
 
 

Institut für Nutzpflanzenwissenschaften und Ressourcenschutz 

Molekulare Phytomedizin 

Identification and characterization of effector proteins of 

the beet cyst nematode Heterodera schachtii 

 

Dissertation 

zur 

Erlangung des Grades 

Doktor der Agrarwissenschaften  (Dr. agr.) 

der 

Landwirtschaftlichen Fakultät 

der 

Rheinischen Friedrich‐Wilhelms‐Universität Bonn 

 

vorgelegt von 

Samer Samir Habash 

aus 

Jordanien  

 Bonn 2017 

  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Referent: Prof. Dr. Florian M.W. Grundler 

Gutachter: Prof. Andreas Meyer 

Gutachter: Assoc.Prof. Luma Al Banna 

Tag der mündlichen Prüfung: 09.03.2017  

Angefertigt mit Genehmigung der Landwirtschaftlichen Fakultäte der Universitäte Bonn 

  



 
 

 

 

 

 

 

 

 

 

“This work is dedicated to my beloved family” 

-------------------------------------- 
 

 

 

 

   



 
 

Table of contents 

 

Abstract ......................................................................................................................................  i 

Zusammenfassung  ..................................................................................................................... ii  

List of figures  ........................................................................................................................... iii 

List of tables ............................................................................................................................... v 

Chapter 1: An introduction to nematodes .................................................................................. 1 

    1.1 Nematodes and their economic value  .............................................................................. 1 

1.2 Nematode biology and life cycle of H. schachtii   ........................................................... 4 

1.3 Syncytium morphology and physiology  .......................................................................... 6 

1.4 Effectors secreted by the beet cyst nematode H. schachtii  .............................................. 7 

1.5 Identification of nematode effectors  .............................................................................. 11 

1.6 Arabidopsis thaliana as a model plant to study effectors ............................................... 12 

1.7 Transcriptome analysis and PSP selection  .................................................................... 13 

1.8 References   ..................................................................................................................... 16 

Chapter 2: Identification and characterization of a putative protein disulfide-isomerase 

(HsPDI) as a novel effector of Heterodera schachtii .............................................................. 23 

2.1 Summary  ........................................................................................................................ 23 

2.2 Introduction ..................................................................................................................... 24 

2.3 Materials and methods   .................................................................................................. 27  

2.4  Results............................................................................................................................ 32 

2.5 Discussion ....................................................................................................................... 37 

2.6 Figures  ........................................................................................................................... 40 

2.7 References  ...................................................................................................................... 53 



 
 

Chapter 3: Heterodera schachtii Tyrosinase-like protein - a novel nematode effector ........... 60 

3.1 Summary  ........................................................................................................................ 60 

3.2 Introduction ..................................................................................................................... 61 

3.3 Results ............................................................................................................................ 62 

3.4 Discussion  ...................................................................................................................... 65 

3.5 Methods  ......................................................................................................................... 67 

3.6 Figures  ........................................................................................................................... 72 

3.7 References   ..................................................................................................................... 81 

Chapter 4: General conclusion   ............................................................................................... 85 

4.1 References   ..................................................................................................................... 89 

Acknowledgment ..................................................................................................................... 93 

Publication List   ...................................................................................................................... 94 

 

 

  



i 
 

Abstract  

Plant parasitic nematodes (PPN) are considered as economically important pests of a wide 

range of plants including ornamentals, vegetables, and fruit trees. The beet cyst nematode 

Heterodera schachtii causes massive yield loss in sugar beet production. H. schachtii is a 

biotrophic sedentary endoparasite which depends on a specific hypermetabolic syncytial nurse 

cell structure in the host root. To induce and maintain the feeding site, H. schachtii uses a 

specific set of effector proteins that are secreted mostly from the oesophageal glands. 

Identification and functional analysis of these proteins are crucial steps to understand the 

nature of nematode parasitism. In our study, we sequenced the H. schachtii transcriptome via 

Illumina MiSeq. We compared the assembled H. schachtii transcriptome with the available 

nematode ESTs from NEMBASE4 and transcripts from available nematode transcriptomes in 

order to identify new effectors. We found 484 putative secretory proteins specific to plant-

parasitic nematodes (PSP). Further comparison with known H. schachtii ESTs resulted in the 

identification of so far unknown PSPs. The annotation of the identified PSPs showed 

enrichment in certain gene ontologies such as metabolic and catalytic activities in addition to 

growth regulation function. We selected two genes for a detailed functional analysis. Through 

Pfam domain analysis, we identified “HsPDI” encoding a protein disulfide-isomerase domain 

and “Hs-Tyr” encoding a tyrosinase functional domain. To our knowledge, these two domains 

have not yet been described in the context of nematode effector proteins.  

Transcripts of both genes were localized in the esophageal gland of pre-parasitic juveniles, 

and their expression was found to be up-regulated during the parasitic developmental stages. 

Silencing of both genes by RNAi affected nematode development and syncytium formation: 

both females and syncytia were significantly smaller than the controls. On the contrary, 

ectopic expression of the effectors in Arabidopsis increased plant susceptibility to H. 

schachtii. 

Silencing of HsPDI led to syncytia with distinct ultrastructural changes such as less dense 

cytoplasm with distorted and degraded organelles. Treating HsPDI-expressing Arabidopsis 

plants with the defense inducing peptide flg22 triggered ROS burst, but the measured H2O2 

level was lower compared with control plants. Furthermore, treating pre-infective nematode 

juveniles with H2O2caused up-regulation of HsPDI expression. Silencing HsPDI in pre-

infective nematode juveniles induced higher sensitivity to H2O2 stress compared with 

untreated nematodes. Fluorescence microscopy of Nicotiana benthamiana leaves transiently   

expressing HsPDI::GFP showed that it is specifically located in the apoplastic space. Thus, 

our results demonstrate the importance of the HsPDI for the interaction between nematode 

and host as an apoplastic effector, and indicates the possible function of HsPDI as a scavenger 

of plant ROS. 

Ectopic expression of Hs-Tyr in Arabidopsis has a clear impact on plant growth: shoot growth 

was promoted and root architecture was changed. No changes where observed in the root 

length or weight.  Additionally, the presence of Hs-Tyr in the plant caused changes in the 

homeostasis of several plant hormones especially auxin, jasmonate precursor cisOPDA and 

the ethylene precursor ACC. No significant changes of jasmonic acid and salicylic acid levels 

were observed. The transgenic plants were more susceptible to H. schachtii, but not to the 

root-knot nematode Meloidogyne incognita. This indicates that this effector is of specific 

importance for the parasitism of the cyst nematode H. schachtii. The results suggest that Hs-

Tyr interferes with the orchestration of plant hormones in a still unknown way.   

The presented results show that the analyzed PSPs have specific effects on nematode-plant 

interaction and therefore serve as effectors facilitating parasitism.  
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Zusammenfassung 

Pflanzenparasitäre Nematoden sind wirtschaftlich bedeutsame Schaderreger an vielen 

landwirtschaftlichen Kulturen wie auch Zierpflanzen, Gemüse- und Obstarten. Der 

Rübenzystennematode Heterodera schachtii verursacht massive Ertragsverluste in der 

Zuckerrübenproduktion. H. schachtii ist ein biotropher, sedentärer Endoparasit, dessen Entwicklung 

von der Bildung eines hypermetabolischen Nährzellensystems in der Wurzel abhängt. Um dieses 

Nährzellensystem zu induzieren und auf Dauer zu erhalten, verfügt H. schachtii über Effektorproteine, 

die überwiegend in den Ösophagusdrüsen gebildet werden. Die Identifizierung und funktionelle 

Analyse dieser Effektoren sind wichtige Schritte auf dem Weg zu einem tieferen Verständnis des 

Parasitismus des Nematoden. Für unsere Analysen sequenzierten wir das Transkriptom von H. 

schachtii mit einem Illumina MiSeq Gerät. Anschließend wurde das zusammengesetzte Transkriptom 

mit den verfügbaren ESTs aus der Datenbank NEMABASE4 und Transkriptomen weiterer 

Nematoden verglichen, um neue Effektorseqzenzen zu identifizieren. Auf diese Weise wurden 

zunächst 484 mutmaßlich sekretierte Proteine (PSP) identifiziert. Eine weiterer Sequenzvergleich mit 

bekannten ESTs von H. schachtii führte zur Identifizierung bisher unbekannter PSPs. Die Annotation 

dieser neuen PSPs ergab eine Anreicherung bestimmter Genontologien wie z.B. metabolischen und 

katalytischen Aktivitäten und wachstumsregulierenden Funktionen. Es wurden zwei Gene für eine 

detaillierte funktionelle Analyse ausgewählt. Mit Hilfe einer Pfam-Domänenanalyse  konnten 

“HsPDI”, das für eine protein disulfide-isomerase Domäne, sowie “Hs-Tyr”, das für eine Tyrosinase-

Domäne kodiert, identifiziert werden. Beide Domänen waren bisher noch nicht in Zusammenhang mit 

Nematoden-Effektoren gebracht worden.  

Die Transkripte beider Gene konnten in den Ösophagusdrüsen von prä-infektiösen Nematodenlarven 

lokalisiert werden, wobei die Genexpression während der parasitischen Entwicklungsstadien 

aufreguliert ist. Das Stilllegen der beiden Gene mit Hilfe von RNAi hatte Auswirkungen auf die 

Nematodenentwicklung wie auch auf die Bildung des Nährzellensystems: sowohl Weibchen als auch 

Nährzellen waren kleiner als in unbehandelten Kontrollen.  Im Gegensatz dazu führte die ektopische 

Expression der Gene in Arabidopsispflanzen zu einer erhöhten Anfälligkeit gegenüber H. schachtii. 

Die Stilllegung von HsPDI wirkte sich auf die Ultrastruktur der gebildeten Nährzellen in Form eines 

weniger dichten Zytoplasmas mit veränderten und degradierten Organellen aus.  Wurden transgene 

Arabidopsispflanzen, die HsPDI exprimierten, mit dem Abwehr induzierenden Peptid flg22 behandelt, 

so reagierten diese mit starker ROS-Produktion, die H2O2-Konzentration war jedoch geringer als in 

nicht transgenen Kontrollpflanzen. Die Stilllegung von HsPDI in prä-infektösen Nematodenlarven 

führte zu deren erhöhter Sensitivität gegenüber einer Behandlung mit H2O2 im Vergleich zu einer 

Kontrollgruppe. Die fluoreszenzmikroskopische Analyse von Blättern von Nicotiana benthamiana, die 

HsPDI::GFP transient exprimierten, zeigte, dass HsPDI im Apoplasten lokalisiert ist. Die Ergebnisse 

der durchgeführten Experimente zeigen, dass HsPDI ein Effektor ist, der eine wichtige Rolle in der 

Interaktion zwischen Nematode und Wirtspflanze spielt, wobei es vermutlich als Radikalfänger für 

ROS pflanzlicher Herkunft fungiert.  

Die ektopische Expression von Hs-Tyr in Arabidopsis hatte eine deutliche Auswirkung auf das 

Pflanzenwachstum: Das Sprosswachtum war verstärkt, die Wurzelarchitektur war verändert, wobei die 

Wurzellänge und das Wurzelgewicht unverändert blieben. Die transgenen Pflanzen wiesen darüber 

hinaus deutliche Veränderung der Homöostase verschiedener Hormone, vor allem Auxin, dem 

Jasmonatvorläufer cisOPDA und dem Ethylenvorläufer ACC auf. Die Konzentrationen  von 

Jasmonsäure und Salizylsäure waren dagegen gleich bleibend. Die transgenen Pflanzen waren 

gegenüber H. schachtii anfälliger,  nicht jedoch gegenüber dem Wurzelgallennematoden Meloidogyne 

incognita. Daraus läßt sich schließen, dass der Effektor physiologische Prozesse in Gang setzt, die 

spezifisch für den Parasitismus des Zystennematoden H. schachtii von Bedeutung sind. Die bisherigen 

Ergebnisse weisen darauf hin, dass Hs-Tyr dabei in einer noch unbekannten Weise in den 

Hormonhaushalt der Pflanze eingreift. 

Die gewonnenen Erkenntnisse zeigen, dass die untersuchten PSPs spezifische Effekte auf die 

Interaktion zwischen Nematode und Pflanze haben und somit als Effektoren den Parasitismus des 

Nematoden unterstützen. 
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Chapter 1: An introduction to nematodes 

  

1.1 Nematodes and their economic value 

Nematodes are the most numerous and probably most diverse multicellular animals. 

They are prevalent and highly distributed in almost every ecological habitat (Hodda, 

2011). All nematodes live in wet or liquid environment and need a film of water for 

being active. Some of them are restricted to specific geographical environmental 

conditions while others can be found all over the world. The distribution of nematodes 

is correlated with their dispersal, which can be active and slow by active movement, or 

passively by the help of environmental elements, human activities and vectors. So far, 

over 25,000 nematode species have been described including free living, animal 

parasitic and plant parasitic nematodes (PPNs) inhabiting a very broad range of 

environments (Hodda, 2011; Zhang, 2013). Approximately 50% of the nematodes are 

marine nematodes (Figure 1.1); they represent the majority of the phylum nematodes 

and are abundant in all oceans from intertidal zones to several thousand meters depth. 

Approximately 15% are animal-parasitic which infect invertebrates and vertebrates, 

including humans and domesticated animals. PPNs and free-living nematodes represent 

10% and 25% of nematodes, respectively (Ayoub, 1980; Maggenti, 1981). 

 

Figure 1.1 Nematodes distribution on different habitats (Ayoub, 1980; Maggenti, 

1981) 

 

Nematodes are pseudocoelomate cylindrical worms, which have a bilateral symmetric 

body containing simple organ systems including digestive, excretory, nervous and 

reproductive system (Figure 1.2). The nematode length varies from less than 

millimetres in some PPNs to several meters in some animal parasitic nematodes.  
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Figure 1.2 Nematode anatomy (Source: University of Illinois) 

 

Nematodes come in the second place after arthropods, according to their direct or 

indirect impact on human’s life (i.e. through affecting agriculture). Due to their damage 

and the economic impact, the majority of the identified and well-studied nematodes are 

animal- and plant-parasitic nematodes. Many studies were performed to estimate the 

socio-economic losses of the animal-parasitic nematodes and explained their damage 

either on animal’s health or on the economy (McLeod, 1995; Murray & Lopez, 1996). 

Similarly for the PPNs, it has been estimated that the annual yield loss caused by them 

alone exceeds 100 Billion $, which makes them one of the most devastating group of 

agricultural pests (Koenning et al., 1999). A study by Sasser and Freckman in 1987 

showed the estimated percentage of losses for the most important crops affected by 

PPNs (Table 1.1). Losses reached up to 20 % in crops like okra and tomato. 
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 Table 1.1 Worldwide estimated losses due to damage by plant parasitic nematodes 

(Sasser & Freckman, 1987) 

 

Life crop 
sustaining  

Annual loss 
(%) 

Economically important 
crops  

Annual loss (%) 

Banana 19.7 Cacao 10.5 

Barley 6.3 Citrus 14.2 

Cassava 8.4 Coffee 15 

Chickpea 13.7 Cotton 10.7 

Coconut 17.1 Cowpea 15.1 

Corn 10.2 Eggplant 16.9 

Field bean 10.9 Forages 8.2 

Millet  11.8 Grapes 12.5 

Oat 4.2 Guava 10.8 

Peanut 12 Melons 13.8 

Pigeon pea 13.2 Misc. Other 17.3 

Potato 12.2 Okra 20.4 

Rice 10 Ornamentals 11.1 

Rye 3.3 Papaya 15.1 

Sorghum 6.9 Pepper 12.2 

Soybean 10.6 Pineapple 14.9 

Sugar beet 10.9 Tea 8.2 

Sugar cane 15.3 Tobacco 14.7 

Sweet potato 10.2 Tomato 20.6 

Wheat 7 Yam 17.6 

Average 10.70% Average 14.0% 

 Overall average 12.3 %  
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Most PPNs feed on plant roots, however, there are several species that target the 

vegetative part of the plant including stems, leaves, flowers and also seeds. Regarding 

the feeding habit, nematodes are classified to different groups. During feeding, PPNs 

either remain outside of the host roots (ectoparasites) or enter the host roots and feed 

internally on the root cells (endoparasites). In terms of mobility, nematodes are mobile 

during feeding and move from one cell to the other (migratory) or immobile during 

feeding, where they select specific cells and initiate morphological and physiological 

modifications and spend the rest of their life cycle feeding on these feeding structures 

(sedentary). The most devastating and economically damaging group of PPNs are 

sedentary endoparasites (Sasser & Freckman, 1987; Koenning et al., 1999; Chitwood, 

2003; Jones et al., 2013). Cyst nematodes, as a group of endoparasitic nematodes, cause 

high yield losses and therefore have been studied intensively. Many studies focus on 

the interaction between cyst nematodes and their host plant and try to elucidate their 

biology. Cyst nematodes including the genera Heterodera spp. and Globodera spp. 

infect a wide range of host plants like vegetables, legumes and cereals. H. schachtii is 

a pest on sugar beet, but parasitizes more than 200 plant species in 23 different plant 

families. Most hosts belong to Chenopodiaceae and Cruciferae including some 

economically important crops.  

Cyst nematode control is a challenging process. Many different management 

approaches were used to control H. schachtii. Crop rotation with non-host crop and trap 

crops for 3-5 years in addition to remove the host weeds is one of the most effective 

means to decrease the cyst nematode population in the soil. The usage of nematicides 

also effectively controls nematodes but is often restricted due to environmental 

concerns. Modern studies aim to find tolerant and resistant cultivars that can be 

integrated in the management programs. One way is the traditional screening of these 

cultivars, but novel technologies like TILLING (Targeting Induced Local Lesion In 

Genomes) and ecoTILLING are established and used increasingly. For successful 

selection, understanding cyst nematode biology and the interaction with the host plant 

is needed. 

1.2 Nematode biology and life cycle of H. schachtii  

The hibernating cysts in the soil, which contain the eggs, are considered as the first 

inoculum. In presence of the host plant, J2s start to hatch from eggs and move in the 

soil towards the plant roots (Masamune et al., 1982). Once the J2s reach the roots, they 
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tend to enter them at the elongation region with continuous piercing of the spear-like 

stylet and the help of specific secretions. After penetration, the J2s migrate through the 

root, destroy the cells and cause severe damage to the host. Then they select a 

procambial cell in the vascular cylinder as Initial Syncytial Cell (ISC) (Wyss & Zunke, 

1986; Wyss, 1992). The migratory J2s use their hollow stylet to inject a cocktail of 

secretions into the ISC. Secretions initiate cellular changes including cell wall 

degradation, fusion of the neighbouring cells with the ISC, hypertrophy of the affected 

cells and an increased activity of the cytoplasm. The parasitic J2s become immobile, 

feed on the syncytia, and undergo a series of three molts until reaching the adulthood 

as females or males. Females continue feeding, increase in size and rupture the root 

tissues to be exposed to males for mating. Vermiform males leave the roots, search for 

females and copulate (Figure 1.3). Afterwards females start to accumulate the fertilized 

eggs inside their reproductive system and later die retaining the eggs within their 

bodies. The dead female´s cuticle hardens to form the cyst. The cyst acts as a capsule 

protecting the eggs inside against the harsh soil environment to proceed the life cycle. 

Some J2s will hatch in the same season to do more than one infection cycle, while the 

rest stay dormant for the next season or until the availability of the host again. Some 

reports mentioned that eggs within cysts can stay dormant and viable up to 10 years. 

This is one of the factors that make the eradication of the cyst nematodes from the soil 

hard (Lilley et al., 2005). 

 

 

 

Figure 1.3 The life cycle of H. schachtii. Representing the eggs inside the cyst, the 

successive molts of the juveniles (J2 = second stage juvenile, J3 = third stage juvenile, 

and J4 = fourth stage juvenile) and the adult stages associated with the syncytium.  
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1.3 Syncytium morphology and physiology 

The syncytium is the only food source for the nematode through the life cycle. For that 

reason, initiating and maintaining the syncytium are critical processes for nematode 

survival.  

The J2s initiate the syncytia by injecting effectors into the ISC. As a result, the ISCs 

start to increase massively in size, local cell wall openings are formed to neighbouring 

cells and the cytoplasm of the cells fuse to form a complex of multinuclear syncytium. 

At the same time, the cell wall which surround the syncytia becomes thick in order to 

compensate the increased osmotic pressure (Jones & Northcote, 1972; Jones, 1981). In 

the advanced stages of syncytium formation, the cytoplasm becomes dense and 

metabolically active with increasing the size of the nuclei. At the same time the 

vacuoles break down to form small vesicles, mitochondria proliferate and smooth 

endoplasmic reticulum becomes prominent (Wyss & Grundler, 1992; Golinowski et 

al., 1996; Sobczak et al., 1997). The syncytium size increment is associated with 

nematode development. Once the female has completed its life cycle it dies and 

becomes a cyst. The associated syncytia remain functional as long as the nematodes 

feed. On A. thaliana, the H. schachtii life cycle takes around 6 weeks (Sobczak & 

Golinowski, 2011). The male’s syncytium is smaller in size and is active only until the 

end of the J3 stage. J4 do not take up nutrients, but soon molt and develop to adult male. 

These males leave the root and search for females to mate with.  

Several studies reported many changes at the molecular level of the infected compared 

with the uninfected roots showing that the syncytial formation process massively 

orchestrate the plant activities to serve nematode survival. The syncytial transcriptome 

gene ontology (GO) analysis of the five and 15 days after infection showed that most 

of the up-regulated genes are probably involved in the degradation of cell walls and 

belong to the pectate lyase and expansin families, whereas the down regulated genes 

belong to the peroxidase family (Szakasits et al., 2009). They also showed that a high 

number of these differentially expressed genes are involved in metabolic activities and 

defence response. In another study, it was shown that nematodes are able to remodel 

plant metabolites to facilitate parasitism. GC–MS analysis of syncytia detect the 

accumulation of several amino acids and phosphorylated metabolites and other types 

of sugars such as 1-kestose that normally does not accumulate in the roots. This shows 

that nematode reorganize the plant metabolites and nutrients to their favour (Hofmann 

et al., 2010). 
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1.4 Effectors secreted by the beet cyst nematode H. schachtii  

Effectors are proteins expressed by plant pathogens including bacteria, fungi and 

nematodes to aid infection of specific plant species. These molecules can alter plant 

processes in favor of the pathogen to facilitate infection.  In nematode, from the 

beginning of the parasitism until the end of the life cycle, they produce effectors 

proteins released into the host cells to facilitate parasitism. They are thought to be 

released through amphids, phasmids, rectal gland, hypoderm and the esophageal glands 

(Figure 1.4). It is believed that the majority of the effectors which are involved in the 

nematode-plant interaction are secreted in the three esophageal glands. These secretions 

then are injected into the host plant cells through the hollow mouth stylet in the 

cytoplasm to interact with plant proteins or translocate it to other cell compartments 

(Figure 1.5) (Jaouannet & Rosso, 2013) 

 

 

Figure 1.4 Schematic overview of a typical plant-parasitic nematode showing its most 

important secretory organs including: (A) Dorsal gland (B) Hypodermis (C) Amphids 

(D) Subventral glands (Haegeman et al., 2012).  
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Figure 1.5 Schematic overview of the stylet and effector proteins injection in the plant 

cell. Adapted from Torto-Alalibo et al. (2009) and Wyss (Nemapix). 

Currently, many studies were performed aiming to mine H. schachtii effectors. Several 

effectors were identified and structurally studied. However, these studies indicate that 

many effectors are still unknown. So far, the identified effectors can be grouped 

regarding to their function to the following categories: cell wall modifying, defense 

suppressing, and growth enhancing.  

Cell wall-modifying effectors 

The first stage of nematode parasitism is the plant roots penetration, followed by 

migration within the roots. During migration, nematode movement is restricted due to 

the presence of the strong cell wall. Plant cell walls consist of a cross-linked matrix of 

hemicelluloses and pectins, embedding a framework of cellulose fibres. To overcome 

this physical barrier, nematodes produce and release a cocktail of cell wall modifying 

enzymes with the help of the stylet to disintegrate and depolymerize its components.  

One of the first isolated cell wall modifying effectors belongs to the glycosyl hydrolase 

family 5 (GHF5) cellulases. These enzymes target and degrade the celluloses and 

hemicelluloses during the migratory stages (Haegeman et al., 2012). Additionally, 

pectate lyase has been isolated from H. schachtii which cleaves the internal alpha-1,4-

linked galacturonic acid glycosidic bond of pectate to facilitate the nematode movement 

(Vanholme et al., 2007). Cell wall modifying effectors are well proven to be involved 

in the cell wall manipulation to form the syncytia. Cellulose binding protein (CBP) was 

identified from H. schachtii. It has been shown that Hs-CBP is expressed in the early 

stages of the syncytia formation but not in the migratory stages. It was also found that 
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expressing the Hs-CBP in Arabidopsis increasing the susceptibly to H. schachtii and 

the activity of the plant pectin methylesterase protein 3 (PME3). 

PMEs was suggested to contribute to cell growth by regulating the mechanical and 

chemical properties of plant cell walls via demethylesterification of pectin (Micheli, 

2001). This interaction seems to be important in the reduction of cell wall pectin 

methylesterification through CBP-mediated increased and targeted PME3 activity 

which allows improved access of other cell wall–modifying enzymes to cell wall 

polymers, thereby accelerating enzymatic activities, which is a requirement for 

syncytium development (Hewezi et al., 2008). 

Defense suppressing effectors  

Plants and pathogens adopted many strategies to interact with each other. Since plants 

are surrounded by many organisms, they have evolved a multi-layer immune system to 

ensure recognition of pathogens and defense. The first line of defense is established by 

extracellular immune receptors that recognize pathogen associated molecular patterns 

(PAMPS) from diverse pathogens. The recognition of pathogens leads to PAMP-

triggered immunity (PTI) which generate plant defense including cell modification and 

releasing reactive oxygen species (ROS). The second layer is activated once a pathogen 

overcomes the first layer. This may induce changes in molecular status of host 

resistance proteins (immune receptors) or in the host proteins that are being monitored 

by the immune receptors, so-called R proteins. This interaction usually activates a 

specific type of programmed cell death, known as hypersensitive response (HR) 

(Holbein et al., 2016). 

On the other hand, nematodes as successful biotrophic pathogens developed effectors 

that overcome or suppress plant immunity. In the last few years many nematode 

effectors involved in plant defense suppression were identified.  

For example, Hs-10A06 binds to and activates the plant spermidine synthase (SPDS2), 

a key enzyme involved in polyamine biosynthesis. This interaction elevates the 

polyamine oxidase (PAO) activity, therefore stimulates the induction of the plant 

antioxidant machinery, which likely protects the nematode feeding structure and the 

nematode from ROS that are triggered during infection. Furthermore, the expression of 

the Hs-10A06 in Arabidopsis increased plant growth and susceptibility to H. schachtii, 

Pseudomonas syringae pv tomato (Pst DC300) and the yellow strain of Cucumber 

mosaic virus (Hewezi et al., 2010). 
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The effector Hs-30C20 has been shown by yeast two hybrid to interact specifically and 

target the host plant β-1,3-endoglucanase (AT4G16260). It was also shown that this 

effector suppresses the β-1,3-endoglucanase activity to promote parasitism. Expression 

levels of the plant β-1,3-endoglucanase have a peak at 3-5 days after nematode 

infection. Hs-30C20 expression was found to be highest at the same time. The 

constitutive expression of the Hs-30C20 in Arabidopsis increased the plant 

suceptability to H. schachtii while overexpressing the β-1,3-endoglucanase decreased 

it (Hamamouch et al., 2012).  

As another example, H. schachtii Venom-Allergen like Protein (VAP1) was shown to 

be responsible for inhibiting plant immunity during nematode parasitism (Lozano-

Torres et al., 2014). Ectopically expressing the Hs-VAP1 in Arabidopsis increased 

plant susceptibility and showed loss of basal immunity to different unrelated pathogens 

including fungi, bacteria and nematode.  

The H. schachtii effector (4F01) interacts specifically with the plant oxidoreductase a 

member of 2OG-Fe(II) oxygenase family and complement the Arabidopsis annexin. 

This interaction suggests that Hs-4F01 mimicks the plant annexin function in regulating 

plant defense and stress responses during infection (Patel et al., 2010).  

Growth enhancing effectors 

Nematode established a cascade of effectors, which orchestrate plant gene expression 

and thus interfere with the plant growth to support the nematode development. These 

effectors either mimic plant hormones or interfere in hormone signaling pathways. 

Recently, cytokinins were revealed to be important signaling elements in nematode 

parasitism. It was presented that cytokinin signaling is activated not only in the 

syncytium but also in neighboring cells to be incorporated into the syncytium. It was 

shown that plant mutants deficient in cytokinin or cytokinin signaling resulted in less 

infection and smaller size of the females compared with control. In fact, Siddique et al. 

(2015) showed that juveniles of H. schachtii are able to synthesize a functional 

cytokinin in their esophageal glands and inject it into the plant in order to activate the 

cell cycle of affected root cells. It was also shown that silencing the key gene of 

cytokinine synthesis in the nematode affects syncytium formation and nematode 

performance (Siddique et al., 2015).  

H. schachtii is also shown to produce CLE-like effectors HsCLE1 and HsCLE2 which 

show high similarity to the Arabidopsis CLEs 1–7. Plant CLEs have been shown to 
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bind to extracellular receptors and activate signaling cascades regulating plant growth 

and development, including shoot and floral meristem maintenance (Brand et al., 2000; 

Clark et al., 1995; Rojo et al., 2002). Secreting these peptides into the plant has been 

shown to functionally mimick plant CLE and to enable nematodes to manipulate root 

growth in favour of syncytium formation (Wang et al., 2011). 

1.5 Identification of nematode effectors  

The identification and characterization of nematode effectors and their function is the 

key factor to understand plant-nematode interactions. A number of different techniques 

have been used to identify nematode effectors. The production of monoclonal 

antibodies (MAbs) directed against nematode secretions or fractionated homogenate of 

nematodes was a great method for nematode effectors identification. Several nematode 

β-1-4-endoglucanases were identified in Globodera rostochiensis by using MAbs 

raised against fractionated homogenate of pre-parasitic J2s (Smant et al., 1998; Rehman 

et al., 2009). Additionally, mRNA finger-printing by complementary DNA- amplified 

fragment length polymorphism (cDNA-AFLP) allowed a comprehensive analysis of 

differentially expressed mRNAs isolated from various stages of G. rostochiensis (Qin 

et al., 2000). In the last decades a major step was the availability of Expressed Sequence 

Tags (ESTs). ESTs are short sub-sequences of a cloned cDNA library either for the 

whole nematode mRNA or specific organs. The presence of other useful tools like 

NemaGene, NemaBlast, NemaBrowse, NemaSNP and NemaPath supported the 

annotation of the resulted ESTs and accelerated the selection and identification of 

effector proteins. The number of available H. schachtii ESTs reached 2,182 as reviewed 

by Rehman et al. (2016). Vanholme et al. (2006) generated a first set of ESTs of H. 

schachtii to identify the putative secretory proteins (PSP). By using different 

bioinformatic filters they ended up identifying 50 PSPs. They also showed that many 

of these ESTs match with different identified homologs of effector proteins from other 

nematodes. These results show that using the ESTs is a useful tool to identify the 

nematode PSPs. On the other hand, next generation sequencing technology (NGS) 

enhanced the coverage of the extracted sequences and facilitated the PSP mining 

procedure. The sequencing of nematode transcriptomes including H. schachtii led to 

the identification of further novel effectors (Maier et al., 2013; Bauters et al., 2014; 

Haegemann et al., 2013; Fosu-Nyarko et al., 2016). As a principal basis of effector 

identification, the target sequences should meet specific criteria. The first feature is the 
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presence of N-terminal sequence representing a signal peptide and the lack of any 

transmembrane domain. This feature indicates that the associated protein can be 

secreted. This feature is still used in many studies as a first step of candidate gene 

selection. Furthermore, the localization of the candidate genes in the nematode 

secretory organs increases their probability of being an effector. For that reason, most 

of the effectors studies are targeting those genes, which were mainly localized in the 

nematode esophageal glands. Due to that reason, the in situ hybridization of the 

candidate genes with digoxygenin labeled antisense riboprobes was used to localize the 

associated mRNA in the nematode organs (Vanholme et al., 2002). Additionally, the 

increase of the expression level of the candidate genes in a pattern associated with the 

parasitic stages leading to suggest that the function(s) of these candidate genes could 

be important for parasitism. Moreover, hindering nematode infection, parasitism, and 

survival on the host plant by gene-silencing through RNA interference is another 

approach to study the importance of the gene for the nematode-plant interaction. RNAi 

has been used in many studies aiming to identify effectors and functionally studying 

their role in parasitism (Lozano-Torres et al., 2014; Lin et al., 2016). These collective 

positive results are confirming the function of a candidate gene as an effector and were 

used successfully in effector identification.  

1.6 Arabidopsis thaliana as a model plant to study effectors 

Arabidopsis belongs to the family Brassicaceae and has a relatively short life cycle of 

approximately six weeks (Figure 1.6). It has a small sequenced genome of 135 MB and 

5 chromosomes (Bennett et al., 2003). It was the first plant species to be fully sequenced 

(The Arabidopsis Genome Initiative, 2000). The genome of A. thaliana is maintained, 

continuously curated and updated, and available for downloading by the Arabidopsis 

Information Resource (TAIR). Around 27,000 genes were identified which encode 

35,000 proteins (The Arabidopsis Genome Initiative, 2000). These traits had nominated 

Arabidopsis to be used as ideal model plant to study plants on different levels including 

genetic evolution, population genetics, and plant development. Furthermore, 

Arabidopsis has been widely used to study plant–pathogen interactions. The fact that 

Arabidopsis is a host for many pathogens including insects, bacteria, fungi and 

nematodes facilitate and speed the understanding of the plant-pathogen interaction. 

Furthermore, the fast and simple generation of mutation and transgenic plant enable 

straight forward gene function studies. In 1991, Arabidopsis was established as a model 
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host plant for H. schachtii in order to study the molecular basis of the host-pathogen 

interaction (Sijmons et al., 1991).  

 

Figure 1.6 The life cycle of the model plant Arabidopsis thaliana. (A) Different stages 

of its life cycle, from seed (bottom left) to seedling (11 days), to vegetative growth 

(39 days), and to reproductive growth (45 days). (B) Flower, (C) Pollen grain and (D) 

mature siliques. Image credits: Modified from B and C, Maria Bernal and Peter 

Huijser; other photographs, Ines Kubigsteltig and Klaus Hagemann. Doi: 

http://dx.doi.org/10.7554/eLife.0600.002.  

1.7 Transcriptome analysis and PSP selection  

The total RNA from H. schachtii second stage juveniles was extracted using the 

Mirvana Kit following the manufacturer instructions (Applied Biosystems). Two 

independent RNA extractions, with RIN (RNA Integrity Number) value greater than 

9.0, were used, independently, for 100 paired-end sequencing. The RNA was 

fragmented using divalent cations under elevated temperature. The cDNA preparation 

was performed for each run separately, fragmented with an average length of 330 bp 
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and sequenced via Illumina MiSeq. Sequencing resulted in a collection of 148,125,233 

of 100bp paired-end reads. 

Reads were trimmed for quality, ambiguity and adapter sequences, then duplicates were 

removed and transcript assembly was performed using CLC genomic workbench 

(version 5.1). Trimming for quality was performed excluding low quality bases (>0.05). 

Ambiguous nucleotides (>2n) and adapter sequences were removed. The de novo 

assembly of all reads that passed quality filtering was computed with following 

parameters: word size 24, similarity = 0.8, length fraction = 0.5, insertion cost = 3, 

deletion cost = 2, and mismatch = 2. In total, 115,027,834 reads with an average length 

of 96.8bp were assembled to form the transcriptome. It was built from 66,886 contigs 

with an average length of 427bp and a total size of 28 MB.  

All contigs were translated based on their longest open reading frame ORF and the 

orientation of their best hit using BLAST2GO and EMBOSS Transeq tools. All contigs 

were annotated by using Swissprot (BBH), TrEMBL (BBH), and C. elegans (BBH) 

(Boeckmann et al. 2003) and the results were used as an input for the Automated 

Human Readable tool (AHRD). Furthermore, BLAST2GO (version 2.6.0) was used to 

assign gene ontology (GO) terms and for Gene Set Enrichment Analysis (GSEA).  Gene 

ontology analysis and function enrichment showed the number of sequences and their 

associated activities (Figure 1.7). Proteins with signal peptide (SignalP) and 

transmembrane domains (TMHMM) were selected as H. schachtii secretome. In this 

way, 1081 putative secretory proteins (PSP) were identified. The PSPs were compared 

with all ESTs available in Nembase4 database. ESTs were categorized to 4 groups, 

plant-, animal-parasitic nematodes, free-living nematodes and entomopathogenic 

nematodes. The comparison resulted in the identification of 484 plant specific PSPs. A 

BLAST was performed on the P-PSP with 64 sequences from H. schachtii and 81 

sequences from H. glycines which are predicted to be PSPs (e-value <e-10). This 

comparison showed a subset of sequences predicted to be pioneer effectors.  Figure 1.8 

shows the filtering work flow of the transcriptome to identify the candidate PSPs.  
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Figure 1.7 Gene ontology annotation of H. schachtii transcriptome. (A) Molecular 

functions, (B) Biological processes and (C) Cellular components. 
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Figure 1.8 Schematic overview of the PSPs selection procedure. 

 

Since the field of nematode effectors is relatively new, not much is known about the H. 

schachtii effectors. In this studies we use the well-established aseptic growing system 

of Arabidopsis on Knop medium, to perform detailed analyses. We used the resulted 

data set and performed functional analysis to identify novel effector proteins involved 

in nematode parasitism.   
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Chapter 2: Identification and characterization of a putative protein disulfide 

isomerase (HsPDI) as a novel effector of Heterodera schachtii 
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Grundler, Abdelnaser Elashry 

2.1 Summary 

 The plant-parasitic cyst nematode Heterodera schachtii is an obligate biotroph 

that induces long-term syncytial feeding sites in roots of its host plants.  The 

nematodes produce effector proteins that are secreted into the host and 

facilitate infection process. Here we identified H. schachtii protein disulphide 

isomerase (HsPDI) as an effector that interferes with the host’s redox status. 

  In situ hybridization showed that HsPDI is specifically localized within 

esophageal glands of pre-parasitic second stage juveniles (J2). HsPDI is up-

regulated in the early parasitic J2s. Silencing of HsPDI expression by RNA 

interference in the J2s hampers their development and leads to structural 

malfunctions in associated feeding sites induced in Arabidopsis roots.  

 Expression of HsPDI in Arabidopsis increases plant’s susceptibility towards 

H. schachtii. HsPDI expression is up-regulated in the presence of exogenous 

H2O2, whereas HsPDI silencing results in increased mortality under H2O2 

stress.  

 Stable expression of HsPDI in Arabidopsis plants decreases ROS burst 

induced by flg22. Transiently expressed HsPDI in N. benthamiana leaves is 

localized in the apoplast. 

 HsPDI plays an important role in the interaction between nematode and plant, 

probably through inducing local changes in the redox status of infected host 

tisse. It also contributes to protecting the nematode from exogenous H2O2 

stress. 

Key words: Arabidopsis thaliana, Heterodera schachtii, effector, Protein 

disulphide isomerase (PDI), Reactive oxygen species (ROS), Plant-nematode 

interaction. 
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2.2 Introduction  

Plant-parasitic cyst nematodes are obligate biotrophs that induce and maintain intimate 

and long-term feeding relationships with their host plants. Second stage juveniles (J2s) 

of cyst nematodes hatch from eggs and invade the roots primarily in the elongation 

zone. After entering the roots, nematodes pierce single cells with their stylet, penetrate 

them and migrate through various tissue layers until they reach the vascular cylinder. 

Nematode migration inside the root is aided by releasing cell wall-degrading enzymes 

via the mouth stylet. Reaching the vascular cylinder, nematodes select a suitable cell to 

establish an initial syncytial cell (ISC). Once an ISC is established, cell walls of 

neighbouring cells are partially dissolved and the protoplasts of these cells fuse. This 

process continues so that a multinucleate, hypertrophied and metabolically hyperactive 

syncytium is formed. Syncytium formation is accompanied by massive transcriptomic 

and metabolomics changes, which have been previously reported (Wyss & Zunke, 

1986; Sijmons et al., 1991; Wyss, 1992; Golinowski et al., 1996; Szakasits et al., 2009; 

Hofmann et al., 2010). After establishment of the ISC, J2s pursue their life cycle, 

increase in size and moult three times (J3, J4, and adult) until reaching adult stages. 

Adult males leave the roots to search for females to mate, whereas the lemon-shaped 

adult females remain attached to the roots. After mating, females lay eggs inside their 

bodies, then die and turn into cysts protecting the eggs from the surrounding hostile 

environment (Wyss & Zunke, 1986; Wyss, 1992). For successful parasitism, H. 

schachtii releases various effectors into the plant that help the nematodes successfully 

invade the roots, suppress the plant’s defence mechanisms, induce and maintain the 

syncytium (Williamson & Gleason, 2003; Mitchum et al., 2013; Holbein et al., 2016). 

Plants are hosts to a wide range of pathogens, including bacteria, fungi, viruses, insects 

and nematodes. During evolution, both pathogens and plants have developed various 

strategies to facilitate their efforts, resembling a continuous battle of actions and 

counteractions (Mittler et al., 2004; Quentin et al., 2013; Goverse & Smant, 2014; 

Holbein et al., 2016). One of the responses by which plants defend themselves against 

pathogens is the production of reactive oxygen species (ROS). Because ROS are highly 

toxic and reactive, they can restrict pathogen growth and development. In addition to 

their role in plant defence, ROS have also been shown to act as signalling molecules 

and regulate a variety of key biological processes, such as, growth, differentiation, 

proliferation and apoptosis (Shetty et al., 2007; Slesak et al., 2007; Veal et al., 2007; 
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Forman et al., 2010). A number of studies have demonstrated and clarified the positive 

role of ROS in environmental stresses other than plant defence. ROS with prominent 

biological significance include superoxide anion (O-2), hydroxyl radical (OH-) and 

hydrogen peroxide (H2O2). Among these, H2O2 is less reactive and can freely diffuse 

through lipid membrane, thus making it an ideal candidate for signalling processes. A 

number of studies have shown the correlation between ROS levels and intensity of 

pathogen infections (Torres et al., 2002; Mittler et al., 2004). In the context of plant-

nematode interactions, the presence of ROS-generated signals and their spatiotemporal 

expression in the interaction of tomato with root-knot nematodes have been studied in 

detail (Melillo et al., 2006). In Arabidopsis, invasion and parasitism by H. glycines 

were shown to induce H2O2 production not only in the infected cells but also in the cells 

which are not in direct contact with nematodes (Waetzig et al., 1999). Similarly, it has 

recently been shown that infection of Arabidopsis by H. schachtii activates the plasma 

membrane-localised NADPH oxidase (RbohD and RbohF) to produce ROS, which, 

however, is required for proper infection and syncytium development (Siddique et al., 

2014). These observations on parasitic nematodes together with other previously 

published literature led to the suggestion that redox homeostasis is crucial for both 

effective plant defence and successful parasitism (Foley et al., 2013; Siddique et al., 

2014). 

Because ROS are highly toxic, the development of an efficient scavenging system is 

crucial for both plants and pathogens. This is especially important in case of biotrophic 

pathogens, who require living cells for successful infection (Jones et al., 2004; Molina 

& Kahmann, 2007; Blackman & Hardham, 2008; Flores-Cruz & Allen, 2009; Dubreuil 

et al., 2011; Li et al., 2011). Animal parasitic nematodes have developed several ROS-

scavenging mechanisms to protect themselves against the oxidative defence 

mechanisms of their hosts (Henkle-Dührsen & Kampkötter, 2001; Sotirchos et al., 

2009). Two animal parasitic nematodes species, Brugia malayi and Haemonchus 

contortus, possess different thioredoxins that have been shown to increase nematode 

immunity against host ROS production (Kunchithapautham et al., 2003; Sotirchos et 

al., 2009). 

Plant parasitic nematodes have also been shown to be capable of manipulating the redox 

status of their hosts (Lin et al., 2016). The root-knot nematode Meloidogyne incognita 

secretes peroxiredoxins to successfully develop within its tomato host (Dubreuil et al., 
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2011). Meloidogyne  javanica produce a transthyretin-like protein, MjTTL5, which has 

been shown to manipulate the host immune system by interacting with the Arabidopsis 

ferredoxin-thioredoxin reductase catalytic subunit (AtFTRc), that plays an important 

role in the ferredoxin/thioredoxin regulatory chain and decrease ROS burst (Lin et al., 

2016). The potato cyst nematode (Globodera rostochiensis) produces peroxiredoxins 

(PXN) and glutathione peroxidases (GXP), which are likely responsible for regulation 

of ROS level at nematode infection sites (Robertson et al., 2000; Jones et al., 2004).  

Protein disulfide isomerase (PDI) family includes PDI and PDI-like proteins with 

thioredoxin domains, also called thioredoxin superfamily. They vary in size, 

expression, localization and enzymatic function. Typical PDI consists of four 

thioredoxin-like domains, the domains (a and a′) with catalytic domains are separated 

by two non-catalytic domains (b and b´). In addition to this, an ER retention signal is 

located at the small C-terminal domain (c), and also PDI has an N-terminal signal 

sequence. The two catalytic domains containing characteristic CGHC active-site motif 

are essential for PDI enzymatic activity (Appenzeller-Herzog & Ellgaard, 2008). PDIs 

are very versatile enzymes as they are able to catalyze in vitro thiol oxidation reactions 

and disulfide reduction or isomerisation, depending on their redox states (Ali Khan & 

Mutus, 2014). PDIs that are found in an oxidized form most likely function as thiol 

oxidases, whereas PDIs functioning as isomerases need to be in a reduced state (Frand 

& Kaiser, 1999). In addition, it was found that PDI play an important role in the 

regulation of ROS. Oxidized PDI stimulates ROS production whereas reduced PDI 

inhibited the production of ROS (De et al., 2011).  

PDIs play an important role during host-pathogen interactions (Stolf et al., 2011). It 

was shown that the expression of Leishmania PDI (LmPDI) is higher in virulent 

parasitic strains of Leishmania, suggesting that PDI protein is a virulence factor (Ben 

Achour et al., 2002). The use of PDI inhibitors affected parasite growth (Hong & 

Soong, 2008). Studying the expression pattern of the PfPDI-8 from Plasmodium 

falciparum showed that it is associated with all parasitic stages (Mahajan et al., 2006). 

Recently, a PDI from the oomycete plant parasitic Phytophthora parasitica (PpPDI1) 

was identified as a virulence factor. It was shown that expressing PpPDI1 induce strong 

cell death in Nicotiana benthamiana leaves while mutating the gene decreased the 

effect (Meng et al., 2015). To date, nothing is known about the role played by PDIs in 

H. schachtii. Here, we describe a novel effector of H. schachtii which belongs to the 
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PDI family. We show that it is involved in the interaction with the nematode´s host 

plant and in protecting the parasite against plant-released ROS.  

2.3 Materials and methods  

Plant growth and nematode culture 

Arabidopsis thaliana L. Heyn. ecotype Col-0 plants and  two transgenic lines 

expressing HsPDI were grown aseptically on agar medium supplemented with 

modified 0.2 Knop’s nutrient solutions for 16h light and 8h dark at 25ºC as described 

previously (Sijmons et al., 1991). 

Heterodera schachtii Schmidt used in the experiments was reared on white mustard 

(Sinapis alba L. cv. Albatros) plants which were grown aseptically on agar containing 

0.2% Knop medium. Mature cysts were collected in funnels and hatched in 3 mM ZnCl2 

(Sijmons et al., 1991). The hatched pre-parasitic J2s were collected and used in the 

experiments. 

 

Infection assay 

Nematode infection assays on Arabidopsis plants either for the nematode RNA 

interference (RNAi) experiments or on HsPDI-expressing lines were performed as 

described previously (Siddique et al., 2014). Briefly, sterilised seeds were placed on 

0.2% Knop medium. After 10 days, roots were inoculated with 60-70 J2s per plant. For 

each experiment, 12 plants per treatment were used. Numbers of adult males and 

females were counted per plant at 12 days after inoculation (DAI). Furthermore, sizes 

of females and associated syncytia were measured after 13 DAI, sizes of cysts and 

numbers of eggs per cyst were examined at 45 DAI using Leica M165C Binocular 

(Leica Microsystems, Wetzlar, Germany) and Leica Application Suite software. 

Experiments were repeated three times and analysed using Student’s t-test. 

Sequence analysis 

HsPDI (KU948160) was identified by performing a BLASTn of the esophageal gland 

cells putative secretory hsp3 (AF273730.1) which was isolated from Heterodera 

glycines (Wang et al., 2001) against draft transcriptomic data of H. schachtii. The draft 

transcriptome was generated by using next generation sequencing (Illumina, 100bp 

paired end reads) of pre-parasitic J2s. The assembly was done using CLC genomics 

workbench after trimming the reads for adapter sequence and low quality nucleotides 
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(less than 0.05) and ambiguity nucleotides (more than 2 adjacent ambiguous 

nucleotides). 

The deduced protein was analysed to predict its functional domain(s). The conserved 

domains search was performed using the National Center for Biotechnology 

Information NCBI CD search program 

(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi), signal peptide was identified 

using signalP4 server (Petersen et al., 2011), and transmembrane domains using 

TMHMM algorithm (Krogh et al., 2001).  

The PDI protein sequences from different organisms were obtained from NCBI 

(http://www.ncbi.nlm.nih.gov/), see supporting information Table S1. All sequences 

were aligned using CLC Main Workbench (V7.7.3). 

In situ hybridization 

Digoxigenin (DIG)-labelled probes complementary to identified HsPDI fragments 

were amplified in asymmetric PCR with single sense (negative control) or antisense 

primer and DIG-labelled deoxynucleoside triphosphates (dNTPs) (Roche) in the 

reaction mixture (see supporting information Table S2). The hybridization was 

performed on the pre-parasitic J2s of H. schachtii at temperature of 47 °C as performed 

in previous study (de Boer et al.1998). The hybridized nematodes were examined using 

Leica DMI2000 compound microscope. 

Developmental expression pattern analysis  

Transcription of HsPDI was analysed in different developmental stages (eggs, pre-

parasitic J2, parasitic juveniles and females) by quantitative PCR (qRT-PCR) using 

specific primers (supporting information Table S2). Around 3,000 eggs and 3,000 pre-

parasitic J2s were collected directly from hatching funnels (Sijmons et al., 1991). 

Around 500-600 nematodes were collected manually from nematode infected roots of 

A. thaliana at 5, 10, 15 DAI, what corresponds to J3, J4, and young female stages. 

Total RNA was extracted using NucleoSpin RNA kit (MACHEREY-NAGEL) 

following manufacturer’s protocol. Quality and quantity of the extracted RNA samples 

were tested using the Agilent 2100 Bioanalyzer system (Agilent Technologies). The 

RNA with RNA integrity number (RIN) value higher than 8.5 was used for first strand 

cDNA synthesis using the High-Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems) and oligo-dT primer. The resulted cDNAs were tested for the expression 
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changes using the Stepone Plus Real-Time PCR System (Applied Biosystems) with 95 

ºC for 15 s and 60 ºC for 30 s (40 cycles) for amplification. Each sample contained 10 

μl of Fast SYBR Green qPCR Master Mix (Invitrogen), 9 μl of the specific primer 

mixture with final concentration 1 μM for each primer, 1 μl of cDNA. The amplified 

data were analysed by using the Stepone Plus Real-Time PCR software to create Ct 

values. The data were analysed and relative expression was calculated following Pfaffl 

(2001). Actin was used as internal control for all experiments (supporting information 

Table S2). Three biological replicates from each stage in three technical replicates for 

each biological replicate were used. 

Double stranded RNA (dsRNA) and gene silencing in nematodes 

HsPDI dsRNA was synthesized using RiboMAX RNA Large-Scale Production System 

(Promega) according to the manufacturer’s instruction. The forward and reverse 

primers (supporting information Table S2) were supplemented with the SP6 and T7 

promoter sequences and used for dsRNA synthesis. The GFP template was used for 

synthesis of a dsRNA construct that was used as a negative control. 

About 10,000 freshly hatched J2s of H. schachtii were soaked in 50 µL of dsRNA 

incubation mixture consisting of  25 µL HsPDI-dsRNA or GFP-dsRNA (2 mg*mL-1 ) 

in 5 µL of 10x M9 buffer(55mM KH2PO4, 21mM NaCl, 47mM NH4Cl) supplemented 

with 100 mM spermidine (1.5 µL), 500 mM octopamine (5.0 µL) and 13.5 µL 

(nematode suspension) for one day. Incubated J2s were washed three times in H2O, 

sterilized in 0.05 M HgCL2 for 2 minutes and washed again three times with sterile 

water. Afterwards, the batch of juveniles was divided equally and one part was used for 

plant infection assay whereas the second part was used to evaluate the level of HsPDI 

silencing using qRT-PCR as described above. 

Ten days old A. thaliana Col-0 plants were inoculated with 60-70 J2s incubated in 

HsPDI or GFP dsRNA. Numbers of developed females and males were counted after 

12 DAI, sizes of females and syncytia associated with females were measured at 13 

DAI, whereas sizes of cysts and numbers of eggs per cyst were examined at 45 DAI. 

All measurements were conducted under a Leica M165C stereo microscope using 

manufacturer’s software. Experiments were repeated three times with 12 plants per 

treatment in each experiment. The obtained data were merged and analysed using the 

Student’s t-test. 
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Syncytium anatomy and ultrastructure 

Segments of roots containing nematode induced syncytia were dissected from 

Arabidopsis Col-0 plants inoculated with HsPDI or GFP dsRNA-treated juveniles at 5 

and 10 DAI. They were processed for light and transmission electron microscopy as 

described by (Daneshkhah et al., 2013). Semi-thin sections (3 μm thick) taken on a 

Leica RM2165 microtome (Leica) were stained with hot 1% (w/v) aqueous solution of 

Crystal violet (Sigma, St. Louis, MI, USA) for 1 min at 65 °C. They were examined 

with an Olympus AX70 ‘Provis’ (Olympus, Tokyo, Japan) light microscope equipped 

with an Olympus DP50 digital camera. Ultra-thin sections (70–80 nm thick) taken on a 

Leica UCT ultramicrotome (Leica Microsystems) were collected and on formvar-

coated (Fluka, Buchs, Switzerland) single-slot copper grids and stained with uranyl 

acetate (Fluka) and lead citrate (Sigma) (Golinowski et al., 1996). They were examined 

with an FEI 268D ‘Morgagni’ transmission electron microscope (FEI, Hillsboro, OR, 

USA) operating at 80 kV. The images were recorded with an SIS ‘Morada’ digital 

camera (Olympus SIS, Münster, Germany) at 10 Mpix resolution. The images were 

equalized for similar contrast and brightness, resized and cropped using Adobe 

Photoshop graphic software. 

Survival of H. schachtii and HsPDI expression check under the H2O2 stress  

Around 100-150 freshly hatched J2s were incubated in 0, 5, 10, 25 mM of H2O2. Dead 

nematodes were counted after 15, 30, 45 and 60 min and percentage of survival was 

calculated. Treatments were replicated three times and experiment was repeated three 

times. To check HsPDI gene expression under H2O2 stress, J2s were incubated for 30 

min in 5 or 10 mM H2O2, and washed in sterile tap water. J2s incubated in sterile tap 

water were used as a control. RNA was extracted, cDNA was generated and expression 

of HsPDI was quantified by qRT-PCR as described above. Three biological replicates 

were carried out and each one was replicated three times. 

Effect of HsPDI depletion on nematode survival under the H2O2 stress 

Around 150 freshly hatched J2s were incubated overnight in solution of HsPDI dsRNA 

and in GFP dsRNA as described above and then washed in tap water. Afterwards, the 

J2s were incubated in 5 mM H2O2 or in tap water as a control for 30 min. The numbers 

of dead J2s were counted and their percentage was calculated and analysed using 

Student’s t-test. Each treatment consisted of 4 replicates and the experiment was 

repeated 4 times. 
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Construct generation and production of transgenic HsPDI expressing plants 

The ORF of the HsPDI with no signal peptide was cloned into the binary Gateway over-

expression vector pMDC83 to obtain a C-terminal fusion with GFP (Curtis & 

Grossniklaus, 2003) using the primers listed in Table S2. The construct was transferred 

to Agrobacterium tumefaciens GV3101::pMP90 strain (Sparkes et al., 2006) and 

transformed into A. thaliana Col-0 using the floral dip method (Clough & Bent, 1998). 

The transformed plants were selected for hygromycin resistance on modified 0.2 Knop 

medium and grown for 3 generations to obtain homozygous lines for infection assays. 

The expression of HsPDI in homozygous lines was confirmed using qRT-PCR as 

described previously (Pfaffl, 2001). 

The homozygous lines were grown on Murashige and Skoog media (MS) plates for 

10 days. The number of lateral roots, main root length, fresh root weight and fresh 

shoot weight were measured and compared with Col-0. The experiment was repeated 

3 times and each experiment consists of 10 plants for each line. After phenotyping, 

plants were infected with H. schachtii as described above.  

Agroinfiltration and subcellular localization of HsPDI 

A. tumefaciens transformed with HsPDI::pMDC83 construct was grown overnight in 

50 ml of YEB liquid medium (Sparkes et al., 2006) supplemented with 10 mg*mL-1 

gentamycin, 50 mg*mL-1 kanamycin and 50 mg*mL-1 rifampicin to an OD600 of 0.8 

in an incubator/shaker at 28 ºC. Bacteria were pelleted then they were re-suspended in 

an infiltration buffer (Sparkes et al., 2006). Bacterial suspensions were diluted with the 

infiltration buffer to get the required OD600 of 1. After incubation for 4h at RT, the 

transformed bacteria were injected in the leaves abaxial side of 6 week-old Nicotiana 

benthamiana plant using 1 mL hypodermic syringe without needle. For co-infiltration 

of RNA silencing inhibitor P19 and the apoplastic marker, equal volumes of a bacterial 

suspensions harbouring pBin61::P19 (Voinnet et al., 2003), HsPDI::pMDC83 and 

apoplastic marker constructs were mixed and injected. To perform co-localization 

experiments in the apoplast, the N-terminal region of a membrane-localized receptor-

like-kinase (At4g31250) was amplified and cloned in frame with mCherry under the 

control of the 35S CaMV promoter and terminator. The cloning of only N-terminal 

region assured the delivery of fusion protein into extracellular region. The complete 

expression cassette was further cloned with restriction enzyme SdaI into the binary 
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vector pGreenII (Hellens et al., 2000) resulting in a pGreen-apo-mCherry marker. The 

primers sequences are given in table S2. Infiltrated plants were incubated in the growth 

chamber (16hrs light, 8hrs dark and at 25ºC) for 6 days. Slides were made from the 

infiltrated leaves and examined for the presence of fluorescence signal using Zeiss 

CLSM 710 with and without plasmolysis with 1M NaCl2.  

ROS measurement in HsPDI over-expressing plants  

ROS production in Col-0 and transgenic HsPDI over-expressing plants after treatment 

with bacterial peptide flg22 was measured on leaf disc samples using luminol-based 

assay and 96 wells plate luminometer Mithras LB 940 (Berthold Technologies) as 

described by Prince et al. (2014). Light emission was measured in relative units over 

120 min long incubation period and analysed using instrument software. Data was 

tabulated and analysed statistically using Student’s t-test. Experiments were repeated 

three times by using 4 leaf discs in each time as technical replicates. Total ROS 

production was calculated and presented. 

2.4 Results 

Sequence analysis of HsPDI  

BLAST results revealed 100 % similarity of hsp3 (AF273730.1) with one of the contigs 

in our draft transcriptome. The contig was extracted and further analysed.  A detailed 

sequence analysis showed that the resulted contig contains a signal peptide of 22 amino 

acid residues and lacks a transmembrane domain. Further domain analysis with NCBI 

CD search program revealed four conserved TRX domains (a,b,b´,a´) with two catalytic 

domains (Cys-Gly-His-Cys), as outlined in Figure 1A. This arrangement of the 

domains is a classical feature of the protein disulfide isomerase family members. For 

that reason, the described sequence was annotated as HsPDI. 

Alignment results of HsPDI with other PDIs from different organisms showed high 

conserved active domains (CGHG) in eukaryotic organisms including some protozoans 

(supporting information Figure S1). However, overall the highest level of sequence 

similarity among PDIs was within nematodes (identity > 70%). In comparison, 

similarity was less to the other organisms PDIs (supporting information Table S1) 

HsPDI is expressed in oesophageal glands during early parasitic stages 
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We used in situ hybridization to localise the expression of the HsPDI in the pre-parasitic 

juveniles of H. schachtii. The labelled antisense riboprobe of HsPDI gave a clear signal 

in the dorsal gland cell of the pre-parasitic J2s (Figure 1B). To further investigate the 

expression pattern of HsPDI during different developmental stages of H. schachtii, we 

used the qRT-PCR using cDNA generated from nematode RNA isolated at different 

pre-parasitic (eggs and freshly hatched J2s) and parasitic developmental stages (J3s, 

J4s and young females). HsPDI expression level increased during the sedentary stages 

of nematode development, reaching its maximum in J3 with 15-fold increase compared 

with unhatched J2 in eggs. In J4s and young females, expression decreased, 

respectively, to 2.3 and 1.6-fold compared with unhatched J2s in eggs and hatched pre-

parasitic J2s (Figure 1C). 

HsPDI is involved in parasitism 

To analyse whether HsPDI plays a role in parasitism, we performed in vitro RNAi 

targeting HsPDI (see methods for details). Our results showed that RNAi caused a 

significant decrease in the transcript abundance of HsPDI in J2s of H. schachtii (see 

supporting information Figure S2). Next we infected the roots of Arabidopsis wild-

type plants with nematodes soaked in dsRNA targeted against HsPDI or GFP and 

counted the number of females and males at 12 DAI. We also measured the average 

sizes of females, associated syncytia and cysts and counted the average number of eggs 

per cyst. Our analysis showed no significant difference in number of infecting 

nematodes found on plants infected with J2s treated with dsRNA targeting HsPDI 

compared to those treated with dsRNA targeting GFP (Figure 2A). However, the 

average size of syncytia, average size of females, average size of cysts and average 

number of eggs per cyst were reduced significantly in plants infected with juveniles 

treated with dsRNA against HsPDI compared with GFP (Figure 2B-3E).  

To characterise further these differences, we examined the anatomical and 

ultrastructural features of syncytia induced by HsPDI or GFP dsRNA-treated juveniles, 

we performed a detailed time-course analysis via light and transmission electron 

microscopy. To obtain comparable materials for these analyses, we took sections in the 

middle region of syncytia. At 5 DAI, syncytia induced by HsPDI dsRNA-treated 

juveniles were composed of a similar number of elements as syncytia induced by the 

GFP dsRNA-treated control juveniles (Figure 3A and 3B). Nevertheless, the 

hypertrophy of a single syncytial element were lower in HsPDI silenced nematodes. 
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The openings were also observed to be narrower than those found in syncytia induced 

by GFP dsRNA-treated juveniles. At 10 DAI, the differences between syncytia induced 

by HsPDI and GFP dsRNA-treated juveniles were less obvious (Figure 3C and 3D), 

but the number and extent of cell wall openings were lower and the regions with 

confluent cytoplasm were smaller in syncytia induced by HsPDI dsRNA-treated 

juveniles.  

Parallel examinations of the ultrastructure of syncytial elements revealed 

developmental abnormalities in syncytia induced by HsPDI dsRNA-treated juveniles. 

They showed differences in the electron density of the cytoplasm, the organisation and 

composition of endoplasmic reticulum (ER) and vacuole formation. First of all, 

cytoplasm electron density was lower in syncytia induced by HsPDI dsRNA-treated 

juveniles at 5 DAI (syncytia associated with sedentary J2) and 10 DAI (syncytia 

associated with young females) than in syncytia induced by GFP dsRNA-treated 

juveniles (Figure 4A, B, C vs 4E, F). However, this difference was less pronounced 

when comparing syncytia at 10 DAI (Figure 4C, D vs. 4G, H). In addition, large 

organelle-free regions were present in syncytia induced by HsPDI dsRNA-treated 

juveniles at 5 DAI (Figure 4A, B). At the interface to the organelle-containing 

cytoplasm, small vesicles or dilated cisterns of accumulated ER appeared (Figure 4A, 

B). Secondly, the organization and composition of the ER differed strongly between 

syncytia induced by both groups of juveniles. In control syncytia, numerous cisternae 

of ER were present (Figure 4F), whereas they were almost absent in syncytia induced 

by HsPDI dsRNA-treated juveniles at 5 DAI (Figure 4C). Interestingly the total 

number of ER cisternae decreased during syncytia development in both groups. At 10 

DAI they were still quite numerous in syncytia induced by GFP dsRNA-treated 

juveniles (Figure 4G, H), but completely absent in syncytia induced by HsPDI dsRNA-

treated juveniles (Figure 4C, D). The ER system in syncytia induced by HsPDI 

dsRNA-treated juveniles consisted predominantly of tubular ER that occupied large 

regions of syncytial cytoplasm (Figure 4A, C). Tubular ER was present also in syncytia 

induced by GFP dsRNA-treated juveniles, but never appeared alone in any syncytial 

element (Figure 4E-H). Thirdly, syncytia induced by HsPDI dsRNA-treated juveniles 

were strongly vacuolated at 10 DAI (Figure 4C, D). These vesicles were apparently 

formed from dilating cisternae of ER that accumulated at the interface between the 

organelle-free and organelle-containing regions of syncytial cytoplasm observed at 5 
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DAI (Figure 4A-H). Other organelles such as nuclei, plastids or cell walls, displayed 

no structural changes (Figure 4A-H), and their ultrastructure was typical as described 

for syncytial elements (Golinowski et al., 1996; Sobczak et al., 1997).  

To analyse the function of HsPDI in more detail, we produced transgenic Arabidopsis 

plants over-expressing HsPDI (35S::HsPDI-GFP). The relative expression of HsPDI in 

transgenic lines was measured using qRT-PCR (supporting information Figure S3). A 

detailed phenotypic analysis did not reveal any significant differences in plant growth 

as indicated by number of lateral roots, length of main root, fresh root weight and fresh 

shoot weight between HsPDI expressing plants and Col-0 (supporting information 

Figure S4). Next, we analysed these lines for susceptibility via nematode infection 

assay and found that at least one of the HsPDI expressing lines was more susceptible 

to H. schachtii infection as compared with wild-type control (Figure 5A). However, 

considering significantly higher average female, cyst, and syncytium sizes, both HsPDI 

expressing lines appear to be more susceptible than the wild type Col-0 plants (Figure 

5B-5C). Furthermore, the average number of eggs were also increased significantly 

compared with the control (Figure 5D).  

HsPDI expression is triggered by H2O2 and increases H2O2 tolerance 

We tested whether treating J2s with H2O2 influence the survival of nematodes. To test 

vitality, pre-parasitic J2s were soaked in 5, 10 or 25 mM H2O2 and the percentage of 

dead juveniles was counted after 15, 30, 45, and 60 min. We found that J2s can survive 

up to 30 min in 10 mM H2O2 without significantly increased mortality rate (Figure 

6A), but prolonged treatment substantially increased mortality of J2s. Next, we used 

qRT-PCR to analyse the expression of HsPDI in response to H2O2.  By analysing the 

juveniles that were exposed to H2O2 (5 or 10 mM) for 30 min, we found a significant 

increase in transcript abundance of the HsPDI when compared with water-treated 

control J2s (Figure 6B). 

We examined the mortality rate of HsPDI or GFP dsRNA-treated J2s after soaking 

them in 5mM H2O2 for 30 min. As a control, we incubated dsRNA-treated J2s in water 

(Figure 6C). We observed a significantly lower percentage of J2s that survived in H2O2 

in case of HsPDI dsRNA-treated nematodes, indicating that HsPDI plays a role in 

protecting J2 from the impact of the exogenous H2O2. Following up on these results, 

we investigated whether HsPDI could modulate the plant endogenous ROS burst. We 
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incubated the plants leaf discs in bacterial peptide flg22 and total ROS burst was 

measured in HsPDI expressing transgenic plants and wild type Col-0. We observed a 

significant decrease in total ROS in both transgenic plant lines expressing the HsPDI 

to half of the total amount of ROS produced by Col-0 plants (Figure 6D, supporting 

information Figure S5 ).   

HsPDI is localised in the plant apoplastic space 

To determine the sub-cellular localization of the HsPDI protein inside the host cells, 

we transiently expressed HsPDI::GFP in Nicotiana benthamiana epidermal cells with 

the constitutive cauliflower mosaic virus (CaMV) 35S promoter and assessed its 

localization by co-infiltrate it with an apoplastic marker under the confocal microscope 

(Figure 7A-D). Our observations clearly showed that GFP signal was localized in the 

cell periphery and co-localized with the mCherry signal. To further investigate the 

specificity of subcellular localization, we induced plasmolysis by adding 1 M NaCl to 

the leaf tissue. Upon dissociation of plasma membrane from the cell wall, the signal 

was observed in the apoplastic space indicating the localization of HsPDI in outer cell 

periphery (Figure 7E-H).  

2.5 Discussion  

Plant endo-parasitic nematodes spend most of their life cycle inside host tissue. To 

establish parasitism, nematodes have evolved a repertoire of physical and chemical 

tools including secretions of proteinaceous and non-proteinaceous effectors into the 

host tissues (Hewezi et al., 2010; Hamamouch et al., 2012; Lozano-Torres et al., 2014). 

In the current work, we have cloned a full-length HsPDI from H. schachtii based on 

information from nematode transcriptome and characterised its role in facilitating 

parasitism.  

HsPDI encodes a 22-amino acid, signal peptide at its N-terminal and lacks a 

transmembrane domain. Moreover, four thioredoxin domains and two active catalytic 

motifs were also detected (CGHC and CGHC) (Figure 1A). Being a typical PDI 

protein, HsPDI contains the main structural building block. It also contains a-type 

domains containing two cysteines in a CXXC active-site motif with an intervening GH 

sequence, which is the most common CGHC motif in the PDIs (Kozlov et al., 2010). 

Presence of a signal peptide and lack of a transmembrane domain supported the role of 

HsPDI as a putative effector (Wang et al., 2001; Jones et al., 2009). Previous studies 
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have shown that the active catalytic motifs are important for the protein activity as 

mutations in the active site domains result in the loss of protein functions (Kim & 

Mayfield, 2002). It was also shown that, as a virulent factor, mutating the active motifs 

of the PpPDI1 abolished necrosis-inducing activity of the oomycete plant parasitic 

Phytophthora parasitica, indicating that the cell death-inducing function might be 

related to the catalytic properties (Meng et al., 2015). Here we showed that the active 

catalytic motifs are highly conserved in the tested sequences from various eukaryotes 

(supporting information Figure S1).  

The observation that transcript for HsPDI was localized in oesophageal gland cells 

supports the hypothesis that the HsPDI protein is secreted into the host tissues to 

facilitate parasitism (Maier et al., 2013; Mitchum et al., 2013). Furthermore, our 

expression analysis found that transcript abundance for HsPDI was increased 

significantly during early stages of infection reaching its maximum at 5 DAI, which 

coincides with rapid enlargement of the nematode induced syncytium (Golinowski et 

al., 1996). This particular expression pattern points towards the importance of HsPDI 

in the early stages of infection including syncytium formation and maintenance. This 

hypothesis is further supported by results from infection assays where silencing HsPDI 

expression via RNAi led to impaired nematode development and ultrastructural and 

anatomical abnormalities in associated syncytium. Additionally, the described set of 

ultrastructural features strongly resembles the ultrastructure of syncytia associated with 

developing male juveniles (Sobczak et al., 1997). This suggests that syncytia induced 

by HsPDI depleted-nematodes may suffer from a shortage of nutrients, which can lead 

to smaller females with a lower numbers of eggs. Earlier studies suggest that in H. 

schachtii (i) sex determination is regulated epigenetically by the composition and 

amount of nutrients withdrawn from syncytia (Müller et al. 1982), (ii) sex 

differentiation occurs during the sedentary late J2 stage (Wyss, 1992). Therefore we 

conclude that HsPDI dsRNA-treated juveniles can induce fully functional syncytia that 

support their development into females during J2 sedentary stage. Afterwards these 

syncytia start to develop structural abnormalities. Theses abnormalities are similar to 

ultrastructural features of syncytium senescence typically occurring in degrading 

syncytia associated male J4 and adult males which had ceased feeding. The impaired 

function of their syncytia makes associated females developing smaller and producing 

fewer eggs. 
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It has been shown previously that ROS oxidize DNA, proteins, and lipids, which causes 

damage to the cellular organelles and inhibits cell functions (Baker & Orlandi, 1995). 

Plant-parasitic nematodes encodes various antioxidant enzymes, such as superoxide 

dismutase (SOD), catalase, ascorbate, p-phenylenediamine-pyrocatechol (PPD-PC), o-

dianisidine, guaiacol isoperoxidases, peroxiredoxins and glutathione peroxidases, 

which are important for parasitism and could have protective function against ROS 

(Molinari & Miacola, 1997; Robertson et al., 2000; Jones et al., 2004; Dubreuil et al., 

2011). The fact that HsPDI expression was elevated in presence of exogenous H2O2 and 

that silencing the expression of HsPDI using dsRNA decrease the tolerance of 

nematodes to 5 mM H2O2 points to the role of HsPDI to protect the nematode. These 

observations are supported by previous studies where similar expression pattern was 

observed for M incognita peroxiredoxins. Silencing peroxiredoxins expression of M 

incognita impaired the nematode infectivity on tomato and their tolerance to exogenous 

H2O2 (Dubreuil et al., 2011). 

Our data for subcellular localization showed that HsPDI (without signal peptide) is 

localized in apoplast; however, this observation also raises the question of how an 

effector that is putatively secreted into the cytoplasm of infected tissues is ultimately 

translocated to the apoplastic space. Although the exact mechanism is currently 

unknown, it is plausible that host trafficking machinery is manipulated to deliver 

effectors into the apoplastic space (Wang et al., 2010; Ali et al., 2015).  

In plants, apoplastic ROS are actively produced through the action of NADPH oxidases 

and class III peroxidases, but the biological significance and the mechanism by which 

these ROS are scavenged during the plant–nematode interaction are not well 

understood. Recently, it was shown that H. schachtii infection of Arabidopsis plants 

stimulates ROS burst via host NADPH oxidases (RbohD and RbohF). Surprisingly, 

knocking out RbohD and RbohF restricted nematode development and nurse cell 

formation and triggered massive cell death upon nematode infection (Siddique et al., 

2014). Combining the previous studies with our result we conclude that although ROS 

are needed for successful nematode infection, they are harmful for the plants and 

nematodes when exceeding a certain level. Therefore, nematode not only induce ROS 

burst, but they also manipulate their levels for optimal infection and less plant damage. 

HsPDI is proposed as one of the effectors which may serve this purpose. Alternatively, 

it is possible that Rbohs are guarded by a nucleotide-binding and leucine-rich repeat 
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protein (NLR), leading to a strong immune response in mutants deficient in Rboh genes 

upon infection (Kadota et al., 2014; Holbein et al., 2016). 

In conclusion, our results strongly indicate that HsPDI is a nematode effector that is 

secreted into host tissues and become a part of the host antioxidant mechanisms as plant 

ROS scavenger not only during invasion but also during sedentary parasitism. 

Clarifying further details of the interplay between various ROS-producing and ROS-

scavenging systems during plant-nematode interaction will provide exciting 

information on nematode parasitism.  
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2.6 Figures  

 

Figure 2.1 Structure and functional annotation of HsPDI and expression pattern of 

HsPDI gene. (A) Detailed amino acid sequence of HsPDI protein with predicted signal 

peptide (grey), thioredoxin domains (a and a´in red, b and b´ in green) and functional 

catalytic active site (asterisks). (B) In situ hybridization of DIG-labelled antisense 

HsPDI probe to pre-parasitic J2s showed transcripts localized inside the oesophageal 

gland Bars: 50 μm. (C) The relative expression levels of HsPDI mRNA quantified using 

qRT-PCR. The fold change values of changes in HsPDI mRNA abundance in pre-

parasitic J2, J3, J4, and female relative its abundancy in eggs. Data are averages of three 

biologically independent experiments, each consisting of three technical replicates. 

Bars represent standard errors of the mean values. H. schachtii actin gene was used as 

an internal control to normalize gene expression level. 

  



Chapter2: Protein Disulfiede Isomerase (HsPDI) a novel effector of Heterodera schachtii 

------------------------------------------------------------------------------------------------------- 

41 
 

 

 

Figure 2.2 Effect of HsPDI silencing on H. schachtii parasitism. Figures show 

susceptibility parameters representing the parasitism of the nematodes that were soaked 

in the HsPDI dsRNA compared with those nematodes which were soaked in GFP 

dsRNA as a negative control (A) Average number of males, females and total 

nematodes developed on Arabidopsis Col-0 plant. (B) Average sizes of syncytia at 13 

DAI (C) Average sizes of females at 13 DAI. (D) Average sizes of cysts at 45 DAI. (E) 

Average numbers of eggs inside cysts. Data points represent mean of three independent 

experiments. Bars represent standard errors of the mean values. Asterisks indicate 

significance according to Student's t-test (P<0.05). 
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Figure 2.3 Anatomy of nematode-induced syncytia. Light microscopy images of cross 

sections of syncytia at (A,B)  5 DAI and (C,D) 10 DAI induced in Arabidopsis Col-0 

roots upon infection with J2s treated with HsPDI dsRNA (A,C) or GFP dsRNA (B,D). 

Selected syncytial elements are marked with asterisks and cell wall openings are 

pointed with arrows. Abbreviations: N, nematode; X, xylem. Bars: 20 µm. 
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Figure 2.4 Ultrastructure of nematode-induced syncytia. Transmission electron 

microscopy images of cross sections of syncytia at 5 (A, B, E, F) and 10 DAI (C, D, 

G, H) induced in Arabidopsis Col-0 roots upon infection with J2s treated with HsPDI 

dsRNA (A-D) or GFP dsRNA (E-H). Asterisks indicate organelle-free regions in 

syncytial cytoplasm, arrow-heads point to dilated cisternae at the interface of organelle-

free region and regular syncytial cytoplasm. Abbreviations: CW, cell wall; cER, 

cisternal endoplasmic reticulum; tER, tubular endoplasmic reticulum; Ne, necrosis; Nu, 

nucleus; Ph, phloem; Pl, plastid; S, syncytium; V, vacuole/vesicle. Bars: 5 µm (A, C, 

E, G) and 2 µm (B, D, F, H). 
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Figure 2.5 Effect of HsPDI expression on Arabidopsis susceptibility to H. schachtii 

infection. Stable transformed Arabidopsis plants expressing HsPDI gene (Line 1.1 and 

2.1) were infected with J2s of H. schachtii. Susceptibility parameters were. (A) Average 

numbers of females, males and total nematodes per plant. (B) Average sizes of females 

and syncytia at 13DAI. (C) Average sizes of cysts at 45 DAI. (D) Average numbers of 

eggs inside cysts. Data represent three independent experiments. Bars indicate standard 

errors of the mean values. Asterisks indicate significance compared with control 

according to Student's t-test (with P<0.05).  
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Figure 2.6 HsPDI expression is triggered by H2O2 and increases H2O2 tolerance. (A) 

Mortality rate of freshly-hatched J2s in H2O2. (B) The relative HsPDI mRNA 

expression levels in freshly hatched J2s quantified using qRT-PCR after soaking for 30 

min in 5 and 10 mM H2O2. The fold change values were calculated in H2O2 incubated 

nematodes relative to J2s soaked in sterile distilled water (0mM H2O2). (C) Effect of 

HsPDI silencing on H2O2 stress tolerance, freshly hatched J2s of H. schachtii were 

soaked in HsPDI dsRNA or GFP dsRNA as a control. dsRNA-treated nematodes were 

soaked in 5mM H2O2 or in sterile water and alive nematodes were counted after 30 min. 

(D) ROS bursts in response to the bacterial elicitor peptide flg22 was measured in 

relative light units (RLU) in plants expressing HsPDI and compared with Col-0 using 

luminol-based assay after 120 min-long incubation. Data are averages from three 

biologically independent experiments, each consisting of three technical replicates. 

Bars represent standard errors of mean values. Asterisk indicates significance according 

Student's t-test (with P <0.05).  
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Figure 2.7 Subcellular localization of HsPDI:GFP within Nicotiana benthamiana leaf 

epidermal cell. Observation was done at 6 days post inoculation with Agrobacterium 

infiltrated at OD600nm = 1 (A-D) Florescent signal in the outer cell periphery. (E-H) 

The signal localized in the outer cell periphery after plasmolysis in 1 M NaCl for 10 

min. (A, E) Green fluorescence originated from HsPDI:GFP fusion protein. (B, F) Red 

fluorescence originated from apoplastic marker::mCherry fusion protein. (C, G) 

Merged image shows the red and the green signal in orange. (D, H) Merged image 

shows the florescent signal in bright field. Bars = 10μm.  
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Supporting information  

 

Figure 2.S1 Multiple sequence alignment of the a and a´ thioredoxin damains from 

HsPDI and PDIs from other organisms. The regions with red colour background show 

the conserved sequences with high similarity. The blue coloured background represent 

the non-conserved sequences. The sequence in the black box shows the active catalytic 

motifs (CGHC). Alignment was performed using CLC Main Workbench (V7.7.3). 
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Figure 2.S2 Silencing of HsPDI expression in J2s via RNA interference. Freshly 

hatched J2s were incubated in HsPDI dsRNA or GFP dsRNA as negative control. Bars 

represent standard errors of mean values. Experiment was repeated three times. 

Asterisk indicates significance according to Student's t-test (with P <0.05). 

 

Figure 2.S3 Expression of HsPDI transcripts in transgenic Arabidopsis confirmed by 

qRT-PCR. The qRT-PCR was performed on two independent T3, homozygous 

Arabidopsis lines. The expression of the transgene was determined in relation to the 

Arabidopsis housekeeping gene Actin. Bars represent standard errors of mean values. 
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Figure 2.S4 Effect of ectopic expression of HsPDI on Arabidopsis growth. The 

following parameters were analysed: (A) root and shoot fresh weight (B) number of 

lateral roots per plant (C) length of main root compared with Col-0. Data represent the 

average of three independent experiments with 10 plants per each. Bars represent 

standard error of the mean. Asterisk marks indicates significance in a student's t-test 

(with P <0.05). 
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Figure 2.S5 ROS bursts in response to the bacterial elicitor peptide flg22 in transgenic 

lines. ROS burst was measured in relative light units (RLU) in plants expressing HsPDI 

and compared with Col-0 using luminol-based assay after 30, 60, 90 and 120 min-long 

incubation. Data are averages from three biologically independent experiments, each 

consisting of three technical replicates. Bars represent standard errors of mean values. 

Asterisk indicates significance according Student's t-test (with P <0.05).  

 

 

Figure 2.S6 Subcellular localization of HsPDI:GFP within transgenic Arabidopsis 

thaliana roots. Florescent signal of HsPDI::GFP was observed under confocal 

microscope in the apoplast of the root cells. (A) Dark filed (B) bright field (C) Merged 

photo. Bars = 10μm. 

 

Table 2.S1 Details of sequences used for phylogeny analysis 
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Species Contig name/ Accession number  Identity %  

Ancylostoma ceylanicum EYC45980 76.6 

Necator americanus XP_013298836 74.8 

Haemonchus contortus CDJ86767 76.5 

Ascaris suum ERG84937 71.3 

Brugia malayi XP_001897232 36.9 

Ostertagia ostertagi CAD29445 71.5 

Toxocara canis KHN78570 72.9 

Strongyloides ratti CEF66381 70.5 

Trichinella nelsoni KRX16041 56.8 

Caenorhabditis elegans NP_491995 73.3 

Phytophthora parasitica  XP_008914616 36.9 

Phytophthora sojae XP_009520350 36.9 

Saprolegnia parasitica  KDO30563 37.7 

Albugo laibachii CCA26649 32.8 

Mus musculus NP_035162 33.8 

Homo sapiens NP_000909 34 

Arabidopsis thaliana NP_851234 31 

Triticum aestivum BAO79451 31.7 

Chlamydomonas reinhardtii XP_001701755 33.3 

Plasmodium falciparum CAC15387 30.2 

Toxoplasma gondii XP_002371293 32.3 

Saccharomyces cerevisiae NP_009887 31.9 

Magnaporthe oryzae XP_003710672 37.8 

Leishmania major AAN75008 28.9 

Trypanosoma cruzi XP_821173 31 
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Table 2.S2 Primer labels and sequences used in the study 

Primer label Primer sequence  

HsPDI-In situ-F GAAGGAGAAAGCAAGCTG 

 HsPDI -In situ-R TGCACTTTGCGCTTGTAA  

HsPDI -qRT-PCR- F CGAACAATCCACCGACCCTC 

HsPDI -qRT-PCR- R ACATTAGGGGAGAAGGAG 

Hs-Actin-F CGTGACCTCACTGACTACCT 

Hs-Actin-R CGTAGCACAACTTCTCCTTG 

RNAi-F TAATACGACTCACTATAGGGAGA GAAGGAGAAAGCAAGCTG 

RNAi-R CATACGATTTAGGTGACACTATAG TGCACTTTGCGCTTGTAA  

HsPDI Localization Fw ATGAATAGTGTTTTATCGATC 

HsPDI Localization Rw GAGTTCCTCAGCCTTTGC 

At-Actin-F  ACAGCAGAGCGGGAAATTGT 

At-Actin-R AGCAGCTTCCATTCCCACAA 

Rlk Fw gcCCATGGCAATGACCCGTGATGACAAATTC 

RlkNter Rw gcCCATGGGCGGACGAGTGTATCTGCACGG 
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3.1 Summary 

The beet cyst nematode Heterodera schachtii causes major yield losses in sugar beet. 

Understanding the interaction between H. schachtii and its host plant is important for 

developing a sustainable management system. Nematode effectors play a crucial role 

in initializing and sustaining successful parasitism. In our study, we identified a gene 

(Hs-Tyr) encoding a tyrosinase functional domain (PF00264). We describe Hs-Tyr as a 

novel nematode effector. Hs-Tyr is localized in the nematode esophageal gland. Up-

regulation of its expression coincided with the parasitic developmental stages of the 

nematode. Silencing Hs-Tyr by RNA interference made the treated nematodes less 

virulent. When RNAi-treated nematodes succeeded in infecting the plant, developing 

females and their associated syncytia were significantly smaller than the controls. 

Ectopically expressing the Hs-Tyr effector in Arabidopsis increased plant susceptibility 

to H. schachtii, but not to the root-knot nematode Meloidogyne incognita. Interestingly, 

expressing Hs-Tyr in the plant promoted plant growth and changed the root 

architecture. Additionally, the presence of Hs-Tyr in the plant caused changes in the 

homeostasis of several plant hormones especially auxin and ethylene precursor the 

aminocyclopropane-carboxylic acid. 
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3.2 Introduction  

Plant parasitic nematodes (PPNs) cause massive yield losses in many important crops 

and are therefore considered as a major problem in crop production 1. The beet cyst 

nematode H. schachtii is an important sedentary parasite of sugar beet2. In the cysts, 

the eggs can hibernate for many years in the soil environment. When conditions are 

favorable, the infective second stage juveniles (J2s) hatch from the eggs and spread in 

the soil.  When they reach a host root, they enter it and migrate through the cells into 

the vascular cylinder. There they search for a specific cell that is used to establish the 

initial syncytial cell (ISC)3,4. From ISC a highly active syncytial nurse cells systems 

develops through the fusion of neighboring cells5. The hypertrophic and 

hypermetabolic syncytium serves as the only source of nutrients of the developing 

juveniles. The nematodes undergo three molts until reaching the adult stage; males 

leave the root in a vermiform shape, whereas females grow to a lemon-like shape, 

rupture the root cortex, but continue feeding and remain sedentary. After mating, 

females produce eggs inside their bodies until they eventually die; their cuticles turn 

into brown-tanned cysts containing the eggs.  

Since the nematodes become sedentary upon feeding, they rely on their syncytia as the 

sole source of nutrition throughout their life cycle. Therefore, initiating and maintaining 

the syncytium is the key factor for the nematodes successful parasitism. As a result, 

nematodes are equipped with effectors which support their parasitism by manipulating 

the host plant through suppression of plant defenses, and altering developmental and 

physiological processes3,6,7. 

Recent molecular studies have focused on the identification and characterization of 

effectors in order to understand their function in the plant-nematode interaction. Some 

effectors are able to modulate the plant defenses during the parasitism process, either 

by mimicking plant proteins or manipulating the plant defense. For example, a recent 

study found that the H. schachtii effector 4F01 is mimicking plant annexin and, by 

doing so, alters the host defenses against nematodes8. In another example, effector 

10A06 has been shown to interact with spermidine synthase, and this interaction 

disturbs the host´s ability to produce defense-associated compounds such as salicylic 

acid9. According to a recent report, effector 30C02 binds and inhibits the pathogenesis 

related protein β-1,3-endoglucanase in the infected Arabidopsis plants and increases 
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host susceptibility to nematode infection10. Nematode effectors can also affect basal 

immune responses. Basal defenses may be triggered by cell wall fragments produced 

during the nematode’s migration through the root or by unidentified PAMPs.  However, 

H. schachtii venom-allergen like protein (VAP) acts as an apoplastic immune repressor 

which dampens the plant’s immune responses. Overexpressing the VAP in Arabidopsis 

also increased the plant susceptibility to unrelated pathogens, suggesting that it 

interferes with defense responses to different biotic stresses11. 

In addition to effectors that seem to target plant defenses, nematodes are also able to 

produce molecules with hormone activity. These effectors enhance the plant’s 

physiological activities to the benefit of the nematodes. Recently, H. schachtii juveniles 

were shown to secret cytokinins into the feeding site, which stimulate cell division and 

growth for feeding site formation12. Additionally, nematodes secrete peptides which 

mimic plant peptide hormones CLEs and allow the nematode to be able to 

developmentally reprogram the root cells in order to initiate and maintain its feeding 

site13. 

Based on the results of the analysis of the transcriptome of a H. schachtii, we identified 

a novel candidate effector that encodes a nematode protein with a Tyrosinase domain 

(Hs-Tyr). Tyrosinases are copper monooxygenases that catalyze the hydroxylation of 

monophenols and the oxidation of o-diphenols to o-quinols. These proteins are 

polyphenol oxidases that are involved in formation of pigments such as melanin and 

other polyphenolic compounds. They exist in prokaryotes as well as in eukaryotes.  

Within the Hs-Tyr sequence we found that it contains a signal peptide and lacks a 

transmembrane domain suggesting that it is a secreted protein. We showed that the Hs-

Tyr is transcribed in the esophageal gland and is required for successful nematode 

parasitism. Moreover, expressing the Hs-Tyr in Arabidopsis increased the plants’ 

susceptibility to H. schachtti, increased vegetative growth and induced hormonal 

changes, suggesting that Hs-Tyr affects plant growth and development to support 

nematode parasitism. 

3.3 Results 

Sequence domains prediction and phylogenetic analysis  
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The transcriptome analysis of H. schachtii J2s using next generation sequencing 

(Illumina) revealed a sequence that we designated Hs-Tyr (accession No. KU975565). 

It contains a tyrosinase domain (E-value: 3.2E-11), defensin_2 (E-value: 0.0043), and 

4 SHK domains like (E-value: 2.2E-34) as predicted by pfam domain analysis. Further 

sequence analysis predicted that the protein contained a signal peptide of 19 amino 

acids and lacked any transmembrane domains.  Aligning Hs-Tyr to other tyrosinases 

from several nematode species revealed a high level of sequence and structure 

similarity. In comparison to Hs-Tyr, Ce-tyr4 (Caenorhabitis elegans), 

Nab_25123_c0_seq1 (Nacobus aberrans), and GPLIN_000202700 (Globodera 

pallida) have the most similar organization of functional domains. The phylogenetic 

analysis of nematode tyrosinases showed that tyrosinases of plant parasites cluster 

separately from that of free living and animal parasitic nematodes. Furthermore, within 

the cluster of plant parasitic nematodes, the tyrosinases of the cyst- and root knot-

nematodes cluster separately (Figure 3.1).   

The Hs-Tyr localization and expression profile analysis 

To localize Hs-Tyr expression in the nematode body we performed a whole mount in 

situ hybridization on the pre-infective J2s. The hybridized riboprobe was visualized 

within the esophageal gland cells of the J2s (Figure 3.2a), while no signal appeared in 

the negative control using the sense probe (Figure 3.2b). We further studied the 

expression profile of Hs-Tyr in correlation with the eggs, J2s, J3s, J4s, females and late 

females by qRT-PCR amplification using stage specific cDNA. Results showed that 

Hs-Tyr expression was the lowest in eggs compared with the infective stages. The 

expression of Hs-Tyr was not significantly changed in pre-parasitic J2s, but there was 

a massive increase in expression in the later life stages when the nematodes had started 

feeding. The highest expression was in J3s. Later, gene expression decreased in J4s and 

female stages. The high expression of Hs-Tyr in the parasitic stages compared to the 

pre-parasitic stages suggests that it plays a role in nematode parasitism (Figure 3.2c).  

 

The effect of Hs-Tyr silencing and ectopic expression in the plant on nematode 

infection 

In order to analyze the role of Hs-Tyr for H. schachtii parasitism, we silenced Hs-Tyr 

in the nematodes by RNA-interference. Soaking the pre-parasitic J2s in Hs-Tyr dsRNA 
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knocked down 80% of the endogenous Hs-Tyr transcript compared with nematodes 

treated with GFP dsRNA (Figure 3.S1). In a next experiment, plants were inoculated 

with the dsRNA treated nematodes.  Soaked nematodes were clearly affected in 

development. The numbers of males and females per plant (12 days after inoculation 

(DAI)) decreased significantly compared with nematodes soaked in the GFP dsRNA 

control (Figure 3.3a). Total nematode infection decreased by 50% (Figure 3.3b). The 

average female size was also reduced significantly compared with the GFP-treated 

nematodes (Figure 3.3c). Syncytia associated with Hs-Tyr treated nematodes were 

significantly smaller, reaching a size of 0,2 mm2 compared with 0,27 mm2 in the control 

(Figure 3.3d).  

In order to examine whether expressing Hs-Tyr in Arabidopsis affects susceptibility to 

H. schachtii infection, three separate transgenic Arabidopsis lines ectopically 

expressing 35s::Hs-Tyr were infected with J2s. The transgenic lines showed increased 

susceptibility to nematode infection. The total number of nematodes and the number of 

mature females increased significantly in lines 2.3 and 5.7 while no significant increase 

was found in line 14.1 (Figure 3.4a and 4b). Similarly, the size of the mature females 

and their associated syncytia was increased significantly in the overexpression lines 2.3 

and 5.7 while line 14.1 showed no significant difference (Figure 3.4c and 4d). We then 

analyzed the susceptibility of the transgenic plant lines to other sedentary nematodes. 

Therefore they were infected with M. incognita, but the number and size of galls did 

not change compared with the wild type Col-0 (Figure 3.S2). 

Ectopic expression of Hs-Tyr in Arabidopsis stimulates plant growth and 

modulates root architecture 

Growth and development of the transgenic Arabidopsis plants ectopically 

expressing the Hs-Tyr were analyzed and compared with Col-0.  The Hs-Tyr expressing 

lines did not show changes in root length and root weight compared with Col-0 (Figure 

3.S3), but the root architecture was significantly changed. The number of lateral roots 

compared to the Col-0 plants was higher (Figure 3.5a) and the shoot weight and growth 

was significantly increased (Figure 3.5b, c and d). 

Ectopic expression of Hs-Tyr triggers changes in plant hormone homeostasis 

To explain the changes of the plant growth, endogenous hormones were measured in 

Hs-Tyr expressing Arabidopsis roots and compared with the wild type Col-0 using 
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HPLC-MS. Roots of the line 2.3, which showed the highest susceptibility were 

analyzed and compared with Col-0 roots. Results showed that level of auxins precursor 

indole-3-acetonitrile as well as content of IAA metabolites was significantly increased 

in Hs-Tyr expressing plants (Figure 3.5). Jasmonate precursor cisOPDA concentration 

was lower in the transgenic plants while no significant change of the jasmonic acid and 

jasmonate isoleucine was observed. Concentration of the immediate ethylene precursor 

1-aminocyclopropane-1-carboxylic acid (ACC) was higher in the roots of transgenic 

plants compared with Col-0. No significant changes were detected in the SA 

concentration (Figure 3.5). 

Hs-Tyr localization in Nicotiana benthamiana leaves  

To investigate the action site of the Hs-Tyr in the plant, a transient transformation of N. 

benthamiana leaves was performed. The leaves were infiltrated with the Agrobacterium 

expressing Hs-Tyr::GFP and checked for green fluorescence after 5 days. Results 

showed that the protein was translated and its fluorescent signal was localized in the 

cytoplasm of the N. benthamiana leaf cells (Figure 3.6).   

3.4 Discussion 

H. schachtii can dramatically decrease the yield of sugar beet. Understanding the 

mechanisms by which nematodes manipulate the plants may give clues in search for 

novel management strategies. Recent advances in techniques such as the RNAseq and 

next generation sequencing facilitate mining of plant parasitic nematode genes involved 

in the parasitism14,15. The ability of H. schachtii to infect the model host plant A. 

thaliana16 opens additional perspectives in studying gene functions. Using available 

transcriptomic data of H. schachtii we identified a putative effector that may play a role 

in the nematode parasitism. The bioinformatic analysis of the predicted amino acid 

sequence showed the presence of a signal peptide and a lack of transmembrane 

domains, which is a strong indication that the protein is secreted.  These criteria have 

been used as standards for screening secreted nematode effectors in other labs17,18. 

Furthermore, checking for the functional domain(s) showed the presence of a 

Tyrosinase like domain that is, up to our knowledge, the first time to be described in 

relation to nematode plant-parasitism. Phylogenetic analysis revealed Hs-Tyr 

homologues in plant parasitic, animal parasitic and free-living nematodes. The 

constructed phylogenetic tree displays a relation to other nematodes (Figure 3.1a). It 

shows that Ascaris spp. is clustering separately from C. elegans and plant parasitic 
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nematode species. Furthermore, cyst nematodes form a subcluster separate from root-

knot nematodes within the plant parasitic nematode cluster.  This separation may also 

hint to a functional divergence and could explain why the Hs-Tyr transgenic lines were 

more susceptible to cyst nematodes but not to root-knot nematodes.   

Supported by several experimental approaches we show that Hs-Tyr contributes to 

successful parasitism of the cyst nematode. First, we found that Hs-Tyr expression is 

exclusively observed within the dorsal oesophageal gland by using whole mount in situ 

hybridization, suggesting that the protein is secreted from the dorsal gland into the 

plant.  Secondly, we showed a dramatic increase in Hs-Tyr expression after Arabidopsis 

infection, which is further linking Hs-Tyr expression with a role in parasitism. 

Knocking down Hs-Tyr by RNAi resulted in approximately 80% decrease of Hs-Tyr 

expression. This result is in a range that was found in previous studies on gene silencing 

by RNAi19. The Hs-Tyr-silenced nematodes were suffering throughout their life stages 

as indicated by the small size of females and associated syncytia (Figure 3.2). This 

findings are similar to previous studies, where it was shown that reduced expression of 

nematode effectors is obstructing nematode development in plants11,20. Furthermore, 

we showed that expressing Hs-Tyr in the Arabidopsis plants increased the plant 

susceptibility to the cyst nematodes. Remarkably, this holds true only for H. schachtii, 

but not for the root-knot nematode M. incognita. We therefore conclude that Hs-Tyr 

functions specifically within a pathway supporting an efficient H. schachtii parasitism, 

while being redundant for M. incognita.   

We did not observe any hypersensitive responses in the infiltrated N. benthamiana 

leaves and in the transgenic plant, suggesting that Hs-Tyr was not recognised by the 

plant immune system. This assumption is in agreement with the lack of significant 

changes in JA and SA levels. According to previous analyses some nematode effectors 

induced a hypersensitive response, however, Hs-Tyr obviously does not belong to this 

type of effectors21. 

Interestingly, Hs-Tyr expression in the plant caused changes in the plant growth 

represented by increasing the plant lateral roots and increasing the shoot weight, both 

features that may be related to the observed changes in hormone homeostasis. We 

showed that auxin biosynthesis was enhanced, as indicated by higher content of both 

auxin precursor and auxin metabolites in the transgenic plant.  This may explain 

increased shoot growth as well as stimulation of lateral root formation. Auxin 
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homeostasis in roots is well known to determine lateral root formation22. Hyper-

susceptibility of the Hs-Tyr overexpression plants to nematodes could be correlated to 

the hormonal changes in two ways. First, high concentration of the plant ACC/ET 

results in higher attraction of the infective J2s to the roots, which leads to the increase 

of the number of J2s infecting the plant. This explanation is supported by previous 

studies which showed that root exudates of ET-overexpressing mutants are more 

attractive to nematodes23. Furthermore, treating the plant with ethephon as a source of 

ET, increased the plant attraction to the pre-infective J2s. In contrast, the plant ACC 

inhibition was triggered by the aminooxyacetic acid treatment decreased the number of 

females and males developed on the plants24. Secondly, a lower concentration of the 

jasmonic acid increases susceptibility of the transgenic plants towards J2s. In fact, it 

was shown that JA is a main player during the early plant defence against nematode 

infection. On the other hand, nematodes were shown to trigger the up-regulation of 

plant genes which suppress JA-based defence during the infection24. Additionally, the 

Arabidopsis mutants DELAYED DEHISCENCE 2 (dde2) and LIPOXYGENASE 6 

(lox6), which are deficient in JA biosynthesis showed higher susceptibility towards H. 

schachtii and increased female development compared to wild-type plants24. These 

results indicate that Hs-Tyr interferes with plant growth pathways and triggers 

hormonal changes promoting nematode parasitism12, 25, 26.  

Our results clearly entitle Hs-Tyr as an esophageal gland effector protein playing an 

important role during parasitism of H. schachtii. Functional analysis of the proteins 

suggests a mode of action through changes in the homeostasis of plant hormones. 

3.5 Methods 

Plant growth and nematode culture 

Transgenic lines and the Col-0 wild type Arabidopsis thaliana L. Heyn plants were 

grown aseptically on agar medium supplemented with modified Knop’s nutrient 

solutions for H. schachtii infection and on MS medium for M. incognita under 

conditions described previously16. 

Mature cysts were collected from white mustard (Sinapis alba L.) cvar. Albatros plants 

in funnels and hatched in 3mM ZnCl2
16. The freshly hatched pre-parasitic second stage 

juveniles (J2s) were collected for direct RNA extraction, infecting the Arabidopsis 

plants for post infective stages collection and for infection assay. 
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The M. incognita J2s were collected from egg masses cultured on tomato grown in the 

greenhouse. Eggs were isolated from egg masses on tomato roots with 1.5% sodium 

hypochlorite and rinsed with water on a 25-µm sieve. Eggs were hatched in a solution 

of 2ml of gentamycin sulphate (22.5 mg.ml-1) and 150 µl of nystatin (10.000 U.ml-1) in 

30 ml water for 4 days at room temperature in the dark. The hatched nematodes were 

collected and further surface sterilized as described previously 27. Briefly, nematodes 

were surface sterilized by incubation for 20 min in 0.5% (w/v) streptomycin/ penicillin 

solution, for 20 min in 0.1% (w/v) ampicillin/gentamycin solution, for 5 min in sterile 

tap water, and for 3 min in 0.1% (v/v) chlorhexidine solution. The nematodes were 

subsequently washed three times in sterile tap water then used for infection. 

Infection assay 

Nematode infection assays on Arabidopsis plants either for the RNA interference 

(RNAi) experiments or on Hs-Tyr overexpression lines were performed for the H. 

schachtii as described before28. Briefly, seeds were plated for ten days on 0.2% Knop 

medium. Plants were inoculated with 60-70 J2 nematodes per plant. Various 

susceptibility parameters including, number of male and female nematodes per plant 

was counted after 12 DAI. On the following day, average size of female nematodes and 

associated syncytia were measured.  Each experiment contained 12 plants per line. 

For M. incognita infection, ten days old plants on MS media were infected with 100 

nematodes per plant. Number and size of galls were collected after 22 days. Ten plants 

per line and wild type Col-0 were infected. All measures were taken using Leica 

M165C Binocular (Leica Microsystems, Wetzlar, Germany) and Leica Application 

Suite software. Experiments for both nematodes were repeated three times and 

statically analysed using the Student’s t-test.  

Sequence analysis and phylogeny  

Hs-Tyr was determined as one of the predicted putative secreted protein (PSPs) in H. 

schachtii transcriptome assembly (Elashry et al. unpublished). The Hs-Tyr sequence 

was translated using CLC genomics workbench (V8.0) and analysed to predict the 

longest ORF and functional domain(s) by Pfam database (http://pfam.xfam.org/) and 

HMMER algorithm29, signal peptide by signalP4 server30, and transmembrane domain 

by TMHMM31. 
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Hs-Tyr homologs in other nematode species were identified using BLASTP search 

against the nr database in the NCBI database. Further, we downloaded transcriptomes 

of M. incognita32, M. hapla33, Nacobus aberrans14, H. avenae34 and G. pallida35. All 

transcriptomes were examined by CLC genomics workbench (V8.0) to identify Hs-Tyr 

homologues. All Hs-Tyr homologues (Table S1) were analysed structurally to confirm 

similarities of their functional domains and aligned to each other to build a phylogenetic 

tree by UPGMA algorithm with distance measured by Jukes-Cantor and 1000 

bootstraps (CLC genomics workbench V.8.0). 

In situ hybridization 

Subsequent PCR was performed on gene specific PCR product using primers in Table 

S2 with presence of DIG-labelled deoxynucleotide triphosphates (dNTPs) (Roche). 

Riboprobes were prepared using single sense primer (negative control) and the 

antisense primer. The riboprobes hybridized in pre-parasitic J2s as described 

previously36. The hybridized nematodes were visualized using the DMI2000 compound 

microscope (Leica Microsystems). 

Developmental expression pattern analysis  

Real time quantitative PCR was used to analyse the Hs-Tyr transcript at different 

developmental stages of H. schachtii using a gene specific primers (Table S2). Around 

3000 eggs and 3000 pre-paparsitic J2s were collected directly from cysts. Around 500-

600 nematodes were collected manually by separating them from the A. thaliana roots 

after 5, 10, 15, 20 DAI representing J3s, J4s, females and late females respectively. 

RNA was extracted using NucleoSpin RNA kit (MACHEREY-NAGEL) following the 

manufacture´s protocol. The first strand cDNA was synthesized using the High-

Capacity cDNA Reverse Transcription Kit (Applied Biosystems) in presence of the 

oligo-dT primer. The resulted cDNA were tested for the expression changes using the 

Stepone Plus Real-Time PCR System (Applied Biosystems) following the 

amplification conditions: 95ºC for 15 s and 60ºC for 30 s (40 cycles). Each sample 

contained 10 μl of Fast SYBR Green qPCR Master Mix (Invitrogen), 9 μl of the primer 

mix with final concentration 1μM for each primer, 1 μl of cDNA. The amplified data 

were analysed using one step system to create Ct values. The resulted data were 

analysed and relative expression was calculated37. Actin was used as internal control 

for all experiments. Three biological replicates from each stage were used with three 

technical replicates.   
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RNA interference and Hs-Tyr silencing in nematodes 

Hs-Tyr specific dsRNA was generated following the manufacturer’s instructions of 

MEGAscript T7 kit (Ambion, Life Technologies). The GFP DNA fragment was 

amplified to synthesise dsRNA as a negative control.  

Freshly hatched nematode were soaked for one day in 50 µL soaking mix (1µg/µL 

dsRNA (25µL), 10x soaking buffer (5µL), 100mM spermidine (1.5µL), 500mM 

octapamine (5µL), nematodes in water (13.5µL)). After that, nematodes were 

washed three times with sterile water and sterilized using HgCl2 for 4 min. 

Nematodes were washed three times with fresh water. After sterilization, 

nematodes were divided to two parts. One part was used to evaluate the gene 

expression after silencing by qPCR. While, the second part was used to infect the 

Arabidopsis plants as described above. 

Construct generation and N. benthamiana agroinfiltration 

The Hs-Tyr without signal peptide-encoding region was cloned in the binary expression 

vector pMDC83 using primers in Table S2. The pMDC83 vector contains C-terminal 

GFP fusion protein driven by 2x 35S promoter38. The Hs-Tyr::GFP construct was 

transformed in Agrobacterium tumefaciens strain GV3101::pMP9039. The transformed 

Agrobacterium were grown overnight in 50ml YEB liquid medium with 10 mg.ml-1 

gentamycin, 50 mg.ml-1 kanamycin and 50 mg.ml-1 rifampicin to an OD600 of 0.8 in 

an incubator/shaker at 28 ºC. Bacteria were harvested by centrifugation at 4000 rpm for 

7 min at room temperature. The pellet was suspended in infiltration buffer39. Bacterial 

suspensions were diluted in the infiltration buffer to OD600= 1. After incubation for 2-

4h at RT, Agrobacteria suspensions were infiltrated in the abaxial side of 6 weeks N. 

benthamiana leaves by using 1 ml syringe. For co-infiltration of RNA silencing 

inhibitor P19, an equal volume of a bacterial suspension harbouring pBin61-P1940 was 

mixed and infiltrated. Infiltrated plants were incubated for 5 days. Slides were made 

from the infiltrated leaves and tested under the confocal microscope for detecting the 

green signal in the leaves cells. 

Production of transgenic lines, phenotyping and infection assays 

The Hs-Tyr ORF was cloned into the binary Gateway overexpression vector 

pB2GW741.  The construct was then transferred to the A. tumefaciens strain GV3101, 

and transformed into Arabidopsis thaliana Col-0 using the floral dip method42.  The 
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seeds of the primary transformants were selected for BASTA resistance (Bayer 

CropScience, Wolfenbüttel, Germany).  In the T2 generation, the lines segregating 3:1 

(BASTA-resistant/BASTA-susceptible) were grown to the next generation.  Three 

homozygous lines were selected on BASTA plates and used in the study. 

The selected lines were grown on MS plates for 10 days, then several phenotypes were 

measured and compared with the wild type plants Col-0 including the number of the 

lateral roots, the main root length, the fresh root weight and the fresh shoot weight. The 

experiment was repeated 3 times and each experiment consists of 9 plants for each line. 

The selected lines were subjected as well to the infection of the nematodes H. schachtii 

and M. incognita as mentioned in the infection assay section.   

Hormone analysis 

Root samples were collected from ten-day Hs-Tyr plants and Col-0. Root samples were 

purified and analysed as mentioned previously43,44. Briefly, samples were homogenized 

with a ball mill (MM301, Retsch) and extracted in cold (-20 °C) methanol/water/formic 

acid (15/4/1 v/v/v). The following labelled internal standards (10 pmol/sample) were 

added: 13C6-IAA (Cambridge Isotope Laboratories); 2H4-SA (Sigma-Aldrich); 2H2-

OxIAA and 2H5-JA(Olchemim). Extracts were purified using SPE-C18 column 

(SepPak-C18, Waters) and a mixed mode reverse phase–cation exchange SPE column 

(Oasis-MCX, Waters). Hormone metabolites were analysed using HPLC (Ultimate 

3000, Dionex) coupled to a hybrid triple quadrupole/linear ion trap mass spectrometer 

(3200 Q TRAP, Applied Biosystems). Quantification of hormones was done using the 

isotope dilution method with multilevel calibration curves (r2 > 0.99). Data processing 

was carried out with Analyst 1.5 software (Applied Biosystems). Data are presented as 

mean ± standard error.  
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3.6 Figures 

  

 

 

 Figure 3.1 Hs-Tyr phylogenetic tree for tyrosinase-like genes of several nematode 

species. Tyrosinase from cyst nematodes clusters separately from root-knot nematodes 

among plant parasites, which, on the other hand, are separated from the animal parasitic 

and free–living nematodes. Numbers on branches are the percentage of bootstrap 

(100bootstrap). 
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Figure 3.2 Hs-Tyr expression localization and profiling. (a) Localization of Hs-Tyr 

transcripts in the esophageal gland cells of H. schachtii J2s by whole mount in situ 

hybridization of digoxigenin-labeled antisense cDNA. (b) In situ hybridization negative 

control treated with digoxigenin-labeled sense probes showing no signals in the 

esophageal gland (Bar=100 μm). (c) Relative mRNA expression levels of Hs-Tyr 

quantified by qPCR in six different life stages of H. schachtii. The fold change values 

were calculated and represent changes in mRNA level in pre-infective J2s, J3, J4, 

females and late females relative to that of eggs. Data are averages of three biologically 

independent experiments, each consisting of three technical replicates. H. schachtii. 

Actin was used as an internal control to normalize gene expression level.  
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Figure 3.3 Effects of silencing Hs-Tyr on H. schachtii parasitism. The graphs show 

the results of bio-assays with J2 soaked in Hs-Tyr -specific dsRNA compared with J2 

soaked in GFP dsRNA as a negative control.  The following parameters were analysed: 

(a) number of males and females (b) total number of nematode infections (c) female 

size (d) size of syncytia. Data are based on three independent experiments (means ± 

SE). Bars represent standard error of the mean values mean. Asterisk marks 

significance in a Student's t-test (with p-value <0.05). 



Chapter 3: Heterodera schachtii Tyrosinase – like protein - a novel nematode effector  

------------------------------------------------------------------------------------------------------- 

75 
 

 

 

Figure 3.4 Effect of ectopic expression of Hs-Tyr on the development of H. 

schachtii in Arabidopsis.  The following parameters were analysed: (a) total number 

of nematode infection per plant (b) number of females per plant (c) female size (d) 

syncytium size, compared with the wild type Col-0. Data represent average of three 

independent experiments (means ± SE). Bars represent standard error of the mean. 

Asterisk marks significance in a Student's t-test (with p-value <0.05).    
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Figure 3.5 Effect of ectopic expression of Hs-Tyr on Arabidopsis growth. The 

following parameters were analysed: (a) number of lateral roots per plant (b) shoot 

weight and visible increase in the shoot growth. (c) and (d) comparison of the wild type 

Col-0 with the overexpression lines. Data represent the average of three independent 

experiments with nine plants per each. Bars represent standard error of the mean. 

Asterisk marks significance in a student's t-test (with p-value <0.05). 

  



Chapter 3: Heterodera schachtii Tyrosinase – like protein - a novel nematode effector  

------------------------------------------------------------------------------------------------------- 

77 
 

 

Figure 3.6 Concentration of various hormones (pmol.g-1FW) in roots of transgenic 

plants ectopically expressing Hs-Tyr compared with Col-0. IAA, indole-3-acetic 

acid; IAA-Asp, IAA-aspartate; IAA-Glu, IAA-glutamate; OxIAA, oxo-IAA; OxIAA-

GE = oxo-IAA-glucose ester; IAN, Indole-3-acetonitrile (IAA precursor); of jasmonic 

acid (JA), JA-isoleucine (JA-Ile), JA precursor cis-12-oxo-10,15-phytodienoic acid 

(cisOPDA), salicylic acid (SA) and 1-aminocyclopropane-1-carboxylic acid (ACC). 

Values are means ± SE, N=5; asterisks indicate significant differences (*, P˂0.05).  

 

Figure 3.7 Subcellular localization of Hs-Tyr::GFP within N. benthamiana leaf 

epidermal cell. (a) The green fluorescence originates from Hs-Tyr::GFP fusion protein 

localized in the cytoplasm of the cells. (b) Merged image shows the GFP signal in bright 

field. 

Supporting information   
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Figure 3.S1 Silencing of Hs-Tyr expression in J2s via RNA interference. Hs-Tyr 

expression was measured after incubating the J2s in Hs-Tyr dsRNA and compared 

with the J2s were incubated in GFP dsRNA as control.   

 

 

Figure 3.S2 Overexpressing the Hs-Tyr did not affect the M. incognita infection on 

Arabidopsis. Transgenic plants didn’t show any susceptibility towards nematode 

parasitism compared with the wild type Col-0 plants represented by (a) Average 

number of galls per plant (b) Average size of nematode galls. Data points represent 

average of three independent experiments (means ± SE). Bars represent standard error 

of the values mean. Significance was tested by student's t-test (with p-value <0.05).  
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Figure 3.S3 Phenotype of the transgenic Arabidopsis plants root ectopically 

expressing Hs-Tyr. (a) root length per plant (b) root weight per plant, compared with 

the wild type Col-0. Data represent average of three independent experiments with nine 

plants per each. Bars represent standard error of the mean.  Significance was tested by 

student's t-test (with p-value <0.05). 

 

 

Figure 3.S4 Relative mRNA expression level of Hs-Tyr in the transgenic 

Arabidopsis lines.  Data are averages of three biologically independent experiments, 

each consisting of three technical replicates. The plant actin was used as an internal 

control to normalize gene expression level. 
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Table 3.S1 Sequence names and accession numbers that were used in the 

phylogeny analysis  

Species Contig name/ Accession number  Source  

Meloidogyne incognita Minc10168b Abad et al. 2008 

Meloidogyne incognita Minc10168a Abad et al. 2008 

Meloidogyne incognita Minc08903 Abad et al. 2008 

Meloidogyne hapla Contig225.frtz3.gene3 Opperman et al. 2008 

Nacobbus aberrans Nab_25123_c0_seq1 Eves-van den Akker et al.2014 

Heterodera avenae Locus_2044 Kumar et al. 2014 

Globodera pallida GPLIN_000659000 Cotton et al. 2014 

Heterodera schachtii Hs-Tyr (C12694) Elashry et al. Unpublished 

Ascaris lumbricoides ALUE_0001861501 NCBI 

Ascaris suum F1KXGS_ASCSU NCBI 

Caenorhabditis elegans NP_491709 NCBI 

Caenorhabditis elegans NP_492055 NCBI 

 

Table 3.S2 Primer names and sequences used in the study 

Primer Lable Primer sequence  

Tyr-In situ-F TCCGCCGACAACATTCCA 

Tyr-In situ-R TGATGCGCTGGTGGTTTT 

Tyr-qPCR- F ACAAGCATGCGGAAAGTG 

Tyr-qPCR- R TGATGCGCTGGTGGTTTT 

Hs-Actin-F CGTGACCTCACTGACTACCT 

Hs-Actin-R CGTAGCACAACTTCTCCTTG 

RNAi-F TAATACGACTCACTATAGGGAGA AGCGACGAAGAACGAATC 

RNAi-R TAATACGACTCACTATAGGGAGA GTGTCGCCCATGAAATCT 

Loc Fw GAAGAAAAGCATGAAAAATC 

Loc Rw TGTTGGCATTCCGTTACT 

At-Actin-F  ACAGCAGAGCGGGAAATTGT 

At-Actin-R AGCAGCTTCCATTCCCACAA 
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Chapter 4: General conclusion 

Plant pathogens, including bacteria, fungi, oomycetes, and nematodes, secrete so called 

effectors to different cellular compartments of their hosts to establish parasitism, evade 

host defenses, promote pathogen propagation and gain access to target host tissues 

(Abramovitch et al., 2006; Birch et al., 2006; Block et al., 2008; Cambronne et al., 

2006; Chisholm et al., 2006; Mitchum et al., 2013; Kamoun, 2006). Effectors of 

different chemical nature have been shown to alter host-cell structure and function. 

These alterations either facilitate infection (virulence factors and toxins) or trigger 

defense responses (avirulence factors and elicitors) or both (Hogenhout et al., 2009). 

The term effector became common with the discovery of the gram-negative bacteria 

type III secretion system (T3SS), which is used to deliver proteins inside host cells 

(Abramovitch et al., 2006; Block et al., 2008; McCann & Guttman, 2008). These 

proteins trigger the hypersensitive response in resistant plants and are therefore 

considered as avirulence factors, whereas it was found later that they also contribute to 

virulence in susceptible plants. Hence, the term avirulence became restricted, since the 

same protein with an avirulence activity in incompatible interactions may display a 

positive virulence activity in compatible interactions (Hogenhout et al., 2009). 

Plant pathogens have evolved various mechanisms to deliver effectors to the host cells. 

Gram-negative bacteria use specialized secretion systems, such as T3SS which consists 

of approximately 30 different proteins to deliver effectors inside host cells. The T3SS 

is a needle-like protein appendage used as a sensory probe to detect the presence of 

eukaryotic organisms and secrete effector proteins. In this way, they are secreted 

directly from the bacterial cell into the host (Abramovitch et al., 2006; Block et al., 

2008; Galan & Wolf-Watz 2006; McCann & Guttman 2008). 

Fungi and oomycetes have different systems to deliver effectors. Effectors are delivered 

mostly via the infection structures. Some intercellularly-growing beneficial and 

pathogenic biotrophs form a special structure called haustoria. For haustorium 

formation, specialized fungal hyphae penetrate the plant cell wall and expand inside 

that cell. The haustorium is surrounded by an extrahaustorial membrane, which is a 

modified derivative of the plant cell plasma membrane. This membrane is a barrier 

where nutrients must pass sequentially through different layers reaching the haustorial 

cytoplasm (Szabo & Bushnell, 2001).  Recently, evidence emerged that haustoria take 
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part in the secretion of particular classes of host-translocated fungal and oomycete 

effectors (Catanzariti et al. 2007; Dodds et al., 2004; Whisson et al., 2007).  

In plant parasitic nematodes, effectors are thought to be released through different 

organs with openings such as amphids, phasmids, rectal gland, hypoderm and the 

esophageal glands (Haegeman et al., 2012). The majority of the identified effectors are 

believed to be injected inside the parasitized plant cell through the specialized stylet 

(Davis et al., 2008). Stylet secretions are associated with nematodes penetration, 

migration, and initiation of long term feeding site in host roots.  

In general, pathogens need to come in contact with the host in order to establish 

parasitism. Penetration and migration is associated with cell wall degrading enzymes 

to facilitate the parasites´ growth and expansion (Vanholme et al., 2007; Haegeman et 

al., 2012; Kubicek et al., 2014). After that, plant defense has to be suppressed by 

various effectors that target the host innate defense mechanisms (Mattoo et al., 2007; 

Hewezi et al., 2010; Lozano-Torres et al., 2014).  

In the last few years, several nematode effectors were identified and their function in 

the plant were elucidated and reviewed (Mitchum et al., 2013). The transcriptomic and 

metabolic changes during syncytium formation were also investigated (Szakasits et al., 

2009; Hofmann et al., 2010). It was shown that syncytium formation was accompanied 

with high expression of cell wall degredation enzymes such as pectate lyase and 

expansin families. This suggests the role of these genes to serve formation of the 

syncytia. On the other hand, defense gene expression was repressed in syncytia 

compared with control (Szakasits et al., 2009). The high accumulation of several plant 

metabolites and sugars in the syncytium indicates that nematodes orchestrate plant 

metabolic process to provide optimal nutrient supply. It is thought that these changes 

initiated and controlled by nematode effectors (Hofmann et al., 2010).  

So far, the identified effectors are involved in different stages of parasitism starting 

with penetration and migration where cell wall modifying enzymes are released to 

facilitate movement and initiate the feeding site. For example, cellulase is one of these 

enzymes that degrade the celluloses and hemicelluloses during migration, pectate lyase 

also cleaves pectate bonds to facilitate the nematode movement (Vanholme et al., 2007; 

Haegeman et al., 2012). It has been shown that cellulose binding protein is expressed 

in the early stages of the syncytia formation but not in the migratory stages and interacts 



Chapter 4: General conclusion 

------------------------------------------------------------------------------------------------------- 

87 
 

with the plant pectin methylesterase protein 3. This interaction seems to be important 

in accelerating enzymatic activities, which is a requirement for syncytium development 

(Hewezi et al., 2008).  

Hormone like effectors and growth manipulating effectors were reported to be secreted 

by nematodes. It was shown that growth manipulating effectors were used to interfere 

with the plant growth and reprogram their system to establish feeding site. Such effector 

is the Hs19C07. It interacts with the auxin influx transporter LAX3. LAX3 expression 

activates and provides auxin signaling that triggers the expression of cell wall-

modifying enzymes. LAX3-induced cell wall-modifying enzymes are expressed in the 

developing syncytium and in cells to be incorporated into the syncytium (Lee et al., 

2011). Cytokinin is one of the hormones which is mimicked by the H. schachtii. 

Siddique et al. (2015) showed for the first time that H. schachtii is able to synthesize a 

functional cytokinin and inject it into the plant in order to activate the root cell cycle.  

Since H. schachtii is a devastating pest on a wide range of economically important 

plants including sugar beet, there is an urgent need to develop sustainable control 

measures. Farmers often rely on multiple nematicide treatments, which, however, can 

have negative effects on the environment. Resistant crop varieties are also used.  The 

continuous use of such crops decrease the nematode population but will promote the 

selection of populations that overcome the plant resistance. These reasons introduce the 

necessity to understand how nematodes are able to break resistance and introduce new 

resistance traits into crops by breeding approaches. One of the approaches is to identify 

nematode effectors and their interactome in the plant. This will help to find crucial 

genes for the nematode parasitism as a target for new nematicides, or find resistant and 

susceptible genes in the plant to be used in crop breeding.  

In the presented studies, novel nematode effector proteins were identified from H. 

schachtii by using the available transcriptom data in comparison with other PPNs. 

Furthermore, a detailed functional analysis was performed to explain the role of these 

effectors during nematode parasitism.  

The availablity of new technologies such as next generation sequencing massively 

contributed to predict larger number of candidate effectors. The abillity of  H. schachtii 

to infect the model plant A. thaliana also facilitated the functional analysis of these 

candidate effectors. The short life cycle and the availiability of genetic data of A. 
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thaliana additionally accelerated these kind of studies. These available approaches 

effectivily contributed in the discovery of new effectors and elucidate the nature of their 

interaction with the plant. 

Many criteria were used for effectors screening. The in silico screening of the available 

meta-data based on presence of signal peptide and lack of  trancemembrance domains 

have been used in many labs, and helped to minimize the target genes from thousands 

to hundred of genes. Further more, presence of these genes in the exeretory organs and 

coinciding their expression with nematode parasitism decrease the number to couple of 

effectors to be studied in detail. 

In the presented studies, we used the previous criteria to identify and prove the function 

of two candidate genes as an effector proteins. Furthermore,  after expressing 

ectopically these effecctors in Arabidopsis we were able to analyze the resulted changes 

and set the basis for determining their role in the plant. Here we are suggesting two 

novel effectors, HsPDI which is involved in protecting the nematode against the plant 

ROS and Hs-Tyr that could be involved in the plant growth manipulation.  

Evidence is rising that PPN are equipped with  genes which manipulate plant ROS 

homeostasis. Lin et al., (2016) showed that the root-knot nematode Meloidogyne 

javanica expresses the effector MjTTL5 to suppress plant defense by decreasing ROS 

burst. Also many of other plant parasitic nematode had some genes which are 

speculated to be involved in ROS detoxification like the M. incognita peroxiredoxin, 

and the Globodera rostochiensis peroxiredoxins (PXN) and glutathione peroxidases 

(GXP) (Robertson et al., 2000; Jones et al., 2004; Dubreuil et al., 2011). In our study, 

we indicate that H. schachtii has one of these candidate genes termed by the HsPDI. 

We showed that presence of the HsPDI is important for the nematode viability under 

the presence of exogenous H2O2 as a ROS component. Furthermore, when HsPDI was 

expressed ectopically in the plant, the elicited ROS burst by presence of the bacterial 

peptide flg22 was reduced. This evidence supports our hypothesis that HsPDI is 

involved in the ROS pathway and also shows that HsPDI protects the nematode from 

H2O2 stress. 

On the other hand, we showed that H. schachtii has another effector protein (Hs-Tyr) 

that promotes growth and rearranges the lateral roots and increases the vegetative 

growth of Arabidopsis plants that ectopically express Hs-Tyr. It also induces changes 



Chapter 4: General conclusion 

------------------------------------------------------------------------------------------------------- 

89 
 

in the hormonal homeostasis. The hormonal changes were in favour of nematode 

parasitism. These changes increased the plant susceptibility towards H. schachtii. It has 

been shown previously that nematodes are able to manipulate and reprogram plant 

growth to supports their parasitism and produce the feeding site (Siddique et al., 2015; 

Pogorelko et al., 2016).  

The resulted data increase our knowledge and fill some gaps in the puzzle of the 

nematode effectors cocktail which is produced to facilitate parasitism. However, more 

investigation is needed concerning the effectors pathway in the plant and to find the 

plant gene(s) which are interacting with these effectors.  
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