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Abstract 

Most cropping systems in the Dry Savanna agro-ecological zone of West Africa qualify as low-input 
systems. The use of mineral fertilizers is among the lowest in the world with an average of <10 kg ha-

1 year-1. Nitrogen is the most limiting nutrient element for crop production in the area, and the 
prevailing low-input systems rely mainly on the provision of native soil N. Depending on 
environmental conditions and management practices, the process of soil N mineralization not only 
provides N for crop nutrition but can also entail substantial N losses. Alternate soil drying and 
wetting cycles and seasonal changes in the rainfall intensity and distribution reportedly affect soil N 
dynamics. Associated with changes in the soil aeration status, nitrate-N can be lost by leaching and 
denitrification, mainly in the period between the first rains and crops establishment, the so-called 
“dry-to-wet season transition period” (DWT). Besides such temporal dynamics, soil N in the 
undulating inland valley landscape of West Africa is also subject to spatial fluxes and translocation of 
water and nitrate along the toposequence. This is likely to exacerbate the intensity of nitrate 
dynamics, particularly in the bottomlands adjacent to valley slopes, used for producing rainfed 
lowland rice. Thus, managing soil native N by avoiding (mainly nitrate-N) losses during DWT is key for 
crop productivity in the short-term and to maintain soil fertility in long-term.  

Field experiments were conducted in Burkina Faso and Benin in 2013 and 2014 to quantify 
the intensity and dynamics and to evaluate options for managing seasonal soil nitrate-N in inland 
valleys of the Dry Savanna zone of West Africa. In addition, factors modulating seasonal N dynamics 
such as rainfall intensity, soil tillage, and location effects were assessed. With the onset of the first 
rains and the rewetting of dry bare soil, and depending on the toposequence position, mineralization 
processes lead to an accumulation of 20-45 kg nitrate-N ha-1 in the topsoil. Initial vertical leaching 
and subsequent lateral subsurface flows of water from the slopes contributed an additional 10-15 kg 
of nitrate N ha-1 to the valley bottom wetland. In the absence of vegetation cover, this in-situ N 
mineralization and nitrate influxes had little effects on the performance of rainfed lowland rice in the 
valley bottom, indicating the occurrence of substantial N losses and pointing out the need for 
management approaches that contribute to conserving native soil N for enhancing rice production. 
The integration of transition season crops (either the leguminous green manures Mucuna pruriens 
and Vigna unguiculata or the non-N2-fixing grass Panicum maximum) in the lowland could capture 
and temporarily immobilize soil N, reducing the extractable soil nitrate content to 8-25 from 50-75 kg 
N ha-1 in the bare fallow control treatment. The resulting N accumulation in the transition season 
biomass was 41-70 kg ha-1 in panicum and 76-86 kg ha-1 in the legumes, where biological N2 fixation 
contributed 30-50%. Nitrate-catching vegetation, and particularly N2-fixing cowpea and mucuna, 
effectively reduced the build-up of native soil Nmin, thus potentially reducing nitrate-N losses and, 
upon biomass incorporation, enhanced the productivity of wet season rainfed rice with grain yield 
increases of 1-2 t ha-1 above the bare fallow control (1.7 t ha-1).  

The extent of such effects strongly depends on environmental conditions and management 
practices, affecting soil N mineralization and changes in the moisture regime. Thus, soil tillage tended 
to increase N mineralization and the extent of the nitrate peak during DWT. While a 30% reduced 
rainfall during DWT increased the nitrate accumulation, the absence of drastic changes in soil 
aeration status limited apparent nitrate losses. On the other hand, a 30% increased rainfall during 
DWT lead to a rapid soil saturation and little nitrate remained once the volumetric soil moisture 
exceeded 25%. Differences in the N-supplying capacity of soil types did affect the extent of the N 
mineralization, but neither the temporal dynamics nor the grain yield of rice. The reported finding 
point to the need for management approaches contributing to conserve native soil N for enhancing 
lowland rice production, such as nitrate-catching vegetation during DWT. The targeting of such 
approaches, however, is highly site specific and their relevance and effectiveness depend on the 
speed of change in soil aeration status during DWT and thus on rainfall, valley slope and 
management attributes, but also on the projected type of climate change.  
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Kurzfassung 

Die meisten Produktionssysteme in der Trockensavanne Westafrikas sind durch geringen Einsatz 
externer Produktionsmittel gekennzeichnet. So ist die Anwendung von <10 kg/ha mineralischer N-
Dünger die niedrigste weltweit. Gerade in den „low-input“ Systemen ist Stickstoffmangel weit 
verbreitet und die N-Versorgung der Kulturpflanzen basiert im Wesentlichen auf die Nachlieferung 
aus Bodenvorräten. Je nach Umweltbedingung und Managementsystem trägt die Mineralisierung 
von Boden-N aber nicht nur zur Nährstoffversorgung der Kulturen bei, sie kann auch zu erheblichen 
N-Verlusten führen. Gerade wiederholte Zyklen von Austrocknung und Wiederbefeuchten des 
Bodens sowie saisonale Schwankungen in Niederschlagsintensität und –verteilung kann nachweislich 
die Boden-N-Dynamik beeinflussen. In Abhängigkeit des Belüftungszustandes des Bodens geht in 
besonderem Maße Nitrat-N durch Auswaschung und Denitrifizierung verloren, vor allem in der Über-
gangsperiode zwischen Trocken- und Regenzeit. Neben solchen zeitlichen Dynamiken ist Nitrate auch 
räumlich mobil und führt in der Landschaft von Inlandtälern zu vertikalen wie auch horizontalen 
Nitrat-Flüssen entlang der Catena, welche die Nitratdynamiken besonders in den Talsohlen weiter 
verstärken. Das Management dieser Nitratdynamik und die Vermeidung von N-Verlusten während 
der Übergangsperiode ist somit kurzfristig der Schlüssel für steigende Erträge und wird langfristig 
zum Erhalt der Bodenfruchtbarkeit beitragen. 

Feldversuche wurden 2013 und 2014 in Burkina Faso und Benin durchgeführt, um die Intensität und 
die Dynamik der Boden-N Mineralisierung während der Übergangsperiode von Trocken- zu Regenzeit  
zu quantifizieren und Management-Optionen hinsichtlich ihrer Bedeutung zur Verminderung von N-
Verlusten und zur Ertragssteigerung von Nassreis vergleichend zu bewerten. Zudem wurde die 
Bedeutung ausgewählter  Standort- und Managementattribute (Bodentyp, Niederschlagsmenge und 
Art der Bodenbearbeitung) auf die saisonale Boden-N-Dynamik ermittelt. Mit Einsetzen der ersten 
Regenfälle nach der Trockenzeit und der Wiederbefeuchtung des trockenen Bodens konnte in 
Abhängigkeit der Toposequenz-Position eine Anreichung mit mineralischem Stickstoff in der 
Größenordnung von 20 bis 45 kg Nitrat-N/ha im Oberboden nachgewiesen werden. Durch zunächst 
vertikale Auswaschung und anschließend durch horizontale Verlagerung mit dem Wasserfluss 
wurden 10-15 kg Nitrat-N vom Hang in die Talsohle verlagert. Ohne eine Bodenbedeckung mit 
lebender Biomasse zeigten weder in-situ Mineralisierung noch laterale Einträge von Nitrat während 
der Übergangsperiode signifikante Effekte auf Leistungsmerkale von Nassreis. Diese Beobachtung 
stützt die Vermutung, dass die substantiellen Mengen an Nitrat im saturierten Boden der Talsohle 
verloren gingen du somit ein verbessertes Management des nativen Boden-N für Produktions-
steigerungen erforderlich ist.  

Der Anbau einer Zwischenfrucht während der Übergangsperiode (entweder in Form der Grün-
düngungs-Leguminosen Mucuna pruriens oder Vigna unguiculata oder des nicht N2-fixierenden 
Futtergrases Panicum maximum) vermochte Nitrat aufzunehmen und zeitweise in der Biomasse zu 
immobilisieren, und somit die verfügbare (und potentiell Verlusten ausgesetzte) Nitratmenge von 50-
75 kg/ha in der Nacktbrache auf 8-25 kg/ha zu reduzieren. Die daraus resultierende N-Anreicherung 
war 41-68 kg/ha im Fall von Panicum und 76-86 kg/ha in den beiden Leguminosen, wobei der Anteil 
des durch biologische N2 Bindung zugeführten Anteils bei 30-50% lag. Der Erhalt von Boden-N sowie 
die zusätzliche Zufuhr von Luft-N (Leguminosen) vermochte die Reiskornerträge um 1-2 t/ha über die 
Kontrollparzelle (Nacktbrache) zu erhöhen. Das genaue Ausmaß solcher Effekte differierte allerdings 
in Abhängigkeit der edaphischen und klimatischen Bedingungen sowie der Art der 
Bodenbearbeitung. Eine wendende Bodenbearbeitung stimulierte die N-Mineralisierung am Hang in 
der Übergangsperiode und erhöhte somit die lateralen Einträge von Nitrat in die Talsohle.  
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Eine 30%ige Verminderung der Niederschlagsmenge während der Übergangsperiode erhöhte die 
Nitrat-Anreicherung im Oberboden. Durch den Wegfall drastischer Änderungen im 
Belüftungszustand des Bodens waren Nitratverluste stark reduziert. Umgekehrt führte eine 30%ige 
Erhöhung der Niederschläge zwar zu einer verminderten Nitrat-Anreicherung im Boden, durch den 
raschen Wechsel von aeroben auf anaerobe Bedingungen wurden dafür die Nitrat-Verluste drastisch 
erhöht und bei Überschreitung einer 25% volumetrischen Bodenfeuchte konnte kein Nitrat mehr im 
Boden nachgewiesen werden. Unterschiede in der N-Nachlieferungskapazität der Böden bestimmt 
das Ausmaß des Nitrat-Peaks, nicht aber die saisonale Dynamik oder den Kornertrag von Reis.  

Die vorgelegten Ergebnisse unterstreichen den Bedarf für ein verbessertes Management des Boden-
N, speziell in der kritischen Übergangsphase zwischen Trocken- und Regenzeit. Der Anbau von 
Zwischenfrüchten vermochte so Boden-N zeitweise zu konservieren und Reiserträge nachweislich zu 
steigern. Die Relevanz und die Effektivität solcher Ansätze hängt im Wesentlichen vom der Intensität 
des Wechsels der Bodenbelüftung ab und ist somit hochgradig Standort-spezifisch. Neben Bodentyp, 
Niederschlagsmenge und Art der Bodenbearbeitung,  dürfte hier auch künftige Entwicklung des 
Klimawandels entscheidend für die Ausweisung von Extrapolations-Domänen der Technologie-
Optionen sein. 
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1 GENERAL INTRODUCTION 

 
1.1 Background 

In the dry savannah agro-ecological zone (AEZ) of West Africa, over half of population 

lives in rural areas. This area is part of the most vulnerable in the world due to severe 

climate conditions and poverty. A major share of the population is comprised of small-

scale farmers (for example, 80% of the population in Burkina Faso), depending on local 

crops for their food production, mainly sorghum (Sorghum bicolor L.), millet 

(Pennisetum glaucum L.), maize (Zea mays L.) and rice (Oryza sativa L.). Agriculture is 

practiced on soils inherently low in soil organic carbon (SOC), associated with low 

cation exchange capacity (Bationo et al. 2007). Besides low-input orientation of 

farmers and unfavorable soil attributes, increasing land degradation affects production 

levels (Sanchez, 2002; Koning and Smaling 2005). Proximate causes include soil 

biophysical characteristics, climatic factors and unsustainable land management 

practices (Ayoub 1998; Salvati and Zitti 2009) while the underlying drivers encompass 

population pressure, poverty, land tenure insecurity and other socio-economic factors 

(Douglas 2006; Nkonya et al. 2008; Jorgenson and Burns 2007; Van et al. 2008; Qasim 

et al. 2013). Thus, traditional fallow rotation systems that were used until the recent 

past to restore soil fertility and reclaim degraded soil have been largely eliminated in 

favour of permanent crop uses. Thereby, continuous and intensive cropping without 

soil fertility conservation and restoration measures has depleted the nutrient base of 

most soils (Soler et al. 2011). Furthermore, the environment is characterized extreme 

climatic conditions with wind and water erosion leading to removing the nutrient-rich 

topsoil (Ker and IDRC 1995; Zougmore et al. 2003). The extent of their effects is 

expected to be further exacerbated by climate change and a predicted future increase 

of climate variability. In his analysis of the climate trend in Africa during the last two 

centuries, Nicholson (2001) estimated that: “the most significant climatic change that 

has occurred in Africa has been a long-term reduction in rainfall in the semi-arid 

regions of West Africa”. Particularly the increasingly variable and hence unpredictable 

onset of the rainy season challenges crop farmers. Also, the area experiences recurrent 

and increasingly frequent drought episodes since the 1970s (Nicholson, 2001, p. 140) 
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and several models predict an increased frequency of erratic heavy precipitation 

events (IPPC 2007), though model predictions are often conflicting regarding expected 

change scenarios of future rainfall (Cooper et al. 2008). For a WASCAL target area in 

the semi-arid zone of West Africa, the climate-related uncertainty is particularly large 

and reduced rainfall combined with more extreme rainfall events, leads to a reduced 

vegetative cover, aggravates water and wind erosion, and enhances uncertainties in 

farmers’ cropping calendar planning. As a consequence, farmers tend to delay the 

establishment of their crops to cope with rainfall uncertainty (Ibrahim et al. 2012; 

Lodoun et al. 2013), thus further reducing the length of the already short growing 

season, while increasing the dry-to-wet season transition period during which the land 

lays bare. 

Most cropping systems in the Dry Savanna AEZ qualify as low-input systems, 

with the use of external inputs such as mineral fertilizers  being among the lowest in 

the world with an average of <10 kg ha-1 year-1 (Fairhurst 2012). These low-input 

farmers depend on indigenous source of nutrient supply for their crop production, 

particularly in rainfed crop production systems. Nitrogen (N) is the most limiting 

nutrient element for crop production in the area, although phosphorus (P) deficiency is 

an emerging issue (Segda 2006). The process of N transformation in the soil leading to 

its availability or loss is influenced by environmental conditions. The climate in the Dry 

Savanna is characterized by a wet season (from May to October) following a long dry 

season. The resulting length of crop growing period ranges from 90 to 180 days (FAO 

2016; Saito et al. 2013). The resulting patterns but also the changes in the distribution 

of rainfall have been reported to affect soil N dynamics, and most N is expected to be 

lost during the period between the first rains and the crops establishment so-called 

“dry-to-wet season transition period” (DWT) (George et al. 1995; Bognonkpe and 

Becker 2009). With the onset of the rains after a prolonged dry season, SOC is 

mineralized by the microbial biomass, leading to a transient peak of mainly nitrate-N, 

the such-called Birch effect (Birch 1960).  

The extent of this N peak depends on the native fertility of the soil (mainly the 

SOC and N content), the intensity of the rains and the land management (Pande and 
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Becker 2003). In inland valleys and in the absence of growing crops (usually the case 

during the DWT) or other conservation measures, this nitrate can be vertically leached 

into deeper soil layers, and subsequently horizontally translocate along the 

toposequence depending on soil attributes (infiltration, permeability, hydraulic 

conductivity) and rainfall characteristics (Smethurst et al. 2013). The fate of the nitrate 

once arriving in the valley bottom depends on soil organic carbon (SOC) content 

(proton donors) and the redox potential (electron acceptors). With soil saturation / 

flooding, facultative anaerobic soil microorganisms use the nitrate as terminal electron 

acceptor (alternative to oxygen) of carbon-based energy sources from the SOC, 

resulting in gaseous losses in the forms of N2 and N2O (Becker et al. 2007).  

Low crop productivity along the toposequence is thus closely related to soil N 

dynamics and N losses during DWT in inland valleys. Thus, managing soil native N by 

avoiding (mainly nitrate-N) losses during DWT appears to be of a particular importance 

for crop productivity in the short-term and to maintain soil fertility in long-term in low-

input systems of the Dry Savanna AEZ of West Africa.  

 

1.2 Hypotheses and objectives 

 
The research questions addressed in this thesis are the following: 

- What is the extent and what the dynamics of seasonal soil N along the 

toposequence and how do they affect lowland rice yield? 

- Can an improved soil nitrogen management during DWT improve the rice 

agronomic performances in the lowland? 

- What are the effects of modulating factors such as soil tillage, rainfall intensity 

and site attributes on soil N dynamics? 

Accordingly to the research questions, and because largest soil N dynamics are 

expected to occur during the DWT, we formulate the following hypotheses: 

Soil nitrate-N translocation from the slope affects rice agronomic performances in the 

lowland, and adapted and adoptable soil N management strategies during DWT can 

increase rice productivity. In addition, soil disturbance via tillage, rainfall variability and 
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other site attributes (location) will differentially influence native soil N dynamics during 

the DWT and hence lowland rice performance.  

The development of sustainable land management practices for low-input 

systems of West Africa involves generating knowledge on key components and 

processes affecting nutrient fluxes and budgets.  

The main objective of this study was to evaluate options for managing seasonal soil 

nitrate-N dynamics in the Dry Savanna zone of West Africa. The specific objectives 

were: 

1. Quantify seasonal soil N dynamics along the toposequence and its effect on 

lowland rice yield; 

2. Assess the effect of seasonal soil nitrogen management on agronomic 

performances of lowland rice; 

3. Assess the effect of modulating factors such as rainfall, tillage and location 

effects on soil nitrogen dynamics. 

Accordingly, the present thesis is structures as follow. After setting the general scene 

by defining the research questions (Chapter 1), and presenting the general material 

and methods (Chapter 2), the main thesis body is comprised of 3 chapters presenting 

the results of research activities undertaken between 2013 and 2014. 

Chapter 3: presents the key findings on dynamics of soil NO3-N along the 

toposequence and the effect of nitrate contributed from the slope on the performance 

of lowland rice. It addresses objective 1. 

Chapter 4: describes the dynamics of soil NO3-N and the performance of rainfed 

lowland rice in response to pre-rice crops development during the dry-to-wet tansition 

season. It discuss the ability of transition season crops to immobilize soil nitrogen and 

additional N fixation from the atmosphere in view of addressing objective 2.  

Chapter 5: analyses the effect of soil disturbance, various soil moisture regimes 

and location on soil nitrogen dynamics which addresses objective 3.  
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2 GENERAL MATERIAL AND METHODS 

This chapter presents the general material and methods used and applied in the thesis, 

including a general description of the study sites (geographic location climatic 

conditions, soil physico-chemical attributes), methods of soil and plant sampling and 

analysis, as well as data management. Further, more chapter-specific aspects of 

material and methods will be elaborated in the three respective research chapters. 

2.1 Geographic location of the study area 

The present study was carried out from 2013 to 2014 in the Dry Savanna AEZ of West 

Africa of Burkina Faso and Benin with similar landscape attribute (Figure 2.1). The 

length of growing period (LGP) for upland crops is 135-160 days (FAO-GAEZ 2016). 

Activities were carried out at the research sites of the West African Science Service 

Center on Climate Change and adapted Land Use (WASCAL) project, supported by the 

German Federal Minsitry for Research and Innovations (BMBF).  

In Burkina Faso, the study area is located near the town of Dano (11° 09’ 00’’ 

Nord, 03° 04’ 00’’ West) within a watershed catchment situated in the south-western 

region of the country. According to the Köppen–Geiger classification (Peel et al. 2007), 

the bio-climate of the study sites belongs to the “Tropical Savannah” type (Aw). The 

climate is sub-humid with average rainfall varying from 900 to 1200 mm per year 

(Ibrahim et al., 2012), distributed in a uni-modal pattern with one rainy season from 

May to October (LGP=135-140 days) and a dry season from November to April. The 

mean temperatures vary from 21 to 32°C. The gently-undulating landscape comprises 

plateaux with an average altitude of 450m above sea level, interspersed with second- 

or third-order inland valleys. The vegetation of the region is mainly savanna with all 

the under-types varying from wooded to grassy savanna and some gallery forests. The 

main activity sectors are agriculture and livestock farming, with lowland rice in the 

valley bottom lands and subsistence maize and sorghum as well as some cotton cash 

crop on the valley slopes and plateaus. 
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Figure 2.1  Location of the study sites in the Dry Savannah zone of Burkina Faso and 
Benin 

 
The second site, Dassari (10° 49’ 18’’ Nord, 1° 04’ 3.76’’ EST) is situated in the district of 

Materi in the sub-humid zone of Benin. The climate is of the Sudano-Guinean type, 
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with a distinct wet seasons from mid-April to mid-October (LGP= 150-160 days) and a 

dry season from mid-October to mid-April. 

  

Figure 2.2  Climate conditions (rainfall, mini-max air temperatures) at the 
experimental sites of Tambiri (Dano, Burkina Faso) and Ouri-yori 
(Dassari, Benin) in the Dry Savannah zone (2013, 2014) 

 

The rainfall is slightly higher than in Dano with 1 000 to 1 400 mm, with a 

maximum in August and September. As in Dano, the vegetation is mainly savannah, 

characterized by trees such as Vitellaria paradoxa, Bombax costatum, Ceiba 

pentandra, Borassus aethiopum, Hyphaene thebaica, Adansonia digitata, and Parkia 

biglobosa.  
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The total rainfall and mean air temperature recorded in 2013 and 2014 are 

presented in Figure 2.2. In Dano, the total rainfall was 981 mm in 2013 and 981 mm in 

2014. Air temperatures varied from 19 to 34°c in 2013 and from 21 to 34°c in 2014. As 

for the Dassari (Ouri-Yori), total rainfall (recorded only from June 2013 onwards) was 

793 mm in 2013 with  temperatures varying from 22 to 29 °c and 941 mm (whole 

season) in 2014 with air temperature ranging from 23 to 34°C. 

2.2 Soil attributes 

According to FAO soil classification, the major soils encountered in the Dano 

watershed catchment comprise Eutric Cambisols, Plintic Luvisols and Ferric Luvisols on 

the plateaus and valley slopes (ISRIC, 2013), and Gleyic Fluvisols as well as some 

Vertisols in the valley bottom lands (Figure 2.3). At the study site in Benin, Ferric 

Luvisols occupy about half of the upland area at Ouri Yori, with Fluvisols and Gleyic 

Luvisols dominating the lowlands (Figure 2.4) (ISRIC 2013).  

Topsoil samples (0-20 cm) were taken before the implementation of the study 

in 2013 as composites of 10 individual samples collected along a diagonal transect 

across the field site. Selected physical and chemical attributes are presented in Table 

2.1 and Table 2.2. The soil in the valley bottom at Dano has a clay loam texture, while 

that at Dassari is clay. At both sites, soils on the slope are mostly loam with an 

important quantity of gravel (data not presented).  Consequently, the bulk density is 

lower on slope positions compared to the valley bottom soils.  The total organic C 

content at both sites was <1% (2% OM) with resulting N contents ranging from 0.04 to 

0.09%.  

Soil K is amply available in both soils with 42-79 mg kg-1  On the other hand, 

available soil P (Bray-I extraction) is relatively low in Dano, ranging from 7 to 17 mg   

kg-1, and is below the critical limit of 3 mg ka-1 at Dassari (0.8-1.6 mg kg-1).  

Both soils are slightly acidic with pH (H2O) of 5-6. However the potential acidity (pH 

KLC) is only 4.7-5.3.  The CEC of the moderately weathered  is very low in the wetland 

soils (about 4 cmol kg-1) with slightly higher values on the upland soils (9 in Dano and 5 

in Dassari), but in all cases a very high saturation with aluminum, higher than in the 

slope position.  
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Figure 2.3  Major soil types of the study area in the district of Dano (Burkina Faso). 
The red marker indicates the study site (Tambiri). Graphic prepared 
from data obtained from ISRIC (2013) using ArcGIS. 
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Figure 2.4  Major soil types of the study area in the district of Materi (Benin). Red 
marker indicates the study site (Ouri Yori).  Graphic prepared from data 
obtained from ISRIC (2013) using ArcGIS. 
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Table 2.1  Selected physical and chemical characteristics of the soil in Dano, 
Burkina Faso. 

 

Soil attribute (0-20 cm) Lowland Footslope Upslope 

Granulo-

metry  

Clay - < 2 μm (%) 38.3 25.0 19.6 

Silts - 2-50 μm (%) 37.3 35.4 43.3 

Sand - 50-2000 μm (%) 24.4 39.6 37.1 

 Texture class Clay loam Loam Loam 

Bulk density BD (g cm-3) 1.6 1.4 1.2 

Organic 

matter 

Total organic C (%) 0.86 0.98 0.77 

Organic matter (%) 1.48 1.7 1.3 

Total N (%) 0.07 0.09 0.07 

C / N ratio 11.3 10.8 11.0 

Potassium 
Total K (mg kg-1) 1403 1334 1130 

Available K (mg kg-1) 52.5 79.1 85.4 

Phosphorus 
Total P (mg kg-1) 157 173 132 

Avail. Bray-I P (mg kg-1) 7.5 2.4 17.0 

Exch. cations 

Ca2+ (cmol kg-1) 7.9 3.7 4.2 

Mg2+ (cmol kg-1) 1.9 1.0 1.1 

K+ (cmol kg-1) 0.1 0.2 0.2 

Na+ (cmol kg-1) 0.14 0.05 0.03 

Sum exch. cations 10.1 4.9 5.5 

CEC (cmol kg-1) 9.7 4.7 4.5 

Base saturation (%) 105 105 123 

Soil reaction 
pH (H2O) 6.0 5.9 6.1 

pH (KCl) 5.1 5.2 5.3 

 

2.3 Plant material 

The lowland rice (Oryza sativa L.) variety used in all experiments (TOX 728-1, released 

in Burkina Faso under the name FKR 19) was obtained from the INERA rice research 
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station at Farakoba.  It is a short-cycled improved variety with 100-110 days of growth 

duration, a yield potential estimated at 6 Mg ha-1, and reportedly adapted to rainfed 

growing conditions (Sie et al. 2006). 

Table 2.2  Selected physical and chemical characteristics of the soil in Dassari, 
Benin. 

 

Soil attribute (0-20 cm) Lowland Footslope Upslope 

Granulo-

metry  

Clay - < 2 μm (%) 43.2 19.3 15.2 

Silts - 2-50 μm (%) 34.9 31.5 36.9 

Sand - 50-2000 μm (%) 21.9 49.2 47.9 

 Texture class Clay Loam Loam 

Bulk density BD (g cm-3) 1.6 1.4 1.2 

Organic 

Matter 

Total organic C (%) 0.59 0.4 0.49 

Organic matter (%) 1.01 0.69 0.84 

Total N (%) 0.05 0.035 0.04 

C / N ratio 10.3 11.0 10.4 

Potassium 
Total K (mg kg-1) 673 409 663 

Available K (mg kg-1) 47.5 74.0 42.0 

Phosphorus 
Total P (mg kg-1) 65.0 41.0 77.0 

Avail. Bray-I P (mg kg-1) 0.8 1.3 1.6 

Exch. cations 

Ca2+ (cmol kg-1) 2.6 2.1 3.0 

Mg2+ (cmol kg-1) 0.6 0.5 0.6 

K+ (cmol kg-1) 0.1 0.2 0.1 

Na+ (cmol kg-1) 0.04 0.04 0.03 

Sum exch. cations 3.4 2.9 3.7 

CEC (cmol kg-1) 4.73 2.3 4.0 

Base saturation (%) 72 125 94 

Soil reaction 
pH (H2O) 5.3 5.2 5.1 

pH (KCl) 4.8 4.7 4.8 
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Three pre-rice crops have been used, including forage cowpea (Vigna unguiculata L.), 

velvet bean (Mucuna cochinchinensis L.), and panicum (Panicum maximum L.). The two 

annual legumes are suited for use as green manures but can also contribute edible 

grain (Vigna), medicinal products (Mucuna) and forage uses (both). Panicum is mainly 

used a perennial forage grass. Seeds of all three species were obtained from INERA in 

Farakoba. 

 

2.4 Soil analyses 

Soil sampling involved composites of 7 core samples taken at 0 – 15 cm, with a 

gravimetric auger. About 20g ±1g field moist soil was extracted with 40 mL of 0.01 M 

CaCl2. The soil/extractant mixture was shaken for 3 min and filtered through filter 

paper. A second subsample of soil (20g) was dried at 105°C for 24 h to determine the 

dry weight of the soil 

2.4.1 Nitrate / ammonium sampling and analysis 

The nitrate-N concentration was determined by two methods: At concentrations of >5 

mg kg L-1, a quick test colorimetric method was applied, using a NitraCheck 404 (range 

from 5 to 500 ppm NO3-N) portable photometer, following the method described by 

Schmidhalter (2005). At nitrate-N concentrations of <5 mg kg L-1, analyses were 

performed using a PHotoFlex STD (WTW-82360 Weilheim, Germany). A volume of 1 ml 

of sample was added in a reaction tube. After mixing/reversal of the reaction tube (10 

x), one bag of VARIO Nitrate Chromotropic was added. After 5 minutes, the reaction 

tube is then inserted in the photometer and nitrate concentration is read using 

program N° 314 (0.2 – 30 mg l-1 NO3-N). The principle of the reaction involves the 

reduction of nitrate to nitrite and the subsequent formation of red colour complex 

involving a mixture of n-naphtyl and sulfonile-amid. Vertical translocation of nitrate in 

the soil profile was assessed along the toposequence using MacroRhizons soil moisture 

samplers (Seeberg-Elverfeldt et al. 2005). Collected solution was analyzed directly in 

the field for NO3-N using either the nitrachec test strips (>5 mg kg-1) or the 

photometry (<5 mg kg-1). Solution samples were collected from 0-15 cm soil depth in 
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the shallow upland soils and from 0-15 as well as 15-30 cm soil depth in the deeper 

lowland soils. 

Cumulative soil NO3-N and NH4-N was determined using ion exchange resin 

capsules (UniBest Inc., Washington, USA). Three capsules each were inserted at soil 

depths of 10, 20 and 30 cm (three internal replications) at the beginning of the 

observation seasons (dry-to-wet season transition period - DWT). Capsules were 

removed at the end of DWT, rinsed with distilled water, and absorbed ions were 

extracted three consecutive times with 20 mL of 2N HCl. The filtered extract was 

analyzed for NO3-N and NH4-N concentrations using a portable “PHotoFlex STD” 

(WTW-82360 Weilheim, Germany) photometer. VARIO Nitrate Chromotropic was 

added for nitrate and VARIO AMMONIA Salicylate F5 and VARIO AMMONIA Cyanurate-

F5 for ammonium determination (program N° 313).  

The quantity of resin-absorbed nitrogen (RAQN) was expressed as ion-loading: 

����	(μ�	
/��²) =
�∗�

�∗�
  

C = NO3-N / NH4-N concentration (mg l
-1

),  

V = Total volume of the extracting solution per capsule (40 ml), 

M = Molar weight of nitrogen (14) 

A = Surface area of the capsule (11.4 cm²) 

 

2.4.2 Soil moisture.  

Soil moisture at upslope and foot slope has been recorded by an automatic weather 

station (Camplell Scientific Inc. CR1000) installed by the Hydrology group of WASCAL 

core research program (Steup, 2016). Soil moisture was measured at 0-20 cm and at 20 

– 30 cm). In the lowland, additional Time Domain Reflectometry (TDR) sensors were 

installed (Figure 2.5) at depths of 10, 20, and 30 cm. Data were recorded via ECH20 EC-

5 dielectric sensors connected to a data logger (Em50) and expressed in a daily mean 

values of volumetric soil moisture. These soil moisture data were used to for 

translating the nitrate concentrations measured in soil solution to nitrate amounts on 

a unit area basis. 

2.5 Plant analysis 

Plant material involved rice as well as pre-rice crops. The above ground biomass was 

removed and dry matter was estimated after oven-drying at 70° C until constant 
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moisture. Dried material was rough ground and a sub-sample of 50 g were fine-ground 

for further analyses. Total N uptake by plant material was determined following the 

Kjeldahl method. Biological nitrogen fixation (Ndfa) of the N-fixing cover crops 

(Cowpea and Mucuna) was determined following 15N natural abundance method 

described by Peoples et al. (1989), Unkovich and ACIAR (2008), using Panicum as the 

non-fixing reference plant. The 15/14N ratios were determined using an ANCA-SL 2020 

mass spectrometer at the Institute of Crop Science and Resource Conservation at the 

University of Bonn.  The share of N derived from the atmosphere (%Ndfa) was 

calculated  as follows (Amanuel et al., 2000): 

%Ndfa = 
����	��	���������	� !�"#����	��	�$	�%&%�'	 �'()�	

����	��	���������	� !�"#*
	+	�,, (1) 

N fixed = 
%./0

122
 X legume N (kg ha-1)       (2) 

A “B-value” of -3.5‰ 15N (natural isotopic discrimination) was applied for cowpea and 

-1.5‰ 15N for Mucuna (Peoples et al. 1989). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2.5 Soil instrumentation with sampling devices (ion exchange resin capsules, 
MicroRhizon moisture samplers and TDR probes).  
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2.6 Data analysis 

All experimental results are based on arithmetic means of three replications. Standard 

errors of the mean (n=3) were applied in graphical data presentations. Analysis of 

variance (ANOVA) was performed using Stata/SE 12.1, using Bonferroni method for 

mean separation (p<0.05). Graphics were prepared using SigmaPlot, version 12. 
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3 SEASONAL SOIL N DYNAMICS AND THEIR EFFECT ON LOWLAND RICE IN AN 

INLAND VALLEY OF BURKINA FASO 

 
ABSTRACT 

Rainfed lowland rice farmers in the inland valleys of the Dry Savanna zone of Burkina 
Faso are challenged with N deficiency as a major production constraint. With 
extremely low use of external inputs, there is a need to efficiently use systems’ internal 
resources such as native soil N. Organic matter starts to mineralize with the onset of 
the rains after a prolonged dry season, leading to transient peaks of nitrate in the soil. 
Substantial amounts of this nitrate may be translocated to the lowlands by (sub) 
surface flow from adjacent valley slopes. Largest soil nitrate-N losses are expected to 
occur in lowlands when the soil aeration status changes from aerobic to anaerobic 
conditions. We quantified seasonal soil N dynamics along the toposequence of an 
inland valley and assessed the effect of slope N contribution to the yield of lowland 
rice near Dano in Burkina Faso during the transition period between the dry and the 
wet season (DWT) of 2013 and 2014. Soil N mineralization and nitrate accumulation 
and translocation (both vertical and horizontal) were determined in soils solution 
sampled 3 times per week and by ion exchange resin capsules (cumulative N 
mineralization during DWT). The biomass and yield of rice were determined in both 
the absence and the presence of nitrate fluxes. With the onset of the first rains, soil 
nitrate accumulated, reaching peaks of 20-45 kg N ha-1 after about 25 days. Some 10-
15 kg of the nitrate in lowland soils was contributed via interflow from the slope, 
corresponding to an addition of 11 and 13 µmol cm-2 RAQ-N in 2013 and 2014, 
respectively. Subsequently, nitrate gradually decreased in the upland soil and 77-80% 
disappeared in the lowland upon reaching soil saturation around day 60. Despite 
substantial nitrate-N losses, N contribution from the slope increased the N uptake of 
rice by 11 kg ha-1 and the grain yield by 0.4 Mg ha-1. We conclude that intense N 
dynamics occur during DWT and that rice benefits from nitrate losses from the valley 
slope into the lowland. Given the substantial amounts of unaccounted nitrate, 
appropriate options for soil N management are required to minimize native soil N 
losses and to enhance rice productivity in the low-input production systems in inland 
valleys of West Africa’s dry savanna zone. 
 
Keywords: Dry Savanna zone, Ion exchange resin, Nitrate, Oryza sativa, West Africa. 
 
  



Louis Yameogo                                                      Seasonal soil N dynamics and its effect on rice 

18 

 

3.1 Introduction 

In Burkina Faso, rice (Oryza sativa L.) is one of the most important cereal crops and the 

main crop produced in inland valleys of the Dry Savanna zone. In the predominant 

smallholder rainfed production systems, N deficiency is widespread and a major 

production constraint. Besides soil N limitations (0.07-0.09 mg N kg-1), soils are also 

generally low in soil organic C (1.3-1.7%). The return of crop residues is limited by the low 

overall production of biomass and its competitive uses as fodder, construction material 

and cooking fuel (Erenstein 2002). The continuous removal of crop residues results in a 

further decline in SOC (Hammerbeck et al. 2012) and hence the reduction of soil N 

supplying capacity (Gami et al. 2001). In the absence of residue return and the prevailing 

low application of external inputs, there is a need to more efficiently use systems’ 

internal resources such as native soil N reserves.  

In the seasonal savanna climate, the transitional period between the dry and 

the wet season (DWT) is subjected to intense change processes. With the onset of the 

first rains, soil microbial activity results in soil N mineralization (Birch 1960) and the 

accumulation of nitrate in the profile, particularly in the absence of a vegetation cover 

(Pande and Becker 2003). With the filling of the pore space at the onset of the main 

rains, the nitrate-N fraction is prone to leaching, but also to being used as a terminal 

electron acceptor for microbial respiration (denitrification). Thus, DWT experiences in 

the first place a large accumulation of N in the profile and subsequent nitrate fluxed 

and N losses (Becker et al. 2007). 

This seasonal dynamics of soil moisture and native soil N are further 

exacerbated in the inland valley landscape. With soil saturation, rainwater is not only 

vertically translocated in the soil profile. Water and dissolved ions can also move 

horizontally, once reaching the largely impermeable saprolyte layer in the profile 

(Windmeijer and Andriesse 1993). Thus, nitrate-N is leached from the light-textured 

upland and slope soils into deeper soil layers and eventually into the lowland. There, 

lateral influxes of water and nitrate increase both the extent of the Birch effect (nitrate 

peak) and the speed of change in soil aeration status in the lowland (Bognonkpe and 

Becker 2009), with resulting effects on denitrification losses (George et al. 1998).  
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This study aimed to assess the extent and the dynamics of native soil nitrate-

N, to quantify the vertical and lateral translocation of nitrate-N along the 

toposequence and to evaluate the effect of N translocation on the performance of 

lowland rice in an inland valley of the semi-arid zone of Burkina Faso. 

 

3.2 Material and methods 

 

3.2.1 Study site 

The present study has been conducted in the watershed catchment of Dano (Burkina 

Faso) from 2013 to 2014. Characteristics of the study site have been presented in 

Chapter 2. 

 

3.2.2 Treatments application 

We assessed the spatial-temporal dynamics of soil nitrate along a toposequence. The 

upland was differentiated into an up-slope and a foot-slope sampling position in each 

of which three bare fallow plots of 6 x 4m were randomly distributed following a 

complete randomized design. Assessing nitrate contribution from the slope to the 

valley bottom required two sub-treatments at the hydromorphic valley fringe, where 

the subsurface flow water is welling up (intercept vs. open). On half of the area, 

horizontal fluxes of water and nitrate were blocked by digging a 15m long interception 

trench down to the saprolyte layer and quantifying and subsequently laterally 

deviating the flows towards the center of the lowland (“intercepted”). The neighboring 

“open” area (no interflow interception) served as reference. The difference in soil 

moisture/water, nitrate content and N amounts between the “intercepted” and the 

“open” areas allowed determining the slope contribution to the lowland. Rice was 

grown and N uptake and yields were assessed in the lowland, both the “intercepted” 

and the “open” areas during the wet season. In each of the two main treatments in the 

hydromorphic fringe, rice was established at 20 cm x 20 cm spacing in 4 x 3m subplots, 

representing three replications. Direct seeding was used in 2014 with 2 grains/hill.  In 

2014, rice was transplanted using two 25-day-old seedling/hill. 



Louis Yameogo                                                      Seasonal soil N dynamics and its effect on rice 

20 

 

 

3.2.3 Soil and nutrient sampling 

Before the onset of the experiment, reference soil samples were taken for soil 

attributes. Additionally, biweekly samples were taken during DWT between mid-April 

and early July and transported to the laboratory for within 2 hours for Nmin extraction 

and nitrate determination as described in Chapter 2. All samples were pooled 

composites of seven topsoil auger samples (0-15 cm), collected across a diagonal of 

each plot. Soil solution was sampled in each treatment at weekly intervals at 0-15 cm 

depth in both upslope and foot slope and at 0-15 cm and 15-30 cm in the lowland 

positions. Concentrations of nitrate in soil solution were measured by a colorimetric 

quick-test or by photometric methods as described before. Based on soil moisture 

content (TDR) and bulk density, the nitrate concentrations were transformed into total 

amounts of N per unit area. The cumulative total nitrate and ammonium (Nmin) 

mineralized during DWT was assessed using ion exchange resin capsules. At each 

position and profile depth, and in both “open” and “intercepted” lowland sites, three 

capsules were inserted (internal replications) before the first rain and removed before 

the establishment of the rice crop after 12 weeks. NO3-N and NH4-N were extracted 

and analyzed as described in Chapter 3. 

3.2.4 Rice biomass and yield 

The contributing effect of subsurface nitrate flows on rice performances was 

determined (1) as sequential biomass accumulation at 28, 56 and 84 days after 

transplanting (based on 5 hills cut at ground level), (2) as grain yield based on a 4m2 

harvest area and reported at 14% moisture, and (3) as total N uptake by grain and 

straw. After oven-drying and weighing, biomass samples were analyzed following the 

micro-Kjeldahl procedure. 

 

3.2.5 Data analysis 

Results are expressed as arithmetic means of 3 replications. Analysis of variance 

(ANOVA) was performed using Stata 12. For mean comparison, Bonferroni method was 
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used. Regression analyses were performed using R. Results are presented in figures 

realized with SigmaPlot, version 12. 

3.3 Results 

This section presents the key findings on (1) the temporal dynamics of soil NO3-N along 

the toposequence, (2) the vertical translocation of NO3-N, and (3) the effect of nitrate 

contributed from the slope on the performance of lowland rice. 

3.3.1 Soil moisture and nitrate-N dynamics  

The dynamics of topsoil NO3-N along the toposequence during the dry-to-wet season 

transition periods of 2013 and 2014 and its relation to rainfall and soil water content is 

presented in Figure 3.1. During the dry season, starting in November and lasting until 

the first rainfall event in April of the following year, soils are generally dry. With the 

onset of the rain, soil water content increases after each rainfall event during DWT, 

and more so in the lowland than the foot slope or the up-slope positions. Volumetric 

soil water varied between 2-20% on the upslope, between 4-19% in the foot-slope, 

and between 8-32% in the valley bottom in 2013 (174mm during Julian days 60-147). 

Lower soil water and less spatial-temporal variability (4-20%, irrespective of the 

toposequence position) was observed in the relatively dry year of 2014 (88mm during 

Julian days 90-155). 

Nitrate-N dynamics can only be presented for part of the DWT in 2013 (no 

data available from Julian date 80 to 102). Nevertheless, initial soil nitrate was <5 kg 

ha-1 at the end of the dry season. Towards the end of DWT, 20 kg N ha-1 were 

recorded. Upon reaching 30% volumetric moisture on Julian date 115 or soil saturation 

at the onset of the main rainy season on Julian date 145, nitrate was <5 kg N ha-1 in 

upland soils and non-detectable in the lowland soil. In 2014, we observed a gradual 

increase in nitrate up to 45 kg N ha-1 three weeks after the first rain, and a subsequent 

gradual decline to about 15 kg N ha-1 when soil moisture exceeded 18%. At the onset 

of the main rains and with the associated saturation of the lowland positions, no more 

nitrate was detectable. Out of a cumulative mineralization of 23 kg N ha-1 in the foot-

slope and 45 kg ha-1 in the up-slope positions, 60-80% was no longer present at the 

end of DWT. In the lowland, some 67 kg of cumulative soil nitrate-N ha-1 mineralized 
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during DWT had disappeared completely from the soil at rice transplanting and can be 

assumed lost. 
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Figure 3.1  Rainfall-related dynamics of soil water and nitrate-N in the topsoil (0 – 
15 cm) during the dry-to-wet transition season at three toposequence 
positions in an inland valley of Burkina Faso (Dano, 2013-2014) 
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In general, amounts of solution nitrate confirm the trends and the nitrate 

dynamics observed from soil extracts, being again significantly higher in 2014 than 

2013 (P=0.001), but presenting only  about 50-60% of the nitrate detected by soil 

extraction. Data presented in Figure 3.2 show only Julian dates 130-180 for 2013 and 

145-188 for 2014. As with soil extract, solution nitrate was highest in the lowland, 

reaching 21 kg ha-1 and being significantly higher than in the upland positions with 7-

11 kg N ha-1.  

 

Figure 3.2  Seasonal dynamics of soil solution nitrate during the dry-to-wet season 
transition at three toposequence positions in an inland valley of Burkina 
Faso (Dano, 2013-2014). Bars present standard errors of the mean (n=3) 

 

3.3.2 Cumulative Nmin and lateral nitrate fluxes 

Cumulative Nmin mineralization during DWT was assessed using ion exchange resin 

capsules. They were installed in the lowland position, both in open and intercepted 

sub-area to determine horizontal N fluxes or the contribution of subsurface flows of 

Nmin (NO3-N; NH4-N) from the slope to the valley bottom. The Resin-Adsorbed 

Quantities (RAQ) of Nmin during the DWTs of 2013 and 2014 are presented in Figure 

3.3. Regardless of the year or the profile depth, the nitrate fraction dominated the soil 

Nmin, particularly in areas open to subsurface interflow. The ammonium content was 
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similar across years with 2-3 µmol NH4-N cm-2, irrespective of the soil layer. Nitrate, on 

the other hand, tended to be higher in the deeper soil layer and across the soil profile 

(0-40 cm) exceeded the nitrate absorption in open by 11-12 µmol NO3-N cm-² over the 

intercepted areas. 

 
 Figure 3.3  Cumulative soil Nmin quantities absorbed by ion exchange resin (RAQ-N) 

during the dry-to-wet transition season period in an inland valley of 
Dano, Burkina Faso (transition season 2013, 2014)  

 

3.3.3 Rice crop response to soil nitrate interflow 

Rice biomass accumulation, grain yield, and total N uptake were assessed in the 

lowland in 2013 and 2014, both in absence and the presence of interflow contribution. 

Results of these parameters during the vegetative phase and at maturity are presented 

in Figure 3.4. Cumulative NO3-N translocated into the valley bottom was similar in both 
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years, and rice tended to respond to this N influx. Sequential biomass accumulation at 

28, 56 and 84 days after seeding (DAS) and at harvest tended to be more in areas open 

to subsurface interflow and was significantly higher at 84 days after crop 

establishment in 2013 and at harvest in both 2013 and 2014. At harvest, the total 

biomass reached 4.6 t ha-1 in open areas in 2013 and 4.3 t ha-1 in 2014. Particularly the 

biomass of the rice straw was significantly lower (P < 0.05) in areas with interflow 

interception with 1.9 Mg ha-1 in 2013 and 1.4 Mg ha-1 in 2014. The rice grain yield 

followed the same trend with 2.0 and 2.3 t ha-1 in open areas and only 1.6 and 1.8 t ha-

1 in interception areas in 2013 and 2014, respectively (not significant in 2013). The 

total N uptake (grain + straw) ranged from 62 to 90 kg ha-1 in open and from 45-62 kg 

ha-1 in interception areas and differences were significant in 2014. A multiple linear 

regression between rice grain yields and interflow attributes showed no effect of soil 

water, while interflow N and crop N uptake were significantly related to grain yield 

(Table 3.1). The model explained 99% of the variance and indicates that 4 kg of nitrate 

interflow result in 1 kg additional crop absorbed N (25% use efficiency) and a rice yield 

increase of 52 kg grain. 

Table 3.1  Relationship between rice grain yield and interflow attributes on (1) 
crop N uptake, (2) soil water content, and (3) N fluxes into the lowland 
of an inland valley in Burkina Faso 

 

 
Estimate Std. Error Pr (>│t│) Probability  

Intercept 479 629 0.475 
 

N uptake 58 8 0.000 0.001 

Interflow nitrogen 400 152 0.039 0.05 

Interflow water - 0.271 0.874 0.766 
 

 R² = 0.9935 ; P value = 1.07 e -06 

3.4 Discussion 

3.4.1 Soil nitrate-N dynamics 

As shown is several previous studies and confirming the concept of the “Birch Effect”, 

the onset of the rains after a prologued dry season results in the accumulation of Nmin 
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(mainly nitrate) in the soil profile. The onset of the main rainy season entail changes in 

soil aeration status with associated risks of nitrate-N losses by leaching and/or 

denitrification (Pande and Becker 2003; Logah et al. 2011, Cacciotti et al. 2011; Unger 

et al. 2012). In the first place, nitrate is vertically translocated (leached) in the soil 

profile as indicated by higher nitrate concentrations in the sub- than in the topsoil as 

reported before (Smethurst et al. 2014). However, and in contrast to previous work, 

this study highlights the additional importance of landscape effects in inland valleys. 

 

Figure 3.4 Rice N uptake, biomass accumulation and grain yield response to native 
soil and inflow nitrogen in an inland valley of Burkina Faso (Dano, 2013, 
2014). Bars present standard errors of the mean (n=3).  
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Thus, in addition to the reported in-situ mineralization dynamics, our work 

could show a substantial contribution of the soil Nmin in the lowland by addition from 

adjacent slopes. This assertion is confirmed by the difference of RAQ-N between the 

treatments with and without interflow interception. Indeed, regardless of the year, 

RAQ-N indicate some 11-12 µmol cm-2 of nitrate being translocated from the slope into 

the valley bottom. As the wetland is more prone to rapid changes in soil aeration 

status than the well-drained upland or slope soils (George et al. 1998), the risk of 

nitrate N losses is exacerbated but such interflow effects. Such seasonal movements of 

the soil nitrate along the toposequence are reportedly responsible for stream nitrate 

export in agricultural headwater catchments (Molenat et al. 2008). The complete 

disappearance of soil nitrate upon soil saturation combined with the presence of an 

impermeable layer in the soil at around 40 cm depth points towards a high likelihood 

of N losses by denitrification as shown in a rice-wheat rotation system in Nepal. 

While the trends observed were similar in both years, the dryer conditions in 

2014 and the later onset of the main rains compared to 2013 extended the length of 

DWT and hence the period where soil N mineralization takes place. The rainfall-related 

extension of DWT duration can increase the amount of nitrate accumulated in the soil 

as indicated by George et al (1993). Such an increased length of the period of soil N 

mineralization also offers possibilities of managing soil nitrate and preventing its 

losses, i.e. by absorbance in a growing “nitrate catching” crop (George et al. 1998; 

Becker et al. 2007). On the other hand, wet years or rapid changes in soil aeration 

status by heavy precipitation will not only shorten DWT and hence the amount of soil 

N mineralized, it may also prevent the application of such nitrate-conserving 

agronomic options (too short growing period) and hence making nitrate N losses 

unavoidable. Depending on the model used and on the assumptions made, both drier 

and wetter scenarios are forecast for the near future in West Africa (IPCC 2014). These 

futures of precipitation will determine both the magnitude of N mineralization, the 

intensity of soil N dynamics, the nitrate N losses and possible opportunities to manage 

and save native soil N. 
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3.4.2 Rice crop response 

While lateral flow of water from the slope reportedly increases the performance of 

rainfed lowland rice (Toure et al. 2009), curbing this inflow by physical interception in 

the present study did not negatively affect rice, and the observed positive effects related 

to N inputs outweighed any possible induced water deficit. Despite the apparent 

substantial loss of soil nitrate upon soil saturation or flooding, lowland rice did benefit 

from both native (in-situ mineralized) and interflow N, responding with increased N 

uptake and higher yield. Similar observations have been reported from Ivory Coast 

where rice yields declined in the presence of a physical barrier that deviated subsurface 

water flows from a valley slope (Bognonkpe 2004). Thus increased N influxes 

stimulated rice N uptake and increased grain yield as reported before (Yameogo et al. 

2013). These findings suggest that against evidence, not all nitrate is lost from the soil. 

It is conceivable that substantial amounts of native soil nitrate (both in-situ mineralized 

and laterally translocated) have been temporarily immobilized, possibly, in the soil 

microbial biomass (Becker et al. 2007) or in the biomass of weeds associated with rice 

(George et al. 1993).  However, the rice yield observed was far below the reported yield 

potential of the variety used (Sie et al. 2006) or the yield responses suggested by the 

amounts of soil N mineralized during DWT and/or those translocated into the wetland 

(i.e. 50 kg grain yield per kg of N), indicating that improved management of native soil 

N may significantly improve rice performances and contribute to closing the large yield 

gap reported for rainfed rice in West Africa (Becker et al. 2003; Haefele et al. 2013). 

 

3.5 Conclusion 

With the onset of the first rains and the rewetting of dry soil, mineralization processes 

start and result in a transient peak of soil nitrate during DWT. In a valley landscape, 

lateral subsurface water flows contribute further nitrate from the slope to the valley 

bottom wetland. While much of this nitrate is unaccounted for upon soil saturation or 

flooding, lowland rice benefits from both in-situ-mineralized and inflow contributed 

nitrate-N. An improved management of this nitrate is likely to further increase rice 

productivity in inland valley of the dry savanna zone of West Africa. 
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4  MANAGEMENT OF SEASONAL SOIL NITROGEN DYNAMICS AND ITS EFFECT ON 

LOWLAND RICE YIELD 

 

ABSTRACT 

Rice (Oryza sativa L.) in low-input systems of West Africa generally depends on 
nutrient supply from the soil. This is particularly true for nitrogen (N), which often 
unavailable or costly in its mineral forms. Associated with non-adapted cropping 
practices, rice yields are far below the ago-ecological and genetic potentials of the 
used varieties with nitrogen being most limiting production factor. During the dry-to-
wet transition season (DWT) in rainfed lowlands of the savanna zone, soil N is 
mineralized in-situ following the rewetting of the dry soil after the onset of the rains. In 
addition, in inland valley landscapes, some nitrate is also translocated from the 
adjacent slopes into the valley wetland. In the absence of a vegetation cover or 
conservation measures, much of the nitrate fraction in the lowland soils is prone to 
losses by leaching and/or denitrification. Management interventions are urgently 
required to improve soil N use efficiency and consequently reduce the wide gap 
between potential and actual yields. A field experiment was conducted to assess the 
effect of pre-rice vegetation or “nitrate catch crops” on soil N dynamics and on the 
agronomic performance of lowland rice in Dano (Burkina Faso). Vegetation cover acted 
as a “nitrate catch crop”, significantly reducing the build-up of soil Nmin during DWT 
from 50-75 kg N ha-1 in the bare fallow to 8-25 kg N ha-1. Nitrogen accumulation by the 
biomass of transition season vegetation ranged from 41-56 kg N ha-1 in the absence of 
subsurface interflow from the slope. In the presence of interflow, panicum (Panicum 

maximum L.) accumulated 73, velvet bean (Mucuna cochinchinensis L.) accumulated 
79, and cowpea (Vigna unguiculata L.) accumulated 86 kg N ha-1, and during DWT. The 
contribution of biological N2 fixation in the legumes ranged from 30-50% Ndfa. Rice 
agronomic performance improved following the incorporation of this transition season 
vegetation. Thus, non-fixing panicum increased rice grain yield by 1.0 t ha-1 compared 
to the bare fallow control. Yields further increased with N2-fixing transitions season 
crops to 2.9 and 3.8 t ha-1 with mucuna and cowpea, respectively. Thus, integrating 
transition season crops in the prevailing low-input lowland rice-based systems in 
inland valleys of the dry savanna zone of West Africa can immobilize and conserve 
substantial amounts of soil nitrate, add biologically-fixed N in case of legumes, and 
contribute to increasing rice yields in the short-term and maintaining soil fertility in the 
long-term. 

 
Keywords: Burkina Faso, nitrate catch crops, Oryza sativa, transition season, yield gap. 
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4.1 Introduction 

Rice consumption steadily increases in West Africa due demographic growth, recent 

changes in consumer preferences, and increasing rates of urbanization (Africa Rice 

Center 2011). In Burkina Faso, rice constitutes the fourth cereal cultivated after 

sorghum, millet and maize (CEFCOD 2013). After the food crisis in 2008, the national 

production increased significantly but still covers only 47% of the demand (SNDR 

2011). Importing the shortfall in production entails costs of an estimated US$ 82 

million (SNDR 2011). Bridging the gap between supply and demand appears to be a 

critical challenge to cope with undernutrition in rural area. Potentially highly 

productive irrigated system cover only 23% of the total rice production area (INERA 

and DGPER 2010), and most rice is produced under rainfed conditions. Recent 

increases in national rice production largely stem from irrigated environments 

(Guissou and Ilboudo 2012; FAO 2014), while rainfed production stagnates at yield 

levels of around 1.3 t ha-1 (Bazié et al. 2014). Thus, rainfed lowland systems cover 62% 

of the rice production area, but contribute only 46% of the national production 

(Ouedraogo et al. 2011). 

 Small-scale farming predominates in the rainfed lowlands in inland valleys of 

the savanna zone and is characterized by low or no use of external inputs such as 

fertilizers (Africa Rice Center 2011). The nutrition in rainfed rice thus relies largely on 

native soil nutrient supply. Nitrogen deficiency is particularly wide-spread, affecting 

crop yields (Henao and Baanante 1999; Segda et al. 2014). While mineral or organic N 

applications enhance crop N uptake and grain yield (Dobermann and Fairhurst 2000; 

Segda 2006, Yameogo et al. 2013), current fertilizer use is below 12 kg ha-1 (Saito et al. 

2013) and farmers’ yields are far below the climatic and genetic potential (Saito et al. 

2012; Haefele et al. 2013). Increasing the rice yields in rainfed environments requires 

thus options aimed at an improved management of system-internal N resources such 

as native soil and biologically-fixed N (Becker et al. 2007).  

Particularly during the dry-to-wet season transition period (DWT) when the soil 

aeration status changes from aerobic to anaerobic, and before rice establishment, 

substantial amounts of native soil N are lost by nitrate leaching and denitrification 
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(Bognonkpe and Becker 2009), leading to N deficiency in rice and low and declining 

yields (Becker et al. 2007). Management of soil native N by the avoidance of losses 

during DWT appear to be of a particular importance in low-input systems to enhance 

grain yields in the short-term and to maintain soil fertility in the longer term (Becker et 

al. 2007). Such management options aim at avoiding the build-up of mineralized Nmin in 

the soil, either by temporary immobilization in the soil microbial biomass (Liu et al., 

2006; Lou et al., 2011) or by nitrate uptake in growing vegetation (Buresh and DeDatta 

1991). Thus, the return of straw in rice-wheat rotations of Nepal could temporarily 

immobilize native soil N in the microbial biomass (Pande et al. 2009) and half N losses 

by denitrification (Becker et al. 2007).  

Another option includes the uptake and hence conservation of nitrate-N in the 

biomass of growing vegetation of such called “nitrate catch crops” (George et al. 1994; 

Baldwin and Creamer 2006) during DWT. Besides the conservation of soil N, such 

strategies may add biologically-fixed N when legumes are grown (George et al. 1998; 

Sullivan et al. 2012) and incorporated as green manure into the soil before rice 

establishment (Ro et al. 2016). Benefits of applying such N conservation and cycling 

strategies on the yield of rice have been reported from a wide range of rainfed 

production systems in South and Southeast Asia but are so far not documented for 

West Africa. While straw management strategies are limited by competing demands 

for fuel, feed or bedding (Eherenstein 2002), pre-rice nitrate catch crops appear 

promising for the rainfed production systems of the dry savanna zone of West Africa.  

Particularly in the inland valley landscape, with the additional lateral 

translocation of nitrate by subsurface flow from valley slopes into the valley bottom 

lands, soil N conservation by vegetation during DWT and N addition by biological N2 

fixation during the pre-rice niche may contribute to maintain soil fertility and increase 

rice grain yield. The objectives of this study were to assess the effect of non-fixing and 

N2-fixing pre-rice crops on native soil N dynamics during DWT and on the yield of 

subsequent rice, both in the absence and in the presence of lateral N fluxes from the 

valley slope in the dry savanna zone of Burkina Faso. 
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4.2 Material and methods 

4.2.1 Study site 

A field experiment was conducted in a rainfed lowland close to the town of Dano in 

Burkina Faso in 2014. The characteristics of the study site are presented in chapter 2 

on general material and methods. 

4.2.2 Plant material 

The lowland rice (O sativa L.) variety TOX 728-1, released in Burkina Faso under the 

name FKR-19, was used. Seeds were obtained from the INERA rice research station at 

Farakoba.  The short-cycled improved 105-day variety has a yield potential of 6 Mg ha-

1, and is reportedly adapted to rainfed conditions (Sie et al. 2006). Three pre-rice crops 

were compared with the traditional practice of a bare fallow, including forage cowpea 

(Vigna unguiculata L.), velvet bean (Mucuna cochinchinensis L.), and panicum (Panicum 

maximum L.) (Figure 4.1). The two annual legumes are suited for use as green manures 

but can also contribute edible grain (Vigna), medicinal products (Mucuna) and forage 

uses (both). Panicum is mainly used as perennial forage grass. Seeds of all three 

species were obtained from INERA in Farakoba, Burkina Faso. 

 

Figure 4.1  Pre-rice crops after 75 days of development during the dry-to-wet 
season transition period in an inland valley of Dano in Burkina Faso 
(2014). A = Vigna, B = Mucuna, C = Panicum 
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4.2.3 Experimental design and crop management 

Management options were compared in two main treatments in the hydromorphic 

valley fringe, where the subsurface flow water is welling up (intercept vs. open). On 

half of the area, horizontal fluxes of water and nitrate were blocked by a 15m long 

interception trench down to the saprolyte layer and subsequently laterally drain the 

flows towards the center of the lowland (“intercepted”). The neighboring “open” area 

(no interflow interception) received the interflow contribution from a 100 m long 

valley slope and served as reference. 

 Nitrogen management treatments involved growing nitrate catch crops 

during DWT and their incorporation into the soil before rice transplantation. We 

compared two N2-fixing green manure legumes and a non-fixing forage grass. The pre-

rice crops were sown at a 40x40 cm spacing with 2 (legumes) or 4 gains/hill (Panicum). 

The traditional bare fallow during DWT served as reference treatment.  The four 

treatments were applied in both the “open” and “intercepted” valley fringe in 

randomized complete blocks following a lattice design with three replications and 

using a sub-plot size of 2x2 m. The treatments were imposed during DWT between 

May and July (145th to 190th Julian day). The biomass was chopped into 20 cm long 

    
Figure 4.2  Application of green manure biomass at the end of the dry-to-wet 

season transition period and before rice transplanting an inland valley 
bottom at Dano, Burkina Faso (2014) 
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segments and incorporated by hand into the soil before transplanting 25-day-old 

seedling at a 20 x 20 cm spacing at two seedlings per hill (Figure 4.2). Throughout DWT 

and the rice-growing season, weeds were manually controlled as required and no 

mineral fertilizer was applied. 

4.2.4 Soil and nutrient sampling 

Before the onset of the experiment, reference soil samples were taken for soil 

attributes. For assessing soil nitrate dynamics, biweekly samples were taken during 

DWT between the establishment of the pre-rice crop in May and their incorporation in 

July and transported to the laboratory within 2 hours for Nmin extraction and nitrate 

determination as described in Chapter 2 (general material and methods). All samples 

were pooled composites of seven topsoil auger samples (0-15 cm), collected across a 

diagonal of each plot. Based on the volumetric soil moisture content (TDR) the bulk 

density, and the nitrate concentration in soil solution or extracts, the amount of nitrate 

N per unit area was calculated. 

4.2.5 Plant sampling and analyses 

Aboveground biomass of the 10-week-old pre-rice crops was determined at the end of 

DWT based on 1m2 harvest areas in the centre of each plot. Sub-samples of 100 g fresh 

matter were oven-dried for dry matter determination and subsequently ground for 

chemical analyses. Biological nitrogen fixation (Ndfa) of the N-fixing cover crops 

(Cowpea and Mucuna) was determined following 15N natural abundance method 

described by Peoples et al. (1989), Unkovich and ACIAR (2008), using Panicum as the 

non-fixing reference plant. The 15/14N ratios were determined using an ANCA-SL 2020 

mass spectrometer at the Institute of Crop Science and Resource Conservation at the 

University of Bonn.  The share of N derived from the atmosphere (%Ndfa) was 

calculated  as follows (Amanuel et al. 2000): 

%Ndfa = 
����	��	���������	� !�"#����	��	�$	�%&%�'	 �'()�	

����	��	���������	� !�"#*
	+	�,, (1) 

N fixed = 
%./0

122
 X legume N (kg ha-1)       (2) 
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A “B-value” of -3.5‰ 15N (natural isotopic discrimination) was applied for cowpea and 

-1.5‰ 15N for Mucuna (Peoples et al. 1989). 

Rice tiller and panicle numbers were assessed based on 1m² harvest areas at 

the end of vegetative and the reproductive phases, respectively. The rice cycle 

(sowing-harvest) was recorded for all treatments. At harvest, straw and grain yield 

were assessed based on 4m2 harvest areas (edge effects were not considered) and 

reported at 14% grain moisture. N uptake by grain and straw was analyzed in 100 g 

sub-samples after oven-drying and grinding, following the micro-Kjeldahl procedure 

(Page et al. 1982). The share of applied N used was computed from the difference in 

rice N uptake in DWT vegetation treatments and the bare fallow control, divided by 

the amount of N cycled (soil N uptake) plus the amount of N derived from N2 fixation. 

The agronomic N use efficiency was computed as kg grain yield increase above the 

bare fallow control divided by the amount of N cycled and/or added. 

 

4.2.6 Data analysis 

Results are based on arithmetic means of three replications. Standard errors of the 

mean (n=3) were applied in graphical data presentations. Analysis of variance (ANOVA) 

was performed using Stata/SE 12.1, using Bonferroni method for mean separation 

(p<0.05). Graphics were prepared using SigmaPlot, version 12. 

 

4.3 Results 

This section presents the major findings on (1) the dynamics of soil NO3-N in response 

to development of pre-rice crops during DWT, (2) the accumulation of N in the 

biomass of pre-rice crops both from soil N uptake and biological nitrogen fixation, and 

(3) the response of lowland rice to transition season treatments (bare fallow and 

incorporation of different pre-rice crops). 

4.3.1 Soil NO3- dynamics 

The dynamics of soil NO3-N during DWT differed between transition season treatments 

and interflow contribution from the slope. While the volumetric water content of the 

lowland soil showed near-identical trends, the water content tended to be slightly 
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higher in plots open to interflow than in those with interflow interception (Figure 4.3, 

lower graphs). This trend was also reflected in the nitrate content of the topsoil which 

was significantly higher in bare fallow plots with than in those without interflow 

contribution from the adjacent valley slope (Figure 4.3, upper graphs). In both cases, 

growing vegetation during DWT reduced soil nitrate from maxima of 50 (interflow 

interception) and 75 (open plots) kg ha-1 in bare fallow at around the 170th Julian day 

to 8-25 kg N ha-1 in vegetation plots, irrespective of the species. With vigorous plant 

growth and associated soil N uptake, nitrate in the topsoil was close to the detection 

limit of 5 kg ha-1 at the end of DWT.  

 

Figure 4.3 Effect of transition season management (bare fallow vs. different pre-
rice cops) on soil nitrate-N dynamics in an inland valley of Dano in 
Burkina Faso. Bars present standard errors of mean (n = 3).  
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Weekly increases in soil nitrate during DWT provided a cumulative net-

mineralization of 31 kg NO3-N ha-1 in the bare fallow plots open to interflow, only 6 kg 

N ha-1 in the case of panicum and 3 kg ha-1 in the cases of mucuna and cowpea. Little 

nitrate was detectable at the end of DWT and above amounts can be assumed having 

been lost from the soil. 

 

4.3.2 Biomass and N accumulation 

The accumulations of biomass and N by pre-rice crops during DWT are presented for 

both open and interception plots in Figure 4.4. There was no biomass in the bare 

fallow, while transition season crops accumulated between 2 and 4 t dry matter ha-1 

(no significant difference between crop species and interception treatments).  
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Figure 4.4  Biomass and N accumulation by crops during the dry-to-wet season 
transition in an inland valley of Dano (Burkina Faso 2014). Bars present 
standard errors of the mean (n=3). Ndfs = nitrogen derived from the soil, 
Ndfa = nitrogen derived from the atmosphere. 

 

The accumulation by non-fixing panicum increased from 41 to 73 kg ha-1 of 

soil derived mineral N in interception and open plots, respectively. In addition to soil N 
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uptake of about 34 (32-35) kg N ha-1 in interception and of about 54 (47-62) kg N ha-1 

in open plots, biological N2 fixation contributed an additional 16-24 kg ha-1 in cowpea 

and 20-31 kg N ha-1 in mucuna. Irrespective of the main plot treatment and the legume 

species, the share of N derived from biological N2 fixation (Ndfa = N derived from the 

atmosphere) was relatively low with 33-49%. 

4.3.3 N balances and rice response 

Nitrogen balances and rice performance attributes following the bare fallow control 

and the incorporation of different transition season vegetation types as green manure 

are presented in Table 4.1 and Table 4.2. 

 In the absence of transition season vegetation, no N was neither cycled 

(uptake from the soil) nor added (biological N2 fixation) and the N uptake by rice 

during the wet season of 32-38 kg ha-1 originated from native soil N mineralization 

during the wet season and possibly some N contributed by interflow from the slope in 

open plots. Panicum absorbed 41 and 73 kg N ha-1 from the soil during DWT in 

interception and open plots respectively, which was returned upon biomass 

incorporation. This cycled N together with N mineralization during the wet season 

resulted in a rice N uptake of 48-58 kg with an about 38% use of the cycled N and an 

agronomic N use efficiency of 14-24 kg grain increase per kg N added in interception 

and open plots, respectively. The addition of biologically-fixed N by the legumes 

resulted in total N inputs of 55 (interception) and 86 (open) kg N ha-1 in cowpea and of 

55 (interception) and 79 (open) kg N ha-1 in mucuna. The resulting rice N uptake of 51-

66 kg ha-1 provides calculated efficiencies of 28-34% in the case of mucuna and of 36-

68% in the case of cowpea.  The resulting agronomic N use efficiencies were 

consequently also higher with cowpea (22-28 kg grain kg-1 N applied) than with 

mucuna (16-19 kg grain kg-1 N applied). In contrast to the bare fallow control, 

treatments involving the return / incorporation of transition season crops tended to 

provide similar or higher amounts of N than those removed by rice uptake. Grain 

yields, tiller and panicle numbers, crop phenology and harvest index of rice did not 

respond to flow interception from the slope (Table 4.2). 
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Table 4.1  Effect of pre-rice crop management during the dry-to-wet transition 
season on the N balance in an inland valley of Dano (Burkina Faso, 
2014). 

 

Tansition season treatments 
N cycled                          

(kg ha
-1

) 

N added                   

(kg ha
-1

) 

N uptake by 

rice   (kg ha
-1

) 

N use 

efficiency        

(kg grain kg
-1

 N) 

Interception 

 

Bare fallow 0 0 32 - 

Cowpea 32 16 65 28 

Mucuna 35 20 51 19 

Panicum 41 0 48 21 

Open 

Bare fallow 0 0 38 - 

Cowpea 62 24 66 22 

Mucuna 48 31 60 16 

Panicum 73 0 58 14 

 

Consequently, the effects of transition season crop management on rice 

performance attributes are presented as mean values from the open and the flow 

inception plots (n=6). 

Grain yields responded strongly and highly significantly to the incorporation 

of the biomass of pre-rice crops and the cycling of soil and/or the addition of 

biologically-fixed N. The highest grain yield was observed with rice grown after cowpea 

(3.8 t ha-1), followed by mucuna (2.9 t ha-1) and the non-fixing panicum (2.7 t ha-1). 

These yields were in all cases significantly higher than those following the bare fallow 

treatment (1.7 t ha-1).  

Grain yield increases were explained mainly by the number of panicles or 

effective tillers. Thus, compared to 125 tillers and only 86 panicles m-2 (<70% of 

effective tillers) in the control treatment (bare fallow), rice grown after cowpea, 

mucuna and panicum produced 171, 159 and 145 tillers and 127, 106, and 103 panicles 

m-² (75% effective tillers), respectively. Also rice phenology was affected by applied 

treatments and in the bare fallow control, apparent N deficiency accelerated grain 
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maturation, reducing the 105-day growth cycle of FKR-19 by about one week to 95 

days. 

   

Table 4.2  Effect of flow interception and pre-rice crop management during the 
dry-to-wet transition season on rice agronomic performance (means 
from inflow interception and open plots) in an inland valley of Dano 
(Burkina Faso, 2014). 

 

Treatments 
Tillers       

(number m-2) 

Panicle 

(number m-

2) 

Rice cycle 

(DAS) 

Harvest  

index 

Grain yield   

(t ha-1) 

Interception 152 104 101 0.47 2.7 

Open 157 107 102 0.45  2.9 

 ns ns ns ns ns 

Bare fallow 125a 86a 95a 0.50 1.7a 

Cowpea 171b 127b 105b 0.48 3.8bc 

Mucuna 149b 106ab 101b 0.42 2.9b 

Panicum 145b 103ab 101b 0.47 2.7ab 

Harvest index: grain / total biomass weight; DAS: days after seeding. 

Interaction between treatments is not significant (P > 0.05) 

Means affected by the same letter within the same column do not differ significantly (P < 0.05, 

Bonferroni’s method) 

 

4.4 Discussion 

4.4.1 Soil nitrate-N dynamics 

Maintaining soil cover has been shown to significantly impact the dynamics of soil N in 

rice-based cropping systems of Asia (George et al. 1995; Pande and Becker 2003). 

Thus, provided the environmental conditions permit it, growing pre-rice green 

manures were efficient in avoiding the build-up of soil nitrate-N in rice-wheat rotations 

of Nepal and to improve systems N balances (Becker et al. 2007). While grass crops 

have been reported to be more effective in trapping and recovering soil N than 

legumes (Baldwin and Creamer 2006), up to 60 kg N ha-1 can be provided additionally 

every year by biological N2 fixation when integrating adapted legumes instead of 
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nitrate-catching grasses into a rainfed rice rotation (Ladha et al. 2000). Amounts of 

native soil N saved by transition season legumes or by a temporary N immobilization 

following the application of straw have been estimated to range from 10 to over 60 kg 

N ha-1 (George et al. 1998; Becker et al. 2007; Yu et al. 2014).  

However, in most rainfed rice production systems of Asia, the pre-rice niche 

is not used to grow green manures. Under the prevailing bare fallow conditions, the 

change in soil redox or aeration status during DWT leads not only to a temporary build-

up of nitrate in the soil profile (Buresh and DeDatta 1991); depending on edaphic and 

climatic conditions, this nitrate is prone to subsequent losses by leaching and/or 

denitrification. These N losses have been estimated to range from 20 to over 80 kg of 

nitrate N ha-1 (Becker et al. 1990; George et al. 1998; Pande and Becker 2003; Becker 

et al. 2007; Pande et al. 2009; Yu et al. 2014). The present work provides the first 

evidence that similar nitrate N dynamics and comparable amounts of N mineralization, 

nitrate accumulation and N losses can be expected from rice-based systems in West 

Africa. Compared to most systems in Asia, the low-input production orientation and 

the prevailing wide-spread N deficiency in rice further enhances the negative 

implications of massive N losses for regional rice production and food security in West 

Africa. In addition, the lateral contribution of nitrate by sub-surface flow from the 

slopes in the inland valley landscape of the savanna zone adds an additional dimension 

of need to improve native soil N management. Such strategies become even more 

important in production environments where farmyard manure is scarce or has 

competing uses, and where mineral N fertilizers are either unavailable or not 

affordable by small-scale farmers. The dry savanna zone of West Africa represents 

such conditions and may thus become a prime target for the suggested native soil N 

management options. 

 

4.4.2 Rice response to applied green manure 

The use of green manures in lowland rice-based systems has been intensively 

researched, mainly in South and South East Asia and comprehensive literature reviews 

are available (i.e., Becker 2003). No similar work is available from the African continent 
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except for fallow rotations in upland rice systems of West Africa (Becker and Johnson 

1998; 1999; 2001). However, overall trends and key limiting factors are likely to be 

similar in both rainfed rice production regions. Thus the need for site- and soil-

specifically adapted legume species as a key factor to high N2 fixation and successful 

green manures (Becker and Ladha 1996) will likely be highly relevant for the adverse 

environmental conditions widely encountered throughout the West Africa savanna. 

Another critical factor for green manure performance can be rhizobial inoculation 

(Mfilinge et al. 2014) and available soil P (Engels et al. 1995; Carsky et al. 1998; Becker 

2003). While soil P deficiency is a widely reported production constraint in Africa 

(Sanchez 2002), was no constraint at the study in Dano, and appears generally to less 

critical in the dry savanna than in the more humid environments of the continent 

(Bationo et al. 2005). Green manure-derived N is reportedly used more efficiently by 

rice than mineral N in coarse-textured soils in rainfed environments with unreliable 

precipitation (Becker et al. 1995). Such conditions apply to much to rice production 

sites in the inland valley landscape of West Africa’s dry savanna zone.  

The incorporation of fast-growing legumes grown as bio-fertilizers in the 

cropping niche before lowland rice reportedly improves rice grain yield, particularly in 

rainfed production systems on sandy soils (Becker et al. 1995; Nascente et al. 2013; Yu 

et al. 2014). As in the present study, Latt et al. (2009) and Islam et al. (2015) showed 

that the incorporation of green manure legumes can not only fully replace mineral N 

fertilizers at current application rates in Asia, but may well do so in West Africa. In 

addition, green manures can have various additional benefits on soil nutrient 

mobilization and uptake (Mandal et al. 2003), on nutrient recovery (Dobermann and 

Fairhurst 2000; Segda 2006), on soil physical attributes (Becker et al. 1995) and on pest 

control (Sullivan et al. 2012). Despite such positive reports, adoption of green manure 

technology by farmers in Asia is low, mainly due to the unreliability in the outcome of 

such investments and to high labor demand for seed production, crop establishment 

and the incorporation of green manure biomass (Ali 1999). Such draw-backs may not 

apply to the same extent to the situation in West Africa, where mineral fertilizers are 

no alternative to low-cost organic sources in the prevailing low-input systems (Seck et 
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al. 2013), where soil fertility is generally poor (Sanchez 2002) and where the lateral 

influx of nutrients with the subsurface flow in the inland valley landscape provides 

additional opportunities and accrued benefits for N-saving technologies (Windmeijer 

and Andriesse 1993). 

 

4.5 Conclusion 

Cultivation of crops in the pre-rice niche in rainfed lowlands contributes to avoid the 

build-up of nitrate in the soil profile, originating both from in-situ mineralization and 

from lateral influx by subsurface flow from adjacent valley slopes, and its subsequent 

losses related to the change in soil aeration status during DWT. Returning this recycled 

native soil and addition of biologically-fixed N following the incorporation of the 

biomass before the establishment of the wet season crop enhances the performance 

of lowland rice and may in the long-run contribute to sustain soil fertility in inland 

valleys of the West African savanna zone. 
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5 FACTORS MODULATING SOIL N DYNAMICS IN THE WEST AFRICAN SAVANNA 

ZONE 

 

ABSTRACT 

Soil nitrate-N dynamics during the dry-to-wet transition (DWT) season and its 
management are key determinants of soil productivity in low-input rice-based systems 
in the inland valley landscape of West Africa. The extent of nitrate mineralization but 
also of lateral nitrate translocation from valley slopes is likely to be affected tillage 
operations (stimulation of microbial mineralization), by rainfall intensity (vertical 
movement of water and nitrate in the soil profile and speed of change in soil aeration 
status and microbial respiration), and by site attributes (mainly soil type, texture and 
CN content). A set of experiment was conducted in the dry savanna zone of West 
Africa in 2013 and 2014 with the aim to determine the effect of such modulating 
factors (soil tillage, rainfall intensity and location) on native soil NO3-N dynamics during 
DWT. The study on effects of soil disturbances on N mineralization compared 
mechanical tillage with a no-till treament of the upland adjacent to the study lowland. 
The effect of rainfall intensity on nitrate dynamics was assessed by comparing natural 
rainfall during DWT in 2014 with a simulated 30% increase (additional irrigation) and a 
30% reduction (soil cover). Location effects involved a comparison of lowland sites in 
Dano (Burkina Faso) and Dassari (Benin) with similar climatic conditions but 
contrasting soil attributes. 
Mechanical soil tillage increased N mineralization in 2013 and during the initial phase 
of DWT in 2014. Towards the end of DWT, most nitrate from wetland soils adjacent to 
a tilled upland had disappeared, while N mineralization continued in the lowland 
below the reduced tillage treatment. However, no differences in grain yield of rice 
were apparent between tillage treatments. Reduced rainfall increased the nitrate 
accumulation in the soil profile with little apparent nitrate losses occurring during 
DWT. With increased rainfall, on the other hand, most nitrate had disappeared once 
the volumetric soil moisture exceeded 25%. Finally, the soil nitrate-N accumulation 
during DWT stood in no apparent relation to rice agronomic performances.  Thus, soil 
nitrate accumulation during DWT was higher in Dano, while grain yields of rice were 
lower (1.6 – 2.1 t ha-1) in Dano than in Dassari (1.8 – 2.5 t ha-1). These relations indicate 
that nitrate mineralized during DWT had apparently been lost from the soil before wet 
season rice was able to take it up. We conclude that soil types, tillage and rainfall 
differentially affect soil N dynamics during DWT but, in the absence of soil N 
management strategies, not necessarily the grain yield of rice. Particularly under 
conditions favouring nitrate accumulation during DWT, there is a need for site-
specifically adapted soil N-conserving management strategies. 

 
Keywords: climate change, dry-to-wet season, nitrate, rainfall variability, tillage. 
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5.1 Introduction 

The fertility of most soils in the West African savanna zone is increasingly depleted due 

the low biomass accumulation by crops and natural vegetation (Bationo et al. 2007), 

little residue cycling due to competing use of organic matter for fuel, feed and animal 

bedding (Giller et al. 2009), and a hot climate causing a rapid turnover of organic 

matter (Henao and Baanante 2006). This is associated with inherently low organic 

carbon content and light-textured soils (Bationo et al. 1998), and with low cation 

exchange capacities due to kaolinite dominating the clay mineral fraction (Vanlauwe et 

al. 2015). Nutrient depletion is further exacerbated by environmental conditions such 

wind and water erosion, constituting further cause of productivity decline in low-input 

systems of West Africa (Zougmore et al. 2003). However, smallholder farmers heavily 

depend on soil nutrient supply for their food production (Giller et al. 2011).  

Nitrogen is the most limiting factor and its management is, therefore key of 

the success in low-input cropping system (Segda 2006). In the savanna environment, a 

surge of soil nitrate occurs with the onset of the rains after a prolonged dry period 

(Birch 1960). Being a biological process, nitrification is affected by edaphic properties 

(soil N supply, C content, texture, aeration status) and climatic conditions 

(temperature and rainfall) but also by management interventions (residue return, soil 

tillage) that affect the microbial dynamics in the soil (Sahrawat 2008). Upon soil 

saturation at the onset of the main rains, and in the absence of a vegetation cover, this 

native soil nitrate-N is prone to losses by leaching and/or microbial respiration or 

denitrification (Pande and Becker 2003; Becker et al. 2007; Blackmer et al. 2008). The 

extent and speed of disappearance of nitrate-N from root zone and its lateral 

translocation in inland valleys from the slopes into the wetland is determined by the 

geomorphology of the landscape (length and steepness of valley slopes, soil texture, 

and presence of an impermeable saprolyte layer in the profile (Windmeijer and 

Andriesse 1993) and the amount and intensity of the rainfall (Bognonkpe 2004). 

Consequently, both site attributes (soil and climate) and management factors (tillage, 

soil cover) will differentially affect native soil N dynamics in savanna production 
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systems, particularly during DWT when the soil aeration changes from dry aerobic to 

saturated anaerobic conditions.  

Within the dry savanna zone, different soil type and rainfall environments are 

encountered, leading to different pre-conditions for N mineralization and changes in 

soil aeration status. Thus, the areas around the town of Dano in Burkina Faso and 

Dassari in Benin are dominated by soils developed on acidic metamorphic rock with 

low kaolinitic clay content (Callo-Concha et al. 2012). However, soils in Dassari are 

slightly acid and finer textured in the lowland than those in Dassari. Rainfall is 

characterized by high variations both within and between sites and recurrent changes 

between years (Forkuor 2014).  

Tillage accelerates the aeration of the top soil and hence favors microbial 

mineralization processes (Balesdent et al. 2000). In the dry savanna zone of West 

Africa tillage is usually done during DWT either by hand hoe or animal traction. 

However, with growing awareness of climate change phenomena and the need not 

only for adaptation but also trace gas mitigation strategies, reduced tillage systems are 

increasingly promoted in sub-Saharan Africa (Milder et al. 2016). Minimum or no-

tillage thereby reduces organic matter mineralization while enhancing soil C 

sequestration (Lal 2004). As a side-effect, the extent of the “Birch effect” and the 

likelihood of N losses during DWT may be reduced. The region is also characterized by 

increasingly variable rainfall (van Wesenbeeck et al. 2016). Recurrent droughts 

(Nicholson 2001) coexist with more intense but erratic rainfall events (IPCC 2007), 

mostly at the onset of the wet season. Model predictions are however often 

conflicting, and depending on “representative concentration pathway” (RCP) 

scenarios, both drier and wetter futures are predicted for West Africa (Cooper et al. 

2008; Regelj et al. 2012). It is, therefore, urgent to understand the effect of these 

modulating factors (site/soil, tillage and rainfall variability) on the seasonal dynamics of 

soil nitrate-N in view of estimating expected N losses and targeting soil N management 

strategies to specific environments. We assessed the effects of tillage, of rainfall and of 

site attributes on seasonal nitrate dynamics and rice performance in the dry savanna 

zone of West Africa in 2013 and 2014. 
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5.2 Material and methods 

5.2.1 Study sites 

We conducted field experiments during the dry-to-wet transition (DWT) seasons of 

2013 and 2014. Studies comparing soil tillage methods (2013 and 2014) and varying 

rainfall intensities (2014 only) were carried out at the Dano study site in Burkina Faso, 

while the comparison of site conditions on N dynamic and rice performance attributes 

(N uptake and yield) included both Dano in Burkina Faso and Dassari in Benin (2013 

and 2014). Geographic characteristics and climatic as well as edaphic attributes of the 

study sites are presented in Chapter 2 on general material and methods. 

 

5.2.2 Treatment application 

We assessed the spatial-temporal dynamic of soil nitrate following soil tillage 

management in Dano in 2013 and 2014. The NO3-N dynamics were assessed:  

a) in a lowland adjacent to a slope which had either been left untilled or tilled (0-

10 cm) using an animal-drawn plow four weeks after the first rainfall event 

following farmer’s practice. Plots of 6x4 m were established in the lowland 

(valley fringe) directly adjacent and perpendicular to the tillage treatments in 4 

replications  

b) along the toposequence differentiated in an upslope and a foot-slope sampling 

position in both tilled untilled plots of 6 x 4m, with four replications distributed 

following a complete randomized design. 

The study focused on the DWT seasons of 2013 and 2014, between the first rainfall 

event in April until the onset of the main rainy season and rice establishment in July. 

To assess site-effects on N mineralization during DWT and on crop performance, rice 

was grown in the lowland in Dano and Dassari. At each site, rice was established at 20 

cm x 20 cm spacing in 4 x 3 m subplots in four replications. Direct seeding was used in 

2013 with 2 grains/hill. In 2014, rice was transplanted, using two 25 day-old seedling 

per hill. Straw biomass and grain yield of rice were assessed at maturity, based on a 

4m2 harvest areas. Grain yield was reported at 14% moisture. After oven-drying and 
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weighing, total N uptake by grain and straw was analysed following the micro-Kjeldahl 

procedure. 

Rainfall variability and its effect on soil nitrate-N dynamics was simulated in 

the lowland by modifying the rainfall amounts, considering tree scenarios : (1) the 

normal in-situ rainfall regime of the DWT 2014, (2) a lower rainfall regime (-30%) 

achieved by covering part of the plot area with plastic sheets until a cumulative DWT 

rainfall of 30% less than “normal” was reached, and (3) a higher rainfall regime (+30%) 

achieved by adding 30% of the amount of water having been received during each 

week, the first day of the following week by watering can on the soil surface. The 

experiment was arranged to a randomized complete blocks design with four 

replications. The size of the modified rainfall regime plots was 1x1 m situated 1 m 

apart. Volumetric moisture was monitored continuously in each experimental plot 

using EC-5 TDR soil moisture sensors (Decagon Devices) at a depth of 10, 20 and 30 cm. 

Soil moisture readings were recorded two-hourly and stored in an EM-50 data logger. 

Before the onset of the experiment, reference soil samples were taken for 

soil attributes. Additionally, auger samples were taken during DWT between mid-April 

and early July twice per week and transported to the laboratory within 2 hours for Nmin 

extraction and nitrate determination as described in Chapter 2. All samples comprised 

pooled composites of seven topsoil auger samples (0-15 cm), collected across a 

diagonal of each plot. In addition, in each treatment soil solution was sampled at 

weekly intervals by suction cups installed at 10 cm (0-20 cm soil layer) at the foot slope 

position,  and at 10cm (0-20 cm) and 30 cm (20-40 cm) depth in the lowland positions. 

The NO3-N was extracted and analyzed as described in Chapter 2, and concentrations 

of nitrate in solution were measured by photometric method. Based on soil moisture 

content (TDR) and bulk density measurements, the nitrate concentrations were 

transformed into total amounts of N per unit area.  

5.2.3 Data analysis 

Results are based on arithmetic means of three replications. Analysis of variance 

(ANOVA) was performed using Stata/SE version 12.1. For mean comparison, 
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Bonferroni correction pairwise multiple comparison post-hoc were applied. Figures 

were prepared using SigmaPlot, version 12. 

 

5.3 Results 

This chapter presents the findings on effects of selected modulating factors on topsoil 

and soil solution N dynamics in three sections: (1) the soil N response to tillage, (2) the 

effect of rainfall variability, and (3) the soil N and rice yield trends by location.  

 

5.3.1 Effect of soil tillage 

The dynamics of topsoil and solution NO3-N following tillage operations during DWT of 

2013 and 2014 and its relation to rainfall are presented in Figure 5.1. Overall, soil N 

mineralization was enhanced by tillage. However, trends differed between observation 

years. As indicated in chapter 3, nitrate-N dynamics is presented for only part of DWT 

2013 due to unavailability of data from Julian date 80 to 102. At the onset of the 

sampling period, topsoil nitrate was similar in tilled and non-tilled plots (about 10 kg 

ha-1), and was followed by a gradual decrease. After soil tillage around Julian date 130 

and with the occurrence of 24 mm rainfall, nitrate increased gradually to about 8 kg 

ha-1 and remained almost constant until the onset of the main rainy season. At the 

same time, nitrate continued to decline in no-tillage plots and no Nmin was detectable 

at the end of the DWT. Amounts of nitrate in soil solution were much lower than those 

extracted from auger samples and were close to or below the detection limit in 2013.  

In 2014, different trends between tillage treatments were clearly observed 

from Julian date 100 - 130 and from 130 – 180 (beginning of the rainy season). During 

the first half of DWT, NO3
- was significantly higher in tilled than in no-till plots. While 

soil nitrate amounts remained nearly constant at 20 kg ha-1 throughout DWT in no-till 

plots, soil tillage increase soil nitrate to 30-40 kg ha-1 after the first rain, and only 20-

25% of this nitrate was detectable once the volumetric soil moisture content exceeded 

25% (data not shown). Out of a maximum of 46 kg ha-1 of nitrate mineralized in tilled 

plots, approximately 78% was no longer present at the onset of rainy season and can 
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be assumed to have been lost. Such presumed N losses during DWT were only about 

one half in the case of no-tillage. 
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Figure 5.1  Seasonal topsoil and soil solution nitrate-N dynamics response to tillage 
during the dry-to-wet transition season period in an inland valley in 
Dano (Burkina Faso, 2013-2014). Bars present standard errors of the 
mean (n=8) 
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5.3.2 Rainfall variability on soil nitrate-N dynamics 

The dynamics of soil NO3-N during DWT responded to the amount of rainfall. With 

“normal” rainfall, volumetric soil moisture increased gradually until reaching 25% from 

Julian date 165 onwards. In the treatment with a 30% reduced rainfall, soil moisture 

reached a maximum of 18%, thus remaining below the field capacity level of 20%. In 

the wet scenario with 30% higher rainfall, the soil reached saturation levels (35% 

moisture) at Julian date 170 and remained anaerobic until the end of DWT (Figure 5.2).  
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Figure 5.2  Effect of rainfall regime (normal, dry and wet scenarios) on soil 
moisture, and extracted topsoil and soil solution nitrate-N dynamics 
during the dry-to-wet transition season period in an inland valley in 
Dano (Burkina Faso, 2013-2014). Bars present standard errors of the 
mean (n=4) 
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With “normal” rainfall, the nitrate dynamics followed the pattern described 

before with an increase following the first rainfall event, reaching about 40 kg ha-1 at 

Julian date 160. This nitrate disappeared once the soil moisture exceeded field capacity 

and no nitrate was detectable at the time of rice establishment. In case of the dry 

scenario (30% less rainfall during DWT), the nitrate mineralization continued 

throughout DWT, reaching peak values of 50-60 kg ha-1 in the still aerobic topsoil at 

the time of rice establishment. In the wet scenario (30% more rainfall during DWT) soil 

nitrate continuously declined from initially 25 kg ha-1 with the increase in soil moisture 

and no nitrate was detectable once soil saturation was reached. to In the drier soil, we 

observed first, a gradual increase of topsoil nitrate up to 44 kg ha-1 at 4% volumetric 

moisture, following by a subsequent decline to about 20 kg ha-1 around Julian day 140. 

Similar trends but at a much lower level were observed from the soil solution samples 

(on average only about 20% of the nitrate determined by soil extraction). 

 

5.3.3 Variability by location 

The relevance of location attributes (here mainly soil type) on soil N dynamics during 

DWT and on the grain yield of rainfed lowland rice has been comparatively studied in 

Dano (Burkina Faso) and Dassari (Benin) in 2013 and 2014.  

Rainfall and soil NO3-N dynamics 

Rainfall distribution can only be presented for 2014 (no data available during the DWT 

of 2013 in Dassari). Figure 5.3 (below graphs) shows the distribution of rainfall in Dano 

and Dassari during the DWT in 2014. Units are measured on daily-basis in mm. Overall, 

total amount rainfall of Dassari was higher than that of Dano. In Dassari, the first 30 

days of the DWT received around 20 mm of rains as opposed to twofold in Dano. 

During the following 30 days, up to 250 mm which account around 65% of the total 

rainfall of the DWT or 25% or the yearly rainfall was observed in Dassari. On the other 

hand, a period of drought was observed in Dano with only 30 mm of rainfall in one 

month time. From the Julian day 150 to 170, rainfall was higher in Dano than in Dassari 

(about 100 mm and 80 mm, respectively). 
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Figure 5.3  Seasonal topsoil nitrate-N dynamics during the dry-to-wet transition 
season period at two toposequence positions in two inland valleys in 
Dano and Dassari (Burkina Faso, Benin, 2014). 

 

Figure 5.3 presents the dynamics of soil NO3-N in footslope upland and valley 

bottom lowland soils at Dano and Dassari during DWT of 2014. At both sites, the 

mineralization was triggered by the first rainfall around Julian date 120, with 

considerably more nitrate accumulating in the lowland than the upland (foot slope) 
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soils. However, total amounts of nitrate formed and subsequently lost were much 

higher in Dano (45 kg ha-1) than in Dassari (10 kg N ha-1), despite similar soil texture 

(clay vs. clay loam) and C and N contents (1% C, 0.04-0.09%N).  

Rice response 

Rice biomass, grain yield and rice N uptake in Dano and Dassari (2013 and 2014) are 

presented in Figure 5.4. The rate of nitrogen mineralization and nitrate accumulation 

during DWT had no apparent relation with the performance of rainfed lowland rice. 

Thus, N uptake by rice was similar between sites and years with 63-95 kg N ha-1 in 

Dassari and 59 to 64 kg N ha-1 in Dano. The grain yields, however, were lower (1.6 – 2.1 

t ha-1) in Dano than in Dassari (1.8 – 2.5 t ha-1). These relations indicate that nitrate 

mineralized during DWT had apparently been lost from the soil before wet season rice 

was able to take it up. 

 

5.4 Discussion 

Overall, the results indicated that strong mineralization kinetics of native soil nitrate 

can be observed during DWT, and that their extent appears to be related to soil tillage, 

rainfall regime and site/soil attributes. However, the nitrate accumulation the top soil 

shows no apparent relationship to the N uptake and yield of rice during the wet 

season. This disconnection of N mineralization from rice performance points towards 

nitrate N being lost before rice can take it up and transform it into biomass and yield.  

  

5.4.1 Soil tillage and N dynamic 

The general trend of enhances soil N mineralization with mechanical tillage is neither 

surprising nor new , as was reported before that frequent disturbances of soil 

accelerate the breakdown of organic matter (West and Post 2002; Mahdi et al. 2004; 

Grandy and Robertson 2007; Calegari et al. 2008; Aurora and Avelino 2010; Kenneth et 

al. 2014; IPNI 2014). Tillage at the onset of the rainy season is commonly practiced 

around the word to remove crop residues from the soil surface, to prepare the seed 

bed and to control the growth of weeds (Buhler 1994). In the dry savanna zone of 

West Africa contour ploughing additionally contributes to enhance soil roughness for 
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increased water infiltration (Thierfelder and Wall 2009). Such benefits of tillage stand 

in contrast to the generally observed trend of mechanical tillage to enhance soil N 

mineralization and possibly N losses. 
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Figure 5.4  Rice N uptake, biomass accumulation and grain yield response to native 
soil mineralization during the dry-to-wet season transition in two inland 
valleys of Burkina Faso (Dano) and Benin (Dassari) (2013, 2014). Bars 
present standard errors of the mean (n=4). 

 

Thus, it was reported before that frequent disturbances of soil accelerate the 

breakdown of organic matter (Grandy and Robertson 2007; Calegari et al. 2008; Aurora 

and Avelino 2010; IPNI 2014), with the released Nmin after its microbial oxidation to 

nitrate being prone to losses by leaching and denitrification (Becker et al. 2007; 
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Kenneth et al. 2014). Additionally, conventional tillage is responsible for the disruption 

of the life cycle of some beneficial microorganisms to reduce soil organic matter (NRC 

2010) and to increase soil compaction (Badalikova 2010). On the other hand, no-till 

systems increase the soil organic C content by up to 40% (Salinas-Garcia et al. 1997) 

and with long-term reduced tillage, the soil microbial biomass increases, at least in the 

warm sub-humid climates. Associated with a lower mineralization of carbon substrates 

under no-till conditions is a reduced N mineralization as shown by Li et al. (2015) from 

long-term experiments in rice-based systems of China. Such a reduction in the soil N 

supplying capacity does not necessarily require compensation by higher N fertilizer 

inputs to maintain crop productivity (Angas et al. 2006). In the contrary, tillage even 

reduced the use efficiency of applied mineral N by 17%.  

However, such reports related to enhanced C sequestration with reduced 

tillage are contested by some authors who surmise that apparent soil C gains are the 

result of a redistribution of soil C near the surface, rather than a real increase in total 

soil C (Baker et al. 2007; Blanco-Canqui and Lal 2008; Christopher and Mishra 2009). 

Supporting such observations, Yagioka et al. (2014) reported significant increases in 

soil N and Nmin in the top 2.5 cm with reduced tillage. Irrespective of possible C 

sequestration or N distribution effects, reduced tillage does reduce soil erosion 

(Maqsood et al. 2013; Premov et al. 2014) and increase the share of water-stable soil 

aggregates (Brye et al. 2012). Such no-till associated changes are reported not to affect 

crop productivity, at least after several years of no-till use, while other authors report 

declining crop productivity, particularly in dry environment (Giller et al. 2009), and 

when crop residues are nor returned to the soil surface (Ouedraogo et al. 2007).    

Findings in the present study are also not conclusive. While tillage increased 

soil nitrate accumulation in the topsoil in 2013, it resulted in lower soil nitrate 

accumulation in 2014. Possibly, the more favorable soil moisture conditions after 

tillage, resulting from improved water infiltration attributes, favoured the rapid 

development of vegetation cover and associated absorption of soil N (El-Haris et al. 

1983), while no-till plots remained bare and weed-free throughout most of DWT and 

showed continued high nitrate levels in the soil. Considering these findings, we suggest 
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that depending on climatic conditions, no-tillage systems can contribute to curb soil N 

mineralization and nitrate-N losses, particularly in wet years. 

5.4.2 Effect of rainfall regimes on soil nitrate-N dynamics 

It is commonly acknowledged that nitrification is limited by dry conditions, 

when dissolved C in the soil solution becomes increasingly concentrated, leading 

chemo-lithotrophic organisms to spend more energy for their maintenance than for 

ammonium oxidation (Wong and Nortcliff 1995). The present work, however, 

indicated a higher nitrate accumulation under dry (30% reduced precipitation) than 

under wet (30% increased precipitation) conditions. White et al. (2004) suggested that 

extreme soil water deficit may be responsible for the death of nitrifying bacteria, 

which upon decomposition release even more inorganic N to the soil. Also, in the 

present study dry conditions were obtained by temporarily covering the soil surface 

with plastic sheets, thus possibly increasing soil temperature and stimulating soil 

microbial activity (Russell et al. 2002); Ma et al. 2014;  Walley 2016).  

Even more than drought, soil flooding or anoxic conditions reduce 

nitrification (Haynes 1986). According to IPNI (2014), microbial ammonium oxidation 

ceases when 60% of the soil pore space is filled with water. In the present study, little 

nitrate accumulated in soils under the wet scenario and rapidly disappeared upon 

reaching 25% soil moisture. This observation is consistent with findings by Cregger et 

al. (2014) who manipulated precipitation in the semi-arid climate of the US, and those 

of D’odorico et al. (2003) who modelled soil moisture effects on the N cycle in the dry 

savanna of South Africa. Both concur that nitrate accumulates more in soils of drier 

than of wetter conditions and that NO3-N decreased with volumetric moisture content. 

The disappearance of nitrate is reportedly related to leaching that increased up to 12-

fold in a wet compared to a baseline scenario (Gu and Riley 2010) and to 

denitrification, whereby N2O emissions peaked after the onset of the rain in a semi-

arid grassland (Liu et al. 2014). Besides such rainfall manipulation and simulation 

studies, other authors exploited natural gradients to investigate the effect of rainfall 

variability on soil C and N dynamics. In a study from the USA, Groffman et al. (2009) 

reported that both mineralization and nitrification decrease towards the drier side of a 
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rainfall gradient. On the other hand, no effect of rainfall on either soil respiration or 

native soil N mineralization was apparent along a precipitation gradient in 

Mediterranean woodland (Jongen et al. 2013). However, most authors agree that in 

the semi-arid tropics, changes in soil moisture regimes induced by rainfall variability 

affect soil N mineralization dynamics at field level, and that the reported 10% yield 

reduction in the past decade is related to changing precipitation patterns and 

associated changes in soil N mineralization and N cycling (van Wesenbeeck et al. 2016). 

The observed increase in soil N mineralization during DWT under drier conditions, and 

the absence of wet season rice yield response to N mineralization during DWT will 

negatively affect soil fertility and increase the vulnerability of low-input farmers in 

West Africa, if soil N conservation measures are not implemented.  

 

5.4.3 Location effects on soil N mineralization dynamics and its effect on rice 

Soil N mineralization is a biological process involving several groups of micro-organisms 

that is governed by climatic and edaphic factors (Ward 2015). Carbon and N 

mineralization is generally lower in fine than in course-textured soils (Walley 2016). 

While ammonification is an unspecific process occurring under a wide range of 

conditions, nitrification occurs only in aerobic soils and at an optimum range of pH 6-8 

(IPNI 2014). Thus, in the acid clay soil in Dassari, nitrification was much less than at 

Dano. However, because of the complexity of relationship between different soil 

attributes (pH, texture, dissolved organic C, nutrient availability, etc.) and nitrification, 

these factors cannot simply explain the potential of nitrification (Rudebeck and 

Persson 1998; Walley 2016). Mineralization potential and soil N supplying capacity are 

general measures of soil quality, fertility and productivity (Deenik 2006). However, due 

to the high mobility of nitrate in the soil system, the lateral fluxes in inland valleys and 

the temporal disconnect between mineralization/nitrification during DWT and N 

uptake during the wet season, direct effects of mineralization on productivity could 

not be shown in the present study. In fact, high soil N mineralization and nitrate 

accumulation was not related to wet season yield, indicating the likelihood of nitrate 

having been lost towards the end of DWT. Such N losses are likely to affect long-term 
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soil fertility (Ward 2015) and to affect the production levels in small-scale low-input 

production systems of West Africa. These findings suggest the need to improve native 

soil N management during DWT and to implement N- conserving options for long-term 

benefits on systems productivity.  

 

5.4.4 Conclusion 

We conclude that tillage affects soil N dynamics during DWT, but depending on 

environmental conditions, the extent of which depending on the soil moisture regime. 

Soil moisture differs by toposequence position and is determined by rainfall. Reduced 

projected rainfall during DWT will lead to more nitrate accumulation in aerobic soils, 

while increased rainfall will stimulate lateral translocation of nitrate, accelerate 

changes in soil aeration status and enhance nitrate losses. Both scenarios will require 

N management options that conserve native soil N, mainly by temporary 

immobilization in the biomass of growing vegetation during DWT and its return to the 

soil upon incorporation / land preparation for wet season lowland rice.  
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6 GENERAL DISCUSSION 

 

Inland valleys in West Africa occur abundantly and constitute an important potential 

for staple food crops and their production by small-scales farmers (Windmeijer and 

Andriesse 1993). Due to favorable hydrological conditions, rice is widely grown in the 

valley bottoms, benefitting from the lateral inflow of water, but also of nutrients and 

sediments from adjacent slopes. Combined with recent advances in rice breeding and 

the release of new rainfed genotypes, adapted to variable hydrologically conditions in 

inland valley bottom lands and that efficiently using limited nutrients, such lowland 

environments provide opportunities for increasing yields and regional production of 

rice in the inland valley landscape of West Africa.  However, grain yields remain low 

and are far below the ecological and genetic potential of rice (Becker et al. 2003; 

Haefele et al. 2013; Saito et al. 2012; Saito et al. 2013). One of the main culprits of low 

productivity is inherently low fertility of the soils (Windmeijer and Andriesse 1993). 

Mineral and organic fertilizers can increase crop productivity. However financial limit 

their use by small-scale farmers who continue to depend largely on the native supply 

of nutrients, mostly N, from the soil. However, the soil nutrient reservoir is increasingly 

depleted by intensified land use combined with inappropriate management practices 

and a lack of residue cycling. Extreme climatic conditions further deteriorate the soil 

resource base, particularly in semi-arid environments. The research questions 

addressed in this thesis relate to the fact that low crop productivity in inland valleys of 

the dry savanna zone are closely related to soil N dynamics and N losses during the 

dry-to-wet transition season period (DWT), calling for improved management 

strategies that are geared to a more effective use of native soil N to enhance crop 

productivity in the short-term and sustain soil fertility in longer-term. Such strategies 

need to consider both the temporal (seasonality of element dynamics) as well as the 

spatial dimension (fluxes along toposequence) of processes occurring in the soil. The 

following sections discuss first the process of seasonal soil N dynamics along a valley 

toposequence and its implications for the N nutrition and yield of lowland rice. 

Subsequently, it discusses strategies aimed at avoiding soil nitrate-N build-up and N 
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cycling and conservation. Finally, the importance of selected factors modulating the 

extent of seasonal N dynamics and determining the effectiveness of technical options 

for soil N conservation are presented in view of regionalizing and upscaling our process 

understanding to the dry savanna zone of West Africa.  

 

6.1 Seasonal soil N dynamics along the toposequence and its effect on lowland rice 

We hypothesized that nitrate-N is not only formed by in-situ mineralization after the 

onset of the rains, it is also vertically leached and horizontally translocated along the 

valley toposequence, contributing to large nitrate peaks occurring during DWT in 

lowland soils and potentially increasing rice agronomic performance during the wet 

season. Chapter 3 provided the evidence of the Birch-effect (transient nitrate 

mineralization peak) to occur during DWT at all levels of the toposequence, following 

the rewetting of the soil after a prolonged dry season (Figure 3.1) and represents a 

significant share of the total N balance (Table 4.1). Larger nitrate amounts in lowland 

than in slope soils point to the presence of lateral nitrate fluxes that are highest once 

the rains have established as shown before from humid forest environments of West 

Africa (Bognonkpe and Becker 2000; Bognonkpe 2004). We suggest that nitrate 

translocation to the valley bottom is mainly the result of subsurface inflow which will 

contribute to deplete soil N on the slopes and thus, contribute the widely reported 

nutrient mining of African upland soils (Smalling et al. 1997). The present study 

showed that 9- 40 kg ha-1 of NO3-N having been translocated from some 100 m of 

slope length into the valley bottom lands during DWT. Considering the whole Dano 

watershed covering an area of some 600 km² and with 60-90 km² of valley bottoms, a 

total amount of 54-81,000 kg of native soil N are “stolen” every year from the 

uplands/slopes simply owing to the fact that the rains have started at a time when the 

landscape is largely bare of vegetation cover. 

The transient nature of the nitrate peak in the lowland during DWT and 

before the establishment of rice suggests that this nitrate is lost and does not or only 

to a low extent contribute to rice production. This assumption is strengthened by 
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previous reports from Asia and the humid zone of West Africa (Bognonkpe and Becker 

2000; Pande et al. 2009).  

 

6.2 Soil nitrogen management during DWT and its effects on rice. 

The combined processes of large in-situ N mineralization, its lateral translocation into 

the wetland with reduced soil aeration status, and the resulting losses by microbial 

respiration (denitrification), and the absence of significant effects of N mineralization 

and /or translocation on lowland rice performance attributes, motivated our studies 

on assessing the effects of soil N conservation and/or N addition by system-inherent N 

sources. As shown in chapter 4, soil N can be managed in different ways by cultivating 

fast growing cover crops, either N-fixing legume or non-N-fixing grasses (Table 4.1). 

The absorption of nitrate by the growing biomass of such pre-rice vegetation types can 

lead to a temporary immobilization of nitrate that is otherwise prone to losses. Upon 

incorporation of the biomass into the soil in the process of land preparation for rice 

establishment, this “saved” as well as the ”added” N are restituted in organic form to 

the soil where it can benefit the rice crop after its decomposition (Table 4.2). Similarly 

to these findings, Logah et al. (2011) showed that organic amendments were able to 

immobilize soil N in Ghana. In a rice-wheat rotation system in Nepal, Pande et al. 

(2009) reported grain yield gains varying from 1 to 2 Mg ha-1, depending of the type of 

the pre-rice crop, its capacity to absorb soil N and its N addition by biological N2 

fixation. Our findings support that up to 2 t ha-1 of additional rice grain can be 

produced with an appropriate soil N management during DWT.  

In Burkina Faso, as in many parts of the West African savanna, demographic 

pressure has led to a near complete disappearance of fallow period that traditionally 

contributed to restore soil fertility between crop cycles (Becker and Johnson 2001). 

With the continuous cropping and in the absence of replacing the removed nutrients,  

soil fertility tends to rapidly decline with associated effects on the grain yield of rice 

(Becker et al. 2003; Saito et al. 2013; Haefele et al. 2013). Considering the potential of 

inland valley in the country and the present findings, we conclude that pre-rice cover 

crops can play a key role in sustaining soil fertility and increasing regional production in 
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low-input systems. However, growing crops during the DWT may not be possible in 

very dry environments or in years when the rains start suddenly and DWT becomes too 

short to accumulate sufficient biomass and absorb sufficient quantities of soil N. Also 

the N contribution by biological N2 fixation in pre-rice green manure legumes is often 

limited by low soil P availability (Ro et al. 2016). Finally, the investment of labor for 

establishing and incorporating green manure crops can be limiting adoption in labor-

strapped situations (Ali et al. 2000), and unsecure land tenure has been shown to be a 

general disincentive for farmers to invest in soil fertility capital-building (Hamadou et 

al. 2005). Thus, technology options are available and have proven to be effective in 

managing native soil N for increased wet season rice yields, but their actual use in 

West Africa will require defining target environments and appropriate social-ecological 

niches for larger-scale adoption.  

 

6.3 Effects of modulating factors and its improved management 

Soil mineralization potential and related N dynamics show complex relationship with a 

number of factors that may modulate the extent of these processes. Such factors may 

comprise site effects (soil type and climate) as well as management effects (tillage, 

vegetation cover of valley slopes). We therefore hypothesized that soil disturbance via 

tillage, rainfall variability and soil type will differentially influence native soil N 

dynamics during the DWT and hence lowland rice performance. We have shown that 

tillage could enhance soil N mineralization but the trend was highly variable across 

years, depending on environmental conditions. Although tillage can create favorable 

conditions to soil microbial activity, it is not a key to accumulation of inorganic N in the 

soil. Several earlier studies could show that apparent C gains associated with reduced 

tillage are rather the result of a redistribution of C near soil surface (Maqsood et al. 

2013; Premov et al. 2014) or associated with organic inputs (Yagioka et al. 2014).  

We have showed that reduced rainfall will increase the nitrate accumulation 

in the soil with little apparent nitrate losses occurring during DWT. One the other 

hand, increased rainfall leads to a rapid and near complete disappearance of nitrate 

from lowland soils. The findings largely agree with previous studies suggesting that low 
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N accumulation in soils of wet environments is likely related to massive leaching (Gu 

and Riley 2010) and denitrification from the saturated soils Cregger et al. 2014). 

Models predict both dryer and wetter futures for West Africa. The dry scenario is likely 

to result in important accumulation of NO3-N in the soil but rather poor use by the 

lowland vegetation. On the other hand, the wet scenario is likely to result in high 

nitrate translocation of rapid denitrification and hence poor availability to the wetland 

vegetation.    

Finally, the high site variable of mineralization and fluxes of nitrate are likely 

due to combined effects of climatic differences between sites, to different geo-

morphological settings (i.e., length and steepness of valley slopes) as well as to soil 

physical and chemical characteristics. Despite large site – related differences in 

mineralization, translocation and the fate of soil nitrate, the yield of season rice 

responded only slightly to N dynamics during DWT. This fact points to the need for 

management approaches that contribute to conserving native soil N for enhancing rice 

production. The use of such-called “nitrate catch crops” in the pre-rice niche appears a 

most promising approach, but necessitates the definition of niches and extrapolation 

domains.  



 

 

 



Louis Yameogo                                                                                                References  

67 

 

7 REFERENCES 

 

Africa Rice Center (2011) Boosting Africa’s rice sector: A research for development 

strategy 2011-2020, Cotonou, Benin 

Ali M (1999) Evaluation of green manure technology in tropical lowland rice systems. 

Field Crops Res 61:61-78 

Amanuel G, Kühne RF, Tanner DG, Vlek PLG (2000) Biological nitrogen fixation in Faba 

bean (Vicia Faba L.) in the Ethiopian highlands as affected by P fertilization and 

inoculation. Biol Fert Soils 32 (5):353-359 

Angás P, Lampurlanés J, Cantero-Martínez C (2006) Tillage and N fertilization. Soil 

Tillage Res 87 (1): 59-71 

Aurona S, Avelino B (2010) Carbon accumulation in soil. Ten-year study of conservation 

tillage and crop rotation in a semi-arid area of Castile-Leon, Spain. Soil Tillage 

Res 107 (2010): 64-70. 

Ayoub AT (1998) Extent, severity and causative factors of land degradation in the 

Sudan. J Arid Environ 38 (3):397-409 

Badalíková B (2010) Influence of soil tillage on soil compaction. In Soil Engineering, 

edited by Dedousis A.P. and Bartzanas T., 20: 19-30. Berlin, Heidelberg: 

Springer Berlin Heidelberg  

Baker JM, Ochsner TE, Venterea RT, Griffis JT (2007) Tillage and soil carbon 

sequestration, what do we really know? Agric Ecosyst Environ 118:1-5 

Baldwin KR, Creamer GN (2006) Cover crops for organic farms. North Carolina 

Cooperative Extension Service, Raleigh, NC, USA 

Balesdenta J, Chenu C, Balabane CM (2000) Relationship of soil organic matter 

dynamics to physical protection and tillage. Soil Tillage Res 53 (3-4): 215-230 

Bationo A, Kihara J, Waswa B, Ouatara B, Vanlauwe B (2005) Technologies for 

sustainable management of sandy Sahelian soils. Food and Agricultural 

Organization of the United Nations, Rome, Italy, pp 1-19 

Bationo A, Lompo F, Koala S (1998) Research on nutrient flows and balances in West 

Africa: state of the art. Agric Ecosyst Environ 71:19-35 



Louis Yameogo                                                                                                References  

68 

 

Bationo A, Kihara J, Vanlauwe B, Waswa B, Kimetu J (2007) Soil organic carbon 

dynamics, functions and management in West African agro-ecosystems. Agric 

Sys 94 (1):13-25 

Bazié YG, Guissou SR, Ilboudo WFA, Aparisi MA (2014) Analyse des incitations par les 

prix pour riz au Burkina Faso. Série de notes techniques, SPAAA, FAO, Rome, 

Italy. 

Becker M (2003) Potential von Leguminosen zur Gründüngung und 

Einsatzmöglichkeiten im tropischen Reisanbau. Books on Demand GmbH, 

Norderstedt, ISBN: 3-8334-0691-7 

Becker M, Asch F, Maskey SL, Pande KR, Shah SC, Shrestha S (2007) Effects of transition 

season management on soil N dynamics and system N balances in rice–wheat 

rotations of Nepal. Field Crops Res 103(2):98-108 

Becker M, Asch F, Maskey SL, Pande KR, Shah SC, Shrestha S (2007) Effects of transition 

season management on soil N dynamics and system N balances in rice–wheat 

rotations of Nepal. Field Crops Res 103(2):98-108 

Becker M, Johnson DE (1998) Rice yield and productivity gaps in irrigated systems of 

the forest zone of Côte d’Ivoire. Field Crops Res 60:201-208 

Becker M, Johnson DE (1999) Legumes as dry season fallow in upland rice-based 

systems of West Africa. Biol Fert Soils 27:358-367 

Becker M, Johnson DE (2001) Cropping intensity effects on upland rice yield and 

sustainability in West Africa. Nutr Cycl Agroecosys 59:128-133 

Becker M, Johnson DE, Wopereis MCS, Sow A (2003) Rice yield gaps in irrigated 

systems along an agro-ecological gradient in West Africa. J Plant Nutr Soil Sci 

166:61-67 

Becker M, Ladha JK (1996) Adaptation of Green Manure Legumes to Adverse 

Conditions in Rice Lowlands. Biol Fert Soils 23:243-248 

Becker M, Ladha JK, Ali M (1995) Green manure technology: Potential, usage, 

limitations. A case study for lowland rice. Plant Soil 174:181-194 



Louis Yameogo                                                                                                References  

69 

 

Becker M, Ladha JK, Ottow JCG (1990) Growth and N2-fixation stem-nodulating 

legumes and their effect as green manure on lowland rice. Soil Biol Biochem 

22:1109-1119 

Birch HF (1960) Nitrification after periods of dryness. Plant Soil 12:81-96 

Blackmer T, Borton C, Porter R, Kyveryga P, Reeg P, Sweeney M, Lane M (2008) 

Undertanding soil nitrogen dynamics. Agronomic research and economic 

performance, a publication of the Iowa Soybean Association, Iowa, USA. 12pp. 

Blanco-Canqui H, Lal R (2008) No-tillage and soil carbon sequestration: An on farm 

assesment. Soil Sci Soc Am J 72:693-701 

Bognonkpe JP (2004) Effect of land use on soil N dynamics at watershed scale in Africa. 

Bonner Agrikulturchemische Reihe, PhD thesis, University of Bonn, ISBN:3-

937941-00-2 

Bognonkpe JP, Becker M (2009) Native Soil N mineralization in major rice based 

cropping systems. J Anim Plant Sci 4:384-398 

Brye KR, Dan CO, Bryan TS, and others (2012) Rice rotation and tillage effects on soil 

aggregation and aggregate carbon and nitrogen dynamics. Soil Sci Soc Am J 76 

(3):994-1004 

Buhler DD (1994) Influence of tillage systems on weed population dynamics and 

Management in corn and soybean in the central USA. Agron J 35(5): 1247-1258. 

Buresh RJ, De Datta SK (1991) Nitrogen dynamics and management in rice legume 

cropping systems. Adv Agron 45:1-59 

Cacciotti E, Benanti G, Saunders M, Tobin B, Osborne B (2011) Soil rewetting and the 

"Birch effect" in different ecosystems, Geophysical Research Abstracts 13 

Calegari A, Hargrove WL, Rheinheimer DDS, Ralish R, Tessier D, Tourdonnet S, 

Guimaraes MF (2008) Impact of long term no-tillage and cropping system 

management on soil organic carbon in an Oxisoil: A model for sustainability. 

Agron J 100:1013-1019 

Callo-Concha D, Gaiser T, Ewert F (2012) Farming and cropping systems in the West 

African Sudanian savanna. WASCAL research area: northern Ghana, southwest 

Burkina Faso and northern Benin. ZEF Working Paper Series 



Louis Yameogo                                                                                                References  

70 

 

Carsky RJ, Tarawali SA, Becker M, Chikoye D, Tian G, Sanginga N (1998) Mucuna-

herbaceous cover legume with potential for multiple uses. Resource and crop 

Management Research Monograph No. 25. IITA, Ibadan, Nigeria 

CEFCOD (2013) Situation de références des principales filières agricoles au Burkina 

Faso. Centre d’étude, de formation et de conseil en développement, 

Ouagadougou, Burkina Faso 

Christopher SF, Mishra RLU (2009) Regional study of no-till effects on carbon 

sequestration in the Midwestern United State. Soil Sci Soc Am J 73 (1):209-216 

Cooper PJM, Dimes J, Rao KPC, Shapiro B, Shiferaw B, Twomlow S (2008) Coping better 

with current climatic variability in the rain-fed farming systems of sub-Saharan 

Africa: An essential first step in adapting to future climate change? Agric 

Ecosyst Environ 127: 85-92 

Crammer KK, Ssali H, Nansamba A, Vlek PLG (2007) The potential benefits of azolla, 

velvet bean (Mucuna Pruriens Var. Utilis) and N fertilizers in rice production 

under contrasting systems in eastern Uganda. In Advances in Integrated Soil 

Fertility Management in Sub-Saharan Africa: Challenges and Opportunities, pp 

423-434 

Cregger MA, McDowell NG, Pangle RE, Pockman WT, Classen AT (2014) The Impact of 

precipitation change on nitrogen cycling in a semi-arid ecosystem. Edited by 

Shuli Niu. Functional Ecology 28 (6):1534-1544  

D’odorico P, Francesco L, Porporato A, Rodriguez-Iturbe I (2003) Hydrologic controls on 

soil carbon and nitrogen cycles. II. A case study. Advances in Water Resources 

26(1):59-70 

Deenik J (2006) Nitrogen mineralization potential in important agricultural soils of 

Hawai’i. Soil and Crop Management 15:1-5 

Dobermann A, Fairhurst TH (2000) Rice: nutritional disorders and nutrient 

management. International Rice Research Institute & Potash and Phosphate 

Institute. Singapore 

Douglas I (2006) The local drivers of land degradation in South-East Asia. Geographical 

Research 44 (2):123-134 



Louis Yameogo                                                                                                References  

71 

 

El-Haris MK, Cochran VL, Elliott LF, Bezdicek DF (1983) Effect of tillage, cropping, and 

fertilizer management on soil nitrogen mineralization potential. Soil Sci Soc Am 

J 47(6):1157-1161 

Engels KA, Becker M, Ottow JCG, Ladha JK (1995) Influence of P and PK fertilization on 

N2 fixation of the stem-nodulating green manure legume Sesbania rostrata in 

different marginally productive wetland rice soils. Biol Fert Soils 20:107-112 

Erenstein O (2002) Crop residue mulching in tropical and semi-tropical countries: An 

evaluation of residue availability and other basic technological implications. Soil 

Tillage Res 67(2):115-133 

Fairhurst T, eds (2012) Handbook for integrated soil fertility management. Africa Soil 

Health Consortium, Nairobi, Kenya 

FAO (2014) Analyse des incitations par les prix pour riz au Burkina Faso. Série de notes 

techniques, SAPAA, par Bazié YG, Guissou SR, Ilboudo WFA, Mas Aparisi A. 

Rome 

FAO (2016) Food and Agriculture Organization (FAO)/International Institute of Applied 

Systems Analysis (IIASA). Global Agro-ecological Zones (GAEZ v3.0) Model 

Documentation, FAO, Rom, Italy 

Forkuor G (2014) Agricultural land use mapping in West Africa using multi-sensor 

satellite imagery. University of Wuerzburg: Wuerzburg, Germany 

Gami S, Ladha J, Pathak H, Shah M, Pasuquin E, Pandey S, Hobbs P, Joshy D, Mishra R 

(2001) Long-term changes in yield and soil fertility in a twenty-year rice-wheat 

experiment in Nepal. Biol Fert Soils 34 (1):73-78  

George T, Buresh RJ, Ladha JK, Punzalan G (1998) Recycling in-situ of legume-fixed and 

soil nitrogen in tropical lowland rice. Agron J 90:429-437 

George T, Buresh RJ, Ladha JK, Punzalan G (1998) Recycling in-situ of legume-fixed and 

soil nitrogen in tropical lowland rice. Agron J 90:429-437 

George T, Ladha JK, Garrity DP, Buresh RJ (1994) Legumes as nitrate catch crops during 

the dry to wet transition in lowland rice cropping system. Agron J 86:267-273 



Louis Yameogo                                                                                                References  

72 

 

George T, Ladha JK, Garrity DP, Torres RO (1995) Nitrogen dynamics as nitrate catch 

crops during dry to wet transition in lowland rice cropping systems. Agron J 

86:267-273 

George T, Ladha KJ, Garrity PD, Buresh RJ (1993) Nitrate dynamics during the aerobic 

soil phase in lowland rice-based cropping systems. Soil Sci Soc Am J 57 (6):1526-

1532  

Giller KE, Tittonell P, Rufino MC, van Wijk MT et al (2011) Communicating complexity: 

Integrated assessment of trade-offs concerning soil fertility management within 

African farming systems to support innovation and development. Field Crops 

Res 104 (2):191-203 

Giller KE, Witter E, Corbeels M, Tittonell P (2009) Conservation agriculture and 

smallholder farming in Africa: The heretics’ view. Field Crops Res 114 (1):23-34  

Groffman PM, Hardy JP, Fisk MC, Fahey TJ, Driscoll CT (2009) Climate variation and soil 

carbon and nitrogen cycling processes in a Northern hardwood Forest. 

Ecosystems 12 (6):927-943 

Gu CI, Riley WJ (2010) Combined effects of short -term rainfall patterns and soil 

texture on soil nitrogen cycling-A modeling analysis. J Contam Hydrol 112 (1-

4):141-54 

Guissou R, Ilboudo F (2012) Analyse des incitations et pénalisations pour le riz au 

Burkina Faso. Série notes techniques, SPAAA, FAO, Rome, Italy 

Haefele SM, Saito K, N’Diaye KM, Mussgnug F, Nelson A, Wopereis MCS (2013) 

Increasing rice productivity through improved nutrient use in Africa. In: CABI 

2013. Realizing Africa’s Rice Promise, (ed) MCS Wopereis et al, pp 250-264 

Hammerbeck AL, Stetson SJ, Osborne SL, Schumacher TE, Pikul JL (2012) Corn residue 

removal impact on soil aggregates in a no-till corn/soybean rotation. Soil Sci Soc 

Am J 76 (4):1390-1398 

Haynes RJ (1986) Mineral nitrogen in the plant-soil system. Physiological ecology. 

Orlando: Academic Press 



Louis Yameogo                                                                                                References  

73 

 

Henao J, Baanante C (2006) Agricultural production and soil nutrient mining in Africa: 

Implication for resource conservation and policy development. IFDC Tech. Bull. 

International Fertilizer Development Center. Muscle Shoals, Al. USA. 13 pp 

https://wascal-dataportal.org/wascal_searchportal2/. Accessed 20 March 2016 

Ibrahim B, Polcher J, Karambiri H, Rockel B (2012) Characterization of the rainy season 

in Burkina Faso and it’s representation by regional climate models. Clim Dynam 

39:1287-1302 

IIslam MR, Hossain MB, Siddique AB, Rahman MT, Malika M (2015) Contribution of 

green manure incorporation in combination with nitrogen fertilizer in rice 

production. SAARC Journal of Agriculture 12:134-142 

INERA, DGPER (2010) Renforcement de la disponibilité et de l’accès aux statistiques 

rizicoles: une contribution à l’initiative d’urgence pour le riz en Afrique 

Subsaharienne. AfricaRice, rapport pays. Ouagadougou, Burkina Faso 

IPCC (2007) Summary for policymakers. In: climate change 2007: the physical science 

basis. Contribution of working group I to the fourth assessment report of the 

intergovernmental panel on climate change [Solomon S., Qin D., Manning M., 

Chen Z., Marquis M., Averyt K.B., Tignor M. and Miller H.L. (eds.)]. Cambridge 

University Press, Cambridge, United Kingdom and New York, NY, USA 

IPCC, Ottmar Edenhofer, eds (2014) Climate Change 2014: Mitigation of Climate 

Change: Working Group III Contribution to the fifth assessment report of the 

Intergovernmental Panel on Climate Change. New York, NY: Cambridge 

University Press 

IPNI (2014) Nitrate leaching. International plant nutrition institute, nitrogen notes, 

number 4. www.ipni.net, consultation date: 19-08-2014 

ISRIC (2013) World soil information. www.isric.org, Accessed 21 March 2016 

Jongen M, Lecomte X, Unger S, Fangueiro D, Pereira JS (2013) Precipitation variability 

does not affect soil respiration and nitrogen dynamics in the understorey of a 

Mediterranean Oak woodland. Plant Soil 372 (1-2):235-251 



Louis Yameogo                                                                                                References  

74 

 

Jorgenson AK, Burns TJ (2007) Effects of rural and urban population dynamics and 

national development on deforestation in less-developed countries, 1990–

2000. Sociological Inquiry 77 (3):460-482 

Kenneth RO, Mahdi MA, Rattan L, Birl L (2014) Experimental consideration, treatments, 

and methods in determining soil organic carbon sequestration rates. Soil Sci Soc 

Am J 78:348-360 

Ker A, and International Development Research Centre (Canada) (1995) Farming 

systems of the African savanna a continent in crisis. Ottawa: International 

Development Research Centre 

Koning N, Smaling E (2005) Environmental crisis or ‘lie of the land’? The debate on soil 

degradation in Africa. Land Use Policy 22:3-11 

Ladha JK, Dawe D, Ventura TS, Singh U, Ventura W, Watanabe I (2000) Long-term 

effects of urea and green manure on rice yields and nitrogen balance. Soil Sci 

Soc Am J 64:1993-2001 

Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123 (1):1-

22 

Latt YK, Myint AK, Yamakawa T, Ogata K, et al (2009) The effects of green manure 

(Sesbania rostrata) on the growth and yield of rice. Journal of the Faculty of 

Agriculture, Kyushu University 54:313-319 

Li S, Xianjun J, Wang X, Wright AL (2015) Tillage effects on soil nitrification and the 

dynamic changes in nitrifying microorganisms in a subtropical rice-based 

ecosystem: a long-term field study. Soil Tillage Res 150:132-138 

Liu X, Herbert SJ, Hashemi AM, Zhang X, Ding G (2006) Effects of agricultural 

management on soil organic matter and carbon transformation-a review. Plant 

Soil Env 52:531-543 

Liu X, YuChun Q, YunShe D, Qin P, He Y, LiangJie S, JunQiang J, CongCong C (2014) 

Response of soil N2O emissions to precipitation pulses under different nitrogen 

availabilities in a semiarid temperate steppe of Inner Mongolia, China. Journal 

of Arid Land 6 (4):410-422 



Louis Yameogo                                                                                                References  

75 

 

Lodoun T, Giannini A, Traore PS, Some L, Sanon M, Vaksmann M, Rasolodimby JM 

(2013) Changes in seasonal descriptors of precipitation in Burkina Faso 

associated with late 20th century drought and recovery in West Africa, 

environmental development  

Logah V, Safo EY, Quansah C (2011) Evaluation of nitrogen mineralization dynamics 

following amendments application under cropping systems on a ferric acrisol in 

Ghana. Int J Environ Sci Dev 2 (2):133-138 

Lou Y, Liang W, Xu M, He X, Wang Y, Zhao K (2011) Straw coverage alleviates seasonal 

variability of the topsoil microbial biomass and activity. Catena 86:117-120 

 Ma L, Yuan S, Guo C, Wang R (2014) Carbon and nitrogen dynamics of native Leymus 

chinensis grasslands along a 1000 Km longitudinal precipitation gradient in 

northeastern China. Biogeosciences 11 (24):7097-7106 

Mahdi MA, Xinhua Y, Mark AL (2004) Soil carbon and nitrogen change as influenced by 

tillage and cropping systems in some Iowa soils. Agric Ecosyst Environ 105: 635-

647 

Mandal UK, Singh G, Victor US, Sharma KL (2003) Green Manuring: its Effect on Soil 

Properties and Crop Growth under Rice-wheat Cropping System. Eur J Agron 

19:225-237 

Maqsood S, Geisseler D, Rauber R, Ludwig B (2013) Long-term impacts of different 

tillage intensities on the C and N dynamics of a haplic luvisol. Archives of 

Agronomy and Soil Science 59 (11):1517-28 

Mfilinge A, Mtei K, Ndakidemi P (2014) Effect of rhizobium inoculation and 

supplementation with phosphorus and potassium on growth and total leaf 

chlorophyll content of bush bean Phaseolus vulgaris, L. Agr Sci 5:1413-1426 

Milder JC, Majanen T, Scherr SJ, et al (2016) Performance and potential of 

conservation agriculture for climate change adaptation and mitigation in sub-

Saharan Africa. Conservation Agriculture for Climate Change Adaptation and 

Mitigation 



Louis Yameogo                                                                                                References  

76 

 

Molenat J, Gascuel-Odoux C, Ruiz L, Gruau G (2008) Role of water table dynamics on 

stream nitrate export and concentration in agricultural headwater catchment 

(France). J Hydrol 348 (3-4):363-378  

Nascente AS, Carlos ACC, Tarcisio C (2013) Ammonium and nitrate in soil and upland 

rice yield as affected by cover crops and their desiccation time. Pesqui 

Agropecu Bras 47:1699-1706 

Nicholson ES (2001) Climatic and environmental change in Africa during the last two 

centuries. Clim Res 17:123-144 

Nkonya EM, Pender JL, Kaizzi KC, Kato E, Mugarura S, Ssali H, Muwonge J (2008) 

Linkages between land management, land degradation, and poverty in Sub-

Saharan Africa: The case of Uganda (No. 159). International Food Policy 

Research Institute (IFPRI) 

NRC (National Research Council), and National Research Council, eds (2010) Toward 

sustainable agricultural systems in the 21st century. Washington, DC: National 

Academies Press 

Ouédraogo E, Mando A, Brussaard L, Stroosnijder L (2007) Tillage and fertility 

management effects on soil organic matter and sorghum yield in semi-arid 

West Africa. Soil Tillage Res 94 (1):64-74 

Ouedraogo M, Ouedraogo S, Kabore M (2011) Analyse de la complexité de la filière riz 

au Burkina Faso. Programme de renforcement et de recherche sur la sécurité 

alimentaire en Afrique de l’Ouest (PRESAO), Rapport final 5, 2011-2012 

Page AL, Miller RH, Keeney DR (1982) Methods of soil analysis; Part 2. ASA - SSSA Inc. 

Publishers, Madison, Wisconsin, USA 

Pande KR, Becker M (2003) Seasonal soil nitrogen dynamics in rice-wheat cropping 

systems of Nepal. J Plant Nutr Soil Sci 166:499-506 

Pandey KR, Shah SC, Becker M (2009) Management of native soil nitrogen for reducing 

nitrous oxide emissions and higher rice production. Journal of Agriculture and 

Environment 9:1-9 



Louis Yameogo                                                                                                References  

77 

 

Peel MC, Finlayson BL, Mcmahon TA (2007) Updated world map of the Köppen-Geiger 

climate classification. Hydrol Earth Syst Sc Discussions, European Geosciences 

Union 11 (5):1633-1644  

Peoples MB and Australian Centre for International Agricultural Research (ACIAR) 

(1989) Methods for evaluating nitrogen fixation by nodulated legumes in the 

field. Canberra: Australian Centre for International Agricultural Research. ISBN: 

978-0-949511-90-4 

Premrov A, Coxon CE, Hackett R, Kirwan L, Richards KG (2014) Effects of over-winter 

green cover on soil solution nitrate concentrations beneath tillage land. Sci 

Total Environ 470-471: 967-974  

Qasim M, Hubacek K, Termansen M (2013) Underlying and proximate driving causes of 

land use change in district swat, Pakistan. Land Use Policy 34:146-157  

Regelij J, Meinshausen M, Knutti R (2012) Global warming under old and new scenarios 

using IPCC climate sensitivity range estimates. Nature Climate Change 2:248-

253 

Ro S, Becker M, Manske G (2016) Effect of P management in rice-mungbean rotations 

on sandy soils of Cambodia. J Plant Nutr Soil Sci 179:481-487 

Rudebeck A, Persson T (1998) Nitrification in organic and mineral soil layers in 

coniferous forests in response to acidity. Environ Pollut 102:377-383 

Russell CA, Fillery IRP, Bootsma N, Mcinnes KJ (2002) Effect of temperature and 

nitrogen source on nitrification in a sandy soil. Communications in Soil Science 

and Plant Analysis, 33 (11-12):1975-1989 

Sahrawat KL (2008) Factors affecting nitrification in soils. Communications in soil 

science and plant analysis 39 (9-10):1436-1446 

Saito K, Nelson A, Zwart SJ, Niang A, Sow A, Yoshida H, Wopereis MCS (2013) Towards 

a better understanding of biophysical determinants of yield gaps and the 

potential for expansion of rice-growing area in Africa. In: Wopereis, MCS, 

Johnson DE, Ahmadi N, Tollens E, Jalloh A (Ed) Realizing Africa's Rice Promise. 

CAB International, CABI, Wallingford, UK, pp 188-203 



Louis Yameogo                                                                                                References  

78 

 

Saito K, Sokei Y, Wopereis MCS (2012) Enhancing rice productivity in West Africa 

through genetic improvement. Crop Sci 52:484-493 

Salinas-Garcia JR, Hons FM, Matocha JE, Zuberer DA (1997) Soil carbon and nitrogen 

dynamics as affected by long-term tillage and nitrogen fertilization. Biol Fertil 

Soils 25 (2):182-188 

Salvati L, Zitti M (2009) Assessing the impact of ecological and economic factors on 

land degradation vulnerability through multiway analysis. Ecological Indicators 

9 (2):357-563 

Sanchez PA (2002) Soil fertility and hunger in Africa. Science 295 (5562):2019-2020. 

Schmidhalter U (2005) Development of a quick on-farm test to determine nitrate levels 

in soil. J Plant Nutr Soil Sci 168:432-438  

Seck PA, Toure A, Coulibaly JY, Diagne A, Wopereis MCS (2013) Africa's rice economy 

before and after the 2008 rice crisis. In: Wopereis, MCS, Johnson DE, Ahmadi N, 

Tollens E, Jalloh A (Ed) Realizing Africa's Rice Promise. CAB International, CABI, 

Wallingford, UK, pp 24-34 

Seeberg-Elverfeldt J, Schlüter M, Feseker T, Kölling M (2005) Rhizon sampling of pore 

waters near the sediment/water interface of aquatic systems. Limnol Oceanogr-

Meth 3 (8):361-371 

Segda Z (2006) Gestion de la fertilité du sol pour une production améliorée et durable 

du riz (Oriza sativa L.) au Burkina Faso : cas de la plaine irrigué de Bagré. Thèse 

présenté à l’UFR/ SVT. Thèse doctorat Université de Ouagadougou, Burkina 

Faso 

Segda Z, Yameogo LP, Bonzi M, Sedogo MP (2014) Le carbone et l’azote dans les 

différentes fractions granulométriques d’un sol brun eutrophe tropical sous 

irrigation de Bagré au Burkina Faso: effets de modes d’apports différents de 

matières organiques et minérales. J Appl Biosci 78:6743-6752 

Sie M, Kabore KB, Dakouo D, Dembele Y, Segda Z, Bado BV et autres (2006) Une variété 

confirmée pour la riziculture de bas-fonds au Burkina Faso. Fiche technique, 

Institut de l’Environnement et de Recherches Agricoles – INERA, Bobo-Dioulasso, 

Burkina Faso 



Louis Yameogo                                                                                                References  

79 

 

Smaling EMA, Nandwa SM, Jansen BH (1997) Soil fertility in Africa is a stake. In: Buresh 

R.J., Sanchez P.A. & Calhoun F. (eds) Replenishing Soil Fertility in Africa, pp 46-

61. American Society of Agronomy and Soil Science Society of America, Special 

Publication no. 51, SSSA and ASA, Madison, WI, USA 

Smethurst PJ, Petrone KC, Langergraber G, Baillie CC, Worledge D, Nash D (2014) 

Nitrate dynamics in a rural headwater catchment: measurements and modelling: 

nitrate dynamics in a headwater catchment. Hydrol Process 28 (4):1820-1834  

SNDR (2011) Stratégie nationale de développement de la riziculture. Ministère de 

l’agriculture de l’hydraulique et des ressources halieutiques. Ouagadougou, 

Burkina Faso 

Soler CM, Tojo VB, Bado K, Traore W, Bostick M, Jones JW, Hoogenboom G (2011) Soil 

organic carbon dynamics and crop yield for different crop rotations in a 

degraded ferruginous tropical soil in a semi-arid region: a simulation approach. 

J Agric Sci 149 (5):579-593 

Steup G (2016) Precipitation data Ouri-Yori-2/Benin, 2013-14. https://wascal-

dataportal.org/wascal_searchportal2/. Accessed 20-03-2016 

Sullivan DM, Nick A, et al (2012) Estimating plant-available nitrogen release from cover 

crops. [Covallis, Or.]: Oregon State University Extension Service 

Thierfelder C, Wall PC (2009) Effects of conservation agriculture techniques on 

infiltration and soil water content in Zambia and Zimbabwe. Soil Tillage Res 105 

(2):217-227 

Touré A, Becker M, Johnson DE, Kone B, Kossou DK, Kiepe P (2009) Response of 

lowland rice to agronomic management under different hydrological regimes in 

an inland valley of Ivory Coast. Field Crops Res 114 (2):304-310  

Unger S, Máguas C, Pereira JS, Teresa SD, Werner C (2012) Interpreting post-drought 

rewetting effects on soil and ecosystem carbon dynamics in a Mediterranean 

Oak savannah. Agr Forest Meteorol 154-155:9-18  

Unger S, Máguas M, Pereira JS, Teresa SD, Werner C (2010) The influence of 

precipitation pulses on soil respiration – Assessing the ‘Birch Effect’ by stable 

carbon isotopes. Soil Biol Biochem 42 (10):1800-1810  



Louis Yameogo                                                                                                References  

80 

 

Unkovich M, and Australian Centre for International Agricultural Research (2008) 

Measuring plant-associated nitrogen fixation in agricultural systems. Canberra, 

ACT: Australian Centre for International Agricultural Research 

Van DN, Douglas I, Mcmorrow J, Lindley S, Thuy Binh DKN, Van TT, Thanh LH, Tho N 

(2008) Erosion and nutrient loss on sloping land under intense cultivation in 

southern Vietnam. Geographical Research 46 (1):4-16  

van Wesenbeeck CFA, Ben Sonneveld GJS, Voortman RL (2016) Localization and 

characterization of populations vulnerable to climate change: two case studies 

in sub-Saharan Africa. Applied Geography 66 (January):81-91 

Vanlauwe B, Descheemaeker K, Giller KE, Huising J, Merckx R, Nziguheba G, Wendt J, 

Zingore S (2015) Integrated soil fertility management in sub-Saharan Africa: 

unravelling local adaptation. Soil 1 (1):491-508 

Walley F (2016) Nitrogen mineralization: what’s happening in your soil? 

http://www.canolawatch.org/wp-content/uploads/2011/11/Fran-Walley-

Nitrogen-Mineralization-2005-Canola-College.pdf. Accessed 12-09-2016 

Ward BB (2013) Nitrification. In: Reference Module in Earth Systems and 

Environmental Sciences. ISBN: 978-0-12-409548-9 

West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop 

rotation: a global data analysis. Soil Sci Soc Am J 66:1930-1946 

White CS, Douglas IM, Craig JA (2004) Regional-scale drought increases potential soil 

fertility in semi-arid grasslands. Biol Fertil Soils 40 (1):73-78 

Windmeijer PN, Andriesse W, eds (1993) Inland valleys in West Africa: An agro-

ecological characterization of rice-growing environments. ILRI Publication 52. 

Wageningen: ILRI. International Land Resources Institute - ILRI, Wageningen, The 

Netherlands 

Wong MTF, Nortcliff S (1995) Seasonal fluctuations of native available N and soil 

management implications. In: Nitrogen Economy in Tropical Soils, 13-26 

 

 



Louis Yameogo                                                                                                References  

81 

 

Yagioka A, Komatsuzaki M, Kaneko N (2014) The effect of minimum tillage with weed 

cover mulching on organic daikon (Raphanus sativus var. longipinnatus cv. 

taibyousoufutori) yield and quality and on soil carbon and nitrogen dynamics. 

Biol Agric Hortic 30 (4):228-242 

Yameogo PL, Segda Z, Dakouo D, Sedogo MP (2013) Placement profond de l’urée (PPU) 

et amélioration de l’efficacité d’utilisation de l’azote en riziculture irriguée dans 

Le périmètre rizicole de Karfiguela au Burkina Faso. J Appl Biosci 70:5523-5530 

Yu Y, Lihong X, Linzhang Y (2014) Winter legumes in rice crop rotations reduces 

nitrogen loss, and improves rice yield and soil nitrogen supply. Agron Sustain 

Dev 34:633-640 

Zougmore R, Mando A, Ringersma J, Stroosnijder L (2003) Effect of combining water 

and nutrient management on runoff and sorghum yield in semiarid Burkina 

Faso. Soil Use Manag (19):257-264 

 

 




