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GENERAL SUMMARY (English) 

Salinity is one of the most severe abiotic stresses perceived by plants, and is continuously increasing 

due to climatic change and poor irrigation management practices. It is currently affecting ~800 

million hectares of land worldwide, including over 20% of the world’s irrigated arable land. Salinity 

causes significant growth reduction and crop yield losses. With the predicted geometric increase in 

the global population, improving the salt tolerance (ST) of crops has become an important challenge 

and target for plant breeders. Several approaches have been exhaustively exploited to ameliorate the 

impact of salinity on crop plants, but because of the complex nature of ST in crop plant, these 

approaches have not been optimally translated into the desired results. It is well known that ST is 

difficult to breed due to its interaction with many physiological processes that are controlled by many 

genes, plant growth stage and are influenced by environmental factors. Wheat is moderately salt 

tolerant which means that the grain yield is significantly affected under soil saline condition of ~10 

dS m-1. Therefore, improving wheat adaptation under high salinity is seen as the most efficient and 

economical approach to address the salinity problem and increase its grain yield especially in the 

poor resource wheat producing countries that are prone to soil salinity. This thesis applies several 

morphological and physiological evaluations, genetic and molecular approaches to elucidate the 

genetic and physiological mechanisms underlying natural variation for ST in wheat and to find ways 

to explore the inherent genetic variation, with the ultimate aim of finding new candidate genes that 

can be used to improve ST in wheat. 

 

The performance of 150 genetically diverse wheat genotypes were evaluated under different salinity 

conditions at germination, seedling and adult plant field growth stages, to identify heritable variation 

for salt tolerance in the measured traits. In addition, the amount of Na+, K+ and K+/Na+ ratio in the 

different shoot parts such as third leaves, stem and remaining leaf parts were determined for each 

genotypes after 24 days of stress under 150 mM/L NaCl. Results revealed genotype and salt 

treatment effects across all the growth stages, and the salt stress applied caused 33%, 51% and 82% 

reductions in germination vigour, seedling biomass and grain yield, respectively. The ability of wheat 

to conserve water in both root and shoot tissues was positively correlated with the K+ uptake under 

exposure to salinity. The wide-spectrum of responses to salt stress observed among the genotypes 

was exploited to identify genotypes with most consistent ST status across growth stages. Among the 

outstanding genotypes identified, four genotypes including Altay2000, 14IWWYTIR-19 and UZ-

11CWA-8 (tolerant) and Bobur (sensitive) showed consistent ST status across the three growth stages 
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including germination, seedling and adult-plant field growth stages. Further evaluation of the 

identified genotypes using several physiological parameters showed that the tolerant genotypes 

possess better adaptation characteristics than the sensitive ones (Bobur and UZ-11CWA-24)  which 

allowed them to sustain growth and reproduce under high salinity.  

 

A high density molecular map with ~18,000 SNPs (average distance between markers of 0.49 cM 

cM) and all the morpho-physiological and seed quality data collected were used to map QTLs for ST 

in the studied population. The LD decayed moderately fast (10 cM, 11 cM and 14 cM (r2 > 0.1) for 

the A, B and D-genome, respectively). By applying mixed linear modeling (MLM) while correcting 

for the effects of population structure and the kinship resulted in the detection of 302 SNPs 

(representing 50 distinct QTL regions) that were significantly associated with various ST traits. They 

explained between 2.00 and 63.45 % of the genetic variance. Most of the associated SNPs/loci 

showed pleiotropic effect on several traits and/or were detected across several independent 

experiments/growth stages. For instance, a single locus (at 90.04 cM) on 6AL was found to be 

strongly associated with ABS/RC, DIo/RC and shoot Na+ traits. An important (about 1.8 cM interval) 

region on 2BL was also found to strongly contribute to the variation in ST in various salt stress 

related traits (ST_DRW, shoot Na+, Fv/Fm, grain yield and seed crude protein). Five novel ST QTL 

regions were also detected on 1BS, 1DL, 5BS, 6AL and 5BL genomic regions. All the identified 

QTL have been discussed in this thesis. 

 

By analyzing sequences of the associated SNPs, several key genes involved in salt and abiotic stress 

tolerance were identified. Among the categories of genes identified (Chapter 3 and 4), the genes 

involved in the stress response (24%), antiporter and transmembrane (18%), transcription and 

translation (14%), and redox homeostasis and detoxification (11%) related activities occurred 

predominantly. The transcriptome and RT-PCR expression analyses performed with the genes linked 

to the significant MTAs revealed differential expressions between the contrasting ST wheat 

genotypes. Moreover, the amino acid sequence analyses of the putative genes uncovered many sites 

of non-synonymous/missense mutation that may have contributed to the observed variable salt stress 

responses in the contrasting wheat genotypes. This study provides new insights towards 

understanding the traits and mechanisms related to ST. Thus, the underlying genetic and molecular 

response as presented in this thesis can be directly exploited by the breeders and scientists to improve 

salt tolerance in wheat. 
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ALLGEMEINE ZUSAMMENFASSUNG  

Die Versalzung des Bodens zählt zu den größten abiotischen Stressfaktoren für Pflanzen, und steigt 

durch den Klimawandel und ein schlechtes Wassermanagement kontinuierlich. Zur Zeit sind etwa 

800 Millionen Hektar weltweit und 20 % der künstlich bewässerten Flächen von Versalzung 

betroffen. Diese führt zu einer signifikanten Reduktion des Pflanzenwachstums und ist 

mitverantwortlich für Ertragseinbußen. Durch das weltweite Bevölkerungswachstum wird die 

Erhöhung der Salztoleranz (ST) von Nutzpflanzen eine immer wichtigere Aufgabe und ein 

anzustrebendes Ziel für die Pflanzenzüchtung. Verschiedene Forschungsansätze wurden verfolgt, um 

die Salztoleranz von Pflanzen zu verbessern, jedoch führten viele dieser Ansätze aufgrund der 

komplexen Natur der ST nicht zu verwertbaren Ergebnissen. Es ist bekannt, dass ST aufgrund der 

Interaktion zwischen vielen physiologischen Prozessen, den unterschiedliche Genen  und  der 

Umwelt, schwierig in die Züchtung zu integrieren ist. Weizen gilt als mäßig salztolerant und der 

Ertrag wird ab einem Bodensalzgehalt von ~10 dS m-1 signifikant beeinflusst. Gerade die 

landwirtschaftlich schwächer entwickelten Regionen sind für Bodenversalzung anfällig und eine 

Erhöhung der Salztoleranz wäre ein probates wirtschaftliches Mittel um den Weizenertrag zu 

steigern. Diese Dissertation nutzt mehrere morphologische und physiologische Auswertungen, 

genetische und molekulare Ansätze, um die genetischen und physiologischen Mechanismen zu 

erklären, die der ST des Weizens zugrunde liegen. Dabei soll die eigene genetische Variation des 

Weizens erklärt und schlussendlich neue Kandidatengene gefunden werden, welche die ST des 

Kulturweizens erhöhen. 

 

Die Leistung von 150 genetisch verschiedenen Weizengenotypen wurde während der Keimung, dem 

Sämlingsstadium und an der adulten Pflanze unter unterschiedlichen Salzbedingungen geprüft, um 

die erbliche Variation des ST in unterschiedlichen Merkmalen oder Wachstumsstadien  zu 

identifizieren. Nach 24 Stunden unter Stressbedingungen mit 150 mM/L NaCl wurde der  Na+-, K+- 

Gehalt und des K+/Na+ - Verhältnis in verschiedenen Sprossteilen, wie dem dritten Blatt, dem Stängel 

und den übrigen Blättern für alle Genotypen bestimmt. Die Ergebnisse zeigten Interaktionen der 

Genotypen und der Salzbehandlung in allen Wachstumsstadien. Die Salzapplikation verursachte 

einen Rückgang von 33% bei der Keimfähigkeit, von 51 % der Sämlingsbiomasse und von  82% 

beim Kornertrag. Die Eigenschaft des Weizens, Wasser in Wurzel- und Sprossteilen zu speichern 

war positiv mit der K+ -Aufnahme unter Stressbedingungen korreliert. Das beobachtete breite 

Spektrum der Pflanzenreaktionen auf die Salzstressapplikation  wurde genutzt um die beständigsten, 
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beziehungsweise die salztolerantesten Genotypen über alle Wachstumsstadien zu identifizieren. Es 

wurden vier extreme Genotypen (Altay2000, 14IWWYTIR-19 und UZ-11CWA-8 (tolerant) und 

Bobur (sensitiv)) ausgewählt, die eine konstante  ST über die untersuchten Wachstumsstadien 

zeigten. Weitere Tests der ausgewählten Genotypen mit verschiedenen physiologischen Parametern 

zeigten, dass die toleranten Genotypen über bessere Anpassungsmechanismen verfügen als die 

sensitiven (Bobur und UZ-11CWA-24). Dadurch ist es ihnen möglich, auch unter hohem Salzgehalt 

das Wachstum aufrecht zu erhalten und fertil zu bleiben.  

Eine hochauflösende molekulare Karte mit ~18000 SNPs und einer durchschnittlichen Distanz 

zwischen den Markern von 0.49 cM wurde zusammen mit den gesammelten morphologischen-, 

physiologischen- und Saatgutqualitätsdaten genutzt um QTLs für die ST der untersuchten Population 

zu bestimmen. Das LD der Weizenpopulation liegt bei 10 cM auf dem A-, bei 11 cM auf dem B- und 

bei 14 cM auf dem D-Genom bei einem r² > 0.1. Mittels gemischten linearen Modellen (MLM) und 

deren Korrektur durch die Verwandtschaftsmatrix, wie auch die Populationsstruktur wurden 302 

SNPs in 50 verschiedenen QTL Regionen detektiert, die signifikant mit verschiedenen Merkmalen 

für ST assoziiert sind. Diese SNPs erklären zwischen 2.00 und 63.45 % der genetischen Varianz in 

der Population. Die meisten assoziierten SNPs/Genorte zeigen pleiotrope Effekte mit mehreren 

Merkmalen und wurden außerdem in unabhängigen Experimenten und Wachstumsstadien 

nachgewiesen. Ein einziger Lokus bei 90.04 cM auf 6AL zeigte zum Beispiel eine starke Assoziation 

mit den Merkmalen: ABS/RC, DIo/RC und Spross Na+. Eine weitere hervorzuhebende Region mit 

der Länge von 1.8 cM auf 2BL hatte eine starke Wirkung auf die Variation der ST in den 

Merkmalen: ST_DRW, Spross Na+, Fv/Fm, Kornertrag und Rohproteingehalt im Samen. Weitere 

fünf neue ST-QTL Regionen auf 1BS, 1DL, 5BS, 6AL und 5BL wurden gefunden und in dieser 

Dissertation diskutiert. 

Durch die Sequenzanalyse assoziierter SNPs wurden mehrere Schlüsselgene identifiziert, welche die 

Salz- und abiotische Stresstoleranz beeinflussen. Bei den Kategorien der identifizierten Gene (in den 

Kapiteln 3 und 4) handelt es sich um Gene die mit der: Stressantwort (24%), Antiporter und 

Transmembran (18%), Transkription und Translation (14%) und redox-gleichgewicht und Entgiftung 

(11%) verknüpft sind. Transkriptom und RT-PCR-Expressionsanalysen der Marker-Merkmal-

Assoziierten (MTA) Gene zeigten, dass diese Gene in den unterschiedliche ST Weizengenotypen 

unterschiedlich exprimiert wurden. Darüber hinaus wurde die Aminosäuresequenz von einigen 

Genen überprüft, die wahrscheinlich zu den Salzstressreaktionen beitragen. Diese Studie zeigt neue 

Einsichten, die zum Verständnis der Merkmale und Mechanismen, die mit ST verbunden sind 
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beitragen. In dieser Dissertation werden genetische und molekulare Ergebnisse präsentiert, die direkt 

von Züchtern und Wissenschaftlern genutzt werden können, um die Salztoleranz in Weizen zu 

erhöhen. 
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Soil salinity  

Salinization of arable land has continued to increase in recent times and, is particularly detrimental to 

irrigated agriculture, which provides one third of the global food supply. Soil salinity can be 

determined by measuring the electrical conductivity (EC) of the soil saturation extract. According to 

the standard definition, a soil is said to be saline if the EC ≥ of 4 dS m-1 (equivalent to about 40 mM 

NaCl), while soils with EC’s exceeding 15 dS m-1 are considered strongly saline (FAO, 1996; SSSA, 

1997). Traditionally, saline irrigation water is grouped into 4 categories (Table 1): slightly saline 

(EC< 2 dS m-1); moderately saline (2–6 dS m-1); highly saline (6–15 dS m-1), and extremely saline 

(EC>15 dS m-1) (FAO, 2008). The salinity of soils is associated with the excessive presence of 

primary cationic species (i.e., Na+, Ca2+, and Mg2+) and anionic (i.e., Cl-, SO4
2-, HCO3

-, and CO3
-) 

species in the soil. However, Na+ and Cl- are the most important ions (Dubey, 1997; Hasegawa et al., 

2000), because they not only cause degradation of soil physical structure but also impair plant growth 

and development. Thus, soils are said to be saline, sodic and/or saline-sodic based on the total 

concentration of salt and the ratio of Na+ to Ca2+ and Mg2+ in the saturated extract of the soil 

(Dudley, 1994). The diverse ionic composition of salinized soils would result in a wide range of 

physiochemical properties.  

Table 1. Approximate soil salinity classes 

Salinity rating EC (dS m
-1

) Impact on plants 

Slightly saline 1.5–2 Salinity effects usually minimal 

Moderately saline 2–6 Yield of salt sensitive plants restricted 

Highly saline 6–15 Only salt tolerant plants yield satisfactorily 

Extremely saline >15 Few salt tolerant plants yield satisfactorily 

Source: FAO land and plant nutrition management service, 2008 
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Salinization of arable lands  

Salinity is one of the most important abiotic stresses, limiting crop production in arid and semi-arid 

regions, where soil salt content is naturally high and precipitation can be insufficient for leaching 

(Zhao et al., 2007a). It may occur naturally in the top soil or may be introduced by man. The natural 

soil salinization is caused by either the shallow saline water table or weathering of parent rock 

materials which releases salts in the soil, while the human-induced soil salinity arises from human 

activities and improper irrigation/poor cultural practices, such as., the use of saline water for 

irrigation, deforestation, overgrazing and poor drainage of irrigated fields (Yadav et al., 2011). 

Salinity is becoming more extensive due to land clearing and unsustainable irrigation practices and 

through pressures for bringing marginal land into production (Munns and Gilliham, 2015). 

According to the FAO (2008), over 6% of the world’s land is affected by salinity, accounting for 

more than 800 million ha of land. Salinity is already widespread in many regions and has continued 

to increase due to the changing climate. It has been estimated that 950 million ha of salt-affected 

lands occur in arid and semi-arid regions, which is about 33% of the arable land area of the world. 

Globally, 20% of irrigated land (450,000 km2) is afflicted by salinity, with 2,500-5,000 km2 of lost 

production lands every year as a result of salinity (UNEP, 2008). Figure 1 shows the distribution of 

saline land world-wide, with the affected areas predominantly located in the wheat producing 

countries including Central and West Asia, Australia, Northern Africa and some parts of South and 

Northern America. Jamil et al. (2011) has predicted that more than 50% of the arable would be 

salinized by the year 2050. The global annual losses in agricultural production from salt-affected land 

are in excess of US$12 billion and rising (Qadir et al., 2008; Flowers et al., 2010). In view of this 

development, concerted efforts must be taken to manage the arable lands (especially those prone to 

salinity) to minimize the impact of salinity on crop yield by adopting practices that curtail further soil 

degradation. Figure 2 shows a typical example of arable land affected by salinity. 

 

 

http://jxb.oxfordjournals.org/content/early/2013/12/23/jxb.ert430.full#ref-112
http://jxb.oxfordjournals.org/content/early/2013/12/23/jxb.ert430.full#ref-46
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Figure 1 Losses of global lands due to salinity. (Source: Globusgreen, 2014) 

 

 

 

Figure 2 Wheat farm (in Karshi, Uzbekistan) showing patches of salt deposit on the soil surface 
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Impacts of salinity on crop plants 

Soil salinity reduces crop biological yield by affecting all aspects of plant physiology, growth and 

development, such as germination potential, vegetative growth and the reproductive growth stages, 

due to the complex interactions among morphological, physiological and biochemical processes 

(Akbarimoghaddam et al., 2011; Singh and Chatrath, 2001). The decrease in crop yield may be partly 

due to in ion (Na+ and Cl-) toxicity (Chinnusamy et al., 2006; Serrano and Rodriguez-Navarro, 2001). 

Salinity can also upset the nutrient balance in the plant and/or interfere with the uptake of some 

nutrients (Blaylock, 1994). Reports have indicated that uptake of nutritive cations - potassium and 

calcium (Asch et al., 2000; Glenn et al., 1999; Maathuis and Amtmann, 1999; Niu et al., 1995; 

Shabala, 2000) and anions - nitrate and phosphate (Song et al., 2009; Cerezo et al., 1999; García-

Sánchez et al., 2003; Glass and Siddiqi, 1985) by plants are significantly decreased under soil 

salinity conditions. The adverse effect of salt stress have also been observed on crop plant at 

physiological and biochemical levels (Munns and James, 2003), as well as at the molecular level 

(Tester and Davenport, 2003). Salt stress increases the formation of reactive oxygen species (ROS) in 

plant (Mittler, 2002; Miller et al., 2008). The ROS main primary production sites in plant are 

chloroplasts, mitochondria, and peroxisomes (Mittler et al., 2004; Asada, 2006). These important 

organs are very sensitive to ROS. Excessive ROS formation is often considered as the initial process 

that leads to cellular damage of these organs in plant under salt stress. ROS are toxic and damages 

the cellular membranes, membrane-bound structures, enzymes and DNA especially in mitochondria 

and chloroplasts, and can therefore severely impair plant growth and/or survival (Allen, 1995) and 

consequently, reduction crop yield. Reduction in crop yield of up to 76% has been reported due to 

salt stress (Rajpar et al., 2006).  

 

An estimated 50% increase in grain yields of major cereals is needed to fulfill the food supply 

requirements for the projected population by 2050 (Godfray et al., 2010). However, most of the 

efforts geared towards achieving this target have more often than not hit a brick wall due to the 

continuous salinization of the agricultural soils. A number of agronomic and engineering solutions 

(such as, the use of salt-free water for irrigation, leaching of excess salts, soil pH adjustment and 

growing of salt loving plants to absorb large amount of the salts) have been exhaustively exploited. 

Therefore, the only way towards ameliorating the salt toxicity problems in crops is to use genetically 

improved salt tolerance crop plants to increase production in salt affected lands. The production of 

crops that can adapt favorably to saline conditions will increasingly be beneficial and profitable for 

farming most especially in the poor resource countries currently facing soil salinity problems.  
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Wheat (Triticum aestivum L.) is an allohexaploid (6x), having 21 pairs of chromosomes (2n = 42) 

that are sub-divided into 3 closely related (homologous) groups of chromosomes, the A-, B- and D-

genomes. Each genome has 7 pairs of chromosomes. The size of the wheat genome is 17 Gbp 

(Bennett and Leitch, 1995) which is bigger than the genome size of barley (~5.3 Gbp in 7 

chromosomes) and rice (~430 Mb in 12 chromosomes) due to high content of repeated sequences. 

This makes the genome study and complete sequencing of wheat a very daunting task. Wheat is the 

third most important cereals, is grown extensively across the globe, with global production and 

utilization now pegged at 732 and 759 million tons (FAO, 2016; Release date: 07/07/2016), 

respectively (Figure 3), a strong indication of the need to increase wheat production. It is moderately 

salt-tolerant crop and suffers significant grain yield losses when grown in moderately saline soil 

conditions (Quayyum and Malik, 1988; Shahbaz et al., 2011, 2012). The general assumption, as 

revealed by previous work, is that the effect of salinity varies among wheat genotypes. Thus, plants 

that are able to sustain their growth and reproduced under high salinity have higher salt tolerance. 

Kingsbury and Epstein (1984) have screened ~ 5000 wheat accessions for salt tolerance at 50% sea 

water and observed that only less than 7% survived up to maturity. The genetic variations for salt 

tolerance show the potential of the existing genetic resources for enhancing wheat salt tolerance. 

Meaningful progress in exploiting the genetic variation for development of salt tolerant genotypes 

will require a robust understanding of the plant agronomic, physiological, genetic and molecular 

response mechanisms of wheat under saline conditions. 
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Figure 3 Global wheat production and utilization (source: FAO, 2016) 
 

 

Crop plant response to salinity 

The ability of plants to survive under saline conditions varies among different species of halophytes 

and glycophytes. The halophytes adapted to live, support growth and reproduce in soils containing 

high concentration of salt (above 200 mM NaCl), by adapting various tolerance mechanisms (Bose et 

al., 2013). Unlike the halophytes, the glycophytes cannot tolerate more than 25% of the salinity 

levels of seawater without shortchanging their growth and yield. Unfortunately, most of the modern 

crops including wheat, rice and barley are glycophytes.  

 

The growth response of glycophytes to salinity (>40 mM NaCl) occurs in two phases: (i) a rapid 

response to increase in external salt known as “osmotic phase” and (ii) slower response with 

accumulation of Na+ ions in vacuoles refer to as “ionic phase”. At both phases, the growth and yield 

of crops are significantly reduced (Munns and Tester 2008). The osmotic phase of growth reduction 

depends on the salt concentration outside the plant rather than the salt in the plant tissues and, growth 

inhibition is mostly due to a water deficit (drought stress) or osmotic stress, with little genotypic 

differences. However, the ionic phase of growth reduction takes time to develop (usually between 2-

4 weeks) as results of an internal salt injury caused by excessive accumulation of toxic Na+. At this 
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phase, salinity would cause the plants to close its stomatal apertures and consequently reduced the 

photosynthetic rate due to the negative effect of toxic Na+ that accumulated in the thylakoid 

membranes of the chloroplasts. This would increase ROS formation and oxidative stress that would 

result in leaf injury and loss of photosynthetic capacity of the plants.  

 

Leaf injury and death is associated with high salt loadings in the leaf to levels that exceeds the 

capacity of salt compartmentation in the vacuoles, causing salt to build up in the cytoplasm to toxic 

levels (Munns, 2002; 2005; Munns et al., 2006). The trade-off between the rate at which the leaves 

die and the rate at which new leaves are produced would determine the tolerance status of the plant 

under salt stress. Plants are unable to cope, tolerate and survive in saline conditions long enough to 

supply sufficient photosynthate to the reproductive organs and produce viable seeds, if the former 

process progresses faster than the latter. Based on this two-phase concept, the osmotic effect exerted 

by salts in the medium around the roots would cause the initial growth reduction in both salt tolerant 

and salt sensitive genotypes (i.e., Osmotic Phase) (Figure 4a). However, the salt-sensitive genotypes 

are much more affected at the ionic phase, because of their inability to prevent Na+ build-up in 

transpiring leaves to toxic levels (Munns et al., 2006). Because of this development, crops have been 

classified into two categories: (i) salt-includers and, (ii) salt-excluders. Salt-includers take up Na+ and 

translocate it to the shoot, where it is sequestered and used as vacuolar osmoticum (tissue tolerance), 

whereas the salt-excluders adapt to saline stress by avoiding Na+ uptake (Mian et al. 2011). The salt-

sensitive genotypes can be differentiated from the salt-tolerant ones at ionic phase (Figure 4b), and 

the effect of salinity on crops may also be as a result of the combination of osmotic and ionic salt 

effect (Figure 4c). The ionic phase has been associated with the reduction in the stomatal 

conductance, photosystem II efficiency, decrease in photosynthesis capacity, reduced biomass and 

poor yield in plants (Isla et al., 1998; Tester and Davenport, 2003; Netondo et al., 2004; Tavakkoli et 

al., 2011).  
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Figure 4 Model showing plant response phases to salt stress (Source: Munns and Tester, 2008) 

The thick green line represents the change in the growth rate after salt application. (a) The broken 

green line represents the hypothetical response of a plant as a result of increased tolerance to the 

osmotic component of salt stress. (b) The broken red line represents the response of a plant with an 

increased in tolerance to the ionic component of salinity stress. (c) The green-and-red line represents 

the response of a plant with increased tolerance to both the osmotic and ionic components of salinity 

stress. 
 

Mechanisms of salinity tolerance  

Several reports have shown wide spectrum of responses to salinity in plants that warrant wide range 

of adaptations at the whole plant level (Wyn Jones and Gorham, 1983; Munns, 1993). Over the years, 

plants have evolved several mechanisms that allow them to adapt, grow and reproduce under high 

salinity conditions. According to  Roy et al. (2014), these mechanisms are grouped into three main 

categories: (i) osmotic stress tolerance, which is controlled by long distance signals that reduce shoot 

growth and is triggered before shoot Na+ accumulation; (ii) Na+ or Cl− exclusion, that tend to prevent 

Na+ and Cl− uptake and transport processes in roots in order to reduce the accumulation of these ions 

to a toxic concentrations within leaves and, (iii) tolerance of tissue to accumulated Na+ or Cl−, where 

Na+ or Cl− that succeeded in getting into the plants are compartmentalized in the leaf vacuole 

(Figure 5) to prevent salt injury to the sensitive thylakoid membrane of the chloroplasts. These three 

mechanisms have also been reported by Munns (2002), Tester and Davenport (2003) and Kumari et 

al. (2014).  

 

Although the information available for the plant tolerance to the ‘osmotic phase’ still remain vague,  

Mittler  et al. (2011) have suggested that this process may be linked to the rapid, long-distance 

signaling via processes such as ROS waves, Ca2+ waves (Simon Gilroy, personal communication), or 
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the long distance electrical signaling (Maischak et al., 2010). This alludes to the fact that the 

differences of plants in osmotic tolerance may be due to the differences in the long-distance signaling 

and/or in the initial salt stress perception and/or in the response to the signals existing among plants 

(Figure 5). However, further studies are needed to gain a clearer understanding of osmotic tolerance 

in plants. The most researched aspect of salt tolerance mechanism is the ‘ionic phase’, which is due 

to Na+ and Cl− accumulation in the leaf blade. The ion toxicity in plants during the ionic phase can be 

minimized by reducing the accumulation of toxic ions (Na+ and Cl− exclusion) in the leaf blades 

and/or by increasing the ability of crops to cope with salts that succeeded in gaining entry into the 

shoot (tissue tolerance) via compartmentation in the vacuoles. Tissue tolerance, which entails Na+ 

exclusion from the cytosol and compartmentalization in the vacuole before the ion has a detrimental 

effect on cellular processes (Roy et al., 2014), may be essential in the synthesis of compatible solutes 

and higher level controls to coordinate transport and biochemical processes, thus plays a role in both 

osmo-protection and osmotic adjustment (Munns and Tester, 2008; Flowers and Colmer, 2008) in 

plants. 

 

Munns et al. (2012) and Roy et al. (2014) have suggested that these three mechanisms of salt 

tolerance are not mutually exclusive. In other words, the occurrence of one does not prevent the 

other. However, it might be possible that each of these tolerance mechanisms is more effective in a 

particular circumstance and/or genotype and growth stage dependent. For instance, Na+ exclusion 

may be more effective in higher salinity (Munns et al., 2012), while at moderately saline conditions, 

‘osmotic tolerance’ may be much more pronounced. In view of this, salinity tolerance is considered a 

complex trait, being controlled by many genes and physiological factors. Thus, a probable reason 

why breeding for salt tolerance through introgression using traditional breeding has not been 

successful (as measured by the lack of commercial products), as has been usually been attributed to 

the multi-genic nature of salt stress tolerance in plants (Flowers and Yeo, 1995). 
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Figure 5 The three main mechanisms of salinity tolerance in a crop plant (Source: Roy et al., 2014) 

Tissue tolerance, where the accumulated toxic Na
+
 in the leaves are compartmentalized at in the vacuole, 

a process involving ion transporters, proton pumps and synthesis of compatible solutes. Osmotic 

tolerance, associated with reduction of shoot growth and related to drought stress may be related to yet 

unknown sensing and signaling mechanisms. Ion exclusion is associated with the exclusion of toxic Na
+
 

and Cl
−
 from getting into the plant (predominantly from the roots). This mechanism may include retrieval 

of Na
+
 from the xylem, compartmentation of Na

+
 and Cl

−
 in vacuoles of cortical cells and/or efflux of Na

+
 

and Cl
−
 back to the soil. 

 

 

The improvement of salt tolerance in glycophytic crops have been achieved by the development of 

cultivars with low Na+ in shoot or high K+/Na+ ratio (Tester and Davenport, 2003; Ren et al., 2005; 

Munns and Tester, 2008; Thomson et al., 2010; Munns et al., 2012). The ability of plants to 

maintain high K+/Na+ is a key feature of salt tolerance because high K+/Na+ is required for normal 

cellular functions and ion-homeostasis. When the plant roots are exposed to salinity, the K+ /Na+ 

ratio in the plant is reduced significantly (Tester and Davenport, 2003), because Na+ competes 

antagonistically with K+ uptake via K+:Na+ co-transporters, which may block the K+-specific 

transporters of root cells under saline conditions (Zhu, 2003) and result in the accumulation of Na+ 

to toxic levels in the plant tissues. This means that salt tolerance status of any plant mainly depend 

on its ability to exclude the Na+ ions, through preferential absorption of K+ over Na+. Amtmann and 
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Sanders (1999) have demonstrated that glycophytes exhibit poor Na+ exclusion potentials, which 

would disrupt the ion homeostasis and inhibit cellular growth and functions. 

 

Na
+
 transport in crop plants 

AS has been described previously, the ability of plants to adapt under high salinity depend on the 

extent at which they can: prevent Na+ initial entry, maximize Na+ efflux transport, minimize loading 

to the xylem or maximize retrieval before reaching the shoot, maximize intracellular 

compartmentation or allocation to particular parts of the shoot (e.g. pith cells or old leaves), extrude, 

mobilize Na+ ions and secrete salt onto the surface of the leaf (Tester and Davenport, 2003; Apse and 

Blumwald, 2007).  The Na+ transporter genes have been reported to perform these functions (Plett 

and Moller, 2010; Tester and Davenport, 2003). For instance, the overexpression of vacuolar Na+/H+ 

antiporter (NHX1) increased salinity tolerance of Arabidopsis (Apse et al., 1999). The Na+/H+ is 

involved in the intracellular compartmentation of Na+ via pumping Na+ into the vacuole and, its 

activity was increased upon Na+ application in Barley (Gabarino and DuPont, 1989) and tomatoes 

(Wilson and Shannon, 1995) and, the Na+/H+ expression was significantly higher in salt‐tolerant 

species, Plantago maritima, than in the salt‐sensitive species, P. media (Staal et al., 1991).  

 

The Na+ transporters are members of the monovalent cation proton antiporter-1 (CPA1) family that 

were derived from bacteria, yeast, plants and animals (Kumari et al., 2014). They play a role in 

cytoplasmic pH regulation, pumping out H+ generated by metabolism, K+ homeostasis and salt 

tolerance due to Na+ influx into vacuoles (Waditee et al., 2001; An et al., 2007). The ability of these 

transporters to prevent Na+ entry into the plant root cells or facilitate the pumping out of Na+ that 

have gained entry into the plant back to the soil solution are important adaptive features of plant 

under saline conditions. Figure 6 illustrates the function and the control sites of two important Na+ 

transporters - Nax1 and Nax2 genes in protecting plants from salinity stress. While, Nax1 mediate 

Na+ unloading from the xylem into the sheath under salinity stress; thus, preventing Na+ over-

accumulation in leaves, to protect the photosynthetic organs, the Nax2 unloads Na+ from the xylem 

in roots.  

 

The influx of Na+ is unidirectional at plasma membrane level and can be triggered and controlled by 

a complex set of signal molecules like Ca2+ and many nonselective cation channels (NSCCs) such as, 

cyclic nucleotide-gated channels (CNGCs) and glutamate receptors (Kumari et al., 2014). Four out of 
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the 20 known CNGCs including AtCNGC1, AtCNGC3, AtCNGC4, and AtCNGC10 are involved in 

Na+ uptake (Gobert et al., 2006; Guo et al., 2008), while AtGLR2 and AtGLR3 controls Na+ and K+ 

symport in plants.  The exchange of K+ or Na+ for proton (H+) are regulated by the Na+/H+ antiporters 

(NHXs) transporters family. In addition, Na+ efflux from plasma membrane to the apoplast is 

regulated by the expression of salt overly sensitive (SOS1) gene, a sodium proton antiporter found in 

root epidermal cells. The loading of Na+ into xylem is essential process for salt tolerance in plant. 

This process leads to increased Na+ concentrations in leaves (Shi et al., 2002). The leaf blade appears 

to be more sensitive to salinity than the roots (Munns and Tester, 2008). Karley et al. (2000) have 

demonstrated that Na+ accumulation is more in the older leaves than younger due of differential 

distribution of various nonselective cation channels in different cell types. High-affinity K+ 

transporter1 (AtHKT1) is also associated with Na+ transport from the shoot into the phloem and also 

in the unloading of Na+ into stelar cells (Kumari et al., 2014). 

 

 

Figure 6 Na
+
 transport control points in plants. 1, Nax2, unloads Na

+
 from the xylem in roots; 2, Nax1, 

controls loading of Na
+
 into the xylem and; 3, Nax1, removal of Na

+
 from the xylem into sheath   
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K
+
 transport in crop Plants 

Optimal K+ uptake is very crucial for salt tolerance in plants (Greenway and Munns, 1980). K+ plays 

an important role in plant metabolism and functions including enzyme activation, protein synthesis, 

photosynthesis, osmoregulation, stomatal movement, energy transfer, phloem transport, cation-anion 

balance and stress resistance (Marschner et al., 2012; Wang et al., 2013a; Ahmad et al., 2014) and, 

K+ influx in plant is inhibited under saline conditions (Blaylock et al., 1994; Ahanger et al., 2014). 

Low K+ concentration at the binding sites would activate the hyperpolarization of membrane 

potential; but depolarization would occur when the K+ concentration is high (Kumari et al., 2014). 

Several genes encoding K+ channels/transporters have been linked to K+ transport in plants. They 

include: KUP/HAK/KT, HKT, Shakers, TPK, Kir-like and CPA sub-families (Kumari et al., 2014). 

 

KUP/HAK/KT transporters: This K+ transporter gene family is homologous to bacterial kup (K+ 

uptake) and has been cloned from barley (Santa-Maria et al., 1997) and, it plays important roles in 

cell expansion and plant development (Davies et al., 2006; Grabov, 2007; Kumari et al., 2014) 

because K+ is a major cellular solute. Reduction of K+ uptake impairs K+ homeostasis, leading to 

weak cell turgor and reduction in the rate of cell expansion. Elumalai et al. (2002) have shown 

reduction in the size of Arabidopsis shoot cells in the mutation shy3-1 in the AtKUP2 gene. In cotton 

fibers (Gossypium hirsutum), the expression of the GhKT1 member of this gene family was 

positively correlated with build-up of turgor pressure (Ruan et al., 2001).  

 

High-affinity K+ (HKT) transporters: The HKT gene families regulate K+ transport in plants (Rubio 

et al., 1995; Roy et al., 2014) and, play vital role in salt tolerance (Mäser et al. 2002). Two classes of 

HKT transporters exits- the HKT1 [which mediate relative Na+ selective uniporters (Mäser et al., 

2002; Horie and Schroeder, 2004; Garciadeblas et al., 2003)] and HKT2 [which mediate Na+/K+ co-

transport activity and homeostasis (Schachtman and Schroeder, 1994; Rubio et al., 1995)] 

transporters. Of the two classes, the HKT1 group is perhaps of greatest potential for improving the 

salinity tolerance of crops, frequently appearing as the most likely candidate for quantitative trait loci 

when phenotyping for salt tolerance and/or Na+ exclusion in mutant and mapping populations (Ren et 

al, 2005; James et al., 2006; Ahmadi et al., 2011) and, has been located on 2AL. Munns et al. (2012) 

and James et al. (2012) have demonstrated that the incorporation of novel HKT1;5 gene from the 

salt-tolerant wheat relative Triticum monococcum into susceptible commercial durum wheat 

(Triticum turgidum ssp. durum) increased grain yield by 25% on saline soil. Moreover, the HKT2 has 

http://jxb.oxfordjournals.org/content/57/5/1059.full#ref-63
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been reported to increase salinity tolerance, but not through Na+ exclusion. Mian et al. (2011) 

indicated that the over-expression of HvHKT2;1 would increase the Na+ uptake, Na+ concentrations 

in the xylem sap, and enhance translocation of Na+ to leaves under saline conditions, suggesting that 

another way plant increase salt tolerance is rather not to translocate Na+ to the shoot but rather to 

compartmentalize Na+ in leaf tissues. 

 

Shakers-type cation channels: The cation channels are mostly expressed in the plasma membrane 

and they possess high selectivity for K+ ions (Kumari et al., 2014). The shakers-type cation channels 

are manipulated via gating which depend mainly on the voltage and/or changes in membrane 

potential and allosteric control and/or signals such as calcium-calmodulin mediated signals 

(Amtmann and Sanders, 1999; Maathuis and Amtmann, 1999; Kumari et al., 2014). This transporter 

is made up of three categories (based on their voltage dependence) (Wang and Wu, 2013): K+ inward 

rectifying channels (KIRC), K+ outward rectifying channels (KORC) and weakly rectifying channels. 

KIRC is activated by hyperpolarization potential and mainly mediate K+ uptake, while KORC 

activated by depolarization mediates the K+ efflux (Wegner and Raschke, 1994; Maathuis and 

Sanders, 1997) into plant cells. The weakly rectifying channels, activated by hyperpolarization, 

mediate both K+ uptake and K+ release depending on the membrane potentials (Wang and Wu, 

2013). The operation of shakers-type cation channels is dependent on external K+ concentration (Zhu 

et al., 1999). For example, at low K+, the probability of openness of KORCs is very low so as to 

prevent leakage of K+ (i.e. efflux) from root cells. 

 

Two-pore K+ (TPK) channel transporters: The two-pore K+ (TPK) family plays an important role in 

maintaining vacuolar K+ homeostasis (Maathuis, 2011; Isayenkov et al., 2011). TPK is a non-

voltage-gated K+ channel (Gomez-Porras et al., 2012), which is regulated by the cytoplasmic calcium 

and 14-33 proteins (Maathuis, 2011). The TPK channels are not only mechanosensitive, but also 

osmo-sensitive, and functions as cellular osmo-sensors during rapid changes in external osmotic 

pressure (MacRobbie, 2006). They are activated under salt stress, resulting in the rapid release of K+ 

from the vacuole, the main cellular depository of water and osmotica (Maathuis, 2011). 

 

Monovalent Cation:Proton Antiporter (CPA): The CPA Superfamilies are named after one of its 

constituent members, the monovalent cation:proton antiporter-2 (CPA2), which happened to be the 

largest gene family of transporters belonging to CPA transporters. Members of the CPA2 family that 

have been functionally well-characterized include: KefB/KefC K+ efflux proteins (Booth et al., 
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1996), Na+/H+ antiporter (Waser et al., 1992) and K+/H+ antiporter (Reizer et al., 1992). These 

proteins functions essentially in the same mechanism (Reizer et al., 1992). For instance, KefC and 

KefB are responsible for glutathione-gated K+ efflux in plants. 

 

Improvement of salt tolerance in wheat 

The use of wide range of genetic materials for comparative phenotype and physiology screening for 

salt stress tolerance and ion uptake in cereals have progressed steadily with the identification three 

mechanisms which may contribute to salt tolerance, such as osmotic tolerance,  ion exclusion and 

tissue tolerance. This offers strong indication that salt tolerance in wheat can be improved via 

pyramiding and/or incorporation of useful alleles that are associated with the above mentioned 

mechanisms. Several breeding strategies have been adopted to achieve these objectives.  

 

Conventional Breeding 

Genetic variation in Na+ for both exclusion and K+/Na+ discrimination exists amongst wheat 

genotypes, wheat progenitors, wild relatives (Gorham et al., 1987; Gorham, 1993), and in the 

halophytic species in the Triticeae (Gorham et al., 1985; Garthwaite et al., 2005). In the past, 

screening of a large collection of wheat germplasm for salt tolerance identified genotypes that can 

sustain growth and produce seeds under saline soil conditions. However, only few of the identified 

salt tolerant genotypes have been successfully released (Table 1). They include Indian KRL1–4 and 

KRL 19 (from Central Soil Salinity Research Institute at Karnal), LU26S and SARC- 1 (released by 

the Saline Agriculture Research Centre at University of Agriculture, Faisalabad), Sakha 8 (from the 

Agricultural Research Centre at Giza) and Kharchia 65 (from India). Among them, Kharchia 65 was 

the most widely and globally exploited salt tolerance “donor parent” that has been used to contribute 

positive alleles in many breeding programs (Munns et al., 2006; Shahbaz and Ashraf, 2013). 

Kharchia 65 was developed via selection by Indian farmers on sodic-saline soils of the Kharchi-Pali 

area of Rajasthan (Rana, 1986). 

 

The tolerant genotype KRL1-4, derived from a cross between Kharchia 65 and WL711, has 

performed well on the saline soils of northern India, but it was not successful in Pakistan due to the 

problem of water logging and soil texture (Hollington, 2000). Also, KTDH 19 which was developed 

in UK by Quarrie and Mahmood from a cross between Kharchia 65 and TW161 (a line identified 

with exceptional Na+ exclusion) performed well in Spain (Hollington et al., 1994); but in India and 
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Pakistan, it was found to be highly tolerant in terms of total dry matter but the grain yield was very 

low due to it maturing around 2 weeks later than local genotypes (Hollington, 2000). In addition, the 

cross of LU26S, Kharchia-65 and two salt-tolerant genotypes, produced two salt-tolerant genotypes, 

S24 and S36 (selected from the F3 populations) at salinity levels of 24 and 36 dS m−1, respectively 

(Ashraf and O’Leary, 1996). S-24 showed positive transgressive inheritance for salt tolerance when 

compared to its parents- Kharchia-65, LU26S and SARC-1, due to its low accumulation of Na+ in 

leaves (Ashraf, 2002). It also exhibited higher grain yield potentials than most wheat cultivars (Arfan 

et al., 2007; Shahbaz et al., 2008; Perveen et al., 2010, 2011, 2012). 

 

Table 2. Improvement in salt tolerance of cereal crops using conventional breeding approach 

Released 

cultivar 
Releasing source 

Good 

performance 
Reference 

KRL1-4 and 

KRL 19 

Central Soil Salinity Research Institute 

(CSSRI) at Karnal, India 

Saline soils of 

northern India 
Hollington, 2000 

LU26S and 

SARC-1 

Saline Agriculture Research Centre (SARC) 

at University of Agriculture, Faisalabad-

Pakistan 

All saline soils 

Munns et al., 

2006 

 

Sakha 8 Agricultural Research Centre, Giza, Egypt All saline soils 

Munns et al., 

2006 

 

Kharchia 65 
Indian farmers through selection on sodic-

saline soil 

Kharchi-Pali area 

of Rajasthan, India 
Rana, 1986 

Line KTDH 19 Quarrie and Mahmood 
Performed well in 

Spain only 

Hollington et al., 

1994 

 

S-24 
Department of Botany, University of 

Agriculture, Faisalabad-Pakistan 
On all saline soils Ashraf, 2002 

 

 

Mutation breeding 

Mutation breeding techniques have been used to generate a vast amount of genetic variability among 

genotypes for salinity tolerance. It has played a significant role in plant breeding and genetics and has 

been used to develop thousands of novel crop varieties which have been released to farmers for 

cultivation. It is cost effective, quick, proven, robust, non-hazardous and environmentally friendly. It 

is based on selfing mutants until the induced character has a stable expression in the advanced mutant 

generations. Mutation breeding has been used to reduce the maturity time by 3 weeks without 

adverse effects on yield at 150 mM NaCl (Mahar et al., 2003). Four salt tolerance mutant wheat 
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varieties have been officially released for commercial use as referenced in the mutant varieties 

database (https://mvd.iaea.org/).  They include: Jiaxuan 1 (released in 1974), Changwei 19 (released 

in 1978), Emai 9 (released in 1980), and H6765 (released in 2004). 

 

Modern Breeding for salt tolerance using molecular markers 

The development of molecular markers for the exploitation of DNA polymorphisms in plant systems 

is one of the most significant developments in the field of molecular biology and biotechnology 

(Soto-Cerda and Cloutier, 2012). DNA marker is a portion of DNA situated on a chromosome and 

tightly linked to a known gene controlling trait variation in a given population. Because salt tolerance 

is polygenic in nature and is largely influenced by environment and genotype, it is difficult to breed 

using conventional methods. Thus, the use of DNA marker systems have gained prominent in plant 

breeding, because of the absence of genotype x environment interaction, epistatic effect, and also 

ease in the picking up of homozygous plants which can be greatly distinguished from the others at an 

early generation (Kumar et al., 2015). Once a marker is found to be linked to gene/QTL contributing 

to the trait (i.e., salt tolerance) variation in the crop species, such marker can be used “as surrogate” 

to incorporate the gene into the commercial crop varieties using either marker assisted selection 

(MAS) or transgenic approach. MAS has been successfully used to incorporate the Na+ exclusion 

gene HKT1;5 into the susceptible commercial durum wheat (Munns et al., 2012 and James et al., 

2012). DNA marker systems have been used to tag/map several genes or QTL contributing to salt 

tolerance in cereals (Table 3). The association and application of the indirect selection markers 

which are genetically linked with the trait(s) of interest is a well-known approach for improvement of 

the crop having difficult complex traits such as salt stress tolerance (Im et al., 2014). This approach 

has contributed immensely on deciphering the genetic basis of salt tolerance in many crops.  

https://mvd.iaea.org/
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Table 3. Salt tolerant QTL/genes that has been identified using DNA markers 

Crop plants Locus name Associated traits  Reference 

Wheat (Triticum 

aestivum L.) 

Kna1 

Controls the selectivity of Na
+
 and K

+
 transport 

from root to shoot and maintains high K
+
/Na

+
 

ratio 

Gorham et al. (1990); Dubcovsky 

et al. (1996) 

Nax1 
Both are involved in decreasing Na

+
 uptake and 

enhancing K
+
 loading into the xylem 

Lindsay et al. (2004); Huang et al. 

(2006) 

Rice (Oryza sativa L.) 

qRL-7, qDWRO-9a and qDWRO-9b 

qBI-1a and qBI-1b 

Play important roles in root length and root dry 

weight at seedling stage under saline conditions 
Sabouri and Sabouri (2008) 

QNa, QNa:K, SKC1/OsHKT8 Control K
+
/Na

+
 homoeostasis Ren et al. (2005) 

qDM-3 and qDM-8, qSTR-6 Enhance Na
+
/K

+
 ratio under saline conditions Sabouri (2009) 

qNAK-2 and qNAK-6 Enhance Na
+
/K

+
 ratio Yao et al. (2005) 

Saltol shoot Na
+
/K

+
 homoeostasis Thomson et al. (2010) 

Saltol and non-Saltol shoot Na
+
/K

+
 homoeostasis Alam et al. (2011) 

QKr1.2 K
+
 content in root Ahmadi and Fotokian (2011) 

Barley (Hordeum 

vulgare) 

Five QTL for ST were identified on 

chromosomes 1H, 2H, 5H, 6H, and 

7H, which accounted for more than 

50% of the phenotypic variation 

Improve vegetative growth under saline stress Zhou et al. (2012) 

A locus HvNax3 on the short arm of 

chromosome 7H in wild barley 

(Hordeum vulgare ssp. spontaneum) 

accession CPI-71284-48 

Reduces shoot Na
+
 content by 10–25% in plants 

grown under salt stress (150 mM NaCl) 
Shavrukov et al. (2010) 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4559640/#B112
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4559640/#B116
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4559640/#B150
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4559640/#B136
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4559640/#B2
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4559640/#B1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4559640/#B158
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4559640/#B120
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The modern plant breeding approaches emphasize the importance of the location of the genes/QTL 

controlling the trait of interest for crop improvement. Molecular genetics which entails using either 

or both forward and reverse genetic approaches have been adopted to identify QTL and genes 

contributing to variability (Takeda and Matsuoka, 2008) in a population under study. The bi-parental 

linkage mapping approach has been extensively used for mapping quantitative traits, but not until 

recently that the use of the association mapping (AM), which has initially gained tremendous success 

in human and animal genetics, was adopted to study genetic architecture controlling important plant 

phenotypes. The QTL mapping populations are broadly divided into two types: (1) family-based 

linkage populations, and (2) natural populations that use linkage disequilibrium mapping approaches 

(Semagn et al., 2010; Mackay and Powell, 2007). In contrast to the biparental mapping approaches, 

AM populations are carefully sampled diverse lines representing the diversity of natural or breeding 

populations of the crops (Zhao et al., 2007b; Zhu et al., 2008). Recently, more advanced mapping 

populations also known as next-generation populations (NGPs) been brought to the fore and adopted 

in various crops in other to overcome the limitations posed by both the bi-parental linkage and 

association mapping approaches. The NGP design entails crossing of multiple parents and/or 

advanced generation intercrosses with further advancement for generations to improve genetic 

resolution of mapping (Morrell et al., 2011). The NGP that have been used for QTL mapping in crop 

improvement include: Nested association mapping (NAM) populations, Multi-parent advanced 

generation intercross (MAGIC) population and advanced intercross recombinant inbred lines (AI-

RILs). For successful identification of QTL/genes underlying complex traits (salt tolerance), the 

investigator must make a decision on the type of population, DNA marker systems and QTL analysis 

method to be adopted. Examples of cloned genes that were initially identified through QTL analysis 

abound in the literature, which demonstrates the power of QTL analysis to discover genes controlling 

important agronomic traits.  

 

Association Mapping  

As described earlier, AM make use of collections of accessions with diverse genetic background and 

relies on the natural genetic variation in the studied germplasm. Thus, AM does not suffer from lack 

of variation that characterized several bi-parental mapping populations (Hall et al., 2010) and, it 

involves searching for  significant genotype (DNA-marker) -phenotype correlations among unrelated 

germplasm collections using different statistical tools. AM relies on the degree of ancestral 
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recombination and mutation events that occurred within the population, taking into account all the 

alleles present in the studied population, to detect significant genotype-phenotype associations. By 

exploiting non-random associations of alleles at nearby loci (i.e., loci in linkage disequilibrium), it is 

possible to detect significantly associated QTL regions with a set of mapped markers (Breseghello 

and Sorrells, 2006; Pasam and Sharma, 2014) that are affecting the traits under investigation. Thus, 

the success of AM depends on the quality of the measured phenotypic data, size of the population 

and population LD (Flint-Garcia et al., 2005; Mackay and Powell, 2007; Pasam et al., 2012). 

AM broadly falls into two main categories: (i) candidate gene association mapping, in which 

candidate genes are selected, sequenced and their sequence polymorphism correlated with the 

measured traits of interest, and (ii) genome-wide association mapping (GWAM), that correlate the 

polymorphic markers across the genome with the measured traits. GWAM has become a powerful 

tool to identify novel loci involved in the genetic variation of complex traits in plant genetics, 

because it depends less on prior information about the candidate genes, in contrast with the candidate 

gene association mapping approach. An increasing number of association studies based on the 

GWAM have been successfully used to localize genes/QTL controlling complex traits in cereals, 

such as maize (Remington et al., 2001; Belo et al., 2008), barley (Pasam et al., 2012; Cockram et al., 

2010; Long et al., 2013), wheat (Jighly et al., 2015; Zegeye et al., 2014; Turki et al., 2014; Edae et 

al., 2014) and rice (Huang et al., 2010; Agrama et al., 2007; Zhao et al., 2011). By exploiting 

broader genetic diversity, AM offers four advantages over the family-based linkage mapping: (i) 

generation of bi-parental populations is not needed, so it saves time (in years) for population 

construction, (ii) the constructed population can be used to study several important agronomic traits, 

(iii) can be used to discover new favorable alleles and (iv) has higher resolution mapping of putative 

QTL.  

 

Implications of Linkage Disequilibrium in Association Mapping 

Both Linkage equilibrium (LE) and linkage disequilibrium (LD) are used to define the linkage 

relationships in population genetics. While LE is defined as the random association of alleles at 

different loci, the LD is the non-random association of alleles at separate loci (Flint-Garcia et al., 

2003; Hill and Robertson, 1968). Tightly linked loci are considered to be in LD due to limited 

recombination between these loci, which implies that the effect coming from these loci may be as a 

result of the influence of single/few genes. AM is dependent on LD because in a situation where the 
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functional polymorphism is not among the genotyped markers, it is expected that the functional 

polymorphism is in high LD with the genotyped marker and thus would be captured via the 

genotyped marker during the analysis. Morton et al. (2001) have shown that only closely linked loci 

remain associated and co-segregate for many generations. Closely linked loci would provide a great 

opportunity to map QTL with higher resolution mapping at the gene level (Ersoz et al., 2009). 

Moreover, the power of AM depends on the degree of LD between the genotyped markers and the 

functional polymorphisms (Pasam and Sharma, 2014) and, the LD decay is species, population and 

genome dependence (Caldwell et al., 2006; Gupta et al., 2005). In case of extensive LD decay, the 

associated QTL/markers are easily detected due to the high chance that many of the genotyped 

markers are in high LD with causal variant; however, it will be very difficult to detect the main 

causal variant. All the associated markers/QTL are resolved into independent genetic variants where 

the LD decays at short distances (also called, LD blocks). The resolution and power of association 

studies depend on the extent of LD, which in turn is influenced by several factors such as mutation 

across the whole genome, population history, sample size, genetic drift, regional variability in 

recombination patterns, chromosome region, diversity and population admixture and the pattern of 

mating within a population (Flint-Garcia et al., 2003; Ersoz et al., 2009; Zhang et al., 2009a; Chao et 

al., 2010). The estimates of LD (r2) ranged between 0 and 1. The value r2 = 0 means that the loci are 

in complete LE, r2 = 1 means that the loci are in complete LD. The LD may decay over a long or 

short distance based on the population under study and the chromosomal region. 

 

Population structure  

AM results are influence by population structure (PS) if not accounted for. PS would often lead to 

spurious associations of unlinked loci (Sneller et al., 2009), due to genetic drift, domestication and/or 

background selection. In other words, loci could be identified as being associated with a trait of 

interest when in fact no real associations exist between the loci and the trait. In view of this, 

statistical models have been developed to account for PS during association analysis so as to improve 

the power of AM for QTL detection. Although several models has been developed to account for PS 

during association studies (Pritchard et al., 2000; Yu et al. (2006), the use of the unified mixed model 

(MLM) which accounts for both population structure (Q) and family relatedness (K) simultaneously 

as covariates in the model is considered to perform best. This model accommodates both fixed and 

random effects. According to Yu et al. (2006), the mixed model equation for Q+K is presented 

below:  
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y = Xβ + Sα +Qv+ Zu + e  

where, Xβ represents those fixed effects other than the SNP under testing and the population 

structure; y is a vector of phenotypic observation; β is a vector of fixed effects other than SNP or 

population group effects; α is a vector of SNP effects (QTN); v is a vector of population effects; u is 

a vector of polygene background effects; e is a vector of residual effects; Q is a matrix from 

STRUCTURE relating y to v; and X, S and Z are incidence matrices of 1s and 0s relating y to β, α 

and u, respectively. The variances of the random effects are assumed to be Var(u) = 2KVg, and 

Var(e) = RVR, where K is an n × n matrix of relative kinship coefficients that define the degree of 

genetic covariance between a pair of individuals; R is an n × n matrix in which the off-diagonal 

elements are 0 and the diagonal elements are the reciprocal of the number of observations for which 

each phenotypic data point was obtained; Vg is the genetic variance; and VR is the residual variance. 

Best linear unbiased estimates (BLUE) of β, α and v (fixed effects) and best linear unbiased 

predictions (BLUP) of u (random effects) were obtained by solving the mixed-model equations 

(Henderson, 1984; Kennedy et al., 1992).  

 

The schematic framework of steps involved in AM studies is presented in Figure 7 (below). The 

steps include: (1) construction of genetically diverse mapping population or panel; (2) Phenotypic 

data collection in a replicated and/or multi-environmental field trials; (3) genotyping the mapping 

population with available molecular markers (in this case, we used the 90K Illumina Chip); (4) 

Chromosomal and/or genome LD quantification using molecular marker data of the mapping panel; 

(5) population structure and kinship assessment (coefficient of relatedness between each pair of 

individuals) of the mapping population; (6) Association analysis using the phenotypic and genotypic 

data with the incorporation of information gained from LD and population structure using 

appropriate statistical methods (Abdurakhmonov and Abdukarimov, 2008). And finally, the specific 

gene(s) controlling a QTL of interest can be identified and cloned using the marker tags and 

annotated for an exact biological function. In the present study, we used the MLM- Q+K approach. 
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Figure 7 Schematic framework of the steps involved in genome-wide association studies for tagging a 

gene of interest using 150 wheat genotypes. 
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Hypothesis of this study 

1. The response of wheat to salt stress is genotype specific. 

 

2. Salt-stress tolerance is regulated at genetic, transcriptomic, and molecular levels and differs 

in the plant developmental growth stages. 

 

3. The adaptation to salt stress can be improved by selection of relevant alleles of salt-

responsive genes. 
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The objectives of the thesis 

Given the amount of wheat needed to feed the growing population in an increasing climatic change, 

improving wheat salt tolerance status has become a herculean task for breeders. Gaining 

understanding of the agronomic, physiological, genetic, and molecular mechanisms underlying salt 

tolerance is of key importance to reach the desired breeding goal of developing high yielding wheat 

genotypes that can be cultivated in the regions prone to salinity where wheat is grown. Therefore, the 

overall goal of this study (thesis) was to use the genetic variations among the studied wheat 

germplasm to dissect its physiological and genetic mechanisms of salt tolerance by performing 

genome-wide association studies (GWAS). The genetic dissection of the quantitative traits 

controlling the salt tolerance in wheat is a prerequisite to allow for the application of the cost 

effective genomics-based approaches in breeding high yielding wheat genotypes for saline 

conditions. In particular, the objectives were to: 

 

1. To screen 150 internationally derived wheat genotypes for salinity tolerance at germination, 

seedling and adult plant stages, with the aim of identifying new genetic resources that can be 

used to improve salt tolerance in wheat through breeding programs; 

 

2. To evaluate the association of the physiological traits of wheat such as ion (K+, Na+ and 

K+/Na+ ratio) contents in leaves and stems, leaf chlorophyll fluorescence parameters and 

water relation parameters with the salt tolerance in terms of seedling biomass and grain yield, 

with a view of finding out the reliable physiological traits that can be used as a surrogate 

when screening for salt tolerance in wheat;  

 

3. To unravel common QTL controlling several salt-stress related agronomic, physiological and 

seed quality parameters that could be exploited the breeding programs and in future research; 

 

4. To identify plausible candidate genes underlying QTL mapped for all the measured traits; 

 

5. To perform single gene expression analysis of some of identified causative genes in other to 

further our understanding on the molecular mechanism of salt tolerance in wheat.  
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CHAPTER 2 

 

 

 

Identification and characterization of salt tolerance of wheat germplasm using a 

multivariable screening approach 
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ABSTRACT 

Salinity is one of the major limitations to wheat production worldwide. This study was designed to 

evaluate the level of genetic variation among 150 internationally-derived wheat genotypes for 

salinity tolerance at germination, seedling and adult plant stages, with the aim of identifying new 

genetic resources with desirable adaptation characteristics for breeding programs and further genetic 

studies. In all the growth stages, genotype and salt treatment effects were observed. Salt stress caused 

33%, 51% and 82% reductions in germination, seedling shoot dry matter and grain yield, 

respectively. The rate of root and shoot water loss due to salt stress exhibited significant negative 

correlation with shoot K+, but not with shoot Na+ and  shoot K+/Na+ ratio. The genotypes showed a 

wide spectrum of response to salt stress across the growth stages, however, four genotypes: 

Altay2000, 14IWWYTIR-19 and UZ-11CWA-8 (tolerant) and Bobur (sensitive) exhibited consistent 

responses to salinity across the three growth stages.  The tolerant genotypes possessed  better ability 

to maintain stable osmotic potential, low Na+ accumulation, higher shoot K+ concentrations, higher 

rates of PSII activity, maximal photochemical efficiency and lower non-photochemical quenching 

(NPQ), resulting in the significantly higher dry matter production observed under salt stress. The 

identified genotypes could be used as parents in breeding for new varieties with improved salt 

tolerance as well as in further genetic studies to uncover the genetic mechanisms governing salt stress 

response in wheat. 

 

INTRODUCTION 

The continuous salinization of arable land is a threat to global food security. Over 800 Mha of land 

are affected by salinity, which equates to more than 6% of the world’s total land area (FAO, 2010) 

and affects more than 20% of present-day agriculture (Mickelbart et al., 2015). Salinized soils extend 

over all the continents leading to annual losses of arable land to about 10 mha (Pessarakli and 

Szabolcs, 1999). About 27.3 billion US dollars is spent annually to combat irrigation induced salinity 

(Qadir et al., 2014).Salt stress, mainly due to accumulation of toxic Na+ and Cl− ions in plant tissues, 

causes osmotic and ionic stresses in plants. Wheat (Triticum aestivum L.) is one of most important 

crop plants worldwide with annual production of about 736 million metric tons (FAO, 2015), but 

suffers significant grain yield losses due to soil salinity. Although, there are several strategies to 

increase wheat production in the salt affected areas (such as leaching, drainage etc), the cultivation of 

tolerant genotypes is recognized as the most effective way to overcome the limitations. The 
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prerequisite is the identification of wheat genotypes with proven wide adaptation under saline 

conditions. The cultivar, Kharchia 65 is one of the very few reputed donors of salt tolerance (ST) in 

wheat and has been extensively used in breeding for ST cultivars globally (Chatrath et al., 2007). 

Thus, there is an urgent need to identify new sources of ST to broaden the gene base and to provide 

donor parents in locally adapted genetic backgrounds.  

An imminent task is the efficient characterization of wheat plants for tolerance towards salt stress. 

The most valuable agronomical traits might serve as good surrogates to discriminate among 

genotypes under salt stress conditions. Munns and James (2003) consider biomass yield as a useful 

criterion because it permits the direct estimation of economic return under saline conditions. 

Moreover, it has been reported that shoot growth is more sensitive to salt stress than the root growth 

firstly, because the reduction in leaf area development relative to the root growth leads to a decrease 

in water use by the plant, thus allowing it to conserve soil moisture and prevent an escalation of the 

salt concentration in the soil, and secondly, due to the accumulation of Na+ and/or Cl- at toxic 

concentration levels affects the photosynthetic capacity resulting in less supply of carbohydrates to 

the young leaves, that further reduces the shoot growth rate (Munns and Tester, 2008). The ST status 

of plants can be assessed as the percent biomass production in saline versus control conditions (Genc 

et al., 2007) over a prolonged period of time. Selection of plants with high ST values would allow 

breeders to identify genotypes better adapted to the salinized arable lands. Screening for chlorophyll 

fluorescence characteristics has also gained increasingly interest in plant abiotic stress research. 

Salinity stress has negative impact on photosynthesis by inhibiting photosystem II (PSII) activity and 

destruction of chlorophyll pigments due to the accumulation of toxic ions. The relationship between 

the PSII operating efficiency and CO2 assimilation in leaves allows fluorescence to be used to detect 

differences in the response of plants to environmental challenges and, consequently, to screen for 

tolerance to environmental stresses (Baker and Rosenqvist, 2004). 

Tolerance to salt stress is a complex biological phenomenon governed by several physiological and 

genetic factors and it is growth stage specific (Haq et al., 2010). Little effort has been made so far to 

simultaneously characterize the wheat germplasm across different growth stages. Experiments 

carried out under controlled conditions were not exposed to those conditions that prevail in salt-

affected soil such as spatial and temporal heterogeneity of soil chemical and physical properties, high 

diurnal temperature variations, low humidity, and presence of drought stress (Munns and James, 

2003). These could be one of the reasons why breeding for ST has not gained significant progress up 
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till now. To meaningfully characterize the ST status of wheat genotypes, it is necessary to evaluate 

wheat response to salt stress across several developmental growth stages, with a view of identifying 

genotypes with desirable ST across all the growth stages. Access to new wheat genotypes with 

contrasting response to salt stress would allow for further characterization of the genetic mechanisms 

controlling ST in wheat.  

 

The response of wheat to salt stress is genetically and physiologically controlled and may differ from 

one growth stage to another. Thus, a better understanding of these mechanisms and processes would 

help in the breeding programs to enhance wheat production under salt stress. This study was 

designed to characterize salt tolerance in a set of winter and facultative wheat landraces, cultivars and 

elite breeding lines at the germination, seedling and mature plant field growth stages, with the aim to 

identify contrasting (salt tolerant and salt sensitive) genotypes for further genetic studies. The 

identified genotypes were evaluated for the effect of salinity on some key physiological traits 

including the cell membrane stability, osmotic potential, leaf chlorophyll fluorescence and dry matter 

production. The identified genotypes would be valuable resources for breeding programs and 

scientific research towards better understanding of plant tolerance to salt stress. 

 

MATERIALS AND METHODS 

Plant Materials 

A total of 150 winter and facultative wheat genotypes consisting of advanced lines from the 

International Winter Wheat Improvement Program (IWWIP-Turkey/CIMMYT/ICARDA), cultivars 

from Turkey national wheat program (TNP) and cultivars from countries of the Central and Western 

Asia (CWA) region. To ensure that pure seeds were used and to minimize heterogeneity and 

contamination, multiplication step and cleaning were performed at the greenhouse of Crop Science 

and Resource conservation Institute (INRES), University of Bonn, Germany. The harvested seeds 

were then used for the ST evaluation at germination, seedling and mature growth stages. 
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Figure 1 The seed multiplication of the 150 association mapping panel 

 

Salt stress test 

Salt-water flooding method as described by the Association of Official Seed Analysts (AOSA, 2009) 

was adopted to evaluate the genotypes germination ability under two salt types (NaCl and Na2SO4) 

and several concentrations: 100, 150, 200 mM for NaCl and 75, 100 mM for Na2SO4 plus control 

(without salt). Twenty-five seeds of each genotype, in three repetitions, were sown in 29 x 22.5 cm 

plastic transparent boxes containing blotting paper (ALBET Lab Science, Germany) soaked in 75-ml 

of each salt treatment solution. Thereafter, the boxes were placed in a growth chamber with white 

fluorescent light (600 µmol m-2 s-1; 14 h light/10 h dark) at 15±1°C, and relative humidity of 65±8%.  

Ten days after sowing, the germination potentials of each genotype were determined with the scale 

from 0 to 9 as described by Mano et al. (1996).  

 

The seedling stage screening was performed in a supported hydroponic system using the modified 

Hoagland solution as described by Tavakkoli et al. (2010). Four independent experiments designated 

E1, E2, E3 and E4, with three replications each were conducted, in the greenhouse. In E1 (October - 

November, 2013) and E2 (February – March, 2014), the genotypes were screened with non-saline 

(control) and saline (100 mM NaCl) nutrient solution, while the solutions containing non-saline and 

saline (75 mM Na2SO4) were used to screen the genotypes during the E3 (April – May, 2014) and E4 

(May to June, 2014) experiments. Supplementary Ca2+ as CaCl2 was added to the saline nutrient 

solution in 20:1 molar ratio of NaCl or Na2SO4:CaCl2 (Haq et al., 2010), to improve nutrient uptake 



32 
 

and ameliorate the effects of salinity on the plant growth. In each experiment, comparisons were 

made between saline and non-saline conditions. The electrical conductivity EC values for control, 

100 mM NaCl (+5.0 mM CaCl2) and 75 mM Na2SO4 (+3.75 mM CaCl2) solutions ranged:  1.79 - 

1.84, 11.89  12.54 and 12.44 -13.68 dS/m, respectively.  

 

 

Figure 2 The designed supported hydroponic experiments used for the seedling screening under control 

(Right) and salt (Left) stress conditions. 

 

156 cylindrical PVC tubes (4.5 cm diameter x 45 cm depth) were placed on each tub served by a 

separate tank containing 164 liters of nutrient solution at 75 minutes interval using EHEIM 

Universal-pump1046 (EHEIM GmbH and Co, Germany). Prior to the transfer into the hydroponic 

system, seeds were exposed to 45°C for 24 hours to remove the inherent differential dormancy. The 

seeds were sown and germinated in situ in the tubes filled with Aquagran filter quartz, 2-3.15 mm 

(Euroquarz GmbH) with tap water. Three days after planting (DAP), salt treatments were introduced 

together with the nutrient solution. The salt application was done in an equal incremental basis for 3 

days to avoid osmotic shock. The stress was continued for 22 days after the final salt stress level was 

reached. The nutrient solutions were changed every 7 days accompanied by adjustment of the pH to 

5.5. Thereafter, the solution pH were monitored daily and adjusted to 6.0. The nutrient solution 

temperature varied from 14.1 to 21.7 °C. At harvest (28 DAP), plant shoots were cut off from the 

base and weighed to obtain the fresh shoot weight (FW). The harvested samples were dried at 55 °C 

for 10 days and weighed to obtain the dry shoot weight (DW). The relative shoot water loss (WL) 

due to salt stress was calculated on the basis of FW and DW in stress conditions (S) vis-a-vis the 

control conditions (C): WL = [(FWC – DWC) - (FWS – DWS)]. 
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The field trials were conducted under saline and non-saline soil conditions in four locations: Urgench 

(Uzbekistan) (41° 32'60N and 60°37'60E, 91 meters above sea level (masl) in 2011-2012; Karshi, 

(Uzbekistan) (38°52'N and 65°48'E, 416 masl) in 2012-2013 and Dongying  (China) (118°33'-

119°20'E, 37°35'-38°12'N) in 2013 -2014. The field layout for the trials in Uzbekistan was α-lattice 

design with three replications. Each plot measured 2 m2 with different number of rows in different 

locations. In Dongying, seeds were sown in 2 rows (20 seeds per row) with plant spacing of 10 cm 

and the width is 1 m for each genotype. The soil chemical properties of all the field locations are 

presented in Table1. At harvest, the grain yield (GY) was measured and recorded for both saline and 

non-saline fields. 

 

 

Figure 3 The 150 AM panel growing in one of the multi-locational research fields (in Urgench, 

Uzbekistan). 
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Table 1 Soil chemical properties of Karshi, Urgench and Dongying field locations 

Soil Chemical properties Non-saline saline  Non-saline saline 

 Karshi  Urgench 

Sodium concentration, dS/m 2.40-6.34 9.24-17.58  3.42-7.05 11.02-19.58 

pH 7.67-8.00 7.59-7.81  6.76-8.03 7.54-7.83 

Total dissolved solids (TDS), mg/L 1100-8400 2200-11300  1200-1800 1400-10500 

Ca
2+

, me/L 10.0-42.4 17.5-82.3  7.4-14.9 9.9-64.8 

Mg
2+

, me/L 4.9-22.2 7.4-30.4  2.5-.5.0 2.5-40.1 

Cl
-
/SO4

2-
 0.14-1.55 0.16-0.58  0.20-2.13 0.07-1.48 

Cl
-
, me/L n.a. n.a.  2.9-13.8 3.9-66.1 

Sodium Absorption Ratio (SAR) n.a. n.a.   0.95-5.62 0.48-13.82 

Soil texture silty clay silty clay  silty clay silty clay 

 Dongying    

Sodium concentration, g/kg 1.9 4.3    

pH 7.58 8.06    

Organic, g/kg 17.86 9.96    

Phosphate, mg/kg 25.52 5.22    

Nitrate, mg/kg 72.02 34.04    

Potassium, mg/kg 258.04 693.15    

Water Content, % 16.56 19.16    

Soil texture salic fluvisols Salic fluvisols    

n.a.= not available (measured data were not consistent). 

Shoot Na
+
 and K

+
 concentration (%) determination 

The 3rd leaf, stem and the remaining leaves (RLP) of each genotype were analyzed for accumulated 

K+ and Na+ after 25 days of stress with 150 mM NaCl (+7.5 mM CaCl2) in the hydroponics. Three 

replicates for each genotype were bulked and dried at 55°C for 10 days. The concentrations of K+ 

and Na+ in the respective shoot parts were determined from 2g grounded sample using atomic 

absorption spectrophotometer (type 2380; Perkin Elmer, Wellesley, MA, USA) and subsequently, the 

K+/Na+ ratios were calculated.  

 

Salt tolerance estimation 

The ST status of each genotype was determined for the measured traits across the growth stages as a 

ratio of trait mean value under salt stress to control condition (Genc et al., 2010a). Thereafter, the 

150 genotypes were ranked for each trait from the highest down to the lowest trait ST values. The 

overall ST ranking for each genotype was calculated as: 

𝐒𝐓𝑶𝒗𝒆𝒓𝒂𝒍𝒍 = ∑ 𝑺𝑻𝒓𝒂𝒏𝒌𝒊𝒏𝒈𝒔
𝑴
𝒊   

Where i is the ST estimates of genotypes for each measured traits; M is the number of measured 

traits across growth stages. Genotypes with extreme response to salt stress were identified: tolerant 

(ST > 75th percentile) and sensitive (STg < 25th percentile). 
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Physiological analyses of contrasting wheat genotypes 

Two genotypes from each extreme were used to examine the effects of salt stress on some plant 

physiological and growth parameters such as leaf electrolyte leakage (EL), osmotic potential (ψπ), 

chlorophyll a fluorescence (ChlF), shoot Cl- accumulation and shoot biomass production. The 

genotypes were grown under saline (150 mM NaCl) and non-saline conditions in the controlled 

conditions (Temperature: 20/15°C; day length: 14 day/10 night hours) in the hydroponics.  

 

Leaf electrolyte leakage (EL) was performed following the procedure outlined by Apostolova et al. 

(2008), with slight modifications. Freshly harvested leaf (0.4 g) were placed in tubes, containing 50 

ml distilled water and kept for 4 h in a shaking water bath at 30 °C for measuring the initial 

conductivity (EC1). The final electrolyte conductivity (EC2) was measured after boiling the leaf 

samples for 20 min, upon equilibration at 30°C. The rate of EL per minutes (ELR) for each of the 

identified genotype was calculated as: ELR =(EC2 − EC1) (0.4 x 20)⁄ .  

 

Leaf osmotic potential (ψπ) was determined as outlined by Pérez-López et al. (2009). The four 

youngest leaves were detached from each genotype under non-saline and stress conditions and frozen 

in liquid nitrogen to break the cell walls. The samples were then thawed and sap was extracted by 

squeezing with garlic press and micro-centrifugation at 15000 rpm for 5 min. The ψπ of the extracts 

were obtained using an OSMOMAT 3000 (Gonotec GmbH, Berlin, Germany). The ψπ readings were 

taken from six different plants for each genotype.  

 

Chlorophyll a fluorescence (ChlF) of  the leaf samples of an 8-weeks old wheat plants under saline 

and non-saline conditions were measured using the FluorPen FP100 (Photon Systems Instruments, 

Brno, Czech Republic). The following OJIP parameters were analyzed: (i) fluorescence fast-

transients (Fo = fluorescence intensity at 50 μs, Fj= fluorescence intensity at J-step (at 2 ms), Fi= 

fluorescence intensity at i-step (at 60 ms), Fm = maximal fluorescence intensity, Fv = maximal 

variable fluorescence); (ii) PSII efficiencies (Fo/Fm = non-photochemical loss in PSII, Fv/Fo = 

efficiency of the water-splitting complex on the donor side of PSII, Fv/Fm = quantum yield of PSII, 

PI(ABS) = performance index on absorption) and, (iii) specific energy fluxes (ABS/RCm= effective 

antenna size of an active reaction center (RC), TRo/RC,= maximal trapping rate of PSII, ETo/RC= 

electron transport in an active RC, DIo/RC = effective dissipation in an active RC). A total of 24 data 
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points were taken for each genotype. The light intensity reaching the leaf was 3000 mol (photons) 

m−2 s−1, which was sufficient to generate maximal fluorescence.  

 

Statistical analysis  

Analysis of variance (ANOVA) was carried out for the traits values by adopting the restricted 

maximum likelihood (REML) model using the GENSTAT 16 program to account for both spatial 

and temporal differences in the seedling and field screening experiments. The GENSTAT procedure 

was used to estimate the un-biased estimates of variance components due to genotypic (σ2
g) and 

environment (σ2
e) effects (O’Neill, (2010). Thereafter, the heritability (h2) estimates for the traits 

were calculated as described by O’Neill. (2010) and Gitonga et al. (2014) using the equation: ℎ2 =

(𝜎𝑔
2) [𝜎𝑔

2 + 𝜎𝑒
2 𝑟⁄ ]⁄ ; where r is the number of replications of each genotype.  

 

RESULTS  

Phenotypic analysis 

Compared to control, all treatment with different salinity concentrations reduced seed germination 

significantly. These reductions amounted to 7, 19 and 33% for 100, 150 and 200 mM NaCl, 

respectively and, 14 and 24% for 75 and 100 mM Na2SO4, respectively (Figure 4A). The 

interactions of salt treatment and genotypes were significant in all the stress concentrations applied, 

except for 100 mM NaCl. The effect induced by NaCl stress was stronger than Na2SO4, when equal 

elemental Na+ concentrations were considered. Significant genotype-by-treatment interactions were 

also observed in all salt treatments applied, except for 100 mM NaCl. The h2 estimates were 0.58 

under 200 mM NaCl and 0.85 under 100 mM NaCl, while the coefficient of variation (CV) increased 

from 3 to 8% with the increase in the salt concentrations. The genotypes responded similarly to salt 

stress of equal elemental sodium (Na+), as indicated by their comparable values of h2 and CVs 

(Table 2). 

 

In DW, genotypes responded differently to salt stress as well as between the salt treatments across 

the four experiments at seedling stage (Table 2). Salt stress significantly decreased the DW by 51% 

in E2, 50.6% in E4, 39% in E3 and 18.6% in E1 (Figure 4B). Significant genotypes x treatment 

interactions were observed in E2 and E3. The h2 estimates of DW in response to salt stress varied 

from 0.42 in E1 to 0.73 in E2 and the observed CV of  ≥ 15%.  
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Highly significant (p<0.01) differences among genotypes, salt treatment and their interactions were 

detected at all the four field trials. Salt stress caused the highest yield reduction in Dongying (82.8%) 

and the lowest in Karshi (10.1%). The CV ranged from 16.25% Karshi to 71.6% Dongying, while the 

highest h2 estimates were observed in Urgench with 0.76 (Table 2). 

 

Table 2 Analysis of ST traits at germination, seedling and maturity growth stages. Shown are: MS-mean 

squares of 150 genotype (G) and treatment (T), CV - coefficient of variation and h
2
- heritability. All the 

experiments were replicated three times and the number of stars indicates the significance level, one star 

= p<0.05 and two stars=p<0.01 

Stage Experiments MSG MST MSG*T CV ST h
2
 

  Germination score after 10 days of salt stress     

 100 mM NaCl 0.56** 48.61** 0.08
ns

 2.87 0.85 

 150 mM NaCl 0.55** 564.20** 0.20** 5.12 0.76 

Germination 200 mM NaCl 0.49** 1862.09** 0.36** 7.94 0.58 

  75 mM Na2SO4 0.44** 307.59** 23.5** 4.23 0.8 

 
100 mM Na2SO4 0.49** 1149.08** 0.40** 7.67 0.6 

  Dry shoot weight  (g/plant) after 25 days of salt stress     

  100 mM NaCl (E1)  716.74** 191.25** 91.01
ns

 14.57 0.42 

 Seedling 100 mM NaCl (E2)  795.92** 3172.41** 357.04** 16.99 0.57 

 
75 mM Na2SO4 (E3)  583.50** 2104.01** 249.94** 14.74 0.63 

  75 mM Na2SO4 (E4) 210.69* 1716.28** 125.23
ns

 15.45 0.73 

  Grain yield (t/ha)     

  Urgench 1054.07** 494.71** 281.33** 23.07 0.76 

Mature  plants Syrdarya 288.18** - - 16.41 0.5 

  Karshi 747.00** 188.77** 437.95** 16.25 0.57 

  Dongying 217.13** 1791.53** 199.11* 71.6 0.23 
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Figure 4 Boxplot showing the effect of salt stress on germination vigour (a) and shoot dry mass (b) at 

germination and seedling stages, respectively. E1, E2, E3 and E4 are the four independent screening 

experiments conducted at the seedling stage in both control and salt stress conditions. 

 

Correlations between ST estimates across growth stages  

Significant positive and negative correlations occurred between some pairs of ST traits, based on 

genotype means, across the growth stages (Table 3). There were significant positive correlations 

between ST estimates at the germination, and the seedling growth stages, but no apparent significant 

trend was detected between ST traits for GY at the mature growth stage. Across the growth stages, the 

DW response to Na2SO4 salt increased with the decrease in the germination vigor in response to 100 

mM Na2SO4, 150 mM NaCl and 200 mM NaCl salt stress. All the significant correlations observed 

between traits at germination and adult plant stages were negative. However, ST for DW estimated 

under NaCl salt stress showed negative and positive correlation with the ST for GY in Urgench and 

Dongying field trials, respectively.  

 

Analysis of the shoot K
+
 and Na

+
 concentration  

Highest K+ accumulation was found in the stem, and was significantly different from the amount in the 

3rd leaf and/or RLP after 25 days of stress (Figure 5). The K+/Na+ ratios in the 3rd leaf and stem were 

similar to each other and varied significantly from the K+/Na+ ratio in the RLP. The K+ and Na+ 

concentrations in the 3rd leaf, stem and RLP after 22 days of salt stress were positively correlated with 
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each other. The shoot K+/Na+ ratio value was influenced stronger by the sodium than by potassium 

(Table 4). The shoot and root water loss due to the salt stresses applied were positively correlated with 

each other. Data indicated that the shoot K+ was negatively correlated with root water loss, shoot water 

loss (NaCl) and shoot water loss (Na2SO4); however, shoot Na+ concentration and  shoot K+/Na+ ratio 

did not correlate  with the root/shoot water loss. 

 

 

Table 3 Pearson correlation coefficients among ST estimates of the genotype mean across the three 

growth stages 

Traits 

 
1 2 3 4 5 

 

6 7 

 

8 9 10 

  

G 

 

S 

 

AP 

 1
G75mM Na2SO4 

 

1 

           2
G100mM Na2SO4 

 

0.517
**

 1 

          3
G100mM NaCl 

 

0.283
**

 0.188
*
 1 

         4
G150mM NaCl 

 

0.495
**

 0.516
**

 0.426
**

 1 

        5
G200mM NaCl 

 

0.563
**

 0.554
**

 0.242
**

 0.528
**

 1 

       6
DSWNaCl 

 

-0.009 -0.013 0.04 0.038 0.006 

 

1 

     7
DSW Na2SO4 

 

-0.101 -0.163
*
 -0.024 -0.211

**
 -0.284

**
 

 

0.171
*
 1 

    8
GYUrgench 

 

0 -0.215
**

 -0.069 -0.071 -0.117 

 

-0.178
*
 -0.081 

 

1 

  9
GYKarshi 

 

0.026 -0.025 0.015 0.027 -0.018 

 

0.014 0.081 

 

-0.071 1 

 10
GYDongying 

 

-0.245
**

 -0.455
**

 0.054 -0.026 -0.235
**

 

 

0.214
**

 0.021 

 

0.116 0.038 1 

**. Correlation is significant at the 0.01 level (2-tailed); *. Correlation is significant at the 0.05 level (2-

tailed); G (germination score), S and AP are germination, seedling and mature plant, respectively. 
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Figure 5 Comparison of the amount of K

+
 (A), Na

+
 (B) accumulations (in %) and the K

+
/Na

+
 ratio of the 150 

genotypes at different shoot parts: 3
rd

 leaves (blue), stem (red) and remaining leaf parts (RLP) (green), after 

25 days under salt stress. Letters on top of the error bars for each shoot parts indicate comparison of the 

means. Means with the same letter are not significantly different from each other. 

 

 
 

 

 

Table 4 Correlation coefficients of the genotype mean of root and shoot water losses caused by salt stress 

conditions and the shoot accumulated K
+
 and Na

+ 
after 25 days under salt stress 

Traits RWLNaCl RWLNa2SO4 SWLNaCl SWLNa2SO4 Shoot K
+
 Shoot Na

+
 Shoot K

+
/Na

+ 
ratio 

RWLNaCl 1 

      RWLNa2SO4 .348** 1 

     SWLNaCl .705** .317** 1 

    SWLNa2SO4 .311** .650** .586** 1 

   Shoot K
+
 -0.099 -.235** -.198* -.259** 1 

  Shoot Na
+
 0.111 0.036 0.004 -0.045 -0.015 1 

 Shoot K
+
/Na

+
 -0.072 -0.089 -0.067 -0.046 .393** -.817** 1 

RWL and SWL are root and shoot water loss due to NaCl and Na2SO4 salt stress, respectively 
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ST rankings of the germplasm  

Based on the overall ST rankings (Data not shown), 33, 39, 45 and 34 genotypes were considered as 

tolerant, moderately tolerant, moderately sensitive and sensitive to salt stress, respectively. The mean 

ST estimates ranged from 0.72 in tolerant genotypes to 0.63 in sensitive genotypes (Figure 6A), while 

the overall mean was 0.67. The PC1 which accounted for 75.49% of the observed variation in the cluster 

analysis plot clearly separated the 33 tolerant and 34 sensitive genotypes into two major groups (Figure 

6B). While tolerant genotypes showed higher capacity for K+ uptake in the 3rd leaf and stem (in 

comparison with the population average) than the sensitive genotypes (Figure 7A), the salt sensitive 

genotypes had higher accumulated Na+ than the salt tolerant genotypes in the three shoot parts 

considered (Figure 7B). These results translated to the significantly higher shoot K+/Na+ ratio observed 

in the tolerant genotypes compared to the sensitive ones (Figure 7C). A total of 22 tolerant and 13 

sensitive genotypes exhibited consistent response to salt stress in at least two growth stages (Table 5). 

Among them, three extreme tolerant (Altay2000, 14IWWYTIR-19 and UZ-11CWA-8) and one extreme 

sensitive (Bobur) genotypes were identified across the three growth stages.   
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Table 5 Salt tolerant and sensitive genotypes identified based on the ST values in more than one growth 

stages. √ and x - indicate the detected tolerant and sensitive genotypes in the corresponding stage, 

respectively. 

 

Entry Name Germination Seedling mature field plant 

 Tolerant genotypes 

Altay2000 √ √ √ 

UZ-11CWA-8 √ √ √ 

14IWWYTIR-19 √ √ √ 

14IWWYTIR-10 √ √  

14IWWYTIR-20 √ √ 

 UZ-11CWA-17 √ √ 

 10AYTIR-9014 √ √ 

 Esaul √ √ 

 KR10-015 √ √ 

 Demir2000 

 

√ √ 

Gerek79 

 

√ √ 

Esook3 

 

√ √ 

Katia 

 

√ √ 

14IWWYTIR-7 

 

√ √ 

14IWWYTIR-8 

 

√ √ 

14IWWYTIR-35 

 

√ √ 

UZ-11CWA-5 

 

√ √ 

UZ-11CWA-6 

 

√ √ 

UZ-11CWA-11 

 

√ √ 

14IWWYTIR-30 √ 

 

√ 

14IWWYTIR-38 √ 

 

√ 

169/2004 √ 

 

√ 

 Sensitive genotypes 

Bobur x x x 

İzgi2001 x x 

 Konya2002 x x 

 UZ-11CWA-4 x x  

10AYTIR-9047 x x 

 Oktyabrina x x 

 14IWWYTIR-14 

 

x x 

UZ-11CWA-13 

 

x x 

UZ-11CWA-24 

 

x x 

10AYTIR-9074 

 

x x 

Turkmen-basy 

 

x x 

Elomon 

 

x x 

KR10-028 x 

 

x 
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Figure 6 Illustrated the representation of the studied genotypes based on the ST rankings. (A) ST status of 

all the 150 genotypes. The dotted line represents the average ST value of the entire population. (B) Scatter 

plot showing clustering of the the tolerant and sensitive genotypes based on the genotype variance-

covariance matrix of their ST rankings across the three growth stages. 
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Figure 7 Comparison of elemental constitution of different shoot parts of the studied genotypes. (a–c) show 

the concentration (%) of K
+
, Na

+
 and K

+
/Na

+
 ratio, respectively, for the 34 sensitive, entire studied 

population and 33 tolerant wheat genotypes after 25 days under salt stress. RLP is the ion concentration in 

the bulked leaves without the 3rd leaf, whereas the shoot is the mean ion estimates of the three shoot parts. 

Letters on top of the error bars for each shoot parts indicate comparison of the means. Means with the same 

letter are not significantly different from each other 
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Analysis of contrasting genotypes for membrane stability and osmotic potential  

The data obtained from the measurements indicate that salt stress affected both the EL and ψπ of the 

tolerant (Altay2000 and UZ-11CWA-8) and sensitive (UZ-11CWA-24 and Bobur) genotypes (Figure 8). 

The amount of electrolytes leaked from the membranes of the sensitive genotypes was much higher than 

that observed in the tolerant genotypes after 8 weeks of salt stress (Figure 8A). The rate of EL of up to 

11% and 2% due to salt stress were calculated for the sensitive and tolerant genotypes, respectively. 

Application of salt stress induced an increase in the osmotic potential of both tolerant and sensitive 

genotypes, however, the increase was highest in the sensitive genotypes (654 and 660 Osmol/Kg for 

UZ-11CWA-24 and Bobur, respectively) compared to the tolerant (610 and 575 Osmol/Kg for 

Altay2000 and UZ-11CWA-8, respectively) genotypes (Figure 8B). 

 

       

Figure 8 Rate of release of electrolytes into deionized water per-min intervals (a) and osmotic potentials (b) 

for the leaf segments of the contrasting ST genotypes: tolerant Altay2000 and UZ-11CWA-8 and sensitive 

UZ-11CWA-24 and Bobur under salt stress and control conditions. Letters on top of the error bars indicate 

comparison of the genotype means under control and salt stress conditions. Means with the same letter are 

not significantly different from each other 
 

 

 

Analysis of contrasting genotypes for leaf chlorophyll fluorescence 

The pattern of fluorescence transients (Fo, Fj, Fi, Fm and Fv) varied among the genotypes under salt 

stress (Figure 9A), but showed a similar trend under non-saline conditions. Salt stress significantly 

inhibited the fluorescence transients across all the OJIP phases; but the inhibition was more intense on 

the two extreme sensitive genotypes. A decrease in the Fm/Fo in tolerant genotypes (up to -2.95% and -

1.24% for Altay2000 and UZ-11CWA-8) and an increase in sensitive ones (up to +3.0% and +4.09% for 

UZ-11CWA-24 and Bobur) were observed after application of salt stress (Table 6). The Fv/Fo and 
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Fv/Fm also showed similar trend between the two groups. The stress impact on the PI(ABS) was 

genotype dependent. It increased by 7.74% in Altay2000 but decreased by 2.67%, 6.12% and 8.67% in 

UZ-11CWA-8, UZ-11CWA-24 and Bobur, respectively. Salt stress also affected negatively all the energy 

fluxes, except ABS/RC and DIo/RC for Altay2000; however, the effect was more severe on the salt 

sensitive genotypes (Table 6). The fix area estimates increased in all the genotype under salt stress (Fig 

9B), but the increase was much higher (up to +16%) in tolerant genotypes than in sensitive genotypes 

(up to +8%). The effects of salt stress on some of the physiological parameters described above resulted 

in the reduction of DW in both the tolerant and sensitive genotypes, although the reduction was much 

pronounced in the sensitive (79% for UZ-11CWA-24 and 76% for Bobur) than in tolerant (21% for 

Altay2000 and 24% for UZ-11CWA-8) ones (Figure 10).  

 

 
Figure 9 Effect of salt stress on the chlorophyll a fluorescence and OJIP test parameters of light- 

adapted leaves of two tolerant (Altay2000, UZ-11CWA-8) and two sensitive wheat genotypes (UZ-

11CWA-24) identified in this study. (a) Chlorophyll a fluorescence kinetics curve (Fo, = fluorescence 

intensity at 50 μs; Fj = fluorescence intensity at J-step (at 2 ms); Fi = fluorescence intensity at i-step (at 

60 ms); Fm = maximal fluorescence intensity; Fv = maximal variable fluorescence). (b). Fix area 

representing the area above the chlorophyll fluorescence curve between Fo and Fm (size of the 

plastoquinone pool). Letters on the error bars indicate comparison of the genotype means under control 

and salt stress conditions. Means with the same letter are not significantly different from each other. 
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Table 6 Effect of salt stress on the energy fluxes of two salt tolerant (in asterisk) and two sensitive wheat 

genotypes. Fm/Fo, Non-photochemical loss in PSII; Fv/Fo, Efficiency of the water-splitting complex; 

Fv/Fm, Maximum quantum yield of PSII; PI(ABS), Performance index; ABS/RC, Effective antenna size of 

an active reaction centre (RC); TRo/RC, Maximal trapping rate of PSII; ETo/RC, Electron transport in an 

active RC; DIo/RC, Effective dissipation in an active RC. 

 

Energy fluxes Genotypes control stress Effect of salt (%) 

Fm/Fo Altay2000* -4.46 -4.33 +2.95 

 
UZ-11CWA-8* -4.44 -4.38 +1.24 

 
UZ-11CWA-24 -4.37 -4.50 -3.01 

 
Bobur -4.40 -4.58 -4.09 

Fv/Fo Altay2000* -3.46 -3.33 +3.80 

 
UZ-11CWA-8* -3.44 -3.38 +1.61 

 
UZ-11CWA-24 -3.37 -3.50 -3.90 

 
Bobur -3.40 -3.58 -5.30 

Fv/Fm Altay2000* -0.77 -0.77 +0.88 

 
UZ-11CWA-8* -0.77 -0.77 +0.38 

 
UZ-11CWA-24 -0.77 -0.78 -0.89 

 
Bobur -0.77 -0.78 -1.19 

PI(ABS) Altay2000* 1.55 1.43 +7.47 

 
UZ-11CWA-8* 1.50 1.54 -2.66 

 
UZ-11CWA-24 1.46 1.55 -6.12 

 
Bobur 1.50 1.63 -8.67 

ABS/RC Altay2000* 2.94 2.95 0.49 

 
UZ-11CWA-8* 2.99 2.92 -2.34 

 
UZ-11CWA-24 3.12 2.97 -4.83 

 
Bobur 3.13 2.94 -6.23 

TRo/RC Altay2000* 2.28 2.27 -0.34 

 
UZ-11CWA-8* 2.31 2.25 -2.7 

 
UZ-11CWA-24 2.41 2.31 -3.98 

 
Bobur 2.42 2.29 -5.04 

ETo/RC Altay2000* 1.28 1.26 -1.31 

 
UZ-11CWA-8* 1.31 1.28 -2.15 

 
UZ-11CWA-24 1.38 1.31 -5.15 

 
Bobur 1.40 1.31 -6.3 

DIo/RC Altay2000* 0.66 0.69 3.33 

 
UZ-11CWA-8* 0.67 0.67 -1.09 

 
UZ-11CWA-24 0.71 0.66 -7.59 

  Bobur 0.72 0.64 -10.25 
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Figure 10 Salt stress intensity (SI)  on the sensitive (UZ-11CWA-24 and Bobur) and tolerant (Altay2000 and 

UZ-11CWA-8) wheat genotypes grown for 6 weeks in hydroponics under 100 mM NaCl stress SI calculated 

as: 𝑆𝐼 = 100[1 − (𝐷𝑊𝑠𝑡𝑟𝑒𝑠𝑠 𝐷𝑊𝑐𝑜𝑛𝑡𝑟𝑜𝑙⁄ )] using 14 plants for each genotype. Blue bars represent controls 

and red stress variants, while the letters on top of the error bars for each genotype indicate comparison of the 

means under control and salt stress conditions. Means with the same letter are not significantly different 

from each other. 
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DISCUSSION 

Access to appropriate genetic diversity is critical to current and future breeding efforts to improve wheat 

yield in the areas affected by soil salinity. Considerable efforts have been made so far to identify salt 

tolerant wheat genotypes, but with few studies reporting on the simultaneous evaluations of salinity 

tolerance in more than one growth stages. In the present study, 150 winter and facultative wheat 

germplasm were evaluated for ST at germination, seedling stage and mature plants grown under field 

conditions to identify genotypes that can be used in breeding and development of new wheat varieties 

with improved and desirable level of salt tolerance and for further genetic studies. The studied 

germplasm showed significant genetic variation for the traits measured across the growth stages. The 

germination vigor, dry shoot weight and grain yield were negatively affected by salt stress as already 

reported (Gomes-Filho et al., 2008; Munns and Tester, 2008; Rasheed, 2009). However, the variation in 

the plant growth and development in response to the applied salt stress provided an opportunity to 

identify genotypes with contrasting attributes under stress amongst the germplasm used. Salt-tolerant 

genotypes would differ from salt-sensitive ones by allowing optimal growth under saline conditions. 

The response to the applied salt stress could partly be attributed to inherent different genotype 

superiority due to the moderate to high heritability estimates in the studied germplasm set. 

 

The ST estimates for each salt concentration at germination stage correlated positively with each other, 

suggesting similar mechanisms controlling salt tolerance at the germination stage. The within growth 

stage correlation observed for ST traits at both germination and seedling stages in response to both NaCl 

and Na2SO4 applied stress provides evidence that both salt types are surrogate and, can be used for the 

evaluation of wheat response to salt stress at the early seedling growth stage. Most of the ST estimates 

at germination stage were significant and negatively correlated with ST estimates at seedling stage. The 

mechanisms of salt stress response are highly growth stage-specific and change during the plant life 

cycle (Walia et al., 2005). 

 

Ion analysis revealed that the accumulated K+ in the stem after stress was significantly higher than that 

accumulated in the 3rd leaf and RLP but, no significant difference was found between K+ concentration 

in the 3rd leaf and RLP. This was in line with the findings in maize (Kobaissi et al., 2014) and barley 

(Booltink and Verhagen, 1997). In contrast, there was no significant difference among the accumulated 

Na+ in 3rd leaf, stem and RLP, although highest and lowest amounts were found in the stem and 3rd leaf, 

respectively. The high K+ observed in the stem indicates that the ion is transported preferentially 

through the stem channels to other plant parts under salt stress conditions. The K+ accumulation in the 
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3rd leaf, stem and RLP were positively correlated among each other, an indication that K+ is mobile 

within the plant and, can be transported from the stem to the other shoot parts. The increase in the shoot 

K+ was accompanied by a significant decline in the shoot Na+, showing antagonism between K+ and Na+ 

(Elhamid et al., 2014). Antagonism exits between K+ and Na+ in the site of ion uptake due to direct 

competition of both ions for absorption in the plants (Epstein, 1966). 

 

The rate of root and shoot water loss due to salt stress correlated positively with each other, suggesting 

that shoot water loss is a direct consequent of the decreased water absorption capacity of root systems 

due to high osmotic potential exerted by salt stress around the plant rooting zone. The shoot K+ 

concentrations increased with the decrease in the rate of root and shoot water loss, an indication that 

maintaining optimum K+ status is favorable for water conservation in plant and would ultimately 

improve the plant growth and survival under salt stress. Reports have also indicated that sufficient K+ 

status would contribute to greater water retention in plant tissues, due to its vital role in the osmotic 

adjustment and turgor regulation during stomatal movement that affects transpiration and photosynthetic 

rates and xylem hydraulic conductance (Guo et al., 2007, Tuna et al., 2010; Wang et al., 2013b; Sá et 

al., 2014). 

Some of the genotypes analyzed in this study have been previously reported to be resilient to different 

abiotic and biotic stresses. Four genotypes with high ST estimates, have been shown to be resistant to 

different stresses: Gerek-79 and Altay-2000 to drought, salt and cold resistant genotypes (Kara and 

Kara, 2010; Mutlu et al., 2009; Akfirat and Uncuoglu, 2013), Katia to zinc and drought tolerance 

(ICARDA, 2005) and Demir2000 to lodging, cold, stripe and leaf rust resistant (Mazid et al., 2009), 

have shown to be resistant to different stresses. However, the salt stress sensitive genotype Bobur is 

susceptible to stripe rust at seedling and mature stages (Ziyaev et al., 2013). These findings may suggest 

cross-tolerance among these stress factors in wheat. Mantri et al. (2010) reported that plant responses to 

fungal infection (Ascochyta blight) are similar to high-salinity stress. 

 

Among the genotypes identified in this study showing contrasting response to salt stress (Table 1), 

Atlay2000, 14IWWYTIR-19 and UZ-11CWA-8 were tolerant, while Bobur was sensitive, across the three 

growth stages. These genotypes could serve as additional sources of ST for exploitation in breeding 

programs and genetic studies. The ionomics revealed that the tolerant genotypes had lower shoot Na+ 

and higher shoot K+ concentration than the sensitive ones. Salt tolerant crops are characterized with 

higher affinity of K+ over Na+ uptake (Teakle and Tyerman, 2010, Kausar et al., 2014). The 

significantly higher shoot K+/Na+ ratio compared to the sensitive ones is a consequence of the high 

http://link.springer.com/search?facet-author=%22S.+Mutlu%22
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shoot K+ and low shoot Na+ concentration. Optimum K+/Na+ ratio plays a vital role in maintaining an 

ideal osmotic and membrane potential for cell volume regulation in plant under salt stress and, has 

contributed to salt tolerance in wheat (El-Hendawy et al., 2009).  Thus the difference in ST among the 

two extreme genotypes could be attributed to their K+/Na+ discrimination ability associated with the 

machinery of water flow in plant under salt stress. The presented data showed increased levels of EL in 

sensitive genotypes caused by salt stress, whereas the EL was low in the tolerant genotypes. This 

suggests a negative impact of the salt stress on the cell membrane integrity. Salt stress would increase 

reactive oxygen species that often results in programmed cell death in plant (Demidchik et al., 2014). 

The rate of EL which measures the amount of membranes leaked over a given time period due to 

membrane injury can be considered useful screening protocol for discriminating among wheat 

genotypes for ST. Salt stress induced an increase in the leaf osmotic potential in both groups, but the 

impact was less in Atlay2000 and UZ-11CWA, which could be attributed to efficient osmotic adjustment 

in the tolerant genotypes due to the higher shoot Na+/K+ ratio. 

 

The chlorophyll fluorescence transients (Fo, Fj, Fi, Fm and Fv) in both tolerant and sensitive genotypes 

declined (Figure 9A) under saline conditions but the sensitive genotypes were more severely affected. 

The decrease in Fo due to salt stress indicates an increased thermal dissipation (Guidi et al. 2002, 

Bussotti et al. 2011), while the decrease in Fv may be attributed to the pigment losses due to salt injury. 

Salinity stress reduces photosynthesis by inhibiting photosystem II complex (PSII) at both acceptor 

[QA] and donor side (oxygen evolving complex OEC) and destruction of chlorophyll pigments by 

accumulation of toxic ions (Chen and Murata 2011). However, the higher fluorescence transients 

observed in the tolerant genotypes can be attributed to higher number of deactivating PSII and PSI 

associated with increase in the excitation energy (increased energy trapping capacity of PSII) and 

decrease in the photochemical quenching coefficient (Krause and Weis, 1991, Guidi et al., 2002).  Baker 

(2008) suggested the use of fluorescence induction parameters to detect metabolic perturbations by 

abiotic stresses. Under salt stress, the Fv/Fm, Fo/Fm and Fv/Fo declined in tolerant genotype and 

increased in the sensitive genotypes, suggesting different mechanisms controlling these salt-responsive 

traits in wheat, making them useful parameters for distinguishing salt stress tolerant from sensitive 

genotypes. However, the quantum yield of PSII as measured by Fv/Fm was found to be insensitive to 

salt stress. The PI(ABS) was also affected by salt stress (increased by +7.47% in Atlay2000 and 

decreased by -2.66%, -6.12% and -8.67% in UZ-11CWA-8, UZ-11CWA-24 and Bobur, respectively), 

but no noticeable pattern was observed between the tolerant and sensitive genotypes and could be 

considered genotype specific. The fix Area was twice higher in the tolerant genotypes compared to the 
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sensitive ones. Salt stress also affected the energy fluxes including ABS/RC, TRo/RC, ETo/RC and 

DIo/RC were mostly negative among the genotypes but the effect was more severe on the sensitive 

genotypes. From these results, it can be anticipated that salt stress reduced energy absorption, energy 

trapping efficiency and conversion of excitation energy into electron flow by damaging oxygen 

evolving complex, over reduction of QA resulting in occurrence of chronic photo-inhibition. 

 

In conclusion, the ST index can be utilized to discriminate against genotypes response to salt stress in 

wheat. The identified contrasting wheat genotypes clearly showed differential physiological responses 

mechanisms to salt stress. The tolerant genotypes (Atlay2000 and UZ-11CWA-8) exhibited higher shoot 

K+/Na+ ratio, higher membrane stability, lower osmotic potential and higher rates of PSII photochemical 

activities than sensitive (UZ-11CWA-24 and Bobur) genotypes which resulted in the significantly higher 

dry matter observed under salt stress condition. These parameters might be routinely used to screen for 

salt tolerance in plants and the identified genotypes could be considered for inclusion in wheat breeding 

program and in future genetic studies for salt tolerance.  
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CHAPTER 3 

 

 

Allelic variations and differential expressions detected at QTL loci for salt stress 

tolerance in wheat  

 

 

 

 

BC  Oyiga1,2,  RC Sharma3, M Baum4,  FC Ogbonnaya4,5, J Léon1,  A  Ballvora1,* 

 
1INRES Plant Breeding, Rheinische Friedrich-Wilhelms-University, Bonn, Germany 
2Center for Development Research (ZEF), Friedrich-Wilhelms-University, Bonn, Germany 
3International Center for Agricultural Research in the Dry Areas (ICARDA), Tashkent, Uzbekistan 
4International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco 
5Grains Research and Development Corporation, Barton, ACT 2600, Australia 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter has been published in Plant, Cell and Envrionment (DOI: 10.1111/pce.12898), with minor 

additions. 

 



54 
 

ABSTRACT 

The increasing salinization of arable lands is a continuing threat to maintaining crop productivity. This 

study aimed to identify genes conferring salt tolerance (ST) in order to understand the mechanistic basis 

of salt stress tolerance and to develop breeding and selection strategies in wheat. A genome-wide 

association study and gene expression analyses were performed on 150 winter wheat germplasm 

characterised for ST agronomic traits at three growth stages and for ionic (K+, Na+ and K+/Na+ ratio) 

parameters to dissect the genetic architectures for ST. A total of 187 significant marker-trait associations 

(MTAs), representing 37 distinct quantitative trait loci (QTL) regions, were identified for the measured 

traits using multilocus mixed linear model (MMLM-P+K). Of these, four QTL on chromosomes 1BS, 

2AL, 2BS and 3AL were linked to ST-related traits across the three growth stages. Novel ST QTL loci 

were identified on chromosomes 1BS, 1DL, 5BS and 5BL. Allelic variations were detected in the 

expressed sequence tags (ESTs) of the identified candidate genes. Comparative gene expression 

analyses performed using salt-tolerant versus salt-sensitive wheat genotypes under non-saline and saline 

conditions identified transcriptionally regulated genes in the contrasting panel. These genes were 

differentially expressed in the contrasting wheat genotypes, suggesting that they contribute to ST in 

wheat. The identified loci or genes can serve as direct targets for both genetic engineering and selection 

for wheat trait improvement. 

 

INTRODUCTION 

About 800 million hectares of global arable land are salt-affected (FAO, 2008). The extent and severity 

of salt-affected agricultural land is predicted to worsen as a result of inadequate drainage of irrigated 

land, rising water tables and global warming (Munns and Gilliham, 2015). It has been estimated that 

20% of the irrigated land in the world is presently affected by salinity excluding the regions classified as 

arid and desert lands (Yamaguchi and Blumwald, 2005). Recent estimates indicated that efforts to 

combat soil salinity are annually gulping about 27.3 billion US dollars (Qadir et al., 2014). In rain fed 

agriculture production systems where transient salinity occurs, yields can be well below theoretical for 

the rainfall received, when subsoil salinity is present, and unused water at harvest is one of its symptoms 

(Sadras et al., 2002).  Wheat (Triticum aestivum L.) is the third most important cereal crop worldwide, 

with an estimated annual production of about 736 million metric tons (FAO, 2015). With the world’s 

population expected to reach 9 billion by 2050 coupled with the growing salinization in arable lands, an 

increase in wheat production would be paramount to meet the global demand. Agronomic and 

engineering solutions are being exhausted in the attempt to minimize the impact of saline land on global 
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food production. The way forward is to breed greater salt tolerance into present crops and to introduce 

new species for cultivation (Munns and Gilliham, 2015). Consequently, access to new genetic resources 

is important in identifying valuable genetic diversity that could be deployed in breeding for ST in wheat.  

 

Under saline conditions, crops exhibit slower growth rates, increased leaf senenses, reduced tillering 

and, over months, the reproductive development is affected (Munns and Tester, 2008), resulting in 

significant grain yield reduction. The effect of salinity on crops is due to osmotic stress caused by the 

accumulation of Na+ and Cl- ions to toxic levels within the plant cells and its interference with the 

uptake of mineral nutrients (Mba et al., 2007). The mechanism of plant response to salt stress is a 

complex phenomenon that involves several genetic, physiological and environmental factors occurring 

at different levels including cellular, tissue and whole plant level. The cell-based synthesis of osmo-

protectants and the mechanisms of ion-homeostasis are essential determinants for salt tolerance (Borsani 

et al., 2003). As the specialization of plant cell progress during ontogeny, the adaptive mechanisms to 

tolerate salt stress start to differentiate, giving rise to the coordination of all the cellular, tissue and organ 

responses which are needed for proper tolerance response. It has been suggested that salt tolerance (ST) 

is developmental growth stage dependent (Haq et al., 2010; Turki et al., 2014), but there may exist the 

possibility of salt-stress response mechanisms that are active across all the different plant growth stages. 

The discovery of key genetic switches associated with genes controlling ST at various growth stages 

would allow not only for characterization of the genetic architectures of salt stress responses, but would 

also facilitate breeding for improved ST.  

 

Genetic diversity for salinity tolerance has been limited in bread wheat. One land race Kharcia 65 

played a major role in salt tolerant varietal development in India where the cultivars KRL1-4 and later 

KRL 19 emerged (Ogbonnaya et al., 2013). Dreccer et al. (2004) identified synthetic hexaploid wheat 

that possessed considerable variation for ST based on Na+ exclusion. Similarly, Colmer et al., (2006) 

reviewed the potential of wild relatives to contribute towards improving salinity tolerance. The salinity 

tolerance of bread wheat is based on a relatively high ability to exclude Na+ from the leaf blades and an 

overall increase in the K+/Na+ ratio, in some cases associated with increased K+ uptake. Several studies 

have reported on the genetic variation for ST at various growth stages in wheat (Schachtman et al., 

1992; Munns et al., 2000; El-Hendawy et al. 2005; Rahnama et al., 2011; Ahmad et al., 2013; Sardouie-

Nasab et al., 2014), providing great opportunity for ST improvement. However, the drawback of these 

studies is their inability to simultaneously analyze the genetic variation for salt tolerance at three key 

growth stages using the same population. In addition, most of the efforts towards exploring the genetic 
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variation to identify loci associated with salinity tolerance relied on the classical biparental linkage-

mapping that are characterized by poor resolution in QTL detection, costly, with considerable amount of 

time needed to develop appropriate mapping population and results in identifying limited number of 

alleles that can be studied simultaneously at any given locus (Flint-Garcia et al., 2003). But, once 

mapping is developed, it is then necessary to validate the results in different breeding populations.  

 

Genome-wide association studies (GWAS) has emerged as an alternative approach that is maximizing 

recent advances in genomic tools and statistical methods by exploiting cumulative recombination and 

mutation events that occurred in a population and taking into account numerous alleles present in the 

population to identify significant marker-trait associations (MTAs). GWAS has proven to be useful tool 

to dissect the complex genetic mechanisms governing biotic (Jighly et al., 2015; Zegeye et al., 2014) 

and abiotic (Long et al., 2013; Turki et al., 2014; Edae et al., 2014) stress tolerance in many crops. The 

inclusion of population structure and kinship matrixes in GWAS model during analysis accounts for 

false positives and thus, improves its effectiveness and power to detect genetic variants for the trait of 

interest. In wheat, there has been little research into the identification of large-scale salt tolerance loci 

using GWAS for different stages of growth within the same germplasm simultaneously. It is well 

known that several genes are differentially expressed in response to a range of biotic and abiotic stresses 

including drought, heat and salinity (Mukhopadhyay et al., 2004; Kang et al., 2011; Yarra et al., 2012; 

Li et al., 2015; He et al., 2015). 

 

In this study, the genetic variation for ST across three growth stages (germination, seedling hydroponics 

and all stage-field conditions) were exploited to comprehensively evaluate and identify QTL conferring 

salt tolerance in 150 winter wheat cultivars using GWAS approach. Further, the probable causative 

genes controlling the observed variation were investigated and, their gene expressions and amino acid 

sequences investigated in contrasting ST wheat genotypes at transcription regulational level. 
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Materials and Method 

Plant Material 

The association panel consists of 150 internationally-derived wheat genotypes previously described in 

Oyiga et al. (2016). 

 

Phenotypic screening 

The phenotypic screening for salt stress tolerance at three growth stages and the statistical analyses of 

the traits have been described in Oyiga et al. (2016). Details of all the traits measured are presented in 

Table 1. Briefly, data on the germination potential were collected under two salt types (NaCl and 

Na2SO4) in several concentrations: 100, 150, 200 mM for NaCl and 75, 100 mM for Na2SO4 plus 

control (without salt). At seedling growth stage, traits including fresh shoot weight (FSW), fresh root 

weight (FRW), dry shoot weight (DSW) and dry root weight (DRW) were collected in four independent 

hydroponic experiments, designated as E1, E2, E3 and E4, with three replications for each experiment 

under saline and non-saline conditions. The amount of biomass (for short and root) accumulation due to 

salt stress for individual genotype was calculated as difference between DSW and/or DRW values in 

non-saline and saline conditions. The adult field grown plants (AFP) trials were conducted under saline 

and non-saline soil conditions in three different field locations: Urgench (Uzbekistan; 41° 32'60N and 

60°37'60E, 91 meters above sea level (masl)), Karshi (Uzbekistan; 38°52'N and 65°48'E, 416 masl) and 

Dongying (China; 118°33'-119°20'E, 37°35'-38°12'N, 47 masl). The soil properties of each location 

have been described (Oyiga et al., 2016). Data collected include: grain yield (GY), plant height (PHT), 

days to maturity (DMT), days to heading (DHD), days to grain filling (GFP) and thousand kernel 

weights (TKW). The salt tolerance indices of all the traits measured were also calculated according to 

Genc et al. (2010), and were also used in the GWAS studies.  

 

Leaf Na
+
 and K

+
 content 

The amounts of Na+ and K+ ions in the third leaf of all the genotypes were measured, after 25 days of 

growth under saline stress (150 mM NaCl) conditions, from three pooled dried plants of each genotype. 

The concentration of each ion (Na+ and K+) was assessed by Atomic Absorption spectrometer (type 

2380; Perkin Elmer, Wellesley, MA, USA) as described in Oyiga et al. (2016) and subsequently, the 

K+/Na+ ratios were calculated. 
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Table 1 Description of the taits studied on the diversity panel of 150 wheat genotypes 

Traits Abbreviation Descriptions 

Germination stage (GS) across five different salt concentrations 

0 mM NaCl - Control  

100 mM NaCl - Screening with 100 mM NaCl salt 

150 mM NaCl - Screening  with 150 mM NaCl salt 

200 mM NaCl - Screening  with 200 mM NaCl salt 

75 mM Na2SO4 - Screening  with 75 mM Na2SO4 salt 

100 mM Na2SO4 - Screening  with 100 mM Na2SO4 salt 

Seedling Stage (SS) in four independent experiments - E1, E2, E3 and E4 

Fresh shoot weight FSW  
Fresh shoot weight (g), measured after 24d in both control and saline 

conditions 

Fresh root weight FRW 
Fresh root weight (g), measured after 24d in both control and saline 

conditions 

Dry shoot weight DSW Dry shoot weight (g), dried shoot sample in oven set at 65°C for days 

Dry root weight DRW Dry root weight (g), dried root sample in oven set at 65°C for days 

Adult field grown plants (AFP) across three distinct Field trial locations 

Grain yield, GY  
The plots were harvested and the grain cleaned. Cleaned samples 

were weighed and the grain yield expressed in Kg/ha calculated. 

Plant height PHT  
Plant height was measured at physiological maturity from the soil 

surface to the tip of the head, excluding awns (cm) 

Days to maturity DMT  Days to physiological maturity of 50% of the plants  

Days to heading DHD  Days to heading of 50% of the plants 

Days to grain 

filling 
GFP Days to grain filling 50% of the plant grains 

Thousand kernel 

weights 
TKW Weight of a thousand  well developed whole grain dried sample (g) 

Ion accumulation in third leaf after 25 days of stress (%) 

Potassium content K
+
 Amount of potassium in the third leaf after 25 days of salt stress 

Sodium content N
a+

 Amount of sodium  in the third leaf after 25 days of salt stress 

Ion ratio K
+
/Na

+
 - 

 

 

SNP Genotyping and data curation 

The genomic DNA of each genotype was extracted from 12 bulked leaf samples of 2-weeks old 

seedlings using the Qiagen DNA extraction kit (Qiagen GmbH, , Hilden, Germany), and was assayed 

with the Illumina iSelect 90K SNP Assay (Wang et al., 2014) at the TraitGenetics GmbH, Gatersleben, 

Germany. The SNP data analyses were performed using the raw intensity data from the Illumina 

Beadchip and Genome Studio ver. 2011.1 (Illumina) following the methods outlined in Bowers et al. 

(2012).  
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Population structure 

The population structure of the GWAS panel was examined with 582 SNPs (MAF>5%; SNPs with <2% 

missing data and spaced approximately 2cM apart) using the STRUCTURE V2.3.3 program based on 

admixture model (Pritchard et al., 2000). The model was applied without the use of prior population 

information (i.e., USEPOPINFO was turned-off) and population genetic clusters of K = 1 to 14 with 20 

runs per K value evaluated. For each run, the initial burn-in period was set to 50,000 followed by 50,000 

MCMC iterations. The most likely number of sub-populations was determined using the Delta K 

method (Evanno et al., 2005). All genotypes were subsequently plotted according to their origin, and the 

genetic relationships among the genotypes were shown graphically via principal coordinates analysis 

(PCoA) as implemented in GenAlEx 6.5 (Peakall et al., 2012).  

 

Linkage disequilibrium (LD) analysis  

The LDs among SNP pairs were estimated for A-, B- and D-genomes using the full-matrix option as 

implemented in TASSEL (Available at: http://www.maizegenetics.net/tassel). Only SNPs with defined 

genetic map positions and MAF ˃ 5% were included in this analysis. The extent at which LD decay 

over genetic distance was determined by plotting the pair-wise squared correlation (r2) values against 

the distance (cM) between SNPs on same chromosome. The P-values for each r2 estimate were 

calculated using 1000 permutations. The percentage of SNP-marker pairs above and below the critical 

LD for each genome was compared. LOESS curve (Breseghello and Sorrells, 2006) was drawn to fit the 

data using second-degree locally weighted scatter plot smoothing in SAS program (SAS Institute, Cary, 

NC; http://www.sas.com). The genetic distance corresponding to LD ≤0.1 was considered as the critical 

distance up to which a QTL extends.  

 

Genome-Wide Association Studies  

GWAS was performed by adopting the multilocus mixed linear model (MMLM-P+K) that accounted 

for population structure (P-matrix) and kinship (K-matrix) (Zhoa et al., 2007). The association tests 

were performed using PROC MIXED in SAS version 9.3 (SAS Institute, Cary, NC; 

http://www.sas.com) and were verified with rrBLUP R package (Endelman, 2011). To minimize false 

positives, only congruent significant MTAs in both analyses were reported. The P- matrix was estimated 

via principle component analysis (PCA). The K-matrix was considered as random effect and, P-matrix 

as fixed effect by including five top principal components in the model. Both the P- and I-matrixes were 

http://www.maizegenetics.net/tassel
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generated with the TASSEL software (Henderson, 1975; Bradbury et al., 2007) and included in the 

equation below. The vector of the phenotypes estimates as “y” was modeled as: 

y = Xβ + Zu + e 

Where X and Z are the known design matrices, β is an unknown vector containing fixed effects 

including genetic marker and population structure (P), u is the vector of the random genetic effects from 

multiple background QTL for individuals or lines and e is the vector of the residuals. The genome-LD 

decay values as described in Long et al. (2013) were used to calculate the threshold for accepting 

significant MTAs. All the significant MTAs identified within an LD block for each genome were 

assigned to single QTL region (Pasam et al., 2012; Pasam and Sharma, 2014). 

 

Structure analysis of the chromosome region harboring identified QTL  

The DNA sequence information surrounding the detected SNPs (Wang et al., 2014) were used for in 

silico analysis. To expand the sequence information up and downstream of the short core SNP 

sequences (<80 bp), matches were first searched in CerealsDB database (http://www.cerealsdb.uk.net/). 

The obtained sequence information were used as queries for identification of ORFs using BLASTn of 

the wheat URGI wheat database (https://urgi.versailles.inra.fr/blast/).  

 

Single gene expression analysis 

Gene expression analyses of candidate salt-stress responsive genes (identified through the in silico 

analysis) were performed using the salt-tolerant (Altay2000 and UZ-11CWA-8) and salt-sensitive (UZ-

11CWA-24 and Bobur) wheat genotypes. These genotypes exhibited contrasting salt stress tolerance 

phenotypes across growth stages (Oyiga et al., 2016). The genotypes were grown in the growth chamber 

(Temperature: 20/15°C; day length: 14 day/10 night hours) using the modified Hoagland solution 

(Tavakkoli et al., 2010). Ten days after planting, salt stress [non-saline (control) and saline (100 mM 

NaCl)] was imposed and the pH monitored daily and adjusted to 6.0. At harvest, pooled third leaf 

samples of 5 representative plants were harvested and immediately frozen in liquid nitrogen. Samples 

were preserved at -80 oC until the expression analyses were carried out.   

 

Using the genome-wide gene expression profiling by MACE (Massive Analysis of cDNA Ends) 

(GenXPro GmbH, Frankfurt am Main, Germany), the expression levels of the putative genes linked to 

the significant MTAs were investigated in the 3rd leaves of salt tolerant (Atlay2000) and sensitive 

(Bobur) genotypes under saline and non-saline conditions after 2hr, 11d and 24 days of stress 

http://www.cerealsdb.uk.net/
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application, in other to have foreknowledge about the transcription of the associated genes. The 

comparative expression at day 24 was performed to analyse the genes identified to be genetically 

associated with scored traits at this time point. Thereafter, we performed reverse transcription 

polymerase chain reaction (RT-PCR) in other to validate the expressions of four of the associated 

putative candidate genes. 

 

RNA extraction and RT-PCR: Total RNA was extracted from the harvested leaf samples after 30d in 

saline and non-saline conditions using E.Z.N.A. Plant RNA Kit (Omega Bio-Tek, Norcross, GA, USA) 

following the manufacturer instructions followed by DNA removal step using DNA Digestion kit 

(Cat.#F1091). Three microgram of total RNA was used for cDNA synthesis with Thermo Scientific 

First strand cDNA Synthesis kit (Cat.#K1632) using the oligo (dT)18 primers in a 20 μL reaction. The 

gene quantification was done using real-time PCR on on SDS-7500 Sequence Detection System 

(Applied Biosystems). The qRT-PCR reaction (20 μl) consisted of gene specific primers (Table 2), 

DyNamo Color Flash SYBR Green 2X-master mix with ROX (Cat.#F456L) and the template. Thermal 

cycling conditions were 95oC/7 min followed by 95oC/10s, 60oC/30s, 72oC/30s (fluorescence 

acquisition) for 40 cycles. The target gene primers were designed around the associated SNP using the 

primer3 online program (http://primer3.wi.mit.edu/). The expression data were analyzed with the 

standard methods of Livak and Schmittgen (2001), normalized with the internal control genes, TaEf-1a 

and TaEf-1b (Unigene accession Ta659). The PCR reaction efficiencies of both target genes and internal 

control are comparable (Figure 1). The melting curve of the amplified targets is presented in Figure 2. 

 

 

Table 2 Sequences of the PCR primers used in the qRT-PCR and the size of the amplified fragment are 

shown 

Gene Forward primer (5´- 3´) Reverse primer (5´- 3´) Product size 

(bp) 

Target genes    

ZIP7  TCTCATTCCACCAGTTCTTCG GATGCCTTCAACCACTAGAGC 191 

KeFC AGCAAAACTTCCAATGTCCG ATCAATGGTGTCGCTCTCGT 175 

AtABC8 CAACAAGACCACAATGCCTG TCTCCCTCACATCCATACCA 177 

6-SFT CGTGGAGGAGATTGAGACCC GCAGAAGCATCAAGGTGGA 141 

Internal control genes   

TaEf-1a CTGGTGTCATCAAGCCTGGT TCCTTCACGGCAACATTC 151 

TaEf-1a CAGATTGGCAACGGCTACG CGGACAGCAAAACGACCAAG 227 

ZIP7-putative zinc transporter; KefC-Glutathione-regulated potassium-efflux system protein; AtABC8-

Putative ABC transporter B family member 8 and; 6-SFT-sucrose: sucrose 1-fructosytransferase. 

 

 

http://primer3.wi.mit.edu/


62 
 

     

     
 
Figure 1 PCR efficiency comparison. CT values were determined for the reference genes and the target 

genes using pooled DNase treated RNA samples of all the genotypes extracted from treated and untreated 

leaves. Real-time RT-PCR was performed using DyNamo ColorFlash Probe qPCR Kit. The CT values of 

target genes were subtracted from the average CT values of the reference genes. The difference in CT values 

was plotted against template amount and the difference in PCR efficiency determined by calculating the 

slope of the line. The resulting slope for each target gene is < 0.1, except 6-SFT. 
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Figure 2 The dissociation curves showing single peaks for endogenous reference genes and four target 

genes. ZIP7-putative zinc transporter; KefC-Glutathione-regulated potassium-efflux system protein; 

AtABC8-Putative ABC transporter B family member 8 and; 6-SFT-sucrose: sucrose 1-fructosytransferase 
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Comparism of the Expressed Sequence Tags (ESTs) between Altay2000 and Bobur 

To examine the relationship between salt tolerance and the putative genes, EST sequences of 6 putative 

genes in Atlay2000 and Bobur were aligned with their corresponding wheat gene draft sequences 

available at Ensembl Genomes database (Kersey et al., 2015). The analyzed gene sequences include: 

ZIP7 (Gene ID: Traes_1BS_D68F0BED6.1), KeFc (Gene ID: Traes_2AL_A2CBDB5F7.1), SAP8 (Gene 

ID: Traes_7AL_B88F6A3D3.1), HAK18 (Gene ID: Traes_5BL_F112FA40E.2), GST1 (Gene ID: 

Traes_3AL_F205FA0941.2) and SWEET17 (Gene ID: Traes_5AS_9937DABBA.1). All the ESTs amino 

acid sequences were inferred using the Sequence Manipulation Suite (Stothard, 2000) and, aligned using 

MAFFT version 7 online (http://mafft.cbrc.jp/alignment/server/) to check for possible mutation that are 

responsible for the observed trait variation. 

 

RESULTS 

Genotypic variation of traits for ST  

The effect of salt stress on the germination and DSW among the studied panel has been reported (Oyiga 

et al., 2016). At seedling stage, ANOVA results indicate that genotype varied significantly for all the 

traits measured, except for FRW in E4 (Table 3). Salt treatment also showed strong effect on all the 

remaining three seedling traits across the four experiments, but the interaction effect of genotype x 

treatment was significant on the traits only in E2 and E3 experiments. The application of salt stress had 

negative effect on all the seedling stage traits (Table 3); however, the reduction was more on the shoot 

traits (FSW and DSW) than the root traits (FRW and DRW) across the four independent experiments 

(Figure 3). The trait heritability (h2) was moderate to high and varied from 0.44 for DRW in E2 to 0.79 

for DRW in E4 with the exception of FRW (Hb: 0.30) in E2. Results also indicate that the magnitude of 

variations among the genotypes in response to the applied salt stress was ≥ 15%.  

 

 

 

 

 

 

 

 

 

 

 

http://mafft.cbrc.jp/alignment/server/
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Table 3 ANOVA, heritability estimates (h2) for ST- traits at seedling growth stage. DRW, dry root 

weights, FRW, fresh root weight; FSW; fresh shoot weight. Number of stars indicates the significant 

level, one star = p<0.05, two stars=p<0.01 and ns= non-significant. 

Experiments Trait G T G*T h2 CV Effect (%) 

E1 DRW 678.31** 136.23** 166.66ns 0.52 18.71 -16.80 

 
FRW 786.87** 63.07** 145.26ns 0.57 19.16 -12.20 

 
FSW 308.22** 325.69** 76.84ns 0.59 14.99 -28.75 

E2 DRW 567.49** 1065.14** 266.78** 0.44 19.42 -36.90 

 
FRW 434.29** 814.38** 235.46** 0.3 21.97 -38.19 

 
FSW 611.67** 5556.08** 387.70** 0.49 17.79 -60.36 

E3 DRW 404.01** 565.08** 185.07* 0.67 15.93 -26.25 

 
FRW 345.58** 654.73** 206.63* 0.70 19.01 -30.83 

 
FSW 548.30** 4763.63** 313.94** 0.66 15.76 -57.85 

E4 DRW 210.76* 332.79** 139.10ns 0.79 17.18 -23.81 

 
FRW 165.65ns 213.16** 124.86ns 0.74 20.47 -23.05 

  FSW 189.97* 2946.91** 127.29ns 0.74 15.94 -63.45 

G= genotype effect; T= treatment effect; G*T= interaction effect of G and T; CV= coefficient of 

variations. E1, E2, E3 and E4 are four independent salt screening experiments 
 

 

 

 

 

 

 

Figure 3 Histogram showing the effect of salt stress on the DRW (dry root weight), FRW (fresh root weight, 

DSW (dry shoot weight) and FSW (fresh root weight) across the four experiments at seedling stage. E1, E2, 

E3 and E4 are four independent salt screening experiments 
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For all the AFP traits (TKW, PH, DHD, DMT and GY) evaluated, there was highly significant genotype 

effect, except for PH at Dongying (Table 4). Soil salinity impacted negatively on all the AFP traits 

except for TKW and DHD at Urgench and Karshi locations, respectively. The genotype-by-saline soil 

interactions were also observed in most of the traits measured. The h2 estimates of the measured traits at 

Urgench and Karshi locations ranged from 0.54 for DHD to 0.89 for TKW at Karshi. The lowest h2 

(0.08) was observed for PH at Dongying location. The magnitudes of variation observed for the ST-

traits was highest (44.3%) for PH at Dongying) and lowest (1.3%) for DMT at Karshi. 

 

 
Table 4 ANOVA, heritability estimates (h2) for ST- traits at adult field grown plants. Shown is the 

effect of genotype (G), treatment (T) and their interactions (G*T), CVST - coefficient of variation. 

Number of stars indicates the significance level, one star = p<0.05, two stars=p<0.01 and ns= non-

significant. 

Field Locations Traits  G T G*T h2 CV ST 

Urgench, Uzbekistan (2011-

2012) 
TKW 1673.50** 0.26ns 213.45* 0.84 6.53 

 
PH 1921.58** 447.28** 287.62** 0.85 8.4 

 GY 1054.07** 494.71** 281.33** 0.76 23.07 

Karshi, Uzbekistan (2012-2013) TKW 2799.12** 21.48** 206.50* 0.89 4.44 

 
DHD 464.10** 5.04ns 132.20ns 0.54 2.06 

 
DMT 502.46** 24.29** 110.84ns 0.59 1.28 

 GY 747.00** 188.77** 437.95** 0.57 16.25 

 Dongying, China (2013 -2014) PHT 156.51ns 814.77** 134.62ns 0.08 44.31  

 GY 217.13** 1791.53** 199.11* 0.23 71.6 

TKW= thousand kernel weight; PHT= plant height; DHD= days to heading; GFP= days to grain filling; 

DMT= days to maturity; GY= grain yield. 
 

 

Figure 4 shows the frequency distribution of ions accumulated in the third leaves among the 150 

genotypes after 25 days of salt treatment. The leaf K+, Na+ and K+/Na+ ratio were normally distributed. 

Among them, the leaf K+ concentrations showed comparatively narrowest variation (CV=8.84%, ranged 

from 4.14 to 6.90%; Figure 4A), whereas Na+ concentration (CV= 28.14%; Figure 4B) varied from 

0.59 to 3.11% and K+/Na+ ratio (CV= 26.80%; Figure 4C) from 2.07 to 10.67%. The relationships 

between the root biomass production under salt stress and the leaf ion concentrations are shown in 

Figure 5. There was no significant pattern observed between the K+ concentration and the root biomass 

production in response to salt treatment (Figure 5A). However, the Na+ concentration (r2= 0.47**; 

Figure 5B) and K+/Na+ ratio (r2 = - 0.24**; Figure 5C) in the third leaf showed an observable pattern 

with the root biomass production in response to salt treatment after 25 days of stress. 
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Figure 4 Histogram of the distribution of ion accumulation traits (K

+
, Na

+
, K

+
/Na

+
 ratio) measured in the 150 GWAM panel of wheat after 24d under 

stress.  

 

         

Figure 5 Relationship of root dry weight differential, calculated as a difference between dry root weight in non-saline and saline conditions, with leaf 

K
+
 and Na

+
 concentration and the estimated K

+
/Na

+
 ratio in the third leaves of the 150 GWAM panel grown in the hydroponics and treated with 150 

mM NaCl. Concentrations of K
+
 and Na

+ 
were estimated using Atomic Absorption Spectrometer after 24 day of stress. 



68 
 

SNP marker analysis 

After applying several filters (SNPs with MAF<5%; missing data < 5% were excluded), a total of 

18,085 SNPs with known genetic positions were found to be polymorphic, but were not evenly 

distributed among the three wheat genome (Table 5; Figure 6). Seven thousand (32.66%), 9243 

(43.04%) and 1734 (0.08%) SNPs were mapped to A-, B-, and D-genomes, respectively with 

corresponding map lengths of 1252.3, 1139.6 and 1251.2 cM. The SNP-map spanned a total genetic 

distance of 3644.10 cM with an average SNP-marker density of 0.49 cM. The longest genetic distance 

between SNPs was 242 cM. 

 

Table 5 shows the analysis of the polymorphic SNPs used for the GWAM analysis and the significant LD 

statistics in each chromosome and across the wheat genomes. 

 

 

 

 

Chromosomes Length 

(cM) 

Number of 

mapped SNP 

SNP 

densitiy 

(cM) 

Number 

of tests 

Number of tests 

revealing LD 

(r
2
˃0.1) 

Marker pairs 

in LD (%) 

A-genome 1252.28 7,001 0.18 7063880 964558 13.65 

B-genome 1139.62 9,246 0.13 6057777 1044383 17.24 

D-genome 1252.2 1,567 1.16 201713 48031 23.81 

1A 156.3 959 0.16 459361 58828 12.81 

1B 173.62 1,760 0.10 1549680 311087 20.07 

1D 181.52 482 0.38 115921 22567 19.47 

2A 185.46 1,087 0.17 589155 113623 19.29 

2B 185.67 1,615 0.11 587815 96483 16.41 

2D 152.84 524 0.29 27375 16585 60.58 

3A 193.78 892 0.22 397386 53380 13.43 

3B 144.74 1,206 0.12 799480 108179 13.53 

3D 156.06 197 0.79 19306 3371 17.46 

4A 164.13 830 0.20 344035 69007 20.06 

4B 115.45 537 0.21 143916 32610 22.66 

4D 170.43 60 2.84 1770 316 17.85 

5A 148.3 1,058 0.14 559153 72074 12.89 

5B 219.77 1,785 0.12 1595791 185217 11.61 

5D 207.33 171 1.21 14535 2390 16.44 

6A 162.91 1,101 0.15 606651 65422 10.78 

6B 122.92 1,276 0.10 813450 217376 26.72 

6D 160.5 1,67 0.96 14028 2098 14.96 

7A 241.4 1,074 0.22 576201 49945 8.67 

7B 177.45 1,067 0.17 567645 93431 16.46 

7D 223.52 133 1.68 8778 704 8.02 

Genome-wide 3644.1 17,814 0.49 13323375 2056972 15.44 
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Figure 6 Genetic linkage maps of wheat containing 18,027 SNP markers spanning 3643.10 cM over 21 chromosomes based on GWAS panel. The 

scale in centi-Morgans (cM) is given at the y-axes and chromosomes at the x-axes. Horizontal lines represent the positions of SNPs on each of the 

corresponding chromosome. 
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Population structure  

Population structure analysis of 150 GWAM panel indicated that the most likely number of 

subpopulations (K) was two. The maximum value of △K occurred at K=2 (Figure 7), confirming that 

two sub-populations provided the optimal structure. Principal coordinate analysis (PCoA) of the panel 

also revealed two major sub-groupings (Figure 8); however, there was no evidence of clear groupings 

among genotypes based on the origin of the germplasm. The estimates of genetic diversity in the panel 

based on neighbor joining (NJ) trees revealed similar results (data not shown), which confirmed the 

results obtained using the STRUCTURE and PCoA analyses.  

 

 

 

 
Figure 7 Magnitude of delta K as a function of K-values= 1 to 14 (x-axes) in the GWAM panel. A 

distinct peak at K=2 was indicative that model with 2 sub-groups was optimal. 
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Figure 8 Principal coordinates analysis (PCoA) of the association panel based on genetic distance 

estimates. The colored figures in the plot represent the core collection centers: blue-TNP (Turkey 

National breeding program); red-IWWIP, green-ICARDA-CYMMYT and the cross the Central Asia. 

 
 

Linkage Disequilibrium Decay  

Figure 9 show that LD decays with increase in the genetic distance. The lowest LD decay of 14 cM was 

found in the D-genome and at approximately 10 and 11 cM in the A- and B-genomes, respectively, with 

the genome-wide LD decay of about 13 cM. The D-genome had the highest number of SNPs (23.81%) 

in significant LD (r2˃0.1) followed by B-genome (17.24%) and A-genome (13.65%) with 15.44% 

recorded for the entire genome (Table 5). Individually, chromosome 2D (60.58%), 6B (26.722%), 4B 

(22.66%), 1B (20.07%) and 4A (20.06%) chromosomes had the highest number of SNPs in significant 

LD. Since the average inter-SNP-marker distance is 0.49 cM, indicates that the marker coverage used 

for this study was appropriate for detecting QTL using a GWAS approach.  

 

C
o

o
rd

. 2
, 2

0
.8

5
%

 

Coord. 1, 27.73% 

TNP IWWIP ICARDA C. Asia



72 
 

 

 

 

 

 

 

      
 

Figure 9 LD decay analysis of A-, B- and D-genome. Inner fitted trend line is a non-linear logarithmic regression curve of r
2
 on genetic distance. LD 

decay is considered below r
2
 = 0.1 threshold. 
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MTAs for the phenotypic traits across growth stages 

A total of 172 significant MTAs were detected for ST with all the measured traits using MLM + PK at 

p<0.01, each explain phenotypic variation (R2) ranging from 3.0% for ST_DRW in E4 to 30.67% for 

DSW at E1+E2. Of these, 30, 99 and 42 were detected at germination-, seedling- and AFP-growth 

stages, respectively. Highest number of MTAs were detected on the A- genome (77) followed by B-

genome (68), and the D-genome (8) in that order. Several of the detected SNPs/loci showed pleiotropic 

properties across growth stages. Novel QTL were detected on 1BS, 1DL, 5BS and 5BL chromosomes. 

Details and description of the associated SNPs at different growth stages are presented in Table 6. 

 

Chromosomal regions harboring multiple MTAs for the phenotypic traits 

Several SNPs were significantly associated with salt-stress related traits in more than one growth stage. 

For example, SNP GENE_3156_152 at 68.36 cM on 5BL had remarkable effect on the traits at 

germination (germination vigor under 75 mM Na2SO4) and seedling (FSW, FRW, DSW and DRW) 

growth stages. This SNP accounted for 24.20% of the observed R2. Similarly, SNP marker 

GENE_1353_136 (at 101.97 cM: R2≥ 22.09%) on 2AL was associated with FRW, DSW and DRW at 

seedling stage and PHT at AFP with R2 of 22.09%. The locus at 137 cM on 1BL with two coincident 

SNPs, Kukri_c18230_1633and BobWhite_c8293_236, accounted for 11.42% of the phenotypic variance 

at both germination (75 mM Na2SO4) and seedling during E2 (ST_DRW) growth stages, respectively. 

The locus on 2BS at 96.99 cM was significantly linked to ST_DRW at seedling and GY at AFP growth 

stages, with R2≥12.69%. Moreover, the locus at 71.33 cM (R2 ≥12.23%) on 7BS detected with 

Ra_c7974_1192 and Excalibur_rep_c67190_638 was associated with germination vigor (under 100 

mM Na2SO4) and ST_DSW, respectively. 

 

SNPs with pleiotropic and growth stage specific effects were identified on five chromosomes - 1DS, 

2AL, 2DS, 3AL and 7BL. The SNP Excalibur_c91176_326 (150.29 cM, R2≥ 10.76 %.) on 2AL was 

strongly associated with DSW and DRW ST-traits in E1 and E2, respectively. Two SNPs on 1DS locus 

(at 67.72 cM, R2≥13.33%), BS00002178_51 and RAC875_c62_1546 showed strong effect on ST_DRW 

in both E2 and E3. SNPs on 2DS (D_GBUVHFX02GV41H_67; R2≥9.62%) and 7BL (BS00004171_51; 

R2≥11.46%) also affected multiple ST-traits at seedling stage. The former associated with FSW and 

DRW, while the later was linked with FSW and DSW. On chromosome 3AL, two SNPs affecting 

ST_FSW (E1+E2) and ST_DSW (E3+E4) were detected in a 0.1-cM interval (Jagger_c765_61 - 

wsnp_RFL_Contig2011_121680). 
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Table 6 Summary of significant SNP marker-trait associations at germination, seedling and adult field 

growth stages 
Experiment mM SNP Chr Pos Alleles MAF -log10 (p) R2 Effect 

 Germination growth stage 

 
75 Kukri_c18230_1633 1BL 137 C/A 0.38 7.14 11.04 

 

 
75 RAC875_c30507_292 3AL 123.01 G/A 0.37 4.06 5.87 - 

 
75 tplb0031e09_1763 3BS 67.45 T/C 0.29 4.34 12.47 - 

 
75 RAC875_c34981_294 4AL 164.13 C/T 0.14 4.11 11.85 + 

 
75 Kukri_c35140_75 4BL 64.26 A/G 0.35 4.49 12.88 + 

 
75 IAAV8258 5AL 86.91 C/T 0.19 13.04 16.22 

 

 
75 GENE_3156_152 5BL 68.36 C/T 0.14 21.51 21.22 

 

 
75 Excalibur_c4699_215 5BL 151.62 C/T 0.38 5.30 7.71 

 
Na2SO4 75 BS00003852_51 Unk - G/A 0.08 12.06 10.93 

 

 
100 BobWhite_c8218_162 1BS 62.32 C/T 0.15 3.95 9.17 - 

 
100 Ku_c6019_806 2AL 103.62 A/G 0.33 4.21 12.12 - 

 
100 Kukri_c38852_100 2AL 103.62 G/A 0.34 4.15 11.96 + 

 
100 RAC875_rep_c109658_382 5BL 131.79 T/C 0.22 4.57 9.14 - 

 
100 BobWhite_c10954_467 5BS 38.5 T/G 0.23 4.05 9.15 - 

 
100 Ra_c7974_1192 7BS 71.33 C/T 0.4 4.06 11.72 - 

 
100 IAAV565 1BL 122.52 C/T 0.27 5.44 15.38 

 

 
100 wsnp_Ku_c32477_42086760 5BS 40.6 G/A 0.24 4.11 11.85 

 

 
100 Kukri_c41157_433 6BL 122.92 A/G 0.32 4.08 11.77 

 

 
100 BS00063365_51 Unkn - C/T 0.42 4.17 12.02 

 

 
100 RAC875_c4682_646 Unkn - G/A 0.09 4.04 11.66 

 

 
150 wsnp_Ex_rep_c68117_66883366 5AL 43.27 G/A 0.31 4.43 12.72 - 

NaCl 150 Excalibur_c2978_667 6AS 25.53 G/T 0.31 5.18 7.31 - 

 
200 Kukri_c29039_315 1AL 83.7 T/C 0.22 4.21 12.12 + 

 
200 wsnp_JD_c12088_12411845 2AL 106.3 G/A 0.37 4.15 11.96 - 

 
200 Ex_c12563_1279 2A 103.62 A/G 0.32 4.49 12.88 - 

 
200 wsnp_Ku_c4042_7375053 2BS 88.93 C/T 0.1 4.01 11.58 + 

 
200 wsnp_RFL_Contig4814_5829093 3AL 89.36 C/T 0.38 4.08 11.77 - 

 
200 RAC875_c20785_1219 5BL 100.64 T/C 0.34 4.79 13.68 + 

 
200 Kukri_rep_c109463_264 5BL 154.54 T/C 0.39 4.95 14.1 + 

 
200 BS00022758_51 Unkn - C/T 0.11 4.28 12.31 

 
 Seedling growth stages 

E1 ST_FSW RFL_Contig7_380 1BL 90.26 C/T 0.13 4.21 12.12 - 

E1 DSW IAAV5776 1BL 159.87 A/G 0.09 5.53 7.45 - 

E1 DRW GENE_1353_136 2AL 101.97 C/T 0.10 14.62 16.93 - 

E1 DSW GENE_1353_136 2AL 101.97 C/T 0.10 16.6 19.57 - 

E1 FRW GENE_1353_136 2AL 101.97 C/T 0.10 20.27 22.09 - 

E1 ST_FSW RAC875_c38018_278 2AL 110.13 CT 0.41 4.53 12.98 + 

E1 DSW Excalibur_c91176_326 2AL 150.29 G/A 0.42 8.82 10.76 + 

E1 ST_DSW BS00091763_51 2AL 166.66 A/G 0.26 9.03 14.02 - 

E1 ST_DRW Excalibur_c25921_230 2BS 96.99 C/T 0.19 4.21 12.12 + 

E1 ST_DRW Ex_c18484_2026 3AL 88.02 C/T 0.34 4.11 11.85 - 

E1 ST_FSW tplb0033c09_1345 4AL 91.19 C/T 0.15 4.79 13.68 - 

E1 DSW Excalibur_c6314_91 5AL 53.11 G/A 0.34 9.07 14.56 - 

E1 ST_FSW wsnp_Ex_c6314_10992814 5AL 53.47 A/G 0.37 3.96 11.45 - 

E1 ST_DRW BS00029412_51 5AL 75.96 C/A 0.17 5.20 14.76 - 

E1 DRW GENE_3156_152 5BL 68.36 C/T 0.14 20.09 20.15 - 

E1 DSW GENE_3156_152 5BL 68.36 C/T 0.14 23.75 24.2 - 

E1 FRW GENE_3156_152 5BL 68.36 C/T 0.14 24.46 23.04 - 

E1 FSW GENE_3156_152 5BL 68.36 C/T) 0.14 19.3 21.81 - 

E1 ST_FRW wsnp_Ex_c18965_27868480 6AL 79.08 A/G 0.25 4.01 11.58 - 

E1 ST_FRW wsnp_Ex_c19770_28768859 6AS 77.14 T/C 0.08 4.42 12.69 - 

E1 ST_DSW BS00068032_51 7AL 212.66 G/A 0.45 4.05 11.69 - 

E1 ST_DSW IACX5996 7AL 226.07 C/T 0.12 4.34 12.47 
 

E1 ST_DSW RAC875_c14173_207 7AS 33.45 C/T 0.08 5.03 14.31 + 

E1 FSW BS00032623_51 7AS 59.07 C/T 0.06 3.61 4.68 + 

E1 DRW Excalibur_c60598_158 Un - T/C 0.09 13.16 12.64 + 

E1 DSW Excalibur_c28592_377 Un - C/T 0.11 3.26 4.05 + 

E1 DSW Excalibur_c60598_158 Un - T/C 0.09 11.55 14.6 + 
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E1 FRW Excalibur_c60598_158 Un - T/C 0.09 8.16 7.64 + 

E2 DSW CAP7_c4879_249 1AL 101.64 C/A 0.45 5.35 7.17 - 

E2 ST_FRW wsnp_Ku_c66585_65967792 1BS 65.42 T/C 0.22 4.27 12.29 - 

E2 ST_DRW BobWhite_c11044_322 1BL 83.47 T/C 0.35 5.64 15.9 + 

E2 ST_DRW BobWhite_c8293_236 1BL 137 C/T 0.06 3.95 11.42 - 

E2 DRW BS00063512_51 1BL 160.9 T/C 0.09 8.66 11.52 - 

E2 ST_DRW BS00002178_51 1DS 67.72 A/G 0.48 6.64 10.64 - 

E2 DRW Excalibur_c91176_326 2AL 150.29 G/A 0.42 7.88 9.77 + 

E2 FRW BobWhite_c5756_532 2BL 181.92 C/A 0.34 7.32 12.87 + 

E2 FRW IAAV790 2DL 97.14 T/G 0.42 10.13 5.92 - 

E2 FSW D_GBUVHFX02GV41H_67 2DS 36.54 A/G 0.07 5.25 7.5 - 

E2 DSW Kukri_c5579_466 2DS 50.83 G/A 0.13 11.43 13.17 + 

E2 ST_DSW BS00063300_51 3AL 109.95 G/A 0.10 4.50 12.9 + 

E2 ST_DSW BS00073732_51 3BS 61.64 C/T 0.29 4.31 12.39 + 

E2 ST_FSW tplb0031i04_452 5AL 45.32 C/T 0.34 4.4 12.64 + 

E2 DRW GENE_3156_152 5BL 68.36 C/T 0.14 7.34 8.81 - 

E2 DSW GENE_3156_152 5BL 68.36 C/T 0.14 9.91 10.85 - 

E2 ST_DRW Tdurum_contig25513_123 5BL 90.35 A/G 0.38 4.35 12.5 + 

E2 DRW BS00032003_51 5BS 0.43 C/T 0.15 9.34 11.53 + 

E2 FRW BS00032003_51 5BS 0.43 C/T 0.15 8.36 8.36 + 

E2 FRW Kukri_c8500_521 6AS 3.86 T/C 0.10 6.93 4.6 - 

E2 ST_FRW Kukri_c42622_369 7AS 35.31 C/T 0.20 4.01 11.58 - 

E2 ST_FRW Tdurum_contig85217_286 7AS 61.88 T/C 0.21 3.84 11.12 + 

E2 DSW BS00004171_51 7BL 171.11 T/C 0.23 
  

- 

E2 FSW BS00004171_51 7BL 171.11 T/C 0.23 8.92 10.62 - 

E2 FSW BS00085688_51 Un - C/T 0.36 6.79 8.74 + 

E3 ST_FRW RAC875_c53725_217 1AL 137.12 G/A 0.46 4.17 12.02 - 

E3 ST_DRW BS00034450_51 1BL 103.98 A/G 0.12 4.57 13.09 - 

E3 ST_DRW RAC875_c62_1546 1DS 67.72 A/G 0.44 4.66 13.33 + 

E3 DRW Excalibur_c65341_303 2BL 114.09 A/G 0.40 9.27 12.11 
 

E3 ST_FSW Ku_c56370_1155 3AL 87.78 G/A 0.11 3.94 11.39 - 

E3 ST_DSW BobWhite_rep_c63943_76 5AL 73.45 T/G 0.21 4.00 11.56 - 

E3 ST_DRW wsnp_Ku_c12211_19780409 5AL 74.76 G/A 0.17 4.45 12.77 - 

E3 ST_FSW RAC875_c23775_406 5AL 84.13 A/G 0.42 4.54 13.01 
 

E3 ST_DSW BobWhite_c27193_217 5AL 114.97 G/A 0.20 4.18 12.04 + 

E3 DRW GENE_3156_152 5BL 68.36 C/T 0.14 11.69 13.73 
 

E3 FRW GENE_3156_152 5BL 68.36 C/T 0.14 9.14 12.21 
 

E3 ST_DSW Tdurum_contig44181_311 5BL 106.16 T/C 0.08 4.84 13.81 + 

E3 ST_DRW Tdurum_contig65330_190 5BL 167.71 A/G 0.22 4.10 11.83 
 

E3 ST_FRW tplb0024k14_1812 6AS 48.09 T/C 0.15 4.31 12.39 - 

E3 ST_DSW RAC875_rep_c105182_460 7AL 135.54 C/A 0.07 
  

- 

E3 ST_FRW Kukri_c1831_1243 7AS 51.36 T/C 0.43 4.12 11.88 + 

E3 ST_DSW Excalibur_rep_c67190_638 7BS 71.33 G/T 0.41 4.25 12.23 - 

E4 ST_FSW wsnp_Ex_rep_c67747_66422078 1BL 114.13 G/A 0.42 4.01 11.58 
 

E4 FSW Excalibur_c11392_1193 2BL 107.87 A/G 0.15 7.41 9.56 + 

E4 DSW BS00009882_51 2BL 134.46 G/A 0.24 7.97 9.62 + 

E4 DRW RAC875_c11609_62 2BS 86.45 G/A 0.35 6.96 8.44 - 

E4 DRW D_GBUVHFX02GV41H_67 2DS 36.54 A/G 0.07 7.65 9.62 + 

E4 FSW Excalibur_rep_c116587_84 3AL 188.38 T/C 0.09 6.6 8.33 - 

E4 ST_DRW Ra_c45147_1600 4AS 48.98 A/G 0.44 4.64 13.28 + 

E4 DRW RAC875_c16405_84 4AS 37.82 C/T 0.35 7.09 8.57 
 

E4 FSW BobWhite_c47456_121 5BL 76.94 T/C 0.16 6.41 8.41 
 

E4 DSW Kukri_c54078_114 5BL 82.36 G/T 0.17 6.03 9.84 - 

E4 ST_FRW Kukri_c3973_101 5BL 122.64 C/T 0.23 4.53 12.98 + 

E4 ST_DRW BS00003655_51 5BL 126.02 C/T 0.16 4.08 11.77 + 

E4 ST_DSW wsnp_Ex_c11348_18327861 6AL 85.07 G/A 0.26 4.34 12.47 - 

E4 FSW BobWhite_c1635_691 7AL 219.59 A/G 0.08 5.13 3.95 
 

E4 ST_DRW BS00095826_51 7AS 33.24 A/G 0.43 4.00 3 + 

E4 FSW BS00011330_51 7AS 89.21 T/C 0.28 6.79 9.41 
 

E4 DSW BS00004171_51 7BL 171.11 T/C 0.23 10.41 11.46 + 

E4 FSW Excalibur_c64418_447 Un - G/A 0.13 10.68 13.66 + 

E4 DRW Kukri_c19784_441 Un - T/C 0.12 17.04 10.9 + 

E1+E2 DSW IAAV7086 2AL 162.89 A/G 0.35 4.95 14.02 
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E1+E2 DSW Ex_c2725_1442 1BS 62.54 
  

31.10 30.67 
 

E1+E2 ST_FSW Jagger_c765_61 3AL 89.48 A/G 0.05 4.17 12.02 - 

E1+E2 ST_DSW BS00097930_51 5AL 53.47 T/C 0.36 3.94 11.39 + 

E1+E2 ST_DSW BS00036211_51 6AL 79.08 A/C 0.17 3.90 11.28 - 

E3+E4 ST_DRW wsnp_Ex_c45_98113 2AL 139.35 G/A 0.18 4.08 11.77 + 

E3+E4 ST_DSW wsnp_RFL_Contig2011_1216801 3AL 89.47 G/A 0.12 4.11 11.85 - 

E3+E4 ST_FSW BobWhite_c15582_253 3AL 173.58 T/C 0.17 3.97 11.47 + 

E3+E4 ST_DRW IAAV8683 4AL 100.38 C/T 0.16 4.43 12.72 - 

E3+E4 ST_DSW BS00067983_51 6BL 91.5 C/A 0.35 4.38 12.58 + 

E3+E4 ST_FSW Kukri_rep_c68381_911 7AL 216.36 A/G 0.15 5.00 14.23 - 

 Adult field grown plant stage 

Urgenchi ST_GY JD_c3173_947 1BS 64.1 T/C 0.15 4.26 12.26 - 

Urgenchi ST_GY BS00084895_51 1BL 115.88 G/A 0.33 4.16 11.99 + 

Urgenchi ST_GY RAC875_rep_c71760_57 2BS 96.99 G/T 0.05 4.42 12.69 - 

Urgenchi ST_GY IAAV3173 2DS 40.05 A/G 0.26 4.09 11.8 + 

Urgenchi ST_TKW Kukri_s117946_404 3AL 177.24 T/C 0.47 4.75 13.57 - 

Urgenchi Germ BobWhite_rep_c49102_169 3AL 90.55 C/T 0.06 7.11 8.96 
 

Urgenchi ST_TKW Jagger_c791_62 3AS 81.82 T/C 0.39 4.10 11.83 - 

Urgenchi ST_TKW wsnp_Ex_c4501_8092034 5AS 15.53 T/C 0.49 4.13 11.91 + 

Urgenchi ST_TKW RFL_Contig3674_847 5AS 19.68 C/T 0.46 4.23 12.18 - 

Urgenchi ST_TKW BS00081120_51 5AS 39.26 T/C 0.15 4.08 11.77 - 

Urgenchi ST_GY wsnp_Ra_c5634_9952011 5BL 49.01 C/T 0.12 4.47 12.82 + 

Urgenchi ST_TKW BS00064272_51 5BL 139.4 G/A 0.11 4.92 14.02 - 

Urgenchi ST_TKW wsnp_Ex_c3175_5864335 5BL 176.61 A/G 0.21 4.10 11.83 - 

Urgenchi PH BS00039561_51 7AL 126.8 C/T 0.22 7.39 9.53 
 

Urgenchi Germ BS00055665_51 Unkn - T/C 0.46 7.92 10 
 

Urgenchi ST_TKW Ku_c30943_843 Unkn - T/C 0.49 4.13 11.91 + 

Urgenchi PH RAC875_c64603_663 Unkn - T/C 0.09 13.76 15.95 
 

Karshi ST_GY CAP12_c8163_118 1AL 131.5 G/A 0.24 4.42 12.69 + 

Karshi ST_TKW TA003773_0807 1AS 62.04 G/T 0.12 5.06 14.39 - 

Karshi ST_TKW Kukri_c4951_503 1BS 70.71 G/A 0.29 4.63 13.25 - 

Karshi ST_TKW RAC875_c24895_311 1BL 79.77 C/A 0.22 4.05 11.69 + 

Karshi ST_GY GENE_0543_201 1BL 159.02 G/A 0.24 4.23 12.18 - 

Karshi DHD RAC875_c16752_283 2BL 129.08 C/T 0.13 11.91 15.01 
 

Karshi ST_GY Kukri_c2454_59 3AL 86.66 A/G 0.27 3.83 11.09 - 

Karshi ST_GY BS00094770_51 4DL 80.43 C/A 0.32 4.43 12.72 + 

Karshi DMD BobWhite_c1387_798 5AL 67.64 C/A 0.26 10.02 12.07 
 

Karshi ST_GY wsnp_Ku_c6977_12078791 5AL 92.35 G/A 0.11 4.11 11.85 - 

Karshi ST_TKW BS00075525_51 7AL 135.62 G/A 0.46 4.49 12.88 - 

Karshi DHD BobWhite_c32883_84 7AL 228.37 A/G 0.28 7.17 9.29 
 

Karshi ST_TKW Jagger_c7242_85 Unkn - C/T 0.47 4.67 13.36 + 

Karshi ST_TKW RAC875_c39204_91 Unkn - C/T 0.32 4.40 12.64 - 

Karshi ST_GY Kukri_c10254_95 Unkn - A/G 0.05 4.17 7.95 - 

Dongying ST_PH Excalibur_c34697_831 1AL 79.19 A/C 0.37 4.27 12.29 
 

Dongying PH GENE_1353_136 2AL 101.97 C/T 0.1 7.73 10.1 
 

Dongying ST_GY Tdurum_contig30569_579 2AL 101.97 G/A 0.29 3.82 11.07 - 

Dongying ST_GY Tdurum_contig82393_484 2BL 118.43 C/A 0.06 4.59 13.14 - 

Dongying ST_GY Tdurum_contig59566_4435 3BL 143.29 A/C 0.29 3.81 11.04 + 

Dongying ST_GY wsnp_Ex_rep_c101323_86702546 5AL 131.42 C/A 0.37 3.83 11.09 + 

Dongying ST_PH Ex_c8134_363 6BL 109.86 C/T 0.09 4.60 13.17 + 

Dongying GY RAC875_rep_c105937_467 6BL 113.28 T/C 0.44 7.25 11.79 
 

Dongying ST_GY IACX9024 6BS 39.24 C/G 0.08 4.52 12.96 + 
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SNPs associated with leaf K
+
, Na

+
 and K

+
/Na

+
 ratio  

Fifteen SNPs were significantly associated with the concentration of K+, Na+ and the K+/Na+ ratio of the 

third leaf after 25 days of salt application, with R2 which ranged from 6.96% for leaf Na+ to 10.13% for 

leaf K+ (Table 7). Five SNP-loci on 2AL, 3AL, 4AS, 5AL and 6BL that showed associations with leaf 

ionic traits were also found to influence measured salt-related phenotypic traits (Table 7; Figure 6). 

SNP locus (Kukri_c11327_977) at 101.97 cM on 2AL (R2 = 7.45%) detected for K+/Na+ ratio, coincided 

with the locus that was detected for the salt-related DRW, DSW and FRW traits at seedling and PHT 

and ST_GY at AFP  growth stages. This locus is also 1.65 cM away from a locus identified for 

germination vigor that was influenced by both 200 mM NaCl and 100 mM Na2SO4 salt stress 

conditions. The SNP wsnp_Ex_rep_c106152_90334299 located on chromosome 3AL at 84.78 cM was 

associated with Na+ and accounted for 7.81% of the R2. It lies less than 4.69 cM away from other SNPs 

that influenced ST-traits at germination (under 200 mM NaCl), seedling (ST_FSW, ST_DSW and 

ST_DRW) and AFP (ST_GY) growth stages. 

 

 

Table 7 Summary of SNP markers significantly associated the accumulated Na
+
 and K

+ 
and K

+
/Na

+
 ratio in 

the third leaf after 25 days of salt stress 

 

Ions SNP Chr. Pos.  P.value MAF R
2
 (%) 

K
+
 content  

Excalibur_c13094_523 7DL 134.69 5.10E-06 0.27 10.13 

RAC875_rep_c70595_321 5D 67.49 0.0000278 0.43 8.06 

IAAV8258 5AL 86.91 0.0000318 0.19 7.90 

RAC875_c14137_994 1DL 107.25 0.0000652 0.10 7.05 

Kukri_c49331_77 6BL 80.61 0.0000713 0.18 6.95 

Na
+
 content 

wsnp_Ex_rep_c106152_90334299 3AL 84.78 0.0000308 0.38 7.81 

wsnp_Ex_c45713_51429315 6BL 116.55 0.0000333 0.33 7.72 

RAC875_c2666_484 6BL 118.99 0.0000353 0.29 7.65 

RAC875_c28831_558 5BS 11.73 0.0000448 0.40 7.37 

Jagger_c4026_328 2AL 124.81 0.0000638 0.28 6.96 

K
+
/Na

+
 ratio 

Excalibur_c13094_523 7DL 134.69 0.0000117 0.27 10.01 

Kukri_rep_c79597_513 4AS 43.39 0.0000289 0.13 8.81 

Excalibur_c39621_358 4AS 43.39 0.0000298 0.15 8.77 

Kukri_c11327_977 2AL 101.97 0.0000404 0.36 8.37 

wsnp_Ex_c59095_60108185 2AL 122.83 0.0000822 0.29 7.45 
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Congruent QTL regions  

Using genome LD-decay of 10, 11 and 14 cM for A-, B- and D-genomes, respectively, all associated 

SNPs were delineated into 37 distinct major QTL regions (Table 8; Figure 10). Four QTL regions 

including Q-1BS.1 (R2≥30.67%), QTL_2AL.1 (R2≥ 16.93%), QTL_2BS.1 (R2≥12.69%) and QTL_3AL.1 

(R2≥12.02%) are most significant because individually, they were significantly associated with ST-traits 

across the three growth states – germination, seedling and field evaluated trials and thus confer all-stage 

ST. Of these, QTL_2AL.1 and QTL_3AL.1 were also associated with leaf K+/Na+ ratio and Na+ 

exclusion, respectively. Eleven QTL regions exhibited significant genome-wide association with ST-

traits at both seedling and AFP stages, while six QTL regions had effect on germination and seedling 

stage ST-traits. Two loci at 68.4 cM on 5BL (GENE_3156_152; R2≥24.20%) and 71.32 cM on 7BS (Q-

7BS; R2≥12.23%) were pleiotropic and had multiple effects on ST-traits at both germination and 

seedling growth stages. A summary of the detected QTL regions, the associated traits and the previously 

reported QTL is presented in Table 8. 
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Figure 10 Map positions of all the SNPs associated with ST- traits. Map distance (in centiMorgan) is shown on the left. “Underlined” SNPs are pleiotropic; 

SNPs in “red color” were associated with leaf ions traits such as K
+
, Na

+
, K

+
/Na

+
; number of asterisk (*) indicates the number of growth stages the SNP was 

detected, while the colored bar in each chromosome designate QTL regions in significant LD. The QTL names are shown in the left with a solid bar. The bars 

are color coded to represent the growth stages at which the QTL regions conferred ST (“Red”= all stage ST; “Green”= seedling + adult field grown plant 

(AFP) ST; “Blue” = germination + seedling stage ST; “Pink” =germination + AFP ST and “Black” = growth specific ST).  
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Table 8 Colocation of SNP clusters with QTL/genes already identified or published    
Chr QTL R

2
 (%) LD region Associated ST traits Reference 

All stage ST QTL   
   

1BS Q-1BS.1 ≥30.67 62.3-70.7 ST_GY, ST_TKW, ST_FRW, 100 mM Na2SO4   
2AL Q-2AL.1 ≥16.93 101.97- 110 

DRW, DSW, FRW, PH, ST_GY, ST_FSW, 100 mM Na2SO4, 200 mM 

NaCl, K
+
/Na

+
 ratio 

Nax1, QTL
 SB

 (Lindsay et al., 2004; Ma et al., 2007; Genc et al., 2010) 

2BS Q-2BS.1 ≥12.69 86.5-97 DRW, FRW, ST_GY, ST_DRW, 200 mM NaCl QTL
GY, SB

 Quarrie et al., 2005; Ma et al., 2007; Genc et al., 2010 

3AL Q-3AL.1 ≥12.02 86.7-90.6 
ST_GY, ST_FSW, ST_DRW, ST_DSW, 200 mM NaCl, field 

germination, Na
+
 content 

QTL
GY

 (Quarrie et al., 2005) 

Seedling + AFP  ST QTL  
   

1AL Q-1AL.2 ≥12.69 131.5-137.12 ST_GY, ST_FRW 
 

1BL Q-1BL.2 ≥12.12 79.8-90.26 ST_TKW, ST_DRW, ST_FSW 
 

1BL Q-1BL.3 ≥13.09 104-115.9 ST_GY, ST_DRW, ST_FSW 
 

1BL Q-1BL.5 ≥12.18 159-160.9 ST_GY, DSW, DRW 
 

2BL Q-2BL.1 ≥13.14 107.9-118 ST_GY, FSW, DRW 
 

2BL Q-2BL.2 ≥15.01 129.1-134.5 DHD, DSW Q.Na2B2 (et al., 2010) 

2DS Q-2DS.1 ≥13.17 36.5-50.8 FSW, DRW, DSW, ST_GY QSdw-2D (Xu et al., 2012) and QSlc.ipk-2D (Landjeva et al., 2008) 

3AL Q-3AL.2 ≥15.57 173.6-177.2 ST_TKW, ST_FSW 
 

7AL Q-7AL.1 ≥12.88 126.8-135.6 PH, ST_TKW, ST_DSW Q.sb7A (Genc et al., 2010) 

7AL Q-7AL.3 ≥14.23 226.1-228.4 DHD, ST_DSW QTL
GY, SB

 (Quarrie et al., 2005; Genc et al., 2010) 

5BL GENE_3156_152 ≥24.20 68.4 DRW, DSW, FRW, FSW, 75 mM Na2SO4  
Germination + Seedling ST QTL 

   
1BL Q-1BL.4 ≥11.42 137 75 mM Na2SO4, ST_DRW 

 
3BS Q-3BS.1 ≥12.47 61.6-67.5 75 mM Na2SO4, DSW QTL

SSI, GST
 (Ma et al., 2007) 

5AL Q-5AL.1 ≥14.56 43.3-53.5 100 mM NaCl, DSW, ST_FSW, ST_DSW QTL
TN, SB, CC, SKC

 (Genc et al. , 2010) 

5AL Q-5AL.2 ≥16.22 73.5-86.9 75 mM Na2SO4, ST_FSW, ST_DSW, ST_DRW, K
+
 content 

Nax2, Q.ls5A  (James et al., 2006; Byrt et al., 2007; Genc et al., 2010; 

Munns et al., 2012) 

5BL Q-5BL.3 ≥13.81 100.6-106.2 200 mM NaCl, ST_DSW 
 

5BL Q-5BL.4 ≥12.98 122.6-131 100 mM Na2SO4, ST_FRW, ST_DRW 
 

7BS Q-7BS.1 ≥12.23 71.3 100 mM Na2SO4, ST_DSW (E3) 
 

Germination + AFP ST QTL  
   

1AL Q-1AL.1 ≥12.29 79.19-83.7 200 mM NaCl, ST_PH QTL
TN

  (Genc et al., 2010) 

5BL Q-5BL.1 ≥21.22 41-49 100 mM NaCl, ST_GY QTL
GY

 (Quarrie et al., 2005) 

Germination ST QTL  
   

5BL Q-5BL.5 ≥14.10 151.6-154.5 75 mM Na2SO4, 200 mM NaCl  
 

Seedling stage ST QTL  
   

1DS Q-1DS.1 ≥13.33 67.72 ST_DRW in E2 and E3 QTL
RKC, SB

 (Xu et al., 2012) 

2AL Q-2AL.2 ≥14.02 162-167 ST_DSW, DSW Nax1 (Huang et al., 2006;  Genc et al., 2010) 

4AS Q-4AS.1 ≥13.28 37.82- 48.98 DRW, ST_DRW,  K
+
/Na

+
 ratio  

5BL  Q-5BL.2 ≥9.84 76.9-90.35 FSW, DSW, ST_DRW 
QTL

GY 
(Quarrie et al. 2005), Qsii-5B.2 (Ma et al., 2007); Q.sb5B and 

Q.mat5B, Q.K5B (Genc et al., 2010), Vrn-1B (Genc et al., 2010) 
6AL Q-6AL.1 ≥12.47 79.1-85.1 ST_FRW, ST_DSW 

 
7AS Q-7AS.1 ≥14.31 33.2-35.31 ST_DRW, ST_DSW, STI_FRW QTL

SB,GST
 (Ma et al., 2007; Shavrukov et al., 2011) 

7AS Q-7AS.2 ≥11.88 51.4-61.9 FSW, ST_FRW QTL
OR

 (Morgan, 1991; Morgan and Tan, 1996) 

7AL Q-7AL.2* ≥14.23 212.7-219.6 FSW, ST_ FSW, ST_DSW QTL
GY, SB

 (Quarrie et al., 2005; Genc et al., 2010) 

5BS Q-5BS.1 ≥11.53 0.43 DRW, FRW 
 

7BL Q-7BL.1 ≥11.46 171.1 FSW (in E2), DSW (in E2), DSW (in E4) 
 

AFP ST QTL  
   

5AS Q-5AS.1 ≥12.18 15.5-19.7 ST_TKW Ma et al. (2007) 

6BL Q-6BL.1 ≥13.17 109.9-113.3 GY, ST_PH  

where the traits controlled by the QTL are shown as superscripts: GST= germination salt tolerance; SSI= seedling salt injury; SB= seedling biomass; TN= tiller number; GY= 

grain yield; LS= leaf symptoms; CC= chlorophyll content and SKC= Shoot K+ concentration, RKC= Root K+ concentration, OR= osmo-regulation. 
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Principal Coordinates Analysis (PCoA) based on the identified polymorphisms 

PCoA with the 187 identified SNPs were used to assess the genetic relatedness among the most 

consistent salt-tolerant and salt-sensitive genotypes identified in the studied panel (Figure 11). The first 

three axes explained 28.57% of the total variation. Notwithstanding the relatively low contribution of 

the first three PCos to the total genetic variance, the PCoA mostly depicted the relationships that are 

consistent with the ST status of the individual genotypes. This is because, it was able to group the 

genotypes based on their salt tolerance status as was previously reported in Oyiga et al. (2016). The salt-

tolerant genotypes (in green) were mostly distributed at the right side of the plot, while the salt-sensitive 

genotypes were distributed to the left side of the plot. The largest eigenvectors were associated with 

Tdurum_contig30569_579 (101.77 cM) and Tdurum_contig30569_579 (110.13 cM) on 2AL, IAAV3173 

(40.05 cM) on 2DS, Ra_c45147_1600 (48.98 cM) on 4AS, wsnp_Ex_c11348_18327861 (85.07 cM) on 

6AL, Excalibur_rep_c67190_638 and Ra_c7974_1192 (71.33 cM) on 7BS (data not shown). 

 

Figure 11 Principal coordinates analysis (PCoA) plot using a genetic distance matrix (GenAlEx 6.5) 

estimated with data from 187 associated polymorphisms of the salt tolerant (Black colour/triangular shaped) 

and salt sensitive (Gray colour/squared shaped) wheat genotypes previously identified in the GWAS 

analysis. The underlined genotypes (in bold) were used to perform the gene expression analysis. 
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Ontology classification of the associated DNA sequences 

The goal was to identify ORFs in the chromosome segments harboring the QTL identified. The in silico 

analysis of the sequences surrounding 74 of the associated SNP sequences revealed high sequence 

homologies to genes known to be involved in salt-stress response (Table S5). The largest categories of 

genes identified were those involved in stress and defense (23%), antiporter/transport (22%), ion 

homeostasis/detoxification (18%), transcription/translation (11%), osmo-protectant (9%), signal 

transduction (8%) activities, while the genes involved in chromosomal repair, protection/cell wall 

modification (5%) and plant hormone synthesis (4%) accounted for relatively small portion (Figure 8). 

 

 

Figure 12 Ontology classifications of the associated SNP loci 
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Table 9   Ontology classification of the associated DNA sequences detected  using the GWAS and the associated traits   

Traits Associated SNP Chr Functional Annotation  bp Expected 

 

  
Redox homeostasis and detoxification (18.2%) 

  ST_DRW BobWhite_c11044_322 1BL thioredoxin H [Triticum aestivum] NC 1.00E-45 

ST_GY Tdurum_contig30569_579 2AL Secologanin synthase [Triticum urartu] C 2.00E-43 

200 mM NaCl wsnp_JD_c12088_12411845 2AL ferredoxin-dependent glutamate synthase [Secale cereale x Triticum durum] NC 2.00E-46 

ST_GY Tdurum_contig82393_484 2BL NADPH-cytochrome P450 reductase [Triticum aestivum] NC 8.00E-44 

Germination BobWhite_rep_c49102_169 3AL Glutathione S-transferase 1 [Triticum urartu] C 1.00E-45 

Leaf K+ IAAV8258 5AL Pyruvate dehydrogenase E1 component subunit beta [Triticum urartu] C 0.0 

75 mM  Na2SO4 IAAV8258 5AL Pyruvate dehydrogenase E1 component subunit beta [Triticum urartu] C 8.00E-57 

ST_GY wsnp_Ex_rep_c101323_86702546 5AL Respiratory burst oxidase-like protein B [Triticum urartu] C 2.00E-53 

ST_TKW RFL_Contig3674_847 5AS 2-aminoethanethiol dioxygenase [Aegilops tauschii] C 1.00E-43 

100 mM NaCl wsnp_Ku_c32477_42086760 5B 4-hydroxyphenylacetaldehyde oxime monooxygenase C 5e-97 

GY RAC875_rep_c105937_467 6BL Lysine-specific histone demethylase 1-3-like protein [Aegilops tauschii] C 2.00E-42 

FSW BobWhite_c1635_691 7AL RecName: Full=Catalase [Triticum aestivum] C 2.00E-35 

DHD BobWhite_c32883_84 7AL Cell elongation protein DIMINUTO [Aegilops tauschii] NC 2.00E-18 

 

  
Antiporter and transmembrane proteins (19.7%) 

  100 mM NaCl IAAV565 1BL Ras-related protein Rab11B C 1.00E-74 

Leaf K+ RAC875_c14137_994 1DL Uncharacterized Na+/H+ antiporter [Triticum aestivum] C  

ST_FSW wsnp_Ex_rep_c67747_66422078 1BL putative ubiquitin-conjugating enzyme E2 24 [Triticum urartu] C/NC 2.00E-25 

100 mM  Na2SO4 BobWhite_c8218_162 1BS Zinc transporter 7, chloroplastic [Aegilops tauschii] C 5.00E-43 

Leaf K+/Na+  Kukri_c11327_977 2AL Protein transport protein Sec24B [Aegilops tauschii] C 0.0 

ST_DSW BS00091763_51 2AL Glutathione-regulated potassium-efflux system protein kefC [Aegilops tauschii] NC 6.00E-44 

DHD RAC875_c16752_283 2BL Glutamyl-tRNA(Gln) amidotransferase subunit A [Triticum urartu] C 6.00E-26 

200 mM NaCl wsnp_RFL_Contig4814_5829093 3AL Putative ABC transporter B family member 8 [Triticum urartu]  C 7.00E-42 

ST_DRW Ra_c45147_1600 4AL Protein transport protein Sec24-like CEF [Aegilops tauschii]    C 7.00E-44 

ST_TKW BS00081120_51 5AS Bidirectional sugar transporter SWEET17 [Triticum urartu] C 1.00E-25 

200 mM NaCl Kukri_rep_c109463_264 5BL boron transporter [Triticum aestivum]   C 3.00E-43 

DSW Kukri_c54078_114 5BL Oligopeptide transporter 7 [Triticum urartu] C 3.00E-43 

ST_DRW Tdurum_contig25513_123 5BL Potassium transporter 18 [Triticum urartu] C/NC 3.00E-45 

Leaf Na+ wsnp_Ex_c45713_51429315 6BL ABC transporter F family member 3 [Triticum urartu] C 3.00E-84 

ST_DSW Excalibur_rep_c67190_638 7BS Transmembrane 9 superfamily member 4 [Aegilops tauschii] C 1.00E-43 

ST_GY Kukri_c10254_95 Unkn ATP synthase subunit beta, mitochondrial [Aegilops tauschii] 

   

  
Plant hormone response (0.05%) 

  ST_FRW RAC875_c53725_217 1AL Asparagine synthetase (glutamine-hydrolyzing) [Aegilops tauschii] C 5.00E-31 

ST_FSW BobWhite_c15582_253 3AL Abscisic stress-ripening protein 1 [Triticum urartu] C/NC 1.00E-45 

FSW BobWhite_c47456_121 5BL Nudix hydrolase 23, chloroplastic [Triticum urartu] NC 4.00E-29 

   Stress and defense related proteins/ Chaperone (24.2%)   

FSW Excalibur_rep_c116587_84 3AL DnaJ homolog subfamily B member 4 [Triticum urartu] C 2.00E-43 

Leaf Na+ wsnp_Ex_rep_c106152_90334299 3AL IAA-alanine resistance protein 1 [Aegilops tauschii] C 3.00E-90 

ST_DSW BS00073732_51 3BS Heat shock 70 kDa protein, mitochondrial [Triticum urartu] C 1.00E-43 

DMD BobWhite_c1387_798 5AL Putative salt tolerance-like protein [Aegilops tauschii] C 2.00E-43 

ST_DSW BobWhite_c27193_217 5AL hypersensitive response protein [Triticum aestivum] NC 1.00E-26 

ST_FRW wsnp_Ex_c18965_27868480 6AL Two-component response regulator-like PRR1 [Triticum urartu] C 2.00E-97 

ST_DSW BS00067983_51 6BL Two-component response regulator-like APRR2 [Aegilops tauschii] C 6.00E-30 

ST_FRW Tdurum_contig85217_286 7AS T-complex protein 1 subunit alpha [Aegilops tauschii] C 1.00E-43 
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PH BS00039561_51 7AL Chaperone protein dnaJ 1, mitochondrial [Triticum urartu] C 2.00E-19 

ST_DSW RAC875_rep_c105182_460 7AL Zinc finger A20 and AN1 domain-containing stress-associated protein 8 [Triticum urartu] C 2.00E-43 

ST_GY CAP12_c8163_118 1AL Prohibitin-2 [Triticum urartu] C 2.00E-43 

ST_DRW BS00002178_51 1DS Defensin-like protein 2 [Aegilops tauschii] C 6.00E-46 

ST_FSW tplb0033c09_1345 4AL Disease resistance protein RPM1 [Aegilops tauschii] C 2.00E-43 

ST_DRW BS00029412_51 5AL Putative disease resistance RPP13-like protein 2 [Aegilops tauschii] C/NC 2.00E-43 

100 mM  Na2SO4 BobWhite_c10954_467 5BS Putative disease resistance protein RGA3 [Aegilops tauschii] NC 2.00E-34 

ST_TKW BS00075525_51 7AL Disease resistance protein RPM1 [Triticum urartu] NC 2.00E-43 

ST_DSW IACX5996 7AL Putative disease resistance RPP13-like protein 1 [Triticum urartu] NC 1.00E-38 

 

  
Osmo-protectant synthesis related protein (0.08%) 

  Leaf K+/Na+  Kukri_rep_c79597_513 4AS putative methionyl-tRNA synthetase [Triticum urartu] C 0.0 

ST_FRW Kukri_c3973_101 5BL 40S ribosomal protein S12 [Triticum urartu] C/NC 3.00E-43 

ST_DRW BS00095826_51 7AS sucrose:sucrose 1-fructosytransferase [Triticum aestivum] C 1.00E-43 

ST_DSW RAC875_c14173_207 7AS sucrose:fructan 6-fructosyltransferase [Triticum aestivum] NC 1.00E-43 

ST_FRW Kukri_c42622_369 7AS sucrose:fructan 6-fructosyltransferase [Triticum durum] C 4.00E-38 

ST_FRW Kukri_c1831_1243 7AS Sucrose synthase 1 [Triticum urartu] C 1.00E-31 

Leaf K+/Na+  Excalibur_c13094_523 7DL Uridine-cytidine kinase-like protein 1 [Aegilops tauschii] C 3.00E-47 

 

  
Transcription and translation (12.1%) 

  ST_DRW BobWhite_c8293_236 1BL MYB-related protein [Aegilops speltoides] C/NC 7.00E-43 

ST_GY JD_c3173_947 1BS Transcription regulatory protein SNF2 [Triticum urartu] C 2.00E-22 

DRW,  FRW BS00032003_51 5BS Ethylene receptor 1 [Aegilops tauschii] C 1.00E-43 

ST_FRW tplb0024k14_1812 6AS PHD finger protein 3 [Aegilops tauschii] C 1.00E-43 

ST_DSW wsnp_Ex_c11348_18327861 6AL BAH and coiled-coil domain-containing protein 1 [Triticum urartu] C 2.00E-97 

ST_PH Ex_c8134_363 6BL B3 domain-containing protein [Aegilops tauschii] NC 2.00E-43 

100 mM NaCl Kukri_c41157_433 6BL Protein furry homolog-like protein [Triticum urartu] C 2.00E-43 

100 mM NaCl RAC875_c4682_646 unkn putative transcription factor X1 [Triticum monococcum] C 5.00E-40 

 

  
Repair, protection and cell wall modification (0.06%) 

  200 mM NaCl Kukri_c29039_315 1AL Structural maintenance of chromosomes protein 4 [Triticum urartu] C 1.00E-45 

ST_FRW wsnp_Ku_c66585_65967792 1BL Vesicle-associated protein 1-1 [Triticum urartu] C/NC 7.00E-98 

DSW IAAV5776 1BL Structural maintenance of chromosomes protein 3 [Aegilops tauschii C 1.00E-69 

75 mM  Na2SO4 Excalibur_c4699_215 5BL Putative polygalacturonase [Aegilops tauschii] C 2.00E-39 

 

  
Signal transduction (0.09%) 

  ST_PH Excalibur_c34697_831 1AL Putative LRR receptor-like serine/threonine-protein kinase [Aegilops tauschii] NC 2.00E-41 

ST_DRW RAC875_c62_1546 1DS Serine/arginine-rich splicing factor 4 [Triticum urartu] C/NC 1.00E-42 

ST_DRW wsnp_Ex_c45_98113 2AL Glycerol kinase [Triticum urartu] C 4.00E-76 

ST_DSW BS00097930_51 5AL Protein kinase G11A [Aegilops tauschii] C 2.00E-43 

ST_GY wsnp_Ku_c6977_12078791 5AL Serine/threonine-protein kinase CTR1 [Aegilops tauschii] C 9.00E-97 

ST_DRW Excalibur_c25921_230 2BS Putative serine/threonine-protein kinase receptor [Aegilops tauschii] C 1.00E-45 
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Analyses of associated gene transcripts  

The transcript abundance of 22 of the identified candidate genes from QTL regions were investigated 

in the leaves of salt tolerant (Atlay2000) and sensitive (Bobur) genotypes under saline and non-saline 

conditions. The comparative expression at day 24 was performed to analyse the genes identified to be 

genetically associated with scored the measured traits at this time point. All the analyzed genes 

revealed differential expressions when compared to time zero or control and, are mostly up-regulated 

in the leaves of Atlay2000 and down-regulated in Bobur (Figure 13), with the exception of Protein 

kinase G11A. The ZIP-7 (located in the QTL region that influenced ST across all the three growth 

stages) exhibited strongest differential expression; it increased by 713.98% in Atlay2000, but 

declined by 22.19% in Bobur vis-à-vis the control. The gene ontology and their biological and 

molecular functions of the analysed genes are shown in Table 10.  

 

The expression patterns of the four putative genes identified were further analyzed to monitor their 

accumulation after salt stress application using RT-PCR. At day 30, the expression of ZIP7, KeFc, 

AtABC8 and 6-SFT revealed similar pattern as was observed in day 24 (Figure 14), which were 

further substantiated by high correlations (r2 = 0.63-0.98, P = 0.01) existing between the 

TranSNiPtomic data and RT-PCR data (Data not shown). They are up-regulated in tolerant 

genotypes in contrast to the sensitive genotypes. 
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Figure 13 Effect of salt stress on some of identified gene transcript abundance (% change to control) between salt-tolerant genotype (Atlay2000, 

in Black) versus salt-sensitive genotype (Bobur, in grey) after 24 days of stress 
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Table 10 Illustrates the key biological functions associated with the 21 predicted gene proteins found to be differentially expressed in the tolerant and sensitive 

wheat genotypes. Their functions were adapted from the UniProt (www.uniprot.org) database. 
Traits  Chr. Gene Annotation Gene ID Biological process 

ST_FRW 1AL Asparagine synthetase (glutamine-hydrolyzing) [Aegilops 

tauschii] 

P49094 glutamine metabolic process, L-asparagine biosynthetic 

process 

ST_GY 1AL Prohibitin-2 [Triticum urartu] O94550 protein folding 

100 mM  Na2SO4 1BS Zinc transporter 7, chloroplastic [Aegilops tauschii] Q5Z653 zinc II ion transmembrane transport 

200 mM NaCl, 

DSW 

1BL Structural maintenance of chromosomes protein 3 [Aegilops 

tauschii 

O42649 cell division, DNA repair, positive regulation of maintenance 

of mitotic sister, chromatid cohesion, centromeric, mitotic 

sister chromatid cohesion 

Leaf K
+
 1DL Uncharacterized Na+/H+ antiporter [Triticum aestivum] O13726 cation transport, sodium ion transport, regulation of pH, 

transmembrane transport 

200 mM NaCl 2AL ferredoxin-dependent glutamate synthase [Secale cereale x 

Triticum durum] 

KF521800.1 glutamate biosynthetic process,  response to sucrose, 

ammonia assimilation cycle, photorespiration, response to 

light stimulus 

ST_DRW 2AL Glycerol kinase [Triticum urartu] A9WJ21 phosphorylation, glycerol metabolic process, glycerol-3-

phosphate metabolic process 

ST_DSW 2AL Glutathione-regulated potassium-efflux system protein kefC 

[Aegilops tauschii] 

A4W6F3 potassium ion transmembrane transport, potassium ion 

transport, regulation of pH, response to toxic substance 

ST_GY 2BL NADPH-cytochrome P450 reductase [Triticum aestivum] AF123610.1 Oxidoreductase 

Field Germination 3AL Glutathione S-transferase 1 [Triticum urartu] P12653 Oxidoreductase 

ST_DRW 4AL Protein transport protein Sec24-like CEF [Aegilops tauschii]    Q2HH63 ER to Golgi vesicle-mediated transport, intracellular protein 

transport 

ST_TKW 5AS Bidirectional sugar transporter SWEET17 [Triticum urartu] B8AYH1 carbohydrate transmembrane transport 

ST_DSW 5AL hypersensitive response protein [Triticum aestivum] A5HE90  

ST_DSW 5AL Protein kinase G11A [Aegilops tauschii] M7YES1 - 

ST_DRW 5BL Potassium transporter 18 [Triticum urartu] Q8VXB1-2 Ion transport, Potassium transport, Transport 

ST_DSW, 

ST_DSW 

6AL Two-component response regulator-like PRR1 [Triticum 

urartu] 

A2YQ93 phosphorelay signal transduction system, regulation of 

transcription, DNA-templated, rhythmic process 

ST_PH 6BL B3 domain-containing protein [Aegilops tauschii] Q2QMT6  regulation of transcription, DNA-templated 

FSW 7AL RecName: Full=Catalase [Triticum aestivum] A2YH64 response to oxidative stress, hydrogen peroxide catabolic 

process 

ST_FRW 7AS T-complex protein 1 subunit alpha [Aegilops tauschii] O94501 protein folding, tubulin complex assembly 

ST_FRW 7AS Sucrose synthase 1 [Triticum urartu] P04712 sucrose metabolic process 

ST_DSW 7AL Zinc finger A20 and AN1 domain-containing stress-associated 

protein 8 [Triticum urartu] 

A2YEZ6 Stress response 

ST_DSW 7BS Transmembrane 9 superfamily member 4 [Aegilops tauschii] Q9Y819 endosomal transport, vesicle-mediated transport 
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Figure 14 Expression levels of  ZIP7- putative Zinc transporter; KefC- Glutathione-regulated potassium-

efflux system protein; AtABC8- Putative ABC transporter B family member 8 and 6-SFT-sucrose: fructan-

6-fructosyltransferase in leaves of two salt tolerant (Atlay2000 and UZ-11CWA-8) and salt sensitive (Uz-

11CWA-24 and Bobur) after 30 days in  non-saline (Grey) and saline (Black) conditions, determined by 2
-

ΔCT
 method. Efa1.1 and Efa1.2 genes were used as internal control genes. Bars are the means (n = 3) ± 

standard error.  
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Time effect and kinetics of some of the associated genes  

The expression-kinetics of the identified genes were compared in the contrasting genotypes over time-

course of 2 hours, 11 days and 24 days in saline and non-saline conditions. Using the sigmoidal function 

revealed that the putative candidate genes had distinct but partially overlapping expression patterns at the 

onset of salt treatment (Figure 15). The transcript amounts were higher in the sensitive genotypes at the 

early phase of salt treatment; but the trend was gradually altered over time, favoring the tolerant 

genotype. In general, there was an increase in the level of transcript expressions in both Atlay2000 and 

Bobur as the salt treatment progressed. However, marked differences in the expression signatures 

between the two genotypes started to manifest at about 11 days after stress. From this time-point onward, 

the expression levels of the genes increased exponentially in Atlay2000 but less so in Bobur. The ZIP7, 

Structural maintenance of chromosomes protein 3 (SMC3) and Na+/H+ antiporter transcripts increased 

and decreased in Atlay2000 and Bobur, respectively,  after 11days of salt treatment; but ferredoxin-

dependent glutamate synthase (GLU) was differentially expressed in both genotypes much earlier after 5 

days of salt treatment. The Zinc finger A20 and AN1 domain-containing stress-associated protein 8 

(SAP8) showed late differential response (beyond 24 days of stress). The gene–gene correlation matrix 

constructed using the expression patterns revealed mostly positive correlations and few negative 

correlations (P≤0.05, Figure 16).  
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Figure 15 The expression kinetics of the associated salt tolerance genes over a period of 24d in salt tolerant 

(in black colour) and salt sensitive (in gray colour) genotypes. The “thick” and “dotted” lines indicate the gene 

expression kinetics over-time in saline and non-saline conditions, respectively. ZIP7 = Zinc transporter 7; 

kefC = Glutathione-regulated potassium-efflux system protein kefC; GLU1 = ferredoxin-dependent glutamate 

synthase; SMC3 = Structural maintenance of chromosomes protein 3; HAK18 = Potassium transporter 18, 

SAP8 = Zinc finger A20 and AN1 domain-containing stress-associated protein 8 and, the Na+/H+ antiporter. 

The x- and y-axes are time of data collection and the amount of expressed transcripts, respectively. 
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Figure 16 Correlation matrixes of 21 expressed genes identified in the GWAS analysis, based on the 

comparison of transcript abundance among these genes at three time-points after salt stress application. Blue 

colors indicates negative and red the positive correlations, whereas, the brightness is proportional to the 

strength of the correlation. 1= Zinc transporter 7; 2= Protein transport protein Sec24-like CEF; 3= 

Bidirectional sugar transporter SWEET17; 4= Transmembrane 9 superfamily member 4; 5= Glutathione-

regulated potassium-efflux system protein kefC; 6= Potassium transporter 18; 7= NADPH-cytochrome P450 

reductase; 8= Glutathione S-transferase 1; 9= ferredoxin-dependent glutamate synthase; 10= hypersensitive 

response protein; 11= Zinc finger A20 and AN1 domain-containing stress-associated protein 8; 12= 

Structural maintenance of chromosomes protein 3; 13= Two-component response regulator-like PRR1; 14= 

B3 domain-containing protein; 15= RecName: Full=Catalase; 16= Asparagine synthetase (glutamine-

hydrolyzing); 17= Prohibitin-2; 18= Glycerol kinase; 19= Protein kinase G11A; 20= T-complex protein 1 

subunit alpha and, 21= Sucrose synthase 1. 
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Sequence analysis in the putative candidate genes 

The amino acid sequence analysis revealed several non-synonymous substitutions between Atlay2000 

and Bobur at the coding regions anchoring the associated SNPs for all the putative genes analyzed 

(Figure 17). Most of the substitutions detected showed dissimilar phyisco-chemical properties. For 

instance, the 496st amino acid in Traes_1BS_D68F0BED6.1.mrna1-E4 coding region of the ZIP-7 

changed from C (Cysteine) in Atlay2000 to S (Serine) in Bobur; and at 503rd and 504th positions, 

“Threonine (T)” and “– (an amino acid deletion)” were observed in Bobur (Figure 17A ) instead of 

Alanine (A)” and “Leucine (L)”, respectively. There were three amino acid changes within the coding 

sequence (Traes_2AL_A2CBDB5F7.1.mrna1-E2) anchoring the associated SNP at second exonic region 

of KefC (Figure 17B). The first change is from L (leucine) in Atlay2000 to G (glutamine) in Bobur, 

while the second is from S (serine) to T (threonine). The third change is from P (proline) in Atlay2000 to 

A (alanine) in Bobur. In associated exon 10 coding region of HAK18 (Traes_5BL_F112FA40E.2.mrna1-

E10), we detected five non-synonymous substitutions sites that may have contributed to the alteration of 

the gene functional capacity and structure (Figure 17C). Sequences variations were also observed 

between Atlay2000 and Bobur in the remaining three genes including SAP8, GST1 and SWEET17 

(Figure 17D-F). 

 

A. Zinc 7 transporters (ZIP7) 
Gene ID    --SMSSLAVWATGLMRRRMTPTSQHTACDTCTLMHVPVFILHTYIRRALVFDGHERTAPVETPEHCLCIYMNPRALLRDILC-- 510 

Atlay2000  --SMSSLAVWATGLMRRRMTPTSQHTACDTCTLMHVPVFILHTYIRRALVFDGHERTAPVETPEHCLCIYMNPRALLRDILC-- 510 

Bobur      --SMSSLAVWATGLMRRRMTPTSQHTACDTCTLMHVPVFILHTYIRRALVFDGHERTAPVETPEHCLSIYMNPRT-LRDILC-- 510 

 

 

 

 

 

B. Glutathione-regulated potassium-efflux system protein (kefC) 
Gene ID      --LCSTSGSSLGYGFSRVMSKTKPVVSDDESDTIDGALAIAHYANVKGSASLVLPGLYSRCVRVK-- 1141 

Atlay2000    --LCSTSGSSLGYGFSRVMSKTKPVVSDDESDTIDGALAIPHYANVKGSASLVLLPGLYSRCVRV-- 1141 

Bobur        --LCSTSGSSQGYGFTRVMSKTKPVVSDDESDTIDGALAIAHYANVKGSASLVLLPGLYSRCVRV-- 1141 
 

 

 

 

 

C. Potassium transporter 18 (HAK18) 
Gene ID      --PGFETVGDEVTFLNSCRDAGVVHILGNTVIRARRDSGPLKKLAIDYLYAFLRKICRENSAIFNVPHESLLNVGQVFYV 875 

Atlay2000    --PGFETVGDEVAFLNSCRDAGVVHILGNTVIRARRASGPLKKLAIDYLYAFLRKICRENSAIFNVPHESLLNVGQVFYV 875 

Bobur        --PGFETVGDEVAFLNSCRDAGVVHILGNTVIRARRDSGPLKKLAIDYLYAFLRKICRENSAIFNVPHESLLNVGQVFYV 875 

 

Gene ID      LKWMITVFVCRLFYRRTLQKLIDFTYLEHVDFSTNKMAHVNFSNKMANFSAV-- 927 

Atlay2000    LKWMITVFVCRLFYRRTLQKLIDFTYLENVDFSTNKMAHVNFSNKMANFSAV-- 927 

Bobur        LKWMITVFVCTLFYRRTLQKLIDFTYMEHVDFSTNKMAHVNFSNKMANFSAV-- 927 
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D. Zinc finger A20 and AN1 domain-containing stress-associated protein 8 (SAP8) 
Gene ID      --AGPSEAAMENPKGPSRCSTCRKRVGLTGFNCRCGNLYCATHRYSDKHECKFDYRAAAMDAIAKANPVVKAEKLDKIEG 258 

Atlay2000    --AGPSEGAMENPKGPSRCSTCRKRVGLTGFNCRCGNLYCATHRYSDKHECKFDYRAAAMDAIAKANPVVKAEKLDKIKG 258 

Bobur        --AGPSEGAMENPKGPSRCSTCRKRVGLTGFNCRCGTLYCATHRYSDKHECKFDYRAAAMDAIAKANPVVKAEKLDKIEG 258 

 

Gene ID      PPYGRQNIRSQIKSALPRHRASLLHYPFIMLASAILVVVGQSCTAHAPRRQPQVRTVSLLAMLCKLYLWSSL--330 

Atlay2000    PPYGRQNIRSQIKSALPRHRASLLHYPFIMLASAILVVVGQSCTAHAPRRQPQVRTVSLLAMLCKLYLWSSL--330 

Bobur        PPYGRQNIRSQIKSALPRHRASLLHYPFIMLASASLVVVGQSCMAHAPRRQPQVLTVSLLAMLCKLYLWSSL--330 

 

 

E. Glutathione S-transferase 1 (GST1) 
Gene ID      --VAALMKPSFLALVRREISRGVFPPMCACPSVCSCDVSSCMFRLVLAILSRSCTEMSIPMLWFNNKLCPEIISASIFS--372 

Atlay2000    --VAALMTPSFLALVRREISRGVCPPMCACPSVCSCDVSSCMFRLVLAILSTSCTEMSIPMLWFNNKLCPDIISASIFS--372 

Bobur        --VAALMRPSFLALVRREISRGVFPPMCACPSVCSCDVSSCMFRLVLAILSQSFTEMSVPMLWFNNKLCLDIIPASIFS--372 

 

 

 

E. Bidirectional sugar transporter (SWEET17) 
Gene ID      --AYDASASLLSSKASRHGQDDVATRVLCKIMFSMSKVQFLSHALIFFKASWTIFLSRDRP--272 

Bobur        --AYDASASLLSSKASRHGQDDVATRVLCKIMFSMSKVQFLSHALIFFKASWTIFLSRDRP--272 

Atlay2000    --AYDASASLLSSKASRHGQDDVATRVLCKIMFSMSKVQFLSHALIFFKASCTIFLSRDRL--272 

                

 
Figure 17 Comparison of the deduced EST amino acid sequence of the associated: A- ZIP7 

(Traes_1BS_D68F0BED6.1.mrna1-E4); B- KefC (Traes_2AL_A2CBDB5F7.1.mrna1-E2); C- HAK18 

(Traes_5BL_F112FA40E.2.mrna1-E10); D- SAP8 (Traes_7AL_B88F6A3D3.1); E- GST1 

(Traes_3AL_F205FA0941.2.mrna1-E1), and F- SWEET17 (Traes_5AS_9937DABBA.1.mrna1-E5)  in 

Atlay2000 (salt tolerant) and Bobur (salt sensitive) genotypes with their corresponding draft sequence 

obtained from Ensembl Genomes database (http://www.ensemblgenomes.org). The “black” and “white” 

colours in the analyzed sequences are the identical and polymorphic sites found between the contrasting wheat 

genotypes, respectively, while gray colour represent region anchoring the associated SNP marker identified in 

the GWAS analysis. 
  

 

DISCUSSION 

Genetic variation among the studied panel under salt stress 

The availability of genetic resources, knowledge about the genetic diversity for the desired traits 

including genes and the population structure is paramount for effective use of genetic resources for gene 

discovery, germplasm development and deployment in breeding. Kulwal et al. (2012) have shown that 

the success of GWAS to detect putative QTL/genes depends greatly on the sample size, choice of 

germplasm, marker density and the heritability of the traits. In this study, 150 ICARDA-CIMMYT-

IWWIP elite wheat germplasm were used to map the QTLs controlling salt tolerance across three 

different growth stages. The association mapping panel was derived from 673 crosses that involved 371 

unique ancestral co-founders; thus, highlighting the potential genetic diversity inherent in the panel used 

for this study which  makes it a valuable genetic resource for QTL identification and characterization of 

the genetic loci contributing to salinity tolerance.  
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The genotypes responded differently to the salt stress across the three growth stages and, the CV ranged 

from 2.87-7.95% for germination, 15-22% for seedling and 1.28–44% for AFP (full details previously 

reported in Oyiga et al 2016). The variations observed across the growth stages are within the range of 

5.4 to 22.8% that have been reported and exploited to uncover QTL controlling ST in wheat (Xu et al., 

2012; Xu et al., 2013, Turki et al. 2014). However, unlike the present study, the previous studies 

evaluated the genetic architectures controlling ST based on single growth stage experiments. The results 

reported here are to our knowledge the first which simultaneously evaluated salt tolerance mechanisms in 

wheat based on three growth stages. All the traits analyzed showed moderate to high h2, lending credence 

in the quality of data collected for various traits to allow for the identification of useful QTL linked to 

such salt stress tolerance traits. Salt stress impacted negatively on germination vigor, root/shoot seedling 

biomass production and yield related traits, as was reported in Oyiga et al. (2016). Similar effect in the 

decrease of plant growth and development due to salinity has been reported in wheat (Munns and Tester 

2008; Gomes-Filho et al., 2008).  

 

Genetic variation in the two key physiological traits, leaf Na+ and K+/Na+ ratio indicates the possibility of 

genetic improvement of salt tolerance (Karan and Subudhi, 2012). In the mapping panel, sufficient 

genetic variations were observed for Na+ concentrations (CV= 28.14%; Figure 2B) and K+/Na+ ratio 

(26.80%; Figure 2C) in the third leaves among the germplasm, after 25 days of salt stress thus, making 

the panel amenable for the dissection of genetic  mechanisms controlling ST. The leaf Na+ concentration 

and the K+/Na+ ratio correlated positively and negatively, respectively, with the accumulated root 

biomass under salt stress, which is consistent with previous studies that indicated that root plays an 

important role in Na+ transport to the shoot as well as in ion-homeostasis (K+/Na+ ratio) (Lacan and 

Durand, 1996; Krishnamurthy et al., 2009). Munns et al. (2006) reported that increase in root biomass 

under salt stress would encourage excessive amounts of salt entering the transpiration stream which will 

cause injury to the cells in the transpiring leaves and may reduce growth. 

 

Population structure and LD  

Population structure can result in spurious associations between markers and traits and necessitates 

consideration in GWAS studies to minimise its confounding effects (Flint-Garcia et al., 2003; Yu et al., 

2006). The population structure of the mapping panel was examined using three approaches 

(STRUCTURE and PCoA) that produced similar results. Two sub-populations were observed, which is 

in line with Wingen et al. (2014), but the groupings did not reflect the four breeding centres where the 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Wingen%20LU%5Bauth%5D
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genotypes originated from, due to the intermixing of several genotypes. A likely explanation for the 

intermixed population could be that the breeders exchanged germplasm in their breeding programs and, 

with the established long history of recombination and mutation events in the panel gave rise to a highly 

diverse germplasm, thus making it suitable for association studies.  

 

The resolution of association mapping depends on the extent of LD across the genome and the rate of LD 

decay with genetic distance (Stracke et al., 2007). The LD of the GWAS panel decayed after 10, 11 and 

14 cM in A-, B- and D-genome, respectively, suggesting that large number of SNPs are required to 

define the recombination profiles in the panel as a means to achieve high resolution. This implies that we 

can expect to detect significant LD due to linkage between SNPs separated by less than 10, 11 and 14 cM 

in A-, B- and D-genome, respectively. With the average SNP interval of 0.49 cM in the GWAM panel, it 

is expected that sufficient SNP-marker density for high resolution was achieved to detect QTL 

controlling ST. LD decay of <14 cM has also been reported in breeding populations such as maize (Stich 

et al., 2005), barley (Kraakman et al., 2004) and wheat (Chao et al., 2007; Emebiri et al., 2010), although 

LD decay of over 40-50 cM has been reported in wheat (Joukhadar et al., 2013; Turki et al., 2014). The 

LD decayed less rapidly in D-genome compared to A- and B-genomes, due to the introduction of new 

haplotypes from Aegilops tauschii (D-genome donor) into the genome of hexaploid wheat germplasm 

through synthetic wheat (Edae et al., 2014), thus making the D-genome less genetically diverse.  

 

Association mapping  

GWAS identified 172 and 15 SNPs associated with the phenotypic and ionic traits, respectively; 

representing 37 LD defined QTL regions and, explained between 3.0% and 30.67% of the R2. Most of the 

associations identified correspond with the chromosomal regions carrying published salt tolerance 

QTL/genes (Table 8). Notable, are Q-1BS.1, Q-2AL.1, Q-2BS.1 and Q-3AL.1 that affected the salt-stress 

related traits across the three growth stages. The Q-2AL.1 and Q-3AL.1 regions were also associated with 

leaf K+/Na+ ratio and leaf Na+ concentrations, respectively, an indication that they could be involved in 

ion-homeostasis (ROS scavenging) and solute transport in wheat. The Q-2AL.1 found in the region of ST 

QTL for seedling biomass (Ma et al., 2007; Genc et al., 2010) coincided with the previously reported Na+ 

exclusion locus in durum wheat that hosts HKT1;4 (Nax1) that is closely linked with gwm312 marker 

(Lindsay et al., 2004; James et al., 2006; Huang et al., 2006), while the Q-2BS.1 is co-localized with a ST 

QTL controlling yield and seedling biomass (Quarrie et al., 2005; Genc et al., 2010) and Ppd-B1 locus 

(Mohler et al., 2004). The Q-3AL.1 was found in the ST QTL region for grain yield (Quarrie et al., 

2005). To the best of our knowledge, the Q-1BS.1 on 1BS at 8.4 cM interval has not been previously 
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reported. These QTL regions could be of value for future efforts to better understanding of salt tolerance 

mechanisms in wheat. 

 

The QTL_2DS.1 on 2DS showing pleiotropic effect in both seedling- and AFP-traits was located 

proximal to ST QTL QSdw-2D (Xu et al., 2012), QSlc.ipk-2D (Landjeva et al., 2008) as well as Ppd-1 

gene reported to exert strong pleiotropic effect on many traits (Kumar et al., 2007; Beales et al., 2007; 

Bennet et al., 2012). It could be hypothesized that QTL_2DS.1 operates in multiple pathways controlling 

plant responses to stress and plant adaptation. Ma et al. (2007) reported a QTL for leaf symptoms due to 

Na+ effect close to QTL_5AS.1 identified in the present study, while QTL_5AL.1 overlapped with QTL 

controlling frost (Baga et al., 2007) and copper (QCut.ipk-5A1; Bálint et al., 2007) tolerance, suggesting 

that this locus might be linked to genes conferring multiple-tolerance to abiotic stresses. The QTL_5AL.2 

(R2≥16.22%) on 5AL, detected for multiple ST-traits such as 75 mM Na2SO4, ST_FSW, ST_DSW, 

ST_DRW and leaf K+, corresponds to the genomic region of gene for Na+ exclusion TmHKT1 identified 

as a candidate for Nax2 (James et al., 2006; Byrt et al. 2007; Munns et al., 2012). SNP GENE_3156_152 

on 5BL at 68.4 cM, associated with ST-traits at germination and seedling growth stages, was found 

within the Vrn-1B locus reported to have pleiotropic effects on several genes controlling frost, salt, 

drought and osmotic stress tolerance (Yan et al., 2003; Limin and Fowler 2006; Dhillon et al., 2010). The 

QTL regions including Q.5BS.1, QTL.5BL.3 and QTL.5BL.4 did not overlap with any reported QTL, 

suggesting that they may be potentially novel ST QTL regions 

 

PCoA based on the associated polymorphisms 

The PCoA using all the SNPs showing significant MTAs in our GWAM studies correctly discriminated 

the most consistent contrasting wheat genotypes, identified in the studied panel (Oyiga et al., 2016), 

based on their salt tolerance status (Figure 11), as the genotypes were broadly separated into two 

genetically distinct groups. The salt-tolerant genotypes were mostly grouped on the right side of the 

PCoA plot, whereas the salt-sensitive genotypes were clustered at the left side of the plot. Singh et al. 

(2013) posited that genetic information based on marker information is very informative and, would 

enable accurate groupings of genotypes sharing common lineage and/or genotypes with similar adaptive 

features. This result not only reflected on the genetic diversity among the genotypes but also showed that 

the identified polymorphisms are involved in salt stress response. This means that the identified SNPs are 

linked to genes regulating ST, suggesting that sequence annotation of the associated loci can uncover the 

genetic variants. Based on genetic relationships from cluster analysis, salinity tolerance might be 

improved by selecting parental genotypes from different clusters. 
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Gene annotations and interpretation of genetic mechanisms 

The map used in this study had a resolution of 0.49 cM, which means that the GWAS results can be 

resolved into a single gene. Among the genes that were identified are genes involved in ST (Table 9). 

The ZIP7 transporter, identified in the novel Q-1BS.1 region that was detected across the three growth 

stages, controls Zn uptake (van der Zaal et al., 1999) and has been shown to confer salinity and drought 

tolerance in rice (Liu et al., 2014). The uptake of Zn in plant increases ST status by improving the 

expression of Na+/H+ antiporter genes, TaSOS1 and TaNHX1, while decreasing the Na+ accumulation 

(Abou Hossein et al., 2002; Xu et al., 2014) as well as the ROS accumulation and homeostasis (Chen et 

al. 2011; Sinclair and Kramer, 2012). The QTL.2A.3 on 2AL is homologous to KefC, which confer 

protection against electrophiles catalyzes K+/H+ antiporter and, export rubidium, lithium and sodium 

(Fujisawa et al., 2007). The SNP RAC875_c14137_994 at 107.25 cM on 1DL (with R2=7.05%) 

significantly linked to a new QTL detected for leaf K+ showed high sequence homology with an 

uncharacterized Na+/H+ antiporter. The SWEET 17 transporters mediate sucrose, fructose and glucose 

transport across tonoplast of roots and leaves (Schroeder et al., 2013; Chen, 2014; Guo et al., 2014). This 

gene is associated with pathogen resistance (Schroeder et al., 2013) and, it´s sequence is associated with 

TKW at 39.26 cM on 5AS.  

 

The Response to ABA and Salt 1B that encode ABA- and salt stress-inducible (Rab11B) genes was 

homologous with the SNP IAAV565 that is associated with germination vigor on 1BL. Ren et al. (2010) 

reported that Rab11B is a negative regulator of salt tolerance during seed germination and early seedling 

growth by enhancing ABA sensitivity. The homologous Transmembrane 9 superfamily member 4 on 

7BS has been reported to be involved in the adaptation to NaCl toxicity in ryegrass (Li et al., 2012) and 

rice (Senadheera et al. 2009). SAP8 was identified on the QTL_7AL.1 region. This gene is known to 

confer salt, cold and dehydration stress tolerance in transgenic tobacco (Mukhopadhyay et al., 2004), tea 

(Paul and Kumar, 2015), Arabidopsis (Giri et al., 2011) and rice (Kanneganti and Gupta, 2008) by 

exhibiting multiple responses. Two associated SNPs RAC875_c14173_207 (33.45 cM; R2= 14.31%) and 

Kukri_c42622_369 (35.31 cM; R2= 11.58%) on Q-7AS.1 region were both coding for sucrose: fructan 6-

fructosyltransferase (6-SFT), a key enzyme for fructan synthesis (Müller et al., 2000). Fructans supports 

osmo-protectants synthesis, anti-oxidation and membrane stability in plants (Valluru and Van den Ende, 

2008; He et al., 2015). The Q-7AS.1 might be similar to the osmoregulation genes regions previously 

described by Morgan (1991) and Morgan and Tan (1996). This further confirmed the earlier study by 

Ogbonnaya et al. (2013) in which they reported the identification of minor gene for Na+ exclusion in 

http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2011.03740.x/full#b31


101 
 

synthetic derived population ‘AUS29639//Yitpi’ on chromosome 7A though they did not characterize the 

underlying gene. 

 

Transcriptomic and single gene expression analysis  

All the putative genes analyzed (except Protein kinase G11A) were significantly up-regulated in the 

Atlay2000 but down-regulated in Bobur after 24 days of salt stress (Figure 13), suggesting that these 

genes are salt-responsive and their expressions may contribute to ST in wheat. Among the genes, ZIP7 

showed strongest differential response to salt stress. It increased by 713.98% in Atlay2000 but declined 

by 22.19% in Bobur, an indication of a positive link existing between Zn transport and salt stress 

tolerance. Lonergan et al. (2009) have shown that candidate locus HvNax4 controls shoot Na+ 

accumulation in barley and is also associated with Zn2+ accumulation. Available reports indicated that 

ATP-binding cassette (ABC) transporters identified on 3AL are involved in a diverse range of processes, 

including hormones, lipids, metals, secondary metabolites and modulators of ion channels (Perlin et al., 

2014; Hellsberg et al., 2015) and its up-regulation enhances salt and drought resistance (Kim et al., 2010; 

Li et al., 2015). Moreover, the over-expression of KefC in Arabidopsis thaliana (Shi et al., 2000; Shi et 

al., 2003) and 6-SFT in tobacco (He et al., 2015) and wheat (Kerepesi et al., 2002), similar to results of 

the present study, have been demonstrated to confer ST. The RT-PCR results of putative genes including 

ZIP7, KefC, AtABC8 and 6-SFT showed similar expression patterns in the leaves of two tolerant (up-

regulation) and two sensitive (down-regulation) genotypes after 30 days of salt treatment, thus 

confirming the role of these genes in ST. Thus, transcriptome and RT-PCR results suggested that the ST-

status of Atlay2000 can partly be attributed to the increased activities of the candidate genes identified in 

the present study. The results presented here were data obtained from the shoot parts, since the analyzed 

genes including ZIP7 (Milner et al., 2013), KefC (Han et al., 2015), AtABC8 (Ma et al., 2016), 6-SFT 

(Nagaraj et al., 2004) and Nax1 (James et al., 2006; Munns et al., 2012) are expressed in the shoot. 

Further analyses of the transcription of these genes in the root cells are essential, as the organ which is in 

close contact with the solution. 

 

The kinetics of the putative genes under saline and non-saline conditions revealed differential transcript 

signatures across the three time points (2hour, 11 days and 24 days) after salt application. Prior to salt 

stress initiation, Bobur exhibited higher tendency toward transcript accumulation than Atlay2000, 

suggesting that both genotypes are genetically different. Over-time, the accumulated transcripts in 

Atlay2000 increased exponentially surpassing that of Bobur, confirming the former to possess better 

adaptation mechanisms to deal with salt stress. The differential expressions of ZIP7, SMC3 and 
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uncharacterized Na+/H+ antiporter between the genotypes became conspicuously obvious after 11d of 

salt treatment. This time period may coincides with the ionic phase earlier described by Munns and 

Tester (2008) when the accumulation of salts is becoming deleterious to the plant, resulting in increased 

leaf senescence, reduced photosynthetic capacity and reduced growth rate. At this time, only plants that 

can tolerate the accumulated Na+ and/or exclude Na+ would have a sustained growth rate under salt 

stress. Much earlier (about 4 days) and late (after 24 days) differential response were observed in GLU 

and SAP8, respectively, between Atlay2000 and Bobur. These findings provide probable reasons and 

support our earlier results report (Oyiga et al., 2016) that Atlay2000 is a widely adapted salt tolerant 

genotype. Further, judging by the mostly positive correlations of the expressions observed among the 

genes analyzed, we might infer that most of the investigated putative genes are co-expressed, although 

further studies are needed to validate this claim. 

 

Sequence variations at candidate gene loci  

Several amino acid changes that resulted in non-synonymous substitutions were detected between 

Atlay2000 and Bobur in the gene coding regions anchoring the SNPs identified by GWAS (Figure 17). 

These substitutions belonged to different physico-chemical properties, suggesting that the detected 

mutation sites may have affected the gene structure and function differently in both genotypes during salt 

stress.  Three non-synonymous substitutions were detected sites 496, 503 and 504 of the EST amino acid 

sequence of ZIP7 (Figure 17A). From Atlay2000 to Bobur, the protein sequences were altered from C 

(Cysteine) to S (Serine), from A (Alanine) to T (Threonine) and from L (Leucine) to – (a SNP deletion) 

at the discriminating amino acid sequence sites, respectively. The aaccumulations of A and L have been 

reported in salt-tolerant plants (Mansour, 2000). In addition, C is more hydrophobic than S and, Hessels 

(2015) has shown that C-to-S substitution decreases the Zn2+ affinity. Thus, the up-and down-regulations 

of ZIP7 observed in Atlay2000 and Bobur, respectively, during salt stress may have been largely 

contributed by the C496S substitutions at the exon 4 of ZIP7.  Amino acid substitution detected at exon 2 

in of putative KefC changed from L (Leucine) in Atlay2000 to Q (Glutamine) in Bobur, from S (Serine, 

in Atlay2000) to T (Threonine, in Bobur) and, from P (Proline, in Atlay2000) to A (Alanine, in Bobur) at 

position 1087, 1092 and 1117, respectively (Figure 17B); offering the probable reason for the differential 

response of this gene in both contrasting genotypes. L and P, which were substituted by G and A in 

Bobur, respectively, have been reported to play osmoprotective role (Arbona et al., 2013) in plants and 

may have contributed to increased salt sensitivity of Bobur to salt stress. The results of this study provide 

new strategy to increase ST in wheat. 
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ABSTRACT 

Soil salinity is one of the most important environmental factors that affect wheat productivity worldwide. 

The dissection of the genetic architectures of salt tolerance (ST) is invaluable towards improvement of 

salt tolerance. We conducted a genome-wide association study using 18,000 single nucleotide 

polymorphism (SNP) markers across 150 diversity panel of wheat that were phenotyped for some key 

physiological and seed quality traits, in order to assess the genetic diversity and to identify marker-trait 

associations and candidate genes involved in ST. Using the mixed-linear model, we identified a total of 

54, 44 and 17 SNPs significantly associated with the salt-related chlorophyll fluorescence (ChlF), shoot 

ionic (SI) and seed quality (SQ) parameters, respectively. They explained between 2% and 63.45 % of 

the observed phenotypic variance. All the significant MTAs were located in 21 LD-defined clusters in the 

wheat genome. Among them, a locus on 6AL were strongly associated with ChlF and shoot Na+ content, 

while another locus on 2DS affected ChlF and SQ traits. We also found a region <1.55 cM on 2BL to be 

influencing Fv/Fm, shoot Na+, shoot K+/Na+ and seed crude fiber content. In-silico analysis of the 

flanking sequences of trait-associated SNPs in wheat databases uncovered several putative genes that 

may be regulating variations in the measured traits. Expressed sequence tags allelic variations and 

expressions analyses performed provided useful information for understanding the genetic mechanisms 

of ST. Thus, this study establishes a fundamental research platform for developing salt-stress responsive 

functional genetic markers that can be utilized in breeding programs in wheat. 

 

INTRODUCTION 

Wheat is one of the world´s most important strategic food crops, with an estimated annual production of 

about 736 million metric tons (MMT) (FAO, 2015). With the projected increase in the world population 

to 9.1 billion by 2050 coupled with the climatic change, there is need to the improve the wheat resilient to 

environmental stresses so as to increase its production to meet the global demand, which has been 

predicted to surpass 880 MMT by 2050 (Weigand, 2011). Salinity is largely limiting the wheat 

production globally with more than 6% of the world’s total land area affected by salinity (FAO 2010) 

and, is expected to increase in the coming years (Munns and Tester, 2008). Salt stress leads to ionic 

imbalance, hyperosmotic stress and nutrient deficiency (Flowers, 2004) and, would decrease the seedling 

growth and survival (Lutts et al., 1995), damage the structure of chloroplasts and photosynthesis 

capabilities (Parida and Das 2005; Yamane et al. 2008; Abbaspour et al. 2012), consequently resulting in 

poor seed set and seed quality (Asch et al., 2000; Nayidu et al., 2013) and yield (Atkinson and Urwin, 

2012). Plant response to salinity is a complex phenomenon involving contributions from several 
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physiological, genetic, molecular and cellular mechanisms, in addition to the interactions between the 

plant and it’s continually changing environmental conditions. Thus, understanding of how these factors 

interact and contribute to ST would be necessary in designing an efficient breeding strategy. 

 

Several strategies have been adopted to minimize the effect of salt stress on plants, but the use of salt 

tolerant wheat cultivars is considered as the most economical and efficient strategy to increase grain 

yield. Salinity tolerance depends on how the plant deals with the process of salt uptake and accumulation 

patterns into different organs (Paranychianakis and Angelakis, 2008, Munns et al., 2012; Guan et al., 

2014), elimination of reactive oxygen species (ROS) (Suzuki et al., 2012; Peng et al., 2014), organic 

compound accumulations (Ashraf and Foolad, 2007) and hormone regulation (Jiang et al., 2013; Osakabe 

et al., 2014). Recent progress in plant molecular biology have shown that adaptation of plant to salt stress 

is achieved via ion homeostasis (Misra et al., 2011; Yang et al., 2012), associated with high K+ uptake, 

restriction Na+ uptake, activating Na+ exclusion or cellular compartmentalization of excessive Na+ into 

the vacuole and ROS-homeostasis (Meyer et al., 2012; Noctor et al., 2014; You and Chan., 2015). The 

expressions of enzymes linked to the genes involved in these processes play vital roles in plants 

adaptation under salt stress conditions.  

 

Khayyat et al. (2014) have reported that plants response to high salinity stress via non-stomatal and 

stomatal levels. While the former inhibits photosynthetic by destroying the chloroplast structure (Rouhi 

et al., 2006), the latter reduces photosynthesis by lowering stomatal conductance (photon flux energy) 

and transpiration rate in leaves (Cornic, 1994; Wang et al., 2013b). The use of the high throughput leaf 

chlorophyll fluorescence (ChlF) measurements allows for quick detection of the stress or damage to the 

photosynthetic apparatus (Glynn et al. 2003). It is a non-invasive means for direct assessment of plant 

photosynthetic performance and capacity and, has been exploited to detect genetic variations for ST in 

plant (Ranjbarfordoei et al. 2006; Kalaji et al. 2011). In spite of the several studies reporting on the 

impact of salt stress on the photosynthetic apparatus using the ChlF techniques, none have reported on 

how the plant photosynthetic performance would impact on the accumulation of shoot ionic (K+, Na+ and 

K+/Na+) components and seed quality under salt stress conditions. The establishment of the genetic 

relationships among these traits would help in the identification of reliable, fast, easy and economical 

criteria that would serve as surrogates to assess the genetic variation for salt tolerance in wheat. Thus, 

reduces large investments (i.e., time, money and labour) that are associated with screening for ionic and 

seed-quality traits, especially in a large population. Identification of common QTL domain regulating 
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these traits would benefit efforts toward developing salt-stress resilient wheat genotypes through targeted 

selection strategies. 

 

In the present study, we used the genome-wide association study (GWAS) approach employing >18,000 

SNP markers in a diversity wheat panel of 150 genotypes in order to: i) investigate marker-trait 

associations (MTAs) for chlorophyll fluorescence (ChlF), shoot ionic (SI) and seed quality (SQ) ST-traits 

and ii) scan for putative candidate genes that control genetic variations in the measured traits. 

Furthermore, we aimed to gain insight into the genetic mechanisms and features regulating salt tolerance 

in the associated ST loci. This study was designed to provide useful information for understanding the 

genetic mechanism of salt stress tolerance in wheat and further unlock common regulatory networks of 

complex physiological traits under salt-stress conditions in wheat.  

 

MATERIALS AND METHODS 

Plant material and growth conditions 

The association mapping panel and hydroponic screening experiments have been described in Oyiga et al 

(2016). In the present study, the 150 diversity wheat panel were grown under non-saline and saline (150 

mM NaCl) conditions in the greenhouse. The salt treatment was introduced three days after planting 

(DAP) in an incremental basis of 50 mM daily.  Thereafter, salt-stress was sustained for 24 days when 

the final concentration was reached. At harvest, all the genotypes were evaluated for ChlF and shoot 

ionic (K+, Na+ and K+/Na+) traits. 

 

Leaf chlorophyll fluorescence: The ChlF-traits were measured in both saline and non-saline conditions at 

three positions in the 3rd leaf (about 5 cm from the stem, in the middle and about 5 cm from the end) 

using the FluorPen FP100 (Photon Systems Instruments, Brno, Czech Republic). All the readings were 

taken on the light-adapted leaves of 10 plants per genotypes, totaling 30 data points for each genotype. 

The light intensity reaching the leaf during measurement was 3000 mol (photons) m−2 s−1, which was 

sufficient to generate maximal fluorescence. The ChlF-traits collected are described in Table 1. 
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Table 1 List of OJIP test parameters with explanations and formulae used for calculation.  

Parameters Formula explanation Description 

Extracted and technical fluorescence  

Fo Fo= F50μs, fluorescence intensity 

at 50 μs 

Fluorescence intensity when all reaction center (RC) are open 

Fm Maximal fluorescence intensity Fluorescence intensity when all RCs are closed 

Fv Fv = Fm-Fo  maximal variable fluorescence 

Vi Vi = ( Fi - Fo ) / ( Fm - Fo )  

Fv/Fo (Fm −Fo)/Fo Efficiency of the water-splitting complex on the donor side of PSII 

Fv /Fm  Maximum quantum yield of PSII within light-adapted 

Fm/Fo  Non-photochemical loss in PSII 

Quantum efficiencies or flux ratios 

PI(ABS)  Performance index on absorption basis where 

Specific fluxes or specific activities (per QA-reducing PSII reaction center—RC) 

ABS/RC ABS/RC = Mo×(1/Vj)×(1/Phi 

Po) 

Effective antenna size of an active reaction center (RC). Total number 

of photons absorbed by Chl molecules of all RC divided by the total 

number of active RCs 

TRo/RC TRo/RC = Mo×(1/Vj) Maximal trapping rate of PSII. Maximal rate by which an excitation is 

trapped by the RC resulting in the reduction of QA to QA− 

ETo/RC ETo/RC = Mo×(1/Vj)×Psi o Electron transport in an active RC. Re-oxidation of reduced QA via 

electron transport in an active RC. It reflects the activity of only the 

active RCs 

DIo/RC DIo/RC = (ABS/RC)−(TRo/RC) Effective dissipation in an active RC. Ratio of the total dissipation of 

un-trapped excitation energy from all RCs with respect to the number 

of active RCs 

 

 

Shoot ion contents: The amount of Na+ and K+ that were accumulated in the different shoot parts 

including 3rd leaf, stem and RLP (remaining leaf parts) under salt-stress were determined using atomic 

absorption spectrophotometer (type 2380; Perkin Elmer, Wellesley, MA, USA), following the procedure 

described in Oyiga et al. (2016). Thereafter, the K+/Na+ ratios were calculated. 

 

Seed grain quality measurements: The SQ parameters including protein content (PC), starch content 

(SC), neutral detergent fiber (NDF), crude fiber (CFC), seed moisture content (SMC), seed hardness (SH) 

and seed sedimentation value (SSV) were measured using the DA 7250 NIR analyzer (Perkin Elmer, 

Wellesley, MA, USA), following the manufacturer’s instructions. The analyzed seed samples were 

obtained from the replicated field evaluation trials in Karshi, Uzbekistan. The analyzed seeds are field 

grown grain harvests in both saline and non-saline conditions. The soil chemical properties and the 

geographical locations of the field trials are published in Oyiga et al. (2016). 

 

Statistical analyses of the phenotype data 

All the data collected were analyzed using the REML procedure as implemented in GENSTAT 16 edition 

to determine the genotype, salt treatment and their interactions effects. The significant differences were 

determined with the Wald statistics. The GENSTAT procedure was used to estimate the un-biased 



108 
 

estimates of variance components due to genotypic (σ2
g) and environment (σ2

e) effects. The heritabilities 

(h2) of the traits were calculated as (O’Neill, 2010):  h2 = [genetic variance Phenotypic variance⁄ =

𝜎𝐺
2 (𝜎𝐺

2 + 𝜎𝑅
2 𝑟⁄ )⁄ ]; where r and 𝜎𝑅

2 correspond to the number of replicates and the residual variance, 

respectively. The best linear unbiased predictor (BLUP) was estimated taking into account the genotype 

by environment interaction (Piepho et al., 2008) and was used to perform correlation analysis and GWAS 

analysis. 

 

Genetic analysis of the GWAS panel 

Detailed information on SNP genotyping and analysis, population structure and linkage disequilibrium 

(LD) of the studied panel has been described in Chapter 4.  

 

Marker-trait associations: MTAs of 18,085 SNP markers with minor allele frequency (MAF) > 0.05 

were evaluated based on the BLUP values of all the measured traits using two software programs: 

TASSEL 5.2.13 standalone version (Bradbury et al., 2007) and SAS programs (SAS Institute Inc., Cary, 

NC). Only congruent QTL loci identified by both programs were reported. The multi-locus mixed linear 

model (MLM) adjusted using both population structure (Q matrix, as the fixed covariate) and kinship (K-

matrix, as random effect) matrixes were employed to reduce errors from population structure. The cut-

offs for accepting significant MTAs were calculated according to Long et al. (2013): -log10 (α/#tests), 

where α= 0.05 and #tests = the number of effective tests calculated as the total genome coverage divided 

by genome LD. We considered the effects of several associated SNPs to be coming from a single QTL, if 

the SNPs are within the genetic interval defined by the LD (Breseghello and Sorrells, 2006; Pasam and 

Sharma, 2014). 

 

Putative candidate genes analysis 

Putative candidate genes were proposed for each significant MTA by BLASTn searches of the extended 

associated SNP sequences from the CerealsDB database (http://www.cerealsdb.uk.net/). The searches 

were performed in the NCBI (http://www.ncbi.nlm.nih.gov/) GenBank non-redundant database.  

 

Gene expression analysis  

The transcript abundances of some putative candidate genes, obtained from the Massive Analysis of 3′-

cDNA Ends (MACE) analysis (Unpublished) data, were analyzed in the leaves of salt-tolerant 

(Atlay2000) and salt-sensitive (Bobur) wheat genotypes over time points of 2hour, 11 days and 24 days 
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under non-saline and saline conditions. The RT-PCR of three putative genes including Myo (myosin-J 

heavy chain) on 6AL, AtABC3 (ABC transporter F family member 3) on 2DS and NAD(P)H (NAD(P)H-

quinone oxidoreductase subunit L, chloroplastic) on 5AL were performed to validate their expression 

pattern in two salt tolerant (Altay2000 and UZ-11CWA-8) and two salt-sensitive (UZ-11CWA-24 and 

Bobur) after 30 days under non-saline and saline conditions. The RT-PCR procedure has already been 

described in Chapter 3. The target gene primers and endogenous control genes are presented in the 

Table 1. 

 

Table 1 RT-PCR primer pairs used for the endogenous control gene and amplification of selected wheat 

transcripts. 

 Forward primer Reverse primer Product size (bp) 

Target genes    

Myo GCCCAACGCCAGCAAAATA GGATTCAAAAGCACGCCAGT 175 

AtABC  ATTCCCAACCCCAGATGAC ACTGTTCCCGATGTTGGTTG 210 

NAD(P)H GGATGAGGCAGAGGTGGTT GCGGGTATCTGTCCTTGAAC 195 

Internal control genes   

TaEf-1a CTGGTGTCATCAAGCCTGGT TCCTTCACGGCAACATTC 151 

TaEf-1a CAGATTGGCAACGGCTACG CGGACAGCAAAACGACCAAG 227 

Details of the primers used for the gene amplification and their corresponding product size. AtABC3, ABC 

transporter F family member 3; Myo, myosin-J heavy chain and NAD(P)H, NAD(P)H-quinone 

oxidoreductase subunit L (chloroplastic). 

 

RESULTS 

Analysis of the phenotypic traits 

Chlorophyll a fluorescence: Analysis of variance (ANOVA) revealed significant (P<0.05) variation 

among genotypes for all the ChlF-traits (except, Fo and Fm) (Table 2), which was also reflected by their 

standard deviation (SD) and coefficient of variation (CV) of traits in saline and non-saline conditions. 

Under non-saline conditions, the CV ranged from 0.9 in Fv/Fm to 13.67% in PI(ABS); but, varied from 

1.37 in Fv/Fm to 16.40% in PI(ABS) in saline condition. Significant differences (P < 0.01) were observed 

between saline and non-saline conditions for all traits. However, interaction effects were non-significant 

for all the ChlF-traits. Among the trait h2 estimates, ETo/RC (63%), Vi (59%), Fv/Fm (33%) and PI(ABS) 

(30%) had the highest estimates, while Fo had the lowest h2 estimates (8%). Salt stress decreased mean 

values of all the ChlF-traits, except for DIo/RC and ETo/RC (Table 2).  

 

The genetic variations among the 150 genotypes obtained for the ionic parameters after 24 days of salt 

stress have been reported in our previous publications (Oyiga et al., 2016). 
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Seed grain quality traits: ANOVA revealed significant variation among genotypes for all the 7 seed 

quality traits (Table 2). Moreover, all the SQ traits showed significant (P < 0.01) salt treatment and 

genotype x salt treatment interactions effects. Results revealed that seeds from saline fields contain 

higher SSV (+42.17%), PC (+13.05%), SH (+4.39%), SMC (+3.28%) contents than the seeds obtained 

from non-saline fields. However, seed CF and SC of the saline field decreased by -1.27% and -1.17%, 

respectively in contrast to values obtained from non-saline field.  The h2 estimates for all the seed quality 

traits was high and ranged from 89% (PC) to 97% (SH).  

 

Traits correlations 

Pearson’s correlation was used to investigate the relationships among the traits (Table 3). Highly 

significant correlations were mostly observed between the ChlF traits. Shoot K+ and several ChlF traits 

including Fv, Fv/Fo, Fv/Fm, TRo/RC, ETo/RC and PI(ABS) were positively correlated (r2= 0.25 – 0.52; 

p= 0.01). Moreover, the seed grain starch showed positively correlation with Fo, Vi, ABS/RC, TRo/RC 

and DIo/RC and; negatively correlated with Fm/Fo, Fv/Fm, ETo/RC and PI(ABS). Seed grain protein and 

starch contents were highly and negatively correlated (r= -0.80, p<0.01) with each other. 
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Table 2: Statistics of leaf fluorescence and seed quality traits of the mapping panel under control and saline conditions. SD, standard deviation; CV, 

coefficient of variation and; E, effect of salt stress on the traits 

     Non-saline  Saline 

Traits G T G*T h
2
 Mean  SD CV Skewness Kurtosis   Mean  SD CV Skewness Kurtosis E  (%) 

     Leaf chlorophyll fluorescence 

Fo - ** - 0.08 -13311.0 736.6 5.5 0.2 0.5 

 

-12316.0 868.6 7.10 -0.1 -0.4 -7.23 

Fm - ** - 0.16 -48301 2409 5.00 0.16 1.02  -47654 3185 6.68 -0.12 -0.21 -0.96 

Fv ** ** - 0.19 -34990 1770 5.06 0.24 1.16  -35338 2409 6.82 -0.05 -0.07 -1.43 

Vi * * - 0.59 0.90 0.01 1.28 -0.28 -0.42 

 

0.88 0.01 1.51 -0.22 -0.22 -2.00 

Fm/Fo ** ** - 0.42 -3.64 0.08 2.30 -0.19 0.12 

 

-3.89 0.11 2.76 -0.01 -0.39 -6.98 

Fv/Fm ** ** - 0.33 -0.72 0.01 0.90 -0.33 0.29 

 

-0.74 0.01 1.37 -4.14 33.00 -2.51 

Fv/Fo ** ** - 0.42 -2.64 0.08 3.18 -0.19 0.12  -2.89 0.11 3.72 -0.01 -0.39 -9.63 

ABS/RC ** ** - 0.11 3.99 0.08 2.09 0.37 0.50 

 

3.83 0.09 2.47 1.25 6.75 -3.89 

DIo/RC ** ** - 0.10 1.00 0.05 4.57 -0.47 4.50 

 

1.10 0.08 8.46 6.68 64.79 +9.71 

ETo/RC ** ** - 0.63 1.25 0.08 6.45 0.12 0.27 

 

1.36 0.09 6.58 0.20 -0.22 +8.98 

TRo/RC ** ** - 0.12 2.88 0.05 1.59 -0.02 0.02 

 

2.84 0.05 1.59 -0.28 0.17 -1.60 

PI(ABS) ** ** - 0.30 -0.54 0.07 13.67 0.30 0.40   -0.74 0.12 16.40 0.66 -0.10 -37.04 

     Seed grain quality 

SMC ** ** ** 0.92 8.83 0.28 3.19 0.64 2.01 

 

9.12 0.20 2.15 0.40 0.25 +3.28 

SH ** ** ** 0.97 55.52 3.23 5.82 -0.48 -0.41 

 

57.96 2.88 4.97 -1.01 0.75 +4.39 

NDF ** - - 0.87 16.84 0.90 5.33 -0.10 -0.12 

 

17.01 1.05 6.19 -0.13 0.11 +1.01 

PC ** ** ** 0.89 12.18 1.10 9.00 0.16 -0.40 

 

13.77 0.99 7.21 -0.03 0.35 +13.05 

CFC ** ** ** 0.98 2.37 0.19 8.03 -0.25 -0.27 

 

2.34 0.20 8.44 0.23 0.29 -1.27 

SSV ** ** ** 0.93 28.62 7.86 27.45 0.42 -0.27 

 

40.69 7.47 18.35 -0.11 0.08 +42.17 

SC ** ** ** 0.93 72.10 1.09 1.52 -0.42 0.16   71.26 1.11 1.56 -0.18 0.05 -1.17 

 **. Correlation is significant at the 0.01 level (2-tailed), -. Non-significant difference; Fo, fluorescence intensity at 50 μs; Fm, maximal fluorescence; 

Fv, maximal variable fluorescence; Fm/Fo, non-photochemical loss in PSII; Fv/Fm, maximum quantum yield of PSII within light-adapted; Fv/Fo, 

efficiency of the water-splitting complex on the donor side of PSII; ABS/RC, effective antenna size of an active reaction center (RC); DIo/RC, effective 

dissipation in an active RC; ETo/RC, electron transport in an active RC; TRo/RC, maximal trapping rate of PSII; PI(ABS), performance index on 

absorption basis; SMC, seed moisture content; SH, seed hardness; NDF, neutral detergent fiber; PC, protein content; CFC, crude fiber; SSV, 

sedimentation value; SC, starch content. 
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Table 3 Shows the correlation coefficients based on the genotype mean among the leaf chlorophyll fluorescence shoot ions contents and seed quality 

traits  

*. Correlation is significant at the 0.05 level (2-tailed); **. Correlation is significant at the 0.01 level (2-tailed); Fo, fluorescence intensity at 50 μs; Fm, maximal 

fluorescence; Fv, maximal variable fluorescence; Fm/Fo, non-photochemical loss in PSII; Fv/Fm, maximum quantum yield of PSII within light-adapted; Fv/Fo, 

efficiency of the water-splitting complex on the donor side of PSII; ABS/RC, effective antenna size of an active reaction center (RC); DIo/RC, effective dissipation in an 

active RC; ETo/RC, electron transport in an active RC; TRo/RC, maximal trapping rate of PSII; PI(ABS), performance index on absorption basis; SMC, seed moisture 

content; PC, protein content; CFC, crude fiber; SSV, sedimentation value; SC, starch content. 

 
Fo Fv Fm/Fo Fv/Fm ETo/RC ABS/RC TRo/RC Dio/RC PI/(ABS) Leaf Na+ Leaf K+ SMC CFC SSV PC SC 

Fo 1 
               

Fv .667** 1 
              

Fm/Fo -.573** .214** 1 
             

Fv/Fm -.508** .205** .943** 1 
            

ETo/RC -.256** .339** .704** .618** 1 
           

ABS/RC .701** 0.085 -.829** -.785** -.389** 1 
          

TRo/RC .746** .358** -.574** -.508** -0.053 .825** 1 
         

Dio/RC .504** -0.079 -.762** -.752** -.469** .897** .527** 1 
        

PI/(ABS) -.506** .219** .905** .798** .896** -.701** -.445** -.665** 1 
       

Shoot Na+ -.139* -0.098 0.064 0.04 0.02 -0.093 -.127* -0.035 0.077 1 
      

Shoot K+ 0.074 .252** .471** .453** .288** -0.016 .253** -0.1 .518** -0.015 1 
     

SMC -.364** 0.047 .534** .468** .414** -.463** -.320** -.410** .519** -0.017 .120* 1 
    

CFC 0.011 0.009 -0.019 -0.034 0.091 0.013 0.026 -0.006 0.068 0.051 .305** .398** 1 
   

SSV -.393** -0.031 .493** .437** .345** -.430** -.304** -.378** .439** -0.029 -0.09 .172** -.453** 1 
  

PC -.422** -0.041 .520** .450** .413** -.444** -.305** -.393** .504** -0.026 -0.038 .204** -.303** .919** 1 
 

SC .299** 0.078 -.306** -.260** -.260** .259** .182** .228** -.306** 0.047 -0.056 0.048 0.082 -.658** -.798** 1 
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Genetic properties of the association panel 

The population structure and the genome LD of the population under study have been described in 

Chapter 3. In brief, the genome LD decay estimates showed a clear decay in each genome between 

SNPs spaced up to about 10, 11 and 14 cM for A-, B- and D-genome (Chapter 3), respectively. Thus, 

the genome LD-decay at 10, 11 and 14 cM for A-, B- and D-genome, respectively were used to 

calculate the threshold for marker-trait associations, as has been described in ‘‘Materials and 

methods’’. All significant SNP-trait association that are within the genetic distance defined by each 

genome LD was grouped into one SNP-cluster and their effects were considered to be coming from a 

single/few QTL. 

 

Marker-trait association analysis 

By applying MLM, a total of 115 SNPs revealed significant MTAs with the ST-related traits 

measured (Table 3). Of these, 54, 17 and 44 SNPs were associated with ChlF, SI and SQ traits, 

respectively. Each associated SNP explained between 2% (BobWhite_c28819_787 for Fm/Fo on 

2AL) and 63.45% (wsnp_Ex_c1146_2200823 for Fv on 7AL) of the observed phenotypic variation 

explained (R2). Using the genome LD, all the SNPs that showed significant ST effect on the traits 

were resolved into 21 QTL regions (Table 4, Figure 1). Additionally, 10 out of the 21 QTL regions 

were detected previously in our GWAS using the phenotypic and yield related ST-traits (see 

Chapter 3).  

 

Pleiotropy and multigenic effect revealed by GWAS  

A single locus showing significant association with multiple traits might be due pleiotropy. Three 

QTL loci were independently associated with the ChlF- and SI-traits on 6AL. The first QTL, 

Q.chl*I(6AL) (R2 = 4.40 - 14.7%)  located at 99.04 cM was associated with ABS/RC, DIo/RC and 

shoot Na+; while the second QTL. Q.chl*I(6AL) (R2 ≤12%) which at 0.17 cM genetic interval had 

significant effect on Fv and shoot Na+. We assumed that the third QTL (R2 = 4.10 to 14.90%) 

spanning from 78.64 to 85.07 cM on 6AL is novel, since no ST QTL has been reported on this region 

(Table 4). This region is linked with ABS/RC, DIo/RC, Vj and shoot Na+ traits. Of interest is the 

QTL, Q.chl*Qu*I(2BL) (R2 ≤8.3%) that spanned 1.55 cM on 2BL. This QTL was significantly 

associated with Fv/Fm, grain crude fiber content, shoot Na+ and shoot K+ /Na+.   
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Table 3 Summary of significant SNP marker-trait associations for leaf chlorophyll fluorescence, shoot 

ionic, and seed quality traits 

Trait SNP Chr cM p Alleles SNP R
2
 

Leaf fluorescence traits      

ABS/RC wsnp_Ex_rep_c66872_65273203 1A 141.53 2.63E-07 C/T 3.2 

ABS/RC wsnp_RFL_Contig1984_1169021 1D 91.53 4.95E-07 A/G 2.9 

ABS/RC BobWhite_c3871_210 2D 80.41 2.66E-07 C/T 3.2 

ABS/RC BS00060391_51 3A 111.62 7.74E-07 G/A 2.8 

ABS/RC BS00109052_51 5A 49.73 2.05E-07 T/C 3.3 

ABS/RC IACX5753 6A 82.38 7.49E-11 T/C 4.8 

ABS/RC Kukri_rep_c107624_603 6A 99.04 4.05E-10 T/C 4.4 

ABS/RC Ra_c106775_711 6D 82.14 2.46E-07 C/T 3 

DIo/RC IAAV1930 1A 142.62 1.76E-06 C/T 6.2 

DIo/RC BS00021955_51 5A 81.96 1.35E-13 T/C 7.3 

DIo/RC BS00003616_51 6A 82.38 1.09E-25 T/C 14.9 

DIo/RC wsnp_Ex_c11348_18327861 6A 85.07 2.74E-09 A/G 4.8 

DIo/RC Kukri_c15096_4206 6A 99.04 2.02E-25 T/C 14.7 

DIo/RC RAC875_rep_c105906_124 6B 23.32 4.76E-12 A/G 6.4 

DIo/RC Kukri_c9424_195 6B 46.96 4.86E-12 A/G 6.4 

DIo/RC wsnp_CV776265A_Ta_2_1 6B 76.2 5.30E-12 A/G 6.4 

ETo/RC wsnp_Ex_c955_1827567 1B 146.25 1.48E-09 A/G 5.4 

ETo/RC wsnp_Ex_c955_1827719 1B 171.31 1.42E-08 G/A 4.8 

ETo/RC wsnp_Ex_rep_c66331_64502558 3B 11.56 1.58E-08 G/A 4.7 

ETo/RC Kukri_c22602_791 4A 154.3 4.50E-09 C/T 5 

ETo/RC BS00062617_51 5B 5.7 1.19E-08 C/T 4.8 

ETo/RC wsnp_CAP8_c2589_1356390 5D 67.49 6.01E-09 A/C 4.9 

Fm/Fo BobWhite_c28819_787 2A 105.53 1.13E-07 A/G 2 

Fm/Fo D_F1BEJMU02GB94Z_188 2D 8.52 4.93E-08 G/A 2.2 

Fm/Fo CAP7_c3950_160 7B 155.41 9.53E-13 C/T 3.6 

Fm/Fo Excalibur_rep_c110429_536 7B 166.24 8.27E-12 C/T 3.5 

Fm/Fo Kukri_c45404_121 7B 171.11 4.18E-11 C/T 3.1 

Fv RAC875_c27986_1460 3B 4.54 2.44E-86 A/G 1.602 

Fv Excalibur_c6782_253 3B 5.86 1.55E-59 C/T 0.945 

Fv Kukri_rep_c79597_513 4A 43.39 8.60E-237 T/C 9.246 

Fv wsnp_BE591195A_Ta_1_1 4A 47.53 9.30E-156 T/C 3.902 

Fv Kukri_rep_c103857_458 5A 62.72 2.00E-127 A/G 2.825 

Fv BS00062617_51 5B 5.7 4.50E-136 C/T 3.085 

Fv wsnp_Ku_c1045_2115866 5B 143.55 8.79E-97 T/C 1.799 

Fv wsnp_Ex_rep_c76495_73453891 6A 140.7036 3.15E-56 C/T 0.91461 

Fv wsnp_CAP11_c651_429263 7A 127.75 1.50E-201 G/A 6.23 

Fv wsnp_Ex_c1146_2200823 7A 131.11 2.60E-253 A/G 63.445 

Fv RAC875_rep_c72959_187 7B 156.54 1.00E-189 T/C 21.959 

Fv/Fm Excalibur_c18417_285 2B 98.53 5.35E-11 T/C 4 

Fv/Fm CAP7_c3950_160 7B 155.41 8.43E-08 C/T 3.4 

Fv/Fo wsnp_Ku_c35386_44598937 5A 60.61 2.96E-09 G/A 2.5 

Fv/Fo BS00003861_51 6A 48.09 6.80E-09 T/C 2.4 

Fv/Fo CAP7_c3950_160 7B 155.41 9.53E-13 C/T 3.6 

Fv/Fo Tdurum_contig8448_363 7B 164.24 3.49E-11 A/C 3.2 

Fv/Fo Excalibur_rep_c110429_536 7B 166.24 8.27E-12 C/T 3.5 

Fv/Fo Kukri_c45404_121 7B 171.11 4.18E-11 C/T 3.1 

TRo/RC GENE_4252_246 3A 77.57 5.85E-08 G/A 4.6 
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TRo/RC CAP8_c1393_327 3A 90.55 1.57E-09 T/C 5.8 

TRo/RC CAP7_rep_c12537_81 3A 177.24 2.34E-08 A/G 5 

TRo/RC IACX11112 7A 74.25 9.29E-09 G/C 5.1 

Vi RAC875_c3947_441 2B 155.41 5.15E-13 C/T 7.2 

Vi Tdurum_contig49608_1185 4B 26 1.20E-11 A/G 5.5 

Vi Kukri_c5685_1066 5B 115.69 1.60E-12 C/T 6.9 

Vi wsnp_Ra_c31052_40235870 7B 67.47 1.14E-11 C/T 6.5 

Shoot ion contents after 25 day of salt treatment      

Shoot K
+
/Na

+
 RAC875_c36559_1994 1B 85.57 8.69E-06 G/A 3.2 

Shoot K
+
/Na

+
 Excalibur_c7971_1573 2B 144.16 3.73E-07 A/G 4.1 

Shoot K
+
/Na

+
 Excalibur_c39621_358 4A 43.39 1.18E-05 G/A 3.1 

Shoot K
+
/Na

+
 Kukri_c59051_579 5B 146.48 2.60E-06 G/A 3.6 

Shoot K
+
/Na

+
 BS00099804_51 7A 119.11 3.20E-06 C/T 3.5 

Shoot Na
+
 wsnp_Ex_c12117_19381493 1A 70.1 1.26E-08 C/A 8 

Shoot Na
+
 Excalibur_rep_c69187_151 2B 99.73 2.19E-08 A/G 8.1 

Shoot Na
+
 BobWhite_c13455_112 2B 99.8 1.46E-08 A/G 8.3 

Shoot Na
+
 Excalibur_c7971_1573 2B 144.16 1.27E-17 A/G 18.3 

Shoot Na
+
 BS00084096_51 5B 107.37 2.60E-08 A/G 7.9 

Shoot Na
+
 Tdurum_contig8171_1602 5B 140.17 5.91E-13 T/C 13.1 

Shoot Na
+
 Kukri_c59051_579 5B 146.48 2.16E-13 G/A 13.3 

Shoot Na
+
 Kukri_c21443_827 6A 28.46 1.01E-08 C/T 8.3 

Shoot Na
+
 BS00040124_51 6A 82.38 9.95E-09 G/A 8.1 

Shoot Na
+
 IAAV5585 6A 99.04 1.19E-08 G/T 8.1 

Shoot Na
+
 Jagger_c1134_353 6A 140.87 2.69E-12 A/G 12 

Shoot Na
+
 RAC875_c25194_55 7A 35.31 2.71E-08 G/A 7.7 

Seed quality traits      

SMC Excalibur_c10689_254 1A 51.09 1.13E-09 A/G 4.3 

SMC wsnp_Ex_c28149_37293117 1A 130.09 5.87E-10 T/G 4.2 

SMC RAC875_rep_c77646_102 2D 97.42 1.84E-09 G/A 4.2 

SMC Excalibur_c8768_1163 2D 99.19 8.57E-10 A/C 4.2 

SMC Excalibur_c5193_2213 2D 103.33 3.19E-10 C 3.9 

SMC wsnp_Ex_c24215_33462239 5A 67 1.17E-09 T/C 4.1 

SMC GENE_3601_145 5A 89.02 3.09E-10 T/C 3.8 

SMC Ku_c19745_1093 7A 211 5.10E-11 T/C 4.8 

SH RAC875_c37857_158 1B 60.62 1.39E-26 G/T 10.2 

SH BobWhite_s63351_73 1B 62.58 2.49E-19 A/G 7.5 

SH GENE_0411_350 1B 64.1 5.46E-27 C/A 10.6 

SH BobWhite_c29807_84 2A 25.97 2.46E-20 C/T 7.7 

SH Kukri_c10860_1283 2A 105.89 4.74E-20 G/A 7.5 

SH Kukri_c29034_867 2A 106.3 7.33E-21 C/T 7.8 

SH BS00079611_51 2A 128.89 2.13E-19 G/T 7.2 

SH GENE_0559_171 2B 13.44 6.24E-21 T/C 7.9 

SH RFL_Contig2862_1219 2D 105.13 4.98E-21 A/G 7.9 

SH GENE_0559_171 3B 5.86 6.24E-21 T/C 7.9 

SH wsnp_Ku_c15531_24168235 4A 121.67 9.91E-20 C/T 7.3 

SH Kukri_c52257_991 5B 109.53 1.49E-26 A/G 10.3 

SH wsnp_Ex_c11265_18216936 5B 116.11 1.67E-24 C/T 9.7 

SH Excalibur_c827_666 6D 117.58 5.01E-21 C/T 8.2 

SH wsnp_JD_c14118_13933380 7A 126.8 3.35E-21 T/C 8.9 

SH tplb0045p11_893 7A 148.43 3.78E-21 T/C 8.3 

NDF RAC875_c23168_480 1A 105.74 6.47E-11 C/T 4.6 
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NDF Excalibur_rep_c101324_1680 5A 26.51 9.24E-10 C/T 4.1 

NDF wsnp_Ex_rep_c68117_66883366 5A 43.27 1.00E-09 G/A 4.1 

NDF wsnp_Ex_rep_c68269_67060931 5A 43.44 2.21E-10 G/T 4.5 

NDF Kukri_c15761_1634 6B 71.76 7.40E-10 C/T 4.1 

PC wsnp_Ex_c18499_27344859 1A 137.12 7.84E-13 C/T 4.6 

PC BS00022824_51 1A 137.69 1.84E-12 T/C 4.4 

PC BS00011521_51 1A 139.74 6.73E-12 A/G 4.1 

PC wsnp_Ex_c742_1458743 3A 81.82 1.43E-11 G/T 4.2 

PC Excalibur_c60683_908 5B 49.01 7.19E-11 T/C 3.7 

PC RFL_Contig4251_851 6B 71.9 3.04E-12 A/G 4.4 

CFC IAAV4238 1A 144.94 6.18E-14 G/A 5.6 

CFC BS00110480_51 1B 68.04 3.27E-12 G/A 5.2 

CFC BobWhite_c2058_367 2A 119.93 6.65E-10 C/T 4 

CFC BobWhite_c13455_112 2B 99.8 8.11E-09 A/G 3.5 

CFC RAC875_c25656_289 2D 8.52 5.85E-09 C/T 3.5 

CFC Excalibur_c8768_1163 2D 99.19 1.44E-10 A/G 4.2 

CFC Excalibur_c9619_1136 2D 100.58 2.02E-09 G/A 3.8 

CFC RFL_Contig2862_1219 2D 105.13 3.39E-11 A/G 4.6 

CFC RAC875_c19099_434 5B 68.93 1.40E-12 C/T 5.2 

SMC, seed moisture content; SH, seed hardness; NDF, neutral detergent fiber; PC, protein content; CFC, 

crude fiber



117 
 

 

 

 

 

 

 

 

 

 



118 
 

 

 

 

 

 

 

 

 

 

 



119 
 

 

 

 

Figure 1 Genetic map of wheat showing the location of the SNP markers associated with the chlorophyll fluorescence (in green), ionomics (in blue) and the 

seed quality (in red) traits in the studied wheat germplasm. Number of Asterisks in each SNP indicates number of traits it affected, Pink QTL region in Asterisks 

(∗) indicates previously reported QTL region in Chapter 3, ++ on QTL names indicates congruent regions detected with rrBLUP program. 
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Table 4 Colocation of SNP clusters with QTL/genes already identified or published    

QTL cM Associated traits  References 

   ChlF QTL Shoot ions QTL Seed Quality QTL 

Leaf fluorescence 
    

Q.chl(4AL) 154-154.3 ETo/RC, Vj Chl a (Zhang et al., 2009b) 
  

Q.chl(7BL) 155.41-156.54 Fm/Fo, Fv/Fm, Fv 
   

Q.chl(7BL) 164.24-171.11 Fm/Fo, Fv/Fo 
   

Seed grain quality 
    

Q.Qu(1BS) 60.6-68.04 CFC, SH 
  

QBwa.mna-1B, QMpv.mna-1B.1, QMpt.mna-1B.1, 
QMpi.mna-1B.1, QMixopa.mna-1B (Tsilo et al., 2011) 

Q.Qu(2DL) 97.42-105.13 CFC, SWC, SH 
  

QAlc.sdau-2D and QDgc.sdau-2D (Sun et al 2008) 

Leaf fluorescence + ionomics 
    

Q.chl*I(4AS) 43.39-47.53 FV and K+/Na+ 
qChlN-4A (Li et al., 2010); Tm4A (Zhang et al., 
2010)  

Grain strength (Nelson et al 2006) 

Q.chl*I(5BL) 140.17-146.48 Fv,  Na+, K+/ Na+ 
   

Q.chl*I(6ALc) 78.64-85.07 
ABS/RC, DIo/RC, 
Vj and Na+    

Q.chl*I(6AL) 99.04 
ABS/RC, DIo/RC 

and Na+ 
Fm, Fv/Fm (Li et al., 2012b) Shoot Na+ (Genc et al., 2010) 

 
Q.chl*I(6AL) 140.7-140.87 Fv and Na+ Fo (Li et al., 2012b) 

  
Leaf fluorescence + Seed grain quality 

   

Q.chl*Qu(1AL) 137-145 
ABS/RC, DIo/RC, 

PC, CFC 
Fo (Zheng et al., 2013) 

  

Q.chl*Qu(2AL) 105.5-106.3 Fm/Fo, SH 
Chl a, chl b (Li et al., 2012b); qFv/FmN-2A (Li 
et al., 2010, Czyczyło-Mysza et al., 2013) 

TmHKT1;4-A (Huang et al., 2006); 
Shoot Na+ (Lindsay et al., 2004) 

QSkhard.mna-2A (Tsilo et al., 2011) 

Q.chl*Qu(2DS) 8.52 Fm/Fo, CFC Fm (Zheng et al., 2013) 
Tg-D1 (Okamoto et al. 2012), SD 

(Tan et al., 2006) 

GY: qGY2Da (Zhang et al., 2009b), Rht8 and Ppd-D1 

(Pestsova and Röder, 2002; Gasperini et al., 2012) 
Q.chl*Qu(3AS) 77.57-81.82 TRo/RC, PC   Viscosity  (Nelson et al 2006) 

Q.chl*Qu(3BS) 4.54-11.56 ETo/RC, Fv, SH Chl a+b, Chl a (Li et al., 2012b) 
 

QMxT.upm-3BS (Kerfa et al., 2010) 

Q.chl*Qu(5AL) 43.26-49.73 NDF and ABS/RC qChlN-5A (Li et al., 2010) 
 

Dough extensibility-QPext.upm5AS (Kerfa et al., 2010); 
QSkhard.mna-5A.1 (Tsilo et al., 2011) 

Q.chl*Qu(5AL) 60.61-67.00 Fv/Fo, Fv, SWC Chl:wPt-1370-Vrn1A (Genc et al., 2010b) 
TaSRO1 (Liu et al., 2014), shoot K+ 

(Genc et al., 2010b) 
grain protein (Nelson et al 2006) 

Q.chl*Qu(6BL) 71.76-76.2 NDF, PC, Dio/RC Fv/Fo,  Fv/Fm, Chl a, Chl a+b (Li et al., 2012b) 
 

grain protein content (Prasad et al., 2003); QFn.sdau-6B 

(Sun et al., 2008) 

Leaf Fluorescence + ionomis + Seed grain quality 
   

Q.chl*Qu*I(2BL) 98.35-99.9 
Fv/Fm, shoot Na+, 

CFC, shoot K+/Na+ 

Fm, Fv/Fm, Fv/Fo (Li et al, 2012b; Zheng et al., 

2013); qChlN-2B (Li et al., 2010); Tm2Bb 
(Zhang et al., 2010) 

Shoot Na+ (Genc et al., 2010b) seed dormancy and PHS loci (Chao et al., 2015) 

Q.chl*Qu*I(5BL) 107.37-116.11 Vi, Na+, SH Fv/Fmi5B (Zhang et al., 2010) Cu-tolerance (Bálint et al., 2007) SD and PHS QTL (Tan et al., 2006) 

Q.chl*Qu*I(7AL) 119.11-131.11 K+/Na+,  Fv, SH 
Chl a, Chl b, Chl a+b, Fm (Zhang et al., 2009b; 
Li et al., 2012b; Zheng et al., 2013) 

Shoot Na+ (Genc et al., 2010b) PHS: Qsd.sau-7A (Jiang et al., 2015) 

PHS-preharvest sprouting; PHS- preharvest sprouting; SB- seedling biomass; SSI-Seedling salt injury; LS- Leaf symptoms; TN- Tiller number; QDgc.sdau-2D- QTL for dry 

gluten content (protein trait); QAlc.sdau-2D- QTL for Amylose (Starch trait); QFn.sdau-6B- QTL for falling number (starch trait); QSkhard.mna-2A (Xgwm339–Xbarc311)- 

QTL for endosperm texture (seed hardness); QMixopa.mna-1B- Micrograph pattern; QMpi.mna-1B.1- Midline peak integral (MPI); QMpt.mna-1B.1- Midline peak time 

(MPT); QMpv.mna-1B.1-Midline peak value (MPV); SD- seed dormancy; QBwa.mna-1B- Bake water absorption; Tg-D1 - tenacious glume locus; PC- seed protein content, 

CFC- crude fibre, SWC- seed water content, SH- seed hardness, NDF- neutral detergent fiber. 
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The PCoA indicated that the most consistent contrasting ST wheat genotypes can be distinguished using 

the 115 SNPs that showed significant MTAs in the GWAS analysis (Figure 2). Most of the salt-tolerant 

genotypes were mostly found on the left side of the plot, whereas, the salt-sensitive ones were 

distributed at right side of the plot (Figure 2). The first three PCos accounted for 28.97% of the variation 

for salt tolerance observed among the genotypes. Highest eigen-values for the associated SNPs were 

detected on 1AL (141.53 to144.94 cM), 2BL (RAC875_c3947_441) (155.41 cM), 2DL (97.42 to105.13 

cM), 4AS (43.39 cM), 6AL (99.04 cM and 140 cM) and 7AL (126.8 cM and 148.43 cM) (data not 

shown). 

 

Figure 2 Principal coordinates analysis (PCoA) plot using a genetic distance matrix (GenAlEx 6.5) 

estimated with data from 115 associated polymorphisms of the salt tolerant (Black colour/triangular shaped) 

and salt sensitive (Gray colour/squared shape) wheat genotypes previously identified among the studied 

population. The genotypes (in bold) were used to perform the gene expression analysis. 
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Candidate genes linked with the associated polymorphisms   

Probable candidate genes responsible for the genetic variations in the salt stress related traits are shown 

in Table 5. The blast search revealed that the sequences of the associated SNP markers are homologous 

with genes known to regulate salt and stress responses. Among categories of genes identified, genes 

involved in the stress response (25%), transport (15%), transcription (13%) and carbohydrate/sucrose 

metabolisms (11%) activities were highly abundant (Figure 3). Moreover, 9% and 6% of the associated 

SNPs showed high sequence homology with genes functioning in the oxidoreductase and 

photosynthesis/photo-morphogenesis pathways, respectively, while few associated SNP sequences 

coded for genes involved in translation (3%) and disease resistance (3%) activities. 

 

 
Table 5 Ontology classification of the associated DNA sequences detected using the GWAS in this study 

Trait SNP Chr Hits 

Carbohydrate/sucrose metabolism - 12%   
DIo/RC IAAV1930 1AL starch catabolic process 
SH BobWhite_s63351_73 1BS Phosphorylated carbohydrates phosphatase [Aegilops tauschii] 
ABS/RC BS00060391_51 3AL xylanase inhibitor 602OS [Triticum aestivum] 
ETo/RC wsnp_Ex_rep_c66331_64502

558 
3BS sucrose-phosphate synthase 2 [Triticum aestivum] 

SMC wsnp_Ex_c24215_33462239 5AL Putative 6-phosphogluconolactonase 4, chloroplastic [Aegilops 
tauschii] 

Na
+
 BS00084096_51 5BL UDP-glucose 6-dehydrogenase [Aegilops tauschii] 

ETo/RC wsnp_CAP8_c2589_1356390 5DL Pyruvate kinase, cytosolic isozyme [Triticum urartu] 
Fv wsnp_CAP11_c651_429263 7AL Beta-glucosidase 28 [Triticum urartu] 
Fv wsnp_Ex_c1146_2200823 7AL UDP-sugar pyrophosphorylase [Triticum urartu] 
Fv RAC875_rep_c72959_187 7BL UDP-sugar pyrophosphorylase [Triticum urartu] 
Fm/Fo Excalibur_rep_c110429_536 7BL Sucrose synthase 2 [Triticum urartu] 
Fv/Fo Excalibur_rep_c110429_536 7BL Sucrose synthase 2 [Triticum urartu] 
Vi wsnp_Ra_c31052_40235870 7BS Fructose-bisphosphate aldolase [Aegilops tauschii] 

Disease resistance protein - 3%   
TRo/RC CAP8_c1393_327 3AL Putative disease resistance protein [Aegilops tauschii] 
Na

+
 BS00040124_51 6AL Nephrocystin-3 [Triticum urartu] 

DIo/RC Kukri_c9424_195 6BS Disease resistance protein RGA2 [Aegilops tauschii] 

Oxidoreductase - 8%   
SH Kukri_c10860_1283 2AL Cytochrome P450 78A3 [Aegilops tauschii] 
K

+
/Na

+
 Excalibur_c7971_1573 2BL Brachypodium distachyon dihydroorotate dehydrogenase (quinone), 

mitochondrial (LOC100837635), mRNA 
Na

+
 Excalibur_c7971_1573 2BL Dihydroorotate dehydrogenase (quinone), mitochondrial [Triticum 

urartu] 
Fv Excalibur_c6782_253 3BS 1-deoxy-D-xylulose 5-phosphate reductoisomerase, chloroplastic 

[Aegilops tauschii] 
SH wsnp_Ku_c15531_24168235 4AL Cytochrome P450 704C1 [Aegilops tauschii] 
Vi Tdurum_contig49608_1185 4BS Monodehydroascorbate reductase [Triticum urartu] 
Vi Kukri_c5685_1066 5BL Malate dehydrogenase, glyoxysomal [Triticum urartu] 
DIo/RC wsnp_CV776265A_Ta_2_1 6BL Alpha-aminoadipic semialdehyde synthase [Aegilops tauschii] 

Photosynthesis/photomorphogensis -6%   
K

+
/Na

+
 RAC875_c36559_1994 1BL Lipoyl synthase, mitochondrial [Aegilops tauschii] 

Fv Kukri_rep_c79597_513 4AS putative methionyl-tRNA synthetase [Triticum urartu] 
K

+
/Na

+
 Excalibur_c39621_358 4AS Neutral alpha-glucosidase AB [Triticum urartu] 

Fv wsnp_BE591195A_Ta_1_1 4AS Translocase of chloroplast 34, chloroplastic [Triticum urartu] 
ABS/RC BS00109052_51 5AS NADH dehydrogenase complex (plastoquinone) assembly, 

photosynthetic electron transport in photosystem I and  transport 
DIo/RC BS00021955_51 5AL Cysteinyl-tRNA synthetase [Triticum urartu] 
Na

+
 Kukri_c21443_827 6AS pentatricopeptide repeat-containing protein At2g37230 [Brachypodium 
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distachyon] 
ABS/RC Ra_c106775_711 6DL 37 kDa inner envelope membrane protein, chloroplastic [Triticum 

urartu] 

Protein repair and maintenance - 8%   
NDF Excalibur_rep_c101324_1680 5AS putative galacturonosyltransferase 13 [Triticum urartu] 
Protein RFL_Contig4251_851 6BL Galactoside 2-alpha-L-fucosyltransferase [Aegilops tauschii] 
CP RFL_Contig4251_851 6BL galactoside 2-alpha-L-fucosyltransferase-like, transcript variant X2, 

mRNA 
Fv/Fm Excalibur_c18417_285 2BL Putative mixed-linked glucan synthase 3 [Aegilops tauschii] 
Na

+
 Excalibur_rep_c69187_151 2BL Nipped-B-like protein [Aegilops tauschii] 

SH Kukri_c29034_867 2AL Pre-mRNA-splicing factor SYF1 [Triticum urartu] 
ABS/RC wsnp_Ex_rep_c66872_65273

203 
1AL Structural maintenance of chromosomes protein 3 [Triticum urartu] 

Fm/Fo Kukri_c45404_121 7BL Callose synthase 3 [Aegilops tauschii] 
Fv/Fo Kukri_c45404_121 7BL Callose synthase 3 [Aegilops tauschii] 

Stress response - 25%   
Fv RAC875_c27986_1460 3BS protein EXECUTER 1, chloroplastic isoform X1 [Brachypodium 

distachyon] 
SH GENE_0559_171 3BS Protein tumorous imaginal discs, mitochondrial [Triticum urartu] 
SH GENE_0559_171 2BS Protein tumorous imaginal discs, mitochondrial [Triticum urartu] 
Fv/Fo BS00003861_51 6AS WD40 protein [Triticum aestivum] 
PC Excalibur_c60683_908 5BL Annexin D5 [Triticum urartu] 
SMC Excalibur_c10689_254 1AS Heat stress transcription factor A-2a [Triticum urartu] 
SH GENE_0411_350 1BS Tubulin-specific chaperone E [Triticum urartu] 
CFC BS00110480_51 1BL Metallothionein-like protein 1B [Aegilops tauschii] 
CFC RAC875_c19099_434 5BL Phospholipase D delta [Triticum urartu] 
ABS/RC BobWhite_c3871_210 2DL Nucleoredoxin [Aegilops tauschii] 
ABS/RC IACX5753 6AL universal stress protein A-like protein [Brachypodium distachyon] 
DIo/RC BS00003616_51 6AL Universal stress protein A-like protein [Triticum urartu] 
SMC GENE_3601_145 5AL Auxin-responsive protein IAA13 [Triticum urartu] 
ABS/RC wsnp_RFL_Contig1984_1169

021 
1DL Acylamino-acid-releasing enzyme [Triticum urartu] 

SMC RAC875_rep_c77646_102 2DL DDB1- and CUL4-associated factor-like protein 1 [Triticum urartu] 
CFC BobWhite_c13455_112 2BL Alanine aminotransferase 2 [Aegilops tauschii] 
Na

+
 BobWhite_c13455_112 2BL Alanine aminotransferase 2 [Aegilops tauschii] 

Fm/Fo BobWhite_c28819_787 2AL Auxin-induced protein [Aegilops tauschii] 
NDF RAC875_c23168_480 1AL Dual specificity protein phosphatase 4 [Triticum urartu] 
SH Kukri_c52257_991 5BL Molybdenum cofactor sulfurase [Triticum urartu] 
SH wsnp_Ex_c11265_18216936 5BL Receptor protein kinase CLAVATA1 [Aegilops tauschii] 
SH BS00079611_51 2AL Adenosylhomocysteinase [Aegilops tauschii] 
PC wsnp_Ex_c18499_27344859 1AL DnaJ homolog subfamily C member 2 [Triticum urartu] 
CP wsnp_Ex_c18499_27344859 1AL DnaJ homolog subfamily C member 2 [Triticum urartu] 
Na

+
 Tdurum_contig8171_1602 5BL Leukotriene A-4 hydrolase [Aegilops tauschii] 

Fv wsnp_Ku_c1045_2115866 5BL Auxin-induced protein 5NG4 [Triticum urartu] 
TRo/RC CAP7_rep_c12537_81 3AL Abscisic stress-ripening protein 1 [Triticum urartu] 
SMC Ku_c19745_1093 7AL Dual specificity protein phosphatase 4 [Triticum urartu] 

Transcription factor - 13%   
PC BS00022824_51 1AL Mitogen-activated protein kinase 9 [Aegilops tauschii] 
CP BS00022824_51 1AL Brachypodium distachyon mitogen-activated protein kinase 9 

(LOC100835396), mRNA 
Na

+
 wsnp_Ex_c12117_19381493 1AS Nuclear receptor corepressor 1 [Aegilops tauschii] 

SH RAC875_c37857_158 1BS Lysine-specific demethylase 5A [Aegilops tauschii] 
CFC BobWhite_c2058_367 2AL Wall-associated receptor kinase 3 [Aegilops tauschii] 
Vi RAC875_c3947_441 2BL putative serine/threonine-protein kinase Cx32, chloroplastic [Triticum 

urartu] 
Fv/Fo wsnp_Ku_c35386_44598937 5AL Brachypodium distachyon MADS-box transcription factor 8 

(LOC100843405), mRNA 
Fv Kukri_rep_c103857_458 5AL putative NOT transcription complex subunit VIP2 [Triticum urartu]  
ETo/RC BS00062617_51 5BS High affinity cationic amino acid transporter 1 [Triticum urartu] 
DIo/RC wsnp_Ex_c11348_18327861 6AL BAH and coiled-coil domain-containing protein 1 [Triticum urartu] 
Fv wsnp_Ex_rep_c76495_73453

891 
6AL NAC domain-containing protein 78 [Triticum urartu] 

Fm/Fo CAP7_c3950_160 7BL putative serine/threonine-protein kinase Cx32, chloroplastic [Triticum 
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urartu] 
Fv/Fm CAP7_c3950_160 7BL putative serine/threonine-protein kinase Cx32, chloroplastic [Triticum 

urartu] 
Fv/Fo CAP7_c3950_160 7BL putative serine/threonine-protein kinase Cx32, chloroplastic [Triticum 

urartu] 

Translation regulation - 3%   
CFC IAAV4238 1AL Lysine-specific demethylase 5B [Triticum urartu] 
SH Excalibur_c827_666 6DL diphthine--ammonia ligase [Brachypodium distachyon] 
Fv/Fo Tdurum_contig8448_363 7BL Chloroplastic group IIA intron splicing facilitator CRS1, chloroplastic 

[Triticum urartu] 

Transporters -15%   
ETo/RC wsnp_Ex_c955_1827567 1BL Mitochondrial outer membrane porin [Aegilops tauschii] 
ETo/RC wsnp_Ex_c955_1827719 1BL Mitochondrial outer membrane porin [Aegilops tauschii] 
CFC Excalibur_c9619_1136 2DL K(+) efflux antiporter 2, chloroplastic [Triticum urartu] 
SMC Excalibur_c5193_2213 2DL Multiple C2 and transmembrane domain-containing protein 1 [Triticum 

urartu] 
SH RFL_Contig2862_1219 2DL ABC transporter E family member 2 [Aegilops tauschii] 
CFC RFL_Contig2862_1219 2DL ABC transporter E family member 2 [Aegilops tauschii] 
Fm/Fo D_F1BEJMU02GB94Z_188 2DS Bidirectional sugar transporter SWEET6b [Triticum urartu] 
CFC RAC875_c25656_289 2DS ABC transporter C family member 3 [Aegilops tauschii] 
PC wsnp_Ex_c742_1458743 3AS PREDICTED: myosin heavy chain, muscle [Brachypodium distachyon] 
NDF wsnp_Ex_rep_c68117_66883

366 
5AS boron transporter [Triticum aestivum] 

Fv BS00062617_51 5BS High affinity cationic amino acid transporter 1 [Triticum urartu] 
ABS/RC Kukri_rep_c107624_603 6AL Myosin-J heavy chain [Aegilops tauschii] 
DIo/RC Kukri_c15096_4206 6AL Myosin-J heavy chain [Triticum urartu] 
Na

+
 IAAV5585 6AL Myosin-J heavy chain [Aegilops tauschii] 

Na
+
 Jagger_c1134_353 6AL ABC transporter F family member 3 [Aegilops tauschii] 

NDF Kukri_c15761_1634 6BL Potassium transporter 25 [Aegilops tauschii] 
K

+
/Na

+
 BS00099804_51 7AL protochlorophyllide-dependent translocon component 52, chloroplastic 

(LOC100825042), mRNA 

Unknown protein -7%   
SMC wsnp_Ex_c28149_37293117 1AL putative galacturonosyltransferase 4 [Triticum urartu] 
ETo/RC Kukri_c22602_791 4AL U-box domain-containing protein 12 [Triticum urartu] 
NDF wsnp_Ex_rep_c68269_67060

931 
5AS Putative Xaa-Pro aminopeptidase 3 [Aegilops tauschii] 

DIo/RC RAC875_rep_c105906_124 6BS Putative U5 small nuclear ribonucleoprotein 200 kDa helicase 
[Aegilops tauschii] 

SH wsnp_JD_c14118_13933380 7AL PREDICTED: protein DJ-1 homolog B-like [Brachypodium distachyon] 
SH tplb0045p11_893 7AL PREDICTED: formin-like protein 3 [Brachypodium distachyon] 
Na

+
 RAC875_c25194_55 7AS Cycloartenol synthase [Aegilops tauschii] 

TRo/RC IACX11112 7AS transposon protein, putative, CACTA, En/Spm sub-class [Oryza sativa 
Japonica Group] 

SMC, seed moisture content; SH, seed hardness; NDF, neutral detergent fiber; PC, protein content; CP, crude protein; 

CFC, crude fiber 
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Figure 3 Functional analyses of the associated SNPs. 
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Functional analysis of the identified genes in this study 

The transcript profiles of 28 putative candidate genes were investigated in leaves of salt-tolerant 

(Atlay2000) and salt-sensitive (Bobur) genotypes after 24 days in saline (100 mM NaCl) and non-saline 

conditions (Figure 4A-C). The expressed transcript amount of each candidate gene was obtained from 

the genome-wide gene expression profiling (unpublished) we recently conducted using the quantitative 

next generation sequencing (NGS) by Massive Analysis of 3′-cDNA Ends (MACE). The gene transcript 

abundances were visualized in bar charts with colors red, representing the expressed transcripts of 

Atlay2000 and green bars, for that of Bobur. All the investigated putative candidate genes (except for 

NAD(P)H-quinone oxidoreductase subunit L, Malate dehydrogenase and putative alanine 

aminotransferase) were differentially expressed between the two contrasting ST genotypes (Figure 4; 

see also Table 6). They showed up- and down-regulation in the salt-tolerant and salt-sensitive 

genotypes, respectively.  
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Figure 4 Effect of salt stress on some of identified gene transcript abundance (% change to control) between salt-tolerant genotype (Atlay2000, in Black) versus 

salt-sensitive genotype (Bobur, in gray) after 24 d of stress. SPS1= Probable sucrose-phosphate synthase 1; pkiA= Pyruvate kinase; USP= UDP-sugar 

pyrophosphorylase OS=Oryza sativa subsp. Indica; pyrD= Dihydroorotate dehydrogenase (quinone); ndhL= NAD(P)H-quinone oxidoreductase subunit L; 

UGD2= UDP-glucose 6-dehydrogenase 2; mdh= Malate dehydrogenase; JMJ703= Lysine-specific demethylase; MPK9= Mitogen-activated protein kinase 9; 

TRIUR3_02773= Putative serine/threonine-protein kinase Cx32, chloroplastic; CRS1= Chloroplastic group IIA intron splicing facilitator CRS1, chloroplastic; 

kefC= Glutathione-regulated potassium-efflux system protein; TRIUR3_16707= Multiple C2 and transmembrane domain-containing protein 1; NRAMP2= 

NADH dehydrogenase complex (plastoquinone) assembly (Metal transporter Nramp2); myo= Myosin-J heavy chain; HAK10= Potassium transporter 10; 

TRIUR3_04667= Callose synthase 2; psm3= Structural maintenance of chromosomes protein 3; ALI1= Metallothionein-like protein 1; SPBC582.08= Putative 

alanine aminotransferase; Os03g0405500= Probable nucleoredoxin 1-1; IAA13= Auxin-responsive protein; hxB= Molybdenum cofactor sulfurase; NCU06732= 

Leukotriene A-4 hydrolase homolog; cnb-1= Calcineurin subunit B. 
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Table 6 Relative transcript abundance of 28 candidate genes identified in our GWAS study and previous reports on them 

Associated traits gene_symbol description UniProt  Abundance (%)  Reference 

    Atlay2000 Bobur RE  

Fv/Fo TRIUR3_04667 Callose synthase 2 OS=Triticum urartu M7YGW 0 -58.35 +,- 
Kosová et al. (2013); 

Sengupta and Majumder 

(2009) 

Crude fiber JMJ703 Lysine-specific demethylase JMJ703 OS=Oryza sativa subsp. japonica Q53WJ1 118.71 53.33 +,+ Shen et al. (2014) 

Protein MPK9 Mitogen-activated protein kinase 9 OS=Oryza sativa subsp. japonica Q6L5D4 133.11 90.94 +,+ Kumar and Sinha, (2013) 

ABS/RC psm3 
Structural maintenance of chromosomes protein 3 OS=Schizosaccharomyces 

pombe 
O42649 45.74 -8.30 +,-  

Crude fiber ALI1 Metallothionein-like protein 1 OS=Triticum aestivum P43400 13.00 8.90 +,+ 
Sekhar et al. (2011); Yang 

et al. (2015) 

Shoot Na+ pyrD Dihydroorotate dehydrogenase (quinone) OS=Azorhizobium caulinodans A8HZX8 -43.09 -4.77 -,- Liu et al. (2009) 

Shoot Na+, Rohfaser SPBC582.08 Putative alanine aminotransferase OS=Schizosaccharomyces pombe Q10334 -7.76 58.78 -,+  

Crude fiber kefC 
Glutathione-regulated potassium-efflux system protein KefC OS=Enterobacter 

sp. 
A4W6F3 38.61 -25.89 +,-  

ABS/RC Os03g0405500 Probable nucleoredoxin 1-1 OS=Oryza sativa subsp. japonica Q7Y0E8 90.16 20.87 +,+  

Moisture content TRIUR3_16707 
Multiple C2 and transmembrane domain-containing protein 1 OS=Triticum 

urartu 
M7YGD3 28.42 -17.64 +,-  

ETo/RC SPS1 Probable sucrose-phosphate synthase 1 OS=Oryza sativa subsp. indica A2WYE9 231.83 35.15 +,+ 
Strand et al. (2003); Chen 

et al. (2005) 

ABS/RC2 NRAMP2 
NADH dehydrogenase complex (plastoquinone) assembly (Metal transporter 

Nramp2) 
Q10Q65 321.52 -65.78 +,- Rumeau et al. (2005) 

Moisture content IAA13 Auxin-responsive protein IAA13 OS=Oryza sativa subsp. indica A2XLV9 49.43 -100.00 +,- Jiang and Guo (2010) 

ABS/RC ndhL NAD(P)H-quinone oxidoreductase subunit L OS=Nostoc sp. Q8YMW5 -25.21 19.65 -,+  

Seed hardness hxB Molybdenum cofactor sulfurase OS=Neosartorya fischeri A1CX75 0 -100.00 +,- Xiong et al. (2001) 

Shoot Na+ NCU06732 Leukotriene A-4 hydrolase homolog OS=Neurospora crassa Q7S785 62.17 40.43 +,+  

Crude fiber PLD1 Phospholipase D alpha 1 OS=Zea mays Q43270 65.10 316.94 +,+  

Shoot Na+ UGD2 UDP-glucose 6-dehydrogenase 2 OS=Oryza sativa subsp. japonica B7F958 85.74 -6.07 +,-  

Vi mdh Malate dehydrogenase OS=Proteus mirabilis B4F2A1 -10.08 30.56 -,+  

ETo/RC pkiA Pyruvate kinase OS=Emericella nidulans P22360 65.09 39.44 +,+  

Shoot Na+, Dio/RC, ABC/RC myo Myosin-J heavy chain [Aegilops tauschii] O94477 198.03 32.94 +,+  

Vj cnb-1 Calcineurin subunit B OS=Neurospora crassa P87072 20.35 -28.04 +,-  

NDF HAK10 Potassium transporter 10 OS=Oryza sativa subsp. japonica Q67VS5 115.92 -10.822 +,-  

Fv USP UDP-sugar pyrophosphorylase OS=Oryza sativa subsp. indica A2YGP6 30.51 -17.96 +,- Juan et al. (2005) 

Fm/Fo TRIUR3_02773 Putative serine/threonine-protein kinase Cx32, chloroplastic OS=Triticum urartu M7ZVA6 38.05 -0.69 +,- Diédhiou et al. (2008) 

Fv/Fo CRS1 
Chloroplastic group IIA intron splicing facilitator CRS1, chloroplastic OS=Zea 

mays 
Q9FYT6 50.14 -28.49 +,-  

Fm/Fo SUS2 Sucrose synthase 2 OS=Oryza sativa subsp. japonica P30298 -50.00 819.81 -,+  

Crude protein MPK9 Mitogen-activated protein kinase 9 Q6L5D4 133.11 90.94 +,+  

RE, effect of salt on the gene expression in relation to non-saline condition; +,- = gene transcript abundance was up-regulated in Atlay2000 but down-regulated 

in Bobur; - ,+ = gene transcript abundance was down-regulated in Atlay2000 but up-regulated in Bobur;  +,+ = gene transcript abundance was up-regulated in 

both Atlay2000 and Bobur; -- =  gene transcript abundance was up-regulated in both Atlay2000 and Bobur 
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The RT-qPCR was used to verify the expression patterns of Myosin-J heavy chain (myo), ABC 

transporter F family member 3 (ABC) and NAD(P)H-quinone oxidoreductase subunit L, 

chloroplastic (NAD(P)H) after 30 days of salt stress (Figure 5A, B and C, respectively). The SNP 

locus (99.04 cM) on 6AL coding for Myosin-J heavy chain is of significant important because it was 

independently associated with ABS/RC, DIo/RC and shoot Na+ content. Myosin-J heavy chain was 

up-regulated in the two salts-tolerant genotypes (Atlay2000 and UZ-11CWA-8) after 30 days of salt 

treatment, in contrast with the salt-sensitive genotypes (UZ-11CWA-24 and Bobur). The expressions 

of AtABC3 and NAD(P)H were both up-regulation the tolerant and sensitive genotypes, although the 

fold-changes were much higher in the salt tolerant wheat genotypes.  
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Figure 5 Expression levels of Myo: Myosin-J heavy chain, AtABC3: ABC transporter F family member 

3 and NAD(P)H: NAD(P)H-quinone oxidoreductase subunit L, chloroplastic in leaves of two salt tolerant 

(Atlay2000 and UZ-11CWA-8) and salt sensitive (UZ-11CWA-24 and Bobur) after 30 days in non-saline 

(Grey) and saline (Black) conditions, determined by 2
-ΔΔCT

 method. Efa1.1 and Efa1.2 genes were used as 

internal control genes. Bars are the means (n = 3) ± standard error.  
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The sigmoidal curves indicated that the kinetics of the putative candidate genes induced by 0 and 100 mM 

NaCl in Atlay2000 and Bobur were investigated after 2hrs, 11d and 24 days of salt application (Figure 6). 

Both genotypes showed differential expression signatures under saline and non-saline conditions after 2hrs 

of stress, with Bobur showing higher transcripts amount than in Atlay2000 in most of the genes. This trend 

was maintained for few (0-5) days. Distinct transcriptional changes were observed between the two 

genotypes in most genes after 11 days of salt stress. At this period, the expressed transcripts in Atlay2000 

increased steadily and exponentially under salt-stress, but decreased in Bobur. Three genes including myo, 

hxB and NRAMP2 coding for Myosin-J heavy chain, Molybdenum cofactor sulfurase and NADH 

dehydrogenase complex (plastoquinone), respectively, exhibited an early response, while Mitogen-activated 

protein kinase 9 was differentially expressed after 15 days of salt stress.   
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Figure 6 MACE analysis showing the expression kinetics of the associated salt tolerance genes over a period of 

24d in salt tolerant (in black) and salt sensitive (in gray) genotypes. The “thick” and “dotted” lines indicate the 

gene expression kinetics over-time in saline and non-saline conditions, respectively.  
 

 

Sequence analysis in the putative candidate genes 

The EST sequence variations in the coding regions of the putative candidate genes anchoring the significant 

MTAs are shown in Figure 7. Four missense amino acid substitutions: C (Cysteine) to G (Glycine), A 

(Alanine) to V (Valine), R (Arginine) to G (Glycine) and, C (Cysteine) to W (Tryptophan) were detected at 

1529, 1549, 1626 and 1628 sites on exon 37 of Myosin-J heavy chain (Traes_6AL_891456790.1), 

respectively (Figure 7A). The Dihydroorotate dehydrogenase (quinone) (Traes_2BL_3A44C99D2.1) 

contains four non-synonymous substitutions at position 361 [V-to-L], 413 [L-to-C], 412 [K-to-P] and 411 [-

(a SNP deletion)-to-C] of exon 10 (Figure 7B). Two non-synonymous substitutions which might have 

altered the functionality of UDP-glucose 6-dehydrogenase 2 (Traes_5BL_7F59B65A3.1) were found on 

exon 1 at 599 [R-to-P] and 662 [P-toT] positions (Figure 7C).  The ESTs of SPS1 

(Traes_3B_35D6F6CE7.1) and NRAMP2 (Traes_4BL_C6A3F5C8A.1) also showed allele variations 

between the two contrasting genotypes (Figure 7D and E, respectively); although the regions anchoring 

their corresponding MTAs were located in the introns. 

 

A. Myosin-J heavy chain (Traes_6AL_891456790.1.mrna1-E37) 

Gene_ID   --ESLHHYPSAQFLLTASPTPCVIEQQGGLGLKISSPDFYGVAPLQQCCTVVFSRANLIGGRGWVCSSKATIVARRRTALAS 1589 

Atlay2000 --ESLHHYPSAQFLLTASPTPCVIEQQGGLGLKISSPDFYGAAPLQQCCTVVFSRANLIGGRGWVCSSKATIVARRRTALAS 1589 

Bobur     --ESLHHYPSAQFLLTASPTPGVIEQQGGLGLKISSPDFYGVAPLQQCCTVVFSRANLIGGRGWVCSSKATIVARRRTALAS 1589 

 

Gene_ID     WVSSCLGYLCCTKNTVEMRSSCPKLITSVAKCPVWCRTCFA--1630 

Atlay2000   WVSSCLGYLCCTKNTVEMRSSCPKLITSVAKCPVWCRTCFA--1630 

Bobur       WVSSCLGYLCCTKNTVEMRSSCPKLITSVAKCPVWCGTWFA--1630 
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B. Dihydroorotate dehydrogenase (quinone) (Traes_2BL_3A44C99D2.1.mrna1-E10) 

Gene_ID    --IIQPLVSTYWSTCHRCIHGWHLVLLSLASCTRNFSLTCISPGFLPCGETMAGLRIVLGYSEAAAFCLCRSLHYAKVICPC 416 

Atlay2000  --IIQPLVSTYWSTCHRCIHGWHLVLVSLASCTRNFSLTCISPGFLPCGETMAGLRIVLGYSEAAAFCLCRSLHYAKVILK- 416 

Bobur      --IIQPLVSTYWSTCHRCIHGWHLVLLSLASCTRNFSLTCISPGFLPCGETMAGLRIVLGYSEAAAFCLCRSLHYAKVICPC 416 

 

Gene_ID      FLVYALNWSLLVGLNLVP--434 

Atlay2000    FLVYALNWSLLVGLNLVP--434 

Bobur        FLVYALNWSLLVGLNLVP--434 

 

 

C. UDP-glucose 6-dehydrogenase 2 (Traes_5BL_7F59B65A3.1.mrna1-E1) 

Gene_ID   --VHLVGRPDRRKSKKWFDRDSFFIVCILQEKHPHFLSRPEFSKSSCLVKFPIHVCATPSVDLTYNQILGPLCCLRRFFRC--672 

Atlay2000 --VHLVARPDRRKSKKWFDRDSFFIVCILQEKHPHFLSRPEFSKSSCLVKFPIHVCATPSVDLTYNQILGPLCCLRRFFRC--672 

Bobur     --VHLVAPPDRRKSKKWFDRDSFFIVCILQEKHPHFLSRPEFSKSSCLVKFPIHVCATPSVDLTYNQILGTLCCLRRFFRC--672 

 

 

D. Sucrose-phosphate synthase 1 (Traes_3B_35D6F6CE7.1.mrna1-E2) 

Gene_ID    --LRILPTFHFHSHGKIVHRFQINYRTIVIKCVLWGMSTLLCGNHIYTQQCACISTNNHLQGAILILLGYICTVSPP--617 

Atlay2000  --LRILPTFHFHSHGKIVHRFQINYRTIVIKCVLWGMSTLLCGNHIYTQQCACISTNNHLQGAILILLGFLCTVSPP--617 

Bobur      --LRILPTFHFHSHGKIVHRFQINYRTIVIKCVLWGMSTLLCGNHIYTQQCACISTNNHLQGAILILLGYICTVSPP--617 

 

 
Figure 7 Comparison of the deduced EST amino acid sequence in Atlay2000 (salt tolerant) and Bobur (salt 

sensitive) genotypes with their corresponding draft sequence obtained from Ensembl Genomes database 

(http://www.ensemblgenomes.org). Black and white colours indicate identical and polymorphic sites, 

respectively, while gray colour represent region anchoring the associated SNP marker identified in the GWAS 

analysis. 
 

 

DISCUSSION 

Phenotypic variation and correlations among traits 

This study combined the high throughput ChlF traits with SI and SQ parameters to gain insight into 

underlying trait-by-trait associations and genetic architectures controlling ST in 150 diversity wheat panel. 

The genotypes showed significant (P < 0.001) level of genetic diversity, as revealed by ANOVA and 

distribution statistics. Majority of the traits analyzed showed relatively high heritability estimates, 

indicating that genetic factors also contributed to the observed phenotypic variations. Thus, uncovering the 

genetic architectures controlling ST using the measured traits is possible. 

 

 It is well-known that the genotype, salinity and their interaction determines plant phenotypes. Results 

showed that the means of some measured traits were significantly reduced under salinity stress compared to 

the non-saline stress, suggesting that the traits were affected strongly by salt stress. In line with the present 

study, Chen and Murata (2011) and Shu et al. (2012) have demonstrated that maximal efficiency of PSII 

http://www.ensemblgenomes.org/
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photochemistry (Fv/Fm) is inhibited under salt stress. The non- significant-interaction effect of genotype x 

salt treatment observed in all the ChlF traits suggests that the genotypes are insensitivities to both saline and 

non-saline treatments. This means that either of the treatment conditions can be relevant for studying 

genetic variations in ChlF traits under salt stress conditions. Lutts et al. (1996) reported non-significant 

interaction of genotypes and salt treatment for Fv/Fm in rice. 

 

Seed protein content (PC) of grains harvested from the saline fields were higher than that harvested from 

the non-saline field, whereas the starch contents (SC) of the seed from saline soil decreased, suggesting that 

salt stress has contrasting impact on both SQ traits. Reports abound on the effects of major abiotic stresses 

on SQ traits in wheat, but none had reported on salinity. For instance, Ozone (O3) (Piikki et al., 2008; 

Zheng et al., 2013) and Heat stresses (Farooq et al., 2011) is known to increase PC in wheat. Fuhrer (1990) 

has also shown that SC is decreased under O3 stress. Salinity stress is associated with decreased SC and 

increase PC in rice (Baxter et al., 2011; Thitisaksakul et al., 2015). The reduction in SC under salt stress 

might be due to the combination of slower growth and development as a consequence of limitation in the 

photosynthesis in salt-stressed plant and, which might have indirectly resulted in the reduction in the sink 

capacity and less starch deposition in the seed grains. Unlike N-metabolism (which results in increase in the 

PC) (Sastry and Gupta, 2009), Stitt et al. (2002) have demonstrated that carbohydrate metabolism is 

negatively affected by salinity. These findings revealed that salt stress may have increased the plants ability 

to re-mobilize N to the active photosynthetic shoot parts, thus, depleting the carbon sink and source.  

 

Shoot K+ was positively correlated with several ChlF traits (Fv, Fv/Fo, Fv/Fm, TRo/RC, ETo/RC and 

PI/ABS). This suggests that shoot K+ amount is critical during photosynthesis (Marschner, 2012). Using the 

correlated ChlF traits as a ‘physiological marker’ for indirect measurement K+ status salt-stress leaves may 

present an indirect approach for rapid evaluation for salt tolerance in a large population. In tomatoes 

(Albacete et al., 2009), Fm/Fv also exhibited high positive correlation (r = 0.76; P ≤ 0.001) with leaf K+ 

under salt stress. The PC correlated negatively (r2= -0.80; P=0.01) with SC. Burešová et al. (2010) and Hucl 

and Chibbar (1996) have also reported a negative correlation (r= –0.83, -0.83, respectively) between protein 

and starch contents in wheat. Base on the correlations observed among the ChlF, shoot ionic and seed 

quality parameters (Table 3), it may be possible that genes controlling some of these traits are related, 

either through linkage or pleiotropy.  
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Association mapping of salt tolerance 

By employing the GWAS approach, a total of 115 significant MTAs using the ST-traits, representing 21 

LD-defined QTL regions, were identified. Of these, 54, 17 and 44 SNPs had effect on ChlF, SI and SQ 

traits, respectively. Some of the associated SNP loci/QTL regions are pleiotropic and/or, were located in 

genomic regions that have been reported for QTL/genes regulating salt tolerance in wheat (see Table 4). In 

addition, three QTL regions on 5BL, 6AL and 7BL have not been previously reported for ST in wheat. 

 

A ST locus at 99.04 cM on 6AL influenced ABS/RC, DIo/RC and shoot Na+. This region is known to 

habour QTL for Fm, Fv/Fm (Li et al., 2012b) as well as a QTL for shoot Na+ (Genc et al., 2010). The 

locus- Q.chl*Qu(2DS) at 8.52 cM on 2DS controlling Fm/Fo and CF traits coincides with several QTL 

controlling Fm (Zheng et al., 2013), tenacious glume locus Tg-D1 (Okamoto et al., 2012) and grain 

dormancy (Tan et al., 2006), ST QTL for grain yield, qGY2Da (Zhang et al., 2009b) and the Rht8 and Ppd-

D1 genes (Pestsova and Röder, 2002; Gasperini et al., 2012). The Q.chl*Qu*I(2BL) region on 2BL 

spanning genetic interval of 1.55 cM had strong effect on  Fv/Fm, CFC, shoot Na+ and shoot K+/Na+ in this 

study. ST QTL for traits such as Fm, Fv/Fm, Fv/Fo and qChlN-2B (Li et al., 2010; Zhang et al., 2010; Li et 

al, 2012b; Zheng et al., 2013), shoot Na+ (Genc et al., 2010), seed dormancy and pre-harvest sprouting 

(PHS) (Chao et al., 2015) have also been reported in this region. The coincidences and co-location of the 

QTL controlling most of the measured parameter (Table 4), is an indication that the identified QTL loci 

have the potential to be exploited for breeding programs and basic genetic research. 

 

Identification of candidate genes contributing to the genetic variance for ST 

The putative candidate genes linked with the detected MTAs are presented in (Table 5). Result showed that 

associated homologous genes are involved in ST and, belong to different functional categories (Figure 3). 

Worthy to mention is the locus (99.04 cM) on 6AL [that influenced ABS/RC, DIo/RC, shoot Na+ and shoot 

K+/Na+ traits]. It showed high sequence homology to Myosin-J heavy chain protein (Myo) that is involved 

in stress response to heavy metal (Ahsan et al., 2007) and cold stress (Yan et al., 2006) in tomatoes and rice 

plants, respectively. Sottosanto et al. (2007) revealed that Myo is salt-responsive and is directly influenced 

by the vacuolar Na+/H+ antiporter. SNP locus (Jagger_c1134_353) at 140.87 cM on 6AL [associated with 

shoot Na+] also coded for ABC transporter F family member 3, an indicating that it may be involved in Na+ 

transport. Recent reports have also indicated that 6AL harbors three wheat plasma membrane transporters 

including TaYSL10, TaYSL14 and TaYSL15 (Pearce et al., 2014). The 2DS SNP locus (8.52 cM), associated 

with Fm/Fo and grain crude fiber content, was found to be highly homologous to ABC transporter C family 
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member 3. The activity of this gene has been linked to seed grain formation and myco-toxin tolerance in 

wheat (Walter et al., 2015).   

 

Single gene expression analysis using contrasting ST wheat genotypes 

We have analyzed 28 associated gene transcripts expression pattern in the leaves of Atlay2000 (salt-

tolerant) and Bobur (salt sensitive). Both genotypes showed contrasting phenotypes for ST in our previous 

study with the entire studied 150 germplasm (Oyiga et al., 2016; also see Figure 2). They showed general 

trend of up- and down-regulation in the salt-tolerant and salt-sensitive genotypes, respectively after 24 days 

of stress (Figure 4), suggesting that their activities contribute to the salt tolerance variation in wheat. 

Several reports have demonstrated that the activities of the candidate genes analyzed confer ST in plants 

(Table 4). The RT-PCR analysis of Myosin-J heavy chain on 6AL revealed that this gene is also up-

regulated in Atlay2000, with no observable change in the expressed transcript in Bobur under saline and 

non-saline conditions; thus validating the expressions of this gene in response to salt stress. In addition, 

AtABC3 and NAD(P)H show that salt stress induced higher expressions of both genotypes, although highly 

significant fold change was observed in the salt tolerant ones. The expressions of profile of NAD(P)H 

observed in the MACE data and RT-PCR data were found contradictory, with the available reports so far 

supporting the latter (Zhou et al., 2009; Wang et al.,2015).  

 

Carbohydrate, sucrose and energy metabolism are rapidly adjusted under salt stress, because large amounts 

of ATPase are required to provide energy for the growth and development of plants under salt stress 

conditions (Wang et al. 2009). Three of the associated SNPs coded for sucrose-phosphate synthase 1 

(SPS1), Pyruvate kinase (pkiA) and UDP-sugar pyrophosphorylase (USP) genes that are involved in 

carbohydrate and energy metabolism. These genes showed higher transcript abundance in Atlay2000 than in 

Bobur, a strong indication that their up-regulation enhances salt tolerance via increase in the carbon 

metabolism and ATP production. In addition, the USP gene is one of the well-documented protein markers 

for salinity tolerance and, is differentially expressed in the salt tolerant and sensitive barley cultivars 

(Mostek et al., 2015). Over-expressions of transporters are known to regulate and/or prevent build-up of 

toxic ions in plant cell (Ohta et al., 2002); thus lowering rate of ROS formation in the leaves of stressed 

plants. All the transporter encoding genes (including Glutathione-regulated potassium-efflux system protein 

(KefC), Multiple C2 and transmembrane domain-containing protein 1, NADH dehydrogenase complex 

(plastoquinone) assembly, Myosin-J heavy chain and Potassium transporter 10) were up-regulated in 

Atlay2000 and down-regulated in Bobur (Table 4), a probable explanation for the enhanced growth 
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observed in Atlay2000 relative to Bobur under saline conditions (Oyiga et al., 2016).  The expression of 

Myosin-J heavy chain was also validated by RT-PCR in the present study.  

 

Sequence variations at candidate gene loci between Atlay2000 and Bobur   

Salt tolerance may arise from a target-site-based mechanism involving mutations in the genes that are 

contributing to adaptation under saline conditions. Non-synonymous substitutions associated with trait 

variation for ST were detected at 1529, 1549, 1626 and 1628 mutation sites in exon 37 of myo 

(Traes_6AL_891456790.1) (Figure 7A). Among the identified substitutions, the R (Arginine) to G 

(Glycine) substitution at 1626 position showed non-conservative modified variation (where alterations 

result in the substitution of an amino acid with biochemically dissimilar amino acid), indication that it may 

have contributed majorly to the differential response of this gene in the two contrasting genotypes. 

Although the effect of R to G mutation has not been reported for ST, available report indicates that such 

mutation is linked to quinol oxydation inhibitors (fungicide) resistance (Sierotzki et al., 2006). 

 

Four amino acid substitutions, from valine to leucine at position 361 (V361L), from Leucine to Cysteine at 

413 (L413C), from Lysine to Proline at 412 (K412P) and, from – (a SNP deletion site) to Cysteine at 411 (-

411C), were detected in exon 10 of Dihydroorotate dehydrogenase (quinone) (Traes_2BL_3A44C99D2.1) 

coding region (Figure 7B). The V361L and L413C substitutions seem not to have significantly affected the 

functionality of this protein because they have similar aliphatic and hydrophobic properties, respectively.  

However, it is highly likely that structural variation in this gene between the contrasting ST wheat 

genotypes may come from K412P and -411C polymorphic sites, given that both amino acids do not have 

similar physio-chemical properties. The cysteine residue, which we found to be deleted in Atlay2000 but 

present in Bobur, has been implicated as active site base residues that promotes substrate oxidation in pyrD 

and its absent would resulted in extremely low activity of the gene (Björnberg et al., 2001). Thus, the higher 

activities’ of pyrD observed in Bobur may be partly connected to the present of cysteine residue in the 411 

substitution site. These findings provide essential knowledge for further unlocking of the genetic 

mechanism and cloning of genes related to salt tolerance in wheat. 
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CHAPTER 5 

General Discussion 

Soil salinity is a great threat to global food security in the face of dwindling arable lands and 

increasing human population (Tester and Langridge 2010; Mainuddin et al. 2011; Bansal et al. 

2014). Thus, the continuous salinization of arable land either by natural or by human induced 

processes is forcing plant breeders to look for new sources of salt tolerance, to identify crop traits and 

candidate genes that confer the tolerance to salt stress that can be exploited through the conventional 

breeding or molecular biotechnological manipulations (Ashraf and Akram 2009; Ford-Lloyd et al. 

2011; Rajalakshmi and Parida 2012; Kumar et al. 2012). The improvement of salt tolerance in crop 

plants is often challenged by lack of effective salt screening and evaluation methods among the crop 

plants (Zeng et al., 2003). The screening of genotypes of diverse genetic background is perceived as 

a prerequisite step in identifying the new sources of salt tolerance. Salt tolerance is a complex 

phenomenon and depends not only on the plant physiology, genetics and molecular mechanisms but 

also on the stage of development during which the stress occurs (Epstein and Rains, 1987; Shannon, 

1985; Mano and Takeda, 1997; Bayuelo Jiménez et al., 2002; Haq et al., 2010). This means that for 

successful identification and development of elite salt tolerant wheat genotypes, salt-tolerance status 

of genotypes at each growth stage should be evaluated separately.  

 

Screening of germplasm across growth stages  

In Chapter 2, a total of 150 wheat genotypes of diverse genetic background were screened 

simultaneously for salt tolerance at germination, seedling and field adult growth, together with the 

K+, Na+ and K+/Na+ constituents of their different shoot parts including third leaf, stem and 

remaining leaf parts. The morpho-physiological assessment revealed substantial genetic variation and 

trait heritabilities that can be exploited to characterize the salt tolerance status of all the studied 

genotypes. The response of the genotypes to salt stress varied across growth stages, with a total of 

33, 39, 45 and 34 genotypes being identified as being tolerant, moderately tolerant, moderately 

sensitive and sensitive, respectively. The identified tolerant genotypes showed higher “K+ inclusion” 

and “Na+ exclusion” mechanisms than the sensitive genotypes. We found Altay2000, 14IWWYTIR-19 

and UZ-11CWA-8 (salt-tolerant) and Bobur (salt-sensitive) genotypes very outstanding because they 

were consistently identified across the three growth stages. Interestingly, Altay2000 has been 

previously found to be resilient to salt, drought and cold stress (Kara and Kara, 2010; Mutlu et al., 

2009; Akfirat and Uncuoglu, 2013). Further physiological evaluations performed revealed that the 

http://link.springer.com/search?facet-author=%22S.+Mutlu%22
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tolerant (Altay2000 and UZ-11CWA-8) genotypes were better equipped with higher membrane 

stability, lower osmotic potential and higher rates of PSII photochemical activities and higher K+/Na+ 

ratio under salt stress. The identified genotypes can be considered as new genetic resources for the 

conventional breeding programs, although studying the genetics and molecular mechanisms of salt 

tolerance in these genotypes would be helpful in confirming their ST status because the conclusions 

reached in the present study were only based on comparing the agronomic and some physiological 

data. 

 

The conventional breeding as a means of genetic improvement for crop yield has been exploited to 

develop salt tolerance genotypes, but till now this has not yielded the desire goals (Flowers 2004; 

Munns et al., 2006), due to complex nature of salt tolerance in plant. The development of 

inexpensive high-throughput genotyping platforms such as the Illumina wheat SNP 90K Beadchip 

(Wang et al., 2014) and/or genotyping-by-sequencing (Elshire et al., 2011) has made the use of 

functional DNA markers for selection very useful tools for identification of wheat genotypes that are 

salt tolerant. Development of functional markers for salt tolerance and deploying them through 

marker-aided selection in breeding program would fasten the process of developing tolerance 

genotypes, thus, circumventing the limitations of conventional breeding. One of our objectives in 

Chapter 3 and 4 was to identify the genetic architectures underlying salt tolerance using the genome-

wide association studies (GWAS) approach that could be applied in the cost effective genomics-

based approaches when breeding high yielding wheat genotypes for saline conditions. GWAS link 

genetic variants to complex traits at high precision by exploiting ancestral linkage disequilibrium 

(LD) between genetic markers and causal variants in diverse population (Rafalski, 2010; Stich and 

Melchinger, 2010). This approach has led to the discovery of important genes controlling complex 

traits such as biotic and abiotic stress tolerance in many plants.  

 

The GWAS depends on the quality of phenotypic data, population structure, rare marker alleles and 

level of LD between the causal factor and the SNPs. Thus, in Chapter 3, we studied the structure and 

LD of the studied population in other to improve our mapping strategies. Since rare alleles are more 

likely to result in the declaration of false positive in GWAS (Lamet et al., 2007), we excluded from 

our dataset all the genotypes and alleles that have less than 5% allele frequency. The population 

analysis using three statistical programs reveal that the studied panel is made up of two sub-groups 

and their distribution in the plots did not reflect germplasm collection centers. The LD analyses 

revealed that the whole genome LD value (r2) rapidly decreased when the genetic distance was less 
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than 13 cM, but the LD was not distributed uniformly across the genome due to the irregular 

distribution of recombination along the chromosome (Cericola et al., 2014). This phenomenon has 

been reported in several studies (Breseghello and Sorrells, 2006; Robbins et al., 2011; Ranc et al., 

2012). In addition, the speed at which LD decay (r2 > 0.1) was 10, 11 and 14 cM in A-, B- and D-

genomes, respectively, which was similar to that previously described in association analysis studies 

(Chao et al., 2007; Emebiri et al., 2010), but faster than that reported by Joukhader et al. (2013) and 

Turki et al. (2014) in wheat. In line with the report by Pasam et al. (2012), we considered SNPs that 

are ≤ 10, ≤ 11 and ≤ 14 cM from each other for A-, B- and D-genomes, respectively, to belong to 

similar LD block, and thus are linked to one/few genes. Rapid LD decay is an indication of high 

genetic diversity within a population. The LD decay of ≤14 cM in the studied panel may be due to 

large genetic diversity. This also demonstrated the availability of genetic variability in the population 

that could be exploited in the identification of QTL contributing to salt tolerance.  

 

An association mapping (MLM, K + Q-model) approach that take into account both the 

STRUCTURE output and the kinship matrix (Yu et al., 2006; Price et al., 2006; 2010) was applied on 

all the morpho-physiological trait data collected to identify promising alleles of QTL/genes 

contributing to salt tolerance to facilitate future breeding for salinity tolerance. Several important 

QTLs were identified for most of the traits and were discussed in Chapter 3 and 4. The coexisting 

chromosomal regions/loci governing different traits offers a great opportunity for breeders to 

introgress such regions together as a unit into high-yielding but salt sensitive cultivars through 

MAS/MAB and to develop cultivars possessing increased adaptation to saline conditions. In this 

section, I will briefly discuss the prospects of some of these QTL regions that were consistently 

identified in both Chapter 3 and 4, the associated traits in the identified regions, predicted genes and 

their implications for the future genetic studies and breeding. Some of these coincident QTL regions 

have been represented in the Figure 1 (below). 

 

Chromosome 1AL 

The QTL region that spanned from 137.12 to 142.62 cM located on 1AL seems to be novel, although 

it was proximal to a QTL for chlorophyll fluorescence, Fo (Zheng et al., 2013) and was strongly 

associated with ST_FRW, Seed protein, Crude fiber, ABS/RC and DIo/RC and was located ~ 6 cM 

away from ST QTL detected for seed grain yield. One of the important genes identified in this region 

was mitogen-activated protein kinase 9 (MAPK9). The overexpression of constitutively active 
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MAPK6 gene family enhances tolerance to salt stress in rice (Kumar and Sinha, 2013). The MACE 

analysis showed that this gene was also constitutively expressed in extreme salt tolerant genotypes, 

but was significantly higher in the tolerant genotype. It has been reported that MARK9 confer 

resistance to Verticillium dahliae pathogen in cotton (Zhang et al., 2014), suggesting that the 

associated 1AL region found in this study may be involved in both biotic and abiotic stress tolerance. 

 

Chromosome 1BS 

Although the QTL region on 1BS (60.62-68.04 cM) has been reported to harbor several QTL for 

endosperm proteins and end-use quality traits - QBwa.mna-1B, QMpv.mna-1B.1, QMpt.mna-1B.1, 

QMpi.mna-1B.1, QMixopa.mna-1B (Tsilo et al., 2011) and Grain filling duration (Zhang et al., 

2009b), to the best of our knowledge, no salt tolerant QTL has been reported on this region. In this 

study, this region strongly affected ST traits at germination (100 mM Na2SO4), seedling (DSW and 

ST_FRW), and field adult plant (ST_TKW and ST GY) stages as well as ST traits for seed hardness 

and crude fiber contents. Based on the in silico analyses performed on this QTL region, the most 

causal gene detected were the ZIP7 transporters. The relevance of this gene to salt tolerance has been 

discussed in Chapter 3. The MACE analysis revealed up-regulation (+713.98%) of ZIP7 transporter 

in Atlay200 (salt tolerant) and down-regulation (-22.19%) in Bobur (salt sensitive) genotypes after 24 

day of salt treatment. RT-qPCR performed for ZIP7 validated the MACE results, suggesting the 

potential of using this gene as early biomarkers of salt stress tolerance in cereals. 

 

Chromosome 2AL 

The QTL region on 2AL (101.97 to 110.13 cM) was strongly associated with ST traits at germination 

(under both 100 mM Na2SO4 and 200 mM NaCl), seedling (ST_FSW), field adult plant (PH and 

ST_GY) stages as well as leaf fluorescence (Fm/Fo) and ion homeostasis-related traits - shoot K+ 

/Na+. This region on 2AL coincided with the ST QTL for seedling biomass (Ma et al., 2007) and the 

Nax1 locus (Lindsay et al., 2004; James et al., 2006; Huang et al., 2006). It also showed sequence 

homology of ferredoxin-dependent glutamate synthase enzyme that has been implicated in ROS 

scavenging and ion homeostasis activities in plant. As has been reported in Chapter 3, ferredoxin-

dependent glutamate synthase exhibited early response to salt stress and was highly expressed in the 

tolerant genotype compared to the sensitive genotype, suggesting the relevance of this gene in 

regulation of salt tolerance regulation in wheat. Report by Jang et al. (2012) indicated that 

ferredoxin-dependent glutamate synthase confers oxidative stress-tolerant into rice. 
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Chromosome 2BL 

The QTL region found within a genetic distance that spanned 1.81 cM on 2BL showed pleiotropic 

effects on ST_DRW, ion homeostasis-related traits - shoot Na+, Fv/Fm, grain yield and seed crude 

protein content. Moreover, several ST QTL for grain yield, seedling biomass (Quarrie et al., 2005; 

Ma et al., 2007; Genc et al., 2010b), Fm, Fv/Fm, Fv/Fo (Zhang et al., 2010; Li et al., 2012b), shoot 

Na+ (Genc et al., 2010b) and seed dormancy and PHS loci (Chao et al., 2015) have also been 

reported in this region. This region also coded for NADPH-cytochrome P450 reductase, an 

oxidoreductase gene responsible for ROS scavenging and ion homoeostasis. 

 

Chromosome 6AL 

Two important QTL regions were identified on 6AL chromosome. We believed the first QTL region 

to be novel. It is located between 77.64 and 85.07 cM on 6AL and has strong effect on leaf 

fluorescence (Fj, Vj, Fj, ABS/RC, DIo/RC), seedling (ST_FRW, ST_DSW) and ion homeostasis-

related traits (shoot Na+) traits. Sequence analysis showed high sequence homology for a universal 

stress protein A-like protein in this region. The second QTL was detected at 90.04 cM on 6AL and 

was associated with ABS/RC, DIo/RC, and ion homeostasis-related traits (shoot Na+) traits. It was 

found to possess high sequence identity of myosin-J heavy chain. The role of myosin-J heavy chain 

in salt tolerance in plant has also been discussed in Chapter 4. In addition, the MACE and RT-PCR 

analyses performed revealed that myosin-J heavy chain is highly and significantly expressed in the 

salt tolerant genotype when compared with the salt sensitive genotypes, an indication that it´s activity 

contributes to salt tolerance in wheat. 
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Figure 1 Summary of major QTLs regions (in LD) detected in both chapter 3 and 4 association studies and their characteristics (associated traits 

and predicted genes) that be used for salt tolerance improvement. 
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Relationships among some of the studied traits 

Our study identified a positive correlation between some of the ChlF traits [Fv, Fv/Fo, Fv/Fm, 

TRo/RC, Eto/RC and PI(ABS)] and shoot K+ under saline conditions, which suggests that stomatal 

movement, energy transfer and photosynthetic activities in plant under saline conditions would 

depend on the K+ uptake (Marschner et al., 2012). The seed starch content was also found to be 

positively correlated with Fo, ABS/RC, TRo/RC and DIo/RC but negatively correlated with Fm/Fo, 

Fv/Fm, ETo/RC and PI(ABS). The correlated traits are of interest because of the following three 

reasons: (i) to connect the genetic causes of correlation through the pleiotropic action of genes, (ii) to 

know how selection for one character will cause a simultaneous change in other characters, and (iii) 

to determine the relationship between traits and fitness (Sandhu et al., 2013). Establishing the 

coincidence of QTL for (morpho-) physiologically related traits provide powerful evidence for causal 

relationships amongst traits (Prioul et al., 1997). The high correlations observed for ChlF traits with 

the ion content and seed quality trait was also reflected in the co-localization of QTL with traits due 

to the effect of pleiotropy or very close linkage of genes. Therefore, our studies have shown that the 

ChlF techniques can be used for early detection of stress symptoms induced by salt stress among 

wheat genotypes; and thus, could be utilized as reliable screening criteria for evaluation of salt 

tolerance when screening for salt tolerance in large wheat population, and has been proposed by Li et 

al. (2014) as an indicator of stress responses in plant. 

 

Expression analysis 

Chapter 3 and 4 also describe some salt-responsive and specific gene expression of some of the 

candidate genes predicted to be controlling the observed genetic variation for salt tolerance in the 

studied panel. By using the PCoA, we have shown that the identified polymorphisms were able to 

discriminate against most of the identified salt tolerant genotypes from the salt sensitive ones, an 

indicative of the regulatory involvement of the SNPs in the salt tolerance mechanisms in wheat. 

Thus, having insight into the regulatory networks of the genes that are co-segregating with the 

identified polymorphisms would help us to know which genetic pathways and mechanisms each of 

the polymorphism is involved in and thus, may elaborate further the functional relevance of such 

locus in offering salt tolerance in wheat. In general, the genes that are involved in the stress/defense 

related (24%) activity along with those regulating the antiport and transmembrane (18%), 

transcription and translation (14%) and redox homoeostasis and detoxification (11%), 

repair/protection/cell wall modification (7%), carbohydrate/sucrose metabolism (7%), plant 



146 
 

hormone/osmo-protectant (6%), photosynthesis (4%) activities, etc at stressed condition were 

detected (Figure 2). The genes that are identified here may be quantitatively regulating salt stress 

and, from the PCoA analysis, it is evident that the tolerant genotypes may have higher number of 

these useful alleles that enabled them to cope and sustain growth under the applied salt treatment 

conditions, as has been observed in our previous report (Oyiga et al., 2016). Our findings would help 

to explain the potential fundamental mechanisms of salinity tolerance active in the diverse natural 

genetic background of wheat. The identified candidate genes can also be considered partly as the 

product of the genetic variation among all the genetic blocks existing within the studied panel, since 

we have analyzed all the genotypes simultaneously. Therefore, we took this into account by using 

only the salt tolerant and salt sensitive wheat genotypes identified in the population to identify the 

differentially expressed transcripts/genes due to salt treatment, which is described in the next section. 

 

 

Stress and defense related 
24% 
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Transcription and 
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Figure 2 Functional analyses of the associated SNPs identified in the GWAS studies in Chapter 3 and 4 
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Differentially expressed transcripts 

The salt tolerant wheat genotypes used for this investigation were chosen accordingly based on our 

previous salt screening study (Oyiga et al., 2016). The comparative gene expression study involving 

some of the identified genotypes was necessary in other to verify the tolerance status of some of the 

identified genotypes. The results revealed that all the analyzed genes were differentially expressed 

between the contrasting wheat genotypes with their expressions mostly favoring the tolerant wheat 

genotypes, suggesting that both genotypes are genetically different in terms of allele constitution for 

salt tolerance. 46 out of the 50 candidate genes analyzed were found to be highly expressed in the 

tolerant genotypes and were mostly down-regulated in the sensitive genotypes. Reports in wheat 

(Aprile et al. 2009; Liu et al. 2012) and barley (Ueda et al. 2006; Talamè et al. 2007) have shown 

that numerous genes are involved in abiotic stresses tolerance mechanisms. The functional roles of 

these differentially expressed candidate genes have also been linked to salinity tolerance mechanism, 

as has also been discussed in the previous Chapters. Thus, one may conclude that the tolerant 

genotypes are better prepared to overcome the salt stress vis-à-vis the number of stress responsive 

genes that were over-expressed compared with the sensitive genotypes. The expressions of 6 

candidate genes identified in this study were also validated by RT-PCR.  

 

Concluding Remarks 

The association mapping technology highly increased the power of detection and mapping resolution. 

The genotypes and QTLs identified in this study suggested the involvement of salt stress tolerance 

genes to be of importance for salt tolerance breeding. Therefore, our specific conclusions are: 

 

I. There is an extensive genetic variation for salt tolerance in the studied germplasm that can be 

exploited for wheat improvement. Among the most consistent extreme salt tolerant wheat 

genotypes identified across growth stages in this study, Altay2000, 14IWWYTIR-19 and UZ-

11CWA-8 (salt tolerant), and Bobur (salt sensitive) identified across the three growth stages. 

The tolerant genotypes - Altay2000 and UZ-11CWA-8, exhibited higher capacity for Na+ 

exclusion, higher K+ inclusion, lower osmotic potential, higher membrane stability and 

optimal photochemical activities under high salinity than the sensitive genotypes - Bobur and 

UZ-11CWA-24. Further genetic and molecular analyses of these extreme genotypes indicate 

that the tolerant genotypes contain higher number of positive alleles that are quantitatively 

regulating salt stress tolerance in their favor than the salt sensitive genotypes. We therefore 



148 
 

recommend these genotypes for further genetic studies for wheat improvement and breeding 

program. 

 

II. GWAS with 90K SNPs is able to unravel the genetic architecture for salt tolerance using 

some growth, physiological and seed quality salt-related traits in wheat. The gene ontology 

analysis of the associated polymorphisms revealed that the plausible candidate genes linked 

to the detected polymorphisms are involved in salt tolerance. The identified candidate genes 

were categorized according to the biological processes (BPs) and molecular functions (MFs) 

of which the genes that were associated with BPs (i.e., stress response, signaling and 

signaling process) and MFs (i.e., antiporter/transporter activity, transcription factor, 

transcription regulator activity and antioxidant activity) have been discussed in Chapter 3 and 

4. The genes identified here provide a picture of the complex and quantitative nature of 

salinity response in wheat with new insights into the mechanisms that are active in the wide 

natural variation of wheat genotypes under salinity stress. 

 

III. In general, out of the 50 candidate gene transcripts analyzed upon exposure to salt stress 

using MACE microarray, 46 of them were uniquely up-regulated in tolerant genotypes and/or 

are commonly up-regulated in both tolerant and susceptible genotypes (but at a higher rate in 

tolerant genotypes). For example, among the uniquely up-regulated genes in tolerant 

genotypes, 12 genes are involved in antiport/transporter activity, 8 genes are involved in 

response to stress and 10 genes are involved in antioxidant/ROS savaging activities and thus 

providing the strongest candidates for salinity tolerance in wheat.  

a. Among the genes involved in antiport/transporter activity, the most highly induced 

gene is Q5Z653 (increased by713.98% in Atlay2000 and decreased by 22.19% in 

Bobur) encoding a ‘Zinc transporter 7’ on the novel QTL region of 1BS, which was 

also validated with the RT-PCR and were found in QTL region conferring all growth 

stage salt tolerance in the studied panel. Another important transporter gene whose 

expression was validated by RT-qPCR is in this study is Myosin-J heavy chain 

(increased by 198.03% in Atlay2000 and increased by 32.94% in Bobur) and was 

associated with shoot Na+, Dio/RC, and ABC/RC at 90.04 cM on 6AL. 

b. Among the genes involved in antioxidant/ROS savaging activities is the gene 

encoding for Glutathione S-transferase (increased by ~250% in Atlay2000 and 

increased by ~80% in Bobur) located at 101.92 cM on 2AL and was strongly 
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associated with agronomic, leaf fluorescence and shoot K+ /Na+ (ion homeostasis-

related) traits. The antioxidant NADH dehydrogenase complex (plastoquinone) 

assembly associated with metal transporter showed 321.52% increase in Atlay2000 

and -65.78% decrease in Bobur. 

 

IV. The candidate genes were also assessed in terms of whether they are located within 

previously reported salt stress related QTL. Among the uniquely up-regulated genes in the 

tolerant genotypes, three were found in QTL region previously described for salt tolerance 

genes.  

a. The glutathione-regulated potassium-efflux system protein (kefC)  (increased by ~ 

60% in Atlay2000 and decreased by ~ 30 in Bobur) associated with dry shoot ST 

related trait in this study was found on 2AL region that has been described to carry 

Na+ exclusion gene controlling biomass (Lindsay et al., 2004; Huang et al., 2006; 

Genc et al., 2010). 

b. An ABC transporter F family member 3 found on 6AL region (detected with the 

shoot Na+ trait) that has reported also been reported for three wheat plasma 

membrane transporters (Pearce et al., 2014).  

c. Lastly, Morgan (1991) and Morgan and Tan (1996) reported osmoregulation gene 

regions on 7AS. We detected a gene fructan 6-fructosyltransferase (6-SFT) that 

functions as osmo-protectants synthesis, anti-oxidation and membrane stability 

(Valluru and Van den Ende, 2008; He et al., 2015) in the same region of 7AS. The 

expressions of kefC and 6-SFT were also validated using RT-qPCR.  

 

V. A novel QTL associated with leaf K+ content and whose sequence was highly  homologous to 

O13726 (increased by ~ 90% in Atlay2000 and decreased by ~ 10% in Bobur)  encoding an 

uncharacterized Na+/H+ antiporter protein was also located on 1DL. 

 

VI. Finally, the amino acid sequence analyses of the putative candidate genes identified non-

synonymous substitutions between the contrasting salt tolerant wheat genotypes at the 

associated gene coding regions, suggesting that the detected SNPs are linked to salt-

responsive genes that can be utilized for future genetic studies and salt tolerance 

improvement in Wheat. 
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