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Summary 

Macrophages are an indispensable part of the innate immune system which mediate various 

functions including host defense against pathogens, metabolism, tissue homeostasis and 

even developmental processes. These extremely heterogeneous cells can adapt their 

transcriptional program upon a plethora of stimulatory cues and thus exist in different 

activation states to facilitate their diverse roles in the body. Corresponding transcriptional 

changes are established amongst others by transcriptional regulators (TRs) with diverse 

functions or by complex epigenetic alterations. Next generation sequencing technologies 

provide excellent experimental methods like ChIP- or RNA-sequencing, with which one can 

analyze genome wide enrichment properties of DNA binding proteins or the transcriptional 

activity of genes to elucidate in detail the activation of macrophages on the transcriptional 

level. 

Integrating the KO implemented normalization method (KOIN) into the standard peak calling 

procedure revealed multiple enhancements for ChIP-seq data analysis. False-positive 

signals can be eliminated in a tremendous amount, while signal-to-noise ratios are increased 

in low and even high quality ChIP-seq data sets. Besides the identification and removal of a 

recently identified special type of false-positive signal called “hyper-ChIPable regions”, the 

biological interpretation can profoundly benefit from KOIN. Overall, the KOIN method 

demonstrated its value as new possible gold standard control with various advantages 

compared to the currently established Input chromatin and IgG ChIP-seq controls. 

Furthermore, the ChIP-seq technology allows the definition of 1) different activity states for 

promoters or cis-regulatory regions and 2) important regulators in the establishment and 

maintenance of the transcriptional landscape by the detection of different covalent 

posttranslational histone modifications (HM), like acetylation or methylation. Four 

differentially activated primary human macrophages demonstrated a common epigenetic 

core program, maintained by various promoter sites. Simultaneously, activation state specific 

epigenetic differences at promoters, super-enhancer regions and especially at enhancer sites 

could mediate their specialization upon employed stimulatory signals. Finally, despite the 

detected epigenetic differences an astonishing fraction of genomic loci was defined by 

accessible promoter and enhancer markings in macrophage activation states. This was 

especially demonstrated in co-regulation networks for TRs and revealed an uncoupling of 

epigenetic and transcriptional control in monocyte-derived activated macrophages 

associated with cellular plasticity in response to microenvironmental signals. Other additional 

levels of transcriptional fine-tuning like enhancer RNAs, repressor proteins or the cross-talk 

between HMs could play an important role in fine-tuning macrophage transcription. 
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Especially, the cooperative binding of pioneer transcription factors (TF) like PU.1 with other 

secondary TFs like STAT proteins to these open genomic macrophage loci could represent 

an additional important switch in macrophage transcription in concert with HMs. 
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1. Introduction 

 

1.1 The innate immune system 

Throughout life an individual faces constant threats by infections with microbial pathogens 

and viruses or other dangerous biological compounds. Survival depends on the recognition 

of infectious microbes and an appropriate defense response. Two fundamental parts of the 

immune system are responsible for this recognition to ensure host survival (1,2). The 

adaptive immunity, an evolutionary achievement of vertebrates creates specialized and 

highly specific antigen receptors de novo in each organism, which are not-germ line encoded 

(3). In contrast, the innate immune system is the evolutionary more ancient form of host 

defense, found in most multicellular organisms and recognizes threats with a defined set of 

germ line encoded pathogen recognition receptors (PPR) (4). Mainly pathogen associated 

molecular patterns (PAMPs) but also abnormal self-antigens are recognized by PPRs. They 

can induce in their secreted form the complement system and lead to the phagocytosis of 

bound microorganisms by macrophages. Transmembrane receptors like Toll-like receptors 

(TLRs) recognize specific microbial compounds (5). In humans, ten different members of the 

TLR family can recognize intra- or extracellular PAMPs. Extracellular TLRs can identify 

lipotheichoic acid (TLR1/2), lipoproteins (TLR2/6), lipopolysaccharide (TLR4) or flagelin 

(TLR5). In the membrane of phagocytic compartments localized intracellular TLRs 

(TLR3/7/9) can recognize nucleic acids (6). All TLR signaling pathways ultimately lead to the 

expression and activation of the TFs nuclear factor kB (NFkB) and activation protein-1 (AP-1) 

inducing the transcription of genes necessary for microbial immune defense. If the innate 

immune system is not able to eliminate microbial infections, the adaptive immunity activates 

T and B cell mediated immunity, providing specific recognition by clonal amplification of 

antigen specific receptors and additionally provides memory for faster resolution of repeated 

challenges with the same microbial antigen. But in most cases, innate immune cells like 

neutrophils, granulocytes, mast cells, dendritic cells or macrophages respond very rapidly 

upon a challenge compared to adaptive immune cells and resolve the threat. 

 

1.2 Macrophage activation and plasticity 

Macrophages, fundamental effectors of the innate immune system, fulfill many specialized 

roles in the defense against pathogens, in developmental processes of the body, in tissue 

homeostasis and even in metabolic functions (7-9). They originate from circulating 

monocytes or tissue-resident precursors (10,11). Depending on their tissue localization 
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macrophages also play different roles in homeostasis (12). For example, Kupffer cells in the 

liver phagocytize erythrocytes and recycle hemoglobin together with red pulp macrophages 

of the spleen to maintain iron homeostasis (13,14), whereas microglia cells in the brain aid in 

synaptic pruning (15,16). Alveolar macrophages in the lung clear mucus and take up 

surfactant lipids (17). These are only some examples of various macrophage types with 

distinct specialized functions (18). Thus, macrophages are defined by their outstanding 

diversity and plasticity reacting to environmental cues like cytokines, microbial antigens or 

damaged cells finally emerging into different functional states. 

Importantly, despite their common monocytic origin tissue resident macrophages and 

monocytic-derived circulating macrophages show substantial differences. Tissue 

macrophages for example display a general immunomodulatory phenotype, while infiltrating 

recruited monocytes are activated into a pro- or anti-inflammatory phenotype depending on 

the tissue conditions (19). In steady state conditions the discrimination between tissue-

resident and monocyte-derived macrophages is not possible, but alternatively activated 

tissue macrophages revealed different transcriptional and phenotypic profiles from 

alternatively activated monocyte-derived macrophages (20). 

For many years, the classical paradigm of macrophage polarization into two major subtypes, 

classically activated (M1) and alternatively activated (M2) macrophages was established in 

the scientific community (7). In this model, the in vitro stimulation of bone-marrow derived 

murine macrophages with microbial agonists or cytokines mimicking in vivo situations 

allowed the characterization of two major functional and phenotypic profiles mirroring the 

Th1-Th2 polarization of T cells. Recently, computational methods analyzing at least 28 

distinct human macrophage activation programs while utilizing 299 highly standardized 

microarray transcriptome data sets expanded the current view of macrophage polarization 

(21). Reverse network engineering and the integration of database-stored knowledge 

allowed not only the identification of a common macrophage program but also distinct 

activation stimulus specific transcriptional changes, suggesting a “spectrum model” with at 

least nine significantly different macrophage activation programs. The “spectrum model” 

better accommodates for the in vivo situation of macrophages, since a plethora of stimuli are 

present in the host microenvironment, generating various possible distinct activation states 

with functional differences, reflecting the fundamental changes on transcriptional level. 

Nevertheless, previous publications describe in detail important mechanisms and involved 

factors in macrophage activation, which demonstrated valuable insights into macrophages 

independently of the recent findings in macrophage plasticity. Classically activated 

inflammatory macrophages MIFNy (formerly known as M1), targets of extensive effort to 

elucidate their activation and functional implications are generated in vitro by the stimulation 
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with TLR ligands, IFNy or TNF-α (22). These IFNy/ TNF-α associated macrophages produce 

pro-inflammatory cytokines like IL-12p40, TNF-α, IL-6 or IL-23, also promoting T helper 1 and 

T helper 17 responses (23), whereas only low levels of IL-10 are expressed. The production 

of pro-inflammatory chemokines and chemokine receptors like CCL2, CCL3, CCL4, CCL5, 

IL-8 and CCR7 attract NK and T helper 1 cells to sites of inflammation (24). On the molecular 

level, various signaling molecules, transcription factors (TFs) and other transcriptional 

regulators (TRs) form the IFNy/ TNF-α macrophage-associated activation profile. Canonical 

IRF/STAT signaling pathways are activated by IFNs or TLR signaling via STAT1 (25). IRF5 

successfully induces the expression of IL-12 and IL-23 (23). TLR4 stimulation of 

macrophages induces NF-kB signaling subsequently expressing the SOCS3 protein, which 

can inhibit IL4 activated macrophage programs by the suppression of STAT3. Interestingly, 

NF-kB signaling also activates a transcriptional program for the resolution of inflammation, 

demonstrating a negative feedback loop for the tight control of inflammatory processes 

(26,27). Thus, NF-kB is not an exclusive TF for IFNy/ TNF-α associated processes, but also 

involved in anti-inflammatory functions. IFNy/ TNF-α associated macrophages phagocytose 

microorganisms and matrix debris, mainly important in early healing phases. In the disease 

background, IFNy/ TNF-α macrophages are amongst others associated with diminished 

metastasis and increased patient survival in colon carcinomas and are even able to kill tumor 

cells in vitro (28-30). However, in septic patients the production of pro-inflammatory IFNy/ 

TNF-α macrophage associated cytokines accompanies high mortality rates (31). 

Macrophages with anti-inflammatory functions MIL4 (formerly known as M2) are in vitro 

generated by IL-4/IL-13, immune complexes or by the stimulation with glucocorticoids. They 

express anti-inflammatory mediators like IL-4, IL-10 and TGF-β (32,33) and are 

characterized by low or no expression of IL-12 and the expression of surface receptors like 

CD23, MCR1 or scavenger receptors (7). On the molecular level, IL-4/IL-13 promotes the 

activation of canonical IRF/STAT signaling pathways via STAT6 (25), while IL-10 signals via 

STAT3 and allows the subsequent expression of genes like IL10, TGFb1 or MRC1 (34,35). 

Other important promoters of IL4 activated macrophages are amongst others SOCS1, KLF4, 

PPARy or PPARδ inhibiting the STAT1/NF-kB associated IFNy/ TNF-α macrophage gene 

activation (36-39). It is important to note that differences between murine and human 

macrophages in their expression profiles were found, despite quite similar functions for 

example by the recruitment of the same cell types to sites of inflammation (40). Macrophages 

in murine models express Ym1, Fizz1, Arginase I and the chemokines CCL2 and CCL7 

recruiting eosinophils and basophils, whereas human macrophages express the chemokines 

CCL13, 14 and 17. IL4 activated macrophages promote angiogenesis, tissue remodeling and 

repair (41). Additionally, increasing evidence suggests a major role for macrophages not only 
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in peritoneal fibrosis (42) but also in tumor formation with poor prognosis and disease 

progression in breast carcinoma (43,44). 

The limitations of the M1/M2 nomenclature of macrophages is easily shown by macrophages 

from chronic inflamed tissues which belong neither to M1 nor to the M2 axis, since they 

display distinct transcriptomic changes in comparison to other activated macrophages (21). 

Chronic inflammation associated macrophages promote anti-inflammatory effects and 

strongly inhibit T cell proliferation. These macrophages are primed with GM-CSF and in vitro 

become activated by a combination of TNF-α, PGE2, and P3C (TPP) and were therefore 

described as TPP stimulated macrophages (MTPP). TNF-α, PGE2 and TLR activation was 

linked to chronic granulomatous inflammation such as in granulomatous listeriosis or 

tuberculosis (45-47). These MTPP macrophages express anti-inflammatory mediators like 

CD25, COX-2, IL10 and indoleamine 2,3-dioxygenase (IDO) which was also detected in 

human macrophages imbedded in human granulomatous structures (46,48). Furthermore, 

MTPP macrophages highly expressed CD14, CD23, CXCR7 and CD197 in comparison to 

IFNy or IL-4 activated macrophages and TFs like STAT4 or soluble effector molecules like IL-

1α were exclusively highly induced in MTPP macrophages. Additional differences on miRNA 

expression levels in comparison to MIFNy or MIL4 activation further suggested the phenotypical 

and functional difference of MTPP (21). 

In general, markers for the differentiation between stimulus-activated macrophages are still a 

matter of debate. Modern computational approaches analyzing the transcriptome of 

differentially activated macrophages may profoundly change and extend the system of 

macrophage classification to mirror more and more the complex in vivo situation and allow a 

better understanding of these innate immune cells, responsible for many functions in immune 

defense, development and even disease. 

 

1.2.1 PU.1 - A pioneer transcription factor in macrophage 

differentiation 

TRs and particularly transcription factors (TFs) play an essential role in the establishment of 

transcriptional programs. During different phases of cell development, lineage commitment 

and activation different classes of TFs are involved. Pioneer TFs like FOXA1 or GATA family 

member proteins determine the cell lineage, are one of the first factors to be expressed and 

feed forward loops further increase their presence during early development (49-52). 

Polarizing TFs are expressed due to cell-extrinsic environmental signals and further fine tune 

the regulatory landscape, thus defining the cell type. Ultimately, effector TFs mediate the 
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activation into different functional cellular subtypes caused by transient changes in the 

microenvironment.  

Pioneer TFs determine cell lineage and identity by the establishment of a core transcriptional 

program shaping the genome structure itself (53). They can bind in contrast to most other 

regulatory proteins DNA sequences even in a silent or native chromatin state and are crucial 

to make chromatin accessible for the binding of other TFs (54-56). The pivotal function of 

pioneer factors recruiting nucleosome remodeling and chromatin modifying complexes allows 

further adaption of the chromatin state at bound sites. Collectively, pioneer factors are 

proposed to act as global organizers, especially for the formation and maintenance of cis-

regulatory elements like enhancers (57). 

Enhancers are defined as DNA sequences influencing transcription in an orientation-

independent manner with variable distances to corresponding genes (58,59). They are not 

only located at intergenic genomic regions but also at intronic sites (60,61) and can contain 

multiple accessible binding sites for TFs important in development and differentiation, 

controlling cell type- and tissue-specific gene expression (57,62,63). Furthermore, specific 

coactivator proteins like mediator complexes are located at enhancers (64-66). The mediator 

protein is associated with cohesion, is essential for the interaction of DNA bound TFs and the 

RNA polymerase II enzyme and acts as a bridge between distant regulatory sites and 

promoters mediating DNA looping (67). Furthermore, other important transcriptional 

coactivators like p300 or CBP histone acetyltransferases were also associated with 

enhancers (68-70).  

The PU.1 pioneer TF, an essential regulator in the hematopoietic cell lineage, establishes the 

recruitment of other TFs to regulatory enhancer sites in murine macrophages (71-73). PU.1-

deficient fibroblasts establish macrophage-specific nucleosome-depletion and gain open 

chromatin modifications going along with active transcription at putative macrophage specific 

promoter and enhancer sites upon PU.1 expression (71). Importantly, mice deficient for PU.1 

do not only show alterations in B and T lymphocyte formation but moreover completely lack 

monocytes and macrophages (74,75). ChIP-seq binding experiments for PU.1 and other 

important TFs like C/EBPβ or p300 correlated to different histone modification (HM) signals 

illustrates the chromatin remodeling capabilities of PU.1 in mouse macrophages and the gain 

and loss of specific enhancer marks during knockout experiments with simultaneous 

changes on nucleosome positioning (71,72). A study even intrinsically linked PU.1 binding 

and nucleosome positioning in macrophages (76). Non-active PU.1 bound sites in 

macrophages and PU.1 bound sites in cell types without PU.1 expression exhibit high 

nucleosomal occupancy. In contrast, in macrophages PU.1 binds a high fraction of putative 

active or poised enhancer sites (77). Interestingly, out of 600.000 predicted high affinity PU.1 
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binding sites only 10% are actually occupied by the PU.1 protein. These results were 

obtained from PU.1 ChIP-seq experiments performed with several human cell lines like 

Jurkat or HL60 cells. Obviously, another higher level of regulation seems to select actual 

PU.1 binding sites. A functional cooperation between pioneer TFs and secondary pioneer 

TFs or a direct DNA interaction by forming 3D structures might also be possible (78). Partner 

TFs could help access specific target sites or allow the pioneer TF to occupy DNA binding 

sites with suboptimal affinities, demonstrated by the interaction of PU.1 with IRF TFs binding 

ETS/IRF composite sites (79,80). Furthermore, partner TFs could additionally remodel 

chromatin states of pioneer factor bound sites by the recruitment of nucleosome remodeling 

enzyme complexes (81). Another issue could be the differential expression rates for PU.1 

between cell types. Lower PU.1 expression in hematopoietic progenitors induced a B cell-like 

phenotype, while higher PU.1 expression leads to a reprogramming into macrophages (75). 

PU.1 expression itself is regulated by many factors. On the transcriptional level, high IRF8 or 

PAX5 expression can down-regulate PU.1 transcription and promote B cell formation (82,83). 

A prolonged cell cycle is another mechanism to enhance PU.1 expression in macrophages in 

contrast to B cells, where shorter cell cycles and decreased Spi1 gene transcription leads to 

less PU.1 protein (84). 

Pivotal for transcriptionally active genomic sites are open chromatin positions without dense 

heterochromatin structures and only sparse nucleosome densities to enable the binding of 

regulatory factors, important parts of the transcriptional machinery. This process is amongst 

others mediated by pioneer TFs and only one aspect of cellular “epigenetic” regulation. 

 

1.3 Epigenetics 

The former meaning of “epigenetics” combined the words “epigenesis” and “genetics” to 

describe processes of cell fate commitment and lineage specification during development 

(85,86). Today, the term “epigenome” describes DNA sequence independent processes that 

modulate gene expression, amongst others DNA methylation, posttranslational modification 

of histone proteins or RNA-based mechanisms (87,88). By organizing the chromosomal 

conformation in the nucleus, chromatin is organized into sites with variable transcriptional 

activity by modulating the accessibility for the binding of TRs like TFs or RNA polymerases. 

Most importantly, epigenetics does not only augment the cellular genomic sequence with an 

additional dimension, thus increasing complexity in an order of magnitude, but also 

preserves memory on different levels particularly of past transcriptional events (89-91). The 

cellular epigenome is intrinsically linked to the structural organization of the genome and 

reflects the global patterns of transcriptional activity (92).  



Introduction 

20  
 

 

1.3.1 DNA methylation 

The methylation of cellular DNA represents one major aspect of epigenetic regulation. A high 

fraction of the human genome is methylated (60-80%) typically at CpG dinucleotides by 

enzymes called DNA methyltransferases (93). DNA methylation is essential for 

developmental processes and the depletion of DNA methyltransferases leads to neonatal 

lethality in mice (94). Previous experiments suggest enrichments of DNA methylation 

especially at sites with low transcriptional activity. Next generation sequencing technology 

revealed that methylation marks are less stable than anticipated, and can also exist at non-

CpG sites and are partially enriched at actively transcribed genes (95). Furthermore, DNA 

methylation is tightly connected to histone modifications and involved in the regulation of 

transcriptional processes (96). 

 

1.3.2 DNA structure 

Another level of epigenetic regulation addresses the basic structural subunit of DNA called 

“nucleosome”. Exactly 147 bp of DNA are wrapped around the nucleosome. Nucleosome 

subunits are connected by linker DNA fragments. ATP-dependent chromatin-remodeling 

enzymes act by sliding along the DNA, triggering conformational changes of the 

nucleosomes that enable subsequent positional changes (97). The nucleosomal positioning 

inhibits or promotes the binding of regulatory proteins by the occupation of sequence specific 

sites or inhibits the activity of RNA polymerase II (98). Histone tails of nucleosomes can also 

serve as binding sites for TRs and associated proteins. Furthermore, the genomic position of 

nucleosomes is not a random process and occurs more frequently at specific regions of 

DNA, depicting the active role of nucleosome positioning in regulatory processes (99). In 

addition, nucleosomal DNA may also support synergistic TF binding leading more efficiently 

to the displacement of nucleosomes in comparison to the presence of only one TF (100). 

The nucleosome structure is only one level of cellular architecture in eukaryotes. Higher 

order 3D structures of chromatin like the 30 nm fiber of packed nucleosomes, stabilized by 

the H1 histone protein or 700 nm condensed sections of chromosomes, enable distant loci 

on the linear DNA to interact with each other and change transcriptional activity of adjacent 

genes (101). For example, distant enhancers with hundreds of kilobases distance can 

increase beta-globin gene transcription by the interaction with its promoter established by 

chromatin looping (102). In addition, chromatin close to the lamina of the inner nuclear 

membrane seems to exist in an inactive heterochromatic state (103). This further 
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demonstrates the importance of chromatin 3D structure onto the regulation of transcriptional 

activity for eukaryotes genes. 

 

1.3.3 RNA mediated processes 

Besides the structural chromatin regulation, a complex system of different RNA mediated 

epigenetic mechanisms further ensures the tight control of cellular transcription e.g. for the 

regulation of development (104), environmental stress (105) and disease relevant processes 

(106). The RNA polymerase II enzyme is a major subject of regulation mediating the 

transcription of eukaryotic DNA into messenger RNA precursors (mRNA) or different non-

coding RNA species like infrastructural (ribosomal RNA, small nuclear RNA) or regulatory 

RNA (microRNA, long non-coding RNA and others) (107). The RNA polymerase II enzyme 

consists of 12 protein subunits (RPBs) highly interacting with each other and mediating 

different functions like DNA binding, stabilization and regulation of transcription (108). 

Importantly, the RPB1 protein possesses a specialized region called CTD (carboxy terminal 

domain) with up to 52 tandem heptapeptide repeats in vertebrates and is subject of extensive 

posttranslational modification (109,110). These modifications define complex patterns 

culminating in a CTD code tightly correlating the state of CTD modification to the actual 

function and activity of RNA polymerase II (111). For example, antibodies in macrophage 

ChIP-seq experiments targeting phosphorylated CTDs at the serine 5 residue recognized 

RNA polymerase II enzymes during their initiation actively transcribing DNA into RNA species 

(112), while subsequent phosphorylations at the serine 2 occur later in the transcriptional 

process, during elongation (113). After reading through the transcribed gene a phosphatase 

enzyme removes the phosphorylation when arriving at the 3’ end of the protein coding 

region. The presence and modification status of RNA polymerase II enzymes allows the 

assessment of transcriptional regulation and activity at important genomic sites. Transcription 

does not only occur at protein coding genomic sites, but also in large amounts outside of 

these regions and can lead to different classes of extragenic transcripts (112,114,115).  

Long non-coding RNAs (lncRNA) are defined by their transcript length of 200 nucleotides, 

their nuclear localization in very low amounts and their sequence conservation (116). They 

can originate from various intergenic genomic locations but were also found at intronic sites 

(117). LncRNAs are involved amongst others in functions like the regulation of allelic 

expression (118) or in developmental processes (119,120). Even disease associated 

functions were identified mainly in cancer related processes (121,122), whereas the analysis 

of the functional relevance for the majority of identified lncRNAs is still far from complete 

(123). Many possible mechanisms how lncRNAs regulate their targets include for example 
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the interaction with chromatin-modifying complexes (124), the modulation of DNA 

methylation (125) or direct effects on transcription by competing with TF binding (126).  

The relatively new concept of enhancer RNA (eRNA), a special type of lncRNAs, transcribed 

at active cis-regulatory sites arises the question, if enhancers do not only influence 

transcription by their direct interaction with TFs bound to promoters forming DNA loops, but 

also regulate transcription by RNA-mediated processes (112,127,128). These highly unstable 

transcripts are produced either unidirectional as short (< 2 kb) and non-polyadenylated RNAs 

(1d-eRNA) or bidirectional in 5’ to 3’ and 3’ to 5’ direction as longer (> 4 kb) and 

polyadenylated eRNA species (2d-eRNA) (128,129). Three functional consequences of 

enhancer transcription are supported by an increasing amount of scientific data. First, 

random collisions of RNA polymerase II with accessible enhancer sites could cause eRNA 

transcription without functional consequences, thus defined as noise (130). Second, the 

process of eRNA transcription can alter the accessibility of the chromatin template due to the 

RNA polymerase II movement and its enzymatic activities altering the chromatin structure 

(131,132). Third, transcripts can cause functional changes by direct in cis or in trans 

interactions with DNA recruiting protein complexes (e.g. chromatin remodelers) or effector 

proteins (133,134).  

Another class of extragenic RNA transcripts with lengths of approximately 22 nucleotides 

were defined as microRNAs (miRNAs). RNA polymerase II transcribes primary miRNA, which 

is subsequently processed by the Drosha and DGCR8 protein complex into a hairpin 

structure called precursor miRNA (135-138). Ran-GTP and exportin 5 transports the 

precursor miRNA into the cytoplasm, where the Dicer cleavage produces mature double-

stranded miRNA. The passenger strand is degraded, while the guide strand is integrated into 

the RISC complex (RNA-induced silencing complex) and specifically targets mRNA 

transcripts, resulting in silencing of the corresponding target gene (139-142). 

Amongst already specified epigenetic mechanisms, the posttranslational modification of 

histone proteins, also called histone modification (HM), plays a key role for the establishment 

and maintenance of cellular transcriptional programs. 

 

1.3.4 Histone modifications 

The fundamental repeated subunit of chromatin called “nucleosome” consists of 

chromosomal DNA wrapped around a histone octamer with protein subunits H2A, H2B, H3 

and H4. Posttranslational modifications at the N-terminal tails of histone proteins and the 

existence of histone isoforms display a high possible variability for nucleosomes. Especially 
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covalent modifications like methylation, acetylation and phosphorylation are well studied 

examples of over 130 possible posttranslational HMs (Figure 1) (143,144). Different classes 

of chromatin-modifying enzymes accomplish the posttranslational modification of histone tails 

(97). The “histone code” hypothesis correlates an interaction of posttranslational HMs read 

by effector proteins to functions like DNA replication, recombination and transcription 

(145,146). For example, modified histone tails can form binding sites for specific classes of 

regulatory molecules. Proteins containing bromodomains bind to histone tails with acetylated 

lysine residues, while chromodomain-containing proteins bind to methylated histone lysine 

residues. These histone binding proteins could link covalently modified histone tails to 

transcriptional regulation (147). Posttranslational HMs play also a major role in 

developmental processes and disease, e.g. in cancer progression. 

 

 

Figure 1. Schema of DNA/chromatin structure and site of histone modification 

DNA consists of basic structural units called nucleosomes and is further packed into higher chromatin 

structures and may form chromosomes. The four histone protein subunits (H2A, H2B, H3, H4) of the 

nucleosome octamer can be target of covalent HMs. Various modifications like acetylation, 

methylation, phosphorylation or others can be located at specific N-terminal amino acid residues e.g. 

on lysine 4 (K4) or lysine 27 (K27).  

In fact, several HMs could be linked to functional relevant regulatory sites in the genome and 

moreover assess their transcriptional activity. The trimethylation of histone H3 on lysine 

residue 4 (H3K4me3) was found to be mainly enriched at promoter sites in yeast, mouse and 

human cells, where transcriptional initiation takes place and important TRs like RNA 

polymerase II or TFs can bind (148-150). The simultaneous methylation of lysine residue 27 

of histone protein H3 (H3K27me3) mediated by the polycomp repressor protein complex and 

of lysine 4 (H3K4me3) allowed the identification of bivalently marked poised promoters, 
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silenced in their transcriptional activity and important for a proper and robust differentiation 

(151,152). The polycomb repressor protein family can form different multiprotein complexes 

e.g. with co-repressor BCL6 or E2F6 proteins, which modify histone or other proteins to 

silence transcription (153-155). In contrast, H3K4me3 enriched sites with a simultaneous 

acetylation of histone protein H3 on lysine residue 27 (H3K27Ac) strongly correlated with 

accessible and active promoters at cell type specific promoters, important for the induction 

and maintenance of cellular transcriptional programs (156). Enhancers, another class of 

regulatory sites can further promote gene transcription and are located up- or downstream of 

transcriptional start sites (TSS) with variable distances up to 1 Mb (157). Different states of 

enhancers were previously defined with specific HMs and correlated to the transcriptional 

activity of adjacent genes. First of all, H3K4me1 (monomethylation of lysine residue 4 of 

histone protein H3) a general histone enhancer mark is solely located at weak enhancers 

regulating transcription of moderately active genes (158,159). Active and poised enhancer 

states can be discriminated with additional H3K27Ac or H3K27me3 HMs (68,160,161). Active 

enhancers increase transcriptional rates by the interaction of bound TRs with promoter sites 

or with non-coding enhancer RNA species (eRNAs) stabilizing these interactions (102,162). 

Poised enhancers, previously in an active state during development, were silenced in 

differentiated cells and correlate well with inactive genes. These combinations of HMs were 

established in various studies as standard strategy for the genome wide identification of 

promoter and enhancer states (163-166). 

In summary, histone modifications can control transcription in an activating or repressive 

manner by changing the DNA accessibility and serve as targets for TRs (167). Additionally, 

genome wide epigenetic maps allow the delineation of unknown genes encoding for example 

for regulatory RNA species or new functional cis-regulatory sites. 

 

1.3.5 Super enhancers – A distinct class of cis-regulatory sites 

A special type of cis-regulatory regions were described recently amongst others in embryonic 

stem cells (168) and murine tissue macrophages (169). These super enhancer (SE) sites are 

not only characterized by a strong enrichment for active regulatory marks and TFs but also 

by a monomethylation of the histone protein 3 at the lysine 4 residue (H3K4me1) (170,171). 

Different approaches were used for their identification based on either mediator coactivator 

complex enrichments, essential for embryonic development and maintenance of the ESC 

state (67), or on the HM H3K27Ac present at active regulatory sites (169). Single enhancer 

positions with exceptionally high H3K27Ac signals and with distances less than 12.5 kb to 

each other are integrated into large SE regions. Due to the broad nature of SEs found at 
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genomic regions spanning tens of thousands of bases, new algorithms for their analysis were 

established and integrated into present ChIP-seq data analyzers like the HOMER program 

(72). These genomic regions were found at prominent genes encoding for key regulators 

required for cell identity in different cell types like embryonic stem cells or murine T-cells 

(172,173). In addition, SE also seem to be associated with oncogenic driver genes 

influencing the development and progression of cancer (171). Furthermore, at SE regions 

TRs are cooperatively bound in high numbers in comparison to standard enhancers. Due to 

this synergistic effects of TF binding, SEs can lose activity more rapidly with lower levels of 

regulators bound to the SE locus (174,175). The higher sensitivity of SEs for perturbation 

than typical enhancers, by the loss of key TFs like BRD4, may promote a targeted down-

regulation of adjacent genes and can represent an efficient mechanism to profoundly 

influence oncogenes. SEs play also a major role for activation-induced cytidine deaminase 

(AID) processes, responsible for the initiation of somatic hypermutations during antibody 

maturation and DNA breakage during antibody class switch recombinations (176). As an 

integral part of the epigenetic landscape, SEs regulate diverse cellular functions in many cell 

types. Additionally, they may also reflect the extracellular environment and their formation is 

influenced by extracellular signals, demonstrated in heterogeneous murine tissue 

macrophages showing common macrophage SEs but also activation state specific sites 

(169), whereas the role for SEs during the establishment of different activity states in human 

macrophages still needs to be elucidated. 

 

1.3.6 Epigenetic regulation in macrophages 

Macrophages participate in a wide spectrum of biological processes and diseases, like 

neurological dysfunctions or cancer and are capable of rapid and dramatic alterations in their 

transcriptional programs adapting to environmental stimuli (92). Interestingly, despite the 

same genome and the expression of nearly the same repertoire of TFs, macrophages 

differentiate under various conditions and fulfill various functions after their specialization into 

distinct activation states (177-179). Such specialized programs seem to be based on specific 

combinations of a small number of expressed and repressed gene subsets. Epigenetic 

changes could hold the key to balance these “substantial similarities” with “specialized 

differences” mediating transcriptome variations, which can change cellular functions and 

identity. If epigenetic mechanisms alone or in combination with secondary control 

mechanisms at accessible loci are responsible for certain macrophage activation states is 

still unknown. 
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Different aspects of complex epigenetic regulatory mechanisms were already subject of 

detailed scientific investigations. First of all, cis-regulatory enhancer regions are established 

and maintained in macrophages mainly by the binding of the lineage determining TF PU.1, 

essential for the macrophage cell type (75,178). Between 35.000 and 45.000 enhancers 

could be identified in murine macrophages (71,72). They are used by signal depending TFs 

to integrate a diverse array of signals with gene transcription. TFs like AP-1 or C/EBP 

strongly correlate with PU.1 bound sites in thioglycolate-elicited mouse macrophages and 

cooperatively displace nucleosome barriers, prior to the establishment of functional 

enhancers (76,180). The identity of TFs cooperating with PU.1 to mediate development or 

survival of macrophages depends on the microenvironment and corresponding macrophage 

function. Tissue macrophages for example display slightly different TF repertoires. Whereas 

microglia located in the central nervous system depend on the TFs IRF8 and SMAD 

mediating TGF-β signaling (181-183), peritoneal macrophages require GATA6 for their 

survival (184). However, different murine spleen macrophage subtypes seem to depend on 

the ETS family TF SPI-C or LXRα (13,185). 

Transcripts of active enhancer sites (eRNA) may also play an important role in the direct 

regulation of the macrophage transcriptome. For instance, Rev-Erb nuclear receptors 

repress the transcription of MMP9 and CX3CR1 genes in mouse macrophages by the direct 

binding of corresponding enhancer sites and mediate the down-regulation of eRNA 

transcripts adjacent to these genes (186). Other regulatory molecules like miRNA-155 can 

down-regulate MIL4 genes in human macrophages by targeting the IL-13Rα1 subunit (187). 

Additionally, identified genomic SE regions in murine macrophages are concomitantly 

enriched for macrophage key TFs like C/EBP and seem to regulate genes responsible for 

cell identity and macrophage specific functions (168).  

Furthermore, recently identified latent or de novo enhancers in mouse macrophages gain 

enhancer associated HMs (H3K4me1) upon macrophage activation and allow the binding of 

regulatory proteins like TFs (73,188). TLR4 stimulation leads to NF-kB activation and finally 

results in PU.1/CEBP binding, which recruits NF-kB p65 to the enhancer site. Histone acetyl 

transferase enzymes (HATs) cause the acetylation of histones and the recruitment of RNA 

Polymerase II mediating in at least some cases the transcription of eRNAs. Histone methyl 

transferases (HMTs) MLL1-4 finally lead to the stabilization of the enhancer characterized by 

the methylation of lysine 4 on histone protein 3. Importantly, latent enhancers keep their 

corresponding H3K4me1 HM signal after loss of the stimulus and upon re-stimulation, a 

faster and stronger induction of macrophages could be detected, thus providing an 

epigenetic memory of the initial stimulation. 
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The histone modification enzyme (HME) repertoire itself can identify different activation 

states of macrophages and are associated with specific macrophage functions. MLL 

enzymes do not only mediate the de novo formation of latent enhancers, but are also known 

to increase the expression of CXCL10 in human and murine macrophages after IFNy/LPS 

stimulation. CXCL10, an important chemokine in MIFNy macrophages attracts T helper 1 cells 

during inflammatory processes (7,189). Other HMEs , especially JMJD3 (Jumonji Domain 

Containing 3) and HDAC3 (histone deacetylase 3) play central roles in macrophage 

differentiation and activation (190). JMJD3 is not exclusively associated to only one 

macrophage population, is essential for the transcription of pro-inflammatory human and 

murine macrophage genes and is crucial for the activation of IL4 macrophages in helminth 

infections and responses to chitin (191-193). Both demethylases JMJD3 and KIAA1718 

cooperate to resolve H3K27me3 repressive marks at genes poised for activation, allow RNA 

Polymerase II travelling and the activation of gene transcription (194). Overall, JMJD3 allows 

the response to different external stimuli in human and murine macrophages. In contrast, 

HDAC3 inhibits the activation of anti-inflammatory IL4 macrophages by the de-acetylation of 

IL-4 induced regulatory regions and promotes MIFNy pro-inflammatory responses in murine 

models (195). In HDAC3 deficient phenotypes, macrophages show MIL4-like properties in the 

absence of external stimuli and are hyper responsive to IL-4. Furthermore, HDAC3 is 

required for the activation of STAT1-dependent inflammatory genes, assessed by defects in 

IFNβ signaling in HDAC3 knockout mouse models (196). The expression and activity of 

HMEs is affected by environmental stimuli and requires the utilization of metabolites. The 

metabolism of MIFNy switches to glycolysis, while MIL4 macrophages perform enhanced fatty 

acid oxidation and mitochondrial oxidative phosphorylation (197-199). Interestingly, the 

inhibition of these metabolic pathways can impair MIFNy or MIL4 activation. Collectively, HMEs 

remodel the epigenetic landscape of macrophages upon environmental stimuli, thus may 

play an important role as linkers between environment, metabolism and macrophage 

activation (200).  

How far in detail epigenetic processes are involved in the alteration and maintenance of 

transcriptional programs, specifically during the generation of primary human macrophage 

subsets still needs to be elucidated. 

 

1.4 Next generation sequencing technology 

Next generation sequencing (NGS) technology, an essential prerequisite for the modern high 

throughput epigenetic analysis of living cells, was developed in the early 2000s to combine 

the principle of DNA sequencing technology with a high throughput approach to massively 
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parallel sequence short DNA reads using solid phase sequencing by reversible terminators. 

In contrast to the ChIP-chip array technology, where ChIP-DNA fragments were identified by 

the hybridization to a microarray, in ChIP-seq experiments the ChIP-DNA is directly 

sequenced with higher resolution, fewer artefacts and greater coverage in a massively 

parallel fashion (201). The exponential increase of deep sequencing data set numbers 

generated with quite variable techniques required the establishment of standardized rules 

and optimized protocols to enable the integration and comparison of different data sets and 

to increase their overall accuracy and quality. For this purpose, the ENCODE and Roadmap 

Epigenomics Projects (202-204) did not only release tight quality protocols to ensure high 

quality sequencing data sets but also contributed gigantic data repositories to distribute 

thousands of NGS experiments to literally everyone. This approach allows the integration of 

data on regulatory processes to generate piece by piece a broader picture of the cellular 

regulatory landscape. Especially for cell line data sets this is already feasible, due to their 

highly abundant data availability, but it is also more and more possible for primary cells finally 

correlating epigenetic, transcriptional and translational data. 

 

1.4.1 Next generation sequencing method variations 

High throughput sequencing experiments were initially designed to identify enriched genomic 

regions for a protein of interest (ChIP-seq). The creative usage of digestion enzymes or 

different separation protocols for the isolation of specific RNA or DNA molecules multiplied 

the potential areas of application. Many aspects of cellular regulation can now be subject of 

detailed high throughput experiments, like epigenetics or transcriptional regulation. 

Three NGS methods are specialized on the analysis of cellular DNA methylation and utilize 

different working principles (205,206). (I) In MRE-seq experiments (Methylation-sensitive 

Restriction Enzyme sequencing) methyl-sensitive restriction enzymes digest genomic DNA 

and finally lead to the identification of CpG methylated genomic sites. A disadvantage of this 

method is its incomplete enzymatic digestion that can lead to less accuracy and potentially 

biased sequencing results. Other more cost efficient approaches use affinity-based 

enrichment assays to select for methylated fragments in sonicated chromatin with an 

antibody or a methyl-binding domain. These sequencing methods are called (II) MeDIP-seq 

(Methylated DNA Immunoprecipitation sequencing) or MBD-seq (Methyl-CpG Binding 

Domain sequencing) (207,208). Other approaches like (III) Bisulfite sequencing experiments 

use a chemical conversion step to distinguish methylated from unmethylated cytosines 

(MethylC-seq) (209). After the discovery of four cytosine variants including intermediate 

states (210,211) classical MethylC-seq experiments were adapted due to their inability to 
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distinguish between the four cytosines (212). Enhanced OxBS-seq (Oxidative BiSulfite 

sequencing) or TAB-seq (TET Assisted Bisulfite sequencing) protocols can now discriminate 

between cytosine variants and produce accurate single-base resolution maps, despite 

concerns like DNA damage due to chemical treatments and their dependency on the 

enzymatic activity of TET (213,214) 

The genome in eukaryotes is structured into basic nucleosome units and eventually forms 

chromosomes through a series of higher order structures. Genome-wide nucleosome 

positioning can be assessed by the enzymatic micrococcal nuclease digestion of chromatin 

(MNase-seq) which is afterwards used as input for following NGS. DNA wrapped around 

nucleosomes or occupied by TFs is protected from digestion and - after a purification step 

and the sequencing of 150 bp nucleosomal DNA segments - allows the identification of 

nucleosome protected regions. Genomic loci vary in their accessibility due to their packaging 

status which is mediated amongst others by nucleosomes and therefore promote or interfere 

with their capabilities to be bound by proteins. Transcriptionally active regulatory regions like 

promoters, enhancers, insulators and silencers are tightly correlated to open chromatin 

positions and are targets of specific transcriptional regulatory proteins. In DNase-seq (DNase 

I hypersensitive sites sequencing) experiments open regulatory regions are identified due to 

their vulnerability to DNase I enzymatic digestions. These experiments finally result after 

DNAse I enzymatic treatment in nucleosome depleted open chromatin fragments (215). 

FAIRE-seq (Formaldehyde-assisted isolation of Regulatory elements), another approach to 

analyze chromatin accessibility uses formaldehyde cross-linked chromatin as input and an 

ultrasound mediated DNA shearing is performed (216). Open regulatory sites are more 

sensitive to ultrasonic shearing and thus can be sequenced after DNA purification. Another 

approach uses transposase enzymes (ATAC-seq), which shear open chromatin regions and 

integrate primer sequences into the cleaved genomic DNA (217). The biggest advantage for 

the analysis of nucleosome-free and open positions is the global identification of regulatory 

elements and protein binding sites without prior knowledge of TRs. Interestingly, specific 

nucleosome-free regions (NFR) e.g. at promoter sites can also be identified by a 

bioinformatics approach using HM data sets like H3K4me3 (tri-methylation of lysine 4 on 

histone protein 3) independently of previously listed methods with tools like the HOMER 

program to analyze the specific HM enrichment patterns (72,218). 

For mapping higher order chromatin architectures, a variety of protocols was established. 

E.g. in all 3C (Chromosome Conformation Capture) methods formaldehyde cross-linked 

chromatin is digested with a restriction enzyme. An intramolecular ligation of DNA ends in 

close proximity to each other further allows the identification of ligation frequencies between 

two restriction fragments (one-to-one) and is finally measured by qPCR with specific primer 
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sequences (219). Variations of the 3C protocol measure the genome wide interaction 

frequency of one target site with 4C-seq experiments (Circular Chromosome Conformation 

Capture sequencing) (one-to-all), while many anchor and bait primers can identify thousands 

of interactions between targets in the 5C-seq method (Chromosome Conformation Capture 

Carbon Copy sequencing) (many-to-many) (220,221). Hi-C sequencing, the newest 

breakthrough in chromatin conformation measurements can identify possible interaction 

frequencies from an entire genome with itself in all combinations (all-to-all) (222). Chimeric 

DNA ligation junctions are selected with a biotin labeled nucleotide incorporated at the 

ligation junction and are subsequently used for NGS. The ChIA-PET (Chromatin Interaction 

Analysis by Paired-End Tag sequencing) protocol even combines the Hi-C method with the 

analysis of proteins like TFs or RNA polymerases interacting with the nuclear organization 

(223). Interestingly, Hi-C experiments identified cell type and species specific 1 Mb regions 

with high local interaction frequencies separated by boundary regions and were termed 

“topologically associated domains” (TADs) (224). TADS consist of regulatory elements like 

promoters or enhancers interacting with each other by DNA looping and can even separate 

chromosomes into higher structured compartments called chromosome territories (222). 

NGS methods were also extended to the analysis of RNA molecules (225) to quantify known 

and unknown transcripts with corresponding splice junctions (226,227), alternative splicing 

(228,229) and even single nucleotide polymorphisms (SNPs) (230). Transcriptome analysis 

by massively parallel sequencing outperforms previous techniques like Sanger sequencing 

or microarray-based methods in resolution and accuracy. In RNA-seq experiments cellular 

total RNA, mRNA with poly-A tails, even micro RNA or other small non-coding RNA species 

(miRNA-seq) serve as input material for the complementary cDNA construction followed by 

RNA library preparation and high throughput sequencing. Standard RNA-seq protocols do 

not preserve the information about which strand was originally transcribed. Newer strand 

specific RNA-seq protocols can discriminate between RNA originated from + or – strand DNA 

(231). This enhanced RNA-seq protocol enables the accurate identification of regulatory 

antisense transcripts (232) or the correct measurement of expression levels for coding and 

non-coding transcripts located at overlapping genomic positions. Derivatives of RNA-seq 

experiments also allow the analysis of nascent RNA products measuring rates of 

transcription instead of steady state RNA levels (GRO-seq, Global Run-On sequencing) 

(232). During a chemically induced transcriptional pause, labeled nucleotides are added to 

isolated nuclei and transcription is briefly resumed. Therefore, the quantity and location of 

newly transcribed RNA molecules can be identified by sequencing the labeled RNA products. 

Furthermore, RNA-seq protocols were adapted to closely monitor translational processes 

(Ribo-seq, Ribosomal sequencing) (233). Only ribosome protected mRNA is isolated and 

used for sequencing experiments to detect global ribosomal densities along mRNA 
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transcripts (234) and translational start sites (235). RNA-seq experiments are the ideal tool to 

elucidate transcriptional and translational processes on a global cellular scale. Nevertheless, 

challenging bioinformatics data analysis requires correction and normalization steps to 

correctly transform experimental data into a profound biological interpretation (236). 

Chromatin immunoprecipitation following deep sequencing (ChIP-seq) identifies genome 

wide binding patterns of proteins directly or indirectly bound to chromatin or covalent 

posttranslational modifications of histone proteins. In this method, formaldehyde cross-linked 

chromatin is sheared and DNA-protein complexes are immunoprecipitated with specific 

antibodies against a protein of interest. After the purification of ChIP-DNA, known adapter 

sequences are ligated to both ends and PCR reactions multiply the DNA amounts. Finally, 

the ChIP-seq library is sequenced and resulting sequence reads are computationally aligned 

to a reference genome for the corresponding species to find peak positions enriched for the 

protein of interest. Antibody quality plays an exceptionally high role for valid and accurate 

sequencing results and greatly influences unspecific and background signal intensities (204). 

The amount of starting material can also impact sequencing results. Especially for primary 

cells ChIP-seq experiments can be challenging and the success is not guaranteed while 

using less than 5 million cells for TF associated experiments and less than 1 million cells for 

detecting HM enrichments. Low cell protocols like ChIP-nano were adapted to overcome at 

least partially the cell number requirement hurdle using 50.000 cells or less by reducing 

sample loss, adapting shearing conditions and washing steps (237,238). Another protocol 

(ChIP-exo, exonuclease sequencing) increases footprinting resolution to nucleotide 

resolution by the 5’-to-3’ exonuclease digestion of sonicated ChIP DNA ends up to the cross-

linked protein. In general, the ChIP-seq method, can identify the genomic positions of 

histones and HMs, as well as TFs, DNA or histone modifying enzymes and other chromatin 

associated proteins. Careful experimental design and data analysis is required to minimize 

false-positive and background signals negatively affecting the correct identification of sites 

enriched by a protein of interest in ChIP-seq experiments. 

 

1.4.2 Technical considerations for ChIP-seq experiments 

ChIP-seq experiments can provide detailed genomic data on many regulatory levels in living 

cells and their design depends on the scientific question and chosen experimental protocol. 

Nevertheless, due to the complexity of experimental design, sequencing and data analysis 

multiple sources of variance need to be considered to allow a precise and correct biological 

data interpretation. First of all, the chromatin structure itself influences the performance of 

shearing experiments creating sites of variable fragility which depends on the hetero- or 
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euchromatin status, thus rendering euchromatic DNA more vulnerable to shearing (239). 

Under consistent shearing conditions using a highly efficient and standardized ultrasonic 

shearing device e.g. from Covaris with the same shearing protocols for target and control 

samples, the effects of this hurdle can be sufficiently abrogated. Incomplete protein digestion 

with the proteinase K enzyme could lead to biases due to the differential solubility of nucleic 

acids and proteins during phenol-chloroform extraction, which is still a widely used method 

during ChIP-seq experiments (240). Moreover, PCR over-amplifications due to inefficient 

amounts of immunoprecipitated ChIP-DNA is especially a problem while using low-cell 

protocols and can further create false-positive signals (241).  

The choice between two different ChIP-seq approaches can additionally introduce variance. 

The X-Chip method uses formaldehyde to tightly fix proteins to corresponding genomic 

positions, which allows the study of non-histone proteins directly or even indirectly bound to 

DNA (242,243). A possible disadvantage is the inefficient antibody mediated precipitation due 

to potential masking of antibody epitopes during fixation and may require higher numbers of 

PCR cycles for sufficient DNA amplification. One positive aspect of X-ChIP experiments is 

the minimal chromatin rearrangement during ChIP-seq procedures. However, the N-ChIP 

method uses chromatin in its natural state without a fixation step and is specifically designed 

for proteins with strong DNA interactions e.g. histone proteins (244). In this protocol the 

chromatin shearing can be for example performed by an enzymatic digestion using the 

MNase enzyme (Microoccal nuclease) (245). N-ChIP is normally not suitable for non-histone 

proteins, shows more pronounced sequencing bias than sonication and protein 

rearrangements could occur during chromatin preparation. (246). An over-digestion of 

chromatin can be controlled by thoroughly assessing optimal temperature and duration of 

MNase treatments. Positive aspects of N-ChIP experiments are e.g. the increased mapping 

resolution after MNase digestion by removing linker DNA more efficiently compared to an 

ultrasound mediated shearing. Furthermore, the generation of specific antibodies is normally 

performed with not-cross-linked peptides or proteins and is therefore more predictable for 

natural chromatin and can lead to a very efficient immunoprecipitation.  

Mentioned examples of technical and biological variances create different kinds of false-

positive ChIP-seq tag (short sequence reads) signals and need to be clearly discriminated 

during peak calling from biological relevant and specific ChIP-seq peak data (Figure 2). The 

antibody performance is critically important for successful ChIP-seq experiments and 

methods like immunoblotting or ChIP-string can assess their specificity and affinity 

(204,247,248). The amount of background noise and non-specific peak signals are inevitably 

connected to antibody quality. They can bind non-specifically with the constant FC region to 

DNA and beads or bind specifically by a cross-reaction to irrelevant epitopes introduced 
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during immunization. Especially for experiments with low enrichments of TF proteins the 

proper identification of significant peaks remains difficult (249). Another type of false-positive 

sites called “hyper ChIPable” regions were recently described in yeast and are characterized 

by huge amounts of non-specific ChIP enrichments for proteins like RNA polymerase II or 

various TFs, irrespective of protein origin (250). Even artificial proteins like GFP were bound 

to these regions in high amounts. These transcriptional active euchromatic sites are also 

vulnerable to DNase I cleavage. Hyper-ChIPable regions seem to display a general 

characteristic of the ChIP procedure per se. DNA from highly transcribed and open regions 

without a densely packed nucleosomal structure could promote stronger electrostatic 

interactions with antibodies or beads used during ChIP experiments. The ChIP antibody 

could also non-specifically interact with RNA polymerase II or III bound at these sites. 

 

 

Figure 2. Schematic overview of variances influencing ChIP-seq data files. 

Sources for true- or false-positive ChIP-seq signals with corresponding graphical schema of raw tag 

signals and called peak positions marked with black bars. Figure has been previously published as 

part of manuscript “Optimization of transcription factor binding map accuracy utilizing knockout-mouse 

models” by myself as first shared author (Krebs, W.*, Schmidt, S.V.*,” et al.). 
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True-positive and biological relevant ChIP-seq signals can be identified and separated from 

false-positive signals like background, non-specific and hyper-ChIPable signals or signals 

created by other technical variances, by the usage of ChIP-seq control data sets (204,251). 

For the first type of possible control sheared “input” chromatin is used, which cannot display 

the ChIP enrichments for specific binding sites of a protein of interest. Input chromatin allows 

an estimation of chromatin distribution and bias, but lacks the integration of variances 

occurring during the chromatin immunoprecipitation (ChIP). In a “mock” ChIP reaction, also 

called “IgG” control, an unspecific control antibody with the same immunoglobulin class than 

the target ChIP antibody reacts with irrelevant antigens on sheared chromatin. IgG controls 

mimic a ChIP experiment more closely than Input DNA but could recover not enough DNA 

amounts to create ChIP-seq libraries with sufficient complexity, thus introducing significant 

amounts of bias. A third type of control utilizing protein knockout (KO) experiments was until 

now only sparsely used in ChIP-seq experiments, combines the positive effects of input and 

IgG controls and simultaneously compensates for some of their negative properties. KO 

controls undergo the same experimental procedures as the ChIP-seq sample, thus 

representing the same bias. KO associated immunoprecipitations also normally result in 

sufficient amounts of ChIP DNA in comparison to the IgG control to produce control libraries 

with enough complexity to finally discriminate true- and false-positive sites without 

introducing additional bias. More importantly, KO controls could identify hyper-ChIPable 

regions in contrast to input controls and could exclude these highly expressed false positive 

sites from the analysis (250). 
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2. Objectives 

The next generation sequencing technology, a very useful but complex method to gain 

insights into a plethora of scientific biological questions evolved in an astonishing way the 

last couple of years concerning data analysis strategies as well as in experimental methods. 

Thus, specific guidelines were recently published to ensure the comparability and 

reproducibility of ChIP-seq experiments (204). The ENCODE consortium did not specifically 

focus on knockout (KO) models and sparsely performed previous experiments concentrated 

more on the aspect of induced biological changes after the KO of a protein of interest in 

comparison to the WT situation. Therefore, it was speculated that KO experiments could be 

used as ChIP-seq control experiments, especially due to the known disadvantages of 

described IgG and Input chromatin controls to improve ChIP-seq data analysis (251).  

These observations raised several questions: Can the standard ChIP-seq data analysis 

benefit from knockout controls used in the KO Implemented Normalization method (KOIN) 

method? In which extent influences KOIN false-positive signal ratios and more importantly 

the biological interpretation of ChIP-seq data? These questions were addressed with the 

establishment of KOIN utilizing six ChIP-seq data sets from mice, either generated with 

different antibodies or under different stimulatory conditions and with the assessment of the 

results in comparison to the standard ChIP-seq analysis. 

In addition, in respect to the newly described spectrum model of human macrophage 

activation (21), the underlying complex mechanisms for their differential transcriptional 

programs need to be further elucidated. Previous observations in murine and human 

macrophages connecting epigenetic changes and transcriptional regulation already revealed 

useful insights into macrophage biology (62,157,161,252). An adapted approach for 

differentially activated primary human macrophages could further expand the knowledge of 

the underlying regulatory mechanisms for macrophage specialization. 

Different questions arose in this matter: Is there a common macrophage core signature also 

visible on the epigenetic level? How extensive are the epigenetic differences for activated 

human macrophages? Do super-enhancers play a role in macrophage activation? Are 

important TRs differentially regulated on the epigenetics level? Four differentially activated 

primary human macrophages were generated to detect their epigenetic activity states at 

promoter, enhancer or super-enhancer positions with the analysis of ChIP-seq data sets for 

four histone modifications (HM) in different combinations (H3K4me1, H3K4me3, H3K27Ac, 

H3K27me3). The HM data was subsequently correlated to RNA-seq expression data to find 

answers for the previously described questions. 
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3. Materials 

 

3.1. Chemicals and Reagents 

Agencourt AMPure XP beads Beckman Coulter, Brea, USA 

BSA New England Biolabs, UK 

CFSE  Sigma-Aldrich, München, DE  

Complete protease inhibitors Hoffmann-La Roche, Basel, CH 

dATP New England Biolabs, UK 

Dimethylsulfoxid Sigma-Aldrich, München, DE  

dNTP solution New England Biolabs, UK 

Dynabeads protein G Invitrogen Life Technologies, Karlsruhe, DE  

Dynabeads® M-450  InvitrogenLifeTechnologies,Karlsruhe, DE  

EDTA Calbiochem, San Diego, USA 

EGTA Calbiochem, San Diego, USA 

Ethanol  Roth, Karlsruhe, DE  

Ethylendiamintetraacetat Sigma, St Louis, USA  

Fetal calf serum Invitrogen LifeTechnologies,Karlsruhe, DE  

Formaldehyde 16% (wt/vol) Thermo Scientific 

Glutamax  Invitrogen Life Technologies, Karlsruhe, DE  

Glycerol Calbiochem, San Diego, USA 

Glycine Calbiochem, San Diego, USA 

Glycogen Roche Diagnostics GmbH, Mannheim, DE 

HEPES buffer Calbiochem, San Diego, USA 

Ionomycin  Sigma Aldrich, Taufkirchen, DE  

Klenow enzyme New England Biolabs, UK 

KOH solution Sigma Aldrich, Taufkirchen, DE  

Lithium chloride Sigma Aldrich, Taufkirchen, DE  

MicroBeads CD14+  MiltenyiBiotech, Bergisch Gladbach, DE  

MNase enzyme Sigma Aldrich, Taufkirchen, DE  

NEB buffer 2  New England Biolabs, UK 

N-Lauryl-sarcosine Sigma Aldrich, Taufkirchen, DE  

NP-40 Calbiochem, San Diego, USA 

Pancoll  PAA Laboratories GmbH, Pasching, AT  

PBS  PAA Laboratories GmbH, Pasching, AT  

PEG-8,000  Sigma Aldrich, Taufkirchen, DE  
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Pfu Ultra buffer Agilent Technologies, USA 

Pfu Ultra II fusion  Agilent Technologies, USA 

Propidium Iodide  Sigma Aldrich, Taufkirchen, DE  

Prostaglandin E2  Sigma Aldrich, Taufkirchen, DE  

Proteinase K Invitrogen LifeTechnologies,Karlsruhe, DE  

QIAzol®  Qiagen, Hilden, DE  

Quick ligase  New England Biolabs, UK 

Quick ligation buffer New England Biolabs, UK 

Rnase A Hoffmann-La Roche, Basel, CH 

RPMI 1640 PAA Laboratories GmbH, Pasching, AT  

SDS Calbiochem, San Diego, USA 

Sodium acetate Roth, Karlsruhe, DE  

Sodium chloride Roth, Karlsruhe, DE  

Sodium deoxycholic acid  Calbiochem, San Diego, USA 

Sodium hydroxide Merck, Darmstadt, DE  

T4 DNA polymerase New England Biolabs, UK 

T4 ligase buffer New England Biolabs, UK 

T4 polynucleotide kinase New England Biolabs, UK 

Trichloroaceticacid  Merck, Darmstadt, DE  

TRIS (hydroxymethyl)-aminomethane  Roth, Karlsruhe, DE  

Tris buffer Calbiochem, San Diego, USA 

Triton X-100 Calbiochem, San Diego, USA 

Trypanblue  Merck, Darmstadt, DE  

Tween-20 Calbiochem, San Diego, USA 

Water, molecular biology grade Sigma Aldrich, Taufkirchen, DE  

 

3.2. Cytokines 

rh GM-CSF Immunotools, Friesoythe, DE 

rh IL-4 Immunotools, Friesoythe, DE 

rh IFNy Immunotools, Friesoythe, DE 

rh TNF-α Immunotools, Friesoythe, DE 

Pam3Cysk4 Invivogen, San Francisco, USA 

PGE2 Sigma Aldrich, Taufkirchen, DE  
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3.3. Antibodies 

ChIP antibodies 

Antigen Host IgG Type Company 

H3K27Ac Rabbit Polyclonal Abcam, Cambridge, UK 

H3K27me3 Rabbit Polyclonal Merck Millipore, Billerica, USA 

H3K4me1 Rabbit Polyclonal Abcam, Cambridge, UK 

H3K4me3 Rabbit Monoclonal Merck Millipore, Billerica, USA 

PU.1 Rabbit Polyclonal Santa Cruz Biotechnology, Dallas, USA 

RNA-Pol II Rabbit Polyclonal Santa Cruz Biotechnology, Dallas, USA 

 

Antibodies for flow cytometry 

Antigen Fluorophore Company 

CD11c PE BD Biosciences, Heidelberg, DE 

CD14 APC BD Biosciences, Heidelberg, DE 

CD14 Pacific Blue Biolegend, San Diego, USA 

CD19 FITC BD Biosciences, Heidelberg, DE 

CD206 APC BD Biosciences, Heidelberg, DE 

CD23 FITC BD Biosciences, Heidelberg, DE 

CD25 FITC BD Biosciences, Heidelberg, DE 

CD3 FITC Biolegend, San Diego, USA 

CD56 PE BD Biosciences, Heidelberg, DE 

CD86 APC Biolegend, San Diego, USA 

 

 

3.4. RT-PCR primers 

Primers were designed with the Beacon Designer software and oligonucleotides were 

ordered from Sigma-Aldrich (Taufkirchen, DE). Semi-quantitative real time PCR experiments 

were performed with listed primers to validate performed ChIP-seq experiments. Primers 

were either designed to target sites with known associated HM enrichments as positive 

controls (pos.) or negative sites without corresponding target HM (neg.). 
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Target Gene Sequence 5' to 3' Purpose 

GAPDH_1 tactagcggttttacgggcg H3K4me3 pos. / H3K27me3 neg. 

  tcgaacaggaggagcagagagcga H3K4me3 pos. / H3K27me3 neg. 

Bmp2 ctcagcactccgcatttg H3K27me3 pos. / H3K4me3 neg. 

  ctcccatccaacgcttag H3K27me3 pos. / H3K4me3 neg. 

GAPDH_2 gccttgctcttgctactc H3K4me1 pos. 

  gcctgcctggtgataatc H3K4me1 pos. 

GAPDH_3 atctcagtcgttcccaaagtc H3K27Ac pos. 

  gtgatcggtgctggttcc H3K27Ac pos. 

Chr5_Intergenic_region gaacaactggatgggacaaac H3K4me1 neg / H3K27Ac neg. 

  acacgaatggaaccttatatctg H3K4me1 neg / H3K27Ac neg. 

 

3.5. Plastic ware 

0,2 - 2 ml Eppendorf tubes Eppendorf GmbH, Hamburg, DE 

1.7 ml siliconized tubes Sigma Aldrich, Taufkirchen, DE 

Falcon 15 ml Greiner bio-one, Frickenhausen, DE 

Falcon 250 ml 
Corning Life Sciences, Tewksbury, 

USA 

Falcon 50 ml Greiner bio-one, Frickenhausen, DE 

LS columns 
Miltenyi Biotech, Bergisch Gladbach, 

DE 

Microtube, AFA fiber Covaris, Woburn USA 

Nunclon™ 24-well tissue culture plate Thermo Scientific, Rockford, US 

Nunclon™ 48-well tissue culture plate Thermo Scientific, Rockford, US 

Nunclon™ 6-well tissue culture plate Thermo Scientific, Rockford, US 

Parafilm Pechiney, Chicago, US 

Pipette filter tips, 10, 200, 1000 μl Starlab GmbH, Hamburg, DE 

Pipette tips, 10, 200, 1000 μl Greiner bio-one, Frickenhausen, DE 

Pipettes 2, 5, 10 and 25 ml Greiner bio-one, Frickenhausen, DE 

Pre-Separation Filters 
MiltenyiBiotech, Bergisch-Gladbach, 

DE 

Slide-A-Lyzer 3.5K dialysis cassette Thermo Scientific, Rockford, USA 

Sterile filter 22 μm Sartorius, Hannover, DE 

Syringe 50 ml Braun, Melsungen, DE 
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3.6. Equipment 

Auto MACS pro separator  MiltenyiBiotech, Bergisch Gladbach, DE  

Bandelin Sono Plus Bandelin, Berlin, DE 

BD LSR II Flow cytometer  BD Biosciences, Heidelberg, DE  

Bioanalyzer Agilent Technologies, Santa Clara, USA 

BioDoc Analyze Biometra, Jena, DE 

cBot Illumina, Eidenhoven, NL  

Centrifuge Type 5415  Eppendorf GmbH, Hamburg, DE  

Centrifuge Type 5424  Eppendorf GmbH, Hamburg, DE  

Centrifuge Type 5810R  Eppendorf GmbH, Hamburg, DE  

Covaris S220 LGC Genomics, Berlin, DE 

Eppendorf Concentrator Plus Eppendorf GmbH, Hamburg, DE  

HiScanSQ system  Illumina, Eidenhoven, NL  

HiSeq 1500 Illumina, Eidenhoven, NL  

Incubator Binder B series  Binder, Tuttlingen, DE  

Incubator Binder C series  Binder, Tuttlingen, DE  

LightCycler 480 PCR system  Roche diagnostics, Basel, Switzerland  

Magnet MACS Multi Stand  MiltenyiBiotech, Bergisch Gladbach, DE  

Magnet MPC-S  DynalBiotech, Oslo, NO  

Mikroskope SM-LUX  Leitz, Wetzlar, DE  

NanoDrop  2000 Thermo Scientific, Rockford, USA  

Neubauer chamber  Carl Roth Karlsruhe, DE  

Odyssey® Infrared Imaging System  LI-COR Biosciences, Bad Homburg, DE  

Orbital shaking incubator  Stuart, Sttafordshire, UK  

pH-meter  Knick, Berlin DE  

Pipette boy  IBS Integra Biosciences, CH  

PowerPac HC Power Supply  Bio-Rad Laboratories, München, DE  

Roller Mixer SRT 1  
Stuart, Staffordshire, UKMettler-Toledo, 

Zwingenberg, DE  

Shaker (type 3011)  GFL, Burgwedel, DE  

Tapestation Agilent Technologies, Santa Clara, USA 

Water bath Memmert, Schwabach, DE 

 

3.7. Buffers and media 

A-base addition buffer (XChIP) 
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6 µl 10x NEB buffer 2, 0.1 µl dATP (100 mM), 10.9 µl nuclease free water 

Adapter ligation buffer (XChIP) 

 

29 µl 2x DNA quick ligase buffer 

End Repair Buffer (XChIP) 

 

6.7 µl 10x T4 DNA ligase buffer, 0.67 µl BSA (10 mg/ml), 0.67 µl dNTP mix 

(10 mM), 16.96 µl nuclease free water 

LiCl buffer (NChIP) 

 

0.25 M LiCl, 0.5 % NP-40, 0.5 % sodium deoxycholate 

MACS buffer  

 

1 x PBS supplemented with 0.5 % BSA, 2 mM EDTA, pH=7.2 sterile-filtered 

MNase digestion buffer (NChIP) 

 

50 mM Tris-Cl (pH 7.6), 1 mM CaCl2, 0.2% Triton X-100, 5 mM sodium 

butyrate, protease inhibitor cocktail (working concentration), 0.5 mM PMSF 

MNase stop buffer (NChIP) 

 

10 mM Tris-Cl (pH 7.6), 10 mM EDTA 

PBS (NChIP) 

 

137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4 

RIPA buffer (NChIP) 

 

10 mM Tris-Cl (Ph 7.6), 1 mM EDTA, 0.1 % SDS, 0.1 % sodium 

deoxycholate, 1 % Triton X-100 

RIPA-NaCl buffer (NChIP) 

 

0.3 M NaCl added to RIPA buffer 

TE buffer (NChIP) 

 

10 mM Tris (pH 8.0), 1 mM EDTA 

TE/Triton X-100 buffer (NChIP) 

 

0.2 % Triton X-100 added to TE-buffer 

 

3.8. Kits 

Bioanalyzer high sensitivity DNA kit Agilent Technologies, Santa Clara, USA 

ChIP-seq sample preparation kit Illumina, Eidenhoven, NL  

KAPA SYBR FAST Roche LightCycler 

480 2X qPCR Master Mix 

KAPABiosystems, Wilmington, USA 

 

Maxima SYBR Green qPCR Master Mix Fermentas, GmbH, DE 

Multiplex sequencing primer kit Illumina, Eidenhoven, NL  

NextFlex ChIP-Seq Barcodes - 48 Bioo Scientific, Austin, USA 
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QIAquick PCR Purification Kit Qiagen, Hilden, DE 

QIAquick Gel Extraction Kit Qiagen, Hilden, DE 

Tapestation DNA high sensitivity kit Agilent Technologies, Santa Clara, USA 

Truseq DNA sample preparation kit v1/v3 Illumina, Eidenhoven, NL  

Truseq RNA sample preparation kit v3 Illumina, Eidenhoven, NL  

Truseq SBS Kit v1/v3 Illumina, Eidenhoven, NL  

 

3.9. Software 

Beacon Designer PREMIER Biosoft, Palo Alto, USA 

Bowtie 0.12.8 Ben Langmead, Cole Trapnell, USA 

Circos 0.65 
Martin Krzywinski, Canada’s Michael 

Smith Genome Sciences Centre, CA 

Cluster 3.0 Michael Eisen, Stanford University, USA 

CorelDRAW X6 Corel Corporation, Ontario, CA 

DESeq2 package (R-package) 
Michael I Love, Harvard School of Public 

Health, USA 

Eland 1.8 (NGS Alignment) Illumina, Einhoven, NL 

Endnote X5 Thomson Reuters, Carlsbad, USA 

FACSDiva BD Biosciences, Heidelberg, GER 

Flowjo 7.6.2 Tree Star, Ashland, USA 

GenomeStudio Illumina, Einhoven, NL 

HOMER 4.3 Chris Benner, UCSD/Salk Institute, USA 

Integrative Genomics Viewer Broad Institute, Cambridge, USA 

Java Treeview 3.0 Alok Saldanha, GPLv2 License 

LightCycler 480 SW 1.5 Roche applied sciences, Basel, CH 

MACS 1.4.2 
Yong Zhang, Tao Liu, Xiaole Shirley Liu 

Lab, USA 

Microsoft Office Microsoft GmbH, Unterschleissheim, DE 

Partek genomics suite Partek, St Louis, Missouri, USA 

Python 2.6.9 
The Python Software Foundation, 

Delaware, USA 

R 2.15.0 - Programming language 
Ross Ihaka, Robert Gentleman, GNU 

General Public License, USA 

Samtools 0.1.18 Heng Li, BSD License/MIT License 

SigmaPlot 12.0 Systat Software GmbH, San José, USA 
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TopHat2 
Daehwan Kim, University of Maryland, 

USA 

 

3.10. Next generation sequencing data sets 

All utilized next generation sequencing data sets are available for download from various 

sources and are listed in Table 1. 

Table 1. Utilized next generation sequencing data sets 

ChIP-seq data set name Source GEO ID 

GATA3 (WT) http://www.ncbi.nlm.nih.gov/geo/ GSM523224 

GATA3 (KO) http://www.ncbi.nlm.nih.gov/geo/ GSM742022 

SRF (WT) http://homer.salk.edu/homer/data/index.html - 

SRF (KO) http://homer.salk.edu/homer/data/index.html - 

PU.1 (WT) http://www.ncbi.nlm.nih.gov/geo/ GSM538003 

PU.1 (KO) http://www.ncbi.nlm.nih.gov/geo/ GSM537999 

ATF3Unstim (WT) http://www.ncbi.nlm.nih.gov/geo/ GSM1334036 

ATF3Unstim (KO) http://www.ncbi.nlm.nih.gov/geo/ GSM1334037 

ATF3HDL (WT) http://www.ncbi.nlm.nih.gov/geo/ GSM1334038 

ATF3HDL (KO) http://www.ncbi.nlm.nih.gov/geo/ GSM1334039 

ATF3HDL+CpG (WT) http://www.ncbi.nlm.nih.gov/geo/ GSM1334040 

ATF3HDL+CpG (KO) http://www.ncbi.nlm.nih.gov/geo/ GSM1334041 

ATF3LPS 0-120min. (WT) http://www.ncbi.nlm.nih.gov/geo/ GSE36104 

HM H3K4me3 (Mb) http://www.ncbi.nlm.nih.gov/geo/ GSM1146439 

HM H3K4me3 (MIFNy) http://www.ncbi.nlm.nih.gov/geo/ GSM1146440 

HM H3K4me3 (MIL4) http://www.ncbi.nlm.nih.gov/geo/ GSM1146441 

HM H3K4me3 (MTPP) http://www.ncbi.nlm.nih.gov/geo/ GSM1146442 

HM H3K27me3 (Mb) http://www.ncbi.nlm.nih.gov/geo/ GSE66595 

HM H3K27me3 (MIFNy) http://www.ncbi.nlm.nih.gov/geo/ GSE66595 

HM H3K27me3 (MIL4) http://www.ncbi.nlm.nih.gov/geo/ GSE66595 

HM H3K27me3 (MTPP) http://www.ncbi.nlm.nih.gov/geo/ GSE66595 

HM H3K27Ac (Mb) http://www.ncbi.nlm.nih.gov/geo/ GSE66595 

HM H3K27Ac (MIFNy) http://www.ncbi.nlm.nih.gov/geo/ GSE66595 

HM H3K27Ac (MIL4) http://www.ncbi.nlm.nih.gov/geo/ GSE66595 

HM H3K27Ac (MTPP) http://www.ncbi.nlm.nih.gov/geo/ GSE66595 

HM H3K4me1 (Mb) http://www.ncbi.nlm.nih.gov/geo/ GSE66595 

HM H3K4me1 (MIFNy) http://www.ncbi.nlm.nih.gov/geo/ GSE66595 

HM H3K4me1 (MIL4) http://www.ncbi.nlm.nih.gov/geo/ GSE66595 

HM H3K4me1 (MTPP) http://www.ncbi.nlm.nih.gov/geo/ GSE66595 

HM murine tissue MФ http://www.ncbi.nlm.nih.gov/geo/ GSE63339 

RNA-Seq (Mb) http://www.ncbi.nlm.nih.gov/geo/ GSE66595 

RNA-Seq (MIFNy) http://www.ncbi.nlm.nih.gov/geo/ GSE36952 

RNA-Seq (MIL4) http://www.ncbi.nlm.nih.gov/geo/ GSE36952 

RNA-Seq (MTPP) http://www.ncbi.nlm.nih.gov/geo/ GSE66595 



Methods 

44  
 

 

Datasets for the analysis of 7 human tissues (5.2.7) are contained within Release 9 of the 

Human Epigenome Atlas (http://www.epigenomeatlas.org). In addition, 7 murine tissue 

macrophage datasets (5.2.8) are available under the main GEO accession number 

GSE63341, with the subseries accession numbers GSE63339 and GSE63340 for ChIP-seq 

and RNAseq experiments. 

Data was either used in the Fastq file format or as SRA files (GEO). SRA files required an 

additional conversion step into the FastQ file format (see Methods section 4.8.1). 

 

4. Methods 

Buffy coats from healthy donors were obtained from the Institute for Experimental 

Hematology and Transfusion Medicine of the University Hospital Bonn following protocols 

accepted by the institutional review board at the University of Bonn (local ethics vote no. 

045/09). Informed written consent was provided for each specimen according to the 

Declaration of Helsinki. 
 

4.1. Isolation of monocytes 

Peripheral blood mononuclear cells (PBMCs) were isolated in a Pancol density gradient by 

centrifugation at 250g for 25 minutes at room temperature. The interface containing the 

PBMCs was collected, washed twice with PBS and resuspended in 3 ml of MACS buffer. The 

fraction of white blood cells was incubated for 20 minutes in 200 µl CD14+ magnetic beads to 

isolate CD14 positive monocytes with the magnetic assorted cell sorting technique (MACS) 

according to the manufacturer’s protocol. LS columns were prepared in a MACS separation 

magnet and pre-separation filters were additionally used to exclude cell aggregates or fat 

pellets from downstream experiments. The white cell fraction was washed after bead 

incubation and transferred into the separation filter on top of the LS column. With the 

application of three times 3 ml of MACS buffer CD14+ cells moved through the LS column 

and were hold in the magnetic field, while CD14 negative cells were washed through the LS 

column into a collection tube. After magnet removal, collected CD14+ cells were counted and 

their purity was assessed. Stainings with CD14, CD11c, CD19 (B-cells), CD56 (NK-cells) and 

CD3 (Lymphocytes) antibodies were performed to identify impurities with CD14 negative 

cells following fluorescence activated cell sorting (FACS) analysis. Successful monocyte 

isolations with purities above 95% were used for further experiments. 

http://www.epigenomeatlas.org/
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4.2. Generation and activation of human monocyte derived 

macrophages 

Isolated monocytes were cultured in RPMI1640 medium supplemented with 10 % fetal calf 

serum (FCS) and 500 U/ml of recombinant human granulocyte macrophage colony- 

stimulating factor (rh GM-CSF). The cell concentration was adjusted to 2x106 cells/ml and 

maintained in 3 ml volume per well in 6-well plates for 72 h at 37°C and 5 % CO2. 

Unstimulated macrophages (also called baseline macrophages, Mb) were harvested and 

aliquots were seeded out in RPMI/10% FCS medium with the addition of 500 U/ml rh GM-

CSF. Treatments with different cytokines and chemicals for additional 72 h generated three 

macrophage activation states activated under different conditions described in Table 2 and 

Figure 3.  

Table 2. Cytokines and chemicals used for macrophage activation 

Macrophage activation state Stimulation Dose 

MIL4 rhIL-4 500 U/ml 

MIFNy rhIFNγ 200 U/ml 

MTPP rhTNF-α 800 U/ml 

  Pam3CSK4 1 µg/ml 

  PGE2 1 µg/ml 

 

Additionally, the expression of typical activation state specific surface proteins was validated 

by FACS analysis using CD14, CD23, CD25 and CD86 antibodies as described previously 

(21,253). For further details, see Methods section 4.4. Activated macrophages were further 

processed for ChIP-seq and RNA-seq experiments for 3 independent donors.  
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Figure 3. Workflow for primary human macrophage generation and differentiation.  

Isolated PBMCs were positively selected for CD14 with the MACS technique. Monocytes were 

cultured with rh GM-CSF for 72 h to generate unstimulated baseline macrophages (Mb). These 

macrophages were further in vitro activated under different stimulatory conditions into classically 

(MIFNy) or alternatively activated (MIL4) macrophages in addition to macrophages induced under chronic 

inflammatory conditions (MTPP) by TNF-α, prostaglandin E2, and the TLR2 ligand P3C (TPP). Figure 

has been previously published as part of manuscript “The transcriptional regulator network of human 

inflammatory macrophages is defined by open chromatin” by myself as first shared author (Schmidt, 

S.V.*, Krebs, W.*, Ulas, T.* et al. 

 

4.3. Generation of murine bone-marrow derived 

macrophages 

Bone marrow-derived macrophages (BMDMs) involved in ATF3 ChIP-seq experiments were 

generated by Dominic De Nardo and Larisa Labzin (Institute of Innate Immunity, University 

Hospitals, University of Bonn, Germany). The detailed method and analysis was described 

previously (254). In brief, BMDMs from 6- to 8-week old wildtype (WT) C57BL/6 and ATF3 

deficient knockout (KO) mice were obtained by culturing bone marrow cells for 6 days in 

DMEM supplemented with 40 ng/ml rh M-CSF, 10% (vol/vol) FCS and 10 μg/ml Ciprobay-

500 (R&D Systems). BMDMs were stimulated with 2 mg/ml HDL for 6 h (HDL condition) or 

with 2 mg/ml HDL for 6 h with additional treatment of 100nM CpG for 4 h (HDL + CpG 

condition). A third aliquot of cells was left untreated in medium (Unstim condition). Generated 

BMDM cells were subsequently used to perform cross-linked ATF3 ChIP experiments 

following deep sequencing. 

 

4.4. Flow cytometry 

For the quantitative and qualitative analysis of surface marker expression on macrophages, 

between 1x105 and 5x105 cells were resuspended in 100µl blocking buffer (PBS + 20 % 
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FCS) incubated for 10 min. at 4°C and stained with 1-5µl of antibody (used antibodies see 

Materials section 3.3) coupled to fluorochromes for 20 min. at 4°C. Next, cells were washed 

twice with 2 ml of PBS and pelleted by centrifugation at 300g for 8 minutes. After the 

supernatant was discarded, the cell volume was adjusted to approximately 300µl with PBS 

and measured on a flow cytometer FACS LSR II (Becton Dickinson, USA). Signal events 

were gated according to the expected size and granularity of living macrophages. Between 

10.000 and 50.000 events in the final gates were recorded. Cell viability was assessed by the 

addition of propidium iodide (PI; 1µg/ml) to the cells directly before measurement to detect 

DNA not protected by an intact cell membrane, thus allowing the estimation of cell death 

ratios. The frequency emission overlap of fluorochromes in a multi-color setup made a 

compensation step necessary. Single stainings for each fluorochrome used with anti-IgG1k 

coated polystyrene beads made the clear assignment of fluorochrome light signals in the 

multi-color setup possible. Finally, raw data was exported as .fcs files and analyzed with the 

FlowJo Software. 

 

4.5. Semi-quantitative real time PCR 

The semi-quantitative real time PCR method was applied as validation for successful ChIP 

experiments using the Maxima SYBR Green/Fluorescein qPCR Master Mix kit (Fermentas) 

with volumes according to manufacturer’s instructions listed in Table 3. 

 

Table 3. qRT-PCR reaction mix 

Type Amount 

Maxima SYBR Green qPCR MM (2x) 12.5 µl 

Forward primer (10µM) 0.75 µl 

Reverse primer (10µM) 0.75 µl 

Water 10 µl 

ChIP DNA (Diluted 1:5) 1 µl 

 

 

Each qPCR reaction mix was loaded at least as duplicates into a 96 well plate and results 

were generated with the LightCycler 480 II System (Roche) with the standard 

temperature/time program recommended by the manufacturer listed in Table 4. 
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Table 4. Standard RT-qPCR program 

Type Temperature, °C Time Cycles 

Initial denaturation 95 10 min. 1 

Denaturation 95 15 sec.  

Annealing 60 30 sec. 40 

Extension 72 30 sec.  

 

The relative PCR enrichment of positive (Pos) against negative (Neg) target sites were 

calculated according to the ΔΔCT method with the following formula and ChIP validation 

results were visualized as the ratios of specific ChIP antibody values (S) to unspecific IgG 

antibody values (IgG) also called as relative enrichment of ChIP antibody against unspecific 

IgG antibody: 

∆𝐶𝑡 = 𝐶𝑡(𝑆) − 𝐶𝑡(𝐼𝑔𝐺) 

∆∆𝐶𝑡 =  𝐶𝑡(𝑃𝑜𝑠) − 𝐶𝑡(𝑁𝑒𝑔) 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒  𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 =  2−∆∆𝐶𝑡 

 

4.6. Isolation of RNA following RNA-sequencing 

RNA isolation procedure and necessary downstream steps were performed by Michael Kraut 

and Laura Bohmann. RNA isolation, quality tests and RNA sequencing experiments were 

carried out according to previously published protocols (255). 

In brief, 5x106 cultured macrophages were lysed in TRIZOL (Invitrogen). Total RNA was 

subsequently extracted according to the manufacturers’ protocol (RNeasy kit, Qiagen) and 

quality assessments were performed. Ratios of the absorbance at 260 nm and 280 nm were 

detected using a Nanodrop 2000 Spectrometer (Thermo Scientific). Furthermore, the 

integrity of the 18/28 S RNA bands was visualized with a denaturing agarose gel. Only total 

RNA meeting the quality criteria with low degradation of 18/28 S RNA bands was used to 

perform the library construction with the Illumina TruSeq RNA sample preparation kit 

according to manufacturer’s descriptions.  

In brief, purified mRNA originating from 5-10 µg of total RNA purified by the usage of poly-T 

oligo-attached magnetic beads was fragmented with divalent cations in fragmentation buffer 

(Illumina). Random oligonucleotides were used as a starting point bound to mRNA for the 

reverse transcriptase enzyme SuperScript II to conduct first strand cDNA synthesis. The 

second strand cDNA synthesis was realized by the DNA Polymerase I and RNase H enzyme. 
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Newly created cDNA overhangs were repaired into blunt ends with exonuclease/polymerase 

enzymes and an A-base was added to DNA 3’ ends. Afterwards, Illumina PE adapter 

oligonucleotides were ligated to both ends of the cDNA molecules. A library size selection for 

preferentially 200 bp cDNA fragments was performed with 2 % (w/v) agarose gels and 

fragments were purified using the QIAquick gel extraction kit (Qiagen). A 15 cycles PCR 

reaction amplified the adapter ligated cDNA molecules with PE1.0 and PE2.0 PCR primers 

(Illumina). PCR products were purified with the QIAquick PCR purification kit (Qiagen). The 

measurements of quality and quantity for constructed cDNA library was carried out on a 

Bioanalyzer 2100 (Agilent) with the Agilent high sensitivity DNA assay kit. The validated 

cDNA library pieces were immobilized on a glas flow cell (Illumina) and clusters were 

generated out of each single strand cDNA molecule within the cBot machine (Illumina).  

Finally, the constructed library was sequenced in a paired-end 100 bp sequencing run for in 

total 208 cycles on the HiScan SQ system (Illumina) with reagents from the TruSeq SBS kit 

v3 (Illumina). With the CASAVA v1.8 software (Illumina) base calling and data conversion 

was performed by Jil Sander. TopHat2 (256) was utilized for the alignment against the hg18 

reference genome (257) and the transcript information for each gene was extracted using 

Partek Genomics Suite v6.6. Subsequently, the annotated data was normalized with the 

DESeq2 package (http://dx.doi.org/10.1101/002832), a plugin for the statistical software R 

v3.0.2 (258). For visualization purposes, normalized read counts below 1 were set to 1 

(flooring) to allow the usage of logarithmic scales during the comparison of differentially 

activated macrophages. Genes with normalized RNA-seq values ≥ 10 were defined as 

expressed. Independent sequencing samples were created for 3 donors. 

 

4.7. ChiP following deep sequencing 

Chromatin immunoprecipitation following next generation sequencing (ChIP-seq) is a 

powerful tool to identify the location of DNA binding proteins or HMs associated with specific 

regions of the genome. This method combines a chromatin immunoprecipitation using 

specific antibodies against a protein of interest or a HM to isolate the corresponding bound 

DNA pieces with a next generation high throughput sequencing approach to finally identify 

the base pair sequences of unknown ChIP DNA fragments (201).  

ChIP experiments were performed with two different approaches, either using chromatin 

fixated with formaldehyde to tightly bind proteins to corresponding genomic positions (X-

ChIP) or chromatin in its natural state without a fixation step (N-ChIP). Each method 

possesses its own advantages and disadvantages described in the introduction (1.4.2). 

http://dx.doi.org/10.1101/002832
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ChIP-seq experiments were conducted for three independent donors and pooled prior to 

peak calling and downstream data analysis. HM data sets yielded in average 28 million 

ChIP-seq reads from 12 to 56 million reads for individual macrophage activation experiments 

 

4.7.1. Native ChIP (N-ChIP) 

The generation of H3K4me3 HM data sets was performed by adapting a previously 

published native ChIP protocol (244) and is published on the Gene Expression Omnibus 

(GEO) platform under accession number GSE47188 (21). In brief, 2x107 primary human 

macrophage cells were used from each activated macrophage population for native ChIP-

seq experiments. Cell lysates were sheared with 0.3 units MNase enzyme (Sigma Aldrich) for 

10 minutes at 37°C into even multiple pieces of 180 bp (mono-, di-, trinucleosome DNA). 

After an additional ultrasonic step (Bandelin), analysis of the resulting DNA fragment length 

was verified in an agarose gel after the shearing of the chromatin. A dialysis was executed 

with dialysis cassettes (Thermo scientific) exchanging the MNase shearing buffer with RIPA 

buffer. During the ChIP experiments rabbit monoclonal anti-trimethyl histone antibodies 

(Millipore) bound to protein G magnetic beads (Life Technologies) or unspecific isotype 

controls (Millipore) were used to isolate chromatin pieces modified with three methyl groups 

added to lysine 4 on histone protein 3 (H3K4me3). After several washing steps with low and 

high salt buffers, the de-cross-linking and protein digestion was carried out overnight. Finally, 

the DNA was purified with silica-membrane-based spin columns included in the Qiagen 

MinElute kit (Qiagen). A qPCR validation step was performed to calculate the DNA 

enrichment signals for target relative to control ChIP DNA using specific or unspecific isotype 

control antibodies (described in section 4.5) 

The ChIP-Seq Sample Preparation Kit (Illumina) and the Multiplexing Sample Preparation 

Oligonucleotide Kit (Illumina) were used with 10 ng ChIP-DNA following the manufacturer’s 

instructions to create multiplex sequencing libraries. Briefly, purified DNA ends were repaired 

using PNK and Klenow enzyme, followed by treatment with Klenow exo minus polymerase to 

add an A base to the 3′ end used for the adaptor ligation. With a size selection step by an 

agarose gel, DNA fragments with approximately 220 bp size were excised and eluted with 

the QIAquick Gel Extraction kit (Qiagen). After subsequent adapter ligation, an amplification 

was performed for 5 cycles with PCR primers 1.1 and 2.1 (Illumina). An additional 13 cycles 

PCR further amplified DNA and integrated an index sequence for each library using specific 

multiplex PCR primers (Illumina). In a last step, library DNA was purified and 8 pM of single 

stranded library was loaded onto a glass Flow Cell (Illumina).  
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Finally, a 57 bp single read multiplex sequencing run was performed on the Illumina 

HiScanSQ/HiSeq 1000 systems resulting in DNA sequences with the length of 50 base pairs. 

These sequences were demultiplexed with CASAVA software (Illumina) and further 

processed with bioinformatics methods described in section 4.8.2. 

 

4.7.2. Cross-linked ChIP (X-ChIP) 

A previously published high-throughput low cell X-ChIP protocol was adapted to create ChIP-

seq data sets for the HMs H3K4me1, H3K27ac, H3K27me3, also including ChIP-seq library 

construction procedures (238). All experiments were performed in 96-well plate format with 

multichannel pipettes to minimize technical errors and maximize speed for optimal protein 

stability. In brief, chromatin was in the first step cross-linked for ChIP reactions to bound 

proteins with 1 % formaldehyde (Sigma Aldrich) for 10 minutes. Cell nuclei from 0.5x106 

lysed cells were isolated and chromatin was subsequently sheared for 45 min. into 

approximately 200 bp pieces with the Covaris S220 ultrasound system (Covaris Ltd.). 

Chromatin size verification was performed with the Bioanalyzer 2100 or Tapestation system 

(Agilent). Polyclonal rabbit ChIP antibodies were bound for 1 hour at RT to protein G 

magnetic beads (Life Technologies) for the subsequent detection of three different HMs 

H3K4me1 (Abcam), H3K27Ac (Abcam) or H3K27me3 (Millipore). Additionally, unspecific 

polyclonal rabbit IgG antibody (Millipore) was used to create IgG control data sets for the 

assessment of successful ChIP experiments. Antibody-bead-complexes were subsequently 

bound to chromatin in an overnight reaction. Washing steps with different salt buffers 

removed unspecific antibody-protein complexes. Chromatin de-cross-linking and 

RNA/protein digestions for 4 hours allowed the DNA purification with AMPure XP SPRI beads 

(Beckman Coulter). Isolated ChIP-DNA was measured with the Bioanalyzer 2100/Tapestation 

(Agilent) to record concentration and size. An additional qPCR validation measuring specific 

ChIP DNA signals relative to unspecific IgG control signals allowed the assessment of 

successfully performed ChIP experiments with high relative enrichments for target against 

control samples.  

ChIP-seq library construction was conducted with 0.5 ng ChIP DNA or sheared chromatin 

prior to ChIP experiments (Input control) as starting material. ChIP DNA ends were repaired 

to blunt ends and an A-base was added to their 3’ ends. Sample volumes were evaporated to 

4 µl to optimize efficacy of the ligation step, while using less DNA ligase enzyme in 

comparison to the described standard protocol. The ligation was performed with Illumina 

sequencing compatible NEXTflex adapter oligonucleotides (Bioo Scientific) in concentrations 

of 0.6 µM and incubated for 15 min. at 25 °C. A SPRI beads cleanup (Beckman Coulter) 
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removed unbound adapter oligonucleotides and a 14 cycles PCR amplification step further 

increased the ChIP-seq library DNA amount. Another SPRI beads cleanup did not only 

exclude remaining PCR primers, but also allowed a size selection and resulted in ChIP-seq 

DNA library sizes between 100 and 500 bp. The double sided SPRI beads size selection was 

conducted with different volumes of water to PEG containing SPRI buffer, which enables the 

binding of different DNA sizes to the AMPure XP beads, thus mediating a size selection. 

Concentration and molarity of purified library DNA was assessed with the KAPA qPCR 

system for Roche LightCycler 480 (Kapabiosystems) and the Bioanalyzer/Tapestation 

(Agilent Technologies). Approximately 11 pM of single stranded library DNA was loaded onto 

the Hiseq 1000 sequencer (Illumina). Multiplex single read runs for 51 cycles and additional 6 

index sequence cycles were performed with the TruSeq SBS reagents kit v3 and the Truseq 

cluster generation kit v3 (Illumina). Generated 50 bp sequence data was demultiplexed with 

Casava (Illumina) to separate data according to the used samples and was further processed 

with bioinformatics methods described in section 4.8.2. 

 

4.8. Bioinformatics data analysis 

 

4.8.1. Conversion of published data sets  

Data sets were downloaded as SRA files from the GEO database (see Materials section 

3.10. This file format does not only allow an efficient storage of ChIP-seq data concerning 

file-sizes, the data can also be reconverted into multiple file formats like fasta, fastq or sam 

as needed (http://www.ncbi.nlm.nih.gov/books/NBK158900). The SRA Toolkit program was 

downloaded and used according to the manufacturer’s recommendations to perform the 

conversion process (http://www.ncbi.nlm.nih.gov/Traces/sra/?view=software). The following 

command was used for the conversion of SRA files into FastQ files: 

fastq-dump <downloaded file> > <filename.fastq> 

 

4.8.2. Alignment to reference genome assembly 

During the alignment step of ChIP-seq data, DNA sequences were mapped with an aligner 

algorithm to the recent reference genome to identify ChIP protein enriched genomic regions. 

The alignments were performed with the program Bowtie with the following command (259): 

http://www.ncbi.nlm.nih.gov/books/NBK158900
http://www.ncbi.nlm.nih.gov/Traces/sra/?view=software


Methods 

53  
 

./bowtie -t -q -e 70 -l 28 -n 2 --best --maxbts 125 -S -p 8 <reference genome> <ChIP-seq-

file.fastq> <aligned-ChIP-seq-file.sam> 

With this command, bowtie uses the first 28 base calls for the alignment and accepts up to 

two mismatches with a Phred score sum of smaller than 70. Bowtie also reports not only the 

uniquely alignable sequences fitting to exact one genomic position, but also the best fitting 

genomic site for short sequences matching to more than one genomic position. 

The input FastQ files do not only contain sequences of the ChIP-seq reads, but also list the 

quality values for each called base. With this information, the aligner tries to find the genomic 

position where the unknown DNA sequence belong to and thus the ChIP protein of interest 

was bound with a high probability (201,260). All ChIP-seq FastQ files either created from the 

author (see Methods section 4.7), converted from SRA files (see Methods section 4.8.1) or 

downloaded from other websites (see Material section 3.10) were aligned to the UCSC 

mouse (mm9) or UCSC human (hg18) reference genomes. TF data sets used in section 5.1 

were aligned to the mouse mm9 reference genome, while all HM data sets used in section 

5.2 were aligned to the human hg18 genome.  

 

4.8.3. Peak Calling 

Subsequently to the alignment of ChIP-seq data to the reference genome, regions with 

significant enrichment for ChIP-seq tags (short sequences reads) were identified by a peak 

calling step. In general, a peak caller takes several properties into account to separate 

background signals from true-positive signals. First of all, the ratio of treatment to control 

ChIP-seq tag counts at enriched regions is an important value for peak calling. Statistical 

calculations like bionomial or poisson distribution models further improve the probability of 

finding true-positive peak positions, due to their correction for regional bias in tag density, 

copy number or amplification variations (201,261,262).  

The peak calling for results depicted in section 5.1 were performed with MACS (Model-based 

Analysis of ChIP-Seq) v1.4.0/v2.0.1 (15), specialized on the identification of sharp peaks in 

standard ChIP-seq experiments with the following options: -g 1.87e9 -s 51 --bw 150 -w --

single-profile -p 1e-4 --on-auto. In brief, WT peaks used in the standard method (described in 

section 5.1.1) were called with aligned ‘.bam’ files as input using MACS v1.4.0. Genomic 

positions with bimodal signal enrichments were defined as peak regions, with strand and 

anti-strand tags enriched upstream and downstream of TF binding. MACS shifted sense and 

anti-sense tags to a peak midpoint and used shifted tags as significant peak position signals 

under a poisson distribution model with the parameter (λlocal WT).  
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λlocal WT = max(λBG WT, λ5kWT, λ10kWT) 

MACS determined the maximum background signals λlocal WT either from the whole WT data 

set (λBG WT) or from 5 or 10kb regions centered to the peak midpoint (λ5k, λ10k). Called WT 

peaks fitted to the poisson distribution model with p-values smaller than 0.04. 

 

During KOIN calculations, MACS used aligned ‘.bam’ files from WT experiments as 

“treatment” file and aligned ‘.bam’ files from KO experiments as separate “control” to 

calculate background signals. Similar peak calling steps were performed according to the 

standard method described before. The sum of called WT peaks with p-values smaller than 

0.04 (poisson model) are based on the parameter λlocal KO. 

λlocal KO = max(λBG KO, λ1kKO, λ5kKO, λ10kKO) 

MACS estimated the maximum background signals with the parameter λlocal KO either from the 

whole KO data set (λBG KO) or from 1, 5 or 10kbp regions centered to the peak middle points 

(λ1kKO, λ5kKO, λ10kKO). Next, “treatment” and “control” files were swapped in a second peak 

calling to identify “negative” KO peaks present in the KO data set. KO peaks with poisson p-

values smaller than 0.04 were described by the parameter λlocal WT. λlocal WT was defined as 

estimated maximum background signal in the WT data set. This is calculated by MACS either 

from the whole data set (λBG WT) or at different regions with 1, 5 or 10kb length around the 

peak summit (λ1kWT, λ5kWT, λ10kWT).  

λlocal WT = max(λBG WT, λ1kWT, λ5kWT, λ10kWT) 

Non-specific peaks which were simultaneously present in the groups of WT and KO peaks 

were excluded for further analysis in the first two steps of the KOIN method. Finally, the sum 

of corrected peaks after the KOIN method only contained significant WT peaks as described 

in the following formula: 

Corrected peaks (KOIN method) = WT peaks  ( KO peaks ∩ WT peaks) 

Peaks with fold changes < 2 for normalized WT tag counts compared to KO tag counts were 

filtered out to increase peak specificity. With the module “annotatePeaks.pl” included in the 

HOMER program, ChIP-seq tags were finally counted and total tag count normalized to WT 

and KO data sets with the -d option (command: annotatePeaks peak-file.bed mm9 -size 

given -d peak-file-tag-directory/). Fold changes (FC) between normalized tag counts for WT 

compared to KO data sets were subsequently calculated. P-values were adapted from the 

standard value 0.05 to 0.04 to reduce the number of enriched regions to a level allowing 
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statistical analysis with the GREAT tool. A command line-based description file for linux 

systems is available online to perform the KOIN correction during peak calling with the 

MACS program (https://github.com/LIMES-NGS/KOIN-pipeline). 

In parallel, peak calling for primary human macrophage data sets for HM data was performed 

with comparable steps using the HOMER program (72). In HOMER the histone style option 

was used with peak sizes of 1000 bp and with minimal peak distances of 2500 bp for an 

optimal HM analysis, especially for broad ChIP-seq peaks. Input samples were utilized as 

control files during peak detection. Significantly called peaks were defined by a four-fold 

enrichment in treatment data sets over input tag counts and passed a false discovery rate of 

1e-3 or better under a statistical Poisson model.  

 

4.8.4. Peak annotation and tag distributions 

MACS or HOMER called peak positions were annotated, concerning their genomic location 

on the reference genome mm9/hg18. The perl script “annotatePeaks.pl” included in the 

HOMER program identifies the center of each peak region and finds the closest TSS of a 

known annotated Refseq gene and finally connects this gene name to the identified peak 

position. Annotation data also allowed the generation of global peak distributions, describing 

the exact location for called peaks in relation to the known genomic function like intronic, 

exonic, intergenic and others. 

Heatmaps centered to peaks of interest were created with HOMER using the 

“annotatePeaks.pl” script with the heatmap option (-ghist). During KOIN analysis (section 

5.1), 10 bp sliding windows were utilized to calculate ChIP-seq raw signals 2 kb up- and 

downstream of peak middle points. For the second results part (section 5.2) 500 bp windows 

were used for the assessment of ChIP-seq signals and 12 kb regions were depicted and 

centered to each peak site. For both approaches ChIP-seq signals were normalized to 107 

total tag numbers. Subsequently, the program Java-Treeview (v1.1.6.r4) visualized the 

HOMER output data as heatmaps. 

For the visualization of genomic example sites with corresponding ChIP-seq raw data signals 

the integrative genomics viewer (IGV) was utilized (263). The normalization of ChIP-seq tag 

counts to 107 total tags allowed the direct comparison of WT and KO or activated 

macrophage data sets, independently of total tag sizes generated for each experiment. 
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4.8.5. De novo motif enrichment analysis 

The de novo motif discovery was performed by HOMER with the”findMotifsGenome.pl” 

script. For TF peaks in the first part of the herein presented results (section 5.1), sequences 

100 bp up- and downstream of peak centers were used as input, while for HM enriched sites 

(results section 5.2) sequences 500 bp up- and downstream of peak centers were utilized. 

Approximately 50000 random background sequences were used as controls with the same 

GC% content as the target sequences. An auto-normalization step removed imbalances in 

the short oligos between target and background sequences. Next, enriched sequences were 

identified in a global search with up to two allowed mismatches and most enriched motifs 

were optimized in their motif probability with a sensitive local optimization algorithm by 

scoring each oligo in the data to the probability matrix. Finally, enriched motifs with lengths of 

8, 10 and 12 bp were identified and scored according to their cumulative binomial p-values. 

Corresponding positional weight matrices (PWMs) were visualized for each respective 

experiment together with the found motif.  

Statistical p-values were converted into positive integer numbers with the formula -log10 (motif 

p-value) and displayed as heatmaps with Partek genomics suite (v6.6) (results section 5.1). 

The percentages of target sequences with corresponding binding motif, determined by the 

standard method or the KOIN method were compared and depicted with horizontal aligned 

bar plots. For each motif, the percentage defines the number of ChIP-seq tags with a positive 

match for the particular motif among all tags used for the motif predictions. Multiple motif hits 

at a given tag site are possible.  

Motif ratios for top 5 enriched motifs were called with HOMER, independently for WT and KO 

data sets. Numbers of motif occurrences in WT data were divided by the numbers found in 

KO data sets, after their normalization to total peak counts in respective WT or KO data sets. 

Higher motif abundance in WT compared to KO data sets are defined as positive FC values. 

Vice versa, higher ratios in KO compared to WT data sets are depicted with negative values. 

 

4.8.6. Gene ontology enrichments 

Peak sites were associated to the nearest TSS of known RefSeq genes using HOMER 

(4.8.4). For the first results section (5.1), gene names associated to peaks within ±1000 bp of 

known TSS or inside gene bodies were used as input for the Cytoscape program (v2.8.3) 

(264) Gene set enrichment analysis (GOEA) was performed with the BiNGO plugin (265). 

For statistical significant results, the false discovery rate threshold (FDR) was set to 0.001. 

Output files for WT and KO data sets were visualized as differential network with the 

Cytoscape plugin Enrichment Map (v1.2). For the detailed options a Jaccard coefficient cutoff 
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was set to 0.001 and a FDR corrected Q-value of 0.01 was used. GO-terms in clusters were 

marked and named according to their main functions, categorized by the Cytoscape plugin 

Word cloud. Only subnetworks with more than four elements were visualized. A GOEA 

analysis for gene groups with and without KOIN correction including distal loci was 

performed with the Genomic Regions Enrichment of Annotations (GREAT) tool (v2.0.2) (266) 

at default parameters. Within this analysis, functions for sets of non-coding cis-regulatory 

genomic regions and TSS-associated regions were assessed. Results were listed in the 

respective figure according to their (-log10) binomial p-values, simultaneously statistical 

significant for the hypergeometric test as well. 

In results section 5.2, genes with H3K4me3 HM peaks within ±2500 bp around known 

RefSeq TSS were used for the assessment of epigenetic promoter states, while genes with 

associated H3K4me1 enhancer peaks with distances between 2.5 kb and 100 kb away from 

the next RefSeq TSS were utilized for the identification of their epigenetic enhancer status. 

These genes were used as input for the Cytoscape program upgraded by the plugins 

BiNGO, Enrichment map and Word cloud to perform a differential GOEA analysis. For the 

final resulting GO-terms statistical filters were set to 0.001 for the FDR corrected q-value and 

subnetworks with at least 2 GO-terms were shown. 

 

4.8.7. Identification of “Hyper-ChIPable regions” 

Top 25 TF peak positions with extraordinary high ChIP-seq signals in comparison to all called 

peaks were identified and listed according to their normalized tag counts. Only peak sites 

located in at least two data sets were used for further inspection with the UCSC genome 

browser (http://genome.ucsc.edu). Loci were defined as “hyper-ChIPable”, if the following 

criteria were visible: (1) Putative regions display additional enrichments for unrelated DNA 

binding proteins currently available at the ENCODE database (described below), (2) 

characterized as DNAse I hypersensitive sites, (3) showed high RNA polymerase II binding 

and (4) showed enrichments for various HMs including H3K4me1, H3K4me3 and 

H3K27me3. Using the UCSC genome browser, putative “hyper-ChIPable regions” were 

visually analyzed for all six data sets (https://genome.ucsc.edu/ENCODE). In case the 

investigated regions showed high signals for all above mentioned criteria beyond the 

viewable default scaling, the region was defined as “hyper-ChIPable”. The following data sets 

were used: TF binding sites (Caltech TFBS; LICR TFBS; PSU TFBS; Stan/Yale TFBS), 

Histone modifications (Caltech Histone; LICR Histone, PSU Histone; Stan/Yale Histone), 

DNAse I hypersensitive cleavage sites (PSU DNaseI HS; UW DNaseI DGF; UW DNaseI 

HS). 
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4.8.8. Epigenetic promoter and enhancer class identification 

Promoter analyses were focused on H3K4me3 enriched regions 2500 bp up- and 

downstream of known RefSeq TSS. Accessible promoters (Pa) displayed both H3K4me3 and 

H3K27Ac signals, while poised promoters (Pp) gained repressive H3K27me3 HM marks. The 

integration of different HM data sets was performed with the HOMER program using the 

“mergePeaks” module. Promoter sites were defined as positively enriched for H3K27Ac or 

H3K27me3 signals, if a direct overlap between enriched genomic positions to H3K4me3 

peaks was detected. Macrophage promoters were defined as activation specific, if H3K4me3 

peak sites were exclusively found in only one macrophage activation state or in case the 

H3K4me3 HM signals were at least two times higher in one activation state than the 

H3K4me3 tag counts in the others. 

The identification of putative enhancer sites according to H3K4me1 enrichments required the 

initial removal of promoter sites enabled by a coordinate data file, listing sites ± 2500 bp up- 

and downstream of known RefSeq TSS. The intersection of promoter related positions in the 

coordinate data file with H3K4me1 enriched sites were excluded as promoter sites from the 

enhancer analysis. Strong enhancers (Es) defined by H3K4me1 and H3K27Ac signals 

lacked repressive H3K27me3 signals. Weak enhancers (Ew) were only enriched for 

H3K4me1 signals, whereas poised enhancers (Ep) gained additional repressive H3K27me3 

marks. Specific enhancers were exclusively enriched for H3K4me1 in only one macrophage 

activation state or showed at least two times more H3K4me1 signals in one macrophage 

activation state compared to the others. 

The super enhancer (SE) identification was performed according to methods described in the 

first SE publication (168) with HOMER, applying the SE option (-style super) within the peak 

calling module “findPeaks”. First, HOMER calls H3K27Ac peaks according to standard 

procedures and stitches peak sites with distances less than 12.5 kb together into SE regions. 

Second, H3K27Ac signals for each SE region are determined by the total normalized ChIP-

seq reads in target minus input data sets. Finally, SE regions are sorted by their signal 

scores (y-axis) after normalization to the highest signals and to the number of putative total 

enhancer regions (x-axis). The results are plotted as line graph. SE regions are located past 

the point, where the slope of the line graph is greater than 1 (see example plot Figure 35B). 

Subsequently, peak positions for different promoter and enhancer classes with corresponding 

normalized ChIP-seq raw data were displayed as heatmaps (detailed description in methods 

4.8.4) 
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4.8.9. Correlation of gene expression to enhancer and promoter 

classification 

Promoter and enhancer peak positions were annotated to known RefSeq gene symbols as 

described in the Method section 4.8.4. In addition, average RNA-seq (n=3) or array-based 

(n=3) expression data was subsequently connected to the same gene symbols, allowing a 

correlation of peak positions and expression data. Only enhancers with peak distances 

between 2.5 kb and 100 kb to the nearest TSS were used for the analysis. If more than one 

enhancer or promoter class correlated to one gene, for example due to multiple enhancers 

located in the proximity of a gene, the following weighting ensured a clear classification to 

only one epigenetic promoter and enhancer state:  

Promoters: Pa > Pp 

Enhancers: Es > Ew > Ep 

If not stated otherwise all genes with expression values above the following cut offs were 

defined as expressed: 

RNA-seq > 10 (linear scale) or > 2.3 (ex scale) or > 3.3 (log2 scale) 

Array-based > 150 (linear scale) or > 5 (ex scale) or > 7.22 (log2 scale) 

Dashed lines in the figures correspond to these cut off values. Statistical significance 

between expression values for activated macrophages was assessed by the Wilcoxon rank-

sum test. 

 

4.8.10. Generation of co-regulation networks for transcriptional 

regulators and macrophage core signature genes 

The generation of co-regulation networks for macrophage core signature genes was 

described in a previous publication (21). In brief, transcriptional information was used to 

perform a reverse network approach on GM-CSF stimulated baseline macrophages further 

stimulated with 28 different conditions with the ARACNe software to compute the interactions 

of important macrophage genes. 10% of resulting common macrophage genes with the 

highest values of predicted interactions (869 genes) were used for the correlation to 

established promoter and enhancer classifications. The network visualization was created 

with the Cytoscape program.  
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A list of TR (transcriptional regulator) genes for human and murine transcriptional regulators 

encompassing TFs, co-factors, RNA-binding proteins (RNBPs) and chromatin remodelers 

was created originating from the TFCat database (267). Subsequent co-regulation networks 

based on variable Pearsons’s correlation coefficients were created for these important TR 

genes using expression data as input for the BioLayout Express3D program, described 

previously (21,268). For the visualization of TR-TR pairs and their correlation coefficients the 

Cytoscape program was utilized using a force-directed layout. Additional information like 

transcriptional fold changes calculated against a group mean value or corresponding 

epigenetic information for corresponding TR genes was mapped onto the co-regulation 

network. Networks were generated not only for differentially activated human macrophages, 

but also for human tissues and murine tissue macrophages to identify corresponding 

important TRs.  

All presented co-regulation networks are also accessible online at VisuTranscript 

(http://www.s-khb.de/visutrans/content/index_eng.html). 
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5. Results 

This thesis was designed to elucidate in its first chapter (5.1) the importance of false-positive 

binding signals falsifying the analysis and interpretation of next generation sequencing data 

sets for transcriptional regulators and transcription factors (204,250,251). A novel 

bioinformatics strategy called KOIN (knockout implement normalization) utilizes protein 

knockout experiments during the ChIP-seq data analysis to significantly and efficiently 

correct for false-positive signals derived from unspecific binding of ChIP-seq antibodies. The 

analyses of different ChIP-seq data sets were generated and online available data sets from 

other scientific publications with various bioinformatics tools were utilized to verify the 

improvement of KOIN onto the biological interpretation of TF ChIP-seq data. 

In the second part of this thesis (chapter 5.2) various ChIP-seq experiments analyzing HMs 

in different macrophages were performed to gain insights into the epigenetic status of 

primary human macrophages activated under different stimulatory conditions. As HMs allow 

the classification of important genomic regulatory sites like promoters and cis-regulatory 

elements (enhancers) into different activation states describing the present chromatin status 

of these loci (156,160,167). The chromatin structure itself can be separated into condensed 

and inactive or open and active sites. This dynamic change of chromatin status at specific 

genomic sites is one of the major regulatory mechanisms for the transcription of cellular 

genes. ChIP-seq and RNA-seq data were merged into correlation networks of central TRs to 

get information about the co-occurrence of certain HM states or the presence of SE markings 

to the transcriptional activity of stimulus specific and common macrophage genes. 

Additionally, RNA-seq and HM ChIP-seq data sets from murine tissue macrophages under 

homeostatic conditions or cells originating from different tissues were used to perform 

epigenetic classifications of gene loci and comparisons of expression data for important TR 

genes in detailed co-regulation networks with four activated macrophage states analyzed in 

detail. 

 

5.1. Knockout mouse models - A tool for the optimization of 

TF ChIP-seq experiments 

Chromatin immunoprecipitation experiments following deep sequencing (ChIP-seq) require 

tight quality controls and outstanding antibody binding properties concerning binding 

specificity and efficiency to their protein targets to allow a precise data analysis and biological 

interpretation, while minimizing false-positive signals (204). Two different types of controls 
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were established in the past for ChIP-seq experiments (204,251), sheared chromatin (Input 

control) or chromatin eluted from antibodies with unspecific binding properties with a similar 

immunoglobulin classification as the specific ChIP antibody (IgG control). Both types of 

control data sets possess positive and negative aspects discussed in the introduction 

(section 1.4.2) (204). However, knockout experiments were underestimated in its value as 

essential ChIP-seq control until now. In fact, knock out experiments could better differentiate 

between false- and true-positive ChIP-seq signals and at the same time minimize negative 

factors of previously mentioned controls. During the analysis and normalization of ChIP-seq 

data sets knockout data were implemented. This correction step during ChIP-seq peak 

calling was termed “Knockout Implemented Normalization” (KOIN) and was published within 

the scope of this thesis (269). Figures shown in section 5.1 are part of this scientific 

publication. 

 

5.1.1. Bioinformatic processing during “Knockout implemented 

normalization method” (KOIN) 

Specific computational steps were necessary to utilize protein knockout (KO) experiments for 

the classical analysis (204) of ChIP-seq data sets (Figure 4). In the first step, next generation 

sequencing data sets from wild-type experiments (WT) and KO experiments for the 

corresponding WT protein were aligned to the human reference genome to find the target 

genomic position for each generated ChIP-seq sequence. Next, peak sites significantly 

enriched for WT ChIP-seq signals were identified during peak calling with the peak caller 

MACS. During the peak identification, the KO data set enabled the differentiation of false- 

and true-positive peaks. False-positive corrected peak files were afterwards further enriched 

for highly specific peaks with normalized tag counts at least two fold higher in WT compared 

to KO data sets. Finally, downstream data analysis was performed with different approaches 

like binding motif predictions or gene ontology enrichments. Details for conducted 

bioinformatics calculations are described in the methods section (4.8). 
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Figure 4. Flowchart depicting the 

generation of false-positive corrected peak 

files (KOIN method). 

All necessary calculation steps and 

input/output files are displayed to generate 

false-positive corrected KOIN peak files. 

The aligned WT and KO data sets (step 1) 

were used as input to perform peak calling 

with MACS (step 2). In this step false-

positive peaks were filtered out. Peak files 

were further filtered to increase peak 

specificity (step 3) using only peaks with at 

least two fold higher normalized tag counts 

for WT against KO experiments. In step 4 

possible downstream data analysis options 

are mentioned ranging from peak 

annotation, connection of identified gene 

names to biological functions or to binding 

motif enrichment calculations. 

 

 

For the evaluation of KOIN advantages in comparison to the standard analysis six ChIP-seq 

data sets were utilized to compute the global binding properties of the ATF3, GATA3, SRF 

and PU.1 proteins (72,254,255,270) (Figure 5, 3.10). The alignment was performed in both 

approaches (standard or KOIN) with Bowtie following the same protocols, whereas during 

the peak calling with MACS non-specific signals were identified and filtered out, following the 

KOIN protocol. Non-specific peak regions included high ChIP-seq tag counts in WT and KO 

data sets similarly, which possibly demonstrated unspecific binding capabilities of the utilized 

ChIP antibody (204). Improvements of KOIN in ChIP-seq analysis were compared in parallel 

to commonly used downstream data analysis methods using HOMER or Cytoscape. 
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Figure 5. Schema of ChIP-seq data analysis using either the KOIN method or the standard 

method. 

Six different data sets were used to perform the KOIN method (green) with wild type (WT) and 

knockout (KO) data sets, whereas for the standard method only WT data sets were utilized. In both 

approaches next generation sequencing data sets were aligned to the reference genome and peak 

calling was performed with MACS. KOIN allowed a discrimination between specific and non-specific 

signals, in contrast to the standard peak calling. ChIP-seq signals enriched peak positions were 

annotated using the HOMER program. For downstream data processing motif enrichment and a 

comparative gene ontology enrichment analysis was performed for both methods. The corresponding 

results were compared. 

In conclusion, standard ChIP-seq analysis and the KOIN method differed only in one step 

facilitating the implementation of KOIN to the standard ChIP-seq data analysis. During the 

peak calling procedure non-specific peak sites could be excluded from downstream analysis 

utilizing KO ChIP-seq data sets. 
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5.1.2. KOIN identifies and excludes false-positive ChIP-seq signals 

False-positive binding signals are inevitable in ChIP-seq experiments (204). Due to the 

binding properties of antibodies, not only specific bindings with high affinities to target 

antigens occur, but also non-specific bindings against irrelevant antigens or unspecific 

binding to the constant FC region. For the illustration of the amount of non-specific antibody 

binding, dot plot visualizations were created, plotting normalized tag counts for WT and KO 

data sets of uncorrected (grey color) and KOIN corrected (red color) peak positions found for 

the four analyzed TFs (Figure 6). The KOIN method identified significant numbers of false-

positive peaks especially in the data sets for SRF and GATA3 proteins with respective 

percentages of 80 % and 78 % of false positive signals. Surprisingly, the correction rates for 

the ATF3 protein were dependent on the stimulatory conditions (unstimulated, stimulated with 

HDL, stimulated with HDL and CpG) ranging from 43 % to 79 %. In contrast, the KOIN 

correction slightly increased the already high peak numbers of the PU.1 data set (see section 

5.1.3). 
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Figure 6. Independent ChIP-seq experiments reveal false-positive signals after KOIN 

calculations.  

ChIP-seq tag counts for SRF, GATA3, PU.1 and ATF3 WT and KO data sets were visualized as 

dotplots with log2 scale normalized to 107 total tag counts. ATF3 data sets were stimulated under 

different stimulatory conditions as indicated. Peaks identified with the standard method were plotted in 

grey color whereas KOIN corrected peaks were overlaid as red dots into the same plots. Jitter was 

added to prevent excessive overlaps of data points and to improve the visualization. KOIN corrected 

(red) and uncorrected standard peak numbers (grey) were plotted additionally to the false-positive 

peak rates (in percent) to the right. 

 

Illuminating the question, whether the false-positive peak signals were enriched at specific 

functional genomic sites, annotations of peaks to the reference genome were performed, 

thus enabling a functional categorization of peaks into intergenic, intronic and promoter 
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regions (Figure 7). SRF and GATA3 experiments showed similar fractions of KOIN corrected 

peaks between 18 % and 24 % irrespective of the genomic peak position. As mentioned 

before, KOIN corrected peak numbers differed in the four ATF3 data sets in dependency on 

the stimulatory conditions. A high specificity of promoter peaks was detected with 50 % and 

63 % for KOIN corrected peaks in ATF3 control experiments without stimulation or stimulation 

with HDL and CpG, while intergenic and intronic sites displayed similar rates of false-positive 

signals. Monocytes stimulated with HDL displayed only minor changes between intergenic 

(53%), intronic (63%) and promoter (69%) peak numbers after KOIN correction. KOIN 

correction increased PU.1 enriched sites for true-positive peak numbers up to 15 % 

irrespective of the analyzed intergenic, intronic, or promoter sites (see section 5.1.3). 

 

Figure 7. Genomic annotation 

of KOIN corrected and 

uncorrected peaks reveal a 

high distribution of false-

positive peaks to various 

genomic positions. 

A comparison of peak numbers 

between standard peaks (blue) 

and KOIN corrected peaks 

(green) was performed according 

to their genomic positions. 

Statistics for peaks located at 

promoter (Prom), intronic (Int) and 

intergenic (Inter) positions are 

shown as bar charts. The 

percentages of true-positive 

peaks which remained after KOIN 

correction were included as green 

numbers. 

 

 

In addition to visualizing global numbers of KOIN corrected peaks, pile-up heatmap 

visualizations relative to peak centres were created to evaluate the false-positive signal 

strength before (standard method) and after the KOIN correction process (Figure 8a). WT 

and KO data sets were depicted ± 2000 bp from peak centres. As an example, the HDL and 
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CpG stimulated ATF3 data set showed distinct false-positive signals after the standard 

method in the KO data set (blue box), whereas these signals could be completely abrogated 

with KOIN correction (green box). Even in ChIP-seq experiments with high specificity like the 

PU.1 data set, KOIN successfully removed false-positive peak positions completely (Figure 

8b). 

 

 

Figure 8. False-positive signals are depleted by KOIN correction in TF ChIP-seq data sets. 

Pile-up heatmaps of ChIP-seq tag densities were created using 10bp sliding windows for total tag 

normalized data (normalized to 107 total tag counts). Tag densities are centred ± 2kb to peak 

midpoints and are displayed for (A) ATF3 under the stimulatory influence of HDL and CpG as well as 

for (B) PU.1 visualized for both WT and KO samples before (blue) and after (green) KOIN correction. 

 

An additional validation for the positive removal of false positive ChIP-seq signals was 

performed with a publicly available ChIP-seq data set, which was generated with the same 

ATF3 antibody (247). Two genomic sites (CD36 and CDK8) were visualized as examples 

(Figure 9). The validation data set (GSE36104) (3.10) called significant ATF3 peaks, marked 

by black boxes. In contrast, after KOIN correction significant ATF3 peaks remained at the 

CD36 locus but not at the CDK8 gene, which was simultaneously enriched for WT and KO 

signals. KOIN correction obviously allowed the differentiation of putative false-positive and 

true-positive peaks. 
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Figure 9. Representative 

genomic positions for 

true-positive and false-

positive ChIP-seq peaks 

differ in KO signal 

intensities. 

Representative ChIP-seq 

reads in the introns of 

true- and false-positive 

ATF3 binding sites. Black 

bars indicate significant 

peaks identified by MACS 

with p-values ≤ 10-4. An 

independently generated 

ATF3 data set (247) was 

used to visualize 

previously called 

significant peaks (black 

bars) called by the 

standard method. 

 

 

Collectively, ChIP-seq data sets demonstrated variable numbers of false-positive peak 

signals. Some data sets contained high numbers of false-positive signals, whereas others 

like the PU.1 data set exhibited only marginal unspecific sites. In all cases, KOIN 

successfully identified and completely removed these non-specific signals. 

 

5.1.3. Altered signal-to-noise ratios can increase peak numbers 

In most cases, the KOIN method reduced the number of significant peaks in comparison to 

standard peak calling strategies correcting for non-specific tag signals. Surprisingly, KOIN 

also increased peak counts (9 %) in the PU.1 data set in comparison to the standard method 

and called 6037 new peaks (Figure 6, Figure 7 and Figure 8b). This effect of KOIN was 

visible due to lowered background signals, since KOIN concomitantly lowered the peak 

calling threshold. In highly specific data sets like PU.1 with only low numbers of false-positive 

peaks, decreased peak calling thresholds also lead to increased numbers of significant 
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peaks with lower tag counts. In sum, more new peaks with slightly lower tag counts were 

called as significant, compared to false-positive peaks which were lost during KOIN. 

Reduced background signals also improved statistical p-values determined during peak 

calling. WT and KOIN corrected p-values were visualized as dot plot (Figure 10). The 

apparent shift of KOIN/standard p-value ratios for called peaks to the upper left corner 

demonstrated the improvement of p-values during KOIN. Furthermore, the orange dots 

emphasized the newly called peaks with lower tag counts and higher but still significant p-

values, whereas few grey dots visualized the KOIN excluded regions. 

Taken together, KOIN even improved data analysis for highly specific antibodies by the 

reduction of noise, thereby identifying more significant binding regions, previously excluded 

as false-negative sites. 

 

Figure 10. KOIN 

correction improves 

signal-to-noise ratios 

and corresponding 

statistical significance 

for KOIN peaks. 

P-values for PU.1 peaks 

called with the standard 

method by MACS (x-

axis, -log10 (p-value)) 

are plotted against the 

p-values for 

corresponding KOIN 

corrected peak 

positions (y-axis, -log10 

(p-value)). Significantly 

called peaks marked in 

red were called with and 

without KOIN correction. False-positive peaks lost after KOIN correction are marked in grey and 

orange peaks were exclusively called after application of KOIN correction. 
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5.1.4. Effect of KOIN on “hyper-ChIPable regions” 

Recently, a special type of false-positive sites was described in yeast known as “hyper-

ChIPable regions” (250). These highly expressed euchromatic regions are not only 

vulnerable to DNAse I cleavage due to the absence of densely packed DNA to nucleosomes, 

but are also highly enriched for RNA Polymerase II allowing extremely high transcriptional 

activity. Other unrelated DNA-binding proteins or certain HMs can also be present at these 

sites. The potential of “hyper-ChIPable regions” to occur in other species as well influencing 

the ChIP-seq data analysis and interpretation justified a detailed analysis. For this task, loci 

with exceptionally high normalized ChIP-seq tag counts were identified, which were found in 

at least two out of six data sets. These sites were afterwards filtered concerning the above 

mentioned criteria using multiple previously published high quality ENCODE data sets to 

identify “hyper-ChIPable regions”. In fact, up to 18 „hyper-ChIPable regions“ were detected in 

the six analyzed ChIP-seq data sets highlighting the point that they could occur in most 

ChIP-seq data sets (Figure 11). More importantly, detected “hyper-ChIPable regions” were 

excluded by KOIN correction. To confirm the successful removal, the top 25 called and KOIN 

corrected peaks did not reveal “hyper-ChIPable” criteria. 
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Figure 11. Examples of Hyper-ChIPable regions with highly enriched ChIP-seq signals.  

Three examples for “hyper-ChIPable example regions” were visualized for six representative ChIP-seq 

TF data sets (SRF, GATA3, PU.1 and ATF3 generated under different stimulatory conditions). 

Histograms of WT and KO ChIP-seq signals are depicted in different colors. In KOIN corrected data 

sets “hyper-ChIPable regions” are absent. 

The herein presented findings suggested that “hyper-ChIPable regions” not only exist in 

yeast but also in other species. More importantly, the KOIN correction curated TF ChIP-seq 

data from “hyper-ChIPable regions” beyond the correction for tag signals from other 

unspecific binding events. 

 

5.1.5. Increased identification of ChIP protein specific binding 

motifs after KOIN correction 

The analysis of TF-binding motifs is a possible approach to evaluate the accuracy of ChIP-

seq data (204,271). In highly specific TF ChIP-seq data a significant enrichment for TF 

binding sites is observed. In ChIP-seq data with high fractions of false-positive binding sites 

the binding motif for the specific target protein is not enriched or can only be found with low 
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statistical significance. The effect of KOIN was determined by the measurement of binomial 

p-values and counts for motif enrichments in WT, KO and KOIN corrected data sets (Figure 

12). First of all, HOMER calculated a high and statistical significant enrichment of the SRF, 

GATA3 and PU.1 binding motifs in WT and KO data sets. Additionally, Jun-AP1 and AP1 

motifs were highly enriched in ATF3 data sets. As both TFs build heterodimers together with 

the ATF3 protein, they are also enriched at the same DNA regions as ATF3 (272). The 

amount of PU.1 positive peaks remained unchanged, possibly due to the high specificity of 

the PU.1 data, whereas in all other ChIP-seq data sets the KOIN correction strongly 

improved relative numbers of important binding motifs. Especially in SRF data KOIN 

improved the SRF binding motif occurrence from 15 % to 45 %. 

 

 

Figure 12. TF motif analysis is significantly improved after KOIN correction. 

Top 10 TF binding motifs which were significantly enriched in SRF, PU.1, GATA3 and ATF3 data sets 

after KOIN correction were visualized and sorted according to their significance p-values. The 
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horizontally aligned bar plots describe the percentage of target sequences with corresponding TF 

motifs in each data set after KOIN correction (blue) or without KOIN correction (green). Graphical 

versions of positional weight matrices (PWM) for each motif are plotted to the right and KOIN motif p-

values are depicted in heatmaps on the left side of each bar (white to red color). 

 

Independent motif enrichments were also conducted solely with available ChIP-seq KO data 

and visualized as horizontal bar plots (Figure 13). In general, poorly enriched KO motifs 

lacked the main motifs of the respective TF as described before. Despite the sporadic 

enrichment of motifs at KO called peaks like the AR-halfsite motif in the GATA3 data set, the 

white colored heatmaps clearly illustrated the poor statistical significance of resulting 

enrichment scores suggesting putative false-positively called binding motifs. 

 

 

Figure 13. Absent enrichment for specific TF motifs in uncorrected KO data sets. 

Percentages of target sequences with the corresponding top 10 enriched motifs exclusively at KO 

peak sites were ranked according to their enrichment p-values for six representative ChIP-seq data 

sets and depicted as horizontally aligned bar plots. Scales for p-values and percentages were used 

according to scales in Figure 12. 
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For further validation of the performed motif predictions, ratios of main motifs for 

independently analyzed WT and KO ChIP-seq data sets were plotted as bar charts (Figure 

14). Fold change ratios were calculated for the top 5 motif counts in WT against KO peaks. In 

SRF and PU.1 data sets corresponding main motifs were found in the WT data set and 

enriched with high fold changes in comparison to KO data. Not only GATA3 but also other 

GATA TF family members were enriched with high fold changes exclusively in WT and not in 

KO data, due to high similarities in their core binding sequence (motif sequences, Figure 12). 

For ATF3 data sets the similarities in core sequences and the previously mentioned 

heterodimer formation with ATF3 caused an enrichment of Jun-AP1, AP1 and Bach2 ratios in 

WT data sets.  

 

 

Figure 14. Enriched WT motifs are exclusively found in WT data sets compared to KO results.  

Motif count ratios for the top 5 enriched motifs were depicted in WT (black) against KO (white) peak 

files. Motif counts were normalized to total peak counts and the ratio of WT against KO motif counts 

was calculated as fold changes. WT specific motifs exhibit positive ratio values and motifs with higher 

abundance in KO data sets show negative ratios. 

 

In summary, motif binding predictions were altered by false-positive peaks in uncorrected WT 

data sets. The removal of false-positive sites drastically increased the percentages of peaks 

positive for the corresponding main TF motif. Additionally, comparisons for the top 5 enriched 
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motifs in WT against KO data sets illustrated the false-positive binding capabilities of ChIP 

antibodies and the enrichment of unrelated motifs without the target protein. 

 

5.1.6. KOIN significantly enhances biological interpretation of TF 

ChIP-seq data  

KOIN identified and significantly reduces false-positive binding signals as demonstrated in 

previous results (269) and in this thesis. The effects of the correction process onto the 

biological interpretation of ChIP-seq data was evaluated with a Gene Ontology Enrichment 

Analysis (GOEA) which connects gene groups with ChIP-seq enriched peak positions to 

known biological functions. The SRF data set was used as an example. GOEA analysis 

before and after KOIN correction was performed to investigate the improvement of biological 

interpretation by KOIN. Genes enriched for strong SRF binding within a 2 kb window 

centered to TSS or within the gene locus itself were utilized to create a differential network 

visualization for enriched GO-terms using BiNGO and EnrichmentMap plugins of Cytoscape 

(Figure 15). From 13 major subnetworks which were enriched in the WT SRF data set, two 

subnetworks were excluded (s7, s12) due to false-positive binding signals (blue edge and 

black border colors). Furthermore, only 5 (s16, s18, s20, s27, s28) out of 15 minor 

subnetworks remained after the KOIN correction process for false-positive curated genomic 

positions (green edge and red node colors). Therefore, KOIN correction curated the data set 

associated biological processes from irrelevant functions for the SRF protein and enriched 

significantly highly relevant biological processes the SRF protein is known for to participate in 

(255,273).  
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Figure 15. GO-term enrichment analysis for promoter regions is significantly improved after 

KOIN correction. 

Gene Ontology Enrichment Analysis (GOEA) was performed for genes marked by SRF protein binding 

signals 1kb up- and downstream from their TSS. Results are visualized as networks for 1510 genes 

before KOIN correction (black node borders: GO-terms, blue edges: GO-term relations) and 327 

genes after the correction process (red nodes: GO-terms, green edges: GO-term relations). The 

remaining true-positive GO-terms for SRF bound genomic regions after the KOIN correction are 

depicted as red nodes with black borders. The binomial FDR corrected p-value cutoff was set to 

<0.001. The analysis was performed with Cytoscape and the plugins BiNGO and Enrichment Map. In 

green color marked corrected GO-terms were also found in GREAT GOEA analysis in Figure 16. 

 

The improvement of GOEA was validated by the GREAT tool (Genomic Regions Enrichment 

of Annotations Tool) which allows the integration of known GO-terms also for distant 

regulatory sites far away from any promoter region into the biological interpretation of ChIP-

seq peak signals (Figure 16) (266). GREAT utilizes stringent filter criteria by the application of 

not only hypergeometric but also binomial statistical models to predict meaningful biological 

processes for proximal and distal regulatory sites. In agreement with previous results found 

for GO-terms enriched at promoter regions (Figure 15) GREAT identified known SRF 

functions like “actin cytoskeleton dependent processes” (274) or “leukocyte activation in 
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immune response” (255). Other not related SRF functions like “mast-cell activation” or 

“cellular response to lithium ion” were excluded by KOIN.  

 

 

Figure 16. KOIN also improves GOEA analysis at cis-regulatory genomic regions. 

Enriched GO-terms for cis-regulatory and non-coding genomic regions were calculated with the 

GREAT tool. Statistical stringency for significantly enriched terms was set to a FDR corrected p-value 

threshold of 0.05 using binomial and hypergeometric tests simultaneously. For the visualization the 

binomial p-value (-log10(p-value)) of enriched GO-terms with (green) or without (blue) KOIN correction 

was used. 

In summary, the herein presented results show that two independent tools for connecting 

ChIP-seq enriched genomic positions to known biological functions highly benefit from KOIN 

corrected data sets. Functional SRF relevant biological processes were correctly identified 

for KOIN corrected data, while false-positive GO-terms were excluded. Uncorrected data 

dilutes the true interpretation of ChIP-seq bound regions and could lead to overestimations 

concerning irrelevant biological functions. 

 

5.2. Epigenetic changes during activation of primary 

human macrophages 

The activation model for human monocyte-derived macrophages was recently extended 

beyond the established M1/M2 axis model to a multi-dimensional model, integrating a 

multitude of specific macrophage activation states equivalent to their multiple origins and 

employed stimulatory cues (21). The described macrophage plasticity with the establishment 

of different activation states displaying specialized functions, requires profound changes on 

the transcriptional level. Complex regulatory networks ensure the efficient and tight control of 

transcriptional processes. Amongst others, the epigenetic regulation of HMs can profoundly 
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alter the chromatin landscape and may also play a critical role as platform for the recruitment 

and binding of TR proteins, like TFs (167). Specific combinations of HMs can not only identify 

important regulatory regions like promoters or cis-regulatory sites in human and mouse, but 

can also predict the transcriptional activity at certain loci and their chromatin packaging 

status (68,148,151,156,158). Four different activation states of monocyte-derived primary 

human macrophages were used as an in vitro model for pro-inflammatory immune activation 

(21) to assess their chromatin landscapes. Four histone modifications were assessed 

(H3K4me1, H3K4me3, H3K27Ac, H3K27me3) in respect to the histone code hypothesis 

(145,146) and previously described adapted methods to identify regulatory regions of 

interest, including promoter and enhancer sites in up to three activity states for each defined 

genomic site. This epigenetic information correlated to transcriptional data from RNA-seq or 

microarray expression data demonstrated in detail the importance of epigenetic regulatory 

processes at promoter and enhancer sites during the activation of primary human 

macrophages and further elucidate underlying molecular mechanisms of their functional 

commonalities and differences. 

The herein presented results (section 5.2) are also in most instances part of a scientific 

publication (275). 

 

5.2.1. ChIP-seq validation procedures 

In preparation of ChIP-seq experiments human monocytes were differentiated into baseline 

macrophages (Mb) and were further activated into MIFNy, MIL4 and MTPP macrophages. GM-

CSF was used as primary differentiation stimulus in the in vitro model to mimic an 

inflammatory milieu, often characterized by elevated systemic levels of GM-CSF (276). The 

complete activation of different macrophage populations was validated by the expression of 

typical macrophage marker proteins, like CD14 for Mb and other activation specific surface 

proteins like CD86 (MIFNy), CD23 (MIL4) and CD25 (MTPP) described previously (Figure 17) 

(21,253).  

 

Figure 17. FACS analysis of surface marker expression in activated macrophages. 
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Typical macrophage surface markers used for the discrimination between certain activation states 

(CD14, CD86, CD23, CD25) were quantified by flow cytometry for unstimulated (baseline), IL4, IFNy 

and TPP stimulated macrophages. Results are depicted as mean fluorescence intensity (MFI). 

*p<0.05 (Student’s t-test) 

 

Chromatin of each macrophage population was sheared in an ultrasonic Covaris S220 into 

approximately 150 bp fragments and the exact length distributions were measured with the 

Agilent Bioanalyzer (Figure 18A). Suitable DNA fragments between 100 and 500 bp were 

purified by paramagnetic beads (Agencourt) during the library construction, while fragments 

with differing sizes were excluded. ChIP-seq experiments were performed as described in 

the methods section. The relative enrichments of known HM marked positions were 

quantified via semi-quantitative real time PCR for target experiments in comparison to DNA 

fragments enriched unspecifically with control IgG antibodies. Relative enrichments between 

256 and 1024 folds for target against control DNA were detected for HM positive sites, 

whereas negative control regions displayed only minimal enrichments (Figure 18B). 

 

 

 

Figure 18. Quality controls for successful ChIP experiments. 
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(A) Representative gel electrophoresis result for cross-linked chromatin sheared for 45 minutes with 

chromatin sizes depicted in bp on the x-axis and fluorescence units on the y-axis. Additionally, optimal 

size for ChIP-seq library construction was marked with blue lines (Region 1). Lower and upper DNA 

markers are located at 35 and 10500 bp. (B) Relative qPCR enrichments of histone enriched known 

positive and negative sites are depicted as fold changes against background controls (IgG). Results 

represent the mean ± standard deviation of at least three independent experiments and were 

performed for four different ChIP-seq data sets: H3K4me3 (red), H3K4me1 (orange), H3K27Ac (blue), 

H3K27me3 (violet). 

 

5.2.2. Optimization of next generation sequencing library 

construction  

Prior to ChIP-seq library construction experiments with primary human macrophages, jurkat 

cell DNA (Human T cell lymphoblast-like cell line, Clone E6-1) was isolated and sheared to 

assess the minimal necessary amount for efficient ChIP-seq library construction. These 

experiments were especially necessary due to the limited amount of isolated CD14 positive 

human monocytes per blood donor to establish the different macrophage activation states. 

For the library construction, between 10pg and 10ng chromatin was used as input starting 

material to construct 7 multiplex ChIP-Seq libraries. Constructed libraries were sequenced on 

a HiScan SQ machine (Illumina). Computational steps like demultiplexing and alignment to 

the reference genome were performed. Finally, sequencing results in form of tag counts 

normalized to total counts for each experiment were compared in circos plots for each 

chromosome to assess the optimal chromatin amount to cover the brought variety of 

genomic positions during ChIP-seq library construction and subsequent sequencing (Figure 

19). 
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Figure 19. Sequencing results for ChIP-seq libraries constructed with variable amounts of DNA 
input material. 

Normalized tag counts for 7 multiplex ChIP-seq libraries were visualized as circos plots and sorted 

according to their library construction starting material (10, 2, 1, 0.5, 0.2, 0.1, 0.01 ng DNA from Jurkat 

cells). Circos plot depicts normalized tag counts on chromosome 12 from position 0 to 5.3 million bp. 

 

Despite manufacturer’s specifications (Illumina) to use 1µg DNA as starting material for ChIP 

sequencing, 0.5-1ng of DNA for the library construction already displayed a broad distribution 

of tag signals for the example position on chromosome 12. Lower amounts of DNA lead to 

tremendously decreased sequencing signal resolutions, because of absent ChIP DNA pieces 

during library construction for various loci. In addition, over amplifications of ChIP-seq signals 

for specific DNA regions on chromosome 12 were observed for libraries constructed with 

10pg input DNA. These signals are inevitable, if only low amounts of DNA are available and 

can falsify subsequent analysis steps.  

Based on the above described optimization, 0.5-1 ng of sheared chromatin isolated from 

human macrophages was utilized for all following ChIP-seq library constructions described in 

the methods section. In addition, representative size distributions of constructed libraries 
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indicated correct sizes between 250 and 450 bp as recommended from the manufacturer 

(Illumina) for the optimal performance of next generation sequencing experiments (Figure 

20). 

 

 

Figure 20. Representative size distribution of macrophage ChIP-seq library. 

Representative DNA size distributions of successfully constructed ChIP-seq libraries (Agilent 

Bioanalyzer). The x-axis represents the chromatin size in bp, while the y-axis depicts fluorescence 

units of measured DNA fragments labelled with an intercalating dye. Lower and upper DNA markers 

are located at 35 and 10500 bp 

 

Applied pipelines for the following downstream analysis of next generation sequencing data 

included the separation of data sets (demultiplexing), the alignment of unknown sequenced 

pieces to the human reference genome and the identification of regions significantly enriched 

for ChIP-seq signals (peak calling) finally determining locations of specific HM signals. 

Furthermore, the usage of 0.5-1 ng of sheared chromatin ensured the correct ChIP-seq 

library construction. 

 

5.2.3. Epigenetic classification of specific promoter and enhancer 

states during human macrophage activation 

Transcriptional processes and their regulation are tightly connected to changes on 

epigenetics level. Exogenous signals can regulate transcriptional processes by the 

modification of histone proteins not only at promoter but also at enhancer sites (73,277). 

Histone proteins, targets of different posttranslational modifications play a major role in these 

35 50        100    150     200              300           400       500    600 700  1000     2000                10380                [bp] 
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changes and act as linkers to integrate amongst others chromatin organization, TF binding 

and transcription. In which extend HMs lead in primary human macrophages to their 

specialization adapting to environmental cues still needs to be elucidated, especially in 

primary human macrophages. 

Previous publications lead to the genome wide identification of transcriptional regulatory sites 

like promoters or enhancers and the definition of activity states by the combination of 

different posttranslational HMs (Figure 22) (148,158,159). Accessible and poised promoters 

(Pa/Pp) as well as strong, weak and poised enhancers (Es, Ew, Ep) could shape the 

transcriptome of differentially activated primary human macrophages.  

 

 

Figure 21. Definition of epigenetic states at promoter and enhancer sites. 

Combinations of four HMs (H3K4me3, H3K4me1, H3K27Ac, H3K27me3) define the activity states of 

promoters (accessible Pa, poised Pp) and enhancer regions (strong Es, weak Ew, poised Ep). 

 

Activation-signal-specific changes of the epigenetic landscape in human inflammatory 

macrophages were defined following two rules: First, specific loci were at least two times 

higher enriched for H3K4me3 or H3K4me1 total tag counts than the input control datasets. 

Second, tag signals for a specific H3K4me3 or H3K4me1 locus were increased at least two 

times in the respective activation state in comparison to the other activated macrophages. 

430 activation state specific accessible promoters were identified (Figure 22A) by following 

the defined criteria during global analysis. Heatmaps clearly visualized the concomitant 

enrichments for H3K4me3 and H3K27Ac HM signals for Pa sites (Figure 22B). Pa numbers 

reflected the activation state of differentially activated macrophages with low numbers in Mb 

and increasing numbers in macrophages stimulated with different molecules (MIFNy, MIL4, 
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MTPP) with highest numbers in pro-inflammatory MIFNy. In contrast to Pa sites, in total 459 Pp 

were marked with H3K4me3 and repressive H3K27me3 signals, while lacking the active 

H3K27Ac HM modification. Highest numbers of Pp in MIL4 could suggest the importance of 

promoter inactivation, necessary for the IL4-induced transcriptional program. MTPP 

macrophages showed almost equal numbers for Pa and Pp, different to MIFNy with higher 

numbers for Pa. Another interesting observation was the mutually exclusive enrichment of 

active H3K27Ac marks and repressive H3K27me3 HM at accessible and poised promoters. 

 

 

Figure 22. Activation state specific epigenetic promoter states in human macrophages. 

(A) Numbers of macrophage activation specific promoter sites. (B) Heatmaps of normalized histone 

ChIP-seq tag counts at macrophage activation specific genomic positions for defined promoter states. 

Pa sites show simultaneous H3K4me3 and H3K27Ac signals, while Pp are characterized by H3K4me3 

and H3K27me3 HM signals. Heatmaps were centred to H3K4me3 peaks and ChIP-seq signals were 

determined in 500 bp windows 6 kb up- and downstream of peak middle points. (Mb/blue, MIFNy/yellow, 

MIL4/green, MTPP/red) 

 



Results 

86  
 

Promoter or enhancer sites need to be accessible for TRs and in an open chromatin state to 

allow actual gene transcription. In macrophages, the pioneer TF PU.1 is essential for the 

opening of closed inactive chromatin sites and mediates with the co-binding of other 

secondary TFs thereby enabling the transcription of corresponding genes (75,278,279). 

Previous publications assessed PU.1 binding mainly at cis-regulatory enhancer sites in 

macrophages, but PU.1 binding motifs are also present at promoter sites. In fact, in 

differentially activated macrophages approximately half of the Pa sites contained the PU.1 

consensus motif (Figure 23A), except for Pa sites in Mb which showed even higher PU.1 

motif rates of 71%. This finding could hint to the hypothesis that PU.1 binding is not a 

prerequisite for the activity of stimulus-specific macrophage promoters. Additionally, genes 

with Pa sites revealed gene ontology (GO) terms like “immune response”, “chemotaxis” or 

“inflammatory response”, correlating well with known functions as exemplified for MTPP. 

 

Figure 23. PU.1 frequencies at 

stimulus specific accessible MTPP 

promoters and GO-terms related to 

typical macrophage functions. 

(A) Percentages of accessible 

promoters enriched for the PU.1 

consensus motif in differentially 

activated macrophages. Positional 

weight matrix of PU.1 motif is depicted 

in the upper right corner. (B) Gene set 

enrichment analysis (GOEA) for 108 

genes marked as accessible 

promoters (Pa) in TPP activated 

macrophages (MTPP). Corresponding 

p-values and corrected p-values were 

listed to the right (hypergeometric test, 

Benjamini & Hochberg correction). 

 

The correlation of epigenetic promoter states to RNA-seq data allowed the assessment, if 

HM promoter markings have an effect on transcriptional activity of genes in primary human 

macrophages. Indeed, a significant increase in transcriptional activity was detected in all 

macrophages activated by the indicated stimuli, when genes with accessible or poised 

promoterss were compared (Figure 24A). Furthermore, genes with specific accessible or 
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poised promoter marks were specific for the corresponding macrophage activation state 

(Figure 24B). MTPP macrophage genes marked with Pa were significantly increased in their 

expression values in MTPP in comparison to other macrophage activation states and showed 

stronger enrichments for H3K4me3 and H3K27Ac in comparison to decreased levels in other 

macrophages, especially for the HM H3K4me3 (Figure 22B). Poised promoter genes were in 

general drastically reduced in their expression values in comparison to accessible promoters, 

already stated previously. However, the less pronounced decrease in the expression rates for 

Pp in MTPP in comparison to other activation states could be present due to the higher 

H3K4me3 signals in MTPP almost diminished in the other macrophages. Comparable specific 

results were detected for the other three activated macrophages (data not shown).  

 

 

Figure 24. Boxplots of expression values for genes marked with stimulus specific accessible 

and poised promoters. 

(A) Boxplots of RNA-seq expression values for genes marked with macrophage activation state 

specific accessible or poised promoters. Dashed line represents cut-off values for genes without gene 

expression. (B) RNA-seq expression values for MTPP genes associated with specific accessible or 

poised promoters in all four macrophage activation states. (Mb/blue, MIFNy/yellow, MIL4/green, 

MTPP/red). *p < 0.05, **p < 0.01, ***p < 0.001 (wilcoxon rank sum test) 

 

Cis-regulatory enhancer sites, crucial for transcriptional regulation and maintenance act as 

platforms bound by TFs and other proteins and can mediate DNA looping to subsequently 

stimulate promoter activation and gene transcription (58,59,67). In addition, recently defined 

“latent enhancers” in murine macrophages suggested that exogenous signals can shape the 

epigenetic landscape (249). Therefore, three activity states of enhancers (strong, weak and 
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poised enhancers) were defined by the combination of three HM signal enrichments (Figure 

21). In total 2024 Es, 15754 Ew and 2390 Ep sites specific for the macrophage activation 

states were identified (Figure 25A). Heatmaps illustrate HM signal combinations for Es with 

H3K4me1 and H3K27Ac signal enrichments, solely H3K4me1 for weak enhancers and a 

combination of H3K4me1 and H3K27me3 for poised enhancer sites (Figure 25B). 

Interestingly, Ew represented in numbers the largest group of defined enhancer states and 

thus could suggest their importance in shaping the activation associated transcriptome to 

induce stimulus-specific macrophage functions (68,160,280). Especially the MIFNy 

macrophage with the highest numbers of Es could also demonstrate the strong impact of 

dominant inflammatory signals on the activity of regulatory sites and their chromatin 

organization. Lower Es numbers in MTPP, despite the inflammatory signals during activation 

could once more reveal negative feedback loops, due to the chronic inflammatory setting. 

MIL4 macrophages showed increased numbers of Ep sites, which is in line with previously 

described high numbers for Pp, emphasizing the importance of repressive mechanisms for 

anti-inflammatory macrophages. For answering the question if stimulus-specific enhancers 

require PU.1 presence for their activity PU.1 binding predictions were performed. 12 % to 54 

% of described Es sites were positively marked with the PU.1 consensus motif, while Ew 

sites were slightly reduced in PU.1 frequencies (12 % - 32 %) (Figure 25C). Previously 

published results for mouse macrophages stated comparable results for the enrichment of 

the PU.1 motifs at H3K4me1 positive enhancer sites (157). These findings suggest - in line 

with previous results (281) - that the presence of PU.1 is not always required for stimulus-

specific enhancers and that additional regulators are involved. TF binding predictions 

revealed significant enrichments for motifs like PU.1 in Mb, IRF1 in MIFNy, STAT6 in MIL4 (data 

not shown) and FOSL2 in MTPP. Exemplarily, the top five enriched motifs for MTPP were 

shown including enrichment p-values for expressed TFs at MTPP-specific enhancer regions 

(Figure 25D). 
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Figure 25. Identification of specific epigenetic enhancer states and corresponding PU.1 

frequencies in four macrophage activation states 
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(A) Numbers of specific enhancer sites in differentially activated macrophages. (B) Normalized ChiP-

seq tag counts of genomic positions for strong (Es), weak (Ew) and poised (Ep) enhancers plotted as 

heatmaps. All enhancers share the H3K4me1 signals, while Es are marked with additional H3K27Ac 

and poised enhancers with H3K27me3, respectively. Heatmaps were centred on H3K4me1 peak 

signals and assessed in 500 bp windows 6 kb up- and downstream of the peak midpoints (C) 

Frequencies for PU.1 positive enhancer sites at Es and Ew depicted for all four macrophage activation 

states in percent. Absolute gene numbers were plotted to the right. (Mb/blue, MIFNy/yellow, MIL4/green, 

MTPP/red) 

 

To assess a correlation of the epigenetic enhancer status at a genomic locus to the actual 

transcriptional activity of adjacent genes, RNA-seq data were combined to enhancer states 

of known genes (Figure 26). Genes in the vicinity of Es sites demonstrated high expression 

levels, while genes with Ew were in comparison to Es significantly down-regulated in MIFNy 

and MIL4 and showed comparable tendencies in the other activation states. In contrast, Ep 

enriched sites were strongly correlated to genes with low transcriptional activity.  

 

Figure 26. RNA-seq expression 

values of genes marked with 

activation specific enhancers. 

Boxplots of RNA-seq expression 

values for genes marked with 

macrophage activation specific 

enhancers with strong (Es), weak 

(Ew) or poised (Ep) status. 

Dashed line represents the cut off 

for expressed genes. (Mb/blue, 

MIFNy/yellow, MIL4/green, MTPP/red). 

*p < 0.05, **p < 0.01, ***p < 

0.001(wilcoxon rank sum test) 

 

Two examples for genomic sites with MTPP specific Pa or Es sites and high expression values 

in RNA-seq data were visualized (Figure 27). Normalized HM tag counts were explicitly 

enriched at marked positions with at least two times higher tag counts in MTPP compared to 

other macrophage activation states. The example genes IL2RA and CXCL1 neighboring 

specific MTPP promoter and enhancer regions were highly expressed, specifically in MTPP 
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macrophages and were also previously linked to chronic inflammation in macrophages 

(21,282). 

 

 

Figure 27. Visualization for 

representative sites in MTPP with 

activation specific accessible 

promoter and strong enhancers. 

Normalized ChIP-seq signals for 

different histone modification data sets 

(H3K4me3, H3K4me1, H3K27Ac and 

H3K27me3) are shown for an 

accessible promoter (left panel, IL2RA) 

or a strong enhancer (right panel, 

CXCL1). Locations of enriched ChIP-

seq signals defining corresponding 

promoter or enhancer states are 

marked with red boxes. Corresponding 

RNA-seq expression values for MTPP 

signature genes are depicted as box 

plots below the genomic visualization 

window.* p < 0.05 (wilcoxon rank sum 

test). (Mb/blue, MIFNy/yellow, 

MIL4/green, MTPP/red) 

 

 

 

Ongoing gene transcription is determined by the combination of promoter and enhancer 

activity. Hypergeometric probability tests, comparing pairs of gene groups marked by 

different epigenetic classes of promoters and enhancers, allowed the estimation of their 

relationships. Hypergeometric p-values smaller than 0.05 define a positive correlation 

between gene groups (Figure 28A). A strong correlation of Pa to Es and Ew and of Pp to Ep 

was detected especially for MIL4 and MTPP. In MIFNy, positive correlations between mentioned 

sites were less pronounced but still significantly detectable. Low correlations of Pa and Pp in 

Mb and Pp in MIFNy to corresponding enhancer sites could be caused by the relatively small 
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numbers of specific promoter sites (< 50) (Figure 22A). To assess the influence of 

combinations for promoter and enhancer markings at corresponding macrophage activation 

specific genes onto transcriptional activity, expression values for Pa genes with and without 

Es or Ew marks were compared (Figure 28B). Genes with additional marks for Es or Ew 

displayed elevated median expression levels in all macrophage activation states. Accessible 

and active promoters with already expressed genes (expression above dashed line) were 

especially increased by numbers in activated macrophages (MIFNy, MIL4, MTPP) due to the 

putative interactions with Es. 

 

 

Figure 28. Correlation analysis of promoters and enhancers with different epigenetic activity 

markings. 

(A) Pairwise correlations (Hypergeometric test) between gene groups marked with macrophage 

activation specific promoters (accessible Pa, poised Pp) and enhancers with different epigenetic 

activity states (strong Es, weak Ew, poised Ep). (B) RNA-seq expression values for genes marked 

with an Pa alone or with simultaneous Es or Ew markings are depicted as box plots for four 

macrophage activation states. (Mb/blue, MIFNy/yellow, MIL4/green, MTPP/red). *p < 0.05 (wilcoxon rank 

sum test) 

 

Collectively, macrophage activation specific genes with different epigenetic promoter and 

enhancer states were identified. These genes may shape the transcriptome of activated 

macrophages and mediate their specialization to fulfill different functions upon stimulation. 

The expression values of genes marked with Pp or Ep were significantly attenuated, while Pa 

genes with or without additional enhancer markings revealed high transcriptional rates in 

most cases. Mentioned exceptions could implicate additional regulatory mechanisms by fine 

tuning the activation-specific macrophage transcriptomes.  
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5.2.4. Epigenetic core program in differentially activated 

macrophages 

Despite the specific differences of activated macrophages on epigenetic level, a high fraction 

of similarities was previously found for macrophages with different origins and stimulated 

under different conditions (21). Recent computational reverse engineering approaches 

utilizing 28 differentially activated human macrophages allowed the definition of a so called 

“macrophage core signature”, describing actively transcribed macrophage genes important 

for their identity.  

Adapting the idea of a “macrophage core signature” for the regulation on epigenetic level, the 

HM status of promoter and cis-regulatory sites for macrophage activation states was 

assessed and sorted for genomic sites with common activity states. 7427 common 

accessible promoters (Pa common) and 1247 common poised promoters (Pp common) could be 

identified and were visualized as heatmaps (Figure 29A). Furthermore, a group of common 

enhancers was identified in all four macrophage activation states and subdivided into 3731 

strong enhancers (Es common) and 467 poised enhancers (Ep common) (Figure 29B). Additionally, 

3110 weak enhancers (Ew common) were found. Common Pa and Es were defined as 

“common histone core signature” (CHCS), found in activated macrophages. Previous results 

comparing murine macrophages, neutrophils and monocytes corroborate the demonstrated 

strong overlap in the usage of accessible promoters in contrast to strong enhancers (157). 

The CHCS seems to be predominantly characterized by a vast number of promoters and to a 

lesser extent by cis-regulatory sites thereby capable of the establishment and maintenance 

of a common macrophage program. 
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Figure 29. Common accessible and poised promoters in activated macrophages. 

Heatmapss of normalized ChiP-seq tag counts for genomic positions with common (A) accessible 

(Pacommon) and poised (Ppcommon) promoters or common (B) strong (Escommon) and weak (Ewcommon) 

enhancers in four macrophage stimulatory conditions. Heatmaps were centred on (A) H3K4me3 or (B) 

H3K4me1 peak signals and assessed in 500 bp windows 6 kb up- and downstream of peak middle 

points. (Mb/blue, MIFNy/yellow, MIL4/green, MTPP/red) 
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To verify, that genes with accessible or poised promoter state are expressed similarly in all 

investigated macrophage activation states or are absent, RNA-seq experiments were 

performed for activated macrophages. Expression values of genes with common Pa are 

plotted in comparison to genes with common Pp marks as boxplots for each macrophage 

activation state separately (Figure 30A). Promoters with common active HM signals were 

significantly higher expressed compared to genes with poised promoter sites. Comparable 

calculations were performed for genes with common enhancer marks found in all 

macrophage activation states (Figure 30B). Genes adjacent to cis-regulatory enhancer sites 

with Es correlated to increased expression values, while genes marked with Ew and Ep were 

significantly down-regulated. Interestingly, genes with poised promoter states were in a lower 

degree down-regulated in their expression in comparison to genes with a poised enhancer in 

their vicinity. In case CHCS genes are particularly important and moreover specific for 

macrophages, higher frequencies for PU.1 motifs at CHCS sites should be visible at 

corresponding promoter and enhancer sites, since PU.1 as macrophage lineage determining 

factor would initiate chromatin remodeling processes and permit the accessibility of gene loci 

(Figure 30C). Indeed, 89 % of Pa sites and 96 % of strong enhancers contained the PU.1 

consensus motif, indicating a macrophage specific transcriptional regulation for the 

corresponding genes. 
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Figure 30. Expression values and PU.1 frequencies of common macrophage promoter and 
enhancer sites. 

RNA-seq expression values depicted as boxplots for genes associated with common (A) Pa and Pp or 

with common (B) Es and Ep sites in all four macrophage activation states. ***p < 0.001 (wilcoxon rank 

sum test). (C) Percentages of PU.1 motif positive accessible promoter (Pa) or strong enhancer (Es) 

sites common in all four macrophage activation states. Absolute gene numbers and PU.1 consensus 

motif were plotted to the right (Mb/blue, MIFNy/yellow, MIL4/green, MTPP/red) 

 

Furthermore, a GO-term enrichment analysis of CHCS genes with common Pa sites and 

common Es marks was combined into one network with promoter data visualized in network 

nodes, while enhancer data was depicted in corresponding node borders (Figure 31). GO-

terms were grouped according to their relationship of biological functions and resulted in 28 

sub-clusters. The network revealed a significant correlation of CHCS gene functions to 

“housekeeping” functions, like “metabolic process”, “cell cycle” or “macromolecule catabolic 

process”. 
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Figure 31. Differential Gene Ontology Enrichment Analysis of CHCS genes marked with 
common Pa or common Es. 

GO-term associated functions of common macrophage genes marked with an accessible promoter 

(red border color) or strong enhancer (black nodes) are depicted as networks. Specific terms for 

network modules with strong correlations to each other are marked with numbers and listed to the 

right. 

 

For a detailed analysis of the macrophage specificity for the defined CHCS gene signature, 

microarray data sets of other immune cells were utilized. CHCS expression values for all cell 

types were plotted as boxplots and compared to expression values in Mb. Statistical 

significant differences were found not only for Mb genes with accessible promoters (Figure 

32A) but also for Mb genes in the proximity of Es compared to non-myeloid cell types (Figure 

32B). Interestingly, Mb showed no statistical significant difference in CHCS expression values 

to monocytes or the other three activated macrophage groups (MIFNy, MIL4, MTPP), probably 

due to their strong relationship to each other as macrophage precursors or different Mb 

activation states. 
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Figure 32. Expression values of common macrophage genes with similar epigenetic status at 

regulatory sites compared to other cell types of the immune system. 

Boxplots of RNA-seq expression values for common macrophage genes associated with (A) 

accessible promoters and (B) strong enhancers in various primary cell types from peripheral blood. **p 

< 0.01, ***p < 0.001 (wilcoxon rank sum test). (Mb/blue, MIFNy/yellow, MIL4/green, MTPP/red, 

Mono=monocytes, DC=immature dendritic cells, NK=natural killer cells, TC=T cells, BC=B cells) 

 

The establishment of a general macrophage phenotype depends on the activity of DNA 

binding proteins like TFs. A motif binding prediction analysis revealed the enrichment of DNA 

binding proteins located at accessible promoters (Figure 33A) or strong enhancer sites 

(Figure 33B) for CHCS genes. Top 10 motifs for proteins expressed in all macrophage 

activation states included the macrophage pioneer factor PU.1 overrepresented not only at 

common Pa but also at common Es sites (71,72). These results corroborated the performed 

PU.1 enrichment analysis described above (Figure 30C). Beyond PU.1, other motifs for TFs 

like ELK4, GABPA and ELK1 were significantly enriched at common Pa sites. These TFs 

were described to cooperate with the serum response factor (SRF) to regulate cytoskeletal 

gene expression in macrophages (255,274). Additionally, ETS family members like FLI1, 

ELF1 and ETS1 were also enriched and can interact with PU.1 to regulate macrophage 

development (283,284). At sites with marks for common Es, TFs like FRA1, FOSL2 (FRA2) 

and AP-1 were identified. Interestingly, these TFs play important roles in putative negative 

feedback loops suppressing exaggerated inflammatory responses, demonstrated previously 

for example for the TF BCL6 (285-287). 
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Figure 33. Motif enrichment analysis of common Pa and Es sites found in four activated 

macrophages. 

Motif enrichment analysis for (A) accessible promoters or (B) strong enhancer sites found in all four 

macrophage activation states. Corresponding p-values (hypergeometric test) and positional weight 

matrices (PWMs) for top 10 enriched motifs were additionally plotted. 

 

With the hypothesis that commonly expressed CHCS genes are best characterized by 

accessible promoters, previously defined major hub genes of the multi-dimensional model of 

human macrophage activation (21) should also be characterized by permissive histone 

modifications at their promoters. Therefore, a network representation of previously defined 

macrophage core signature genes (869 top 10 % highly connected major hub genes) was 

overlaid with CHCS information of Pa and Es/Ew enrichments (Figure 34). More than 94 % of 

major hub genes were tagged with a common accessible promoter, while only 27 % of gene 

names overlapped with genes adjacent to common strong or weak enhancers. The strong 

overlap for common Pa (CHCS data) with central macrophage genes identified by 

independently performed in silico predictions further demonstrates the importance of 

epigenetic data for the identification of central genes of a common macrophage program. 

Lower overlaps for CHCS enhancer data could indicate a minor role for cis-regulatory 

elements in common macrophage programs described before. Intriguingly, the previously 

built common macrophage network was based on 28 different macrophage stimulatory 

conditions, but epigenetic data of only four macrophage activation states already matched to 

a major extent to common macrophage genes. 
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Figure 34. Network 

visualization for the 

epigenetic status of 

regulatory sites in 

common macrophage 

core signature genes. 

The epigenetic status of 

promoter and enhancer 

sites is depicted as 

network visualization for 

869 important regulatory 

macrophage genes: Pa 

(red node colour)/ Es/Ew 

(orange border colour)/ 

no mark (white border or 

node colour).The node 

size specifies the degree of connectivity between depicted common macrophage genes. 

 

In conclusion, accessible and poised promoters as well as enhancers common for all 

investigated macrophage activation states were identified and especially Pa correlated well 

with previously described macrophage core signature genes. Common promoter and 

enhancer sites were enriched for the macrophage pioneer TF PU.1 and other TFs related to 

important macrophage functions. CHCS genes were expressed in all differentially activated 

macrophages and participated in gene ontology terms for general housekeeping functions 

but more importantly for specific biological processes associated to macrophages. The 

collected data supports the hypothesis that the epigenetic regulation mediated by the 

common histone core signature is fundamentally linked to the macrophage phenotype. 

 

5.2.5. Influence of super enhancers onto macrophage activation 

Recently, special regulatory genomic regions called “super enhancers” (SE) were described 

in immune cells like murine macrophages or embryonic stem cells (169,170). Their main 

characteristics are defined by very strong enrichments for activating H3K27Ac HM signals 

and remarkably high numbers of TF binding sites. Additionally, SE regions consist of multiple 

numbers of classically defined enhancer sites with distances less than 12.5 kb to each other 

(Figure 35A). They were proposed to play important roles in disease initiation and 
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progression and regulate cell type-specific gene transcription and thus establishing cell 

identity. 

In activated human macrophages between 417 and 806 SE regions could be identified 

(Figure 35B). As exemplified for MTPP cells, 417 SEs were discriminated from classical 

enhancers by their disproportionally high H3K27Ac signals. Genomic MTPP sites at SE 

regions were first sorted according to their total region size, starting with the biggest SE 

regions with 134.853 bp length and then visualized as heatmaps depicting their normalized 

H3K27Ac tag counts (Figure 36C). Broad H3K27Ac signals distributed over all SE areas 

further validated their identity in comparison to surrounding regions with significantly lower 

H3K27Ac levels. SEs in other macrophages (Mb, MIFNy, MIL4) were identified and validated 

accordingly. 

 

 

Figure 35. Identification of super enhancers in activated macrophages. 

(A) Schematic overview of common and stimulus specific super enhancers (SE). (B) Identification of 

SE sites (grey box) at enhancers with extraordinary high H3K27Ac HM signals, exemplified for SEs 

found in MTPP. Total SE counts for four activated macrophage activation states are listed in upper box. 

(C) Heatmap of normalized H3K27Ac tag densities at genomic SE sites found in MTPP sorted 

according to their total region size in bp (Mb/blue, MIFNy/yellow, MIL4/green, MTPP/red) 

 

In differentially activated macrophages, common and specific SEs could be located. 200 

common SE regions were identified in all four macrophage activation states (Figure 36A). 

Histograms of normalized ChIP-seq raw data were visualized for one example of a common 

SE with high gene expression values in all four investigated macrophage activation states 
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(Figure 36B). This example of a gene locus defined by high H3K27Ac signals showed 

additionally strong H3K4me1 HM signals defining it as enhancer site. The SE adjacent gene 

CCR1, which encodes a chemokine receptor is critical for macrophage immune functions 

and was expressed in all four macrophages (288). Unique SE sites present in only one 

macrophage activation state demonstrated a high variability in their numbers (Figure 36A). 

Highest numbers of activation specific SE were especially identified in Mb and MIFNy. A 

correlation to mRNA expression of genes with specific SE further demonstrated the capability 

of SE to promote transcription of adjacent genes beyond the expression levels of genes with 

Es or Ew in their proximity. For example, MTPP genes with SE markings in their vicinity 

displayed significantly higher expression values in comparison to genes marked with Es or 

Ew, (Figure 36C). These results state a strong impact of SE on overall macrophage gene 

expression. 

 

 

Figure 36. Super enhancer characterization. 

(A) Bar chart for numbers of common and activation specific SE found in differentially activated 

macrophages. (B) Example for a genomic site identified as common macrophage SE visualized as 

histograms with normalized HM signals for four different HM data sets (H3K4me3, H3K4me1, 

H3K27Ac, H3K27me3). Expression values for the XCR1 and the super enhancer associated CCR1 

gene in human macrophages are plotted to the right. (C) Boxplots for expression values of genes 
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marked by the different enhancer types (SE, Es, Ew) in MTPP. ***p < 0.001 (wilcoxon rank sum test). 

(Mb/blue, MIFNy/yellow, MIL4/green, MTPP/red) 

 

Performing a GO analysis on the group of SE marked genes in MTPP, GO-terms for 

macrophage relevant functions like “response to cytokine stimulus”, “wound healing” and 

“phagocytosis” were enriched (Figure 37A). Focusing on the smaller groups of genomic sites 

marked with activation state specific SEs occured at least partially near genes which 

contribute to activation specific macrophage functions (Figure 37B). For example, IFI30 is 

constitutively expressed in antigen-presenting cells mediating lysosomal functions (289). NMI 

is induced by IFNy stimulation and is responsible for STAT-mediated transcription, LIPA 

mediates lipolysis and the alternative activation of macrophages (290) and CXCL1 promotes 

inflammatory processes (291). Yet GO-term analysis on activation specific SE could be 

limited in its interpretations due to the low number of activation specific SE (Figure 36A). 

 

 

Figure 37. Correlation of gene ontology terms to genes with SE marks. 

(A) Top 10 enriched GO-term functions for genes marked with SEs in MTPP. (B) Word cloud 

visualization for exemplified macrophage related genes associated to SEs. (Mb/blue, MIFNy/yellow, 

MIL4/green, MTPP/red) 

 

All shown examples of expressed activation specific macrophage genes possessed an 

activation specific SE (Figure 38). In some cases, specific SE sites over spanned not only a 

single gen locus (LIPA) but were also located over several genes (IFI30) and displayed a 

broad enrichment for H3K27Ac signals. Moreover, a simultaneous enrichment for H3K4me1 

signals was observed thus confirming their enhancer character. 
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Figure 38. Visualization of genomic loci for macrophage activation state specific SE loci. 

Normalized HM signals are visualized for four different data sets (H3K4me3, H3K4me1, H3K27Ac, 

H3K27me3) at macrophage activation specific SE sites (IFI30/Mb, NMI/MIFNy, LIPA/MIL4, CXCL1/MTPP). 

Corresponding H3K27Ac signals are marked for each macrophage population with coloured boxes. 

Expression values for genes at macrophage specific SE sites are depicted at the bottom. *p < 0.05, 

***p < 0.001 (wilcoxon rank sum test). (Mb/blue, MIFNy/yellow, MIL4/green, MTPP/red) 

 

In summary, a special type of regulatory region called “super enhancer” was identified in 

activated human macrophages. Genes in proximity to common and specific SE sites 

displayed strongly increased expression values. Furthermore, a partial overlap with known 

macrophage functions in MTPP and markings at macrophage associated genes in all four 

activation states were detected. These results suggested the involvement of SE in the input-

signal specific induction of gene expression in inflammatory macrophages. 
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5.2.6. Epigenetic regulation of central macrophage transcriptional 

regulators in human 

For the establishment and specialization of macrophage specific transcriptional programs, 

TRs are essential key components. Different classes of TRs mediate various functions like 

chromatin remodelers (e.g. histone methyl-transferases), pioneer factors (e.g. PU.1), 

transcriptional inhibitors mediating protein complex formation (e.g. NCOR2) or TFs. The 

expression of these regulatory proteins is influenced by epigenetic modifications, thus the 

analysis of HM signals at central TR loci could shed light on the regulation of TR expression 

during macrophage activation. 

A previously published multi-dimensional model of macrophage activation allowed the 

definition of a distinct set of TR genes (21). In brief, GM-CSF derived macrophages (Mb) 

were activated by 28 different stimulatory conditions to mimic inflammatory conditions (Figure 

39A). 485 macrophage TRs were identified to be expressed at least in one of the 29 

stimulatory conditions. Co-regulation network analysis allowed the creation of visualizations 

for 297 highly interconnected TR genes, which are to be considered as central key factors for 

macrophage identity and were termed as “macrophage activation TR network”. In this 

network each node represents one specific TR with connections to other co-regulated TRs. 

Surprisingly, almost all promoters (93%) of central TRs participating in macrophage activation 

were marked by an accessible promoter state already in untreated Mb (Figure 39B, C). In 

addition, the vicinity of central TRs was occupied for more than 69% by strong or weak 

enhancers (Figure 39D). Concomitantly, TRs with accessible promoters and/or strong/weak 

enhancer markings showed expression levels above background level, while only a small 

subset of these TRs showed relatively low expression levels (Figure 39E, F). These results 

could support constitutively permissive histone modifications at TR loci independently of their 

transcriptional activity in Mb. 
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Figure 39. Epigenetic landscape of transcriptional regulators in baseline macrophages. 

(A) Schema for the computational generation of co-regulation networks including 297 important 

activated macrophage TRs (transcriptional regulators) (21). Distribution of (B) accessible (Pa) and 

poised (Pp) promoter marks or (C) strong (Es), weak (Ew) or poised (Ep) enhancers in baseline 

macrophages for TRs being part of the generated macrophage activation TR network. (D) TR network 

visualization for baseline macrophages (Mb) with overlaid epigenetic information for accessible 

promoter states (Pa). (E, F) Microarray expression data for 287 TRs depicted as scatter plots in 

baseline macrophages (Mb) and sorted for (E) accessible (Pa) and poised (Pp) promoter states or (F) 

for strong (Es), weak (Ew) or poised (Ep) enhancer states. Mann-Whitney rank sum test (E) or 

Kruskal-Wallis One Way ANOVA on ranks with pairwise multiple comparisons according to Dunn’s 

Method (F) were used for statistical calculations (*p<0.05, ***p<0.001, cutoff for expression: 7.2). 
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To answer the next question, if the activation-specific regulation of TR expression is 

influenced by specific changes of histone modifications at TR loci, three differentially 

activated macrophages were used. As observed for previous Mb results, a large majority of 

TR promoters for all activation conditions showed an accessible state (>93%, Figure 40A) 

with simultaneous strong/weak enhancer markings for a high fraction of TR loci (>69%, 

Figure 40B). The expression levels for these macrophage activation associated TR genes 

with accessible promoters or strong enhancers were once more significantly higher than for 

TR genes with poised promoters or weak/poised enhancer markings (Figure 40C, D). 

Permissive histone modifications seem to dominate not only the epigenetic TR landscape of 

Mb but also play an important role in activated macrophages under inflammatory conditions 

independently of their transcriptional activity. 

 

 

Figure 40. Promoter and enhancer mark distributions for transcriptional regulators in activated 

macrophages. 
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Distributions of (A) accessible (Pa) and poised (Pp) promoter marks or (B) strong (Es), weak (Ew) and 

poised (Ep) enhancer marks visualized as bar charts for TRs being part of the macrophage activation 

TR network in IFNy (yellow), IL4 (green) and TPP (red) activated macrophages. (C, D) Microarray 

expression data for 287 TRs depicted as scatter plots sorted for (C) accessible (Pa) and poised (Pp) 

promoter states or (D) for strong (Es), weak (Ew) or poised (Ep) enhancer states in IFNy (yellow), IL4 

(green) and TPP (red) activated macrophages. Mann-Whitney rank sum test (C) or Kruskal-Wallis One 

Way ANOVA on ranks with pairwise multiple comparisons according to Dunn’s Method (D) were used 

for statistical calculations (*p<0.05, ***p<0.001, cutoff for expression: 7.2). 

 

A network visualization of transcriptional regulators allowed not only the direct comparison of 

transcriptional changes for activated macrophages in comparison to Mb but also the 

assessment of the epigenetic status for their promoter and enhancer sites (Figure 41A). For 

all three activated macrophages (MIFNy, MIL4, MTPP) TRs were transcriptionally regulated in a 

distinct and specific manner (Figure 41A left panel). These results demonstrate an enormous 

transcriptional regulation of TRs in an input-signal specific fashion in human macrophages. 

Compared to the noticeable changes for TRs on transcriptional level, the patterns for 

promoter and enhancer marks within the network were quite uniform (Figure 41A, middle and 

right panel) with a majority of promoters marked as accessible and enhancers with strong or 

weak HM marks. Interestingly, TRs not expressed in any of the 29 stimulatory conditions 

showed only a minority of accessible promoters (12-15%) or strong enhancer markings (12-

17%) (data not shown). To confirm the hypothesis, that the permissive histone landscape is a 

unique feature for macrophage-activation associated TRs in monocyte-derived 

macrophages, a hypergeometric statistical test was performed for different gene sets to 

analyze the significance of accessible promoter occurrences (Figure 41). Both gene groups 

either for the central nervous system (CNS) or randomly chosen genes showed fewer 

accessible promoters and thus lower statistical significances compared to the TRs in 

activated human macrophages. To further identify master regulator genes in each stimulatory 

condition, TFs with significant enriched expression in MIFNy, MIL4 or MTPP were determined 

and were predicted to bind to gene loci with an accessible promoter and strong or weak 

enhancer markings within the network. Important TF genes like STAT1 for MIFNy, IRF4 for 

MIL4 or STAT4 for MTPP were found and previously connected to corresponding macrophage 

functions (193,292,293) (Figure 41C). 
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Figure 41. Epigenetic landscape of transcriptional regulators in activated macrophages. 

(A) Network visualization of transcriptional regulators in activated macrophages (network generation 

described in Figure 39A). Left panel: RNA-seq expression values were overlaid as fold-changes (FC) 

compared to the expression values in Mb (FC with an unadjusted p-value <0.05 are marked by wider 

black border colour). Mid panel: Overlay with epigenetic data on accessible (Pa) promoters (red border 

colour). Right panel: Overlay with epigenetic data on strong (Es) or weak (Ew) enhancer marks 

(orange border colour). (B) Hypergeometric probability test for the enrichment of accessible promoters 
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(Pa) in GO-term gene sets related to the CNS (central nervous system), activated macrophages TR 

genes or a set of random genes. (C) Binomial p-values for motif enrichment calculations at promoter 

and enhancer positions, positional weight matrices and corresponding expression values were 

depicted for predicted master regulators in Mb (blue), MIFNy (yellow), MIL4 (green) and MTPP (red) in all 

macrophage conditions. One Way ANOVA tests with pairwise multiple comparison according to Tukey 

were used for statistical analysis of expression values (*p<0.05, n=3). RNA-seq and ChIP-seq data 

was derived from three independent experiments. 

 

Overall, the established networks of active TRs during human macrophage activation 

showed in general an open chromatin state at promoter loci with concomitant strong or weak 

enhancer markings, while significant transcriptional differences between used stimulatory 

macrophage conditions were visible. These results could hint to a model where the quick 

adaption capabilities of macrophages to environmental signals are tightly connected to these 

epigenetic open TR loci. Transcriptional control mechanisms like the binding of transcription 

factors, co-repressors or –activators or non-coding RNAs which restrain TR mRNA 

transcription could regulate the predominantly accessible promoters and subsequently adapt 

the macrophage transcriptome. 

 

5.2.7. Epigenetic and transcriptional regulation in human tissue-

defined TR networks 

Since human macrophage activation TR networks are characterized by an overall open 

chromatin state the question arises, if this epigenetic pattern is an exclusive feature in these 

cells. To answer this question similar histone modification networks were created for five 

human tissues (intestine, lung, ovary, heart, and muscle) (294) (Figure 43A). These datasets 

showed comparable RNA-seq statistics (data not shown), but up to 3-fold differences in their 

read numbers (Figure 42A) and called peaks (Figure 42B), probably due to their differences 

in function and location in the human body. Nevertheless, the histone distribution across the 

genome in correlation to important genomic functions demonstrated almost equal results, 

which was not only visible for the intestine and lung datasets (Figure 42C) but for all five 

human tissue datasets (data not shown).  
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Figure 42. Main features of ChIP-seq datasets for five different human tissues 

(A, B) Main features of consolidated histone ChIP-seq data (n=1) from the Road map consortium 

(294) describing (A) read counts and (B) called peak positions for corresponding histone datasets in 

five human tissues. (C) Histone modification peak distributions depicted by their localization to specific 

genomic regions for small intestine (SI) and lung tissue (Lung) datasets. 

 

After the creation of a TR network for these 5 human tissues (Figure 43A) a similar approach 

introduced for the human macrophage activation TR network was performed. In the following 

results only two example datasets for small intestine and lung tissues were visualized but the 

other three datasets showed similar results. Transcriptional differences plotted onto the 

network revealed a specific upregulation of genes in only one subcluster for each of the five 

tissues (Figure 43B, left panel). Upregulated small intestine genes e.g. CDX2 or CREB3L3 

are mainly located in the central subcluster, while important upregulated lung genes like 

TBX4 or NKX2-1 are located in the lower right network subcluster. TRs being not expressed 

in the particular tissue were located within the other not-tissue-specific subclusters in the 

network that marked the remaining tissues (Figure 43B, right panel, green nodes). 

Interestingly, genes not expressed in a particular tissue lacked the open promoter markings. 

This pattern strongly supports the hypothesis that transcriptional differences of TRs between 

tissues are epigenetically regulated and thus following previously published models(167). 

Indeed, the correlation of epigenetic promoter status and gene expression of TRs clearly 

demonstrated a dichotomous distribution with expressed TRs being defined by accessible 

promoters, while not expressed TR genes were characterized by the absence of accessible 

promoters (Figure 43C). Raw histone modification read counts on a genomic level also 

support these results (Figure 43D). For example, the CDX2 gene is not only specifically 
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expressed in small intestine cells but also shows specific open chromatin marks like 

H3K4me3 and H3K27Ac only in the small intestine dataset. 

 

 

Figure 43. Epigenetic control of transcriptional regulators in human tissues 

(A) Bioinformatics workflow for the generation of human tissue-related TR networks. (B) Network 

visualization of human-tissue related transcriptional regulators in small intestine and lung tissue 

datasets. Left Panel: Overlay with expression values depicted as fold-changes (FC) over the mean 

expression values of all five tissues included in the analysis. Right Panel: TR networks are overlaid 

with epigenetic data on accessible promoters (Pa) marked in red. Additionally, expressed TRs are 

marked in grey (RNA-seq expression values >10), while not expressed TRs are marked in green with 

black borders (RNA-seq expression values <10). (C) Human tissue related TRs were grouped into 

expressed (black bars) and not expressed (grey bars) genes and their promoter states were visualized 

as bar charts (accessible promoter (Pa), poised promoter (Pp), no H3K4me3 promoter mark (no 
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mark)). (D) Representative example position at CDX2 gene locus for a TR with tissue specific 

expression and promoter marks. 

 

In conclusion, network visualizations clearly showed that highly upregulated genes in tissue 

specific clusters were simultaneously marked with open promoters, while not expressed 

genes lacked these markings. This finding suggests that tissue-associated TRs are unlike 

human macrophages coordinately regulated on the epigenetic and transcriptional level. 

 

5.2.8. Transcriptional regulator networks in tissue macrophages  

Previously depicted data in activated human macrophages and different tissues resulting in 

quite differential pictures about epigenetic and transcriptional regulation raised the question, 

if the described open chromatin state in monocyte-derived human macrophage TR networks 

is already a feature of macrophages during tissue homeostasis. To answer this question 

previously published data of seven murine tissue macrophage populations was used to 

generate TR networks (Figure 44), since there is not sufficient transcriptome and epigenome 

data available for human tissue macrophages (157).  

 

 

Figure 44. Workflow for the generation of TR networks in murine tissue macrophages. 

Bioinformatics workflow for the generation of human tissue-related TR networks. 

 

First of all, 554 expressed TRs were identified in at least one of the 7 populations, while in 

total 321 expressed TRs were highly interconnected (Figure 45A, left panel). Interestingly, 

after the plotting of differential gene expression onto the network, each of the 6 subclusters 

was associated with highly upregulated genes for a particular tissue macrophage population. 

Previously described specific tissue TFs were located in the described tissue specific 

subclusters within the network, for example Runx3, which was previously connected to ileal 

and colonic macrophages was present in the gut subcluster (157). This was also visible for 
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other TFs like Mef2c (microglia), Gata6 (peritoneal macrophages), Rxra (Kuppfer cells), or 

Spic (spleen macrophages). In general, 2/3rd of all TRs are not specifically expressed in one 

tissue macrophage population but in any given population suggesting the importance of 

transcriptional changes in only a small number of TRs for the tissue specific transcriptional 

program. After adding epigenetic promoter information onto the network 77 to 90% of the 

specifically expressed TRs in the respective macrophage population were marked with an 

accessible promoter while only 19 to 41% of TRs being not expressed showed an accessible 

promoter state (Figure 45A, right panel, Figure 45B). Similar results were found for all 554 

TRs expressed in at least one of the seven macrophage populations (data not shown).  
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Figure 45. Epigenetic regulation of TRs in murine tissue macrophages. 
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(A) Network visualizations for transcriptional regulators in seven murine tissue macrophages (network 

generation described in Figure 44A). Left Panel: Overlay with expression values depicted as fold-

changes (FC) over the mean expression of all seven tissue macrophage datasets. Right Panel: 

Epigenetic data for accessible promoters (Pa) was overlaid in red border colours. Expressed TRs 

(RNA-seq expression values >10) were visualized in grey colour, while not expressed TR genes were 

depicted in green with black border colour. (B) Distributions of expressed (black bars) and not 

expressed (grey bars) TRs belonging to the murine tissue macrophage TR network were depicted as 

bar charts and were also grouped by their epigenetic promoter states (accessible promoter (Pa), 

poised promoter (Pp), no H3K4me3 promoter mark (no mark)). ChIP-seq and RNA-seq data originated 

from two independent experiments. 

 

In contrast, TRs not included in the network (n=358) showed clearly lower percentages with 

5-8% accessible promoter ratios (Figure 46A, upper numbers). In addition to epigenetic 

promoter state information two examples of strong enhancer datasets for microglia and 

peritoneal macrophages were also plotted to the network (Figure 46B). The highest 

percentages of strong enhancer enrichments were detected for expressed TRs within the 

network, followed by not expressed network TRs, while TRs not being part of the network 

showed the lowest enrichments for strong enhancers (Figure 46A, lower numbers). The 

genomic loci for two specific tissue TRs (Gata6 and Sall1) were chosen to further visualize 

the epigenetic regulation in murine tissue macrophages. Histone modification signals for 

H3K4me3, H3K27me3 and H3K4me1 were plotted for all tissue macrophages and depict the 

signal specificity of Gata6 for peritoneal macrophages and Sall1 for microglia (Figure 46C). 
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Figure 46. Epigenetic landscape of TR in murine tissue macrophages. 

(A) Promoter and enhancer state distributions for 358 TRs not expressed in five murine tissue 

macrophage datasets (accessible promoter (Pa), poised promoter (Pp), strong enhancer (Es), weak 

enhancer (Ew), poised enhancer (Ep), no H3K4me3 (promoter) / H3K4me1(enhancer) mark (no 

mark)). (B) Network visualizations of murine tissue macrophage related transcriptional regulators for 

microglia and colonic macrophages overlaid with epigenetic data on strong enhancers (orange border 

colour). Expressed genes are marked in grey colour, while not expressed TR genes are marked in 

green with black border colour. (C) Example positions for tissue macrophage-specific promoter 

(H3K4me3) and enhancer (H3K4me1) marks at the TF gene loci Gata6 and Sall1. ChIP-seq and RNA-

seq data originated from two independent experiments. 

 

In summary, the TR network approach revealed that tissue macrophages are defined by a 

whole cluster of co-regulated TRs and not only by the upregulation of a single TR. In 

addition, while activated human macrophage TR networks were characterized by a 

completely open promoter landscape, tissue macrophages showed a more tissue specific 

and coherent regulation of epigenetic and transcriptional activity. 
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5.2.9. Model of epigenetic regulation in human macrophages in an 

inflammatory model 

The integration of herein generated human macrophage data on epigenetic HM level during 

activation and the correlation to transcriptional level can be summarized into a working model 

of several layers of epigenetic regulation beyond the activity status of promoter or cis-

regulatory sites (Figure 47). 

 

 

Figure 47. Model for epigenetic regulation in differentially activated macrophages. 

Schema of central transcriptional regulator networks in human macrophage activation. Differentially 

activated human macrophages share a common core program with accessible promoter and enhancer 

sites marked with H3K4me3 and H3K4me1 and additional H3K27Ac HM activating signals. Activation 

state specific accessible and inactive sites are able to allow fast transcriptional regulation in case of 

environmental signals which are the basics for macrophage plasticity. Such regulatory mechanisms 

are established by several layers of epigenetic control mechanisms and an interplay between 

chromatin remodellers, repressors and transcriptional activators that allow a transcriptional 

specialization of activated macrophages. 

 

In summary, this work describes a macrophage core program which shapes the general 

macrophage transcriptome and could be responsible for the regulation of basic cellular 

functions, while specific programs could drive macrophage specialization into different 

activation states with various functions. Interestingly, besides closed sites without functions in 
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the macrophage cell type, a high abundance of accessible regulatory promoter and enhancer 

sites could keep many genomic TR sites, which control the macrophage transcriptome in a 

general open chromatin state. Thus, these highly adaptive cells can quickly adapt to 

stimulatory signals, induced by changes in the microenvironment, independently of the 

slower chromatin remodeling process. This transcriptional fine-tuning for macrophage 

specialization could be regulated on other epigenetic levels beyond chromatin remodeling, 

possibly amongst others by the binding of transcriptional repressors. 
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6. Discussion 

 

6.1. False-positive and negative signals in ChIP-seq 

experiments 

ChIP-seq experiments inevitably contain false-positive signals introduced at multiple steps of 

experimental procedures (204). The herein presented method to reduce false positive ChIP-

signals named KOIN in the first paragraph of this thesis, revealed false-positive ChIP-seq 

signals in up to 80 % of peak signals in six independent data sets. However, one data set for 

the important macrophage pioneer factor PU.1 displayed outstanding quality with minimal 

amounts of false-positive signals. Intriguingly, even in this high-quality data set the KOIN 

method increased signal-to-noise ratios and identified more significant peaks in comparison 

to peak calling without utilizing the KOIN method (Figure 10). Irrespective of the high 

variability of data set quality with various ratios of false- to true-positive signals, the KOIN 

method successfully identified and removed false-positive ChIP-seq signals (Figure 6, Figure 

8, Figure 9) and recovered false-negative peak signals. 

Interestingly, variable ratios of non-specific to true-positive signals between differentially 

stimulated ATF3 data sets were detected (Figure 6). Percentages of false-positive peaks 

were almost reduced to 50% after HDL stimulation in comparison to unstimulated 

macrophages. It still needs to be elucidated, how and to which extent the stimulation of cells 

can influence the amount of non-specific antibody binding, resulting in false-positive peak 

signals. Hypothetically, due to the strong impact of stimulation onto the chromatin landscape, 

demonstrated in mouse macrophages upon LPS stimulation, many new promoter or 

enhancer regions are in an open chromatin state and thus potentially introducing more ATF3 

binding sites leading to more specific signals (73). Additionally, increased ATF3 expression 

upon HDL stimulation (254) could further present valid antibody targets for specific ChIP-seq 

binding signals and thus increase specific to unspecific signal ratios. 

Particularly, the antibody quality has a strong impact on false-positive binding signals during 

ChIP-seq experiments. One approach called “ChIP-string” was designed to screen for 

effective antibodies against chromatin regulator proteins (248). Multiplexed ChIP-seq 

experiments with low sequencing depth were performed for every antibody and enrichments 

at approximately 500 representative loci were detected and correlated to IgG controls and 

already known chromatin states to assess the antibody quality. This approach or other 

antibody validation procedures, like immunoblotting suggested by the ENCODE consortium 
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(204) can initially help to evaluate antibody quality, aid the optimization of ChIP-seq 

experiments but cannot completely abolish unspecific antibody binding. Besides, KOIN even 

improved ChIP-seq data sets performed with high quality antibodies and is especially 

important for the identification of “hyper-ChIPable” regions, which is not possible with 

described antibody validation methods. 

Overall, the complexity of the next generation sequencing (NGS) technology requires not 

only considerate experimental procedures but also highly specific and adaptive data 

processing methods to account for a data analysis as accurate as possible with the aim to 

correct biological downstream interpretation. The increasing availability of NGS technology 

due to greatly improved cost efficiency resulted in a rapid progression of data analysis 

strategies. These efforts allowed further improvements of NGS data analysis on different 

stages of the ChIP-seq analysis pipeline, which could be in addition to KOIN beneficial for 

future ChIP-seq experiments and decreasing false-positive ChIP-seq signals. For example, 

during the first major step aligning short DNA sequences (ChIP-seq tags) to the reference 

genome to discover locations of enriched ChIP protein binding, unaligned data is normally 

excluded as false-negative sequences from downstream peak calling (295). A remapping 

procedure of not alignable sequences with the short read aligner SHRiMP demonstrated the 

enhancement of gene regulatory grids and networks for the human TAL1 gene. Other 

approaches try to utilize “multi-mappable” reads. These sequences are additionally excluded 

from ChIP-seq analysis and can be introduced for example by excessive PCR amplification 

of ChIP DNA. They match to multiple locations on the reference genome and could therefore 

falsify the peak calling procedure (271). Yet, “not-uniquely” alignable reads can contain 

biological relevant information for proteins binding to highly repetitive sequences at different 

locations on the reference genome and can further increase sequencing depths (296).  

It was demonstrated, that false-positive peak ratios can occur with high variability and are a 

common problem especially amongst “low-quality” ChiP-seq data sets. A systematic 

approach to assess and compare ChIP-seq data quality was performed previously (251). 

Between 20 % and 45 % of analyzed data sets were defined as low or intermediate quality. 

But, rigorous exclusion of all experiments failing very stringent and rigid criteria could be the 

wrong approach and could lead to the loss of important biological discoveries. KOIN could 

greatly improve the interpretation of low-quality ChIP-seq experiments and extract 

biologically meaningful data, especially when antibodies with lower binding specificities were 

used. Newly performed ChIP-seq experiments as well as already archived data could benefit 

from reanalysis with the KOIN method, as long as knockout data sets are available. 
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6.2. Correct biological interpretation requires KOIN 

correction 

One type of biological interpretation for ChIP-seq binding signals correlates for example 

signals associated to specific genes to known gene groups involved in biological functions 

included in a gene ontology (GO) database (264,265,297). This type of analysis allows a 

general evaluation of putative functions associated to the analyzed TF and its binding 

patterns. The exclusion of false-positive signals during the KOIN method had a profound 

impact not only on the enrichments of specific TF binding motifs (Figure 12), often used as 

ChIP-seq quality criterion but also on the biological interpretation of ChIP-seq data sets, 

herein exemplified for the SRF protein (Figure 15, Figure 16). After false-positive correction 

by KOIN, SRF relevant GO-terms were identified, while unspecific SRF functions were lost.  

Another type of biological interpretation utilizes the motif binding enrichments and predicts 

the cooperation of DNA binding proteins by forming putative multi-factor proteins, important 

for the corresponding analyzed cell type. The concomitant enrichment for the important 

pioneer TF PU.1 in the SRF data set at SRF binding sites demonstrated such a cooperative 

binding of TFs in the transcriptional regulation of macrophages (Figure 12) (255). Another 

example for the cooperation of PU.1 with the TF RUNX1 during myeloid differentiation at 

genomic sites like the granulocyte macrophage colony-stimulating factor receptor (GMCSFR) 

were described in murine macrophages (298). Interestingly, without a functional RUNX1 

protein, PU.1 interacts with a corepressor complex and its histone deacetylase (HDAC) 

activity can subsequently decrease GMCSFR expression. It was demonstrated in this work 

that KOIN further sharpens the results for the identification of highly specific motifs 

cooperating with corresponding ChIP proteins, mediating important biological functions. 

Additionally, the low statistical significance of motif enrichments in KO data sets (Figure 13, 

Figure 14) showed the absence of specifically enriched motifs associated with KO peak sites 

and rather depicts randomly distributed motifs over the whole human genome, detected by 

unspecific antibody bindings to irrelevant target proteins.  

Of note, in ATF3 data sets other TF motifs were identified (Jun, Jun-AP1) but not specifically 

the ATF3 motif (Figure 12). This might be caused by variations in TF binding strength based 

on modifications of the motif sequence, as it was described for the early stages of Drosophila 

development in embryonic cells (299). Another reason could be the hetero-dimerization of 

ATF3 with the Jun or AP1 protein to stabilize the ATF3 DNA binding followed by the induction 

of transcription for corresponding target sites (272). 



Discussion 

123  
 

In summary, the described observations like GO-term enrichments as well as TF cooperation 

predictions or other biological interpretations lead to the conclusion that the KOIN method 

performed during ChIP-seq peak calling significantly benefits bioinformatics data analysis. 

 

6.3. Knockout data sets - Optimal control for TF ChIP-seq 

experiments 

Already established controls reduce false-positive signals to a certain extent. Still, these 

established controls display several disadvantages. Input controls accurately describe the 

chromatin landscape of used chromatin material, but do not reflect bias introduced during the 

ChIP procedure. Whereas IgG controls exactly match the experimental steps of the ChIP 

samples they suffer from high variability, over-amplification and overestimation of background 

signals, leading to decreased signal-to-noise ratios and false-negative signals (251). In 

contrast, knockout samples combine both mentioned advantages – complete ChIP protocol 

bias description and the accurate display of the chromatin landscape - without the 

disadvantages of input or IgG controls. 

The ChIP-seq experimental procedures themselves can introduce variation and potential 

bias due to different complex enzymatic reactions following DNA purification. “Hyper-

ChIPable” regions are a special type of introduced ChIP-seq bias and are targets of massive 

protein binding with open chromatin states (250). These naturally occurring genomic sites are 

targets of non-specific ChIP enrichments, irrespective of the used antibody, potentially due to 

their open chromatin state allowing electrostatic or binding interactions of RNA polymerases 

or DNA to antibodies. KOIN identified 18 “hyper-ChIPable” regions in all six data sets and 

successfully removed these special type of false-positive signals (Figure 11). Importantly, 

sites with extraordinary high ChIP protein binding enrichments are of special interest for the 

interpretation of ChIP-seq results and the analysis of TF binding patterns. Without the KOIN 

method, all sites with high ChIP-seq signals are considered for data analysis, irrespective or 

their potential false-positive character.  

Another advantage of KOIN is the possible integration into other ChIP-seq pipelines, utilizing 

different peak calling algorithms. In parallel to the herein presented protocol for ChIP-seq 

analysis, KOIN was tested with a second peak calling algorithm called SICER (269,300). 

Despite the detected improvements on data analysis with SICER utilizing KO data sets, 

MACS outperformed SICER. Different peak calling algorithms influence the identification of 

ChIP-protein enriched regions and thus can have an impact on the downstream biological 

data interpretation (269,301,302). Until now, no gold standard was defined for peak calling 
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algorithms. Every peak caller has its own beneficial properties and drawbacks strongly 

depending on the type of ChIP-seq data used as input for the data analysis. For example, the 

used MACS algorithm (262) showed a good performance not only in classical ChIP-seq but 

also in DNAse-seq experiments (302) and is one of the best established algorithms until now.  

One limitation of the KOIN method is the requirement for ChIP protein knockout cells. In 

murine models, the relatively new CRISPR/Cas-mediated genome engineering approach 

allows a fast and efficient generation of knockout mouse models and is also easily adaptable 

for the usage in other mammalian cells (303,304). This technique utilizes the CRISPR 

(clustered regulatory interspaced short palindromic repeat) and Cas (CRISPR-associated) 

proteins, originally found in bacteria and archaea mediating a RNA-based adaptive immunity 

(305,306). A single guide RNA (sgRNA) is artificially constructed to direct the Cas9 protein to 

a specific genomic DNA sequence to edit the genome in an efficient and simple manner, 

introducing for example reporter constructs or mediating gene knockouts in mammalian cells. 

The generation of KO control cells via the CRISPR/Cas technique might be a way to 

establish a convincing control for ChIP-seq data sets. 

The positive effects on ChIP-seq data analysis utilizing KOIN peak calling demonstrated the 

profound influence and value of KOIN to reduce false-positive peak calls. Future studies of 

novel TFs, chromatin regulators or the recently introduced “occupied regions of genomes 

from affinity purified naturally isolated chromatin “(ORGANIC) method could greatly benefit 

from taking KOIN into account (307). The ORGANIC method uses native chromatin to 

identify direct TF chromatin interactions with high resolution, specificity and sensitivity in 

comparison to standard protocols using cross-linked chromatin. KOIN could further minimize 

bias and maximize specificity in combination with the advantages of native chromatin 

preparations, circumventing epitope masking and allowing minimal chromatin amounts as 

input.  

In conclusion, KOIN should be considered as gold standard for the analysis of TF ChIP-seq 

data, optimizing not only false-positive signal reduction amongst others by the exclusion of 

“hyper-ChIPable” regions but also significantly improving the biological interpretation of TF 

binding data. 

 

6.4. A common epigenetic core program defines the basic 

transcriptional landscape in macrophages 

In the second part of this thesis, the epigenetic changes during activation of a human 

somatic cell type, namely monocyte-derived macrophages, were studied. Macrophages exist 
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upon stimulatory cues in different stimulus specific activation states and can thereby mediate 

various functions in inflammation, immune response modulation and tissue repair (33,308). 

Strong overlaps were found in this study for the epigenetic states of many regulatory 

promoter and enhancer sites in all investigated macrophages (Figure 29, Figure 30). The 

described common regions establish a macrophage specific transcriptional program (Figure 

32) with corresponding general “housekeeping” functions (Figure 31). These high similarities 

were previously visible in different murine myeloid cells with 82 % overlap for H3K4me3 

identified promoter regions comparing macrophages, monocytes and neutrophils (157). 

Common enhancer regions were less abundant (27 %) but still present. In terms of the 

similar origin of these cells, this common signature is not surprising, while cells only differ in 

their activation stimulus. In line with these results, even mouse tissue macrophages 

originated from different organs like lung or brain seem to manifest a common macrophage 

signature (177). Additionally, PU.1 but also other TFs like ETS1, GABPA or FLI1 seem to 

maintain the common epigenetic landscape of human macrophages (Figure 33). In previous 

publications, the cooperation of PU.1 with secondary TFs of the ETS family was described in 

mouse models amongst others in macrophage cells to initiate and maintain their 

transcriptional program (255,274,283,284). Furthermore, with a previous computational 

reverse engineering approach (21) commonly found promoter and enhancer sites could be 

verified by a high overlap of previous common macrophage core signature genes with active 

epigenetic promoter and enhancer markings rendering these genes as highly 

transcriptionally active, thus demonstrating their general importance (Figure 30, Figure 34). 

 

6.5. Profound changes at promoter or cis-regulatory sites 

alter the transcriptional program in activated human 

macrophages 

In this study, 430 differentially regulated H3K4me3 promoters were found while comparing 

four differentially activated primary human macrophages, activated under different 

stimulatory conditions in a pro-inflammatory background (Figure 22). These sites are 

involved in macrophage specific biological processes, exemplified for MTPP and positively 

correlated with the transcriptional activity of corresponding genes (Figure 23, Figure 24). In 

comparison, 873 differential H3K4me3 promoters were previously found in murine 

macrophages compared to monocyte and neutrophils which are in line with found numbers in 

this study (157). These changes reflect the induced transcriptional changes on promoter 

level during the macrophage activation process. Interestingly, at least two times higher 

numbers of repressed promoters were detected in human MIL4 macrophages in comparison 
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to the other activation states. This could hint to a necessary repression of genes to prevent 

their transcriptional activity and finally to the establishment of the MIL4 phenotype with 

corresponding functions. In mouse models, comparable repressive cascades were described 

upon IL-4 stimulation e.g. for STAT6, KLF4 or PPAR proteins, inhibiting important 

mechanisms to finally repress a pro-inflammatory macrophage program (7). 

In addition, a huge number of cis-regulatory enhancer regions with approximately 20.000 

stimulus specific enhancer sites could be identified in the four investigated macrophage 

activation states (Figure 25). Their activity HM classification also positively correlated to the 

transcriptional activity of adjacent genes (Figure 26) and they outnumber the stimulus 

specific promoter regions determined before (Figure 22). The vast increase in activation state 

specific enhancer numbers indicates their extreme variability and complexity and also display 

their important role during the activation process of human macrophages as switch for 

transcriptional regulation and binding sites for signal-dependent TFs (71,72,188,309,310).  

Furthermore, comparable numbers of super enhancers (SE) as determined here for human 

macrophages were found in previously described murine macrophages (169) (Figure 35). 

SEs were located in the vicinity of activation state relevant macrophage genes with 

corresponding functions and substantially increased the transcriptional activity of these 

genes (Figure 36, Figure 37). SEs could play an important role in the regulation of 

macrophage genes, since their role in the determination of cell fate and lineage in murine 

tissue macrophages or stem cells was previously verified (169,170,311). 

This study further demonstrated the repertoire of cis-regulatory elements is shaped by 

different external and internal stimulatory events cells may undergo. Some of these important 

regulatory sites are established during cell differentiation and are directly controlled by the 

enhancer-organizing activities of lineage-determining TFs, which was demonstrated for PU.1 

in macrophages (57,71,72). Other enhancers are formed by the functional cooperation 

between stimulus-activated TFs and lineage-restricted TFs (73). These stimulus dependent 

“latent enhancers” were demonstrated in murine macrophages to form an epigenetic memory 

after stimulatory signals and to change cellular reactions upon future stimulatory cues. Latent 

enhancers, defined by a de novo formation of H3K4me1 signals upon stimulatory signals are 

still present once the stimulatory signal, which established them, is terminated. It can be 

assumed, that the largest group of differential enhancer sites, identified as specific weak 

enhancers with solely H3K4me1 signals (Figure 25) partially consist of latent enhancers with 

no direct effect on the actual transcriptional program, but are important for putative reactions 

upon future stimulatory signals. Another argument for their “latent” enhancer character could 

be the loss of PU.1 binding (Figure 25) at many of the activation specific enhancer sites. 
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Epigenetic memory was also demonstrated for other HMs like H3K27me3 in arabidopsis 

(312), H3K9me3 in murine fibroblasts and pluripotent cells (313) or H3K4me1/2 and 

H3K9me3 in Caenorhabditis elegans (314). Interestingly, not all HMs seem to be able to 

maintain long-lasting marks at corresponding genomic locations (315). Mainly histone 

methylation, like H3K4me3 at promoter or H3K4me1 at enhancer regions, was suggested to 

act as a stable mark to establish longer lasting transcriptional changes with the potential to 

establish a mechanism for epigenetic memory. 

The correlation of promoters with or without cis-regulatory elements located in their vicinity 

resulted in an increase of transcriptional activity (Figure 28B). Enhancers can increase gene 

expression by direct interactions forming chromatin loops or by indirect effects mediated by 

eRNAs (67,112,127,128). The strong overlaps for promoter and enhancer correlated gene 

names, especially for MIL4 and MTPP but also for MIFNy in a less prominent but still significant 

manner, demonstrated the influence and correlation of promoter sites and enhancer 

presence in their surroundings (Figure 28A). Interestingly, the activation of human 

macrophages seems to influence the promoter-enhancer correlation. In unstimulated 

baseline macrophages (Mb), the overlaps are less specific in contrast to the other 

macrophage populations. Despite the defined activation state specificity for described 

promoter and enhancer sites, the results could indicate the usage of Mb enhancers not only 

for Mb promoters but also for other macrophage activation states. This postulate would also 

explain the strong correlation of Ep sites in MIFNy also with Pp sites in MTPP, potentially 

reflecting their common inflammatory background and the partially shared character of these 

enhancer sites. More importantly, the method of promoter-enhancer pair identification could 

be partially responsible for these results as a potential source of variation. 

The identification of regulatory pairs for promoter and corresponding enhancer sites on a 

global scale still remains difficult. Interactions between enhancers and their target genes can 

be orientation-independent, characterized by distances with up to 1 megabase pairs and 

enhancers can even be located within the coding region of the corresponding gene (58-60). 

Furthermore, enhancers and promoters can be targets of multiple interactions, rendering the 

proper identification of promoter-enhancer pairings even more complex. Until now, the 

common approach to annotate cis-regulatory elements to corresponding regulated genes is 

established by the identification of the nearest known TSS relative to the center of the 

corresponding enhancer site. This approach is a fast and efficient solution, especially for a 

high number of enhancer regions in the proximity of TSS for known genes. But due to 

previously mentioned enhancer properties, this approach is not an optimal solution, leading 

to false-positive or negative results. For single cis-regulatory elements, the classical 

luciferase assay is still a valid method to identify corresponding target genes, but for 
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hundreds or thousands of enhancer regions a global approach with the luciferase assay 

technique is not feasible. Future genome wide solutions, which are already utilized for a 

better and more precise prediction of promoter and enhancer cooperation could be the Hi-C 

seq method (222,316). This technique allows the prediction of 3D chromatin structures in a 

genome wide manner, thus identifying promoter to enhancer interactions by forming 

chromatin loops, allowing a direct interaction of factors involved in the regulation and 

transcription of the corresponding gene locus. Another revolutionary approach to identify 

promoter-enhancer pairs could be guanine-rich nucleic acid sequences capable of forming a 

four-stranded structure through Hoogsteen hydrogen bonding, also called “G-quadruplexes 

(317). These G-rich patterns found at the boundaries of DNAse I hypersensitive promoters 

and enhancers could facilitate the formation of G-quadruplexes, thus promoting the formation 

of chromatin loops which mediate the interaction of promoter and enhancer sites (67). 

Another relatively new approach to identify actively transcribed enhancers in a broad variety 

of cell types e.g. human myeloid cells was performed by the FANTOM5 project by the 

detection of the bidirectional promoter activity of active enhancers with the CAGE (Cap 

analysis of gene expression) method and the correlation to histone modifications H3K4me1 

and H3K27Ac (318-320). 

In conclusion, several identified epigenetic promoter and enhancer differences for 

investigated macrophage activation states influence the transcriptional landscapes of these 

cells. A more complex analysis specifically for cis-regulatory elements is required to reveal 

more insights how these important sites impact the establishment of different macrophage 

activation programs by the regulation of corresponding promoter sites and the establishment 

of epigenetic memory. 

 

6.6. Specialized transcriptional control of TRs in activated 

human macrophages 

Due to the general differences found in epigenetic promoter and enhancer states in activated 

human macrophages, a detailed correlation analysis was performed for important TR 

proteins. Transcriptional regulators (TRs) like transcription factors (TFs), chromatin 

remodelers or co-factors are crucial elements responsible for changes on transcriptional 

levels and may act as cornerstones, establishing diverse macrophage programs upon 

inflammation-associated stimulatory signals in an input signal-specific manner. Astonishingly, 

co-regulation networks of TRs in differentially activated macrophages resulted in an 

overwhelming fraction of accessible sites with minimal differences between macrophage 

populations, despite clear transcriptional alterations (Figure 39, Figure 40, Figure 41). This 
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pre-defined open chromatin landscape in inflammatory macrophages could suggest that 

gene expression is solely guided by transcriptional regulatory processes mediated by input-

specific master TRs. In contrast, differential observations were made for histone modification 

states in human tissues or murine tissue macrophages originating from different tissues. 

These cells display a tight regulation of TR on epigenetic level with an accessible chromatin 

landscape for highly expressed genes and vice versa inaccessible chromatin for non-

expressed genes following a previously described general model (Figure 43, Figure 45, 

Figure 46) (167). Interestingly, peritoneal and colonic macrophages showed the highest 

numbers of genes not transcribed yet with accessible promoter markings in tissue 

macrophages, demonstrating a closer relation to the special epigenetic regulatory 

mechanisms in monocytes than other tissue macrophages. This closer connection to human 

monocyte-derived macrophages could be explained by the previously found replacement of 

these cells by monocyte-derived cells in the adulthood (321). In summary, these results 

suggest that the accessibility of the vast majority of TR loci is a special feature of TRs in 

activated monocyte-derived macrophages. This observed uncoupling of epigenetic and 

transcriptional regulation of TRs could not be found in tissue macrophages. 

Only one other example of the uncoupling of epigenetic and transcriptional control was very 

recently found in stem cells and their progenies within intestinal crypts, where cell plasticity 

was associated with broadly permissive chromatin (322). The expression of one specific TF 

was responsible to switch cell phenotypes and functions from enterocytes to secretory cells 

and vice versa, despite the similarly open chromatin landscape. Furthermore, the enormous 

plasticity of gene expression of human macrophage activation demonstrated in the 

previously introduced multi-dimensional model (21) could be a direct consequence of 

expression-dependent regulation within this specialized TR network. Other cell types with 

functional plasticity may also contain similar activation TR networks, while the majority of 

other cell types without a broad functional plasticity are precisely regulated by epigenetic 

mechanisms. 

Aside from macrophage plasticity, macrophages also need to react fast and efficient to 

environmental cues in the organism to mediate proper immune responses and other critical 

functions. It is speculated that the posttranslational HM, one important aspect of epigenetic 

regulation is a relatively slow process with multiple necessary steps until the transcriptional 

activity of corresponding genomic loci are altered (315,323). Pioneer factors open the 

chromatin landscape with or without secondary factors and recruit HM enzymes, which 

covalently modify histone proteins, leading to transcriptional initiation and elongation 

mediated by RNA polymerase II (73,324-326). Interestingly, amongst putative 

posttranslational modifications especially the methylation of histone proteins was described 
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to be a relatively slow and stable process (315). This observation could support the overall 

open promoter landscape in activated macrophages at TR regions, implicating other 

regulatory levels besides the posttranslational modification of histone residues. 

First of all, specific repressor proteins like BCL6 (B cell leukemia) or nuclear receptors 

recruiting co-repressor complexes with additional transcriptional regulatory functions can 

restrict the expression of TRs (154,287,327,328). Other repressive HM marks, which are not 

part of this study like H3K9me3 or H4K20me3 could down-regulate the transcriptional activity 

of adjacent genes (329-331). Importantly, a cross-talk between HM was demonstrated for 

example by the stronger interaction of PHF8 to H3K4me3 with simultaneous H3K9 and 

H3K27 acetylation in human cells (332). Not only the methylation of histone proteins can 

repress gene transcription, but also the ubiquitinylation of H2AK119 inhibits the elongation of 

RNA polymerase II enzymes (333). Furthermore, eRNA transcripts could greatly influence 

the TR gene expression rates by RNA-mediated repression, altering for example the 

formation of DNA loopings between enhancer and promoter sites or changing the chromatin 

structure level itself (112,127,128). Also nuclear receptors can alter eRNA transcription and 

thus down-regulate the transcription of target genes, as it has been demonstrated for the 

Rev-Erb α and Rev-Erb- β proteins in murine macrophages (186,334). In addition, a 

disruption of the interaction between acetylated histone proteins and the bromodomain and 

extra terminal domain (BET) “epigenetic reader” proteins could additionally regulate 

transcription by the elongation of RNA polymerase II. This mechanism was described to 

selectively block the expression of a subset of TLR4 induced genes in mouse models of 

endotoxic shock or for pro-inflammatory cytokine expression (335-337). BET family members 

are indeed expressed in the utilized human macrophage model in all investigated 

populations, thus underlining their importance for a fast transcriptional response in 

macrophages (data not shown). Another possible regulatory level could be the extent of 

differential TR expression between differentially activated macrophages. In case of PU.1, 

differences in protein expression lead to the differentiation of hematopoietic progenitors into 

a B cell-like phenotype or into a macrophage cell type (75). In both cases, PU.1 is expressed 

and thus an open promoter state with corresponding cis-regulatory enhancer markings could 

be assumed. The same mechanism could be true for many TR genes, allowing for rapid 

changes in expression values upon stimulatory signals, due to already open promoter 

markings, rendering slow HM changes unnecessary. 

Eventually, post-translational HMs are deposited as a consequence of TF binding. Multiple 

TFs bind in combinations or as multi-factor proteins to promoter and enhancer positions and 

play key regulatory roles in their activation (327). TF binding seems to be far more dynamic 

than the turnover of chromatin marks, which thus can extend and stabilize cellular activation 
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signals (247). In recent publications, the importance and abundance of these genomic loci 

co-occupied by multiple TFs was demonstrated in multiple cell types, mediating a complex 

regulation of transcriptional processes by their combinatorial binding (319,338-340). Possible 

candidates for important regulatory TFs in macrophages could be especially STAT TFs, 

previously demonstrated as essential proteins for the establishment of transcriptional 

programs in differentially activated macrophages. First of all, STAT1 was strongly associated 

to pro-inflammatory human or mouse macrophages important for IFNy responsive genes 

(196,293,341), while STAT6 is induced by IL-4 stimulation in human and mouse 

macrophages and critically regulates PPARy function (25,342,343). Moreover, the motif 

enrichment analysis of Pa and Es revealed the enrichment of STAT6 in MIL4 macrophages 

(Figure 25). High STAT4 expression and relevance was previously demonstrated in MTPP 

cells (21). STAT TFs were highly expressed in corresponding macrophage populations and 

were marked with Pa and Es markings (Figure 41C). These TFs could act in combination 

with other important regulatory proteins like PU.1, NF-kB or C/EBP with putative lineage 

determining functions in macrophages (92,338,344,345). In fact, multiple publications 

described the synergistic cooperation of STAT proteins with PU.1, C/EBP, NF-kB, AP-1 and 

other proteins (341,346-349). PU.1 and other lineage determining TFs may provide 

macrophages with a basic and plastic epigenomic architecture with many open and 

accessible sites, upon combination with other signals or TFs, a fine-tuning mechanism 

resulting in an optimal transcriptional output adapted to external and internal stimulatory 

signals (92). 

Collectively, the epigenetic and transcriptional regulation in macrophage activation TR 

networks is uncoupled with an overall accessible epigenetic promoter and enhancer state, in 

contrast to other tissue cells or tissue macrophages without a functional and cellular 

plasticity, where a classical model of tight epigenetic and transcriptional correlation has 

emerged. Other regulatory mechanisms like eRNAs or TF binding could fine-tune the signal 

integration-dependent transcriptional regulation of network TRs. 

 

6.7. Epigenetics - the “next generation” tool for the 

identification of regulatory genomic sites 

The exciting identification of a “histone code”, connecting specific posttranslational histone 

modifications read by effector proteins to specific biological functions in virtually all known 

cell types, concomitantly with the development of the next generation sequencing technology 

allowed the location of regulatory sites and the discrimination of their activity status with 

unprecedented precision in a genome wide manner (145,146). This was demonstrated not 
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only in multiple cell types and species for the identification of cis-regulatory elements 

(62,160,161,350), but also for the assessment of disease relevant aspects (351). For the first 

time, differentially activated human macrophages were in detail analyzed in this study, 

correlating epigenetic activity states of regulatory promoter or enhancer sites with 

transcriptional RNA-seq data. Previous chapters described fascinating common but also 

differential properties of activated human macrophages and shed light especially to the 

regulatory processes of TRs, visualized in co-regulation networks.  

The integration of collected data allowed the generation of a model, which described the 

epigenetic modification of important macrophage genes during the differential activation 

process (Figure 47). A macrophage core program defines sets of active and inactive genes 

important for general macrophage functions like the SP1 gene encoding for the TF PU.1 or 

PRDM1 (Figure 39B), while a stimulus specific active program promotes the specialization of 

the corresponding activated macrophage, like IL2RA for MTPP (Figure 27). In contrast, a co-

regulation network of important TR genes revealed an uncoupling of transcriptional and 

epigenetic regulation with a mainly accessible epigenetic landscape, which suggests other 

regulatory mechanisms in concert with accessible epigenetic HM marks in monocyte-derived 

human macrophages (Figure 41), which was discussed previously. 

Additional future approaches are needed to elucidate this interesting point to extend the 

gathered information on HM changes in macrophages and link new knowledge to loose ends 

of macrophage biology. Within this study, cells in the used macrophage models were 

stimulated for 72 hours, harvested and were subsequently used for ChIP-seq experiments. 

Between the first minutes of stimulation and at later time points, various cascades of 

coordinate regulatory mechanisms display concerted actions in macrophage differentiation. 

Future time kinetic experiments could exactly specify the time points when epigenetic 

changes occur and thus, shed more light onto their functions mediating early responses at 

genomic regions for important TFs like TNF or NFkBIA enabling late responses for the 

maintenance of the corresponding macrophage activation state (352-354). Furthermore, 

previously demonstrated transient epigenetic effects in liver development can cause stable 

changes on transcriptional level (355). Comparable transient changes on epigenetic level 

during early phases of the activation process could be lost after the complete activation of 

macrophages and can thus only be targeted with the implementation of multi-time point 

experiments (68,280). Until now, it can only be speculated, how many reversible epigenetic 

marks are established during the differential activation of human macrophages in comparison 

to stable HM marks, visible after the completion of macrophage activation. 

Other experimental approaches could further collect information about complete activation of 

human macrophages on the RNA polymerase II level. Global Run-On sequencing (GRO-
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seq) experiments, already performed for example in mouse macrophages and cancer cells 

(162,186,356) could detect nascent RNA transcripts still associated with the RNA 

polymerase II enzyme in differentially activated macrophages. These experiments could 

further specify regulatory regions with high RNA polymerase II activity in combination with 

epigenetic HM signals at promoter or enhancer locations. Additionally, resulting precise 

catalogues of eRNA transcripts could assess the relevance of these non-coding and 

relatively unstable RNA species (186) in the regulation of human macrophage genes. Thus, 

especially genes in the depicted transcriptional co-regulation networks could be regulated by 

eRNAs, positively correlating with stabilized promoter-enhancer interactions and higher gene 

expression for corresponding adjacent genes and vice versa leading to decreased 

expression values after eRNA suppression. 

In addition to future experiments which aim to gather further invaluable information about 

human macrophage biology, a few general issues should be kept in mind. For the 

characterization of human macrophages, the direct translation of data obtained from mouse 

models or from other species is a quite valuable approach, but should not be used in an 

unquestionable manner, without the consideration of important facts concerning murine and 

human macrophage biology and utilized experimental approaches (308). First, human 

inflammatory monocyte-derived macrophages are in general generated from blood 

monocytes, while murine macrophages are mostly generated from bone marrow in vitro or 

directly isolated from tissues. Moreover, differences in the production of iNOS and nitrite 

oxygen (NO) with antimicrobial functions seem to show fundamental differences in 

experiments performed with human or mouse macrophages (357-361). A similar scenario 

was described for the Arg1 enzyme. In humans it is only expressed in neutrophils, while it 

was found in both murine neutrophils and macrophages (362-364). Due to these differences, 

protein markers for specific murine macrophage states could not be validated in human 

macrophages and vice versa (365). Recent studies (21,366,367) tried to elucidate the 

similarities and differences of macrophages in human and mouse macrophage models to 

understand their core similarities but also highlight obvious evolutionary differences 

influencing their immune responses, like the IFN-regulated IRG protein with two members in 

human and approximately 18 in the mouse (368). 

In addition to the mouse-human comparability, the actual in vivo situation for human 

macrophages should always stay in focus of future research. In this study, primary human 

macrophages were used in an inflammatory model using different stimuli to create functional 

activation states to approach the in vivo situation (Figure 3). In contrast to immortalized cell 

lines, where various artificial alterations to their genetic background could render results 

generated and biological interpretations at least partially questionable. The ENCODE project 
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(204) uses computational approaches (21,156,338) and other similar efforts to standardize 

and collect NGS data sets and thus makes the correlation of different data sets on various 

levels (RNA, promoter, enhancer, histones) possible to get with individual experiments more 

and more insights into complex biological systems. In this study generated data sets 

elucidated macrophage biology and added more aspects of information for the activation of 

primary human macrophages and their epigenetic regulation to the increasing amount of 

NGS databases. Further epigenetic experiments with human tissue macrophages in 

comparison to monocytes and monocyte-derived inflammatory macrophages cannot only 

shed more light on their regulatory processes, commonalities and differences but can also 

help to study epigenetic influences in macrophages in context of human diseases. Finally, 

single cell experiments concerning the genetic variability of macrophage regulation in 

different individuals can be important for personalized medicine-approaches for future 

patients. 
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Zusammenfassung 
Makrophagen, integrale Bestandteile des angeborenen Immunsystems sind an wichtigen 

Funktionen wie z.B. bei der Immunantwort, an metabolischen Prozessen, der Gewebe-

Homöostase und an der Entwicklung beteiligt. Diese extrem heterogenen Zellen können ihre 

transkriptionelle Aktivität einer Vielzahl von stimulatorischen Signalen anpassen, um jeweils 

ihre spezialisierte Funktion erfüllen zu können. Das transkriptionelle Programm von 

aktivierten Makrophagen wird unter anderem durch transkriptionelle Regulatoren (TR) oder 

durch komplexe Veränderungen auf epigenetischer Ebene beeinflusst. Die DNS 

Sequenziertechnologie der nächsten Generation ermöglicht die Bereitstellung von 

genomweiten Analysemethoden, um mit „ChIP-seq“ oder „RNA-seq“ Experimenten die DNS-

Bindungsfähigkeiten von Proteinen im Genom oder die transkriptionelle Aktivität von 

unterschiedlich aktivierten menschlichen Makrophagen zu untersuchen. In dieser Arbeit 

wurden zwei wichtige Aspekte erarbeitet, zum einen eine methodische Verbesserung bei der 

Auswertung von ChIP-seq Daten für genomweite Transkriptionsfaktorbindungsstudien. Zum 

anderen wurde die epigenetische Regulation der Aktivierung humaner monozyten-

abgeleiteter Makrophagen erstmalig beschrieben. 

Für die Reduzierung der falsch-positiven Detektion von Proteinbindungsstellen („Peak-

calling“) im Genom bei ChIP-seq Datensätzen wurde eine neue Methode entwickelt 

(Knockout implemented normalization method = KOIN). Bei KOIN werden ebenfalls Daten 

berücksichtigt, die aus Zellen stammen, die eine Nullmutante (Knockout = KO) für das 

jeweilige Protein darstellen. Mit Hilfe von KOIN konnte der größte Teil falsch-positiver 

Signale eliminiert werden, während das Signal-Stör-Verhältnis unabhängig der 

Datensatzqualität erhöht wurde. Außerdem wurden nicht nur kürzlich entdeckte „hyper-

ChIPable“ Regionen, die mit falsch-positive Signalen assoziiert worden sind, erfolgreich 

ermittelt und entfernt, sondern die darauf folgende biologische Interpretation durch „KOIN“ 

maßgeblich verbessert. Insgesamt erzielte die „KOIN“ Methode durchweg bessere 

Ergebnisse als bisher verwendete „Input“ und „IgG“ Kontrollen, und wird hier deshalb als 

mögliche optimale „ChIP-seq“ Kontrolle für zukünftige ChIP-seq Experimente für 

Transkriptionsfaktoren – zumindest im murinen System - empfohlen. 

Bei der Aktivierung von humanen Monozyten-abgeleiteten Makrophagen wurde ein Modell 

zur Charakterisierung von Histon-Modifizierungen nach Aktivierung erstellt. Mit Hilfe dieser 

Histon-Modifizierungen kann der Aktivierungszustand von wichtigen Regler-Elementen wie 

Promotoren oder Sequenzen die die Transkription eines Gens verstärken („Enhancer“) 

erkannt werden. Diese sind für die Etablierung und Aufrechterhaltung der 

Transkriptionslandschaft von entscheidender Bedeutung. In einem Modell, das teilweise mit 
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Faktoren aus Entzündungsreaktionen etabliert wurde, sind vier verschiedene primäre 

humane Makrophagen-Subpopulationen generiert worden. Zunächst wurde ein 

gemeinsames epigenetisches Makrophagen-Kernprogramm determiniert, was vor allem 

durch eine Vielzahl von gemeinsamen Promotern bestimmt wird. Außerdem konnten Subtyp-

spezifische epigenetische Unterschiede an Promotoren, Super-„Enhancern“ und vor allem an 

einer Vielzahl von „Enhancern“ definiert werden, die auf Grund von stimulatorischen 

Signalen und einer darauf folgenden Spezialisierung der Makrophagen auftraten. 

Überraschenderweise wurden trotz transkriptioneller Unterschiede eine überraschend große 

Zahl an genomischen Bereichen mit aktiven und offenen Promotoren und partieller 

„Enhancer“ Markierung in aktivierten Makrophagen gefunden. Mit Hilfe sogenannter 

Koregulations-Netzwerke für transkriptionelle Regulatoren wurde gezeigt, dass für diese 

Klasse von Genen eine Entkoppelung von epigenetischer und transkriptioneller Kontrolle in 

Monozyten-abgeleiteten Makrophagen besteht. Die fehlende Notwendigkeit der 

epigenetischen Regulation dieser wichtigen Klasse von Genen könnte ein entscheidender 

Mechanismus sein, der der hohen Plastizität dieser Zellen als Antwort auf unterschiedlichste 

Signale aus dem Mikromilieu zugrunde liegt. Zusätzliche Mechanismen der transkriptionellen 

Regulierung wie “eRNA“, repressorische Proteine oder Wechselwirkungen zwischen Histon-

Proteinen könnten für die Feinregulierung der Transkription in Makrophagen verantwortlich 

sein. Die kooperative Bindung zwischen Pionier-Transkriptions-Faktoren wie PU.1 mit 

sekundären Transkriptions-Faktoren wie z.B. STAT Proteinen könnte, neben der Regulation 

durch Histon-Protein-Modifikationen ein wichtiges Element für die Steuerung der 

Transkription für die offenen Positionen im Genom von aktivierten Makrophagen sein. 

 


