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Summary

The numerical simulation of non-Newtonian fluids is of high practical relevance since most complex
fluids developed in the chemical industry are not correctly modeled by classical fluid mechanics. Non-
Newtonian effects are used in practice, for instance, to improve the oil flow in pipelines, to model solute
transport in groundwater flows or to optimize the drop generation in inkjet printing. Furthermore, many
fluids in nature like blood, egg white or even lava are non-Newtonian.

Classical approaches for the modeling of non-Newtonian polymeric fluids base on an additional stress
tensor in the Navier-Stokes fluid equations. The stress tensor evolves according to a differential or inte-
gral constitutive equation. These so-called macroscopic models are comparatively easy to approximate
but feature two serious drawbacks that limit their usability: they involve high modeling errors and they
are prone to numerical instabilities. The numerical instabilities are referred to as the high Weissenberg
number problem.

Both drawbacks can be avoided in a multiscale approach. This approach directly models the kinetic
equations of the microscopic polymeric structure and leads to high-dimensional stochastic or Fokker-
Planck equations. In this thesis, we implement a multiscale multi-bead-spring chain model into the
three-dimensional Navier-Stokes solver NaSt3DGPF developed at the Institute for Numerical Simula-
tion, University of Bonn. It is the first implementation of such a high-dimensional polymer model into a
three-dimensional flow solver. Using the high-dimensional model, we present novel numerical simula-
tions for a square-square contraction flow problem. We then compare the results of our 3D simulations
with that of experimental measurements from the literature and obtain a very good agreement.

Up to now, high-dimensional multiscale approaches are hardly used in practical applications as grid-
based methods suffer from the so-called curse of dimensionality. This term describes the exponential
increase of the grid point number with the problem dimension. Consequently, the CPU running time of
such a coupled system is dominated by the high-dimensional polymer model and hardly affected by the
complexity of the macroscopic flow.

We combine two approaches to weaken or even break the curse of dimensionality for the considered
problem. First, we use a domain decomposition with MPI to allow for massively parallel computations.
Second, we employ a dimension-adaptive sparse grid variant, the combination technique, to reduce
the computational complexity of the multiscale model. The main idea of the combination technique
is to combine a sequence of coarse and anisotropic full grid solutions to obtain an approximation to a
fine sparse grid solution. The small size full grid problems can be solved in parallel. The dimension-
adaptive refinement process balances the computational effort for the spatial grid, the temporal grid, the
stochastic resolution and the modeling accuracy. This is a novel approach in the context of multiscale
polymer physics. Interestingly, the balancing of the different global error terms can be used for a wide
range of similar problems. This is important, for instance, in applications that are related to Uncer-
tainty Quantification where a large number of simulation runs with modified parameters is evaluated
statistically.

Both approaches, the parallelization of the multiscale algorithm and the combination technique, can
be combined. A combined approach has a perfect parallel scaling behavior on large clusters and can be
ideally used in exascale computing.
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Introduction

Motivation

Non-Newtonian fluids: "panta rhei"

The famous phrase "panta rhei" which means "everything flows" by the Greek philosopher Heraclitus
of Ephesus expresses that everything changes with time and that fluid motion is all around us. The
well-known Navier-Stokes equations describe a class of liquids and gases that is denoted as Newtonian.
A Newtonian fluid fulfills Newton’s law of viscosity which states that the shear stress is proportional to
the shear rate with the viscosity as constant of proportionality. This fluid class contains water and most
gases.

In the 20th century various complex fluids have been developed in the chemical industry which
are not correctly described by classical fluid mechanics. Paint, engine oils with polymeric additives,
toothpaste and shampoo are examples for these kinds of fluids. Furthermore, many fluids in nature like
blood, egg white or even lava violate Newton’s law of viscosity and have a stress-dependent viscosity.
In general, all fluids with a microstructure larger in size than the atomic scale show a non-Newtonian
behavior. In the 1920’s, Eugene Bingham, an American chemistry professor, coined the term rheology
for the study of non-Newtonian fluids - inspired by the aphorism "panta rhei" as made famous by
Heraclitus.

This thesis focuses on dilute polymeric fluids which are a subclass of non-Newtonian fluids. Poly-
meric fluids consist of long-chain molecules immersed in a Newtonian fluid. The fluid’s motion leads
to deformations and new orientations of these molecules. The molecules attempt to resume their ini-
tial configuration which causes an elastic force on the macroscopic fluid in opposite direction. Since
polymeric fluids are not only affected by viscous forces but also by elastic forces, they are often named
viscoelastic fluids.

Phenomena in experiments and industrial use

We illustrate the different behavior of Newtonian and non-Newtonian fluids by discussing several non-
Newtonian phenomena observed in experiments.

A well known non-Newtonian phenomenon is the Weissenberg effect; cf. Fig. 0.1 (a). Here, a rotating
rod leads to an upward movement of the fluid against gravity. In contrast to this, a Newtonian fluid
such as water would simply be pushed away due to centrifugal forces. The non-Newtonian movement
results from non-zero normal stresses that cause a tension in flow direction. We also know this effect
from baking in the kitchen when dough moves upwards along the beaters of a handheld electric mixer.

The tubeless syphon effect occurs when certain non-Newtonian fluids become extended. Then, large
elastic forces lead to the behavior that is illustrated in Fig. 0.1 (b). A syringe is put into the fluid and
filled. The filling process can be continued even if the syringe has been removed from the fluid. In that
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(a) Weissenberg effect (cf. Psidot [111]). (b) Tubeless siphon effect (cf. Psidot [109]).

(c) Barus effect (cf. Psidot [110, 112]). (d) Shear thickening effect on loudspeaker
(cf. Bend [10]).

Figure 0.1.: Non-Newtonian phenomena in fluid experiments.

case, a water column connects the syringe with the ground reservoir. This connection would directly
break for a Newtonian fluid such as water.

A further effect that is caused by normal stresses is the Barus effect. In Fig. 0.1 (c) we compare the
effect for a Newtonian fluid colored in red (left) and a non-Newtonian fluid colored in green (right). In
contrast to the Newtonian fluid, the jet that forms outside a pipe is much increased in diameter in the
non-Newtonian case.

As mentioned before, a non-Newtonian fluid has a complex relation between shear stress and shear
deformation. A lot of viscoelastic fluids are either shear-thinning or shear-thickening. In that case,
the viscosity decreases or increases with the shearing, respectively. Fig. 0.1 (d) illustrates the effect
of shear-thickening. A mixture of corn-starch and water is put on a loudspeaker that vibrates with
a frequency of about 30 Hz. The fluid is disturbed by the oscillations which leads to an increase in
viscosity and forms weird structures.

Non-Newtonian fluids are often used in industrial applications to optimize the production process.
One example is the use of drag reducing agents in the oil industry. Usually, the flow rate of oil in a
pipeline is limited due to turbulence effects. Drag reducing agents (DRA) are added in small concentra-
tions to the oil and decrease turbulence effects. As a result, the oil can be transported with a higher flow
rate for the same pressure or, alternatively, with the same flow rate as before but for a reduced pressure.
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Figure 0.2.: Illustration of turbulent drag reduction for oil transport in a pipeline. The drag reducing
agent (DRA) is added at the channel’s center and changes the turbulent oil flow into
a laminar flow. The figure is taken from an advertisement for the TURBOFLO DRA by
Flowchem [62].

This allows oil companies to save energy and money. We illustrate this principle in Fig. 0.2 which is
part of an advertisement from the company Flowchem [62]. Interestingly, there are considerations to
also use DRAs in medicine. For instance, DRAs might be used to improve the blood flow for patients
with arterial stenoses which is a narrowing in a blood vessel.

Further applications in which non-Newtonian effects have to be taken into account are the modeling
of solute transport in groundwater flows, the optimization of the oil or gas fracking process or the drop
generation in inkjet printing. The first application is of major importance in situations in which toxic
chemical solutions might pollute drinking water reservoirs. Next, fracking is a technique in which a
shear-thinning fluid is injected with high-pressure into a borehole to increase the output of gas or oil.
Finally, viscoelasticity is required to allow for faster inkjet printers since it can reduce the creation of
unwanted satellite drops while printing.

Almost all numerical simulations in the literature employ coarse approximation models that are not
able to fully describe the complex fluids in these applications. This strongly motivates further numerical
studies with more advanced multiscale models.

About this thesis

In this dissertation, we couple an existing three-dimensional flow solver with a high-dimensional mul-
tiscale model for polymeric fluids. Due to the enormous complexity of multiscale polymer models, this
is the first time that a high-dimensional polymer model is used for the simulation of three-dimensional
flows. In order to cope with the high-dimensional problem, we employ a dimension-adaptive sparse
grid approach. This method strongly reduces the complexity of the problem and allows us to perform
simulations that otherwise would require months of computing time on a parallel cluster. Note also that
this is the first application of dimension-adaptive sparse grids to non-Newtonian fluids.

In the following, we briefly discuss different modeling approaches for viscoelastic fluids. Then, we
consider the curse of dimensionality in the context of our specific multiscale model.
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25 µm

(a) real polymer (b) dumbbell (c) multi-bead-spring chain

Figure 0.3.: A real polymeric molecule in comparison with two different model approximations.

Modeling of viscoelastic fluids

Mathematical modeling of viscoelastic fluids usually involves an additional stress tensor in the Navier-
Stokes equations. There are different approaches in literature to determine the corresponding stress
tensor components. We distinguish two major modeling approaches which are macroscopic methods
on the one hand and multiscale methods on the other hand. Macroscopic methods model the stress
tensor evolution according to an additional differential or integral constitutive equation. Some often
used macroscopic models in literature are, for instance, the Oldroyd-B [98], the FENE-P [102] and the
PTT model [106]. A comprehensive description of macroscopic models is given in the book by Owens
and Phillips [100]. The major advantage of a macroscopic approach is its computational simplicity.
Therefore, these models have a computational complexity that is comparable to classical Newtonian
models. On the downside, macroscopic methods have two important drawbacks that limit their usability.
These drawbacks are

• the additional modeling error due to the use of closure approximations and

• their sensitivity for the so-called high Weissenberg number problem (HWNP).

Most macroscopic constitutive equations are derived from kinetic equations of the microscopic poly-
meric structure. In general, the constitutive equations are not closed so that an additional modeling
assumption, a closure approximation, is necessary. This closure leads to an additional modeling error.
Furthermore, the high Weissenberg number problem [68] denotes the breakdown of numerical schemes
beyond a critical Deborah or Weissenberg number. These dimensionless numbers characterize elastic
forces in the fluid.

Both drawbacks can be avoided in a multiscale approach which this thesis concentrates on. These ap-
proaches directly solve the kinetic equations of the microscopic polymeric structure. The macroscopic
stress tensor then results from the internal configurations of the molecular structure. A molecular struc-
ture as in nature is shown in Fig. 0.3 (a). A multiscale polymer model is a simplified representation of
the complex polymer structure as, for instance, a dumbbell or a more complex multi-bead-spring chain;
cf. Fig. 0.3 (b)–(c).

Two different approaches exist for the temporal evolution of the simplified polymer model on the
microscale; see the survey by Keunings [70]. These are a stochastic approach [99] on the one hand
and a Fokker-Planck-based approach [89] on the other hand. The Fokker-Planck approach evolves a
probability density function, which describes the position and configuration of a polymer ensemble,
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over time. In contrast, the stochastic approach evolves the corresponding time-dependent random field
according to a stochastic partial different equation. This thesis uses the multiscale approach in its sto-
chastic formulation. However, both approaches lead to high-dimensional modeling spaces. Therefore,
in contrast to macroscopic approaches, multiscale methods are often restricted to simple flows due to
their computational complexity. As a result, they are hardly used in the literature even though they
allow for much better modeling capabilities.

Breaking the curse of dimensionality

This thesis presents first-time multiscale simulation results for complex three-dimensional flows. Fur-
thermore, we state a dimension-adaptive algorithm which strongly reduces the computational complex-
ity of multiscale simulations.

As a motivation, we discuss the complexity of both polymer models in Fig. 0.3. The most simple
polymer model that accounts for the fluid’s elasticity is the dumbbell model. Even for a simple dumb-
bell, the resulting model equation is six-dimensional. More precisely, three dimensions are required
for the dumbbell’s position in the flow space and three dimensions are used to describe the dumbbell’s
orientation and extension in the so-called configuration space. Independent of the polymer model, the
physical flow space is three-dimensional or less. But, for more complex polymer models, the configura-
tion space becomes high-dimensional. Fig. 0.3 (c) shows a multi-bead-spring chain with N = 5 spring
segments. The corresponding configuration space of the system is of dimension 3N = 15. Therefore, a
time-dependent multiscale simulation with a 5-segment spring-chain model in a three-dimensional flow
space is a 19-dimensional problem (1D in time, 3D in flow space, 15D in configuration space). We
show in this thesis that it is actually possible to perform such complex simulations. For this purpose,
we consider two complementary approaches. These approaches are

• massively parallel computations using a domain decomposition approach with MPI and

• dimension-adaptive sparse grids which reduce the computational complexity of the mathematical
model.

We perform parallel simulations on the parallel cluster Atacama that is operated by the Institute
for Numerical Simulation and the Sonderforschungsbereich 1060 at the University of Bonn. For this
purpose, the high-dimensional stochastic equations on the microscale have been implemented and par-
allelized in the existing Newtonian flow solver NaSt3DGPF [48, 30]. We note that the running time of
NaSt3DGPF is then dominated by the high-dimensional microscopic equations and not by the macro-
scopic fluid equations any more. Since NaSt3DGPF is a full grid flow solver, classical sparse grid
discretizations [18] cannot be directly applied. For this reason, we use the combination technique [53]
as an alternative sparse grid representation. This approach allows us to reuse existing full grid solvers
such as NaSt3DGPF and approximates a sparse grid solution by combining a sequence of coarse full
grid solutions. Since an optimal balancing of the different problem dimensions is not known in advance,
we employ a dimension-adaptive refinement algorithm. In the end, the dimension-adaptive combination
technique allows us to reduce the computational complexity of the multiscale polymer model by several
orders of magnitude.

Both approaches, a parallelization of the algorithm on CPU clusters and the dimension-adaptive com-
bination technique, can be used simultaneously. This is due to the fact that the combination technique
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is intrinsically parallel as each subproblem can be computed independently. Then, the individual sub-
problems can also be solved in parallel by using the multiscale model with NaSt3DGPF. This adds a
second level of parallelization. For this reason, our algorithm is perfectly suited for exascale computing
on systems with thousands of processing units as considered, for instance, in the "Software for Exas-
cale Computing" (SPPEXA) German priority programme (SPP) 1648. The parallel scaling behavior
of our implementation was tested on the JUROPA cluster (about 18000 CPU cores) from the Jülich
Supercomputing Centre (JSC) at Jülich Research Centre.

Contributions of this thesis

The main contributions of this thesis are as follows:

• We present the first implementation and parallelization of a high-dimensional multi-bead poly-
mer model into a three-dimensional flow solver. Using this implementation, we obtain novel
simulation results for three-dimensional square-square contraction flows. These findings extend
further results published in Griebel and Rüttgers [51] for a simple dumbbell model. Further-
more, we compare the simulation outcome of the dumbbell model with more complex 3-segment
and 5-segment spring-chains for three-dimensional flows. Even for high flow rates, our imple-
mentation was not affected by the high Weissenberg number problem (HWNP). In the literature,
three-dimensional contraction flows are up to now only considered with macroscopic approaches
such as the PTT model which suffer from stability issues for the flow rates of interest (cf. Chap-
ter 5.2 in Sousa et al. [123]: "In the numerical calculations we are only able to probe a range of
Deborah numbers much smaller than in the experiments, as a consequence of the HWNP and the
limitations of the PTT model.").

• Due to the high complexity of multiscale polymer simulations, we employ a dimension-adaptive
sparse grid approach to allow for simulations with a reduced complexity. For this purpose, our
dimension-adaptive algorithm does not only refine the numerical meshes but also takes the mod-
eling accuracy into account. This novel concept for polymeric fluids allows for an optimal bal-
ancing of the different error contributions such as the stochastic variance, the spatial error, the
temporal error or the modeling accuracy. Our approach can be considered as a generalization of
the Multilevel Monte Carlo (MLMC) method for stochastic ODEs by Giles [47] which balances
the stochastic variance and the temporal error only.

Further contributions of this thesis:

• We compare different multi-bead-spring chain models that differ in the number of spring seg-
ments. For specific applications and certain spring gauges, the elastic stress tensor predictions of
the models are close to each other. Then, a 4-segment spring chain model might deliver a good
approximation to a 5-segment spring chain but for a lower computational effort. We employ this
novel concept for polymer physics in our dimension-adaptive algorithm.

• We state an algorithm to generate equilibrium samples for a general N-segment multi-bead-spring
chain with nonlinear spring forces. There are no existing random number generators for this
specific application. Our algorithm bases on the rejection sampling by von Neumann [131].
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• We compare our simulation outcome for a two-dimensional contraction flow with the literature
results by Wapperom, Keunings and Legat [133]. The literature results analyze the differences
between the multiscale FENE model and the macroscopic FENE-P model. Our numerical ap-
proach allows us to use much higher grid resolutions as in Wapperom, Keunings and Legat [133].
We therefore extend the literature findings with new grid-independent results.

• Our dimension-adaptive refinement algorithm efficiently determines coarse full grid solutions
used in the sparse grid combination technique. At a first view, this refinement algorithm leads to
a computational overhead. However, we show that the outcome of the refinement algorithm can
be reused for a wide range of similar flow problems. This effect is of high practical relevance
for applications in the context of Uncertainty Quantification where hundreds or even thousands
of similar problems, with slightly modified flow conditions, are considered. In these specific
applications, the cost for the adaptive algorithm is negligible.

Outline

The remainder of this thesis is organized as follows:

Chapter 1 provides the basic theory for the simulation of macroscopic and multiscale dilute polymeric
fluids. We analyze the drawbacks of macroscopic polymer models and motivate the usage of
multiscale approaches. Furthermore, we discuss the existence of global weak solutions for the
multiscale model.

Chapter 2 introduces numerical methods for the discretization of partial and stochastic differential
equations that occur in the multiscale polymeric model. Moreover, we describe the implementa-
tion and parallelization of our approach in the full grid flow solver NaSt3DGPF and analyze the
resulting parallel scaling behavior on a CPU cluster.

Chapter 3 contains our numerical results on full grids. First, we discuss homogeneous flow problems
which do not depend on the physical flow space but already feature high-dimensional configu-
ration spaces. Then, we present novel multiscale simulation results in complex two- and three-
dimensional flow spaces.

Chapter 4 introduces the concepts of sparse grids and the combination technique. Furthermore, the
relation between Multilevel Monte Carlo and dimension-adaptive sparse grids is discussed.

Chapter 5 describes the application of sparse grids to polymer physics. As a main result, we present
a dimension-adaptive sparse grid algorithm to cope with the high-dimensional polymer model
equation.

Chapter 6 deals with our numerical results on sparse grids for Couette and extensional flow problems.
The high-dimensional problems are tackled with a dimension-adaptive refinement that balances
the spatial, the temporal, the stochastic and the modeling accuracy. Furthermore, we show that
the outcome of the refinement process can be used efficiently for a large class of similar problems.
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1. Mathematical modeling of polymeric fluids

1.1. Macroscopic models for non-Newtonian fluids

In the first section, we focus on purely macroscopic models for non-Newtonian fluids. The term macro-
scopic in this context indicates that the equations can be derived from continuum mechanics. Histori-
cally, macroscopic approaches have been the methods of choice due to their computational simplicity
compared to more advanced multiscale approaches described in Section 1.2.

A comprehensive description of macroscopic models is given in the books by Renardy [114], Ma-
cosko [90], Joseph [65], Owens and Phillips [100] and Böhme [13]; further details are also given in
Claus [25]. We only discuss differential stress tensor models. An alternative macroscopic formulation
is given by integral models such as the Rivlin-Sawyers equation or the K-BKZ equation.

1.1.1. Differential stress tensor models

We consider fluid flow in a bounded domain O ⊂ R3 and refer to O as physical space. For any position
x ∈ O and any time t ∈ T = [0, tmax] ⊂ R the current state of a purely Newtonian system is described by
the fluid velocity field u : (x, t) ∈ O×T 7→ u(x, t) ∈ R3 and the hydrodynamic pressure field p : (x, t) ∈
O × T 7→ p(x, t) ∈ R with corresponding initial and boundary conditions. For an incompressible and
isothermal viscoelastic flow the conservation of mass and momentum is given by the coupled system

ρ

(
∂u
∂t

+ (u · ∇)u
)

= −∇p + ηs∆u + ∇ · τp (1.1)

∇ · u = 0. (1.2)

In (1.1) and (1.2) the coefficient ρ ∈ R+ denotes the fluid’s density, ηs ∈ R
+ represents the fluid’s

viscosity and τp is the second-order tensor for the polymeric stress contribution. These equations are
coupled with initial conditions

u(x, 0) = u0(x),

p(x, 0) = p0(x),

τp(x, 0) = τ0(x) ∀x ∈ O.

Furthermore, one of the conditions

u|Γ1 = u0 on the inflow boundary Γ1, (1.3a)

u|Γ2 = 0 on the no-slip boundary Γ2, (1.3b)

∂n(u · n)|Γ3 = 0, ∂n(u · t)|Γ3 = 0 on the outflow boundary Γ3 (1.3c)

11
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holds for the velocity field on the boundary ∂O = Γ1 ∪ Γ2 ∪ Γ3. In this case, n denotes the outward
pointing unit normal and t denotes the tangential vector on ∂O.

Most macroscopic methods only differ in their approach of modeling the polymeric stress tensor τp.
A general macroscopic model that covers various types of viscoelastic fluids is given by Phan-Thien
and Tanner [105, 106]. The so called Phan-Thien Tanner (PTT) model is defined as

λ

(
∂τp

∂t
− Lτp − τpL

T
)

+ f(tr τp) = ηp D (1.4)

f(tr τp) =

1 + λ ε
ηp

tr τp (linear PTT)

exp
(
λ ε
ηp

)
(exponential PTT)

(1.5)

with the rate of deformation tensor D = ∇u + (∇u)T . Here, λ ∈ R+ denotes the relaxation time of the
mesoscopic polymer system, ηp ∈ R

+ the zero shear rate polymer viscosity and L = (∇u − ξD) is the
effective velocity gradient tensor. Furthermore, the equations (1.4) and (1.5) contain two dimensionless
real numbers ε (elongation parameter) and ξ (slip parameter) that are used to adapt the model system
to a real fluid’s behavior. Depending on the choice of f(tr τp) in (1.5) the model system is either called
linear or exponential PTT model. Several simplified non-Newtonian models can be derived from (1.4)
and (1.5). We derive

• by ε = 0, the Johnson-Segalman model,

• by ξ = 0, the simplified Phan-Thien Tanner model and

• by ε = ξ = 0, the Oldroyd-B model.

Moreover, we recover the classical Newtonian fluid equations for the case λ = 0 which leads to τp = 0.
The coupled system of equations (1.1)–(1.5) can be written in a dimensionless form by scaling the

equations with the characteristic units Lc (characteristic length in macroscopic flow), Uc (characteristic
fluid velocity), ρc (fluid density, scaling pressure term with 1/(ρUc

2)), and we normalize the polymeric
stress tensor with Lc/(Uc(ηs + ηp)). For reasons of simplicity, we use the same notation as before to
indicate the dimensionless pressure field p and the dimensionless velocity field u. As a result, this leads
to the following dimensionless system of equations

∂u
∂t

+ (u · ∇)u = −∇p +
1

Re
β∆u +

1
Re
∇ · τp (1.6)

∇ · u = 0 (1.7)

f(tr τp) + De
O
τp = 2(1 − β)D − De ξ

(
τp D + Dτp

)
(1.8)

f(tr τp) =

1 + De ε
1−β tr τp (linear PTT)

exp
(

De ε
1−β

)
(exponential PTT).

(1.9)

The system of equations contains the three dimensionless parameter groups De (Deborah number), Re
(Reynolds number) and β (viscosity ratio). They are defined as

Re =
ρcUcLc

ηs + ηp
, De =

λUc

Lc
, β =

ηs

ηs + ηp
. (1.10)
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We also note that the Deborah number is also known as Weissenberg number in the literature. Further-
more, equation (1.8) contains the upper convected derivative or Oldroyd derivative

O
τp which is defined

as
O
A ≡

∂A
∂t

+ (u · ∇)A − ∇u · A − A · (∇u)T (1.11)

for an arbitrary second-order tensor A.
The major advantage of a macroscopic approach as in (1.8) and (1.9) is its computational simplicity

since the unknown τp is of comparable complexity to p and u. On the other hand, macroscopic methods
have two important drawbacks that limit their usability. These drawbacks are

• the additional modeling error due to the use of closure approximations and

• their sensitivity for the so called high Weissenberg number problem (HWNP).

The additional modeling error results from the fact that most constitutive equations are derived from
kinetic equations of the underlying polymeric molecules. In general, the constitutive equations are not
closed so that an additional modeling assumption, the closure approximation, is necessary. However,
in some simple cases there exists a formal equivalence between the kinetic equation and the resulting
constitutive equation. One example for this is given by the Oldroyd-B model. This model predicts an
unlimited shear stress in extensional flows and is therefore only applicable to flows with a dominant
shear component.

The high Weissenberg number problem describes the failure of numerical simulation beyond a critical
Deborah / Weissenberg number. It is, however, still not clear whether the HWNP is only a numerical
problem or also a breakdown of the underlying constitutive law. A comprehensive description on this
problem is given by Keunings [68].

1.1.2. The log-conformation method

In the following, we discuss a recently proposed macroscopic approach, the log-conformation method,
which is able to reduce the high Weissenberg number problem to some extent. The HWNP is known
since about 1970. One reason for the numerical breakdown is caused by large gradients of τp that occur
for high Deborah number flows. In regions with a high deformation rate, for instance at stagnation
points, τp can have an exponential profile. Classical discretization techniques employ a polynomial-
based approximation to this exponential profile. The basic idea to overcome this numerical problem was
given by Fattal and Kupferman [36, 37]. Here, a new variable that scales logarithmically with the stress
tensor is introduced. An obvious choice is to consider the logarithm of the stress tensor τp. However,
the logarithm only exists for the case that τp is strictly positive definite. This cannot be guaranteed by
the numerical scheme. The solution of Fattal and Kupferman is to evolve ψ = log(c) instead of τp in
time. The variable c is called conformation tensor and is symmetric positive definite. On the downside,
the numerical scheme has to ensure that the positive definiteness of c is preserved over time.

For the PTT model given in (1.8) and (1.9), the conformation tensor c is related to the stress tensor
τp via

τp =
(1 − β)

De
(c − Id) . (1.12)

The method is called log-conformation method since it evolves the logarithm ψ of the conformation
tensor. The transformation from ψ to c guarantees that c is positive definite by construction.
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The log-conformation method removes the instability caused by an exponential stress tensor profile.
According to Fattal and Kupferman, spurious instabilities that can also occur in viscometric flows for
high Deborah numbers are not prohibited with this approach. Furthermore, there is a degree of freedom
in the constitutive equation for ψ that is derived from (1.8) and (1.9). As a result, the development of
the log-conformation method is still an active area of research and different variants of the method have
been proposed in the literature; see e.g. Coronado et al. [27] and Knechtges, Behr and Elgeti [72].

We note that the multiscale approach described in Section 1.2 is less prone to the high Weissenberg
number problem than macroscopic methods. More precisely, Mangoubi, Hulsen and Kupferman [91]
state that a multiscale approach seems to be immune to the type of instability caused by the HWNP.
Moreover, the authors derive a log-conformation equivalent to the multiscale approach but have to
conclude that this approach gives no advantage over the classical multiscale formalism.

1.2. Multiscale polymeric fluid models

In this thesis, we use a multiscale micro-macro approach to describe viscoelastic fluids. This section
focuses on the kinetic equations for the microscopic polymer structure. The polymer is modeled as a
multi-bead-spring chain. In the following, we employ the notation that is given in the article by Barrett
and Süli [2] and the book by Öttinger [99].

1.2.1. Dynamics of multi-bead-spring chains

In Fig. 1.1 we a show a realistic representation of a polymer on the left and its mathematical approxima-
tion with a multi-bead-spring chain on the right. A polymeric molecule is modeled as an arrangement of
N+1 beads with mass m that are connected with N elastic springs without mass. As illustrated in Fig. 1.1
(b), the state of the chain is fully determined by the position of the N + 1 beads denoted by ri ∈ O ⊂ R

3,
with i = 1, . . . ,N + 1. The subset O has to be a bounded open Lipschitz domain and is denoted as
the flow space. In general, we consider not only one single chain but a full ensemble of molecules. In
this case, we define Ri as a multivariate random variable Ri : ω ∈ Ωi 7→ Ri(ω) = ri ∈ O ⊂ R

3 with
i = 1, . . . ,N + 1 where the outcome for a given event ω in the sample spaces Ωi is the position of bead
i. In the following, we use lowercase letters such as r and q to describe a single bead or spring real-
ization in configuration space and furthermore uppercase letters such as R and Q to denote the random
variables that induce a distribution according to the underlying probability measure.

A force balance equation for bead-spring chains Next, the dynamics of the polymer chain model
is considered. For this purpose, we consider a time interval T which is either the closed interval
[0, tmax] or the non-negative axis [0,∞]. Then, the sequence of N + 1 random variables Ri becomes
a sequence of stochastic processes Ri(t), t ∈ T . Thereby, for each fixed t ∈ T , the function Ri(t, ·) :
ω ∈ Ωi 7→ Ri(t, ω) ∈ O ⊂ R3 is a multivariate random variable. Then, for each ω ∈ Ωi the function
Ri(·, ω) : t ∈ T 7→ Ri(t, ω) ∈ O ⊂ R3 is a real function defined on T that we could also write in a more
simple notation as ri : T → O. For this reason, we simplify our notation for the stochastic process by
writing Ri(t) instead of Ri(t, ω), i.e. we omit the underlying sample spaces.
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25 µm

(a) real polymer

x

y

z

ri−1

ri

(b) multi-bead-spring chain

Figure 1.1.: Approximation of a polymeric molecule with a multi-bead-spring chain.

According to Newton’s second law, the force balance equation for a single bead ri(t) with mass m is

m
d2r1(t)

dt2 = Fdrag
1 + F1(r2(t) − r1(t)) + B1(t) (1.13a)

m
d2ri(t)

dt2 = Fdrag
i + Fi+1(ri+1(t) − ri(t)) − Fi(ri(t) − ri−1(t)) + Bi(t) for i = 2, . . . ,N (1.13b)

m
d2rN+1(t)

dt2 = Fdrag
N+1 − FN+1(rN+1(t) − rN(t)) + BN+1(t). (1.13c)

Normally, we neglect inertial effect by assuming m d2 ri(t)
dt2 ≈ 0 for i = 1, . . . ,N+1 since the mass m of the

beads is comparatively small; see Schieber and Öttinger [119] for a justification of this simplification.
The right-hand side of (1.13) consists of three force terms:

• Fdrag
i : O × T → R3 is the drag force on bead i. The force opposes the relative motion of

the bead through the fluid, u(ri(t), t) −
d(ri(t))

dt , and represents a kind of fluid resistance. Again,
u : O × T → R3 denotes the fluid’s velocity field. The drag force is defined as

Fdrag
i = ζ

(
u(ri(t), t) −

d(ri(t))
dt

)
(1.14)

with a second-order tensor ζ. In the literature, different definitions are used for ζ. Here, we
employ the simple ansatz ζ = diag(ζ, ζ, ζ) that is derived from Stoke’s law with ζ ∈ R+ as
constant friction coefficient ([ζ] =

kg
s ); see Bird et al. [11, 12].

• Fi : Di ⊂ R3 → R3 denotes an elastic spring force which results from a spring segment that
connects bead i with bead i + 1. The subdomains Di ⊂ R3 are called configuration spaces.
Depending on the spring force terms Fi, the configuration spaces differ; see Section 1.2.3. In all
cases, Fi contains a coefficient H ∈ R+ that is called the Hookean spring constant ([H] = kg/s2).

• Bi : T → R3 is a Brownian force that is caused by random collisions between bead i and
adjacent molecules. We model the Brownian force on bead i as a three-component Wiener process
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according to
Bi(t) dt =

√
2kBTζ dWi(t). (1.15)

Since we assume an isotropic noise in space, the Brownian force does not explicitly depend on
its position in the flow space O. A Wiener process is Gaussian and can be charaterized by its first
two moments. For each component Wi, j(t) with j = 1, 2, 3 the expectation is

〈Wi, j(t)〉 = 0 for j = 1, 2, 3 (1.16)

and the variance for t1, t2 ∈ T is

〈Wi, j(t1)Wi, j(t2)〉 =

∫ t1

0

∫ t2

0
δ
(
t′ − t′′

)
dt′′ dt′ = min(t1, t2). (1.17)

The coefficient
√

2kBTζ in (1.15) results from the equipartition of energy theorem. In this case, kB

([kB] = J/K) is the Boltzmann constant and T denotes the thermodynamic temperature ([T ] = K).

Dimensionless formulation The equations for the bead-spring chains (1.13a)–(1.13c) fully de-
scribe the dynamics of the polymer system. However, since we aim for coupling these equations with
the dimensionless Navier-Stokes equations (1.6) and (1.7), we require this model system also in a di-
mensionless formulation. For this purpose, we employ lc, λ, Lc, and Uc as intrinsic parameters of the
system. We note that Lc and Uc are the same as in Section 1.1 for the non-dimensionalization of the
Navier-Stokes equations. All in all, we choose

• lc =
√

kBT/H as characteristic length-scale of a dumbbell ([lc]=m),

• λ =
ζ

4H as characteristic relaxation time of a dumbbell ([λ]=s),

• Lc as characteristic length of the macroscopic flow ([Lc]=m),

• and Uc as characteristic velocity of the macroscopic flow ([Uc]=m/s)

with H as Hookean spring constant as coefficient in Fi. Using these dimensionless units, we define the
dimensionless quantities

r∗i := ri/Lc, (1.18a)

u∗ := u/Uc, (1.18b)

t∗ := Uc/Lct (1.18c)

for i = 1, . . . ,N + 1. Furthermore, we use Fi = HLcF∗i (r∗i+1 − r∗i ) and Wi(t) = ( L3
c

Ucl2c
)1/2 W∗i (t) to obtain

the dimensionless spring forces and Wiener processes F∗i and W∗i and we transform the differential
operators according to the chain rule. As a result, we obtain the dimensionless stochastic ODE system


dR1(t)
dR2(t)
...

dRN+1(t)

 =




u(R1(t), t)
u(R2(t), t)

...

u(RN+1(t), t)

 +
1

4De
B


F1 (R2(t) − R1(t))
F2 (R3(t) − R2(t))

...

FN (RN+1(t) − RN(t))


 dt +

√
1

2De


dW1(t)
dW2(t)

...

dWN+1(t)

 (1.19)
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with given initial conditions for R1(t), . . . , RN+1(t). Note that the asterisk notation for dimensionless
units has been dropped for simplicity in (1.19) and in the following, analogously to Section 1.1. More-
over, equation (1.19) contains the Deborah number De defined in (1.10) as a non-dimensional constant
which relates the polymer’s relaxation time to the macroscopic observation time. Finally, the coupling
between the different spring segments is given by the matrix

B :=



1 0

−1 1
. . .

0
. . .

. . .
. . .

. . .
. . .

. . . 0
. . .

. . . 1
0 −1


∈ R(N+1)×N . (1.20)

We now rewrite equation (1.19) in a generic form. Therefore, we define

R(t) :=


R1(t)
R2(t)
...

RN(t)

 ∈ O × · · · × O︸        ︷︷        ︸
N+1 times

⊂ R3(N+1), (1.21)

and set

W(t) :=


W1(t)
W2(t)
...

WN+1(t)

 , µ(R(t)) :=


u(R1(t), t)
u(R2(t), t)

...

u(RN+1(t), t)

 +
1

4De
B


F (R2(t) − R1(t))
F (R3(t) − R2(t))

...

F (RN+1(t) − RN(t))


to obtain a generic stochastic differential equation

dR(t) = µ(R(t)) dt + σdW(t) (1.22)

with given initial conditions and σ = 1√
2De

Id. We note that equation (1.22) is actually a short hand
notation for an integral equation that consists of an ordinary Lebesgue integral (first sum on the RHS of
(1.22)) and an Itō integral (second sum on the RHS of (1.22)).

1.2.2. Derivation of the Fokker-Planck equation

In this chapter we state a result from stochastic analysis that connects the stochastic differential equa-
tion (1.19) with a parabolic partial differential equation for the probability density function associated
with the process R(t).

Theorem 1.1
Let R(t) be a 3(N +1)-component stochastic process for which a probability density function ψ : (r, t) ∈
R3(N+1)×T 7→ ψ(r, t) ∈ R+ exists in the Hölder space C2,1(R3(N+1) × T ). Furthermore, let R(0) = R be
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a square-integrable random variable with probability density function ψ0 ∈ C2(R3(N+1)). If R(t) evolves
according to (1.22) for a globally Lipschitz continuous µ and c = σσT , then ψ evolves according to

∂ψ

∂t
+

3(N+1)∑
j=1

∂

∂r j
(µ jψ) =

1
2

3(N+1)∑
i, j=1

∂2(ci jψ)
∂ri ∂r j

(1.23)

with ψ(r, 0) = ψ0(r).

Proof: The proof is given as Corollary 5.2.10 in the book by Lapeyre, Pardoux and Sentis [81].
Note that in our application equation (1.23) simplifies to

∂ψ

∂t
+

3(N+1)∑
j=1

∂

∂r j
(µ jψ) =

1
4De

∆rψ (1.24)

since c = σσT = diag( 1
2De , . . . ,

1
2De ).

Transformation of stochastic processes on spring-oriented variables The stochastic differen-
tial equation (1.22) or the corresponding Fokker-Planck equation (1.24) fully determine the mesoscopic
system. Nevertheless, we are interested in a different formulation that better allows for a coupling
with the macroscopic Navier-Stokes equations; see (1.6) and (1.7) in Section 1.1. For this purpose, we
perform a change of variables to obtain an equivalent description of the multi-bead-spring chain by

r1(t)
r2(t)
...
...

rN+1(t)


↪→



r2(t) − r1(t)
r3(t) − r2(t)

...

rN+1(t) − rN(t)
1

N+1
∑N+1

j=1 r j(t)


=:



q1(t)
q2(t)
...

qN(t)
x(t)


, (1.25)

which is then applied to the sequence of N+1 stochastic processes. We denote these stochastic processes
as Q̂i(t) ∈ Di ⊂ R

3 and X(t) ∈ O. Again, the underlying probability space Ω is not explicitly mentioned.
The stochastic processes Q̂i(t) describe an ensemble of connecting vectors qi(t) ∈ Di ⊂ R

3 between two
adjacent beads i and i + 1 with a distribution of Q̂i(t) according to the underlying probability measure.

x

y

z

q1

x

q2
qN−1

qN

Figure 1.2.: Description with spring-oriented variables q1, . . . , qN .
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The subdomains Di are the configuration spaces that were previously defined in Section 1.2.1 for the
spring forces terms Fi. The random variable X(t) ∈ O represents the bead system’s center of mass. We
illustrate the new system of variables in Fig. 1.2.

The change of variables in (1.25) leads to a modified force balance equation. Therefore, equa-
tion (1.19) has to be rewritten as



dQ̂1(t)
dQ̂2(t)
...

dQ̂N(t)
dX(t)


=





u(R2(t), t) − u(R1(t), t)
u(R3(t), t) − u(R2(t), t)

...

u(RN+1(t), t) − u(RN(t), t)
1

N+1
∑N+1

j=1 u(R j(t), t)


−

1
4De

Â


F1

(
Q̂1(t)

)
F2

(
Q̂2(t)

)
...

FN
(
Q̂N(t)

)



dt

+

√
1

2De



dW2(t) − dW1(t)
dW3(t) − dW2(t)

...

dWN+1(t) − dWN(t)
1
N

∑N+1
j=1 dW j(t)


(1.26)

with

Â :=



2 −1 0

−1 2
. . .

0
. . .

. . .
. . .

. . .
. . .

. . . −1
. . . −1 2

0 0 0


∈ R(N+1)×N . (1.27)

The matrix Â has only zero entries in its last row as the spring force terms cancel out in the sum∑N+1
j=1 dr j(t). In practice, only a submatrix A ∈ RN×N of Â is considered. This matrix can be obtained

by omitting the last row of Â in (1.27). The resulting matrix

A :=



2 −1 0

−1 2
. . .

. . .
. . .

. . .
. . .

. . . −1
0 −1 2


∈ RN×N (1.28)

is called Rouse matrix and fulfills A = BT B with the matrix B as defined in (1.20).

For a better numerical treatment, (1.26) is further simplified by the following assumptions (cf. LeBris
and Lelièvre [83]):
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• the length of a polymer is much smaller than the spatial variation of the velocity field u, i.e. the
Taylor expansion of u at x

u(ri(t), t) ≈ u(x(t), t) + ∇u(x(t), t)(ri(t) − x(t)) + O
(
(ri(t) − x(t))2

)
leads, with second order accuracy in (ri(t) − x(t)), to the simplifications

u(ri+1(t), t) − u(ri(t), t) ≈ ∇u(x(t), t) qi(t) (1.29)

1
N + 1

N+1∑
j=1

u(r j(t), t) ≈ u(x(t), t) (1.30)

in equation (1.26).

• The term 1
N+1

∑N+1
j=1 u(R j(t), t) dt in the last row of (1.26) is of macroscopic size and therefore

much larger than the microscopic variation 1
N

∑N+1
j=1 dW j(t) due to Brownian forces on the N + 1

beads. It can be shown that the Brownian motion scales quadratically in the ratio of microscopic
length scale lc to macroscopic length scale Lc when the equations are nondimensionalized. We
therefore approximate in the last row

1
N

N+1∑
j=1

W j(t) ≈ 0. (1.31)

As a result (1.26) simplifies to a sequence of two stochastic differential equations
dQ̂1(t)
dQ̂2(t)
...

dQ̂N(t)

 =



∇u(X(t), t) Q̂1(t)
∇u(X(t), t) Q̂2(t)

...

∇u(X(t), t) Q̂N(t)

 −
1

4De
A


F1

(
Q̂1(t)

)
F2

(
Q̂2(t)

)
...

FN
(
Q̂N(t)

)


 dt

+

√
1

2De


dW2(t) − dW1(t)
dW3(t) − dW2(t)

...

dWN+1(t) − dWN(t)

 (1.32)

dX(t) = u(X(t), t) dt (1.33)

for the given initial conditions Q̂(0) and X(0). Equation (1.33) appears as a deterministic equation for
the trajectory of the dumbbell particles. We note, however, that u(X, t) is also a random field since the
initial condition X(0) is a random field.

Equations (1.32) and (1.33) in combination with the Navier-Stokes equations are used for the CON-
NFFESSIT approach; see Laso and Öttinger [82]. Here, individual realizations of (Q̂(0), X(0)) evolve
according to (1.32) and (1.33). This can be seen as a Lagrangian or particle based description of the
flow field.
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Fokker-Planck equation in chain specific variables The Fokker-Planck equation (1.24) can also
be written in a new coordinate system (q1, . . . , qN, x) with the change of variables (1.25). For this
purpose, we write the simplified system of stochastic ODEs (1.32) and (1.33) in the combined form



dQ̂1(t)
dQ̂2(t)
...

dQ̂N(t)
dX(t)


=





∇u(X(t), t) Q̂1(t)
∇u(X(t), t) Q̂2(t)

...

∇u(X(t), t) Q̂N(t)
u(X(t), t)


−

1
4De

A



F1
(
Q̂1(t)

)
...
...

FN
(
Q̂N(t)

)
0




dt + σ



dW1(t)
dW2(t)

...

...

dWN+1(t)


(1.34)

with

σ =
1
√

2De



−1 1 0

0 −1 1
. . .

0
. . .

. . .
. . . 0

. . .
. . . −1 1

0 0 . . . 0


∈ R(N+1)×(N+1) (1.35)

such that Theorem 1 is applicable.
We then apply Theorem 1 to the ODE system (1.34). The resulting Fokker-Planck equation equiva-

lent to (1.24) is then

∂ψ

∂t
+ ∇x · (uψ) +

N∑
i=1

∇qi ·

(∇xu)T qiψ −
1

4 De

N∑
j=1

Ai jF(qi)

 (1.36)

=
1

4 De

N∑
i=1

N∑
j=1

Ai j∇qi · ∇q jψ

with ψ : D1×· · ·×DN×O×[0,T ]→ R+, (q1, . . . , qN , x, t) 7→ ψ(q1, . . . , qN , x, t) and ψ(q1, . . . , qN , x, 0) =

ψ0(q1, . . . , qN). Note that this equation does not contain the center of mass diffusion ∆x due to the sim-
plification in (1.31). The center of mass diffusion is typically in the order of O(10−8) since it scales
quadratically with the ratio of the polymer length to the macroscopic length. This ratio is typically in
the order of 10−4. Barrett and Süli [5] however show that it is necessary to keep ∆x to be able to show
the existence of global weak solutions for some dilute polymer models.

Brownian Configuration Fields

The random variable X(t) in (1.33) appears as a parameter in the stochastic ODE (1.32). It is therefore
possible to rewrite the stochastic ODE for the stochastic process Q̂(t) as a stochastic PDE for a random
field Q(x, t), x ∈ O ⊂ R3. The description in form of a stochastic ODE is called Lagrangian perspective.
An alternative representation as a random field is denoted as Eulerian perspective. The correspondence
principle between these two equivalent descriptions is given in Table 1.1. Both descriptions can be
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Table 1.1.: Comparison of Lagrangian and Eulerian description of the microscopic bead-spring-chain
system

Lagrangian Eulerian
chain description N+1 3D-valued sto-

chastic processes
Q̂1(t), . . . , Q̂N(t), X(t)

N time-dependent 3D-
valued random fields
Q1(x, t), . . . ,QN(x, t)

dynamics N+1 3D-valued stochastic
ODEs

N 3D-valued stochastic
PDEs

discrete approach CONNFFESSIT Brownian Configuration
fields

converted into each other. For this purpose, we

• identify Q(X(t), t)↔ Q̂(t) with X(t) as solution of (1.33) and

• use the material derivative / Lagrangian derivative d
dt := ∂

∂t + u · ∇ to transform the Lagrangian
equation of motion into the Eulerian description and vice versa. The material derivative allows
to rewrite the evolution of Q̂(t) as

dQ̂(t)
dt

=
∂Q(x, t)
∂t

+ (u(x, t) · ∇) Q(x, t). (1.37)

The Eulerian reformulation of (1.32) and (1.33) leads to the stochastic partial differential equation


dQ1(x, t)
dQ2(x, t)

...

dQN(x, t)

 =

 −

(u(x, t) · ∇)Q1(x, t)
(u(x, t) · ∇)Q2(x, t)

...

(u(x, t) · ∇)QN(x, t)

 +


∇u(x, t) · Q1(x, t)
∇u(x, t) · Q2(x, t)

...

∇u(x, t) · QN(x, t)

 (1.38)

−
1

4De
A


F

(
Q1(x, t)

)
F

(
Q2(x, t)

)
...

F
(
QN(x, t)

)

 dt +

√
1

2De


dW2(t) − dW1(t)
dW3(t) − dW2(t)

...

dWN+1(t) − dWN(t)


or in compact notation

dQ(x, t)=
(
− u∇Q(x, t)+(∇u)T Q(x, t)−

1
4 De

A·F(Q(x, t))
)

dt + σdW(t) (1.39)

for the random field Q(x, t) = (Q1(x, t), . . . ,QN(x, t)). Again, A in (1.39) denotes the Rouse ma-
trix (1.28) and W(t) = (W1(t),W2(t), . . . ,WN+1(t)). Furthermore, σ ∈ RN×(N+1) is obtained from (1.35)
when the last row is omitted and, for simplicity, we use the same notation as before.

One discrete approach for the solution of (1.39) is the sampling of the random field Q(x, t) and the
evolution of each particle according to (1.39). In the context of non-Newtonian fluid mechanics the



1.2. Multiscale polymeric fluid models 23

(a) CONNFFESSIT (b) BCF

Figure 1.3.: Schematic difference of the sampling method in a discrete approximation.

sample particles are called Brownian Configuration fields (BCF); see Hulsen, Van Heel and Van Den
Brule [61]. The same sampling can be applied to the ODE system (1.32) and (1.33). As mentioned
before, the approach is then denoted as CONNFFESSIT; see Laso and Öttinger [82]. We illustrate both
approaches in Fig. 1.3.

1.2.3. Multiscale Navier-Stokes-BCF system

Up to now, the fluid’s velocity field u(x, t) in the stochastic PDE (1.38) and in the previous equations in
Section 1.2 was assumed to be known. We now want to couple the equations for the spring-chain on the
microscale with the macroscopic Navier-Stokes equations for the velocity field u(x, t) and the pressure
field p(x, t) as in Section 1.1. This requires a coupling between both length scales. The coupling from
the macroscale equations to the microscale equations is given by the velocity field u(x, t). The reverse
coupling is given, up to a normalization constant, by the expectation of the Brownian Configuration
field’s tensor product. This expectation is the stress tensor field τp(x, t) that is already known from the
purely macroscopic approach in Section 1.1. The calculation of the expectation is denoted as Kramers’
expression in the context of computational rheology. We illustrate this coupling in Fig. 1.4.

The stress tensor

In the multiscale approach the macroscopic stress tensor τp : (x, t) ∈ O × T 7→ τp(x, t) ∈ R3×3 is also
a random field τp : (ω, x, t) ∈ Ω × O × T 7→ τp(ω, x, t) ∈ R3×3 since it depends on the random field
Q(x, t). The stress tensor for a general spring chain is defined as

τp(x, t) =
3(1 − β)αb,d

De(N)·((N + 1)2 − 1)

N∑
i=1

(∫
D

qi(x, t) ⊗ Fi(qi(x, t)) ψ(q, x, t) dq − Id
)

(1.40)

=̂
3(1 − β)αb,d

De(N)·((N + 1)2 − 1)

N∑
i=1

(
E[Qi(x, t) ⊗ Fi(Qi(x, t))] − Id

)
(1.41)

where i again denotes the spring element of the spring chain, Fi : Di ⊂ R
3 → R3 is the spring force of

Section 1.2.3, αb,d ∈ R is a given spring force dependent constant, ⊗ : R3 × R3 → R3×3 is the tensor
product of two vector fields in R3 and E[·] =

∫
D · ψ(q, x, t) dq is the expectation defined on the N-fold
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polymer chain equation

Kramers’
formula

Navier-Stokes

u(x, t) Q(x, t)

τp(x, t) macroscopic

microscopic

expectation E[·]

Figure 1.4.: Coupling of microscopic and macroscopic equations.

Cartesian product D = D1×· · ·×DN of balanced open sets Di, i = 1, . . . ,N. In this application, balanced
means that qi ∈ Di only if −qi ∈ Di; see Barrett and Süli [4]. Moreover, ψ(q, x, t) ∈ C2,1(R3(N+1) × T )
is the probability density function from Theorem 1.1.

We note that the representation in (1.40) is used for the deterministic Fokker-Planck based approach
that is derived from Theorem 1.1. In contrast to this, equation (1.41) is used in the case of the spring
chain being modeled as a stochastic process as in our application. The relation between (1.40) and
(1.41) is therefore that we can identify a spring configuration vector with realizations of a stochastic
process.

Furthermore, (1.40) and (1.41) involve two dimensionless parameters De(N) (N-spring chain Debo-
rah number) and β (viscosity ratio) known from the macroscopic approach in (1.10). Here, we define
the Deborah number as

De(N) =
λ(N) Uc

Lc
(1.42)

since the relaxation time λ depends on the number of spring segments N. We will discuss this de-
pendency in Section 1.2.3. However, we note that De(1) is equivalent to De as defined in (1.10) and
therefore only use the notation De(N) if N > 1. Analogously to Section 1.1, the reference units Lc

(characteristic length in macroscopic flow) and Uc (characteristic fluid velocity) are used for the nondi-
mensionalization of (1.41).

Connector spring forces

In equations (1.39) and (1.41) the explicit choice of the spring force Fi : Di ⊂ R
3 → R3 has not been

specified. There are four popular choices in the literature for the characterization of intermolecular
forces Fi, namely, the Hookean spring force, the FENE spring force (cf. Warner [134]) the FENE-P
spring force (cf. Keunings [69]) and Cohen’s Padé approximation (cf. Cohen [26]). They are defined
as

Fi(qi) = qi, qi ∈ R
3 (Hooke), (1.43a)

Fi(qi) =
qi

1 − ‖qi‖
2/b(N)

, ‖qi‖
2 ≤ b(N) (FENE), (1.43b)

Fi(qi) =
qi

1 − 〈q2
i 〉/b(N)

, 〈q2
i 〉 ≤ b(N) (FENE-P), (1.43c)
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Fi(qi) =
1 − ‖qi‖

2/(3b(N))
1 − ‖qi‖

2/b(N)
qi, ‖qi‖

2 ≤ b(N) (Cohen) (1.43d)

for a parameter b(N) ∈ R+ that depends on the number of spring segments. This parameter can be
considered as a normalized maximum extension of each spring segment. Furthermore, the configuration
spaces Di depend on the choice of the spring force model. These spaces are

Di =

R3 for the Hookean and the FENE-P model and
B(0, b(N)1/2) for the FENE model and the Cohen’s Padé approximant.

Here, B(0, b(N)1/2) denotes an open ball with radius b(N)1/2 ∈ R+ centered at the origin.

The Hookean (1.43a), FENE (1.43b) and Cohen (1.43d) spring forces can alternatively be character-
ized as the gradient of a scalar spring potential U with

U(qi) =
1
2
‖qi‖

2 (Hooke), (1.44a)

U(qi) = −
b(N)

2
log

(
1 −
‖qi‖

2

b(N)

)
(FENE), (1.44b)

U(qi) =
‖qi‖

2

6
−

b(N)
3

log
(
1 −
‖qi‖

2

b(N)

)
(Cohen). (1.44c)

This is not possible for the FENE-P spring force (1.43c) which is derived by averaging the denominator
of the FENE spring force (1.43b), i.e. the FENE-P spring is a closure approximation.

Equation (1.41) contains a further constant αb,d that also depends on the spring force. Depending on
the spring force, the constant is

αb,d ≡


1, for a Hookean spring (b(N)→ ∞),
b(N)+5

b(N) , for a 3-dimensional FENE spring,
b(N)+3

b(N) , for a 3-dimensional FENE-P spring.

(1.45)

The coefficient αb,d is more complicated for Cohen’s Padé approximant as it leads to hypergeomet-
ric functions of b(N). We note that the spring force laws (1.43b)–(1.43d) are more or less accurate
approximations of the inverse Langevin force law. This force law is defined by

Fi(qi) =
b(N)

3
L−1

(
‖qi‖
√

b(N)
qi

‖qi‖

)
(1.46)

with the Langevin function L(x) = coth(x) − 1/x, x ∈ [0,∞); see Barrett and Süli [2]. The Langevin
function tends to 1 when its argument goes to infinity. For that reason, the inverse Langevin function
L−1 with the argument as in (1.46) goes to infinity when qi →

√
b(N). This is the case for the FENE

and for Cohen’s spring force laws (1.43b) and (1.43d) but not for the FENE-P model (1.43c). This
emphasizes the limitations of the FENE-P closure approximation.

Spring forces as in (1.43a)–(1.43d) can be subdivided into two different groups. For some simple
spring force models there exists a closed form solution. Then, these models can be rewritten as a
macroscopic model as considered in Section 1.1. This is the case for the Hookean spring force in (1.43a)
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b(4)

b(1)

Figure 1.5.: Comparison of maximum single FENE spring extension in a four segment chain with the
corresponding extension of a FENE dumbbell.

and for the FENE-P spring force in (1.43c). Since a macroscopic constitutive equation is much easier
to solve than its multiscale equivalent, these two spring forces are only considered for comparative
reasons. In fact, only those spring forces without a macroscopic equivalent are of practical importance.
This is the case for the FENE spring force in (1.43b) and for Cohen’s Padé approximation in (1.43d).
In most applications in the literature, the FENE spring is the connector force of choice if a purely
multiscale model is investigated.

Relaxation time and spring extension gauge

FENE models The stress tensor equation (1.41), (1.42) and furthermore the springe force equations
(1.43b)–(1.43d) contain two dimensionless parameters λ(N) (relaxation time of spring segment) and
b(N) (maximum spring extension of a single segment) depending on the number N of spring segments.
In physical experiments, the material parameters from a real fluid can be estimated. This delivers infor-
mation on the relaxation time of the full spring chain λ ∈ R+ and its maximum normalized extension
b ∈ R+. There has to be, however, a gauge from the full chain to a single segment, i.e. we have to relate
b with b(N) and λ with λ(N). A detailed explanation of the dumbbell’s gauging is, for instance, given
by Jin and Collins [64].

First, we consider the dumbbell case N = 1 for which we set

b(1) = b, λ(1) = λ (1.47)

since the single dumbbell represents the full chain; cf. Fig. 1.5.
This becomes more complicated for the general case with N > 1 segments. For the maximum spring

extension we follow an approach by de Gennes [33] and set

b(N) =
b
N
. (1.48)

Thereby, the sum of all maximum elongated segments is the full spring length; cf. Fig. 1.5. This
approach is used, for instance, by Koppol, Sureshkumar and Khomami [76] and by Jin and Collins [64].

There exist several gauges for the relaxation time λ and consequently for the Deborah number De.
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An adequate gauge for λ is problem-dependent. Popular choices are

λ(N) = λ, (1.49)

λ(N) = λ/d1 with d1 =
b(N)

b(N) + 5
·

√
(b + 5)(b + 7)

b(N)
(1.50)

·
[ (2(N + 1)2 + 7) · ((N + 1)2 − 1)

45
−

12((N + 1)4 − 1)
45(N + 1)(b(N) + 7)

]1/2
,

λ(N) = λ/d2 with d2 =
b + 7
15b

·
b(N)

b(N) + 5
(1.51)

·

[
(2(N + 1)2 + 7) −

12[(N + 1)2 + 1]
(N + 1)(b(N) + 7)

]
.

The first gauge for λ(N) equals the relaxation time of the dumbbell with the relaxation time of the
bead-spring model. The gauge in (1.50) is used to equate the zero shear material function ψN-bead

10 and
ψdumbbell

10 such that

ψN-bead
10 =nkBTλ(N)2 ·

2b(N)2

45(b(N) + 5)2

[
((N + 1)2 − 1)(2(N + 1)2 + 7)

−
12

[
(N + 1)4 − 1

]
(N + 1)(b(N) + 7)

]
!
=nkBTλ2 ·

2b2

(b + 5)(b + 7)
= ψdumbbell

10 (1.52)

according to equation (55) in Wiest and Tanner [139]. Equation (1.52) is solved for λ(N) to obtain the
second gauge.

The third relation (1.51) follows from matching the zero shear characteristic relaxation time scale
ψ10/(2ηp0) of the spring-chain to a dumbbell system which leads to

(
ψ10

2ηp

)
N-bead

=
b(N) λ(N)

15(b(N) + 5)

[
(2(N + 1)2 + 7) −

12
[
(N + 1)2 + 1

]
(N + 1)(b(N) + 7)

]
!
=λ ·

b
b + 7

=

(
ψ10

2ηp

)
dumbbell

. (1.53)

Equation (1.53) is solved for λ(N) to obtain the third gauge.

In this thesis, we employ the third mapping (1.53) for λ(N) for which Koppol et al. [76] report a high
agreement with experimental results in shear and extensional flows. Basically, λ(N) decreases with
increasing segment number N in (1.53) , i.e. each spring segment becomes stiffer. Fig. 1.6 shows the
decrease of the time scale ratio λ(N)/λ according to (1.53) for different maximum spring extensibility
parameters b = 20, 60, 120, 180. The values of b have been chosen such that they coincide with the
experimental parameters in Chapter 3. Interestingly, the larger the extensibility parameter b the faster
the decrease of λ(N)/λ, i.e. long spring-chains segments require a more stiff adjustment than short ones.

Finally, we note that all scalings of λ(N) and b(N) represent choices to balance the characteristics
of spring-chain models that differ in the number of segments N. Normally, these models cannot be
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Figure 1.6.: Decrease of the spring segment time scale ratio according to the mapping in (1.53) for
different spring extensibilities b.

mapped such that they predict an identical flow behavior. A more detailed analysis of this problem is
given by Ghosh et al. [46].

Hookean springs - Rouse model In case the connector segments are represented by Hookean
springs we obtain the Rouse model. The relation from the Hookean relaxation time λ to the more
general Rouse spring chain λ(N) depends on the gauge, i.e.

λ(N) = λ (1.54a)

λ(N) = λ/d1 with d1 =
(2(N + 1)2 + 7) · ((N + 1)2 − 1)

45
(1.54b)

λ(N) = λ/d2 with d2 =
(2(N + 1)2 + 7)

15
. (1.54c)

The relations (1.54b) and (1.54c) can be obtained from (1.50) and (1.51) for the limit b→ ∞.

Initial condition for the probability density function

Depending on the chosen spring connector force (1.43a)–(1.43d) the initial condition ψ0(q1, . . . , qN)
for the probability density function in (1.36) or, equivalently, the initial distribution of the random field
Q(x, 0) ∼ ψ0(q1, . . . , qN) in (1.39) is different.

We employ the equilibrium solution ψeq as initial condition for the Fokker-Planck or stochastic dif-
ferential equation. ψeq is derived as the solution of the Fokker-Planck equation (1.36) for the velocity
field u = 0 in Ω. Then, for q = (q1, . . . , qN) ∈ R3N equation (1.36) simplifies to

− ∇q ·
(
F(q)ψeq(q)

)
= ∆qψeq(q). (1.55)

First, we state the equilibrium solutions for one spring segment N = 1. Following Bonvin [14] and



1.2. Multiscale polymeric fluid models 29

the article by Herrchen and Öttinger [59], the equilibrium solutions are

ψeq(q) =
1

(2π)3/2 exp
(
−
‖q‖2

2

)
(Hooke), (1.56a)

ψeq(q) =
1

2πb(N)3/2B( 3
2 ,

b(N)+2
2 )

(
1 −
‖q‖2

b(N)

)b(N)/2

(FENE), (1.56b)

ψeq(q) =

(
b(N) + 3
2πb(N)

)3/2

exp
(
−

b(N) + 3
2b(N)

‖q‖2
)

(FENE-P), (1.56c)

ψeq(q) = C exp
(
−
‖q‖2

6

) (
1 −
‖q‖2

b(N)

)b(N)/3

(Cohen) (1.56d)

with a normalization constant C ∈ R and the beta function B(., .) that is defined by

B(x, y) =

∫ 1

0
sx−1(1 − s)y−1ds for x, y > 0. (1.57)

Except for the FENE-P model, the equilibrium solution is proportional to the negative exponential of
the spring force potential U, i.e. ψeq ∝ exp(−U) with U as in (1.44a)–(1.44c). Again, the FENE-
P spring behaves differently since it is a closure approximation from the FENE spring to reduce the
computational complexity.

Next, we consider the equilibrium solution for the general case with N > 1 spring segments. These
are the generalizations of the single segment density functions. Since the equilibrium random fields
for the single segments are independent from each other, the joint density is the product of the single
densities. We then obtain the multi segment equilibrium solutions

ψeq(q1, . . . , qN) =
1

(2π)(3N)/2

N∏
i=1

exp
(
−
‖qi‖

2

2

)
(N-segment Rouse chain),

(1.58a)

ψeq(q1, . . . , qN) =
1(

2πb(N)3/2B( 3
2 ,

b(N)+2
2 )

)N

N∏
i=1

(
1 −
‖qi‖

2

b(N)

)b(N)/2

(N-segment FENE chain),

(1.58b)

ψeq(q1, . . . , qN) =

(
b(N) + 3
2πb(N)

)(3N)/2 N∏
i=1

exp
(
−

b(N) + 3
2b(N)

‖qi‖
2
)

(N-segment FENE-P chain),

(1.58c)

ψeq(q1, . . . , qN) = C
N∏

i=1

exp
(
−
‖qi‖

2

6

) (
1 −
‖qi‖

2

b(N)

)b/3

(N-segment Cohen chain).

(1.58d)

We note that (1.58a) is a 3N-dimensional normal distribution with zero mean vector and the identity
as covariance matrix. Furthermore, (1.58c) is a 3N-dimensional normal distribution with zero mean
vector and covariance matrix b(N)

b(N)+3 Id.
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Coupled multiscale flow system

The full multiscale Navier-Stokes-BCF system as illustrated in Fig. 1.4 consists of the equations for
conservation of momentum and mass for an incompressible and isothermal viscoelastic one-phase flow
(1.6) and (1.7) in addition to the BCF equation (1.39) for an N-bead-spring chain and Kramers’ expres-
sion (1.41). We summarize the full problem for the FENE spring force (1.43b) since it will be primarily
used for the applications in Chapter 3 and Chapter 6.

For given T = [0, tmax] and given flow space O ⊂ R3 find the solutions

• u : (x, t) ∈ O × T 7→ u(x, t) ∈ R3 (velocity field),

• p : (x, t) ∈ O × T 7→ p(x, t) ∈ R (pressure field)

• τp : (x, t) ∈ O × T 7→ τp(x, t) ∈ R3 × R3 (stress tensor field)

• Q : (x, t) ∈ O × T 7→ Q(x, t) = (Q1(x, t), . . . ,QN(x, t)) ∈ D1 × · · · × DN ⊂ R
3N

(Brownian Configuration field)

such that

∂u(x, t)
∂t

+ (u(x, t) · ∇)u(x, t) = − ∇p(x, t) +
1

Re
β∆u(x, t) +

1
Re
∇ · τp(x, t) (1.59)

∇ · u(x, t) = 0 (1.60)

dQ(x, t)=
[
− u(x, t)∇Q(x, t)+(∇u(x, t))T Q(x, t)

−
1

4 De(N)
A·F (Q(x, t))

]
dt + σdW(t) (1.61)

τp(x, t)=
3(1 − β) (b(N) + 5)

b(N) De(N) ((N + 1)2 − 1)

N∑
i=1

(
E[Qi(x, t) ⊗ Fi(Qi(x, t))] − Id

)
(1.62)

Fi(Qi) =
Qi

1 − ‖Qi‖
2/b(N)

for i = 1, . . . ,N (1.63)

with the initial conditions

u(x, 0) = u0(x), (1.64)

p(x, 0) = p0(x), (1.65)

Qi(x, 0) ∼ ψeq(q) =
1

2πb(N)3/2B( 3
2 ,

b(N)+2
2 )

(
1 −
‖q‖2

b(N)

)b(N)/2

for i = 1, . . . ,N (1.66)

τp(x, 0) = τ0(x) ∀x ∈ O. (1.67)

Furthermore, the Reynolds number Re and the viscosity ratio β are given in (1.10) and the maximum
spring segment extension b(N) as well as the modified Deborah number De(N) are stated in (1.48) and
(1.49)–(1.51).

The boundary conditions for u are the same as in the macroscopic formulation (1.3a)–(1.3c). As in the
Newtonian case, homogeneous Neumann boundary conditions are assumed for the pressure field p in all
applications. Furthermore, the restriction on Q is that all of its realizations are in the configuration space
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D1 × · · · ×DN , i.e. ‖Qi(x, t, ω)‖ ≤
√

b ∀(x, t, ω) ∈ Di ×T ×Ω and i = 1, . . . ,N. This corresponds to a
zero Dirichlet boundary condition for the density function ψ that is associated with Q on the boundaries
∂Di, i = 1, . . . ,N. Since the equilibrium configuration fields are independent from each other, we
individually sample each spring segment i. We note, however, that the segments are coupled in (1.61) by
the Rouse matrix A from (1.28) . Therefore, for the general case t , 0 the segments are not independent
and the probability density functions ψ has no product form. Finally, we note that the random field Q
also requires a boundary condition with respect to the position x in flow space O. Usually, these are
Dirichlet boundary conditions on the inflow boundary and homogeneous Neumann boundary conditions
otherwise. Their implementation into NaSt3DGPF will be discussed in Section 2.2.1.

1.2.4. Existence of global weak solutions for multiscale model

The existence and uniqueness of solutions for the three-dimensional Navier-Stokes equations (1.59) and
(1.60) is still an area of active research; see Fefferman [38]. The existence and uniqueness of solutions
for the two-dimensional Navier-Stokes equations in R3 has been shown by Ladyzhenskaya [80]. For
the three-dimensional case only partial results have been shown:

• If the initial velocity u0 in (1.64) satisfies a smallness condition, smooth and globally defined
solutions of the three-dimensional Navier-Stokes equations exist; see e.g. Koch and Tataru [74].

• For a general initial velocity such a solution exists only on a small interval [0,T ) in which T
depends on u0. The maximum T in this context is called blowup time.

Furthermore, additional results on the existence of weak solutions of the Navier-Stokes equations
have been shown. Leray [86] proved the existence of global weak solutions for a general initial velocity.
It is however unknown if this solution is unique.

The mathematical analysis of the multiscale flow system (1.59)–(1.60) is even more complicated.
Beside the nonlinear transport term u · ∇u in (1.59), the coupling terms u∇Q and (∇u)T Q in (1.61) lead
to additional difficulties in proving existence. A further nonlinearity comes from the FENE spring force
(1.63) which also complicates finding existence results. For this reason, only the existence of globally
weak solutions has been shown. In the following, we summarize the most important findings. These
are primarily given for the the Fokker-Planck description of the system with the density function ψ so
that (1.61) is replaced with (1.36) in the coupled multiscale system.

Entropy estimates for the multiscale system As indicated by Le Bris and Lelièvre [84] most
results on the existence of weak solutions base on a priori estimate of the relative entropy. The relative
entropy is also known as Kullback-Leibler divergence and gives a non-symmetric measure of the dif-
ference between two probability density functions. In our application, the relative entropy of ψ(t) and
t ∈ T with respect to a steady state solution ψsteady is defined as

DKL(ψ(t)‖ψsteady) =

∫
D1×...DN

ψ(t) log
(
ψ(t)
ψsteady

)
dq. (1.68)

The entropy DKL(ψ(t)‖ψsteady) is always non-negative. Furthermore, it is zero only if ψ(t) = ψsteady
almost everywhere according to Gibb’s inequality. Using DKL(ψ(t)‖ψsteady), we can estimate the L1-
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norm of ψ(t) − ψsteady as ∫
D1×...DN

|ψ(t) − ψsteady| dq ≤
√

2DKL(ψ‖ψsteady) (1.69)

according to the Csiszár-Kullback inequality [32]. Consequently, if we can find a steady state solution
ψsteady so that DKL(ψ(t)‖ψsteady) → 0 for t → ∞ we obtain convergence in L1 from (1.69). Crucial for
the proof DKL(ψ(t)‖ψsteady) → 0 for t → ∞ is the existence of a logarithmic Sobolev inequality. There
is a logarithmic Sobolev inequality for ψsteady if there exists a constant C > 0 for which∫

D1×...DN

φ log
(

φ

ψsteady

)
dq ≤

1
2C

∫
D1×...DN

|∇ log
(

φ

ψsteady

)
|2 dq (1.70)

for all probability density functions φ defined on D1 × . . .DN . The existence of a logarithmic Sobolev
inequality (1.70) and a steady state solution is difficult to show in practice. We summarize some of the
results in the literature.

Existence results for Fokker-Planck equation in simple flows

Various results have been shown for the case in which the Fokker-Planck equation (1.36), or equiva-
lently the stochastic PDE (1.61), is not coupled with the fluid equations (1.59) and (1.60) with (1.62);
see Jourdain et al. [66]. In that case, the density function ψ does not depend on the spatial variable x.
We only consider the simplified situation in which the velocity gradient does not depend on space and
on time, i.e. ∇u(x, t) = κ ∈ R3×3. Depending on the form of κ, different steady state solutions ψsteady are
known:

• If κ = 0 as in (1.55) or if κ is skew-symmetric, i.e. κT = −κ, then the unique steady state solution
is

ψsteady = C exp(−U). (1.71)

Here, C ∈ R is a spring force dependent constant and U is the spring potential as in (1.44a)–
(1.44c). Note that in applications this is the initial condition that we employ for the Fokker-Planck
equation (1.36).

• If κ is symmetric, then the unique steady state solution is

ψsteady = C exp
(
−U + De qT κq

)
(1.72)

for the FENE spring force (1.43b) and for Cohen’s spring force (1.43d). For the Hookean spring
force (1.43a), the stated solution exists only for the case that the eigenvalues of κ are strictly
smaller than 1

2De .

The most important application in which κ is symmetric is an extensional flow. In an extensional
flow κ is a diagonal matrix with trace(κ) = 0 due to the continuity equation (1.60). We here
concentrate on the special case for an extensional flow in which κ = diag(ε̇,−ε̇/2, ε̇/2) with
extension rate ε̇ ∈ R. As reported, for instance, by Owens and Phillips [100] the Hookean
dumbbell spring / Oldroyd-B model predicts unlimited normal stress for extensional flows ε̇ ≥

1
2De . Consequently, these models have further restrictions on the eigenvalues of κ.
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In both cases, ψ convergences exponentially to ψsteady since

DKL(ψ(t)‖ψsteady) ≤ DKL(ψ(0)‖ψsteady) exp(−
C
De

t) = DKL(ψeq‖ψsteady) exp(−
C
De

t) (1.73)

for all t ∈ T and C > 0 as the constant in (1.70). This result follows from the logarithmic Sobolev
inequality (1.70), Gronwall’s Lemma and from the decrease of DKL(ψ(t)‖ψsteady) over time where ψsteady
is given by (1.71) or (1.72).

Existence results for multiscale modesl

We consider the general case for the coupled problem (1.59), (1.60), (1.36) and (1.41). Additionally
to the results stated for the Navier-Stokes equations in the beginning of Section 1.2.4, the momentum
equation (1.59) now contains the polymeric stress tensor τp. The stress tensor is primarily evolved by
the velocity gradient ∇u. Consequently, the regularity of τp resembles the regularity of ∇u.

The mathematical analysis of the multiscale model started with a local existence and uniqueness
theorem by Renardy [115]. Renardy’s proof bases on an iteration scheme to construct the solution. The
scheme alternates between the macroscopic flow equations and the Fokker-Planck equation. Moreover,
Le Bris and Lelièvre [84] report that global existence results have been primarily obtained for modified/

regularized formulations of the original problem:

• Barrett and Süli show the existence of global weak solutions for FENE type models in a series of
articles. First in [5], the authors proof the existence of global solutions for the FENE dumbbell
model N = 1 with center of mass diffusion, i.e. with an additional term ∆xψ in (1.36), and with a
microscopic cut-off function that restricts ψ by a certain value L ∈ R+. Later on this restrictions
are weakened. In [6] and in [3] the cut-off function is removed by the proof of the limit L → ∞.
Furthermore, [6] considers the more general case of FENE spring chains with N > 1 segments
and [3] focuses on the Rouse model. Recently in [7], the proof of global weak solutions has been
extended to the case of polymers with variable density and viscosity.

All of these existence results contain a center of mass diffusion term ∆xψ in (1.31) that we skipped
in the derivation. This additional term is justified by the physics of the system. Masmoudi [93],
however, notes that this additional center of mass diffusion term simplifies the mathematical
problem. Consequently, the results are not fully transferable to our applications.

• A larger class of global existence proofs uses a corotational derivative instead of the upper
convected derivative (1.11). More precisely, the velocity gradient ∇u in (1.36) is replaced by
∇u−∇uT

2 . For this derivative, global existence results of weak solutions are given by Lions and
Masmoudi [87]. Furthermore, the existence of strong solutions in 2D is shown by Masmoudi [92].

• An existence result that is applicable to our formulation of the multiscale FENE model has been
given by Masmoudi [93]. Here, the author also omits the center of mass diffusion term and
employs the classical upper convected derivative. The author proves the existence of global weak
solutions for the FENE dumbbell system (N = 1 segments). An extension of this result to general
FENE chains has not yet been given.

As mentioned before, the annotated existence results are given for the multiscale model in the Fokker-
Planck formulation from equation (1.36). Much less results exists for the stochastic formulation that
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we employ in (1.59)–(1.62). Up to now, the most advanced result in the stochastic formulation is given
by Jourdain, Lelièvre and Le Bris [67]. The authors show the existence of a local in time solution for
the FENE dumbbell system (N = 1 segments).
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This chapter focuses on discretization methods for the system of equations (1.59) – (1.63) that describes
viscoelastic polymers in a Newtonian solvent. Due to the complex coupling of several nonlinear equa-
tions, the numerical techniques that are used for the microscopic stochastic partial differential equation
in (1.61) differ from the techniques for the macroscopic three-dimensional Navier-Stokes equations in
(1.59) and (1.60).

A classical method to calculate the first moment of a stochastic process is given by Monte Carlo (MC)
quadrature. Our application in polymer physics requires high-dimensional integration in a configuration
space D ⊂ R3N with N as the number of polymer segments. All concepts that are related to the
integration problem are discussed in Section 2.1.

The discretization of the macroscopic Navier-Stokes equations is considered in Section 2.2. We
give a brief overview of the discretization in the physical flow space O ⊂ R3 but refer to Griebel and
Rüttgers [51, 52] and Rüttgers [117] for a more detailed description. Furthermore, Section 2.2 explains
the coupling between the macroscopic and the microscopic equations and gives detailed information on
the temporal evolution of the coupled system.

Finally, Section 2.3 analyzes the computational complexity of our full grid approach and describes
an efficient parallelization approach that bases on domain decomposition.

2.1. Monte Carlo quadrature for diffusion problems

This section is concerned with the high-dimensional integration problem which determines the elastic
stress tensor. First, Section 2.1.1 gives general information on the accuracy of Monte Carlo quadrature.
Then, in Section 2.1.2 we concentrate on the generation of random numbers for the random field that
describes the initial polymer configurations. Moreover, we state an explicit algorithm which allows
to generate high-dimensional initial samples. Next, in Section 2.1.3 we explain variance reduction
schemes that will be used in the final multiscale algorithm. At last, in Section 2.1.4 we discuss higher-
order Quasi Monte Carlo (QMC) methods for polymer physics. We also show that the accuracy of
QMC reduces to the classical Monte Carlo accuracy if the dimensionality of the integration problem
exceeds a certain limit.

2.1.1. General concepts

We first recall that the SPDE (1.61) for an N-segment bead-spring chain and Kramers’ expression (1.62)
can be written as a high-dimensional integration problem of the form

Id(x, t; f ) =

∫
D

f (q)ψ(q, x, t) dq (2.1)

35
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with D ⊂ R3N for the polymeric stress tensor τp(x, t); see equation (1.40) for the precise form of the
integrand f . Even if the probability density function ψ : D × O × [0,T ] → R+, (q, x, t) 7→ ψ(q, x, t) in
(2.1) was exactly known, an approximation of (2.1) with product rules as

Id(x, t; f ) ≈
m∑

i1=1

. . .

m∑
i3N=1

ωi1 · . . . · ωi3N f (qi1 , . . . , qi3N )ψ(qi1 , . . . , qi3N , x, t) · Vol(D) (2.2)

with m grid points in each coordinate direction would suffer from the so called curse of dimensionality;
see Caflisch [22] and Dick, Kuo and Sloan [35]. Equation (2.2) is the 3N-fold tensor product of a
one-dimensional quadrature rule with quadrature weights ωi. The total number of points is Ms = m3N

which grows exponentially in the number of spring segments N or in the problem dimension d = 3N,
respectively.

Furthermore, the same problem occurs for grid based approaches of (2.2) with respect to the conver-
gence behavior. Classical quadrature formulas of order k with Ms points in the d-dimensional hypercube
have a M−1/d

s grid spacing. Consequently, the convergence rate of the d-fold product rule is of order
O(M−k/d

s ).
The Monte Carlo (MC) approach which we will use in the following consists of an equal-weight

cubature rule

Id(x f , t f ; f ) ≈ QMs,d(x f , t f ; f ) =
1

Ms

Ms∑
i=1

f (ti) (2.3)

with Ms samples t1, . . . , tMs ∈ D of dimension d that are all i.i.d. (independent and identically dis-
tributed) drawn from the probability density function ψ(q, x f , t f ) : D → R+ for fixed x f ∈ O and
t f ∈ T = [0,T ]. Alternatively, but worse from a numerical perspective, (2.3) can also be rewritten as

Id(x f , t f ; f ) ≈ Q̃Ms,d(x f , t f ; f ) =
1

Ms

Ms∑
i=1

f (ti)ψ(ti, x f , t f ) · Vol(D) (2.4)

with Ms i.i.d uniformly drawn samples t1, . . . , tMs ∈ D. In (2.3), the random samples are generated
according to the measure ψdq. On the other hand, the probability measure in (2.4) is just dq. The
second approach in (2.4) is worse than (2.3) since a lot of samples are spent in regions in which ψ is
close to zero, i.e. in regions that do not have a large contribution to the integral. In the literature, ψ in
(2.3) is often denoted as an importance sampling function and the approach is known as importance
sampling; see Srinivasan [125].

The main advantages of a Monte Carlo approach is that

• it does not require the integrand to be smooth but only to be square-integrable and that

• the order of convergence does not depend on the dimension d. However, the constant of propor-
tionality C is still dimension-dependent.

In the following, we investigate the accuracy and the convergence behavior of the Monte Carlo
method. As a short-hand notation, we subsequently write QMs,d( f ) instead of QMs,d(x, t; f ) for the sake
of simplicity. The convergence of QMs,d( f ) in (2.3) to the real integral Id( f ) in probability according to

Prob
(

lim
Ms→∞

QMs,d( f ) = Id( f )
)

= 1
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is guaranteed by the strong law of large numbers; see e.g. Feller [39] for a proof. Furthermore, the
approximation of Id( f ) by QMs,d( f ) is unbiased and therefore

E[QMs,d( f )] = Id( f )

for all Ms ∈ N. In this case, the expectation E[QMs,d( f )] is understood with respect to the random
samples t1, . . . , tMs such that E[QMs,d( f )] =

∫
D . . .

∫
D

1
Ms

∑
i f (ti)ψ(ti)dt1 . . . dtMs .

Next, we define the Monte Carlo integration error as

εMs( f ) = |Id( f ) − QMs,d( f )|.

Then, the root-mean-square error (RMSE) is E[εMs( f )2]1/2. The RMSE can be estimated by the follow-
ing theorem.

Theorem 2.1 [Monte Carlo root-mean-square error]
Let f be square-integrable, then the RMSE of QMs,d( f ) is

E[εMs( f )2]1/2 =
σ( f )

M1/2
s

(2.5)

with
σ( f )2 = Id( f 2) − Id( f )2 (2.6)

as the variance of f .

Proof: A proof can be found, for instance, in Dick, Kuo and Sloan [35].
As a result, the RMSE of Monte Carlo integration is of order O(M−1/2

s ) with the variance of the
integrand f as a dimension-dependent constant. A comparison of grid-based methods of orderO(M−k/d

s )
with the Monte Carlo RMSE of order O(M−1/2

s ) suggests that Monte Carlo approaches are the method
of choice for problem dimensions d with k/d ≤ 1/2.

Practical error estimation In practice, the RMSE (2.5) can only be estimated since the exact knowl-
edge of σ( f ) requires the exact knowledge of the cubature problem Id( f ). Instead of that, a relation
between σ( f )2, the variance of f , and Var[QMs,d( f )], the variance of the MC approximation, is used.
They are related via

Var[QMs,d( f )] = E[|Id( f ) − QMs,d( f )|2] =
σ( f )2

Ms
. (2.7)

The MC approach provides an unbiased estimator for Var[QMs,d( f )] according to

Var[QMs,d( f )] ≈
1

Ms − 1

Ms∑
i=1

(
f (ti) − QMs,d( f )

)2 . (2.8)

In combination with (2.7) this results in an estimator for E[εMs( f )2]1/2 in (2.5).

Central Limit Theorem The statistical distribution of the Monte Carlo integration error is described
by the Central Limit Theorem. It states that the error is normally distributed regardless of the underlying
sample point distribution.
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Theorem 2.2 [Central Limit Theorem]
If 0 < σ( f ) < ∞ then

lim
Ms→∞

Prob
(
Id( f ) − QMs,d( f ) ≤ z

σ( f )
√

Ms

)
=

1
2π

∫ z

−z
exp(−x2/2) dx (2.9)

for any z ∈ R.

Proof: see e.g. Theorem 30.13 in Bauer [8].

Required number of samplings The Central Limit Theorem allows to determine the required num-
ber of samples Ms in (2.3) to achieve a given accuracy εMs( f ) up to a given confidence interval c. The
confidence interval is just the right-hand side of equation (2.9) according to

c =
1

2π

∫ s(c)

−s(c)
exp(−x2/2) dx (2.10)

with a real-valued confidence function s : [0, 1] → R that has to be determined at c. The required
number of samples Ms is then

Ms = εMs( f )−2σ( f )2s(c) (2.11)

with confidence level c.

2.1.2. Random number generation

In the following, we focus on Monte Carlo integration with a non-uniform measure ψdq as in (2.3) for
the case t = 0. For our multiscale model in polymer physics, we require random numbers t1, . . . , tMs ∼

ψ(0) where ψ(0) is the initial condition of the Fokker-Planck equation (1.36). Depending on the spe-
cific elastic spring force, the initial condition is given in (1.56a)–(1.58d). The FENE spring force, in
which we are primarily interested in the applications, leads to a complex probability density function
from which random samples cannot be generated easily, for instance, from an existing library. In the
following, we shortly discuss our method of choice, the rejection sampling, and then state an algorithm
to generate samples for an N-segment FENE chain (1.58b).

For the purpose of sample generation, two different approaches are primarily used:

Inversion method Let X be a real random variable with continuous cumulative distribution function
FX(x) = P(X ≤ x) : R → [0, 1]. Furthermore, let U be a uniform random variable on [0, 1].
Then, F−1

X (U) follows the distribution FX .

von Neumann rejection sampling This is a Monte Carlo type approach that was invented by von
Neumann [131]. The basic idea is that samples for a random variable can be generated if its den-
sity function is known and the area that lies under the graph of the density function is uniformly
sampled.

In practice, it can be complicated to construct F−1
X in the inversion method. Since we want to compute

samples that are distributed according to the bead-spring chain equilibrium density functions ψ(0) in
(1.36), we employ von Neumann’s rejection sampling. The rejection sampling only requires that the
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a bxs

(xs, c(xs))

reject xs

accept xs

ψ(x)

c(x)

generate quasi uniform
number distribution

Figure 2.1.: The von Neumann rejection sampling generates random numbers distributed according to
a known density ψ(x) by using samples from a comparison function c(x).

density function is known up to a constant. But, on the downside, this approach generates unwanted
overhead samples.

The main idea of the rejection method bases on a geometric argument that we will discuss in one
dimension for the simplified case ψ : [a, b] ⊂ R → R. Fig. 2.1 shows the graph of the probability
density function ψ in blue. If the area below the graph (x, ψ(x)) is sampled uniformly with a sequence
of points {(x1, ψ(x1)), (x2, ψ(x2)), . . .}, then the sequence of x-coordinates {xs}, s ∈ S  N is distributed
according to ψ.

Von Neumann [131] proposed a method how to construct such an uniform sampling below the graph
(x, ψ(x)). For this purpose, a comparison function c : [a, b] ⊂ R → R is required. The comparison
function has to fulfill two requirements. These requirements are that

• ψ(x) ≤ c(x) for all x ∈ [a, b] and

• a method is known which generates samples x1, x2, . . . distributed according to c(x).

These samples {(xs, ys)}s∈S N then fill the area below the graph (x, c(x)) uniformly if an imaginative
y-coordinate is added; see Fig. 2.1. The rejection sampling method

• accepts the subset {(xs̃, ys̃)} ⊂ {(xs, ys)}s∈S of points which also lie below the graph (x, ψ(x)) and

• rejects the remaining points.

As result, {xs̃}s̃∈S is distributed according to ψ(x). Algorithm 1 implements the von Neumann rejec-
tion sampling for an N-segment FENE chain (1.58b). The outcome of the algorithm cannot be easily
visualized since the samples are 3N-dimensional. For this reason, we show in Fig. 2.2 the sample
points distributed according to a simplified 2D probability density function; cf. Rüttgers [117]. The
density function is a special case of the FENE chain for a single segment, the dumbbell case, and a
two-dimensional configuration space.

Algorithm 1 incorporates several implementation details. First, we use the fact that ψ(q1, . . . , qN , x)
is a product density with respect to q1, . . . , qN . For the Monte Carlo approach this allows the simplified
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Algorithm 1: The von Neumann rejection sampling algorithm applied to the initial density of an N-segment
FENE chain with maximum spring segment extensibility b.

Data: N-segment FENE chain density function ψ(q1, . . . , qN) as in (1.58b);
comparison function c(qi) = 3/(4πb3/2) for i = 1, . . . ,N;
uniform random number generator U(0, 1);
Result: sequence of random numbers for ψ(q1, . . . , qN) // ψ = ψ1(q1) · . . . · ψN(qN)

1 L ← 2/(3 · B( 3
2 ,

b+2
2 )) // find a constant L > 1 with ψ ≤ L · c pointwise, the beta

function B(., .) is defined in (1.57);
2 s ← 1 // sample number;
3 i ← 1 // spring segment number;
4 for i← 1 to N ; // loop over all N segments
5 do
6 while s ≤ Ms do
7 Sample random number x(s)

i ∼ c(qi) // restrict x(s)
i ∈ U(−

√
b,
√

b)3 on sphere;
8 Generate random number u ∈ U(0, 1);
9 if (uLc(x(s)

i )) ≤ ψ(x(s)
i ) then

10 Accept x(s)
i as an sample of ψ(qi);

11 s← s + 1;
12 else
13 Reject the value x(s)

i ;
14 end
15 end
16 end
17 Obtain s = 1, . . . ,Ms samples t(s) = (x(s)

1 , . . . , x(s)
N ) ∼ ψ(q1, . . . , qN).

computation of (2.1) for all x ∈ O as∫
D

f (qi)ψ(q1, . . . , qN , x) dq

=

∫
D

f (qi)ψ(q1, x) · . . . · ψ(qN , x) dq

=

∫
D\Di

(∫
Di

f (qi)ψ(qi, x) dqi

)
ψ(q1, x) · . . . · ψ(qi−1, x) · ψ(qi+1, x) · . . . · ψ(qN , x) dq1,...,i−1,i+1,...,N

for i = 1, . . . ,N. Consequently, we obtain a sequence of N three-dimensional random fields which can
be computed separately. For this reason, Algorithm 1 scales linearly in the number of spring segments
N.

The previously stated requirement ψ(x) ≤ c(x) for all x ∈ [a, b] cannot be fulfilled by any probability
density function. More precisely, since both probability density functions necessarily satisfy

∫
ψ dx =∫

c dx = 1 and if ψ , c then there exists an xs ∈ [a, b] with ψ(xs) > c(xs). As a solution, Algorithm 1
contains a real constant L > 1 with ψ(x) < Lc(x) for all x. An optimal choice of L is essential for the
efficiency of the algorithm. The larger the constant L in Algorithm 1 the more samples from c(x) are
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Figure 2.2.: A sequence of 3000 two-dimensional random numbers which is distributed according to
the probability density function of a 2D FENE dumbbell model.

rejected as shown in Fig. 2.1. For this reason, the optimal choice Lopt for L is

Lopt = max
{

x ∈ [a, b]
∣∣∣∣∣ ψ(x)

c(x)
> 1

}
. (2.12)

The number of rejected sampling points is minimized if L is chosen according to (2.12).
In a more precise mathematical notation, von Neumann’s rejection sampling for generating samples

of dimensionality D can be rewritten as integration problem of dimension D + 1. This transforms the
integration problem (2.1) into the integral∫

D

∫ 1

0
f (q)ψ(q, x, t)χ

(
y <

1
Lopt · c(q)

)
dy dq (2.13)

with characteristic function χ.
For the specific case of an N-segment FENE chain as in Algorithm 1 we employ a constant density

c(q) = 3/(4πb3/2) as comparison function for the N segment equilibrium density ψeq(q1, . . . , qN). Then,
the optimal choice Lopt is

LFENE
opt =

ψeq(0, . . . , 0)
c(0)

=
2

3 · B( 3
2 ,

b+2
2 )

with B(x, y) as the Eulerian Beta function that is defined as

B(x, y) =

∫ 1

0
sx−1(1 − s)y−1ds for x, y > 0.

We note that a similar algorithm was proposed by Bonvin [14, 15] to generate samples for the FENE
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equilibrium density. In this case, the algorithm is restricted to the dumbbell case N = 1. The author
explicitly uses spherical coordinates to take advantage of the radial symmetry of the solution. However,
the algorithm by Bonvin still produces a large number of unwanted samples as it also bases on the
rejection sampling approach.

Note that Section 2.1.1 and Section 2.1.2 considered Monte Carlo integration Id(x f , t f ; f ) for the case
t f = 0 only. For t f > 0, the probability density function ψ is not known in general. One solution is to
evolve ψ according to the Fokker-Planck equation (1.36). Instead of that, as mentioned in Section 1.2.3,
we evolve the samples t1, . . . , tMs ∈ D from (2.3) in time such that t1(t), . . . , tMs(t) ∼ ψ(t) for all
t ∈ T = [0, tmax]. The algorithm for the temporal evolution of the stochastic realizations will be given
in Section 2.2.2 where we directly consider the full coupled system with the Navier-Stokes equations.

2.1.3. Variance reduction schemes

Variance reduction schemes are used to decrease the statistical error of a Monte Carlo approach without
increasing the computational effort, i.e. without increasing the number of samples Ms. In the literature,
various methods for variance reduction have been proposed. As far as we know, only two of these
approaches have been applied to the problem of polymer dynamics:

Importance sampling The basic idea of importance sampling is to determine those samples in (2.3)
that have the largest influence on Id(x f , t f ; f ). For instance, since the density functions of the
bead-spring chains (1.58a)–(1.58d) are radial symmetric with their maximum at the origin, most
random numbers are generated close to the origin. The integrand, however, is zero there and only
has a minor effect on the result. Importance sampling gives larger importance to the samples with
a more significant influence on the expectation. An application to polymer modes was first given
by Melchior and Öttinger [94, 95]. We further note that the MC treatment according to (2.3)
instead of (2.4) can already be considered as an importance sampling approach. In this case, we
denote ψ in (2.3) as importance function.

Control variates Let Xt be a stochastic process for which E[Xt] has to be determined. Instead of
directly calculating E[Xt], we decompose the expectation according to

E[Xt] = E[Xt − Yt] + E[Yt] (2.14)

for a further process Yt, the control variate. The basic idea of a control variate is to construct Yt

such that for all t ∈ T = [0, tmax]

• E[Yt] can be deterministically computed, i.e. Var[Yt] = 0, and

• Var[Xt − Yt] < Var[Xt].

A more detailed explanation of this approach can be found in Bonvin [14].

In the following, we focus on the method of control variates. This is due to the fact that for a
specific choice of the control variate Yt the method reduces the variance of the expectation without any
significant computational overhead. For this purpose, we first give details on an optimal choice for Yt.
Since Var[Xt − Yt] = Var[Xt] + Var[Yt] − 2 Cov(Xt,Yt), the condition Var[Xt] > Var[Xt − Yt] implies

Cov(Xt,Yt) >
1
2

Var[Yt]. (2.15)
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As a result, the variance on the right-hand side of (2.14) is only reduced in those cases in which Xt and
Yt are strongly correlated.

The stochastic process in our case is the time-dependent random field Q(x, t), cf. Vanmarcke [127],
that evolves according to

dQ(x, t)=
[
− u(x, t)∇Q(x, t)+(∇u(x, t))T Q(x, t) −

1
4 De(1)

A·F (Q(x, t))
]

dt + σdW(t) (2.16)

as specified in equation (1.61). For simplicity, we first consider Q(x, t) for a fixed position x = x f ∈ O

such that Xt = Q(x f , t) is a stochastic process. We then search for a control variate Yt that closely
resembles Xt. Two possible choices for Yt are

• an equilibrium control variate and

• a macroscopic model control variate.

The key idea in both cases is that the same Wiener process W(t) as in (2.16) for Xt is used for the control
variate. This will ensure a strong coupling between Xt and its control variate.

Equilibrium control variate An equilibrium control variate Yt reuses the initial configuration Y0 =

X0 and evolves Yt according to a similar equation as (2.16) but with the simplifications

• u(t) = 0 for all t ∈ T and

• F(Yt) = F(Xt) for all t ∈ T , i.e. we reuse the original spring force.

The SPDE (2.16) then simplifies to

dYt = −
1

4 De(1)
A·F (Yt) dt + σdW(t). (2.17)

Equation (2.17), however, is just the stochastic equivalent of the equilibrium equation (1.55) for which
the solution is given in (1.58a)–(1.58d). Consequently, we determine E[Yt] = 0 for all t ∈ T determin-
istically and approximate E[Xt − Yt] numerically.

Fig. 2.3 gives an example for an equilibrium control variate that is used to determine the τxx-stress
component of τp for a homogeneous extensional flow. In this example, E[Xt] is colored in blue, E[Yt]
(numerical approximation of the analytical result zero) is colored in brown and the better approximation
by the control variate E[Xt−Yt] is colored in red. The steady state solution at t ≥ 3 is τxx ≈ 4.02 for the
considered flow field. We indicate the steady state solution with a dashed blue line and intentionally use
only Ms = 100 samples or configurations fields to emphasize the improvement of the control variate
(red solid line).

Macroscopic model control variate We have mentioned in Section 1.2.3 that some microscopic
spring forces can be used to derive a noise free macroscopic equation for τp. Interestingly, the compar-
ison between such a microscopic spring model with its macroscopic counterpart can be used as control
variate for a purely microscopic model. This will be explained in the following.

Again, we use the initial configuration Y0 = X0 as initial configuration for Yt. Moreover, we evolve
the control variate with
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Figure 2.3.: Plot of the τxx-stress component over time for Ms = 100 samples. The normal simula-
tion outcome (blue) is compared with the outcome of an equilibrium control variate (red).
Moreover, the dashed line indicates the analytic steady state result.

• the same velocity field u(t) as for Xt in (2.16) and

• employ a spring force F which possesses a macroscopic equivalent.

For instance, if we want to use a Hookean control variate for the FENE spring-chain model (1.43b)
we employ a Hookean spring force model (1.43a) for Yt. Then, E[Xt−Yt] is calculated by Monte Carlo
integration according to (2.3) and E[Yt] is the noise free solution from the macroscopic Oldroyd-B
model in Section 1.1. This is due to the fact that the macroscopic Oldroyd-B model and the microscopic
Hookean dumbbell system are formally equivalent. In situations in which the FENE and the Hookean
model predict similar stress tensor values, the stochastic noise decreases strongly. On the other hand,
the situation can become worse in situations in which both models differ, for instance, in extensional
flows. Here, the Hookean spring model predicts infinite stress values which the FENE model does not.

As a conclusion, it strongly depends on the similarity of the purely microscopic model with the
control variate if this approach improves the result. For this reason, a macroscopic model control
variate has to be adapted to a specific flow problem.

2.1.4. Higher-order Quasi Monte Carlo methods

Quasi Monte Carlo (QMC) is an approach in which the random samples t1, . . . , tMs for numerical
integration in (2.3) and in (2.4) are replaced with a deterministic problem-adapted point set. A recent
discussion of different QMC sequences can be found, for instance, in the article by Dick, Kuo and
Sloan [35].

In the best case, the rate of convergence increases from O(M−1/2
s ) for MC points to O(M−1

s ) for
QMC point sequences. Therefore, an obvious question is why do we still use a classical Monte Carlo
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Figure 2.4.: Sampling of initial stress component τxx with MC and QMC sequences.

approach? In the following, we explain the difficulties of QMC point sets for diffusion problems as in
our specific application which often reduces the rate of convergence to O(M−1/2

s ) as before.

Integration of the equilibrium density

The probability density function ψ in the high-dimensional integrand is exactly known only at the initial
state at t = 0.0; see equilibrium solution ψeq in (1.56a)–(1.58d). In the following, we discuss a simple
approach to generate a pseudo random sequence for ψeq. For this purpose, we modify Algorithm 1
by choosing x(s)

i ∈ U(−
√

b,
√

b)3 in line 7 from a QMC sequence. The rejection sampling algorithm
then keeps the points x(s)

i ∼ ψeq. It is a common approach to only select a subsequence out of a set
of QMC points and skip the rest. For this reason, rejection sampling should not strongly decrease the
efficiency of the QMC sequence as it can be considered as a skipping of points. On the other hand,
rejection sampling can be considered as sampling of a non smooth integral as indicated in (2.13). Some
articles in the literature, for instance Wang [132] or Nguyen and Ökten [97], observe that a smoothing
of the characteristic function in (2.13) is required to obtain a rate of convergence as expected from QMC
sequences.

In the following, the advantage of QMC points for a 2D FENE dumbbell model is considered since
the corresponding sampling points can be visualized easily. In this case, the integral Id(x, t = 0; q ⊗
F(q)) is defined in a two-dimensional configuration space with a two-dimensional probability density
function ψeq. We approximate the absolute error EMs(τxx) = |τxx,numeric(t = 0)| of the first stress tensor
component for Ms samples by averaging the outcome of ten independent simulations. The averaging of
the stress tensor component is necessary since its convergence is only in probability. We also note that
the analytic solution is τxx,analytic(t = 0) = 0. All MC simulations are independent by construction. For
the QMC simulations we first create a two-dimensional Sobol sequence xi for i = 1, . . . ,Ms. Then, we
add a random offset U according to

x̃i = xi + U (mod 1)

with U ∼ U([0, 1]2) to xi and obtain independent point sets x̃i. Fig. 2.4 shows EMs(τxx) over the number
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of samples for a 2D FENE dumbbell model with spring extensibility b = 10. As expected, a sampling
with Monte Carlo points converges with a rate of about 1/2. The rate of convergence increases with
Quasi Monte Carlo points. In this case, we obtain an order of about 0.88 which is close to the theoretical
order of 1.0. One explanation for the difference might be given by the unsmoothed characteristic func-
tion in (2.13). Nguyen and Ökten [97] give detailed information on smoothed characteristic functions
that might be able to restore the theoretical rate of convergence of 1.0.

Integration of a time-dependent integral

The convergence study in Fig. 2.4 shows the improvement of QMC sequences over MC points in a
situation when the probability density function ψ is known. As an illustrative example, the first row
in Fig. 2.5 visualizes a typical distribution of 2000 samples from a MC point set on the left hand side
and from a QMC point set on the right-hand side. The lower discrepancy of the QMC points is directly
visible due to the more symmetric point arrangement. Furthermore, QMC samples do not build clusters
as in the case of MC points.

The situation differs for t > 0 in which ψ in (1.62) is not known. In the literature, there exist different
schemes for the temporal evolution of random variables and their discrete realizations as an ensemble
of Ms samples. Section 2.2.2 gives detailed information on different stochastic time discretization
schemes. An important difference is the treatment of the Brownian motion. Two important approaches
that deal with Brownian motion are

• a random walk discretization and

• a Brownian bridge discretization.

In this section, we compare both approaches for the mathematical treatment of Brownian motion
and evolve the initial distribution of 2000 MC and QMC points for a given velocity field in time.
As mentioned before, the initial distribution is shown in the first row of Fig. 2.5. The evolution in
time is according to a homogeneous extensional flow in x-direction i.e. the velocity field is u(x, y, z) =

(ε x,−ε/2 y,−ε/2 z) with ε ∈ R for all x = (x, y, z) ∈ O. For MC points, both discretizations, the random
walk and Brownian bridge, use normally distributed MC points to approximate the Wiener process. The
bottom left partial image of Fig. 2.5 shows a typical sample distribution at time t = 5.12 close to the
steady state. Both approaches for Brownian motion lead to interchangeable results if MC points are
used.

The situation differs for the temporal evolution using QMC points. In this case, the normally dis-
tributed points that approximate the Wiener process are also created from a quasi random sequence.
The dimensionality of the problem is the product of the number of Brownian motions (i.e. the number
of three-dimensional spring segments) with the number of time-steps in the temporal discretization. In
this example, we evolve a two-dimensional FENE dumbbell system up to t = 5.12 with a time-step
width ∆t = 0.01. Then, the full dimension of the Brownian motion is d = 1024. Consequently, we have
to construct, for instance, Sobol points of dimensionality d = 1024 and use the inverse of the Gaussian
cumulative distribution function to obtain normally distributed quasi random samples. However, for a
discretization with

• a random walk the order of convergence is worse than for MC samples (below 0.5) and with

• a Brownian bridge discretization the order of convergence is roughly the same as in the MC case.
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Figure 2.5.: Comparison of MC and QMC sampling of the initial FENE density (top row) and at t = 5.12
(bottom row) for a homogeneous extensional flow. The QMC approach at t = 5.12 has no
advantage over the classical MC approach.

We visualize the Brownian bridge outcome with QMC points in the bottom right partial image of
Fig. 2.5. Obviously, the low discrepancy of the point set at initial time has been lost at t = 5.12 due to
the Brownian motion which leads to an overlap of the sampling points. In the end, the approximation
of the QMC points in the final stage of the simulation is of similar accuracy as in the Monte Carlo
case. For this reason, the order of convergence for the QMC points reduces from 0.92 as in Fig. 2.4
to roughly 1/2. Of course, this reduction of accuracy depends on the problem and on the number of
involved time-steps.

In Fig. 2.6 we give a descriptive illustration of the difficulties that occur in the Brownian path. Even
though Sobol points are a low discrepancy point set, their distribution is inadequate in high dimensions.
This leads to a pattern in the Gaussian point distribution on the right-hand side of Fig. 2.6. Conse-
quently, this has an effect on the construction of the Brownian path. A random walk discretization gives
equal importance to each dimension. On the other hand, a Brownian bridge discretization has a high
variance in the first dimensions which then decreases in every step. For this reason, a Brownian bridge
discretization can cope with the poor distribution of the 1024-dimensional point set whereas the random
walk cannot. This is a first explanation for the observation in Fig. 2.5 for QMC point sets.

The problem of generating accurate point set with low discrepancy in high dimensions is still an
active area of research; see e.g. Dick, Kuo and Sloan [35]. It is often the case that the MC order of
1/2 can be improved up to an order that is between 0.5 and 1.0. Höök, Johnsen and Hellsten [60], for
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Figure 2.6.: Visualization of the dimensions 1, 2, 911 and 912 of a 1024-dimensional Sobol point set.
The samples have been transformed with the inverse of the Gaussian cumulative distribu-
tion function.

instance, consider a problem of fast ion thermalization. In this case, the order of convergence directly
correlates with the number of time-steps. For 200 time-steps the order of convergence is about 0.7 for
the random walk and about 0.95 for the Brownian bridge. This decreases to about 0.3 for the random
walk and 0.6 for the Brownian bridge if 1000 time-steps are used. As a result, the authors recommend
a QMC approach only for moderate problem dimensions in the order O(100). For problems of higher
dimensionality that result from e.g. a large number of time steps, Monte Carlo approaches are still
the methods of choice. Similar results are observed by Venkiteswaran and Junk [129]. These authors
employ QMC points in the context of polymeric fluids but only for homogeneous flow fields in which
the velocity field u does not depend on space x or time t.

2.2. Discretization of the multiscale Navier-Stokes-BCF system

This section covers the discretization of the coupled multiscale flow system from (1.59)–(1.63) in space
and in time. Here, the spatial discretization refers to the physical space O ⊂ R3. The numerical treat-
ment of the high-dimensional configuration space D ⊂ R3N with N as the number of spring segments
is considered in Section 2.1. The main result of this section is Algorithm 2 that allows to evolve the
discrete microscopic and macroscopic unknowns over time.

2.2.1. Spatial discretization

A finite difference scheme is used for the spatial discretization of (1.59)–(1.63) with respect to x ∈ O.
For this purpose, we subdivide the physical domain O into rectangular grid cells. Then, the variables
of interest are either discretized at the cell centers or on the cell faces. We place the macroscopic
variables p and τp in the cell centers and the three components of the velocity field u on the cell
faces. This method is denoted as a staggered grid and ensures a strong coupling between p and u.
Otherwise, numerical instabilities, such as the checkerboard phenomena for the pressure field, might
occur. The checkerboard phenomena describes a decoupling of adjacent discrete pressure values that
then oscillate between two different values. Since the stress tensor results from a high-dimensional
integral in configuration space D, see equation (1.62), it does make sense to also place the discrete
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Figure 2.7.: Discrete unknowns at index position (i, j, k) on the staggered grid.

samples Q(s), s = 1, . . . ,Ms of the x-dependent random fields Q in the cell centers.

Let ∆x, ∆y and ∆z denote the mesh widths in the x-, y- and z-direction, respectively. Then, the triple
(i, j, k) with i = 1, . . . , imax, j = 1, . . . , jmax and k = 1, . . . , kmax fully determines the physical position
of a discrete solution:

ui, j,k = u(i ∆x, ( j − 0.5)∆y, (k − 0.5)∆z),

vi, j,k = v((i − 0.5) ∆x, j ∆y, (k − 0.5)∆z),

wi, j,k = w((i − 0.5) ∆x, ( j − 0.5)∆y, k ∆z),

pi, j,k = p((i − 0.5) ∆x, ( j − 0.5)∆y, (k − 0.5)∆z),

τp, i, j,k = τp((i − 0.5)∆x, ( j − 0.5)∆y, (k − 0.5)∆z).

We visualize the position of the unknowns in grid cell (i, j, k) in Fig. 2.7.

Using second-order central differences we discretize all x-dependent derivatives in (1.59)–(1.63)
except for the convective velocity terms. Since the convective terms in the momentum equations (1.59)
are prone for numerical instabilities, we discretize these terms with a 5th-order WENO scheme [63]
to avoid oscillatory solutions. On the downside, the high-order of the WENO scheme requires a large
discretization stencil of three grid cells in each coordinate direction. Consequently, the boundary of O
has to be extended with an artificial strip of three grid cells, the so called ghost cells. As a result, the
full grid for the velocity field including the ghost cells has the index positions i = −2 up to i = imax + 3
and analogously for j and k. This simplifies to i = 0 up to i = imax + 1 for the pressure field p as
we only employ central differences here. More details on the spatial discretization of the macroscopic
variables in NaSt3DGPF can be found in Griebel et al. [48] and in Croce et al. [31]. In Section 1.1, we
discuss macroscopic constitutive equations which represent an alternative approach to model the stress
tensor τp. The discretization of these macroscopic equations in NaSt3DGPF is explained in detail in
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Claus [25].
On the micro-scale, we discretize the random field Q(x, t) = (Q1(x, t), . . . ,QN(x, t)) ∈ D1 × · · · ×

DN ⊂ R
3N in space in the cell centers analogously to p and τp, i.e. at the positions ((i − 0.5)∆x, ( j −

0.5)∆y, (k − 0.5)∆z) with i = 1, . . . , imax, j = 1, . . . , jmax and k = 1, . . . , kmax. This is necessary to avoid
an interpolation of the random field Q(x, t) since τp directly depends on Q(x, t) according to (1.62).
As discussed in Section 2.1, each discrete random field Q(xi jk, t) is represented by a number of s =

1, . . . ,Ms samples Q(s)(xi jk, t). Consequently, the total number of samples with dimensionality R3N is
of order O(Ms imax jmax kmax).

The discrete Brownian configuration fields Q(s)
i, j,k(t) evolve according to the SPDE (1.61). We explic-

itly note that the Wiener process W(t) in (1.61) depends on time but not on space. This artificial spatial
correlation since W(t) is uniform in space is a key idea of the Brownian configuration field method.
It ensures a coupling between different Brownian configuration fields which strongly reduces the sto-
chastic noise in space. We therefore observe a smooth stress tensor field in space in our simulations
in Chapter 3. Nevertheless, the stress tensor still shows large oscillations over time. Furthermore,
we discretize the convective part of (1.61) with a second-order QUICK scheme [85]. This has to be
understood in the sense that derivatives with respect to x are performed individually for each sample
s = 1, . . . ,Ms with the neighboring cell samples. A QUICK scheme has a difference stencil that covers
two neighboring cells in the flow domain but only one neighboring cell on the boundary, i.e. we only
require one artificial ghost cell for Q(s)

i, j,k(t) on the boundary. As a result, the full grid for the Brownian
configuration fields is described by an index set with range i = 0, . . . , imax + 1, j = 0, . . . , jmax + 1 and
k = 0, . . . , kmax + 1.

Boundary conditions

The boundary conditions for the velocity field u have been specified in (1.3a)–(1.3c) as

u|Γ1 = u0 on the inflow boundary Γ1,

u|Γ2 = 0 on the no-slip boundary Γ2,

∂n(u · n)|Γ3 = 0, ∂n(u · t)|Γ3 = 0 on the outflow boundary Γ3

and with ∂O = Γ1∪Γ2∪Γ3, n as outward pointing unit normal and t as tangential vector on ∂O. Further-
more, we use homogeneous Neumann boundary conditions for the pressure field p. These conditions
can directly be discretized using finite differences.

Next, we turn to the boundary conditions for the Brownian configuration fields. We set

Q(s)(x, t)|Γ1
= Q0,(s) on the inflow boundary Γ1, (2.19)

∇xQ(s)(x, t)|Γ2,3
= 0 on Γ2 and Γ3 (2.20)

for all s = 1, . . . ,Ms realizations. One approach to generate configuration fields Q0,(s) for a Dirichlet
boundary condition on Γ1 bases on previous simulations in a two-dimensional flow space. In this case,
we first evolve a set of random samples Q(s)|Γ for a fixed inflow velocity u0 on Γ1 from equilibrium
towards steady state. The actual simulation in three-dimensional flow space O ⊂ R3 then reuses Q(s)|Γ
on the two-dimensional inflow boundary. It is crucial to reuse the same number Ms of stochastic re-
alizations as well as the same Brownian path to evolve the configuration fields towards a steady state.
This ensures that Q0,(s) represents an adequate inflow field on Γ1.
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2.2.2. Temporal discretization

We first consider the temporal discretization of the equations for conservation of momentum (1.59)
and conservation of mass (1.60). The discretization bases on a semi-implicit scheme proposed by Bell
et al. [9]. The implementation into NaSt3DGPF is described in Verleye et al. [130]. In this case, the
diffusive velocity terms in (1.59) are discretized with an implicit 2nd-order Crank-Nicolson scheme to
avoid severe CFL-type time step restrictions in the laminar flow regime. This is of practical importance
since we primarily consider flow situations with low Reynolds numbers but with high Deborah numbers
so that elastic effects are dominant. For the convective velocities in (1.59), we employ an explicit 2nd-
order Adams-Bashforth scheme. This scheme leads to a restriction on the time-step width.

The temporal discretization of the stochastic partial differential equation (1.61) depends on the spe-
cific choice of the spring force term F in (1.63). The Hookean and the FENE-P spring in (1.43a) and
(1.43c) do not restrict the possible spring extension so that the corresponding configuration space is
D = R3N . For these spring models, we use an explicit Euler-Maruyama scheme for temporal discretiza-
tion which is of first-order accuracy in time. In the applications, however, the first order accuracy in
time is not a severe restriction. This is due to the fact that the accuracy of τp is primarily restricted by
the variance which reduces with an increasing number of samples Ms

The situation differs for the FENE spring (1.43b). Here, the configuration space Di for each spring
segment is an open sphere in R3 with radius b(N)1/2 centered at the origin. Consequently, a physical
solution has to fulfill ‖qi‖

2 < b(N) for all segments i = 1, . . . ,N. This restriction, however, is not nec-
essarily fulfilled by an explicit time-discretization scheme. For this reason, we use a time-discretization
which is implicit in the spring force term. This approach was proposed by Öttinger [99]. The basic idea
is that the extension of the spring segments ‖qn+1

i ‖ with i = 1, . . . ,N in the new time-step n + 1 is the
only unknown that has to be determined. This leads to a cubic equation for ‖qn+1

i ‖ which has a unique
solution in Di.

Semi-implicit projection method

Let un, pn, τn
p and Qn denote the discretized variables in time step tn ∈ [0,T ]. Furthermore, Rn is

a discrete equilibrium control variate of Qn at tn as described in Section 2.1.2. We then conduct the
following steps to compute the discrete solution at tn + ∆tn = tn+1 ∈ (0,T ]:

1. In case of the Hookean and the FENE-P spring forces (1.43a) and (1.43c), respectively, we solve
the stochastic ODE that results from the SPDE (1.61) after spatial discretization. Consequently,
we apply a step of an explicit Euler-Maruyama method at all grid nodes x j, for all spring segments
i = 1, . . . ,N and for all s = 1, . . . ,Ms stochastic samples according to

Qn+1,(s)
i (x j) = Qn,(s)

i (x j) +

[
− un∇Qn,(s)

i (x j) + (∇xun)T Qn,(s)
i (x j) −

1
4 De(N)

N∑
k=1

Aik ·F
(
Qn,(s)

k (x j)
) ]

∆tn

+

√
∆tn

2De(N)

[
t(s)
i+1 − t(s)

i

]
with t(s)

i , t(s)
i+1 ∼ N(0, 1)3. (2.21)

We note that x j is a short-hand notation for the three-dimensional grid as used in Fig. 2.7. Here,
we only write x j instead of xi, j,k to avoid confusion since the index i denotes the spring segment
in this case. Furthermore, Aik are the components of the Rouse matrix (1.28).
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If F is a FENE spring force (1.43b), we employ a semi-implicit Euler-Maruyama method(
1 +

Aii∆tn

4 De(N)

)
F

(
Qn+1,(s)

i (x j)
)

= Qn,(s)
i (x j) +

[
− un∇Qn,(s)

i (x j) + (∇xun)T Qn,(s)
i

−
1

4 De(N)

N∑
k=1
k,i

Aik ·F
(
Qn,(s)

k (x j)
) ]

∆tn

+

√
∆tn

2De(N)

[
t(s)
i+1 − t(s)

i

]
with t(s)

i , t(s)
i+1 ∼ N(0, 1)3 (2.22)

and solve this equation for Qn+1,(s)
i (x j).

In both equations, t(s)
i and t(s)

i+1 denote a triple of independent Gaussian random variables with
zero mean and variance one for s = 1, . . . ,Ms.

2. Advance the equilibrium control variate according to

Rn+1,(s)
i = Rn,(s)

i −
∆tn

4 De(N)

N∑
k=1

Aik ·F
(
Rn,(s)

k

)
+

√
∆tn

2De(N)

[
t(s)
i+1 − t(s)

i

]
with t(s)

i , t(s)
i+1 ∼ N(0, 1)3.

(2.23)

For an equilibrium control variate, it is crucial to use the same samples for the Brownian path of
the Brownian configuration field Qn as for the control variate Rn. This ensures a high correlation
of Qn and Rn and therefore a better variance reduction.

3. We compute the new stress tensor according to Kramers’ expression as

τn+1
p (x j) =

αb,d(1 − β)
De(N)

·
3

(N + 1)2 − 1

N∑
i=1

( 1
Ms

Ms∑
s=1

[
Qn+1,(s)

i (x j) ⊗ F(Qn+1,(s)
i (x j))

− Rn+1,(s)
i ⊗ F(Rn+1,(s)

i )
]
− Id

)
. (2.24)

Note that equation (2.24) uses the fact that the expectation 〈Rn+1 ⊗ F(Rn+1)〉 is zero since Rn+1

is an equilibrium control variate.

4. We solve a Helmholtz equation(
Id −

∆tnβ

2Re
∆

)
u∗ = un − ∆tn

(
∇pn + un · ∇un −

β

2Re
∆un −

1
Re
∇ · τn+1

p

)
(2.25)

by using an SSOR preconditioned CG method and obtain an intermediate velocity field u∗.

5. We use u∗ on the right-hand side of a Poisson problem to compute a pressure correction φn+1
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which ensures that un+1 is divergence free, i.e.

∆φn+1 =
1

∆tn∇ · u
∗ (2.26)

un+1 = u∗ − ∆tn∇φn+1. (2.27)

The Poisson problem is solved with an AMG-preconditioned BiCGStab solver; see Metsch [96].

6. We obtain the new pressure field by computing

pn+1 = pn + φn+1 −
∆tnβ

2Re
∆φn+1. (2.28)

Time-step restriction

It is generally known that explicit time-discretization schemes are only stable for limited time-step
widths. We employ a semi-implicit scheme which is implicit in the diffusive velocity terms in the
momentum equation and also implicit in some spring force contributions. For this reason, larger time-
steps than in a fully explicit scheme are possible. We next discuss the restrictions on the time-step width
∆t for our specific implementation. The results can be derived, for instance, by a von Neumann stability
analysis [24].

Compared to purely Newtonian fluids, the momentum equations (1.59) contain an additional stress
tensor τp which further restricts the size of ∆t. Trebotich et al. [126] state the restriction on ∆t for the
convective velocity term in x-direction, which we denote as ∆tx, is

∆tx ≤
∆x

maxi, j,k

[
|ui, j,k| +

√
2(τxx +

1−β
De )/Re

] . (2.29)

Analogously, we derive restrictions ∆ty and ∆tz in the coordinate directions y and z, respectively. As a
result, the restriction in time due to the contribution of the convective velocities is

∆tc = min(∆tx,∆ty,∆tz). (2.30)

The restriction in (2.30) is the famous Courant-Friedrich-Lewy (CFL) condition [28].
If our scheme was explicit in the diffusive velocity terms, we would obtain a similar restriction as for

the convective velocities. Other restrictions can occur due to body forces such as gravity; see Croce [29]
for a detailed explanation.

Next, we consider time-step restrictions for the SPDE (1.61). For this purpose, we cite a theorem
that connects the stability of an SPDE with the stability of its corresponding deterministic PDE.

Theorem 2.3 [Stability of stochastic differential equations]
Let dXt = µ(Xt, t) dt + σ(Xt, t) dBt be a stochastic differential equation with drift term µ and diffusion
term σ. A finite difference discretization of the previous stochastic differential equation is stable if and
only if the corresponding discretization of the deterministic equation dXt = µ(Xt, t) dt is stable.

Proof: The proof is given as Corollary 3.1 in Roth [116].
As a result, we only analyze the stability of the deterministic equivalent of (1.61). Furthermore,
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Algorithm 2: Algorithm for variance reduced multiscale simulations of viscoelastic fluids

Data: Initial conditions u 0 and p0 and N-segment chain density ψeq according to (1.58a)–(1.58d).
Result: Discrete solution u, p, τp and Q(s) with s = 1, . . . ,Ms at time t ≤ tmax.

1 Set t ← 0, n← 0;
2 Initialize velocity and pressure field with u 0 and p0;
3 Generate s = 1, . . . ,Ms realizations Q(s) = (Q(s)

1 , . . . ,Q(s)
N ) ∼ ψeq // von Neumann rejection

sampling according to Algorithm 1

4 Initialize all BCFs with the equilibrium configuration, i.e. Q 0,(s)
i, j,k = Q(s) for all i, j, k;

5 Reuse samples for the equilibrium control variate R0,(s) ← Q(s) for s = 1 . . . ,Ms ;
6 Compute initial stress tensor values τp

0 by using (2.24) // is zero up to machine accuracy
7 while t ≤ tmax do
8 Compute new time-step size ∆tn according to (2.30) without diffusive restriction;
9 Set boundary values for un and pn;

10 Set boundary values for the BCFs Q n,(s)
i, j,k ;

11 Compute new configuration field values Q n+1,(s)
i, j,k according to (2.21) or (2.22);

12 Compute new control variate R n+1,(s) by using (2.23);
13 Obtain new stress tensor τp

n+1 as in (2.24) // Kramers’ expression
14 Set boundary values for intermediate velocities u ∗;
15 Solve the Helmholtz equation for u ∗ according to (2.25);
16 Solve the Poisson problem (2.26) for the the pressure difference φn+1;
17 Compute the new velocity field u n+1 by using the pressure difference (2.27);
18 Obtain the new pressure field pn+1 according to (2.28);
19 t ← t + ∆tn, n← n + 1
20 end

we employ a discretization of (1.61) which is implicit in the spring force F. Consequently, there is
no stability restriction due to F in (1.61). As a result, only a convection equation with reaction term
remains. Since we employ the same finite difference scheme for the Navier-Stokes equations as for the
stochastic equation, the time-step restriction is very similar to the restrictions in (2.29) and (2.30). In
fact, a Neumann stability analysis shows that the restriction in time-step width for the Navier-Stokes
equations is more severe than for the Brownian configuration field equation (1.61). For this reason, it is
sufficient to limit ∆t according to (2.29) and (2.30) in the applications.

Algorithm for multiscale viscoelastic flow solver

Finally, we state Algorithm 2 which summarizes the findings of Section 2.2.1 and Section 2.2.2 on
the temporal and spatial discretization, respectively. The implementation in NaSt3DGPF bases on this
algorithm.

We note that the steps 11 and 13 in Algorithm 2 for the evolution of the Brownian configuration
fields Qn are the most demanding with respect to the computing time. This is due to the fact that Qn is a
short-hand notation for Ms samples in the center of the grid cell (i, j, k). One simple approach to reduce
the computing time bases on parallelization. This topic will be covered in the next section.
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2.3. Complexity and parallelization

In Section 2.3.1, we first discuss the complexity of our multiscale viscoelastic flow solver. Further-
more, we state the CPU and memory requirements for the numerical simulations in Chapter 3. These
requirements cannot be fulfilled on single-core workstations. Instead of that, massively parallel com-
putations are necessary to reduce the computing time. After that, parallelization will be considered in
Section 2.3.2.

However, even on massively parallel computers the computing time is in the order of days up to
weeks for typical problems of interest. Therefore, we require a more advanced approach to reduce
the computational complexity of the problem. Our method of choice to overcome these limitations
uses a sparse grid instead of a full grid discretization. Sparse grid discretizations will be discussed in
Chapters 4–6.

2.3.1. Complexity of full grid approach

Chapter 1 covers two different approaches for modeling viscoelastic fluids: these are macroscopic ap-
proaches on the one hand, see Section 1.1, and multiscale approaches on the other hand, see Section 1.2.
Macroscopic methods have a computational complexity that is comparable to the complexity of a clas-
sical Newtonian fluid. In contrast to this, multiscale methods have a higher computational complexity.
This is due to the more complex modeling of the polymer chains.

The computational complexity of a non-Newtonian macroscopic flow solver can be estimated as the
following:

• Let Mg be the number of grid cells per coordinate direction, then the grid complexity is O(M3
g)

unknowns for the velocity, the pressure and the stress tensor field.

• If Algorithm 2 requires Mt time-steps, then the computational complexity of a full simulation is
O(Mt · M3

g) operations.

The complexity increases in the case of a multiscale polymer model due to the enormous complexity
for the Brownian configuration fields:

• An N-segment Brownian configuration field Q is approximated with s = 1, . . . ,Ms samples
Q(s) ∈ R3N . After discretization, a sample in R3N can be stored as a sequence of N samples in R3.
Then, the grid complexity of a Brownian configuration field is of order O(N · Ms · M3

g) with the
same constant of proportionality as for the macroscopic variables.

• The total number of operations in Algorithm 2 is of order O(N · Mt · Ms · M3
g) where Mt is again

the number of time steps.

The complexity estimate shows that the stochastic approximation which bases on random fields leads
to an enormous increase in computing time (number of operations) and in memory requirement (number
of unknowns). In Table 2.1 we compare the grid complexity of three multiscale simulations from
Chapter 3. In Section 3.1.2 we simulate a homogeneous extensional flow, i.e. the solution does not
depend on the position in space x ∈ O. Therefore, the memory requirement is in the order of several
hundred megabytes only although the number of samples Ms = 106 is high. Next, in Section 3.2.1 a
planar contraction flow is simulated. In this case, the flow space O is a subset of R2. Since NaSt3DGPF
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Table 2.1.: Grid complexity of the Brownian configuration fields for three simulations in Chapter 3.
extensional flow planar contraction flow 4 : 1 contraction flow

section 3.1.2 3.2.1 3.2.2
spatial grid M3

g 1 cell (homogeneous) 640 × 128 × 3 cells 380 × 64 × 64 cells
samples per cell Ms 1.5 · 105 4000 1200
spring segments N 5 1 5
random field samples 1.5 · 106 983 · 106 1.87 · 109

dimension of samples 15-dim 3-dim 15-dim
memory [GB] 0.1 22 208

only creates three-dimensional grids, we emulate a two-dimensional grid by using only three grids
in the third coordinate direction and applying periodic boundary conditions there. As a result, the
memory requirement for the Brownian configuration fields is about 22 GB. Finally, the last column of
Table 2.1 lists the memory requirements for a three-dimensional 4 : 1 contraction flow. This problem
in Section 3.2.2 is the most demanding in this thesis with respect to the computational complexity. This
is due to the fine spatial grid with 380× 64× 64 cells. For this reason, the memory requirement is about
208 GB. We note that simulations for the second and third problem of Table 2.1 were conducted on a
parallel computer.

Complexity of a control variate for PDE system In Section 2.1.3 we discuss control variates
that allow us to decrease the statistical error. As mentioned before, the complexity of the Brownian
configuration fields is of order O(N Ms M3

g) in each time step. Next, we analyze how this complexity
increases for an equilibrium control variate on the one hand and for a macroscopic model control variate
on the other hand. The complexity noticeably differs for these two control variates since

• an equilibrium control variate requires only Ms samples of Yt in (2.17) independent of space x,
i.e. there is practically no increase in cost, and

• a macroscopic model control variate requires the same number of samples of order O(N Ms M3
g)

as used for Brownian configuration fields, i.e. the total computational cost increases toO(N M3
g (Ms

+Ms)) with the same constant of proportionality.

Consequently, a macroscopic model control variate only makes sense if it reduces the root-mean-
square error in (2.5) by a factor larger than

√
2. Otherwise, it is better to simply double the number of

samples Ms → 2Ms. For this reason, all complex simulations in Chapter 3 with the three-dimensional
flow solver NaSt3dGPF employ an inexpensive equilibrium control variate for which the complexity
analysis in Table 2.1 remains the same. Furthermore, Algorithm 2 contains an equilibrium control
variate.

2.3.2. Parallelization

A natural approach for parallelization bases on domain decomposition; see e.g. Smith et al. [120]. This
method decomposes the flow space O into subdomains. Each subdomain is assigned to a different
processor / CPU core. Processor cores that share a common boundary face have to exchange data in
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Ω1 Ω2

Ω3 Ω4

Figure 2.8.: Two-dimensional illustration of the domain decomposition approach for parallelization.

Table 2.2.: Parallel code performance of Algorithm 2 on CPU cluster Siebengebirge.
#cores #nodes time [s] speedup efficiency
32 1 13531 1.0 100 %
64 2 7693 1.76 88 %
128 4 3726 3.63 91 %
160 5 2937 4.61 92 %

every time step. We illustrate the principle of data exchange in two dimensions in Fig. 2.8 which is
taken from Rüttgers et al. [118].

The data exchange is performed with the Message Passing Interface (MPI). For this purpose, every
local subdomain has additional ghost rows adjacent to the cell faces which do not belong to ∂O. These
ghost cells store the flow field from the neighboring cores. For an optimal efficiency of the paralleliza-
tion it is essential to minimize the size of these additional ghost cells. We therefore decide for cubic
shaped subdomains for the individual cores. Data exchange is required for the velocity field, the pres-
sure field and for the Brownian configuration field but not for the stress tensor τp. This is due to the fact
that τp directly depends on the stochastic fields according to (1.62). Since the data exchange is time-
consuming, it can be more efficient to directly compute τp if the number of samples Ms is low. This is
the case for the complex multiscale simulations in Chapter 3. Analogously to the sequential code, data
exchange of the stochastic samples requires most of the time. More details on the data exchange of the
macroscopic variables in NaSt3DGPF is given in Croce [29].

The parallel results in Chapter 3 have been computed on the parallel CPU cluster Atacama. The
cluster is operated by the Institute for Numerical Simulation and the Sonderforschungsbereich 1060
at University of Bonn. Atacama consists of 78 Dell PowerEdge M620 compute nodes with 16 Intel
Xeon CPU E5-2650 2.60 GHz CPUs per node. Therefore, the total CPU number is 1248. Furthermore,
the system has a main memory of 4992 GB and MPI communication is performed with 56 Gb/Section
(4X FDR) Infiniband. The Linpack performance of the system is 20,630 GFlop/s which is 80% of the
theoretical peak performance.

In the literature, several articles investigate the parallel code performance of NaSt3DGPF. Zaspel
and Griebel [140] study the scaling behavior of a NaSt3DGPF GPU portation using NVIDIA’s CUDA
framework. Furthermore, the parallel code performance of NaSt3DGPF on Atacama is analyzed by



58 2. Numerical modeling of polymeric fluids

Rüttgers et al. [118] for a Newtonian fluid simulation through a complex geometry from nature, the
scopa of an oil collecting bee. Finally, the scaling behavior of an implementation of the multiscale
Algorithm 2 in NaSt3DGPF is investigated by Griebel and Rüttgers [51]. The scaling results for a
simple test problem are listed in Table 2.2. We note that these results have been obtained on a smaller
cluster called Siebengebirge. This cluster consists of 160 Intel Xeon X7560 2.226 GHz CPUs on 5
computing nodes and is operated by the Institute for Numerical Simulation. As expected, the scaling
behavior on Siebengebirge is close to optimal. The efficiency is always close to or above 90%. The
high parallel efficiency results from the large number of stochastic samples, see Table 2.1, that can be
parallelized efficiently. We expect similar results for the larger cluster Atacama since the same code is
used for a similar CPU architecture. Therefore, we conclude that NaSt3DGPF is perfectly adapted for
massively parallel multiscale simulations of viscoelastic fluids. Better results can only be achieved by
reducing the complexity of Algorithm 2. For this purpose, we employ a discretization on a sparse grid
which will be the considered in the second part of this thesis.



3. Numerical results on full grids

This chapter contains numerical results on full grids that were computed with the multiscale viscoelastic
flow solver described in Chapter 2. In the following applications, we distinguish

• homogeneous flows and

• complex multiscale flows.

Homogeneous flow fields refer to stationary velocity fields with a velocity gradient that does not
depend on space. In this case, it is not necessary to solve the Navier-Stokes equations. Furthermore,
the Brownian configuration fields for the underlying polymer structure simplify from a random field to
a stochastic process. The numerical treatment of this process is described in Section 2.1. We present
numerical results for homogeneous flow fields in Section 3.1.

Complex multiscale flows denote the general case in which the coupled multiscale flow system in
(1.59)–(1.63) is considered. A discrete approach for the solution of the multiscale system is given
in Algorithm 2 in Section 2.2. These flow fields exhibit an enormous computational complexity and
require an efficient parallelization approach; see Section 2.3. The numerical results on complex flows
are presented in Section 3.2.

3.1. Homogeneous flows

In non-Newtonian fluid mechanics, homogeneous shear and extensional flows are used to characterize
the fluid’s elasticity behavior. We here concentrate on extensional flows and refer to Section 6.1 or to
Rüttgers [117] for a description of shear flows.

Extensional flows

An extensional flow stretches a fluid element in one or two coordinate directions and compresses it in the
remaining ones. The rate of constant elongation is characterized by a dimensionless scalar elongation
rate ε̇ > 0. Then, the corresponding velocity field is

u = (ε̇x,−
ε̇

2
y,−

ε̇

2
z) for an uniaxial extensional flow and (3.1a)

u = (ε̇x,−ε̇y, 0) for a planar extensional flow. (3.1b)

We visualize both velocity fields in Fig. 3.1. This figure is taken from Rüttgers [117].
In the following, we focus on uniaxial extensional flows in x-direction as defined in (3.1a). The

velocity field gradient for this flow field is ∇u(x, t) = diag(ε̇,−ε̇/2,−ε̇/2) := κ, i.e., it does not depend

59
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planar extensional flow uniaxial extensional flow

Figure 3.1.: Comparison of stationary planar and uniaxial extensional flow.

on space and time, and the coupled system in (1.59)–(1.63) simplifies to

dQ(t)=
[
κT Q(t) −

1
4 De(N)

A·F (Q(t))
]

dt + σdW(t) (3.2)

τp(t)=
3(1 − β) (b(N) + 5)

b(N) De(N) ((N + 1)2 − 1)

N∑
i=1

(
E[Qi(t) ⊗ Fi(Qi(t))] − Id

)
. (3.3)

In this simplified case, the only quantities of interest are the stochastic process Q(t) = (Q1(t), . . . ,QN(t))
and the corresponding stress tensor τp(t). Furthermore, only the diagonal components τxx, τyy and τzz

of τp(t) are non-zero.

3.1.1. Dumbbell models

The first application is an extensional flow for the simplified dumbbell model case N = 1. For this
model, we compare the outcome of the Hookean spring force, the FENE spring force and the FENE-P
spring force. The initial condition for the probability density function ψeq(q) in the dumbbell model is
given in (1.56a)–(1.56d). Note again that the initial stress tensor τp(t) that is computed from the random
variable Q(0) ∼ ψeq(q) in (3.3) has an expectation of zero. The steady state stress tensor in a stationary
velocity field is known for some dumbbell models. We discuss these analytical results in the following.

Hookean dumbbell solution in an extensional flow

The linear Hookean dumbbell model can be written as a macroscopic stress tensor equation; see e.g.
Lozinski [88]. This constitutive equation for τp results from (1.8) and (1.9) for the special case ε = ξ =

0. According to Owens and Phillips [100], the steady state stress tensor in an x-directional extensional
flow is

τxx =
2 ε̇

1 − 2De ε̇
, τyy = τzz = −

ε̇

1 + De ε̇
(3.4)
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for a Deborah number De < 1/(2ε̇). Furthermore, the Hookean dumbbell model predicts an unlimited
first normal stress component for De ≥ 1/(2ε̇).

FENE dumbbell solution in an extensional flow

In homogeneous flow fields there exists a steady state solution for the FENE probability density func-
tion ψ in flow fields with a symmetric and constant velocity gradient κ. This solution also applies to
homogeneous extensional flows. The solution is

ψanalytic = C
(
1 −
‖q‖2

b

)b/2

exp(De κ : q ⊗ q) (3.5)

with q ∈ B(0, b(1)1/2) ⊂ R3 and C as a normalization constant. For further information, Bird et al. [12]
state this solution as equation (13.2-14). The steady state solution ψanalytic allows to compute the expec-
tation in (3.3).

Spring model comparison for moderate extensional flow

In Table 3.1 we first list the parameters for the following simulations. Using these parameters, we
compute the analytic steady state stress tensor values for the Hookean and the FENE dumbbell model
with equation (3.4) and (3.5). The parameters are chosen such that the first normal stress component
and the extensional viscosity tend to infinity for the Hookean dumbbell model.

Furthermore, the analytical formula for the FENE model yields

• τanalytic
xx ≈ 9.3991,

• τanalytic
yy ≈ −0.6643,

• τanalytic
zz ≈ −0.6643,

• zero for all shear stresses.

• (τxx − τyy)/ε̇ ≈ 10.634

Next, we numerically solve the system of equations (3.2) and (3.3) with the parameters listed in the
last rows of Table 3.1. We plot the extensional viscosity η(ε̇) = (τxx − τyy)/ε̇ over time in Fig. 3.2. For
the Hookean dumbbell model there is a linear increase of η(ε̇) over the full time range of the simulation.
An analysis of the stochastic samples shows that the Hookean dumbbells become the more stretched
the longer the simulation is performed. This results in an unlimited stress growth in this flow field.

On the other hand, the FENE and FENE-P model predict a finite steady state result for η(ε̇) after
about t = 8.0. The numerical result for the FENE model tends to the analytical result of ≈ 10.634

Extensional flow with dumbbell model
Deborah number De 0.5

viscosity ratio β 0.0
extensional rate ε̇ 1.0

maximum spring extension b 60.0
stochastic samples M 2 · 106

time-step size (const.) ∆ t 5 · 10−4

Table 3.1.: Parameters for the mathematical model and for the numerical simulations in which a dumb-
bell model evolves according to a three-dimensional extensional flow.
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Figure 3.2.: Time-dependent extensional viscosity η(ε̇) = (τxx − τyy)/ε̇ with ε̇ = 1 for the FENE, FENE-P
and Hookean dumbbell model.

that is indicated with a black dotted line in Fig. 3.2. Further investigations show that the error of the
approximation reduces with order O(M−1/2). We do not investigate the error reduction depending on M
for the dumbbell case since this analysis is already performed in Section 6.2.1 of Rüttgers [117].

Moreover, the FENE-P model reaches a larger steady state result of about η(ε̇) ≈ 13.9. This is
expected since the FENE-P model restricts only the average dumbbell extension by b1/2 such that
E(Q) ≤ b1/2 for the FENE-P model instead of Q ≤ b1/2 as for the FENE model. This results in higher
stress tensor values for the FENE-P model in moderate and strong velocity fields. Consequently, the
FENE-P model is an accurate approximation of the FENE model only in flow fields with low elongation
rate ε̇.

Fig. 3.2 shows a further interesting aspect that separates the FENE model from the Hookean and
the FENE-P model. The Hookean model predicts a linear increase of η(ε̇). In the initial phase of the
simulation up to about t = 1.8, the FENE-P model also predicts a linear increase of η(ε̇). Both models
assume a Gaussian initial distribution which is not the case for the FENE model. For this reason, the
FENE model has a nonlinear behavior over the complete time range of the simulation.

3.1.2. Spring-chain models

In this section we consider an extensional flow for more general spring-chain systems with N = 1, . . . , 5
segments. Each segment is connected with a nonlinear FENE spring. The physical system is fully
determined by the system of equations (3.2) and (3.3). Moreover, we now analyze how the stress tensor
development over time depends on the spring segment number N. This dependency, however, also
depends on the chosen spring-chain gauge; cf. Section 1.2.3. In Table 3.2 we list the mathematical
and numerical parameters for the following simulation. In contrast to the simulations in Section 3.1.1
for the dumbbell model, we now prescribe a stronger extensional rate ε̇ = 2.0 and employ a larger
maximum spring extension b = 120. For this reason, we expect larger stress tensor values as in the
previous simulation.
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Extensional flow with spring-chain model
Deborah number De 1.0

viscosity ratio β 0.0
extensional rate ε̇ 2.0

spring model FENE
maximum spring extension b 120.0

spring extension gauge b(N) de Gennes (1.48)
spring relaxation gauge λ(N) rel. time scale (1.51)

stochastic samples M 1.5 · 105

time-step size (const.) ∆ t 5 · 10−4

Table 3.2.: Parameters for the FENE multi-bead-spring chain systems in a 3D extensional flow.
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Figure 3.3.: Extensional viscosity η(ε̇) = (τxx − τyy)/ε̇ with ε̇ = 2 over time for FENE spring chains with
different segment numbers N.

In Fig. 3.3 we visualize η(ε̇ = 2, t) for t ∈ [0, 8.0] with N = 1, . . . , 5 spring segments. More precisely,
on the left hand side (LHS) of Fig. 3.3 we plot η(ε̇ = 2, t) over the full temporal grid and on the right-
hand side (RHS) we focus on a zoomed extract close to the steady state of the system. The zoomed
extract is indicated with a red rectangle on the LHS of the figure.

The simulated steady state results are about 186 (dumbbell case), 154 (N = 2 segments), 145 (N = 3
segments) and about 142 for N = 4 and N = 5. We observe that the dumbbell model predicts the lowest
extensional viscosity in the early stage of the simulation up to about t = 2.0 but the largest extensional
viscosity in the end. The situations is reversed for N = 5. Here, the stress tensor values are largest in the
initial phase but lowest at steady state. The early stage behavior is primarily caused by the mapping of
the relaxation time λ(N) according to (1.51). Due to this mapping, the relaxation time λ(1) for the single
dumbbell segment is larger than, for instance, the relaxation time λ(5) for each of the five segments.
This leads to a later increase in η(ε̇ = 2) for the dumbbell model as shown in Fig. 3.3. The steady
state behavior seems to be more affected by the maximum spring segment extension b(N) according to
(1.48). The figure indicates that the dumbbell segment with maximum extensibility b(1) = 120 seems
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Figure 3.4.: Temporal evolution of τxx for a five segment spring-chain with different numbers of sample
points M.

to be more elongated in average than a five segment chain with b(5) = 24 for each segment.

According to Fig. 3.3, the dumbbell model and the 2-segment chain strongly differ in their steady
state result for η(ε̇ = 2). In contrast to this, the differences for N = 4 and N = 5 are negligible. Note
that this effect is specific to the current application and to the gauge of the spring-chains and cannot
be generalized to other flow situations. However, in this application the four-segment chains delivers a
suitable approximation to the five-segment chain but with a lower computational complexity. This is an
idea that will be used in Chapter 6 to reduce the computational complexity of multiscale polymer flow
simulations.

Finally, we analyze the order of convergence for the first normal stress component τxx for a chain
with N = 5 spring segments. Fig. 3.4 shows the time-dependent evolution of τxx depending on the
number M of stochastic realizations. The numerical steady state result is τxx ≈ 284. The left-hand
side (LHS) of Fig. 3.4 visualizes τxx for t ∈ [0, 15]. Again, a small red rectangle indicates a zoomed
extract that is shown on the right-hand side (RHS) of the figure. The stress component increases from
its initial value of zero at t = 0.0 up to about t ≈ 4.0 when the system reaches its steady state. Then,
τxx oscillates around its steady state result and the size of the oscillation, more precisely the variance
of the solution, strongly depends on the number of samples M. As expected, the variance is largest for
M = 10 samples and, in average, the more decreases the more M is increased. In total, we perform
six simulations l = 1, 2, . . . , 6 with different sample numbers Ml = 10l. The numerical solution on the
finest grid (black solid line) for level l = 6 does not show any visible variance with the chosen scaling
of the x-axis in Fig. 3.4. We note that Fig. 3.4 does not include the results of the levels l = 4 and l = 5
since the results can hardly be distinguished from the result on level l = 6.

Next, we compare the expectation 〈τxx〉 for the different levels l = 1, . . . , 6 in Table 3.3. For this
purpose, we approximate 〈τxx〉 as

〈τxx〉 =
1

#MT

∑
ti∈MT

τxx(ti) for MT ≡ {ti| ti ≥ 10.0} . (3.6)
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Table 3.3.: Average of the normal stress component τxx for different numbers of stochastic realizations
Ml and the corresponding rate of convergence. The same results are specified for the
variance σ2(τxx).

l Ml 〈τxx〉 εrel(τxx) pl(εrel) σ2(τxx) pl(σ2)
1 101 286.5353 1.0−2 245.29
2 102 285.8048 7.4−3 0.13 25.73 0.98
3 103 283.9659 9.4−4 0.90 1.90 1.13
4 104 283.8157 4.1−4 0.36 0.17 1.04
5 105 283.7308 1.1−4 0.56 0.02 0.93
6 106 283.6987 1.6−3 1.10
〈pl〉 0.49 1.03

In this case, MT contains all discrete points in time ≥ 10.0 to ensure that the variance error is dominant.
Moreover, the 4th column of Table 3.3 specifies an approximation to the relative error εrel(τxx) =

|τxx − τxx,analytic|/|τxx,analytic|. In this case, an analytic formula for the steady state probability density
function ψ results in a 15-dimensional integral for the expectation in (3.3) due to the high-dimensional
configuration space. Since this integral cannot be easily solved with grid-based methods we approxi-
mate τxx,analytic ≈ τxx on level l = 6. We use this approximation of εrel(τxx) for the levels l = 1, . . . , 5.
This approximation of εrel(τxx) now allows us to investigate the order of convergence pl for the different
sample levels l. For this purpose, we define the order of convergence between the levels l − 1 and l as

pl(εrel) =
log(εl−1/εl)

log(10)
(3.7)

where εl is a short-hand notation for εrel(τxx) on level l. We list the order of convergence of the relative
error in the 5th column of Table 3.3. As expected for a stochastic approach, the order of convergence
strongly varies between 0.13 and 0.90. In the last row, we compute an average rate of convergence of
0.49. This result is very close to the expected result of 0.5.

Next, we investigate the variance of the solution σ2(τp). Similarly to definition (3.6) we compute
σ2(τp) as

σ2(τp) =
1

#MT

∑
ti∈MT

(τp(ti) − τfine_grid)2 for MT ≡ {ti| ti ≥ 10.0} (3.8)

where τfine_grid again denotes the numerical approximation on level l = 6. Note that it is necessary to
change the denominator in (3.8) from MT to MT − 1 to obtain an unbiased variance estimator. The
second last row of Table 3.3 specifies the variance of the approximation. Furthermore, the last row lists
the order of convergence of σ2(τp). In this case, pl(σ2) is analogously defined to (3.7). We observe
for pl(σ2) on different levels l that the results have a comparatively small variance with respect to the
expected rate of 1.0.

Finally, we conclude that the numerical scheme of Chapter 2 is able to obtain the expected rates
of convergence for the mean and for the variance, respectively, for spring-chain models up to N = 5
segments. The next subsection focuses on the question how the stochastic approximation can be used
to approximate the corresponding probability density function.
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3.1.3. Reconstruction of the probability density function

An important difference between macroscopic approaches as described in Section 1.1 and multiscale
approaches as considered in this thesis is that a multiscale description delivers additional information on
the underlying polymeric structure. This information can be used to better characterize the dominant
type of flow in a certain region of the flow domain. For this purpose, it is necessary to somehow
visualize the distribution of the random variable Q. In contrast to the Fokker-Planck based approach,
see equation (1.36) in Section 1.2.2, the probability density function ψ is not directly computed in a
stochastic approach. However, it is possible to recover the density ψ from the stochastic realizations.
The corresponding numerical approach is known as kernel density approximation; see Parzen [101].
Usually, this approach suffers from a low order of convergence. On the other hand, it is sufficient to
obtain a coarse approximation of ψ to get an idea of the dominant type of flow.

First, we try to reconstruct a three-dimensional probability density function for a FENE dumbbell
model as considered in Section 3.1.1. In this case, we approximate ψ : B(0, b(1))1/2 × [0,T ] →
R+, (q, t) 7→ ψ(q, t) for a moderate extensional flow with the parameters De = 1.0, ε̇ = 1.0, b = 10 and
M = 105.

In Fig. 3.5 we visualize a two-dimensional cut of ψ with z = 0 that is taken from Rüttgers [117].
The first row of Fig. 3.5 shows the analytic result at initial and at steady state. These two plots are
visualizations of equation (1.56b) and (3.5). The equilibrium configuration at t = 0.0 has no dominant

qxqy

(a) equilibrium state (exact)

qxqy

(b) steady state (exact)

qxqy

(c) equilibrium state (stochastic)

qxqy

(d) steady state (stochastic)

Figure 3.5.: Comparison of a 2D cut from a simulated and a reconstructed 3D probability density func-
tion with the analytic solution. The density function evolves according to an extensional
flow.
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spring orientation since the density function is rotationally symmetric with respect to the origin. This
situation has changed at steady state. Here, ψ is oriented along the flow direction x. The maximum of
ψ is close to the maximum spring extension of b1/2 ≈ 3.2. Therefore, an extensional flow stretches the
molecules and rotates them in the direction of flow. We further note that the solution is point symmetric
with respect to the origin since the orientation of the configuration vector q can be changed to −q with-
out affecting the physical state of the system. The second row of Fig. 3.5 shows the reconstruction of
ψ with a kernel density estimator by Botev et al. [16]. Although the stochastic simulation is performed
with M = 105 stochastic realizations, only a few thousands samples have a z-coordinate close to zero
and can be used to reconstruct the 2D cut of ψ at z = 0. This results in a coarse approximation of
the probability density function. Nevertheless, it is still possible to characterize the type of flow as the
general shape of ψ can be recognized.

Next, we analyze the polymer configurations for a more general spring-chain with N > 1 as consid-
ered in Section 3.1.2. In this case, the probability density function is a map ψ : D1×· · ·×DN × [0,T ]→
R+, (q1, . . . , qN , t) 7→ ψ(q1, . . . , qN , t) with Di = B(0, b(N)1/2) ⊂ R3 for i = 1, . . . ,N. Consequently,
ψ has 15 dimensions in configuration space for the five segment case that was analyzed in Fig. 3.4
and in Table 3.3. Therefore, we cannot completely visualize the density function in a single plot but
concentrate on marginal densities that represent individual spring segments.

In Fig. 3.6 we compare the components that belong to the spring segments i = 1 and i = 3 for
2000 samples in 15-dimensional space. This is a discrete approximation of the marginal densities
ψ|D1 : D1 × [0,T ] → R+ and ψ|D3 : D3 × [0,T ] → R+. We further note that the third row of Fig. 3.6
shows the x-y-components of both segments only and skips the z-component. Since the equilibrium
solution in (1.58b) at t = 0 is the N-fold tensor product of the dumbbell equilibrium density from
(1.56b), we can use the same stochastic samples for each spring segment; see first column of Fig. 3.6.
The situation changes with ongoing time. At t = 2.0 the stochastic samples in both spring segments
have been stretched along the x-axis. Furthermore, most of the samples are close to their maximum
extension b(N)1/2 ≈ 4.9. Nevertheless, we still detect stochastic samples which are not extended at
all. Interestingly, the samples for spring segment i = 3 (red color) seem to be more extended than
the samples for segment i = 1 (blue color) as shown in the third row of Fig. 3.6. This effect is more
pronounced at t = 10.0 close to the steady state. The physical interpretation of this finding is that the
spring segments in the center of the spring-chain are better aligned with the flow and that there is a
higher degree of freedom for the spring segments at the end of the chain.

The different distributions of these two segments of a five segment spring-chain can be better com-
pared with the corresponding probability density functions. As seen in Fig. 3.6, we can only visualize
two-dimensional cuts of the marginal distributions ψ|D1 and ψ|D3 for the random variables Q1 and Q3
or alternatively visualize some specific 3D contour lines. To avoid this limitation, we instead consider
the random variables ‖Q1‖

2 and ‖Q3‖
2 and try to reconstruct the corresponding densities. An approach

is to construct a histogram of the 2000 samples in Fig. 3.6 and then normalize the result. The outcome
is shown in Fig. 3.7. Here, we compare the densities of the squared extension of both spring segments
i = 1 (blue solid line) and i = 3 (red solid line). We obtain similar results as in Fig. 3.6. The probability
density function for i = 3 has its peak position at ≈ 21 which is close to the maximum extension of
b(5) = 24. Furthermore, the density for i = 3 is more localized.

As a result, the reconstruction of the density function ψ gives valuable insights into the flow behav-
ior. This becomes important in the following section on complex multiscale flows where regions with
different dominant flow field types occur.



68 3. Numerical results on full grids

−2 0
2 −2

0

2−2

0

2

Qx

Qy

Q
z

t=0.0 (1st segment)

−4 −2 0 2 4 −2

0

2

−2

0

2

Qx

Qy

Q
z

t=2.0

−4 −2 0 2 4 −2

0

2

−2

0

2

Qx

Qy

Q
z

t=10.0

−2 0
2 −2

0

2−2

0

2

Qx

Qy

Q
z

t=0.0 (3rd segment)

−4 −2 0 2 4 −2

0

2

−2

0

2

Qx

Qy

Q
z

t=2.0

−4 −2 0 2 4 −2

0

2

−2

0

2

Qx

Qy

Q
z

t=10.0

−2 −1 0 1 2

−2

−1

0

1

2

Qx

Q
y

1st segment
3rd segment

−4 −2 0 2 4
−2

−1

0

1

2

Qx

Q
y

−4 −2 0 2 4
−2

−1

0

1

2

Qx

Q
y

Figure 3.6.: Comparison of the discrete polymer configurations for the segments i = 1 and i = 3 of a
5-segment chain in an extensional flow. The third row compares the x/y-components of
both segments.
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3.2. Complex multiscale flows

A complex multiscale flow problem denotes the case in which the coupled system (1.59)–(1.63) is
considered, i.e. the macroscopic Navier-Stokes equations are coupled with a stochastic PDE for the
underlying polymeric structure. In contrast to homogeneous flows in Section 3.1, the spring segment
variable Q now represents a time-dependent random field Q = Q(x, t).

In the following, we present numerical results for different complex flows. These are

• a planar contraction flow and

• a 4 : 1 square-square contraction flow.

First, we consider a planar contraction flow for the multiscale FENE dumbbell model N = 1 in
Section 3.2.1. Here, we reuse the flow parameters from previous simulations in the literature and are
able to compare the simulation outcomes.

In Section 3.2.2 we present numerical results for a 4 : 1 square-square contraction flow. For this
purpose, we employ the multiscale FENE spring-chain model with N = 1, 3, 5 spring segments. In this
case, we compare our results with experimental measurements from the literature.

Furthermore, we note that we have validated our multiscale viscoelastic flow solver in Griebel and
Rüttgers [51] by comparing the simulation outcome with the analytic solution for a benchmark prob-
lem and by determining the rate of convergence. A non-Newtonian flow problem for which an analytic
solution is known is, for instance, an unsteady Poiseuille flow of a Hookean dumbbell fluid. For this
problem, an analytic solution for the velocity field was first derived by Waters and King [136]. Further-
more, Carew et al. [23] found an analytical solution for the stress tensor components.

3.2.1. Planar contraction flow

Problem specification and choice of simulation parameters

The first multiscale flow problem is a 4 : 1 contraction flow in a two-dimensional channel that we
visualize in Fig. 3.8. Simulation results for this type of flow have been published, for instance, by
Wapperom, Keunings and Legat [133] for the FENE and FENE-P model with N = 1 spring segment.
We reuse their simulation parameters to allow for comparisons. The results have been published in
Griebel and Rüttgers [51] so that we focus on the most important findings. This simulation is of high
practical relevance for the subsequent simulation in Section 3.2.2 since the 2D problem features the
same corner singularity as the 3D case.

Fig. 3.8 shows the two-dimensional channel geometry. The length of the upstream and downstream
channel is both 20.0. The upstream channel’s height is 8.0 and reduces to a downstream channel with
height 2.0 which leads to a contraction ratio of 4 : 1. Furthermore, we select the fluid parameters in
accordance with Wapperom et al. [133] as ρ = 0.098, ηs = 0.05, ηp = 0.65 and λ = 0.6. On the upper
and low channel walls we prescribe no-slip boundary conditions. Furthermore, we assume a parabolic
velocity profile on the inflow and outflow domain. With Uc = 23/3 as average outflow velocity, Lc

as half of the channel height and the definitions in (1.10) we obtain the following dimensionless units
to characterize the flow: Reynolds number Re ≈ 1.07, Deborah number De = 4.6 and viscosity ratio
β = 1/14. Furthermore, the FENE and FENE-P model both require a maximum spring extensibility
which is chosen as b = 10.
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Figure 3.8.: Two-dimensional contraction flow geometry.

Table 3.4.: Mesh width on different levels l used for the FENE and FENE-P simulations with N = 1
spring segment.

l ∆xl , ∆yl ∆zl cells/direction total cells
1 0.5 0.5 80 × 16 × 3 3,840
2 0.25 0.5 160 × 32 × 3 15,360
3 0.125 0.5 320 × 64 × 3 61,440
4 0.0625 0.5 640 × 128 × 3 245,760

In Table 3.4 we list four different mesh resolutions l = 1, 2, 3, 4 for the following simulation. As
mentioned in Chapter 2 the flow solver NaSt3DGPF only allows three-dimension grids. For two-
dimensional simulations the three-dimensional grid is built with periodic boundary conditions in the
z-direction to emulate a two-dimensional domain.

The simulations with the FENE and FENE-P model both use the discrete multiscale scheme described
in Algorithm 2 in Section 2.2.2 with M = 4000 Brownian configuration fields. We note, however, that
the FENE-P model is actually a macroscopic model. Therefore, the same results as with Algorithm 2
could be achieved with a purely macroscopic approach. Nevertheless, we use the FENE-P model in its
multiscale formulation to allow for a better comparability with the FENE model since all discrepancies
result from the modeling and not from the implementation differences.

The temporal discretization of the Navier-Stokes equations is performed with a semi-implicit Crank-
Nicolson scheme; see Section 2.2.2. The maximum time-step width that ensures stability depends on
the grid level l. The time-step width is of order O(10−2) for l = 1 and of order O(10−3) for l = 4. Finally,
we summarize the essential simulation parameters in Table 3.5.

Planar contraction flow with dumbbell models
Reynolds number Re 1.07
Deborah number De 4.6

viscosity ratio β 1/14
maximum spring extension b 20

number of segments N 1 (dumbbell)
stochastic samples / cell M 4000

temporal scheme (macro) Crank-Nicolson

Table 3.5.: Parameters for a planar contraction flow with a FENE and FENE-P dumbbell model.
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2D simulation results

In Fig. 3.9, the main result, we compare the temporal evolution of the lower corner vortices for the
FENE model (left) and FENE-P model (right) on the finest grid level l = 4. Furthermore, the points in
time for which the vortices have been visualized are chosen such that they coincide with the results in
Figure 15 and Figure 20 in Wapperom et al. [133]. These two figures are reprinted in Fig. 3.10 in this
thesis.

Both models predict a small initial corner vortex that starts to grow over time. At about t = 0.35 the
corner vortices have reached their maximum size and a lip-vortex at the re-entrant corner forms. Then,

t = 0.05

t = 0.25

t = 0.70

t = 1.05

t = 3.00

t = 0.15

t = 0.35

t = 0.85

t = 1.35

t = 10.0

(a) Evolution of the FENE model

t = 0.05

t = 0.25

t = 0.70

t = 1.05

t = 3.00

t = 0.15

t = 0.35

t = 0.85

t = 1.35

t = 10.0

(b) Evolution of the FENE-P model

Figure 3.9.: Comparison of the corner vortex evolution over time for the FENE and the FENE-P dumb-
bell model on grid level l = 4. See Fig. 3.10 for a comparison with the literature result.
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(a) Evolution of the FENE model as shown in
Figure 20 of Wapperom et al. [133]

(b) Evolution of the FENE-P model as shown
in Figure 15 of Wapperom et al. [133]

Figure 3.10.: Vortex evolution for the FENE and FENE-P models according to the literature result.1

the further evolution differs between the FENE and the FENE-P model.
At t ≈ 0.7, the lip vortex in the FENE model attaches to the corner vortex. Next, the vortex intensity

of the combined structure further increases up to t ≈ 3.0 when the system reaches a steady state.
Although a combined vortex structure is formed, both vortex cores can still be separated during the
complete simulation.

On the other hand, the lip vortex that is predicted in the FENE-P model is larger in size than in the
FENE model. Interestingly, the vortices in the FENE-P model are separated for a longer period of time
up to about t = 0.85. Then, they build one larger vortex structure that differs in vortex intensity and
shape from the FENE model. Although both vortex cores can also be separated in the FENE-P model,
they seem to be more concentrated than in the FENE model. This is due to the fact that the interior
region between the vortex cores in the FENE-P model has a much higher intensity. Furthermore, the
corner vortex at steady state has a smaller size than in the FENE model. The FENE-P model also
reaches its steady state at t ≈ 3.0.

Compared to the literature, our FENE simulation results show an excellent agreement with the results
in Figure 20 in Wapperom et al. [133] (reprinted in Fig. 3.10 (a) in this thesis). But, our results for the
FENE-P model differ from the literature result at the final stage of the simulation. Wapperom et al. [133]
observe that the two separate vortex cores in the FENE-P model merge at t ≈ 1.35 and form one large
lip vortex; cf. Fig. 3.10 (b).

1Reprinted from Journal of Non-Newtonian Fluid Mechanics, 91 (2), Wapperom, Keunings and Legat, The backward-
tracking Lagrangian particle method for transient viscoelastic flows, 273–295, 2000, with permission from Elsevier.
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t = 0.70 l = 3
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t = 1.05 l = 3

t = 1.35 l = 3
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t = 0.70 l = 4

t = 0.85 l = 4

t = 1.05 l = 4

t = 1.35 l = 4

t = 10.0 l = 4

Figure 3.11.: Numerical result for the FENE-P dumbbell model depending on the mesh width l.

An explanation for this difference in the FENE-P model between our simulation and the findings by
Wapperom et al. [133] can be found in Fig. 3.11. In this figure, we compare the temporal evolution of
the FENE-P model on our finest grid l = 4 (right) and on the next coarser grid with level l = 3 (left).
The results on both grids are nearly identical up to t ≈ 0.85. Then, at t ≈ 1.35 the two vortex cores on
l = 3 merge and build one large vortex structure. Consequently, the coarser grid does not seem to be
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l = 1 l = 2

l = 3 l = 4

Figure 3.12.: Steady state corner vortex for the FENE dumbbell model depending on the mesh width l.

sufficient to resolve both vortex cores. Interestingly, the result for l = 3 closely resembles the literature
results by Wapperom et al. [133] that we have reprinted in Fig. 3.10 (b) in this thesis. Furthermore,
the authors employ an adaptive mesh that is relatively fine close to the corner singularity but coarse
otherwise. For this reason, it seems plausible that the grid used by Wapperom et al. [133] is fine enough
to resolve the lip vortex core close to the contraction corner but not fine enough to resolve the core of
the corner vortex. Note that we have also performed a FENE-P simulation on the next finer mesh level
l = 5 with 1280 × 256 × 3 grid cells. The steady state result is very close to the result on level l = 4.
This verifies that our result on level l = 4 is grid independent. We do not show the level l = 5 as it does
not reveal any further vortex characteristics.

The results for the FENE-P model indicate that with an insufficient grid resolution the simulation
outcome strongly varies with the mesh width. Fig. 3.12 gives a similar analysis for the FENE dumbbell
model at t = 10.0 (steady state). On the coarsest grid level l = 1 the mesh only resolves one large
corner vortex. A lip vortex does not occur. The next grid l = 2 is still unable to resolve both vortex
cores. Nevertheless, the shape of the vortex structure already resembles the fine grid results. Finally,
the finest grids l = 3 and l = 4 are both able to show a separate lip and corner vortex. Although there
are still minor differences in the vortex shapes, the grid on level l = 3 is able to resolve all important
vortex characteristics. Therefore, at least for the FENE model a grid accuracy on level l = 3 seems
to be sufficient. This is important as the resolution of the subsequent 3D simulations in Section 3.2.2
resemble the grid solution on l = 3. Our 2D grid convergence study indicates that this resolution seems
to be sufficient to capture the relevant flow phenomena.

Finally, in Fig. 3.13 we display the first normal stress component τxx and the first shear stress com-
ponent τxy at t = 10.0 (steady state). Although the solution is symmetric with respect to the channel’s
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τxx

(a) Contour lines of stress component τxx

τxy

(b) Contour lines of stress component τxy

Figure 3.13.: Steady state stress components for the FENE dumbbell model.

centerline, we nevertheless show a slightly larger part of the simulation domain. This illustrates the
accuracy of our numerical stress tensor scheme that ensures the symmetry of the solution even though
it depends on stochastic samples. On a larger scale there are stochastic oscillations of the stress tensor
over time. For fixed time, however, hardly any oscillations are visible for the stress tensor. This is a
result of the Brownian configuration field approach that is described in Chapter 2.2.

The perspective in Fig. 3.13 was chosen such that it coincides with Figure 19 in the article by Wap-
perom et al. [133]. Both stress components have their maximum at the corner singularity. We note that
the numerical scheme in NaSt3DGPF does not place grid points in the cell corners. As a consequence,
this leads to a slightly rounded corner geometry. Therefore, the τxx stress component at the corner be-
comes the larger the more the mesh level l is increased since the singularity is better approximated. The
contour lines of both stress components closely resemble the results obtained by Wapperom et al. [133].
The only difference we note is that the maximum normal stress values are slightly larger in the literature
result. We explain this difference by the adaptive mesh geometry refinement at the corner singularity.
This difference diminishes with further mesh refinement.

As a result, we conclude for our multiscale flow solver:

• The simulated corner vortex structure in a two-dimensional contraction flow with a FENE dumb-
bell model closely resembles the literature results; cf. Fig. 3.9 (left) with Figure 20 in Wapperom
et al. [133]. Note that the literature result is reprinted in Fig. 3.10 (a) in this thesis.

• The macroscopic FENE-P closure delivers only a coarse approximation to the FENE spring force
model; see vortex structure in Fig. 3.9. This verifies that multiscale simulation approaches deliver
insights into the micro-scale that cannot be approximated by macroscopic methods.

• Our simulation results for the FENE-P model differed with the results in Wapperom et al. [133];
cf. Fig. 3.10 (b). But, our simulation results indicate that these differences result from a coarse
mesh in Wapperom et al. [133] in the region far away from the contraction corner. This was
derived from the finding that our result on the coarse grid level l = 3 agrees with the literature
result; see Fig. 3.11.
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3.2.2. 4 : 1 square-square contraction flow

Problem specification and choice of simulation parameters

In this section, we extend the two-dimensional contraction flow simulations from Section 3.2.1 to its
three-dimensional analogon. Due to the enormous increase in computational complexity for three-
dimensional multiscale polymer simulations, there exist no further multiscale simulation results for this
three-dimensional flow problem in the literature.

In Griebel and Rüttgers [51] some first-time results for this problem have been published. The
following results extend these findings in the following aspects:

• We consider the general FENE spring-chain with N = 1, 3, 5 spring segments. The simulation in
Griebel and Rüttgers [51] concentrates on the FENE dumbbell model with N = 1 only.

• We analyze the effect of different maximum spring extensibility parameters b. In Griebel and
Rüttgers [51] only simulations with b = 20 were conducted.

• We employ more grid cells to discretize the 3D flow space and more stochastic samples to approx-
imate the 3N-dimensional configuration space as in Griebel and Rüttgers [51]. For this reason,
the simulation domain includes a longer downstream channel to allow for an analysis of the stress
relaxation.

Although we are not aware of comparable simulation results, there exists various experimental mea-
surements for square-square contraction flows in the literature. In the following, we employ measure-
ments published by Sousa et al. [123] for a non-Newtonian solution composed of 40.0% (w/w) glycerol,
59.9% (w/w) water and polyacrylic acid (PAA) with a weight concentration of 600 ppm for compar-
ison. This publication extends previous results from Sousa et al. [122] for a Newtonian and a Boger
fluid to shear-thinning fluids. The reason to decide for this literature result is that shear-thinning fluid is
considered and that the FENE model is able to describe such fluids.

Fig. 3.14 visualizes the simulation domains which will be used in the following. Depending on the
model parameters, we decide for one of two similar simulation domains (a) or (b). In both cases, the
flow geometry consists of a quadratic upstream channel with side length 2H1 = 24 mm which contracts
into a smaller downstream channel with side length 2H2 = 6 mm, i.e. the contraction ratio is 4:1. The

U2 average down-
stream velocity

x

y

z
2H2

2H1

(a)

(b)

Figure 3.14.: Visualization of the 3D meshes for the contraction flow problem.
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Three-dimensional contraction flow with spring-chain models
solvent shear viscosity ηs 0.03 [Pa s]

zero polymer shear viscosity ηp 1.62 [Pa s]
fluid’s relaxation time λ 32 [s]

Reynolds number Re � 1.0
Deborah number De 24.1, 108, 157

viscosity ratio β 0.0182
spring models FENE-chain

maximum spring extension b 20, 60, 120
spring segment nr. N 1, 3, 5

spring extension gauge b(N) de Gennes (1.48)
spring relaxation gauge λ(N) rel. time scale (1.51)

number of grid cells 380 × 64 × 64
stochastic samples / cell M up to 1200

total sample nr. up to ≈ 1.87 · 109

memory requirement up to ≈ 209 GB
temporal scheme (macro) Crank-Nicolson

Table 3.6.: Parameters for a 3D contraction flow simulation with FENE spring-chain models.

length of the upstream channel in domain (a) is 82.5 mm. The corresponding downstream channel’s
length is 60 mm. This slightly differs for the other simulation domain (b) shown in the lower part
of Fig. 3.14. Here, the lengths of the upstream and downstream channels are 112.5 mm and 30 mm,
respectively. In total, the length of the simulation domain in x-direction is 142.5 mm in both cases.

The reason for these two different simulation domains becomes clear from the simulation parameters
that we list in Table 3.6. The simulations are conducted with maximum spring extensibility values
b = 20, 60, 120. Usually, the larger the spring extensibility b is chosen the larger is the stress tensor τp

in the model. Since larger normal stresses often lead to stronger corner vortices in the upstream channel,
we try to maximize the upstream channel’s length for b = 120 without increasing the computational
complexity. Therefore, we use the simulation domain (b) for b = 120. Since we do not expect corner
vortices with a comparable size for b = 20 and b = 60, it is beneficial to spend more grid points on the
downstream channel. Therefore, we perform the simulations with b = 20 and b = 60 on the simulation
domain (a) as shown in Fig. 3.14.

Both computational domains are discretized on a grid with 380 × 64 × 64 cells; see Table 3.6. In
Section 3.2.1 we demonstrate that this resolution is sufficient to resolve the relevant vortex structures in
the FENE model. For the stochastic description of the polymer models we employ M = 1200 samples
in each cell. Consequently, without considering the boundary cells, the total number of Brownian
configuration fields is 380 × 64 × 64 × 1200 ≈ 1.87 · 109. This leads to an enormous computational
complexity especially for the simulation with N = 5 spring segments. The samples for a Brownian
configuration field of dimensionality 3N require 3N double variables which each have an 8 byte size.
To sum it up, the memory requirement is ≈ 209 GB for N = 5 spring segments and about 125 GB
and 42 GB for N = 3 and N = 1, respectively. For this reason, it is essential to use massively parallel
computers to allow for simulations of this complexity on full grids, see Section 2.3, or perform the same
simulations on sparse grids, see Chapter 6.
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We choose the parameters of the flow in correspondence with those used by Sousa et al. [123]. Be-
side experimental measurements, these authors also perform macroscopic simulations with a simplified
Phan-Thien Tanner model (SPTT) that is able to predict shear-thinnig. Sousa et al. [123] state the
parameters for their fluid fit as ε = 0.06 for the extensibility parameter, ηp = 1.62 Pa s for the zero poly-
mer shear viscosity, ηs = 0.03 Pa s for the solvent shear viscosity, and λ = 32 s for the fluid’s relaxation
time, respectively. Again, we transform these variables into their dimensionless form by using (1.10).
In this case, we obtain β = 0.0182 for the viscosity ratio. Next, we decide for Lc = H2 = 3 mm as a
characteristic length scale and for Uc = U2, with U2 as average downstream velocity, as a characteristic
velocity. With U2 = 2.26 mm/s, 10.1 mm/s and 14.2 mm/s and (1.10) we then obtain the Deborah
numbers De = 24.1, 108 and 157. The corresponding Reynolds number are about Re = 0.003, 0.014
and 0.02 < 1. Consequently, the low Reynolds number indicates that the occurrence of corner vortices
for high flow rates are an effect of the fluid’s elasticity, characterized by the Deborah number, and not
due to inertia as characterized by the Reynolds number.

On the inflow boundary, we prescribe the analytical velocity field solution for a constant viscosity
fluid as boundary condition; see White [138]. Theoretically, this boundary condition only applies to
Newtonian fluids and viscoelastic fluids without shear-thinning. But, at a sufficient distance from the
contraction corner, the velocity profile can be assumed as Newtonian even for shear-thinning fluids.
Since our simulations do not show deviations from the inflow profile in the first part of the upstream
channel, we conclude that this simplification does not strongly effect the behavior in the contraction
region.

The FENE model contains one parameter, the maximum spring-chain extensibility b, to match the
shear-thinning behavior of the experimental fluid. There is, however, no guarantee that the specific
experimental fluid can be described in all details by the FENE model. Furthermore, we cannot directly
evaluate the viscometric functions of the experimental fluid which is a fluid characterization in shear and
extensional flows. But, since Sousa et al. [123] stated the extensibility of the SPTT model as ε = 0.06,
we can fit b such that it matches the SPTT model. For this purpose, we plot in Fig. 3.15 the viscosity
η(γ̇) = ηs + ηp(γ̇) and the first normal stress coefficient Ψ1 = (τxx − τyy)/γ̇ over the shear rate γ̇ for the
3D FENE dumbbell model with b = 5, 10, 20, 50.

In the first row of Fig. 3.15 the apparent viscosity η(γ̇) is visualized for different shear rates in the
range γ̇ ∈ [10−2, 103]s−1. In the limit γ̇ → 0, the apparent viscosity matches the specified zero shear
result η(γ̇) = ηs + ηp = 1.65 Pa s. For γ̇ → ∞, the polymer viscosity ηp(γ̇) tends to zero so that
all plots in Fig. 3.15 converge to the solvent’s viscosity value 0.03 Pa s. In the following simulations,
however, we focus on shear rates in the range [0.5 ·10−1, 101]s−1 since relevant shear rates γ̇ are of order
γ̇ ≈ U2/H2 = 0.75 s−1 for De = 24.1 and of order γ̇ ≈ U2/H2 = 4.9 s−1 for De = 157. For this reason,
we show the corresponding range of γ̇ in a zoomed extract on the right-hand side (RHS). Furthermore,
this extract is indicated with a red rectangle on the left-hand side (LHS) of Fig. 3.15. We note that all
four choices for b in the FENE dumbbell model deviate from the SPTT model prediction (black solid
line) for η(γ̇). This outcome underlines that the FENE and the SPTT model used by Sousa et al. [123]
differ in the prediction of the shear-rate dependent viscosity.

Since the analysis of the shear-thinning behavior leads to indecisive results for an estimate of the
model parameter b, a further approach was used in Griebel and Rüttgers [51]. Here, a plot of the first
normal stress coefficient defined as Ψ1 = (τxx − τyy)/γ̇2 is compared. We show corresponding plots
in the second row of Fig. 3.15. In this case, the FENE model with b = 20 is in high accordance with
the SPTT model fit for the relevant range of γ̇. For this reason, all 3D contraction flow simulations in
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Figure 3.15.: Apparent viscosity and first stress coefficient Ψ1 over shear rate γ̇ for the SPTT and the
3D FENE dumbbell model with b = 5, 10, 20, 50.

Griebel and Rüttgers [51] were performed with this parameter choice.
One finding in Griebel and Rüttgers [51] was that the FENE dumbbell model with b = 20 accurately

predicts the size of the corner vortices for low and medium Deborah numbers, compared to the experi-
mental measurements in Sousa et al. [123], but underestimates the vortex size for high Deborah number
flows. Furthermore, a comparison with the SPTT model was not possible in Griebel and Rüttgers [51]
since Sousa et al. [123] report stability issues for higher Deborah numbers. These stability issues did
not occur for the multiscale Brownian configuration field approach in Griebel and Rüttgers [51] and
motivated the use of this computationally demanding approach.

In this thesis, we investigate other choices for the maximum spring extensions b as in Griebel and
Rüttgers [51] to better match the experimentally measured vortex size. More precisely, we perform
simulations with the values b = 20, b = 60 and b = 120 even though Fig. 3.15 indicates that b = 20
gives the best match to the fluid in a shear flow. One explanation for this approach is that we expect
an extensional flow-type behavior on the centerline. Sousa et al. [123] do not deliver a characterization
of the fluid in an extensional flow. Therefore, it does make sense to also investigate other choices for
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b. Usually, the stress tensor grows with the molecular extension that is characterized by b. Since the
corner vortices are an effect of the normal stress, an increase in b should lead to larger corner vortices.
Nevertheless, we decide for b = 120 as largest possible extension in the following simulations for two
reasons:

• Herrchen and Öttinger [59] analyzed various FENE dumbbell and closure models with extensions
b = 20, 50, 100. These authors give a physical meaning to b interpret this values roughly as the
number of monomer units that build the polymer molecule. They conclude that b ∈ [20, 100]
leads to a model that corresponds with the physical representation of a real polymer.

• As mentioned before, for b→ ∞ the FENE spring converges to the Hookean spring model. Since
a Hookean spring-chain molecule (Rouse model) can be fully described by a macroscopic model,
see Section 1.1, a multiscale approach is not required. We therefore concentrate on choices for b
in which the FENE model differs from the Oldroyd-B model.

3D simulation results

As listed in Table 3.6, we consider contraction flows with different flow rates characterized by the Deb-
orah number (De = 24.1, 108, 157), flows with different spring segments numbers (N = 1, 3, 5) and with
different maximum spring extensibility parameters (b = 20, 60, 120). Since each multiscale simulation
requires massively parallel computations, we do not simulate all possible 27 parameter combinations
but restrict ourselves to 8 representative simulations. These simulations use the parameters

• De = 24.1,N = 1,b = 20,

• De = 108,N = 1,b = 20,

• De = 157,N = 1,b = 20,

• De = 157,N = 3,b = 20,

• De = 157,N = 3,b = 60,

• De = 157,N = 3,b = 120,

• De = 157,N = 5,b = 120

• De = 157,N = 1,b = 120,

and the remaining flow parameters as specified in Table 3.6.
In all eight simulations a vortex occurs in the corner regions of the upstream channel and starts to

grow over time, compare with Section 3.2.1 for the two-dimensional analogon. We plot the size of the
corner vortices for the three dumbbell simulations with N = 1 in Fig. 3.16 (a). This plot resembles
Fig. 22 in Griebel and Rüttgers [51]. We observe that the size of the 2H1-normalized corner vortex
increases with ongoing time and reaches its steady state value at t ≈ 50 s for De = 108, 157 and at
t ≈ 70 s for De = 24.1. Furthermore, the size of the corner vortex increases with De. The steady state
results for the 2H1-normalized corner vortex size are ≈ 0.7 for De = 24.1, ≈ 1.0 for De = 108 and ≈ 1.1
for De = 157. The longer period of time for the simulation with De = 24.1 to reach a steady state can
be comprehended with a physical interpretation of the polymer system. Since larger Deborah numbers
correspond with higher flow rates in the channel, the spring-chain molecules are extended much faster
in a shorter period of time. This explains the immediate increase of τxx for De = 108 and De = 157 in
Fig. 3.16 (a) compared to the flow with De = 24.1.

Fig. 3.16 (b) shows the temporal evolution of the corner vortex sizes for the 3-segment spring-chain
(N = 3). In this case, we concentrate on the highest Deborah number but vary the maximum spring
extensibility b. As expected, the normal stresses increase with b and the higher elasticity leads to larger
corner vortices. In all cases, the 3-segment chains have not yet fully reached their steady state. The
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Figure 3.16.: Comparison of the 2H1-normalized vortex length on the central plane for different Debo-
rah numbers, spring extensibility b and number of spring segments N.

reason for this limitation is the enormous computation time for such a simulation in the order of weeks.
As a preliminary result, the 2H1-normalized corner vortex size is about 1.0 at t = 30 s for b = 20
and about 1.35 and 1.6 for b = 60 and b = 120, respectively. Interestingly, the plot of the τxx stress
component in Fig. 3.16 (b) for N = 3 has a lower variance than the corresponding plot in Fig. 3.16 (a)
for N = 1. There are two explanations for this observation. First, as mentioned before, the simulations
with N = 1 use M = 800 samples per grid cell instead of M = 1200 for N = 3 and N = 5. Second, the
stress component for N = 3 is the average of the three spring-segment stress components; cf. (1.62) for
the stress tensor definition. This averaging further reduces the variance of the solutions for N = 3 and
for N = 5.
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At last, in Fig. 3.16 (c) we compare the vortex growth depending on the spring-segment number N.
Here, all simulations use the highest flow rate with De = 157 and have a maximum spring extension of
b = 120. Up to t = 10 s, the three simulations are almost identical and predict a corner vortex size of
≈ 1.0. Then, the situation differs between the dumbbell model on the one hand and the 3-segment and
5-segment chain on the other hand. Interestingly, the dumbbell model predicts a larger corner vortex of
about 1.7 at t = 40 s compared to about 1.5 for N = 3 and N = 5. In contrast to this, both spring-chain
models show a high agreement in the predicted vortex size. The simulation with the 5-segment chain is
conducted up to t ≈ 68 s with a final vortex size of about 1.7 which matches the result of the dumbbell
system at t ≈ 40.0 s. Our results clearly indicate a substantial difference between a dumbbell and a
spring-chain model. Up to now, however, it is not clear which model is more accurate even though the
multi-segment model more closely resembles a real polymeric molecule.

Next in Fig. 3.17, we compare the steady state results of several selected simulations. For a better
visualization of the flow patterns, we project the three-dimensional streamlines onto a slice that goes
through the channel center. The projection is performed with the Surface Vectors filter in the post pro-
cessing program ParaView; see Squillacote and Ahrens [124]. In agreement with Fig. 3.16 (b), the
smallest corner vortices occur for b = 20 and increase for larger values of b. The velocity field on the
slice is visualized with a rainbow color scheme and normalized by the average velocity of the down-
stream channel U2 = 14.2 mm/s. As expected, the velocity is largest in the center of the downstream
channel. For a Newtonian fluid, the ratio of the maximum to the average velocity in a downstream
channel with quadratic shape is ≈ 2.0963 and this value is reached at a sufficient distance from the con-
traction. This distance can be estimated from the elastic stress tensor field which is shown in Fig. 3.25
in the end of this section.

Fig. 3.17 shows another interesting phenomena that is typically associated with highly elastic flows,
the so called streamline divergence. In a Newtonian fluid, the streamlines in a contraction geometry run
parallel to the channel walls and then move inwards into the downstream channel. The situation differs
for high Deborah number flows as in Fig. 3.17. Here, the streamlines in the upstream channel diverge
towards the channel walls shortly before they reach the corner vortex. This effect is more pronounced
if larger corner vortices occur as for b = 120 in Fig. 3.17 (d) and Fig. 3.17 (e). We also note that
the horizontal velocity component has a local minimum u/U2 < 0.1 on the channel’s centerline at the
position with the strongest streamline divergence.

The effects of large corner vortices and a streamline divergence for high Deborah number flows
are not only observed in simulations but also occur in experiments. Fig. 3.18 shows, as an illustrative
example, both phenomena in an experiment by Sousa et al. [123] for a Deborah number De = 123.59.
The flow patterns in the experiment were visualized with long time exposure streak line photography.
For this purpose, a 3 mW 523 nm laser diode (green) illuminates a plane in the flow domain. Apart
from a slightly lower flow rate, Fig. 3.18 resembles the simulation results in Fig. 3.17 and visualizes
both flow phenomena.

In Fig. 3.19 we visualize the temporal evolution of the streamlines, again projected on a slice through
the channel’s center, for the 5-segment spring chain at time t = 4.0 s, t = 10.0 s and t = 68.0 s.
In the early stage of the simulation at t = 4.0 s, a corner vortex with a circular shape occurs. The
2H1-normalized extension of the corner vortices is 0.5. At this time, a streamline divergence is not
yet visible. Then, at t = 10 s both corner vortices have doubled their extension in x-direction so
that the 2H1-normalized length is about 1.0; cf. Fig. 3.16 (c). Furthermore, a slight deformation of the
streamlines becomes visible. Finally, at t = 68 s the corner vortex structures have obtained an extremely
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Figure 3.17.: Comparison of streamlines that are projected on a slice through the channel’s center for
a Newtonian and several non-Newtonian fluids.
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Figure 3.18.: Experimental measurement of a shear-thinning fluid in a contraction geometry with the
same physical dimensions as considered in this thesis. The figure was provided by Dr.
P.C. Sousa from University of Porto, Portugal.
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(b) t = 10.0 s

(c) t = 68.0 s

Figure 3.19.: Temporal evolution of selected streamlines for the 5-segment spring chain with b = 120.
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Figure 3.20.: Three-dimensional corner vortex patterns for low Deborah number / Newtonian-like flows
(left) and for highly elastic flows (right).

ellipsoidal shape and the vortex extension is ≈ 1.7 times the upstream channel’s height. Moreover, a
divergence of the streamline is clearly visible in the region shortly before the corner vortex starts. Again,
this effect is caused by the elastic stress tensor and does not occur in the Newtonian case since we are
in a laminar flow regime with Reynolds number Re < 1.

Up to now, we have solely focused on streamlines that run on a slice through the channel center. The
results resemble the simulation outcomes from Section 3.2.1 for a planar contraction flow but, due to
the higher elasticity of the fluid, larger corner vortices occur. However, in contrast to the planar case,
the streamlines in the three-dimensional geometry run along a complex three-dimensional path. We
illustrate this complex three-dimensional vortex structure in Fig. 3.20 for a low Deborah number flow
on the left-hand side (LHS) and for a high Deborah number flow with De = 157 on the right-hand side
(RHS). We note that the perspective in Fig. 3.20 coincides with the direction of flow, i.e. the x-direction.
In Fig. 3.20 (a) a Newtonian-like flow was simulated with a macroscopic PTT model with De = 0.5,
compare with Griebel and Rüttgers [51]. First, black solid lines show the flow field on a diagonal
slice. Furthermore, blue solid lines visualize selected three-dimensional streamlines. These streamlines
indicate that particles which enter the flow domain on a diagonal plane, such as (y−H1) + (z−H1) = 0,
rotate by 45◦ towards one of the central planes y = H1 or z = H1, respectively. Various findings
from the literature show that an inversion of this 3D vortex pattern occurs for highly elastic flows.
Fig. 3.20 (b) illustrates this flow inversion phenomena for the simulation with N = 5, De = 157 and
b = 120. In this case, particles enter the flow domain on the horizontal and vertical planes y = H1
and z = H1, respectively, and rotate in the opposite direction before they reach the contraction. Sousa
et al. [123] observe that a flow inversion occurs in experiments for Deborah numbers larger than ≈ 1.5.
This phenomena is reproduced in Griebel and Rüttgers [51] and is also shown in Fig. 3.20.

In Fig. 3.21 we compare the simulated steady state vortex lengths from Fig. 3.16 with the experimen-
tal measurements by Sousa et al. [123]. Again, we note that we are not aware of any other simulations
of these highly elastic flows with De = 108 and De = 157. This is due to the fact that Sousa et al. [123]
report stability issues for the macroscopic PTT model for Deborah numbers in the order of O(10) and
only multiscale approaches can be applied. First, Fig. 3.21 contains the experimental measurements by
Sousa et al. [123] colored in red. These values show some variation due to measurement errors and
minor oscillations in the flow. Next, Fig. 3.21 shows all findings from Griebel and Rüttgers [51] in dark
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Figure 3.21.: Comparison of the 2H1-normalized vortex lengths on the central plane obtained in the
simulations with experimental measurements.

blue. The simulation outcomes in Griebel and Rüttgers [51] for the dumbbell model with N = 1 are
in high agreement with the experimental measurements for Deborah numbers up to De ≈ 24.1. Then,
the numerically predicted vortex sizes for De = 108 and De = 157 are by a factor of 2 smaller than the
experimental measurements. According to Griebel and Rüttgers [51], two possible modifications of the
simulation parameters to overcome these limitations are

• to use a FENE multi-bead-spring model instead of a FENE dumbbell model and

• to better investigate the influence of the parameter for the maximum spring extensibility b.

As already shown in Fig. 3.16, we conduct both possible extensions in this thesis. Therefore, Fig. 3.21
also contains numerically predicted vortex sizes for the simulations with a 3-segment chain with b = 60,
a 5-segment chain with b = 120 and for a dumbbell model with b = 120. All these simulations employ
a flow rate such that the corresponding Deborah number is De = 157. In agreement with Fig. 3.16,
the steady state vortex sizes strongly increase with the parameter b. On the downside, the 3-segment
and 5-segment chains predict slightly smaller steady state vortex sizes than the dumbbell model. As a
preliminary result, the dumbbell model with N = 1 and b = 120 seems to better match the experiments
than the more complex multi-segment chains with respect to the experimental vortex sizes. But, it has
to be taken into account that b = 120 is already larger than the sensible parameter range b ∈ [20, 100]
that is suggested by Herrchen and Öttinger [59]. Therefore, the quality of the different spring-chain
models cannot be estimated by the prediction of the steady state vortex sizes alone so that we compare
further flow features in the following.

As mentioned before, Fig. 3.21 shows a high agreement between the multiscale polymer simulations
and the experimental measurements by Sousa et al. [123] for low and medium Deborah numbers up to
about 24.1. To better illustrate this, Fig. 3.22 compares the velocity component u in flow direction on
the channel’s centerline, i.e. along the line with y = H1 and z = H1. The simulation uses a FENE dumb-
bell model and is described in detail in Griebel and Rüttgers [51]. As expected, the flow velocity in the
upstream channel is comparatively small in the region far away from the contraction. Then, at a 2H1-
normalized distance of about x = −0.8 with respect to the contraction, the fluid’s velocity increases.
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Figure 3.22.: Velocity profiles on the channel’s centerline with a dumbbell model and De = 24.1.

We note that the position at which the fluid starts to accelerate roughly corresponds with the maximum
extension of the corner vortices. Furthermore, we observe an excellent agreement of this position be-
tween experiment and simulation in Fig. 3.22. The simulation then predicts a maximum U2-normalized
velocity of about 2.1 which closely matches the analytical value of ≈ 2.0963 for a quadratic channel.
In this case, there are some minor differences with the experimental measurement. Unfortunately, the
experimental measurement ends shortly after the contraction. Therefore, it is not clear when the ex-
perimental fluid has relaxed and when its velocity profile adapts the analytic value. Furthermore, we
observe some minor oscillations in the experimental measurements from Sousa et al. [123]. Since the
authors do not give an error analysis for their measured velocity profile, it is difficult to distinguish mea-
surement errors and elastic fluid behavior. Nevertheless, the general accordance with the measurements
is high.

Fig. 3.23 shows that the difference and uncertainty between the measurement and the simulation is
larger for De = 157. First, the experimental measurements by Sousa et al. [123] strongly oscillate for
De = 157 (black solid line) and also, for comparison, for an intermediate Deborah number De = 108
(light blue line). Since the predicted vortex sizes for these Deborah numbers can differ by more than
50 % for repeated measurements, see Fig. 3.21, this uncertainty should be taken into account when the
quality of the simulation outcome is evaluated. Nevertheless, all four simulations in Fig. 3.23 underes-
timate the experimental vortex size and therefore predict a later fluid acceleration on the centerline. As
mentioned before, the simulation results become better with larger extensibility values b. Interestingly,
the velocity profile does not change significantly between the 3-segment and the 5-segment chain. Fur-
thermore, the simulation result with N = 1 and b = 120 (green line) has the highest accordance with
the experimental measurement.

Next, all simulations in Fig. 3.23 reproduce a phenomena that is known as velocity undershoot, a local
minimum of the velocity profile. More precisely, this term denotes the effect that a minimum of the
horizontal velocity profile occurs shortly before the fluid starts to accelerate. This minimum does not
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Figure 3.23.: Spring-chain model comparison of the central velocity profiles for a high Deborah number
flow with De = 157.

occur for Newtonian and for low Deborah number flows. The effect is connected with the streamline
divergence shown, for instance, in Fig. 3.17 and Fig. 3.19. The velocity undershoot is shown in a
zoomed extract in Fig. 3.23. The undershoot is also observed by Sousa et al. [123] but more difficult to
detect in Fig. 3.23 since the lower fluid measurements in the upstream channel are prone to oscillations.

In Fig. 3.24, the dimensionless pressure gradient (∇x/H2 p)/
(
(ηs + ηp)U2/H2

)
is plotted on the chan-

nel’s centerline. Similarly to Fig. 3.23, the origin of the horizontal axis has been shifted such that
it coincides with the beginning of the contraction. Normally, the pressure gradient is negative for a
fluid flow in positive coordinate direction. Far away from the contraction, the dimensionless pressure
gradient is ≈ −0.023 in the upstream channel and ≈ −3.85 in the downstream channel. But, in the
interval [−H2,H2] the pressure gradient varies strongly in all four multiscale flow simulations. First,
we observe a pressure recovery such that (∇x/H2 p)/

(
(ηs + ηp)U2/H2

)
> 0 in all models. This pressure

recovery correlates with the velocity undershoot phenomena in Fig. 3.23. According to Fig. 3.24, the
pressure recovery for the model parameters (N = 3, b = 20) and (N = 3, b = 60) is much lower than for
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Figure 3.24.: Pressure gradient over the centerline for different spring chain models.

(N = 3, b = 120). Furthermore, this is not only affected by the spring extensibility b but also influenced
by the number of spring segments. More precisely, for (N = 1, b = 120) the pressure recovery is much
lower than for the 3-segment chain. Moreover, we note that the pressure profile for the 5-segment chain
with b = 120 closely resembles the result of the 3-segment chain. Shortly after the pressure recovery,
all models predict a large pressure drop with a global minimum at x/H2 ≈ 0. Then, the pressure gra-
dient has a further local maximum at x/H2 ≈ 0.5 for both models with b = 120. Finally, the pressure
gradient asymptotically reaches the Newtonian value in the downstream channel. In contrast to this, a
Newtonian pressure profile shows only one large pressure drop exactly at the contraction.

With respect to the pressure prediction, there seems to be a significant difference between a dumbbell
model on the one hand and multi-segment chains on the other hand. Without an experimental compari-
son it cannot be decided which model achieves better results. There are, however, pressure comparisons
by Koppol et al. [75] for a two-dimensional 4:1:4 contraction-expansion flow. In this publication, the
predictions of the pressure drop for a macroscopic FENE-P closure model, a multiscale FENE dumb-
bell and a multiscale FENE three-bead-spring model are compared with experimental results. The
authors conclude that the results of the 3-segment model had the best accordance with the measure-
ment. Therefore, the results by Koppol et al. [75] indicate that the pressure profile of the 3-segment
chain in Fig. 3.24 better matches experimental data. Since large pressure drops are also expected for
this type of flow, it is probable that our multi-spring chain results also better coincide with the behavior
in nature.

Finally, we focus on the stress tensor and on the stochastic polymer configurations. For this purpose,
Fig. 3.25 shows the τxx stress component on a central plane for the 5-segment spring chain model with
De = 157 close to the steady state at t = 68 s. In agreement with the findings by Keunings [70] for the
Brownian configuration field (BCF) method, the stress field is smooth in space at a fixed point in time.
At a first glance, this result is unexpected for a stochastic approach. But the smoothness in space is
caused by a locally correlated Brownian force as described in Chapter 2. On the downside, we note that
stochastic noise still occurs over time; see e.g. Fig. 38 in Griebel and Rüttgers [51]. Fig. 3.25 shows
that τxx has two stress peaks close to the corner singularity. High normal stress values are also observed
along the streamlines that run close to the corner singularity. This observation illustrates that streamline
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Figure 3.25.: Simulation of the τxx stress component for the 5-segment spring chain model with De =

157 at steady state. The points P1 and P2 illustrate the position of the configurations fields
that are analyzed in Fig. 3.26 and Fig. 3.27.

divergence as shown in Fig. 3.19 is an elastic effect that is caused by the stress tensor.
Fig. 3.25 contains two additional points P1 and P2 at which we visualize the polymer chain orien-

tation. A similar analysis can be found in Prieto et al. [108] for a 2D planar contraction flow. This
analysis allows to better characterize the fluid at this position. The exact positions of P1 and P2 are

P1 = (86.0625 mm, 20.4375 mm, 11.8125 mm)

P2 = (112.3125 mm, 11.8125 mm, 11.8125 mm).

These positions coincide with the cell centers of the finite difference cells (i, j, k) = (230, 55, 32) and
(i, j, k) = (300, 32, 32). The distance of both points to the central plane z = H1 is half the size of the
equidistant mesh width.

In Fig. 3.26 the Brownian configuration fields are visualized at position P1 close to the upper cor-
ner vortex and at position P2 close to the centerline. As listed in Table 3.6, every grid cell contains
M = 1200 samples of dimensionality 3N = 15. The first column of Fig. 3.26 plots the first three dimen-
sions of the samples in blue and, analogously, the second column shows the dimensions that represent
the third spring segment in red, i.e. plots the dimensions 7, 8 and 9. Furthermore, the last column super-
imposes the sample dimensions (1, 2) and (7, 8) in one figure which corresponds to the x/y-component
of the first and the third spring segment. Obviously, the distribution of the samples differs between P1
and P2. At position P1, the samples are rotated against the horizontal axis and are moderately extended.
Furthermore, the third segment is more extended, in average, than the first segment. The distribution
of the samples is typical for a shear flow that is expected at this flow position. Next, the second row
of Fig. 3.26 analyzes the configuration fields at position P2. In this case, the configuration fields are
aligned with the flow direction. Furthermore, most samples have an extension close to the maximum
value of b(5)1/2 = (120/5)1/2 ≈ 4.9 and the samples are more localized. This corresponds with results
from the literature which state a dominant extensional flow on the centerline.

Analogously to Fig 3.7 in Section 3.1.3, Fig. 3.27 plots the density function of the squared configu-
ration vector for the samples at position P1 and P2. This allows us to better characterize the strength
of the flow but does not deliver information on the flow orientation any more. We further note that
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Figure 3.26.: Visualization of the first and the third component of the 15-dimensional Brownian config-
uration fields at two positions in flow space.
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Figure 3.27.: Comparison of the density function for the squared configuration vector of a 5-segment
chain at two positions P1 (left, center) and P2 (right).

our temporal scheme, which is implicit in the spring force term, ensures a valid maximum extension
≤ b(5)1/2 for each sample in configuration space. Consequently, the probability density function is zero
for squared extensions equal to or larger than b(5) = 24. At position P1, the third spring segment in
the middle of the polymer chain is extended most. On the other hand, the end of the polymer chain
which corresponds to the first and fifth segment is slightly less extended. The second and fourth spring
segment have an extension between these two regimes. We therefore conclude that the shear flow at P1
leads to a molecular extension that is strongest at the polymer chain’s center. The situation differs at
position P2 on the right-hand side of Fig. 3.27. Here, we observe a much stronger polymer extension
since nearly all samples are close to their maximum extension. Furthermore, there is no difference be-
tween the five spring segments. This is an effect of the strong extensional flow on the centerline. The
strong fluid field reduces the degrees of freedom for the polymeric molecules.
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As a conclusion, our simulations were able to reproduce all flow phenomena that are reported in the
literature for highly elastic fluid flows in contraction geometries. These phenomena are

• streamline divergence, cf. Fig. 3.19,

• an inversion of the flow field, cf. Fig. 3.20,

• an undershoot of the velocity component on the centerline, cf. Fig. 3.23,

• a pressure recovery shortly before the contraction, cf. Fig. 3.24, and

• an enormous corner vortex increase compared to the Newtonian case, cf. Fig. 3.21.

Furthermore, our simulations reveal the differences between dumbbell models on the one hand and
spring-chain models on the other hand. According to Koppol et al. [75], the pressure drop predicted
by spring-chain models better corresponds with experimental measurements than the prediction by a
simple dumbbell model. This justifies the increase of computational complexity that occurs for more
complex multi-spring models.

As reported in Section 2.3, the multiscale simulations in this chapter required weeks of computing
time on massively parallel clusters such as Atacama. It is therefore essential to reduce the computational
complexity of these simulations if even more complex problems shall be considered. For this reason,
the second part of this thesis will concentrate on the reduction of the computational complexity. In
the following, we will show that sparse grids can be ideally used to weaken or even break the curse of
dimensionality for our applications in polymer physics.
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In Chapter 2 we have presented an algorithm to allow for multiscale simulations of viscoelastic fluids.
Theoretically, all dilute polymeric flow problems of practical interest can be solved by using this ap-
proach. In practice, however, our simulations with the flow solver NaSt3DGPF suffer from the so called
curse of dimensionality; cf. Section 2.3. Therefore, concepts are required that dramatically reduce the
complexity of the physical problem.

In this chapter, we discuss the combination technique as one viable method to cope with multiscale
viscoelastic flow problems. The combination technique is a variant of a sparse grid discretization. We
first discuss the general concepts of sparse grids in Section 4.1. Then, we focus on the sparse grid
combination technique in Section 4.2. Furthermore, in Section 4.3 the relation between dimension-
adaptive sparse grids on the one hand and the Multilevel Monte Carlo method on the other hand is
discussed. Using these concepts in Chapter 5, we derive a dimension-adaptive algorithm that applies
the combination technique to the multiscale fluid equations. This adaptive algorithm is used in Chapter 6
to decrease the computing time of multiscale polymeric fluid simulations enormously.

4.1. General concepts

Let d denote the dimensionality of a PDE problem and N the number of grid points in each dimension
of a tensor-product grid-based discretization scheme, then the complexity with respect to the number of
grid points is of order O(Nd). The term curse of dimensionality is usually applied to describe this expo-
nential growth of complexity. This growth underlines the importance of more elaborated approaches to
cope with high-dimensional problems. One possible approach to reduce the complexity is given by the
sparse grid method that was introduced to PDE problems by Zenger [141]. Discretizations on a sparse
grid have a significantly reduced complexity of order O(N · (log N)d−1). Furthermore, they preserve
nearly the same accuracy as a tensor product grid approach provided that the solution is sufficiently
smooth. The basic principle of sparse grids, a high-dimensional multiscale basis, was first used by
Smolyak [121] for integration problems. We here describe the basic concepts and refer to Bungartz and
Griebel [18] and the references given therein for a more detailed description. Moreover, our summary
of the general concepts is based on Pflüger [103] and on Garcke [40].

Let u : x ∈ Ω̄ = [0, 1]d
i=1 ⊂ R

d 7→ u(x) ∈ R denote a real-valued function defined on a d-dimensional
hypercube. This function u is the solution of a PDE problem of the form

L(u) = f on Ω (4.1)

u = g on ∂Ω

on a domain Ω with a general second-order differential operator L(·) and a right-hand side f . In our
application, the coupled multiscale system in (1.59)–(1.63), the unknown u might represent the pressure
field, a velocity field component or a component of the stress tensor. Furthermore, this interpretation
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requires a suitable smooth transformation from the high-dimensional flow and polymer configuration
space on which u is defined to the d-dimensional unit cube on which sparse grids are defined.

After discretization the problem is given on a discrete mesh Ωl with level l ∈ Nd and a corresponding
mesh size hl = (h1, . . . , hd) = (2−l1 , . . . , 2−ld ). In general, the mesh widths differ in each coordinate di-
rection. In a single direction it is, however, assumed to be equidistant. Consequently, the approximation
space is defined on discrete points

xl, j = (xl1, j1 , . . . , xld , jd ) (4.2)

with ji = 0, . . . , 2li in each dimension i = 1, . . . , d.
Depending on the discretization scheme applied to the PDE problem (4.1) the discrete approximation

spaces Vl associated with the grid Ωl differ. In the Finite Element method (FEM) with homogeneous
Dirichlet boundary conditions the approximation space associated with the interior grid consists of
polynomial basis functions of degree p on a compact support. The most simple choice is given by
one-dimensional hat functions φl, j for p = 1 which are defined for x ∈ [0, 1] ⊂ R as

φli, ji(x) =

1 − |x/hli − ji| for x ∈ [( ji − 1)hli , ( ji + 1)hli)] ∩ [0, 1]
0 else

(4.3)

for i = 1, . . . , d. The tensor product of the one-dimensional functions

φl, j(x) =

d∏
i=1

φli, ji(xi), x ∈ Ω, (4.4)

then defines a basis. The approximation space Vl as linear combination of the basis

Vl = span{φl, j| ji = 0, . . . , 2li , i = 1, . . . , d} (4.5)

is the standard nodal point basis.

4.1.1. Hierarchical increment space

Using the approximation space Vl we define the hierarchical increment space or hierarchical difference
space Wl as

Wl = span{φl, j| ji = 1, . . . , 2li − 1, ji odd for all i = 1, . . . , d}. (4.6)

With hierarchical increment spaces it is possible to rewrite the full grid space Vl as a direct sum of
subspaces in the form

Vl =

l1⊕
k1=1

· · ·

ld⊕
kd=1

W(1)
k1
⊗ . . . ⊗W(d)

kd
=

l1⊕
k1=1

· · ·

ld⊕
kd=1

Wk1,...,kd =
⊕
k≤l

Wk (4.7)

where the relation ≤ on the right-hand side of (4.7) is a component-wise operation. In the special case
l1 = · · · = ld = n we rewrite (4.7) in a simplified form as

V (∞)
n =

⊕
|k|∞≤n

Wk. (4.8)
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Figure 4.1.: Nodal and hierarchical basis functions for the levels l = 1, 2, 3 and d = 1.

As a result, the increment space lead to a multilevel subspace decomposition. The elements of Wl in
(4.6) form a basis which is called a hierarchical basis. In Fig. 4.1 we compare the basis functions of
Vl and Wl for the levels l = 1, 2, 3 and d = 1. When the hierarchical increment space is used as ansatz
space in a FEM discretization, the discrete solution ũ on Vl is approximated as

ũ(x) =
∑
k≤l

uk(x) =
∑
k≤l

∑
1≤ j≤2l−1

j is odd

cl, j · φl, j(x) (4.9)

with coefficients cl, j ∈ R and partial solutions uk(x) in Wk. The coefficients cl, j in a hierarchical
representation are called hierarchical surplus. Both basis representations, the nodal and the hierarchical
basis, require

∏d
i=1(2li − 1) inner basis functions when the boundary conditions are not taken into

account. For l1 = · · · = ld = n the full grid V (∞)
n has a complexity

|V (∞)
n | = (2n − 1)d =

n∑
i=0

(
n
i

)
2nd−i · (−1)i ≈ O(Nd) (4.10)

with N = 2n. The major difference of the hierarchical representation is the decay of the hierarchical
surplus cl, j on higher levels l; cf. Bungartz and Griebel [18].

In a finite difference (FD) discretization we employ the same discrete grid points xl, j as in (4.2). In
contrast to a FEM discretization, the solution is only described on these grid points. Consequently,
the approximation spaces Vl and Wl are the discrete point spaces defined on these grid points. A
drawback in comparison to a FEM discretization is the stronger regularity assumption on the solution.
Typically, the solution u is an element of a Hölder space instead of a Sobolev space. Next, we employ
the hierarchical increment spaces Wl to construct an approximation space of level l with a reduced
complexity compared with the full grid spaces in (4.7) and (4.8).

4.1.2. Sparse grids

The basic idea of sparse grids is to construct an approximation space that consists of a combination of
increment spaces from a cost-benefit optimized index set I ⊂ Nd, i.e. Vapprox =

⊕
k∈IWk. For each
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increment space Wk, which is uniquely characterized by its index k ∈ Nd, a local cost function c(k) is
defined by

c(k) = 2|k|1−1 (4.11)

with |k|1 =
∑d

i=1 ki. Moreover, a local benefit function b∗(k) is given by upper bounds for ‖uk‖
2
∗ with

uk ∈ Wk. These upper bounds are stated in Lemma 3.4 of Bungartz and Griebel [18] for the discrete
L2-norm, L∞-norm and energy norm. The local cost-benefit ratio cbr∗(k) for a general norm ‖·‖∗ is
defined as

cbr∗(k) =
b∗(k)
c(k)

. (4.12)

The generalized index set I then consists of all indices k with cbr∗(k) ≥ σ∗(n) for a given threshold
σ∗(n). The threshold σ∗(n) of level n is in the order of the cost-benefit ratio cbr∗((n, 1, . . . , 1)) if the
cost is equally distributed in all dimensions. This means that we fix the finest increment space that is
uniquely refined in the first dimension and add other indices that can also be refined in other dimension
with an equal or better cost-benefit ratio. The resulting index set is

I =

{k ∈ Nd | |k|1 ≤ n + d − 1} for L2- and L∞-norm,
{k ∈ Nd | |k|1− 1

5 log2(
∑d

i=1 4k j) ≤ n+d−1− 1
5 log2(4n + 4d − 4)} for energy norm.

(4.13)
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The L2-based sparse grid space of level n that we will use in the following is therefore given by

V (1)
n =

n+d−1⊕
k1=1

· · ·

n+d−1−
∑

i<d ki⊕
kd=1

W (1)
k1
⊗ . . . ⊗W (d)

kd
=

⊕
|k|1≤n+d−1

Wk. (4.14)

In Fig. 4.2 we illustrate the grid points which build the hierarchical increment spaces Wk for d = 2.
The second to last column shows the grid points of the full grid spaces V (∞)

n for n = 1, 2, 3 and 4.
Analogously, the last column visualizes the corresponding L2-based sparse grid spaces V (1)

n .
Compared to the full grid space V (∞)

n , the number of degrees of freedom reduces fromO(Nd) in (4.10)
to

|V (1)
n | =

n−1∑
i=0

2i ·

(
d − 1 + i

d − 1

)
≈ 2n ·

(
nd−1

(d − 1)!
+ O(nd−2)

)
≈ O(N · log2(N)d−1) (4.15)

in which N = 2n and |Wk| = 2|k−1|1 have been used. The basic question is if the reduced complexity of
the sparse grid space in (4.15) compared to the full grid space in (4.10) also deteriorates the solution’s
accuracy. For this purpose, the regularity of the solution u has to be considered.

4.1.3. Assumptions on the regularity of the solution

Classically, we assume that the solution u : x ∈ Ω̄ = [0, 1]d
i=1 ⊂ R

d 7→ u(x) ∈ R is contained in the
Hölder space Cm(Ω̄,R). This space contains all functions u : Ω → R that are m-times continuously
differentiable and for which the partial derivatives ∂su of order |s|1 ≤ m are continuously extendible on
Ω̄. The space Cm(Ω̄,R) is a Banach space with norm

‖u‖Cm =
∑
|s|1≤m

‖∂su‖C0

in which ‖u‖C0 = supx∈Ω̄ |u(x)|. Additionally, Cm
0 (Ω,R) denotes the subspace with functions f ∈ Cm

that have a zero boundary condition on ∂Ω. In a FD discretization of (4.1) Hölder regularity is required.
The regularity assumptions are weakened for the PDE problem (4.1) in its weak formulation. For this

purpose, let Lp(Ω̄,R) be the class of p-integrable functions on the measurable space Ω̄. Since Ω̄ is a
subset of Rn, the measurable space is defined using the underlying Borel σ-algebra B and the Lebesgue
measure µ. For 1 ≤ p < ∞ the Banach space Lp(Ω̄,R) is defined as

Lp(Ω̄,R) = { f : Ω̄→ R | f is µ-measurable and ‖ f ‖Lp < ∞} (4.16)

with norm

‖ f ‖Lp =

(∫
Ω̄

| f |p dµ
) 1

p

. (4.17)

The space Lp(Ω̄,R) consists of equivalence classes of measurable functions and two elements are iden-
tical if they are equal almost everywhere with respect to µ. The definition can be extended to the case
p = ∞ if f : Ω̄→ R is essentially bounded with respect to µ, i.e.

supx∈Ω̄\N | f (x)| < ∞
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for a µ-measure zero set N ∈ B. The corresponding norm for L∞(Ω̄,R) is

‖ f ‖L∞ = infµ-zero sets N
(
supx∈Ω̄\N | f (x)|

)
. (4.18)

The elements in Lp(Ω̄,R) are unique up to a µ-zero set, i.e.

f = g in Lp(Ω̄,R) ⇔ f = g up to a µ-zero set.

We further note that L2(Ω̄,R) is also a Hilbert space with inner product

( f , g)L2 =

∫
Ω̄

f (x)g(x) dµ(x)

for any two elements f , g ∈ L2(Ω̄,R).

Next, the weak derivative D(s) f ∈ Lp(Ω̄,R) of order |s|1 ≤ m is defined as the solution of the integral
equation ∫

Ω̄

∂sϕ · f dµ = (−1)|s|1
∫

Ω̄

ϕ · D(s) f dµ (4.19)

for all ϕ ∈ Cm
0 (Ω,R). We then define the Sobolev space of order m ∈ N and exponent p, 1 ≤ p ≤ ∞, as

Wm,p(Ω̄,R) = { f ∈ Lp(Ω̄,R) |D(s) f ∈ Lp(Ω̄,R) for all |s|1 ≤ m}. (4.20)

This space is a Banach space with norm

‖ f ‖Wm,p =

 ∑
|s|1≤m

‖D(s) f ‖Lp

1/p

. (4.21)

For a more compact notation, we write Wm,p(Ω̄) instead of Wm,p(Ω̄,R) if the image space is R. Analo-
gously to L2(Ω̄), the space Wm,2(Ω̄) is a Hilbert space with inner product

( f , g)Wm,2 =
∑
|s|1≤m

(D(s) f ,D(s)g)L2 . (4.22)

We use Hm(Ω̄) as a more compact notation for Wm,2(Ω̄). This smoothness class is relevant, for instance,
when a finite element discretization on a full grid space V (∞)

n of level n is used. With the required
Hölder or Sobolev smoothness, a discretization scheme for the PDE problem (4.1) of order p with full
grid mesh width hn in all d dimensions achieves an accuracy with respect to the L2- and L∞-norm of

‖u − un‖∗ = O(hp
n ). (4.23)

Furthermore, we note that Hölder spaces and Sobolev spaces are related via the Sobolev embedding
theorem:

Theorem 4.1 [Sobolev embedding theorem]
Let Ω ⊂ Rd be open and m, k ∈ N with m > k+ d

2 . Then, any equivalence class f ∈ Hm(Ω̄) is represented
by an element in Ck(Ω̄).
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Proof: The proof is given as Theorem V.2.12 in the book by Werner [137] and as Theorem 8.13 in
the book by Alt [1].

Roughly speaking, Theorem 4.1 states that with increasing dimensionality d the smoothness of a
function for which the m-th weak derivative exists reduces compared to classical Hölder smoothness.

For sparse grid discretizations of level n on the sparse grid space V (1)
n defined in (4.14) the reduced

computational complexity leads to stronger smoothness requirements of the solution. The inner product
(4.22) is associated with Sobolev spaces Hm(Ω̄) of isotropic smoothness. A further inner product

( f , g)Hm
mix

=
∑
|s|∞≤m

(D(s) f ,D(s)g)L2 (4.24)

motivates a different class of Hilbert spaces

Hm
mix(Ω̄) = { f ∈ Lp(Ω̄) | ‖ f ‖Hm

mix
< ∞} (4.25)

with a norm defined by ‖ f ‖Hm
mix

= ( f , f )
1
2
Hm

mix
. These function spaces are termed as Sobolev spaces of

mixed smoothness.
If the discretization scheme of order p, which has been used in (4.23) for the full grid space V (∞)

n ,
is now applied to the corresponding sparse grid space V (1)

n , the accuracy is slightly reduced. More
precisely, Bungartz et al. [19] show that the accuracy of the solution us

n on the sparse grid space V (1)
n

reduces to
‖u − us

n‖∗ = O(hp
n · log(hn)d−1) (4.26)

if u has sufficient mixed Sobolev smoothness. As can be seen by comparing (4.22) and (4.24), the
smoothness requirement in Hm

mix is stronger than in Hm since Hm
mix ⊂ Hm. A better understanding of

these stronger smoothness requirements can be obtained from Sobolev spaces Hs with a non-integer
index s ∈ R. These more general Sobolev spaces are also called Bessel potential spaces; see, for
instance, Chapter 2.1 of Knapek [71] for a rigorous definition using a Fourier transformation. Here, the
relation

Hsd ⊂ Hs
mix ⊂ Hs ⊂ Hs/d

mix (4.27)

for s ∈ R+ can be derived. Equation (4.27) indicates that the mixed smoothness requirement for the
sparse grids becomes the stronger, the higher the dimensionality d of the physical problem is.

We further note that Sobolev spaces of mixed smoothness can be represented as tensor product of
Sobolev spaces of dimensionality one, i.e. we can relate Hm

mix(Ω̄) with Hm([0, 1])⊗ · · · ⊗Hm([0, 1]). For
the PDE problem of the multi-bead-spring chain in Section 1.2 we require regularity in H1

mix(Ω̄). Due to
Theorem 4.1 this can be related to a tensor product of function spaces that have at least a representative
in C0. The continuity of the solution is essential for the sparse grid combination technique, which we
describe in the following section, as the approach requires an interpolation of different solutions on a
common solution space.

4.2. Sparse grid combination technique

An advantage of L2-based sparse grids is their reduced number of degrees of freedom in the order of
O(N · log2(N)d−1) compared to full grid spaces with a complexity of O(Nd). This approach requires,
however, a stronger regularity of the solution typically in H1

mix(Ω̄) if L(·) in (4.1) is a second-order
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I(V1,4) I(V2,3) I(V3,2) I(V4,1)

I(V1,3) I(V2,2) I(V3,1) V
(1)
4

Figure 4.3.: Linear combination of bilinearly interpolated 2D full grid spaces Vi, j and the corresponding
discrete solutions ui, j according to the combination technique with n = 4. Interpolated
points are colored in light blue.

differential operator. Furthermore, the discretization in V (1)
n requires a hierarchical data structure. Con-

sequently, the solver has to be specifically adapted to hierarchical increment spaces.
In this section, we consider the sparse grid combination technique. This approach bases on multi-

variate extrapolation, cf. Bungartz, Griebel and Rüde [21]. It allows us to approximate the sparse grid
solution in V (1)

n but has two immanent advantages:

• Solutions with a standard nodal point basis on full grid spaces V (∞)
n as defined in (4.8) can be

used in the combination technique. This is advantageous if PDE solvers such as NaSt3DPGF
already exist for the specific application; cf. Chapter 3.

• The combination technique is intrinsically parallel. Since our application, the multiscale simu-
lation of polymeric fluids, is extremely demanding with respect to its computational complexity,
we have to make use of massively parallel computers.

The sparse grid combination technique was first introduced by Griebel, Schneider and Zenger [53].
For an illustration of the general principle, we first consider the PDE problem (4.1) in d = 2 dimensions.
We discretize (4.1) on a full grid Vl,m as in (4.7) and obtain a linear system of equations of the form

Ll,m(ul,m) = fl,m in Vl,m (4.28)

with appropriate boundary conditions. The index pair (l,m) ∈ N2 uniquely identifies the discrete prob-
lem (4.28). A level n sparse grid solution in V (1)

n is then approximated in the combination space V c
n by

a multivariate extrapolation of several solutions according to

uc
n =

∑
l1+l2=n+1

ul1,l2 −
∑

l1+l2=n

ul1,l2 for l1, l2 = 1, . . . , n. (4.29)

Equation (4.29) cannot be directly computed but requires an interpolation of all the different coarse and
fine grid solutions ul1,l2 in Vl1,l2 on a common grid. This grid is actually V (1)

n from (4.15). Fig. 4.3
illustrates the interpolation I : Vl1,l2 → V (1)

4 that is involved in (4.29) for the case n = 4. Only the grid
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points colored in dark blue are contained in Vl1,l2 . The grid points that are contained in V (1)
4 but not in

Vl1,l2 are colored in light blue.

In contrast to Fig. 4.2, the boundary conditions are now taken into account. At a first glance, this leads
to a large number of grid points on the boundary compared to the inner domain. The grid points on the
boundary of V (1)

4 coincide with the boundary points of the full grid V (∞)
4 However, for a PDE problem

the solution is prescribed on the boundary. In Chapter 6 we combine different finite difference solutions
by using the combination technique. In this case, we only have to combine interior grid points since
the solution on the boundary is identical on every grid Vl1,l2 and only the solution on the interior grid
is unknown. This is different, for instance, when the combination technique is applied to integration
problems. In this case, an evaluation of the integrand on the boundary has the same complexity as in
the inner domain.

Next, we consider the combination formula (4.29) for d = 3 and for general dimensions d. In the
three-dimensional case, the combination formula is

uc
n =

∑
l1+l2+l3=n+2

ul1,l2,l3 − 2 ·
∑

l1+l2+l3=n+1

ul1,l2,l3 +
∑

l1+l2+l3=n

ul1,l2,l3 for l1, l2, l3 = 1, . . . , n. (4.30)

In the general d-dimensional case the combination approximation is given by

uc
n =

d−1∑
i=0

(−1)i
(
d − 1

i

) ∑
|l|1=n+(d−1)−i

ul for l1, . . . , ld = 1, . . . , n. (4.31)

4.2.1. Error bounds for combination technique

Griebel, Schneider and Zenger [53] show that the combined solution uc
n of (4.31) is identical to the

sparse grid solution us
n for interpolation problems. This is due to the fact that the interpolant is identical

on all common grid points independent of the mesh width. This is obviously not the case for PDE
problems as the discrete solution at each grid point is associated with the specific mesh width. However,
the additional PDE discretization error is of the same order as the approximation error as long as a
certain error splitting exists. For this purpose, we require the following theorem:

Theorem 4.2
Let u be the solution of the PDE problem 4.1 and ul ∈ Vl a discrete solution for which pointwise an
error expansion of the form

u(xl) − ul(xl) =

d∑
i=1

∑
{ j1,..., ji}⊂{1,...,d}

c j1,..., ji(xl, h j1 , . . . , h ji) hp
j1
· · · · · hp

ji
(4.32)

exists for all xl ∈ Ωl with li ≤ n for i = 1, . . . , d. Furthermore, the coefficients c j1,..., ji(xl) are pointwise
bounded by K, i.e.

|c j1,..., ji(xl)| ≤ K ∀ 1 ≤ i ≤ d and ∀ { j1, . . . , ji} ⊂ {1, . . . , d}

for all xl ∈ Ωl with li ≤ n for i = 1, . . . , d. Then, the combination technique solution uc
n ∈ V c

n from
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(4.31) fulfills the error estimate

|u − uc
n(xn)| ≤

2K
(d − 1)!

(
2p + 1
2p−1

)d−1

(n + 2(d − 1))d−1 2−pn ≈ O
(
hp

n · log2 (hn)d−1
)

(4.33)

for all xn ∈ Ωn.

Proof: The proof is given as Theorem 5.4 in Reisinger [113]. Theorem 4.2 states that the accuracy
of the combined solution uc

n is of the same order as the accuracy of the classical sparse grid solution
(4.26).

It remains to show that an expansion as in (4.32) exists for a given PDE problem and an appropri-
ate discretization. Bungartz et al. [20] have shown such an expansion and have given a proof of the
convergence of the combination technique for the 2D Laplace equation on the unit cube with Dirichlet
boundary conditions. Furthermore, an error expansion has been shown by Reisinger [113] for finite
difference discretizations of Poisson and advection-diffusion equations in d dimensions. This motivates
the use of the combination technique for the multiscale bead-spring-chain system of (1.59)–(1.63) al-
though such an expansion is not known in this case.

4.2.2. Analysis of computational complexity

In (4.10) we state that the complexity of the interior domain of V (∞)
n is of order O(Nd) with N =

2n. Instead of that, the sparse grid estimate in V (1)
n has a complexity of order O(N · log2(N)d−1); cf.

equation (4.15). We subsequently show that the combination technique has a computational complexity
of the same order as the sparse grid approximation. Compared with the full grid approach in V (∞)

n , the
combination formula (4.31) sums up O(nd−1) problems of reduced complexity dim(Vl) with |l|1 � nd.
We therefore obtain

|V c
n | =

d−1∑
i=0

∑
|l|1=n+(d−1)−i

|Vl| =

d−1∑
i=0

∑
|l|1=n+(d−1)−i

∑
k≤l

|Wk| (4.34a)

≈
∑

|l|1=n+(d−1)

|Wl| + lower complexity spaces Wk (4.34b)

≈

(
n + d − 2

d − 1

)
2n−1 = 2n ·

(
nd−1

(d − 1)!
+ O(nd−2)

)
≈ O(N · log2(N)d−1) (4.34c)

where N = 2n and |Wl| = 2|l|1−d have been used. We also note that there are
(
n+d−2

d−1

)
ways to build the

sum n + d − 1 in (4.34b) with d positive integers.
As motivated in Fig. 4.3 the combination technique in (4.31) requires d-linear interpolation. Ob-

viously, the complexity of the interpolation has to be of the same order as (4.34c) to ensure a global
complexity of O(N · log2(N)d−1). This problem will be discussed in the following.

Interpolation on hierarchical increment space

We consider d-linear interpolation as required for the combination formula (4.31) in d-dimensional
space. Theoretically, it is also possible to interpolate the different coarse grid solution to the finest full
grid space V (∞)

n . This, however, involves additional grid points which are not contained in any coarse
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Figure 4.4.: Illustration of how a full grid solution is decomposed into a sequence of hierarchical incre-
ment spaces. For this purpose, the nodal values have to be transformed into the hierar-
chical surpluses. Increment spaces from V (1)

4 without any contribution to V1,3 are colored
gray.

grid solution but on which, nevertheless, the combined solution has to be interpolated. Consequently,
interpolation of N = 2n grid points in d dimensions is performed with O(Nd) operations. As a result,
the interpolation on the full grid space V (∞)

n destroys the reduced complexity of (4.15) that is possible
by using sparse grids. As a result, we have to make sure that the interpolation in (4.31) is performed
with a complexity of O(N · log2(N)d−1) operations, i.e. the interpolation has to be performed on V (1)

n , to
ensure an overall complexity of this order.

The definition of V (1)
n in (4.14) bases on a sequence of hierarchical increment spaces. It is therefore

most economical to first transform all the coarse full grid solutions on Vl with |l|1 ≤ n + (d − 1) from a
nodal basis to its hierarchical basis representation

⊕
k≤l Wk as in (4.7) and then build the interpolated

solution on V (1)
n according to

⊕
|k|1≤n+d−1 Wk on the right-hand side of (4.14). The key idea is that the

coefficients on the incremental spaces Wk that are contained in V (1)
n but not in Vl are zero. Therefore,

no interpolation to new grid points is necessary. We illustrate this principle in Fig. 4.4 for V1,3 from the
2-dim example in Fig. 4.3. Fig. 4.4 shows that only the hierarchical surplus for the increment spaces
W1,1, W1,2 and W1,3 have to be calculated. Since the coefficients of all other spaces are zero, we do not
explicitly have to compute them. Since these spaces do not give any contribution in the hierarchical
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Algorithm 3: Data transformation from nodal to its hierarchical representation.

Data: Discrete data u(xl, j) on level l ∈ Nd with mesh width hl in nodal basis representation.
Result: Data u(xl, j) in hierarchical basis representation as in Wk with k ≤ l.

1 for i← 1 to d ; /* loop over all dimensions */
2 do
3 for k ← 1 to li ; /* every dimension i = 1, . . . , d has li sublevels */
4 do
5 h← 2k−1 ; /* distance of points on sublevel k in dimension i */
6 forall the dimensions , i pointwise ; /* loop over every dimension , i */
7 do
8 for ji ← h to (2li − h) step 2h do
9 u(. . . , xk, ji . . . )← u(. . . , xk, ji . . . ) −

1
2

(
u(. . . , xk, ji−h . . . ) + u(. . . , xk, ji+h . . . )

)
;

/* u(. . .) indicates pointwise operation in all dimensions , i */
10 end
11 end
12 end
13 end

basis, we have colored them in gray in Fig. 4.4 to emphasize this.
The algorithm for the transformation from a nodal basis to a hierarchical basis is given in Griebel

and Thurner [54] for d = 1 and d = 2 dimensions. It can easily be generalized to d-dimensional spaces
for a solution u on a grid xl, j = (xl1, j1 , . . . , xld , jd ) by using Algorithm 3. The input of the algorithm
is a discrete solution on a fine full grid Vl for which then the values in the hierarchical representation
are constructed iteratively. The approach firstly determines the coefficients of the finest incremental
space Wl and then continues with the coarser grids Wk with |k|1 < |l|1. For each index k, a point that
is contained in Wk but not in Wk−ei , with ei as unit vector in Rd, the difference between the numerical
solution at this grid point and the interpolant from the neighboring grid points is computed and stored
in Wk−ei , with ei; cf. line 9 of Algorithm 3.

The accuracy of d-linear interpolation is of order O(hl) as long as the solution is in H1
mix(Ω̄) and

therefore continuous. For this reason, the interpolation error tends to decrease for increasing levels of
the hierarchical increment spaces. As a consequence, the hierarchical increments in Wk, the differences
between linearly interpolated and actual grid values, also decrease. Furthermore, the decay of the
coefficients in Wk is indicated in Fig. 4.4 by the color coding that reaches from dark blue to light blue
for visualization purposes.

As a result, the transformation on the hierarchical basis has the same complexity of order O(N ·
log2(N)d−1) as the combination technique in equation (4.31). It is, however, obvious that the inverse
transformation from the combination technique approximation on V (1)

n to the full grid solution on V (∞)
n

requires additional operations. The complexity then is again of order O(Nd). Consequently, it depends
on the application which kind of combination technique is more adequate for the current problem. For
existing codes such as NaSt3DGPF it is usually better to work with the nodal basis and interpolate on
V (∞)

n since the post processing software such as ParaView requires a rectilinear data format.
For completeness, we note another variant of the combination technique, the optimized combination

technique as developed by Garcke and Hegland[58, 41]. In this case, the combination coefficients cl are
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not chosen according to equation (4.31) but instead specifically adapted to the underlying problem. For
a given sequence of coarse full grid solutions, the optimized approach delivers the optimal combination
formula. Moreover, the combined solution is the closest approximation to the sparse grid solution.

In the following section, we discuss the Multilevel Monte Carlo method (MLMC) and analyze its
connection to sparse grid discretizations. This comparison leads to dimension-adaptive sparse grid
algorithms. In Chapter 5, we present a dimension-adaptive algorithm for the combination technique to
solve the coupled multiscale polymer flow problem.

4.3. Relation multilevel Monte Carlo - sparse grids

Sparse grids are one viable approach for the solution of the coupled multiscale system from (1.59)–
(1.63). There exist other approaches in the literature for stochastic differential equations, for instance,
the multilevel Monte Carlo (MLMC) method by Giles [47]. Interestingly, this approach can also be
interpreted as a sparse grid approximation. Furthermore, the interpretation as a sparse grid approach al-
lows stricter error bounds compared to MLMC in its classical formulation; see Gerstner and Heinz [45].

In the following section, we first state the basic principles of MLMC. Then, we give details on the
relation between sparse grids discretizations on the one hand and the MLMC method on the other hand.
In Chapter 5 we use the basic idea of MLMC, combining solutions on different temporal and stochastic
grids, in our dimension-adaptive algorithm for the multiscale simulation of polymeric fluids.

4.3.1. Multilevel Monte Carlo method

As a problem of interest let
dQ(t) = µ(Q, t) dt + σ(Q, t) dW(t) (4.35)

be a general ordinary stochastic differential equation with 0 ≤ t ≤ T , drift function µ : Rn×[0,T ]→ Rn,
volatility σ : Rn× [0,T ]→ Rn and initial data Q(0) ∈ Rn; cf. equation (1.61). The quantity of interest is
the expectation E[ f (Q(T ))] with f as a scalar or vector-valued function with a Lipschitz bound. In our
application, the expectation is the stress tensor from (1.62). In computational finance, the expectation
is usually known as payoff.

The most simple approach to discretize (4.35) in time is the Euler-Maruyama method. This approach
was used in (2.21) for the simple FENE-P and Hookean spring models. Employing the method with an
equidistant timestep width h results in

Qn+1 = Qn + µ(Qn, tn) h + σ(Qn, tn) ∆Wn (4.36)

with independent Wiener increments ∆Wn. Equation (4.36) is performed for s = 1, . . . ,M samples
Qn,(s) until tn = T . In the following, we denote the discrete samples at time T as QT,(s). Then, the
resulting estimate for

E[ f (Q(T ))] =

∫
f (Q(T, ω)) dP(ω) (4.37)

in which dP(ω) is the underlying probability measure of Q is

Y = M−1
M∑

s=1

f (QT,(s)). (4.38)
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The MLMC method approximates E[ f (Q(T ))] as a sequence

Ŷ =

L∑
k=0

Ŷk (4.39)

of k = 0, 1, . . . , L estimators. Equation (4.39) bases on the linearity of the expectation. The estimators
differ in the timestep width hk in (4.36) and in the number of stochastic samples Mk. More precisely,
we set

hk = K−kT (4.40)

with K ∈ N, typically K ∈ {2, 3, 4}, and define the estimators as

Ŷ0 = M−1
0

M0∑
s=1

f (QT,(s)
0 ) for k = 0, (4.41)

Ŷk = M−1
k

Mk∑
s=1

(
f (QT,(s)

k ) − f (QT,(s)
k−1 )

)
for k = 1, . . . , L. (4.42)

We further note that the two function evaluations in equation (4.42) actually requires to evolve the same
number of stochastic realizations by using the same Brownian path but with different timestep widths
hk and hk−1. The key idea of MLMC is that the variance of (4.42) decreases with increasing level k such
that less samples points are required.

Provided certain conditions on the drift µ and the diffusion σ are fulfilled, the expected mean-square
error (MSE) can be decomposed as

MSE = Var(Ŷ) + E[Ŷ − E[ f (Q(T ))]]2. (4.43)

The first error contribution in (4.43) is the variance in Ŷ that results from the Monte Carlo approximation
in (4.41) and (4.42). The variance decreases linearly in the number of samples. The second contribution
in (4.43) is the square of the bias due to the Euler-Maruyama discretization.

The aim of the MLMC method is to achieve a MSE for Ŷ less than ε2 but with a lower computational
complexity as for the classical estimator Y in (4.38). According to Giles [47], the optimal number of
samples for given ε2 is

Mk =

2ε−2
√

Var(Ŷk) hk

 L∑
k=0

√
Var(Ŷk/hk)


 . (4.44)

The MLMC approach starts with one level, i.e. L = 0, and then proceeds as following (cf. Giles [47]):

1. Estimate the variance Var(ŶL) on level L.

2. Compute the optimal number of samples Mk for k = 0, . . . , L to ensure Var(Ŷ) < 1
2ε

2.

3. If E[Ŷ − E[ f (Q(T ))]] < 1√
2
ε, terminate the algorithm and otherwise set L← L + 1 and go to 1.

After the algorithm has been terminated, the MSE is usually lower than ε2 as indicated in (4.43). We
further note that the restriction on the variance, i.e. Var(Ŷ) < 1

2ε
2, in step 2 is enforced in every iteration

step. However, this requires that the required number of samples Mk for k = 1, . . . , L changes in every
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iteration step. Therefore, the required number of samples Mk might decrease with ongoing simulation.
Then, since this additional but actually superfluous number of samples is not skipped, the decrease in
variance might be larger than required. This guarantees a high reliability of the algorithm but reduces
its efficiency.

For a MSE of O(ε2), the classical Euler-Maruyama approach in (4.38) has a computational com-
plexity of O(ε−3). This is due to a number of samples M in the order of O(ε−2) and a timestep width
h = O(ε). In contrast to this, the MLMC complexity is of order O(ε−2 log(ε)2) if the Euler-Maruyama
scheme (4.36) is used. The complexity can be further reduced to O(ε−2) for higher-order schemes such
as a Milstein discretization. A general result is given as Theorem 3.1 in Giles [47].

4.3.2. Interpretation of MLMC as sparse grid approximation

As explained in detail in the previous section, the MLMC method decomposes the expectation of a
stochastic process and efficiently computes each partial sum using different timestep widths and sample
numbers. We now discuss the connection of MLMC to sparse grid discretizations. For this purpose,
we will interpret the different timestep widths and number of samples as different resolved discretiza-
tions of a sparse grid with two parameter dimensions. This relation was first annotated by Gerstner
and Heinz [45] for problems with stochastic ordinary differential equations as in Section 4.3.1 and by
Harbrecht, Peters and Siebenmorgen [56] for elliptic stochastic partial differential equations such as
stochastic diffusion problems. A recent discussion on this topic is also given by Griebel, Harbrecht and
Peters [49].

Equation (4.14) in Section 4.1 defines L2-based sparse grids in d dimensions. For d = 2 the definition
of the sparse grid space simplifies to

Vsg
n =

⊕
k1+k2≤n+1

W (1)
k1
⊗W(2)

k2
. (4.45)

Here, we write Vsg
n instead of V (1)

n as in (4.14) to avoid confusion with the one dimensional full grid
spaces V (1) and V (2) that will be used in the following. Furthermore, in contrast to (4.14), we start with
an index 0 in each coordinate direction since this resembles the MLMC indexing. Next, in view of
equation (4.7) we can rewrite (4.45) as

Vsg
n =

n+1⊕
k1=0

W (1)
k1
⊗

(n+1−k1⊕
k2=0

W (2)
k2

)
=

n+1⊕
k=0

W (1)
k ⊗ V (2)

n+1−k . (4.46)

Analogously, we derive a second representation of Vsg
n as

Vsg
n =

n+1⊕
k2=0

(n+1−k2⊕
k1=0

W(1)
k1

)
⊗W(2)

k2
=

n+1⊕
k=0

V (1)
n+1−k ⊗W (2)

k . (4.47)

Both representations in (4.46) and in (4.47) are equivalent. We illustrate these different representations
in Fig. 4.5; cf. Griebel, Harbrecht and Peters [49]. However, there is the advantage of the representation
in (4.46) that the sequence of one-dimensional full grid spaces {V (2)

k } in the second dimensions does not
need to be nested as the hierarchical space in (4.6). The same is valid for the sequence {V (1)

k } in (4.47).
Interestingly, the MLMC method in Section 4.3.1 uses a representation as in (4.47) with
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Figure 4.5.: Different representations of the sparse grid spaces Vsg
k1,k2

with k1, k2 ∈ {1, . . . , 5}.

• {V (1)
k } as a sequence of Monte Carlo quadrature rules with increasing sampling number and

• {V (2)
k } as a sequence of temporal discretizations with decreasing timestep widths such that the

complement spaces W (2)
k+1 = V (2)

k+1 	 V (2)
k with V (2)

−1 = 0 can be built.

More precisely, (4.39)–(4.42) is a decomposition of the expectation according to∫
f (Q(T, ω)) dP(ω) ≈

L∑
k=0

Quk

(
∆ f (QT

k )
)

(4.48)

with Quk : L1(D,X) → X as Monte Carlo quadrature rule for a suitable Bochner space X using Mk

samples and with
∆ f (QT

k ) = f (QT
k − QT

k−1) with QT
−1 = 0. (4.49)

However, the decomposition in (4.48) has not yet the form of (4.47) since {Mk}k=0,...,L as in (4.44) is
not necessarily a decreasing sequence of sample numbers. In the following, we assume that {Mk}k=0,...,L
decreases with k or otherwise perform a refinement of the coarser levels such that M0 ≥ M1 ≥ . . . ML.
Then, we set Q̂uL−k := Quk for k = 0, . . . , L and obtain∫

f (Q(T, ω)) dP(ω) ≈
L∑

k=0

Q̂uL−k

(
∆ f (QT

k )
)

(4.50)

which is similar to the splitting in (4.47). The sequence of quadrature rules {Q̂u0, . . . , Q̂uL} is then
defined on the full grid sequence {V (1)

0 , . . . ,V (1)
L }. As mentioned before, these spaces need not to be

nested since the number of samples is defined by (4.44). On the other hand, the sequence of complement
spaces {W (2)

0 , . . . ,W (2)
L } for the temporal grids is nested. Here, the timestep width is hk = K−kT for

k = 0, . . . , L with K ∈ N.
Instead of estimating the full grid sequence {V (1)

k } according to (4.44), it is also possible to obtain a
sequence from a dimension-adaptive algorithm. This approach will be considered for comparison in
the following section.
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4.3.3. Dimension-adaptive sparse grids

A dimension-adaptive sparse grid algorithm, closely related to the MLMC method, that copes with
stochastic ODEs as in (4.35) is given by Gerstner and Heinz [45]. The difference to MLMC is that

• the sample point sequence {Mk}k=0,...,L is not computed according to (4.44) but starts with a low
number of samples which is then adaptively refined and

• the contributions to the MSE in (4.43) from the variance and the bias are not both bounded by
ε2/2. Instead of that only their sum is bounded by ε2. This gives a higher degree of freedom for
an optimal distribution of the error terms.

The adaptive algorithm by Gerstner and Heinz [45] starts on two levels, i.e. L = 1, and with a low initial
number of samples on these levels M0 and M1, e.g. M0 = M1 = 100. The algorithm then continues as
following:

1. Estimate the variances Var(Ŷk) for k = 0, . . . , L. The MSE is then approximated as:

• Var(Ŷ) ≈
∑L

k=0 Var(Ŷk) (variance estimator)

• E[Ŷ − E[ f (Q(T ))]]2 ≈ (ŶL/(Kα − 1))2 (bias estimator)

with K as in (4.40) and with α as weak order of convergence.

2. The refinement then depends on the dominant MSE error contribution:

• if the estimated variance is larger than the bias, we set Mk ← 2Mk for k ∈ {1, . . . , L} with
the largest variance contribution in

∑L
k=0 Var(Ŷk).

• otherwise, if the bias is larger than the variance, set L← L + 1 and start with a low number
of initial samples on the new level.

3. If the estimated MSE as in (4.43) is lower than ε2 the algorithm terminates; otherwise goto 1.

Gerstner and Heinz [45] compare this dimension-adaptive sparse grids algorithm with the classical
MLMC algorithm from Section 4.3.1. Their conclusion for an option pricing problem is the following:

• The rate of convergence with respect to the variance error for MLMC and for their dimension-
adaptive approach is 1/2 which is expected for Monte Carlo quadrature.

• An initially given MSE ε is reached by both algorithms. However, MLMC usually has a lower
error than requested. On the downside, this implies that MLMC is not optimal with respect to its
efficiency.

• The adaptive refinement in MLMC is performed in one dimension only, i.e. for the timestep
width. Instead of that, the dimension-adaptive sparse grid algorithm adaptively refines both di-
mensions, the timestep width and the number of samples, even though the quadrature is per-
formed on full grid spaces. Consequently, the sparse grid algorithm requires more iteration steps
than the MLMC algorithm for termination.
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As a result, the decision between both algorithms depends on the underlying problem. If the variance
estimation that is required in every iteration step has a high computational complexity, then MLMC is
the method of choice since the number of refinement steps is comparatively low. On the other hand,
since MLMC tends to overestimate the required number of samples the sparse grid algorithm tends to
be more efficient with respect to the computational complexity.

Another aspect between both algorithms is the amount of knowledge about the underlying problem
that has to be taken into account. MLMC depends on a reliable variance estimation to calculate the
required number of samples for the quadrature grid. A dimension-adaptive sparse grid algorithm ap-
proximates the required grid accuracy in the form of (4.46) or (4.47) in several iteration steps. The
refinement criterion as given by Gerstner and Heinz [45] is therefore only one possible choice. This
allows a higher flexibility for more complex problems in which a refinement criterion is not directly
clear. This flexibility is important for our applications in polymer physics which will be discussed in
Chapter 5.

Relation to the combination technique

In the following chapter, we will apply the combination technique to the coupled multiscale system
(1.59)–(1.63). For this purpose, we derive a dimension-adaptive algorithm for the combination tech-
nique to solve our multiscale polymer system. The resulting algorithm can be interpreted as a gener-
alization of MLMC to problem dimensions d > 2. Furthermore, it turns out that a dimension-adaptive
refinement allows for an optimal balancing of the different error contributions in the coupled multiscale
system. As a result, we are able to perform multiscale simulations as in Chapter 3 with a much lower
computational complexity.



5. Discretization of multiscale polymer model
on sparse grids

In Chapter 4 we introduced sparse grids to cope with problems of high dimensionality. In the following,
we apply sparse grids to our multiscale model in polymer physics. However, there are several problems
and considerations that have to be taken into account:

• Is it possible to reuse the existing multiscale flow solver described in Chapter 2?

• Which are the important problem dimensions for the mathematical model and for the discretiza-
tion?

• Can the computing time in the order of weeks that is observed in Chapter 3 be reduced?

In Section 4.2 we have already discussed the combination technique. This approach allows us to
reuse our full grid multiscale algorithm described in Section 2.2 and gives a positive answer to the first
question.

In our application, the combination technique can be used with anisotropic spatial, temporal and sto-
chastic grids. Furthermore, the modeling accuracy can be interpreted as a further problem dimension.
The major question is how to balance these different grids in the combination technique? The answer
depends on the corresponding rates of convergence. The numerical schemes require a certain smooth-
ness and a sufficient grid accuracy to reach their theoretical rates of convergence. Furthermore, it is not
directly clear how the overall error is affected by the modeling accuracy of the polymeric molecules.

We show that a close to optimal balancing can be achieved with a dimension-adaptive refinement
since it identifies the problem dimensions of major importance. Moreover, it can be used in situations
in which the regularity in different problem dimensions is not clear. This gives a positive answer to the
second question.

First in Section 5.1, we discuss general concepts of the dimension-adaptive combination technique.
For our application, this approach can be considered as a generalization of the Multilevel Monte Carlo
(MLMC) method by Giles [47] which balances the stochastic variance and the temporal error only.
Then in Section 5.2, we apply the dimension-adaptive combination technique to our multiscale polymer
model. The main result of this chapter is Algorithm 5 to allow for dimension-adaptive simulations in
polymer physics.

The computing time of the dimension-adaptive combination technique will be analyzed in Chapter 6.
It can be shown that our approach dramatically reduces the computing time which gives a positive
answer to the last initial question.

5.1. Dimension-adaptive combination technique

In Section 4.1 we discuss the general concepts of sparse grid discretizations. It turns out that depending
on the norm ‖·‖∗ the resulting index set I differs. Equation (4.13) states the index sets for the L2 and

113
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L∞ estimate on the one hand and for the energy norm on the other hand.
It is intuitively clear that other norm estimates lead to different index sets I. A first generalization

of I can be achieved by using a weight vector a ∈ Rd
+ with |a|1 = d that reflects the importance of

different dimensions; see, for instance, Garcke and Griebel [42] and Gerstner and Griebel [43]. A
further generalization results from an adaptively generated index set.

5.1.1. Generalized index sets

The dimension-adaptive combination technique iteratively builds a problem-dependent index set I ⊂
Nd. Then, the approximation space is built from all discrete grid spaces that are contained in I. The
building process is an optimization problem that can be interpreted as a binary knapsack problem; see
Bungartz and Griebel [17]. The adaptive algorithm starts with a single coarse full grid solution and
then adds further grids to I according to a specific refinement criterion. The choice of the criterion
strongly affects the resulting index set I. We will discuss the construction of I and the refinement
criterion subsequently but in a first step assume that I is already known. Then, the dimension-adaptive
combination technique for general index sets, see Hegland [57] and Gerstner and Griebel [43], is defined
as

uc
I

=
∑
l∈I

 (1,...,1)∑
z=0∈Nd

(−1)|z|1 · χI(l + z)

 ul =
∑

l

clul. (5.1)

In this case, χI is a characteristic function on the index set I according to

χI(l) =

1 if l ∈ I
0 else

(5.2)

and cl is the combination coefficient with

cl =

 1∑
z=0

(−1)|z|1χI(l + z)

 . (5.3)

In Fig. 5.1 we give an example of such an index set for d = 3. Here, each cube represents a full
grid solution in Vl1,l2,l3 and the box color specifies the corresponding combination coefficient according
to (5.3). In total, 57 grids have a combination coefficient unequal to zero and are used in the combination
formula (5.1).

We now give details on the construction of I in (5.1). Interestingly, not every index set can be
used in the combination formula. The generalized index set has to ensure an admissibility condition or
consistency conditions; see Griebel and Gerstner [44] and Plaskota [107]. It holds for an admissible
index set I: If l ∈ I with e j unit vector then

l − e j ∈ I for 1 ≤ j ≤ d, l j > l min
j ≥ 1. (5.4)

Hegland [57] denotes such an index set as a downset. The corresponding generalized sparse grid space
is

V (s)
I

=
⊕
l∈I

Wl. (5.5)
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Figure 5.1.: A generalized index set I in three dimensions. The box color indicates the combination
coefficient cl according to (5.3).

We note that the admissibility condition (5.4) does not require that the coarsest grid of the approxima-
tion space V(1,...,1) is contained in I. In applications, however, this is usually the case. Furthermore,
error estimates for general index sets are still an active area of research; see Wasilkowski and Wozni-
akowski [135]. For sufficient mixed Sobolev smoothness and a specific multivariate expansion of the
discretization error, the error estimate for the classical combination technique is of the same order as for
sparse grids defined in (4.26). Since an adaptive algorithm allows to detect the important dimensions,
the accuracy of the adaptive algorithm is usually at least in the order of the classical algorithm or even
better; see Gerstner and Griebel [44].

The algorithm starts with a single element in I. We here assume, for simplicity, the usual case in
which I = {(1, . . . , 1)} ⊂ Nd, i.e. the coarse grid solution contains only one interior grid point. The
algorithm then adds additional indices l, representing a full grid solution ul ∈ Vl, to I with respect to
the conditions that

• the extended index set remains admissible and

• the error of the combined solution decreases.

The first condition of admissibility can be ensured by an approach in which I is separated into two
subsetsA and O with I = O∪A andA∩O = ∅. The setsA and O are denoted as active and old index
set, respectively.

In each adaptive step, an element l ∈ A is selected that determines new grids k < I whose numerical
solution uk might be computed and added to the combination formula. These new grids k have to fulfill
two requirements:
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Figure 5.2.: Evolution of the dimension-adaptive algorithm (iteration step p up to step p + 3) for d = 2.
The second row shows the nodes of the corresponding sparse grid space VI(p) .

• k is adjacent to l ∈ A, i.e. ∃i ∈ {1, . . . , d} with k = l + ei, and

• all backward neighbors of k are contained in O, i.e. k − ei ∈ O for all i = 1, . . . , d.

Then, up to d grids that fulfill both requirements are added to A and the selected l ∈ A is removed
from A and added to O. For a better illustration, the process of refinement with both subsets A and O
is illustrated in Fig. 5.2 for the iteration steps p up to p + 3. Analogously to Fig. 5.1, all grids with a
combination coefficient one are colored red and those with a coefficient of minus one are colored blue.
Usually, the red colored cells belong to the active index set A. However, in iteration step p + 3 the
solution u3,2 from the grid Ω3,2 is still combined with a combination coefficient one even though the
index (3, 2) does not belong to A any more. We indicate this difference with a different red tone in the
colorbar on the right-hand side. Furthermore, cells which are colored blue and gray belong to the old
index set O. In every iteration step, an index is selected for refinement. This index is indicated with
a black circle. Moreover, two arrows indicate different possible directions of refinement in the current
iteration step. In some cases, this does not lead to additional full grid solutions so that only an element
from A is transferred to O. Furthermore, we note that the algorithm looses some of its efficiency in
situations in which a refinement is performed in all d dimensions although refinement is actually only
required in one dimension. Then, the remaining d − 1 full grid solutions are computed but only lead to
small benefits.

In the following, we discuss how to select an adequate index l ∈ A for the adaptive algorithm. This
requires an error estimation for the solution on grid l.

5.1.2. Error estimation in adaptive algorithm

For PDE problems in the form of (4.1) it is not guaranteed that the error decreases with each refinement
step. It is therefore crucial to develop an adequate refinement criterion. For this purpose, we distinguish
two different approaches for a posteriori error detection which are
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• an error estimator that bases on a theory and allows a qualitative error description and

• an error indicator for which only a heuristic problem dependent approach exists.

In both cases, a local error εl is associated with each l that might be added to I. In our application,
we approximate the size of the hierarchical surplus in the increment space Wl and use this as an error
estimator. More precisely, we estimate the hierarchical surplus wl ∈ Wl in the combination technique
by

‖wl‖∗ ≈ ‖⊗
d
i=1∆i ul‖∗ = ‖∆d(⊗d−1

i=1 ∆i) ul‖∗ = ‖(∆d . . .∆1) ul‖∗ (5.6)

with the first-order difference operator

∆iul =

ul − ul−ei , if li > 1,
ul, if li = 1,

(5.7)

and with ei as canonical unit vector and ul ∈ Vl as full grid solution. Here, ‖·‖∗ is a suitable error norm
depending on the application and on whether ul is a scalar function, a vector or a tensor. Furthermore,
we note that the approximation in (5.6) is exact for interpolation problems since the interpolant on two
different meshes is identical on common grid points.

Next, we make two assumptions on the decay of expectation and variance of the hierarchical sur-
plus approximation. A comparable decay is also assumed in Haji-Ali, Nobile and Tempone [55] for
a problem related to groundwater flow. Note that the variance of the hierarchical surplus is caused by
the stochastic nature of the polymeric structure. Since the stochastic microscopic scale couples with
the macroscopic scale, all macroscopic unknowns also become random fields. However, as reported in
Chapter 1, the stochastic variance of the velocity field is very small in practice. Depending on the rate
of convergence, the expectation

∥∥∥∥E (
⊗d

i=1∆i ul
)∥∥∥∥
∗

decays according to

∥∥∥∥E (
⊗d

i=1∆i ul
)∥∥∥∥
∗
≤ C

d∏
i=1

β−liwi
i (5.8)

with constants C, βi,wi ∈ R, βi > 1 and wi > 0 for = 1, . . . , d. The constants βi correspond to the rate of
grid refinement and the constants wi represent the order of convergence of the discretization scheme in
dimension i. A similar assumption can be made for the variance of ⊗d

i=1∆i ul. Here, we assume a decay
of Var

(
⊗d

i=1∆i ul
)

according to

Var
(
⊗d

i=1∆i ul
)
≤ C2

d∏
i=1

β−li si
i (5.9)

with constants C2 and si > 0 or = 1, . . . , d; cf. Haji-Ali, Nobile and Tempone [55].
Another aspect that is relevant for optimization is the computational effort, the work or cost that is

required to compute each solution in Vl. If εl is an accurate estimate of the local error l, we expect
the largest error reduction in each extension step by adding this solution. However, with respect to
the computational complexity this refinement criteria is not necessarily optimal. Other grids k might
lead to a similar error reduction but have a much lower computational effort to obtain the numerical
solution, especially if k � l. The complexity in elliptic PDE problems directly relates to the number of
unknowns, for instance, to the number of interior grid points in an FD discretization. Time-dependent
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problems or problems with a stochastic component require a more general definition of the involved
work nl.

The work nl and the benefit εl can be used to define a generalized local refinement indicator gl as

gl = f (εl, nl) (5.10)

with an unspecified function f that gives a weight between work nl and benefit εl; see Griebel and
Gerstner [44]. In this thesis, we discuss two possible choices for f that both will be applied to our
specific PDE problem in Section 5.2. These choices are

• A κ-weighted cost-benefit indicator

gl = max
{
κ ·

εl

ε(1,...,1)
, (1 − κ) ·

n(1,...,1)

nl

}
(5.11)

with κ ∈ [0, 1]. We both normalize the cost and the benefit with the corresponding values on the
coarsest grid with index 1 = (1, . . . , 1) to make both values comparable. This approach balances
the ratio of error reduction with the ratio of complexity increase with an additional parameter κ.
Depending on the choice of κ, the indicator (5.11) becomes

κ =


1, greedy approach,
0, classical combination technique
else, κ-weighted combination technique.

• A profit indicator
gl =

εl · n1

ε1 · nl
= C ·

εl

nl
(5.12)

with C =
n1
εl
∈ R. Since the cost and benefit on the coarsest grid lead to a scaling factor C that

applies to every local indicator gl, it is assumed that C = 1 in the following without affecting the
refinement procedure.

In addition to the local error indicators εl, we also require a global error indicator E. Apart from
some simple benchmark experiments, an analytic solution or even the existence of a solution for the
multiscale bead-spring chain is not known; see Section 1.2.4. Consequently, the exact error of the
combined solution in (5.1) is also unknown. One approach to overcome this limitation is to measure
the difference ‖uc

I(p+1) − uc
I(p)‖∗ between two iterations in step p and p + 1 with the corresponding index

sets I(p+1) and I(p). If this difference is smaller than a given tolerance TOL more than r times in a row,
the algorithm terminates. The r-times repetition of this criterion ensures that a short stagnation in the
error reduction does not lead to a termination of the algorithm.

As a result, Algorithm 4 sums up the previous considerations. In the following section, we adapt
Algorithm 4 specifically to the multiscale polymer flow model from Chapter 1.
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Algorithm 4: Dimension-adaptive combination technique with generalized index sets.
Result: Solution uc with error < TOL.

1 l B (1, . . . , 1);
2 A B {l} ; /* active index set */
3 O B ∅ ; /* old index set */
4 gl ; /* local error indicator/ local profit indicator */
5 Determine global error indicator E and error tolerance TOL;
6 while E > TOL do
7 select l ∈ A with largest gl according to (5.11) or (5.12);
8 O = O ∪ {l}, A = A\{l};
9 for t ← 1 to d do

10 j = l + et;
11 if j − el ∈ O ∀ l = 1, . . . , d then
12 A = A ∪ { j};
13 Solve PDE problem (4.1) on full grid space V j;
14 Compute local benefit/ profit indicator g j;
15 end
16 end
17 Compute new global error indicator E;
18 end
19 Compute uc on index set I = O ∪ A according to (5.1) ;

5.2. Dimension-adaptivity for multiscale polymeric fluids

In this section, we develop a dimension-adaptive algorithm for the coupled multiscale system in (1.59)–
(1.63) or its discrete equivalent in (2.21)–(2.28).

First, we identify the different problem dimensions of the discrete system. For this purpose, we use
a very general interpretation of the term problem dimension. More precisely, we balance not only the
discretization accuracy as in Haji-Ali et al. [55] but also take the modeling accuracy of the spring-chain
system into account. As a result, the problem dimensions for our specific application are

1. spatial grid: the spatial discretization of the velocity field u(x, t), the pressure field p(x, t), the
stress tensor field τp(x, t) and the Brownian configuration field Q(x, t) with respect to the flow
space variable x ∈ O ⊂ R3 as described in Section 2.2.1. Here, the maximum numbers imax, jmax
and kmax of finite difference grid cells in the coordinate directions x, y and z lead to an anisotropic
three-dimensional spatial grid.

2. temporal grid: the temporal discretization of the coupled system up to the final time T is de-
scribed in Section 2.2.2. Here, the same timestep width ∆t is applied to the discrete flow equa-
tions for u and p and to the stochastic partial differential equation for Q. Therefore, we obtain a
one-dimensional grid with T/∆t steps in time.

3. stochastic grid: the stochastic partial differential equation (2.21) or (2.22) for the Brownian con-
figuration field and equation (2.23) for the equilibrium control variate are solved for Ms stochastic
samples. The number of samples Ms is considered as a one-dimensional problem dimension.
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Figure 5.3.: Refinement of the index set l = (1, 1, 1, 1, 1, 1) ∈ I in a six-dimensional parameter space.

4. modeling grid: the number of spring segments N ∈ N is also considered as a modeling dimension.
As mentioned before, N determines the dimensionality of the configuration space D ⊂ R3N and
consequently the dimensionality of the stochastic samples. Note that although the configuration
space is of high dimensionality it is a one-dimensional problem for the adaptive algorithm.

For a better understanding, we illustrate the different parameter dimensions of the six-dimensional
index set I in Fig. 5.3. This parameter space is used for the applications in Chapter 6.

Furthermore, we note that the problem dimensions in the combination technique are not equivalent
to the dimensions of physical problem in the coupled system (1.59)–(1.63) As described in Section 1.2,
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the coupled multiscale polymer system is of dimensionality 3N + 4 since the physical space O is three-
dimensional, the configuration space D is 3N-dimensional and the system depends on time.

Due to the particle-based Monte Carlo approach for the configuration space described in Section 2.1,
the configuration space D is sampled with realizations of dimension 3N which gives equal importance
to every dimension of D. If the configuration space had been discretized with a grid-based approach, an
anisotropic grid for the discretization of D in our dimension-adaptive algorithm would have been pos-
sible. In this case, a dimension-adaptive combination technique with even more parameter dimensions
would have been possible which further reduces the computational complexity of the physical problem.

5.2.1. Effect of coupled system on adaptive refinement

In Section 4.1, sparse grid discretizations for a general PDE problem in the form of (4.1) have been
introduced. The coupled multiscale polymer system (1.59)–(1.63) can be written in this form. The
solution of the system is a tuple (u, p,Q, τp) but, depending on the application, we normally focus on a
subset of (u, p,Q, τp):

• If the interest is on an exact description of the fluid flow, an accurate approximate of the velocity
field u is the primary quantity of interest.

• If we are interested in elasticity effects due to the non-Newtonian behavior of the fluid, an exact
description of the stress tensor τp is searched for.

It is obviously clear that approximations uC
I

and τC
p,I of u and τp using formula (5.1) with index set

I have to fulfill uC
I

→ u
τC

p,I → τp
for cardinality(I)→ ∞, (5.13)

i.e. with increasing index set I the combined solution converges to the real solution. Furthermore,
the dimension-adaptive algorithm tries to minimize the cardinality of I for a given error tolerance ε.
Depending on the definition of ε, e.g. ε = ‖uC

I
− u‖∗ or ε = ‖τC

p,I − τp‖∗, the index set I differs. A
dimension-adaptive approach primarily refines

• the spatial and temporal grid if the error in uC
I

shall be reduced and

• the temporal, stochastic and spring-chain grid if an error reduction in τp
C
I

is aimed for.

For the general case in which both fields are of interest, we use a weighted approximation of the
hierarchical surpluses ‖Wl(u)‖∗ and ‖Wl(τp)‖∗ as error indicator in the adaptive refinement strategy. In
this case, ‖Wl(u)‖∗ approximates the hierarchical surplus of the velocity field u by using formula (5.6)
and a suitable vector norm ‖·‖∗. The same definition applies to ‖Wl(τp)‖∗ but in this case ‖·‖∗ refers to a
suitable tensor norm for τp. Then, the local indicators in (5.11) and (5.12) modify to

gl = max
{
κ1 ·

‖Wl(u)‖∗
‖W(1,...,1)(u)‖∗

, κ2 ·
‖Wl(τp)‖∗
‖W(1,...,1)(τp)‖∗

, (1 −max(κ1, κ2)) ·
n(1,...,1)

nl

}
, (5.14)

gl = max
{

λ · ‖Wl(u)‖∗
nl ‖W(1,...,1)(u)‖∗

,
(1 − λ) · ‖Wl(τp)‖∗)
nl ‖W(1,...,1)(τp)‖∗

}
(5.15)
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with κ1, κ2, λ ∈ [0, 1]. Both refinement indicators balance the benefit with the involved work nl that is
associated with l. Furthermore, λ in (5.15) balances the magnitude of the velocity field surplus with the
magnitude of the stress tensor field surplus.

Adequate choice of the error norm

Up to now, the vector norm ‖Wl(u)‖∗ and the tensor norm ‖Wl(τp)‖∗ in (5.14) and (5.15) have not been
precisely defined. Next, we give details on an adequate choice of these norms in our application.

The accuracy of the velocity field u(xi, t j) ∈ R3 at fixed position in space-time (xi, t j) is measured
according to one of the following two vector norms:

‖u(xi, t j)‖2 =
(
u(xi, t j)T · u(xi, t j)

)1/2
(Euclidean norm) (5.16)

‖u(xi, t j)‖∞ = max
(
|u(xi, t j)|, |v(xi, t j)|, |w(xi, t j)|

)
(comp.-wise maximum norm). (5.17)

Usually, the velocity field has one dominant direction of flow. Then, the maximum norm in (5.17)
measures the velocity component in flow direction. Moreover, since the solution is computed on a
discrete space-time grid (xi, t j) with i = 1, . . . , I and j = 1, . . . , J we require a weighted average of the
point-wise error terms in (5.16) and in (5.17). Consequently, for a discrete solution u ∈ Vl we define
the two error norms

‖u‖2 =

 ∑
(xi,t j)

‖u(xi, t j)‖22 ∆t j ∆xi


1/2

(discrete L2-norm of u) (5.18)

‖u‖2,∞ =

 ∑
(xi,t j)

‖u(xi, t j)‖2∞ ∆t j ∆xi


1/2

(discrete L2-norm of main flow direction) (5.19)

that are used in the refinement procedure. Here, ∆t j denotes the timestep width and ∆xi the spatial
resolution in Vl.

The L2-norms for the stress tensor τp ∈ R
3×3 on a space-time grid (xi, t j) are defined analogously but

instead of the vector norms (5.16) and (5.17) we now employ one of the matrix norms

‖τp(xi, t j)‖2 =
(
τp(xi, t j) : τp(xi, t j)

)1/2
(Frobenius norm) (5.20)

‖τp(xi, t j)‖∞ = max
(
|τxx(xi, t j)|, |τxy(xi, t j)|, . . . , |τzz(xi, t j)|

)
(maximum norm) (5.21)

at each grid point (xi, t j). In (5.20) the term τp(xi, t j) : τp(xi, t j) denotes the double dot product of τp,
i.e. the squared sum of all entries of τp. Finally, we obtain as error norms for optimizing the stress
tensor

‖τp‖2 =

 ∑
(xi,t j)

‖τp(xi, t j)‖22 ∆t j ∆xi


1/2

(discrete L2-norm of τp) (5.22)

‖τp‖2,∞ =

 ∑
(xi,t j)

‖τp(xi, t j)‖2∞ ∆t j ∆xi


1/2

(discrete L2-norm of main stress component). (5.23)
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As mentioned before, an adequate choice of ‖·‖∗ is problem specific:

• If the problem has a dominant direction of flow, e.g. in a channel flow, we usually employ the
maximum norms (5.19) for u or (5.23) for τp.

• In flow fields without a dominant flow direction, e.g. in rotational type flows, we employ the
weighted error norms (5.18) or (5.22), respectively.

Estimation of involved work

Next, we consider the work or cost that is associated with each grid level l. According to (4.10), the
computational cost ml of our spatial grid (l1, l2, l3), see Fig. 5.3, is

ml =

3∏
i=1

(2li − 1). (5.24)

In this case, ml denotes the number of inner grid cells for a PDE approximation.
In our setting, we employ the work required for all stochastic realizations nl as a measure for the

involved work. Loosely speaking, nl is the product of the

• inner grid complexity ml due to the spatial grid,

• time integration complexity due to the temporal grid,

• the number of samples Ms due to the stochastic grid and

• the dimensionality of the samples due to the modeling accuracy N.

LetWs be the average work that is required to compute a single realization. The workWs can be
approximated as

Ws = C1 dT/∆te 3N (5.25)

floating point operations with C1 ∈ R. Equation (5.25) sums up that a sample is of dimensionality 3N
and that the temporal scheme employs dT/∆te steps. The total number of floating point operations is
then

nl = C2 ml MsWs (5.26)

with C2 ∈ R and ml as in (5.24) with d = 3. Theoretically, the cost is n(1,...,1) = 1 on the initial level. In
practice, however, there are some restrictions on the coarsest grids due to stability reasons. We discuss
these restrictions in the following section on Shifted index sets. Some typical restrictions are

• a CFL-type stability restriction for the temporal grid l4 and

• a minimum number of initial samples for the stochastic grid l5.

The second restriction is, for instance, used in the dimension-adaptive sparse grid approach for sto-
chastic ODEs by Gerstner and Heinz [45]; see Section 4.3.3. A sufficient number of initial samples
on the coarsest level ensures that the variance of the solution does not lead to a stability breakdown of
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the numerical approach. As a consequence of these stability considerations, the number of time steps
NT = dT/∆te is of the form

NT = CT (2l4 − 1) (5.27)

with CT ∈ N. The parameter CT is chosen such that stability issues are avoided in all discrete approxi-
mation spaces. We note that CT often depends on the spatial grid accuracy such that CT = CT (l1, l2, l3).

Furthermore, the number of samples Ms is

Ms = Cs(2l5 − 1) (5.28)

with CS ∈ N and we usually set CS = 100. This choice corresponds with the minimum number of
samples used by Gerstner and Heinz [45]. Moreover, the last index l6 = 1, 2, . . . represents the number
of spring segments N.

As a result, we can rewrite the complexity estimate (5.26) as

nl = O

l6 5∏
i=1

(2li − 1)

 . (5.29)

Consequently, the cost increases linearly in the modeling dimension but exponentially in all numerical
dimensions. The constants C,Cs,CT in (5.29) are of no practical interest for the adaptive algorithm as
they cancel out in the local indicator (5.14) and do not affect the maximum in (5.15).

Effect of nested sampling

Our dimension-adaptive approach refines different problem dimensions which are illustrated in Fig. 5.3
on page 120. In the figure, the index l5 is used for the number of stochastic samples / Brownian
configuration fields. Typically, this number doubles with every level increase. For a fixed level l5, the
corresponding samples are independent and identical distributed according to the probability density
function ψ from Chapter 1. Nevertheless, the question arises if a correlation between the samples on
different grid levels l5 should be applied or not. In the following, we show that a correlation of the
different stochastic levels leads to several advantages in our application.

First, we recapitulate that an average decay of the hierarchical surplus according to (5.8) is assumed.
This condition, however, is not necessarily fulfilled for a single realization of ⊗d

i=1∆i ul on a specific
grid l. For this reason, Giles [47] repeats his MLMC algorithm, described in Section 4.3.1, several
times to demonstrate that the expected root mean square error can be achieved. As explained in Chap-
ter 3, each simulation of a full multiscale flow problem requires months of computing time so that we
cannot average our simulations that way. Therefore in our application, the quantities of interest are only
averaged over time similar to the simulations by Vargas, Manero and Phillips [128].

We observe, however, that the variance of a single realization of ⊗d
i=1∆i ul is reduced if the samples

on different sampling levels l5 are correlated. For this purpose, we use nested samples in the grid
sequence. If, for instance, the coarsest grid l5 = 1 consists of 100 sample particles, we reuse those
100 samples on the next finer grid l5 = 2 with 200 realizations. More precisely, we reuse the initial
configuration and apply the same Brownian motion to evolve the samples in time. In practice, this
reduces the computation time since we just have to compute the samples on the finest grid, store them,
and then use subsets on the coarser grid levels.
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Figure 5.4.: Comparison of the τxy error decrease for uncorrelated and correlated samples in a steady
Couette flow, cf. Section 6.1.1.

A further advantage of nested sampling is shown in Fig. 5.4. Here, we compare the absolute L2-
error of the τxy stress component depending on the number of stochastic samples in a steady Couette
flow; see Section 6.1.1. On the left-hand side, we compare three independent runs of the algorithm for
different sample numbers Ml5 = 26, 28, . . . , 216. Note that the outcome on the left-hand side of Fig. 5.4 is
interchangeable since all samples are uncorrelated. On the right-hand side, we perform three runs of the
multiscale algorithm but use nested sampling points. In this case, all samples from the first realization
(black solid line), from the second realization (blue solid line) and from the third realization (red solid
line) are correlated. In both figures, the expected order of convergence is pl5 = 0.5 for all levels of
refinement l5. But, we obtain a more monotonic error decrease for correlated samples. Obviously,
this gives an eminent advantage in our dimension-adaptive approach since the variance according to
Assumption 2 in (5.9) is reduced.

Furthermore, we note that the sample correlation between different levels depends on the rate of
refinement. If we double the number of samples for each level l5, consecutive levels which are required
to build ⊗d

i=1∆i ul share 50% of the Brownian paths in the stochastic problem dimension.
Note that this kind of correlation is closely related to the correlation in the Brownian configuration

field (BCF) method itself. As explained in detail for the BCF method in Section 2.2, the configuration
fields evolve according to a Brownian motion that only depends on time but not on space such that
their discrete Brownian motion is correlated. Our approach now extends this correlation to different
grid resolutions l in the combination formula. As a result, this decreases the variance of the solution
analogously to the BCF approach.

Shifting index set in the combination formula

As mentioned before, we apply the combination technique to multiscale polymer flows. It is known
from previous results in the literature, see e.g. Griebel, Huber and Zenger [50] or Kranz [78], that very
coarse grids in the spatial dimensions are unable to resolve vortex structures that occur, for instance, in
contraction flow simulations as considered in Section 3.2.2. For this reason, several approaches exist
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Figure 5.5.: Illustration of a constant index shift ∆l = (1, 0) in the dimension-adaptive combination
formula (top row) and the resulting sparse grid (bottom row).

to achieve a more suitable combination set which further modify the index set I in (5.1); see Kowitz
et al. [77].

The main idea for optimizing the combination grid is to exclude anisotropic grid solutions with an
insufficient accuracy in certain dimensions from our index set by applying a constant shift ∆l. In Fig 5.5
we illustrate the index set I + ∆l for a constant shift ∆l = (1, 0, . . . , 0) in the first problem dimension.
This index shift does not change the number of full grid solutions but increases their resolution. As a
result, the adaptive combination formula (5.1) modifies to

uc
(I+∆l) =

∑
l∈(I+∆l)

 (1,...,1)∑
z=0∈Nd

(−1)|z|1 · χ(I+∆l)(l + z)

 ul (5.30)

with a constant shift ∆l ∈ Nd and χ(I+∆l) as characteristic function on the shifted index set. For
simplicity in practical applications, see Chapter 6, we often denote the coarsest full grid solution with
the index (1, . . . , 1) even if that solution is already refined. In that case, we actually consider a renamed
index set Ĩ that differs from I just by the index shift ∆l. Due to reasons of simplicity in Chapter 6, we
still denote the index sets with I even if they have been shifted in certain dimensions.

As expected, the size of a level shift depends on the specific problem. We note that our multiscale
flow solver NaSt3DGPF, for instance, requires a minimum number number of grid cells in space for
the discretization of the convective velocity terms. Furthermore, NaSt3DGPF is semi-implicit in time
such that the maximum timestep width is restricted by a CFL-condition. Therefore, the simulations in
Chapter 6 require more than one interior grid point.
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5.2.2. Sparse dimension-adaptive algorithm

Algorithm 5: Dimension-adaptive algorithm for multiscale simulation of polymeric fluids.

Result: Solution (uC
I
, τp

C
I

) with L2-error < TOL.
1 Select important problem dimensions d = 1, . . . , 6 ; /* compare with Fig. 5.3 */
2 Shift grid indices with ∆l ∈ Nd as in (5.30) ; /* avoid coarse full grid solutions */
3 Determine maximum resolution lmax ; /* e.g. restriction on modeling grid */
4 l B (1, . . . , 1) ; /* coarsest full grid solution that resolves flow structure */
5 A B {l} ; /* active index set */
6 O B ∅ ; /* old index set */
7 Select gl according to (5.14) or (5.15) ; /* local benefit/ profit indicator */
8 Determine global error indicator E and error tolerance TOL;
9 while E > TOL do

10 select l ∈ A with largest gl according to (5.14) or (5.15);
11 O = O ∪ {l}, A = A\{l};
12 for t ← 1 to d do
13 j = l + et;
14 if j − el ∈ O ∀ l = 1, . . . , d and if;
15 j ≤ lmax then
16 A = A ∪ { j};
17 Apply multiscale flow solver from Algorithm 2 on full grid space V j;
18 Compute local benefit/ profit indicator g j;
19 end
20 end
21 Compute new global error indicator E ; /* terminate algorithm if r-times below

TOL */

22 end
23 Compute (uC

I
, τp

C
I

) on shifted index set I = O ∪ A according to (5.30);

Finally, we present Algorithm 5 which modifies Algorithm 4 such that it allows for multiscale poly-
meric flow simulations. Using this algorithm, we obtain the numerical results in Chapter 6.

We note that the refinement procedure does not necessarily converge in every case. A typical problem
in an dimension-adaptive algorithm is the following: If ‖ul+ei − ul‖∗ ≈ 0 for any i ∈ {1, . . . , d}, then
the algorithm terminates even if the global error is still large. This situation can occur due to a non-
monotonic error decrease as illustrated in Fig. 5.4.

In these situations, the robustness of the algorithm can be increased by extending the index shift ∆l
in the combination formula (5.30), by using the L∞-norm in (5.19) instead of the L2-norm in (5.18) in
the refinement procedure, or by requiring that the global error is below the threshold TOL r-times in a
row as indicated in line 21 of Algorithm 5.

In Fig. 5.6, we illustrate the effect of an index shift on the cardinality of a two-dimensional index
set I. For this example, we assume an isotropic increase of the computational complexity in both
dimensions and that we are able to compute full grid solutions up to level l1 +l2 ≥ 9. After that, a further
refinement becomes too expensive. First, the index set I contains 36 index pairs in the combination
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Figure 5.6.: Comparison of the number of index pairs in a 2D index set (colored in red) for different
index shifts. An extreme case is a single full grid solution in which the combination formula
has maximum stability but looses all of its efficiency. However, this extreme situation does
not occur in our simulations in the following chapter.

formula (5.30). Next, a constant shift I + (1, 2) reduces the cardinality of I to 15 grids, cf. central
figure in Fig. 5.6. On the one hand, this shift increases the stability of the approach since anisotropic
index pairs can be avoided that otherwise that might lead to instabilities in the combined solution. On
the other hand, this decreases the efficiency of the approach since the combination formula is applied
to a smaller index set. An extreme example is shown on the right-hand side of Fig. 5.6. Here, a further
index shift has reduced the elements in I such that only one full grid solution V4,5 remains. Provided
the numerical scheme converges, a single approximation space is always stable but does not obtain any
benefit from the combination formula (5.30).

As a result, the example in Fig. 5.6 shows that numerical stability of Algorithm 5 can always be
achieved provided its efficiency is sacrificed. This extreme example, however, does not occur in our
simulations in the following Chapter 6. There, we apply Algorithm 5 to polymeric fluid flows. Further-
more, we show that our adaptive algorithm always reduces the computational complexity and allows
for much more refined simulations.



6. Numerical results on sparse grids

This chapter shows the advantages of our dimension-adaptive sparse grid approach. In the following,
we concentrate on two important applications which are

• shear-type flows/ Couette flows in Section 6.1 and

• extensional-type flows in Section 6.2.

Both types of flow are often considered in rheology since they allow for a polymeric fluid character-
ization. Furthermore, all problem dimensions that have been identified in Fig. 5.3 for optimization are
used in the following applications. These problem dimensions include anisotropic

• spatial grids,

• temporal grids,

• stochastic grids and

• modeling grids.

We investigate the interaction of these different dimensions and show that dimension-adaptive solvers
have a lower computational complexity than classical full grid solvers. Using our approach, it is possible
to reduce the curse of dimensionality that often occurs in this type of application. For all applications
in Section 6.1 and Section 6.2 we explicitly state the reduction of complexity that can be achieved.

Another interesting aspect which will be analyzed in the following is that the process of dimension-
adaptive refinement only has to be applied once to a specific class of fluid problems. The resulting
combined grids / index set for such a class can be used for further simulations with modified flow con-
ditions provided that the solution continuously depends on the modified parameters. We will investigate
this effect in Section 6.1.3. In such situations, the adaptive refinement does not lead to any overhead
compared to the classical combination technique in d-dimensional problem space.

6.1. Couette flows

A Couette flow occurs in the fluid volume between two parallel plates that move relative to each other;
see Fig. 6.1 (a). In the non-Newtonian case, viscous and elastic forces act on the fluid and lead to a fluid
flow in the direction of the moving plate. As the flow is assumed to be laminar, we only have to consider
one velocity component of the two dimensional velocity field u ∈ O ⊂ R2, i.e. u = u(x, y, t) ex =

u(y, t) ex (continuity equation) with ex as canonical unit vector in flow direction.
In the beginning for t = 0, the fluid is at rest. Then, for t > 0 the upper plate at y = L moves with

a constant velocity V . In the Newtonian case, the fluid velocity u monotonically increases such that
a constant velocity gradient ∂u

∂y = V/L := γ̇ occurs at steady state. In the non-Newtonian case, the

129
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Figure 6.1.: Illustration of a shear flow at steady state (left) and visualization of the velocity component
u over space and time in the non-Newtonian case (right).

steady state result is identical to the Newtonian case in Fig. 6.1 (a) but the temporal evolution differs.
Fig. 6.1 (b) visualizes the temporal evolution of u(y, t) for t ∈ [0, 1] and V = L = 1.0.

For a Couette flow, the complex multiscale system (1.59)–(1.62) simplifies to

∂u(y, t)
∂t

=
1

Re
β
∂2u(y, t)
∂y2 +

1
Re

∂τxy(y, t)
∂y

(6.1)

dQ(y, t) =
[
(∇u(y, t))T Q(y, t) −

1
2 De

Q(y, t)
]

dt +
1
√

De
dW(t) (6.2)

τxy(y, t) =
1 − β
De

E[Qx(y, t) Qy(y, t)] (6.3)

with Q(y, t) = (Qx,Qy,Qz)(y, t) ∈ D ⊂ R3 and with De as Deborah number, Re as Reynolds number
and β as viscosity ratio as defined in (1.10). Furthermore, the initial and boundary conditions are

u(y, 0) = 0, u(0, t) = 0, u(1, t) = V (6.4a)

τxy(y, 0) = 0, ∂τxy(0, t)/∂y = ∂τxy(L, t)/∂y = 0 (6.4b)

Q(y, 0) ∼ ψeq(q) =
1

(2π)3/2 exp
(
−
‖q‖2

2

)
(6.4c)

for all t ∈ [0, 1] and for all y ∈]0, L[.
We further note that the simplified system (6.1)–(6.3) describes a non-Newtonian fluid using a

Hookean dumbbell model; cf. (1.43a). The system (6.2)–(6.3) can be rewritten into a constitutive
equation for τxy which leads to the Oldroyd-B model defined in (1.4) and (1.5). Here, we use the
Oldroyd-B model for comparison purposes to obtain a reference solution. Fig. 6.2 visualizes u(y = 0.5)
and τxy(y = 0.5) over time in the center of a channel with height L = 1.0. The corresponding fluid
parameters are Re = 0.1, De = 0.5 and β = 0.1. Unless stated otherwise, all simulations in this sec-
tion employ these parameters. In Fig. 6.2, we observe two velocity overshoots for u(y = 0.5) at about
t ≈ 0.2 and t ≈ 0.65. These overshoots and the undershoot at t ≈ 0.45 are a result of the elastic fluid
behavior that leads to a viscosity change. Due to the delayed increase of τxy, the effective viscosity in
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Figure 6.2.: Velocity component u and stress component τxy over time in a non-Newtonian Couette
flow.

the beginning is lower than at steady state. This explains why the maximum velocity occurs at t = 0.2
and not at steady state.

6.1.1. Homogeneous Couette flows as a stochastic ODE problem

In this section, we consider a further simplification of (6.1)–(6.3) that leads to a stochastic ODE prob-
lem. For this purpose, we note that the velocity field at steady state for t → ∞ has a constant velocity
gradient γ̇ =

∂u(y)
∂y for all y ∈ [0, L]; cf. Fig. 6.1 (a). Since the stochastic PDE (6.2) only depends on

the velocity gradient, the fluid equations (6.1) do not have to be solved in that case. Furthermore, the
random field Q(y, t) in (6.2) and in (6.3) then simplifies to a stochastic process Q(t). As a result, we
only have to solve the stochastic ODE (6.2) and to perform the integration in (6.3) to compute the stress
component τxy over time. In this simplified setting, we decide for β = 0 as viscosity ratio since we only
compute the elastic stress component and do not consider a Newtonian stress contribution. The time-
integration of Q(t) is performed for the Hookean spring force with an Euler-Maruyama method; see
Section 2.2.2. The implementation has been programmed in Matlab. The routines provided by Matlab
are used to generate the initial equilibrium samples and to perform the interpolation of the solution on
a common grid.

In the following, we compare the accuracy and the computational effort for the simplified ODE prob-
lem that is discretized on different full grids V (∞)

n as in Chapter 3, on approximations to the sparse grid
space V (1)

n with the classical combination formula (4.31) described in Chapter 4.2 and on approxima-
tions with the dimension-adaptive algorithm described in Chapter 5.2; see Algorithm 5.

In Table 6.1 we list a sequence l = (l1, l2) of anisotropic full grid spaces Vl that is derived from the
different dimensions in Fig. 5.3. Similar to the Multilevel Monte Carlo (MLMC) method by Giles [47],
we then combine full grid solutions with a different number of timesteps and with different numbers of
Brownian configuration fields / sample points. For this purpose, we use the combination formula for
shifted index sets (5.30) described in Section 5.2.1. Moreover, the grid sequence listed in Table 6.1 has



132 6. Numerical results on sparse grids

Table 6.1.: Sequence of different resolutions (l1, l2) for a steady Couette flow.
level l 1 2 3 4 5 6 7 8
samples l1 256 1024 4096 16384 65536 262,144 1,048,576 4,194,304
temporal grid l2 1/8 1/16 1/32 1/64 1/128 1/256 1/512 1/1024
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Figure 6.3.: Comparison of the full grid spaces V (∞)
6 and V (∞)

7 with the grids in the classical combination
spaces V (C)

6 and V (C)
7 . The resolution of the different grids is listed in Table 6.1.

already been refined such that extremely anisotropic full grid solutions are avoided in the classical and
in the dimension-adaptive combination technique.

On the left-hand side of Fig. 6.3, the temporal and spatial resolution of the single full grid that
defines V (∞)

6 is compared with the resolution of the grids that build V (C)
6 . Here, grids colored in red

have a positive weight +1 and grids colored in blue have a negative weight -1 in the two-dimensional
combination formula (4.29). Analogously, the corresponding grids in V (∞)

7 and in V (C)
7 are shown on

the right-hand side of Fig. 6.3.
The grids in V (C)

6 and V (C)
7 equally weight both dimensions. This approach is only justified if the

refinement factors in Table 6.1 coincide with the corresponding rates of convergence of the numerical
schemes. In Chapter 2, we describe the numerical schemes in detail. For the simplified stochastic ODE
in (6.2), we employ a first-order Euler-Maruyama scheme in time and evaluate the integral in (6.3) with
a Monte Carlo approach. For this reason, we expect a first-order convergence in time and a decay of the
sampling error with a rate of 1/2. Consequently, the rate of grid refinement in Table 6.1 is β1 = 4 for
the first parameter dimension and β2 = 2 for the second dimension; cf. Section 5.1.2.

Potential of dimension-adaptivity In Table 6.1 the factor of refinement was chosen such that the
classical combination formula (4.29) is applicable. Next, we apply the dimension-adaptive combina-
tion technique. Provided the grid sequence in Table 6.1 was chosen properly, the dimension adaptive
refinement should lead to the identical result.

To better comprehend the dimension-adaptive refinement, we first analyze the benefit and the profit
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Figure 6.4.: Comparison of the benefit and the profit indicator for the grid index pair (l1, l2) in a steady
Couette flow. Note that the rate of refinement is β1 = 4 in the first and β2 = 2 in the second
parameter dimension.

indicator of each index pair (l1, l2) in Fig. 6.4. As a benefit indicator for the contribution of Vl1,l2 we
employ the size of the hierarchical surplus approximation ‖Wl1,l2(τxy)‖2 defined as the tensor product
of first-order difference operators; see equation (5.6) and (5.7). Up to a normalization constant, this
choice coincides with the indicator gl in (5.14) with κ1 = 0 and κ2 = 1. As expected, ‖Wl1,l2(τxy)‖2
decreases with increasing (l1, l2) ∈ I. Apart from some slight oscillations due to the stochastic nature
of τxy, its contour lines in Fig. 6.4 (a) run diagonally. A further explanation for the oscillations could
be that the temporal grid with a time-step width of 1/8 for l2 = 1 is still in the pre-asymptotic regime
and a further index shift in that direction might be necessary to obtain the asymptotic first-order rate
of convergence; cf. Section 5.2.1. Nevertheless, using the benefit indicator in Fig. 6.4 (a), Algorithm 5
produces an index set which is nearly identical to the index set shown in Fig. 6.3 apart from a slight
tendency to perform a further refinement step in the temporal dimension.

Next, we consider the profit indicator in Fig. 6.4 (b). Up to a normalization constant, this choice
coincides with the indicator gl from (5.15) in Section 5.2.1 for λ = 0. Consequently, ‖Wl1,l2(τxy)/nl1,l2‖2
relates the benefit associated with the hierarchical surplus approximation on the one hand with the cost
nl1,l2 of the approximation space Vl1,l2 on the other hand. Since the cost nl1,l2 associated with level
(l1, l2) is of order O(nr. of samples ·∆t−1

l2
), we just employ the product of samples points and the inverse

timestep width as an approximation to the cost. This definition can also be applied to the case that
the final simulation time is Tfinal , 1 since the shape of the contour lines of ‖Wl1,l2(τxy)/nl1,l2‖2 is not
affected by this scaling. Theoretically, we could also relate the cost on level (l1, l2) to the cost of the
coarsest grid V1,1 and consider nl1,l2/n1,1 instead of nl1,l2 . However, the resulting index set I is not
affected by this scaling.

Fig 6.5 shows the resulting index set I(p) for the iterations p = 1, 2, 4, 7, 12, 19 of Algorithm 5. In
agreement with the color coding in Fig. 6.3, grids with a positive weight +1 are colored in red, grids
with a negative weight -1 are colored in blue and the remaining gray colored grids are not contained
in the combination formula since they have a zero weight contribution. We note that the early iteration
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Figure 6.5.: Index set I(p) for different iteration steps p of the dimension-adaptive algorithm. The color
of the grids indicates their weight in the combination formula which is +1 (red), -1 (blue)
and 0 (gray).

steps p = 1, 2, 4, 7 reproduce the classical combination technique space V (C)
n with n = 1, 2, 3, 4. This

corresponds with the contour lines of the profit indicator shown in Fig. 6.4 (b). Then, the profit indicator
leads to a stronger refinement of the temporal grid. The resulting grid is shown in Fig 6.5 for the iteration
steps p = 12 and p = 19. The primary reason for the stronger refinement of the temporal grid is the
anisotropic increase of the cost nl1,l2 in this direction. This is a consequence of the rate of refinement
in the different dimensions in Table 6.1. As a result, a profit indicator has a tendency to include grids
with a low computational complexity that would not have been chosen by a refinement with respect to
the benefit; cf. Fig. 6.4 (a).

In Table 6.2 we compare the accuracy of all three approaches with respect to the computational effort.
For this purpose, a reference solution of τxy has been computed on a fine temporal grid by solving the
corresponding macroscopic constitutive equation (1.8) in the special case β = ε = ζ = 0. This parameter
choice leads to a simplification of the Oldroyd-B model which is known as upper-convected Maxwell
(UCM) model. Furthermore, Table 6.2 specifies the relative costs of the solutions. The relative cost of
a full grid solution Vl1,l2 is defined as the ratio nl1,l2/n1,1. Then, the coarsest grid V1,1 has a relative cost
of 1.

As a measure for the accuracy of the approaches, Table 6.2 lists the relative L2-error with respect
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Table 6.2.: Relative L2-error of τxy with respect to first iteration.

n cost (full) V (∞)
n (full) cost (sparse) V (C)

n step p cost (adapt.) VI(p)

1 1 1.0 1 1.0 1 1 1.0
2 8 6.7−1 7 7.3−1 2 7 7.3−1

3 64 1.9−1 34 2.2−1 4 34 2.2−1

4 512 7.2−2 148 1.7−1 7 148 1.7−1

5 4,096 3.9−2 616 9.0−2 12 272 1.1−1

6 32,769 2.2−2 2,512 4.7−2 19 1,248 5.3−2

7 262,144 1.2−2 10,144 2.6−2

to the first iteration, i.e. ‖τxy,n − τxy,ref‖2/‖τxy,1 − τxy,ref‖2 with τxy,n ∈ V (∞)
n and analogously for the

errors in the sparse grid approximation spaces. We consider relative errors since the absolute errors in
u and in τp usually differ in size. Therefore, investigating relative errors allow a better balancing of
the different quantities of interest in the following sections. In accordance with the expected numerical
rates of convergence, the error of the full grid solutions in V (∞)

n decreases by a factor of 2 if the level
index n is increased by 1; cf. Table 6.1. Next, the central column in Table 6.2 lists the relative error of
the classical combination technique. As expected, on the same level index n the solution in V (C)

n has a
larger error as the solution in V (∞)

n . On the other hand, the solution in V (C)
n has a much lower complexity

compared to V (∞)
n . For the same computational effort, the sparse grid approach achieves a lower relative

error as the full grid solution.
The right column in Table 6.2 lists the error of the dimension-adaptive refinement. Since the iteration

steps p = 1, 2, 4, 7 reproduces the classical combination space the error is the same as in V (C)
n . The iter-

ation steps p = 12 and p = 19 seem to achieve a slight improvement compared to classical combination
space. However, the results are not conclusive here. One reason for the lower complexity of VI(p) for
p = 12 and p = 19 is that the corresponding index sets contain less non-zero full grid solutions than
than the combination spaces V (C)

5 and V (C)
6 . We note, however, that the dimension-adaptive approach

would perform worse if the full grid solutions with zero weight (gray) would also be considered in the
cost calculation. Since we show in Section 6.1.3 that the adaptive index set I can be used for modified
flow conditions this justifies our cost consideration in Table 6.2 where solutions spaces with zero weight
are ignored.

6.1.2. General Couette flows as a stochastic PDE problem

In this section we consider the coupled system specified in (6.1)–(6.3). In contrast to Section 6.1.1, the
velocity field is now time-dependent and a two-way coupling exists between the velocity and the stress
tensor field. Furthermore, the velocity and the stress tensor become time-dependent random fields and
the spatial resolution can be varied as a third parameter dimension in the dimension-adaptive algorithm;
cf. Fig. 5.3. We apply Algorithm 5 to the velocity field component u since this unknown quantity is of
higher practical relevance than the stress tensor field. A further reason to optimize for the velocity field
instead of for the stress component τxy is that the SPDE (6.2) is only moderately influenced by the spatial
grid. This is due to the fact that a high spatial resolution only affects the velocity gradient as a coefficient
in the SPDE (6.2) for Q or τxy, respectively. Consequently, a dimension-adaptive procedure in three
parameter dimensions for τxy roughly reproduces a grid sequence as in Fig. 6.4 and therefore effectively
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Table 6.3.: Uniformly refined grid sequence (l1, l2, l3) for a time-dependent Couette flow.
level l 1 2 3 4 5 6 7 8 . . . 11
space 1/∆xl1 2 4 8 16 32 64 128 256
samples l2 256 512 210 211 212 213 214 215 . . . 218

1/∆tl3 16 32 64 128 256 512 1024 2048

reduces to the two parameter dimensions time (bias error) and stochastic realizations (variance error).
The situation differs for the velocity component u. Here, since the absolute error in u is usually one
order of magnitude smaller than the absolute error in τxy, a three-dimensional refinement is beneficial.
For a high accuracy in u an exact approximation of ∂τxy(y,t)

∂y in (6.1) is of major importance which requires
a fine temporal and stochastic grid to approximate τxy.

In Table 6.3 we list a sequence of different spatial, temporal and stochastic grid resolutions. For the
discretization in space we use central differences with a constant mesh width ∆xl1 = 1/l1. The central
difference stencil simplifies to one-sided differences at the boundary. Moreover, time integration of the
macroscopic velocity field is performed with an implicit Euler scheme that is unconditionally stable.
Here, the constant timestep width is ∆tl3 = 1/l3. As a result, the numerical scheme is of first-oder
accuracy in space and in time. The corresponding linear system of equations is directly solved with the
routines provided by Matlab. Analogously to Section 6.1.1, the SPDE in (6.2) is solved in time with
an Euler-Maruyama scheme with constant timestep width ∆tl3 = 1/l3 for l2 samples. Then, the integral
in (6.3) is evaluated with Monte Carlo quadrature using l2 sampling points in the center of the finite
difference cells as described in Section 2.1. In each dimension, the rate of grid refinement is βi = 2
for i = 1, 2, 3. Therefore, the cost uniformly increases in each dimension. This differs to Table 6.1 in
Section 6.1.1 in which the corresponding order of convergence was considered. Now, we directly use
the dimension-adaptive refinement algorithm to decide for the directions and the rates of refinement.
The advantage of this approach is that the grid sequence contains more levels and a refinement step
only moderately increases the cost of the resulting index set. Consequently, it is easier to avoid a too
strong refinement in one problem dimension.

Fig. 6.6 and Fig. 6.7 visualize the benefit and the profit indicator for two-dimensional cuts with
l3 = 3 and l3 = 5 in the three-dimensional grid sequence. The benefit indicator ‖W(l1,l2,l3)(u)‖2 for the
velocity component is computed according to (5.6) and indicates grid spaces with the largest benefit
contribution in the dimension-adaptive procedure. This approach of refinement is a special case of the
local refinement indicator gl in (5.14) with κ1 = 1 and κ2 = 0. In Fig. 6.7, we visualize the ratio of the
benefit to the involved work ‖W(l1,l2,l3)(u)/nl1,l2,l3‖2. In the adaptive refinement procedure described in
Section 5.2.1, this corresponds to a refinement indicator as in (5.15) for the special choice λ = 1, i.e. an
optimization of the velocity field. A comparison of Fig. 6.6 and Fig. 6.7 reveals some differences in the
isoline’s shape. While the benefit indicator performs a strong refinement in the stochastic dimension,
the profit indicator recommends are more uniform refinement. This is due to the low cost contribution
of mixed full grid spaces Vl1,l2,l3 with l1 ≈ l2 and moderate values for l1 and l2. Furthermore, the profit
indicator in Fig. 6.7 performs a similar refinement strategy also in the third parameter dimension. Apart
from that, we note in Fig. 6.6 some minor oscillations of the isolines for grid spaces Vl1,l2,l3 with either
l1 = 1 or with l2 = 1. A shift of the index set from I to I+ (1, 1, 0) as described in Section 5.2.1 would
remove these oscillations. However, since Algorithm 5 does not show any stability issues for the grid
sequence as in Table 6.3, we keep these coarse full grid solutions in our index set I.
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Figure 6.6.: 2D-cut of the benefit indicator with the index pairs (l1, l2, 3) and (l1, l2, 5) in a time-
dependent Couette flow.
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Figure 6.7.: Visualization of a 2D cut of the profit indicator with the index pairs (l1, l2, 3) and (l1, l2, 5) in
a time-dependent Couette flow.

Fig. 6.8 visualizes the index sets I(p) for the iteration steps p = 10, 25, 55, 90 of the dimension adap-
tive algorithm. The color of the grids in Fig. 6.8 represents the weight contribution in the combination
formula (5.30). Grids with a positive weight +1 are colored red, grids with a negative weight -1 are
colored blue and grids that are not required as they have a zero weight contribution are colored gray.
Furthermore, the combination technique in 3 dimensions also possesses grids with a weight factor -2.
These grids are colored green. The optimization in Fig. 6.8 bases on the size of the profit indicator
‖W(l1,l2,l3)(u)/nl1,l2,l3‖2 as shown in Fig. 6.7. The profit indicator leads to a more or less equal refinement
in each problem dimension. Later on, we will perform a refinement that solely bases on the benefit
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Figure 6.8.: Resulting index set I(p) for the iteration steps p = 10, 25, 55, 90 of the dimension adaptive
algorithm. The direction of refinement bases on the profit indicator.

indicator ‖W(l1,l2,l3)(u)‖2 and compare the different index sets. It will turn out that the index I(90) seems
to be close to an optimal index set with respect to the cost for a given relative L2-accuracy of 0.02 for u.

Fig 6.9 shows the solution u(y, t) at two different positions in the channel with height y = 0.25 and
y = 0.5 for the index sets I(p) with p = 10, 25, 55, 90 in comparison with the reference solution. Again,
the reference solution was computed with the macroscopic Oldroyd-B model (1.1), (1.2) and (1.4) on
a fine spatial and temporal grid. The fluid velocity is largest in the channel center at y = 0.5 (top
row of Fig. 6.9) and decreases towards the channel walls. At both positions in the flow space, we
observe a sequence of velocity over- and undershoots which decrease with ongoing time. The velocity
overshoot at t ≈ 2 is shown in a zoomed extract on the right-hand side of Fig 6.9. As expected, the worst
approximation of the velocity overshoot is obtained on the approximation space VI(10) . Interestingly,
the coarse approximation space VI(10) does not only overpredict the magnitude of the velocity overshoot
but also shifts its position in time. More precisely, the velocity overshoot in the approximation space
VI(10) appears at t ≈ 0.22 instead of t ≈ 0.19. This difference, however, disappears completely with
further refinement.
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Figure 6.9.: Visualization of the velocity field approximation at two different positions in the flow do-
main for the spaces VI(p) and iteration steps p = 10, 25, 55, 90 of the dimension-adaptive
refinement.

In Fig. 6.10, a quantitative measure of the error decrease with ongoing refinement is given. Here, we
measure the relative error E(uC) =

‖uC−uref‖2
‖u(1,1,1)−uref‖2

with respect to the first iteration and with uC ∈ VI(p) for
p = 1, . . . , 90. As mentioned before, the error does not decrease monotonically. Therefore, there is no
guarantee that a further refinement step necessarily decreases the error in u although this is generally
the case. Furthermore, the refinement procedure can lead to situations in which VI(p) = VI(p+1) for a
certain number of refinement steps. This situation appears, for instance, when line 11 in Algorithm 5
returns false, i.e. if ∃l = 1, . . . , d with j − el < O. As the index set is not modified in this case, the
approximation space is unchanged and therefore the error stagnates. In this application, however, the
algorithm achieves optimal results in accordance with the results in Fig 6.9 and in Fig. 6.10.
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Figure 6.10.: Relative L2-error of u with respect to u1,1,1 ∈ V1,1,1 for each iteration step.

Comparison of profit and benefit grid Next, we compare different refinement criteria for the
dimension-adaptive algorithm. Moreover, a special emphasis is on the differences between a refinement
with a benefit indicator as shown in Fig. 6.6 and with a profit indicator as shown in Fig. 6.7. For
this purpose, Fig. 6.11 compares two index sets that have the same relative error E(uC) ≈ 0.02. The
index set in the first row of Fig. 6.11 was created in p = 90 iteration steps using the profit indicator
‖W(l1,l2,l3)(u)/nl1,l2,l3‖2. This is the index set from Fig. 6.8 (d). On the other hand, the second row of
Fig. 6.11 shows an index set which results from a benefit-oriented refinement using ‖W(l1,l2,l3)(u)‖2.
Since it is difficult to compare the full three-dimensional index sets, we concentrate on two 2D l1/l2-
subspaces with l3 = 3 and l3 = 5. These choices correspond with the 2D cuts in Fig. 6.6 and Fig. 6.7. It
can be seen that the index sets in Fig. 6.11 are created according to the isolines of the benefit and profit
indicator, respectively. While the benefit indicator leads to index sets with very anisotropic grids, i.e.
l1 � l2 or vice versa, the profit indicator also contains isotropic grids with l1 ≈ l2. As mentioned before,
the isolines of the benefit indicator oscillate for l1 = 1 or l2 = 1. If the index set I + (1, 1, 0) instead
of I would be considered, a much stronger refinement in the stochastic than in the spatial dimension
could be observed. For instance, the index set contains the solution spaces V2,6,3 (4-times refined in
l2-dimension compared to V2,2,3) and V4,2,3 (2-times refined in l1-dimension compared to V2,2,3). This
reflects the lower order of convergence of 1/2 in the stochastic dimension compared to the first-order
convergence in the spatial dimension.

It is not directly clear which of the two index sets shown in Fig. 6.11 is better. On the one hand,
the profit grid is created with p = 90 iterations of Algorithm 5 while the benefit grid requires p =

105 iterations. From this perspective, the profit-oriented refinement is the method of choice since the
algorithm requires fewer iterations. However, the process of refining the index set I has to be applied
only once since the resulting index set can be reused in comparable flow situations as described in
Section 6.1.3.

A further approach to evaluate the quality of the index sets in Fig. 6.11 focuses on the cost of all grids
in I with non-zero weight contribution. Again, we normalize this cost with respect to the cost of the
coarsest full grid solution V1,1,1 in I, i.e. the cost is defined as

∑
(l1,l2,l3)∈I nl1,l2,l3/n1,1,1 for those spaces

Vl1,l2,l3 with a combination coefficient , 0 in (5.30). Then for given accuracy E(uC) = 0.02, the cost
associated with the profit-oriented refinement is 5608. The most expensive full grids solution spaces in
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Figure 6.11.: Comparison of an index set created with a profit-oriented refinement (top row) with an
index set according to a benefit-oriented refinement (bottom row). Both index sets have
the same L2-error in the velocity component u.

this index set are V7,1,4 with relative cost n7,1,4/n1,1,1 = 512 = 29 (9-times refined), V3,1,7 with relative
cost n3,1,7/n1,1,1 = 256 = 28 (8-times refined) and V2,6,3 with relative cost n3,1,7/n1,1,1 = 256 (8-times
refined). Analogously, the cost of a benefit-oriented grid is 8160-times the cost of the discrete space
V1,1,1 which has one inner grid point, uses 16 steps in time and employs 256 samples in the SPDE.
Again, the profit indicator performs better than the benefit indicator.

Moreover, Fig. 6.11 specifies the number of grids with non-zero weight that have been used to com-
pute the relative cost. Here, the situation differs. While the benefit indicator uses 57 grids in the
combination formula, the profit indicator requires 67 grids. As mentioned before, these 67 profit grids
are still cheaper than the 57 benefit grids due to their relatively coarse refinement. An explanation for
this effect is that the benefit indicator always adds the best full grid solutions, ignoring the cost, and
therefore requires less grids while the profit indicator gives a better balance of cost and accuracy and
therefore minimizes the global cost.

Next, we analyze the influence of the refinement indicators on the resulting index set. For this
purpose, we do not only employ a pure benefit indicator (gl as in (5.14) with κ1 = 1 and κ2 = 0) and
a pure profit indicator (gl as in (5.15) with λ = 1) but furthermore also consider κ1-weighted cost to
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Table 6.4.: Comparison of the cost of different refinement indicators with the same relative error in the
combination formula. For comparison, the last two columns list the cost and the accuracy of
the two full grid approximation spaces. For a given accuracy, a profit-oriented optimization
requires the lowest cost.

approach total cost / n1,1,1 nr. of grids rel. error E(u)
κ1 = 0.7 21,708 154 0.02
κ1 = 0.85 7808 83 0.02
κ1 = 0.9 7808 83 0.02
κ1 = 0.925 8416 85 0.02
κ1 = 0.95 8816 69 0.02
κ1 = 0.975 8496 68 0.02
benefit grid (κ1 = 1) 8160 57 0.02
profit grid (λ = 1) 5608 67 0.02
V6,6,6 32,768 1 ≈ 0.04
V7,7,7 262,144 1 ≈ 0.01

benefit refinement indicators for the velocity field such that κ2 = 0. Table 6.4 compares the cost for
different choices of κ1. While κ1 = 1 only considers the benefit of a full grid solution, κ1 = 0 only takes
its computational cost into account. We note that κ1 = 0 results in the classical combination formula.
In this specific application, κ1 = 0 is not an optimal choice since the rate of refinement in Table 6.3 is
βi = 2 for i = 1, 2, 3 independent of the order of convergence in that dimension. Therefore, we cannot
expect for a cost-optimized grid to perform best. Indeed, Table 6.4 shows that a large number of 154 full
grid solutions is required for κ1 = 0.7 to obtain a similar relative L2-error as the two index sets shown in
Fig. 6.11. We do not list smaller values than κ1 = 0.7 since then even more full grid solutions would be
required. In this application, the interesting range for an optimal choice of κ1 is the interval [0.7, 1.0].
According to Table 6.4, the cost of the refinement indicator gl as in (5.14) with κ2 = 0 is minimized
for κ1 ∈ [0.85, 0.9]. Furthermore, if the number of non-zero grids in the combination formula shall be
minimized it is beneficial to use larger values for κ1 close to 1.0. Interestingly, none of the choices of κ1
that is listed in Table 6.4 leads to the same index set as the benefit indicator (gl as in (5.15) with λ = 1).
Consequently, the investigation shows that the resulting index set I strongly depends on the refinement
strategy.

Finally, the last two columns in Table 6.4 lists the cost and the accuracy of the two full grid solution
spaces V6,6,6 and V7,7,7. The accuracy of all dimension-adaptive approaches is between these two full
grid spaces but their computational cost is about one order of magnitude smaller. The optimal choice
in our setting can be achieved with the profit indicator. Here, the relative cost is 5608 using the opti-
mal index set. The corresponding sparse solution space has a higher accuracy than V6,6,6 but requires
roughly 1/6 of its cost. This result clearly shows the large benefit that is possible with a sparse grid
discretization. Using an optimal refinement strategy, it is possible to strongly reduce the limitations due
to the curse of dimensionality that were observed in Section 2.3.
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6.1.3. Effect of modified flow conditions on index sets

The process of creating an optimal index set I(p) with a dimension-adaptive approach leads to some
overhead since some elements in the final index set I have a zero weight in the combination for-
mula (5.30). But, a positive aspect is that the process of creating I only has to be applied once for a
specific class of problems. The index set can be reused for modified flow conditions. This property is
important, for instance, in the context of Uncertainty Quantification where the same type of problem
is considered various times with slightly modified flow conditions. This section considers for a fixed
index set the error increase in the case of modified flow conditions.
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Figure 6.12.: Comparison of the velocity field over time for different shear rates γ̇ = 1, 2, 4, 10. For γ̇ > 1
we reuse the index set from the profit-oriented refinement as shown in Fig. 6.8.
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As a first modification of the flow conditions, we vary the shear rate γ̇ in the range [1, 10]. In every
new simulation, we reuse the index sets I(p) from the profit-oriented refinement strategy for γ̇ = 1
since this approach performed best in the previous section; see Table 6.4. Next, Fig. 6.12 shows the
numerical solution in the channel center at y = 0.5 over time for the original shear rate γ̇ = 1.0 as in
Fig. 6.9 and for the shear rates γ̇ = 2.0, γ̇ = 4.0 and γ̇ = 10.0. As mentioned before, we always employ
the same index set I(p) for the iteration steps p = 10, 25, 55, 90 which are visualized in Fig. 6.8. Of
course, we have to compute the corresponding full grid solutions for the new shear rates. In this case,
however, the advantage is that we only have to compute the solutions with a non-zero weight in the
combination formula, for instance, 67 solutions in I(90) with card(I(90)) = 111. Since all of these grids
are comparative cheap, the numerical result can be obtained much faster than on a fine full grid.

As can be seen in Fig. 6.12 the fluid velocity linearly scales with the shear rate γ̇. Apart from that,
the temporal evolution of u is the same for all flow rates. In this case, the index set I(p) can be reused
for modified shear rates γ̇ , 1. For a better analysis of this assumption, we list the relative and absolute
L2-error (in space and in time) of u in Table 6.5. Interestingly, the relative error is almost identical
independent of the shear rate. This is due to the linear scaling of the flow rate with γ̇ which apart from
the scaling does not affect the velocity field profile. This coincides with the results in Fig. 6.12 since the
deviations, for instance, of the solution in I(10) to the reference solution are very similar for all shear
rates. Furthermore, Table 6.5 specifies the absolute error of the velocity field. As expected, this error
scales linearly with γ̇ analogously to the flow rate increase.

A further modification of the flow conditions can be applied to the Deborah number De which rep-
resents the amount of elasticity in the fluid. A modification of De is of practical relevance since the
Deborah number affects the flow profile and, therefore, is more difficult to approximate with a reused
index set. For this reason, Fig. 6.13 shows the velocity profile for De = 0.5 as in the previous section
and for the three modifications De = 1.0, 2.0, 4.0. The comparison shows that the velocity over- and
undershoots for the flow with De = 0.5 dampen out if De is increased and only one velocity overshoot

Table 6.5.: Comparison of absolute and relative L2-errors on dimension-adaptive sparse grids (obtained
for γ̇ = 1) for flows with different shear rates.

γ̇ = 1 γ̇ = 2 γ̇ = 4 γ̇ = 10
relative error ‖uC,p − uref‖2/‖uC,1 − uref‖2

iteration p = 1 1 1 1 1
iteration p = 10 0.373 0.366 0.363 0.362
iteration p = 25 0.172 0.165 0.163 0.162
iteration p = 55 0.068 0.065 0.064 0.064
iteration p = 90 0.02 0.019 0.02 0.02
absolute error ‖uC,p − uref‖2

iteration p = 1 1.07−1 2.16−1 4.33−1 1.090
iteration p = 10 3.98−2 7.88−2 1.57−1 3.93−1
iteration p = 25 1.83−2 3.55−2 7.05−2 1.76−1
iteration p = 55 7.21−3 1.39−2 2.76−2 6.90−2
iteration p = 90 2.09−3 4.17−3 8.59−3 2.20−2



6.1. Couette flows 145

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

time t

u
(y
=
0.
5)

Deborah number De = 0.5
apply adaptive algorithm

VI(10)

VI(25)

VI(55)

VI(90)

Vref

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

time t

Deborah number De = 1.0
reuse De = 0.5 grid

VI(10)

VI(25)

VI(55)

VI(90)

Vref

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

time t

u
(y
=
0.
5)

Deborah number De = 2.0
reuse De = 0.5 grid

VI(10)

VI(25)

VI(55)

VI(90)

Vref

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

time t

Deborah number De = 4.0
reuse De = 0.5 grid

VI(10)

VI(25)

VI(55)

VI(90)

Vref

Figure 6.13.: Couette flow simulation with four different Deborah numbers. All four simulations employ
the index set I that was adaptively built for De = 0.5. The solution u is visualized at
position y = 0.5 for the dimension-adaptive iterations steps p = 10, 25, 55, 90.

remains. From a numerical point of view, it is easier to approximate a single large overshoot. In contrast
to our expectations, the numerical approximation on VI(p) even becomes better with increasing De.

The finding that the numerical solution in VI(p) becomes better for larger Deborah numbers, corre-
sponds with the results in Table 6.6 that state the quantitative error. Again, we note that the relative
error is only slightly affected by the Deborah number. This is due to the fact that the relative error is
measured with respect to the error in V1,1,1. Since the absolute error in V1,1,1 also becomes smaller for
larger Deborah numbers (cf. bottom rows in Table 6.6), the relative error (top rows) is calculated with
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Table 6.6.: Absolute and relative L2-error for flows with modified Deborah numbers. The dimension-
adaptive approach always uses the index set I(p) that has been obtained for De = 0.5.

De = 0.5 De = 1.0 De = 2.0 De = 4.0
relative error ‖uC,p − uref‖2/‖uC,1 − uref‖2

iteration p = 1 1 1 1 1
iteration p = 10 0.373 0.344 0.349 0.379
iteration p = 25 0.172 0.162 0.174 0.195
iteration p = 55 0.068 0.063 0.067 0.075
iteration p = 90 0.02 0.023 0.018 0.012
absolute error ‖uC,p − uref‖2

iteration p = 1 1.07−1 9.73−2 8.60−2 7.49−2
iteration p = 10 3.98−2 3.35−2 3.01−2 2.84−2
iteration p = 25 1.83−2 1.58−2 1.50−2 1.46−2
iteration p = 55 7.21−3 6.08−3 5.77−3 5.62−3
iteration p = 90 2.09−3 2.23−3 1.52−3 9.25−4

respect to a more accurate initial solution. Nevertheless, the smaller absolute error corresponds with
the qualitative results in Fig. 6.13.

Finally, we note that further variations of the flow conditions are possible, e.g. a variation of the
channel height. Even for these modifications, we expect that our index sets achieves accurate results.
This is due to the fact that the flow field is laminar and continuously depends on the flow parameters.
Therefore, as long as the parameters are chosen within this laminar regime, the index set as in Fig. 6.8
is optimal with respect to the profit / cost-benefit ratio for a given set of discretization schemes and a
given refinement of the parameter dimensions; cf. Table 6.3. The restriction on laminar flow fields is
not a severe limitation in our application since all complex simulations in Chapter 3 are performed with
a Reynolds number below 1 in a laminar flow regime. This is due to the fact that the interesting flow
phenomena for non-Newtonian fluids result from the fluid’s elasticity and not from inertial forces. As
a result, the 3D dimension-adaptive approach as shown in this section is actually applicable to a wide
range of complex non-Newtonian flow phenomena. In the next section, we will consider a different
example which includes the modeling accuracy as a further dimension for optimization.

6.2. Extensional flows

In the following section, we apply the dimension-adaptive combination technique to homogeneous
extensional flows. Here, we will not only combine full grid spaces with anisotropic temporal and sto-
chastic solution as for the shear flow simulations in Section 6.1 but will also combine full grid spaces
with different modeling resolutions; cf. Fig. 5.3 for an illustration of the different dimensions for opti-
mization. Therefore, the following dimension-adaptive approach is more elaborated as in Section 6.1
due to the combination of anisotropic numerical and modeling grids.
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Figure 6.14.: Visualization of a three-dimensional uniaxial extensional flow.

Description of the flow

Homogeneous extensional flows have already been described in Section 3.1. Therefore, we only sum-
marize the important characteristics of 3D homogeneous extensional flows that will be considered in
the following and refer to Section 3.1 for a more general description of this flow type.

The velocity field in a homogeneous three-dimensional extensional flow is defined as

u = (ε̇x,−
ε̇

2
y,−

ε̇

2
z) (6.5)

in which the dimensionless scalar elongation rate ε̇ > 0 characterizes the strength of the flow. The
velocity field is visualized in Fig. 6.14. Since the velocity gradient that results from (6.5) does not
depend on space and time, the coupled system in (1.59)–(1.63) reduces to

dQ(t)=
[
∇uT Q(t) −

1
4 De(N)

A·F (Q(t))
]

dt + σdW(t) (6.6)

τp(t)=
3(1 − β) (b(N) + 5)

b(N) De(N) ((N + 1)2 − 1)

N∑
i=1

(
E[Qi(t) ⊗ Fi(Qi(t))] − Id

)
. (6.7)

Consequently, we solve (6.6) and (6.7) for the 3N-valued stochastic process Q(t) = (Q1(t), . . . ,QN(t))
and for the stress tensor τp(t) but finally concentrate on the stress tensor as the primary quantity
of interest. In an extensional flow, all shear components of τp(t) are zero and we have τp(t) =

diag(τxx(t), τyy(t), τzz(t)).
The common parameters of all following simulations are listed in Table 6.7. Most of these param-

eters coincide with the simulation parameters in Table 3.2 for the full grid spring-chain simulations
in Section 3.1.2. Nevertheless, in this section we balance the number of stochastic realizations, the
number of time steps and the number of spring segments for the different full grid approximations. In
contrast to the temporal scheme for the Hooke model in Section 6.1, we now employ the semi-implicit



148 6. Numerical results on sparse grids

Euler-Maruyama scheme from (2.22) for the temporal evolution of the stochastic realizations. This
scheme is implicit in the FENE spring force contribution in (6.6) but explicit in the remaining terms.

3D extensional flow with spring-chain models
Deborah number De 1.0

viscosity ratio β 0.0
extensional rate ε̇ 2.0

spring model FENE
maximum spring extension b 120.0

spring extension gauge b(N) de Gennes (1.48)
spring relaxation gauge λ(N) rel. time scale (1.51)

Table 6.7.: Common simulation parameters for all full grid solutions in the index set I.

Adaptivity with anisotropic numerical and modeling grids

As a first motivation for the following approach, we consider Fig. 6.15 which again visualizes the results
from Fig. 3.3 in Section 3.1.2. Fig. 6.15 displays the temporal evolution of the extensional viscosity
η(ε̇) = (τxx−τyy)/ε̇ for different spring-chain models with N = 1, 2, . . . , 5 segments on a full grid space
with a high resolution in the temporal and the stochastic dimension. We first observe that the dumbbell
model N = 1 strongly differs from the multi-segment systems. But, the larger the number of spring
segments N becomes, the more reduces the difference in the predicted extensional viscosity. Moreover,
the temporal evolution for N = 4 and N = 5 can only be distinguished on a very fine grid. Usually,
an index set I in the dimension-adaptive approach contains coarse full grid solutions with relatively
large bias and variance errors. For these coarse full grid solutions, the corresponding discretization
errors can be larger than the difference between, for instance, the spring model with N = 4 or with
N = 5 chains. Consequently, it might be beneficial to employ coarse spring chain approximations
with a certain modeling error to reduce the computational cost in situations with numerical errors of
comparable size. In the following, we will perform an exact analysis of this idea.

First, we adaptively built an index set I from a set of full grid solutions that are listed in Table 6.8.
We note that this grid sequence is strongly shifted in the stochastic dimensions l1; see Section 5.2.1.
Consequently, we employ a relatively fine initial grid in the stochastic dimension to increase the stability
of the numerical approach.

In the end, we aim for a cost effective approximation of a five-segment spring-chain system which
is indicated in Fig. 6.15 with a dashed black line. For this reason, we artificially restrict the refinement
in the modeling dimensions to l3 = 5 spring segments; cf. Table 6.8. This restriction corresponds
with the maximum resolution lmax in line 3 of Algorithm 5. The restriction is necessary since the
hierarchical surplus for grids with l3 = 5 is usually not zero so that the algorithm might decide to
further refine the modeling dimension. Of course, a restriction such as l3 ≤ 5 is not necessary if a
solution for the asymptotic limit N → ∞ is searched for. However, we do know an analytic formula for
the limit N → ∞. Consequently, it is not possible to evaluate the quality of a solution with an unlimited
refinement in dimension l3.

Analogously to the previous section, the refinement is performed according to the profit indicator
‖W(1,l2,l3)(τxx)/nl1,l2,l3‖2 (cf. refinement indicator (5.15) with λ = 0) for the dominant stress tensor com-
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Figure 6.15.: Illustration of the basic idea for using different modeling accuracies. The figure displays
the extensional viscosity for different spring-chain systems of length N. Note that the
figure coincides with Fig. 3.3 in Section 3.1.2.

Table 6.8.: Grid sequence of the dimension-adaptive refinement of a homogeneous extensional flow.

level l 1 2 3 4 5 6 7 . . . 12
samples l1 1024 2048 212 213 214 215 216 . . . 2·106

1/∆tl2 2 4 8 16 32 64 128 . . . 4096
springs l3 1 2 3 4 5

ponent τxx of τp. Since the other normal stress components of τp are close to zero, this choice of error
measurement corresponds with the tensor maximum norm (5.21) and ‖·‖2 as in (5.23) in Section 5.2.1.

Next, Fig. 6.16 shows the resulting index set I(p) for the iterations p = 7, 19, 24, 38 of Algorithm 5.
In accordance with Section 6.1.2, we measure the relative error of τxx with respect to the first iteration in
each iteration step p as E(τC

xx) =
‖τC

xx−τxx,ref‖2

‖τ(1,1,1)
xx −τxx,ref‖2

. Here, the reference solution τxx,ref is the full grid solution
in V12,12,5, i.e. a fine numerical discretization of a five-segment spring chain system. As mentioned
before, due to this choice of the reference solution a refinement with l3 > 5 has to be excluded in
Algorithm 5.

The adaptive refinement shown in Fig. 6.16 terminates if the error tolerance reaches E(τC
xx) < 0.02.

In total, 38 iterations are required for this threshold as shown in Fig. 6.16 (d). The relative error for
each iteration step is shown on the left hand side of Fig. 6.17. We note that the error does not decrease
monotonically. A further refinement can always lead to completely different weights in the combination
formula. Furthermore, an iteration step does not necessarily lead to new grids, i.e. I(p) = I(p+1), if the
if-loop in line 14 of Algorithm 5 returns false; cf. Fig. 5.2. This effect can be seen in the iteration
steps p = 20 and p = 21. Here, the error stagnates as the number of elements in I does not change.
Therefore, the computational effort also stagnates. This is shown on the right-hand side of Fig. 6.17.
Here, we do not state the cost of all grids in I but only take the cost of full grid spaces with non-zero
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Figure 6.16.: Visualization of the index set I in a homogeneous extensional flow. The color of the grids
specifies the cost in the combination formula. Consequently, grids colored in gray are not
required in the end.

weight into account. Generally, if the cardinality of I increases, the number of non-zero grids grows.
But, as can be seen in Fig. 6.16 (c) with 24 grids (iteration p = 24) and in Fig. 6.16 (d) with 22 (iteration
p = 38) non-zero grids, the opposite situation is possible as well. Nevertheless, we generally observe a
decrease of the relative error with ongoing refinement. Furthermore, the increase in the computational
cost in Fig. 6.17 is moderate in comparison to a factor of nl1+1,l2+1,l3+1/nl1,l2,l3 = 4(l3 +1)/l3 if a full grid
solution space is uniformly refined in each dimension according to Vl1,l2,l3 → Vl1+1,l2+1,l3+1.

The adaptive refinement as shown in Fig. 6.16 primarily takes place in the modeling and in the
temporal dimension. This is due to the fact that the initial full grid solution is relatively fine in the
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Figure 6.17.: Plot of the relative error in τxx and the cost of the corresponding non-zero full grid solutions
in the combination formula for different refinement steps p.

stochastic dimension but very coarse in the temporal dimension; cf. Table 6.8. More precisely, the
stochastic grid on level l1 = 1 with 210 = 1024 samples has already been refined 10-times compared to
the coarsest possible stochastic grid with 20 = 1 samples. This initial refinement can also be interpreted
as an index shift I+ (10, 0, 0) as explained in detail in Section 5.2.1. We note that this initial refinement
in the stochastic dimension was required to increase the numerical stability of the algorithm. In the end,
the adaptive algorithm recognizes that only a few further refinement steps in the stochastic dimension
are necessary. The dominant error terms are the bias and the modeling error.

The refinement in the temporal and in the modeling dimension also has a certain structure that will
be discussed in the following; cf. Fig. 6.16. As shown in Fig. 6.16 (a), the algorithm tends to fully
refine the modeling dimension up to level l3 = 5 for fixed l1 and l2. In the end, this complete refinement
leads to a full grid in the modeling dimension. An explanation for this refinement behavior is given
in Fig. 6.18. Here, we show a 2D cut of the hierarchical surplus (benefit space), the computational
costs and the profit index for the time and modeling dimension. This cut in Fig. 6.18 visualizes a fine
stochastic grid with l1 = 8. This is due to the fact that the hierarchical surplus for τxx as defined in (5.6)
uses first-order differences in every dimension. If the first dimension is fully refined as for l1 = 8, the
first-order difference in the stochastic dimension is comparatively small and Fig. 6.18 actually shows a
reduced difference stencil in the 2nd / 3rd dimension.

Fig. 6.18 (a) displays the isolines of the benefit space for a 2D-cut in the temporal-modeling dimen-
sion. For l3 = 1 or l3 = 2, the isolines run diagonally as expected for an isotropic error decrease in both
dimensions. This underlines that the dynamic behavior of a dumbbell model with l3 = N = 1 spring
segments strongly differs from a multi-spring chain with l3 > 1. Then, from l3 = 2 to l3 = 5 the isolines
run parallel to the l3-axis. Interestingly, a similar shape of the isolines is visible in Fig. 6.18 (b) for
the cost space. This is a consequence of the anisotropic increase of the cost in dimension 2 and 3; see
Section 5.2.1. While the cost increases exponentially in the temporal dimension l2 since β2 = 2, the cost
increases linearly in the number of springs segments N. As a result, the contour lines in Fig. 6.18 (c)
also run parallel to the l3-axis. Therefore, the algorithm fully resolves the modeling dimension since
this dimension can be inexpensively refined and the refinement leads to a large error reduction.

As shown in Fig. 6.18 (a), the hierarchical surplus does not seem to decrease in the modeling dimen-
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Figure 6.18.: Visualization of the benefit space (hierarchical surplus approximation), the cost space
and the profit space of τxx in a 2D-cut.

sion which is, beside the anisotropic cost, a further reason for a full refinement of that dimension. This
finding seems to disagree with our initial examples in Fig. 6.15 where the four and the five-segment
spring-chain predict similar stress tensor values. An explanation of this apparent contradiction is given
in Fig. 6.19. All four subfigures Fig. 6.19 (a)–(d) visualize τxx on a sequence of differently refined full
grid spaces. The refinements on the left-hand side in Fig. 6.19 (a) and Fig. 6.19 (c) are performed with
respect to the modeling grid in both cases but differ in their temporal error. On the right-hand side in
Fig. 6.19 (b) and Fig. 6.19 (d), the grids are refined in the temporal dimension and the figures show the
convergence for ∆tl2 → 0. We note that Fig. 6.19 (a) closely resembles Fig. 6.16. Since τyy ≈ 0 and
ε̇ = 2, the normal stress component τxx is roughly two times the size of the extensional viscosity. In
Fig. 6.19 (a) the solution spaces V8,7,4 (4-segment chain) and V8,7,5 (5-segment chain) closely resemble
each other. Interestingly, the situation differs for Fig. 6.19 (c). Here, the evolution of τxx on V8,1,4
(4-segment chain with coarse temporal resolution) and on V8,1,5 (5-segment chain with coarse temporal
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(c) model convergence on coarse temporal grid
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Figure 6.19.: Comparison of the convergence behavior of different refined full grid solution. The par-
tial figure (c) gives an explanation for a high surplus on certain grids in the modeling
dimension. This leads to a full refinement of that dimension; see Fig. 6.18.

resolution) still differ strongly. This deviation leads to a high hierarchical surplus. Consequently, the
algorithm directly refines this dimension; cf. Fig. 6.16. As expected, we do not observe these large
differences for the temporal grids in Fig. 6.19 (b) and Fig. 6.19 (d). Here, the solutions on V8,4,5 and
V8,5,5 and, moreover, on V8,4,1 and V8,5,1 are in high agreement with each other.

In the end, Fig. 6.19 (c) shows that the spring relaxation gauge from de Gennes (1.48) is not able to
perfectly match the dynamic behavior of the spring-chain systems on all grids in I. However, the steady
state stress components in Fig. 6.19 (c) for t > 6.0 are in high agreement. This result is expected since
it is much easier to equilibrate the steady state of a system instead of the full dynamics. Nevertheless,
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Figure 6.20.: Plot of the τxx stress component over time for a reference solution on V12,12,5 and for the
iteration steps p = 1, 7, 19, 38 of the dimension-adaptive algorithm.

our dimension-adaptive algorithm still terminates successfully. The only consequence of the different
spring-chain dynamic behavior in Fig. 6.19 (c) is that the modeling dimension is fully refined which, in
the end, reduces the efficiency of Algorithm 5.

The convergence of the algorithm is illustrated in Fig. 6.20. For this purpose, the temporal evolution
for the iteration steps p = 1, 7, 19, 38 is compared with a numerical reference solution in V12,12,5.
Since the index set in the first iteration step only consists of the coarsest full grid solution such that
I(1) = {(1, 1, 1)}, the corresponding solution strongly differs from the reference solution. This is due to
the fact that the model equation in V1,1,1 actually describes the dynamics of a dumbbell system and not
the dynamics of a five-segment chain. But, with ongoing iteration of Algorithm 5 the numerical solution
better approximates the reference solution. At iteration step p = 38 the combined solution correctly
describes the dynamics of the five-segment chain. Furthermore, we show the dynamic behavior of the
different numerical solutions in more detail in a zoomed extract on the right-hand side of Fig. 6.20.
Here, we notice that the solution in VI(19) already gives an accurate approximation of the steady state
stress tensor value but not of the early stage for t ≤ 2.0. Interestingly, the approximation space VI(38)

correctly describes the evolution of τxx in the complete time range, even though I(38) still contains grids
that approximate a dumbbell system. It might be that some of these coarse full grid solutions have to
be removed from the index set if a higher accuracy as E(τxx) = 0.02 is searched for. Again, this can
be achieved by shifting the index set, see Section 5.2.1, and remove these grids from the sequence in
Table 6.8.

Finally, Table 6.9 compares the relative cost and the relative accuracy of several sparse solution
spaces with comparable full grid solution spaces with respect to the L2-norm. We note that the final
index set I(38) has an accuracy which is similar to the accuracy of the full grid solution space V8,6,5 but
for 1/5 of its cost; cf. Table 6.9. The most expensive full grid spaces in I(38) are V1,12,1 with relative cost
n1,12,1/n1,1,1 = 2048 (11-times refined), V1,10,2 with relative cost n1,10,2/n1,1,1 = 1024 (10-times refined)
and V1,10,1 with relative cost n1,10,1/n1,1,1 = 512 (9-times refined); cf. Fig. 6.16 (d). Interestingly, spaces
with l3 = 5 which are fully refined in the modeling dimension are not the most cost expensive spaces in
I(38). As mentioned before, this is due to the anisotropic cost increase in l3 compared to l1 and l2.
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Table 6.9.: Comparison of the relative cost and the relative accuracy of different sparse and full solution
spaces with respect to V1,1,1.

approach total cost / n1,1,1 nr. of grids rel. error E(τxx)
adaptive step 7 24 7 0.52
adaptive step 19 215 14 0.12
adaptive step 38 4,235 22 0.02
V8,4,5 5,120 1 0.098
V8,5,5 10,240 1 0.048
V8,6,5 20,480 1 0.021
V8,7,5 40,960 1 0.009

As a result of Table 6.9, we conclude that the dimension-adaptive combination technique is able to
not only cope with grids that have an anisotropic numerical resolution but also to cope with different
modeling accuracies. In this application on extensional flows, the approach was able to reduce the cost
by a factor of five with respect to a single full grid solution. This is less than for an unsteady Couette flow
described in Section 6.1.2 where the cost was reduced by a factor of about ten. This slightly reduced
efficiency for the anisotropic numerical-modeling grid is due to a fully refinement of the modeling grid,
see Fig. 6.16, and the low cost increase in dimension l3. Nevertheless, our results clearly show the
potential of a dimension-adaptive refinement in which the modeling equation is considered as a further
problem dimension. We assume that this idea is generally applicable for other problems of interest.
This invokes, however, a detailed understanding of the modeling equation and a sensible gauge theory
for the corresponding units; see, e.g., Section 1.2.3 for a comparison of different spring models and
relaxation time gauges.





Conclusion

Summary

In this thesis, we implemented and investigated a multiscale spring-chain model for the simulation of
three-dimensional dilute polymeric fluids. A multiscale approach was chosen due to the fundamental
modeling errors that often occur for classical macroscopic approaches even in simple flow fields such
as the breakdown of the macroscopic Oldroyd-B model in homogeneous extensional flows. The major
advantages of multiscale approaches as used in this thesis are

• a higher modeling accuracy since closure errors can be avoided,

• a better understanding of the microscopic polymer configurations since this quantity is directly
modeled, and

• a higher numerical stability which, to some point, overcomes the high Weissenberg number prob-
lem; cf. Fattal and Kupferman [36, 37].

We described in this thesis the first implementation of a high-dimensional spring-chain model into a
three-dimensional flow solver. Furthermore, we presented in Section 3.2.2 new multiscale simulation
results for a 4:1 square-square contraction flow in a three-dimensional channel. Since there are no other
simulation results on this problem so far, we compared our findings with experimental measurements
from the literature. Besides, we verified our implementation on simple flow problems with previously
published numerical results. This included homogeneous flows in Section 3.1 and two-dimensional
contraction flows in Section 3.2.1. Note that a further benchmark for our multiscale model can be
found in Griebel and Rüttgers [51] where we consider a viscoelastic unsteady Poiseuille flow for which
an analytic solution exists.

Our multiscale simulation approaches delivered valuable insights into the underlying structure of
the polymeric molecules. On the downside, the large number of degrees of freedom led to high-
dimensional, time-dependent random fields. As an illustrative example, the Fokker-Planck equation
that describes the temporal evolution of an N-segment spring-chain system in a three-dimensional flow
space is 3N + 4-dimensional (1D in time, 3D in flow space and 3N-dimensional in configuration space
for the polymer orientations). This enormous computational complexity explains the limited number of
results available in the literature.

One approach to overcome the curse of dimensionality based on massively parallel computing and
was discussed in Section 2.3.2 of this thesis. The approach allowed us to compute the multiscale
simulation results in Chapter 3. For this purpose, the parallel CPU cluster Atacama with a total CPU
number of 1248 processors was used. The cluster is operated by the Institute for Numerical Simulation
and the Sonderforschungsbereich 1060 at the University of Bonn. Even then, some of the simulations
required several weeks of computing time.

A more advanced approach to reduce the computational complexity described in Chapter 4 based on
sparse grid discretizations. The main idea of this method is to achieve a comparable or only slightly
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reduced accuracy (by a logarithmic factor) on a grid with much lower complexity. For our specific ap-
plication, it was advantageous to use the combination technique. This sparse grid variant approximated
the solution in a sparse grid space by a superposition of solutions in several coarse full grid spaces. The
reasons for using the combination technique were that

• we could reuse our multiscale model implementation for the full grid solver NaSt3DPGF, see
first part of this thesis, and that

• the different full grid solutions could be computed independently since the combination technique
is intrinsically parallel.

On a parallel cluster such as Atacama, the computational cost was therefore primarily defined by the
cost of the most expensive full grid solution which could also be computed in parallel. This further
verified that the combination technique is perfectly adapted for exascale computing as considered, for
instance, in the project "An Exa-Scalable Two-Level Sparse Grid Approach for Higher-Dimensional
Problems in Plasma Physics and Beyond" (EXAHD ) of SPP 1648; see Pflüger et al. [104]. Further-
more, this thesis described the first application of the combination technique to multiscale viscoelastic
flow problems.

As mentioned before, we related the macroscopic fluid equations with the microscopic polymer ori-
entations in the multiscale approach. The accuracy of this combined system thus depended on a com-
plex coupling between macroscopic and microscopic discretization errors. Therefore, it was crucial
for an efficient use of the combination technique to identify the quantities of interest and the important
problem dimensions. In our application, these problem dimensions were

• the spatial resolution of the velocity, pressure and stress tensor field in a three-dimensional flow
space,

• the temporal resolution of the coupled system of equations with an isotropic temporal resolution
of microscopic and macroscopic equations, and

• the stochastic resolution, i.e. the number of discrete realizations (Brownian configuration fields)
of the vector-valued random field that described the polymer orientations in the stochastic ap-
proach.

In Section 6.1, we combined grids with an anisotropic refinement of these problem dimensions to
simulate Couette flow problems. In a first step in Section 6.1.1, a simplified homogeneous Couette flow
was considered. Here, only the temporal and the stochastic resolution of the corresponding stochastic
ODE was varied similar to the Multilevel Monte Carlo approach. Then in Section 6.1.2, we used the
approach to simulate general Couette flows in which macroscale and microscale were directly coupled.
Here, we also combined anisotropic spatial grids. In the end, the dimension-adaptive combination tech-
nique reduced the computation complexity by one order of magnitude compared to full grid solutions
with a comparable accuracy. This underlines the enormous cost reduction that was possible by using
the combination technique.

Furthermore, we demonstrated in Section 6.1.3 that the cost for creating the index set I, i.e. the
dimension-adaptive refinement process itself, was negligible if compared to the cost of all full grid
solutions with non-zero weight in I. This was due to the fact that, at least for laminar flows which
typically occur in our application, the index set I could be reused for modified flow conditions. This
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becomes especially important in applications that are related to Uncertainty Quantification (UQ). In
a non-intrusive UQ approach, certain quantities of interest are defined and computed with a large se-
quence of simulation runs. Usually, every simulation run is performed with modified flow conditions.
The index set used in Section 6.1.3 is perfectly suited to perform a non-intrusive UQ analysis of an un-
steady Couette flow with the numerical schemes from Chapter 2. Furthermore, note that our multiscale
model already contained an UQ-related type of uncertainty due to the stochastic nature of Brownian
motion.

In Section 6.2 we further extended the concept of problem dimensions which were refined in the
dimension-adaptive algorithm to modeling dimensions. This was a novel extension for the combination
technique. The basic idea resulted from the observation that different FENE spring-chains became
more and more alike for an increasing number of spring segments. This required, however, a careful
gauge fixing of the different spring parameters such as maximum extension or spring stiffness. In the
literature is, as far as we know, no gauge theory which fully matches the full temporal dynamics of
different spring-chain models. In these situations, the dimension-adaptive algorithm fully resolved the
modeling dimension and reduced to a full grid in the corresponding dimension.

The concept of anisotropic modeling accuracies in a refinement algorithm becomes even more im-
portant in applications that involve high modeling costs. In molecular dynamics of correlated systems,
for instance, the cost increases exponentially with the number of many-body potentials that are taken
into account. In such an application, the computational effort can be dramatically reduced if a reduced
modeling complexity can be achieved. This thesis demonstrated that the general idea of a modeling
dimension which was then used in a refinement algorithm is applicable. Beside the numerical accuracy,
this was a further key concept to overcome the curse of dimensionality in this multiscale physical prob-
lem.

Future perspectives

We conclude this thesis by considering possible future directions of research related to high dimensional
problems in polymer physics:

Modeling of spring-chain systems. In this thesis we considered spring-chain systems with up to
five spring segments. As indicated before, it is expected that the dynamical behavior of these
system converges to the complex behavior of polymer molecules in nature. Consequently, we
propose the simulation of systems with hundreds of spring-segments which, due to the huge
complexity, is not possible at the moment. Furthermore, an optimal gauge theory for such a
system is still unclear and maybe even problem-dependent.

Different spring forces. We primarily used the nonlinear FENE spring force to account for the elas-
ticity of the fluid. Although the FENE spring force is widely accepted in the literature, we
could very well consider more general spring force models such as Cohen’s Padé approximation
described in Section 1.2.3. A recent analysis of different spring chain models is performed in
Kröger [79].

Uncertainty Quantification. As mentioned before, our adaptively computed index sets could be used
for a non-intrusive moment estimation in UQ. A typical application related to UQ and to global
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optimization would be the turbulent drag reduction of an oil flow in a pipe. It is known from the
literature that a small amount of a polymeric additive can reduce the amount of turbulence by
30%. Consequently, the oil flow rate in a pipe can be increased which leads to enormous cost
reductions. However, the optimal material properties of non-Newtonian polymer additives are an
area of active research.

Fokker-Planck based modeling. If we directly solved the Fokker-Planck equation instead of its sto-
chastic interpretation, we would obtain a noise free solution. On the downside, the deterministic
Fokker-Planck equation of an N-segment spring chain is of dimensionality 3N + 4. On a full
grid, the numerical problem cannot be tackled so that only some early stage results exist in the
literature; see e.g. Knezevic and Süli [73]. It is therefore essential to employ a more advanced
approach to overcome the limitations of the exponential cost increase. A first approach on sparse
grids is given by Delaunay et al. [34] for a steady flow problem with a low-dimensional configu-
ration space. We propose the application of sparse grids, such as the combination technique used
in this thesis, to high-dimensional Fokker-Planck equations. Even then, however, the problem
is barely solvable on current parallel clusters if N > 1, i.e. if more than one spring segment is
considered.

In summary, this thesis represents a first yet very important step towards a complete numerical de-
scription of non-Newtonian fluids in nature. And still, much further research is required in order to
tackle the complexity of high-dimensional polymer models.
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