (−∞,−ε], Hε and [ε,∞), where Hε is the half-circle from −ε to ε in the lower

half-plane oriented counter-clockwise for some sufficiently small ε > 0; πσ,z is defined in
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Subsection 2.6; M̂ is the set of equivalence classes of irreducible unitary representations of

M ; and

Θσ̆−λ(mγaγ) = e−iλt ·Θσ̆(mγ), Θσ̆(mγ) = tr σ̆(mγ), (2.36)

for γ conjugated to mγaγ, where aγ =
(
et 0
0 e−t

)
and mγ ∈ M . Above σ̆ denotes the contra-

gredient representation of σ.

Remark 2.11.9. We need to introduce the contour Dε only if σ = w0σ, because then the

intertwining operator JP̄0|P0
(σ, z) has a pole at z = 0 by Proposition 2.10.3. Otherwise we

could have put Dε = R.

Definition 2.11.10. Let

Ecusp(α) :=
∑

γ∈ΓM (P )

C(γ) · IL(γ, α),

J cusp(α) :=
∑

γ∈ΓM (P )

C(γ) · (−IL(γ, α) + JL(γ, α)),

where C(γ) is a constant depending only on γ and Γ. It equals

vol(Mη/(ΓM)η)hp(η)|DL(η)|−1/2 (2.37)

from [Hof99, Theorem 7]; for the definition of the terms occurring in (2.37) we refer to

[Hof99]. For the further use, define:

J (α) := −IL(e, α) + JL(e, α).

Remark 2.11.11. The information we need about C(γ) is that it depends only on γ.

Remark 2.11.12. Recall that ΓM(P ) ⊂M , hence Θσ̆−λ(γ) does not depend on λ. Defini-

tion 2.11.10 and (2.35) imply

J cusp(α) =
∑

γ∈ΓM (P )

C ′(γ) · J (α)

for some new constant C ′(γ).

Definition 2.11.13. Define

Rσ(α) := −1

4
Tr (C(σ : 0)πΓ,σ,0) , σ = w0σ,

and Rσ(α) := 0 otherwise; define

R(α) :=
∑
σ∈M̂

Rσ.
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We introduce the following notation in order to be consistent with [Pfa12]:

Definition 2.11.14. Define

S(α) := J(α) +
∑
σ∈M̂

1

4π

∫
R

Tr

(
πΓ,σ,iλ(α)C(σ : iλ)

d

dz
C(σ : iλ)

)
.

Now we restrict ourselves to 3-dimensional orbifolds.

Definition 2.11.15. Denote by r the canonical isomorphism between PSL(2,C) and SO0(1, 3),

let r1 := r ( 1 1
0 1 ), r2 = r

( −1 0
0 −1

)
. Then

TP (α) :=
∑

ν∈ΓM (P )∩{r2,+1}

C(P, ν,Γ)

∫
G/Gνr1

α(xνr1x
−1) dx,

T (α) :=
∑
P∈P

TP ,

where C(P, ν,Γ) is the constant term in the Laurent expansion of some Epstein function,

associated to Γ. Once again, we will ignore this constant.

Proposition 2.11.16. For ν ∈ ΓM(P ) ∩ {r2,+1},∫
G/Gνr1

α(xνr1x
−1) dx =

∫
K

∫
N

α(knk−1)dk dn.

Proof. Note that Gνr1 = N , and hence G/Gνr1 = KA. Rewrite x = ka, then∫
G/Gνr1

α(xνr1x
−1) dx =

∫
K

∫
R
e−2ntα(ka(t)νr1a(t)−1k−1)dtdk. (2.38)

Note that n = a(t)νr1a(t)−1 ranges over N , while t runs over R; moreover dn = C2e
−2nt ·dt,

thus the change of variables proves Proposition 2.11.16.

Proposition 2.11.17. We have that

T (α) =
∑
σ∈M̂

C3(Γ) · dim(σ)

∫
R

Θσ,λ(α)dλ

for some C3(Γ) ∈ R.

Proof. Follows from Definition 2.11.15, Proposition 2.11.16 and [Pfa12, (6.9)].
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Theorem 2.11.18 (Selberg trace formula for finite volume orbifolds). Let Γ\G/K be a

hyperbolic orbifold. For a K-finite Schwartz function α ∈ C∞(G) we have

Tr (πΓ,d(α)) = I(α) +H(α) + T (α) + I(α) +R(α)+

S(α) + E(α) + Ecusp(α) + J cusp(α).
(2.39)

Proof. The first two lines in [Hof99, Theorem 4.2] correspond to summing I(α) +H(α) +

E(α). The third line in [Hof99, Theorem 4.2] corresponds to T (α). The fourth line corre-

sponds to Ecusp(α) + J cusp(α) + I(α) + J(α); the fifth line corresponds to S(α) − J (α);

the sixth line corresponds to R(α).

2.12 Mellin transform

Let f(t) ∈ C0(R). Assume that

f(t) = O(e−Ct), t→∞

for some C > 0. Moreover, let

f(t) ∼
∞∑
j=1

ajt
αj , t→ 0,

where αj ∈ R tend to +∞ as j →∞.

Definition 2.12.1. The Mellin transform f̃(s) of f(t) is defined by

f̃(s) :=

∫ ∞
0

ts−1f(t) dt (2.40)

for Re(s) > −minjαj.

Proposition 2.12.2. [JL94, Theorem 1.1] The Mellin transform defined by (2.40) admits

a meromorphic continuation to C with simple poles of residue aj as s = −αj and no other

poles.
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Chapter 3

The Selberg trace formula and

Selberg zeta function for non-unitary

twists

3.1 Pseudodifferential operators on orbibundles

In this subsection we explain why the necessary elements of the classical analysis of pseu-

dodifferential operators can be applied to orbifolds.

Sobolev spaces

To define Sobolev norms on an orbifold O, first define Sobolev norms locally. Let Ũ and

GU be as in Definition 2.1.2. Note that if GU is finite, then

C∞0 (GU\Ũ , (GU\(Ũ × Rk)) ∼= C∞0 (Ũ , Ũ × Rk)GU , (3.1)

where C∞0 (Ũ , Ũ×Rk)GU denotes the space of GU -equivariant sections of C∞0 (Ũ , Ũ×Rk) and

C∞0 (GU\Ũ , (GU\(Ũ ×Rk)) is from Definition 2.1.8. The space C∞0 (Ũ , Ũ ×Rk) is equipped

with usual Sobolev norm || · ||s, and this norm restricts to GU -invariant sections. We equip

C∞0 (Ũ , Ũ × Rk)GU , and hence C∞0 (GU\Ũ , (GU\(Ũ × Rk)) with the following norm:

||f ′||s;U :=
1

|GU |
||f ||s. (3.2)

for f ′ ∈ C∞0 (GU\Ũ , (GU\(Ũ × Rk)) and the corresponding element f ∈ C∞0 (Ũ , Ũ × Rk).

Next we use an orbifold atlas and a partition of unity to define the Sobolev norm on the
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space of smooth sections of an orbibundle E → O. Sobolev norms defined using equivalent

atlases will be themselves equivalent. The space Hs(O, E) denotes the completion of

C∞(O;E) with respect to any of these norms; put L2(O;E) := H0(O;E).

Remark 3.1.1. The isomorphism (3.1) does not necessarily hold if GU is infinite. For

example, let γ act on R by x ·γ = x+1 and put GU = {γn : n ∈ Z}. Then C∞0 (R)GU = {0},
but C∞0 (GU\R) 6= {0}.

Pseudodifferential operators

We recall some basic facts about pseudodifferential operators on orbibundles. For more

details see [Buc99, p. 28], [Kor12, Section 2.2].

Definition 3.1.2. Let E → O be an orbibundle. For any orbifold chart (Ũ , GU , φU) of O,

let (Ũ × Vρ, GU , φ̃U) be a local trivialization of E over (Ũ , GU , φU) as in [Kor12, Section

2.2]. A linear mapping A : C∞(O, E) → C∞(O, E) is a pseudodifferential operator on

E → O of order m if:

1. the Schwartz kernel of A is smooth outside any neighborhood of the diagonal in O×O,

2. for any x ∈ O and for any local trivialization (Ũ × Vρ, GU , φ̃U) of E over an orbifold

chart (Ũ , GU , φU) with x ∈ U , the operator

C∞c (U,E) 3 f 7→ A(f)|U ∈ C∞(U,E)

is given by the restriction to GU -invariant functions of a pseudodifferential operator

Ã of order m on C∞(Ũ , Vρ) that commutes with the induced GU -action on C∞(Ũ , Vρ).

Definition 3.1.3. A pseudodifferential operator A on O is elliptic if a pseudodifferential

operator Ã is elliptic for any choice of orbifold charts.

The Sobolev embedding and the Kondrachov-Rellich theorem are valid as in the case

of manifolds:

Proposition 3.1.4 (Sobolev embedding). For s > s′, the embedding

Hs(O) ⊂ Hs′(O)

is continuous.
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Proposition 3.1.5 (Kondrachov-Rellich theorem). Let O be compact and s > s′, then the

embedding

Hs(O) ⊂ Hs′(O)

is compact.

Proof of Propositions 3.1.4 and 3.1.5. Instead of the original proofs [Shu87, p. 60], one

chooses a partition of unity and reduces the theorems to their local versions in a single

chart. As sections over orbifold charts are GU -invariant sections over the corresponding

smooth charts, the desired proofs are obtained by repeating the local arguments from

[Shu87] verbatim for the subspaces of GU -invariant sections.

Remark 3.1.6. For another proof of the Sobolev embedding and the Kondrachov-Rellich

theorem on orbifolds, see [Far01].

Remark 3.1.7. Let O be compact. Note that any pseudodifferential operator of order 0

extends to a bounded operator in L2(O, E); compare [Shu87, Theorem 6.5]. Moreover, the

Proposition 3.1.5 implies that any pseudodifferential operator of negative order is compact;

compare [Shu87, Corollary 6.2].

Theorem 3.1.8. Let H be a second order elliptic pseudodifferential operator acting on

sections of an orbibundle E over a compact good orbifold O with the leading symbol

σ(H)(x, ξ) = ||ξ||2x · IdEx , x ∈ O, ξ ∈ T ∗xO. (3.3)

For a subset I ⊂ [−π, π] let

ΛI := {reiφ : 0 6 r <∞, φ ∈ I}

and

BR(0) := {x ∈ C, |x| ≤ R}.

Then for every 0 < ε < π/2 there exists R > 0 such that the spectrum of H is contained

in the set BR(0)∪Λ[−ε,ε]. Moreover, the spectrum of H is discrete, and there exists R ∈ R
such that for |λ| > R and λ 6∈ Λ[−ε,ε],

||(H − λ)−1|| 6 C/|λ|.

Proof. The proof of theorem is similar to the smooth case for which we refer to [Shu87,

Theorem 9.3 and Theorem 8.4], except for the following: in the case of manifolds a partition

of unity reduces the proof to Rn, whereas in our case it is GU\Rn, where GU is a finite

group.
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3.2 Functional analysis

In this section we refine the necessary facts from functional analysis from [Mül11, Section 2]

for the case of compact orbifolds. The main difference from the case of compact manifolds

is that we replace all theorems involving Sobolev spaces to their orbifold analogues from

the previous section. Note that we though we assume our orbifold O is a good orbifold,

it is not a necessary condition till the end of this section. The requirement on O to be

compact is crucial, because we will need Remark 3.1.7.

Let E → O be a Hermitian orbibundle, pick a Hermitian metric in E and let ∇ be a

covariant derivative in E which is compatible with the Hermitian metric.

Definition 3.2.1. The operator

∆E = ∇∗∇ (3.4)

is the Bochner-Laplacian associated to the connection ∇ and the Hermitian fiber metric.

By [Buc99, Theorem 3.5], the Bochner-Laplace operator ∆E is essentially selfadjoint.

We denote its selfadjoint extension by the same symbol. Consider the class of elliptic

operators

H : C∞(O, E)→ C∞(O, E), (3.5)

which are perturbations of the Laplace operator ∆E by a first order differential operator,

i.e.

H = ∆E +D1, (3.6)

where D1 : C∞(O, E)→ C∞(O, E) is a first order differential operator.

For every 0 < ε < π/2 there exists R > 0 such that the spectrum of H is contained in

BR(0)∪Λ[−ε,+ε] by Theorem 3.1.8. Though H is not self-adjoint in general, it has nice spec-

tral properties. The reason is the following: D1(∆E −λ)−1 is a pseudodifferential operator

of order −1, and hence by Remark 3.1.7 is compact. This implies [Mar88] that L2(O, E)

is the closure of the algebraic direct sum of finite-dimensional H-invariant subspaces Vk

L2(O, E) =
⊕
k>1

Vk, (3.7)

such that the restriction of H to Vk has a unique eigenvalue λk, and for each k there exists

Nk ∈ N such that (H − λk · Id)NkVk = 0, and |λk| → ∞.

Denote by spec(H) the spectrum of H. Suppose that 0 6∈ spec(H). It follows from

Theorem 3.1.8 that there exists an Agmon angle θ for H, and we can define the square
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root H
1/2
θ . If θ is fixed, we simply denote H

1/2
θ by H1/2. Note that H1/2 is a classical

pseudodifferential operator with the leading symbol

σ(H1/2)(x, ξ) = ||ξ||x · IdEx . (3.8)

By spectral theorem we can define ∆
1/2
E . The principal symbols of H1/2 and ∆

1/2
E coincide,

hence

H1/2 = ∆
1/2
E +B0, (3.9)

where B0 is a pseudodifferential operator of order zero.

Lemma 3.2.2. The resolvent of H1/2 is compact, and the spectrum of H1/2 is discrete.

There exists b > 0 and d ∈ R such that the spectrum of H1/2 is contained in the domain

Ωb,d := {λ ∈ C : Re(λ) > d, |Im(λ)| < b}.

Proof. The proof follows in the same way as in [Mül11]. First note that H1/2 is an elliptic

pseudodifferential operator of order 1, hence by Remark 3.1.7 its resolvent is compact, that

implies the spectrum of H1/2 is discrete. Second, the operator B0 extends to a bounded

operator in L2(O, E) by Remark 3.1.7; denote

b := 2 · ||B0||. (3.10)

Recall that [Kat66, Chapter V, (3.16)] for λ 6∈ spec(∆
1/2
E )

||(∆1/2
E − λ · Id)−1|| ≤ |Im(λ)|−1. (3.11)

The equations (3.10) and (3.11) imply

||B0 · (∆1/2
E − λ · Id)−1|| ≤ 1/2, |Im(λ)| ≥ b,

and hence I +B0 · (∆1/2
E − λ · Id)−1 is invertible for such λ, and

||(I +B0 · (∆1/2
E − λ · Id)−1)−1|| ≤ 2, |Im(λ)| ≥ b.

Moreover,

(H1/2 − λ · Id)−1 = (∆E − λ · Id)−1 ·
(
I +B0 · (∆1/2

E − λ · Id)−1
)−1

,

that together with (3.11) implies

||(H1/2 − λ · Id)−1|| ≤ 2 · |Im(λ)|−1, |Im(λ)| ≥ b,

hence the spec(H1/2) ⊂ Ωb,d.
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It follows from the spectral decomposition (3.7) that H1/2 has the same spectral de-

composition as H with eigenvalues λ1/2, λ ∈ spec(H) and multiplicities m(λ1/2) = m(λ).

We need to introduce some class of function for further use.

Definition 3.2.3. Denote by PW (C) be the space of Paley-Wiener functions on C, that

is

PW (C) = ∪R>0PW
R(C)

with the inductive limit topology. Above PWR(C) is the space of entire functions φ on C
such that for every N ∈ N there exists CN > 0 such that

|φ(λ)| 6 CN(1 + |λ|)−NeR|Im(λ)|, λ ∈ C.

Proposition 3.2.4. Given h ∈ C∞0 ((−R,R)), let

ϕ(λ) =
1√
2π

∫
R
h(r)e−irλdr, λ ∈ C, (3.12)

be the Fourier-Laplace transform of h. Then ϕ satisfies (3.2.3) for every N ∈ N, that

is ϕ ∈ PWR(C). Conversely, by the Paley-Wiener theorem, every φ ∈ PWR(C) is the

Fourier-Laplace transform of a function in C∞c ((−R,R)).

Recall that we are assuming 0 6∈ spec(H).

Definition 3.2.5. For b > 0 and d ∈ R let Γb,d be the contour which is the union of the

two half-lines L±b,d := {z ∈ C : Im(z) = ±b, Re(z) > d} and the semicircle S = {d+ beiθ :

π/2 6 θ 6 3π/2}, oriented clockwise.

By Lemma 3.2.2 there exists b > 0, d ∈ R such that spec(H1/2) is contained in the

interior of Γb,d. For an even Paley-Wiener function ϕ put

ϕ(H1/2) :=
i

2π

∫
Γb,d

ϕ(λ)(H1/2 − λ)−1dλ. (3.13)

Remark 3.2.6. In the next chapter, the Selberg trace formula will contain Trϕ(H1/2) as

a spectral side for some H.

Lemma 3.2.7. ϕ(H1/2) is an integral operator with a smoothing kernel.
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Proof. The proof follows in the same way as in [Mül11, Lemma 2.4]. For k, l ∈ N we have

Hkϕ(H1/2)H l =
i

2π

∫
Γb,d

λ2(k+l)ϕ(λ)(H1/2 − λ)−1dλ.

The operator Hkϕ(H1/2)H l is a bounded operator in L2(O, E), since λ 7→ λ2(k+l)ϕ(λ)

is rapidly decreasing on L±b,d. One can easily observe that as in the case of manifolds,

Hs(O, E) is the completion of C∞(O, E) with respect to the norm ||(Id +H)s/2f ||, where

|| · || is the L2-norm. It follows that for all s, r ∈ R, ϕ(H1/2) extends to a bounded operator

from Hs(O, E) to Hr(O, E) and hence is a smoothing operator.

Analogously to [Mül11, Lemma 2.2], we obtain:

Theorem 3.2.8 (The Weyl law). Let

N(r,H) :=
∑

λ∈spec(H),|λ|≤r

m(λ)

be the counting function of the spectrum of H, where eigenvalues are counted with algebraic

multiplicity. Then

N(r,H) =
rk(E) vol(O)

(4π)(dimO)/2Γ((dimO)/2 + 1)
r(dimO)/2 + o(r(dimO)/2), r →∞. (3.14)

Proof. The Weyl law for ∆E from Theorem 4.2.7 and the compactness of D1 ·(∆E−λ·Id)−1

implies (3.14) [Mar88, I, Corollary 8.5].

We need to establish an auxiliary result about smoothing operators. The proof of the

following lemma literally repeats [Mül11, Proposition 2.5]:

Lemma 3.2.9. Let

A : L2(O, E)→ L2(O, E)

be an integral operator with a smooth kernel K; denote by dµ(x) the Riemanian measure

on O. Then A is a trace class operator and

Tr(A) =

∫
O

trK(x, x)dµ(x).
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Proof. The proof generalizes [Lan69, Chapter VII, §1]. Let {ϕj}j∈N be an orthonormal basis

of L2(O, E) consisting of eigensections of ∆E with eigenvalues 0 ≤ λ1 ≤ λ2 ≤ . . . → ∞.

We can expand K in the orthonormal basis as

K(x, y) =
∞∑

i,j=1

ai,jφi(x)⊗ φ∗j(y), (3.15)

where

ai,j = 〈Aφi, φj〉. (3.16)

Note that

(1 + λi + λj)
Nai,j = 〈(I + ∆E ⊗ I + I ⊗∆E)NA, φi ⊗ φ∗j〉,

hence for every N ∈ N there exists CN such that

|ai,j| ≤ CN(1 + λi + λj)
−N

for any i, j ∈ N. Then by Theorem 4.2.7 the right hand side of (3.15) converges in C∞-

topology.

Definition 3.2.10. Define Pi,j, i, j = 1, . . . ,∞ to be the integral operator with kernel

φi ⊗ φ∗j . Put

A1 =
∞∑

i,j=1

ai,j(1 + λj)
nPi,j.

Definition 3.2.11. Define Pj, j = 1, . . . ,∞ to be the orthogonal projection of L2(O, E)

onto Cφj. Put

A2 =
∞∑
j=1

(1 + λj)
−nPj.

By Theorem 4.2.7, both A1 and A2 are Hilbert-Schmidt operators, hence A = A1A2 is

of trace class; moreover, by (3.16) and (3.15):

TrA =
∞∑
i=1

ai,i =
∞∑

i,j=1

ai,j

∫
O
〈φi(x), φi(x)〉dµ(x) =

∫
O

trK(x, x)dµ(x).

Now we apply this result to ϕ(H1/2), where ϕ ∈ PW (C) and ϕ is even. Let Kϕ(x, y)

be the kernel of ϕ(H1/2). Then by Lemma 3.2.9, ϕ(H1/2) is a trace class operator, and we

have

Trϕ(H1/2) =

∫
O

trKϕ(x, x)dµ(x). (3.17)

Moreover, the following lemma holds:
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Lemma 3.2.12. Let ϕ ∈ PW (C) be even. Then we have∑
λ∈spec(H)

m(λ)ϕ(λ1/2) =

∫
O

trKϕ(x, x)dµ(x), (3.18)

where m(λ) is the multiplicity of λ.

Proof. By Lidskii’s theorem [GK69, Theorem 8.4], the trace is equal to the sum of the eigen-

values of ϕ(H1/2), counted with their algebraic multiplicities. One can show that ϕ(H1/2)

leaves the decomposition (3.7) invariant and that ϕ(H1/2)|Vk , has the unique eigenvalue

ϕ(λ
1/2
k ). Applying Lidskii’s theorem and (3.17), we get Lemma 3.2.12.

3.3 The Selberg trace formula

3.3.1 The wave equation

In this subsection we give a description of the kernel Kϕ of the smoothing operator ϕ(H1/2)

in terms of the solution of the wave equation. For technical reasons we impose some

restrictions on the orbifold O, namely assume that O = Γ\G/K where Γ is a discrete

subgroup of the isometry group of a symmetric space G/K. For these subgroups the

following lemma holds:

Lemma 3.3.1. [Sel60, Lemma 8] A finitely generated group Γ of matrices over a field of

characteristic zero has a normal torsion-free subgroup Γ0 of finite index.

Remark 3.3.2. The restriction that O = Γ\G/K is rather technical; during Subsection

3.3.1 we could have assumed that O is a good orbifold.

It follows from Lemma 3.3.1 that Γ0\G/K is a manifold. Let ρ : Γ → GL(Cn) be a

finite-dimensional representation of Γ, and let

E = Γ\(G/K × Cn)→ O

be the associated vector orbibundle. Let ρ0 be the restriction of ρ to Γ0, and denote by

E0 = Γ0\(G/K × Cn)→ Γ0\G/K

the associated vector bundle. Note that every f ∈ C∞(O, E) can be pulled back to

f0 ∈ C∞(Γ0\G/K,E0) as well as every (Γ0\Γ)-invariant f0 ∈ C∞(Γ0\G/K,E0) can be

pushed down to f ∈ C∞(O, E).
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Proposition 3.3.3. Denote by ||·||s;Γ0\G/K and ||·||s;O the s-Sobolev norms on Hs(Γ0\G/K,E0)

and Hs(O, E), respectively. Then there exists C, c > 0 such that for any f and f0 as above

the following inequality holds:

c · ||f0||s;Γ0\G/K ≤ ||f ||s;O ≤ C · ||f0||s;Γ0\G/K

Proof. Follows from that Γ0\G/K is a finite covering of O.

Consider the wave equation:(
∂2/∂t2 +H

)
u = 0, u(0, x; f) = f(x), ut(0, x; f) = 0 (3.19)

for u(t, x; f) ∈ C∞(R×O, E).

Lemma 3.3.4. For each f ∈ C∞(O, E) there is a unique solution u(t, x; f) ∈ C∞(R ×
O, E) of the wave equation (3.19). Moreover for every T > 0 and s ∈ R there exists C > 0

such that for every f ∈ C∞(O, E)

||u(t, ·; f)||s;O 6 C||f ||s;O, |t| 6 T (3.20)

Proof. The proof follows from [Mül11, Proposition 3.1]: first pull-back the wave equation

to C∞(R × Γ0\G/K,E0) and solve it there. The solution of the pulled-back wave equa-

tion satisfies [Mül11, (3.2)], that is the estimates of type (3.20), but for Sobolev norms

|| · ||s;Γ0\G/K instead of || · ||s;O. Moreover, it is invariant undet Γ0\Γ, because the pull-

back of the initial conditions is invariant under Γ0\Γ. Second, push the solution down to

C∞(O, E) and use Proposition 3.3.3.

Lemma 3.3.5. Let ϕ ∈ PW (C) and ϕ̂ be the Fourier transform of ϕ|R. Then for every

f ∈ C∞(O, E) we have

[ϕ(H1/2)f ](·) =
1√
2π

∫
R
ϕ̂(t)u(t, ·; f)dt. (3.21)

Proof. We follow [Mül11, Proposition 3.2]. Let Γb,d be as in Definition 3.2.5, choose c > 0

such that

spec(H + c) ⊂ {z ∈ C : Re z > 0}.

For σ > 0, define the operator cos(tH1/2)e−σ(H+c) by:

cos(tH1/2)e−σ(H+c) :=
i

2π

∫
Γb,d

cos(tλ)e−σ(λ2+c)(H1/2 − λ)−1dλ.
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Note that for f ∈ C∞(O, E)(
cos(tH1/2

)
e−σ(H+c)f)(x)− u(t, x; f)

is the unique solution of the wave equation (3.19) with initial condition e−σ(H+c)f − f ; the

proof is by substitution and does not change if O is an orbifold. The rest of the proof is

to show that

1√
2π

∫
R
ϕ̂(t) cos(tH1/2)e−σ(H+c)f dt =

i

2π

∫
Γb,d

ϕ(λ)e−σ(λ2+c)(H1/2 − λ)−1f dλ, (3.22)

and that the right hand side of (3.22) converges to ϕ(H1/2)f as σ → 0, whereas the left

hand side converges to (2π)−1
∫
R ϕ̂(t)u(t, ·; f) dt. Proof of convergence is analogous to the

manifold case.

Now we would like to lift the wave equation once again, but now to G/K. Let

Ẽ := (G/K)× Cn → G/K

be a lift of E to G/K and let

H̃ : C∞(G/K, Ẽ)→ C∞(G/K, Ẽ)

be the lift of H to G/K. Let ũ(u, x̃; f) and f̃ be the pull-back to G/K of u(t, x; f) and f ,

respectively. Then the following holds:(
∂2/∂t2 + H̃

)
ũ = 0, ũ(0, x; f) = f(x), ũt(0, x; f) = 0 (3.23)

As in [Mül11, (3.15)], with the help of the finite propagation speed argument one can show

that it does not matter if:

1. either we solve the wave equation (3.19) onO and then pull the solution back to G/K,

2. or we first pull back the initial condition to G/K and then solve the wave equa-

tion (3.23).

Let d(x, y) denote the geodesic distance of x, y ∈ G/K. For δ > 0 define Uδ := {(x, y) ∈
G/K ×G/K : d(x, y) < δ}.

Lemma 3.3.6. There exists δ > 0 and Hϕ ∈ C∞(G/K×G/K,Hom(Ẽ, Ẽ)) with suppHϕ ⊂
Uδ, such that for all ψ ∈ C∞(G/K, Ẽ) we have

1√
2π

∫
R
ϕ̂(t)u(t, x̃, ψ)dt =

∫
G/K

Hϕ(x̃, ỹ)(ψ(ỹ))dỹ.
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Proof. The proof follows [Mül11, Proposition 3.3] and is based on the finite propagation

speed argument, that is valid for orbifolds as well.

Using Lemmas 3.3.5 and 3.3.6 we obtain

[ϕ(H1/2)f ](x̃) =

∫
G/K

Hϕ(x̃, ỹ)(f̃(ỹ)) dỹ (3.24)

for all f ∈ C∞(X,E). Let F ⊂ M be a fundamental domain for the action of Γ on G/K.

Given γ ∈ Γ, let

Rγ : Ẽ 7→ Ẽ (3.25)

be the induced bundle map. Note that

f̃(γỹ) = Rγ(f̃(ỹ)), γ ∈ Γ. (3.26)

Arguing as in [Mül11] by rewriting
∫
G/K

as
∑

γ∈Γ

∫
γF

in (3.24) and using (3.26), one can

show that the kernel Kϕ of ϕ(H1/2) is given by

Kϕ(x, y) =
∑
γ∈Γ

Hϕ(x̃, γỹ) ◦Rγ, (3.27)

where x̃, ỹ are any lifts of x and y to the fundamental domain F . Together with Lemma

3.2.12 we obtain:

Lemma 3.3.7. [Mül11, Proposition 3.4] Let ϕ ∈ PW be even. Then we have∑
λ∈spec(H)

m(λ)ϕ(λ1/2) =
∑
γ∈Γ

∫
F

tr(Hϕ(x̃, γx̃) ◦Rγ)dx̃.

3.3.2 The twisted Bochner-Laplace operator

In this section we follow [Mül11, Section 4] to introduce the twisted non-selfadjoint Lapla-

cian ∆#
E,χ. Let O be a good orbifold O = Γ\G/K, G = SO0(1, 2n + 1), K = SO(2n + 1).

Let χ : Γ → GL(Vχ) be a finite-dimensional representation of Γ, and let F → O be the

associated orbibundle over O; let ∇F be a canonical flat connection on F . Let E be a

Hermitian vector orbibundle over O with a Hermitian connection ∇E.

Definition 3.3.8. We equip E ⊗ F with the product connection ∇E⊗F , defined by

∇E⊗F
Y := ∇E

Y ⊗ 1 + 1⊗∇F
Y

for Y ∈ C∞(G/K, T (G/K)).
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Definition 3.3.9. The twisted connection Laplacian ∆#
E,χ associated to ∇E⊗F is given by

∆#
E,χ := −Tr(∇E⊗F )2,

where (∇E⊗F )2 is the invariant second covariant derivative.

Definition 3.3.10. Denote by ∆E the Bochner-Laplace operator (∇E)∗∇E.

Remark 3.3.11. The principal symbol of ∆#
E,χ is given by

σ(∆#
E,χ)(x, ξ) = ||ξ||2x · Id(E⊗F )x .

Let Ẽ and F̃ be the pullback to G/K of E and F , respectively. Note that

C∞(G/K, Ẽ ⊗ F̃ ) ∼= C∞(G/K, Ẽ)⊗ Vχ.

Let ∆̃#
E,χ and ∆̃E be the lift of ∆#

E,χ and ∆E to G/K, respectively. Note that:

∆̃#
E,χ = ∆̃E ⊗ Id, (3.28)

where ∆̃E ⊗ Id acts on C∞(G/K, Ẽ) ⊗ V . Then for any ψ ∈ C∞c (G/K, Ẽ), the unique

solution of the equation

(∂2/∂t2 + ∆̃#
E,χ)u(t, ·;ψ) = 0, u(0, ·;ψ) = ψ, ut(0, ·;ψ) = 0

splits as well and is given by

u(t, ·;ψ) =
(

cos(t(∆̃E)1/2)⊗ Id
)
ψ(·),

where cos(t(∆̃E) is defined by the spectral theorem. Let ϕ ∈ PW (C) be even and let

kϕ(x̃, ỹ) be the kernel of

ϕ
(

(∆̃E)1/2
)

=
1√
2π

∫
R
ϕ̂(t) cos(t(∆̃E)1/2) dt.

Then Hϕ from Lemma 3.3.6 is given by Hϕ(x̃, ỹ) = kϕ(x̃, ỹ)⊗ Id. Then it follows from

(3.27) that the kernel of the operator ϕ
(

(∆#
E,χ)1/2

)
is given by

Kϕ(x, y) =
∑
γ∈Γ

kϕ(x̃, γỹ) ◦ (Rγ ⊗ χ(γ)).

Lemma 3.3.7 implies the following Lemma:
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Lemma 3.3.12. Let F be a flat vector orbibundle over O, associated to a finite-dimensional

complex representation χ : Γ→ GL(Vχ). Let ∆#
E,χ be the twisted connection Laplacian from

Definition 3.3.9 acting in C∞(O, E ⊗ F ). Let ϕ ∈ PW (C) be even and denote by kϕ(x̃, ỹ)

the kernel of ϕ
(

(∆̃E)1/2
)

. Then we have

∑
λ∈spec(∆#

E,χ)

m(λ)ϕ(λ1/2) =
∑
γ∈Γ

trχ(γ)

∫
F

tr(kϕ(x̃, γỹ) ◦Rγ) dx̃.

3.3.3 Locally symmetric spaces and the pre-trace formula

In this subsection we specify Lemma 3.3.12 to the case when E is a locally homogeneous

orbibundle.

Let χ : Γ→ GL(Vχ) be a finite-dimensional (possibly non-unitary) complex representa-

tion and let F → O be the associated flat vector bundle over O as in previous subsection.

Let ν : K → GL(Vν) be a unitary representation of K and let Eν → O be the locally

homogeneous orbibundle as in Definition 2.5.6.

Denote by ∆#
Eν ,χ

be the twisted connection Laplacian acting in C∞(O, Eν ⊗ F ) as in

Definition 3.3.9. To simplify notations denote:

∆#
ν,χ := ∆#

Eν ,χ
. (3.29)

Let ∆̃ν be as in Definition 2.5.5. We are now interested in rewriting kϕ in a different way

with respect to the information that Eν is a locally homogeneous orbibundle. Note that

ϕ(∆̃
1/2
ν ) is a G-invariant operator. With respect to the isometry (2.13) it can be identified

with a compactly supported C∞ function

hϕ : G→ EndVν ,

such that

hϕ(k1gk2) = ν(k1) ◦ hϕ(g) ◦ ν(k2), k1, k2 ∈ K.

Then (∆̃
1/2
ν ) acts by convolution:(

ϕ(∆̃1/2
ν )f

)
(g1) =

∫
G

hϕ(g−1
1 g2)(f(g2))dg2, (3.30)

and the kernel Kϕ of ϕ((∆#
ν,χ)1/2) is given by

Kϕ(g1K, g2K) =
∑
γ∈Γ

hϕ(g−1
1 γg2)⊗ χ(γ). (3.31)
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By Lemma 3.3.12 we get∑
λ∈spec(∆#

E,χ)

m(λ)ϕ(λ1/2) =
∑
γ∈Γ

trχ(γ)

∫
Γ\G

trhϕ(g−1γg)dġ. (3.32)

Definition 3.3.13. For γ ∈ Γ, denote by {γ}Γ its Γ-conjugacy class.

Definition 3.3.14. For γ ∈ Γ, denote by Γγ and Gγ the centralizers of γ in Γ and G,

respectively.

Collect the terms in the right hand side of (3.32) according to their conjugacy classes.

Separating {e}Γ, we obtain a pre-trace formula.

Proposition 3.3.15. [Pre-trace formula] For all even ϕ ∈ PW (C) we have:∑
λ∈spec(∆#

E,ρ)

m(λ)ϕ(λ1/2) = dim(Vχ)vol(Γ\G/K) trhϕ(e)+

+
∑

{γ}Γ 6={e}

trχ(γ)vol(Γγ\Gγ)

∫
Gγ\G

trhϕ(g−1γg)dġ.

(3.33)

Restrict ourselves to the case G = SO0(1, 2n + 1), K = SO(2n + 1). In order to make

the formula more explicit, we need to evaluate the orbital integrals
∫
Gγ\G trhϕ(g−1γg)dġ on

the right hand side of (3.33), that will be done in Subsections 3.3.4 and 3.3.5 for hyperbolic

for elliptic γ, respectively.

3.3.4 Orbital integrals for hyperbolic elements

In this section we slightly modify [Wal93, Theorem 6.7] to evaluate the orbital integrals∫
Gγ\G trhϕ(g−1γg)dġ for hyperbolic γ.

Let Γγ and Gγ be the centralizers of γ in Γ and G, respectively.

Definition 3.3.16. For a hyperbolic γ ∈ Γ, define its primitive element as an element

γ0 ∈ Γ such that γ = γk0 , and for any γ′0 ∈ Γ such that γ = (γ′0)n, it follows that n ≤ k.

A primitive element γ0 is not necessarily unique. It is defined up to

Γ1
γ := Γ ∩G1

γ,

where G1
γ is the maximal compact subgroup of Gγ.
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Remark 3.3.17. Note that

vol(Γγ\Gγ) = l(γ0)/|Γ1
γ|.

Recall that for σ ∈ ŜO(2n) and λ ∈ R one can define the unitarily induced representa-

tions πσ,λ as in (2.16), let Θσ,λ denote the character of πσ,λ. For hyperbolic γ we slightly

modify [Wal93, Theorem 6.7] in order to get the following lemma:

Lemma 3.3.18. Let γ ∈ Γ be a hyperbolic element. Then the following holds:

vol(Γγ\Gγ)

∫
Gγ\G

trhϕ(g−1γg)dġ =

l(γ0)

2π|Γ1
γ|D(γ)

·
∑

σ∈ ̂SO(2n)

trσ(γ)

∫
R

Θσ,λ(hϕ) · e−il(γ)λdλ,

where

D(γ) = e−nl(γ)
∣∣∣ det(Ad(mγaγ)|n̄ − Id)

∣∣∣ (3.34)

and l(γ0) is from Definition 2.3.1, mγ and aγ is from Lemma 2.3.3.

Proof. The modification of [Wal93, Theorem 6.7] is as follows: we take vol(Γγ\Gγ) and

change it to l(γ0)/|Γ1
γ| by Remark 3.3.17.

3.3.5 Orbital integrals for elliptic elements

In this subsection we evaluate the orbital integrals

Eγ(hϕ) :=

∫
Gγ\G

trhϕ(g−1γg)dġ (3.35)

for γ ∈ Γ elliptic. We may assume γ is of the form:

γ =


1

...
1
Rφk+1

...
Rφn+1

 , (3.36)

where Rφ =
(

cosφ sinφ
− sinφ cosφ

)
, φ ∈ (0, 2π). Note that in general γ is not a regular element, e.g.

if k > 1 or some of the angles φi coincide; see Definition 2.3.6. For further use we want to

approximate γ by a sequence of regular elements γε parametrized by ε:

γε =



1
1
Rε2

...
Rεk

Rεk+1

...
Rεn+1

 , (3.37)
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where sequences εi ∈ R, i = 2, . . . , n+1 are chosen in the following way: all εi are pairwise

distinct, that is εi 6= εj for i 6= j, and

lim
ε→0

εi = 0, i ≤ k,

lim
ε→0

εi = φi, i > k.

The strategy for the subsection is the following: first we recall how to calculate Eγε(hϕ),

second we apply a certain element of the symmetric algebra S(bC), and set ε = 0 to

obtain Eγ(hφ). To calculate Eγε(hϕ), we combine together an adjusted version of [Kna01,

Theorem 13.1] together with the following proposition:

Proposition 3.3.19. Let η(γ) ∈ Spin(1, 2n + 1) be a lift of γ. Let π is a canonical

projection π : Spin(1, 2n + 1) → SO0(1, 2n + 1). For γ ∈ G, denote Spin(1, 2n + 1)η(γ) to

be the centralizer of η(γ) in Spin(1, 2n+ 1). Define

π∗hϕ : Spin(1, 2n+ 1) 7→ C,

π∗hϕ(x) := hϕ(π(x)).

Then∫
Spin(1,2n+1)η(γ)\Spin(1,2n+1)

π∗hϕ(g−1η(γ)g)dg =

∫
SO0(1,2n+1)γ\SO0(1,2n+1)

hϕ(g−1γg)dg.

(3.38)

Proof. Note that Spin(1, 2n+ 1)η(γ) is a 2-fold covering of SO0(1, 2n+ 1)γ, hence

π
(
Spin(1, 2n+ 1)η(γ)\Spin(1, 2n+ 1)

) ∼= SO0(1, 2n+ 1)γ\SO0(1, 2n+ 1).

Moreover,

hϕ(π(g)−1γπ(g)) = hϕ(π(g−1η(γ)g)) = π∗hϕ(g−1η(γ)g).

and hence ∫
Spin(1,2n+1)η(γ)\Spin(1,2n+1)

π∗hϕ
(
g−1η(γ)g

)
dg =∫

Spin(1,2n+1)η(γ)\Spin(1,2n+1)

hϕ
(
π(g)−1γπ(g)

)
dg =∫

π(Spin(1,2n+1)η(γ)\Spin(1,2n+1))

hϕ
(
g−1γg

)
dg =∫

SO0(1,2n+1)γ\SO0(1,2n+1)

hϕ
(
g−1γg

)
dg,

(3.39)

that proves the proposition.
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Lemma 3.3.20. The orbital integral Eγε(hϕ) can be expressed as

Eγε(hϕ) = C ·
∑

σ∈ ̂SO(2n)

∫
R

∑
s∈W

det(s)
(
ξ−s(Λ(σ)+ρM ) ⊗ e−

√
−1λ(γε)

)
·Θσ,λ(hϕ)dλ, (3.40)

where C ∈ R\{0} does not depend on ε. The sum in (3.40) is finite, because hϕ is K-finite.

Above det(s) denotes the determinant of s, and for every

γ =
(
γ1 0
0 γ2

)
, (3.41)

where γ1 =
(
et 0
0 e−t

)
∈ SO0(1, 1) and γ2 ∈ SO(2n), the tensor product acts as:

ξ−s(Λ(σ)+ρM ) ⊗ e−
√
−1λ(γ) :=

[
ξ−s(Λ(σ)+ρM )(γ

2)
]
· [e−

√
−1λt].

Remark 3.3.21. For γε elliptic, γ1
ε = ( 1 0

0 1 ) and hence

ξ−s(Λ(σ)+ρM ) ⊗ e−
√
−1λ(γε)

does not depend on λ.

Remark 3.3.22. Our notation differs from [Kna01, Theorem 13.1], namely h, f and

F T
f (h) corresponds to our γε, hϕ and Eγε(hϕ), respectively; F T

f (h) is defined in [Kna01, p.

349].

Definition 3.3.23. For α ∈ ∆+(so0(1, 2n+ 1)C, hC), denote by Hα its coroot.

Without loss of generality assume that all φi from (3.36) are different, then the stabilizer

Gγ of γ is equal to SO(2)k × SO0(1, 2k − 1). The root system for Gγ can be written as

∆γ(gC, hC) = {±ei ± ej, 1 6 i < j 6 k}.

We can choose an ordering such that

∆+
γ (gC, hC) = {±(ei + ej), 1 6 i < j 6 k}.

Lemma 3.3.24. [SW73, (5.2)] There exists Mγ ∈ R \ {0} such that

Eγ(hϕ) = Mγ · lim
γε→γ

 ∏
α∈∆+

γ

Hα

Eγε(hϕ).

We are ready to prove the main theorem in this subsection:
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Theorem 3.3.25. There exists an even polynomial P γ
σ (
√
−1λ) such that

Eγ(hϕ) =
∑

σ∈ ̂SO(2n)

∫
R
P γ
σ (
√
−1λ)Θσ,λ(hϕ)dλ.

Proof. Theorem 3.3.25 holds with

P γ
σ (
√
−1λ) =

∏
α∈∆+

γ

Hα

(∑
s∈W

det(s)
(
ξ−s(Λ(σ)+ρM ) ⊗ e−

√
−1λ(γε)

))∣∣∣∣∣∣
ε=0

(3.42)

by Lemmas 3.3.20 and 3.3.24. We need to show that P γ
σ (
√
−1λ) is an even polynomial.

Note that every α ∈ ∆+
γ is a root with 〈α, α〉 = 2, hence∏
α∈∆+

γ

Hα

(
ξ−s(Λ(σ)+ρM ) ⊗ e−

√
−1λ(γε)

)
=

 ∏
α∈∆+

γ

〈−s(Λ(σ) + ρM)−
√
−1λe1, α〉

(ξ−s(Λ(σ)+ρM ) ⊗ e−
√
−1λ(γε)

)
.

(3.43)

Let s(Λ(σ) + ρM) =
∑

26i6n+1 kiei with ρM as in (2.5). For simplicity assume k1 = 0 and

denote by δi,j the Kronecker delta. Then∏
α∈∆+

γ

〈−s(Λ(σ) + ρM)−
√
−1λe1, α〉 =

(−1)|∆
+
γ |

∏
16i′<j′6k

〈
∑

26i6n+1

kiei +
√
−1λe1, ei′ − ej′〉 · 〈

∑
26i6n+1

kiei +
√
−1λe1, ei′ + ej′〉 =

(−1)|∆
+
γ |

∏
16i′<j′6k

(√
−1λ(δi′,1 − δj′,1) + (ki′ − kj′)

)
·
(√
−1λ(δi′,1 + δj′,1) + (ki′ + kj′)

)
.

(3.44)

Note that above δj′,1 is always equal to 0. Now we would like to study the dependance of

(3.47) on λ, for this we split the product above as:∏
1≤i′<j′≤k

=
∏
i′=1,

2≤j′≤k

·
∏

2≤i′<j′≤k

,

and first notice that∏
2≤i′≤j′≤k

(√
−1λδi′,1 + (ki′ − kj′)

)
·
(√
−1λδi′,1 + (ki′ + kj′)

)
=

∏
2≤i′<j′≤k

(k2
i′ − k2

j′) := C(k)

(3.45)
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does not depend on λ. Second,∏
i′=1,

2≤j′≤k

(√
−1λδi′,1 + (ki′ − kj′)

)
·
(√
−1λδi′,1 + (ki′ + kj′)

)
=

∏
26j′≤k

(√
−1λ− kj′

)
·
(√
−1λ+ kj′

)
= −

∏
2≤j′≤k

(λ2 + k2
j′).

(3.46)

Putting together (3.44-3.46) gives us∏
α∈∆+

γ

〈−s(Λ(σ) + ρM)−
√
−1λe1, α〉 = (−1)|∆

+
γ |+1 · C(k) ·

∏
2≤j′≤k

(λ2 + k2
j′), (3.47)

where (−1)|∆
+
γ |+1 · C(k) does not depend on λ. Note that (3.47) is an even polynomial in

λ and by Remark 3.3.21, ξ−s(Λ(σ)+ρM )−
√
−1e1λ(γε) does not depend on λ. Hence, (3.43) and

(3.42) are even polynomials in λ as well.

We would like to mention the resemblance of Theorem 3.3.25 to the following:

Proposition 3.3.26. [Kna01, Theorem 13.2] There exists an even polynomial Pσ′(
√
−1λ)

such that

trhϕ(e) =
∑
σ′∈M̂

∫
R
Pσ′(
√
−1λ)Θσ,λ(hϕ)dλ.

For further use we need to show one property of the polynomial P γ
σ (
√
−1λ). Let M ′

be the normalizer of A in K and let W (A) = M ′/M be the restricted Weyl group. It

has order 2 and acts on finite-dimensional representations of M [Pfa12, p. 18]. Let σ be a

finite-dimensional representation of M with the highest weight

Λ(σ) =
n+1∑
j=2

λj(σ)ej, (3.48)

then the highest weight of a representation w0σ, where w0 is the non-identity element of

W (A) from (2.6), equals

Λ(w0σ) =
n∑
j=2

λj(σ)ej − λn+1(σ)en+1. (3.49)

Lemma 3.3.27. The polynomial P γ
σ is invariant under the action of W (A):

P γ
σ (
√
−1λ) = P γ

w0σ
(
√
−1λ).
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Proof. Recall that s ∈ W acts on the roots by even sign changes and the permutations.

Then it follows from (3.48) and (3.49) that if s(Λ(σ)+δM) =
∑

26i6n+1 kiei for some ki ∈ Z,

then s(Λ(σ) + δM) =
∑

26i6n+1 k̂iei, where k̂i = −ki for exactly one i and k̂j = kj for all

j 6= i. It follows that k̂2
i = k2

i . By (3.47) the polynomial P γ
σ (
√
−1λ) depends only on k2

i

which completes the proof of Lemma 3.3.27.

3.4 Selberg zeta function

Let σ ∈ M̂ , where M = SO(2n).

Remark 3.4.1. Note that ν from the previous section was a unitary representation of

K = SO(2n+ 1).

Definition 3.4.2. The Selberg zeta function is:

Z(s, σ, χ) := exp

− ∑
{γ} hyperbolic

tr(χ(γ)) · tr(σ(mγ)) · e−(s+n)l(γ))

nΓ · |Γ1
γ| · det(Id− Ad(mγaγ)|n̄)

 . (3.50)

Proposition 3.4.3. There exist c > 0 such that Z(s, σ, χ) converges absolutely and locally

uniformly for Re(s) > c.

Proof. Analogously to [Spi15, Lemma 3.3], there exist k,K ≥ 0 such that

tr(χ(γ)) ≤ Kekl(γ).

It follows by definition that |Γ1
γ| ≥ 1, nΓ ≥ 1 and tr(σ(mγ)) ≤ dim(σ). We need the

following lemma to estimate the number of closed geodesics:

Lemma 3.4.4. There exists a constant C3 > 0 such that for all x ∈ H2n+1, the following

estimate holds:

#{γ hyperbolic, γ ∈ Γ : ρ(x, γx) ≤ R} ≤ C3e
2nR, (3.51)

where ρ(x, y) denotes the hyperbolic distance between x and y.
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Proof. Let x ∈ H2n+1, denote by BR(x) the hyperbolic ball around x of radius R; note that

vol(BR(x)) ≤ C2 · e2nR

for some C2 > 0. Note that because Γ is cocompact, there exists ε > 0 such that

Bε(x) ∩ γBε(x) = ∅, γ ∈ Γ, γ hyperbolic, x ∈ H2n+1.

Thus ⊔
γ∈Γ, γ hyperbolic, ρ(x,γx)≤R

γBε(x) ⊆ BR+ε(x),

that implies (3.51).

Moreover,

det(Id− Ad(mγaγ)|n̄) ≥ (1− e−l(γ))n,

hence there exists a constant C4 such that for every γ hyperbolic

1

det(Id− Ad(mγaγ)|n̄)
< C4.

Collecting all together proves Proposition 3.4.3.

3.4.1 The symmetric Selberg zeta function

Let σ ∈ M̂ with the highest weight

k2(σ)e2 + . . .+ k(σ)n+1en+1.

Definition 3.4.5. For Re(s) > c with the constant c as in Proposition 3.4.3, we define the

symmetric Selberg zeta function by

S(s, σ, χ) =

Z(s, σ, χ)Z(s, w0σ, χ), if σ 6= w0σ;

Z(s, σ, χ), if σ = w0σ.
(3.52)

In this subsection we prove the existence of the meromorphic continuation of the sym-

metric Selberg zeta function. We follow the approach of [Pfa12] which associates a vector

bundle E(σ) to every representation σ ∈ ŜO(2n). This vector bundle is graded and there

exists a canonical graded differential operator A(σ, χ) which acts on smooth sections of

E(σ). The next step is to apply the Selberg trace formula to A(σ, χ) with a certain test

function.

First, we construct the bundle E(σ) and the operator A(σ, χ).
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Definition 3.4.6. Let R(K) and R(M) be the representation rings over Z of K and M ,

respectively.

Definition 3.4.7. Denote by ι∗ : R(K) → R(M) the restriction map induced by the

inclusion ι : M ↪→ K.

By [Pfa12, Prop. 2.17], there exist integers mν(σ) ∈ {−1, 0, 1} such that for σ = w0σ

one has

σ =
∑
ν∈K̂

mν(σ)ι∗ν

and for σ 6= w0σ one has

σ + w0σ =
∑
ν∈K̂

mν(σ)ι∗ν.

Moreover, mν(σ) are zero except for finitely many ν ∈ K̂.

Let Eν,χ be the orbibundle associated to ν ∈ K̂, χ : Γ→ GL(V ) as in Subsection 3.3.3.

Definition 3.4.8. Let E(σ) be the orbibundle

E(σ) :=
⊕

ν:mν(σ)6=0

Eν,χ.

For every ν ∈ K̂ let Aν,χ be the operator defined by

Aν,χ := ∆#
ν,χ + c(σ)− ν(ΩK),

where ∆#
ν,χ is as in Subsection 3.3.2, ν(ΩK) is as in (2.14) and

c(σ) =
n+1∑
j=1

(kj(σ) + ρj)
2 −

n+1∑
j=1

ρ2
j .

Let A(σ, χ) be the operator acting on C∞(O, E(σ)) defined by

A(σ, χ) :=
⊕

ν:mν(σ) 6=0

Aν,χ.

Let Ẽ(σ) :=
⊕

ν:mν(σ)6=0 Ẽν,χ be the lift of E(σ) to H2n+1, and let Ã(σ, χ) be the lift of

A(σ, χ) to Ẽ(σ). Note that by (3.28),

Ã(σ, χ) =
⊕

ν:mν(σ) 6=0

(
∆̃ν + c(σ)− ν(Ωk)

)
⊗ IdEχ .
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Together with (2.14) it gives

Ã(σ, χ) =
⊕

ν:mν(σ)6=0

(−R(Ω) + c(σ))⊗ IdEχ .

Second, we wish to apply the Selberg trace formula to A(σ, χ). For this let

hσt (g) := e−tc(σ)
∑

ν:mν(σ)6=0

mν(σ)hνt (g), (3.53)

where hνt := trHν
t , and Hν

t is the integral kernel of e−t∆̃ν .

Lemma 3.4.9. [MP12, Section 4] Θσ′,λ(h
σ
t ) = e−tλ

2
for σ′ ∈ {σ,w0σ} and equals zero

otherwise.

We are almost ready to apply the Selberg trace formula.

Definition 3.4.10. Let Bν, ν ∈ K̂, be trace class operators acting on sections of Eν. Let

B =
⊕

ν:mν(σ)6=0

Bν .

Then define

TrsB :=
∑

ν:mν(σ) 6=0

mν(σ) TrBν . (3.54)

Proposition 3.3.15, Lemma 3.3.18, Theorem 3.3.25 and Proposition 3.3.26 imply:

Theorem 3.4.11. We have

Trs(e
−tA(σ,χ)) = vol(O) dim(Vχ)

∑
σ′∈M̂

∫
R
Pσ′(iλ)Θσ′,λ(h

σ
t )dλ+

∑
σ′∈M̂

∑
{γ} elliptic

vol(Γγ\Gγ)tr(χ(γ))
∑
σ′∈M̂

∫
R
P γ
σ′(iλ)Θσ′,λ(h

σ
t )dλ+

∑
σ′∈M̂

∑
{γ}hyperbolic

tr(χ(γ)) l(γ0)

2πD(γ)
tr(σ′(γ))

∫
R

Θσ′,λ(h
σ
t )e−l(γ)λdλ.

Let

ε(σ) =

2, if σ 6= w0σ;

1, if σ = w0σ.
(3.55)
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Denote

I(t) := ε(σ)vol(O) dim(Vχ)

∫
R
Pσ(iλ)e−tλ

2

dt,

E(t) := ε(σ)
∑

{γ} elliptic

vol(Γγ\Gγ)tr(χ(γ))

∫
R
P γ
σ (iλ)e−tλ

2

dt,

H(t) :=
∑

{γ}hyperbolic

tr(χ(γ)) l(γ0)

2πD(γ)|Γ1
γ|

(
tr(σ(γ)) + tr(w0σ(γ))

)∫
R
e−tλ

2

e−l(γ)λdλ.

(3.56)

Then Lemma 3.3.27, Theorem 3.4.11, Lemma 3.4.9 together with (3.55) and (3.56) imply

Trs(e
−tA(σ,χ)) = I(t) + E(t) +H(t). (3.57)

Denote (A(σ, χ) + s2)−1 =: R(s2) for s ∈ C, s 6∈ spec(A(σ, χ)). Note that for Re(s2 +

A(σ, χ)) > 0,

R(s2) =

∫ ∞
0

e−ts
2

e−tA(σ,χ)dt. (3.58)

The operator R(s2) is not a trace class operator, but we will now improve it.

Lemma 3.4.12. [BO95, Lemma 3.5] Let s1, . . . , sN ∈ C such that s2
i 6= s2

j for i 6= j. Then

for every z ∈ C \ {−s2
1, . . . ,−s2

N} one has

N∑
i=1

1

s2
i + z

N∏
j=1,j 6=i

1

s2
j − s2

i

=
N∏
i=1

1

s2
i + z

,

hence for ci =
∏N

j=1,j 6=i
1

s2j−s2i
, i = 1, . . . , N,

N∑
j=1

cjR(s2
j) =

N∏
j=1

R(s2
j). (3.59)

Lemma 3.4.13. The operator
∏N

j=1 R(s2
j) is of trace class.

Proof. In [BO95] Lemma 3.4.12 was proven for manifolds by the following argument: each

of the factors is a pseudodifferential operator of order −2/(2n+ 1), hence their product is

a pseudodifferential operator of order −2N/(2n + 1) that is of trace class for sufficiently

large N by the Weyl law.

Let R be the value of the resolvent of a self-adjoint Laplacian on E(σ) at a point x ∈ R,

x < 0, that is not in its spectrum. Note that it is self-adjoint and non-negative.

Lemma 3.4.14. The operator RN is of trace class for N > (2n+ 1)/2.
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Proof. Let λk be the k-th eigenvalue of R. Then by Theorem 3.2.8, λk = O(k−2/(2n+1))

as k → ∞. Note that λNk is the k-th eigenvalue of RN , hence λNk = O(k−2N/(2n+1)) as

k →∞.

Lemma 3.4.15. The operator R−N ·
∏N

j=1R(s2
j) is bounded.

Proof. It is a pseudodifferential operator of order 0 and hence bounded by Remark 3.1.7.

By the above two lemmas,

N∏
j=1

R(s2
j) = RN ·

(
R−N ·

N∏
j=1

R(s2
j)

)
is of trace class.

From now on let all sj, j = 1, . . . , N satisfy Re(sj +A(σ, χ)2) > 0. We can choose such

sj, because the real parts of eigenvalues of A(σ, χ) are bounded from below. Put s := s1

and cj := c′j/c1 for 1 ≤ j ≤ N in Lemmas 3.4.12 and 3.4.13, then R(s2) +
∑N

j=2 cjR(s2
j) is

of trace class, and by (3.58)

Trs

(
R(s2) +

N∑
j=2

cjR(s2
j)

)
=

∫ ∞
0

(
e−ts

2

+
N∑
j=2

cje
−ts2j

)
· Trs (e−tA(σ,χ))dt. (3.60)

We would like to apply Theorem 3.4.11 to the right hand side. By analogy with [Pfa12,

pp. 68-70], ∫ ∞
0

(
e−ts

2

+
∑
j

cje
−ts2j

)
· I(t)dt = ε(σ)vol(O) dim(Vχ)×(

π

s
Pσ(s) +

∑
j

cjπ

sj
Pσ(sj)

)
,

∫ ∞
0

(
e−ts

2

+
∑
j

cje
−ts2j

)
· E(t)dt =

∑
{γ} elliptic

ε(σ)vol(Γγ\Gγ)tr(χ(γ))×(
π

s
P γ
σ (s) +

∑
j

cjπ

sj
P γ
σ (sj)

)
,

∫ ∞
0

(
e−ts

2

+
∑
j

cje
−ts2j

)
·H(t)dt =

1

2s

S ′(s, σ, χ)

S(s, σ, χ)
+

∑
j

cj
2sj

S ′(sj, σ, χ)

S(sj, σ, χ)
.

(3.61)
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Note that we are crucially using that P γ
σ (ν) and Pσ(ν) are even polynomials in ν. Thus

we get

Trs
(
R(s2) +

∑
j

cjR(s2
j)
)

=
1

2s

S ′(s, σ)

S(s, σ)
+
∑
j

cj
2sj

S ′(sj, σ)

S(sj, σ)
+

ε(σ)vol(O) dim(Vχ) ·

(
π

s
Pσ(s) +

∑
j

cjπ

sj
Pσ(sj)

)
+

∑
{γ} elliptic

ε(σ)vol(Γγ\Gγ)tr(χ(γ)) ·

(
π

s
P γ
σ (s) +

∑
j

cjπ

sj
P γ
σ (sj)

)
.

Put

Ξ(s, σ, χ) := exp

−2πε(σ)vol(O) dim(Vχ)

∫ s

0

Pσ(r)dr − 2ε(σ)
∑

{γ} elliptic

tr(χ(γ))

∫ s

0

P γ
σ (r)dr

×
S(s, σ, χ)

(3.62)

Then (3.4.1) can be rewritten as

Trs

(
R(s2) +

N∑
j=1

cjR(s2
j)

)
=

1

2s

Ξ′(s, σ, χ)

Ξ(s, σ, χ)
+

N∑
j=1

cj
2sj

Ξ′(sj, σ, χ)

Ξ(sj, σ, χ)
, (3.63)

where Ξ′(s, σ) denotes the differentiation with respect to the first variable. It follows from

(3.62) and (3.63), that S(s, σ) extends meromorphically to C if and only if Ξ(s, σ) does,

moreover, its singularities coincide. Let λi, i = 1, 2, . . . be the eigenvalues of A(σ, χ). For

each λi let E(λi) be the eigenspace of A(σ) with eigenvalue λi. Put

ms(λi, σ) :=
∑

ν:mν(σ) 6=0

(−1)mν(σ)+1 dim Eν(λi), (3.64)

where Eν(λi) is the eigenspace of Aν,χ with eigenvalue λi. Put

s±i = ±
√
−1 ·

√
λi, j ∈ N,

where
√
λi is chosen to have the non-negative imaginary part. Note that 1

λi+s2
and

cj
λi+s2j

are the eigenvalues of R(s2) and cjR(s2
j), hence by (3.64) and Lidskii’s theorem,

Trs

(
R(s2) +

N∑
j=1

cjR(s2
j)

)
=
∞∑
i=1

(
ms(λi, σ)

λi + s2
+

N∑
j=1

cj ·ms(λi, σ)

λi + c2
j

)
. (3.65)

Note that (3.65) and
2s

λi + s2
=

1

s+ s+
i

+
1

s− s−i
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imply that all residues of 2s · Trs

(
R(s2) +

∑N
j=1 cjR(c2

j)
)

in s are integers. Hence by

(3.63), Ξ(s, σ) admits a meromorphic extension to C. Together with (3.62)

Theorem 3.4.16. The symmetrised Selberg zeta function S(σ, s, χ) has a meromorphic

extension to C. The set of singularities of S(s, σ, χ) equals {s±i : i ∈ N}. If λi 6= 0, then

the order of S(s, σ, χ) at both sii
+ and s−i is equal to ms(λi, σ). The order of the singularity

at s = 0 is 2ms(0, σ).

3.4.2 Antisymmetric Selberg zeta function

Suppose that σ 6= w0σ, otherwise the symmetric Selberg zeta function equals the Selberg

zeta function and this section can be skipped. For Re(s) > c with the constant c as in

Proposition 3.4.3 we define the antisymmetric Selberg zeta function as

Sa(s, σ, χ) := Z(s, σ, χ)/Z(s, w0σ, χ). (3.66)

In this subsection we prove the meromorphic continuation of antisymmetric Selberg zeta

function Sa(s, σ, χ).

Dirac bundles and twisted Dirac operators

Let Cl(p) be the Clifford algebra of p with respect to the scalar product on p. Let κ be

the spin-representation of K and put ∆2n := C2n ; denote by S̃ = G×κ ∆2n be the spinor

bundle on H2n+1 and equip it with a connection ∇S.

Let σ ∈ M̂ . By [BO95, Proposition 1.1], there a unique ν(σ) ∈ R(K) such that

ν(σ)⊗ κ = ν+(σ)⊕ ν−(σ) =: νκ(σ),

where ν±(σ) ∈ K̂. Define Ẽνκ(σ) to be the locally homogeneous vector bundle over H2n+1:

Ẽνκ(σ) := G×νκ(σ) (Vν(σ) ⊗∆2n)→ H2n+1.

Remark 3.4.17. Note that

Ẽνκ(σ) = Ẽν(σ) × S̃,

that allows us to equip Ẽνκ(σ) with the product connection ∇σ := ∇ν(σ) ⊗ 1 + 1⊗∇S.

Define Eσ := Γ\Ẽνκ(σ) and denote the pull-back of ∇νκ(σ) by the same symbol. Let

χ : Γ → GL(Vχ) be a finite-dimensional (possibly non-unitary) complex representation
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and let Eχ → O be the associated flat vector bundle over O as in Subsecton 3.3.2, equiped

with the flat connection ∇χ. Define

Eσ,χ := Eσ ⊗ Eχ,

equip it with the connection

∇σ,χ := ∇σ ⊗ 1 + 1⊗∇χ.

Let

· : p⊗∆2n → ∆2n

denote the Clifford multiplication. We extend its action to Vν(σ)⊗∆2n and (Vν(σ)⊗∆2n)⊗Vχ
as follows:

e ·σ (w ⊗ s) := w ⊗ (e · s), w ∈ Vν(σ), e ∈ Cl(p), s ∈ ∆2n.

e ·σ,χ ((w ⊗ s)⊗ v) := (w ⊗ (e · s))⊗ v, w ∈ Vν(σ), e ∈ Cl(p), v ∈ Vχ, s ∈ ∆2n,

Consider an open subset U of O such that Eχ|U is trivial. Then Eσ,χ|U is isomorphic

to the direct sum of rank(Eχ) copies of Eσ|U . Let vj be the basis of flat sections of Eχ|U ,

then each ϕ ∈ C∞(U,Eσ,χ|U) can be written as:

ϕ =

rank(Eχ)∑
j=1

φj ⊗ vj,

where φj ∈ C∞(U,Eσ|U). The Dirac operator D(σ, χ) acting on sections of Eσ,χ is defined

as follows: for each ϕ as above,

D(σ, χ)ϕ =
dimO∑
i=1

rank(Eχ)∑
j=1

ei ·σ,χ
(
∇σ
ei
φj ⊗ vj

)
.

The Dirac operator D̃(σ) acting on sections of Ẽνk(σ) is defined as follow:

D̃(σ)f =
dimO∑
i=1

ei ·σ ∇σ
ei
f,

where f ∈ C∞(H2n+1, Vν(σ) ⊗∆2n).

Note that D(σ, χ)2 a second order elliptic differential operator and by Theorem 3.1.8,

its spectrum is discrete and there exist R ∈ R and ε > 0 such that

spec(D(σ, χ)2) ∈ L := Λ[−ε,ε] ∪B(R). (3.67)
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Selberg trace formula

In this subsection we verify that the Selberg trace formula can be applied to the operator

D(σ, χ)e−tD(σ,χ)2
. We define the operator D(σ, χ)e−tD(σ,χ)2

via the integral

D(σ, χ)e−tD(σ,χ)2

:=
i

2π

∫
B

e−tλD(σ, χ)(D(σ, χ)2 − λ)−1dλ (3.68)

for B = ∂L with L as in (3.67).

Proposition 3.4.18. The right hand side of (3.68) converges.

Proof. Follows from Theorem 3.1.8.

Note that the lift of D(σ, χ) to H2n+1 splits into D̃(σ) ⊗ Id by the same arguments

as in Sections 3.3.2 and 3.4.1. Also the operator D(σ, χ)e−tD(σ,χ) is an integral operator

with smooth kernel, because e−tD(σ,χ) is. By an analogy with the previous calculations we

obtain:

Lemma 3.4.19. Denote by kσt (·) the convolution kernel of D̃(σ)e−tD̃
2(σ). Then we have∑

λ∈spec(D)

λe−tλ
2

= dim(Vχ)vol(Γ\G/K)tr kσt (e)+

∑
{γ}6={e}

trχ(γ)vol(Γγ\Gγ)

∫
Gγ\G

trkσt (g−1γg)dġ.
(3.69)

Analogously to Theorem 3.4.11, we get

Trs(D(σ, χ)e−tD(σ,χ)2

) = vol(O) dim(Vχ)
∑
σ′∈M̂

∫
R
Pσ′(iλ)Θσ′,λ(k

σ
t )dλ+

∑
σ′∈M̂

∑
[γ] elliptic

vol(Γγ\Gγ)tr(χ(γ))
∑
σ′∈M̂

∫
R
P γ
σ′(iλ)Θσ′,λ(k

σ
t )dλ+

∑
σ′∈M̂

∑
[γ] hyperbolic

tr(χ(γ))l(γ0)

2πD(γ)|Γ1
γ|

tr(σ′(γ))

∫
R

Θσ′,λ(k
σ
t )e−l(γ)λdλ.

(3.70)

Proposition 3.4.20. [Pfa13, Proposition 8.2], [MS89] Let σ ∈ M̂ , kn+1(σ) > 0. Then for

λ ∈ R one has

Θσ,λ(k) = (−1)nλe−tλ
2

, Θw0σ,λ(k) = (−1)n+1λe−tλ
2

.

Moreover, if σ′ ∈ M̂ and σ′ 6= {σ,w0σ}, for every λ ∈ R one has Θσ′,λ(k) = 0.
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Applying Proposition 3.4.20 to (3.70), we get

(−1)nTrs (De−tD
2

) = vol(O) dim(Vχ)

∫
R
(Pσ(iλ)− Pw0σ(iλ))λe−tλ

2

dλ+

+
∑

[γ] elliptic

vol(Γγ\Gγ)

∫
R
(P γ

σ (iλ)− P γ
w0σ

(iλ))λe−tλ
2

dλ+

+
∑

[γ] hyperbolic

C2(γ)
l(γ0)

2π
(L(γ, σ)− L(γ, w0σ))

∫
R
λe−tλ

2

e−l(γ)λdλ,

(3.71)

Moreover, the first and the second summand in the right hand side of (3.71) vanish by the

following two remarks.

Remark 3.4.21. By [MP12, (2.22)],

Pσ(iν)− Pw0σ(iν) = 0.

Remark 3.4.22. By Lemma 3.3.27,

P γ
σ (iν)− P γ

w0σ
(iν) = 0.

We proceed as in Section 3.4.1. The operator D(σ, χ) · (D(σ, χ)2 + s2)−1 is not of

trace class, but we can choose coefficients cj and sj such that D(σ, χ) · (D(σ, χ)2 + s2)−1 +∑
j cjD(σ, χ) · (D(σ, χ)2 +s2

j)
−1 is of trace class. By the same arguments as in (3.60)-(3.62)

and Remarks 3.4.21 and 3.4.22, we obtain

Tr

(
D(σ, χ) · (D(σ, χ)2 + s2)−1 +

∑
j

cjD(σ, χ) · (D(σ, χ)2 + s2
j)
−1

)
=

1

2s

S ′a(s, σ, χ)

Sa(s, σ, χ)
+
∑
j

cj
2sj

S ′a(sj, σ, χ)

Sa(sj, σ, χ)

(3.72)

The theorem below follows.

Theorem 3.4.23. The antisymmetric Selberg zeta Sa(s, σ, χ) function has a meromorphic

extension to C. It has singularities at the points ±iµk of order 1
2
(d(±µk, σ)− d(∓µk, σ)),

where µk is a non-zero eigenvalue of D(σ, χ) of multiplicity d(µk, σ).

Using that Z(s, σ, χ) = S(s, σ, χ)Sa(s, σ, χ), we obtain

Theorem 3.4.24. The Selberg zeta function has an meromorphic extension to C. It has

the following singularities:
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• If σ = w0σ, a sigularity at the points ±i
√
λk of order ms(λk, σ), where λk is a non-

zero eigenvalue of A(σ, χ) and ms(λk, σ) is the graded dimension of the corresponding

eigenspace.

• If σ 6= w0σ, a singularity at the points ±iµk of order 1
2
(ms(µ

2
k, σ) + d(±µk, σ) −

d(∓µk, σ)). Here µk is a non-zero eigenvalue of D(σ, χ) of multiplicity d(µk, σ) and

ms(µ
2
k, σ) is the graded dimension of the eigenspace A(σ, χ) corresponding to the

eigenvalue µ2
k.

• At the point s = 0 a singularity of order 2ms(0, σ) if σ = w0σ and of order ms(0, σ)

if σ 6= w0σ.
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The heat kernel

Let E → O be from Definition 2.1.6, equip it with a Hermitian fibre metric and let ∆

be the Bochner-Laplace operator acting on sections of E; assume that E is a complex

orbibundle of rank k. Our goal is to construct and study the heat kernel for ∆. The main

idea is to take an approximate solution of the heat equation from [BGV92, Theorem 2.26]

and use the construction of a parametrix for the heat operator as in [DGGW08].

The results of this section are widely used throughout the thesis:

1. In Theorem 3.2.8, we needed the Weyl law from Theorem 4.2.7 for self-adjoint oper-

ators in order to establish the Weyl law for non self-adjoint operators ,

2. Lemma 3.2.9 used the Weyl law from Theorem 4.2.7 to establish the fast decay of

certain coefficients,

3. The definition of spectral zeta function from Definition 5.1.3 uses the heat trace

expansion from Lemma 4.2.1,

4. To establish the independence of the analytic torsion on the variation of metric in

Corollary 5.2.12 we need to show that the constant term in the heat trace asymptotics

in Lemma 4.2.5 vanishes.

4.1 Existence and uniqueness of the heat kernel

Definition 4.1.1. We say that K ∈ Γ((0,∞) × O × O, E � E∗) is a heat kernel, if it

satisfies:
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1. K is C0 in all three variables, C1 in the first, and C2 in the second,

2. ( ∂
∂t

+ ∆x)K(t, x, y) = 0, where ∆x denotes ∆ that acts on the second variable,

3. limt→+0K(t, x, ·) = δx for all x ∈ O, where δx is the Dirac distribution.

Let (Ũα, GU , πU) be a chart of O of radius no less than ε > 0. Denote

Uε := {(x, y) ∈ Ũα × Ũα | d(x, y) < ε},

where d(x, y) is the distance between x and y. The following lemma follows from [BGV92,

Theorem 2.26]:

Lemma 4.1.2. For l ∈ N ∪ {0} there exist ui(x, y) ∈ C∞(Uε, E � E∗) with i = 0, . . . , l,

such that (
∂

∂t
+ ∆x

)[
(4πt)−n/2 · e−d(x,y)2/4t ·

l∑
i=0

ui(x, y)ti

]
=

(4π)−n/2tl−n/2 · e−d(x,y)2/4t ·∆xul(x, y).

(4.1)

Remark 4.1.3. In [BGV92] the functions ui were constructed for Ĥ : Γ(M,E⊗|Λ|1/2)→
Γ(M,E ⊗ |Λ|1/2) instead of H : Γ(M,E) → Γ(M,E), where |Λ| is density and M is a

manifold.

Remark 4.1.4. In Lemma 4.1.2 we are still in the manifold setup.

Remark 4.1.5. As ∆x commutes with isometries of Uε and d(γx, γy) = d(x, y) for γ ∈ Gα,

the following equality holds:

ui(γx, y) = Rγ ◦ ui(x, γ−1y) ◦Rγ−1 , (4.2)

where Rγ is from (3.25).

Definition 4.1.6. F ∈ Γ((0,∞)×O×O, E�E∗) is a parametrix for the heat operator if:

1. F is C∞-smooth,

2. [( ∂
∂t

+∆x)F ](t, x, y) ∈ Γ((0,∞)×O×O, E�E∗) is a C0-function in all three variables,

3. limt→0 F (t, x, ·) = δx for all x ∈ O.
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The construction of a parametrix is as follows. Fix ε > 0 such that for each x ∈ O,

there exists a coordinate chart of radius ε centered at x. Cover O with finitely many such

charts (Ũα, Gα, φα), α ∈ I. Identify Ũα with the unit ball, let p̃α be its center. Let

W̃α := {u ∈ Ũα : d(u, p̃α) ≤ ε/4},

Ṽα := {u ∈ Ũα : d(u, p̃α) ≤ ε/2}.

Let pα be the center of Uα, and let

Wα := {u ∈ Uα : d(u, pα) ≤ ε/4},

Vα := {u ∈ Uα : d(u, pα) ≤ ε/2}.

Definition 4.1.7. For each α ∈ I and each non-negative integer m, define H̃
(m)
α ∈ Γ(R+×

Ũα × Ũα, E � E∗) by

H̃α

(m)
(t, x̃, ỹ) := (4πt)−n/2e−d

2(x̃,ỹ)/4t

m∑
i=0

tiui(x̃, ỹ),

where the ui are from Lemma 4.1.2.

Proposition 4.1.8. The sum

H(m)
α (t, x̃, ỹ) :=

∑
γ∈Gα

H̃α

(m)
(t, x̃, γỹ) ◦Rγ (4.3)

descends to a function H
(m)
α ∈ Γ(R+ × Uα × Uα, E � E∗).

Remark 4.1.9. As we will see further, the sum (4.3) resembles (4.6).

Proof of Proposition 4.1.8. In order to prove the proposition, we need to show thatH
(m)
α (t, x̃, ỹ)

is Gα-invariant in the second and the third variable.

H(m)
α (t, x̃, γ′ỹ) =

∑
γ∈Gα

H̃α

(m)
(t, x̃, γγ′ỹ) ◦Rγ =

(∑
g∈Gα

H̃α

(m)
(t, x̃, gỹ) ◦Rg

)
◦Rγ′−1 =

H(m)
α (t, x̃, ỹ) ◦Rγ′−1 .

(4.4)

Above the second equality is due to the change of variables g = γγ′.

H(m)
α (t, γ′x̃, ỹ) =

∑
γ∈Gα

H̃α

(m)
(t, γ′x̃, γỹ) ◦Rγ =

∑
γ∈Gα

Rγ′ ◦ H̃α

(m)
(t, x̃, γ′−1γỹ) ◦Rγ′−1 ◦Rγ = Rγ′ ◦

(∑
g∈Gα

H̃α

(m)
(t, x̃, gỹ) ◦Rg

)
=

Rγ′ ◦H(m)
α (t, x̃, ỹ).



66 4. The heat kernel

Above the second equality is due to (4.2), and the third follows from the change of variables

g = γ′−1γ.

Let ψα : O → R be a C∞ cut-off function, which is identically one on Vα and is

supported in Wα. Let {ηα} be a partition of unity on O with supp(ηα) ⊂ Uα.

Definition 4.1.10. Define H(m) ∈ Γ(R+ ×O ×O, E � E∗) by

H(m)(t, x, y) :=
∑
α

ψα(x)ηα(y)H(m)
α (t, x, y).

The following lemma is implied by [DGGW08, p. 13]:

Lemma 4.1.11. H(m) is a parametrix for the heat operator on O if m > n/2.

From this point, the construction of the heat kernel from the parametrix H(m) is carried

out as in [BGM71, p. 210]. The uniqueness of the heat kernel follows from [Don76, Theorem

3.3].

4.2 Computation of the heat asymptotics

Lemma 4.2.1. Let E → O be an orbibundle over a good Riemannian orbifold; more-

over, assume that O = Γ\M , where M is a compact manifold and Γ is a finite group of

orientation-preserving isometries of M . Denote by Ẽ the lift of E to M , and let K(t, x̃, ỹ)

and KO(t, x, y) be the heat kernels on Ẽ and E, respectively. Then∫
O

trKO(t, x, x) dvolO(x) ∼ Ie(t) +
∑

γ∈Γ,γ 6=e

Iγ(t), t→ 0, (4.5)

where

Ie(t) ∼ t− dim(O)/2

∞∑
k=0

akt
k, t→ 0,

Iγ(t) ∼ t− dim(Nγ)/2

∞∑
k=0

aγkt
k, t→ 0.

Above ak, a
γ
k are some coefficients in C, and Nγ is the fixed point set of γ in M .

Proof. Let π : M 7→ O be a natural projection. Then

KO(t, x, y) =
∑
γ∈Γ

K(t, x̃, γỹ) ◦Rγ, (4.6)
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where x̃ and ỹ are elements of π−1(x) and π−1(y), respectively. Then∫
O

trKO(t, x, x) dvolO(x) =
1

|Γ|

∫
M

trK(t, x̃, x̃) dvolM(x̃)+

1

|Γ|
∑
e6=γ∈Γ

∫
M

tr (K(t, x̃, γ(x̃)) ◦Rγ) dvolM(x̃).
(4.7)

where dvolM and dvolO denotes the Riemannian measure on M and O, respectively. We

study the asymptotic behavior of (4.7) following [Gil95]. The asymptotic expansion of the

first summand in the right hand side of (4.7) follows from the following theorem:

Theorem 4.2.2. [Gil95, Theorem 1.7.6] There exist ak(x) : M → C, k = 0, . . . ,∞ such

that ∫
M

trK(t, x, x)dx ∼
∞∑
k=0

t(k−dim(M))/2

∫
M

ak(x) dvolM(x), t→ 0.

Remark 4.2.3. The leading coefficient is given by a0(x) = (4π)− dim(M)/2.

The asymptotic expansion of the second summand of the right hand side of (4.7) follows

with minor modification from [Gil95, Lemma 1.8.2]:

Theorem 4.2.4. There exist aγn(x) : Nγ → C, k = 0, . . . ,∞ such that∫
M

tr (K(t, x̃, γx̃) ◦Rγ) dvolM(x̃) ∼
∞∑
n=0

t(n−dim(Nγ))/2

∫
Nγ

aγn(x)dvolNγ (x),

where dvolNγ (x) denotes the Riemannian measure on Nγ.

Proof. By [Gil95, Lemma 1.8.2],∫
M

tr
(
R−1
γ ◦K(t, γx̃, x̃)

)
dvolM(x̃) ∼

∞∑
n=0

t(n−dim(Nγ))/2

∫
Nγ

aγn(x)dvolNγ (x). (4.8)

Note that
tr
(
R−1
γ ◦K(t, γx̃, x̃)

)
= tr

(
Rγ ◦R−1

γ ◦K(t, γx̃, x̃) ◦R−1
γ

)
=

tr
(
K(t, γx̃, x̃) ◦R−1

γ

)
.

(4.9)

Let ỹ = γx̃, then∫
M

tr
(
K(t, γx̃, x̃) ◦R−1

γ

)
dvolM(x̃) =

∫
M

tr
(
K(t, ỹ, γ−1ỹ) ◦Rγ−1

)
dvolM(ỹ). (4.10)

Putting together (4.8), (4.9) and (4.10) implies Theorem 4.2.4.

Applying Theorems 4.2.2 and 4.2.4 finishes the proof of Lemma 4.2.1.
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Lemma 4.2.5. Let E → O be as above, let B0 be a zeroth order pseudodifferential operator

and let ∆p be the Bochner-Laplacian acting on p-forms with coefficients in E. Then

Tr
(
B0e

−t∆p
)
∼ t− dim(O)/2

∞∑
k=0

akt
k +

∑
γ∈Γ,γ 6=e

t− dim(Nγ)/2

∞∑
k=0

aγkt
k, t→ 0

for some aγk, ak ∈ C, k = 0, . . . ,∞.

Proof. Analogously to the proof of Lemma 4.2.1.

Remark 4.2.6. For a similar result, see [LR91, pp. 438-440].

As usual, we establish the Weyl law.

Theorem 4.2.7. The counting function N(r,∆) for ∆ satisfies

N(r,∆) =
rk(E)vol(O)

(4π)(dimO)/2Γ((dimO)/2 + 1)
r(dimO)/2 + o(r(dimO)/2), r →∞.

Proof. Follows from the Tauberian theorem, Lemma 4.2.1 and Remark 4.2.3.
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Analytic torsion of compact orbifolds

5.1 Definition of the analytic torsion

Let E → O be a flat vector orbibundle over a compact good Riemannian orbifold (O, g);

pick a Hermitian fiber metric h in E. Denote by ∆p(h, g) the Bochner Laplace operator

acting on E-valued p-forms on O with respect to h. By [Buc99, Theorem 3.5], it is essen-

tially selfadjoint; another possibility is just to take the Friedrichs extension. We denote

its selfadjoint extension by the same symbol. Note that spec(∆p(h, g)) is semi-bounded,

hence we can define e−t∆p(h,g) by a suitable Dunford integral as in [Gil95].

Definition 5.1.1. The zeta function ζp(s;h, g) is

ζp(s;h, g) :=
1

Γ(s)

∫ ∞
0

ts−1Tr(e−t∆p(h,g)(1− P ))dt,

where P is the orthogonal projection to ker ∆p(h, g) and Γ(s) is the gamma-function.

Assumption 5.1.2. From now on and till the end of the thesis assume that ∆p(h, g) > 0

and, hence, P = 0.

Note that by Lemma 4.2.1, Tr
(
e−t∆p(h,g)

)
admits the following asymptotic expansion

as t→ +0:

Tr
(
e−t∆p(h,g)

)
∼ t− dim(O)/2

∞∑
k=0

akt
k +

∑
γ∈Γ,γ 6=e

t− dim(Nγ)/2

∞∑
k=0

aγkt
k.

By Assumption 5.1.2,

Tr
(
e−t∆p(h,g)

)
∼ O(e−ct), t→∞
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for some c > 0. Hence by Proposition 2.12.2, the zeta function ζp(s;h, g) admits a mero-

morphic extension to C; moreover, it is regular at s = 0.

Definition 5.1.3. The analytic torsion TO(h, g) is defined as

log TO(h, g) :=
1

2

dimO∑
p=1

(−1)pp
d

ds
ζp(s;h, ρ)|s=0 .

Fix an admissible metric h from Definition 2.7.1.

Definition 5.1.4. Further denote TO(ρ) := TO(h, g); here ρ indicates the dependence of

the analytic torsion on the orbibundle Eρ, and TO(h, g) is from Definition 5.1.3.

5.2 Analytic torsion under metric variation

In this section we study the Ray-Singer analytic torsion TO(h, g) of a compact odd-

dimensional good Riemannian orbifold (O, g), where O = GU\Ũ for a finite group GU

and a compact manifold Ũ . The main goal is to establish the invariance of the analytic

torsion under certain deformations of the metric g, which we will now specify.

5.2.1 Deformations of the metric

For a moment we let O = GU\Ũ be a compact orbifold, where Ũ is a (not necessarily

compact) manifold, and GU is a (not necessarily finite) group. Consider an orbifold atlas

of O consisting of charts (Ũα, Gα, φα) as in Definition 2.1.2.

Definition 5.2.1. By a smooth family of metrics on O we mean a collection of GU -

invariant metrics g(u), u ∈ [0, 1] on Ũ , depending smoothly on u.

Example 5.2.2. Let g be a metric on an orbifold O and m ∈ R. The family of metrics

λ · g, λ ∈ [1,m] is a smooth family of metrics.

5.2.2 Deformation of the analytic torsion

Let O be an orbifold equipped with a smooth family of metrics g(u), u ∈ [0, 1] from

Definition 5.2.1, and let E → O be a flat orbibundle equipped with a Hermitian metric h.

Definition 5.2.3. Denote by ∆k(u) the Bochner-Laplace operator acting on E-valued k-

forms of O.
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Definition 5.2.4. To simplify the notations, put

L2Ωk(u)(O) := L2Ωk(u)(O, E), H2Ωk(u)(O) := H2Ωk(u)(O, E).

Note that for different values of u the Laplacians ∆k(u) act on different Hilbert spaces

L2Ωk(u)(O). However, we can identify these spaces by a natural isometry

T (u) : L2Ωk(u)(O) 7→ L2Ωk(0)(O), T (u) : f(x) 7→
(

det g(0)(x)

det g(u)(x)

) 1
4

· f(x)

for x ∈ O and u ∈ [0, 1].

Proposition 5.2.5. The operator T (u) maps H2Ωk(u)(O) to H2Ωk(0)(O).

Proof. Take a partition of unity; then Definition 5.2.1 together with the same result for

manifolds imply the proposition.

Remark 5.2.6. The domain of ∆k(u) is

dom (∆k(u)) = H2Ωk(u)(O)

Together Proposition 5.2.5 and Remark 5.2.6 imply:

Proposition 5.2.7. The operator T (u) is a well-defined map from dom (∆k(u)) to dom (∆k(0)).

Define the self-adjoint operators

Hk(u) := T (u) ◦∆k(u) ◦ T (u)−1 (5.1)

with the fixed domain domHk(u) = H2Ωk(0)(Ω). To establish the independence of the

analytic torsion on u, we follow [MV10, Subsection 3.2], the key steps of whose proof we

repeat here for the reader’s convenience.

Lemma 5.2.8. We have that:

∂

∂u
Tr
(
e−t∆k(u)

)∣∣∣∣
u=u0

= −t · Tr

(
∂∆k(u)

∂u

∣∣∣∣
u=u0

◦ e−t∆k(u0)

)
.

Proof. From the semigroups properties it follows that for any u, u0 ∈ [0, 1],

e−tHk(u) − e−tHk(u0)

u− u0

=

∫ t

0

∂

∂s

(
e−(t−s)Hk(u0)e−sHk(u)

u− u0

)
ds =∫ t

0

e−(t−s)Hk(u0) · Hk(u0)−Hk(u)

u− u0

· e−sHk(u)ds.
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Taking u→ u0 gives

∂

∂u
Tr e−tHk(u)

∣∣∣∣
u=u0

= −
∫ t

0

Tr

(
e−(t−s)Hk(u0) · ∂Hk(u)

∂u

∣∣∣∣
u=u0

· e−sHk(u0)

)
ds =

−t · Tr

(
∂Hk(u)

∂u

∣∣∣∣
u=u0

· e−tHk(u0)

)
.

The previous equation and (5.1) imply:

∂

∂u
Tr
(
e−tHk(u)

)∣∣∣∣
u=u0

= −t · Tr

(
∂T (u)

∂u

∣∣∣∣
u=u0

◦∆k(u0) ◦ e−t∆k(u0) ◦ T−1(u0)

)
−

t · Tr

∆k(u0) ◦

(
∂T (u)

∂u

∣∣∣∣
u=u0

)−1

◦ T (u0) ◦ e−t∆k(u0)

− t · Tr

(
∂∆k(u)

∂u

∣∣∣∣
u=u0

◦ e−t∆k(u0)

)
.

(5.2)

Remark 5.2.9. Although ∆k(u) have different domains for different u, the operator on

the right hand side of (5.2) is well-defined. The reason is as follows: in the mentioned

equation ∆k(u) acts on the range of e−t∆k(u0), that is a smoothing operator.

The first and the second summand in the right hand side of (5.2) cancel, as

Tr

∆k(u0) ◦

(
∂T (u)

∂u

∣∣∣∣
u=u0

)−1

T (u0) ◦ e−t∆k(u0)

 =

Tr

e−(t/2)∆k(u0)∆k(u0) ◦

(
∂T (u)

∂u

∣∣∣∣
u=u0

)−1

T (u0) ◦ e−(t/2)∆k(u0)

 =

Tr

( ∂T (u)

∂u

∣∣∣∣
u=u0

)−1

T (u0) ◦∆k(u0) ◦ e−t∆k(u0)

 =

−Tr

(
T−1(u0)

∂T (u)

∂u

∣∣∣∣
u=u0

◦∆k(u0) ◦ e−t∆k(u0)

)
.

(5.3)

Together (5.2) and (5.3) imply the statement of the lemma.

Let ∗u denote the Hodge-star operator associated with g(u), and put αku := ∗−1
u · ∂∗∂u ,

where k denotes the restriction to the forms of degree k. By the arguments as in [RS71,

p.153], Lemma 5.2.8 implies

dimO∑
k=0

(−1)k · k · ∂
∂u

Tr
(
e−t∆k(u)

)∣∣∣∣
u=u0

= t · ∂
∂t

dimO∑
k=0

(−1)k · Tr
(
αkue

−t∆k(u)
)
. (5.4)
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Suppose that ker ∆k(u) = {0} for all k and u and put

f(u, s) :=
1

2

dimO∑
k=0

(−1)k · k · 1

Γ(k)

∫ ∞
0

ts−1 · Tr
(
αkue

−t∆k(u)
)
dt. (5.5)

Remark 5.2.10. By definition of the analytic torsion,

log TO(h, g(u)) =
∂

∂s

∣∣∣∣
s=0

f(u, s). (5.6)

By the exponential decay of the heat trace we can differentiate the right hand side of

(5.5) with respect to u by differentiating inside the integral sign. Together with (5.4), it

implies:

∂f(u, s)

∂u
=

1

2

dimO∑
k=0

(−1)k · 1

Γ(s)

∫ ∞
0

ts
d

dt
Tr (αkue

−t∆k(u))dt. (5.7)

Differentiating by parts, we obtain

1

Γ(s)

∫ ∞
0

ts
d

dt
Tr (αkue

−t∆k(u))dt = (−s) · 1

Γ(s)

∫ ∞
0

ts−1 · Tr (αkue
−t∆k(u))dt (5.8)

By Lemma 4.2.5,

Tr
(
αkue

−t∆k(u)
)
∼

∞∑
k=0

ckt
− dim(O)/2+k +

∑
e6=γ∈GU

∞∑
k=0

dkt
− dimNγ/2+k (5.9)

for some ck, dk ∈ C as t → 0. Putting together (5.7), (5.6), (5.8), (5.9) and proceeding as

in [RS71], we obtain the following statement:

Theorem 5.2.11. Let O be a good Riemannian orbifold, and let g(u), u ∈ [0, 1] be a

smooth family of metrics on O. Suppose that ker(∆k(u)) = {0} for all u ∈ [0, 1] and k =

1, . . . dimO. Furthermore, let lk(u) denote the constant term of the asymptotic expansion

(5.9). Then

∂

∂u
log TO(h, g(u)) = −1/2

dimO∑
k=0

(−1)k lk(u).

Corollary 5.2.12. Assume O = GU\Ũ , dimO is odd and the fixed point set of every

element γ ∈ GU in Ũ is odd-dimensional, for example O = Γ\H2n+1; see Proposition

2.3.5. Then lk(u) = 0 for k = 0, . . . , dimO, and log TO(h, g(u)) does not depend on u.

Further we will apply Corollary 5.2.12 to the families of metrics g(u) from Example

5.2.2.
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5.3 L2-torsion

In this section we recall the notion of L2-torsion. Our main goal is to establish the analytic

behavior of the analytic torsion, and as a by-product we will study the asymptotic behavior

of the L2-torsion.

Let O = Γ\H2n+1 be a compact hyperbolic orbifold, let ∆̃p(τ) be as in Definition 2.7.3

and τ(m) be as in Definition 2.6.2. Denote by TrΓ(e−t∆̃p(τ(m))) the Γ-trace of e−t∆̃p(τ(m))

on H2n+1 as in [Lot92]. It follows that

TrΓ e
−t∆̃p(τ(m)) = vol(O)h

τ(m),p
t (1),

where h
τ(m),p
t is as in (2.18); see [MP11]. Therefore, we have that

2n+1∑
p=1

(−1)pp · TrΓ e
−t∆̃p(τ(m)) = I(t, τ(m)),

where I(t, τ(m)) := vol(O) · kτ(m)
t (e), where k

τ(m)
t (e) is as in (2.19) with the representation

τ = τ(m) from Definition 2.6.2.

Definition 5.3.1. The L2-torsion is defined by

log T
(2)
O (τ(m)) :=

1

2

d

ds

(
1

Γ(s)

∫
R
ts−1

2n+1∑
p=1

(−1)pp · TrΓ e
−t∆̃p(τ(m))

)∣∣∣∣∣
s=0

.

5.4 Asymptotic behavior of analytic and L2-torsion

In this section we establish the asymptotic behavior of the analytic and the L2-torsion

for odd-dimensional hyperbolic orbifolds O = Γ\H2n+1. We will refer to some technical

lemmas from Section 5.5. Our main results are Theorems 5.4.2 and 5.4.3.

Definition 5.4.1. A pseudopolynomial PE(m) of degree ≤ d2+d+2
2

is a sum of type

d2+d+2
2∑
j=0

K∑
k=0

Cj,km
jeimφj,k ,

where Cj,k, φj,k ∈ R, K ∈ N are constants depending on elliptic elements of Γ.
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Theorem 5.4.2. Let τ(m) be as in Definition 2.6.2. Then there exists c1 > 0 such that

log TO(τ(m)) = PI(m) + PE(m) +O(e−c1m), m→∞.

Above PI(m) is a polynomial in m of degree n2+n+2
2

; PE(m) is a pseudopolynomial in m

of degree ≤ d2+d+2
2

with 2d+ 1 being the maximal dimension of fixed point sets of elements

γ ∈ Γ, γ 6= e in H2n+1.

Theorem 5.4.3. We have that

log T
(2)
O (τ(m)) = PI(m), m→∞,

where PI(m) is the polynomial from Theorem 5.4.2.

Definition 5.4.4. By [MP11, Proposition 5.5], the Mellin transform∫ ∞
0

ts−1I(t, τ(m))dt

of I(t, τ(m)) is a meromorphic functions of s ∈ C, which is regular at s = 0. Denote by

MI(τ(m)) its value at s = 0.

We would like to investigate the Mellin transform∫ ∞
0

ts−1E(t, τ(m))dt

of E(t, τ) and examine its behavior at s = 0. To do this, we use the calculation of the

orbital integral from Lemma 1.1.3.

Remark 5.4.5. Although the set-up, in which we obtained Lemma 1.1.3, deals with the

Selberg trace formula applied to certain non-selfadjoint operators, the non self-adjointness

does not matter as long as we consider only the orbital integrals.

Lemma 1.1.3 and [MP11, Proposition 5.5] imply the following proposition:

Proposition 5.4.6. The Mellin transform∫ ∞
0

ts−1E(t, τ(m))dt

of E(t, τ(m)) is is a meromorphic function of s ∈ C, which is regular at s = 0.

Definition 5.4.7. Denote by ME(τ(m))) its its value at s = 0.
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Proof of Proposition 5.4.6. The crucial step of [MP11, Proposition 5.5] is to use that

Pσ′(iλ) from Theorem 3.3.26 are polynomials in λ. By Lemma 1.1.3, we have that P γ
σ′(iλ)

are polynomials in λ, that analogously to [MP11, Proposition 5.5] proves the proposi-

tion.

Lemma 5.4.8.

log TO(τ(m)) =
1

2
(MI(τ(m)) +ME(τ(m))) +O(e−c1m)

as m→∞.

Lemma 5.4.9. There exists m′ ∈ N such that for any m > m′, the representation τ(m)

satisfies Assumption 5.1.2, that is

∆p(ρ(m)) > 0.

Proof of Lemma 5.4.9. The proof follows from the following two facts. First, [Pfa12,

Lemma 9.2] proves the same result for manifolds; and second, by the Selberg lemma,

our orbifold Γ\H2n+1 is finitely covered by a manifold.

Proof of Lemma 5.4.8. Lemma 5.4.9 together with Corollary 5.2.12 the analytic torsion

TO(τ(m);h, g) is invariant under smooth deformation of the metric g. As in Example 5.2.2

we can rescale the metric by
√
m or, equivalently, replace ∆p(τ(m)) by 1

m
∆p(τ(m)), so

that (1.2) becomes

log TO(τ(m)) =
1

2

d

ds

(
1

Γ(s)

∫ ∞
0

ts−1K

(
t

m
, τ(m)

)
dt

)∣∣∣∣
s=0

. (5.10)

Note that

d

ds

(
1

Γ(s)

∫ ∞
1

ts−1K

(
t

m
, τ(m)

)
dt

)∣∣∣∣
s=0

=

∫ ∞
1

t−1K

(
t

m
, τ(m)

)
dt. (5.11)

To continue the proof, we need to introduce the following lemma:

Lemma 5.4.10. [MP11, Proposition 5.3] Let H0
t be the heat kernel of the Laplacian ∆̃0

on C∞(H2n+1). Then there exists m0 ∈ N and C > 0 such that for all m ≥ m0, g ∈ G,

t ∈ (0,∞) and p = {0, . . . , 2n+ 1}, one has∣∣∣hτ(m),p
t (g)

∣∣∣ ≤ C · dim(τ(m)) · e−tm2/2 ·H0
t (g).
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Proposition 5.4.11. We have that∫ ∞
1

t−1K

(
t

m
, τ(m)

)
dt = O(e−m/8), m→∞. (5.12)

Proof of Proposition 5.4.11. By Lemma 5.4.10, applied to h
τ(m),p
t/m (g) instead of h

τ(m),p
t (g),

and the Selberg trace formula,∣∣∣∣K ( t

m
, τ(m)

)∣∣∣∣ ≤ C · e−mt/2 · dim(τ(m)) ·
∫

Γ\G

∑
γ∈Γ

H0
t/m(g−1γg)dġ

= C · e−
m
2
t · dim(τ(m)) · Tr(e−

t
m

∆0),

(5.13)

where ∆0 denotes the Laplacian on C∞(Γ\H2n+1). By Lemma 4.2.1 and Remark 4.2.3,

Tr(e−
t
m

∆0) = C1 · vol(Γ\H2n+1) ·m(2n+1)/2 +O(m(2n−1)/2), m→∞.

The last equation and (5.13) imply∣∣∣∣K ( t

m
, τ(m)

)∣∣∣∣ ≤ C2 · τ(m) · e−mt/2, t ≥ 1

and ∣∣∣∣∫ ∞
1

t−1K

(
t

m
, τ(m)

)
dt

∣∣∣∣ ≤ C3 · dim τ(m) · e−m/4
∫ ∞

1

t−1e−m
2t/4dt. (5.14)

Recall that by a consequence of Weyl’s dimension formula,

dim(τ(m)) = C ·m
n(n+1)

2 +O(m
n(n+1)

2
−1), m→∞,

that together with (5.14) imply (5.12).

Putting together (5.10), (5.11) and (5.12), we obtain

log TO(τ(m)) =
1

2

d

ds

(
1

Γ(s)

∫ 1

0

ts−1K

(
t

m
, τ(m)

)
dt

)∣∣∣∣
s=0

+O(e−m/8). (5.15)

We need to estimate K(t/m, τ(m)) for 0 < t ≤ 1.

Proposition 5.4.12. We have that

K

(
t

m
, τ(m)

)
= I

(
t

m
, τ(m)

)
+ E

(
t

m
, τ(m)

)
+H

(
t

m
, τ(m)

)
. (5.16)
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Proof. Let k
τ(m)
t/m be as in (2.19). Substituting α = k

τ(m)
t/m to (2.30) implies the proposition.

Proposition 5.4.13. The contribution from H
(
t
m
, τ(m)

)
to the first summand of the right

hand side of (5.15) decays exponentially:

d

ds

(
1

Γ(s)

∫ 1

0

ts−1H

(
t

m
, τ(m)

)
dt

)∣∣∣∣
s=0

= O(e−c2m)m m→∞.

Proof of Proposition 5.4.13. The Proposition follows from [MP14, p. 23] with minor mod-

ification; for the convenience of the reader we include the key steps of the proof. First note

that

H(t, τ(m)) :=

∫
Γ\G

∑
γ hyperbolic,γ∈Γ

k
τ(m)
t (g−1γg)dġ.

By Lemma 5.4.10,∑
γ hyperbolic

∣∣∣kτ(m)
t (gγg−1)

∣∣∣ ≤ C · e−tm2/2 · dim(τ(m)) ·
∑

γ hyperbolic,γ∈Γ

H0
t (g−1γg).

To finish the proof, we need to prove that∑
γ hyperbolic,γ∈Γ

H0
t (g−1γg) ≤ Ce−c/t (5.17)

for some C > 0.

Remark 5.4.14. The inequality (5.17) corresponds to [MP11, Proposition 3.2].

It follows from the construction of a fundamental solution of the heat equation (see

Section 4.1) that there exists C > 0 such that for all g ∈ G, t ∈ (0, 1], one has

H0
t (g) ≤ C · t− dim(O)/2 · e−

ρ2(gK,1K)
4π , (5.18)

where ρ(x, y) denotes the hyperbolic distance between x and y. Together (5.18) and (3.51)

imply (5.17), that finishes the proof.

From (2.33), (2.34) and Remark 2.11.5 we obtain

I(t, τ(m)) = 2 vol(O)
n∑
k=0

(−1)k+1e−tλ
2
τ(m),k

∫
R
e−tλ

2

Pστ(m),k
(iλ)dλ,

E(t, τ(m)) = 2
∑

{γ} elliptic

vol(Γγ\Gγ)
n∑
k=0

(−1)k+1e−tλ
2
τ(m),k

∫
R
e−tλ

2

P γ
στ(m),k

(iλ)dλ.

(5.19)

For further estimates of (5.15) we need
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Lemma 5.4.15. There exists C > 0 such that∫ 1

0

t−1I

(
t

m
, τ(m)

)
dt =

∫ ∞
0

t−1I

(
t

m
, τ(m)

)
dt+O(e−Cm), (5.20)

∫ 1

0

t−1E

(
t

m
, τ(m)

)
dt =

∫ ∞
0

t−1E

(
t

m
, τ(m)

)
dt+O(e−Cm), (5.21)

as m→∞.

Proof. We repeat the estimate of (5.20) for the reader’s convenience [MP11, p. 25]. Recall

that the polynomial

Pσ(m),k(t) =
n∑
i=0

ak,i(m)t2i

and there exists C > 0 such that

|ak,i| ≤ Cm2n+n(n+1)/2

for all k, i = 0, . . . , n and m ∈ N. Applying this estimate to (5.19) and using that

λτ(m),i ≥ m

for i = 0, . . . ,m, we get ∣∣∣∣I ( t

m
, τ(m)

)∣∣∣∣ ≤ Ce−c(m+t), t ≥ 1 (5.22)

for some c > 0, and hence∫ ∞
1

t−1I

(
t

m
, τ(m)

)
dt = O(e−cm), m→∞. (5.23)

By Lemma 5.5.8 we get the same estimates for
∫∞

1
t−1E

(
t
m
, τ(m)

)
dt, that implies (5.21).

Using (5.23) and the arguments after [MP11, Proposition 5.5], we obtain Lemma 5.4.8.

Lemma 5.4.16. [MP11, (5.17)] We have that log T
(2)
O (τ(m)) = 1

2
(MI(τ(m))).

Theorem 5.4.17. We have that

MI(τ(m)) = PI(m), ME(τ(m)) = PE(m),

where PI(m) is the polynomial in m of degree n2+n+2
2

, PE(m) is the pseudopolynomial

in m of degree d2−d+1
2

with 2d − 1 being the maximal dimension the fixed point sets of

γ ∈ Γ, γ 6= e.
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Remark 5.4.18. In Theorem 5.4.17, we let the maximal dimension the fixed point sets of

γ ∈ Γ, γ 6= e be equal to 2d − 1, but not 2d + 1 as in Theorem 5.4.2. In order to obtain

Theorem 5.4.2, set d′ = d− 1, then d2 − d+ 1 = (d′ + 1)2 − (d′ + 1) + 1 = d′2 + d′ + 1 and

2d− 1 = 2d′ + 1.

Proof of Theorem 5.4.17. Note that

MI(τ(m)) = vol(Γ\G)
n∑
k=0

(−1)k
∫ λτ(m),k

0

Pστ(m),k
(t)dt,

ME(τ(m)) =
n∑
k=0

∑
{γ} elliptic

(−1)kvol(Γγ\Gγ)

∫ λτ(m),k

0

P γ
στ(m),k

(t)dt.

As the estimate of MI(τ(m)) does not depend on the structure of the group Γ, [MP11,

Corollary 5.7] implies:

n∑
k=0

(−1)k
∫ λτ(m),k

0

Pστ(m),k
(t)dt = c(n)m dim τ(m) +O(m

n(n+1)
2 ),

where c(n) is as in [MP11, (2.21)]. It remains to estimate

n∑
k=0

(−1)k
∫ λτ(m),k

0

P γ
στ(m),k

(t)dt.

Let γ be an elliptic element as in (2.7). Recall that by definition of λτ(m),k,

λτ(m),0 > λτ(m),1 > . . . > λτ(m),n. (5.24)

Split the integrals

n∑
k=0

(−1)k
∫ λτ(m),k

0

P γ
στ(m),k

(t)dt =

∫ λτ(m),n

0

n∑
k=0

(−1)kP γ
στ(m),k

(t)dt+
n∑
k=0

(−1)k
∫ λτ(m),k

λτ(m),n

P γ
στ(m),k

(t)dt.

(5.25)

We calculate the first summand in the right hand side of (5.25). By Lemma 5.5.3, it follows

that
n∑
k=0

(−1)kP γ
στ(m),k

(t)
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does not depend on t, hence

n∑
k=0

(−1)k
∫ λτ(m),n

0

P γ
στ(m),k

(t)dt = λτ(m),n·
n−1∑
k=0

(−1)kP γ
στ(m),k

(t) = (τn+1+m)·
n−1∑
k=0

(−1)kP γ
στ(m),k

(t).

(5.26)

The second equality is due to (2.20). Hence by Lemma 5.5.6 the expression in the right

hand side of (5.26) is a pseudopolynomial of order 6 d2−d+2
2

. We are left to understand∫ λτ(m),k

λτ(m),n
P γ
στ(m),k

(t)dt. By Lemma 5.5.10,∣∣∣∣∣md(d−1)/2

∫ λτ(m),k

λτ(m),n

P γ
στ(m),k

(t)

md(d−1)/2
dt

∣∣∣∣∣ 6 md(d−1)/2 · (λτ(m),k − λτ(m),n) ·O(1) = O(m(d2−d)/2),

that proves the theorem.

Theorems 5.4.2 and 5.4.3 follow from Lemmas 5.4.8, 5.4.16 and Theorem 5.4.17.

5.5 Some technical lemmas

In this section we collect the technical lemmas which have been used in the proof of

Theorem 5.4.17, namely Lemmas 5.5.3, 5.5.6, 5.5.8 and 5.5.10.

Proposition 5.5.1. Let γ ∈ Γ be from (3.37) with d := k and let σ ∈ M̂ . It follows from

Theorem 3.3.25 that:

P γ
σ (ν) =

∑
s∈W

det(s)
∏
α∈∆+

γ

〈α,−s(Λ(σ) + ρM)− iνe1〉ζ−s(Λ(σ)+ρM )(γ), ν ∈ C. (5.27)

Remark 5.5.2. Note that γ fixes in H2n+1 the point set of dimension 2d−1; compare with

γ = e, that corresponds to d = n+ 1 and fixes H2n+1.

For Λ ∈ h∗C, we denote

A(Λ, ν) :=
∏
α∈∆+

γ

〈α,−Λ−
√
−1νe1〉, B(Λ) = ζ−Λ(γ). (5.28)

Note that if Λ = v2e2 + . . . vn+1en+1, then (5.28) becomes:

A(Λ, ν) =
∏

2≤j≤d

(−ν2 − v2
j )

∏
2≤i<j≤d

(v2
i − v2

j ), B(Λ) = e−
√
−1(vd+1φd+1+...vn+1φn+1). (5.29)

Note that A(Λ, ν) is an even polynomial in ν of order 2(d − 1), and that B(Λ) does not

depend on ν. First we present two lemmas needed for the estimate (5.26).
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Lemma 5.5.3. The sum
n∑
k=0

(−1)kP γ
τ(m),k(ν) (5.30)

does not depend on ν.

Remark 5.5.4. Compare Lemma 5.5.3 with the same result for
∑n

k=0(−1)kPτ(m),k(ν)

[Pfa12, Corollary 9.9].

Remark 5.5.5. Every summand in (5.30) is a polynomial of order 2(d− 1) in ν by (5.27-

5.29), but the whole sum does not depend on ν.

Lemma 5.5.6. The sum
∑n

k=0(−1)kP γ
τ(m),k(ν) is a pseudopolynomial in m of order ≤

d(d−1)
2

.

Remark 5.5.7. Note that γ = id is equivalent to d = n+ 1. Then the sum

n∑
k=0

(−1)kPτ(m),k(ν) =
n∑
k=0

(−1)kP γ
τ(m),k(ν)

is a polynomial in m of order n(n+ 1)/2; compare [MP11, Corollary 1.4].

The following two lemmas are needed to prove Lemma 5.4.15.

Lemma 5.5.8. Let

P γ
τ(m),k(ν) =

n∑
i=0

aγk,i(m)ν2i,

then there exists C > 0 such that

|aγk,i| 6 Cm2(d−1)+d(d−1)/2.

Definition 5.5.9. For brevity put λi := λτ(m),i for i = 0, . . . , n, where λτ(m),i is (2.20).

Lemma 5.5.10. There exists C > 0 such that for any k = 0, . . . , n and ν ∈ [λn, λk]

P γ
τ(m),k(ν)m−

d(d−1)
2 < C.

Then by Definition 2.6.2, (2.5) and (2.20)

Λ(στ(m),k) + ρM =
k+1∑
i=2

λi−2ei +
n+1∑
i=k+2

λi−1ei. (5.31)
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Substituting (5.28) to (5.27), we obtain

n∑
k=0

(−1)kP γ
τ(m),k(ν) =

n∑
k=0

∑
s∈W

(−1)k det(s)A(s · Λ(στ(m),k) + ρM), ν)B(s · Λ(στ(m),k) + ρM).

(5.32)

To prove Lemma 5.5.3, we need the following two propositions:

Definition 5.5.11. Fix some (k, s) ∈ {0, . . . , n} ×W . Denote

U(k, s) :=
{

(k′, s′) ∈ {0, . . . , n} ×W
∣∣B(s · (Λ(στ(m),k) + ρM)) = B(s′ · (Λ(στ(m),k′) + ρM))

}
.

Proposition 5.5.12. The sum∑
(k′,s′)∈U(k,s)

A(s′ · (Λ(στ(m),k′) + ρM), ν)

does not depend on ν.

Proof of Proposition 5.5.12. Without loss of generality assume that W contains only the

permutation elements, but not the sign changes.

Fix k ∈ {0, . . . , n} and fix λη(d+1), . . . , λη(n+1) ∈ {λ0, λ1, . . . , λ̂k, . . . , λn}, such that

η(d + i) 6= η(d + j) for i 6= j; above λ̂k means, that the element λk is omitted. Without

loss of generality assume

η(d+ 1) < η(d+ 2) < . . . < η(n+ 1).

Denote by

Λk
stan := λ0e2 + λ1e3 + . . .+ λ̂kek+2 + . . .+ λnen+1.

Let l(i) ∈ N, i = 2, . . . , d be as follows:

1. {l(i)}di=2 ∩ {η(j)}n+1
j=d+1 = ∅,

2. {l(i)}di=2 ∪ {η(j)}n+1
j=d+1 = {i}ni=0\{k},

3. l(2) < l(3) < . . . < l(d).

Define

l := λl(2)e2 + . . .+ λl(d)ed,

η := λη(d+1)ed+1 + . . .+ λη(n+1)en+1,
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and let

K := {0, 1, . . . , n}\ ∪n+1
i=d+1 {η(i)}

Let w ∈ W be the element such that

w · Λk
stan = l + η.

It follows from (5.29), that

B(w · Λk
stan) = B(s · Λκ)

holds if and only if s · Λκ = s′ · v + η, where

1. κ ∈ K,

2. v = λv(2)e2 + . . .+ λv(d)ed, where v(i) ∈ K\{k} and v(i) < v(j) for i < j,

3. s′ is a restriction of W that maps the first d− 1 coordinates into themselves, i.e. w

permutes the coefficients at e1, . . . , ed and keeps the coefficients at ed+1, . . . , en+1.

Note that once w · Λk
stan and κ ∈ K is fixed, the choice of v is unique, though s′ can still

be any element of W , satisfying (3). Thus grouping together summands as in Proposition

5.5.12 would result into a group(∑
κ∈K

∑
s′

det(w)A(s′ · v + η, ν)

)
·B(w · Λk

stan) =(∑
κ∈K

∑
s′

det(w) det(s′) · A(v, ν)

)
·B(w · Λk

stan).

(5.33)

The equality above follows from (5.29) and

A(s′ · v + η, ν) = det(s′) · A(v, ν).

Every A(v, ν) is a polynomial in ν of order 2(d− 1), moreover,

A(v, ν) =
∏

i∈K,i6=k

(−ν2 − λ2
i )

∏
0≤i<j≤n, i,j∈K\{k}

(λ2
i − λ2

j).

We are interested in its values in 2d points ν = ±
√
−1λj, j ∈ K. For convenience put

η(d) := −1 and η(n+ 2) := n+ 2. Let

η(d+B) < κ < η(d+B + 1) (5.34)
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for some B = 0, . . . , n− d+ 1.

A(v,±iλj) = 0, j ∈ K\{κ},

A(v,±iλκ) = (−1)k−B
∏

0≤i<j≤n, i,j∈K

(λ2
i − λ2

j).
(5.35)

Note that w−1 · s′ maps v+ ν to Λk
stan. We know the exact formulas for both, hence we

can calculate the amount of permutations needed to map one into another, to obtain

det(w · s′) = det(w−1 · s′) = (−1)κ+B, (5.36)

where B is defined by (5.34). Putting together (5.33), (5.35) and (5.36), we obtain:

∑
κ∈K

∑
s′

det(w)A(s′ · ν + η, ν)

∣∣∣∣∣
ν=±iλk

=
∏

0≤1<j≤n;i,j∈K

(λ2
i − λ2

j), k ∈ K.

By definition, it is a polynomial in ν of order 2(d−1). As we have shown, its value coincides

the same as 2d points, hence it is a constant not depending on ν, that finishes the proof.

Proof of Lemma 5.5.3. We collect the summands in the right hand side of (5.32) into

groups as in Definition 5.5.11; Lemma 5.5.3 follows from Proposition 5.5.12, which states

that each group separately does not depend on ν.

Proof of Lemma 5.5.6. By the proof of the previous lemma, it suffices to consider A(v, ν)

for any ν; choose ν =
√
−1λ0:

A(v,
√
−1λ0) =

∏
0≤i<j≤n; i,j∈K

(λ2
i − λ2

j). (5.37)

We need to estimate its growth as m→∞. Recall that λi = m+ τi+1 +n− i, thus λ2
i −λ2

j

has a linear growth in m. The set K consists of d elements, hence (5.37) is the product of
d(d−1)

2
factors of linear growth, hence A(Λ0,

√
−1λ0) = O(m

d(d−1)
2 ), m→∞.

Proof of Lemma 5.5.8. To prove the lemma, it suffices to estimate∏
2≤j≤d

(−ν2 − v2
j )

∏
2≤i<j≤d

(v2
i − v2

j ), m→∞

where every vi equals λk for some k ∈ [0, n]. Note that

v2
i − v2

j = O(m),
∏

2≤i<j≤d

(v2
i − v2

j ) = O(md(d−1)/2), m→∞,
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and ∏
2≤j≤d

v2
j = O(m2(d−1)),

that implies Lemma 5.5.8.

Proof of Lemma 5.5.10. To prove the lemma, we need to estimate∏
16j6n;j∈K\{k}(−ν2 − λ2

j)
∏

16i<j6n,i,j∈K\{k}(λ
2
i − λ2

j)

md(d−1)/2
.

First note that ∏
16i<j6n,i,j∈K\{k}(λ

2
i − λ2

j)

m
(d−1)(d−2)

2

=
∏

16i<j6n;i,j∈K

(λ2
i − λ2

j)

m

is bounded for every K and m; the equality above follows from |K\{k}| = d− 1. Second,∏
16j6n;j∈K(−ν2 − λ2

j)

md
=

∏
16j6n,j∈K

(−ν2 − λ2
j)

m
.

To estimate the latter note that λ2
n − λ2

j 6 ν2 − λ2
j 6 λ2

k − λ2
j , 1 6 j 6 n, j ∈ K, hence

|ν2 − λ2
j |

m
6
|λ2
k − λ2

j |+ |λ2
k − λ2

n|
m

.

Note that this expression is bounded for every j and m; this proves the lemma.



Chapter 6

Analytic torsion for finite volume

orbifolds

The main goal of this chapter is to prove Theorem 1.3.1. We restrict ourselves to 3-

dimensional hyperbolic orbifolds Γ\H3 of finite volume.

6.1 Trace formula and trace regularization

In this section we define the regularized trace Trreg
(
e−tAν

)
and express it as the spectral

side of the Selberg trace formula.

Let O be a hyperbolic manifold. Note that an operator Aν has a non-empty continuous

spectrum and hence the heat operator is not of trace class. To overcome this problem,

various authors have used a regularization of the heat trace. A natural definition of the

regularized trace is as follows: one needs to integrate the pointwise trace of the heat

kernel over the truncated manifold and show that the integral admits an expansion in the

truncation parameter:

Theorem 6.1.1. [MP12] There exists the following asymptotic expansion:∫
C(Y )

hν(t;x, x) dx = C1(t) log(Y ) + C2(t) + o(1), Y →∞,

where C(Y ) is from (2.23) and hν(t;x, x′) is the kernel of πΓ(hνt ), where hνt is from (2.15).

Define the regularized trace as

Trreg(e
−tAν ) := C2(t).
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Moreover, it follows from [MP12], that the regularized trace of e−tAν equals the spectral

side of the Selberg trace formula applied to a test function hνt . We define the regularized

trace on an orbifold in the same spirit:

Definition 6.1.2. [MP12] The regularized trace Trreg(e
−tAν ) equals the spectral side of the

Selberg trace formula applied to exp(−tAν), and hence

Trreg(e
−tAν ) = I(hνt ) +H(hνt ) + T (hνt ) + I(hνt ) + J(hνt ) + Ecusp(hνt ) + J cusp(hνt ). (6.1)

6.2 Fourier transform of the weighted orbital inte-

grals

In this section we recall the Fourier transform of the distributions I(α) and Ecusp(α)

[Hof97].

6.2.1 Fourier transform of I(α).

Definition 6.2.1. For σ ∈ M̂ with highest weight

k2(σ)e2 + · · ·+ kn+1(σ)en+1

and λ ∈ R, define λσ ∈ (h)∗C by

λσ := iλe1 +
n+1∑
j=2

(kj(σ) + ρj)ej,

where ρj is from (2.5).

Let S(bC) be the symmetric algebra of bC. Define Π ∈ S(bC) by

Π :=
∏

α∈∆+(mC,bC)

Hα. (6.2)

The restriction of the Killing form to hC defines a non-degenerate symmetric bilinear form;

thus we can identify h∗C with hC via this form; denote the induced symmetric bilinear form

on h∗C by 〈·, ·〉. Define the reflection

sα : h∗C → h∗C
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by

sα(x) := x− 2
〈x, α〉
〈α, α〉

α

for α ∈ ∆+(gC, hC).

Theorem 6.2.2. [Hof97, Corollary on p.96] For every K-finite α ∈ C2(G) one has

I(α) =
κ

4π

∑
σ∈M̂

∫
R

Ω(σ̌,−λ)Θσ,λ(α)dλ,

where
Ω(σ, λ) := −2 dim(σ)γ−

1

2

∑
α∈∆+(gC,aC)

Π(sαλσ)

Π(ρM)
(ψ(1 + λσ(Hα)) + ψ(1− λσ(Hα)))

and σ̌ is the contragredient representation of σ.

6.2.2 Fourier transform of Ecusp(α) on SO0(1, 3).

Note that for G = SO0(1, 3), λσ from Definition 6.2.1 reads:

λσ = iλe1 + k2(σ)e2. (6.3)

Note that the non-identity element w0 of the Weyl group W from Subsection 2.2 acts on

λσ as

w0λσ = −iλe1 − k2(σ)e2. (6.4)

Recall that Σ+
P = {e1 − e2} ∪ {e1 + e2}, and

λσ(He1−e2) = iλ− k2(σ), λσ(He1+e2) = iλ+ k2(σ),

λw0σ(He1−e2) = −iλ+ k2(σ), λw0σ(He1+e2) = −iλ− k2(σ).
(6.5)

Let

γ =

( 1 0
0 1

cos(2φ) sin(2φ)
− sin(2φ) cos(2φ)

)
, (6.6)

where φ ∈ [0, 2π), then

γn(e1−e2) = e−2inφ, γn(e1+e2) = e2inφ,

and

γλσ = e2iφ k2(σ), γw0λσ = e−2iφ k2(σ).

Then [Hof97, Theorem 1] reads
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Theorem 6.2.3. Let γ ∈ ΓM(G), then

IL(γ, α) =
1

2πi

∑
σ∈M̂

∫
R

Ω(γ, σ̆)Θσ,λ(α)dλ, (6.7)

where

Ω(γ, σ) =
1

2

[
e2iφk2(σ)

(
∞∑
n=1

e2inφ

n+ iλ− k2(σ)
+
∞∑
n=1

e−2inφ

n+ iλ+ k2(σ)

)
+

e−2iφk2(σ)

(
∞∑
n=1

e2inφ

n− iλ+ k2(σ)
+
∞∑
n=1

e−2inφ

n− iλ− k2(σ)

)]
.

(6.8)

For convenience, express Ω(γ, σ) in terms of the digamma function. For this denote

b(s, z) :=
∞∑
n=1

zn

n+ s
, (6.9)

which is absolutely convergent for s, z ∈ C with s 6= {−1,−2, . . .}, |z| < 1, and condition-

ally convergent for |z| = 1, z 6= 1.

Lemma 6.2.4. For m ∈ N,

b(s, ei
2π
m ) = − 1

m

m−1∑
k=0

e
2πi
m

(m−k)ψ

(
s− k
m

+ 1

)
,

where ψ is the digamma function.

Every γ ∈ ΓM(P ) is of finite order by Remark 2.3.12, thus Theorem 6.2.3, Lemma 6.2.4

and (6.9) imply the following corollary:

Corollary 6.2.5. For Ω(γ, σ) as in (6.8), we have:

Ω(γ, σ) =
∑
j∈J

cj · ψ
(
aj + ibj · λ

)
,

where J and aj do not depend on k2(σ); cj = O(1), bj = O(k2(σ)) as k2(σ) → ∞; and

Ω(γ, σ) has no pole at λ = 0.

We will present two proofs of Lemma 6.2.4: the second one was kindly proposed by

Werner Hoffmann.
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A baby-proof of Lemma 6.2.4. We will consider the case for m = 2. The proof for m 6=
2,m ∈ N is done by analogy, but with more technicalities, therefore we omit it. Recall that

ψ(1 + z) = lim
n→∞

(
lnn− 1

z + 1
− . . .− 1

z + n

)
, z 6= −1,−2, . . . .

Hence

ψ

(
s− 1

2
+ 1

)
= lim

n→∞

(
lnn− 2

s+ 1
− 2

s+ 3
− . . .− 2

s− 1 + 2n

)
︸ ︷︷ ︸

=:An(s)

, (6.10)

ψ
(s

2
+ 1
)

= lim
n→∞

(
lnn− 2

s+ 2
− 2

s+ 4
− . . .− 2

s+ 2n

)
︸ ︷︷ ︸

=:Bn(s)

. (6.11)

Put

Cn(s) := − 1

s+ 1
+

1

s+ 2
− . . .+ (−1)n

1

s+ n
, (6.12)

then

b(s,−1) = lim
n→∞

Cn(s).

It follows from (6.10), (6.11) and (6.12) that

C2n =
An(s)−Bn(s)

2
, C2n+1 =

An+1(s)−Bn(s)

2
,

hence

lim
n→∞

C2n(s) = lim
n→∞

C2n+1(s) = lim
n→∞

An(s)−Bn(s)

2

and

b(s,−1) = lim
n→∞

Cn = lim
n→∞

An(s)−Bn(s)

2
=
ψ
(
s
2

+ 1
2

)
− ψ

(
s
2

+ 1
)

2
,

that proves Lemma 6.2.4 for m = 2.

Proof of Lemma 6.2.4. Recall that for Re(z) > −1,

b(s, z) = z

∫ 1

0

xs(1− zx)−1dx,

and for Re(z) > 0 [AS64, 6.3.22],

ψ(z + 1) = −γ +

∫ 1

0

1− xs

1− x
dx,
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where γ is the Euler-Mascheroni constant. Note that

1

m

m−1∑
k=0

e
2πi
m

(m−k)ψ

(
s− k
m

+ 1

)
=

1

m
·
∫ 1

0

m∑
k=0

e2πi·(m−k)/m · 1− x s−km
1− x

dx =

∫ 1

0

e2πi/m

m
· x−1+ 1+s

m

−1 + e2πi/m · x1/m
dx.

(6.13)

Let y = x1/m, then the right hand side of the equation above equals:∫ 1

0

e2πi/m · ys

−1 + e2πi/m · y
dy = −b(s, e2πi/m),

that proves the statement.

6.2.3 Fourier transform of Ecusp(α) on SO0(1, 2n+ 1).

Lemma 6.2.4 together with [Hof97, Theorem 1] implies:

Theorem 6.2.6. For every K-finite α ∈ C2(G), one has

Ecusp(α) =
∑
σ∈M̂

∫
R

Ωcusp(σ̌,−λ)Θσ,λ(α)dλ,

where

Ωcusp(σ, λ) :=
∑
j∈I

cjψ(aj + bjiλ).

Above I is a finite set; aj, bj ∈ R; cj ∈ C; ψ is a digamma function; and Ωcusp(σ, λ) is

regular at λ = 0. Let (τ2 + m)e1 + . . . + (τn+1 + m)en+1 be the highest weight of σ. Then

aj = O(1), cj = O(1), |I| = O(1) and bj = O(m) when m→∞ or m→ −∞.

6.3 Asymptotic expansion of the regularized trace

In order to define the analytic torsion via the Mellin transform of the regularized trace

Trrege
−tAν , we need to show that the latter admits a certain type of asymptotic expansion

as t→ +0. For this we need the following lemmas:

Lemma 6.3.1. Let φ(t) :=
∫
R
e−tλ

2

λ+c
dλ, where c 6= 0, c ∈ iR. Then there exist a′j ∈ C such

that

φ(t) ∼
∞∑
j=0

a′jt
j/2, t→ 0.



6.3 Asymptotic expansion of the regularized trace 93

Proof. Note that∫
R

e−tλ
2

λ+ c
dλ =

∫
R

e−tλ
2
λ

λ2 − c2
dλ− c

∫
R

e−tλ
2

λ2 − c2
dλ = −ce−tc2

∫
R

e−tλ
2+tc2

λ2 − c2
dλ.

and (correcting a mistake in [MP14, Lemma 6.6]),

d

dt

∫
R

e−tλ
2+tc2

λ2 − c2
dλ = −

√
π√
t
etc

2

.

It follows from the previous equation that∫
R

e−tλ
2+tc2

λ2 − c2
dλ = −C1 · erfc(

√
t) + C2

for some C1 and C2. Expanding erfc(
√
t) in power series implies Lemma 6.3.1.

Lemma 6.3.2. Let φ2(t) :=
∫
R e
−tλ2

ψ(a+ iλ)dλ, where a ∈ (0, 1] and ψ is the digamma

function. Then there exist a′j, b
′
j, c

′
j ∈ C such that as t → 0, there is an asymptotic

expansion

φ2(t) ∼
∞∑
j=0

a′jt
j−1/2 +

∞∑
j=0

b′jt
j−1/2 log t+

∞∑
j=0

c′jt
j, t→ 0.

Proof. Follows [MP12, Lemma 6.7] with minor modifications.

Corollary 6.3.3. Let φ3(t) :=
∫
R e
−tλ2

ψ(a+ ibλ)dλ, where a, b ∈ R, a 6= 0 and ψ is

the digamma function. Then there exist a′j, b
′
j, c

′
j ∈ C such that as t → 0, there is an

asymptotic expansion

φ2(t) ∼
∞∑
j=0

a′jt
j−1/2 +

∞∑
j=0

b′jt
j−1/2 log t+

∞∑
j=0

c′jt
j, t→ 0.

Proof. Without loss of generality we can assume that b > 0 and, moreover, b = 1. Then

Corollary 6.3.3 follows from Lemmas 6.3.1 and 6.3.2, taking into account that φ(z + 1) =

φ(z) + 1
z
.

The main result of the subsection is the following proposition:

Proposition 6.3.4. There exist coefficients a′j, b
′
j, c
′
j, where j ∈ N such that

Trreg(e
−tAν ) ∼

∞∑
j=0

a′jt
j−d/2 +

∞∑
j=0

b′jt
j−1/2 log t+

∞∑
j=0

c′jt
j,

as t→ +0, where Trreg
(
e−tAν

)
is from Theorem 6.1.1.
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Proof. It is sufficient to show that the summands on the right hand side of (6.1) admit

an asymptotic expansion as t → + 0. The summands I(hνt ), H(hνt ), T (hνt ), I(hνt ), J(hνt )

were treated in [MP12, Proposition 6.9]. The terms J cusp(hνt ) and E(hνt ) are treated in the

same way as J(hνt ) and I(hνt ), respectively. The asymptotic expansion of Ecusp(hνt ) follows

from Corollary 6.3.3 and Theorem 6.2.6.

6.4 Analytic torsion

In this section we define the analytic torsion on finite volume orbifolds and prove Theorem

1.3.1.

In order to define the spectral zeta function we need to study the asymptotic behavior

of Trrege
−t∆p(τ) as t → 0 and t → ∞. It follows from Lemma 2.7.2 and Proposition 6.3.4

that there exist coefficients a′j, b
′
j, c
′
j, j ∈ N such that

Trreg(e
−t∆p(τ)) ∼

∞∑
j=0

a′jt
j−d/2 +

∞∑
j=0

b′jt
j−1/2 log t+

∞∑
j=0

c′jt
j, (6.14)

as t→ +0. As in [MP12, (7.10)] it follows that for some cj ∈ N

Trreg
(
e−t∆p(τ)

)
∼ hp(τ) +

∞∑
j=1

cjt
−j/2, t→∞, (6.15)

where hp(τ) := dim(ker ∆p(τ) ∩ L2).

Definition 6.4.1. The spectral zeta function is defined as:

ζp(s; τ) :=
1

Γ(s)

∫ 1

0

+

∫ ∞
1

ts−1Trreg
(
e−t∆p(τ) − hp(τ)

)
dt.

The first integral is defined for Re(s) > d/2, the second one is defined for Re(s) < 1/2.

By (6.14) and (6.15) both integrals admit meromorphic continuations to C that are

regular at s = 0, and hence we can define:

Definition 6.4.2. The analytic torsion TO(τ) associated with a flat vector bundle Eτ

equipped with the admissible metric from Definition 2.7.1, is defined as

TO(τ) = exp

(
1

2

2n+1∑
p=0

(−1)pp
d

ds
ζp(s; τ)

∣∣∣∣∣
s=0

 .
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Let

K(t, τ) :=
2n+1∑
p=0

(−1)p pTrrege
−t∆p(τ)

Note that if hp(τ) = 0, the analytic torsion is given by:

log TO(τ) =
1

2

d

ds

∣∣∣∣
s=0

(
1

Γ(s)

∫ ∞
0

ts−1K(t, τ) dt

)
. (6.16)

Remark 6.4.3. If τ = τ(m), then hp(τ(m)) = 0 for sufficiently large m [MP12, Lemma

7.3].

It follows from Theorem 6.1.1 that

K(t, τ) = (I +H + T + I + J + E + Ecusp + J cusp) (kτt ). (6.17)

By (6.16) and (6.17) in order to study the analytic torsion TO(τ) we need to study the

Mellin transform of the right hand side of (6.17) at zero.

6.5 Asymptotic behavior of the analytic torsion

From now on let τ(m) be the ray of representations of G from in Definition 2.6.2. Denote by

the same symbol its restriction to Γ. LetMI(τ(m)),MH(τ(m)),MT (τ(m)),MI(τ(m))

MJ(τ(m)) be as in [MP12] and ME(τ(m)) be as in Definition 5.4.4. Roughly speaking,

they equal the value of Mellin transforms at zero of the corresponding terms in the right

hand side of (6.17) with τ = τ(m).

Theorem 6.5.1. There exists a constant C such that for m sufficiently large one has

MI(t, τ(m)) = C(n)vol(X)m dim τ(m) +O(m
n(n+1)

2 ),

|MH(τ(m))| ≤ Cm
n(n−1)

2 , |MT (τ(m))| ≤ Cm
n(n+1)

2 ,

|MI(τ(m))| ≤ Cm
n(n+1)

2 , |MJ(τ(m))| ≤ Cm
n(n+1)

2 logm,

|ME(t, τ(m))| ≤ Cm
n(n−1)

2 .

Proof. Follows from [MP12, Propositions 10.1, 10.3, 10.4, 10.10, 10.14] and Theorem 5.4.17.

Theorem 6.5.2. There exists a constant C such that for m sufficiently large one has

|MJ cusp(τ(m))| ≤ Cm
n(n+1)

2 logm.
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Proof. Follows with minor modifications from [MP12, Proposition 10.14], keeping in mind

Remark 2.11.12.

It follows from Corollary 6.3.3 that Ecusp(kτ(m)
t ) admits an asymptotic expansion

Ecusp(kτ(m)
t ) ∼

∞∑
j=0

a′jt
j−1/2 +

∞∑
j=0

b′jt
j−1/2 log t+

∞∑
j=0

c′jt
j

for some a′j, b
′
j, c
′
j ∈ C. Moreover, Ecusp(kτ(m)

t ) = O(e−tm
2
) as m→∞. Hence

MEcusp(s; τ(m)) :=

∫ ∞
0

ts−1Ecusp(kτ(m)
t ) dt

converges for Re(s) > d−1
2

, admits a meromorphic continuation to C and has at most

simple pole at s = 0. Denote

MEcusp(τ(m)) :=
d

ds

MEcusp(s; τ(m))

Γ(s)

∣∣∣∣
s=0

.

Theorem 6.5.3. There exists a constant C such that for m sufficiently large one has

|MEcusp(τ(m))| ≤ C ·m log(m).

In order to prove Theorem 6.5.3 we need the following technical lemmas.

Lemma 6.5.4. For c ∈ (0,∞), s ∈ C, Re(s) > 0, ej, dj > 0 let

ζc(s) :=
1

π

∫ ∞
0

ts−1e−tc
2

∫
∞

e−tz
2

iejz + dj
dz dt.

Then ζc(s) has a meromorphic continuation to C with a simple pole at 0. Moreover, one

has

d

ds

∣∣∣∣
s=0

ζc(s)

Γ(s)
= − 2

ej
log (c+ dj/ej).

Proof. Follows with minor modifications from [MP12, Lemma 10.5].

Lemma 6.5.5. Let c ∈ R+, s ∈ C, Re(s) > 1/2, aj, bj > 0. Define

ζ̃c(s) :=
1

π

∫ ∞
0

ts−1e−tc
2

∫
R
e−tλ

2

ψ (aj + ibjλ) dλ dt.

Then ζ̃c(s) has a meromorphic continuation to s ∈ C with at most a simple pole at s = 0.

Moreover, there exists a constant C(ψ) which is independent of c, aj and bj such that

d

ds

∣∣∣∣
s=0

ζ̃c(s)

Γ(s)
= − 2

bj
log Γ(aj + cbj) + C(ψ).
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Proof. Follows from [MP12, Lemma 10.6] with minor modifications.

Proof of Theorem 6.5.3. Let

MEcusp(s;στ(m),k) :=

∫ ∞
0

ts−1e−tλ
2
τ(m),kEcusp(hστ(m),k

t ) dt.

As above it follows that the integral converges for Re(s) > (d − 2)/2 and admits a mero-

morphic continuation to C with at most a simple pole at s = 0. By [MP12, Proposition

8.2],

MEcusp(τ(m)) =
n∑
k=0

(−1)k+1 d

ds

∣∣∣∣
s=0

MEcusp(s;στ(m),k)

Γ(s)
.

In order to prove Theorem 6.5.3 it suffices to consider

d

ds

∣∣∣∣
s=0

MEcusp(s;στ(m),k)

Γ(s)
=

d

ds

(∫ ∞
0

ts−1e−tλ
2
τ(m),kEcusp(hστ(m),k

t )dt

)∣∣∣∣
s=0

(6.18)

as m→∞. By Theorem 6.2.6 we can rewrite the left hand side of (6.18) as

d

ds

∣∣∣∣
s=0

∫ ∞
0

ts−1e−tλ
2
τ(m),k

∫
R

(
Ω(στ(m),k, λ) + Ω(w0στ(m),k, λ)

)
e−tλ

2

dλ dt,

where

Ω(στ(m),k, λ) =
∑
j∈J

cj · ψ(aj + iλbj)

for some aj ∈ R, growing not faster than linearly in m. Moreover, cj, that is bounded by

a constant as m grows; bj ∈ R does not depend on m. The set J is finite and does not

depend on m either. Note that∫
R
ψ(aj + ibjλ)e−tλ

2

dλ =

∫
R
ψ(aj − ibjλ)e−tλ

2

dλ,

hence we can assume that all bj > 0. As ψ(z + 1) = ψ(z) + 1
z
, we can we can rewrite the

right hand side of (6.18) as

d

ds

∣∣∣∣
s=0

∫ ∞
0

ts−1e−tλ
2
τ(m),k

∫
R

(∑
j∈J ′

cj · ψ(aj + iλbj) +
∑
j∈J ′′

1

iejλ+ dj

)
e−tλ

2

dλ dt. (6.19)

Above aj, bj, cj, dj > 0, J and J ′ are finite sets; bj, ej and |J ′| do not depend on m; aj, dj

and |J ′′| grow not faster than linearly in m; and cj is bounded by a constant as m grows.
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By (6.19), Lemmas 6.5.4 and 6.5.5

d

ds

∣∣∣∣
s=0

MEcusp(s;στ(m),k)

Γ(s)
= −

∑
j∈J ′

(
2cj
bj

log Γ(aj + bjλτ(m),k) + cj · Cj(ψ)

)
−

∑
j∈J ′′

2cj
ej

log(dj/ej + λτ(m),k).

(6.20)

By (2.20),

aj + bjλτ(m),k = O(m),

hence

log Γ(aj + bjλτ(m),k) = O(m · logm) (6.21)

by the Stirling’s formula. On the other hand,∑
j∈J ′′

2

ej
log(dj/ej + λτ(m),k) = O(m · logm). (6.22)

Putting together (6.18), (6.20), (6.21) and (6.22) proves Theorem 1.3.1.
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Nomenclature

α a K-finite Schwartz function, see p. 24

χ a (possibly non-unitary) representation of Γ; χ : Γ→ Vχ, see p. 42

χP,Y truncation function, see p. 21

∆(gC, hC) set of roots of (gC, hC), see p. 13

∆(u)k the Bochner-Laplace operator with respect to the metric g(u), see p. 5.2.3

∆E the Bochner-Laplace operator acting on C∞(O, E), see p. 34

∆
1/2
E a square root of ∆E; see p. 35

∆#
ν,χ see p. 44

∆#
E,χ the twisted non-selfadjoint Laplacian acting on C∞(O, E ⊗ F ), where F is a flat

orbibundle and E is a Hermitian orbibundle, see p. 43

γ an element of Γ

Γγ the centralizer of γ in Γ

Γ1
γ see p. 45

Γb,d the contour of integration, see p. 36

κ number of cusps, see p.15

λσ see p. 89

ΛI subset of C; see p. 33

Λστ,k see p. 19
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J cusp(α) see p. 27

h Cartan subalgebra of g, see p. 13

P a fixed set of representatives of Γ-nonequivalent proper cuspidal subgroups of G, see

p.15

∇ a covariant derivative, see p. 34

∇ν the canonical connection on Ẽν , see p. 18

∇F a flat connection on F → O, see p. 42

∇E⊗F a product connection, see p. 42

ν a finite-dimensional unitary representation of K; ν : K → GL(Vν), see p. 17

Ωb,d subset of C; see p. 35

πΓ the right-regular representation of G on L2(Γ\G), see p. 24

πΓ(α) the operator on L2(Γ\G), see p. 24

πΓ,c(α) see p. 25

πΓ,d(α) see p. 25

πσ,λ principle series, see p. 2.16

σ(H)(x, ξ) principal symbol of an operator H, see p. 33

spec(H) spectrum of H; see p. 35

TrA trace of a trace class operator A

trB the matrix trace of B

θ an Agmon angle for H; see p. 35

Θσ̆−λ(mγaγ) see p. 27

Θσ,λ the character of πσ,λ, see p. 45

ϕ a Paley-Wiener function, see 36 and PW (C)
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ϕ(H1/2) a smoothing operator, see p. 36

∆̃ν the Bochner-Laplace operator on Ẽν , see p. 18

Ãν a second-order differential operator, p. 18

Ẽν homogeneous vector bundle, see p. 17

ζp(s;h, g) the spectral zeta function, see p. 69

{γ}Γ Γ-conjugacy class of γ, see p. 45

A a usual notation for an operator, see e.g. p. 37

A see p. 12

aγ see p. 14

Aν a second-order differential operator, p. 18

b(s, z) see p. 90

B0 a pseudodifferential operator of order 0, see p. 35

BR(0) the unit ball in C of radius R and 0 as a center; see p. 33

D(γ) see p. 3.34

D1 A first order differential operator, see p. 34

E(σ) the graded orbibundle, see p. 53

e−tAν the semigroup of Aν on L2(Γ\G, ν), see p. 18

Ecusp(α) see p. 27

Eγ(hϕ) Orbital integral for γ, see p. 46

Eν locally homogeneous vector orbibundle, p. 17

ej elements of h∗C, see p. 12

F → O a flat vector orbibundle, see p. 42

G a semisimple Lie group with finite center, see p. 12
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Gγ the centralizer of γ in G, see p. 15

Gγ the centralizer of γ in G

G1
γ see p. 45

H a second order elliptic operator, possibly non-selfadjoint, see p. 34

Hs(O, E) s-Sobolev space; see p. 31

H1/2 H
1/2
θ with a fixed Agmon angle θ, see p. 35

H
1/2
θ a square root of H, defined with respect to an Agmon angle θ, see p. 35

Hj, j = 1, . . . , n+ 1 see p. 12

Hν
t (g) the convolution kernel of Aν , see p. 18

hνt (g) see p. 18

Iγ(t) see p.66

Ie(t) see p.66

IL(γ, α) see p. 26

JL(γ, α) see p. 26

K a compact subgroup in G, see p. 12

K an integral kernel of an operator A

Kϕ(x, y) integral kernel of ϕ(H1/2), see p. 38

l(γ) the length of the closed geodesic, associated to γ, see p. 14

L2(O, E) square-integrable sections of E; see p. 31

L2
c(Γ\G) see p. 24

L2
d(Γ\G) see p. 24

M the centralizer of A in K, see p. 12

mγ see p. 14
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N see p. 12

N(r,H) counting function for an operator H, see p. 37

PW (C) the space of Paley-Wiener functions on C, see p. 36

R(K) the representation ring over Z of K, see p. 53

R(M) the representation ring over Z of M , see p. 53

Sa(s, σ, χ) The antisymmetric Selberg zeta function, defined on p. 58

Vχ see χ

Vν see ν

Vk finite-dimensional H-invariant subspaces Vk; see p. 34

Z(s, σ, χ) The Selberg zeta function, defined on p. 51
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Summary

This thesis deals with two aspects of the geometry and the spectral theory of hyperbolic

orbifolds, that is, quotients of a hyperbolic space by discrete groups actions.

Our first topic is the twisted Selberg trace formula and the twisted Selberg zeta function.

The latter was introduced by Selberg as an analogue of the Riemann zeta function where

the prime numbers are replaced by the lengths of primitive closed geodesics l(γ) on a

hyperbolic surface:

Z(s) :=
∑
γ

∞∑
k=0

(1− e−(s+k)l(γ)), Re(s) > 1.

Analogously to the Riemann zeta function, it admits a meromorphic continuation to the

whole complex plane and satisfies a certain functional equation; one of the ways to prove

it is by using the non-commutative analogue of the Poisson summation formula, called the

Selberg trace formula. Moreover, the latter implies that the zeroes of the Selberg zeta

function correspond to the eigenvalues of the Laplace operator. This may be regarded as

an analogue of the Riemann hypothesis. The main result of the first part of the thesis is as

follows: we prove a more general Selberg trace formula for hyperbolic orbifolds Γ\H2n+1,

which is twisted by representations χ and σ of Γ and SO(2n), respectively. Further we apply

this trace formula to study the meromorphic continuation of a generalization Z(s, σ, χ) of

the Selberg zeta function, twisted by the aforementioned representations, and describe its

singularities.

Theorem A. The Selberg zeta function Z(s, σ, χ) admits a meromorphic continuation to

C; its singularities correspond to the eigenvalues of a certain Laplace-type and Dirac-type

operators, depending on σ and χ.

In the second and the third part of the thesis, we deal with the analytic torsion defined

as follows. Let X be a Riemannian manifold, E a vector bundle over X, and ∆k the Laplace



operator acting on the k-forms with values in E. Using the method of zeta function regu-

larization, we define the regularized determinant det(∆k); formally, it is the regularization

of the product of its non-zero eigenvalues. Then the analytic torsion is defined as follows:

TX :=
dimX∏
k=0

(det(∆k))
(−1)k+1k/2 .

The analytic torsion is the spectral counterpart of a topological invariant called the Rei-

demeister torsion. Because these invariants have very different natures, their equality has

applications in topology, number theory, and mathematical physics.

Now fix a hyperbolic orbifold Γ\H2n+1 and associate a flat orbibundle to every finite-

dimensional representation of Γ. We vary a representation and consider a varying orbibun-

dle over a fixed hyperbolic orbifold. The main question of the rest of the thesis is: how

does the analytic torsion of the orbibundle change, and what kind of geometric information

about the orbifold can we obtain from it? In the second and the third part of the thesis, we

answer the question for compact and finite volume odd-dimensional hyperbolic orbifolds.

Theorem B. Let Γ\H2n+1 be a compact hyperbolic orbifold and let Eτ(m) → Γ\H2n+1,

m ∈ N be a certain sequence of flat vector orbibundles; denote by TO(τ(m)) their analytic

torsions. Then there exists C > 0, φj,k ∈ R, K ∈ N ∪ {0} and Cj,k, Cj ∈ R such that

log TO(τ(m)) =

d2+d+2
2∑
j=0

K∑
k=0

Cj,km
jeimφj,k +

n2+n+2
2∑
j=0

Cjm
j +O(e−Cm), m→∞.

Above, 2d+ 1 is the maximal dimension of the fixed point set of Γ in H2n+1.

Theorem C. Let Γ\H3 be a hyperbolic orbifold of finite volume and let TO(τ(m)) be as

above. Then

log TO(τ(m)) = − 1

2π
· vol(O) ·m2 +O(m · log(m)), m→∞. (6.23)

Our main method is the Selberg trace formula; we show that though its geometric side

cannot be used to calculate the analytic torsion for a given orbibundle explicitly, it suits

well for studying its asymptotic behavior.
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